prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, Index, Series, concat, date_range, ) import pandas._testing as tm class TestEmptyConcat: def test_handle_empty_objects(self, sort): df = DataFrame(np.random.randn(10, 4), columns=list("abcd")) baz = df[:5].copy() baz["foo"] = "bar" empty = df[5:5] frames = [baz, empty, empty, df[5:]] concatted = concat(frames, axis=0, sort=sort) expected = df.reindex(columns=["a", "b", "c", "d", "foo"]) expected["foo"] = expected["foo"].astype("O") expected.loc[0:4, "foo"] = "bar" tm.assert_frame_equal(concatted, expected) # empty as first element with time series # GH3259 df = DataFrame( {"A": range(10000)}, index=date_range("20130101", periods=10000, freq="s") ) empty = DataFrame() result = concat([df, empty], axis=1) tm.assert_frame_equal(result, df) result = concat([empty, df], axis=1) tm.assert_frame_equal(result, df) result = concat([df, empty]) tm.assert_frame_equal(result, df) result = concat([empty, df]) tm.assert_frame_equal(result, df) def test_concat_empty_series(self): # GH 11082 s1 = Series([1, 2, 3], name="x") s2 = Series(name="y", dtype="float64") res = concat([s1, s2], axis=1) exp = DataFrame( {"x": [1, 2, 3], "y": [np.nan, np.nan, np.nan]}, index=Index([0, 1, 2], dtype="O"), ) tm.assert_frame_equal(res, exp) s1 = Series([1, 2, 3], name="x") s2 = Series(name="y", dtype="float64") res =
concat([s1, s2], axis=0)
pandas.concat
import sys import pandas as pd from datetime import timedelta, datetime, date, time import API # if __name__ == '__main__': # main(sys.argv[1]) # Global constants DATA_TYPE = 'Adj Close' DAYS_LOOK_BACK = 5110 # 12*252 years expresed in days HOW_RECENT = 0 MAIN_FOLDER = 'C:/Users/champ/Python_proj/base_financial_repo/' ECONO_DATA_REPO = 'Econometric_data_repo/' META_FILE_FOLDER = 'meta_data/' GIT_IGNORE = 'C:/Users/champ/Python_proj/git_ignore/' SECURITIES_FILE = 'Securities research.csv' HOLIDAYS_FILE = 'Federal_holidays.csv' SECURITY_ARRAY = ['sectors','inx'] FRED_API = FRED_API_KEY # Your API goes here FIGURE_WIDTH = 12 FIGURE_HEIGHT = 6 LINE_WIDTH = 2 GRAPH_FONT_SIZE = 12 INX = 'spy' # Global variables #end_date = pd.Timestamp('today') end_date = pd.to_datetime('today') #end_date = pd.to_datetime('now').tz_localize("GMT").tz_convert('America/Los_Angeles') end_date = end_date.replace(hour=0, minute=0, second=0, microsecond=0) start_date = end_date - timedelta(days=DAYS_LOOK_BACK) fred = Fred(FRED_API) META_FILE_FOLDER_LOCATION = MAIN_FOLDER + ECONO_DATA_REPO + META_FILE_FOLDER securities_file_location = META_FILE_FOLDER_LOCATION + SECURITIES_FILE Securities_file_import_from_csv =
pd.read_csv(securities_file_location, sep=';')
pandas.read_csv
import gc import logging import traceback from collections import defaultdict from datetime import datetime, timedelta from multiprocessing import Process, Queue import numpy as np import pandas as pd import xarray as xr from typhon.geodesy import great_circle_distance from typhon.geographical import GeoIndex from typhon.utils import add_xarray_groups, get_xarray_groups from typhon.utils.timeutils import to_datetime, to_timedelta, Timer __all__ = [ "Collocator", "check_collocation_data" ] logger = logging.getLogger(__name__) # The names for the processes. This started as an easter egg, but it actually # helps to identify different processes during debugging. PROCESS_NAMES = [ 'Newton', 'Einstein', 'Bohr', 'Darwin', 'Pasteur', 'Freud', 'Galilei', 'Lavoisier', 'Kepler', 'Copernicus', 'Faraday', 'Maxwell', 'Bernard', 'Boas', 'Heisenberg', 'Pauling', 'Virchow', 'Schrodinger', 'Rutherford', 'Dirac', 'Vesalius', 'Brahe', 'Buffon', 'Boltzmann', 'Planck', 'Curie', 'Herschel', 'Lyell', 'Laplace', 'Hubble', 'Thomson', 'Born', 'Crick', 'Fermi', 'Euler', 'Liebig', 'Eddington', 'Harvey', 'Malpighi', 'Huygens', 'Gauss', 'Haller', 'Kekule', 'Koch', 'Gell-Mann', 'Fischer', 'Mendeleev', 'Glashow', 'Watson', 'Bardeen', 'Neumann', 'Feynman', 'Wegener', 'Hawking', 'Leeuwenhoek', 'Laue', 'Kirchhoff', 'Bethe', 'Euclid', 'Mendel', 'Onnes', 'Morgan', 'Helmholtz', 'Ehrlich', 'Mayr', 'Sherrington', 'Dobzhansky', 'Delbruck', 'Lamarck', 'Bayliss', 'Chomsky', 'Sanger', 'Lucretius', 'Dalton', 'Broglie', 'Linnaeus', 'Piaget', 'Simpson', 'Levi-Strauss', 'Margulis', 'Landsteiner', 'Lorenz', 'Wilson', 'Hopkins', 'Elion', 'Selye', 'Oppenheimer', 'Teller', 'Libby', 'Haeckel', 'Salk', 'Kraepelin', 'Lysenko', 'Galton', 'Binet', 'Kinsey', 'Fleming', 'Skinner', 'Wundt', 'Archimedes' ] class ProcessCrashed(Exception): """Helper exception for crashed processes""" pass class Collocator: def __init__( self, threads=None, name=None, #log_dir=None ): """Initialize a collocator object that can find collocations Args: threads: Finding collocations can be parallelized in threads. Give here the maximum number of threads that you want to use. Which number of threads is the best, may be machine-dependent. So this is a parameter that you can use to fine-tune the performance. Note: Not yet implemented due to GIL usage of sklearn BallTree. name: The name of this collocator, will be used in log statements. """ self.empty = None # xr.Dataset() self.index = None self.index_with_primary = False self.threads = threads # These optimization parameters will be overwritten in collocate self.bin_factor = None self.magnitude_factor = None self.tunnel_limit = None self.leaf_size = None self.name = name if name is not None else "Collocator" # If no collocations are found, this will be returned. We need empty # arrays to concatenate the results without problems: @property def no_pairs(self): return np.array([[], []]) @property def no_intervals(self): return np.array([], dtype='timedelta64[ns]') @property def no_distances(self): return np.array([]) def __call__(self, *args, **kwargs): return self.collocate(*args, **kwargs) def _debug(self, msg): logger.debug(f"[{self.name}] {msg}") def _info(self, msg): logger.info(f"[{self.name}] {msg}") def _error(self, msg): logger.error(f"[{self.name}] {msg}") def collocate_filesets( self, filesets, start=None, end=None, processes=None, output=None, bundle=None, skip_file_errors=False, post_processor=None, post_processor_kwargs=None, **kwargs ): """Find collocation between the data of two filesets If you want to save the collocations directly to disk, it may be easier to use :meth:`~typhon.collocations.Collocations.search` directly. Args: filesets: A list of two :class:`FileSet` objects, the primary and the secondary fileset. Can be also :class:`~typhon.collocations.common.Collocations` objects with `read_mode=collapse`. The order of the filesets is irrelevant for the results of the collocation search but files from the secondary fileset might be read multiple times if using parallel processing (`processes` is greater than one). The number of output files could be different (see also the option `bundle`). start: Start date either as datetime object or as string ("YYYY-MM-DD hh:mm:ss"). Year, month and day are required. Hours, minutes and seconds are optional. If not given, it is datetime.min per default. end: End date. Same format as "start". If not given, it is datetime.max per default. processes: Collocating can be parallelized which improves the performance significantly. Pass here the number of processes to use. output: Fileset object where the collocated data should be stored. bundle: Set this to *primary* if you want to bundle the output files by their collocated primaries, i.e. there will be only one output file per primary. *daily* is also possible, then all files from one day are bundled together. Per default, all collocations for each file match will be saved separately. This might lead to a high number of output files. Note: *daily* means one process bundles all collocations from one day into one output file. If using multiple processes, this could still produce several daily output files per day. skip_file_errors: If this is *True* and a file could not be read, the file and its match will be skipped and a warning will be printed. Otheriwse the program will stop (default). post_processor: A function for post-processing the collocated data before saving it to `output`. Must accept two parameters: a xarray.Dataset with the collocated data and a dictionary with the path attributes from the collocated files. post_processor_kwargs: A dictionary with keyword arguments that should be passed to `post_processor`. **kwargs: Further keyword arguments that are allowed for :meth:`collocate`. Yields: A xarray.Dataset with the collocated data if `output` is not set. If `output` is set to a FileSet-like object, only the filename of the stored collocations is yielded. The results are not ordered if you use more than one process. For more information about the yielded xarray.Dataset have a look at :meth:`collocate`. Examples: .. code-block:: python """ timer = Timer().start() if len(filesets) != 2: raise ValueError("Only collocating two filesets at once is allowed" "at the moment!") # Check the max_interval argument because we need it later max_interval = kwargs.get("max_interval", None) if max_interval is None: raise ValueError("Collocating filesets without max_interval is" " not yet implemented!") if start is None: start = datetime.min else: start = to_datetime(start) if end is None: end = datetime.max else: end = to_datetime(end) self._info(f"Collocate from {start} to {end}") # Find the files from both filesets which overlap tempoerally. matches = list(filesets[0].match( filesets[1], start=start, end=end, max_interval=max_interval, )) if processes is None: processes = 1 # Make sure that there are never more processes than matches processes = min(processes, len(matches)) total_matches = sum(len(match[1]) for match in matches) self._info(f"using {processes} process(es) on {total_matches} matches") # MAGIC with processes # Each process gets a list with matches. Important: the matches should # be continuous to guarantee a good performance. After finishing one # match, the process pushes its results to the result queue. If errors # are raised during collocating, the raised errors are pushed to the # error queue, matches_chunks = np.array_split(matches, processes) # This queue collects all results: results = Queue(maxsize=processes) # This queue collects all error exceptions errors = Queue() # Extend the keyword arguments that we are going to pass to # _collocate_files: kwargs.update({ "start": start, "end": end, "filesets": filesets, "output": output, "bundle": bundle, "skip_file_errors": skip_file_errors, "post_processor": post_processor, "post_processor_kwargs": post_processor_kwargs, }) # This list contains all running processes process_list = [ Process( target=Collocator._process_caller, args=( self, results, errors, PROCESS_NAMES[i], ), kwargs={**kwargs, "matches": matches_chunk}, daemon=True, ) for i, matches_chunk in enumerate(matches_chunks) ] # We want to keep track of the progress of the collocation search since # it may take a while. process_progress = { name: 0. # Each process is at 0 percent at the beginning for name in PROCESS_NAMES[:processes] } # Start all processes: for process in process_list: process.start() # As long as some processes are still running, wait for their results: running = process_list.copy() processed_matches = 0 # The main process has two tasks during its child processes are # collocating. # 1) Collect their results and yield them to the user # 2) Display the progress and estimate the remaining processing time while running: # Filter out all processes that are dead: they either crashed or # complete their task running = [ process for process in running if process.is_alive() ] # Get all results from the result queue while not results.empty(): process, progress, result = results.get() # The process might be crashed. To keep the remaining time # estimation useful, we exclude the crashed process from the # calculation. if result is ProcessCrashed: del process_progress[process] else: process_progress[process] = progress try: nerrors = errors.qsize() except NotImplementedError: nerrors = 'unknown' self._print_progress( timer.elapsed, process_progress, len(running), nerrors) if result is not None: yield result # Explicit free up memory: gc.collect() for process in process_list: process.join() if not errors.empty(): self._error("Some processes terminated due to errors:") while not errors.empty(): error = errors.get() msg = '\n'.join([ "-"*79, error[2], "".join(traceback.format_tb(error[1])), "-" * 79 + "\n" ]) self._error(msg) @staticmethod def _print_progress(elapsed_time, process_progress, processes, errors): elapsed_time -= timedelta(microseconds=elapsed_time.microseconds) if len(process_progress) == 0: msg = "-"*79 + "\n" msg += f"100% | {elapsed_time} hours elapsed | " \ f"{errors} processes failed\n" msg += "-"*79 + "\n" logger.error(msg) return progress = sum(process_progress.values()) / len(process_progress) try: expected_time = elapsed_time * (100 / progress - 1) expected_time -= timedelta( microseconds=expected_time.microseconds) except ZeroDivisionError: expected_time = "unknown" msg = "-"*79 + "\n" msg += f"{progress:.0f}% | {elapsed_time} hours elapsed, " \ f"{expected_time} hours left | {processes} proc running, " \ f"{errors} failed\n" msg += "-"*79 + "\n" logger.error(msg) @staticmethod def _process_caller( self, results, errors, name, output, bundle, post_processor, post_processor_kwargs, **kwargs): """Wrapper around _collocate_matches This function is called for each process. It communicates with the main process via the result and error queue. Result Queue: Adds for each collocated file match the process name, its progress and the actual results. Error Queue: If an error is raised, the name of this proces and the error messages is put to this queue. """ self.name = name # We keep track of how many file pairs we have already processed to # make the error debugging easier. We need the match in flat form: matches = [ [match[0], secondary] for match in kwargs['matches'] for secondary in match[1] ] # If we want to bundle the output, we need to collect some contents. # The current_bundle_tag stores a certain information for the current # bundle (e.g. filename of primary or day of the year). If it changes, # the bundle is stored to disk and a new bundle is created. cached_data = [] cached_attributes = {} current_bundle_tag = None try: processed = 0 collocated_matches = self._collocate_matches(**kwargs) for collocations, attributes in collocated_matches: match = matches[processed] processed += 1 progress = 100 * processed / len(matches) if collocations is None: results.put([name, progress, None]) continue # The user does not want to bundle anything therefore just save # the current collocations if bundle is None: result = self._save_and_return( collocations, attributes, output, post_processor, post_processor_kwargs ) results.put([name, progress, result]) continue # The user may want to bundle the collocations before writing # them to disk, e.g. by their primaries. save_cache = self._should_save_cache( bundle, current_bundle_tag, match, to_datetime(collocations.attrs["start_time"]) ) if save_cache: result = self._save_and_return( cached_data, cached_attributes, output, post_processor, post_processor_kwargs ) results.put([name, progress, result]) cached_data = [] cached_attributes = {} # So far, we have not cached any collocations or we still need # to wait before saving them to disk. cached_data.append(collocations) cached_attributes.update(**attributes) if bundle == "primary": current_bundle_tag = match[0].path elif bundle == "daily": current_bundle_tag = \ to_datetime(collocations.attrs["start_time"]).date() # After all iterations, save last cached data to disk: if cached_data: result = self._save_and_return( cached_data, cached_attributes, output, post_processor, post_processor_kwargs ) results.put([name, progress, result]) except Exception as exception: # Tell the main process to stop considering this process for the # remaining processing time: results.put( [name, 100., ProcessCrashed] ) self._error("ERROR: I got a problem and terminate!") # Build a message that contains all important information for # debugging: msg = f"Process {name} ({matches[0][0].times[0]} -" \ f"{matches[-1][0].times[1]}) failed\n" \ f"Failed to collocate {matches[processed]} with"\ f"{matches[processed]}\n" # The main process needs to know about this exception! error = [ name, exception.__traceback__, msg + "ERROR: " + str(exception) ] errors.put(error) self._error(exception) # Finally, raise the exception to terminate this process: raise exception self._info(f"Finished all {len(matches)} matches") def _save_and_return(self, collocations, attributes, output, post_processor, post_processor_kwargs): """Save collocations to disk or return them""" if isinstance(collocations, list): collocations = concat_collocations( collocations ) if output is None: return collocations, attributes else: filename = output.get_filename( [to_datetime(collocations.attrs["start_time"]), to_datetime(collocations.attrs["end_time"])], fill=attributes ) # Apply a post processor function from the user if post_processor is not None: if post_processor_kwargs is None: post_processor_kwargs = {} collocations = post_processor( collocations, attributes, **post_processor_kwargs ) if collocations is None: return None self._info(f"Store collocations to\n{filename}") # Write the data to the file. output.write(collocations, filename) return filename @staticmethod def _should_save_cache(bundle, current_bundle_tag, match, start_time): """Return true if the cache should be saved otherwise false """ if current_bundle_tag is None: return False elif bundle == "primary": # Check whether the primary has changed since the last time: return current_bundle_tag != match[0].path elif bundle == "daily": # Has the day changed since last time? return current_bundle_tag != start_time.date() # In all other cases, the bundle should not be saved yet: return False def _collocate_matches( self, filesets, matches, skip_file_errors, **kwargs ): """Load file matches and collocate their content Yields: A tuple of two items: the first is always the current percentage of progress. If output is True, the second is only the filename of the saved collocations. Otherwise, it is a tuple of collocations and their collected :class:`~typhon.files.handlers.common.FileInfo` attributes as a dictionary. """ # Load all matches in a parallized queue: loaded_matches = filesets[0].align( filesets[1], matches=matches, return_info=True, compact=False, skip_errors=skip_file_errors, ) for loaded_match in loaded_matches: # The FileInfo objects of the matched files: files = loaded_match[0][0], loaded_match[1][0] # We copy the data from the matches since they might be used for # other matches as well: primary, secondary = \ loaded_match[0][1].copy(), loaded_match[1][1].copy() self._debug(f"Collocate {files[0].path}\nwith {files[1].path}") collocations = self.collocate( (filesets[0].name, primary), (filesets[1].name, secondary), **kwargs, ) if collocations is None: self._debug("Found no collocations!") # At least, give the process caller a progress update: yield None, None continue # Check whether the collocation data is compatible and was build # correctly check_collocation_data(collocations) found = [ collocations[f"{filesets[0].name}/time"].size, collocations[f"{filesets[1].name}/time"].size ] self._debug( f"Found {found[0]} ({filesets[0].name}) and " f"{found[1]} ({filesets[1].name}) collocations" ) # Add the names of the processed files: for f in range(2): if f"{filesets[f].name}/__file" in collocations.variables: continue collocations[f"{filesets[f].name}/__file"] = files[f].path # Collect the attributes of the input files. The attributes get a # prefix, primary or secondary, to allow not-unique names. attributes = { f"primary.{p}" if f == 0 else f"secondary.{p}": v for f, file in enumerate(files) for p, v in file.attr.items() } yield collocations, attributes def collocate( self, primary, secondary, max_interval=None, max_distance=None, bin_factor=1, magnitude_factor=10, tunnel_limit=None, start=None, end=None, leaf_size=40 ): """Find collocations between two xarray.Dataset objects Collocations are two or more data points that are located close to each other in space and/or time. Each xarray.Dataset contain the variables *time*, *lat*, *lon*. They must be - if they are coordinates - unique. Otherwise, their coordinates must be unique, i.e. they cannot contain duplicated values. *time* must be a 1-dimensional array with a *numpy.datetime64*-like data type. *lat* and *lon* can be gridded, i.e. they can be multi- dimensional. However, they must always share the first dimension with *time*. *lat* must be latitudes between *-90* (south) and *90* (north) and *lon* must be longitudes between *-180* (west) and *180* (east) degrees. See below for examples. The collocation searched is performed with a fast ball tree implementation by scikit-learn. The ball tree is cached and reused whenever the data points from `primary` or `secondary` have not changed. If you want to find collocations between FileSet objects, use :class:`collocate_filesets` instead. Args: primary: A tuple of a string with the dataset name and a xarray.Dataset that fulfill the specifications from above. Can be also a xarray.Dataset only, the name is then automatically set to *primary*. secondary: A tuple of a string with the dataset name and a xarray.Dataset that fulfill the specifications from above. Can be also a xarray.Dataset only, the name is then automatically set to *secondary*. max_interval: Either a number as a time interval in seconds, a string containing a time with a unit (e.g. *100 minutes*) or a timedelta object. This is the maximum time interval between two data points. If this is None, the data will be searched for spatial collocations only. max_distance: Either a number as a length in kilometers or a string containing a length with a unit (e.g. *100 meters*). This is the maximum distance between two data points to meet the collocation criteria. If this is None, the data will be searched for temporal collocations only. Either `max_interval` or *max_distance* must be given. tunnel_limit: Maximum distance in kilometers at which to switch from tunnel to haversine distance metric. Per default this algorithm uses the tunnel metric, which simply transform all latitudes and longitudes to 3D-cartesian space and calculate their euclidean distance. This is faster than the haversine metric but produces an error that grows with larger distances. When searching for distances exceeding this limit (`max_distance` is greater than this parameter), the haversine metric is used, which is more accurate but takes more time. Default is 1000 kilometers. magnitude_factor: Since building new trees is expensive, this algorithm tries to use the last tree when possible (e.g. for data with fixed grid). However, building the tree with the larger dataset and query it with the smaller dataset is faster than vice versa. Depending on which premise to follow, there might have a different performance in the end. This parameter is the factor of that one dataset must be larger than the other to throw away an already-built ball tree and rebuild it with the larger dataset. leaf_size: The size of one leaf in the Ball Tree. The higher the leaf size the faster is the tree building but the slower is the tree query. The optimal leaf size is dataset-dependent. Default is 40. bin_factor: When using a temporal criterion via `max_interval`, the data will be temporally binned to speed-up the search. The bin size is `bin_factor` * `max_interval`. Which bin factor is the best, may be dataset-dependent. So this is a parameter that you can use to fine-tune the performance. start: Limit the collocated data from this start date. Can be either as datetime object or as string ("YYYY-MM-DD hh:mm:ss"). Year, month and day are required. Hours, minutes and seconds are optional. If not given, it is datetime.min per default. end: End date. Same format as "start". If not given, it is datetime.max per default. Returns: None if no collocations were found. Otherwise, a xarray.Dataset with the collocated data in *compact* form. It consists of three groups (groups of variables containing */* in their name): the *primary*, *secondary* and the *Collocations* group. If you passed `primary` or `secondary` with own names, they will be used in the output. The *Collocations* group contains information about the found collocations. *Collocations/pairs* is a 2xN array where N is the number of found collocations. It contains the indices of the *primary* and *secondary* data points which are collocations. The indices refer to the data points stored in the *primary* or *secondary* group. *Collocations/interval* and *Collocations/distance* are the intervals and distances between the collocations in seconds and kilometers, respectively. Collocations in *compact* form are efficient when saving them to disk but it might be complicated to use them directly. Consider applying :func:`~typhon.collocations.common.collapse` or :func:`~typhon.collocations.common.expand` on them. Examples: .. code-block: python # TODO: Update this example! import numpy as np from typhon.collocations import Collocator # Create the data. primary and secondary can also be # xarray.Dataset objects: primary = { "time": np.arange( "2018-01-01", "2018-01-02", dtype="datetime64[h]" ), "lat": 30.*np.sin(np.linspace(-3.14, 3.14, 24))+20, "lon": np.linspace(0, 90, 24), } secondary = { "time": np.arange( "2018-01-01", "2018-01-02", dtype="datetime64[h]" ), "lat": 30.*np.sin(np.linspace(-3.14, 3.14, 24)+1.)+20, "lon": np.linspace(0, 90, 24), } # Find collocations with a maximum distance of 300 kilometers # and a maximum interval of 1 hour collocator = Collocator() collocated = collocator.collocate( primary, secondary, max_distance="300km", max_interval="1h" ) print(collocated) """ if max_distance is None and max_interval is None: raise ValueError( "Either max_distance or max_interval must be given!" ) if max_interval is not None: max_interval = to_timedelta(max_interval, numbers_as="seconds") # The user can give strings instead of datetime objects: start = datetime.min if start is None else to_datetime(start) end = datetime.max if end is None else to_datetime(end) # Did the user give the datasets specific names? primary_name, primary, secondary_name, secondary = self._get_names( primary, secondary ) # Select the common time period of both datasets and flat them. primary, secondary = self._prepare_data( primary, secondary, max_interval, start, end ) # Maybe there is no data left after selection? if primary is None: return self.empty self.bin_factor = bin_factor self.magnitude_factor = magnitude_factor self.tunnel_limit = tunnel_limit self.leaf_size = leaf_size timer = Timer().start() # We cannot allow NaNs in the time, lat or lon fields not_nans1 = self._get_not_nans(primary) not_nans2 = self._get_not_nans(secondary) # Retrieve the important fields from the data. To avoid any overhead by # xarray, we use the plain numpy.arrays and do not use the isel method # (see https://github.com/pydata/xarray/issues/2227). We rather use # index arrays that we use later to select the rest of the data lat1 = primary.lat.values[not_nans1] lon1 = primary.lon.values[not_nans1] time1 = primary.time.values[not_nans1] lat2 = secondary.lat.values[not_nans2] lon2 = secondary.lon.values[not_nans2] time2 = secondary.time.values[not_nans2] original_indices = [ np.arange(primary.time.size)[not_nans1], np.arange(secondary.time.size)[not_nans2] ] self._debug(f"{timer} for filtering NaNs") # We can search for spatial collocations (max_interval=None), temporal # collocations (max_distance=None) or both. if max_interval is None: # Search for spatial collocations only: pairs, distances = self.spatial_search( lat1, lon1, lat2, lon2, max_distance, ) intervals = self._get_intervals( time1[pairs[0]], time2[pairs[1]] ) return self._create_return( primary, secondary, primary_name, secondary_name, self._to_original(pairs, original_indices), intervals, distances, max_interval, max_distance ) elif max_distance is None: # Search for temporal collocations only: pairs, intervals = self.temporal_search( time1, time2, max_interval ) distances = self._get_distances( lat1[pairs[0]], lon1[pairs[0]], lat2[pairs[1]], lon2[pairs[1]], ) return self._create_return( primary, secondary, primary_name, secondary_name, self._to_original(pairs, original_indices), intervals, distances, max_interval, max_distance ) # The user wants to use both criteria and search for spatial and # temporal collocations. At first, we do a coarse temporal pre-binning # so that we only search for collocations between points that might # also be temporally collocated. Unfortunately, this also produces an # overhead that is only negligible if we have a lot of data: data_magnitude = time1.size * time2.size if data_magnitude > 100_0000: # We have enough data, do temporal pre-binning! pairs, distances = self.spatial_search_with_temporal_binning( {"lat": lat1, "lon": lon1, "time": time1}, {"lat": lat2, "lon": lon2, "time": time2}, max_distance, max_interval ) else: # We do not have enough data to justify that whole pre-binning. # Simply do it directly! pairs, distances = self.spatial_search( lat1, lon1, lat2, lon2, max_distance, ) # Did we find any spatial collocations? if not pairs.any(): return self.empty # Check now whether the spatial collocations really pass the temporal # condition: passed_temporal_check, intervals = self._temporal_check( time1[pairs[0]], time2[pairs[1]], max_interval ) # Return only the values that passed the time check return self._create_return( primary, secondary, primary_name, secondary_name, self._to_original( pairs[:, passed_temporal_check], original_indices), intervals, distances[passed_temporal_check], max_interval, max_distance ) @staticmethod def _to_original(pairs, original_indices): return np.array([ original_indices[i][pair_array] for i, pair_array in enumerate(pairs) ]) @staticmethod def _get_names(primary, secondary): # Check out whether the user gave the primary and secondary any name: if isinstance(primary, (tuple, list)): primary_name, primary = primary else: primary_name = "primary" if isinstance(secondary, (tuple, list)): secondary_name, secondary = secondary else: secondary_name = "secondary" return primary_name, primary, secondary_name, secondary def _prepare_data(self, primary, secondary, max_interval, start, end): """Prepare the data for the collocation search This method selects the time period which should be searched for collocations and flats the input datasets if they have gridded variables. Returns: The datasets constraint to the common time period, sorted by time and flattened. If no common time period could be found, two None objects are returned. """ if max_interval is not None: timer = Timer().start() # We do not have to collocate everything, just the common time # period expanded by max_interval and limited by the global start # and end parameter: primary_period, secondary_period = self._get_common_time_period( primary, secondary, max_interval, start, end ) # Check whether something is left: if not primary_period.size or not secondary_period.size: return None, None # We need everything sorted by the time, otherwise xarray's stack # method makes problems: primary_period = primary_period.sortby(primary_period) primary_dim = primary_period.dims[0] secondary_period = secondary_period.sortby(secondary_period) secondary_dim = secondary_period.dims[0] # Select the common time period and while using sorted indices: primary = primary.sel(**{primary_dim: primary_period[primary_dim]}) secondary = secondary.sel( **{secondary_dim: secondary_period[secondary_dim]} ) # Check whether something is left: if not primary_period.size or not secondary_period.size: return None, None self._debug(f"{timer} for selecting common time period") # Flat the data: For collocating, we need a flat data structure. # Fortunately, xarray provides the very convenient stack method # where we can flat multiple dimensions to one. Which dimensions do # we have to stack together? We need the fields *time*, *lat* and # *lon* to be flat. So we choose their dimensions to be stacked. timer = Timer().start() primary = self._flat_to_main_coord(primary) secondary = self._flat_to_main_coord(secondary) self._debug(f"{timer} for flatting data") return primary, secondary @staticmethod def _get_common_time_period( primary, secondary, max_interval, start, end): max_interval = pd.Timedelta(max_interval) # We want to select a common time window from both datasets, # aligned to the primary's time coverage. Because xarray has a # very annoying bug in time retrieving # (https://github.com/pydata/xarray/issues/1240), this is a # little bit cumbersome: common_start = max( start, pd.Timestamp(primary.time.min().item(0)) - max_interval, pd.Timestamp(secondary.time.min().item(0)) - max_interval ) common_end = min( end, pd.Timestamp(primary.time.max().item(0)) + max_interval, pd.Timestamp(secondary.time.max().item(0)) + max_interval ) primary_period = primary.time.where( (primary.time.values >= np.datetime64(common_start)) & (primary.time.values <= np.datetime64(common_end)) ).dropna(primary.time.dims[0]) secondary_period = secondary.time.where( (secondary.time.values >= np.datetime64(common_start)) & (secondary.time.values <= np.datetime64(common_end)) ).dropna(secondary.time.dims[0]) return primary_period, secondary_period @staticmethod def _get_not_nans(dataset): return dataset.lat.notnull().values & dataset.lon.notnull().values @staticmethod def _flat_to_main_coord(data): """Make the dataset flat despite of its original structure We need a flat dataset structure for the collocation algorithms, i.e. time, lat and lon are not allowed to be gridded, they must be 1-dimensional and share the same dimension (namely *collocation*). There are three groups of original data structures that this method can handle: * linear (e.g. ship track measurements): time, lat and lon have the same dimension and are all 1-dimensional. Fulfills all criteria from above. No action has to be taken. * gridded_coords (e.g. instruments on satellites with gridded swaths): lat or lon are gridded (they have multiple dimensions). Stack the coordinates of them together to a new shared dimension. Args: data: xr.Dataset object Returns: A xr.Dataset where time, lat and lon are aligned on one shared dimension. """ # Flat: shared_dims = list( set(data.time.dims) | set(data.lat.dims) | set(data.lon.dims) ) # Check whether the dataset is flat (time, lat and lon share the same # dimension size and are 1-dimensional) if len(shared_dims) == 1: if shared_dims[0] in ("time", "lat", "lon"): # One of the key variables is the main dimension! Change this: data["collocation"] = shared_dims[0], np.arange( data[shared_dims[0]].size) data = data.swap_dims({shared_dims[0]: "collocation"}) data = data.reset_coords(shared_dims[0]) # So far, collocation is a coordinate. We want to make it to a # dimension, so drop its values: return data.drop("collocation") return data.rename({ shared_dims[0]: "collocation" }) # The coordinates are gridded: # Some field might be more deeply stacked than another. Choose the # dimensions of the most deeply stacked variable: dims = max( data["time"].dims, data["lat"].dims, data["lon"].dims, key=lambda x: len(x) ) # We want to be able to retrieve additional fields after collocating. # Therefore, we give each dimension that is no coordinate yet a value # to use them as indices later. for dim in dims: if dim not in data.coords: data[dim] = dim, np.arange(data.dims[dim]) # We assume that coordinates must be unique! Otherwise, we would have # to use this ugly work-around: # Replace the former coordinates with new coordinates that have unique # values. # new_dims = [] # for dim in dims: # new_dim = f"__replacement_{dim}" # data[new_dim] = dim, np.arange(data.dims[dim]) # data = data.swap_dims({dim: new_dim}) # new_dims.append(new_dim) return data.stack(collocation=dims) def _create_return( self, primary, secondary, primary_name, secondary_name, original_pairs, intervals, distances, max_interval, max_distance ): if not original_pairs.any(): return self.empty pairs = [] output = {} names = [primary_name, secondary_name] for i, dataset in enumerate([primary, secondary]): # name of the current dataset (primary or secondary) name = names[i] # These are the indices of the points in the original data that # have collocations. We remove the duplicates since we want to copy # the required data only once. They are called original_indices # because they are the indices in the original data array: original_indices = pd.unique(original_pairs[i]) # After selecting the collocated data, the original indices cannot # be applied any longer. We need new indices that indicate the # pairs in the collocated data. new_indices = np.empty(original_indices.max() + 1, dtype=int) new_indices[original_indices] = np.arange( original_indices.size ) collocation_indices = new_indices[original_pairs[i]] # Save the collocation indices in the metadata group: pairs.append(collocation_indices) output[names[i]] = dataset.isel(collocation=original_indices) # We have to convert the MultiIndex to a normal index because we # cannot store it to a file otherwise. We can convert it by simply # setting it to new values, but we are losing the sub-level # coordinates (the dimenisons that we stacked to create the # multi-index in the first place) with that step. Hence, we store # the sub-level coordinates in additional dataset to preserve them. main_coord_is_multiindex = isinstance( output[name].get_index("collocation"), pd.core.indexes.multi.MultiIndex ) if main_coord_is_multiindex: stacked_dims_data = xr.merge([ xr.DataArray( output[name][dim].values, name=dim, dims=["collocation"] ) for dim in output[name].get_index("collocation").names ]) # Okay, actually we want to get rid of the main coordinate. It # should stay as a dimension name but without own labels. I.e. we # want to drop it. Because it still may a MultiIndex, we cannot # drop it directly but we have to set it to something different. output[name]["collocation"] = \ np.arange(output[name]["collocation"].size) if main_coord_is_multiindex: # Now, since we unstacked the multi-index, we can add the # stacked dimensions back to the dataset: output[name] = xr.merge( [output[name], stacked_dims_data], ) # For the flattening we might have created temporal variables, # also collect them to drop: vars_to_drop = [ var for var in output[name].variables.keys() if var.startswith("__replacement_") ] output[name] = output[name].drop([ f"collocation", *vars_to_drop ]) # Merge all datasets into one: output = add_xarray_groups( xr.Dataset(), **output ) # This holds the collocation information (pairs, intervals and # distances): metadata = xr.Dataset() metadata["pairs"] = xr.DataArray( np.array(pairs, dtype=int), dims=("group", "collocation"), attrs={ "max_interval": f"Max. interval in secs: {max_interval}", "max_distance": f"Max. distance in kilometers: {max_distance}", "primary": primary_name, "secondary": secondary_name, } ) metadata["interval"] = xr.DataArray( intervals, dims=("collocation", ), attrs={ "max_interval": f"Max. interval in secs: {max_interval}", "max_distance": f"Max. distance in kilometers: {max_distance}", "primary": primary_name, "secondary": secondary_name, } ) metadata["distance"] = xr.DataArray( distances, dims=("collocation",), attrs={ "max_interval": f"Max. interval in secs: {max_interval}", "max_distance": f"Max. distance in kilometers: {max_distance}", "primary": primary_name, "secondary": secondary_name, "units": "kilometers", } ) metadata["group"] = xr.DataArray( [primary_name, secondary_name], dims=("group",), attrs={ "max_interval": f"Max. interval in secs: {max_interval}", "max_distance": f"Max. distance in kilometers: {max_distance}", } ) output = add_xarray_groups( output, Collocations=metadata ) start = pd.Timestamp( output[primary_name+"/time"].min().item(0) ) end = pd.Timestamp( output[primary_name+"/time"].max().item(0) ) output.attrs = { "start_time": str(start), "end_time": str(end), } return output @staticmethod def get_meta_group(): return f"Collocations" def spatial_search_with_temporal_binning( self, primary, secondary, max_distance, max_interval ): # For time-binning purposes, pandas Dataframe objects are a good choice primary = pd.DataFrame(primary).set_index("time") secondary = pd.DataFrame(secondary).set_index("time") # Now let's split the two data data along their time coordinate so # we avoid searching for spatial collocations that do not fulfill # the temporal condition in the first place. However, the overhead # of the finding algorithm must be considered too (for example the # BallTree creation time). This can be adjusted by the parameter # bin_factor: bin_duration = self.bin_factor * max_interval # The binning is more efficient if we use the largest dataset as # primary: swapped_datasets = secondary.size > primary.size if swapped_datasets: primary, secondary = secondary, primary # Let's bin the primaries along their time axis and search for the # corresponding secondary bins: bin_pairs = ( self._bin_pairs(start, chunk, primary, secondary, max_interval) for start, chunk in primary.groupby(
pd.Grouper(freq=bin_duration)
pandas.Grouper
#!/bin/env python3 import pandas as pd import numpy as np import glob import re from tqdm.notebook import tqdm from pathlib import Path def read_conll(input_file, label_nr=3): """Reads a conllu file.""" ids = [] texts = [] tags = [] # text = [] tag = [] idx = None for line in open(input_file, encoding="utf-8"): if line.startswith("# sent_id ="): idx = line.strip().split()[-1] ids.append(idx) elif line.startswith("#"): pass elif line.strip() == "": texts.append(text) tags.append(tag) text, tag = [], [] else: try: splits = line.strip().split("\t") token = splits[1] # the token label = splits[label_nr] # the UD Tag label text.append(token) tag.append(label) except ValueError: print(idx) return ids, texts, tags def make_lang_code_dicts(): file_path = Path(__file__).parent / "../utils/lang_codes.tsv" lang_codes = pd.read_csv(file_path, header=0, sep="\t") return {"code_to_name": pd.Series(lang_codes["English name of Language"].values, index=lang_codes["ISO 639-1 Code"]).to_dict(), "name_to_code": pd.Series(lang_codes["ISO 639-1 Code"].values, index=lang_codes["English name of Language"]).to_dict()} def make_lang_group_dict(): file_path = Path(__file__).parent / "../utils/lang_groups.tsv" return pd.read_csv(file_path, sep="\t").set_index("Language").to_dict()["Group"] def order_table(table, experiment): assert experiment in ["tfm", "acl", "acl_sentiment"], \ "Invalid experiment, must be 'tfm' 'acl' or 'acl_sentiment'" # Make sure the path is correct even when importing this function from somewhere else file_path = Path(__file__).parent / "../utils/{}_langs.tsv".format(experiment) all_langs = pd.read_csv(file_path, sep="\t", header=None).values.flatten() lang_colname = find_lang_column(table) lang_order = [lang for lang in all_langs if lang in table[lang_colname].values] if isinstance(table.columns, pd.MultiIndex): # Check for hierarchical columns level = 0 else: level = None new_table = table.copy() # Make a copy so the original does not get modified new_table.insert(0, "sort", table[lang_colname].apply(lambda x: lang_order.index(x))) new_table = new_table.sort_values(by=["sort"]).drop("sort", axis=1, level=level).reset_index( drop=True) return new_table def convert_table_to_latex(table, experiment): assert experiment in ["tfm", "acl", "acl_sentiment"], \ "Invalid experiment, must be 'tfm', 'acl' or 'acl_sentiment'" table = order_table(table, experiment) # In case it's not already in correct order # Retrieve language groups in correct order and add them to table table = add_lang_groups(table, "group") # Latex output print("\n".join([" & ".join(line) + r"\\" for line in table.astype(str).values])) # Pandas output return table def run_through_data(data_path, f, table=None, **kwargs): code_dicts = make_lang_code_dicts() code_to_name = code_dicts["code_to_name"] # Find all data files in path data_files = glob.glob(data_path + "*/*.csv") + glob.glob(data_path + "*/*.conllu") task = data_path.split("/")[-2] assert task in ["ud", "sentiment"], data_path + " is not a valid data path." for file_path in tqdm(data_files): lang_code = file_path.split("\\")[1] lang_name = code_to_name[lang_code] match = re.findall(r"[a-z]+\.", file_path) if match and match[0][:-1] in ["train", "dev", "test"]: dataset = match[0][:-1] else: print(file_path, "is not a valid data path, skipping") continue table = f({"file_path": file_path, "lang_name": lang_name, "lang_code": lang_code, "dataset": dataset}, table, **kwargs) return table def find_lang_column(table): r = re.compile(r".*[lL]ang") if isinstance(table.columns, pd.MultiIndex): # Check for hierarchical columns matches = list(filter(r.match, table.columns.levels[0])) # Check in top level else: matches = list(filter(r.match, table.columns)) if matches: return matches[0] else: return None def add_lang_groups(table, colname="group"): # Retrieve language groups in correct order and add them to table in human readable format lang_to_group = make_lang_group_dict() lang_colname = find_lang_column(table) table.insert(loc=0, column=colname, value=table[lang_colname].map(lang_to_group)) return table def find_table(r, task="", by="colname"): possible_tasks = ["", "pos", "sentiment"] possible_by = ["colname", "path"] assert task in possible_tasks, "Task must be one of " + str(possible_tasks) assert by in possible_by, "'by' must be one of " + str(possible_by) all_colnames = pd.read_csv(Path(__file__).parent / "../utils/all_colnames.tsv", sep="\t") r = re.compile(r) matches = list( filter(r.match, all_colnames.loc[all_colnames["path"].apply(lambda x: task in x), by])) if len(matches) == 0: raise Exception("No match.") if by == "colname": paths = all_colnames.loc[ all_colnames["path"].apply(lambda x: task in x) & all_colnames["colname"].isin( matches), "path"].values if len(paths) == 0: raise Exception("No match.") print("\nMatched pairs: ", *enumerate(zip(paths, matches)), sep="\n") i = int(input("Choose pair: ")) path = paths[i] colname = matches[i] else: print("\nMatched paths", *enumerate(np.unique(matches)), sep="\n") i = int(input("Choose path: ")) path = matches[i] cols = pd.read_csv(path).columns print("\nPossible columns", *enumerate(
pd.read_csv(path)
pandas.read_csv
""" Timing and Telemetry Data - :mod:`fastf1.core` ============================================== The Fast-F1 core is a collection of functions and data objects for accessing and analyzing F1 timing and telemetry data. Data Objects ------------ All data is provided through the following data objects: .. autosummary:: :nosignatures: Weekend Session Laps Lap Telemetry SessionResults DriverResult The :class:`Session` object is mainly used as an entry point for loading timing data and telemetry data. The :class:`Session` can create a :class:`Laps` object which contains all timing, track and session status data for a whole session. Usually you will be using :func:`get_session` to get a :class:`Session` object. The :class:`Laps` object holds detailed information about multiples laps. The :class:`Lap` object holds the same information as :class:`Laps` but only for one single lap. When selecting a single lap from a :class:`Laps` object, an object of type :class:`Lap` will be returned. Apart from only providing data, the :class:`Laps`, :class:`Lap` and :class:`Telemetry` objects implement various methods for selecting and analyzing specific parts of the data. Functions --------- .. autosummary:: :nosignatures: get_session get_round """ import collections from functools import cached_property import logging import warnings import numpy as np import pandas as pd import fastf1 from fastf1 import api, ergast from fastf1.utils import recursive_dict_get, to_timedelta logging.basicConfig(level=logging.INFO, style='{', format="{module: <8} {levelname: >10} \t{message}") D_LOOKUP = [[44, 'HAM', 'Mercedes'], [77, 'BOT', 'Mercedes'], [55, 'SAI', 'Ferrari'], [16, 'LEC', 'Ferrari'], [33, 'VER', 'Red Bull'], [11, 'PER', 'Red Bull'], [3, 'RIC', 'McLaren'], [4, 'NOR', 'McLaren'], [5, 'VET', '<NAME>'], [18, 'STR', 'Aston Martin'], [14, 'ALO', 'Alpine'], [31, 'OCO', 'Alpine'], [22, 'TSU', 'AlphaTauri'], [10, 'GAS', 'AlphaTauri'], [47, 'MSC', 'Haas F1 Team'], [9, 'MAZ', 'Haas F1 Team'], [7, 'RAI', '<NAME>o'], [99, 'GIO', 'Alfa Romeo'], [6, 'LAT', 'Williams'], [63, 'RUS', 'Williams']] def get_session(*args, **kwargs): """ .. deprecated:: 2.2 replaced by :func:`fastf1.get_session` """ # TODO remove warnings.warn("`fastf1.core.get_session` has been deprecated and will be" "removed in a future version.\n" "Use `fastf1.get_session` instead.", FutureWarning) from fastf1 import events return events.get_session(*args, **kwargs) def get_round(year, match): """ .. deprecated:: 2.2 will be removed without replacement; Use :func:`fastf1.get_event` instead to get an :class:`~fastf1.events.Event` object which provides information including the round number for the event. """ # TODO remove warnings.warn("_func:`fastf1.core.get_round` has been deprecated and will " "be removed without replacement in a future version.\n" "Use :func:`fastf1.get_event` instead to get an " ":class:`~fastf1.events.Event` object which provides " "information including the round number for the event.", FutureWarning) from fastf1 import events event = events.get_event(year, match) return event.RoundNumber class Telemetry(pd.DataFrame): """Multi-channel time series telemetry data The object can contain multiple telemetry channels. Multiple telemetry objects with different channels can be merged on time. Each telemetry channel is one dataframe column. Partial telemetry (e.g. for one lap only) can be obtained through various methods for slicing the data. Additionally, methods for adding common computed data channels are available. The following telemetry channels existed in the original API data: - **Car data**: - `Speed` (float): Car speed - `RPM` (int): Car RPM - `nGear` (int): Car gear number - `Throttle` (float): 0-100 Throttle pedal pressure - `Brake` (float): 0-100 Brake pedal pressure - `DRS` (int): DRS indicator (See :meth:`car_data` for more info) - **Position data**: - `X` (float): X position - `Y` (float): Y position - `Z` (float): Z position - `Status` (string): Flag - OffTrack/OnTrack - **For both of the above**: - `Time` (timedelta): Time (0 is start of the data slice) - `SessionTime` (timedelta): Time elapsed since the start of the session - `Date` (datetime): The full date + time at which this sample was created - `Source` (str): Flag indicating how this sample was created: - 'car': sample from original api car data - 'pos': sample from original api position data - 'interpolated': this sample was artificially created; all values are computed/interpolated Example: A sample's source is indicated as 'car'. It contains values for speed, rpm and x, y, z coordinates. Originally, this sample (with its timestamp) was received when loading car data. This means that the speed and rpm value are original values as received from the api. The coordinates are interpolated for this sample. All methods of :class:`Telemetry` which resample or interpolate data will preserve and adjust the source flag correctly when modifying data. Through merging/slicing it is possible to obtain any combination of telemetry channels! The following additional computed data channels can be added: - Distance driven between two samples: :meth:`add_differential_distance` - Distance driven since the first sample: :meth:`add_distance` - Relative distance driven since the first sample: :meth:`add_relative_distance` - Distance to driver ahead and car number of said driver: :meth:`add_driver_ahead` .. note:: See the separate explanation concerning the various definitions of 'Time' for more information on the three date and time related channels: :ref:`time-explanation` Slicing this class will return :class:`Telemetry` again for slices containing multiple rows. Single rows will be returned as :class:`pandas.Series`. Args: *args (any): passed through to `pandas.DataFrame` superclass session (:class:`Session`): Instance of associated session object. Required for full functionality! driver (str): Driver number as string. Required for full functionality! **kwargs (any): passed through to `pandas.DataFrame` superclass """ TELEMETRY_FREQUENCY = 'original' """Defines the frequency used when resampling the telemetry data. Either the string ``'original'`` or an integer to specify a frequency in Hz.""" _CHANNELS = { 'X': {'type': 'continuous', 'missing': 'quadratic'}, 'Y': {'type': 'continuous', 'missing': 'quadratic'}, 'Z': {'type': 'continuous', 'missing': 'quadratic'}, 'Status': {'type': 'discrete'}, 'Speed': {'type': 'continuous', 'missing': 'linear'}, # linear is often required as quadratic overshoots 'RPM': {'type': 'continuous', 'missing': 'linear'}, # on sudden changes like sudden pedal application) 'Throttle': {'type': 'continuous', 'missing': 'linear'}, 'Brake': {'type': 'discrete'}, 'DRS': {'type': 'discrete'}, 'nGear': {'type': 'discrete'}, 'Source': {'type': 'excluded'}, # special case, custom handling 'Date': {'type': 'excluded'}, # special case, used as the index during resampling 'Time': {'type': 'excluded'}, # special case, Time/SessionTime recalculated from 'Date' 'SessionTime': {'type': 'excluded'}, 'Distance': {'type': 'continuous', 'missing': 'quadratic'}, 'RelativeDistance': {'type': 'continuous', 'missing': 'quadratic'}, 'DifferentialDistance': {'type': 'continuous', 'missing': 'quadratic'}, 'DriverAhead': {'type': 'discrete'}, 'DistanceToDriverAhead': {'type': 'continuous', 'missing': 'linear'} } """Known telemetry channels which are supported by default""" _metadata = ['session', 'driver'] def __init__(self, *args, session=None, driver=None, **kwargs): super().__init__(*args, **kwargs) self.session = session self.driver = driver @property def _constructor(self): def _new(*args, **kwargs): return Telemetry(*args, **kwargs).__finalize__(self) return _new @property def base_class_view(self): """For a nicer debugging experience; can view DataFrame through this property in various IDEs""" return pd.DataFrame(self) def join(self, *args, **kwargs): """Wraps :mod:`pandas.DataFrame.join` and adds metadata propagation. When calling `self.join` metadata will be propagated from self to the joined dataframe. """ meta = dict() for var in self._metadata: meta[var] = getattr(self, var) ret = super().join(*args, **kwargs) for var, val in meta.items(): setattr(ret, var, val) return ret def merge(self, *args, **kwargs): """Wraps :mod:`pandas.DataFrame.merge` and adds metadata propagation. When calling `self.merge` metadata will be propagated from self to the merged dataframe. """ meta = dict() for var in self._metadata: meta[var] = getattr(self, var) ret = super().merge(*args, **kwargs) for var, val in meta.items(): setattr(ret, var, val) return ret def slice_by_mask(self, mask, pad=0, pad_side='both'): """Slice self using a boolean array as a mask. Args: mask (array-like): Array of boolean values with the same length as self pad (int): Number of samples used for padding the sliced data pad_side (str): Where to pad the data; possible options: 'both', 'before', 'after' Returns: :class:`Telemetry` """ if pad: if pad_side in ('both', 'before'): i_left_pad = max(0, np.min(np.where(mask)) - pad) else: i_left_pad = np.min(np.where(mask)) if pad_side in ('both', 'after'): i_right_pad = min(len(mask), np.max(np.where(mask)) + pad) else: i_right_pad = np.max(np.where(mask)) mask[i_left_pad: i_right_pad + 1] = True data_slice = self.loc[mask].copy() return data_slice def slice_by_lap(self, ref_laps, pad=0, pad_side='both', interpolate_edges=False): """Slice self to only include data from the provided lap or laps. .. note:: Self needs to contain a 'SessionTime' column. .. note:: When slicing with an instance of :class:`Laps` as a reference, the data will be sliced by first and last lap. Missing laps in between will not be considered and data for these will still be included in the sliced result. Args: ref_laps (Lap or Laps): The lap/laps by which to slice self pad (int): Number of samples used for padding the sliced data pad_side (str): Where to pad the data; possible options: 'both', 'before', 'after interpolate_edges (bool): Add an interpolated sample at the beginning and end to exactly match the provided time window. Returns: :class:`Telemetry` """ if isinstance(ref_laps, Laps) and len(ref_laps) > 1: if 'DriverNumber' not in ref_laps.columns: ValueError("Laps is missing 'DriverNumber'. Cannot return telemetry for unknown driver.") if not len(ref_laps['DriverNumber'].unique()) <= 1: raise ValueError("Cannot create telemetry for multiple drivers at once!") end_time = ref_laps['Time'].max() start_time = ref_laps['LapStartTime'].min() elif isinstance(ref_laps, (Lap, Laps)): if isinstance(ref_laps, Laps): # one lap in Laps ref_laps = ref_laps.iloc[0] # needs to be handled as a single lap if 'DriverNumber' not in ref_laps.index: ValueError("Lap is missing 'DriverNumber'. Cannot return telemetry for unknown driver.") end_time = ref_laps['Time'] start_time = ref_laps['LapStartTime'] else: raise TypeError("Attribute 'ref_laps' needs to be an instance of `Lap` or `Laps`") return self.slice_by_time(start_time, end_time, pad, pad_side, interpolate_edges) def slice_by_time(self, start_time, end_time, pad=0, pad_side='both', interpolate_edges=False): """Slice self to only include data in a specific time frame. .. note:: Self needs to contain a 'SessionTime' column. Slicing by time use the 'SessionTime' as its reference. Args: start_time (Timedelta): Start of the section end_time (Timedelta): End of the section pad (int): Number of samples used for padding the sliced data pad_side (str): Where to pad the data; possible options: 'both', 'before', 'after interpolate_edges (bool): Add an interpolated sample at the beginning and end to exactly match the provided time window. Returns: :class:`Telemetry` """ if interpolate_edges: edges = Telemetry({'SessionTime': (start_time, end_time), 'Date': (start_time + self.session.t0_date, end_time + self.session.t0_date)}, session=self.session) d = self.merge_channels(edges) else: d = self.copy() # TODO no copy? sel = ((d['SessionTime'] <= end_time) & (d['SessionTime'] >= start_time)) if np.any(sel): data_slice = d.slice_by_mask(sel, pad, pad_side) if 'Time' in data_slice.columns: # shift time to 0 so laps can overlap data_slice.loc[:, 'Time'] = data_slice['SessionTime'] - start_time return data_slice return Telemetry() def merge_channels(self, other, frequency=None): """Merge telemetry objects containing different telemetry channels. The two objects don't need to have a common time base. The data will be merged, optionally resampled and missing values will be interpolated. :attr:`Telemetry.TELEMETRY_FREQUENCY` determines if and how the data is resampled. This can be overridden using the `frequency` keyword fo this method. Merging and resampling: If the frequency is 'original', data will not be resampled. The two objects will be merged and all timestamps of both objects are kept. Values will be interpolated so that all telemetry channels contain valid data for all timestamps. This is the default and recommended option. If the frequency is specified as an integer in Hz the data will be merged as before. After that, the merged time base will be resampled from the first value on at the specified frequency. Afterwards, the data will be interpolated to fit the new time base. This means that usually most if not all values of the data will be interpolated values. This is detrimental for overall accuracy. Interpolation: Missing values after merging will be interpolated for all known telemetry channels using :meth:`fill_missing`. Different interpolation methods are used depending on what kind of data the channel contains. For example, forward fill is used to interpolated 'nGear' while linear interpolation is used for 'RPM' interpolation. .. note :: Unknown telemetry channels will be merged but missing values will not be interpolated. This can either be done manually or a custom telemetry channel can be added using :meth:`register_new_channel`. .. note :: Do not resample data multiple times. Always resample based on the original data to preserve accuracy Args: other (:class:`Telemetry` or :class:`pandas.DataFrame`): Object to be merged with self frequency (str or int): Optional frequency to overwrite global preset. (Either string 'original' or integer for a frequency in Hz) Returns: :class:`Telemetry` """ # merge the data and interpolate missing; 'Date' needs to be the index data = self.set_index('Date') other = other.set_index('Date') # save dtypes before merging so they can be restored after merging # necessary for example because merging produces NaN values which would cause an int column to become float # but it can be converted back to int after interpolating missing values dtype_map = dict() for df in data, other: for col in df.columns: if col not in dtype_map.keys(): dtype_map[col] = df[col].dtype # Exclude columns existing on both dataframes from one dataframe before merging (cannot merge with duplicates) on_both_columns = set(other.columns).intersection(set(data.columns)) merged = other.merge(data[data.columns.difference(on_both_columns, sort=False)], how='outer', left_index=True, right_index=True, sort=True) # now use the previously excluded columns to update the missing values in the merged dataframe for col in on_both_columns: merged[col].update(data[col]) if 'Driver' in merged.columns and len(merged['Driver'].unique()) > 1: raise ValueError("Cannot merge multiple drivers") if not frequency: frequency = data.TELEMETRY_FREQUENCY i = data.get_first_non_zero_time_index() if i is None: raise ValueError("No valid 'Time' data. Cannot resample!") ref_date = merged.index[i] # data needs to be resampled/interpolated differently, depending on what kind of data it is # how to handle which column is defined in self._CHANNELS if frequency == 'original': # no resampling but still interpolation due to merging merged = merged.fill_missing() merged = merged.reset_index().rename(columns={'index': 'Date'}) # make 'Date' a column again else: frq = f'{1 / frequency}S' resampled_columns = dict() for ch in self._CHANNELS.keys(): if ch not in merged.columns: continue sig_type = self._CHANNELS[ch]['type'] if sig_type == 'continuous': missing = self._CHANNELS[ch]['missing'] res = merged.loc[:, ch] \ .resample(frq, origin=ref_date).mean().interpolate(method=missing, fill_value='extrapolate') elif sig_type == 'discrete': res = merged.loc[:, ch].resample(frq, origin=ref_date).ffill().ffill().bfill() # first ffill is a method of the resampler object and will ONLY ffill values created during # resampling but not already existing NaN values. NaN values already existed because of merging, # therefore call ffill a second time as a method of the returned series to fill these too # only use bfill after ffill to fix first row else: continue resampled_columns[ch] = res res_source = merged.loc[:, 'Source'].resample(frq, origin=ref_date).asfreq().fillna(value='interpolation') resampled_columns['Source'] = res_source # join resampled columns and make 'Date' a column again merged = Telemetry(resampled_columns, session=self.session).reset_index().rename(columns={'index': 'Date'}) # recalculate the time columns merged['SessionTime'] = merged['Date'] - self.session.t0_date merged['Time'] = merged['SessionTime'] - merged['SessionTime'].iloc[0] # restore data types from before merging for col in dtype_map.keys(): try: merged.loc[:, col] = merged.loc[:, col].astype(dtype_map[col]) except ValueError: logging.warning(f"Failed to preserve data type for column '{col}' while merging telemetry.") return merged def resample_channels(self, rule=None, new_date_ref=None, **kwargs): """Resample telemetry data. Convenience method for frequency conversion and resampling. Up and down sampling of data is supported. 'Date' and 'SessionTime' need to exist in the data. 'Date' is used as the main time reference. There are two ways to use this method: - Usage like :meth:`pandas.DataFrame.resample`: In this case you need to specify the 'rule' for resampling and any additional keywords will be passed on to :meth:`pandas.Series.resample` to create a new time reference. See the pandas method to see which options are available. - using the 'new_date_ref' keyword a :class:`pandas.Series` containing new values for date (dtype :class:`pandas.Timestamp`) can be provided. The existing data will be resampled onto this new time reference. Args: rule (optional, str): Resampling rule for :meth:`pandas.Series.resample` new_date_ref (optional, pandas.Series): New custom Series of reference dates **kwargs (optional, any): Only in combination with 'rule'; additional parameters for :meth:`pandas.Series.resample` """ if rule is not None and new_date_ref is not None: raise ValueError("You can only specify one of 'rule' or 'new_index'") if rule is None and new_date_ref is None: raise ValueError("You need to specify either 'rule' or 'new_index'") if new_date_ref is None: st = pd.Series(index=pd.DatetimeIndex(self['Date']), dtype=int).resample(rule, **kwargs).asfreq() new_date_ref =
pd.Series(st.index)
pandas.Series
# -*- coding: utf-8 -*- """ Created on Fri Sep 27 08:59:17 2019 @author: <NAME> @contact: <EMAIL> """ import pandas as pd def relative_strong_signal(data,threshold,val_threshold): """ This function compute date based sectional relative strong/weak indicator given dataframe with structure = {"row":"dates","col":"product price"} we select the dates when market overal drops/raise but a very small portion(threshold) of it goes opposite Output dataframe gives relative strong/weak indicator with that date return and associated quantile """ answers = {} # Output={"Product":[Dates,return,threshold]..} ans_df = pd.DataFrame() # Reordering answer dataframe [df1,df2] # Provide data in pandas dataframe df = data.pct_change().dropna().round(5) total = df.shape[1] for index, row in df.iterrows(): positive_pct = round(sum(row>0)/total,3) negative_pct = round(sum(row<0)/total,3) if positive_pct <= threshold: temp = row.where(row>0).dropna().to_dict() for key,val in temp.items(): val = val*100 if abs(val) > val_threshold: if key not in answers: answers[key] = [[index.date(),val,positive_pct]] else: answers[key].append([index.date(),val,positive_pct]) elif negative_pct <= threshold: temp = row.where(row<0).dropna().to_dict() for key,val in temp.items(): val = val*100 if abs(val) > val_threshold: if key not in answers: answers[key] = [[index.date(),val,negative_pct]] else: answers[key].append([index.date(),val,negative_pct]) for key,val in answers.items(): df = pd.DataFrame(val,columns = ["Dates","Return%","Quantile"]) df["Product"] = key df = df[["Dates","Product","Return%","Quantile"]] ans_df = ans_df.append(df) ans_df = ans_df.set_index("Dates").sort_index() return ans_df def relative_skew_signal( data, window, Top_NUM, val_tao ): """ This function compute date based sectional relative skewness indicator given dataframe with structure = {"row":"dates","col":"product price"} we select the dates when market overal skewness is one side but a very small portion(threshold) of it goes opposite Output dataframe gives relative strong/weak indicator with that date return and associated quantile """ answers = {} # Output={"Product":[Dates,return,threshold]..} ans_df =
pd.DataFrame()
pandas.DataFrame
import re from unittest.mock import Mock, patch import numpy as np import pandas as pd import pytest from rdt.transformers import ( CategoricalTransformer, LabelEncodingTransformer, OneHotEncodingTransformer) RE_SSN = re.compile(r'\d\d\d-\d\d-\d\d\d\d') class TestCategoricalTransformer: def test___init__(self): """Passed arguments must be stored as attributes.""" # Run transformer = CategoricalTransformer( fuzzy='fuzzy_value', clip='clip_value', ) # Asserts assert transformer.fuzzy == 'fuzzy_value' assert transformer.clip == 'clip_value' def test__get_intervals(self): # Run data = pd.Series(['foo', 'bar', 'bar', 'foo', 'foo', 'tar']) result = CategoricalTransformer._get_intervals(data) # Asserts expected_intervals = { 'foo': (0, 0.5, 0.25, 0.5 / 6), 'bar': (0.5, 0.8333333333333333, 0.6666666666666666, 0.05555555555555555), 'tar': (0.8333333333333333, 0.9999999999999999, 0.9166666666666666, 0.027777777777777776) } assert result[0] == expected_intervals def test_fit(self): # Setup transformer = CategoricalTransformer() # Run data = np.array(['foo', 'bar', 'bar', 'foo', 'foo', 'tar']) transformer.fit(data) # Asserts expected_intervals = { 'foo': (0, 0.5, 0.25, 0.5 / 6), 'bar': (0.5, 0.8333333333333333, 0.6666666666666666, 0.05555555555555555), 'tar': (0.8333333333333333, 0.9999999999999999, 0.9166666666666666, 0.027777777777777776) } assert transformer.intervals == expected_intervals def test__get_value_no_fuzzy(self): # Setup transformer = CategoricalTransformer(fuzzy=False) transformer.fuzzy = False transformer.intervals = { 'foo': (0, 0.5, 0.25, 0.5 / 6), } # Run result = transformer._get_value('foo') # Asserts assert result == 0.25 @patch('scipy.stats.norm.rvs') def test__get_value_fuzzy(self, rvs_mock): # setup rvs_mock.return_value = 0.2745 transformer = CategoricalTransformer(fuzzy=True) transformer.intervals = { 'foo': (0, 0.5, 0.25, 0.5 / 6), } # Run result = transformer._get_value('foo') # Asserts assert result == 0.2745 def test__normalize_no_clip(self): """Test normalize data""" # Setup transformer = CategoricalTransformer(clip=False) # Run data = pd.Series([-0.43, 0.1234, 1.5, -1.31]) result = transformer._normalize(data) # Asserts expect = pd.Series([0.57, 0.1234, 0.5, 0.69], dtype=float) pd.testing.assert_series_equal(result, expect) def test__normalize_clip(self): """Test normalize data with clip=True""" # Setup transformer = CategoricalTransformer(clip=True) # Run data = pd.Series([-0.43, 0.1234, 1.5, -1.31]) result = transformer._normalize(data) # Asserts expect = pd.Series([0.0, 0.1234, 1.0, 0.0], dtype=float) pd.testing.assert_series_equal(result, expect) def test_reverse_transform_array(self): """Test reverse_transform a numpy.array""" # Setup data = np.array(['foo', 'bar', 'bar', 'foo', 'foo', 'tar']) rt_data = np.array([-0.6, 0.5, 0.6, 0.2, 0.1, -0.2]) transformer = CategoricalTransformer() # Run transformer.fit(data) result = transformer.reverse_transform(rt_data) # Asserts expected_intervals = { 'foo': (0, 0.5, 0.25, 0.5 / 6), 'bar': (0.5, 0.8333333333333333, 0.6666666666666666, 0.05555555555555555), 'tar': (0.8333333333333333, 0.9999999999999999, 0.9166666666666666, 0.027777777777777776) } assert transformer.intervals == expected_intervals expect = pd.Series(data) pd.testing.assert_series_equal(result, expect) def test__transform_by_category_called(self): """Test that the `_transform_by_category` method is called. When the number of rows is greater than the number of categories, expect that the `_transform_by_category` method is called. Setup: The categorical transformer is instantiated with 4 categories. Input: - data with 5 rows Output: - the output of `_transform_by_category` Side effects: - `_transform_by_category` will be called once """ # Setup data = pd.Series([1, 3, 3, 2, 1]) categorical_transformer_mock = Mock() categorical_transformer_mock.means = pd.Series([0.125, 0.375, 0.625, 0.875]) # Run transformed = CategoricalTransformer.transform(categorical_transformer_mock, data) # Asserts categorical_transformer_mock._transform_by_category.assert_called_once_with(data) assert transformed == categorical_transformer_mock._transform_by_category.return_value def test__transform_by_category(self): """Test the `_transform_by_category` method with numerical data. Expect that the correct transformed data is returned. Setup: The categorical transformer is instantiated with 4 categories and intervals. Input: - data with 5 rows Ouptut: - the transformed data """ # Setup data = pd.Series([1, 3, 3, 2, 1]) transformer = CategoricalTransformer() transformer.intervals = { 4: (0, 0.25, 0.125, 0.041666666666666664), 3: (0.25, 0.5, 0.375, 0.041666666666666664), 2: (0.5, 0.75, 0.625, 0.041666666666666664), 1: (0.75, 1.0, 0.875, 0.041666666666666664), } # Run transformed = transformer._transform_by_category(data) # Asserts expected = np.array([0.875, 0.375, 0.375, 0.625, 0.875]) assert (transformed == expected).all() def test__transform_by_row_called(self): """Test that the `_transform_by_row` method is called. When the number of rows is less than or equal to the number of categories, expect that the `_transform_by_row` method is called. Setup: The categorical transformer is instantiated with 4 categories. Input: - data with 4 rows Output: - the output of `_transform_by_row` Side effects: - `_transform_by_row` will be called once """ # Setup data = pd.Series([1, 2, 3, 4]) categorical_transformer_mock = Mock() categorical_transformer_mock.means = pd.Series([0.125, 0.375, 0.625, 0.875]) # Run transformed = CategoricalTransformer.transform(categorical_transformer_mock, data) # Asserts categorical_transformer_mock._transform_by_row.assert_called_once_with(data) assert transformed == categorical_transformer_mock._transform_by_row.return_value def test__transform_by_row(self): """Test the `_transform_by_row` method with numerical data. Expect that the correct transformed data is returned. Setup: The categorical transformer is instantiated with 4 categories and intervals. Input: - data with 4 rows Ouptut: - the transformed data """ # Setup data = pd.Series([1, 2, 3, 4]) transformer = CategoricalTransformer() transformer.intervals = { 4: (0, 0.25, 0.125, 0.041666666666666664), 3: (0.25, 0.5, 0.375, 0.041666666666666664), 2: (0.5, 0.75, 0.625, 0.041666666666666664), 1: (0.75, 1.0, 0.875, 0.041666666666666664), } # Run transformed = transformer._transform_by_row(data) # Asserts expected = np.array([0.875, 0.625, 0.375, 0.125]) assert (transformed == expected).all() @patch('psutil.virtual_memory') def test__reverse_transfrom_by_matrix_called(self, psutil_mock): """Test that the `_reverse_transform_by_matrix` method is called. When there is enough virtual memory, expect that the `_reverse_transform_by_matrix` method is called. Setup: The categorical transformer is instantiated with 4 categories. Also patch the `psutil.virtual_memory` function to return a large enough `available_memory`. Input: - numerical data with 4 rows Output: - the output of `_reverse_transform_by_matrix` Side effects: - `_reverse_transform_by_matrix` will be called once """ # Setup data = pd.Series([1, 2, 3, 4]) categorical_transformer_mock = Mock() categorical_transformer_mock.means = pd.Series([0.125, 0.375, 0.625, 0.875]) categorical_transformer_mock._normalize.return_value = data virtual_memory = Mock() virtual_memory.available = 4 * 4 * 8 * 3 + 1 psutil_mock.return_value = virtual_memory # Run reverse = CategoricalTransformer.reverse_transform(categorical_transformer_mock, data) # Asserts categorical_transformer_mock._reverse_transform_by_matrix.assert_called_once_with(data) assert reverse == categorical_transformer_mock._reverse_transform_by_matrix.return_value @patch('psutil.virtual_memory') def test__reverse_transfrom_by_matrix(self, psutil_mock): """Test the _reverse_transform_by_matrix method with numerical data Expect that the transformed data is correctly reverse transformed. Setup: The categorical transformer is instantiated with 4 categories and means. Also patch the `psutil.virtual_memory` function to return a large enough `available_memory`. Input: - transformed data with 4 rows Ouptut: - the original data """ # Setup data = pd.Series([1, 2, 3, 4]) transformed = pd.Series([0.875, 0.625, 0.375, 0.125]) transformer = CategoricalTransformer() transformer.means = pd.Series([0.125, 0.375, 0.625, 0.875], index=[4, 3, 2, 1]) transformer.dtype = data.dtype virtual_memory = Mock() virtual_memory.available = 4 * 4 * 8 * 3 + 1 psutil_mock.return_value = virtual_memory # Run reverse = transformer._reverse_transform_by_matrix(transformed) # Assert pd.testing.assert_series_equal(data, reverse) @patch('psutil.virtual_memory') def test__reverse_transform_by_category_called(self, psutil_mock): """Test that the `_reverse_transform_by_category` method is called. When there is not enough virtual memory and the number of rows is greater than the number of categories, expect that the `_reverse_transform_by_category` method is called. Setup: The categorical transformer is instantiated with 4 categories. Also patch the `psutil.virtual_memory` function to return an `available_memory` of 1. Input: - numerical data with 5 rows Output: - the output of `_reverse_transform_by_category` Side effects: - `_reverse_transform_by_category` will be called once """ # Setup transform_data = pd.Series([1, 3, 3, 2, 1]) categorical_transformer_mock = Mock() categorical_transformer_mock.means = pd.Series([0.125, 0.375, 0.625, 0.875]) categorical_transformer_mock._normalize.return_value = transform_data virtual_memory = Mock() virtual_memory.available = 1 psutil_mock.return_value = virtual_memory # Run reverse = CategoricalTransformer.reverse_transform( categorical_transformer_mock, transform_data) # Asserts categorical_transformer_mock._reverse_transform_by_category.assert_called_once_with( transform_data) assert reverse == categorical_transformer_mock._reverse_transform_by_category.return_value @patch('psutil.virtual_memory') def test__reverse_transform_by_category(self, psutil_mock): """Test the _reverse_transform_by_category method with numerical data. Expect that the transformed data is correctly reverse transformed. Setup: The categorical transformer is instantiated with 4 categories, and the means and intervals are set for those categories. Also patch the `psutil.virtual_memory` function to return an `available_memory` of 1. Input: - transformed data with 5 rows Ouptut: - the original data """ data = pd.Series([1, 3, 3, 2, 1]) transformed = pd.Series([0.875, 0.375, 0.375, 0.625, 0.875]) transformer = CategoricalTransformer() transformer.means = pd.Series([0.125, 0.375, 0.625, 0.875], index=[4, 3, 2, 1]) transformer.intervals = { 4: (0, 0.25, 0.125, 0.041666666666666664), 3: (0.25, 0.5, 0.375, 0.041666666666666664), 2: (0.5, 0.75, 0.625, 0.041666666666666664), 1: (0.75, 1.0, 0.875, 0.041666666666666664), } transformer.dtype = data.dtype virtual_memory = Mock() virtual_memory.available = 1 psutil_mock.return_value = virtual_memory reverse = transformer._reverse_transform_by_category(transformed) pd.testing.assert_series_equal(data, reverse) @patch('psutil.virtual_memory') def test__reverse_transform_by_row_called(self, psutil_mock): """Test that the `_reverse_transform_by_row` method is called. When there is not enough virtual memory and the number of rows is less than or equal to the number of categories, expect that the `_reverse_transform_by_row` method is called. Setup: The categorical transformer is instantiated with 4 categories. Also patch the `psutil.virtual_memory` function to return an `available_memory` of 1. Input: - numerical data with 4 rows Output: - the output of `_reverse_transform_by_row` Side effects: - `_reverse_transform_by_row` will be called once """ # Setup data = pd.Series([1, 2, 3, 4]) categorical_transformer_mock = Mock() categorical_transformer_mock.means = pd.Series([0.125, 0.375, 0.625, 0.875]) categorical_transformer_mock.starts = pd.DataFrame( [0., 0.25, 0.5, 0.75], index=[4, 3, 2, 1], columns=['category']) categorical_transformer_mock._normalize.return_value = data virtual_memory = Mock() virtual_memory.available = 1 psutil_mock.return_value = virtual_memory # Run reverse = CategoricalTransformer.reverse_transform(categorical_transformer_mock, data) # Asserts categorical_transformer_mock._reverse_transform_by_row.assert_called_once_with(data) assert reverse == categorical_transformer_mock._reverse_transform_by_row.return_value @patch('psutil.virtual_memory') def test__reverse_transform_by_row(self, psutil_mock): """Test the _reverse_transform_by_row method with numerical data. Expect that the transformed data is correctly reverse transformed. Setup: The categorical transformer is instantiated with 4 categories, and the means, starts, and intervals are set for those categories. Also patch the `psutil.virtual_memory` function to return an `available_memory` of 1. Input: - transformed data with 4 rows Ouptut: - the original data """ # Setup data = pd.Series([1, 2, 3, 4]) transformed = pd.Series([0.875, 0.625, 0.375, 0.125]) transformer = CategoricalTransformer() transformer.means = pd.Series([0.125, 0.375, 0.625, 0.875], index=[4, 3, 2, 1]) transformer.starts = pd.DataFrame( [4, 3, 2, 1], index=[0., 0.25, 0.5, 0.75], columns=['category']) transformer.intervals = { 4: (0, 0.25, 0.125, 0.041666666666666664), 3: (0.25, 0.5, 0.375, 0.041666666666666664), 2: (0.5, 0.75, 0.625, 0.041666666666666664), 1: (0.75, 1.0, 0.875, 0.041666666666666664), } transformer.dtype = data.dtype virtual_memory = Mock() virtual_memory.available = 1 psutil_mock.return_value = virtual_memory # Run reverse = transformer.reverse_transform(transformed) # Assert pd.testing.assert_series_equal(data, reverse) class TestOneHotEncodingTransformer: def test__prepare_data_empty_lists(self): # Setup ohet = OneHotEncodingTransformer() data = [[], [], []] # Assert with pytest.raises(ValueError): ohet._prepare_data(data) def test__prepare_data_nested_lists(self): # Setup ohet = OneHotEncodingTransformer() data = [[[]]] # Assert with pytest.raises(ValueError): ohet._prepare_data(data) def test__prepare_data_list_of_lists(self): # Setup ohet = OneHotEncodingTransformer() # Run data = [['a'], ['b'], ['c']] out = ohet._prepare_data(data) # Assert expected = np.array(['a', 'b', 'c']) np.testing.assert_array_equal(out, expected) def test__prepare_data_pandas_series(self): # Setup ohet = OneHotEncodingTransformer() # Run data = pd.Series(['a', 'b', 'c']) out = ohet._prepare_data(data) # Assert expected = pd.Series(['a', 'b', 'c']) np.testing.assert_array_equal(out, expected) def test_fit_no_nans(self): """Test the ``fit`` method without nans. Check that the settings of the transformer are properly set based on the input. Encoding should be activated Input: - Series with values """ # Setup ohet = OneHotEncodingTransformer() # Run data = pd.Series(['a', 'b', 'c']) ohet.fit(data) # Assert np.testing.assert_array_equal(ohet.dummies, ['a', 'b', 'c']) np.testing.assert_array_equal(ohet.decoder, ['a', 'b', 'c']) assert ohet.dummy_encoded assert not ohet.dummy_na def test_fit_no_nans_numeric(self): """Test the ``fit`` method without nans. Check that the settings of the transformer are properly set based on the input. Encoding should be deactivated Input: - Series with values """ # Setup ohet = OneHotEncodingTransformer() # Run data = pd.Series([1, 2, 3]) ohet.fit(data) # Assert np.testing.assert_array_equal(ohet.dummies, [1, 2, 3]) np.testing.assert_array_equal(ohet.decoder, [1, 2, 3]) assert not ohet.dummy_encoded assert not ohet.dummy_na def test_fit_nans(self): """Test the ``fit`` method with nans. Check that the settings of the transformer are properly set based on the input. Encoding and NA should be activated. Input: - Series with containing nan values """ # Setup ohet = OneHotEncodingTransformer() # Run data = pd.Series(['a', 'b', None]) ohet.fit(data) # Assert np.testing.assert_array_equal(ohet.dummies, ['a', 'b']) np.testing.assert_array_equal(ohet.decoder, ['a', 'b', np.nan]) assert ohet.dummy_encoded assert ohet.dummy_na def test_fit_nans_numeric(self): """Test the ``fit`` method with nans. Check that the settings of the transformer are properly set based on the input. Encoding should be deactivated and NA activated. Input: - Series with containing nan values """ # Setup ohet = OneHotEncodingTransformer() # Run data = pd.Series([1, 2, np.nan]) ohet.fit(data) # Assert np.testing.assert_array_equal(ohet.dummies, [1, 2]) np.testing.assert_array_equal(ohet.decoder, [1, 2, np.nan]) assert not ohet.dummy_encoded assert ohet.dummy_na def test_fit_single(self): # Setup ohet = OneHotEncodingTransformer() # Run data = pd.Series(['a', 'a', 'a']) ohet.fit(data) # Assert np.testing.assert_array_equal(ohet.dummies, ['a']) def test__transform_no_nan(self): """Test the ``_transform`` method without nans. The values passed to ``_transform`` should be returned in a one-hot encoding representation. Input: - Series with values Output: - one-hot encoding of the input """ # Setup ohet = OneHotEncodingTransformer() data = pd.Series(['a', 'b', 'c']) ohet.dummies = ['a', 'b', 'c'] ohet.num_dummies = 3 # Run out = ohet._transform(data) # Assert expected = np.array([ [1, 0, 0], [0, 1, 0], [0, 0, 1] ]) np.testing.assert_array_equal(out, expected) def test__transform_no_nan_categorical(self): """Test the ``_transform`` method without nans. The values passed to ``_transform`` should be returned in a one-hot encoding representation using the categorical branch. Input: - Series with categorical values Output: - one-hot encoding of the input """ # Setup ohet = OneHotEncodingTransformer() data = pd.Series(['a', 'b', 'c']) ohet.dummies = ['a', 'b', 'c'] ohet.indexer = [0, 1, 2] ohet.num_dummies = 3 ohet.dummy_encoded = True # Run out = ohet._transform(data) # Assert expected = np.array([ [1, 0, 0], [0, 1, 0], [0, 0, 1] ]) np.testing.assert_array_equal(out, expected) def test__transform_nans(self): """Test the ``_transform`` method with nans. The values passed to ``_transform`` should be returned in a one-hot encoding representation. Null values should be represented by the same encoding. Input: - Series with values containing nans Output: - one-hot encoding of the input """ # Setup ohet = OneHotEncodingTransformer() data = pd.Series([np.nan, None, 'a', 'b']) ohet.dummies = ['a', 'b'] ohet.dummy_na = True ohet.num_dummies = 2 # Run out = ohet._transform(data) # Assert expected = np.array([ [0, 0, 1], [0, 0, 1], [1, 0, 0], [0, 1, 0] ]) np.testing.assert_array_equal(out, expected) def test__transform_nans_categorical(self): """Test the ``_transform`` method with nans. The values passed to ``_transform`` should be returned in a one-hot encoding representation using the categorical branch. Null values should be represented by the same encoding. Input: - Series with categorical values containing nans Output: - one-hot encoding of the input """ # Setup ohet = OneHotEncodingTransformer() data = pd.Series([np.nan, None, 'a', 'b']) ohet.dummies = ['a', 'b'] ohet.indexer = [0, 1] ohet.dummy_na = True ohet.num_dummies = 2 ohet.dummy_encoded = True # Run out = ohet._transform(data) # Assert expected = np.array([ [0, 0, 1], [0, 0, 1], [1, 0, 0], [0, 1, 0] ]) np.testing.assert_array_equal(out, expected) def test__transform_single(self): """Test the ``_transform`` with one category. The values passed to ``_transform`` should be returned in a one-hot encoding representation where it should be a single column. Input: - Series with a single category Output: - one-hot encoding of the input """ # Setup ohet = OneHotEncodingTransformer() data = pd.Series(['a', 'a', 'a']) ohet.dummies = ['a'] ohet.num_dummies = 1 # Run out = ohet._transform(data) # Assert expected = np.array([ [1], [1], [1] ]) np.testing.assert_array_equal(out, expected) def test__transform_single_categorical(self): """Test the ``_transform`` with one category. The values passed to ``_transform`` should be returned in a one-hot encoding representation using the categorical branch where it should be a single column. Input: - Series with a single category Output: - one-hot encoding of the input """ # Setup ohet = OneHotEncodingTransformer() data = pd.Series(['a', 'a', 'a']) ohet.dummies = ['a'] ohet.indexer = [0] ohet.num_dummies = 1 ohet.dummy_encoded = True # Run out = ohet._transform(data) # Assert expected = np.array([ [1], [1], [1] ]) np.testing.assert_array_equal(out, expected) def test__transform_zeros(self): """Test the ``_transform`` with unknown category. The values passed to ``_transform`` should be returned in a one-hot encoding representation where it should be a column of zeros. Input: - Series with unknown values Output: - one-hot encoding of the input """ # Setup ohet = OneHotEncodingTransformer() pd.Series(['a']) ohet.dummies = ['a'] ohet.num_dummies = 1 # Run out = ohet._transform(pd.Series(['b', 'b', 'b'])) # Assert expected = np.array([ [0], [0], [0] ]) np.testing.assert_array_equal(out, expected) def test__transform_zeros_categorical(self): """Test the ``_transform`` with unknown category. The values passed to ``_transform`` should be returned in a one-hot encoding representation using the categorical branch where it should be a column of zeros. Input: - Series with categorical and unknown values Output: - one-hot encoding of the input """ # Setup ohet = OneHotEncodingTransformer() pd.Series(['a']) ohet.dummies = ['a'] ohet.indexer = [0] ohet.num_dummies = 1 ohet.dummy_encoded = True # Run out = ohet._transform(pd.Series(['b', 'b', 'b'])) # Assert expected = np.array([ [0], [0], [0] ]) np.testing.assert_array_equal(out, expected) def test__transform_unknown_nan(self): """Test the ``_transform`` with unknown and nans. This is an edge case for ``_transform`` where unknowns should be zeros and nans should be the last entry in the column. Input: - Series with unknown and nans Output: - one-hot encoding of the input """ # Setup ohet = OneHotEncodingTransformer() pd.Series(['a']) ohet.dummies = ['a'] ohet.dummy_na = True ohet.num_dummies = 1 # Run out = ohet._transform(pd.Series(['b', 'b', np.nan])) # Assert expected = np.array([ [0, 0], [0, 0], [0, 1] ]) np.testing.assert_array_equal(out, expected) def test_transform_no_nans(self): """Test the ``transform`` without nans. In this test ``transform`` should return an identity matrix representing each item in the input. Input: - Series with categorical values Output: - one-hot encoding of the input """ # Setup ohet = OneHotEncodingTransformer() data = pd.Series(['a', 'b', 'c']) ohet.fit(data) # Run out = ohet.transform(data) # Assert expected = np.array([ [1, 0, 0], [0, 1, 0], [0, 0, 1] ]) np.testing.assert_array_equal(out, expected) def test_transform_nans(self): """Test the ``transform`` with nans. In this test ``transform`` should return an identity matrix representing each item in the input as well as nans. Input: - Series with categorical values and nans Output: - one-hot encoding of the input """ # Setup ohet = OneHotEncodingTransformer() data = pd.Series(['a', 'b', None]) ohet.fit(data) # Run out = ohet.transform(data) # Assert expected = np.array([ [1, 0, 0], [0, 1, 0], [0, 0, 1] ]) np.testing.assert_array_equal(out, expected) def test_transform_single(self): """Test the ``transform`` on a single category. In this test ``transform`` should return a column filled with ones. Input: - Series with a single categorical value Output: - one-hot encoding of the input """ # Setup ohet = OneHotEncodingTransformer() data = pd.Series(['a', 'a', 'a']) ohet.fit(data) # Run out = ohet.transform(data) # Assert expected = np.array([ [1], [1], [1] ]) np.testing.assert_array_equal(out, expected) def test_transform_unknown(self): """Test the ``transform`` with unknown data. In this test ``transform`` should raise an error due to the attempt of transforming data with previously unseen categories. Input: - Series with unknown categorical values """ # Setup ohet = OneHotEncodingTransformer() data = pd.Series(['a']) ohet.fit(data) # Assert with np.testing.assert_raises(ValueError): ohet.transform(['b']) def test_transform_numeric(self): """Test the ``transform`` on numeric input. In this test ``transform`` should return a matrix representing each item in the input as one-hot encodings. Input: - Series with numeric input Output: - one-hot encoding of the input """ # Setup ohet = OneHotEncodingTransformer() data = pd.Series([1, 2]) ohet.fit(data) expected = np.array([ [1, 0], [0, 1], ]) # Run out = ohet.transform(data) # Assert assert not ohet.dummy_encoded np.testing.assert_array_equal(out, expected) def test_reverse_transform_no_nans(self): # Setup ohet = OneHotEncodingTransformer() data = pd.Series(['a', 'b', 'c']) ohet.fit(data) # Run transformed = np.array([ [1, 0, 0], [0, 1, 0], [0, 0, 1] ]) out = ohet.reverse_transform(transformed) # Assert expected =
pd.Series(['a', 'b', 'c'])
pandas.Series
import os import pathlib import sys import febrl_data_transform as transform import pandas as pd OUTPUT_DATA_DIR = pathlib.Path(__file__).parent / "holdout" ORIGINALS_DATA_DIR = pathlib.Path(__file__).parent / "holdout" / "originals" def main(): # Read in FEBRL data with dupes and separate into A/B/true links. dataset_A = [] dataset_B = [] true_links = [] for filename in [ "febrl_holdout_dupes_light_mod.csv", "febrl_holdout_dupes_medium_mod.csv", "febrl_holdout_dupes_heavy_mod.csv", ]: _df_A, _df_B, _df_true_links = transform.transform_febrl_dataset_with_dupes( ORIGINALS_DATA_DIR / filename ) dataset_A.append(_df_A) dataset_B.append(_df_B) true_links.append(_df_true_links) df_A = pd.concat(dataset_A) df_B = pd.concat(dataset_B) df_true_links =
pd.concat(true_links)
pandas.concat
import os from os.path import join import collections import numpy as np import pandas as pd from itertools import chain from sklearn.model_selection import train_test_split from sklearn.impute import SimpleImputer, MissingIndicator from sklearn.pipeline import make_union, Pipeline from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import ShuffleSplit, GridSearchCV from sklearn.model_selection import learning_curve from sklearn.metrics import (mean_absolute_error, mean_squared_error, explained_variance_score, r2_score) from ukbb_variables import (brain_dmri_fa, brain_dmri_icvf, brain_dmri_isovf, brain_dmri_l1, brain_dmri_l2, brain_dmri_l3, brain_dmri_md, brain_dmri_mo, brain_dmri_od, brain_smri_plus, fluid_intelligence, earlylife, lifestyle, mental_health, education, primary_demographics) path_to_csv = '/storage/store/work/kdadi/rs_study/experiments/UKBB/ukb9543.csv' path_to_matrices = '/storage/store/derivatives/UKBB/rfMRI_tangent_matrix_dim100/' path_to_merge_brain = '/storage/store/work/kdadi/rs_study/experiments/UKBB/para/roadmap/ukb_add1_merge_brain.csv' X_iterate = zip([brain_dmri_fa, brain_dmri_icvf, brain_dmri_isovf, brain_dmri_l1, brain_dmri_l2, brain_dmri_l3, brain_dmri_md, brain_dmri_mo, brain_dmri_od, brain_smri_plus, fluid_intelligence, earlylife, lifestyle, mental_health, primary_demographics, education], ['fa', 'icvf', 'isovf', 'l1', 'l2', 'l3', 'md', 'mo', 'od', 'smri', 'Fluid \n intelligence', 'Earlylife', 'Lifestyle', 'MH', 'Age', 'Education']) columns = [] for i in X_iterate: columns.extend(i[0].keys()) columns.extend(['eid']) ukbb = pd.read_csv(path_to_csv, usecols=['20016-2.0', 'eid']) y = ukbb[['eid', '20016-2.0']].dropna() new_ukbb = pd.DataFrame(ukbb, index=y.index) new_ukbb = new_ukbb.drop(columns=['20016-2.0'], errors='ignore') # Random splitting of data to train our model X_train, X_test, y_train, y_test = train_test_split( new_ukbb, y, test_size=0.5, random_state=0) merged_data = pd.read_csv(path_to_merge_brain, usecols=columns) dmriDict = collections.OrderedDict(chain(brain_dmri_fa.items(), brain_dmri_icvf.items(), brain_dmri_isovf.items(), brain_dmri_l1.items(), brain_dmri_l2.items(), brain_dmri_l3.items(), brain_dmri_md.items(), brain_dmri_mo.items(), brain_dmri_od.items())) dmriDict.update({'eid': 'eid'}) dmri = pd.DataFrame(merged_data, columns=dmriDict.keys()) dmri = dmri.dropna() def load_combine_data(X_split, merged_data, dmri): data_frame = [] connectomes = [] eids = [] for e_id in X_split.eid: this_eid_data = merged_data[merged_data['eid'] == e_id] this_path = os.path.join( path_to_matrices, str(e_id) + '_20227_2_0.txt') this_dmri_data = dmri[dmri['eid'] == e_id] if not e_id == 3551399: if os.path.exists(this_path) and not len(this_dmri_data) == 0: eids.append(e_id) data_frame.append(this_eid_data) connectomes.append(np.loadtxt(this_path)) X_split = pd.concat(data_frame) y_split =
pd.DataFrame(X_split, columns=['20016-2.0'])
pandas.DataFrame
'''Runs program''' import pandas as pd import matplotlib.pyplot as plt import create_data as cd def prompt(): '''Prompts the user what information they want to see. :returns: page URL ''' page_list = { "Marine Fish": "https://www.liveaquaria.com/divers-den/category/3/marine-fish", "Freshwater": "https://www.liveaquaria.com/divers-den/category/11/freshwater", "Betta Fish": "https://www.liveaquaria.com/divers-den/category/12/betta-fish", "Inverts": "https://www.liveaquaria.com/divers-den/category/4/inverts", "Maricultured Corals": "https://www.liveaquaria.com/divers-den/category/6/maricultured-corals", "Aquacultured Corals": "https://www.liveaquaria.com/divers-den/category/5/aquacultured-corals", "Soft Corals": "https://www.liveaquaria.com/divers-den/category/7/polyp-mushroom-and-soft-corals", "LPS Corals": "https://www.liveaquaria.com/divers-den/category/8/lps-corals", "SPS Corals": "https://www.liveaquaria.com/divers-den/category/2/sps-corals", "NPS Corals": "https://www.liveaquaria.com/divers-den/category/10/non-photosynthetic-nps", "Deals": "https://www.liveaquaria.com/divers-den/category/9/deals-steals" } print("""Welcome to the LiveAquaria Scraper! What information would you like to know about? Please pick one from the following \t- Marine Fish \t- Freshwater \t- Betta Fish \t- Inverts \t- Maricultured Corals \t- Aquacultured Corals \t- Soft Corals \t- LPS Corals \t- SPS Corals \t- NPS Corals \t- Deals """) not_answered = True while not_answered: answer = input("> ") if answer in page_list: return page_list[answer] def display_data(names, price): '''Creates and displays data graph :names: List of item name :price: Price of item ''' data = { 'Name': names, 'Price': price } data_frame =
pd.DataFrame(data, columns=['Name', 'Price'])
pandas.DataFrame
import operator import re import warnings import numpy as np import pytest from pandas._libs.sparse import IntIndex import pandas.util._test_decorators as td import pandas as pd from pandas import isna from pandas.core.sparse.api import SparseArray, SparseDtype, SparseSeries import pandas.util.testing as tm from pandas.util.testing import assert_almost_equal @pytest.fixture(params=["integer", "block"]) def kind(request): return request.param class TestSparseArray: def setup_method(self, method): self.arr_data = np.array([np.nan, np.nan, 1, 2, 3, np.nan, 4, 5, np.nan, 6]) self.arr = SparseArray(self.arr_data) self.zarr = SparseArray([0, 0, 1, 2, 3, 0, 4, 5, 0, 6], fill_value=0) def test_constructor_dtype(self): arr = SparseArray([np.nan, 1, 2, np.nan]) assert arr.dtype == SparseDtype(np.float64, np.nan) assert arr.dtype.subtype == np.float64 assert np.isnan(arr.fill_value) arr = SparseArray([np.nan, 1, 2, np.nan], fill_value=0) assert arr.dtype == SparseDtype(np.float64, 0) assert arr.fill_value == 0 arr = SparseArray([0, 1, 2, 4], dtype=np.float64) assert arr.dtype == SparseDtype(np.float64, np.nan) assert np.isnan(arr.fill_value) arr = SparseArray([0, 1, 2, 4], dtype=np.int64) assert arr.dtype == SparseDtype(np.int64, 0) assert arr.fill_value == 0 arr = SparseArray([0, 1, 2, 4], fill_value=0, dtype=np.int64) assert arr.dtype == SparseDtype(np.int64, 0) assert arr.fill_value == 0 arr = SparseArray([0, 1, 2, 4], dtype=None) assert arr.dtype == SparseDtype(np.int64, 0) assert arr.fill_value == 0 arr = SparseArray([0, 1, 2, 4], fill_value=0, dtype=None) assert arr.dtype == SparseDtype(np.int64, 0) assert arr.fill_value == 0 def test_constructor_dtype_str(self): result = SparseArray([1, 2, 3], dtype='int') expected = SparseArray([1, 2, 3], dtype=int) tm.assert_sp_array_equal(result, expected) def test_constructor_sparse_dtype(self): result = SparseArray([1, 0, 0, 1], dtype=SparseDtype('int64', -1)) expected = SparseArray([1, 0, 0, 1], fill_value=-1, dtype=np.int64) tm.assert_sp_array_equal(result, expected) assert result.sp_values.dtype == np.dtype('int64') def test_constructor_sparse_dtype_str(self): result = SparseArray([1, 0, 0, 1], dtype='Sparse[int32]') expected = SparseArray([1, 0, 0, 1], dtype=np.int32) tm.assert_sp_array_equal(result, expected) assert result.sp_values.dtype == np.dtype('int32') def test_constructor_object_dtype(self): # GH 11856 arr = SparseArray(['A', 'A', np.nan, 'B'], dtype=np.object) assert arr.dtype == SparseDtype(np.object) assert np.isnan(arr.fill_value) arr = SparseArray(['A', 'A', np.nan, 'B'], dtype=np.object, fill_value='A') assert arr.dtype == SparseDtype(np.object, 'A') assert arr.fill_value == 'A' # GH 17574 data = [False, 0, 100.0, 0.0] arr = SparseArray(data, dtype=np.object, fill_value=False) assert arr.dtype == SparseDtype(np.object, False) assert arr.fill_value is False arr_expected = np.array(data, dtype=np.object) it = (type(x) == type(y) and x == y for x, y in zip(arr, arr_expected)) assert np.fromiter(it, dtype=np.bool).all() @pytest.mark.parametrize("dtype", [SparseDtype(int, 0), int]) def test_constructor_na_dtype(self, dtype): with pytest.raises(ValueError, match="Cannot convert"): SparseArray([0, 1, np.nan], dtype=dtype) def test_constructor_spindex_dtype(self): arr = SparseArray(data=[1, 2], sparse_index=IntIndex(4, [1, 2])) # XXX: Behavior change: specifying SparseIndex no longer changes the # fill_value expected = SparseArray([0, 1, 2, 0], kind='integer') tm.assert_sp_array_equal(arr, expected) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 arr = SparseArray(data=[1, 2, 3], sparse_index=IntIndex(4, [1, 2, 3]), dtype=np.int64, fill_value=0) exp = SparseArray([0, 1, 2, 3], dtype=np.int64, fill_value=0) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 arr = SparseArray(data=[1, 2], sparse_index=IntIndex(4, [1, 2]), fill_value=0, dtype=np.int64) exp = SparseArray([0, 1, 2, 0], fill_value=0, dtype=np.int64) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 arr = SparseArray(data=[1, 2, 3], sparse_index=IntIndex(4, [1, 2, 3]), dtype=None, fill_value=0) exp = SparseArray([0, 1, 2, 3], dtype=None) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 @pytest.mark.parametrize("sparse_index", [ None, IntIndex(1, [0]), ]) def test_constructor_spindex_dtype_scalar(self, sparse_index): # scalar input arr = SparseArray(data=1, sparse_index=sparse_index, dtype=None) exp = SparseArray([1], dtype=None) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 arr = SparseArray(data=1, sparse_index=IntIndex(1, [0]), dtype=None) exp = SparseArray([1], dtype=None) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 def test_constructor_spindex_dtype_scalar_broadcasts(self): arr = SparseArray(data=[1, 2], sparse_index=IntIndex(4, [1, 2]), fill_value=0, dtype=None) exp = SparseArray([0, 1, 2, 0], fill_value=0, dtype=None) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 @pytest.mark.parametrize('data, fill_value', [ (np.array([1, 2]), 0), (np.array([1.0, 2.0]), np.nan), ([True, False], False), ([pd.Timestamp('2017-01-01')], pd.NaT), ]) def test_constructor_inferred_fill_value(self, data, fill_value): result = SparseArray(data).fill_value if pd.isna(fill_value): assert pd.isna(result) else: assert result == fill_value @pytest.mark.parametrize('format', ['coo', 'csc', 'csr']) @pytest.mark.parametrize('size', [ pytest.param(0, marks=td.skip_if_np_lt("1.16", reason='NumPy-11383')), 10 ]) @td.skip_if_no_scipy def test_from_spmatrix(self, size, format): import scipy.sparse mat = scipy.sparse.random(size, 1, density=0.5, format=format) result = SparseArray.from_spmatrix(mat) result = np.asarray(result) expected = mat.toarray().ravel() tm.assert_numpy_array_equal(result, expected) @td.skip_if_no_scipy def test_from_spmatrix_raises(self): import scipy.sparse mat = scipy.sparse.eye(5, 4, format='csc') with pytest.raises(ValueError, match="not '4'"): SparseArray.from_spmatrix(mat) @pytest.mark.parametrize('scalar,dtype', [ (False, SparseDtype(bool, False)), (0.0, SparseDtype('float64', 0)), (1, SparseDtype('int64', 1)), ('z', SparseDtype('object', 'z'))]) def test_scalar_with_index_infer_dtype(self, scalar, dtype): # GH 19163 arr = SparseArray(scalar, index=[1, 2, 3], fill_value=scalar) exp = SparseArray([scalar, scalar, scalar], fill_value=scalar) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == dtype assert exp.dtype == dtype @pytest.mark.parametrize("fill", [1, np.nan, 0]) @pytest.mark.filterwarnings("ignore:Sparse:FutureWarning") def test_sparse_series_round_trip(self, kind, fill): # see gh-13999 arr = SparseArray([np.nan, 1, np.nan, 2, 3], kind=kind, fill_value=fill) res = SparseArray(SparseSeries(arr)) tm.assert_sp_array_equal(arr, res) arr = SparseArray([0, 0, 0, 1, 1, 2], dtype=np.int64, kind=kind, fill_value=fill) res = SparseArray(SparseSeries(arr), dtype=np.int64) tm.assert_sp_array_equal(arr, res) res = SparseArray(SparseSeries(arr)) tm.assert_sp_array_equal(arr, res) @pytest.mark.parametrize("fill", [True, False, np.nan]) @pytest.mark.filterwarnings("ignore:Sparse:FutureWarning") def test_sparse_series_round_trip2(self, kind, fill): # see gh-13999 arr = SparseArray([True, False, True, True], dtype=np.bool, kind=kind, fill_value=fill) res = SparseArray(SparseSeries(arr)) tm.assert_sp_array_equal(arr, res) res = SparseArray(SparseSeries(arr)) tm.assert_sp_array_equal(arr, res) def test_get_item(self): assert np.isnan(self.arr[1]) assert self.arr[2] == 1 assert self.arr[7] == 5 assert self.zarr[0] == 0 assert self.zarr[2] == 1 assert self.zarr[7] == 5 errmsg = re.compile("bounds") with pytest.raises(IndexError, match=errmsg): self.arr[11] with pytest.raises(IndexError, match=errmsg): self.arr[-11] assert self.arr[-1] == self.arr[len(self.arr) - 1] def test_take_scalar_raises(self): msg = "'indices' must be an array, not a scalar '2'." with pytest.raises(ValueError, match=msg): self.arr.take(2) def test_take(self): exp = SparseArray(np.take(self.arr_data, [2, 3])) tm.assert_sp_array_equal(self.arr.take([2, 3]), exp) exp = SparseArray(np.take(self.arr_data, [0, 1, 2])) tm.assert_sp_array_equal(self.arr.take([0, 1, 2]), exp) def test_take_fill_value(self): data = np.array([1, np.nan, 0, 3, 0]) sparse = SparseArray(data, fill_value=0) exp = SparseArray(np.take(data, [0]), fill_value=0) tm.assert_sp_array_equal(sparse.take([0]), exp) exp = SparseArray(np.take(data, [1, 3, 4]), fill_value=0) tm.assert_sp_array_equal(sparse.take([1, 3, 4]), exp) def test_take_negative(self): exp = SparseArray(np.take(self.arr_data, [-1])) tm.assert_sp_array_equal(self.arr.take([-1]), exp) exp = SparseArray(np.take(self.arr_data, [-4, -3, -2])) tm.assert_sp_array_equal(self.arr.take([-4, -3, -2]), exp) @pytest.mark.parametrize('fill_value', [0, None, np.nan]) def test_shift_fill_value(self, fill_value): # GH #24128 sparse = SparseArray(np.array([1, 0, 0, 3, 0]), fill_value=8.0) res = sparse.shift(1, fill_value=fill_value) if isna(fill_value): fill_value = res.dtype.na_value exp = SparseArray(np.array([fill_value, 1, 0, 0, 3]), fill_value=8.0) tm.assert_sp_array_equal(res, exp) def test_bad_take(self): with pytest.raises(IndexError, match="bounds"): self.arr.take([11]) def test_take_filling(self): # similar tests as GH 12631 sparse = SparseArray([np.nan, np.nan, 1, np.nan, 4]) result = sparse.take(np.array([1, 0, -1])) expected = SparseArray([np.nan, np.nan, 4]) tm.assert_sp_array_equal(result, expected) # XXX: test change: fill_value=True -> allow_fill=True result = sparse.take(np.array([1, 0, -1]), allow_fill=True) expected = SparseArray([np.nan, np.nan, np.nan]) tm.assert_sp_array_equal(result, expected) # allow_fill=False result = sparse.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) expected = SparseArray([np.nan, np.nan, 4]) tm.assert_sp_array_equal(result, expected) msg = "Invalid value in 'indices'" with pytest.raises(ValueError, match=msg): sparse.take(np.array([1, 0, -2]), allow_fill=True) with pytest.raises(ValueError, match=msg): sparse.take(np.array([1, 0, -5]), allow_fill=True) with pytest.raises(IndexError): sparse.take(np.array([1, -6])) with pytest.raises(IndexError): sparse.take(np.array([1, 5])) with pytest.raises(IndexError): sparse.take(np.array([1, 5]), allow_fill=True) def test_take_filling_fill_value(self): # same tests as GH 12631 sparse = SparseArray([np.nan, 0, 1, 0, 4], fill_value=0) result = sparse.take(np.array([1, 0, -1])) expected = SparseArray([0, np.nan, 4], fill_value=0) tm.assert_sp_array_equal(result, expected) # fill_value result = sparse.take(np.array([1, 0, -1]), allow_fill=True) # XXX: behavior change. # the old way of filling self.fill_value doesn't follow EA rules. # It's supposed to be self.dtype.na_value (nan in this case) expected = SparseArray([0, np.nan, np.nan], fill_value=0) tm.assert_sp_array_equal(result, expected) # allow_fill=False result = sparse.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) expected = SparseArray([0, np.nan, 4], fill_value=0) tm.assert_sp_array_equal(result, expected) msg = ("Invalid value in 'indices'.") with pytest.raises(ValueError, match=msg): sparse.take(np.array([1, 0, -2]), allow_fill=True) with pytest.raises(ValueError, match=msg): sparse.take(np.array([1, 0, -5]), allow_fill=True) with pytest.raises(IndexError): sparse.take(np.array([1, -6])) with pytest.raises(IndexError): sparse.take(np.array([1, 5])) with pytest.raises(IndexError): sparse.take(np.array([1, 5]), fill_value=True) def test_take_filling_all_nan(self): sparse = SparseArray([np.nan, np.nan, np.nan, np.nan, np.nan]) # XXX: did the default kind from take change? result = sparse.take(np.array([1, 0, -1])) expected = SparseArray([np.nan, np.nan, np.nan], kind='block') tm.assert_sp_array_equal(result, expected) result = sparse.take(np.array([1, 0, -1]), fill_value=True) expected = SparseArray([np.nan, np.nan, np.nan], kind='block') tm.assert_sp_array_equal(result, expected) with pytest.raises(IndexError): sparse.take(np.array([1, -6])) with pytest.raises(IndexError): sparse.take(np.array([1, 5])) with pytest.raises(IndexError): sparse.take(np.array([1, 5]), fill_value=True) def test_set_item(self): def setitem(): self.arr[5] = 3 def setslice(): self.arr[1:5] = 2 with pytest.raises(TypeError, match="assignment via setitem"): setitem() with pytest.raises(TypeError, match="assignment via setitem"): setslice() def test_constructor_from_too_large_array(self): with pytest.raises(TypeError, match="expected dimension <= 1 data"): SparseArray(np.arange(10).reshape((2, 5))) def test_constructor_from_sparse(self): res = SparseArray(self.zarr) assert res.fill_value == 0 assert_almost_equal(res.sp_values, self.zarr.sp_values) def test_constructor_copy(self): cp = SparseArray(self.arr, copy=True) cp.sp_values[:3] = 0 assert not (self.arr.sp_values[:3] == 0).any() not_copy = SparseArray(self.arr) not_copy.sp_values[:3] = 0 assert (self.arr.sp_values[:3] == 0).all() def test_constructor_bool(self): # GH 10648 data = np.array([False, False, True, True, False, False]) arr = SparseArray(data, fill_value=False, dtype=bool) assert arr.dtype == SparseDtype(bool) tm.assert_numpy_array_equal(arr.sp_values, np.array([True, True])) # Behavior change: np.asarray densifies. # tm.assert_numpy_array_equal(arr.sp_values, np.asarray(arr)) tm.assert_numpy_array_equal(arr.sp_index.indices, np.array([2, 3], np.int32)) dense = arr.to_dense() assert dense.dtype == bool tm.assert_numpy_array_equal(dense, data) def test_constructor_bool_fill_value(self): arr = SparseArray([True, False, True], dtype=None) assert arr.dtype ==
SparseDtype(np.bool)
pandas.core.sparse.api.SparseDtype
import sys import pandas as pd import pandas_ta as ta import investpy as iv import numpy as np from datetime import date, datetime from calendar import monthrange def find_days_in_month(): today = date.today() first = today.replace(day=1) last = today.replace(day=monthrange(today.year, today.month)[1]) return first, last # def find_days_in_arange(*args): def find_days_in_arange(day_range, interval='Daily'): ''' Now only support Days and Weeks -> handle Months | Years TypeError issue * Daily: get when new day income * Weekly: get when new week income * Monthly: get when new month income ''' interval_dict = {'Daily': 'D', 'Weekly': 'W'} end = date.today() start = np.datetime64(end) - \ np.timedelta64(day_range, interval_dict[interval]) start = np.datetime64(start).astype(datetime) return start, end def convert_date(date): return date.strftime("%d/%m/%Y") # Get data def get_data(*inputs): # start, end = find_days_in_month() # need changing this quote, interval, day_range = inputs start, end = find_days_in_arange(day_range, interval) start, end = convert_date(start), convert_date(end) # can reuse print(start, end) # issue if current month not reach the end df = iv.commodities.get_commodity_historical_data( quote, start, end, interval=interval) # print(df.tail(10)) # print(df) df.to_csv(f"data\\{quote}_{interval}.csv") return # Load data def load_data(quote, interval): df = pd.read_csv(f"data\\{quote}_{interval}.csv") df.drop('Currency', axis=1, inplace=True) df['Date'] =
pd.to_datetime(df['Date'])
pandas.to_datetime
# coding=utf-8 # pylint: disable-msg=E1101,W0612 """ test get/set & misc """ import pytest from datetime import timedelta import numpy as np import pandas as pd from pandas.core.dtypes.common import is_scalar from pandas import (Series, DataFrame, MultiIndex, Timestamp, Timedelta, Categorical) from pandas.tseries.offsets import BDay from pandas.compat import lrange, range from pandas.util.testing import (assert_series_equal) import pandas.util.testing as tm from pandas.tests.series.common import TestData JOIN_TYPES = ['inner', 'outer', 'left', 'right'] class TestMisc(TestData): def test_getitem_setitem_ellipsis(self): s = Series(np.random.randn(10)) np.fix(s) result = s[...] assert_series_equal(result, s) s[...] = 5 assert (result == 5).all() def test_pop(self): # GH 6600 df = DataFrame({'A': 0, 'B': np.arange(5, dtype='int64'), 'C': 0, }) k = df.iloc[4] result = k.pop('B') assert result == 4 expected = Series([0, 0], index=['A', 'C'], name=4) assert_series_equal(k, expected) def test_getitem_get(self): idx1 = self.series.index[5] idx2 = self.objSeries.index[5] assert self.series[idx1] == self.series.get(idx1) assert self.objSeries[idx2] == self.objSeries.get(idx2) assert self.series[idx1] == self.series[5] assert self.objSeries[idx2] == self.objSeries[5] assert self.series.get(-1) == self.series.get(self.series.index[-1]) assert self.series[5] == self.series.get(self.series.index[5]) # missing d = self.ts.index[0] - BDay() pytest.raises(KeyError, self.ts.__getitem__, d) # None # GH 5652 for s in [Series(), Series(index=list('abc'))]: result = s.get(None) assert result is None def test_getitem_int64(self): idx = np.int64(5) assert self.ts[idx] == self.ts[5] def test_getitem_fancy(self): slice1 = self.series[[1, 2, 3]] slice2 = self.objSeries[[1, 2, 3]] assert self.series.index[2] == slice1.index[1] assert self.objSeries.index[2] == slice2.index[1] assert self.series[2] == slice1[1] assert self.objSeries[2] == slice2[1] def test_getitem_generator(self): gen = (x > 0 for x in self.series) result = self.series[gen] result2 = self.series[iter(self.series > 0)] expected = self.series[self.series > 0] assert_series_equal(result, expected) assert_series_equal(result2, expected) def test_type_promotion(self): # GH12599 s = pd.Series() s["a"] = pd.Timestamp("2016-01-01") s["b"] = 3.0 s["c"] = "foo" expected = Series([pd.Timestamp("2016-01-01"), 3.0, "foo"], index=["a", "b", "c"]) assert_series_equal(s, expected) @pytest.mark.parametrize( 'result_1, duplicate_item, expected_1', [ [ pd.Series({1: 12, 2: [1, 2, 2, 3]}), pd.Series({1: 313}), pd.Series({1: 12, }, dtype=object), ], [ pd.Series({1: [1, 2, 3], 2: [1, 2, 2, 3]}), pd.Series({1: [1, 2, 3]}), pd.Series({1: [1, 2, 3], }), ], ]) def test_getitem_with_duplicates_indices( self, result_1, duplicate_item, expected_1): # GH 17610 result = result_1.append(duplicate_item) expected = expected_1.append(duplicate_item) assert_series_equal(result[1], expected) assert result[2] == result_1[2] def test_getitem_out_of_bounds(self): # don't segfault, GH #495 pytest.raises(IndexError, self.ts.__getitem__, len(self.ts)) # GH #917 s = Series([]) pytest.raises(IndexError, s.__getitem__, -1) def test_getitem_setitem_integers(self): # caused bug without test s = Series([1, 2, 3], ['a', 'b', 'c']) assert s.iloc[0] == s['a'] s.iloc[0] = 5 tm.assert_almost_equal(s['a'], 5) def test_getitem_box_float64(self): value = self.ts[5] assert isinstance(value, np.float64) def test_series_box_timestamp(self): rng = pd.date_range('20090415', '20090519', freq='B') ser = Series(rng) assert isinstance(ser[5], pd.Timestamp) rng = pd.date_range('20090415', '20090519', freq='B') ser = Series(rng, index=rng) assert isinstance(ser[5], pd.Timestamp) assert isinstance(ser.iat[5], pd.Timestamp) def test_getitem_ambiguous_keyerror(self): s = Series(lrange(10), index=lrange(0, 20, 2)) pytest.raises(KeyError, s.__getitem__, 1) pytest.raises(KeyError, s.loc.__getitem__, 1) def test_getitem_unordered_dup(self): obj = Series(lrange(5), index=['c', 'a', 'a', 'b', 'b']) assert is_scalar(obj['c']) assert obj['c'] == 0 def test_getitem_dups_with_missing(self): # breaks reindex, so need to use .loc internally # GH 4246 s = Series([1, 2, 3, 4], ['foo', 'bar', 'foo', 'bah']) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): expected = s.loc[['foo', 'bar', 'bah', 'bam']] with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = s[['foo', 'bar', 'bah', 'bam']] assert_series_equal(result, expected) def test_getitem_dups(self): s = Series(range(5), index=['A', 'A', 'B', 'C', 'C'], dtype=np.int64) expected = Series([3, 4], index=['C', 'C'], dtype=np.int64) result = s['C'] assert_series_equal(result, expected) def test_getitem_dataframe(self): rng = list(range(10)) s = pd.Series(10, index=rng) df = pd.DataFrame(rng, index=rng) pytest.raises(TypeError, s.__getitem__, df > 5) def test_getitem_callable(self): # GH 12533 s = pd.Series(4, index=list('ABCD')) result = s[lambda x: 'A'] assert result == s.loc['A'] result = s[lambda x: ['A', 'B']] tm.assert_series_equal(result, s.loc[['A', 'B']]) result = s[lambda x: [True, False, True, True]] tm.assert_series_equal(result, s.iloc[[0, 2, 3]]) def test_setitem_ambiguous_keyerror(self): s = Series(lrange(10), index=lrange(0, 20, 2)) # equivalent of an append s2 = s.copy() s2[1] = 5 expected = s.append(Series([5], index=[1])) assert_series_equal(s2, expected) s2 = s.copy() s2.loc[1] = 5 expected = s.append(Series([5], index=[1])) assert_series_equal(s2, expected) def test_setitem_callable(self): # GH 12533 s = pd.Series([1, 2, 3, 4], index=list('ABCD')) s[lambda x: 'A'] = -1 tm.assert_series_equal(s, pd.Series([-1, 2, 3, 4], index=list('ABCD'))) def test_setitem_other_callable(self): # GH 13299 inc = lambda x: x + 1 s = pd.Series([1, 2, -1, 4]) s[s < 0] = inc expected = pd.Series([1, 2, inc, 4]) tm.assert_series_equal(s, expected) def test_slice(self): numSlice = self.series[10:20] numSliceEnd = self.series[-10:] objSlice = self.objSeries[10:20] assert self.series.index[9] not in numSlice.index assert self.objSeries.index[9] not in objSlice.index assert len(numSlice) == len(numSlice.index) assert self.series[numSlice.index[0]] == numSlice[numSlice.index[0]] assert numSlice.index[1] == self.series.index[11] assert tm.equalContents(numSliceEnd, np.array(self.series)[-10:]) # Test return view. sl = self.series[10:20] sl[:] = 0 assert (self.series[10:20] == 0).all() def test_slice_can_reorder_not_uniquely_indexed(self): s = Series(1, index=['a', 'a', 'b', 'b', 'c']) s[::-1] # it works! def test_setitem(self): self.ts[self.ts.index[5]] = np.NaN self.ts[[1, 2, 17]] = np.NaN self.ts[6] = np.NaN assert np.isnan(self.ts[6]) assert np.isnan(self.ts[2]) self.ts[np.isnan(self.ts)] = 5 assert not np.isnan(self.ts[2]) # caught this bug when writing tests series = Series(tm.makeIntIndex(20).astype(float), index=tm.makeIntIndex(20)) series[::2] = 0 assert (series[::2] == 0).all() # set item that's not contained s = self.series.copy() s['foobar'] = 1 app = Series([1], index=['foobar'], name='series') expected = self.series.append(app) assert_series_equal(s, expected) # Test for issue #10193 key = pd.Timestamp('2012-01-01') series = pd.Series() series[key] = 47 expected = pd.Series(47, [key]) assert_series_equal(series, expected) series = pd.Series([], pd.DatetimeIndex([], freq='D')) series[key] = 47 expected = pd.Series(47, pd.DatetimeIndex([key], freq='D')) assert_series_equal(series, expected) def test_setitem_dtypes(self): # change dtypes # GH 4463 expected = Series([np.nan, 2, 3]) s = Series([1, 2, 3]) s.iloc[0] = np.nan assert_series_equal(s, expected) s = Series([1, 2, 3]) s.loc[0] = np.nan assert_series_equal(s, expected) s = Series([1, 2, 3]) s[0] = np.nan assert_series_equal(s, expected) s = Series([False]) s.loc[0] = np.nan assert_series_equal(s, Series([np.nan])) s = Series([False, True]) s.loc[0] = np.nan assert_series_equal(s, Series([np.nan, 1.0])) def test_set_value(self): idx = self.ts.index[10] with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): res = self.ts.set_value(idx, 0) assert res is self.ts assert self.ts[idx] == 0 # equiv s = self.series.copy() with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): res = s.set_value('foobar', 0) assert res is s assert res.index[-1] == 'foobar' assert res['foobar'] == 0 s = self.series.copy() s.loc['foobar'] = 0 assert s.index[-1] == 'foobar' assert s['foobar'] == 0 def test_setslice(self): sl = self.ts[5:20] assert len(sl) == len(sl.index) assert sl.index.is_unique def test_basic_getitem_setitem_corner(self): # invalid tuples, e.g. self.ts[:, None] vs. self.ts[:, 2] with tm.assert_raises_regex(ValueError, 'tuple-index'): self.ts[:, 2] with tm.assert_raises_regex(ValueError, 'tuple-index'): self.ts[:, 2] = 2 # weird lists. [slice(0, 5)] will work but not two slices result = self.ts[[slice(None, 5)]] expected = self.ts[:5] assert_series_equal(result, expected) # OK pytest.raises(Exception, self.ts.__getitem__, [5, slice(None, None)]) pytest.raises(Exception, self.ts.__setitem__, [5, slice(None, None)], 2) def test_basic_getitem_with_labels(self): indices = self.ts.index[[5, 10, 15]] result = self.ts[indices] expected = self.ts.reindex(indices) assert_series_equal(result, expected) result = self.ts[indices[0]:indices[2]] expected = self.ts.loc[indices[0]:indices[2]] assert_series_equal(result, expected) # integer indexes, be careful s = Series(np.random.randn(10), index=lrange(0, 20, 2)) inds = [0, 2, 5, 7, 8] arr_inds = np.array([0, 2, 5, 7, 8]) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = s[inds] expected = s.reindex(inds) assert_series_equal(result, expected) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = s[arr_inds] expected = s.reindex(arr_inds) assert_series_equal(result, expected) # GH12089 # with tz for values s = Series(pd.date_range("2011-01-01", periods=3, tz="US/Eastern"), index=['a', 'b', 'c']) expected = Timestamp('2011-01-01', tz='US/Eastern') result = s.loc['a'] assert result == expected result = s.iloc[0] assert result == expected result = s['a'] assert result == expected def test_setitem_with_tz(self): for tz in ['US/Eastern', 'UTC', 'Asia/Tokyo']: orig = pd.Series(pd.date_range('2016-01-01', freq='H', periods=3, tz=tz)) assert orig.dtype == 'datetime64[ns, {0}]'.format(tz) # scalar s = orig.copy() s[1] = pd.Timestamp('2011-01-01', tz=tz) exp = pd.Series([
pd.Timestamp('2016-01-01 00:00', tz=tz)
pandas.Timestamp
# -*- coding: utf-8 -*- """ Created on Mon Apr 12 16:49:09 2021 @author: Administrator """ #this website is called macrotrends #this script is designed to scrape its financial statements #yahoo finance only contains the recent 5 year #macrotrends can trace back to 2005 if applicable import re import json import pandas as pd import requests import os os.chdir('k:/') #simply scrape def scrape(url,**kwargs): session=requests.Session() session.headers.update( {'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.121 Safari/537.36'}) response=session.get(url,**kwargs) return response #create dataframe def etl(response): #regex to find the data num=re.findall('(?<=div\>\"\,)[0-9\.\"\:\-\, ]*',response.text) text=re.findall('(?<=s\: \')\S+(?=\'\, freq)',response.text) #convert text to dict via json dicts=[json.loads('{'+i+'}') for i in num] #create dataframe df=
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Thu Sep 23 08:06:31 2021 @author: bcamc """ #%% Import Packages import matplotlib as mpl import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1.inset_locator import InsetPosition, inset_axes from matplotlib.lines import Line2D import pandas as pd import numpy as np import scipy from scipy.stats.stats import pearsonr, spearmanr import cartopy import cartopy.crs as ccrs from mpl_toolkits.axes_grid1 import make_axes_locatable import xarray as xr from sklearn.decomposition import IncrementalPCA import os from sklearn.preprocessing import StandardScaler from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import train_test_split from sklearn.metrics import r2_score from datetime import datetime from sklearn import linear_model import datetime import cartopy.io.shapereader as shpreader from cartopy.feature import ShapelyFeature import shapely.geometry as sgeom from shapely.ops import unary_union from shapely.prepared import prep import joblib from joblib import Parallel, delayed from obspy.geodetics import kilometers2degrees, degrees2kilometers import cmocean import seaborn as sns from tabulate import tabulate # Progress bar package from tqdm import tqdm # Gibbs seawater properties packages import gsw # Import pre-built mapping functions from SO_mapping_templates import haversine, South_1ax_map, South_1ax_flat_map # Import function to calculate fluxes from Fluxes import calculate_fluxes # Import taylor diagram script from taylorDiagram import TaylorDiagram #%% Define directories front_dir = 'C:/Users/bcamc/OneDrive/Desktop/Python/Projects/sulfur/southern_ocean/' lana_dir = 'C:/Users/bcamc/OneDrive/Desktop/Python/Projects/sulfur/southern_ocean/dmsclimatology/' jarnikova_dir = 'C:/Users/bcamc/OneDrive/Desktop/Python/Projects/sulfur/southern_ocean/Jarnikova_SO_files/' #%% Set working directories dir_ = 'C:\\Users\\bcamc\\OneDrive\\Desktop\\Python\\Projects\\sulfur\\southern_ocean\\Scripts' if os.getcwd() != dir_: os.chdir(dir_) #%% Read in data (optional) export_dir = 'C:/Users/bcamc/OneDrive/Desktop/Python/Projects/sulfur/southern_ocean/export_data/' models_combined = pd.read_csv(export_dir+'models_combined.csv').set_index(['datetime','latbins','lonbins']).squeeze('columns') X_full_plus = pd.read_csv(export_dir+'X_full_plus.csv').set_index(['datetime','latbins','lonbins']) # ANN_y_pred = pd.read_csv(export_dir+'ANN_y_pred.csv').set_index(['datetime','latbins','lonbins']).squeeze('columns') # RFR_y_pred = pd.read_csv(export_dir+'RFR_y_pred.csv').set_index(['datetime','latbins','lonbins']).squeeze('columns') # y = pd.read_csv(export_dir+'y.csv').set_index(['datetime','latbins','lonbins']).squeeze('columns') # X = pd.read_csv(export_dir+'X.csv').set_index(['datetime','latbins','lonbins']) # X_full = X_full_plus.drop(['dSSHA','currents','SRD'],axis=1) #%% Post-processing # ***** Load in models/data using "SO_DMS_build_models.py" ***** # for plotting reordered_months = np.array([10.,11.,12.,1.,2.,3.,4.]) # Average predictions RFR_y_pred_mean = np.sinh(RFR_y_pred).groupby(['latbins','lonbins']).mean() ANN_y_pred_mean = np.sinh(ANN_y_pred).groupby(['latbins','lonbins']).mean() # calculate Si* Si_star = (X_full.loc[:,'Si']-X_full.loc[:,'SSN']).squeeze() X_full_plus['Si_star'] = Si_star #------------------------------------------------------------------------------ # Import ACC front locations front_data = xr.open_dataset(front_dir+'Park_durand_fronts.nc') fronts = dict() to_bin = lambda x: np.round(x /grid) * grid #------------------------------------------------------------------------------ # NB front fronts['NB'] = pd.DataFrame(np.stack([front_data.LatNB.values, front_data.LonNB.values, np.ones(front_data.LonNB.values.shape)],axis=1), columns=['latbins','lonbins','locs']) fronts['NB'] = fronts['NB'].sort_values('lonbins') fronts['NB']['latbins'] = fronts['NB']['latbins'].map(to_bin).round(3) fronts['NB']['lonbins'] = fronts['NB']['lonbins'].map(to_bin).round(3) fronts['NB'] = fronts['NB'].set_index(['latbins','lonbins']).squeeze() fronts['NB'] = fronts['NB'][~fronts['NB'].index.duplicated(keep='first')] # fronts['NB'] = fronts['NB'].reindex_like(models_combined.loc[1]) #------------------------------------------------------------------------------ # SAF front fronts['SAF'] = pd.DataFrame(np.stack([front_data.LatSAF.values, front_data.LonSAF.values, np.ones(front_data.LonSAF.values.shape)],axis=1), columns=['latbins','lonbins','locs']) fronts['SAF'] = fronts['SAF'].sort_values('lonbins') fronts['SAF']['latbins'] = fronts['SAF']['latbins'].map(to_bin).round(3) fronts['SAF']['lonbins'] = fronts['SAF']['lonbins'].map(to_bin).round(3) fronts['SAF'] = fronts['SAF'].set_index(['latbins','lonbins']).squeeze() fronts['SAF'] = fronts['SAF'][~fronts['SAF'].index.duplicated(keep='first')] # fronts['SAF'] = fronts['SAF'].reindex_like(models_combined.loc[1]) #------------------------------------------------------------------------------ # PF front fronts['PF'] = pd.DataFrame(np.stack([front_data.LatPF.values, front_data.LonPF.values, np.ones(front_data.LonPF.values.shape)],axis=1), columns=['latbins','lonbins','locs']) fronts['PF'] = fronts['PF'].sort_values('lonbins') fronts['PF']['latbins'] = fronts['PF']['latbins'].map(to_bin).round(3) fronts['PF']['lonbins'] = fronts['PF']['lonbins'].map(to_bin).round(3) fronts['PF'] = fronts['PF'].set_index(['latbins','lonbins']).squeeze() fronts['PF'] = fronts['PF'][~fronts['PF'].index.duplicated(keep='first')] # fronts['PF'] = fronts['PF'].reindex_like(models_combined.loc[1]) #------------------------------------------------------------------------------ # SACCF front fronts['SACCF'] = pd.DataFrame(np.stack([front_data.LatSACCF.values, front_data.LonSACCF.values, np.ones(front_data.LonSACCF.values.shape)],axis=1), columns=['latbins','lonbins','locs']) fronts['SACCF'] = fronts['SACCF'].sort_values('lonbins') fronts['SACCF']['latbins'] = fronts['SACCF']['latbins'].map(to_bin).round(3) fronts['SACCF']['lonbins'] = fronts['SACCF']['lonbins'].map(to_bin).round(3) fronts['SACCF'] = fronts['SACCF'].set_index(['latbins','lonbins']).squeeze() fronts['SACCF'] = fronts['SACCF'][~fronts['SACCF'].index.duplicated(keep='first')] # fronts['SACCF'] = fronts['SACCF'].reindex_like(models_combined.loc[1]) #------------------------------------------------------------------------------ # SB front fronts['SB'] = pd.DataFrame(np.stack([front_data.LatSB.values, front_data.LonSB.values, np.ones(front_data.LonSB.values.shape)],axis=1), columns=['latbins','lonbins','locs']) fronts['SB'] = fronts['SB'].sort_values('lonbins') fronts['SB']['latbins'] = fronts['SB']['latbins'].map(to_bin).round(3) fronts['SB']['lonbins'] = fronts['SB']['lonbins'].map(to_bin).round(3) fronts['SB'] = fronts['SB'].set_index(['latbins','lonbins']).squeeze() fronts['SB'] = fronts['SB'][~fronts['SB'].index.duplicated(keep='first')] # fronts['SB'] = fronts['SB'].reindex_like(models_combined.loc[1]) # front_data.close(); del front_data #------------------------------------------------------------------------------ SA = gsw.SA_from_SP(SP=X_full.loc[:,'SAL'].values, p=1, lon=X_full.index.get_level_values('lonbins').values, lat=X_full.index.get_level_values('latbins').values) CT = gsw.CT_from_t(SA=SA, t=X_full.loc[:,'SST'].values, p=1) density = gsw.density.rho(SA=SA,CT=CT,p=1) density = pd.Series(density, index=X_full.loc[:,'chl'].index) #%% Model Sea-Air Fluxes #----------------------------------------------------------------------------- #~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ # =================== # RFR Model # =================== #----------------------------------------------------------------------------- # Fluxes (umol m^-2 d^-1): RFR_flux = dict() k_dms, RFR_flux['GM12'] = calculate_fluxes(data=np.sinh(RFR_y_pred).values, ice_cover=X_full.loc[:,'ice'].values, wind_speed=X_full.loc[:,'wind'].values, T=X_full.loc[:,'SST'].values, parameterization='GM12') _, RFR_flux['SD02'] = calculate_fluxes(data=np.sinh(RFR_y_pred).values, ice_cover=X_full.loc[:,'ice'].values, wind_speed=X_full.loc[:,'wind'].values, T=X_full.loc[:,'SST'].values, parameterization='SD02') # ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ # Set as series RFR_flux['GM12'] = pd.Series(RFR_flux['GM12'], index=X_full.loc[:,'SST'].index, name='DMS flux') # filter out negative estimates RFR_flux['GM12'] = RFR_flux['GM12'][(RFR_flux['GM12'] >= 0) & (RFR_flux['GM12'].notna())].reindex_like(RFR_y_pred) RFR_flux['SD02'] = pd.Series(RFR_flux['SD02'], index=X_full.loc[:,'SST'].index, name='DMS flux') #----------------------------------------------------------------------------- # =================== # ANN Model # =================== #----------------------------------------------------------------------------- ANN_flux = dict() _, ANN_flux['GM12'] = calculate_fluxes(data=np.sinh(ANN_y_pred).values, ice_cover=X_full.loc[:,'ice'].values, wind_speed=X_full.loc[:,'wind'].values, T=X_full.loc[:,'SST'].values, parameterization='GM12') _, ANN_flux['SD02'] = calculate_fluxes(data=np.sinh(ANN_y_pred).values, ice_cover=X_full.loc[:,'ice'].values, wind_speed=X_full.loc[:,'wind'].values, T=X_full.loc[:,'SST'].values, parameterization='SD02') # ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ # Set as series ANN_flux['GM12'] = pd.Series(ANN_flux['GM12'], index=X_full.loc[:,'SST'].index, name='DMS flux') # filter out negative estimates ANN_flux['GM12'] = ANN_flux['GM12'][(ANN_flux['GM12'] >= 0) & (ANN_flux['GM12'].notna())].reindex_like(ANN_y_pred) ANN_flux['SD02'] = pd.Series(ANN_flux['SD02'], index=X_full.loc[:,'SST'].index, name='DMS flux') #----------------------------------------------------------------------------- # =================== # Actual # =================== #----------------------------------------------------------------------------- obs_flux = dict() _, obs_flux['GM12'] = calculate_fluxes(data=np.sinh(y).values, ice_cover=X.loc[:,'ice'].values, wind_speed=X.loc[:,'wind'].values, T=X.loc[:,'SST'].values, parameterization='GM12') _, obs_flux['SD02'] = calculate_fluxes(data=np.sinh(y).values, ice_cover=X.loc[:,'ice'].values, wind_speed=X.loc[:,'wind'].values, T=X.loc[:,'SST'].values, parameterization='SD02') # ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ # Set as series obs_flux['GM12'] = pd.Series(obs_flux['GM12'], index=X.loc[:,'SST'].index, name='DMS flux') # filter out negative estimates obs_flux['GM12'] = obs_flux['GM12'][(obs_flux['GM12'] >= 0) & (obs_flux['GM12'].notna())].reindex_like(y) obs_flux['SD02'] = pd.Series(obs_flux['SD02'], index=X.loc[:,'SST'].index, name='DMS flux') #----------------------------------------------------------------------------- # =================== # Regional Fluxes # =================== #----------------------------------------------------------------------------- #~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ # Constants: A = ((max_lat-min_lat)*111*1000)*((max_lon-min_lon)*111*1000) # total regional area A_ocean = A*frac_ocean # fraction of total area covered by ocean S_mol_mass = 32.06 # molar mass of sulfur num_days = np.sum(np.array([31,30,31,31,28,31,30])) # number of total days in the dataset #----------------------------------------------------------------------------- # Regional modelled flux (convert to Tg over total days) RFR_flux_reg = (RFR_flux['GM12']*S_mol_mass*A_ocean*num_days)/(1e6*1e12) ANN_flux_reg = (ANN_flux['GM12']*S_mol_mass*A_ocean*num_days)/(1e6*1e12) obs_flux_reg = (obs_flux['GM12']*S_mol_mass*A_ocean*num_days)/(1e6*1e12) fluxes_combined = pd.concat([RFR_flux['GM12'], ANN_flux['GM12']], axis=1).mean(axis=1) #%% Lana Climatology Sea-air Fluxes files = os.listdir(lana_dir) # Set 1x1o coords lana_coords = dict() lana_coords['lat'] = pd.Series(np.arange(-89,91,1), name='latbins') lana_coords['lon'] = pd.Series(np.arange(-179,181,1), name='lonbins') time_match = {'OCT':10,'NOV':11,'DEC':12,'JAN':1,'FEB':2,'MAR':3,'APR':4} # Retrive DMS climatology values, adding lats/lons to dataframes lana_clim = [] for file in files: frame = pd.DataFrame(np.flipud(pd.read_csv(lana_dir+file, header=None)), index=lana_coords['lat'], columns=lana_coords['lon']) frame = frame.stack(dropna=False) frame = frame.reset_index() frame['datetime'] = np.tile(float(time_match[file.split('.')[0][-3:]]), len(frame)) frame = frame.set_index(['datetime','latbins','lonbins']).squeeze() frame.name = 'DMS' lana_clim.append(frame) lana_clim = pd.concat(lana_clim) # Regrid variables to compute sea-air fluxes lana = dict() for var in ['wind','ice','SST']: lana[var] = X_full.loc[:,var].copy() lana[var] = lana[var].reset_index() lana[var] = lana[var].rename(columns={'lonbins':'lon','latbins':'lat'}) # regrid to nearest degree (i.e. 1x1o grid) lana[var]['latbins'] = lana[var].lat.round(0).astype('int32') lana[var]['lonbins'] = lana[var].lon.round(0).astype('int32') lana[var] = lana[var].set_index(['datetime','latbins','lonbins']) lana[var] = lana[var].drop(columns=['lat','lon']) lana[var] = lana[var].groupby(['datetime','latbins','lonbins']).mean().squeeze() lana[var] = lana[var].sort_index().reindex_like(lana_clim) print(var+' regrid complete') # Compute sea-air flux #----------------------------------------------------------------------------- lana_flux = dict() _, lana_flux['GM12'] = calculate_fluxes(data=lana_clim.values, ice_cover=lana['ice'].values, wind_speed=lana['wind'].values, T=lana['SST'].values, parameterization='GM12') _, lana_flux['SD02'] = calculate_fluxes(data=lana_clim.values, ice_cover=lana['ice'].values, wind_speed=lana['wind'].values, T=lana['SST'].values, parameterization='SD02') # ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ # Set as series lana_flux['GM12'] = pd.Series(lana_flux['GM12'], index=lana['SST'].index, name='DMS flux') # filter out negative estimates lana_flux['GM12'] = lana_flux['GM12'][(lana_flux['GM12'] >= 0) & (lana_flux['GM12'].notna())].reindex_like(lana_clim) lana_flux['SD02'] = pd.Series(lana_flux['SD02'], index=lana['SST'].index, name='DMS flux') #----------------------------------------------------------------------------- del frame #%% Jarnikova Climatology Sea-air Fluxes # This climatology is from Dec to Feb (Jarnikova & Tortell, 2016) mat = scipy.io.loadmat(jarnikova_dir+'nov26product.mat') tj_dms = mat['structname'][0,1]['barnessmooth'][0,0] tj_lats = mat['structname'][0,1]['latvec'][0,0][0,:] tj_lons = mat['structname'][0,1]['lonvec'][0,0][0,:] jarnikova_clim = pd.DataFrame(tj_dms, index=tj_lats, columns=tj_lons) jarnikova_clim.index = jarnikova_clim.index.rename('latbins') jarnikova_clim.columns = jarnikova_clim.columns.rename('lonbins') jarnikova_clim = jarnikova_clim.stack() # Reindex like lana et al. climatology jarnikova_clim = jarnikova_clim.reindex_like(lana_clim.loc[[12,1,2]].groupby(['latbins','lonbins']).mean()) # Calculate the fluxes #----------------------------------------------------------------------------- jarnikova_flux = dict() _, jarnikova_flux['GM12'] = calculate_fluxes(data=jarnikova_clim, ice_cover=lana['ice'].loc[[12,1,2]].groupby(['latbins','lonbins']).mean(), wind_speed=lana['wind'].loc[[12,1,2]].groupby(['latbins','lonbins']).mean(), T=lana['SST'].loc[[12,1,2]].groupby(['latbins','lonbins']).mean(), parameterization='GM12') _, jarnikova_flux['SD02'] = calculate_fluxes(data=jarnikova_clim.values, ice_cover=lana['ice'].loc[[12,1,2]].groupby(['latbins','lonbins']).mean().values, wind_speed=lana['wind'].loc[[12,1,2]].groupby(['latbins','lonbins']).mean().values, T=lana['SST'].loc[[12,1,2]].groupby(['latbins','lonbins']).mean().values, parameterization='SD02') # ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ # Set as series jarnikova_flux['GM12'] = pd.Series(jarnikova_flux['GM12'], index=lana['SST'].loc[[12,1,2]].groupby(['latbins','lonbins']).mean().index, name='DMS flux') # filter out negative estimates jarnikova_flux['GM12'] = jarnikova_flux['GM12'][(jarnikova_flux['GM12'] >= 0) & (jarnikova_flux['GM12'].notna())].reindex_like(jarnikova_clim) jarnikova_flux['SD02'] = pd.Series(jarnikova_flux['SD02'], index=lana['SST'].loc[[12,1,2]].groupby(['latbins','lonbins']).mean().index, name='DMS flux') #----------------------------------------------------------------------------- del mat #%% Compute KDEs for fluxes def KDE(y): """ A modifed wrapper function pulled from the Pandas source code (https://github.com/pandas-dev/pandas/blob/0.21.x/pandas/plotting/_core.py#L1381-L1430) that returns the kernel density estimates of a Pandas Series/sliced DataFrame using scipy's gaussian_kde function. It is efficient like the pandas native plotting function (because it only fits a subset of only 1000 points from the distribution) but it returns the actual values instead of an axes handle. Parameters ---------- y : Series or sliced Dataframe Input data. Returns ------- evals : Series or Dataframe col1: Fitted indices (1000 samples between data max/min bounds); col2: evaluated kernel density estimates at each indice. """ from scipy.stats import gaussian_kde y = y.dropna() sample_range = np.nanmax(y) - np.nanmin(y) ind = np.linspace(np.nanmin(y) - 0.5 * sample_range, np.nanmax(y) + 0.5 * sample_range, 1000) kde = gaussian_kde(y.dropna()) vals = kde.evaluate(ind) evals = pd.concat([pd.Series(ind, name='ind'), pd.Series(vals, name='kde')],axis=1) return evals # Function speeds up computation, but its still faster to load up the data # rather than rerun the function: if first_run is True: # Calculate the KDEs lana_kde = KDE(lana_flux['GM12']) jarnikova_kde = KDE(jarnikova_flux['GM12']) RFR_kde = KDE(RFR_flux['GM12']) RFR_kde_3mon = KDE(RFR_flux['GM12'].loc[[12,1,2],:,:]) ANN_kde = KDE(ANN_flux['GM12']) ANN_kde_3mon = KDE(ANN_flux['GM12'].loc[[12,1,2],:,:]) # Write each to a csv files lana_kde.to_csv(write_dir[:-14]+'lana_kde.csv') jarnikova_kde.to_csv(write_dir[:-14]+'jarnikova_kde.csv') RFR_kde.to_csv(write_dir[:-14]+'RFR_kde.csv') RFR_kde_3mon.to_csv(write_dir[:-14]+'RFR_kde_3mon.csv') ANN_kde.to_csv(write_dir[:-14]+'ANN_kde.csv') ANN_kde_3mon.to_csv(write_dir[:-14]+'ANN_kde_3mon.csv') else: # load up the csv files lana_kde = pd.read_csv(write_dir[:-14]+'lana_kde.csv') jarnikova_kde = pd.read_csv(write_dir[:-14]+'jarnikova_kde.csv') RFR_kde = pd.read_csv(write_dir[:-14]+'RFR_kde.csv') RFR_kde_3mon =
pd.read_csv(write_dir[:-14]+'RFR_kde_3mon.csv')
pandas.read_csv
import numpy as np import pandas as pd from sklearn.model_selection import ParameterGrid from itertools import product from explore.ContCat import ContCat def data_iter(): np.random.seed(2342) n = 30 # 2 classes cont = np.random.normal(size=n) cat = np.random.choice([0, 1], size=n).astype(str) for cont, cat in format_iter(cont, cat): yield cont, cat # 3 classes cont = np.random.normal(size=n) cat = np.random.choice([0, 1, 3], size=n).astype(str) for cont, cat in format_iter(cont, cat): yield cont, cat def format_iter(cont, cat): """ Iterates over various formats """ yield cont, cat cont =
pd.Series(cont)
pandas.Series
#Creates temperature mean from Tmin and Tmax average import sys import numpy as np import pandas as pd import rasterio from osgeo import gdal from affine import Affine from pyproj import Transformer #NAMING SETTINGS & OUTPUT FLAGS----------------------------------------------# MASTER_DIR = r'/home/hawaii_climate_products_container/preliminary/' CODE_MASTER_DIR = MASTER_DIR + r'air_temp/daily/code/' RUN_MASTER_DIR = MASTER_DIR + r'air_temp/data_outputs/' MAP_OUTPUT_DIR = RUN_MASTER_DIR + r'tiffs/daily/county/' #Set subdirectories based on varname and iCode SE_OUTPUT_DIR = RUN_MASTER_DIR + r'tiffs/daily/county/' CV_OUTPUT_DIR = RUN_MASTER_DIR + r'tables/loocv/daily/county/' TIFF_SUFFIX = '.tif' SE_SUFFIX = '_se.tif' CV_SUFFIX = '_loocv.csv' NO_DATA_VAL = -9999 #END SETTINGS----------------------------------------------------------------# #FUNCTION DEFINITION---------------------------------------------------------# def get_Coordinates(GeoTiff_name): # Read raster with rasterio.open(GeoTiff_name) as r: T0 = r.transform # upper-left pixel corner affine transform A = r.read() # pixel values # All rows and columns cols, rows = np.meshgrid(np.arange(A.shape[2]), np.arange(A.shape[1])) # Get affine transform for pixel centres T1 = T0 * Affine.translation(0.5, 0.5) # Function to convert pixel row/column index (from 0) to easting/northing # at centre def rc2en(r, c): return T1 * (c, r) # All eastings and northings (there is probably a faster way to do this) eastings, northings = np.vectorize( rc2en, otypes=[ float, float])( rows, cols) transformer = Transformer.from_proj( 'EPSG:4326', '+proj=longlat +datum=WGS84 +no_defs +type=crs', always_xy=True, skip_equivalent=True) LON, LAT = transformer.transform(eastings, northings) return LON, LAT def get_island_df(tiff_name,varname): lon,lat = get_Coordinates(tiff_name) lon = lon.reshape(-1) lat = lat.reshape(-1) df_dict = {'LON':lon,'LAT':lat} raster_img = rasterio.open(tiff_name) raster_data = raster_img.read(1) raster_mask = raster_img.read_masks(1) raster_mask[raster_mask > 0] = 1 masked_array = raster_data * raster_mask masked_array[raster_mask == 0] = np.nan masked_array = masked_array.reshape(-1) df_dict[varname] = masked_array island_df = pd.DataFrame.from_dict(df_dict) shape = raster_data.shape return island_df, shape def output_tiff(data,base_tiff_name,out_tiff_name,tiff_shape): cols,rows = tiff_shape ds = gdal.Open(base_tiff_name) driver = gdal.GetDriverByName("GTiff") outdata = driver.Create(out_tiff_name, rows, cols, 1, gdal.GDT_Float32) # sets same geotransform as input outdata.SetGeoTransform(ds.GetGeoTransform()) outdata.SetProjection(ds.GetProjection()) # sets same projection as input outdata.GetRasterBand(1).WriteArray(data.reshape(tiff_shape)) # if you want these values (in the mask) transparent outdata.GetRasterBand(1).SetNoDataValue(NO_DATA_VAL) outdata.FlushCache() # saves to disk!! outdata = None band = None ds = None #END FUNCTIONS---------------------------------------------------------------# #Open raster files for Tmin and Tmax #Merge standard error as well #"Main functions" def generate_county_mean(iCode,date_str,datadir=None): date_tail = ''.join(date_str.split('-')) iCode = iCode.upper() min_varname = 'Tmin' max_varname = 'Tmax' mean_varname = 'Tmean' #[SET_DIR] if datadir == None: TMIN_TIFF_DIR = MAP_OUTPUT_DIR + min_varname + '/' + iCode + '/' TMAX_TIFF_DIR = MAP_OUTPUT_DIR + max_varname + '/' + iCode + '/' TMEAN_TIFF_DIR = MAP_OUTPUT_DIR + mean_varname + '/' + iCode + '/' else: TMIN_TIFF_DIR = datadir[0] TMAX_TIFF_DIR = datadir[1] TMEAN_TIFF_DIR = datadir[2] #Set tiff filename tmin_tiff_name = TMIN_TIFF_DIR + '_'.join((min_varname,'map',iCode,date_tail)) + TIFF_SUFFIX tmax_tiff_name = TMAX_TIFF_DIR + '_'.join((max_varname,'map',iCode,date_tail)) + TIFF_SUFFIX tmean_tiff_name = TMEAN_TIFF_DIR + '_'.join((mean_varname,'map',iCode,date_tail)) + TIFF_SUFFIX #Open raster files and convert to dataframes min_df, shape = get_island_df(tmin_tiff_name,min_varname) max_df, shape = get_island_df(tmax_tiff_name,max_varname) #Merge them so that we have Tmin and Tmax in same data frame only at matching lat-lons #(Although lat-lons should not have any mismatch) merged_df = min_df.merge(max_df,how='inner',on=['LON','LAT']) #Take the mean of Tmin and Tmax columns, convert into dataframe tmean = merged_df[[min_varname,max_varname]].mean(axis=1).values tmean = np.round(tmean,1) tmean[np.isnan(tmean)] = NO_DATA_VAL #Output to new tiff output_tiff(tmean,tmin_tiff_name,tmean_tiff_name,shape) def generate_se_mean(iCode,date_str,datadir=None): #Setting file names date_tail = ''.join(date_str.split('-')) iCode = iCode.upper() min_varname = 'Tmin' max_varname = 'Tmax' mean_varname = 'Tmean' #[SET_DIR] if datadir == None: TMIN_TIFF_DIR = MAP_OUTPUT_DIR + min_varname + '_se/' + iCode + '/' TMAX_TIFF_DIR = MAP_OUTPUT_DIR + max_varname + '_se/' + iCode + '/' TMEAN_TIFF_DIR = MAP_OUTPUT_DIR + mean_varname + '_se/' + iCode + '/' else: TMIN_TIFF_DIR = datadir[0] TMAX_TIFF_DIR = datadir[1] TMEAN_TIFF_DIR = datadir[2] se_min_tiff_name = TMIN_TIFF_DIR + '_'.join((min_varname,'map',iCode,date_tail)) + SE_SUFFIX se_max_tiff_name = TMAX_TIFF_DIR + '_'.join((max_varname,'map',iCode,date_tail)) + SE_SUFFIX se_mean_tiff_name = TMEAN_TIFF_DIR + '_'.join((mean_varname,'map',iCode,date_tail)) + SE_SUFFIX #Reading tiff data and getting statistic values se_min_df, tiff_shape = get_island_df(se_min_tiff_name,min_varname) se_max_df, tiff_shape = get_island_df(se_max_tiff_name,max_varname) #Create an array from the combined standard deviations #Square each and divide by sample size (? what is the sample size?) se_min2 = se_min_df[min_varname]**2 se_max2 = se_max_df[max_varname]**2 combined = np.sqrt((se_min2) + (se_max2)) / 2.0 combined = np.round(combined,1) combined[np.isnan(combined)] = NO_DATA_VAL output_tiff(combined.values,se_min_tiff_name,se_mean_tiff_name,tiff_shape) # This code has been automatically covnerted to comply with the pep8 convention # This the Linux command: # $ autopep8 --in-place --aggressive <filename>.py if __name__ == '__main__': iCode = str(sys.argv[1]) # 'bi' #main_dir = sys.argv[2] #Parent dir, assuming standard temp file tree date_range = str(sys.argv[2]) #YYYYMMDD_start-YYYYMMDD_end date_range = date_range.split('-') st_date =
pd.to_datetime(date_range[0],format='%Y%m%d')
pandas.to_datetime
__author__ = "<NAME>" __version__ = ".2" import pandas as pd import numpy as np from datetime import datetime from dateutil.relativedelta import relativedelta class MetricsFunctions: def average_los_in_es_shelter(self, entries_df, cleaned=False): """ Used For: :param entries_df: :return: """ stays = entries_df[ ( entries_df["Entry Exit Provider Id"].str.contains("Hansen") | entries_df["Entry Exit Provider Id"].str.contains("Columbia") | entries_df["Entry Exit Provider Id"].str.contains("Willamette") | entries_df["Entry Exit Provider Id"].str.contains("SOS") | entries_df["Entry Exit Provider Id"].str.contains("5th") ) ] stays["Entry Date"] = pd.to_datetime(stays["Entry Exit Entry Date"]).dt.date stays["Exit Date"] = pd.to_datetime(stays["Entry Exit Exit Date"]).dt.date stays["Exit Date"].fillna(value=datetime(year=2017, month=9, day=30, hour=23, minute=59, second=59)) stays["LOS"] = (stays["Exit Date"] - stays["Entry Date"]).dt.days filtered_stays = stays[["Client Uid", "Entry Date", "Exit Date", "LOS"]] total_days = filtered_stays["LOS"].sum() total_stays = len(filtered_stays.index) un_cleaned_mean = filtered_stays["LOS"].mean() cleaned_los_data = filtered_stays[ np.abs(filtered_stays.LOS - filtered_stays.LOS.mean()) <= (3 * filtered_stays.LOS.std(ddof=0)) ] cleaned_mean = cleaned_los_data.mean() if cleaned: return tuple(["Length of stay per emergency shelter resident (days)", "", cleaned_mean]) else: return tuple(["Length of stay per emergency shelter resident (days)", "", un_cleaned_mean]) def average_los_in_res_shelter(self, entries_df, cleaned=False): """ Used For: Agency :param entries_df: data frame of all entries report :param cleaned: if cleaned == True method will return the mean excluding outliers, which are defined as 3 standard deviations from the norm :return: """ stays = entries_df[ ( entries_df["Entry Exit Provider Id"].str.contains("Doreen's") | entries_df["Entry Exit Provider Id"].str.contains("Clark Center") | entries_df["Entry Exit Provider Id"].str.contains("Jean's") ) ] stays["Entry Date"] = pd.to_datetime(stays["Entry Exit Entry Date"]).dt.date stays["Exit Date"] = pd.to_datetime(stays["Entry Exit Exit Date"]).dt.date stays["Exit Date"].fillna(value=datetime(year=2017, month=9, day=30, hour=23, minute=59, second=59)) stays["LOS"] = (stays["Exit Date"] - stays["Entry Date"]).dt.days filtered_stays = stays[["Client Uid", "Entry Date", "Exit Date", "LOS"]] total_days = filtered_stays["LOS"].sum() total_stays = len(filtered_stays.index) un_cleaned_mean = filtered_stays["LOS"].mean() cleaned_los_data = filtered_stays[ np.abs(filtered_stays.LOS - filtered_stays.LOS.mean()) <= (3 * filtered_stays.LOS.std()) ] cleaned_mean = cleaned_los_data.mean() if cleaned: return tuple(["Length of stay per residential shelter resident (days)", "", cleaned_mean]) else: return tuple(["Length of stay per residential shelter resident (days)", "", un_cleaned_mean]) def calculate_average_wait_list_length(self, waitlist_df, waitlist="Men"): """ Used by: Agency Used for: LOS on Men's Waitlist; LOS on Women's Waitlist :param waitlist: This should be either 'Men' or 'Women' :param waitlist_df: :return:If there are no values that result from a removal of outlier items (3 standard deviations from the mean) then a basic mean will be returned other wise the return value will exclude outliers. """ def check_list(waitlist, data_frame=waitlist_df): if waitlist == "Men": specific_wait_list = data_frame[data_frame["Waitlist Name"].str.contains(waitlist)] return specific_wait_list elif waitlist == "Women": specific_wait_list = data_frame[ ( data_frame["Waitlist Name"].str.contains(waitlist) | data_frame["Waitlist Name"].str.contains("Jean's") ) ] return specific_wait_list specified = check_list(waitlist, waitlist_df.dropna(axis=0, subset=["Waitlist Name"])) specified["Event Date"] = pd.to_datetime(specified["Waitlist Event Date"]) filtered = specified[["ClientID", "Event Date", "Waitlist Event Code"]] filtered["q_start"] = datetime(year=2017, month=10, day=1, hour=0, minute=0, second=0) filtered["q_end"] = datetime(year=2017, month=12, day=31, hour=23, minute=59, second=59) in_shelter = filtered[ ( filtered["Waitlist Event Code"].str.contains("IN") & (filtered["Event Date"] >= filtered["q_start"]) & (filtered["Event Date"] <= filtered["q_end"]) ) ] in_shelter["In Date"] = in_shelter["Event Date"] in_shelter_clean = in_shelter[["ClientID", "In Date"]] new_to_list = filtered[ ( filtered["Waitlist Event Code"].str.contains("NEW") & filtered["ClientID"].isin(in_shelter["ClientID"]) ) ] new_to_list_sorted = new_to_list.sort_values(by="Event Date").drop_duplicates(subset="ClientID", keep="first") new_to_list_clean = new_to_list_sorted[["ClientID", "Event Date"]] merged = in_shelter_clean.merge(new_to_list_clean, on="ClientID", how="left") merged["time_on_list"] = (merged["In Date"] - merged["Event Date"]).dt.days all_values_mean = merged.time_on_list.mean() clean_mean = merged[ np.abs(merged.time_on_list - merged.time_on_list.mean()) <= (3 * merged.time_on_list.std()) ].time_on_list.mean() if clean_mean: return tuple([ "Length of {}'s shelter waitlist (in days)".format(waitlist), "", "{} Days".format(clean_mean) ]) else: return tuple([ "Length of {}'s shelter waitlist (in days)".format(waitlist), "", "{} Days".format(all_values_mean) ]) def count_access_employment_services(self, services_df, staff_on_team, direct=False): """ prior to 7/1/2017 = ["<NAME>(7792)"] from 7/1/2017 - 10/1/2017 = ["<NAME>(8044)", "<NAME>(7792)"] post 10/1/2017 = ["<NAME>(7727)", "<NAME>(8044)", "<NAME>(7792)"] Numbers from this report for the quarters run separately then merged and de-duplicated are not matching numbers run for multiple quarters. This is strange and seems to indicate an error somewhere. Set unit tests and investigate. Currently, due to staffing changes during the previous quarter I am running this for multiple quarters using the direct=True parameter, assigning the output for each quarter's data to a different variable. I am then merging the variables on the Client Uid column as an 'outer' merge, de-duplicating, and returning the len of the resulting data frame's index. :param services_df: :param staff_on_team: :return: """ if direct == True and type(staff_on_team) == list: return services_df[ services_df["Service User Creating"].isin(staff_on_team) & services_df["Service Provide Provider"].str.contains("Support") ].drop_duplicates(subset="Client Uid") elif direct == True and type(staff_on_team) == str: return services_df[ services_df["Service User Creating"].str.contains(staff_on_team) & services_df["Service Provide Provider"].str.contains("Support") ].drop_duplicates(subset="Client Uid") elif type(staff_on_team) == list: served = services_df[ services_df["Service User Creating"].isin(staff_on_team) & services_df["Service Provide Provider"].str.contains("Support") ].drop_duplicates(subset="Client Uid") return tuple(["600 participants will access employment services", 600, len(served.index)]) elif type(staff_on_team) == str: served = services_df[ (services_df["Service User Creating"] == staff_on_team) & services_df["Service Provide Provider"].str.contains("Support") ].drop_duplicates(subset="Client Uid") return tuple(["600 participants will access employment services", 600, len(served.index)]) else: return tuple(["Error", "Error", "Error"]) def count_employment_services(self, employment_df, start_date, end_date, metric): """ Currently this method uses some rather flawed data for reporting individuals served. Instead please used the count_access_employment_services method to report on this metric. The end date should be the last day of the quarter or reporting period. :param employment_df: A data-frame made from the employment tracker access datasheet available on tprojects.info on the support services page. :param start_date: date string using the standard U.S. mm/dd/YYYY format :param end_date: date string using the standard U.S. mm/dd/YYYY format :return: An integer indidcating the number of unique individuals served by the employment a """ start = datetime.strptime(start_date, "%m/%d/%Y") end = datetime.strptime(end_date, "%m/%d/%Y") employment_df["Start Date"] = start employment_df["End Date"] = end if metric.lower() == "served": in_period_access = employment_df[ ( (employment_df["Start Date"] <= employment_df["Created"]) & (employment_df["Created"] <= employment_df["End Date"]) ) | ( employment_df["Date Income Changed"].notna() & ( (employment_df["Start Date"] <= employment_df["Date Income Changed"]) & (employment_df["Date Income Changed"] <= employment_df["End Date"]) ) ) ] served = len(in_period_access.drop_duplicates(subset="PT ID").index) return tuple(["600 participants will access employment services", 600, served]) elif metric.lower() == "employment": in_period_gained = employment_df[ employment_df["Employment Gained"].notna() & ( (employment_df["Start Date"] <= employment_df["Employment Gained"]) & (employment_df["Employment Gained"] <= employment_df["End Date"]) ) ] gained = len(in_period_gained.drop_duplicates(subset="PT ID").index) return tuple(["","", gained]) elif metric.lower() == "income": in_period_gained = employment_df[ employment_df["Date Income Changed"].notna() & ( (employment_df["Start Date"] <= employment_df["Employment Gained"]) & (employment_df["Date Income Changed"] <= employment_df["End Date"]) ) ] gained = len(in_period_gained.drop_duplicates(subset="PT ID").index) return tuple(["15% of participants will increase their incomes ****", "15%", gained]) else: return tuple(["Error", "Error", "Error"]) def count_employment_services_by_provider(self, employment_df, entries_df, provider): entries = entries_df[ entries_df["Entry Exit Provider Id"].str.contains(provider) ].drop_duplicates(subset="Client Uid") employment = employment_df[["PT ID", "Employment Gained", "Date Income Changed", "Employment Lost"]] merged = entries.merge(employment, left_on="Client Uid", right_on="PT ID", how="left") cleaned = merged[ ( merged["Employment Gained"].notna() & (merged["Entry Exit Entry Date"] <= merged["Employment Gained"]) & (merged["Employment Gained"] <= merged["Entry Exit Exit Date"]) ) | ( merged["Date Income Changed"].notna() & (merged["Entry Exit Entry Date"] <= merged["Date Income Changed"]) & (merged["Date Income Changed"] <= merged["Entry Exit Exit Date"]) ) ] return tuple([ "", "", "{} / {} = {}%".format( len(cleaned.index), len(entries.index), 100 * (len(cleaned.index) / len(entries.index)) ) ]) def count_all_ep(self, placements_df): """ Used by: Agency :param placements_df: :return: """ ep_placements = placements_df[ placements_df["Intervention Type (TPI)(8745)"] == "Eviction Prevention" ] de_duplicated_ep = len(ep_placements.drop_duplicates(subset="Client Uid").index) return tuple(["124 participants will have their evictions prevented", 124, de_duplicated_ep]) def count_all_pp(self, placements_df): """ Used by: Agency :param placements_df: :return: """ pp_placements = placements_df[ placements_df["Intervention Type (TPI)(8745)"].notnull & placements_df["Intervention Type (TPI)(8745)"].str.contains("Permanent") ] de_duplicated_pp = len(pp_placements.drop_duplicates(subset="Client Uid").index) return tuple(["1,065 participants will be permanently housed*", 1065, de_duplicated_pp]) def count_all_placed(self, placements_df): """ :param placements_df: :return: """ return placements_df.drop_duplicates(subset="Client Uid") def count_all_placed_by_provider( self, placements_df, provider=["ACCESS", "SSVF - TPI", "Retention", "Residential CM"] ): """ Used By: ACCESS, SSVF, Retention, Residential CM :param placements_df: :param provider: :return: """ de_duplicated = placements_df[ placements_df["Department Placed From(3076)"].isin(provider) ].drop_duplicates(subset="Client Uid") return len(de_duplicated.index) def count_entries_by_provider(self, entries_df, provider): """ Used By: :param entries_df: :param provider: :return: """ if type(provider) == str: count = len(entries_df[ entries_df["Entry Exit Provider Id"].str.contains(provider) ].drop_duplicates(subset="Client Uid", keep="first").index) if provider == "Residential": return tuple(["Engage 900 participants in case management", 900, count]) elif provider == "Retention": pass elif provider == "SSVF": pass elif provider == "ACCESS": return tuple(["Engage 1200 participants in case management", 1200, count]) elif provider.lower() == "columbia": return tuple(["700 unduplicated participants have a safe place to sleep", 700, count]) elif provider.lower() == "wil": return tuple(["1000 unduplicated participants have a safe place to sleep", 1000, count]) elif provider.lower() == "5th": return tuple(["700 unduplicated participants have a safe place to sleep", 700, count]) elif provider.lower() == "han": return tuple(["1000 unduplicated participants have a safe place to sleep", 1000, count]) elif provider.lower() == "sos": return tuple(["700 unduplicated participants have a safe place to sleep", 700, count]) elif (provider.lower() == "clark center") or (provider.lower() == "doreen's"): return tuple([ "550 unduplicated participants have a safe place to sleep at {}".format(provider), 550, count ]) elif provider.lower() == "jean's place": return tuple([ "350 unduplicated participants have a safe place to sleep at Jean's Place", 350, count ]) elif type(provider) == list: full_provider_name = { "cc": "Transition Projects (TPI) - Clark Center - SP(25)", "col": "Transition Projects (TPI) - Columbia Shelter(5857)", "dp": "Transition Projects (TPI) - Doreen's Place - SP(28)", "h": "Transition Projects (TPI) - Hansen Emergency Shelter - SP(5588)", "jp": "Transition Projects (TPI) - Jean's Place L1 - SP(29)", "sos": "Transition Projects (TPI) - SOS Shelter(2712)", "dpgpd": "Transition Projects (TPI) - VA Grant Per Diem (inc. Doreen's Place GPD) - SP(3189)", "wc": "Transition Projects (TPI) - Willamette Center(5764)", "access": "Transition Projects (TPI) - ACCESS - CM(5471)", "res": "Transition Projects (TPI) - Residential - CM(5473)", "ret": "Transition Projects (TPI) - Retention - CM(5472)", "ca": "Transition Projects (TPI) Housing - Clark Annex PSH - SP(2858)", "cagpd": "Transition Projects (TPI) Housing - Clark Annex GPD - SP(4259)" } provider_list = [] for dept in provider: name = full_provider_name[dept.lower()] provider_list.append(name) count = len(entries_df[ entries_df["Entry Exit Provider Id"].isin(provider_list) ].drop_duplicates(subset="Client Uid", keep="first").index) return tuple([ "1850 unduplicated participants in all emergency shelters will have a safe place to sleep", 1850, count ]) def count_exit_destination_by_shelter_group(self, entries_df, shelter_group): low_barrier = [ "Transition Projects (TPI) - SOS Shelter(2712)", "Transition Projects (TPI) - Willamette Center(5764)", "Transition Projects (TPI) - Columbia Shelter(5857)", "Transition Projects (TPI) - 5th Avenue Shelter(6281)", "Transition Projects (TPI) - Hansen Emergency Shelter - SP(5588)", ] residential = [ "Transition Projects(TPI) - Clark Center - SP(25)", "Transition Projects(TPI) - VA Grant Per Diem(inc.Doreen's Place GPD) - SP(3189)", "Transition Projects(TPI) - Jean's Place L1 - SP(29)", "Transition Projects(TPI) - Doreen's Place - SP(28)", "Transition Projects(TPI) - Jean’s Place VA Grant Per Diem(GPD) - SP(3362)" ] perm_destination = [ "Owned by client, no ongoing housing subsidy (HUD)", "Owned by client, with ongoing housing subsidy (HUD)", "Permanent housing for formerly homeless persons (HUD)", "Rental by client, no ongoing housing subsidy (HUD)", "Rental by client, with other ongoing housing subsidy (HUD)", "Rental by client, with VASH subsidy (HUD)", "Staying or living with family, permanent tenure (HUD)", "Staying or living with friends, permanent tenure (HUD)", "Foster care home or foster care group home (HUD)", "Rental by client, with GPD TIP subsidy (HUD)", "Permanent housing (other than RRH) for formerly homeless persons (HUD)", "Moved from one HOPWA funded project to HOPWA PH (HUD)", "Long-term care facility or nursing home (HUD)", "Residential project or halfway house with no homeless criteria (HUD)" ] temp_destination = [ # "Emergency shelter, including hotel or motel paid for with emergency shelter voucher (HUD)", "Hospital or other residential non-psychiatric medical facility (HUD)", "Hotel or motel paid for without emergency shelter voucher (HUD)", "Jail, prison or juvenile detention facility (HUD)", "Staying or living with family, temporary tenure (e.g., room, apartment or house)(HUD)", "Staying or living with friends, temporary tenure (e.g., room apartment or house)(HUD)", "Transitional housing for homeless persons (including homeless youth) (HUD)", "Moved from one HOPWA funded project to HOPWA TH (HUD)", "Substance abuse treatment facility or detox center (HUD)", "Psychiatric hospital or other psychiatric facility (HUD)" ] if shelter_group.lower() == "res": perm = entries_df[ entries_df["Entry Exit Provider Id"].isin(residential) & entries_df["Entry Exit Destination"].notna() & entries_df["Entry Exit Destination"].isin(perm_destination) ].drop_duplicates(subset="Client Uid") temp = entries_df[ entries_df["Entry Exit Provider Id"].isin(residential) & entries_df["Entry Exit Destination"].notna() & entries_df["Entry Exit Destination"].isin(temp_destination) ].drop_duplicates(subset="Client Uid") all = entries_df[ entries_df["Entry Exit Provider Id"].isin(residential) & entries_df["Entry Exit Exit Date"].notna() ].drop_duplicates(subset="Client Uid") return (len(perm.index), len(temp.index), len(all.index)) elif shelter_group.lower() == "low": perm = entries_df[ entries_df["Entry Exit Provider Id"].isin(low_barrier) & entries_df["Entry Exit Destination"].notna() & entries_df["Entry Exit Destination"].isin(perm_destination) ].drop_duplicates(subset="Client Uid") temp = entries_df[ entries_df["Entry Exit Provider Id"].isin(low_barrier) & entries_df["Entry Exit Destination"].notna() & entries_df["Entry Exit Destination"].isin(temp_destination) ].drop_duplicates(subset="Client Uid") all = entries_df[ entries_df["Entry Exit Provider Id"].isin(low_barrier) & entries_df["Entry Exit Exit Date"].notna() ].drop_duplicates(subset="Client Uid") return (len(perm.index), len(temp.index), len(all.index)) else: pass def count_households_screened(self, entries_hh_df): """ Used By: :param entries_hh_df: :return: """ screened = len(entries_hh_df[ entries_hh_df["Entry Exit Provider Id"].str.contains("Screening") ].drop_duplicates(subset="Household Uid", keep="first").index) return tuple(["Screen 784 veteran families for services", 784, screened]) def count_hygiene_services_by_provider(self, services_df, provider="Day Center"): """ Use for: Agency, Day Center Question: participants will receive hygiene services Warning: Do not update the services_1 list to include the newer service code description of "Personal Goods/Services" as this will cause the module to return a count including non-hygiene services that are sharing this same service code description :return: a count of unique participants receiving any hygiene service """ services_1 = [ "Bathing Facilities", "Personal/Grooming Supplies", "Hairdressing/Nail Care" ] services_2 = [ "Shower", "Showers", "Laundry Supplies", "Clothing", "Hairdressing/Nail Care", "Personal Grooming Supplies" ] if provider == "Day Center": services = services_df[ ((services_df["Service Code Description"].isin(services_1)) | ( services_df["Service Provider Specific Code"].isin(services_2))) & services_df["Service Provide Provider"].str.contains(provider) ] services_provided = services[ services["Service Provide Provider"].str.contains("Day Center") ] return tuple(["40,000 hygiene services provided", 40000, len(services_provided.index)]) elif provider == "Agency": services = services_df[ ((services_df["Service Code Description"].isin(services_1)) | ( services_df["Service Provider Specific Code"].isin(services_2))) ] de_duped = services.drop_duplicates(subset="Client Uid", inplace=False) return tuple(["7,500 participants will receive hygiene services", 7500, len(de_duped.index)]) def count_id_assistance_by_provider(self, services_df, provider="Day Center"): """ Used by: Day Center :param services_df: :param provider: :return: """ id_assistance = ["Birth Certificate", "Driver's License/State ID Card"] served = services_df[ services_df["Service Provide Provider"].str.contains(provider) & services_df[ "Service Provider Specific Code"].isin(id_assistance) ].drop_duplicates(subset="Client Uid") return tuple(["1500 individuals received assistance obtaining ID documents", 1500, len(served.index)]) def count_mailing_services_by_day_center(self, services_df): """ Used For: Day Center :param services_df: :return: """ mail_services = len(services_df[ services_df["Service Code Description"] == "Temporary Mailing Address" ].index) return tuple(["43,000 mailing services provided", 43000, mail_services]) def count_ongoing_cm_services(self, services_df): """ Used For: Agency Issues: Currently, regardless of the method name, this method counts unique individuals served with a CM service ignoring department. This could cause false counts when the wrong service is selected by a non-cm provider and does not truly show ongoing services as defined by the agency data dictionary. :param services_df: :return: """ cm_services = [ "Case Management - Office Visit", "Case Management - Other", "Case Management - Phone Meeting", "Case Management - Home Visit", "Case Management Meeting - Home Visit", "Case Management Meeting - Office Visit", "Case Management Meeting - Phone" ] receiving = len(services_df[ services_df["Service Provider Specific Code"].isin(cm_services) ].drop_duplicates(subset="Client Uid", inplace=False).index) return tuple(["2,100 participants served through case management", 2100, receiving]) def count_ongoing_cm_services_by_department(self, services_df, provider="SSVF"): """ Used For: Residential CM, Retention, SSVF Question: Provide ongoing case management to X participants :param services_df: :param provider: :return: """ cm_services = [ "Case Management - Office Visit", "Case Management - Other", "Case Management - Phone Meeting", "Case Management - Home Visit", "Case Management Meeting - Home Visit", "Case Management Meeting - Office Visit", "Case Management Meeting - Phone" ] in_provider = services_df[ services_df["Service Provide Provider"].str.contains(provider) ] receiving = in_provider[ in_provider["Service Provider Specific Code"].isin(cm_services) ] ongoing = receiving.groupby(by="Client Uid").count() output = len(ongoing[ongoing["Service Provider Specific Code"] >= 2].index) if provider == "Residential": return tuple(["Provide ongoing case management to 700 participants", 700, output]) elif provider == "Retention": return tuple(["Provide ongoing case management to 800 participants", 800, output]) elif provider == "SSVF": return tuple(["Provide ongoing case management to 450 participants", 450, output]) elif provider == "ACCESS": return tuple(["Provide ongoing case management to 800 participants", 800, output]) else: return tuple(["PROVIDERERROR", "PROVIDERERROR", "PROVIDERERROR"]) def count_perm_by_provider(self, placements_df, provider=["ACCESS", "SSVF - TPI", "Retention", "Residential CM"]): """ Used For: Outreach, SSVF, Retention CM, Residential CM :param placements_df: :param provider: :return: """ placements = len(placements_df[ (placements_df["Department Placed From(3076)"].isin(provider)) & ( placements_df["Intervention Type (TPI)(8745)"] == "Permanent Placement") ].drop( [ "Client First Name", "Client Last Name", "Department Placed From(3076)", "Placement Case Manager(3075)", "Placement Grant(8743)", "Reporting Program (TPI)(8748)" ], axis=1 ).index) if (len(provider) == 1) and (provider[0] == "ACCESS"): return tuple(["415 participants move into permanent housing", 415, placements]) elif (len(provider) == 1) and (provider[0] == "SSVF - TPI"): return tuple(["262 veteran families will move into permanent housing", 262, placements]) else: return "Error: Empty Provider List" def count_pts_with_barrier_mitigation_and_doc_prep(self, services_df, provider="CHAT"): """ Used by: Coordinated Access (CHAT) :param services_df: Use the standard services spread sheet. :param provider: :return: """ services = [ "Housing Barrier Resolution", "Birth Certificate", "DD214", "Driver's License/State ID Card", "General Form Assistance", "Notary Service" ] served = len(services_df[ services_df["Service Provide Provider"].str.contains(provider) & services_df["Service Provider Specific Code"].isin(services) ].drop_duplicates(subset="Client Uid", inplace=False).index) return tuple([ "Provide barrier mitigation and document prep to 150 individuals", 150, served ]) def count_ep_by_provider(self, placements_df, provider=["ACCESS", "SSVF - TPI", "Retention", "Residential CM"]): """ Used For: Outreach, SSVF, Retention CM, Residential CM :param placements_df: :param provider: :return: """ placements = placements_df[ (placements_df["Department Placed From(3076)"].isin(provider)) & ( placements_df["Intervention Type (TPI)(8745)"] == "Eviction Prevention") ].drop( [ "Client First Name", "Client Last Name", "Department Placed From(3076)", "Placement Case Manager(3075)", "Placement Grant(8743)", "Reporting Program (TPI)(8748)" ], axis=1 ) if (len(provider) == 1) and (provider[0] == "SSVF - TPI"): return tuple(["56 veteran families will have evictions prevented", 56, len(placements.index)]) else: return tuple(["", "", len(placements.index)]) def count_exclusions_by_provider(self, exclusions_df, provider): exclusions = exclusions_df[ exclusions_df["Infraction Provider"].str.contains(provider) & exclusions_df["Infraction Banned Code"].notna() & (exclusions_df["Infraction Banned Code"] != "Warning") & (exclusions_df["Infraction Banned Code"] != "Safety Alert") & (exclusions_df["Infraction Banned Code"] != "Other") ] return tuple([ "20% reduction in participant exclusions", "20%", "{} <--- Must be divided by last quarter's numbers -(last quarter/ this quarter)".format( len(exclusions.index) ) ]) def count_latinos_served_by_provider(self, services_df, provider="Wellness Access"): """ Used For: Wellness Access Use: Standard All Services Report :param services_df: :param provider: :return: """ original = services_df cleaned = original[ ( original["Service Provide Provider"].str.contains(provider) & (original["Ethnicity (Hispanic/Latino)(896)"].str.contains("Hispanic/Latino")) ) ].drop_duplicates(subset="Client Uid") return tuple(["80 Latino participants outreached to per year", 80, len(cleaned.index)]) def count_legal_barriers_mitigated(self, entries_df, services_df, provider): """ Used For: SSVF Needs to be modified to look at the version of the all services report which includes needs outcomes. :param cm_provider: :param services_df: :param entries_df: :return: a count of the participants """ no_na = entries_df.dropna(axis=0, subset=["Entry Exit Provider Id"]) entries = no_na[no_na["Entry Exit Provider Id"].str.contains(provider)] in_provider_list = entries["Client Uid"].tolist() legal_services = len(services_df[ ( (services_df["Service Code Description"] == "Legal Services") & (services_df["Client Uid"].isin(in_provider_list)) ) ].drop_duplicates(subset="Client Uid").index) return tuple(["50 veteran families will have legal barriers mitigated", 50, legal_services]) def count_poc_placed(self, placements_df, services_df): """ Used For: Agency :param placements_df: :return: """ poc_placements = len(placements_df[ placements_df["Client Uid"].isin(self.return_poc_list(services_df)) ].drop_duplicates(subset="Client Uid").index) return poc_placements def count_poc_placed_by_provider( self, placements_df, services_df, provider=["ACCESS", "SSVF - TPI", "Retention", "Residential CM"] ): """ Used For: :param placements_df: :param services_df: :param provider: :return: """ poc_placements = placements_df[ ( (placements_df["Client Uid"].isin(self.return_poc_list(services_df))) & (placements_df["Department Placed From(3076)"].isin(provider)) ) ] return len(poc_placements.drop_duplicates(subset="Client Uid").index) def count_provider(self, entries_df, cm_provider, goal): """ Used For: Agency :param entries_df: :param cm_provider: :param goal: :return: """ provider_ee = len(entries_df[ entries_df["Entry Exit Provider Id"].str.contains(cm_provider) ].drop_duplicates(subset="Client Uid", keep="first").index) return tuple(["{} participants served by {}".format(goal, cm_provider), goal, provider_ee]) def count_referrals_resulting_in_connections(self, services_df, needs_df, provider, referrals, metric): """ Used by: Wellness Access Method of the method: First remove rows from the services data frame which were not created by the provider and were not in the list of referral services. Then, remove rows from the needs data frame where the Client Uid is not in the Client Uid column of the services data frame and the need status is not fully met. Merge left the needs data frame into the services data frame using Client Uid from both data frames as well as Need Creation Date from the need data frame (right) and the service creation data from the services data frame (left). This will be done using the pd.merge method and entering the columns as lists of strings in the left_on and right_on params. medical_referrals = ["Referral - Eye Care", "Referral - Dental Care", "Referral - Medical Care"] mh_referrals = [ "Referral - A&D Support", "Referral - DV Support", "Referral - Mental Health Care", "Referral - MH Support" ] :param provider: :param services_df: :param needs_df: :param referrals: provide a list of strings or this will return an error :param metric: enter one of the following strings - 'med count', 'mh sud count', 'percent med', 'percent mh sud' :return: """ services = services_df[ services_df["Service Provide Provider"].str.contains(provider) & services_df["Service Provider Specific Code"].isin(referrals) ] needs = needs_df[ needs_df["Client Uid"].isin(services["Client Uid"].tolist()) & (needs_df["Need Status"] == "Closed") & (needs_df["Need Outcome"] == "Fully Met") ] served = pd.merge( services, needs, how="left", left_on=["Client Uid", "Service Provide Start Date"], right_on=["Client Uid", "Need Date Set"] ) if metric == "med count": return tuple([ "200 connections to medical care per year", 200, len(served.index) ]) elif metric == "mh sud count": return tuple([ "700 connections to mental health or SUD services per year", 700, len(served.index) ]) elif metric == "percent med": all = len(served.index) clean = served.dropna(axis=0, how="any", subset=["Need Uid"]) success = len(clean.index) return tuple([ "50% of referrals result in connection to medical care provider", "50%", "{}/{} = {}%".format(success, all, 100*(success/all)) ]) elif metric == "percent mh sud": all = len(served.index) success = len(served.dropna(axis=0, how="any", subset=["Need Uid"]).index) return tuple([ "50% of referrals result in connection to mental health and/or SUD services", "50%", "{}/{} = {}%".format(success, all, 100 * (success / all)) ]) else: return "Param Error: metric's value was not among the list of used values" def count_rent_assist(self, services_df): """ Use by: Agency Question: participants will receive rent assistance :return: a count of unique participants receiving any rent assistance service """ rent_services = [ "Rent Payment Assistance", "Rental Application Fee Payment Assistance", "Rental Deposit Assistance" ] rent_service_2 = [ "Application Fee", "Arrears / Property Debt", "Deposit", "Rent Payment Assistance" ] services = services_df[ (services_df["Service Code Description"].isin(rent_services)) | ( services_df["Service Provider Specific Code"].isin(rent_service_2)) ] unique = len(services.drop_duplicates( subset="Client Uid", keep="first", inplace=False ).index) return tuple(["900 participants will receive rent assistance", 900, unique]) def count_rent_well(self, services_df, type): """ Used by: Agency, RentWell This method will identify the participants who either had at least a single service by TPI RentWell or a graduation service during the reporting period. :param services_df: :return: """ if type.lower() == "attendance": attended = services_df[ services_df["Service Provider Specific Code"].notna() & ( services_df["Service Provider Specific Code"].str.contains("RentWell - Attendence") | services_df["Service Provider Specific Code"].str.contains("RentWell - Graduation") ) ].drop_duplicates(subset="Client Uid") return tuple(["400 participants will enroll in Rent Well ", 400, len(attended.index)]) elif type.lower() == "graduation": graduated = services_df[ services_df["Service Provider Specific Code"].notna() & services_df["Service Provider Specific Code"].str.contains("RentWell - Graduation") ].drop_duplicates(subset="Client Uid") return tuple(["240 Participants will graduate RentWell", 240, len(graduated.index)]) elif type.lower() == "services": services = services_df[ services_df["Service Provider Specific Code"].notna() & ( services_df["Service Provider Specific Code"].str.contains("RentWell - Attendence") | services_df["Service Provider Specific Code"].str.contains("RentWell - Graduation") ) ] return tuple(["", "", len(services.index)]) elif type.lower() == "all served": attended = services_df[ services_df["Service Provider Specific Code"].notna() & ( services_df["Service Provider Specific Code"].str.contains("RentWell - Attendence") | services_df["Service Provider Specific Code"].str.contains("RentWell - Graduation") ) ].drop_duplicates(subset="Client Uid") return attend[["Client Uid", "Service Provide Start Date"]] elif type.lower() == "all graduates": graduated = services_df[ services_df["Service Provider Specific Code"].notna() & services_df["Service Provider Specific Code"].str.contains("RentWell - Graduation") ].drop_duplicates(subset="Client Uid") return graduated[["Client Uid", "Service Provide Start Date"]] else: return tuple(["ERROR", "ERROR", "ERROR"]) def count_retention_by_length(self, retention_df, length, provider="agency"): """ Used by: Agency For this to work you need to add a Months Post Subsidy column to the follow ups report. The column must be filled down with the following formula: =IF(ISBLANK(B2),"",DATEDIF(B2,C2,"M")) :param length: int: 1-12 :return: """ no_na = retention_df.dropna(axis=0, subset=["Months Post Subsidy"]) fu_of_duration = no_na[ ( (no_na["Months Post Subsidy"] >= length - 1) & (no_na["Months Post Subsidy"] <= length + 1) ) ] fu_positive = len(fu_of_duration[fu_of_duration["Is Client Still in Housing?(2519)"] == "Yes (HUD)"].index) # print(len(retention_df.index), len(no_na.index), fu_positive, len(fu_of_duration.index)) if provider.lower() == "agency": return tuple([ "80% participants retain their housing for 12 months post-subsidy*", "80%", "{}/{} = {}%".format( fu_positive, len(fu_of_duration.index), 100 * (fu_positive / len(fu_of_duration.index)) ) ]) elif provider.lower() == "ssvf": return tuple([ "90% of participants will remain in housing 12 months after entering housing", "90%", "{}/{}={}".format(fu_positive, len(fu_of_duration.index), 100*(fu_positive/len(fu_of_duration.index))) ]) else: if len(fu_of_duration.index) > 0: return tuple([ "80% participants retain their housing for 12 months post-subsidy*", "80%", "{}/{} = {}%".format( fu_positive, len(fu_of_duration.index), 100 * (fu_positive / len(fu_of_duration.index)) ) ]) else: return tuple([ "80% participants retain their housing for 12 months post-subsidy*", "80%", "{}/{} = {}%".format( fu_positive, len(fu_of_duration.index), "N/A" ) ]) def count_served_by_provider(self, services_df, provider=""): """ Used For: Day Center :param services_df: :param provider: :return: """ served = len(services_df[ services_df["Service Provide Provider"].str.contains(provider) ].drop_duplicates(subset="Client Uid").index) if provider != "Day Center": return served else: return tuple([ "7000 unduplicated participants received services through the day center*", 7000, served ]) def count_services_by_provider(self, services_df, provider): """ USed For: Day Center :param services_df: :param provider: :return: """ services = len(services_df[services_df["Service Provide Provider"].str.contains(provider)].index) return tuple(["85000 total services in the {}".format(provider), 85000, services]) def count_shelter_stays(self, entries_df, agency=True): """ Used For: Agency, Residential Shelters :param entries_df: :return: """ if agency: entries = entries_df[ (entries_df["Entry Exit Provider Id"].str.contains("Clark Center")) | ( entries_df["Entry Exit Provider Id"].str.contains("Jean's Place L1")) | ( entries_df["Entry Exit Provider Id"].str.contains("Doreen's")) | ( entries_df["Entry Exit Provider Id"].str.contains("SOS")) | ( entries_df["Entry Exit Provider Id"].str.contains("Hansen")) |( entries_df["Entry Exit Provider Id"].str.contains("Peace 2")) | ( entries_df["Entry Exit Provider Id"].str.contains("Columbia")) | ( entries_df["Entry Exit Provider Id"].str.contains("Willamette")) | ( entries_df["Entry Exit Provider Id"].str.contains("Maher")) | ( entries_df["Entry Exit Provider Id"].str.contains("5th")) | ( entries_df["Entry Exit Provider Id"].str.contains("Clark Annex")) ] de_duped = len(entries.drop_duplicates(subset="Client Uid", inplace=False).index) return tuple(["2,850 participants will have a safe place to sleep at night*", 2850, de_duped]) else: entries = entries_df[ (entries_df["Entry Exit Provider Id"].str.contains("Clark Center")) | ( entries_df["Entry Exit Provider Id"].str.contains("Doreen's")) | ( entries_df["Entry Exit Provider Id"].str.contains("Jean's Place L1")) ] de_duped = len(entries.drop_duplicates(subset="Client Uid", inplace=False).index) return tuple(["1,000 participants will have a safe place to sleep", 1000, de_duped]) def count_shelter_to_perm_w_group(self, entries_df, services_df, low_barrier=True): """ Used For: Strategic Initiative Current Issue: need to check for zero in denominator of output and return 0 instead of attempting illegal division :param entries_df: :param services_df: :param low_barrier: :return: """ perm_destination = [ "Owned by client, no ongoing housing subsidy (HUD)", "Owned by client, with ongoing housing subsidy (HUD)", "Permanent housing for formerly homeless persons (HUD)", "Rental by client, no ongoing housing subsidy (HUD)", "Rental by client, with other ongoing housing subsidy (HUD)", "Rental by client, with VASH subsidy (HUD)", "Staying or living with family, permanent tenure (HUD)", "Staying or living with friends, permanent tenure (HUD)", "Foster care home or foster care group home (HUD)", "Rental by client, with GPD TIP subsidy (HUD)", "Permanent housing (other than RRH) for formerly homeless persons (HUD)", "Moved from one HOPWA funded project to HOPWA PH (HUD)", "Long-term care facility or nursing home (HUD)", "Residential project or halfway house with no homeless criteria (HUD)" ] if low_barrier: attended = self.percent_low_barrier_in_groups(entries_df, services_df, True, False) else: attended = self.percent_low_barrier_in_groups(entries_df, services_df, False, False) exited = entries_df[ entries_df["Client Uid"].isin(attended) & entries_df["Entry Exit Exit Date"].notnull() ] perm = exited[exited["Entry Exit Destination"].isin(perm_destination)] if low_barrier and len(exited.index) > 0: return tuple([ "10% increase in housing placements for participants who attend groups", "10%", "{}/{} = {}% for current quarter. Please subtract from number from previous quarter".format( len(perm.index), len(exited.index), 100*(len(perm.index)/len(exited.index)) ) ]) elif len(exited.index) == 0: return tuple([ "10% increase in housing placements for participants who attend groups", "10%", "Error: Denominator == 0" ]) else: return tuple([ "10% increase in service-intensive shelter placements for participants who attend groups", "10%", "{}/{} = {}% for current quarter. Please subtract from number from previous quarter".format( len(perm.index), len(exited.index), 100 * (len(perm.index) / len(exited.index)) ) ]) def count_transportation_passes_by_provider(self, services_df, provider="Day Center"): """ Used For: Day Center :param services_df: :param provider: :return: """ served = services_df[ services_df["Service Provide Provider"].str.contains(provider) & ( services_df["Service Code Description"] == "Transportation Passes") ].drop_duplicates(subset="Client Uid") return tuple(["1300 individuals received local transit passes", 1300, len(served.index)]) def days_from_id_to_placement(self, placements_df, entries_df, cm_provider, placement_provider): """ Used For: :param entries_df: :param placements_df: :param cm_provider: just use the short name for the provider :param placement_provider: Use one of the following options Retention: ACCESS, Residential CM, Clark Center, SSVF - TPI, Doreen's Place, Hansen, Willamette Center :return: the mean of the days from id to placement column """ clean_placements = placements_df.dropna(axis=0, how="any", subset=["Department Placed From(3076)"]) placement_df = clean_placements[clean_placements["Department Placed From(3076)"].isin(placement_provider)] entry_dates = entries_df[entries_df["Entry Exit Provider Id"].str.contains(cm_provider)] pd.to_datetime(placement_df["Placement Date(3072)"]) pd.to_datetime(entry_dates["Entry Exit Entry Date"]) entry_dates = entry_dates[["Client Uid", "Entry Exit Entry Date"]] merged = pd.merge(placement_df, entry_dates, on="Client Uid", how="left") merged["Days from ID to Placement"] = placement_df["Placement Date(3072)"] - merged["Entry Exit Entry Date"] return tuple([ "Number of days from identification to placement <90*", "<90", merged["Days from ID to Placement"].mean().days ]) def exit_destination_by_shelter_type(self, entries_df, shelter_group): low_barrier_shelters = [ "Transition Projects (TPI) - Willamette Center(5764)", "Transition Projects (TPI) - Hansen Emergency Shelter - SP(5588)", "Transition Projects (TPI) - Columbia Shelter(5857)", "Transition Projects (TPI) - SOS Shelter(2712)", "Transition Projects (TPI) - 5th Avenue Shelter(6281)" ] perm_destination = [ "Owned by client, no ongoing housing subsidy (HUD)", "Owned by client, with ongoing housing subsidy (HUD)", "Permanent housing for formerly homeless persons (HUD)", "Rental by client, no ongoing housing subsidy (HUD)", "Rental by client, with other ongoing housing subsidy (HUD)", "Rental by client, with VASH subsidy (HUD)", "Staying or living with family, permanent tenure (HUD)", "Staying or living with friends, permanent tenure (HUD)", "Foster care home or foster care group home (HUD)", "Rental by client, with GPD TIP subsidy (HUD)", "Permanent housing (other than RRH) for formerly homeless persons (HUD)", "Moved from one HOPWA funded project to HOPWA PH (HUD)", "Long-term care facility or nursing home (HUD)", "Residential project or halfway house with no homeless criteria (HUD)" ] temp_destination = [ # "Emergency shelter, including hotel or motel paid for with emergency shelter voucher (HUD)", "Hospital or other residential non-psychiatric medical facility (HUD)", "Hotel or motel paid for without emergency shelter voucher (HUD)", "Jail, prison or juvenile detention facility (HUD)", "Staying or living with family, temporary tenure (e.g., room, apartment or house)(HUD)", "Staying or living with friends, temporary tenure (e.g., room apartment or house)(HUD)", "Transitional housing for homeless persons (including homeless youth) (HUD)", "Moved from one HOPWA funded project to HOPWA TH (HUD)", "Substance abuse treatment facility or detox center (HUD)", "Psychiatric hospital or other psychiatric facility (HUD)" ] entries = entries_df[entries_df["Entry Exit Provider Id"].isin(low_barrier_shelters)] exits = entries[entries["Entry Exit Exit Date"].notna()] positive = exits[ exits["Entry Exit Destination"].isin(temp_destination) | exits["Entry Exit Destination"].isin( perm_destination) ].drop_duplicates(subset="Client Uid") perm = exits[ exits["Entry Exit Destination"].isin(perm_destination) ].drop_duplicates(subset="Client Uid") temp = exits[ exits["Entry Exit Destination"].isin(temp_destination) ].drop_duplicates(subset="Client Uid") return tuple([ "% all low barrier shelter to stable or perm", "15%", "{}/{}={}%".format( len(positive.index), len(exits.drop_duplicates(subset="Client Uid").index), 100 * (len(positive.index) / len(exits.drop_duplicates(subset="Client Uid").index)) ), len(perm.index), len(temp.index) ]) def exit_destination_by_provider(self, entries_df, provider, exit_type="perm temp"): """ Used For: Strategic Initiative, Low-Barrier Shelters :param entries_df: :param provider: :param exit_type: :return: """ perm_destination = [ "Owned by client, no ongoing housing subsidy (HUD)", "Owned by client, with ongoing housing subsidy (HUD)", "Permanent housing for formerly homeless persons (HUD)", "Rental by client, no ongoing housing subsidy (HUD)", "Rental by client, with other ongoing housing subsidy (HUD)", "Rental by client, with VASH subsidy (HUD)", "Staying or living with family, permanent tenure (HUD)", "Staying or living with friends, permanent tenure (HUD)", "Foster care home or foster care group home (HUD)", "Rental by client, with GPD TIP subsidy (HUD)", "Permanent housing (other than RRH) for formerly homeless persons (HUD)", "Moved from one HOPWA funded project to HOPWA PH (HUD)", "Long-term care facility or nursing home (HUD)", "Residential project or halfway house with no homeless criteria (HUD)" ] temp_destination = [ # "Emergency shelter, including hotel or motel paid for with emergency shelter voucher (HUD)", "Hospital or other residential non-psychiatric medical facility (HUD)", "Hotel or motel paid for without emergency shelter voucher (HUD)", "Jail, prison or juvenile detention facility (HUD)", "Staying or living with family, temporary tenure (e.g., room, apartment or house)(HUD)", "Staying or living with friends, temporary tenure (e.g., room apartment or house)(HUD)", "Transitional housing for homeless persons (including homeless youth) (HUD)", "Moved from one HOPWA funded project to HOPWA TH (HUD)", "Substance abuse treatment facility or detox center (HUD)", "Psychiatric hospital or other psychiatric facility (HUD)" ] entries = entries_df[entries_df["Entry Exit Provider Id"].str.contains(provider)] exits = entries.dropna(axis=0, subset=["Entry Exit Exit Date"]) perm = exits[exits["Entry Exit Destination"].isin(perm_destination)] temp = exits[exits["Entry Exit Destination"].isin(temp_destination)] if exit_type == "all": return entries, perm, temp, exits elif exit_type == "perm temp": return perm, temp, exits elif exit_type == "perm": return perm, exits elif exit_type == "temp": return temp, exits elif exit_type == "count perm": return len(perm.index) elif exit_type == "count temp": return len(temp.index) elif exit_type == "count exits": return len(exits.index) elif exit_type == "count entries": return len(entries.index) elif exit_type == "percent perm": return "{}/{} = {}%".format(len(perm), len(exits), 100*(len(perm)/len(exits))) elif exit_type == "percent temp": return "{}/{} = {}%".format(len(temp), len(exits), 100*(len(temp)/len(exits))) elif exit_type == "perm and temp percent": entries = entries_df[entries_df["Entry Exit Provider Id"].str.contains(provider)] exits = entries.dropna(axis=0, subset=["Entry Exit Exit Date"]) perm_or_temp = exits[ exits["Entry Exit Destination"].isin(perm_destination) | exits["Entry Exit Destination"].isin(temp_destination) ].drop_duplicates(subset="Client Uid") all = exits.drop_duplicates(subset="Client Uid") return "{} / {} = {} %".format(len(perm_or_temp.index),len(all.index), 100*(len(perm_or_temp)/len(all))) def percent_exits_from_low_barrier_to_service_intensive(self, entries_df, low_barrier_provider): """ Used For: Strategic Initiative :param entries_df: :param low_barrier_provider: :return: """ count = 0 intensive_entries = entries_df[ entries_df["Entry Exit Provider Id"].str.contains("Clark Center") | entries_df["Entry Exit Provider Id"].str.contains("Doreen's Place") | entries_df["Entry Exit Provider Id"].str.contains("Jean's Place") ] intensive_entries["Start"] = pd.to_datetime(intensive_entries["Entry Exit Entry Date"]).dt.date intensive = intensive_entries[["Client Uid", "Start"]] exiting_shelter = entries_df[ entries_df["Entry Exit Provider Id"].str.contains(low_barrier_provider) & entries_df["Entry Exit Exit Date"].notnull() ] exiting_shelter["Exit"] = pd.to_datetime(exiting_shelter["Entry Exit Exit Date"]).dt.date for row in exiting_shelter.index: client = exiting_shelter.loc[row, "Client Uid"] exit = exiting_shelter.loc[row, "Exit"] entry_data = intensive[intensive["Client Uid"] == client] for e_row in entry_data.index: if exit >= (entry_data.loc[e_row, "Start"] + relativedelta(days=-5)): count += 1 else: pass exit_count = len(exiting_shelter.index) to_intensive_percent = 100*(count/exit_count) return tuple([ "16% of Hansen participants move to a services-intensive shelter", "16%", "{} / {} = {}%".format(count, exit_count, to_intensive_percent) ]) def percent_exits_caused_by_exclusion(self, entries_df_plus_reason, shelter_type): """ Used For: Service Intensive Shelters :param entries_df_plus_reason: :param shelter_type: :return: """ if shelter_type.lower() == "res": leavers = entries_df_plus_reason[ entries_df_plus_reason["Entry Exit Exit Date"].notnull() & ( entries_df_plus_reason["Entry Exit Provider Id"].str.contains("Doreen's") | entries_df_plus_reason["Entry Exit Provider Id"].str.contains("Jean's") | entries_df_plus_reason["Entry Exit Provider Id"].str.contains("Clark Center") ) ] else: leavers = entries_df_plus_reason[ entries_df_plus_reason["Entry Exit Exit Date"].notnull() & ( entries_df_plus_reason["Entry Exit Provider Id"].str.contains("Columbia") | entries_df_plus_reason["Entry Exit Provider Id"].str.contains("Hansen") | entries_df_plus_reason["Entry Exit Provider Id"].str.contains("SoS") | entries_df_plus_reason["Entry Exit Provider Id"].str.contains("5th") | entries_df_plus_reason["Entry Exit Provider Id"].str.contains("Willamette") ) ] excluded = leavers[leavers["Entry Exit Reason Leaving"] == "Non-compliance with program"] leaver_count = len(leavers.index) excluded_count = len(excluded.index) percent_excluded = 100 * (excluded_count / leaver_count) return tuple([ "15% decrease in behavior based exclusions", "<= -15%", "{} / {} = {} <--- Don't forget to subtract this from the previous quarters numbers".format(excluded_count, leaver_count, percent_excluded) ]) def percent_iap_successful(self, entries_plus_df): """ Used For: Wellness Access :param entries_plus_df: :return: """ all_entries = entries_plus_df[ ( entries_plus_df["Entry Exit Provider Id"].str.contains("IAP") | entries_plus_df["Entry Exit Provider Id"].str.contains("PIAP") ) ] entry_count = len(all_entries.index) successful = len(all_entries[ all_entries["Entry Exit Exit Date"].notnull() & all_entries["Entry Exit Reason Leaving"].str.contains("Completed") ].index) any_exit = len(all_entries[all_entries["Entry Exit Exit Date"].notnull()].index) return tuple([ "60% of IAPs will be successfully completed by participants", "60%", "{}/{} = {}%".format(successful, any_exit, 100*(successful/any_exit)) ]) def percent_low_barrier_in_groups(self, entries_df, services_df, low_barrier=True, direct=True): """ Used For: Strategic Initiative Potential Issue: If a participant does not have an end date for their shelter stay this method will provide an end date of the current day. This will lead to services outside of the reporting quarter being counted as acceptable. This will likely need to be rectified prior to releasing related numbers. :param entries_df: :param services_df: :param low_barrier: :param direct: :return: """ low_barrier_shelters = [ "Transition Projects (TPI) - Willamette Center(5764)", "Transition Projects (TPI) - Hansen Emergency Shelter - SP(5588)", "Transition Projects (TPI) - Columbia Shelter(5857)", "Transition Projects (TPI) - SOS Shelter(2712)", "Transition Projects (TPI) - 5th Avenue Shelter(6281)" ] service_intensive = [ "Transition Projects (TPI) - Clark Center - SP(25)", "Transition Projects (TPI) - Doreen's Place - SP(28)", "Transition Projects (TPI) - Jean's Place L1 - SP(29)" ] if low_barrier: entries = entries_df[entries_df["Entry Exit Provider Id"].isin(low_barrier_shelters)] else: entries = entries_df[entries_df["Entry Exit Provider Id"].isin(service_intensive)] conditions = [entries["Entry Exit Exit Date"].isnull(),entries["Entry Exit Exit Date"].notnull()] choices = [datetime.now().date(), pd.to_datetime(entries["Entry Exit Exit Date"]).dt.date] entries["End"] = np.select(conditions, choices, default=datetime.now().date()) entries["Start"] = pd.to_datetime(entries["Entry Exit Entry Date"]).dt.date pt_list = entries["Client Uid"].tolist() attendees = services_df[ services_df["Service Provider Specific Code"].str.contains("Group") & services_df["Client Uid"].isin(pt_list) ] attendees["Service Date"] = pd.to_datetime(attendees["Service Provide Start Date"]).dt.date participants = {pt: 0 for pt in list(set(pt_list))} for row in entries.index: e_client = entries.loc[row, "Client Uid"] e_entry = entries.loc[row, "Start"] e_exit = entries.loc[row, "End"] for s_row in attendees.index: s_client = attendees.loc[s_row, "Client Uid"] s_date = attendees.loc[s_row, "Service Date"] if (s_client == e_client) and (e_entry <= s_date <= e_exit): participants[e_client] += 1 else: pass all_pt = len(list(set(pt_list))) final_data = pd.DataFrame.from_dict(participants, orient="index") served = len(final_data[final_data[0] != 0].index) if direct: return tuple([ "35% of shelter residents attend on-site groups or activities", "35%", "{} / {} = {}%".format(served, all_pt, 100*(served/all_pt)) ]) else: return final_data[final_data[0] != 0].index.tolist() def percent_low_barrier_to_perm(self, entries_df): """ Used For: Strategic Initiative :param entries_df: :return: """ h_perm, h_all = self.exit_destination_by_provider(entries_df, "Hansen", "perm") w_perm, w_all = self.exit_destination_by_provider(entries_df, "Willamette", "perm") s_perm, s_all = self.exit_destination_by_provider(entries_df, "SOS", "perm") c_perm, c_all = self.exit_destination_by_provider(entries_df, "Columbia", "perm") f_perm, f_all = self.exit_destination_by_provider(entries_df, "5th", "perm") all_perm = len(h_perm.index) + len(w_perm.index) + len(s_perm.index) + len(c_perm.index) + len(f_perm.index) all_exits = len(h_all.index) + len(w_all.index) + len(s_all.index) + len(c_all.index) + len(f_all.index) return tuple([ "15% of participants exit to permanent housing", "15%", "{} / {} = {}%".format(all_perm, all_exits, 100*(all_perm/all_exits)) ]) def percent_low_barrier_to_stable(self, entries_df): """ Used For: Strategic Initiative :param entries_df: :return: """ h_temp, h_all = self.exit_destination_by_provider(entries_df, "Hansen", "temp") w_temp, w_all = self.exit_destination_by_provider(entries_df, "Will", "temp") s_temp, s_all = self.exit_destination_by_provider(entries_df, "SOS", "temp") c_temp, c_all = self.exit_destination_by_provider(entries_df, "Columbia", "temp") f_temp, f_all = self.exit_destination_by_provider(entries_df, "5th", "temp") all_temp = len(h_temp.index) + len(w_temp.index) + len(s_temp.index) + len(c_temp.index) + len(f_temp.index) all_exits = len(h_all.index) + len(w_all.index) + len(s_all.index) + len(c_all.index) + len(f_all.index) return tuple([ "15% of participants exit to stable housing", "15%", "{} / {} = {}%".format(all_temp, all_exits, 100*(all_temp/all_exits)) ]) def percent_non_poc_exiting_to_perm_by_provider( self, entries_df, services_df, provider, direct=True ): """ Used For: :param entries_df: :param services_df: :param provider: :param direct: :return: """ perm_destination = [ "Owned by client, no ongoing housing subsidy (HUD)", "Owned by client, with ongoing housing subsidy (HUD)", "Permanent housing for formerly homeless persons (HUD)", "Rental by client, no ongoing housing subsidy (HUD)", "Rental by client, with other ongoing housing subsidy (HUD)", "Rental by client, with VASH subsidy (HUD)", "Staying or living with family, permanent tenure (HUD)", "Staying or living with friends, permanent tenure (HUD)", "Foster care home or foster care group home (HUD)", "Rental by client, with GPD TIP subsidy (HUD)", "Permanent housing (other than RRH) for formerly homeless persons (HUD)", "Moved from one HOPWA funded project to HOPWA PH (HUD)", "Long-term care facility or nursing home (HUD)", "Residential project or halfway house with no homeless criteria (HUD)" ] exited = entries_df[ entries_df["Entry Exit Exit Date"].notna() & entries_df["Entry Exit Provider Id"].isin(provider) & ~entries_df["Client Uid"].isin(self.return_poc_list(services_df)) ] perm = len(exited[exited["Entry Exit Destination"].isin(perm_destination)]) if direct: return tuple([ "Participants housed are at least 40% people of color", "40%", "{}/{} = {}%".format(perm, len(exited), 100*(perm/len(exited))) ]) else: return perm, len(exited.index) def percent_poc_exiting_to_perm_by_provider( self, entries_df, services_df, providers=[ "Transition Projects (TPI) Housing - Clark Annex GPD - SP(4259)", "Transition Projects (TPI) Housing - Clark Annex PSH - SP(2858)", "Transition Projects (TPI) Housing - Barbara Maher Apartments PSH - SP(3018)" ], direct=True ): """ Used For: :param entries_df: :param services_df: :param providers: :param direct: :return: """ perm_destination = [ "Owned by client, no ongoing housing subsidy (HUD)", "Owned by client, with ongoing housing subsidy (HUD)", "Permanent housing for formerly homeless persons (HUD)", "Rental by client, no ongoing housing subsidy (HUD)", "Rental by client, with other ongoing housing subsidy (HUD)", "Rental by client, with VASH subsidy (HUD)", "Staying or living with family, permanent tenure (HUD)", "Staying or living with friends, permanent tenure (HUD)", "Foster care home or foster care group home (HUD)", "Rental by client, with GPD TIP subsidy (HUD)", "Permanent housing (other than RRH) for formerly homeless persons (HUD)", "Moved from one HOPWA funded project to HOPWA PH (HUD)", "Long-term care facility or nursing home (HUD)", "Residential project or halfway house with no homeless criteria (HUD)" ] exited = entries_df[ entries_df["Entry Exit Exit Date"].notna() & entries_df["Entry Exit Provider Id"].isin(providers) & entries_df["Client Uid"].isin(self.return_poc_list(services_df)) ] perm = len(exited[exited["Entry Exit Destination"].isin(perm_destination)]) if direct: if len(exited) > 0: return tuple([ "Participants housed are at least 40% people of color", "40%", "{}/{} = {}%".format(perm, len(exited), 100*(perm/len(exited))) ]) else: return tuple([ "Participants housed are at least 40% people of color", "40%", "{}/{} = {}%".format(perm, len(exited), "N/A") ]) else: return perm, len(exited.index) def percent_of_pt_w_home_visits_by_provider(self, services_df, entries_df, provider): """ Used by: SSVF :param services_df: :param entries_df: :param provider: :return: """ hv_services = [ "Case Management Meeting - Home Visit" ] hv_serviced = len( services_df[ (services_df["Service Provider Specific Code"].isin(hv_services)) & (services_df["Service Provide Provider"].str.contains(provider)) ].drop_duplicates(subset="Client Uid").index ) all_w_entry = len(entries_df[ entries_df["Entry Exit Provider Id"].str.contains(provider) ].drop_duplicates(subset="Client Uid").index) output = "{} / {} = {}%".format(hv_serviced, all_w_entry, 100 * (hv_serviced / all_w_entry)) return tuple(["25% of participants will have quarterly home visits", "25%", output]) def percent_placed_are_poc(self, placements_df, services_df): """ Used For: Agency :param placements_df: :param services_df: :return: """ poc = self.count_poc_placed(placements_df, services_df) all = len(self.count_all_placed(placements_df).index) return tuple([ "Participants housed are at least 41% participants of color", "41%", "{}/{} = {}%".format(poc, all, 100*(poc/all)) ]) def percent_poc_placed_by_provider(self, placements_df, services_df, provider): """ Used For: SSVF :param placements_df: :param services_df: :param provider: :return: """ poc_placed = self.count_poc_placed_by_provider(placements_df, services_df, provider) all_by_provider = self.count_all_placed_by_provider(placements_df, provider) if provider == ["SSVF - TPI"]: return tuple([ "Veterans housed are at least 25% people of color", "25%", "{}/{} = {}%".format(poc_placed, all_by_provider, 100 * (poc_placed / all_by_provider)) ]) else: return tuple([ "Participants housed are at least 41% people of color", "41%", "{}/{} = {}%".format(poc_placed, all_by_provider, 100 * (poc_placed / all_by_provider)) ]) def percent_poc_placed_vs_percent_white_placed_by_shelter(self, entries_df, services_df, provider): """ Used For: Service Intensive Shelters :param entries_df: :param services_df: :param provider: :return: """ if provider == "res": poc_perm, poc_all = self.percent_poc_exiting_to_perm_by_provider( entries_df, services_df, providers=[ "Transition Projects (TPI) - Doreen's Place - SP(28)", "Transition Projects (TPI) - Clark Center - SP(25)", "Transition Projects (TPI) - Jean's Place L1 - SP(29)" ], direct=False ) perm, all = self.percent_non_poc_exiting_to_perm_by_provider(entries_df, services_df, [ "Transition Projects (TPI) - Doreen's Place - SP(28)", "Transition Projects (TPI) - Clark Center - SP(25)", "Transition Projects (TPI) - Jean's Place L1 - SP(29)" ], False) poc_perm = poc_perm poc_all = poc_all perm = perm all_served = all return tuple([ "Participants who are people of color that exit the program have housing outcomes greater than or equal to those of non-people of color", ">= 0%", "({}/{})-({}/{})={}%".format( poc_perm, poc_all, perm, all_served, 100*((poc_perm / poc_all) - (perm / all_served)) ) ]) else: poc_perm, poc_all = self.percent_poc_exiting_to_perm_by_provider( entries_df, services_df, providers=provider, direct=False ) perm, all = self.percent_non_poc_exiting_to_perm_by_provider(entries_df, services_df, provider, False) return tuple([ "Participants who are people of color that exit the program have housing outcomes greater than or equal to those of non-people of color", ">= 0%", "({}/{})-({}/{})={}%".format( poc_perm, poc_all, perm, all, 100*((poc_perm / poc_all) - (perm / all)) ) ]) def percent_poc_w_small_s_support_services_by_provider(self, services_df, provider): """ Used by: Day Center :param services_df: :param provider: :return: """ poc_list = self.return_poc_list(services_df) services_1 = [ "Bathing Facilities", "Personal/Grooming Supplies", "Hairdressing/Nail Care" ] services_2 = [ "Shower", "Showers", "Laundry Supplies", "Clothing", "Hairdressing/Nail Care", "Personal Grooming Supplies" ] services = services_df[ ~( (services_df["Service Code Description"].isin(services_1)) | (services_df["Service Provider Specific Code"].isin(services_2)) ) & services_df["Service Provide Provider"].str.contains("Day") & services_df["Client Uid"].isin(poc_list) ] small_s_de_duped = services.drop_duplicates(subset="Client Uid", inplace=False) served_by_day = services_df[ services_df["Service Provide Provider"].str.contains("Day") & services_df["Client Uid"].isin(poc_list) ].drop_duplicates(subset="Client Uid") poc_ss_served = len(small_s_de_duped.index) all_served = len(served_by_day.index) percent = 100*(poc_ss_served/all_served) return tuple([ "50% of people of color served by the Day Center access a supportive service", ">= 50%", "{}/{} = {}%".format(poc_ss_served, all_served, percent) ]) def percent_residents_oriented_in_ten_days(self, entries_df, services_df, providers): """ Used For: Service Intensive Shelters Future Improvement Idea: Add a way to break out individual shelter data to make this metric more useful to each of the shelter managers. :param entries_df: :param services_df: :param providers: :return: """ orientation_services = ["Shelter Orientation", "Orientation - Residential Program"] entry_to_providers = entries_df[ entries_df["Entry Exit Provider Id"].isin(providers) ] entry_to_providers["Entry Date"] = pd.to_datetime(entry_to_providers["Entry Exit Entry Date"]).dt.date entry_date = entry_to_providers.filter(["Client Uid", "Entry Date"], axis=1) orientation_services = services_df[ services_df["Service Provider Specific Code"].isin(orientation_services) ] orientation_services["Service Date"] = pd.to_datetime(orientation_services["Service Provide Start Date"]).dt.date orient_date = orientation_services.filter(["Client Uid", "Service Date"]) merged = entry_date.merge(orient_date, on="Client Uid", how="left") conditions = [merged["Service Date"].notnull(), merged["Service Date"].isnull()] choices = [((merged["Service Date"] - merged["Entry Date"]).dt.days), np.nan] merged["Days to Orientation"] = np.select(conditions, choices, default=np.nan) not_na = merged[merged["Days to Orientation"].notna()] oriented_in_seven_days = len( not_na[ (not_na["Days to Orientation"].astype(float) <= 10) ].index ) all_entries = len(merged.index) return tuple([ "95% of participants will attend orientation within the first 10 days", ">= 95%", "{} / {} = {}".format(oriented_in_seven_days, all_entries, 100*(oriented_in_seven_days/all_entries)) ]) def percent_shelter_stays_less_than_seven_days(self, entries_df, providers): """ Use For: Service Intensive Shelters :param entries_df: :param providers: :return: """ exits = entries_df[ entries_df["Entry Exit Exit Date"].notnull() & entries_df["Entry Exit Provider Id"].isin(providers) ] exits["Entry Date"] = pd.to_datetime(exits["Entry Exit Entry Date"]).dt.date exits["Exit Date"] =
pd.to_datetime(exits["Entry Exit Exit Date"])
pandas.to_datetime
from builtins import print from sklearn.preprocessing import LabelEncoder from sklearn.metrics import accuracy_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import confusion_matrix from sklearn.metrics import f1_score from scipy.io import arff import scipy.io as sio import numpy as np import pandas as pd import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt import seaborn as sns import os import operator import h5py import glob import scipy from collections import Counter def readucr(filename): data = np.loadtxt(filename) # 混洗 shuffle 默认打乱第一维度 np.random.shuffle(data) Y = data[:, 0] X = data[:, 1:] return X, Y def readmts(filename): data = arff.loadarff(filename + '_TRAIN.arff') df =
pd.DataFrame(data[0])
pandas.DataFrame
#!/usr/bin/env python3 # SPDX-License-Identifier: BSD-3-Clause-Clear # Copyright (c) 2019, The Numerical Algorithms Group, Ltd. All rights reserved. """Shared routines for different Metric Sets """ from warnings import warn import numpy import pandas from ..trace import Trace from ..traceset import TraceSet from .._plotsettings import pypop_mpl_params, figparams __all__ = ["Metric", "MetricSet"] class Metric: """Individual performance metrics to be used within a metricset. Defines metric name, properties and method of calculation. """ def __init__( self, key, level, displayname=None, desc=None, is_inefficiency=False, freq_corr=False, ): """ Parameters ---------- key: str Key by which to identify metric. level: int Level at which to display metric in the stack. displayname: str or None Display name to use for metric in table etc. Defaults to key. desc: str or None Detailed description of the metric. is_inefficiency: bool Tag metric as an inefficiency (rather than efficiency) for correct display and shading. Default False. freq_corr: bool Correct performance metrics based on average clock frequency (use to correct for node dynamic clocking issues). Default False. """ self.key = key self.level = level self.description = str(desc) if desc else "" self.is_inefficiency = is_inefficiency if displayname: self.displayname = r"↪ " * bool(self.level) + displayname else: self.displayname = r"↪ " * bool(self.level) + self.key class MetricSet: """Calculate and plot POP MPI metrics Statistics data is expected to have been produced with `collect_statistics()` Attributes ---------- metric_data metric_definition """ _programming_model = None _default_metric_key = "Number of Processes" _default_group_key = None _default_scaling_key = "Total Threads" _key_descriptions = { "Number of Processes": "", "Threads per Process": "", "Total Threads": "", "Hybrid Layout": "", "Tag": "", } def __init__(self, stats_data, ref_key=None, sort_keys=True): """ Parameters ---------- stats_data: TraceSet instance, dict, iterable or instance of Trace Statistics as collected with `collect_statistics()`. Dictionary keys will be used as the dataframe index. If a list, a dict will be constructed by enumeration. ref_key: str or None Key of stats_dict that should be used as the reference for calculation of scaling values. By default the trace with smallest number of processes and smallest number of threads per process will be used. sort_keys: bool If true (default), lexically sort the keys in the returned DataFrame. """ self._stats_dict = MetricSet._dictify_stats(stats_data) self._metric_data = None self._sort_keys = sort_keys self._ref_key = ( self._choose_ref_key(self._stats_dict) if ref_key is None else ref_key ) def _calculate_metrics(self): raise NotImplementedError def _repr_html_(self): return self.metric_data._repr_html_() @staticmethod def _choose_ref_key(stats_dict): """ Take the stats dict and choose an appropriate reference trace. As a default choice choose the smallest number of total threads, breaking ties with smallest number of threads per process """ return min( stats_dict.items(), key=lambda x: "{:05}_{:05}_{}".format( sum(x[1].metadata.threads_per_process), max(x[1].metadata.threads_per_process), x[1].metadata.tag, ), )[0] @property def metric_data(self): """pandas.DataFrame: Calculated metric data. """ if self._metric_data is None: self._calculate_metrics(ref_key=self._ref_key) return self._metric_data @staticmethod def _dictify_stats(stats_data): if isinstance(stats_data, TraceSet): return {k: v for k, v in enumerate(stats_data.traces)} else: if isinstance(stats_data, Trace): return {0: stats_data} if not isinstance(stats_data, dict): stats_data = {k: v for k, v in enumerate(stats_data)} for df in stats_data.values(): if not isinstance(df, Trace): raise ValueError("stats_dict must be an iterable of pypop.trace.Trace") return stats_data @property def metrics(self): """List of :py:class:`pypop.metrics.Metric`: List of metrics that will be calculated. """ return self._metric_list def _create_subdataframe(self, metadata, idxkey): if len(set(metadata.threads_per_process)) != 1: warn( "The supplied trace has a varying number of threads per process. " "The PyPOP metrics were designed assuming a homogenous number of " "threads per process -- analysis results may be inaccurate." ) layout_keys = { "Number of Processes": pandas.Series( data=[metadata.num_processes], index=[idxkey] ), "Threads per Process": pandas.Series( data=[metadata.threads_per_process[0]], index=[idxkey] ), "Total Threads": pandas.Series( data=[sum(metadata.threads_per_process)], index=[idxkey] ), "Hybrid Layout": pandas.Series( data=[ "{}x{}".format( metadata.num_processes, metadata.threads_per_process[0] ) ], index=[idxkey], ), "Tag":
pandas.Series(data=[metadata.tag], index=[idxkey])
pandas.Series
""" Unit test of Inverse Transform """ import unittest import pandas as pd import numpy as np import category_encoders as ce import catboost as cb import sklearn import lightgbm import xgboost from shapash.utils.transform import inverse_transform, apply_preprocessing, get_col_mapping_ce class TestInverseTransformCaterogyEncoder(unittest.TestCase): def test_inverse_transform_1(self): """ Test no preprocessing """ train = pd.DataFrame({'city': ['chicago', 'paris'], 'state': ['US', 'FR']}) original = inverse_transform(train) pd.testing.assert_frame_equal(original, train) def test_inverse_transform_2(self): """ Test multiple preprocessing """ train = pd.DataFrame({'Onehot1': ['A', 'B', 'A', 'B'], 'Onehot2': ['C', 'D', 'C', 'D'], 'Binary1': ['E', 'F', 'E', 'F'], 'Binary2': ['G', 'H', 'G', 'H'], 'Ordinal1': ['I', 'J', 'I', 'J'], 'Ordinal2': ['K', 'L', 'K', 'L'], 'BaseN1': ['M', 'N', 'M', 'N'], 'BaseN2': ['O', 'P', 'O', 'P'], 'Target1': ['Q', 'R', 'Q', 'R'], 'Target2': ['S', 'T', 'S', 'T'], 'other': ['other', np.nan, 'other', 'other']}) test = pd.DataFrame({'Onehot1': ['A', 'B', 'A'], 'Onehot2': ['C', 'D', 'ZZ'], 'Binary1': ['E', 'F', 'F'], 'Binary2': ['G', 'H', 'ZZ'], 'Ordinal1': ['I', 'J', 'J'], 'Ordinal2': ['K', 'L', 'ZZ'], 'BaseN1': ['M', 'N', 'N'], 'BaseN2': ['O', 'P', 'ZZ'], 'Target1': ['Q', 'R', 'R'], 'Target2': ['S', 'T', 'ZZ'], 'other': ['other', '123', np.nan]}) expected = pd.DataFrame({'Onehot1': ['A', 'B', 'A'], 'Onehot2': ['C', 'D', 'missing'], 'Binary1': ['E', 'F', 'F'], 'Binary2': ['G', 'H', 'missing'], 'Ordinal1': ['I', 'J', 'J'], 'Ordinal2': ['K', 'L', 'missing'], 'BaseN1': ['M', 'N', 'N'], 'BaseN2': ['O', 'P', np.nan], 'Target1': ['Q', 'R', 'R'], 'Target2': ['S', 'T', 'NaN'], 'other': ['other', '123', np.nan]}) y =
pd.DataFrame(data=[0, 1, 0, 0], columns=['y'])
pandas.DataFrame
import xml.etree.ElementTree as ET from pathlib import Path import cv2 import pandas as pd from tqdm import tqdm from manga_ocr_dev.env import MANGA109_ROOT def get_books(): root = MANGA109_ROOT / 'Manga109s_released_2021_02_28' books = (root / 'books.txt').read_text().splitlines() books = pd.DataFrame({ 'book': books, 'annotations': [str(root / 'annotations' / f'{book}.xml') for book in books], 'images': [str(root / 'images' / book) for book in books], }) return books def export_frames(): books = get_books() data = [] for book in tqdm(books.itertuples(), total=len(books)): tree = ET.parse(book.annotations) root = tree.getroot() for page in root.findall('./pages/page'): for frame in page.findall('./frame'): row = {} row['book'] = book.book row['page_index'] = int(page.attrib['index']) row['page_path'] = str(Path(book.images) / f'{row["page_index"]:03d}.jpg') row['page_width'] = int(page.attrib['width']) row['page_height'] = int(page.attrib['height']) row['id'] = frame.attrib['id'] row['xmin'] = int(frame.attrib['xmin']) row['ymin'] = int(frame.attrib['ymin']) row['xmax'] = int(frame.attrib['xmax']) row['ymax'] = int(frame.attrib['ymax']) data.append(row) data = pd.DataFrame(data) data.page_path = data.page_path.apply(lambda x: '/'.join(Path(x).parts[-4:])) data.to_csv(MANGA109_ROOT / 'frames.csv', index=False) def export_crops(): crops_root = MANGA109_ROOT / 'crops' crops_root.mkdir(parents=True, exist_ok=True) margin = 10 books = get_books() data = [] for book in tqdm(books.itertuples(), total=len(books)): tree = ET.parse(book.annotations) root = tree.getroot() for page in root.findall('./pages/page'): for text in page.findall('./text'): row = {} row['book'] = book.book row['page_index'] = int(page.attrib['index']) row['page_path'] = str(Path(book.images) / f'{row["page_index"]:03d}.jpg') row['page_width'] = int(page.attrib['width']) row['page_height'] = int(page.attrib['height']) row['id'] = text.attrib['id'] row['text'] = text.text row['xmin'] = int(text.attrib['xmin']) row['ymin'] = int(text.attrib['ymin']) row['xmax'] = int(text.attrib['xmax']) row['ymax'] = int(text.attrib['ymax']) data.append(row) data =
pd.DataFrame(data)
pandas.DataFrame
import subprocess import os import pandas as pd import glob def setup_module(module): THIS_DIR = os.path.dirname(os.path.abspath(__file__)) os.chdir(THIS_DIR) def teardown_module(module): cmd = ["make clean"] cmdOutput = subprocess.check_output(cmd, stderr=subprocess.STDOUT, shell=True) def run_command(cmd): try: cmdOutput = subprocess.check_output(cmd, stderr=subprocess.STDOUT, shell=True) except subprocess.CalledProcessError as e: print(e.output) exit() return cmdOutput from contextlib import contextmanager import os @contextmanager def cd(newdir): prevdir = os.getcwd() os.chdir(os.path.expanduser(newdir)) try: yield finally: os.chdir(prevdir) def read_report(report, data_list): assert(len(report) >= 10) for line in report: #print(line) if("NaN found" in line or "INF found" in line): line_set = line.split(" ") elif("underflow (subnormal)" in line): line_set = line.split(" ") # elif("Total Division by 0" in line): # line_set = line.split(" ") elif("Kernels" in line): line_set = line.split(" ") elif("Inst. count" in line): line_set = line.split(" ") else: line_set = [] #print(line_set) if(len(line_set)==2): num = line_set[1].split("\n")[0] data_list.append(num) #print(report) print(len(data_list)) assert(len(data_list) == 9) return data_list def to_time_s(t): time_list = t.split('m') return float(time_list[0])*60+float(time_list[1].split('s')[0]) def time_info(infos): count = 0 for line in infos: count = count +1 if("real" in line): assert("user" in infos[count]) assert("sys" in infos[count+1]) t = line.split(" ")[1] t_s = to_time_s(t) return t_s df =
pd.DataFrame(columns = ["program","fp64_NAN", "fp64_INF", "fp64_SUB","fp32_NAN", "fp32_INF", "fp32_SUB","kernel","FP instructions","check_time","ori_time","slowdown"])
pandas.DataFrame
# Copyright(C) 2020 Google Inc. # # Licensed under the Apache License, Version 2.0(the "License"); you may not # use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.See the # License for the specific language governing permissions and limitations under # the License. import operator import os import string import warnings from datetime import date, datetime import numpy as np import pandas as pd import pandas.util.testing as tm import pytest from pytest import param import ibis import ibis.expr.datatypes as dt from ibis import literal as L import ibis.expr.types as ir from ibis.expr.window import rows_with_max_lookback sa = pytest.importorskip('sqlalchemy') pytest.importorskip('snowflake') pytestmark = pytest.mark.snowflake @pytest.fixture def guid(con): name = ibis.util.guid() try: yield name finally: con.drop_table(name, force=True) @pytest.fixture def guid2(con): name = ibis.util.guid() try: yield name finally: con.drop_table(name, force=True) @pytest.mark.parametrize( ('left_func', 'right_func'), [ param( lambda t: t.double_col.cast('int8'), lambda at: sa.cast(at.c.double_col, sa.SMALLINT), id='double_to_int8', ), param( lambda t: t.double_col.cast('int16'), lambda at: sa.cast(at.c.double_col, sa.SMALLINT), id='double_to_int16', ), param( lambda t: t.string_col.cast('double'), # https://docs.snowflake.com/en/sql-reference/data-types-numeric.html#double-double-precision-real lambda at: sa.cast( at.c.string_col, sa.DECIMAL ), id='string_to_double', ), param( lambda t: t.string_col.cast('float'), lambda at: sa.cast(at.c.string_col, sa.FLOAT), id='string_to_float', ), param( lambda t: t.string_col.cast('decimal'), lambda at: sa.cast(at.c.string_col, sa.NUMERIC(9, 0)), id='string_to_decimal_no_params', ), param( lambda t: t.string_col.cast('decimal(9, 3)'), lambda at: sa.cast(at.c.string_col, sa.NUMERIC(9, 3)), id='string_to_decimal_params', ), ], ) def test_cast(alltypes, at, translate, left_func, right_func): left = left_func(alltypes) right = right_func(at) assert str(translate(left).compile()) == str(right.compile()) def test_date_cast(alltypes, at, translate): result = alltypes.date_string_col.cast('date') expected = sa.cast(at.c.date_string_col, sa.DATE) assert str(translate(result)) == str(expected) @pytest.mark.parametrize( 'column', [ '`INDEX`', 'Unnamed: 0', 'id', 'bool_col', 'tinyint_col', 'smallint_col', 'int_col', 'bigint_col', 'float_col', 'double_col', 'date_string_col', 'string_col', 'timestamp_col', 'year', 'month', ], ) def test_noop_cast(alltypes, at, translate, column): col = alltypes[column] result = col.cast(col.type()) expected = at.c[column] assert result.equals(col) assert str(translate(result)) == str(expected) def test_timestamp_cast_noop(alltypes, at, translate): result1 = alltypes.timestamp_col.cast('timestamp') result2 = alltypes.int_col.cast('timestamp') assert isinstance(result1, ir.TimestampColumn) assert isinstance(result2, ir.TimestampColumn) expected1 = at.c.timestamp_col assert str(translate(result1)) == "CAST({} AS TIMESTAMP)".format(str(expected1)) @pytest.mark.parametrize( ('func', 'expected'), [ param(operator.methodcaller('year'), 2015, id='year'), param(operator.methodcaller('month'), 9, id='month'), param(operator.methodcaller('day'), 1, id='day'), param(operator.methodcaller('hour'), 14, id='hour'), param(operator.methodcaller('minute'), 48, id='minute'), param(operator.methodcaller('second'), 5, id='second'), param(lambda x: x.day_of_week.index(), 1, id='day_of_week_index'), param( lambda x: x.day_of_week.full_name(), 'Tue', id='day_of_week_full_name', ), ], ) def test_simple_datetime_operations(con, func, expected, translate): value= L('2015-09-01 14:48:05.359').cast(dt.string).cast(dt.timestamp) assert con.execute(func(value)) == expected @pytest.mark.parametrize( ('func', 'left', 'right', 'expected'), [ param(operator.add, L(3), L(4), 7, id='add'), param(operator.sub, L(3), L(4), -1, id='sub'), param(operator.mul, L(3), L(4), 12, id='mul'), param(operator.truediv, L(12), L(4), 3, id='truediv_no_remainder'), param(operator.pow, L(12), L(2), 144, id='pow'), param(operator.mod, L(12), L(5), 2, id='mod'), param(operator.truediv, L(7), L(2), 3.5, id='truediv_remainder'), param(operator.floordiv, L(7), L(2), 3, id='floordiv'), param( lambda x, y: x.floordiv(y), L(7), 2, 3, id='floordiv_no_literal' ), param( lambda x, y: x.rfloordiv(y), L(2), 7, 3, id='rfloordiv_no_literal' ), ], ) def test_binary_arithmetic(con, func, left, right, expected): expr = func(left, right) result = con.execute(expr) assert result == expected @pytest.mark.parametrize( ('value', 'expected'), [ param(L('foo_bar'), 'VARCHAR', id='text'), param(L(5), 'INTEGER', id='integer'), param(ibis.NA, None, id='null'), # TODO(phillipc): should this really be double? param(L(1.2345), 'DECIMAL', id='numeric'), param( L('2015-09-01 14:48:05.359').cast(dt.string).cast(dt.timestamp), 'TIMESTAMP_NTZ', id='timestamp_without_time_zone', ) ], ) def test_typeof(con, value, expected): assert con.execute(value.typeof()) == expected @pytest.mark.parametrize(('value', 'expected'), [(0, None), (5.5, 5.5)]) def test_nullifzero(con, value, expected): assert con.execute(L(value).nullifzero()) == expected @pytest.mark.parametrize(('value', 'expected'), [('foo_bar', 7), ('', 0)]) def test_string_length(con, value, expected): assert con.execute(L(value).length()) == expected @pytest.mark.parametrize( ('op', 'expected'), [ param(operator.methodcaller('left', 3), 'foo', id='left'), param(operator.methodcaller('right', 3), 'bar', id='right'), param(operator.methodcaller('substr', 0, 3), 'foo', id='substr_0_3'), param(operator.methodcaller('substr', 4, 3), 'bar', id='substr_4, 3'), param(operator.methodcaller('substr', 1), 'oo_bar', id='substr_1'), ], ) def test_string_substring(con, op, expected): value = L('foo_bar') assert con.execute(op(value)) == expected @pytest.mark.parametrize( ('opname', 'expected'), [('lstrip', 'foo '), ('rstrip', ' foo'), ('strip', 'foo')], ) def test_string_strip(con, opname, expected): op = operator.methodcaller(opname) value = L(' foo ') assert con.execute(op(value)) == expected @pytest.mark.parametrize( ('opname', 'count', 'char', 'expected'), [('lpad', 6, ' ', ' foo'), ('rpad', 6, ' ', 'foo ')], ) def test_string_pad(con, opname, count, char, expected): op = operator.methodcaller(opname, count, char) value = L('foo') assert con.execute(op(value)) == expected def test_string_reverse(con): assert con.execute(L('foo').reverse()) == 'oof' def test_string_upper(con): assert con.execute(L('foo').upper()) == 'FOO' def test_string_lower(con): assert con.execute(L('FOO').lower()) == 'foo' @pytest.mark.parametrize( ('haystack', 'needle', 'expected'), [ ('foobar', 'bar', True), ('foobar', 'foo', True), ('foobar', 'baz', False), ('100%', '%', True), ('a_b_c', '_', True), ], ) def test_string_contains(con, haystack, needle, expected): value = L(haystack) expr = value.contains(needle) assert con.execute(expr) == expected @pytest.mark.parametrize( ('value', 'expected'), [('foo bar foo', 'Foo Bar Foo'), ('foobar Foo', 'Foobar Foo')], ) def test_capitalize(con, value, expected): assert con.execute(L(value).capitalize()) == expected def test_repeat(con): expr = L('bar ').repeat(3) assert con.execute(expr) == 'bar bar bar ' def test_re_replace(con): expr = L('fudge|||chocolate||candy').re_replace('\\|{2,3}', ', ') assert con.execute(expr) == 'fudge, chocolate, candy' def test_translate(con): expr = L('faab').translate('a', 'b') assert con.execute(expr) == 'fbbb' @pytest.mark.parametrize( ('raw_value', 'expected'), [('a', 0), ('b', 1), ('d', -1), (None, 3)] ) def test_find_in_set(demonstration, con, raw_value, expected): value = L('a', dt.string) haystack = demonstration.array1 expr = value.find_in_set(haystack) assert con.execute(expr) == expected @pytest.mark.parametrize( ('raw_value', 'opname', 'expected'), [ (None, 'isnull', True), (1, 'isnull', False), (None, 'notnull', False), (1, 'notnull', True), ], ) def test_isnull_notnull(con, raw_value, opname, expected): lit = L(raw_value) op = operator.methodcaller(opname) expr = op(lit) assert con.execute(expr) == expected @pytest.mark.parametrize( ('expr', 'expected'), [ param(L('foobar').find('bar'), 3, id='find_pos'), param(L('foobar').find('baz'), -1, id='find_neg'), param(L('foobar').like('%bar'), True, id='like_left_pattern'), param(L('foobar').like('foo%'), True, id='like_right_pattern'), param(L('foobar').like('%baz%'), False, id='like_both_sides_pattern'), param(L('foobar').like(['%bar']), True, id='like_list_left_side'), param(L('foobar').like(['foo%']), True, id='like_list_right_side'), param(L('foobar').like(['%baz%']), False, id='like_list_both_sides'), param( L('foobar').like(['%bar', 'foo%']), True, id='like_list_multiple' ), param(L('foobarfoo').replace('foo', 'H'), 'HbarH', id='replace'), param(L('a').ascii_str(), ord('a'), id='ascii_str'), ], ) def test_string_functions(con, expr, expected): assert con.execute(expr) == expected @pytest.mark.parametrize( ('expr', 'expected'), [ param(L('San Francisco').re_search('San* [fF].*'), True, id='re_search_match'), param(L('abcd').re_search(r'[\d]+'), False, id='re_search_no_match'), param( L('1222').re_search(r'[\d]+'), True, id='re_search_match_number' ), ], ) def test_regexp(con, expr, expected): assert con.execute(expr) == expected @pytest.mark.parametrize( ('expr', 'expected'), [ param( L('abcd').re_extract('([a-z]+)', 1), 'abcd', id='re_extract_whole' ), param( L('How are you doing today?').re_extract('\\b\\S*o\\S*\\b', 3), 'you', id='re_extract_first' ), # valid group number but no match => NULL for snowflake param(L('abcd').re_extract(r'(\d)', 1), None, id='re_extract_no_match'), # match but not a valid group number => NULL param(L('abcd').re_extract('abcd', 3), None, id='re_extract_match'), ], ) def test_regexp_extract(con, expr, expected): assert con.execute(expr) == expected @pytest.mark.parametrize( ('expr', 'expected'), [ param(ibis.NA.fillna(5), 5, id='filled'), param(L(5).fillna(10), 5, id='not_filled'), param(L(5).nullif(5), None, id='nullif_null'), param(L(10).nullif(5), 10, id='nullif_not_null'), ], ) def test_fillna_nullif(con, expr, expected): assert con.execute(expr) == expected @pytest.mark.parametrize( ('expr', 'expected'), [ param(ibis.coalesce(5, None, 4), 5, id='first'), param(ibis.coalesce(ibis.NA, 4, ibis.NA), 4, id='second'), param(ibis.coalesce(ibis.NA, ibis.NA, 3.14), 3.14, id='third'), ], ) def test_coalesce(con, expr, expected): assert con.execute(expr) == expected @pytest.mark.parametrize( ('expr', 'expected'), [ param(ibis.coalesce(ibis.NA, ibis.NA), None, id='all_null'), param( ibis.coalesce(ibis.NA, ibis.NA, ibis.NA.cast('double')), None, id='all_nulls_with_one_cast', ), param( ibis.coalesce( ibis.NA.cast('int8'), ibis.NA.cast('int8'), ibis.NA.cast('int8'), ), None, id='all_nulls_with_all_cast', ), ], ) def test_coalesce_all_na(con, expr, expected): assert con.execute(expr) == expected def test_numeric_builtins_work(alltypes, df): expr = alltypes.double_col.fillna(0) result = expr.execute() expected = df.double_col.fillna(0) expected.name = 'tmp' tm.assert_series_equal(result, expected) @pytest.mark.parametrize( ('op', 'pandas_op'), [ param( lambda t: (t.double_col > 20).ifelse(10, -20), lambda df: pd.Series( np.where(df.double_col > 20, 10, -20), dtype='int8' ), id='simple', ), param( lambda t: (t.double_col > 20).ifelse(10, -20).abs(), lambda df: pd.Series( np.where(df.double_col > 20, 10, -20), dtype='int8' ).abs(), id='abs', ), ], ) def test_ifelse(alltypes, df, op, pandas_op): expr = op(alltypes) result = expr.execute() result.name = None expected = pandas_op(df) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( ('distinct1', 'distinct2', 'expected1', 'expected2'), [ (True, True, 'UNION', 'UNION'), (True, False, 'UNION', 'UNION ALL'), (False, True, 'UNION ALL', 'UNION'), (False, False, 'UNION ALL', 'UNION ALL'), ], ) def test_union_cte(alltypes, distinct1, distinct2, expected1, expected2): t = alltypes expr1 = t.group_by(t.string_col).aggregate(metric=t.double_col.sum()) expr2 = expr1.view() expr3 = expr1.view() expr = expr1.union(expr2, distinct=distinct1).union( expr3, distinct=distinct2 ) result = '\n'.join( map( lambda line: line.rstrip(), # strip trailing whitespace str( expr.compile().compile(compile_kwargs=dict(literal_binds=True)) ).splitlines(), ) ) expected = """\ WITH anon_1 AS (SELECT t0.string_col AS string_col, sum(t0.double_col) AS metric FROM functional_alltypes AS t0 GROUP BY t0.string_col), anon_2 AS (SELECT t0.string_col AS string_col, sum(t0.double_col) AS metric FROM functional_alltypes AS t0 GROUP BY t0.string_col), anon_3 AS (SELECT t0.string_col AS string_col, sum(t0.double_col) AS metric FROM functional_alltypes AS t0 GROUP BY t0.string_col) (SELECT anon_1.string_col, anon_1.metric FROM anon_1 {} SELECT anon_2.string_col, anon_2.metric FROM anon_2) {} SELECT anon_3.string_col, anon_3.metric FROM anon_3""".format( expected1, expected2 ) assert str(result) == expected @pytest.mark.parametrize( ('func', 'pandas_func'), [ param( lambda t, cond: t.bool_col.count(), lambda df, cond: df.bool_col.count(), id='count', ), param( lambda t, cond: t.double_col.sum(), lambda df, cond: df.double_col.sum(), id='sum', ), param( lambda t, cond: t.double_col.mean(), lambda df, cond: df.double_col.mean(), id='mean', ), param( lambda t, cond: t.double_col.min(), lambda df, cond: df.double_col.min(), id='min', ), param( lambda t, cond: t.double_col.max(), lambda df, cond: df.double_col.max(), id='max', ), param( lambda t, cond: t.double_col.var(), lambda df, cond: df.double_col.var(), id='var', ), param( lambda t, cond: t.double_col.std(), lambda df, cond: df.double_col.std(), id='std', ), param( lambda t, cond: t.double_col.var(how='sample'), lambda df, cond: df.double_col.var(ddof=1), id='samp_var', ), param( lambda t, cond: t.double_col.std(how='pop'), lambda df, cond: df.double_col.std(ddof=0), id='pop_std', ), param( lambda t, cond: t.bool_col.count(where=cond), lambda df, cond: df.bool_col[cond].count(), id='count_where', ), param( lambda t, cond: t.double_col.mean(where=cond), lambda df, cond: df.double_col[cond].mean(), id='mean_where', ), param( lambda t, cond: t.double_col.min(where=cond), lambda df, cond: df.double_col[cond].min(), id='min_where', ), param( lambda t, cond: t.double_col.max(where=cond), lambda df, cond: df.double_col[cond].max(), id='max_where', ), param( lambda t, cond: t.double_col.var(where=cond), lambda df, cond: df.double_col[cond].var(), id='var_where', ), param( lambda t, cond: t.double_col.std(where=cond), lambda df, cond: df.double_col[cond].std(), id='std_where', ), param( lambda t, cond: t.double_col.var(where=cond, how='sample'), lambda df, cond: df.double_col[cond].var(), id='samp_var_where', ), param( lambda t, cond: t.double_col.std(where=cond, how='pop'), lambda df, cond: df.double_col[cond].std(ddof=0), id='pop_std_where', ), ], ) def test_aggregations(alltypes, df, func, pandas_func): table = alltypes.limit(100) df = df.head(table.count().execute()) cond = table.string_col.isin(['1', '7']) expr = func(table, cond) result = expr.execute() expected = pandas_func(df, cond.execute()) np.testing.assert_allclose(result, expected) def test_not_contains(alltypes, df): n = 100 table = alltypes.limit(n) expr = table.string_col.notin(['1', '7']) result = expr.execute() expected = ~df.head(n).string_col.isin(['1', '7']) tm.assert_series_equal(result, expected, check_names=False) def test_group_concat(alltypes, df): expr = alltypes.string_col.group_concat() result = expr.execute() expected = ','.join(df.string_col.dropna()) assert result == expected def test_distinct_aggregates(alltypes, df): expr = alltypes.limit(100).double_col.nunique() result = expr.execute() assert result == df.head(100).double_col.nunique() def test_not_exists(alltypes, df): t = alltypes t2 = t.view() expr = t[~((t.string_col == t2.string_col).any())] result = expr.execute() left, right = df, t2.execute() expected = left[left.string_col != right.string_col] tm.assert_frame_equal( result, expected, check_index_type=False, check_dtype=False ) def test_subquery(alltypes, df): t = alltypes expr = ( t.mutate(d=t.double_col.fillna(0)) .limit(1000) .group_by('string_col') .size() ) result = expr.execute().sort_values('string_col').reset_index(drop=True) expected = ( df.assign(d=df.double_col.fillna(0)) .head(1000) .groupby('string_col') .string_col.count() .reset_index(name='count') .sort_values('string_col') .reset_index(drop=True) ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize('func', ['mean', 'sum']) def test_rolling_window(alltypes, func, df): t = alltypes df = ( df[['double_col', 'timestamp_col']] .sort_values('timestamp_col') .reset_index(drop=True) ) window = ibis.window(order_by=t.timestamp_col, preceding=6, following=0) f = getattr(t.double_col, func) df_f = getattr(df.double_col.rolling(7, min_periods=0), func) result = ( t.projection([f().over(window).name('double_col')]) .execute() .double_col ) expected = df_f() tm.assert_series_equal(result, expected) @pytest.mark.parametrize('func', ['min', 'max']) def test_cumulative_ordered_window(alltypes, func, df): t = alltypes df = df.sort_values('timestamp_col').reset_index(drop=True) window = ibis.cumulative_window(order_by=t.timestamp_col) f = getattr(t.double_col, func) expr = t.projection([(t.double_col - f().over(window)).name('double_col')]) result = expr.execute().double_col expected = df.double_col - getattr(df.double_col, 'cum%s' % func)()
tm.assert_series_equal(result, expected)
pandas.util.testing.assert_series_equal
#! /usr/bin/env python3 """ Copyright 2021 <NAME>. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ # # Classify applications into 104 classes given their raw code. # # The representation (graph) is created from IR. # import os import sys import glob import numpy as np import pandas as pd from absl import app, flags, logging from yacos.essential import IO from yacos.info import compy as R from yacos.info.compy.extractors import LLVMDriver import matplotlib.pyplot as plt from silence_tensorflow import silence_tensorflow silence_tensorflow() import stellargraph as sg from stellargraph.mapper import PaddedGraphGenerator from stellargraph.layer import DeepGraphCNN from stellargraph import StellarDiGraph from tensorflow.keras import Model from tensorflow.keras.optimizers import Adam from tensorflow.keras.layers import Dense, Conv1D, MaxPool1D, Dropout, Flatten from tensorflow.keras.losses import categorical_crossentropy def get_num_labels(indexes, labels): """Get the number of labels""" num_labels = {} for index in indexes: if labels[index] not in num_labels: num_labels[labels[index]] = 0 num_labels[labels[index]] += 1 return num_labels def graph2stellar(graph): """Convert the graph to StellarGraph representation.""" nodes_features = graph.get_nodes_inst2vec_embeddings() n_index = [index for index, _, _ in nodes_features] n_features = [features for _, _, features in nodes_features] nodes = pd.DataFrame(n_features, index=n_index) edges = graph.get_edges_dataFrame() s_graph = StellarDiGraph(nodes, edges=edges, edge_type_column="type") # print(s_graph.info(show_attributes=True, truncate=None)) return s_graph def prepare_data(data_directory, graph_type, ratio): """Extract the representation from the source code.""" # Instantiate the LLVM driver. driver = LLVMDriver() # Define the builder builder = R.LLVMGraphBuilder(driver) # Define the visitor visitors = {'programl': R.LLVMProGraMLVisitor, 'programlnoroot': R.LLVMProGraMLNoRootVisitor, 'cfg': R.LLVMCFGVisitor, 'cfgcompact': R.LLVMCFGCompactVisitor, 'cfgcall': R.LLVMCFGCallVisitor, 'cfgcallnoroot': R.LLVMCFGCallNoRootVisitor, 'cfgcallcompact': R.LLVMCFGCallCompactVisitor, 'cfgcallcompactnoroot': R.LLVMCFGCallCompactNoRootVisitor, 'cdfg': R.LLVMCDFGVisitor, 'cdfgcompact': R.LLVMCDFGCompactVisitor, 'cdfgcall': R.LLVMCDFGCallVisitor, 'cdfgcallnoroot': R.LLVMCDFGCallNoRootVisitor, 'cdfgcallcompact': R.LLVMCDFGCallCompactVisitor, 'cdfgcallcompactnoroot': R.LLVMCDFGCallCompactNoRootVisitor, 'cdfgplus': R.LLVMCDFGPlusVisitor, 'cdfgplusnoroot': R.LLVMCDFGPlusNoRootVisitor} index = 0 graphs = [] labels = [] indexes = {'ir_train': [], 'ir_val': [], 'ir_test': []} # Load data from all folders for dir in ['ir_train', 'ir_val', 'ir_test']: top_dir = os.path.join(data_directory, dir) folders = [ os.path.join(top_dir, subdir) for subdir in os.listdir(top_dir) if os.path.isdir(os.path.join(top_dir, subdir)) ] for folder in folders: label = folder.replace('{}/'.format(top_dir), '') sources = glob.glob('{}/*.ll'.format(folder)) nof_dataset_itens = int(len(sources) * ratio) for item, source in enumerate(sources): # Extract "information" from the file # (data to construct the graph). extractionInfo = builder.ir_to_info(source) # Build the graph. graph = builder.info_to_representation(extractionInfo, visitors[graph_type]) indexes[dir].append(index) graphs.append(graph2stellar(graph)) labels.append(label) index += 1 if item == nof_dataset_itens - 1: break labels = pd.Series(labels, name='label', dtype="category") return graphs, labels, indexes def execute(argv): """Extract a graph representation.""" del argv # Print summary print('='*80, flush=True) print('Classify applications into 104 classes given their raw code.') print('='*80, flush=True) FLAGS = flags.FLAGS print('Deep Graph Convolutional Neural Network') print('='*80, flush=True) # Verify datset directory. if not os.path.isdir(FLAGS.dataset_directory): logging.error('Dataset directory {} does not exist.'.format( FLAGS.dataset_directory) ) sys.exit(1) # # IMPORT THE DATA # # Prepare the datasets graphs, graph_labels, graph_indexes = prepare_data(FLAGS.dataset_directory, FLAGS.graph, FLAGS.ratio) # Summary statistics of the sizes of the graphs print('Dataset', flush=True) summary = pd.DataFrame( [(g.number_of_nodes(), g.number_of_edges()) for g in graphs], columns=['nodes', 'edges'], ) print('\n', summary.describe().round(1), flush=True) print('\n', graph_labels.value_counts().to_frame(), flush=True) print('='*80, flush=True) # Dataset statistics dataset = {'training': {}, 'validation': {}, 'test': {}} training = len(graph_indexes['ir_train']) dataset['training']['counter'] = training validation = len(graph_indexes['ir_val']) dataset['validation']['counter'] = validation test = len(graph_indexes['ir_test']) dataset['test']['counter'] = test print('Training:', training, flush=True) dataset['training']['labels'] = {} num_labels = get_num_labels(graph_indexes['ir_train'], graph_labels) for label, counter in num_labels.items(): print('\t', label, '\t', counter) dataset['training']['labels'][label] = counter print('Validation:', validation, flush=True) dataset['validation']['labels'] = {} num_labels = get_num_labels(graph_indexes['ir_val'], graph_labels) for label, counter in num_labels.items(): print('\t', label, '\t', counter) dataset['validation']['labels'][label] = counter print('Test:', test, flush=True) dataset['test']['labels'] = {} num_labels = get_num_labels(graph_indexes['ir_test'], graph_labels) for label, counter in num_labels.items(): print('\t', label, '\t', counter) dataset['test']['labels'][label] = counter print('='*80, flush=True) test_labels_original = graph_labels[training+validation:] # Encode class values graph_labels =
pd.get_dummies(graph_labels)
pandas.get_dummies
"""Read data files in different formats""" import json as jsonlib import pandas as pd from eln.decorators.register_reader import register_reader, READERS as _READERS from eln.helpers.logger import log_error class UnsupportedFileFormatError(TypeError): """Unsupported file format""" def read(plugin, *args, **kwargs): if plugin in _READERS: return _READERS[plugin](*args, **kwargs) raise UnsupportedFileFormatError() @register_reader def csv(file_path): """Read CSV file, return DataFrame""" return
pd.read_csv(file_path)
pandas.read_csv
# TODO move away from this test generator style since its we need to manage the generator file, # which is no longer in this project workspace, as well as the output test file. ## ## # # # THIS TEST WAS AUTOGENERATED BY groupby_test_generator.py # # # ## # TODO refactor this into table driven tests using pytest parameterize since each test body follows the same structure # and a single test body with multiple test tabe entries will be more readable and flexible. from .groupby_unit_test_parameters import * import pandas as pd import riptable as rt import unittest class autogenerated_gb_tests(unittest.TestCase): def safe_assert(self, ary1, ary2): for a, b in zip(ary1, ary2): if a == a and b == b: self.assertAlmostEqual(a, b, places=7) def test_multikey___aggs_median__symb_ratio_01__nvalcols_1__nkeycols_1(self): aggs = ['median'] test_class = groupby_everything(1, 1, 0.1, ['median']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median__symb_ratio_01__nvalcols_4__nkeycols_1(self): aggs = ['median'] test_class = groupby_everything(4, 1, 0.1, ['median']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median__symb_ratio_01__nvalcols_7__nkeycols_1(self): aggs = ['median'] test_class = groupby_everything(7, 1, 0.1, ['median']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median__symb_ratio_01__nvalcols_2__nkeycols_2(self): aggs = ['median'] test_class = groupby_everything(2, 2, 0.1, ['median']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median__symb_ratio_01__nvalcols_5__nkeycols_2(self): aggs = ['median'] test_class = groupby_everything(5, 2, 0.1, ['median']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median__symb_ratio_01__nvalcols_1__nkeycols_3(self): aggs = ['median'] test_class = groupby_everything(1, 3, 0.1, ['median']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median__symb_ratio_01__nvalcols_4__nkeycols_3(self): aggs = ['median'] test_class = groupby_everything(4, 3, 0.1, ['median']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median__symb_ratio_01__nvalcols_7__nkeycols_3(self): aggs = ['median'] test_class = groupby_everything(7, 3, 0.1, ['median']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median__symb_ratio_0300__nvalcols_2__nkeycols_1(self): aggs = ['median'] test_class = groupby_everything(2, 1, 0.30, ['median']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median__symb_ratio_0300__nvalcols_5__nkeycols_1(self): aggs = ['median'] test_class = groupby_everything(5, 1, 0.30, ['median']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median__symb_ratio_0300__nvalcols_1__nkeycols_2(self): aggs = ['median'] test_class = groupby_everything(1, 2, 0.30, ['median']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median__symb_ratio_0300__nvalcols_4__nkeycols_2(self): aggs = ['median'] test_class = groupby_everything(4, 2, 0.30, ['median']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median__symb_ratio_0300__nvalcols_7__nkeycols_2(self): aggs = ['median'] test_class = groupby_everything(7, 2, 0.30, ['median']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median__symb_ratio_0300__nvalcols_2__nkeycols_3(self): aggs = ['median'] test_class = groupby_everything(2, 3, 0.30, ['median']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median__symb_ratio_0300__nvalcols_5__nkeycols_3(self): aggs = ['median'] test_class = groupby_everything(5, 3, 0.30, ['median']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median_min__symb_ratio_01__nvalcols_1__nkeycols_1(self): aggs = ['median', 'min'] test_class = groupby_everything(1, 1, 0.1, ['median', 'min']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median_min__symb_ratio_01__nvalcols_4__nkeycols_1(self): aggs = ['median', 'min'] test_class = groupby_everything(4, 1, 0.1, ['median', 'min']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median_min__symb_ratio_01__nvalcols_7__nkeycols_1(self): aggs = ['median', 'min'] test_class = groupby_everything(7, 1, 0.1, ['median', 'min']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median_min__symb_ratio_01__nvalcols_2__nkeycols_2(self): aggs = ['median', 'min'] test_class = groupby_everything(2, 2, 0.1, ['median', 'min']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median_min__symb_ratio_01__nvalcols_5__nkeycols_2(self): aggs = ['median', 'min'] test_class = groupby_everything(5, 2, 0.1, ['median', 'min']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median_min__symb_ratio_01__nvalcols_1__nkeycols_3(self): aggs = ['median', 'min'] test_class = groupby_everything(1, 3, 0.1, ['median', 'min']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median_min__symb_ratio_01__nvalcols_4__nkeycols_3(self): aggs = ['median', 'min'] test_class = groupby_everything(4, 3, 0.1, ['median', 'min']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median_min__symb_ratio_01__nvalcols_7__nkeycols_3(self): aggs = ['median', 'min'] test_class = groupby_everything(7, 3, 0.1, ['median', 'min']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median_min__symb_ratio_0300__nvalcols_2__nkeycols_1(self): aggs = ['median', 'min'] test_class = groupby_everything(2, 1, 0.30, ['median', 'min']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median_min__symb_ratio_0300__nvalcols_5__nkeycols_1(self): aggs = ['median', 'min'] test_class = groupby_everything(5, 1, 0.30, ['median', 'min']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median_min__symb_ratio_0300__nvalcols_1__nkeycols_2(self): aggs = ['median', 'min'] test_class = groupby_everything(1, 2, 0.30, ['median', 'min']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median_min__symb_ratio_0300__nvalcols_4__nkeycols_2(self): aggs = ['median', 'min'] test_class = groupby_everything(4, 2, 0.30, ['median', 'min']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median_min__symb_ratio_0300__nvalcols_7__nkeycols_2(self): aggs = ['median', 'min'] test_class = groupby_everything(7, 2, 0.30, ['median', 'min']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median_min__symb_ratio_0300__nvalcols_2__nkeycols_3(self): aggs = ['median', 'min'] test_class = groupby_everything(2, 3, 0.30, ['median', 'min']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median_min__symb_ratio_0300__nvalcols_5__nkeycols_3(self): aggs = ['median', 'min'] test_class = groupby_everything(5, 3, 0.30, ['median', 'min']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_mean_max__symb_ratio_01__nvalcols_1__nkeycols_1(self): aggs = ['var', 'mean', 'max'] test_class = groupby_everything(1, 1, 0.1, ['var', 'mean', 'max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_mean_max__symb_ratio_01__nvalcols_4__nkeycols_1(self): aggs = ['var', 'mean', 'max'] test_class = groupby_everything(4, 1, 0.1, ['var', 'mean', 'max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_mean_max__symb_ratio_01__nvalcols_7__nkeycols_1(self): aggs = ['var', 'mean', 'max'] test_class = groupby_everything(7, 1, 0.1, ['var', 'mean', 'max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_mean_max__symb_ratio_01__nvalcols_2__nkeycols_2(self): aggs = ['var', 'mean', 'max'] test_class = groupby_everything(2, 2, 0.1, ['var', 'mean', 'max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_mean_max__symb_ratio_01__nvalcols_5__nkeycols_2(self): aggs = ['var', 'mean', 'max'] test_class = groupby_everything(5, 2, 0.1, ['var', 'mean', 'max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_mean_max__symb_ratio_01__nvalcols_1__nkeycols_3(self): aggs = ['var', 'mean', 'max'] test_class = groupby_everything(1, 3, 0.1, ['var', 'mean', 'max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_mean_max__symb_ratio_01__nvalcols_4__nkeycols_3(self): aggs = ['var', 'mean', 'max'] test_class = groupby_everything(4, 3, 0.1, ['var', 'mean', 'max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_mean_max__symb_ratio_01__nvalcols_7__nkeycols_3(self): aggs = ['var', 'mean', 'max'] test_class = groupby_everything(7, 3, 0.1, ['var', 'mean', 'max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_mean_max__symb_ratio_0300__nvalcols_2__nkeycols_1( self, ): aggs = ['var', 'mean', 'max'] test_class = groupby_everything(2, 1, 0.30, ['var', 'mean', 'max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_mean_max__symb_ratio_0300__nvalcols_5__nkeycols_1( self, ): aggs = ['var', 'mean', 'max'] test_class = groupby_everything(5, 1, 0.30, ['var', 'mean', 'max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_mean_max__symb_ratio_0300__nvalcols_1__nkeycols_2( self, ): aggs = ['var', 'mean', 'max'] test_class = groupby_everything(1, 2, 0.30, ['var', 'mean', 'max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_mean_max__symb_ratio_0300__nvalcols_4__nkeycols_2( self, ): aggs = ['var', 'mean', 'max'] test_class = groupby_everything(4, 2, 0.30, ['var', 'mean', 'max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_mean_max__symb_ratio_0300__nvalcols_7__nkeycols_2( self, ): aggs = ['var', 'mean', 'max'] test_class = groupby_everything(7, 2, 0.30, ['var', 'mean', 'max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_mean_max__symb_ratio_0300__nvalcols_2__nkeycols_3( self, ): aggs = ['var', 'mean', 'max'] test_class = groupby_everything(2, 3, 0.30, ['var', 'mean', 'max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_mean_max__symb_ratio_0300__nvalcols_5__nkeycols_3( self, ): aggs = ['var', 'mean', 'max'] test_class = groupby_everything(5, 3, 0.30, ['var', 'mean', 'max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_max_sum_mean__symb_ratio_01__nvalcols_1__nkeycols_1( self, ): aggs = ['var', 'max', 'sum', 'mean'] test_class = groupby_everything(1, 1, 0.1, ['var', 'max', 'sum', 'mean']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_max_sum_mean__symb_ratio_01__nvalcols_4__nkeycols_1( self, ): aggs = ['var', 'max', 'sum', 'mean'] test_class = groupby_everything(4, 1, 0.1, ['var', 'max', 'sum', 'mean']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_max_sum_mean__symb_ratio_01__nvalcols_7__nkeycols_1( self, ): aggs = ['var', 'max', 'sum', 'mean'] test_class = groupby_everything(7, 1, 0.1, ['var', 'max', 'sum', 'mean']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_max_sum_mean__symb_ratio_01__nvalcols_2__nkeycols_2( self, ): aggs = ['var', 'max', 'sum', 'mean'] test_class = groupby_everything(2, 2, 0.1, ['var', 'max', 'sum', 'mean']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_max_sum_mean__symb_ratio_01__nvalcols_5__nkeycols_2( self, ): aggs = ['var', 'max', 'sum', 'mean'] test_class = groupby_everything(5, 2, 0.1, ['var', 'max', 'sum', 'mean']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_max_sum_mean__symb_ratio_01__nvalcols_1__nkeycols_3( self, ): aggs = ['var', 'max', 'sum', 'mean'] test_class = groupby_everything(1, 3, 0.1, ['var', 'max', 'sum', 'mean']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_max_sum_mean__symb_ratio_01__nvalcols_4__nkeycols_3( self, ): aggs = ['var', 'max', 'sum', 'mean'] test_class = groupby_everything(4, 3, 0.1, ['var', 'max', 'sum', 'mean']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_max_sum_mean__symb_ratio_01__nvalcols_7__nkeycols_3( self, ): aggs = ['var', 'max', 'sum', 'mean'] test_class = groupby_everything(7, 3, 0.1, ['var', 'max', 'sum', 'mean']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_max_sum_mean__symb_ratio_0300__nvalcols_2__nkeycols_1( self, ): aggs = ['var', 'max', 'sum', 'mean'] test_class = groupby_everything(2, 1, 0.30, ['var', 'max', 'sum', 'mean']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_max_sum_mean__symb_ratio_0300__nvalcols_5__nkeycols_1( self, ): aggs = ['var', 'max', 'sum', 'mean'] test_class = groupby_everything(5, 1, 0.30, ['var', 'max', 'sum', 'mean']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_max_sum_mean__symb_ratio_0300__nvalcols_1__nkeycols_2( self, ): aggs = ['var', 'max', 'sum', 'mean'] test_class = groupby_everything(1, 2, 0.30, ['var', 'max', 'sum', 'mean']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_max_sum_mean__symb_ratio_0300__nvalcols_4__nkeycols_2( self, ): aggs = ['var', 'max', 'sum', 'mean'] test_class = groupby_everything(4, 2, 0.30, ['var', 'max', 'sum', 'mean']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_max_sum_mean__symb_ratio_0300__nvalcols_7__nkeycols_2( self, ): aggs = ['var', 'max', 'sum', 'mean'] test_class = groupby_everything(7, 2, 0.30, ['var', 'max', 'sum', 'mean']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_max_sum_mean__symb_ratio_0300__nvalcols_2__nkeycols_3( self, ): aggs = ['var', 'max', 'sum', 'mean'] test_class = groupby_everything(2, 3, 0.30, ['var', 'max', 'sum', 'mean']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_max_sum_mean__symb_ratio_0300__nvalcols_5__nkeycols_3( self, ): aggs = ['var', 'max', 'sum', 'mean'] test_class = groupby_everything(5, 3, 0.30, ['var', 'max', 'sum', 'mean']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_max__symb_ratio_01__nvalcols_1__nkeycols_1(self): aggs = ['max'] test_class = groupby_everything(1, 1, 0.1, ['max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_max__symb_ratio_01__nvalcols_4__nkeycols_1(self): aggs = ['max'] test_class = groupby_everything(4, 1, 0.1, ['max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_max__symb_ratio_01__nvalcols_7__nkeycols_1(self): aggs = ['max'] test_class = groupby_everything(7, 1, 0.1, ['max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_max__symb_ratio_01__nvalcols_2__nkeycols_2(self): aggs = ['max'] test_class = groupby_everything(2, 2, 0.1, ['max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_max__symb_ratio_01__nvalcols_5__nkeycols_2(self): aggs = ['max'] test_class = groupby_everything(5, 2, 0.1, ['max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_max__symb_ratio_01__nvalcols_1__nkeycols_3(self): aggs = ['max'] test_class = groupby_everything(1, 3, 0.1, ['max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_max__symb_ratio_01__nvalcols_4__nkeycols_3(self): aggs = ['max'] test_class = groupby_everything(4, 3, 0.1, ['max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_max__symb_ratio_01__nvalcols_7__nkeycols_3(self): aggs = ['max'] test_class = groupby_everything(7, 3, 0.1, ['max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_max__symb_ratio_0300__nvalcols_2__nkeycols_1(self): aggs = ['max'] test_class = groupby_everything(2, 1, 0.30, ['max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_max__symb_ratio_0300__nvalcols_5__nkeycols_1(self): aggs = ['max'] test_class = groupby_everything(5, 1, 0.30, ['max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_max__symb_ratio_0300__nvalcols_1__nkeycols_2(self): aggs = ['max'] test_class = groupby_everything(1, 2, 0.30, ['max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_max__symb_ratio_0300__nvalcols_4__nkeycols_2(self): aggs = ['max'] test_class = groupby_everything(4, 2, 0.30, ['max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_max__symb_ratio_0300__nvalcols_7__nkeycols_2(self): aggs = ['max'] test_class = groupby_everything(7, 2, 0.30, ['max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_max__symb_ratio_0300__nvalcols_2__nkeycols_3(self): aggs = ['max'] test_class = groupby_everything(2, 3, 0.30, ['max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_max__symb_ratio_0300__nvalcols_5__nkeycols_3(self): aggs = ['max'] test_class = groupby_everything(5, 3, 0.30, ['max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_min_sum__symb_ratio_01__nvalcols_1__nkeycols_1(self): aggs = ['min', 'sum'] test_class = groupby_everything(1, 1, 0.1, ['min', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_min_sum__symb_ratio_01__nvalcols_4__nkeycols_1(self): aggs = ['min', 'sum'] test_class = groupby_everything(4, 1, 0.1, ['min', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_min_sum__symb_ratio_01__nvalcols_7__nkeycols_1(self): aggs = ['min', 'sum'] test_class = groupby_everything(7, 1, 0.1, ['min', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_min_sum__symb_ratio_01__nvalcols_2__nkeycols_2(self): aggs = ['min', 'sum'] test_class = groupby_everything(2, 2, 0.1, ['min', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_min_sum__symb_ratio_01__nvalcols_5__nkeycols_2(self): aggs = ['min', 'sum'] test_class = groupby_everything(5, 2, 0.1, ['min', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_min_sum__symb_ratio_01__nvalcols_1__nkeycols_3(self): aggs = ['min', 'sum'] test_class = groupby_everything(1, 3, 0.1, ['min', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_min_sum__symb_ratio_01__nvalcols_4__nkeycols_3(self): aggs = ['min', 'sum'] test_class = groupby_everything(4, 3, 0.1, ['min', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_min_sum__symb_ratio_01__nvalcols_7__nkeycols_3(self): aggs = ['min', 'sum'] test_class = groupby_everything(7, 3, 0.1, ['min', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_min_sum__symb_ratio_0300__nvalcols_2__nkeycols_1(self): aggs = ['min', 'sum'] test_class = groupby_everything(2, 1, 0.30, ['min', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_min_sum__symb_ratio_0300__nvalcols_5__nkeycols_1(self): aggs = ['min', 'sum'] test_class = groupby_everything(5, 1, 0.30, ['min', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_min_sum__symb_ratio_0300__nvalcols_1__nkeycols_2(self): aggs = ['min', 'sum'] test_class = groupby_everything(1, 2, 0.30, ['min', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_min_sum__symb_ratio_0300__nvalcols_4__nkeycols_2(self): aggs = ['min', 'sum'] test_class = groupby_everything(4, 2, 0.30, ['min', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_min_sum__symb_ratio_0300__nvalcols_7__nkeycols_2(self): aggs = ['min', 'sum'] test_class = groupby_everything(7, 2, 0.30, ['min', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_min_sum__symb_ratio_0300__nvalcols_2__nkeycols_3(self): aggs = ['min', 'sum'] test_class = groupby_everything(2, 3, 0.30, ['min', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_min_sum__symb_ratio_0300__nvalcols_5__nkeycols_3(self): aggs = ['min', 'sum'] test_class = groupby_everything(5, 3, 0.30, ['min', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_median_sum__symb_ratio_01__nvalcols_1__nkeycols_1( self, ): aggs = ['var', 'median', 'sum'] test_class = groupby_everything(1, 1, 0.1, ['var', 'median', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_median_sum__symb_ratio_01__nvalcols_4__nkeycols_1( self, ): aggs = ['var', 'median', 'sum'] test_class = groupby_everything(4, 1, 0.1, ['var', 'median', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_median_sum__symb_ratio_01__nvalcols_7__nkeycols_1( self, ): aggs = ['var', 'median', 'sum'] test_class = groupby_everything(7, 1, 0.1, ['var', 'median', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_median_sum__symb_ratio_01__nvalcols_2__nkeycols_2( self, ): aggs = ['var', 'median', 'sum'] test_class = groupby_everything(2, 2, 0.1, ['var', 'median', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_median_sum__symb_ratio_01__nvalcols_5__nkeycols_2( self, ): aggs = ['var', 'median', 'sum'] test_class = groupby_everything(5, 2, 0.1, ['var', 'median', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_median_sum__symb_ratio_01__nvalcols_1__nkeycols_3( self, ): aggs = ['var', 'median', 'sum'] test_class = groupby_everything(1, 3, 0.1, ['var', 'median', 'sum']) pd_out = (
pd.DataFrame(test_class.data)
pandas.DataFrame
""" test indexing with ix """ from warnings import catch_warnings import numpy as np import pandas as pd from pandas.types.common import is_scalar from pandas.compat import lrange from pandas import Series, DataFrame, option_context, MultiIndex from pandas.util import testing as tm from pandas.core.common import PerformanceWarning class TestIX(tm.TestCase): def test_ix_deprecation(self): # GH 15114 df = DataFrame({'A': [1, 2, 3]}) with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): df.ix[1, 'A'] def test_ix_loc_setitem_consistency(self): # GH 5771 # loc with slice and series s = Series(0, index=[4, 5, 6]) s.loc[4:5] += 1 expected = Series([1, 1, 0], index=[4, 5, 6]) tm.assert_series_equal(s, expected) # GH 5928 # chained indexing assignment df = DataFrame({'a': [0, 1, 2]}) expected = df.copy() with catch_warnings(record=True): expected.ix[[0, 1, 2], 'a'] = -expected.ix[[0, 1, 2], 'a'] with catch_warnings(record=True): df['a'].ix[[0, 1, 2]] = -df['a'].ix[[0, 1, 2]] tm.assert_frame_equal(df, expected) df = DataFrame({'a': [0, 1, 2], 'b': [0, 1, 2]}) with catch_warnings(record=True): df['a'].ix[[0, 1, 2]] = -df['a'].ix[[0, 1, 2]].astype( 'float64') + 0.5 expected = DataFrame({'a': [0.5, -0.5, -1.5], 'b': [0, 1, 2]}) tm.assert_frame_equal(df, expected) # GH 8607 # ix setitem consistency df = DataFrame({'timestamp': [1413840976, 1413842580, 1413760580], 'delta': [1174, 904, 161], 'elapsed': [7673, 9277, 1470]}) expected = DataFrame({'timestamp': pd.to_datetime( [1413840976, 1413842580, 1413760580], unit='s'), 'delta': [1174, 904, 161], 'elapsed': [7673, 9277, 1470]}) df2 = df.copy() df2['timestamp'] = pd.to_datetime(df['timestamp'], unit='s') tm.assert_frame_equal(df2, expected) df2 = df.copy() df2.loc[:, 'timestamp'] = pd.to_datetime(df['timestamp'], unit='s')
tm.assert_frame_equal(df2, expected)
pandas.util.testing.assert_frame_equal
#!/usr/bin/env python # coding: utf-8 # In[1]: import os project_name = "reco-tut-mlh"; branch = "main"; account = "sparsh-ai" project_path = os.path.join('/content', project_name) # In[2]: if not os.path.exists(project_path): get_ipython().system(u'cp /content/drive/MyDrive/mykeys.py /content') import mykeys get_ipython().system(u'rm /content/mykeys.py') path = "/content/" + project_name; get_ipython().system(u'mkdir "{path}"') get_ipython().magic(u'cd "{path}"') import sys; sys.path.append(path) get_ipython().system(u'git config --global user.email "<EMAIL>"') get_ipython().system(u'git config --global user.name "reco-tut"') get_ipython().system(u'git init') get_ipython().system(u'git remote add origin https://"{mykeys.git_token}":[email protected]/"{account}"/"{project_name}".git') get_ipython().system(u'git pull origin "{branch}"') get_ipython().system(u'git checkout main') else: get_ipython().magic(u'cd "{project_path}"') # In[34]: get_ipython().system(u'git status') # In[35]: get_ipython().system(u'git add . && git commit -m \'commit\' && git push origin "{branch}"') # In[7]: import sys sys.path.insert(0, './code') # --- # # Collaborative Filtering Comparison # # In this notebook we compare different recommendation systems starting with the state-of-the-art LightGCN and going back to the winning algorithm for 2009's Netflix Prize competition, SVD++. # # Models include in order are LightGCN, NGCF, SVAE, SVD++, and SVD. Each model has their own individual notebooks where we go more indepth, especially LightGCN and NGCF, where we implemented them from scratch in Tensorflow. # # The last cell compares the performance of the different models using ranking metrics: # # # * Precision@k # * Recall@k # * Mean Average Precision (MAP) # * Normalized Discounted Cumulative Gain (NDCG) # # where $k=10$ # # # # Imports # In[4]: get_ipython().system(u'pip install -q surprise') # In[8]: import math import numpy as np import os import pandas as pd import random import requests import scipy.sparse as sp import surprise import tensorflow as tf from sklearn.model_selection import train_test_split from tensorflow.python.framework.ops import disable_eager_execution from tqdm import tqdm from utils import stratified_split, numpy_stratified_split import build_features import metrics from models import SVAE from models.GCN import LightGCN, NGCF # # Prepare data # In[9]: fp = os.path.join('./data/bronze', 'u.data') raw_data = pd.read_csv(fp, sep='\t', names=['userId', 'movieId', 'rating', 'timestamp']) print(f'Shape: {raw_data.shape}') raw_data.sample(10, random_state=123) # In[10]: # Load movie titles. fp = os.path.join('./data/bronze', 'u.item') movie_titles = pd.read_csv(fp, sep='|', names=['movieId', 'title'], usecols = range(2), encoding='iso-8859-1') print(f'Shape: {movie_titles.shape}') movie_titles.sample(10, random_state=123) # In[15]: train_size = 0.75 train, test = stratified_split(raw_data, 'userId', train_size) print(f'Train Shape: {train.shape}') print(f'Test Shape: {test.shape}') print(f'Do they have the same users?: {set(train.userId) == set(test.userId)}') # In[16]: combined = train.append(test) n_users = combined['userId'].nunique() print('Number of users:', n_users) n_movies = combined['movieId'].nunique() print('Number of movies:', n_movies) # In[17]: # Create DataFrame with reset index of 0-n_movies. movie_new = combined[['movieId']].drop_duplicates() movie_new['movieId_new'] = np.arange(len(movie_new)) train_reindex = pd.merge(train, movie_new, on='movieId', how='left') # Reset index to 0-n_users. train_reindex['userId_new'] = train_reindex['userId'] - 1 train_reindex = train_reindex[['userId_new', 'movieId_new', 'rating']] test_reindex = pd.merge(test, movie_new, on='movieId', how='left') # Reset index to 0-n_users. test_reindex['userId_new'] = test_reindex['userId'] - 1 test_reindex = test_reindex[['userId_new', 'movieId_new', 'rating']] # Create dictionaries so we can convert to and from indexes item2id = dict(zip(movie_new['movieId'], movie_new['movieId_new'])) id2item = dict(zip(movie_new['movieId_new'], movie_new['movieId'])) user2id = dict(zip(train['userId'], train_reindex['userId_new'])) id2user = dict(zip(train_reindex['userId_new'], train['userId'])) # In[18]: # Create user-item graph (sparse matix where users are rows and movies are columns. # 1 if a user reviewed that movie, 0 if they didn't). R = sp.dok_matrix((n_users, n_movies), dtype=np.float32) R[train_reindex['userId_new'], train_reindex['movieId_new']] = 1 # Create the adjaceny matrix with the user-item graph. adj_mat = sp.dok_matrix((n_users + n_movies, n_users + n_movies), dtype=np.float32) # List of lists. adj_mat.tolil() R = R.tolil() # Put together adjacency matrix. Movies and users are nodes/vertices. # 1 if the movie and user are connected. adj_mat[:n_users, n_users:] = R adj_mat[n_users:, :n_users] = R.T adj_mat # In[19]: # Calculate degree matrix D (for every row count the number of nonzero entries) D_values = np.array(adj_mat.sum(1)) # Square root and inverse. D_inv_values = np.power(D_values + 1e-9, -0.5).flatten() D_inv_values[np.isinf(D_inv_values)] = 0.0 # Create sparse matrix with the values of D^(-0.5) are the diagonals. D_inv_sq_root = sp.diags(D_inv_values) # Eval (D^-0.5 * A * D^-0.5). norm_adj_mat = D_inv_sq_root.dot(adj_mat).dot(D_inv_sq_root) # In[20]: # to COOrdinate format first ((row, column), data) coo = norm_adj_mat.tocoo().astype(np.float32) # create an index that will tell SparseTensor where the non-zero points are indices = np.mat([coo.row, coo.col]).transpose() # covert to sparse tensor A_tilde = tf.SparseTensor(indices, coo.data, coo.shape) A_tilde # # Train models # ## Graph Convoultional Networks (GCNs) # ### Light Graph Convolution Network (LightGCN) # In[21]: light_model = LightGCN(A_tilde, n_users = n_users, n_items = n_movies, n_layers = 3) # In[22]: optimizer = tf.keras.optimizers.Adam(learning_rate=1e-2) light_model.fit(epochs=25, batch_size=1024, optimizer=optimizer) # ### Neural Graph Collaborative Filtering (NGCF) # In[23]: ngcf_model = NGCF(A_tilde, n_users = n_users, n_items = n_movies, n_layers = 3 ) ngcf_model.fit(epochs=25, batch_size=1024, optimizer=optimizer) # ### Recommend with LightGCN and NGCF # In[24]: # Convert test user ids to the new ids users = np.array([user2id[x] for x in test['userId'].unique()]) recs = [] for model in [light_model, ngcf_model]: recommendations = model.recommend(users, k=10) recommendations = recommendations.replace({'userId': id2user, 'movieId': id2item}) recommendations = recommendations.merge(movie_titles, how='left', on='movieId' )[['userId', 'movieId', 'title', 'prediction']] # Create column with the predicted movie's rank for each user top_k = recommendations.copy() top_k['rank'] = recommendations.groupby('userId', sort=False).cumcount() + 1 # For each user, only include movies recommendations that are also in the test set recs.append(top_k) # ## Standard Variational Autoencoder (SVAE) # In[26]: # Binarize the data (only keep ratings >= 4) df_preferred = raw_data[raw_data['rating'] > 3.5] df_low_rating = raw_data[raw_data['rating'] <= 3.5] df = df_preferred.groupby('userId').filter(lambda x: len(x) >= 5) df = df.groupby('movieId').filter(lambda x: len(x) >= 1) # Obtain both usercount and itemcount after filtering usercount = df[['userId']].groupby('userId', as_index = False).size() itemcount = df[['movieId']].groupby('movieId', as_index = False).size() unique_users =sorted(df.userId.unique()) np.random.seed(123) unique_users = np.random.permutation(unique_users) HELDOUT_USERS = 200 # Create train/validation/test users n_users = len(unique_users) train_users = unique_users[:(n_users - HELDOUT_USERS * 2)] val_users = unique_users[(n_users - HELDOUT_USERS * 2) : (n_users - HELDOUT_USERS)] test_users = unique_users[(n_users - HELDOUT_USERS):] train_set = df.loc[df['userId'].isin(train_users)] val_set = df.loc[df['userId'].isin(val_users)] test_set = df.loc[df['userId'].isin(test_users)] unique_train_items = pd.unique(train_set['movieId']) val_set = val_set.loc[val_set['movieId'].isin(unique_train_items)] test_set = test_set.loc[test_set['movieId'].isin(unique_train_items)] # Instantiate the sparse matrix generation for train, validation and test sets # use list of unique items from training set for all sets am_train = build_features.AffinityMatrix(df=train_set, items_list=unique_train_items) am_val = build_features.AffinityMatrix(df=val_set, items_list=unique_train_items) am_test = build_features.AffinityMatrix(df=test_set, items_list=unique_train_items) # Obtain the sparse matrix for train, validation and test sets train_data, _, _ = am_train.gen_affinity_matrix() val_data, val_map_users, val_map_items = am_val.gen_affinity_matrix() test_data, test_map_users, test_map_items = am_test.gen_affinity_matrix() # Split validation and test data into training and testing parts val_data_tr, val_data_te = numpy_stratified_split(val_data, ratio=0.75, seed=123) test_data_tr, test_data_te = numpy_stratified_split(test_data, ratio=0.75, seed=123) # Binarize train, validation and test data train_data = np.where(train_data > 3.5, 1.0, 0.0) val_data = np.where(val_data > 3.5, 1.0, 0.0) test_data = np.where(test_data > 3.5, 1.0, 0.0) # Binarize validation data val_data_tr = np.where(val_data_tr > 3.5, 1.0, 0.0) val_data_te_ratings = val_data_te.copy() val_data_te = np.where(val_data_te > 3.5, 1.0, 0.0) # Binarize test data: training part test_data_tr = np.where(test_data_tr > 3.5, 1.0, 0.0) # Binarize test data: testing part (save non-binary version in the separate object, will be used for calculating NDCG) test_data_te_ratings = test_data_te.copy() test_data_te = np.where(test_data_te > 3.5, 1.0, 0.0) # retrieve real ratings from initial dataset test_data_te_ratings=pd.DataFrame(test_data_te_ratings) val_data_te_ratings=
pd.DataFrame(val_data_te_ratings)
pandas.DataFrame
# importing modules import numpy as np import pandas as pd ###ETL reddit data #---------------------------------------------------------------------------------------------------------------------------------------- def pq (names, subredits='allstocks', sort='relevance', date='all', comments=False): #importing reddit api from reddit_api import get_reddit reddit = get_reddit() #preparing the inputs to be search if isinstance(names, str): if names.isupper()==False: if names[0].isupper()==False: name1 = names name2 = names.capitalize() name3 = names.upper() else: name1 = names.lower() name2 = names name3 = names.upper() else: name1 = names.lower() name2 = names.lower().capitalize() name3 = names pnames = [[name1,name2,name3]] elif isinstance(names, list): pnames =[] for i, n in enumerate(names): if isinstance(n, str): n = str(n) if n.isupper()==False: if n[0].isupper()==False: name1 = n name2 = n.capitalize() name3 = n.upper() else: name1 = n.lower() name2 = n name3 = n.upper() else: name1 = n.lower() name2 = n.lower().capitalize() name3 = n pnames.append([name1,name2,name3]) else: pnames = [] elif (isinstance(names, str)==False) or (isinstance(names, list)==False): pnames = [] #scraping posts posts = [] for n in pnames: if subredits=='allstocks': stocks = reddit.subreddit('stocks') for post in stocks.search(n[0] or n[1] or n[3], sort, 'lucene', date): posts.append([post.title, post.score, post.id, post.subreddit, post.url, post.num_comments, post.selftext, post.created]) stocks = reddit.subreddit('StocksAndTrading') for post in stocks.search(n[0] or n[1] or n[3], sort, 'lucene', date): posts.append([post.title, post.score, post.id, post.subreddit, post.url, post.num_comments, post.selftext, post.created]) stocks = reddit.subreddit('stockspiking') for post in stocks.search(n[0] or n[1] or n[3], sort, 'lucene', date): posts.append([post.title, post.score, post.id, post.subreddit, post.url, post.num_comments, post.selftext, post.created]) stocks = reddit.subreddit('Stocks_Picks') for post in stocks.search(n[0] or n[1] or n[3], sort, 'lucene', date): posts.append([post.title, post.score, post.id, post.subreddit, post.url, post.num_comments, post.selftext, post.created]) stocks = reddit.subreddit('wallstreetbets') for post in stocks.search(n[0] or n[1] or n[3], sort, 'lucene', date): posts.append([post.title, post.score, post.id, post.subreddit, post.url, post.num_comments, post.selftext, post.created]) stocks = reddit.subreddit('Wallstreetbetsnew') for post in stocks.search(n[0] or n[1] or n[3], sort, 'lucene', date): posts.append([post.title, post.score, post.id, post.subreddit, post.url, post.num_comments, post.selftext, post.created]) stocks = reddit.subreddit('WallStreetbetsELITE') for post in stocks.search(n[0] or n[1] or n[3], sort, 'lucene', date): posts.append([post.title, post.score, post.id, post.subreddit, post.url, post.num_comments, post.selftext, post.created]) else: hot_posts = reddit.subreddit(subredits) for post in hot_posts.search(n[0] or n[1] or n[3], sort, 'lucene', date): posts.append([post.title, post.score, post.id, post.subreddit, post.url, post.num_comments, post.selftext, post.created]) posts = pd.DataFrame(posts,columns=['title', 'score', 'post_id', 'subreddit', 'url', 'num_comments', 'body', 'created']) posts = posts.infer_objects() posts.drop_duplicates(subset ="post_id", keep = "first", inplace = True) posts.reset_index(drop=True, inplace=True) #scraping comments if comments==True: comments = [] for index, row in posts.iterrows(): submission = reddit.submission(id=row['post_id']) submission.comments.replace_more(limit=0) for comment in submission.comments.list(): comments.append([row['post_id'], row['title'], comment.score, comment.id, comment.body, comment.created]) comments = pd.DataFrame(comments,columns=['post_id', 'post', 'score', 'comment_id', 'body', 'created']) comments = comments.infer_objects() #formating posts and optional comments dataframes posts['created'] = pd.to_datetime(posts['created'], unit='s') posts.set_index('created', inplace=True) comments['created'] = pd.to_datetime(comments['created'], unit='s') comments.set_index('created', inplace=True) return posts, comments #formating postsdataframe posts['created'] = pd.to_datetime(posts['created'], unit='s') posts.set_index('created', inplace=True) return posts ###Sentiment analysis #---------------------------------------------------------------------------------------------------------------------------------------- def sentiment (posts, comments=None): #importing sentiment model flair import flair sentiment_model = flair.models.TextClassifier.load('en-sentiment') #changing index for processing posts.reset_index (inplace=True) posts.set_index('post_id', inplace=True) #calculating sentiment on body sentiment = [] score = [] for sentence in posts['body']: if sentence.strip()=='': sentiment.append(np.nan) score.append(np.nan) else: sample = flair.data.Sentence(sentence) sentiment_model.predict(sample) sentiment.append(sample.labels[0].value) score.append(sample.labels[0].score) posts['sentiment'] = sentiment posts['sentiment_score'] = score #calculating sentiment on tittle if body is nan for index in posts[posts["sentiment"].isna()].index: if posts.loc[index,"title"].strip()!='': sample = flair.data.Sentence(posts.loc[index,"title"]) sentiment_model.predict(sample) posts.at[index,"sentiment"] = sample.labels[0].value posts.at[index,"sentiment_score"] = sample.labels[0].score #calculating sentiment on comments if isinstance(comments, pd.DataFrame): sentiment = [] score = [] for sentence in comments['body']: if sentence.strip()=='': sentiment.append(np.nan) score.append(np.nan) else: sample = flair.data.Sentence(sentence) sentiment_model.predict(sample) sentiment.append(sample.labels[0].value) score.append(sample.labels[0].score) comments['sentiment'] = sentiment comments['sentiment_score'] = score #mean sentiment of posts by comments posts["comments_sentiment"] = np.nan posts["comments_score"] = np.nan for post_id in comments["post_id"].unique(): posts.at[posts[posts.index==post_id].index,"comments_sentiment"] = comments["sentiment"].loc[comments["post_id"]==post_id].mode()[0] posts.at[posts[posts.index==post_id].index,"comments_score"] =comments["sentiment_score"].loc[comments["post_id"]==post_id].mean() #combined sentiment score posts["combined_sentiment"] = np.where (posts['comments_sentiment'].isna(), posts['sentiment'],np.where (posts['sentiment'] == posts['comments_sentiment'], 'POSITIVE', 'NEGATIVE')) posts["combined_score"] = (posts["sentiment_score"]+posts["comments_score"])/2 posts["combined_score"] = np.where(posts["combined_score"].notna()==True, posts["combined_score"], posts["sentiment_score"]) else: posts["comments_sentiment"] = np.nan posts["comments_score"] = np.nan posts["combined_sentiment"] = np.nan posts["combined_score"] = np.nan #returning to original index posts.reset_index(inplace=True) posts.set_index('created', inplace=True) #formating new columns posts['sentiment'] = posts['sentiment'].astype('category') posts['sentiment_score'] = pd.to_numeric(posts['sentiment_score']) comments['sentiment'] = comments['sentiment'].astype('category') comments['sentiment_score'] =
pd.to_numeric(comments['sentiment_score'])
pandas.to_numeric
import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.preprocessing import LabelEncoder import re from sklearn.feature_extraction import DictVectorizer from sklearn.model_selection import train_test_split import xgboost as xgb from sklearn.cluster import MiniBatchKMeans def process_am(x): aa = '' if type(x) == pd.core.series.Series: x = x.values aa = [aa + x[i] for i in range(len(x))] aa = aa[0] aa = re.sub('"'," ", aa) elif type(x) == str: aa = x aa = re.sub('"'," ", aa) aal = [] _aal = aa.split(',') for aa in _aal: aa = re.sub("{"," ", aa) aa = re.sub("}"," ", aa) aa = re.sub(","," ", aa) aa = re.sub(":"," ", aa) aa = re.sub('’n',"", aa) aa = aa.strip() aa = re.sub('\s+',"_", aa) aa = aa.lower() if len(aa)>0: aal.append(aa) return dict.fromkeys(set(aal), 1) def perc2float(x): return float(x.strip('%'))/100 ######################## train = pd.read_csv('train.csv') test = pd.read_csv('test.csv') print("train:",train.shape) print("test:",test.shape) # 1. log_price print("1. log_price") y_train = train['log_price'] train = train.drop(['log_price'],axis=1) assert train.shape[1] == test.shape[1] for i in range(train.shape[1]): assert train.columns[i] == test.columns[i] train_obs = len(train) all_data = pd.concat([train,test],axis=0) # 2. property_type, room_type, bed_type print('--------------> Feature Engineering ... ') print("2. property_type, room_type, bed_type") encoder = LabelEncoder() encoder.fit(all_data['property_type']) all_data['property_type'] = encoder.transform(all_data['property_type']) all_data['room_type'] = all_data['room_type'].map( {'Entire home/apt':5, 'Private room':3, 'Shared room':1}) all_data.bed_type = all_data.bed_type.fillna('missing') encoder = LabelEncoder() encoder.fit(all_data['bed_type']) all_data['bed_type'] = encoder.transform(all_data['bed_type']) # 3. amenities print("3. amenities") am_list = [process_am( all_data.iloc[i]['amenities']) for i in range(len(all_data))] assert len(am_list) == len(all_data) v = DictVectorizer(sparse=False) X = v.fit_transform(am_list) amenities_df = pd.DataFrame(data=X,columns=v.feature_names_) amenities_df.index = all_data.index all_data = pd.concat([all_data,amenities_df],axis=1) all_data = all_data.drop(['amenities'],axis=1) del amenities_df #4. accommodates , bathrooms #5. cancellation_policy, cleaning_fee print("5. cancellation_policy, cleaning_fee") all_data['cancellation_policy'] = all_data['cancellation_policy'].map( { 'super_strict_60':20, 'super_strict_30':30, 'strict':50, 'moderate':10, 'flexible':5, 'long_term':1, }) all_data['cleaning_fee'] = all_data['cleaning_fee'].map( { True:1, False:0 }) # 6. city print("6. city") encoder = LabelEncoder() encoder.fit(all_data['city']) all_data['city'] = encoder.transform(all_data['city']) # 7. description TODO print("7. description ... TODO") all_data['description'] = all_data['description'].fillna('') all_data = all_data.drop(['description'],axis=1) # 8. first_review , last_review , number_of_reviews , review_scores_rating print("7. 8. first_review , last_review , number_of_reviews , review_scores_rating ... TODO better") most_recent_review = pd.to_datetime(all_data.last_review).max() delta_last_review = most_recent_review - pd.to_datetime(all_data.last_review) delta_last_review = delta_last_review.fillna(-1) delta_last_review = delta_last_review.map(lambda x: x.total_seconds()/(60*60*24)) all_data['delta_most_recent_review'] = delta_last_review delta_rev = pd.to_datetime(all_data.last_review) -
pd.to_datetime(all_data.first_review)
pandas.to_datetime
import pandas as pd STRING_COLS = ["slug", "token"] INT_COLS = ["tok_id", "length", "label"] FLOAT_COLS = [ "page", "x0", "y0", "x1", "y1", "gross_amount", "match", "digitness", "log_amount", ] BOOL_COLS = ["is_dollar"] def fix_type(df, col, na_value, dtype, downcast=False): if col not in df.columns: return df[col] = df[col].fillna(na_value).astype(dtype) if downcast: try: df[col] =
pd.to_numeric(df[col], downcast=dtype)
pandas.to_numeric
from typing import Dict, List import matplotlib.pyplot as plt import matplotlib.colors as colors import numpy as np import pandas as pd import seaborn as sns from tqdm import tqdm import wandb api = wandb.Api() entity = "proteins" import matplotlib.ticker as ticker class StupidLogFormatter(ticker.LogFormatter): def __init__( self, base: float = 10.0, labelOnlyBase=False, minor_thresholds=None, linthresh=None, ): super().__init__( base=base, labelOnlyBase=labelOnlyBase, minor_thresholds=minor_thresholds, linthresh=linthresh, ) def _num_to_string(self, x, vmin, vmax): if x > 20000: s = "%1.0e" % x elif x < 1: s = "%1.0e" % x else: s = self._pprint_val(x, vmax - vmin) return s def multimsa_pair_plot(df, k1, k2, m="auc"): filtered_df_x = df[df.sweep_name == k1] filtered_df_y = df[df.sweep_name == k2] lsuffix = "_x" rsuffix = "_y" merged_df = pd.merge( filtered_df_x, filtered_df_y, on="pdb_idx", suffixes=(lsuffix, rsuffix) ) print("comparison families: ", len(merged_df)) lseqs = "num_seqs" + lsuffix rseqs = "num_seqs" + rsuffix if lseqs in merged_df.keys(): seqs_column = lseqs elif rseqs in merged_df.keys(): seqs_column = rseqs else: print("no seqs found for ") print(df_x["model"].iloc(0)) print(df_y["model"].iloc(0)) return plt.plot([0, 1], [0, 1], c="k") num_seqs = merged_df[seqs_column] plt.scatter( merged_df[m + lsuffix], merged_df[m + rsuffix], c=num_seqs, s=9, norm=colors.LogNorm(vmin=num_seqs.min(), vmax=num_seqs.max()), cmap="viridis", ) formatter = StupidLogFormatter(base=2.0) cbar = plt.colorbar(format=formatter) # cbar.locator = matplotlib.ticker.LogLocator(base=2) # cbar.update_ticks() plt.xlabel(k1) plt.ylabel(k2) cbar.set_label("\# of MSA sequences") print("spoagef") cbar.set_ticks( ticker.LogLocator(base=2.0), update_ticks=True, ) cbar.minorticks_off() def add_apc_default(df: pd.DataFrame, sweep_name: str) -> pd.DataFrame: # Adds modified sweep whose default metrics are apc'd d = df[df.sweep_name == sweep_name] d.loc[:, "sweep_name"] = sweep_name + "-apc" d.loc[:, "pr_at_L"] = d.loc[:, "pr_at_L_apc"] d.loc[:, "pr_at_L_5"] = d.loc[:, "pr_at_L_5_apc"] d.loc[:, "auc"] = d.loc[:, "auc_apc"] d["apc"] = True return df.append(d) def parse_old_model(df): d = df[ [ "sweep_name", "pdb", "pdb_idx", "len_ref", "num_seqs", "run_state", "Train_Precision_@_l/1", "Train_Precision_apc_@_l/1", "Train_Precision_@_l/5", "Train_Precision_apc_@_l/5", "Train_Auc", "Train_Auc_apc", ] ] d = d.rename( columns={ "Train_Precision_@_l/1": "pr_at_L", "Train_Precision_apc_@_l/1": "pr_at_L_apc", "Train_Precision_@_l/5": "pr_at_L_5", "Train_Precision_apc_@_l/5": "pr_at_L_5_apc", "Train_Auc": "auc", "Train_Auc_apc": "auc_apc", "len_ref": "msa_length", } ) d["log_num_seqs"] = np.log2(d.num_seqs) d["model"] = d["sweep_name"].map(lambda x: x.split("-")[0]) if "use_bias" in df.columns: d["use_bias"] = df.use_bias else: d["use_bias"] = False return d def load_attention_msa_df(sweep_id, sweep_name, model_name, pdb_map): # Loads sweep df for runs from old repo project = "gremlin-contacts" runs = api.runs(f"{entity}/{project}", {"sweep": f"{sweep_id}"}, per_page=1000) print(f"{sweep_id} has {len(runs)} runs") id_list = [] summary_list = [] config_list = [] name_list = [] model_list = [] state_list = [] tags_list = [] num_contacts_list = [] for run in tqdm(runs): tags_list.append(run.tags) state_list.append(run.state) id_list.append(run.id) # run.summary are the output key/values like accuracy. We call ._json_dict to omit large files summary_list.append(run.summary._json_dict) # run.config is the input metrics. We remove special values that start with _. config_list.append( {str(k): v for k, v in run.config.items() if not k.startswith("_")} ) # run.name is the name of the run. name_list.append(run.name) model_list.append(model_name) # currently unused, very slow to download true contact files # num_contacts_list.append(get_num_true_contacts(run)) # num_contacts_df = pd.DataFrame({'num_true_contacts': num_contacts_list}) summary_df = pd.DataFrame.from_records(summary_list) config_df = pd.DataFrame.from_dict(config_list) pdb_id_df = pd.DataFrame({"pdb_idx": list(config_df.pdb.map(pdb_map))}) state_df = pd.DataFrame({"run_state": state_list}) name_df =
pd.DataFrame({"name": name_list})
pandas.DataFrame
#!/usr/bin/python # -*- coding: utf-8 -*- import os import click import logging from dotenv import find_dotenv, load_dotenv import pandas as pd import numpy as np import re from sklearn.externals import joblib # This program reads in both train and test data set # and creates a dataset dictionary # of cleaned and sanitized data. # result format: # { # 'train': <pandas.DataFrame> # 'test': <pandas.DataFrame> # } # extracts title from a name, i.e. # extract_title('Caldwell, Mr. <NAME>') = 'Mr.' def extract_title(name): m = re.search('[^,]+, ([^\.]+)\..*', name) return m.group(1) @click.command() @click.argument('train_filepath', type=click.Path(exists=True)) @click.argument('test_filepath', type=click.Path(exists=True)) @click.argument('output_filepath', type=click.Path()) def main(train_filepath, test_filepath, output_filepath): logger = logging.getLogger(__name__) logger.info('making final data set from raw data') df_train =
pd.read_csv(train_filepath, dtype={'Age': np.float64})
pandas.read_csv
""" MIT License Copyright (c) 2017 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ """ # Evaluate price action for past hour, day, week, and month General Rules: - Never buy the top of a range...unless extreme volume and a quick trade - Never buy a falling knife that has no support - Never buy a product that is more than 10% above 14 period SMA - Sell top of range if price has been ranging for less than 4 hours or more than 1 day Questions: - Is price going up, down, or ranging? - up Consider selling open positions - down Consider adding new positions - ranging Consider a series of buy-low-sell-high trades until it doesnt work anymore. - Is volume weak, medeocre, or strong? - weak - on ranging price take ranging strategy - medeocre - on up price consider taking profits, ranging/down price hold position - strong - on up price hold until there's a clear sign to sell or we have a very healthy profit. - on down price consider looking for past support and bottom-fishing - on ranging price heavily consider adding a long - Is price a healthy level near 14 and 8 period SMA? - far above Probably a little to risky to buy, good idea to close open positions only exception is if price has CONSISTENTLY been above these SMAs - right around Probably a good idea to hold - not much you can get from this signal - far below Probably a good idea to bottom fish, especially on a volume spike and on past support. - What is current price velocity? - Fast - Consider quicker trading timeframes too much in one direction cant be good. - Medeocre - Consider mid-longer term timeframes with tight stops - Low - Consider longer term timeframes, not much to do here. - Is 14 period RSI Overbought, Oversold, or in the Middle zone? Overbought: Consider taking profit unless embedded overbought Oversold: Consider bottom-fishing play Middle Zone: Consider holding and maybe adjusting stop to right below latest support. How to determine an entry, target, and exit price: 1) Consider the above questions, do most of them say buy now? - If no wait until they do 2) A healthy target is maybe 30% of the average range for the trading time period. 3) A stop loss should be set just under the next buy wall near the support price - This may need to be monitored to follow the buy wall since those seem to move constantly. 4) A trading strategy should try 10 times and lose 2% each time with fewer than 5 wins before requesting help and shutting down. Preferably should be back-tested against past data to determine profit/loss before being used in production. """ import os from stockstats import StockDataFrame import pandas as pd from stocklook.crypto.gdax import GdaxChartData, Gdax from stocklook.utils.timetools import now, now_minus, now_plus, timestamp_to_path from stocklook.config import config def get_velocity(df, price='price', date='date'): df.sort_values(date, ascending=True, inplace=True) class TradeSet: BUY = 'buy' SELL = 'sell' TYPES = [BUY, SELL] def __init__(self, margin=False, funds=10000): self.data = list() self._df = None self._pos_size = 0 self.margin = margin self.funds = funds self.start_funds = funds self._trades = 0 @property def df(self): if self._df is None: self.to_frame() return self._df @property def trades(self): return self._trades @property def position_size(self): return self._pos_size def add_trade(self, time, size, price, type): assert type in self.TYPES if type == self.SELL: if size < 0: size = abs(size) if self._pos_size < size and not self.margin: if self._pos_size <= 0: # Can't sell coin you dont # have without margin. return False size = self._pos_size self._pos_size -= abs(size) elif type == self.BUY: if size > 0: size = -size total = size * price if self.funds + total < 0: if self.funds <= 0: # Can't buy coin without funds. return False size = self.funds / price size = -size self._pos_size += abs(size) self.funds += size * price assert price > 0 contents = [time, size, price, type] self.data.append(contents) #print("Trade: {} - position: {} - funds: {}".format(contents, self._pos_size, self.funds)) self._trades += 1 return True def buy(self, time, size, price): return self.add_trade(time, size, price, self.BUY) def sell(self, time, size, price): return self.add_trade(time, size, price, self.SELL) def clear(self): self.data.clear() def close_positions(self, time, price): df = self.to_frame() size_sum = df['size'].sum() if size_sum < 0: self.add_trade(time, size_sum, price, self.SELL) elif size_sum > 0: self.add_trade(time, size_sum, price, self.BUY) def get_profit(self): return self.funds - self.start_funds def get_pnl(self): return round(((self.funds / self.start_funds) * 100) - 100, 2) def get_total_bought(self): df = self.df msk = df['type'].isin([self.BUY]) t = df.loc[msk, 'size'].sum() return abs(t) def get_total_sold(self): df = self.df msk = df['type'].isin([self.SELL]) t = df.loc[msk, 'size'].sum() return abs(t) def to_frame(self): data = self.data columns = ['time', 'size', 'price', 'type'] idx = range(len(data)) df = pd.DataFrame(data=data, columns=columns, index=idx) df.loc[:, 'total'] = df['size'] * df['price'] self._df = df return df class DecisionMaker: """ A decision maker analyzes a row of data and decides whether or not to buy or sell. """ def __init__(self, stock_data_frame, trade_set, size, **kwargs): self.sdf = stock_data_frame self.tset = trade_set self.kwargs = kwargs self.size = size self.trades = list() def calculate(self): raise NotImplementedError("Child classes should update " "their sdf (StockDataFrame) here.") def execute(self, row): """ Should buy or sell a position based on data found in the row. :param row: :return: """ raise NotImplementedError("Child classes should buy or sell here.") def inputs(self): raise NotImplementedError("Child classes should return " "key class properties here.") def register_trade(self, row, type): row['type'] = type self.trades.append(row) def __repr__(self): return "DecisionMaker(size='{}', trades='{}')".format(self.size, len(self.trades)) class MACDRSIMaker(DecisionMaker): def __init__(self, *args, buy_ratio=1.7, sell_ratio=0.95): DecisionMaker.__init__(self, *args) self.buy_ratio = buy_ratio self.sell_ratio = sell_ratio self.macd_buy_point = None self.macd_sell_point = None self.rsi_buy_point = None self.rsi_sell_point = None if self.sdf is not None: self.calculate() def inputs(self): return dict(buy_ratio=self.buy_ratio, sell_ratio=self.sell_ratio, macd_buy_point=self.macd_buy_point, macd_sell_point=self.macd_sell_point, rsi_buy_point=self.rsi_buy_point, rsi_sell_point=self.rsi_sell_point) def calculate(self): self.sdf.get('macd') self.sdf.get('rsi_6') df = self.sdf.dropna(subset=['rsi_6', 'macd'], how='any') df = df.loc[df['rsi_6'] > 0.1, :] df = df.loc[df['macd'] > 0.1, :] macd, rsi = df['macd'], df['rsi_6'] min_macd, max_macd = macd.min(), macd.max() min_rsi, max_rsi = rsi.min(), rsi.max() self.macd_buy_point = min_macd * self.buy_ratio self.macd_sell_point = max_macd * self.sell_ratio self.rsi_buy_point = min_rsi * self.buy_ratio self.rsi_sell_point = max_rsi * self.sell_ratio def execute(self, row): tset, rec = self.tset, row macd_buy = rec['macd'] <= self.macd_buy_point rsi_buy = rec['rsi_6'] <= self.rsi_buy_point macd_sell = rec['macd'] >= self.macd_sell_point rsi_sell = rec['rsi_6'] >= self.rsi_sell_point time = rec['time'] price = rec['close'] size = self.size if macd_buy or rsi_buy: buyable = tset.funds / price if buyable > size * 3: s = buyable / 3 else: s = size s = round(s, 0) t = tset.buy(time, s, price) if t: self.register_trade(row, tset.BUY) elif macd_sell or rsi_sell: if tset.position_size > size * 3: s = round(tset.position_size * .5, 0) else: s = size t = tset.sell(time, s, price) if t: self.register_trade(row, tset.SELL) def __repr__(self): return ','.join("{}='{}'".format(k, v) for k, v in self.inputs().items()) class Strategy: def __init__(self, stock_data_frame=None, margin=False, funds=1500, position_size=5): self.tset = TradeSet(margin=margin, funds=funds) self.stock_data_frame = stock_data_frame self.position_size = position_size self.makers = list() def add_decision_maker(self, cls, **kwargs): trade_set = TradeSet(margin=self.tset.margin, funds=self.tset.funds) maker = cls(self.stock_data_frame, trade_set, self.position_size, **kwargs) self.makers.append(maker) def execute(self): """ You can override this however you want with subclassed :param stock_data_frame: :return: """ sdf = self.stock_data_frame sdf.sort_values(['time'], ascending=[True], inplace=True) [[maker.execute(rec) for maker in self.makers] for _, rec in sdf.iterrows()] rec = sdf.iloc[-1] [maker.tset.close_positions(rec['time'], rec['close']) for maker in self.makers] def set_stock_df(self, df): self.stock_data_frame = df for maker in self.makers: maker.sdf = df try: maker.calculate() except: pass def run_macd_rsi_decisions(data_dir, product, start, end, granularity, overwrite=True, strat=None): # File paths to be saved at the end. out_name = '{}-BTEST-{}-{}.csv'.format(product, granularity, timestamp_to_path(end)) tout_name = out_name.split('.')[0] + '-TRADES.csv' pout_name = out_name.split('.')[0] + '-PNL.csv' out_path = os.path.join(data_dir, out_name) # Chart Data tout_path = os.path.join(data_dir, tout_name) # Trade Data pout_path = os.path.join(data_dir, pout_name) # PNL Data if os.path.exists(tout_path) and not overwrite: tdf = pd.read_csv(tout_path, parse_dates=['time']) return tout_path, tdf if os.path.exists(out_path) and not overwrite: df = pd.read_csv(out_path, parse_dates=['time']) else: data = GdaxChartData(Gdax(), product, start, end, granularity=granularity) try: df = data.df except ValueError: return None,
pd.DataFrame()
pandas.DataFrame
""" This script is for analysing the outputs from the implementation of DeepAR in GluonTS """ import os, time from pathlib import Path import streamlit as st import pandas as pd import numpy as np from gluonts.model.predictor import Predictor from gluonts.dataset.common import ListDataset from gluonts.transform import FieldName from gluonts.evaluation.backtest import make_evaluation_predictions import autodraft.visualization as viz import autodraft.gluonts as glu import autodraft.api as nhl from bokeh.sampledata.perceptions import probly # @st.cache def load_model(file_path): model = Predictor.deserialize(Path(file_path)) return model @st.cache def get_data(path='../../data/input/full_dataset_4_seasons.csv'): data = pd.read_csv(path) return data # @st.cache # def load_predictions(path='/home/ubuntu/AutoDraft/data/deepar_truncated_results_ne100_lre-4_bs64.csv'): # data = pd.read_csv(path, index_col=2) # return data @st.cache def load_predictions(path='../../data/output/deepar_truncated_results_unit_s_ne300_lr1e-3_bs64_nl3_cl3.csv'): data = pd.read_csv(path, index_col=2) model_name = path.split('/')[-1].split('.')[0] return data, model_name @st.cache def load_joe(): joe = pd.read_csv('../../data/input/joe_schmo_4_seasons.csv') return joe @st.cache def get_roster(path='../../data/input/full_roster_4_seasons.csv'): data = pd.read_csv(path) return data @st.cache def process_data(data, roster): train, test, targets, targets_meta, stat_cat_features, dyn_cat_features, dyn_real_features, dyn_real_features_meta = glu.prep_df(data, roster, column_list=['name', 'date', 'gameNumber', 'cumStatpoints'], streamlit=True, scale=True) return train, test, targets, targets_meta, stat_cat_features, dyn_cat_features, dyn_real_features, dyn_real_features_meta # @st.cache def run_prediction(model, data): predictions = model.predict(dataset=data) return list(predictions) def process_prediction(prediction): mean = prediction.mean_ts mean = mean.reset_index() mean = mean.rename(columns={'index': 'predictions'}) mean = mean.reset_index() mean = mean.rename(columns={'index': 'gameNumber'}) mean = mean.drop(columns=[0]) mean.loc[:, 'gameNumber'] = mean.loc[:, 'gameNumber'] + 1 conf = pd.DataFrame() conf.loc[:, 'low'] = prediction.quantile('0.05') conf.loc[:, 'high'] = prediction.quantile('0.95') full_df = pd.concat([mean, conf], axis=1) return full_df def generate_prediction_df(predictions, train_data, test_data, drop=True, target='cumStatpoints', scaled=None, scaling_loc=None): if scaled is not None: scaling_meta = pd.read_pickle(scaling_loc) st.write(scaling_meta) names = test_data.loc[:, 'name'].unique() full_predictions = pd.DataFrame() for prediction, name in zip(predictions, names): player_df = pd.DataFrame() player_test_data = test_data.loc[test_data.loc[:, 'name'] == name].loc[:, ['name', 'date', target]] player_train_data = train_data.loc[train_data.loc[:, 'name'] == name].loc[:, ['name', 'date', target]] player_test_data.loc[:, 'date'] =
pd.to_datetime(player_test_data.loc[:, 'date'])
pandas.to_datetime
import numpy as np import pytest from pandas._libs import join as _join from pandas import Categorical, DataFrame, Index, merge import pandas._testing as tm class TestIndexer: @pytest.mark.parametrize( "dtype", ["int32", "int64", "float32", "float64", "object"] ) def test_outer_join_indexer(self, dtype): indexer = _join.outer_join_indexer left = np.arange(3, dtype=dtype) right = np.arange(2, 5, dtype=dtype) empty = np.array([], dtype=dtype) result, lindexer, rindexer = indexer(left, right) assert isinstance(result, np.ndarray) assert isinstance(lindexer, np.ndarray) assert isinstance(rindexer, np.ndarray) tm.assert_numpy_array_equal(result, np.arange(5, dtype=dtype)) exp = np.array([0, 1, 2, -1, -1], dtype=np.int64) tm.assert_numpy_array_equal(lindexer, exp) exp = np.array([-1, -1, 0, 1, 2], dtype=np.int64) tm.assert_numpy_array_equal(rindexer, exp) result, lindexer, rindexer = indexer(empty, right) tm.assert_numpy_array_equal(result, right) exp = np.array([-1, -1, -1], dtype=np.int64) tm.assert_numpy_array_equal(lindexer, exp) exp = np.array([0, 1, 2], dtype=np.int64) tm.assert_numpy_array_equal(rindexer, exp) result, lindexer, rindexer = indexer(left, empty) tm.assert_numpy_array_equal(result, left) exp = np.array([0, 1, 2], dtype=np.int64) tm.assert_numpy_array_equal(lindexer, exp) exp = np.array([-1, -1, -1], dtype=np.int64) tm.assert_numpy_array_equal(rindexer, exp) def test_left_join_indexer_unique(): a = np.array([1, 2, 3, 4, 5], dtype=np.int64) b = np.array([2, 2, 3, 4, 4], dtype=np.int64) result = _join.left_join_indexer_unique(b, a) expected = np.array([1, 1, 2, 3, 3], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) def test_left_outer_join_bug(): left = np.array( [ 0, 1, 0, 1, 1, 2, 3, 1, 0, 2, 1, 2, 0, 1, 1, 2, 3, 2, 3, 2, 1, 1, 3, 0, 3, 2, 3, 0, 0, 2, 3, 2, 0, 3, 1, 3, 0, 1, 3, 0, 0, 1, 0, 3, 1, 0, 1, 0, 1, 1, 0, 2, 2, 2, 2, 2, 0, 3, 1, 2, 0, 0, 3, 1, 3, 2, 2, 0, 1, 3, 0, 2, 3, 2, 3, 3, 2, 3, 3, 1, 3, 2, 0, 0, 3, 1, 1, 1, 0, 2, 3, 3, 1, 2, 0, 3, 1, 2, 0, 2, ], dtype=np.int64, ) right = np.array([3, 1], dtype=np.int64) max_groups = 4 lidx, ridx = _join.left_outer_join(left, right, max_groups, sort=False) exp_lidx = np.arange(len(left), dtype=np.int64) exp_ridx = -np.ones(len(left), dtype=np.int64) exp_ridx[left == 1] = 1 exp_ridx[left == 3] = 0 tm.assert_numpy_array_equal(lidx, exp_lidx) tm.assert_numpy_array_equal(ridx, exp_ridx) def test_inner_join_indexer(): a = np.array([1, 2, 3, 4, 5], dtype=np.int64) b = np.array([0, 3, 5, 7, 9], dtype=np.int64) index, ares, bres = _join.inner_join_indexer(a, b) index_exp = np.array([3, 5], dtype=np.int64) tm.assert_almost_equal(index, index_exp) aexp = np.array([2, 4], dtype=np.int64) bexp = np.array([1, 2], dtype=np.int64) tm.assert_almost_equal(ares, aexp) tm.assert_almost_equal(bres, bexp) a = np.array([5], dtype=np.int64) b = np.array([5], dtype=np.int64) index, ares, bres = _join.inner_join_indexer(a, b) tm.assert_numpy_array_equal(index, np.array([5], dtype=np.int64)) tm.assert_numpy_array_equal(ares, np.array([0], dtype=np.int64)) tm.assert_numpy_array_equal(bres, np.array([0], dtype=np.int64)) def test_outer_join_indexer(): a = np.array([1, 2, 3, 4, 5], dtype=np.int64) b = np.array([0, 3, 5, 7, 9], dtype=np.int64) index, ares, bres = _join.outer_join_indexer(a, b) index_exp = np.array([0, 1, 2, 3, 4, 5, 7, 9], dtype=np.int64) tm.assert_almost_equal(index, index_exp) aexp = np.array([-1, 0, 1, 2, 3, 4, -1, -1], dtype=np.int64) bexp = np.array([0, -1, -1, 1, -1, 2, 3, 4], dtype=np.int64) tm.assert_almost_equal(ares, aexp) tm.assert_almost_equal(bres, bexp) a = np.array([5], dtype=np.int64) b = np.array([5], dtype=np.int64) index, ares, bres = _join.outer_join_indexer(a, b) tm.assert_numpy_array_equal(index, np.array([5], dtype=np.int64)) tm.assert_numpy_array_equal(ares, np.array([0], dtype=np.int64)) tm.assert_numpy_array_equal(bres, np.array([0], dtype=np.int64)) def test_left_join_indexer(): a = np.array([1, 2, 3, 4, 5], dtype=np.int64) b = np.array([0, 3, 5, 7, 9], dtype=np.int64) index, ares, bres = _join.left_join_indexer(a, b) tm.assert_almost_equal(index, a) aexp = np.array([0, 1, 2, 3, 4], dtype=np.int64) bexp = np.array([-1, -1, 1, -1, 2], dtype=np.int64) tm.assert_almost_equal(ares, aexp) tm.assert_almost_equal(bres, bexp) a = np.array([5], dtype=np.int64) b = np.array([5], dtype=np.int64) index, ares, bres = _join.left_join_indexer(a, b) tm.assert_numpy_array_equal(index, np.array([5], dtype=np.int64)) tm.assert_numpy_array_equal(ares, np.array([0], dtype=np.int64)) tm.assert_numpy_array_equal(bres, np.array([0], dtype=np.int64)) def test_left_join_indexer2(): idx = Index([1, 1, 2, 5]) idx2 = Index([1, 2, 5, 7, 9]) res, lidx, ridx =
_join.left_join_indexer(idx2.values, idx.values)
pandas._libs.join.left_join_indexer
# -*- coding: utf-8 -*- """ Covid-19 em São Paulo Gera gráficos para acompanhamento da pandemia de Covid-19 na cidade e no estado de São Paulo. @author: https://github.com/DaviSRodrigues """ from datetime import datetime, timedelta from io import StringIO import locale import math from tableauscraper import TableauScraper import traceback import unicodedata import pandas as pd import plotly.graph_objects as go import plotly.io as pio from plotly.subplots import make_subplots import requests def main(): locale.setlocale(locale.LC_ALL, 'pt_BR.UTF-8') print('Carregando dados...') hospitais_campanha, leitos_municipais, leitos_municipais_privados, leitos_municipais_total = carrega_dados_cidade() dados_munic, dados_estado, isolamento, leitos_estaduais, internacoes, doencas, dados_raciais, dados_vacinacao, doses_aplicadas, doses_recebidas, dados_imunizantes, atualizacao_imunizantes = carrega_dados_estado() print('\nLimpando e enriquecendo dos dados...') dados_cidade, dados_munic, hospitais_campanha, leitos_municipais, leitos_municipais_privados, leitos_municipais_total, dados_estado, isolamento, leitos_estaduais, internacoes, doencas, dados_raciais, dados_vacinacao, dados_imunizantes = pre_processamento(hospitais_campanha, leitos_municipais, leitos_municipais_privados, leitos_municipais_total, dados_estado, isolamento, leitos_estaduais, internacoes, doencas, dados_raciais, dados_vacinacao, doses_aplicadas, doses_recebidas, dados_munic, dados_imunizantes, atualizacao_imunizantes) evolucao_cidade, evolucao_estado = gera_dados_evolucao_pandemia(dados_munic, dados_estado, isolamento, dados_vacinacao, internacoes) evolucao_cidade, evolucao_estado = gera_dados_semana(evolucao_cidade, evolucao_estado, leitos_estaduais, isolamento, internacoes) print('\nGerando gráficos e tabelas...') gera_graficos(dados_munic, dados_cidade, hospitais_campanha, leitos_municipais, leitos_municipais_privados, leitos_municipais_total, dados_estado, isolamento, leitos_estaduais, evolucao_cidade, evolucao_estado, internacoes, doencas, dados_raciais, dados_vacinacao, dados_imunizantes) print('\nAtualizando serviceWorker.js...') atualiza_service_worker(dados_estado) print('\nFim') def carrega_dados_cidade(): hospitais_campanha = pd.read_csv('dados/hospitais_campanha_sp.csv', sep=',') leitos_municipais = pd.read_csv('dados/leitos_municipais.csv', sep=',') leitos_municipais_privados = pd.read_csv('dados/leitos_municipais_privados.csv', sep=',') leitos_municipais_total = pd.read_csv('dados/leitos_municipais_total.csv', sep=',') return hospitais_campanha, leitos_municipais, leitos_municipais_privados, leitos_municipais_total def carrega_dados_estado(): hoje = data_processamento ano = hoje.strftime('%Y') mes = hoje.strftime('%m') data = hoje.strftime('%Y%m%d') try: print('\tAtualizando dados dos municípios...') URL = 'https://raw.githubusercontent.com/seade-R/dados-covid-sp/master/data/dados_covid_sp.csv' dados_munic = pd.read_csv(URL, sep=';', decimal=',') opcoes_zip = dict(method='zip', archive_name='dados_munic.csv') dados_munic.to_csv('dados/dados_munic.zip', sep=';', decimal=',', index=False, compression=opcoes_zip) except Exception as e: traceback.print_exception(type(e), e, e.__traceback__) print('\tErro ao buscar dados_covid_sp.csv do GitHub: lendo arquivo local.\n') dados_munic = pd.read_csv('dados/dados_munic.zip', sep=';', decimal=',') try: print('\tAtualizando dados estaduais...') URL = 'https://raw.githubusercontent.com/seade-R/dados-covid-sp/master/data/sp.csv' dados_estado = pd.read_csv(URL, sep=';') dados_estado.to_csv('dados/dados_estado_sp.csv', sep=';') except Exception as e: traceback.print_exception(type(e), e, e.__traceback__) print('\tErro ao buscar dados_estado_sp.csv do GitHub: lendo arquivo local.\n') dados_estado = pd.read_csv('dados/dados_estado_sp.csv', sep=';', decimal=',', encoding='latin-1', index_col=0) try: print('\tCarregando dados de isolamento social...') isolamento = pd.read_csv('dados/isolamento_social.csv', sep=',') except Exception as e: print(f'\tErro ao buscar isolamento_social.csv\n\t{e}') try: print('\tAtualizando dados de internações...') URL = ('https://raw.githubusercontent.com/seade-R/dados-covid-sp/master/data/plano_sp_leitos_internacoes.csv') internacoes = pd.read_csv(URL, sep=';', decimal=',', thousands='.') internacoes.to_csv('dados/internacoes.csv', sep=';', decimal=',') except Exception as e: try: print(f'\tErro ao buscar internacoes.csv do GitHub: lendo arquivo da Seade.\n\t{e}') URL = (f'http://www.seade.gov.br/wp-content/uploads/{ano}/{mes}/Leitos-e-Internacoes.csv') internacoes = pd.read_csv(URL, sep=';', encoding='latin-1', decimal=',', thousands='.', engine='python', skipfooter=2) except Exception as e: print(f'\tErro ao buscar internacoes.csv da Seade: lendo arquivo local.\n\t{e}') internacoes = pd.read_csv('dados/internacoes.csv', sep=';', decimal=',', thousands='.', index_col=0) try: print('\tAtualizando dados de doenças preexistentes...') URL = ('https://raw.githubusercontent.com/seade-R/dados-covid-sp/master/data/casos_obitos_doencas_preexistentes.csv.zip') doencas = pd.read_csv(URL, sep=';') if len(doencas.asma.unique()) == 3: opcoes_zip = dict(method='zip', archive_name='doencas_preexistentes.csv') doencas.to_csv('dados/doencas_preexistentes.zip', sep=';', compression=opcoes_zip) else: global processa_doencas processa_doencas = False raise Exception('O arquivo de doeças preexistentes não possui registros SIM/NÃO/IGNORADO para todas as doenças.') except Exception as e: try: print(f'\tErro ao buscar doencas_preexistentes.csv do GitHub: lendo arquivo local.\n\t{e}') doencas = pd.read_csv('dados/doencas_preexistentes.zip', sep=';', index_col=0) except Exception as e: print(f'\tErro ao buscar doencas_preexistentes.csv localmente: lendo arquivo da Seade.\n\t{e}') URL = f'http://www.seade.gov.br/wp-content/uploads/{ano}/{mes}/casos_obitos_doencas_preexistentes.csv' doencas = pd.read_csv(URL, sep=';', encoding='latin-1') try: print('\tAtualizando dados de casos/óbitos por raça e cor...') URL = ('https://raw.githubusercontent.com/seade-R/dados-covid-sp/master/data/casos_obitos_raca_cor.csv.zip') dados_raciais = pd.read_csv(URL, sep=';') opcoes_zip = dict(method='zip', archive_name='dados_raciais.csv') dados_raciais.to_csv('dados/dados_raciais.zip', sep=';', compression=opcoes_zip) except Exception as e: print(f'\tErro ao buscar dados_raciais.csv do GitHub: lendo arquivo local.\n\t{e}') dados_raciais = pd.read_csv('dados/dados_raciais.zip', sep=';', index_col=0) print('\tAtualizando dados da campanha de vacinação...') headers = {'User-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) ' 'AppleWebKit/537.36 (KHTML, like Gecko) ' 'Chrome/88.0.4324.182 ' 'Safari/537.36 ' 'Edg/88.0.705.74'} try: print('\t\tDoses aplicadas por município...') URL = f'https://www.saopaulo.sp.gov.br/wp-content/uploads/{ano}/{mes}/{data}_vacinometro.csv' req = requests.get(URL, headers=headers, stream=True) req.encoding = req.apparent_encoding doses_aplicadas = pd.read_csv(StringIO(req.text), sep=';', encoding='utf-8-sig') except Exception as e: print(f'\t\tErro ao buscar {data}_vacinometro.csv da Seade: {e}') doses_aplicadas = None try: print('\t\tDoses recebidas por cada município...') URL = f'https://www.saopaulo.sp.gov.br/wp-content/uploads/{ano}/{mes}/{data}_painel_distribuicao_doses.csv' req = requests.get(URL, headers=headers, stream=True) req.encoding = req.apparent_encoding doses_recebidas = pd.read_csv(StringIO(req.text), sep=';', encoding='utf-8-sig') except Exception as e: print(f'\t\tErro ao buscar {data}_painel_distribuicao_doses.csv da Seade: {e}') doses_recebidas = None try: print('\t\tAtualizando doses aplicadas por vacina...') url = 'https://www2.simi.sp.gov.br/views/PaineldeEstatsticasGerais_14_09_2021_16316423974680/PaineldeEstatsticasGerais' scraper = TableauScraper() scraper.loads(url) sheet = scraper.getWorkbook().getWorksheet('donuts imunibiológico') atualizacao_imunizantes = sheet.data.copy() atualizacao_imunizantes['data'] = data_processamento atualizacao_imunizantes = atualizacao_imunizantes[['data', 'Imunibiológico_Ajustado-alias', 'CNT(Imunibiológico_Ajustado)-alias']] atualizacao_imunizantes.columns = ['data', 'vacina', 'aplicadas'] atualizacao_imunizantes.sort_values(by='vacina', inplace=True) except Exception as e: print(f'\t\tErro ao buscar dados de vacinas do Tableau: {e}') traceback.print_exception(type(e), e, e.__traceback__) atualizacao_imunizantes = None leitos_estaduais = pd.read_csv('dados/leitos_estaduais.csv', index_col=0) dados_vacinacao = pd.read_csv('dados/dados_vacinacao.zip') dados_imunizantes = pd.read_csv('dados/dados_imunizantes.csv') return dados_munic, dados_estado, isolamento, leitos_estaduais, internacoes, doencas, dados_raciais, dados_vacinacao, doses_aplicadas, doses_recebidas, dados_imunizantes, atualizacao_imunizantes def pre_processamento(hospitais_campanha, leitos_municipais, leitos_municipais_privados, leitos_municipais_total, dados_estado, isolamento, leitos_estaduais, internacoes, doencas, dados_raciais, dados_vacinacao, doses_aplicadas, doses_recebidas, dados_munic, dados_imunizantes, atualizacao_imunizantes): print('\tDados municipais...') dados_cidade, hospitais_campanha, leitos_municipais, leitos_municipais_privados, leitos_municipais_total = pre_processamento_cidade(dados_munic, hospitais_campanha, leitos_municipais, leitos_municipais_privados, leitos_municipais_total) print('\tDados estaduais...') dados_estado, isolamento, leitos_estaduais, internacoes, doencas, dados_raciais, dados_vacinacao, dados_munic, dados_imunizantes = pre_processamento_estado(dados_estado, isolamento, leitos_estaduais, internacoes, doencas, dados_raciais, dados_vacinacao, doses_aplicadas, doses_recebidas, dados_munic, dados_imunizantes, atualizacao_imunizantes) return dados_cidade, dados_munic, hospitais_campanha, leitos_municipais, leitos_municipais_privados, leitos_municipais_total, dados_estado, isolamento, leitos_estaduais, internacoes, doencas, dados_raciais, dados_vacinacao, dados_imunizantes def pre_processamento_cidade(dados_munic, hospitais_campanha, leitos_municipais, leitos_municipais_privados, leitos_municipais_total): dados_cidade = dados_munic.loc[dados_munic.nome_munic == 'São Paulo', ['datahora', 'casos', 'casos_novos', 'obitos', 'obitos_novos', 'letalidade']] dados_cidade.columns = ['data', 'confirmados', 'casos_dia', 'óbitos', 'óbitos_dia', 'letalidade'] dados_cidade['letalidade'] = dados_cidade.letalidade * 100 dados_cidade['data'] = pd.to_datetime(dados_cidade.data) dados_cidade['dia'] = dados_cidade.data.apply(lambda d: d.strftime('%d %b %y')) hospitais_campanha['data'] = pd.to_datetime(hospitais_campanha.data, format='%d/%m/%Y') hospitais_campanha['dia'] = hospitais_campanha.data.apply(lambda d: d.strftime('%d %b %y')) leitos_municipais['data'] = pd.to_datetime(leitos_municipais.data, format='%d/%m/%Y') leitos_municipais['dia'] = leitos_municipais.data.apply(lambda d: d.strftime('%d %b %y')) leitos_municipais_privados['data'] =
pd.to_datetime(leitos_municipais_privados.data, format='%d/%m/%Y')
pandas.to_datetime
# -*- coding: utf-8 -*- import numpy as np import pytest from pandas._libs.tslib import iNaT import pandas.compat as compat from pandas.core.dtypes.dtypes import CategoricalDtype import pandas as pd from pandas import ( CategoricalIndex, DatetimeIndex, Float64Index, Index, Int64Index, IntervalIndex, MultiIndex, PeriodIndex, RangeIndex, Series, TimedeltaIndex, UInt64Index, isna) from pandas.core.indexes.base import InvalidIndexError from pandas.core.indexes.datetimelike import DatetimeIndexOpsMixin import pandas.util.testing as tm class Base(object): """ base class for index sub-class tests """ _holder = None _compat_props = ['shape', 'ndim', 'size', 'nbytes'] def setup_indices(self): for name, idx in self.indices.items(): setattr(self, name, idx) def test_pickle_compat_construction(self): # need an object to create with msg = (r"Index\(\.\.\.\) must be called with a collection of some" r" kind, None was passed|" r"__new__\(\) missing 1 required positional argument: 'data'|" r"__new__\(\) takes at least 2 arguments \(1 given\)") with pytest.raises(TypeError, match=msg): self._holder() def test_to_series(self): # assert that we are creating a copy of the index idx = self.create_index() s = idx.to_series() assert s.values is not idx.values assert s.index is not idx assert s.name == idx.name def test_to_series_with_arguments(self): # GH18699 # index kwarg idx = self.create_index() s = idx.to_series(index=idx) assert s.values is not idx.values assert s.index is idx assert s.name == idx.name # name kwarg idx = self.create_index() s = idx.to_series(name='__test') assert s.values is not idx.values assert s.index is not idx assert s.name != idx.name @pytest.mark.parametrize("name", [None, "new_name"]) def test_to_frame(self, name): # see GH-15230, GH-22580 idx = self.create_index() if name: idx_name = name else: idx_name = idx.name or 0 df = idx.to_frame(name=idx_name) assert df.index is idx assert len(df.columns) == 1 assert df.columns[0] == idx_name assert df[idx_name].values is not idx.values df = idx.to_frame(index=False, name=idx_name) assert df.index is not idx def test_to_frame_datetime_tz(self): # GH 25809 idx = pd.date_range(start='2019-01-01', end='2019-01-30', freq='D') idx = idx.tz_localize('UTC') result = idx.to_frame() expected = pd.DataFrame(idx, index=idx) tm.assert_frame_equal(result, expected) def test_shift(self): # GH8083 test the base class for shift idx = self.create_index() msg = "Not supported for type {}".format(type(idx).__name__) with pytest.raises(NotImplementedError, match=msg): idx.shift(1) with pytest.raises(NotImplementedError, match=msg): idx.shift(1, 2) def test_create_index_existing_name(self): # GH11193, when an existing index is passed, and a new name is not # specified, the new index should inherit the previous object name expected = self.create_index() if not isinstance(expected, MultiIndex): expected.name = 'foo' result = pd.Index(expected) tm.assert_index_equal(result, expected) result = pd.Index(expected, name='bar') expected.name = 'bar' tm.assert_index_equal(result, expected) else: expected.names = ['foo', 'bar'] result = pd.Index(expected) tm.assert_index_equal( result, Index(Index([('foo', 'one'), ('foo', 'two'), ('bar', 'one'), ('baz', 'two'), ('qux', 'one'), ('qux', 'two')], dtype='object'), names=['foo', 'bar'])) result = pd.Index(expected, names=['A', 'B']) tm.assert_index_equal( result, Index(Index([('foo', 'one'), ('foo', 'two'), ('bar', 'one'), ('baz', 'two'), ('qux', 'one'), ('qux', 'two')], dtype='object'), names=['A', 'B'])) def test_numeric_compat(self): idx = self.create_index() with pytest.raises(TypeError, match="cannot perform __mul__"): idx * 1 with pytest.raises(TypeError, match="cannot perform __rmul__"): 1 * idx div_err = "cannot perform __truediv__" with pytest.raises(TypeError, match=div_err): idx / 1 div_err = div_err.replace(' __', ' __r') with pytest.raises(TypeError, match=div_err): 1 / idx with pytest.raises(TypeError, match="cannot perform __floordiv__"): idx // 1 with pytest.raises(TypeError, match="cannot perform __rfloordiv__"): 1 // idx def test_logical_compat(self): idx = self.create_index() with pytest.raises(TypeError, match='cannot perform all'): idx.all() with pytest.raises(TypeError, match='cannot perform any'): idx.any() def test_boolean_context_compat(self): # boolean context compat idx = self.create_index() with pytest.raises(ValueError, match='The truth value of a'): if idx: pass def test_reindex_base(self): idx = self.create_index() expected = np.arange(idx.size, dtype=np.intp) actual = idx.get_indexer(idx) tm.assert_numpy_array_equal(expected, actual) with pytest.raises(ValueError, match='Invalid fill method'): idx.get_indexer(idx, method='invalid') def test_get_indexer_consistency(self): # See GH 16819 for name, index in self.indices.items(): if isinstance(index, IntervalIndex): continue if index.is_unique or isinstance(index, CategoricalIndex): indexer = index.get_indexer(index[0:2]) assert isinstance(indexer, np.ndarray) assert indexer.dtype == np.intp else: e = "Reindexing only valid with uniquely valued Index objects" with pytest.raises(InvalidIndexError, match=e): index.get_indexer(index[0:2]) indexer, _ = index.get_indexer_non_unique(index[0:2]) assert isinstance(indexer, np.ndarray) assert indexer.dtype == np.intp def test_ndarray_compat_properties(self): idx = self.create_index() assert idx.T.equals(idx) assert idx.transpose().equals(idx) values = idx.values for prop in self._compat_props: assert getattr(idx, prop) == getattr(values, prop) # test for validity idx.nbytes idx.values.nbytes def test_repr_roundtrip(self): idx = self.create_index() tm.assert_index_equal(eval(repr(idx)), idx) def test_str(self): # test the string repr idx = self.create_index() idx.name = 'foo' assert "'foo'" in str(idx) assert idx.__class__.__name__ in str(idx) def test_repr_max_seq_item_setting(self): # GH10182 idx = self.create_index() idx = idx.repeat(50) with pd.option_context("display.max_seq_items", None): repr(idx) assert '...' not in str(idx) def test_copy_name(self): # gh-12309: Check that the "name" argument # passed at initialization is honored. for name, index in compat.iteritems(self.indices): if isinstance(index, MultiIndex): continue first = index.__class__(index, copy=True, name='mario') second = first.__class__(first, copy=False) # Even though "copy=False", we want a new object. assert first is not second # Not using tm.assert_index_equal() since names differ. assert index.equals(first) assert first.name == 'mario' assert second.name == 'mario' s1 = Series(2, index=first) s2 = Series(3, index=second[:-1]) if not isinstance(index, CategoricalIndex): # See gh-13365 s3 = s1 * s2 assert s3.index.name == 'mario' def test_ensure_copied_data(self): # Check the "copy" argument of each Index.__new__ is honoured # GH12309 for name, index in compat.iteritems(self.indices): init_kwargs = {} if isinstance(index, PeriodIndex): # Needs "freq" specification: init_kwargs['freq'] = index.freq elif isinstance(index, (RangeIndex, MultiIndex, CategoricalIndex)): # RangeIndex cannot be initialized from data # MultiIndex and CategoricalIndex are tested separately continue index_type = index.__class__ result = index_type(index.values, copy=True, **init_kwargs) tm.assert_index_equal(index, result) tm.assert_numpy_array_equal(index._ndarray_values, result._ndarray_values, check_same='copy') if isinstance(index, PeriodIndex): # .values an object array of Period, thus copied result = index_type(ordinal=index.asi8, copy=False, **init_kwargs) tm.assert_numpy_array_equal(index._ndarray_values, result._ndarray_values, check_same='same') elif isinstance(index, IntervalIndex): # checked in test_interval.py pass else: result = index_type(index.values, copy=False, **init_kwargs) tm.assert_numpy_array_equal(index.values, result.values, check_same='same') tm.assert_numpy_array_equal(index._ndarray_values, result._ndarray_values, check_same='same') def test_memory_usage(self): for name, index in compat.iteritems(self.indices): result = index.memory_usage() if len(index): index.get_loc(index[0]) result2 = index.memory_usage() result3 = index.memory_usage(deep=True) # RangeIndex, IntervalIndex # don't have engines if not isinstance(index, (RangeIndex, IntervalIndex)): assert result2 > result if index.inferred_type == 'object': assert result3 > result2 else: # we report 0 for no-length assert result == 0 def test_argsort(self): for k, ind in self.indices.items(): # separately tested if k in ['catIndex']: continue result = ind.argsort() expected = np.array(ind).argsort() tm.assert_numpy_array_equal(result, expected, check_dtype=False) def test_numpy_argsort(self): for k, ind in self.indices.items(): result = np.argsort(ind) expected = ind.argsort() tm.assert_numpy_array_equal(result, expected) # these are the only two types that perform # pandas compatibility input validation - the # rest already perform separate (or no) such # validation via their 'values' attribute as # defined in pandas.core.indexes/base.py - they # cannot be changed at the moment due to # backwards compatibility concerns if isinstance(type(ind), (CategoricalIndex, RangeIndex)): msg = "the 'axis' parameter is not supported" with pytest.raises(ValueError, match=msg): np.argsort(ind, axis=1) msg = "the 'kind' parameter is not supported" with pytest.raises(ValueError, match=msg): np.argsort(ind, kind='mergesort') msg = "the 'order' parameter is not supported" with pytest.raises(ValueError, match=msg): np.argsort(ind, order=('a', 'b')) def test_take(self): indexer = [4, 3, 0, 2] for k, ind in self.indices.items(): # separate if k in ['boolIndex', 'tuples', 'empty']: continue result = ind.take(indexer) expected = ind[indexer] assert result.equals(expected) if not isinstance(ind, (DatetimeIndex, PeriodIndex, TimedeltaIndex)): # GH 10791 with pytest.raises(AttributeError): ind.freq def test_take_invalid_kwargs(self): idx = self.create_index() indices = [1, 2] msg = r"take\(\) got an unexpected keyword argument 'foo'" with pytest.raises(TypeError, match=msg): idx.take(indices, foo=2) msg = "the 'out' parameter is not supported" with pytest.raises(ValueError, match=msg): idx.take(indices, out=indices) msg = "the 'mode' parameter is not supported" with pytest.raises(ValueError, match=msg): idx.take(indices, mode='clip') def test_repeat(self): rep = 2 i = self.create_index() expected = pd.Index(i.values.repeat(rep), name=i.name) tm.assert_index_equal(i.repeat(rep), expected) i = self.create_index() rep = np.arange(len(i)) expected = pd.Index(i.values.repeat(rep), name=i.name) tm.assert_index_equal(i.repeat(rep), expected) def test_numpy_repeat(self): rep = 2 i = self.create_index() expected = i.repeat(rep) tm.assert_index_equal(np.repeat(i, rep), expected) msg = "the 'axis' parameter is not supported" with pytest.raises(ValueError, match=msg): np.repeat(i, rep, axis=0) @pytest.mark.parametrize('klass', [list, tuple, np.array, Series]) def test_where(self, klass): i = self.create_index() cond = [True] * len(i) result = i.where(klass(cond)) expected = i tm.assert_index_equal(result, expected) cond = [False] + [True] * len(i[1:]) expected = pd.Index([i._na_value] + i[1:].tolist(), dtype=i.dtype) result = i.where(klass(cond)) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("case", [0.5, "xxx"]) @pytest.mark.parametrize("method", ["intersection", "union", "difference", "symmetric_difference"]) def test_set_ops_error_cases(self, case, method): for name, idx in compat.iteritems(self.indices): # non-iterable input msg = "Input must be Index or array-like" with pytest.raises(TypeError, match=msg): getattr(idx, method)(case) def test_intersection_base(self): for name, idx in compat.iteritems(self.indices): first = idx[:5] second = idx[:3] intersect = first.intersection(second) if isinstance(idx, CategoricalIndex): pass else: assert tm.equalContents(intersect, second) # GH 10149 cases = [klass(second.values) for klass in [np.array, Series, list]] for case in cases: if isinstance(idx, PeriodIndex): msg = "can only call with other PeriodIndex-ed objects" with pytest.raises(ValueError, match=msg): first.intersection(case) elif isinstance(idx, CategoricalIndex): pass else: result = first.intersection(case) assert tm.equalContents(result, second) if isinstance(idx, MultiIndex): msg = "other must be a MultiIndex or a list of tuples" with pytest.raises(TypeError, match=msg): first.intersection([1, 2, 3]) def test_union_base(self): for name, idx in compat.iteritems(self.indices): first = idx[3:] second = idx[:5] everything = idx union = first.union(second) assert tm.equalContents(union, everything) # GH 10149 cases = [klass(second.values) for klass in [np.array, Series, list]] for case in cases: if isinstance(idx, PeriodIndex): msg = "can only call with other PeriodIndex-ed objects" with pytest.raises(ValueError, match=msg): first.union(case) elif isinstance(idx, CategoricalIndex): pass else: result = first.union(case) assert tm.equalContents(result, everything) if isinstance(idx, MultiIndex): msg = "other must be a MultiIndex or a list of tuples" with pytest.raises(TypeError, match=msg): first.union([1, 2, 3]) @pytest.mark.parametrize("sort", [None, False]) def test_difference_base(self, sort): for name, idx in compat.iteritems(self.indices): first = idx[2:] second = idx[:4] answer = idx[4:] result = first.difference(second, sort) if isinstance(idx, CategoricalIndex): pass else: assert tm.equalContents(result, answer) # GH 10149 cases = [klass(second.values) for klass in [np.array, Series, list]] for case in cases: if isinstance(idx, PeriodIndex): msg = "can only call with other PeriodIndex-ed objects" with pytest.raises(ValueError, match=msg): first.difference(case, sort) elif isinstance(idx, CategoricalIndex): pass elif isinstance(idx, (DatetimeIndex, TimedeltaIndex)): assert result.__class__ == answer.__class__ tm.assert_numpy_array_equal(result.sort_values().asi8, answer.sort_values().asi8) else: result = first.difference(case, sort) assert tm.equalContents(result, answer) if isinstance(idx, MultiIndex): msg = "other must be a MultiIndex or a list of tuples" with pytest.raises(TypeError, match=msg): first.difference([1, 2, 3], sort) def test_symmetric_difference(self): for name, idx in compat.iteritems(self.indices): first = idx[1:] second = idx[:-1] if isinstance(idx, CategoricalIndex): pass else: answer = idx[[0, -1]] result = first.symmetric_difference(second) assert tm.equalContents(result, answer) # GH 10149 cases = [klass(second.values) for klass in [np.array, Series, list]] for case in cases: if isinstance(idx, PeriodIndex): msg = "can only call with other PeriodIndex-ed objects" with pytest.raises(ValueError, match=msg): first.symmetric_difference(case) elif isinstance(idx, CategoricalIndex): pass else: result = first.symmetric_difference(case) assert tm.equalContents(result, answer) if isinstance(idx, MultiIndex): msg = "other must be a MultiIndex or a list of tuples" with pytest.raises(TypeError, match=msg): first.symmetric_difference([1, 2, 3]) def test_insert_base(self): for name, idx in compat.iteritems(self.indices): result = idx[1:4] if not len(idx): continue # test 0th element assert idx[0:4].equals(result.insert(0, idx[0])) def test_delete_base(self): for name, idx in compat.iteritems(self.indices): if not len(idx): continue if isinstance(idx, RangeIndex): # tested in class continue expected = idx[1:] result = idx.delete(0) assert result.equals(expected) assert result.name == expected.name expected = idx[:-1] result = idx.delete(-1) assert result.equals(expected) assert result.name == expected.name with pytest.raises((IndexError, ValueError)): # either depending on numpy version idx.delete(len(idx)) def test_equals(self): for name, idx in compat.iteritems(self.indices): assert idx.equals(idx) assert idx.equals(idx.copy()) assert idx.equals(idx.astype(object)) assert not idx.equals(list(idx)) assert not idx.equals(np.array(idx)) # Cannot pass in non-int64 dtype to RangeIndex if not isinstance(idx, RangeIndex): same_values = Index(idx, dtype=object) assert idx.equals(same_values) assert same_values.equals(idx) if idx.nlevels == 1: # do not test MultiIndex assert not idx.equals(pd.Series(idx)) def test_equals_op(self): # GH9947, GH10637 index_a = self.create_index() if isinstance(index_a, PeriodIndex): pytest.skip('Skip check for PeriodIndex') n = len(index_a) index_b = index_a[0:-1] index_c = index_a[0:-1].append(index_a[-2:-1]) index_d = index_a[0:1] msg = "Lengths must match|could not be broadcast" with pytest.raises(ValueError, match=msg): index_a == index_b expected1 = np.array([True] * n) expected2 = np.array([True] * (n - 1) + [False]) tm.assert_numpy_array_equal(index_a == index_a, expected1) tm.assert_numpy_array_equal(index_a == index_c, expected2) # test comparisons with numpy arrays array_a = np.array(index_a) array_b = np.array(index_a[0:-1]) array_c = np.array(index_a[0:-1].append(index_a[-2:-1])) array_d = np.array(index_a[0:1]) with pytest.raises(ValueError, match=msg): index_a == array_b tm.assert_numpy_array_equal(index_a == array_a, expected1) tm.assert_numpy_array_equal(index_a == array_c, expected2) # test comparisons with Series series_a = Series(array_a) series_b = Series(array_b) series_c = Series(array_c) series_d = Series(array_d) with pytest.raises(ValueError, match=msg): index_a == series_b tm.assert_numpy_array_equal(index_a == series_a, expected1) tm.assert_numpy_array_equal(index_a == series_c, expected2) # cases where length is 1 for one of them with pytest.raises(ValueError, match="Lengths must match"): index_a == index_d with pytest.raises(ValueError, match="Lengths must match"): index_a == series_d with pytest.raises(ValueError, match="Lengths must match"): index_a == array_d msg = "Can only compare identically-labeled Series objects" with pytest.raises(ValueError, match=msg): series_a == series_d with pytest.raises(ValueError, match="Lengths must match"): series_a == array_d # comparing with a scalar should broadcast; note that we are excluding # MultiIndex because in this case each item in the index is a tuple of # length 2, and therefore is considered an array of length 2 in the # comparison instead of a scalar if not isinstance(index_a, MultiIndex): expected3 = np.array([False] * (len(index_a) - 2) + [True, False]) # assuming the 2nd to last item is unique in the data item = index_a[-2] tm.assert_numpy_array_equal(index_a == item, expected3) tm.assert_series_equal(series_a == item, Series(expected3)) def test_numpy_ufuncs(self): # test ufuncs of numpy, see: # http://docs.scipy.org/doc/numpy/reference/ufuncs.html for name, idx in compat.iteritems(self.indices): for func in [np.exp, np.exp2, np.expm1, np.log, np.log2, np.log10, np.log1p, np.sqrt, np.sin, np.cos, np.tan, np.arcsin, np.arccos, np.arctan, np.sinh, np.cosh, np.tanh, np.arcsinh, np.arccosh, np.arctanh, np.deg2rad, np.rad2deg]: if isinstance(idx, DatetimeIndexOpsMixin): # raise TypeError or ValueError (PeriodIndex) # PeriodIndex behavior should be changed in future version with pytest.raises(Exception): with np.errstate(all='ignore'): func(idx) elif isinstance(idx, (Float64Index, Int64Index, UInt64Index)): # coerces to float (e.g. np.sin) with np.errstate(all='ignore'): result = func(idx) exp = Index(func(idx.values), name=idx.name) tm.assert_index_equal(result, exp) assert isinstance(result, pd.Float64Index) else: # raise AttributeError or TypeError if len(idx) == 0: continue else: with pytest.raises(Exception): with np.errstate(all='ignore'): func(idx) for func in [np.isfinite, np.isinf, np.isnan, np.signbit]: if isinstance(idx, DatetimeIndexOpsMixin): # raise TypeError or ValueError (PeriodIndex) with pytest.raises(Exception): func(idx) elif isinstance(idx, (Float64Index, Int64Index, UInt64Index)): # Results in bool array result = func(idx) assert isinstance(result, np.ndarray) assert not isinstance(result, Index) else: if len(idx) == 0: continue else: with pytest.raises(Exception): func(idx) def test_hasnans_isnans(self): # GH 11343, added tests for hasnans / isnans for name, index in self.indices.items(): if isinstance(index, MultiIndex): pass else: idx = index.copy() # cases in indices doesn't include NaN expected = np.array([False] * len(idx), dtype=bool) tm.assert_numpy_array_equal(idx._isnan, expected) assert idx.hasnans is False idx = index.copy() values = np.asarray(idx.values) if len(index) == 0: continue elif isinstance(index, DatetimeIndexOpsMixin): values[1] = iNaT elif isinstance(index, (Int64Index, UInt64Index)): continue else: values[1] = np.nan if isinstance(index, PeriodIndex): idx = index.__class__(values, freq=index.freq) else: idx = index.__class__(values) expected = np.array([False] * len(idx), dtype=bool) expected[1] = True tm.assert_numpy_array_equal(idx._isnan, expected) assert idx.hasnans is True def test_fillna(self): # GH 11343 for name, index in self.indices.items(): if len(index) == 0: pass elif isinstance(index, MultiIndex): idx = index.copy() msg = "isna is not defined for MultiIndex" with pytest.raises(NotImplementedError, match=msg): idx.fillna(idx[0]) else: idx = index.copy() result = idx.fillna(idx[0]) tm.assert_index_equal(result, idx) assert result is not idx msg = "'value' must be a scalar, passed: " with pytest.raises(TypeError, match=msg): idx.fillna([idx[0]]) idx = index.copy() values = np.asarray(idx.values) if isinstance(index, DatetimeIndexOpsMixin): values[1] = iNaT elif isinstance(index, (Int64Index, UInt64Index)): continue else: values[1] = np.nan if isinstance(index, PeriodIndex): idx = index.__class__(values, freq=index.freq) else: idx = index.__class__(values) expected = np.array([False] * len(idx), dtype=bool) expected[1] = True tm.assert_numpy_array_equal(idx._isnan, expected) assert idx.hasnans is True def test_nulls(self): # this is really a smoke test for the methods # as these are adequately tested for function elsewhere for name, index in self.indices.items(): if len(index) == 0: tm.assert_numpy_array_equal( index.isna(), np.array([], dtype=bool)) elif isinstance(index, MultiIndex): idx = index.copy() msg = "isna is not defined for MultiIndex" with pytest.raises(NotImplementedError, match=msg): idx.isna() else: if not index.hasnans: tm.assert_numpy_array_equal( index.isna(), np.zeros(len(index), dtype=bool)) tm.assert_numpy_array_equal( index.notna(), np.ones(len(index), dtype=bool)) else: result = isna(index) tm.assert_numpy_array_equal(index.isna(), result) tm.assert_numpy_array_equal(index.notna(), ~result) def test_empty(self): # GH 15270 index = self.create_index() assert not index.empty assert index[:0].empty def test_join_self_unique(self, join_type): index = self.create_index() if index.is_unique: joined = index.join(index, how=join_type) assert (index == joined).all() def test_map(self): # callable index = self.create_index() # we don't infer UInt64 if isinstance(index, pd.UInt64Index): expected = index.astype('int64') else: expected = index result = index.map(lambda x: x)
tm.assert_index_equal(result, expected)
pandas.util.testing.assert_index_equal
import pickle import argparse import common_utils import itertools import tqdm import re import collections import random import numpy as np import pandas as pd import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import seaborn as sns def get_top_frags(zipped, threshold): assert threshold > 0.0 import operator ig = operator.itemgetter(1) temp = sorted(zipped, key=ig, reverse=True) frags = [] cumm = 0.0 for ion, ion_int in temp: if cumm > threshold: break frags.append(ion) cumm += ion_int return frags def jacc(x, y, threshold=0.9, verbose=False): assert isinstance(x, zip) assert isinstance(y, zip) xfrags = get_top_frags(x, threshold) yfrags = get_top_frags(y, threshold) assert len(xfrags) > 0 assert len(yfrags) > 0 if verbose: print(f'experimental: {xfrags}') print(f'predicted: {yfrags}') intersect = len(set.intersection(set(xfrags), set(yfrags))) union = len(set.union(set(xfrags), set(yfrags))) return intersect / float(union) def _bin_z(charge): if int(charge) < 4: return charge else: return '4+' def _getbin(l): if 7 <= l < 12: return '7-11' elif 12 <= l < 17: return '12-16' elif 17 <= l < 22: return '17-21' elif 22 <= l < 27: return '22-26' elif 27 <= l: return '27+' def baseline(): def _validateSpectraPair(spectra, minlength): prev = None assert len(spectra) == 2 for s in spectra: try: score, yi, yw, bi, bw, yf = s if len(yi) < minlength: return False if prev == s: return False except Exception as e: print(f"Unexpected number of tokens found!") e.args += (str(s),) raise prev = s return True def _getSpectraPair(seq, data): valid_spectra = data ntry = 1 minlen = 5 spectra = random.sample(valid_spectra, 2) try: while not _validateSpectraPair(spectra, minlen): ntry += 1 if ntry > 5: valid_spectra = [d for d in data if len(d[1]) > minlen] if len(valid_spectra) < 2: print(f"Not enough valid spectra for {seq}") return None spectra = random.sample(valid_spectra, 2) except Exception as e: print(f"Exception occurred during processing {seq}") e.args += (str(data),) raise return spectra def _getParser(infile): print('Processing the spectra...') from MQParser import MQParser with open(infile, 'r') as f: parser = MQParser() reader = pd.read_csv(f, delimiter='\t', iterator=True, chunksize=100000) for index, chunk in enumerate(reader): df =
pd.DataFrame(chunk)
pandas.DataFrame
"""The postprocessing metric computation.""" import os # type: ignore import numpy as np # type: ignore import PySAM import pandas as pd # type: ignore import PySAM.PySSC as pssc # type: ignore import PySAM.Singleowner as pysam_singleowner_financial_model # type: ignore from copy import deepcopy # type: ignore from typing import List, Tuple, Union # type: ignore from pathlib import Path # type: ignore from functools import partial # type: ignore from itertools import product # type: ignore from wombat.core import FixedCosts from wombat.core.library import load_yaml def _calculate_time_availability( availability: np.ndarray, by_turbine=False ) -> Union[float, np.ndarray]: """Calculates the availability ratio of the whole timeseries or the whole timeseries, by turbine. Parameters ---------- availability : np.ndarray Timeseries array of operating ratios. by_turbine : bool, optional If True, calculates the availability rate of each column, otherwise across the whole array, by default False. Returns ------- Union[float, np.ndarray] Availability ratio across the whole timeseries, or broken out by column (turbine). """ availability = availability > 0 if by_turbine: return availability.sum(axis=0) / availability.shape[0] return availability.sum() / availability.size def _process_single( events: pd.DataFrame, request_filter: np.ndarray ) -> Tuple[str, float, float, float, int]: """Computes the timing values for a single ``request_id``. Parameters ---------- events : pd.DataFrame The NaN-filtered events ``pd.DataFrame``. request_filter : np.ndarray The indicies to include for the calculation of the timings. Returns ------- Tuple[str, float, float, float, int] The timing values. See ``process_times``. """ request = events.iloc[request_filter] downtime = request[request.system_operating_level < 1] vals = ( request.reason[0], request.env_time.max() - request.env_time.min(), # total time request.duration.sum(), # actual process time downtime.env_time.max() - downtime.env_time.min(), # downtime (duration of operations < 1) 1, # N processes ) return vals class Metrics: """The metric computation class that will store the logged outputs and compile results.""" _hourly_cost = "hourly_labor_cost" _salary_cost = "salary_labor_cost" _labor_cost = "total_labor_cost" _equipment_cost = "equipment_cost" _materials_cost = "materials_cost" _total_cost = "total_cost" _cost_columns = [ _hourly_cost, _salary_cost, _labor_cost, _equipment_cost, _materials_cost, _total_cost, ] def __init__( self, data_dir: Union[str, Path], events: Union[str, pd.DataFrame], operations: Union[str, pd.DataFrame], potential: Union[str, pd.DataFrame], production: Union[str, pd.DataFrame], inflation_rate: float, project_capacity: float, turbine_capacities: List[float], fixed_costs: str, substation_id: Union[str, List[str]], turbine_id: Union[str, List[str]], service_equipment_names: Union[str, List[str]], SAM_settings: Union[str, None] = None, ) -> None: """Initializes the Metrics class. Parameters ---------- data_dir : Union[str, Path] This should be the same as was used for running the analysis. events : Union[str, pd.DataFrame] Either a pandas ``DataFrame`` or filename to be used to read the csv log data. operations : Union[str, pd.DataFrame] Either a pandas ``DataFrame`` or filename to be used to read the csv log data. potential : Union[str, pd.DataFrame] Either a pandas ``DataFrame`` or a filename to be used to read the csv potential power production data. production : Union[str, pd.DataFrame] Either a pandas ``DataFrame`` or a filename to be used to read the csv power production data. inflation_rate : float The inflation rate to be applied to all dollar amounts from the analysis starting year to ending year. project_capacity : float The project's rated capacity, in MW. turbine_capacities : Union[float, List[float]] The capacity of each individual turbine corresponding to ``turbine_id``, in kW. fixed_costs : str The filename of the project's fixed costs. substation_id : Union[str, List[str]] The substation id(s). turbine_id : Union[str, List[str]] The turbine id(s). service_equipment_names : Union[str, List[str]] The names of the servicing equipment, corresponding to ``ServiceEquipment.settings.name`` for each ``ServiceEquipment`` in the simulation. SAM_settings : Union[str, None] The SAM settings YAML file located in <data_dir>/windfarm/<SAM_settings> that should end in ".yaml". If no input is provided, then the model will raise a ``NotImplementedError`` when the SAM-powered metrics are attempted to be accessed. """ self.data_dir = Path(data_dir) if not os.path.isdir(self.data_dir): raise FileNotFoundError(f"{self.data_dir} does not exist") self.inflation_rate = 1 + inflation_rate self.project_capacity = project_capacity fixed_costs = load_yaml(self.data_dir / "windfarm", fixed_costs) self.fixed_costs = FixedCosts(**fixed_costs) # type: ignore if isinstance(substation_id, str): substation_id = [substation_id] self.substation_id = substation_id if isinstance(turbine_id, str): turbine_id = [turbine_id] self.turbine_id = turbine_id if isinstance(service_equipment_names, str): service_equipment_names = [service_equipment_names] self.service_equipment_names = sorted(list(set(service_equipment_names))) if isinstance(turbine_capacities, (float, int)): turbine_capacities = [turbine_capacities] self.turbine_capacities = turbine_capacities if isinstance(events, str): events = self._read_data(events) self.events = self._apply_inflation_rate(self._tidy_data(events, kind="events")) if isinstance(operations, str): operations = self._read_data(operations) self.operations = self._tidy_data(operations, kind="operations") if isinstance(potential, str): potential = self._read_data(potential) self.potential = self._tidy_data(potential, kind="potential") if isinstance(production, str): production = self._read_data(production) self.production = self._tidy_data(production, kind="production") if SAM_settings is not None: SAM_settings = "SAM_Singleowner_defaults.yaml" self.sam_settings = load_yaml(self.data_dir / "windfarm", SAM_settings) self._setup_pysam() else: self.sam_settings = None self.financial_model = None def _tidy_data(self, data: pd.DataFrame, kind: str) -> pd.DataFrame: """Tidies the "raw" csv-converted data to be able to be used among the ``Metrics`` class. Parameters ---------- data : pd.DataFrame The freshly imported csv log data. kind : str The category of the input provided to ``data``. Should be one of: - "operations" - "events" - "potential" - "production" Returns ------- pd.DataFrame A tidied data frame to be used for all the operations in this class. """ if data.index.name != "datetime": try: data.datetime = pd.to_datetime(data.datetime) except AttributeError: data["datetime"] = pd.to_datetime(data.env_datetime) data.index = data.datetime data = data.drop(labels="datetime", axis=1) data.env_datetime = pd.to_datetime(data.env_datetime) data["year"] = data.env_datetime.dt.year data["month"] = data.env_datetime.dt.month data["day"] = data.env_datetime.dt.day if kind == "operations": data["windfarm"] = data[self.substation_id].mean(axis=1) * data[ self.turbine_id ].mean(axis=1) elif kind in ("potential", "production"): data[self.turbine_id] = data[self.turbine_id].astype(float) return data def _read_data(self, fname: str) -> pd.DataFrame: """Reads the csv log data from library. This is intended to be used for the events or operations data. Parameters ---------- path : str Path to the simulation library. fname : str Filename of the csv data. Returns ------- pd.DataFrame Dataframe of either the events or operations data. """ data = pd.read_csv(self.data_dir / "outputs" / "logs" / fname) return data def _apply_inflation_rate(self, events: pd.DataFrame) -> pd.DataFrame: """Adjusts the cost data for compounding inflation. Parameters ---------- inflation_rate : float The inflation rate to be applied for each year. events : pd.DataFrame The events dataframe containing the project cost data. Returns ------- pd.DataFrame The events dataframe with costs adjusted for inflation. """ adjusted_inflation = deepcopy(self.inflation_rate) years = events.year.unique() years.sort() for year in years: row_filter = events.year == year if year > years[0]: events.loc[row_filter, self._cost_columns] *= adjusted_inflation adjusted_inflation *= self.inflation_rate return events def _setup_pysam(self) -> None: """Creates and executes the PySAM model for financial metrics.""" # Define the model and import the SAM settings file. self.financial_model = pysam_singleowner_financial_model.default( "WindPowerSingleOwner" ) model_data = pssc.dict_to_ssc_table(self.sam_settings, "singleowner") self.financial_model = pysam_singleowner_financial_model.wrap(model_data) # Remove the leap year production leap_year_ix = self.production.index.month == 2 leap_year_ix &= self.production.index.day == 29 generation = self.production.loc[~leap_year_ix].windfarm.values # Create a years variable for later use with the PySAM outputs self.years = sorted(self.production.year.unique()) # Let mypy know that I know what I'm doing assert isinstance(self.financial_model, PySAM.Singleowner.Singleowner) # Replace the coded generation with modeled generation self.financial_model.FinancialParameters.analysis_period = len(self.years) self.financial_model.SystemOutput.gen = generation # Reset the system capacity, in kW self.financial_model.FinancialParameters.system_capacity = ( self.project_capacity * 1000 ) # Run the financial model self.financial_model.execute() def time_based_availability( # type: ignore self, frequency: str, by: str ) -> Union[float, pd.DataFrame]: """Calculates the time-based availabiliy over a project's lifetime as a single value, annual average, or monthly average for the whole windfarm or by turbine. .. note:: This currently assumes that if there are multiple substations, that the turbines are all connected to multiple. Parameters ---------- frequency : str One of "project", "annual", "monthly", or "month-year". by : str One of "windfarm" or "turbine". Returns ------- Union[float, pd.DataFrame] The time-based availability at the desired aggregation level. """ frequency = frequency.lower().strip() if frequency not in ("project", "annual", "monthly", "month-year"): raise ValueError( '``frequency`` must be one of "project", "annual", "monthly", or "month-year".' ) by = by.lower().strip() if by not in ("windfarm", "turbine"): raise ValueError('``by`` must be one of "windfarm" or "turbine".') by_turbine = by == "turbine" operations = deepcopy(self.operations) substation = np.prod(operations[self.substation_id], axis=1).values.reshape( (-1, 1) ) hourly = substation * operations.loc[:, self.turbine_id].values if frequency == "project": availability = _calculate_time_availability(hourly, by_turbine=by_turbine) if by == "windfarm": return availability availability = pd.DataFrame( availability.reshape(1, -1), columns=self.turbine_id # type: ignore ) return availability elif frequency == "annual": date_time = operations[["year"]] counts = operations.groupby(by="year").count() counts = counts[self.turbine_id] if by_turbine else counts[["windfarm"]] annual = [ _calculate_time_availability( hourly[date_time.year == year], by_turbine=by_turbine ) for year in counts.index ] return pd.DataFrame( annual, index=counts.index, columns=counts.columns ).reset_index() elif frequency == "monthly": date_time = operations[["month"]] counts = operations.groupby(by="month").count() counts = counts[self.turbine_id] if by_turbine else counts[["windfarm"]] monthly = [ _calculate_time_availability( hourly[date_time.month == month], by_turbine=by_turbine ) for month in counts.index ] return pd.DataFrame( monthly, index=counts.index, columns=counts.columns ).reset_index() elif frequency == "month-year": date_time = operations[["year", "month"]] counts = operations.groupby(by=["year", "month"]).count() counts = counts[self.turbine_id] if by_turbine else counts[["windfarm"]] month_year = [ _calculate_time_availability( hourly[(date_time.year == year) & (date_time.month == month)], by_turbine=by_turbine, ) for year, month in counts.index ] return pd.DataFrame( month_year, index=counts.index, columns=counts.columns ).reset_index() def production_based_availability( # type: ignore self, frequency: str, by: str ) -> Union[float, pd.DataFrame]: """Calculates the production-based availabiliy over a project's lifetime as a single value, annual average, or monthly average for the whole windfarm or by turbine. .. note:: This currently assumes that if there are multiple substations, that the turbines are all connected to multiple. Parameters ---------- frequency : str One of "project", "annual", "monthly", or "month-year". by : str One of "windfarm" or "turbine". Returns ------- Union[float, pd.DataFrame] The production-based availability at the desired aggregation level. """ frequency = frequency.lower().strip() if frequency not in ("project", "annual", "monthly", "month-year"): raise ValueError( '``frequency`` must be one of "project", "annual", "monthly", or "month-year".' ) by = by.lower().strip() if by not in ("windfarm", "turbine"): raise ValueError('``by`` must be one of "windfarm" or "turbine".') by_turbine = by == "turbine" production = self.production.loc[:, self.turbine_id] potential = self.potential.loc[:, self.turbine_id] if frequency == "project": production = production.values potential = potential.values if (potential == 0).sum() > 0: potential[potential == 0] = 1 if not by_turbine: return production.sum() / potential.sum() availability = pd.DataFrame( (production.sum(axis=0) / potential.sum(axis=0)).reshape(1, -1), columns=self.turbine_id, ) return availability production[["year", "month"]] = [ production.index.year.values.reshape(-1, 1), production.index.month.values.reshape(-1, 1), ] potential[["year", "month"]] = [ potential.index.year.values.reshape(-1, 1), potential.index.month.values.reshape(-1, 1), ] if frequency == "annual": production = production.groupby("year").sum()[self.turbine_id] potential = potential.groupby("year").sum()[self.turbine_id] elif frequency == "monthly": production = production.groupby("month").sum()[self.turbine_id] potential = potential.groupby("month").sum()[self.turbine_id] elif frequency == "month-year": production = production.groupby(["year", "month"]).sum()[self.turbine_id] potential = potential.groupby(["year", "month"]).sum()[self.turbine_id] if (potential.values == 0).sum() > 0: potential.loc[potential.values == 0] = 1 columns = self.turbine_id if not by_turbine: production = production.sum(axis=1) potential = potential.sum(axis=1) columns = [by] return pd.DataFrame(production / potential, columns=columns) def capacity_factor( # type: ignore self, which: str, frequency: str, by: str ) -> Union[float, pd.DataFrame]: """Calculates the capacity factor over a project's lifetime as a single value, annual average, or monthly average for the whole windfarm or by turbine. .. note:: This currently assumes that if there are multiple substations, that the turbines are all connected to multiple. Parameters ---------- which : str One of "net" or "gross". frequency : str One of "project", "annual", "monthly", or "month-year". by : str One of "windfarm" or "turbine". Returns ------- Union[float, pd.DataFrame] The capacity factor at the desired aggregation level. """ which = which.lower().strip() if which not in ("net", "gross"): raise ValueError('``which`` must be one of "net" or "gross".') frequency = frequency.lower().strip() if frequency not in ("project", "annual", "monthly", "month-year"): raise ValueError( '``frequency`` must be one of "project", "annual", "monthly", or "month-year".' ) by = by.lower().strip() if by not in ("windfarm", "turbine"): raise ValueError('``by`` must be one of "windfarm" or "turbine".') by_turbine = by == "turbine" capacity = ( np.array(self.turbine_capacities) if by_turbine else self.project_capacity ) production = self.production if which == "net" else self.potential production = production.loc[:, self.turbine_id] if frequency == "project": potential = production.shape[0] if not by_turbine: production = production.values.sum() / 1000 # convert to MWh return production / (potential * capacity) potential = potential * capacity / 1000 cf = pd.DataFrame((production.sum(axis=0) / 1000 / potential)).T return cf production[["year", "month"]] = [ production.index.year.values.reshape(-1, 1), production.index.month.values.reshape(-1, 1), ] if frequency == "annual": potential = production.groupby("year").count()[self.turbine_id] production = production.groupby("year").sum()[self.turbine_id] elif frequency == "monthly": potential = production.groupby("month").count()[self.turbine_id] production = production.groupby("month").sum()[self.turbine_id] elif frequency == "month-year": potential = production.groupby(["year", "month"]).count()[self.turbine_id] production = production.groupby(["year", "month"]).sum()[self.turbine_id] if by_turbine: columns = self.turbine_id potential = potential.iloc[:, 0].values.reshape(-1, 1) * ( capacity / 1000 ).reshape(1, -1) else: production = production.sum(axis=1) potential = potential.iloc[:, 0] * capacity columns = [by] return pd.DataFrame(production / 1000 / potential, columns=columns) def task_completion_rate( self, which: str, frequency: str ) -> Union[float, pd.DataFrame]: """Calculates the task completion rate over a project's lifetime as a single value, annual average, or monthly average for the whole windfarm or by turbine. .. note:: This currently assumes that if there are multiple substations, that the turbines are all connected to multiple. Parameters ---------- which : str One of "scheduled", "unscheduled", or "both". frequency : str One of "project", "annual", "monthly", or "month-year". Returns ------- Union[float, pd.DataFrame] The task completion rate at the desired aggregation level. """ which = which.lower().strip() if which not in ("scheduled", "unscheduled", "both"): raise ValueError( '``which`` must be one of "scheduled", "unscheduled", or "both".' ) frequency = frequency.lower().strip() if frequency not in ("project", "annual", "monthly", "month-year"): raise ValueError( '``frequency`` must be one of "project", "annual", "monthly", or "month-year".' ) if which == "scheduled": task_filter = ["maintenance"] elif which == "unscheduled": task_filter = ["repair"] else: task_filter = ["maintenance", "repair"] cols = ["env_datetime", "request_id"] completion_filter = [f"{el} complete" for el in task_filter] request_filter = [f"{el} request" for el in task_filter] requests = self.events.loc[ self.events.action.isin(request_filter), cols ].reset_index(drop=True) completions = self.events.loc[ self.events.action.isin(completion_filter), cols ].reset_index(drop=True) if frequency == "project": return completions.shape[0] / requests.shape[0] requests[["year", "month"]] = [ requests.env_datetime.dt.year.values.reshape(-1, 1), requests.env_datetime.dt.month.values.reshape(-1, 1), ] completions[["year", "month"]] = [ completions.env_datetime.dt.year.values.reshape(-1, 1), completions.env_datetime.dt.month.values.reshape(-1, 1), ] if frequency == "annual": group_filter = ["year"] indices = self.operations.year.unique() elif frequency == "monthly": group_filter = ["month"] indices = self.operations.month.unique() elif frequency == "month-year": group_filter = ["year", "month"] indices = list( product(self.operations.year.unique(), self.operations.month.unique()) ) requests = requests.groupby(group_filter).count()["request_id"] requests.loc[requests == 0] = 1 completions = completions.groupby(group_filter).count()["request_id"] missing = [ix for ix in indices if ix not in requests] requests = requests.append(pd.Series(np.ones(len(missing)), index=missing)) requests = requests.sort_index() missing = [ix for ix in indices if ix not in completions] completions = completions.append( pd.Series(np.zeros(len(missing)), index=missing) ) completions = completions.sort_index() completion_rate = pd.DataFrame(completions / requests).reset_index() return completion_rate.rename( columns={ "request_id": "Completion Rate", 0: "Completion Rate", "index": "year", } ) def equipment_costs( self, frequency: str, by_equipment: bool = False ) -> Union[float, pd.DataFrame]: """Calculates the equipment costs for the simulation at a project, annual, or monthly level with (or without) respect to equipment utilized in the simulation. Parameters ---------- frequency : str One of "project", "annual", "monthly", or "month-year". by_equipment : bool, optional Indicates whether the values are with resepect to the equipment utilized (True) or not (False), by default False. Returns ------- Union[float, pd.DataFrame] Returns either a float for whole project-level costs or a pandas ``DataFrame`` with columns: - year (if appropriate for frequency) - month (if appropriate for frequency) - then any equipment names as they appear in the logs Raises ------ ValueError If ``frequency`` is not one of "project", "annual", "monthly", or "month-year". ValueError If ``by_equipment`` is not one of ``True`` or ``False``. """ frequency = frequency.lower().strip() if frequency not in ("project", "annual", "monthly", "month-year"): raise ValueError( '``frequency`` must be one of "project", "annual", or "monthly".' ) if not isinstance(by_equipment, bool): raise ValueError("``by_equipment`` must be one of ``True`` or ``False``") if frequency == "annual": col_filter = ["year"] elif frequency == "monthly": col_filter = ["month"] elif frequency == "month-year": col_filter = ["year", "month"] if by_equipment: if frequency == "project": costs = ( self.events[self.events[self._equipment_cost] > 0] .groupby(["agent"]) .sum()[[self._equipment_cost]] .fillna(0) .reset_index(level=0) ) costs = costs.fillna(costs.max(axis=0)).T costs = ( costs.rename(columns=costs.iloc[0]) .drop(index="agent") .reset_index(drop=True) ) return costs col_filter = ["agent"] + col_filter costs = ( self.events[self.events[self._equipment_cost] > 0] .groupby(col_filter) .sum()[[self._equipment_cost]] .reset_index(level=0) ) costs = pd.concat( [ costs[costs.agent == eq][[self._equipment_cost]].rename( columns={self._equipment_cost: eq} ) for eq in costs.agent.unique() ], axis=1, ) return costs.fillna(value=0).reset_index() if frequency == "project": return self.events[self._equipment_cost].sum() costs = self.events.groupby(col_filter).sum()[[self._equipment_cost]] return costs.fillna(0).reset_index() def service_equipment_utilization(self, frequency: str) -> pd.DataFrame: """Calculates the utilization rate for each of the service equipment in the simulation. Parameters ---------- frequency : str One of "project" or "annual". Returns ------- pd.DataFrame The utilization rate of each of the simulation ``SerivceEquipment``. Raises ------ ValueError If ``frequency`` is not one of "project" or "annual". """ frequency = frequency.lower().strip() if frequency not in ("project", "annual"): raise ValueError('``frequency`` must be one of "project" or "annual".') no_requests = [] total_days = [] no_request_filter = self.events.reason == "no requests" return_filter = self.events.action == "delay" return_filter &= self.events.reason == "work is complete" return_filter &= self.events.additional == "will return next year" for name in self.service_equipment_names: equipment_filter = self.events.agent == name _events = self.events[equipment_filter & no_request_filter] _events = _events.groupby("year").count()[["agent"]] no_requests.append(_events.rename(columns={"agent": name})) ix_filter = equipment_filter & ~return_filter total = self.events[ix_filter].groupby(["year", "month", "day"]).size() total = total.reset_index().groupby("year").count()[["day"]] total_days.append(total.rename(columns={"day": name})) if len(self.service_equipment_names) > 1: no_requests_df = no_requests[0].join(no_requests[1:]).fillna(0) total_df = total_days[0].join(total_days[1:]).fillna(1) else: no_requests_df = pd.DataFrame(no_requests[0]) total_df = pd.DataFrame(total_days[0]) for year in self.events.year.unique(): if year not in no_requests_df.index: missing = pd.DataFrame( np.zeros((1, no_requests_df.shape[1])), index=[year], columns=no_requests_df.columns, ) no_requests_df = no_requests_df.append(missing).sort_index() if year not in total_df.index: missing = pd.DataFrame( np.ones((1, total_df.shape[1])), index=[year], columns=no_requests_df.columns, ) total_df = total_df.append(missing).sort_index() if frequency == "project": no_requests_df = no_requests_df.reset_index().sum()[ self.service_equipment_names ] total_df = total_df.reset_index().sum()[self.service_equipment_names] return pd.DataFrame((total_df - no_requests_df) / total_df).T return (total_df - no_requests_df) / total_df def labor_costs( self, frequency: str, by_type: bool = False ) -> Union[float, pd.DataFrame]: """Calculates the labor costs for the simulation at a project, annual, or monthly level that can be broken out by hourly and salary labor costs. Parameters ---------- frequency : str One of "project", "annual", "monthly", or "month-year". by_type : bool, optional Indicates whether the values are with resepect to the labor types (True) or not (False), by default False. Returns ------- Union[float, pd.DataFrame] Returns either a float for whole project-level costs or a pandas ``DataFrame`` with columns: - year (if appropriate for frequency) - month (if appropriate for frequency) - total_labor_cost - hourly_labor_cost (if broken out) - salary_labor_cost (if broken out) Raises ------ ValueError If ``frequency`` is not one of "project", "annual", "monthly", or "month-year". ValueError If ``by_type`` is not one of ``True`` or ``False``. """ frequency = frequency.lower().strip() if frequency not in ("project", "annual", "monthly", "month-year"): raise ValueError( '``frequency`` must be one of "project", "annual", "monthly", or "month-year".' ) if not isinstance(by_type, bool): raise ValueError("``by_equipment`` must be one of ``True`` or ``False``") labor_cols = [self._hourly_cost, self._salary_cost, self._labor_cost] if frequency == "project": costs = pd.DataFrame( self.events[labor_cols].sum(axis=0).values.reshape(1, -1), columns=labor_cols, ) if not by_type: return costs[self._labor_cost].values[0] return costs if frequency == "annual": group_filter = ["year"] elif frequency == "monthly": group_filter = ["month"] elif frequency == "month-year": group_filter = ["year", "month"] costs = ( self.events.groupby(group_filter) .sum()[labor_cols] .reset_index() .fillna(value=0) ) if not by_type: return costs[group_filter + [self._labor_cost]] return costs def equipment_labor_cost_breakdowns( self, frequency: str, by_category: bool = False ) -> pd.DataFrame: """Calculates the producitivty cost breakdowns for the simulation at a project, annual, or monthly level that can be broken out to include the equipment and labor components. Parameters ---------- frequency : str One of "project", "annual", "monthly", or "month-year". by_category : bool, optional Indicates whether to include the equipment and labor categories (True) or not (False), by default False. .. note:: Does not produce a value if there is no cost associated with a "reason". Returns ------- pd.DataFrame Returns pandas ``DataFrame`` with columns: - year (if appropriate for frequency) - month (if appropriate for frequency) - reason - hourly_labor_cost (if by_category == ``True``) - salary_labor_cost (if by_category == ``True``) - total_labor_cost (if by_category == ``True``) - equipment_cost (if by_category == ``True``) - total_cost (if broken out) Raises ------ ValueError If ``frequency`` is not one of "project", "annual", "monthly", or "month-year". ValueError If ``by_category`` is not one of ``True`` or ``False``. """ frequency = frequency.lower().strip() if frequency not in ("project", "annual", "monthly", "month-year"): raise ValueError( '``frequency`` must be one of "project", "annual", or "monthly".' ) if not isinstance(by_category, bool): raise ValueError("``by_equipment`` must be one of ``True`` or ``False``") group_filter = ["action", "reason", "additional"] if frequency in ("annual", "month-year"): group_filter.insert(0, "year") elif frequency == "monthly": group_filter.insert(0, "month") if frequency == "month-year": group_filter.insert(1, "month") equipment = self.events[self.events[self._equipment_cost] > 0].agent.unique() costs = ( self.events[ self.events.agent.isin(equipment) & self.events.action.isin( ("delay", "repair", "maintenance", "mobilization") ) & ~self.events.additional.isin(["work is complete"]) ] .groupby(group_filter) .sum()[self._cost_columns] .reset_index() ) costs["display_reason"] = [""] * costs.shape[0] group_filter.append("display_reason") non_shift_hours = ( "not in working hours", "work shift has ended; waiting for next shift to start", "no more return visits will be made", "will return next year", ) costs.loc[ (costs.action == "delay") & (costs.additional.isin(non_shift_hours)), "display_reason", ] = "Not in Shift" costs.loc[costs.action == "repair", "display_reason"] = "Repair" costs.loc[costs.action == "maintenance", "display_reason"] = "Maintenance" costs.loc[costs.action == "mobilization", "display_reason"] = "Mobilization" costs.loc[ costs.additional == "weather delay", "display_reason" ] = "Weather Delay" costs.loc[costs.reason == "no requests", "display_reason"] = "No Requests" costs.reason = costs.display_reason group_filter.pop(group_filter.index("action")) group_filter.pop(group_filter.index("display_reason")) group_filter.pop(group_filter.index("additional")) drop_columns = [self._materials_cost] if not by_category: drop_columns.extend( [ self._hourly_cost, self._salary_cost, self._labor_cost, self._equipment_cost, ] ) costs = costs.drop(columns=drop_columns) costs = costs.groupby(group_filter).sum().reset_index() month_year = frequency == "month-year" if frequency in ("annual", "month-year"): years = costs.year.unique() reasons = costs.reason.unique() comparison_values = product(years, reasons) if month_year: months = costs.month.unique() comparison_values = product(years, months, reasons) zeros = np.zeros(costs.shape[1] - 2).tolist() for _year, *_month, _reason in comparison_values: row_filter = costs.year.values == _year row = [_year, _reason] + zeros if month_year: _month = _month[0] row_filter &= costs.month.values == _month row = [_year, _month, _reason] + zeros[:-1] row_filter &= costs.reason.values == _reason if costs.loc[row_filter].size > 0: continue costs.loc[costs.shape[0]] = row elif frequency == "monthly": months = costs.month.unique() reasons = costs.reason.unique() comparison_values = product(months, reasons) zeros = np.zeros(costs.shape[1] - 2).tolist() for _month, _reason in comparison_values: row_filter = costs.month.values == _month row_filter &= costs.reason.values == _reason row = [_month, _reason] + zeros if costs.loc[row_filter].size > 0: continue costs.loc[costs.shape[0]] = row new_sort = [ "Maintenance", "Repair", "Mobilization", "Weather Delay", "No Requests", "Not in Shift", ] costs.reason = pd.Categorical(costs.reason, new_sort) if frequency == "project": return costs.sort_values(by="reason").reset_index(drop=True) if frequency == "annual": return costs.sort_values(by=["year", "reason"]).reset_index(drop=True) if frequency == "monthly": return costs.sort_values(by=["month", "reason"]).reset_index(drop=True) return costs.sort_values(by=["year", "month", "reason"]).reset_index(drop=True) def component_costs( self, frequency: str, by_category: bool = False, by_action: bool = False ) -> pd.DataFrame: """Calculates the component costs for the simulation at a project, annual, or monthly level that can be broken out by cost categories. This will not sum to the total cost because it is does not include times where there is no work being done, but costs are being accrued. .. note:: It should be noted that the costs will include costs accrued from both weather delays and shift-to-shift delays. In the future these will be disentangled. Parameters ---------- frequency : str One of "project", "annual", "monthly", or "month-year". by_category : bool, optional Indicates whether the values are with resepect to the various cost categories (True) or not (False), by default False. by_action : bool, optional Indicates whether component costs are going to be further broken out by the action being performed--repair, maintenance, and delay--(True) or not (False), by default False. Returns ------- Union[float, pd.DataFrame] Returns either a float for whole project-level costs or a pandas ``DataFrame`` with columns: - year (if appropriate for frequency) - month (if appropriate for frequency) - component - action (if broken out) - materials_cost (if broken out) - total_labor_cost (if broken out) - equipment_cost (if broken out) - total_cost Raises ------ ValueError If ``frequency`` is not one of "project", "annual", "monthly", or "month-year". ValueError If ``by_category`` is not one of ``True`` or ``False``. ValueError If ``by_action`` is not one of ``True`` or ``False``. """ frequency = frequency.lower().strip() if frequency not in ("project", "annual", "monthly", "month-year"): raise ValueError( '``frequency`` must be one of "project", "annual", or "monthly".' ) if not isinstance(by_category, bool): raise ValueError("``by_equipment`` must be one of ``True`` or ``False``") if not isinstance(by_action, bool): raise ValueError("``by_equipment`` must be one of ``True`` or ``False``") events = deepcopy(self.events) events = events[~events.part_id.isna()] # Need to simplify the cable identifiers to not include the connection information events["component"] = [el.split("::")[0] for el in events.part_id.values] cost_cols = ["total_cost"] if by_category: cost_cols[0:0] = ["materials_cost", "total_labor_cost", "equipment_cost"] group_filter = [] if frequency == "annual": group_filter = ["year"] elif frequency == "monthly": group_filter = ["month"] elif frequency == "month-year": group_filter = ["year", "month"] group_filter.append("component") if by_action: repair_map = { val: "repair" for val in ("repair request", "repair", "repair_complete") } maintenance_map = { val: "maintenance" for val in ( "maintenance request", "maintenance", "maintenance_complete", ) } delay_map = {"delay": "delay"} action_map = {**repair_map, **maintenance_map, **delay_map} events.action = events.action.map(action_map) group_filter.append("action") month_year = frequency == "month-year" zeros = np.zeros(len(cost_cols)).tolist() costs = events.groupby(group_filter).sum()[cost_cols].reset_index() if not by_action: costs["action"] = np.zeros(costs.shape[0]) cols = costs.columns.to_list() _ix = cols.index("component") + 1 cols[_ix:_ix] = ["action"] cols.pop(-1) costs = costs[cols] if frequency in ("annual", "month-year"): years = costs.year.unique() components = costs.component.unique() actions = costs.action.unique() comparison_values = product(years, components, actions) if month_year: months = costs.month.unique() comparison_values = product(years, months, components, actions) for _year, *_month, _component, _action in comparison_values: row_filter = costs.year.values == _year row_filter &= costs.component.values == _component row_filter &= costs.action.values == _action row = [_year, _component, _action] + zeros if month_year: _month = _month[0] row_filter &= costs.month.values == _month row = [_year, _month, _component, _action] + zeros if costs.loc[row_filter].size > 0: continue costs.loc[costs.shape[0]] = row elif frequency == "monthly": months = costs.month.unique() components = costs.component.unique() actions = costs.action.unique() comparison_values = product(months, actions, components) for _month, _action, _component in comparison_values: row_filter = costs.month.values == _month row_filter &= costs.component.values == _component row_filter &= costs.action.values == _action row = [_month, _component, _action] + zeros if costs.loc[row_filter].size > 0: continue costs.loc[costs.shape[0]] = row elif frequency == "project": components = costs.component.unique() actions = costs.action.unique() comparison_values = product(actions, components) for _action, _component in comparison_values: row_filter = costs.component.values == _component row_filter &= costs.action.values == _action row = [_component, _action] + zeros if costs.loc[row_filter].size > 0: continue costs.loc[costs.shape[0]] = row costs = costs.sort_values(group_filter)[group_filter + cost_cols] return costs.reset_index(drop=True) def project_fixed_costs(self, frequency: str, resolution: str) -> pd.DataFrame: """Calculates the fixed costs of a project at the project and annual frequencies at a given cost breakdown resolution. Parameters ---------- frequency : str One of "project" or "annual". resolution : str One of "low", "medium", or "high", where the values correspond to: - low: ``FixedCosts.resolution["low"]``, corresponding to the itemized costs. - medium: ``FixedCosts.resolution["medium"]``, corresponding to the overarching cost categories. - high: ``FixedCosts.resolution["high"]``, corresponding to a lump sum. These values can also be seen through the ``FixedCosts.hierarchy`` Returns ------- pd.DataFrame The project's fixed costs as a sum or annualized with high, medium, and low resolution as desired. Raises ------ ValueError If ``frequency`` not one of "project" or "annual". ValueError If ``resolution`` must be one of "low", "medium", or "high". """ frequency = frequency.lower().strip() if frequency not in ("project", "annual"): raise ValueError('``frequency`` must be one of "project" or "annual".') resolution = resolution.lower().strip() if resolution not in ("low", "medium", "high"): raise ValueError( '``resolution`` must be one of "low", "medium", or "high".' ) keys = self.fixed_costs.resolution[resolution] vals = [[getattr(self.fixed_costs, key) for key in keys]] costs =
pd.DataFrame(vals, columns=keys)
pandas.DataFrame
#%% import pandas as pd import numpy as np import holoviews as hv import hvplot.pandas from scipy.sparse.linalg import svds from scipy.stats import chisquare, chi2_contingency from sklearn.decomposition import TruncatedSVD from umoja.ca import CA hv.extension('bokeh') #%% X = context.io.load('xente_train') Y = context.io.load('xente_sample_submission') Y_wide = (Y .loc[:, 'Account X date X PID'] .str.split(' X ', expand=True) .rename(columns={0:'acc', 1:'date',2:'PID'}) .assign(test = True) ) context.io.save('xente_sample_submission_wide', Y_wide) data = (pd.concat([Y_wide, X.assign(test = False)], axis=0) .reset_index() .rename(columns={'index':'old_index'}) .assign(acc = lambda df: df.acc.astype('int64'))) context.io.save('xente_merged', data) # %% a = (data.drop(columns=['old_index']) .groupby(['acc', 'PID']) .date .apply(lambda df: pd.to_datetime(df).sort_values().diff().dt.total_seconds() .fillna(0)) .reset_index() .rename(columns={'level_2': 'index'}) .set_index('index') .rename(columns={'date': 'time_since_last'})) b = data.loc[:,['date']].assign(date = lambda df: pd.to_datetime(df.date)) #%% time_since_last = (a.join(b).sort_values('date')) #%% dummies =
pd.get_dummies(time_since_last.PID)
pandas.get_dummies
"""SQL io tests The SQL tests are broken down in different classes: - `PandasSQLTest`: base class with common methods for all test classes - Tests for the public API (only tests with sqlite3) - `_TestSQLApi` base class - `TestSQLApi`: test the public API with sqlalchemy engine - `TestSQLiteFallbackApi`: test the public API with a sqlite DBAPI connection - Tests for the different SQL flavors (flavor specific type conversions) - Tests for the sqlalchemy mode: `_TestSQLAlchemy` is the base class with common methods, `_TestSQLAlchemyConn` tests the API with a SQLAlchemy Connection object. The different tested flavors (sqlite3, MySQL, PostgreSQL) derive from the base class - Tests for the fallback mode (`TestSQLiteFallback`) """ import csv from datetime import date, datetime, time from io import StringIO import sqlite3 import warnings import numpy as np import pytest from pandas.core.dtypes.common import is_datetime64_dtype, is_datetime64tz_dtype import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, Series, Timestamp, concat, date_range, isna, to_datetime, to_timedelta, ) import pandas._testing as tm import pandas.io.sql as sql from pandas.io.sql import read_sql_query, read_sql_table try: import sqlalchemy import sqlalchemy.schema import sqlalchemy.sql.sqltypes as sqltypes from sqlalchemy.ext import declarative from sqlalchemy.orm import session as sa_session SQLALCHEMY_INSTALLED = True except ImportError: SQLALCHEMY_INSTALLED = False SQL_STRINGS = { "create_iris": { "sqlite": """CREATE TABLE iris ( "SepalLength" REAL, "SepalWidth" REAL, "PetalLength" REAL, "PetalWidth" REAL, "Name" TEXT )""", "mysql": """CREATE TABLE iris ( `SepalLength` DOUBLE, `SepalWidth` DOUBLE, `PetalLength` DOUBLE, `PetalWidth` DOUBLE, `Name` VARCHAR(200) )""", "postgresql": """CREATE TABLE iris ( "SepalLength" DOUBLE PRECISION, "SepalWidth" DOUBLE PRECISION, "PetalLength" DOUBLE PRECISION, "PetalWidth" DOUBLE PRECISION, "Name" VARCHAR(200) )""", }, "insert_iris": { "sqlite": """INSERT INTO iris VALUES(?, ?, ?, ?, ?)""", "mysql": """INSERT INTO iris VALUES(%s, %s, %s, %s, "%s");""", "postgresql": """INSERT INTO iris VALUES(%s, %s, %s, %s, %s);""", }, "create_test_types": { "sqlite": """CREATE TABLE types_test_data ( "TextCol" TEXT, "DateCol" TEXT, "IntDateCol" INTEGER, "IntDateOnlyCol" INTEGER, "FloatCol" REAL, "IntCol" INTEGER, "BoolCol" INTEGER, "IntColWithNull" INTEGER, "BoolColWithNull" INTEGER )""", "mysql": """CREATE TABLE types_test_data ( `TextCol` TEXT, `DateCol` DATETIME, `IntDateCol` INTEGER, `IntDateOnlyCol` INTEGER, `FloatCol` DOUBLE, `IntCol` INTEGER, `BoolCol` BOOLEAN, `IntColWithNull` INTEGER, `BoolColWithNull` BOOLEAN )""", "postgresql": """CREATE TABLE types_test_data ( "TextCol" TEXT, "DateCol" TIMESTAMP, "DateColWithTz" TIMESTAMP WITH TIME ZONE, "IntDateCol" INTEGER, "IntDateOnlyCol" INTEGER, "FloatCol" DOUBLE PRECISION, "IntCol" INTEGER, "BoolCol" BOOLEAN, "IntColWithNull" INTEGER, "BoolColWithNull" BOOLEAN )""", }, "insert_test_types": { "sqlite": { "query": """ INSERT INTO types_test_data VALUES(?, ?, ?, ?, ?, ?, ?, ?, ?) """, "fields": ( "TextCol", "DateCol", "IntDateCol", "IntDateOnlyCol", "FloatCol", "IntCol", "BoolCol", "IntColWithNull", "BoolColWithNull", ), }, "mysql": { "query": """ INSERT INTO types_test_data VALUES("%s", %s, %s, %s, %s, %s, %s, %s, %s) """, "fields": ( "TextCol", "DateCol", "IntDateCol", "IntDateOnlyCol", "FloatCol", "IntCol", "BoolCol", "IntColWithNull", "BoolColWithNull", ), }, "postgresql": { "query": """ INSERT INTO types_test_data VALUES(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s) """, "fields": ( "TextCol", "DateCol", "DateColWithTz", "IntDateCol", "IntDateOnlyCol", "FloatCol", "IntCol", "BoolCol", "IntColWithNull", "BoolColWithNull", ), }, }, "read_parameters": { "sqlite": "SELECT * FROM iris WHERE Name=? AND SepalLength=?", "mysql": 'SELECT * FROM iris WHERE `Name`="%s" AND `SepalLength`=%s', "postgresql": 'SELECT * FROM iris WHERE "Name"=%s AND "SepalLength"=%s', }, "read_named_parameters": { "sqlite": """ SELECT * FROM iris WHERE Name=:name AND SepalLength=:length """, "mysql": """ SELECT * FROM iris WHERE `Name`="%(name)s" AND `SepalLength`=%(length)s """, "postgresql": """ SELECT * FROM iris WHERE "Name"=%(name)s AND "SepalLength"=%(length)s """, }, "create_view": { "sqlite": """ CREATE VIEW iris_view AS SELECT * FROM iris """ }, } class MixInBase: def teardown_method(self, method): # if setup fails, there may not be a connection to close. if hasattr(self, "conn"): for tbl in self._get_all_tables(): self.drop_table(tbl) self._close_conn() class MySQLMixIn(MixInBase): def drop_table(self, table_name): cur = self.conn.cursor() cur.execute(f"DROP TABLE IF EXISTS {sql._get_valid_mysql_name(table_name)}") self.conn.commit() def _get_all_tables(self): cur = self.conn.cursor() cur.execute("SHOW TABLES") return [table[0] for table in cur.fetchall()] def _close_conn(self): from pymysql.err import Error try: self.conn.close() except Error: pass class SQLiteMixIn(MixInBase): def drop_table(self, table_name): self.conn.execute( f"DROP TABLE IF EXISTS {sql._get_valid_sqlite_name(table_name)}" ) self.conn.commit() def _get_all_tables(self): c = self.conn.execute("SELECT name FROM sqlite_master WHERE type='table'") return [table[0] for table in c.fetchall()] def _close_conn(self): self.conn.close() class SQLAlchemyMixIn(MixInBase): def drop_table(self, table_name): sql.SQLDatabase(self.conn).drop_table(table_name) def _get_all_tables(self): meta = sqlalchemy.schema.MetaData(bind=self.conn) meta.reflect() table_list = meta.tables.keys() return table_list def _close_conn(self): pass class PandasSQLTest: """ Base class with common private methods for SQLAlchemy and fallback cases. """ def _get_exec(self): if hasattr(self.conn, "execute"): return self.conn else: return self.conn.cursor() @pytest.fixture(params=[("data", "iris.csv")]) def load_iris_data(self, datapath, request): import io iris_csv_file = datapath(*request.param) if not hasattr(self, "conn"): self.setup_connect() self.drop_table("iris") self._get_exec().execute(SQL_STRINGS["create_iris"][self.flavor]) with io.open(iris_csv_file, mode="r", newline=None) as iris_csv: r = csv.reader(iris_csv) next(r) # skip header row ins = SQL_STRINGS["insert_iris"][self.flavor] for row in r: self._get_exec().execute(ins, row) def _load_iris_view(self): self.drop_table("iris_view") self._get_exec().execute(SQL_STRINGS["create_view"][self.flavor]) def _check_iris_loaded_frame(self, iris_frame): pytype = iris_frame.dtypes[0].type row = iris_frame.iloc[0] assert issubclass(pytype, np.floating) tm.equalContents(row.values, [5.1, 3.5, 1.4, 0.2, "Iris-setosa"]) def _load_test1_data(self): columns = ["index", "A", "B", "C", "D"] data = [ ( "2000-01-03 00:00:00", 0.980268513777, 3.68573087906, -0.364216805298, -1.15973806169, ), ( "2000-01-04 00:00:00", 1.04791624281, -0.0412318367011, -0.16181208307, 0.212549316967, ), ( "2000-01-05 00:00:00", 0.498580885705, 0.731167677815, -0.537677223318, 1.34627041952, ), ( "2000-01-06 00:00:00", 1.12020151869, 1.56762092543, 0.00364077397681, 0.67525259227, ), ] self.test_frame1 = DataFrame(data, columns=columns) def _load_test2_data(self): df = DataFrame( dict( A=[4, 1, 3, 6], B=["asd", "gsq", "ylt", "jkl"], C=[1.1, 3.1, 6.9, 5.3], D=[False, True, True, False], E=["1990-11-22", "1991-10-26", "1993-11-26", "1995-12-12"], ) ) df["E"] = to_datetime(df["E"]) self.test_frame2 = df def _load_test3_data(self): columns = ["index", "A", "B"] data = [ ("2000-01-03 00:00:00", 2 ** 31 - 1, -1.987670), ("2000-01-04 00:00:00", -29, -0.0412318367011), ("2000-01-05 00:00:00", 20000, 0.731167677815), ("2000-01-06 00:00:00", -290867, 1.56762092543), ] self.test_frame3 = DataFrame(data, columns=columns) def _load_raw_sql(self): self.drop_table("types_test_data") self._get_exec().execute(SQL_STRINGS["create_test_types"][self.flavor]) ins = SQL_STRINGS["insert_test_types"][self.flavor] data = [ { "TextCol": "first", "DateCol": "2000-01-03 00:00:00", "DateColWithTz": "2000-01-01 00:00:00-08:00", "IntDateCol": 535852800, "IntDateOnlyCol": 20101010, "FloatCol": 10.10, "IntCol": 1, "BoolCol": False, "IntColWithNull": 1, "BoolColWithNull": False, }, { "TextCol": "first", "DateCol": "2000-01-04 00:00:00", "DateColWithTz": "2000-06-01 00:00:00-07:00", "IntDateCol": 1356998400, "IntDateOnlyCol": 20101212, "FloatCol": 10.10, "IntCol": 1, "BoolCol": False, "IntColWithNull": None, "BoolColWithNull": None, }, ] for d in data: self._get_exec().execute( ins["query"], [d[field] for field in ins["fields"]] ) def _count_rows(self, table_name): result = ( self._get_exec() .execute(f"SELECT count(*) AS count_1 FROM {table_name}") .fetchone() ) return result[0] def _read_sql_iris(self): iris_frame = self.pandasSQL.read_query("SELECT * FROM iris") self._check_iris_loaded_frame(iris_frame) def _read_sql_iris_parameter(self): query = SQL_STRINGS["read_parameters"][self.flavor] params = ["Iris-setosa", 5.1] iris_frame = self.pandasSQL.read_query(query, params=params) self._check_iris_loaded_frame(iris_frame) def _read_sql_iris_named_parameter(self): query = SQL_STRINGS["read_named_parameters"][self.flavor] params = {"name": "Iris-setosa", "length": 5.1} iris_frame = self.pandasSQL.read_query(query, params=params) self._check_iris_loaded_frame(iris_frame) def _to_sql(self, method=None): self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", method=method) assert self.pandasSQL.has_table("test_frame1") num_entries = len(self.test_frame1) num_rows = self._count_rows("test_frame1") assert num_rows == num_entries # Nuke table self.drop_table("test_frame1") def _to_sql_empty(self): self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1.iloc[:0], "test_frame1") def _to_sql_fail(self): self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="fail") assert self.pandasSQL.has_table("test_frame1") msg = "Table 'test_frame1' already exists" with pytest.raises(ValueError, match=msg): self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="fail") self.drop_table("test_frame1") def _to_sql_replace(self): self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="fail") # Add to table again self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="replace") assert self.pandasSQL.has_table("test_frame1") num_entries = len(self.test_frame1) num_rows = self._count_rows("test_frame1") assert num_rows == num_entries self.drop_table("test_frame1") def _to_sql_append(self): # Nuke table just in case self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="fail") # Add to table again self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="append") assert self.pandasSQL.has_table("test_frame1") num_entries = 2 * len(self.test_frame1) num_rows = self._count_rows("test_frame1") assert num_rows == num_entries self.drop_table("test_frame1") def _to_sql_method_callable(self): check = [] # used to double check function below is really being used def sample(pd_table, conn, keys, data_iter): check.append(1) data = [dict(zip(keys, row)) for row in data_iter] conn.execute(pd_table.table.insert(), data) self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", method=sample) assert self.pandasSQL.has_table("test_frame1") assert check == [1] num_entries = len(self.test_frame1) num_rows = self._count_rows("test_frame1") assert num_rows == num_entries # Nuke table self.drop_table("test_frame1") def _roundtrip(self): self.drop_table("test_frame_roundtrip") self.pandasSQL.to_sql(self.test_frame1, "test_frame_roundtrip") result = self.pandasSQL.read_query("SELECT * FROM test_frame_roundtrip") result.set_index("level_0", inplace=True) # result.index.astype(int) result.index.name = None tm.assert_frame_equal(result, self.test_frame1) def _execute_sql(self): # drop_sql = "DROP TABLE IF EXISTS test" # should already be done iris_results = self.pandasSQL.execute("SELECT * FROM iris") row = iris_results.fetchone() tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, "Iris-setosa"]) def _to_sql_save_index(self): df = DataFrame.from_records( [(1, 2.1, "line1"), (2, 1.5, "line2")], columns=["A", "B", "C"], index=["A"] ) self.pandasSQL.to_sql(df, "test_to_sql_saves_index") ix_cols = self._get_index_columns("test_to_sql_saves_index") assert ix_cols == [["A"]] def _transaction_test(self): with self.pandasSQL.run_transaction() as trans: trans.execute("CREATE TABLE test_trans (A INT, B TEXT)") class DummyException(Exception): pass # Make sure when transaction is rolled back, no rows get inserted ins_sql = "INSERT INTO test_trans (A,B) VALUES (1, 'blah')" try: with self.pandasSQL.run_transaction() as trans: trans.execute(ins_sql) raise DummyException("error") except DummyException: # ignore raised exception pass res = self.pandasSQL.read_query("SELECT * FROM test_trans") assert len(res) == 0 # Make sure when transaction is committed, rows do get inserted with self.pandasSQL.run_transaction() as trans: trans.execute(ins_sql) res2 = self.pandasSQL.read_query("SELECT * FROM test_trans") assert len(res2) == 1 # ----------------------------------------------------------------------------- # -- Testing the public API class _TestSQLApi(PandasSQLTest): """ Base class to test the public API. From this two classes are derived to run these tests for both the sqlalchemy mode (`TestSQLApi`) and the fallback mode (`TestSQLiteFallbackApi`). These tests are run with sqlite3. Specific tests for the different sql flavours are included in `_TestSQLAlchemy`. Notes: flavor can always be passed even in SQLAlchemy mode, should be correctly ignored. we don't use drop_table because that isn't part of the public api """ flavor = "sqlite" mode: str def setup_connect(self): self.conn = self.connect() @pytest.fixture(autouse=True) def setup_method(self, load_iris_data): self.load_test_data_and_sql() def load_test_data_and_sql(self): self._load_iris_view() self._load_test1_data() self._load_test2_data() self._load_test3_data() self._load_raw_sql() def test_read_sql_iris(self): iris_frame = sql.read_sql_query("SELECT * FROM iris", self.conn) self._check_iris_loaded_frame(iris_frame) def test_read_sql_view(self): iris_frame = sql.read_sql_query("SELECT * FROM iris_view", self.conn) self._check_iris_loaded_frame(iris_frame) def test_to_sql(self): sql.to_sql(self.test_frame1, "test_frame1", self.conn) assert sql.has_table("test_frame1", self.conn) def test_to_sql_fail(self): sql.to_sql(self.test_frame1, "test_frame2", self.conn, if_exists="fail") assert sql.has_table("test_frame2", self.conn) msg = "Table 'test_frame2' already exists" with pytest.raises(ValueError, match=msg): sql.to_sql(self.test_frame1, "test_frame2", self.conn, if_exists="fail") def test_to_sql_replace(self): sql.to_sql(self.test_frame1, "test_frame3", self.conn, if_exists="fail") # Add to table again sql.to_sql(self.test_frame1, "test_frame3", self.conn, if_exists="replace") assert sql.has_table("test_frame3", self.conn) num_entries = len(self.test_frame1) num_rows = self._count_rows("test_frame3") assert num_rows == num_entries def test_to_sql_append(self): sql.to_sql(self.test_frame1, "test_frame4", self.conn, if_exists="fail") # Add to table again sql.to_sql(self.test_frame1, "test_frame4", self.conn, if_exists="append") assert sql.has_table("test_frame4", self.conn) num_entries = 2 * len(self.test_frame1) num_rows = self._count_rows("test_frame4") assert num_rows == num_entries def test_to_sql_type_mapping(self): sql.to_sql(self.test_frame3, "test_frame5", self.conn, index=False) result = sql.read_sql("SELECT * FROM test_frame5", self.conn) tm.assert_frame_equal(self.test_frame3, result) def test_to_sql_series(self): s = Series(np.arange(5, dtype="int64"), name="series") sql.to_sql(s, "test_series", self.conn, index=False) s2 = sql.read_sql_query("SELECT * FROM test_series", self.conn) tm.assert_frame_equal(s.to_frame(), s2) def test_roundtrip(self): sql.to_sql(self.test_frame1, "test_frame_roundtrip", con=self.conn) result = sql.read_sql_query("SELECT * FROM test_frame_roundtrip", con=self.conn) # HACK! result.index = self.test_frame1.index result.set_index("level_0", inplace=True) result.index.astype(int) result.index.name = None tm.assert_frame_equal(result, self.test_frame1) def test_roundtrip_chunksize(self): sql.to_sql( self.test_frame1, "test_frame_roundtrip", con=self.conn, index=False, chunksize=2, ) result = sql.read_sql_query("SELECT * FROM test_frame_roundtrip", con=self.conn) tm.assert_frame_equal(result, self.test_frame1) def test_execute_sql(self): # drop_sql = "DROP TABLE IF EXISTS test" # should already be done iris_results = sql.execute("SELECT * FROM iris", con=self.conn) row = iris_results.fetchone() tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, "Iris-setosa"]) def test_date_parsing(self): # Test date parsing in read_sql # No Parsing df = sql.read_sql_query("SELECT * FROM types_test_data", self.conn) assert not issubclass(df.DateCol.dtype.type, np.datetime64) df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates=["DateCol"] ) assert issubclass(df.DateCol.dtype.type, np.datetime64) assert df.DateCol.tolist() == [ pd.Timestamp(2000, 1, 3, 0, 0, 0), pd.Timestamp(2000, 1, 4, 0, 0, 0), ] df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates={"DateCol": "%Y-%m-%d %H:%M:%S"}, ) assert issubclass(df.DateCol.dtype.type, np.datetime64) assert df.DateCol.tolist() == [ pd.Timestamp(2000, 1, 3, 0, 0, 0), pd.Timestamp(2000, 1, 4, 0, 0, 0), ] df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates=["IntDateCol"] ) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) assert df.IntDateCol.tolist() == [ pd.Timestamp(1986, 12, 25, 0, 0, 0), pd.Timestamp(2013, 1, 1, 0, 0, 0), ] df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates={"IntDateCol": "s"} ) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) assert df.IntDateCol.tolist() == [ pd.Timestamp(1986, 12, 25, 0, 0, 0), pd.Timestamp(2013, 1, 1, 0, 0, 0), ] df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates={"IntDateOnlyCol": "%Y%m%d"}, ) assert issubclass(df.IntDateOnlyCol.dtype.type, np.datetime64) assert df.IntDateOnlyCol.tolist() == [ pd.Timestamp("2010-10-10"), pd.Timestamp("2010-12-12"), ] def test_date_and_index(self): # Test case where same column appears in parse_date and index_col df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, index_col="DateCol", parse_dates=["DateCol", "IntDateCol"], ) assert issubclass(df.index.dtype.type, np.datetime64) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) def test_timedelta(self): # see #6921 df = to_timedelta(Series(["00:00:01", "00:00:03"], name="foo")).to_frame() with tm.assert_produces_warning(UserWarning): df.to_sql("test_timedelta", self.conn) result = sql.read_sql_query("SELECT * FROM test_timedelta", self.conn) tm.assert_series_equal(result["foo"], df["foo"].astype("int64")) def test_complex_raises(self): df = DataFrame({"a": [1 + 1j, 2j]}) msg = "Complex datatypes not supported" with pytest.raises(ValueError, match=msg): df.to_sql("test_complex", self.conn) @pytest.mark.parametrize( "index_name,index_label,expected", [ # no index name, defaults to 'index' (None, None, "index"), # specifying index_label (None, "other_label", "other_label"), # using the index name ("index_name", None, "index_name"), # has index name, but specifying index_label ("index_name", "other_label", "other_label"), # index name is integer (0, None, "0"), # index name is None but index label is integer (None, 0, "0"), ], ) def test_to_sql_index_label(self, index_name, index_label, expected): temp_frame = DataFrame({"col1": range(4)}) temp_frame.index.name = index_name query = "SELECT * FROM test_index_label" sql.to_sql(temp_frame, "test_index_label", self.conn, index_label=index_label) frame = sql.read_sql_query(query, self.conn) assert frame.columns[0] == expected def test_to_sql_index_label_multiindex(self): temp_frame = DataFrame( {"col1": range(4)}, index=MultiIndex.from_product([("A0", "A1"), ("B0", "B1")]), ) # no index name, defaults to 'level_0' and 'level_1' sql.to_sql(temp_frame, "test_index_label", self.conn) frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn) assert frame.columns[0] == "level_0" assert frame.columns[1] == "level_1" # specifying index_label sql.to_sql( temp_frame, "test_index_label", self.conn, if_exists="replace", index_label=["A", "B"], ) frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn) assert frame.columns[:2].tolist() == ["A", "B"] # using the index name temp_frame.index.names = ["A", "B"] sql.to_sql(temp_frame, "test_index_label", self.conn, if_exists="replace") frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn) assert frame.columns[:2].tolist() == ["A", "B"] # has index name, but specifying index_label sql.to_sql( temp_frame, "test_index_label", self.conn, if_exists="replace", index_label=["C", "D"], ) frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn) assert frame.columns[:2].tolist() == ["C", "D"] msg = "Length of 'index_label' should match number of levels, which is 2" with pytest.raises(ValueError, match=msg): sql.to_sql( temp_frame, "test_index_label", self.conn, if_exists="replace", index_label="C", ) def test_multiindex_roundtrip(self): df = DataFrame.from_records( [(1, 2.1, "line1"), (2, 1.5, "line2")], columns=["A", "B", "C"], index=["A", "B"], ) df.to_sql("test_multiindex_roundtrip", self.conn) result = sql.read_sql_query( "SELECT * FROM test_multiindex_roundtrip", self.conn, index_col=["A", "B"] ) tm.assert_frame_equal(df, result, check_index_type=True) def test_integer_col_names(self): df = DataFrame([[1, 2], [3, 4]], columns=[0, 1]) sql.to_sql(df, "test_frame_integer_col_names", self.conn, if_exists="replace") def test_get_schema(self): create_sql = sql.get_schema(self.test_frame1, "test", con=self.conn) assert "CREATE" in create_sql def test_get_schema_dtypes(self): float_frame = DataFrame({"a": [1.1, 1.2], "b": [2.1, 2.2]}) dtype = sqlalchemy.Integer if self.mode == "sqlalchemy" else "INTEGER" create_sql = sql.get_schema( float_frame, "test", con=self.conn, dtype={"b": dtype} ) assert "CREATE" in create_sql assert "INTEGER" in create_sql def test_get_schema_keys(self): frame = DataFrame({"Col1": [1.1, 1.2], "Col2": [2.1, 2.2]}) create_sql = sql.get_schema(frame, "test", con=self.conn, keys="Col1") constraint_sentence = 'CONSTRAINT test_pk PRIMARY KEY ("Col1")' assert constraint_sentence in create_sql # multiple columns as key (GH10385) create_sql = sql.get_schema( self.test_frame1, "test", con=self.conn, keys=["A", "B"] ) constraint_sentence = 'CONSTRAINT test_pk PRIMARY KEY ("A", "B")' assert constraint_sentence in create_sql def test_chunksize_read(self): df = DataFrame(np.random.randn(22, 5), columns=list("abcde")) df.to_sql("test_chunksize", self.conn, index=False) # reading the query in one time res1 = sql.read_sql_query("select * from test_chunksize", self.conn) # reading the query in chunks with read_sql_query res2 = DataFrame() i = 0 sizes = [5, 5, 5, 5, 2] for chunk in sql.read_sql_query( "select * from test_chunksize", self.conn, chunksize=5 ): res2 = concat([res2, chunk], ignore_index=True) assert len(chunk) == sizes[i] i += 1 tm.assert_frame_equal(res1, res2) # reading the query in chunks with read_sql_query if self.mode == "sqlalchemy": res3 = DataFrame() i = 0 sizes = [5, 5, 5, 5, 2] for chunk in sql.read_sql_table("test_chunksize", self.conn, chunksize=5): res3 = concat([res3, chunk], ignore_index=True) assert len(chunk) == sizes[i] i += 1 tm.assert_frame_equal(res1, res3) def test_categorical(self): # GH8624 # test that categorical gets written correctly as dense column df = DataFrame( { "person_id": [1, 2, 3], "person_name": ["<NAME>", "<NAME>", "<NAME>"], } ) df2 = df.copy() df2["person_name"] = df2["person_name"].astype("category") df2.to_sql("test_categorical", self.conn, index=False) res = sql.read_sql_query("SELECT * FROM test_categorical", self.conn) tm.assert_frame_equal(res, df) def test_unicode_column_name(self): # GH 11431 df = DataFrame([[1, 2], [3, 4]], columns=["\xe9", "b"]) df.to_sql("test_unicode", self.conn, index=False) def test_escaped_table_name(self): # GH 13206 df = DataFrame({"A": [0, 1, 2], "B": [0.2, np.nan, 5.6]}) df.to_sql("d1187b08-4943-4c8d-a7f6", self.conn, index=False) res = sql.read_sql_query("SELECT * FROM `d1187b08-4943-4c8d-a7f6`", self.conn) tm.assert_frame_equal(res, df) @pytest.mark.single @pytest.mark.skipif(not SQLALCHEMY_INSTALLED, reason="SQLAlchemy not installed") class TestSQLApi(SQLAlchemyMixIn, _TestSQLApi): """ Test the public API as it would be used directly Tests for `read_sql_table` are included here, as this is specific for the sqlalchemy mode. """ flavor = "sqlite" mode = "sqlalchemy" def connect(self): return sqlalchemy.create_engine("sqlite:///:memory:") def test_read_table_columns(self): # test columns argument in read_table sql.to_sql(self.test_frame1, "test_frame", self.conn) cols = ["A", "B"] result = sql.read_sql_table("test_frame", self.conn, columns=cols) assert result.columns.tolist() == cols def test_read_table_index_col(self): # test columns argument in read_table sql.to_sql(self.test_frame1, "test_frame", self.conn) result = sql.read_sql_table("test_frame", self.conn, index_col="index") assert result.index.names == ["index"] result = sql.read_sql_table("test_frame", self.conn, index_col=["A", "B"]) assert result.index.names == ["A", "B"] result = sql.read_sql_table( "test_frame", self.conn, index_col=["A", "B"], columns=["C", "D"] ) assert result.index.names == ["A", "B"] assert result.columns.tolist() == ["C", "D"] def test_read_sql_delegate(self): iris_frame1 = sql.read_sql_query("SELECT * FROM iris", self.conn) iris_frame2 = sql.read_sql("SELECT * FROM iris", self.conn)
tm.assert_frame_equal(iris_frame1, iris_frame2)
pandas._testing.assert_frame_equal
#!usr/bin/env python """ Evaluate the performance of the generative model on multiple aspects: to be filled """ import pandas as pd import numpy as np from post_processing import data from rdkit import Chem, DataStructs import scipy.stats as ss import math from rdkit import Chem from rdkit.Chem.Draw import IPythonConsole from IPython.display import SVG import time from rdkit.Chem import rdDepictor from rdkit.Chem.Draw import rdMolDraw2D def internal_sim(smi_lst): """ Compute internal similarity within generated SMILES Args: smi_lst: list of generated unique SMILE structures Returns: Average internal molecular similarity with in the input list """ setV = len(smi_lst) mols = data.get_mols(smi_lst) fps_morgan, _ = data.get_fingerprints(mols) total_smi = 0 for i in range(len(fps_morgan)): for j in range(len(fps_morgan)): total_smi += DataStructs.DiceSimilarity(fps_morgan[i], fps_morgan[j]) Din = total_smi/(setV*setV) return Din def external_sim(smi_lst, reference): """ Compute the external similarity against the source data, i.e. the average similarity between the generated molecules and their nearest neighbours in the training set. Args: smi_lst: list of generated unique SMILE structures reference: list of SMILES used for training the generation Returns: Average external molecular similarity between generated and origin lst """ gen_mols, ori_mols = get_mols(smi_lst), get_mols(reference) fps_gen, _ = get_fingerprints(gen_mols) #print(len(smi_lst), len(fps_gen)) fps_ori, _ = get_fingerprints(ori_mols) similarity_maxs = [] neighbours = [] for i in range(len(fps_gen)): similarity_with = [] gen_smi = smi_lst[i] for j in range(len(fps_ori)): similarity_with.append(DataStructs.DiceSimilarity(fps_gen[i], fps_ori[j])) similarity_maxs.append(max(similarity_with)) k = np.argmax(similarity_with) ref_neighbour = similarity_with[k] neighbours.extend([reference[k], ref_neighbour]) assert (len(similarity_maxs) == len(fps_gen)) Dext = np.sum(similarity_maxs)/len(fps_gen) return Dext, neighbours def KL_divergence(gen_arr, reference_arr): """ Args: gen_arr: array of numeric parameters of generated molecules reference_arr: array of original numeric parameters of training molecules Returns: KL-divergence of value_arr against reference_arr """ epsilon = 0.0001 min_val = math.floor(min(min(gen_arr), min(reference_arr))) max_val = math.ceil(max(max(gen_arr), max(reference_arr))) gen_arr_dis = np.histogram(gen_arr, bins=12,range=(min_val, max_val), density=True)[0] + epsilon reference_arr_dis = np.histogram(reference_arr, bins=12, range=(min_val, max_val), density=True)[0] + epsilon entropy = ss.entropy(reference_arr_dis, gen_arr_dis) return entropy def generate_metric_df(): all_exp_df = pd.read_csv('exp_df_merged.csv') all_gen_df = pd.read_csv('novel_sampled_merged.csv') eval_df = pd.DataFrame() eval_df['Group'] = ['all', 'class3', 'prom'] internal_sims = []; external_sims = []; gaps_kls = []; dips_kls= [] for group in ['all', 'class3', 'prom']: gen_smi = all_gen_df[all_gen_df['Label'] == group]['SMILES'].tolist() exp_smi = all_exp_df[all_exp_df['Label'] == group]['SMILES'].tolist() gen_gap = all_gen_df[all_gen_df['Label'] == group]['Gaps'] exp_gap = all_exp_df[all_exp_df['Label'] == group]['gaps'] gen_dip = all_gen_df[all_gen_df['Label'] == group]['Dips'] exp_dip = all_exp_df[all_exp_df['Label'] == group]['dips'] internal_ = internal_sim(gen_smi) internal_sims.append(internal_) external_ , _= external_sim(gen_smi, exp_smi) external_sims.append(external_) gaps_kl = KL_divergence(gen_gap, exp_gap) dips_kl = KL_divergence(gen_dip, exp_dip) gaps_kls.append(gaps_kl) dips_kls.append(dips_kl) print('Internal similarity for group {}: {}'.format(group, internal_)) print('External similarity for group {}: {}'.format(group, external_)) print('KL divergence for H-L gaps for group {}: {}'.format(group, gaps_kl)) print('KL divergence for dips for group {}: {}'.format(group, dips_kl)) eval_df['Internal_similarity'] = internal_sims eval_df['External_similarity'] = external_sims eval_df['KL_gaps'] = gaps_kls eval_df['KL_dips'] = dips_kls return eval_df def find_neighbour(smi, b_lst, n=5): """ get n neighbours (most similar molecules) of smi from b_lst IMPORTANT: all smiles must be valid. Args: smi: target smile representation of molecule b_lst: list of smiles n: number of neighbours to obtain Returns: list of smiles of the n neighbours """ smi_mol, lst_mols = get_mols([smi]), get_mols(b_lst) fps_lst, _ = get_fingerprints(lst_mols) smi_fp, _ = get_fingerprints(smi_mol) assert len(fps_lst) == len(b_lst), "Invalid SMILES representation present." similarity = [] for i in range(len(fps_lst)): tmp_sim = DataStructs.DiceSimilarity(smi_fp[0], fps_lst[i]) similarity.append((b_lst[i], tmp_sim)) sorted_sim = sorted(similarity, key=lambda tup:tup[0]) return sorted_sim[:n] def moltosvg(mol,molSize=(450,150),kekulize=True): mc = Chem.Mol(mol.ToBinary()) if kekulize: try: Chem.Kekulize(mc) except: mc = Chem.Mol(mol.ToBinary()) if not mc.GetNumConformers(): rdDepictor.Compute2DCoords(mc) drawer = rdMolDraw2D.MolDraw2DSVG(molSize[0],molSize[1]) drawer.DrawMolecule(mc) drawer.FinishDrawing() svg = drawer.GetDrawingText() # It seems that the svg renderer used doesn't quite hit the spec. # Here are some fixes to make it work in the notebook, although I think # the underlying issue needs to be resolved at the generation step return svg.replace('svg:','') def get_prom_neighbours(): """ Get the closest neighbours of gen prom molecules in the reference set Returns: """ all_exp_df = pd.read_csv('exp_df_merged.csv') all_gen_df = pd.read_csv('novel_sampled_merged.csv') exp_prom = all_exp_df[all_exp_df['Gaps'] <=2 & all_exp_df['Dips']<=2] if __name__ == '__main__': m1_train =
pd.read_csv('Training')
pandas.read_csv
import numpy as np from numpy.random import randn import pytest from pandas import DataFrame, Series import pandas._testing as tm @pytest.mark.parametrize("name", ["var", "vol", "mean"]) def test_ewma_series(series, name): series_result = getattr(series.ewm(com=10), name)() assert isinstance(series_result, Series) @pytest.mark.parametrize("name", ["var", "vol", "mean"]) def test_ewma_frame(frame, name): frame_result = getattr(frame.ewm(com=10), name)() assert isinstance(frame_result, DataFrame) def test_ewma_adjust(): vals = Series(np.zeros(1000)) vals[5] = 1 result = vals.ewm(span=100, adjust=False).mean().sum() assert np.abs(result - 1) < 1e-2 @pytest.mark.parametrize("adjust", [True, False]) @pytest.mark.parametrize("ignore_na", [True, False]) def test_ewma_cases(adjust, ignore_na): # try adjust/ignore_na args matrix s = Series([1.0, 2.0, 4.0, 8.0]) if adjust: expected = Series([1.0, 1.6, 2.736842, 4.923077]) else: expected = Series([1.0, 1.333333, 2.222222, 4.148148]) result = s.ewm(com=2.0, adjust=adjust, ignore_na=ignore_na).mean() tm.assert_series_equal(result, expected) def test_ewma_nan_handling(): s = Series([1.0] + [np.nan] * 5 + [1.0]) result = s.ewm(com=5).mean() tm.assert_series_equal(result, Series([1.0] * len(s))) s = Series([np.nan] * 2 + [1.0] + [np.nan] * 2 + [1.0]) result = s.ewm(com=5).mean() tm.assert_series_equal(result, Series([np.nan] * 2 + [1.0] * 4)) @pytest.mark.parametrize( "s, adjust, ignore_na, w", [ ( Series([np.nan, 1.0, 101.0]), True, False, [np.nan, (1.0 - (1.0 / (1.0 + 2.0))), 1.0], ), ( Series([np.nan, 1.0, 101.0]), True, True, [np.nan, (1.0 - (1.0 / (1.0 + 2.0))), 1.0], ), ( Series([np.nan, 1.0, 101.0]), False, False, [np.nan, (1.0 - (1.0 / (1.0 + 2.0))), (1.0 / (1.0 + 2.0))], ), ( Series([np.nan, 1.0, 101.0]), False, True, [np.nan, (1.0 - (1.0 / (1.0 + 2.0))), (1.0 / (1.0 + 2.0))], ), ( Series([1.0, np.nan, 101.0]), True, False, [(1.0 - (1.0 / (1.0 + 2.0))) ** 2, np.nan, 1.0], ), (
Series([1.0, np.nan, 101.0])
pandas.Series
# write_Division_Codes_from_Census.py (scripts) # !/usr/bin/env python3 # coding=utf-8 """ Grabs Census Region and Division codes from a static URL. - Writes reshaped file to datapath as csv. """ import pandas as pd import numpy as np from flowsa.settings import datapath url = "https://www2.census.gov/programs-surveys/popest/geographies/2017/state-geocodes-v2017.xlsx" if __name__ == '__main__': # Read directly into a pandas df, raw_df =
pd.read_excel(url)
pandas.read_excel
""" Module for collecting metrics values from GCE datastore generated with the cloud functions located in feature_engineering USAGE: $python3 collect_from_datastore.py This will create a .csv file in the current folder containing the values of all the metrics available in the database for later use in the jupyter notebooks of this section """ import numpy as np import pandas as pd from tqdm import tqdm # [START datastore_build_service] from google.cloud import datastore # Function to create datastore client def create_client(project_id): return datastore.Client(project_id) # [END datastore_build_service] # Function to gather all properties for a kind in a pandas dataframe def get_jobs_df(kind, namespace): query = client.query(kind=kind, namespace=namespace) query_iter = query.fetch() i = 0 number_of_pages = 300 jobs_df = pd.DataFrame() for page in tqdm(query_iter.pages): i += 1 tasks = list(page) page_df = pd.DataFrame(data=tasks) print(i * number_of_pages, ' videos retrieved so far') jobs_df = pd.concat([jobs_df, page_df], axis=0, sort=True) print('Data retrieval completed {} videos retrieved, {} features extracted'.format(jobs_df.shape[0],jobs_df.shape[1])) return jobs_df def initialize(): global client print('Initializing...')
pd.set_option('display.max_colwidth', -1)
pandas.set_option
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Aug 13 23:14:33 2020 @author: arti """ import pandas as pd import seaborn as sns df = pd.read_csv('./titanic.csv') pd.set_option('display.max_columns', 15) rdf = df.drop(['deck', 'embark_town'], axis=1) rdf = rdf.dropna(subset=['age'], how='any', axis=0) most_freq = rdf['embarked'].value_counts(dropna=True).idxmax() rdf['embarked'].fillna(most_freq, inplace=True) ndf = rdf[['survived', 'pclass', 'sex', 'age', 'sibsp', 'parch', 'embarked']] onehot_sex = pd.get_dummies(ndf['sex']) ndf = pd.concat([ndf, onehot_sex], axis=1) onehot_embarked = pd.get_dummies(ndf['embarked'], prefix='town') ndf =
pd.concat([ndf, onehot_embarked], axis=1)
pandas.concat
import pandas as pd import numpy as np import json import argparse import os def get_args(): """ Allows users to input arguments Returns: argparse.ArgumentParser.parse_args Object containing options input by user """ def isFile(string: str): if os.path.isfile(string): return string else: raise parser = argparse.ArgumentParser() parser.description = "Counts the amount of MAG, and MeSH terms in a JSON newline delmited file." parser.add_argument("input_file", type=isFile, help="Path to JSON newline delimited file") return parser.parse_args() def load_dataframe(input_path: str): """ Loads json newline delimited file into a dataframe and trims down to mesh and mag terms Args: input_path: str Full or relative path to the input file Returns: pandas.DataFrame Dataframe containing only mag and mesh terms """ paper_list = [] with open(input_path, "r") as cleaned_file: for line in cleaned_file: paper_list.append(json.loads(line)) dataframe =
pd.DataFrame(paper_list)
pandas.DataFrame
import pandas as pd from numpy import datetime64 from pandas_datareader import data from pandas.core.series import Series from pandas.core.frame import DataFrame from yahoofinancials import YahooFinancials # holding period return in percents def get_holding_period_return(df: DataFrame, start, end, col) -> float: start_price = df.at[pd.to_datetime(start), col] end_price = df.at[pd.to_datetime(end), col] return round((end_price - start_price) * 100 / start_price, 2) # calculates return for the last x days in percents def get_rolling_x_day_return(df: DataFrame, col: str, days: int) -> DataFrame: def f(x: Series): return round((x[-1:] - x[0]) * 100 / x[0], 2) df['Rolling Return'] = df[col].rolling(days).apply(f) return df # Rolling returns rank is based on the # percentile stock's rolling returns fall into. def get_market_timing(df: DataFrame, col: str) -> DataFrame: df['{} Rank'.format(col)] = round(df[col].rank(pct=True) * 100, 2) return df def format_quater(dt: datetime64) -> str: return '{}Q{}'.format(int((dt.month - 1) / 3) + 1, dt.year) # read stock data from yahoo finance and return adjusted cose prices def read_stock_dataframe(start: str, end: str, symbol: str) -> DataFrame: df = data.get_data_yahoo(symbol, start, end) df['Quarter'] = df.index df['Quarter'] = df['Quarter'].apply(format_quater) df = df[['Quarter', 'Adj Close']] return df # return df with the following columns # Quarter, Shares Outstanding, Net Income, Total Sales, Book Value def read_quarter_res(symbol: str) -> DataFrame: df = { 'Quarter': [], 'Book Value': [], 'Net Income': [], 'Total Sales': [], 'Shares Outstanding': [], } stock = YahooFinancials(symbol) res = stock.get_financial_stmts('quarterly', ['income', 'balance']) income = res['incomeStatementHistoryQuarterly'][symbol] balance = res['balanceSheetHistoryQuarterly'][symbol] for dt in [list(d.items())[0][0] for d in income]: dt_income = [x[dt] for x in income if dt in x.keys()][0] dt_balance = [x[dt] for x in balance if dt in x.keys()][0] df['Quarter'].append(format_quater(pd.to_datetime(dt))) df['Book Value'].append(dt_balance['netTangibleAssets']) df['Net Income'].append(dt_income['netIncome']) df['Total Sales'].append(dt_income['totalRevenue']) df['Shares Outstanding'].append(dt_balance['commonStock']) return
pd.DataFrame.from_dict(df)
pandas.DataFrame.from_dict
''' Copyright 2022 Airbus SAS Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' from sos_trades_core.tools.post_processing.post_processing_factory import PostProcessingFactory from sos_trades_core.study_manager.study_manager import StudyManager from os.path import join, dirname from numpy import asarray, arange, array import pandas as pd import numpy as np from sos_trades_core.execution_engine.func_manager.func_manager import FunctionManager from sos_trades_core.execution_engine.func_manager.func_manager_disc import FunctionManagerDisc import matplotlib.pyplot as plt from scipy.interpolate import interp1d def update_dspace_with(dspace_dict, name, value, lower, upper): ''' type(value) has to be ndarray ''' if not isinstance(lower, (list, np.ndarray)): lower = [lower] * len(value) if not isinstance(upper, (list, np.ndarray)): upper = [upper] * len(value) dspace_dict['variable'].append(name) dspace_dict['value'].append(value.tolist()) dspace_dict['lower_bnd'].append(lower) dspace_dict['upper_bnd'].append(upper) dspace_dict['dspace_size'] += len(value) def update_dspace_dict_with(dspace_dict, name, value, lower, upper, activated_elem=None, enable_variable=True): if not isinstance(lower, (list, np.ndarray)): lower = [lower] * len(value) if not isinstance(upper, (list, np.ndarray)): upper = [upper] * len(value) if activated_elem is None: activated_elem = [True] * len(value) dspace_dict[name] = {'value': value, 'lower_bnd': lower, 'upper_bnd': upper, 'enable_variable': enable_variable, 'activated_elem': activated_elem} dspace_dict['dspace_size'] += len(value) class Study(StudyManager): def __init__(self, year_start=2000, year_end=2020, time_step=1, name='', execution_engine=None): super().__init__(__file__, execution_engine=execution_engine) self.study_name = 'usecase' self.macro_name = '.Macroeconomics' self.year_start = year_start self.year_end = year_end self.time_step = time_step self.nb_poles = 8 def setup_usecase(self): setup_data_list = [] years = np.arange(self.year_start, self.year_end + 1, 1) self.nb_per = round(self.year_end - self.year_start + 1) # data dir data_dir = join( dirname(dirname(dirname(dirname(dirname(__file__))))), 'tests', 'data') if self.year_start == 2000 and self.year_end == 2020: data_dir = join( dirname(dirname(dirname(dirname(dirname(__file__))))), 'tests', 'data/sectorization_fitting') #Invest hist_invest = pd.read_csv(join(data_dir, 'hist_invest_sectors.csv')) agri_invest = pd.DataFrame({'years': hist_invest['years'], 'investment': hist_invest['Agriculture']}) services_invest = pd.DataFrame({'years': hist_invest['years'], 'investment': hist_invest['Services']}) indus_invest = pd.DataFrame({'years': hist_invest['years'], 'investment': hist_invest['Industry']}) #Energy hist_energy = pd.read_csv(join(data_dir, 'hist_energy_sect.csv')) agri_energy = pd.DataFrame({'years': hist_energy['years'], 'Total production': hist_energy['Agriculture']}) services_energy = pd.DataFrame({'years': hist_energy['years'], 'Total production': hist_energy['Services']}) indus_energy =
pd.DataFrame({'years': hist_energy['years'], 'Total production': hist_energy['Industry']})
pandas.DataFrame
""" **hep_ml.speedup** is module to obtain formulas with machine learning, which can be applied very fast (with a speed comparable to simple selections), while keeping high quality of classification. In many application (i.e. triggers in HEP) it is pressing to get really fast formula. This module contains tools to prepare formulas, which can be applied with the speed comparable to cuts. Example ------- Let's show how one can use some really heavy classifier and still have fast predictions: >>> from sklearn.ensemble import RandomForestClassifier >>> from hep_ml.speedup import LookupClassifier >>> base_classifier = RandomForestClassifier(n_estimators=1000, max_depth=25) >>> classifier = LookupClassifier(base_estimator=base_classifier, keep_trained_estimator=False) >>> classifier.fit(X, y, sample_weight=sample_weight) Though training takes much time, all predictions are precomputed and saved to lookup table, so you are able to predict millions of events per second using single CPU. >>> classifier.predict_proba(testX) """ from __future__ import division, print_function, absolute_import import numpy import pandas from collections import OrderedDict from sklearn.base import ClassifierMixin, BaseEstimator, clone from .commonutils import to_pandas_dataframe, check_xyw, check_sample_weight, weighted_quantile __author__ = '<NAME>' class LookupClassifier(BaseEstimator, ClassifierMixin): def __init__(self, base_estimator, n_bins=16, max_cells=500000000, keep_trained_estimator=True): """ LookupClassifier splits each of features into bins, trains a base_estimator to use this data. To predict class for new observation, results of base_estimator are kept for all possible combinations of bins, and saved together :param n_bins: * int: how many bins to use for each axis * dict: feature_name -> int, specialize how many bins to use for each axis * dict: feature_name -> list of floats, set manually edges of bins By default, the (weighted) quantiles are used to compute bin edges. :type n_bins: int | dict :param int max_cells: raise error if lookup table will have more items. :param bool keep_trained_estimator: if True, trained estimator will be saved. See also: this idea is used inside LHCb triggers, see <NAME>, <NAME>, 'Bonsai BDT' Resulting formula is very simple and can be rewritten in other language or environment (C++, CUDA, etc). """ self.base_estimator = base_estimator self.n_bins = n_bins self.max_cells = max_cells self.keep_trained_estimator = keep_trained_estimator def fit(self, X, y, sample_weight=None): """Train a classifier and collect predictions for all possible combinations. :param X: pandas.DataFrame or numpy.array with data of shape [n_samples, n_features] :param y: array with labels of shape [n_samples] :param sample_weight: None or array of shape [n_samples] with weights of events :return: self """ self.classes_ = numpy.unique(y) X, y, normed_weights = check_xyw(X, y, sample_weight=sample_weight, classification=True) X = to_pandas_dataframe(X) normed_weights = check_sample_weight(y, sample_weight=normed_weights, normalize_by_class=True, normalize=True) self.bin_edges = self._compute_bin_edges(X, normed_weights=normed_weights) n_parameter_combinations = numpy.prod([len(bin_edge) + 1 for name, bin_edge in self.bin_edges.items()]) assert n_parameter_combinations <= self.max_cells, \ 'the total size of lookup table exceeds {}, ' \ 'reduce n_bins or number of features in use'.format(self.max_cells) transformed_data = self.transform(X) trained_estimator = clone(self.base_estimator) fit_params = {} if sample_weight is not None: fit_params['sample_weights'] = sample_weight trained_estimator.fit(transformed_data, y, **fit_params) all_lookup_indices = numpy.arange(int(n_parameter_combinations)) all_combinations = self.convert_lookup_index_to_bins(all_lookup_indices) self._lookup_table = trained_estimator.predict_proba(all_combinations) if self.keep_trained_estimator: self.trained_estimator = trained_estimator return self def _compute_bin_edges(self, X, normed_weights): """ Compute edges of bins, weighted quantiles are used, """ bins_over_axis = OrderedDict() for column in X.columns: if isinstance(self.n_bins, int): bins_over_axis[column] = self.n_bins else: bins_over_axis[column] = self.n_bins[column] bin_edges = OrderedDict() for column, column_bins in bins_over_axis.items(): if isinstance(column_bins, int): quantiles = numpy.linspace(0., 1., column_bins + 1)[1:-1] bin_edges[column] = weighted_quantile(X[column], quantiles=quantiles, sample_weight=normed_weights) else: bin_edges[column] = numpy.array(list(column_bins)) return bin_edges def convert_bins_to_lookup_index(self, bins_indices): """ :param bins_indices: numpy.array of shape [n_samples, n_columns], filled with indices of bins. :return: numpy.array of shape [n_samples] with corresponding index in lookup table """ lookup_indices = numpy.zeros(len(bins_indices), dtype=int) bins_indices = numpy.array(bins_indices) assert bins_indices.shape[1] == len(self.bin_edges) for i, (column_name, bin_edges) in enumerate(self.bin_edges.items()): lookup_indices *= len(bin_edges) + 1 lookup_indices += bins_indices[:, i] return lookup_indices def convert_lookup_index_to_bins(self, lookup_indices): """ :param lookup_indices: array of shape [n_samples] with positions at lookup table :return: array of shape [n_samples, n_features] with indices of bins. """ result = numpy.zeros([len(lookup_indices), len(self.bin_edges)], dtype='uint8') for i, (column_name, bin_edges) in list(enumerate(self.bin_edges.items()))[::-1]: n_columns = len(bin_edges) + 1 result[:, i] = lookup_indices % n_columns lookup_indices = lookup_indices // n_columns return result def transform(self, X): """Convert data to bin indices. :param X: pandas.DataFrame or numpy.array with data :return: pandas.DataFrame, where each column is replaced with index of bin """ X = to_pandas_dataframe(X) assert list(X.columns) == list(self.bin_edges.keys()), 'passed dataset with wrong columns' result = numpy.zeros(X.shape, dtype='uint8') for i, column in enumerate(X.columns): edges = self.bin_edges[column] result[:, i] = numpy.searchsorted(edges, X[column]) return
pandas.DataFrame(result, columns=X.columns)
pandas.DataFrame
import pytest from pandas._libs.tslibs.frequencies import INVALID_FREQ_ERR_MSG, _period_code_map from pandas.errors import OutOfBoundsDatetime from pandas import Period, Timestamp, offsets class TestFreqConversion: """Test frequency conversion of date objects""" @pytest.mark.parametrize("freq", ["A", "Q", "M", "W", "B", "D"]) def test_asfreq_near_zero(self, freq): # GH#19643, GH#19650 per = Period("0001-01-01", freq=freq) tup1 = (per.year, per.hour, per.day) prev = per - 1 assert prev.ordinal == per.ordinal - 1 tup2 = (prev.year, prev.month, prev.day) assert tup2 < tup1 def test_asfreq_near_zero_weekly(self): # GH#19834 per1 = Period("0001-01-01", "D") + 6 per2 = Period("0001-01-01", "D") - 6 week1 = per1.asfreq("W") week2 = per2.asfreq("W") assert week1 != week2 assert week1.asfreq("D", "E") >= per1 assert week2.asfreq("D", "S") <= per2 def test_to_timestamp_out_of_bounds(self): # GH#19643, used to incorrectly give Timestamp in 1754 per = Period("0001-01-01", freq="B") msg = "Out of bounds nanosecond timestamp" with pytest.raises(OutOfBoundsDatetime, match=msg): per.to_timestamp() def test_asfreq_corner(self): val = Period(freq="A", year=2007) result1 = val.asfreq("5t") result2 = val.asfreq("t") expected = Period("2007-12-31 23:59", freq="t") assert result1.ordinal == expected.ordinal assert result1.freqstr == "5T" assert result2.ordinal == expected.ordinal assert result2.freqstr == "T" def test_conv_annual(self): # frequency conversion tests: from Annual Frequency ival_A = Period(freq="A", year=2007) ival_AJAN = Period(freq="A-JAN", year=2007) ival_AJUN = Period(freq="A-JUN", year=2007) ival_ANOV = Period(freq="A-NOV", year=2007) ival_A_to_Q_start = Period(freq="Q", year=2007, quarter=1) ival_A_to_Q_end = Period(freq="Q", year=2007, quarter=4) ival_A_to_M_start = Period(freq="M", year=2007, month=1) ival_A_to_M_end = Period(freq="M", year=2007, month=12) ival_A_to_W_start = Period(freq="W", year=2007, month=1, day=1) ival_A_to_W_end = Period(freq="W", year=2007, month=12, day=31) ival_A_to_B_start = Period(freq="B", year=2007, month=1, day=1) ival_A_to_B_end = Period(freq="B", year=2007, month=12, day=31) ival_A_to_D_start = Period(freq="D", year=2007, month=1, day=1) ival_A_to_D_end = Period(freq="D", year=2007, month=12, day=31) ival_A_to_H_start = Period(freq="H", year=2007, month=1, day=1, hour=0) ival_A_to_H_end = Period(freq="H", year=2007, month=12, day=31, hour=23) ival_A_to_T_start = Period( freq="Min", year=2007, month=1, day=1, hour=0, minute=0 ) ival_A_to_T_end = Period( freq="Min", year=2007, month=12, day=31, hour=23, minute=59 ) ival_A_to_S_start = Period( freq="S", year=2007, month=1, day=1, hour=0, minute=0, second=0 ) ival_A_to_S_end = Period( freq="S", year=2007, month=12, day=31, hour=23, minute=59, second=59 ) ival_AJAN_to_D_end = Period(freq="D", year=2007, month=1, day=31) ival_AJAN_to_D_start = Period(freq="D", year=2006, month=2, day=1) ival_AJUN_to_D_end = Period(freq="D", year=2007, month=6, day=30) ival_AJUN_to_D_start = Period(freq="D", year=2006, month=7, day=1) ival_ANOV_to_D_end = Period(freq="D", year=2007, month=11, day=30) ival_ANOV_to_D_start = Period(freq="D", year=2006, month=12, day=1) assert ival_A.asfreq("Q", "S") == ival_A_to_Q_start assert ival_A.asfreq("Q", "e") == ival_A_to_Q_end assert ival_A.asfreq("M", "s") == ival_A_to_M_start assert ival_A.asfreq("M", "E") == ival_A_to_M_end assert ival_A.asfreq("W", "S") == ival_A_to_W_start assert ival_A.asfreq("W", "E") == ival_A_to_W_end assert ival_A.asfreq("B", "S") == ival_A_to_B_start assert ival_A.asfreq("B", "E") == ival_A_to_B_end assert ival_A.asfreq("D", "S") == ival_A_to_D_start assert ival_A.asfreq("D", "E") == ival_A_to_D_end assert ival_A.asfreq("H", "S") == ival_A_to_H_start assert ival_A.asfreq("H", "E") == ival_A_to_H_end assert ival_A.asfreq("min", "S") == ival_A_to_T_start assert ival_A.asfreq("min", "E") == ival_A_to_T_end assert ival_A.asfreq("T", "S") == ival_A_to_T_start assert ival_A.asfreq("T", "E") == ival_A_to_T_end assert ival_A.asfreq("S", "S") == ival_A_to_S_start assert ival_A.asfreq("S", "E") == ival_A_to_S_end assert ival_AJAN.asfreq("D", "S") == ival_AJAN_to_D_start assert ival_AJAN.asfreq("D", "E") == ival_AJAN_to_D_end assert ival_AJUN.asfreq("D", "S") == ival_AJUN_to_D_start assert ival_AJUN.asfreq("D", "E") == ival_AJUN_to_D_end assert ival_ANOV.asfreq("D", "S") == ival_ANOV_to_D_start assert ival_ANOV.asfreq("D", "E") == ival_ANOV_to_D_end assert ival_A.asfreq("A") == ival_A def test_conv_quarterly(self): # frequency conversion tests: from Quarterly Frequency ival_Q = Period(freq="Q", year=2007, quarter=1) ival_Q_end_of_year = Period(freq="Q", year=2007, quarter=4) ival_QEJAN = Period(freq="Q-JAN", year=2007, quarter=1) ival_QEJUN = Period(freq="Q-JUN", year=2007, quarter=1) ival_Q_to_A = Period(freq="A", year=2007) ival_Q_to_M_start = Period(freq="M", year=2007, month=1) ival_Q_to_M_end = Period(freq="M", year=2007, month=3) ival_Q_to_W_start = Period(freq="W", year=2007, month=1, day=1) ival_Q_to_W_end = Period(freq="W", year=2007, month=3, day=31) ival_Q_to_B_start = Period(freq="B", year=2007, month=1, day=1) ival_Q_to_B_end = Period(freq="B", year=2007, month=3, day=30) ival_Q_to_D_start = Period(freq="D", year=2007, month=1, day=1) ival_Q_to_D_end = Period(freq="D", year=2007, month=3, day=31) ival_Q_to_H_start = Period(freq="H", year=2007, month=1, day=1, hour=0) ival_Q_to_H_end = Period(freq="H", year=2007, month=3, day=31, hour=23) ival_Q_to_T_start = Period( freq="Min", year=2007, month=1, day=1, hour=0, minute=0 ) ival_Q_to_T_end = Period( freq="Min", year=2007, month=3, day=31, hour=23, minute=59 ) ival_Q_to_S_start = Period( freq="S", year=2007, month=1, day=1, hour=0, minute=0, second=0 ) ival_Q_to_S_end = Period( freq="S", year=2007, month=3, day=31, hour=23, minute=59, second=59 ) ival_QEJAN_to_D_start = Period(freq="D", year=2006, month=2, day=1) ival_QEJAN_to_D_end = Period(freq="D", year=2006, month=4, day=30) ival_QEJUN_to_D_start = Period(freq="D", year=2006, month=7, day=1) ival_QEJUN_to_D_end = Period(freq="D", year=2006, month=9, day=30) assert ival_Q.asfreq("A") == ival_Q_to_A assert ival_Q_end_of_year.asfreq("A") == ival_Q_to_A assert ival_Q.asfreq("M", "S") == ival_Q_to_M_start assert ival_Q.asfreq("M", "E") == ival_Q_to_M_end assert ival_Q.asfreq("W", "S") == ival_Q_to_W_start assert ival_Q.asfreq("W", "E") == ival_Q_to_W_end assert ival_Q.asfreq("B", "S") == ival_Q_to_B_start assert ival_Q.asfreq("B", "E") == ival_Q_to_B_end assert ival_Q.asfreq("D", "S") == ival_Q_to_D_start assert ival_Q.asfreq("D", "E") == ival_Q_to_D_end assert ival_Q.asfreq("H", "S") == ival_Q_to_H_start assert ival_Q.asfreq("H", "E") == ival_Q_to_H_end assert ival_Q.asfreq("Min", "S") == ival_Q_to_T_start assert ival_Q.asfreq("Min", "E") == ival_Q_to_T_end assert ival_Q.asfreq("S", "S") == ival_Q_to_S_start assert ival_Q.asfreq("S", "E") == ival_Q_to_S_end assert ival_QEJAN.asfreq("D", "S") == ival_QEJAN_to_D_start assert ival_QEJAN.asfreq("D", "E") == ival_QEJAN_to_D_end assert ival_QEJUN.asfreq("D", "S") == ival_QEJUN_to_D_start assert ival_QEJUN.asfreq("D", "E") == ival_QEJUN_to_D_end assert ival_Q.asfreq("Q") == ival_Q def test_conv_monthly(self): # frequency conversion tests: from Monthly Frequency ival_M = Period(freq="M", year=2007, month=1) ival_M_end_of_year = Period(freq="M", year=2007, month=12) ival_M_end_of_quarter = Period(freq="M", year=2007, month=3) ival_M_to_A = Period(freq="A", year=2007) ival_M_to_Q = Period(freq="Q", year=2007, quarter=1) ival_M_to_W_start = Period(freq="W", year=2007, month=1, day=1) ival_M_to_W_end = Period(freq="W", year=2007, month=1, day=31) ival_M_to_B_start = Period(freq="B", year=2007, month=1, day=1) ival_M_to_B_end = Period(freq="B", year=2007, month=1, day=31) ival_M_to_D_start = Period(freq="D", year=2007, month=1, day=1) ival_M_to_D_end = Period(freq="D", year=2007, month=1, day=31) ival_M_to_H_start = Period(freq="H", year=2007, month=1, day=1, hour=0) ival_M_to_H_end = Period(freq="H", year=2007, month=1, day=31, hour=23) ival_M_to_T_start = Period( freq="Min", year=2007, month=1, day=1, hour=0, minute=0 ) ival_M_to_T_end = Period( freq="Min", year=2007, month=1, day=31, hour=23, minute=59 ) ival_M_to_S_start = Period( freq="S", year=2007, month=1, day=1, hour=0, minute=0, second=0 ) ival_M_to_S_end = Period( freq="S", year=2007, month=1, day=31, hour=23, minute=59, second=59 ) assert ival_M.asfreq("A") == ival_M_to_A assert ival_M_end_of_year.asfreq("A") == ival_M_to_A assert ival_M.asfreq("Q") == ival_M_to_Q assert ival_M_end_of_quarter.asfreq("Q") == ival_M_to_Q assert ival_M.asfreq("W", "S") == ival_M_to_W_start assert ival_M.asfreq("W", "E") == ival_M_to_W_end assert ival_M.asfreq("B", "S") == ival_M_to_B_start assert ival_M.asfreq("B", "E") == ival_M_to_B_end assert ival_M.asfreq("D", "S") == ival_M_to_D_start assert ival_M.asfreq("D", "E") == ival_M_to_D_end assert ival_M.asfreq("H", "S") == ival_M_to_H_start assert ival_M.asfreq("H", "E") == ival_M_to_H_end assert ival_M.asfreq("Min", "S") == ival_M_to_T_start assert ival_M.asfreq("Min", "E") == ival_M_to_T_end assert ival_M.asfreq("S", "S") == ival_M_to_S_start assert ival_M.asfreq("S", "E") == ival_M_to_S_end assert ival_M.asfreq("M") == ival_M def test_conv_weekly(self): # frequency conversion tests: from Weekly Frequency ival_W = Period(freq="W", year=2007, month=1, day=1) ival_WSUN = Period(freq="W", year=2007, month=1, day=7) ival_WSAT = Period(freq="W-SAT", year=2007, month=1, day=6) ival_WFRI = Period(freq="W-FRI", year=2007, month=1, day=5) ival_WTHU = Period(freq="W-THU", year=2007, month=1, day=4) ival_WWED = Period(freq="W-WED", year=2007, month=1, day=3) ival_WTUE = Period(freq="W-TUE", year=2007, month=1, day=2) ival_WMON = Period(freq="W-MON", year=2007, month=1, day=1) ival_WSUN_to_D_start = Period(freq="D", year=2007, month=1, day=1) ival_WSUN_to_D_end = Period(freq="D", year=2007, month=1, day=7) ival_WSAT_to_D_start = Period(freq="D", year=2006, month=12, day=31) ival_WSAT_to_D_end = Period(freq="D", year=2007, month=1, day=6) ival_WFRI_to_D_start = Period(freq="D", year=2006, month=12, day=30) ival_WFRI_to_D_end = Period(freq="D", year=2007, month=1, day=5) ival_WTHU_to_D_start = Period(freq="D", year=2006, month=12, day=29) ival_WTHU_to_D_end = Period(freq="D", year=2007, month=1, day=4) ival_WWED_to_D_start = Period(freq="D", year=2006, month=12, day=28) ival_WWED_to_D_end = Period(freq="D", year=2007, month=1, day=3) ival_WTUE_to_D_start = Period(freq="D", year=2006, month=12, day=27) ival_WTUE_to_D_end = Period(freq="D", year=2007, month=1, day=2) ival_WMON_to_D_start = Period(freq="D", year=2006, month=12, day=26) ival_WMON_to_D_end = Period(freq="D", year=2007, month=1, day=1) ival_W_end_of_year = Period(freq="W", year=2007, month=12, day=31) ival_W_end_of_quarter = Period(freq="W", year=2007, month=3, day=31) ival_W_end_of_month = Period(freq="W", year=2007, month=1, day=31) ival_W_to_A = Period(freq="A", year=2007) ival_W_to_Q = Period(freq="Q", year=2007, quarter=1) ival_W_to_M = Period(freq="M", year=2007, month=1) if Period(freq="D", year=2007, month=12, day=31).weekday == 6: ival_W_to_A_end_of_year = Period(freq="A", year=2007) else: ival_W_to_A_end_of_year = Period(freq="A", year=2008) if Period(freq="D", year=2007, month=3, day=31).weekday == 6: ival_W_to_Q_end_of_quarter = Period(freq="Q", year=2007, quarter=1) else: ival_W_to_Q_end_of_quarter = Period(freq="Q", year=2007, quarter=2) if Period(freq="D", year=2007, month=1, day=31).weekday == 6: ival_W_to_M_end_of_month = Period(freq="M", year=2007, month=1) else: ival_W_to_M_end_of_month = Period(freq="M", year=2007, month=2) ival_W_to_B_start = Period(freq="B", year=2007, month=1, day=1) ival_W_to_B_end = Period(freq="B", year=2007, month=1, day=5) ival_W_to_D_start = Period(freq="D", year=2007, month=1, day=1) ival_W_to_D_end = Period(freq="D", year=2007, month=1, day=7) ival_W_to_H_start = Period(freq="H", year=2007, month=1, day=1, hour=0) ival_W_to_H_end = Period(freq="H", year=2007, month=1, day=7, hour=23) ival_W_to_T_start = Period( freq="Min", year=2007, month=1, day=1, hour=0, minute=0 ) ival_W_to_T_end = Period( freq="Min", year=2007, month=1, day=7, hour=23, minute=59 ) ival_W_to_S_start = Period( freq="S", year=2007, month=1, day=1, hour=0, minute=0, second=0 ) ival_W_to_S_end = Period( freq="S", year=2007, month=1, day=7, hour=23, minute=59, second=59 ) assert ival_W.asfreq("A") == ival_W_to_A assert ival_W_end_of_year.asfreq("A") == ival_W_to_A_end_of_year assert ival_W.asfreq("Q") == ival_W_to_Q assert ival_W_end_of_quarter.asfreq("Q") == ival_W_to_Q_end_of_quarter assert ival_W.asfreq("M") == ival_W_to_M assert ival_W_end_of_month.asfreq("M") == ival_W_to_M_end_of_month assert ival_W.asfreq("B", "S") == ival_W_to_B_start assert ival_W.asfreq("B", "E") == ival_W_to_B_end assert ival_W.asfreq("D", "S") == ival_W_to_D_start assert ival_W.asfreq("D", "E") == ival_W_to_D_end assert ival_WSUN.asfreq("D", "S") == ival_WSUN_to_D_start assert ival_WSUN.asfreq("D", "E") == ival_WSUN_to_D_end assert ival_WSAT.asfreq("D", "S") == ival_WSAT_to_D_start assert ival_WSAT.asfreq("D", "E") == ival_WSAT_to_D_end assert ival_WFRI.asfreq("D", "S") == ival_WFRI_to_D_start assert ival_WFRI.asfreq("D", "E") == ival_WFRI_to_D_end assert ival_WTHU.asfreq("D", "S") == ival_WTHU_to_D_start assert ival_WTHU.asfreq("D", "E") == ival_WTHU_to_D_end assert ival_WWED.asfreq("D", "S") == ival_WWED_to_D_start assert ival_WWED.asfreq("D", "E") == ival_WWED_to_D_end assert ival_WTUE.asfreq("D", "S") == ival_WTUE_to_D_start assert ival_WTUE.asfreq("D", "E") == ival_WTUE_to_D_end assert ival_WMON.asfreq("D", "S") == ival_WMON_to_D_start assert ival_WMON.asfreq("D", "E") == ival_WMON_to_D_end assert ival_W.asfreq("H", "S") == ival_W_to_H_start assert ival_W.asfreq("H", "E") == ival_W_to_H_end assert ival_W.asfreq("Min", "S") == ival_W_to_T_start assert ival_W.asfreq("Min", "E") == ival_W_to_T_end assert ival_W.asfreq("S", "S") == ival_W_to_S_start assert ival_W.asfreq("S", "E") == ival_W_to_S_end assert ival_W.asfreq("W") == ival_W msg = INVALID_FREQ_ERR_MSG with pytest.raises(ValueError, match=msg): ival_W.asfreq("WK") def test_conv_weekly_legacy(self): # frequency conversion tests: from Weekly Frequency msg = INVALID_FREQ_ERR_MSG with pytest.raises(ValueError, match=msg): Period(freq="WK", year=2007, month=1, day=1) with pytest.raises(ValueError, match=msg): Period(freq="WK-SAT", year=2007, month=1, day=6) with pytest.raises(ValueError, match=msg): Period(freq="WK-FRI", year=2007, month=1, day=5) with pytest.raises(ValueError, match=msg): Period(freq="WK-THU", year=2007, month=1, day=4) with pytest.raises(ValueError, match=msg): Period(freq="WK-WED", year=2007, month=1, day=3) with pytest.raises(ValueError, match=msg): Period(freq="WK-TUE", year=2007, month=1, day=2) with pytest.raises(ValueError, match=msg): Period(freq="WK-MON", year=2007, month=1, day=1) def test_conv_business(self): # frequency conversion tests: from Business Frequency" ival_B = Period(freq="B", year=2007, month=1, day=1) ival_B_end_of_year = Period(freq="B", year=2007, month=12, day=31) ival_B_end_of_quarter = Period(freq="B", year=2007, month=3, day=30) ival_B_end_of_month = Period(freq="B", year=2007, month=1, day=31) ival_B_end_of_week = Period(freq="B", year=2007, month=1, day=5) ival_B_to_A = Period(freq="A", year=2007) ival_B_to_Q = Period(freq="Q", year=2007, quarter=1) ival_B_to_M = Period(freq="M", year=2007, month=1) ival_B_to_W = Period(freq="W", year=2007, month=1, day=7) ival_B_to_D = Period(freq="D", year=2007, month=1, day=1) ival_B_to_H_start = Period(freq="H", year=2007, month=1, day=1, hour=0) ival_B_to_H_end = Period(freq="H", year=2007, month=1, day=1, hour=23) ival_B_to_T_start = Period( freq="Min", year=2007, month=1, day=1, hour=0, minute=0 ) ival_B_to_T_end = Period( freq="Min", year=2007, month=1, day=1, hour=23, minute=59 ) ival_B_to_S_start = Period( freq="S", year=2007, month=1, day=1, hour=0, minute=0, second=0 ) ival_B_to_S_end = Period( freq="S", year=2007, month=1, day=1, hour=23, minute=59, second=59 ) assert ival_B.asfreq("A") == ival_B_to_A assert ival_B_end_of_year.asfreq("A") == ival_B_to_A assert ival_B.asfreq("Q") == ival_B_to_Q assert ival_B_end_of_quarter.asfreq("Q") == ival_B_to_Q assert ival_B.asfreq("M") == ival_B_to_M assert ival_B_end_of_month.asfreq("M") == ival_B_to_M assert ival_B.asfreq("W") == ival_B_to_W assert ival_B_end_of_week.asfreq("W") == ival_B_to_W assert ival_B.asfreq("D") == ival_B_to_D assert ival_B.asfreq("H", "S") == ival_B_to_H_start assert ival_B.asfreq("H", "E") == ival_B_to_H_end assert ival_B.asfreq("Min", "S") == ival_B_to_T_start assert ival_B.asfreq("Min", "E") == ival_B_to_T_end assert ival_B.asfreq("S", "S") == ival_B_to_S_start assert ival_B.asfreq("S", "E") == ival_B_to_S_end assert ival_B.asfreq("B") == ival_B def test_conv_daily(self): # frequency conversion tests: from Business Frequency" ival_D = Period(freq="D", year=2007, month=1, day=1) ival_D_end_of_year = Period(freq="D", year=2007, month=12, day=31) ival_D_end_of_quarter = Period(freq="D", year=2007, month=3, day=31) ival_D_end_of_month = Period(freq="D", year=2007, month=1, day=31) ival_D_end_of_week = Period(freq="D", year=2007, month=1, day=7) ival_D_friday = Period(freq="D", year=2007, month=1, day=5) ival_D_saturday = Period(freq="D", year=2007, month=1, day=6) ival_D_sunday = Period(freq="D", year=2007, month=1, day=7) # TODO: unused? # ival_D_monday = Period(freq='D', year=2007, month=1, day=8) ival_B_friday = Period(freq="B", year=2007, month=1, day=5) ival_B_monday = Period(freq="B", year=2007, month=1, day=8) ival_D_to_A = Period(freq="A", year=2007) ival_Deoq_to_AJAN = Period(freq="A-JAN", year=2008) ival_Deoq_to_AJUN = Period(freq="A-JUN", year=2007) ival_Deoq_to_ADEC = Period(freq="A-DEC", year=2007) ival_D_to_QEJAN = Period(freq="Q-JAN", year=2007, quarter=4) ival_D_to_QEJUN = Period(freq="Q-JUN", year=2007, quarter=3) ival_D_to_QEDEC = Period(freq="Q-DEC", year=2007, quarter=1) ival_D_to_M = Period(freq="M", year=2007, month=1) ival_D_to_W = Period(freq="W", year=2007, month=1, day=7) ival_D_to_H_start = Period(freq="H", year=2007, month=1, day=1, hour=0) ival_D_to_H_end = Period(freq="H", year=2007, month=1, day=1, hour=23) ival_D_to_T_start = Period( freq="Min", year=2007, month=1, day=1, hour=0, minute=0 ) ival_D_to_T_end = Period( freq="Min", year=2007, month=1, day=1, hour=23, minute=59 ) ival_D_to_S_start = Period( freq="S", year=2007, month=1, day=1, hour=0, minute=0, second=0 ) ival_D_to_S_end = Period( freq="S", year=2007, month=1, day=1, hour=23, minute=59, second=59 ) assert ival_D.asfreq("A") == ival_D_to_A assert ival_D_end_of_quarter.asfreq("A-JAN") == ival_Deoq_to_AJAN assert ival_D_end_of_quarter.asfreq("A-JUN") == ival_Deoq_to_AJUN assert ival_D_end_of_quarter.asfreq("A-DEC") == ival_Deoq_to_ADEC assert ival_D_end_of_year.asfreq("A") == ival_D_to_A assert ival_D_end_of_quarter.asfreq("Q") == ival_D_to_QEDEC assert ival_D.asfreq("Q-JAN") == ival_D_to_QEJAN assert ival_D.asfreq("Q-JUN") == ival_D_to_QEJUN assert ival_D.asfreq("Q-DEC") == ival_D_to_QEDEC assert ival_D.asfreq("M") == ival_D_to_M assert ival_D_end_of_month.asfreq("M") == ival_D_to_M assert ival_D.asfreq("W") == ival_D_to_W assert ival_D_end_of_week.asfreq("W") == ival_D_to_W assert ival_D_friday.asfreq("B") == ival_B_friday assert ival_D_saturday.asfreq("B", "S") == ival_B_friday assert ival_D_saturday.asfreq("B", "E") == ival_B_monday assert ival_D_sunday.asfreq("B", "S") == ival_B_friday assert ival_D_sunday.asfreq("B", "E") == ival_B_monday assert ival_D.asfreq("H", "S") == ival_D_to_H_start assert ival_D.asfreq("H", "E") == ival_D_to_H_end assert ival_D.asfreq("Min", "S") == ival_D_to_T_start assert ival_D.asfreq("Min", "E") == ival_D_to_T_end assert ival_D.asfreq("S", "S") == ival_D_to_S_start assert ival_D.asfreq("S", "E") == ival_D_to_S_end assert ival_D.asfreq("D") == ival_D def test_conv_hourly(self): # frequency conversion tests: from Hourly Frequency" ival_H = Period(freq="H", year=2007, month=1, day=1, hour=0) ival_H_end_of_year = Period(freq="H", year=2007, month=12, day=31, hour=23) ival_H_end_of_quarter = Period(freq="H", year=2007, month=3, day=31, hour=23) ival_H_end_of_month = Period(freq="H", year=2007, month=1, day=31, hour=23) ival_H_end_of_week = Period(freq="H", year=2007, month=1, day=7, hour=23) ival_H_end_of_day = Period(freq="H", year=2007, month=1, day=1, hour=23) ival_H_end_of_bus = Period(freq="H", year=2007, month=1, day=1, hour=23) ival_H_to_A = Period(freq="A", year=2007) ival_H_to_Q = Period(freq="Q", year=2007, quarter=1) ival_H_to_M = Period(freq="M", year=2007, month=1) ival_H_to_W = Period(freq="W", year=2007, month=1, day=7) ival_H_to_D = Period(freq="D", year=2007, month=1, day=1) ival_H_to_B = Period(freq="B", year=2007, month=1, day=1) ival_H_to_T_start = Period( freq="Min", year=2007, month=1, day=1, hour=0, minute=0 ) ival_H_to_T_end = Period( freq="Min", year=2007, month=1, day=1, hour=0, minute=59 ) ival_H_to_S_start = Period( freq="S", year=2007, month=1, day=1, hour=0, minute=0, second=0 ) ival_H_to_S_end = Period( freq="S", year=2007, month=1, day=1, hour=0, minute=59, second=59 ) assert ival_H.asfreq("A") == ival_H_to_A assert ival_H_end_of_year.asfreq("A") == ival_H_to_A assert ival_H.asfreq("Q") == ival_H_to_Q assert ival_H_end_of_quarter.asfreq("Q") == ival_H_to_Q assert ival_H.asfreq("M") == ival_H_to_M assert ival_H_end_of_month.asfreq("M") == ival_H_to_M assert ival_H.asfreq("W") == ival_H_to_W assert ival_H_end_of_week.asfreq("W") == ival_H_to_W assert ival_H.asfreq("D") == ival_H_to_D assert ival_H_end_of_day.asfreq("D") == ival_H_to_D assert ival_H.asfreq("B") == ival_H_to_B assert ival_H_end_of_bus.asfreq("B") == ival_H_to_B assert ival_H.asfreq("Min", "S") == ival_H_to_T_start assert ival_H.asfreq("Min", "E") == ival_H_to_T_end assert ival_H.asfreq("S", "S") == ival_H_to_S_start assert ival_H.asfreq("S", "E") == ival_H_to_S_end assert ival_H.asfreq("H") == ival_H def test_conv_minutely(self): # frequency conversion tests: from Minutely Frequency" ival_T = Period(freq="Min", year=2007, month=1, day=1, hour=0, minute=0) ival_T_end_of_year = Period( freq="Min", year=2007, month=12, day=31, hour=23, minute=59 ) ival_T_end_of_quarter = Period( freq="Min", year=2007, month=3, day=31, hour=23, minute=59 ) ival_T_end_of_month = Period( freq="Min", year=2007, month=1, day=31, hour=23, minute=59 ) ival_T_end_of_week = Period( freq="Min", year=2007, month=1, day=7, hour=23, minute=59 ) ival_T_end_of_day = Period( freq="Min", year=2007, month=1, day=1, hour=23, minute=59 ) ival_T_end_of_bus = Period( freq="Min", year=2007, month=1, day=1, hour=23, minute=59 ) ival_T_end_of_hour = Period( freq="Min", year=2007, month=1, day=1, hour=0, minute=59 ) ival_T_to_A = Period(freq="A", year=2007) ival_T_to_Q = Period(freq="Q", year=2007, quarter=1) ival_T_to_M = Period(freq="M", year=2007, month=1) ival_T_to_W = Period(freq="W", year=2007, month=1, day=7) ival_T_to_D = Period(freq="D", year=2007, month=1, day=1) ival_T_to_B = Period(freq="B", year=2007, month=1, day=1) ival_T_to_H = Period(freq="H", year=2007, month=1, day=1, hour=0) ival_T_to_S_start = Period( freq="S", year=2007, month=1, day=1, hour=0, minute=0, second=0 ) ival_T_to_S_end = Period( freq="S", year=2007, month=1, day=1, hour=0, minute=0, second=59 ) assert ival_T.asfreq("A") == ival_T_to_A assert ival_T_end_of_year.asfreq("A") == ival_T_to_A assert ival_T.asfreq("Q") == ival_T_to_Q assert ival_T_end_of_quarter.asfreq("Q") == ival_T_to_Q assert ival_T.asfreq("M") == ival_T_to_M assert ival_T_end_of_month.asfreq("M") == ival_T_to_M assert ival_T.asfreq("W") == ival_T_to_W assert ival_T_end_of_week.asfreq("W") == ival_T_to_W assert ival_T.asfreq("D") == ival_T_to_D assert ival_T_end_of_day.asfreq("D") == ival_T_to_D assert ival_T.asfreq("B") == ival_T_to_B assert ival_T_end_of_bus.asfreq("B") == ival_T_to_B assert ival_T.asfreq("H") == ival_T_to_H assert ival_T_end_of_hour.asfreq("H") == ival_T_to_H assert ival_T.asfreq("S", "S") == ival_T_to_S_start assert ival_T.asfreq("S", "E") == ival_T_to_S_end assert ival_T.asfreq("Min") == ival_T def test_conv_secondly(self): # frequency conversion tests: from Secondly Frequency" ival_S = Period(freq="S", year=2007, month=1, day=1, hour=0, minute=0, second=0) ival_S_end_of_year = Period( freq="S", year=2007, month=12, day=31, hour=23, minute=59, second=59 ) ival_S_end_of_quarter = Period( freq="S", year=2007, month=3, day=31, hour=23, minute=59, second=59 ) ival_S_end_of_month = Period( freq="S", year=2007, month=1, day=31, hour=23, minute=59, second=59 ) ival_S_end_of_week = Period( freq="S", year=2007, month=1, day=7, hour=23, minute=59, second=59 ) ival_S_end_of_day = Period( freq="S", year=2007, month=1, day=1, hour=23, minute=59, second=59 ) ival_S_end_of_bus = Period( freq="S", year=2007, month=1, day=1, hour=23, minute=59, second=59 ) ival_S_end_of_hour = Period( freq="S", year=2007, month=1, day=1, hour=0, minute=59, second=59 ) ival_S_end_of_minute = Period( freq="S", year=2007, month=1, day=1, hour=0, minute=0, second=59 ) ival_S_to_A = Period(freq="A", year=2007) ival_S_to_Q = Period(freq="Q", year=2007, quarter=1) ival_S_to_M = Period(freq="M", year=2007, month=1) ival_S_to_W = Period(freq="W", year=2007, month=1, day=7) ival_S_to_D = Period(freq="D", year=2007, month=1, day=1) ival_S_to_B = Period(freq="B", year=2007, month=1, day=1) ival_S_to_H = Period(freq="H", year=2007, month=1, day=1, hour=0) ival_S_to_T = Period(freq="Min", year=2007, month=1, day=1, hour=0, minute=0) assert ival_S.asfreq("A") == ival_S_to_A assert ival_S_end_of_year.asfreq("A") == ival_S_to_A assert ival_S.asfreq("Q") == ival_S_to_Q assert ival_S_end_of_quarter.asfreq("Q") == ival_S_to_Q assert ival_S.asfreq("M") == ival_S_to_M assert ival_S_end_of_month.asfreq("M") == ival_S_to_M assert ival_S.asfreq("W") == ival_S_to_W assert ival_S_end_of_week.asfreq("W") == ival_S_to_W assert ival_S.asfreq("D") == ival_S_to_D assert ival_S_end_of_day.asfreq("D") == ival_S_to_D assert ival_S.asfreq("B") == ival_S_to_B assert ival_S_end_of_bus.asfreq("B") == ival_S_to_B assert ival_S.asfreq("H") == ival_S_to_H assert ival_S_end_of_hour.asfreq("H") == ival_S_to_H assert ival_S.asfreq("Min") == ival_S_to_T assert ival_S_end_of_minute.asfreq("Min") == ival_S_to_T assert ival_S.asfreq("S") == ival_S def test_conv_microsecond(self): # GH#31475 Avoid floating point errors dropping the start_time to # before the beginning of the Period per =
Period("2020-01-30 15:57:27.576166", freq="U")
pandas.Period
"""Tests for the sdv.constraints.base module.""" import warnings from unittest.mock import Mock, patch import pandas as pd import pytest from copulas.multivariate.gaussian import GaussianMultivariate from copulas.univariate import GaussianUnivariate from rdt.hyper_transformer import HyperTransformer from sdv.constraints.base import Constraint, _get_qualified_name, get_subclasses, import_object from sdv.constraints.errors import MissingConstraintColumnError from sdv.constraints.tabular import ColumnFormula, UniqueCombinations def test__get_qualified_name_class(): """Test the ``_get_qualified_name`` function, if a class is passed. The ``_get_qualified_name`` function is expected to: - Return the Fully Qualified Name from a class. Input: - A class. Output: - The class qualified name. """ # Run fully_qualified_name = _get_qualified_name(Constraint) # Assert expected_name = 'sdv.constraints.base.Constraint' assert fully_qualified_name == expected_name def test__get_qualified_name_function(): """Test the ``_get_qualified_name`` function, if a function is passed. The ``_get_qualified_name`` function is expected to: - Return the Fully Qualified Name from a function. Input: - A function. Output: - The function qualified name. """ # Run fully_qualified_name = _get_qualified_name(_get_qualified_name) # Assert expected_name = 'sdv.constraints.base._get_qualified_name' assert fully_qualified_name == expected_name def test_get_subclasses(): """Test the ``get_subclasses`` function. The ``get_subclasses`` function is expected to: - Recursively find subclasses for the class object passed. Setup: - Create three classes, Parent, Child and GrandChild, which inherit of each other hierarchically. Input: - The Parent class. Output: - Dict of the subclasses of the class: ``Child`` and ``GrandChild`` classes. """ # Setup class Parent: pass class Child(Parent): pass class GrandChild(Child): pass # Run subclasses = get_subclasses(Parent) # Assert expected_subclasses = { 'Child': Child, 'GrandChild': GrandChild } assert subclasses == expected_subclasses def test_import_object_class(): """Test the ``import_object`` function, when importing a class. The ``import_object`` function is expected to: - Import a class from its qualifed name. Input: - Qualified name of the class. Output: - The imported class. """ # Run obj = import_object('sdv.constraints.base.Constraint') # Assert assert obj is Constraint def test_import_object_function(): """Test the ``import_object`` function, when importing a function. The ``import_object`` function is expected to: - Import a function from its qualifed name. Input: - Qualified name of the function. Output: - The imported function. """ # Run imported = import_object('sdv.constraints.base.import_object') # Assert assert imported is import_object class TestConstraint(): def test__identity(self): """Test ```Constraint._identity`` method. ``_identity`` method should return whatever it is passed. Input: - anything Output: - Input """ # Run instance = Constraint('all') output = instance._identity('input') # Asserts assert output == 'input' def test___init___transform(self): """Test ```Constraint.__init__`` method when 'transform' is passed. If 'transform' is given, the ``__init__`` method should replace the ``is_valid`` method with an identity and leave ``transform`` and ``reverse_transform`` untouched. Input: - transform Side effects: - is_valid == identity - transform != identity - reverse_transform != identity """ # Run instance = Constraint(handling_strategy='transform') # Asserts assert instance.filter_valid == instance._identity assert instance.transform != instance._identity assert instance.reverse_transform != instance._identity def test___init___reject_sampling(self): """Test ``Constraint.__init__`` method when 'reject_sampling' is passed. If 'reject_sampling' is given, the ``__init__`` method should replace the ``transform`` and ``reverse_transform`` methods with an identity and leave ``is_valid`` untouched. Input: - reject_sampling Side effects: - is_valid != identity - transform == identity - reverse_transform == identity """ # Run instance = Constraint(handling_strategy='reject_sampling') # Asserts assert instance.filter_valid != instance._identity assert instance.transform == instance._identity assert instance.reverse_transform == instance._identity def test___init___all(self): """Test ``Constraint.__init__`` method when 'all' is passed. If 'all' is given, the ``__init__`` method should leave ``transform``, ``reverse_transform`` and ``is_valid`` untouched. Input: - all Side effects: - is_valid != identity - transform != identity - reverse_transform != identity """ # Run instance = Constraint(handling_strategy='all') # Asserts assert instance.filter_valid != instance._identity assert instance.transform != instance._identity assert instance.reverse_transform != instance._identity def test___init___not_kown(self): """Test ``Constraint.__init__`` method when a not known ``handling_strategy`` is passed. If a not known ``handling_strategy`` is given, a ValueError is raised. Input: - not_known Side effects: - ValueError """ # Run with pytest.raises(ValueError): Constraint(handling_strategy='not_known') def test_fit(self): """Test the ``Constraint.fit`` method. The base ``Constraint.fit`` method is expected to: - Call ``_fit`` method. Input: - Table data (pandas.DataFrame) """ # Setup table_data = pd.DataFrame({ 'a': [1, 2, 3] }) instance = Constraint(handling_strategy='transform', fit_columns_model=False) instance._fit = Mock() # Run instance.fit(table_data) # Assert instance._fit.assert_called_once_with(table_data) @patch('sdv.constraints.base.GaussianMultivariate', spec_set=GaussianMultivariate) def test_fit_gaussian_multivariate_correct_distribution(self, gm_mock): """Test the ``GaussianMultivariate`` from the ``Constraint.fit`` method. The ``GaussianMultivariate`` is expected to be called with default distribution set as ``GaussianUnivariate``. Input: - Table data (pandas.DataFrame) """ # Setup table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [1, 2, 3] }) instance = Constraint(handling_strategy='transform', fit_columns_model=True) instance.constraint_columns = ('a', 'b') # Run instance.fit(table_data) # Assert gm_mock.assert_called_once_with(distribution=GaussianUnivariate) @patch('sdv.constraints.base.GaussianMultivariate', spec_set=GaussianMultivariate) @patch('sdv.constraints.base.HyperTransformer', spec_set=HyperTransformer) def test_fit_trains_column_model(self, ht_mock, gm_mock): """Test the ``Constraint.fit`` method trains the column model. When ``fit_columns_model`` is True and there are multiple ``constraint_columns``, the ``Constraint.fit`` method is expected to: - Call ``_fit`` method. - Create ``_hyper_transformer``. - Create ``_column_model`` and train it. Input: - Table data (pandas.DataFrame) """ # Setup table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance = Constraint(handling_strategy='transform', fit_columns_model=True) instance.constraint_columns = ('a', 'b') # Run instance.fit(table_data) # Assert gm_mock.return_value.fit.assert_called_once() calls = ht_mock.return_value.fit_transform.mock_calls args = calls[0][1] assert len(calls) == 1 pd.testing.assert_frame_equal(args[0], table_data) def test_transform(self): """Test the ``Constraint.transform`` method. It is an identity method for completion, to be optionally overwritten by subclasses. The ``Constraint.transform`` method is expected to: - Return the input data unmodified. Input: - Anything Output: - Input """ # Run instance = Constraint(handling_strategy='transform') output = instance.transform('input') # Assert assert output == 'input' def test_transform_calls__transform(self): """Test that the ``Constraint.transform`` method calls ``_transform``. The ``Constraint.transform`` method is expected to: - Return value returned by ``_transform``. Input: - Anything Output: - Result of ``_transform(input)`` """ # Setup constraint_mock = Mock() constraint_mock.fit_columns_model = False constraint_mock._transform.return_value = 'the_transformed_data' constraint_mock._validate_columns.return_value = pd.DataFrame() # Run output = Constraint.transform(constraint_mock, 'input') # Assert assert output == 'the_transformed_data' def test_transform_model_disabled_any_columns_missing(self): """Test the ``Constraint.transform`` method with invalid data. If ``table_data`` is missing any columns and ``fit_columns_model`` is False, it should raise a ``MissingConstraintColumnError``. The ``Constraint.transform`` method is expected to: - Raise ``MissingConstraintColumnError``. """ # Run instance = Constraint(handling_strategy='transform', fit_columns_model=False) instance._transform = lambda x: x instance.constraint_columns = ('a',) # Assert with pytest.raises(MissingConstraintColumnError): instance.transform(pd.DataFrame([[1, 2], [3, 4]], columns=['b', 'c'])) def test_transform_model_enabled_all_columns_missing(self): """Test the ``Constraint.transform`` method with missing columns. If ``table_data`` is missing all of the ``constraint_columns`` and ``fit_columns_model`` is True, it should raise a ``MissingConstraintColumnError``. The ``Constraint.transform`` method is expected to: - Raise ``MissingConstraintColumnError``. """ # Run instance = Constraint(handling_strategy='transform') instance._transform = lambda x: x instance.constraint_columns = ('a',) # Assert with pytest.raises(MissingConstraintColumnError): instance.transform(pd.DataFrame()) def test_transform_model_enabled_some_columns_missing(self): """Test that the ``Constraint.transform`` method uses column model. If ``table_data`` is missing some of the ``constraint_columns``, the ``_column_model`` should be used to sample the rest and the data should be transformed. Input: - Table with some missing columns. Output: - Transformed data with all columns. """ # Setup instance = Constraint(handling_strategy='transform') instance._transform = lambda x: x instance.constraint_columns = ('a', 'b') instance._hyper_transformer = Mock() instance._columns_model = Mock() conditions = [ pd.DataFrame([[5, 1, 2]], columns=['a', 'b', 'c']), pd.DataFrame([[6, 3, 4]], columns=['a', 'b', 'c']) ] transformed_conditions = [ pd.DataFrame([[1]], columns=['b']), pd.DataFrame([[3]], columns=['b']) ] instance._columns_model.sample.return_value = pd.DataFrame([ [1, 2, 3] ], columns=['b', 'c', 'a']) instance._hyper_transformer.transform.side_effect = transformed_conditions instance._hyper_transformer.reverse_transform.side_effect = conditions # Run data = pd.DataFrame([[1, 2], [3, 4]], columns=['b', 'c']) transformed_data = instance.transform(data) # Assert expected_tranformed_data = pd.DataFrame([[1, 2, 3]], columns=['b', 'c', 'a']) expected_result = pd.DataFrame([ [5, 1, 2], [6, 3, 4] ], columns=['a', 'b', 'c']) model_calls = instance._columns_model.sample.mock_calls assert len(model_calls) == 2 instance._columns_model.sample.assert_any_call(num_rows=1, conditions={'b': 1}) instance._columns_model.sample.assert_any_call(num_rows=1, conditions={'b': 3}) reverse_transform_calls = instance._hyper_transformer.reverse_transform.mock_calls pd.testing.assert_frame_equal(reverse_transform_calls[0][1][0], expected_tranformed_data) pd.testing.assert_frame_equal(reverse_transform_calls[1][1][0], expected_tranformed_data) pd.testing.assert_frame_equal(transformed_data, expected_result) def test_transform_model_enabled_reject_sampling(self): """Test the ``Constraint.transform`` method's reject sampling. If the column model is used but doesn't return valid rows, reject sampling should be used to get the valid rows. Setup: - The ``_columns_model`` returns some valid_rows the first time, and then the rest with the next call. Input: - Table with some missing columns. Output: - Transformed data with all columns. """ # Setup instance = Constraint(handling_strategy='transform') instance._transform = lambda x: x instance.constraint_columns = ('a', 'b') instance._hyper_transformer = Mock() instance._columns_model = Mock() transformed_conditions = [pd.DataFrame([[1], [1], [1], [1], [1]], columns=['b'])] instance._columns_model.sample.side_effect = [ pd.DataFrame([ [1, 2], [1, 3] ], columns=['a', 'b']), pd.DataFrame([ [1, 4], [1, 5], [1, 6], [1, 7] ], columns=['a', 'b']), ] instance._hyper_transformer.transform.side_effect = transformed_conditions instance._hyper_transformer.reverse_transform = lambda x: x # Run data = pd.DataFrame([[1], [1], [1], [1], [1]], columns=['b']) transformed_data = instance.transform(data) # Assert expected_result = pd.DataFrame([ [1, 2], [1, 3], [1, 4], [1, 5], [1, 6] ], columns=['a', 'b']) model_calls = instance._columns_model.sample.mock_calls assert len(model_calls) == 2 instance._columns_model.sample.assert_any_call(num_rows=5, conditions={'b': 1}) assert model_calls[1][2]['num_rows'] > 3 pd.testing.assert_frame_equal(transformed_data, expected_result) def test_transform_model_enabled_reject_sampling_error(self): """Test that the ``Constraint.transform`` method raises an error appropriately. If the column model is used but doesn't return valid rows, reject sampling should be used to get the valid rows. If it doesn't get any valid rows in 100 tries, a ``ValueError`` is raised. Setup: - The ``_columns_model`` is fixed to always return an empty ``DataFrame``. Input: - Table with some missing columns. Side Effect: - ``ValueError`` raised. """ # Setup instance = Constraint(handling_strategy='transform') instance.constraint_columns = ('a', 'b') instance._hyper_transformer = Mock() instance._columns_model = Mock() transformed_conditions = pd.DataFrame([[1]], columns=['b']) instance._columns_model.sample.return_value = pd.DataFrame() instance._hyper_transformer.transform.return_value = transformed_conditions instance._hyper_transformer.reverse_transform.return_value =
pd.DataFrame()
pandas.DataFrame
# Import required libraries import pandas as pd import nest_asyncio import numpy as np import warnings import re from nltk.corpus import stopwords from nltk.stem import PorterStemmer from nltk.tokenize import TweetTokenizer # Configurations warnings.filterwarnings('ignore') # This function takes a card and transforms it to the shape required by the models def transform_card(insert): # Create the empty dataset to populate with our card set_df = pd.DataFrame(columns=['name', 'lang', 'released_at', 'mana_cost', 'cmc', 'type_line', 'oracle_text', 'power', 'toughness', 'colors', 'color_identity', 'keywords', 'legalities', 'games', 'set', 'set_name', 'set_type', 'digital', 'rarity', 'flavor_text', 'artist', 'edhrec_rank', 'prices', 'loyalty', 'prints','image_uris', 'card_faces', 'oracle_text_1', 'oracle_text_2', 'image_uris_1', 'image_uris_2']) # Insert the new card into the empty dataframe from before set_df = set_df.append(insert,ignore_index=True) # If it has text in "oracle_text_1", then it's a Double Faced Card set_df['DFC'] = np.where(set_df['oracle_text_1'] != "None", 1, 0) # Transform the data in double faced cards # Let's first create a dataframe that just has the card name and the column 'card_faces' double_cards_df = set_df[['name','card_faces']].dropna() # We also filter it so we get cards that actually have 2 sides double_cards_df = double_cards_df[double_cards_df['card_faces']!="none"] # If we actually have information about the 2 faces, we separate them into 2 columns try: double_cards_df[['face1','face2']] = pd.DataFrame(double_cards_df['card_faces'].tolist(), index= double_cards_df.index) except: double_cards_df[['oracle_text_1','oracle_text_2']] = "None" # Now let's drop the column 'card_faces' double_cards_df.drop("card_faces",axis=1, inplace=True) # We now go into each key within the dictionary of face1 and face2 and separate them into columns try: double_cards_df[double_cards_df['face1'].apply(pd.Series).columns + "_1"] = double_cards_df['face1'].apply(pd.Series) double_cards_df[double_cards_df['face2'].apply(pd.Series).columns + "_2"] = double_cards_df['face2'].apply(pd.Series) except: pass # Define a list of columns we want to keep from the 2 sided cards cols_to_keep = ['name','oracle_text_1','oracle_text_2','image_uris_1','image_uris_2', 'colors_1', 'power_1', 'toughness_1', 'loyalty_1'] # For each column in the dataframe, if it's not a selected column, we drop it for i in double_cards_df.columns: if i not in cols_to_keep: double_cards_df.drop(i, axis=1, inplace=True) # We now need to consolidate the 2 oracle texts into 1, we join them together double_cards_df['oracle_text_dobles'] = double_cards_df['oracle_text_1'] + "\n" + double_cards_df['oracle_text_2'] # Reset the indexes double_cards_df = double_cards_df.reset_index(drop=True) # Merge the 2 faces info into our main df # We now merge them by card name set_df = set_df.merge(double_cards_df, on=["name","oracle_text_1","oracle_text_2"], how="left").drop("card_faces",axis=1) # We use this script to replace Nulls with "None" set_df[['oracle_text_1','oracle_text_2']] = set_df[['oracle_text_1','oracle_text_2']].fillna("None") try: set_df[['image_uris_1','image_uris_2', 'colors_1', 'power_1', 'toughness_1','loyalty_1']] = set_df[['image_uris_1','image_uris_2', 'colors_1', 'power_1', 'toughness_1','loyalty_1']].fillna("None") except: pass # Now that we have our oracle text from the 2 card sides joined together, we want to use it to replace # the actual "oracle_text" from the original dataframe, which is actually empty # If oracle_text is empty (meaning it's a double faced card), we replace it with our 'oracle_text_dobles' column set_df['oracle_text'] = np.where(set_df['oracle_text'].isna(),set_df['oracle_text_dobles'],set_df['oracle_text']) # And now that column is useless so we drop it set_df = set_df.drop("oracle_text_dobles",axis=1) # We need to do the same for all the other columns. However, for these columns, we bring the results # of the front card: # Color of the card try: set_df['colors'] = np.where(set_df['colors'].isna(),set_df['colors_1'],set_df['colors']) set_df = set_df.drop("colors_1",axis=1) except: pass # Power of the creature try: set_df['power'] = np.where(set_df['power'].isna(),set_df['power_1'],set_df['power']) set_df = set_df.drop("power_1",axis=1) except: pass # Toughness of the creature try: set_df['toughness'] = np.where(set_df['toughness'].isna(),set_df['toughness_1'],set_df['toughness']) set_df = set_df.drop("toughness_1",axis=1) except: pass # Loyalty of the planeswalker try: set_df['loyalty'] = np.where(set_df['loyalty'].isna(),set_df['loyalty_1'],set_df['loyalty']) set_df = set_df.drop("loyalty_1",axis=1) except: pass # One last thing. We can create a new column that will indicate if the card is a double faced card or not set_df['DFC'] = np.where(set_df['oracle_text_1'] != "None", 1, 0) # CMC grouping # Create groupings for the cmc. For 7 or above, we group them together set_df['cmc_grp'] = np.where(set_df['cmc'] <= 6.0, (set_df['cmc'].astype('int').astype('str'))+"_drop", "7plus_drop") # Separate the Keywords column into unique keyword columns # Create a list to use as column names for the keyword columnn my_list = list(set_df['keywords'].apply(pd.Series).columns) string = 'keyword_' kw_list = [string + str(x+1) for x in my_list] print("Keyword Columns:") print(kw_list) #Apply the separation to our dataset set_df[kw_list] = set_df['keywords'].apply(pd.Series).fillna('99999') # Separate the Legalities column into unique legality columns #Apply the separation to our dataset set_df[set_df['legalities'].apply(pd.Series).columns] = set_df['legalities'].apply(pd.Series) # Separate the prices column into unique price columns #Apply the separation to our dataset set_df[set_df['prices'].apply(pd.Series).columns] = set_df['prices'].apply(pd.Series) # Let's check the shape of our dataframe once again print(f"Shape of dataframe: {set_df.shape}") # Colors print(f"Max colors in a card: {len(list(set_df['colors'].apply(pd.Series).fillna('99999').columns))}") # Lets create a dataframe that joins the colors to create all possible color combinations color_df = set_df['colors'].apply(pd.Series).fillna('') color_df['color'] = color_df.apply(lambda x: ''.join(sorted(x)), axis=1).replace('','Colorless') color_df = color_df[['color']] # Replace the "colors" column in the dataframe with our new column set_df['colors'] = color_df print(f"Different color in data: {len(set_df['colors'].unique())}") # Repeat the process for the "color_identity" column color_id_df = set_df['color_identity'].apply(pd.Series).fillna('') color_id_df['color_identity'] = color_id_df.apply(lambda x: ''.join(sorted(x)), axis=1).replace('','Colorless') color_id_df = color_id_df[['color_identity']] set_df['color_identity'] = color_id_df ### Remove useless columns # List of columns we no longer need cols_to_drop = ['keywords','legalities','games','prices','usd_etched'] # Drop the columns set_df.drop(cols_to_drop,axis=1,inplace=True) # Creating the keywords columns #Lets create a sub dataframe with just the name of the card and the keyword columns temp_df = set_df[['name'] + kw_list] # We now want to melt this dataframe so we have the name repeated as many times as keywords, but just 1 keywords column temp_df2 = pd.melt(temp_df, id_vars=['name'], value_vars=kw_list).drop('variable',axis=1) # Now we can pivot this sub dataframe and get a column for each keyword, with 0s and 1s depending on each card kw_df = temp_df2.pivot(columns="value", values="value").fillna(0) try: kw_df = kw_df.drop('99999',axis=1) except: pass try: kw_df = kw_df.replace(regex={r'\D': 1}) except: pass # Let's add the name of the card to this new sub dataframe result = pd.concat([temp_df2[['name']], kw_df], axis=1) # Summing and resetting index will help to condense the data final_df = result.groupby(['name']).sum().reset_index() # We can now merge this sub dataframe with our main dataframe and get all the keywords! set_df_kw = set_df.merge(final_df, on=['name'], how="left").drop(kw_list, axis=1) ### Replace nulls in `flavor_text` # If a card does not have a flavor text, let's put "no flavor text" instead set_df_kw['flavor_text'] = set_df_kw['flavor_text'].fillna("no_flavor_text") ### Replace nulls in `edhrec_rank` # If a card does not have an edhrec_rank, let's replace it with int 999999 set_df_kw['edhrec_rank'] = set_df_kw['edhrec_rank'].fillna(999999).astype(int) # Separate column ``type_line`` # We first separate the card type of the front from the card type of the back try: set_df_kw[['face','back']] = set_df_kw['type_line'].str.split(' // ',expand=True).fillna('None') except: set_df_kw[['face','back']] = [set_df_kw['type_line'],"None"] # We then separate the face type using the "-" as separator try: set_df_kw[['face_type','face_subtype']] = set_df_kw['face'].str.split(' — ',expand=True).fillna('None') except: set_df_kw['face_type'] = set_df_kw['face'] set_df_kw['face_subtype'] = "None" # If a card has a back, we then separate the back type using the "-" as separator try: set_df_kw[['back_type','back_subtype']] = set_df_kw['back'].str.split(' — ',expand=True).fillna('None') except: set_df_kw['back_type'] = set_df_kw['back'] set_df_kw['back_subtype'] = "None" # Separate ``face_type`` in each possible token # Let's obtain the max quantity of words within "face_type" column max_word_len = [] for i in range(len(set_df_kw['face_type'].unique())): append_length = len(set_df_kw['face_type'].unique()[i].split()) max_word_len.append(append_length) face_type_max = max(max_word_len) print(f"Max words in face_type: {face_type_max}") # Using our result of max words in face_type, create as many face_type_N columns face_type_cols = [] for i in range(face_type_max): face_type_col = f"face_type_{i+1}" face_type_cols.append(face_type_col) # Use these columns to split the face_type column set_df_kw[face_type_cols] = set_df_kw['face_type'].str.split(' ',expand=True).fillna('None') # Separate ``face_subtype`` in each possible token # Let's obtain the max quantity of words within "face_subtype" column max_word_len = [] for i in range(len(set_df_kw['face_subtype'].unique())): append_length = len(set_df_kw['face_subtype'].unique()[i].split()) max_word_len.append(append_length) face_subtype_max = max(max_word_len) print(f"Max words in face_subtype: {face_subtype_max}") # Using our result of max words in face_subtype, create as many face_subtype_N columns face_subtype_cols = [] for i in range(face_subtype_max): face_subtype_col = f"face_subtype_{i+1}" face_subtype_cols.append(face_subtype_col) # Use these columns to split the face_subtype column set_df_kw[face_subtype_cols] = set_df_kw['face_subtype'].str.split(' ',expand=True).fillna('None') # Separate ``back_type`` in each possible token # Let's obtain the max quantity of words within "back_type" column max_word_len = [] for i in range(len(set_df_kw['back_type'].unique())): append_length = len(set_df_kw['back_type'].unique()[i].split()) max_word_len.append(append_length) back_type_max = max(max_word_len) print(f"Max words in back_type: {back_type_max}") # Using our result of max words in back_type, create as many face_subtype_N columns back_type_cols = [] for i in range(back_type_max): back_type_col = f"back_type_{i+1}" back_type_cols.append(back_type_col) # Use these columns to split the back_type column set_df_kw[back_type_cols] = set_df_kw['back_type'].str.split(' ',expand=True).fillna('None') # Separate ``back_subtype`` in each possible token # Let's obtain the max quantity of words within "back_subtype" column max_word_len = [] for i in range(len(set_df_kw['back_subtype'].unique())): append_length = len(set_df_kw['back_subtype'].unique()[i].split()) max_word_len.append(append_length) back_subtype_max = max(max_word_len) print(f"Max words in back_subtype: {back_subtype_max}") # Using our result of max words in back_subtype, create as many back_subtype_N columns back_subtype_cols = [] for i in range(back_subtype_max): back_subtype_col = f"back_subtype_{i+1}" back_subtype_cols.append(back_subtype_col) # Use these columns to split the back_subtype column set_df_kw[back_subtype_cols] = set_df_kw['back_subtype'].str.split(' ',expand=True).fillna('None') # Abilities Count # Define a function that will split the oracle text using \n as delimiter def count_abilities(string): try: abilities_count = len(string.split('\n')) except: abilities_count = 0 return abilities_count # Apply the function and create the "abilities_count" column set_df_kw['abilities_count'] = set_df_kw.apply(lambda x: count_abilities(x['oracle_text']),axis=1) # Cleave fix # Cleave transformation # If card has cleave, remove "[" and "]" and repeat the same orcale text removing whatever is between them try: set_df_kw['oracle_text'] = np.where(set_df_kw['Cleave']==1, set_df_kw['oracle_text'].str.replace("[","").str.replace("]","")+'\n'+set_df_kw['oracle_text'].str.replace(r"[\(\[].*?[\)\]] ", ""), set_df_kw['oracle_text']) except: pass # Monocolored, Multicolored and others # If color column has just 1 character, it's monocolored (eg. "B" or "W") set_df_kw['monocolored'] = np.where(set_df_kw['colors'].str.len() == 1,1,0) # If it has more than 1 charater and it does not say Colorless, then it's multicolored set_df_kw['multicolored'] = np.where((set_df_kw['colors'].str.len() > 1) & (set_df_kw['colors'] != "Colorless"),1,0) # And these other variants set_df_kw['two_colors'] = np.where(set_df_kw['colors'].str.len() == 2,1,0) set_df_kw['three_colors'] = np.where(set_df_kw['colors'].str.len() == 3,1,0) set_df_kw['four_colors'] = np.where(set_df_kw['colors'].str.len() == 4,1,0) set_df_kw['five_colors'] = np.where(set_df_kw['colors'].str.len() == 5,1,0) set_df_kw['colorless'] = np.where(set_df_kw['colors'] == "Colorless",1,0) # Devotion # We count how many mana symbols we find in a card CMC set_df_kw['mana_symbols_cost'] = set_df_kw['mana_cost'].str.count('W|U|B|R|G').fillna(0) # We also count how many specific mana symbols set_df_kw['devotion_W'] = set_df_kw['mana_cost'].str.count('W').fillna(0) set_df_kw['devotion_U'] = set_df_kw['mana_cost'].str.count('U').fillna(0) set_df_kw['devotion_B'] = set_df_kw['mana_cost'].str.count('B').fillna(0) set_df_kw['devotion_R'] = set_df_kw['mana_cost'].str.count('R').fillna(0) set_df_kw['devotion_G'] = set_df_kw['mana_cost'].str.count('G').fillna(0) # Prices # We create some columns to detect if we have missing prices set_df_kw['missing_usd'] = np.where(set_df_kw['usd'].isna(), 1, 0) set_df_kw['missing_usd_foil'] = np.where(set_df_kw['usd_foil'].isna(), 1, 0) set_df_kw['missing_eur'] = np.where(set_df_kw['eur'].isna(), 1, 0) set_df_kw['missing_eur_foil'] = np.where(set_df_kw['eur_foil'].isna(), 1, 0) set_df_kw['missing_tix'] = np.where(set_df_kw['tix'].isna(), 1, 0) # If there are missings, we fill them with 0 set_df_kw['usd'] = set_df_kw['usd'].fillna(0) set_df_kw['eur'] = set_df_kw['eur'].fillna(0) set_df_kw['usd_foil'] = set_df_kw['usd_foil'].fillna(0) set_df_kw['eur_foil'] = set_df_kw['eur_foil'].fillna(0) set_df_kw['tix'] = set_df_kw['tix'].fillna(0) # Power & Toughness # We just want to fill NaNs with "None" to fix any card that is not a creature set_df_kw['power'] = set_df_kw['power'].fillna("None") # Loyalty # We just want to fill NaNs with "None" to fix any card that is not a planeswalker set_df_kw['loyalty'] = set_df_kw['loyalty'].fillna('None') # X spells # Create a column that is 1 if it's a card with X in it's mana cost set_df_kw['X_spell'] = np.where(set_df_kw['mana_cost'].str.contains('{X}'),1,0) # Text `(to be removed)` # Remove text between brackets in oracle_text set_df_kw['oracle_text'] = set_df_kw['oracle_text'].str.replace(r"\(.*\)","") # Mana symbols in oracle text # We create a column tha that is 1 if there are mana symbols inside the oracle text set_df_kw['mana_symbols_oracle'] = np.where(set_df_kw['oracle_text'].str.contains('{W}|{U}|{B}|{R}|{G}'),1,0) # We count how many different mana symbols are in the oracle text set_df_kw['mana_symbols_oracle_nbr'] = set_df_kw['oracle_text'].str.count('{W}|{U}|{B}|{R}|{G}') # Includes tapping ability # We create a column that is 1 if the card has {T} in the oracle_text set_df_kw['tapping_ability'] = np.where(set_df_kw['oracle_text'].str.contains('{T}'),1,0) # Includes multiple choice # We create a column that is 1 if the card has '• ' in the oracle_text set_df_kw['multiple_choice'] = np.where(set_df_kw['oracle_text'].str.contains('• '),1,0) # Replace card name #EXACT MATCH for i in range(len(set_df_kw)): set_df_kw.at[i,"oracle_text"] = set_df_kw.at[i,'oracle_text'].replace(set_df_kw.at[i,'name'].split(" // ")[0], 'CARDNAME') #this is to also replace cardnames from back cards try: set_df_kw.at[i,"oracle_text"] = set_df_kw.at[i,'oracle_text'].replace(set_df_kw.at[i,'name'].split(" // ")[1], 'CARDNAME') except: pass #FIRST NAME MATCH for i in range(len(set_df_kw)): set_df_kw.at[i,"oracle_text"] = set_df_kw.at[i,'oracle_text'].replace(set_df_kw.at[i,'name'].replace(",","").split(" // ")[0].split(" ")[0], 'CARDNAME') #this is to also replace cardnames from back cards try: set_df_kw.at[i,"oracle_text"] = set_df_kw.at[i,'oracle_text'].replace(set_df_kw.at[i,'name'].replace(",","").split(" // ")[1].split(" ")[0], 'CARDNAME') except: pass # Tokenize Oracle Text # Define a function that takes the oracle text, removes undesired characters, stopwords and tokenizes it def process_oracle(oracle): """Process oracle function. Input: oracle: a string containing an oracle Output: oracle_clean: a list of words containing the processed oracle """ import string stemmer = PorterStemmer() stopwords_english = stopwords.words('english') oracle = re.sub(r'\$\w*', '', oracle) oracle = re.sub(r'^RT[\s]+', '', oracle) oracle = re.sub(r'#', '', oracle) oracle = re.sub("\d+", '', oracle) # tokenize tweets tokenizer = TweetTokenizer(preserve_case=False, strip_handles=True, reduce_len=True) oracle_tokens = tokenizer.tokenize(oracle) oracle_clean = [] for word in oracle_tokens: if (word not in stopwords_english and # remove stopwords word not in string.punctuation): # remove punctuation # oracle_clean.append(word) stem_word = stemmer.stem(word) # stemming word oracle_clean.append(stem_word) return oracle_clean # Apply the function and create a new column set_df_kw['oracle_tokens'] = set_df_kw['oracle_text'].apply(lambda x: process_oracle(x)) # Create columns for each token # Separate the tokens into columns tokens_df = set_df_kw['oracle_tokens'].apply(pd.Series).fillna("None") # Create a list with all the different tokens tokens_set_list = [] remove_tokens = ['iii','None','•','x','c','r','−','g','iv','}:', 'eight','nine','ten','—','ii','u','b','w','p'] for i in tokens_df.columns: tokens_set_list = list(set(tokens_set_list+list(tokens_df[i].unique()))) tokens_set_list = [x for x in tokens_set_list if x not in remove_tokens] print(f"Number of tokens: {len(tokens_set_list)}") # Create a new df with as many columns as tokens and 1s or 0s if the card has that token or not empty_df =
pd.DataFrame(columns=tokens_set_list)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jun 15 01:48:49 2018 @author: ozkan """ import pandas as pd import numpy as np #from sklearn.preprocessing import MinMaxScaler, LabelEncoder from scipy import stats from contextlib import contextmanager import time import gc def nonUnique(x): return x.nunique() def modeValue(x): return stats.mode(x)[0][0] def totalBadCredit(x): badCredit = 0 for value in x: if(value==2 or value==3): badCredit+=1 return badCredit def creditOverdue(x): overdue=0 for value in x: if(value>0): overdue+=1 return overdue # One-hot encoding for categorical columns with get_dummies def one_hot_encoder(df): original_columns = list(df.columns) categorical_columns = [col for col in df.columns if df[col].dtype == 'object'] df = pd.get_dummies(df, columns= categorical_columns, dummy_na=True) new_columns = [c for c in df.columns if c not in original_columns] return df, new_columns def getAppData(): data = pd.read_csv('../input/application_train.csv') test = pd.read_csv('../input/application_test.csv') len_train = len(data) app_data = pd.concat([data, test]) print('Combined train & test input shape before any merging = {}'.format(app_data.shape)) return app_data, len_train def generateAppFeatures(app_data): app_data['LOAN_INCOME_RATIO'] = app_data['AMT_CREDIT'] / app_data['AMT_INCOME_TOTAL'] app_data['ANNUITY_INCOME_RATIO'] = app_data['AMT_ANNUITY'] / app_data['AMT_INCOME_TOTAL'] app_data['ANNUITY LENGTH'] = app_data['AMT_CREDIT'] / app_data['AMT_ANNUITY'] app_data['WORKING_LIFE_RATIO'] = app_data['DAYS_EMPLOYED'] / app_data['DAYS_BIRTH'] app_data['INCOME_PER_FAM'] = app_data['AMT_INCOME_TOTAL'] / app_data['CNT_FAM_MEMBERS'] app_data['CHILDREN_RATIO'] = app_data['CNT_CHILDREN'] / app_data['CNT_FAM_MEMBERS'] #appdata_['INCOME_CREDIT_PCT'] = app_data['AMT_INCOME_TOTAL'] / app_data['AMT_CREDIT'] print('Shape after extra features = {}'.format(app_data.shape)) return app_data def generateAppFeatures_v4(app_data): app_data.loc[app_data['CODE_GENDER']=='XNA','CODE_GENDER'] = 'F' docs = [_f for _f in app_data.columns if 'FLAG_DOC' in _f] live = [_f for _f in app_data.columns if ('FLAG_' in _f) & ('FLAG_DOC' not in _f) & ('_FLAG_' not in _f)] # NaN values for DAYS_EMPLOYED: 365.243 -> nan app_data['DAYS_EMPLOYED'].replace(365243, np.nan, inplace= True) inc_by_org = app_data[['AMT_INCOME_TOTAL', 'ORGANIZATION_TYPE']].groupby('ORGANIZATION_TYPE').median()['AMT_INCOME_TOTAL'] app_data['NEW_CREDIT_TO_ANNUITY_RATIO'] = app_data['AMT_CREDIT'] / app_data['AMT_ANNUITY'] app_data['NEW_CREDIT_TO_GOODS_RATIO'] = app_data['AMT_CREDIT'] / app_data['AMT_GOODS_PRICE'] app_data['NEW_DOC_IND_KURT'] = app_data[docs].kurtosis(axis=1) app_data['NEW_LIVE_IND_SUM'] = app_data[live].sum(axis=1) app_data['NEW_INC_PER_CHLD'] = app_data['AMT_INCOME_TOTAL'] / (1 + app_data['CNT_CHILDREN']) app_data['NEW_INC_BY_ORG'] = app_data['ORGANIZATION_TYPE'].map(inc_by_org) app_data['NEW_EMPLOY_TO_BIRTH_RATIO'] = app_data['DAYS_EMPLOYED'] / app_data['DAYS_BIRTH'] app_data['NEW_ANNUITY_TO_INCOME_RATIO'] = app_data['AMT_ANNUITY'] / (1 + app_data['AMT_INCOME_TOTAL']) app_data['NEW_SOURCES_PROD'] = (app_data['EXT_SOURCE_1']+1) * (app_data['EXT_SOURCE_2']+1) * (app_data['EXT_SOURCE_3']+1) app_data['NEW_EXT_SOURCES_MEAN'] = app_data[['EXT_SOURCE_1', 'EXT_SOURCE_2', 'EXT_SOURCE_3']].mean(axis=1) app_data['NEW_SCORES_STD'] = app_data[['EXT_SOURCE_1', 'EXT_SOURCE_2', 'EXT_SOURCE_3']].std(axis=1) app_data['NEW_SCORES_STD'] = app_data['NEW_SCORES_STD'].fillna(app_data['NEW_SCORES_STD'].mean()) app_data['NEW_CAR_TO_BIRTH_RATIO'] = app_data['OWN_CAR_AGE'] / app_data['DAYS_BIRTH'] app_data['NEW_CAR_TO_EMPLOY_RATIO'] = app_data['OWN_CAR_AGE'] / app_data['DAYS_EMPLOYED'] app_data['NEW_PHONE_TO_BIRTH_RATIO'] = app_data['DAYS_LAST_PHONE_CHANGE'] / app_data['DAYS_BIRTH'] app_data['NEW_PHONE_TO_BIRTH_RATIO_EMPLOYER'] = app_data['DAYS_LAST_PHONE_CHANGE'] / app_data['DAYS_EMPLOYED'] app_data['NEW_CREDIT_TO_INCOME_RATIO'] = app_data['AMT_CREDIT'] / app_data['AMT_INCOME_TOTAL'] # Categorical features with Binary encode (0 or 1; two categories) for bin_feature in ['CODE_GENDER', 'FLAG_OWN_CAR', 'FLAG_OWN_REALTY']: app_data[bin_feature], uniques = pd.factorize(app_data[bin_feature]) # Categorical features with One-Hot encode app_data, cat_cols = one_hot_encoder(app_data) print('Shape after generating extra features = {}'.format(app_data.shape)) return app_data def handlePrev(app_data): prev = pd.read_csv('../input/previous_application.csv') prev_group = prev.groupby('SK_ID_CURR').agg({'SK_ID_CURR': 'count', 'AMT_CREDIT': ['sum', 'mean', 'max', 'min']}) prev_group.columns = [' '.join(col).strip() for col in prev_group.columns.values] for column in prev_group.columns: prev_group = prev_group.rename(columns={column:'PREV_'+column}) merged_app_data = app_data.merge(prev_group, left_on='SK_ID_CURR', right_index=True, how='left') categorical_feats = [f for f in prev.columns if prev[f].dtype == 'object'] for f_ in categorical_feats: prev[f_], indexer = pd.factorize(prev[f_]) prev_apps_cat_mode = prev.groupby('SK_ID_CURR').agg({categorical_feats[0]:modeValue, categorical_feats[1]:modeValue, categorical_feats[2]:modeValue, categorical_feats[3]:modeValue, categorical_feats[4]:modeValue, categorical_feats[5]:modeValue, categorical_feats[6]:modeValue, categorical_feats[7]:modeValue, categorical_feats[8]:modeValue, categorical_feats[9]:modeValue, categorical_feats[10]:modeValue, categorical_feats[11]:modeValue, categorical_feats[12]:modeValue, categorical_feats[13]:modeValue, categorical_feats[14]:modeValue, categorical_feats[15]:modeValue}) merged_app_data = merged_app_data.merge(prev_apps_cat_mode, left_on='SK_ID_CURR', right_index=True, how='left', suffixes=['', '_PRVMODE']) print('Shape after merging with PREV = {}'.format(merged_app_data.shape)) return merged_app_data def handlePrev_v2(app_data): prev = pd.read_csv('../input/previous_application.csv') prev, cat_cols = one_hot_encoder(prev) # Days 365.243 values -> nan prev['DAYS_FIRST_DRAWING'].replace(365243, np.nan, inplace= True) prev['DAYS_FIRST_DUE'].replace(365243, np.nan, inplace= True) prev['DAYS_LAST_DUE_1ST_VERSION'].replace(365243, np.nan, inplace= True) prev['DAYS_LAST_DUE'].replace(365243, np.nan, inplace= True) prev['DAYS_TERMINATION'].replace(365243, np.nan, inplace= True) # Add feature: value ask / value received percentage prev['APP_CREDIT_PERC'] = prev['AMT_APPLICATION'] / prev['AMT_CREDIT'] # Previous applications numeric features num_aggregations = { 'AMT_ANNUITY': [ 'max', 'mean'], 'AMT_APPLICATION': [ 'max','mean'], 'AMT_CREDIT': [ 'max', 'mean'], 'APP_CREDIT_PERC': [ 'max', 'mean'], 'AMT_DOWN_PAYMENT': [ 'max', 'mean'], 'AMT_GOODS_PRICE': [ 'max', 'mean'], 'HOUR_APPR_PROCESS_START': [ 'max', 'mean'], 'RATE_DOWN_PAYMENT': [ 'max', 'mean'], 'DAYS_DECISION': [ 'max', 'mean'], 'CNT_PAYMENT': ['mean', 'sum'], } # Previous applications categorical features cat_aggregations = {} for cat in cat_cols: cat_aggregations[cat] = ['mean'] prev_agg = prev.groupby('SK_ID_CURR').agg({**num_aggregations, **cat_aggregations}) prev_agg.columns = pd.Index(['PREV_' + e[0] + "_" + e[1].upper() for e in prev_agg.columns.tolist()]) # Previous Applications: Approved Applications - only numerical features approved = prev[prev['NAME_CONTRACT_STATUS_Approved'] == 1] approved_agg = approved.groupby('SK_ID_CURR').agg(num_aggregations) approved_agg.columns = pd.Index(['APPROVED_' + e[0] + "_" + e[1].upper() for e in approved_agg.columns.tolist()]) prev_agg = prev_agg.join(approved_agg, how='left') # Previous Applications: Refused Applications - only numerical features refused = prev[prev['NAME_CONTRACT_STATUS_Refused'] == 1] refused_agg = refused.groupby('SK_ID_CURR').agg(num_aggregations) refused_agg.columns = pd.Index(['REFUSED_' + e[0] + "_" + e[1].upper() for e in refused_agg.columns.tolist()]) prev_agg = prev_agg.join(refused_agg, how='left') merged_app_data = app_data.merge(prev_agg, left_on='SK_ID_CURR', right_index=True, how='left') return merged_app_data def handlePrev_v4(app_data): prev = pd.read_csv('../input/previous_application.csv') prev, cat_cols = one_hot_encoder(prev) # Days 365.243 values -> nan prev['DAYS_FIRST_DRAWING'].replace(365243, np.nan, inplace= True) prev['DAYS_FIRST_DUE'].replace(365243, np.nan, inplace= True) prev['DAYS_LAST_DUE_1ST_VERSION'].replace(365243, np.nan, inplace= True) prev['DAYS_LAST_DUE'].replace(365243, np.nan, inplace= True) prev['DAYS_TERMINATION'].replace(365243, np.nan, inplace= True) # Add feature: value ask / value received percentage prev['APP_CREDIT_PERC'] = prev['AMT_APPLICATION'] / prev['AMT_CREDIT'] # Previous applications numeric features num_aggregations = { 'AMT_ANNUITY' : [ 'max', 'mean', 'min', 'sum', 'std'], 'AMT_APPLICATION' : [ 'max', 'mean', 'min', 'sum', 'std'], 'AMT_CREDIT' : [ 'max', 'mean', 'min', 'sum', 'std'], 'APP_CREDIT_PERC' : [ 'max', 'mean', 'min', 'sum', 'std'], 'AMT_DOWN_PAYMENT' : [ 'max', 'mean', 'min', 'sum', 'std'], 'AMT_GOODS_PRICE' : [ 'max', 'mean', 'min', 'sum', 'std'], 'HOUR_APPR_PROCESS_START' : [ 'max', 'mean', 'min', 'sum', 'std'], 'RATE_DOWN_PAYMENT' : [ 'max', 'mean', 'min', 'sum', 'std'], 'DAYS_DECISION' : [ 'max', 'mean', 'min', 'sum', 'std'], 'CNT_PAYMENT' : [ 'max', 'mean', 'min', 'sum', 'std'], } # Previous applications categorical features cat_aggregations = {} for cat in cat_cols: cat_aggregations[cat] = ['mean', 'sum'] prev_agg = prev.groupby('SK_ID_CURR').agg({**num_aggregations, **cat_aggregations}) prev_agg.columns = pd.Index(['PREV_' + e[0] + "_" + e[1].upper() for e in prev_agg.columns.tolist()]) # Previous Applications: Approved Applications - only numerical features approved = prev[prev['NAME_CONTRACT_STATUS_Approved'] == 1] approved_agg = approved.groupby('SK_ID_CURR').agg({**num_aggregations, **cat_aggregations}) approved_agg.columns = pd.Index(['APPROVED_' + e[0] + "_" + e[1].upper() for e in approved_agg.columns.tolist()]) prev_agg = prev_agg.join(approved_agg, how='left') # Previous Applications: Refused Applications - only numerical features refused = prev[prev['NAME_CONTRACT_STATUS_Refused'] == 1] refused_agg = refused.groupby('SK_ID_CURR').agg({**num_aggregations, **cat_aggregations}) refused_agg.columns = pd.Index(['REFUSED_' + e[0] + "_" + e[1].upper() for e in refused_agg.columns.tolist()]) prev_agg = prev_agg.join(refused_agg, how='left') app_data = app_data.merge(prev_agg, left_on='SK_ID_CURR', right_index=True, how='left') print('Shape after merging with PREV = {}'.format(app_data.shape)) return app_data def handleCreditCard(app_data): credit_card = pd.read_csv('../input/credit_card_balance.csv') # Value Counts app_data = app_data.merge(pd.DataFrame(credit_card['SK_ID_CURR'].value_counts()), left_on='SK_ID_CURR', right_index=True, how='left', suffixes=['', '_CNT_CRED_CARD']) # Last Values most_recent_index = credit_card.groupby('SK_ID_CURR')['MONTHS_BALANCE'].idxmax() cat_feats = credit_card.columns[credit_card.dtypes == 'object'].tolist() + ['SK_ID_CURR'] app_data = app_data.merge(credit_card.loc[most_recent_index, cat_feats], left_on='SK_ID_CURR', right_on='SK_ID_CURR', how='left', suffixes=['', '_CCLAST']) print('Shape after merging with credit card data = {}'.format(app_data.shape)) return app_data def handleCreditCard_v2(app_data): credit_card = pd.read_csv('../input/credit_card_balance.csv') idColumns = ['SK_ID_CURR', 'SK_ID_PREV'] cat_feats = [f for f in credit_card.columns if credit_card[f].dtype == 'object'] for f_ in cat_feats: credit_card[f_], indexer = pd.factorize(credit_card[f_]) cat_feats = cat_feats + ['MONTHS_BALANCE'] nonNum_feats = idColumns + cat_feats num_feats = [f for f in credit_card.columns if f not in nonNum_feats] # Numeric Features trans = ['sum', 'mean', 'max', 'min'] aggs = {} for feat in num_feats: aggs[feat]=trans aggs['SK_ID_CURR']='count' cc_numeric_group = credit_card.groupby('SK_ID_CURR').agg(aggs) cc_numeric_group.columns = [' '.join(col).strip() for col in cc_numeric_group.columns.values] for column in cc_numeric_group.columns: cc_numeric_group = cc_numeric_group.rename(columns={column:'CC_'+column}) app_data = app_data.merge(cc_numeric_group, left_on='SK_ID_CURR', right_index=True, how='left', suffixes=['','_CC']) # Categorical Features trans = modeValue aggs = {} for feat in cat_feats: aggs[feat]=trans cc_cat_group = credit_card.groupby('SK_ID_CURR').agg(aggs) for column in cc_cat_group.columns: cc_cat_group = cc_cat_group.rename(columns={column:'CC_'+column}) app_data = app_data.merge(cc_cat_group, left_on='SK_ID_CURR', right_index=True, how='left', suffixes=['', '_CCMODE']) # Last Features most_recent_index = credit_card.groupby('SK_ID_CURR')['MONTHS_BALANCE'].idxmax() app_data = app_data.merge(credit_card.loc[most_recent_index], on='SK_ID_CURR', how='left', suffixes=['','_CCLAST']) print('Shape after merging with credit card data = {}'.format(app_data.shape)) return app_data def handleCreditCard_v4(app_data): credit_card = pd.read_csv('../input/credit_card_balance.csv') credit_card.drop('SK_ID_PREV', inplace=True, axis=1) idColumns = ['SK_ID_CURR'] credit_card, cat_cols = one_hot_encoder(credit_card) nonNum_cols = idColumns + cat_cols num_cols = [f for f in credit_card.columns if f not in nonNum_cols] numAggs = {} catAggs = {} numMethods = ['max', 'mean', 'min', 'sum', 'std'] catMethods = ['mean','sum'] for feat in num_cols: numAggs[feat] = numMethods for feat in cat_cols: catAggs[feat] = catMethods credit_agg = credit_card.groupby('SK_ID_CURR').agg({**numAggs, **catAggs}) credit_agg.columns = pd.Index(['CreditCard_' + e[0] + "_" + e[1].upper() for e in credit_agg.columns.tolist()]) app_data = app_data.merge(credit_agg, left_on='SK_ID_CURR', right_index=True, how='left') print('Shape after merging with credit card data = {}'.format(app_data.shape)) return app_data def handleBuro(app_data): buro = pd.read_csv('../input/bureau.csv') # Value Counts app_data = app_data.merge(pd.DataFrame(buro['SK_ID_CURR'].value_counts()), left_on='SK_ID_CURR', right_index=True, how='left', suffixes=['', '_CNT_BUREAU']) # Aggregate Values on All Credits buro_group = buro.groupby('SK_ID_CURR').agg({'SK_ID_BUREAU':'count', 'AMT_CREDIT_SUM':'sum', 'AMT_CREDIT_SUM_DEBT':'sum', 'CREDIT_CURRENCY': [nonUnique, modeValue], 'CREDIT_TYPE': [nonUnique, modeValue], 'CNT_CREDIT_PROLONG': 'sum', 'CREDIT_ACTIVE': totalBadCredit, 'CREDIT_DAY_OVERDUE': creditOverdue }) buro_group.columns = [' '.join(col).strip() for col in buro_group.columns.values] for column in buro_group.columns: buro_group = buro_group.rename(columns={column:'BURO_ALL_'+column}) app_data = app_data.merge(buro_group, left_on='SK_ID_CURR', right_index=True, how='left', suffixes=['', '_BURO']) # Aggregate Values on Active Credits buro_active = buro.loc[buro['CREDIT_ACTIVE']==1] buro_group_active = buro_active.groupby('SK_ID_CURR').agg({'AMT_CREDIT_SUM': ['sum', 'count'], 'AMT_CREDIT_SUM_DEBT': 'sum', 'AMT_CREDIT_SUM_LIMIT': 'sum' }) buro_group_active.columns = [' '.join(col).strip() for col in buro_group_active.columns.values] for column in buro_group_active.columns: buro_group_active = buro_group_active.rename(columns={column:'BURO_ACT_'+column}) app_data = app_data.merge(buro_group_active, left_on='SK_ID_CURR', right_index=True, how='left', suffixes=['', '_BURO_ACT']) # Buro_Last['LastBalanceOnCreditBuro'] = Buro_Last['Active_Debt_Amount'] / Buro_Last['Active_Credit_Amount'] # Getting last credit for each user idx = buro.groupby('SK_ID_CURR')['SK_ID_BUREAU'].transform(max) == buro['SK_ID_BUREAU'] Buro_Last = buro[idx][['SK_ID_CURR','CREDIT_TYPE','DAYS_CREDIT_UPDATE','DAYS_CREDIT', 'DAYS_CREDIT_ENDDATE','DAYS_ENDDATE_FACT', 'SK_ID_BUREAU']] app_data = app_data.merge(Buro_Last, left_on='SK_ID_CURR', right_index=True, how='left', suffixes=['', '_BURO_LAST']) print('Shape after merging with credit bureau data = {}'.format(app_data.shape)) return app_data def handleBuro_v2(app_data): bureau = pd.read_csv('../input/bureau.csv') bb = pd.read_csv('../input/bureau_balance.csv') bb, bb_cat = one_hot_encoder(bb) bureau, bureau_cat = one_hot_encoder(bureau) # Bureau balance: Perform aggregations and merge with bureau.csv bb_aggregations = {'MONTHS_BALANCE': ['min', 'max', 'size']} for col in bb_cat: bb_aggregations[col] = ['mean'] bb_agg = bb.groupby('SK_ID_BUREAU').agg(bb_aggregations) bb_agg.columns = pd.Index([e[0] + "_" + e[1].upper() for e in bb_agg.columns.tolist()]) bureau = bureau.join(bb_agg, how='left', on='SK_ID_BUREAU') bureau.drop(['SK_ID_BUREAU'], axis=1, inplace= True) # Bureau and bureau_balance numeric features num_aggregations = { 'DAYS_CREDIT': [ 'mean', 'var'], 'DAYS_CREDIT_ENDDATE': [ 'mean'], 'DAYS_CREDIT_UPDATE': ['mean'], 'CREDIT_DAY_OVERDUE': ['mean'], 'AMT_CREDIT_MAX_OVERDUE': ['mean'], 'AMT_CREDIT_SUM': [ 'mean', 'sum'], 'AMT_CREDIT_SUM_DEBT': [ 'mean', 'sum'], 'AMT_CREDIT_SUM_OVERDUE': ['mean'], 'AMT_CREDIT_SUM_LIMIT': ['mean', 'sum'], 'AMT_ANNUITY': ['max', 'mean'], 'CNT_CREDIT_PROLONG': ['sum'], 'MONTHS_BALANCE_MIN': ['min'], 'MONTHS_BALANCE_MAX': ['max'], 'MONTHS_BALANCE_SIZE': ['mean', 'sum'] } # Bureau and bureau_balance categorical features cat_aggregations = {} for cat in bureau_cat: cat_aggregations[cat] = ['mean'] for cat in bb_cat: cat_aggregations[cat + "_MEAN"] = ['mean'] bureau_agg = bureau.groupby('SK_ID_CURR').agg({**num_aggregations, **cat_aggregations}) bureau_agg.columns = pd.Index(['BURO_' + e[0] + "_" + e[1].upper() for e in bureau_agg.columns.tolist()]) # Bureau: Active credits - using only numerical aggregations active = bureau[bureau['CREDIT_ACTIVE_Active'] == 1] active_agg = active.groupby('SK_ID_CURR').agg(num_aggregations) active_agg.columns = pd.Index(['ACTIVE_' + e[0] + "_" + e[1].upper() for e in active_agg.columns.tolist()]) bureau_agg = bureau_agg.join(active_agg, how='left') del active, active_agg gc.collect() # Bureau: Closed credits - using only numerical aggregations closed = bureau[bureau['CREDIT_ACTIVE_Closed'] == 1] closed_agg = closed.groupby('SK_ID_CURR').agg(num_aggregations) closed_agg.columns = pd.Index(['CLOSED_' + e[0] + "_" + e[1].upper() for e in closed_agg.columns.tolist()]) bureau_agg = bureau_agg.join(closed_agg, how='left') return bureau_agg def handleBuro_v4(app_data): bureau = pd.read_csv('../input/bureau.csv') bb = pd.read_csv('../input/bureau_balance.csv') bb, bb_cat = one_hot_encoder(bb) bureau, bureau_cat = one_hot_encoder(bureau) # Bureau balance: Perform aggregations and merge with bureau.csv bb_aggregations = {'MONTHS_BALANCE': ['min', 'max', 'size']} for col in bb_cat: bb_aggregations[col] = ['mean'] bb_agg = bb.groupby('SK_ID_BUREAU').agg(bb_aggregations) bb_agg.columns = pd.Index([e[0] + "_" + e[1].upper() for e in bb_agg.columns.tolist()]) bureau = bureau.join(bb_agg, how='left', on='SK_ID_BUREAU') bureau.drop(['SK_ID_BUREAU'], axis=1, inplace= True) # Bureau and bureau_balance numeric features num_aggregations = { 'DAYS_CREDIT': [ 'mean', 'var'], 'DAYS_CREDIT_ENDDATE': [ 'mean'], 'DAYS_CREDIT_UPDATE': ['mean'], 'CREDIT_DAY_OVERDUE': ['mean'], 'AMT_CREDIT_MAX_OVERDUE': ['mean'], 'AMT_CREDIT_SUM': [ 'mean', 'sum'], 'AMT_CREDIT_SUM_DEBT': [ 'mean', 'sum'], 'AMT_CREDIT_SUM_OVERDUE': ['mean'], 'AMT_CREDIT_SUM_LIMIT': ['mean', 'sum'], 'AMT_ANNUITY': ['max', 'mean'], 'CNT_CREDIT_PROLONG': ['sum'], 'MONTHS_BALANCE_MIN': ['min'], 'MONTHS_BALANCE_MAX': ['max'], 'MONTHS_BALANCE_SIZE': ['mean', 'sum'] } # Bureau and bureau_balance categorical features cat_aggregations = {} for cat in bureau_cat: cat_aggregations[cat] = ['mean'] for cat in bb_cat: cat_aggregations[cat + "_MEAN"] = ['mean'] bureau_agg = bureau.groupby('SK_ID_CURR').agg({**num_aggregations, **cat_aggregations}) bureau_agg.columns = pd.Index(['BURO_' + e[0] + "_" + e[1].upper() for e in bureau_agg.columns.tolist()]) # Bureau: Active credits - using only numerical aggregations active = bureau[bureau['CREDIT_ACTIVE_Active'] == 1] active_agg = active.groupby('SK_ID_CURR').agg(num_aggregations) active_agg.columns = pd.Index(['ACTIVE_' + e[0] + "_" + e[1].upper() for e in active_agg.columns.tolist()]) bureau_agg = bureau_agg.join(active_agg, how='left') del active, active_agg gc.collect() # Bureau: Closed credits - using only numerical aggregations closed = bureau[bureau['CREDIT_ACTIVE_Closed'] == 1] closed_agg = closed.groupby('SK_ID_CURR').agg(num_aggregations) closed_agg.columns = pd.Index(['CLOSED_' + e[0] + "_" + e[1].upper() for e in closed_agg.columns.tolist()]) bureau_agg = bureau_agg.join(closed_agg, how='left') app_data = app_data.merge(bureau_agg, left_on='SK_ID_CURR', right_index=True, how='left') return app_data def handleBuroBalance(app_data): buro_balance = pd.read_csv('../input/bureau_balance.csv') # Historical Buro Balance buro_balance.loc[buro_balance['STATUS']=='C', 'STATUS'] = '0' buro_balance.loc[buro_balance['STATUS']=='X', 'STATUS'] = '0' buro_balance['STATUS'] = buro_balance['STATUS'].astype('int64') buro_balance_group = buro_balance.groupby('SK_ID_BUREAU').agg({'STATUS':['max','mean'], 'MONTHS_BALANCE':'max'}) buro_balance_group.columns = [' '.join(col).strip() for col in buro_balance_group.columns.values] app_data = app_data.merge(buro_balance_group, left_on='SK_ID_CURR', right_index=True, how='left', suffixes=['', '_BALANCE_HIST']) # Last Buro Balance idx = buro_balance.groupby('SK_ID_BUREAU')['MONTHS_BALANCE'].transform(max) == buro_balance['MONTHS_BALANCE'] Buro_Balance_Last = buro_balance[idx][['SK_ID_BUREAU','STATUS']] app_data = app_data.merge(Buro_Balance_Last, left_on='SK_ID_CURR', right_index=True, how='left', suffixes=['', '_BALANCE_HIST']) print('Shape after merging with Bureau Balance Data = {}'.format(app_data.shape)) return app_data def handleBuroBalance_v2(app_data): buro_balance = pd.read_csv('../input/bureau_balance.csv') buro = pd.read_csv('../input/bureau.csv') buro = buro[['SK_ID_CURR','SK_ID_BUREAU']] # Add Historical Buro Balance buro_balance.loc[buro_balance['STATUS']=='C', 'STATUS'] = '0' buro_balance.loc[buro_balance['STATUS']=='X', 'STATUS'] = '0' buro_balance['STATUS'] = buro_balance['STATUS'].astype('int64') buro_balance_group = buro_balance.groupby('SK_ID_BUREAU').agg({'STATUS':['max','mean','min','sum'], 'MONTHS_BALANCE':['count']}) buro_balance_group.columns = [' '.join(col).strip() for col in buro_balance_group.columns.values] buro = buro.merge(buro_balance_group, left_on='SK_ID_BUREAU', right_index=True, how='left', suffixes=['', '_BALANCE_HIST']) # Add Last Buro Balance most_recent_index = buro_balance.groupby('SK_ID_BUREAU')['MONTHS_BALANCE'].idxmax() Buro_Balance_Last = buro_balance.loc[most_recent_index] buro = buro.merge(Buro_Balance_Last, on='SK_ID_BUREAU', how='left', suffixes=['', '_BALANCE_LAST']) # All historical data for each credit is now one line # Buro Balance summary merged with all credits in Buro trans = ['sum', 'mean', 'max', 'min'] aggs = {} aggregateColumns = ['STATUS max','STATUS mean','STATUS min','STATUS sum','MONTHS_BALANCE count'] for col in aggregateColumns: aggs[col]=trans BuroBal_AllHist_group = buro.groupby('SK_ID_CURR').agg(aggs) BuroBal_AllHist_group.columns = [' '.join(col).strip() for col in BuroBal_AllHist_group.columns.values] app_data = app_data.merge(BuroBal_AllHist_group, left_on='SK_ID_CURR', right_index=True, how='left', suffixes=['','_BBHist']) # Buro Balance summary merged with active credits in Buro # Posponed for now # Buro Balance summary merged with last credit in Buro most_recent_index = buro.groupby('SK_ID_CURR')['SK_ID_BUREAU'].idxmax() buroLast = buro.loc[most_recent_index] buroLastBeforeMerge = buroLast.drop('SK_ID_BUREAU', axis=1) app_data = app_data.merge(buroLastBeforeMerge, on='SK_ID_CURR',how='left', suffixes=['','_BuroBalLAST']) print('Shape after merging with Bureau Balance Data = {}'.format(app_data.shape)) return app_data def handlePosCash(app_data): POS_CASH = pd.read_csv('../input/POS_CASH_balance.csv') # Weighted by recency wm = lambda x: np.average(x, weights=-1/POS_CASH.loc[x.index, 'MONTHS_BALANCE']) f = {'CNT_INSTALMENT': wm, 'CNT_INSTALMENT_FUTURE': wm, 'SK_DPD': wm, 'SK_DPD_DEF':wm} cash_avg = POS_CASH.groupby('SK_ID_CURR')['CNT_INSTALMENT','CNT_INSTALMENT_FUTURE', 'SK_DPD', 'SK_DPD_DEF'].agg(f) app_data = app_data.merge(cash_avg, left_on='SK_ID_CURR', right_index=True, how='left', suffixes=['', '_CashAVG']) # Historical Data PosCashGroup = POS_CASH.groupby('SK_ID_CURR')['CNT_INSTALMENT','CNT_INSTALMENT_FUTURE','SK_DPD', 'SK_DPD_DEF'].agg({ 'CNT_INSTALMENT':['mean', 'max', 'min'], 'CNT_INSTALMENT_FUTURE':['mean', 'max', 'min'], 'SK_DPD':['mean', 'max', 'min'], 'SK_DPD_DEF':['mean', 'max', 'min']}) PosCashGroup.columns = [' '.join(col).strip() for col in PosCashGroup.columns.values] for column in PosCashGroup.columns: PosCashGroup = PosCashGroup.rename(columns={column:'PosCash_'+column}) app_data = app_data.merge(PosCashGroup, left_on='SK_ID_CURR', right_index=True, how='left', suffixes=['', '_POSCASH']) # Last Values most_recent_index = POS_CASH.groupby('SK_ID_CURR')['MONTHS_BALANCE'].idxmax() cat_feats = POS_CASH.columns[POS_CASH.dtypes == 'object'].tolist() + ['SK_ID_CURR'] app_data = app_data.merge(POS_CASH.loc[most_recent_index, cat_feats], on='SK_ID_CURR', how='left', suffixes=['', '_PosCashLast']) print('Shape after merging with pos cash data = {}'.format(app_data.shape)) return app_data def handlePosCash_v2(app_data): POS_CASH = pd.read_csv('../input/POS_CASH_balance.csv') idColumns = ['SK_ID_CURR', 'SK_ID_PREV'] cat_feats = [f for f in POS_CASH.columns if POS_CASH[f].dtype == 'object'] for f_ in cat_feats: POS_CASH[f_], indexer =
pd.factorize(POS_CASH[f_])
pandas.factorize
""" This module implements visualizations for EOPatch Credits: Copyright (c) 2017-2019 <NAME>, <NAME>, <NAME>, <NAME> (Sinergise) Copyright (c) 2017-2019 <NAME>, <NAME>, <NAME>, <NAME>, <NAME> (Sinergise) Copyright (c) 2017-2019 <NAME>, <NAME>, <NAME>, <NAME>, <NAME> (Sinergise) This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. """ import numpy as np import pandas as pd import geopandas as gpd import xarray as xr import holoviews as hv import geoviews as gv import hvplot # pylint: disable=unused-import import hvplot.xarray # pylint: disable=unused-import import hvplot.pandas # pylint: disable=unused-import from cartopy import crs as ccrs from shapely.geometry import Polygon import shapely shapely.speedups.disable() from sentinelhub import CRS ## TODO! # make using sys obsolete import sys sys.path.append("D:/Code/eotopia/repo_core") from constants import FeatureType, FeatureTypeSet from utilities import FeatureParser sys.path.append("D:/Code/eotopia/repo_visualization_eopatchcore") from xarray_utils_viz import array_to_dataframe, new_coordinates, string_to_variable PLOT_WIDTH = 800 PLOT_HEIGHT = 500 class EOPatchVisualization: """ Plot class for making visulizations. :param eopatch: eopatch :type eopatch: EOPatch :param feature: feature of eopatch :type feature: (FeatureType, str) :param rgb: bands for creating RGB image :type rgb: [int, int, int] :param rgb_factor: multiplication factor for constructing rgb image :type rgb_factor: float :param vdims: value dimensions for plotting geopandas.GeoDataFrame :type vdims: str :param timestamp_column: geopandas.GeoDataFrame columns with timestamps :type timestamp_column: str :param geometry_column: geopandas.GeoDataFrame columns with geometry :type geometry_column: geometry :param pixel: wheather plot data for each pixel (line), for FeatureType.DATA and FeatureType.MASK :type pixel: bool :param mask: name of the FeatureType.MASK to apply to data :type mask: str """ def __init__(self, eopatch, feature, rgb=None, rgb_factor=3.5, vdims=None, timestamp_column='TIMESTAMP', geometry_column='geometry', pixel=False, mask=None): self.eopatch = eopatch self.feature = feature self.rgb = list(rgb) if isinstance(rgb, tuple) else rgb self.rgb_factor = rgb_factor self.vdims = vdims self.timestamp_column = timestamp_column self.geometry_column = geometry_column self.pixel = pixel self.mask = mask def plot(self): """ Plots eopatch :return: plot :rtype: holovies/bokeh """ features = list(FeatureParser(self.feature)) feature_type, feature_name = features[0] if self.pixel and feature_type in FeatureTypeSet.RASTER_TYPES_4D: vis = self.plot_pixel(feature_type, feature_name) elif feature_type in (FeatureType.MASK, *FeatureTypeSet.RASTER_TYPES_3D): vis = self.plot_raster(feature_type, feature_name) elif self.rgb and feature_type is FeatureType.DATA: vis = self.plot_data_rgb(feature_name) elif feature_type is FeatureType.VECTOR: vis = self.plot_vector(feature_name) elif feature_type is FeatureType.VECTOR_TIMELESS: vis = self.plot_vector_timeless(feature_name) else: # elif feature_type in (FeatureType.SCALAR, FeatureType.LABEL): vis = self.plot_scalar_label(feature_type, feature_name) return vis.opts(plot=dict(width=PLOT_WIDTH, height=PLOT_HEIGHT)) def plot_data_rgb(self, feature_name): """ Plots the FeatureType.DATA of eopatch. :param feature_name: name of the eopatch feature :type feature_name: str :return: visualization :rtype: holoview/geoviews/bokeh """ crs = self.eopatch.bbox.crs crs = CRS.POP_WEB if crs is CRS.WGS84 else crs data_da = array_to_dataframe(self.eopatch, (FeatureType.DATA, feature_name), crs=crs) if self.mask: data_da = self.mask_data(data_da) timestamps = self.eopatch.timestamp crs = self.eopatch.bbox.crs if not self.rgb: return data_da.hvplot(x='x', y='y', crs=ccrs.epsg(crs.epsg)) data_rgb = self.eopatch_da_to_rgb(data_da, feature_name, crs) rgb_dict = {timestamp_: self.plot_rgb_one(data_rgb, timestamp_) for timestamp_ in timestamps} return hv.HoloMap(rgb_dict, kdims=['time']) @staticmethod def plot_rgb_one(eopatch_da, timestamp): # OK """ Returns visualization for one timestamp for FeatureType.DATA :param eopatch_da: eopatch converted to xarray DataArray :type eopatch_da: xarray DataArray :param timestamp: timestamp to make plot for :type timestamp: datetime :return: visualization :rtype: holoviews/geoviews/bokeh """ return eopatch_da.sel(time=timestamp).drop('time').hvplot(x='x', y='y') def plot_raster(self, feature_type, feature_name): """ Makes visualization for raster data (except for FeatureType.DATA) :param feature_type: type of eopatch feature :type feature_type: FeatureType :param feature_name: name of eopatch feature :type feature_name: str :return: visualization :rtype: holoviews/geoviews/bokeh """ crs = self.eopatch.bbox.crs crs = CRS.POP_WEB if crs is CRS.WGS84 else crs data_da = array_to_dataframe(self.eopatch, (feature_type, feature_name), crs=crs) data_min = data_da.values.min() data_max = data_da.values.max() data_levels = len(np.unique(data_da)) data_levels = 11 if data_levels > 11 else data_levels data_da = data_da.where(data_da > 0).fillna(-1) vis = data_da.hvplot(x='x', y='y', crs=ccrs.epsg(crs.epsg)).opts(clim=(data_min, data_max), clipping_colors={'min': 'transparent'}, color_levels=data_levels) return vis def plot_vector(self, feature_name): """ Visualizaton for vector (FeatureType.VECTOR) data :param feature_name: name of eopatch feature :type feature_name: str :return: visualization :rtype: holoviews/geoviews/bokeh """ crs = self.eopatch.bbox.crs timestamps = self.eopatch.timestamp data_gpd = self.fill_vector(FeatureType.VECTOR, feature_name) if crs is CRS.WGS84: crs = CRS.POP_WEB data_gpd = data_gpd.to_crs(crs.pyproj_crs()) shapes_dict = {timestamp_: self.plot_shapes_one(data_gpd, timestamp_, crs) for timestamp_ in timestamps} return hv.HoloMap(shapes_dict, kdims=['time']) def fill_vector(self, feature_type, feature_name): """ Adds timestamps from eopatch to GeoDataFrame. :param feature_type: type of eopatch feature :type feature_type: FeatureType :param feature_name: name of eopatch feature :type feature_name: str :return: GeoDataFrame with added data :rtype: geopandas.GeoDataFrame """ vector = self.eopatch[feature_type][feature_name].copy() vector['valid'] = True eopatch_timestamps = self.eopatch.timestamp vector_timestamps = set(vector[self.timestamp_column]) blank_timestamps = [timestamp for timestamp in eopatch_timestamps if timestamp not in vector_timestamps] dummy_geometry = self.create_dummy_polygon(0.0000001) temp_df = self.create_dummy_dataframe(vector, blank_timestamps=blank_timestamps, dummy_geometry=dummy_geometry) final_vector = gpd.GeoDataFrame(pd.concat((vector, temp_df), ignore_index=True), crs=vector.crs) return final_vector def create_dummy_dataframe(self, geodataframe, blank_timestamps, dummy_geometry, fill_str='', fill_numeric=1): """ Creates geopadnas GeoDataFrame to fill with dummy data (for visualization) :param geodataframe: dataframe to append rows to :type geodataframe: geopandas.GeoDataFrame :param blank_timestamps: timestamps for constructing dataframe :type blank_timestamps: list of timestamps :param dummy_geometry: geometry to plot when there is no data :type dummy_geometry: shapely.geometry.Polygon :param fill_str: insert when there is no value in str column :type fill_str: str :param fill_numeric: insert when :type fill_numeric: float :return: dataframe with dummy data :rtype: geopandas.GeoDataFrame """ dataframe =
pd.DataFrame(data=blank_timestamps, columns=[self.timestamp_column])
pandas.DataFrame
# Imports: standard library import re import copy import datetime from typing import Dict, List, Tuple, Union, Optional # Imports: third party import numpy as np import pandas as pd # Imports: first party from ml4c3.metrics import weighted_crossentropy from definitions.ecg import ECG_PREFIX from definitions.ici import ICI_PREFIX, ICI_DATE_COLUMN from definitions.sts import STS_PREFIX, STS_SURGERY_DATE_COLUMN from definitions.echo import ECHO_PREFIX, ECHO_DATETIME_COLUMN from definitions.globals import SECONDS_IN_DAY from tensormap.TensorMap import ( Dates, TensorMap, PatientData, Interpretation, make_default_time_series_filter, ) def update_tmaps_weighted_loss( tmap_name: str, tmaps: Dict[str, TensorMap], ) -> Dict[str, TensorMap]: """Make new tmap from base name, modifying loss weight""" if "_weighted_loss_" not in tmap_name: return tmaps base_name, weight = tmap_name.split("_weighted_loss_") if base_name not in tmaps: raise ValueError( f"Base tmap {base_name} not in existing tmaps. " f"Cannot modify weighted loss.", ) weight = weight.split("_")[0] tmap = copy.deepcopy(tmaps[base_name]) new_tmap_name = f"{base_name}_weighted_loss_{weight}" tmap.name = new_tmap_name tmap.loss = weighted_crossentropy([1.0, float(weight)], new_tmap_name) tmaps[new_tmap_name] = tmap return tmaps random_date_selections: Dict[str, Union[List[str], pd.Series]] = dict() def update_tmaps_time_series( tmap_name: str, tmaps: Dict[str, TensorMap], time_series_limit: Optional[int] = None, ) -> Dict[str, TensorMap]: """Given the name of a needed tensor maps, e.g. ["ecg_age_newest"], and its base TMap, e.g. tmaps["ecg_age"], this function creates new tmap with the name of the needed tmap and the correct shape, but otherwise inherits properties from the base tmap. Next, updates new tmap to tmaps dict. """ if "_newest" in tmap_name: base_split = "_newest" elif "_oldest" in tmap_name: base_split = "_oldest" elif "_random" in tmap_name: base_split = "_random" else: return tmaps base_name, _ = tmap_name.split(base_split) if base_name not in tmaps: raise ValueError( f"Base tmap {base_name} not in existing tmaps. Cannot modify time series.", ) base_tmap = tmaps[base_name] def updated_time_series_filter(data: PatientData) -> Dates: _dates = base_tmap.time_series_filter(data) _dates = ( _dates.sort_values() if isinstance(_dates, pd.Series) else sorted(_dates) ) tsl = 1 if time_series_limit is None else time_series_limit if "_random" in tmap_name: if data.id in random_date_selections: return random_date_selections[data.id] if len(_dates) < tsl: tsl = len(_dates) _dates = ( _dates.sample(tsl, replace=False) if isinstance(_dates, pd.Series) else np.random.choice(_dates, tsl, replace=False) ) random_date_selections[data.id] = _dates return _dates if "_oldest" in tmap_name: return _dates[:tsl] if "_newest" in tmap_name: return _dates[-tsl:] raise ValueError(f"Unknown time series ordering: {tmap_name}") new_tmap = copy.deepcopy(base_tmap) new_tmap_name = f"{base_name}{base_split}" new_tmap.name = new_tmap_name new_tmap.time_series_limit = time_series_limit new_tmap.time_series_filter = updated_time_series_filter tmaps[new_tmap_name] = new_tmap return tmaps def _get_dataset_metadata(dataset_name: str) -> Tuple[str, str]: if dataset_name == "sts": prefix = STS_PREFIX datetime_column = STS_SURGERY_DATE_COLUMN elif dataset_name == "echo": prefix = ECHO_PREFIX datetime_column = ECHO_DATETIME_COLUMN elif dataset_name == "ecg": prefix = ECG_PREFIX datetime_column = None elif dataset_name == "ici": prefix = ICI_PREFIX datetime_column = ICI_DATE_COLUMN else: raise ValueError("{data_descriptor} is not a valid data descriptor") return prefix, datetime_column CROSS_REFERENCE_SOURCES = [ECG_PREFIX, STS_PREFIX, ECHO_PREFIX, ICI_PREFIX] def _days_between_tensor_from_file(tm: TensorMap, data: PatientData) -> np.ndarray: # Time series filter will be updated to return days for this tensor from file days = tm.time_series_filter(data) return days.to_numpy()[:, None] def update_tmaps_window( tmap_name: str, tmaps: Dict[str, TensorMap], ) -> Dict[str, TensorMap]: """ Make new tensor map from base tensor map, making conditional on a date from another source of data. This requires a precise format for tensor map name: [base_tmap_name]_[N]_days_[pre/post]_[other_data_source] e.g. ecg_2500_365_days_pre_echo ecg_2500_365_days_pre_sts_newest av_peak_gradient_30_days_post_echo Additionally, a special tensor map can be created to get the days between cross referenced events by the following format: [source_name]_[N]_days_[pre/post]_[other_data_source]_days_between_matched_events e.g. ecg_180_days_pre_echo_days_between_matched_events """ pattern = ( fr"(.*)_(\d+)_days_(pre|post)_({'|'.join(CROSS_REFERENCE_SOURCES)})" fr"(_days_between_matched_events)?" ) match = re.match(pattern, tmap_name) if match is None: return tmaps # fmt: off # ecg_2500_std_180_days_pre_echo source_name = match[1] # ecg_2500_std offset_days = int(match[2]) # 180 pre_or_post = match[3] # pre reference_name = match[4] # echo days_between = match[5] or "" # (empty string) # fmt: on new_name = ( f"{source_name}_{offset_days}_days_{pre_or_post}_{reference_name}{days_between}" ) # If the tmap should return the number of days between matched events, # source_name is the name of a source dataset if days_between: if source_name not in CROSS_REFERENCE_SOURCES: raise ValueError( f"Source dataset {source_name} not in known cross reference sources; " f"cannot create {new_name}", ) source_prefix, source_dt_col = _get_dataset_metadata(dataset_name=source_name) # Setup time series filter, using the default time series filter if the source # datetime column is None if source_dt_col is not None: time_series_filter = lambda data: data[source_prefix][source_dt_col] else: time_series_filter = make_default_time_series_filter(source_prefix) # Create a fake base tmap which will be modified with a time series filter # function which returns the number of days between events base_tmap = TensorMap( name=source_name, shape=(1,), interpretation=Interpretation.CONTINUOUS, path_prefix=source_prefix, tensor_from_file=_days_between_tensor_from_file, time_series_limit=0, time_series_filter=time_series_filter, ) # If not getting days between events, source_name is the name of an underlying tmap # to filter and must exist elif source_name not in tmaps: raise ValueError( f"Base tmap {source_name} not in existing tmaps; cannot create {new_name}", ) # If all checks pass, get base_tmap in the case that it is an existing tmap else: base_tmap = tmaps[source_name] # Copy the base_tmap to modify, either a real tmap or the fake one setup to get # the days between events new_tmap = copy.deepcopy(base_tmap) reference_prefix, reference_dt_col = _get_dataset_metadata( dataset_name=reference_name, ) # One-to-one matching algorithm maximizes the number of matches by pairing events # nearest in time, starting from the most recent event. # 1. Sort source dates from newest -> oldest # 2. Sort reference dates from newest -> oldest # 3. For each reference date, starting from the newest reference date # a. Compute relative time window # b. Take the newest source date in range def get_cross_referenced_dates(data: PatientData) -> Dates: source_dates = base_tmap.time_series_filter(data) # Get dates from reference data reference_data = data[reference_prefix] if isinstance(reference_data, pd.DataFrame): reference_dates = reference_data[reference_dt_col] # Reference data is CSV else: reference_dates = list(reference_data) # Reference data is HD5 # Convert everything to pd.Series of pd.Timestamp source_is_list = isinstance(source_dates, list) source_dates = pd.Series(source_dates).sort_values(ascending=False) source_dates_dt = pd.to_datetime(source_dates) reference_dates = pd.Series(reference_dates).sort_values(ascending=False) reference_dates = pd.to_datetime(reference_dates) # Set start and end dates relative to an event if pre_or_post == "pre": start_dates = reference_dates + datetime.timedelta(days=offset_days * -1) end_dates = reference_dates else: start_dates = reference_dates end_dates = reference_dates + datetime.timedelta(days=offset_days) dates = pd.Series(dtype=object) day_differences = pd.Series(dtype=object) for start_date, end_date, reference_date in zip( start_dates, end_dates, reference_dates, ): # Get newest source date in range of start and end dates matched_date = source_dates_dt[ source_dates_dt.between(start_date, end_date, inclusive=False) ][:1] # If computing the days between events, calculate the day difference between # the reference date and the matched date if days_between: difference = reference_date - matched_date difference = difference.dt.total_seconds() / SECONDS_IN_DAY day_differences = day_differences.append(difference) # If not computing the days between events, return the actual dates else: # Computation is done on pd.Timestamp objects but returned list should # use the original strings/format in source_dates dates = dates.append(source_dates[matched_date.index]) # Remove the matched date from further matching source_dates_dt = source_dates_dt.drop(matched_date.index) if len(dates) == 0 and len(day_differences) == 0: raise ValueError("No cross referenced dates") if days_between: return day_differences elif source_is_list: return list(dates) else: return dates new_tmap.time_series_filter = get_cross_referenced_dates new_tmap.name = new_name tmaps[new_name] = new_tmap return tmaps def update_sts_ecg_cross_reference( tmap_name: str, tmaps: Dict[str, TensorMap], ) -> Dict[str, TensorMap]: pattern = fr"(.*)_(\d+)_days_(before_sts|after_ecg)" match = re.match(pattern, tmap_name) if match is None: return tmaps # ecg_2500_zscore_pop_180_days_pre_sts base_name = match[1] # ecg_2500_zscore_pop offset_days = int(match[2]) # 180 relative_event = match[3] # pre_sts new_name = f"{base_name}_{offset_days}_days_{relative_event}" if base_name not in tmaps: raise ValueError( f"Base tmap {base_name} not in existing tmaps; cannot create {new_name}", ) base_tmap = tmaps[base_name] new_tmap = copy.deepcopy(base_tmap) left_edge = pd.to_datetime(pd.Series(["1900-01-01"])) left_edge.index = [-1] def get_cross_referenced_dates(data: PatientData) -> Dates: ecg_dates_str = pd.Series(list(data[ECG_PREFIX])) surgery_dates = data[STS_PREFIX][STS_SURGERY_DATE_COLUMN] ecg_dates =
pd.to_datetime(ecg_dates_str)
pandas.to_datetime
import pickle from ds import * import pandas as pd from sklearn.neural_network import MLPRegressor from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.preprocessing import StandardScaler from sklearn import metrics from sklearn import ensemble import numpy as np import xgboost as xgb from sklearn.impute import SimpleImputer import csv data_as_list = [] with open('data/out.csv') as csvfile: readCSV = csv.reader(csvfile, delimiter=',') for idx,row in enumerate(readCSV): if idx==0: continue try: title_len = len(row[0]) story_len = len(row[1]) goal = int(row[4]) category = row[5] amt_raised = int(row[3]) data_as_list.append([title_len, story_len, goal, category, amt_raised]) except Exception: continue df = pd.DataFrame(data_as_list, columns = ["title_len", "story_len", "goal", "category", "amt_raised"]) df['category'] =
pd.Categorical(df['category'])
pandas.Categorical
#!/usr/bin/env python # encoding:utf-8 """ Author : <NAME> Date : 2021/8/4 Time: 20:06 File: precision_table_plot.py HomePage : http://github.com/yuanqingmei Email : <EMAIL> compute the avg std max min values and draw the box plot of precision and recall. """ import time def precision_table_plot(working_dir="F:\\NJU\\MTmeta\\experiments\\pooled\\", plot_dir="F:\\NJU\\MTmeta\\experiments\\pooled\\plots\\"): import os import csv import pandas as pd import matplotlib.pyplot as plt pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None)
pd.set_option('display.width', 5000)
pandas.set_option
################################################################################ # The contents of this file are Teradata Public Content and have been released # to the Public Domain. # <NAME> & <NAME> - April 2020 - v.1.1 # Copyright (c) 2020 by Teradata # Licensed under BSD; see "license.txt" file in the bundle root folder. # ################################################################################ # R and Python TechBytes Demo - Part 5: Python in-nodes with SCRIPT # ------------------------------------------------------------------------------ # File: stoRFFitMM.py # ------------------------------------------------------------------------------ # The R and Python TechBytes Demo comprises of 5 parts: # Part 1 consists of only a Powerpoint overview of R and Python in Vantage # Part 2 demonstrates the Teradata R package tdplyr for clients # Part 3 demonstrates the Teradata Python package teradataml for clients # Part 4 demonstrates using R in-nodes with the SCRIPT and ExecR Table Operators # Part 5 demonstrates using Python in-nodes with the SCRIPT Table Operator ################################################################################ # # This TechBytes demo utilizes a use case to predict the propensity of a # financial services customer base to open a credit card account. # # The present file is the Python model fitting script to be used with the SCRIPT # table operator, as described in the following use case 2 of the present demo # Part 5: # # 2) Fitting and scoring multiple models # # We utilize the statecode variable as a partition to built a Random # Forest model for every state. This is done by using SCRIPT Table Operator # to run a model fitting script with a PARTITION BY statecode in the query. # This creates a model for each of the CA, NY, TX, IL, AZ, OH and Other # state codes, and perists the model in the database via CREATE TABLE AS # statement. # Then we run a scoring script via the SCRIPT Table Operator against # these persisted Random Forest models to score the entire data set. # # For this use case, we build an analytic data set nearly identical to the # one in the teradataml demo (Part 3), with one change as indicated by item # (d) below. This is so we can demonstrate the in-database capability of # simultaneously building many models. # 60% of the analytic data set rows are sampled to create a training # subset. The remaining 40% is used to create a testing/scoring dataset. # The train and test/score datasets are used in the SCRIPT operations. ################################################################################ # File Changelog # v.1.0 2019-10-29 First release # v.1.1 2020-04-02 Added change log; no code changes in present file ################################################################################ import sys import numpy as np import pandas as pd from sklearn.ensemble import RandomForestClassifier import pickle import base64 ### ### Read input ### delimiter = '\t' inputData = [] for line in sys.stdin.read().splitlines(): line = line.split(delimiter) inputData.append(line) ### ### If no data received, gracefully exit rather than producing an error later. ### if not inputData: sys.exit() ### ### Set up input DataFrame according to input schema ### # Know your data: You must know in advance the number and data types of the # incoming columns from the database! # For numeric columns, the database sends in floats in scientific format with a # blank space when the exponential is positive; e.g., 1.0 is sent as 1.000E 000. # The following input data read deals with any such blank spaces in numbers. columns = ['cust_id', 'tot_income', 'tot_age', 'tot_cust_years', 'tot_children', 'female_ind', 'single_ind', 'married_ind', 'separated_ind', 'statecode', 'ck_acct_ind', 'sv_acct_ind', 'cc_acct_ind', 'ck_avg_bal', 'sv_avg_bal', 'cc_avg_bal', 'ck_avg_tran_amt', 'sv_avg_tran_amt', 'cc_avg_tran_amt', 'q1_trans_cnt', 'q2_trans_cnt', 'q3_trans_cnt', 'q4_trans_cnt', 'SAMPLE_ID'] df = pd.DataFrame(inputData, columns=columns) del inputData df['cust_id'] = pd.to_numeric(df['cust_id']) df['tot_income'] = df['tot_income'].apply(lambda x: "".join(x.split())) df['tot_income'] = pd.to_numeric(df['tot_income']) df['tot_age'] = pd.to_numeric(df['tot_age']) df['tot_cust_years'] = pd.to_numeric(df['tot_cust_years']) df['tot_children'] = pd.to_numeric(df['tot_children']) df['female_ind'] = pd.to_numeric(df['female_ind']) df['single_ind'] = pd.to_numeric(df['single_ind']) df['married_ind'] =
pd.to_numeric(df['married_ind'])
pandas.to_numeric
# -*- coding: utf-8 -*- """ Created on Thu Jun 7 11:41:44 2018 @author: MichaelEK """ import types import pandas as pd import numpy as np import json from pdsf import sflake as sf from utils import split_months def process_allo(param, permit_use): """ Function to process the consented allocation from the input tables from Accela and others. More descriptions in the code below. Parameters ---------- param : dict Input parameters permit_use : DataFrame DataFrame from the output of the process_use_types function Returns ------- DataFrame """ run_time_start = pd.Timestamp.today().strftime('%Y-%m-%d %H:%M:%S') print(run_time_start) ####################################### ### Read in source data and update accela tables in ConsentsReporting db print('--Reading in source data...') ## Make object to contain the source data db = types.SimpleNamespace() for t in param['misc']['AllocationProcessing']['tables']: p = param['source data'][t] print(p['table']) if p['schema'] != 'public': stmt = 'select {cols} from "{schema}"."{table}"'.format(schema=p['schema'], table=p['table'], cols=json.dumps(p['col_names'])[1:-1]) else: stmt = 'select {cols} from "{table}"'.format(table=p['table'], cols=json.dumps(p['col_names'])[1:-1]) setattr(db, t, sf.read_table(p['username'], p['password'], p['account'], p['database'], p['schema'], stmt)) ################################################## ### Sites print('--Process Waps') ## takes wap_allo1 = db.wap_allo.copy() wap1 = wap_allo1['Wap'].unique() waps = wap1[~pd.isnull(wap1)].copy() ## Check that all Waps exist in the USM sites table usm_waps1 = db.waps[db.waps.isin(waps)].copy() # usm_waps1[['NzTmX', 'NzTmY']] = usm_waps1[['NzTmX', 'NzTmY']].astype(int) if len(wap1) != len(usm_waps1): miss_waps = set(wap1).difference(set(usm_waps1.Wap)) print('Missing {} Waps in USM'.format(len(miss_waps))) wap_allo1 = wap_allo1[~wap_allo1.Wap.isin(miss_waps)].copy() ################################################## ### Permit table print('--Process Permits') ''' WILCO: Selection FromDate and toDate was a bit of a pain in the ass i remember for the Rakaia as well. I don't think there is any filtering done here below yet, but maybe it is good to consider that: 1) Some consents may have never been active between the FromDate and ToDate. The 'Given Effect To' field can help with that. If the given effect to is larger than the toDate, then that consent was never exercised and (at least for modelling purposes) should be dropped from the list of consents. 2) If the Given Effect To date is larger than the fromDate, then set FromDate equal to Given Effect To. 3) For parent and child consents (orginal and renewals) it is good to check the FromDate and ToDate. In the Ecan database the FromDate of the renewal is most of the time equal to the ToDate of the parent (original record), which would lead to double accounting for that day. For the Rakaia I fixed this by making sure that sure that the toDate is always 1 day before the frommDate of the child consent. Below I have inserted some (commented) code that I used in my Rakaia work, so not sure whether you want to use this yes/no. ''' # #-Select consents that were active between sdate and edate # print 'Filter consents that were active between %s and %s...' %(sdate.strftime('%d-%m-%Y'), edate.strftime('%d-%m-%Y')) # df1 = df.loc[(df['toDate']>pd.Timestamp(sdate)) & (df['fmDate']<=pd.Timestamp(edate))] # #-If 'Given Effect To' date is later than 'toDate', then consent was never active in between the fmDate-toDate period, and is therefore removed from the dataframe # df1.loc[(df1['Given Effect To'] > df1['toDate']),:]=np.nan # df2 = df1.dropna(how='all') # #-If 'Given Effect To' date is later than 'fmDate', then the 'fmDate' field is set to 'Given Effect To' # df2.loc[(df2['fmDate'] < df2['Given Effect To']),['fmDate']]= df2['Given Effect To'] # # #-Unique consent numbers of 'OriginalRecord' # ori_records = pd.unique(df2['OriginalRecord']) # df2_columns = list(df2.columns) # fmDate_index = df2_columns.index('fmDate') # toDate_index = df2_columns.index('toDate') # #-Make sure toDate is always 1 day before the fmDate of the child consent. Required to make sure that a consent isn't active twice on one day # for c in ori_records: # #-select the consents that belong to the same group (have same parent so to speak) # df_short = df2.loc[df2['OriginalRecord']==c] # for i in range(0,len(df_short)-1): # toDate = df_short.iloc[i,toDate_index] #-toDate of current record # fmDate = df_short.iloc[i+1,fmDate_index] #-fromDate of child record # if toDate == fmDate: #-cannot be equal. If so, then decrease the todate of the current record with one day # df_short.iloc[i, toDate_index] = toDate - dt.timedelta(days=1) # df2.loc[df2['OriginalRecord']==c] = df_short # #-get rid of old dataframes # df = df2.copy() # df1 = None; df2 = None; del df1, df2 # # #-For consents that are active for one day, the toDate may now (because of extracting one day from toDate) be smaller than fmDate. Those records are removed # df = df.loc[df['toDate']>=df['fmDate']] ## Clean data permits2 = db.permit.copy() permits2['FromDate'] = pd.to_datetime(permits2['FromDate'], infer_datetime_format=True, errors='coerce') permits2['ToDate'] = pd.to_datetime(permits2['ToDate'], infer_datetime_format=True, errors='coerce') ## Filter data permits2 = permits2[permits2.ConsentStatus.notnull() & permits2.RecordNumber.notnull()].copy() # permits2 = permits2[(permits2['FromDate'] > '1950-01-01') & (permits2['ToDate'] > '1950-01-01') & (permits2['ToDate'] > permits2['FromDate']) & permits2.NzTmX.notnull() & permits2.NzTmY.notnull() & permits2.ConsentStatus.notnull() & permits2.RecordNumber.notnull() & permits2['EcanID'].notnull()].copy() ## Convert datetimes to date permits2.loc[permits2['FromDate'].isnull(), 'FromDate'] = pd.Timestamp('1900-01-01') permits2.loc[permits2['ToDate'].isnull(), 'ToDate'] = pd.Timestamp('1900-01-01') ################################################## ### Parent-Child print('--Process Parent-child table') ## Clean data pc1 = db.parent_child.copy() ## Filter data pc1 = pc1.drop_duplicates() pc1 = pc1[pc1['ParentRecordNumber'].notnull() & pc1['ChildRecordNumber'].notnull()] ## Check foreign keys --> what are foreign keys? crc1 = permits2.RecordNumber.unique() pc0 = pc1[pc1.ParentRecordNumber.isin(crc1) & pc1.ChildRecordNumber.isin(crc1)].copy() ################################################# ### AllocatedRatesVolumes print('--Process Allocation data') ## Rates # Clean data wa1 = wap_allo1.copy() # Check foreign keys wa4 = wa1[wa1.RecordNumber.isin(crc1)].copy() # Find the missing Waps per consent crc_wap_mis1 = wa4.loc[wa4.Wap.isnull(), 'RecordNumber'].unique() crc_wap4 = wa4[['RecordNumber', 'Wap']].drop_duplicates() for i in crc_wap_mis1: crc2 = pc0[np.in1d(pc0.ParentRecordNumber, i)].ChildRecordNumber.values wap1 = [] while (len(crc2) > 0) & (len(wap1) == 0): wap1 = crc_wap4.loc[np.in1d(crc_wap4.RecordNumber, crc2), 'Wap'].values crc2 = pc0[np.in1d(pc0.ParentRecordNumber, crc2)].ChildRecordNumber.values if len(wap1) > 0: wa4.loc[wa4.RecordNumber == i, 'Wap'] = wap1[0] wa4 = wa4[wa4.Wap.notnull()].copy() ## Distribute the months # Since the tables in accela have no explicit primary/composite keys, it is possible that the eventual composite key 'RecordNumber', 'TakeType', 'SwAllocationBlock', 'Wap' does not fully caapture the Accela data set. It is possible that the rates also change by month. This occurs in less than 100 consents ever, so the simplification seems justified. The below code splits the consents out by each month that the consent is allowed to be active by the appropriate rates and volumes listed in the Accela table. Then the mean is taken over all months to ensure that there is only one value for 'RecordNumber', 'TakeType', 'SwAllocationBlock', 'Wap'. cols1 = wa4.columns.tolist() from_mon_pos = cols1.index('FromMonth') to_mon_pos = cols1.index('ToMonth') allo_rates_list = [] for val in wa4.itertuples(False, None): from_month = int(val[from_mon_pos]) to_month = int(val[to_mon_pos]) if from_month > to_month: mons = list(range(1, to_month + 1)) else: mons = range(from_month, to_month + 1) d1 = [val + (i,) for i in mons] allo_rates_list.extend(d1) col_names1 = wa4.columns.tolist() col_names1.extend(['Month']) wa5 = pd.DataFrame(allo_rates_list, columns=col_names1).drop(['FromMonth', 'ToMonth'], axis=1) # Mean of all months grp1 = wa5.groupby(['RecordNumber', 'TakeType', 'SwAllocationBlock', 'Wap']) mean1 = grp1[['WapRate', 'AllocatedRate', 'VolumeDaily', 'VolumeWeekly', 'Volume150Day']].mean().round(2) include1 = grp1['IncludeInSwAllocation'].first() mon_min = grp1['Month'].min() mon_min.name = 'FromMonth' mon_max = grp1['Month'].max() mon_max.name = 'ToMonth' wa6 = pd.concat([mean1, mon_min, mon_max, include1], axis=1).reset_index() # wa6['HydroGroup'] = 'Surface Water' ## Rename allocation blocks !!!!!! Need to be changed later!!!! # av1.rename(columns={'GwAllocationBlock': 'AllocationBlock'}, inplace=True) # wa6.rename(columns={'SwAllocationBlock': 'AllocationBlock'}, inplace=True) # wa6.replace({'SwAllocationBlock': {'In Waitaki': 'A'}}, inplace=True) ## Combine volumes with rates !!! Needs to be changed later!!! # wa7 = pd.merge(av1, wa6, on=['RecordNumber', 'TakeType']) ## Add in stream depletion waps = db.waps.copy() wa7 = pd.merge(wa6, waps, on='Wap').drop(['SD1_30Day'], axis=1) # wa9['SD1_7Day'] = pd.to_numeric(wa9['SD1_7Day'], errors='coerce').round(0) # wa9['SD1_150Day'] = pd.to_numeric(wa9['SD1_150Day'], errors='coerce').round(0) ## Add in the lowflow bool wa8 = pd.merge(wa7, db.consented_takes, on=['RecordNumber', 'TakeType'], how='left') wa8.loc[wa8.LowflowCondition.isnull(), 'LowflowCondition'] = False ## Distribute the rates according to the stream depletion requirements ## According to the LWRP Schedule 9! allo_rates1 = wa8.drop_duplicates(['RecordNumber', 'SwAllocationBlock', 'Wap']).set_index(['RecordNumber', 'SwAllocationBlock', 'Wap']).copy() # Convert daily, 7-day, and 150-day volumes to rates in l/s allo_rates1['RateDaily'] = (allo_rates1['VolumeDaily'] / 24 / 60 / 60) * 1000 allo_rates1['RateWeekly'] = (allo_rates1['VolumeWeekly'] / 7 / 24 / 60 / 60) * 1000 allo_rates1['Rate150Day'] = (allo_rates1['Volume150Day'] / 150 / 24 / 60 / 60) * 1000 # SD categories - According to the LWRP! Schedule 9. rate_bool = (allo_rates1['Rate150Day'] * (allo_rates1['SD1_150Day'] * 0.01)) > 5 allo_rates1['sd_cat'] = 'low' allo_rates1.loc[(rate_bool | (allo_rates1['SD1_150Day'] >= 40)), 'sd_cat'] = 'moderate' allo_rates1.loc[(allo_rates1['SD1_150Day'] >= 60), 'sd_cat'] = 'high' allo_rates1.loc[(allo_rates1['SD1_7Day'] >= 90), 'sd_cat'] = 'direct' allo_rates1.loc[(allo_rates1['TakeType'] == 'Take Surface Water'), 'sd_cat'] = 'direct' # Assign volume ratios allo_rates1['sw_vol_ratio'] = 1 allo_rates1.loc[allo_rates1.sd_cat == 'low', 'sw_vol_ratio'] = 0 allo_rates1.loc[allo_rates1.sd_cat == 'moderate', 'sw_vol_ratio'] = 0.5 allo_rates1.loc[allo_rates1.sd_cat == 'high', 'sw_vol_ratio'] = 0.75 allo_rates1.loc[allo_rates1.sd_cat == 'direct', 'sw_vol_ratio'] = 1 allo_rates1 = allo_rates1[allo_rates1['IncludeInSwAllocation'] | (allo_rates1['TakeType'] == 'Take Groundwater')].copy() ## Assign Rates rates1 = allo_rates1.copy() gw_bool = rates1['TakeType'] == 'Take Groundwater' sw_bool = rates1['TakeType'] == 'Take Surface Water' low_bool = rates1.sd_cat == 'low' mod_bool = rates1.sd_cat == 'moderate' high_bool = rates1.sd_cat == 'high' direct_bool = rates1.sd_cat == 'direct' lf_cond_bool = rates1.LowflowCondition rates1['Surface Water'] = 0 rates1['Groundwater'] = 0 rates1.loc[gw_bool, 'Groundwater'] = rates1.loc[gw_bool, 'Rate150Day'] rates1.loc[mod_bool | high_bool, 'Surface Water'] = rates1.loc[mod_bool | high_bool, 'Rate150Day'] * (rates1.loc[mod_bool | high_bool, 'SD1_150Day'] * 0.01) # The below boolean query is directly related to Schedule 9 and the consented allocation document by <NAME> and Don alt_bool = gw_bool & (((rates1.Storativity | lf_cond_bool) & (mod_bool | high_bool)) | rates1.Combined) rates1.loc[alt_bool, 'Groundwater'] = rates1.loc[alt_bool, 'Rate150Day'] - rates1.loc[alt_bool, 'Surface Water'] rates1.loc[direct_bool & gw_bool, 'Surface Water'] = rates1.loc[direct_bool & gw_bool, 'RateDaily'] rates1.loc[(direct_bool & gw_bool) & (rates1.Storativity | lf_cond_bool), 'Groundwater'] = 0 rates1.loc[sw_bool, 'Surface Water'] = rates1.loc[sw_bool, 'AllocatedRate'] rates2 = rates1[['Groundwater', 'Surface Water']].stack().reset_index() rates2.rename(columns={'level_3': 'HydroGroup', 0: 'AllocatedRate'}, inplace=True) rates2 = pd.merge(rates2, rates1.reset_index()[['RecordNumber', 'SwAllocationBlock', 'Wap', 'FromMonth', 'ToMonth']], on=['RecordNumber', 'SwAllocationBlock', 'Wap']) # rates2.rename(columns={'SwAllocationBlock': 'AllocationBlock'}, inplace=True) # rates3 = rates2.drop_duplicates(['RecordNumber', 'HydroGroup', 'SwAllocationBlock', 'Wap']).set_index(['RecordNumber', 'HydroGroup', 'SwAllocationBlock', 'Wap']) rates3 = rates2.drop_duplicates(['RecordNumber', 'HydroGroup', 'SwAllocationBlock', 'Wap']) ## Allocated Volume av1 = db.allocated_volume.copy() # av1.replace({'GwAllocationBlock': {'In Waitaki': 'A'}}, inplace=True) # Add in the Wap info ar1 = allo_rates1.reset_index()[['RecordNumber', 'SwAllocationBlock', 'TakeType', 'Wap', 'Rate150Day', 'Storativity', 'Combined', 'sd_cat', 'sw_vol_ratio', 'LowflowCondition']].copy() ar2_grp = ar1.groupby(['RecordNumber', 'TakeType', 'Wap']) ar2_rates = ar2_grp[['Rate150Day']].sum() ar2_others = ar2_grp[['Storativity', 'Combined', 'sd_cat', 'sw_vol_ratio', 'LowflowCondition']].first() ar3 = pd.concat([ar2_rates, ar2_others], axis=1).reset_index() # ar3['WapCount'] = ar3.groupby(['RecordNumber', 'TakeType'])['Wap'].transform('count') vols1 = pd.merge(av1, ar3, on=['RecordNumber', 'TakeType']) # vols1.groupby(['RecordNumber', 'TakeType', 'Wap'])['GwAllocationBlock'].count() grp3 = vols1.groupby(['RecordNumber', 'TakeType', 'GwAllocationBlock']) vols1['Rate150DayAgg'] = grp3['Rate150Day'].transform('sum') vols1['ratio'] = vols1['Rate150Day'] / vols1['Rate150DayAgg'] vols1.loc[vols1['ratio'].isnull(), 'ratio'] = 0 vols1['FullAnnualVolume'] = (vols1['FullAnnualVolume'] * vols1['ratio']) vols1.drop(['Rate150DayAgg', 'ratio'], axis=1, inplace=True) # vols1['FullAnnualVolume'] = (vols1['FullAnnualVolume'] * vols1['ratio'] / vols1['WapCount']).round() # vols1.drop(['WapRateAgg', 'ratio', 'WapCount'], axis=1, inplace=True) # Assign volumes with discount exception # vols1 = allo_rates1.copy() vols1['Surface Water'] = vols1['FullAnnualVolume'] * vols1['sw_vol_ratio'] vols1['Groundwater'] = vols1['FullAnnualVolume'] vols1.loc[vols1.TakeType == 'Take Surface Water', 'Groundwater'] = 0 # vols1.loc[(vols1.TakeType == 'Take Surface Water') & (vols1['Surface Water'] == 0), 'Surface Water'] = np.nan # discount_bool = ((vols1.sd_cat == 'moderate') & (vols1.Storativity)) | ((vols1.sd_cat == 'moderate') & vols1.Combined) | (vols1.sd_cat == 'high') | (vols1.sd_cat == 'direct') discount_bool = ((vols1.Storativity | vols1.LowflowCondition) & ((vols1.sd_cat == 'moderate') | (vols1.sd_cat == 'high') | (vols1.sd_cat == 'direct'))) | vols1.Combined vols1.loc[discount_bool, 'Groundwater'] = vols1.loc[discount_bool, 'FullAnnualVolume'] - vols1.loc[discount_bool, 'Surface Water'] # Split the take types by SW and GW to assign the appropraite allocation block type - Put more info about why this has to happen! sw_vols1 = vols1[vols1.TakeType == 'Take Surface Water'].copy() gw_vols1 = vols1[vols1.TakeType == 'Take Groundwater'].copy() sw_vols1.rename(columns={'GwAllocationBlock': 'SwAllocationBlock'}, inplace=True) gw_vols2 = gw_vols1.set_index(['RecordNumber', 'GwAllocationBlock', 'Wap'])[['Groundwater', 'Surface Water']].stack().reset_index() gw_vols2.rename(columns={'level_3': 'HydroGroup', 0: 'AllocatedAnnualVolume'}, inplace=True) gw_vols3 = gw_vols2.drop_duplicates(['RecordNumber', 'HydroGroup', 'GwAllocationBlock', 'Wap']) sw_vols2 = sw_vols1.set_index(['RecordNumber', 'SwAllocationBlock', 'Wap'])[['Groundwater', 'Surface Water']].stack().reset_index() sw_vols2.rename(columns={'level_3': 'HydroGroup', 0: 'AllocatedAnnualVolume'}, inplace=True) sw_vols3 = sw_vols2.drop_duplicates(['RecordNumber', 'HydroGroup', 'SwAllocationBlock', 'Wap']) ## Join SW rates to SW volumes rv0 = pd.merge(rates3, sw_vols3, on=['RecordNumber', 'SwAllocationBlock', 'HydroGroup', 'Wap']) rv0.rename(columns={'SwAllocationBlock': 'AllocationBlock'}, inplace=True) ## Join GW rates and GW volumes rv1 = pd.merge(rates3, gw_vols3, on=['RecordNumber', 'HydroGroup', 'Wap']) # Fix duplicates rv1['Count'] = rv1.groupby(['RecordNumber', 'HydroGroup', 'SwAllocationBlock', 'Wap'])['AllocatedRate'].transform('count') rv1['AllocatedRate'] = rv1['AllocatedRate'] / rv1['Count'] rv_grp = rv1.groupby(['RecordNumber', 'HydroGroup', 'GwAllocationBlock', 'Wap']) rv1['Count'] = rv_grp['AllocatedRate'].transform('count') rv1['AllocatedAnnualVolume'] = rv1['AllocatedAnnualVolume'] / rv1['Count'] # Distribute volumes according to rates rv1['rate_ratio'] = rv1['AllocatedRate'] / rv_grp['AllocatedRate'].transform('sum') rv1.loc[rv1['rate_ratio'].isnull(), 'rate_ratio'] = 0 rv1.loc[rv1['rate_ratio'] == np.inf, 'rate_ratio'] = 1 rv1['vol_sum'] = rv_grp['AllocatedAnnualVolume'].transform('sum') rv1['AllocatedAnnualVolume'] = rv1['vol_sum'] * rv1['rate_ratio'] # Specify the Allocation blocks and aggregate rv1['AllocationBlock'] = rv1['SwAllocationBlock'] rv1.loc[rv1.HydroGroup == 'Groundwater', 'AllocationBlock'] = rv1.loc[rv1.HydroGroup == 'Groundwater', 'GwAllocationBlock'] rv1.drop(['SwAllocationBlock', 'GwAllocationBlock', 'Count', 'rate_ratio', 'vol_sum'], axis=1, inplace=True) rv1_grp = rv1.groupby(['RecordNumber', 'HydroGroup', 'AllocationBlock', 'Wap']) rv1_sum = rv1_grp[['AllocatedRate', 'AllocatedAnnualVolume']].sum() rv1_min = rv1_grp[['FromMonth']].min() rv1_max = rv1_grp[['ToMonth']].max() rv1a = pd.concat([rv1_sum, rv1_min, rv1_max], axis=1).reset_index() ## Combine the SW and GW data frames rv2 = pd.concat([rv0, rv1a]) ## Deal with the "Include in Allocation" fields sw_allo_bool = allo_rates1.reset_index()[['RecordNumber', 'Wap', 'IncludeInSwAllocation']].drop_duplicates(['RecordNumber', 'Wap']) gw_allo_bool = vols1[['RecordNumber', 'Wap', 'IncludeInGwAllocation']].drop_duplicates(['RecordNumber', 'Wap']) rv2a = pd.merge(rv2, sw_allo_bool, on=['RecordNumber', 'Wap']) rv2 = pd.merge(rv2a, gw_allo_bool, on=['RecordNumber', 'Wap']) rv3 = rv2[(rv2.HydroGroup == 'Surface Water') | (rv2.IncludeInGwAllocation)] rv4 = rv3[(rv3.HydroGroup == 'Groundwater') | (rv3.IncludeInSwAllocation)] ## Calculate missing volumes and rates # ann_bool = rv4.AllocatedAnnualVolume.isnull() # rv4.loc[ann_bool, 'AllocatedAnnualVolume'] = (rv4.loc[ann_bool, 'AllocatedRate'] * 0.001*60*60*24*30.42* (rv4.loc[ann_bool, 'ToMonth'] - rv4.loc[ann_bool, 'FromMonth'] + 1)).round() # # rate_bool = rv4.AllocatedRate.isnull() # rv4.loc[rate_bool, 'AllocatedRate'] = np.floor((rv4.loc[rate_bool, 'AllocatedAnnualVolume'] / 60/60/24/30.42/ (rv4.loc[rate_bool, 'ToMonth'] - rv4.loc[rate_bool, 'FromMonth'] + 1) * 1000)) rv4 = rv4[(rv4['AllocatedAnnualVolume'] > 0) | (rv4['AllocatedRate'] > 0)].copy() # rv4.loc[rv4['AllocatedAnnualVolume'].isnull(), 'AllocatedAnnualVolume'] = 0 # rv4.loc[rv4['AllocatedRate'].isnull(), 'AllocatedRate'] = 0 ## Aggregate by crc, allo block, hydrogroup, and wap # rv_grp = rv4.groupby(['RecordNumber', 'HydroGroup', 'AllocationBlock', 'Wap']) # sum1 = rv_grp[['AllocatedRate', 'AllocatedAnnualVolume']].sum() # other1 = rv_grp[['FromMonth', 'ToMonth']].first() # # rv4 = pd.concat([sum1, other1], axis=1).reset_index() ## Convert the rates and volumes to integers rv4['AllocatedAnnualVolume'] = rv4['AllocatedAnnualVolume'].round().astype('int64') rv4['AllocatedRate'] = rv4['AllocatedRate'].round().astype('int64') ## Combine with permit data rv5 = pd.merge(rv4, permits2[['RecordNumber', 'ConsentStatus', 'ApplicationStatus', 'FromDate', 'ToDate']].drop_duplicates('RecordNumber', keep='last'), on='RecordNumber') ## Update the Waitaki use types rv5a = pd.merge(rv5, permit_use[['RecordNumber', 'WaitakiTable5']], on='RecordNumber') rv5a.loc[rv5a.AllocationBlock == 'In Waitaki', 'AllocationBlock'] = rv5a.loc[rv5a.AllocationBlock == 'In Waitaki', 'WaitakiTable5'] rv5b = rv5a.drop('WaitakiTable5', axis=1) ## Combine with other Wap data waps1 = waps[['Wap', 'GwSpatialUnitId', 'SwSpatialUnitId', 'Combined']].copy() rv6 =
pd.merge(rv5b, waps1, on='Wap')
pandas.merge
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Dec 30 09:52:31 2021 @author: HaoLI """ #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Dec 8 11:48:41 2021 @author: HaoLI """ import torch, torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from torch.utils.data.sampler import WeightedRandomSampler import torch.utils.data as data_utils import pandas as pd import numpy as np import os #for working directory from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt from sklearn.metrics import roc_curve, auc, roc_auc_score # 计算roc和auc import time import datetime from imblearn.over_sampling import RandomOverSampler from sklearn.preprocessing import MinMaxScaler, LabelEncoder import random use_gpu = torch.cuda.is_available() print("GPU",use_gpu) list_rec = [] #记录参数 randomseed = 22 random.seed(randomseed) layer1=196 layer2=196 oversample_ratio=0.5 training_epochs = 80 minibatch_size = 5000 learning_rate=2e-4 penalty=2 #p=1 for L1; p=0 for L2, weight_decay only for L2 ; p=2 for default. 范数计算中的幂指数值,默认求2范数. 当p=0为L2正则化,p=1为L1正则化 weight_decay=0.0125 #weight_decay 就是 L2 正则项 dropout=0.0 #os.getcwd() os.chdir('/Users/HaoLI/Stata/credit/data') df =
pd.read_csv('data1210rename_use.csv')
pandas.read_csv
# -*- coding: utf-8 -*- from collections import namedtuple import csv import json import os import re import sys import pkg_resources from zipfile import ZipFile import requests from tiingo.restclient import RestClient from tiingo.exceptions import ( InstallPandasException, APIColumnNameError, InvalidFrequencyError, MissingRequiredArgumentError) try: import pandas as pd pandas_is_installed = True except ImportError: pandas_is_installed = False VERSION = pkg_resources.get_distribution("tiingo").version # These methods enable python 2 + 3 compatibility. def get_zipfile_from_response(response): if sys.version_info < (3, 0): # python 2 from StringIO import StringIO as Buffer else: # python 3 from io import BytesIO as Buffer buffered = Buffer(response.content) return ZipFile(buffered) def get_buffer_from_zipfile(zipfile, filename): if sys.version_info < (3, 0): # python 2 from StringIO import StringIO return StringIO(zipfile.read(filename)) else: # python 3 # Source: # https://stackoverflow.com/questions/5627954/py3k-how-do-you-read-a-file-inside-a-zip-file-as-text-not-bytes from io import (TextIOWrapper, BytesIO) return TextIOWrapper(BytesIO(zipfile.read(filename))) def dict_to_object(item, object_name): """Converts a python dict to a namedtuple, saving memory.""" fields = item.keys() values = item.values() return json.loads(json.dumps(item), object_hook=lambda d: namedtuple(object_name, fields)(*values)) class TiingoClient(RestClient): """Class for managing interactions with the Tiingo REST API Supply API Key via Environment Variable TIINGO_API_KEY or via the Config Object """ def __init__(self, *args, **kwargs): super(TiingoClient, self).__init__(*args, **kwargs) self._base_url = "https://api.tiingo.com" try: api_key = self._config['api_key'] except KeyError: api_key = os.environ.get('TIINGO_API_KEY') self._api_key = api_key if not(api_key): raise RuntimeError("Tiingo API Key not provided. Please provide" " via environment variable or config argument.") self._headers = { 'Authorization': "Token {}".format(api_key), 'Content-Type': 'application/json', 'User-Agent': 'tiingo-python-client {}'.format(VERSION) } self._frequency_pattern = re.compile('^[0-9]+(min|hour)$', re.IGNORECASE) def __repr__(self): return '<TiingoClient(url="{}")>'.format(self._base_url) def _is_eod_frequency(self,frequency): return frequency.lower() in ['daily', 'weekly', 'monthly', 'annually'] # TICKER PRICE ENDPOINTS # https://api.tiingo.com/docs/tiingo/daily def list_tickers(self, assetTypes=[]): """Return a list of dicts of metadata tickers for all supported tickers of the specified asset type, as well as metadata about each ticker. This includes supported date range, the exchange the ticker is traded on, and the currency the stock is traded on. Tickers for unrelated products are omitted. https://apimedia.tiingo.com/docs/tiingo/daily/supported_tickers.zip """ listing_file_url = "https://apimedia.tiingo.com/docs/tiingo/daily/supported_tickers.zip" response = requests.get(listing_file_url) zipdata = get_zipfile_from_response(response) raw_csv = get_buffer_from_zipfile(zipdata, 'supported_tickers.csv') reader = csv.DictReader(raw_csv) if not len(assetTypes): return [row for row in reader] assetTypesSet = set(assetTypes) return [row for row in reader if row.get('assetType') in assetTypesSet] def list_stock_tickers(self): return self.list_tickers(['Stock']) def list_etf_tickers(self): return self.list_tickers(['ETF']) def list_fund_tickers(self): return self.list_tickers(['Mutual Fund']) def get_ticker_metadata(self, ticker, fmt='json'): """Return metadata for 1 ticker Use TiingoClient.list_tickers() to get available options Args: ticker (str) : Unique identifier for stock """ url = "tiingo/daily/{}".format(ticker) response = self._request('GET', url) data = response.json() if fmt == 'json': return data elif fmt == 'object': return dict_to_object(data, "Ticker") def _invalid_frequency(self, frequency): """ Check to see that frequency was specified correctly :param frequency (string): frequency string :return (boolean): """ is_valid = self._is_eod_frequency(frequency) or re.match(self._frequency_pattern, frequency) return not is_valid def _get_url(self, ticker, frequency): """ Return url based on frequency. Daily, weekly, or yearly use Tiingo EOD api; anything less than daily uses the iex intraday api. :param ticker (string): ticker to be embedded in the url :param frequency (string): valid frequency per Tiingo api :return (string): url """ if self._invalid_frequency(frequency): etext = ("Error: {} is an invalid frequency. Check Tiingo API documentation " "for valid EOD or intraday frequency format.") raise InvalidFrequencyError(etext.format(frequency)) else: if self._is_eod_frequency(frequency): return "tiingo/daily/{}/prices".format(ticker) else: return "iex/{}/prices".format(ticker) def get_ticker_price(self, ticker, startDate=None, endDate=None, fmt='json', frequency='daily'): """By default, return latest EOD Composite Price for a stock ticker. On average, each feed contains 3 data sources. Supported tickers + Available Day Ranges are here: https://apimedia.tiingo.com/docs/tiingo/daily/supported_tickers.zip Args: ticker (string): Unique identifier for stock ticker startDate (string): Start of ticker range in YYYY-MM-DD format endDate (string): End of ticker range in YYYY-MM-DD format fmt (string): 'csv' or 'json' frequency (string): Resample frequency """ url = self._get_url(ticker, frequency) params = { 'format': fmt if fmt != "object" else 'json', # conversion local 'resampleFreq': frequency } if startDate: params['startDate'] = startDate if endDate: params['endDate'] = endDate # TODO: evaluate whether to stream CSV to cache on disk, or # load as array in memory, or just pass plain text response = self._request('GET', url, params=params) if fmt == "json": return response.json() elif fmt == "object": data = response.json() return [dict_to_object(item, "TickerPrice") for item in data] else: return response.content.decode("utf-8") def get_dataframe(self, tickers, startDate=None, endDate=None, metric_name=None, frequency='daily'): """ Return a pandas.DataFrame of historical prices for one or more ticker symbols. By default, return latest EOD Composite Price for a list of stock tickers. On average, each feed contains 3 data sources. Supported tickers + Available Day Ranges are here: https://apimedia.tiingo.com/docs/tiingo/daily/supported_tickers.zip or from the TiingoClient.list_tickers() method. Args: tickers (string/list): One or more unique identifiers for a stock ticker. startDate (string): Start of ticker range in YYYY-MM-DD format. endDate (string): End of ticker range in YYYY-MM-DD format. metric_name (string): Optional parameter specifying metric to be returned for each ticker. In the event of a single ticker, this is optional and if not specified all of the available data will be returned. In the event of a list of tickers, this parameter is required. frequency (string): Resample frequency (defaults to daily). """ valid_columns = {'open', 'high', 'low', 'close', 'volume', 'adjOpen', 'adjHigh', 'adjLow', 'adjClose', 'adjVolume', 'divCash', 'splitFactor'} if metric_name is not None and metric_name not in valid_columns: raise APIColumnNameError('Valid data items are: ' + str(valid_columns)) if metric_name is None and isinstance(tickers, list): raise MissingRequiredArgumentError("""When tickers is provided as a list, metric_name is a required argument. Please provide a metric_name, or call this method with one ticker at a time.""") params = { 'format': 'json', 'resampleFreq': frequency } if startDate: params['startDate'] = startDate if endDate: params['endDate'] = endDate if pandas_is_installed: if type(tickers) is str: stock = tickers url = self._get_url(stock, frequency) response = self._request('GET', url, params=params) df = pd.DataFrame(response.json()) if metric_name is not None: prices = df[metric_name] prices.index = df['date'] else: prices = df prices.index = df['date'] del (prices['date']) else: prices = pd.DataFrame() for stock in tickers: url = self._get_url(stock, frequency) response = self._request('GET', url, params=params) df = pd.DataFrame(response.json()) df.index = df['date'] df.rename(index=str, columns={metric_name: stock}, inplace=True) prices = pd.concat([prices, df[stock]], axis=1, sort=True) prices.index =
pd.to_datetime(prices.index)
pandas.to_datetime
import ast import os import logging import numpy as np import pandas as pd logger = logging.getLogger("iocurves analysis") def boltzman(x, xmid, tau): """ evaluate the boltzman function with midpoint xmid and time constant tau over x """ return 1./(1. + np.exp(-(x - xmid)/tau)) def sigmoid(x, x0, k): """ evaluate sigmoid function slope k and midpoint x0 over x """ y = 1/(1 + np.exp(-k*(x - x0))) return y # keep some results in memory for quick re-evaluation (ast can take a while) memoised = dict() def get_params(save_name): """Convert a name to python data base don a known structure. :param save_name: str in format: `"[file name[_KCC2]]_[synapse type]_[synapse numbers]_[syn input]_...[recording location]_[trials].txt"` :type save_name: str :return: file_name, synapse_type, synapse_numbers, syn_input, non_default_dict, location, trials :rtype: (str, int, list of int, dict of str, dict, str, int) """ if save_name in memoised: return memoised[save_name] params = save_name.split('_') if params[1] == 'KCC2': params[0] = params[0] + '_' + params[1] del params[1] file_name, synapse_type, synapse_numbers, syn_input = params[:4] location, trials = params[-2:] non_default_dict = {"diam": None, "pa_kcc2": None} if len(params) > 6: extra_keys = list(non_default_dict.keys()) for i in range(4, len(params) - 2): non_default_dict[extra_keys[i - 4]] = params[i] # process some of the params syn_input = syn_input.replace('=', "':").replace('(', "{'").replace(")", "}").replace(",",",'") synapse_numbers = ast.literal_eval(synapse_numbers) syn_input = ast.literal_eval(syn_input) for key, value in non_default_dict.items(): try: non_default_dict[key] = ast.literal_eval(non_default_dict[key].replace('=', "':").replace('(', "{'").replace(")", "}").replace(",",",'")) except (ValueError, AttributeError): # do nothing pass memoised[save_name] = (file_name, synapse_type, synapse_numbers, syn_input, non_default_dict, location, trials) return file_name, synapse_type, synapse_numbers, syn_input, non_default_dict, location, trials def get_var(df, recorded_var, mean=True): """ Get variable from dataframe one level deep and optionally the mean. :param df: Recorded data over time :type df: pd.DataFrame :param recorded_var: Variable to retrieve from df :type recorded_var: str :param mean: Include the mean in the return tuple :type mean: bool :return: Dataframe of variable and Series of the mean for the variable for each time step :rtype: (pd.DataFrame, pd.Series or None) """ all_var_columns = df.xs(recorded_var, level=1, axis=1) if mean: # mean over the columns mean_val = all_var_columns.mean(axis=1) else: mean_val = None return all_var_columns, mean_val def moving_average(spike_indices, time_bin=1., backward=True): """ Calculate the moving average filter for the spike_indices according to time_bin (in seconds). :param spike_indices: Array of spike/no spike boolean type over time. :type spike_indices: np.ndarray of bool :param time_bin: Size of sliding window computation (in seconds) :type time_bin: float :param backward: Return values are for t-time_bin (True) or t+time_bin (False) :type backward: bool :return: Instantaneous firing rate for each point in time (overlapping windows) :rtype: np.ndarray or float """ from src.iocurves.sim import DT time_bin_size = int(time_bin*1000/DT) ifr = np.cumsum(spike_indices, dtype=float) if backward: ifr[:-time_bin_size] = ifr[time_bin_size:] - ifr[:-time_bin_size] # backward window # amend end (if backward window) of IFR trace to be flat ifr[-time_bin_size:] = ifr[-time_bin_size - 1] else: ifr[time_bin_size:] = ifr[time_bin_size:] - ifr[:-time_bin_size] # forward window ifr = ifr[time_bin_size - 1:] return ifr/time_bin def get_inst_firing_rate(spike_arr, time_bin=1., slide=True): """ :param spike_arr: :type spike_arr: np.ndarray of int or list of int :param time_bin: Size of sliding window computation (in seconds) :type time_bin: float :param slide: :type slide: bool :return: :rtype: """ from src.iocurves.sim import DT if type(spike_arr) != np.ndarray: spike_arr = np.array(spike_arr) spike_indices = np.diff(spike_arr) > 0 spike_indices = np.append(spike_indices, [False]) # add an element due to diff losing one if slide: # super fast ifr = moving_average(spike_indices, time_bin) else: ifr = np.zeros(shape=len(spike_indices)) time_bin_size = int(time_bin*1000/DT) # slower for moving average, but fast enough for non-overlapping intervals for i in range(0, int(len(spike_indices) - time_bin_size), time_bin_size): ifr[i:i + time_bin_size] = sum(spike_indices[i:i + time_bin_size])/time_bin return ifr def save_to_file(title, result): """Save results to either h5 file (if DataFrame), otherwise to npy file.""" from src.utils.file_io import create_dir create_dir("results", timestamp=False) path = os.path.join('results', title) if type(result) is list: np.save(path + '.npy', result) elif type(result) is pd.DataFrame: result.to_hdf(path, 'table') else: raise RuntimeError(f"saving failed for {result}") logger.info("saved") def load_from_file(title): """Load results from a file. Can be DataFrame or numpy arrays.""" path = os.path.join('results', title) try: return pd.read_hdf(path, 'table') except IOError: try: return np.load(path + ".npy", allow_pickle=True) except OSError: return None def get_data(cl_state_trials, ifr_windowsize, time_points, var='spikes'): from src.iocurves.sim import DT FRdf =
pd.DataFrame(index=time_points)
pandas.DataFrame
import os import math import numpy as np import collections import pandas as pd from matplotlib import pyplot as plt import matplotlib.ticker as ticker from collections.abc import Iterable import stethoscope.plotting_constants as plotting_constants def _roundup(x): return int(math.ceil(x / 100) * 100) class UtilizationLineGraph: FILENAME = 'ts_line_utilization.png' @classmethod def plot(cls : type, utilization_per_service : dict, simulation_start : pd.Timestamp, simulation_end : pd.Timestamp, resolution : pd.Timedelta = pd.Timedelta(1000, unit = 'ms'), figures_dir = None): """ Line graph (x axis - time) of the service system resources utilization, separately for each service-resource pair """ utilization_regionalized = collections.defaultdict(lambda: collections.defaultdict(dict)) for service_name, utilization_per_region in utilization_per_service.items(): for region_name, utilization_per_resource in utilization_per_region.items(): utilization_regionalized[region_name][service_name] = utilization_per_resource for region_name, utilization_per_service in utilization_regionalized.items(): if len(utilization_per_service) > 0: fig, axs = plt.subplots(nrows = plotting_constants.SYSTEM_RESOURCES_CNT, ncols = len(utilization_per_service), figsize = (len(utilization_per_service) * plotting_constants.SQUARE_PLOT_SIDE_INCH, plotting_constants.SYSTEM_RESOURCES_CNT * plotting_constants.SQUARE_PLOT_SIDE_INCH)) font = {'color': 'black', 'weight': 'bold', 'size': 12} if not isinstance(axs, Iterable): axs = np.asarray([axs]) if len(utilization_per_service) == 1: axs = np.asarray([axs]).T i = 0 for service_name, utilization_per_resource in utilization_per_service.items(): j = 0 for resource_name, utilization_ts in utilization_per_resource.items(): index_full = pd.date_range(simulation_start, simulation_end, freq = resolution) utilization_ts_full = pd.DataFrame({'value': [0.0] * len(index_full)}, index = index_full) utilization_ts.index =
pd.to_datetime(utilization_ts.index)
pandas.to_datetime
import json import pandas as pd from objects.folder import Folder from objects.mapping import Mapping from objects.source import Source from objects.target import Target from objects.target_field import TargetField from objects.source_field import SourceField from objects.transformation import Transformation from objects.transformation_field import TransformationField from objects.connector import Connector class FileProcess(object): def __init__(self, input_file: str = None, output_folder: str = None): self.input_file = input_file self.output_folder = output_folder def _get_folders(self, data: dict): # Data folder informations powermart_object = data['POWERMART'] repository_object = powermart_object['REPOSITORY'] repository_version = powermart_object['REPOSITORY_VERSION'] repository_name = repository_object['NAME'] folder_object = repository_object['FOLDER'] database_type = repository_object['DATABASETYPE'] folders = [] for _folder in folder_object: folder_name = _folder['NAME'] # sources sources = self._get_sources(_folder) # targets targets = self._get_targets(_folder) # mappings mappings = self._get_mappings(_folder) folder = Folder(repository_version, repository_name, folder_name, database_type, sources=sources, mappings=mappings, targets=targets) folders.append(folder) return folders def _get_sources(self, folder: dict): sources = [] if not folder.get('SOURCE'): return sources if isinstance(folder.get('SOURCE'), list): for _source in folder['SOURCE']: source_fields = self._get_source_fields(_source) source = Source(_source['DATABASETYPE'], _source['DBDNAME'], _source['NAME'], _source['OWNERNAME'], source_fields, folder['NAME']) sources.append(source) elif isinstance(folder.get('SOURCE'), dict): source_fields = self._get_source_fields(folder['SOURCE']) source = Source(folder['SOURCE']['DATABASETYPE'], folder['SOURCE']['DBDNAME'], folder['SOURCE']['NAME'], folder['SOURCE']['OWNERNAME'], source_fields, folder['NAME']) sources.append(source) return sources def _get_source_fields(self, source: dict): source_fields = [] if not source.get('SOURCEFIELD'): return source_fields if isinstance(source.get('SOURCEFIELD'), list): for _source_field in source['SOURCEFIELD']: source_field = SourceField(_source_field['DATATYPE'], _source_field['NAME'], _source_field['NULLABLE'], _source_field['KEYTYPE'], source['NAME'], _source_field['PRECISION']) source_fields.append(source_field) elif isinstance(source.get('SOURCEFIELD'), dict): source_field = SourceField(source['SOURCEFIELD']['DATATYPE'], source['SOURCEFIELD']['NAME'], source['SOURCEFIELD']['NULLABLE'], source['SOURCEFIELD']['KEYTYPE'], source['NAME'], source['SOURCEFIELD']['PRECISION']) source_fields.append(source_field) return source_fields def _get_transformation_fields(self, transformation: dict): transform_fields = [] if not transformation.get('TRANSFORMFIELD'): return transform_fields if isinstance(transformation.get('TRANSFORMFIELD'), list): for _transform_field in transformation['TRANSFORMFIELD']: transform_field = TransformationField(_transform_field['DATATYPE'], _transform_field['NAME'], _transform_field['PORTTYPE'], _transform_field['DEFAULTVALUE'], _transform_field['PRECISION'], transformation['NAME'], _transform_field.get('EXPRESSION'), transformation['MAPPING_NAME']) transform_fields.append(transform_field) elif isinstance(transformation.get('TRANSFORMFIELD'), dict): transform_field = TransformationField(transformation['TRANSFORMFIELD']['DATATYPE'], transformation['TRANSFORMFIELD']['NAME'], transformation['TRANSFORMFIELD']['PORTTYPE'], transformation['TRANSFORMFIELD']['DEFAULTVALUE'], transformation['TRANSFORMFIELD']['PRECISION'], transformation['NAME'], transformation['TRANSFORMFIELD'].get('EXPRESSION'), transformation['MAPPING_NAME']) transform_fields.append(transform_field) return transform_fields def _get_transformations(self, mapping: dict): transformations = [] if not mapping.get('TRANSFORMATION'): return transformations if isinstance(mapping.get('TRANSFORMATION'), list): for _transformation in mapping['TRANSFORMATION']: _transformation['MAPPING_NAME'] = mapping['NAME'] transformation_fields = self._get_transformation_fields(_transformation) transformation_sql = self._get_query(_transformation) transformation = Transformation(_transformation['NAME'], transformation_fields, transformation_sql, mapping['NAME']) transformations.append(transformation) elif isinstance(mapping.get('TRANSFORMATION'), dict): mapping['TRANSFORMATION']['MAPPING_NAME'] = mapping['NAME'] transformation_fields = self._get_transformation_fields(mapping['TRANSFORMATION']) transformation_sql = self._get_query(mapping['TRANSFORMATION']) transformation = Transformation(mapping['TRANSFORMATION']['NAME'], transformation_fields, transformation_sql, mapping['NAME']) transformations.append(transformation) return transformations def _get_query(self, transformation): if isinstance(transformation.get('TABLEATTRIBUTE'), list): for _table_attribute in transformation['TABLEATTRIBUTE']: if _table_attribute['NAME'] == "Sql Query": return _table_attribute['VALUE'] return "" def _get_targets(self, folder: dict): targets = [] if not folder.get('TARGET'): return targets if isinstance(folder.get('TARGET'), list): for _target in folder['TARGET']: target_fields = self._get_target_fields(_target) target = Target(_target['NAME'], _target['DATABASETYPE'], target_fields, folder['NAME']) targets.append(target) elif isinstance(folder.get('TARGET'), dict): target_fields = self._get_target_fields(folder['TARGET']) target = Target(folder['TARGET']['NAME'], folder['TARGET']['DATABASETYPE'], target_fields, folder['NAME']) targets.append(target) return targets def _get_target_fields(self, target: dict): target_fields = [] if not target.get('TARGETFIELD'): return target_fields if isinstance(target.get('TARGETFIELD'), list): for _target_field in target['TARGETFIELD']: target_field = TargetField(_target_field['DATATYPE'], _target_field['NAME'], _target_field['NULLABLE'], _target_field['KEYTYPE'], target['NAME'], _target_field['PRECISION']) target_fields.append(target_field) elif isinstance(target.get('TARGETFIELD'), dict): # data_type, name, nullable, key_type, precision target_field = TargetField(target['TARGETFIELD']['DATATYPE'], target['TARGETFIELD']['NAME'], target['TARGETFIELD']['NULLABLE'], target['TARGETFIELD']['KEYTYPE'], target['NAME'], target['TARGETFIELD']['PRECISION']) target_fields.append(target_field) return target_fields def _get_session_name(self, folder: dict, mapping_name: str): if isinstance(folder.get('SESSION'), list): for session in folder['SESSION']: if session['MAPPINGNAME'] == mapping_name: return session['NAME'] elif isinstance(folder.get('SESSION'), dict): if folder['SESSION']['MAPPINGNAME'] == mapping_name: return folder['SESSION']['NAME'] return None def _get_task_name(self, task_instance: dict): if not task_instance['NAME']: return None if 's_' in task_instance['TASKNAME'] and task_instance['TASKTYPE'] == 'Session': return task_instance['TASKNAME'] return None def _get_workflow_name(self, folder: dict, session_name: str): if isinstance(folder.get('WORKFLOW'), list): for workflow in folder['WORKFLOW']: if isinstance(workflow['TASKINSTANCE'], list): for task_instance in workflow['TASKINSTANCE']: task_name = self._get_task_name(task_instance) if task_name == session_name: return workflow['NAME'] elif isinstance(workflow['TASKINSTANCE'], dict): task_name = self._get_task_name(workflow['TASKINSTANCE']) if task_name == session_name: return workflow['NAME'] elif isinstance(folder.get('WORKFLOW'), dict): if isinstance(folder['WORKFLOW']['TASKINSTANCE'], list): for task_instance in folder['WORKFLOW']['TASKINSTANCE']: task_name = self._get_task_name(task_instance) if task_name: return task_name elif isinstance(folder['WORKFLOW']['TASKINSTANCE'], dict): task_name = self._get_task_name(folder['WORKFLOW']['TASKINSTANCE']) if task_name: return task_name return None def _get_mappings(self, folder: dict): mappings = [] if not folder.get('MAPPING'): return mappings if isinstance(folder.get('MAPPING'), list): for _mapping in folder['MAPPING']: session_name = self._get_session_name(folder, _mapping['NAME']) workflow_name = self._get_workflow_name(folder, session_name) connectors = self._get_connectors(_mapping) transformations = self._get_transformations(_mapping) mapping = Mapping(_mapping['NAME'], connectors, transformations, folder['NAME'], session_name, workflow_name) mappings.append(mapping) elif isinstance(folder.get('MAPPING'), dict): session_name = self._get_session_name(folder, folder['MAPPING']['NAME']) workflow_name = self._get_workflow_name(folder, session_name) connectors = self._get_connectors(folder['MAPPING']) transformations = self._get_transformations(folder['MAPPING']) mapping = Mapping(folder['MAPPING']['NAME'], connectors, transformations, folder['NAME'], session_name, workflow_name) mappings.append(mapping) return mappings def _get_connectors(self, mapping: dict): connectors = [] if not mapping.get('CONNECTOR'): return connectors if isinstance(mapping.get('CONNECTOR'), list): for _connector in mapping['CONNECTOR']: connector = Connector(_connector['FROMFIELD'], _connector['FROMINSTANCE'], _connector['FROMINSTANCETYPE'], _connector['TOFIELD'], _connector['TOINSTANCE'], _connector['TOINSTANCETYPE'], mapping['NAME']) connectors.append(connector) elif isinstance(mapping.get('MAPPING'), dict): connector = Connector(mapping['MAPPING']['FROMFIELD'], mapping['MAPPING']['FROMINSTANCE'], mapping['MAPPING']['FROMINSTANCETYPE'], mapping['MAPPING']['TOFIELD'], mapping['MAPPING']['TOINSTANCE'], mapping['MAPPING']['TOINSTANCETYPE'], mapping['NAME']) connectors.append(connector) return connectors def _parser(self, input_file): with open(input_file, 'r') as data_file: data = json.loads(data_file.read()) return data def _write_files(self, data_frames: list, names_sheets: list, writer): if len(data_frames) == len(names_sheets): ValueError("Dataframes and names sheets must be equal lengths") for df, sheet_name in zip(data_frames, names_sheets): # Write each dataframe to a different worksheet. df.to_excel(writer, sheet_name=sheet_name) def generate_documentation(self, folders: list): for folder in folders: dfs, sheets = [], [] # Sources sources = [s.to_dict() for s in folder.sources] source_fields = [] for s in sources: source_fields.extend(s.pop('source_fields', None)) dfs.append(pd.DataFrame(sources)) sheets.append("Sources") # source fields source_fields = [sf.to_dict() for sf in source_fields] dfs.append(pd.DataFrame(source_fields)) sheets.append("Source Fields") # targets targets = [t.to_dict() for t in folder.targets] target_fields = [] for t in targets: target_fields.extend(t.pop('target_fields', None)) dfs.append(pd.DataFrame(targets)) sheets.append("Targets") # target fields target_fields = [tf.to_dict() for tf in target_fields] dfs.append(pd.DataFrame(target_fields)) sheets.append("Target Fields") # mappings mappings = [m.to_dict() for m in folder.mappings] connectors = [] transformations = [] for m in mappings: connectors.extend(m.pop('connectors', None)) transformations.extend(m.pop('transformations', None)) dfs.append(pd.DataFrame(mappings)) sheets.append("Mappings") # connectors connectors = [c.to_dict() for c in connectors] dfs.append(pd.DataFrame(connectors)) sheets.append("Connectors") # transformations transformations = [t.to_dict() for t in transformations] transformation_fields = [] for t in transformations: transformation_fields.extend(t.pop('transformation_fields', None)) dfs.append(
pd.DataFrame(transformations)
pandas.DataFrame
import sys import random as rd import matplotlib #matplotlib.use('Agg') matplotlib.use('TkAgg') # revert above import matplotlib.pyplot as plt from matplotlib.gridspec import GridSpec import os import numpy as np import glob from pathlib import Path from scipy.interpolate import UnivariateSpline from scipy.optimize import curve_fit import pickle import pandas as pd from findiff import FinDiff from scipy.stats import chisquare from scipy.stats import spearmanr def powlaw(x, a, b) : return np.power(10,a) * np.power(x, b) def linlaw(x, a, b) : return a + x * b def curve_fit_log(xdata, ydata, sigma): """Fit data to a power law with weights according to a log scale""" # Weights according to a log scale # Apply fscalex xdata_log = np.log10(xdata) # Apply fscaley ydata_log = np.log10(ydata) sigma_log = np.log10(sigma) # Fit linear popt_log, pcov_log = curve_fit(linlaw, xdata_log, ydata_log, sigma=sigma_log) #print(popt_log, pcov_log) # Apply fscaley^-1 to fitted data ydatafit_log = np.power(10, linlaw(xdata_log, *popt_log)) # There is no need to apply fscalex^-1 as original data is already available return (popt_log, pcov_log, ydatafit_log) def big_data_plotter(data_frame, x_name, y_name, index, ax, label, colour, style, lw, figsize): # plts big_data.data data_table = data_frame['dfs'][index] # print(y_name, x_name) return data_table.plot(ax=ax, kind='line', x=x_name, y=y_name, label=label, c=colour, style=style, lw=lw, figsize=figsize) def clipped_h_data_plotter(data_frame, index): # plts big_data.data h_data = data_frame['dfs'][index]['Height [Mm]'].dropna() x = h_data.index.values k = 3 # 5th degree spline n = len(h_data) s = 1#n - np.sqrt(2*n) # smoothing factor spline_1 = UnivariateSpline(x, h_data, k=k, s=s).derivative(n=1) sign_change_indx = np.where(np.diff(np.sign(spline_1(x))))[0] if len(sign_change_indx)>1: sign_change_indx = sign_change_indx[1] else: sign_change_indx = len(h_data) return x[:sign_change_indx], h_data[:sign_change_indx] def ballistic_flight(v0, g, t): # assumes perfectly verticle launch and are matching units # v0-initial velocity # g-gravitational acceleration # t-np time array x = v0*t y = v0*t-0.5*g*t**2 y = np.where(y<0,0,y) t_apex = v0/g x_apex = v0*t_apex y_apex = v0*t_apex-0.5*g*(t_apex)**2 return x, y, t_apex, x_apex, y_apex degree_sign= u'\N{DEGREE SIGN}' i = 0 shuff = 0 SMALL_SIZE = 42 MEDIUM_SIZE = SMALL_SIZE + 2 BIGGER_SIZE = MEDIUM_SIZE + 2 plt.rc('font', size=MEDIUM_SIZE) # controls default text sizes plt.rc('axes', titlesize=MEDIUM_SIZE) # fontsize of the axes title plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels plt.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('ytick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('legend', fontsize=26) # legend fontsize plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title #path_2_shared_drive = '/run/user/1001/gvfs/smb-share:server=uosfstore.shef.ac.uk,share=shared/mhd_jet1/User/smp16fm/j' path_2_shared_drive = '/run/user/1000/gvfs/smb-share:server=uosfstore.shef.ac.uk,share=shared/mhd_jet1/User/smp16fm/j' #dir_paths = glob.glob('data/*') ##data set for paper #dir_paths = glob.glob('big_data/run1/*') # run2 is standard jet runs #dir_paths = glob.glob('big_data/run2/*') # how to read pickels #max_h_data_set = pd.read_pickle(dir_paths[1]) #big_data_set = pd.read_pickle(dir_paths[0]) #dir_paths_max_h = glob.glob('sharc_run/jet_B60_A60_T*/max_h_data*') #dir_paths_big_data = glob.glob('sharc_run/jet_B60_A60_T*/big_data*') #ne dir_paths_max_h = glob.glob('sharc_run/new_pscan/*/max_h_data*') dir_paths_big_data = glob.glob('sharc_run/new_pscan/*/big_data*') #dir_paths_max_h = glob.glob('sharc_run/tilt_scan/*/max_h_data*') #dir_paths_big_data = glob.glob('sharc_run/tilt_scan/*/big_data*') #dir_paths_max_h = glob.glob('sharc_run/sj_tilt_Scan/*/max_h_data*') #dir_paths_big_data = glob.glob('sharc_run/sj_tilt_Scan/*/big_data*') dummy_max_h0 = [] max_h_data_set = [] dummy_bd0 = [] big_data_set = [] dummy_max_h0 = pd.read_pickle(dir_paths_max_h[0]) dummy_bd0 = pd.read_pickle(dir_paths_big_data[0]) # Silly fix for badly saved data. # data files are being appended each run, need to fix this in other script keep_indx = 1 if len(dummy_max_h0)>1: # dummy_max_h0 = dummy_max_h0.drop([0]) for clip_idx in dummy_max_h0.index: if clip_idx == keep_indx: pass else: dummy_max_h0 = dummy_max_h0.drop([clip_idx]) if len(dummy_bd0)>1: # dummy_bd0 = dummy_bd0.drop([0]) for clip_idx in dummy_bd0.index: if clip_idx == keep_indx: pass else: dummy_bd0 = dummy_bd0.drop([clip_idx]) first_append = True for i in range(1,len(dir_paths_max_h)): dummy_max_h = pd.read_pickle(dir_paths_max_h[i]) dummy_bd = pd.read_pickle(dir_paths_big_data[i]) if len(dummy_max_h)>1: dummy_max_h = dummy_max_h.drop([0]) for clip_idx in dummy_max_h.index: if clip_idx == keep_indx: pass else: dummy_max_h = dummy_max_h.drop([clip_idx]) if len(dummy_bd)>1: # dummy_bd = dummy_bd.drop([0]) for clip_idx in dummy_bd.index: if clip_idx == keep_indx: pass else: dummy_bd = dummy_bd.drop([clip_idx]) if first_append == True: first_append = False max_h_data_set = dummy_max_h0.append(dummy_max_h,ignore_index=True) big_data_set = dummy_bd0.append(dummy_bd,ignore_index=True) else: max_h_data_set = max_h_data_set.append(dummy_max_h,ignore_index=True) big_data_set = big_data_set.append(dummy_bd,ignore_index=True) max_h_data_set = max_h_data_set.sort_values(by=['Tilt [deg]'])#.reset_index(drop=True) order = max_h_data_set.index max_h_data_set = max_h_data_set.reset_index(drop=True) big_data_set = big_data_set.reindex(order).reset_index(drop=True) # constants unit_length = 1e9 # cm DOMIAN = [5*unit_length, 3*unit_length] unit_temperature = 1e6 # K unit_numberdensity = 1e9 # cm^-3 g_cm3_to_kg_m3 = 1e3 dyne_cm2_to_Pa = 1e-1 cm_to_km = 1e-5 m_to_km = 1e-3 km_to_Mm = 1e-3 cm_to_Mm = 1e-8 s_to_min = 1/60 earth_g = 9.80665 #m s-2 sun_g = 28.02*earth_g*m_to_km # km s-2 unit_density = 2.3416704877999998E-015 unit_velocity = 11645084.295622544 unit_pressure = 0.31754922400000002 unit_magenticfield = 1.9976088799077159 unit_time = unit_length/unit_velocity # I messed up time scaling on data collection TIME_CORRECTION_FACTOR = 10/unit_time unit_mass = unit_density*unit_length**3 unit_specific_energy = (unit_length/unit_time)**2 # options # IMPORTANT TO CHANGE dt dt = unit_time/20 #dt = unit_time/200 # high dt plot_h_vs_t = True all_data = True # plotss all data as suppose to small selection plot_w_vs_t = False plot_error_bars = False plot_hmax_vs_B = False # plot_hmax_vs_A = False # plot_mean_w_vs_tilt = True power_law_fit = False plot_hmax_vs_dt = False data_check = False interp_check = False # Doesnt work well enough for my purposes diff_check = False sf = [0.55, 0.55, 0.5, 0.5] plot_mean_w_vs_BAdt = False test_balstic = False Decelleration_analysis = False c_data = True jet_word_search = 'jet_P300_B60_A60_T*/*data.csv' jl_jet_word_search = 'jet_P300_B60_A60_T*/*jl.csv' apex_vs_tile = True plot_cdata_LA = True quad_plot = True quad_plot_cdata = True lw = 3# 2.5# xliml11, xlimu11 = 15, 125 yliml11, ylimu11 = 1, 9 #xliml21, xlimu21 = yliml21, ylimu21 = 1, 12 #xliml21, xlimu21 = #yliml21, ylimu21 = #xliml22, xlimu22 = yliml22, ylimu22 = 100, 1800 # max_h_data_set.plot(x ='amplitude [km s-1]', y='max height [Mm]', kind = 'scatter') # test = [ind for ind, i in enumerate(big_data_set['idx']) if sum(i-[50, 60, 20])==0] #print(big_data_set['dfs'][test[0]]) #name = "tab20c" #cmap = get_cmap(name) # type: matplotlib.colors.ListedColormap #colors = cmap.colors # type: list colors = ['#332288', '#88CCEE', '#44AA99', '#117733', '#999933', '#DDCC77', '#CC6677', '#882255', '#AA4499'] styles = ['-', '--', '-.', ':','-', '--', '-.', ':','-'] styles_alt = ['-', '--', '-.', ':'] #default_cycler = (cycler(color=colors) + # cycler(linestyle=styles)) #plt.rc('axes', prop_cycle=default_cycler) plt.rc('lines', linewidth=lw) #list_of_indexs = [[300,20,80],[200,20,80],[50,20,80],[300,80,80],[300,100,80]] #list_of_indexs = [[20],[40],[60],[80]] list_of_indexs = [[300,40]] fig_len_h_comp=plt.figure(figsize=(60,40)) gs=GridSpec(2,2) # 2 rows, 2 columns lhc_ax1 = fig_len_h_comp.add_subplot(gs[:,0]) lhc_ax2 = fig_len_h_comp.add_subplot(gs[0,1]) lhc_ax3 = fig_len_h_comp.add_subplot(gs[1,1], sharex=lhc_ax2) if diff_check == True: id_no = 42 driver_time = big_data_set['idx'][id_no][0] h_data = big_data_set['dfs'][id_no]['Height [Mm]'].dropna() t_data = big_data_set['dfs'][id_no]['time [s]'].dropna() time_stop_index = np.argmin(abs(t_data-driver_time)) x = h_data.index.values dx = x[1] - x[0] d_dx = FinDiff(0, dx) d2_dx2 = FinDiff(0, dx, 2) dh_dx = d_dx(h_data) d2h_dx2 = d2_dx2(h_data) mean = d2h_dx2[:time_stop_index].mean() std = d2h_dx2[:time_stop_index].std() sigma = 1 range_of_vales = [mean-sigma*std,mean+sigma*std] test = d2h_dx2-mean step = np.hstack((np.ones(len(test)), -1*np.ones(len(test)))) dary_step = np.convolve(test, step, mode='valid') step_indx = np.argmax(dary_step) clip_indx = np.argwhere((d2h_dx2>range_of_vales[0]) & (d2h_dx2<range_of_vales[1])) clip_indx = clip_indx.reshape(len(clip_indx)) clip_data = h_data[clip_indx] print(mean,std,range_of_vales) fig = plt.figure() ax = fig.add_subplot(111) ax.plot(t_data, h_data, 'bo', ms=2, label='data') ax.plot(t_data, dh_dx, 'r', label='1st order derivative') # ax.plot(t_data[:time_stop_index], d2h_dx2[:time_stop_index], 'b', label='2nd order derivative clip') # ax.plot(t_data[clip_indx], d2h_dx2[clip_indx], 'g--', label='2nd order derivative') # ax.plot(t_data[clip_indx], clip_data[clip_indx], 'orange', label='new curve') ax.legend(loc='best') plt.show() if interp_check == True: # id_no = 22 id_no = 0 h_data = big_data_set['dfs'][id_no]['Height [Mm]'].dropna() x = h_data.index.values k = 3 # 5th degree spline n = len(h_data) s = 1#n - np.sqrt(2*n) # smoothing factor spline_0 = UnivariateSpline(x, h_data, k=k, s=s) spline_1 = UnivariateSpline(x, h_data, k=k, s=s).derivative(n=1) # spline_2 = UnivariateSpline(x, h_data, k=k, s=s).derivative(n=2) sign_change_indx = np.where(np.diff(np.sign(spline_1(x))))[0] if len(sign_change_indx)>1: sign_change_indx = sign_change_indx[1] else: sign_change_indx = len(h_data) fig = plt.figure() ax = fig.add_subplot(111) ax.plot(h_data, 'bo', ms=2, label='data') ax.plot(x, spline_0(x), 'k', label='5th deg spline') # ax.plot(x, spline_1(x), 'r', label='1st order derivative') ax.plot(x[:sign_change_indx], h_data[:sign_change_indx]) # ax.plot(x, spline_2(x), 'g', label='2nd order derivative') ax.legend(loc='best') plt.show() spear_list = [] decell_array = [] vmax_array = [] predicted_decell_array = [] if plot_cdata_LA: fig, ax = plt.subplots(figsize=(20,12)) path2_c_data = glob.glob('sharc_run/c_data/'+jl_jet_word_search) tilt_nb = [int(path2_c_data[i].split('_')[-3][1:]) for i in range(len(path2_c_data))] tilt_order_index = np.argsort(tilt_nb) path2_c_data = [path2_c_data[i] for i in tilt_order_index] tilt_nb = [tilt_nb[i] for i in tilt_order_index] jet_length_max = [] tilt_deg = [] i=0 for cdex, cdata_name in enumerate(path2_c_data): i = cdex % len(colors) j = cdex % len(styles_alt) # if i ==0: styles_alt = [styles_alt[-1]]+styles_alt[:-1] dumb_file =
pd.read_csv(cdata_name)
pandas.read_csv
import time import copy import pandas as pd import networkx as nx from fup.core.manager import Manager from fup.core.functions import get_module_blueprints, get_blueprint import fup.profiles import fup.modules def overwrite_config(a, b): for key in b: if isinstance(a.get(key), dict) and isinstance(b.get(key), dict): overwrite_config(a[key], b[key]) else: a[key] = b[key] def get_sorted_module_names(modules): G = nx.DiGraph() G.add_node("root") for module_name, module in modules.items(): if module.run_end_of_year: continue G.add_node(module_name) for dep_name in module.depends_on_modules: G.add_edge(dep_name, module_name) # FIXME theoretical end_of_year module can appear here, too. # FIXME instead add psedo end of year module and add dependencies for modify_name in module.modifies_modules: G.add_edge(module_name, modify_name) # check for loop try: cycle = nx.find_cycle(G, orientation="original") raise Exception(f"Dependency loop found: {cycle}") except nx.NetworkXNoCycle: pass # add root dependencies for node in G.nodes(): if node == "root": continue if len(G.in_edges(node)) < 1: G.add_edge("root", node) # Traverse Graph sorted_module_names = list(reversed(list(nx.dfs_postorder_nodes(G, source="root"))))[1:] return sorted_module_names # TODO put this method somewhere else, where??! def get_sorted_module_blueprints(config): # imports Manager -> no cyclic imports! module_blueprints = get_module_blueprints(config=config, root_module=fup.modules) profile_blueprint = get_blueprint(config=config["profile"], root_module=fup.profiles) # dry run to get dependencies manager = Manager(config=config, module_blueprints=module_blueprints, profile_blueprint=profile_blueprint, current_account_name="CurrentAccount") manager.dependency_check() sorted_module_names = get_sorted_module_names(modules=manager.modules) sorted_modules = [] for module_name in sorted_module_names: sorted_modules += [m for m in module_blueprints if m.name == module_name] # FIXME remove special treatment of end of year for module_name, module in manager.modules.items(): if module.run_end_of_year: sorted_modules += [m for m in module_blueprints if m.name == module_name] return sorted_modules def get_start_values(config): config = copy.deepcopy(config) config["simulation"]["random"] = False config["modules"]["main.environment.Inflation"]["inflation_mean"] = 1 sorted_module_blueprints = get_sorted_module_blueprints(config=config) profile_blueprint = get_blueprint(config=config["profile"], root_module=fup.profiles) manager = fup.core.manager.Manager(config=config, module_blueprints=sorted_module_blueprints, profile_blueprint=profile_blueprint, current_account_name="CurrentAccount") manager.next_year() rows = [] for module_name in manager.modules: rows += [manager.modules[module_name].info] return pd.DataFrame(rows) def run_simulations(config, runs=100, debug=False): time_start = time.time() sorted_module_blueprints = get_sorted_module_blueprints(config) profile_blueprint = get_blueprint(config=config["profile"], root_module=fup.profiles) dfs = [] stats = [] for i in range(runs): manager = fup.core.manager.Manager(config=config, module_blueprints=sorted_module_blueprints, profile_blueprint=profile_blueprint, current_account_name="CurrentAccount") rows = [] for i_year in range(config["simulation"]["end_year"] - config["simulation"]["start_year"]): manager.next_year() rows += [manager.df_row] df = pd.DataFrame(rows) df["run"] = i # tax correction df["expenses_net"] = df["expenses"] - df["tax"] - df["tax_offset"] df["income_net"] = df["income"] - df["tax"] - df["tax_offset"] # Inflation corrected df["expenses_net_cor"] = df["expenses_net"] / df["total_inflation"] df["income_net_cor"] = df["income_net"] / df["total_inflation"] df["assets_cor"] = df["assets"] / df["total_inflation"] dfs += [df] # TODO implement me stats += [manager.get_stats()] df = pd.concat(dfs) df_stats =
pd.DataFrame(stats)
pandas.DataFrame
# coding: utf8 import torch import numpy as np import os import warnings import pandas as pd from time import time import logging from torch.nn.modules.loss import _Loss import torch.nn.functional as F from sklearn.utils import column_or_1d import scipy.sparse as sp from clinicadl.tools.deep_learning.iotools import check_and_clean from clinicadl.tools.deep_learning import EarlyStopping, save_checkpoint ##################### # CNN train / test # ##################### def train(model, train_loader, valid_loader, criterion, optimizer, resume, log_dir, model_dir, options, logger=None): """ Function used to train a CNN. The best model and checkpoint will be found in the 'best_model_dir' of options.output_dir. Args: model: (Module) CNN to be trained train_loader: (DataLoader) wrapper of the training dataset valid_loader: (DataLoader) wrapper of the validation dataset criterion: (loss) function to calculate the loss optimizer: (torch.optim) optimizer linked to model parameters resume: (bool) if True, a begun job is resumed log_dir: (str) path to the folder containing the logs model_dir: (str) path to the folder containing the models weights and biases options: (Namespace) ensemble of other options given to the main script. logger: (logging object) writer to stdout and stderr """ from tensorboardX import SummaryWriter from time import time if logger is None: logger = logging columns = ['epoch', 'iteration', 'time', 'balanced_accuracy_train', 'loss_train', 'balanced_accuracy_valid', 'loss_valid'] if hasattr(model, "variational") and model.variational: columns += ["kl_loss_train", "kl_loss_valid"] filename = os.path.join(os.path.dirname(log_dir), 'training.tsv') if not resume: check_and_clean(model_dir) check_and_clean(log_dir) results_df = pd.DataFrame(columns=columns) with open(filename, 'w') as f: results_df.to_csv(f, index=False, sep='\t') options.beginning_epoch = 0 else: if not os.path.exists(filename): raise ValueError('The training.tsv file of the resumed experiment does not exist.') truncated_tsv = pd.read_csv(filename, sep='\t') truncated_tsv.set_index(['epoch', 'iteration'], inplace=True) truncated_tsv.drop(options.beginning_epoch, level=0, inplace=True) truncated_tsv.to_csv(filename, index=True, sep='\t') # Create writers writer_train = SummaryWriter(os.path.join(log_dir, 'train')) writer_valid = SummaryWriter(os.path.join(log_dir, 'validation')) # Initialize variables best_valid_accuracy = -1.0 best_valid_loss = np.inf epoch = options.beginning_epoch model.train() # set the model to training mode train_loader.dataset.train() early_stopping = EarlyStopping('min', min_delta=options.tolerance, patience=options.patience) mean_loss_valid = None t_beginning = time() while epoch < options.epochs and not early_stopping.step(mean_loss_valid): logger.info("Beginning epoch %i." % epoch) model.zero_grad() evaluation_flag = True step_flag = True tend = time() total_time = 0 for i, data in enumerate(train_loader, 0): t0 = time() total_time = total_time + t0 - tend if options.gpu: imgs, labels = data['image'].cuda(), data['label'].cuda() else: imgs, labels = data['image'], data['label'] if hasattr(model, "variational") and model.variational: z, mu, std, train_output = model(imgs) kl_loss = kl_divergence(z, mu, std) loss = criterion(train_output, labels) + kl_loss else: train_output = model(imgs) loss = criterion(train_output, labels) # Back propagation loss.backward() del imgs, labels if (i + 1) % options.accumulation_steps == 0: step_flag = False optimizer.step() optimizer.zero_grad() del loss # Evaluate the model only when no gradients are accumulated if options.evaluation_steps != 0 and (i + 1) % options.evaluation_steps == 0: evaluation_flag = False _, results_train = test(model, train_loader, options.gpu, criterion) mean_loss_train = results_train["total_loss"] / (len(train_loader) * train_loader.batch_size) _, results_valid = test(model, valid_loader, options.gpu, criterion) mean_loss_valid = results_valid["total_loss"] / (len(valid_loader) * valid_loader.batch_size) model.train() train_loader.dataset.train() global_step = i + epoch * len(train_loader) writer_train.add_scalar('balanced_accuracy', results_train["balanced_accuracy"], global_step) writer_train.add_scalar('loss', mean_loss_train, global_step) writer_valid.add_scalar('balanced_accuracy', results_valid["balanced_accuracy"], global_step) writer_valid.add_scalar('loss', mean_loss_valid, global_step) logger.info("%s level training accuracy is %f at the end of iteration %d" % (options.mode, results_train["balanced_accuracy"], i)) logger.info("%s level validation accuracy is %f at the end of iteration %d" % (options.mode, results_valid["balanced_accuracy"], i)) t_current = time() - t_beginning row = [epoch, i, t_current, results_train["balanced_accuracy"], mean_loss_train, results_valid["balanced_accuracy"], mean_loss_valid] if hasattr(model, "variational") and model.variational: row += [results_train["total_kl_loss"] / (len(train_loader) * train_loader.batch_size), results_valid["total_kl_loss"] / (len(valid_loader) * valid_loader.batch_size)] row_df = pd.DataFrame([row], columns=columns) with open(filename, 'a') as f: row_df.to_csv(f, header=False, index=False, sep='\t') tend = time() logger.debug('Mean time per batch loading: %.10f s' % (total_time / len(train_loader) * train_loader.batch_size)) # If no step has been performed, raise Exception if step_flag: raise Exception('The model has not been updated once in the epoch. The accumulation step may be too large.') # If no evaluation has been performed, warn the user elif evaluation_flag and options.evaluation_steps != 0: warnings.warn('Your evaluation steps are too big compared to the size of the dataset.' 'The model is evaluated only once at the end of the epoch') # Always test the results and save them once at the end of the epoch model.zero_grad() logger.debug('Last checkpoint at the end of the epoch %d' % epoch) _, results_train = test(model, train_loader, options.gpu, criterion) mean_loss_train = results_train["total_loss"] / (len(train_loader) * train_loader.batch_size) _, results_valid = test(model, valid_loader, options.gpu, criterion) mean_loss_valid = results_valid["total_loss"] / (len(valid_loader) * valid_loader.batch_size) model.train() train_loader.dataset.train() global_step = (epoch + 1) * len(train_loader) writer_train.add_scalar('balanced_accuracy', results_train["balanced_accuracy"], global_step) writer_train.add_scalar('loss', mean_loss_train, global_step) writer_valid.add_scalar('balanced_accuracy', results_valid["balanced_accuracy"], global_step) writer_valid.add_scalar('loss', mean_loss_valid, global_step) logger.info("%s level training accuracy is %f at the end of iteration %d" % (options.mode, results_train["balanced_accuracy"], len(train_loader))) logger.info("%s level validation accuracy is %f at the end of iteration %d" % (options.mode, results_valid["balanced_accuracy"], len(train_loader))) t_current = time() - t_beginning row = [epoch, i, t_current, results_train["balanced_accuracy"], mean_loss_train, results_valid["balanced_accuracy"], mean_loss_valid] if hasattr(model, "variational") and model.variational: row += [results_train["total_kl_loss"] / (len(train_loader) * train_loader.batch_size), results_valid["total_kl_loss"] / (len(valid_loader) * valid_loader.batch_size)] row_df = pd.DataFrame([row], columns=columns) with open(filename, 'a') as f: row_df.to_csv(f, header=False, index=False, sep='\t') accuracy_is_best = results_valid["balanced_accuracy"] > best_valid_accuracy loss_is_best = mean_loss_valid < best_valid_loss best_valid_accuracy = max(results_valid["balanced_accuracy"], best_valid_accuracy) best_valid_loss = min(mean_loss_valid, best_valid_loss) save_checkpoint({'model': model.state_dict(), 'epoch': epoch, 'valid_loss': mean_loss_valid, 'valid_acc': results_valid["balanced_accuracy"]}, accuracy_is_best, loss_is_best, model_dir) # Save optimizer state_dict to be able to reload save_checkpoint({'optimizer': optimizer.state_dict(), 'epoch': epoch, 'name': options.optimizer, }, False, False, model_dir, filename='optimizer.pth.tar') epoch += 1 os.remove(os.path.join(model_dir, "optimizer.pth.tar")) os.remove(os.path.join(model_dir, "checkpoint.pth.tar")) def evaluate_prediction(y, y_pred): """ Evaluates different metrics based on the list of true labels and predicted labels. Args: y: (list) true labels y_pred: (list) corresponding predictions Returns: (dict) ensemble of metrics """ true_positive = np.sum((y_pred == 1) & (y == 1)) true_negative = np.sum((y_pred == 0) & (y == 0)) false_positive = np.sum((y_pred == 1) & (y == 0)) false_negative = np.sum((y_pred == 0) & (y == 1)) accuracy = (true_positive + true_negative) / (true_positive + true_negative + false_positive + false_negative) if (true_positive + false_negative) != 0: sensitivity = true_positive / (true_positive + false_negative) else: sensitivity = 0.0 if (false_positive + true_negative) != 0: specificity = true_negative / (false_positive + true_negative) else: specificity = 0.0 if (true_positive + false_positive) != 0: ppv = true_positive / (true_positive + false_positive) else: ppv = 0.0 if (true_negative + false_negative) != 0: npv = true_negative / (true_negative + false_negative) else: npv = 0.0 balanced_accuracy = (sensitivity + specificity) / 2 results = {'accuracy': accuracy, 'balanced_accuracy': balanced_accuracy, 'sensitivity': sensitivity, 'specificity': specificity, 'ppv': ppv, 'npv': npv, } return results def test(model, dataloader, use_cuda, criterion, mode="image", use_labels=True): """ Computes the predictions and evaluation metrics. Args: model: (Module) CNN to be tested. dataloader: (DataLoader) wrapper of a dataset. use_cuda: (bool) if True a gpu is used. criterion: (loss) function to calculate the loss. mode: (str) input used by the network. Chosen from ['image', 'patch', 'roi', 'slice']. use_labels (bool): If True the true_label will be written in output DataFrame and metrics dict will be created. Returns (DataFrame) results of each input. (dict) ensemble of metrics + total loss on mode level. """ model.eval() dataloader.dataset.eval() if mode == "image": columns = ["participant_id", "session_id", "true_label", "predicted_label"] elif mode in ["patch", "roi", "slice"]: columns = ['participant_id', 'session_id', '%s_id' % mode, 'true_label', 'predicted_label', 'proba0', 'proba1'] else: raise ValueError("The mode %s is invalid." % mode) softmax = torch.nn.Softmax(dim=1) results_df = pd.DataFrame(columns=columns) total_loss = 0 total_kl_loss = 0 total_time = 0 tend = time() with torch.no_grad(): for i, data in enumerate(dataloader, 0): t0 = time() total_time = total_time + t0 - tend if use_cuda: inputs, labels = data['image'].cuda(), data['label'].cuda() else: inputs, labels = data['image'], data['label'] if hasattr(model, "variational") and model.variational: z, mu, std, outputs = model(inputs) kl_loss = kl_divergence(z, mu, std) total_kl_loss += kl_loss.item() else: outputs = model(inputs) if use_labels: loss = criterion(outputs, labels) total_loss += loss.item() _, predicted = torch.max(outputs.data, 1) # Generate detailed DataFrame for idx, sub in enumerate(data['participant_id']): if mode == "image": row = [[sub, data['session_id'][idx], labels[idx].item(), predicted[idx].item()]] else: normalized_output = softmax(outputs) row = [[sub, data['session_id'][idx], data['%s_id' % mode][idx].item(), labels[idx].item(), predicted[idx].item(), normalized_output[idx, 0].item(), normalized_output[idx, 1].item()]] row_df = pd.DataFrame(row, columns=columns) results_df = pd.concat([results_df, row_df]) del inputs, outputs, labels tend = time() results_df.reset_index(inplace=True, drop=True) if not use_labels: results_df = results_df.drop("true_label", axis=1) metrics_dict = None else: metrics_dict = evaluate_prediction(results_df.true_label.values.astype(int), results_df.predicted_label.values.astype(int)) metrics_dict['total_loss'] = total_loss metrics_dict['total_kl_loss'] = total_kl_loss torch.cuda.empty_cache() return results_df, metrics_dict def sort_predicted(model, data_df, input_dir, model_options, criterion, keep_true, batch_size=1, num_workers=0, gpu=False): from .data import return_dataset, get_transforms from torch.utils.data import DataLoader from copy import copy if keep_true is None: return data_df _, all_transforms = get_transforms(model_options.mode, model_options.minmaxnormalization) dataset = return_dataset(mode=model_options.mode, input_dir=input_dir, data_df=data_df, preprocessing=model_options.preprocessing, train_transformations=None, all_transformations=all_transforms, params=model_options) dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers, pin_memory=True) test_options = copy(model_options) test_options.gpu = gpu results_df, _ = test(model, dataloader, gpu, criterion, model_options.mode, use_labels=True) sorted_df = data_df.sort_values(['participant_id', 'session_id']).reset_index(drop=True) results_df = results_df.sort_values(['participant_id', 'session_id']).reset_index(drop=True) if keep_true: return sorted_df[results_df.true_label == results_df.predicted_label].reset_index(drop=True) else: return sorted_df[results_df.true_label != results_df.predicted_label].reset_index(drop=True) ################################# # Voting systems ################################# def mode_level_to_tsvs(output_dir, results_df, metrics, fold, selection, mode, dataset='train', cnn_index=None): """ Writes the outputs of the test function in tsv files. Args: output_dir: (str) path to the output directory. results_df: (DataFrame) the individual results per patch. metrics: (dict or DataFrame) the performances obtained on a series of metrics. fold: (int) the fold for which the performances were obtained. selection: (str) the metrics on which the model was selected (best_acc, best_loss) mode: (str) input used by the network. Chosen from ['image', 'patch', 'roi', 'slice']. dataset: (str) the dataset on which the evaluation was performed. cnn_index: (int) provide the cnn_index only for a multi-cnn framework. """ if cnn_index is None: performance_dir = os.path.join(output_dir, 'fold-%i' % fold, 'cnn_classification', selection) else: performance_dir = os.path.join(output_dir, 'fold-%i' % fold, 'cnn_classification', 'cnn-%i' % cnn_index, selection) os.makedirs(performance_dir, exist_ok=True) results_df.to_csv(os.path.join(performance_dir, '%s_%s_level_prediction.tsv' % (dataset, mode)), index=False, sep='\t') if metrics is not None: metrics["%s_id" % mode] = cnn_index if isinstance(metrics, dict): pd.DataFrame(metrics, index=[0]).to_csv(os.path.join(performance_dir, '%s_%s_level_metrics.tsv' % (dataset, mode)), index=False, sep='\t') elif isinstance(metrics, pd.DataFrame): metrics.to_csv(os.path.join(performance_dir, '%s_%s_level_metrics.tsv' % (dataset, mode)), index=False, sep='\t') else: raise ValueError("Bad type for metrics: %s. Must be dict or DataFrame." % type(metrics).__name__) def concat_multi_cnn_results(output_dir, fold, selection, mode, dataset, num_cnn): """Concatenate the tsv files of a multi-CNN framework""" prediction_df = pd.DataFrame() metrics_df = pd.DataFrame() for cnn_index in range(num_cnn): cnn_dir = os.path.join(output_dir, 'fold-%i' % fold, 'cnn_classification', 'cnn-%i' % cnn_index) performance_dir = os.path.join(cnn_dir, selection) cnn_pred_path = os.path.join(performance_dir, '%s_%s_level_prediction.tsv' % (dataset, mode)) cnn_metrics_path = os.path.join(performance_dir, '%s_%s_level_metrics.tsv' % (dataset, mode)) cnn_pred_df = pd.read_csv(cnn_pred_path, sep='\t') prediction_df = pd.concat([prediction_df, cnn_pred_df]) os.remove(cnn_pred_path) if os.path.exists(cnn_metrics_path): cnn_metrics_df =
pd.read_csv(cnn_metrics_path, sep='\t')
pandas.read_csv
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import pickle pd.set_option('display.max_columns', 100) pd.options.mode.chained_assignment = None train_path = '../input/forest-cover-type-prediction/train.csv' test_path = '../input/forest-cover-type-prediction/test.csv' submit_path = '../input/forest-cover-type-prediction/sampleSubmission.csv' dtrain = pd.read_csv(train_path, index_col=0) dtest = pd.read_csv(test_path, index_col=0) dtrain['Cover_Type'].value_counts() dtrain.info() # Now this includes values for all classes, better to groupyby the target variable and then get description. dtrain.describe() print(dtrain.skew()) grouped_dataframe = dtrain.groupby(['Cover_Type']) # Dictionary of the Cover_type and the label label_dict = {1 : 'Spruce/Fir', 2 : 'Lodgepole Pine', 3 : 'Ponderosa Pine', 4 : 'Cottonwood/Willow', 5 : 'Aspen', 6 : 'Douglas-fir', 7 : 'Krummholz'} from IPython.display import display for cover in dtrain.Cover_Type.unique(): print(f'Forest Cover Type - {cover}') display(grouped_dataframe.get_group(cover).describe()) # Only continuous columns d_train_cont=dtrain.iloc[:,:10] # To plot multiple distributions filtered by the target for each continuous variable. import math targets = dtrain.Cover_Type.unique() fig = plt.figure() height = 34 width = 18 fig.set_figheight(height) fig.set_figwidth(width) for i, col in enumerate(d_train_cont.columns): ax = fig.add_subplot(math.ceil(len(d_train_cont.columns.to_list())/2), 2, i+1) for cover_type in targets: temp = d_train_cont.loc[dtrain.Cover_Type == cover_type] sns.distplot(temp[col], label = label_dict[cover_type]) ax.legend() ax.set_title(col) #plt.savefig('Graph/Univariate_cont_dist.jpg') plt.show() d_train_cont['Cover_type'] = dtrain.Cover_Type fig = plt.figure() fig.set_figheight(34) fig.set_figwidth(18) for i, item in enumerate(d_train_cont.columns.to_list()): fig.add_subplot(math.ceil(len(d_train_cont.columns.to_list())/2), 2, i+1) sns.violinplot(y= item, x = 'Cover_type', data = d_train_cont) #plt.savefig('Graph/Bivariate_feat_cover.jpg') plt.show() # Correlation heatmap would be too large, find largest correlations. plt.figure(figsize=(9, 7)) sns.heatmap(d_train_cont.corr(),annot=True, cbar = True) plt.show() # 2nd Method, get all corrrelations and corresponding rows and columns in numpyarray from the top triangle # of matrix. Then sort this array. corr_list = [] for row_num, row in enumerate(d_train_cont.corr().index): for col_num, col in enumerate(d_train_cont.corr().index): # Ignoring comparison between the same columns if col_num > row_num: corr_list.append([row, col, np.abs(d_train_cont.corr().iloc[row_num, col_num])]) corr_array = np.array(corr_list) corr_array = corr_array[corr_array[:,2].argsort()][::-1] corr_array[:10] # Iterating over the corr_array array and then using the column names from the 1st, 2nd element of list. # create new figure and add subplots inside loop fig = plt.figure() fig.set_figheight(30) fig.set_figwidth(22) fig.set_dpi(120) for i, item in enumerate(corr_array[:10]): fig.add_subplot(math.ceil(len(corr_array[:10])/2), 2, i+1 ) sns.scatterplot(x = item[0], y = item[1], data = dtrain, hue = 'Cover_Type', legend = 'full', palette=sns.husl_palette(7)) #plt.savefig('Graph/data_interaction.jpg') plt.show() # Filter cover type and then barplot of wilderness area to see if any trees grow exclusively in a region. #data.describe() data = dtrain.groupby(['Cover_Type'])[['Wilderness_Area1', 'Wilderness_Area2', 'Wilderness_Area3', 'Wilderness_Area4']].sum() # Transpose to get numbers by wilderness type. data.T.plot(kind = 'bar', figsize = (12,8)) plt.show() # Drop Soil type 15,7 - They have no variation. dtrain.drop(['Soil_Type7', 'Soil_Type15'], axis = 1, inplace = True) # filtering all columns that contain the str Soil soil_columns = dtrain.columns[dtrain.columns.str.contains('Soil')].to_list() data_soil = dtrain.groupby(['Cover_Type'])[soil_columns[:10]].sum() data_soil.T.plot(kind = 'bar', figsize = (18,8)) plt.show() data_soil = dtrain.groupby(['Cover_Type'])[soil_columns[10:20]].sum() data_soil.T.plot(kind = 'bar', figsize = (18,8)) plt.show() data_soil = dtrain.groupby(['Cover_Type'])[soil_columns[20:30]].sum() data_soil.T.plot(kind = 'bar', figsize = (18,8)) plt.show() data_soil = dtrain.groupby(['Cover_Type'])[soil_columns[30:]].sum() data_soil.T.plot(kind = 'bar', figsize = (18,8)) plt.show() label = dtrain['Cover_Type'] dtrain.drop(['Cover_Type'], axis = 1, inplace=True) from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV from sklearn.metrics import accuracy_score, f1_score, classification_report,confusion_matrix from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from xgboost import XGBClassifier x_train, x_test, y_train, y_test = train_test_split(dtrain, label, test_size = .3) dirty_clf = RandomForestClassifier() dirty_clf.fit(x_train, y_train) print(dirty_clf.score(x_test, y_test)) imp_feat = pd.DataFrame(index= dtrain.columns.to_list() , data= dirty_clf.feature_importances_) imp_feat.rename(columns={0 : 'Importance'}, inplace=True) imp_feat.sort_values(by='Importance', axis =0, ascending=False)[:15] baseline_features = ['Elevation', 'Horizontal_Distance_To_Roadways'] features = ['Elevation', 'Horizontal_Distance_To_Roadways', 'Horizontal_Distance_To_Hydrology', 'Horizontal_Distance_To_Fire_Points', 'Aspect','Wilderness_Area1', 'Wilderness_Area4', 'Soil_Type3', 'Soil_Type4','Soil_Type10', 'Soil_Type29', 'Soil_Type38'] x_train, x_test, y_train, y_test = train_test_split(dtrain[features], label, test_size = .3) clf = DecisionTreeClassifier(criterion='gini', max_depth=8, min_samples_split=2, class_weight= None, max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_weight_fraction_leaf=0.0, presort='deprecated', random_state=None,) grid_params = {'criterion' : ["gini", "entropy"]} grid = GridSearchCV(estimator=clf, param_grid=grid_params, n_jobs=-1, cv = 5) grid.fit(x_train, y_train) grid.score(x_test, y_test) grid.best_estimator_ y_pred = grid.predict(x_test) clf.fit(x_train, y_train) print(f'No of Leaves : {clf.get_n_leaves()}') clf.feature_importances_ # With the Selected Features. print(classification_report(y_test, y_pred, labels= list(label_dict.keys()), target_names=list(label_dict.values()))) rnd_clf = RandomForestClassifier() grid_params_1 = {'max_depth' : [18], 'n_estimators' : [127], 'criterion':['entropy']} grid = GridSearchCV(estimator=rnd_clf, param_grid=grid_params_1, n_jobs=-1, cv = 5) grid.fit(x_train, y_train) print(grid.best_score_) print(grid.score(x_test, y_test)) #grid.cv_results_ #grid.best_estimator_ final_clf = RandomForestClassifier(max_depth=18, n_estimators=127, criterion='entropy') final_clf.fit(x_train, y_train) print(final_clf.score(x_train, y_train)) print(final_clf.score(x_test, y_test)) y_hat = final_clf.predict(x_test) print(classification_report(y_test, y_hat, target_names=label_dict.values())) plt.figure(figsize=(8,8)) sns.heatmap(pd.DataFrame(confusion_matrix(y_test, y_pred), index = label_dict.values(), columns= label_dict.values()), annot=True, cbar = False) plt.show() imp_feat = pd.DataFrame(index= features , data= final_clf.feature_importances_) imp_feat.rename(columns={0 : 'Importance'}, inplace=True) imp_feat.sort_values(by='Importance', axis =0, ascending=False) xgb_clf = XGBClassifier(n_estimators=100, max_depth = 12) #grid_params = {'max_depth' : [12,14,16]} #grid_xgb = GridSearchCV(xgb_clf, grid_params, cv= 5) #grid_xgb.fit(x_train, y_train) #print(grid_xgb.best_score_) #grid_xgb.cv_results_ #grid_xgb.score(x_test, y_test) xgb_clf.fit(x_train, y_train) xgb_clf.score(x_test, y_test) y_pred = xgb_clf.predict(x_test) print(classification_report(y_test, y_pred, target_names=label_dict.values())) # Final Fit xgb_clf.fit(dtrain[features], label) y_test_hat = xgb_clf.predict(dtest[features]) dtest['Predicted_cover_type'] = y_test_hat sns.countplot(x = 'Predicted_cover_type', data = dtest) sns.distplot(dtest.Elevation) test_targets = dtest.Predicted_cover_type.unique() plt.figure(figsize=(10,6)) for target in test_targets: temp = dtest.loc[dtest.Predicted_cover_type == target] sns.distplot(temp.Elevation, label = label_dict[target]) plt.legend() plt.title('Distribution of Elevation of Predicted Cover Type') #plt.savefig('Graph/Predicted_classes.jpg') plt.show() df_submit =
pd.read_csv(submit_path, index_col=0)
pandas.read_csv
# Library for parsing arbitrary valid ipac tbl files and writing them out. # Written by: <NAME> # at: UCLA 2012, July 18 # The main elements the user should concern themselves with are: # # TblCol: a class for storing an IPAC table column, including all data and # functions needed to input/output that column. # name - the name of the column # type - the data type stored in the column # units - the units of the quantity in the column (if any) # null - the string to write in the column if the value is not valid # or otherwise missing. # data - list containing the column's data # mask - bolean list contains True if the corresponding element in # data is valid, False if not. # Stringer - the function used to convert column values to strings. # Parser - the function used to parse the values in an ASCII tbl. # ResetStringer - function that insures that the stringer will produce # columns of sufficient width to store the data. # # Tbl: a class that stores a complete IPAC table, including all the columns, # comment lines, and functions needed to read/write Tbl files. # hdr - a list conting the comment lines, one item per line. # colnames - a list of the names of the columns. The primary importance of # this item is that it controls the order of when columns are # written to the ouput file, and even whether they are written # out at all. # cols - a dictionary containing the table columns as TblCols. It is # indexed using the name of the column in question. # Read - function for reading in an IPAC table. The only essential # argument is fname, the name of the table to be read in. # The optional items are: # RowMask - a function that takes a row's zero indexed order and # the row's raw string and returns True if the row is to # be read in, False if it is to be ignored. # startrow - a long integer specifying the first zero indexed data # row/line to be read in. # breakrow - a long integer specifying the last zero indexed data # row/line to be read in. # Row - a convenience function for grabbing all the data in the given # zero indexed row from the columns. # ResetStringers - convenience function that calls the ResetStringer # method of every column, returning both the data and # boolean mask for the row in question. # Print - writes the table to stdout. # header - boolean set to True if the comment strings and column # headers are to be printed. # Write - writes the table to the file named in fname. Will append to the # file if append=True (WARNING: it is impossible for this library # to gaurantee that this operation will produce a valid IPAC tbl # file. Use at your own risk). import sys import os import gzip as gz if sys.version_info[0] >= 3: long = int decode = lambda x: x.decode() encode = lambda x: bytes(x, "ascii") else: decode = lambda x: x encode = lambda x: x class FormatError(Exception): def __init__(self, value): self.value = value def __str__(self): return repr(self.value) def IPACExpandType( IPACtp, shrink=False ): """Takes the header from an IPAC table and parses it into the full ipac name of the type if shrink==False. If shrink != False, return the 1 character IPAC table type.""" if len(IPACtp) == 0: raise ValueError( "IPACExpandType requires a string with length at least 1." ) pfx = IPACtp[0] if shrink == False: if pfx == "i": result = "int" elif pfx == "l": result = "long" elif pfx == "f": result = "float" elif pfx == "d": result = "double" elif pfx == "r": result = "real" elif pfx == "c": result = "char" elif IPACtp == "t" or ( len(IPACtp) > 1 and IPACtp[:1] == "da" ): result = "date" else: raise ValueError( "Invalid IPAC type supplied to IPACExpandType: " + IPACtp ) else: if pfx in ( "i", "l", "f", "d", "r", "c" ): result = pfx elif IPACtp == "t" or ( len(IPACtp) > 1 and IPACtp[:1] == "da" ): result = "t" else: raise ValueError( "Invalid IPAC type supplied to IPACExpandType: " + IPACtp ) return result def IPACtoPythonType( IPACtp ): if IPACtp in ( "c", "char", "t", "date" ): return type("a") elif IPACtp in ( "i", "int" ): return type(int(1)) elif IPACtp in ( "l", "long" ): return type(long(1)) elif IPACtp in ( "d", "double", "f", "float", "r", "real" ): return type( float(1.0) ) else: raise ValueError("Argument valtype to IPACtoPythonType must be a " + \ "valid IPAC table column type. " + \ "Type given: " + valtype ) def MakeStringer( valtype, width, null="null", precision=None ): #Check argument validity if type(valtype) != type("a"): raise TypeError("MakeStringer's first argument must be a string.") if type(null) != type("a"): raise TypeError("MakeStringer's null argument must be a string.") if type(width) != type(int(1)): raise TypeError("MakeStringer's width argument must be an int.") if width <= 0: raise ValueError("the width passed to MakeStringer must be > 0.") if precision != None: if type(precision) != type(int(1)): raise TypeError("MakeStringer's precision argument must" + " be an int.") if precision <= 0: raise ValueError("the precision passed to MakeStringer" + " must be > 0.") #Format string stuff doesn't work so well. # #Make the formatting string # valfmtstring = "{0: ^" + str(width) # if precision != None: # valfmtstring += "." + str(precision) # if valtype in ( "c", "char", "date" ): # valfmtstring += "s" # elif valtype in ( "i", "int", "l", "long" ): # valfmtstring += "d" # elif valtype in ( "d", "double", "f", "float", "r", "real" ): # valfmtstring += "g" # else: # raise ValueError("Argument valtype to MakeStringer must be a " + \ # "valid IPAC table column type. " + \ # "Type given: " + valtype ) # valfmtstring += "}" padstring = "{0: ^" + str(width) + "s}" def result( val, mask ): if mask == True: r = padstring.format(str(val)) if len(r) > width: raise FormatError( "Column width insufficient. Width " + str(width) + ", " + str(val) ) else: r = padstring.format(null) if len(r) > width: raise FormatError( "Column width insufficient. Width " + str(width) + ", " + str(null) ) return r result.width = width return result def MakeParser( valtype, null="null" ): if type(valtype) != type("a"): raise TypeError("MakeParser's first argument must be a string.") if type(null) != type("a"): raise TypeError("MakeParser's null argument must be a string.") if valtype in ( "i", "int" ): baseparse = int default = 1 elif valtype in ( "l", "long" ): baseparse = long default = long(1) elif valtype in ( "d", "double", "f", "float", "r", "real" ): def baseparse( x ): try: return float(x) except ValueError: return float.fromhex(x) default = 1.0 elif valtype in ( "c", "char", "t", "date" ): baseparse = lambda x: x default = "" else: raise ValueError("Argument valtype to MakeParser must be a " + \ "valid IPAC table column type. " + \ "Type given: " + valtype ) def parser( x ): y = x.strip() if y != null: return ( baseparse( y ), True ) else: return ( default, False ) return parser def MakeNullParser( valtype, null="null" ): if type(valtype) != type("a"): raise TypeError("MakeParser's first argument must be a string.") if type(null) != type("a"): raise TypeError("MakeParser's null argument must be a string.") if valtype in ( "i", "int" ): default = 1 elif valtype in ( "l", "long" ): default = long(1) elif valtype in ( "d", "double", "f", "float", "r", "real" ): default = 1.0 elif valtype in ( "c", "char", "t", "date" ): default = "" else: raise ValueError("Argument valtype to MakeParser must be a " + \ "valid IPAC table column type. " + \ "Type given: " + valtype ) def parser( x ): return ( default, False ) return parser class TblCol: def __init__(self): self.name = "" self.type = "" self.units = "" self.null = "null" self.mask = [] self.data = [] self.Stringer = lambda x, y: "undefined" #to be defined self.Parser = None def __len__(self): if len(self.data) == len(self.mask): return len(self.data) else: raise FormatError( "Length of mask, " + str(len(self.mask)) + ", inconsistent with data, " + str(len(self.data)) + "." ) def ResetStringer( self ): width = max( len(self.name), len(self.type), len(self.units), len(self.null) ) for v, m in zip(self.data, self.mask): if m == True: width = max( width, len(str(v)) ) #width += 10 #Deal with python's crappy formatting funcs self.Stringer = MakeStringer( self.type, width, null=self.null ); return None def ResetParser( self ): self.Parser = MakeParser( self.type, null=self.null ); return None import sys class TblRow: def __init__(self, colnames=[]): self.colnames = colnames self.data = [ None for n in colnames ] self.mask = [ False for n in colnames ] return None def __getitem__(self, k): if type(k) in ( type(1), type(long(1)) ): return ( self.data[k], self.mask[k] ) elif type(k) == type("a"): if k in self.colnames: i = self.colnames.index(k) return( self.data[i], self.mask[i]) else: raise KeyError( "Column name given not understood by row." ) else: raise TypeError("Rows must be indexed by a string, integer, or long.") return None def __setitem__( self, k, val ): if type(k) in ( type(1), type(long(1)) ): if k < len(self.data) and k >= -len(self.data): self.data[k] = val self.mask[k] = True return( val, True ) else: raise IndexError( "list index out of range" ) elif type(k) == type("a"): if k in self.colnames: i = self.colnames.index(k) self.data[i] = val self.mask[i] = True return( val, True ) else: raise KeyError( "Column name given not understood by row.") else: raise TypeError("Rows must be indexed by a string, integer, or long.") return None def __delitem__( self, k ): if type(k) in ( type(1), type(long(1)) ): if k < len(self.data) and k >= -len(self.data): self.mask[k] = False else: raise IndexError( "list index out of range" ) elif type(k) == type("a"): if k in self.colnames: i = self.colnames.index(k) self.mask[i] = False else: raise KeyError( "Column name given not understood by row.") else: raise TypeError("Rows must be indexed by a string, integer, or long.") return None def ReadTable( fname, RowMask = lambda x, y: True, startrow=long(0), breakrow=None, gzip=False ): """Function for reading IPAC tables into a dictionary of Tblcolumns. Will only read lines for which the function RowMask returns True when passed the row number and row. Rows are zero indexed, just like Python lists. The first row read will be startrow, and will not read past breakrow. Does not support universal line endings for gzipped files.""" if gzip != True: f = open(fname, "rb") else: f = gz.open( fname, "r" ) #Read past header hdrlines = [] cnames = [] while (True): l = decode(f.readline()) if (l[0] == "\\"): hdrlines.append( l.rstrip("\n\r") ) elif (l[0] == "|"): break else: raise FormatError("The header of file " + fname + " has an error in it.") linelen = len(l) rawcolnames = (l.strip("|\n\r")).split("|") #The "-" in headers part of the spec can cause problems for # negative numerical null values, but it seems to be a problem # inherent in the spec. colnames = [ x.strip(" -") for x in rawcolnames ] cols = {} rawcoltypes = ((decode(f.readline())).strip("|\n\r")).split("|") coltypes = [ IPACExpandType( x.strip(" -") ) for x in rawcoltypes ] for n, r, t in zip(colnames, rawcolnames, coltypes): newcol = TblCol() newcol.width = len(r) newcol.type = t newcol.name = n cols[n] = newcol pos = f.tell() l = decode(f.readline()) if ( l[0] != "|" ): #We've read past the header f.seek(pos) else: units = (l.strip("|\n\r")).split( "|" ) if ( len(units) != len( cols ) ): raise FormatError( "Header format broken." ) for n, u in zip( colnames, units ): cols[n].units = u.strip( " -" ) pos = f.tell() l = decode(f.readline()) if ( l[0] != "|" ): #We've read past the header f.seek(pos) else: nulls = (l.strip("|\n\r")).split( "|" ) if ( len(nulls) != len( cols ) ): raise FormatError( "Header format broken." ) for n, nl in zip( colnames, nulls ): cols[n].null = nl.strip( " -" ) #Define the stringer and parser functions colwidths = [ len(r) for r in rawcolnames ] for n, w in zip(colnames, colwidths): tp = cols[n].type nl = cols[n].null cols[n].Stringer = MakeStringer( tp, w, null=nl ) cols[n].Parser = MakeParser( tp, null=nl ) #read past ignored rows if startrow > long(0) and gzip == False: f.seek( long(linelen) * long(startrow), os.SEEK_CUR ) elif startrow > long(0) and gzip == True: #Read past the hard way for i in range( startrow ): dummy = f.readline() del(dummy) colstarts = [ 1 ] colends = [] for w in colwidths: colends.append( colstarts[-1] + w ) colstarts.append( colends[-1] + 1 ) del colstarts[-1] # colstarts = [ 1 for w in colwidths ] # colends = [ 1 + w for w in colwidths ] # for i in range(1, len(colwidths)): # colstarts[i] = colstarts[i - 1] + colwidths[i-1] + 1 # colends[i] = colends[i - 1] + colwidths[i] + 1 parsers = [ MakeParser( cols[nm].type, null=cols[nm].null ) for nm in colnames ] alldata = [ [] for n in colnames ] allmask = [ [] for n in colnames ] rownum = long(startrow) for line in f: line = decode(line) if breakrow != None and rownum >= breakrow: break; if RowMask(rownum, line) != True: continue rownum += long(1) parts = [ line[start:end] for start, end in zip( colstarts, colends ) ] for p, par, i in zip( parts, parsers, range(len(colnames)) ): r = par( p ) alldata[i].append( r[0] ) allmask[i].append( r[1] ) for n, d, m in zip( colnames, alldata, allmask ): cols[n].data = d cols[n].mask = m f.close() return [ hdrlines, colnames, cols ] class Tbl: def Read( self, fname, RowMask = lambda x, l: True, startrow=long(0), breakrow=None, gzip=False ): """Function for reading IPAC tables into a the Tbl. Will only read lines for which the function RowMask returns True for the row number. Rows are zero indexed, just like Python lists.""" if type(fname) == type("asdf"): self.hdr, self.colnames, self.cols = ReadTable( fname, RowMask=RowMask, startrow=startrow, breakrow=breakrow, gzip=gzip) else: raise TypeError(" tbl file name must be a string.") return None def __init__( self, fname = "", gzip=False ): if fname == "": self.hdr = [] self.colnames = [] self.cols = {} else: self.Read( fname, gzip=gzip ) return None def __len__(self): return len(self.cols.keys()) def Row(self, rownum): result = TblRow() #Prep the structures - this avoids dereferencing the column dict twice result.colnames = [ x for x in self.colnames ] result.data = [ None for k in self.colnames ] result.mask = [ False for k in self.colnames ] for i in range(len(self.colnames)): col = self.cols[self.colnames[i]] result.data[i] = col.data[rownum] result.mask[i] = col.mask[rownum] return result def ResetStringers(self): """Updates the stringer functions to ensure that they have the null and type specified by the columns and produce fields wide enough to hold all the values in the columns.""" #sys.stderr.write(str(self.cols.keys()) + "\n") for k in self.colnames: self.cols[k].ResetStringer() return None def __out(self, ofile, header=True): """Prints the contents of the table. if "header" is set to false, only the data is printed. The column widths are set by the colwidths list, the order is set by colnames, special null values are set by nulls, and units set by units. """ if header == True: colwidths = [ len(self.cols[k].Stringer( None, False ) ) \ for k in self.colnames ] def hdrstrn( strs, wids ): r = [ ("{0: ^" + str(w) + "s}").format(s) \ for s, w in zip( strs, wids ) ] for v, w in zip( r, wids ): if len(v) > w: raise FormatError( "column width insufficient.") return "|" + "|".join(r) + "|\n" for l in self.hdr: ofile.write(encode(l + "\n")) l = hdrstrn( self.colnames, colwidths ) ofile.write(encode( l )) coltypes = [ self.cols[k].type for k in self.colnames ] l = hdrstrn( coltypes, colwidths ) ofile.write(encode( l )) units = [ self.cols[k].units for k in self.colnames ] l = hdrstrn( units, colwidths ) ofile.write(encode( l )) nulls = [ self.cols[k].Stringer( "asdf", False ) \ for k in self.colnames ] l = hdrstrn( nulls, colwidths ) ofile.write(encode( l )) for i in range(len(self.cols[self.colnames[0]])): strcols = [ self.cols[n].Stringer(self.cols[n].data[i], self.cols[n].mask[i]) for n in self.colnames ] ofile.write(encode( " " + " ".join( strcols ) + " \n" )) return None def Print(self, header=True): self.__out( sys.stdout, header=header ) return None def Write(self, fname, append=False, gzip=-1): if type(gzip) != type(int(1)): raise TypeError( "Keyword argument gzip expects an int." ) elif gzip <= -1: op = lambda x, y: open( x, y ) else: op = lambda x, y: gz.open( x, y, min( max(gzip, 1), 9 ) ) if append == False: f = op( fname, "wb" ) self.__out(f, header=True) else: f = op( fname, "a" ) self.__out(f, header=False) f.close() return(None) linebuffersize = 5 * 1024**2 #5 megabytes class BigTbl: def OpenRead( self, fname, gzip=False ): self.hdr = [] self.types = {} self.nulls = {} self.units = {} self.parsers = [] self.stringers = [] self.__seekable = not gzip self.__inputbuffer = [] if gzip != True: self.infile = open( fname, "rb" ) else: self.infile = gz.open( fname, "r" ) #First read past the comment header while True: l = decode(self.infile.readline()) if l[0] == "\\": self.hdr.append( l.rstrip( "\n\r" ) ) elif l[0] == "|": break else: raise FormatError("The header of file " + fname + " has an error in it.") self.__inlinelen = len(l.rstrip( "\n\r" )) #We now have the data necessary to find the column widths rawcolnames = ( l.strip("|\n\r") ).split("|") self.colwidths = [ len(n) for n in rawcolnames ] self.colstarts = [ 1 ] self.colends = [] for w in self.colwidths: self.colends.append( self.colstarts[-1] + w ) self.colstarts.append( self.colends[-1] + 1 ) del self.colstarts[-1] self.colnames = [ n.strip(" -") for n in rawcolnames ] l = (decode(self.infile.readline()).strip("|\n\r")).split("|") coltypes = [ IPACExpandType( n.strip(" -") ) for n in l ] self.__indatstart = self.infile.tell() #Defaults units = [ "" for n in self.colnames ] nulls = [ "null" for n in self.colnames ] l = decode(self.infile.readline()) if l[0] == "|": units = map( lambda x: x.strip(" -"), (l.strip("|\n\r")).split( "|" )) if len(units) != len(self.colnames): raise FormatError( "Header format broken." ) self.__indatstart = self.infile.tell() l = decode(self.infile.readline()) if l[0] == "|": nulls = map( lambda x: x.strip(" -"), (l.strip("|\n\r")).split( "|" )) if len(nulls) != len(self.colnames): raise FormatError( "Header format broken." ) self.__indatstart = self.infile.tell() else: self.infile.seek( self.__indatstart ) else: self.infile.seek( self.__indatstart ) #Now parse the header info into the local variables for n, t, nul, u, w in zip( self.colnames, coltypes, nulls, units, self.colwidths ): self.types[n] = t self.nulls[n] = nul self.units[n] = u self.parsers.append( MakeParser( t, null=nul ) ) self.stringers.append( MakeStringer( t, w, null=nul ) ) return None def CloseRead(self): if self.infile != None: self.infile.close() self.infile = None return None def __init__(self, fname="", gzip=False ): self.outfile = None self.__currow = long(0) if fname == "": self.hdr = [] self.colnames = [] self.types = {} self.nulls = {} self.units = {} self.parsers = [] self.stringers = [] self.colwidths = [] self.colstarts = [] self.colends = [] self.__seekable = False self.outfile = None self.infile = None self.__inlinelen = long(0) self.__indatstart = long(0) self.__inputbuffer = [] else: self.OpenRead( fname, gzip=gzip ) return None def ReadRow( self, rownum=-long(1) ): if self.__currow != rownum and rownum >= long(0): if self.__seekable == True: self.infile.seek( self.__indatstart + self.__inlinelen * rownum ) else: sys.stderr.write( "Warning: seeking in compressed tables " + "is slower than uncompressed.\n" ) if rownum < self.__currow: self.infile.seek( self.__indatstart ) seeknum = rownum else: seeknum = rownum - self.__currow for i in range(seeknum): dummy = self.infile.readline() del(dummy, i) self.__currow = rownum self.__inputbuffer = [] if len( self.__inputbuffer ) == 0: self.__inputbuffer = self.infile.readlines( linebuffersize ) #End of file reached, return None if len( self.__inputbuffer ) == 0: return None line = ( self.__inputbuffer[0] ).rstrip( "\n\r" ) del self.__inputbuffer[0] #Check formatting if len(line) != self.__inlinelen: raise FormatError( "Malformed line: " + line ) result = TblRow() result.data = [ None for n in self.colnames ] result.mask = [ False for n in self.colnames ] result.colnames = [ n for n in self.colnames ] #Ensures independence result.data, result.mask = zip(*[ p(line[s:e]) for p, s, e in zip( self.parsers, self.colstarts, self.colends ) ]) result.data = list(result.data) result.mask = list(result.mask) # colstart = 1 # for i, n in zip(range(len(self.colnames)), self.colnames): # colend = colstart + self.colwidths[i] # result.data[i], result.mask[i] = self.parsers[i]( # line[colstart:colend] ) # colstart = colend + 1 self.__currow += 1 return result def ReadLine(self): if len( self.__inputbuffer ) == 0: self.__inputbuffer = self.infile.readlines( linebuffersize ) #End of file reached, return None if len( self.__inputbuffer ) == 0: return None line = ( self.__inputbuffer[0] ).rstrip( "\n\r" ) del self.__inputbuffer[0] return line def RefreshParsers(self): for n in self.colnames: self.parsers = [ MakeParser( self.types[n], null=self.nulls[n] ) for n in self.colnames ] return None def RefreshStringers(self): for n, w in zip( self.colnames, self.colwidths ): self.stringers = [ MakeStringer( self.types[n], w, null=self.nulls[n] ) for n, w in zip( self.colnames, self.colwidths ) ] return None def WriteHeader( self ): for l in self.hdr: self.outfile.write(encode( l + "\n" )) hdrstringers = [ MakeStringer( "char", w ) for w in self.colwidths ] def hdrstrn( input ): if type(input) == type([]): strs = input else: strs = [ input[n] for n in self.colnames ] strs = [ S( x, True ) for x, S in zip( strs, hdrstringers )] return( "|" + "|".join( strs ) + "|\n" ) self.outfile.write(encode( hdrstrn( self.colnames ) )) self.outfile.write(encode( hdrstrn( self.types ) )) self.outfile.write(encode( hdrstrn( self.units ) )) self.outfile.write(encode( hdrstrn( self.nulls ) )) return None def OpenWrite( self, fname, appendmode=False, gzip=-1 ): if type(gzip) != type(int(1)): raise TypeError( "Keyword argument gzip expects an int." ) elif gzip <= -1: op = lambda x, y: open( x, y ) else: op = lambda x, y: gz.open( x, y, min( max(gzip, 1), 9 ) ) if appendmode == True: self.outfile = op( fname, "ab" ) else: self.outfile = op( fname, "wb" ) self.WriteHeader() return None def CloseWrite( self ): if self.outfile != None: self.outfile.close() self.outfile = None return None def WriteRow( self, row ): outarr = [ row[n] for n in self.colnames ] parts = [ S( r[0], r[1] ) for r, S in zip( outarr, self.stringers ) ] self.outfile.write(encode( " " + " ".join( parts ) + " \n" )) return None def Close( self ): self.CloseRead() self.CloseWrite() return None try: import numpy as np def arrayize_cols( tbl ): type_dict = { "int": np.int32, \ "long": np.int64, \ "float": np.float32, \ "double": np.float64, \ "real": np.float64, \ "char": "S", \ "date": "S" } for c in tbl.colnames: longtype = IPACExpandType( tbl.cols[c].type ) dtype = type_dict[ longtype ] tbl.cols[c].data = np.asarray(tbl.cols[c].data, dtype=dtype) tbl.cols[c].mask = np.asarray(tbl.cols[c].mask) return None except ModuleNotFoundError: sys.stderr.write("Warning: numpy not found - ipac array features disabled.") try: import pandas as pd def tbl_to_DFrame( tbl ): typedict = { "int": "int32", \ "long": "int64", \ "float": "float32", \ "double": "float64", \ "real": "float64", \ "char": "str" } df = pd.DataFrame() for n in tbl.colnames: col = tbl.cols[n] dat = col.data if col.type not in ( "t", "date" ): longtype = IPACExpandType( col.type ) dtype = typedict[longtype] dat = pd.array(col.data, dtype=dtype) else: dat = pd.array([
pd.to_datetime(v)
pandas.to_datetime
# -*- coding: utf-8 -*- """ Created on Fri Oct 2 15:46:53 2020 @author: Barney """ import os import pandas as pd import scipy.stats as stats import numpy as np #Misc MINUTES_IN_HOUR = 60 #minutes DAYS_IN_WEEK = 7 #days HOURS_IN_DAY = 24 #hours DIARY_INTERVAL = 10 #minutes DIARY_OFFSET = 4 #hours (i.e. diary starts at 4am) #Addresses data_root = os.path.join("D:\\", "Barney" , "data", "UKDA-8128-tab", "tab") # DOI : 10.5255/UKDA-SN-8128-1 output_root = os.path.join("C:\\", "Users", "Barney", "Documents", "GitHub", "cwsd_demand", "data", "processed") timeuse_fid = os.path.join(data_root, "uktus15_diary_wide.tab") indiv_fid = os.path.join(data_root, "uktus15_individual.tab") week_fid = os.path.join(data_root, "uktus15_wksched.tab") #Load data indiv_df = pd.read_csv(indiv_fid, sep = '\t', low_memory = False) timeuse_df = pd.read_csv(timeuse_fid, sep= '\t', low_memory = False) week_df = pd.read_csv(week_fid, sep ='\t', low_memory = False) #Extract London (should test with and without) london_number = 7 indiv_df = indiv_df.loc[indiv_df.dgorpaf == london_number] timeuse_df = timeuse_df.loc[timeuse_df.serial.isin(indiv_df.serial.unique())] #Format timeuse_df timeuse_df = timeuse_df.rename(columns = {'DiaryDate_Act' : 'date'}) timeuse_df.date = pd.to_datetime(timeuse_df.date, format = '%m/%d/%Y', errors = "coerce") timeuse_df = timeuse_df.dropna() timeuse_df = timeuse_df.set_index(['serial', 'pnum', 'date']) def format_record(df, columns): time_num = [int(x[1]) for x in columns.str.split('_')] df_ = df[columns].copy() df_.columns = time_num return df_ location_df = format_record(timeuse_df, timeuse_df.columns[timeuse_df.columns.str.contains('wher')]) activity_df = format_record(timeuse_df, timeuse_df.columns[28:28+144]) #Generate action dataframe df = pd.DataFrame(columns = activity_df.columns, index = activity_df.index) int_map = {'sleep' : 0, 'work' : 1, 'home' : 2, 'away' : 3} athome_ind = location_df == 11 df[activity_df.isin([110,111])] = int_map['sleep'] df[(activity_df >= 1000) & (activity_df < 2000) & ~athome_ind] = int_map['work'] df[df.isna() & athome_ind] = int_map['home'] df[df.isna() & ~athome_ind] = int_map['away'] #Format columns to timeoffsets hour = (np.array([int((x-1) * DIARY_INTERVAL / MINUTES_IN_HOUR) for x in df.columns]) + DIARY_OFFSET) % HOURS_IN_DAY mins = ((df.columns - 1) * DIARY_INTERVAL) % MINUTES_IN_HOUR df.columns = [pd.DateOffset(minutes = x, hours = y) for x, y in zip(mins.tolist(),hour.tolist())] #Extract state changes time_results_df = [] for idx, row in df.iterrows(): changes = row[row.diff() != 0] changes = changes.map({x:y for y ,x in int_map.items()}) changes = changes.reset_index() changes.columns = ['time','measurement'] changes['serial'] = idx[0] changes['pnum'] = idx[1] changes['datetime'] = idx[2] + changes.time changes['period'] = 'week' changes.loc[changes.datetime.dt.weekday >= 5, 'period'] = 'weekend' changes = changes.drop('time', axis=1) changes['workstatus'] = 'nonwork' if (changes.measurement == 'work').any(): changes['workstatus'] = 'work' time_results_df.append(changes) #Print time_results_df =
pd.concat(time_results_df)
pandas.concat
# -*- coding: utf-8 -*- """ Project : PyCoA Date : april 2020 - march 2021 Authors : <NAME>, <NAME>, <NAME> Copyright ©pycoa.fr License: See joint LICENSE file Module : coa.display About : ------- An interface module to easily plot pycoa data with bokeh """ from coa.tools import kwargs_test, extract_dates, verb, get_db_list_dict from coa.error import * import math import pandas as pd import geopandas as gpd import numpy as np from collections import defaultdict import itertools import json import io from io import BytesIO import base64 from IPython import display import copy import locale from bokeh.models import ColumnDataSource, TableColumn, DataTable, ColorBar, LogTicker,\ HoverTool, CrosshairTool, BasicTicker, GeoJSONDataSource, LinearColorMapper, LogColorMapper,Label, \ PrintfTickFormatter, BasicTickFormatter, NumeralTickFormatter, CustomJS, CustomJSHover, Select, \ Range1d, DatetimeTickFormatter, Legend, LegendItem, Text from bokeh.models.widgets import Tabs, Panel from bokeh.plotting import figure from bokeh.layouts import row, column, gridplot from bokeh.palettes import Category10, Category20, Viridis256 from bokeh.models import Title from bokeh.io import export_png from bokeh import events from bokeh.models.widgets import DateSlider from bokeh.models import LabelSet, WMTSTileSource from bokeh.transform import transform, cumsum import shapely.geometry as sg import branca.colormap from branca.colormap import LinearColormap from branca.element import Element, Figure import folium from PIL import Image import coa.geo as coge import matplotlib.pyplot as plt import datetime as dt import bisect from functools import wraps from IPython.core.display import display, HTML width_height_default = [500, 380] MAXCOUNTRIESDISPLAYED = 27 class CocoDisplay: def __init__(self, db=None, geo = None): verb("Init of CocoDisplay() with db=" + str(db)) self.database_name = db self.dbld = get_db_list_dict() self.lcolors = Category20[20] self.scolors = Category10[5] self.ax_type = ['linear', 'log'] self.geom = [] self.geopan = gpd.GeoDataFrame() self.location_geometry = None self.boundary_metropole = None self.listfigs = [] self.options_stats = ['when','input','input_field'] self.options_charts = [ 'bins'] self.options_front = ['where','option','which','what','visu'] self.available_tiles = ['openstreet','esri','stamen'] self.available_modes = ['mouse','vline','hline'] self.uptitle, self.subtitle = ' ',' ' self.dfigure_default = {'plot_height':width_height_default[1] ,'plot_width':width_height_default[0],'title':None,'textcopyright':'default'} self.dvisu_default = {'mode':'mouse','tile':self.available_tiles[0],'orientation':'horizontal','cursor_date':None,'maplabel':None,'guideline':False} self.when_beg = dt.date(1, 1, 1) self.when_end = dt.date(1, 1, 1) self.alloptions = self.options_stats + self.options_charts + self.options_front + list(self.dfigure_default.keys()) +\ list(self.dvisu_default.keys()) + ['resumetype'] self.iso3country = self.dbld[self.database_name][0] self.granularity = self.dbld[self.database_name][1] self.namecountry = self.dbld[self.database_name][2] try: if self.granularity != 'nation': self.geo = coge.GeoCountry(self.iso3country) if self.granularity == 'region': self.location_geometry = self.geo.get_region_list()[['code_region', 'name_region', 'geometry']] self.location_geometry = self.location_geometry.rename(columns={'name_region': 'location'}) if self.iso3country == 'PRT': tmp=self.location_geometry.rename(columns={'name_region': 'location'}) tmp = tmp.loc[tmp.code_region=='PT.99'] self.boundary_metropole =tmp['geometry'].total_bounds if self.iso3country == 'FRA': tmp=self.location_geometry.rename(columns={'name_region': 'location'}) tmp = tmp.loc[tmp.code_region=='999'] self.boundary_metropole =tmp['geometry'].total_bounds elif self.granularity == 'subregion': list_dep_metro = None self.location_geometry = self.geo.get_subregion_list()[['code_subregion', 'name_subregion', 'geometry']] self.location_geometry = self.location_geometry.rename(columns={'name_subregion': 'location'}) #if country == 'FRA': # list_dep_metro = geo.get_subregions_from_region(name='Métropole') #elif country == 'ESP': # list_dep_metro = geo.get_subregions_from_region(name='España peninsular') #if list_dep_metro: # self.boundary_metropole = self.location_geometry.loc[self.location_geometry.code_subregion.isin(list_dep_metro)]['geometry'].total_bounds else: self.geo=coge.GeoManager('name') geopan = gpd.GeoDataFrame()#crs="EPSG:4326") info = coge.GeoInfo() allcountries = self.geo.get_GeoRegion().get_countries_from_region('world') geopan['location'] = [self.geo.to_standard(c)[0] for c in allcountries] geopan = info.add_field(field=['geometry'],input=geopan ,geofield='location') geopan = gpd.GeoDataFrame(geopan, geometry=geopan.geometry, crs="EPSG:4326") geopan = geopan[geopan.location != 'Antarctica'] geopan = geopan.dropna().reset_index(drop=True) self.location_geometry = geopan except: raise CoaTypeError('What data base are you looking for ?') ''' FIGURE COMMUN FOR ALL ''' def standardfig(self, **kwargs): """ Create a standard Bokeh figure, with pycoa.fr copyright, used in all the bokeh charts """ plot_width = kwargs.get('plot_width', self.dfigure_default['plot_width']) plot_height = kwargs.get('plot_height', self.dfigure_default['plot_height']) textcopyright = kwargs.get('textcopyright', self.dfigure_default['textcopyright']) if textcopyright == 'default': textcopyright = '©pycoa.fr (data from: {})'.format(self.database_name) else: textcopyright = '©pycoa.fr ' + textcopyright citation = Label(x=0.65 * plot_width - len(textcopyright), y=0.01 * plot_height, x_units='screen', y_units='screen', text_font_size='1.5vh', background_fill_color='white', background_fill_alpha=.75, text=textcopyright) for i in list(self.dvisu_default.keys()) + self.options_front + self.options_charts + ['textcopyright'] + self.options_stats + ['date_slider']: if i in kwargs.keys(): kwargs.pop(i) kwargs.pop('title') fig = figure(**kwargs, tools=['save', 'box_zoom,reset'], toolbar_location="right") #fig.add_layout(citation) fig.add_layout(Title(text=self.uptitle, text_font_size="10pt"), 'above') fig.add_layout(Title(text=self.subtitle, text_font_size="8pt", text_font_style="italic"), 'below') return fig def get_listfigures(self): return self.listfigs def set_listfigures(self,fig): if not isinstance(fig,list): fig = [fig] self.listfigs = fig ''' WRAPPER COMMUN FOR ALL''' def decowrapper(func): ''' Main decorator it mainly deals with arg testings ''' @wraps(func) def wrapper(self, input = None, input_field = None, **kwargs): """ Parse a standard input, return : - pandas: with location keyword (eventually force a column named 'where' to 'location') - kwargs: * keys = [plot_width, plot_width, title, when, title_temporal,bins, what, which] Note that method used only the needed variables, some of them are useless """ if not isinstance(input, pd.DataFrame): raise CoaTypeError(input + 'Must be a pandas, with pycoa structure !') kwargs_test(kwargs, self.alloptions, 'Bad args used in the display function.') when = kwargs.get('when', None) which = kwargs.get('which', input.columns[2]) if input_field and 'cur_' in input_field: what = which else: # cumul is the default what = kwargs.get('what', which) if input_field is None: input_field = which if isinstance(input_field,list): test = input_field[0] else: test = input_field if input[[test,'date']].isnull().values.all(): raise CoaKeyError('All values for '+ which + ' is nan nor empty') option = kwargs.get('option', None) bins = kwargs.get('bins', 10) title = kwargs.get('title', None) #textcopyright = kwargs.get('textcopyright', 'default') kwargs['plot_width'] = kwargs.get('plot_width', self.dfigure_default['plot_width']) kwargs['plot_height'] = kwargs.get('plot_height', self.dfigure_default['plot_height']) if 'where' in input.columns: input = input.rename(columns={'where': 'location'}) if 'codelocation' and 'clustername' not in input.columns: input['codelocation'] = input['location'] input['clustername'] = input['location'] input['rolloverdisplay'] = input['location'] input['permanentdisplay'] = input['location'] else: if self.granularity == 'nation' : #input['codelocation'] = input['codelocation'].apply(lambda x: str(x).replace('[', '').replace(']', '') if len(x)< 10 else x[0]+'...'+x[-1] ) input['permanentdisplay'] = input.apply(lambda x: x.clustername if self.geo.get_GeoRegion().is_region(x.clustername) else str(x.codelocation), axis = 1) else: if self.granularity == 'subregion' : input = input.reset_index(drop=True) if isinstance(input['codelocation'][0],list): input['codelocation'] = input['codelocation'].apply(lambda x: str(x).replace("'", '')\ if len(x)<5 else '['+str(x[0]).replace("'", '')+',...,'+str(x[-1]).replace("'", '')+']') trad={} cluster = input.clustername.unique() if isinstance(input.location[0],list): cluster = [i for i in cluster] for i in cluster: if i == self.namecountry: input['permanentdisplay'] = input.clustername #[self.dbld[self.database_name][2]]*len(input) else: if self.geo.is_region(i): trad[i] = self.geo.is_region(i) elif self.geo.is_subregion(i): trad[i] = self.geo.is_subregion(i)#input.loc[input.clustername==i]['codelocation'].iloc[0] else: trad[i] = i trad={k:(v[:3]+'...'+v[-3:] if len(v)>8 else v) for k,v in trad.items()} if ',' in input.codelocation[0]: input['permanentdisplay'] = input.clustername else: input['permanentdisplay'] = input.codelocation#input.clustername.map(trad) elif self.granularity == 'region' : if all(i == self.namecountry for i in input.clustername.unique()): input['permanentdisplay'] = [self.namecountry]*len(input) else: input['permanentdisplay'] = input.codelocation input['rolloverdisplay'] = input['location'] maplabel = kwargs.get('maplabel', None) if maplabel and 'unsorted' in maplabel: pass else: input = input.sort_values(by=input_field, ascending = False).reset_index(drop=True) uniqloc = input.clustername.unique() if len(uniqloc) < 5: colors = self.scolors else: colors = self.lcolors colors = itertools.cycle(colors) dico_colors = {i: next(colors) for i in uniqloc} input = input.copy() if not 'colors' in input.columns: input.loc[:,'colors'] = input['clustername'].map(dico_colors)#(pd.merge(input, country_col, on='location')) if not isinstance(input_field, list): input_field = [input_field] else: input_field = input_field col2=which when_beg = input[[col2,'date']].date.min() when_end = input[[col2,'date']].date.max() if when: when_beg, when_end = extract_dates(when) if when_end > input[[col2,'date']].date.max(): when_end = input[[col2,'date']].date.max() if when_beg == dt.date(1, 1, 1): when_beg = input[[col2,'date']].date.min() if not isinstance(when_beg, dt.date): raise CoaNoData("With your current cuts, there are no data to plot.") if when_end <= when_beg: print('Requested date below available one, take', when_beg) when_end = when_beg if when_beg > input[[col2,'date']].date.max() or when_end > input[[col2,'date']].date.max(): raise CoaNoData("No available data after "+str(input[[input_field[0],'date']].date.max())) when_end_change = when_end for i in input_field: if input[i].isnull().all(): raise CoaTypeError("Sorry all data are NaN for " + i) else: when_end_change = min(when_end_change,CocoDisplay.changeto_nonull_date(input, when_end, i)) if func.__name__ not in ['pycoa_date_plot', 'pycoa_plot', 'pycoa_scrollingmenu', 'pycoa_spiral_plot','pycoa_yearly_plot']: if len(input_field) > 1: print(str(input_field) + ' is dim = ' + str(len(input_field)) + '. No effect with ' + func.__name__ + '! Take the first input: ' + input_field[0]) input_field = input_field[0] if when_end_change != when_end: when_end = when_end_change self.when_beg = when_beg self.when_end = when_end input = input.loc[(input['date'] >= self.when_beg) & (input['date'] <= self.when_end)] title_temporal = ' (' + 'between ' + when_beg.strftime('%d/%m/%Y') + ' and ' + when_end.strftime('%d/%m/%Y') + ')' if func.__name__ not in ['pycoa_date_plot', 'pycoa_plot', 'pycoa_scrollingmenu', 'pycoa_spiral_plot','pycoa_yearly_plot']: title_temporal = ' (' + when_end.strftime('%d/%m/%Y') + ')' title_option='' if option: if 'sumallandsmooth7' in option: option.remove('sumallandsmooth7') option += ['sumall','smooth7'] title_option = ' (option: ' + str(option)+')' input_field_tostring = str(input_field).replace('[', '').replace(']', '').replace('\'', '') whichtitle = which if 'pop' in input_field_tostring: whichtitle = input_field_tostring.replace('weekly ','').replace('daily ','') if 'daily' in input_field_tostring: titlefig = whichtitle + ', ' + 'day to day difference' + title_option elif 'weekly' in input_field_tostring: titlefig = whichtitle + ', ' + 'week to week difference' + title_option else: if 'cur_' in which or 'idx_' in which: #titlefig = which + ', ' + 'current ' + which.replace('cur_','').replace('idx_','')+ title_option titlefig = whichtitle + ', current value' + title_option else: titlefig = whichtitle + ', cumulative'+ title_option if title: title = title else: title = titlefig self.uptitle = title textcopyright = kwargs.get('textcopyright', None) if textcopyright: textcopyright = '©pycoa.fr ' + textcopyright + title_temporal kwargs.pop('textcopyright') else: textcopyright = '©pycoa.fr data from: {}'.format(self.database_name)+' '+title_temporal self.subtitle = textcopyright kwargs['title'] = title+title_temporal return func(self, input, input_field, **kwargs) return wrapper @decowrapper def pycoa_resume_data(self, input, input_field, **kwargs): loc=list(input['clustername'].unique()) input['cases'] = input[input_field] resumetype = kwargs.get('resumetype','spiral') if resumetype == 'spiral': dspiral={i:CocoDisplay.spiral(input.loc[ (input.clustername==i) & (input.date >= self.when_beg) & (input.date <= self.when_end)].sort_values(by='date')) for i in loc} input['resume']=input['clustername'].map(dspiral) elif resumetype == 'spark': spark={i:CocoDisplay.sparkline(input.loc[ (input.clustername==i) & (input.date >= self.when_beg) & (input.date <= self.when_end)].sort_values(by='date')) for i in loc} input['resume']=input['clustername'].map(spark) else: raise CoaError('pycoa_resume_data can use spiral or spark ... here what ?') input = input.loc[input.date==input.date.max()].reset_index(drop=True) def path_to_image_html(path): return '<img src="'+ path + '" width="60" >' input=input.drop(columns=['permanentdisplay','rolloverdisplay','colors','cases']) input=input.apply(lambda x: x.round(2) if x.name in [input_field,'daily','weekly'] else x) if isinstance(input['location'][0], list): col=[i for i in list(input.columns) if i not in ['clustername','location','codelocation']] col.insert(0,'clustername') input = input[col] input=input.set_index('clustername') else: input = input.drop(columns='clustername') input=input.set_index('location') return input.to_html(escape=False,formatters=dict(resume=path_to_image_html)) ''' DECORATORS FOR PLOT: DATE, VERSUS, SCROLLINGMENU ''' def decoplot(func): """ decorator for plot purpose """ @wraps(func) def inner_plot(self, input = None, input_field = None, **kwargs): mode = kwargs.get('mode', None) if mode: mode = mode else: mode = self.dvisu_default['mode'] if mode not in self.available_modes: raise CoaTypeError('Don\'t know the mode wanted. So far:' + str(self.available_modes)) kwargs['mode'] = mode if 'location' in input.columns: location_ordered_byvalues = list( input.loc[input.date == self.when_end].sort_values(by=input_field, ascending=False)['clustername'].unique()) input = input.copy() # needed to avoid warning input.loc[:,'clustername'] = pd.Categorical(input.clustername, categories=location_ordered_byvalues, ordered=True) input = input.sort_values(by=['clustername', 'date']).reset_index(drop = True) if func.__name__ != 'pycoa_scrollingmenu' : if len(location_ordered_byvalues) >= MAXCOUNTRIESDISPLAYED: input = input.loc[input.clustername.isin(location_ordered_byvalues[:MAXCOUNTRIESDISPLAYED])] list_max = [] for i in input_field: list_max.append(max(input.loc[input.clustername.isin(location_ordered_byvalues)][i])) if len([x for x in list_max if not np.isnan(x)]) > 0: amplitude = (np.nanmax(list_max) - np.nanmin(list_max)) if amplitude > 10 ** 4: self.ax_type.reverse() if func.__name__ == 'pycoa_scrollingmenu' : if isinstance(input_field,list): if len(input_field) > 1: print(str(input_field) + ' is dim = ' + str(len(input_field)) + '. No effect with ' + func.__name__ + '! Take the first input: ' + input_field[0]) input_field = input_field[0] if self.dbld[self.database_name][1] == 'nation' and self.dbld[self.database_name][0] != 'WW': func.__name__ = 'pycoa_date_plot' return func(self, input, input_field, **kwargs) return inner_plot ''' PLOT VERSUS ''' @decowrapper @decoplot def pycoa_plot(self, input = None, input_field = None ,**kwargs): ''' ----------------- Create a versus plot according to arguments. See help(pycoa_plot). Keyword arguments ----------------- - input = None : if None take first element. A DataFrame with a Pycoa struture is mandatory |location|date|Variable desired|daily|cumul|weekly|codelocation|clustername|permanentdisplay|rolloverdisplay| - input_field = if None take second element. It should be a list dim=2. Moreover the 2 variables must be present in the DataFrame considered. - plot_heigh = width_height_default[1] - plot_width = width_height_default[0] - title = None - textcopyright = default - mode = mouse - cursor_date = None if True - orientation = horizontal - when : default min and max according to the inpude DataFrame. Dates are given under the format dd/mm/yyyy. when format [dd/mm/yyyy : dd/mm/yyyy] if [:dd/mm/yyyy] min date up to if [dd/mm/yyyy:] up to max date ''' if len(input_field) != 2: raise CoaTypeError('Two variables are needed to plot a versus chart ... ') panels = [] cases_custom = CocoDisplay.rollerJS() if self.get_listfigures(): self.set_listfigures([]) listfigs=[] for axis_type in self.ax_type: standardfig = self.standardfig( x_axis_label = input_field[0], y_axis_label = input_field[1], y_axis_type = axis_type, **kwargs ) standardfig.add_tools(HoverTool( tooltips=[('Location', '@rolloverdisplay'), ('date', '@date{%F}'), (input_field[0], '@{casesx}' + '{custom}'), (input_field[1], '@{casesy}' + '{custom}')], formatters={'location': 'printf', '@{casesx}': cases_custom, '@{casesy}': cases_custom, '@date': 'datetime'}, mode = kwargs['mode'], point_policy="snap_to_data")) # ,PanTool()) for loc in input.clustername.unique(): pandaloc = input.loc[input.clustername == loc].sort_values(by='date', ascending='True') pandaloc.rename(columns={input_field[0]: 'casesx', input_field[1]: 'casesy'}, inplace=True) standardfig.line(x='casesx', y='casesy', source=ColumnDataSource(pandaloc), legend_label=pandaloc.clustername.iloc[0], color=pandaloc.colors.iloc[0], line_width=3, hover_line_width=4) standardfig.legend.label_text_font_size = "12px" panel = Panel(child=standardfig, title=axis_type) panels.append(panel) standardfig.legend.background_fill_alpha = 0.6 standardfig.legend.location = "top_left" listfigs.append(standardfig) CocoDisplay.bokeh_legend(standardfig) self.set_listfigures(listfigs) tabs = Tabs(tabs=panels) return tabs ''' DATE PLOT ''' @decowrapper @decoplot def pycoa_date_plot(self, input = None, input_field = None, **kwargs): ''' ----------------- Create a date plot according to arguments. See help(pycoa_date_plot). Keyword arguments ----------------- - input = None : if None take first element. A DataFrame with a Pycoa struture is mandatory |location|date|Variable desired|daily|cumul|weekly|codelocation|clustername|permanentdisplay|rolloverdisplay| - input_field = if None take second element could be a list - plot_heigh= width_height_default[1] - plot_width = width_height_default[0] - title = None - textcopyright = default - mode = mouse - guideline = False - cursor_date = None if True - orientation = horizontal - when : default min and max according to the inpude DataFrame. Dates are given under the format dd/mm/yyyy. when format [dd/mm/yyyy : dd/mm/yyyy] if [:dd/mm/yyyy] min date up to if [dd/mm/yyyy:] up to max date ''' guideline = kwargs.get('guideline',self.dvisu_default['guideline']) panels = [] listfigs = [] cases_custom = CocoDisplay.rollerJS() if isinstance(input['rolloverdisplay'][0],list): input['rolloverdisplay'] = input['clustername'] for axis_type in self.ax_type: standardfig = self.standardfig( y_axis_type = axis_type, x_axis_type = 'datetime',**kwargs) i = 0 r_list=[] maxou=-1000 lcolors = iter(self.lcolors) line_style = ['solid', 'dashed', 'dotted', 'dotdash','dashdot'] for val in input_field: for loc in list(input.clustername.unique()): input_filter = input.loc[input.clustername == loc].reset_index(drop = True) src = ColumnDataSource(input_filter) leg = input_filter.clustername[0] #leg = input_filter.permanentdisplay[0] if len(input_field)>1: leg = input_filter.permanentdisplay[0] + ', ' + val if len(list(input.clustername.unique())) == 1: color = next(lcolors) else: color = input_filter.colors[0] r = standardfig.line(x = 'date', y = val, source = src, color = color, line_width = 3, legend_label = leg, hover_line_width = 4, name = val, line_dash=line_style[i%4]) r_list.append(r) maxou=max(maxou,np.nanmax(input_filter[val].values)) i += 1 for r in r_list: label = r.name tooltips = [('Location', '@rolloverdisplay'), ('date', '@date{%F}'), (r.name, '@$name{0,0.0}')] formatters = {'location': 'printf', '@date': 'datetime', '@name': 'printf'} hover=HoverTool(tooltips = tooltips, formatters = formatters, point_policy = "snap_to_data", mode = kwargs['mode'], renderers=[r]) # ,PanTool()) standardfig.add_tools(hover) if guideline: cross= CrosshairTool() standardfig.add_tools(cross) if axis_type == 'linear': if maxou < 1e4 : standardfig.yaxis.formatter = BasicTickFormatter(use_scientific=False) standardfig.legend.label_text_font_size = "12px" panel = Panel(child=standardfig, title = axis_type) panels.append(panel) standardfig.legend.background_fill_alpha = 0.6 standardfig.legend.location = "top_left" standardfig.legend.click_policy="hide" standardfig.legend.label_text_font_size = '8pt' if len(input_field) > 1 and len(input_field)*len(input.clustername.unique())>16: standardfig.legend.visible=False standardfig.xaxis.formatter = DatetimeTickFormatter( days = ["%d/%m/%y"], months = ["%d/%m/%y"], years = ["%b %Y"]) CocoDisplay.bokeh_legend(standardfig) listfigs.append(standardfig) self.set_listfigures(listfigs) tabs = Tabs(tabs = panels) return tabs ''' SPIRAL PLOT ''' @decowrapper @decoplot def pycoa_spiral_plot(self, input = None, input_field = None, **kwargs): guideline = kwargs.get('guideline',self.dvisu_default['guideline']) panels = [] listfigs = [] if isinstance(input['rolloverdisplay'][0],list): input['rolloverdisplay'] = input['clustername'] borne=300 kwargs.pop('plot_width') standardfig = self.standardfig(y_axis_type = None, x_axis_type = None, width=kwargs['plot_height'], x_range=[-borne, borne], y_range=[-borne, borne], match_aspect=True,**kwargs) if len(input.clustername.unique()) > 1 : print('Can only display spiral for ONE location. I took the first one:', input.clustername[0]) input = input.loc[input.clustername == input.clustername[0]].copy() input['date']=pd.to_datetime(input["date"]) input["dayofyear"]=input.date.dt.dayofyear input['year']=input.date.dt.year input['cases'] = input[input_field] K = 2*input[input_field].max() #drop bissextile fine tuning in needed in the future input = input.loc[~(input['date'].dt.month.eq(2) & input['date'].dt.day.eq(29))].reset_index(drop=True) input["dayofyear_angle"] = input["dayofyear"]*2 * np.pi/365 input["r_baseline"] = input.apply(lambda x : ((x["year"]-2020)*2 * np.pi + x["dayofyear_angle"])*K,axis=1) size_factor = 16 input["r_cas_sup"] = input.apply(lambda x : x["r_baseline"] + 0.5*x[input_field]*size_factor,axis=1) input["r_cas_inf"] = input.apply(lambda x : x["r_baseline"] - 0.5*x[input_field]*size_factor,axis=1) radius = 200 def polar(theta,r,norm=radius/input["r_baseline"].max()): x = norm*r*np.cos(theta) y = norm*r*np.sin(theta) return x,y x_base,y_base=polar(input["dayofyear_angle"],input["r_baseline"]) x_cas_sup,y_cas_sup=polar(input["dayofyear_angle"],input["r_cas_sup"]) x_cas_inf,y_cas_inf=polar(input["dayofyear_angle"],input["r_cas_inf"]) xcol,ycol=[],[] [ xcol.append([i,j]) for i,j in zip(x_cas_inf,x_cas_sup)] [ ycol.append([i,j]) for i,j in zip(y_cas_inf,y_cas_sup)] standardfig.patches(xcol,ycol,color='blue',fill_alpha = 0.5) src = ColumnDataSource(data=dict( x=x_base, y=y_base, date=input['date'], cases=input['cases'] )) standardfig.line( x = 'x', y = 'y', source = src, legend_label = input.clustername[0], line_width = 3, line_color = 'blue') circle = standardfig.circle('x', 'y', size=2, source=src) cases_custom = CocoDisplay.rollerJS() hover_tool = HoverTool(tooltips=[('Cases', '@cases{0,0.0}'), ('date', '@date{%F}')], formatters={'Cases': 'printf', '@{cases}': cases_custom, '@date': 'datetime'}, renderers=[circle], point_policy="snap_to_data") standardfig.add_tools(hover_tool) outer_radius=250 [standardfig.annular_wedge( x=0, y=0, inner_radius=0, outer_radius=outer_radius, start_angle=i*np.pi/6,\ end_angle=(i+1)*np.pi/6,fill_color=None,line_color='black',line_dash='dotted') for i in range(12)] label = ['January','February','March','April','May','June','July','August','September','October','November','December'] xr,yr = polar(np.linspace(0, 2 * np.pi, 13),outer_radius,1) standardfig.text(xr[:-1], yr[:-1], label,text_font_size="9pt", text_align="center", text_baseline="middle") standardfig.legend.background_fill_alpha = 0.6 standardfig.legend.location = "top_left" standardfig.legend.click_policy="hide" return standardfig ''' SCROLLINGMENU PLOT ''' @decowrapper @decoplot def pycoa_scrollingmenu(self, input = None, input_field = None, **kwargs): ''' ----------------- Create a date plot, with a scrolling menu location, according to arguments. See help(pycoa_scrollingmenu). Keyword arguments ----------------- len(location) > 2 - input = None : if None take first element. A DataFrame with a Pycoa struture is mandatory |location|date|Variable desired|daily|cumul|weekly|codelocation|clustername|permanentdisplay|rolloverdisplay| - input_field = if None take second element could be a list - plot_heigh= width_height_default[1] - plot_width = width_height_default[0] - title = None - textcopyright = default - mode = mouse -guideline = False - cursor_date = None if True - orientation = horizontal - when : default min and max according to the inpude DataFrame. Dates are given under the format dd/mm/yyyy. when format [dd/mm/yyyy : dd/mm/yyyy] if [:dd/mm/yyyy] min date up to if [dd/mm/yyyy:] up to max date ''' mode = kwargs.get('mode',self.dvisu_default['mode']) guideline = kwargs.get('guideline',self.dvisu_default['guideline']) uniqloc = input.clustername.unique().to_list() uniqloc.sort() if 'location' in input.columns: if len(uniqloc) < 2: raise CoaTypeError('What do you want me to do ? You have selected, only one country.' 'There is no sens to use this method. See help.') input = input[['date', 'clustername', input_field]] input = input.sort_values(by='clustername', ascending = True).reset_index(drop=True) mypivot = pd.pivot_table(input, index='date', columns='clustername', values=input_field) column_order = uniqloc mypivot = mypivot.reindex(column_order, axis=1) source = ColumnDataSource(mypivot) filter_data1 = mypivot[[uniqloc[0]]].rename(columns={uniqloc[0]: 'cases'}) src1 = ColumnDataSource(filter_data1) filter_data2 = mypivot[[uniqloc[1]]].rename(columns={uniqloc[1]: 'cases'}) src2 = ColumnDataSource(filter_data2) cases_custom = CocoDisplay.rollerJS() hover_tool = HoverTool(tooltips=[('Cases', '@cases{0,0.0}'), ('date', '@date{%F}')], formatters={'Cases': 'printf', '@{cases}': cases_custom, '@date': 'datetime'}, mode = mode, point_policy="snap_to_data") # ,PanTool()) panels = [] for axis_type in self.ax_type: standardfig = self.standardfig( y_axis_type = axis_type, x_axis_type = 'datetime', **kwargs) standardfig.yaxis[0].formatter = PrintfTickFormatter(format = "%4.2e") standardfig.add_tools(hover_tool) if guideline: cross= CrosshairTool() standardfig.add_tools(cross) def add_line(src, options, init, color): s = Select(options = options, value = init) r = standardfig.line(x = 'date', y = 'cases', source = src, line_width = 3, line_color = color) li = LegendItem(label = init, renderers = [r]) s.js_on_change('value', CustomJS(args=dict(s0=source, s1=src, li=li), code=""" var c = cb_obj.value; var y = s0.data[c]; s1.data['cases'] = y; li.label = {value: cb_obj.value}; s1.change.emit(); """)) return s, li s1, li1 = add_line(src1, uniqloc, uniqloc[0], self.scolors[0]) s2, li2 = add_line(src2, uniqloc, uniqloc[1], self.scolors[1]) standardfig.add_layout(Legend(items = [li1, li2])) standardfig.legend.location = 'top_left' layout = row(column(row(s1, s2), row(standardfig))) panel = Panel(child = layout, title = axis_type) panels.append(panel) tabs = Tabs(tabs = panels) label = standardfig.title return tabs ''' YEARLY PLOT ''' @decowrapper @decoplot def pycoa_yearly_plot(self, input = None, input_field = None, **kwargs): ''' ----------------- Create a date plot according to arguments. See help(pycoa_date_plot). Keyword arguments ----------------- - input = None : if None take first element. A DataFrame with a Pycoa struture is mandatory |location|date|Variable desired|daily|cumul|weekly|codelocation|clustername|permanentdisplay|rolloverdisplay| - input_field = if None take second element could be a list - plot_heigh= width_height_default[1] - plot_width = width_height_default[0] - title = None - textcopyright = default - mode = mouse - guideline = False - cursor_date = None if True - orientation = horizontal - when : default min and max according to the inpude DataFrame. Dates are given under the format dd/mm/yyyy. when format [dd/mm/yyyy : dd/mm/yyyy] if [:dd/mm/yyyy] min date up to if [dd/mm/yyyy:] up to max date ''' guideline = kwargs.get('guideline',self.dvisu_default['guideline']) if len(input.clustername.unique()) > 1 : print('Can only display yearly plot for ONE location. I took the first one:', input.clustername[0]) input = input.loc[input.clustername == input.clustername[0]].copy() panels = [] listfigs = [] cases_custom = CocoDisplay.rollerJS() input['date']=pd.to_datetime(input["date"]) #drop bissextile fine tuning in needed in the future input = input.loc[~(input['date'].dt.month.eq(2) & input['date'].dt.day.eq(29))].reset_index(drop=True) input = input.copy() input.loc[:,'allyears']=input['date'].apply(lambda x : x.year) input['allyears'] = input['allyears'].astype(int) input.loc[:,'dayofyear']= input['date'].apply(lambda x : x.dayofyear) allyears = list(input.allyears.unique()) if isinstance(input['rolloverdisplay'][0],list): input['rolloverdisplay'] = input['clustername'] if len(input_field)>1: CoaError('Only one variable could be displayed') else: input_field=input_field[0] for axis_type in self.ax_type: standardfig = self.standardfig( y_axis_type = axis_type,**kwargs) i = 0 r_list=[] maxou=-1000 input['cases']=input[input_field] line_style = ['solid', 'dashed', 'dotted', 'dotdash'] colors = itertools.cycle(self.lcolors) for loc in list(input.clustername.unique()): for year in allyears: input_filter = input.loc[(input.clustername == loc) & (input['date'].dt.year.eq(year))].reset_index(drop = True) src = ColumnDataSource(input_filter) leg = loc + ' ' + str(year) r = standardfig.line(x = 'dayofyear', y = input_field, source = src, color = next(colors), line_width = 3, legend_label = leg, hover_line_width = 4, name = input_field) maxou=max(maxou,np.nanmax(input_filter[input_field].values)) label = input_field tooltips = [('Location', '@rolloverdisplay'), ('date', '@date{%F}'), ('Cases', '@cases{0,0.0}')] formatters = {'location': 'printf', '@date': 'datetime', '@name': 'printf'} hover=HoverTool(tooltips = tooltips, formatters = formatters, point_policy = "snap_to_data", mode = kwargs['mode']) # ,PanTool()) standardfig.add_tools(hover) if guideline: cross= CrosshairTool() standardfig.add_tools(cross) if axis_type == 'linear': if maxou < 1e4 : standardfig.yaxis.formatter = BasicTickFormatter(use_scientific=False) standardfig.legend.label_text_font_size = "12px" panel = Panel(child=standardfig, title = axis_type) panels.append(panel) standardfig.legend.background_fill_alpha = 0.6 standardfig.legend.location = "top_left" standardfig.legend.click_policy="hide" labelspd=input.loc[(input.allyears.eq(2021)) & (input.date.dt.day.eq(1))] standardfig.xaxis.ticker = list(labelspd['dayofyear'].astype(int)) replacelabelspd = labelspd['date'].apply(lambda x: str(x.strftime("%b"))) #label_dict = dict(zip(input.loc[input.allyears.eq(2020)]['daymonth'],input.loc[input.allyears.eq(2020)]['date'].apply(lambda x: str(x.day)+'/'+str(x.month)))) standardfig.xaxis.major_label_overrides = dict(zip(list(labelspd['dayofyear'].astype(int)),list(replacelabelspd))) CocoDisplay.bokeh_legend(standardfig) listfigs.append(standardfig) tooltips = [('Location', '@rolloverdisplay'), ('date', '@date{%F}'), (r.name, '@$name{0,0.0}')] formatters = {'location': 'printf', '@date': 'datetime', '@name': 'printf'} hover=HoverTool(tooltips = tooltips, formatters = formatters, point_policy = "snap_to_data", mode = kwargs['mode'], renderers=[r]) # ,PanTool()) standardfig.add_tools(hover) if guideline: cross= CrosshairTool() standardfig.add_tools(cross) self.set_listfigures(listfigs) tabs = Tabs(tabs = panels) return tabs ''' DECORATORS FOR HISTO VERTICAL, HISTO HORIZONTAL, PIE & MAP''' def decohistomap(func): """ Decorator function used for histogram and map """ @wraps(func) def inner_hm(self, input = None, input_field = None, **kwargs): tile = kwargs.get('tile', self.dvisu_default['tile']) maplabel = kwargs.get('maplabel', None) if not isinstance(maplabel,list): maplabel=[maplabel] #if maplabel: # maplabel = maplabel if 'map' in func.__name__: kwargs['maplabel'] = maplabel orientation = kwargs.get('orientation', self.dvisu_default['orientation']) cursor_date = kwargs.get('cursor_date', None) #if orientation: # kwargs['orientation'] = orientation #kwargs['cursor_date'] = kwargs.get('cursor_date', self.dvisu_default['cursor_date']) if isinstance(input['location'].iloc[0],list): input['rolloverdisplay'] = input['clustername'] input = input.explode('location') else: input['rolloverdisplay'] = input['location'] uniqloc = input.clustername.unique() geopdwd = input if maplabel and 'unsorted' in maplabel: pass else: geopdwd = geopdwd.sort_values(by=input_field, ascending = False).reset_index(drop=True) started = geopdwd.date.min() ended = geopdwd.date.max() if cursor_date: date_slider = DateSlider(title = "Date: ", start = started, end = ended, value = ended, step=24 * 60 * 60 * 1000, orientation = orientation) #wanted_date = date_slider.value_as_datetime.date() #if func.__name__ == 'pycoa_mapfolium' or func.__name__ == 'pycoa_map' or func.__name__ == 'innerdecomap' or func.__name__ == 'innerdecopycoageo': if func.__name__ in ['pycoa_mapfolium','pycoa_map','pycoageo' ,'pycoa_pimpmap']: if isinstance(input.location.to_list()[0],list): geom = self.location_geometry geodic={loc:geom.loc[geom.location==loc]['geometry'].values[0] for loc in geopdwd.location.unique()} geopdwd['geometry'] = geopdwd['location'].map(geodic) else: geopdwd = pd.merge(geopdwd, self.location_geometry, on='location') kwargs['tile'] = tile if self.iso3country in ['USA']:#['FRA','USA'] geo = copy.deepcopy(self.geo) d = geo._list_translation if func.__name__ != 'pycoa_mapfolium': if any(i in list(geopdwd.codelocation.unique()) for i in d.keys()) \ or any(True for i in d.keys() if ''.join(list(geopdwd.codelocation.unique())).find(i)!=-1): geo.set_dense_geometry() kwargs.pop('tile') else: geo.set_main_geometry() d = {} new_geo = geo.get_data()[['name_'+self.granularity,'geometry']] new_geo = new_geo.rename(columns={'name_'+self.granularity:'location'}) new_geo = new_geo.set_index('location')['geometry'].to_dict() geopdwd['geometry'] = geopdwd['location'].map(new_geo) geopdwd = gpd.GeoDataFrame(geopdwd, geometry=geopdwd.geometry, crs="EPSG:4326") if func.__name__ == 'pycoa_histo': pos = {} new = pd.DataFrame() n = 0 for i in uniqloc: perloc = geopdwd.loc[geopdwd.clustername == i] if all(perloc != 0): pos = perloc.index[0] if new.empty: new = perloc else: new = new.append(perloc) n += 1 geopdwd = new.reset_index(drop=True) if cursor_date: date_slider = date_slider else: date_slider = None kwargs['date_slider'] = date_slider return func(self, geopdwd, input_field, **kwargs) return inner_hm ''' VERTICAL HISTO ''' @decowrapper @decohistomap def pycoa_histo(self, geopdwd, input_field = None, **kwargs): ''' ----------------- Create 1D histogramme by value according to arguments. See help(pycoa_histo). Keyword arguments ----------------- - geopdwd : A DataFrame with a Pycoa struture is mandatory |location|date|Variable desired|daily|cumul|weekly|codelocation|clustername|permanentdisplay|rolloverdisplay| - input_field = if None take second element could be a list - plot_heigh= width_height_default[1] - plot_width = width_height_default[0] - title = None - textcopyright = default - when : default min and max according to the inpude DataFrame. Dates are given under the format dd/mm/yyyy. when format [dd/mm/yyyy : dd/mm/yyyy] if [:dd/mm/yyyy] min date up to if [dd/mm/yyyy:] up to max date ''' geopdwd_filter = geopdwd.loc[geopdwd.date == self.when_end] geopdwd_filter = geopdwd_filter.reset_index(drop = True) input = geopdwd_filter.rename(columns = {'cases': input_field}) bins = kwargs.get('bins', None) if 'location' in input.columns: uniqloc = list(input.clustername.unique()) allval = input.loc[input.clustername.isin(uniqloc)][['clustername', input_field,'permanentdisplay']] min_val = allval[input_field].min() max_val = allval[input_field].max() if bins: bins = bins else: if len(uniqloc) == 1: bins = 2 min_val = 0. else: bins = 11 delta = (max_val - min_val ) / bins interval = [ min_val + i*delta for i in range(bins+1)] contributors = { i : [] for i in range(bins+1)} for i in range(len(allval)): rank = bisect.bisect_left(interval, allval.iloc[i][input_field]) if rank == bins+1: rank = bins contributors[rank].append(allval.iloc[i]['clustername']) colors = itertools.cycle(self.lcolors) lcolors = [next(colors) for i in range(bins+1)] contributors = dict(sorted(contributors.items())) frame_histo = pd.DataFrame({ 'left': [0]+interval[:-1], 'right':interval, 'middle_bin': [format((i+j)/2, ".1f") for i,j in zip([0]+interval[:-1],interval)], 'top': [len(i) for i in list(contributors.values())], 'contributors': [', '.join(i) for i in contributors.values()], 'colors': lcolors}) #tooltips = """ #<div style="width: 400px"> #<b>Middle value:</b> @middle_bin <br> #<b>Contributors:</b> @contributors{safe} <br> #</div> #""" tooltips = """ <b>Middle value:</b> @middle_bin <br> <b>Contributors:</b> @contributors{safe} <br> """ hover_tool = HoverTool(tooltips = tooltips) panels = [] bottom = 0 x_axis_type, y_axis_type, axis_type_title = 3 * ['linear'] for axis_type in ["linear", "linlog", "loglin", "loglog"]: if axis_type == 'linlog': y_axis_type, axis_type_title = 'log', 'logy' if axis_type == 'loglin': x_axis_type, y_axis_type, axis_type_title = 'log', 'linear', 'logx' if axis_type == 'loglog': x_axis_type, y_axis_type = 'log', 'log' axis_type_title = 'loglog' standardfig = self.standardfig(x_axis_type=x_axis_type, y_axis_type=y_axis_type, **kwargs) standardfig.yaxis[0].formatter = PrintfTickFormatter(format = "%4.2e") standardfig.xaxis[0].formatter = PrintfTickFormatter(format="%4.2e") standardfig.add_tools(hover_tool) standardfig.x_range = Range1d(1.05 * interval[0], 1.05 * interval[-1]) standardfig.y_range = Range1d(0, 1.05 * frame_histo['top'].max()) if x_axis_type == "log": left = 0.8 if frame_histo['left'][0] <= 0: frame_histo.at[0, 'left'] = left else: left = frame_histo['left'][0] standardfig.x_range = Range1d(left, 10 * interval[-1]) if y_axis_type == "log": bottom = 0.0001 standardfig.y_range = Range1d(0.001, 10 * frame_histo['top'].max()) standardfig.quad(source=ColumnDataSource(frame_histo), top='top', bottom=bottom, left='left', \ right='right', fill_color='colors') panel = Panel(child=standardfig, title=axis_type_title) panels.append(panel) tabs = Tabs(tabs=panels) return tabs ''' DECORATORS FOR HISTO VERTICAL, HISTO HORIZONTAL, PIE ''' def decohistopie(func): @wraps(func) def inner_decohistopie(self, geopdwd, input_field, **kwargs): """ Decorator for Horizontal histogram & Pie Chart """ geopdwd['cases'] = geopdwd[input_field] maplabel = kwargs.get('maplabel',None) plot_width = kwargs.get('plot_width',self.dfigure_default['plot_width']) plot_height = kwargs.get('plot_height',self.dfigure_default['plot_height']) geopdwd_filter = geopdwd.loc[geopdwd.date == self.when_end] geopdwd_filter = geopdwd_filter.reset_index(drop = True) geopdwd_filter['cases'] = geopdwd_filter[input_field] cursor_date = kwargs.get('cursor_date',self.dvisu_default['cursor_date']) date_slider = kwargs['date_slider'] my_date = geopdwd.date.unique() dico_utc = {i: DateSlider(value=i).value for i in my_date} geopdwd['date_utc'] = [dico_utc[i] for i in geopdwd.date] #geopdwd = geopdwd.drop_duplicates(["date", "codelocation","clustername"])#for sumall avoid duplicate #geopdwd_filter = geopdwd_filter.drop_duplicates(["date", "codelocation","clustername"]) geopdwd = geopdwd.drop_duplicates(["date","clustername"])#for sumall avoid duplicate geopdwd_filter = geopdwd_filter.drop_duplicates(["date","clustername"]) locunique = geopdwd_filter.clustername.unique()#geopdwd_filtered.location.unique() geopdwd_filter = geopdwd_filter.copy() nmaxdisplayed = MAXCOUNTRIESDISPLAYED if len(locunique) >= nmaxdisplayed :#and func.__name__ != 'pycoa_pie' : if func.__name__ != 'pycoa_pie' : geopdwd_filter = geopdwd_filter.loc[geopdwd_filter.clustername.isin(locunique[:nmaxdisplayed])] else: geopdwd_filter_first = geopdwd_filter.loc[geopdwd_filter.clustername.isin(locunique[:nmaxdisplayed-1])] geopdwd_filter_other = geopdwd_filter.loc[geopdwd_filter.clustername.isin(locunique[nmaxdisplayed-1:])] geopdwd_filter_other = geopdwd_filter_other.groupby('date').sum() geopdwd_filter_other['location'] = 'others' geopdwd_filter_other['clustername'] = 'others' geopdwd_filter_other['codelocation'] = 'others' geopdwd_filter_other['permanentdisplay'] = 'others' geopdwd_filter_other['rolloverdisplay'] = 'others' geopdwd_filter_other['colors'] = '#FFFFFF' geopdwd_filter = geopdwd_filter_first geopdwd_filter = geopdwd_filter.append(geopdwd_filter_other) if func.__name__ == 'pycoa_horizonhisto' : #geopdwd_filter['bottom'] = geopdwd_filter.index geopdwd_filter['left'] = geopdwd_filter['cases'] geopdwd_filter['right'] = geopdwd_filter['cases'] geopdwd_filter['left'] = geopdwd_filter['left'].apply(lambda x: 0 if x > 0 else x) geopdwd_filter['right'] = geopdwd_filter['right'].apply(lambda x: 0 if x < 0 else x) n = len(geopdwd_filter.index) d = plot_height / n ymax = plot_height geopdwd_filter['top'] = [ymax*(n-i)/n + d/2 for i in range(n)] geopdwd_filter['bottom'] = [ymax*(n-i)/n - d/2 for i in range(n)] geopdwd_filter['horihistotexty'] = geopdwd_filter['bottom'] + d/2 geopdwd_filter['horihistotextx'] = geopdwd_filter['right'] if maplabel and 'label%' in maplabel: geopdwd_filter['right'] = geopdwd_filter['right'].apply(lambda x: 100.*x) geopdwd_filter['horihistotextx'] = geopdwd_filter['right'] geopdwd_filter['horihistotext'] = [str(round(i))+'%' for i in geopdwd_filter['right']] else: geopdwd_filter['horihistotext'] = [ '{:.3g}'.format(float(i)) if float(i)>1.e4 else round(float(i),2) for i in geopdwd_filter['right'] ] geopdwd_filter['horihistotext'] = [str(i) for i in geopdwd_filter['horihistotext']] if func.__name__ == 'pycoa_pie' : geopdwd_filter = self.add_columns_for_pie_chart(geopdwd_filter,input_field) geopdwd = self.add_columns_for_pie_chart(geopdwd,input_field) if maplabel and 'label%' in maplabel: geopdwd_filter['textdisplayed2'] = geopdwd_filter['percentage'] geopdwd['textdisplayed2'] = geopdwd['percentage'] source = ColumnDataSource(data = geopdwd) input_filter = geopdwd_filter srcfiltered = ColumnDataSource(data = input_filter) max_value = max(input_filter['cases']) min_value = min(input_filter['cases']) min_value_gt0 = min(input_filter[input_filter['cases'] > 0]['cases']) panels = [] for axis_type in self.ax_type: plot_width = kwargs['plot_width'] plot_height = kwargs['plot_height'] standardfig = self.standardfig( x_axis_type = axis_type, x_range = (1.05*min_value, 1.05 * max_value),**kwargs) if maplabel and 'label%' in maplabel: standardfig.x_range = Range1d(0.01, 1.2 * max_value*100) standardfig.xaxis.axis_label = 'percentage(%)' standardfig.xaxis.formatter = BasicTickFormatter(use_scientific=False) else: standardfig.xaxis[0].formatter = PrintfTickFormatter(format="%4.2e") standardfig.x_range = Range1d(0.01, 1.2 * max_value) if not input_filter[input_filter[input_field] < 0.].empty: standardfig.x_range = Range1d(1.2 * min_value, 1.2 * max_value) if axis_type == "log": if not input_filter[input_filter[input_field] < 0.].empty: print('Some value are negative, can\'t display log scale in this context') else: if func.__name__ == 'pycoa_horizonhisto' : if maplabel and 'label%' in maplabel: standardfig.x_range = Range1d(0.01, 50 * max_value*100) else: standardfig.x_range = Range1d(0.01, 50 * max_value) srcfiltered.data['left'] = [0.01] * len(srcfiltered.data['right']) if func.__name__ == 'pycoa_pie': if not input_filter[input_filter[input_field] < 0.].empty: raise CoaKeyError('Some values are negative, can\'t display a Pie chart, try histo by location') standardfig.plot_width = plot_height standardfig.plot_height = plot_height if date_slider: date_slider.width = int(0.8*plot_width) callback = CustomJS(args = dict(source = source, source_filter = srcfiltered, date_slider = date_slider, ylabel = standardfig.yaxis[0], title = standardfig.title, x_range = standardfig.x_range, x_axis_type = axis_type, figure = standardfig), code = """ var date_slide = date_slider.value; var dates = source.data['date_utc']; var val = source.data['cases']; var loc = source.data['clustername']; //var loc = source.data['location']; var subregion = source.data['name_subregion']; var codeloc = source.data['codelocation']; var colors = source.data['colors']; var newval = []; var newloc = []; var newcolors = []; var newcodeloc = []; var newname_subregion = []; var labeldic = {}; for (var i = 0; i < dates.length; i++){ if (dates[i] == date_slide){ newval.push(parseFloat(val[i])); newloc.push(loc[i]); newcodeloc.push(codeloc[i]); newcolors.push(colors[i]); if(typeof subregion !== 'undefined') newname_subregion.push(subregion[i]); } } var len = source_filter.data['clustername'].length; var indices = new Array(len); for (var i = 0; i < len; i++) indices[i] = i; indices.sort(function (a, b) { return newval[a] > newval[b] ? -1 : newval[a] < newval[b] ? 1 : 0; }); var orderval = []; var orderloc = []; var ordercodeloc = []; var ordername_subregion = []; var ordercolors = []; var textdisplayed = []; for (var i = 0; i < len; i++) { orderval.push(newval[indices[i]]); orderloc.push(newloc[indices[i]]); ordercodeloc.push(newcodeloc[indices[i]]); if(typeof subregion !== 'undefined') ordername_subregion.push(newname_subregion[i]); ordercolors.push(newcolors[indices[i]]); //labeldic[len-indices[i]] = newcodeloc[indices[i]]; textdisplayed.push(newcodeloc[indices[i]].padStart(40,' ')); } source_filter.data['cases'] = orderval; const reducer = (accumulator, currentValue) => accumulator + currentValue; var tot = orderval.reduce(reducer); var top = []; var bottom = []; var starts = []; var ends = []; var middle = []; var text_x = []; var text_y = []; var r = 0.7; var bthick = 0.95; var cumul = 0.; var percentage = []; var angle = []; var text_size = []; var left_quad = []; var right_quad = []; for(var i = 0; i < orderval.length; i++) { cumul += ((orderval[i] / tot) * 2 * Math.PI); ends.push(cumul); if(i==0) starts.push(0); else starts.push(ends[i-1]); middle.push((ends[i]+starts[i])/2); text_x.push(r*Math.cos(middle[i])); text_y.push(r*Math.sin(middle[i])); percentage.push(String(100.*orderval[i] / tot).slice(0, 4)); angle.push((orderval[i] / tot) * 2 * Math.PI) /*if ((ends[i]-starts[i]) > 0.08*(2 * Math.PI)) text_size.push('10pt'); else text_size.push('6pt');*/ //top.push((orderval.length-i) + bthick/2); //bottom.push((orderval.length-i) - bthick/2); if (isNaN(orderval[i])) orderval[i] = 0.; if(orderval[i]<=0.) { left_quad.push(orderval[i]); right_quad.push(0.); } else { left_quad.push(0); right_quad.push(orderval[i]); } } source_filter.data['clustername'] = orderloc; source_filter.data['codelocation'] = ordercodeloc; //source_filter.data['colors'] = ordercolors; if(typeof subregion !== 'undefined') source_filter.data['rolloverdisplay'] = ordername_subregion; else source_filter.data['rolloverdisplay'] = orderloc; source_filter.data['ends'] = ends; source_filter.data['starts'] = starts; source_filter.data['middle'] = middle; source_filter.data['text_x'] = text_x; source_filter.data['text_y'] = text_y; //source_filter.data['text_size'] = text_size; source_filter.data['percentage'] = percentage; source_filter.data['angle'] = angle; source_filter.data['left'] = left_quad; source_filter.data['right'] = right_quad; var mid =[]; var ht = []; var textdisplayed2 = []; var n = right_quad.length; var d = figure.plot_height / n; var ymax = figure.plot_height; for(i=0; i<right_quad.length;i++){ top.push(parseInt(ymax*(n-i)/n+d/2)); bottom.push(parseInt(ymax*(n-i)/n-d/2)); mid.push(parseInt(ymax*(n-i)/n)); labeldic[parseInt(ymax*(n-i)/n)] = ordercodeloc[i]; ht.push(right_quad[i].toFixed(2).toString()); var a=new Intl.NumberFormat().format(right_quad[i]) textdisplayed2.push(a.toString().padStart(26,' ')); //textdisplayed2.push(right_quad[i].toFixed(2).toString().padStart(40,' ')); } source_filter.data['top'] = top; source_filter.data['bottom'] = bottom; source_filter.data['horihistotextxy'] = mid; source_filter.data['horihistotextx'] = right_quad; source_filter.data['horihistotext'] = ht; source_filter.data['permanentdisplay'] = ordercodeloc; source_filter.data['textdisplayed'] = textdisplayed; source_filter.data['textdisplayed2'] = textdisplayed2; var maxx = Math.max.apply(Math, right_quad); var minx = Math.min.apply(Math, left_quad); ylabel.major_label_overrides = labeldic; console.log(labeldic); x_range.end = 1.2 * maxx; x_range.start = 1.05 * minx; if(minx >= 0){ x_range.start = 0.01; source_filter.data['left'] = Array(left_quad.length).fill(0.01); } var tmp = title.text; tmp = tmp.slice(0, -11); var dateconverted = new Date(date_slide); var dd = String(dateconverted.getDate()).padStart(2, '0'); var mm = String(dateconverted.getMonth() + 1).padStart(2, '0'); //January is 0! var yyyy = dateconverted.getFullYear(); var dmy = dd + '/' + mm + '/' + yyyy; title.text = tmp + dmy+")"; source_filter.change.emit(); """) date_slider.js_on_change('value', callback) cases_custom = CocoDisplay.rollerJS() if func.__name__ == 'pycoa_pie' : standardfig.add_tools(HoverTool( tooltips=[('Location', '@rolloverdisplay'), (input_field, '@cases{0,0.0}'), ('%','@percentage'), ], formatters={'location': 'printf', '@{' + 'cases' + '}': cases_custom, '%':'printf'}, point_policy="snap_to_data")) # ,PanTool()) else: standardfig.add_tools(HoverTool( tooltips=[('Location', '@rolloverdisplay'), (input_field, '@cases{0,0.0}'), ], formatters={'location': 'printf', '@{' + 'cases' + '}': cases_custom, }, point_policy="snap_to_data")) # ,PanTool()) panel = Panel(child = standardfig, title = axis_type) panels.append(panel) return func(self, srcfiltered, panels, date_slider) return inner_decohistopie ''' VERTICAL HISTO ''' @decowrapper @decohistomap @decohistopie def pycoa_horizonhisto(self, srcfiltered, panels, date_slider): ''' ----------------- Create 1D histogramme by location according to arguments. See help(pycoa_histo). Keyword arguments ----------------- - srcfiltered : A DataFrame with a Pycoa struture is mandatory |location|date|Variable desired|daily|cumul|weekly|codelocation|clustername|permanentdisplay|rolloverdisplay| - input_field = if None take second element could be a list - plot_heigh= width_height_default[1] - plot_width = width_height_default[0] - title = None - textcopyright = default - mode = mouse - cursor_date = None if True - orientation = horizontal - when : default min and max according to the inpude DataFrame. Dates are given under the format dd/mm/yyyy. when format [dd/mm/yyyy : dd/mm/yyyy] if [:dd/mm/yyyy] min date up to if [dd/mm/yyyy:] up to max date ''' n = len(panels) new_panels = [] for i in range(n): fig = panels[i].child fig.y_range = Range1d(min(srcfiltered.data['bottom']), max(srcfiltered.data['top'])) fig.yaxis[0].formatter = NumeralTickFormatter(format="0.0") ytick_loc = [int(i) for i in srcfiltered.data['horihistotexty']] fig.yaxis.ticker = ytick_loc label_dict = dict(zip(ytick_loc,srcfiltered.data['permanentdisplay'])) fig.yaxis.major_label_overrides = label_dict #print(fig.y_range ,fig.yaxis.major_label_overrides) fig.quad(source = srcfiltered, top='top', bottom = 'bottom', left = 'left', right = 'right', color = 'colors', line_color = 'black', line_width = 1, hover_line_width = 2) labels = LabelSet( x = 'horihistotextx', y = 'horihistotexty', x_offset=5, y_offset=-4, text = 'horihistotext', source = srcfiltered,text_font_size='10px',text_color='black') fig.add_layout(labels) panel = Panel(child = fig, title = panels[i].title) new_panels.append(panel) tabs = Tabs(tabs = new_panels) if date_slider: tabs = column(date_slider,tabs) return tabs ''' PIE ''' def add_columns_for_pie_chart(self,df,column_name): df = df.copy() column_sum = df[column_name].sum() df['percentage'] = df[column_name]/column_sum percentages = [0] + df['percentage'].cumsum().tolist() df['angle'] = (df[column_name]/column_sum)*2 * np.pi df['starts'] = [p * 2 * np.pi for p in percentages[:-1]] df['ends'] = [p * 2 * np.pi for p in percentages[1:]] df['diff'] = (df['ends'] - df['starts']) df['middle'] = df['starts']+np.abs(df['ends']-df['starts'])/2. df['cos'] = np.cos(df['middle']) * 0.9 df['sin'] = np.sin(df['middle']) * 0.9 df['text_size'] = '8pt' df['textdisplayed'] = df['permanentdisplay'].str.pad(36, side = "left") locale.setlocale(locale.LC_ALL, 'en_US') df['textdisplayed2'] = [ locale.format("%d", i, grouping=True)\ for i in df[column_name]] #df['textdisplayed2'] = df[column_name].astype(str) #[i.str for i in df[column_name]] df['textdisplayed2'] = df['textdisplayed2'].str.pad(26, side = "left") #df['textdisplayed2'] = df[column_name].str.pad(26, side = "left") df.loc[df['diff'] <= np.pi/20,'textdisplayed']='' df.loc[df['diff'] <= np.pi/20,'textdisplayed2']='' df['percentage'] = 100.*df['percentage'] return df @decowrapper @decohistomap @decohistopie def pycoa_pie(self, srcfiltered, panels, date_slider): ''' ----------------- Create a pie chart according to arguments. See help(pycoa_pie). Keyword arguments ----------------- - srcfiltered : A DataFrame with a Pycoa struture is mandatory |location|date|Variable desired|daily|cumul|weekly|codelocation|clustername|permanentdisplay|rolloverdisplay| - input_field = if None take second element could be a list - plot_heigh= width_height_default[1] - plot_width = width_height_default[0] - title = None - textcopyright = default - mode = mouse - cursor_date = None if True - orientation = horizontal ''' standardfig = panels[0].child standardfig.plot_height=400 standardfig.plot_width=400 standardfig.x_range = Range1d(-1.1, 1.1) standardfig.y_range = Range1d(-1.1, 1.1) standardfig.axis.visible = False standardfig.xgrid.grid_line_color = None standardfig.ygrid.grid_line_color = None standardfig.wedge(x=0, y=0, radius=1.,line_color='#E8E8E8', start_angle=cumsum('angle', include_zero=True), end_angle=cumsum('angle'), fill_color='colors', legend_label='clustername', source=srcfiltered) standardfig.legend.visible = False labels = LabelSet(x=0, y=0,text='textdisplayed',angle=cumsum('angle', include_zero=True), text_font_size="10pt",source=srcfiltered,render_mode='canvas') labels2 = LabelSet(x=0, y=0, text='textdisplayed2', angle=cumsum('angle', include_zero=True),text_font_size="8pt",source=srcfiltered) standardfig.add_layout(labels) standardfig.add_layout(labels2) if date_slider: standardfig = column(date_slider,standardfig) return standardfig ''' MAP FOLIUM ''' @decowrapper @decohistomap def pycoa_mapfolium(self, geopdwd, input_field, **kwargs): ''' ----------------- Create a map folium to arguments. See help(pycoa_histo). Keyword arguments ----------------- - srcfiltered : A DataFrame with a Pycoa struture is mandatory |location|date|Variable desired|daily|cumul|weekly|codelocation|clustername|permanentdisplay|rolloverdisplay| - input_field = if None take second element could be a list - plot_heigh= width_height_default[1] - plot_width = width_height_default[0] - title = None - textcopyright = default - mode = mouse - cursor_date = None if True - orientation = horizontal - when : default min and max according to the inpude DataFrame. Dates are given under the format dd/mm/yyyy. when format [dd/mm/yyyy : dd/mm/yyyy] if [:dd/mm/yyyy] min date up to if [dd/mm/yyyy:] up to max date ''' title = kwargs.get('title', None) tile = kwargs.get('tile', self.dvisu_default['tile']) tile = CocoDisplay.convert_tile(tile, 'folium') maplabel = kwargs.get('maplabel',self.dvisu_default['maplabel']) plot_width = kwargs.get('plot_width',self.dfigure_default['plot_width']) plot_height = kwargs.get('plot_height',self.dfigure_default['plot_height']) geopdwd['cases'] = geopdwd[input_field] geopdwd_filtered = geopdwd.loc[geopdwd.date == self.when_end] geopdwd_filtered = geopdwd_filtered.reset_index(drop = True) geopdwd_filtered['cases'] = geopdwd_filtered[input_field] my_date = geopdwd.date.unique() dico_utc = {i: DateSlider(value=i).value for i in my_date} geopdwd['date_utc'] = [dico_utc[i] for i in geopdwd.date] #geopdwd = geopdwd.drop_duplicates(["date", "codelocation","clustername"])#for sumall avoid duplicate #geopdwd_filtered = geopdwd_filtered.sort_values(by='cases', ascending = False).reset_index() #locunique = geopdwd_filtered.clustername.unique()#geopdwd_filtered.location.unique() if self.database_name == 'risklayer': geopdwd_filtered = geopdwd_filtered.loc[geopdwd_filtered.geometry.notna()] uniqloc = list(geopdwd_filtered.codelocation.unique()) geopdwd_filtered = geopdwd_filtered.drop(columns=['date', 'colors']) msg = "(data from: {})".format(self.database_name) minx, miny, maxx, maxy = geopdwd_filtered.total_bounds mapa = folium.Map(tiles=tile, attr='<a href=\"http://pycoa.fr\"> ©pycoa.fr </a>' + msg) #min_lat=minx, max_lat=maxx, min_lon=miny, max_lon=maxy) #location=[geopdwd_filtered.centroid.y.mean(),geopdwd_filtered.centroid.x.mean()],) if self.dbld[self.database_name][0] != 'WW': mapa.fit_bounds([(miny, minx), (maxy, maxx)]) fig = Figure(width=plot_width, height=plot_height) fig.add_child(mapa) min_col, max_col = CocoDisplay.min_max_range(np.nanmin(geopdwd_filtered[input_field]), np.nanmax(geopdwd_filtered[input_field])) min_col_non0 = (np.nanmin(geopdwd_filtered.loc[geopdwd_filtered['cases']>0.]['cases'])) invViridis256 = Viridis256[::-1] if 'log' in maplabel: geopdwd_filtered['cases'] = geopdwd_filtered.loc[geopdwd_filtered['cases']>0]['cases'] color_mapper = LinearColorMapper(palette=invViridis256, low=min_col_non0, high=max_col, nan_color='#d9d9d9') colormap = branca.colormap.LinearColormap(color_mapper.palette).to_step(data=list(geopdwd_filtered['cases']),n=10,method='log') else: color_mapper = LinearColorMapper(palette=invViridis256, low=min_col, high=max_col, nan_color='#d9d9d9') colormap = branca.colormap.LinearColormap(color_mapper.palette).scale(min_col, max_col) colormap.caption = title colormap.add_to(mapa) map_id = colormap.get_name() custom_label_colorbar_js = """ var div = document.getElementById('legend'); var ticks = document.getElementsByClassName('tick') for(var i = 0; i < ticks.length; i++){ var values = ticks[i].textContent.replace(',','') val = parseFloat(values).toExponential(1).toString().replace("+", "") if(parseFloat(ticks[i].textContent) == 0) val = 0. div.innerHTML = div.innerHTML.replace(ticks[i].textContent,val); } """ e = Element(custom_label_colorbar_js) html = colormap.get_root() html.script.get_root().render() html.script._children[e.get_name()] = e geopdwd_filtered[input_field + 'scientific_format'] = \ (['{:.5g}'.format(i) for i in geopdwd_filtered['cases']]) # (['{:.3g}'.format(i) if i>100000 else i for i in geopdwd_filter[input_field]]) map_dict = geopdwd_filtered.set_index('location')[input_field].to_dict() if np.nanmin(geopdwd_filtered[input_field]) == np.nanmax(geopdwd_filtered[input_field]): map_dict['FakeCountry'] = 0. if 'log' in maplabel: color_scale = branca.colormap.LinearColormap(color_mapper.palette).to_step(data=list(geopdwd_filtered['cases']),n=10,method='log') else: color_scale = LinearColormap(color_mapper.palette, vmin=min(map_dict.values()), vmax=max(map_dict.values())) def get_color(feature): value = map_dict.get(feature['properties']['location']) if value is None or np.isnan(value): return '#8c8c8c' # MISSING -> gray else: return color_scale(value) displayed = 'rolloverdisplay' folium.GeoJson( geopdwd_filtered, style_function=lambda x: { 'fillColor': get_color(x), 'fillOpacity': 0.8, 'color': None }, highlight_function=lambda x: {'weight': 2, 'color': 'green'}, tooltip=folium.features.GeoJsonTooltip(fields=[displayed, input_field + 'scientific_format'], aliases=['location' + ':', input_field + ":"], style=""" background-color: #F0EFEF; border: 2px solid black; border-radius: 3px; box-shadow: 3px; opacity: 0.2; """), # '<div style="barialckground-color: royalblue 0.2; color: black; padding: 2px; border: 1px solid black; border-radius: 2px;">'+input_field+'</div>']) ).add_to(mapa) return mapa ''' DECORATOR FOR MAP BOKEH ''' def decopycoageo(func): @wraps(func) def innerdecopycoageo(self, geopdwd, input_field, **kwargs): geopdwd['cases'] = geopdwd[input_field] geopdwd_filtered = geopdwd.loc[geopdwd.date == self.when_end] geopdwd_filtered = geopdwd_filtered.reset_index(drop = True) geopdwd_filtered = gpd.GeoDataFrame(geopdwd_filtered, geometry=geopdwd_filtered.geometry, crs="EPSG:4326") geopdwd = geopdwd.sort_values(by=['clustername', 'date'], ascending = [True, False]) geopdwd_filtered = geopdwd_filtered.sort_values(by=['clustername', 'date'], ascending = [True, False]).drop(columns=['date', 'colors']) new_poly = [] geolistmodified = dict() for index, row in geopdwd_filtered.iterrows(): split_poly = [] new_poly = [] if row['geometry']: for pt in self.get_polycoords(row): if type(pt) == tuple: new_poly.append(CocoDisplay.wgs84_to_web_mercator(pt)) elif type(pt) == list: shifted = [] for p in pt: shifted.append(CocoDisplay.wgs84_to_web_mercator(p)) new_poly.append(sg.Polygon(shifted)) else: raise CoaTypeError("Neither tuple or list don't know what to do with \ your geometry description") if type(new_poly[0]) == tuple: geolistmodified[row['location']] = sg.Polygon(new_poly) else: geolistmodified[row['location']] = sg.MultiPolygon(new_poly) ng = pd.DataFrame(geolistmodified.items(), columns=['location', 'geometry']) geolistmodified = gpd.GeoDataFrame({'location': ng['location'], 'geometry': gpd.GeoSeries(ng['geometry'])}, crs="epsg:3857") geopdwd_filtered = geopdwd_filtered.drop(columns='geometry') geopdwd_filtered = pd.merge(geolistmodified, geopdwd_filtered, on='location') #if kwargs['wanted_dates']: # kwargs.pop('wanted_dates') return func(self, geopdwd, geopdwd_filtered, **kwargs) return innerdecopycoageo ''' RETURN GEOMETRY, LOCATIO + CASES ''' @decowrapper @decohistomap @decopycoageo def pycoageo(self, geopdwd, geopdwd_filtered, **kwargs): return geopdwd_filtered def decomap(func): @wraps(func) def innerdecomap(self, geopdwd, geopdwd_filtered, **kwargs): title = kwargs.get('title', None) maplabel = kwargs.get('maplabel',self.dvisu_default['maplabel']) tile = kwargs.get('tile', None) if tile: tile = CocoDisplay.convert_tile(tile, 'bokeh') uniqloc = list(geopdwd_filtered.clustername.unique()) dfLabel = pd.DataFrame() sourcemaplabel = ColumnDataSource(dfLabel) if maplabel or func.__name__ == 'pycoa_pimpmap': locsum = geopdwd_filtered.clustername.unique() numberpercluster = geopdwd_filtered['clustername'].value_counts().to_dict() sumgeo = geopdwd_filtered.copy() sumgeo['geometry'] = sumgeo['geometry'].buffer(0.001) #needed with geopandas 0.10.2 sumgeo = sumgeo.dissolve(by='clustername', aggfunc='sum').reset_index() sumgeo['nb'] = sumgeo['clustername'].map(numberpercluster) #print(geopdwd_filtered.loc[geopdwd_filtered.clustername=='Île-de-France'].reset_index(drop=True).explode(index_parts=False)) centrosx = sumgeo['geometry'].centroid.x centrosy = sumgeo['geometry'].centroid.y cases = sumgeo['cases']/sumgeo['nb'] dfLabel=
pd.DataFrame({'clustername':sumgeo.clustername,'centroidx':centrosx,'centroidy':centrosy,'cases':cases,'geometry':sumgeo['geometry']})
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import pickle import shutil import sys import tempfile import numpy as np from numpy import arange, nan import pandas.testing as pdt from pandas import DataFrame, MultiIndex, Series, to_datetime # dependencies testing specific import pytest import recordlinkage from recordlinkage.base import BaseCompareFeature STRING_SIM_ALGORITHMS = [ 'jaro', 'q_gram', 'cosine', 'jaro_winkler', 'dameraulevenshtein', 'levenshtein', 'lcs', 'smith_waterman' ] NUMERIC_SIM_ALGORITHMS = ['step', 'linear', 'squared', 'exp', 'gauss'] FIRST_NAMES = [ u'Ronald', u'Amy', u'Andrew', u'William', u'Frank', u'Jessica', u'Kevin', u'Tyler', u'Yvonne', nan ] LAST_NAMES = [ u'Graham', u'Smith', u'Holt', u'Pope', u'Hernandez', u'Gutierrez', u'Rivera', nan, u'Crane', u'Padilla' ] STREET = [ u'<NAME>', nan, u'<NAME>', u'<NAME>', u'<NAME>', u'<NAME>', u'Williams Trail', u'Durham Mountains', u'Anna Circle', u'<NAME>' ] JOB = [ u'Designer, multimedia', u'Designer, blown glass/stained glass', u'Chiropractor', u'Engineer, mining', u'Quantity surveyor', u'Phytotherapist', u'Teacher, English as a foreign language', u'Electrical engineer', u'Research officer, government', u'Economist' ] AGES = [23, 40, 70, 45, 23, 57, 38, nan, 45, 46] # Run all tests in this file with: # nosetests tests/test_compare.py class TestData(object): @classmethod def setup_class(cls): N_A = 100 N_B = 100 cls.A = DataFrame({ 'age': np.random.choice(AGES, N_A), 'given_name': np.random.choice(FIRST_NAMES, N_A), 'lastname': np.random.choice(LAST_NAMES, N_A), 'street': np.random.choice(STREET, N_A) }) cls.B = DataFrame({ 'age': np.random.choice(AGES, N_B), 'given_name': np.random.choice(FIRST_NAMES, N_B), 'lastname': np.random.choice(LAST_NAMES, N_B), 'street': np.random.choice(STREET, N_B) }) cls.A.index.name = 'index_df1' cls.B.index.name = 'index_df2' cls.index_AB = MultiIndex.from_arrays( [arange(len(cls.A)), arange(len(cls.B))], names=[cls.A.index.name, cls.B.index.name]) # Create a temporary directory cls.test_dir = tempfile.mkdtemp() @classmethod def teardown_class(cls): # Remove the test directory shutil.rmtree(cls.test_dir) class TestCompareApi(TestData): """General unittest for the compare API.""" def test_repr(self): comp = recordlinkage.Compare() comp.exact('given_name', 'given_name') comp.string('given_name', 'given_name', method='jaro') comp.numeric('age', 'age', method='step', offset=3, origin=2) comp.numeric('age', 'age', method='step', offset=0, origin=2) c_str = str(comp) c_repr = repr(comp) assert c_str == c_repr start_str = '<{}'.format(comp.__class__.__name__) assert c_str.startswith(start_str) def test_instance_linking(self): comp = recordlinkage.Compare() comp.exact('given_name', 'given_name') comp.string('given_name', 'given_name', method='jaro') comp.numeric('age', 'age', method='step', offset=3, origin=2) comp.numeric('age', 'age', method='step', offset=0, origin=2) result = comp.compute(self.index_AB, self.A, self.B) # returns a Series assert isinstance(result, DataFrame) # resulting series has a MultiIndex assert isinstance(result.index, MultiIndex) # indexnames are oke assert result.index.names == [self.A.index.name, self.B.index.name] assert len(result) == len(self.index_AB) def test_instance_dedup(self): comp = recordlinkage.Compare() comp.string('given_name', 'given_name', method='jaro') comp.numeric('age', 'age', method='step', offset=3, origin=2) comp.numeric('age', 'age', method='step', offset=0, origin=2) result = comp.compute(self.index_AB, self.A) # returns a Series assert isinstance(result, DataFrame) # resulting series has a MultiIndex assert isinstance(result.index, MultiIndex) # indexnames are oke assert result.index.names == [self.A.index.name, self.B.index.name] assert len(result) == len(self.index_AB) def test_label_linking(self): comp = recordlinkage.Compare() comp.compare_vectorized( lambda s1, s2: np.ones(len(s1), dtype=np.int), 'given_name', 'given_name', label='my_feature_label') result = comp.compute(self.index_AB, self.A, self.B) assert "my_feature_label" in result.columns.tolist() def test_label_dedup(self): comp = recordlinkage.Compare() comp.compare_vectorized( lambda s1, s2: np.ones(len(s1), dtype=np.int), 'given_name', 'given_name', label='my_feature_label') result = comp.compute(self.index_AB, self.A) assert "my_feature_label" in result.columns.tolist() def test_multilabel_none_linking(self): def ones_np_multi(s1, s2): return np.ones(len(s1)), np.ones((len(s1), 3)) def ones_pd_multi(s1, s2): return (Series(np.ones(len(s1))), DataFrame(np.ones((len(s1), 3)))) comp = recordlinkage.Compare() comp.string('given_name', 'given_name', method='jaro') comp.compare_vectorized( ones_np_multi, 'given_name', 'given_name') comp.compare_vectorized( ones_pd_multi, 'given_name', 'given_name') result = comp.compute(self.index_AB, self.A, self.B) assert [0, 1, 2, 3, 4, 5, 6, 7, 8] == \ result.columns.tolist() def test_multilabel_linking(self): def ones_np_multi(s1, s2): return np.ones(len(s1)), np.ones((len(s1), 3)) def ones_pd_multi(s1, s2): return (Series(np.ones(len(s1))), DataFrame(np.ones((len(s1), 3)))) comp = recordlinkage.Compare() comp.string('given_name', 'given_name', method='jaro') comp.compare_vectorized( ones_np_multi, 'given_name', 'given_name', label=['a', ['b', 'c', 'd']]) comp.compare_vectorized( ones_pd_multi, 'given_name', 'given_name', label=['e', ['f', 'g', 'h']]) result = comp.compute(self.index_AB, self.A, self.B) assert [0, 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'] == \ result.columns.tolist() def test_multilabel_dedup(self): def ones_np_multi(s1, s2): return np.ones(len(s1)), np.ones((len(s1), 3)) def ones_pd_multi(s1, s2): return (Series(np.ones(len(s1))), DataFrame(np.ones((len(s1), 3)))) comp = recordlinkage.Compare() comp.string('given_name', 'given_name', method='jaro') comp.compare_vectorized( ones_np_multi, 'given_name', 'given_name', label=['a', ['b', 'c', 'd']]) comp.compare_vectorized( ones_pd_multi, 'given_name', 'given_name', label=['e', ['f', 'g', 'h']]) result = comp.compute(self.index_AB, self.A) assert [0, 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'] == \ result.columns.tolist() def test_multilabel_none_dedup(self): def ones_np_multi(s1, s2): return np.ones(len(s1)), np.ones((len(s1), 3)) def ones_pd_multi(s1, s2): return (Series(np.ones(len(s1))), DataFrame(np.ones((len(s1), 3)))) comp = recordlinkage.Compare() comp.string('given_name', 'given_name', method='jaro') comp.compare_vectorized( ones_np_multi, 'given_name', 'given_name') comp.compare_vectorized( ones_pd_multi, 'given_name', 'given_name') result = comp.compute(self.index_AB, self.A) assert [0, 1, 2, 3, 4, 5, 6, 7, 8] == \ result.columns.tolist() def test_multilabel_error_dedup(self): def ones(s1, s2): return np.ones((len(s1), 2)) comp = recordlinkage.Compare() comp.string('given_name', 'given_name', method='jaro') comp.compare_vectorized( ones, 'given_name', 'given_name', label=['a', 'b', 'c']) with pytest.raises(ValueError): comp.compute(self.index_AB, self.A) def test_incorrect_collabels_linking(self): comp = recordlinkage.Compare() comp.string('given_name', 'given_name', method='jaro') comp.compare_vectorized(lambda s1, s2: np.ones(len(s1), dtype=np.int), "given_name", "not_existing_label") with pytest.raises(KeyError): comp.compute(self.index_AB, self.A, self.B) def test_incorrect_collabels_dedup(self): comp = recordlinkage.Compare() comp.compare_vectorized(lambda s1, s2: np.ones(len(s1), dtype=np.int), "given_name", "not_existing_label") with pytest.raises(KeyError): comp.compute(self.index_AB, self.A) def test_compare_custom_vectorized_linking(self): A = DataFrame({'col': ['abc', 'abc', 'abc', 'abc', 'abc']}) B = DataFrame({'col': ['abc', 'abd', 'abc', 'abc', '123']}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) # test without label comp = recordlinkage.Compare() comp.compare_vectorized(lambda s1, s2: np.ones(len(s1), dtype=np.int), 'col', 'col') result = comp.compute(ix, A, B) expected = DataFrame([1, 1, 1, 1, 1], index=ix) pdt.assert_frame_equal(result, expected) # test with label comp = recordlinkage.Compare() comp.compare_vectorized( lambda s1, s2: np.ones(len(s1), dtype=np.int), 'col', 'col', label='my_feature_label') result = comp.compute(ix, A, B) expected = DataFrame( [1, 1, 1, 1, 1], index=ix, columns=['my_feature_label']) pdt.assert_frame_equal(result, expected) # def test_compare_custom_nonvectorized_linking(self): # A = DataFrame({'col': [1, 2, 3, 4, 5]}) # B = DataFrame({'col': [1, 2, 3, 4, 5]}) # ix = MultiIndex.from_arrays([A.index.values, B.index.values]) # def custom_func(a, b): # return np.int64(1) # # test without label # comp = recordlinkage.Compare() # comp.compare_single( # custom_func, # 'col', # 'col' # ) # result = comp.compute(ix, A, B) # expected = DataFrame([1, 1, 1, 1, 1], index=ix) # pdt.assert_frame_equal(result, expected) # # test with label # comp = recordlinkage.Compare() # comp.compare_single( # custom_func, # 'col', # 'col', # label='test' # ) # result = comp.compute(ix, A, B) # expected = DataFrame([1, 1, 1, 1, 1], index=ix, columns=['test']) # pdt.assert_frame_equal(result, expected) def test_compare_custom_instance_type(self): A = DataFrame({'col': ['abc', 'abc', 'abc', 'abc', 'abc']}) B = DataFrame({'col': ['abc', 'abd', 'abc', 'abc', '123']}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) def call(s1, s2): # this should raise on incorrect types assert isinstance(s1, np.ndarray) assert isinstance(s2, np.ndarray) return np.ones(len(s1), dtype=np.int) comp = recordlinkage.Compare() comp.compare_vectorized(lambda s1, s2: np.ones(len(s1), dtype=np.int), 'col', 'col') result = comp.compute(ix, A, B) expected = DataFrame([1, 1, 1, 1, 1], index=ix) pdt.assert_frame_equal(result, expected) def test_compare_custom_vectorized_arguments_linking(self): A = DataFrame({'col': ['abc', 'abc', 'abc', 'abc', 'abc']}) B = DataFrame({'col': ['abc', 'abd', 'abc', 'abc', '123']}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) # test without label comp = recordlinkage.Compare() comp.compare_vectorized( lambda s1, s2, x: np.ones(len(s1), dtype=np.int) * x, 'col', 'col', 5) result = comp.compute(ix, A, B) expected = DataFrame([5, 5, 5, 5, 5], index=ix) pdt.assert_frame_equal(result, expected) # test with label comp = recordlinkage.Compare() comp.compare_vectorized( lambda s1, s2, x: np.ones(len(s1), dtype=np.int) * x, 'col', 'col', 5, label='test') result = comp.compute(ix, A, B) expected = DataFrame([5, 5, 5, 5, 5], index=ix, columns=['test']) pdt.assert_frame_equal(result, expected) # test with kwarg comp = recordlinkage.Compare() comp.compare_vectorized( lambda s1, s2, x: np.ones(len(s1), dtype=np.int) * x, 'col', 'col', x=5, label='test') result = comp.compute(ix, A, B) expected = DataFrame([5, 5, 5, 5, 5], index=ix, columns=['test']) pdt.assert_frame_equal(result, expected) def test_compare_custom_vectorized_dedup(self): A = DataFrame({'col': ['abc', 'abc', 'abc', 'abc', 'abc']}) ix = MultiIndex.from_arrays([[0, 1, 2, 3, 4], [1, 2, 3, 4, 0]]) # test without label comp = recordlinkage.Compare() comp.compare_vectorized(lambda s1, s2: np.ones(len(s1), dtype=np.int), 'col', 'col') result = comp.compute(ix, A) expected = DataFrame([1, 1, 1, 1, 1], index=ix) pdt.assert_frame_equal(result, expected) # test with label comp = recordlinkage.Compare() comp.compare_vectorized( lambda s1, s2: np.ones(len(s1), dtype=np.int), 'col', 'col', label='test') result = comp.compute(ix, A) expected = DataFrame([1, 1, 1, 1, 1], index=ix, columns=['test']) pdt.assert_frame_equal(result, expected) def test_compare_custom_vectorized_arguments_dedup(self): A = DataFrame({'col': ['abc', 'abc', 'abc', 'abc', 'abc']}) ix = MultiIndex.from_arrays([[0, 1, 2, 3, 4], [1, 2, 3, 4, 0]]) # test without label comp = recordlinkage.Compare() comp.compare_vectorized( lambda s1, s2, x: np.ones(len(s1), dtype=np.int) * x, 'col', 'col', 5) result = comp.compute(ix, A) expected = DataFrame([5, 5, 5, 5, 5], index=ix) pdt.assert_frame_equal(result, expected) # test with label comp = recordlinkage.Compare() comp.compare_vectorized( lambda s1, s2, x: np.ones(len(s1), dtype=np.int) * x, 'col', 'col', 5, label='test') result = comp.compute(ix, A) expected = DataFrame([5, 5, 5, 5, 5], index=ix, columns=['test']) pdt.assert_frame_equal(result, expected) def test_parallel_comparing_api(self): # use single job comp = recordlinkage.Compare(n_jobs=1) comp.exact('given_name', 'given_name', label='my_feature_label') result_single = comp.compute(self.index_AB, self.A, self.B) result_single.sort_index(inplace=True) # use two jobs comp = recordlinkage.Compare(n_jobs=2) comp.exact('given_name', 'given_name', label='my_feature_label') result_2processes = comp.compute(self.index_AB, self.A, self.B) result_2processes.sort_index(inplace=True) # compare results pdt.assert_frame_equal(result_single, result_2processes) def test_parallel_comparing(self): # use single job comp = recordlinkage.Compare(n_jobs=1) comp.exact('given_name', 'given_name', label='my_feature_label') result_single = comp.compute(self.index_AB, self.A, self.B) result_single.sort_index(inplace=True) # use two jobs comp = recordlinkage.Compare(n_jobs=2) comp.exact('given_name', 'given_name', label='my_feature_label') result_2processes = comp.compute(self.index_AB, self.A, self.B) result_2processes.sort_index(inplace=True) # use two jobs comp = recordlinkage.Compare(n_jobs=4) comp.exact('given_name', 'given_name', label='my_feature_label') result_4processes = comp.compute(self.index_AB, self.A, self.B) result_4processes.sort_index(inplace=True) # compare results pdt.assert_frame_equal(result_single, result_2processes) pdt.assert_frame_equal(result_single, result_4processes) def test_pickle(self): # test if it is possible to pickle the Compare class comp = recordlinkage.Compare() comp.string('given_name', 'given_name') comp.numeric('number', 'number') comp.geo('lat', 'lng', 'lat', 'lng') comp.date('before', 'after') # do the test pickle_path = os.path.join(self.test_dir, 'pickle_compare_obj.pickle') pickle.dump(comp, open(pickle_path, 'wb')) def test_manual_parallel_joblib(self): # test if it is possible to pickle the Compare class # This is only available for python 3. For python 2, it is not # possible to pickle instancemethods. A workaround can be found at # https://stackoverflow.com/a/29873604/8727928 if sys.version.startswith("3"): # import joblib dependencies from joblib import Parallel, delayed # split the data into smaller parts len_index = int(len(self.index_AB) / 2) df_chunks = [self.index_AB[0:len_index], self.index_AB[len_index:]] comp = recordlinkage.Compare() comp.string('given_name', 'given_name') comp.string('lastname', 'lastname') comp.exact('street', 'street') # do in parallel Parallel(n_jobs=2)( delayed(comp.compute)(df_chunks[i], self.A, self.B) for i in [0, 1]) def test_indexing_types(self): # test the two types of indexing # this test needs improvement A = DataFrame({'col': ['abc', 'abc', 'abc', 'abc', 'abc']}) B = DataFrame({'col': ['abc', 'abc', 'abc', 'abc', 'abc']}) B_reversed = B[::-1].copy() ix = MultiIndex.from_arrays([np.arange(5), np.arange(5)]) # test with label indexing type comp_label = recordlinkage.Compare(indexing_type='label') comp_label.exact('col', 'col') result_label = comp_label.compute(ix, A, B_reversed) # test with position indexing type comp_position = recordlinkage.Compare(indexing_type='position') comp_position.exact('col', 'col') result_position = comp_position.compute(ix, A, B_reversed) assert (result_position.values == 1).all(axis=0) pdt.assert_frame_equal(result_label, result_position) def test_pass_list_of_features(self): from recordlinkage.compare import FrequencyA, VariableA, VariableB # setup datasets and record pairs A = DataFrame({'col': ['abc', 'abc', 'abc', 'abc', 'abc']}) B = DataFrame({'col': ['abc', 'abc', 'abc', 'abc', 'abc']}) ix = MultiIndex.from_arrays([np.arange(5), np.arange(5)]) # test with label indexing type features = [ VariableA('col', label='y1'), VariableB('col', label='y2'), FrequencyA('col', label='y3') ] comp_label = recordlinkage.Compare(features=features) result_label = comp_label.compute(ix, A, B) assert list(result_label) == ["y1", "y2", "y3"] class TestCompareFeatures(TestData): def test_feature(self): # test using classes and the base class A = DataFrame({'col': ['abc', 'abc', 'abc', 'abc', 'abc']}) B = DataFrame({'col': ['abc', 'abd', 'abc', 'abc', '123']}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) feature = BaseCompareFeature('col', 'col') feature._f_compare_vectorized = lambda s1, s2: np.ones(len(s1)) feature.compute(ix, A, B) def test_feature_multicolumn_return(self): # test using classes and the base class A = DataFrame({'col': ['abc', 'abc', 'abc', 'abc', 'abc']}) B = DataFrame({'col': ['abc', 'abd', 'abc', 'abc', '123']}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) def ones(s1, s2): return DataFrame(np.ones((len(s1), 3))) feature = BaseCompareFeature('col', 'col') feature._f_compare_vectorized = ones result = feature.compute(ix, A, B) assert result.shape == (5, 3) def test_feature_multicolumn_input(self): # test using classes and the base class A = DataFrame({ 'col1': ['abc', 'abc', 'abc', 'abc', 'abc'], 'col2': ['abc', 'abc', 'abc', 'abc', 'abc'] }) B = DataFrame({ 'col1': ['abc', 'abd', 'abc', 'abc', '123'], 'col2': ['abc', 'abd', 'abc', 'abc', '123'] }) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) feature = BaseCompareFeature(['col1', 'col2'], ['col1', 'col2']) feature._f_compare_vectorized = \ lambda s1_1, s1_2, s2_1, s2_2: np.ones(len(s1_1)) feature.compute(ix, A, B) class TestCompareExact(TestData): """Test the exact comparison method.""" def test_exact_str_type(self): A = DataFrame({'col': ['abc', 'abc', 'abc', 'abc', 'abc']}) B = DataFrame({'col': ['abc', 'abd', 'abc', 'abc', '123']}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) expected = DataFrame([1, 0, 1, 1, 0], index=ix) comp = recordlinkage.Compare() comp.exact('col', 'col') result = comp.compute(ix, A, B) pdt.assert_frame_equal(result, expected) def test_exact_num_type(self): A = DataFrame({'col': [42, 42, 41, 43, nan]}) B = DataFrame({'col': [42, 42, 42, 42, 42]}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) expected = DataFrame([1, 1, 0, 0, 0], index=ix) comp = recordlinkage.Compare() comp.exact('col', 'col') result = comp.compute(ix, A, B) pdt.assert_frame_equal(result, expected) def test_link_exact_missing(self): A = DataFrame({'col': [u'a', u'b', u'c', u'd', nan]}) B = DataFrame({'col': [u'a', u'b', u'd', nan, nan]}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) comp = recordlinkage.Compare() comp.exact('col', 'col', label='na_') comp.exact('col', 'col', missing_value=0, label='na_0') comp.exact('col', 'col', missing_value=9, label='na_9') comp.exact('col', 'col', missing_value=nan, label='na_na') comp.exact('col', 'col', missing_value='str', label='na_str') result = comp.compute(ix, A, B) # Missing values as default expected = Series([1, 1, 0, 0, 0], index=ix, name='na_') pdt.assert_series_equal(result['na_'], expected) # Missing values as 0 expected = Series([1, 1, 0, 0, 0], index=ix, name='na_0') pdt.assert_series_equal(result['na_0'], expected) # Missing values as 9 expected = Series([1, 1, 0, 9, 9], index=ix, name='na_9') pdt.assert_series_equal(result['na_9'], expected) # Missing values as nan expected = Series([1, 1, 0, nan, nan], index=ix, name='na_na') pdt.assert_series_equal(result['na_na'], expected) # Missing values as string expected = Series([1, 1, 0, 'str', 'str'], index=ix, name='na_str') pdt.assert_series_equal(result['na_str'], expected) def test_link_exact_disagree(self): A = DataFrame({'col': [u'a', u'b', u'c', u'd', nan]}) B = DataFrame({'col': [u'a', u'b', u'd', nan, nan]}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) comp = recordlinkage.Compare() comp.exact('col', 'col', label='d_') comp.exact('col', 'col', disagree_value=0, label='d_0') comp.exact('col', 'col', disagree_value=9, label='d_9') comp.exact('col', 'col', disagree_value=nan, label='d_na') comp.exact('col', 'col', disagree_value='str', label='d_str') result = comp.compute(ix, A, B) # disagree values as default expected = Series([1, 1, 0, 0, 0], index=ix, name='d_') pdt.assert_series_equal(result['d_'], expected) # disagree values as 0 expected = Series([1, 1, 0, 0, 0], index=ix, name='d_0') pdt.assert_series_equal(result['d_0'], expected) # disagree values as 9 expected = Series([1, 1, 9, 0, 0], index=ix, name='d_9') pdt.assert_series_equal(result['d_9'], expected) # disagree values as nan expected = Series([1, 1, nan, 0, 0], index=ix, name='d_na') pdt.assert_series_equal(result['d_na'], expected) # disagree values as string expected = Series([1, 1, 'str', 0, 0], index=ix, name='d_str') pdt.assert_series_equal(result['d_str'], expected) # tests/test_compare.py:TestCompareNumeric class TestCompareNumeric(TestData): """Test the numeric comparison methods.""" def test_numeric(self): A = DataFrame({'col': [1, 1, 1, nan, 0]}) B = DataFrame({'col': [1, 2, 3, nan, nan]}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) comp = recordlinkage.Compare() comp.numeric('col', 'col', 'step', offset=2) comp.numeric('col', 'col', method='step', offset=2) comp.numeric('col', 'col', 'step', 2) result = comp.compute(ix, A, B) # Basics expected = Series([1.0, 1.0, 1.0, 0.0, 0.0], index=ix, name=0) pdt.assert_series_equal(result[0], expected) # Basics expected = Series([1.0, 1.0, 1.0, 0.0, 0.0], index=ix, name=1) pdt.assert_series_equal(result[1], expected) # Basics expected = Series([1.0, 1.0, 1.0, 0.0, 0.0], index=ix, name=2) pdt.assert_series_equal(result[2], expected) def test_numeric_with_missings(self): A = DataFrame({'col': [1, 1, 1, nan, 0]}) B = DataFrame({'col': [1, 1, 1, nan, nan]}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) comp = recordlinkage.Compare() comp.numeric('col', 'col', scale=2) comp.numeric('col', 'col', scale=2, missing_value=0) comp.numeric('col', 'col', scale=2, missing_value=123.45) comp.numeric('col', 'col', scale=2, missing_value=nan) comp.numeric('col', 'col', scale=2, missing_value='str') result = comp.compute(ix, A, B) # Missing values as default expected = Series([1.0, 1.0, 1.0, 0.0, 0.0], index=ix, name=0) pdt.assert_series_equal(result[0], expected) # Missing values as 0 expected = Series( [1.0, 1.0, 1.0, 0.0, 0.0], index=ix, dtype=np.float64, name=1) pdt.assert_series_equal(result[1], expected) # Missing values as 123.45 expected = Series([1.0, 1.0, 1.0, 123.45, 123.45], index=ix, name=2) pdt.assert_series_equal(result[2], expected) # Missing values as nan expected = Series([1.0, 1.0, 1.0, nan, nan], index=ix, name=3) pdt.assert_series_equal(result[3], expected) # Missing values as string expected = Series( [1, 1, 1, 'str', 'str'], index=ix, dtype=object, name=4) pdt.assert_series_equal(result[4], expected) @pytest.mark.parametrize("alg", NUMERIC_SIM_ALGORITHMS) def test_numeric_algorithms(self, alg): A = DataFrame({'col': [1, 1, 1, 1, 1]}) B = DataFrame({'col': [1, 2, 3, 4, 5]}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) comp = recordlinkage.Compare() comp.numeric('col', 'col', method='step', offset=1, label='step') comp.numeric( 'col', 'col', method='linear', offset=1, scale=2, label='linear') comp.numeric( 'col', 'col', method='squared', offset=1, scale=2, label='squared') comp.numeric( 'col', 'col', method='exp', offset=1, scale=2, label='exp') comp.numeric( 'col', 'col', method='gauss', offset=1, scale=2, label='gauss') result_df = comp.compute(ix, A, B) result = result_df[alg] # All values between 0 and 1. assert (result >= 0.0).all() assert (result <= 1.0).all() if alg != 'step': print(alg) print(result) # sim(scale) = 0.5 expected_bool = Series( [False, False, False, True, False], index=ix, name=alg) pdt.assert_series_equal(result == 0.5, expected_bool) # sim(offset) = 1 expected_bool = Series( [True, True, False, False, False], index=ix, name=alg) pdt.assert_series_equal(result == 1.0, expected_bool) # sim(scale) larger than 0.5 expected_bool = Series( [False, False, True, False, False], index=ix, name=alg) pdt.assert_series_equal((result > 0.5) & (result < 1.0), expected_bool) # sim(scale) smaller than 0.5 expected_bool = Series( [False, False, False, False, True], index=ix, name=alg) pdt.assert_series_equal((result < 0.5) & (result >= 0.0), expected_bool) @pytest.mark.parametrize("alg", NUMERIC_SIM_ALGORITHMS) def test_numeric_algorithms_errors(self, alg): # scale negative if alg != "step": with pytest.raises(ValueError): comp = recordlinkage.Compare() comp.numeric('age', 'age', method=alg, offset=2, scale=-2) comp.compute(self.index_AB, self.A, self.B) # offset negative with pytest.raises(ValueError): comp = recordlinkage.Compare() comp.numeric('age', 'age', method=alg, offset=-2, scale=-2) comp.compute(self.index_AB, self.A, self.B) def test_numeric_does_not_exist(self): # raise when algorithm doesn't exists A = DataFrame({'col': [1, 1, 1, nan, 0]}) B = DataFrame({'col': [1, 1, 1, nan, nan]}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) comp = recordlinkage.Compare() comp.numeric('col', 'col', method='unknown_algorithm') pytest.raises(ValueError, comp.compute, ix, A, B) # tests/test_compare.py:TestCompareDates class TestCompareDates(TestData): """Test the exact comparison method.""" def test_dates(self): A = DataFrame({ 'col': to_datetime( ['2005/11/23', nan, '2004/11/23', '2010/01/10', '2010/10/30']) }) B = DataFrame({ 'col': to_datetime([ '2005/11/23', '2010/12/31', '2005/11/23', '2010/10/01', '2010/9/30' ]) }) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) comp = recordlinkage.Compare() comp.date('col', 'col') result = comp.compute(ix, A, B)[0] expected = Series([1, 0, 0, 0.5, 0.5], index=ix, name=0) pdt.assert_series_equal(result, expected) def test_date_incorrect_dtype(self): A = DataFrame({ 'col': ['2005/11/23', nan, '2004/11/23', '2010/01/10', '2010/10/30'] }) B = DataFrame({ 'col': [ '2005/11/23', '2010/12/31', '2005/11/23', '2010/10/01', '2010/9/30' ] }) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) A['col1'] = to_datetime(A['col']) B['col1'] = to_datetime(B['col']) comp = recordlinkage.Compare() comp.date('col', 'col1') pytest.raises(ValueError, comp.compute, ix, A, B) comp = recordlinkage.Compare() comp.date('col1', 'col') pytest.raises(ValueError, comp.compute, ix, A, B) def test_dates_with_missings(self): A = DataFrame({ 'col': to_datetime( ['2005/11/23', nan, '2004/11/23', '2010/01/10', '2010/10/30']) }) B = DataFrame({ 'col': to_datetime([ '2005/11/23', '2010/12/31', '2005/11/23', '2010/10/01', '2010/9/30' ]) }) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) comp = recordlinkage.Compare() comp.date('col', 'col', label='m_') comp.date('col', 'col', missing_value=0, label='m_0') comp.date('col', 'col', missing_value=123.45, label='m_float') comp.date('col', 'col', missing_value=nan, label='m_na') comp.date('col', 'col', missing_value='str', label='m_str') result = comp.compute(ix, A, B) # Missing values as default expected = Series([1, 0, 0, 0.5, 0.5], index=ix, name='m_') pdt.assert_series_equal(result['m_'], expected) # Missing values as 0 expected = Series([1, 0, 0, 0.5, 0.5], index=ix, name='m_0') pdt.assert_series_equal(result['m_0'], expected) # Missing values as 123.45 expected = Series([1, 123.45, 0, 0.5, 0.5], index=ix, name='m_float') pdt.assert_series_equal(result['m_float'], expected) # Missing values as nan expected = Series([1, nan, 0, 0.5, 0.5], index=ix, name='m_na') pdt.assert_series_equal(result['m_na'], expected) # Missing values as string expected = Series( [1, 'str', 0, 0.5, 0.5], index=ix, dtype=object, name='m_str') pdt.assert_series_equal(result['m_str'], expected) def test_dates_with_swap(self): months_to_swap = [(9, 10, 123.45), (10, 9, 123.45), (1, 2, 123.45), (2, 1, 123.45)] A = DataFrame({ 'col': to_datetime( ['2005/11/23', nan, '2004/11/23', '2010/01/10', '2010/10/30']) }) B = DataFrame({ 'col': to_datetime([ '2005/11/23', '2010/12/31', '2005/11/23', '2010/10/01', '2010/9/30' ]) }) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) comp = recordlinkage.Compare() comp.date('col', 'col', label='s_') comp.date( 'col', 'col', swap_month_day=0, swap_months='default', label='s_1') comp.date( 'col', 'col', swap_month_day=123.45, swap_months='default', label='s_2') comp.date( 'col', 'col', swap_month_day=123.45, swap_months=months_to_swap, label='s_3') comp.date( 'col', 'col', swap_month_day=nan, swap_months='default', missing_value=nan, label='s_4') comp.date('col', 'col', swap_month_day='str', label='s_5') result = comp.compute(ix, A, B) # swap_month_day as default expected = Series([1, 0, 0, 0.5, 0.5], index=ix, name='s_') pdt.assert_series_equal(result['s_'], expected) # swap_month_day and swap_months as 0 expected = Series([1, 0, 0, 0, 0.5], index=ix, name='s_1') pdt.assert_series_equal(result['s_1'], expected) # swap_month_day 123.45 (float) expected = Series([1, 0, 0, 123.45, 0.5], index=ix, name='s_2') pdt.assert_series_equal(result['s_2'], expected) # swap_month_day and swap_months 123.45 (float) expected = Series([1, 0, 0, 123.45, 123.45], index=ix, name='s_3') pdt.assert_series_equal(result['s_3'], expected) # swap_month_day and swap_months as nan expected = Series([1, nan, 0, nan, 0.5], index=ix, name='s_4') pdt.assert_series_equal(result['s_4'], expected) # swap_month_day as string expected = Series( [1, 0, 0, 'str', 0.5], index=ix, dtype=object, name='s_5') pdt.assert_series_equal(result['s_5'], expected) # tests/test_compare.py:TestCompareGeo class TestCompareGeo(TestData): """Test the geo comparison method.""" def test_geo(self): # Utrecht, Amsterdam, Rotterdam (Cities in The Netherlands) A = DataFrame({ 'lat': [52.0842455, 52.3747388, 51.9280573], 'lng': [5.0124516, 4.7585305, 4.4203581] }) B = DataFrame({ 'lat': [52.3747388, 51.9280573, 52.0842455], 'lng': [4.7585305, 4.4203581, 5.0124516] }) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) comp = recordlinkage.Compare() comp.geo( 'lat', 'lng', 'lat', 'lng', method='step', offset=50) # 50 km range result = comp.compute(ix, A, B) # Missing values as default [36.639460, 54.765854, 44.092472] expected = Series([1.0, 0.0, 1.0], index=ix, name=0) pdt.assert_series_equal(result[0], expected) def test_geo_batch(self): # Utrecht, Amsterdam, Rotterdam (Cities in The Netherlands) A = DataFrame({ 'lat': [52.0842455, 52.3747388, 51.9280573], 'lng': [5.0124516, 4.7585305, 4.4203581] }) B = DataFrame({ 'lat': [52.3747388, 51.9280573, 52.0842455], 'lng': [4.7585305, 4.4203581, 5.0124516] }) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) comp = recordlinkage.Compare() comp.geo( 'lat', 'lng', 'lat', 'lng', method='step', offset=1, label='step') comp.geo( 'lat', 'lng', 'lat', 'lng', method='linear', offset=1, scale=2, label='linear') comp.geo( 'lat', 'lng', 'lat', 'lng', method='squared', offset=1, scale=2, label='squared') comp.geo( 'lat', 'lng', 'lat', 'lng', method='exp', offset=1, scale=2, label='exp') comp.geo( 'lat', 'lng', 'lat', 'lng', method='gauss', offset=1, scale=2, label='gauss') result_df = comp.compute(ix, A, B) print(result_df) for alg in ['step', 'linear', 'squared', 'exp', 'gauss']: result = result_df[alg] # All values between 0 and 1. assert (result >= 0.0).all() assert (result <= 1.0).all() def test_geo_does_not_exist(self): # Utrecht, Amsterdam, Rotterdam (Cities in The Netherlands) A = DataFrame({ 'lat': [52.0842455, 52.3747388, 51.9280573], 'lng': [5.0124516, 4.7585305, 4.4203581] }) B = DataFrame({ 'lat': [52.3747388, 51.9280573, 52.0842455], 'lng': [4.7585305, 4.4203581, 5.0124516] }) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) comp = recordlinkage.Compare() comp.geo('lat', 'lng', 'lat', 'lng', method='unknown') pytest.raises(ValueError, comp.compute, ix, A, B) class TestCompareStrings(TestData): """Test the exact comparison method.""" def test_defaults(self): # default algorithm is levenshtein algorithm # test default values are indentical to levenshtein A = DataFrame({ 'col': [u'str_abc', u'str_abc', u'str_abc', nan, u'hsdkf'] }) B = DataFrame({'col': [u'str_abc', u'str_abd', u'jaskdfsd', nan, nan]}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) comp = recordlinkage.Compare() comp.string('col', 'col', label='default') comp.string('col', 'col', method='levenshtein', label='with_args') result = comp.compute(ix, A, B) pdt.assert_series_equal( result['default'].rename(None), result['with_args'].rename(None) ) def test_fuzzy(self): A = DataFrame({ 'col': [u'str_abc', u'str_abc', u'str_abc', nan, u'hsdkf'] }) B = DataFrame({'col': [u'str_abc', u'str_abd', u'jaskdfsd', nan, nan]}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) comp = recordlinkage.Compare() comp.string('col', 'col', method='jaro', missing_value=0) comp.string('col', 'col', method='q_gram', missing_value=0) comp.string('col', 'col', method='cosine', missing_value=0) comp.string('col', 'col', method='jaro_winkler', missing_value=0) comp.string('col', 'col', method='dameraulevenshtein', missing_value=0) comp.string('col', 'col', method='levenshtein', missing_value=0) result = comp.compute(ix, A, B) print(result) assert result.notnull().all(1).all(0) assert (result[result.notnull()] >= 0).all(1).all(0) assert (result[result.notnull()] <= 1).all(1).all(0) def test_threshold(self): A = DataFrame({'col': [u"gretzky", u"gretzky99", u"gretzky", u"gretzky"]}) B = DataFrame({'col': [u"gretzky", u"gretzky", nan, u"wayne"]}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) comp = recordlinkage.Compare() comp.string( 'col', 'col', method="levenshtein", threshold=0.5, missing_value=2.0, label="x_col1" ) comp.string( 'col', 'col', method="levenshtein", threshold=1.0, missing_value=0.5, label="x_col2" ) comp.string( 'col', 'col', method="levenshtein", threshold=0.0, missing_value=nan, label="x_col3" ) result = comp.compute(ix, A, B) expected = Series([1.0, 1.0, 2.0, 0.0], index=ix, name="x_col1") pdt.assert_series_equal(result["x_col1"], expected) expected = Series([1.0, 0.0, 0.5, 0.0], index=ix, name="x_col2") pdt.assert_series_equal(result["x_col2"], expected) expected = Series([1.0, 1.0, nan, 1.0], index=ix, name="x_col3") pdt.assert_series_equal(result["x_col3"], expected) @pytest.mark.parametrize("alg", STRING_SIM_ALGORITHMS) def test_incorrect_input(self, alg): A = DataFrame({'col': [1, 1, 1, nan, 0]}) B = DataFrame({'col': [1, 1, 1, nan, nan]}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) with pytest.raises(Exception): comp = recordlinkage.Compare() comp.string('col', 'col', method=alg) comp.compute(ix, A, B) @pytest.mark.parametrize("alg", STRING_SIM_ALGORITHMS) def test_string_algorithms_nan(self, alg): A = DataFrame({'col': [u"nan", nan, nan, nan, nan]}) B = DataFrame({'col': [u"nan", nan, nan, nan, nan]}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) comp = recordlinkage.Compare() comp.string('col', 'col', method=alg) result = comp.compute(ix, A, B)[0] expected = Series([1.0, 0.0, 0.0, 0.0, 0.0], index=ix, name=0) pdt.assert_series_equal(result, expected) comp = recordlinkage.Compare() comp.string('col', 'col', method=alg, missing_value=nan) result = comp.compute(ix, A, B)[0] expected = Series([1.0, nan, nan, nan, nan], index=ix, name=0) pdt.assert_series_equal(result, expected) comp = recordlinkage.Compare() comp.string('col', 'col', method=alg, missing_value=9.0) result = comp.compute(ix, A, B)[0] expected = Series([1.0, 9.0, 9.0, 9.0, 9.0], index=ix, name=0) pdt.assert_series_equal(result, expected) @pytest.mark.parametrize("alg", STRING_SIM_ALGORITHMS) def test_string_algorithms(self, alg): A = DataFrame({ 'col': [u'str_abc', u'str_abc', u'str_abc', nan, u'hsdkf'] }) B = DataFrame({'col': [u'str_abc', u'str_abd', u'jaskdfsd', nan, nan]}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) comp = recordlinkage.Compare() comp.string('col', 'col', method=alg, missing_value=0) result = comp.compute(ix, A, B)[0] assert result.notnull().all() assert (result >= 0).all() assert (result <= 1).all() assert (result > 0).any() assert (result < 1).any() def test_fuzzy_does_not_exist(self): A = DataFrame({ 'col': [u'str_abc', u'str_abc', u'str_abc', nan, u'hsdkf'] }) B = DataFrame({'col': [u'str_abc', u'str_abd', u'jaskdfsd', nan, nan]}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) comp = recordlinkage.Compare() comp.string('col', 'col', method='unknown_algorithm') pytest.raises(ValueError, comp.compute, ix, A, B) class TestCompareFreq(object): def test_freq(self): # data array_repeated = np.repeat(np.arange(10), 10) array_tiled = np.tile(np.arange(20), 5) # convert to pandas data A = DataFrame({'col': array_repeated}) B = DataFrame({'col': array_tiled}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) # the part to test from recordlinkage.compare import Frequency, FrequencyA, FrequencyB comp = recordlinkage.Compare() comp.add(Frequency(left_on='col')) comp.add(FrequencyA('col')) result = comp.compute(ix, A, B) expected = Series(np.ones((100, )) / 10, index=ix) pdt.assert_series_equal(result[0], expected.rename(0)) pdt.assert_series_equal(result[1], expected.rename(1)) comp = recordlinkage.Compare() comp.add(Frequency(right_on='col')) comp.add(FrequencyB('col')) result = comp.compute(ix, A, B) expected = Series(np.ones((100, )) / 20, index=ix) pdt.assert_series_equal(result[0], expected.rename(0)) pdt.assert_series_equal(result[1], expected.rename(1)) def test_freq_normalise(self): # data array_repeated = np.repeat(np.arange(10), 10) array_tiled = np.tile(np.arange(20), 5) # convert to pandas data A = DataFrame({'col': array_repeated}) B = DataFrame({'col': array_tiled}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) # the part to test from recordlinkage.compare import Frequency comp = recordlinkage.Compare() comp.add(Frequency(left_on='col', normalise=False)) result = comp.compute(ix, A, B) expected = DataFrame(np.ones((100, )) * 10, index=ix) pdt.assert_frame_equal(result, expected) comp = recordlinkage.Compare() comp.add(Frequency(right_on='col', normalise=False)) result = comp.compute(ix, A, B) expected = DataFrame(np.ones((100, )) * 5, index=ix) pdt.assert_frame_equal(result, expected) @pytest.mark.parametrize('missing_value', [0.0, np.nan, 10.0]) def test_freq_nan(self, missing_value): # data array_repeated = np.repeat(np.arange(10, dtype=np.float64), 10) array_repeated[90:] = np.nan array_tiled = np.tile(np.arange(20, dtype=np.float64), 5) # convert to pandas data A = DataFrame({'col': array_repeated}) B = DataFrame({'col': array_tiled}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) # the part to test from recordlinkage.compare import Frequency comp = recordlinkage.Compare() comp.add(Frequency(left_on='col', missing_value=missing_value)) result = comp.compute(ix, A, B) expected_np = np.ones((100, )) / 10 expected_np[90:] = missing_value expected = DataFrame(expected_np, index=ix) pdt.assert_frame_equal(result, expected) class TestCompareVariable(object): def test_variable(self): # data arrayA = np.random.random((100,)) arrayB = np.random.random((100,)) # convert to pandas data A = DataFrame({'col': arrayA}) B = DataFrame({'col': arrayB}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) # the part to test from recordlinkage.compare import Variable, VariableA, VariableB comp = recordlinkage.Compare() comp.add(Variable(left_on='col')) comp.add(VariableA('col')) result = comp.compute(ix, A, B) expected = Series(arrayA, index=ix) pdt.assert_series_equal(result[0], expected.rename(0)) pdt.assert_series_equal(result[1], expected.rename(1)) comp = recordlinkage.Compare() comp.add(Variable(right_on='col')) comp.add(VariableB('col')) result = comp.compute(ix, A, B) expected = Series(arrayB, index=ix) pdt.assert_series_equal(result[0], expected.rename(0)) pdt.assert_series_equal(result[1], expected.rename(1)) @pytest.mark.parametrize('missing_value', [0.0, np.nan, 10.0]) def test_variable_nan(self, missing_value): # data arrayA = np.random.random((100,)) arrayA[90:] = np.nan arrayB = np.random.random((100,)) # convert to pandas data A =
DataFrame({'col': arrayA})
pandas.DataFrame
import dash import dash_core_components as dcc from dash.dependencies import Input, Output import dash_html_components as html import numpy as np import pandas as pd import plotly.graph_objs as go df = pd.read_csv("./data/kiva_loans.csv", parse_dates=True) def split_borrower_gender(l): m = 0 f = 0 if type(l) != list: return np.nan for i in l: if i== 'male': m += 1 else: f += 1 if m == 0: return 'female' elif f == 0: return 'male' else: return 'both' df.borrower_genders = df.borrower_genders.str.split(', ').apply(split_borrower_gender) df['disbursed_year'] = pd.to_datetime(df.disbursed_time).dt.year top5 = df.groupby('activity').size().sort_values(ascending=False)[0:5] # lets look at top 5 top5_male = df.groupby('activity').size().sort_values(ascending=False)[0:5] top5_female = df[df.borrower_genders == 'female'].groupby('activity').size().sort_values(ascending=False)[0:5] # converting dates from string to DateTime objects gives nice tools df['date'] =
pd.to_datetime(df['date'])
pandas.to_datetime
import pandas as pd import matplotlib.pyplot as plt retail_data1 = pd.read_csv('https://storage.googleapis.com/dqlab-dataset/10%25_original_randomstate%3D42/retail_data_from_1_until_3_reduce.csv') retail_data2 = pd.read_csv('https://storage.googleapis.com/dqlab-dataset/10%25_original_randomstate%3D42/retail_data_from_4_until_6_reduce.csv') retail_data3 = pd.read_csv('https://storage.googleapis.com/dqlab-dataset/10%25_original_randomstate%3D42/retail_data_from_7_until_9_reduce.csv') retail_data4 = pd.read_csv('https://storage.googleapis.com/dqlab-dataset/10%25_original_randomstate%3D42/retail_data_from_10_until_12_reduce.csv') retail_table = pd.concat([retail_data1, retail_data2, retail_data3, retail_data4]) cek = retail_table.loc[(retail_table['item_price'] < 0) | (retail_table['total_price'] < 0)] if cek.shape[0] != 0: retail_table = retail_table.loc[(retail_table['item_price'] > 0) & (retail_table['total_price'] > 0)] cek = retail_table.loc[retail_table['order_id'] == 'undefined'] if cek.shape[0] != 0: retail_table = retail_table.loc[retail_table['order_id'] != 'undefined'] retail_table['order_id'] = retail_table['order_id'].astype('int64') retail_table['order_date'] =
pd.to_datetime(retail_table['order_date'])
pandas.to_datetime
# Energy and entropy map # calculation for pdb files import pandas as pd import numpy as np from sklearn.decomposition import PCA from sklearn import preprocessing import matplotlib.pyplot as plt import seaborn as sns from MD_Analysis import * import easygui as eg # Getting the phi/psi angles # pdb = eg.fileopenbox(msg="Select the pdb to calculate angles from") # AC = Angle_Calc(pdb) # AC.get_phi_psi() # AC.angles.to_csv("sADP5_wt_metad100ns_phi_psi.csv") # get the cos/sin data from phi/psi using pedros name = 'sADP5_WT_3ms' data = pd.read_csv(name + '.csv') # del data['Unnamed: 0'] sc_df =
pd.DataFrame()
pandas.DataFrame
# !/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Oct 16 13:34:51 2019 @author: jaime #""" import h5py as h5 from circle_fit import least_squares_circle import pandas as pd import re as re from sys import platform import numpy as np import os cmy = 365 * 24 * 60 * 60. * 100 class UserChoice(Exception): def __init__(self, message): self.message = message # Print iterations progress def printProgressBar(iteration, total, prefix='', suffix='', decimals=1, length=100, fill='█', printEnd="\r"): """ Call in a loop to create terminal progress bar @params: iteration - Required : current iteration (Int) total - Required : total iterations (Int) prefix - Optional : prefix string (Str) suffix - Optional : suffix string (Str) decimals - Optional : positive number of decimals in per cent complete (Int) length - Optional : character length of bar (Int) fill - Optional : bar fill character (Str) printEnd - Optional : end character (e.g. "\r", "\r\n") (Str) """ percent = ("{0:." + str(decimals) + "f}").format(100 * (iteration / float(total))) filledLength = int(length * iteration // total) bar = fill * filledLength + '-' * (length - filledLength) print(f'\r{prefix} |{bar}| {percent}% {suffix}', end=printEnd) # Print New Line on Complete if iteration == total: print() def get_model_name(model_dir): if 'win' in platform: if model_dir[-1] == r'\\': model_dir -= r'\\' return re.split(r'\\', model_dir)[-1] else: if model_dir[-1] == '/': model_dir -= '/' return re.split('/', model_dir)[-1] def velocity_rescale(df, scf): df = df / scf * cmy return df def viscosity_rescale(df, scf): df = np.log10(df * scf) return df def dim_eval(res): # Not likely to be a 1D model. if len(res) > 2: return 3 else: return 2 def get_res(model_dir): # Make the file path filename = model_dir + 'Mesh.linearMesh.00000.h5' # Read everything data = h5.File(filename, 'r') res = data.attrs['mesh resolution'] # Get the dimensions: ndims = dim_eval(res) if ndims == 2: return {'x': res[0] + 1, 'y': res[1] + 1}, ndims else: return {'x': res[0] + 1, 'y': res[1] + 1, 'z': res[2] + 1}, ndims def ts_writer(ts_in): # Making the timestep text: return str(ts_in).zfill(5) def get_time(mdir, ts): data = h5.File(mdir + 'timeInfo.' + ts + '.h5', 'r') time_out = data['currentTime'][0] return time_out def get_nproc(mdir): data = h5.File(mdir + '/timeInfo.00000.h5', 'r') return data['nproc'][0] # %% class UwLoader: def __init__(self, model_dir, ts=0, scf=1e22, get_time_only=False): if model_dir[-1] != '/': self.model_dir = model_dir + '/' else: self.model_dir = model_dir # Verify if the path is correct: if not os.path.isdir(model_dir): raise FileNotFoundError('No such model exists.') self.res, self.dim = get_res(self.model_dir) # Cores are not needed for now. # Initiate a boundary coordinate self.boundary = {} # Set the default scaling: self.scf = scf # Save the model name self.model_name = get_model_name(model_dir) # Save an empty list/dict for any slicing that will be done self.performed_slices = [] # Get the number of processors used self.nproc = get_nproc(model_dir) # set th initial timestep: self.current_step = ts_writer(ts) self.time_Ma = np.round(get_time(self.model_dir, self.current_step) * self.scf / (365 * 24 * 3600) / 1e6, 3) if not get_time_only: # Initiate a output dataframe self.output = None self._get_mesh() # if get_all: self.get_all() self.starting_output = self.output # for slices def set_current_ts(self, step): """ Function to reset the model output and replace the output object. """ # Reinstanciate the object with a new timestep: self.__init__(model_dir=self.model_dir, ts=step, scf=self.scf) ################################################## # RETRIEVING INFORMATION # ################################################## def get_all(self): """ Function to get all existing variables from the current working directory. """ # print('Getting all variables...') self.get_material() self.get_velocity() self.get_strain() self.get_stress() self.get_viscosity() self.get_temperature() # Get mesh information: def _get_mesh(self): # Set the file path: filename = self.model_dir + 'Mesh.linearMesh.' + \ self.current_step + '.h5' # Read the h5 file: data = h5.File(filename, 'r') # Get the information from the file: mesh_info = data['vertices'][()] # Write the info accordingly: if self.dim == 2: self.output = pd.DataFrame(data=mesh_info, columns=['x', 'y'], dtype='float') else: # in 3D: self.output = pd.DataFrame(data=mesh_info, columns=['x', 'y', 'z'], dtype='float') # Save the model dimensions: axes = self.output.columns.values max_dim = self.output.max().values min_dim = self.output.min().values for axis, min_val, max_val in zip(axes, min_dim, max_dim): self.boundary[axis] = [min_val, max_val] def get_velocity(self): try: self.scf except NameError: raise ValueError('No Scaling Factor detected!') if type(self.output) == dict: self._get_mesh() # Set the file path: filename = self.model_dir + 'VelocityField.' + \ self.current_step + '.h5' # Read the h5 file: data = h5.File(filename, 'r') # Get the information from the file: vel_info = data['data'][()] # Write the info accordingly: if self.dim == 2: velocity = pd.DataFrame(data=vel_info, columns=['vx', 'vy']) else: # in 3D: velocity = pd.DataFrame(data=vel_info, columns=['vx', 'vy', 'vz']) # Rescale velocity = velocity_rescale(velocity, self.scf) # Merge with the current output dataframe self.output = self.output.merge(velocity, left_index=True, right_index=True) def get_viscosity(self, convert_to_log=True): try: self.scf except: raise ValueError('No Scaling Factor detected!') if self.output is None: self._get_mesh() # Set the file path: filename = self.model_dir + 'ViscosityField.' + \ self.current_step + '.h5' # Read the h5 file: data = h5.File(filename, 'r') # Get the information from the file: mat_info = data['data'][()] # Write the info accordingly: viscosity = pd.DataFrame(data=mat_info, columns=['eta']) # Rescale if convert_to_log: viscosity = viscosity_rescale(viscosity, self.scf) else: viscosity *= self.scf # Merge: self.output = self.output.merge(viscosity, left_index=True, right_index=True) def get_material(self): # Set the file path: filename = self.model_dir + 'MaterialIndexField.' + \ self.current_step + '.h5' # Read the h5 file: data = h5.File(filename, 'r') # Get the information from the file: mat_info = data['data'][()] # Write the info accordingly: material =
pd.DataFrame(data=mat_info, columns=['mat'])
pandas.DataFrame
import sys from sqlalchemy import create_engine import pandas as pd from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer from sklearn.multioutput import MultiOutputClassifier from sklearn.pipeline import Pipeline, FeatureUnion from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report from feature_extraction import StartingVerbExtractor, ResponseLengthExtractor, tokenize from sklearn.ensemble import AdaBoostClassifier import pickle def load_data(database_filepath): ''' Loads the data from the passed path and splits it into X and y ''' # load data from database engine = create_engine('sqlite:///{}'.format(database_filepath)) df =
pd.read_sql_table('Response', engine)
pandas.read_sql_table
from kfp.components import InputPath, OutputPath from kfp.v2.dsl import (Artifact, Dataset, Input, Model, Output, Metrics, ClassificationMetrics) def get_full_tech_indi( # tech_indi_dataset01_path: InputPath('DataFrame'), # tech_indi_dataset02_path: InputPath('DataFrame'), # tech_indi_dataset03_path: InputPath('DataFrame'), # tech_indi_dataset04_path: InputPath('DataFrame'), # tech_indi_dataset05_path: InputPath('DataFrame'), # full_tech_indi_dataset_path: OutputPath('DataFrame') tech_indi_dataset01: Input[Dataset], tech_indi_dataset02: Input[Dataset], tech_indi_dataset03: Input[Dataset], tech_indi_dataset04: Input[Dataset], tech_indi_dataset05: Input[Dataset], tech_indi_dataset06: Input[Dataset], tech_indi_dataset07: Input[Dataset], tech_indi_dataset08: Input[Dataset], tech_indi_dataset09: Input[Dataset], tech_indi_dataset10: Input[Dataset], tech_indi_dataset11: Input[Dataset], full_tech_indi_dataset: Output[Dataset] ): import pandas as pd df_01 = pd.read_pickle(tech_indi_dataset01.path) df_02 = pd.read_pickle(tech_indi_dataset02.path) df_03 = pd.read_pickle(tech_indi_dataset03.path) df_04 = pd.read_pickle(tech_indi_dataset04.path) df_05 = pd.read_pickle(tech_indi_dataset05.path) df_06 = pd.read_pickle(tech_indi_dataset06.path) df_07 = pd.read_pickle(tech_indi_dataset07.path) df_08 = pd.read_pickle(tech_indi_dataset08.path) df_09 = pd.read_pickle(tech_indi_dataset09.path) df_10 = pd.read_pickle(tech_indi_dataset10.path) df_11 =
pd.read_pickle(tech_indi_dataset11.path)
pandas.read_pickle
from flask import Flask,request, render_template, session, redirect, url_for, session import numpy as np import pickle import pandas as pd import datetime as dt import bz2 app = Flask(__name__) # data = bz2.BZ2File('model.pkl', 'rb') # model = pickle.load(data) # REMEMBER TO LOAD THE MODEL AND THE SCALER! def conver_date(date): #WeekOfYear = dt.datetime.strptime(date, "%Y-%m-%d").weekofyear Year = dt.datetime.strptime(date, "%Y-%m-%d").year Month = dt.datetime.strptime(date, "%Y-%m-%d").month DayOfMonth = dt.datetime.strptime(date, "%Y-%m-%d").day return { "Year":Year, "Month": Month, "DayOfMonth":DayOfMonth} def one_hot(data): if data == "0": return 0 elif data == 'a': return 2 elif data == 'b': return 2 elif data == 'c': return 3 elif data == 'd': return 4 def radio_to_binary(data): if data == 'on': return 1 else: return 0 @app.route('/', methods=['GET', 'POST']) def index(): # # Create instance of the form. return render_template('home.html') @app.route('/prediction',methods=['POST']) def prediction(): feature_dict = {"SchoolHoliday": [int(request.form['school'])], "StoreType": [one_hot(request.form['store_type'])], "PromoOpen": [int(request.form['PromoOpen'])], "DayOfMonth": [conver_date(request.form['date'])['DayOfMonth']], "Year": [conver_date(request.form['date'])['Year']], "Month": [conver_date(request.form['date'])['Month']], "CompetionDistance": [int(request.form['competion_distance'])], "Assortment": [one_hot(request.form['assortment'])], "StateHoliday": [one_hot(request.form['state_holiday'])], "Store": [int(request.form['Store'])], "Promo": [radio_to_binary(request.form['promo'])], "Promo2": [radio_to_binary(request.form['promo2'])], "DayOfWeek": [int(request.form['day_of_week'])] } test_frame =
pd.DataFrame.from_dict(feature_dict)
pandas.DataFrame.from_dict
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.cluster.bicluster import SpectralCoclustering from bokeh.plotting import figure, output_file, show from bokeh.models import HoverTool, ColumnDataSource from itertools import product ######## practice pt1 x = pd.Series([6, 3, 8, 6], index=["q", "w", "e", "r"]) # print(x.index) # print(x) x = x.reindex(sorted(x.index)) # print(x.index) # print(x) y = pd.Series([7, 3, 5, 2], index=["e", "q", "r", "t"]) # print(x + y) ######## practice pt2 data = {'name': ['Tim', 'Jim', 'Pam', 'Sam'], 'age': [29, 31, 27, 35], 'ZIP': ['02115', '02130', '67700', '00100']} y =
pd.DataFrame(data, columns=["name", "age", "ZIP"])
pandas.DataFrame
import click import pandas as pd import os import time from binance.client import Client @click.command() @click.option('--pm', default=0.01, help='Profit Margin') @click.option('--ci', default=60, help='Check interval in seconds') def trade_coins(pm, ci): if os.path.isdir('crypto-data'): pass else: os.mkdir('crypto-data') if os.path.exists('cypto-data/crypto-log.txt'): os.remove('cypto-data/crypto-log.txt') else: pass file = open('crypto-data/crypto-log.txt', 'w') api_key = '<KEY>' api_secret = '<KEY>' client = Client(api_key, api_secret) print('--- Client Instantiated ---') file.write('--- Client Instantiated ---\n') pd.options.mode.chained_assignment = None coins = client.get_all_coins_info() print('--- Coins retrieved ---') file.write('--- Coins retrieved ---\n') coins_dataframe = pd.DataFrame(columns=['coin','trading','isLegalMoney']) for coin in coins: coins_dataframe = coins_dataframe.append({'coin': coin['coin'], 'trading': coin['trading'],'isLegalMoney': coin['isLegalMoney']}, ignore_index=True) coins_dataframe = coins_dataframe[coins_dataframe.trading > 0 ] coins_dataframe = coins_dataframe[coins_dataframe.isLegalMoney == 0] print('--- Retrieving Trade Fees ---') file.write('--- Retrieving Trade Fees ---\n') coins_dataframe['trade_fee'] = coins_dataframe.coin.apply(lambda x: client.get_trade_fee(symbol=x+'USDT')) coins_dataframe.trade_fee = coins_dataframe.trade_fee.apply(lambda x: x if len(x)> 0 else None) coins_dataframe = coins_dataframe[coins_dataframe.trade_fee.astype(str) != 'None'] coins_dataframe['trade_symbol'] = coins_dataframe.trade_fee.apply(lambda x: x[0]['symbol']) print('--- Trade fees retrieved ---') file.write('--- Trade fees retrieved ---\n') coins_dataframe.reset_index(inplace=True,drop=True) coins_dataframe['profit'] = 0 coins_dataframe['gained'] = 0 coins_dataframe['times_it_sold'] = 0 coins_dataframe['coin_status'] = 'initialized' print('--- Statistics initialized ---') file.write('--- Statistics initialized ---\n') initial_buying_prices = os.path.exists('crypto-data/initial_buying_prices.csv') coins_dataframe['initial_buy_price'] = None coins_dataframe['initial_buy_cost'] = None coins_dataframe.reset_index(drop=True,inplace=True) if initial_buying_prices: initial_buying_prices = pd.read_csv('crypto-data/initial_buying_prices.csv') for coin in initial_buying_prices.coin.values: if coin in coins_dataframe.coin.values: index = coins_dataframe[coins_dataframe.coin == coin].index[0] index_initial_buying_prices = initial_buying_prices[initial_buying_prices.coin == coin].index[0] coins_dataframe.loc[index, 'initial_buy_price'] = initial_buying_prices.loc[index_initial_buying_prices,'initial_buy_price'] coins_dataframe.loc[index, 'initial_buy_cost'] = initial_buying_prices.loc[index_initial_buying_prices,'initial_buy_cost'] else: prices = client.get_all_tickers() for price in prices: if price['symbol'] in coins_dataframe.trade_symbol.values: index = coins_dataframe[coins_dataframe.trade_symbol == price['symbol']].index[0] coins_dataframe.loc[index,'initial_buy_price'] = float(price['price']) coins_dataframe.loc[index,'initial_buy_cost'] = float(coins_dataframe.loc[index,'trade_fee'][0]['makerCommission']) * float(price['price']) coins_dataframe[['coin','initial_buy_price','initial_buy_cost']].to_csv('crypto-data/initial_buying_prices.csv',index=False) print('--- Initial prices retrieved ---') file.write('--- Initial prices retrieved ---\n') print('--- Starting the updating of the prices loop ---') file.write('--- Starting the updating of the prices loop ---\n') coins_sold_history = os.path.exists('crypto-data/coins_sold_history.csv') if coins_sold_history: df_coins_sold = pd.read_csv('crypto-data/coins_sold_history.csv') else: df_coins_sold = pd.DataFrame(columns=['coin','initial_buy_price','initial_buy_cost','out_price','estimated_cost', 'profit']) coins_rebought_history = os.path.exists('crypto-data/coins_rebought_history.csv') if coins_rebought_history: df_coins_rebought =
pd.read_csv('crypto-data/coins_rebought_history.csv')
pandas.read_csv
import numpy as np import matplotlib.pyplot as plt import seaborn as sns import pandas as pd import warnings warnings.filterwarnings("ignore") import yfinance as yf yf.pdr_override() import datetime as dt symbol = 'AMD' market = 'SPY' num_of_years = 1 start = dt.date.today() - dt.timedelta(days=365*num_of_years) end = dt.date.today() dataset = yf.download(symbol,start,end) benchmark = yf.download(market,start,end) dataset['Returns'] = dataset['Adj Close'].pct_change().dropna() PP = pd.Series((dataset['High'] + dataset['Low'] + dataset['Close']) / 3) R1 = pd.Series(2 * PP - dataset['Low']) S1 = pd.Series(2 * PP - dataset['High']) R2 = pd.Series(PP + dataset['High'] - dataset['Low']) S2 = pd.Series(PP - dataset['High'] + dataset['Low']) R3 = pd.Series(dataset['High'] + 2 * (PP - dataset['Low'])) S3 = pd.Series(dataset['Low'] - 2 * (dataset['High'] - PP)) R4 = pd.Series(dataset['High'] + 3 * (PP - dataset['Low'])) S4 = pd.Series(dataset['Low'] - 3 * (dataset['High'] - PP)) R5 =
pd.Series(dataset['High'] + 4 * (PP - dataset['Low']))
pandas.Series
import numpy as np import pandas as pd from scipy.optimize import minimize from tqdm import tqdm from kndetect.utils import extract_mimic_alerts_region def get_feature_names(npcs=3): """ Create the list of feature names depending on the number of principal components. Parameters ---------- npcs : int number of principal components to use Returns ------- list name of the features. """ names_root = ["coeff" + str(i + 1) + "_" for i in range(npcs)] + [ "residuo_", "maxflux_", ] return [i + j for j in ["g", "r"] for i in names_root] def calc_prediction(coeff, pcs_arr): """ given the coefficients and PCs, it calculates the prediction as a linear combination Parameters ---------- coeff: np.array of shape [num_pcs] coefficients of the linear combinations for the PCs pcs_arr: np.array of shape [num_pcs, num_prediction_points] The PCs that are being used as templates Returns ------- predicted_lc: np.array of shape [num_prediction_points] prediction as a linear comination of PCs """ predicted_lc = np.zeros_like(pcs_arr.shape[0]) for a, b in zip(pcs_arr, coeff): predicted_lc = np.add(predicted_lc, b * a) return predicted_lc def calc_loss( coeff, pcs_arr, light_curve_flux, light_curve_err, map_dates_to_arr_index, regularization_weight, low_var_indices=[1, 2], ): """ function to calculate the loss to be optimized Parameters ---------- coeff: np.array of shape [num_of_pcs] current value of coefficients pcs_arr: np.array of shape [num_pcs, num_prediction_points] principal components to the used for the prediction light_curve_flux: pandas column of shape [num_recorded_points] segment of lightcurve that is to be fitted light_curve_err: pandas column of shape [num_recorded_points] segment with corresponding error bars in the segment that is to be fitted. map_dates_to_arr_index: np.array of shape [num_recorded_points] maping that holds the index position corresponding to each point in the lightcurve regularization_weight: float weights given to the regularization term low_var_indices: list Indices along which variance is low. Default value is set to [1, 2] which regularizes the 2nd and 3rd PCs Returns ------- loss: (float) that is to be optimized """ # calculation of the reconstruction loss y_pred = calc_prediction(coeff, pcs_arr) real_flux = np.take(y_pred, map_dates_to_arr_index) reconstruction_loss = np.sum( np.divide(np.square(real_flux - light_curve_flux), np.square(light_curve_err)) ) # Calculate the regularization # Regularize the second coefficient regularization_term = 0 if low_var_indices is not None: regularization_term = np.sum(np.square(coeff[low_var_indices[:]])) # Regularize negative pcscoeff = 0 if coeff[0] < 0: regularization_term = regularization_term + np.square(coeff[0]) loss = reconstruction_loss + regularization_term * regularization_weight return loss def calc_residual( coeff, pcs_arr, light_curve_flux, light_curve_err, map_dates_to_arr_index ): """ function to calculate residual of the fit Parameters ---------- coeff: np.array of shape [num_of_pcs] current value of coefficients pcs: np.array of shape [num_pcs, num_prediction_points] principal components to the used for the prediction light_curve_flux: pandas column of shape [num_recorded_points] segment of lightcurve that is to be fitted light_curve_err: pandas column of shape [num_recorded_points] segment with corresponding error bars in the segment that is to be fitted. map_dates_to_arr_index: np.array of shape [num_recorded_points] maping that holds the index position corresponding to each point in the lightcurve Returns ------- residual: float residual value """ y_pred = calc_prediction(coeff, pcs_arr) real_flux = np.take(y_pred, map_dates_to_arr_index) diff = real_flux - light_curve_flux reconstruction_loss = np.mean( np.divide(np.square(diff), np.square(light_curve_err)) ) residual = np.sqrt(reconstruction_loss) return residual def predict_band_features( band_df, pcs, time_bin=0.25, flux_lim=200, low_var_indices=[1, 2] ): """ function to evaluate features for a band Parameters ---------- band_df: pandas.DataFrame dataframe with the data of only one band of a lightcurve pcs: np.array of shape [num pc components, num prediction points/bins] For example, pcs_arr[0] will correspond the the first principal component. time_bin: float Width of time gap between two elements in PCs. flux_lim: float (optional) Limit of minimum flux for prediction to be made in a band. Note that all the points in the band is used for the fit provided that max flux in the band > flux_lim low_var_indices: list Indices along which variance is low. Default value is set to [1, 2] which regularizes the 2nd and 3rd PCs Returns ------- features: list of features for the given band The features are in the same order in which the classifier was trained: coefficients of pcs, number of features, residual and maxflux. """ num_pcs = len(pcs) num_prediction_points = len(pcs[0]) if len(band_df) == 0: features = np.zeros(int(len(get_feature_names(num_pcs)) / 2)).tolist() return features max_loc = np.argmax(band_df["FLUXCAL"]) max_flux = band_df["FLUXCAL"].iloc[max_loc] # extract the prediction region mid_point_date = band_df["MJD"].iloc[max_loc] prediction_duration = time_bin * (num_prediction_points - 1) start_date = mid_point_date - prediction_duration / 2 end_date = mid_point_date + prediction_duration / 2 duration_index = (band_df["MJD"] > start_date) & (band_df["MJD"] < end_date) band_df = band_df[duration_index] if (max_flux > flux_lim) & (len(band_df) >= 2): # update the location max_loc = np.argmax(band_df["FLUXCAL"]) # create a mapping from JD to index in the prediction. # For Example, midpoint is at index (num_prediction_points - 1) / 2. The middle of the prediction region. map_dates_to_arr_index = np.around( (band_df["MJD"].values - mid_point_date).astype(float) / time_bin + (num_prediction_points - 1) / 2 ) map_dates_to_arr_index = map_dates_to_arr_index.astype(int) # Initil guess for coefficients. initial_guess = np.zeros(num_pcs) + 0.5 # Calculating the regularization weight to make it comparable to reconstruction loss part. err_bar_of_max_flux = band_df["FLUXCALERR"].iloc[max_loc] regularization_weight = np.square(max_flux / err_bar_of_max_flux) # normalize the flux and errorbars normalized_flux = band_df["FLUXCAL"].values / max_flux normalized_err_bars = band_df["FLUXCALERR"].values / max_flux # bounds for the coefficient bounds = [] for i in range(num_pcs): bounds.append([-2, 2]) # minimize the cost function result = minimize( calc_loss, initial_guess, args=( pcs, normalized_flux, normalized_err_bars, map_dates_to_arr_index, regularization_weight, low_var_indices, ), bounds=bounds, ) # extract the coefficients coeff = list(result.x) # maximum flux in a band max_band_flux = max_flux # calculate residuals residual = calc_residual( result.x, pcs, normalized_flux, normalized_err_bars, map_dates_to_arr_index ) else: coeff = np.zeros(num_pcs).tolist() residual = 0 max_band_flux = 0 # buid features list features = coeff features.append(residual) features.append(max_band_flux) return features def extract_features_all_bands(pcs, filters, lc, flux_lim, time_bin): """ Extract features for all the bands of lightcurve Parameters ---------- pcs: np.array of shape [num_pcs, num_prediction_points] principal components to the used for the prediction time_bin: float Width of time gap between two elements in PCs. filters: list List of broad band filters. lc: pd.DataFrame Keys should be ['MJD', 'FLUXCAL', 'FLUXCALERR', 'FLT']. flux_lim: float (optional) Limit of minimum flux for prediction to be made in a band. Note that all the points in the band is used for the fit provided that max flux in the band > flux_lim low_var_indices: list Indices along which variance is low. Default value is set to [1, 2] which regularizes the 2nd, 3rd PCs flux_lim: int/float flux value above which no predictions are made for a band time_bin: duration of a time bin in days. For eg, .25 means 6 hours Returns ------- all_features: list List of features for this object. Order is all features from first filter, then all features from second filters, etc. """ low_var_indices = [1, 2] all_features = [] for band in filters: band_df = lc[lc["FLT"] == band] features = predict_band_features( band_df=band_df, pcs=pcs, time_bin=time_bin, flux_lim=flux_lim, low_var_indices=low_var_indices, ) all_features.extend(features) return all_features def extract_features_all_lightcurves(lc_df, key, pcs, filters, mimic_alerts=False): """ extracts features for all lightcurves in df Parameters: lc_df: pandas DataFrame dataframe with data of differnet lightcurves. Columns must include: "MJD", "FLT", "FLUXCAL", "FLUXCALERR" and a key key: str Column name to identify each lightcurve to be fitted. pcs: np.array of shape [num_pcs, num_prediction_points] principal components to the used for the prediction filters: list list of filters/bands present in the lightcurves minic_alerts: bool boolean value to choose beetween extracting features for complete light curves or partical lightcurves. """ time_bin = 0.25 # 6 hours flux_lim = 200 object_ids = np.unique(lc_df[key]) feature_names = get_feature_names() features_df = {k: [] for k in feature_names} features_df["key"] = [] current_dates = [] for object_id in tqdm(object_ids): object_lc = lc_df[lc_df[key] == object_id] object_lc = object_lc[object_lc["FLUXCAL"] == object_lc["FLUXCAL"]] if mimic_alerts: object_lc, current_date = extract_mimic_alerts_region(object_lc, flux_lim) current_dates.append(current_date) features = extract_features_all_bands( pcs=pcs, filters=filters, lc=object_lc, flux_lim=flux_lim, time_bin=time_bin ) features_df["key"].append(object_id) for i, feature_name in enumerate(feature_names): features_df[feature_name].append(features[i]) if mimic_alerts: features_df["current_dates"] = current_dates return
pd.DataFrame.from_dict(features_df)
pandas.DataFrame.from_dict
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Nov 30 20:25:08 2019 @author: alexandradarmon """ ### RUN TIME SERIES import pandas as pd from punctuation.recognition.training_testing_split import ( get_nn_indexes ) from punctuation.feature_operations.distances import d_KL from punctuation.recognition.recognition_algorithms import ( launch_nearest_neighbour, launch_neural_net ) from punctuation.config import options from punctuation.utils.utils import ( load_corpus, int_or_nan ) from punctuation.time_series.time_functions import ( get_temporal, plot_histogram_years, plot_freq_overtime, plot_col_overtime ) import pandas as pd import numpy as np import matplotlib.style import matplotlib as mpl mpl.style.use('seaborn-paper') df = load_corpus() df_temporal = get_temporal(df=df) plot_histogram_years(df_temporal, show_middleyear=False, to_show=True, print_legend=False) plot_histogram_years(df_temporal,show_middleyear=True, to_show=True, print_legend=False) list_freq_pun_col = list(range(options.nb_signs)) freq_pun_col_1 = [1,4,5] freq_pun_col_2 = [0,7] freq_pun_col_3 = [2,3,6,8,9] for f in [freq_pun_col_1,freq_pun_col_2,freq_pun_col_3]: plot_freq_overtime(df_temporal, f, col_date='author_middle_age', min_date=1700, max_date=1950, to_show=True, print_legend=True) plot_freq_overtime(df_temporal, list_freq_pun_col, col_date='author_middle_age', min_date=1700, max_date=1950, to_show=True, print_legend=False) wells = pd.read_csv('data/Marya_Wells.csv').sort_values('Date') wells = pd.merge(wells, df_temporal, how='inner', on='title') wells['Date_bin'] = wells['Date'] plot_freq_overtime(wells, list_freq_pun_col, col_date='Date', min_date=min(wells['Date']), max_date=1922, print_legend=False, show_ci=True) fleming = pd.read_csv('data/Alex_Fleming.csv').sort_values('Date') fleming = pd.merge(fleming, df_temporal, how='left', on='title') fleming['Date_bin'] = fleming['Date'] plot_freq_overtime(fleming, list_freq_pun_col, col_date='Date', min_date=min(fleming['Date']), max_date=max(fleming['Date']), print_legend=False, show_ci=True) shakespeare = pd.read_csv('data/Alex_Shakespeare.csv').sort_values('Date') shakespeare = pd.merge(shakespeare, df_temporal, how='inner', on='title') shakespeare['Date_bin'] = shakespeare['Date'] plot_freq_overtime(shakespeare, list_freq_pun_col, col_date='Date', min_date=min(shakespeare['Date']), max_date=max(shakespeare['Date']), print_legend=False) dickens = pd.read_csv('data/Alex_Dickens.csv').sort_values('Date') dickens =
pd.merge(dickens, df_temporal, how='left', on='title')
pandas.merge
import pandas as pd import numpy as np from pandas_datareader import data import matplotlib.pyplot as plt import yaml import sys import math plt.style.use('ggplot') def LoadConfig( yamlpath: str)-> dict: config = yaml.load( open(yamlpath, 'r'), Loader=yaml.FullLoader) return config def GetData( ticker : str, start_date : str, end_date : str)-> pd.DataFrame: """Getting historic price data from yahoo finance. Arguments: ticker {str} start_date {str} end_date {str} Returns: pd.DataFrame --> the output price dataframe """ return data.DataReader(ticker,'yahoo', start_date, end_date) def PlotOptimalSharpeRatio(Agent): plt.plot(range(len(Agent.epoch_training)),Agent.epoch_training, color ="navy") plt.title("Sharpe ratio optimization") plt.xlabel("Number of Iterations") plt.ylabel("Sharpe Ratio") plt.grid(True) plt.savefig("outputfiles/graphs/Sharpe ratio optimization {} SMA noFeatures.png".format(str(Agent.input_size)), dpi=300) plt.close def PlotTraining(Agent): fig, ax = plt.subplots(nrows=3, figsize=(20, 10)) t = np.linspace(1, Agent.trading_periods, Agent.trading_periods)[::-1] ax[0].plot(t, Agent.prices[:Agent.trading_periods], color="navy") ax[0].set_xlabel("time") ax[0].set_ylabel("SMA-S&P500") ax[0].grid(True) ax[1].plot(t, Agent.action_space[:Agent.trading_periods], color="navy") ax[1].set_xlabel("time") ax[1].set_ylabel("Trading Signal") ax[1].grid(True) ax[2].plot(t, Agent.sumR, color="navy", label="Optimised Policy") ax[2].plot(range(len(Agent.returns[:Agent.trading_periods])), np.cumsum(Agent.returns[::-1][:Agent.trading_periods]), color="maroon", label="Benchmark") ax[2].set_xlabel("time") ax[2].set_ylabel("Cumulative Return") ax[2].legend(loc="upper left") ax[2].grid(True) plt.savefig("outputfiles/graphs/rrl_train{}.png".format(str(Agent.input_size)), dpi=300) fig.clear() def PlotWeight(Agent): plt.bar(range(len(Agent.w_opt)),Agent.w_opt, color ="navy") plt.title("Optimal Weights") plt.xlabel("Input Vector Order") plt.ylabel("Weight") plt.grid(True) plt.savefig("outputfiles/graphs/weights{}.png".format(str(Agent.input_size)), dpi=300) plt.close def PlotSMA(Agent): df =
pd.DataFrame(data=Agent.prices[::-1], index=None, columns=["a"])
pandas.DataFrame
import pandas as pd import geopandas as gpd import numpy as np from .graph import Graph from ..util import transform import logging from math import ceil, floor, sqrt class BusSim: def __init__( self, manager, day, start_time, elapse_time, avg_walking_speed=1.4, max_walking_min=-1, # HACK trip_delays=[] ): """The constructor of the BusSim class Args: day (str): the day in a week to perform simulation on start_time (str): the starting time to perform simulation on (HH:MM:SS) elapse_time (str): the elapse time from starting time to perform simulation on (HH:MM:SS) avg_walking_speed (float): the assumed average walking speed max_walking_min (float): the maximum allowed walking time minutes trip_delays (list[Tuple], optional): the list of trip-delay pairs to add the tuple should be in the format of `(trip_id, delay in HH:MM:SS)` """ self._logger = logging.getLogger('app') self._logger.info("Start initializing sim") self.manager = manager self.day = day self.start_time = start_time self.elapse_time = elapse_time self.avg_walking_speed = avg_walking_speed # HACK if max_walking_min == -1: max_walking_min = elapse_time self.max_walking_min = max_walking_min self.max_walking_distance = max_walking_min * 60.0 * avg_walking_speed self.stopTimes_final_df = self._gen_final_df(trip_delays) self.graph = Graph(self.stopTimes_final_df, start_time, elapse_time, self.max_walking_distance, avg_walking_speed) self._logger.info("Sim successfully initialized") def get_access_grid(self, start_stop=None, start_point=None, grid_size_min=2, route_remove=[]): max_x, min_x, max_y, min_y = self.manager.get_borders() x_num, y_num, grid_size = self._get_grid_dimention(grid_size_min) grid = np.zeros(x_num*y_num).reshape(y_num, -1) self._logger.info("Start searching graph") # first convert start_point into meters if start_point is not None: start_point = transform(start_point[0], start_point[1]) stops_radius_list = self.graph.search( start_stop, start_point, route_remove) if stops_radius_list is None or len(stops_radius_list) == 0: return grid self._logger.info("Start compressing") for bubble in stops_radius_list: min_x_idx = floor( (bubble["stop_x"] - min_x - bubble["radius"]) / grid_size) max_x_idx = floor( (bubble["stop_x"] - min_x + bubble["radius"]) / grid_size) min_y_idx = floor( (bubble["stop_y"] - min_y - bubble["radius"]) / grid_size) max_y_idx = floor( (bubble["stop_y"] - min_y + bubble["radius"]) / grid_size) # TODO: make this radius calculation more precise radius_idx = (max_x_idx - min_x_idx + 1) / 2 mid_x_idx = (max_x_idx + min_x_idx) / 2 mid_y_idx = (max_y_idx + min_y_idx) / 2 start_y = max(0, min_y_idx) start_x = max(0, min_x_idx) end_y = min(max_y_idx+1, y_num) end_x = min(max_x_idx+1, x_num) for y in range(start_y, end_y): for x in range(start_x, end_x): # check 4 corners, if the distance for all of them is greater than radius, then this grid is not in the circle if (y - mid_y_idx) ** 2 + (x - mid_x_idx) ** 2 < radius_idx ** 2 or \ (y - mid_y_idx) ** 2 + (x + 1 - mid_x_idx) ** 2 < radius_idx ** 2 or \ (y + 1 - mid_y_idx) ** 2 + (x - mid_x_idx) ** 2 < radius_idx ** 2 or \ (y + 1 - mid_y_idx) ** 2 + (x + 1 - mid_x_idx) ** 2 < radius_idx ** 2: grid[y][x] = 1 self._logger.info("Finish generating grid") return grid def get_gdf(self, start_stop=None, start_point=None, route_remove=[]): """Given a starting point(lat, lon) or a starting stop_id, compute the region covered in geopandas.Geodataframe Args: start_stop (str, optional): The path to the directory of the data files (contains both mmt_gtfs and plot subdirectories) start_point (str, optional): the day in a week to perform simulation on Returns: geopandas.GeoDataFrame: the GeoDataFrame of the region covered """ self._logger.info("Start searching graph") # first convert start_point into meters if start_point is not None: start_point = transform(start_point[0], start_point[1]) stops_radius_list = self.graph.search( start_stop, start_point, route_remove) if stops_radius_list is None or len(stops_radius_list) == 0: return self._logger.debug("start generating gdf") df =
pd.DataFrame(stops_radius_list)
pandas.DataFrame
import pandas as pd import matplotlib.pyplot as plt import numpy as np import seaborn as sns pd.set_option('display.max_columns', 500) def clean_features(data, type): df = pd.DataFrame(data) # df = df.drop("PassengerId", axis=1) df.set_index("PassengerId") df = df.drop(columns=['Cabin', 'Name', 'Ticket']) print((df.Fare == 0).sum()) if type == True: analyse_data(df) return df def analyse_data(df): print(df.Survived.value_counts(normalize=True)) fig, axes = plt.subplots(2, 4, figsize=(16, 10)) df["Faily_count"] = df.SibSp + df.Parch df["Faily_count"] = pd.cut(df["Faily_count"], bins=[-1, 0, 3, 7, 16], labels=["Alone", "Small Family", "Medium Family", "Big Family"]) alive_family = df[df["Survived"] == 1]["Faily_count"].value_counts() dead_family = df[df["Survived"] == 0]["Faily_count"].value_counts() family_df = pd.DataFrame([alive_family, dead_family]) family_df.index = ['Alive', 'Dead'] family_df.plot(kind="bar", stacked=True, ax=axes[0][1]) df["Age_Range"] = pd.cut(df["Age"], bins=[1, 14, 30, 50, 80], labels=["Child", "Adult", "MidAge", "Old"]) alive_age = df[df["Survived"] == 1]["Age_Range"].value_counts() dead_age = df[df["Survived"] == 0]["Age_Range"].value_counts() age_df =
pd.DataFrame([alive_age, dead_age])
pandas.DataFrame
from pandas import DataFrame, read_csv from PyQt5 import uic, QtCore from PyQt5.QtCore import Qt from PyQt5.QtWidgets import QDialog, QTableView, QPushButton, QHeaderView from Util import UI_DIR, resource_path class TableModel(QtCore.QAbstractTableModel): def __init__(self, data): super(TableModel, self).__init__() self._data = data def data(self, index, role): if role == Qt.DisplayRole: value = self._data.iloc[index.row(), index.column()] return str(value) def rowCount(self, index): return self._data.shape[0] def columnCount(self, index): return self._data.shape[1] def headerData(self, section, orientation, role): # section is the index of the column/row. if role == Qt.DisplayRole: if orientation == Qt.Horizontal: return str(self._data.columns[section]) if orientation == Qt.Vertical: return str(self._data.index[section]) class LogWindow(QDialog): def __init__(self, parent=None): super().__init__(parent) uic.loadUi(UI_DIR + "work_timer_log.ui", self) self.table: QTableView = self.findChild(QTableView, 'tableView') self.table.horizontalHeader().setSectionResizeMode(QHeaderView.Stretch) self.btnClear = self.findChild(QPushButton, 'btnClearLog') self.btnClear.clicked.connect(self.clearLog) self.btnDone = self.findChild(QPushButton, 'btnDone') self.btnDone.clicked.connect(self.dismissLog) self.loadLog() self.show() def loadLog(self): try: data = read_csv(resource_path("work_timer_log.csv"), header=None) data.columns = ['Date', 'Started Work At', 'Took Break For', 'Ended Work At', 'Total Work Time', 'Notes'] except: data =
DataFrame()
pandas.DataFrame
# coding: utf8 from .tsv_utils import complementary_list, add_demographics, baseline_df, chi2 from ..deep_learning.iotools import return_logger from scipy.stats import ttest_ind import shutil import pandas as pd from os import path import numpy as np import os import logging sex_dict = {'M': 0, 'F': 1} def create_split(diagnosis, diagnosis_df, merged_df, n_test, age_name="age", pval_threshold_ttest=0.80, t_val_chi2_threshold=0.0642, logger=None): """ Split data at the subject-level in training and test set with equivalent age and sex distributions :param diagnosis: (str) diagnosis on which the split is done :param diagnosis_df: DataFrame with columns including ['participant_id', 'session_id', 'diagnosis'] :param merged_df: DataFrame with columns including ['age', 'sex'] and containing the same sessions as diagnosis_df :param n_test: (float) If >= 1 number of subjects to put in the test set. If < 1 proportion of subjects to put in the test set. :param age_name: (str) label of the age column in the dataset. :param pval_threshold_ttest: (float) threshold for the t-test on age :param t_val_chi2_threshold: (float) threshold for the chi2 test on sex :param logger: Logger object from logging library :return: train_df (DataFrame) subjects in the train set test_df (DataFrame) subjects in the test set """ if logger is None: logger = logging logger.basicConfig(level=logging.DEBUG) diagnosis_baseline_df = baseline_df(diagnosis_df, diagnosis) baseline_demographics_df = add_demographics(diagnosis_baseline_df, merged_df, diagnosis) if n_test >= 1: n_test = int(n_test) else: n_test = int(n_test * len(diagnosis_baseline_df)) sex = list(baseline_demographics_df.sex.values) age = list(baseline_demographics_df[age_name].values) idx = np.arange(len(diagnosis_baseline_df)) flag_selection = True n_try = 0 while flag_selection: idx_test = np.random.choice(idx, size=n_test, replace=False) idx_test.sort() idx_train = complementary_list(idx, idx_test) # Find the a similar distribution for the age variable if len(set(age)) != 1: age_test = [float(age[idx]) for idx in idx_test] age_train = [float(age[idx]) for idx in idx_train] t_age, p_age = ttest_ind(age_test, age_train) else: p_age = 1 # Find the a similar distribution for the sex variable if len(set(sex)) != 1: sex_test = [sex_dict[sex[idx]] for idx in idx_test] sex_train = [sex_dict[sex[idx]] for idx in idx_train] T_sex = chi2(sex_test, sex_train) else: T_sex = 0 if T_sex < t_val_chi2_threshold and p_age > pval_threshold_ttest: flag_selection = False test_df = baseline_demographics_df.loc[idx_test] train_df = baseline_demographics_df.loc[idx_train] n_try += 1 logger.info("Split for diagnosis %s was found after %i trials" % (diagnosis, n_try)) return train_df, test_df def split_diagnoses(merged_tsv, formatted_data_path, n_test=100, age_name="age", subset_name="test", MCI_sub_categories=True, t_val_threshold=0.0642, p_val_threshold=0.80, verbosity=0): """ Performs a single split for each label independently on the subject level. The train folder will contain two lists per diagnosis (baseline and longitudinal), whereas the test folder will only include the list of baseline sessions. The age and sex distributions between the two sets must be non-significant (according to T-test and chi-square). Args: merged_tsv (str): Path to the file obtained by the command clinica iotools merge-tsv. formatted_data_path (str): Path to the folder containing data extracted by clinicadl tsvtool getlabels. n_test (float): If > 1, number of subjects to put in set with name 'subset_name'. If < 1, proportion of subjects to put in set with name 'subset_name'. If 0, no training set is created and the whole dataset is considered as one set with name 'subset_name'. age_name (str): Label of the age column in the dataset. subset_name (str): Name of the subset that is complementary to train. MCI_sub_categories (bool): If True, manages MCI sub-categories to avoid data leakage. t_val_threshold (float): The threshold used for the chi2 test on sex distributions. p_val_threshold (float): The threshold used for the T-test on age distributions. verbosity (int): level of verbosity. Returns: writes three files per <label>.tsv file present in formatted_data_path: - formatted_data_path/train/<label>.tsv - formatted_data_path/train/<label>_baseline.tsv - formatted_data_path/<subset_name>/<label>_baseline.tsv """ logger = return_logger(verbosity, "split") # Read files merged_df = pd.read_csv(merged_tsv, sep='\t') merged_df.set_index(['participant_id', 'session_id'], inplace=True) results_path = formatted_data_path train_path = path.join(results_path, 'train') if path.exists(train_path): shutil.rmtree(train_path) if n_test > 0: os.makedirs(train_path) test_path = path.join(results_path, subset_name) if path.exists(test_path): shutil.rmtree(test_path) os.makedirs(test_path) diagnosis_df_paths = os.listdir(results_path) diagnosis_df_paths = [x for x in diagnosis_df_paths if x.endswith('.tsv')] diagnosis_df_paths = [x for x in diagnosis_df_paths if not x.endswith('_baseline.tsv')] MCI_special_treatment = False if 'MCI.tsv' in diagnosis_df_paths and n_test > 0: if MCI_sub_categories: diagnosis_df_paths.remove('MCI.tsv') MCI_special_treatment = True elif 'sMCI.tsv' in diagnosis_df_paths or 'pMCI.tsv' in diagnosis_df_paths: logger.warning("MCI special treatment was deactivated though MCI subgroups were found." "Be aware that it may cause data leakage in transfer learning tasks.") # The baseline session must be kept before or we are taking all the sessions to mix them for diagnosis_df_path in diagnosis_df_paths: diagnosis_df = pd.read_csv(path.join(results_path, diagnosis_df_path), sep='\t') diagnosis = diagnosis_df_path.split('.')[0] if n_test > 0: train_df, test_df = create_split(diagnosis, diagnosis_df, merged_df, age_name=age_name, n_test=n_test, t_val_chi2_threshold=t_val_threshold, pval_threshold_ttest=p_val_threshold, logger=logger) # Save baseline splits train_df = train_df[['participant_id', 'session_id', 'diagnosis']] train_df.to_csv(path.join(train_path, str(diagnosis) + '_baseline.tsv'), sep='\t', index=False) test_df = test_df[['participant_id', 'session_id', 'diagnosis']] test_df.to_csv(path.join(test_path, str(diagnosis) + '_baseline.tsv'), sep='\t', index=False) # Retrieve all sessions for the training set complete_train_df = pd.DataFrame() for idx in train_df.index.values: subject = train_df.loc[idx, 'participant_id'] subject_df = diagnosis_df[diagnosis_df.participant_id == subject] complete_train_df = pd.concat([complete_train_df, subject_df]) complete_train_df.to_csv(path.join(train_path, str(diagnosis) + '.tsv'), sep='\t', index=False) else: diagnosis_baseline_df = baseline_df(diagnosis_df, diagnosis) test_df = diagnosis_baseline_df[['participant_id', 'session_id', 'diagnosis']] test_df.to_csv(path.join(test_path, str(diagnosis) + '_baseline.tsv'), sep='\t', index=False) if MCI_special_treatment: # Extraction of MCI subjects without intersection with the sMCI / pMCI train diagnosis_df = pd.read_csv(path.join(results_path, 'MCI.tsv'), sep='\t') MCI_df = diagnosis_df.set_index(['participant_id', 'session_id']) supplementary_diagnoses = [] logger.debug('Before subjects removal for MCI special treatment') sub_df = diagnosis_df.reset_index().groupby('participant_id')['session_id'].nunique() logger.debug('%i subjects, %i scans' % (len(sub_df), len(diagnosis_df))) if 'sMCI.tsv' in diagnosis_df_paths: sMCI_baseline_train_df = pd.read_csv(path.join(train_path, 'sMCI_baseline.tsv'), sep='\t') sMCI_baseline_test_df = pd.read_csv(path.join(test_path, 'sMCI_baseline.tsv'), sep='\t') sMCI_baseline_df = pd.concat([sMCI_baseline_train_df, sMCI_baseline_test_df]) sMCI_baseline_df.reset_index(drop=True, inplace=True) for idx in sMCI_baseline_df.index.values: subject = sMCI_baseline_df.loc[idx, 'participant_id'] MCI_df.drop(subject, inplace=True) supplementary_diagnoses.append('sMCI') logger.debug('Removed %i subjects based on sMCI label' % len(sMCI_baseline_df)) sub_df = MCI_df.reset_index().groupby('participant_id')['session_id'].nunique() logger.debug('%i subjects, %i scans' % (len(sub_df), len(MCI_df))) if 'pMCI.tsv' in diagnosis_df_paths: pMCI_baseline_train_df = pd.read_csv(path.join(train_path, 'pMCI_baseline.tsv'), sep='\t') pMCI_baseline_test_df = pd.read_csv(path.join(test_path, 'pMCI_baseline.tsv'), sep='\t') pMCI_baseline_df = pd.concat([pMCI_baseline_train_df, pMCI_baseline_test_df]) pMCI_baseline_df.reset_index(drop=True, inplace=True) for idx in pMCI_baseline_df.index.values: subject = pMCI_baseline_df.loc[idx, 'participant_id'] MCI_df.drop(subject, inplace=True) supplementary_diagnoses.append('pMCI') logger.debug('Removed %i subjects based on pMCI label' % len(pMCI_baseline_df)) sub_df = MCI_df.reset_index().groupby('participant_id')['session_id'].nunique() logger.debug('%i subjects, %i scans' % (len(sub_df), len(MCI_df))) if len(supplementary_diagnoses) == 0: raise ValueError('The MCI_sub_categories flag is not needed as there are no intersections with' 'MCI subcategories.') # Construction of supplementary train supplementary_train_df =
pd.DataFrame()
pandas.DataFrame
__author__ = 'saeedamen' # <NAME> # # Copyright 2016-2020 Cuemacro - https://www.cuemacro.com / @cuemacro # # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the # License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and limitations under the License. # import numpy as np import pandas as pd from numba import guvectorize from findatapy.timeseries import Calendar from finmarketpy.util.marketconstants import MarketConstants from finmarketpy.curve.abstractpricer import AbstractPricer market_constants = MarketConstants() @guvectorize(['void(f8[:], f8[:], f8[:,:], f8[:,:], intp, f8[:])'], '(n),(n),(n,m),(n,m),()->(n)', cache=True, target="cpu", nopython=True) def _forwards_interpolate_numba(spot_arr, spot_delivery_days_arr, quoted_delivery_days_arr, forwards_points_arr, no_of_tenors, out): for i, delivery_day in enumerate(spot_delivery_days_arr): for j in range(no_of_tenors): # curr_forward_pts = forwards_points_arr[i, j] # curr_delivery_days = quoted_delivery_days_arr[i, j] # next_forward_pts = forwards_points_arr[i, j+1] # next_delivery_days = quoted_delivery_days_arr[i, j+1] # In other words, SP (Spot) if delivery_day == 0: out[i] = spot_arr[i] break # Say if we're in between SP and 1W elif delivery_day <= quoted_delivery_days_arr[i, j]: out[i] = spot_arr[i] + (forwards_points_arr[i, j] / quoted_delivery_days_arr[i, j]) * delivery_day break # Eg. if we're in between 1W and 2W elif delivery_day >= quoted_delivery_days_arr[i, j] and delivery_day <= quoted_delivery_days_arr[i, j + 1]: # Alternative interpolation # interpolated_forwards_arr[i] = spot_arr[i] + \ # delivery_day * (forwards_points_arr[i, j+1] - forwards_points_arr[i, j]) \ # / (quoted_delivery_days_arr[i, j+1] - quoted_delivery_days_arr[i, j]) forward_points_per_day = (forwards_points_arr[i, j + 1] - forwards_points_arr[i, j]) \ / (quoted_delivery_days_arr[i, j + 1] - quoted_delivery_days_arr[i, j]) out[i] = spot_arr[i] + forward_points_per_day * delivery_day \ + forwards_points_arr[i, j] - (forward_points_per_day * quoted_delivery_days_arr[i, j]) break @guvectorize(['void(f8[:], f8[:,:], f8[:,:], f8[:,:], f8, f8, intp, f8[:,:])'], '(n),(n,m),(n,m),(n,m),(),(),()->(n,m)', cache=True, target="cpu", nopython=True) def _infer_base_currency_depo_numba(spot_arr, outright_forwards_arr, depo_arr, quoted_delivery_days_arr, base_conv, terms_conv, no_of_tenors, out): for i in range(len(out)): for j in range(no_of_tenors): out[i, j] = (((1 + depo_arr[i, j] * (quoted_delivery_days_arr[i, j] / terms_conv)) / (outright_forwards_arr[i, j] / spot_arr[i])) - 1) \ / (quoted_delivery_days_arr[i, j] / base_conv) @guvectorize(['void(f8[:], f8[:,:], f8[:,:], f8[:,:], f8, f8, intp, f8[:,:])'], '(n),(n,m),(n,m),(n,m),(),(),()->(n,m)', cache=True, target="cpu", nopython=True) def _infer_terms_currency_depo_numba(spot_arr, outright_forwards_arr, depo_arr, quoted_delivery_days_arr, base_conv, terms_conv, no_of_tenors, out): for i in range(len(out)): for j in range(no_of_tenors): out[i,j] = ((outright_forwards_arr[i,j] / spot_arr[i]) * (1 + depo_arr[i,j] * (quoted_delivery_days_arr[i,j] / base_conv)) - 1) \ / (quoted_delivery_days_arr[i,j] / terms_conv) def _forwards_interpolate(spot_arr, spot_delivery_days_arr, quoted_delivery_days_arr, forwards_points_arr, no_of_tenors): out = np.zeros(len(quoted_delivery_days_arr)) * np.nan for i, delivery_day in enumerate(spot_delivery_days_arr): for j in range(no_of_tenors): # curr_forward_pts = forwards_points_arr[i, j] # curr_delivery_days = quoted_delivery_days_arr[i, j] # next_forward_pts = forwards_points_arr[i, j+1] # next_delivery_days = quoted_delivery_days_arr[i, j+1] # In other words, SP (Spot) if delivery_day == 0: out[i] = spot_arr[i] break # Say if we're in between SP and 1W elif delivery_day <= quoted_delivery_days_arr[i, j]: out[i] = spot_arr[i] + (forwards_points_arr[i, j] / quoted_delivery_days_arr[i, j]) * delivery_day break # Eg. if we're in between 1W and 2W elif delivery_day >= quoted_delivery_days_arr[i, j] and delivery_day <= quoted_delivery_days_arr[i, j + 1]: # Alternative interpolation # interpolated_forwards_arr[i] = spot_arr[i] + \ # delivery_day * (forwards_points_arr[i, j+1] - forwards_points_arr[i, j]) \ # / (quoted_delivery_days_arr[i, j+1] - quoted_delivery_days_arr[i, j]) forward_points_per_day = (forwards_points_arr[i, j + 1] - forwards_points_arr[i, j]) \ / (quoted_delivery_days_arr[i, j + 1] - quoted_delivery_days_arr[i, j]) out[i] = spot_arr[i] + forward_points_per_day * delivery_day \ + forwards_points_arr[i, j] - (forward_points_per_day * quoted_delivery_days_arr[i, j]) break return out class FXForwardsPricer(AbstractPricer): """Prices forwards for odd dates which are not quoted using linear interpolation, eg. if we have forward points for 1W and 1M, and spot date but we want to price a 3W forward, or any arbitrary horizon date that lies in that interval Also calculates the implied deposit rate from FX spot, FX forward points and deposit rate. """ def __init__(self, market_df=None, quoted_delivery_df=None): self._calendar = Calendar() self._market_df = market_df self._quoted_delivery_df = quoted_delivery_df def price_instrument(self, cross, horizon_date, delivery_date, option_expiry_date=None, market_df=None, quoted_delivery_df=None, fx_forwards_tenor_for_interpolation=market_constants.fx_forwards_tenor_for_interpolation, return_as_df=True): """Creates an interpolated outright FX forward (and the associated points), for horizon dates/delivery dates given by the user from FX spot rates and FX forward points. This can be useful when we have an odd/broken date which isn't quoted. Uses linear interpolation between quoted dates to calculate the appropriate interpolated forward. Eg. if we ask for a delivery date in between 1W and 1M, we will interpolate between those. Parameters ---------- cross : str Currency pair horizon_date : DateTimeIndex Horizon dates for forward contracts delivery_date : DateTimeIndex Delivery dates for forward contracts market_df : DataFrame Contains FX spot and FX forward points data quoted_delivery_df : DataFrame (DateTimeIndex) Delivery dates for every quoted forward point fx_forwards_tenor_for_interpolation : str(list) Which forwards to use for interpolation Returns ------- DataFrame """ if market_df is None: market_df = self._market_df if quoted_delivery_df is None: quoted_delivery_df = self._quoted_delivery_df if quoted_delivery_df is None: quoted_delivery_df = self.generate_quoted_delivery(cross, market_df, quoted_delivery_df, fx_forwards_tenor_for_interpolation, cross) # Make horizon date and delivery date pandas DatetimeIndex if isinstance(horizon_date, pd.Timestamp): horizon_date = pd.DatetimeIndex([horizon_date]) delivery_date =
pd.DatetimeIndex([delivery_date])
pandas.DatetimeIndex
import zipfile import io import requests import json import pandas as pd pd.options.mode.chained_assignment = None import os, sys, yaml try: modulepath = os.path.dirname(os.path.realpath(__file__)).replace('\\', '/') + '/' except NameError: modulepath = 'facilitymatcher/' output_dir = modulepath + 'output/' data_dir = modulepath + 'data/' stewi_inventories = ["NEI","TRI","eGRID","RCRAInfo"] inventory_to_FRS_pgm_acronymn = {"NEI":"EIS","TRI":"TRIS","eGRID":"EGRID","GHGRP":"E-GGRT","RCRAInfo":"RCRAINFO","DMR":"NPDES"} def config(): configfile = None with open(modulepath + 'config.yaml', mode='r') as f: configfile = yaml.load(f,Loader=yaml.FullLoader) return configfile def download_extract_FRS_combined_national(FRSpath): _config = config()['databases']['FRS'] url = _config['url'] request = requests.get(url).content zip_file = zipfile.ZipFile(io.BytesIO(request)) zip_file.extractall(FRSpath) #Only can be applied before renaming the programs to inventories def filter_by_program_list(df,program_list): df = df[df['PGM_SYS_ACRNM'].isin(program_list)] return df #Only can be applied after renaming the programs to inventories def filter_by_inventory_list(df,inventory_list): df = df[df['Source'].isin(inventory_list)] return df #Only can be applied after renaming the programs to inventories def filter_by_inventory_id_list(df,inventories_of_interest,base_inventory,id_list): #Find FRS_IDs first FRS_ID_list = list(df.loc[(df['Source'] == base_inventory) & (df['FacilityID'].isin(id_list)),"FRS_ID"]) #Now use that FRS_ID list and list of inventories of interest to get decired matches df = df.loc[(df['Source'].isin(inventories_of_interest)) & (df['FRS_ID'].isin(FRS_ID_list))] return df def filter_by_facility_list(df,facility_list): df = df[df['FRS_ID'].isin(facility_list)] return df def list_facilities_not_in_bridge(bridges, facility_list): facilities = bridges[bridges['REGISTRY_ID'].isin(facility_list)] return bridges #Returns list of acronymns for inventories that correspond to def get_programs_for_inventory_list(list_of_inventories): program_list = [] for l in list_of_inventories: pgm_acronym = inventory_to_FRS_pgm_acronymn[l] program_list.append(pgm_acronym) return program_list def invert_inventory_to_FRS(): FRS_to_inventory_pgm_acronymn = {v: k for k, v in inventory_to_FRS_pgm_acronymn.items()} return FRS_to_inventory_pgm_acronymn #Function to return facility info from FRS web service #Limitation - the web service only matches on facility at a time ##example #id='2' #program_acronym='EGRID' def callFRSforProgramAcronymandIDfromAPI(program_acronym, id): # base url base = 'http://ofmpub.epa.gov/enviro/frs_rest_services' facilityquery = base + '.get_facilities?' pgm_sys_id = 'pgm_sys_id=' pgm_sys_acrnm = 'pgm_sys_acrnm=' output = 'output=JSON' url = facilityquery + pgm_sys_acrnm + program_acronym + '&' + pgm_sys_id + id + '&' + output facilityresponse = requests.get(url) facilityjson = json.loads(facilityresponse.text)['Results'] facilityinfo = facilityjson['FRSFacility'] return facilityinfo def getFRSIDfromAPIfaciltyinfo(facilityinfo): FRSID = facilityinfo[0]['RegistryId'] return FRSID def add_manual_matches(df_matches): #Read in manual matches manual_matches =
pd.read_csv(data_dir+'facilitymatches_manual.csv',header=0,dtype={'FacilityID':'str','FRS_ID':'str'})
pandas.read_csv
from . import filtertools from .sound import Sound from .library.voice_activity_detection import extract_voiced_segments from .dataset import NoiseDataSet import bisect import librosa.core import nltk import numpy as np import os import pandas as pd import scipy.fft import scipy.signal import time class Test(object): def __init__(self, folder='', store_wavs=False, sentences_per_condition=100): self.folder = folder self.id = int(time.time()) self._download_nltk_dependencies() self.results = dict() self.results_counter = dict() self.store_wavs = store_wavs self.to_store = [] self.other_data = [] self.sentences_per_condition = sentences_per_condition self.parameters = dict() def run(self, asr_system, dataset): raise NotImplementedError() def _extract_keywords(self, sentence): def is_keyword(word, pos): is_key_word = pos[:2] in ['NN', 'VB', 'JJ', 'CD', 'MD', 'RP', 'PR', 'RB', 'WR', 'IN', 'DT', 'EX', 'WP'] #is_posessive = '$' in pos banned = word in ['be', 'am', 'are', 'is', 'was', 'been', 'for', 'a', 'the', 'so', 'will', 'from', 'can', 'any', "n't"] include = word in ['us', 'we', 'he'] long_word = len(word) > 2 return (is_key_word and not banned and long_word) or include tokenized = nltk.word_tokenize(sentence) keywords = [word for (word, pos) in nltk.pos_tag(tokenized) if is_keyword(word, pos)] return keywords def _keyword_accuracy(self, prediction, transcription): """ TODO(lweerts): * Ensure every keyword can only count towards the accuracy as often as it occurs in the sentence. * Find the maximum number of keywords that occur in the correct order """ keywords_prediction = self._extract_keywords(prediction.lower()) keywords_transcription = self._extract_keywords(transcription.lower()) # Measure how many of the keywords in the transcription were in the prediction correct_keywords = [1 if k in keywords_prediction else 0 for k in keywords_transcription] return np.sum(correct_keywords)/len(correct_keywords), correct_keywords def _add_noise(self, speech_signal, noise_signal, snr, a_weighting=False, speech_volt_meter=False, speech_reference_level=None, noise_reference_level=None): if noise_signal is None: if speech_reference_level: speech_signal.set_advanced_level(speech_reference_level, a_weighting, speech_volt_meter) return speech_signal samplerate = min(speech_signal.samplerate_Hz, noise_signal.samplerate_Hz) if speech_signal.samplerate_Hz != noise_signal.samplerate_Hz: if speech_signal.samplerate_Hz > samplerate: speech_signal = Sound.resample(speech_signal, samplerate) else: noise_signal = Sound.resample(noise_signal, samplerate) # Resize or lengthen noise signal to match with speech signal. noise_aligned, noise_start, noise_end = self._align(speech_signal, noise_signal) noise_signal = Sound(noise_aligned, noise_signal.samplerate_Hz) if speech_reference_level is not None: speech_signal.set_advanced_level(speech_reference_level, a_weighting, speech_volt_meter) noise_signal.set_advanced_level(speech_reference_level - snr, a_weighting, False) elif noise_reference_level is not None: speech_signal.set_advanced_level(noise_reference_level + snr, a_weighting, speech_volt_meter) noise_signal.set_advanced_level(noise_reference_level, a_weighting, False) else: speech_level = speech_signal.get_advanced_level(a_weighting, speech_volt_meter) noise_level = noise_signal.get_advanced_level(a_weighting, False) noise_signal *= 10**(((speech_level - snr) - noise_level)/20.) return speech_signal + noise_signal def _align(self, speech_signal, noise): if speech_signal.samplerate_Hz != noise.samplerate_Hz: noise = Sound.resample(noise, speech_signal.samplerate_Hz) goal_len = len(speech_signal) if(goal_len == len(noise)): return noise, 0, goal_len elif goal_len <= len(noise): start = np.random.randint(0, len(noise) - goal_len) aligned_noise = Sound(noise[start:start + goal_len], noise.samplerate_Hz) return aligned_noise, start, start + goal_len else: raise ValueError('Noise needs to be longer than or equal to speech signal in duration.') def _generate_longterm_speech_shaped_noise(self, sound, dataset): samples = len(sound) freqs = np.abs(scipy.fft.fftfreq(samples, 1/sound.samplerate_Hz)) power = dataset.longterm_fft(freqs) power = np.array(power, dtype='complex') Np = (len(power) - 1) // 2 phases = np.random.rand(Np) * 2 * np.pi phases = np.cos(phases) + 1j * np.sin(phases) power[1:Np+1] *= phases power[-1:-1-Np:-1] = np.conj(power[1:Np+1]) return Sound(scipy.fft.ifft(power).real, sound.samplerate_Hz) def _generate_speech_shaped_noise(self, sound, modulated, modulation_rate_Hz=8): spectrogram = np.abs(scipy.fft.fft(sound))*np.exp(2j*np.pi*np.random.rand(len(sound))) noise = np.real(scipy.fft.ifft(spectrogram)) if modulated: t = np.arange(len(sound))/sound.samplerate_Hz modulation = 10**(30*(np.sin(2*np.pi*modulation_rate_Hz*t)-1)/40) noise = noise*modulation return Sound(noise, sound.samplerate_Hz) def _generate_gaussian_white_noise(self, duration_frames, samplerate): return Sound(np.random.randn(duration_frames), samplerate) def _generate_noise(self, sound, noise_type, longterm_dataset=None, kwargs={}): if noise_type is None: return None if isinstance(noise_type, NoiseDataSet): return Sound(noise_type.random_sample(len(sound), sound.samplerate_Hz), sound.samplerate_Hz) elif 'speech_shaped_longterm' in noise_type: return self._generate_longterm_speech_shaped_noise(sound, longterm_dataset, **kwargs) elif 'speech_shaped' in noise_type: if 'modulated' in noise_type: return self._generate_speech_shaped_noise(sound, True, **kwargs) else: return self._generate_speech_shaped_noise(sound, False, **kwargs) elif 'white_noise' in noise_type: return self._generate_gaussian_white_noise(len(sound), sound.samplerate_Hz, **kwargs) def _download_nltk_dependencies(self): try: nltk.data.find('tokenizers/punkt') except LookupError: nltk.download('punkt') try: nltk.data.find('taggers/averaged_perceptron_tagger') except LookupError: nltk.download('averaged_perceptron_tagger') return def _allocate_result_dataframe(self, index_values, index_names, column_names, result_name='standard'): midx = pd.MultiIndex.from_product( index_values, names=index_names ) empty_results = np.full_like(np.zeros((len(midx), len(column_names))), np.nan) self.results[result_name] = pd.DataFrame(empty_results, columns=column_names, index=midx) self.results_counter[result_name] = 0 def _allocate_result_dataframe_from_dataframe(self, old_results, result_name): self.results[result_name] =
pd.DataFrame(columns=old_results.columns, index=old_results.index)
pandas.DataFrame
import unittest import qteasy as qt import pandas as pd from pandas import Timestamp import numpy as np from numpy import int64 import itertools import datetime from qteasy.utilfuncs import list_to_str_format, regulate_date_format, time_str_format, str_to_list from qteasy.utilfuncs import maybe_trade_day, is_market_trade_day, prev_trade_day, next_trade_day, prev_market_trade_day from qteasy.utilfuncs import next_market_trade_day from qteasy.space import Space, Axis, space_around_centre, ResultPool from qteasy.core import apply_loop from qteasy.built_in import SelectingFinanceIndicator from qteasy.history import stack_dataframes from qteasy.tsfuncs import income, indicators, name_change, get_bar from qteasy.tsfuncs import stock_basic, trade_calendar, new_share, get_index from qteasy.tsfuncs import balance, cashflow, top_list, index_indicators, composite from qteasy.tsfuncs import future_basic, future_daily, options_basic, options_daily from qteasy.tsfuncs import fund_basic, fund_net_value, index_basic from qteasy.evaluate import eval_alpha, eval_benchmark, eval_beta, eval_fv from qteasy.evaluate import eval_info_ratio, eval_max_drawdown, eval_sharp from qteasy.evaluate import eval_volatility from qteasy.tafuncs import bbands, dema, ema, ht, kama, ma, mama, mavp, mid_point from qteasy.tafuncs import mid_price, sar, sarext, sma, t3, tema, trima, wma, adx, adxr from qteasy.tafuncs import apo, bop, cci, cmo, dx, macd, macdext, aroon, aroonosc from qteasy.tafuncs import macdfix, mfi, minus_di, minus_dm, mom, plus_di, plus_dm from qteasy.tafuncs import ppo, roc, rocp, rocr, rocr100, rsi, stoch, stochf, stochrsi from qteasy.tafuncs import trix, ultosc, willr, ad, adosc, obv, atr, natr, trange from qteasy.tafuncs import avgprice, medprice, typprice, wclprice, ht_dcperiod from qteasy.tafuncs import ht_dcphase, ht_phasor, ht_sine, ht_trendmode, cdl2crows from qteasy.tafuncs import cdl3blackcrows, cdl3inside, cdl3linestrike, cdl3outside from qteasy.tafuncs import cdl3starsinsouth, cdl3whitesoldiers, cdlabandonedbaby from qteasy.tafuncs import cdladvanceblock, cdlbelthold, cdlbreakaway, cdlclosingmarubozu from qteasy.tafuncs import cdlconcealbabyswall, cdlcounterattack, cdldarkcloudcover from qteasy.tafuncs import cdldoji, cdldojistar, cdldragonflydoji, cdlengulfing from qteasy.tafuncs import cdleveningdojistar, cdleveningstar, cdlgapsidesidewhite from qteasy.tafuncs import cdlgravestonedoji, cdlhammer, cdlhangingman, cdlharami from qteasy.tafuncs import cdlharamicross, cdlhighwave, cdlhikkake, cdlhikkakemod from qteasy.tafuncs import cdlhomingpigeon, cdlidentical3crows, cdlinneck from qteasy.tafuncs import cdlinvertedhammer, cdlkicking, cdlkickingbylength from qteasy.tafuncs import cdlladderbottom, cdllongleggeddoji, cdllongline, cdlmarubozu from qteasy.tafuncs import cdlmatchinglow, cdlmathold, cdlmorningdojistar, cdlmorningstar from qteasy.tafuncs import cdlonneck, cdlpiercing, cdlrickshawman, cdlrisefall3methods from qteasy.tafuncs import cdlseparatinglines, cdlshootingstar, cdlshortline, cdlspinningtop from qteasy.tafuncs import cdlstalledpattern, cdlsticksandwich, cdltakuri, cdltasukigap from qteasy.tafuncs import cdlthrusting, cdltristar, cdlunique3river, cdlupsidegap2crows from qteasy.tafuncs import cdlxsidegap3methods, beta, correl, linearreg, linearreg_angle from qteasy.tafuncs import linearreg_intercept, linearreg_slope, stddev, tsf, var, acos from qteasy.tafuncs import asin, atan, ceil, cos, cosh, exp, floor, ln, log10, sin, sinh from qteasy.tafuncs import sqrt, tan, tanh, add, div, max, maxindex, min, minindex, minmax from qteasy.tafuncs import minmaxindex, mult, sub, sum from qteasy.history import get_financial_report_type_raw_data, get_price_type_raw_data from qteasy.database import DataSource from qteasy._arg_validators import _parse_string_kwargs, _valid_qt_kwargs class TestCost(unittest.TestCase): def setUp(self): self.amounts = np.array([10000, 20000, 10000]) self.op = np.array([0, 1, -0.33333333]) self.prices = np.array([10, 20, 10]) self.r = qt.Cost() def test_rate_creation(self): print('testing rates objects\n') self.assertIsInstance(self.r, qt.Cost, 'Type should be Rate') def test_rate_operations(self): self.assertEqual(self.r['buy_fix'], 0.0, 'Item got is incorrect') self.assertEqual(self.r['sell_fix'], 0.0, 'Item got is wrong') self.assertEqual(self.r['buy_rate'], 0.003, 'Item got is incorrect') self.assertEqual(self.r['sell_rate'], 0.001, 'Item got is incorrect') self.assertEqual(self.r['buy_min'], 5., 'Item got is incorrect') self.assertEqual(self.r['sell_min'], 0.0, 'Item got is incorrect') self.assertEqual(self.r['slipage'], 0.0, 'Item got is incorrect') self.assertEqual(np.allclose(self.r(self.amounts), [0.003, 0.003, 0.003]), True, 'fee calculation wrong') def test_rate_fee(self): self.r.buy_rate = 0.003 self.r.sell_rate = 0.001 self.r.buy_fix = 0 self.r.sell_fix = 0 self.r.buy_min = 0 self.r.sell_min = 0 self.r.slipage = 0 print('\nSell result with fixed rate = 0.001 and moq = 0:') print(self.r.get_selling_result(self.prices, self.op, self.amounts)) test_rate_fee_result = self.r.get_selling_result(self.prices, self.op, self.amounts) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 0., -3333.3333]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], 33299.999667, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 33.333332999999996, msg='result incorrect') print('\nSell result with fixed rate = 0.001 and moq = 1:') print(self.r.get_selling_result(self.prices, self.op, self.amounts, 1)) test_rate_fee_result = self.r.get_selling_result(self.prices, self.op, self.amounts, 1) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 0., -3333]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], 33296.67, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 33.33, msg='result incorrect') print('\nSell result with fixed rate = 0.001 and moq = 100:') print(self.r.get_selling_result(self.prices, self.op, self.amounts, 100)) test_rate_fee_result = self.r.get_selling_result(self.prices, self.op, self.amounts, 100) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 0., -3300]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], 32967.0, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 33, msg='result incorrect') print('\nPurchase result with fixed rate = 0.003 and moq = 0:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 0)) test_rate_fee_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 0) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 997.00897308, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 59.82053838484547, msg='result incorrect') print('\nPurchase result with fixed rate = 0.003 and moq = 1:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 1)) test_rate_fee_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 1) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 997., 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], -19999.82, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 59.82, msg='result incorrect') print('\nPurchase result with fixed rate = 0.003 and moq = 100:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 100)) test_rate_fee_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 100) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 900., 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], -18054., msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 54.0, msg='result incorrect') def test_min_fee(self): self.r.buy_rate = 0. self.r.sell_rate = 0. self.r.buy_fix = 0. self.r.sell_fix = 0. self.r.buy_min = 300 self.r.sell_min = 300 self.r.slipage = 0. print('\npurchase result with fixed cost rate with min fee = 300 and moq = 0:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 0)) test_min_fee_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 0) self.assertIs(np.allclose(test_min_fee_result[0], [0., 985, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_min_fee_result[2], 300.0, msg='result incorrect') print('\npurchase result with fixed cost rate with min fee = 300 and moq = 10:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 10)) test_min_fee_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 10) self.assertIs(np.allclose(test_min_fee_result[0], [0., 980, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], -19900.0, msg='result incorrect') self.assertAlmostEqual(test_min_fee_result[2], 300.0, msg='result incorrect') print('\npurchase result with fixed cost rate with min fee = 300 and moq = 100:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 100)) test_min_fee_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 100) self.assertIs(np.allclose(test_min_fee_result[0], [0., 900, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], -18300.0, msg='result incorrect') self.assertAlmostEqual(test_min_fee_result[2], 300.0, msg='result incorrect') print('\nselling result with fixed cost rate with min fee = 300 and moq = 0:') print(self.r.get_selling_result(self.prices, self.op, self.amounts)) test_min_fee_result = self.r.get_selling_result(self.prices, self.op, self.amounts) self.assertIs(np.allclose(test_min_fee_result[0], [0, 0, -3333.3333]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], 33033.333) self.assertAlmostEqual(test_min_fee_result[2], 300.0) print('\nselling result with fixed cost rate with min fee = 300 and moq = 1:') print(self.r.get_selling_result(self.prices, self.op, self.amounts, 1)) test_min_fee_result = self.r.get_selling_result(self.prices, self.op, self.amounts, 1) self.assertIs(np.allclose(test_min_fee_result[0], [0, 0, -3333]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], 33030) self.assertAlmostEqual(test_min_fee_result[2], 300.0) print('\nselling result with fixed cost rate with min fee = 300 and moq = 100:') print(self.r.get_selling_result(self.prices, self.op, self.amounts, 100)) test_min_fee_result = self.r.get_selling_result(self.prices, self.op, self.amounts, 100) self.assertIs(np.allclose(test_min_fee_result[0], [0, 0, -3300]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], 32700) self.assertAlmostEqual(test_min_fee_result[2], 300.0) def test_rate_with_min(self): """Test transaction cost calculated by rate with min_fee""" self.r.buy_rate = 0.0153 self.r.sell_rate = 0.01 self.r.buy_fix = 0. self.r.sell_fix = 0. self.r.buy_min = 300 self.r.sell_min = 333 self.r.slipage = 0. print('\npurchase result with fixed cost rate with buy_rate = 0.0153, min fee = 300 and moq = 0:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 0)) test_rate_with_min_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 0) self.assertIs(np.allclose(test_rate_with_min_result[0], [0., 984.9305624, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_rate_with_min_result[2], 301.3887520929774, msg='result incorrect') print('\npurchase result with fixed cost rate with buy_rate = 0.0153, min fee = 300 and moq = 10:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 10)) test_rate_with_min_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 10) self.assertIs(np.allclose(test_rate_with_min_result[0], [0., 980, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], -19900.0, msg='result incorrect') self.assertAlmostEqual(test_rate_with_min_result[2], 300.0, msg='result incorrect') print('\npurchase result with fixed cost rate with buy_rate = 0.0153, min fee = 300 and moq = 100:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 100)) test_rate_with_min_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 100) self.assertIs(np.allclose(test_rate_with_min_result[0], [0., 900, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], -18300.0, msg='result incorrect') self.assertAlmostEqual(test_rate_with_min_result[2], 300.0, msg='result incorrect') print('\nselling result with fixed cost rate with sell_rate = 0.01, min fee = 333 and moq = 0:') print(self.r.get_selling_result(self.prices, self.op, self.amounts)) test_rate_with_min_result = self.r.get_selling_result(self.prices, self.op, self.amounts) self.assertIs(np.allclose(test_rate_with_min_result[0], [0, 0, -3333.3333]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], 32999.99967) self.assertAlmostEqual(test_rate_with_min_result[2], 333.33333) print('\nselling result with fixed cost rate with sell_rate = 0.01, min fee = 333 and moq = 1:') print(self.r.get_selling_result(self.prices, self.op, self.amounts, 1)) test_rate_with_min_result = self.r.get_selling_result(self.prices, self.op, self.amounts, 1) self.assertIs(np.allclose(test_rate_with_min_result[0], [0, 0, -3333]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], 32996.7) self.assertAlmostEqual(test_rate_with_min_result[2], 333.3) print('\nselling result with fixed cost rate with sell_rate = 0.01, min fee = 333 and moq = 100:') print(self.r.get_selling_result(self.prices, self.op, self.amounts, 100)) test_rate_with_min_result = self.r.get_selling_result(self.prices, self.op, self.amounts, 100) self.assertIs(np.allclose(test_rate_with_min_result[0], [0, 0, -3300]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], 32667.0) self.assertAlmostEqual(test_rate_with_min_result[2], 333.0) def test_fixed_fee(self): self.r.buy_rate = 0. self.r.sell_rate = 0. self.r.buy_fix = 200 self.r.sell_fix = 150 self.r.buy_min = 0 self.r.sell_min = 0 self.r.slipage = 0 print('\nselling result of fixed cost with fixed fee = 150 and moq=0:') print(self.r.get_selling_result(self.prices, self.op, self.amounts, 0)) test_fixed_fee_result = self.r.get_selling_result(self.prices, self.op, self.amounts) self.assertIs(np.allclose(test_fixed_fee_result[0], [0, 0, -3333.3333]), True, 'result incorrect') self.assertAlmostEqual(test_fixed_fee_result[1], 33183.333, msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 150.0, msg='result incorrect') print('\nselling result of fixed cost with fixed fee = 150 and moq=100:') print(self.r.get_selling_result(self.prices, self.op, self.amounts, 100)) test_fixed_fee_result = self.r.get_selling_result(self.prices, self.op, self.amounts, 100) self.assertIs(np.allclose(test_fixed_fee_result[0], [0, 0, -3300.]), True, f'result incorrect, {test_fixed_fee_result[0]} does not equal to [0,0,-3400]') self.assertAlmostEqual(test_fixed_fee_result[1], 32850., msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 150., msg='result incorrect') print('\npurchase result of fixed cost with fixed fee = 200:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 0)) test_fixed_fee_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 0) self.assertIs(np.allclose(test_fixed_fee_result[0], [0., 990., 0.]), True, 'result incorrect') self.assertAlmostEqual(test_fixed_fee_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 200.0, msg='result incorrect') print('\npurchase result of fixed cost with fixed fee = 200:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 100)) test_fixed_fee_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 100) self.assertIs(np.allclose(test_fixed_fee_result[0], [0., 900., 0.]), True, 'result incorrect') self.assertAlmostEqual(test_fixed_fee_result[1], -18200.0, msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 200.0, msg='result incorrect') def test_slipage(self): self.r.buy_fix = 0 self.r.sell_fix = 0 self.r.buy_min = 0 self.r.sell_min = 0 self.r.buy_rate = 0.003 self.r.sell_rate = 0.001 self.r.slipage = 1E-9 print('\npurchase result of fixed rate = 0.003 and slipage = 1E-10 and moq = 0:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 0)) print('\npurchase result of fixed rate = 0.003 and slipage = 1E-10 and moq = 100:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 100)) print('\nselling result with fixed rate = 0.001 and slipage = 1E-10:') print(self.r.get_selling_result(self.prices, self.op, self.amounts)) test_fixed_fee_result = self.r.get_selling_result(self.prices, self.op, self.amounts) self.assertIs(np.allclose(test_fixed_fee_result[0], [0, 0, -3333.3333]), True, f'{test_fixed_fee_result[0]} does not equal to [0, 0, -10000]') self.assertAlmostEqual(test_fixed_fee_result[1], 33298.88855591, msg=f'{test_fixed_fee_result[1]} does not equal to 99890.') self.assertAlmostEqual(test_fixed_fee_result[2], 34.44444409, msg=f'{test_fixed_fee_result[2]} does not equal to -36.666663.') test_fixed_fee_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 0) self.assertIs(np.allclose(test_fixed_fee_result[0], [0., 996.98909294, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_fixed_fee_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 60.21814121353513, msg='result incorrect') test_fixed_fee_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 100) self.assertIs(np.allclose(test_fixed_fee_result[0], [0., 900., 0.]), True, 'result incorrect') self.assertAlmostEqual(test_fixed_fee_result[1], -18054.36, msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 54.36, msg='result incorrect') class TestSpace(unittest.TestCase): def test_creation(self): """ test if creation of space object is fine """ # first group of inputs, output Space with two discr axis from [0,10] print('testing space objects\n') # pars_list = [[(0, 10), (0, 10)], # [[0, 10], [0, 10]]] # # types_list = ['discr', # ['discr', 'discr']] # # input_pars = itertools.product(pars_list, types_list) # for p in input_pars: # # print(p) # s = qt.Space(*p) # b = s.boes # t = s.types # # print(s, t) # self.assertIsInstance(s, qt.Space) # self.assertEqual(b, [(0, 10), (0, 10)], 'boes incorrect!') # self.assertEqual(t, ['discr', 'discr'], 'types incorrect') # pars_list = [[(0, 10), (0, 10)], [[0, 10], [0, 10]]] types_list = ['foo, bar', ['foo', 'bar']] input_pars = itertools.product(pars_list, types_list) for p in input_pars: # print(p) s = Space(*p) b = s.boes t = s.types # print(s, t) self.assertEqual(b, [(0, 10), (0, 10)], 'boes incorrect!') self.assertEqual(t, ['enum', 'enum'], 'types incorrect') pars_list = [[(0, 10), (0, 10)], [[0, 10], [0, 10]]] types_list = [['discr', 'foobar']] input_pars = itertools.product(pars_list, types_list) for p in input_pars: # print(p) s = Space(*p) b = s.boes t = s.types # print(s, t) self.assertEqual(b, [(0, 10), (0, 10)], 'boes incorrect!') self.assertEqual(t, ['discr', 'enum'], 'types incorrect') pars_list = [(0., 10), (0, 10)] s = Space(pars=pars_list, par_types=None) self.assertEqual(s.types, ['conti', 'discr']) self.assertEqual(s.dim, 2) self.assertEqual(s.size, (10.0, 11)) self.assertEqual(s.shape, (np.inf, 11)) self.assertEqual(s.count, np.inf) self.assertEqual(s.boes, [(0., 10), (0, 10)]) pars_list = [(0., 10), (0, 10)] s = Space(pars=pars_list, par_types='conti, enum') self.assertEqual(s.types, ['conti', 'enum']) self.assertEqual(s.dim, 2) self.assertEqual(s.size, (10.0, 2)) self.assertEqual(s.shape, (np.inf, 2)) self.assertEqual(s.count, np.inf) self.assertEqual(s.boes, [(0., 10), (0, 10)]) pars_list = [(1, 2), (2, 3), (3, 4)] s = Space(pars=pars_list) self.assertEqual(s.types, ['discr', 'discr', 'discr']) self.assertEqual(s.dim, 3) self.assertEqual(s.size, (2, 2, 2)) self.assertEqual(s.shape, (2, 2, 2)) self.assertEqual(s.count, 8) self.assertEqual(s.boes, [(1, 2), (2, 3), (3, 4)]) pars_list = [(1, 2, 3), (2, 3, 4), (3, 4, 5)] s = Space(pars=pars_list) self.assertEqual(s.types, ['enum', 'enum', 'enum']) self.assertEqual(s.dim, 3) self.assertEqual(s.size, (3, 3, 3)) self.assertEqual(s.shape, (3, 3, 3)) self.assertEqual(s.count, 27) self.assertEqual(s.boes, [(1, 2, 3), (2, 3, 4), (3, 4, 5)]) pars_list = [((1, 2, 3), (2, 3, 4), (3, 4, 5))] s = Space(pars=pars_list) self.assertEqual(s.types, ['enum']) self.assertEqual(s.dim, 1) self.assertEqual(s.size, (3,)) self.assertEqual(s.shape, (3,)) self.assertEqual(s.count, 3) pars_list = ((1, 2, 3), (2, 3, 4), (3, 4, 5)) s = Space(pars=pars_list) self.assertEqual(s.types, ['enum', 'enum', 'enum']) self.assertEqual(s.dim, 3) self.assertEqual(s.size, (3, 3, 3)) self.assertEqual(s.shape, (3, 3, 3)) self.assertEqual(s.count, 27) self.assertEqual(s.boes, [(1, 2, 3), (2, 3, 4), (3, 4, 5)]) def test_extract(self): """ :return: """ pars_list = [(0, 10), (0, 10)] types_list = ['discr', 'discr'] s = Space(pars=pars_list, par_types=types_list) extracted_int, count = s.extract(3, 'interval') extracted_int_list = list(extracted_int) print('extracted int\n', extracted_int_list) self.assertEqual(count, 16, 'extraction count wrong!') self.assertEqual(extracted_int_list, [(0, 0), (0, 3), (0, 6), (0, 9), (3, 0), (3, 3), (3, 6), (3, 9), (6, 0), (6, 3), (6, 6), (6, 9), (9, 0), (9, 3), (9, 6), (9, 9)], 'space extraction wrong!') extracted_rand, count = s.extract(10, 'rand') extracted_rand_list = list(extracted_rand) self.assertEqual(count, 10, 'extraction count wrong!') print('extracted rand\n', extracted_rand_list) for point in list(extracted_rand_list): self.assertEqual(len(point), 2) self.assertLessEqual(point[0], 10) self.assertGreaterEqual(point[0], 0) self.assertLessEqual(point[1], 10) self.assertGreaterEqual(point[1], 0) pars_list = [(0., 10), (0, 10)] s = Space(pars=pars_list, par_types=None) extracted_int2, count = s.extract(3, 'interval') self.assertEqual(count, 16, 'extraction count wrong!') extracted_int_list2 = list(extracted_int2) self.assertEqual(extracted_int_list2, [(0, 0), (0, 3), (0, 6), (0, 9), (3, 0), (3, 3), (3, 6), (3, 9), (6, 0), (6, 3), (6, 6), (6, 9), (9, 0), (9, 3), (9, 6), (9, 9)], 'space extraction wrong!') print('extracted int list 2\n', extracted_int_list2) self.assertIsInstance(extracted_int_list2[0][0], float) self.assertIsInstance(extracted_int_list2[0][1], (int, int64)) extracted_rand2, count = s.extract(10, 'rand') self.assertEqual(count, 10, 'extraction count wrong!') extracted_rand_list2 = list(extracted_rand2) print('extracted rand list 2:\n', extracted_rand_list2) for point in extracted_rand_list2: self.assertEqual(len(point), 2) self.assertIsInstance(point[0], float) self.assertLessEqual(point[0], 10) self.assertGreaterEqual(point[0], 0) self.assertIsInstance(point[1], (int, int64)) self.assertLessEqual(point[1], 10) self.assertGreaterEqual(point[1], 0) pars_list = [(0., 10), ('a', 'b')] s = Space(pars=pars_list, par_types='enum, enum') extracted_int3, count = s.extract(1, 'interval') self.assertEqual(count, 4, 'extraction count wrong!') extracted_int_list3 = list(extracted_int3) self.assertEqual(extracted_int_list3, [(0., 'a'), (0., 'b'), (10, 'a'), (10, 'b')], 'space extraction wrong!') print('extracted int list 3\n', extracted_int_list3) self.assertIsInstance(extracted_int_list3[0][0], float) self.assertIsInstance(extracted_int_list3[0][1], str) extracted_rand3, count = s.extract(3, 'rand') self.assertEqual(count, 3, 'extraction count wrong!') extracted_rand_list3 = list(extracted_rand3) print('extracted rand list 3:\n', extracted_rand_list3) for point in extracted_rand_list3: self.assertEqual(len(point), 2) self.assertIsInstance(point[0], (float, int)) self.assertLessEqual(point[0], 10) self.assertGreaterEqual(point[0], 0) self.assertIsInstance(point[1], str) self.assertIn(point[1], ['a', 'b']) pars_list = [((0, 10), (1, 'c'), ('a', 'b'), (1, 14))] s = Space(pars=pars_list, par_types='enum') extracted_int4, count = s.extract(1, 'interval') self.assertEqual(count, 4, 'extraction count wrong!') extracted_int_list4 = list(extracted_int4) it = zip(extracted_int_list4, [(0, 10), (1, 'c'), (0, 'b'), (1, 14)]) for item, item2 in it: print(item, item2) self.assertTrue(all([tuple(ext_item) == item for ext_item, item in it])) print('extracted int list 4\n', extracted_int_list4) self.assertIsInstance(extracted_int_list4[0], tuple) extracted_rand4, count = s.extract(3, 'rand') self.assertEqual(count, 3, 'extraction count wrong!') extracted_rand_list4 = list(extracted_rand4) print('extracted rand list 4:\n', extracted_rand_list4) for point in extracted_rand_list4: self.assertEqual(len(point), 2) self.assertIsInstance(point[0], (int, str)) self.assertIn(point[0], [0, 1, 'a']) self.assertIsInstance(point[1], (int, str)) self.assertIn(point[1], [10, 14, 'b', 'c']) self.assertIn(point, [(0., 10), (1, 'c'), ('a', 'b'), (1, 14)]) pars_list = [((0, 10), (1, 'c'), ('a', 'b'), (1, 14)), (1, 4)] s = Space(pars=pars_list, par_types='enum, discr') extracted_int5, count = s.extract(1, 'interval') self.assertEqual(count, 16, 'extraction count wrong!') extracted_int_list5 = list(extracted_int5) for item, item2 in extracted_int_list5: print(item, item2) self.assertTrue(all([tuple(ext_item) == item for ext_item, item in it])) print('extracted int list 5\n', extracted_int_list5) self.assertIsInstance(extracted_int_list5[0], tuple) extracted_rand5, count = s.extract(5, 'rand') self.assertEqual(count, 5, 'extraction count wrong!') extracted_rand_list5 = list(extracted_rand5) print('extracted rand list 5:\n', extracted_rand_list5) for point in extracted_rand_list5: self.assertEqual(len(point), 2) self.assertIsInstance(point[0], tuple) print(f'type of point[1] is {type(point[1])}') self.assertIsInstance(point[1], (int, np.int64)) self.assertIn(point[0], [(0., 10), (1, 'c'), ('a', 'b'), (1, 14)]) print(f'test incremental extraction') pars_list = [(10., 250), (10., 250), (10., 250), (10., 250), (10., 250), (10., 250)] s = Space(pars_list) ext, count = s.extract(64, 'interval') self.assertEqual(count, 4096) points = list(ext) # 已经取出所有的点,围绕其中10个点生成十个subspaces # 检查是否每个subspace都为Space,是否都在s范围内,使用32生成点集,检查生成数量是否正确 for point in points[1000:1010]: subspace = s.from_point(point, 64) self.assertIsInstance(subspace, Space) self.assertTrue(subspace in s) self.assertEqual(subspace.dim, 6) self.assertEqual(subspace.types, ['conti', 'conti', 'conti', 'conti', 'conti', 'conti']) ext, count = subspace.extract(32) points = list(ext) self.assertGreaterEqual(count, 512) self.assertLessEqual(count, 4096) print(f'\n---------------------------------' f'\nthe space created around point <{point}> is' f'\n{subspace.boes}' f'\nand extracted {count} points, the first 5 are:' f'\n{points[:5]}') def test_axis_extract(self): # test axis object with conti type axis = Axis((0., 5)) self.assertIsInstance(axis, Axis) self.assertEqual(axis.axis_type, 'conti') self.assertEqual(axis.axis_boe, (0., 5.)) self.assertEqual(axis.count, np.inf) self.assertEqual(axis.size, 5.0) self.assertTrue(np.allclose(axis.extract(1, 'int'), [0., 1., 2., 3., 4.])) self.assertTrue(np.allclose(axis.extract(0.5, 'int'), [0., 0.5, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5])) extracted = axis.extract(8, 'rand') self.assertEqual(len(extracted), 8) self.assertTrue(all([(0 <= item <= 5) for item in extracted])) # test axis object with discrete type axis = Axis((1, 5)) self.assertIsInstance(axis, Axis) self.assertEqual(axis.axis_type, 'discr') self.assertEqual(axis.axis_boe, (1, 5)) self.assertEqual(axis.count, 5) self.assertEqual(axis.size, 5) self.assertTrue(np.allclose(axis.extract(1, 'int'), [1, 2, 3, 4, 5])) self.assertRaises(ValueError, axis.extract, 0.5, 'int') extracted = axis.extract(8, 'rand') self.assertEqual(len(extracted), 8) self.assertTrue(all([(item in [1, 2, 3, 4, 5]) for item in extracted])) # test axis object with enumerate type axis = Axis((1, 5, 7, 10, 'A', 'F')) self.assertIsInstance(axis, Axis) self.assertEqual(axis.axis_type, 'enum') self.assertEqual(axis.axis_boe, (1, 5, 7, 10, 'A', 'F')) self.assertEqual(axis.count, 6) self.assertEqual(axis.size, 6) self.assertEqual(axis.extract(1, 'int'), [1, 5, 7, 10, 'A', 'F']) self.assertRaises(ValueError, axis.extract, 0.5, 'int') extracted = axis.extract(8, 'rand') self.assertEqual(len(extracted), 8) self.assertTrue(all([(item in [1, 5, 7, 10, 'A', 'F']) for item in extracted])) def test_from_point(self): """测试从一个点生成一个space""" # 生成一个space,指定space中的一个点以及distance,生成一个sub-space pars_list = [(0., 10), (0, 10)] s = Space(pars=pars_list, par_types=None) self.assertEqual(s.types, ['conti', 'discr']) self.assertEqual(s.dim, 2) self.assertEqual(s.size, (10., 11)) self.assertEqual(s.shape, (np.inf, 11)) self.assertEqual(s.count, np.inf) self.assertEqual(s.boes, [(0., 10), (0, 10)]) print('create subspace from a point in space') p = (3, 3) distance = 2 subspace = s.from_point(p, distance) self.assertIsInstance(subspace, Space) self.assertEqual(subspace.types, ['conti', 'discr']) self.assertEqual(subspace.dim, 2) self.assertEqual(subspace.size, (4.0, 5)) self.assertEqual(subspace.shape, (np.inf, 5)) self.assertEqual(subspace.count, np.inf) self.assertEqual(subspace.boes, [(1, 5), (1, 5)]) print('create subspace from a 6 dimensional discrete space') s = Space(pars=[(10, 250), (10, 250), (10, 250), (10, 250), (10, 250), (10, 250)]) p = (15, 200, 150, 150, 150, 150) d = 10 subspace = s.from_point(p, d) self.assertIsInstance(subspace, Space) self.assertEqual(subspace.types, ['discr', 'discr', 'discr', 'discr', 'discr', 'discr']) self.assertEqual(subspace.dim, 6) self.assertEqual(subspace.volume, 65345616) self.assertEqual(subspace.size, (16, 21, 21, 21, 21, 21)) self.assertEqual(subspace.shape, (16, 21, 21, 21, 21, 21)) self.assertEqual(subspace.count, 65345616) self.assertEqual(subspace.boes, [(10, 25), (190, 210), (140, 160), (140, 160), (140, 160), (140, 160)]) print('create subspace from a 6 dimensional continuous space') s = Space(pars=[(10., 250), (10., 250), (10., 250), (10., 250), (10., 250), (10., 250)]) p = (15, 200, 150, 150, 150, 150) d = 10 subspace = s.from_point(p, d) self.assertIsInstance(subspace, Space) self.assertEqual(subspace.types, ['conti', 'conti', 'conti', 'conti', 'conti', 'conti']) self.assertEqual(subspace.dim, 6) self.assertEqual(subspace.volume, 48000000) self.assertEqual(subspace.size, (15.0, 20.0, 20.0, 20.0, 20.0, 20.0)) self.assertEqual(subspace.shape, (np.inf, np.inf, np.inf, np.inf, np.inf, np.inf)) self.assertEqual(subspace.count, np.inf) self.assertEqual(subspace.boes, [(10, 25), (190, 210), (140, 160), (140, 160), (140, 160), (140, 160)]) print('create subspace with different distances on each dimension') s = Space(pars=[(10., 250), (10., 250), (10., 250), (10., 250), (10., 250), (10., 250)]) p = (15, 200, 150, 150, 150, 150) d = [10, 5, 5, 10, 10, 5] subspace = s.from_point(p, d) self.assertIsInstance(subspace, Space) self.assertEqual(subspace.types, ['conti', 'conti', 'conti', 'conti', 'conti', 'conti']) self.assertEqual(subspace.dim, 6) self.assertEqual(subspace.volume, 6000000) self.assertEqual(subspace.size, (15.0, 10.0, 10.0, 20.0, 20.0, 10.0)) self.assertEqual(subspace.shape, (np.inf, np.inf, np.inf, np.inf, np.inf, np.inf)) self.assertEqual(subspace.count, np.inf) self.assertEqual(subspace.boes, [(10, 25), (195, 205), (145, 155), (140, 160), (140, 160), (145, 155)]) class TestCashPlan(unittest.TestCase): def setUp(self): self.cp1 = qt.CashPlan(['2012-01-01', '2010-01-01'], [10000, 20000], 0.1) self.cp1.info() self.cp2 = qt.CashPlan(['20100501'], 10000) self.cp2.info() self.cp3 = qt.CashPlan(pd.date_range(start='2019-01-01', freq='Y', periods=12), [i * 1000 + 10000 for i in range(12)], 0.035) self.cp3.info() def test_creation(self): self.assertIsInstance(self.cp1, qt.CashPlan, 'CashPlan object creation wrong') self.assertIsInstance(self.cp2, qt.CashPlan, 'CashPlan object creation wrong') self.assertIsInstance(self.cp3, qt.CashPlan, 'CashPlan object creation wrong') # test __repr__() print(self.cp1) print(self.cp2) print(self.cp3) # test __str__() self.cp1.info() self.cp2.info() self.cp3.info() # test assersion errors self.assertRaises(AssertionError, qt.CashPlan, '2016-01-01', [10000, 10000]) self.assertRaises(KeyError, qt.CashPlan, '2020-20-20', 10000) def test_properties(self): self.assertEqual(self.cp1.amounts, [20000, 10000], 'property wrong') self.assertEqual(self.cp1.first_day, Timestamp('2010-01-01')) self.assertEqual(self.cp1.last_day, Timestamp('2012-01-01')) self.assertEqual(self.cp1.investment_count, 2) self.assertEqual(self.cp1.period, 730) self.assertEqual(self.cp1.dates, [Timestamp('2010-01-01'), Timestamp('2012-01-01')]) self.assertEqual(self.cp1.ir, 0.1) self.assertAlmostEqual(self.cp1.closing_value, 34200) self.assertAlmostEqual(self.cp2.closing_value, 10000) self.assertAlmostEqual(self.cp3.closing_value, 220385.3483685) self.assertIsInstance(self.cp1.plan, pd.DataFrame) self.assertIsInstance(self.cp2.plan, pd.DataFrame) self.assertIsInstance(self.cp3.plan, pd.DataFrame) def test_operation(self): cp_self_add = self.cp1 + self.cp1 cp_add = self.cp1 + self.cp2 cp_add_int = self.cp1 + 10000 cp_mul_int = self.cp1 * 2 cp_mul_float = self.cp2 * 1.5 cp_mul_time = 3 * self.cp2 cp_mul_time2 = 2 * self.cp1 cp_mul_time3 = 2 * self.cp3 cp_mul_float2 = 2. * self.cp3 self.assertIsInstance(cp_self_add, qt.CashPlan) self.assertEqual(cp_self_add.amounts, [40000, 20000]) self.assertEqual(cp_add.amounts, [20000, 10000, 10000]) self.assertEqual(cp_add_int.amounts, [30000, 20000]) self.assertEqual(cp_mul_int.amounts, [40000, 20000]) self.assertEqual(cp_mul_float.amounts, [15000]) self.assertEqual(cp_mul_float.dates, [Timestamp('2010-05-01')]) self.assertEqual(cp_mul_time.amounts, [10000, 10000, 10000]) self.assertEqual(cp_mul_time.dates, [Timestamp('2010-05-01'), Timestamp('2011-05-01'), Timestamp('2012-04-30')]) self.assertEqual(cp_mul_time2.amounts, [20000, 10000, 20000, 10000]) self.assertEqual(cp_mul_time2.dates, [Timestamp('2010-01-01'), Timestamp('2012-01-01'), Timestamp('2014-01-01'), Timestamp('2016-01-01')]) self.assertEqual(cp_mul_time3.dates, [Timestamp('2019-12-31'), Timestamp('2020-12-31'), Timestamp('2021-12-31'), Timestamp('2022-12-31'), Timestamp('2023-12-31'), Timestamp('2024-12-31'), Timestamp('2025-12-31'), Timestamp('2026-12-31'), Timestamp('2027-12-31'), Timestamp('2028-12-31'), Timestamp('2029-12-31'), Timestamp('2030-12-31'), Timestamp('2031-12-29'), Timestamp('2032-12-29'), Timestamp('2033-12-29'), Timestamp('2034-12-29'), Timestamp('2035-12-29'), Timestamp('2036-12-29'), Timestamp('2037-12-29'), Timestamp('2038-12-29'), Timestamp('2039-12-29'), Timestamp('2040-12-29'), Timestamp('2041-12-29'), Timestamp('2042-12-29')]) self.assertEqual(cp_mul_float2.dates, [Timestamp('2019-12-31'), Timestamp('2020-12-31'), Timestamp('2021-12-31'), Timestamp('2022-12-31'), Timestamp('2023-12-31'), Timestamp('2024-12-31'), Timestamp('2025-12-31'), Timestamp('2026-12-31'), Timestamp('2027-12-31'), Timestamp('2028-12-31'), Timestamp('2029-12-31'), Timestamp('2030-12-31')]) self.assertEqual(cp_mul_float2.amounts, [20000.0, 22000.0, 24000.0, 26000.0, 28000.0, 30000.0, 32000.0, 34000.0, 36000.0, 38000.0, 40000.0, 42000.0]) class TestPool(unittest.TestCase): def setUp(self): self.p = ResultPool(5) self.items = ['first', 'second', (1, 2, 3), 'this', 24] self.perfs = [1, 2, 3, 4, 5] self.additional_result1 = ('abc', 12) self.additional_result2 = ([1, 2], -1) self.additional_result3 = (12, 5) def test_create(self): self.assertIsInstance(self.p, ResultPool) def test_operation(self): self.p.in_pool(self.additional_result1[0], self.additional_result1[1]) self.p.cut() self.assertEqual(self.p.item_count, 1) self.assertEqual(self.p.items, ['abc']) for item, perf in zip(self.items, self.perfs): self.p.in_pool(item, perf) self.assertEqual(self.p.item_count, 6) self.assertEqual(self.p.items, ['abc', 'first', 'second', (1, 2, 3), 'this', 24]) self.p.cut() self.assertEqual(self.p.items, ['second', (1, 2, 3), 'this', 24, 'abc']) self.assertEqual(self.p.perfs, [2, 3, 4, 5, 12]) self.p.in_pool(self.additional_result2[0], self.additional_result2[1]) self.p.in_pool(self.additional_result3[0], self.additional_result3[1]) self.assertEqual(self.p.item_count, 7) self.p.cut(keep_largest=False) self.assertEqual(self.p.items, [[1, 2], 'second', (1, 2, 3), 'this', 24]) self.assertEqual(self.p.perfs, [-1, 2, 3, 4, 5]) class TestCoreSubFuncs(unittest.TestCase): """Test all functions in core.py""" def setUp(self): pass def test_input_to_list(self): print('Testing input_to_list() function') input_str = 'first' self.assertEqual(qt.utilfuncs.input_to_list(input_str, 3), ['first', 'first', 'first']) self.assertEqual(qt.utilfuncs.input_to_list(input_str, 4), ['first', 'first', 'first', 'first']) self.assertEqual(qt.utilfuncs.input_to_list(input_str, 2, None), ['first', 'first']) input_list = ['first', 'second'] self.assertEqual(qt.utilfuncs.input_to_list(input_list, 3), ['first', 'second', None]) self.assertEqual(qt.utilfuncs.input_to_list(input_list, 4, 'padder'), ['first', 'second', 'padder', 'padder']) self.assertEqual(qt.utilfuncs.input_to_list(input_list, 1), ['first', 'second']) self.assertEqual(qt.utilfuncs.input_to_list(input_list, -5), ['first', 'second']) def test_point_in_space(self): sp = Space([(0., 10.), (0., 10.), (0., 10.)]) p1 = (5.5, 3.2, 7) p2 = (-1, 3, 10) self.assertTrue(p1 in sp) print(f'point {p1} is in space {sp}') self.assertFalse(p2 in sp) print(f'point {p2} is not in space {sp}') sp = Space([(0., 10.), (0., 10.), range(40, 3, -2)], 'conti, conti, enum') p1 = (5.5, 3.2, 8) self.assertTrue(p1 in sp) print(f'point {p1} is in space {sp}') def test_space_in_space(self): print('test if a space is in another space') sp = Space([(0., 10.), (0., 10.), (0., 10.)]) sp2 = Space([(0., 10.), (0., 10.), (0., 10.)]) self.assertTrue(sp2 in sp) self.assertTrue(sp in sp2) print(f'space {sp2} is in space {sp}\n' f'and space {sp} is in space {sp2}\n' f'they are equal to each other\n') sp2 = Space([(0, 5.), (2, 7.), (3., 9.)]) self.assertTrue(sp2 in sp) self.assertFalse(sp in sp2) print(f'space {sp2} is in space {sp}\n' f'and space {sp} is not in space {sp2}\n' f'{sp2} is a sub space of {sp}\n') sp2 = Space([(0, 5), (2, 7), (3., 9)]) self.assertFalse(sp2 in sp) self.assertFalse(sp in sp2) print(f'space {sp2} is not in space {sp}\n' f'and space {sp} is not in space {sp2}\n' f'they have different types of axes\n') sp = Space([(0., 10.), (0., 10.), range(40, 3, -2)]) self.assertFalse(sp in sp2) self.assertFalse(sp2 in sp) print(f'space {sp2} is not in space {sp}\n' f'and space {sp} is not in space {sp2}\n' f'they have different types of axes\n') def test_space_around_centre(self): sp = Space([(0., 10.), (0., 10.), (0., 10.)]) p1 = (5.5, 3.2, 7) ssp = space_around_centre(space=sp, centre=p1, radius=1.2) print(ssp.boes) print('\ntest multiple diameters:') self.assertEqual(ssp.boes, [(4.3, 6.7), (2.0, 4.4), (5.8, 8.2)]) ssp = space_around_centre(space=sp, centre=p1, radius=[1, 2, 1]) print(ssp.boes) self.assertEqual(ssp.boes, [(4.5, 6.5), (1.2000000000000002, 5.2), (6.0, 8.0)]) print('\ntest points on edge:') p2 = (5.5, 3.2, 10) ssp = space_around_centre(space=sp, centre=p1, radius=3.9) print(ssp.boes) self.assertEqual(ssp.boes, [(1.6, 9.4), (0.0, 7.1), (3.1, 10.0)]) print('\ntest enum spaces') sp = Space([(0, 100), range(40, 3, -2)], 'discr, enum') p1 = [34, 12] ssp = space_around_centre(space=sp, centre=p1, radius=5, ignore_enums=False) self.assertEqual(ssp.boes, [(29, 39), (22, 20, 18, 16, 14, 12, 10, 8, 6, 4)]) print(ssp.boes) print('\ntest enum space and ignore enum axis') ssp = space_around_centre(space=sp, centre=p1, radius=5) self.assertEqual(ssp.boes, [(29, 39), (40, 38, 36, 34, 32, 30, 28, 26, 24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4)]) print(sp.boes) def test_time_string_format(self): print('Testing qt.time_string_format() function:') t = 3.14 self.assertEqual(time_str_format(t), '3s 140.0ms') self.assertEqual(time_str_format(t, estimation=True), '3s ') self.assertEqual(time_str_format(t, short_form=True), '3"140') self.assertEqual(time_str_format(t, estimation=True, short_form=True), '3"') t = 300.14 self.assertEqual(time_str_format(t), '5min 140.0ms') self.assertEqual(time_str_format(t, estimation=True), '5min ') self.assertEqual(time_str_format(t, short_form=True), "5'140") self.assertEqual(time_str_format(t, estimation=True, short_form=True), "5'") t = 7435.0014 self.assertEqual(time_str_format(t), '2hrs 3min 55s 1.4ms') self.assertEqual(time_str_format(t, estimation=True), '2hrs ') self.assertEqual(time_str_format(t, short_form=True), "2H3'55\"001") self.assertEqual(time_str_format(t, estimation=True, short_form=True), "2H") t = 88425.0509 self.assertEqual(time_str_format(t), '1days 33min 45s 50.9ms') self.assertEqual(time_str_format(t, estimation=True), '1days ') self.assertEqual(time_str_format(t, short_form=True), "1D33'45\"051") self.assertEqual(time_str_format(t, estimation=True, short_form=True), "1D") def test_get_stock_pool(self): print(f'start test building stock pool function\n') share_basics = stock_basic(fields='ts_code,symbol,name,area,industry,market,list_date,exchange') print(f'\nselect all stocks by area') stock_pool = qt.get_stock_pool(area='上海') print(f'{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stock areas are "上海"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['area'].eq('上海').all()) print(f'\nselect all stocks by multiple areas') stock_pool = qt.get_stock_pool(area='贵州,北京,天津') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stock areas are in list of ["贵州", "北京", "天津"]\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['area'].isin(['贵州', '北京', '天津']).all()) print(f'\nselect all stocks by area and industry') stock_pool = qt.get_stock_pool(area='四川', industry='银行, 金融') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stock areas are "四川", and industry in ["银行", "金融"]\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['industry'].isin(['银行', '金融']).all()) self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['area'].isin(['四川']).all()) print(f'\nselect all stocks by industry') stock_pool = qt.get_stock_pool(industry='银行, 金融') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stocks industry in ["银行", "金融"]\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['industry'].isin(['银行', '金融']).all()) print(f'\nselect all stocks by market') stock_pool = qt.get_stock_pool(market='主板') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stock market is "主板"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['market'].isin(['主板']).all()) print(f'\nselect all stocks by market and list date') stock_pool = qt.get_stock_pool(date='2000-01-01', market='主板') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stock market is "主板", and list date after "2000-01-01"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['market'].isin(['主板']).all()) self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['list_date'].le('2000-01-01').all()) print(f'\nselect all stocks by list date') stock_pool = qt.get_stock_pool(date='1997-01-01') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all list date after "1997-01-01"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['list_date'].le('1997-01-01').all()) print(f'\nselect all stocks by exchange') stock_pool = qt.get_stock_pool(exchange='SSE') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all exchanges are "SSE"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['exchange'].eq('SSE').all()) print(f'\nselect all stocks by industry, area and list date') industry_list = ['银行', '全国地产', '互联网', '环境保护', '区域地产', '酒店餐饮', '运输设备', '综合类', '建筑工程', '玻璃', '家用电器', '文教休闲', '其他商业', '元器件', 'IT设备', '其他建材', '汽车服务', '火力发电', '医药商业', '汽车配件', '广告包装', '轻工机械', '新型电力', '多元金融', '饲料'] area_list = ['深圳', '北京', '吉林', '江苏', '辽宁', '广东', '安徽', '四川', '浙江', '湖南', '河北', '新疆', '山东', '河南', '山西', '江西', '青海', '湖北', '内蒙', '海南', '重庆', '陕西', '福建', '广西', '上海'] stock_pool = qt.get_stock_pool(date='19980101', industry=industry_list, area=area_list) print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all exchanges are "SSE"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['list_date'].le('1998-01-01').all()) self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['industry'].isin(industry_list).all()) self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['area'].isin(area_list).all()) self.assertRaises(KeyError, qt.get_stock_pool, industry=25) self.assertRaises(KeyError, qt.get_stock_pool, share_name='000300.SH') self.assertRaises(KeyError, qt.get_stock_pool, markets='SSE') class TestEvaluations(unittest.TestCase): """Test all evaluation functions in core.py""" # 以下手动计算结果在Excel文件中 def setUp(self): """用np.random生成测试用数据,使用cumsum()模拟股票走势""" self.test_data1 = pd.DataFrame([5.34892759, 5.65768696, 5.79227076, 5.56266871, 5.88189632, 6.24795001, 5.92755558, 6.38748165, 6.31331899, 5.86001665, 5.61048472, 5.30696736, 5.40406792, 5.03180571, 5.37886353, 5.78608307, 6.26540339, 6.59348026, 6.90943801, 6.70911677, 6.33015954, 6.06697417, 5.9752499, 6.45786408, 6.95273763, 6.7691991, 6.70355481, 6.28048969, 6.61344541, 6.24620003, 6.47409983, 6.4522311, 6.8773094, 6.99727832, 6.59262674, 6.59014938, 6.63758237, 6.38331869, 6.09902105, 6.35390109, 6.51993567, 6.87244592, 6.83963485, 7.08797815, 6.88003144, 6.83657323, 6.97819483, 7.01600276, 7.12554256, 7.58941523, 7.61014457, 7.21224091, 7.48174399, 7.66490854, 7.51371968, 7.11586198, 6.97147399, 6.67453301, 6.2042138, 6.33967015, 6.22187938, 5.98426993, 6.37096079, 6.55897161, 6.26422645, 6.69363762, 7.12668015, 6.83232926, 7.30524081, 7.4262041, 7.54031383, 7.17545919, 7.20659257, 7.44886016, 7.37094393, 6.88011022, 7.08142491, 6.74992833, 6.5967097, 6.21336693, 6.35565105, 6.82347596, 6.44773408, 6.84538053, 6.47966466, 6.09699528, 5.63927014, 6.01081024, 6.20585303, 6.60528206, 7.01594726, 7.03684251, 6.76574977, 7.08740846, 6.65336462, 7.07126686, 6.80058956, 6.79241977, 6.47843472, 6.39245474], columns=['value']) self.test_data2 = pd.DataFrame([5.09276527, 4.83828592, 4.6000911, 4.63170487, 4.63566451, 4.50546921, 4.96390044, 4.64557907, 4.25787855, 3.76585551, 3.38826334, 3.76243422, 4.06365426, 3.87084726, 3.91400935, 4.13438822, 4.27064542, 4.56776104, 5.03800296, 5.31070529, 5.39902276, 5.21186286, 5.05683114, 4.68842046, 5.11895168, 5.27151571, 5.72294993, 6.09961056, 6.26569635, 6.48806151, 6.16058885, 6.2582459, 6.38934791, 6.57831057, 6.19508831, 5.70155153, 5.20435735, 5.36538825, 5.40450056, 5.2227697, 5.37828693, 5.53058991, 6.02996797, 5.76802181, 5.66166713, 6.07988994, 5.61794367, 5.63218151, 6.10728013, 6.0324168, 6.27164431, 6.27551239, 6.52329665, 7.00470007, 7.34163113, 7.33699083, 7.67661334, 8.09395749, 7.68086668, 7.58341161, 7.46219819, 7.58671899, 7.19348298, 7.40088323, 7.47562005, 7.93342043, 8.2286081, 8.3521632, 8.43590025, 8.34977395, 8.57563095, 8.81586328, 9.08738649, 9.01542031, 8.8653815, 9.21763111, 9.04233017, 8.59533999, 8.47590075, 8.70857222, 8.78890756, 8.92697606, 9.35743773, 9.68280866, 10.15622021, 10.55908549, 10.6337894, 10.55197128, 10.65435176, 10.54611045, 10.19432562, 10.48320884, 10.36176768, 10.03186854, 10.23656092, 10.0062843, 10.13669686, 10.30758958, 9.87904176, 10.05126375], columns=['value']) self.test_data3 = pd.DataFrame([5.02851874, 5.20700348, 5.02410709, 5.49836387, 5.06834371, 5.10956737, 5.15314979, 5.02256472, 5.09746382, 5.23909247, 4.93410336, 4.96316186, 5.40026682, 5.7353255, 5.53438319, 5.79092139, 5.67528173, 5.89840855, 5.75379463, 6.10855386, 5.77322365, 5.84538021, 5.6103973, 5.7518655, 5.49729695, 5.13610628, 5.30524121, 5.68093462, 5.73251319, 6.04420783, 6.26929843, 6.59610234, 6.09872345, 6.25475121, 6.72927396, 6.91395783, 7.00693283, 7.36217783, 7.71516676, 7.67580263, 7.62477511, 7.73600568, 7.53457914, 7.46170277, 7.83658014, 8.11481319, 8.03705544, 7.64948845, 7.52043731, 7.67247943, 7.46511982, 7.43541798, 7.58856517, 7.9392717, 8.25406287, 7.77031632, 8.03223447, 7.86799055, 7.57630999, 7.33230519, 7.22378732, 6.85972264, 7.17548456, 7.5387846, 7.2392632, 6.8455644, 6.59557185, 6.6496796, 6.73685623, 7.18598015, 7.13619128, 6.88060157, 7.1399681, 7.30308077, 6.94942434, 7.0247815, 7.37567798, 7.50080197, 7.59719284, 7.14520561, 7.29913484, 7.79551341, 8.15497781, 8.40456095, 8.86516528, 8.53042688, 8.94268762, 8.52048006, 8.80036284, 8.91602364, 9.19953385, 8.70828953, 8.24613093, 8.18770453, 7.79548389, 7.68627967, 7.23205036, 6.98302636, 7.06515819, 6.95068113], columns=['value']) self.test_data4 = pd.DataFrame([4.97926539, 5.44016005, 5.45122915, 5.74485615, 5.45600553, 5.44858945, 5.2435413, 5.47315161, 5.58464303, 5.36179749, 5.38236326, 5.29614981, 5.76523508, 5.75102892, 6.15316618, 6.03852528, 6.01442228, 5.70510182, 5.22748133, 5.46762379, 5.78926267, 5.8221362, 5.61236849, 5.30615725, 5.24200611, 5.41042642, 5.59940342, 5.28306781, 4.99451932, 5.08799266, 5.38865647, 5.58229139, 5.33492845, 5.48206276, 5.09721379, 5.39190493, 5.29965087, 5.0374415, 5.50798022, 5.43107577, 5.22759507, 4.991809, 5.43153084, 5.39966868, 5.59916352, 5.66412137, 6.00611838, 5.63564902, 5.66723484, 5.29863863, 4.91115153, 5.3749929, 5.75082334, 6.08308148, 6.58091182, 6.77848803, 7.19588758, 7.64862286, 7.99818347, 7.91824794, 8.30341071, 8.45984973, 7.98700002, 8.18924931, 8.60755649, 8.66233396, 8.91018407, 9.0782739, 9.33515448, 8.95870245, 8.98426422, 8.50340317, 8.64916085, 8.93592407, 8.63145745, 8.65322862, 8.39543204, 8.37969997, 8.23394504, 8.04062872, 7.91259763, 7.57252171, 7.72670114, 7.74486117, 8.06908188, 7.99166889, 7.92155906, 8.39956136, 8.80181323, 8.47464091, 8.06557064, 7.87145573, 8.0237959, 8.39481998, 8.68525692, 8.81185461, 8.98632237, 9.0989835, 8.89787405, 8.86508591], columns=['value']) self.test_data5 = pd.DataFrame([4.50258923, 4.35142568, 4.07459514, 3.87791297, 3.73715985, 3.98455684, 4.07587908, 4.00042472, 4.28276612, 4.01362051, 4.13713565, 4.49312372, 4.48633159, 4.4641207, 4.13444605, 3.79107217, 4.22941629, 4.56548511, 4.92472163, 5.27723158, 5.67409193, 6.00176917, 5.88889928, 5.55256103, 5.39308314, 5.2610492, 5.30738908, 5.22222408, 4.90332238, 4.57499908, 4.96097146, 4.81531011, 4.39115442, 4.63200662, 5.04588813, 4.67866025, 5.01705123, 4.83562258, 4.60381702, 4.66187576, 4.41292828, 4.86604507, 4.42280124, 4.07517294, 4.16317319, 4.10316596, 4.42913598, 4.06609666, 3.96725913, 4.15965746, 4.12379564, 4.04054068, 3.84342851, 3.45902867, 3.17649855, 3.09773586, 3.5502119, 3.66396995, 3.66306483, 3.29131401, 2.79558533, 2.88319542, 3.03671098, 3.44645857, 3.88167161, 3.57961874, 3.60180276, 3.96702102, 4.05429995, 4.40056979, 4.05653231, 3.59600456, 3.60792477, 4.09989922, 3.73503663, 4.01892626, 3.94597242, 3.81466605, 3.71417992, 3.93767156, 4.42806557, 4.06988106, 4.03713636, 4.34408673, 4.79810156, 5.18115011, 4.89798406, 5.3960077, 5.72504875, 5.61894017, 5.1958197, 4.85275896, 5.17550207, 4.71548987, 4.62408567, 4.55488535, 4.36532649, 4.26031979, 4.25225607, 4.58627048], columns=['value']) self.test_data6 = pd.DataFrame([5.08639513, 5.05761083, 4.76160923, 4.62166504, 4.62923183, 4.25070173, 4.13447513, 3.90890013, 3.76687608, 3.43342482, 3.67648224, 3.6274775, 3.9385404, 4.39771627, 4.03199346, 3.93265288, 3.50059789, 3.3851961, 3.29743973, 3.2544872, 2.93692949, 2.70893003, 2.55461976, 2.20922332, 2.29054475, 2.2144714, 2.03726827, 2.39007617, 2.29866155, 2.40607111, 2.40440444, 2.79374649, 2.66541922, 2.27018079, 2.08505127, 2.55478864, 2.22415625, 2.58517923, 2.58802256, 2.94870959, 2.69301739, 2.19991535, 2.69473146, 2.64704637, 2.62753542, 2.14240825, 2.38565154, 1.94592117, 2.32243877, 2.69337246, 2.51283854, 2.62484451, 2.15559054, 2.35410875, 2.31219177, 1.96018265, 2.34711266, 2.58083322, 2.40290041, 2.20439791, 2.31472425, 2.16228248, 2.16439749, 2.20080737, 1.73293206, 1.9264407, 2.25089861, 2.69269101, 2.59296687, 2.1420998, 1.67819153, 1.98419023, 2.14479494, 1.89055376, 1.96720648, 1.9916694, 2.37227761, 2.14446036, 2.34573903, 1.86162546, 2.1410721, 2.39204939, 2.52529064, 2.47079939, 2.9299031, 3.09452923, 2.93276708, 3.21731309, 3.06248964, 2.90413406, 2.67844632, 2.45621213, 2.41463398, 2.7373913, 3.14917045, 3.4033949, 3.82283446, 4.02285451, 3.7619638, 4.10346795], columns=['value']) self.test_data7 = pd.DataFrame([4.75233583, 4.47668283, 4.55894263, 4.61765848, 4.622892, 4.58941116, 4.32535872, 3.88112797, 3.47237806, 3.50898953, 3.82530406, 3.6718017, 3.78918195, 4.1800752, 4.01818557, 4.40822582, 4.65474654, 4.89287256, 4.40879274, 4.65505126, 4.36876403, 4.58418934, 4.75687172, 4.3689799, 4.16126498, 4.0203982, 3.77148242, 3.38198096, 3.07261764, 2.9014741, 2.5049543, 2.756105, 2.28779058, 2.16986991, 1.8415962, 1.83319008, 2.20898291, 2.00128981, 1.75747025, 1.26676663, 1.40316876, 1.11126484, 1.60376367, 1.22523829, 1.58816681, 1.49705679, 1.80244138, 1.55128293, 1.35339409, 1.50985759, 1.0808451, 1.05892796, 1.43414812, 1.43039101, 1.73631655, 1.43940867, 1.82864425, 1.71088265, 2.12015154, 2.45417128, 2.84777618, 2.7925612, 2.90975121, 3.25920745, 3.13801182, 3.52733677, 3.65468491, 3.69395211, 3.49862035, 3.24786017, 3.64463138, 4.00331929, 3.62509565, 3.78013949, 3.4174012, 3.76312271, 3.62054004, 3.67206716, 3.60596058, 3.38636199, 3.42580676, 3.32921095, 3.02976759, 3.28258676, 3.45760838, 3.24917528, 2.94618304, 2.86980011, 2.63191259, 2.39566759, 2.53159917, 2.96273967, 3.25626185, 2.97425402, 3.16412191, 3.58280763, 3.23257727, 3.62353556, 3.12806399, 2.92532313], columns=['value']) # 建立一个长度为 500 个数据点的测试数据, 用于测试数据点多于250个的情况下的评价过程 self.long_data = pd.DataFrame([ 9.879, 9.916, 10.109, 10.214, 10.361, 10.768, 10.594, 10.288, 10.082, 9.994, 10.125, 10.126, 10.384, 10.734, 10.4 , 10.87 , 11.338, 11.061, 11.415, 11.724, 12.077, 12.196, 12.064, 12.423, 12.19 , 11.729, 11.677, 11.448, 11.485, 10.989, 11.242, 11.239, 11.113, 11.075, 11.471, 11.745, 11.754, 11.782, 12.079, 11.97 , 12.178, 11.95 , 12.438, 12.612, 12.804, 12.952, 12.612, 12.867, 12.832, 12.832, 13.015, 13.315, 13.249, 12.904, 12.776, 12.64 , 12.543, 12.287, 12.225, 11.844, 11.985, 11.945, 11.542, 11.871, 12.245, 12.228, 12.362, 11.899, 11.962, 12.374, 12.816, 12.649, 12.252, 12.579, 12.3 , 11.988, 12.177, 12.312, 12.744, 12.599, 12.524, 12.82 , 12.67 , 12.876, 12.986, 13.271, 13.606, 13.82 , 14.161, 13.833, 13.831, 14.137, 13.705, 13.414, 13.037, 12.759, 12.642, 12.948, 13.297, 13.483, 13.836, 14.179, 13.709, 13.655, 13.198, 13.508, 13.953, 14.387, 14.043, 13.987, 13.561, 13.391, 12.923, 12.555, 12.503, 12.292, 11.877, 12.34 , 12.141, 11.687, 11.992, 12.458, 12.131, 11.75 , 11.739, 11.263, 11.762, 11.976, 11.578, 11.854, 12.136, 12.422, 12.311, 12.56 , 12.879, 12.861, 12.973, 13.235, 13.53 , 13.531, 13.137, 13.166, 13.31 , 13.103, 13.007, 12.643, 12.69 , 12.216, 12.385, 12.046, 12.321, 11.9 , 11.772, 11.816, 11.871, 11.59 , 11.518, 11.94 , 11.803, 11.924, 12.183, 12.136, 12.361, 12.406, 11.932, 11.684, 11.292, 11.388, 11.874, 12.184, 12.002, 12.16 , 11.741, 11.26 , 11.123, 11.534, 11.777, 11.407, 11.275, 11.679, 11.62 , 11.218, 11.235, 11.352, 11.366, 11.061, 10.661, 10.582, 10.899, 11.352, 11.792, 11.475, 11.263, 11.538, 11.183, 10.936, 11.399, 11.171, 11.214, 10.89 , 10.728, 11.191, 11.646, 11.62 , 11.195, 11.178, 11.18 , 10.956, 11.205, 10.87 , 11.098, 10.639, 10.487, 10.507, 10.92 , 10.558, 10.119, 9.882, 9.573, 9.515, 9.845, 9.852, 9.495, 9.726, 10.116, 10.452, 10.77 , 11.225, 10.92 , 10.824, 11.096, 11.542, 11.06 , 10.568, 10.585, 10.884, 10.401, 10.068, 9.964, 10.285, 10.239, 10.036, 10.417, 10.132, 9.839, 9.556, 9.084, 9.239, 9.304, 9.067, 8.587, 8.471, 8.007, 8.321, 8.55 , 9.008, 9.138, 9.088, 9.434, 9.156, 9.65 , 9.431, 9.654, 10.079, 10.411, 10.865, 10.51 , 10.205, 10.519, 10.367, 10.855, 10.642, 10.298, 10.622, 10.173, 9.792, 9.995, 9.904, 9.771, 9.597, 9.506, 9.212, 9.688, 10.032, 9.723, 9.839, 9.918, 10.332, 10.236, 9.989, 10.192, 10.685, 10.908, 11.275, 11.72 , 12.158, 12.045, 12.244, 12.333, 12.246, 12.552, 12.958, 13.11 , 13.53 , 13.123, 13.138, 13.57 , 13.389, 13.511, 13.759, 13.698, 13.744, 13.467, 13.795, 13.665, 13.377, 13.423, 13.772, 13.295, 13.073, 12.718, 12.388, 12.399, 12.185, 11.941, 11.818, 11.465, 11.811, 12.163, 11.86 , 11.935, 11.809, 12.145, 12.624, 12.768, 12.321, 12.277, 11.889, 12.11 , 12.606, 12.943, 12.945, 13.112, 13.199, 13.664, 14.051, 14.189, 14.339, 14.611, 14.656, 15.112, 15.086, 15.263, 15.021, 15.346, 15.572, 15.607, 15.983, 16.151, 16.215, 16.096, 16.089, 16.32 , 16.59 , 16.657, 16.752, 16.583, 16.743, 16.373, 16.662, 16.243, 16.163, 16.491, 16.958, 16.977, 17.225, 17.637, 17.344, 17.684, 17.892, 18.036, 18.182, 17.803, 17.588, 17.101, 17.538, 17.124, 16.787, 17.167, 17.138, 16.955, 17.148, 17.135, 17.635, 17.718, 17.675, 17.622, 17.358, 17.754, 17.729, 17.576, 17.772, 18.239, 18.441, 18.729, 18.319, 18.608, 18.493, 18.069, 18.122, 18.314, 18.423, 18.709, 18.548, 18.384, 18.391, 17.988, 17.986, 17.653, 17.249, 17.298, 17.06 , 17.36 , 17.108, 17.348, 17.596, 17.46 , 17.635, 17.275, 17.291, 16.933, 17.337, 17.231, 17.146, 17.148, 16.751, 16.891, 17.038, 16.735, 16.64 , 16.231, 15.957, 15.977, 16.077, 16.054, 15.797, 15.67 , 15.911, 16.077, 16.17 , 15.722, 15.258, 14.877, 15.138, 15. , 14.811, 14.698, 14.407, 14.583, 14.704, 15.153, 15.436, 15.634, 15.453, 15.877, 15.696, 15.563, 15.927, 16.255, 16.696, 16.266, 16.698, 16.365, 16.493, 16.973, 16.71 , 16.327, 16.605, 16.486, 16.846, 16.935, 17.21 , 17.389, 17.546, 17.773, 17.641, 17.485, 17.794, 17.354, 16.904, 16.675, 16.43 , 16.898, 16.819, 16.921, 17.201, 17.617, 17.368, 17.864, 17.484], columns=['value']) self.long_bench = pd.DataFrame([ 9.7 , 10.179, 10.321, 9.855, 9.936, 10.096, 10.331, 10.662, 10.59 , 11.031, 11.154, 10.945, 10.625, 10.233, 10.284, 10.252, 10.221, 10.352, 10.444, 10.773, 10.904, 11.104, 10.797, 10.55 , 10.943, 11.352, 11.641, 11.983, 11.696, 12.138, 12.365, 12.379, 11.969, 12.454, 12.947, 13.119, 13.013, 12.763, 12.632, 13.034, 12.681, 12.561, 12.938, 12.867, 13.202, 13.132, 13.539, 13.91 , 13.456, 13.692, 13.771, 13.904, 14.069, 13.728, 13.97 , 14.228, 13.84 , 14.041, 13.963, 13.689, 13.543, 13.858, 14.118, 13.987, 13.611, 14.028, 14.229, 14.41 , 14.74 , 15.03 , 14.915, 15.207, 15.354, 15.665, 15.877, 15.682, 15.625, 15.175, 15.105, 14.893, 14.86 , 15.097, 15.178, 15.293, 15.238, 15. , 15.283, 14.994, 14.907, 14.664, 14.888, 15.297, 15.313, 15.368, 14.956, 14.802, 14.506, 14.257, 14.619, 15.019, 15.049, 14.625, 14.894, 14.978, 15.434, 15.578, 16.038, 16.107, 16.277, 16.365, 16.204, 16.465, 16.401, 16.895, 17.057, 16.621, 16.225, 16.075, 15.863, 16.292, 16.551, 16.724, 16.817, 16.81 , 17.192, 16.86 , 16.745, 16.707, 16.552, 16.133, 16.301, 16.08 , 15.81 , 15.75 , 15.909, 16.127, 16.457, 16.204, 16.329, 16.748, 16.624, 17.011, 16.548, 16.831, 16.653, 16.791, 16.57 , 16.778, 16.928, 16.932, 17.22 , 16.876, 17.301, 17.422, 17.689, 17.316, 17.547, 17.534, 17.409, 17.669, 17.416, 17.859, 17.477, 17.307, 17.245, 17.352, 17.851, 17.412, 17.144, 17.138, 17.085, 16.926, 16.674, 16.854, 17.064, 16.95 , 16.609, 16.957, 16.498, 16.552, 16.175, 15.858, 15.697, 15.781, 15.583, 15.36 , 15.558, 16.046, 15.968, 15.905, 16.358, 16.783, 17.048, 16.762, 17.224, 17.363, 17.246, 16.79 , 16.608, 16.423, 15.991, 15.527, 15.147, 14.759, 14.792, 15.206, 15.148, 15.046, 15.429, 14.999, 15.407, 15.124, 14.72 , 14.713, 15.022, 15.092, 14.982, 15.001, 14.734, 14.713, 14.841, 14.562, 15.005, 15.483, 15.472, 15.277, 15.503, 15.116, 15.12 , 15.442, 15.476, 15.789, 15.36 , 15.764, 16.218, 16.493, 16.642, 17.088, 16.816, 16.645, 16.336, 16.511, 16.2 , 15.994, 15.86 , 15.929, 16.316, 16.416, 16.746, 17.173, 17.531, 17.627, 17.407, 17.49 , 17.768, 17.509, 17.795, 18.147, 18.63 , 18.945, 19.021, 19.518, 19.6 , 19.744, 19.63 , 19.32 , 18.933, 19.297, 19.598, 19.446, 19.236, 19.198, 19.144, 19.159, 19.065, 19.032, 18.586, 18.272, 18.119, 18.3 , 17.894, 17.744, 17.5 , 17.083, 17.092, 16.864, 16.453, 16.31 , 16.681, 16.342, 16.447, 16.715, 17.068, 17.067, 16.822, 16.673, 16.675, 16.592, 16.686, 16.397, 15.902, 15.597, 15.357, 15.162, 15.348, 15.603, 15.283, 15.257, 15.082, 14.621, 14.366, 14.039, 13.957, 14.141, 13.854, 14.243, 14.414, 14.033, 13.93 , 14.104, 14.461, 14.249, 14.053, 14.165, 14.035, 14.408, 14.501, 14.019, 14.265, 14.67 , 14.797, 14.42 , 14.681, 15.16 , 14.715, 14.292, 14.411, 14.656, 15.094, 15.366, 15.055, 15.198, 14.762, 14.294, 13.854, 13.811, 13.549, 13.927, 13.897, 13.421, 13.037, 13.32 , 13.721, 13.511, 13.999, 13.529, 13.418, 13.881, 14.326, 14.362, 13.987, 14.015, 13.599, 13.343, 13.307, 13.689, 13.851, 13.404, 13.577, 13.395, 13.619, 13.195, 12.904, 12.553, 12.294, 12.649, 12.425, 11.967, 12.062, 11.71 , 11.645, 12.058, 12.136, 11.749, 11.953, 12.401, 12.044, 11.901, 11.631, 11.396, 11.036, 11.244, 10.864, 11.207, 11.135, 11.39 , 11.723, 12.084, 11.8 , 11.471, 11.33 , 11.504, 11.295, 11.3 , 10.901, 10.494, 10.825, 11.054, 10.866, 10.713, 10.875, 10.846, 10.947, 11.422, 11.158, 10.94 , 10.521, 10.36 , 10.411, 10.792, 10.472, 10.305, 10.525, 10.853, 10.556, 10.72 , 10.54 , 10.583, 10.299, 10.061, 10.004, 9.903, 9.796, 9.472, 9.246, 9.54 , 9.456, 9.177, 9.484, 9.557, 9.493, 9.968, 9.536, 9.39 , 8.922, 8.423, 8.518, 8.686, 8.771, 9.098, 9.281, 8.858, 9.027, 8.553, 8.784, 8.996, 9.379, 9.846, 9.855, 9.502, 9.608, 9.761, 9.409, 9.4 , 9.332, 9.34 , 9.284, 8.844, 8.722, 8.376, 8.775, 8.293, 8.144, 8.63 , 8.831, 8.957, 9.18 , 9.601, 9.695, 10.018, 9.841, 9.743, 9.292, 8.85 , 9.316, 9.288, 9.519, 9.738, 9.289, 9.785, 9.804, 10.06 , 10.188, 10.095, 9.739, 9.881, 9.7 , 9.991, 10.391, 10.002], columns=['value']) def test_performance_stats(self): """test the function performance_statistics() """ pass def test_fv(self): print(f'test with test data and empty DataFrame') self.assertAlmostEqual(eval_fv(self.test_data1), 6.39245474) self.assertAlmostEqual(eval_fv(self.test_data2), 10.05126375) self.assertAlmostEqual(eval_fv(self.test_data3), 6.95068113) self.assertAlmostEqual(eval_fv(self.test_data4), 8.86508591) self.assertAlmostEqual(eval_fv(self.test_data5), 4.58627048) self.assertAlmostEqual(eval_fv(self.test_data6), 4.10346795) self.assertAlmostEqual(eval_fv(self.test_data7), 2.92532313) self.assertAlmostEqual(eval_fv(pd.DataFrame()), -np.inf) print(f'Error testing') self.assertRaises(AssertionError, eval_fv, 15) self.assertRaises(KeyError, eval_fv, pd.DataFrame([1, 2, 3], columns=['non_value'])) def test_max_drawdown(self): print(f'test with test data and empty DataFrame') self.assertAlmostEqual(eval_max_drawdown(self.test_data1)[0], 0.264274308) self.assertEqual(eval_max_drawdown(self.test_data1)[1], 53) self.assertEqual(eval_max_drawdown(self.test_data1)[2], 86) self.assertTrue(np.isnan(eval_max_drawdown(self.test_data1)[3])) self.assertAlmostEqual(eval_max_drawdown(self.test_data2)[0], 0.334690849) self.assertEqual(eval_max_drawdown(self.test_data2)[1], 0) self.assertEqual(eval_max_drawdown(self.test_data2)[2], 10) self.assertEqual(eval_max_drawdown(self.test_data2)[3], 19) self.assertAlmostEqual(eval_max_drawdown(self.test_data3)[0], 0.244452899) self.assertEqual(eval_max_drawdown(self.test_data3)[1], 90) self.assertEqual(eval_max_drawdown(self.test_data3)[2], 99) self.assertTrue(np.isnan(eval_max_drawdown(self.test_data3)[3])) self.assertAlmostEqual(eval_max_drawdown(self.test_data4)[0], 0.201849684) self.assertEqual(eval_max_drawdown(self.test_data4)[1], 14) self.assertEqual(eval_max_drawdown(self.test_data4)[2], 50) self.assertEqual(eval_max_drawdown(self.test_data4)[3], 54) self.assertAlmostEqual(eval_max_drawdown(self.test_data5)[0], 0.534206456) self.assertEqual(eval_max_drawdown(self.test_data5)[1], 21) self.assertEqual(eval_max_drawdown(self.test_data5)[2], 60) self.assertTrue(np.isnan(eval_max_drawdown(self.test_data5)[3])) self.assertAlmostEqual(eval_max_drawdown(self.test_data6)[0], 0.670062689) self.assertEqual(eval_max_drawdown(self.test_data6)[1], 0) self.assertEqual(eval_max_drawdown(self.test_data6)[2], 70) self.assertTrue(np.isnan(eval_max_drawdown(self.test_data6)[3])) self.assertAlmostEqual(eval_max_drawdown(self.test_data7)[0], 0.783577449) self.assertEqual(eval_max_drawdown(self.test_data7)[1], 17) self.assertEqual(eval_max_drawdown(self.test_data7)[2], 51) self.assertTrue(np.isnan(eval_max_drawdown(self.test_data7)[3])) self.assertEqual(eval_max_drawdown(pd.DataFrame()), -np.inf) print(f'Error testing') self.assertRaises(AssertionError, eval_fv, 15) self.assertRaises(KeyError, eval_fv, pd.DataFrame([1, 2, 3], columns=['non_value'])) # test max drawdown == 0: # TODO: investigate: how does divide by zero change? self.assertAlmostEqual(eval_max_drawdown(self.test_data4 - 5)[0], 1.0770474121951792) self.assertEqual(eval_max_drawdown(self.test_data4 - 5)[1], 14) self.assertEqual(eval_max_drawdown(self.test_data4 - 5)[2], 50) def test_info_ratio(self): reference = self.test_data1 self.assertAlmostEqual(eval_info_ratio(self.test_data2, reference, 'value'), 0.075553316) self.assertAlmostEqual(eval_info_ratio(self.test_data3, reference, 'value'), 0.018949457) self.assertAlmostEqual(eval_info_ratio(self.test_data4, reference, 'value'), 0.056328143) self.assertAlmostEqual(eval_info_ratio(self.test_data5, reference, 'value'), -0.004270068) self.assertAlmostEqual(eval_info_ratio(self.test_data6, reference, 'value'), 0.009198027) self.assertAlmostEqual(eval_info_ratio(self.test_data7, reference, 'value'), -0.000890283) def test_volatility(self): self.assertAlmostEqual(eval_volatility(self.test_data1), 0.748646166) self.assertAlmostEqual(eval_volatility(self.test_data2), 0.75527442) self.assertAlmostEqual(eval_volatility(self.test_data3), 0.654188853) self.assertAlmostEqual(eval_volatility(self.test_data4), 0.688375814) self.assertAlmostEqual(eval_volatility(self.test_data5), 1.089989522) self.assertAlmostEqual(eval_volatility(self.test_data6), 1.775419308) self.assertAlmostEqual(eval_volatility(self.test_data7), 1.962758406) self.assertAlmostEqual(eval_volatility(self.test_data1, logarithm=False), 0.750993311) self.assertAlmostEqual(eval_volatility(self.test_data2, logarithm=False), 0.75571473) self.assertAlmostEqual(eval_volatility(self.test_data3, logarithm=False), 0.655331424) self.assertAlmostEqual(eval_volatility(self.test_data4, logarithm=False), 0.692683021) self.assertAlmostEqual(eval_volatility(self.test_data5, logarithm=False), 1.09602969) self.assertAlmostEqual(eval_volatility(self.test_data6, logarithm=False), 1.774789504) self.assertAlmostEqual(eval_volatility(self.test_data7, logarithm=False), 2.003329156) self.assertEqual(eval_volatility(pd.DataFrame()), -np.inf) self.assertRaises(AssertionError, eval_volatility, [1, 2, 3]) # 测试长数据的Volatility计算 expected_volatility = np.array([ np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, 0.39955371, 0.39974258, 0.40309866, 0.40486593, 0.4055514 , 0.40710639, 0.40708157, 0.40609006, 0.4073625 , 0.40835305, 0.41155304, 0.41218193, 0.41207489, 0.41300276, 0.41308415, 0.41292392, 0.41207645, 0.41238397, 0.41229291, 0.41164056, 0.41316317, 0.41348842, 0.41462249, 0.41474574, 0.41652625, 0.41649176, 0.41701556, 0.4166593 , 0.41684221, 0.41491689, 0.41435209, 0.41549087, 0.41849338, 0.41998049, 0.41959106, 0.41907311, 0.41916103, 0.42120773, 0.42052391, 0.42111225, 0.42124589, 0.42356445, 0.42214672, 0.42324022, 0.42476639, 0.42621689, 0.42549439, 0.42533678, 0.42539414, 0.42545038, 0.42593637, 0.42652095, 0.42665489, 0.42699563, 0.42798159, 0.42784512, 0.42898006, 0.42868781, 0.42874188, 0.42789631, 0.4277768 , 0.42776827, 0.42685216, 0.42660989, 0.42563155, 0.42618281, 0.42606281, 0.42505222, 0.42653242, 0.42555378, 0.42500842, 0.42561939, 0.42442059, 0.42395414, 0.42384356, 0.42319135, 0.42397497, 0.42488579, 0.42449729, 0.42508766, 0.42509878, 0.42456616, 0.42535577, 0.42681884, 0.42688552, 0.42779918, 0.42706058, 0.42792887, 0.42762114, 0.42894045, 0.42977398, 0.42919859, 0.42829041, 0.42780946, 0.42825318, 0.42858952, 0.42858315, 0.42805601, 0.42764751, 0.42744107, 0.42775518, 0.42707283, 0.4258592 , 0.42615335, 0.42526286, 0.4248906 , 0.42368986, 0.4232565 , 0.42265079, 0.42263954, 0.42153046, 0.42132051, 0.41995353, 0.41916605, 0.41914271, 0.41876945, 0.41740175, 0.41583884, 0.41614026, 0.41457908, 0.41472411, 0.41310876, 0.41261041, 0.41212369, 0.41211677, 0.4100645 , 0.40852504, 0.40860297, 0.40745338, 0.40698661, 0.40644546, 0.40591375, 0.40640744, 0.40620663, 0.40656649, 0.40727154, 0.40797605, 0.40807137, 0.40808913, 0.40809676, 0.40711767, 0.40724628, 0.40713077, 0.40772698, 0.40765157, 0.40658297, 0.4065991 , 0.405011 , 0.40537645, 0.40432626, 0.40390177, 0.40237701, 0.40291623, 0.40301797, 0.40324145, 0.40312864, 0.40328316, 0.40190955, 0.40246506, 0.40237663, 0.40198407, 0.401969 , 0.40185623, 0.40198313, 0.40005643, 0.39940743, 0.39850438, 0.39845398, 0.39695093, 0.39697295, 0.39663201, 0.39675444, 0.39538699, 0.39331959, 0.39326074, 0.39193287, 0.39157266, 0.39021327, 0.39062591, 0.38917591, 0.38976991, 0.38864187, 0.38872158, 0.38868096, 0.38868377, 0.38842057, 0.38654784, 0.38649517, 0.38600464, 0.38408115, 0.38323049, 0.38260215, 0.38207663, 0.38142669, 0.38003262, 0.37969367, 0.37768092, 0.37732108, 0.37741991, 0.37617779, 0.37698504, 0.37606784, 0.37499276, 0.37533731, 0.37350437, 0.37375172, 0.37385382, 0.37384003, 0.37338938, 0.37212288, 0.37273075, 0.370559 , 0.37038506, 0.37062153, 0.36964661, 0.36818564, 0.3656634 , 0.36539259, 0.36428672, 0.36502487, 0.3647148 , 0.36551435, 0.36409919, 0.36348181, 0.36254383, 0.36166601, 0.36142665, 0.35954942, 0.35846915, 0.35886759, 0.35813867, 0.35642888, 0.35375231, 0.35061783, 0.35078463, 0.34995508, 0.34688918, 0.34548257, 0.34633158, 0.34622833, 0.34652111, 0.34622774, 0.34540951, 0.34418809, 0.34276593, 0.34160916, 0.33811193, 0.33822709, 0.3391685 , 0.33883381]) test_volatility = eval_volatility(self.long_data) test_volatility_roll = self.long_data['volatility'].values self.assertAlmostEqual(test_volatility, np.nanmean(expected_volatility)) self.assertTrue(np.allclose(expected_volatility, test_volatility_roll, equal_nan=True)) def test_sharp(self): self.assertAlmostEqual(eval_sharp(self.test_data1, 5, 0), 0.06135557) self.assertAlmostEqual(eval_sharp(self.test_data2, 5, 0), 0.167858667) self.assertAlmostEqual(eval_sharp(self.test_data3, 5, 0), 0.09950547) self.assertAlmostEqual(eval_sharp(self.test_data4, 5, 0), 0.154928241) self.assertAlmostEqual(eval_sharp(self.test_data5, 5, 0.002), 0.007868673) self.assertAlmostEqual(eval_sharp(self.test_data6, 5, 0.002), 0.018306537) self.assertAlmostEqual(eval_sharp(self.test_data7, 5, 0.002), 0.006259971) # 测试长数据的sharp率计算 expected_sharp = np.array([ np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, -0.02346815, -0.02618783, -0.03763912, -0.03296276, -0.03085698, -0.02851101, -0.02375842, -0.02016746, -0.01107885, -0.01426613, -0.00787204, -0.01135784, -0.01164232, -0.01003481, -0.00022512, -0.00046792, -0.01209378, -0.01278892, -0.01298135, -0.01938214, -0.01671044, -0.02120509, -0.0244281 , -0.02416067, -0.02763238, -0.027579 , -0.02372774, -0.02215294, -0.02467094, -0.02091266, -0.02590194, -0.03049876, -0.02077131, -0.01483653, -0.02488144, -0.02671638, -0.02561547, -0.01957986, -0.02479803, -0.02703162, -0.02658087, -0.01641755, -0.01946472, -0.01647757, -0.01280889, -0.00893643, -0.00643275, -0.00698457, -0.00549962, -0.00654677, -0.00494757, -0.0035633 , -0.00109037, 0.00750654, 0.00451208, 0.00625502, 0.01221367, 0.01326454, 0.01535037, 0.02269538, 0.02028715, 0.02127712, 0.02333264, 0.02273159, 0.01670643, 0.01376513, 0.01265342, 0.02211647, 0.01612449, 0.00856706, -0.00077147, -0.00268848, 0.00210993, -0.00443934, -0.00411912, -0.0018756 , -0.00867461, -0.00581601, -0.00660835, -0.00861137, -0.00678614, -0.01188408, -0.00589617, -0.00244323, -0.00201891, -0.01042846, -0.01471016, -0.02167034, -0.02258554, -0.01306809, -0.00909086, -0.01233746, -0.00595166, -0.00184208, 0.00750497, 0.01481886, 0.01761972, 0.01562886, 0.01446414, 0.01285826, 0.01357719, 0.00967613, 0.01636272, 0.01458437, 0.02280183, 0.02151903, 0.01700276, 0.01597368, 0.02114336, 0.02233297, 0.02585631, 0.02768459, 0.03519235, 0.04204535, 0.04328161, 0.04672855, 0.05046191, 0.04619848, 0.04525853, 0.05381529, 0.04598861, 0.03947394, 0.04665006, 0.05586077, 0.05617728, 0.06495018, 0.06205172, 0.05665466, 0.06500615, 0.0632062 , 0.06084328, 0.05851466, 0.05659229, 0.05159347, 0.0432977 , 0.0474047 , 0.04231723, 0.03613176, 0.03618391, 0.03591012, 0.03885674, 0.0402686 , 0.03846423, 0.04534014, 0.04721458, 0.05130912, 0.05026281, 0.05394312, 0.05529349, 0.05949243, 0.05463304, 0.06195165, 0.06767606, 0.06880985, 0.07048996, 0.07078815, 0.07420767, 0.06773439, 0.0658441 , 0.06470875, 0.06302349, 0.06456876, 0.06411282, 0.06216669, 0.067094 , 0.07055075, 0.07254976, 0.07119253, 0.06173308, 0.05393352, 0.05681246, 0.05250643, 0.06099845, 0.0655544 , 0.06977334, 0.06636514, 0.06177949, 0.06869908, 0.06719767, 0.06178738, 0.05915714, 0.06882277, 0.06756821, 0.06507994, 0.06489791, 0.06553941, 0.073123 , 0.07576757, 0.06805446, 0.06063571, 0.05033801, 0.05206971, 0.05540306, 0.05249118, 0.05755587, 0.0586174 , 0.05051288, 0.0564852 , 0.05757284, 0.06358355, 0.06130082, 0.04925482, 0.03834472, 0.04163981, 0.04648316, 0.04457858, 0.04324626, 0.04328791, 0.04156207, 0.04818652, 0.04972634, 0.06024123, 0.06489556, 0.06255485, 0.06069815, 0.06466389, 0.07081163, 0.07895358, 0.0881782 , 0.09374151, 0.08336506, 0.08764795, 0.09080174, 0.08808926, 0.08641158, 0.07811943, 0.06885318, 0.06479503, 0.06851185, 0.07382819, 0.07047903, 0.06658251, 0.07638379, 0.08667974, 0.08867918, 0.08245323, 0.08961866, 0.09905298, 0.0961908 , 0.08562706, 0.0839014 , 0.0849072 , 0.08338395, 0.08783487, 0.09463609, 0.10332336, 0.11806497, 0.11220297, 0.11589097, 0.11678405]) test_sharp = eval_sharp(self.long_data, 5, 0.00035) self.assertAlmostEqual(np.nanmean(expected_sharp), test_sharp) self.assertTrue(np.allclose(self.long_data['sharp'].values, expected_sharp, equal_nan=True)) def test_beta(self): reference = self.test_data1 self.assertAlmostEqual(eval_beta(self.test_data2, reference, 'value'), -0.017148939) self.assertAlmostEqual(eval_beta(self.test_data3, reference, 'value'), -0.042204233) self.assertAlmostEqual(eval_beta(self.test_data4, reference, 'value'), -0.15652986) self.assertAlmostEqual(eval_beta(self.test_data5, reference, 'value'), -0.049195532) self.assertAlmostEqual(eval_beta(self.test_data6, reference, 'value'), -0.026995082) self.assertAlmostEqual(eval_beta(self.test_data7, reference, 'value'), -0.01147809) self.assertRaises(TypeError, eval_beta, [1, 2, 3], reference, 'value') self.assertRaises(TypeError, eval_beta, self.test_data3, [1, 2, 3], 'value') self.assertRaises(KeyError, eval_beta, self.test_data3, reference, 'not_found_value') # 测试长数据的beta计算 expected_beta = np.array([ np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, -0.04988841, -0.05127618, -0.04692104, -0.04272652, -0.04080598, -0.0493347 , -0.0460858 , -0.0416761 , -0.03691527, -0.03724924, -0.03678865, -0.03987324, -0.03488321, -0.02567672, -0.02690303, -0.03010128, -0.02437967, -0.02571932, -0.02455681, -0.02839811, -0.03358653, -0.03396697, -0.03466321, -0.03050966, -0.0247583 , -0.01629325, -0.01880895, -0.01480403, -0.01348783, -0.00544294, -0.00648176, -0.00467036, -0.01135331, -0.0156841 , -0.02340763, -0.02615705, -0.02730771, -0.02906174, -0.02860664, -0.02412914, -0.02066416, -0.01744816, -0.02185133, -0.02145285, -0.02681765, -0.02827694, -0.02394581, -0.02744096, -0.02778825, -0.02703065, -0.03160023, -0.03615371, -0.03681072, -0.04265126, -0.04344738, -0.04232421, -0.04705272, -0.04533344, -0.04605934, -0.05272737, -0.05156463, -0.05134196, -0.04730733, -0.04425352, -0.03869831, -0.04159571, -0.04223998, -0.04346747, -0.04229844, -0.04740093, -0.04992507, -0.04621232, -0.04477644, -0.0486915 , -0.04598224, -0.04943463, -0.05006391, -0.05362256, -0.04994067, -0.05464769, -0.05443275, -0.05513493, -0.05173594, -0.04500994, -0.04662891, -0.03903505, -0.0419592 , -0.04307773, -0.03925718, -0.03711574, -0.03992631, -0.0433058 , -0.04533641, -0.0461183 , -0.05600344, -0.05758377, -0.05959874, -0.05605942, -0.06002859, -0.06253002, -0.06747014, -0.06427915, -0.05931947, -0.05769974, -0.04791515, -0.05175088, -0.05748039, -0.05385232, -0.05072975, -0.05052637, -0.05125567, -0.05005785, -0.05325104, -0.04977727, -0.04947867, -0.05148544, -0.05739156, -0.05742069, -0.06047279, -0.0558414 , -0.06086126, -0.06265151, -0.06411129, -0.06828052, -0.06781762, -0.07083409, -0.07211207, -0.06799162, -0.06913295, -0.06775162, -0.0696265 , -0.06678248, -0.06867502, -0.06581961, -0.07055823, -0.06448184, -0.06097973, -0.05795587, -0.0618383 , -0.06130145, -0.06050652, -0.05936661, -0.05749424, -0.0499 , -0.05050495, -0.04962687, -0.05033439, -0.05070116, -0.05422009, -0.05369759, -0.05548943, -0.05907353, -0.05933035, -0.05927918, -0.06227663, -0.06011455, -0.05650432, -0.05828134, -0.05620949, -0.05715323, -0.05482478, -0.05387113, -0.05095559, -0.05377999, -0.05334267, -0.05220438, -0.04001521, -0.03892434, -0.03660782, -0.04282708, -0.04324623, -0.04127048, -0.04227559, -0.04275226, -0.04347049, -0.04125853, -0.03806295, -0.0330632 , -0.03155531, -0.03277152, -0.03304518, -0.03878731, -0.03830672, -0.03727434, -0.0370571 , -0.04509224, -0.04207632, -0.04116198, -0.04545179, -0.04584584, -0.05287341, -0.05417433, -0.05175836, -0.05005509, -0.04268674, -0.03442321, -0.03457309, -0.03613426, -0.03524391, -0.03629479, -0.04361312, -0.02626705, -0.02406115, -0.03046384, -0.03181044, -0.03375164, -0.03661673, -0.04520779, -0.04926951, -0.05726738, -0.0584486 , -0.06220608, -0.06800563, -0.06797431, -0.07562211, -0.07481996, -0.07731229, -0.08413381, -0.09031826, -0.09691925, -0.11018071, -0.11952675, -0.10826026, -0.11173895, -0.10756359, -0.10775916, -0.11664559, -0.10505051, -0.10606547, -0.09855355, -0.10004159, -0.10857084, -0.12209301, -0.11605758, -0.11105113, -0.1155195 , -0.11569505, -0.10513348, -0.09611072, -0.10719791, -0.10843965, -0.11025856, -0.10247839, -0.10554044, -0.10927647, -0.10645088, -0.09982498, -0.10542734, -0.09631372, -0.08229695]) test_beta_mean = eval_beta(self.long_data, self.long_bench, 'value') test_beta_roll = self.long_data['beta'].values self.assertAlmostEqual(test_beta_mean, np.nanmean(expected_beta)) self.assertTrue(np.allclose(test_beta_roll, expected_beta, equal_nan=True)) def test_alpha(self): reference = self.test_data1 self.assertAlmostEqual(eval_alpha(self.test_data2, 5, reference, 'value', 0.5), 11.63072977) self.assertAlmostEqual(eval_alpha(self.test_data3, 5, reference, 'value', 0.5), 1.886590071) self.assertAlmostEqual(eval_alpha(self.test_data4, 5, reference, 'value', 0.5), 6.827021872) self.assertAlmostEqual(eval_alpha(self.test_data5, 5, reference, 'value', 0.92), -1.192265168) self.assertAlmostEqual(eval_alpha(self.test_data6, 5, reference, 'value', 0.92), -1.437142359) self.assertAlmostEqual(eval_alpha(self.test_data7, 5, reference, 'value', 0.92), -1.781311545) # 测试长数据的alpha计算 expected_alpha = np.array([ np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, -0.09418119, -0.11188463, -0.17938358, -0.15588172, -0.1462678 , -0.13089586, -0.10780125, -0.09102891, -0.03987585, -0.06075686, -0.02459503, -0.04104284, -0.0444565 , -0.04074585, 0.02191275, 0.02255955, -0.05583375, -0.05875539, -0.06055551, -0.09648245, -0.07913737, -0.10627829, -0.12320965, -0.12368335, -0.1506743 , -0.15768033, -0.13638829, -0.13065298, -0.14537834, -0.127428 , -0.15504529, -0.18184636, -0.12652146, -0.09190138, -0.14847221, -0.15840648, -0.1525789 , -0.11859418, -0.14700954, -0.16295761, -0.16051645, -0.10364859, -0.11961134, -0.10258267, -0.08090148, -0.05727746, -0.0429945 , -0.04672356, -0.03581408, -0.0439215 , -0.03429495, -0.0260362 , -0.01075022, 0.04931808, 0.02779388, 0.03984083, 0.08311951, 0.08995566, 0.10522428, 0.16159058, 0.14238174, 0.14759783, 0.16257712, 0.158908 , 0.11302115, 0.0909566 , 0.08272888, 0.15261884, 0.10546376, 0.04990313, -0.01284111, -0.02720704, 0.00454725, -0.03965491, -0.03818265, -0.02186992, -0.06574751, -0.04846454, -0.05204211, -0.06316498, -0.05095099, -0.08502656, -0.04681162, -0.02362027, -0.02205091, -0.07706374, -0.10371841, -0.14434688, -0.14797935, -0.09055402, -0.06739549, -0.08824959, -0.04855888, -0.02291244, 0.04027138, 0.09370505, 0.11472939, 0.10243593, 0.0921445 , 0.07662648, 0.07946651, 0.05450718, 0.10497677, 0.09068334, 0.15462924, 0.14231034, 0.10544952, 0.09980256, 0.14035223, 0.14942974, 0.17624102, 0.19035477, 0.2500807 , 0.30724652, 0.31768915, 0.35007521, 0.38412975, 0.34356521, 0.33614463, 0.41206165, 0.33999177, 0.28045963, 0.34076789, 0.42220356, 0.42314636, 0.50790423, 0.47713348, 0.42520169, 0.50488411, 0.48705211, 0.46252601, 0.44325578, 0.42640573, 0.37986783, 0.30652822, 0.34503393, 0.2999069 , 0.24928617, 0.24730218, 0.24326897, 0.26657905, 0.27861168, 0.26392824, 0.32552649, 0.34177792, 0.37837011, 0.37025267, 0.4030612 , 0.41339361, 0.45076809, 0.40383354, 0.47093422, 0.52505036, 0.53614256, 0.5500943 , 0.55319293, 0.59021451, 0.52358459, 0.50605947, 0.49359168, 0.47895956, 0.49320243, 0.4908336 , 0.47310767, 0.51821564, 0.55105932, 0.57291504, 0.5599809 , 0.46868842, 0.39620087, 0.42086934, 0.38317217, 0.45934108, 0.50048866, 0.53941991, 0.50676751, 0.46500915, 0.52993663, 0.51668366, 0.46405428, 0.44100603, 0.52726147, 0.51565458, 0.49186248, 0.49001081, 0.49367648, 0.56422294, 0.58882785, 0.51334664, 0.44386256, 0.35056709, 0.36490029, 0.39205071, 0.3677061 , 0.41134736, 0.42315067, 0.35356394, 0.40324562, 0.41340007, 0.46503322, 0.44355762, 0.34854314, 0.26412842, 0.28633753, 0.32335224, 0.30761141, 0.29709569, 0.29570487, 0.28000063, 0.32802547, 0.33967726, 0.42511212, 0.46252357, 0.44244974, 0.42152907, 0.45436727, 0.50482359, 0.57339198, 0.6573356 , 0.70912003, 0.60328917, 0.6395092 , 0.67015805, 0.64241557, 0.62779142, 0.55028063, 0.46448736, 0.43709245, 0.46777983, 0.51789439, 0.48594916, 0.4456216 , 0.52008189, 0.60548684, 0.62792473, 0.56645031, 0.62766439, 0.71829315, 0.69481356, 0.59550329, 0.58133754, 0.59014148, 0.58026655, 0.61719273, 0.67373203, 0.75573056, 0.89501633, 0.8347253 , 0.87964685, 0.89015835]) test_alpha_mean = eval_alpha(self.long_data, 100, self.long_bench, 'value') test_alpha_roll = self.long_data['alpha'].values self.assertAlmostEqual(test_alpha_mean, np.nanmean(expected_alpha)) self.assertTrue(np.allclose(test_alpha_roll, expected_alpha, equal_nan=True)) def test_calmar(self): """test evaluate function eval_calmar()""" pass def test_benchmark(self): reference = self.test_data1 tr, yr = eval_benchmark(self.test_data2, reference, 'value') self.assertAlmostEqual(tr, 0.19509091) self.assertAlmostEqual(yr, 0.929154957) tr, yr = eval_benchmark(self.test_data3, reference, 'value') self.assertAlmostEqual(tr, 0.19509091) self.assertAlmostEqual(yr, 0.929154957) tr, yr = eval_benchmark(self.test_data4, reference, 'value') self.assertAlmostEqual(tr, 0.19509091) self.assertAlmostEqual(yr, 0.929154957) tr, yr = eval_benchmark(self.test_data5, reference, 'value') self.assertAlmostEqual(tr, 0.19509091) self.assertAlmostEqual(yr, 0.929154957) tr, yr = eval_benchmark(self.test_data6, reference, 'value') self.assertAlmostEqual(tr, 0.19509091) self.assertAlmostEqual(yr, 0.929154957) tr, yr = eval_benchmark(self.test_data7, reference, 'value') self.assertAlmostEqual(tr, 0.19509091) self.assertAlmostEqual(yr, 0.929154957) def test_evaluate(self): pass class TestLoop(unittest.TestCase): """通过一个假设但精心设计的例子来测试loop_step以及loop方法的正确性""" def setUp(self): self.shares = ['share1', 'share2', 'share3', 'share4', 'share5', 'share6', 'share7'] self.dates = ['2016/07/01', '2016/07/04', '2016/07/05', '2016/07/06', '2016/07/07', '2016/07/08', '2016/07/11', '2016/07/12', '2016/07/13', '2016/07/14', '2016/07/15', '2016/07/18', '2016/07/19', '2016/07/20', '2016/07/21', '2016/07/22', '2016/07/25', '2016/07/26', '2016/07/27', '2016/07/28', '2016/07/29', '2016/08/01', '2016/08/02', '2016/08/03', '2016/08/04', '2016/08/05', '2016/08/08', '2016/08/09', '2016/08/10', '2016/08/11', '2016/08/12', '2016/08/15', '2016/08/16', '2016/08/17', '2016/08/18', '2016/08/19', '2016/08/22', '2016/08/23', '2016/08/24', '2016/08/25', '2016/08/26', '2016/08/29', '2016/08/30', '2016/08/31', '2016/09/01', '2016/09/02', '2016/09/05', '2016/09/06', '2016/09/07', '2016/09/08', '2016/09/09', '2016/09/12', '2016/09/13', '2016/09/14', '2016/09/15', '2016/09/16', '2016/09/19', '2016/09/20', '2016/09/21', '2016/09/22', '2016/09/23', '2016/09/26', '2016/09/27', '2016/09/28', '2016/09/29', '2016/09/30', '2016/10/10', '2016/10/11', '2016/10/12', '2016/10/13', '2016/10/14', '2016/10/17', '2016/10/18', '2016/10/19', '2016/10/20', '2016/10/21', '2016/10/23', '2016/10/24', '2016/10/25', '2016/10/26', '2016/10/27', '2016/10/29', '2016/10/30', '2016/10/31', '2016/11/01', '2016/11/02', '2016/11/05', '2016/11/06', '2016/11/07', '2016/11/08', '2016/11/09', '2016/11/12', '2016/11/13', '2016/11/14', '2016/11/15', '2016/11/16', '2016/11/19', '2016/11/20', '2016/11/21', '2016/11/22'] self.dates = [pd.Timestamp(date_text) for date_text in self.dates] self.prices = np.array([[5.35, 5.09, 5.03, 4.98, 4.50, 5.09, 4.75], [5.66, 4.84, 5.21, 5.44, 4.35, 5.06, 4.48], [5.79, 4.60, 5.02, 5.45, 4.07, 4.76, 4.56], [5.56, 4.63, 5.50, 5.74, 3.88, 4.62, 4.62], [5.88, 4.64, 5.07, 5.46, 3.74, 4.63, 4.62], [6.25, 4.51, 5.11, 5.45, 3.98, 4.25, 4.59], [5.93, 4.96, 5.15, 5.24, 4.08, 4.13, 4.33], [6.39, 4.65, 5.02, 5.47, 4.00, 3.91, 3.88], [6.31, 4.26, 5.10, 5.58, 4.28, 3.77, 3.47], [5.86, 3.77, 5.24, 5.36, 4.01, 3.43, 3.51], [5.61, 3.39, 4.93, 5.38, 4.14, 3.68, 3.83], [5.31, 3.76, 4.96, 5.30, 4.49, 3.63, 3.67], [5.40, 4.06, 5.40, 5.77, 4.49, 3.94, 3.79], [5.03, 3.87, 5.74, 5.75, 4.46, 4.40, 4.18], [5.38, 3.91, 5.53, 6.15, 4.13, 4.03, 4.02], [5.79, 4.13, 5.79, 6.04, 3.79, 3.93, 4.41], [6.27, 4.27, 5.68, 6.01, 4.23, 3.50, 4.65], [6.59, 4.57, 5.90, 5.71, 4.57, 3.39, 4.89], [6.91, 5.04, 5.75, 5.23, 4.92, 3.30, 4.41], [6.71, 5.31, 6.11, 5.47, 5.28, 3.25, 4.66], [6.33, 5.40, 5.77, 5.79, 5.67, 2.94, 4.37], [6.07, 5.21, 5.85, 5.82, 6.00, 2.71, 4.58], [5.98, 5.06, 5.61, 5.61, 5.89, 2.55, 4.76], [6.46, 4.69, 5.75, 5.31, 5.55, 2.21, 4.37], [6.95, 5.12, 5.50, 5.24, 5.39, 2.29, 4.16], [6.77, 5.27, 5.14, 5.41, 5.26, 2.21, 4.02], [6.70, 5.72, 5.31, 5.60, 5.31, 2.04, 3.77], [6.28, 6.10, 5.68, 5.28, 5.22, 2.39, 3.38], [6.61, 6.27, 5.73, 4.99, 4.90, 2.30, 3.07], [6.25, 6.49, 6.04, 5.09, 4.57, 2.41, 2.90], [6.47, 6.16, 6.27, 5.39, 4.96, 2.40, 2.50], [6.45, 6.26, 6.60, 5.58, 4.82, 2.79, 2.76], [6.88, 6.39, 6.10, 5.33, 4.39, 2.67, 2.29], [7.00, 6.58, 6.25, 5.48, 4.63, 2.27, 2.17], [6.59, 6.20, 6.73, 5.10, 5.05, 2.09, 1.84], [6.59, 5.70, 6.91, 5.39, 4.68, 2.55, 1.83], [6.64, 5.20, 7.01, 5.30, 5.02, 2.22, 2.21], [6.38, 5.37, 7.36, 5.04, 4.84, 2.59, 2.00], [6.10, 5.40, 7.72, 5.51, 4.60, 2.59, 1.76], [6.35, 5.22, 7.68, 5.43, 4.66, 2.95, 1.27], [6.52, 5.38, 7.62, 5.23, 4.41, 2.69, 1.40], [6.87, 5.53, 7.74, 4.99, 4.87, 2.20, 1.11], [6.84, 6.03, 7.53, 5.43, 4.42, 2.69, 1.60], [7.09, 5.77, 7.46, 5.40, 4.08, 2.65, 1.23], [6.88, 5.66, 7.84, 5.60, 4.16, 2.63, 1.59], [6.84, 6.08, 8.11, 5.66, 4.10, 2.14, 1.50], [6.98, 5.62, 8.04, 6.01, 4.43, 2.39, 1.80], [7.02, 5.63, 7.65, 5.64, 4.07, 1.95, 1.55], [7.13, 6.11, 7.52, 5.67, 3.97, 2.32, 1.35], [7.59, 6.03, 7.67, 5.30, 4.16, 2.69, 1.51], [7.61, 6.27, 7.47, 4.91, 4.12, 2.51, 1.08], [7.21, 6.28, 7.44, 5.37, 4.04, 2.62, 1.06], [7.48, 6.52, 7.59, 5.75, 3.84, 2.16, 1.43], [7.66, 7.00, 7.94, 6.08, 3.46, 2.35, 1.43], [7.51, 7.34, 8.25, 6.58, 3.18, 2.31, 1.74], [7.12, 7.34, 7.77, 6.78, 3.10, 1.96, 1.44], [6.97, 7.68, 8.03, 7.20, 3.55, 2.35, 1.83], [6.67, 8.09, 7.87, 7.65, 3.66, 2.58, 1.71], [6.20, 7.68, 7.58, 8.00, 3.66, 2.40, 2.12], [6.34, 7.58, 7.33, 7.92, 3.29, 2.20, 2.45], [6.22, 7.46, 7.22, 8.30, 2.80, 2.31, 2.85], [5.98, 7.59, 6.86, 8.46, 2.88, 2.16, 2.79], [6.37, 7.19, 7.18, 7.99, 3.04, 2.16, 2.91], [6.56, 7.40, 7.54, 8.19, 3.45, 2.20, 3.26], [6.26, 7.48, 7.24, 8.61, 3.88, 1.73, 3.14], [6.69, 7.93, 6.85, 8.66, 3.58, 1.93, 3.53], [7.13, 8.23, 6.60, 8.91, 3.60, 2.25, 3.65], [6.83, 8.35, 6.65, 9.08, 3.97, 2.69, 3.69], [7.31, 8.44, 6.74, 9.34, 4.05, 2.59, 3.50], [7.43, 8.35, 7.19, 8.96, 4.40, 2.14, 3.25], [7.54, 8.58, 7.14, 8.98, 4.06, 1.68, 3.64], [7.18, 8.82, 6.88, 8.50, 3.60, 1.98, 4.00], [7.21, 9.09, 7.14, 8.65, 3.61, 2.14, 3.63], [7.45, 9.02, 7.30, 8.94, 4.10, 1.89, 3.78], [7.37, 8.87, 6.95, 8.63, 3.74, 1.97, 3.42], [6.88, 9.22, 7.02, 8.65, 4.02, 1.99, 3.76], [7.08, 9.04, 7.38, 8.40, 3.95, 2.37, 3.62], [6.75, 8.60, 7.50, 8.38, 3.81, 2.14, 3.67], [6.60, 8.48, 7.60, 8.23, 3.71, 2.35, 3.61], [6.21, 8.71, 7.15, 8.04, 3.94, 1.86, 3.39], [6.36, 8.79, 7.30, 7.91, 4.43, 2.14, 3.43], [6.82, 8.93, 7.80, 7.57, 4.07, 2.39, 3.33], [6.45, 9.36, 8.15, 7.73, 4.04, 2.53, 3.03], [6.85, 9.68, 8.40, 7.74, 4.34, 2.47, 3.28], [6.48, 10.16, 8.87, 8.07, 4.80, 2.93, 3.46], [6.10, 10.56, 8.53, 7.99, 5.18, 3.09, 3.25], [5.64, 10.63, 8.94, 7.92, 4.90, 2.93, 2.95], [6.01, 10.55, 8.52, 8.40, 5.40, 3.22, 2.87], [6.21, 10.65, 8.80, 8.80, 5.73, 3.06, 2.63], [6.61, 10.55, 8.92, 8.47, 5.62, 2.90, 2.40], [7.02, 10.19, 9.20, 8.07, 5.20, 2.68, 2.53], [7.04, 10.48, 8.71, 7.87, 4.85, 2.46, 2.96], [6.77, 10.36, 8.25, 8.02, 5.18, 2.41, 3.26], [7.09, 10.03, 8.19, 8.39, 4.72, 2.74, 2.97], [6.65, 10.24, 7.80, 8.69, 4.62, 3.15, 3.16], [7.07, 10.01, 7.69, 8.81, 4.55, 3.40, 3.58], [6.80, 10.14, 7.23, 8.99, 4.37, 3.82, 3.23], [6.79, 10.31, 6.98, 9.10, 4.26, 4.02, 3.62], [6.48, 9.88, 7.07, 8.90, 4.25, 3.76, 3.13], [6.39, 10.05, 6.95, 8.87, 4.59, 4.10, 2.93]]) self.op_signals = np.array([[0, 0, 0, 0, 0.25, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0.1, 0.15], [0.2, 0.2, 0, 0, 0, 0, 0], [0, 0, 0.1, 0, 0, 0, 0], [0, 0, 0, 0, -0.75, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [-0.333, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, -0.5, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, -1], [0, 0, 0, 0, 0.2, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [-0.5, 0, 0, 0.15, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0.2, 0, -1, 0.2, 0], [0.5, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0.2, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -0.5, 0.2], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0.2, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0.15, 0, 0], [-1, 0, 0.25, 0.25, 0, 0.25, 0], [0, 0, 0, 0, 0, 0, 0], [0.25, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0.2, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, -1, 0, 0.2], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, -1, 0, 0, 0, 0, 0], [-1, 0, 0.15, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0]]) self.cash = qt.CashPlan(['2016/07/01', '2016/08/12', '2016/09/23'], [10000, 10000, 10000]) self.rate = qt.Cost(buy_fix=0, sell_fix=0, buy_rate=0, sell_rate=0, buy_min=0, sell_min=0, slipage=0) self.rate2 = qt.Cost(buy_fix=0, sell_fix=0, buy_rate=0, sell_rate=0, buy_min=10, sell_min=5, slipage=0) self.op_signal_df = pd.DataFrame(self.op_signals, index=self.dates, columns=self.shares) self.history_list = pd.DataFrame(self.prices, index=self.dates, columns=self.shares) self.res = np.array([[0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 0.000, 7500.000, 0.000, 10000.000], [0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 0.000, 7500.000, 0.000, 9916.667], [0.000, 0.000, 0.000, 0.000, 555.556, 205.065, 321.089, 5059.722, 0.000, 9761.111], [346.982, 416.679, 0.000, 0.000, 555.556, 205.065, 321.089, 1201.278, 0.000, 9646.112], [346.982, 416.679, 191.037, 0.000, 555.556, 205.065, 321.089, 232.719, 0.000, 9685.586], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 9813.218], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 9803.129], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 9608.020], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 9311.573], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 8883.625], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 8751.390], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 8794.181], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 9136.570], [231.437, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 2472.244, 0.000, 9209.359], [231.437, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 2472.244, 0.000, 9093.829], [231.437, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 2472.244, 0.000, 9387.554], [231.437, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 2472.244, 0.000, 9585.959], [231.437, 416.679, 95.519, 0.000, 138.889, 205.065, 321.089, 3035.804, 0.000, 9928.777], [231.437, 416.679, 95.519, 0.000, 138.889, 205.065, 321.089, 3035.804, 0.000, 10060.381], [231.437, 416.679, 95.519, 0.000, 138.889, 205.065, 321.089, 3035.804, 0.000, 10281.002], [231.437, 416.679, 95.519, 0.000, 138.889, 205.065, 321.089, 3035.804, 0.000, 10095.561], [231.437, 416.679, 95.519, 0.000, 138.889, 205.065, 0.000, 4506.393, 0.000, 10029.957], [231.437, 416.679, 95.519, 0.000, 474.224, 205.065, 0.000, 2531.270, 0.000, 9875.613], [231.437, 416.679, 95.519, 0.000, 474.224, 205.065, 0.000, 2531.270, 0.000, 9614.946], [231.437, 416.679, 95.519, 0.000, 474.224, 205.065, 0.000, 2531.270, 0.000, 9824.172], [115.719, 416.679, 95.519, 269.850, 474.224, 205.065, 0.000, 1854.799, 0.000, 9732.574], [115.719, 416.679, 95.519, 269.850, 474.224, 205.065, 0.000, 1854.799, 0.000, 9968.339], [115.719, 416.679, 95.519, 269.850, 474.224, 205.065, 0.000, 1854.799, 0.000, 10056.158], [115.719, 416.679, 95.519, 269.850, 474.224, 205.065, 0.000, 1854.799, 0.000, 9921.492], [115.719, 416.679, 95.519, 269.850, 474.224, 205.065, 0.000, 1854.799, 0.000, 9894.162], [115.719, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 6179.774, 0.000, 20067.937], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21133.508], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20988.848], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20596.743], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 19910.773], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20776.707], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20051.797], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20725.388], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20828.880], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21647.181], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21310.169], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20852.099], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21912.395], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21937.828], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21962.458], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 21389.402], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22027.453], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 20939.999], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 21250.064], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22282.781], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 21407.066], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 21160.237], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 21826.768], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22744.940], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 23466.118], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22017.882], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 23191.466], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 23099.082], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22684.767], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22842.135], [1073.823, 416.679, 735.644, 269.850, 1785.205, 938.697, 1339.207, 5001.425, 0, 33323.836], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 32820.290], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 33174.614], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 35179.466], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 34465.195], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 34712.354], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 35755.550], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 37895.223], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 37854.284], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 37198.374], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 35916.711], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 35806.937], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 36317.592], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 37103.973], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 35457.883], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 36717.685], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 37641.463], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 36794.298], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 37073.817], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 35244.299], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 37062.382], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 37420.067], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 38089.058], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 39260.542], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 42609.684], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 43109.309], [0.000, 416.679, 1290.692, 719.924, 1785.205, 2701.488, 1339.207, 0.000, 0.000, 42283.408], [0.000, 416.679, 1290.692, 719.924, 0.000, 2701.488, 4379.099, 915.621, 0.000, 43622.444], [0.000, 416.679, 1290.692, 719.924, 0.000, 2701.488, 4379.099, 915.621, 0.000, 42830.254], [0.000, 416.679, 1290.692, 719.924, 0.000, 2701.488, 4379.099, 915.621, 0.000, 41266.463], [0.000, 416.679, 1290.692, 719.924, 0.000, 2701.488, 4379.099, 915.621, 0.000, 41164.839], [0.000, 416.679, 1290.692, 719.924, 0.000, 2701.488, 4379.099, 915.621, 0.000, 41797.937], [0.000, 416.679, 1290.692, 719.924, 0.000, 2701.488, 4379.099, 915.621, 0.000, 42440.861], [0.000, 416.679, 1290.692, 719.924, 0.000, 2701.488, 4379.099, 915.621, 0.000, 42113.839], [0.000, 416.679, 1290.692, 719.924, 0.000, 2701.488, 4379.099, 915.621, 0.000, 43853.588], [0.000, 416.679, 1290.692, 719.924, 0.000, 2701.488, 4379.099, 915.621, 0.000, 46216.760], [0.000, 0.000, 1290.692, 719.924, 0.000, 2701.488, 4379.099, 5140.743, 0.000, 45408.737], [0.000, 0.000, 2027.188, 719.924, 0.000, 2701.488, 4379.099, 0.000, 0.000, 47413.401], [0.000, 0.000, 2027.188, 719.924, 0.000, 2701.488, 4379.099, 0.000, 0.000, 44603.718], [0.000, 0.000, 2027.188, 719.924, 0.000, 2701.488, 4379.099, 0.000, 0.000, 44381.544]]) def test_loop_step(self): cash, amounts, fee, value = qt.core._loop_step(pre_cash=10000, pre_amounts=np.zeros(7, dtype='float'), op=self.op_signals[0], prices=self.prices[0], rate=self.rate, moq_buy=0, moq_sell=0, print_log=True) print(f'day 1 result in complete looping: \n' f'cash: {cash}\n' f'amounts: {np.round(amounts, 2)}\n' f'value: {value}') self.assertAlmostEqual(cash, 7500) self.assertTrue(np.allclose(amounts, np.array([0, 0, 0, 0, 555.5555556, 0, 0]))) self.assertAlmostEqual(value, 10000.00) cash, amounts, fee, value = qt.core._loop_step(pre_cash=5059.722222, pre_amounts=np.array([0, 0, 0, 0, 555.5555556, 205.0653595, 321.0891813]), op=self.op_signals[3], prices=self.prices[3], rate=self.rate, moq_buy=0, moq_sell=0, print_log=True) print(f'day 4 result in complete looping: \n' f'cash: {cash}\n' f'amounts: {np.round(amounts, 2)}\n' f'value: {value}') self.assertAlmostEqual(cash, 1201.2775195, 5) self.assertTrue(np.allclose(amounts, np.array([346.9824373, 416.6786936, 0, 0, 555.5555556, 205.0653595, 321.0891813]))) self.assertAlmostEqual(value, 9646.111756, 5) cash, amounts, fee, value = qt.core._loop_step(pre_cash=6179.77423, pre_amounts=np.array([115.7186428, 416.6786936, 735.6441811, 269.8495646, 0, 1877.393446, 0]), op=self.op_signals[31], prices=self.prices[31], rate=self.rate, moq_buy=0, moq_sell=0, print_log=True) print(f'day 32 result in complete looping: \n' f'cash: {cash}\n' f'amounts: {np.round(amounts, 2)}\n' f'value: {value}') self.assertAlmostEqual(cash, 0, 5) self.assertTrue(np.allclose(amounts, np.array([1073.823175, 416.6786936, 735.6441811, 269.8495646, 0, 1877.393446, 0]))) self.assertAlmostEqual(value, 21133.50798, 5) cash, amounts, fee, value = qt.core._loop_step(pre_cash=10000, pre_amounts=np.array([1073.823175, 416.6786936, 735.6441811, 269.8495646, 0, 938.6967231, 1339.207325]), op=self.op_signals[60], prices=self.prices[60], rate=self.rate, moq_buy=0, moq_sell=0, print_log=True) print(f'day 61 result in complete looping: \n' f'cash: {cash}\n' f'amounts: {np.round(amounts, 2)}\n' f'value: {value}') self.assertAlmostEqual(cash, 5001.424618, 5) self.assertTrue(np.allclose(amounts, np.array([1073.823175, 416.6786936, 735.6441811, 269.8495646, 1785.205494, 938.6967231, 1339.207325]))) self.assertAlmostEqual(value, 33323.83588, 5) cash, amounts, fee, value = qt.core._loop_step(pre_cash=cash, pre_amounts=amounts, op=self.op_signals[61], prices=self.prices[61], rate=self.rate, moq_buy=0, moq_sell=0, print_log=True) print(f'day 62 result in complete looping: \n' f'cash: {cash}\n' f'amounts: {np.round(amounts, 2)}\n' f'value: {value}') self.assertAlmostEqual(cash, 0, 5) self.assertTrue(np.allclose(amounts, np.array([0, 416.6786936, 1290.69215, 719.9239224, 1785.205494, 2701.487958, 1339.207325]))) self.assertAlmostEqual(value, 32820.29007, 5) cash, amounts, fee, value = qt.core._loop_step(pre_cash=915.6208259, pre_amounts=np.array([0, 416.6786936, 1290.69215, 719.9239224, 0, 2701.487958, 4379.098907]), op=self.op_signals[96], prices=self.prices[96], rate=self.rate, moq_buy=0, moq_sell=0, print_log=True) print(f'day 97 result in complete looping: \n' f'cash: {cash}\n' f'amounts: {np.round(amounts, 2)}\n' f'value: {value}') self.assertAlmostEqual(cash, 5140.742779, 5) self.assertTrue(np.allclose(amounts, np.array([0, 0, 1290.69215, 719.9239224, 0, 2701.487958, 4379.098907]))) self.assertAlmostEqual(value, 45408.73655, 4) cash, amounts, fee, value = qt.core._loop_step(pre_cash=cash, pre_amounts=amounts, op=self.op_signals[97], prices=self.prices[97], rate=self.rate, moq_buy=0, moq_sell=0, print_log=True) print(f'day 98 result in complete looping: \n' f'cash: {cash}\n' f'amounts: {np.round(amounts, 2)}\n' f'value: {value}') self.assertAlmostEqual(cash, 0, 5) self.assertTrue(np.allclose(amounts, np.array([0, 0, 2027.18825, 719.9239224, 0, 2701.487958, 4379.098907]))) self.assertAlmostEqual(value, 47413.40131, 4) def test_loop(self): res = apply_loop(op_list=self.op_signal_df, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate, moq_buy=0, moq_sell=0, inflation_rate=0, print_log=True) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') self.assertTrue(np.allclose(res.values, self.res, 5)) print(f'test assertion errors in apply_loop: detect moqs that are not compatible') self.assertRaises(AssertionError, apply_loop, self.op_signal_df, self.history_list, self.cash, self.rate, 0, 1, 0, False) self.assertRaises(AssertionError, apply_loop, self.op_signal_df, self.history_list, self.cash, self.rate, 1, 5, 0, False) print(f'test loop results with moq equal to 100') res = apply_loop(op_list=self.op_signal_df, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate2, moq_buy=100, moq_sell=1, inflation_rate=0, print_log=True) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') class TestOperatorSubFuncs(unittest.TestCase): def setUp(self): mask_list = [[0.0, 0.0, 0.0, 0.0], [0.5, 0.0, 0.0, 1.0], [0.5, 0.0, 0.3, 1.0], [0.5, 0.0, 0.3, 0.5], [0.5, 0.5, 0.3, 0.5], [0.5, 0.5, 0.3, 1.0], [0.3, 0.5, 0.0, 1.0], [0.3, 1.0, 0.0, 1.0]] signal_list = [[0.0, 0.0, 0.0, 0.0], [0.5, 0.0, 0.0, 1.0], [0.0, 0.0, 0.3, 0.0], [0.0, 0.0, 0.0, -0.5], [0.0, 0.5, 0.0, 0.0], [0.0, 0.0, 0.0, 0.5], [-0.4, 0.0, -1.0, 0.0], [0.0, 0.5, 0.0, 0.0]] mask_multi = [[[0, 0, 1, 1, 0], [0, 1, 1, 1, 0], [1, 1, 1, 1, 0], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 1, 0, 1, 1], [0, 1, 0, 0, 1], [1, 1, 0, 0, 1], [1, 1, 0, 0, 1], [1, 0, 0, 0, 1]], [[0, 0, 1, 0, 1], [0, 1, 1, 1, 1], [1, 1, 0, 1, 1], [1, 1, 1, 0, 0], [1, 1, 0, 0, 0], [1, 0, 0, 0, 0], [1, 0, 0, 0, 0], [1, 1, 0, 0, 0], [1, 1, 0, 1, 0], [0, 1, 0, 1, 0]], [[0, 0, 0., 0, 1], [0, 0, 1., 0, 1], [0, 0, 1., 0, 1], [1, 0, 1., 0, 1], [1, 1, .5, 1, 1], [1, 0, .5, 1, 0], [1, 1, .5, 1, 0], [0, 1, 0., 0, 0], [1, 0, 0., 0, 0], [0, 1, 0., 0, 0]]] signal_multi = [[[0., 0., 1., 1., 0.], [0., 1., 0., 0., 0.], [1., 0., 0., 0., 0.], [0., 0., 0., 0., 1.], [0., 0., 0., 0., 0.], [0., 0., -1., 0., 0.], [-1., 0., 0., -1., 0.], [1., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., -1., 0., 0., 0.]], [[0., 0., 1., 0., 1.], [0., 1., 0., 1., 0.], [1., 0., -1., 0., 0.], [0., 0., 1., -1., -1.], [0., 0., -1., 0., 0.], [0., -1., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 1., 0., 0., 0.], [0., 0., 0., 1., 0.], [-1., 0., 0., 0., 0.]], [[0., 0., 0., 0., 1.], [0., 0., 1., 0., 0.], [0., 0., 0., 0., 0.], [1., 0., 0., 0., 0.], [0., 1., -0.5, 1., 0.], [0., -1., 0., 0., -1.], [0., 1., 0., 0., 0.], [-1., 0., -1., -1., 0.], [1., -1., 0., 0., 0.], [-1., 1., 0., 0., 0.]]] self.mask = np.array(mask_list) self.multi_mask = np.array(mask_multi) self.correct_signal = np.array(signal_list) self.correct_multi_signal = np.array(signal_multi) self.op = qt.Operator() def test_ls_blend(self): """测试多空蒙板的混合器,三种混合方式均需要测试""" ls_mask1 = [[0.0, 0.0, 0.0, -0.0], [1.0, 0.0, 0.0, -1.0], [1.0, 0.0, 1.0, -1.0], [1.0, 0.0, 1.0, -1.0], [1.0, 1.0, 1.0, -1.0], [1.0, 1.0, 1.0, -1.0], [0.0, 1.0, 0.0, -1.0], [0.0, 1.0, 0.0, -1.0]] ls_mask2 = [[0.0, 0.0, 0.5, -0.5], [0.0, 0.0, 0.5, -0.3], [0.0, 0.5, 0.5, -0.0], [0.5, 0.5, 0.3, -0.0], [0.5, 0.5, 0.3, -0.3], [0.5, 0.5, 0.0, -0.5], [0.3, 0.5, 0.0, -1.0], [0.3, 1.0, 0.0, -1.0]] ls_mask3 = [[0.5, 0.0, 1.0, -0.4], [0.4, 0.0, 1.0, -0.3], [0.3, 0.0, 0.8, -0.2], [0.2, 0.0, 0.6, -0.1], [0.1, 0.2, 0.4, -0.2], [0.1, 0.3, 0.2, -0.5], [0.1, 0.4, 0.0, -0.5], [0.1, 0.5, 0.0, -1.0]] # result with blender 'avg' ls_blnd_avg = [[0.16666667, 0.00000000, 0.50000000, -0.3], [0.46666667, 0.00000000, 0.50000000, -0.53333333], [0.43333333, 0.16666667, 0.76666667, -0.4], [0.56666667, 0.16666667, 0.63333333, -0.36666667], [0.53333333, 0.56666667, 0.56666667, -0.5], [0.53333333, 0.60000000, 0.40000000, -0.66666667], [0.13333333, 0.63333333, 0.00000000, -0.83333333], [0.13333333, 0.83333333, 0.00000000, -1.]] # result with blender 'str-1.5' ls_blnd_str_15 = [[0, 0, 1, 0], [0, 0, 1, -1], [0, 0, 1, 0], [1, 0, 1, 0], [1, 1, 1, -1], [1, 1, 0, -1], [0, 1, 0, -1], [0, 1, 0, -1]] # result with blender 'pos-2' == 'pos-2-0' ls_blnd_pos_2 = [[0, 0, 1, -1], [1, 0, 1, -1], [1, 0, 1, -1], [1, 0, 1, -1], [1, 1, 1, -1], [1, 1, 1, -1], [1, 1, 0, -1], [1, 1, 0, -1]] # result with blender 'pos-2-0.25' ls_blnd_pos_2_25 = [[0, 0, 1, -1], [1, 0, 1, -1], [1, 0, 1, 0], [1, 0, 1, 0], [1, 1, 1, -1], [1, 1, 0, -1], [0, 1, 0, -1], [0, 1, 0, -1]] # result with blender 'avg_pos-2' == 'pos-2-0' ls_blnd_avg_pos_2 = [[0.00000000, 0.00000000, 0.50000000, -0.3], [0.46666667, 0.00000000, 0.50000000, -0.53333333], [0.43333333, 0.00000000, 0.76666667, -0.4], [0.56666667, 0.00000000, 0.63333333, -0.36666667], [0.53333333, 0.56666667, 0.56666667, -0.5], [0.53333333, 0.60000000, 0.40000000, -0.66666667], [0.13333333, 0.63333333, 0.00000000, -0.83333333], [0.13333333, 0.83333333, 0.00000000, -1.]] # result with blender 'avg_pos-2-0.25' ls_blnd_avg_pos_2_25 = [[0.00000000, 0.00000000, 0.50000000, -0.3], [0.46666667, 0.00000000, 0.50000000, -0.53333333], [0.43333333, 0.00000000, 0.76666667, 0.00000000], [0.56666667, 0.00000000, 0.63333333, 0.00000000], [0.53333333, 0.56666667, 0.56666667, -0.5], [0.53333333, 0.60000000, 0.00000000, -0.66666667], [0.00000000, 0.63333333, 0.00000000, -0.83333333], [0.00000000, 0.83333333, 0.00000000, -1.]] # result with blender 'combo' ls_blnd_combo = [[0.5, 0., 1.5, -0.9], [1.4, 0., 1.5, -1.6], [1.3, 0.5, 2.3, -1.2], [1.7, 0.5, 1.9, -1.1], [1.6, 1.7, 1.7, -1.5], [1.6, 1.8, 1.2, -2.], [0.4, 1.9, 0., -2.5], [0.4, 2.5, 0., -3.]] ls_masks = np.array([np.array(ls_mask1), np.array(ls_mask2), np.array(ls_mask3)]) # test A: the ls_blender 'str-T' self.op.set_blender('ls', 'str-1.5') res = qt.Operator._ls_blend(self.op, ls_masks) print(f'test A: result of ls_blender: str-1.5: \n{res}') self.assertTrue(np.allclose(res, ls_blnd_str_15)) # test B: the ls_blender 'pos-N-T' self.op.set_blender('ls', 'pos-2') res = qt.Operator._ls_blend(self.op, ls_masks) print(f'Test B-1: result of ls_blender: pos-2: \n{res}') self.assertTrue(np.allclose(res, ls_blnd_pos_2)) self.op.set_blender('ls', 'pos-2-0.25') res = qt.Operator._ls_blend(self.op, ls_masks) print(f'Test B-2: result of ls_blender: pos-2-0.25: \n{res}') self.assertTrue(np.allclose(res, ls_blnd_pos_2_25)) # test C: the ls_blender 'avg_pos-N-T' self.op.set_blender('ls', 'avg_pos-2') res = qt.Operator._ls_blend(self.op, ls_masks) print(f'Test C-1: result of ls_blender: avg_pos-2: \n{res}') self.assertTrue(np.allclose(res, ls_blnd_pos_2, 5)) self.op.set_blender('ls', 'avg_pos-2-0.25') res = qt.Operator._ls_blend(self.op, ls_masks) print(f'Test C-2: result of ls_blender: avg_pos-2-0.25: \n{res}') self.assertTrue(np.allclose(res, ls_blnd_pos_2_25, 5)) # test D: the ls_blender 'avg' self.op.set_blender('ls', 'avg') res = qt.Operator._ls_blend(self.op, ls_masks) print(f'Test D: result of ls_blender: avg: \n{res}') self.assertTrue(np.allclose(res, ls_blnd_avg)) # test E: the ls_blender 'combo' self.op.set_blender('ls', 'combo') res = qt.Operator._ls_blend(self.op, ls_masks) print(f'Test E: result of ls_blender: combo: \n{res}') self.assertTrue(np.allclose(res, ls_blnd_combo)) def test_sel_blend(self): """测试选股蒙板的混合器,包括所有的混合模式""" # step2, test blending of sel masks pass def test_bs_blend(self): """测试买卖信号混合模式""" # step3, test blending of op signals pass def test_unify(self): print('Testing Unify functions\n') l1 = np.array([[3, 2, 5], [5, 3, 2]]) res = qt.unify(l1) target = np.array([[0.3, 0.2, 0.5], [0.5, 0.3, 0.2]]) self.assertIs(np.allclose(res, target), True, 'sum of all elements is 1') l1 = np.array([[1, 1, 1, 1, 1], [2, 2, 2, 2, 2]]) res = qt.unify(l1) target = np.array([[0.2, 0.2, 0.2, 0.2, 0.2], [0.2, 0.2, 0.2, 0.2, 0.2]]) self.assertIs(np.allclose(res, target), True, 'sum of all elements is 1') def test_mask_to_signal(self): signal = qt.mask_to_signal(self.mask) print(f'Test A: single mask to signal, result: \n{signal}') self.assertTrue(np.allclose(signal, self.correct_signal)) signal = qt.mask_to_signal(self.multi_mask) print(f'Test A: single mask to signal, result: \n{signal}') self.assertTrue(np.allclose(signal, self.correct_multi_signal)) class TestLSStrategy(qt.RollingTiming): """用于test测试的简单多空蒙板生成策略。基于RollingTiming滚动择时方法生成 该策略有两个参数,N与Price N用于计算OHLC价格平均值的N日简单移动平均,判断,当移动平均值大于等于Price时,状态为看多,否则为看空 """ def __init__(self): super().__init__(stg_name='test_LS', stg_text='test long/short strategy', par_count=2, par_types='discr, conti', par_bounds_or_enums=([1, 5], [2, 10]), data_types='close, open, high, low', data_freq='d', window_length=5) pass def _realize(self, hist_data: np.ndarray, params: tuple): n, price = params h = hist_data.T avg = (h[0] + h[1] + h[2] + h[3]) / 4 ma = sma(avg, n) if ma[-1] < price: return 0 else: return 1 class TestSelStrategy(qt.SimpleSelecting): """用于Test测试的简单选股策略,基于Selecting策略生成 策略没有参数,选股周期为5D 在每个选股周期内,从股票池的三只股票中选出今日变化率 = (今收-昨收)/平均股价(OHLC平均股价)最高的两支,放入中选池,否则落选。 选股比例为平均分配 """ def __init__(self): super().__init__(stg_name='test_SEL', stg_text='test portfolio selection strategy', par_count=0, par_types='', par_bounds_or_enums=(), data_types='high, low, close', data_freq='d', sample_freq='10d', window_length=5) pass def _realize(self, hist_data: np.ndarray, params: tuple): avg = np.nanmean(hist_data, axis=(1, 2)) dif = (hist_data[:, :, 2] - np.roll(hist_data[:, :, 2], 1, 1)) dif_no_nan = np.array([arr[~np.isnan(arr)][-1] for arr in dif]) difper = dif_no_nan / avg large2 = difper.argsort()[1:] chosen = np.zeros_like(avg) chosen[large2] = 0.5 return chosen class TestSelStrategyDiffTime(qt.SimpleSelecting): """用于Test测试的简单选股策略,基于Selecting策略生成 策略没有参数,选股周期为5D 在每个选股周期内,从股票池的三只股票中选出今日变化率 = (今收-昨收)/平均股价(OHLC平均股价)最高的两支,放入中选池,否则落选。 选股比例为平均分配 """ def __init__(self): super().__init__(stg_name='test_SEL', stg_text='test portfolio selection strategy', par_count=0, par_types='', par_bounds_or_enums=(), data_types='close, low, open', data_freq='d', sample_freq='w', window_length=2) pass def _realize(self, hist_data: np.ndarray, params: tuple): avg = hist_data.mean(axis=1).squeeze() difper = (hist_data[:, :, 0] - np.roll(hist_data[:, :, 0], 1))[:, -1] / avg large2 = difper.argsort()[0:2] chosen = np.zeros_like(avg) chosen[large2] = 0.5 return chosen class TestSigStrategy(qt.SimpleTiming): """用于Test测试的简单信号生成策略,基于SimpleTiming策略生成 策略有三个参数,第一个参数为ratio,另外两个参数为price1以及price2 ratio是k线形状比例的阈值,定义为abs((C-O)/(H-L))。当这个比值小于ratio阈值时,判断该K线为十字交叉(其实还有丁字等多种情形,但这里做了 简化处理。 信号生成的规则如下: 1,当某个K线出现十字交叉,且昨收与今收之差大于price1时,买入信号 2,当某个K线出现十字交叉,且昨收与今收之差小于price2时,卖出信号 """ def __init__(self): super().__init__(stg_name='test_SIG', stg_text='test signal creation strategy', par_count=3, par_types='conti, conti, conti', par_bounds_or_enums=([2, 10], [0, 3], [0, 3]), data_types='close, open, high, low', window_length=2) pass def _realize(self, hist_data: np.ndarray, params: tuple): r, price1, price2 = params h = hist_data.T ratio = np.abs((h[0] - h[1]) / (h[3] - h[2])) diff = h[0] - np.roll(h[0], 1) sig = np.where((ratio < r) & (diff > price1), 1, np.where((ratio < r) & (diff < price2), -1, 0)) return sig class TestOperator(unittest.TestCase): """全面测试Operator对象的所有功能。包括: 1, Strategy 参数的设置 2, 历史数据的获取与分配提取 3, 策略优化参数的批量设置和优化空间的获取 4, 策略输出值的正确性验证 5, 策略结果的混合结果确认 """ def setUp(self): """prepare data for Operator test""" print('start testing HistoryPanel object\n') # build up test data: a 4-type, 3-share, 50-day matrix of prices that contains nan values in some days # for some share_pool # for share1: data_rows = 50 share1_close = [10.04, 10, 10, 9.99, 9.97, 9.99, 10.03, 10.03, 10.06, 10.06, 10.11, 10.09, 10.07, 10.06, 10.09, 10.03, 10.03, 10.06, 10.08, 10, 9.99, 10.03, 10.03, 10.06, 10.03, 9.97, 9.94, 9.83, 9.77, 9.84, 9.91, 9.93, 9.96, 9.91, 9.91, 9.88, 9.91, 9.64, 9.56, 9.57, 9.55, 9.57, 9.61, 9.61, 9.55, 9.57, 9.63, 9.64, 9.65, 9.62] share1_open = [10.02, 10, 9.98, 9.97, 9.99, 10.01, 10.04, 10.06, 10.06, 10.11, 10.11, 10.07, 10.06, 10.09, 10.03, 10.02, 10.06, 10.08, 9.99, 10, 10.03, 10.02, 10.06, 10.03, 9.97, 9.94, 9.83, 9.78, 9.77, 9.91, 9.92, 9.97, 9.91, 9.9, 9.88, 9.91, 9.63, 9.64, 9.57, 9.55, 9.58, 9.61, 9.62, 9.55, 9.57, 9.61, 9.63, 9.64, 9.61, 9.56] share1_high = [10.07, 10, 10, 10, 10.03, 10.03, 10.04, 10.09, 10.1, 10.14, 10.11, 10.1, 10.09, 10.09, 10.1, 10.05, 10.07, 10.09, 10.1, 10, 10.04, 10.04, 10.06, 10.09, 10.05, 9.97, 9.96, 9.86, 9.77, 9.92, 9.94, 9.97, 9.97, 9.92, 9.92, 9.92, 9.93, 9.64, 9.58, 9.6, 9.58, 9.62, 9.62, 9.64, 9.59, 9.62, 9.63, 9.7, 9.66, 9.64] share1_low = [9.99, 10, 9.97, 9.97, 9.97, 9.98, 9.99, 10.03, 10.03, 10.04, 10.11, 10.07, 10.05, 10.03, 10.03, 10.01, 9.99, 10.03, 9.95, 10, 9.95, 10, 10.01, 9.99, 9.96, 9.89, 9.83, 9.77, 9.77, 9.8, 9.9, 9.91, 9.89, 9.89, 9.87, 9.85, 9.6, 9.64, 9.53, 9.55, 9.54, 9.55, 9.58, 9.54, 9.53, 9.53, 9.63, 9.64, 9.59, 9.56] # for share2: share2_close = [9.68, 9.87, 9.86, 9.87, 9.79, 9.82, 9.8, 9.66, 9.62, 9.58, 9.69, 9.78, 9.75, 9.96, 9.9, 10.04, 10.06, 10.08, 10.24, 10.24, 10.24, 9.86, 10.13, 10.12, 10.1, 10.25, 10.24, 10.22, 10.75, 10.64, 10.56, 10.6, 10.42, 10.25, 10.24, 10.49, 10.57, 10.63, 10.48, 10.37, 10.96, 11.02, np.nan, np.nan, 10.88, 10.87, 11.01, 11.01, 11.58, 11.8] share2_open = [9.88, 9.88, 9.89, 9.75, 9.74, 9.8, 9.62, 9.65, 9.58, 9.67, 9.81, 9.8, 10, 9.95, 10.1, 10.06, 10.14, 9.9, 10.2, 10.29, 9.86, 9.48, 10.01, 10.24, 10.26, 10.24, 10.12, 10.65, 10.64, 10.56, 10.42, 10.43, 10.29, 10.3, 10.44, 10.6, 10.67, 10.46, 10.39, 10.9, 11.01, 11.01, np.nan, np.nan, 10.82, 11.02, 10.96, 11.55, 11.74, 11.8] share2_high = [9.91, 10.04, 9.93, 10.04, 9.84, 9.88, 9.99, 9.7, 9.67, 9.71, 9.85, 9.9, 10, 10.2, 10.11, 10.18, 10.21, 10.26, 10.38, 10.47, 10.42, 10.07, 10.24, 10.27, 10.38, 10.43, 10.39, 10.65, 10.84, 10.65, 10.73, 10.63, 10.51, 10.35, 10.46, 10.63, 10.74, 10.76, 10.54, 11.02, 11.12, 11.17, np.nan, np.nan, 10.92, 11.15, 11.11, 11.55, 11.95, 11.93] share2_low = [9.63, 9.84, 9.81, 9.74, 9.67, 9.72, 9.57, 9.54, 9.51, 9.47, 9.68, 9.63, 9.75, 9.65, 9.9, 9.93, 10.03, 9.8, 10.14, 10.09, 9.78, 9.21, 9.11, 9.68, 10.05, 10.12, 9.89, 9.89, 10.59, 10.43, 10.34, 10.32, 10.21, 10.2, 10.18, 10.36, 10.51, 10.41, 10.32, 10.37, 10.87, 10.95, np.nan, np.nan, 10.65, 10.71, 10.75, 10.91, 11.31, 11.58] # for share3: share3_close = [6.64, 7.26, 7.03, 6.87, np.nan, 6.64, 6.85, 6.7, 6.39, 6.22, 5.92, 5.91, 6.11, 5.91, 6.23, 6.28, 6.28, 6.27, np.nan, 5.56, 5.67, 5.16, 5.69, 6.32, 6.14, 6.25, 5.79, 5.26, 5.05, 5.45, 6.06, 6.21, 5.69, 5.46, 6.02, 6.69, 7.43, 7.72, 8.16, 7.83, 8.7, 8.71, 8.88, 8.54, 8.87, 8.87, 8.18, 7.8, 7.97, 8.25] share3_open = [7.26, 7, 6.88, 6.91, np.nan, 6.81, 6.63, 6.45, 6.16, 6.24, 5.96, 5.97, 5.96, 6.2, 6.35, 6.11, 6.37, 5.58, np.nan, 5.65, 5.19, 5.42, 6.3, 6.15, 6.05, 5.89, 5.22, 5.2, 5.07, 6.04, 6.12, 5.85, 5.67, 6.02, 6.04, 7.07, 7.64, 7.99, 7.59, 8.73, 8.72, 8.97, 8.58, 8.71, 8.77, 8.4, 7.95, 7.76, 8.25, 7.51] share3_high = [7.41, 7.31, 7.14, 7, np.nan, 6.82, 6.96, 6.85, 6.5, 6.34, 6.04, 6.02, 6.12, 6.38, 6.43, 6.46, 6.43, 6.27, np.nan, 6.01, 5.67, 5.67, 6.35, 6.32, 6.43, 6.36, 5.79, 5.47, 5.65, 6.04, 6.14, 6.23, 5.83, 6.25, 6.27, 7.12, 7.82, 8.14, 8.27, 8.92, 8.76, 9.15, 8.9, 9.01, 9.16, 9, 8.27, 7.99, 8.33, 8.25] share3_low = [6.53, 6.87, 6.83, 6.7, np.nan, 6.63, 6.57, 6.41, 6.15, 6.07, 5.89, 5.82, 5.73, 5.81, 6.1, 6.06, 6.16, 5.57, np.nan, 5.51, 5.19, 5.12, 5.69, 6.01, 5.97, 5.86, 5.18, 5.19, 4.96, 5.45, 5.84, 5.85, 5.28, 5.42, 6.02, 6.69, 7.28, 7.64, 7.25, 7.83, 8.41, 8.66, 8.53, 8.54, 8.73, 8.27, 7.95, 7.67, 7.8, 7.51] # for sel_finance test shares_eps = np.array([[np.nan, np.nan, np.nan], [0.1, np.nan, np.nan], [np.nan, 0.2, np.nan], [np.nan, np.nan, 0.3], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 0.2], [0.1, np.nan, np.nan], [np.nan, 0.3, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [0.3, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, 0.3, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 0.3], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, 0, 0.2], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [0.1, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 0.2], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [0.15, np.nan, np.nan], [np.nan, 0.1, np.nan], [np.nan, np.nan, np.nan], [0.1, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 0.3], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [0.2, np.nan, np.nan], [np.nan, 0.5, np.nan], [0.4, np.nan, 0.3], [np.nan, np.nan, np.nan], [np.nan, 0.3, np.nan], [0.9, np.nan, np.nan], [np.nan, np.nan, 0.1]]) self.date_indices = ['2016-07-01', '2016-07-04', '2016-07-05', '2016-07-06', '2016-07-07', '2016-07-08', '2016-07-11', '2016-07-12', '2016-07-13', '2016-07-14', '2016-07-15', '2016-07-18', '2016-07-19', '2016-07-20', '2016-07-21', '2016-07-22', '2016-07-25', '2016-07-26', '2016-07-27', '2016-07-28', '2016-07-29', '2016-08-01', '2016-08-02', '2016-08-03', '2016-08-04', '2016-08-05', '2016-08-08', '2016-08-09', '2016-08-10', '2016-08-11', '2016-08-12', '2016-08-15', '2016-08-16', '2016-08-17', '2016-08-18', '2016-08-19', '2016-08-22', '2016-08-23', '2016-08-24', '2016-08-25', '2016-08-26', '2016-08-29', '2016-08-30', '2016-08-31', '2016-09-01', '2016-09-02', '2016-09-05', '2016-09-06', '2016-09-07', '2016-09-08'] self.shares = ['000010', '000030', '000039'] self.types = ['close', 'open', 'high', 'low'] self.sel_finance_tyeps = ['eps'] self.test_data_3D = np.zeros((3, data_rows, 4)) self.test_data_2D = np.zeros((data_rows, 3)) self.test_data_2D2 = np.zeros((data_rows, 4)) self.test_data_sel_finance = np.empty((3, data_rows, 1)) # Build up 3D data self.test_data_3D[0, :, 0] = share1_close self.test_data_3D[0, :, 1] = share1_open self.test_data_3D[0, :, 2] = share1_high self.test_data_3D[0, :, 3] = share1_low self.test_data_3D[1, :, 0] = share2_close self.test_data_3D[1, :, 1] = share2_open self.test_data_3D[1, :, 2] = share2_high self.test_data_3D[1, :, 3] = share2_low self.test_data_3D[2, :, 0] = share3_close self.test_data_3D[2, :, 1] = share3_open self.test_data_3D[2, :, 2] = share3_high self.test_data_3D[2, :, 3] = share3_low self.test_data_sel_finance[:, :, 0] = shares_eps.T self.hp1 = qt.HistoryPanel(values=self.test_data_3D, levels=self.shares, columns=self.types, rows=self.date_indices) print(f'in test Operator, history panel is created for timing test') self.hp1.info() self.hp2 = qt.HistoryPanel(values=self.test_data_sel_finance, levels=self.shares, columns=self.sel_finance_tyeps, rows=self.date_indices) print(f'in test_Operator, history panel is created for selection finance test:') self.hp2.info() self.op = qt.Operator(selecting_types=['all'], timing_types='dma', ricon_types='urgent') def test_info(self): """Test information output of Operator""" print(f'test printing information of operator object') # self.op.info() def test_operator_ready(self): """test the method ready of Operator""" pass # print(f'operator is ready? "{self.op.ready}"') def test_operator_add_strategy(self): """test adding strategies to Operator""" pass # self.assertIsInstance(self.op, qt.Operator) # self.assertIsInstance(self.op.timing[0], qt.TimingDMA) # self.assertIsInstance(self.op.selecting[0], qt.SelectingAll) # self.assertIsInstance(self.op.ricon[0], qt.RiconUrgent) # self.assertEqual(self.op.selecting_count, 1) # self.assertEqual(self.op.strategy_count, 3) # self.assertEqual(self.op.ricon_count, 1) # self.assertEqual(self.op.timing_count, 1) # self.assertEqual(self.op.ls_blender, 'pos-1') # print(f'test adding strategies into existing op') # print('test adding strategy by string') # self.op.add_strategy('macd', 'timing') # self.assertIsInstance(self.op.timing[0], qt.TimingDMA) # self.assertIsInstance(self.op.timing[1], qt.TimingMACD) # self.assertEqual(self.op.selecting_count, 1) # self.assertEqual(self.op.strategy_count, 4) # self.assertEqual(self.op.ricon_count, 1) # self.assertEqual(self.op.timing_count, 2) # self.assertEqual(self.op.ls_blender, 'pos-1') # self.op.add_strategy('random', 'selecting') # self.assertIsInstance(self.op.selecting[0], qt.TimingDMA) # self.assertIsInstance(self.op.selecting[1], qt.TimingMACD) # self.assertEqual(self.op.selecting_count, 2) # self.assertEqual(self.op.strategy_count, 5) # self.assertEqual(self.op.ricon_count, 1) # self.assertEqual(self.op.timing_count, 2) # self.assertEqual(self.op.selecting_blender, '0 or 1') # self.op.add_strategy('none', 'ricon') # self.assertIsInstance(self.op.ricon[0], qt.TimingDMA) # self.assertIsInstance(self.op.ricon[1], qt.TimingMACD) # self.assertEqual(self.op.selecting_count, 2) # self.assertEqual(self.op.strategy_count, 6) # self.assertEqual(self.op.ricon_count, 2) # self.assertEqual(self.op.timing_count, 2) # print('test adding strategy by list') # self.op.add_strategy(['dma', 'macd'], 'timing') # print('test adding strategy by object') # test_ls = TestLSStrategy() # self.op.add_strategy(test_ls, 'timing') def test_operator_remove_strategy(self): """test removing strategies from Operator""" pass # self.op.remove_strategy(stg='macd') def test_property_get(self): self.assertIsInstance(self.op, qt.Operator) self.assertIsInstance(self.op.timing[0], qt.TimingDMA) self.assertIsInstance(self.op.selecting[0], qt.SelectingAll) self.assertIsInstance(self.op.ricon[0], qt.RiconUrgent) self.assertEqual(self.op.selecting_count, 1) self.assertEqual(self.op.strategy_count, 3) self.assertEqual(self.op.ricon_count, 1) self.assertEqual(self.op.timing_count, 1) print(self.op.strategies, '\n', [qt.TimingDMA, qt.SelectingAll, qt.RiconUrgent]) print(f'info of Timing strategy: \n{self.op.strategies[0].info()}') self.assertEqual(len(self.op.strategies), 3) self.assertIsInstance(self.op.strategies[0], qt.TimingDMA) self.assertIsInstance(self.op.strategies[1], qt.SelectingAll) self.assertIsInstance(self.op.strategies[2], qt.RiconUrgent) self.assertEqual(self.op.strategy_count, 3) self.assertEqual(self.op.op_data_freq, 'd') self.assertEqual(self.op.op_data_types, ['close']) self.assertEqual(self.op.opt_space_par, ([], [])) self.assertEqual(self.op.max_window_length, 270) self.assertEqual(self.op.ls_blender, 'pos-1') self.assertEqual(self.op.selecting_blender, '0') self.assertEqual(self.op.ricon_blender, 'add') self.assertEqual(self.op.opt_types, [0, 0, 0]) def test_prepare_data(self): test_ls = TestLSStrategy() test_sel = TestSelStrategy() test_sig = TestSigStrategy() self.op = qt.Operator(timing_types=[test_ls], selecting_types=[test_sel], ricon_types=[test_sig]) too_early_cash = qt.CashPlan(dates='2016-01-01', amounts=10000) early_cash = qt.CashPlan(dates='2016-07-01', amounts=10000) on_spot_cash = qt.CashPlan(dates='2016-07-08', amounts=10000) no_trade_cash = qt.CashPlan(dates='2016-07-08, 2016-07-30, 2016-08-11, 2016-09-03', amounts=[10000, 10000, 10000, 10000]) late_cash = qt.CashPlan(dates='2016-12-31', amounts=10000) multi_cash = qt.CashPlan(dates='2016-07-08, 2016-08-08', amounts=[10000, 10000]) self.op.set_parameter(stg_id='t-0', pars={'000300': (5, 10.), '000400': (5, 10.), '000500': (5, 6.)}) self.op.set_parameter(stg_id='s-0', pars=()) self.op.set_parameter(stg_id='r-0', pars=(0.2, 0.02, -0.02)) self.op.prepare_data(hist_data=self.hp1, cash_plan=on_spot_cash) self.assertIsInstance(self.op._selecting_history_data, list) self.assertIsInstance(self.op._timing_history_data, list) self.assertIsInstance(self.op._ricon_history_data, list) self.assertEqual(len(self.op._selecting_history_data), 1) self.assertEqual(len(self.op._timing_history_data), 1) self.assertEqual(len(self.op._ricon_history_data), 1) sel_hist_data = self.op._selecting_history_data[0] tim_hist_data = self.op._timing_history_data[0] ric_hist_data = self.op._ricon_history_data[0] print(f'in test_prepare_data in TestOperator:') print('selecting history data:\n', sel_hist_data) print('originally passed data in correct sequence:\n', self.test_data_3D[:, 3:, [2, 3, 0]]) print('difference is \n', sel_hist_data - self.test_data_3D[:, :, [2, 3, 0]]) self.assertTrue(np.allclose(sel_hist_data, self.test_data_3D[:, :, [2, 3, 0]], equal_nan=True)) self.assertTrue(np.allclose(tim_hist_data, self.test_data_3D, equal_nan=True)) self.assertTrue(np.allclose(ric_hist_data, self.test_data_3D[:, 3:, :], equal_nan=True)) # raises Value Error if empty history panel is given empty_hp = qt.HistoryPanel() correct_hp = qt.HistoryPanel(values=np.random.randint(10, size=(3, 50, 4)), columns=self.types, levels=self.shares, rows=self.date_indices) too_many_shares = qt.HistoryPanel(values=np.random.randint(10, size=(5, 50, 4))) too_many_types = qt.HistoryPanel(values=np.random.randint(10, size=(3, 50, 5))) # raises Error when history panel is empty self.assertRaises(ValueError, self.op.prepare_data, empty_hp, on_spot_cash) # raises Error when first investment date is too early self.assertRaises(AssertionError, self.op.prepare_data, correct_hp, early_cash) # raises Error when last investment date is too late self.assertRaises(AssertionError, self.op.prepare_data, correct_hp, late_cash) # raises Error when some of the investment dates are on no-trade-days self.assertRaises(ValueError, self.op.prepare_data, correct_hp, no_trade_cash) # raises Error when number of shares in history data does not fit self.assertRaises(AssertionError, self.op.prepare_data, too_many_shares, on_spot_cash) # raises Error when too early cash investment date self.assertRaises(AssertionError, self.op.prepare_data, correct_hp, too_early_cash) # raises Error when number of d_types in history data does not fit self.assertRaises(AssertionError, self.op.prepare_data, too_many_types, on_spot_cash) # test the effect of data type sequence in strategy definition def test_operator_generate(self): """ :return: """ test_ls = TestLSStrategy() test_sel = TestSelStrategy() test_sig = TestSigStrategy() self.op = qt.Operator(timing_types=[test_ls], selecting_types=[test_sel], ricon_types=[test_sig]) self.assertIsInstance(self.op, qt.Operator, 'Operator Creation Error') self.op.set_parameter(stg_id='t-0', pars={'000300': (5, 10.), '000400': (5, 10.), '000500': (5, 6.)}) self.op.set_parameter(stg_id='s-0', pars=()) # 在所有策略的参数都设置好之前调用prepare_data会发生assertion Error self.assertRaises(AssertionError, self.op.prepare_data, hist_data=self.hp1, cash_plan=qt.CashPlan(dates='2016-07-08', amounts=10000)) self.op.set_parameter(stg_id='r-0', pars=(0.2, 0.02, -0.02)) self.op.prepare_data(hist_data=self.hp1, cash_plan=qt.CashPlan(dates='2016-07-08', amounts=10000)) self.op.info() op_list = self.op.create_signal(hist_data=self.hp1) print(f'operation list is created: as following:\n {op_list}') self.assertTrue(isinstance(op_list, pd.DataFrame)) self.assertEqual(op_list.shape, (26, 3)) # 删除去掉重复信号的code后,信号从原来的23条变为26条,包含三条重复信号,但是删除重复信号可能导致将不应该删除的信号删除,详见 # operator.py的create_signal()函数注释836行 target_op_dates = ['2016/07/08', '2016/07/12', '2016/07/13', '2016/07/14', '2016/07/18', '2016/07/20', '2016/07/22', '2016/07/26', '2016/07/27', '2016/07/28', '2016/08/02', '2016/08/03', '2016/08/04', '2016/08/05', '2016/08/08', '2016/08/10', '2016/08/16', '2016/08/18', '2016/08/24', '2016/08/26', '2016/08/29', '2016/08/30', '2016/08/31', '2016/09/05', '2016/09/06', '2016/09/08'] target_op_values = np.array([[0.0, 1.0, 0.0], [0.5, -1.0, 0.0], [1.0, 0.0, 0.0], [0.0, 0.0, -1.0], [0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.5, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, -1.0], [0.0, 1.0, 0.0], [0.0, -1.0, 0.0], [0.0, 0.0, -1.0], [0.0, 1.0, 0.0], [-1.0, 0.0, 0.0], [0.0, 0.0, -1.0], [0.0, 0.0, -1.0], [0.0, 0.0, 1.0], [-1.0, 0.0, 0.0], [0.0, 1.0, 1.0], [0.0, 1.0, 0.5], [0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, -1.0], [0.0, 1.0, 0.0]]) target_op = pd.DataFrame(data=target_op_values, index=target_op_dates, columns=['000010', '000030', '000039']) target_op = target_op.rename(index=pd.Timestamp) print(f'target operation list is as following:\n {target_op}') dates_pairs = [[date1, date2, date1 == date2] for date1, date2 in zip(target_op.index.strftime('%m-%d'), op_list.index.strftime('%m-%d'))] signal_pairs = [[list(sig1), list(sig2), all(sig1 == sig2)] for sig1, sig2 in zip(list(target_op.values), list(op_list.values))] print(f'dates side by side:\n ' f'{dates_pairs}') print(f'signals side by side:\n' f'{signal_pairs}') print([item[2] for item in dates_pairs]) print([item[2] for item in signal_pairs]) self.assertTrue(np.allclose(target_op.values, op_list.values, equal_nan=True)) self.assertTrue(all([date1 == date2 for date1, date2 in zip(target_op.index.strftime('%m-%d'), op_list.index.strftime('%m-%d'))])) def test_operator_parameter_setting(self): """ :return: """ new_op = qt.Operator(selecting_types=['all'], timing_types='dma', ricon_types='urgent') print(new_op.strategies, '\n', [qt.TimingDMA, qt.SelectingAll, qt.RiconUrgent]) print(f'info of Timing strategy in new op: \n{new_op.strategies[0].info()}') self.op.set_parameter('t-0', pars=(5, 10, 5), opt_tag=1, par_boes=((5, 10), (5, 15), (10, 15)), window_length=10, data_types=['close', 'open', 'high']) self.op.set_parameter(stg_id='s-0', pars=None, opt_tag=1, sample_freq='10d', window_length=10, data_types='close, open') self.op.set_parameter(stg_id='r-0', pars=None, opt_tag=0, sample_freq='d', window_length=20, data_types='close, open') self.assertEqual(self.op.timing[0].pars, (5, 10, 5)) self.assertEqual(self.op.timing[0].par_boes, ((5, 10), (5, 15), (10, 15))) self.assertEqual(self.op.op_data_freq, 'd') self.assertEqual(self.op.op_data_types, ['close', 'high', 'open']) self.assertEqual(self.op.opt_space_par, ([(5, 10), (5, 15), (10, 15), (0, 1)], ['discr', 'discr', 'discr', 'conti'])) self.assertEqual(self.op.max_window_length, 20) self.assertRaises(AssertionError, self.op.set_parameter, stg_id='t-1', pars=(1, 2)) self.assertRaises(AssertionError, self.op.set_parameter, stg_id='t1', pars=(1, 2)) self.assertRaises(AssertionError, self.op.set_parameter, stg_id=32, pars=(1, 2)) self.op.set_blender('selecting', '0 and 1 or 2') self.op.set_blender('ls', 'str-1.2') self.assertEqual(self.op.ls_blender, 'str-1.2') self.assertEqual(self.op.selecting_blender, '0 and 1 or 2') self.assertEqual(self.op.selecting_blender_expr, ['or', 'and', '0', '1', '2']) self.assertEqual(self.op.ricon_blender, 'add') self.assertRaises(ValueError, self.op.set_blender, 'select', '0and1') self.assertRaises(TypeError, self.op.set_blender, 35, '0 and 1') self.assertEqual(self.op.opt_space_par, ([(5, 10), (5, 15), (10, 15), (0, 1)], ['discr', 'discr', 'discr', 'conti'])) self.assertEqual(self.op.opt_types, [1, 1, 0]) def test_exp_to_blender(self): self.op.set_blender('selecting', '0 and 1 or 2') self.assertEqual(self.op.selecting_blender_expr, ['or', 'and', '0', '1', '2']) self.op.set_blender('selecting', '0 and ( 1 or 2 )') self.assertEqual(self.op.selecting_blender_expr, ['and', '0', 'or', '1', '2']) self.assertRaises(ValueError, self.op.set_blender, 'selecting', '0 and (1 or 2)') def test_set_opt_par(self): self.op.set_parameter('t-0', pars=(5, 10, 5), opt_tag=1, par_boes=((5, 10), (5, 15), (10, 15)), window_length=10, data_types=['close', 'open', 'high']) self.op.set_parameter(stg_id='s-0', pars=(0.5,), opt_tag=0, sample_freq='10d', window_length=10, data_types='close, open') self.op.set_parameter(stg_id='r-0', pars=(9, -0.23), opt_tag=1, sample_freq='d', window_length=20, data_types='close, open') self.assertEqual(self.op.timing[0].pars, (5, 10, 5)) self.assertEqual(self.op.selecting[0].pars, (0.5,)) self.assertEqual(self.op.ricon[0].pars, (9, -0.23)) self.assertEqual(self.op.opt_types, [1, 0, 1]) self.op.set_opt_par((5, 12, 9, 8, -0.1)) self.assertEqual(self.op.timing[0].pars, (5, 12, 9)) self.assertEqual(self.op.selecting[0].pars, (0.5,)) self.assertEqual(self.op.ricon[0].pars, (8, -0.1)) # test set_opt_par when opt_tag is set to be 2 (enumerate type of parameters) self.assertRaises(ValueError, self.op.set_opt_par, (5, 12, 9, 8)) def test_stg_attribute_get_and_set(self): self.stg = qt.TimingCrossline() self.stg_type = 'TIMING' self.stg_name = "CROSSLINE STRATEGY" self.stg_text = 'Moving average crossline strategy, determine long/short position according to the cross ' \ 'point' \ ' of long and short term moving average prices ' self.pars = (35, 120, 10, 'buy') self.par_boes = [(10, 250), (10, 250), (1, 100), ('buy', 'sell', 'none')] self.par_count = 4 self.par_types = ['discr', 'discr', 'conti', 'enum'] self.opt_tag = 0 self.data_types = ['close'] self.data_freq = 'd' self.sample_freq = 'd' self.window_length = 270 self.assertEqual(self.stg.stg_type, self.stg_type) self.assertEqual(self.stg.stg_name, self.stg_name) self.assertEqual(self.stg.stg_text, self.stg_text) self.assertEqual(self.stg.pars, self.pars) self.assertEqual(self.stg.par_types, self.par_types) self.assertEqual(self.stg.par_boes, self.par_boes) self.assertEqual(self.stg.par_count, self.par_count) self.assertEqual(self.stg.opt_tag, self.opt_tag) self.assertEqual(self.stg.data_freq, self.data_freq) self.assertEqual(self.stg.sample_freq, self.sample_freq) self.assertEqual(self.stg.data_types, self.data_types) self.assertEqual(self.stg.window_length, self.window_length) self.stg.stg_name = 'NEW NAME' self.stg.stg_text = 'NEW TEXT' self.assertEqual(self.stg.stg_name, 'NEW NAME') self.assertEqual(self.stg.stg_text, 'NEW TEXT') self.stg.pars = (1, 2, 3, 4) self.assertEqual(self.stg.pars, (1, 2, 3, 4)) self.stg.par_count = 3 self.assertEqual(self.stg.par_count, 3) self.stg.par_boes = [(1, 10), (1, 10), (1, 10), (1, 10)] self.assertEqual(self.stg.par_boes, [(1, 10), (1, 10), (1, 10), (1, 10)]) self.stg.par_types = ['conti', 'conti', 'discr', 'enum'] self.assertEqual(self.stg.par_types, ['conti', 'conti', 'discr', 'enum']) self.stg.par_types = 'conti, conti, discr, conti' self.assertEqual(self.stg.par_types, ['conti', 'conti', 'discr', 'conti']) self.stg.data_types = 'close, open' self.assertEqual(self.stg.data_types, ['close', 'open']) self.stg.data_types = ['close', 'high', 'low'] self.assertEqual(self.stg.data_types, ['close', 'high', 'low']) self.stg.data_freq = 'w' self.assertEqual(self.stg.data_freq, 'w') self.stg.window_length = 300 self.assertEqual(self.stg.window_length, 300) def test_rolling_timing(self): stg = TestLSStrategy() stg_pars = {'000100': (5, 10), '000200': (5, 10), '000300': (5, 6)} stg.set_pars(stg_pars) history_data = self.hp1.values output = stg.generate(hist_data=history_data) self.assertIsInstance(output, np.ndarray) self.assertEqual(output.shape, (45, 3)) lsmask = np.array([[0., 0., 1.], [0., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1., 0.], [1., 1., 0.], [1., 1., 0.], [1., 0., 0.], [1., 0., 0.], [1., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.]]) # TODO: Issue to be solved: the np.nan value are converted to 0 in the lsmask,这样做可能会有意想不到的后果 # TODO: 需要解决nan值的问题 self.assertEqual(output.shape, lsmask.shape) self.assertTrue(np.allclose(output, lsmask, equal_nan=True)) def test_sel_timing(self): stg = TestSelStrategy() stg_pars = () stg.set_pars(stg_pars) history_data = self.hp1['high, low, close', :, :] seg_pos, seg_length, seg_count = stg._seg_periods(dates=self.hp1.hdates, freq=stg.sample_freq) self.assertEqual(list(seg_pos), [0, 5, 11, 19, 26, 33, 41, 47, 49]) self.assertEqual(list(seg_length), [5, 6, 8, 7, 7, 8, 6, 2]) self.assertEqual(seg_count, 8) output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates) self.assertIsInstance(output, np.ndarray) self.assertEqual(output.shape, (45, 3)) selmask = np.array([[0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0]]) self.assertEqual(output.shape, selmask.shape) self.assertTrue(np.allclose(output, selmask)) def test_simple_timing(self): stg = TestSigStrategy() stg_pars = (0.2, 0.02, -0.02) stg.set_pars(stg_pars) history_data = self.hp1['close, open, high, low', :, 3:50] output = stg.generate(hist_data=history_data, shares=self.shares, dates=self.date_indices) self.assertIsInstance(output, np.ndarray) self.assertEqual(output.shape, (45, 3)) sigmatrix = np.array([[0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, -1.0, 0.0], [1.0, 0.0, 0.0], [0.0, 0.0, -1.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, -1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, -1.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, -1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, -1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [-1.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 1.0], [0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, -1.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0]]) side_by_side_array = np.array([[i, out_line, sig_line] for i, out_line, sig_line in zip(range(len(output)), output, sigmatrix)]) print(f'output and signal matrix lined up side by side is \n' f'{side_by_side_array}') self.assertEqual(sigmatrix.shape, output.shape) self.assertTrue(np.allclose(output, sigmatrix)) def test_sel_finance(self): """Test selecting_finance strategy, test all built-in strategy parameters""" stg = SelectingFinanceIndicator() stg_pars = (False, 'even', 'greater', 0, 0, 0.67) stg.set_pars(stg_pars) stg.window_length = 5 stg.data_freq = 'd' stg.sample_freq = '10d' stg.sort_ascending = False stg.condition = 'greater' stg.lbound = 0 stg.ubound = 0 stg._poq = 0.67 history_data = self.hp2.values print(f'Start to test financial selection parameter {stg_pars}') seg_pos, seg_length, seg_count = stg._seg_periods(dates=self.hp1.hdates, freq=stg.sample_freq) self.assertEqual(list(seg_pos), [0, 5, 11, 19, 26, 33, 41, 47, 49]) self.assertEqual(list(seg_length), [5, 6, 8, 7, 7, 8, 6, 2]) self.assertEqual(seg_count, 8) output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates) self.assertIsInstance(output, np.ndarray) self.assertEqual(output.shape, (45, 3)) selmask = np.array([[0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0]]) self.assertEqual(output.shape, selmask.shape) self.assertTrue(np.allclose(output, selmask)) # test single factor, get mininum factor stg_pars = (True, 'even', 'less', 1, 1, 0.67) stg.sort_ascending = True stg.condition = 'less' stg.lbound = 1 stg.ubound = 1 stg.set_pars(stg_pars) print(f'Start to test financial selection parameter {stg_pars}') output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates) selmask = np.array([[0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5]]) self.assertEqual(output.shape, selmask.shape) self.assertTrue(np.allclose(output, selmask)) # test single factor, get max factor in linear weight stg_pars = (False, 'linear', 'greater', 0, 0, 0.67) stg.sort_ascending = False stg.weighting = 'linear' stg.condition = 'greater' stg.lbound = 0 stg.ubound = 0 stg.set_pars(stg_pars) print(f'Start to test financial selection parameter {stg_pars}') output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates) selmask = np.array([[0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.66667, 0.00000], [0.33333, 0.66667, 0.00000], [0.33333, 0.66667, 0.00000]]) self.assertEqual(output.shape, selmask.shape) self.assertTrue(np.allclose(output, selmask)) # test single factor, get max factor in linear weight stg_pars = (False, 'proportion', 'greater', 0, 0, 0.67) stg.sort_ascending = False stg.weighting = 'proportion' stg.condition = 'greater' stg.lbound = 0 stg.ubound = 0 stg.set_pars(stg_pars) print(f'Start to test financial selection parameter {stg_pars}') output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates) selmask = np.array([[0.00000, 0.08333, 0.91667], [0.00000, 0.08333, 0.91667], [0.00000, 0.08333, 0.91667], [0.00000, 0.08333, 0.91667], [0.00000, 0.08333, 0.91667], [0.00000, 0.08333, 0.91667], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.50000, 0.50000], [0.00000, 0.50000, 0.50000], [0.00000, 0.50000, 0.50000], [0.00000, 0.50000, 0.50000], [0.00000, 0.50000, 0.50000], [0.00000, 0.50000, 0.50000], [0.00000, 0.50000, 0.50000], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.91667, 0.00000], [0.08333, 0.91667, 0.00000], [0.08333, 0.91667, 0.00000]]) self.assertEqual(output.shape, selmask.shape) self.assertTrue(np.allclose(output, selmask, 0.001)) # test single factor, get max factor in linear weight, threshold 0.2 stg_pars = (False, 'even', 'greater', 0.2, 0.2, 0.67) stg.sort_ascending = False stg.weighting = 'even' stg.condition = 'greater' stg.lbound = 0.2 stg.ubound = 0.2 stg.set_pars(stg_pars) print(f'Start to test financial selection parameter {stg_pars}') output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates) selmask = np.array([[0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0]]) self.assertEqual(output.shape, selmask.shape) self.assertTrue(np.allclose(output, selmask, 0.001)) class TestLog(unittest.TestCase): def test_init(self): pass class TestConfig(unittest.TestCase): """测试Config对象以及QT_CONFIG变量的设置和获取值""" def test_init(self): pass def test_invest(self): pass def test_pars_string_to_type(self): _parse_string_kwargs('000300', 'asset_pool', _valid_qt_kwargs()) class TestHistoryPanel(unittest.TestCase): def setUp(self): print('start testing HistoryPanel object\n') self.data = np.random.randint(10, size=(5, 10, 4)) self.index = pd.date_range(start='20200101', freq='d', periods=10) self.index2 = ['2016-07-01', '2016-07-04', '2016-07-05', '2016-07-06', '2016-07-07', '2016-07-08', '2016-07-11', '2016-07-12', '2016-07-13', '2016-07-14'] self.index3 = '2016-07-01, 2016-07-04, 2016-07-05, 2016-07-06, 2016-07-07, ' \ '2016-07-08, 2016-07-11, 2016-07-12, 2016-07-13, 2016-07-14' self.shares = '000100,000101,000102,000103,000104' self.htypes = 'close,open,high,low' self.data2 = np.random.randint(10, size=(10, 5)) self.data3 = np.random.randint(10, size=(10, 4)) self.data4 = np.random.randint(10, size=(10)) self.hp = qt.HistoryPanel(values=self.data, levels=self.shares, columns=self.htypes, rows=self.index) self.hp2 = qt.HistoryPanel(values=self.data2, levels=self.shares, columns='close', rows=self.index) self.hp3 = qt.HistoryPanel(values=self.data3, levels='000100', columns=self.htypes, rows=self.index2) self.hp4 = qt.HistoryPanel(values=self.data4, levels='000100', columns='close', rows=self.index3) self.hp5 = qt.HistoryPanel(values=self.data) self.hp6 = qt.HistoryPanel(values=self.data, levels=self.shares, rows=self.index3) def test_properties(self): """ test all properties of HistoryPanel """ self.assertFalse(self.hp.is_empty) self.assertEqual(self.hp.row_count, 10) self.assertEqual(self.hp.column_count, 4) self.assertEqual(self.hp.level_count, 5) self.assertEqual(self.hp.shape, (5, 10, 4)) self.assertSequenceEqual(self.hp.htypes, ['close', 'open', 'high', 'low']) self.assertSequenceEqual(self.hp.shares, ['000100', '000101', '000102', '000103', '000104']) self.assertSequenceEqual(list(self.hp.hdates), list(self.index)) self.assertDictEqual(self.hp.columns, {'close': 0, 'open': 1, 'high': 2, 'low': 3}) self.assertDictEqual(self.hp.levels, {'000100': 0, '000101': 1, '000102': 2, '000103': 3, '000104': 4}) row_dict = {Timestamp('2020-01-01 00:00:00', freq='D'): 0, Timestamp('2020-01-02 00:00:00', freq='D'): 1, Timestamp('2020-01-03 00:00:00', freq='D'): 2,
Timestamp('2020-01-04 00:00:00', freq='D')
pandas.Timestamp
import os import pandas as pd import pytest from requests_mock.mocker import Mocker from upgini import FeaturesEnricher, SearchKey from upgini.metadata import RuntimeParameters from .utils import ( mock_default_requests, mock_get_features_meta, mock_get_metadata, mock_initial_search, mock_initial_summary, mock_raw_features, mock_validation_raw_features, mock_validation_search, mock_validation_summary, ) def test_search_keys_validation(requests_mock: Mocker): url = "http://fake_url2" mock_default_requests(requests_mock, url) with pytest.raises(Exception, match="Date and datetime search keys are presented simultaniously"): FeaturesEnricher( search_keys={"d1": SearchKey.DATE, "dt2": SearchKey.DATETIME}, endpoint=url, ) with pytest.raises(Exception, match="COUNTRY search key should be provided if POSTAL_CODE is presented"): FeaturesEnricher(search_keys={"postal_code": SearchKey.POSTAL_CODE}, endpoint=url) def test_features_enricher(requests_mock: Mocker): pd.set_option("mode.chained_assignment", "raise") url = "http://fake_url2" path_to_mock_features = os.path.join( os.path.dirname(os.path.realpath(__file__)), "test_data/binary/mock_features.parquet" ) mock_default_requests(requests_mock, url) search_task_id = mock_initial_search(requests_mock, url) ads_search_task_id = mock_initial_summary( requests_mock, url, search_task_id, hit_rate=99.9, auc=0.66, uplift=0.1, eval_set_metrics=[ {"eval_set_index": 1, "hit_rate": 1.0, "auc": 0.5}, {"eval_set_index": 2, "hit_rate": 0.99, "auc": 0.77}, ], ) mock_get_metadata(requests_mock, url, search_task_id) mock_get_features_meta( requests_mock, url, ads_search_task_id, ads_features=[{"name": "feature", "importance": 10.1, "matchedInPercent": 99.0, "valueType": "NUMERIC"}], etalon_features=[{"name": "SystemRecordId_473310000", "importance": 1.0, "matchedInPercent": 100.0}], ) mock_raw_features(requests_mock, url, search_task_id, path_to_mock_features) path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "test_data/binary/data.csv") df = pd.read_csv(path, sep=",") train_df = df.head(10000) train_features = train_df.drop(columns="target") train_target = train_df["target"] eval1_df = df[10000:11000] eval1_features = eval1_df.drop(columns="target") eval1_target = eval1_df["target"] eval2_df = df[11000:12000] eval2_features = eval2_df.drop(columns="target") eval2_target = eval2_df["target"] enricher = FeaturesEnricher( search_keys={"phone_num": SearchKey.PHONE, "rep_date": SearchKey.DATE}, endpoint=url, api_key="fake_api_key", date_format="%Y-%m-%d", ) enriched_train_features = enricher.fit_transform( train_features, train_target, eval_set=[(eval1_features, eval1_target), (eval2_features, eval2_target)], keep_input=True, ) assert enriched_train_features.shape == (10000, 4) metrics = enricher.calculate_metrics( train_features, train_target, eval_set=[(eval1_features, eval1_target), (eval2_features, eval2_target)] ) expected_metrics = pd.DataFrame( [ { "match_rate": 99.9, "baseline roc_auc": 0.5, "enriched roc_auc": 0.4926257640349131, "uplift": -0.007374235965086906, }, {"match_rate": 100.0, "baseline roc_auc": 0.5, "enriched roc_auc": 0.5, "uplift": 0.0}, {"match_rate": 99.0, "baseline roc_auc": 0.5, "enriched roc_auc": 0.5, "uplift": 0.0}, ], index=["train", "eval 1", "eval 2"], ) print("Expected metrics: ") print(expected_metrics) print("Actual metrics: ") print(metrics) assert metrics is not None for segment in expected_metrics.index: for col in expected_metrics.columns: assert metrics.loc[segment, col] == expected_metrics.loc[segment, col] print(enricher.features_info) assert enricher.feature_names_ == ["feature"] assert enricher.feature_importances_ == [10.1] assert len(enricher.features_info) == 2 first_feature_info = enricher.features_info.iloc[0] assert first_feature_info["feature_name"] == "feature" assert first_feature_info["shap_value"] == 10.1 second_feature_info = enricher.features_info.iloc[1] assert second_feature_info["feature_name"] == "SystemRecordId_473310000" assert second_feature_info["shap_value"] == 1.0 def test_features_enricher_fit_transform_runtime_parameters(requests_mock: Mocker): pd.set_option("mode.chained_assignment", "raise") url = "http://fake_url2" path_to_mock_features = os.path.join( os.path.dirname(os.path.realpath(__file__)), "test_data/binary/mock_features.parquet" ) mock_default_requests(requests_mock, url) search_task_id = mock_initial_search(requests_mock, url) ads_search_task_id = mock_initial_summary( requests_mock, url, search_task_id, hit_rate=99.9, auc=0.66, uplift=0.1, eval_set_metrics=[ {"eval_set_index": 1, "hit_rate": 100, "auc": 0.5}, {"eval_set_index": 2, "hit_rate": 99, "auc": 0.77}, ], ) mock_get_metadata(requests_mock, url, search_task_id) mock_get_features_meta( requests_mock, url, ads_search_task_id, ads_features=[{"name": "feature", "importance": 10.1, "matchedInPercent": 99.0, "valueType": "NUMERIC"}], etalon_features=[{"name": "SystemRecordId_473310000", "importance": 1.0, "matchedInPercent": 100.0}], ) mock_raw_features(requests_mock, url, search_task_id, path_to_mock_features) path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "test_data/binary/data.csv") df = pd.read_csv(path, sep=",") train_df = df.head(10000) train_features = train_df.drop(columns="target") train_target = train_df["target"] eval1_df = df[10000:11000] eval1_features = eval1_df.drop(columns="target") eval1_target = eval1_df["target"] eval2_df = df[11000:12000] eval2_features = eval2_df.drop(columns="target") eval2_target = eval2_df["target"] enricher = FeaturesEnricher( search_keys={"phone_num": SearchKey.PHONE, "rep_date": SearchKey.DATE}, date_format="%Y-%m-%d", endpoint=url, api_key="fake_api_key", runtime_parameters=RuntimeParameters(properties={"runtimeProperty1": "runtimeValue1"}), ) assert enricher.runtime_parameters is not None enricher.fit( train_features, train_target, eval_set=[(eval1_features, eval1_target), (eval2_features, eval2_target)], ) fit_req = None initial_search_url = url + "/public/api/v2/search/initial" for elem in requests_mock.request_history: if elem.url == initial_search_url: fit_req = elem # TODO: can be better with # https://metareal.blog/en/post/2020/05/03/validating-multipart-form-data-with-requests-mock/ # It"s do-able to parse req with cgi module and verify contents assert fit_req is not None assert "runtimeProperty1" in str(fit_req.body) assert "runtimeValue1" in str(fit_req.body) validation_search_task_id = mock_validation_search(requests_mock, url, search_task_id) mock_validation_summary( requests_mock, url, search_task_id, ads_search_task_id, validation_search_task_id, hit_rate=99.9, auc=0.66, uplift=0.1, eval_set_metrics=[ {"eval_set_index": 1, "hit_rate": 100, "auc": 0.5}, {"eval_set_index": 2, "hit_rate": 99, "auc": 0.77}, ], ) mock_validation_raw_features(requests_mock, url, validation_search_task_id, path_to_mock_features) transformed = enricher.transform(train_features, keep_input=True) transform_req = None transform_url = url + "/public/api/v2/search/validation?initialSearchTaskId=" + search_task_id for elem in requests_mock.request_history: if elem.url == transform_url: transform_req = elem assert transform_req is not None assert "runtimeProperty1" in str(transform_req.body) assert "runtimeValue1" in str(transform_req.body) assert transformed.shape == (10000, 4) def test_search_with_only_personal_keys(requests_mock: Mocker): url = "https://some.fake.url" mock_default_requests(requests_mock, url) with pytest.raises(Exception): FeaturesEnricher(search_keys={"phone": SearchKey.PHONE, "email": SearchKey.EMAIL}, endpoint=url) def test_filter_by_importance(requests_mock: Mocker): url = "https://some.fake.url" path_to_mock_features = os.path.join( os.path.dirname(os.path.realpath(__file__)), "test_data/binary/mock_features.parquet" ) mock_default_requests(requests_mock, url) search_task_id = mock_initial_search(requests_mock, url) ads_search_task_id = mock_initial_summary( requests_mock, url, search_task_id, hit_rate=99.9, auc=0.66, uplift=0.1, eval_set_metrics=[ {"eval_set_index": 1, "hit_rate": 1.0, "auc": 0.5}, {"eval_set_index": 2, "hit_rate": 0.99, "auc": 0.77}, ], ) mock_get_metadata(requests_mock, url, search_task_id) mock_get_features_meta( requests_mock, url, ads_search_task_id, ads_features=[{"name": "feature", "importance": 0.7, "matchedInPercent": 99.0, "valueType": "NUMERIC"}], etalon_features=[{"name": "SystemRecordId_473310000", "importance": 0.3, "matchedInPercent": 100.0}], ) mock_raw_features(requests_mock, url, search_task_id, path_to_mock_features) path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "test_data/binary/data.csv") df =
pd.read_csv(path, sep=",")
pandas.read_csv
import sys import os import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib.ticker import FormatStrFormatter plt.rcParams['font.size'] = 6 root_path = os.path.dirname(os.path.abspath('__file__')) # root_path = os.path.abspath(os.path.join(root_path,os.path.pardir)) graphs_path = root_path+'/graphs/' results_path = root_path+'/results_analysis/results/' print("root path:{}".format(root_path)) sys.path.append(root_path) from tools.results_reader import read_two_stage, read_pure_esvr,read_pure_arma h_arma = read_pure_arma("Huaxian") x_arma = read_pure_arma("Xianyang") z_arma = read_pure_arma("Zhangjiashan") h_svr_1 = pd.read_csv(root_path+'/Huaxian/projects/esvr/1_ahead_pacf_lag12/optimal_model_results.csv') h_svr_3 = pd.read_csv(root_path+'/Huaxian/projects/esvr/3_ahead_pacf_lag12/optimal_model_results.csv') h_svr_5 = pd.read_csv(root_path+'/Huaxian/projects/esvr/5_ahead_pacf_lag12/optimal_model_results.csv') h_svr_7 = pd.read_csv(root_path+'/Huaxian/projects/esvr/7_ahead_pacf_lag12/optimal_model_results.csv') x_svr_1 = pd.read_csv(root_path+'/Xianyang/projects/esvr/1_ahead_pacf_lag12/optimal_model_results.csv') x_svr_3 = pd.read_csv(root_path+'/Xianyang/projects/esvr/3_ahead_pacf_lag12/optimal_model_results.csv') x_svr_5 = pd.read_csv(root_path+'/Xianyang/projects/esvr/5_ahead_pacf_lag12/optimal_model_results.csv') x_svr_7 = pd.read_csv(root_path+'/Xianyang/projects/esvr/7_ahead_pacf_lag12/optimal_model_results.csv') z_svr_1 = pd.read_csv(root_path+'/Zhangjiashan/projects/esvr/1_ahead_pacf_lag12/optimal_model_results.csv') z_svr_3 = pd.read_csv(root_path+'/Zhangjiashan/projects/esvr/3_ahead_pacf_lag12/optimal_model_results.csv') z_svr_5 = pd.read_csv(root_path+'/Zhangjiashan/projects/esvr/5_ahead_pacf_lag12/optimal_model_results.csv') z_svr_7 = pd.read_csv(root_path+'/Zhangjiashan/projects/esvr/7_ahead_pacf_lag12/optimal_model_results.csv') h_lstm_1 = pd.read_csv(root_path+'/Huaxian/projects/lstm/1_ahead/optimal/opt_pred.csv') h_lstm_3 = pd.read_csv(root_path+'/Huaxian/projects/lstm/3_ahead/optimal/opt_pred.csv') h_lstm_5 = pd.read_csv(root_path+'/Huaxian/projects/lstm/5_ahead/optimal/opt_pred.csv') h_lstm_7 = pd.read_csv(root_path+'/Huaxian/projects/lstm/7_ahead/optimal/opt_pred.csv') x_lstm_1 = pd.read_csv(root_path+'/Xianyang/projects/lstm/1_ahead/optimal/opt_pred.csv') x_lstm_3 = pd.read_csv(root_path+'/Xianyang/projects/lstm/3_ahead/optimal/opt_pred.csv') x_lstm_5 = pd.read_csv(root_path+'/Xianyang/projects/lstm/5_ahead/optimal/opt_pred.csv') x_lstm_7 = pd.read_csv(root_path+'/Xianyang/projects/lstm/7_ahead/optimal/opt_pred.csv') z_lstm_1 = pd.read_csv(root_path+'/Zhangjiashan/projects/lstm/1_ahead/optimal/opt_pred.csv') z_lstm_3 = pd.read_csv(root_path+'/Zhangjiashan/projects/lstm/3_ahead/optimal/opt_pred.csv') z_lstm_5 = pd.read_csv(root_path+'/Zhangjiashan/projects/lstm/5_ahead/optimal/opt_pred.csv') z_lstm_7 = pd.read_csv(root_path+'/Zhangjiashan/projects/lstm/7_ahead/optimal/opt_pred.csv') h_dnn_1 = pd.read_csv(root_path+'/Huaxian/projects/dnn/1_ahead/optimal/opt_pred.csv') h_dnn_3 = pd.read_csv(root_path+'/Huaxian/projects/dnn/3_ahead/optimal/opt_pred.csv') h_dnn_5 = pd.read_csv(root_path+'/Huaxian/projects/dnn/5_ahead/optimal/opt_pred.csv') h_dnn_7 = pd.read_csv(root_path+'/Huaxian/projects/dnn/7_ahead/optimal/opt_pred.csv') x_dnn_1 = pd.read_csv(root_path+'/Xianyang/projects/dnn/1_ahead/optimal/opt_pred.csv') x_dnn_3 = pd.read_csv(root_path+'/Xianyang/projects/dnn/3_ahead/optimal/opt_pred.csv') x_dnn_5 = pd.read_csv(root_path+'/Xianyang/projects/dnn/5_ahead/optimal/opt_pred.csv') x_dnn_7 = pd.read_csv(root_path+'/Xianyang/projects/dnn/7_ahead/optimal/opt_pred.csv') z_dnn_1 = pd.read_csv(root_path+'/Zhangjiashan/projects/dnn/1_ahead/optimal/opt_pred.csv') z_dnn_3 = pd.read_csv(root_path+'/Zhangjiashan/projects/dnn/3_ahead/optimal/opt_pred.csv') z_dnn_5 = pd.read_csv(root_path+'/Zhangjiashan/projects/dnn/5_ahead/optimal/opt_pred.csv') z_dnn_7 = pd.read_csv(root_path+'/Zhangjiashan/projects/dnn/7_ahead/optimal/opt_pred.csv') h_d_1 = pd.read_csv(root_path+'/Huaxian_dwt/projects/esvr/db10-2/one_step_1_ahead_forecast_pacf/optimal_model_results.csv') h_d_3 = pd.read_csv(root_path+'/Huaxian_dwt/projects/esvr/db10-2/one_step_3_ahead_forecast_pacf/optimal_model_results.csv') h_d_5 = pd.read_csv(root_path+'/Huaxian_dwt/projects/esvr/db10-2/one_step_5_ahead_forecast_pacf/optimal_model_results.csv') h_d_7 = pd.read_csv(root_path+'/Huaxian_dwt/projects/esvr/db10-2/one_step_7_ahead_forecast_pacf/optimal_model_results.csv') h_e_1 = pd.read_csv(root_path+'/Huaxian_eemd/projects/esvr/one_step_1_ahead_forecast_pacf/optimal_model_results.csv') h_e_3 = pd.read_csv(root_path+'/Huaxian_eemd/projects/esvr/one_step_3_ahead_forecast_pacf/optimal_model_results.csv') h_e_5 = pd.read_csv(root_path+'/Huaxian_eemd/projects/esvr/one_step_5_ahead_forecast_pacf/optimal_model_results.csv') h_e_7 = pd.read_csv(root_path+'/Huaxian_eemd/projects/esvr/one_step_7_ahead_forecast_pacf/optimal_model_results.csv') h_s_1 = pd.read_csv(root_path+'/Huaxian_ssa/projects/esvr/one_step_1_ahead_forecast_pacf/optimal_model_results.csv') h_s_3 = pd.read_csv(root_path+'/Huaxian_ssa/projects/esvr/one_step_3_ahead_forecast_pacf/optimal_model_results.csv') h_s_5 = pd.read_csv(root_path+'/Huaxian_ssa/projects/esvr/one_step_5_ahead_forecast_pacf/optimal_model_results.csv') h_s_7 = pd.read_csv(root_path+'/Huaxian_ssa/projects/esvr/one_step_7_ahead_forecast_pacf/optimal_model_results.csv') h_v_1 = pd.read_csv(root_path+'/Huaxian_vmd/projects/esvr/one_step_1_ahead_forecast_pacf/optimal_model_results.csv') h_v_3 = pd.read_csv(root_path+'/Huaxian_vmd/projects/esvr/one_step_3_ahead_forecast_pacf/optimal_model_results.csv') h_v_5 = pd.read_csv(root_path+'/Huaxian_vmd/projects/esvr/one_step_5_ahead_forecast_pacf/optimal_model_results.csv') h_v_7 = pd.read_csv(root_path+'/Huaxian_vmd/projects/esvr/one_step_7_ahead_forecast_pacf/optimal_model_results.csv') h_m_1 = pd.read_csv(root_path+'/Huaxian_modwt/projects/esvr-wddff/db1-4/single_hybrid_1_ahead_lag12_mi_ts0.1/optimal_model_results.csv') h_m_3 = pd.read_csv(root_path+'/Huaxian_modwt/projects/esvr-wddff/db1-4/single_hybrid_3_ahead_lag12_mi_ts0.1/optimal_model_results.csv') h_m_5 = pd.read_csv(root_path+'/Huaxian_modwt/projects/esvr-wddff/db1-4/single_hybrid_5_ahead_lag12_mi_ts0.1/optimal_model_results.csv') h_m_7 = pd.read_csv(root_path+'/Huaxian_modwt/projects/esvr-wddff/db1-4/single_hybrid_7_ahead_lag12_mi_ts0.1/optimal_model_results.csv') x_d_1 = pd.read_csv(root_path+'/Xianyang_dwt/projects/esvr/db10-2/one_step_1_ahead_forecast_pacf/optimal_model_results.csv') x_d_3 = pd.read_csv(root_path+'/Xianyang_dwt/projects/esvr/db10-2/one_step_3_ahead_forecast_pacf/optimal_model_results.csv') x_d_5 = pd.read_csv(root_path+'/Xianyang_dwt/projects/esvr/db10-2/one_step_5_ahead_forecast_pacf/optimal_model_results.csv') x_d_7 = pd.read_csv(root_path+'/Xianyang_dwt/projects/esvr/db10-2/one_step_7_ahead_forecast_pacf/optimal_model_results.csv') x_e_1 = pd.read_csv(root_path+'/Xianyang_eemd/projects/esvr/one_step_1_ahead_forecast_pacf/optimal_model_results.csv') x_e_3 = pd.read_csv(root_path+'/Xianyang_eemd/projects/esvr/one_step_3_ahead_forecast_pacf/optimal_model_results.csv') x_e_5 = pd.read_csv(root_path+'/Xianyang_eemd/projects/esvr/one_step_5_ahead_forecast_pacf/optimal_model_results.csv') x_e_7 = pd.read_csv(root_path+'/Xianyang_eemd/projects/esvr/one_step_7_ahead_forecast_pacf/optimal_model_results.csv') x_s_1 = pd.read_csv(root_path+'/Xianyang_ssa/projects/esvr/one_step_1_ahead_forecast_pacf/optimal_model_results.csv') x_s_3 = pd.read_csv(root_path+'/Xianyang_ssa/projects/esvr/one_step_3_ahead_forecast_pacf/optimal_model_results.csv') x_s_5 = pd.read_csv(root_path+'/Xianyang_ssa/projects/esvr/one_step_5_ahead_forecast_pacf/optimal_model_results.csv') x_s_7 = pd.read_csv(root_path+'/Xianyang_ssa/projects/esvr/one_step_7_ahead_forecast_pacf/optimal_model_results.csv') x_v_1 = pd.read_csv(root_path+'/Xianyang_vmd/projects/esvr/one_step_1_ahead_forecast_pacf/optimal_model_results.csv') x_v_3 = pd.read_csv(root_path+'/Xianyang_vmd/projects/esvr/one_step_3_ahead_forecast_pacf/optimal_model_results.csv') x_v_5 = pd.read_csv(root_path+'/Xianyang_vmd/projects/esvr/one_step_5_ahead_forecast_pacf/optimal_model_results.csv') x_v_7 = pd.read_csv(root_path+'/Xianyang_vmd/projects/esvr/one_step_7_ahead_forecast_pacf/optimal_model_results.csv') x_m_1 = pd.read_csv(root_path+'/Xianyang_modwt/projects/esvr-wddff/db1-4/single_hybrid_1_ahead_lag12_mi_ts0.1/optimal_model_results.csv') x_m_3 = pd.read_csv(root_path+'/Xianyang_modwt/projects/esvr-wddff/db1-4/single_hybrid_3_ahead_lag12_mi_ts0.1/optimal_model_results.csv') x_m_5 = pd.read_csv(root_path+'/Xianyang_modwt/projects/esvr-wddff/db1-4/single_hybrid_5_ahead_lag12_mi_ts0.1/optimal_model_results.csv') x_m_7 = pd.read_csv(root_path+'/Xianyang_modwt/projects/esvr-wddff/db1-4/single_hybrid_7_ahead_lag12_mi_ts0.1/optimal_model_results.csv') z_d_1 = pd.read_csv(root_path+'/Zhangjiashan_dwt/projects/esvr/db10-2/one_step_1_ahead_forecast_pacf/optimal_model_results.csv') z_d_3 = pd.read_csv(root_path+'/Zhangjiashan_dwt/projects/esvr/db10-2/one_step_3_ahead_forecast_pacf/optimal_model_results.csv') z_d_5 = pd.read_csv(root_path+'/Zhangjiashan_dwt/projects/esvr/db10-2/one_step_5_ahead_forecast_pacf/optimal_model_results.csv') z_d_7 = pd.read_csv(root_path+'/Zhangjiashan_dwt/projects/esvr/db10-2/one_step_7_ahead_forecast_pacf/optimal_model_results.csv') z_e_1 = pd.read_csv(root_path+'/Zhangjiashan_eemd/projects/esvr/one_step_1_ahead_forecast_pacf/optimal_model_results.csv') z_e_3 = pd.read_csv(root_path+'/Zhangjiashan_eemd/projects/esvr/one_step_3_ahead_forecast_pacf/optimal_model_results.csv') z_e_5 = pd.read_csv(root_path+'/Zhangjiashan_eemd/projects/esvr/one_step_5_ahead_forecast_pacf/optimal_model_results.csv') z_e_7 = pd.read_csv(root_path+'/Zhangjiashan_eemd/projects/esvr/one_step_7_ahead_forecast_pacf/optimal_model_results.csv') z_s_1 = pd.read_csv(root_path+'/Zhangjiashan_ssa/projects/esvr/one_step_1_ahead_forecast_pacf/optimal_model_results.csv') z_s_3 = pd.read_csv(root_path+'/Zhangjiashan_ssa/projects/esvr/one_step_3_ahead_forecast_pacf/optimal_model_results.csv') z_s_5 = pd.read_csv(root_path+'/Zhangjiashan_ssa/projects/esvr/one_step_5_ahead_forecast_pacf/optimal_model_results.csv') z_s_7 = pd.read_csv(root_path+'/Zhangjiashan_ssa/projects/esvr/one_step_7_ahead_forecast_pacf/optimal_model_results.csv') z_v_1 = pd.read_csv(root_path+'/Zhangjiashan_vmd/projects/esvr/one_step_1_ahead_forecast_pacf/optimal_model_results.csv') z_v_3 =
pd.read_csv(root_path+'/Zhangjiashan_vmd/projects/esvr/one_step_3_ahead_forecast_pacf/optimal_model_results.csv')
pandas.read_csv
#!/usr/bin/env python3 import argparse import configparser import json # import logging import pandas as pd # set logging # logger=logging.getLogger(__name__) # logger.setLevel(logging.DEBUG) # formatter=logging.Formatter('[%(asctime)s:%(levelname)s:%(lineno)d %(message)s', datefmt='%H:%M:%S') #time:levelname:message:line# # file_handler=logging.FileHandler('log/merge-to-db.log') # # file_handler=logging.FileHandler('log/merge_db-error.log') # # file_handler.setLevel(logging.ERROR) # file_handler.setFormatter(formatter) # stream_handler=logging.StreamHandler() # stream_handler.setFormatter(formatter) # logger.addHandler(file_handler) # logger.addHandler(stream_handler) def parse_args(): parser=argparse.ArgumentParser(prog='concat-hitsum.py', conflict_handler='resolve') parser.add_argument('-i', type=str, required=False, help='=> path/to/infile.csv') parser.add_argument('-dbconfig', type=str, required=False, help='=> path/to/main_db.ini') parser.add_argument('-o', type=str, required=False, help='=> path/to/merged_outfile.csv') return(parser.parse_args()) def main(): """ Appends column-specific data from a db.csv file to a designated .csv file """ args=parse_args() # Set main input df to merge file in_df=
pd.read_csv(args.i)
pandas.read_csv
# # Copyright 2018, Planet Labs, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Script to create time series plots visualising the tmask analysis for the corner pixels of the AOI """ import pandas as pd import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import os from tools.folders_handle import PLOTS_FOLDER, COEFFICIENTS_FOLDER def draw_plots(plots_folder, coeff_folder): pixels = ['ul', 'll', 'ur', 'lr'] for pixel in pixels: d = np.load(os.path.join(coeff_folder, 'tmask_date.npy')) co = np.load(os.path.join(coeff_folder, 'tmask_coeffs_plot_%s.npy') %(pixel)) r = np.load(os.path.join(coeff_folder, 'tmask_analytic_plot_%s.npy') %(pixel)) juldate_start = int(d[0]) juldate_end = int(d[-1]) juldate = np.linspace(juldate_start, juldate_end, juldate_end - juldate_start) num_days = juldate_end - juldate_start daysPerYear = 365 constant = np.ones(juldate.shape) cosT = np.cos(2.0 * np.pi * juldate / daysPerYear) sinT = np.sin(2.0 * np.pi * juldate / daysPerYear) cosNT = np.cos(2.0 * np.pi * juldate / num_days) sinNT = np.sin(2.0 * np.pi * juldate / num_days) y = [] ref = [] bands = 4 for band in range(bands): constant_fitted = constant * co[band][0] cosT_fitted = cosT * co[band][1] sinT_fitted = sinT * co[band][2] cosNT_fitted = cosNT * co[band][3] sinNT_fitted = sinNT * co[band][4] y.append(constant_fitted + cosT_fitted + sinT_fitted + cosNT_fitted + sinNT_fitted) refc = r[:,band] ref.append(refc) df = pd.DataFrame({'julian':juldate}) df['date'] =
pd.to_datetime(df['julian'], unit='D', origin='julian')
pandas.to_datetime