prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import warnings import numpy as np import pandas as pd from lhorizon.constants import LUNAR_RADIUS from lhorizon.lhorizon_utils import make_raveled_meshgrid from lhorizon.solutions import make_ray_sphere_lambdas from lhorizon.target import Targeter from lhorizon.tests.data.test_cases import TEST_CASES from lhorizon.kernels import load_metakernel load_metakernel() lunar_solutions = make_ray_sphere_lambdas(LUNAR_RADIUS) def test_find_targets_long(): path = TEST_CASES["TRANQUILITY_2021"]["data_path"] targeter = Targeter(
pd.read_csv(path + "_CENTER.csv")
pandas.read_csv
from datetime import datetime import operator import numpy as np import pytest from pandas import DataFrame, Index, Series, bdate_range import pandas._testing as tm from pandas.core import ops class TestSeriesLogicalOps: @pytest.mark.parametrize("bool_op", [operator.and_, operator.or_, operator.xor]) def test_bool_operators_with_nas(self, bool_op): # boolean &, |, ^ should work with object arrays and propagate NAs ser = Series(bdate_range("1/1/2000", periods=10), dtype=object) ser[::2] = np.nan mask = ser.isna() filled = ser.fillna(ser[0]) result = bool_op(ser < ser[9], ser > ser[3]) expected = bool_op(filled < filled[9], filled > filled[3]) expected[mask] = False tm.assert_series_equal(result, expected) def test_logical_operators_bool_dtype_with_empty(self): # GH#9016: support bitwise op for integer types index = list("bca") s_tft = Series([True, False, True], index=index) s_fff = Series([False, False, False], index=index) s_empty = Series([], dtype=object) res = s_tft & s_empty expected = s_fff tm.assert_series_equal(res, expected) res = s_tft | s_empty expected = s_tft tm.assert_series_equal(res, expected) def test_logical_operators_int_dtype_with_int_dtype(self): # GH#9016: support bitwise op for integer types # TODO: unused # s_0101 = Series([0, 1, 0, 1]) s_0123 = Series(range(4), dtype="int64") s_3333 = Series([3] * 4) s_4444 = Series([4] * 4) res = s_0123 & s_3333 expected = Series(range(4), dtype="int64") tm.assert_series_equal(res, expected) res = s_0123 | s_4444 expected = Series(range(4, 8), dtype="int64") tm.assert_series_equal(res, expected) s_1111 = Series([1] * 4, dtype="int8") res = s_0123 & s_1111 expected = Series([0, 1, 0, 1], dtype="int64") tm.assert_series_equal(res, expected) res = s_0123.astype(np.int16) | s_1111.astype(np.int32) expected = Series([1, 1, 3, 3], dtype="int32") tm.assert_series_equal(res, expected) def test_logical_operators_int_dtype_with_int_scalar(self): # GH#9016: support bitwise op for integer types s_0123 = Series(range(4), dtype="int64") res = s_0123 & 0 expected = Series([0] * 4) tm.assert_series_equal(res, expected) res = s_0123 & 1 expected = Series([0, 1, 0, 1]) tm.assert_series_equal(res, expected) def test_logical_operators_int_dtype_with_float(self): # GH#9016: support bitwise op for integer types s_0123 = Series(range(4), dtype="int64") msg = "Cannot perform.+with a dtyped.+array and scalar of type" with pytest.raises(TypeError, match=msg): s_0123 & np.NaN with pytest.raises(TypeError, match=msg): s_0123 & 3.14 msg = "unsupported operand type.+for &:" with pytest.raises(TypeError, match=msg): s_0123 & [0.1, 4, 3.14, 2] with pytest.raises(TypeError, match=msg): s_0123 & np.array([0.1, 4, 3.14, 2]) with pytest.raises(TypeError, match=msg): s_0123 & Series([0.1, 4, -3.14, 2]) def test_logical_operators_int_dtype_with_str(self): s_1111 = Series([1] * 4, dtype="int8") msg = "Cannot perform 'and_' with a dtyped.+array and scalar of type" with pytest.raises(TypeError, match=msg): s_1111 & "a" with pytest.raises(TypeError, match="unsupported operand.+for &"): s_1111 & ["a", "b", "c", "d"] def test_logical_operators_int_dtype_with_bool(self): # GH#9016: support bitwise op for integer types s_0123 = Series(range(4), dtype="int64") expected = Series([False] * 4) result = s_0123 & False tm.assert_series_equal(result, expected) result = s_0123 & [False] tm.assert_series_equal(result, expected) result = s_0123 & (False,) tm.assert_series_equal(result, expected) result = s_0123 ^ False expected = Series([False, True, True, True]) tm.assert_series_equal(result, expected) def test_logical_operators_int_dtype_with_object(self): # GH#9016: support bitwise op for integer types s_0123 = Series(range(4), dtype="int64") result = s_0123 & Series([False, np.NaN, False, False]) expected = Series([False] * 4) tm.assert_series_equal(result, expected) s_abNd = Series(["a", "b", np.NaN, "d"]) with pytest.raises(TypeError, match="unsupported.* 'int' and 'str'"): s_0123 & s_abNd def test_logical_operators_bool_dtype_with_int(self): index = list("bca") s_tft = Series([True, False, True], index=index) s_fff = Series([False, False, False], index=index) res = s_tft & 0 expected = s_fff tm.assert_series_equal(res, expected) res = s_tft & 1 expected = s_tft tm.assert_series_equal(res, expected) def test_logical_ops_bool_dtype_with_ndarray(self): # make sure we operate on ndarray the same as Series left = Series([True, True, True, False, True]) right = [True, False, None, True, np.nan] expected = Series([True, False, False, False, False]) result = left & right tm.assert_series_equal(result, expected) result = left & np.array(right) tm.assert_series_equal(result, expected) result = left & Index(right) tm.assert_series_equal(result, expected) result = left & Series(right) tm.assert_series_equal(result, expected) expected = Series([True, True, True, True, True]) result = left | right tm.assert_series_equal(result, expected) result = left | np.array(right) tm.assert_series_equal(result, expected) result = left | Index(right) tm.assert_series_equal(result, expected) result = left | Series(right) tm.assert_series_equal(result, expected) expected = Series([False, True, True, True, True]) result = left ^ right tm.assert_series_equal(result, expected) result = left ^ np.array(right) tm.assert_series_equal(result, expected) result = left ^ Index(right) tm.assert_series_equal(result, expected) result = left ^ Series(right) tm.assert_series_equal(result, expected) def test_logical_operators_int_dtype_with_bool_dtype_and_reindex(self): # GH#9016: support bitwise op for integer types # with non-matching indexes, logical operators will cast to object # before operating index = list("bca") s_tft = Series([True, False, True], index=index) s_tft = Series([True, False, True], index=index) s_tff = Series([True, False, False], index=index) s_0123 = Series(range(4), dtype="int64") # s_0123 will be all false now because of reindexing like s_tft expected = Series([False] * 7, index=[0, 1, 2, 3, "a", "b", "c"]) result = s_tft & s_0123 tm.assert_series_equal(result, expected) expected = Series([False] * 7, index=[0, 1, 2, 3, "a", "b", "c"]) result = s_0123 & s_tft tm.assert_series_equal(result, expected) s_a0b1c0 = Series([1], list("b")) res = s_tft & s_a0b1c0 expected = s_tff.reindex(list("abc")) tm.assert_series_equal(res, expected) res = s_tft | s_a0b1c0 expected = s_tft.reindex(list("abc")) tm.assert_series_equal(res, expected) def test_scalar_na_logical_ops_corners(self): s = Series([2, 3, 4, 5, 6, 7, 8, 9, 10]) msg = "Cannot perform.+with a dtyped.+array and scalar of type" with pytest.raises(TypeError, match=msg): s & datetime(2005, 1, 1) s = Series([2, 3, 4, 5, 6, 7, 8, 9, datetime(2005, 1, 1)]) s[::2] = np.nan expected = Series(True, index=s.index) expected[::2] = False result = s & list(s) tm.assert_series_equal(result, expected) def test_scalar_na_logical_ops_corners_aligns(self): s = Series([2, 3, 4, 5, 6, 7, 8, 9, datetime(2005, 1, 1)]) s[::2] = np.nan d = DataFrame({"A": s}) expected = DataFrame(False, index=range(9), columns=["A"] + list(range(9))) result = s & d tm.assert_frame_equal(result, expected) result = d & s tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("op", [operator.and_, operator.or_, operator.xor]) def test_logical_ops_with_index(self, op): # GH#22092, GH#19792 ser = Series([True, True, False, False]) idx1 = Index([True, False, True, False]) idx2 =
Index([1, 0, 1, 0])
pandas.Index
"""Move Mouse Pointer.""" """ Copyright (c) 2018 Intel Corporation. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit person to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import cv2 import pandas as pd import numpy as np from sys import exit from datetime import datetime import time from model_base import ModelBase from gaze_estimation import GazeEstimation from mouse_controller import MouseController from MediaReader import MediaReader from signal import SIGINT, signal from argparse import ArgumentParser from sys import platform import os import math # Get correct CPU extension if platform == "linux" or platform == "linux2": CPU_EXTENSION = "/opt/intel/openvino/deployment_tools/inference_engine/lib/intel64/libcpu_extension_sse4.so" elif platform == "darwin": CPU_EXTENSION = "/opt/intel/openvino/deployment_tools/inference_engine/lib/intel64/libcpu_extension.dylib" elif platform == "win32": CPU_EXTENSION = None else: print("Unsupported OS.") exit(1) model_names = {'fd':'facial detection', 'fl': 'landmark detection', 'hp': 'head pose', 'ge':'gaze estimation'} def build_argparser(): """ Parse command line arguments. :return: command line arguments """ parser = ArgumentParser() parser.add_argument("-i", "--input", required=True, type=str, help="Path to input image or video file. 0 for webcam.") parser.add_argument("-p", "--precisions", required=False, type=str, default='FP16', help="Set model precisions as a comma-separated list without spaces" ", e.g. FP32,FP16,FP32-INT8 (FP16 by default)") parser.add_argument("-fdm", "--fd_model", required=False, type=str, help="Path to directory for a trained Face Detection model." " This directory path must include the model's precision because" "face-detection-adas-binary-0001 has only one precision, FP32-INT1." "(../models/intel/face-detection-adas-binary-0001/FP32-INT1/face-detection-adas-binary-0001" " by default)", default="../models/intel/face-detection-adas-binary-0001/FP32-INT1/face-detection-adas-binary-0001") parser.add_argument("-flm", "--fl_model", required=False, type=str, help="Path to directory for a trained Facial Landmarks model." " The directory must have the model precisions as subdirectories." "../models/intel/landmarks-regression-retail-0009 by default)", default="../models/intel/landmarks-regression-retail-0009") parser.add_argument("-hpm", "--hp_model", required=False, type=str, help="Path to directory for a trained Head Pose model." " The directory must have the model precisions as subdirectories." "(../models/intel/head-pose-estimation-adas-0001 by default)", default="../models/intel/head-pose-estimation-adas-0001") parser.add_argument("-gem", "--ge_model", required=False, type=str, help="Path to directory for a trained Gaze Detection model." " The directory must have the model precisions as subdirectories." "(../models/intel/gaze-estimation-adas-0002 by default)", default="../models/intel/gaze-estimation-adas-0002") parser.add_argument("-l", "--cpu_extension", required=False, type=str, default=None, help="MKLDNN (CPU)-targeted custom layers." " Absolute path to a shared library with the" " kernels impl.") parser.add_argument("-d", "--device", type=str, required=False, default="CPU", help="Specify the target device to infer on: " "CPU, GPU, FPGA or MYRIAD is acceptable. The program " "will look for a suitable plugin for the device " "specified (CPU by default)") parser.add_argument("-ct", "--conf_threshold", type=float, default=0.3, required=False, help="Confidence threshold for detections filtering" " (0.3 by default)") parser.add_argument("-bm", "--benchmark", required=False, type=lambda s: s.lower() in ['true', 't', 'yes', '1'], default=True, help="Show benchmark data? True|False (True by default)") parser.add_argument("-nf", "--num_frames", required=False, type=int, default=100, help="The number of frames to run. Use this to limit running time, " "especially if using webcam. (100 by default)") parser.add_argument("-sv", "--showvideo", required=False, type=lambda s: s.lower() in ['true', 't', 'yes', '1'], default=True, help="Show video while running? True|False. (True by default)") parser.add_argument("-async", "--async_inference", required=False, type=lambda s: s.lower() in ['true', 't', 'yes', '1'], default=True, help="If True, run asynchronous inference where possible. " "If false, run synchronous inference. True|False. (True by default)") parser.add_argument("-v", "--visualize", required=False, type=lambda s: s.lower() in ['true', 't', 'yes', '1'], default=True, help="If True, visualize the outputs from each model. " "If -v is True then the video will be shown regardless of -sv. " "If false, do not show outputs. True|False. (True by default)") return parser def draw_box(image, start_point, end_point): box_col = (0,255,0) #GREEN thickness = 4 image = cv2.rectangle(image, start_point, end_point, box_col, thickness) return image def scale_dims(shape, x, y): width = shape[1] height= shape[0] x = int(x*width) y = int(y*height) return x, y #build_camera_matrix and draw_axes code from https://knowledge.udacity.com/questions/171017, thanks to <NAME> def build_camera_matrix(center_of_face, focal_length): cx = int(center_of_face[0]) cy = int(center_of_face[1]) camera_matrix = np.zeros((3, 3), dtype='float32') camera_matrix[0][0] = focal_length camera_matrix[0][2] = cx camera_matrix[1][1] = focal_length camera_matrix[1][2] = cy camera_matrix[2][2] = 1 return camera_matrix def draw_axes(frame, center_of_face, yaw, pitch, roll, scale, focal_length): yaw *= np.pi / 180.0 pitch *= np.pi / 180.0 roll *= np.pi / 180.0 cx = int(center_of_face[0]) cy = int(center_of_face[1]) Rx = np.array([[1, 0, 0], [0, math.cos(pitch), -math.sin(pitch)], [0, math.sin(pitch), math.cos(pitch)]]) Ry = np.array([[math.cos(yaw), 0, -math.sin(yaw)], [0, 1, 0], [math.sin(yaw), 0, math.cos(yaw)]]) Rz = np.array([[math.cos(roll), -math.sin(roll), 0], [math.sin(roll), math.cos(roll), 0], [0, 0, 1]]) # R = np.dot(Rz, Ry, Rx) # ref: https://www.learnopencv.com/rotation-matrix-to-euler-angles/ # R = np.dot(Rz, np.dot(Ry, Rx)) R = Rz @ Ry @ Rx # print(R) camera_matrix = build_camera_matrix(center_of_face, focal_length) xaxis = np.array(([1 * scale, 0, 0]), dtype='float32').reshape(3, 1) yaxis = np.array(([0, -1 * scale, 0]), dtype='float32').reshape(3, 1) zaxis = np.array(([0, 0, -1 * scale]), dtype='float32').reshape(3, 1) zaxis1 = np.array(([0, 0, 1 * scale]), dtype='float32').reshape(3, 1) o = np.array(([0, 0, 0]), dtype='float32').reshape(3, 1) o[2] = camera_matrix[0][0] xaxis = np.dot(R, xaxis) + o yaxis = np.dot(R, yaxis) + o zaxis = np.dot(R, zaxis) + o zaxis1 = np.dot(R, zaxis1) + o xp2 = (xaxis[0] / xaxis[2] * camera_matrix[0][0]) + cx yp2 = (xaxis[1] / xaxis[2] * camera_matrix[1][1]) + cy p2 = (int(xp2), int(yp2)) cv2.line(frame, (cx, cy), p2, (0, 0, 255), 2) xp2 = (yaxis[0] / yaxis[2] * camera_matrix[0][0]) + cx yp2 = (yaxis[1] / yaxis[2] * camera_matrix[1][1]) + cy p2 = (int(xp2), int(yp2)) cv2.line(frame, (cx, cy), p2, (0, 255, 0), 2) xp1 = (zaxis1[0] / zaxis1[2] * camera_matrix[0][0]) + cx yp1 = (zaxis1[1] / zaxis1[2] * camera_matrix[1][1]) + cy p1 = (int(xp1), int(yp1)) xp2 = (zaxis[0] / zaxis[2] * camera_matrix[0][0]) + cx yp2 = (zaxis[1] / zaxis[2] * camera_matrix[1][1]) + cy p2 = (int(xp2), int(yp2)) cv2.line(frame, p1, p2, (255, 0, 0), 2) cv2.circle(frame, p2, 3, (255, 0, 0), 2) return frame #scale the landmarks to the whole frame size def scale_landmarks(landmarks, image_shape, orig, image, draw): color = (0,0,255) #RED thickness = cv2.FILLED num_lm = len(landmarks) orig_x = orig[0] orig_y = orig[1] scaled_landmarks = [] for point in range(0, num_lm, 2): x, y = scale_dims(image_shape, landmarks[point], landmarks[point+1]) x_scaled = orig_x + x y_scaled = orig_y + y if draw: image = cv2.circle(image, (x_scaled, y_scaled), 2, color, thickness) scaled_landmarks.append([x_scaled, y_scaled]) return scaled_landmarks, image def process_model_names(name): new_path = name.replace("\\","/") dir, new_name = new_path.rsplit('/', 1) if name.find(dir) == -1: dir, _ = name.rsplit('\\',1) return dir, new_name def run_pipeline(network, input_image, duration): # Detect faces #Preprocess the input start_time = time.perf_counter() p_image = network.preprocess_input(input_image) duration['input'] += time.perf_counter() - start_time #print("duration ", duration['input']*100000) #Infer the faces start_time = time.perf_counter() network.sync_infer(p_image) duration['infer'] += time.perf_counter() - start_time #Get the outputs start_time = time.perf_counter() output = network.preprocess_output() duration['output'] += time.perf_counter() - start_time return duration, output def output_bm(args, t_df, r_df, frames): t_df=t_df*1000 #Convert to (ms) avg_df = t_df/frames now = datetime.now() print("OpenVINO Results") print ("Current date and time: ",now.strftime("%Y-%m-%d %H:%M:%S")) print("Platform: {}".format(platform)) print("Device: {}".format(args.device)) print("Asynchronous Inference: {}".format(args.async_inference)) print("Precision: {}".format(args.precisions)) print("Total frames: {}".format(frames)) print("Total runtimes(s):") print(r_df) print("\nTotal Durations(ms) per phase:") print(t_df) print("\nDuration(ms)/Frames per phase:") print(avg_df) print("\n*********************************************************************************\n\n\n") def infer_on_stream(args): """ Initialize the inference network, stream video to network, and output stats and video. """ try: ######### Setup fonts for text on image ######################## font = cv2.FONT_HERSHEY_SIMPLEX org = (10,40) fontScale = .5 # Blue color in BGR color = (255, 0, 0) # Line thickness of 1 px thickness = 1 text = "" ####################################### fd_dir, fd_model = process_model_names(args.fd_model) _, fl_model = process_model_names(args.fl_model) _, hp_model = process_model_names(args.hp_model) _, ge_model = process_model_names(args.ge_model) # Initialize the classes fd_infer_network = ModelBase(name=model_names['fd'], dev=args.device, ext=args.cpu_extension, threshold=args.conf_threshold) fl_infer_network = ModelBase(name = model_names['fl'], dev=args.device, ext=args.cpu_extension) hp_infer_network = ModelBase(name = model_names['hp'], dev=args.device, ext=args.cpu_extension) ge_infer_network = GazeEstimation(name = model_names['ge'],dev=args.device, ext=args.cpu_extension) precisions=args.precisions.split(",") columns=['load','input','infer','output'] model_indeces=[fd_infer_network.short_name, fl_infer_network.short_name, hp_infer_network.short_name, ge_infer_network.short_name] iterables = [model_indeces,precisions] index = pd.MultiIndex.from_product(iterables, names=['Model','Precision']) total_df = pd.DataFrame(np.zeros((len(model_indeces)*len(precisions),len(columns)), dtype=float),index=index, columns=columns) flip=False cap = MediaReader(args.input) if cap.sourcetype() == MediaReader.CAMSOURCE: flip = True frame_height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT) frame_width = cap.get(cv2.CAP_PROP_FRAME_WIDTH) mc = MouseController('high', 'fast') screenWidth, screenHeight = mc.monitor() if args.showvideo: cv2.startWindowThread() cv2.namedWindow("Out") if platform == "win32": cv2.moveWindow("Out", int((screenWidth-frame_width)/2), int((screenHeight-frame_height)/2)) else: cv2.moveWindow("Out", int((screenWidth-frame_width)/2), int((screenHeight+frame_height)/2)) # Process frames until the video ends, or process is exited ### TODO: Load the models through `infer_network` ### print("Video being shown: ", str(args.showvideo)) #Dictionary to store runtimes for each precision runtime={} #Camera parameters for drawing pose axes focal_length = 950.0 scale = 50 for precision in precisions: print("Beginning test for precision {}.".format(precision)) mc.put(int(screenWidth/2), int(screenHeight/2)) #Place the mouse cursor in the center of the screen frame_count=0 runtime_start = time.perf_counter() fl_dir = os.path.join(args.fl_model, precision) hp_dir = os.path.join(args.hp_model, precision) ge_dir = os.path.join(args.ge_model, precision) total_df.loc(axis=0)[fd_infer_network.short_name,precision]['load'] = fd_infer_network.load_model(dir=fd_dir, name=fd_model) total_df.loc(axis=0)[fl_infer_network.short_name,precision]['load'] = fl_infer_network.load_model(dir=fl_dir, name=fl_model) total_df.loc(axis=0)[hp_infer_network.short_name,precision]['load'] = hp_infer_network.load_model(dir=hp_dir, name=hp_model) total_df.loc(axis=0)[ge_infer_network.short_name,precision]['load'] = ge_infer_network.load_model(dir=ge_dir, name=ge_model) too_many = False not_enough = False single = False gaze = [[0, 0, 0]] cap.set(property=cv2.CAP_PROP_POS_FRAMES, val=0) while cap.isOpened(): if args.num_frames!=None and frame_count>=args.num_frames: break # Read the next frame flag, frame = cap.read() if not flag: break #Flip the frame is the input is from the web cam if flip: frame=cv2.flip(frame, 1) frame_count+=1 frame = cv2.putText(frame, text, org, font, fontScale, color, thickness, cv2.LINE_AA) # Break if escape key pressed if cv2.waitKey(25) & 0xFF == ord('q'): break # Detect faces total_df.loc(axis=0)[fd_infer_network.short_name,precision], outputs = run_pipeline(fd_infer_network, frame, total_df.loc(axis=0)[fd_infer_network.short_name,precision]) coords = [[x_min, y_min, x_max, y_max] for _, _, conf, x_min, y_min, x_max, y_max in outputs[fd_infer_network.output_name][0][0] if conf>=args.conf_threshold] num_detections = len(coords) ### Execute the pipeline only if one face is in the frame if num_detections == 1: too_many = False not_enough = False if not single: text="I see you. Move the mouse cursor with your eyes." print(text) single=True x_min, y_min, x_max, y_max = coords[0] x_min, y_min = scale_dims(frame.shape, x_min, y_min) x_max, y_max = scale_dims(frame.shape, x_max, y_max) face_frame = frame[y_min:y_max, x_min:x_max] if args.async_inference: #Run asynchronous inference #facial landmark detection preprocess the input start_time = time.perf_counter() frame_for_input = fl_infer_network.preprocess_input(face_frame) total_df.loc(axis=0)[fl_infer_network.short_name,precision]['input'] += time.perf_counter() - start_time #Run landmarks inference asynchronously # do not measure time, not relevant since it is asynchronous fl_infer_network.predict(frame_for_input) #Send cropped frame to head pose estimation start_time = time.perf_counter() frame_for_input = hp_infer_network.preprocess_input(face_frame) total_df.loc(axis=0)[hp_infer_network.short_name,precision]['input'] += time.perf_counter() - start_time #Head pose infer hp_infer_network.predict(frame_for_input) #Wait for async inferences to complete if fl_infer_network.wait()==0: start_time = time.perf_counter() outputs = fl_infer_network.preprocess_output() scaled_lm, frame = scale_landmarks(landmarks=outputs[fl_infer_network.output_name][0], image_shape=face_frame.shape, orig=(x_min, y_min),image=frame,draw=args.visualize) total_df.loc(axis=0)[fl_infer_network.short_name,precision]['output'] += time.perf_counter() - start_time if hp_infer_network.wait()==0: start_time = time.perf_counter() outputs = hp_infer_network.preprocess_output() hp_angles = [outputs['angle_y_fc'][0], outputs['angle_p_fc'][0], outputs['angle_r_fc'][0]] total_df.loc(axis=0)[hp_infer_network.short_name,precision]['output'] += time.perf_counter() - start_time else: #Run synchronous inference #facial landmark detection preprocess the input total_df.loc(axis=0)[fl_infer_network.short_name,precision], outputs = run_pipeline(fl_infer_network, face_frame, total_df.loc(axis=0)[fl_infer_network.short_name,precision]) scaled_lm, frame = scale_landmarks(landmarks=outputs[fl_infer_network.output_name][0], image_shape=face_frame.shape, orig=(x_min, y_min),image=frame,draw=args.visualize) #Send cropped frame to head pose estimation total_df.loc(axis=0)[hp_infer_network.short_name, precision], outputs = run_pipeline(hp_infer_network, face_frame, total_df.loc(axis=0)[hp_infer_network.short_name,precision]) hp_angles = [outputs['angle_y_fc'][0], outputs['angle_p_fc'][0], outputs['angle_r_fc'][0]] input_duration, predict_duration, output_duration, gaze = ge_infer_network.sync_infer(face_image=frame, landmarks=scaled_lm, head_pose_angles=[hp_angles]) total_df.loc(axis=0)[ge_infer_network.short_name,precision]['input'] += input_duration total_df.loc(axis=0)[ge_infer_network.short_name,precision]['infer'] += predict_duration total_df.loc(axis=0)[ge_infer_network.short_name,precision]['output'] += output_duration if args.visualize: #draw box around detected face frame = draw_box(frame,(x_min, y_min), (x_max, y_max)) center_of_face = (x_min + face_frame.shape[1] / 2, y_min + face_frame.shape[0] / 2, 0) #draw head pose axes frame = draw_axes(frame, center_of_face, hp_angles[0], hp_angles[1], hp_angles[2], scale, focal_length) #left eye gaze frame = draw_axes(frame, scaled_lm[0], gaze[0][0], gaze[0][1], gaze[0][2], scale, focal_length) #draw gaze vectors on right eye frame = draw_axes(frame, scaled_lm[1], gaze[0][0], gaze[0][1], gaze[0][2], scale, focal_length) #Move the mouse cursor mc.move(gaze[0][0], gaze[0][1]) elif num_detections > 1: single = False not_enough=False if not too_many: text="Too many faces confuse me. I need to see only one face." print(text) too_many=True else: too_many = False single=False if not not_enough: text="Is there anybody out there?" print(text) not_enough=True if args.showvideo or args.visualize: cv2.imshow("Out", frame) ## End While Loop runtime[precision] = time.perf_counter() - runtime_start # Release the capture and destroy any OpenCV windows print("Completed run for precision {}.".format(precision)) if args.benchmark: rt_df = pd.DataFrame.from_dict(runtime, orient='index', columns=["Total runtime"]) rt_df['FPS'] = frame_count/rt_df["Total runtime"] ### End For Loop cap.release() cv2.waitKey(1) cv2.destroyAllWindows() cv2.waitKey(1) #Collect Stats #Setup dataframe if args.benchmark: output_bm(args, total_df, rt_df, frame_count) except KeyboardInterrupt: #Collect Stats print("Detected keyboard interrupt") if args.benchmark: rt_df =
pd.DataFrame.from_dict(runtime, orient='index', columns=["Total runtime"])
pandas.DataFrame.from_dict
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = "<NAME>" __copyright__ = "Copyright 2020, University of Copenhagen" __email__ = "<EMAIL>" __license__ = "MIT" import json import sys import click import pandas as pd from scipy.stats.distributions import chi2 ANCESTRIES = ["ALL", "ANA", "CHG", "WHG", "EHG"] @click.command() @click.option("--data", "data_tsv", metavar="<file>", help="SNP data", type=click.Path(exists=True), required=True) @click.option("--columns", metavar="<col,col>", help="rsID columns", required=True) @click.option("--info", "info_tsv", metavar="<file>", help="INFO scores", type=click.Path(exists=True), required=True) @click.option("--dataset", metavar="<string>", help="Name of the dataset", required=True) @click.option("--population", metavar="<string>", help="Name of the population", required=True) @click.option("--mode", metavar="<string>", help="Clues mode", required=True) @click.option("--ancestry", metavar="<string>", help="Ancestral path", type=click.Choice(ANCESTRIES), required=True) @click.option("--output", metavar="<file>", type=click.Path(writable=True), help="Output filename", required=True) def clues_report(data_tsv, columns, info_tsv, dataset, population, mode, ancestry, output): """ Generate a CLUES report """ # get the list of SNPs to load data = pd.read_table(data_tsv) info =
pd.read_table(info_tsv)
pandas.read_table
import numpy as np import pandas as pd import scipy.sparse as sps import matplotlib.pyplot as plt from mlhub.pkg import mlask, mlcat from IPython.display import display from collections import Counter from relm.mechanisms import LaplaceMechanism mlcat("Differentially Private Release Mechanism", """\ This demo is based on the Jupyter Notebook from the RelM package on github. RelM can be readily utilised for the differentially private release of data. In our demo database the records indicate the age group of each patient who received a COVID-19 test on 9 March 2020. Each patient is classified as belonging to one of eight age groups: 0-9, 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, and 70+. One common way to summarise this kind of data is with a histogram. That is, to report the number of patients that were classified as belonging to each age group. For this demonstration we will create a histogram for the actual data and then a histogram for differentially private data. The data is first loaded from a csv file. It simply consists of two columns, the first is the date and the scond is the age group.""") # Read the raw data. data = pd.read_csv("pcr_testing_age_group_2020-03-09.csv") mlask(True, True) # Compute the exact query responses. exact_counts = data["age_group"].value_counts().sort_index() values = exact_counts.values mlcat("Data Sample", """\ Here's a random sample of some of the records: """) print(data.sample(10)) mlask(True, True) mlcat("Laplace Mechanism", """\ The Laplace mechanism can be used to produce a differentially private histogram that summarises the data without compromising the privacy of the patients whose data comprise the database. To do so, Laplace noise is added to the count for each age group and the noisy counts are released instead of the exact counts. The noise that is added results in perturbed values that are real numbers rather than integers, and so if the results we are expecting are integers, the results can be rounded without loss of privacy. We do that here for our peturbed values.""") # Create a differentially private release mechanism epsilon = 0.1 mechanism = LaplaceMechanism(epsilon=epsilon, sensitivity=1.0) perturbed_counts = mechanism.release(values=values.astype(np.float)) perturbed_counts = perturbed_counts.astype(np.int64) mlask(True, True) mlcat("Choosing Epsilon", f"""\ The magnitude of the differences between the exact counts and perturbed counts depends only on the value of the privacy parameter, epsilon. Smaller values of epsilon yield larger perturbations. Larger perturbations yeild lower utility. To understand this compare the actual and peturbed values below. If the value of epsilon is not too small, then we expect that the two histograms will look similar. For our purposes we have chosen epsilon as {epsilon} resulting in the following peturbation. """) # Extract the set of possible age groups. age_groups = np.sort(data["age_group"].unique()) # Reformat the age group names for nicer display. age_ranges = np.array([a.lstrip("AgeGroup_") for a in age_groups]) # Create a dataframe with both exact and perturbed counts. column_names = ["Age Group", "Exact Counts", "Perturbed Counts"] column_values = [age_ranges, values, perturbed_counts] table = {k: v for (k, v) in zip(column_names, column_values)} df = pd.DataFrame(table) # Display as a table. print(df) mlask(True, True) mlcat("Visualising the Perturbations", """\ The two histograms show that the peturbed values remain consistent with the true values, whilst ensuring privacy. """) # Plot the two histograms as bar graphs. df.plot(x="Age Group", title="Test Counts by Age Group", kind="bar", rot=0) plt.show() exit() mlcat("Geometric Mechanism", """\ TODO In this example, all of the exact counts are integers. That is because they are the result of so-called counting queries. The perturbed counts produced by the Laplace mechanism are real-valued. In some applications, e.g. when some downstream processing assumes it will receive integer-valued data, we may need the perturbed counts to be integers. One way to achieve this is by simply rounding the outputs of the Laplace mechanism to the nearest integer. Because this differentially private release mechanisms are not affected by this kind of post-processing, doing so will not affect any privacy guarantees. Alternatively, we could use the geometric mechanism to compute the permuted counts. The geometric mechanism is simply a discrete version of the Laplace mechanism and it produces integer valued perturbations. """) mlask() mlcat("", """Basic Usage """) mlask() mlcat("", """ # Create a differentially private release mechanism from relm.mechanisms import GeometricMechanism mechanism = GeometricMechanism(epsilon=0.1, sensitivity=1.0) perturbed_counts = mechanism.release(values=values) """) mlask() # Create a differentially private release mechanism from relm.mechanisms import GeometricMechanism mechanism = GeometricMechanism(epsilon=0.1, sensitivity=1.0) perturbed_counts = mechanism.release(values=values) mlcat("", """Visualising the Results As with the Laplace mechanism, we can plot the exact histogram alongside the differentially private histogram to get an idea if we have used too small a value for epsilon. """) mlask() mlcat("", """ # Create a dataframe with both exact and perturbed counts column_values = [age_ranges, values, perturbed_counts] table = {k: v for (k, v) in zip(column_names, column_values)} df = pd.DataFrame(table) # Display the two histograms as a table display(df.style.set_caption("Test Counts by Age Group")) # Plot the two histograms as bar graphs df.plot(x="Age Group", title="Test Counts by Age Group", kind="bar", rot=0) plt.show() """) mlask() # Create a dataframe with both exact and perturbed counts column_values = [age_ranges, values, perturbed_counts] table = {k: v for (k, v) in zip(column_names, column_values)} df = pd.DataFrame(table) # Display the two histograms as a table display(df.style.set_caption("Test Counts by Age Group")) # Plot the two histograms as bar graphs df.plot(x="Age Group", title="Test Counts by Age Group", kind="bar", rot=0) plt.show() mlcat("", """Exponential Mechanism """) mlask() mlcat("", """Basic Usage The ExponentialMechanism does not lend itself to vectorised queries as easily as the LaplaceMechanism or GeometricMechanism. So, to produce a histogram query that is comparable to those discussed above we wrap the query releases in a loop and compute them one at a time. """) mlask() mlcat("", """ # Create a differentially private release mechanism from relm.mechanisms import ExponentialMechanism output_range = np.arange(2**10) utility_function = lambda x: -abs(output_range - x) perturbed_counts = np.empty(len(values), dtype=np.int) for i, value in enumerate(values.astype(np.float)): mechanism = ExponentialMechanism(epsilon=0.1, utility_function=utility_function, sensitivity=1.0, output_range=output_range) perturbed_counts[i] = mechanism.release(values=value) """) mlask() # Create a differentially private release mechanism from relm.mechanisms import ExponentialMechanism output_range = np.arange(2**10) utility_function = lambda x: -abs(output_range - x) perturbed_counts = np.empty(len(values), dtype=np.int) for i, value in enumerate(values.astype(np.float)): mechanism = ExponentialMechanism(epsilon=0.1, utility_function=utility_function, sensitivity=1.0, output_range=output_range) perturbed_counts[i] = mechanism.release(values=value) mlcat("", """Visualising the Results """) mlask() mlcat("", """ # Create a dataframe with both exact and perturbed counts column_values = [age_ranges, values, perturbed_counts] table = {k: v for (k, v) in zip(column_names, column_values)} df = pd.DataFrame(table) # Display the two histograms as a table display(df.style.set_caption("Test Counts by Age Group")) # Plot the two histograms as bar graphs df.plot(x="Age Group", title="Test Counts by Age Group", kind="bar", rot=0) plt.show() """) mlask() # Create a dataframe with both exact and perturbed counts column_values = [age_ranges, values, perturbed_counts] table = {k: v for (k, v) in zip(column_names, column_values)} df = pd.DataFrame(table) # Display the two histograms as a table display(df.style.set_caption("Test Counts by Age Group")) # Plot the two histograms as bar graphs df.plot(x="Age Group", title="Test Counts by Age Group", kind="bar", rot=0) plt.show() mlcat("", """Sparse Mechanisms We currently have four mechanisms that take advantage of sparsity to answer more queries about the data for a given privacy budget. All of these mechanisms compare noisy query responses to a noisy threshold value. If a noisy response does not exceed the noisy threshold, then the mechanism reports only that the value did not exceed the threshold. Otherwise, the mechanism reports that the value exceeded the threshold. Furthermore, in the latter case some mechanisms release more information about the underlying exact count. This extra information is computed using some other differentially private mechanism and therefore imposes some additional privacy costs. """) mlask() mlcat("", """Data Wrangling All three of our mechanims share an input format. We require a sequence of exact query responses and a threshold value to which these responses will be compared. """) mlask() mlcat("", """ # Read the raw data fp = '20200811_QLD_dummy_dataset_individual_v2.xlsx' data = pd.read_excel(fp) # Limit our attention to the onset date column data.drop(list(data.columns[1:]), axis=1, inplace=True) # Remove data with no onset date listed mask = data['ONSET_DATE'].notna() data = data[mask] # Compute the exact query responses queries = [(pd.Timestamp('2020-01-01') + i*pd.Timedelta('1d'),) for i in range(366)] exact_counts = dict.fromkeys(queries, 0) exact_counts.update(data.value_counts()) dates, values = zip(*sorted(exact_counts.items())) values = np.array(values, dtype=np.float64) """) mlask() # Read the raw data fp = '20200811_QLD_dummy_dataset_individual_v2.xlsx' data = pd.read_excel(fp) # Limit our attention to the onset date column data.drop(list(data.columns[1:]), axis=1, inplace=True) # Remove data with no onset date listed mask = data['ONSET_DATE'].notna() data = data[mask] # Compute the exact query responses queries = [(
pd.Timestamp('2020-01-01')
pandas.Timestamp
import pandas as pd import numpy as np import yfinance as yf #Yahoo Finance API from datetime import datetime as dt, date import time df = pd.DataFrame() tickers = ["^KS11", "^GSPC", "^N225", "^HSI", "^N100", "^FTSE", "^DJI"] start_day = dt(2019, 12, 1) today = str(date.today()) kospi = yf.download('^KS11', start=dt(2005, 1, 1), end=today) def get_all_index_data(df, tickers, start_day, today): for ticker in tickers: try: print('Stealing from Yahoo Finance ......................\n') print('Working on a ticker: ', ticker, '......................\n') ticker_df = yf.download(ticker, start=start_day, end=today) time.sleep(1) df_temp = ticker_df.reset_index() df_temp = df_temp[['Date','Adj Close']] df_temp = df_temp.rename(columns={'Adj Close': ticker}) df = df.join(df_temp, how='outer', rsuffix='Date') except IndexError: print('value error') df = df.loc[:,~df.columns.str.contains('DateDate', case=False)] df = df.dropna() df.columns = df.columns.str.replace('^', '') print('.....................Done ......................') return df data = get_all_index_data(df, tickers, start_day, today) def normalize(df): df1 = df.iloc[:, 1:].apply(lambda x: np.log(x) - np.log(x.shift(1))) df1['Date'] = df['Date'] df1 = df1[list(df.columns)] return df1 def plot(data): plt.figure(figsize=(15, 10)) plt.plot(data.Date, data.KS11, label='KOSPI', color='blue') plt.plot(data.Date, data.GSPC, label='S&P 500', color='orange') plt.plot(data.Date, data.N225, label='Nikkei 225', color='magenta') plt.plot(data.Date, data.HSI, label='Hang Seng Index', color='green') plt.plot(data.Date, data.N100, label='Euro 100', color='yellow') plt.plot(data.Date, data.FTSE, label='FTSE', color='grey') plt.legend(loc='upper left') #plt.savefig('SMA-KOSPI.png') plt.show() #Interactive Graph 시각화 with plotly import plotly.express as px import plotly.graph_objects as go ##로그 변화율 interactive 시각화(data_fill이용) log_data_fill = log_diff(data_fill) fig = go.Figure() fig.add_trace(go.Scatter( x=log_data_fill.index, y=log_data_fill.FTSE, mode='lines', name='FTSE')) fig.add_trace(go.Scatter(x=log_data_fill.index, y=log_data_fill.GSPC, mode='lines', name='GSPC(S&P 500)')) fig.add_trace(go.Scatter(x=log_data_fill.index, y=log_data_fill.HSI, mode='lines', name='HSI(Hangseng')) fig.add_trace(go.Scatter(x=log_data_fill.index, y=log_data_fill.KS11, mode='lines', name='KS11(KOSPI)')) fig.add_trace(go.Scatter(x=log_data_fill.index, y=log_data_fill.N100, mode='lines', name='N100(EuroNext100)')) fig.add_trace(go.Scatter(x=log_data_fill.index, y=log_data_fill.N225, mode='lines', name='N225(Nikkei225)')) #정규화 지표값 추이 interactive 시각화 standardize_data_fill = standardize(data_fill) fig = go.Figure() fig.add_trace(go.Scatter( x=standardize_data_fill.index, y=standardize_data_fill.FTSE, mode='lines', name='FTSE')) fig.add_trace(go.Scatter(x=standardize_data_fill.index, y=standardize_data_fill.GSPC, mode='lines', name='GSPC(S&P 500)')) fig.add_trace(go.Scatter(x=standardize_data_fill.index, y=standardize_data_fill.HSI, mode='lines', name='HSI(Hangseng')) fig.add_trace(go.Scatter(x=standardize_data_fill.index, y=standardize_data_fill.KS11, mode='lines', name='KS11(KOSPI)')) fig.add_trace(go.Scatter(x=standardize_data_fill.index, y=standardize_data_fill.N100, mode='lines', name='N100(EuroNext100)')) fig.add_trace(go.Scatter(x=standardize_data_fill.index, y=standardize_data_fill.N225, mode='lines', name='N225(Nikkei225)')) world_aggregated = 'https://raw.githubusercontent.com/datasets/covid-19/master/data/worldwide-aggregated.csv' countries_aggregated= 'https://raw.githubusercontent.com/datasets/covid-19/master/data/countries-aggregated.csv' world =
pd.read_csv(world_aggregated)
pandas.read_csv
import requests import pandas as pd import numpy as np import configparser from datetime import datetime from dateutil import relativedelta, parser, rrule from dateutil.rrule import WEEKLY class WhoopClient: '''A class to allow a user to login and store their authorization code, then perform pulls using the code in order to access different types of data''' def __init__(self, auth_code=None, whoop_id=None, current_datetime=datetime.utcnow()): self.auth_code = auth_code self.whoop_id = whoop_id self.current_datetime = current_datetime self.start_datetime = None self.all_data = None self.all_activities = None self.sport_dict = None self.all_sleep = None self.all_sleep_events = None def reset(self): self.auth_code = None self.whoop_id = None self.current_datetime = datetime.utcnow() self.start_datetime = None self.all_data = None self.all_activities = None self.sport_dict = None self.all_sleep = None self.all_sleep_events = None def pull_api(self, url, df=False): auth_code = self.auth_code headers = {'authorization': auth_code} pull = requests.get(url, headers=headers) if pull.status_code == 200 and len(pull.content) > 1: if df: d = pd.json_normalize(pull.json()) return d else: return pull.json() else: return "no response" def pull_sleep_main(self, sleep_id): athlete_id = self.whoop_id sleep = self.pull_api( 'https://api-7.whoop.com/users/{}/sleeps/{}'.format( athlete_id, sleep_id)) main_df = pd.json_normalize(sleep) return main_df def pull_sleep_events(self, sleep_id): athlete_id = self.whoop_id sleep = self.pull_api( 'https://api-7.whoop.com/users/{}/sleeps/{}'.format( athlete_id, sleep_id)) events_df = pd.json_normalize(sleep['events']) events_df['id'] = sleep_id return events_df def get_authorization(self, user_ini): ''' Function to get the authorization token and user id. This must be completed before a user can query the api ''' config = configparser.ConfigParser() config.read(user_ini) username = config['whoop']['username'] password = config['whoop']['password'] headers = { "username": username, "password": password, "grant_type": "password", "issueRefresh": False } auth = requests.post("https://api-7.whoop.com/oauth/token", json=headers) if auth.status_code == 200: content = auth.json() user_id = content['user']['id'] token = content['access_token'] start_time = content['user']['profile']['createdAt'] self.whoop_id = user_id self.auth_code = 'bearer ' + token self.start_datetime = start_time print("Whoop: Authentication successful") else: print( "Authentication failed - please double check your credentials") def get_keydata_all(self): ''' This function returns a dataframe of WHOOP metrics for each day of WHOOP membership. In the resulting dataframe, each day is a row and contains strain, recovery, and sleep information ''' if self.start_datetime: if self.all_data is not None: ## All data already pulled return self.all_data else: start_date = parser.isoparse( self.start_datetime).replace(tzinfo=None) end_time = 'T23:59:59.999Z' start_time = 'T00:00:00.000Z' intervals = rrule.rrule(freq=WEEKLY, interval=1, until=self.current_datetime, dtstart=start_date) date_range = [[ d.strftime('%Y-%m-%d') + start_time, (d + relativedelta.relativedelta(weeks=1)).strftime('%Y-%m-%d') + end_time ] for d in intervals] all_data = pd.DataFrame() for dates in date_range: cycle_url = 'https://api-7.whoop.com/users/{}/cycles?end={}&start={}'.format( self.whoop_id, dates[1], dates[0]) data = self.pull_api(cycle_url, df=True) all_data = pd.concat([all_data, data]) all_data.reset_index(drop=True, inplace=True) ## fixing the day column so it's not a list all_data['days'] = all_data['days'].map(lambda d: d[0]) all_data.rename(columns={"days": 'day'}, inplace=True) ## Putting all time into minutes instead of milliseconds sleep_cols = [ 'qualityDuration', 'needBreakdown.baseline', 'needBreakdown.debt', 'needBreakdown.naps', 'needBreakdown.strain', 'needBreakdown.total' ] for sleep_col in sleep_cols: all_data['sleep.' + sleep_col] = all_data[ 'sleep.' + sleep_col].astype(float).apply( lambda x: np.nan if np.isnan(x) else x / 60000) ## Making nap variable all_data['nap_duration'] = all_data['sleep.naps'].apply( lambda x: x[0]['qualityDuration'] / 60000 if len(x) == 1 else (sum([ y['qualityDuration'] for y in x if y['qualityDuration'] is not None ]) / 60000 if len(x) > 1 else 0)) all_data.drop(['sleep.naps'], axis=1, inplace=True) ## dropping duplicates subsetting because of list columns all_data.drop_duplicates(subset=['day', 'sleep.id'], inplace=True) self.all_data = all_data return all_data else: print("Please run the authorization function first") def get_activities_all(self): ''' Activity data is pulled through the get_keydata functions so if the data pull is present, this function just transforms the activity column into a dataframe of activities, where each activity is a row. If it has not been pulled, this function runs the key data function then returns the activity dataframe''' if self.sport_dict: sport_dict = self.sport_dict else: sports = self.pull_api('https://api-7.whoop.com/sports') sport_dict = {sport['id']: sport['name'] for sport in sports} self.sport_dict = self.sport_dict if self.start_datetime: ## process activity data if self.all_data is not None: ## use existing data = self.all_data else: ## pull all data to process activities data = self.get_keydata_all() ## now process activities data act_data = pd.json_normalize( data[data['strain.workouts'].apply(len) > 0] ['strain.workouts'].apply(lambda x: x[0])) act_data[['during.upper', 'during.lower' ]] = act_data[['during.upper', 'during.lower']].apply(pd.to_datetime) act_data['total_minutes'] = act_data.apply( lambda x: (x['during.upper'] - x['during.lower']).total_seconds() / 60.0, axis=1) for z in range(0, 6): act_data['zone{}_minutes'.format( z + 1)] = act_data['zones'].apply(lambda x: x[z] / 60000.) act_data['sport_name'] = act_data.sportId.apply( lambda x: sport_dict[x]) act_data['day'] = act_data['during.lower'].dt.strftime('%Y-%m-%d') act_data.drop(['zones', 'during.bounds'], axis=1, inplace=True) act_data.drop_duplicates(inplace=True) self.all_activities = act_data return act_data else: print("Whoop: Please run the authorization function first") def get_sleep_all(self): ''' This function returns all sleep metrics in a data frame, for the duration of user's WHOOP membership. Each row in the data frame represents one night of sleep ''' if self.auth_code: if self.all_data is not None: ## use existing data = self.all_data else: ## pull timeframe data data = self.get_keydata_all() ## getting all the sleep ids if self.all_sleep is not None: ## All sleep data already pulled return self.all_sleep else: sleep_ids = data['sleep.id'].values.tolist() sleep_list = [int(x) for x in sleep_ids if
pd.isna(x)
pandas.isna
#!/usr/bin/env python import pandas as pd pd.options.mode.chained_assignment = None import json import os import yaml try: modulepath = os.path.dirname(os.path.realpath(__file__)).replace('\\', '/') + '/' except NameError: modulepath = 'stewi/' output_dir = modulepath + 'output/' data_dir = modulepath + 'data/' reliability_table = pd.read_csv(data_dir + 'DQ_Reliability_Scores_Table3-3fromERGreport.csv', usecols=['Source', 'Code', 'DQI Reliability Score']) def config(): configfile = None print(modulepath) with open(modulepath + 'config.yaml', mode='r') as f: configfile = yaml.load(f,Loader=yaml.FullLoader) return configfile inventory_metadata = { 'SourceType': 'Static File', #Other types are "Web service" 'SourceFileName':'NA', 'SourceURL':'NA', 'SourceVersion':'NA', 'SourceAquisitionTime':'NA', 'StEWI_versions_version': '0.9' } inventory_single_compartments = {"NEI":"air","RCRAInfo":"waste"} def url_is_alive(url): """ Checks that a given URL is reachable. :param url: A URL :rtype: bool """ import urllib request = urllib.request.Request(url) request.get_method = lambda: 'HEAD' try: urllib.request.urlopen(request) return True except urllib.request.HTTPError: return False except urllib.error.URLError: return False def download_table(filepath, url, get_time=False, zip_dir=''): import os.path, time if not os.path.exists(filepath): if url[-4:].lower() == '.zip': import zipfile, requests, io table_request = requests.get(url).content zip_file = zipfile.ZipFile(io.BytesIO(table_request)) zip_file.extractall(zip_dir) elif 'xls' in url.lower() or url.lower()[-5:] == 'excel': import urllib, shutil with urllib.request.urlopen(url) as response, open(filepath, 'wb') as out_file: shutil.copyfileobj(response, out_file) elif 'json' in url.lower(): import pandas as pd pd.read_json(url).to_csv(filepath, index=False) if get_time: try: retrieval_time = os.path.getctime(filepath) except: retrieval_time = time.time() return time.ctime(retrieval_time) def set_dir(directory_name): path = os.path.realpath(directory_name + '/').replace('\\', '/') + '/' if os.path.exists(path): pathname = path else: pathname = path os.makedirs(pathname) return pathname def import_table(path_or_reference, skip_lines=0, get_time=False): import time if '.core.frame.DataFrame' in str(type(path_or_reference)): import_file = path_or_reference elif path_or_reference[-3:].lower() == 'csv': import_file = pd.read_csv(path_or_reference) elif 'xls' in path_or_reference[-4:].lower(): import_file = pd.ExcelFile(path_or_reference) import_file = {sheet: import_file.parse(sheet, skiprows=skip_lines) for sheet in import_file.sheet_names} if get_time: try: retrieval_time = os.path.getctime(path_or_reference) except: retrieval_time = time.time() return import_file, retrieval_time return import_file def drop_excel_sheets(excel_dict, drop_sheets): for s in drop_sheets: try: excel_dict.pop(s) except KeyError: continue return excel_dict def filter_inventory(inventory, criteria_table, filter_type, marker=None): """ :param inventory_df: DataFrame to be filtered :param criteria_file: Can be a list of items to drop/keep, or a table of FlowName, FacilityID, etc. with columns marking rows to drop :param filter_type: drop, keep, mark_drop, mark_keep :param marker: Non-empty fields are considered marked by default. Option to specify 'x', 'yes', '1', etc. :return: DataFrame """ inventory = import_table(inventory); criteria_table = import_table(criteria_table) if filter_type in ('drop', 'keep'): for criteria_column in criteria_table: for column in inventory: if column == criteria_column: criteria = set(criteria_table[criteria_column]) if filter_type == 'drop': inventory = inventory[~inventory[column].isin(criteria)] elif filter_type == 'keep': inventory = inventory[inventory[column].isin(criteria)] elif filter_type in ('mark_drop', 'mark_keep'): standard_format = import_table(data_dir + 'flowbyfacility_format.csv') must_match = standard_format['Name'][standard_format['Name'].isin(criteria_table.keys())] for criteria_column in criteria_table: if criteria_column in must_match: continue for field in must_match: if filter_type == 'mark_drop': if marker is None: inventory = inventory[~inventory[field].isin(criteria_table[field][criteria_table[criteria_column] != ''])] else: inventory = inventory[~inventory[field].isin(criteria_table[field][criteria_table[criteria_column] == marker])] if filter_type == 'mark_keep': if marker is None: inventory = inventory[inventory[field].isin(criteria_table[field][criteria_table[criteria_column] != ''])] else: inventory = inventory[inventory[field].isin(criteria_table[field][criteria_table[criteria_column] == marker])] return inventory.reset_index(drop=True) def filter_states(inventory_df, include_states=True, include_dc=True, include_territories=False): states_df = pd.read_csv(data_dir + 'state_codes.csv') states_filter =
pd.DataFrame()
pandas.DataFrame
"""Multiple Factor Analysis (MFA)""" import itertools import numpy as np import pandas as pd from sklearn import utils from . import mca from . import pca class MFA(pca.PCA): def __init__(self, groups=None, rescale_with_mean=True, rescale_with_std=True, n_components=2, n_iter=10, copy=True, random_state=None, engine='auto'): super().__init__( rescale_with_mean=rescale_with_mean, rescale_with_std=rescale_with_std, n_components=n_components, n_iter=n_iter, copy=copy, random_state=random_state, engine=engine ) self.groups = groups def fit(self, X, y=None): # Checks groups are provided if self.groups is None: raise ValueError('Groups have to be specified') # Check input utils.check_array(X, dtype=[str, np.number]) # Make sure X is a DataFrame for convenience if not isinstance(X, pd.DataFrame): X = pd.DataFrame(X) # Check group types are consistent self.all_nums_ = {} for name, cols in sorted(self.groups.items()): all_num = all(
pd.api.types.is_numeric_dtype(X[c])
pandas.api.types.is_numeric_dtype
import inspect import json import os import re from urllib.parse import quote from urllib.request import urlopen import pandas as pd import param from .configuration import DEFAULTS class TutorialData(param.Parameterized): label = param.String(allow_None=True) raw = param.Boolean() verbose = param.Boolean() return_meta = param.Boolean() use_cache = param.Boolean() _source = None _base_url = None _data_url = None _description = None def __init__(self, **kwds): super().__init__(**kwds) self._cache_dir = DEFAULTS["cache_kwds"]["directory"] self._remove_href = re.compile(r"<(a|/a).*?>") os.makedirs(self._cache_dir, exist_ok=True) self._init_owid() @property def _cache_path(self): cache_file = f"{self.label}.pkl" return os.path.join(self._cache_dir, cache_file) @property def _dataset_options(self): options = set([]) for method in dir(self): if method.startswith("_load_") and "owid" not in method: options.add(method.replace("_load_", "")) return list(options) + list(self._owid_labels_df.columns) @staticmethod def _specify_cache(cache_path, **kwds): if kwds: cache_ext = "_".join( f"{key}={val}".replace(os.sep, "") for key, val in kwds.items() ) cache_path = f"{os.path.splitext(cache_path)[0]}_{cache_ext}.pkl" return cache_path def _cache_dataset(self, df, cache_path=None, **kwds): if cache_path is None: cache_path = self._cache_path cache_path = self._specify_cache(cache_path, **kwds) df.to_pickle(cache_path) def _read_cache(self, cache_path=None, **kwds): if not self.use_cache: return None if cache_path is None: cache_path = self._cache_path cache_path = self._specify_cache(cache_path, **kwds) try: return pd.read_pickle(cache_path) except Exception: if os.path.exists(cache_path): os.remove(cache_path) return None @staticmethod def _snake_urlify(s): # Replace all hyphens with underscore s = s.replace(" - ", "_").replace("-", "_") # Remove all non-word characters (everything except numbers and letters) s = re.sub(r"[^\w\s]", "", s) # Replace all runs of whitespace with a underscore s = re.sub(r"\s+", "_", s) return s.lower() def _init_owid(self): cache_path = os.path.join(self._cache_dir, "owid_labels.pkl") self._owid_labels_df = self._read_cache(cache_path=cache_path) if self._owid_labels_df is not None: return owid_api_url = ( "https://api.github.com/" "repos/owid/owid-datasets/" "git/trees/master?recursive=1" ) with urlopen(owid_api_url) as f: sources = json.loads(f.read().decode("utf-8")) owid_labels = {} owid_raw_url = "https://raw.githubusercontent.com/owid/owid-datasets/master/" for source_tree in sources["tree"]: path = source_tree["path"] if ".csv" not in path and ".json" not in path: continue label = "owid_" + self._snake_urlify(path.split("/")[-2].strip()) if label not in owid_labels: owid_labels[label] = {} url = f"{owid_raw_url}/{quote(path)}" if ".csv" in path: owid_labels[label]["data"] = url elif ".json" in path: owid_labels[label]["meta"] = url self._owid_labels_df = pd.DataFrame(owid_labels) self._cache_dataset(self._owid_labels_df, cache_path=cache_path) def _load_owid(self, **kwds): self._data_url = self._owid_labels_df[self.label]["data"] meta_url = self._owid_labels_df[self.label]["meta"] with urlopen(meta_url) as response: meta = json.loads(response.read().decode()) self.label = meta["title"] self._source = ( " & ".join(source["dataPublishedBy"] for source in meta["sources"]) + " curated by Our World in Data (OWID)" ) self._base_url = ( " & ".join(source["link"] for source in meta["sources"]) + " through https://github.com/owid/owid-datasets" ) self._description = re.sub(self._remove_href, "", meta["description"]) df = self._read_cache(**kwds) if df is None: df =
pd.read_csv(self._data_url, **kwds)
pandas.read_csv
import numpy as np import pandas as pd def main_post(s_name,orig_data): D = 20 print("Max Moment Order", D) d = np.genfromtxt("moments.txt", delimiter = "\t")[:,:-1] frame = [] cell = [] moment = [] for i in range(len(d)): f = d[i][0] c = d[i][1] m = d[i][2:] ff = [f] * len(m) cc = [c] * len(m) frame.append(ff) cell.append(cc) moment.append(m) frame_flat = [item for sublist in frame for item in sublist] cell_flat = [item for sublist in cell for item in sublist] moment_flat = np.array([item for sublist in moment for item in sublist]) * 255 data_l = list(zip(frame_flat,cell_flat,moment_flat)) df = pd.DataFrame(data = data_l) df.columns = ["frame_id","cell_id","moment_value"] a = [] for i in range(D+1): a.append(i) even = [] odd = [] for i in a: if i % 2 == 0: even.append(i) if i % 2 != 0: odd.append(i) even_zm = [] even_zn = [] for i in even: for j in even: if j <= i: even_zm.append(i) even_zn.append(j) odd_zm = [] odd_zn = [] for i in odd: for j in odd: if j <= i: odd_zm.append(i) odd_zn.append(j) evenl = list(zip(even_zm,even_zn)) oddl = list(zip(odd_zm,odd_zn)) totall = evenl + oddl df_index = pd.DataFrame(data = totall) df_index.columns = ["moment","az_angle"] df_index_s = df_index.sort_values(["moment","az_angle"], ascending = [True,True]) df_index_s = df_index_s[2:] df_2 = pd.concat([df_index_s] * len(d)) df_2 = df_2.reset_index(drop = True) final =
pd.concat([df, df_2],axis=1)
pandas.concat
# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. # Specifically for Period dtype import operator import numpy as np import pytest from pandas._libs.tslibs.period import IncompatibleFrequency from pandas.errors import PerformanceWarning import pandas as pd from pandas import Period, PeriodIndex, Series, period_range from pandas.core import ops from pandas.core.arrays import TimedeltaArray import pandas.util.testing as tm from pandas.tseries.frequencies import to_offset # ------------------------------------------------------------------ # Comparisons class TestPeriodArrayLikeComparisons: # Comparison tests for PeriodDtype vectors fully parametrized over # DataFrame/Series/PeriodIndex/PeriodArray. Ideally all comparison # tests will eventually end up here. def test_compare_zerodim(self, box_with_array): # GH#26689 make sure we unbox zero-dimensional arrays xbox = box_with_array if box_with_array is not pd.Index else np.ndarray pi = pd.period_range("2000", periods=4) other = np.array(pi.to_numpy()[0]) pi = tm.box_expected(pi, box_with_array) result = pi <= other expected = np.array([True, False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) class TestPeriodIndexComparisons: # TODO: parameterize over boxes @pytest.mark.parametrize("other", ["2017", 2017]) def test_eq(self, other): idx = PeriodIndex(["2017", "2017", "2018"], freq="D") expected = np.array([True, True, False]) result = idx == other tm.assert_numpy_array_equal(result, expected) def test_pi_cmp_period(self): idx = period_range("2007-01", periods=20, freq="M") result = idx < idx[10] exp = idx.values < idx.values[10] tm.assert_numpy_array_equal(result, exp) # TODO: moved from test_datetime64; de-duplicate with version below def test_parr_cmp_period_scalar2(self, box_with_array): xbox = box_with_array if box_with_array is not pd.Index else np.ndarray pi = pd.period_range("2000-01-01", periods=10, freq="D") val = Period("2000-01-04", freq="D") expected = [x > val for x in pi] ser = tm.box_expected(pi, box_with_array) expected = tm.box_expected(expected, xbox) result = ser > val tm.assert_equal(result, expected) val = pi[5] result = ser > val expected = [x > val for x in pi] expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_parr_cmp_period_scalar(self, freq, box_with_array): # GH#13200 xbox = np.ndarray if box_with_array is pd.Index else box_with_array base = PeriodIndex(["2011-01", "2011-02", "2011-03", "2011-04"], freq=freq) base = tm.box_expected(base, box_with_array) per = Period("2011-02", freq=freq) exp = np.array([False, True, False, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base == per, exp) tm.assert_equal(per == base, exp) exp = np.array([True, False, True, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base != per, exp) tm.assert_equal(per != base, exp) exp = np.array([False, False, True, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base > per, exp) tm.assert_equal(per < base, exp) exp = np.array([True, False, False, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base < per, exp) tm.assert_equal(per > base, exp) exp = np.array([False, True, True, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base >= per, exp) tm.assert_equal(per <= base, exp) exp = np.array([True, True, False, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base <= per, exp) tm.assert_equal(per >= base, exp) @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_parr_cmp_pi(self, freq, box_with_array): # GH#13200 xbox = np.ndarray if box_with_array is pd.Index else box_with_array base = PeriodIndex(["2011-01", "2011-02", "2011-03", "2011-04"], freq=freq) base = tm.box_expected(base, box_with_array) # TODO: could also box idx? idx = PeriodIndex(["2011-02", "2011-01", "2011-03", "2011-05"], freq=freq) exp = np.array([False, False, True, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base == idx, exp) exp = np.array([True, True, False, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base != idx, exp) exp = np.array([False, True, False, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base > idx, exp) exp = np.array([True, False, False, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base < idx, exp) exp = np.array([False, True, True, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base >= idx, exp) exp = np.array([True, False, True, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base <= idx, exp) @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_parr_cmp_pi_mismatched_freq_raises(self, freq, box_with_array): # GH#13200 # different base freq base = PeriodIndex(["2011-01", "2011-02", "2011-03", "2011-04"], freq=freq) base = tm.box_expected(base, box_with_array) msg = "Input has different freq=A-DEC from " with pytest.raises(IncompatibleFrequency, match=msg): base <= Period("2011", freq="A") with pytest.raises(IncompatibleFrequency, match=msg): Period("2011", freq="A") >= base # TODO: Could parametrize over boxes for idx? idx = PeriodIndex(["2011", "2012", "2013", "2014"], freq="A") rev_msg = ( r"Input has different freq=(M|2M|3M) from " r"PeriodArray\(freq=A-DEC\)" ) idx_msg = rev_msg if box_with_array is tm.to_array else msg with pytest.raises(IncompatibleFrequency, match=idx_msg): base <= idx # Different frequency msg = "Input has different freq=4M from " with pytest.raises(IncompatibleFrequency, match=msg): base <= Period("2011", freq="4M") with pytest.raises(IncompatibleFrequency, match=msg): Period("2011", freq="4M") >= base idx = PeriodIndex(["2011", "2012", "2013", "2014"], freq="4M") rev_msg = r"Input has different freq=(M|2M|3M) from " r"PeriodArray\(freq=4M\)" idx_msg = rev_msg if box_with_array is tm.to_array else msg with pytest.raises(IncompatibleFrequency, match=idx_msg): base <= idx @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_pi_cmp_nat(self, freq): idx1 = PeriodIndex(["2011-01", "2011-02", "NaT", "2011-05"], freq=freq) result = idx1 > Period("2011-02", freq=freq) exp = np.array([False, False, False, True]) tm.assert_numpy_array_equal(result, exp) result = Period("2011-02", freq=freq) < idx1 tm.assert_numpy_array_equal(result, exp) result = idx1 == Period("NaT", freq=freq) exp = np.array([False, False, False, False]) tm.assert_numpy_array_equal(result, exp) result = Period("NaT", freq=freq) == idx1 tm.assert_numpy_array_equal(result, exp) result = idx1 != Period("NaT", freq=freq) exp = np.array([True, True, True, True]) tm.assert_numpy_array_equal(result, exp) result = Period("NaT", freq=freq) != idx1 tm.assert_numpy_array_equal(result, exp) idx2 = PeriodIndex(["2011-02", "2011-01", "2011-04", "NaT"], freq=freq) result = idx1 < idx2 exp = np.array([True, False, False, False]) tm.assert_numpy_array_equal(result, exp) result = idx1 == idx2 exp = np.array([False, False, False, False]) tm.assert_numpy_array_equal(result, exp) result = idx1 != idx2 exp = np.array([True, True, True, True]) tm.assert_numpy_array_equal(result, exp) result = idx1 == idx1 exp = np.array([True, True, False, True]) tm.assert_numpy_array_equal(result, exp) result = idx1 != idx1 exp = np.array([False, False, True, False]) tm.assert_numpy_array_equal(result, exp) @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_pi_cmp_nat_mismatched_freq_raises(self, freq): idx1 = PeriodIndex(["2011-01", "2011-02", "NaT", "2011-05"], freq=freq) diff = PeriodIndex(["2011-02", "2011-01", "2011-04", "NaT"], freq="4M") msg = "Input has different freq=4M from Period(Array|Index)" with pytest.raises(IncompatibleFrequency, match=msg): idx1 > diff with pytest.raises(IncompatibleFrequency, match=msg): idx1 == diff # TODO: De-duplicate with test_pi_cmp_nat @pytest.mark.parametrize("dtype", [object, None]) def test_comp_nat(self, dtype): left = pd.PeriodIndex( [pd.Period("2011-01-01"), pd.NaT, pd.Period("2011-01-03")] ) right = pd.PeriodIndex([pd.NaT, pd.NaT, pd.Period("2011-01-03")]) if dtype is not None: left = left.astype(dtype) right = right.astype(dtype) result = left == right expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = left != right expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(left == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == right, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(left != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != left, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(left < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > left, expected) class TestPeriodSeriesComparisons: def test_cmp_series_period_series_mixed_freq(self): # GH#13200 base = Series( [ Period("2011", freq="A"), Period("2011-02", freq="M"), Period("2013", freq="A"), Period("2011-04", freq="M"), ] ) ser = Series( [ Period("2012", freq="A"), Period("2011-01", freq="M"), Period("2013", freq="A"), Period("2011-05", freq="M"), ] ) exp = Series([False, False, True, False]) tm.assert_series_equal(base == ser, exp) exp = Series([True, True, False, True]) tm.assert_series_equal(base != ser, exp) exp = Series([False, True, False, False]) tm.assert_series_equal(base > ser, exp) exp = Series([True, False, False, True]) tm.assert_series_equal(base < ser, exp) exp = Series([False, True, True, False]) tm.assert_series_equal(base >= ser, exp) exp = Series([True, False, True, True]) tm.assert_series_equal(base <= ser, exp) class TestPeriodIndexSeriesComparisonConsistency: """ Test PeriodIndex and Period Series Ops consistency """ # TODO: needs parametrization+de-duplication def _check(self, values, func, expected): # Test PeriodIndex and Period Series Ops consistency idx = pd.PeriodIndex(values) result = func(idx) # check that we don't pass an unwanted type to tm.assert_equal assert isinstance(expected, (pd.Index, np.ndarray)) tm.assert_equal(result, expected) s = pd.Series(values) result = func(s) exp = pd.Series(expected, name=values.name) tm.assert_series_equal(result, exp) def test_pi_comp_period(self): idx = PeriodIndex( ["2011-01", "2011-02", "2011-03", "2011-04"], freq="M", name="idx" ) f = lambda x: x == pd.Period("2011-03", freq="M") exp = np.array([False, False, True, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") == x self._check(idx, f, exp) f = lambda x: x != pd.Period("2011-03", freq="M") exp = np.array([True, True, False, True], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") != x self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") >= x exp = np.array([True, True, True, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: x > pd.Period("2011-03", freq="M") exp = np.array([False, False, False, True], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") >= x exp = np.array([True, True, True, False], dtype=np.bool) self._check(idx, f, exp) def test_pi_comp_period_nat(self): idx = PeriodIndex( ["2011-01", "NaT", "2011-03", "2011-04"], freq="M", name="idx" ) f = lambda x: x == pd.Period("2011-03", freq="M") exp = np.array([False, False, True, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") == x self._check(idx, f, exp) f = lambda x: x == pd.NaT exp = np.array([False, False, False, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.NaT == x self._check(idx, f, exp) f = lambda x: x != pd.Period("2011-03", freq="M") exp = np.array([True, True, False, True], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") != x self._check(idx, f, exp) f = lambda x: x != pd.NaT exp = np.array([True, True, True, True], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.NaT != x self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") >= x exp = np.array([True, False, True, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: x < pd.Period("2011-03", freq="M") exp = np.array([True, False, False, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: x > pd.NaT exp = np.array([False, False, False, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.NaT >= x exp = np.array([False, False, False, False], dtype=np.bool) self._check(idx, f, exp) # ------------------------------------------------------------------ # Arithmetic class TestPeriodFrameArithmetic: def test_ops_frame_period(self): # GH#13043 df = pd.DataFrame( { "A": [pd.Period("2015-01", freq="M"), pd.Period("2015-02", freq="M")], "B": [pd.Period("2014-01", freq="M"), pd.Period("2014-02", freq="M")], } ) assert df["A"].dtype == "Period[M]" assert df["B"].dtype == "Period[M]" p = pd.Period("2015-03", freq="M") off = p.freq # dtype will be object because of original dtype exp = pd.DataFrame( { "A": np.array([2 * off, 1 * off], dtype=object), "B": np.array([14 * off, 13 * off], dtype=object), } ) tm.assert_frame_equal(p - df, exp) tm.assert_frame_equal(df - p, -1 * exp) df2 = pd.DataFrame( { "A": [pd.Period("2015-05", freq="M"), pd.Period("2015-06", freq="M")], "B": [pd.Period("2015-05", freq="M"), pd.Period("2015-06", freq="M")], } ) assert df2["A"].dtype == "Period[M]" assert df2["B"].dtype == "Period[M]" exp = pd.DataFrame( { "A": np.array([4 * off, 4 * off], dtype=object), "B": np.array([16 * off, 16 * off], dtype=object), } ) tm.assert_frame_equal(df2 - df, exp) tm.assert_frame_equal(df - df2, -1 * exp) class TestPeriodIndexArithmetic: # --------------------------------------------------------------- # __add__/__sub__ with PeriodIndex # PeriodIndex + other is defined for integers and timedelta-like others # PeriodIndex - other is defined for integers, timedelta-like others, # and PeriodIndex (with matching freq) def test_parr_add_iadd_parr_raises(self, box_with_array): rng = pd.period_range("1/1/2000", freq="D", periods=5) other = pd.period_range("1/6/2000", freq="D", periods=5) # TODO: parametrize over boxes for other? rng = tm.box_expected(rng, box_with_array) # An earlier implementation of PeriodIndex addition performed # a set operation (union). This has since been changed to # raise a TypeError. See GH#14164 and GH#13077 for historical # reference. with pytest.raises(TypeError): rng + other with pytest.raises(TypeError): rng += other def test_pi_sub_isub_pi(self): # GH#20049 # For historical reference see GH#14164, GH#13077. # PeriodIndex subtraction originally performed set difference, # then changed to raise TypeError before being implemented in GH#20049 rng = pd.period_range("1/1/2000", freq="D", periods=5) other = pd.period_range("1/6/2000", freq="D", periods=5) off = rng.freq expected = pd.Index([-5 * off] * 5) result = rng - other tm.assert_index_equal(result, expected) rng -= other tm.assert_index_equal(rng, expected) def test_pi_sub_pi_with_nat(self): rng = pd.period_range("1/1/2000", freq="D", periods=5) other = rng[1:].insert(0, pd.NaT) assert other[1:].equals(rng[1:]) result = rng - other off = rng.freq expected = pd.Index([pd.NaT, 0 * off, 0 * off, 0 * off, 0 * off]) tm.assert_index_equal(result, expected) def test_parr_sub_pi_mismatched_freq(self, box_with_array): rng = pd.period_range("1/1/2000", freq="D", periods=5) other = pd.period_range("1/6/2000", freq="H", periods=5) # TODO: parametrize over boxes for other? rng = tm.box_expected(rng, box_with_array) with pytest.raises(IncompatibleFrequency): rng - other @pytest.mark.parametrize("n", [1, 2, 3, 4]) def test_sub_n_gt_1_ticks(self, tick_classes, n): # GH 23878 p1_d = "19910905" p2_d = "19920406" p1 = pd.PeriodIndex([p1_d], freq=tick_classes(n)) p2 = pd.PeriodIndex([p2_d], freq=tick_classes(n)) expected = pd.PeriodIndex([p2_d], freq=p2.freq.base) - pd.PeriodIndex( [p1_d], freq=p1.freq.base ) tm.assert_index_equal((p2 - p1), expected) @pytest.mark.parametrize("n", [1, 2, 3, 4]) @pytest.mark.parametrize( "offset, kwd_name", [ (pd.offsets.YearEnd, "month"), (pd.offsets.QuarterEnd, "startingMonth"), (pd.offsets.MonthEnd, None), (pd.offsets.Week, "weekday"), ], ) def test_sub_n_gt_1_offsets(self, offset, kwd_name, n): # GH 23878 kwds = {kwd_name: 3} if kwd_name is not None else {} p1_d = "19910905" p2_d = "19920406" freq = offset(n, normalize=False, **kwds) p1 = pd.PeriodIndex([p1_d], freq=freq) p2 = pd.PeriodIndex([p2_d], freq=freq) result = p2 - p1 expected = pd.PeriodIndex([p2_d], freq=freq.base) - pd.PeriodIndex( [p1_d], freq=freq.base ) tm.assert_index_equal(result, expected) # ------------------------------------------------------------- # Invalid Operations @pytest.mark.parametrize("other", [3.14, np.array([2.0, 3.0])]) @pytest.mark.parametrize("op", [operator.add, ops.radd, operator.sub, ops.rsub]) def test_parr_add_sub_float_raises(self, op, other, box_with_array): dti = pd.DatetimeIndex(["2011-01-01", "2011-01-02"], freq="D") pi = dti.to_period("D") pi = tm.box_expected(pi, box_with_array) with pytest.raises(TypeError): op(pi, other) @pytest.mark.parametrize( "other", [ # datetime scalars pd.Timestamp.now(), pd.Timestamp.now().to_pydatetime(), pd.Timestamp.now().to_datetime64(), # datetime-like arrays pd.date_range("2016-01-01", periods=3, freq="H"), pd.date_range("2016-01-01", periods=3, tz="Europe/Brussels"), pd.date_range("2016-01-01", periods=3, freq="S")._data, pd.date_range("2016-01-01", periods=3, tz="Asia/Tokyo")._data, # Miscellaneous invalid types ], ) def test_parr_add_sub_invalid(self, other, box_with_array): # GH#23215 rng = pd.period_range("1/1/2000", freq="D", periods=3) rng = tm.box_expected(rng, box_with_array) with pytest.raises(TypeError): rng + other with pytest.raises(TypeError): other + rng with pytest.raises(TypeError): rng - other with pytest.raises(TypeError): other - rng # ----------------------------------------------------------------- # __add__/__sub__ with ndarray[datetime64] and ndarray[timedelta64] def test_pi_add_sub_td64_array_non_tick_raises(self): rng = pd.period_range("1/1/2000", freq="Q", periods=3) tdi = pd.TimedeltaIndex(["-1 Day", "-1 Day", "-1 Day"]) tdarr = tdi.values with pytest.raises(IncompatibleFrequency): rng + tdarr with pytest.raises(IncompatibleFrequency): tdarr + rng with pytest.raises(IncompatibleFrequency): rng - tdarr with pytest.raises(TypeError): tdarr - rng def test_pi_add_sub_td64_array_tick(self): # PeriodIndex + Timedelta-like is allowed only with # tick-like frequencies rng = pd.period_range("1/1/2000", freq="90D", periods=3) tdi = pd.TimedeltaIndex(["-1 Day", "-1 Day", "-1 Day"]) tdarr = tdi.values expected = pd.period_range("12/31/1999", freq="90D", periods=3) result = rng + tdi tm.assert_index_equal(result, expected) result = rng + tdarr tm.assert_index_equal(result, expected) result = tdi + rng tm.assert_index_equal(result, expected) result = tdarr + rng tm.assert_index_equal(result, expected) expected = pd.period_range("1/2/2000", freq="90D", periods=3) result = rng - tdi tm.assert_index_equal(result, expected) result = rng - tdarr tm.assert_index_equal(result, expected) with pytest.raises(TypeError): tdarr - rng with pytest.raises(TypeError): tdi - rng # ----------------------------------------------------------------- # operations with array/Index of DateOffset objects @pytest.mark.parametrize("box", [np.array, pd.Index]) def test_pi_add_offset_array(self, box): # GH#18849 pi = pd.PeriodIndex([pd.Period("2015Q1"), pd.Period("2016Q2")]) offs = box( [ pd.offsets.QuarterEnd(n=1, startingMonth=12), pd.offsets.QuarterEnd(n=-2, startingMonth=12), ] ) expected = pd.PeriodIndex([pd.Period("2015Q2"), pd.Period("2015Q4")]) with tm.assert_produces_warning(PerformanceWarning): res = pi + offs tm.assert_index_equal(res, expected) with tm.assert_produces_warning(PerformanceWarning): res2 = offs + pi tm.assert_index_equal(res2, expected) unanchored = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)]) # addition/subtraction ops with incompatible offsets should issue # a PerformanceWarning and _then_ raise a TypeError. with pytest.raises(IncompatibleFrequency): with tm.assert_produces_warning(PerformanceWarning): pi + unanchored with pytest.raises(IncompatibleFrequency): with tm.assert_produces_warning(PerformanceWarning): unanchored + pi @pytest.mark.parametrize("box", [np.array, pd.Index]) def test_pi_sub_offset_array(self, box): # GH#18824 pi = pd.PeriodIndex([pd.Period("2015Q1"), pd.Period("2016Q2")]) other = box( [ pd.offsets.QuarterEnd(n=1, startingMonth=12), pd.offsets.QuarterEnd(n=-2, startingMonth=12), ] ) expected = PeriodIndex([pi[n] - other[n] for n in range(len(pi))]) with tm.assert_produces_warning(PerformanceWarning): res = pi - other tm.assert_index_equal(res, expected) anchored = box([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]) # addition/subtraction ops with anchored offsets should issue # a PerformanceWarning and _then_ raise a TypeError. with pytest.raises(IncompatibleFrequency): with tm.assert_produces_warning(PerformanceWarning): pi - anchored with pytest.raises(IncompatibleFrequency): with tm.assert_produces_warning(PerformanceWarning): anchored - pi def test_pi_add_iadd_int(self, one): # Variants of `one` for #19012 rng = pd.period_range("2000-01-01 09:00", freq="H", periods=10) result = rng + one expected = pd.period_range("2000-01-01 10:00", freq="H", periods=10) tm.assert_index_equal(result, expected) rng += one tm.assert_index_equal(rng, expected) def test_pi_sub_isub_int(self, one): """ PeriodIndex.__sub__ and __isub__ with several representations of the integer 1, e.g. int, np.int64, np.uint8, ... """ rng = pd.period_range("2000-01-01 09:00", freq="H", periods=10) result = rng - one expected = pd.period_range("2000-01-01 08:00", freq="H", periods=10) tm.assert_index_equal(result, expected) rng -= one tm.assert_index_equal(rng, expected) @pytest.mark.parametrize("five", [5, np.array(5, dtype=np.int64)]) def test_pi_sub_intlike(self, five): rng = period_range("2007-01", periods=50) result = rng - five exp = rng + (-five) tm.assert_index_equal(result, exp) def test_pi_sub_isub_offset(self): # offset # DateOffset rng = pd.period_range("2014", "2024", freq="A") result = rng - pd.offsets.YearEnd(5) expected = pd.period_range("2009", "2019", freq="A") tm.assert_index_equal(result, expected) rng -= pd.offsets.YearEnd(5) tm.assert_index_equal(rng, expected) rng = pd.period_range("2014-01", "2016-12", freq="M") result = rng - pd.offsets.MonthEnd(5) expected = pd.period_range("2013-08", "2016-07", freq="M") tm.assert_index_equal(result, expected) rng -= pd.offsets.MonthEnd(5) tm.assert_index_equal(rng, expected) def test_pi_add_offset_n_gt1(self, box_transpose_fail): # GH#23215 # add offset to PeriodIndex with freq.n > 1 box, transpose = box_transpose_fail per = pd.Period("2016-01", freq="2M") pi = pd.PeriodIndex([per]) expected = pd.PeriodIndex(["2016-03"], freq="2M") pi = tm.box_expected(pi, box, transpose=transpose) expected = tm.box_expected(expected, box, transpose=transpose) result = pi + per.freq tm.assert_equal(result, expected) result = per.freq + pi tm.assert_equal(result, expected) def test_pi_add_offset_n_gt1_not_divisible(self, box_with_array): # GH#23215 # PeriodIndex with freq.n > 1 add offset with offset.n % freq.n != 0 pi = pd.PeriodIndex(["2016-01"], freq="2M") expected = pd.PeriodIndex(["2016-04"], freq="2M") # FIXME: with transposing these tests fail pi = tm.box_expected(pi, box_with_array, transpose=False) expected = tm.box_expected(expected, box_with_array, transpose=False) result = pi + to_offset("3M") tm.assert_equal(result, expected) result = to_offset("3M") + pi tm.assert_equal(result, expected) # --------------------------------------------------------------- # __add__/__sub__ with integer arrays @pytest.mark.parametrize("int_holder", [np.array, pd.Index]) @pytest.mark.parametrize("op", [operator.add, ops.radd]) def test_pi_add_intarray(self, int_holder, op): # GH#19959 pi = pd.PeriodIndex([pd.Period("2015Q1"), pd.Period("NaT")]) other = int_holder([4, -1]) result = op(pi, other) expected = pd.PeriodIndex([pd.Period("2016Q1"), pd.Period("NaT")]) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("int_holder", [np.array, pd.Index]) def test_pi_sub_intarray(self, int_holder): # GH#19959 pi = pd.PeriodIndex([pd.Period("2015Q1"), pd.Period("NaT")]) other = int_holder([4, -1]) result = pi - other expected = pd.PeriodIndex([pd.Period("2014Q1"), pd.Period("NaT")]) tm.assert_index_equal(result, expected) with pytest.raises(TypeError): other - pi # --------------------------------------------------------------- # Timedelta-like (timedelta, timedelta64, Timedelta, Tick) # TODO: Some of these are misnomers because of non-Tick DateOffsets def test_pi_add_timedeltalike_minute_gt1(self, three_days): # GH#23031 adding a time-delta-like offset to a PeriodArray that has # minute frequency with n != 1. A more general case is tested below # in test_pi_add_timedeltalike_tick_gt1, but here we write out the # expected result more explicitly. other = three_days rng = pd.period_range("2014-05-01", periods=3, freq="2D") expected = pd.PeriodIndex(["2014-05-04", "2014-05-06", "2014-05-08"], freq="2D") result = rng + other tm.assert_index_equal(result, expected) result = other + rng tm.assert_index_equal(result, expected) # subtraction expected = pd.PeriodIndex(["2014-04-28", "2014-04-30", "2014-05-02"], freq="2D") result = rng - other tm.assert_index_equal(result, expected) with pytest.raises(TypeError): other - rng @pytest.mark.parametrize("freqstr", ["5ns", "5us", "5ms", "5s", "5T", "5h", "5d"]) def test_pi_add_timedeltalike_tick_gt1(self, three_days, freqstr): # GH#23031 adding a time-delta-like offset to a PeriodArray that has # tick-like frequency with n != 1 other = three_days rng = pd.period_range("2014-05-01", periods=6, freq=freqstr) expected = pd.period_range(rng[0] + other, periods=6, freq=freqstr) result = rng + other tm.assert_index_equal(result, expected) result = other + rng tm.assert_index_equal(result, expected) # subtraction expected = pd.period_range(rng[0] - other, periods=6, freq=freqstr) result = rng - other tm.assert_index_equal(result, expected) with pytest.raises(TypeError): other - rng def test_pi_add_iadd_timedeltalike_daily(self, three_days): # Tick other = three_days rng = pd.period_range("2014-05-01", "2014-05-15", freq="D") expected = pd.period_range("2014-05-04", "2014-05-18", freq="D") result = rng + other tm.assert_index_equal(result, expected) rng += other tm.assert_index_equal(rng, expected) def test_pi_sub_isub_timedeltalike_daily(self, three_days): # Tick-like 3 Days other = three_days rng = pd.period_range("2014-05-01", "2014-05-15", freq="D") expected = pd.period_range("2014-04-28", "2014-05-12", freq="D") result = rng - other tm.assert_index_equal(result, expected) rng -= other tm.assert_index_equal(rng, expected) def test_pi_add_sub_timedeltalike_freq_mismatch_daily(self, not_daily): other = not_daily rng = pd.period_range("2014-05-01", "2014-05-15", freq="D") msg = "Input has different freq(=.+)? from Period.*?\\(freq=D\\)" with pytest.raises(IncompatibleFrequency, match=msg): rng + other with pytest.raises(IncompatibleFrequency, match=msg): rng += other with pytest.raises(IncompatibleFrequency, match=msg): rng - other with pytest.raises(IncompatibleFrequency, match=msg): rng -= other def test_pi_add_iadd_timedeltalike_hourly(self, two_hours): other = two_hours rng = pd.period_range("2014-01-01 10:00", "2014-01-05 10:00", freq="H") expected = pd.period_range("2014-01-01 12:00", "2014-01-05 12:00", freq="H") result = rng + other tm.assert_index_equal(result, expected) rng += other tm.assert_index_equal(rng, expected) def test_pi_add_timedeltalike_mismatched_freq_hourly(self, not_hourly): other = not_hourly rng = pd.period_range("2014-01-01 10:00", "2014-01-05 10:00", freq="H") msg = "Input has different freq(=.+)? from Period.*?\\(freq=H\\)" with pytest.raises(IncompatibleFrequency, match=msg): rng + other with pytest.raises(IncompatibleFrequency, match=msg): rng += other def test_pi_sub_isub_timedeltalike_hourly(self, two_hours): other = two_hours rng = pd.period_range("2014-01-01 10:00", "2014-01-05 10:00", freq="H") expected = pd.period_range("2014-01-01 08:00", "2014-01-05 08:00", freq="H") result = rng - other tm.assert_index_equal(result, expected) rng -= other tm.assert_index_equal(rng, expected) def test_add_iadd_timedeltalike_annual(self): # offset # DateOffset rng = pd.period_range("2014", "2024", freq="A") result = rng + pd.offsets.YearEnd(5) expected = pd.period_range("2019", "2029", freq="A") tm.assert_index_equal(result, expected) rng += pd.offsets.YearEnd(5) tm.assert_index_equal(rng, expected) def test_pi_add_sub_timedeltalike_freq_mismatch_annual(self, mismatched_freq): other = mismatched_freq rng = pd.period_range("2014", "2024", freq="A") msg = "Input has different freq(=.+)? from Period.*?\\(freq=A-DEC\\)" with pytest.raises(IncompatibleFrequency, match=msg): rng + other with pytest.raises(IncompatibleFrequency, match=msg): rng += other with pytest.raises(IncompatibleFrequency, match=msg): rng - other with pytest.raises(IncompatibleFrequency, match=msg): rng -= other def test_pi_add_iadd_timedeltalike_M(self): rng = pd.period_range("2014-01", "2016-12", freq="M") expected = pd.period_range("2014-06", "2017-05", freq="M") result = rng + pd.offsets.MonthEnd(5) tm.assert_index_equal(result, expected) rng += pd.offsets.MonthEnd(5) tm.assert_index_equal(rng, expected) def test_pi_add_sub_timedeltalike_freq_mismatch_monthly(self, mismatched_freq): other = mismatched_freq rng = pd.period_range("2014-01", "2016-12", freq="M") msg = "Input has different freq(=.+)? from Period.*?\\(freq=M\\)" with pytest.raises(IncompatibleFrequency, match=msg): rng + other with pytest.raises(IncompatibleFrequency, match=msg): rng += other with pytest.raises(IncompatibleFrequency, match=msg): rng - other with pytest.raises(IncompatibleFrequency, match=msg): rng -= other def test_parr_add_sub_td64_nat(self, box_transpose_fail): # GH#23320 special handling for timedelta64("NaT") box, transpose = box_transpose_fail pi = pd.period_range("1994-04-01", periods=9, freq="19D") other = np.timedelta64("NaT") expected = pd.PeriodIndex(["NaT"] * 9, freq="19D") obj = tm.box_expected(pi, box, transpose=transpose) expected =
tm.box_expected(expected, box, transpose=transpose)
pandas.util.testing.box_expected
""" This network uses the last 26 observations of gwl, tide, and rain to predict the next 18 values of gwl for well MMPS-175 """ import pandas as pd from pandas import DataFrame from pandas import concat from pandas import read_csv from sklearn.metrics import mean_squared_error from sklearn.preprocessing import MinMaxScaler import tensorflow as tf import keras import keras.backend as K from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM from keras.layers import Dropout from keras.layers import Activation from math import sqrt import matplotlib.pyplot as plt import matplotlib import numpy as np import random as rn import os matplotlib.rcParams.update({'font.size': 8}) # convert time series into supervised learning problem def series_to_supervised(data, n_in=1, n_out=1, dropnan=True): n_vars = 1 if type(data) is list else data.shape[1] df = DataFrame(data) cols, names = list(), list() # input sequence (t-n, ... t-1) for i in range(n_in, 0, -1): cols.append(df.shift(i)) names += [('var%d(t-%d)' % (j+1, i)) for j in range(n_vars)] # forecast sequence (t, t+1, ... t+n) for i in range(0, n_out): cols.append(df.shift(-i)) if i == 0: names += [('var%d(t)' % (j+1)) for j in range(n_vars)] else: names += [('var%d(t+%d)' % (j+1, i)) for j in range(n_vars)] # put it all together agg = concat(cols, axis=1) agg.columns = names # drop rows with NaN values if dropnan: agg.dropna(inplace=True) return agg # def create_weights(train_labels): # obs_mean = np.mean(train_labels, axis=-1) # obs_mean = np.reshape(obs_mean, (n_batch, 1)) # obs_mean = np.repeat(obs_mean, n_ahead, axis=1) # weights = (train_labels + obs_mean) / (2 * obs_mean) # return weights # # # def sq_err(y_true, y_pred): # return K.square(y_pred - y_true) # # def mse(y_true, y_pred): return K.mean(K.square(y_pred - y_true), axis=-1) def rmse(y_true, y_pred): return K.sqrt(K.mean(K.square(y_pred - y_true), axis=-1)) def pw_rmse(y_true, y_pred): # num_rows, num_cols = K.int_shape(y_true)[0], K.int_shape(y_true)[1] # print(num_rows, num_cols) act_mean = K.mean(y_true, axis=-1) # print("act_mean 1 is:", act_mean) act_mean = K.reshape(act_mean, (n_batch, 1)) # print("act_mean is: ", act_mean) mean_repeat = K.repeat_elements(act_mean, n_ahead, axis=1) # print("mean_repeat is:", mean_repeat) weights = (y_true+mean_repeat)/(2*mean_repeat) return K.sqrt(K.mean((K.square(y_pred - y_true)*weights), axis=-1)) # configure network n_lags = 116 n_ahead = 18 n_features = 3 n_train = 52551 n_test = 8359 n_epochs = 500 n_neurons = 10 n_batch = 52551 # load dataset dataset_raw = read_csv("C:/Users/<NAME>/Documents/HRSD GIS/Site Data/MMPS_175_no_blanks.csv", index_col=None, parse_dates=True, infer_datetime_format=True) # dataset_raw = dataset_raw[0:len(dataset_raw)-1] # split datetime column into train and test for plots train_dates = dataset_raw[['Datetime', 'GWL', 'Tide', 'Precip.']].iloc[:n_train] test_dates = dataset_raw[['Datetime', 'GWL', 'Tide', 'Precip.']].iloc[n_train:] test_dates = test_dates.reset_index(drop=True) test_dates['Datetime'] = pd.to_datetime(test_dates['Datetime']) # drop columns we don't want to predict dataset = dataset_raw.drop(dataset_raw.columns[[0]], axis=1) values = dataset.values values = values.astype('float32') gwl = values[:, 0] gwl = gwl.reshape(gwl.shape[0], 1) tide = values[:, 1] tide = tide.reshape(tide.shape[0], 1) rain = values[:, 2] rain = rain.reshape(rain.shape[0], 1) # normalize features with individual scalers gwl_scaler, tide_scaler, rain_scaler = MinMaxScaler(), MinMaxScaler(), MinMaxScaler() gwl_scaled = gwl_scaler.fit_transform(gwl) tide_scaled = tide_scaler.fit_transform(tide) rain_scaled = rain_scaler.fit_transform(rain) scaled = np.concatenate((gwl_scaled, tide_scaled, rain_scaled), axis=1) # frame as supervised learning reframed = series_to_supervised(scaled, n_lags, n_ahead) values = reframed.values # split into train and test sets train, test = values[:n_train, :], values[n_train:, :] # split into input and outputs input_cols, label_cols = [], [] for i in range(values.shape[1]): if i <= n_lags*n_features-1: input_cols.append(i) elif i % 3 != 0: input_cols.append(i) elif i % 3 == 0: label_cols.append(i) train_X, train_y = train[:, input_cols], train[:, label_cols] # [start:stop:increment, (cols to include)] test_X, test_y = test[:, input_cols], test[:, label_cols] # reshape input to be 3D [samples, timesteps, features] train_X = train_X.reshape((train_X.shape[0], 1, train_X.shape[1])) test_X = test_X.reshape((test_X.shape[0], 1, test_X.shape[1])) print(train_X.shape, train_y.shape, test_X.shape, test_y.shape) #create weights for peak weighted rmse loss function # weights = create_weights(train_y) # load model here if needed # model = keras.models.load_model("C:/Users/<NAME>/PycharmProjects/Tensorflow/keras_models/mmps175.h5", # custom_objects={'pw_rmse':pw_rmse}) # set random seeds for model reproducibility as suggested in: # https://keras.io/getting-started/faq/#how-can-i-obtain-reproducible-results-using-keras-during-development os.environ['PYTHONHASHSEED'] = '0' np.random.seed(42) rn.seed(12345) session_conf = tf.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1) tf.set_random_seed(1234) sess = tf.Session(graph=tf.get_default_graph(), config=session_conf) K.set_session(sess) # define model model = Sequential() model.add(LSTM(units=n_neurons, input_shape=(None, train_X.shape[2]))) # model.add(LSTM(units=n_neurons, return_sequences=True, input_shape=(None, train_X.shape[2]))) # model.add(LSTM(units=n_neurons, return_sequences=True)) # model.add(LSTM(units=n_neurons)) model.add(Dropout(.1)) model.add(Dense(input_dim=n_neurons, activation='linear', units=n_ahead)) # model.add(Activation('linear')) model.compile(loss=pw_rmse, optimizer='adam') tbCallBack = keras.callbacks.TensorBoard(log_dir='C:/tmp/tensorflow/keras/logs', histogram_freq=0, write_graph=True, write_images=False) earlystop = keras.callbacks.EarlyStopping(monitor='loss', min_delta=0.0001, patience=5, verbose=1, mode='auto') history = model.fit(train_X, train_y, batch_size=n_batch, epochs=n_epochs, verbose=2, shuffle=False, callbacks=[earlystop, tbCallBack]) # save model # model.save("C:/Users/<NAME>/PycharmProjects/Tensorflow/keras_models/mmps175.h5") # plot model history # plt.plot(history.history['loss'], label='train') # # plt.plot(history.history['val_loss'], label='validate') # # plt.legend() # # ticks = np.arange(0, n_epochs, 1) # (start,stop,increment) # # plt.xticks(ticks) # plt.xlabel("Epochs") # plt.ylabel("Loss") # plt.tight_layout() # plt.show() # make predictions trainPredict = model.predict(train_X) yhat = model.predict(test_X) inv_trainPredict = gwl_scaler.inverse_transform(trainPredict) inv_yhat = gwl_scaler.inverse_transform(yhat) inv_y = gwl_scaler.inverse_transform(test_y) inv_train_y = gwl_scaler.inverse_transform(train_y) # save test predictions and observed inv_yhat_df = DataFrame(inv_yhat) inv_yhat_df.to_csv("C:/Users/<NAME>/PycharmProjects/Tensorflow/mmps175_results/predicted.csv") inv_y_df = DataFrame(inv_y) inv_y_df.to_csv("C:/Users/<NAME>/PycharmProjects/Tensorflow/mmps175_results/observed.csv") # calculate RMSE for whole test series (each forecast step) RMSE_forecast = [] for i in np.arange(0, n_ahead, 1): rmse = sqrt(mean_squared_error(inv_y[:, i], inv_yhat[:, i])) RMSE_forecast.append(rmse) RMSE_forecast = DataFrame(RMSE_forecast) rmse_avg = sqrt(mean_squared_error(inv_y, inv_yhat)) print('Average Test RMSE: %.3f' % rmse_avg) RMSE_forecast.to_csv("C:/Users/<NAME>/PycharmProjects/Tensorflow/mmps175_results/RMSE.csv") # calculate RMSE for each individual time step RMSE_timestep = [] for i in np.arange(0, inv_yhat.shape[0], 1): rmse = sqrt(mean_squared_error(inv_y[i, :], inv_yhat[i, :])) RMSE_timestep.append(rmse) RMSE_timestep = DataFrame(RMSE_timestep) # plot rmse vs forecast steps plt.plot(RMSE_forecast, 'ko') ticks = np.arange(0, n_ahead, 1) # (start,stop,increment) plt.xticks(ticks) plt.ylabel("RMSE (ft)") plt.xlabel("Forecast Step") plt.tight_layout() plt.show() # plot training predictions plt.plot(inv_train_y[:, 0], label='actual') plt.plot(inv_trainPredict[:, 0], label='predicted') plt.xlabel("Timestep") plt.ylabel("GWL (ft)") plt.title("Training Predictions") # ticks = np.arange(0, n_ahead, 1) # plt.xticks(ticks) plt.legend() plt.tight_layout() plt.show() # plot test predictions for Hermine, Julia, and Matthew dates = DataFrame(test_dates[["Datetime"]][n_lags:-n_ahead+1]) dates = dates.reset_index(inplace=False) dates = dates.drop(columns=['index']) dates = dates[5700:8000] dates = dates.reset_index(inplace=False) dates = dates.drop(columns=['index']) dates_9 = DataFrame(test_dates[["Datetime"]][n_lags+8:-n_ahead+9]) dates_9 = dates_9.reset_index(inplace=False) dates_9 = dates_9.drop(columns=['index']) dates_9 = dates_9[5700:8000] dates_9 = dates_9.reset_index(inplace=False) dates_9 = dates_9.drop(columns=['index']) dates_18 = DataFrame(test_dates[["Datetime"]][n_lags+17:]) dates_18 = dates_18.reset_index(inplace=False) dates_18 = dates_18.drop(columns=['index']) dates_18 = dates_18[5700:8000] dates_18 = dates_18.reset_index(inplace=False) dates_18 = dates_18.drop(columns=['index']) fig, (ax1, ax2, ax3) = plt.subplots(1, 3, sharey=True, figsize=(6.5, 3)) x_ticks = np.arange(0, 2300, 168) ax1.plot(inv_y[5700:8000, 0], 'k-', label='Obs.') ax1.plot(inv_yhat[5700:8000, 0], 'k:', label='Pred.') ax1.set_xticks(x_ticks) ax1.set_xticklabels(dates['Datetime'][x_ticks].dt.strftime('%Y-%m-%d'), rotation='vertical') ax2.plot(inv_y[5700:8000, 8], 'k-', label='Obs.') ax2.plot(inv_yhat[5700:8000, 8], 'k:', label='Pred.') ax2.set_xticks(x_ticks) ax2.set_xticklabels(dates_9['Datetime'][x_ticks].dt.strftime('%Y-%m-%d'), rotation='vertical') ax3.plot(inv_y[5700:8000, 17], 'k-', label='Obs.') ax3.plot(inv_yhat[5700:8000, 17], 'k:', label='Pred.') ax3.set_xticks(x_ticks) ax3.set_xticklabels(dates_18['Datetime'][x_ticks].dt.strftime('%Y-%m-%d'), rotation='vertical') ax1.set(ylabel="GWL (ft)", title='t+1') ax2.set(title='t+9') ax3.set(title='t+18') plt.legend() plt.tight_layout() plt.show() # fig.savefig('C:/Users/<NAME>/Documents/HRSD GIS/Presentation Images/Paper Figures/MMPS175_preds.tif', dpi=300) # create dfs of timestamps, obs, and pred data to find peak values and times obs_t1 = np.reshape(inv_y[5700:8000, 0], (2300, 1)) pred_t1 = np.reshape(inv_yhat[5700:8000, 0], (2300,1)) df_t1 = np.concatenate([obs_t1, pred_t1], axis=1) df_t1 =
DataFrame(df_t1, index=None, columns=["obs", "pred"])
pandas.DataFrame
import pickle from ds import * import pandas as pd from sklearn.neural_network import MLPRegressor from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor from sklearn.preprocessing import StandardScaler from sklearn import metrics import numpy as np from sklearn.impute import SimpleImputer data_as_list = [] pickle_files = ['data/dataset_0_10000.pkl', 'data/dataset_10000_20000.pkl', 'data/dataset_20000_30000.pkl', 'data/dataset_30000_40000.pkl'] for pickle_file in pickle_files: pickle_off = open(pickle_file, "rb") emp = pickle.load(pickle_off) title_vec_len = emp[0].features.title.vector.shape[0] story_vec_len = emp[0].features.story.vector.shape[0] for dataobject in emp: category = dataobject.features.category goal = dataobject.features.goal created = dataobject.features.created title_vec = dataobject.features.title.vector story_vec = dataobject.features.story.vector amt_raised = dataobject.result feature_vec = [category, goal, created] feature_vec.extend(title_vec) feature_vec.extend(story_vec) feature_vec.append(amt_raised) data_as_list.append(feature_vec) headings = ["category", "goal", "created"] headings.extend(["title_{}".format(i) for i in range(0, title_vec_len)]) headings.extend(["story_{}".format(i) for i in range(0, story_vec_len)]) headings.append("amt_raised") df = pd.DataFrame(data_as_list, columns = headings) df['category'] = pd.Categorical(df['category']) dfDummies = pd.get_dummies(df['category'], prefix='category') df =
pd.concat([df, dfDummies], axis=1)
pandas.concat
import numpy as np import pandas as pd import datetime as dt import os import zipfile from datetime import datetime, timedelta from urllib.parse import urlparse study_prefix = "U01" def get_user_id_from_filename(f): #Get user id from from file name return(f.split(".")[3]) def get_file_names_from_zip(z, file_type=None, prefix=study_prefix): #Extact file list file_list = list(z.filelist) if(filter is None): filtered = [f.filename for f in file_list if (prefix in f.filename) and (".csv" in f.filename)] else: filtered = [f.filename for f in file_list if (file_type in f.filename and prefix in f.filename)] return(filtered) def get_data_catalog(catalog_file, data_file, data_dir, dict_dir): dc=pd.read_csv(catalog_file) dc=dc.set_index("Data Product Name") dc.data_file=data_dir+data_file #add data zip file field dc.data_dir=data_dir #add data zip file field dc.dict_dir=dict_dir #add data distionary directory field return(dc) def get_data_dictionary(data_catalog, data_product_name): dictionary_file = data_catalog.dict_dir + data_catalog.loc[data_product_name]["Data Dictionary File Name"] dd=pd.read_csv(dictionary_file) dd=dd.set_index("ElementName") dd.data_file_name = data_catalog.loc[data_product_name]["Data File Name"] #add data file name pattern field dd.name = data_product_name #add data product name field dd.index_fields = data_catalog.loc[data_product_name]["Index Fields"] #add index fields dd.description = data_catalog.loc[data_product_name]["Data Product Description"] return(dd) def get_df_from_zip(file_type,zip_file, participants): #Get participant list from participants data frame participant_list = list(participants["Participant ID"]) #Open data zip file z = zipfile.ZipFile(zip_file) #Get list of files of specified type file_list = get_file_names_from_zip(z, file_type=file_type) #Open file inside zip dfs=[] for file_name in file_list: sid = get_user_id_from_filename(file_name) if(sid in participant_list): f = z.open(file_name) file_size = z.getinfo(file_name).file_size if file_size > 0: df = pd.read_csv(f, low_memory=False) df["Subject ID"] = sid dfs.append(df) else: print('warning %s is empty (size = 0)' % file_name) df =
pd.concat(dfs)
pandas.concat
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # This file contains dummy data for the model unit tests import numpy as np import pandas as pd AIR_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 380.6292037661305, 1: 383.26004701147235, 2: 385.8905370924373, 3: 388.52067431512216, 4: 391.1504589893095, 5: 393.7798914284503, 6: 396.4089719496461, 7: 399.0377008736321, 8: 401.66607852475926, 9: 404.2941052309762, 10: 406.9217813238114, 11: 409.54910713835505, 12: 412.1760830132403, 13: 414.80270929062544, 14: 417.42898631617453, 15: 420.0549144390392, 16: 422.68049401183924, 17: 425.3057253906438, 18: 427.93060893495215, 19: 430.555145007674, 20: 433.1793339751107, 21: 435.8031762069345, 22: 438.42667207616984, 23: 441.0498219591729, 24: 443.6726262356114, 25: 446.2950852884452, 26: 448.91719950390507, 27: 451.53896927147304, 28: 454.1603949838614, 29: 456.78147703699216, }, "fcst_upper": { 0: 565.2596851227581, 1: 567.9432096935082, 2: 570.6270874286351, 3: 573.3113180220422, 4: 575.9959011639468, 5: 578.680836540898, 6: 581.3661238357942, 7: 584.0517627279, 8: 586.7377528928648, 9: 589.4240940027398, 10: 592.1107857259966, 11: 594.797827727545, 12: 597.4852196687516, 13: 600.1729612074585, 14: 602.8610519980012, 15: 605.5494916912286, 16: 608.2382799345206, 17: 610.9274163718079, 18: 613.6169006435915, 19: 616.3067323869615, 20: 618.9969112356168, 21: 621.6874368198849, 22: 624.3783087667415, 23: 627.0695266998305, 24: 629.7610902394838, 25: 632.4529990027421, 26: 635.145252603374, 27: 637.8378506518982, 28: 640.5307927556019, 29: 643.2240785185628, }, } ) AIR_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 351.01805478037915, 1: 353.64044896268456, 2: 356.2623766991775, 3: 358.883838394139, 4: 361.50483445671773, 5: 364.12536530090745, 6: 366.74543134552374, 7: 369.3650330141812, 8: 371.98417073526997, 9: 374.6028449419319, 10: 377.2210560720369, 11: 379.83880456815905, 12: 382.45609087755207, 13: 385.07291545212513, 14: 387.68927874841813, 15: 390.3051812275768, 16: 392.92062335532785, 17: 395.5356056019535, 18: 398.15012844226646, 19: 400.764192355584, 20: 403.37779782570226, 21: 405.99094534087044, 22: 408.60363539376465, 23: 411.2158684814615, 24: 413.82764510541136, 25: 416.4389657714128, 26: 419.04983098958445, 27: 421.66024127433906, 28: 424.2701971443558, 29: 426.8796991225531, }, "fcst_upper": { 0: 594.8708341085095, 1: 597.562807742296, 2: 600.255247821895, 3: 602.9481539430253, 4: 605.6415256965386, 5: 608.3353626684409, 6: 611.0296644399166, 7: 613.724430587351, 8: 616.4196606823541, 9: 619.1153542917842, 10: 621.8115109777711, 11: 624.508130297741, 12: 627.2052118044398, 13: 629.9027550459588, 14: 632.6007595657577, 15: 635.299224902691, 16: 637.998150591032, 17: 640.6975361604982, 18: 643.3973811362772, 19: 646.0976850390515, 20: 648.7984473850253, 21: 651.4996676859489, 22: 654.2013454491467, 23: 656.903480177542, 24: 659.6060713696838, 25: 662.3091185197744, 26: 665.0126211176946, 27: 667.716578649032, 28: 670.4209905951075, 29: 673.1258564330019, }, } ) PEYTON_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 7.055970485245664, 1: 7.056266316358524, 2: 7.056561800026597, 3: 7.056856936297079, 4: 7.057151725217398, 5: 7.05744616683524, 6: 7.057740261198534, 7: 7.058034008355445, 8: 7.058327408354395, 9: 7.058620461244044, 10: 7.0589131670733005, 11: 7.059205525891312, 12: 7.059497537747475, 13: 7.059789202691431, 14: 7.0600805207730595, 15: 7.060371492042489, 16: 7.060662116550093, 17: 7.060952394346479, 18: 7.06124232548251, 19: 7.0615319100092835, 20: 7.061821147978145, 21: 7.062110039440677, 22: 7.062398584448709, 23: 7.062686783054313, 24: 7.0629746353098, 25: 7.063262141267724, 26: 7.063549300980883, 27: 7.063836114502315, 28: 7.0641225818852975, 29: 7.064408703183352, }, "fcst_upper": { 0: 9.903278969069254, 1: 9.903703030365794, 2: 9.90412743910712, 3: 9.904552195246042, 4: 9.904977298735123, 5: 9.90540274952668, 6: 9.90582854757279, 7: 9.906254692825279, 8: 9.90668118523573, 9: 9.90710802475548, 10: 9.907535211335626, 11: 9.907962744927016, 12: 9.908390625480251, 13: 9.9088188529457, 14: 9.90924742727347, 15: 9.909676348413441, 16: 9.91010561631524, 17: 9.910535230928254, 18: 9.910965192201623, 19: 9.91139550008425, 20: 9.91182615452479, 21: 9.912257155471659, 22: 9.912688502873028, 23: 9.913120196676825, 24: 9.91355223683074, 25: 9.913984623282214, 26: 9.914417355978456, 27: 9.914850434866427, 28: 9.915283859892844, 29: 9.91571763100419, }, } ) PEYTON_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 6.605000045325637, 1: 6.605275566724015, 2: 6.605550630617649, 3: 6.605825237068679, 4: 6.606099386139563, 5: 6.60637307789309, 6: 6.606646312392368, 7: 6.606919089700827, 8: 6.607191409882221, 9: 6.607463273000626, 10: 6.607734679120443, 11: 6.608005628306389, 12: 6.608276120623508, 13: 6.608546156137163, 14: 6.608815734913038, 15: 6.609084857017139, 16: 6.609353522515795, 17: 6.609621731475649, 18: 6.609889483963668, 19: 6.610156780047143, 20: 6.61042361979368, 21: 6.610690003271204, 22: 6.610955930547961, 23: 6.611221401692519, 24: 6.611486416773756, 25: 6.611750975860878, 26: 6.612015079023405, 27: 6.612278726331177, 28: 6.612541917854348, 29: 6.612804653663393, }, "fcst_upper": { 0: 10.354249408989281, 1: 10.354693780000304, 2: 10.355138608516068, 3: 10.355583894474442, 4: 10.356029637812957, 5: 10.35647583846883, 6: 10.356922496378955, 7: 10.357369611479896, 8: 10.357817183707903, 9: 10.358265212998898, 10: 10.358713699288483, 11: 10.359162642511938, 12: 10.359612042604219, 13: 10.360061899499968, 14: 10.360512213133493, 15: 10.36096298343879, 16: 10.361414210349539, 17: 10.361865893799084, 18: 10.362318033720465, 19: 10.36277063004639, 20: 10.363223682709256, 21: 10.363677191641132, 22: 10.364131156773775, 23: 10.364585578038621, 24: 10.365040455366783, 25: 10.365495788689062, 26: 10.365951577935935, 27: 10.366407823037564, 28: 10.366864523923793, 29: 10.36732168052415, }, } ) PEYTON_FCST_LINEAR_INVALID_ZERO = pd.DataFrame( { "time": { 0: pd.Timestamp("2012-05-02 00:00:00"), 1: pd.Timestamp("2012-05-03 00:00:00"), 2: pd.Timestamp("2012-05-04 00:00:00"), 3: pd.Timestamp("2012-05-05 00:00:00"), 4: pd.Timestamp("2012-05-06 00:00:00"), 5: pd.Timestamp("2012-05-07 00:00:00"), 6: pd.Timestamp("2012-05-08 00:00:00"), 7: pd.Timestamp("2012-05-09 00:00:00"), 8: pd.Timestamp("2012-05-10 00:00:00"), 9: pd.Timestamp("2012-05-11 00:00:00"), 10: pd.Timestamp("2012-05-12 00:00:00"), 11: pd.Timestamp("2012-05-13 00:00:00"), 12: pd.Timestamp("2012-05-14 00:00:00"), 13: pd.Timestamp("2012-05-15 00:00:00"), 14: pd.Timestamp("2012-05-16 00:00:00"), 15: pd.Timestamp("2012-05-17 00:00:00"), 16: pd.Timestamp("2012-05-18 00:00:00"), 17: pd.Timestamp("2012-05-19 00:00:00"), 18: pd.Timestamp("2012-05-20 00:00:00"), 19: pd.Timestamp("2012-05-21 00:00:00"), 20: pd.Timestamp("2012-05-22 00:00:00"), 21: pd.Timestamp("2012-05-23 00:00:00"), 22: pd.Timestamp("2012-05-24 00:00:00"), 23: pd.Timestamp("2012-05-25 00:00:00"), 24: pd.Timestamp("2012-05-26 00:00:00"), 25: pd.Timestamp("2012-05-27 00:00:00"), 26: pd.Timestamp("2012-05-28 00:00:00"), 27: pd.Timestamp("2012-05-29 00:00:00"), 28: pd.Timestamp("2012-05-30 00:00:00"), 29: pd.Timestamp("2012-05-31 00:00:00"), 30: pd.Timestamp("2012-06-01 00:00:00"), 31: pd.Timestamp("2012-06-02 00:00:00"), 32: pd.Timestamp("2012-06-03 00:00:00"), 33: pd.Timestamp("2012-06-04 00:00:00"), 34: pd.Timestamp("2012-06-05 00:00:00"), 35: pd.Timestamp("2012-06-06 00:00:00"), 36: pd.Timestamp("2012-06-07 00:00:00"), 37: pd.Timestamp("2012-06-08 00:00:00"), 38: pd.Timestamp("2012-06-09 00:00:00"), 39: pd.Timestamp("2012-06-10 00:00:00"), 40: pd.Timestamp("2012-06-11 00:00:00"), 41: pd.Timestamp("2012-06-12 00:00:00"), 42: pd.Timestamp("2012-06-13 00:00:00"), 43: pd.Timestamp("2012-06-14 00:00:00"), 44: pd.Timestamp("2012-06-15 00:00:00"), 45: pd.Timestamp("2012-06-16 00:00:00"), 46: pd.Timestamp("2012-06-17 00:00:00"), 47: pd.Timestamp("2012-06-18 00:00:00"), 48: pd.Timestamp("2012-06-19 00:00:00"), 49: pd.Timestamp("2012-06-20 00:00:00"), 50: pd.Timestamp("2012-06-21 00:00:00"), 51: pd.Timestamp("2012-06-22 00:00:00"), 52: pd.Timestamp("2012-06-23 00:00:00"), 53: pd.Timestamp("2012-06-24 00:00:00"), 54: pd.Timestamp("2012-06-25 00:00:00"), 55: pd.Timestamp("2012-06-26 00:00:00"), 56: pd.Timestamp("2012-06-27 00:00:00"), 57: pd.Timestamp("2012-06-28 00:00:00"), 58: pd.Timestamp("2012-06-29 00:00:00"), 59: pd.Timestamp("2012-06-30 00:00:00"), 60: pd.Timestamp("2012-07-01 00:00:00"), 61: pd.Timestamp("2012-07-02 00:00:00"), 62: pd.Timestamp("2012-07-03 00:00:00"), 63: pd.Timestamp("2012-07-04 00:00:00"), 64: pd.Timestamp("2012-07-05 00:00:00"), 65: pd.Timestamp("2012-07-06 00:00:00"), 66: pd.Timestamp("2012-07-07 00:00:00"), 67: pd.Timestamp("2012-07-08 00:00:00"), 68: pd.Timestamp("2012-07-09 00:00:00"), 69: pd.Timestamp("2012-07-10 00:00:00"), 70: pd.Timestamp("2012-07-11 00:00:00"), 71: pd.Timestamp("2012-07-12 00:00:00"), 72: pd.Timestamp("2012-07-13 00:00:00"), 73: pd.Timestamp("2012-07-14 00:00:00"), 74: pd.Timestamp("2012-07-15 00:00:00"), 75: pd.Timestamp("2012-07-16 00:00:00"), 76: pd.Timestamp("2012-07-17 00:00:00"), 77: pd.Timestamp("2012-07-18 00:00:00"), 78: pd.Timestamp("2012-07-19 00:00:00"), 79: pd.Timestamp("2012-07-20 00:00:00"), 80: pd.Timestamp("2012-07-21 00:00:00"), 81: pd.Timestamp("2012-07-22 00:00:00"), 82: pd.Timestamp("2012-07-23 00:00:00"), 83: pd.Timestamp("2012-07-24 00:00:00"), 84: pd.Timestamp("2012-07-25 00:00:00"), 85: pd.Timestamp("2012-07-26 00:00:00"), 86: pd.Timestamp("2012-07-27 00:00:00"), 87: pd.Timestamp("2012-07-28 00:00:00"), 88: pd.Timestamp("2012-07-29 00:00:00"), 89: pd.Timestamp("2012-07-30 00:00:00"), 90: pd.Timestamp("2012-07-31 00:00:00"), 91: pd.Timestamp("2012-08-01 00:00:00"), 92: pd.Timestamp("2012-08-02 00:00:00"), 93: pd.Timestamp("2012-08-03 00:00:00"), 94: pd.Timestamp("2012-08-04 00:00:00"), 95: pd.Timestamp("2012-08-05 00:00:00"), 96: pd.Timestamp("2012-08-06 00:00:00"), 97: pd.Timestamp("2012-08-07 00:00:00"), 98: pd.Timestamp("2012-08-08 00:00:00"), 99: pd.Timestamp("2012-08-09 00:00:00"), 100: pd.Timestamp("2012-08-10 00:00:00"), 101: pd.Timestamp("2012-08-11 00:00:00"), 102: pd.Timestamp("2012-08-12 00:00:00"), 103: pd.Timestamp("2012-08-13 00:00:00"), 104: pd.Timestamp("2012-08-14 00:00:00"), 105: pd.Timestamp("2012-08-15 00:00:00"), 106: pd.Timestamp("2012-08-16 00:00:00"), 107: pd.Timestamp("2012-08-17 00:00:00"), 108: pd.Timestamp("2012-08-18 00:00:00"), 109: pd.Timestamp("2012-08-19 00:00:00"), 110: pd.Timestamp("2012-08-20 00:00:00"), 111: pd.Timestamp("2012-08-21 00:00:00"), 112: pd.Timestamp("2012-08-22 00:00:00"), 113: pd.Timestamp("2012-08-23 00:00:00"), 114: pd.Timestamp("2012-08-24 00:00:00"), 115: pd.Timestamp("2012-08-25 00:00:00"), 116: pd.Timestamp("2012-08-26 00:00:00"), 117: pd.Timestamp("2012-08-27 00:00:00"), 118: pd.Timestamp("2012-08-28 00:00:00"), 119: pd.Timestamp("2012-08-29 00:00:00"), 120: pd.Timestamp("2012-08-30 00:00:00"), 121: pd.Timestamp("2012-08-31 00:00:00"), 122: pd.Timestamp("2012-09-01 00:00:00"), 123: pd.Timestamp("2012-09-02 00:00:00"), 124: pd.Timestamp("2012-09-03 00:00:00"), 125: pd.Timestamp("2012-09-04 00:00:00"), 126: pd.Timestamp("2012-09-05 00:00:00"), 127: pd.Timestamp("2012-09-06 00:00:00"), 128: pd.Timestamp("2012-09-07 00:00:00"), 129: pd.Timestamp("2012-09-08 00:00:00"), 130: pd.Timestamp("2012-09-09 00:00:00"), 131: pd.Timestamp("2012-09-10 00:00:00"), 132: pd.Timestamp("2012-09-11 00:00:00"), 133: pd.Timestamp("2012-09-12 00:00:00"), 134: pd.Timestamp("2012-09-13 00:00:00"), 135: pd.Timestamp("2012-09-14 00:00:00"), 136: pd.Timestamp("2012-09-15 00:00:00"), 137: pd.Timestamp("2012-09-16 00:00:00"), 138: pd.Timestamp("2012-09-17 00:00:00"), 139: pd.Timestamp("2012-09-18 00:00:00"), 140: pd.Timestamp("2012-09-19 00:00:00"), 141: pd.Timestamp("2012-09-20 00:00:00"), 142: pd.Timestamp("2012-09-21 00:00:00"), 143: pd.Timestamp("2012-09-22 00:00:00"), 144: pd.Timestamp("2012-09-23 00:00:00"), 145: pd.Timestamp("2012-09-24 00:00:00"), 146: pd.Timestamp("2012-09-25 00:00:00"), 147: pd.Timestamp("2012-09-26 00:00:00"), 148: pd.Timestamp("2012-09-27 00:00:00"), 149: pd.Timestamp("2012-09-28 00:00:00"), 150: pd.Timestamp("2012-09-29 00:00:00"), 151: pd.Timestamp("2012-09-30 00:00:00"), 152: pd.Timestamp("2012-10-01 00:00:00"), 153: pd.Timestamp("2012-10-02 00:00:00"), 154: pd.Timestamp("2012-10-03 00:00:00"), 155: pd.Timestamp("2012-10-04 00:00:00"), 156: pd.Timestamp("2012-10-05 00:00:00"), 157: pd.Timestamp("2012-10-06 00:00:00"), 158: pd.Timestamp("2012-10-07 00:00:00"), 159: pd.Timestamp("2012-10-08 00:00:00"), 160: pd.Timestamp("2012-10-09 00:00:00"), 161: pd.Timestamp("2012-10-10 00:00:00"), 162: pd.Timestamp("2012-10-11 00:00:00"), 163: pd.Timestamp("2012-10-12 00:00:00"), 164: pd.Timestamp("2012-10-13 00:00:00"), 165: pd.Timestamp("2012-10-14 00:00:00"), 166: pd.Timestamp("2012-10-15 00:00:00"), 167: pd.Timestamp("2012-10-16 00:00:00"), 168: pd.Timestamp("2012-10-17 00:00:00"), 169: pd.Timestamp("2012-10-18 00:00:00"), 170: pd.Timestamp("2012-10-19 00:00:00"), 171: pd.Timestamp("2012-10-20 00:00:00"), 172: pd.Timestamp("2012-10-21 00:00:00"), 173: pd.Timestamp("2012-10-22 00:00:00"), 174: pd.Timestamp("2012-10-23 00:00:00"), 175: pd.Timestamp("2012-10-24 00:00:00"), 176: pd.Timestamp("2012-10-25 00:00:00"), 177: pd.Timestamp("2012-10-26 00:00:00"), 178: pd.Timestamp("2012-10-27 00:00:00"), 179: pd.Timestamp("2012-10-28 00:00:00"), 180: pd.Timestamp("2012-10-29 00:00:00"), 181: pd.Timestamp("2012-10-30 00:00:00"), 182: pd.Timestamp("2012-10-31 00:00:00"), 183: pd.Timestamp("2012-11-01 00:00:00"), 184: pd.Timestamp("2012-11-02 00:00:00"), 185: pd.Timestamp("2012-11-03 00:00:00"), 186: pd.Timestamp("2012-11-04 00:00:00"), 187: pd.Timestamp("2012-11-05 00:00:00"), 188: pd.Timestamp("2012-11-06 00:00:00"), 189: pd.Timestamp("2012-11-07 00:00:00"), 190: pd.Timestamp("2012-11-08 00:00:00"), 191: pd.Timestamp("2012-11-09 00:00:00"), 192: pd.Timestamp("2012-11-10 00:00:00"), 193: pd.Timestamp("2012-11-11 00:00:00"), 194: pd.Timestamp("2012-11-12 00:00:00"), 195: pd.Timestamp("2012-11-13 00:00:00"), 196: pd.Timestamp("2012-11-14 00:00:00"), 197: pd.Timestamp("2012-11-15 00:00:00"), 198: pd.Timestamp("2012-11-16 00:00:00"), 199: pd.Timestamp("2012-11-17 00:00:00"), 200: pd.Timestamp("2012-11-18 00:00:00"), 201: pd.Timestamp("2012-11-19 00:00:00"), 202: pd.Timestamp("2012-11-20 00:00:00"), 203: pd.Timestamp("2012-11-21 00:00:00"), 204: pd.Timestamp("2012-11-22 00:00:00"), 205: pd.Timestamp("2012-11-23 00:00:00"), 206: pd.Timestamp("2012-11-24 00:00:00"), 207: pd.Timestamp("2012-11-25 00:00:00"), 208: pd.Timestamp("2012-11-26 00:00:00"), 209: pd.Timestamp("2012-11-27 00:00:00"), 210: pd.Timestamp("2012-11-28 00:00:00"), 211: pd.Timestamp("2012-11-29 00:00:00"), 212: pd.Timestamp("2012-11-30 00:00:00"), 213: pd.Timestamp("2012-12-01 00:00:00"), 214: pd.Timestamp("2012-12-02 00:00:00"), 215: pd.Timestamp("2012-12-03 00:00:00"), 216: pd.Timestamp("2012-12-04 00:00:00"), 217: pd.Timestamp("2012-12-05 00:00:00"), 218: pd.Timestamp("2012-12-06 00:00:00"), 219: pd.Timestamp("2012-12-07 00:00:00"), 220: pd.Timestamp("2012-12-08 00:00:00"), 221: pd.Timestamp("2012-12-09 00:00:00"), 222: pd.Timestamp("2012-12-10 00:00:00"), 223: pd.Timestamp("2012-12-11 00:00:00"), 224: pd.Timestamp("2012-12-12 00:00:00"), 225: pd.Timestamp("2012-12-13 00:00:00"), 226: pd.Timestamp("2012-12-14 00:00:00"), 227: pd.Timestamp("2012-12-15 00:00:00"), 228: pd.Timestamp("2012-12-16 00:00:00"), 229: pd.Timestamp("2012-12-17 00:00:00"), 230: pd.Timestamp("2012-12-18 00:00:00"), 231: pd.Timestamp("2012-12-19 00:00:00"), 232: pd.Timestamp("2012-12-20 00:00:00"), 233: pd.Timestamp("2012-12-21 00:00:00"), 234: pd.Timestamp("2012-12-22 00:00:00"), 235: pd.Timestamp("2012-12-23 00:00:00"), 236: pd.Timestamp("2012-12-24 00:00:00"), 237: pd.Timestamp("2012-12-25 00:00:00"), 238: pd.Timestamp("2012-12-26 00:00:00"), 239: pd.Timestamp("2012-12-27 00:00:00"), 240: pd.Timestamp("2012-12-28 00:00:00"), 241: pd.Timestamp("2012-12-29 00:00:00"), 242: pd.Timestamp("2012-12-30 00:00:00"), 243: pd.Timestamp("2012-12-31 00:00:00"), 244: pd.Timestamp("2013-01-01 00:00:00"), 245: pd.Timestamp("2013-01-02 00:00:00"), 246: pd.Timestamp("2013-01-03 00:00:00"), 247: pd.Timestamp("2013-01-04 00:00:00"), 248: pd.Timestamp("2013-01-05 00:00:00"), 249: pd.Timestamp("2013-01-06 00:00:00"), 250: pd.Timestamp("2013-01-07 00:00:00"), 251: pd.Timestamp("2013-01-08 00:00:00"), 252: pd.Timestamp("2013-01-09 00:00:00"), 253: pd.Timestamp("2013-01-10 00:00:00"), 254: pd.Timestamp("2013-01-11 00:00:00"), 255: pd.Timestamp("2013-01-12 00:00:00"), 256: pd.Timestamp("2013-01-13 00:00:00"), 257: pd.Timestamp("2013-01-14 00:00:00"), 258: pd.Timestamp("2013-01-15 00:00:00"), 259: pd.Timestamp("2013-01-16 00:00:00"), 260: pd.Timestamp("2013-01-17 00:00:00"), 261: pd.Timestamp("2013-01-18 00:00:00"), 262: pd.Timestamp("2013-01-19 00:00:00"), 263: pd.Timestamp("2013-01-20 00:00:00"), 264: pd.Timestamp("2013-01-21 00:00:00"), 265: pd.Timestamp("2013-01-22 00:00:00"), 266: pd.Timestamp("2013-01-23 00:00:00"), 267: pd.Timestamp("2013-01-24 00:00:00"), 268: pd.Timestamp("2013-01-25 00:00:00"), 269: pd.Timestamp("2013-01-26 00:00:00"), 270: pd.Timestamp("2013-01-27 00:00:00"), 271: pd.Timestamp("2013-01-28 00:00:00"), 272: pd.Timestamp("2013-01-29 00:00:00"), 273: pd.Timestamp("2013-01-30 00:00:00"), 274: pd.Timestamp("2013-01-31 00:00:00"), 275: pd.Timestamp("2013-02-01 00:00:00"), 276: pd.Timestamp("2013-02-02 00:00:00"), 277: pd.Timestamp("2013-02-03 00:00:00"), 278: pd.Timestamp("2013-02-04 00:00:00"), 279: pd.Timestamp("2013-02-05 00:00:00"), 280: pd.Timestamp("2013-02-06 00:00:00"), 281: pd.Timestamp("2013-02-07 00:00:00"), 282: pd.Timestamp("2013-02-08 00:00:00"), 283: pd.Timestamp("2013-02-09 00:00:00"), 284: pd.Timestamp("2013-02-10 00:00:00"), 285: pd.Timestamp("2013-02-11 00:00:00"), 286: pd.Timestamp("2013-02-12 00:00:00"), 287: pd.Timestamp("2013-02-13 00:00:00"), 288: pd.Timestamp("2013-02-14 00:00:00"), 289: pd.Timestamp("2013-02-15 00:00:00"), 290: pd.Timestamp("2013-02-16 00:00:00"), 291: pd.Timestamp("2013-02-17 00:00:00"), 292: pd.Timestamp("2013-02-18 00:00:00"), 293: pd.Timestamp("2013-02-19 00:00:00"), 294: pd.Timestamp("2013-02-20 00:00:00"), 295: pd.Timestamp("2013-02-21 00:00:00"), 296: pd.Timestamp("2013-02-22 00:00:00"), 297: pd.Timestamp("2013-02-23 00:00:00"), 298: pd.Timestamp("2013-02-24 00:00:00"), 299: pd.Timestamp("2013-02-25 00:00:00"), 300: pd.Timestamp("2013-02-26 00:00:00"), 301: pd.Timestamp("2013-02-27 00:00:00"), 302: pd.Timestamp("2013-02-28 00:00:00"), 303: pd.Timestamp("2013-03-01 00:00:00"), 304: pd.Timestamp("2013-03-02 00:00:00"), 305: pd.Timestamp("2013-03-03 00:00:00"), 306: pd.Timestamp("2013-03-04 00:00:00"), 307: pd.Timestamp("2013-03-05 00:00:00"), 308: pd.Timestamp("2013-03-06 00:00:00"), 309: pd.Timestamp("2013-03-07 00:00:00"), 310: pd.Timestamp("2013-03-08 00:00:00"), 311: pd.Timestamp("2013-03-09 00:00:00"), 312: pd.Timestamp("2013-03-10 00:00:00"), 313: pd.Timestamp("2013-03-11 00:00:00"), 314: pd.Timestamp("2013-03-12 00:00:00"), 315: pd.Timestamp("2013-03-13 00:00:00"), 316: pd.Timestamp("2013-03-14 00:00:00"), 317: pd.Timestamp("2013-03-15 00:00:00"), 318: pd.Timestamp("2013-03-16 00:00:00"), 319: pd.Timestamp("2013-03-17 00:00:00"), 320: pd.Timestamp("2013-03-18 00:00:00"), 321: pd.Timestamp("2013-03-19 00:00:00"), 322: pd.Timestamp("2013-03-20 00:00:00"), 323: pd.Timestamp("2013-03-21 00:00:00"), 324: pd.Timestamp("2013-03-22 00:00:00"), 325: pd.Timestamp("2013-03-23 00:00:00"), 326: pd.Timestamp("2013-03-24 00:00:00"), 327: pd.Timestamp("2013-03-25 00:00:00"), 328: pd.Timestamp("2013-03-26 00:00:00"), 329: pd.Timestamp("2013-03-27 00:00:00"), 330: pd.Timestamp("2013-03-28 00:00:00"), 331: pd.Timestamp("2013-03-29 00:00:00"), 332: pd.Timestamp("2013-03-30 00:00:00"), 333: pd.Timestamp("2013-03-31 00:00:00"), 334: pd.Timestamp("2013-04-01 00:00:00"), 335: pd.Timestamp("2013-04-02 00:00:00"), 336: pd.Timestamp("2013-04-03 00:00:00"), 337: pd.Timestamp("2013-04-04 00:00:00"), 338: pd.Timestamp("2013-04-05 00:00:00"), 339: pd.Timestamp("2013-04-06 00:00:00"), 340: pd.Timestamp("2013-04-07 00:00:00"), 341: pd.Timestamp("2013-04-08 00:00:00"), 342: pd.Timestamp("2013-04-09 00:00:00"), 343: pd.Timestamp("2013-04-10 00:00:00"), 344: pd.Timestamp("2013-04-11 00:00:00"), 345: pd.Timestamp("2013-04-12 00:00:00"), 346: pd.Timestamp("2013-04-13 00:00:00"), 347: pd.Timestamp("2013-04-14 00:00:00"), 348: pd.Timestamp("2013-04-15 00:00:00"), 349: pd.Timestamp("2013-04-16 00:00:00"), 350: pd.Timestamp("2013-04-17 00:00:00"), 351: pd.Timestamp("2013-04-18 00:00:00"), 352: pd.Timestamp("2013-04-19 00:00:00"), 353: pd.Timestamp("2013-04-20 00:00:00"), 354: pd.Timestamp("2013-04-21 00:00:00"), 355: pd.Timestamp("2013-04-22 00:00:00"), 356: pd.Timestamp("2013-04-23 00:00:00"), 357: pd.Timestamp("2013-04-24 00:00:00"), 358: pd.Timestamp("2013-04-25 00:00:00"), 359: pd.Timestamp("2013-04-26 00:00:00"), 360: pd.Timestamp("2013-04-27 00:00:00"), 361: pd.Timestamp("2013-04-28 00:00:00"), 362: pd.Timestamp("2013-04-29 00:00:00"), 363: pd.Timestamp("2013-04-30 00:00:00"), 364: pd.Timestamp("2013-05-01 00:00:00"), 365: pd.Timestamp("2013-05-02 00:00:00"), 366: pd.Timestamp("2013-05-03 00:00:00"), 367: pd.Timestamp("2013-05-04 00:00:00"), 368: pd.Timestamp("2013-05-05 00:00:00"), 369: pd.Timestamp("2013-05-06 00:00:00"), 370: pd.Timestamp("2013-05-07 00:00:00"), 371: pd.Timestamp("2013-05-08 00:00:00"), 372: pd.Timestamp("2013-05-09 00:00:00"), 373: pd.Timestamp("2013-05-10 00:00:00"), 374: pd.Timestamp("2013-05-11 00:00:00"), 375: pd.Timestamp("2013-05-12 00:00:00"), 376: pd.Timestamp("2013-05-13 00:00:00"), 377: pd.Timestamp("2013-05-14 00:00:00"), 378: pd.Timestamp("2013-05-15 00:00:00"), 379: pd.Timestamp("2013-05-16 00:00:00"), 380: pd.Timestamp("2013-05-17 00:00:00"), 381: pd.Timestamp("2013-05-18 00:00:00"), 382: pd.Timestamp("2013-05-19 00:00:00"), 383: pd.Timestamp("2013-05-20 00:00:00"), 384: pd.Timestamp("2013-05-21 00:00:00"), 385: pd.Timestamp("2013-05-22 00:00:00"), 386: pd.Timestamp("2013-05-23 00:00:00"), 387: pd.Timestamp("2013-05-24 00:00:00"), 388: pd.Timestamp("2013-05-25 00:00:00"), 389: pd.Timestamp("2013-05-26 00:00:00"), 390: pd.Timestamp("2013-05-27 00:00:00"), 391: pd.Timestamp("2013-05-28 00:00:00"), 392: pd.Timestamp("2013-05-29 00:00:00"), 393: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.348604308646497, 1: 8.348964254851197, 2: 8.349324201055898, 3: 8.349684147260598, 4: 8.350044093465298, 5: 8.350404039669998, 6: 8.3507639858747, 7: 8.3511239320794, 8: 8.3514838782841, 9: 8.351843824488801, 10: 8.352203770693501, 11: 8.352563716898201, 12: 8.352923663102903, 13: 8.353283609307603, 14: 8.353643555512303, 15: 8.354003501717003, 16: 8.354363447921704, 17: 8.354723394126404, 18: 8.355083340331104, 19: 8.355443286535806, 20: 8.355803232740506, 21: 8.356163178945206, 22: 8.356523125149906, 23: 8.356883071354607, 24: 8.357243017559307, 25: 8.357602963764007, 26: 8.357962909968709, 27: 8.358322856173409, 28: 8.358682802378109, 29: 8.35904274858281, 30: 8.35940269478751, 31: 8.35976264099221, 32: 8.36012258719691, 33: 8.360482533401612, 34: 8.360842479606312, 35: 8.361202425811012, 36: 8.361562372015714, 37: 8.361922318220413, 38: 8.362282264425113, 39: 8.362642210629813, 40: 8.363002156834515, 41: 8.363362103039215, 42: 8.363722049243915, 43: 8.364081995448617, 44: 8.364441941653316, 45: 8.364801887858016, 46: 8.365161834062716, 47: 8.365521780267418, 48: 8.365881726472118, 49: 8.366241672676818, 50: 8.36660161888152, 51: 8.36696156508622, 52: 8.36732151129092, 53: 8.367681457495621, 54: 8.368041403700321, 55: 8.368401349905021, 56: 8.36876129610972, 57: 8.369121242314423, 58: 8.369481188519122, 59: 8.369841134723822, 60: 8.370201080928524, 61: 8.370561027133224, 62: 8.370920973337924, 63: 8.371280919542624, 64: 8.371640865747326, 65: 8.372000811952026, 66: 8.372360758156725, 67: 8.372720704361427, 68: 8.373080650566127, 69: 8.373440596770827, 70: 8.373800542975529, 71: 8.374160489180229, 72: 8.374520435384929, 73: 8.374880381589628, 74: 8.37524032779433, 75: 8.37560027399903, 76: 8.37596022020373, 77: 8.376320166408432, 78: 8.376680112613132, 79: 8.377040058817832, 80: 8.377400005022531, 81: 8.377759951227233, 82: 8.378119897431933, 83: 8.378479843636633, 84: 8.378839789841335, 85: 8.379199736046035, 86: 8.379559682250735, 87: 8.379919628455436, 88: 8.380279574660136, 89: 8.380639520864836, 90: 8.380999467069536, 91: 8.381359413274238, 92: 8.381719359478938, 93: 8.382079305683638, 94: 8.38243925188834, 95: 8.38279919809304, 96: 8.38315914429774, 97: 8.383519090502439, 98: 8.38387903670714, 99: 8.38423898291184, 100: 8.38459892911654, 101: 8.384958875321242, 102: 8.385318821525942, 103: 8.385678767730642, 104: 8.386038713935344, 105: 8.386398660140044, 106: 8.386758606344744, 107: 8.387118552549444, 108: 8.387478498754145, 109: 8.387838444958845, 110: 8.388198391163545, 111: 8.388558337368247, 112: 8.388918283572947, 113: 8.389278229777647, 114: 8.389638175982347, 115: 8.389998122187048, 116: 8.390358068391748, 117: 8.390718014596448, 118: 8.39107796080115, 119: 8.39143790700585, 120: 8.39179785321055, 121: 8.392157799415251, 122: 8.392517745619951, 123: 8.392877691824651, 124: 8.393237638029351, 125: 8.393597584234053, 126: 8.393957530438753, 127: 8.394317476643453, 128: 8.394677422848154, 129: 8.395037369052854, 130: 8.395397315257554, 131: 8.395757261462254, 132: 8.396117207666956, 133: 8.396477153871656, 134: 8.396837100076356, 135: 8.397197046281057, 136: 8.397556992485757, 137: 8.397916938690457, 138: 8.398276884895157, 139: 8.398636831099859, 140: 8.398996777304559, 141: 8.399356723509259, 142: 8.39971666971396, 143: 8.40007661591866, 144: 8.40043656212336, 145: 8.400796508328062, 146: 8.401156454532762, 147: 8.401516400737462, 148: 8.401876346942162, 149: 8.402236293146863, 150: 8.402596239351563, 151: 8.402956185556263, 152: 8.403316131760965, 153: 8.403676077965665, 154: 8.404036024170365, 155: 8.404395970375065, 156: 8.404755916579767, 157: 8.405115862784466, 158: 8.405475808989166, 159: 8.405835755193868, 160: 8.406195701398568, 161: 8.406555647603268, 162: 8.40691559380797, 163: 8.40727554001267, 164: 8.40763548621737, 165: 8.40799543242207, 166: 8.408355378626771, 167: 8.408715324831471, 168: 8.409075271036171, 169: 8.409435217240873, 170: 8.409795163445573, 171: 8.410155109650272, 172: 8.410515055854972, 173: 8.410875002059674, 174: 8.411234948264374, 175: 8.411594894469074, 176: 8.411954840673776, 177: 8.412314786878476, 178: 8.412674733083175, 179: 8.413034679287877, 180: 8.413394625492577, 181: 8.413754571697277, 182: 8.414114517901977, 183: 8.414474464106679, 184: 8.414834410311379, 185: 8.415194356516078, 186: 8.41555430272078, 187: 8.41591424892548, 188: 8.41627419513018, 189: 8.41663414133488, 190: 8.416994087539582, 191: 8.417354033744282, 192: 8.417713979948982, 193: 8.418073926153683, 194: 8.418433872358383, 195: 8.418793818563083, 196: 8.419153764767785, 197: 8.419513710972485, 198: 8.419873657177185, 199: 8.420233603381885, 200: 8.420593549586586, 201: 8.420953495791286, 202: 8.421313441995986, 203: 8.421673388200688, 204: 8.422033334405388, 205: 8.422393280610088, 206: 8.422753226814788, 207: 8.42311317301949, 208: 8.42347311922419, 209: 8.423833065428889, 210: 8.42419301163359, 211: 8.42455295783829, 212: 8.42491290404299, 213: 8.42527285024769, 214: 8.425632796452392, 215: 8.425992742657092, 216: 8.426352688861792, 217: 8.426712635066494, 218: 8.427072581271194, 219: 8.427432527475894, 220: 8.427792473680595, 221: 8.428152419885295, 222: 8.428512366089995, 223: 8.428872312294695, 224: 8.429232258499397, 225: 8.429592204704097, 226: 8.429952150908797, 227: 8.430312097113498, 228: 8.430672043318198, 229: 8.431031989522898, 230: 8.431391935727598, 231: 8.4317518819323, 232: 8.432111828137, 233: 8.4324717743417, 234: 8.432831720546401, 235: 8.433191666751101, 236: 8.433551612955801, 237: 8.433911559160503, 238: 8.434271505365203, 239: 8.434631451569903, 240: 8.434991397774603, 241: 8.435351343979304, 242: 8.435711290184004, 243: 8.436071236388704, 244: 8.436431182593406, 245: 8.436791128798106, 246: 8.437151075002806, 247: 8.437511021207506, 248: 8.437870967412207, 249: 8.438230913616907, 250: 8.438590859821607, 251: 8.438950806026309, 252: 8.439310752231009, 253: 8.439670698435709, 254: 8.44003064464041, 255: 8.44039059084511, 256: 8.44075053704981, 257: 8.44111048325451, 258: 8.441470429459212, 259: 8.441830375663912, 260: 8.442190321868612, 261: 8.442550268073314, 262: 8.442910214278013, 263: 8.443270160482713, 264: 8.443630106687413, 265: 8.443990052892115, 266: 8.444349999096815, 267: 8.444709945301515, 268: 8.445069891506217, 269: 8.445429837710916, 270: 8.445789783915616, 271: 8.446149730120318, 272: 8.446509676325018, 273: 8.446869622529718, 274: 8.447229568734418, 275: 8.44758951493912, 276: 8.44794946114382, 277: 8.44830940734852, 278: 8.448669353553221, 279: 8.449029299757921, 280: 8.449389245962621, 281: 8.449749192167321, 282: 8.450109138372023, 283: 8.450469084576723, 284: 8.450829030781422, 285: 8.451188976986124, 286: 8.451548923190824, 287: 8.451908869395524, 288: 8.452268815600226, 289: 8.452628761804926, 290: 8.452988708009626, 291: 8.453348654214325, 292: 8.453708600419027, 293: 8.454068546623727, 294: 8.454428492828427, 295: 8.454788439033129, 296: 8.455148385237829, 297: 8.455508331442529, 298: 8.455868277647228, 299: 8.45622822385193, 300: 8.45658817005663, 301: 8.45694811626133, 302: 8.457308062466032, 303: 8.457668008670732, 304: 8.458027954875432, 305: 8.458387901080131, 306: 8.458747847284833, 307: 8.459107793489533, 308: 8.459467739694233, 309: 8.459827685898935, 310: 8.460187632103635, 311: 8.460547578308335, 312: 8.460907524513036, 313: 8.461267470717736, 314: 8.461627416922436, 315: 8.461987363127136, 316: 8.462347309331838, 317: 8.462707255536538, 318: 8.463067201741238, 319: 8.46342714794594, 320: 8.46378709415064, 321: 8.46414704035534, 322: 8.464506986560039, 323: 8.46486693276474, 324: 8.46522687896944, 325: 8.46558682517414, 326: 8.465946771378842, 327: 8.466306717583542, 328: 8.466666663788242, 329: 8.467026609992944, 330: 8.467386556197644, 331: 8.467746502402344, 332: 8.468106448607044, 333: 8.468466394811745, 334: 8.468826341016445, 335: 8.469186287221145, 336: 8.469546233425847, 337: 8.469906179630547, 338: 8.470266125835247, 339: 8.470626072039947, 340: 8.470986018244648, 341: 8.471345964449348, 342: 8.471705910654048, 343: 8.47206585685875, 344: 8.47242580306345, 345: 8.47278574926815, 346: 8.473145695472851, 347: 8.473505641677551, 348: 8.473865587882251, 349: 8.474225534086951, 350: 8.474585480291653, 351: 8.474945426496353, 352: 8.475305372701053, 353: 8.475665318905754, 354: 8.476025265110454, 355: 8.476385211315154, 356: 8.476745157519854, 357: 8.477105103724556, 358: 8.477465049929256, 359: 8.477824996133956, 360: 8.478184942338657, 361: 8.478544888543357, 362: 8.478904834748057, 363: 8.479264780952759, 364: 8.479624727157459, 365: 8.479984673362159, 366: 8.480344619566859, 367: 8.48070456577156, 368: 8.48106451197626, 369: 8.48142445818096, 370: 8.481784404385662, 371: 8.482144350590362, 372: 8.482504296795062, 373: 8.482864242999762, 374: 8.483224189204464, 375: 8.483584135409163, 376: 8.483944081613863, 377: 8.484304027818565, 378: 8.484663974023265, 379: 8.485023920227965, 380: 8.485383866432667, 381: 8.485743812637367, 382: 8.486103758842066, 383: 8.486463705046766, 384: 8.486823651251468, 385: 8.487183597456168, 386: 8.487543543660868, 387: 8.48790348986557, 388: 8.48826343607027, 389: 8.48862338227497, 390: 8.48898332847967, 391: 8.489343274684371, 392: 8.489703220889071, 393: 8.490063167093771, }, "fcst_lower": { 0: -np.inf, 1: -np.inf, 2: -np.inf, 3: -np.inf, 4: -np.inf, 5: -np.inf, 6: -np.inf, 7: -np.inf, 8: -np.inf, 9: -np.inf, 10: -np.inf, 11: -np.inf, 12: -np.inf, 13: -np.inf, 14: -np.inf, 15: -np.inf, 16: -np.inf, 17: -np.inf, 18: -np.inf, 19: -np.inf, 20: -np.inf, 21: -np.inf, 22: -np.inf, 23: -np.inf, 24: -np.inf, 25: -np.inf, 26: -np.inf, 27: -np.inf, 28: -np.inf, 29: -np.inf, 30: -np.inf, 31: -np.inf, 32: -np.inf, 33: -np.inf, 34: -np.inf, 35: -np.inf, 36: -np.inf, 37: -np.inf, 38: -np.inf, 39: -np.inf, 40: -np.inf, 41: -np.inf, 42: -np.inf, 43: -np.inf, 44: -np.inf, 45: -np.inf, 46: -np.inf, 47: -np.inf, 48: -np.inf, 49: -np.inf, 50: -np.inf, 51: -np.inf, 52: -np.inf, 53: -np.inf, 54: -np.inf, 55: -np.inf, 56: -np.inf, 57: -np.inf, 58: -np.inf, 59: -np.inf, 60: -np.inf, 61: -np.inf, 62: -np.inf, 63: -np.inf, 64: -np.inf, 65: -np.inf, 66: -np.inf, 67: -np.inf, 68: -np.inf, 69: -np.inf, 70: -np.inf, 71: -np.inf, 72: -np.inf, 73: -np.inf, 74: -np.inf, 75: -np.inf, 76: -np.inf, 77: -np.inf, 78: -np.inf, 79: -np.inf, 80: -np.inf, 81: -np.inf, 82: -np.inf, 83: -np.inf, 84: -np.inf, 85: -np.inf, 86: -np.inf, 87: -np.inf, 88: -np.inf, 89: -np.inf, 90: -np.inf, 91: -np.inf, 92: -np.inf, 93: -np.inf, 94: -np.inf, 95: -np.inf, 96: -np.inf, 97: -np.inf, 98: -np.inf, 99: -np.inf, 100: -np.inf, 101: -np.inf, 102: -np.inf, 103: -np.inf, 104: -np.inf, 105: -np.inf, 106: -np.inf, 107: -np.inf, 108: -np.inf, 109: -np.inf, 110: -np.inf, 111: -np.inf, 112: -np.inf, 113: -np.inf, 114: -np.inf, 115: -np.inf, 116: -np.inf, 117: -np.inf, 118: -np.inf, 119: -np.inf, 120: -np.inf, 121: -np.inf, 122: -np.inf, 123: -np.inf, 124: -np.inf, 125: -np.inf, 126: -np.inf, 127: -np.inf, 128: -np.inf, 129: -np.inf, 130: -np.inf, 131: -np.inf, 132: -np.inf, 133: -np.inf, 134: -np.inf, 135: -np.inf, 136: -np.inf, 137: -np.inf, 138: -np.inf, 139: -np.inf, 140: -np.inf, 141: -np.inf, 142: -np.inf, 143: -np.inf, 144: -np.inf, 145: -np.inf, 146: -np.inf, 147: -np.inf, 148: -np.inf, 149: -np.inf, 150: -np.inf, 151: -np.inf, 152: -np.inf, 153: -np.inf, 154: -np.inf, 155: -np.inf, 156: -np.inf, 157: -np.inf, 158: -np.inf, 159: -np.inf, 160: -np.inf, 161: -np.inf, 162: -np.inf, 163: -np.inf, 164: -np.inf, 165: -np.inf, 166: -np.inf, 167: -np.inf, 168: -np.inf, 169: -np.inf, 170: -np.inf, 171: -np.inf, 172: -np.inf, 173: -np.inf, 174: -np.inf, 175: -np.inf, 176: -np.inf, 177: -np.inf, 178: -np.inf, 179: -np.inf, 180: -np.inf, 181: -np.inf, 182: -np.inf, 183: -np.inf, 184: -np.inf, 185: -np.inf, 186: -np.inf, 187: -np.inf, 188: -np.inf, 189: -np.inf, 190: -np.inf, 191: -np.inf, 192: -np.inf, 193: -np.inf, 194: -np.inf, 195: -np.inf, 196: -np.inf, 197: -np.inf, 198: -np.inf, 199: -np.inf, 200: -np.inf, 201: -np.inf, 202: -np.inf, 203: -np.inf, 204: -np.inf, 205: -np.inf, 206: -np.inf, 207: -np.inf, 208: -np.inf, 209: -np.inf, 210: -np.inf, 211: -np.inf, 212: -np.inf, 213: -np.inf, 214: -np.inf, 215: -np.inf, 216: -np.inf, 217: -np.inf, 218: -np.inf, 219: -np.inf, 220: -np.inf, 221: -np.inf, 222: -np.inf, 223: -np.inf, 224: -np.inf, 225: -np.inf, 226: -np.inf, 227: -np.inf, 228: -np.inf, 229: -np.inf, 230: -np.inf, 231: -np.inf, 232: -np.inf, 233: -np.inf, 234: -np.inf, 235: -np.inf, 236: -np.inf, 237: -np.inf, 238: -np.inf, 239: -np.inf, 240: -np.inf, 241: -np.inf, 242: -np.inf, 243: -np.inf, 244: -np.inf, 245: -np.inf, 246: -np.inf, 247: -np.inf, 248: -np.inf, 249: -np.inf, 250: -np.inf, 251: -np.inf, 252: -np.inf, 253: -np.inf, 254: -np.inf, 255: -np.inf, 256: -np.inf, 257: -np.inf, 258: -np.inf, 259: -np.inf, 260: -np.inf, 261: -np.inf, 262: -np.inf, 263: -np.inf, 264: -np.inf, 265: -np.inf, 266: -np.inf, 267: -np.inf, 268: -np.inf, 269: -np.inf, 270: -np.inf, 271: -np.inf, 272: -np.inf, 273: -np.inf, 274: -np.inf, 275: -np.inf, 276: -np.inf, 277: -np.inf, 278: -np.inf, 279: -np.inf, 280: -np.inf, 281: -np.inf, 282: -np.inf, 283: -np.inf, 284: -np.inf, 285: -np.inf, 286: -np.inf, 287: -np.inf, 288: -np.inf, 289: -np.inf, 290: -np.inf, 291: -np.inf, 292: -np.inf, 293: -np.inf, 294: -np.inf, 295: -np.inf, 296: -np.inf, 297: -np.inf, 298: -np.inf, 299: -np.inf, 300: -np.inf, 301: -np.inf, 302: -np.inf, 303: -np.inf, 304: -np.inf, 305: -np.inf, 306: -np.inf, 307: -np.inf, 308: -np.inf, 309: -np.inf, 310: -np.inf, 311: -np.inf, 312: -np.inf, 313: -np.inf, 314: -np.inf, 315: -np.inf, 316: -np.inf, 317: -np.inf, 318: -np.inf, 319: -np.inf, 320: -np.inf, 321: -np.inf, 322: -np.inf, 323: -np.inf, 324: -np.inf, 325: -np.inf, 326: -np.inf, 327: -np.inf, 328: -np.inf, 329: -np.inf, 330: -np.inf, 331: -np.inf, 332: -np.inf, 333: -np.inf, 334: -np.inf, 335: -np.inf, 336: -np.inf, 337: -np.inf, 338: -np.inf, 339: -np.inf, 340: -np.inf, 341: -np.inf, 342: -np.inf, 343: -np.inf, 344: -np.inf, 345: -np.inf, 346: -np.inf, 347: -np.inf, 348: -np.inf, 349: -np.inf, 350: -np.inf, 351: -np.inf, 352: -np.inf, 353: -np.inf, 354: -np.inf, 355: -np.inf, 356: -np.inf, 357: -np.inf, 358: -np.inf, 359: -np.inf, 360: -np.inf, 361: -np.inf, 362: -np.inf, 363: -np.inf, 364: -np.inf, 365: -np.inf, 366: -np.inf, 367: -np.inf, 368: -np.inf, 369: -np.inf, 370: -np.inf, 371: -np.inf, 372: -np.inf, 373: -np.inf, 374: -np.inf, 375: -np.inf, 376: -np.inf, 377: -np.inf, 378: -np.inf, 379: -np.inf, 380: -np.inf, 381: -np.inf, 382: -np.inf, 383: -np.inf, 384: -np.inf, 385: -np.inf, 386: -np.inf, 387: -np.inf, 388: -np.inf, 389: -np.inf, 390: -np.inf, 391: -np.inf, 392: -np.inf, 393: -np.inf, }, "fcst_upper": { 0: np.inf, 1: np.inf, 2: np.inf, 3: np.inf, 4: np.inf, 5: np.inf, 6: np.inf, 7: np.inf, 8: np.inf, 9: np.inf, 10: np.inf, 11: np.inf, 12: np.inf, 13: np.inf, 14: np.inf, 15: np.inf, 16: np.inf, 17: np.inf, 18: np.inf, 19: np.inf, 20: np.inf, 21: np.inf, 22: np.inf, 23: np.inf, 24: np.inf, 25: np.inf, 26: np.inf, 27: np.inf, 28: np.inf, 29: np.inf, 30: np.inf, 31: np.inf, 32: np.inf, 33: np.inf, 34: np.inf, 35: np.inf, 36: np.inf, 37: np.inf, 38: np.inf, 39: np.inf, 40: np.inf, 41: np.inf, 42: np.inf, 43: np.inf, 44: np.inf, 45: np.inf, 46: np.inf, 47: np.inf, 48: np.inf, 49: np.inf, 50: np.inf, 51: np.inf, 52: np.inf, 53: np.inf, 54: np.inf, 55: np.inf, 56: np.inf, 57: np.inf, 58: np.inf, 59: np.inf, 60: np.inf, 61: np.inf, 62: np.inf, 63: np.inf, 64: np.inf, 65: np.inf, 66: np.inf, 67: np.inf, 68: np.inf, 69: np.inf, 70: np.inf, 71: np.inf, 72: np.inf, 73: np.inf, 74: np.inf, 75: np.inf, 76: np.inf, 77: np.inf, 78: np.inf, 79: np.inf, 80: np.inf, 81: np.inf, 82: np.inf, 83: np.inf, 84: np.inf, 85: np.inf, 86: np.inf, 87: np.inf, 88: np.inf, 89: np.inf, 90: np.inf, 91: np.inf, 92: np.inf, 93: np.inf, 94: np.inf, 95: np.inf, 96: np.inf, 97: np.inf, 98: np.inf, 99: np.inf, 100: np.inf, 101: np.inf, 102: np.inf, 103: np.inf, 104: np.inf, 105: np.inf, 106: np.inf, 107: np.inf, 108: np.inf, 109: np.inf, 110: np.inf, 111: np.inf, 112: np.inf, 113: np.inf, 114: np.inf, 115: np.inf, 116: np.inf, 117: np.inf, 118: np.inf, 119: np.inf, 120: np.inf, 121: np.inf, 122: np.inf, 123: np.inf, 124: np.inf, 125: np.inf, 126: np.inf, 127: np.inf, 128: np.inf, 129: np.inf, 130: np.inf, 131: np.inf, 132: np.inf, 133: np.inf, 134: np.inf, 135: np.inf, 136: np.inf, 137: np.inf, 138: np.inf, 139: np.inf, 140: np.inf, 141: np.inf, 142: np.inf, 143: np.inf, 144: np.inf, 145: np.inf, 146: np.inf, 147: np.inf, 148: np.inf, 149: np.inf, 150: np.inf, 151: np.inf, 152: np.inf, 153: np.inf, 154: np.inf, 155: np.inf, 156: np.inf, 157: np.inf, 158: np.inf, 159: np.inf, 160: np.inf, 161: np.inf, 162: np.inf, 163: np.inf, 164: np.inf, 165: np.inf, 166: np.inf, 167: np.inf, 168: np.inf, 169: np.inf, 170: np.inf, 171: np.inf, 172: np.inf, 173: np.inf, 174: np.inf, 175: np.inf, 176: np.inf, 177: np.inf, 178: np.inf, 179: np.inf, 180: np.inf, 181: np.inf, 182: np.inf, 183: np.inf, 184: np.inf, 185: np.inf, 186: np.inf, 187: np.inf, 188: np.inf, 189: np.inf, 190: np.inf, 191: np.inf, 192: np.inf, 193: np.inf, 194: np.inf, 195: np.inf, 196: np.inf, 197: np.inf, 198: np.inf, 199: np.inf, 200: np.inf, 201: np.inf, 202: np.inf, 203: np.inf, 204: np.inf, 205: np.inf, 206: np.inf, 207: np.inf, 208: np.inf, 209: np.inf, 210: np.inf, 211: np.inf, 212: np.inf, 213: np.inf, 214: np.inf, 215: np.inf, 216: np.inf, 217: np.inf, 218: np.inf, 219: np.inf, 220: np.inf, 221: np.inf, 222: np.inf, 223: np.inf, 224: np.inf, 225: np.inf, 226: np.inf, 227: np.inf, 228: np.inf, 229: np.inf, 230: np.inf, 231: np.inf, 232: np.inf, 233: np.inf, 234: np.inf, 235: np.inf, 236: np.inf, 237: np.inf, 238: np.inf, 239: np.inf, 240: np.inf, 241: np.inf, 242: np.inf, 243: np.inf, 244: np.inf, 245: np.inf, 246: np.inf, 247: np.inf, 248: np.inf, 249: np.inf, 250: np.inf, 251: np.inf, 252: np.inf, 253: np.inf, 254: np.inf, 255: np.inf, 256: np.inf, 257: np.inf, 258: np.inf, 259: np.inf, 260: np.inf, 261: np.inf, 262: np.inf, 263: np.inf, 264: np.inf, 265: np.inf, 266: np.inf, 267: np.inf, 268: np.inf, 269: np.inf, 270: np.inf, 271: np.inf, 272: np.inf, 273: np.inf, 274: np.inf, 275: np.inf, 276: np.inf, 277: np.inf, 278: np.inf, 279: np.inf, 280: np.inf, 281: np.inf, 282: np.inf, 283: np.inf, 284: np.inf, 285: np.inf, 286: np.inf, 287: np.inf, 288: np.inf, 289: np.inf, 290: np.inf, 291: np.inf, 292: np.inf, 293: np.inf, 294: np.inf, 295: np.inf, 296: np.inf, 297: np.inf, 298: np.inf, 299: np.inf, 300: np.inf, 301: np.inf, 302: np.inf, 303: np.inf, 304: np.inf, 305: np.inf, 306: np.inf, 307: np.inf, 308: np.inf, 309: np.inf, 310: np.inf, 311: np.inf, 312: np.inf, 313: np.inf, 314: np.inf, 315: np.inf, 316: np.inf, 317: np.inf, 318: np.inf, 319: np.inf, 320: np.inf, 321: np.inf, 322: np.inf, 323: np.inf, 324: np.inf, 325: np.inf, 326: np.inf, 327: np.inf, 328: np.inf, 329: np.inf, 330: np.inf, 331: np.inf, 332: np.inf, 333: np.inf, 334: np.inf, 335: np.inf, 336: np.inf, 337: np.inf, 338: np.inf, 339: np.inf, 340: np.inf, 341: np.inf, 342: np.inf, 343: np.inf, 344: np.inf, 345: np.inf, 346: np.inf, 347: np.inf, 348: np.inf, 349: np.inf, 350: np.inf, 351: np.inf, 352: np.inf, 353: np.inf, 354: np.inf, 355: np.inf, 356: np.inf, 357: np.inf, 358: np.inf, 359: np.inf, 360: np.inf, 361: np.inf, 362: np.inf, 363: np.inf, 364: np.inf, 365: np.inf, 366: np.inf, 367: np.inf, 368: np.inf, 369: np.inf, 370: np.inf, 371: np.inf, 372: np.inf, 373: np.inf, 374: np.inf, 375: np.inf, 376: np.inf, 377: np.inf, 378: np.inf, 379: np.inf, 380: np.inf, 381: np.inf, 382: np.inf, 383: np.inf, 384: np.inf, 385: np.inf, 386: np.inf, 387: np.inf, 388: np.inf, 389: np.inf, 390: np.inf, 391: np.inf, 392: np.inf, 393: np.inf, }, } ) PEYTON_FCST_LINEAR_INVALID_NEG_ONE = pd.DataFrame( { "time": { 0: pd.Timestamp("2012-05-02 00:00:00"), 1: pd.Timestamp("2012-05-03 00:00:00"), 2: pd.Timestamp("2012-05-04 00:00:00"), 3: pd.Timestamp("2012-05-05 00:00:00"), 4: pd.Timestamp("2012-05-06 00:00:00"), 5: pd.Timestamp("2012-05-07 00:00:00"), 6: pd.Timestamp("2012-05-08 00:00:00"), 7: pd.Timestamp("2012-05-09 00:00:00"), 8: pd.Timestamp("2012-05-10 00:00:00"), 9: pd.Timestamp("2012-05-11 00:00:00"), 10: pd.Timestamp("2012-05-12 00:00:00"), 11: pd.Timestamp("2012-05-13 00:00:00"), 12: pd.Timestamp("2012-05-14 00:00:00"), 13: pd.Timestamp("2012-05-15 00:00:00"), 14: pd.Timestamp("2012-05-16 00:00:00"), 15: pd.Timestamp("2012-05-17 00:00:00"), 16: pd.Timestamp("2012-05-18 00:00:00"), 17: pd.Timestamp("2012-05-19 00:00:00"), 18: pd.Timestamp("2012-05-20 00:00:00"), 19: pd.Timestamp("2012-05-21 00:00:00"), 20: pd.Timestamp("2012-05-22 00:00:00"), 21: pd.Timestamp("2012-05-23 00:00:00"), 22: pd.Timestamp("2012-05-24 00:00:00"), 23: pd.Timestamp("2012-05-25 00:00:00"), 24: pd.Timestamp("2012-05-26 00:00:00"), 25: pd.Timestamp("2012-05-27 00:00:00"), 26: pd.Timestamp("2012-05-28 00:00:00"), 27: pd.Timestamp("2012-05-29 00:00:00"), 28: pd.Timestamp("2012-05-30 00:00:00"), 29: pd.Timestamp("2012-05-31 00:00:00"), 30: pd.Timestamp("2012-06-01 00:00:00"), 31: pd.Timestamp("2012-06-02 00:00:00"), 32: pd.Timestamp("2012-06-03 00:00:00"), 33: pd.Timestamp("2012-06-04 00:00:00"), 34: pd.Timestamp("2012-06-05 00:00:00"), 35: pd.Timestamp("2012-06-06 00:00:00"), 36: pd.Timestamp("2012-06-07 00:00:00"), 37: pd.Timestamp("2012-06-08 00:00:00"), 38: pd.Timestamp("2012-06-09 00:00:00"), 39: pd.Timestamp("2012-06-10 00:00:00"), 40: pd.Timestamp("2012-06-11 00:00:00"), 41: pd.Timestamp("2012-06-12 00:00:00"), 42: pd.Timestamp("2012-06-13 00:00:00"), 43: pd.Timestamp("2012-06-14 00:00:00"), 44: pd.Timestamp("2012-06-15 00:00:00"), 45: pd.Timestamp("2012-06-16 00:00:00"), 46: pd.Timestamp("2012-06-17 00:00:00"), 47: pd.Timestamp("2012-06-18 00:00:00"), 48: pd.Timestamp("2012-06-19 00:00:00"), 49: pd.Timestamp("2012-06-20 00:00:00"), 50: pd.Timestamp("2012-06-21 00:00:00"), 51: pd.Timestamp("2012-06-22 00:00:00"), 52: pd.Timestamp("2012-06-23 00:00:00"), 53: pd.Timestamp("2012-06-24 00:00:00"), 54: pd.Timestamp("2012-06-25 00:00:00"), 55: pd.Timestamp("2012-06-26 00:00:00"), 56: pd.Timestamp("2012-06-27 00:00:00"), 57: pd.Timestamp("2012-06-28 00:00:00"), 58: pd.Timestamp("2012-06-29 00:00:00"), 59: pd.Timestamp("2012-06-30 00:00:00"), 60: pd.Timestamp("2012-07-01 00:00:00"), 61: pd.Timestamp("2012-07-02 00:00:00"), 62: pd.Timestamp("2012-07-03 00:00:00"), 63: pd.Timestamp("2012-07-04 00:00:00"), 64: pd.Timestamp("2012-07-05 00:00:00"), 65: pd.Timestamp("2012-07-06 00:00:00"), 66: pd.Timestamp("2012-07-07 00:00:00"), 67: pd.Timestamp("2012-07-08 00:00:00"), 68: pd.Timestamp("2012-07-09 00:00:00"), 69: pd.Timestamp("2012-07-10 00:00:00"), 70: pd.Timestamp("2012-07-11 00:00:00"), 71: pd.Timestamp("2012-07-12 00:00:00"), 72: pd.Timestamp("2012-07-13 00:00:00"), 73: pd.Timestamp("2012-07-14 00:00:00"), 74: pd.Timestamp("2012-07-15 00:00:00"), 75: pd.Timestamp("2012-07-16 00:00:00"), 76: pd.Timestamp("2012-07-17 00:00:00"), 77: pd.Timestamp("2012-07-18 00:00:00"), 78: pd.Timestamp("2012-07-19 00:00:00"), 79: pd.Timestamp("2012-07-20 00:00:00"), 80: pd.Timestamp("2012-07-21 00:00:00"), 81: pd.Timestamp("2012-07-22 00:00:00"), 82: pd.Timestamp("2012-07-23 00:00:00"), 83: pd.Timestamp("2012-07-24 00:00:00"), 84: pd.Timestamp("2012-07-25 00:00:00"), 85: pd.Timestamp("2012-07-26 00:00:00"), 86: pd.Timestamp("2012-07-27 00:00:00"), 87: pd.Timestamp("2012-07-28 00:00:00"), 88: pd.Timestamp("2012-07-29 00:00:00"), 89: pd.Timestamp("2012-07-30 00:00:00"), 90: pd.Timestamp("2012-07-31 00:00:00"), 91: pd.Timestamp("2012-08-01 00:00:00"), 92: pd.Timestamp("2012-08-02 00:00:00"), 93: pd.Timestamp("2012-08-03 00:00:00"), 94: pd.Timestamp("2012-08-04 00:00:00"), 95: pd.Timestamp("2012-08-05 00:00:00"), 96: pd.Timestamp("2012-08-06 00:00:00"), 97: pd.Timestamp("2012-08-07 00:00:00"), 98: pd.Timestamp("2012-08-08 00:00:00"), 99: pd.Timestamp("2012-08-09 00:00:00"), 100: pd.Timestamp("2012-08-10 00:00:00"), 101: pd.Timestamp("2012-08-11 00:00:00"), 102: pd.Timestamp("2012-08-12 00:00:00"), 103: pd.Timestamp("2012-08-13 00:00:00"), 104: pd.Timestamp("2012-08-14 00:00:00"), 105: pd.Timestamp("2012-08-15 00:00:00"), 106: pd.Timestamp("2012-08-16 00:00:00"), 107: pd.Timestamp("2012-08-17 00:00:00"), 108: pd.Timestamp("2012-08-18 00:00:00"), 109: pd.Timestamp("2012-08-19 00:00:00"), 110: pd.Timestamp("2012-08-20 00:00:00"), 111: pd.Timestamp("2012-08-21 00:00:00"), 112: pd.Timestamp("2012-08-22 00:00:00"), 113: pd.Timestamp("2012-08-23 00:00:00"), 114: pd.Timestamp("2012-08-24 00:00:00"), 115: pd.Timestamp("2012-08-25 00:00:00"), 116: pd.Timestamp("2012-08-26 00:00:00"), 117: pd.Timestamp("2012-08-27 00:00:00"), 118: pd.Timestamp("2012-08-28 00:00:00"), 119: pd.Timestamp("2012-08-29 00:00:00"), 120: pd.Timestamp("2012-08-30 00:00:00"), 121: pd.Timestamp("2012-08-31 00:00:00"), 122: pd.Timestamp("2012-09-01 00:00:00"), 123: pd.Timestamp("2012-09-02 00:00:00"), 124: pd.Timestamp("2012-09-03 00:00:00"), 125: pd.Timestamp("2012-09-04 00:00:00"), 126: pd.Timestamp("2012-09-05 00:00:00"), 127: pd.Timestamp("2012-09-06 00:00:00"), 128: pd.Timestamp("2012-09-07 00:00:00"), 129: pd.Timestamp("2012-09-08 00:00:00"), 130: pd.Timestamp("2012-09-09 00:00:00"), 131: pd.Timestamp("2012-09-10 00:00:00"), 132: pd.Timestamp("2012-09-11 00:00:00"), 133: pd.Timestamp("2012-09-12 00:00:00"), 134: pd.Timestamp("2012-09-13 00:00:00"), 135: pd.Timestamp("2012-09-14 00:00:00"), 136: pd.Timestamp("2012-09-15 00:00:00"), 137: pd.Timestamp("2012-09-16 00:00:00"), 138: pd.Timestamp("2012-09-17 00:00:00"), 139: pd.Timestamp("2012-09-18 00:00:00"), 140: pd.Timestamp("2012-09-19 00:00:00"), 141: pd.Timestamp("2012-09-20 00:00:00"), 142: pd.Timestamp("2012-09-21 00:00:00"), 143: pd.Timestamp("2012-09-22 00:00:00"), 144: pd.Timestamp("2012-09-23 00:00:00"), 145: pd.Timestamp("2012-09-24 00:00:00"), 146: pd.Timestamp("2012-09-25 00:00:00"), 147: pd.Timestamp("2012-09-26 00:00:00"), 148: pd.Timestamp("2012-09-27 00:00:00"), 149: pd.Timestamp("2012-09-28 00:00:00"), 150: pd.Timestamp("2012-09-29 00:00:00"), 151: pd.Timestamp("2012-09-30 00:00:00"), 152: pd.Timestamp("2012-10-01 00:00:00"), 153: pd.Timestamp("2012-10-02 00:00:00"), 154: pd.Timestamp("2012-10-03 00:00:00"), 155: pd.Timestamp("2012-10-04 00:00:00"), 156: pd.Timestamp("2012-10-05 00:00:00"), 157: pd.Timestamp("2012-10-06 00:00:00"), 158: pd.Timestamp("2012-10-07 00:00:00"), 159: pd.Timestamp("2012-10-08 00:00:00"), 160: pd.Timestamp("2012-10-09 00:00:00"), 161: pd.Timestamp("2012-10-10 00:00:00"), 162: pd.Timestamp("2012-10-11 00:00:00"), 163: pd.Timestamp("2012-10-12 00:00:00"), 164: pd.Timestamp("2012-10-13 00:00:00"), 165: pd.Timestamp("2012-10-14 00:00:00"), 166: pd.Timestamp("2012-10-15 00:00:00"), 167: pd.Timestamp("2012-10-16 00:00:00"), 168: pd.Timestamp("2012-10-17 00:00:00"), 169: pd.Timestamp("2012-10-18 00:00:00"), 170: pd.Timestamp("2012-10-19 00:00:00"), 171: pd.Timestamp("2012-10-20 00:00:00"), 172: pd.Timestamp("2012-10-21 00:00:00"), 173: pd.Timestamp("2012-10-22 00:00:00"), 174: pd.Timestamp("2012-10-23 00:00:00"), 175: pd.Timestamp("2012-10-24 00:00:00"), 176: pd.Timestamp("2012-10-25 00:00:00"), 177: pd.Timestamp("2012-10-26 00:00:00"), 178: pd.Timestamp("2012-10-27 00:00:00"), 179: pd.Timestamp("2012-10-28 00:00:00"), 180: pd.Timestamp("2012-10-29 00:00:00"), 181: pd.Timestamp("2012-10-30 00:00:00"), 182: pd.Timestamp("2012-10-31 00:00:00"), 183: pd.Timestamp("2012-11-01 00:00:00"), 184: pd.Timestamp("2012-11-02 00:00:00"), 185: pd.Timestamp("2012-11-03 00:00:00"), 186: pd.Timestamp("2012-11-04 00:00:00"), 187: pd.Timestamp("2012-11-05 00:00:00"), 188: pd.Timestamp("2012-11-06 00:00:00"), 189: pd.Timestamp("2012-11-07 00:00:00"), 190: pd.Timestamp("2012-11-08 00:00:00"), 191: pd.Timestamp("2012-11-09 00:00:00"), 192: pd.Timestamp("2012-11-10 00:00:00"), 193: pd.Timestamp("2012-11-11 00:00:00"), 194: pd.Timestamp("2012-11-12 00:00:00"), 195: pd.Timestamp("2012-11-13 00:00:00"), 196: pd.Timestamp("2012-11-14 00:00:00"), 197: pd.Timestamp("2012-11-15 00:00:00"), 198: pd.Timestamp("2012-11-16 00:00:00"), 199: pd.Timestamp("2012-11-17 00:00:00"), 200: pd.Timestamp("2012-11-18 00:00:00"), 201: pd.Timestamp("2012-11-19 00:00:00"), 202: pd.Timestamp("2012-11-20 00:00:00"), 203: pd.Timestamp("2012-11-21 00:00:00"), 204: pd.Timestamp("2012-11-22 00:00:00"), 205: pd.Timestamp("2012-11-23 00:00:00"), 206: pd.Timestamp("2012-11-24 00:00:00"), 207: pd.Timestamp("2012-11-25 00:00:00"), 208: pd.Timestamp("2012-11-26 00:00:00"), 209: pd.Timestamp("2012-11-27 00:00:00"), 210: pd.Timestamp("2012-11-28 00:00:00"), 211: pd.Timestamp("2012-11-29 00:00:00"), 212: pd.Timestamp("2012-11-30 00:00:00"), 213: pd.Timestamp("2012-12-01 00:00:00"), 214: pd.Timestamp("2012-12-02 00:00:00"), 215: pd.Timestamp("2012-12-03 00:00:00"), 216: pd.Timestamp("2012-12-04 00:00:00"), 217: pd.Timestamp("2012-12-05 00:00:00"), 218: pd.Timestamp("2012-12-06 00:00:00"), 219: pd.Timestamp("2012-12-07 00:00:00"), 220: pd.Timestamp("2012-12-08 00:00:00"), 221: pd.Timestamp("2012-12-09 00:00:00"), 222: pd.Timestamp("2012-12-10 00:00:00"), 223: pd.Timestamp("2012-12-11 00:00:00"), 224: pd.Timestamp("2012-12-12 00:00:00"), 225: pd.Timestamp("2012-12-13 00:00:00"), 226: pd.Timestamp("2012-12-14 00:00:00"), 227: pd.Timestamp("2012-12-15 00:00:00"), 228: pd.Timestamp("2012-12-16 00:00:00"), 229: pd.Timestamp("2012-12-17 00:00:00"), 230: pd.Timestamp("2012-12-18 00:00:00"), 231: pd.Timestamp("2012-12-19 00:00:00"), 232: pd.Timestamp("2012-12-20 00:00:00"), 233: pd.Timestamp("2012-12-21 00:00:00"), 234: pd.Timestamp("2012-12-22 00:00:00"), 235: pd.Timestamp("2012-12-23 00:00:00"), 236: pd.Timestamp("2012-12-24 00:00:00"), 237: pd.Timestamp("2012-12-25 00:00:00"), 238: pd.Timestamp("2012-12-26 00:00:00"), 239: pd.Timestamp("2012-12-27 00:00:00"), 240: pd.Timestamp("2012-12-28 00:00:00"), 241: pd.Timestamp("2012-12-29 00:00:00"), 242: pd.Timestamp("2012-12-30 00:00:00"), 243: pd.Timestamp("2012-12-31 00:00:00"), 244: pd.Timestamp("2013-01-01 00:00:00"), 245: pd.Timestamp("2013-01-02 00:00:00"), 246: pd.Timestamp("2013-01-03 00:00:00"), 247: pd.Timestamp("2013-01-04 00:00:00"), 248: pd.Timestamp("2013-01-05 00:00:00"), 249: pd.Timestamp("2013-01-06 00:00:00"), 250: pd.Timestamp("2013-01-07 00:00:00"), 251: pd.Timestamp("2013-01-08 00:00:00"), 252: pd.Timestamp("2013-01-09 00:00:00"), 253: pd.Timestamp("2013-01-10 00:00:00"), 254: pd.Timestamp("2013-01-11 00:00:00"), 255: pd.Timestamp("2013-01-12 00:00:00"), 256: pd.Timestamp("2013-01-13 00:00:00"), 257: pd.Timestamp("2013-01-14 00:00:00"), 258: pd.Timestamp("2013-01-15 00:00:00"), 259: pd.Timestamp("2013-01-16 00:00:00"), 260: pd.Timestamp("2013-01-17 00:00:00"), 261: pd.Timestamp("2013-01-18 00:00:00"), 262: pd.Timestamp("2013-01-19 00:00:00"), 263: pd.Timestamp("2013-01-20 00:00:00"), 264: pd.Timestamp("2013-01-21 00:00:00"), 265: pd.Timestamp("2013-01-22 00:00:00"), 266: pd.Timestamp("2013-01-23 00:00:00"), 267: pd.Timestamp("2013-01-24 00:00:00"), 268: pd.Timestamp("2013-01-25 00:00:00"), 269: pd.Timestamp("2013-01-26 00:00:00"), 270: pd.Timestamp("2013-01-27 00:00:00"), 271: pd.Timestamp("2013-01-28 00:00:00"), 272: pd.Timestamp("2013-01-29 00:00:00"), 273: pd.Timestamp("2013-01-30 00:00:00"), 274: pd.Timestamp("2013-01-31 00:00:00"), 275: pd.Timestamp("2013-02-01 00:00:00"), 276: pd.Timestamp("2013-02-02 00:00:00"), 277: pd.Timestamp("2013-02-03 00:00:00"), 278: pd.Timestamp("2013-02-04 00:00:00"), 279: pd.Timestamp("2013-02-05 00:00:00"), 280: pd.Timestamp("2013-02-06 00:00:00"), 281: pd.Timestamp("2013-02-07 00:00:00"), 282: pd.Timestamp("2013-02-08 00:00:00"), 283: pd.Timestamp("2013-02-09 00:00:00"), 284: pd.Timestamp("2013-02-10 00:00:00"), 285: pd.Timestamp("2013-02-11 00:00:00"), 286: pd.Timestamp("2013-02-12 00:00:00"), 287: pd.Timestamp("2013-02-13 00:00:00"), 288: pd.Timestamp("2013-02-14 00:00:00"), 289: pd.Timestamp("2013-02-15 00:00:00"), 290: pd.Timestamp("2013-02-16 00:00:00"), 291: pd.Timestamp("2013-02-17 00:00:00"), 292: pd.Timestamp("2013-02-18 00:00:00"), 293: pd.Timestamp("2013-02-19 00:00:00"), 294: pd.Timestamp("2013-02-20 00:00:00"), 295: pd.Timestamp("2013-02-21 00:00:00"), 296: pd.Timestamp("2013-02-22 00:00:00"), 297: pd.Timestamp("2013-02-23 00:00:00"), 298: pd.Timestamp("2013-02-24 00:00:00"), 299: pd.Timestamp("2013-02-25 00:00:00"), 300: pd.Timestamp("2013-02-26 00:00:00"), 301: pd.Timestamp("2013-02-27 00:00:00"), 302: pd.Timestamp("2013-02-28 00:00:00"), 303: pd.Timestamp("2013-03-01 00:00:00"), 304: pd.Timestamp("2013-03-02 00:00:00"), 305: pd.Timestamp("2013-03-03 00:00:00"), 306: pd.Timestamp("2013-03-04 00:00:00"), 307: pd.Timestamp("2013-03-05 00:00:00"), 308: pd.Timestamp("2013-03-06 00:00:00"), 309: pd.Timestamp("2013-03-07 00:00:00"), 310: pd.Timestamp("2013-03-08 00:00:00"), 311: pd.Timestamp("2013-03-09 00:00:00"), 312: pd.Timestamp("2013-03-10 00:00:00"), 313: pd.Timestamp("2013-03-11 00:00:00"), 314: pd.Timestamp("2013-03-12 00:00:00"), 315: pd.Timestamp("2013-03-13 00:00:00"), 316: pd.Timestamp("2013-03-14 00:00:00"), 317: pd.Timestamp("2013-03-15 00:00:00"), 318: pd.Timestamp("2013-03-16 00:00:00"), 319: pd.Timestamp("2013-03-17 00:00:00"), 320: pd.Timestamp("2013-03-18 00:00:00"), 321: pd.Timestamp("2013-03-19 00:00:00"), 322: pd.Timestamp("2013-03-20 00:00:00"), 323: pd.Timestamp("2013-03-21 00:00:00"), 324: pd.Timestamp("2013-03-22 00:00:00"), 325: pd.Timestamp("2013-03-23 00:00:00"), 326: pd.Timestamp("2013-03-24 00:00:00"), 327: pd.Timestamp("2013-03-25 00:00:00"), 328: pd.Timestamp("2013-03-26 00:00:00"), 329: pd.Timestamp("2013-03-27 00:00:00"), 330: pd.Timestamp("2013-03-28 00:00:00"), 331: pd.Timestamp("2013-03-29 00:00:00"), 332: pd.Timestamp("2013-03-30 00:00:00"), 333: pd.Timestamp("2013-03-31 00:00:00"), 334: pd.Timestamp("2013-04-01 00:00:00"), 335: pd.Timestamp("2013-04-02 00:00:00"), 336: pd.Timestamp("2013-04-03 00:00:00"), 337: pd.Timestamp("2013-04-04 00:00:00"), 338: pd.Timestamp("2013-04-05 00:00:00"), 339: pd.Timestamp("2013-04-06 00:00:00"), 340: pd.Timestamp("2013-04-07 00:00:00"), 341: pd.Timestamp("2013-04-08 00:00:00"), 342: pd.Timestamp("2013-04-09 00:00:00"), 343: pd.Timestamp("2013-04-10 00:00:00"), 344: pd.Timestamp("2013-04-11 00:00:00"), 345: pd.Timestamp("2013-04-12 00:00:00"), 346: pd.Timestamp("2013-04-13 00:00:00"), 347: pd.Timestamp("2013-04-14 00:00:00"), 348: pd.Timestamp("2013-04-15 00:00:00"), 349: pd.Timestamp("2013-04-16 00:00:00"), 350: pd.Timestamp("2013-04-17 00:00:00"), 351: pd.Timestamp("2013-04-18 00:00:00"), 352: pd.Timestamp("2013-04-19 00:00:00"), 353: pd.Timestamp("2013-04-20 00:00:00"), 354: pd.Timestamp("2013-04-21 00:00:00"), 355: pd.Timestamp("2013-04-22 00:00:00"), 356: pd.Timestamp("2013-04-23 00:00:00"), 357: pd.Timestamp("2013-04-24 00:00:00"), 358: pd.Timestamp("2013-04-25 00:00:00"), 359: pd.Timestamp("2013-04-26 00:00:00"), 360: pd.Timestamp("2013-04-27 00:00:00"), 361:
pd.Timestamp("2013-04-28 00:00:00")
pandas.Timestamp
# Define functions used in the landscape-area-measurements notebook import numpy as np import json import requests import pandas as pd import geopandas as gpd import numpy.ma as ma import xarray as xr import rioxarray as rxr import rasterio as rio from rasterio.crs import CRS from shapely.geometry import Polygon, shape, mapping def clean_array_plot(xr_obj): """Takes a single xarray object as an input and produces a cleaned numpy array output for plotting. Parameters ---------- xr_obj : xarray DataArray xarray object containing null values Returns ---------- masked_array : numpy array masked numpy array """ masked_array = ma.masked_array(xr_obj.values, xr_obj.isnull()) return masked_array def get_cii_parcel_polygons(naip_tile): """Retrieves non-residential/CII parcel polygons for extent of input NAIP tile using City of Los Angeles : LA County Parcels API. Parameters ---------- naip_tile : xarray DataArray NAIP tile to use as bounds of API query Returns ------- cii_parcel_gdf : GeoDataFrame GeoDataFrame of all CII parcel polygons in tile area """ cii_uses = ['Recreational', 'Commercial', 'Insitutitonal', 'Government', 'Industrial'] crs_wgs84 = CRS.from_string('EPSG:4326') naip_tile_reproj = naip_tile.rio.reproject(crs_wgs84) (xmin, ymin, xmax, ymax) = naip_tile_reproj.rio.bounds() center_geom_str = "CENTER_LAT%20%3E%3D%20"+str(ymin)+"%20AND%20CENTER_LAT%20%3C%3D%20"+str( ymax)+"%20AND%20CENTER_LON%20%3E%3D%20"+str(xmin)+"%20AND%20CENTER_LON%20%3C%3D%20"+str(xmax) parcel_gdf_list = [] for use in cii_uses: use_parcel_url = "https://public.gis.lacounty.gov/public/rest/services/LACounty_Cache/LACounty_Parcel/MapServer/0/query?where=" + \ center_geom_str+"AND%20UseType%3D'"+use + \ "'&outFields=APN,SitusCity,SitusZIP,UseType,UseDescription,LAT_LON,OBJECTID&outSR=4326&f=json" try: return_dict = json.loads(requests.get(use_parcel_url).text) except ConnectionError: print('Connection could not be made to database.') parcel_df = pd.DataFrame(columns=[x["name"] for x in return_dict["fields"]]) parcel_df.insert(loc=7, column='geometry', value=np.nan) parcel_df['geometry'] = parcel_df['geometry'].astype('geometry') for i in np.arange(0, len(return_dict['features']), 1): att_dict = return_dict['features'][i]['attributes'] parcel_df = parcel_df.append(att_dict, ignore_index=True) geom_dict = return_dict['features'][i]['geometry'] geom_df = pd.DataFrame( data=[str(geom_dict['rings'])], columns=['geometry']) poly_data = Polygon(eval(geom_df.geometry.loc[0])[0]) poly_gdf = gpd.GeoSeries(poly_data) parcel_df.loc[i]['geometry'] = poly_gdf[0] parcel_gdf = gpd.GeoDataFrame(parcel_df, geometry=parcel_df['geometry'], crs=crs_wgs84) parcel_gdf_list.append(parcel_gdf) cii_parcel_gdf =
pd.concat(parcel_gdf_list)
pandas.concat
# -*- coding: utf-8 -*- __author__ = "<NAME> (Srce Cde)" __license__ = "GPL 3.0" __email__ = "<EMAIL>" __maintainer__ = "<NAME> (Srce Cde)" from collections import defaultdict import json import pandas as pd from ..helper import openURL from ..config import YOUTUBE_COMMENT_URL, SAVE_PATH class VideoComment: def __init__(self, maxResults, videoId, key): self.comments = defaultdict(list) self.replies = defaultdict(list) self.params = { "part": "snippet,replies", "maxResults": maxResults, "videoId": videoId, "textFormat": "plainText", "key": key, } def load_comments(self, mat): for item in mat["items"]: comment = item["snippet"]["topLevelComment"] self.comments["id"].append(comment["id"]) self.comments["comment"].append(comment["snippet"]["textDisplay"]) self.comments["author"].append(comment["snippet"]["authorDisplayName"]) self.comments["likecount"].append(comment["snippet"]["likeCount"]) self.comments["publishedAt"].append(comment["snippet"]["publishedAt"]) if "replies" in item.keys(): for reply in item["replies"]["comments"]: self.replies["parentId"].append(reply["snippet"]["parentId"]) self.replies["authorDisplayName"].append( reply["snippet"]["authorDisplayName"] ) self.replies["replyComment"].append(reply["snippet"]["textDisplay"]) self.replies["publishedAt"].append(reply["snippet"]["publishedAt"]) self.replies["likeCount"].append(reply["snippet"]["likeCount"]) def get_video_comments(self): url_response = json.loads(openURL(YOUTUBE_COMMENT_URL, self.params)) nextPageToken = url_response.get("nextPageToken") self.load_comments(url_response) while nextPageToken: self.params.update({"pageToken": nextPageToken}) url_response = json.loads(openURL(YOUTUBE_COMMENT_URL, self.params)) nextPageToken = url_response.get("nextPageToken") self.load_comments(url_response) # self.create_df() def create_df(self): df =
pd.DataFrame()
pandas.DataFrame
import pandas as pd import numpy as np import tensorflow as tf from tensorflow import keras import os base_dir = "../input/" train_dir = os.path.join(base_dir,"train/train") testing_dir = os.path.join(base_dir, "test") train = pd.read_csv("../input/train.csv") train_dataframe = pd.read_csv("../input/train.csv") train_dataframe["has_cactus"] = np.where(train_dataframe["has_cactus"] == 1, "yes", "no") from keras.models import Sequential from keras.layers import Conv2D from keras.layers import MaxPooling2D from keras.layers import Flatten from keras.layers import Dense from keras.preprocessing.image import ImageDataGenerator classifier = Sequential() # first convolution layer classifier.add(Conv2D(filters=16, kernel_size=(3, 3), input_shape = (32, 32, 3), activation="relu")) # Max pooling layer classifier.add(MaxPooling2D(pool_size=(2, 2))) # second convolution layer classifier.add(Conv2D(32, kernel_size=(3, 3), activation="relu")) # Max pooling layer classifier.add(MaxPooling2D(pool_size=(2, 2))) # Flatteing layer classifier.add(Flatten()) # Fully connected Layer classifier.add(Dense(output_dim = 128, activation = 'relu')) classifier.add(Dense(output_dim = 1, activation = 'sigmoid')) classifier.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"]) train_datagen = ImageDataGenerator(rescale = 1./255, shear_range = 0.2, validation_split=0.25, zoom_range = 0.2, horizontal_flip = True) training_set = train_datagen.flow_from_dataframe(dataframe = train_dataframe, directory = train_dir, x_col="id", y_col="has_cactus", target_size=(32,32), subset="training", batch_size=25, shuffle=True, class_mode="binary") val_set = train_datagen.flow_from_dataframe(dataframe = train_dataframe, directory = train_dir, x_col="id", y_col="has_cactus", target_size=(32,32), subset="validation", batch_size=25, shuffle=True, class_mode="binary") classifier.fit_generator(training_set, epochs = 100, steps_per_epoch = 525, validation_data = val_set, validation_steps = 175) test_datagen = ImageDataGenerator( rescale=1./255 ) test_generator = test_datagen.flow_from_directory( testing_dir, target_size=(32,32), batch_size=1, shuffle=False, class_mode=None ) preds = classifier.predict_generator( test_generator, steps=len(test_generator.filenames) ) image_ids = [name.split('/')[-1] for name in test_generator.filenames] preds = preds.flatten() data = {'id': image_ids, 'has_cactus':preds} submission =
pd.DataFrame(data)
pandas.DataFrame
from collections import defaultdict import copy import json import numpy as np import pandas as pd import pickle import scipy import seaborn as sb import torch from allennlp.common.util import prepare_environment, Params from matplotlib import pyplot as plt from pytorch_pretrained_bert import BertTokenizer, BertModel from scipy.stats import entropy from sklearn.metrics.pairwise import cosine_similarity from sklearn.metrics import accuracy_score, mean_squared_error from probing.globals import * from probing.helpers import _reg_r2 from probing.tasks import ProbingTask class Analytics: def __init__(self, workspace): self.directories = {d: os.path.join(workspace, d) for d in ["out", "tasks", "datasets", "configs"]} self.scalar_mixes = None self.tokenizer = None self.embedder = None # === Data statistics def task_statistics(self): data = [] for task_id in sorted(os.listdir(self.directories["tasks"])): config = ProbingTask.parse_id(task_id) stats = json.load(open(os.path.join(self.directories["tasks"], task_id, "_stats.json"))) for split in stats: c = copy.deepcopy(config) c["sentences"] = stats[split]["total_sentences"] c["instances"] = stats[split]["total_instances"] c["labels"] = stats[split]["total_labels"] c["split"] = split data += [c] return pd.DataFrame(data) def dataset_statistics(self): def _collect_stats(sentences): num_tokens = 0 num_sentences = 0 num_predications = 0 roles_all = 0 roles_core = 0 for s, pp in sentences: num_tokens += len(s.tokens()) num_sentences += 1 num_predications += len(pp) for p in pp: roles_all += len([a for a in p.arguments]) roles_core += len([a for a in p.arguments if not p.arguments[a]["pb"].startswith("AM")]) return {"tokens": num_tokens, "sentences": num_sentences, "predicates": num_predications, "roles_all": roles_all, "roles_core": roles_core} rows = [] for ds in os.listdir(self.directories["datasets"]): ds = pickle.load(open(os.path.join(self.directories["datasets"], ds), "rb")) for split in ds: stats = _collect_stats(ds[split].values()) stats["split"] = split stats["dataset"] = ds.name rows += [stats] df = pd.DataFrame(rows) return df # === Scalar mix analysis def get_mixes(self): if self.scalar_mixes is None: self.scalar_mixes = self._parse_scalar_mixes() return self.scalar_mixes @staticmethod # Extract a single scalar mix set by layer def _parse_scalar_mix(th, kind, softmax=True): mix_map = {"common": "bert_embedder._scalar_mix.scalar_parameters", "src": "bert_embedder._scalar_mix_1.scalar_parameters", "tgt": "bert_embedder._scalar_mix_2.scalar_parameters"} device = torch.device('cpu') data = torch.load(os.path.join(th), map_location=device) layers = [] for layer in range(12): # FIXME num layers to global layers += [data[f"{mix_map[kind]}.{layer}"].item()] return kind, scipy.special.softmax(np.array(layers)) if softmax else np.array(layers) @staticmethod def center_of_gravity(x): return sum(l * x[l] for l in range(len(x))) def _parse_scalar_mixes(self): data = [] for exp_id in os.listdir(self.directories["out"]): config = ProbingTask.parse_id(exp_id) task_name = config["name"] try: if config["ttype"] == "unary": mix = [self._parse_scalar_mix(os.path.join(self.directories["out"], exp_id, "best.th"), "common")] else: mix = [self._parse_scalar_mix(os.path.join(self.directories["out"], exp_id, "best.th"), m) for m in ["src", "tgt"]] for kind, m in mix: task_mix_name = task_name # prepend regression tasks with * if config["mtype"] == "reg": task_mix_name = "*"+task_mix_name # add src-tgt mix distinction if kind != "common": task_mix_name += " " + kind for layer in range(12): c = copy.deepcopy(config) c["name"] = task_mix_name c["layer"] = layer c["weight"] = m[layer] data += [c] except Exception: print(f"No best weights for {exp_id} (yet?). Skipping.") return pd.DataFrame(data) def plot_scalar_mix_by_task(self, lang, task_order=None, cbar_max=None, show_cbar=True, ax=None): mix_df = self.get_mixes() pvt = mix_df[mix_df["language"] == lang].copy().pivot("name", "layer", "weight") cog = {name: self.center_of_gravity(pvt.loc[name]) for name in pvt.index} if task_order is None: # if no task order for display, order by center of gravity pvt = pvt.reindex([x[0] for x in sorted(cog.items(), key=lambda y: y[1])]) else: pvt = pvt.reindex(task_order) # set maximum value for heatmap if cbar_max is None: cbar_max = pvt.values.max() ax = sb.heatmap(pvt, cmap="Oranges", vmin=0.0, vmax=cbar_max, cbar=show_cbar, square=False, xticklabels=[], yticklabels=[ix + f" [{round(cog[ix], 2)}]" for ix in pvt.index], ax=ax) bottom, top = ax.get_ylim() ax.set_ylim(bottom + 0.5, top - 0.5) ax.set_ylabel("") ax.set_xlabel(r'Layer $\rightarrow$') ax.set_title(lang) def plot_anchor_task_map(self, lang, target_tasks, anchor_tasks=None, ax=None, show_cbar=False): mix_df = self.get_mixes() pvt = mix_df[mix_df["language"] == lang].copy().pivot("name", "layer", "weight") if anchor_tasks is None: anchor_tasks = [a for a in mix_df["name"].unique() if a not in target_tasks] kl_div = pd.DataFrame() for a in target_tasks: for b in anchor_tasks: kl_div.at[a, b] = entropy(pvt.loc[a], pvt.loc[b]) ax = sb.heatmap(kl_div.T, cmap="Blues_r", cbar=show_cbar, square=True, ax=ax) bottom, top = ax.get_ylim() ax.set_ylim(bottom + 0.5, top - 0.5) plt.yticks(rotation=0) ax.set_title(lang) plt.tight_layout() # === Performance and error analysis def performance_summary(self): data = [] for exp_id in os.listdir(self.directories["out"]): try: row = ProbingTask.parse_id(exp_id) metrics = json.load(open(os.path.join(self.directories["out"], exp_id, "metrics.json"))) row["best_epoch"] = metrics["best_epoch"] row["dev_score"] = None if "best_validation_acc" in metrics: # if classification task, take accuracy from AllenNLP metrics row["dev_score"] = metrics["best_validation_acc"] else: # regression tasks need predictions to get the score, they should be generated automatically # FIXME implement R2 as AllenNLP metric prettyout = os.path.join(self.directories["out"], exp_id, f"predictions.pretty.dev.json") if os.path.exists(prettyout): row["dev_score"] = _reg_r2(prettyout) else: row["dev_score"] = "NEED_PREDICTIONS" data += [row] except Exception: print(f"No metrics for {exp_id} (yet?). Skipping.") df =
pd.DataFrame(data)
pandas.DataFrame
"""Automated data download and IO.""" # Builtins import glob import os import gzip import bz2 import hashlib import shutil import zipfile import sys import math import logging from functools import partial, wraps import time import fnmatch import urllib.request import urllib.error from urllib.parse import urlparse import socket import multiprocessing from netrc import netrc import ftplib import ssl import tarfile # External libs import pandas as pd import numpy as np import shapely.geometry as shpg import requests # Optional libs try: import geopandas as gpd except ImportError: pass try: import salem from salem import wgs84 except ImportError: pass try: import rasterio try: # rasterio V > 1.0 from rasterio.merge import merge as merge_tool except ImportError: from rasterio.tools.merge import merge as merge_tool except ImportError: pass try: ModuleNotFoundError except NameError: ModuleNotFoundError = ImportError # Locals import oggm.cfg as cfg from oggm.exceptions import (InvalidParamsError, NoInternetException, DownloadVerificationFailedException, DownloadCredentialsMissingException, HttpDownloadError, HttpContentTooShortError, InvalidDEMError, FTPSDownloadError) # Module logger logger = logging.getLogger('.'.join(__name__.split('.')[:-1])) # Github repository and commit hash/branch name/tag name on that repository # The given commit will be downloaded from github and used as source for # all sample data SAMPLE_DATA_GH_REPO = 'OGGM/oggm-sample-data' SAMPLE_DATA_COMMIT = '98f6e299ab60b04cba9eb3be382231e19baf8c9e' GDIR_L1L2_URL = ('https://cluster.klima.uni-bremen.de/~oggm/gdirs/oggm_v1.4/' 'L1-L2_files/centerlines/') GDIR_L3L5_URL = ('https://cluster.klima.uni-bremen.de/~oggm/gdirs/oggm_v1.4/' 'L3-L5_files/CRU/centerlines/qc3/pcp2.5/no_match/') DEMS_GDIR_URL = ('https://cluster.klima.uni-bremen.de/~oggm/gdirs/oggm_v1.4/' 'rgitopo/') CHECKSUM_URL = 'https://cluster.klima.uni-bremen.de/data/downloads.sha256.hdf' CHECKSUM_VALIDATION_URL = CHECKSUM_URL + '.sha256' CHECKSUM_LIFETIME = 24 * 60 * 60 # Web mercator proj constants WEB_N_PIX = 256 WEB_EARTH_RADUIS = 6378137. DEM_SOURCES = ['GIMP', 'ARCTICDEM', 'RAMP', 'TANDEM', 'AW3D30', 'MAPZEN', 'DEM3', 'ASTER', 'SRTM', 'REMA', 'ALASKA', 'COPDEM', 'NASADEM'] DEM_SOURCES_PER_GLACIER = None _RGI_METADATA = dict() DEM3REG = { 'ISL': [-25., -13., 63., 67.], # Iceland 'SVALBARD': [9., 35.99, 75., 84.], 'JANMAYEN': [-10., -7., 70., 72.], 'FJ': [36., 68., 79., 90.], # Franz Josef Land 'FAR': [-8., -6., 61., 63.], # Faroer 'BEAR': [18., 20., 74., 75.], # Bear Island 'SHL': [-3., 0., 60., 61.], # Shetland # Antarctica tiles as UTM zones, large files '01-15': [-180., -91., -90, -60.], '16-30': [-91., -1., -90., -60.], '31-45': [-1., 89., -90., -60.], '46-60': [89., 189., -90., -60.], # Greenland tiles 'GL-North': [-72., -11., 76., 84.], 'GL-West': [-62., -42., 64., 76.], 'GL-South': [-52., -40., 59., 64.], 'GL-East': [-42., -17., 64., 76.] } # Function tuple2int = partial(np.array, dtype=np.int64) lock = None def mkdir(path, reset=False): """Checks if directory exists and if not, create one. Parameters ---------- reset: erase the content of the directory if exists Returns ------- the path """ if reset and os.path.exists(path): shutil.rmtree(path) try: os.makedirs(path) except FileExistsError: pass return path def del_empty_dirs(s_dir): """Delete empty directories.""" b_empty = True for s_target in os.listdir(s_dir): s_path = os.path.join(s_dir, s_target) if os.path.isdir(s_path): if not del_empty_dirs(s_path): b_empty = False else: b_empty = False if b_empty: os.rmdir(s_dir) return b_empty def findfiles(root_dir, endswith): """Finds all files with a specific ending in a directory Parameters ---------- root_dir : str The directory to search fo endswith : str The file ending (e.g. '.hgt' Returns ------- the list of files """ out = [] for dirpath, dirnames, filenames in os.walk(root_dir): for filename in [f for f in filenames if f.endswith(endswith)]: out.append(os.path.join(dirpath, filename)) return out def get_lock(): """Get multiprocessing lock.""" global lock if lock is None: # Global Lock if cfg.PARAMS.get('use_mp_spawn', False): lock = multiprocessing.get_context('spawn').Lock() else: lock = multiprocessing.Lock() return lock def get_dl_verify_data(section): """Returns a pandas DataFrame with all known download object hashes. The returned dictionary resolves str: cache_obj_name (without section) to a tuple int(size) and bytes(sha256) """ verify_key = 'dl_verify_data_' + section if cfg.DATA.get(verify_key) is not None: return cfg.DATA[verify_key] verify_file_path = os.path.join(cfg.CACHE_DIR, 'downloads.sha256.hdf') def verify_file(force=False): """Check the hash file's own hash""" if not cfg.PARAMS['has_internet']: return if not force and os.path.isfile(verify_file_path) and \ os.path.getmtime(verify_file_path) + CHECKSUM_LIFETIME > time.time(): return logger.info('Checking the download verification file checksum...') try: with requests.get(CHECKSUM_VALIDATION_URL) as req: req.raise_for_status() verify_file_sha256 = req.text.split(maxsplit=1)[0] verify_file_sha256 = bytearray.fromhex(verify_file_sha256) except Exception as e: verify_file_sha256 = None logger.warning('Failed getting verification checksum: ' + repr(e)) if os.path.isfile(verify_file_path) and verify_file_sha256: sha256 = hashlib.sha256() with open(verify_file_path, 'rb') as f: for b in iter(lambda: f.read(0xFFFF), b''): sha256.update(b) if sha256.digest() != verify_file_sha256: logger.warning('%s changed or invalid, deleting.' % (verify_file_path)) os.remove(verify_file_path) else: os.utime(verify_file_path) if not np.any(['dl_verify_data_' in k for k in cfg.DATA.keys()]): # We check the hash file only once per session # no need to do it at each call verify_file() if not os.path.isfile(verify_file_path): if not cfg.PARAMS['has_internet']: return pd.DataFrame() logger.info('Downloading %s to %s...' % (CHECKSUM_URL, verify_file_path)) with requests.get(CHECKSUM_URL, stream=True) as req: if req.status_code == 200: mkdir(os.path.dirname(verify_file_path)) with open(verify_file_path, 'wb') as f: for b in req.iter_content(chunk_size=0xFFFF): if b: f.write(b) logger.info('Done downloading.') verify_file(force=True) if not os.path.isfile(verify_file_path): logger.warning('Downloading and verifying checksums failed.') return pd.DataFrame() try: data = pd.read_hdf(verify_file_path, key=section) except KeyError: data = pd.DataFrame() cfg.DATA[verify_key] = data return data def _call_dl_func(dl_func, cache_path): """Helper so the actual call to downloads can be overridden """ return dl_func(cache_path) def _cached_download_helper(cache_obj_name, dl_func, reset=False): """Helper function for downloads. Takes care of checking if the file is already cached. Only calls the actual download function when no cached version exists. """ cache_dir = cfg.PATHS['dl_cache_dir'] cache_ro = cfg.PARAMS['dl_cache_readonly'] # A lot of logic below could be simplified but it's also not too important wd = cfg.PATHS.get('working_dir') if wd: # this is for real runs fb_cache_dir = os.path.join(wd, 'cache') check_fb_dir = False else: # Nothing have been set up yet, this is bad - find a place to write # This should happen on read-only cluster only but still wd = os.environ.get('OGGM_WORKDIR') if wd is not None and os.path.isdir(wd): fb_cache_dir = os.path.join(wd, 'cache') else: fb_cache_dir = os.path.join(cfg.CACHE_DIR, 'cache') check_fb_dir = True if not cache_dir: # Defaults to working directory: it must be set! if not cfg.PATHS['working_dir']: raise InvalidParamsError("Need a valid PATHS['working_dir']!") cache_dir = fb_cache_dir cache_ro = False fb_path = os.path.join(fb_cache_dir, cache_obj_name) if not reset and os.path.isfile(fb_path): return fb_path cache_path = os.path.join(cache_dir, cache_obj_name) if not reset and os.path.isfile(cache_path): return cache_path if cache_ro: if check_fb_dir: # Add a manual check that we are caching sample data download if 'oggm-sample-data' not in fb_path: raise InvalidParamsError('Attempting to download something ' 'with invalid global settings.') cache_path = fb_path if not cfg.PARAMS['has_internet']: raise NoInternetException("Download required, but " "`has_internet` is False.") mkdir(os.path.dirname(cache_path)) try: cache_path = _call_dl_func(dl_func, cache_path) except BaseException: if os.path.exists(cache_path): os.remove(cache_path) raise return cache_path def _verified_download_helper(cache_obj_name, dl_func, reset=False): """Helper function for downloads. Verifies the size and hash of the downloaded file against the included list of known static files. Uses _cached_download_helper to perform the actual download. """ path = _cached_download_helper(cache_obj_name, dl_func, reset) try: dl_verify = cfg.PARAMS['dl_verify'] except KeyError: dl_verify = True if dl_verify and path and cache_obj_name not in cfg.DL_VERIFIED: cache_section, cache_path = cache_obj_name.split('/', 1) data = get_dl_verify_data(cache_section) if cache_path not in data.index: logger.info('No known hash for %s' % cache_obj_name) cfg.DL_VERIFIED[cache_obj_name] = True else: # compute the hash sha256 = hashlib.sha256() with open(path, 'rb') as f: for b in iter(lambda: f.read(0xFFFF), b''): sha256.update(b) sha256 = sha256.digest() size = os.path.getsize(path) # check data = data.loc[cache_path] if data['size'] != size or bytes(data['sha256']) != sha256: err = '%s failed to verify!\nis: %s %s\nexpected: %s %s' % ( path, size, sha256.hex(), data[0], data[1].hex()) raise DownloadVerificationFailedException(msg=err, path=path) logger.info('%s verified successfully.' % path) cfg.DL_VERIFIED[cache_obj_name] = True return path def _requests_urlretrieve(url, path, reporthook, auth=None, timeout=None): """Implements the required features of urlretrieve on top of requests """ chunk_size = 128 * 1024 chunk_count = 0 with requests.get(url, stream=True, auth=auth, timeout=timeout) as r: if r.status_code != 200: raise HttpDownloadError(r.status_code, url) r.raise_for_status() size = r.headers.get('content-length') or -1 size = int(size) if reporthook: reporthook(chunk_count, chunk_size, size) with open(path, 'wb') as f: for chunk in r.iter_content(chunk_size=chunk_size): if not chunk: continue f.write(chunk) chunk_count += 1 if reporthook: reporthook(chunk_count, chunk_size, size) if chunk_count * chunk_size < size: raise HttpContentTooShortError() def _classic_urlretrieve(url, path, reporthook, auth=None, timeout=None): """Thin wrapper around pythons urllib urlretrieve """ ourl = url if auth: u = urlparse(url) if '@' not in u.netloc: netloc = auth[0] + ':' + auth[1] + '@' + u.netloc url = u._replace(netloc=netloc).geturl() old_def_timeout = socket.getdefaulttimeout() if timeout is not None: socket.setdefaulttimeout(timeout) try: urllib.request.urlretrieve(url, path, reporthook) except urllib.error.HTTPError as e: raise HttpDownloadError(e.code, ourl) except urllib.error.ContentTooShortError as e: raise HttpContentTooShortError() finally: socket.setdefaulttimeout(old_def_timeout) class ImplicitFTPTLS(ftplib.FTP_TLS): """ FTP_TLS subclass that automatically wraps sockets in SSL to support implicit FTPS. Taken from https://stackoverflow.com/a/36049814 """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._sock = None @property def sock(self): """Return the socket.""" return self._sock @sock.setter def sock(self, value): """When modifying the socket, ensure that it is ssl wrapped.""" if value is not None and not isinstance(value, ssl.SSLSocket): value = self.context.wrap_socket(value) self._sock = value def url_exists(url): """Checks if a given a URL exists or not.""" request = requests.get(url) return request.status_code < 400 def _ftps_retrieve(url, path, reporthook, auth=None, timeout=None): """ Wrapper around ftplib to download from FTPS server """ if not auth: raise DownloadCredentialsMissingException('No authentication ' 'credentials given!') upar = urlparse(url) # Decide if Implicit or Explicit FTPS is used based on the port in url if upar.port == 990: ftps = ImplicitFTPTLS() elif upar.port == 21: ftps = ftplib.FTP_TLS() try: # establish ssl connection ftps.connect(host=upar.hostname, port=upar.port, timeout=timeout) ftps.login(user=auth[0], passwd=auth[1]) ftps.prot_p() logger.info('Established connection %s' % upar.hostname) # meta for progress bar size count = 0 total = ftps.size(upar.path) bs = 12*1024 def _ftps_progress(data): outfile.write(data) nonlocal count count += 1 reporthook(count, count*bs, total) with open(path, 'wb') as outfile: ftps.retrbinary('RETR ' + upar.path, _ftps_progress, blocksize=bs) except (ftplib.error_perm, socket.timeout, socket.gaierror) as err: raise FTPSDownloadError(err) finally: ftps.close() def _get_url_cache_name(url): """Returns the cache name for any given url. """ res = urlparse(url) return res.netloc.split(':', 1)[0] + res.path def oggm_urlretrieve(url, cache_obj_name=None, reset=False, reporthook=None, auth=None, timeout=None): """Wrapper around urlretrieve, to implement our caching logic. Instead of accepting a destination path, it decided where to store the file and returns the local path. auth is expected to be either a tuple of ('username', 'password') or None. """ if cache_obj_name is None: cache_obj_name = _get_url_cache_name(url) def _dlf(cache_path): logger.info("Downloading %s to %s..." % (url, cache_path)) try: _requests_urlretrieve(url, cache_path, reporthook, auth, timeout) except requests.exceptions.InvalidSchema: if 'ftps://' in url: _ftps_retrieve(url, cache_path, reporthook, auth, timeout) else: _classic_urlretrieve(url, cache_path, reporthook, auth, timeout) return cache_path return _verified_download_helper(cache_obj_name, _dlf, reset) def _progress_urlretrieve(url, cache_name=None, reset=False, auth=None, timeout=None): """Downloads a file, returns its local path, and shows a progressbar.""" try: from progressbar import DataTransferBar, UnknownLength pbar = None def _upd(count, size, total): nonlocal pbar if pbar is None: pbar = DataTransferBar() if not pbar.is_terminal: pbar.min_poll_interval = 15 if pbar.max_value is None: if total > 0: pbar.start(total) else: pbar.start(UnknownLength) pbar.update(min(count * size, total)) sys.stdout.flush() res = oggm_urlretrieve(url, cache_obj_name=cache_name, reset=reset, reporthook=_upd, auth=auth, timeout=timeout) try: pbar.finish() except BaseException: pass return res except (ImportError, ModuleNotFoundError): return oggm_urlretrieve(url, cache_obj_name=cache_name, reset=reset, auth=auth, timeout=timeout) def aws_file_download(aws_path, cache_name=None, reset=False): with get_lock(): return _aws_file_download_unlocked(aws_path, cache_name, reset) def _aws_file_download_unlocked(aws_path, cache_name=None, reset=False): """Download a file from the AWS drive s3://astgtmv2/ **Note:** you need AWS credentials for this to work. Parameters ---------- aws_path: path relative to s3://astgtmv2/ """ while aws_path.startswith('/'): aws_path = aws_path[1:] if cache_name is not None: cache_obj_name = cache_name else: cache_obj_name = 'astgtmv2/' + aws_path def _dlf(cache_path): raise NotImplementedError("Downloads from AWS are no longer supported") return _verified_download_helper(cache_obj_name, _dlf, reset) def file_downloader(www_path, retry_max=5, cache_name=None, reset=False, auth=None, timeout=None): """A slightly better downloader: it tries more than once.""" local_path = None retry_counter = 0 while retry_counter <= retry_max: # Try to download try: retry_counter += 1 local_path = _progress_urlretrieve(www_path, cache_name=cache_name, reset=reset, auth=auth, timeout=timeout) # if no error, exit break except HttpDownloadError as err: # This works well for py3 if err.code == 404 or err.code == 300: # Ok so this *should* be an ocean tile return None elif err.code >= 500 and err.code < 600: logger.info("Downloading %s failed with HTTP error %s, " "retrying in 10 seconds... %s/%s" % (www_path, err.code, retry_counter, retry_max)) time.sleep(10) continue else: raise except HttpContentTooShortError as err: logger.info("Downloading %s failed with ContentTooShortError" " error %s, retrying in 10 seconds... %s/%s" % (www_path, err.code, retry_counter, retry_max)) time.sleep(10) continue except DownloadVerificationFailedException as err: if (cfg.PATHS['dl_cache_dir'] and err.path.startswith(cfg.PATHS['dl_cache_dir']) and cfg.PARAMS['dl_cache_readonly']): if not cache_name: cache_name = _get_url_cache_name(www_path) cache_name = "GLOBAL_CACHE_INVALID/" + cache_name retry_counter -= 1 logger.info("Global cache for %s is invalid!") else: try: os.remove(err.path) except FileNotFoundError: pass logger.info("Downloading %s failed with " "DownloadVerificationFailedException\n %s\n" "The file might have changed or is corrupted. " "File deleted. Re-downloading... %s/%s" % (www_path, err.msg, retry_counter, retry_max)) continue except requests.ConnectionError as err: if err.args[0].__class__.__name__ == 'MaxRetryError': # if request tried often enough we don't have to do this # this error does happen for not existing ASTERv3 files return None else: # in other cases: try again logger.info("Downloading %s failed with ConnectionError, " "retrying in 10 seconds... %s/%s" % (www_path, retry_counter, retry_max)) time.sleep(10) continue except FTPSDownloadError as err: logger.info("Downloading %s failed with FTPSDownloadError" " error: '%s', retrying in 10 seconds... %s/%s" % (www_path, err.orgerr, retry_counter, retry_max)) time.sleep(10) continue # See if we managed (fail is allowed) if not local_path or not os.path.exists(local_path): logger.warning('Downloading %s failed.' % www_path) return local_path def locked_func(func): """To decorate a function that needs to be locked for multiprocessing""" @wraps(func) def wrapper(*args, **kwargs): with get_lock(): return func(*args, **kwargs) return wrapper def file_extractor(file_path): """For archives with only one file inside extract the file to tmpdir.""" filename, file_extension = os.path.splitext(file_path) # Second one for tar.gz files f2, ex2 = os.path.splitext(filename) if ex2 == '.tar': filename, file_extension = f2, '.tar.gz' bname = os.path.basename(file_path) # This is to give a unique name to the tmp file hid = hashlib.md5(file_path.encode()).hexdigest()[:7] + '_' # extract directory tmpdir = cfg.PATHS['tmp_dir'] mkdir(tmpdir) # Check output extension def _check_ext(f): _, of_ext = os.path.splitext(f) if of_ext not in ['.nc', '.tif']: raise InvalidParamsError('Extracted file extension not recognized' ': {}'.format(of_ext)) return of_ext if file_extension == '.zip': with zipfile.ZipFile(file_path) as zf: members = zf.namelist() if len(members) != 1: raise RuntimeError('Cannot extract multiple files') o_name = hid + members[0] o_path = os.path.join(tmpdir, o_name) of_ext = _check_ext(o_path) if not os.path.exists(o_path): logger.info('Extracting {} to {}...'.format(bname, o_path)) with open(o_path, 'wb') as f: f.write(zf.read(members[0])) elif file_extension == '.gz': # Gzip files cannot be inspected. It's always only one file # Decide on its name o_name = hid + os.path.basename(filename) o_path = os.path.join(tmpdir, o_name) of_ext = _check_ext(o_path) if not os.path.exists(o_path): logger.info('Extracting {} to {}...'.format(bname, o_path)) with gzip.GzipFile(file_path) as zf: with open(o_path, 'wb') as outfile: for line in zf: outfile.write(line) elif file_extension == '.bz2': # bzip2 files cannot be inspected. It's always only one file # Decide on its name o_name = hid + os.path.basename(filename) o_path = os.path.join(tmpdir, o_name) of_ext = _check_ext(o_path) if not os.path.exists(o_path): logger.info('Extracting {} to {}...'.format(bname, o_path)) with bz2.open(file_path) as zf: with open(o_path, 'wb') as outfile: for line in zf: outfile.write(line) elif file_extension in ['.tar.gz', '.tar']: with tarfile.open(file_path) as zf: members = zf.getmembers() if len(members) != 1: raise RuntimeError('Cannot extract multiple files') o_name = hid + members[0].name o_path = os.path.join(tmpdir, o_name) of_ext = _check_ext(o_path) if not os.path.exists(o_path): logger.info('Extracting {} to {}...'.format(bname, o_path)) with open(o_path, 'wb') as f: f.write(zf.extractfile(members[0]).read()) else: raise InvalidParamsError('Extension not recognized: ' '{}'.format(file_extension)) # Be sure we don't overfill the folder cfg.get_lru_handler(tmpdir, ending=of_ext).append(o_path) return o_path def download_with_authentication(wwwfile, key): """ Uses credentials from a local .netrc file to download files This is function is currently used for TanDEM-X and ASTER Parameters ---------- wwwfile : str path to the file to download key : str the machine to to look at in the .netrc file Returns ------- """ # Check the cache first. Use dummy download function to assure nothing is # tried to be downloaded without credentials: def _always_none(foo): return None cache_obj_name = _get_url_cache_name(wwwfile) dest_file = _verified_download_helper(cache_obj_name, _always_none) # Grab auth parameters if not dest_file: authfile = os.path.expanduser('~/.netrc') if not os.path.isfile(authfile): raise DownloadCredentialsMissingException( (authfile, ' does not exist. Add necessary credentials for ', key, ' with `oggm_netrc_credentials. You may have to ', 'register at the respective service first.')) try: netrc(authfile).authenticators(key)[0] except TypeError: raise DownloadCredentialsMissingException( ('Credentials for ', key, ' are not in ', authfile, '. Add ', 'credentials for with `oggm_netrc_credentials`.')) dest_file = file_downloader( wwwfile, auth=(netrc(authfile).authenticators(key)[0], netrc(authfile).authenticators(key)[2])) return dest_file def download_oggm_files(): with get_lock(): return _download_oggm_files_unlocked() def _download_oggm_files_unlocked(): """Checks if the demo data is already on the cache and downloads it.""" zip_url = 'https://github.com/%s/archive/%s.zip' % \ (SAMPLE_DATA_GH_REPO, SAMPLE_DATA_COMMIT) odir = os.path.join(cfg.CACHE_DIR) sdir = os.path.join(cfg.CACHE_DIR, 'oggm-sample-data-%s' % SAMPLE_DATA_COMMIT) # download only if necessary if not os.path.exists(sdir): ofile = file_downloader(zip_url) with zipfile.ZipFile(ofile) as zf: zf.extractall(odir) assert os.path.isdir(sdir) # list of files for output out = dict() for root, directories, filenames in os.walk(sdir): for filename in filenames: if filename in out: # This was a stupid thing, and should not happen # TODO: duplicates in sample data... k = os.path.join(os.path.basename(root), filename) assert k not in out out[k] = os.path.join(root, filename) else: out[filename] = os.path.join(root, filename) return out def _download_srtm_file(zone): with get_lock(): return _download_srtm_file_unlocked(zone) def _download_srtm_file_unlocked(zone): """Checks if the srtm data is in the directory and if not, download it. """ # extract directory tmpdir = cfg.PATHS['tmp_dir'] mkdir(tmpdir) outpath = os.path.join(tmpdir, 'srtm_' + zone + '.tif') # check if extracted file exists already if os.path.exists(outpath): return outpath # Did we download it yet? wwwfile = ('http://srtm.csi.cgiar.org/wp-content/uploads/files/srtm_5x5/' 'TIFF/srtm_' + zone + '.zip') dest_file = file_downloader(wwwfile) # None means we tried hard but we couldn't find it if not dest_file: return None # ok we have to extract it if not os.path.exists(outpath): with zipfile.ZipFile(dest_file) as zf: zf.extractall(tmpdir) # See if we're good, don't overfill the tmp directory assert os.path.exists(outpath) cfg.get_lru_handler(tmpdir).append(outpath) return outpath def _download_nasadem_file(zone): with get_lock(): return _download_nasadem_file_unlocked(zone) def _download_nasadem_file_unlocked(zone): """Checks if the NASADEM data is in the directory and if not, download it. """ # extract directory tmpdir = cfg.PATHS['tmp_dir'] mkdir(tmpdir) wwwfile = ('https://e4ftl01.cr.usgs.gov/MEASURES/NASADEM_HGT.001/' '2000.02.11/NASADEM_HGT_{}.zip'.format(zone)) demfile = '{}.hgt'.format(zone) outpath = os.path.join(tmpdir, demfile) # check if extracted file exists already if os.path.exists(outpath): return outpath # Did we download it yet? dest_file = file_downloader(wwwfile) # None means we tried hard but we couldn't find it if not dest_file: return None # ok we have to extract it if not os.path.exists(outpath): with zipfile.ZipFile(dest_file) as zf: zf.extract(demfile, path=tmpdir) # See if we're good, don't overfill the tmp directory assert os.path.exists(outpath) cfg.get_lru_handler(tmpdir).append(outpath) return outpath def _download_tandem_file(zone): with get_lock(): return _download_tandem_file_unlocked(zone) def _download_tandem_file_unlocked(zone): """Checks if the tandem data is in the directory and if not, download it. """ # extract directory tmpdir = cfg.PATHS['tmp_dir'] mkdir(tmpdir) bname = zone.split('/')[-1] + '_DEM.tif' wwwfile = ('https://download.geoservice.dlr.de/TDM90/files/' '{}.zip'.format(zone)) outpath = os.path.join(tmpdir, bname) # check if extracted file exists already if os.path.exists(outpath): return outpath dest_file = download_with_authentication(wwwfile, 'geoservice.dlr.de') # That means we tried hard but we couldn't find it if not dest_file: return None elif not zipfile.is_zipfile(dest_file): # If the TanDEM-X tile does not exist, a invalid file is created. # See https://github.com/OGGM/oggm/issues/893 for more details return None # ok we have to extract it if not os.path.exists(outpath): with zipfile.ZipFile(dest_file) as zf: for fn in zf.namelist(): if 'DEM/' + bname in fn: break with open(outpath, 'wb') as fo: fo.write(zf.read(fn)) # See if we're good, don't overfill the tmp directory assert os.path.exists(outpath) cfg.get_lru_handler(tmpdir).append(outpath) return outpath def _download_dem3_viewpano(zone): with get_lock(): return _download_dem3_viewpano_unlocked(zone) def _download_dem3_viewpano_unlocked(zone): """Checks if the DEM3 data is in the directory and if not, download it. """ # extract directory tmpdir = cfg.PATHS['tmp_dir'] mkdir(tmpdir) outpath = os.path.join(tmpdir, zone + '.tif') extract_dir = os.path.join(tmpdir, 'tmp_' + zone) mkdir(extract_dir, reset=True) # check if extracted file exists already if os.path.exists(outpath): return outpath # OK, so see if downloaded already # some files have a newer version 'v2' if zone in ['R33', 'R34', 'R35', 'R36', 'R37', 'R38', 'Q32', 'Q33', 'Q34', 'Q35', 'Q36', 'Q37', 'Q38', 'Q39', 'Q40', 'P31', 'P32', 'P33', 'P34', 'P35', 'P36', 'P37', 'P38', 'P39', 'P40']: ifile = 'http://viewfinderpanoramas.org/dem3/' + zone + 'v2.zip' elif zone in DEM3REG.keys(): # We prepared these files as tif already ifile = ('https://cluster.klima.uni-bremen.de/~oggm/dem/' 'DEM3_MERGED/{}.tif'.format(zone)) return file_downloader(ifile) else: ifile = 'http://viewfinderpanoramas.org/dem3/' + zone + '.zip' dfile = file_downloader(ifile) # None means we tried hard but we couldn't find it if not dfile: return None # ok we have to extract it with zipfile.ZipFile(dfile) as zf: zf.extractall(extract_dir) # Serious issue: sometimes, if a southern hemisphere URL is queried for # download and there is none, a NH zip file is downloaded. # Example: http://viewfinderpanoramas.org/dem3/SN29.zip yields N29! # BUT: There are southern hemisphere files that download properly. However, # the unzipped folder has the file name of # the northern hemisphere file. Some checks if correct file exists: if len(zone) == 4 and zone.startswith('S'): zonedir = os.path.join(extract_dir, zone[1:]) else: zonedir = os.path.join(extract_dir, zone) globlist = glob.glob(os.path.join(zonedir, '*.hgt')) # take care of the special file naming cases if zone in DEM3REG.keys(): globlist = glob.glob(os.path.join(extract_dir, '*', '*.hgt')) if not globlist: # Final resort globlist = (findfiles(extract_dir, '.hgt') or findfiles(extract_dir, '.HGT')) if not globlist: raise RuntimeError("We should have some files here, but we don't") # merge the single HGT files (can be a bit ineffective, because not every # single file might be exactly within extent...) rfiles = [rasterio.open(s) for s in globlist] dest, output_transform = merge_tool(rfiles) profile = rfiles[0].profile if 'affine' in profile: profile.pop('affine') profile['transform'] = output_transform profile['height'] = dest.shape[1] profile['width'] = dest.shape[2] profile['driver'] = 'GTiff' with rasterio.open(outpath, 'w', **profile) as dst: dst.write(dest) for rf in rfiles: rf.close() # delete original files to spare disk space for s in globlist: os.remove(s) del_empty_dirs(tmpdir) # See if we're good, don't overfill the tmp directory assert os.path.exists(outpath) cfg.get_lru_handler(tmpdir).append(outpath) return outpath def _download_aster_file(zone): with get_lock(): return _download_aster_file_unlocked(zone) def _download_aster_file_unlocked(zone): """Checks if the ASTER data is in the directory and if not, download it. """ # extract directory tmpdir = cfg.PATHS['tmp_dir'] mkdir(tmpdir) wwwfile = ('https://e4ftl01.cr.usgs.gov/ASTER_B/ASTT/ASTGTM.003/' '2000.03.01/{}.zip'.format(zone)) outpath = os.path.join(tmpdir, zone + '_dem.tif') # check if extracted file exists already if os.path.exists(outpath): return outpath # download from NASA Earthdata with credentials dest_file = download_with_authentication(wwwfile, 'urs.earthdata.nasa.gov') # That means we tried hard but we couldn't find it if not dest_file: return None # ok we have to extract it if not os.path.exists(outpath): with zipfile.ZipFile(dest_file) as zf: zf.extractall(tmpdir) # See if we're good, don't overfill the tmp directory assert os.path.exists(outpath) cfg.get_lru_handler(tmpdir).append(outpath) return outpath def _download_topo_file_from_cluster(fname): with get_lock(): return _download_topo_file_from_cluster_unlocked(fname) def _download_topo_file_from_cluster_unlocked(fname): """Checks if the special topo data is in the directory and if not, download it from the cluster. """ # extract directory tmpdir = cfg.PATHS['tmp_dir'] mkdir(tmpdir) outpath = os.path.join(tmpdir, fname) url = 'https://cluster.klima.uni-bremen.de/data/dems/' url += fname + '.zip' dfile = file_downloader(url) if not os.path.exists(outpath): logger.info('Extracting ' + fname + '.zip to ' + outpath + '...') with zipfile.ZipFile(dfile) as zf: zf.extractall(tmpdir) # See if we're good, don't overfill the tmp directory assert os.path.exists(outpath) cfg.get_lru_handler(tmpdir).append(outpath) return outpath def _download_copdem_file(cppfile, tilename): with get_lock(): return _download_copdem_file_unlocked(cppfile, tilename) def _download_copdem_file_unlocked(cppfile, tilename): """Checks if Copernicus DEM file is in the directory, if not download it. cppfile : name of the tarfile to download tilename : name of folder and tif file within the cppfile """ # extract directory tmpdir = cfg.PATHS['tmp_dir'] mkdir(tmpdir) # tarfiles are extracted in directories per each tile fpath = '{0}_DEM.tif'.format(tilename) demfile = os.path.join(tmpdir, fpath) # check if extracted file exists already if os.path.exists(demfile): return demfile # Did we download it yet? ftpfile = ('ftps://cdsdata.copernicus.eu:990/' + 'datasets/COP-DEM_GLO-90-DGED/2019_1/' + cppfile) dest_file = download_with_authentication(ftpfile, 'spacedata.copernicus.eu') # None means we tried hard but we couldn't find it if not dest_file: return None # ok we have to extract it if not os.path.exists(demfile): tiffile = os.path.join(tilename, 'DEM', fpath) with tarfile.open(dest_file) as tf: tmember = tf.getmember(tiffile) # do not extract the full path of the file tmember.name = os.path.basename(tf.getmember(tiffile).name) tf.extract(tmember, tmpdir) # See if we're good, don't overfill the tmp directory assert os.path.exists(demfile) cfg.get_lru_handler(tmpdir).append(demfile) return demfile def _download_aw3d30_file(zone): with get_lock(): return _download_aw3d30_file_unlocked(zone) def _download_aw3d30_file_unlocked(fullzone): """Checks if the AW3D30 data is in the directory and if not, download it. """ # extract directory tmpdir = cfg.PATHS['tmp_dir'] mkdir(tmpdir) # tarfiles are extracted in directories per each tile tile = fullzone.split('/')[1] demfile = os.path.join(tmpdir, tile, tile + '_AVE_DSM.tif') # check if extracted file exists already if os.path.exists(demfile): return demfile # Did we download it yet? ftpfile = ('ftp://ftp.eorc.jaxa.jp/pub/ALOS/ext1/AW3D30/release_v1804/' + fullzone + '.tar.gz') try: dest_file = file_downloader(ftpfile, timeout=180) except urllib.error.URLError: # This error is raised if file is not available, could be water return None # None means we tried hard but we couldn't find it if not dest_file: return None # ok we have to extract it if not os.path.exists(demfile): from oggm.utils import robust_tar_extract dempath = os.path.dirname(demfile) robust_tar_extract(dest_file, dempath) # See if we're good, don't overfill the tmp directory assert os.path.exists(demfile) # this tarfile contains several files for file in os.listdir(dempath): cfg.get_lru_handler(tmpdir).append(os.path.join(dempath, file)) return demfile def _download_mapzen_file(zone): with get_lock(): return _download_mapzen_file_unlocked(zone) def _download_mapzen_file_unlocked(zone): """Checks if the mapzen data is in the directory and if not, download it. """ bucket = 'elevation-tiles-prod' prefix = 'geotiff' url = 'http://s3.amazonaws.com/%s/%s/%s' % (bucket, prefix, zone) # That's all return file_downloader(url, timeout=180) def get_prepro_gdir(rgi_version, rgi_id, border, prepro_level, base_url=None): with get_lock(): return _get_prepro_gdir_unlocked(rgi_version, rgi_id, border, prepro_level, base_url=base_url) def get_prepro_base_url(base_url=None, rgi_version=None, border=None, prepro_level=None): """Extended base url where to find the desired gdirs.""" if base_url is None: if prepro_level <= 2: base_url = GDIR_L1L2_URL else: base_url = GDIR_L3L5_URL if not base_url.endswith('/'): base_url += '/' if rgi_version is None: rgi_version = cfg.PARAMS['rgi_version'] if border is None: border = cfg.PARAMS['border'] url = base_url url += 'RGI{}/'.format(rgi_version) url += 'b_{:03d}/'.format(int(border)) url += 'L{:d}/'.format(prepro_level) return url def _get_prepro_gdir_unlocked(rgi_version, rgi_id, border, prepro_level, base_url=None): url = get_prepro_base_url(rgi_version=rgi_version, border=border, prepro_level=prepro_level, base_url=base_url) url += '{}/{}.tar' .format(rgi_id[:8], rgi_id[:11]) tar_base = file_downloader(url) if tar_base is None: raise RuntimeError('Could not find file at ' + url) return tar_base def get_geodetic_mb_dataframe(file_path=None): """Fetches the reference geodetic dataframe for calibration. Currently that's the data from Hughonnet et al 2021, corrected for outliers and with void filled. The data preparation script is available at https://nbviewer.jupyter.org/urls/cluster.klima.uni-bremen.de/~oggm/geodetic_ref_mb/convert.ipynb Parameters ---------- file_path : str in case you have your own file to parse (check the format first!) Returns ------- a DataFrame with the data. """ # fetch the file online or read custom file if file_path is None: base_url = 'https://cluster.klima.uni-bremen.de/~oggm/geodetic_ref_mb/' file_name = 'hugonnet_2021_ds_rgi60_pergla_rates_10_20_worldwide_filled.hdf' file_path = file_downloader(base_url + file_name) # Did we open it yet? if file_path in cfg.DATA: return cfg.DATA[file_path] # If not let's go extension = os.path.splitext(file_path)[1] if extension == '.csv': df = pd.read_csv(file_path, index_col=0) elif extension == '.hdf': df = pd.read_hdf(file_path) # Check for missing data (old files) if len(df.loc[df['dmdtda'].isnull()]) > 0: raise InvalidParamsError('The reference file you are using has missing ' 'data and is probably outdated (sorry for ' 'that). Delete the file at ' f'{file_path} and start again.') cfg.DATA[file_path] = df return df def srtm_zone(lon_ex, lat_ex): """Returns a list of SRTM zones covering the desired extent. """ # SRTM are sorted in tiles of 5 degrees srtm_x0 = -180. srtm_y0 = 60. srtm_dx = 5. srtm_dy = -5. # quick n dirty solution to be sure that we will cover the whole range mi, ma = np.min(lon_ex), np.max(lon_ex) # int() to avoid Deprec warning: lon_ex = np.linspace(mi, ma, int(np.ceil((ma - mi) + 3))) mi, ma = np.min(lat_ex), np.max(lat_ex) # int() to avoid Deprec warning lat_ex = np.linspace(mi, ma, int(np.ceil((ma - mi) + 3))) zones = [] for lon in lon_ex: for lat in lat_ex: dx = lon - srtm_x0 dy = lat - srtm_y0 assert dy < 0 zx = np.ceil(dx / srtm_dx) zy = np.ceil(dy / srtm_dy) zones.append('{:02.0f}_{:02.0f}'.format(zx, zy)) return list(sorted(set(zones))) def _tandem_path(lon_tile, lat_tile): # OK we have a proper tile now # First folder level is sorted from S to N level_0 = 'S' if lat_tile < 0 else 'N' level_0 += '{:02d}'.format(abs(lat_tile)) # Second folder level is sorted from W to E, but in 10 steps level_1 = 'W' if lon_tile < 0 else 'E' level_1 += '{:03d}'.format(divmod(abs(lon_tile), 10)[0] * 10) # Level 2 is formating, but depends on lat level_2 = 'W' if lon_tile < 0 else 'E' if abs(lat_tile) <= 60: level_2 += '{:03d}'.format(abs(lon_tile)) elif abs(lat_tile) <= 80: level_2 += '{:03d}'.format(divmod(abs(lon_tile), 2)[0] * 2) else: level_2 += '{:03d}'.format(divmod(abs(lon_tile), 4)[0] * 4) # Final path out = (level_0 + '/' + level_1 + '/' + 'TDM1_DEM__30_{}{}'.format(level_0, level_2)) return out def tandem_zone(lon_ex, lat_ex): """Returns a list of TanDEM-X zones covering the desired extent. """ # Files are one by one tiles, so lets loop over them # For higher lats they are stored in steps of 2 and 4. My code below # is probably giving more files than needed but better safe than sorry lat_tiles = np.arange(np.floor(lat_ex[0]), np.ceil(lat_ex[1]+1e-9), dtype=int) zones = [] for lat in lat_tiles: if abs(lat) < 60: l0 = np.floor(lon_ex[0]) l1 = np.floor(lon_ex[1]) elif abs(lat) < 80: l0 = divmod(lon_ex[0], 2)[0] * 2 l1 = divmod(lon_ex[1], 2)[0] * 2 elif abs(lat) < 90: l0 = divmod(lon_ex[0], 4)[0] * 4 l1 = divmod(lon_ex[1], 4)[0] * 4 lon_tiles = np.arange(l0, l1+1, dtype=int) for lon in lon_tiles: zones.append(_tandem_path(lon, lat)) return list(sorted(set(zones))) def _aw3d30_path(lon_tile, lat_tile): # OK we have a proper tile now # Folders are sorted with N E S W in 5 degree steps # But in N and E the lower boundary is indicated # e.g. N060 contains N060 - N064 # e.g. E000 contains E000 - E004 # but S and W indicate the upper boundary: # e.g. S010 contains S006 - S010 # e.g. W095 contains W091 - W095 # get letters ns = 'S' if lat_tile < 0 else 'N' ew = 'W' if lon_tile < 0 else 'E' # get lat/lon lon = abs(5 * np.floor(lon_tile/5)) lat = abs(5 * np.floor(lat_tile/5)) folder = '%s%.3d%s%.3d' % (ns, lat, ew, lon) filename = '%s%.3d%s%.3d' % (ns, abs(lat_tile), ew, abs(lon_tile)) # Final path out = folder + '/' + filename return out def aw3d30_zone(lon_ex, lat_ex): """Returns a list of AW3D30 zones covering the desired extent. """ # Files are one by one tiles, so lets loop over them lon_tiles = np.arange(np.floor(lon_ex[0]), np.ceil(lon_ex[1]+1e-9), dtype=int) lat_tiles = np.arange(np.floor(lat_ex[0]), np.ceil(lat_ex[1]+1e-9), dtype=int) zones = [] for lon in lon_tiles: for lat in lat_tiles: zones.append(_aw3d30_path(lon, lat)) return list(sorted(set(zones))) def _extent_to_polygon(lon_ex, lat_ex, to_crs=None): if lon_ex[0] == lon_ex[1] and lat_ex[0] == lat_ex[1]: out = shpg.Point(lon_ex[0], lat_ex[0]) else: x = [lon_ex[0], lon_ex[1], lon_ex[1], lon_ex[0], lon_ex[0]] y = [lat_ex[0], lat_ex[0], lat_ex[1], lat_ex[1], lat_ex[0]] out = shpg.Polygon(np.array((x, y)).T) if to_crs is not None: out = salem.transform_geometry(out, to_crs=to_crs) return out def arcticdem_zone(lon_ex, lat_ex): """Returns a list of Arctic-DEM zones covering the desired extent. """ gdf = gpd.read_file(get_demo_file('ArcticDEM_Tile_Index_Rel7_by_tile.shp')) p = _extent_to_polygon(lon_ex, lat_ex, to_crs=gdf.crs) gdf = gdf.loc[gdf.intersects(p)] return gdf.tile.values if len(gdf) > 0 else [] def rema_zone(lon_ex, lat_ex): """Returns a list of REMA-DEM zones covering the desired extent. """ gdf = gpd.read_file(get_demo_file('REMA_Tile_Index_Rel1.1.shp')) p = _extent_to_polygon(lon_ex, lat_ex, to_crs=gdf.crs) gdf = gdf.loc[gdf.intersects(p)] return gdf.tile.values if len(gdf) > 0 else [] def alaska_dem_zone(lon_ex, lat_ex): """Returns a list of Alaska-DEM zones covering the desired extent. """ gdf = gpd.read_file(get_demo_file('Alaska_albers_V3_tiles.shp')) p = _extent_to_polygon(lon_ex, lat_ex, to_crs=gdf.crs) gdf = gdf.loc[gdf.intersects(p)] return gdf.tile.values if len(gdf) > 0 else [] def copdem_zone(lon_ex, lat_ex): """Returns a list of Copernicus DEM tarfile and tilename tuples """ # path to the lookup shapefiles gdf = gpd.read_file(get_demo_file('RGI60_COPDEM_lookup.shp')) # intersect with lat lon extents p = _extent_to_polygon(lon_ex, lat_ex, to_crs=gdf.crs) gdf = gdf.loc[gdf.intersects(p)] # COPDEM is global, if we miss all tiles it is worth an error if len(gdf) == 0: raise InvalidDEMError('Could not find any Copernicus DEM tile.') flist = [] for _, g in gdf.iterrows(): cpp = g['CPP File'] eop = g['Eop Id'] eop = eop.split(':')[-2] assert 'Copernicus' in eop flist.append((cpp, eop)) return flist def dem3_viewpano_zone(lon_ex, lat_ex): """Returns a list of DEM3 zones covering the desired extent. http://viewfinderpanoramas.org/Coverage%20map%20viewfinderpanoramas_org3.htm """ for _f in DEM3REG.keys(): if (np.min(lon_ex) >= DEM3REG[_f][0]) and \ (np.max(lon_ex) <= DEM3REG[_f][1]) and \ (np.min(lat_ex) >= DEM3REG[_f][2]) and \ (np.max(lat_ex) <= DEM3REG[_f][3]): # test some weird inset files in Antarctica if (np.min(lon_ex) >= -91.) and (np.max(lon_ex) <= -90.) and \ (np.min(lat_ex) >= -72.) and (np.max(lat_ex) <= -68.): return ['SR15'] elif (np.min(lon_ex) >= -47.) and (np.max(lon_ex) <= -43.) and \ (np.min(lat_ex) >= -61.) and (np.max(lat_ex) <= -60.): return ['SP23'] elif (np.min(lon_ex) >= 162.) and (np.max(lon_ex) <= 165.) and \ (np.min(lat_ex) >= -68.) and (np.max(lat_ex) <= -66.): return ['SQ58'] # test some rogue Greenland tiles as well elif (np.min(lon_ex) >= -72.) and (np.max(lon_ex) <= -66.) and \ (np.min(lat_ex) >= 76.) and (np.max(lat_ex) <= 80.): return ['T19'] elif (np.min(lon_ex) >= -72.) and (np.max(lon_ex) <= -66.) and \ (np.min(lat_ex) >= 80.) and (np.max(lat_ex) <= 83.): return ['U19'] elif (np.min(lon_ex) >= -66.) and (np.max(lon_ex) <= -60.) and \ (np.min(lat_ex) >= 80.) and (np.max(lat_ex) <= 83.): return ['U20'] elif (np.min(lon_ex) >= -60.) and (np.max(lon_ex) <= -54.) and \ (np.min(lat_ex) >= 80.) and (np.max(lat_ex) <= 83.): return ['U21'] elif (np.min(lon_ex) >= -54.) and (np.max(lon_ex) <= -48.) and \ (np.min(lat_ex) >= 80.) and (np.max(lat_ex) <= 83.): return ['U22'] elif (np.min(lon_ex) >= -25.) and (np.max(lon_ex) <= -13.) and \ (np.min(lat_ex) >= 63.) and (np.max(lat_ex) <= 67.): return ['ISL'] else: return [_f] # if the tile doesn't have a special name, its name can be found like this: # corrected SRTMs are sorted in tiles of 6 deg longitude and 4 deg latitude srtm_x0 = -180. srtm_y0 = 0. srtm_dx = 6. srtm_dy = 4. # quick n dirty solution to be sure that we will cover the whole range mi, ma = np.min(lon_ex), np.max(lon_ex) # TODO: Fabien, find out what Johannes wanted with this +3 # +3 is just for the number to become still a bit larger # int() to avoid Deprec warning lon_ex = np.linspace(mi, ma, int(np.ceil((ma - mi) / srtm_dy) + 3)) mi, ma = np.min(lat_ex), np.max(lat_ex) # int() to avoid Deprec warning lat_ex = np.linspace(mi, ma, int(np.ceil((ma - mi) / srtm_dx) + 3)) zones = [] for lon in lon_ex: for lat in lat_ex: dx = lon - srtm_x0 dy = lat - srtm_y0 zx = np.ceil(dx / srtm_dx) # convert number to letter zy = chr(int(abs(dy / srtm_dy)) + ord('A')) if lat >= 0: zones.append('%s%02.0f' % (zy, zx)) else: zones.append('S%s%02.0f' % (zy, zx)) return list(sorted(set(zones))) def aster_zone(lon_ex, lat_ex): """Returns a list of ASTGTMV3 zones covering the desired extent. ASTER v3 tiles are 1 degree x 1 degree N50 contains 50 to 50.9 E10 contains 10 to 10.9 S70 contains -69.99 to -69.0 W20 contains -19.99 to -19.0 """ # adding small buffer for unlikely case where one lon/lat_ex == xx.0 lons = np.arange(np.floor(lon_ex[0]-1e-9), np.ceil(lon_ex[1]+1e-9)) lats = np.arange(np.floor(lat_ex[0]-1e-9), np.ceil(lat_ex[1]+1e-9)) zones = [] for lat in lats: # north or south? ns = 'S' if lat < 0 else 'N' for lon in lons: # east or west? ew = 'W' if lon < 0 else 'E' filename = 'ASTGTMV003_{}{:02.0f}{}{:03.0f}'.format(ns, abs(lat), ew, abs(lon)) zones.append(filename) return list(sorted(set(zones))) def nasadem_zone(lon_ex, lat_ex): """Returns a list of NASADEM zones covering the desired extent. NASADEM tiles are 1 degree x 1 degree N50 contains 50 to 50.9 E10 contains 10 to 10.9 S70 contains -69.99 to -69.0 W20 contains -19.99 to -19.0 """ # adding small buffer for unlikely case where one lon/lat_ex == xx.0 lons = np.arange(np.floor(lon_ex[0]-1e-9), np.ceil(lon_ex[1]+1e-9)) lats = np.arange(np.floor(lat_ex[0]-1e-9), np.ceil(lat_ex[1]+1e-9)) zones = [] for lat in lats: # north or south? ns = 's' if lat < 0 else 'n' for lon in lons: # east or west? ew = 'w' if lon < 0 else 'e' filename = '{}{:02.0f}{}{:03.0f}'.format(ns, abs(lat), ew, abs(lon)) zones.append(filename) return list(sorted(set(zones))) def mapzen_zone(lon_ex, lat_ex, dx_meter=None, zoom=None): """Returns a list of AWS mapzen zones covering the desired extent. For mapzen one has to specify the level of detail (zoom) one wants. The best way in OGGM is to specify dx_meter of the underlying map and OGGM will decide which zoom level works best. """ if dx_meter is None and zoom is None: raise InvalidParamsError('Need either zoom level or dx_meter.') bottom, top = lat_ex left, right = lon_ex ybound = 85.0511 if bottom <= -ybound: bottom = -ybound if top <= -ybound: top = -ybound if bottom > ybound: bottom = ybound if top > ybound: top = ybound if right >= 180: right = 179.999 if left >= 180: left = 179.999 if dx_meter: # Find out the zoom so that we are close to the desired accuracy lat = np.max(np.abs([bottom, top])) zoom = int(np.ceil(math.log2((math.cos(lat * math.pi / 180) * 2 * math.pi * WEB_EARTH_RADUIS) / (WEB_N_PIX * dx_meter)))) # According to this we should just always stay above 10 (sorry) # https://github.com/tilezen/joerd/blob/master/docs/data-sources.md zoom = 10 if zoom < 10 else zoom # Code from planetutils size = 2 ** zoom xt = lambda x: int((x + 180.0) / 360.0 * size) yt = lambda y: int((1.0 - math.log(math.tan(math.radians(y)) + (1 / math.cos(math.radians(y)))) / math.pi) / 2.0 * size) tiles = [] for x in range(xt(left), xt(right) + 1): for y in range(yt(top), yt(bottom) + 1): tiles.append('/'.join(map(str, [zoom, x, str(y) + '.tif']))) return tiles def get_demo_file(fname): """Returns the path to the desired OGGM-sample-file. If Sample data is not cached it will be downloaded from https://github.com/OGGM/oggm-sample-data Parameters ---------- fname : str Filename of the desired OGGM-sample-file Returns ------- str Absolute path to the desired file. """ d = download_oggm_files() if fname in d: return d[fname] else: return None def get_wgms_files(): """Get the path to the default WGMS-RGI link file and the data dir. Returns ------- (file, dir) : paths to the files """ download_oggm_files() sdir = os.path.join(cfg.CACHE_DIR, 'oggm-sample-data-%s' % SAMPLE_DATA_COMMIT, 'wgms') datadir = os.path.join(sdir, 'mbdata') assert os.path.exists(datadir) outf = os.path.join(sdir, 'rgi_wgms_links_20200415.csv') outf = pd.read_csv(outf, dtype={'RGI_REG': object}) return outf, datadir def get_glathida_file(): """Get the path to the default GlaThiDa-RGI link file. Returns ------- file : paths to the file """ # Roll our own download_oggm_files() sdir = os.path.join(cfg.CACHE_DIR, 'oggm-sample-data-%s' % SAMPLE_DATA_COMMIT, 'glathida') outf = os.path.join(sdir, 'rgi_glathida_links.csv') assert os.path.exists(outf) return outf def get_rgi_dir(version=None, reset=False): """Path to the RGI directory. If the RGI files are not present, download them. Parameters ---------- version : str '5', '6', defaults to None (linking to the one specified in cfg.PARAMS) reset : bool If True, deletes the RGI directory first and downloads the data Returns ------- str path to the RGI directory """ with get_lock(): return _get_rgi_dir_unlocked(version=version, reset=reset) def _get_rgi_dir_unlocked(version=None, reset=False): rgi_dir = cfg.PATHS['rgi_dir'] if version is None: version = cfg.PARAMS['rgi_version'] if len(version) == 1: version += '0' # Be sure the user gave a sensible path to the RGI dir if not rgi_dir: raise InvalidParamsError('The RGI data directory has to be' 'specified explicitly.') rgi_dir = os.path.abspath(os.path.expanduser(rgi_dir)) rgi_dir = os.path.join(rgi_dir, 'RGIV' + version) mkdir(rgi_dir, reset=reset) if version == '50': dfile = 'http://www.glims.org/RGI/rgi50_files/rgi50.zip' elif version == '60': dfile = 'http://www.glims.org/RGI/rgi60_files/00_rgi60.zip' elif version == '61': dfile = 'https://cluster.klima.uni-bremen.de/data/rgi/rgi_61.zip' elif version == '62': dfile = 'https://cluster.klima.uni-bremen.de/~oggm/rgi/rgi62.zip' test_file = os.path.join(rgi_dir, '*_rgi*{}_manifest.txt'.format(version)) if len(glob.glob(test_file)) == 0: # if not there download it ofile = file_downloader(dfile, reset=reset) # Extract root with zipfile.ZipFile(ofile) as zf: zf.extractall(rgi_dir) # Extract subdirs pattern = '*_rgi{}_*.zip'.format(version) for root, dirs, files in os.walk(cfg.PATHS['rgi_dir']): for filename in fnmatch.filter(files, pattern): zfile = os.path.join(root, filename) with zipfile.ZipFile(zfile) as zf: ex_root = zfile.replace('.zip', '') mkdir(ex_root) zf.extractall(ex_root) # delete the zipfile after success os.remove(zfile) if len(glob.glob(test_file)) == 0: raise RuntimeError('Could not find a manifest file in the RGI ' 'directory: ' + rgi_dir) return rgi_dir def get_rgi_region_file(region, version=None, reset=False): """Path to the RGI region file. If the RGI files are not present, download them. Parameters ---------- region : str from '01' to '19' version : str '5', '6', defaults to None (linking to the one specified in cfg.PARAMS) reset : bool If True, deletes the RGI directory first and downloads the data Returns ------- str path to the RGI shapefile """ rgi_dir = get_rgi_dir(version=version, reset=reset) f = list(glob.glob(rgi_dir + "/*/{}_*.shp".format(region))) assert len(f) == 1 return f[0] def get_rgi_glacier_entities(rgi_ids, version=None): """Get a list of glacier outlines selected from their RGI IDs. Will download RGI data if not present. Parameters ---------- rgi_ids : list of str the glaciers you want the outlines for version : str the rgi version Returns ------- geopandas.GeoDataFrame containing the desired RGI glacier outlines """ regions = [s.split('-')[1].split('.')[0] for s in rgi_ids] if version is None: version = rgi_ids[0].split('-')[0][-2:] selection = [] for reg in sorted(np.unique(regions)): sh = gpd.read_file(get_rgi_region_file(reg, version=version)) selection.append(sh.loc[sh.RGIId.isin(rgi_ids)]) # Make a new dataframe of those selection = pd.concat(selection) selection.crs = sh.crs # for geolocalisation if len(selection) != len(rgi_ids): raise RuntimeError('Could not find all RGI ids') return selection def get_rgi_intersects_dir(version=None, reset=False): """Path to the RGI directory containing the intersect files. If the files are not present, download them. Parameters ---------- version : str '5', '6', defaults to None (linking to the one specified in cfg.PARAMS) reset : bool If True, deletes the intersects before redownloading them Returns ------- str path to the directory """ with get_lock(): return _get_rgi_intersects_dir_unlocked(version=version, reset=reset) def _get_rgi_intersects_dir_unlocked(version=None, reset=False): rgi_dir = cfg.PATHS['rgi_dir'] if version is None: version = cfg.PARAMS['rgi_version'] if len(version) == 1: version += '0' # Be sure the user gave a sensible path to the RGI dir if not rgi_dir: raise InvalidParamsError('The RGI data directory has to be' 'specified explicitly.') rgi_dir = os.path.abspath(os.path.expanduser(rgi_dir)) mkdir(rgi_dir) dfile = 'https://cluster.klima.uni-bremen.de/data/rgi/' dfile += 'RGI_V{}_Intersects.zip'.format(version) if version == '62': dfile = ('https://cluster.klima.uni-bremen.de/~oggm/rgi/' 'rgi62_Intersects.zip') odir = os.path.join(rgi_dir, 'RGI_V' + version + '_Intersects') if reset and os.path.exists(odir): shutil.rmtree(odir) # A lot of code for backwards compat (sigh...) if version in ['50', '60']: test_file = os.path.join(odir, 'Intersects_OGGM_Manifest.txt') if not os.path.exists(test_file): # if not there download it ofile = file_downloader(dfile, reset=reset) # Extract root with zipfile.ZipFile(ofile) as zf: zf.extractall(odir) if not os.path.exists(test_file): raise RuntimeError('Could not find a manifest file in the RGI ' 'directory: ' + odir) else: test_file = os.path.join(odir, '*ntersect*anifest.txt'.format(version)) if len(glob.glob(test_file)) == 0: # if not there download it ofile = file_downloader(dfile, reset=reset) # Extract root with zipfile.ZipFile(ofile) as zf: zf.extractall(odir) # Extract subdirs pattern = '*_rgi{}_*.zip'.format(version) for root, dirs, files in os.walk(cfg.PATHS['rgi_dir']): for filename in fnmatch.filter(files, pattern): zfile = os.path.join(root, filename) with zipfile.ZipFile(zfile) as zf: ex_root = zfile.replace('.zip', '') mkdir(ex_root) zf.extractall(ex_root) # delete the zipfile after success os.remove(zfile) if len(glob.glob(test_file)) == 0: raise RuntimeError('Could not find a manifest file in the RGI ' 'directory: ' + odir) return odir def get_rgi_intersects_region_file(region=None, version=None, reset=False): """Path to the RGI regional intersect file. If the RGI files are not present, download them. Parameters ---------- region : str from '00' to '19', with '00' being the global file (deprecated). From RGI version '61' onwards, please use `get_rgi_intersects_entities` with a list of glaciers instead of relying to the global file. version : str '5', '6', '61'... defaults the one specified in cfg.PARAMS reset : bool If True, deletes the intersect file before redownloading it Returns ------- str path to the RGI intersects shapefile """ if version is None: version = cfg.PARAMS['rgi_version'] if len(version) == 1: version += '0' rgi_dir = get_rgi_intersects_dir(version=version, reset=reset) if region == '00': if version in ['50', '60']: version = 'AllRegs' region = '*' else: raise InvalidParamsError("From RGI version 61 onwards, please use " "get_rgi_intersects_entities() instead.") f = list(glob.glob(os.path.join(rgi_dir, "*", '*intersects*' + region + '_rgi*' + version + '*.shp'))) assert len(f) == 1 return f[0] def get_rgi_intersects_entities(rgi_ids, version=None): """Get a list of glacier intersects selected from their RGI IDs. Parameters ---------- rgi_ids: list of str list of rgi_ids you want to look for intersections for version: str '5', '6', '61'... defaults the one specified in cfg.PARAMS Returns ------- geopandas.GeoDataFrame with the selected intersects """ if version is None: version = cfg.PARAMS['rgi_version'] if len(version) == 1: version += '0' regions = [s.split('-')[1].split('.')[0] for s in rgi_ids] selection = [] for reg in sorted(np.unique(regions)): sh = gpd.read_file(get_rgi_intersects_region_file(reg, version=version)) selection.append(sh.loc[sh.RGIId_1.isin(rgi_ids) | sh.RGIId_2.isin(rgi_ids)]) # Make a new dataframe of those selection = pd.concat(selection) selection.crs = sh.crs # for geolocalisation return selection def is_dem_source_available(source, lon_ex, lat_ex): """Checks if a DEM source is available for your purpose. This is only a very rough check! It doesn't mean that the data really is available, but at least it's worth a try. Parameters ---------- source : str, required the source you want to check for lon_ex : tuple or int, required a (min_lon, max_lon) tuple delimiting the requested area longitudes lat_ex : tuple or int, required a (min_lat, max_lat) tuple delimiting the requested area latitudes Returns ------- True or False """ from oggm.utils import tolist lon_ex = tolist(lon_ex, length=2) lat_ex = tolist(lat_ex, length=2) def _in_grid(grid_json, lon, lat): i, j = cfg.DATA['dem_grids'][grid_json].transform(lon, lat, maskout=True) return np.all(~ (i.mask | j.mask)) if source == 'GIMP': return _in_grid('gimpdem_90m_v01.1.json', lon_ex, lat_ex) elif source == 'ARCTICDEM': return _in_grid('arcticdem_mosaic_100m_v3.0.json', lon_ex, lat_ex) elif source == 'RAMP': return _in_grid('AntarcticDEM_wgs84.json', lon_ex, lat_ex) elif source == 'REMA': return _in_grid('REMA_100m_dem.json', lon_ex, lat_ex) elif source == 'ALASKA': return _in_grid('Alaska_albers_V3.json', lon_ex, lat_ex) elif source == 'TANDEM': return True elif source == 'AW3D30': return np.min(lat_ex) > -60 elif source == 'MAPZEN': return True elif source == 'DEM3': return True elif source == 'ASTER': return True elif source == 'SRTM': return np.max(np.abs(lat_ex)) < 60 elif source == 'COPDEM': return True elif source == 'NASADEM': return (np.min(lat_ex) > -56) and (np.max(lat_ex) < 60) elif source == 'USER': return True elif source is None: return True def default_dem_source(rgi_id): """Current default DEM source at a given location. Parameters ---------- rgi_id : str the RGI id Returns ------- the chosen DEM source """ rgi_reg = 'RGI{}'.format(rgi_id[6:8]) rgi_id = rgi_id[:14] if cfg.DEM_SOURCE_TABLE.get(rgi_reg) is None: fp = get_demo_file('rgi62_dem_frac.h5') cfg.DEM_SOURCE_TABLE[rgi_reg] =
pd.read_hdf(fp, key=rgi_reg)
pandas.read_hdf
from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import classification_report, confusion_matrix, accuracy_score from gensim.corpora.dictionary import Dictionary from gensim.models import LdaModel from shorttext.utils import standard_text_preprocessor_1 import pandas as pd import os dir = os.getcwd() #Create test set corpus test = pd.read_csv('test_set.csv') pre = standard_text_preprocessor_1() test['processed'] = test['response_text'].apply(pre) test_corpus = test['processed'].apply(lambda x : x.split(' ')) dict_test = Dictionary(test_corpus) bow_corpus_test = [dict_test.doc2bow(doc) for doc in test_corpus] #Create training set corpus train =
pd.read_csv('train_set.csv')
pandas.read_csv
# Modified from # https://github.com/bhattbhavesh91/cowin-vaccination-slot-availability import datetime import json import numpy as np import requests import pandas as pd import streamlit as st from copy import deepcopy # Faking chrome browser browser_header = {'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/56.0.2924.76 Safari/537.36'} df_18 = pd.DataFrame() df_45 = pd.DataFrame() st.set_page_config(layout='wide', initial_sidebar_state='collapsed') @st.cache(allow_output_mutation=True, suppress_st_warning=True) def load_mapping(): df = pd.read_csv("./district_list.csv") return df def filter_column(df, col, value): df_temp = deepcopy(df.loc[df[col] == value, :]) return df_temp def filter_capacity(df, col, value): df_temp = deepcopy(df.loc[df[col] > value, :]) return df_temp dictfilt = lambda x, y: dict([ (i,x[i]) for i in x if i in set(y) ]) mapping_df = load_mapping() mapping_dict = pd.Series(mapping_df["district id"].values, index = mapping_df["district name"].values).to_dict() rename_mapping = { 'date': 'Date', 'min_age_limit': 'Minimum Age Limit', 'available_capacity': 'Available Capacity', 'vaccine': 'Vaccine', 'pincode': 'Pincode', 'name': 'Hospital Name', 'state_name' : 'State', 'district_name' : 'District', 'block_name': 'Block Name', 'fee_type' : 'Fees' } st.markdown("<h1 style='text-align: center; color: white;'>CoWin Vaccine Availability</h1>", unsafe_allow_html=True) st.markdown("<h3 style='text-align: center; color: yellow;'>The CoWIN APIs are geo-fenced so sometimes you may not see an output! Please try after sometime</h3>", unsafe_allow_html=True) unique_districts = list(mapping_df["district name"].unique()) unique_districts.sort() left_column_1, right_column_1 = st.beta_columns(2) with right_column_1: numdays = st.slider('Select Date Range', 0, 100, 5) with left_column_1: dist_inp = st.multiselect('Select District', unique_districts) #Changed to Multi select DIST_ID = dictfilt(mapping_dict,dist_inp).values() base = datetime.datetime.today() date_list = [base + datetime.timedelta(days=x) for x in range(numdays)] date_str = [x.strftime("%d-%m-%Y") for x in date_list] final_df = None for INP_DATE in date_str: for distid in DIST_ID: # Added a loop for District URL = "https://cdn-api.co-vin.in/api/v2/appointment/sessions/calendarByDistrict?district_id={}&date={}".format(distid, INP_DATE) #Changed to Non Public API response = requests.get(URL, headers=browser_header) if (response.ok) and ('centers' in json.loads(response.text)): resp_json = json.loads(response.text)['centers'] if resp_json is not None: df = pd.DataFrame(resp_json) if len(df): df = df.explode("sessions") df['min_age_limit'] = df.sessions.apply(lambda x: x['min_age_limit']) df['vaccine'] = df.sessions.apply(lambda x: x['vaccine']) df['available_capacity'] = df.sessions.apply(lambda x: x['available_capacity']) df['date'] = df.sessions.apply(lambda x: x['date']) df = df[["date", "available_capacity", "vaccine", "min_age_limit", "pincode", "name", "state_name", "district_name", "block_name", "fee_type"]] if final_df is not None: final_df = pd.concat([final_df, df]) else: final_df = deepcopy(df) else: st.error("No rows in the data Extracted from the API") if len(DIST_ID): if (final_df is not None) and (len(final_df)): final_df.drop_duplicates(inplace=True) final_df.rename(columns=rename_mapping, inplace=True) center_column_2a, center_column_2b = st.beta_columns(2) with center_column_2a: option_18 = st.checkbox('18+') with center_column_2b: option_45 = st.checkbox('45+') if option_18: df_18 = filter_column(final_df, "Minimum Age Limit", 18) if option_45: df_45 = filter_column(final_df, "Minimum Age Limit", 45) if (option_18) or (option_45): final_df =
pd.concat([df_18,df_45])
pandas.concat
""" @authors: <NAME> / <NAME> goal: edf annotation reader Modified: <NAME>, Stanford University, 2018 """ import re import numpy as np import pandas as pd import xmltodict def read_edf_annotations(fname, annotation_format="edf/edf+"): """read_edf_annotations Parameters: ----------- fname : str Path to file. Returns: -------- annot : DataFrame The annotations """ with open(fname, 'r', encoding='utf-8', errors='ignore') as annotions_file: tal_str = annotions_file.read() if "edf" in annotation_format: if annotation_format == "edf/edf+": exp = '(?P<onset>[+\-]\d+(?:\.\d*)?)' + \ '(?:\x15(?P<duration>\d+(?:\.\d*)?))?' + \ '(\x14(?P<description>[^\x00]*))?' + '(?:\x14\x00)' elif annotation_format == "edf++": exp = '(?P<onset>[+\-]\d+.\d+)' + \ '(?:(?:\x15(?P<duration>\d+.\d+)))' + \ '(?:\x14\x00|\x14(?P<description>.*?)\x14\x00)' annot = [m.groupdict() for m in re.finditer(exp, tal_str)] good_annot = pd.DataFrame(annot) good_annot = good_annot.query('description != ""').copy() good_annot.loc[:, 'duration'] = good_annot['duration'].astype(float) good_annot.loc[:, 'onset'] = good_annot['onset'].astype(float) elif annotation_format == "xml": annot = xmltodict.parse(tal_str) annot = annot['PSGAnnotation']["ScoredEvents"]["ScoredEvent"] good_annot = pd.DataFrame(annot) return good_annot def resample_30s(annot): """resample_30s: to resample annot dataframe when durations are multiple of 30s Parameters: ----------- annot : pandas dataframe the dataframe of annotations Returns: -------- annot : pandas dataframe the resampled dataframe of annotations """ annot["start"] = annot.Start.values.astype(np.float).astype(np.int) df_end = annot.iloc[[-1]].copy() df_end['start'] += df_end['Duration'].values.astype(np.float) df_end.index += 1 annot = annot.append(df_end) annot = annot.set_index('start') annot.index = pd.to_timedelta(annot.index, unit='s') annot = annot.resample('30s').ffill() annot = annot.reset_index() annot['duration'] = 30. onset = np.zeros(annot.shape[0]) onset[1:] = annot["duration"].values[1:].cumsum() annot["onset"] = onset return annot.iloc[:-1] # Return without the last row (which we inserted in order to fill the last row correctly). def parse_hypnogram(annot_f, annotation_format="edf++"): """parse_hypnogram: keep only annotations related to sleep stages Parameters: ----------- annot_f : string The name of the annotation file annotation_format : string, optional (default="edf++") The annotation format Returns: -------- good_annot : pandas dataframe dataframe of annotations related to sleep stages """ annot = read_edf_annotations(annot_f, annotation_format=annotation_format) if annotation_format == "edf++": # process annot for sleep stages annot = annot[annot.description.str.startswith('Sleep')].reset_index() annot["idx_stage"] = np.arange(annot.shape[0]) stages =
pd.DataFrame()
pandas.DataFrame
import json import matplotlib.pyplot as plt import numpy as np import pandas as pd import random from sklearn.metrics import precision_recall_fscore_support from statsmodels.stats.inter_rater import fleiss_kappa __author__ = '<NAME>' pd.set_option('max_colwidth', 999) pd.set_option('display.max_rows', 999) pd.set_option('display.max_columns', 999) ALL_CATS = ('positive', 'negative', 'neutral', 'mixed') TERNARY_CATS = ('positive', 'negative', 'neutral') def load_dataset(*src_filenames, labels=None): data = [] for filename in src_filenames: with open(filename) as f: for line in f: d = json.loads(line) if labels is None or d['gold_label'] in labels: data.append(d) return data def get_label_distribution(*splits, dist_labels=False): if dist_labels: all_labels = [] for split in splits: for d in split: dist = d['label_distribution'] all_labels += [label for label, ids in dist.items() for _ in range(len(ids))] series = pd.Series(all_labels) else: df = pd.concat((pd.DataFrame(split) for split in splits)) series = df.gold_label series = series.fillna("No Majority") dist = series.value_counts(dropna=False) dist['Total'] = dist.sum() return dist def get_label_model_relationship(*splits, model_colname='model_0_label'): all_splits = sum(splits, []) df = pd.DataFrame(all_splits) return df.groupby(['gold_label', model_colname]).apply(len) def get_adversarial_rate(*splits, model_colname='model_0_label', labels=None): dist = get_label_model_relationship(*splits, model_colname=model_colname) dist = dist.reset_index().rename(columns={0: 'examples'}) total = dist.examples.sum() if labels is not None: dist = dist[dist.gold_label.isin(labels)] adversarial = dist[dist.gold_label != dist[model_colname]] return adversarial.examples.sum(), total def get_label_rating_relationship(*splits): all_splits = sum(splits, []) df = pd.DataFrame(all_splits) return df.groupby(['gold_label', 'review_rating']).apply(len) def get_dist_of_majority_dists(split): data = [] for d in split: if d['gold_label']: dist = sorted([(len(v), k) for k, v in d['label_distribution'].items()]) c = dist[-1][0] data.append(c) return
pd.Series(data)
pandas.Series
"""Functions for modeling the avalanche risk levels """ import sys sys.path.append("/home/daniel/Schreibtisch/Projekte/avalanche-risk") import pickle import numpy as np import pandas as pd import seaborn as sns import re from eda.functions_eda import plot_correlations, plot_missing_values from imblearn.over_sampling import SMOTE, SMOTENC from matplotlib import pyplot as plt from sklearn.ensemble import RandomForestClassifier from sklearn.feature_selection import RFE from sklearn.impute import KNNImputer from sklearn.linear_model import (ElasticNet, Lasso, LinearRegression, LogisticRegression, Ridge) from sklearn.naive_bayes import GaussianNB from sklearn.metrics import (classification_report, confusion_matrix, mean_squared_error, r2_score) from sklearn.model_selection import cross_val_score from sklearn.pipeline import make_pipeline from sklearn.preprocessing import (MinMaxScaler, PowerTransformer, StandardScaler) from sklearn.svm import SVC, LinearSVC from sklearn.tree import DecisionTreeClassifier WEATHER_FILEPATH = "../data/lawinenwarndienst/weather_data/" def preprocess_X_values(df, agg_func): """Preprocess features for modeling Args: df (DataFrame): DataFrame with timeSeries index and numerical features agg_func (str): Function to aggregate time series data on a daily level Returns: DataFrame: Preprocessed features """ # Aggregate with agg_func per day df = getattr(df.groupby(df.index.date), agg_func)() df.index = pd.to_datetime(df.index, format="%Y-%m-%d") # Impute knn = KNNImputer(n_neighbors = 10) # Scale scale = StandardScaler() pipeline = make_pipeline(knn, scale) out = pd.DataFrame(pipeline.fit_transform(df), columns = df.columns, index = df.index) return out def get_shifted_features(df, min_shift, max_shift): """Get a time series DataFrame which is shifted between min_shift and max_shift days backwards Args: df (DataFrame): DataFrame with timeSeries index and numerical features min_shift (int): Minimum number of days to shift max_shift (int): Maximum number of days to shift Returns: DataFrame: DataFrame with shifted features """ out = pd.DataFrame(index = df.index) for shift in range(min_shift, max_shift+1): data = df.shift(shift) data.columns = df.columns + f"-{shift}" out = out.join(data).dropna() return out def preprocess(X_train, y_train, agg_func, min_shift, max_shift, include_y, smote, **kwargs): """Wrapper function to do all feature preprocessing (aggregate, impute, scale, shift, drop NAs, smote) Args: X_train (DataFrame): DataFrame with timeSeries index and numerical features y_train (pd.Series): pd.Series with timeSeries index containing the target variable agg_func (str): Function to aggregate time series data on a daily level min_shift (int): Minimum number of days to shift max_shift (int): Maximum number of days to shift include_y (bool): Should the time shifted dependent variable be added as a predictor to the model? smote (bool): Should SMOTE be performed on the model data? This can be useful in case of an imbalanced dataset. Returns: X: DataFrame with preprocessed features y: pd.Series with target variable in the same date range """ # Impute, Scale X_train_prep = preprocess_X_values(X_train, agg_func = agg_func) if include_y: X_train_prep = X_train_prep.join(y_train) # Shift X_train_shifted = get_shifted_features(X_train_prep, min_shift = min_shift, max_shift = max_shift) # this function also removes NAs # Merge to align date index train = X_train_shifted.join(y_train).dropna(subset = y_train.columns) X = train.iloc[:,:-1] y = train.iloc[:,-1] # SMOTE (important: AFTER getting the lags) if smote: kwargs.setdefault("k_neighbors", 5) assert all(y.value_counts() > kwargs["k_neighbors"]), "SMOTE will fail, because some levels of y have less occurences than 'k_neighbors', which is set to 5 as a standard. Specify a lower 'k_neighbors' via **kwargs or set smote to False (and execute it with a larger dataset)." sm = SMOTE(random_state = 10, **kwargs) X, y = sm.fit_resample(X, y) return X, y def upsample(X, y, **kwargs): """Function to upsample a dataset by means of SMOTENC. Useful for imbalanced data. Args: X (DataFrame): DataFrame containing the predicting variables y (pd.Series): pd.Series containing the target variable Returns: X: DataFrame containing the upsampled predicting variables y: pd.Series containing the upsampled target variable """ kwargs.setdefault("k_neighbors", 5) assert all(y.value_counts() > kwargs["k_neighbors"]), "SMOTE will fail, because some levels of y have less occurences than 'k_neighbors', which is set to 5 as a standard. Specify a lower 'k_neighbors' via **kwargs or set smote to False (and execute it with a larger dataset)." sm = SMOTENC(random_state = 10, **kwargs) X, y = sm.fit_resample(X, y) return X, y def import_preprocess_region(region, metrics, agg_func, min_shift, max_shift, include_y, smote): """Wrapper function to import and preprocess data from a single avalanche warning region Args: region (str): The region to import and preprocess. One of ["allgaeu", "ammergau", "werdenfels", "voralpen", "chiemgau", "berchtesgaden"] metrics (list): List of strings for the predictor variables which should be retained agg_func (str): Function to aggregate time series data on a daily level min_shift (int): Minimum number of days to shift max_shift (int): Maximum number of days to shift include_y (bool): Should the time shifted dependent variable be added as a predictor to the model? smote (bool): Should SMOTE be performed on the model data? This can be useful in case of an imbalanced dataset. Returns: X_train: DataFrame containing preprocessed predictor variables for training set y_train: pd.Series containing the target variable for training X_test: DataFrame containing preprocessed predictor variables for test set y_test: pd.Series containing the target variable for testing """ data = pickle.load(open(WEATHER_FILEPATH + f"pickles/{region}.p", "rb")) # Filter the relevant metrics data = data[metrics] plot = plot_missing_values(data, aspect = 0.00004) warning_levels = pickle.load(open("../data/lawinenwarndienst/warning_levels_preprocessed.p", "rb")) warning_levels = warning_levels[(warning_levels.low_high == 1) & (warning_levels.Zone == region)][["Warnstufe"]].astype(int) # Train-test split based on time time_threshold = "2017-08-01" X_train_raw = data.loc[data.index < time_threshold] X_test_raw = data.loc[data.index >= time_threshold] y_train_raw = warning_levels.loc[warning_levels.index < time_threshold] y_train_raw = y_train_raw[~y_train_raw.index.duplicated()] # drop duplicates y_test_raw = warning_levels.loc[warning_levels.index >= time_threshold] y_test_raw = y_test_raw[~y_test_raw.index.duplicated()] # drop duplicates # Test for NA-only columns in X_test na_list = X_test_raw.isna().sum() == len(X_test_raw) assert sum(na_list) == 0, f"X_test contains a feature with only NAs: {na_list.index[list(na_list).index(True)]}" # Preprocessing X_train, y_train = preprocess(X_train_raw, y_train_raw, agg_func = agg_func, min_shift = min_shift, max_shift = max_shift, include_y = include_y, smote = smote) X_test, y_test = preprocess(X_test_raw, y_test_raw, agg_func = agg_func, min_shift = min_shift, max_shift = max_shift, include_y = include_y, smote = False) # no smote for test data return X_train, y_train, X_test, y_test def import_preprocess_multiple_regions(regions, metrics, agg_func, min_shift, max_shift, include_y, smote): """[summary] Args: regions (list): List of strings for the regions to be imported and preprocessed. One or several of ["allgaeu", "ammergau", "werdenfels", "voralpen", "chiemgau", "berchtesgaden"] metrics (list): List of strings for the predictor variables which should be retained agg_func (str): Function to aggregate time series data on a daily level min_shift (int): Minimum number of days to shift max_shift (int): Maximum number of days to shift include_y (bool): Should the time shifted dependent variable be added as a predictor to the model? smote (bool): Should SMOTE be performed on the model data? This can be useful in case of an imbalanced dataset. Returns: X_train: DataFrame containing preprocessed predictor variables for training set y_train: pd.Series containing the target variable for training X_test: DataFrame containing preprocessed predictor variables for test set y_test: pd.Series containing the target variable for testing """ X_train = pd.DataFrame() X_test = pd.DataFrame() y_train =
pd.Series()
pandas.Series
import collections import csv import datetime import fuzzywuzzy.fuzz import fuzzywuzzy.process import itertools import joblib import libsbml import lxml import lxml.etree import networkx import numpy import os import operator import pickle import re import simstring import sys ######################################################################## ######################################################################## # Globals # gene_map GENE_MAP = None # simstring SIMSTRING_DB = None SBO_NODES = None #SBO_NODES = convert_xml_to_sbonodes() ######################################################################## ######################################################################## def now(): return datetime.datetime.strftime(datetime.datetime.now(), '%Y-%m-%d %H:%M:%S') ######################################################################## ######################################################################## def exists( x, elements, test = lambda x,y : x == y): for y in elements: if test( x, y): return True return False ######################################################################## ######################################################################## # remove_prefixes PREFIXES = [ "acetylated ", "activated ", "associated ", \ "bound ", \ "catabolized ", "catalyzed ", "converted ", \ "deacetylated ", "degradated ", "demethylated ", "dephosporylated ", "deubiquinated ", "dissociated ","deactivated ", \ "expressed ", \ "methylated ", \ "positively ",\ "negatively ", \ "regulated ",\ "phosphorylated ", "regulated ",\ "transcribed ", "translated ", \ "ubiquitinated "] def remove_prefixes( name): global PREFIXES new_name = name for prefix in PREFIXES: if prefix != None: new_name = new_name.replace( prefix, "") return new_name.strip() ######################################################################## ######################################################################## def compute_all_is_a( node, nodes): all_parents = set( node["is_a"]) for parent_id in node["is_a"]: all_parents.update( compute_all_is_a( nodes[parent_id], nodes)) return all_parents def convert_xml_to_sbonodes( file_name = "sbo.xml", output_file_name = "sbo.pickle"): # load nodes nodes = {} sbo_xml = lxml.etree.fromstring( open( file_name, "rt").read()) for term in sbo_xml.xpath( "/*[local-name()='sbo']/*[local-name()='Term']"): id = term.find( "{http://www.biomodels.net/sbo}id").text name = term.find( "{http://www.biomodels.net/sbo}name").text is_a = []; if term.find( "{http://www.biomodels.net/sbo}is_a") is not None: is_a = [el.text for el in term.findall( "{http://www.biomodels.net/sbo}is_a")] nodes[id] = { "id" : id, "name" : name , "is_a" : is_a } # compute all is_a for fast lookup is_a_all = {} for node in nodes.itervalues(): is_a_all[node["id"]] = compute_all_is_a( node, nodes) for node in nodes.itervalues(): node["is_a"] = is_a_all[node["id"]] if output_file_name is not None: pickle.dump( nodes, open( output_file_name, "wb")) return nodes; def sbo_is_a( sbo_1, sbo_2): "return true if sbo_1 is_a sbo_2 (if any of them is None, return true)" global SBO_NODES if sbo_1 == sbo_2 or sbo_1 == None or sbo_2 == None: return True elif sbo_1 in SBO_NODES: return sbo_2 in SBO_NODES[sbo_1]["is_a"]; else: return False def sbo_is_a2( sbo_1, sbo_2): "Return true if is a either direction" return sbo_is_a( sbo_1, sbo_2) or sbo_is_a( sbo_2, sbo_1) def sbo_name( sbo_1): global SBO_NODES return SBO_NODES[sbo_1]["name"] def load_sbo( file_name = "sbo.pickle"): global SBO_NODES SBO_NODES = pickle.load( open( file_name, "rb")) def sbo_export_graph(): global SBO_NODES sbo_graph = networkx.DiGraph() for node in SBO_NODES: sbo_graph.add_node( node) for node in SBO_NODES.values(): for parent in node["is_a"]: sbo_graph.add_edge( node["id"], parent) export_all_graph( sbo_graph, "sbo_graph") def sbo_export_graph_nodes( nodes, file_prefix = "test"): """ exports hierarchy for SBO nodes""" global SBO_NODES sbo_graph = networkx.DiGraph() all_nodes = nodes + [ parent for n in nodes for parent in compute_all_is_a( n) ] for node in all_nodes: sbo_graph.add_node( node) for node in all_nodes: for parent in node["is_a"]: sbo_graph.add_edge( node["id"], parent) export_all_graph( sbo_graph, file_prefix) def get_terms( miriam_urns): """ takes a list of miriam encoded urn, e.g. ['urn:miriam:GO:0016579', 'urn:miriam:SBO:0000330'] and returns the strings ["GO:0016579", "SBO:0000330"] """ return [ i[11:]for i in miriam_urns] def get_sbo_terms( miriam_urns): """ takes a list of miriam encoded urn, e.g. ['urn:miriam:GO:0016579', 'urn:miriam:SBO:0000330'] and returns the strings ["SBO:0000330"] """ return [ i[11:]for i in miriam_urns if i.startswith( "urn:miriam:SBO:")] def get_sbo_int( miriam_urns): """ takes a list of miriam encoded urn, e.g. ['urn:miriam:GO:0016579', 'urn:miriam:SBO:0000330'] and returns the integers [330] """ return [ int( i[15:]) for i in miriam_urns if i.startswith( "urn:miriam:SBO:")] ######################################################################## ######################################################################## ST_SBO_GO_MAP = { # degradation 'acetylation': 'SBO:0000215', 'activation': 'SBO:0000170', 'association': 'SBO:0000297', 'binding': 'SBO:0000297', 'catabolism': 'GO:0009056', 'catalysis': 'SBO:0000172', 'conversion': 'SBO:0000182', 'deacetylation': 'GO:0006476', 'degradation': 'SBO:0000179', 'demethylation': 'GO:0006482', 'dephosphorylation': 'SBO:0000330', 'deubiquitination': 'GO:0016579', 'dissociation': 'SBO:0000180', 'gene_expression': 'SBO:0000205', 'inactivation': 'SBO:0000169', 'localization': 'GO:0051179', 'methylation': 'SBO:0000214', 'negative_regulation': 'SBO:0000169', 'pathway': 'SBO:0000375', 'phosphorylation': 'SBO:0000216', 'positive_regulation': 'SBO:0000170', 'protein_catabolism': 'SBO:0000179', 'regulation': 'SBO:0000168', 'transcription': 'SBO:0000183', 'translation': 'SBO:0000184', 'transport': 'SBO:0000185', 'ubiquitination': 'SBO:0000224'} SBO_GO_ST_MAP = { v : k for k, v in ST_SBO_GO_MAP.iteritems()} def sbo_go_name( urn_miriam): if urn_miriam.startswith( "urn:miriam:"): urn_miriam = urn_miriam[11:] if urn_miriam in SBO_GO_ST_MAP: return SBO_GO_ST_MAP[urn_miriam] elif urn_miriam.startswith( "SBO:"): return sbo_name( urn_miriam) else: return urn_miriam def sbo_go_name_known( urn_miriam): if urn_miriam.startswith( "urn:miriam:"): urn_miriam = urn_miriam[11:] if urn_miriam in SBO_GO_ST_MAP: return True elif urn_miriam.startswith( "SBO:"): return True else: return False ######################################################################## ######################################################################## def clean_name( name): return remove_prefixes( name.lower()).strip() def clean_name2( name): return re.sub('[^a-zA-Z0-9-]', ' ', remove_prefixes( name.lower())).strip() def names( graph): return [graph.node[n].get("name") for n in graph.nodes() if graph.node[n].get("name")] def names_clean( graph): return [ remove_prefixes( graph.node[n].get("name").lower()) for n in graph.nodes() if graph.node[n].get("name")] def names_clean2( graph): return [ re.sub('[^a-zA-Z0-9-]', ' ', remove_prefixes( graph.node[n].get("name").lower())) for n in graph.nodes() if graph.node[n].get("name")] ######################################################################## ######################################################################## def sort_edge_signature( signature, graph): """ takes (species122,reaction122,"product") and returns (reaction122,species122,"product") """ if signature[2] == "reactant" and graph.node[signature[0]]["type"] != "species": return (signature[1],signature[0],signature[2]) elif signature[2] == "product" and graph.node[signature[1]]["type"] != "species": return (signature[1],signature[0],signature[2]) elif signature[2] == "modifier" and graph.node[signature[0]]["type"] != "species": return (signature[1],signature[0],signature[2]) else: return signature def edge_signatures( graph): signatures = set([ sort_edge_signature( (edge[0], edge[1], edge[2]["type"]), graph) for edge in graph.edges( data = True)]) assert( len(signatures) == len( graph.edges())) return signatures ######################################################################## ######################################################################## def create_gene_map( chilibot = True, hugo = True, human_entrez = False): lists = [] print( "create_gene_map") print("Loading data") if chilibot: with open( "gene_list_chilibot.txt", "rt") as f: txt = f.read() for line in txt.strip().split("\n"): line = line.strip(";") synonyms = [ line.split( "|")[0].strip()] + line.split( "|")[1].split( ";") lists.append( set( [s.lower() for s in synonyms])) if hugo: with open('gene_list_hugo.txt', 'rU') as f: csv_list = csv.reader( f, delimiter = '\t') for row in csv_list: lists.append( set( [ s.lower() for s in filter( bool, row) if s != ""])) if human_entrez: with open('gene_list_human_entrez.txt', 'r') as f: lines = f.read().split("\n") lines.pop(0) # remove first line for line in lines: synonyms = [s.lower() for s in line.strip().split("\t")] synonyms.pop(0) lists.append( set(synonyms)) print("Merging lists") dict_forward = {} # maps el : value dict_backward = {} # maps val : list of elements new_value_counter = 0 for idx, l in enumerate(lists): if idx % 10000 == 0: print( "Processed %i" % idx) new_value_counter += 1 new_value = new_value_counter # compute overlap_values - those values overlapping overlap_values = set() for e in l: if e in dict_forward: overlap_values.add( dict_forward[e]) elements = set(l) # initialize elements with known values if overlap_values != set(): new_value = new_value_counter new_value_counter += 1 # update elements with known values for val in overlap_values: elements.update( dict_backward[val]) # update dict_forward for e in elements: dict_forward[e] = new_value # update dict_backward for val in overlap_values: del dict_backward[val] dict_backward[new_value] = elements else: # no overlap found, just add elements to dicts for e in elements: dict_forward[e] = new_value dict_backward[new_value] = elements lists = list(dict_backward.values()) print("Merging lists finished (%i total sets)" % len( lists)) print("Computing gene map") gene_map = {} for l in lists: listt = [ re.sub('[^a-zA-Z0-9-]', ' ', e.lower()) for e in l if e != ""] if listt != []: val = listt[0] for l in listt: gene_map[l] = val print("Computing gene map (%i total names/genes)" % len( gene_map)) print("Exporting gene map") pickle.dump( gene_map, open( "gene_map.pickle", "wb")) return gene_map def create_simstring_txt( gene_map): """ Creates gene_list.txt for usage in simstring db use: simstring -b -d gene_list.simstring < gene_list.txt afterwards to create simstring""" print( "create_simstring_txt") with open( "gene_list.txt", "wt") as f: f.write( "\n".join( gene_map.keys() + list( set( gene_map.values())))) def create_simstring_db(): """ Creates simstring database use: simstring -b -d gene_list.simstring < gene_list.txt""" import commands print( "create_simstring_db") ret = commands.getstatusoutput('simstring -b -d gene_list.simstring < gene_list.txt') print( ret) print( "create_simstring_db finished") def create_gene_map_AND_simstring_db(): gene_map = create_gene_map() # gene_map = pickle.load( open( "gene_map.pickle", "rb")) create_simstring_txt( gene_map) create_simstring_db() ####################### def map_gene_fuzzywuzzy( name, threshold = 90): global GENE_MAP assert(GENE_MAP) clean_name = clean_name2( name) if GENE_MAP.get( clean_name): return set( [GENE_MAP[clean_name]]) else: results = set() for k in GENE_MAP.keys(): if fuzzywuzzy.fuzz.ratio( clean_name, k) > threshold: results.add( GENE_MAP[k]) if results != set(): return results else: return None def map_gene_simstring( name): "retrieves gene_map results by simstring matching and lookup" global GENE_MAP, SIMSTRING_DB assert( GENE_MAP and SIMSTRING_DB) clean_name = clean_name2( name) if GENE_MAP.get( clean_name): return set( [GENE_MAP[clean_name]]) else: results = SIMSTRING_DB.retrieve( clean_name) if results: return set( [GENE_MAP[r] for r in results]) else: return None def export_mapping( mapping, file_name): with open( file_name, "wt") as f: f.write( "\n".join( [ "{} : {}".format( k, ",".join( [str(v) for v in values])) for k, values in mapping.itervalues()])) def compute_simstring_coverage( names, thresholds = [ i/10.0 for i in range(1, 10)], measure = simstring.cosine): results = [] for t in thresholds: db = simstring.reader( 'gene_list.simstring') db.measure = measure db.threshold = t results.append( [ True for n in names if map_gene_simstring(n, db)].count( True) / float( len( names))) return results ######################################################################## ######################################################################## def export_graph( graph, graph_name, prog = "dot"): agraph = networkx.to_agraph( graph) ## "neato"|"dot"|"twopi"|"circo"|"fdp"|"nop" agraph.layout( prog = prog) file_name = graph_name + "_" + prog + ".pdf" agraph.draw( file_name) print( "Exported {}".format( file_name)) def export_all_graph( graph, graph_name): for prog in ["neato", "dot", "twopi", "circo", "fdp"]: export_graph( graph, graph_name, prog = prog) ######################################################################## ######################################################################## def load_sbml( file_name): reader = libsbml.SBMLReader() document = reader.readSBML( file_name) print( "Loaded {} ({} errors)".format( file_name, document.getNumErrors())) return document def get_participants_species( species, prefix, model): """ Takes an SBML species and returns its participants (mTOR)""" annotation = species.getAnnotation() if annotation == None: return [] # retrieve path annotation_path_names = [ 'RDF', 'Participants'] current_state = annotation for name in annotation_path_names: last_state = current_state current_state = None for i in xrange( last_state.getNumChildren()): if last_state.getChild(i).getName() == name: current_state = last_state.getChild(i) if current_state == None: break # retrieve participants participants = [] if current_state != None: for idx in range( current_state.getNumChildren()): child = current_state.getChild( idx) if child.getName() != 'Participant': sys.stderr.write( "\nERROR: unexpected participant xml name {}".format( prefix + species.getId())) sys.stderr.flush() elif child.getAttrValue("participant") == "": sys.stderr.write( "\nERROR: unexpected participant attribute value {}".format( prefix + species.getId())) sys.stderr.flush() elif model.getSpecies( child.getAttrValue("participant")) == None: sys.stderr.write( "\nERROR: participant {} does not exist in model (species: {})".format( child.getAttrValue("participant"), prefix + species.getId())) sys.stderr.flush() else: participants.append( child.getAttrValue("participant")) return participants def create_graph( model, prefix = "", ignore_participant_graph = False, skip_uris = ["urn:miriam:reactome", "urn:miriam:pubmed", "urn:miriam:ec"]): graph = networkx.Graph(); # add species for species in model.getListOfSpecies(): bqbiol_is = [] bqbiol_has_part = [] bqbiol_has_version = [] if species.getCVTerms() != None: for term in species.getCVTerms(): uris = [ term.getResourceURI( idx) for idx in xrange( term.getNumResources()) if not any( term.getResourceURI( idx).startswith(s) for s in skip_uris)] if term.getBiologicalQualifierType() in [libsbml.BQB_IS, libsbml.BQB_IS_HOMOLOG_TO]: bqbiol_is.extend( uris) elif term.getBiologicalQualifierType() == libsbml.BQB_HAS_PART: bqbiol_has_part.extend( uris) elif term.getBiologicalQualifierType() == libsbml.BQB_HAS_VERSION: bqbiol_has_version.extend( uris) sbo = species.getSBOTerm() if sbo == -1: sbo = None; sbo_str = None; else: sbo_str = "SBO:{0:07d}".format( sbo) annotation = {} for prefix in PREFIXES: annotation[ prefix.strip()] = species.getName().count( prefix) if species.getCompartment() == "default": compartment = None compartment_id = None else: compartment = model.getCompartment( species.getCompartment()).getName().lower().strip() compartment_id = species.getCompartment() node_data = { "type" : "species", "id" : prefix + species.getId(), "name" : species.getName(), "compartment" : compartment, "compartment_id" : compartment_id, "bqbiol_is" : tuple( sorted( set( bqbiol_is))), "bqbiol_has_part" : tuple( sorted( set( bqbiol_has_part))), "bqbiol_has_version" : tuple( sorted( set( bqbiol_has_version))), "sbo" : sbo, "sbo_str" : sbo_str, "participants" : [], "participant_ids" : [], "annotation" : annotation}; graph.add_node( prefix + species.getId(), node_data) # add species reactions for reaction in model.getListOfReactions(): bqbiol_is = [] bqbiol_has_part = [] bqbiol_has_version = [] if reaction.getCVTerms() != None: for term in reaction.getCVTerms(): uris = [ term.getResourceURI( idx) for idx in xrange( term.getNumResources()) if not any( term.getResourceURI( idx).startswith(s) for s in skip_uris)] if term.getBiologicalQualifierType() in [libsbml.BQB_IS, libsbml.BQB_IS_HOMOLOG_TO]: bqbiol_is.extend( uris) elif term.getBiologicalQualifierType() == libsbml.BQB_HAS_PART: bqbiol_has_part.extend( uris) elif term.getBiologicalQualifierType() == libsbml.BQB_HAS_VERSION: bqbiol_has_version.extend( uris) sbo = reaction.getSBOTerm() if sbo == -1: sbo = None; sbo_str = None; else: sbo_str = "SBO:{0:07d}".format( sbo) bqbiol_is.append( "urn:miriam:SBO:{0:07d}".format( sbo)) graph.add_node( prefix + reaction.getId(), { "type" : "reaction", "id" : prefix + reaction.getId(), "local_id" : reaction.getId(), "name" : reaction.getName(), "compartment" : reaction.getCompartment(), "bqbiol_is" : tuple( sorted( set( bqbiol_is))), "bqbiol_has_part" : tuple( sorted( set( bqbiol_has_part))), "bqbiol_has_version" : tuple( sorted( set( bqbiol_has_version))), "sbo" : sbo, "sbo_str" : sbo_str} ) # add edges for i in xrange( model.getNumReactions()): reaction = model.getReaction(i); for r in xrange( reaction.getNumReactants()): graph.add_edge( prefix + reaction.getId(), prefix + reaction.getReactant(r).getSpecies(), type = "reactant") for p in xrange( reaction.getNumProducts()): graph.add_edge( prefix + reaction.getId(), prefix + reaction.getProduct(p).getSpecies(), type = "product") for m in xrange( reaction.getNumModifiers()): graph.add_edge( prefix + reaction.getId(), prefix + reaction.getModifier(m).getSpecies(), type = "modifier") if ignore_participant_graph: return graph else: # participant graph participant_graph = networkx.DiGraph() graph_w_participant_edges = graph.copy() # add participant links for i in xrange( model.getNumSpecies()): species = model.getSpecies(i); graph_node = graph.node[ prefix + species.getId()] for participant in get_participants_species( species, prefix, model): # add participant graph edge participant_graph.add_edge( prefix + species.getId(), prefix + participant, type = "participant") graph_w_participant_edges.add_edge( prefix + species.getId(), prefix + participant, type = "participant") # add participant node information to graph_node["participant_ids"].append( prefix + participant) graph_node["participants"].append( graph.node[prefix + participant]) graph_node["bqbiol_has_part"] = tuple( sorted( set( list( graph.node[prefix + participant]["bqbiol_has_part"]) + list( graph_node["bqbiol_has_part"])))) return graph, participant_graph, graph_w_participant_edges ######################################################################## def bqbiol_is_map( graph): "returns a dictionary mapping of uri to node ids {uri : set( node ids)}" signature_map = {} for i in graph.nodes(): node = graph.node[i] if signature_map.get( node["bqbiol_is"]) == None: signature_map[node["bqbiol_is"]] = [i] else: signature_map[node["bqbiol_is"]].append( i) return signature_map def get_all_bqbiol_is_uris( graph): """ Returns all bqbiol_is uris from a graph """ unique_ids = set() for n in graph.nodes( data = True): if n[1].get("bqbiol_is") and n[1].get("bqbiol_is") != (): unique_ids.update( n[1].get("bqbiol_is")) return unique_ids ######################################################################## ######################################################################## def find_nodes( graph, attribute, value): return [ n[1] for n in graph.nodes( data = True ) if n[1].get( attribute) != None and n[1][attribute] == value] ######################################################################## ######################################################################## def filter_graph_remove_species_wo_bqbiol_is( graph): "Remove species without bqbiol_is" graph_cpy = graph.copy() remove_nodes = [] for node in graph_cpy.nodes( data = True): # require nothing for reaction n = node[1] if n["type"] != "reaction" and n["bqbiol_is"] == (): remove_nodes.append( node[0]) graph_cpy.remove_nodes_from( remove_nodes) graph_cpy.name = graph.name + "-REMOVED-SPECIES-WO-BQBIOL-IS" graph_cpy.file_name = None return graph_cpy def filter_graph_remove_isolated_nodes( graph): "Remove nodes without connections" graph_cpy = graph.copy() graph_cpy.remove_nodes_from( networkx.isolates( graph)) graph_cpy.name = graph.name + "-NO-ISOLATED-NODES" graph_cpy.file_name = None return graph_cpy def filter_graph_remove_isolated_participants( graph): """Remove nodes without connections that are participants - keep isolated nodes that are not participatns""" graph_cpy = graph.copy() isolates = set( networkx.isolates( graph)) participants = set( [p for parts in [ [p ["id"] for p in n[1].get("participants")] for n in graph.nodes( data = True) if n[1].get("participants")] for p in parts ]) graph_cpy.remove_nodes_from( isolates.intersection( participants)) graph_cpy.name = graph.name + "-NO-ISOLATED-NODES" graph_cpy.file_name = None return graph_cpy def filter_graph_remove_reactions_wo_sbo( graph): "Remove reactions without bqbiol_is" graph_cpy = graph.copy() remove_nodes = [] for node in graph_cpy.nodes( data = True): # require nothing for reaction n = node[1] if n["type"] != "species" and n["sbo"] == None: remove_nodes.append( node[0]) graph_cpy.remove_nodes_from( remove_nodes) graph_cpy.name = graph.name + "-REMOVED-REACTIONS-WO-SBO" graph_cpy.file_name = None return graph_cpy def filter_reactions( graph): "remove all nodes that are NOT a reaction" graph_cpy = graph.copy() non_reaction_ids = [ n[0] for n in graph_cpy.nodes( data = True) if n[1]["type"] != "reaction"] graph_cpy.remove_nodes_from( non_reaction_ids) graph_cpy.name = graph.name + "-REACTIONS" graph_cpy.file_name = None return graph_cpy def filter_reactions_sbo( graph): "Remove all nodes that are NOT reactions with SBO" graph_cpy = graph.copy() non_reaction_ids = [ n[0] for n in graph_cpy.nodes( data = True) if n[1]["type"] != "reaction" or n[1]["sbo"] == None] graph_cpy.remove_nodes_from( non_reaction_ids) graph_cpy.name = graph.name + "-SBO-REACTIONS" graph_cpy.file_name = None return graph_cpy def filter_species( graph): "Remove all nodes that are NOT species" graph_cpy = graph.copy() non_species_ids = [ n[0] for n in graph_cpy.nodes( data = True) if n[1]["type"] != "species"] graph_cpy.remove_nodes_from( non_species_ids) graph_cpy.name = graph.name + "-SPECIES" graph_cpy.file_name = None return graph_cpy def filter_species_bqbiol_is( graph): "Remove all nodes that are NOT species with bqbiol_is" graph_cpy = graph.copy() non_bqbiol_is_species_ids = [ n[0] for n in graph_cpy.nodes( data = True) if n[1]["type"] != "species" or n[1]["bqbiol_is"] == ()] graph_cpy.remove_nodes_from( non_bqbiol_is_species_ids) graph_cpy.name = graph.name + "-BQBIOL-IS-SPECIES" graph_cpy.file_name = None return graph_cpy def filter_species_complex( graph): "Removes all nodes that are not complex - don't have participants" graph_cpy = graph.copy() non_complexes = [n[0] for n in graph.nodes( data = True) if not n[1].get("participants")] graph_cpy.remove_nodes_from( non_complexes) graph_cpy.name = graph.name + "-COMPLEXES" graph_cpy.file_name = None return graph_cpy def filter_species_complex2( graph): "REmoves all nodes that are not complex - do not have sbo == 253" graph_cpy = graph.copy() non_complexes = [n[0] for n in graph.nodes( data = True) if not n[1].get("sbo") or n[1]["sbo"] != 253] graph_cpy.remove_nodes_from( non_complexes) graph_cpy.name = graph.name + "-COMPLEXES" graph_cpy.file_name = None return graph_cpy ######################################################################## ######################################################################## def run_analysis( graph, export_file = None): """ Collects some simple statistics about the graph """ import pandas print("%s:%s: run_analysis" % (now(), graph.name)) species = filter_species( graph) reactions = filter_reactions( graph) edges = [n[2] for n in graph.edges( data = True)] isolated_nodes = networkx.isolates( graph) print("%s:%s: Computing statistics" % (now(), graph.name)) d = {"name" : graph.name, "# nodes" : len( graph.nodes()), "# species" : len( species.nodes()), "# reactions" : len( reactions.nodes()), "# edges" : len( edges), "# edges reactant" : len( [ e for e in edges if e["type"] == "reactant"]), "# edges product" : len( [ e for e in edges if e["type"] == "product"]), "# edges modifier" : len( [ e for e in edges if e["type"] == "modifier"]), "# compartments" : len(set( [species.node[s]["compartment_id"] for s in species.nodes() if species.node[s]["compartment_id"]])), "# unique compartment names" : len(set( [species.node[s]["compartment"] for s in species.nodes() if species.node[s]["compartment"]])), "# isolated nodes" : len(isolated_nodes), "# isolated subgraphs" : len( list( networkx.connected_component_subgraphs( graph)))} data = pandas.Series(d) print("%s:%s: Results" % (now(), graph.name)) print( data) if export_file: print("%s:%s: Exporting %s" % (now(), graph.name, export_file)) data.to_pickle( export_file) print("%s:%s: Computing isolated nodes" % (now(), graph.name)) isolates = set( networkx.isolates( graph)) participants = set( [p for parts in [ [p ["id"] for p in n[1].get("participants")] for n in graph.nodes( data = True) if n[1].get("participants")] for p in parts ]) real_isolates = isolates.difference( participants) # we have to discount those that are participants in a complex d["isolates # nodes"] = len( real_isolates) d["isolates # species"] = len( [n for n in real_isolates if graph.node[n]["type"] == "species"]) d["isolates # reactions"] = len( [n for n in real_isolates if graph.node[n]["type"] == "reaction"]) print("%s:%s: Computing subgraphs" % (now(), graph.name)) # compute new graph with participant links participant_edges = [] subgraphs = None for n1 in graph.nodes(data=True): if "participants" in n1[1] and n1[1]["participants"] != []: participant_edges.extend( [(n1[1]["id"], n2["id"]) for n2 in n1[1]["participants"]]) if participant_edges != []: graph = graph.copy() [graph.add_edge( e[0], e[1], type = "participant") for e in participant_edges] subgraphs = list( networkx.connected_component_subgraphs( graph)) elif subgraphs == None: subgraphs = list( networkx.connected_component_subgraphs( graph)) nr_nodes = [ len( s.nodes()) for s in subgraphs] nr_edges = [ len( s.edges()) for s in subgraphs] d["subgraphs # subgraphs"] = len( subgraphs) d["subgraphs # nodes min"] = min(nr_nodes) d["subgraphs # nodes mean"] = numpy.mean( nr_nodes) d["subgraphs # nodes median"] = numpy.median( nr_nodes) d["subgraphs # nodes max"] = max( nr_nodes) d["subgraphs nodes histogram"] = collections.Counter( nr_nodes) d["subgraphs # edges min"] = min(nr_nodes) d["subgraphs # edges mean"] = numpy.mean( nr_nodes) d["subgraphs # edges median"] = numpy.median( nr_nodes) d["subgraphs # edges max"] = max( nr_nodes) d["subgraphs edges histogram"] = collections.Counter( nr_edges) data = pandas.Series(d) print("%s:%s: Results" % (now(), graph.name)) print( data) if export_file: print("%s:%s: Exporting %s" % (now(), graph.name, export_file)) data.to_pickle( export_file) return data ######################################################################## ######################################################################## def run_analysis_signatures( graph, export_file = None, d = {}): """ Collects some statistics about the graphs names, bqbiol is signatures etc This takes a long time at this point. Use carefully""" print("%s:%s: run_analysis_signatures" % (now(), graph.name)) import pandas species = filter_species( graph) reactions = filter_reactions( graph) if not "name" in d.keys(): d["name"] = graph.name ## names print("%s:%s: Computing name statistics" % (now(), graph.name)) species_names = [ species.node[n]["name"].lower() for n in species if species.node[n]["name"] != ""] d["species % have name"] = 100. * len(species_names) / len( species.nodes()) d["species # unique names"] = len(set(species_names)) species_clean_names = set([ clean_name(species.node[n]["name"]) for n in species if species.node[n]["name"] != ""]) d["species # unique clean names"] = len(species_clean_names) species_clean_names2 = set([ clean_name2(species.node[n]["name"]) for n in species if species.node[n]["name"] != ""]) d["species # unique clean names2"] = len(species_clean_names2) similar_names = [] for name in species_clean_names2: similar = filter( lambda n: fuzzywuzzy.fuzz.ratio( name, n) > 90, species_clean_names2) similar_names.append( set( [name] + similar)) similar_names = merge( similar_names) d["species # similar unique clean names2"] = len( similar_names) print("%s:%s: Computing bqbiol_is statistics species" % (now(), graph.name)) species_bqbiolis = [ species.node[n]["bqbiol_is"] for n in species if species.node[n]["bqbiol_is"]] species_bqbiolis_signature_unique = set( species_bqbiolis) species_bqbiolis_terms = set( [ b for n in species for b in species.node[n]["bqbiol_is"]]) d["species % have bqbiol_is"] = 100. * len( species_bqbiolis) / float( len(species)) d["species # unique bqbiol_is signatures"] = len( species_bqbiolis_signature_unique) d["species # unique bqbiol_is terms"] = len( species_bqbiolis_terms) species_bqbiol_has_part = [ species.node[n]["bqbiol_has_part"] for n in species if species.node[n]["bqbiol_has_part"]] species_bqbiol_has_part_signature_unique = set( species_bqbiol_has_part) species_bqbiol_has_part_terms = set( [ b for n in species for b in species.node[n]["bqbiol_has_part"]]) d["species % have bqbiol_has_part"] = 100* len( species_bqbiol_has_part) / float( len(species)) d["species # unique bqbiol_has_part signatures"] = len( species_bqbiol_has_part_signature_unique) d["species # unique bqbiol_has_part terms"] = len( species_bqbiol_has_part_terms) print("%s:%s: Computing bqbiol_is statistics reactions" % (now(), graph.name)) reactions_uri = [ reactions.node[n]["bqbiol_is"] for n in reactions if reactions.node[n]["bqbiol_is"]] reactions_uri_signature_unique = set( reactions_uri) reactions_bqbiol_terms = [ b for n in reactions for b in reactions.node[n]["bqbiol_is"]] reactions_bqbiol_terms_known = [ t for t in reactions_bqbiol_terms if sbo_go_name_known(t)] reactions_bqbiol_terms_set = set( reactions_bqbiol_terms) reactions_bqbiol_terms_known_set = set(reactions_bqbiol_terms_known) unknown_terms = reactions_bqbiol_terms_set.difference( reactions_bqbiol_terms_known_set) d["reactions % have bqbiol_is"] = 100* len( reactions_uri) / float( len(reactions)) d["reactions # unique bqbiol_is signatures"] = len( reactions_uri_signature_unique) d["reactions # unique bqbiol_is terms"] = len(reactions_bqbiol_terms_set) d["reactions # unique bqbiol_is terms known SBO/GO terms"] = len(reactions_bqbiol_terms_set) d["reactions # unique bqbiol_is terms unknown SBO/GO terms"] = len( unknown_terms) d["reactions bqbiol_is terms histogram"] = collections.Counter( reactions_bqbiol_terms_known) data = pandas.Series(d) print("%s:%s: Results" % (now(), graph.name)) print( data) if export_file: print("%s:%s: Exporting %s" % (now(), graph.name, export_file)) data.to_pickle( export_file) ######################################################################## ######################################################################## def run_analysis_isolated_nodes( graph): print( "\n\nrun_analysis_isolated_nodes(%s)" % graph.name) isolates = set( networkx.isolates( graph)) participants = set( [p for parts in [ [p ["id"] for p in n[1].get("participants")] for n in graph.nodes( data = True) if n[1].get("participants")] for p in parts ]) real_isolates = isolates.difference( participants) # we have to discount those that are participants in a complex print( "{} isolated nodes (ignoring participant nodes) ({} isolated species, {} isolated reactions)".format( len( real_isolates), len( [n for n in real_isolates if graph.node[n]["type"] == "species"]), len( [n for n in real_isolates if graph.node[n]["type"] == "reaction"]))) print( "{} isolated nodes (including isolated participant nodes) ({} isolated species, {} isolated reactions)".format( len( isolates), len( [n for n in isolates if graph.node[n]["type"] == "species"]), len( [n for n in isolates if graph.node[n]["type"] == "reaction"]))) ######################################################################## ######################################################################## def run_analysis_subgraphs( graph, subgraphs = None): """ Compute some statistics for subgraphs: min,max,median """ print( "run_analysis_subgraphs( %s)" % graph.name) # compute new graph with participant links participant_edges = [] for n1 in graph.nodes(data=True): if "participants" in n1[1] and n1[1]["participants"] != []: participant_edges.extend( [(n1[1]["id"], n2["id"]) for n2 in n1[1]["participants"]]) if participant_edges != []: graph = graph.copy() [graph.add_edge( e[0], e[1], type = "participant") for e in participant_edges] subgraphs = list( networkx.connected_component_subgraphs( graph)) elif subgraphs == None: subgraphs = list( networkx.connected_component_subgraphs( graph)) nr_nodes = [ len( s.nodes()) for s in subgraphs] nr_edges = [ len( s.edges()) for s in subgraphs] print( "{} # subgraphs".format( len( subgraphs))) print( "{}/{}/{}/{} min/mean/median/max # nodes per subgraph".format( min(nr_nodes), numpy.mean( nr_nodes), numpy.median( nr_nodes), max( nr_nodes))) print( "{}/{}/{}/{} min/mean/median/max # edges per subgraph".format( min(nr_edges), numpy.mean( nr_edges), numpy.median( nr_nodes), max( nr_edges))) print() print( "# nodes per subgraph statistics: {}".format( collections.Counter( nr_nodes))) print( "# edges per subgraph statistics: {}".format( collections.Counter( nr_edges))) subgraphs_no_isolates = [ s for s in subgraphs if len(s.nodes()) > 1] nr_nodes_subgraphs_no_isolates = [ len( s.nodes()) for s in subgraphs_no_isolates] nr_edges_subgraphs_no_isolates = [ len( s.edges()) for s in subgraphs_no_isolates] print( "\n--\n") print( "{} # subgraphs no isolated nodes".format( len( subgraphs_no_isolates))) print( "{}/{}/{}/{} min/mean/median/max # nodes per subgraphs no isolated nodes".format( min( nr_nodes_subgraphs_no_isolates), numpy.mean( nr_nodes_subgraphs_no_isolates), numpy.median( nr_nodes_subgraphs_no_isolates), max( nr_nodes_subgraphs_no_isolates))) print( "{}/{}/{}/{} min/mean/median/max # edges per subgraphs no isolated nodes".format( min( nr_edges_subgraphs_no_isolates), numpy.mean( nr_edges_subgraphs_no_isolates), numpy.median( nr_edges_subgraphs_no_isolates), max( nr_edges_subgraphs_no_isolates))) print() print( "# nodes per subgraph (no isolated nodes) statistics: {}".format( collections.Counter( nr_nodes_subgraphs_no_isolates))) print( "# edges per subgraph (no isolated nodes) statistics: {}".format( collections.Counter( nr_edges_subgraphs_no_isolates))) ######################################################################## ######################################################################## def run_analysis_complex_participants( graph, participant_graph): node_dict = { n[0] : n[1] for n in graph.nodes(data = True) } edges_dict = { n: [] for n in node_dict.keys()} for e in graph.edges( data = True): edges_dict[e[0]].append( (e[1],e[2]["type"])) edges_dict[e[1]].append( (e[0],e[2]["type"])) reaction_participants = set( [ p for e in graph.edges() for p in e]) # sbo complexes complexes = [n[1] for n in graph.nodes() if n[1]["type"] == "species" and n[1]["sbo"] == 253] complexes_ids = set( [ c["id"] for c in complexes]) assert( len( complexes) == len( complexes_ids)) print( "{} total # of complexes (sbo == 253)".format( len( complexes))) # complexes based on Participant edge complexes2 = set( [ e[0] for e in participant_graph.edges()]) complexes2_participant = set( [ e[1] for e in participant_graph.edges()]) # participants of complexes print( "{} total # of complexes (complex in a complex relationship with some participant)".format( len( complexes2))) print( "{} total # of unique participants".format( len( complexes2_participant))) # complexes part of reaction complexes_in_reaction = complexes_ids.intersection( reaction_participants) complexes_not_in_reaction = complexes_ids.difference( reaction_participants) print( "{}/{} of complexes are part of a reaction ({}/{} are not)".format( len( complexes_in_reaction), len( complexes_ids), len( complexes_not_in_reaction), len( complexes_ids))) # participants part of reaction complexes_participant_in_reaction = complexes2_participant.intersection( reaction_participants) complexes_participant_not_in_reaction = complexes2_participant.difference( reaction_participants) print( "{}/{} of participants are part of a reaction ({}/{} are not)".format( len( complexes_participant_in_reaction), len( complexes2_participant), len( complexes_participant_not_in_reaction), len( complexes2_participant))) complexes_participants_in_other_complexes = complexes_ids.intersection( complexes2_participant) print( "{} complexes participate in other complexes".format( len( complexes_participants_in_other_complexes))) multiple_complex_edge_participant = [n for n, c in collections.Counter( [ e[1] for e in participant_graph.edges()]).items() if c > 1] print( "{} participants participate in multiple complexes".format( len(multiple_complex_edge_participant))) ## some annotation information complexes_wo_bqbiol_is = [ c for c in complexes_ids if graph.node[c]["bqbiol_is"] == ()] print( "{}/{} complexes w/o bqbiol_is".format( len( complexes_wo_bqbiol_is), len( complexes_ids))) participants_wo_bqbiol_is = [ p for p in complexes2_participant if graph.node[p]["bqbiol_is"] == ()] print( "{}/{} participants w/o bqbiol_is".format( len( participants_wo_bqbiol_is), len( complexes2_participant))) ######################################################################## ######################################################################## def precision_recall_f_score( tp, fp, fn): if len( tp) == 0 and len( fp) == 0: precision = 0 else: precision = len( tp) / float( len( tp) + len( fp)) if len( tp) == 0 and len( fn) == 0: recall = 0 else: recall = len( tp) / float( len( tp) + len( fn)) if precision == 0 and recall == 0: f_score = 0.0 else: f_score = 2.0 * (precision * recall) / (precision + recall) return precision, recall, f_score ######################################################################## ######################################################################## def set_overlap( set_1, set_2, equal_fn): r_1 = set() r_2 = set() for e1 in set_1: e2s = filter( lambda e2: equal_fn( e1, e2), set_2) if e2s: r_2 = r_2.union( e2s) r_1.add( e1) return r_1, r_2 def list_overlap( list_1, list_2, equal_fn): """ Returns indices of overlapping elements""" indices_1 = set() indices_2 = set() for i_1, e1 in enumerate( list_1): is_2 = [i for i, e2 in enumerate(list_2) if equal_fn( e1, e2)] if is_2 != []: indices_2.update( is_2) indices_1.add( i_1) return indices_1, indices_2 def list_intersect( list_1, list_2): l_1 = list_1[:] l_2 = list_2[:] result = [] while len(l_1) > 0: e1 = l_1.pop() try: idx = l_2.index( e1) except: idx = None if idx != None: l_2.remove( e1) result.append( e1) return result assert( list_intersect([1,2,3],[4,5]) == []) assert( list_intersect([1,2,3],[1,5]) == [1]) assert( list_intersect([1,2,3,1],[1,5]) == [1]) assert( list_intersect([1,2,3,1],[1,1]) == [1,1]) def list_difference( list_1, list_2): l_1 = list_1[:] for e2 in list_2: try: l_1.remove(e2) except: pass return l_1 assert( list_difference([1,2,3,1],[5,6]) == [1,2,3,1]) assert( list_difference([1,2,3,1],[1,6]) == [2,3,1]) assert( list_difference([1,2,3,1],[1,1,6]) == [2,3]) def list_find( el, listt, equal_fn): for el2 in listt: if equal_fn( el, el2): return el2 return None def list_difference2( list_1, list_2, equal_fn): "returns those elements of list_1 which are not in list_2 according to equal_fn" result = [] for e in list_1: if not list_find( e, list_2, equal_fn): result.append( e) return result def list_reduce2( list_1, equal_fn): result = [] elements_remaining = list_1[:] while elements_remaining: el = elements_remaining.pop() result.append( el) new_elements_remaining = [] for el2 in elements_remaining: if not equal_fn( el, el2): new_elements_remaining.append( el2) elements_remaining = new_elements_remaining return result assert( list_reduce2([1,"1",2,"2"], lambda e1, e2: str( e1) == str( e2)) == ['2','1']) def merge( sets): "merges sets which are disjoint" merged = 1 while merged: merged = 0 results = [] while sets: common, rest = sets[0], sets[1:] sets = [] for x in rest: if x.isdisjoint(common): sets.append(x) else: merged = 1 common |= x results.append(common) sets = results return sets def analyse_set_overlap( set_1, set_2, equal_fn = operator.eq): res_1, res_2 = set_overlap( set_1, set_2, equal_fn) if len( set_2) == 0: precision = 0 else: precision = 100.0 * len( res_2) / float( len( set_2)) if len( set_1) == 0: recall = 0 else: recall = 100.0 * len( res_1) / float( len( set_1)) if precision == 0 and recall == 0: f_score = 0.0 else: f_score = 2.0 * (precision * recall) / (precision + recall) return res_1, res_2, precision, recall, f_score def analyse_list_overlap( list_1, list_2, equal_fn = operator.eq): res_1, res_2 = list_overlap( list_1, list_2, equal_fn) if len( list_2) == 0: precision = 0 else: precision = 100.0 * len( res_2) / float( len( list_2)) if len( list_1) == 0: recall = 0 else: recall = 100.0 * len( res_1) / float( len( list_1)) if precision == 0 and recall == 0: f_score = 0.0 else: f_score = 2.0 * (precision * recall) / (precision + recall) return res_1, res_2, precision, recall, f_score def tuple_eq_empty_not_eq( t_1, t_2): """ those which are empty are in fact not equal""" return len( t_1) > 0 and t_1 == t_2 def tuple_overlaps( t_1, t_2): return len( set(t_1).intersection( t_2)) > 0 def tuple_overlaps_sbo_is_a( t_1, t_2): if tuple_overlaps( t_1, t_2): return True else: sbo_terms_1 = get_sbo_terms( t_1) sbo_terms_2 = get_sbo_terms( t_2) for s1 in sbo_terms_1: for s2 in sbo_terms_2: if sbo_is_a2( s1, s2): return True def name_approx_equal( n1, n2): return fuzzywuzzy.fuzz.ratio( n1, n2) > 90 ######################################################################## ######################################################################## def nm_name_equal( n1, n2): "Checks if name is the same" return n1["name"].lower() == n2["name"].lower() def nm_name_equal_w_participants( n1, n2): "Checks if name and names of participants overlap" names_1 = [n1["name"].lower()] + [ p["name"].lower() for p in n1["participants"]] names_2 = [n2["name"].lower()] + [ p["name"].lower() for p in n2["participants"]] return len( set( names_1).intersection( names_2)) > 0 def nm_name_clean_equal( n1, n2): "Checks if clean name is the same" return remove_prefixes( n1["name"].lower()) == remove_prefixes( n2["name"].lower()) def nm_name_clean_equal_w_participants( n1, n2): "Checks if name and names of participants overlap" clean_names_1 = [remove_prefixes( n1["name"].lower())] + [ remove_prefixes( p["name"].lower()) for p in n1["participants"]] clean_names_2 = [remove_prefixes( n2["name"].lower())] + [ remove_prefixes( p["name"].lower()) for p in n2["participants"]] return len( set( clean_names_1).intersection( clean_names_2)) > 0 def nm_name_clean2_equal( n1, n2): "Checks if clean name is the same" return clean_name2( n1["name"]) == clean_name2( n2["name"]) def nm_name_clean_approx( n1, n2): return fuzzywuzzy.fuzz.ratio( clean_name2( n1["name"]), clean_name2( n2["name"])) > 90 def nm_name_clean_approx_w_participants( n1, n2): clean_names_1 = [ re.sub('[^a-zA-Z0-9-]', ' ', remove_prefixes( n1["name"].lower()))] + [ re.sub('[^a-zA-Z0-9-]', ' ', remove_prefixes( p["name"].lower())) for p in n1["participants"]] clean_names_2 = [ re.sub('[^a-zA-Z0-9-]', ' ', remove_prefixes( n2["name"].lower()))] + [ re.sub('[^a-zA-Z0-9-]', ' ', remove_prefixes( p["name"].lower())) for p in n2["participants"]] for name_1 in clean_names_1: if list_find( name_1, clean_names_2, lambda name_1, name_2: fuzzywuzzy.fuzz.ratio( name_1, name_2) > 90): return True return False def nm_gene_id_intersect( n1, n2): set_1 = map_gene_simstring( n1["name"]) set_2 = map_gene_simstring( n2["name"]) return set_1 and set_2 and len( set_1.intersection( set_2)) > 0 def nm_gene_id_intersect_w_participants( n1, n2): sets_1 = filter( bool, [map_gene_simstring(n) for n in [ n1["name"]] + [ p["name"] for p in n1["participants"]]]) sets_2 = filter( bool, [map_gene_simstring(n) for n in [ n2["name"]] + [ p["name"] for p in n2["participants"]]]) for s1 in sets_1: for s2 in sets_2: if len( s1.intersection( s2)) > 0: return True return False def nm_name_clean_approx_OR_gene_id_intersect( n1, n2): return nm_name_clean_approx( n1, n2) or nm_gene_id_intersect( n1, n2) def nm_name_clean_approx_OR_gene_id_intersect_w_participants( n1, n2): return nm_name_clean_approx_w_participants( n1, n2) or nm_gene_id_intersect_w_participants( n1, n2) def nm_bqbiol_is_equal( n1, n2): "Checks if the bqbiol_is are the same" return n1["bqbiol_is"] and n2["bqbiol_is"] and n1["bqbiol_is"] == n2["bqbiol_is"] def nm_bqbiol_is_equal_w_participants( n1, n2): "Checks if the bqbiol_is are the same - also checks participants" sets_1 = filter( bool, [set(n1["bqbiol_is"])] + [ set(p["bqbiol_is"]) for p in n1["participants"]]) sets_2 = filter( bool, [n2["bqbiol_is"]] + [ p["bqbiol_is"] for p in n2["participants"]]) for s1 in sets_1: for s2 in sets_2: if len( s1.intersection( s2)) > 0: return True return False def nm_bqbiol_is_overlaps( n1, n2): "Checks if the bqbiol_is are the same" return n1["bqbiol_is"] and n2["bqbiol_is"] and len( set( n1["bqbiol_is"]).intersection( set( n2["bqbiol_is"]))) > 0 def nm_bqbiol_is_overlaps_sbo_is_a( n1, n2): "Checks if the bqbiol_is are the same" if nm_bqbiol_is_overlaps( n1, n2): return True elif n1["bqbiol_is"] and n2["bqbiol_is"]: sbo_terms_1 = get_sbo_terms( n1["bqbiol_is"]) sbo_terms_2 = get_sbo_terms( n2["bqbiol_is"]) for s1 in sbo_terms_1: for s2 in sbo_terms_2: if sbo_is_a2( s1, s2): return True return False def nm_bqbiol_is_overlaps_w_participants( n1, n2): "Checks if the bqbiol_is overlaps - also checks participants" set_1 = set( n1["bqbiol_is"]) if n1.get("participants"): [set_1.update( p["bqbiol_is"]) for p in n1["participants"]] set_2 = set( n2["bqbiol_is"]) if n2.get("participants"): [set_2.update( p["bqbiol_is"]) for p in n2["participants"]] if len( set_1.intersection( set_2)) > 0: return True else: return False def nm_bqbiol_is_has_part_overlaps( n1, n2): "Checks if the bqbiol_is and bqbiol_has_part overlaps" uris_1 = set() if n1["bqbiol_is"]: uris_1.update( n1["bqbiol_is"]) if n1["bqbiol_has_part"]: uris_1.update( n1["bqbiol_has_part"]) uris_2 = set() if n2["bqbiol_is"]: uris_2.update( n2["bqbiol_is"]) if n1["bqbiol_has_part"]: uris_2.update( n2["bqbiol_has_part"]) return len( uris_1.intersection( uris_2)) > 0 def nm_sbo_equal( n1, n2): "Only works on reactions" return n1["sbo"] and n2["sbo"] and n1["sbo"] == n2["sbo"] def nm_sbo_is_a( n1, n2): "Only works on reactions" return n1["sbo_str"] and n2["sbo_str"] and sbo_is_a2( n1["sbo_str"], n2["sbo_str"]) ################### name_clean + various reactions matches def nm_name_clean_AND_nm_bqbiol_is_equal( n1, n2): if n1["type"] != n2["type"]: return False elif n1["type"] == "reaction" and nm_bqbiol_is_equal( n1, n2): return True elif n1["type"] == "species" and nm_name_clean_equal( n1, n2): return True else: return False def nm_name_clean_w_participants_AND_nm_bqbiol_is_equal( n1, n2): if n1["type"] != n2["type"]: return False elif n1["type"] == "reaction" and nm_bqbiol_is_equal( n1, n2): return True elif n1["type"] == "species" and nm_name_clean_equal_w_participants( n1, n2): return True else: return False def nm_name_clean_AND_nm_bqbiol_is_overlaps( n1, n2): if n1["type"] != n2["type"]: return False elif n1["type"] == "reaction" and nm_bqbiol_is_overlaps( n1, n2): return True elif n1["type"] == "species" and nm_name_clean_equal( n1, n2): return True else: return False def nm_name_clean_w_participants_AND_nm_bqbiol_is_overlaps( n1, n2): if n1["type"] != n2["type"]: return False elif n1["type"] == "reaction" and nm_bqbiol_is_overlaps( n1, n2): return True elif n1["type"] == "species" and nm_name_clean_equal_w_participants( n1, n2): return True else: return False def nm_name_clean_AND_nm_bqbiol_is_overlaps_sbo_is_a( n1, n2): if n1["type"] != n2["type"]: return False elif n1["type"] == "reaction" and nm_bqbiol_is_overlaps_sbo_is_a( n1, n2): return True elif n1["type"] == "species" and nm_name_clean_equal( n1, n2): return True else: return False def nm_name_clean_w_participants_AND_nm_bqbiol_is_overlaps_sbo_is_a( n1, n2): if n1["type"] != n2["type"]: return False elif n1["type"] == "reaction" and nm_bqbiol_is_overlaps_sbo_is_a( n1, n2): return True elif n1["type"] == "species" and nm_name_clean_equal_w_participants( n1, n2): return True else: return False ################### name_clean_approx + various reactions matches def nm_name_clean_approx_AND_nm_bqbiol_is_equal( n1, n2): if n1["type"] != n2["type"]: return False elif n1["type"] == "reaction" and nm_bqbiol_is_equal( n1, n2): return True elif n1["type"] == "species" and nm_name_clean_approx( n1, n2): return True else: return False def nm_name_clean_approx_w_participants_AND_nm_bqbiol_is_equal( n1, n2): if n1["type"] != n2["type"]: return False elif n1["type"] == "reaction" and nm_bqbiol_is_equal( n1, n2): return True elif n1["type"] == "species" and nm_name_clean_approx_w_participants( n1, n2): return True else: return False def nm_name_clean_approx_AND_nm_bqbiol_is_overlaps( n1, n2): if n1["type"] != n2["type"]: return False elif n1["type"] == "reaction" and nm_bqbiol_is_overlaps( n1, n2): return True elif n1["type"] == "species" and nm_name_clean_approx( n1, n2): return True else: return False def nm_name_clean_approx_w_participants_AND_nm_bqbiol_is_overlaps( n1, n2): if n1["type"] != n2["type"]: return False elif n1["type"] == "reaction" and nm_bqbiol_is_overlaps( n1, n2): return True elif n1["type"] == "species" and nm_name_clean_approx_w_participants( n1, n2): return True else: return False def nm_name_clean_approx_AND_nm_bqbiol_is_overlaps_sbo_is_a( n1, n2): if n1["type"] != n2["type"]: return False elif n1["type"] == "reaction" and nm_bqbiol_is_overlaps_sbo_is_a( n1, n2): return True elif n1["type"] == "species" and nm_name_clean_approx( n1, n2): return True else: return False def nm_name_clean_approx_w_participants_AND_nm_bqbiol_is_overlaps_sbo_is_a( n1, n2): if n1["type"] != n2["type"]: return False elif n1["type"] == "reaction" and nm_bqbiol_is_overlaps_sbo_is_a( n1, n2): return True elif n1["type"] == "species" and nm_name_clean_approx_w_participants( n1, n2): return True else: return False ################### name_clean_approx or bqbiol_is_equal various reactions matches def nm_name_clean_approx_OR_bqbiol_is_equal_AND_nm_bqbiol_is_equal( n1, n2): if n1["type"] != n2["type"]: return False elif n1["type"] == "reaction" and nm_bqbiol_is_equal( n1, n2): return True elif n1["type"] == "species"and (nm_name_clean_approx( n1, n2) or nm_bqbiol_is_equal( n1, n2)): return True else: return False def nm_name_clean_approx_OR_bqbiol_is_equal_w_participants_AND_nm_bqbiol_is_equal( n1, n2): if n1["type"] != n2["type"]: return False elif n1["type"] == "reaction" and nm_bqbiol_is_equal( n1, n2): return True elif n1["type"] == "species"and (nm_name_clean_approx_w_participants( n1, n2) or nm_bqbiol_is_equal_w_participants( n1, n2)): return True else: return False def nm_name_clean_approx_OR_bqbiol_is_equal_AND_nm_bqbiol_is_overlaps( n1, n2): if n1["type"] != n2["type"]: return False elif n1["type"] == "reaction" and nm_bqbiol_is_overlaps( n1, n2): return True elif n1["type"] == "species"and (nm_name_clean_approx( n1, n2) or nm_bqbiol_is_equal( n1, n2)): return True else: return False def nm_name_clean_approx_OR_bqbiol_is_equal_w_participants_AND_nm_bqbiol_is_overlaps( n1, n2): if n1["type"] != n2["type"]: return False elif n1["type"] == "reaction" and nm_bqbiol_is_overlaps( n1, n2): return True elif n1["type"] == "species"and (nm_name_clean_approx_w_participants( n1, n2) or nm_bqbiol_is_equal_w_participants( n1, n2)): return True else: return False def nm_name_clean_approx_OR_bqbiol_is_equal_AND_nm_bqbiol_is_overlaps_sbo_is_a( n1, n2): if n1["type"] != n2["type"]: return False elif n1["type"] == "reaction" and nm_bqbiol_is_overlaps_sbo_is_a( n1, n2): return True elif n1["type"] == "species"and (nm_name_clean_approx( n1, n2) or nm_bqbiol_is_equal( n1, n2)): return True else: return False def nm_name_clean_approx_OR_bqbiol_is_equal_w_participants_AND_nm_bqbiol_is_overlaps_sbo_is_a( n1, n2): if n1["type"] != n2["type"]: return False elif n1["type"] == "reaction" and nm_bqbiol_is_overlaps_sbo_is_a( n1, n2): return True elif n1["type"] == "species"and (nm_name_clean_approx_w_participants( n1, n2) or nm_bqbiol_is_equal_w_participants( n1, n2)): return True else: return False ################### name_clean_approx or bqbiol_is_overlaps various reactions matches def nm_name_clean_approx_OR_bqbiol_is_overlaps_AND_nm_bqbiol_is_equal( n1, n2): if n1["type"] != n2["type"]: return False elif n1["type"] == "reaction" and nm_bqbiol_is_equal( n1, n2): return True elif n1["type"] == "species"and (nm_name_clean_approx( n1, n2) or nm_bqbiol_is_overlaps( n1, n2)): return True else: return False def nm_name_clean_approx_OR_bqbiol_is_overlaps_w_participants_AND_nm_bqbiol_is_equal( n1, n2): if n1["type"] != n2["type"]: return False elif n1["type"] == "reaction" and nm_bqbiol_is_equal( n1, n2): return True elif n1["type"] == "species"and (nm_name_clean_approx_w_participants( n1, n2) or nm_bqbiol_is_overlaps_w_participants( n1, n2)): return True else: return False def nm_name_clean_approx_OR_bqbiol_is_overlaps_AND_nm_bqbiol_is_overlaps( n1, n2): if n1["type"] != n2["type"]: return False elif n1["type"] == "reaction" and nm_bqbiol_is_overlaps( n1, n2): return True elif n1["type"] == "species"and (nm_name_clean_approx( n1, n2) or nm_bqbiol_is_overlaps( n1, n2)): return True else: return False def nm_name_clean_approx_OR_bqbiol_is_overlaps_w_participants_AND_nm_bqbiol_is_overlaps( n1, n2): if n1["type"] != n2["type"]: return False elif n1["type"] == "reaction" and nm_bqbiol_is_overlaps( n1, n2): return True elif n1["type"] == "species"and (nm_name_clean_approx_w_participants( n1, n2) or nm_bqbiol_is_overlaps_w_participants( n1, n2)): return True else: return False def nm_name_clean_approx_OR_bqbiol_is_overlaps_AND_nm_bqbiol_is_overlaps_sbo_is_a( n1, n2): if n1["type"] != n2["type"]: return False elif n1["type"] == "reaction" and nm_bqbiol_is_overlaps_sbo_is_a( n1, n2): return True elif n1["type"] == "species"and (nm_name_clean_approx( n1, n2) or nm_bqbiol_is_overlaps( n1, n2)): return True else: return False def nm_name_clean_approx_OR_bqbiol_is_overlaps_w_participants_AND_nm_bqbiol_is_overlaps_sbo_is_a( n1, n2): if n1["type"] != n2["type"]: return False elif n1["type"] == "reaction" and nm_bqbiol_is_overlaps_sbo_is_a( n1, n2): return True elif n1["type"] == "species"and (nm_name_clean_approx_w_participants( n1, n2) or nm_bqbiol_is_overlaps_w_participants( n1, n2)): return True else: return False ################### name_clean_approx or bqbiol_is_overlaps various reactions matches def nm_name_clean_approx_OR_bqbiol_is_bqbiol_is_has_parts_overlaps_AND_nm_bqbiol_is_equal( n1, n2): if n1["type"] != n2["type"]: return False elif n1["type"] == "reaction" and nm_bqbiol_is_equal( n1, n2): return True elif n1["type"] == "species"and (nm_name_clean_approx( n1, n2) or nm_bqbiol_is_has_part_overlaps( n1, n2)): return True else: return False def nm_name_clean_approx_OR_bqbiol_is_bqbiol_is_has_parts_overlaps_AND_nm_bqbiol_is_overlaps( n1, n2): if n1["type"] != n2["type"]: return False elif n1["type"] == "reaction" and nm_bqbiol_is_overlaps( n1, n2): return True elif n1["type"] == "species"and (nm_name_clean_approx( n1, n2) or nm_bqbiol_is_has_part_overlaps( n1, n2)): return True else: return False def nm_name_clean_approx_OR_bqbiol_is_bqbiol_is_has_parts_overlaps_AND_nm_bqbiol_is_overlaps_sbo_is_a( n1, n2): if n1["type"] != n2["type"]: return False elif n1["type"] == "reaction" and nm_bqbiol_is_overlaps_sbo_is_a( n1, n2): return True elif n1["type"] == "species"and (nm_name_clean_approx( n1, n2) or nm_bqbiol_is_has_part_overlaps( n1, n2)): return True else: return False ################### edge match exact def edge_match_exact( e1, e2): "only edges" return e1["type"] == e2["type"] ######################################################################## ######################################################################## # nodes overlap max def compute_nodes_overlap_max( graph_1, graph_2, node_match): """ computes a nodes in graph_2 matching with nodes in graph_1 according to node_match Returns - a dictionary of nodes """ nodes_2 = [ filter( lambda n2: node_match( graph_1.node[n1], graph_2.node[n2]), graph_2.nodes()) for n1 in graph_1.nodes()] return { n1: n2 for n1, n2 in zip( graph_1.nodes(), nodes_2) if n2 } def get_nodes_overlap_max_result_precision_recall_f_score( graph_1, graph_2, matches): if len( graph_2) == 0: precision = 0; else: precision = len( set( itertools.chain(*matches.values()))) / float( len( graph_2)) if len( graph_1) == 0: recall = 0 else: recall = len( matches.keys()) / float( len( graph_1)) if precision == 0 and recall == 0: f_score = 0.0 else: f_score = 2.0 * (precision * recall) / (precision + recall) return 100.0 * precision, 100.0 * recall, 100.0 * f_score def print_node_match_result( graph_1, graph_2, matches, node_match_name = "", export_matches = None): # print results precision, recall, f_score = get_nodes_overlap_max_result_precision_recall_f_score( graph_1, graph_2, matches) print( "{}: {:.2f} & {:.2f} & {:.2f} node overlap (precision/recall/f-score)".format( node_match_name, precision, recall, f_score)) # export text matches files if export_matches: with open( export_matches, "wt") as f: clean_names_map = { clean_name2( graph_1.node[k]["name"]) : k for k in matches.keys()} for n in sorted( clean_names_map.keys()): k = clean_names_map[n] if matches[k]: f.write( "\n-------------------------------------------------------------\n") f.write( n) f.write( "\n--\n" ) names = set( [clean_name2( graph_2.node[v]["name"]) for v in matches[k]]) f.write( "\n".join(names)) def run_analysis_nodes_overlap_max( graph_1, graph_2, node_match, export_results = False, export_results_prefix = "results-nodes-overlap-max", ignore_existing = False): """ computes nodes overlap and prints statistics""" export_file = "%s__%s__%s__%s.pickle" % (export_results_prefix, graph_1.name, graph_2.name, node_match.__name__) if ignore_existing and os.path.exists( export_file): print("%s:%s/%s:run_analysis_nodes_overlap_max:%s exists. using that one." % (now(),graph_1.name, graph_2.name, export_file)) data = pickle.load( open( export_file, "rb")) graph_1, graph_2, matches = data[0], data[1], data[2] else: matches = compute_nodes_overlap_max( graph_1, graph_2, node_match) print_node_match_result( graph_1, graph_2, matches, node_match_name = node_match.__name__) if export_results and not( ignore_existing and os.path.exists( export_file)): print("%s:%s/%s:run_analysis_nodes_overlap_max:Exporting %s" % (now(),graph_1.name, graph_2.name, export_file)) pickle.dump( [graph_1, graph_2, matches], open( export_file, "wb")) def run_analyses_nodes_overlap_max( graph_1, graph_2, node_match_fns, prefix = None, n_jobs = None, export_results = False, export_results_prefix = "results-nodes-overlap-max"): """ computes nodes overlaps according to multiple node_match_fns and prints statistics """ print( "-----------") print( "run_analyses_nodes_overlap_max %s/%s n_jobs=%s -- %s" % (graph_1.name, graph_2.name, n_jobs, node_match_fns)) # compute the nodes of 2 that exist in 1 (ignoring edges) if n_jobs: with joblib.Parallel( n_jobs = n_jobs) as parallel: parallel( joblib.delayed( run_analysis_nodes_overlap_max) ( graph_1, graph_2, fn, export_results = export_results, export_results_prefix = export_results_prefix) for fn in node_match_fns) else: for nm in node_match_fns: run_analysis_nodes_overlap_max( graph_1, graph_2, nm, export_results = export_results, export_results_prefix = export_results_prefix) ######################################################################## ######################################################################## # subgraph overlap max def match_subgraph_max( graph, subgraph, node_match, edge_match = edge_match_exact, file_name = None): """ computes overlap for single subgraph""" assert( subgraph or file_name) if subgraph == None: subgraph = pickle.load( open( file_name, "rb")) graph_matcher = networkx.algorithms.isomorphism.GraphMatcher( graph, subgraph, node_match = node_match, edge_match = edge_match) result = list( graph_matcher.subgraph_isomorphisms_iter()) return result, subgraph def match_graph_max( graph, file_name, node_match, edge_match = edge_match_exact): """ computes overlap for graph loaded from a file""" graph_2 = pickle.load( open( file_name, "rb")) subgraphs = list( networkx.connected_component_subgraphs( graph_2)) graph_matchers = [networkx.algorithms.isomorphism.GraphMatcher( graph, subgraph, node_match = node_match, edge_match = edge_match) for subgraph in subgraphs] results = [ (list( m.subgraph_isomorphisms_iter()), s) for m, s in zip( graph_matchers, subgraphs)] return results def match_subgraphs_max( graph, subgraphs, node_match, edge_match = edge_match_exact, n_jobs = None, file_names = None): """ computes overlap for subgraphs """ # compute the nodes of 2 that exist in 1 (ignoring edges) assert( subgraphs or file_names) if file_names: # use the files instead of subgraphs if possible print( "Running match_subgraphs_max using file_names (individual graph files) n_jobs=%s" %(n_jobs)) if n_jobs: with joblib.Parallel( n_jobs = n_jobs) as parallel: results = parallel( joblib.delayed( match_graph_max) ( graph, file_name, node_match = node_match, edge_match = edge_match) for file_name in file_names) else: results = [ match_graph_max( graph, file_name, node_match = node_match, edge_match = edge_match) for file_name in file_names] results = [r for result in results for r in result] else: print( "Running match_subgraphs_max using subgraphs n_jobs=%s" %(n_jobs)) if n_jobs: with joblib.Parallel( n_jobs = n_jobs) as parallel: results = parallel( joblib.delayed( match_subgraph_max) ( graph, subgraph, node_match, edge_match) for subgraph in subgraphs) else: results = [ match_subgraph_max( graph, subgraph, node_match = node_match, edge_match = edge_match) for subgraph in subgraphs] results_matches = [r[0] for r in results] results_subgraphs = [r[1] for r in results] return results_matches, results_subgraphs def subgraph_match_get_edges( subgraph, match, reverse_match, edge_signatures_1, edge_signatures_2): """ Computes matching edges from match_subgraphs results """ m_edges = {} for e in subgraph.edges( data = True): # a bit of acrobatics to get around having to use digraph (which is buggy) signature_1_1 = (reverse_match[e[0]], reverse_match[e[1]], e[2]["type"]) signature_1_2 = (reverse_match[e[1]], reverse_match[e[0]], e[2]["type"]) signature_2_1 = (e[0], e[1], e[2]["type"]) signature_2_2 = (e[1], e[0], e[2]["type"]) assert signature_1_1 in edge_signatures_1 or signature_1_2 in edge_signatures_1 assert not( signature_1_1 in edge_signatures_1 and signature_1_2 in edge_signatures_1) assert signature_2_1 in edge_signatures_2 or signature_2_2 in edge_signatures_2 assert not( signature_2_1 in edge_signatures_2 and signature_2_2 in edge_signatures_2) if signature_1_1 in edge_signatures_1: signature_1 = signature_1_1 else: signature_1 = signature_1_2 if signature_2_1 in edge_signatures_2: signature_2 = signature_2_1 else: signature_2 = signature_2_2 m_edges[signature_1] = signature_2 assert signature_1 in edge_signatures_1 assert signature_2 in edge_signatures_2 return m_edges def compute_subgraphs_overlap_max( graph_1, graph_2, node_match, edge_match = edge_match_exact, subgraphs_2 = None, n_jobs = None, export_results = False, export_results_prefix = "results-subgraphs-overlap-max", file_names = None, ignore_existing = False): """ compute the subgraphs in graph_1 isomorph to nodes in subgraphs of 2 """ if export_results: export_file = "%s__%s__%s__%s__%s.pickle" % (export_results_prefix, graph_1.name, graph_2.name, node_match.__name__, edge_match.__name__) if export_results and ignore_existing and os.path.exists( export_file): print( "%s:%s/%s:compute_subgraphs_overlap_max:results exist %s, loading" % (now(), graph_1.name, graph_2.name, export_file)) data = pickle.load( open( export_file, "rb")) graph_1, graph_2, results_subgraphs, results_matches = data[0], data[1], data[2], data[3] return results_matches, results_subgraphs if graph_2 and file_names == None and subgraphs_2 == None: subgraphs_2 = list( networkx.connected_component_subgraphs( graph_2)) # Run! results_matches, results_subgraphs = match_subgraphs_max( graph_1, subgraphs_2, node_match = node_match, edge_match = edge_match, n_jobs = n_jobs, file_names = file_names) # export data if export_results: pickle.dump( [graph_1, graph_2, results_subgraphs, results_matches], open( "%s__%s__%s__%s__%s.pickle" % (export_results_prefix, graph_1.name, graph_2.name, node_match.__name__, edge_match.__name__), "wb")) return results_matches, results_subgraphs def get_subgraphs_overlap_max_results( graph_1, graph_2, results_subgraphs, results_matches, species_1 = None, species_2 = None, reactions_1 = None, reactions_2 = None): """ takes results from matching and computes matches for nodes, edges, species, and reactions """ if species_1 == None: species_1 = set(filter_species( graph_1).nodes()) if species_2 == None: species_2 = set(filter_species( graph_2).nodes()) if reactions_1 == None: reactions_1 = set( filter_reactions( graph_1).nodes()) if reactions_2 == None: reactions_2 = set( filter_reactions( graph_2).nodes()) # collet results for analysis matches_nodes_1 = set() matches_nodes_2 = set() matches_edges_1 = set() matches_edges_2 = set() edge_signatures_1 = edge_signatures( graph_1) edge_signatures_2 = edge_signatures( graph_2) for subgraph_2, matches in zip( results_subgraphs, results_matches): for m in matches: matches_nodes_1 = matches_nodes_1.union( m.keys()) matches_nodes_2 = matches_nodes_2.union( m.values()) reverse_m = { v: k for k, v in m.iteritems()} m_edges = subgraph_match_get_edges( subgraph_2, m , reverse_m, edge_signatures_1, edge_signatures_2) matches_edges_1 = matches_edges_1.union( m_edges.keys()) matches_edges_2 = matches_edges_2.union( m_edges.values()) species_1_matches = species_1.intersection( matches_nodes_1) species_2_matches = species_2.intersection( matches_nodes_2) reactions_1_matches = reactions_1.intersection( matches_nodes_1) reactions_2_matches = reactions_2.intersection( matches_nodes_2) return matches_nodes_1, matches_nodes_2, matches_edges_1, matches_edges_2, species_1_matches, species_2_matches, reactions_1_matches, reactions_2_matches def get_subgraphs_overlap_max_results_precision_recall_f_score(graph_1, graph_2, results_subgraphs, results_matches, species_1 = None, species_2 = None, reactions_1 = None, reactions_2 = None): """ Returns precision recall for nodes, species, reactions, edges as a dict """ if species_1 == None: species_1 = set(filter_species( graph_1).nodes()) if species_2 == None: species_2 = set(filter_species( graph_2).nodes()) if reactions_1 == None: reactions_1 = set( filter_reactions( graph_1).nodes()) if reactions_2 == None: reactions_2 = set( filter_reactions( graph_2).nodes()) matches_nodes_1, matches_nodes_2, matches_edges_1, matches_edges_2, species_1_matches, species_2_matches, reactions_1_matches, reactions_2_matches = \ get_subgraphs_overlap_max_results( graph_1, graph_2, results_subgraphs, results_matches, species_1, species_2, reactions_1, reactions_2) result = {} precision = 100. * len( matches_nodes_2) / float( len( graph_2.nodes())) recall = 100. * len( matches_nodes_1) / float( len( graph_1.nodes())) result["node precision"] = precision result["node recall"] = recall if precision + recall == 0: result["node f-score"] = 0 else: result["node f-score"] = 2.0 * (precision * recall) / (precision + recall) precision = 100. * len( species_2_matches) / float( len( species_2)) recall = 100. * len( species_1_matches) / float( len( species_1)) result["species precision"] = precision result["species recall"] = recall if precision + recall == 0: result["species f-score"] = 0 else: result["species f-score"] = 2.0 * (precision * recall) / (precision + recall) precision = 100. * len( reactions_2_matches) / float( len( reactions_2)) recall = 100. * len( reactions_1_matches) / float( len( reactions_1)) result["reaction precision"] = precision result["reaction recall"] = recall if precision + recall == 0: result["reaction f-score"] = 0 else: result["reaction f-score"] = 2.0 * (precision * recall) / (precision + recall) precision = 100. * len( matches_edges_2) / float( len( graph_2.edges())) recall = 100. * len( matches_edges_1) / float( len( graph_1.edges())) result["edge precision"] = precision result["edge recall"] = recall if precision + recall == 0: result["edge f-score"] = 0 else: result["edge f-score"] = 2.0 * (precision * recall) / (precision + recall) return result def print_analysis_subgraphs_overlap_results( graph_1, graph_2, node_match, matches_nodes_1, matches_nodes_2, matches_edges_1, matches_edges_2, species_1_matches, species_2_matches, reactions_1_matches, reactions_2_matches, species_1 = None, species_2 = None, reactions_1 = None, reactions_2 = None): if not species_1: species_1 = set( filter_species( graph_1).nodes()) if not species_2: species_2 = set( filter_species( graph_2).nodes()) if not reactions_1: reactions_1 = set( filter_reactions( graph_1).nodes()) if not reactions_2: reactions_2 = set( filter_reactions( graph_2).nodes()) ## print results print( "{} {}/{}".format( node_match.__name__, graph_1.name, graph_2.name)) precision = 100. * len( matches_nodes_2) / float( len( graph_2.nodes())) recall = 100. * len( matches_nodes_1) / float( len( graph_1.nodes())) f_score = 0.0 if precision + recall > 0: f_score = 2. * precision * recall / (precision + recall) print( "%.2f & %.2f & %.2f node" % (precision, recall, f_score)) precision = 100. * len( species_2_matches) / float( len( species_2)) recall = 100. * len( species_1_matches) / float( len( species_1)) f_score = 0.0 if precision + recall > 0: f_score = 2. * precision * recall / (precision + recall) print( "%.2f & %.2f & %.2f species" % (precision, recall, f_score)) precision = 100 * len( reactions_2_matches) / float( len( reactions_2)) recall = 100 * len( reactions_1_matches) / float( len( reactions_1)) f_score = 0.0 if precision + recall > 0: f_score = 2. * precision * recall / (precision + recall) print( "%.2f & %.2f & %.2f reaction" % (precision, recall, f_score)) precision = 100 * len( matches_edges_2) / float( len( graph_2.edges())) recall = 100 * len( matches_edges_1) / float( len( graph_1.edges())) f_score = 0.0 if precision + recall > 0: f_score = 2. * precision * recall / (precision + recall) print( "%.2f & %.2f & %.2f edge" % (precision, recall, f_score)) def print_analysis_subgraphs_overlap_results_from_file( graph_1_name, graph_2_name, node_match, edge_match = edge_match_exact, prefix = "results/results-subgraphs-overlap-max"): # load file [graph_1, graph_2, results_subgraphs, results_matches] \ = pickle.load( open( "%s__%s__%s__%s__%s.pickle" % ( prefix,graph_1_name, graph_2_name, node_match.__name__, edge_match.__name__), "rb")) # process results species_1 = set(filter_species( graph_1).nodes()) species_2 = set(filter_species( graph_2).nodes()) reactions_1 = set( filter_reactions( graph_1).nodes()) reactions_2 = set( filter_reactions( graph_2).nodes()) matches_nodes_1, matches_nodes_2, \ matches_edges_1, matches_edges_2, \ species_1_matches, species_2_matches, \ reactions_1_matches, reactions_2_matches = \ get_subgraphs_overlap_max_results( graph_1, graph_2, results_subgraphs, results_matches, \ species_1 = species_1, species_2 = species_2, reactions_1 = reactions_1, reactions_2 = reactions_2) # print results print_analysis_subgraphs_overlap_results( graph_1, graph_2, node_match, matches_nodes_1, matches_nodes_2, matches_edges_1, matches_edges_2, species_1_matches, species_2_matches, reactions_1_matches, reactions_2_matches, species_1, species_2, reactions_1, reactions_2) def run_analysis_subgraphs_overlap( graph_1, graph_2, node_match, edge_match = edge_match_exact, subgraphs_2 = None, species_1 = None, species_2 = None, reactions_1 = None, reactions_2 = None, n_jobs = None, export_results = False, export_results_prefix = "results-subgraphs-overlap-max", file_names = None, print_results = True, ignore_existing = False): """ runs analysis for subgraphs """ print( "-----------") print( "%s: run_analysis_subgraphs_overlap %s/%s -- %s" % (now(), graph_1.name, graph_2.name, node_match.__name__)) if subgraphs_2 == None: subgraphs_2 = list( networkx.connected_component_subgraphs( graph_2)) if not species_1: species_1 = set( filter_species( graph_1).nodes()) if not species_2: species_2 = set( filter_species( graph_2).nodes()) if not reactions_1: reactions_1 = set( filter_reactions( graph_1).nodes()) if not reactions_2: reactions_2 = set( filter_reactions( graph_2).nodes()) results_matches, results_subgraphs \ = compute_subgraphs_overlap_max( graph_1, graph_2, node_match = node_match, edge_match = edge_match_exact, subgraphs_2 = subgraphs_2, n_jobs = n_jobs, export_results = export_results, export_results_prefix = export_results_prefix, file_names = file_names, ignore_existing = ignore_existing) if print_results: # process results matches_nodes_1, matches_nodes_2, \ matches_edges_1, matches_edges_2, \ species_1_matches, species_2_matches, \ reactions_1_matches, reactions_2_matches = \ get_subgraphs_overlap_max_results( graph_1, graph_2, results_subgraphs, results_matches, \ species_1 = species_1, species_2 = species_2, reactions_1 = reactions_1, reactions_2 = reactions_2) # print results print_analysis_subgraphs_overlap_results( graph_1, graph_2, node_match, matches_nodes_1, matches_nodes_2, matches_edges_1, matches_edges_2, species_1_matches, species_2_matches, reactions_1_matches, reactions_2_matches, species_1, species_2, reactions_1, reactions_2) return results_matches, results_subgraphs def run_analyses_subgraphs_overlap( graph_1, graph_2, node_match_fns, subgraphs_2 = None, export_results = False, export_results_prefix = "results-subgraphs-overlap-max", print_results = True): """ runs analysis for subgraphs for multiple node_match_fns""" print( "-----------") print( "run_analyses_subgraphs_overlap {}/{} -- {}".format( graph_1.name, graph_2.name, node_match_fns)) if subgraphs_2 == None: subgraphs_2 = list( networkx.connected_component_subgraphs( graph_2)) species_1 = set( filter_species( graph_1).nodes()) species_2 = set( filter_species( graph_2).nodes()) reactions_1 = set( filter_reactions( graph_1).nodes()) reactions_2 = set( filter_reactions( graph_2).nodes()) for node_match in node_match_fns: print("\n---") run_analysis_subgraphs_overlap( graph_1, graph_2, node_match, edge_match = edge_match_exact, subgraphs_2 = subgraphs_2, species_1 = species_1, species_2 = species_2, reactions_1 = reactions_1, reactions_2 = reactions_2, export_results = export_results, export_results_prefix = export_results_prefix) ######################################################################## ######################################################################## ## side-by-side graphviz def _graphviz_label( n, graph, n_id_map = {}, id_prefix = "", participant = False, show_identifier = False): if graph.node[n].get("participants"): n_id_map[n] = id_prefix + n label = graph.node[n]["name"] if show_identifier: label += "\n" + n label = "<table>%s%s</table>" % ("<tr><td port=\"%s\"><b>%s</b></td></tr>" % (n, label), "".join([ _graphviz_label( p, graph, n_id_map, id_prefix = id_prefix, participant = True) for p in graph.node[n]["participant_ids"]])) if participant: return "<tr><td>%s</td></tr>" % label else: return "<%s>" % label elif graph.node[n]["type"] == "species": n_id_map[n] = id_prefix + n label = graph.node[n]["name"] if show_identifier: label += "\n" + n if participant: return "<tr><td port=\"%s\">%s</td></tr>" % (n, label) else: return label else: n_id_map[n] = n label = ", ".join( sbo_go_name(b) for b in graph.node[n]["bqbiol_is"]) if show_identifier: label += "\n" + n return label def _graphviz_add_node( n, graph, graphviz_graph, n_id_map = {}, label = None, show_identifier = False, **kwargs): """ adds a node top level (should not be participant of a complex) """ if label == None and graph.node[n].get("participants"): label = _graphviz_label( n, graph, n_id_map, id_prefix = n + ":", show_identifier = show_identifier) else: label = _graphviz_label( n, graph, n_id_map, show_identifier = show_identifier) if graph.node[n].get("participants"): # has participants graphviz_graph.node( n, label = label, shape = "none", **kwargs) elif graph.node[n]["type"] == "species": graphviz_graph.node( n, label = label, shape = "rectangle", **kwargs) else: graphviz_graph.node( n, label = label, shape = "ellipse", **kwargs) def _graphviz_add_edge( e, graph, graphviz_graph, n_id_map = {}, **kwargs): """ adds an edge to the graphviz graph """ if (e[2] == "product" and not graph.node[e[0]]["type"] == "reaction") \ or (e[2] != "product" and not graph.node[e[1]]["type"] == "reaction"): e = (e[1],e[0],e[2]) e0 = e[0] e1 = e[1] if e0 in n_id_map: e0 = n_id_map[e0] if e1 in n_id_map: e1 = n_id_map[e1] if e[2] == "modifier": graphviz_graph.edge( e0, e1, arrowhead = "diamond", **kwargs) else: graphviz_graph.edge( e0, e1, **kwargs) def graphviz_graph( graph, file_name = "test.dot", view = True, show_identifier = False): """ renders a graph using dot""" import graphviz n_id_map = {} participant_complex_map = { id : n for n in graph.nodes() if graph.node[n].get("participant_ids") for id in graph.node[n].get("participant_ids")} top_nodes = set( graph.nodes()).difference( participant_complex_map.keys()) graphviz_graph = graphviz.Digraph() [_graphviz_add_node( n, graph, graphviz_graph, n_id_map, show_identifier = show_identifier) for n in top_nodes]; [_graphviz_add_edge( (e[0], e[1], e[2]["type"]), graph, graphviz_graph, n_id_map) for e in graph.edges( data = True)]; graphviz_graph.render( file_name, view = view) def get_top_complex( n, graph, participant_complex_map = {}): if participant_complex_map == {}: participant_complex_map = { id : n for n in graph.nodes() if graph.node[n].get("participant_ids") for id in graph.node[n].get("participant_ids")} if not (n in participant_complex_map): return n else: return get_top_complex( participant_complex_map[n], graph, participant_complex_map) def graphviz_comparison_graph( graph_1, graph_2, m_nodes, m_edges, file_name = "test.dot", view = True, include_context_graph_1 = True, show_identifier = False): """ Creates a graph visualization visualizing a match (left, right) """ import graphviz g = graphviz.Digraph() s1 = graphviz.Digraph( "cluster_1") s1.body.append( "\tlabel=\"%s\"" % graph_1.name) participant_complex_map_1 = { id : n for n in graph_1.nodes() if graph_1.node[n].get("participant_ids") for id in graph_1.node[n].get("participant_ids")} top_complexes_1 = [ get_top_complex( n, graph_1, participant_complex_map_1) for n in m_nodes.keys()] n_id_map_1 = {} [_graphviz_add_node( n, graph_1, s1, n_id_map_1, show_identifier = show_identifier) for n in top_complexes_1] [_graphviz_add_edge( e, graph_1, s1, n_id_map_1) for e in m_edges.keys()] if include_context_graph_1: context_edges = set([ sort_edge_signature((edge[0], edge[1], edge[2]["type"]), graph_1) for edge in graph_1.edges( m_nodes.keys(), data = True)]).difference( m_edges.keys()) context_nodes = set( [ c for e in context_edges for c in e[:2]]).difference( top_complexes_1) # add nodes [_graphviz_add_node( get_top_complex( n, graph_1, participant_complex_map_1), graph_1, s1, n_id_map_1, color = "grey", show_identifier = show_identifier) for n in context_nodes] # add edges [_graphviz_add_edge( e, graph_1, s1, n_id_map_1, color = "grey") for e in context_edges] g.subgraph( s1) s2 = graphviz.Digraph( "cluster_2") s2.body.append( "\tlabel=\"%s\"" % graph_2.name) participant_complex_map_2 = { id : n for n in graph_2.nodes() if graph_2.node[n].get("participant_ids") for id in graph_2.node[n].get("participant_ids")} top_complexes_2 = [ get_top_complex( n, graph_2, participant_complex_map_2) for n in m_nodes.values()] n_id_map_2 = {} [_graphviz_add_node( n, graph_2, s2, n_id_map_2, show_identifier = show_identifier) for n in top_complexes_2] [_graphviz_add_edge( e, graph_2, s2, n_id_map_2) for e in m_edges.values()] g.subgraph( s2) for n1, n2 in m_nodes.iteritems(): g.edge( n_id_map_1[n1], n_id_map_2[n2], dir = "none", style = "dotted", constraint = "false") g.render( file_name, view = view) #graphviz_comparison_graph( graph_1, graph_2, m_nodes, m_edges) #graphviz_comparison_graph( graph_1, graph_2, m_nodes, m_edges, include_context_graph_1 = False) ######################################################################## ######################################################################## ## graphviz color overlap def _graphviz_label2( n, graph, n_id_map = {}, id_prefix = "", matched_nodes = set(), participant = False, **kwargs): """ Generates colored labels condition on whether a node matched """ # choose color color = kwargs["color"] fontcolor = kwargs["fontcolor"] fillcolor = kwargs["fillcolor"] show_identifier = kwargs["show_identifier"] if n in matched_nodes: color = kwargs["matched_color"] fontcolor = kwargs["matched_fontcolor"] fillcolor = kwargs["matched_fillcolor"] # handle different node types (with or without participants etc) if graph.node[n].get("participants"): n_id_map[n] = id_prefix + n label = "<table>%s%s</table>" \ % ("<tr><td port=\"%s\" color=\"%s\" bgcolor=\"%s\"><font color=\"%s\"><b>%s</b></font></td></tr>" % (n, color, fillcolor, fontcolor, graph.node[n]["name"]), "".join([ _graphviz_label2( p, graph, n_id_map, id_prefix = id_prefix, participant = True, **kwargs) for p in graph.node[n]["participant_ids"]])) if participant: return "<tr><td>%s</td></tr>" % label else: return "<%s>" % label elif graph.node[n]["type"] == "species": n_id_map[n] = id_prefix + n if participant: return "<tr><td port=\"%s\" color=\"%s\" bgcolor=\"%s\"><font color=\"%s\">%s</font></td></tr>" % (n, color, fillcolor, fontcolor, graph.node[n]["name"]) else: label = graph.node[n]["name"] if show_identifier: label += "\n" + n return label else: n_id_map[n] = n label = ", ".join( sbo_go_name(b) for b in graph.node[n]["bqbiol_is"]) if show_identifier: label += "\n" + n return label def _graphviz_add_node2( n, graph, graphviz_graph, n_id_map = {}, matched_nodes = set(), **kwargs): # choose color color = kwargs["color"] fontcolor = kwargs["fontcolor"] fillcolor = kwargs["fillcolor"] if n in matched_nodes: color = kwargs["matched_color"] fontcolor = kwargs["matched_fontcolor"] fillcolor = kwargs["matched_fillcolor"] # compute label if graph.node[n].get("participants"): label = _graphviz_label2( n, graph, n_id_map, id_prefix = n + ":", matched_nodes = matched_nodes, **kwargs) else: label = _graphviz_label2( n, graph, n_id_map, matched_nodes = matched_nodes, **kwargs) if graph.node[n].get("participants"): # has participants graphviz_graph.node( n, label = label, color = color, fontcolor = fontcolor, fillcolor = fillcolor, shape = "none") elif graph.node[n]["type"] == "species": # simple species graphviz_graph.node( n, label = label, shape = "rectangle", color = color, fontcolor = fontcolor, fillcolor = fillcolor, style = "filled") else: # simple reaction graphviz_graph.node( n, label = label, shape = "ellipse", color = color, fontcolor = fontcolor, fillcolor = fillcolor, style = "filled") def graphviz_comparison_graph2( graph_1, matched_nodes = set(), matched_edges = set(), file_name = "test.dot", view = True, mode = "only_match", # can be only_match, context, all matched_color = "red", matched_fontcolor = "red", matched_fillcolor = "white", fontcolor = "grey", color = "grey", fillcolor = "white", show_identifier = False): """ Visualization of matched nodes and edges using different color (single graph)""" import graphviz g = graphviz.Digraph() participant_complex_map_1 = { id : n for n in graph_1.nodes() if graph_1.node[n].get("participant_ids") for id in graph_1.node[n].get("participant_ids")} top_complexes_1 = [ get_top_complex( n, graph_1, participant_complex_map_1) for n in matched_nodes] n_id_map_1 = {} for n in top_complexes_1: _graphviz_add_node2( n, graph_1, g, n_id_map_1, matched_nodes, matched_color = matched_color, matched_fontcolor = matched_fontcolor, matched_fillcolor = matched_fillcolor, fontcolor = fontcolor, color = color, fillcolor = fillcolor, show_identifier = show_identifier) [_graphviz_add_edge( e, graph_1, g, n_id_map_1, color = matched_color) for e in matched_edges] if mode == "context": context_edges = set([ sort_edge_signature((edge[0], edge[1], edge[2]["type"]), graph_1) for edge in graph_1.edges( matched_nodes, data = True)]).difference( matched_edges) context_nodes_complexes = set([get_top_complex( n, graph_1, participant_complex_map_1) for n in set( [ c for e in context_edges for c in e[:2]]).difference( matched_nodes)]).difference(top_complexes_1) # add context nodes [_graphviz_add_node2( n, graph_1, g, n_id_map_1, color = color, fontcolor = fontcolor, fillcolor = fillcolor, show_identifier = show_identifier) for n in context_nodes_complexes] # add context edges [_graphviz_add_edge( e, graph_1, g, color = color) for e in set(context_edges).difference( matched_edges)] elif mode == "all": all_top_complexes = set( [ get_top_complex( n, graph_1, participant_complex_map_1) for n in set(graph_1.nodes()).difference( matched_nodes)]) all_edges = set([ (edge[0], edge[1], edge[2]["type"]) for edge in graph_1.edges( data = True)]).difference( matched_edges) # add context nodes [_graphviz_add_node2( n, graph_1, g, n_id_map_1, color = color, fontcolor = fontcolor, fillcolor = fillcolor, show_identifier = show_identifier) for n in all_top_complexes] # add context edges [_graphviz_add_edge( e, graph_1, g, color = color) for e in all_edges] g.render( file_name, view = view) #graphviz_comparison_graph2( graph_1, set(m_nodes.keys()), set(m_edges.keys())) #graphviz_comparison_graph2( graph_1, set(m_nodes.keys()), set(m_edges.keys()), mode = "all") ######################################################################## ######################################################################## def subgraph_overlap_graphviz( file_name = "TARGET__NLP-ANN__nm_name_clean_approx_OR_gene_id_intersect_AND_sbo_is_a__edge_match_exact--MAX.pickle"): """ Creates a single overlap graph from subgraph match results (color based) """ import pickle [graph_1, graph_2, subgraphs_2, matches_list] = pickle.load( open( file_name, "rb")) edge_signatures_1 = edge_signatures( graph_1) edge_signatures_2 = edge_signatures( graph_2) all_matched_nodes_1 = set() all_matched_edges_1 = set() for subgraph_2, matches in zip( subgraphs_2, matches_list): for m in matches: all_matched_nodes_1.update( m.keys()) reverse_m = { v: k for k, v in m.iteritems()} m_edges = subgraph_match_get_edges( subgraph_2, m , reverse_m, edge_signatures_1, edge_signatures_2) all_matched_edges_1.update( m_edges.keys()) graphviz_comparison_graph2( graph_1, all_matched_nodes_1, all_matched_edges_1, mode = "all", file_name = file_name + ".dot") def subgraph_overlaps_graphviz( input_file = "results/results-subgraphs-overlap-max__TARGET__NLP-ANN__nm_name_clean_approx_OR_bqbiol_is_equal_AND_nm_bqbiol_is_overlaps_sbo_is_a__edge_match_exact.pickle", output_file_prefix = "results-subgraphs-overlap-max__TARGET__NLP-ANN__nm_name_clean_approx_OR_bqbiol_is_equal_AND_nm_bqbiol_is_overlaps_sbo_is_a__edge_match_exact", include_context_graph_1 = True, ignore_isolated_nodes = True, graph_1 = None, graph_2 = None, show_identifier = False, reactions_1 = None, reactions_2 = None, graph_1_reaction_txt_mapping = None, graph_2_reaction_txt_mapping = None): """ Creates many overlap graph from subgraph match results (comparison graph left/right) """ import pickle [graph_1_f, graph_2_f, subgraphs_2, matches_list] = pickle.load( open( input_file, "rb")) if graph_1 == None: graph_1 = graph_1_f if graph_2 == None: graph_2 = graph_2_f if reactions_1 == None: reactions_1 = set( filter_reactions( graph_1)) if reactions_2 == None: reactions_2 = set( filter_reactions( graph_2)) edge_signatures_1 = edge_signatures( graph_1) edge_signatures_2 = edge_signatures( graph_2) for i, subgraph_2, matches in zip( range(len(subgraphs_2)), subgraphs_2, matches_list): print( "Processing %i of %i" % (i, len(subgraphs_2))) if ignore_isolated_nodes and len(subgraph_2.nodes()) < 2: print( "Ignoring %i of %i" % (i, len(subgraphs_2))) else: for j, m_nodes in enumerate( matches): print( "Processing matches %i of %i" % (j, len(matches))) reverse_m_nodes = { v: k for k, v in m_nodes.iteritems()} m_edges = subgraph_match_get_edges( subgraph_2, m_nodes, reverse_m_nodes, edge_signatures_1, edge_signatures_2) output_file = "%s-%i-%i.dot" % ( output_file_prefix, i, j) print( "Exporting %s" % output_file) graphviz_comparison_graph( graph_1, graph_2, m_nodes, m_edges, file_name = output_file, view = False, show_identifier = show_identifier, include_context_graph_1 = include_context_graph_1) if graph_1_reaction_txt_mapping: output_file = "%s-%i-%i-target.txt" % ( output_file_prefix, i, j) print( "Exporting %s" % output_file) m_reactions_1 = reactions_1.intersection( m_nodes.keys()) open( output_file, "wt").write( "\n".join( [graph_1_reaction_txt_mapping[r] for r in m_reactions_1 if r in graph_1_reaction_txt_mapping])) if graph_2_reaction_txt_mapping: output_file = "%s-%i-%i-nlp.txt" % ( output_file_prefix, i, j) print( "Exporting %s" % output_file) m_reactions_2 = reactions_2.intersection( m_nodes.values()) open( output_file, "wt").write( "\n".join( [graph_2_reaction_txt_mapping[r] for r in m_reactions_2 if r in graph_2_reaction_txt_mapping])) ######################################################################## ######################################################################## ## overlap SBML def _sbml_color_all( root, color_lines = "90000000", color_bounds = "00000000"): namespaces = {"cd" : "http://www.sbml.org/2001/ns/celldesigner", "sbml" : "http://www.sbml.org/sbml/level2"} for line in root.xpath("//cd:line", namespaces = namespaces): line.set( "color", color_lines) for paint in root.xpath("//cd:paint", namespaces = namespaces): paint.set( "color", color_bounds) def _sbml_color_reaction( root, reaction_id, color = "ffff0000", width = "1.0"): """ colors the reaction links to reactant and product""" namespaces = {"cd" : "http://www.sbml.org/2001/ns/celldesigner", "sbml" : "http://www.sbml.org/sbml/level2"} lines = root.xpath("//sbml:reaction[@id='%s']/sbml:annotation/cd:line" % reaction_id, namespaces = namespaces) assert( len(lines) == 1) lines[0].set( "color", color) lines[0].set( "width", width) def _sbml_color_reaction_modifier( root, reaction_id, modifier_id, color = "ffff0000", width = "1.0"): namespaces = {"cd" : "http://www.sbml.org/2001/ns/celldesigner", "sbml" : "http://www.sbml.org/sbml/level2"} lines = root.xpath("//sbml:reaction[@id='%s']/sbml:annotation/cd:listOfModification/cd:modification[@aliases='%s']/cd:line" % (reaction_id, modifier_id), namespaces = namespaces) if len(lines) == 1: lines[0].set( "color", color) lines[0].set( "width", width) else: print( "_sbml_color_reaction_modifier:Ignoring %s/%s" % (reaction_id, modifier_id)) def _sbml_color_species( root, species_id, color = "ffff0000"): namespaces = {"cd" : "http://www.sbml.org/2001/ns/celldesigner", "sbml" : "http://www.sbml.org/sbml/level2"} paints = root.xpath( "//cd:speciesAlias[@id='%s']//cd:paint" % species_id, namespaces = namespaces) \ or root.xpath( "//cd:complexSpeciesAlias[@id='%s']//cd:paint" % species_id, namespaces = namespaces) assert( len(paints) > 0) [ p.set( "color", color) for p in paints] def subgraph_overlaps_sbml( graph_1, matches_nodes_1 = set(), matches_edges_1 = set(), inn = 'mTORPathway-celldesigner.xml', out = 'mTORPathway-celldesigner-color.xml', background_color_bounds = "00000000", background_color_lines = "000000", matched_color = "FF00FF00", matched_line_width = "2.0"): """ Visualization of matched species and reactions using different color (single graph)""" print( "sbml_color_matched:Loading %s" % inn) tree = lxml.etree.parse( inn); root = tree.getroot() print( "subgraph_overlaps_sbml:Coloring background") _sbml_color_all( root, color_bounds = background_color_bounds, color_lines = background_color_lines) # color species print( "subgraph_overlaps_sbml:Coloring matched species") for n in set( filter_species( graph_1).nodes()).intersection( matches_nodes_1): _sbml_color_species( root, n, color = matched_color) print( "subgraph_overlaps_sbml:Coloring matched reactions") matched_reactions = set( filter_reactions( graph_1).nodes()).intersection( matches_nodes_1) modifier_edges = filter( lambda e: e[2] == "modifier", matches_edges_1) matched_modifiers = { r : [e[0] for e in modifier_edges if e[1] == r] for r in matched_reactions} for r in matched_reactions: _sbml_color_reaction( root, r, color = matched_color, width = matched_line_width) for m in matched_modifiers[r]: _sbml_color_reaction_modifier( root, r, m, color = matched_color, width = matched_line_width) print( "subgraph_overlaps_sbml:Outputting %s" % out) tree.write( out, encoding='utf-8', xml_declaration = True) ######################################################################## ######################################################################## # initialize def initialize(): global SBO_NODES, GENE_MAP, SIMSTRING_DB print( "Initializing networkx_analysis.py") print( "Loading SBO") SBO_NODES = pickle.load( open( "sbo.pickle", "rb")) print( "Loading GENE_MAP") GENE_MAP = pickle.load( open( "gene_map.pickle", "rb")) print( "Loading SIMSTRING_DB") SIMSTRING_DB = simstring.reader( 'gene_list.simstring') SIMSTRING_DB.measure = simstring.cosine SIMSTRING_DB.threshold = 0.9 def load_pathway( name, input_file, output_file, output_file_participant_graph = None, output_file_w_participant_edges = None, ending = ".xml", pickle_graph = True, prefix = ""): # load data print( "Loading %s" % (input_file)) sbml = load_sbml( input_file) model = sbml.getModel(); if model == None: print( "Error loading %s" % (input_file)) return; graph, participant_graph, graph_w_participant_edges = create_graph( model, prefix = prefix) graph.name = name graph.source_file_name = input_file graph.file_name = output_file if pickle_graph == True: print( "Saving networkx as " + output_file) pickle_output_file = output_file networkx.write_gpickle( graph, pickle_output_file) if output_file_participant_graph: print( "Saving participant_graph networkx as " + output_file_participant_graph) networkx.write_gpickle( participant_graph, output_file_participant_graph) if output_file_w_participant_edges: print( "Saving graph with participant edges networkx as " + output_file_w_participant_edges) networkx.write_gpickle( graph_w_participant_edges, output_file_w_participant_edges) return graph, participant_graph, graph_w_participant_edges ######################################################################## ######################################################################## # PROCESSING SIGNATURES def run_analysis_bqbiol_is_signatures( bqbiol_is_1, bqbiol_is_2, name_1 = "name_1", name_2 = "name_2", type = "species", equal_fns = [operator.eq]): bqbiol_is_terms_set_1 = set( [b for t in bqbiol_is_1 for b in t]) bqbiol_is_set_1 = set(bqbiol_is_1) bqbiol_is_terms_set_2 = set( [b for t in bqbiol_is_2 for b in t]) bqbiol_is_set_2 = set(bqbiol_is_2) data = [] res_1, res_2, precision, recall, f_score = analyse_set_overlap( bqbiol_is_terms_set_1, bqbiol_is_terms_set_2) print("%s:%s/%s:%s unique bqbiol_is terms equal: %.2f & %.2f & %.2f precision/recall/fscore" % (now(), name_1, name_2, type, precision, recall, f_score)) data.append({ "graph_1" : name_1, "graph_2" : name_2, "unique" : True, "type" : type, "reduction" : "bqbiol_is terms", "eq" : "eq", "precision" : precision, "recall" : recall, "f-score" : f_score}) for eq_fun in equal_fns: res_1, res_2, precision, recall, f_score = analyse_set_overlap( bqbiol_is_set_1, bqbiol_is_set_2, eq_fun) print("%s:%s/%s:%s unique bqbiol_is signatures %s: %.2f & %.2f & %.2f precision/recall/fscore" % (now(), name_1, name_2, type, eq_fun.__name__, precision, recall, f_score)) data.append({ "graph_1" : name_1, "graph_2" : name_2, "unique" : True, "type" : type, "reduction" : "bqbiol_is signatures", "eq" : eq_fun.__name__, "precision" : precision, "recall" : recall, "f-score" : f_score}) res_1, res_2, precision, recall, f_score = analyse_list_overlap( bqbiol_is_1, bqbiol_is_2, eq_fun) print("%s:%s/%s:%s bqbiol_is signatures %s: %.2f & %.2f & %.2f precision/recall/fscore" % (now(), name_1, name_2, type, eq_fun.__name__, precision, recall, f_score)) data.append({ "graph_1" : name_1, "graph_2" : name_2, "unique" : False, "type" : type, "reduction" : "bqbiol_is signatures", "eq" : eq_fun.__name__, "precision" : precision, "recall" : recall, "f-score" : f_score}) return data def run_analysis_species_signatures( graph_1, graph_2, species_1 = None, species_2 = None): import pandas print("%s:%s/%s:run_analysis_species_signatures" % (now(), graph_1.name, graph_2.name)) if species_1 == None: print("%s:%s/%s:run_analysis_species_signatures:filtering species graph_1" % (now(), graph_1.name, graph_2.name)) species_1 = filter_species( graph_1) if species_2 == None: print("%s:%s/%s:run_analysis_species_signatures:filtering species graph_2" % (now(), graph_1.name, graph_2.name)) species_2 = filter_species( graph_2) data = [] print("%s:%s/%s:run_analysis_species_signatures:names" % (now(), graph_1.name, graph_2.name)) for reduction_fun, equality_fn in zip( [clean_name, clean_name2, clean_name2], [operator.eq, operator.eq, name_approx_equal]): source_target = ([ reduction_fun( graph_1.node[n]["name"]) for n in species_1], [ reduction_fun( graph_2.node[n]["name"]) for n in species_2]) res_1, res_2, precision, recall, f_score = analyse_set_overlap( set(source_target[0]), set(source_target[1]), equality_fn) print("%s:%s/%s: species unique overlap %s/%s: %.2f & %.2f & %.2f precision/recall/fscore" % (now(), graph_1.name, graph_2.name, reduction_fun.__name__, equality_fn.__name__, precision, recall, f_score)) data.append({ "graph_1" : graph_1.name, "graph_2" : graph_2.name, "unique" : True, "type" : "species", "reduction" : reduction_fun.__name__, "eq" : equality_fn.__name__, "precision" : precision, "recall" : recall, "f-score" : f_score}) res_1, res_2, precision, recall, f_score = analyse_list_overlap( source_target[0], source_target[1], equality_fn) print("%s:%s/%s: species overlap %s/%s: %.2f & %.2f & %.2f precision/recall/fscore" % (now(), graph_1.name, graph_2.name, reduction_fun.__name__, equality_fn.__name__, precision, recall, f_score)) data.append({ "graph_1" : graph_1.name, "graph_2" : graph_2.name, "unique" : False, "type" : "species", "reduction" : reduction_fun.__name__, "eq" : equality_fn.__name__, "precision" : precision, "recall" : recall, "f-score" : f_score}) # BQBIOL_IS print("%s:%s/%s:run_analysis_species_signatures:running bqbiol_is" % (now(), graph_1.name, graph_2.name)) data.extend( run_analysis_bqbiol_is_signatures( bqbiol_is_1 = [ graph_1.node[n]["bqbiol_is"] for n in species_1], bqbiol_is_2 = [ graph_2.node[n]["bqbiol_is"] for n in species_2], name_1 = graph_1.name, name_2 = graph_2.name, type = "species", equal_fns = [ tuple_eq_empty_not_eq, tuple_overlaps])) data_p =
pandas.DataFrame(data)
pandas.DataFrame
""" calcimpy Input impedance calculation program for air column ( wind instruments ). """ import argparse import sys import os.path import numpy as np import pandas as pd import xmensur as xmn import imped __version__ = '1.1.0' def main(): parser = argparse.ArgumentParser(description='calcimpy : input impedance calculation for air column') parser.add_argument('-v', '--version', action='version', version='%(prog)s {}'.format(__version__)) parser.add_argument('-m', '--minfreq', default='0.0', help='minimum frequency to calculate, default 0 Hz.') parser.add_argument('-M', '--maxfreq', default='2000.0', help='maximum frequency to calculate, default 2000 Hz.') parser.add_argument('-s', '--stepfreq', default='2.5', help='step frequency for calculation, default 2.5 Hz.') parser.add_argument('-t', '--temperature', default='24.0', help='air temperature, default 24 celsius.') parser.add_argument('-R', '--radiation', choices=['PIPE', 'BAFFLE', 'NONE'], default='PIPE', help='type of calculation of radiation, default PIPE.') parser.add_argument('-o', '--output', default='', help='output filename, stdout is used when "-"') parser.add_argument('filepath') args = parser.parse_args() path = args.filepath if path: # read mensur file here mentop = xmn.read_mensur_file(path) # set calculation conditions imped.set_params(temperature=float(args.temperature), minfreq=float(args.minfreq), maxfreq=float(args.maxfreq), stepfreq=float(args.stepfreq), rad=args.radiation) nn = (imped._Mf - imped._mf)/imped._sf + 1 ff = np.linspace(imped._mf, imped._Mf, nn, endpoint=True) wff = np.pi*2*ff # set file output if args.output == '-': fout = sys.stdout elif args.output == '': # default *.imp rt, ext = os.path.splitext(path) fout = open(rt + '.imp', 'w') else: fout = open(args.output, 'w') s = mentop.df*mentop.df*np.pi/4 # section area zz = [s * imped.input_impedance(frq, mentop) for frq in wff] zr = np.real(zz) zi = np.imag(zz) mg = [0 if z == 0 else 20*np.log10(np.abs(z)) for z in zz] dt =
pd.DataFrame()
pandas.DataFrame
from collections import defaultdict import glob import os import pickle import re from matplotlib import pyplot as plt import numpy as np import pandas as pd from common.utils import METHOD_NAME, get_latest_folder, load_compressed_pickle, mysavefig from games.maze.maze_game import MazeGame from games.maze.maze_level import MazeLevel from metrics.rl.tabular.rl_agent_metric import RLAgentMetric from metrics.rl.tabular.rl_difficulty_metric import RLDifficultyMetric from novelty_neat.maze.neat_maze_level_generation import GenerateMazeLevelsUsingTiling import seaborn as sns def pretty_key(k): if 'time' in k: return ' '.join(map(str.title, k.split("_"))) + " (s)" # Thanks :) https://stackoverflow.com/a/37697078 splitted = re.sub('([A-Z][a-z]+)', r' \1', re.sub('([A-Z]+)', r' \1', k)).split() return ' '.join(splitted) def analyse_104_with_line_graph(): """ This plots a line graph of experiment 104, as well as using some data from experiment 107. The x-axis will be level size and the y-axis the metrics, specifically time and maybe some others. """ data = load_compressed_pickle(get_latest_folder('../results/experiments/104b/runs/*/data.pbz2')) def get_mean_standard_for_one_point_in_directga(width, mean_dic, std_dic): path = f'../results/experiments/experiment_107_a/Maze/DirectGA/2021-10-25_20-03-03/{width}/*/*/*/*/*/*/*.p' li = glob.glob(path) print(len(li), path) assert len(li) == 5 metrics = defaultdict(lambda: []) all_levels = [] for p in li: with open(p, 'rb') as f: d = pickle.load(f) for key in d['eval_results_single']: metrics[key].append(d['eval_results_single'][key]) for key in ['generation_time']: # DON'T divide by 100 here, as this was for 1 level. The experiment.py already normalised it. metrics[key].append(d[key]) all_levels.append(d['levels'][0]) dir = f'results/maze/104/line_graph/levels_direct_ga' for i, l in enumerate(all_levels): os.makedirs(dir, exist_ok=True) plt.figure(figsize=(20, 20)) plt.imshow(1 - l.map, cmap='gray', vmin=0, vmax=1) plt.axis('off') mysavefig(os.path.join(dir, f'{width}-{i}.png'), pad_inches=0.1, bbox_inches='tight') plt.close() print("Direct ", metrics.keys()) for key in metrics: metrics[key] = np.array(metrics[key]) mean_dic[key].append(np.mean(metrics[key])) std_dic[key].append(np.std(metrics[key])) D = data['data'] # D[14] = data['original'] fs = data['files'] og_metrics = defaultdict(lambda: 0) for T in data['original']: things = T['eval_results_single'] for key in things: og_metrics[key] += np.mean(things[key]) for key in og_metrics: og_metrics[key] /= len(fs) all_metrics = { # 14: og_metrics } all_values_mean = defaultdict(lambda : []) all_values_std = defaultdict(lambda : []) all_values_mean_direct_ga = defaultdict(lambda : []) all_values_std_direct_ga = defaultdict(lambda : []) directga_widths = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] for w in directga_widths: get_mean_standard_for_one_point_in_directga(w, all_values_mean_direct_ga, all_values_std_direct_ga) widths = [] the_keys_to_use = sorted(D.keys()) for width in the_keys_to_use: levels_to_plot = [] metrics = defaultdict(lambda: []) widths.append(width) for d in D[width]: levels_to_plot.append(d['levels'][0]) for key in d['eval_results_single']: metrics[key].append(d['eval_results_single'][key]) for key in ['generation_time']: if width != 14: # for 14, it was measured properly. # the values in here were for all levels, so we norm it to one level. metrics[key].append(d[key] / 100) else: metrics[key].append(d[key]) for key in metrics: metrics[key] = np.array(metrics[key]) all_values_mean[key].append(np.mean(metrics[key])) all_values_std[key].append(np.std(metrics[key])) dir = 'results/maze/104/line_graph/levels' os.makedirs(dir, exist_ok=True) for i, l in enumerate(levels_to_plot): l: MazeLevel plt.figure(figsize=(20, 20)) l.show(True) plt.axis('off') mysavefig(os.path.join(dir, f'{width}-{i}.png'), pad_inches=0.1, bbox_inches='tight') plt.close() metrics_to_plot = [ 'generation_time', 'SolvabilityMetric', 'CompressionDistanceMetric', 'AStarDiversityMetric', 'AStarDifficultyMetric', 'AStarEditDistanceDiversityMetric' ] print("KEYS: ", all_values_mean.keys()) sns.set_theme() for key in metrics_to_plot: all_values_mean[key] = np.array(all_values_mean[key]) all_values_std[key] = np.array(all_values_std[key]) all_values_mean_direct_ga[key] = np.array(all_values_mean_direct_ga[key]) all_values_std_direct_ga[key] = np.array(all_values_std_direct_ga[key]) plt.figure() try: plt.plot(widths, all_values_mean[key], label=METHOD_NAME) plt.fill_between(widths, all_values_mean[key] - all_values_std[key], all_values_mean[key] + all_values_std[key], alpha=0.5) except Exception as e: print("ERROR", e) if len(all_values_mean_direct_ga[key]) == 0: print(f"KEY = {key} does not have data for DirectGA") else: plt.plot(directga_widths, all_values_mean_direct_ga[key], label='DirectGA+') plt.fill_between(directga_widths, all_values_mean_direct_ga[key] - all_values_std_direct_ga[key], all_values_mean_direct_ga[key] + all_values_std_direct_ga[key], alpha=0.5) plt.xlabel("Level Width = Height") pkey = pretty_key(key).replace("Metric", '').strip() plt.ylabel(pkey) plt.title(f"Comparing {pkey} vs Level Size. Higher is better.") if 'time' in key.lower(): plt.title(f"Comparing {pkey} vs Level Size. Lower is better.") plt.scatter([14, 20], [40000, 70000], marker='x', color='red', label='PCGRL (Turtle)') plt.yscale('log') plt.tight_layout() # plt.show() plt.legend() mysavefig(f'results/maze/104/line_graph/{key}.png', bbox_inches='tight', pad_inches=0.05) df =
pd.DataFrame(all_metrics)
pandas.DataFrame
import tempfile import unittest import numpy as np import pandas as pd from airflow import DAG from datetime import datetime from mock import MagicMock, patch import dd.api.workflow.dataset from dd import DB from dd.api.workflow.actions import Action from dd.api.workflow.sql import SQLOperator dd.api.workflow.dataset.is_ipython = lambda: True dd.api.workflow.actions.is_ipython = lambda: True from dd.api.contexts.distributed import AirflowContext from dd.api.workflow.dataset import Dataset, DatasetLoad, DatasetTransformation class TestDataset(unittest.TestCase): def setUp(self): self.workflow = MagicMock(spec_set=DAG("test_workflow", start_date=datetime.now())) self.workflow.dag_id = "mock" self.db = MagicMock() self.db.query.result_value = None def test_creating_dataset_should_add_task_to_workflow(self): # Given workflow = self.workflow db = self.db # When _ = AirflowContext(workflow, db).create_dataset("table") # Assert workflow.add_task.assert_called_once() def test_apply_method_should_run(self): # Given context = AirflowContext(self.workflow, self.db) dataset = context.create_dataset("table") self.db.retrieve_table.return_value = pd.DataFrame([[np.nan, 1], [0, 1]]) expected_result1 = pd.DataFrame([[np.nan, 7], [6, 7]]) # With a function with only args def my_apply_function(indf, arg1, arg2, arg3): self.assertEqual(arg1, 1) self.assertEqual(arg2, 2) self.assertEqual(arg3, 3) odf = indf.applymap(lambda t: t + arg1 + arg2 + arg3) self.assertTrue(odf.equals(expected_result1)) # When a valid execution new_action = dataset.apply(my_apply_function, 1, 2, 3) # Assert self.assertFalse(new_action.executed) new_action.execute() def test_apply_method_should_raise_when_invalid_number_args(self): # Given context = AirflowContext(self.workflow, self.db) dataset = context.create_dataset("table") self.db.retrieve_table.return_value = pd.DataFrame([[np.nan, 1], [0, 1]]) # With a function with only args def my_apply_function(indf, arg1, arg2, arg3): pass # When new_action = dataset.apply(my_apply_function, 1, 2) # Assert self.assertFalse(new_action.executed) with self.assertRaises(TypeError) as context: new_action.execute() possible_exceptions = ["my_apply_function() missing 1 required positional argument: 'arg3'", # msg Python 3 "my_apply_function() takes exactly 4 arguments (3 given)"] # msg Python 2 self.assertIn(str(context.exception), possible_exceptions) # When new_action = dataset.apply(my_apply_function) # Assert self.assertFalse(new_action.executed) with self.assertRaises(TypeError) as context: new_action.execute() possible_exceptions = ["my_apply_function() missing 3 required positional arguments: 'arg1', 'arg2', and 'arg3'", # msg Python 3 "my_apply_function() takes exactly 4 arguments (1 given)"] # msg Python 2 self.assertIn(str(context.exception), possible_exceptions) def test_transform_method_should_return_new_dataset(self): # Given context = AirflowContext(self.workflow, self.db) dataset = context.create_dataset("table") # When new_dataset = dataset.transform(lambda x: x) # Assert self.assertIsNot(new_dataset, dataset) self.assertIsInstance(new_dataset, Dataset) def test_transform_method_should_handle_optional_kwargs(self): # Given context = AirflowContext(self.workflow, self.db) dataset = context.create_dataset("table") dataset2 = context.create_dataset("table") self.db.retrieve_table.return_value = pd.DataFrame([[np.nan, 1], [0, 1]]) expected_result1 = pd.DataFrame([[np.nan, 2], [1, 2]]) # With a function with only args def my_transform_function(indf, df2, arg1=0): return indf.applymap(lambda t: t + arg1) # When new_dataset = dataset.transform(my_transform_function, arg1=1, output_table="mytable", datasets=[dataset2], write_options=dict(if_exists="replace")) # Assert self.assertIsNone(new_dataset.dataframe) self.assertFalse(new_dataset.executed) # Finally new_dataset.execute() new_dataset.collect() self.assertTrue(self.db.import_dataframe.call_args[0][0].equals( expected_result1 )) self.assertTrue(new_dataset.output_table == "mytable") def test_transform_method_should_raise_when_invalid_number_args(self): # Given context = AirflowContext(self.workflow, self.db) dataset = context.create_dataset("table") self.db.retrieve_table.return_value = pd.DataFrame([[np.nan, 1], [0, 1]]) expected_result1 = pd.DataFrame([[np.nan, 4], [3, 4]]) # With a function with only args def my_transform_function(indf, arg1, arg2, arg3): return indf.applymap(lambda t: t + arg1 + arg2 + arg3) # When new_dataset = dataset.transform(my_transform_function, 1, 2) # Assert self.assertIsNone(new_dataset.dataframe) self.assertFalse(new_dataset.executed) with self.assertRaises(TypeError) as context: new_dataset.execute() possible_exceptions = ["my_transform_function() missing 1 required positional argument: 'arg3'", # msg Python 3 "my_transform_function() takes exactly 4 arguments (3 given)"] # msg Python 2 self.assertIn(str(context.exception), possible_exceptions) # When new_dataset = dataset.transform(my_transform_function) # Assert self.assertIsNone(new_dataset.dataframe) self.assertFalse(new_dataset.executed) with self.assertRaises(TypeError) as context: new_dataset.execute() possible_exceptions = ["my_transform_function() missing 3 required positional arguments: 'arg1', 'arg2', and 'arg3'", # msg Python 3 "my_transform_function() takes exactly 4 arguments (1 given)"] # msg Python 2 self.assertIn(str(context.exception), possible_exceptions) # When new_dataset = dataset.transform(my_transform_function, 1, 1, 1) # Assert self.assertIsNone(new_dataset.dataframe) self.assertFalse(new_dataset.executed) # Finally new_dataset.execute() new_dataset.collect() self.assertTrue(self.db.import_dataframe.call_args[0][0].equals( expected_result1 )) def test_transform_method_should_handle_args_kwargs(self): # Given context = AirflowContext(self.workflow, self.db) dataset = context.create_dataset("table") self.db.retrieve_table.return_value = pd.DataFrame([[np.nan, 1], [0, 1]]) expected_result1 = pd.DataFrame([[np.nan, 2], [1, 2]]) expected_result2 = pd.DataFrame([[np.nan, 3], [2, 3]]) # With a function with arg and kwargs def mytransfun(indf, myarg1, mynamedarg1=1): return indf.applymap(lambda t: t + myarg1 - mynamedarg1) # When new_dataset = dataset.transform(mytransfun, 2) # Assert self.assertIsNone(new_dataset.dataframe) self.assertFalse(new_dataset.executed) new_dataset.execute() new_dataset.collect() self.assertTrue(self.db.import_dataframe.call_args[0][0].equals( expected_result1 )) # When new_dataset = dataset.transform(mytransfun, 2, mynamedarg1=0) # Assert self.assertIsNone(new_dataset.dataframe) self.assertFalse(new_dataset.executed) new_dataset.execute() new_dataset.collect() self.assertTrue(self.db.import_dataframe.call_args[0][0].equals( expected_result2 )) def test_transform_method_should_apply_function_to_dataset(self): # Given context = AirflowContext(self.workflow, self.db) dataset = context.create_dataset("table") self.db.retrieve_table.return_value = pd.DataFrame([[np.nan, 1], [0, 1]]) dataset2 = context.create_dataset("table") expected_result1 = pd.DataFrame([[np.nan, 2], [1, 2]]) expected_result2 = pd.DataFrame([[0.0, 1], [0.0, 1]]) # When new_dataset = dataset.transform(lambda x: x.applymap(lambda t: t + 1)) new_dataset2 = dataset2.transform(lambda df: df.fillna(0)) # Assert self.assertIsNone(new_dataset.dataframe) self.assertIsNone(new_dataset2.dataframe) self.assertFalse(new_dataset.executed) self.assertFalse(new_dataset2.executed) new_dataset.execute() new_dataset.collect() self.assertTrue(self.db.import_dataframe.call_args[0][0].equals( expected_result1 )) new_dataset2.execute() new_dataset2.collect() self.assertTrue(self.db.import_dataframe.call_args[0][0].equals( expected_result2 )) def test_transform_method_should_be_able_to_process_multiple_datasets( self): # Given context = AirflowContext(self.workflow, self.db) dataset1 = context.create_dataset("table") dataset2 = context.create_dataset("table") mock_function = MagicMock() mock_function.__name__ = "mock" new_dataset = dataset1.transform(mock_function, datasets=[dataset2]) # When new_dataset.execute() new_dataset.collect() # Check args, kwargs = mock_function.call_args self.assertTrue(args[0], dataset1) self.assertTrue(args[1], dataset2) def test_collect_should_return_dataframe_attribute_when_non_empty(self): # Given context = AirflowContext(self.workflow, self.db) dataset = context.create_dataset("table") initial_dataframe = pd.DataFrame([[0.0, 1], [0.0, 1]]) dataset.dataframe = initial_dataframe # When dataframe = dataset.collect() # Assert self.assertIsInstance(dataframe, pd.DataFrame) self.assertTrue(dataframe.equals(initial_dataframe)) def test_collect_should_call_db_retrieve_table_when_empty(self): # Given context = AirflowContext(self.workflow, self.db) dataset = context.create_dataset("table") output_table = "output_table" dataset.output_table = output_table # When dataset.collect() # Assert self.db.retrieve_table.assert_called_once_with(output_table) def test_split_train_test_should_return_two_datasets(self): # Given context = AirflowContext(self.workflow, self.db) dataset = context.create_dataset("table") # When train, test = dataset.split_train_test() # Assert self.assertIsInstance(train, Dataset) self.assertIsInstance(test, Dataset) def test_join_should_return_new_dataset(self): # Given context = AirflowContext(self.workflow, self.db) dataset_left = context.create_dataset("table") dataset_right = context.create_dataset("table") # When join = dataset_left.join(dataset_right) # Check self.assertIsInstance(join, Dataset) def test_execute_should_call_operator_execute_once(self): # Given context = AirflowContext(self.workflow, self.db) dataset = context.create_dataset("table").transform(lambda x: x) dataset.operator = MagicMock() # When dataset.execute() dataset.execute() # Check dataset.operator.execute.assert_called_once() def test_execute_with_force_should_call_operator_execute_twice(self): # Given context = AirflowContext(self.workflow, self.db) dataset = context.create_dataset("table").transform(lambda x: x) dataset.operator = MagicMock() # When dataset.execute() dataset.execute(force=True) # Check self.assertEqual(dataset.operator.execute.call_count, 2) def test_execute_when_operator_is_DDOperator_should_return_resulted_dataframe_from_operator_get_result(self): # Given dataset = Dataset(MagicMock(), 'output') dataset.executed = False dataset.operator = MagicMock() dataset.operator.execute = lambda: 'output_table' dataset.operator.get_result = lambda: 'Dataframe' dataset.operator.set_upstream = None # When result = dataset.execute() # Check self.assertEqual(result, 'Dataframe') def test_transform_with_if_exists_should_append_to_existing_table(self): # Given context = AirflowContext(self.workflow, self.db) dataset = context.create_dataset("table") new_dataset = dataset.transform(lambda x: x, write_options=dict(if_exists="append")) # When new_dataset.execute() # Check self.assertIn("if_exists", self.db.import_dataframe.call_args[1]) self.assertEqual(self.db.import_dataframe.call_args[1]["if_exists"], "append") def test_select_columns_should_create_new_dataset(self): # Given context = AirflowContext(self.workflow, self.db) dataset = context.create_dataset("table") # When new_dataset = dataset.select_columns(["foo", "bar"]) # Check self.assertIsInstance(new_dataset, Dataset) self.assertIsNot(new_dataset, dataset) def test_default_is_cached_should_match_context_auto_persistence(self): # Given persisted_context = MagicMock() persisted_context.auto_persistence = True unpersisted_context = MagicMock() unpersisted_context.auto_persistence = False # When persisted_dataset = Dataset(persisted_context, "foo") unpersisted_dataset = Dataset(unpersisted_context, "bar") # Check self.assertTrue(persisted_dataset.is_cached) self.assertFalse(unpersisted_dataset.is_cached) def test_is_cached_attribute_may_be_set_by_cache_method(self): # Given context = MagicMock() context.auto_persistence = False dataset = Dataset(context, "foo") # When dataset.cache() # Check self.assertTrue(dataset.is_cached) # Then when dataset.cache(boolean=False) # Check self.assertFalse(dataset.is_cached) def test_memory_usage_returns_integer(self): # Given context = MagicMock() context.auto_persistence = False dataset = Dataset(context, "foo") # When usage = dataset.memory_usage # Check self.assertIsInstance(usage, int) def test_providing_output_table_in_select_columns_must_set_output_table( self): # Given context = AirflowContext(self.workflow, self.db) dataset = context.create_dataset("table") # When new_dataset = dataset.select_columns(["foo", "bar"], output_table="myoutput.table") # Check self.assertEqual(new_dataset.output_table, "myoutput.table") def test_sql_query_should_return_dataset(self): # Given context = AirflowContext(self.workflow, self.db) dataset = context.create_dataset("table") # When new_dataset = dataset.sql.query("SELECT * FROM foo.bar") # Check self.assertIsInstance(new_dataset, Dataset) def test_sql_query_should_call_db_query(self): # Given context = AirflowContext(self.workflow, self.db) dataset = context.create_dataset("table") # When qw = dataset.sql.query("SELECT * FROM foo.bar") qw.execute() # In airflow context we force execution qw.head() # Check self.db.query.assert_called_once_with("SELECT * FROM foo.bar") def test_sql_execute_should_return_action(self): # Given context = AirflowContext(self.workflow, self.db) dataset = context.create_dataset("table") # When action = dataset.sql.execute("SELECT * FROM foo.bar") # Check self.assertIsInstance(action, Action) def test_sql_execute_should_call_db_execute(self): # Given context = AirflowContext(self.workflow, self.db) dataset = context.create_dataset("table") action = dataset.sql.execute("SELECT * FROM foo.bar") # When action.execute(force=True) # Check self.db.execute.assert_called_once_with("SELECT * FROM foo.bar") def test_apply_should_return_action(self): # Given context = AirflowContext(self.workflow, self.db) dataset = context.create_dataset("table") mock_function = MagicMock() mock_function.__name__ = "mock" # When result = dataset.apply(mock_function) # Check self.assertIsInstance(result, Action) def test_sql_should_be_SQLOperator(self): # Given context = AirflowContext(self.workflow, self.db) dataset = context.create_dataset("table") # When result = dataset.sql # Check self.assertIsInstance(result, SQLOperator) def test_sql_should_have_same_context(self): # Given context = AirflowContext(self.workflow, self.db) dataset = context.create_dataset("table") # When result = dataset.sql # Check self.assertIs(result.context, dataset.context) def test_multitransform_method_should_allow_multiple_output_datasets(self): # Given with tempfile.NamedTemporaryFile() as tmp: workflow = DAG("test_workflow", start_date=datetime.now()) db = DB(dbtype='sqlite', filename=tmp.name) ctx = AirflowContext(workflow, db) # given df = pd.DataFrame([[np.nan, 2], [1, 2]]) df.columns = map(lambda x: "num_" + str(x), df.columns) expected_result2 = pd.DataFrame([[np.nan, 3], [2, 3]]) expected_result2.columns = map(lambda x: "num_" + str(x), expected_result2.columns) db.import_dataframe(df, "test_num", index=False) dataset = ctx.table("test_num") # when def my_multiple_output(indf): return indf, indf + 1 new_df1, new_df2 = dataset.multitransform(my_multiple_output, output_tables=["odf1", "odf2"]) # then self.assertIsNone(new_df1.dataframe) self.assertFalse(new_df1.executed) self.assertIsNone(new_df2.dataframe) self.assertFalse(new_df2.executed) # finally new_df1.execute() # same result odf1 = new_df1.collect() odf2 = new_df2.collect() pd.testing.assert_frame_equal(odf1, df) pd.testing.assert_frame_equal(odf2, expected_result2) def test_multitransform_should_handle_column_method(self): # Given ctx = self._get_airflow_context() ctx.db.import_dataframe(pd.DataFrame([[np.nan, 2], [1, 2]], columns=["n1", "n2"]), "test_num", index=False) dataset = ctx.create_dataset("test_num") # when def my_multiple_output(indf): return indf, indf + 1 new_df1, new_df2 = dataset.multitransform(my_multiple_output, output_tables=["odf1", "odf2"]) new_df1.execute() # then columns must be equal new_df1_cols = list(new_df1.columns) new_df2_cols = list(new_df2.columns) self.assertEqual(new_df1_cols, new_df2_cols) def test_multitransform_should_handle_shape_method(self): # Given ctx = self._get_airflow_context() ctx.db.import_dataframe(pd.DataFrame([[np.nan, 2], [1, 2]], columns=["n1", "n2"]), "test_num", index=False) dataset = ctx.create_dataset("test_num") # when def my_multiple_output(indf): return indf, indf + 1 new_df1, new_df2 = dataset.multitransform(my_multiple_output, output_tables=["odf1", "odf2"]) new_df1.execute() # then shapes must be equal new_df1_sh = new_df1.shape new_df2_sh = new_df2.shape self.assertEqual(new_df1_sh, new_df2_sh) def test_multitransform_should_handle_memory_usage_method(self): # Given ctx = self._get_airflow_context() ctx.db.import_dataframe(pd.DataFrame([[np.nan, 2], [1, 2]], columns=["n1", "n2"]), "test_num", index=False) dataset = ctx.create_dataset("test_num") # when def my_multiple_output(indf): return indf, indf + 1 new_df1, new_df2 = dataset.multitransform(my_multiple_output, output_tables=["odf1", "odf2"]) new_df1.execute() # then memory usage must be equal mu1 = new_df1.memory_usage mu2 = new_df2.memory_usage self.assertEqual(mu1, mu2) def test_multitransform_should_handle_head_method(self): # Given ctx = self._get_airflow_context() df = pd.DataFrame([[np.nan, 2], [1, 2]], columns=["n1", "n2"]) ctx.db.import_dataframe(df, "test_num", index=False) dataset = ctx.create_dataset("test_num") # when def my_multiple_output(indf): return indf, indf + 1 new_df1, new_df2 = dataset.multitransform(my_multiple_output, output_tables=["odf1", "odf2"]) new_df1.execute() # then head must be equal pd.testing.assert_frame_equal(new_df1.head(2), df.head(2)) pd.testing.assert_frame_equal(new_df2.head(2), df.head(2) + 1) def test_multitransform_should_handle_sql_operator(self): # Given ctx = self._get_airflow_context() df = pd.DataFrame([[np.nan, 2], [1, 2]], columns=["n1", "n2"]) ctx.db.import_dataframe(df, "test_num", index=False) dataset = ctx.create_dataset("test_num") # when def my_multiple_output(indf): return indf, indf + 1 new_df1, new_df2 = dataset.multitransform(my_multiple_output, output_tables=["odf1", "odf2"]) new_df1.execute() result = ctx.db.read_sql("select * from odf1") # then dataframe must be equal pd.testing.assert_frame_equal(result, df) def test_multitransform_should_handle_join_method(self): # Given ctx = self._get_airflow_context() df =
pd.DataFrame([[np.nan, 2], [1, 2]], columns=["n1", "n2"])
pandas.DataFrame
# coding:utf-8 # # The MIT License (MIT) # # Copyright (c) 2016-2020 # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # 从TDX磁盘空间读取数据 import os import re from datetime import time import pandas as pd from pandas import DataFrame from pytdx.reader import TdxDailyBarReader, TdxExHqDailyBarReader, TdxLCMinBarReader, BlockReader, GbbqReader from czsc.Data.code_classify import sse_code_classify, szse_code_classify from czsc.Setting import TDX_DIR from czsc.Utils import util_log_info from czsc.Data.frequency import parse_frequency_str from czsc.Data.resample import resample_from_daily_data from czsc.Utils.trade_date import util_get_next_day _SH_DIR = '{}{}{}'.format(TDX_DIR, os.sep, 'vipdoc\\sh') _SZ_DIR = '{}{}{}'.format(TDX_DIR, os.sep, 'vipdoc\\sz') _DS_DIR = '{}{}{}'.format(TDX_DIR, os.sep, 'vipdoc\\ds') def _get_sh_sz_list(): """ 读取上海深圳交易所行情目录的文件列表,并对市场,品种和代码分类 sh000015.day 期货 ('28', 'AP2003') 'sse' # 上海证券交易所 sh 6位数字代码 前两位 "60" A股 "90" B股 "00", "88", "99" 指数 "50", "51" 基金 "01", "10", "11", "12", "13", "14" 债券,和深圳有重合 110 可转债 对应股票代码 600 111 601 113 可转债 对应股票代码 603 沪市中小板 118 可转债 科创板 'szse' # 深圳证券交易所 sz 6位数字代码 前两位 "00", "30" A股 "20" "39" 指数 "15", "16" 基金 "10", "11", "12", "13", "14" 债券,和深圳有重合 123 可转债 对应股票代码 300 128 可转债 对应股票代码 002 127 可转债 对应股票代码 000 pattern = "^(?P<tdx_code>[shz]{2})#(?P<code>\d{6})\.day" """ sh_dir = '{}{}{}'.format(_SH_DIR, os.sep, 'lday') sh_list = os.listdir(sh_dir) pattern = "^(?P<tdx_code>sh)(?P<code>\d{6})\.day" data = [re.match(pattern, x) for x in sh_list] try: sh_df = pd.DataFrame([x.groupdict() for x in data]) except: util_log_info("{} can't be analyzed by pattern ({}) }".format(_SH_DIR, pattern)) return None sh_df['exchange'] = 'sse' sh_df['instrument'] = sh_df.code.apply(sse_code_classify) sz_dir = '{}{}{}'.format(_SZ_DIR, os.sep, 'lday') sz_list = os.listdir(sz_dir) pattern = "^(?P<tdx_code>sz)(?P<code>\d{6})\.day" data = [re.match(pattern, x) for x in sz_list] try: sz_df = pd.DataFrame([x.groupdict() for x in data]) except: util_log_info("{} can't be analyzed by pattern ({}) }".format(_SZ_DIR, pattern)) return None sz_df['exchange'] = 'szse' sz_df['instrument'] = sz_df.code.apply(szse_code_classify) sz_df['filename'] = sz_list sz_df['last_modified'] = sz_df['filename'].apply(lambda x: os.path.getmtime(os.path.join(sz_dir, x))) sh_df['filename'] = sh_list sh_df['last_modified'] = sh_df['filename'].apply(lambda x: os.path.getmtime(os.path.join(sh_dir, x))) return pd.concat([sh_df, sz_df]) def _get_ds_list(): """ 读取扩展行情目录的文件列表,并对市场,品种和代码分类 47#TS2009.day 期货 ('28', 'AP2003') 7#IO760795.day 期权 ('7', 'IO760795') 5#V 7C0D49.day 期权 中间有空格,特殊处理 102#980001.day 102 国证指数 pattern = "^(?P<tdx_code>\d{1,3})#(?P<code>.+)\.day" """ DS_CODE_TO_TYPE = { '4': {'exchange': 'czce', 'instrument': 'option'}, '5': {'exchange': 'dce', 'instrument': 'option'}, '6': {'exchange': 'shfe', 'instrument': 'option'}, '7': {'exchange': 'cffex', 'instrument': 'option'}, '8': {'exchange': 'sse', 'instrument': 'option'}, '9': {'exchange': 'szse', 'instrument': 'option'}, '27': {'exchange': 'hkse', 'instrument': 'index'}, # 香港指数 '28': {'exchange': 'czce', 'instrument': 'future'}, '29': {'exchange': 'dce', 'instrument': 'future'}, '30': {'exchange': 'shfe', 'instrument': 'future'}, '31': {'exchange': 'hkse', 'instrument': 'stock'}, # 香港主板 '33': {'exchange': 'sse szse', 'instrument': 'OEF'}, # 开放式基金 '34': {'exchange': 'sse szse', 'instrument': 'MMF'}, # 货币型基金 '44': {'exchange': 'neeq', 'instrument': 'stock'}, # 股转系统 '47': {'exchange': 'cffex', 'instrument': 'future'}, '48': {'exchange': 'hkse', 'instrument': 'stock'}, # 香港创业板 '49': {'exchange': 'hkse', 'instrument': 'TF'}, # 香港信托基金 '62': {'exchange': 'csindex', 'instrument': 'index'}, # 中证指数 '71': {'exchange': 'hkconnect', 'instrument': 'stock'}, # 港股通品种 '102': {'exchange': 'sse szse', 'instrument': 'index'}, } ds_dir = '{}{}{}'.format(_DS_DIR, os.sep, 'lday') ds_list = os.listdir(ds_dir) pattern = "^(?P<tdx_code>\d{1,3})#(?P<code>.+)\.day" data = [re.match(pattern, x) for x in ds_list] try: # 注释条码用来显示pattern不能识别的文件名 # for i, x in enumerate(Data): # if not x: # util_log_info('{}'.format(ds_list[i])) ds_df = pd.DataFrame([x.groupdict() for x in data]) except: util_log_info("{} can't be analyzed by pattern ({})".format(_DS_DIR, pattern)) return None ds_df['exchange'] = ds_df.tdx_code.apply(lambda x: DS_CODE_TO_TYPE[x]['exchange'] if x in DS_CODE_TO_TYPE else None) ds_df['instrument'] = ds_df.tdx_code.apply( lambda x: DS_CODE_TO_TYPE[x]['instrument'] if x in DS_CODE_TO_TYPE else None) ds_df['filename'] = ds_list ds_df['last_modified'] = ds_df['filename'].apply(lambda x: os.path.getmtime(os.path.join(ds_dir, x))) return ds_df def get_security_list(): securities: DataFrame = pd.concat([_get_sh_sz_list(), _get_ds_list()]) securities['last_modified'] = securities['last_modified'].apply(lambda x: pd.to_datetime(x, unit='s')) # 日期正确,小时不对 return securities.set_index('code') SECURITY_DATAFRAME = get_security_list() def _get_tdx_code_from_security_dataframe(code, exchange): try: recorder = SECURITY_DATAFRAME.loc[code] except: util_log_info("Can't get tdx_code from {}".format(code)) return if isinstance(recorder, pd.Series): return recorder['tdx_code'] try: return recorder.loc[recorder['exchange'] == exchange].loc[code, 'tdx_code'] except: util_log_info('Not only one {} in the list , please provide exchange or instrument'.format(code)) return recorder.tdx_code[0] def _generate_path(code, freq, tdx_code): # code = code.upper() # standard_freq = standard_freq.lower() ext = { 'D': '.day', '5min': '.lc5', '1min': '.lc1', } dir = { 'D': 'lday', '5min': 'fzline', '1min': '.minline', } try: if tdx_code == 'sz': dir_name = '{}{}{}'.format(_SZ_DIR, os.sep, dir[freq]) filename = tdx_code + code + ext[freq] elif tdx_code == 'sh': dir_name = '{}{}{}'.format(_SH_DIR, os.sep, dir[freq]) filename = tdx_code + code + ext[freq] else: dir_name = '{}{}{}'.format(_DS_DIR, os.sep, dir[freq]) filename = tdx_code + '#' + code + ext[freq] except KeyError: util_log_info('Not supported Frequency {}!'.format(freq)) return file_path = os.path.join(dir_name, filename) return file_path def get_bar(code, start=None, end=None, freq='day', exchange=None): """ 股票成交量 volume 单位是100股 """ code = code.upper() standard_freq = parse_frequency_str(freq) try: tdx_code = _get_tdx_code_from_security_dataframe(code, exchange) except: util_log_info("Can't get tdx_code from {}".format(code)) return if standard_freq in ['D', 'w', 'M', 'Q', 'Y']: file_path = _generate_path(code, 'D', tdx_code) elif standard_freq in ['1min', '5min', '30min', '60min']: file_path = _generate_path(code, '5min', tdx_code) elif standard_freq in ['1min']: file_path = _generate_path(code, '1min', tdx_code) else: util_log_info('Not supported frequency {}'.format(freq)) return if not os.path.exists(file_path): util_log_info('=={}== {} file is not exists!'.format(code, file_path)) return # 统一freq的数据结构 if tdx_code in ['sh', 'sz']: if standard_freq in ['D', 'w', 'M', 'Q', 'Y']: reader = TdxDailyBarReader() df = reader.get_df(file_path) elif standard_freq in ['1min', '5min', '30min', '60min']: reader = TdxLCMinBarReader() df = reader.get_df(file_path) else: util_log_info('Not supported frequency {}'.format(freq)) return else: if standard_freq in ['D', 'w', 'M', 'Q', 'Y']: reader = TdxExHqDailyBarReader() df = reader.get_df(file_path) elif standard_freq in ['1min', '5min', '30min', '60min']: reader = TdxLCMinBarReader() df = reader.get_df(file_path) else: util_log_info('Not supported frequency {}'.format(freq)) return if len(df) < 1: return recorder = SECURITY_DATAFRAME.loc[code] if isinstance(recorder, pd.DataFrame): instrument = recorder.loc[recorder['tdx_code'] == tdx_code].loc[code, 'instrument'] exchange = recorder.loc[recorder['tdx_code'] == tdx_code].loc[code, 'exchange'] else: instrument = recorder['instrument'] exchange = recorder['exchange'] if instrument in ['future', 'option']: df.rename(columns={'amount': "position", "jiesuan": "settle"}, inplace=True) if start: start = pd.to_datetime(start) df = df[df.index >= start] if end: end = pd.to_datetime(end) if standard_freq in ['1min', '5min', '30min', '60min']: if time(0, 0) == end.time(): end = pd.to_datetime(util_get_next_day(end)) df = df[df.index <= end] df['date'] = df.index df = df.assign(code=code, exchange=exchange) if standard_freq in ['w', 'M', 'Q', 'Y']: df = resample_from_daily_data(df, standard_freq) return df def get_index_block(): """ 返回股票对应的指数 block_zs.dat 对应通达信指数板块 block_gn.dat 对应通达信概念板块 block_fg.dat 对应通达信风格板块 融资融券 已高送转 近期弱势 index 为 code columns 为指数,如果为指数成份股 则为2 :return: """ filename = '{}{}{}'.format(TDX_DIR, os.sep, 'T0002\\hq_cache\\block_zs.dat') return BlockReader().get_df(filename).pivot(index='code', columns='blockname', values='block_type') def get_concept_block(): """ 返回股票对应的指数 block_zs.dat 对应通达信指数板块 block_gn.dat 对应通达信概念板块 block_fg.dat 对应通达信风格板块 融资融券 已高送转 近期弱势 index 为 code columns 为指数,如果为指数成份股 则为2 :return: """ filename = '{}{}{}'.format(TDX_DIR, os.sep, 'T0002\\hq_cache\\block_gn.dat') return BlockReader().get_df(filename).pivot(index='code', columns='blockname', values='block_type') def get_style_block(): """ 返回股票对应的指数 block_zs.dat 对应通达信指数板块 block_gn.dat 对应通达信概念板块 block_fg.dat 对应通达信风格板块 融资融券 已高送转 近期弱势 index 为 code columns 为指数,如果为指数成份股 则为2 :return: """ filename = '{}{}{}'.format(TDX_DIR, os.sep, 'T0002\\hq_cache\\block_fg.dat') return BlockReader().get_df(filename).pivot(index='code', columns='blockname', values='block_type') def get_convertible_info(): """ D:\Trade\TDX\cjzq_tdx\T0002\hq_cache\speckzzdata.txt :return: """ filename = '{}{}{}'.format(TDX_DIR, os.sep, 'T0002\\hq_cache\\speckzzdata.txt') columns = [ 'exchange', 'code', 'stock_code', 'convert_price', 'current_interest', 'list_amount', 'call_price', 'redeem_price', 'convert_start', 'due_price', 'convert_end', 'convert_code', 'current_amount', 'list_date', 'convert_ratio(%)' ] df =
pd.read_csv(filename, names=columns)
pandas.read_csv
""" Common routines to work with raw MS data from metabolomics experiments. Functions --------- detect_features(path_list) : Perform feature detection on several samples. feature_correspondence(feature_data) : Match features across different samples using a combination of clustering algorithms. """ import pandas as pd import numpy as np from .fileio import MSData from .container import DataContainer from .lcms import Roi from . import validation from pathlib import Path from sklearn.cluster import DBSCAN from sklearn import mixture from scipy.optimize import linear_sum_assignment from typing import Optional, Tuple, List, Dict, Union from IPython.display import clear_output __all__ = ["detect_features", "feature_correspondence", "make_data_container"] def detect_features(path: Union[Path, List[str]], separation: str = "uplc", instrument: str = "qtof", roi_params: Optional[dict] = None, smoothing_strength: Optional[float] = 1.0, noise_params: Optional[dict] = None, baseline_params: Optional[dict] = None, find_peaks_params: Optional[dict] = None, descriptors: Optional[dict] = None, filters: Optional[dict] = None, verbose: bool = True ) -> Tuple[Dict[str, List[Roi]], pd.DataFrame]: """ Perform feature detection on LC-MS centroid samples. Parameters ---------- path: Path or List[str] Path can be a list of strings of absolute path representations to mzML files in centroid mode or a Path object. Path objects can be used in two ways: It can point to a mzML file or to a directory. in the second case all mzML files inside the directory will be analyzed. separation: {"uplc", "hplc"} Analytical platform used for separation. Used to set default the values of `detect_peak_params`, `roi_params` and `filter_params`. instrument: {"qtof". "orbitrap"} MS instrument used for data acquisition. Used to set default value of `roi_params`. roi_params: dict, optional parameters to pass to :py:meth:`tidyms.MSData.make_roi` smoothing_strength: positive number, optional Width of a gaussian window used to smooth the ROI. If None, no smoothing is applied. find_peaks_params : dict, optional parameters to pass to :py:func:`tidyms.peaks.detect_peaks` descriptors : dict, optional descriptors to pass to :py:func:`tidyms.peaks.get_peak_descriptors` filters : dict, optional filters to pass to :py:func:`tidyms.peaks.get_peak_descriptors` noise_params : dict, optional parameters to pass to :py:func:`tidyms.peaks.estimate_noise` baseline_params : dict, optional parameters to pass to :py:func:`tidyms.peaks.estimate_baseline` descriptors : dict, optional pass custom descriptors to :py:func:`tidyms.peaks.get_peak_descriptors` filters : dict, optional pass custom filters to :py:func:`tidyms.peaks.get_peak_descriptors` verbose: bool Returns ------- roi_dict: dict dictionary of sample names to a list of ROI. feature_table: DataFrame A Pandas DataFrame where each row is a feature detected in a sample and each column is a feature descriptor. By default the following descriptors are computed: mz weighted average of the m/z in the peak region. mz std standard deviation of the m/z in the peak region. rt weighted average of the retention time in the peak region. width Chromatographic peak width. height Height of the chromatographic peak minus the baseline. area Area of the chromatographic peak. minus the baseline area. sample The sample name where the feature was detected. Also, two additional columns have information to search each feature in its correspondent Roi: roi_index : index in the list of ROI where the feature was detected. peak_index : index of the peaks attribute of each ROI associated to the feature. Notes ----- Features are detected as follows: 1. Default parameters are set based on the values of the parameters `instrument` and `separation`. 2. Regions of interest (ROI) are detected in each sample. See the documentation of :py:meth:`tidyms.fileio.MSData.make_roi` for a detailed description of how ROI are created from raw data. 3. Features (chromatographic peaks) are detected on each ROI. See :py:meth:`tidyms.lcms.Chromatogram.find_peaks` for a detailed description of how peaks are detected and how descriptors are computed. See Also -------- fileio.MSData.make_roi : Finds ROIs in a mzML sample. lcms.ROI.find_peaks : Detect peaks and compute peak estimators for a ROI. """ # parameter validation # validation.validate_detect_peaks_params(detect_peak_params) validation.validate_descriptors(descriptors) validation.validate_filters(filters) if roi_params is None: roi_params = dict() path_list = _get_path_list(path) roi_dict = dict() ft_table_list = list() n_samples = len(path_list) for k, sample_path in enumerate(path_list): sample_name = sample_path.stem sample_path_str = str(sample_path) ms_data = MSData(sample_path_str, ms_mode="centroid", instrument=instrument, separation=separation) k_roi = ms_data.make_roi(**roi_params) if verbose: clear_output(wait=True) msg = "Processing sample {} ({}/{})." msg = msg.format(sample_name, k + 1, n_samples) print(msg) print("Searching features in {} ROI...".format(len(k_roi)), end=" ") k_table = _build_feature_table(k_roi, smoothing_strength=smoothing_strength, descriptors=descriptors, filters=filters, noise_params=noise_params, baseline_params=baseline_params, find_peaks_params=find_peaks_params) if verbose: msg = "Found {} features".format(k_table.shape[0]) print(msg) k_table["sample"] = sample_name roi_dict[sample_name] = k_roi ft_table_list.append(k_table) feature_table =
pd.concat(ft_table_list)
pandas.concat
import utility_funcs as uf import ProjectOverlayDataProcess as data import pandas as pd import numpy as np import code number_of_groups=5 def import_data(only_relevant_groups=True): if only_relevant_groups: members = data.get_group_membership() relevantgroups = data.import_dataframe("relevantgroups") cosine_similarities = data.import_dataframe("cosine_similarities") members = members.loc[members.group_guid.isin(relevantgroups.guid),:] return members, cosine_similarities else: return data.get_group_membership(), data.import_dataframe("cosine_similarities") def calculate_group_similarities(df, groupbycol, nestcol, newcolname): newdf = uf.nest_for_json(df, groupbycol=groupbycol, nestcol=nestcol, newcolname=newcolname) length = len(newdf) similarity_matrix = np.zeros((length, length)) for i in range(length): for j in range(length): similarity_matrix[i,j] = uf.list_similarites(newdf[newcolname][i],newdf[newcolname][j]) similarity_df =
pd.DataFrame(similarity_matrix)
pandas.DataFrame
from __future__ import absolute_import, division, print_function import argparse import logging import sys import numpy as np import pandas as pd from sklearn.neighbors import NearestNeighbors from sklearn.preprocessing import StandardScaler from sklearn.utils import check_random_state logger = logging.getLogger('causalml') def smd(feature, treatment): """Calculate the standard mean difference (SMD) of a feature between the treatment and control groups. The definition is available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3144483/#s11title Args: feature (pandas.Series): a column of a feature to calculate SMD for treatment (pandas.Series): a column that indicate whether a row is in the treatment group or not Returns: (float): The SMD of the feature """ t = feature[treatment == 1] c = feature[treatment == 0] return (t.mean() - c.mean()) / np.sqrt(.5 * (t.var() + c.var())) def create_table_one(data, treatment_col, features): """Report balance in input features between the treatment and control groups. References: R's tableone at CRAN: https://github.com/kaz-yos/tableone Python's tableone at PyPi: https://github.com/tompollard/tableone Args: data (pandas.DataFrame): total or matched sample data treatment_col (str): the column name for the treatment features (list of str): the column names of features Returns: (pandas.DataFrame): A table with the means and standard deviations in the treatment and control groups, and the SMD between two groups for the features. """ t1 = pd.pivot_table(data[features + [treatment_col]], columns=treatment_col, aggfunc=[lambda x: '{:.2f} ({:.2f})'.format(x.mean(), x.std())]) t1.columns = t1.columns.droplevel(level=0) t1['SMD'] = data[features].apply( lambda x: smd(x, data[treatment_col]) ).round(4) n_row = pd.pivot_table(data[[features[0], treatment_col]], columns=treatment_col, aggfunc=['count']) n_row.columns = n_row.columns.droplevel(level=0) n_row['SMD'] = '' n_row.index = ['n'] t1 =
pd.concat([n_row, t1], axis=0)
pandas.concat
from sklearn.feature_extraction import DictVectorizer import pandas as pd import numpy as np class LinearModel(object): @staticmethod def validate_options(opts): if opts['loss'] == 'quantile': raise NotImplementedError("Loss function 'quantile' is not implemented yet") # if opts['opt'] == 'adagrad': # raise NotImplementedError("optimizer 'adagrad' is not implemented yet") # elif opts['opt'] == 'adadelta': # raise NotImplementedError("optimizer 'adadelta' is not implemented yet") # elif opts['opt'] == 'adam': # raise NotImplementedError("optimizer 'adam' is not implemented yet") if opts['penalty'] == 'rda': raise NotImplementedError("regularization 'rda' is not implemented yet") if opts['learning_rate'] == 'simple': raise NotImplementedError("learning rate 'simple' is not implemented yet") @staticmethod def load(conn, table, feature_column='feature', weight_column='weight', bias_feature=None): df = conn.fetch_table(table) intercept = np.array([0.]) # (1,) coef = np.array([[]]) # (1, n_feature) vocabulary = {} feature_names = [] j = 0 for i, row in df.iterrows(): feature, weight = row[feature_column], row[weight_column] if feature == bias_feature: intercept[0] = float(weight) continue coef = np.append(coef, [[weight]], axis=1) vocabulary[feature] = j j += 1 feature_names.append(feature) vectorizer = DictVectorizer(separator='#') vectorizer.vocabulary_ = vocabulary vectorizer.feature_names_ = feature_names return coef, intercept, vectorizer def store(self, conn, table, vocabulary, feature_column='feature', weight_column='weight', bias_feature=None): df = self._to_frame(vocabulary, feature_column, weight_column, bias_feature) conn.import_frame(df, table) def _to_frame(self, vocabulary, feature_column, weight_column, bias_feature): data = [] for feature, index in vocabulary.items(): data.append((feature, self.coef_[0, index])) if bias_feature is not None: data.append((bias_feature, self.intercept_[0])) return
pd.DataFrame.from_records(data, columns=[feature_column, weight_column])
pandas.DataFrame.from_records
import requests import json import traceback import sqlite3 import server.app.decode_fbs as decode_fbs import scanpy as sc import anndata as ad import pandas as pd import numpy as np import diffxpy.api as de import matplotlib matplotlib.use('Agg') from matplotlib import pyplot as plt import seaborn as sns import matplotlib.patches as mpatches from matplotlib import rcParams import plotly.graph_objects as go import plotly.io as plotIO import base64 import math from io import BytesIO import sys import time import os import re import glob import subprocess strExePath = os.path.dirname(os.path.abspath(__file__)) import pprint ppr = pprint.PrettyPrinter(depth=6) import server.compute.diffexp_generic as diffDefault import pickle from pyarrow import feather sys.setrecursionlimit(10000) sc.settings.verbosity = 2 rcParams.update({'figure.autolayout': True}) api_version = "/api/v0.2" import threading jobLock = threading.Lock() def getLock(lock): while not lock.acquire(): time.sleep(1.0) def freeLock(lock): lock.release() def route(data,appConfig): #ppr.pprint("current working dir:%s"%os.getcwd()) data = initialization(data,appConfig) #ppr.pprint(data) try: getLock(jobLock) taskRes = distributeTask(data["method"])(data) freeLock(jobLock) return taskRes except Exception as e: freeLock(jobLock) return 'ERROR @server: '+traceback.format_exc() # 'ERROR @server: {}, {}'.format(type(e),str(e)) #return distributeTask(data["method"])(data) import server.app.app as app def initialization(data,appConfig): # obtain the server host information data = json.loads(str(data,encoding='utf-8')) # update the environment information data.update(VIPenv) # updatting the hosting data information if appConfig.is_multi_dataset(): data["url_dataroot"]=appConfig.server_config.multi_dataset__dataroot['d']['base_url'] data['h5ad']=os.path.join(appConfig.server_config.multi_dataset__dataroot['d']['dataroot'], data["dataset"]) else: data["url_dataroot"]=None data["dataset"]=None data['h5ad']=appConfig.server_config.single_dataset__datapath # setting the plotting options if 'figOpt' in data.keys(): setFigureOpt(data['figOpt']) # get the var (gene) and obv index with app.get_data_adaptor(url_dataroot=data['url_dataroot'],dataset=data['dataset']) as scD: data['obs_index'] = scD.get_schema()["annotations"]["obs"]["index"] data['var_index'] = scD.get_schema()["annotations"]["var"]["index"] return data def setFigureOpt(opt): sc.set_figure_params(dpi_save=int(opt['dpi']),fontsize= float(opt['fontsize']),vector_friendly=(opt['vectorFriendly'] == 'Yes'),transparent=(opt['transparent'] == 'Yes'),color_map=opt['colorMap']) rcParams.update({'savefig.format':opt['img']}) def getObs(data): selC = list(data['cells'].values()) cNames = ["cell%d" %i for i in selC] ## obtain the category annotation with app.get_data_adaptor(url_dataroot=data['url_dataroot'],dataset=data['dataset']) as scD: selAnno = [data['obs_index']]+data['grp'] dAnno = list(scD.get_obs_keys()) anno = [] sel = list(set(selAnno)&set(dAnno)) if len(sel)>0: tmp = scD.data.obs.loc[selC,sel].astype('str') tmp.index = cNames anno += [tmp] sel = list(set(selAnno)-set(dAnno)) if len(sel)>0: annotations = scD.dataset_config.user_annotations if annotations: labels = annotations.read_labels(scD) tmp = labels.loc[list(scD.data.obs.loc[selC,data['obs_index']]),sel] tmp.index = cNames anno += [tmp] obs = pd.concat(anno,axis=1) #ppr.pprint(obs) ## update the annotation Abbreviation combUpdate = cleanAbbr(data) if 'abb' in data.keys(): for i in data['grp']: obs[i] = obs[i].map(data['abb'][i]) return combUpdate, obs def getObsNum(data): selC = list(data['cells'].values()) cNames = ["cell%d" %i for i in selC] ## obtain the category annotation obs = pd.DataFrame() with app.get_data_adaptor(url_dataroot=data['url_dataroot'],dataset=data['dataset']) as scD: selAnno = data['grpNum'] dAnno = list(scD.get_obs_keys()) sel = list(set(selAnno)&set(dAnno)) if len(sel)>0: obs = scD.data.obs.loc[selC,sel] obs.index = cNames return obs def getVar(data): ## obtain the gene annotation with app.get_data_adaptor(url_dataroot=data['url_dataroot'],dataset=data['dataset']) as scD: gInfo = scD.data.var gInfo.index = list(gInfo[data['var_index']]) gInfo = gInfo.drop([data['var_index']],axis=1) return gInfo def collapseGeneSet(data,expr,gNames,cNames,fSparse): Y = expr if 'geneGrpColl' in data.keys() and not data['geneGrpColl']=='No' and 'geneGrp' in data.keys() and len(data['geneGrp'])>0: data['grpLoc'] = [] data['grpID'] = [] if fSparse: Y = pd.DataFrame.sparse.from_spmatrix(Y,columns=gNames,index=cNames) for aN in data['geneGrp'].keys(): if data['geneGrpColl']=='mean': Y = pd.concat([Y,Y[data['geneGrp'][aN]].mean(axis=1).rename(aN)],axis=1,sort=False) if data['geneGrpColl']=='median': Y = pd.concat([Y,Y[data['geneGrp'][aN]].median(axis=1).rename(aN)],axis=1,sort=False) for gene in data['geneGrp'][aN]: if gene in data['genes']: data['genes'].remove(gene) data['genes'] += [aN] gNames = list(Y.columns) return Y,gNames def createData(data): selC = list(data['cells'].values()) cNames = ["cell%d" %i for i in selC] ## onbtain the expression matrix gNames = [] expr = [] fSparse = False X = [] if 'genes' in data.keys(): with app.get_data_adaptor(url_dataroot=data['url_dataroot'],dataset=data['dataset']) as scD: if not type(scD.data.X) is np.ndarray: fSparse = True if len(data['genes'])>0: fullG = list(scD.data.var[data['var_index']]) selG = sorted([fullG.index(i) for i in data['genes']]) #when data loaded backed, incremental is required X = scD.data.X[:,selG] gNames = [fullG[i] for i in selG] #data['genes'] else: X = scD.data.X gNames = list(scD.data.var[data['var_index']]) if 'figOpt' in data.keys() and data['figOpt']['scale'] == 'Yes': X = sc.pp.scale(X,zero_center=(data['figOpt']['scaleZero'] == 'Yes'),max_value=(float(data['figOpt']['scaleMax']) if data['figOpt']['clipValue']=='Yes' else None)) X = X[selC] if fSparse: expr = X else: expr = pd.DataFrame(X,columns=gNames,index=cNames) expr,gNames = collapseGeneSet(data,expr,gNames,cNames,fSparse) #ppr.pprint("finished expression ...") ## obtain the embedding embed = {} if 'layout' in data.keys(): layout = data['layout'] if isinstance(layout,str): layout = [layout] if len(layout)>0: for one in layout: with app.get_data_adaptor(url_dataroot=data['url_dataroot'],dataset=data['dataset']) as scD: embed['X_%s'%one] = pd.DataFrame(scD.data.obsm['X_%s'%one][selC][:,[0,1]],columns=['%s1'%one,'%s2'%one],index=cNames) #ppr.pprint("finished layout ...") ## obtain the category annotation combUpdate, obs = getObs(data) ## create a custom annotation category and remove cells which are not in the selected annotation if combUpdate and len(data['grp'])>1: newGrp = 'Custom_combine' combineGrp = list(data['combine'].keys()); obs[newGrp] = obs[combineGrp[0]] for i in combineGrp: if not i==combineGrp[0]: obs[newGrp] += ":"+obs[i] selC = ~obs[newGrp].str.contains("Other").to_numpy() expr = expr[selC] for i in embed.keys(): embed[i] = embed[i][selC] obs = obs[selC].astype('category') obs[newGrp].cat.set_categories(data['combineOrder'],inplace=True) data['grp'] = [newGrp] obs = obs.astype('category') ## empty selection if expr.shape[0]==0 or expr.shape[1]==0: return [] #ppr.pprint("finished obv ...") return sc.AnnData(expr,obs,var=pd.DataFrame([],index=gNames),obsm={layout:embed[layout].to_numpy() for layout in embed.keys()}) def cleanAbbr(data): updated = False if 'abb' in data.keys() and 'combine' in data.keys(): if len(data['combine'])>0: updated = True for cate in data['abb'].keys(): if cate in data['combine'].keys(): for anName in data['abb'][cate].keys(): if not anName in data['combine'][cate]: data['abb'][cate][anName] = "Other"; else: if not data['abb'][cate][anName]==anName: data['combineOrder'] = [one.replace(anName,data['abb'][cate][anName]) for one in data['combineOrder']] else: data['abb'][cate] = {key:"Other" for key in data['abb'][cate].keys()} return updated def errorTask(data): raise ValueError('Error task!') def distributeTask(aTask): return { 'SGV':SGV, 'SGVcompare':SGVcompare, 'PGV':PGV, 'VIOdata':VIOdata, 'HEATplot':pHeatmap, 'HEATdata':HeatData, 'GD':GD, 'DEG':DEG, 'DOT':DOT, 'EMBED':EMBED, 'TRAK':TRACK, 'DUAL':DUAL, 'MARK': MARK, 'MINX':MINX, 'DENS':DENS, 'DENS2D':DENS2D, 'SANK':SANK, 'STACBAR':STACBAR, 'HELLO':HELLO, 'CLI':CLI, 'preDEGname':getPreDEGname, 'preDEGvolcano':getPreDEGvolcano, 'preDEGmulti':getPreDEGbubble, 'mergeMeta': mergeMeta, 'isMeta': isMeta, 'testVIPready':testVIPready, 'Description':getDesp, 'GSEAgs':getGSEA, 'SPATIAL':SPATIAL, 'saveTest':saveTest, 'getBWinfo':getBWinfo, 'plotBW':plotBW }.get(aTask,errorTask) def HELLO(data): return 'Hi, connected.' def iostreamFig(fig): #getLock(iosLock) figD = BytesIO() #ppr.pprint('io located at %d'%int(str(figD).split(" ")[3].replace(">",""),0)) fig.savefig(figD,bbox_inches="tight") #ppr.pprint(sys.getsizeof(figD)) #ppr.pprint('io located at %d'%int(str(figD).split(" ")[3].replace(">",""),0)) imgD = base64.encodebytes(figD.getvalue()).decode("utf-8") figD.close() #ppr.pprint("saved Fig") #freeLock(iosLock) if 'matplotlib' in str(type(fig)): plt.close(fig)#'all' return imgD def Msg(msg): fig = plt.figure(figsize=(5,2)) plt.text(0,0.5,msg) ax = plt.gca() ax.axis('off') return iostreamFig(fig) def SPATIAL(data): with app.get_data_adaptor(url_dataroot=data['url_dataroot'],dataset=data['dataset']) as scD: #ppr.pprint(vars(scD.data.uns["spatial"])) spatial=scD.data.uns["spatial"] if (data['embedding'] == "get_spatial_list"): return json.dumps({'list':list(spatial)}) library_id=list(spatial)[0] if (data['embedding'] in list(spatial)): library_id=data['embedding'] height, width, depth = spatial[library_id]["images"][data['resolution']].shape embedding = 'X_'+data['embedding'] spatialxy = scD.data.obsm[embedding] tissue_scalef = spatial[library_id]['scalefactors']['tissue_' + data['resolution'] + '_scalef'] i = data['spots']['spoti_i'] x = 0 y = 1 # from original embedding to (0,1) coordinate system (cellxgene embedding) scalex = (data['spots']['spot0_x'] - data['spots']['spoti_x']) / (spatialxy[0][x] - spatialxy[i][x]) scaley = (data['spots']['spot0_y'] - data['spots']['spoti_y']) / (spatialxy[0][y] - spatialxy[i][y]) # image is in (-1,0,1) coordinate system, so multiplied by 2 translatex = (spatialxy[i][x]*scalex - data['spots']['spoti_x']) * 2 translatey = (spatialxy[i][y]*scaley - data['spots']['spoti_y']) * 2 scale = 1/tissue_scalef * scalex * 2 # Addtional translate in Y due to flipping of the image if needed ppr.pprint(scalex) ppr.pprint(scaley) ppr.pprint(translatex) ppr.pprint(translatey) # from (-1,0,1) (image layer) to (0,1) coordinate system (cellxgene embedding). Overlapping (0,0) origins of both. translatex = -(1+translatex) if (translatey > -0.1): flip = True translatey = -(1+translatey) + height*scale else: flip = False translatey = -(1+translatey) returnD = [{'translatex':translatex,'translatey':translatey,'scale':scale}] dpi=100 figsize = width / float(dpi), height / float(dpi) fig = plt.figure(figsize=figsize) ax = fig.add_axes([0, 0, 1, 1]) ax.axis('off') if (flip): ax.imshow(np.flipud(spatial[library_id]["images"][data['resolution']]), interpolation='nearest') else: ax.imshow(spatial[library_id]["images"][data['resolution']], interpolation='nearest') figD = BytesIO() plt.savefig(figD, dpi=dpi) ppr.pprint(sys.getsizeof(figD)) imgD = base64.encodebytes(figD.getvalue()).decode("utf-8") figD.close() plt.close(fig) return json.dumps([returnD, imgD]) def MINX(data): with app.get_data_adaptor(url_dataroot=data['url_dataroot'],dataset=data['dataset']) as scD: minV = min(scD.data.X[0]) return '%.1f'%minV def geneFiltering(adata,cutoff,opt): ## 1. remove cells if the max expression of all genes is lower than the cutoff if opt==1: #sT = time.time() #ix = adata.to_df().apply(lambda x: max(x)>float(cutoff),axis=1) #ppr.pprint(time.time()-sT) #sT=time.time() df = adata.to_df() ix = df[df>float(cutoff)].count(axis=1)>0 #ppr.pprint(time.time()-sT) #sT = time.time() #ix = pd.DataFrame((adata.X>float(cutoff)).sum(1)>0,index=list(adata.obs.index)).iloc[:,0] #ppr.pprint(time.time()-sT) adata = adata[ix,] ## 2. Set all expression level smaller than the cutoff to be NaN not for plotting without removing any cells elif opt==2: def cutoff(x): return x if x>float(cutoff) else None X = adata.to_df() X=X.applymap(cutoff) adata = sc.AnnData(X,adata.obs) return adata def SGV(data): # figure width and heights depends on number of unique categories # characters of category names, gene number #ppr.pprint("SGV: creating data ...") adata = createData(data) #ppr.pprint("SGV: data created ...") adata = geneFiltering(adata,data['cutoff'],1) if len(adata)==0: raise ValueError('No cells in the condition!') a = list(set(list(adata.obs[data['grp'][0]]))) ncharA = max([len(x) for x in a]) w = len(a)/4+1 h = ncharA/6+2.5 ro = math.acos(10/max([15,ncharA]))/math.pi*180 ## fig = plt.figure(figsize=[w,h]) sc.pl.violin(adata,data['genes'],groupby=data['grp'][0],ax=fig.gca(),show=False) fig.autofmt_xdate(bottom=0.2,rotation=ro,ha='right') return iostreamFig(fig) def SGVcompare(data): adata = createData(data) #adata = geneFiltering(adata,data['cutoff'],1) if len(adata)==0: raise ValueError('No cells in the condition!') # plot in R strF = ('%s/SGV%f.csv' % (data["CLItmp"],time.time())) X=pd.concat([adata.to_df(),adata.obs[data['grp']]],axis=1,sort=False) X[X.iloc[:,0]>=float(data['cellCutoff'])].to_csv(strF,index=False) strCMD = " ".join(["%s/Rscript"%data['Rpath'],strExePath+'/violin.R',strF,str(data['cutoff']),data['figOpt']['img'],str(data['figOpt']['fontsize']),str(data['figOpt']['dpi']),data['Rlib']]) #ppr.pprint(strCMD) res = subprocess.run([strExePath+'/violin.R',strF,str(data['cutoff']),data['figOpt']['img'],str(data['figOpt']['fontsize']),str(data['figOpt']['dpi']),data['Rlib']],capture_output=True)# img = res.stdout.decode('utf-8') os.remove(strF) if 'Error' in res.stderr.decode('utf-8'): raise SyntaxError("in R: "+res.stderr.decode('utf-8')) return img def VIOdata(data): adata = createData(data) adata = geneFiltering(adata,data['cutoff'],1) if len(adata)==0: raise ValueError('No cells in the condition!') return pd.concat([adata.to_df(),adata.obs], axis=1, sort=False).to_csv() def unique(seq): seen = set() seen_add = seen.add return [x for x in seq if not (x in seen or seen_add(x))] def updateGene(data): grpID = [] grpLoc=[] allG = [] if 'geneGrp' in data.keys(): for aN in data['geneGrp'].keys(): grpLoc += [(len(allG),len(allG)+len(data['geneGrp'][aN])-1)] allG += data['geneGrp'][aN] grpID += [aN] data['genes'] = unique(allG+data['genes']) data['grpLoc'] = grpLoc data['grpID'] = grpID def PGV(data): # figure width and heights depends on number of unique categories # characters of category names, gene number #pecam1 pdpn updateGene(data) #ppr.pprint("PGV: creating data ...") adata = createData(data) #ppr.pprint("PGV: data created ...") adata = geneFiltering(adata,data['cutoff'],1) if adata.shape[0]==0 or adata.shape[1]==0: return Msg('No cells in the condition!') a = list(set(list(adata.obs[data['grp'][0]]))) ncharA = max([len(x) for x in a]) w = max([3,ncharA/8])+len(data['genes'])/2+1.5 h = len(a)+0.5 swapAx = False ## if data['by']=='Columns': a = w w = h h = a swapAx = True if 'split_show' in data['figOpt']['scanpybranch']: #.dev140+ge9cbc5f vp = sc.pl.stacked_violin(adata,data['genes'],groupby=data['grp'][0],return_fig=True,figsize=(w,h),swap_axes=swapAx,var_group_positions=data['grpLoc'],var_group_labels=data['grpID']) vp.add_totals().style(yticklabels=True, cmap=data['color']).show() #vp.add_totals().show() fig = vp#plt.gcf() else: fig = plt.figure(figsize=[w,h]) axes = sc.pl.stacked_violin(adata,data['genes'],groupby=data['grp'][0],show=False,ax=fig.gca(),swap_axes=swapAx, var_group_positions=data['grpLoc'],var_group_labels=data['grpID']) return iostreamFig(fig) def pHeatmap(data): # figure width is depends on the number of categories was choose to show # and the character length of each category term # if the number of element in a category is smaller than 10, "Set1" or "Set3" is choosen # if the number of element in a category is between 10 and 20, default is choosen # if the number of element in a category is larger than 20, husl is choosen #Xsep = createData(data,True) #adata = sc.AnnData(Xsep['expr'],Xsep['obs']) #sT = time.time() adata = createData(data) data['grp'] += data['addGrp'] #Xdata = pd.concat([adata.to_df(),adata.obs], axis=1, sort=False).to_csv() #ppr.pprint('HEAT data reading cost %f seconds' % (time.time()-sT) ) #sT = time.time() exprOrder = True if data['order']!="Expression": exprOrder = False; adata = adata[adata.obs.sort_values(data['order']).index,] #s = adata.obs[data['order']] #ix = sorted(range(len(s)), key=lambda k: s[k]) #adata = adata[ix,] colCounter = 0 colName =['Set1','Set3'] grpCol = list() grpLegend = list() grpWd = list() grpLen = list() h = 8 w = len(data['genes'])/3+0.3 for gID in data['grp']: grp = adata.obs[gID] Ugrp = grp.unique() if len(Ugrp)<10: lut = dict(zip(Ugrp,sns.color_palette(colName[colCounter%2],len(Ugrp)).as_hex())) colCounter += 1 elif len(Ugrp)<20: lut = dict(zip(Ugrp,sns.color_palette(n_colors=len(Ugrp)).as_hex())) else: lut = dict(zip(Ugrp,sns.color_palette("husl",len(Ugrp)).as_hex())) grpCol.append(grp.map(lut)) grpLegend.append([mpatches.Patch(color=v,label=k) for k,v in lut.items()]) grpWd.append(max([len(x) for x in Ugrp]))#0.02*fW*max([len(x) for x in Ugrp]) grpLen.append(len(Ugrp)+2) w += 2 Zscore=None heatCol=data['color'] heatCenter=None colTitle="Expression" if data['norm']=='zscore': Zscore=1 #heatCol="vlag" heatCenter=0 colTitle="Z-score" #ppr.pprint('HEAT data preparing cost %f seconds' % (time.time()-sT) ) #sT = time.time() try: g = sns.clustermap(adata.to_df(), method="ward",row_cluster=exprOrder,z_score=Zscore,cmap=heatCol,center=heatCenter, row_colors=pd.concat(grpCol,axis=1).astype('str'),yticklabels=False,xticklabels=True, figsize=(w,h),colors_ratio=0.05, cbar_pos=(.3, .95, .55, .02), cbar_kws={"orientation": "horizontal","label": colTitle,"shrink": 0.5}) except Exception as e: return 'ERROR: Z score calculation failed for 0 standard diviation. '+traceback.format_exc() # 'ERROR @server: {}, {}'.format(type(e),str(e)) #ppr.pprint('HEAT plotting cost %f seconds' % (time.time()-sT) ) #sT = time.time() g.ax_col_dendrogram.set_visible(False) #g.ax_row_dendrogram.set_visible(False) plt.setp(g.ax_heatmap.xaxis.get_majorticklabels(), rotation=90) grpW = [1.02] grpH = [1.2] cumulaN = 0 cumulaMax = 0 characterW=1/40 # a character is 1/40 of heatmap width characterH=1/40 # a character is 1/40 of heatmap height for i in sorted(range(len(grpLen)),key=lambda k:grpLen[k]):#range(5):# cumulaN += grpLen[i] if cumulaN>(10+1/characterH): grpW.append(grpW[-1]+cumulaMax) grpH = [1.2] cumulaN =0 cumulaMax=0 leg = g.ax_heatmap.legend(handles=grpLegend[i],frameon=True,title=data['grp'][i],loc="upper left", bbox_to_anchor=(grpW[-1],grpH[-1]),fontsize=5)#grpW[i],0.5,0.3 #leg = g.ax_heatmap.legend(handles=grpLegend[0],frameon=True,title=data['grp'][0],loc="upper left", # bbox_to_anchor=(1.02,1-i*0.25),fontsize=5)#grpW[i],0.5,0. cumulaMax = max([cumulaMax,grpWd[i]*characterW]) grpH.append(grpH[-1]-grpLen[i]*characterH) leg.get_title().set_fontsize(6)#min(grpSize)+2 g.ax_heatmap.add_artist(leg) #ppr.pprint('HEAT post plotting cost %f seconds' % (time.time()-sT) ) return iostreamFig(g)#json.dumps([iostreamFig(g),Xdata])#)# def HeatData(data): adata = createData(data) Xdata = pd.concat([adata.to_df(),adata.obs], axis=1, sort=False).to_csv() return Xdata def GD(data): adata = None; for one in data['cells'].keys(): #sT = time.time() oneD = data.copy() oneD.update({'cells':data['cells'][one], 'genes':[], 'grp':[]}) D = createData(oneD) #ppr.pprint("one grp aquire data cost %f seconds" % (time.time()-sT)) D.obs['cellGrp'] = one if adata is None: adata = D else: #sT =time.time() adata = adata.concatenate(D) #ppr.pprint("Concatenate data cost %f seconds" % (time.time()-sT)) if adata is None: return Msg("No cells were satisfied the condition!") ## adata.obs.astype('category') cutOff = 'geneN_cutoff'+data['cutoff'] #sT = time.time() #adata.obs[cutOff] = adata.to_df().apply(lambda x: sum(x>float(data['cutoff'])),axis=1) #ppr.pprint(time.time()-sT) #sT = time.time() #df = adata.to_df() #adata.obs[cutOff] = df[df>float(data['cutoff'])].count(axis=1) #ppr.pprint(time.time()-sT) sT = time.time() adata.obs[cutOff] = (adata.X >float(data['cutoff'])).sum(1) ppr.pprint(time.time()-sT) ## w = 3 if len(data['cells'])>1: w += 3 fig = plt.figure(figsize=[w,4]) sc.pl.violin(adata,cutOff,groupby='cellGrp',ax=fig.gca(),show=False,rotation=0,size=2) return iostreamFig(fig) def getGSEA(data): strGSEA = '%s/gsea/'%strExePath return json.dumps(sorted([os.path.basename(i).replace(".symbols.gmt","") for i in glob.glob(strGSEA+"*.symbols.gmt")])) def DEG(data): adata = None; genes = data['genes'] data['genes'] = [] comGrp = 'cellGrp' if 'combine' in data.keys(): if data['DEmethod']=='default': combUpdate, obs = getObs(data) if combUpdate and len(data['grp'])>1: obs[comGrp] = obs[data['grp'][0]] for i in data['grp']: if i!=data['grp'][0]: obs[comGrp] += ":"+obs[i] mask = [obs[comGrp].isin([data['comGrp'][i]]) for i in [0,1]] else: data['figOpt']['scale'] = 'No' adata = createData(data) comGrp = data['grp'][0] adata = adata[adata.obs[comGrp].isin(data['comGrp'])] else: mask = [pd.Series(range(data['cellN'])).isin(data['cells'][one].values()) for one in data['comGrp']] for one in data['comGrp']: oneD = data.copy() oneD['cells'] = data['cells'][one] oneD['genes'] = [] oneD['grp'] = [] oneD['figOpt']['scale']='No' #oneD = {'cells':data['cells'][one], # 'genes':[], # 'grp':[], # 'figOpt':{'scale':'No'}, # 'url':data['url']} D = createData(oneD) D.obs[comGrp] = one if adata is None: adata = D else: adata = adata.concatenate(D) if data['DEmethod']=='default': if sum(mask[0]==True)<10 or sum(mask[1]==True)<10: raise ValueError('Less than 10 cells in a group!') with app.get_data_adaptor(url_dataroot=data['url_dataroot'],dataset=data['dataset']) as scD: res = diffDefault.diffexp_ttest(scD,mask[0].to_numpy(),mask[1].to_numpy(),scD.data.shape[1])# shape[cells as rows, genes as columns] gNames = list(scD.data.var[data['var_index']]) deg = pd.DataFrame(res,columns=['gID','log2fc','pval','qval']) gName = pd.Series([gNames[i] for i in deg['gID']],name='gene') deg = pd.concat([deg,gName],axis=1).loc[:,['gene','log2fc','pval','qval']] else: if not 'AnnData' in str(type(adata)): raise ValueError('No data extracted by user selection') adata.obs.astype('category') nm = None if data['DEmethod']=='wald': nm = 'nb' if data['DEmethod']=='wald': res = de.test.wald(adata,formula_loc="~1+"+comGrp,factor_loc_totest=comGrp) elif data['DEmethod']=='t-test': res = de.test.t_test(adata,grouping=comGrp) elif data['DEmethod']=='rank': res = de.test.rank_test(adata,grouping=comGrp) else: raise ValueError('Unknown DE methods:'+data['DEmethod']) #res = de.test.two_sample(adata,comGrp,test=data['DEmethod'],noise_model=nm) deg = res.summary() deg = deg.sort_values(by=['qval']).loc[:,['gene','log2fc','pval','qval']] deg['log2fc'] = -1 * deg['log2fc'] ## plot in R #strF = ('/tmp/DEG%f.csv' % time.time()) strF = ('%s/DEG%f.csv' % (data["CLItmp"],time.time())) deg.to_csv(strF,index=False) #ppr.pprint([strExePath+'/volcano.R',strF,'"%s"'%';'.join(genes),data['figOpt']['img'],str(data['figOpt']['fontsize']),str(data['figOpt']['dpi']),str(data['logFC']),data['comGrp'][1],data['comGrp'][0]]) res = subprocess.run([strExePath+'/volcano.R',strF,';'.join(genes),data['figOpt']['img'],str(data['figOpt']['fontsize']),str(data['figOpt']['dpi']),str(data['logFC']),data['comGrp'][1],data['comGrp'][0],str(data['sigFDR']),str(data['sigFC']),data['Rlib']],capture_output=True)# if 'Error' in res.stderr.decode('utf-8'): raise SyntaxError("in volcano.R: "+res.stderr.decode('utf-8')) img = res.stdout.decode('utf-8') # GSEA GSEAimg="" GSEAtable=pd.DataFrame() if data['gsea']['enable']: res = subprocess.run([strExePath+'/fgsea.R', strF, '%s/gsea/%s.symbols.gmt'%(strExePath,data['gsea']['gs']), str(data['gsea']['gsMin']), str(data['gsea']['gsMax']), str(data['gsea']['padj']), data['gsea']['up'], data['gsea']['dn'], str(data['gsea']['collapse']), data['figOpt']['img'], str(data['figOpt']['fontsize']), str(data['figOpt']['dpi']), data['Rlib']],capture_output=True)# if 'Error' in res.stderr.decode('utf-8'): raise SyntaxError("in fgsea.R: "+res.stderr.decode('utf-8')) GSEAimg = res.stdout.decode('utf-8') GSEAtable = pd.read_csv(strF) GSEAtable['leadingEdge'] = GSEAtable['leadingEdge'].apply(lambda x:'|'.join(x.split('|')[:10])) os.remove(strF) ##### gInfo = getVar(data) deg.index = deg['gene'] deg = pd.concat([deg,gInfo],axis=1,sort=False) #return deg.to_csv() if not data['topN']=='All': deg = deg.iloc[range(int(data['topN'])),] #deg.loc[:,'log2fc'] = deg.loc[:,'log2fc'].apply(lambda x: '%.2f'%x) #deg.loc[:,'pval'] = deg.loc[:,'pval'].apply(lambda x: '%.4E'%x) #deg.loc[:,'qval'] = deg.loc[:,'qval'].apply(lambda x: '%.4E'%x) #ppr.pprint(GSEAtable) #ppr.pprint(GSEAtable.sort_values('pval')) return json.dumps([deg.to_csv(index=False),img,GSEAtable.to_csv(index=False),GSEAimg])#json.dumps([deg.values.tolist(),img]) def DOT(data): #ppr.pprint("DOT, starting ...") updateGene(data) # Dot plot, The dotplot visualization provides a compact way of showing per group, the fraction of cells expressing a gene (dot size) and the mean expression of the gene in those cell (color scale). The use of the dotplot is only meaningful when the counts matrix contains zeros representing no gene counts. dotplot visualization does not work for scaled or corrected matrices in which zero counts had been replaced by other values, see http://scanpy-tutorials.readthedocs.io/en/multiomics/visualizing-marker-genes.html data['figOpt']['scale'] = 'No'; #ppr.pprint("DOT: creating data ...") adata = createData(data) #ppr.pprint("DOT: data created!") if len(adata)==0: return Msg('No cells in the condition!') #return adata grp = adata.obs[data['grp'][0]].unique() if len(grp)<10: col = np.array(sns.color_palette('Set1',len(grp)).as_hex()) elif len(grp)<20: col = np.array(sns.color_palette(n_colors=len(grp)).as_hex()) else: col = np.array(sns.color_palette("husl",len(grp)).as_hex()) adata.uns[data['grp'][0]+'_colors'] = col #ppr.pprint(sc.__version__) if 'split_show' in data['figOpt']['scanpybranch']:#.dev140+ge9cbc5f dp = sc.pl.dotplot(adata,data['genes'],groupby=data['grp'][0],expression_cutoff=float(data['cutoff']),mean_only_expressed=(data['mean_only_expressed'] == 'Yes'), var_group_positions=data['grpLoc'],var_group_labels=data['grpID'], return_fig=True)# dp = dp.add_totals(size=1.2).legend(show_size_legend=True,width=float(data['legendW'])).style(cmap=data['color'], dot_edge_color='black', dot_edge_lw=1, size_exponent=1.5) dp.show() fig = dp.get_axes()['mainplot_ax'].figure else: sc.pl.dotplot(adata,data['genes'],groupby=data['grp'][0],show=False,expression_cutoff=float(data['cutoff']),mean_only_expressed=(data['mean_only_expressed'] == 'Yes'),var_group_positions=data['grpLoc'],var_group_labels=data['grpID'], color_map=data['color']) fig = plt.gcf() #ppr.pprint(adata) return iostreamFig(fig) def EMBED(data): adata = createData(data) if len(data['grpNum'])>0: adata.obs = pd.concat([adata.obs,getObsNum(data)],axis=1) subSize = 4 ncol = int(data['ncol']) ngrp = len(data['grp']) ngrpNum = len(data['grpNum']) ngene = len(data['genes']) nrow = ngrp+math.ceil(ngrpNum/ncol)+math.ceil(ngene/ncol) if 'splitGrp' in data.keys(): splitName = list(adata.obs[data['splitGrp']].unique()) nsplitRow = math.ceil(len(splitName)/ncol) nrow = ngrp+math.ceil(ngrpNum/ncol)+ngene*nsplitRow step =11 grpCol = {gID:math.ceil(len(list(adata.obs[gID].unique()))/step) for gID in data['grp']} rcParams['figure.constrained_layout.use'] = False fig = plt.figure(figsize=(ncol*subSize,subSize*nrow)) gs = fig.add_gridspec(nrow,ncol,wspace=0.2) for i in range(ngrp): grpName = adata.obs[data['grp'][i]].value_counts().to_dict() grpPalette = None plotOrder = None dotSize = None if len(grpName)==2 and max(grpName.values())/min(grpName.values())>10: grpPalette = {max(grpName,key=grpName.get):'#c0c0c030',min(grpName,key=grpName.get):'#de2d26ff'} plotOrder = min(grpName,key=grpName.get) #list(grpPalette.keys()) # grpPalette = [grpPalette[k] for k in list(adata.obs[data['grp'][i]].cat.categories)] dotSize = adata.obs.apply(lambda x: 360000/adata.shape[1] if x['HIVcell']==plotOrder else 120000/adata.shape[1],axis=1).tolist() ax = sc.pl.embedding(adata,data['layout'],color=data['grp'][i],ax=fig.add_subplot(gs[i,0]),show=False,palette=grpPalette,groups=plotOrder,size=dotSize) if grpCol[data['grp'][i]]>1: ax.legend(ncol=grpCol[data['grp'][i]],loc=6,bbox_to_anchor=(1,0.5),frameon=False) ax.set_xlabel('%s1'%data['layout']) ax.set_ylabel('%s2'%data['layout']) for i in range(ngrpNum): x = int(i/ncol)+ngrp y = i % ncol ax = sc.pl.embedding(adata,data['layout'],color=data['grpNum'][i],ax=fig.add_subplot(gs[x,y]),show=False)#,wspace=0.25 ax.set_xlabel('%s1'%data['layout']) ax.set_ylabel('%s2'%data['layout']) if 'splitGrp' in data.keys(): vMax = adata.to_df().apply(lambda x: max(x)) vMin = adata.to_df().apply(lambda x: min(x)) dotSize = 120000 / adata.n_obs for i in range(ngene): for j in range(len(splitName)): x = ngrp + math.ceil(ngrpNum/ncol) + i*nsplitRow+int(j/ncol) y = j % ncol ax = sc.pl.embedding(adata,data['layout'],ax=fig.add_subplot(gs[x,y]),show=False)#color=data['genes'][i],wspace=0.25, ax = sc.pl.embedding(adata[adata.obs[data['splitGrp']]==splitName[j]],data['layout'],color=data['genes'][i], vmin=vMin[data['genes'][i]],vmax=vMax[data['genes'][i]],ax=ax,show=False, size=dotSize,title='{} in {}'.format(data['genes'][i],splitName[j])) ax.set_xlabel('%s1'%data['layout']) ax.set_ylabel('%s2'%data['layout']) else: for i in range(ngene): x = int(i/ncol)+ngrp+math.ceil(ngrpNum/ncol) y = i % ncol ax = sc.pl.embedding(adata,data['layout'],color=data['genes'][i],ax=fig.add_subplot(gs[x,y]),show=False) ax.set_xlabel('%s1'%data['layout']) ax.set_ylabel('%s2'%data['layout']) return iostreamFig(fig) def TRACK(data): updateGene(data) adata = createData(data) if len(adata)==0: return Msg('No cells in the condition!') w = math.log2(adata.n_obs) h = adata.n_vars/2 ## a bug in scanpy reported: https://github.com/theislab/scanpy/issues/1265, if resolved the following code is not needed if len(data['grpLoc'])>0 and data['grpLoc'][len(data['grpLoc'])-1][1] < (len(data['genes'])-1): data['grpLoc'] += [(data['grpLoc'][len(data['grpLoc'])-1][1]+1,len(data['genes'])-1)] data['grpID'] += ['others'] ############## #ppr.pprint(data['grpLoc']) #ppr.pprint(data['grpID']) ax = sc.pl.tracksplot(adata,data['genes'],groupby=data['grp'][0],figsize=(w,h), var_group_positions=data['grpLoc'],var_group_labels=data['grpID'], show=False) fig=ax['track_axes'][0].figure return iostreamFig(fig) def cut(x,cutoff,anno): iC = x[x>cutoff].count() if iC ==0: return "None" elif iC==2: return "Both" elif x[0]>cutoff: return anno[0] elif x[1]>cutoff: return anno[1] return "ERROR" def dualExp(df,cutoff,anno): label = ['None']+list(anno)+['Both'] a = df.iloc[:,0]>cutoff b = df.iloc[:,1]>cutoff return pd.Series([label[i] for i in list(a+2*b)],index=df.index,dtype='category') def DUAL(data): adata = createData(data) adata.obs['Expressed'] = dualExp(adata.to_df(),float(data['cutoff']),adata.var_names) sT = time.time() pCol = {"None":"#AAAAAA44","Both":"#EDDF01AA",data['genes'][0]:"#1CAF82AA",data['genes'][1]:"#FA2202AA"} adata.uns["Expressed_colors"]=[pCol[i] for i in adata.obs['Expressed'].cat.categories] rcParams['figure.figsize'] = 4.5, 4 fig = sc.pl.embedding(adata,data['layout'],color='Expressed',return_fig=True,show=False,legend_fontsize="small") plt.xlabel('%s1'%data['layout']) plt.ylabel('%s2'%data['layout']) rcParams['figure.figsize'] = 4, 4 return iostreamFig(fig) def MARK(data): adata = createData(data) if len(adata)==0: return Msg('No cells in the condition!') ## remove the annotation whose cell counts are smaller than 2 to avoid division by zero vCount = adata.obs[data["grp"][0]].value_counts() keepG = [key for key,val in vCount.items() if val>2] adata = adata[adata.obs[data["grp"][0]].isin(keepG),:] if len(adata.obs[data['grp'][0]].unique())<3: return 'ERROR @server: {}'.format('Less than 3 groups in selected cells! Please use DEG for 2 groups') #return json.dumps([[['name','scores'],['None','0']],Msg('Less than 3 groups in selected cells!Please use DEG for 2 groups')]) sc.tl.rank_genes_groups(adata,groupby=data["grp"][0],n_genes=int(data['geneN']),method=data['markMethod'])# ppr.pprint(int(data['geneN'])) sc.pl.rank_genes_groups(adata,n_genes=int(data['geneN']),ncols=min([3,len(adata.obs[data['grp'][0]].unique())]),show=False) fig =plt.gcf() gScore = adata.uns['rank_genes_groups'] #ppr.pprint(gScore) pKeys = [i for i in ['names','scores','logfoldchanges','pvals','pvals_adj'] if i in gScore.keys()] scoreM = [pKeys+['Group']] for i in gScore['scores'].dtype.names: for j in range(len(gScore['scores'][i])): one = [] for k in pKeys: if k=='logfoldchanges': one += ['%.2f' % gScore[k][i][j]] elif k in ['pvals','pvals_adj']: one += ['%.4E' % gScore[k][i][j]] elif k=='scores': one += ['%.4f' % gScore[k][i][j]] else: one += [gScore[k][i][j]] scoreM += [one+[i]] return json.dumps([scoreM,iostreamFig(fig)]) def DENS(data): #sT = time.time() adata = createData(data) #ppr.pprint("read data cost: %f seconds" % (time.time()-sT)) #sT = time.time() adata.obs['None'] = pd.Categorical(['all']*adata.shape[0]) bw=float(data['bw']) sGrp = data['category'][0] cGrp = data['category'][1] defaultFontsize = 16 if 'figOpt' in data.keys(): defaultFontsize = float(data['figOpt']['fontsize']) subSize = 4 #split = list(adata.obs[sGrp].unique()) split = sorted(list(adata.obs[sGrp].cat.categories)) genes = sorted(list(adata.var.index)) #colGrp = list(adata.obs[cGrp].unique()) colGrp = sorted(list(adata.obs[cGrp].cat.categories)) legendCol = math.ceil(len(colGrp)/(len(split)*11)) fig = plt.figure(figsize=(len(genes)*subSize,len(split)*(subSize-1))) plt.xlabel("Expression",labelpad=20,fontsize=defaultFontsize+1) #plt.ylabel(sGrp,labelpad=50,fontsize=defaultFontsize+1) plt.xticks([]) plt.yticks([]) plt.box(on=None) #plt.xlabel("Expression") #plt.ylabel(sGrp) gs = fig.add_gridspec(len(split),len(genes),wspace=0.2)# #dataT = 0 #plotT = 0 for i in range(len(split)): #resT = time.time() Dobs = adata[adata.obs[sGrp]==split[i]].obs[cGrp] D = adata[adata.obs[sGrp]==split[i]].to_df() #dataT += (time.time()-resT) for j in range(len(genes)): ax = fig.add_subplot(gs[i,j]) #resT = time.time() for one in colGrp: if sum(Dobs==one)<1: sns.kdeplot([0],label=one) else: sns.kdeplot(D[Dobs==one][genes[j]].to_numpy(),bw_method=bw,label=one) ax.set_ylabel("",fontsize=defaultFontsize) if i==0: ax.set_title(genes[j],fontsize=defaultFontsize+2) if j==0: ax.set_ylabel(split[i],fontsize=defaultFontsize) if i==0 and j==(len(genes)-1): ax.legend(prop={'size': 10},title = cGrp,loc=2,bbox_to_anchor=(1,1),ncol=legendCol,frameon=False)# else: leg = ax.get_legend() if not leg==None: leg.remove() #fig.text(0.6,0.09,"Expression",ha='center') #ppr.pprint("plotting data cost: %f seconds" % dataT) #ppr.pprint("plotting plot cost: %f seconds" % plotT) #ppr.pprint("plotting total cost: %f seconds" % (time.time()-sT)) return iostreamFig(fig) def SANK(data): updateGene(data) if len(data['genes'])==0: tmp, D = getObs(data) D = D.apply(lambda x:x.apply(lambda y:x.name+":"+y)) else: adata = createData(data) D = pd.concat([adata.obs.apply(lambda x:x.apply(lambda y:x.name+":"+y)), adata.to_df().apply(lambda x:pd.cut(x,int(data['sankBin'])).apply(lambda y:x.name+":"+'%.1f_%.1f'%(y.left,y.right)))], axis=1,sort=False) D = D.astype('str').astype('category') if data['obs_index'] in D.columns: del D[data['obs_index']] colName =['Set1','Set3','viridis'] labels = [] cols = [] colindex = 0 for gID in D.columns: gNames = list(D[gID].unique()) labels += gNames if len(gNames) <10: cols += sns.color_palette(colName[colindex%2],len(gNames)).as_hex() colindex += 1 else: cols += sns.color_palette(colName[2],len(gNames)).as_hex() sIDs =[] dIDs =[] v=[] Dnames = data['sankOrder']#list(D.columns) #maxGrp = 0 #ppr.pprint(Dnames) for i in range(len(Dnames)-1): oneName = Dnames[i:i+2] #maxGrp = max(maxGrp,len(D[oneName[0]].unique())) summaryOne = D.groupby(oneName).size().reset_index(name='Count') summaryOne=summaryOne[summaryOne['Count']>0] sIDs += list(summaryOne[oneName[0]].apply(lambda x: labels.index(x))) dIDs += list(summaryOne[oneName[1]].apply(lambda x: labels.index(x))) v += list(summaryOne['Count']) data_trace = dict( type='sankey', domain=dict(x=[0,1],y=[0,1]), orientation='h', valueformat = ".0f", node = dict( pad = 10, thickness = 15, line = dict( color = "black", width = 0.5 ), label = labels, color = cols ), link = dict( source = sIDs, target = dIDs, value = v ) ) ## if the image is requested if 'imgSave' in data.keys(): layout = dict( font = dict(size=int(data['figOpt']['fontsize'])), height= int(data['imgH']), width = int(data['imgW'])*D.shape[1] ) fig = go.Figure(data=[go.Sankey(data_trace)],layout=layout) img = plotIO.to_image(fig,data['imgSave']) return base64.encodebytes(img).decode('utf-8') layout = dict( font = dict(size=int(data['figOpt']['fontsize'])), height= int(data['imgH']), width = int(data['imgW'])*D.shape[1], updatemenus= [ dict( y=0.9, buttons=[ dict( label='Thick', method='restyle', args=['node.thickness', 15] ), dict( label='Thin', method='restyle', args=['node.thickness', 8] ) ] ), dict( y=0.8, buttons=[ dict( label='Small gap', method='restyle', args=['node.pad', 15] ), dict( label='Large gap', method='restyle', args=['node.pad', 20] ) ] ), dict( y=0.7, buttons=[ dict( label='Snap', method='restyle', args=['arrangement', 'snap'] ), dict( label='Perpendicular', method='restyle', args=['arrangement', 'perpendicular'] ), dict( label='Freeform', method='restyle', args=['arrangement', 'freeform'] ), dict( label='Fixed', method='restyle', args=['arrangement', 'fixed'] ) ] ), dict( y=0.6, buttons=[ dict( label='Horizontal', method='restyle', args=['orientation','h']#{,'height':700,'width':250*D.shape[1]} ), dict( label='Vertical', method='restyle', args=['orientation','v']#{'orientation': 'v','height':250*D.shape[1],'width':700} ) ] ) ] ) fig = go.Figure(data=[go.Sankey(data_trace)],layout=layout) div = plotIO.to_html(fig) return div#[div.find('<div>'):(div.find('</div>')+6)] def DENS2D(data): adata = createData(data) ## plot in R strF = ('%s/DENS2D%f.csv' % (data["CLItmp"],time.time())) adata.to_df().to_csv(strF)# res = subprocess.run([strExePath+'/Density2D.R',strF,data['figOpt']['img'],str(data['cutoff']),str(data['bandwidth']),data['figOpt']['colorMap'],str(data['figOpt']['fontsize']),str(data['figOpt']['dpi']),data['Rlib']],capture_output=True)# img = res.stdout.decode('utf-8') os.remove(strF) if 'Error' in res.stderr.decode('utf-8'): raise SyntaxError("in R: "+res.stderr.decode('utf-8')) return img def toInt(x): if len(x)==0: return 0 return int(x) def STACBAR(data): if len(data['genes'])==0: tmp, D = getObs(data) D = D.apply(lambda x:x.apply(lambda y:y)) else: adata = createData(data) D = pd.concat([adata.obs.apply(lambda x:x.apply(lambda y:y)), adata.to_df().apply(lambda x:pd.cut(x,int(data['Nbin'])).apply(lambda y:'%s:%.1f_%.1f'%(x.name,y.left,y.right)))], axis=1,sort=False) D = D.astype('str').astype('category') if data['obs_index'] in D.columns: del D[data['obs_index']] cellN = D.groupby(list(D.columns)).size().reset_index(name="Count") strCol = data['colorBy'] tmp = list(D.columns) tmp.remove(strCol) strX = tmp[0] returnD = [{'name':i, 'sales':[{'year':j,#.replace(strX+':',''), 'profit':toInt(cellN[(cellN[strCol]==i) & (cellN[strX]==j)]['Count'])} for j in cellN[strX].unique()]} for i in cellN[strCol].unique()] return json.dumps(returnD) def CLI(data): strPath = data["CLItmp"]+('/CLI%f' % time.time()) script = data['script'] del data['script'] adata = createData(data) strData = strPath + '.h5ad' adata.write(strData) #with open(strData,'wb') as f: #pickle.dump(adata,f) ppr.pprint(len(re.findall(r'```',script))) if (len(re.findall(r'```',script)) >0): strScript = strPath + '.Rmd' with open(strScript,'w') as f: f.writelines(['---\noutput:\n html_document:\n code_folding: hide\n---\n\n```{r}\nstrPath <- "%s"\n```\n\n'%strPath]) f.write(script) #ppr.pprint(subprocess.run('which Rscript',capture_output=True,shell=True).stdout.decode('utf-8')) res = subprocess.run('Rscript -e \'rmarkdown::render("%s", output_file="%s.html")\''%(strScript,strPath),capture_output=True,shell=True) if (os.path.exists('%s.html'%strPath)): with open('%s.html'%strPath,'r') as file: html = file.read() else: html = '' ppr.pprint(res.stdout.decode('utf-8')) ppr.pprint(res.stderr.decode('utf-8')) else: strScript = strPath + '.py' with open(strScript,'w') as f: f.writelines(['%load_ext rpy2.ipython\n','from anndata import read_h5ad\n','adata=read_h5ad("%s")\n'%strData, 'strPath="%s"\n\n'%strPath]) #f.writelines(['%load_ext rpy2.ipython\n','import pickle\n','with open("%s","rb") as f:\n'%strData,' adata=pickle.load(f)\n','strPath="%s"\n\n'%strPath]) f.writelines(['%%R\n','strPath="%s"\n\n'%strPath]) f.write(script) ppr.pprint(subprocess.run('which Rscript',capture_output=True,shell=True).stdout.decode('utf-8')) ppr.pprint(subprocess.run('which pandoc',capture_output=True,shell=True).stdout.decode('utf-8')) ppr.pprint(subprocess.run("Rscript -e 'reticulate::py_config()'",capture_output=True,shell=True).stdout.decode('utf-8')) res = subprocess.run('jupytext --to notebook --output - %s | jupyter nbconvert --ExecutePreprocessor.timeout=1800 --to html --execute --stdin --stdout'%strScript,capture_output=True,shell=True) html = res.stdout.decode('utf-8') h,s,e = html.partition('<div class="cell border-box-sizing code_cell rendered">') h1,s,e = e.partition('<div class="cell border-box-sizing code_cell rendered">') ## remove the first cell h1,s,e = e.partition('<div class="cell border-box-sizing code_cell rendered">') ## remove the second cell html = h+s+e if 'Error' in res.stderr.decode('utf-8'): html = 'ERROR @server:\nstderr:\n' + res.stderr.decode('utf-8') + '\nstdout:\n' + res.stdout.decode('utf-8') for f in glob.glob(strPath+"*"): try: os.remove(f) except: continue return html def getDesp(data): strF = re.sub("h5ad$","txt",data["h5ad"]) if not os.path.isfile(strF): return "" txt = "" with open(strF,'r') as fp: for line in fp: txt = "%s<br>%s"%(txt,line) return txt def getPreDEGname(data): strF = re.sub("h5ad$","db",data["h5ad"]) if not os.path.isfile(strF): #ppr.pprint(strF+" is NOT found!") return "" conn = sqlite3.connect(strF) df = pd.read_sql_query("select DISTINCT contrast,tags from DEG;", conn) conn.close() return json.dumps(list(df['contrast']+"::"+df['tags'])) def getPreDEGvolcano(data): strF = re.sub("h5ad$","db",data["h5ad"]) comGrp = data["compSel"].split("::") conn = sqlite3.connect(strF) df = pd.read_sql_query("select gene,log2fc,pval,qval from DEG where contrast=? and tags=?;", conn,params=comGrp) conn.close() deg = df.sort_values(by=['qval']) data["comGrp"] = comGrp[0].split(".vs.") ## plot in R strF = ('%s/DEG%f.csv' % (data["CLItmp"],time.time())) deg.to_csv(strF,index=False) #ppr.pprint([strExePath+'/volcano.R',strF,';'.join(genes),data['figOpt']['img'],str(data['figOpt']['fontsize']),str(data['figOpt']['dpi']),str(data['logFC']),data['comGrp'][1],data['comGrp'][0]]) res = subprocess.run([strExePath+'/volcano.R',strF,';'.join(data['genes']),data['figOpt']['img'],str(data['figOpt']['fontsize']),str(data['figOpt']['dpi']),str(data['logFC']),data['comGrp'][1],data['comGrp'][0],str(data['sigFDR']),str(data['sigFC']),data['Rlib']],capture_output=True)# img = res.stdout.decode('utf-8') os.remove(strF) if 'Error' in res.stderr.decode('utf-8'): raise SyntaxError("in R: "+res.stderr.decode('utf-8')) ##### gInfo = getVar(data) deg.index = deg['gene'] deg = pd.concat([deg,gInfo],axis=1,join='inner',sort=False) #return deg.to_csv() if not data['topN']=='All': deg = deg.iloc[range(min(deg.shape[0],int(data['topN']))),] #deg.loc[:,'log2fc'] = deg.loc[:,'log2fc'].apply(lambda x: '%.2f'%x) #deg.loc[:,'pval'] = deg.loc[:,'pval'].apply(lambda x: '%.4E'%x) #deg.loc[:,'qval'] = deg.loc[:,'qval'].apply(lambda x: '%.4E'%x) return json.dumps([deg.to_csv(index=False),img])#json.dumps([deg.values.tolist(),img]) def getPreDEGbubble(data): #data={'compSel':['MS.vs.Control::EN.L4','MS.vs.Control::Endo.cells','MS.vs.Control::EN.PYR'],'genes':['RASGEF1B','SLC26A3','UNC5C','AHI1','CD9']} sql = "select gene,log2fc,pval,qval,contrast || '::' || tags as tag from DEG where tag in ({comp}) and gene in ({gList}) order by case tag {oList} end;".format( comp=','.join(['?']*len(data['compSel'])), gList=','.join(['?']*len(data['genes'])), oList=' '.join(['WHEN ? THEN %d'%i for i in range(len(data['compSel']))])) strF = re.sub("h5ad$","db",data["h5ad"]) conn = sqlite3.connect(strF) deg =
pd.read_sql_query(sql,conn,params=data['compSel']+data['genes']+data['compSel'])
pandas.read_sql_query
# Package import from __future__ import print_function, division from warnings import warn from nilmtk.disaggregate import Disaggregator import pandas as pd import numpy as np from collections import OrderedDict import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from statistics import mean import os import time import argparse import pickle import random import json from torchsummary import summary import torch import torch.nn as nn import torch.distributed as dist import torch.nn.functional as F import torch.utils.data as tud from torch.utils.data.dataset import TensorDataset from torch.utils.tensorboard import SummaryWriter # Fix the random seed to ensure the reproducibility of the experiment random_seed = 10 random.seed(random_seed) np.random.seed(random_seed) torch.manual_seed(random_seed) torch.cuda.manual_seed_all(random_seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # Use cuda or not USE_CUDA = torch.cuda.is_available() DEVICE = 'cuda' if USE_CUDA else 'cpu' class Encoder(nn.Module): def __init__(self, power_dis_dim, embed_dim = 128, enc_hid_dim = 128, dec_hid_dim = 256): super(Encoder, self).__init__() self.embedding = nn.Embedding(power_dis_dim, embed_dim) self.rnn = nn.GRU(embed_dim, enc_hid_dim, bidirectional = True, batch_first = True) self.fc = nn.Linear(enc_hid_dim * 2, dec_hid_dim) self.dropout = nn.Dropout(0.5) self.act = nn.Tanh() def forward(self, mains): # mains = [batch_size, 1, mains_len] # embedded = [batch_size, mains_len, embed_dim] embedded = self.dropout(self.embedding(mains.squeeze(1))) # enc_output = [batch_size, mains_len, enc_hid_dim * 2], enc_hidden = [batch_size, 2, enc_hid_dim] enc_output, enc_hidden = self.rnn(embedded) # s [batch_size, dec_hid_dim] = enc_hidden [batch_size, 2 * enc_hid_dim] * W [enc_hid_dim * 2, dec_hid_dim] s = self.act(self.fc(enc_hidden.contiguous().view(mains.size(0), -1))) return enc_output, s class Attention(nn.Module): def __init__(self, enc_hid_dim = 128, dec_hid_dim = 256): super(Attention, self).__init__() self.W_hs = nn.Linear((enc_hid_dim * 2) + dec_hid_dim, dec_hid_dim, bias = False) self.v = nn.Linear(dec_hid_dim, 1, bias = False) self.act = nn.Tanh() def forward(self, s, enc_output): # s = [batch_size, dec_hid_dim], enc_output = [batch_size, mains_len, enc_hid_dim * 2] batch_size, mains_len = enc_output.size(0), enc_output.size(1) # repeat decoder hidden state mains_len times, so s = [batch_size, mains_len, dec_hid_dim] # print(s.size()) s = s.unsqueeze(1).repeat(1, mains_len, 1) # E [batch_size, mains_len, dec_hid_dim] = h_s [batch_size, mains_len, dec_hid_dim + enc_hid_dim * 2] * W_hs[dec_hid_dim + enc_hid_dim * 2, dec_hid_dim] E = self.act(self.W_hs(torch.cat((s, enc_output), dim = 2))) # attention = [batch_size, mains_len] attention = self.v(E).squeeze(2) return F.softmax(attention, dim = 1) class Decoder(nn.Module): def __init__(self, power_dis_dim, attention, enc_hid_dim = 128, dec_hid_dim = 256): super(Decoder, self).__init__() self.power_dis_dim = power_dis_dim self.attention = attention self.rnn = nn.GRU(enc_hid_dim * 2, dec_hid_dim, batch_first = True) self.fc_out = nn.Linear((enc_hid_dim * 2) + dec_hid_dim, power_dis_dim) self.dropout = nn.Dropout(0.5) def forward(self, enc_output, s): # enc_output = [batch_size, mains_len, enc_hid_dim * 2], s = [batch_size, dec_hid_dim] # a = [batch_size, 1, mains_len] a = self.attention(s, enc_output).unsqueeze(1) # c = [batch_size, 1, enc_hid_dim * 2] c = torch.bmm(a, enc_output) # dec_output = [batch_size, 1, dec_hid_dim] = dec_hidden = [batch_size, 1, dec_hid_dim] dec_output, dec_hidden = self.rnn(c, s.unsqueeze(0)) # dec_output = [batch_size, dec_hid_dim], c = [batch_size, enc_hid_dim * 2] dec_output, c = dec_output.squeeze(1), c.squeeze(1) # pred = [batch_size, power_dis_dim] pred = self.fc_out(torch.cat((dec_output, c),dim = 1)) return pred, dec_hidden.squeeze(0) def initialize(layer): if isinstance(layer, nn.LSTM): # Xavier_uniform will be applied to W_{ih}, Orthogonal will be applied to W_{hh}, to be consistent with Keras and Tensorflow torch.nn.init.xavier_uniform_(layer.weight_ih_l0.data) torch.nn.init.orthogonal_(layer.weight_hh_l0.data) torch.nn.init.constant_(layer.bias_ih_l0.data, val = 0.0) torch.nn.init.constant_(layer.bias_hh_l0.data, val = 0.0) elif isinstance(layer, nn.Linear): # Xavier_uniform will be applied to conv1d and dense layer, to be consistent with Keras and Tensorflow torch.nn.init.xavier_uniform_(layer.weight.data) if layer.bias is not None: torch.nn.init.constant_(layer.bias.data, val = 0.0) class Seq2Seq_Pytorch(nn.Module): def __init__(self, encoder, decoder, device = DEVICE): # Refer to "<NAME>, <NAME>, <NAME>, et al. Nonintrusive Load Monitoring based on Sequence-to-sequence Model With Attention Mechanism[J]. Proceedings of the CSEE". super(Seq2Seq_Pytorch, self).__init__() self.encoder = encoder self.encoder.apply(initialize) self.decoder = decoder self.decoder.apply(initialize) self.device = device def forward(self, mains): # mains = [batch_size, 1 ,mains_len], appliance = [batch_size, 1, app_len] batch_size, app_len = mains.size(0), mains.size(2) # Notice that decoder.output_dim = encoder.input_dim app_power_dim = self.decoder.power_dis_dim # tensor to store decoder outputs outputs = torch.zeros(batch_size, app_len, app_power_dim).to(self.device) enc_output, s = self.encoder(mains) # For-loop for t in range(app_len): # receive output tensor (predictions) and new hidden state, and place predictions in outputs dec_output, s = self.decoder(enc_output, s) outputs[:,t,:] = dec_output return outputs def train(appliance_name, model, sequence_length, mains, appliance, epochs, batch_size, pretrain = False, checkpoint_interval = None, train_patience = 3): # Model configuration if USE_CUDA: model = model.cuda() if not pretrain: model.apply(initialize) # summary(model, (1, mains.shape[1]),dtypes = torch.long) # split the train and validation set train_mains,valid_mains,train_appliance,valid_appliance = train_test_split(mains, appliance, test_size=.2, random_state = random_seed) # Create optimizer, loss function, and dataload optimizer = torch.optim.Adam(model.parameters(), lr = 1e-3) loss_fn = torch.nn.CrossEntropyLoss() train_dataset = TensorDataset(torch.from_numpy(train_mains).long().permute(0,2,1), torch.from_numpy(train_appliance).float().permute(0,2,1)) valid_dataset = TensorDataset(torch.from_numpy(valid_mains).long().permute(0,2,1), torch.from_numpy(valid_appliance).float().permute(0,2,1)) train_loader = tud.DataLoader(train_dataset, batch_size = batch_size, shuffle = True, num_workers = 0, drop_last = True) valid_loader = tud.DataLoader(valid_dataset, batch_size = batch_size, shuffle = True, num_workers = 0, drop_last = True) writer = SummaryWriter(comment='train_visual') patience, best_loss = 0, None for epoch in range(epochs): # Earlystopping if(patience == train_patience): print("val_loss did not improve after {} Epochs, thus Earlystopping is calling".format(train_patience)) break # Train the model st = time.time() model.train() for i, (batch_mains, batch_appliance) in enumerate(train_loader): if USE_CUDA: batch_mains = batch_mains.cuda() batch_appliance = batch_appliance.cuda() batch_pred = model(batch_mains) loss = loss_fn(batch_pred.view(batch_size * sequence_length, -1), batch_appliance.view(-1).long()) model.zero_grad() loss.backward() optimizer.step() ed = time.time() # Evaluate the model model.eval() with torch.no_grad(): cnt, loss_sum = 0, 0 for i, (batch_mains, batch_appliance) in enumerate(valid_loader): if USE_CUDA: batch_mains = batch_mains.cuda() batch_appliance = batch_appliance.cuda() batch_pred = model(batch_mains) loss = loss_fn(batch_pred.view(batch_size * sequence_length, -1), batch_appliance.view(-1).long()) loss_sum += loss cnt += 1 final_loss = loss_sum / cnt # Save best only if best_loss is None or final_loss < best_loss: best_loss = final_loss patience = 0 net_state_dict = model.state_dict() path_state_dict = "./"+appliance_name+"_seq2seq_best_state_dict.pt" torch.save(net_state_dict, path_state_dict) else: patience = patience + 1 print("Epoch: {}, Valid_Loss: {}, Time consumption: {}.".format(epoch, final_loss, ed - st)) # For the visualization of training process for name,param in model.named_parameters(): writer.add_histogram(name + '_grad', param.grad, epoch) writer.add_histogram(name + '_data', param, epoch) writer.add_scalars("MSELoss", {"Valid":final_loss}, epoch) # Save checkpoint if (checkpoint_interval != None) and ((epoch + 1) % checkpoint_interval == 0): checkpoint = {"model_state_dict": model.state_dict(), "optimizer_state_dict": optimizer.state_dict(), "epoch": epoch} path_checkpoint = "./"+appliance_name+"_seq2seq_checkpoint_{}_epoch.pt".format(epoch) torch.save(checkpoint, path_checkpoint) def test(model, test_mains, batch_size = 512): # Model test st = time.time() model.eval() # Create test dataset and dataloader batch_size = test_mains.shape[0] if batch_size > test_mains.shape[0] else batch_size test_dataset = TensorDataset(torch.from_numpy(test_mains).float().permute(0,2,1)) test_loader = tud.DataLoader(test_dataset, batch_size = batch_size, shuffle = False, num_workers = 0) with torch.no_grad(): for i, batch_mains in enumerate(test_loader): batch_pred = torch.argmax(model(batch_mains[0].long()).cpu(), dim = -1) if i == 0: res = batch_pred else: res = torch.cat((res, batch_pred), dim = 0) ed = time.time() print("Inference Time consumption: {}.".format(ed - st)) return res.numpy() class Seq2Seq(Disaggregator): def __init__(self, params): self.MODEL_NAME = "Seq2Seq" self.sequence_length = params.get('sequence_length',63) self.n_epochs = params.get('n_epochs', 10) self.batch_size = params.get('batch_size',512) self.appliance_params = params.get('appliance_params',{}) self.mains_max = params.get('mains_max', 10000) self.models = OrderedDict() def partial_fit(self, train_main, train_appliances, pretrain = False, do_preprocessing=True,**load_kwargs): # To preprocess the data and bring it to a valid shape if do_preprocessing: print ("Doing Preprocessing") train_main, train_appliances, power_dis_dim = self.call_preprocessing(train_main, train_appliances,'train') train_main = pd.concat(train_main, axis = 0).values train_main = train_main.reshape((-1, self.sequence_length, 1)) new_train_appliances = [] for app_name, app_df in train_appliances: app_df = pd.concat(app_df, axis=0).values app_df = app_df.reshape((-1, self.sequence_length, 1)) new_train_appliances.append((app_name, app_df)) train_appliances = new_train_appliances for appliance_name, power in train_appliances: if appliance_name not in self.models: print ("First model training for ",appliance_name) encoder = Encoder(power_dis_dim) attention = Attention() decoder = Decoder(power_dis_dim, attention) self.models[appliance_name] = Seq2Seq_Pytorch(encoder, decoder) # Load pretrain dict or not if pretrain is True: self.models[appliance_name].load_state_dict(torch.load("./"+appliance_name+"_seq2seq_pre_state_dict.pt")) model = self.models[appliance_name] train(appliance_name,model, self.sequence_length, train_main, power, self.n_epochs, self.batch_size, pretrain = pretrain, checkpoint_interval = 3) # Model test will be based on the best model self.models[appliance_name].load_state_dict(torch.load("./"+appliance_name+"_seq2seq_best_state_dict.pt")) def disaggregate_chunk(self, test_main_list, do_preprocessing = True): # Disaggregate (test process) if do_preprocessing: test_main_list = self.call_preprocessing(test_main_list, submeters_lst = None, method='test') test_predictions = [] for test_main in test_main_list: test_main = test_main.values.reshape((-1, self.sequence_length, 1)) disggregation_dict = {} for appliance in self.models: # Move the model to cpu, and then test it model = self.models[appliance].to('cpu') prediction = test(model, test_main) prediction = self.continuous_output(prediction) valid_predictions = prediction.flatten() series = pd.Series(valid_predictions) disggregation_dict[appliance] = series results = pd.DataFrame(disggregation_dict,dtype = 'float32') test_predictions.append(results) return test_predictions def call_preprocessing(self, mains_lst, submeters_lst, method): # Seq2Seq Version sequence_length = self.sequence_length if method=='train': # Preprocess the main and appliance data, the parameter 'overlapping' will be set 'True' processed_mains = [] for mains in mains_lst: # Notice that we will not use z-score method to normalize the data, since the seq2seq requires us to convert continuous power reading into discrete label mains = self.discrete_data(mains.values, sequence_length, True) processed_mains.append(pd.DataFrame(mains)) tuples_of_appliances = [] for (appliance_name,app_df_list) in submeters_lst: processed_app_dfs = [] for app_df in app_df_list: data = self.discrete_data(app_df.values, sequence_length, True) processed_app_dfs.append(pd.DataFrame(data)) tuples_of_appliances.append((appliance_name, processed_app_dfs)) return processed_mains, tuples_of_appliances, int((self.mains_max + 9) / 10) + 1 if method=='test': # Preprocess the main data only, the parameter 'overlapping' will be set 'False' processed_mains = [] for mains in mains_lst: mains = self.discrete_data(mains.values, sequence_length, False) processed_mains.append(
pd.DataFrame(mains)
pandas.DataFrame
import csv import pandas as pd import random import numpy as np from sklearn.decomposition import PCA from sklearn import svm #from sklearn.neural_network import MLPClassifier #from sklearn import tree from sklearn.metrics import accuracy_score df=
pd.read_csv('C:\\Users\\Admin\\Desktop\\BE Proj\\HighFrequency.txt')
pandas.read_csv
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import logging from typing import Optional, Union from flask_babel import gettext as _ from pandas import DataFrame from superset.exceptions import InvalidPostProcessingError from superset.utils.core import DTTM_ALIAS from superset.utils.pandas_postprocessing.utils import PROPHET_TIME_GRAIN_MAP def _prophet_parse_seasonality( input_value: Optional[Union[bool, int]] ) -> Union[bool, str, int]: if input_value is None: return "auto" if isinstance(input_value, bool): return input_value try: return int(input_value) except ValueError: return input_value def _prophet_fit_and_predict( # pylint: disable=too-many-arguments df: DataFrame, confidence_interval: float, yearly_seasonality: Union[bool, str, int], weekly_seasonality: Union[bool, str, int], daily_seasonality: Union[bool, str, int], periods: int, freq: str, ) -> DataFrame: """ Fit a prophet model and return a DataFrame with predicted results. """ try: # pylint: disable=import-error,import-outside-toplevel from prophet import Prophet prophet_logger = logging.getLogger("prophet.plot") prophet_logger.setLevel(logging.CRITICAL) prophet_logger.setLevel(logging.NOTSET) except ModuleNotFoundError as ex: raise InvalidPostProcessingError(_("`prophet` package not installed")) from ex model = Prophet( interval_width=confidence_interval, yearly_seasonality=yearly_seasonality, weekly_seasonality=weekly_seasonality, daily_seasonality=daily_seasonality, ) if df["ds"].dt.tz: df["ds"] = df["ds"].dt.tz_convert(None) model.fit(df) future = model.make_future_dataframe(periods=periods, freq=freq) forecast = model.predict(future)[["ds", "yhat", "yhat_lower", "yhat_upper"]] return forecast.join(df.set_index("ds"), on="ds").set_index(["ds"]) def prophet( # pylint: disable=too-many-arguments df: DataFrame, time_grain: str, periods: int, confidence_interval: float, yearly_seasonality: Optional[Union[bool, int]] = None, weekly_seasonality: Optional[Union[bool, int]] = None, daily_seasonality: Optional[Union[bool, int]] = None, index: Optional[str] = None, ) -> DataFrame: """ Add forecasts to each series in a timeseries dataframe, along with confidence intervals for the prediction. For each series, the operation creates three new columns with the column name suffixed with the following values: - `__yhat`: the forecast for the given date - `__yhat_lower`: the lower bound of the forecast for the given date - `__yhat_upper`: the upper bound of the forecast for the given date :param df: DataFrame containing all-numeric data (temporal column ignored) :param time_grain: Time grain used to specify time period increments in prediction :param periods: Time periods (in units of `time_grain`) to predict into the future :param confidence_interval: Width of predicted confidence interval :param yearly_seasonality: Should yearly seasonality be applied. An integer value will specify Fourier order of seasonality. :param weekly_seasonality: Should weekly seasonality be applied. An integer value will specify Fourier order of seasonality, `None` will automatically detect seasonality. :param daily_seasonality: Should daily seasonality be applied. An integer value will specify Fourier order of seasonality, `None` will automatically detect seasonality. :param index: the name of the column containing the x-axis data :return: DataFrame with contributions, with temporal column at beginning if present """ index = index or DTTM_ALIAS # validate inputs if not time_grain: raise InvalidPostProcessingError(_("Time grain missing")) if time_grain not in PROPHET_TIME_GRAIN_MAP: raise InvalidPostProcessingError( _("Unsupported time grain: %(time_grain)s", time_grain=time_grain,) ) freq = PROPHET_TIME_GRAIN_MAP[time_grain] # check type at runtime due to marhsmallow schema not being able to handle # union types if not isinstance(periods, int) or periods < 0: raise InvalidPostProcessingError(_("Periods must be a whole number")) if not confidence_interval or confidence_interval <= 0 or confidence_interval >= 1: raise InvalidPostProcessingError( _("Confidence interval must be between 0 and 1 (exclusive)") ) if index not in df.columns: raise InvalidPostProcessingError(_("DataFrame must include temporal column")) if len(df.columns) < 2: raise InvalidPostProcessingError(_("DataFrame include at least one series")) target_df =
DataFrame()
pandas.DataFrame
import numpy as np import pytest from pandas import ( DataFrame, Index, MultiIndex, Series, Timestamp, date_range, ) import pandas._testing as tm @pytest.mark.parametrize("bad_raw", [None, 1, 0]) def test_rolling_apply_invalid_raw(bad_raw): with pytest.raises(ValueError, match="raw parameter must be `True` or `False`"): Series(range(3)).rolling(1).apply(len, raw=bad_raw) def test_rolling_apply_out_of_bounds(engine_and_raw): # gh-1850 engine, raw = engine_and_raw vals = Series([1, 2, 3, 4]) result = vals.rolling(10).apply(np.sum, engine=engine, raw=raw) assert result.isna().all() result = vals.rolling(10, min_periods=1).apply(np.sum, engine=engine, raw=raw) expected = Series([1, 3, 6, 10], dtype=float) tm.assert_almost_equal(result, expected) @pytest.mark.parametrize("window", [2, "2s"]) def test_rolling_apply_with_pandas_objects(window): # 5071 df = DataFrame( {"A": np.random.randn(5), "B": np.random.randint(0, 10, size=5)}, index=date_range("20130101", periods=5, freq="s"), ) # we have an equal spaced timeseries index # so simulate removing the first period def f(x): if x.index[0] == df.index[0]: return np.nan return x.iloc[-1] result = df.rolling(window).apply(f, raw=False) expected = df.iloc[2:].reindex_like(df) tm.assert_frame_equal(result, expected) with tm.external_error_raised(AttributeError): df.rolling(window).apply(f, raw=True) def test_rolling_apply(engine_and_raw): engine, raw = engine_and_raw expected = Series([], dtype="float64") result = expected.rolling(10).apply(lambda x: x.mean(), engine=engine, raw=raw) tm.assert_series_equal(result, expected) # gh-8080 s = Series([None, None, None]) result = s.rolling(2, min_periods=0).apply(lambda x: len(x), engine=engine, raw=raw) expected = Series([1.0, 2.0, 2.0]) tm.assert_series_equal(result, expected) result = s.rolling(2, min_periods=0).apply(len, engine=engine, raw=raw) tm.assert_series_equal(result, expected) def test_all_apply(engine_and_raw): engine, raw = engine_and_raw df = ( DataFrame( {"A": date_range("20130101", periods=5, freq="s"), "B": range(5)} ).set_index("A") * 2 ) er = df.rolling(window=1) r = df.rolling(window="1s") result = r.apply(lambda x: 1, engine=engine, raw=raw) expected = er.apply(lambda x: 1, engine=engine, raw=raw)
tm.assert_frame_equal(result, expected)
pandas._testing.assert_frame_equal
from __future__ import division import pytest import numpy as np from pandas import (Interval, IntervalIndex, Index, isna, interval_range, Timestamp, Timedelta, compat) from pandas._libs.interval import IntervalTree from pandas.tests.indexes.common import Base import pandas.util.testing as tm import pandas as pd class TestIntervalIndex(Base): _holder = IntervalIndex def setup_method(self, method): self.index = IntervalIndex.from_arrays([0, 1], [1, 2]) self.index_with_nan = IntervalIndex.from_tuples( [(0, 1), np.nan, (1, 2)]) self.indices = dict(intervalIndex=tm.makeIntervalIndex(10)) def create_index(self): return IntervalIndex.from_breaks(np.arange(10)) def test_constructors(self): expected = self.index actual = IntervalIndex.from_breaks(np.arange(3), closed='right') assert expected.equals(actual) alternate = IntervalIndex.from_breaks(np.arange(3), closed='left') assert not expected.equals(alternate) actual = IntervalIndex.from_intervals([Interval(0, 1),
Interval(1, 2)
pandas.Interval
import os import pandas as pd import numpy as np import h5py from sklearn.model_selection import KFold from sklearn.preprocessing import StandardScaler from collections import OrderedDict test_path = "/Users/marina/Documents/PhD/research/astro_research/data/testing/" dpath = test_path + "PROCESSED_DATA/" def prettify(class_name): if "/" in class_name: class_name = class_name.replace("/", "") class_name = class_name.replace(" ", "_") return class_name def save_HDF5s(training_folds, val_fold, test_fold, thex_data_path): """ Save class data to HDF5 """ # Save to HDF5 File hfile = h5py.File(thex_data_path, 'w') # define & fill groups for i in range(8): training = hfile.create_group("folds/1/training/" + str(i + 1)) data = training_folds[i].to_numpy(dtype=np.float32) dset = training.create_dataset("data", data=data) val = hfile.create_group("folds/1/training/9") dset = val.create_dataset("data", data=val_fold.to_numpy(dtype=np.float32)) val = hfile.create_group("folds/1/tests/1") dset = val.create_dataset("data", data=test_fold.to_numpy(dtype=np.float32)) hfile.close() def save_CSVs(fold_sets, class_X, class_name, output_dir): """ Save class data to CSV """ train_indices = [] for i in range(9): # Include validation fold in training train_indices += fold_sets[i].tolist() class_train = class_X.iloc[train_indices] class_test = class_X.iloc[fold_sets[9]] class_train.to_csv(output_dir + prettify(class_name) + "train.csv", index=False) class_test.to_csv(output_dir + prettify(class_name) + "test.csv", index=False) def save_class_data(class_name, X, y, output_dir, scaling=False): """ Save the X data of this class as HDF5 file Returns test fold to be saved separately in joined test file. """ label_name = list(y)[0] class_indices = y.loc[y[label_name].str.contains(class_name)].index class_X = X.iloc[class_indices] # Divide data into 10 folds; use 8 as training, 1 as validation, 1 as testing kf = KFold(n_splits=10, shuffle=True) fold_sets = [] for remaining_indices, fold_indices in kf.split(class_X): fold_sets.append(fold_indices) training_folds = [] for i in range(8): training_folds.append(class_X.iloc[fold_sets[i]]) val_fold = class_X.iloc[fold_sets[8]] test_fold = class_X.iloc[fold_sets[9]] if scaling: fs = list(val_fold) scaler = StandardScaler() class_X = pd.DataFrame( data=scaler.fit_transform(class_X), columns=fs) training_folds = [] for i in range(8): training_folds.append(class_X.iloc[fold_sets[i]]) val_fold = pd.DataFrame( data=scaler.transform(val_fold), columns=fs) test_fold = pd.DataFrame( data=scaler.transform(test_fold), columns=fs) # Save to HDF5 File class_path = output_dir + prettify(class_name) + 'X.hdf5' save_HDF5s(training_folds, val_fold, test_fold, class_path) # Also save as CSVs - to test on KDE Model save_CSVs(fold_sets, class_X, class_name, output_dir) return test_fold def save_test_X_y(test_folds, dpath, label="transient_type"): """ Using existing folds, combine each class's test fold into one whole test data set. Save as both an HDF5 and CSV. """ full_test_set = pd.concat(test_folds.values()) hfile = h5py.File(dpath + "test_X.hdf5", 'w') group = hfile.create_group("folds/1/tests/1") dset = group.create_dataset("data", data=full_test_set.to_numpy(dtype=np.float32)) hfile.close() # Save as CSV too for KDE model testing full_test_set.to_csv(dpath + "test_X.csv", index=False) # Save labels corresponding to test set in CSV. labels = [] for class_name in test_folds.keys(): class_count = test_folds[class_name].shape[0] for i in range(class_count): labels.append(class_name) label_df =
pd.DataFrame(labels, columns=[label])
pandas.DataFrame
# -*- coding: utf-8 -*- """ :Author: <NAME> :Date: 2018. 1. 24. """ import numpy as np import pandas as pd from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis from sklearn.linear_model import Ridge, LogisticRegression, Lasso from sklearn.naive_bayes import GaussianNB from scipy import stats COLUMN_NAME = 'column_name' COEFFICIENT_VALUE = 'coefficient_value' P_VALUE = 'p-value' def custom_round(number): return 1 if number >= 0.5 else 0 # noinspection PyUnusedLocal def get_logistic_regression(x_train, y_train, x_test, alpha=None, summary=False): """ :param x_train: (DataFrame) The variables of train set. :param y_train: (Series) The correct answers of train set. :param x_test: (DataFrame) The variables of test set. :param alpha: :param summary: :return y_prediction: (Series) The predictions of test set. """ model = LogisticRegression() model.fit(x_train, y_train) y_prediction = model.predict(X=x_test) y_prediction = pd.Series(y_prediction).apply(custom_round) return y_prediction def get_ridge_regression(x_train, y_train, x_test, alpha, summary=False): """ :param x_train: (DataFrame) The variables of train set. :param y_train: (Series) The correct answers of train set. :param x_test: (DataFrame) The variables of test set. :param alpha: Regularization strength; must be a positive float. Regularization improves the conditioning of the problem and reduces the variance of the estimates. Larger values specify stronger regularization. Alpha corresponds to ``C^-1`` in other linear models such as LogisticRegression or LinearSVC. If an array is passed, penalties are assumed to be specific to the targets. Hence they must correspond in number. :param summary: (bool) If summary is True, print the coefficient values by descent order. :return y_prediction: (Series) The predictions of test set. """ model = Ridge(alpha=alpha) model.fit(x_train, y_train) if summary: # Calculate coefficients and p-values standard_error = np.sum((model.predict(X=x_train) - y_train) ** 2, axis=0) / float(x_train.shape[0] - x_train.shape[1]) t_statistics = model.coef_ / standard_error p_values = 2 * (1 - stats.t.cdf(np.abs(t_statistics), y_train.shape[0] - x_train.shape[1])) model_coef = pd.DataFrame(data=list(zip(x_train.columns, np.abs(model.coef_), p_values)), columns=[COLUMN_NAME, COEFFICIENT_VALUE, P_VALUE]) model_coef = model_coef.sort_values(by=COEFFICIENT_VALUE, ascending=False) print(model_coef) y_prediction = model.predict(X=x_test) y_prediction = pd.Series(y_prediction).apply(custom_round) return y_prediction def get_lasso_regression(x_train, y_train, x_test, alpha, summary=False): """ :param x_train: (DataFrame) The variables of train set. :param y_train: (Series) The correct answers of train set. :param x_test: (DataFrame) The variables of test set. :param alpha: Regularization strength; must be a positive float. Regularization improves the conditioning of the problem and reduces the variance of the estimates. Larger values specify stronger regularization. Alpha corresponds to ``C^-1`` in other linear models such as LogisticRegression or LinearSVC. If an array is passed, penalties are assumed to be specific to the targets. Hence they must correspond in number. :param summary: (bool) If summary is True, print the coefficient values by descent order. :return y_prediction: (Series) The predictions of test set. """ model = Lasso(alpha=alpha) model.fit(X=x_train, y=y_train) if summary: # Calculate coefficients and p-values standard_error = np.sum((model.predict(X=x_train) - y_train) ** 2, axis=0) / float(x_train.shape[0] - x_train.shape[1]) t_statistics = model.coef_ / standard_error p_values = 2 * (1 - stats.t.cdf(np.abs(t_statistics), y_train.shape[0] - x_train.shape[1])) model_coef = pd.DataFrame(data=list(zip(x_train.columns, np.abs(model.coef_), p_values)), columns=[COLUMN_NAME, COEFFICIENT_VALUE, P_VALUE]) model_coef = model_coef.sort_values(by=COEFFICIENT_VALUE, ascending=False) print(model_coef) y_prediction = model.predict(X=x_test) y_prediction = pd.Series(y_prediction).apply(custom_round) return y_prediction # noinspection PyUnusedLocal def get_linear_discriminant_analysis(x_train, y_train, x_test, alpha=None, summary=False): """ :param x_train: :param y_train: :param x_test: :param alpha: :param summary: :return y_prediction: (Series) The predictions of test set. """ model = LinearDiscriminantAnalysis() model.fit(x_train, y_train) y_prediction = model.predict(X=x_test) y_prediction = pd.Series(y_prediction).apply(custom_round) return y_prediction # noinspection PyUnusedLocal def get_quadratic_discriminant_analysis(x_train, y_train, x_test, alpha=None, summary=False): """ :param x_train: :param y_train: :param x_test: :param alpha: :param summary: :return y_prediction: (Series) The predictions of test set. """ model = QuadraticDiscriminantAnalysis() model.fit(x_train, y_train) y_prediction = model.predict(X=x_test) y_prediction = pd.Series(y_prediction).apply(custom_round) return y_prediction # noinspection PyUnusedLocal def get_naive_bayes(x_train, y_train, x_test, alpha=None, summary=False): """ :param x_train: :param y_train: :param x_test: :param alpha: :param summary: :return y_prediction: (Series) The predictions of test set. """ model = GaussianNB() model.fit(x_train, y_train) y_prediction = model.predict(X=x_test) y_prediction = pd.Series(y_prediction).apply(custom_round) return y_prediction # noinspection PyUnusedLocal def get_random_forest(x_train, y_train, x_test, alpha=None, summary=False): """ :param x_train: :param y_train: :param x_test: :param alpha: :param summary: :return y_prediction: (Series) The predictions of test set. """ from sklearn.ensemble import RandomForestClassifier from sklearn.datasets import make_classification n_features = len(x_train.columns) x_train, y_train = make_classification(n_samples=5500, n_features=n_features, n_informative=2, n_redundant=0, random_state=0, shuffle=False) model = RandomForestClassifier(max_depth=2, random_state=0) model.fit(x_train, y_train) RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini', max_depth=2, max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1, oob_score=False, random_state=0, verbose=0, warm_start=False) print(model.feature_importances_) print(model.predict([[0] * n_features])) y_prediction = model.predict(X=x_test) y_prediction = pd.Series(y_prediction).apply(custom_round) return y_prediction # The column names of following_count A_FOLLOWER_COUNT = 'A_following_count' B_FOLLOWER_COUNT = 'B_following_count' # noinspection PyUnusedLocal def get_select_more_follower_count(x_train, y_train, original_x_test, alpha=None, summary=False): """ :param x_train: :param y_train: :param original_x_test: :param alpha: :param summary: :return y_prediction: (Series) The predictions of test set. """ y_prediction = pd.Series(np.where(original_x_test[A_FOLLOWER_COUNT] > original_x_test[B_FOLLOWER_COUNT], 1, 0)) return y_prediction # An usage example if __name__ == '__main__': from data.data_reader import get_training_data from data.data_combinator import get_full_combinations alpha = 0.002 x_train, y_train, x_val, y_val = get_training_data(validation=True) x_train = get_full_combinations(x_train) original_x_val = x_val.copy() x_val = get_full_combinations(x_val) y_val = y_val.reset_index(drop=True) print('Logistic Regression') y_prediction = get_logistic_regression(x_train, y_train, x_val) result =
pd.concat([y_val, y_prediction], axis=1)
pandas.concat
# test vector generation module __doc__ = """ Test vector generation block for mProbo. We use three sampling schemes: - Orthogonal arrays with the strength of two in a OA table; - LatinHyperCube sampling if proper OA doesn't exist; - Random sampling. """ import numpy as np import os from BitVector import BitVector import copy from itertools import product, ifilter, ifilterfalse import pandas as pd import random from dave.common.davelogger import DaVELogger from dave.common.misc import print_section, all_therm, dec2bin, bin2dec, bin2thermdec, flatten_list, assert_file, isNone from environ import EnvOaTable, EnvFileLoc, EnvTestcfgPort from port import get_singlebit_name import oatable import pyDOE import dave.mprobo.mchkmsg as mcode #------------------------------------------------------ class LatinHyperCube(object): ''' Perform Latin Hyper Cube sampling using pyDOE and scale the generated samples by depth (i.e. number of levels) to make all integers - n_var : number of variables - depth : Depth applied to all variables - sample : number of samples to be generated ''' def __call__(self, n_var, depth, sample): lhs_samples = self._get_lhs(n_var, sample) return self._scale(lhs_samples, depth) def _scale(self, vector, depth): # scale vector by depth return np.ceil(depth*vector) def _get_lhs(self, n_var, sample): # get samples using LHS return pyDOE.lhs(n_var, sample) #------------------------------------------------------ class OrthogonalArray(object): ''' NOT YET IMPLEMENTED for generic OA ''' def __init__(self, logger_id='logger_id'): self._logger = DaVELogger.get_logger('%s.%s.%s' % (logger_id, __name__, self.__class__.__name__)) #------------------------------------------------------ class OrthogonalArrayTable(OrthogonalArray): ''' Generates orthogonal array samples from pre-defined tables. ''' TABLENAME_FORMAT = 'OA_V%d_L%d_tbl' def __init__(self, logger_id='logger_id'): OrthogonalArray.__init__(self, logger_id) @property def max_nvar(self): # max # of vars supported by mProbo return EnvOaTable().max_oa_var @property def max_depth(self): # max # oa depth supported by mProbo ''' TODO: somehow self._max_oa_depth returns a string, os int() is used ''' return int(EnvOaTable().max_oa_depth) @property def vector(self): # generated vector return self._vector @property def length(self): # length of generated vector return self._length @property def depth(self): # depth of generated vector return self._depth def generate(self, n_var, depth): ''' generate OA+random vector for given # of vars, OA depth ''' self._depth = depth self._vector = self._read_oatable(n_var, depth) self._length = self._vector.shape[0] if not isNone(self._vector) else 0 self._logger.debug(mcode.DEBUG_019 %(self.depth, self.length)) def test(self, n_var, depth): # test if OA exists for given # of vars, OA depth return self._read_oatable(n_var, depth) def get_oatable(self, n_var, depth): # return oa table StringIO if exists try: return getattr(oatable, self.TABLENAME_FORMAT %(n_var, depth)) except: return None def _read_oatable(self, n_var, depth): # return OA vector if exists table = self.get_oatable(n_var, depth) if table: strio = copy.deepcopy(table) # copy since StringIO is read more than once vector_array = np.loadtxt(strio, dtype=int)-1 # -1 because table starts from 1 return vector_array.reshape(vector_array.shape[0], n_var) else: return None #------------------------------------------------------ class TestVectorGenerator(object): def __init__(self, ph, test_cfg, logger_id='logger_id'): ''' ph: Port Handler class instance test_cfg: TestConfig class instance ''' self._logger_id = logger_id self._logger = DaVELogger.get_logger('%s.%s.%s' % (logger_id, __name__, self.__class__.__name__)) self.option = { # read vector generation options from test config #'oa_depth': test_cfg.get_option_regression_oa_depth(), 'oa_depth': int(test_cfg.get_option_regression_min_oa_depth()), 'min_oa_depth': int(test_cfg.get_option_regression_min_oa_depth()), 'max_sample': int(test_cfg.get_option_regression_max_sample()), 'en_interact': test_cfg.get_option_regression_en_interact(), 'order': int(test_cfg.get_option_regression_order()) } map(self._logger.info, print_section(mcode.INFO_036, 2)) # print section header # all possible linear circuit configurations by DigitalModePort self._generate_digital_vector(ph.get_digital_input()) # process analog ports self._ph = ph if self._ph.get_by_name('dummy_analoginput') != None: self.option['max_sample'] = 1 self._count_port(ph) # count number of (pinned, unpinned) ports self._update_analog_grid() analog_raw_vector = self._generate_analog_raw_vector() # analog test vectors by scaling raw vector to real range self._a_vector = self._map_analog_vector(analog_raw_vector) self._logger.info(mcode.INFO_045 % self.get_analog_vector_length()) def _count_port(self, ph): # separate unpinned, pinned analog ports and count them self.unpin_analog = ph.get_unpinned(ph.get_pure_analog_input()) self.pin_analog = ph.get_pinned(ph.get_pure_analog_input()) self.unpin_quantized = ph.get_unpinned(ph.get_quantized_analog()) self.pin_quantized = ph.get_pinned(ph.get_quantized_analog()) self.no_unpin_analog = len(self.unpin_analog) + len(self.unpin_quantized) self.no_pin_analog = len(self.pin_analog) + len(self.pin_quantized) def _update_analog_grid(self): ''' calculate required analog grid for given max_sample option max_sample: maximum number of vectors set by user Na : # of analog+quantized input ports TODO: Decide whether max_bitw affects analog grid or not ''' # adjust grid to (self.max_bitw + 1) if that is smaller than 3 self.max_bitw = self._get_max_bitwidth(self.unpin_quantized) if self.option['oa_depth'] <= self.max_bitw: self.option.update({'oa_depth': self.max_bitw + 1}) self._logger.info(mcode.INFO_039 % self.option['oa_depth']) self._logger.info(mcode.INFO_036_1 % self.option['max_sample']) if isNone(self._ph.get_by_name('dummy_analoginput')): # Adjust max_sample to 2x no of all the linear terms #max_sample_internal = self.get_unit_no_testvector() + min(self.get_unit_no_testvector(), 2*self.get_unit_no_testvector_otf()) max_sample_internal = max(8,2*self.get_unit_no_testvector()) if self.option['max_sample'] < max_sample_internal: self.option['max_sample'] = max_sample_internal self._logger.info(mcode.INFO_036_1_1 % max_sample_internal) Na = self.no_unpin_analog Ng = self.option['oa_depth'] oa = OrthogonalArrayTable(self._logger_id) if not isNone(oa.get_oatable(Na, Ng)): # caculate # of grid, if oa exists max_sample = self.option['max_sample'] oa_vec0 = oa.test(Na, Ng) if len(oa_vec0) <= max_sample: max_depth = oa.max_depth+1 if Na > 1 else 100 for i in range (self.option['oa_depth'], max_depth): oa_vec = oa.test(Na, i) if isNone(oa_vec): Ng = i - 1 break elif len(oa_vec) >= max_sample: Ng = i break #Ng = i oa_vec0 = oa.test(Na, Ng) if len(oa_vec0) > max_sample: self.option['max_sample'] = len(oa_vec0) else: self.option['max_sample'] = len(oa_vec0) self.option['oa_depth'] = Ng self._logger.info(mcode.INFO_036_2 % self.option['max_sample']) self._logger.info(mcode.INFO_036_3 % self.option['oa_depth']) self._logger.info(mcode.INFO_036_4 % (Ng, len(oa.test(Na, Ng)))) def get_unit_no_testvector_otf(self): # unit number of test vectors for on-the-fly check n = len(self.unpin_analog)*self.option['order'] for p in self.unpin_quantized: n += p.bit_width return max(4,n) def get_unit_no_testvector(self): # N+1 where N is the number of linear terms n = len(self.unpin_analog) # number of analog inputs (exclude quantized analog) nh = n*(self.option['order']-1) # number of higher-order terms for analog inputs nqa = 0 nqa_int = 0 for p in self.unpin_quantized: nqa += p.bit_width # total bit width of quantized analog if len(self.unpin_quantized) > 1: # if # of quantized analog inputs > 1 nqa_int = 1 for p in self.unpin_quantized: nqa_int *= p.bit_width # interaction between quantized analog bits n_tot = 1 + n + nh + nqa # linear terms if self.option['en_interact']: # take into account for interaction terms return n_tot + n*(n-1)/2 + nqa*n + nqa_int # linear terms + 1st interaction terms else: return n_tot def dump_test_vector(self, ph, workdir): # dump generated test vectors to a csv file csv_d = os.path.join(workdir, EnvFileLoc().csv_vector_prefix+'_digital.csv') # for digital csv_a = os.path.join(workdir, EnvFileLoc().csv_vector_prefix+'_analog.csv') # for analog d_vector = dict([ (k, self.conv_tobin(ph, k, v)) for k, v in self._d_vector.items() ]) a_vector = dict([ (k, self.conv_tobin(ph, k, v)) for k, v in self._a_vector.items() ]) df_d =
pd.DataFrame(d_vector)
pandas.DataFrame
# coding: utf-8 # In[1]: import sys sys.path.append("../") # In[2]: get_ipython().run_line_magic('load_ext', 'watermark') get_ipython().run_line_magic('watermark', '-p torch,pandas,numpy -m') # In[3]: from pathlib import Path import itertools from collections import Counter from functools import partial, reduce import joblib import pandas as pd import numpy as np from sklearn.model_selection import StratifiedShuffleSplit from fastai.text import ( TextDataset, SortishSampler, SortSampler, DataLoader, ModelData, get_rnn_classifier, seq2seq_reg, RNN_Learner, TextModel, to_gpu, LanguageModelLoader, LanguageModelData ) from fastai.core import T from fastai.rnn_reg import EmbeddingDropout from fastai.text import accuracy from torch.optim import Adam import torch.nn as nn import torch import torch.nn.functional as F from sklearn.metrics import confusion_matrix import matplotlib.pyplot as plt from tqdm import tqdm_notebook import sentencepiece as spm get_ipython().run_line_magic('matplotlib', 'inline') # In[4]: path = Path("../data/cache/lm_unigram_douban/") path.mkdir(parents=True, exist_ok=True) # In[5]: def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print("Normalized confusion matrix") else: print('Confusion matrix, without normalization') print(cm) plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) fmt = '.2f' if normalize else 'd' thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, format(cm[i, j], fmt), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') # ## Import And Tokenize Comments and Ratings # In[6]: df_ratings = pd.read_csv("../data/ratings_word.csv") df_ratings.head() # In[7]: sss = StratifiedShuffleSplit(n_splits=1, test_size=0.4, random_state=888) train_idx, test_idx = next(sss.split(df_ratings, df_ratings.rating)) df_train = df_ratings.iloc[train_idx].copy() df_test = df_ratings.iloc[test_idx].copy() sss = StratifiedShuffleSplit(n_splits=1, test_size=0.5, random_state=888) val_idx, test_idx = next(sss.split(df_test, df_test.rating)) df_val = df_test.iloc[val_idx].copy() df_test = df_test.iloc[test_idx].copy() del df_ratings # In[8]: UNK = 0 BEG = 1 EMB_DIM = 300 # ### Use the Unigram Vocabulary from the Wiki model # In[9]: sp = spm.SentencePieceProcessor() sp.Load("../data/unigram_model.model") # #### Tokenize # In[11]: results = [] tokens_train, tokens_val, tokens_test = [], [], [] for df, tokens in zip((df_train, df_val, df_test), (tokens_train, tokens_val, tokens_test)) : for i, row in tqdm_notebook(df.iterrows(), total=df.shape[0]): tokens.append(np.array([BEG] + sp.EncodeAsIds(row["comment"]))) # In[12]: assert len(tokens_train) == df_train.shape[0] # In[14]: tokens_train[0] # #### Embedding # We can keep using the original embedding matrix, but the row corresponding to the BEG token must be zeroed. # In[17]: MODEL_PATH = "../data/cache/lm_unigram/models/lm_lstm.h5" weights = torch.load(MODEL_PATH, map_location=lambda storage, loc: storage) assert weights['0.encoder.weight'].shape[1] == EMB_DIM weights['0.encoder.weight'].shape # In[18]: weights['0.encoder.weight'][BEG, :] = 0 weights['0.encoder_with_dropout.embed.weight'][BEG, :] = 0 weights['1.decoder.weight'][BEG, :] = 0 # In[22]: n_toks = weights['0.encoder.weight'].shape[0] # ### Use the Refitted Vocabulary # #### Investigate Vocabulary Differences # In[9]: itos_orig = [] with open("../data/unigram_model.vocab", mode="r", encoding="utf-8") as f: for line in f.readlines(): itos_orig.append(line.split("\t")[0]) itos = [] with open("../data/rating_unigram_model.vocab", mode="r", encoding="utf-8") as f: for line in f.readlines(): itos.append(line.split("\t")[0]) n_toks = len(itos) n_toks # In[10]: itos[:5] # In[11]: mapping = {s: idx for idx, s in enumerate(itos)} mapping_orig = {s: idx for idx, s in enumerate(itos_orig)} # In[12]: voc_diff = set(itos) - set(itos_orig) print(len(voc_diff), len(itos)) sorted([(x, mapping[x]) for x in list(voc_diff)], key=lambda x: x[1], reverse=True)[:50] # #### Tokenize # In[13]: sp = spm.SentencePieceProcessor() sp.Load("../data/rating_unigram_model.model") # In[14]: results = [] tokens_train, tokens_val, tokens_test = [], [], [] for df, tokens in zip((df_train, df_val, df_test), (tokens_train, tokens_val, tokens_test)) : for i, row in tqdm_notebook(df.iterrows(), total=df.shape[0]): tokens.append(np.array([BEG] + sp.EncodeAsIds(row["comment"]))) assert len(tokens_train) == df_train.shape[0] # In[15]: tokens_val[0] # In[16]: df_val.iloc[0] # #### Prepare the embedding matrix # In[17]: MODEL_PATH = "../data/cache/lm_unigram/models/lm_lstm.h5" weights = torch.load(MODEL_PATH, map_location=lambda storage, loc: storage) assert weights['0.encoder.weight'].shape[1] == EMB_DIM weights['0.encoder.weight'].shape # In[18]: new_matrix = np.zeros((n_toks, EMB_DIM)) hits = 0 for i, w in enumerate(itos): if w in mapping_orig: new_matrix[i] = weights['0.encoder.weight'][mapping_orig[w]] hits += 1 new_matrix[BEG, :] = 0 hits, hits *100 / len(itos[3:]) # In[19]: weights['0.encoder.weight'] = T(new_matrix) weights['0.encoder_with_dropout.embed.weight'] = T(np.copy(new_matrix)) weights['1.decoder.weight'] = T(np.copy(new_matrix)) # ## Languange Model # In[20]: bs = 64 bptt = 50 trn_dl = LanguageModelLoader(np.concatenate(tokens_train), bs, bptt) val_dl = LanguageModelLoader(np.concatenate(tokens_val), bs, bptt) # In[21]: np.max(np.array(list(itertools.chain.from_iterable(tokens_train)))) # In[23]: model_data = LanguageModelData(path, 2, n_toks, trn_dl, val_dl, bs=bs, bptt=bptt) # In[24]: drops = np.array([0.25, 0.1, 0.2, 0.02, 0.15])*0.7 opt_fn = partial(torch.optim.Adam, betas=(0.8, 0.99)) # In[25]: learner = model_data.get_model(opt_fn, EMB_DIM, 500, 3, dropouti=drops[0], dropout=drops[1], wdrop=drops[2], dropoute=drops[3], dropouth=drops[4]) learner.metrics = [accuracy] learner.freeze_to(-1) # In[26]: learner.model.load_state_dict(weights) # In[27]: lr=1e-3 lrs = lr learner.fit(lrs/2, 1, wds=1e-7, use_clr=(32,2), cycle_len=1) # In[28]: learner.save('lm_last_ft') # In[29]: learner.unfreeze() learner.clip = 25 learner.lr_find(start_lr=lrs/10, end_lr=lrs*10, linear=True) # In[30]: learner.sched.plot() # In[31]: lr = 3e-3 lrs = lr learner.fit(lrs, 1, wds=1e-7, use_clr=(20,5), cycle_len=10) # In[34]: learner.save_encoder("lm1_enc") # In[35]: learner.save("lm1") # In[36]: del learner # ## 3-class Classifier # As in https://zhuanlan.zhihu.com/p/27198713 # ### Full Dataset (v1) # In[37]: for df in (df_train, df_val, df_test): df["label"] = (df["rating"] >= 3) * 1 df.loc[df.rating == 3, "label"] = 1 df.loc[df.rating > 3, "label"] = 2 # In[38]: df_train.label.value_counts() # In[39]: bs = 64 trn_ds = TextDataset(tokens_train, df_train.label.values) val_ds = TextDataset(tokens_val, df_val.label.values) trn_samp = SortishSampler(tokens_train, key=lambda x: len(tokens_train[x]), bs=bs//2) val_samp = SortSampler(tokens_val, key=lambda x: len(tokens_val[x])) trn_dl = DataLoader(trn_ds, bs//2, transpose=True, num_workers=1, pad_idx=0, sampler=trn_samp) val_dl = DataLoader(val_ds, bs, transpose=True, num_workers=1, pad_idx=0, sampler=val_samp) model_data = ModelData(path, trn_dl, val_dl) # In[40]: dps = np.array([0.4,0.5,0.05,0.3,0.4]) * 0.5 opt_fn = partial(torch.optim.Adam, betas=(0.7, 0.99)) bptt = 50 # In[41]: model = get_rnn_classifier(bptt, bptt*2, 3, n_toks, emb_sz=EMB_DIM, n_hid=500, n_layers=3, pad_token=2, layers=[EMB_DIM*3, 50, 3], drops=[dps[4], 0.1], dropouti=dps[0], wdrop=dps[1], dropoute=dps[2], dropouth=dps[3]) # In[42]: learn = RNN_Learner(model_data, TextModel(to_gpu(model)), opt_fn=opt_fn) learn.reg_fn = partial(seq2seq_reg, alpha=2, beta=1) learn.clip=25. learn.metrics = [accuracy] learn.load_encoder('lm1_enc') # In[43]: learn.freeze_to(-1) learn.lr_find(lrs/1000) learn.sched.plot() # In[44]: lr=2e-4 lrm = 2.6 lrs = np.array([lr/(lrm**4), lr/(lrm**3), lr/(lrm**2), lr/lrm, lr]) learn.fit(lrs, 1, wds=0, cycle_len=1, use_clr=(8,3)) # In[45]: learn.save('clas_0') # In[46]: learn.freeze_to(-2) learn.fit(lrs, 1, wds=0, cycle_len=1, use_clr=(8,3)) # In[47]: learn.save('clas_1') # In[48]: learn.unfreeze() learn.fit(lrs, 1, wds=0, cycle_len=14, use_clr=(32,10)) # In[49]: learn.save("clas_full") # #### Evaluate # In[50]: learn.load("clas_full") learn.model.reset() _ = learn.model.eval() # In[51]: learn.model.eval() preds, ys = [], [] for x, y in tqdm_notebook(val_dl): preds.append(np.argmax(learn.model(x)[0].cpu().data.numpy(), axis=1)) ys.append(y.cpu().numpy()) # In[52]: preds = np.concatenate(preds) ys = np.concatenate(ys) preds.shape, ys.shape # In[53]:
pd.Series(ys)
pandas.Series
###################################################################### ## DeepBiome ## - Main code ## ## July 10. 2019 ## Youngwon (<EMAIL>) ## ## Reference ## - Keras (https://github.com/keras-team/keras) ###################################################################### import os import sys import json import time import numpy as np import pandas as pd import gc import warnings warnings.filterwarnings("ignore") import logging from sklearn.model_selection import KFold from . import logging_daily from . import configuration from . import loss_and_metric from . import readers from . import build_network from .utils import file_path_fold, argv_parse, taxa_selection_accuracy import keras.backend as k import tensorflow as tf import copy from ete3 import Tree, faces, AttrFace, TreeStyle, NodeStyle, CircleFace, TextFace, RectFace import matplotlib.colors as mcolors pd.set_option('display.float_format', lambda x: '%.03f' % x) np.set_printoptions(formatter={'float_kind':lambda x: '%.03f' % x}) def deepbiome_train(log, network_info, path_info, number_of_fold=None, tree_level_list = ['Genus', 'Family', 'Order', 'Class', 'Phylum'], max_queue_size=10, workers=1, use_multiprocessing=False, verbose=True): """ Function for training the deep neural network with phylogenetic tree weight regularizer. It uses microbiome abundance data as input and uses the phylogenetic taxonomy to guide the decision of the optimal number of layers and neurons in the deep learning architecture. Parameters ---------- log (logging instance) : python logging instance for logging network_info (dictionary) : python dictionary with network_information path_info (dictionary): python dictionary with path_information number_of_fold (int): default=None tree_level_list (list): name of each level of the given reference tree weights default=['Genus', 'Family', 'Order', 'Class', 'Phylum'] max_queue_size (int): default=10 workers (int): default=1 use_multiprocessing (boolean): default=False verbose (boolean): show the log if True default=True Returns ------- test_evaluation (numpy array): numpy array of the evaluation using testset from all fold train_evaluation (numpy array): numpy array of the evaluation using training from all fold network (deepbiome network instance): deepbiome class instance Examples -------- Training the deep neural network with phylogenetic tree weight regularizer. test_evaluation, train_evaluation, network = deepbiome_train(log, network_info, path_info) """ if tf.__version__.startswith('2'): gpus = tf.config.experimental.get_visible_devices(device_type='GPU') try: tf.config.experimental.set_memory_growth(gpus, True) except: pass else: config = tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True)) ### Argument ######################################################################################### model_save_dir = path_info['model_info']['model_dir'] model_path = os.path.join(model_save_dir, path_info['model_info']['weight']) try: hist_path = os.path.join(model_save_dir, path_info['model_info']['history']) is_save_hist = True except: is_save_hist = False try: warm_start = network_info['training_info']['warm_start'] == 'True' warm_start_model = network_info['training_info']['warm_start_model'] except: warm_start = False # try: save_frequency=int(network_info['training_info']['save_frequency']) # except: save_frequency=None ### Reader ########################################################################################### if verbose: log.info('-----------------------------------------------------------------') reader_class = getattr(readers, network_info['model_info']['reader_class'].strip()) # TODO: fix path_info reader = reader_class(log, path_info, verbose=verbose) data_path = path_info['data_info']['data_path'] y_path = '%s/%s'%(data_path, path_info['data_info']['y_path']) ############################################ # Set the cross-validation try: idxs = np.array(pd.read_csv(path_info['data_info']['idx_path'])-1, dtype=np.int) if number_of_fold == None: number_of_fold = idxs.shape[1] except: nsample = pd.read_csv(y_path).shape[0] if number_of_fold == None: number_of_fold = nsample kf = KFold(n_splits=number_of_fold, shuffle=True, random_state=12) cv_gen = kf.split(range(nsample)) idxs = np.array([train_idx for train_idx, test_idx in cv_gen]).T ############################################ try: count_path = path_info['data_info']['count_path'] x_list = np.array(
pd.read_csv(path_info['data_info']['count_list_path'], header=None)
pandas.read_csv
import os import matplotlib.pyplot as plt import numpy as np import pandas as pd import sklearn.preprocessing as preprocessing from sklearn import linear_model from sklearn import model_selection from sklearn.ensemble import RandomForestRegressor print(os.getcwd()) # data_path = r'C:\Users\ArseneLupin\Desktop\OrderType.csv' data_path = os.getcwd() + r'\dataset\train.csv' data_train = pd.read_csv(data_path) data_train.shape # 使用 len 和 df for i in range(len(data_train)): for j in range(12): cur_data = data_train.loc[i][j] print(cur_data) # 使用 .iteriterms() for i, series in data_train.iteritems(): # print(i, ":", type(series)) # print(i + ' : ' + series) print(series) print(data_train.head()) # data.select_dtypes() data_train.info() # show the data fig = plt.figure() plt.subplot2grid((2, 3), (0, 0)) # the Survived is the y data_train.Survived.value_counts().plot(kind='bar') # 柱状图 plt.title(u'live num') plt.ylabel(u'num') plt.subplot2grid((2, 3), (0, 1)) data_train.Pclass.value_counts().plot(kind="bar") plt.ylabel(u"num") plt.title(u"passenger class") plt.subplot2grid((2, 3), (0, 2)) plt.scatter(data_train.Age, data_train.Survived) plt.ylabel(u"live") # 设定纵坐标名称 plt.grid(b=True, which='major', axis='y') plt.title(u"live by age") plt.subplot2grid((2, 3), (1, 0), colspan=2) data_train.Age[data_train.Pclass == 1].plot(kind='kde') data_train.Age[data_train.Pclass == 2].plot(kind='kde') data_train.Age[data_train.Pclass == 3].plot(kind='kde') plt.xlabel(u"age") # plots an axis lable plt.ylabel(u"density") plt.title(u"passerger class by age ") plt.legend((u'1 class ', u'2 class', u'3 class'), loc='best') # sets our legend for our graph. plt.subplot2grid((2, 3), (1, 2)) data_train.Embarked.value_counts().plot(kind='bar') plt.title(u"num at embarked ") plt.ylabel(u"num") # 看看各乘客等级的获救情况 fig = plt.figure() # fig.set(alpha=0.2) # 设定图表颜色alpha参数 Survived_0 = data_train.Pclass[data_train.Survived == 0].value_counts() Survived_1 = data_train.Pclass[data_train.Survived == 1].value_counts() df = pd.DataFrame({u'live': Survived_1, u'unlive': Survived_0}) df.plot(kind='bar', stacked=True) plt.title(u"live by class") plt.xlabel(u"passenger class") plt.ylabel(u"num") plt.show() # the baby all lived the old lives little than the new Survived_age = data_train.Age[data_train.Survived == 1].value_counts() unSurvived_age = data_train.Age[data_train.Survived == 0].value_counts() temp_data = {u'live': Survived_age, u'unlive': unSurvived_age} df = pd.DataFrame(temp_data) df.plot(kind='bar', stacked=True) plt.title(u'live by age') plt.ylabel(u'num') plt.xlabel(u'age') print(df) plt.show() print(df.head()) print(df.size) print(df.shape) df.describe() df.get_dtype_counts() df.idxmax() df.idxmin() df.info() data_list = df.iteritems # 看看各性别的获救情况 fig = plt.figure() # fig.set(alpha=0.2) # 设定图表颜色alpha参数 # most of the people died and in the live ,women is more Survived_m = data_train.Survived[data_train.Sex == 'male'].value_counts() Survived_f = data_train.Survived[data_train.Sex == 'female'].value_counts() df = pd.DataFrame({u'man': Survived_m, u'female': Survived_f}) df.plot(kind='bar', stacked=True) plt.title(u"survied by sex") plt.xlabel(u"sex") plt.ylabel(u"num") plt.show() # 然后我们再来看看各种舱级别情况下各性别的获救情况 fig = plt.figure() # fig.set(alpha=0.65) # 设置图像透明度,无所谓 plt.title(u"surviced by class and sex") ax1 = fig.add_subplot(141) data_train.Survived[data_train.Sex == 'female'][data_train.Pclass != 3].value_counts().plot(kind='bar', label="female highclass", color='#FA2479') ax1.set_xticklabels([u"unlive", u"live"], rotation=0) ax1.legend([u"femall/high class"], loc='best') ax2 = fig.add_subplot(142, sharey=ax1) data_train.Survived[data_train.Sex == 'female'][data_train.Pclass == 3].value_counts().plot(kind='bar', label='female, low class', color='pink') ax2.set_xticklabels([u"live", u"unlive"], rotation=0) plt.legend([u"female/low class"], loc='best') ax3 = fig.add_subplot(143, sharey=ax1) data_train.Survived[data_train.Sex == 'male'][data_train.Pclass != 3].value_counts().plot(kind='bar', label='male, high class', color='lightblue') ax3.set_xticklabels([u"unlive", u"live"], rotation=0) plt.legend([u"man/high class"], loc='best') ax4 = fig.add_subplot(144, sharey=ax1) data_train.Survived[data_train.Sex == 'male'][data_train.Pclass == 3].value_counts().plot(kind='bar', label='male low class', color='steelblue') ax4.set_xticklabels([u"unlive", u"live"], rotation=0) plt.legend([u"man/low class"], loc='best') plt.show() fig = plt.figure() fig.set(alpha=0.2) # 设定图表颜色alpha参数 # x is the Embarked and y is the num and in the dataframe the row is the Embarked and the clo is the num Survived_0 = data_train.Embarked[data_train.Survived == 0].value_counts() Survived_1 = data_train.Embarked[data_train.Survived == 1].value_counts() df = pd.DataFrame({u'live': Survived_1, u'unlive': Survived_0}) df.plot(kind='bar', stacked=True) plt.title(u"live by Embarked") plt.xlabel(u"Embarked") plt.ylabel(u"num") plt.show() df # 堂兄妹个数 这就是特征工程,就是属性队结果的影响就是侦探的直觉,所以这些东西吸引我的原因,因为这些东西 在一开始就是和我在一起。很久很久以前。 g = data_train.groupby(['SibSp', 'Survived']) df = pd.DataFrame(g.count()['PassengerId']) df g = data_train.groupby(['Parch', 'Survived']) df = pd.DataFrame(g.count()['PassengerId']) df temp_data = data_train.Parch temp_data data_train.head() # ticket是船票编号,应该是unique的,和最后的结果没有太大的关系,先不纳入考虑的特征范畴把 # cabin只有204个乘客有值,我们先看看它的一个分布 temp_data = data_train.Cabin.value_counts() temp_data fig = plt.figure() fig.set(alpha=0.2) # 设定图表颜色alpha参数 # cabin 客舱 Survived_cabin = data_train.Survived[pd.notnull(data_train.Cabin)].value_counts() Survived_nocabin = data_train.Survived[pd.isnull(data_train.Cabin)].value_counts() df = pd.DataFrame({u'yes cabin': Survived_cabin, u'no cabin': Survived_nocabin}).transpose() df.plot(kind='bar', stacked=True) plt.title(u"live by cabin") plt.xlabel(u"Cabin exit") plt.ylabel(u"num") plt.show() ### 使用 RandomForestClassifier 填补缺失的年龄属性 def set_missing_ages(df): # 把已有的数值型特征取出来丢进Random Forest Regressor中 age_df = df[['Age', 'Fare', 'Parch', 'SibSp', 'Pclass']] # 乘客分成已知年龄和未知年龄两部分 known_age = age_df[age_df.Age.notnull()].as_matrix() unknown_age = age_df[age_df.Age.isnull()].as_matrix() # y即目标年龄 y = known_age[:, 0] # X即特征属性值 X = known_age[:, 1:] # fit到RandomForestRegressor之中 rfr = RandomForestRegressor(random_state=0, n_estimators=2000, n_jobs=-1) rfr.fit(X, y) # 用得到的模型进行未知年龄结果预测 predictedAges = rfr.predict(unknown_age[:, 1::]) # 用得到的预测结果填补原缺失数据 df.loc[(df.Age.isnull()), 'Age'] = predictedAges return df, rfr def set_Cabin_type(df): df.loc[(df.Cabin.notnull()), 'Cabin'] = "Yes" df.loc[(df.Cabin.isnull()), 'Cabin'] = "No" return df data_train, rfr = set_missing_ages(data_train) data_train = set_Cabin_type(data_train) age_df = data_train[['Age', 'Fare', 'Parch', 'SibSp', 'Pclass']] known_age = age_df[age_df.Age.notnull()].values unknown_age = age_df[age_df.Age.isnull()].values # y即目标年龄 y = known_age[:, 0] X = known_age[:, 1:] # fit到RandomForestRegressor之中 rfr = RandomForestRegressor(random_state=0, n_estimators=2000, n_jobs=-1) rfr.fit(X, y) predictedAges = rfr.predict(unknown_age[:, 1::]) # 用得到的预测结果填补原缺失数据 df.loc[(df.Age.isnull()), 'Age'] = predictedAges dummies_Cabin = pd.get_dummies(data_train['Cabin'], prefix='Cabin') dummies_Embarked =
pd.get_dummies(data_train['Embarked'], prefix='Embarked')
pandas.get_dummies
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Feb 2 18:48:59 2019 @author: Kazuki AvSigVersion を datetime とみなし、日毎の EngineVersion 等のシェアを計る """ import numpy as np import pandas as pd import os, gc from glob import glob from multiprocessing import cpu_count, Pool import utils utils.start(__file__) PREF = 'f009' features = ['EngineVersion', 'AppVersion', 'OsBuild', 'OsBuildLab', 'IeVerIdentifier', 'Census_OSBranch', 'Census_OSBuildNumber', 'Census_OSBuildRevision', 'Census_OSVersion'] tr = pd.read_feather('../data/train.f')[['AvSigVersion']+features] te = pd.read_feather('../data/test.f')[['AvSigVersion']+features] # AS timestamp datedictAS = np.load('../external/AvSigVersionTimestamps.npy')[()] tr['AvSigVersion_date'] = tr['AvSigVersion'].map(datedictAS).dt.date te['AvSigVersion_date'] = te['AvSigVersion'].map(datedictAS).dt.date trte = pd.concat([tr, te], ignore_index=True) gc.collect() def multi(args): gc.collect() key, outpath_tr, outpath_te = args ct = pd.crosstab(trte['AvSigVersion_date'], trte[key], normalize='index') melt = pd.melt(ct.reset_index(), 'AvSigVersion_date') melt.columns = ['AvSigVersion_date', key, f'AvSigVersion_{key}_ratio'] # shift melt[f'lag1_AvSigVersion_{key}_ratio'] = pd.melt(ct.shift(1).reset_index(), 'AvSigVersion_date')['value'] melt[f'lead1_AvSigVersion_{key}_ratio'] = pd.melt(ct.shift(-1).reset_index(), 'AvSigVersion_date')['value'] keys = ['AvSigVersion_date', key] tr_f = pd.merge(tr[keys], melt, on=keys, how='left') te_f = pd.merge(te[keys], melt, on=keys, how='left') tr_f.drop(keys, axis=1, inplace=True) te_f.drop(keys, axis=1, inplace=True) # output tr_f.add_prefix(PREF+'_').to_feather(outpath_tr) te_f.add_prefix(PREF+'_').to_feather(outpath_te) return os.system(f'rm ../data/tmp_*_{PREF}*') argss = [] for i,c in enumerate(features): argss.append([c, f'../data/tmp_tr_{PREF}_{c}.f', f'../data/tmp_te_{PREF}_{c}.f']) pool = Pool( cpu_count() ) pool.map(multi, argss) pool.close() # train df = pd.concat([
pd.read_feather(f)
pandas.read_feather
import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt pd.set_option('display.max_columns', None) train = pd.read_csv('./train.csv', encoding='utf-8') train.head() test = pd.read_csv('./test.csv', encoding='utf-8') test.head() ## 결측치를 확인하고 결측치 채우기 (simple imputer 이용) train.info() train.isnull().sum() train[train['hour_bef_pm2.5'].isnull()] from sklearn.impute import SimpleImputer si = SimpleImputer(strategy='mean') imputed_df = si.fit_transform(train) train = pd.DataFrame(imputed_df, columns = train.columns) train.isnull().sum() test.info() test.isnull().sum() test[test['hour_bef_pm2.5'].isnull()] si = SimpleImputer(strategy='mean') imputed_df2 = si.fit_transform(test) test = pd.DataFrame(imputed_df2, columns = test.columns) test.isnull().sum() ## 컬럼간 상관관계 확인하기 train.corr() train.corr()[np.abs(train.corr())>=0.3] sns.heatmap(train.corr()[np.abs(train.corr())>=0.3], annot=True) test.corr() test.corr()[np.abs(test.corr())>=0.3] sns.heatmap(test.corr()[np.abs(test.corr())>=0.3], annot=True) ''' train에서는 id는 상관관계가 없기 때문에 삭제하고 진행 강수량은 상관관계가 낮으나 test에서는 상관관계가 존재하므로 삭제 안함 test는 id만 삭제하고 진행 ''' X_train = train.drop(columns=['id', 'count'], axis=1) y_train = train['count'] print(X_train.shape, y_train.shape) X_test = test.drop(columns=['id'], axis=1) print(X_test.shape) ### 앙상블 모델링 진행하기 from sklearn.ensemble import AdaBoostRegressor from sklearn.ensemble import GradientBoostingRegressor from sklearn.ensemble import RandomForestRegressor import xgboost as xgb import lightgbm as lgb from sklearn.metrics import * from sklearn.model_selection import GridSearchCV, RandomizedSearchCV abc = AdaBoostRegressor(random_state=100) gbc = GradientBoostingRegressor(random_state=100) rf = RandomForestRegressor(random_state=100, booster='gbtree') xgb = xgb.XGBRegressor(random_state=100, booster='gbtree') lgb = lgb.LGBMRegressor(random_state=100, booster='gbtree', boosting_type = 'gbdt') ######### param_grid_abc = { 'n_estimators': [1, 10, 50, 100], 'loss': ['linear', 'square', 'exponential'], 'learning_rate': [0, 0.1, 0.2, 0.5, 0.8, 1.0], } grid_search_abc = GridSearchCV(abc, param_grid=param_grid_abc, cv=10, n_jobs=-1) grid_search_abc.fit(X_train, y_train) print(grid_search_abc.best_estimator_) #AdaBoostRegressor(learning_rate=0.1, n_estimators=100, random_state=100) best_param_abc_gs = grid_search_abc.best_estimator_ pred_abc_gs = best_param_abc_gs.predict(X_test) random_search_abc = RandomizedSearchCV(abc, param_grid_abc, n_iter=30, cv = 10, n_jobs=-1, scoring = 'neg_mean_squared_error') random_search_abc.fit(X_train, y_train) print(random_search_abc.best_estimator_) #AdaBoostRegressor(learning_rate=0.1, n_estimators=100, random_state=100) best_param_abc_rs = random_search_abc.best_estimator_ pred_abc_rs = best_param_abc_rs.predict(X_test) sns.kdeplot(pred_abc_gs, label = 'grid_pred') sns.kdeplot(pred_abc_rs, label = 'rand_pred') plt.legend() plt.show() print(best_param_abc_rs.score(X_train, y_train)) #0.7338069755742368 col_imp1 = pd.DataFrame(best_param_abc_gs.feature_importances_, index = X_train.columns, columns = ['value']).sort_values(by='value', ascending=False) plt.figure(figsize=(10,10)) sns.barplot(col_imp1.index, col_imp1['value']) plt.xticks(rotation=45) ######### param_grid_rf = { 'max_depth': [None, 1, 10, 15, 20], 'max_leaf_nodes': [2], 'criterion':["mse"], 'n_estimators': [1, 10, 50, 100, 150, 200], 'min_samples_split':[2,3,4,8,10], } param_grid_rf = GridSearchCV(rf, param_grid=param_grid_rf, cv=10, n_jobs=-1) param_grid_rf.fit(X_train, y_train) print(param_grid_rf.best_estimator_) #RandomForestRegressor(max_leaf_nodes=2, n_estimators=150, random_state=100) best_param_rf_gs = param_grid_rf.best_estimator_ pred_rf_gs = best_param_rf_gs.predict(X_test) ''' random_search_rf = RandomizedSearchCV(rf, param_grid_rf, n_iter=30, cv = 10, n_jobs=-1, scoring = 'neg_mean_squared_error') random_search_rf.fit(X_train, y_train) print(random_search_rf.best_estimator_) best_param_rf_rs = random_search_rf.best_estimator_ pred_rf_rs = best_param_rf_rs.predict(X_test)''' sns.kdeplot(pred_rf_gs, label = 'grid_pred') sns.kdeplot(pred_rf_rs, label = 'rand_pred') plt.legend() plt.show() print(rf.fit(X_train, y_train).score(X_train, y_train)) #0.97125328407911 col_imp2 = pd.DataFrame(best_param_rf_gs.feature_importances_, index = X_train.columns, columns = ['value']).sort_values(by='value', ascending=False) plt.figure(figsize=(10,10)) sns.barplot(col_imp2.index, col_imp2['value']) plt.xticks(rotation=45) ######### param_grid_gbc = { 'n_estimators': [1, 10, 50, 100], 'learning_rate': [0, 0.1, 0.2, 0.5, 0.8, 1.0], 'criterion':["mse"], 'max_depth':[None, 10, 20, 30, 50], 'min_samples_split':[2,3,4,8,10], } param_grid_gbc = GridSearchCV(gbc, param_grid=param_grid_gbc, cv=10, n_jobs=-1) param_grid_gbc.fit(X_train, y_train) print(param_grid_gbc.best_estimator_) #GradientBoostingRegressor(criterion='mse', max_depth=10, min_samples_split=10, random_state=100) best_param_gbc_gs = param_grid_gbc.best_estimator_ pred_gbc_gs = best_param_gbc_gs.predict(X_test) ''' random_search_gbc = RandomizedSearchCV(gbc, param_grid_gbc, n_iter=30, cv = 10, n_jobs=-1, scoring = 'neg_mean_squared_error') random_search_gbc.fit(X_train, y_train) print(random_search_gbc.best_estimator_) best_param_gbc_rs = random_search_gbc.best_estimator_ pred_gbc_rs = best_param_gbc_rs.predict(X_test)''' sns.kdeplot(pred_gbc_gs, label = 'grid_pred') sns.kdeplot(pred_gbc_rs, label = 'rand_pred') plt.legend() plt.show() col_imp3 = pd.DataFrame(best_param_gbc_gs.feature_importances_, index = X_train.columns, columns = ['value']).sort_values(by='value', ascending=False) plt.figure(figsize=(10,10)) sns.barplot(col_imp3.index, col_imp3['value']) plt.xticks(rotation=45) print(best_param_gbc_gs.score(X_train, y_train)) #0.9994846712235719 ######### """ param_grid_xgb = { 'max_depth': [None, 1, 10, 15, 20], 'n_estimators': [1, 10, 50, 100], # 'alpha': [0.001, 0.01, 0.1, 1], # 'lambda': [0.001, 0.01, 0.1, 1], 'learning_rate': [0, 0.1, 0.2, 0.5, 0.8, 1.0], } param_grid_xgb = GridSearchCV(xgb, param_grid=param_grid_xgb, cv=10, n_jobs=-1) param_grid_xgb.fit(X_train, y_train) print(param_grid_xgb.best_estimator_) best_param_xgb_gs = param_grid_xgb.best_estimator_ pred_xgb_gs = best_param_xgb_gs.predict(X_test) ''' random_search_xgb = RandomizedSearchCV(xgb, param_grid_xgb, n_iter=30, cv = 10, n_jobs=-1, scoring = 'neg_mean_squared_error') random_search_xgb.fit(X_train, y_train) print(random_search_xgb.best_estimator_) best_param_xgb_rs = random_search_xgb.best_estimator_ pred_xgb_rs = best_param_xgb_rs.predict(X_test)''' sns.kdeplot(pred_xgb_gs, label = 'grid_pred') sns.kdeplot(pred_xgb_rs, label = 'rand_pred') plt.legend() plt.show() col_imp4 = pd.DataFrame(best_param_xgb_gs.feature_importances_, index = X_train.columns, columns = ['value']).sort_values(by='value', ascending=False) plt.figure(figsize=(10,10)) sns.barplot(col_imp4.index, col_imp4['value']) plt.xticks(rotation=45) #from xgboost import plot_importance #plot_importance(param_grid_xgb.fit(X_train, y_train)) print(best_param_xgb_gs.score(X_train, y_train)) #0.9708202535661757 ######### param_grid_lgb = { 'max_depth': [-1, 1, 5, 10, 15, 20], 'n_estimators': [1, 9, 10, 50, 100], # 'alpha': [0.001, 0.01, 0.1, 1], # 'lambda': [0.001, 0.01, 0.1, 1], 'learning_rate': [0.1, 0.2, 0.5, 0.8, 1.0], } param_grid_lgb = GridSearchCV(lgb, param_grid=param_grid_lgb, cv=10, n_jobs=-1) param_grid_lgb.fit(X_train, y_train) print(param_grid_lgb.best_estimator_) best_param_lgb_gs = param_grid_lgb.best_estimator_ pred_lgb_gs = best_param_lgb_gs.predict(X_test) ''' random_search_lgb = RandomizedSearchCV(lgb, param_grid_lgb, n_iter=30, cv = 10, n_jobs=-1, scoring = 'neg_mean_squared_error') random_search_lgb.fit(X_train, y_train) print(random_search_rf.best_estimator_) best_param_rf_rs = random_search_rf.best_estimator_ pred_rf_rs = best_param_rf_rs.predict(X_test)''' sns.kdeplot(pred_lgb_gs, label = 'grid_pred_lgb') sns.kdeplot(pred_rf_rs, label = 'rand_pred') plt.legend() plt.show() col_imp5 =
pd.DataFrame(best_param_lgb_gs.feature_importances_, index = X_train.columns, columns = ['value'])
pandas.DataFrame
import pandas as pd import re from functools import wraps from lxml.etree import ParserError, XMLSyntaxError from pyquery import PyQuery as pq from urllib.error import HTTPError from .. import utils from .constants import (NATIONALITY, PLAYER_ELEMENT_INDEX, PLAYER_SCHEME, PLAYER_URL, ROSTER_URL) from .player import AbstractPlayer def _cleanup(prop): try: prop = prop.replace('%', '') prop = prop.replace('$', '') prop = prop.replace(',', '') return prop.replace('+', '') # Occurs when a value is of Nonetype. When that happens, return a blank # string as whatever came in had an incomplete value. except AttributeError: return '' def _int_property_decorator(func): @property @wraps(func) def wrapper(*args): index = args[0]._index prop = func(*args) element_ind = 0 if func.__name__ in PLAYER_ELEMENT_INDEX.keys(): element_ind = PLAYER_ELEMENT_INDEX[func.__name__] try: value = _cleanup(prop[index][element_ind]) return int(value) except (ValueError, TypeError, IndexError): # If there is no value, default to None return None return wrapper def _float_property_decorator(func): @property @wraps(func) def wrapper(*args): index = args[0]._index prop = func(*args) element_ind = 0 try: value = _cleanup(prop[index][element_ind]) return float(value) except (ValueError, TypeError, IndexError): # If there is no value, default to None return None return wrapper def _most_recent_decorator(func): @property @wraps(func) def wrapper(*args): season = args[0]._most_recent_season seasons = args[0]._season index = seasons.index(season) prop = func(*args) element_ind = 0 try: return prop[index][element_ind] except (TypeError, IndexError): # If there is no value, default to None return None return wrapper class Player(AbstractPlayer): """ Get player information and stats for all seasons. Given a player ID, such as 'altuvjo01' for <NAME>, capture all relevant stats and information like name, nationality, height/weight, career home runs, last season's batting average, salary, contract amount, and much more. By default, the class instance will return the player's career stats, but single-season stats can be found by calling the instance with the requested season as denoted on baseball-reference.com. Parameters ---------- player_id : string A player's ID according to basketball-reference.com, such as 'altuvjo01' for <NAME>. The player ID can be found by navigating to the player's stats page and getting the string between the final slash and the '.html' in the URL. In general, the ID is in the format 'LLLLLFFNN' where 'LLLLL' are the first 5 letters in the player's last name, 'FF', are the first 2 letters in the player's first name, and 'NN' is a number starting at '01' for the first time that player ID has been used and increments by 1 for every successive player. """ def __init__(self, player_id): self._most_recent_season = '' self._index = None self._player_id = player_id self._season = None self._name = None self._team_abbreviation = None self._position = None self._height = None self._weight = None self._birth_date = None self._nationality = None self._contract = None self._games = None self._games_started = None self._plate_appearances = None self._at_bats = None self._runs = None self._hits = None self._doubles = None self._triples = None self._home_runs = None self._runs_batted_in = None self._stolen_bases = None self._times_caught_stealing = None self._bases_on_balls = None self._times_struck_out = None self._batting_average = None self._on_base_percentage = None self._slugging_percentage = None self._on_base_plus_slugging_percentage = None self._on_base_plus_slugging_percentage_plus = None self._total_bases = None self._grounded_into_double_plays = None self._times_hit_by_pitch = None self._sacrifice_hits = None self._sacrifice_flies = None self._intentional_bases_on_balls = None self._complete_games = None self._innings_played = None self._defensive_chances = None self._putouts = None self._assists = None self._errors = None self._double_plays_turned = None self._fielding_percentage = None self._total_fielding_runs_above_average = None self._defensive_runs_saved_above_average = None self._total_fielding_runs_above_average_per_innings = None self._defensive_runs_saved_above_average_per_innings = None self._range_factor_per_nine_innings = None self._range_factor_per_game = None self._league_fielding_percentage = None self._league_range_factor_per_nine_innings = None self._league_range_factor_per_game = None self._games_in_batting_order = None self._games_in_defensive_lineup = None self._games_pitcher = None self._games_catcher = None self._games_first_baseman = None self._games_second_baseman = None self._games_third_baseman = None self._games_shortstop = None self._games_left_fielder = None self._games_center_fielder = None self._games_right_fielder = None self._games_outfielder = None self._games_designated_hitter = None self._games_pinch_hitter = None self._games_pinch_runner = None # Stats specific to pitchers self._wins = None self._losses = None self._win_percentage = None self._era = None self._games_finished = None self._shutouts = None self._saves = None self._hits_allowed = None self._runs_allowed = None self._earned_runs_allowed = None self._home_runs_allowed = None self._bases_on_balls_given = None self._intentional_bases_on_balls_given = None self._strikeouts = None self._times_hit_player = None self._balks = None self._wild_pitches = None self._batters_faced = None self._era_plus = None self._fielding_independent_pitching = None self._whip = None self._hits_against_per_nine_innings = None self._home_runs_against_per_nine_innings = None self._bases_on_balls_given_per_nine_innings = None self._batters_struckout_per_nine_innings = None self._strikeouts_thrown_per_walk = None player_data = self._pull_player_data() self._find_initial_index() AbstractPlayer.__init__(self, player_id, self._name, player_data) def _build_url(self): """ Create the player's URL to pull stats from. The player's URL requires the first letter of the player's last name followed by the player ID. Returns ------- string The string URL for the player's stats page. """ # The first letter of the player's last name is used to sort the player # list and is a part of the URL. first_character = self._player_id[0] return PLAYER_URL % (first_character, self._player_id) def _retrieve_html_page(self): """ Download the requested player's stats page. Download the requested page and strip all of the comment tags before returning a pyquery object which will be used to parse the data. Returns ------- PyQuery object The requested page is returned as a queriable PyQuery object with the comment tags removed. """ url = self._build_url() try: url_data = pq(url) except HTTPError: return None return pq(utils._remove_html_comment_tags(url_data)) def _parse_season(self, row): """ Parse the season string from the table. The season is generally located in the first column of the stats tables and should be parsed to denote which season metrics are being pulled from. Parameters ---------- row : PyQuery object A PyQuery object of a single row in a stats table. Returns ------- string A string representation of the season in the format 'YYYY', such as '2017'. """ return utils._parse_field(PLAYER_SCHEME, row, 'season') def _combine_season_stats(self, table_rows, career_stats, all_stats_dict): """ Combine all stats for each season. Since all of the stats are spread across multiple tables, they should be combined into a single field which can be used to easily query stats at once. Parameters ---------- table_rows : generator A generator where each element is a row in a stats table. career_stats : generator A generator where each element is a row in the footer of a stats table. Career stats are kept in the footer, hence the usage. all_stats_dict : dictionary A dictionary of all stats separated by season where each key is the season ``string``, such as '2017', and the value is a ``dictionary`` with a ``string`` of 'data' and ``string`` containing all of the data. Returns ------- dictionary Returns an updated version of the passed all_stats_dict which includes more metrics from the provided table. """ most_recent_season = self._most_recent_season if not table_rows: table_rows = [] for row in table_rows: # For now, remove minor-league stats if 'class="minors_table hidden"' in str(row) or \ 'class="spacer partial_table"' in str(row) or \ 'class="partial_table"' in str(row): continue season = self._parse_season(row) try: all_stats_dict[season]['data'] += str(row) except KeyError: all_stats_dict[season] = {'data': str(row)} most_recent_season = season self._most_recent_season = most_recent_season if not career_stats: return all_stats_dict try: all_stats_dict['Career']['data'] += str(next(career_stats)) except KeyError: all_stats_dict['Career'] = {'data': str(next(career_stats))} return all_stats_dict def _combine_all_stats(self, player_info): """ Pull stats from all tables into single data structure. Pull the stats from all of the requested tables into a dictionary that is separated by season to allow easy queries of the player's stats for each season. Parameters ---------- player_info : PyQuery object A PyQuery object containing all of the stats information for the requested player. Returns ------- dictionary Returns a dictionary where all stats from each table are combined by season to allow easy queries by year. """ all_stats_dict = {} for table_id in ['batting_standard', 'standard_fielding', 'appearances', 'pitching_standard']: table_items = utils._get_stats_table(player_info, 'table#%s' % table_id) career_items = utils._get_stats_table(player_info, 'table#%s' % table_id, footer=True) all_stats_dict = self._combine_season_stats(table_items, career_items, all_stats_dict) return all_stats_dict def _parse_nationality(self, player_info): """ Parse the player's nationality. The player's nationality is denoted by a flag in the information section with a country code for each nation. The country code needs to pulled and then matched to find the player's home country. Once found, the '_nationality' attribute is set for the player. Parameters ---------- player_info : PyQuery object A PyQuery object containing the HTML from the player's stats page. """ for span in player_info('span').items(): if 'class="f-i' in str(span): nationality = span.text() nationality = NATIONALITY[nationality] setattr(self, '_nationality', nationality) break def _parse_player_information(self, player_info): """ Parse general player information. Parse general player information such as height, weight, and name. The attribute for the requested field will be set with the value prior to returning. Parameters ---------- player_info : PyQuery object A PyQuery object containing the HTML from the player's stats page. """ for field in ['_height', '_weight', '_name']: short_field = str(field)[1:] value = utils._parse_field(PLAYER_SCHEME, player_info, short_field) setattr(self, field, value) def _parse_birth_date(self, player_info): """ Parse the player's birth date. Pull the player's birth date from the player information and set the '_birth_date' attribute with the value prior to returning. Parameters ---------- player_info : PyQuery object A PyQuery object containing the HTML from the player's stats page. """ date = player_info('span[itemprop="birthDate"]').attr('data-birth') setattr(self, '_birth_date', date) def _parse_team_name(self, team): """ Parse the team name in the contract table. The team names in the contract table should be pulled in plain text and returned as a string. Parameters ---------- team : string A string representing the team_name tag in a row in the player's contract table. Returns ------- string A string of the team's name, such as '<NAME>'. """ team = team.replace('\xa0', ' ') team_html = pq(team) return team_html.text() def _parse_contract(self, player_info): """ Parse the player's contract. Depending on the player's contract status, a contract table is located at the bottom of the stats page and includes player wages by season. If found, create a dictionary housing the wages by season. Parameters ---------- player_info : PyQuery object A PyQuery object containing the HTML from the player's stats page. """ contract = {} salary_table = player_info('table#br-salaries') for row in salary_table('tbody tr').items(): if 'class="spacer partial_table"' in str(row): continue year = row('th[data-stat="year_ID"]').text() if year.strip() == '': continue age = row('td[data-stat="age"]').text() team = self._parse_team_name(str(row('td[data-stat="team_name"]'))) salary = row('td[data-stat="Salary"]').text() contract[year] = { 'age': age, 'team': team, 'salary': salary } setattr(self, '_contract', contract) def _parse_value(self, html_data, field): """ Parse the HTML table to find the requested field's value. All of the values are passed in an HTML table row instead of as individual items. The values need to be parsed by matching the requested attribute with a parsing scheme that sports-reference uses to differentiate stats. This function returns a single value for the given attribute. Parameters ---------- html_data : string A string containing all of the rows of stats for a given team. If multiple tables are being referenced, this will be comprised of multiple rows in a single string. field : string The name of the attribute to match. Field must be a key in the PLAYER_SCHEME dictionary. Returns ------- list A list of all values that match the requested field. If no value could be found, returns None. """ scheme = PLAYER_SCHEME[field] items = [i.text() for i in html_data(scheme).items()] # Stats can be added and removed on a yearly basis. If no stats are # found, return None and have that be the value. if len(items) == 0: return None return items def _pull_player_data(self): """ Pull and aggregate all player information. Pull the player's HTML stats page and parse unique properties, such as the player's height, weight, and position. Next, combine all stats for all seasons plus the player's career stats into a single object which can easily be iterated upon. Returns ------- dictionary Returns a dictionary of the player's combined stats where each key is a string of the season and the value is the season's associated stats. """ player_info = self._retrieve_html_page() self._parse_player_information(player_info) self._parse_nationality(player_info) self._parse_birth_date(player_info) self._parse_contract(player_info) all_stats = self._combine_all_stats(player_info) setattr(self, '_season', list(all_stats.keys())) return all_stats def _find_initial_index(self): """ Find the index of career stats. When the Player class is instantiated, the default stats to pull are the player's career stats. Upon being called, the index of the 'Career' element should be the index value. """ index = 0 for season in self._season: # The career stats default to Nonetype if season is None or season == 'Career': self._index = index self._season[index] = 'Career' break index += 1 def __call__(self, requested_season=''): """ Specify a different season to pull stats from. A different season can be requested by passing the season string, such as '2017' to the class instance. Parameters ---------- requested_season : string (optional) A string of the requested season to query, such as '2017'. If left blank or 'Career' is passed, the career stats will be used for stats queries. Returns ------- Player class instance Returns the class instance with the updated stats being referenced. """ if requested_season.lower() == 'career' or \ requested_season == '': requested_season = 'Career' index = 0 for season in self._season: if season == requested_season: self._index = index break index += 1 return self def _dataframe_fields(self): """ Creates a dictionary of all fields to include with DataFrame. With the result of the calls to class properties changing based on the class index value, the dictionary should be regenerated every time the index is changed when the dataframe property is requested. Returns ------- dictionary Returns a dictionary where the keys are the shortened ``string`` attribute names and the values are the actual value for each attribute for the specified index. """ fields_to_include = { 'assists': self.assists, 'at_bats': self.at_bats, 'bases_on_balls': self.bases_on_balls, 'batting_average': self.batting_average, 'birth_date': self.birth_date, 'complete_games': self.complete_games, 'defensive_chances': self.defensive_chances, 'defensive_runs_saved_above_average': self.defensive_runs_saved_above_average, 'defensive_runs_saved_above_average_per_innings': self.defensive_runs_saved_above_average_per_innings, 'double_plays_turned': self.double_plays_turned, 'doubles': self.doubles, 'errors': self.errors, 'fielding_percentage': self.fielding_percentage, 'games': self.games, 'games_catcher': self.games_catcher, 'games_center_fielder': self.games_center_fielder, 'games_designated_hitter': self.games_designated_hitter, 'games_first_baseman': self.games_first_baseman, 'games_in_batting_order': self.games_in_batting_order, 'games_in_defensive_lineup': self.games_in_defensive_lineup, 'games_left_fielder': self.games_left_fielder, 'games_outfielder': self.games_outfielder, 'games_pinch_hitter': self.games_pinch_hitter, 'games_pinch_runner': self.games_pinch_runner, 'games_pitcher': self.games_pitcher, 'games_right_fielder': self.games_right_fielder, 'games_second_baseman': self.games_second_baseman, 'games_shortstop': self.games_shortstop, 'games_started': self.games_started, 'games_third_baseman': self.games_third_baseman, 'grounded_into_double_plays': self.grounded_into_double_plays, 'height': self.height, 'hits': self.hits, 'home_runs': self.home_runs, 'innings_played': self.innings_played, 'intentional_bases_on_balls': self.intentional_bases_on_balls, 'league_fielding_percentage': self.league_fielding_percentage, 'league_range_factor_per_game': self.league_range_factor_per_game, 'league_range_factor_per_nine_innings': self.league_range_factor_per_nine_innings, 'name': self.name, 'nationality': self.nationality, 'on_base_percentage': self.on_base_percentage, 'on_base_plus_slugging_percentage': self.on_base_plus_slugging_percentage, 'on_base_plus_slugging_percentage_plus': self.on_base_plus_slugging_percentage_plus, 'plate_appearances': self.plate_appearances, 'player_id': self.player_id, 'position': self.position, 'putouts': self.putouts, 'range_factor_per_game': self.range_factor_per_game, 'range_factor_per_nine_innings': self.range_factor_per_nine_innings, 'runs': self.runs, 'runs_batted_in': self.runs_batted_in, 'sacrifice_flies': self.sacrifice_flies, 'sacrifice_hits': self.sacrifice_hits, 'season': self.season, 'slugging_percentage': self.slugging_percentage, 'stolen_bases': self.stolen_bases, 'team_abbreviation': self.team_abbreviation, 'times_caught_stealing': self.times_caught_stealing, 'times_hit_by_pitch': self.times_hit_by_pitch, 'times_struck_out': self.times_struck_out, 'total_bases': self.total_bases, 'total_fielding_runs_above_average': self.total_fielding_runs_above_average, 'total_fielding_runs_above_average_per_innings': self.total_fielding_runs_above_average_per_innings, 'triples': self.triples, 'weight': self.weight, # Properties specific to pitchers 'balks': self.balks, 'bases_on_balls_given': self.bases_on_balls_given, 'bases_on_balls_given_per_nine_innings': self.bases_on_balls_given_per_nine_innings, 'batters_faced': self.batters_faced, 'batters_struckout_per_nine_innings': self.batters_struckout_per_nine_innings, 'earned_runs_allowed': self.earned_runs_allowed, 'era': self.era, 'era_plus': self.era_plus, 'fielding_independent_pitching': self.fielding_independent_pitching, 'games_finished': self.games_finished, 'hits_against_per_nine_innings': self.hits_against_per_nine_innings, 'hits_allowed': self.hits_allowed, 'home_runs_against_per_nine_innings': self.home_runs_against_per_nine_innings, 'home_runs_allowed': self.home_runs_allowed, 'intentional_bases_on_balls_given': self.intentional_bases_on_balls_given, 'losses': self.losses, 'runs_allowed': self.runs_allowed, 'saves': self.saves, 'shutouts': self.shutouts, 'strikeouts': self.strikeouts, 'strikeouts_thrown_per_walk': self.strikeouts_thrown_per_walk, 'times_hit_player': self.times_hit_player, 'whip': self.whip, 'wild_pitches': self.wild_pitches, 'win_percentage': self.win_percentage, 'wins': self.wins } return fields_to_include @property def dataframe(self): """ Returns a ``pandas DataFrame`` containing all other relevant class properties and values where each index is a different season plus the career stats. """ temp_index = self._index rows = [] indices = [] for season in self._season: self._index = self._season.index(season) rows.append(self._dataframe_fields()) indices.append(season) self._index = temp_index return
pd.DataFrame(rows, index=[indices])
pandas.DataFrame
import numpy as np import pandas as pd shirley_1015_bs_name = np.load(r'D:\voice2face\shirley_1015\shirley_1015_bs_name.npy') shirley_1119_bs_name = np.load(r'D:\voice2face\shirley_1015\shirley_1119_bs_name.npy') shirley_1119_bs_name316 = np.load(r'D:\voice2face\shirley_1119\shirley_1119_bs_name316.npy') bs_value_1114_3_16 = np.load(r'D:\voice2face\shirley_1119\bs_value\bs_value_1114_3_16.npy') print(bs_value_1114_3_16.shape) weights1 = np.zeros((bs_value_1114_3_16.shape[0],len(shirley_1119_bs_name))) bs_name_index = [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 94, 93, 95, 96, 97, 98, 99, 100, 101, 102, 103, 105, 104, 106, 107, 108, 109, 110, 111, 112, 113, 114, 1, 115] for i in range(len(bs_name_index)): weights1[:,i] = bs_value_1114_3_16[:,bs_name_index[i]] # 导出权重的csv文件 import pandas as pd df =
pd.DataFrame(weights1,columns=shirley_1119_bs_name)
pandas.DataFrame
# -------------- # import packages import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt # Load Offers offers=
pd.read_excel(path,sheet_name=0)
pandas.read_excel
import os import json import traceback import numpy as np import pickle import pandas as pd import csv #Run this code file from console to create the pickle file pklfile = "taxa_mapping.pkl" root_path = "<add root path here>" image_location = root_path + "result-img\\" taxa_file_path = root_path + "\\data\\taxa.csv" image_url = "/static/result-img/" def create_taxa_mapping(): try: taxa_info =
pd.read_csv(taxa_file_path)
pandas.read_csv
#!/usr/bin/python3 # -*- coding: utf-8 -*- # *****************************************************************************/ # * Authors: <NAME> # *****************************************************************************/ """transformCSV.py This module contains the basic functions for creating the content of a configuration file from CSV. Args: --inFile: Path for the configuration file where the time series data values CSV --outFile: Path for the configuration file where the time series data values INI --debug: Boolean flag to activate verbose printing for debug use Example: Default usage: $ python transformCSV.py Specific usage: $ python transformCSV.py --inFile C:\raad\src\software\time-series.csv --outFile C:\raad\src\software\time-series.ini --debug True """ import sys import datetime import optparse import traceback import pandas import numpy import os import pprint import csv if sys.version_info.major > 2: import configparser as cF else: import ConfigParser as cF class TransformMetaData(object): debug = False fileName = None fileLocation = None columnsList = None analysisFrameFormat = None uniqueLists = None analysisFrame = None def __init__(self, inputFileName=None, debug=False, transform=False, sectionName=None, outFolder=None, outFile='time-series-madness.ini'): if isinstance(debug, bool): self.debug = debug if inputFileName is None: return elif os.path.exists(os.path.abspath(inputFileName)): self.fileName = inputFileName self.fileLocation = os.path.exists(os.path.abspath(inputFileName)) (analysisFrame, analysisFrameFormat, uniqueLists, columnNamesList) = self.CSVtoFrame( inputFileName=self.fileName) self.analysisFrame = analysisFrame self.columnsList = columnNamesList self.analysisFrameFormat = analysisFrameFormat self.uniqueLists = uniqueLists if transform: passWrite = self.frameToINI(analysisFrame=analysisFrame, sectionName=sectionName, outFolder=outFolder, outFile=outFile) print(f"Pass Status is : {passWrite}") return def getColumnList(self): return self.columnsList def getAnalysisFrameFormat(self): return self.analysisFrameFormat def getuniqueLists(self): return self.uniqueLists def getAnalysisFrame(self): return self.analysisFrame @staticmethod def getDateParser(formatString="%Y-%m-%d %H:%M:%S.%f"): return (lambda x: pandas.datetime.strptime(x, formatString)) # 2020-06-09 19:14:00.000 def getHeaderFromFile(self, headerFilePath=None, method=1): if headerFilePath is None: return (None, None) if method == 1: fieldnames = pandas.read_csv(headerFilePath, index_col=0, nrows=0).columns.tolist() elif method == 2: with open(headerFilePath, 'r') as infile: reader = csv.DictReader(infile) fieldnames = list(reader.fieldnames) elif method == 3: fieldnames = list(pandas.read_csv(headerFilePath, nrows=1).columns) else: fieldnames = None fieldDict = {} for indexName, valueName in enumerate(fieldnames): fieldDict[valueName] = pandas.StringDtype() return (fieldnames, fieldDict) def CSVtoFrame(self, inputFileName=None): if inputFileName is None: return (None, None) # Load File print("Processing File: {0}...\n".format(inputFileName)) self.fileLocation = inputFileName # Create data frame analysisFrame = pandas.DataFrame() analysisFrameFormat = self._getDataFormat() inputDataFrame = pandas.read_csv(filepath_or_buffer=inputFileName, sep='\t', names=self._getDataFormat(), # dtype=self._getDataFormat() # header=None # float_precision='round_trip' # engine='c', # parse_dates=['date_column'], # date_parser=True, # na_values=['NULL'] ) if self.debug: # Preview data. print(inputDataFrame.head(5)) # analysisFrame.astype(dtype=analysisFrameFormat) # Cleanup data analysisFrame = inputDataFrame.copy(deep=True) analysisFrame.apply(pandas.to_numeric, errors='coerce') # Fill in bad data with Not-a-Number (NaN) # Create lists of unique strings uniqueLists = [] columnNamesList = [] for columnName in analysisFrame.columns: if self.debug: print('Column Name : ', columnName) print('Column Contents : ', analysisFrame[columnName].values) if isinstance(analysisFrame[columnName].dtypes, str): columnUniqueList = analysisFrame[columnName].unique().tolist() else: columnUniqueList = None columnNamesList.append(columnName) uniqueLists.append([columnName, columnUniqueList]) if self.debug: # Preview data. print(analysisFrame.head(5)) return (analysisFrame, analysisFrameFormat, uniqueLists, columnNamesList) def frameToINI(self, analysisFrame=None, sectionName='Unknown', outFolder=None, outFile='nil.ini'): if analysisFrame is None: return False try: if outFolder is None: outFolder = os.getcwd() configFilePath = os.path.join(outFolder, outFile) configINI = cF.ConfigParser() configINI.add_section(sectionName) for (columnName, columnData) in analysisFrame: if self.debug: print('Column Name : ', columnName) print('Column Contents : ', columnData.values) print("Column Contents Length:", len(columnData.values)) print("Column Contents Type", type(columnData.values)) writeList = "[" for colIndex, colValue in enumerate(columnData): writeList = f"{writeList}'{colValue}'" if colIndex < len(columnData) - 1: writeList = f"{writeList}, " writeList = f"{writeList}]" configINI.set(sectionName, columnName, writeList) if not os.path.exists(configFilePath) or os.stat(configFilePath).st_size == 0: with open(configFilePath, 'w') as configWritingFile: configINI.write(configWritingFile) noErrors = True except ValueError as e: errorString = ("ERROR in {__file__} @{framePrintNo} with {ErrorFound}".format(__file__=str(__file__), framePrintNo=str( sys._getframe().f_lineno), ErrorFound=e)) print(errorString) noErrors = False return noErrors @staticmethod def _validNumericalFloat(inValue): """ Determines if the value is a valid numerical object. Args: inValue: floating-point value Returns: Value in floating-point or Not-A-Number. """ try: return numpy.float128(inValue) except ValueError: return numpy.nan @staticmethod def _calculateMean(x): """ Calculates the mean in a multiplication method since division produces an infinity or NaN Args: x: Input data set. We use a data frame. Returns: Calculated mean for a vector data frame. """ try: mean = numpy.float128(numpy.average(x, weights=numpy.ones_like(numpy.float128(x)) / numpy.float128(x.size))) except ValueError: mean = 0 pass return mean def _calculateStd(self, data): """ Calculates the standard deviation in a multiplication method since division produces a infinity or NaN Args: data: Input data set. We use a data frame. Returns: Calculated standard deviation for a vector data frame. """ sd = 0 try: n = numpy.float128(data.size) if n <= 1: return numpy.float128(0.0) # Use multiplication version of mean since numpy bug causes infinity. mean = self._calculateMean(data) sd = numpy.float128(mean) # Calculate standard deviation for el in data: diff = numpy.float128(el) - numpy.float128(mean) sd += (diff) ** 2 points = numpy.float128(n - 1) sd = numpy.float128(numpy.sqrt(numpy.float128(sd) / numpy.float128(points))) except ValueError: pass return sd def _determineQuickStats(self, dataAnalysisFrame, columnName=None, multiplierSigma=3.0): """ Determines stats based on a vector to get the data shape. Args: dataAnalysisFrame: Dataframe to do analysis on. columnName: Column name of the data frame. multiplierSigma: Sigma range for the stats. Returns: Set of stats. """ meanValue = 0 sigmaValue = 0 sigmaRangeValue = 0 topValue = 0 try: # Clean out anomoly due to random invalid inputs. if (columnName is not None): meanValue = self._calculateMean(dataAnalysisFrame[columnName]) if meanValue == numpy.nan: meanValue = numpy.float128(1) sigmaValue = self._calculateStd(dataAnalysisFrame[columnName]) if float(sigmaValue) is float(numpy.nan): sigmaValue = numpy.float128(1) multiplier = numpy.float128(multiplierSigma) # Stats: 1 sigma = 68%, 2 sigma = 95%, 3 sigma = 99.7 sigmaRangeValue = (sigmaValue * multiplier) if float(sigmaRangeValue) is float(numpy.nan): sigmaRangeValue = numpy.float128(1) topValue = numpy.float128(meanValue + sigmaRangeValue) print("Name:{} Mean= {}, Sigma= {}, {}*Sigma= {}".format(columnName, meanValue, sigmaValue, multiplier, sigmaRangeValue)) except ValueError: pass return (meanValue, sigmaValue, sigmaRangeValue, topValue) def _cleanZerosForColumnInFrame(self, dataAnalysisFrame, columnName='cycles'): """ Cleans the data frame with data values that are invalid. I.E. inf, NaN Args: dataAnalysisFrame: Dataframe to do analysis on. columnName: Column name of the data frame. Returns: Cleaned dataframe. """ dataAnalysisCleaned = None try: # Clean out anomoly due to random invalid inputs. (meanValue, sigmaValue, sigmaRangeValue, topValue) = self._determineQuickStats( dataAnalysisFrame=dataAnalysisFrame, columnName=columnName) # dataAnalysisCleaned = dataAnalysisFrame[dataAnalysisFrame[columnName] != 0] # When the cycles are negative or zero we missed cleaning up a row. # logicVector = (dataAnalysisFrame[columnName] != 0) # dataAnalysisCleaned = dataAnalysisFrame[logicVector] logicVector = (dataAnalysisCleaned[columnName] >= 1) dataAnalysisCleaned = dataAnalysisCleaned[logicVector] # These timed out mean + 2 * sd logicVector = (dataAnalysisCleaned[columnName] < topValue) # Data range dataAnalysisCleaned = dataAnalysisCleaned[logicVector] except ValueError: pass return dataAnalysisCleaned def _cleanFrame(self, dataAnalysisTemp, cleanColumn=False, columnName='cycles'): """ Args: dataAnalysisTemp: Dataframe to do analysis on. cleanColumn: Flag to clean the data frame. columnName: Column name of the data frame. Returns: cleaned dataframe """ try: replacementList = [pandas.NaT, numpy.Infinity, numpy.NINF, 'NaN', 'inf', '-inf', 'NULL'] if cleanColumn is True: dataAnalysisTemp = self._cleanZerosForColumnInFrame(dataAnalysisTemp, columnName=columnName) dataAnalysisTemp = dataAnalysisTemp.replace(to_replace=replacementList, value=numpy.nan) dataAnalysisTemp = dataAnalysisTemp.dropna() except ValueError: pass return dataAnalysisTemp @staticmethod def _getDataFormat(): """ Return the dataframe setup for the CSV file generated from server. Returns: dictionary data format for pandas. """ dataFormat = { "Serial_Number": pandas.StringDtype(), "LogTime0": pandas.StringDtype(), # @todo force rename "Id0": pandas.StringDtype(), # @todo force rename "DriveId": pandas.StringDtype(), "JobRunId": pandas.StringDtype(), "LogTime1": pandas.StringDtype(), # @todo force rename "Comment0": pandas.StringDtype(), # @todo force rename "CriticalWarning": pandas.StringDtype(), "Temperature": pandas.StringDtype(), "AvailableSpare": pandas.StringDtype(), "AvailableSpareThreshold": pandas.StringDtype(), "PercentageUsed": pandas.StringDtype(), "DataUnitsReadL": pandas.StringDtype(), "DataUnitsReadU": pandas.StringDtype(), "DataUnitsWrittenL": pandas.StringDtype(), "DataUnitsWrittenU": pandas.StringDtype(), "HostReadCommandsL": pandas.StringDtype(), "HostReadCommandsU": pandas.StringDtype(), "HostWriteCommandsL": pandas.StringDtype(), "HostWriteCommandsU": pandas.StringDtype(), "ControllerBusyTimeL": pandas.StringDtype(), "ControllerBusyTimeU": pandas.StringDtype(), "PowerCyclesL": pandas.StringDtype(), "PowerCyclesU": pandas.StringDtype(), "PowerOnHoursL": pandas.StringDtype(), "PowerOnHoursU": pandas.StringDtype(), "UnsafeShutdownsL": pandas.StringDtype(), "UnsafeShutdownsU": pandas.StringDtype(), "MediaErrorsL": pandas.StringDtype(), "MediaErrorsU": pandas.StringDtype(), "NumErrorInfoLogsL": pandas.StringDtype(), "NumErrorInfoLogsU": pandas.StringDtype(), "ProgramFailCountN": pandas.StringDtype(), "ProgramFailCountR": pandas.StringDtype(), "EraseFailCountN": pandas.StringDtype(), "EraseFailCountR": pandas.StringDtype(), "WearLevelingCountN": pandas.StringDtype(), "WearLevelingCountR": pandas.StringDtype(), "E2EErrorDetectCountN": pandas.StringDtype(), "E2EErrorDetectCountR": pandas.StringDtype(), "CRCErrorCountN": pandas.StringDtype(), "CRCErrorCountR": pandas.StringDtype(), "MediaWearPercentageN": pandas.StringDtype(), "MediaWearPercentageR": pandas.StringDtype(), "HostReadsN": pandas.StringDtype(), "HostReadsR": pandas.StringDtype(), "TimedWorkloadN": pandas.StringDtype(), "TimedWorkloadR": pandas.StringDtype(), "ThermalThrottleStatusN": pandas.StringDtype(), "ThermalThrottleStatusR": pandas.StringDtype(), "RetryBuffOverflowCountN": pandas.StringDtype(), "RetryBuffOverflowCountR": pandas.StringDtype(), "PLLLockLossCounterN": pandas.StringDtype(), "PLLLockLossCounterR": pandas.StringDtype(), "NandBytesWrittenN": pandas.StringDtype(), "NandBytesWrittenR": pandas.StringDtype(), "HostBytesWrittenN": pandas.StringDtype(), "HostBytesWrittenR": pandas.StringDtype(), "SystemAreaLifeRemainingN": pandas.StringDtype(), "SystemAreaLifeRemainingR": pandas.StringDtype(), "RelocatableSectorCountN": pandas.StringDtype(), "RelocatableSectorCountR": pandas.StringDtype(), "SoftECCErrorRateN": pandas.StringDtype(), "SoftECCErrorRateR": pandas.StringDtype(), "UnexpectedPowerLossN": pandas.StringDtype(), "UnexpectedPowerLossR": pandas.StringDtype(), "MediaErrorCountN": pandas.StringDtype(), "MediaErrorCountR": pandas.StringDtype(), "NandBytesReadN": pandas.StringDtype(), "NandBytesReadR": pandas.StringDtype(), "WarningCompTempTime": pandas.StringDtype(), "CriticalCompTempTime": pandas.StringDtype(), "TempSensor1": pandas.StringDtype(), "TempSensor2": pandas.StringDtype(), "TempSensor3": pandas.StringDtype(), "TempSensor4": pandas.StringDtype(), "TempSensor5": pandas.StringDtype(), "TempSensor6": pandas.StringDtype(), "TempSensor7": pandas.StringDtype(), "TempSensor8": pandas.StringDtype(), "ThermalManagementTemp1TransitionCount": pandas.StringDtype(), "ThermalManagementTemp2TransitionCount": pandas.StringDtype(), "TotalTimeForThermalManagementTemp1": pandas.StringDtype(), "TotalTimeForThermalManagementTemp2": pandas.StringDtype(), "Core_Num": pandas.StringDtype(), "Id1": pandas.StringDtype(), # @todo force rename "Job_Run_Id": pandas.StringDtype(), "Stats_Time": pandas.StringDtype(), "HostReads": pandas.StringDtype(), "HostWrites": pandas.StringDtype(), "NandReads": pandas.StringDtype(), "NandWrites": pandas.StringDtype(), "ProgramErrors": pandas.StringDtype(), "EraseErrors": pandas.StringDtype(), "ErrorCount": pandas.StringDtype(), "BitErrorsHost1": pandas.StringDtype(), "BitErrorsHost2": pandas.StringDtype(), "BitErrorsHost3": pandas.StringDtype(), "BitErrorsHost4": pandas.StringDtype(), "BitErrorsHost5": pandas.StringDtype(), "BitErrorsHost6": pandas.StringDtype(), "BitErrorsHost7": pandas.StringDtype(), "BitErrorsHost8": pandas.StringDtype(), "BitErrorsHost9": pandas.StringDtype(), "BitErrorsHost10": pandas.StringDtype(), "BitErrorsHost11": pandas.StringDtype(), "BitErrorsHost12": pandas.StringDtype(), "BitErrorsHost13": pandas.StringDtype(), "BitErrorsHost14": pandas.StringDtype(), "BitErrorsHost15": pandas.StringDtype(), "ECCFail": pandas.StringDtype(), "GrownDefects": pandas.StringDtype(), "FreeMemory": pandas.StringDtype(), "WriteAllowance": pandas.StringDtype(), "ModelString": pandas.StringDtype(), "ValidBlocks": pandas.StringDtype(), "TokenBlocks": pandas.StringDtype(), "SpuriousPFCount": pandas.StringDtype(), "SpuriousPFLocations1": pandas.StringDtype(), "SpuriousPFLocations2": pandas.StringDtype(), "SpuriousPFLocations3": pandas.StringDtype(), "SpuriousPFLocations4": pandas.StringDtype(), "SpuriousPFLocations5": pandas.StringDtype(), "SpuriousPFLocations6": pandas.StringDtype(), "SpuriousPFLocations7": pandas.StringDtype(), "SpuriousPFLocations8": pandas.StringDtype(), "BitErrorsNonHost1": pandas.StringDtype(), "BitErrorsNonHost2": pandas.StringDtype(), "BitErrorsNonHost3": pandas.StringDtype(), "BitErrorsNonHost4": pandas.StringDtype(), "BitErrorsNonHost5": pandas.StringDtype(), "BitErrorsNonHost6": pandas.StringDtype(), "BitErrorsNonHost7": pandas.StringDtype(), "BitErrorsNonHost8": pandas.StringDtype(), "BitErrorsNonHost9": pandas.StringDtype(), "BitErrorsNonHost10": pandas.StringDtype(), "BitErrorsNonHost11": pandas.StringDtype(), "BitErrorsNonHost12": pandas.StringDtype(), "BitErrorsNonHost13": pandas.StringDtype(), "BitErrorsNonHost14": pandas.StringDtype(), "BitErrorsNonHost15": pandas.StringDtype(), "ECCFailNonHost": pandas.StringDtype(), "NSversion": pandas.StringDtype(), "numBands": pandas.StringDtype(), "minErase": pandas.StringDtype(), "maxErase": pandas.StringDtype(), "avgErase": pandas.StringDtype(), "minMVolt": pandas.StringDtype(), "maxMVolt": pandas.StringDtype(), "avgMVolt": pandas.StringDtype(), "minMAmp": pandas.StringDtype(), "maxMAmp": pandas.StringDtype(), "avgMAmp": pandas.StringDtype(), "comment1": pandas.StringDtype(), # @todo force rename "minMVolt12v": pandas.StringDtype(), "maxMVolt12v": pandas.StringDtype(), "avgMVolt12v": pandas.StringDtype(), "minMAmp12v": pandas.StringDtype(), "maxMAmp12v": pandas.StringDtype(), "avgMAmp12v": pandas.StringDtype(), "nearMissSector": pandas.StringDtype(), "nearMissDefect": pandas.StringDtype(), "nearMissOverflow": pandas.StringDtype(), "replayUNC": pandas.StringDtype(), "Drive_Id": pandas.StringDtype(), "indirectionMisses": pandas.StringDtype(), "BitErrorsHost16": pandas.StringDtype(), "BitErrorsHost17": pandas.StringDtype(), "BitErrorsHost18": pandas.StringDtype(), "BitErrorsHost19": pandas.StringDtype(), "BitErrorsHost20": pandas.StringDtype(), "BitErrorsHost21": pandas.StringDtype(), "BitErrorsHost22": pandas.StringDtype(), "BitErrorsHost23": pandas.StringDtype(), "BitErrorsHost24": pandas.StringDtype(), "BitErrorsHost25": pandas.StringDtype(), "BitErrorsHost26": pandas.StringDtype(), "BitErrorsHost27": pandas.StringDtype(), "BitErrorsHost28": pandas.StringDtype(), "BitErrorsHost29": pandas.StringDtype(), "BitErrorsHost30": pandas.StringDtype(), "BitErrorsHost31": pandas.StringDtype(), "BitErrorsHost32": pandas.StringDtype(), "BitErrorsHost33": pandas.StringDtype(), "BitErrorsHost34": pandas.StringDtype(), "BitErrorsHost35": pandas.StringDtype(), "BitErrorsHost36": pandas.StringDtype(), "BitErrorsHost37": pandas.StringDtype(), "BitErrorsHost38": pandas.StringDtype(), "BitErrorsHost39": pandas.StringDtype(), "BitErrorsHost40": pandas.StringDtype(), "XORRebuildSuccess": pandas.StringDtype(), "XORRebuildFail": pandas.StringDtype(), "BandReloForError": pandas.StringDtype(), "mrrSuccess": pandas.StringDtype(), "mrrFail": pandas.StringDtype(), "mrrNudgeSuccess": pandas.StringDtype(), "mrrNudgeHarmless": pandas.StringDtype(), "mrrNudgeFail": pandas.StringDtype(), "totalErases": pandas.StringDtype(), "dieOfflineCount": pandas.StringDtype(), "curtemp": pandas.StringDtype(), "mintemp": pandas.StringDtype(), "maxtemp": pandas.StringDtype(), "oventemp": pandas.StringDtype(), "allZeroSectors": pandas.StringDtype(), "ctxRecoveryEvents": pandas.StringDtype(), "ctxRecoveryErases": pandas.StringDtype(), "NSversionMinor": pandas.StringDtype(), "lifeMinTemp": pandas.StringDtype(), "lifeMaxTemp": pandas.StringDtype(), "powerCycles": pandas.StringDtype(), "systemReads": pandas.StringDtype(), "systemWrites": pandas.StringDtype(), "readRetryOverflow": pandas.StringDtype(), "unplannedPowerCycles": pandas.StringDtype(), "unsafeShutdowns": pandas.StringDtype(), "defragForcedReloCount": pandas.StringDtype(), "bandReloForBDR": pandas.StringDtype(), "bandReloForDieOffline": pandas.StringDtype(), "bandReloForPFail": pandas.StringDtype(), "bandReloForWL": pandas.StringDtype(), "provisionalDefects": pandas.StringDtype(), "uncorrectableProgErrors": pandas.StringDtype(), "powerOnSeconds": pandas.StringDtype(), "bandReloForChannelTimeout": pandas.StringDtype(), "fwDowngradeCount": pandas.StringDtype(), "dramCorrectablesTotal": pandas.StringDtype(), "hb_id": pandas.StringDtype(), "dramCorrectables1to1": pandas.StringDtype(), "dramCorrectables4to1": pandas.StringDtype(), "dramCorrectablesSram": pandas.StringDtype(), "dramCorrectablesUnknown": pandas.StringDtype(), "pliCapTestInterval": pandas.StringDtype(), "pliCapTestCount": pandas.StringDtype(), "pliCapTestResult": pandas.StringDtype(), "pliCapTestTimeStamp": pandas.StringDtype(), "channelHangSuccess": pandas.StringDtype(), "channelHangFail": pandas.StringDtype(), "BitErrorsHost41": pandas.StringDtype(), "BitErrorsHost42": pandas.StringDtype(), "BitErrorsHost43": pandas.StringDtype(), "BitErrorsHost44": pandas.StringDtype(), "BitErrorsHost45": pandas.StringDtype(), "BitErrorsHost46": pandas.StringDtype(), "BitErrorsHost47": pandas.StringDtype(), "BitErrorsHost48": pandas.StringDtype(), "BitErrorsHost49": pandas.StringDtype(), "BitErrorsHost50": pandas.StringDtype(), "BitErrorsHost51": pandas.StringDtype(), "BitErrorsHost52": pandas.StringDtype(), "BitErrorsHost53": pandas.StringDtype(), "BitErrorsHost54": pandas.StringDtype(), "BitErrorsHost55": pandas.StringDtype(), "BitErrorsHost56": pandas.StringDtype(), "mrrNearMiss": pandas.StringDtype(), "mrrRereadAvg": pandas.StringDtype(), "readDisturbEvictions": pandas.StringDtype(), "L1L2ParityError": pandas.StringDtype(), "pageDefects": pandas.StringDtype(), "pageProvisionalTotal": pandas.StringDtype(), "ASICTemp": pandas.StringDtype(), "PMICTemp": pandas.StringDtype(), "size": pandas.StringDtype(), "lastWrite": pandas.StringDtype(), "timesWritten": pandas.StringDtype(), "maxNumContextBands": pandas.StringDtype(), "blankCount": pandas.StringDtype(), "cleanBands": pandas.StringDtype(), "avgTprog": pandas.StringDtype(), "avgEraseCount": pandas.StringDtype(), "edtcHandledBandCnt": pandas.StringDtype(), "bandReloForNLBA": pandas.StringDtype(), "bandCrossingDuringPliCount": pandas.StringDtype(), "bitErrBucketNum": pandas.StringDtype(), "sramCorrectablesTotal": pandas.StringDtype(), "l1SramCorrErrCnt": pandas.StringDtype(), "l2SramCorrErrCnt": pandas.StringDtype(), "parityErrorValue": pandas.StringDtype(), "parityErrorType": pandas.StringDtype(), "mrr_LutValidDataSize": pandas.StringDtype(), "pageProvisionalDefects": pandas.StringDtype(), "plisWithErasesInProgress": pandas.StringDtype(), "lastReplayDebug": pandas.StringDtype(), "externalPreReadFatals": pandas.StringDtype(), "hostReadCmd": pandas.StringDtype(), "hostWriteCmd": pandas.StringDtype(), "trimmedSectors": pandas.StringDtype(), "trimTokens": pandas.StringDtype(), "mrrEventsInCodewords": pandas.StringDtype(), "mrrEventsInSectors": pandas.StringDtype(), "powerOnMicroseconds": pandas.StringDtype(), "mrrInXorRecEvents": pandas.StringDtype(), "mrrFailInXorRecEvents": pandas.StringDtype(), "mrrUpperpageEvents": pandas.StringDtype(), "mrrLowerpageEvents": pandas.StringDtype(), "mrrSlcpageEvents": pandas.StringDtype(), "mrrReReadTotal": pandas.StringDtype(), "powerOnResets": pandas.StringDtype(), "powerOnMinutes": pandas.StringDtype(), "throttleOnMilliseconds": pandas.StringDtype(), "ctxTailMagic": pandas.StringDtype(), "contextDropCount": pandas.StringDtype(), "lastCtxSequenceId": pandas.StringDtype(), "currCtxSequenceId": pandas.StringDtype(), "mbliEraseCount": pandas.StringDtype(), "pageAverageProgramCount": pandas.StringDtype(), "bandAverageEraseCount": pandas.StringDtype(), "bandTotalEraseCount": pandas.StringDtype(), "bandReloForXorRebuildFail": pandas.StringDtype(), "defragSpeculativeMiss": pandas.StringDtype(), "uncorrectableBackgroundScan": pandas.StringDtype(), "BitErrorsHost57": pandas.StringDtype(), "BitErrorsHost58": pandas.StringDtype(), "BitErrorsHost59": pandas.StringDtype(), "BitErrorsHost60": pandas.StringDtype(), "BitErrorsHost61": pandas.StringDtype(), "BitErrorsHost62": pandas.StringDtype(), "BitErrorsHost63": pandas.StringDtype(), "BitErrorsHost64": pandas.StringDtype(), "BitErrorsHost65": pandas.StringDtype(), "BitErrorsHost66": pandas.StringDtype(), "BitErrorsHost67": pandas.StringDtype(), "BitErrorsHost68": pandas.StringDtype(), "BitErrorsHost69": pandas.StringDtype(), "BitErrorsHost70": pandas.StringDtype(), "BitErrorsHost71": pandas.StringDtype(), "BitErrorsHost72": pandas.StringDtype(), "BitErrorsHost73": pandas.StringDtype(), "BitErrorsHost74": pandas.StringDtype(), "BitErrorsHost75": pandas.StringDtype(), "BitErrorsHost76": pandas.StringDtype(), "BitErrorsHost77": pandas.StringDtype(), "BitErrorsHost78": pandas.StringDtype(), "BitErrorsHost79": pandas.StringDtype(), "BitErrorsHost80": pandas.StringDtype(), "bitErrBucketArray1": pandas.StringDtype(), "bitErrBucketArray2": pandas.StringDtype(), "bitErrBucketArray3": pandas.StringDtype(), "bitErrBucketArray4": pandas.StringDtype(), "bitErrBucketArray5": pandas.StringDtype(), "bitErrBucketArray6": pandas.StringDtype(), "bitErrBucketArray7": pandas.StringDtype(), "bitErrBucketArray8": pandas.StringDtype(), "bitErrBucketArray9": pandas.StringDtype(), "bitErrBucketArray10": pandas.StringDtype(), "bitErrBucketArray11": pandas.StringDtype(), "bitErrBucketArray12": pandas.StringDtype(), "bitErrBucketArray13": pandas.StringDtype(), "bitErrBucketArray14": pandas.StringDtype(), "bitErrBucketArray15": pandas.StringDtype(), "bitErrBucketArray16": pandas.StringDtype(), "bitErrBucketArray17": pandas.StringDtype(), "bitErrBucketArray18": pandas.StringDtype(), "bitErrBucketArray19": pandas.StringDtype(), "bitErrBucketArray20": pandas.StringDtype(), "bitErrBucketArray21": pandas.StringDtype(), "bitErrBucketArray22": pandas.StringDtype(), "bitErrBucketArray23": pandas.StringDtype(), "bitErrBucketArray24": pandas.StringDtype(), "bitErrBucketArray25": pandas.StringDtype(), "bitErrBucketArray26": pandas.StringDtype(), "bitErrBucketArray27": pandas.StringDtype(), "bitErrBucketArray28": pandas.StringDtype(), "bitErrBucketArray29": pandas.StringDtype(), "bitErrBucketArray30": pandas.StringDtype(), "bitErrBucketArray31": pandas.StringDtype(), "bitErrBucketArray32": pandas.StringDtype(), "bitErrBucketArray33": pandas.StringDtype(), "bitErrBucketArray34": pandas.StringDtype(), "bitErrBucketArray35": pandas.StringDtype(), "bitErrBucketArray36": pandas.StringDtype(), "bitErrBucketArray37": pandas.StringDtype(), "bitErrBucketArray38": pandas.StringDtype(), "bitErrBucketArray39": pandas.StringDtype(), "bitErrBucketArray40": pandas.StringDtype(), "bitErrBucketArray41": pandas.StringDtype(), "bitErrBucketArray42": pandas.StringDtype(), "bitErrBucketArray43": pandas.StringDtype(), "bitErrBucketArray44": pandas.StringDtype(), "bitErrBucketArray45": pandas.StringDtype(), "bitErrBucketArray46": pandas.StringDtype(), "bitErrBucketArray47": pandas.StringDtype(), "bitErrBucketArray48": pandas.StringDtype(), "bitErrBucketArray49": pandas.StringDtype(), "bitErrBucketArray50": pandas.StringDtype(), "bitErrBucketArray51": pandas.StringDtype(), "bitErrBucketArray52": pandas.StringDtype(), "bitErrBucketArray53": pandas.StringDtype(), "bitErrBucketArray54": pandas.StringDtype(), "bitErrBucketArray55": pandas.StringDtype(), "bitErrBucketArray56": pandas.StringDtype(), "bitErrBucketArray57": pandas.StringDtype(), "bitErrBucketArray58": pandas.StringDtype(), "bitErrBucketArray59": pandas.StringDtype(), "bitErrBucketArray60": pandas.StringDtype(), "bitErrBucketArray61": pandas.StringDtype(), "bitErrBucketArray62": pandas.StringDtype(), "bitErrBucketArray63": pandas.StringDtype(), "bitErrBucketArray64": pandas.StringDtype(), "bitErrBucketArray65": pandas.StringDtype(), "bitErrBucketArray66": pandas.StringDtype(), "bitErrBucketArray67": pandas.StringDtype(), "bitErrBucketArray68": pandas.StringDtype(), "bitErrBucketArray69": pandas.StringDtype(), "bitErrBucketArray70": pandas.StringDtype(), "bitErrBucketArray71": pandas.StringDtype(), "bitErrBucketArray72": pandas.StringDtype(), "bitErrBucketArray73": pandas.StringDtype(), "bitErrBucketArray74": pandas.StringDtype(), "bitErrBucketArray75": pandas.StringDtype(), "bitErrBucketArray76": pandas.StringDtype(), "bitErrBucketArray77": pandas.StringDtype(), "bitErrBucketArray78": pandas.StringDtype(), "bitErrBucketArray79": pandas.StringDtype(), "bitErrBucketArray80": pandas.StringDtype(), "mrr_successDistribution1": pandas.StringDtype(), "mrr_successDistribution2": pandas.StringDtype(), "mrr_successDistribution3": pandas.StringDtype(), "mrr_successDistribution4": pandas.StringDtype(), "mrr_successDistribution5": pandas.StringDtype(), "mrr_successDistribution6": pandas.StringDtype(), "mrr_successDistribution7": pandas.StringDtype(), "mrr_successDistribution8": pandas.StringDtype(), "mrr_successDistribution9": pandas.StringDtype(), "mrr_successDistribution10": pandas.StringDtype(), "mrr_successDistribution11": pandas.StringDtype(), "mrr_successDistribution12": pandas.StringDtype(), "mrr_successDistribution13": pandas.StringDtype(), "mrr_successDistribution14": pandas.StringDtype(), "mrr_successDistribution15": pandas.StringDtype(), "mrr_successDistribution16": pandas.StringDtype(), "mrr_successDistribution17": pandas.StringDtype(), "mrr_successDistribution18": pandas.StringDtype(), "mrr_successDistribution19": pandas.StringDtype(), "mrr_successDistribution20": pandas.StringDtype(), "mrr_successDistribution21": pandas.StringDtype(), "mrr_successDistribution22": pandas.StringDtype(), "mrr_successDistribution23": pandas.StringDtype(), "mrr_successDistribution24": pandas.StringDtype(), "mrr_successDistribution25": pandas.StringDtype(), "mrr_successDistribution26": pandas.StringDtype(), "mrr_successDistribution27": pandas.StringDtype(), "mrr_successDistribution28": pandas.StringDtype(), "mrr_successDistribution29": pandas.StringDtype(), "mrr_successDistribution30": pandas.StringDtype(), "mrr_successDistribution31": pandas.StringDtype(), "mrr_successDistribution32": pandas.StringDtype(), "mrr_successDistribution33": pandas.StringDtype(), "mrr_successDistribution34": pandas.StringDtype(), "mrr_successDistribution35": pandas.StringDtype(), "mrr_successDistribution36": pandas.StringDtype(), "mrr_successDistribution37": pandas.StringDtype(), "mrr_successDistribution38": pandas.StringDtype(), "mrr_successDistribution39": pandas.StringDtype(), "mrr_successDistribution40": pandas.StringDtype(), "mrr_successDistribution41": pandas.StringDtype(), "mrr_successDistribution42": pandas.StringDtype(), "mrr_successDistribution43": pandas.StringDtype(), "mrr_successDistribution44": pandas.StringDtype(), "mrr_successDistribution45": pandas.StringDtype(), "mrr_successDistribution46": pandas.StringDtype(), "mrr_successDistribution47": pandas.StringDtype(), "mrr_successDistribution48": pandas.StringDtype(), "mrr_successDistribution49": pandas.StringDtype(), "mrr_successDistribution50": pandas.StringDtype(), "mrr_successDistribution51": pandas.StringDtype(), "mrr_successDistribution52": pandas.StringDtype(), "mrr_successDistribution53": pandas.StringDtype(), "mrr_successDistribution54": pandas.StringDtype(), "mrr_successDistribution55": pandas.StringDtype(), "mrr_successDistribution56": pandas.StringDtype(), "mrr_successDistribution57": pandas.StringDtype(), "mrr_successDistribution58": pandas.StringDtype(), "mrr_successDistribution59": pandas.StringDtype(), "mrr_successDistribution60": pandas.StringDtype(), "mrr_successDistribution61": pandas.StringDtype(), "mrr_successDistribution62": pandas.StringDtype(), "mrr_successDistribution63": pandas.StringDtype(), "mrr_successDistribution64": pandas.StringDtype(), "blDowngradeCount": pandas.StringDtype(), "snapReads": pandas.StringDtype(), "pliCapTestTime": pandas.StringDtype(), "currentTimeToFreeSpaceRecovery": pandas.StringDtype(), "worstTimeToFreeSpaceRecovery": pandas.StringDtype(), "rspnandReads": pandas.StringDtype(), "cachednandReads": pandas.StringDtype(), "spnandReads": pandas.StringDtype(), "dpnandReads": pandas.StringDtype(), "qpnandReads": pandas.StringDtype(), "verifynandReads": pandas.StringDtype(), "softnandReads": pandas.StringDtype(), "spnandWrites": pandas.StringDtype(), "dpnandWrites": pandas.StringDtype(), "qpnandWrites": pandas.StringDtype(), "opnandWrites": pandas.StringDtype(), "xpnandWrites": pandas.StringDtype(), "unalignedHostWriteCmd": pandas.StringDtype(), "randomReadCmd": pandas.StringDtype(), "randomWriteCmd": pandas.StringDtype(), "secVenCmdCount": pandas.StringDtype(), "secVenCmdCountFails": pandas.StringDtype(), "mrrFailOnSlcOtfPages": pandas.StringDtype(), "mrrFailOnSlcOtfPageMarkedAsMBPD": pandas.StringDtype(), "lcorParitySeedErrors": pandas.StringDtype(), "fwDownloadFails": pandas.StringDtype(), "fwAuthenticationFails": pandas.StringDtype(), "fwSecurityRev": pandas.StringDtype(), "isCapacitorHealthly": pandas.StringDtype(), "fwWRCounter": pandas.StringDtype(), "sysAreaEraseFailCount": pandas.StringDtype(), "iusDefragRelocated4DataRetention": pandas.StringDtype(), "I2CTemp": pandas.StringDtype(), "lbaMismatchOnNandReads": pandas.StringDtype(), "currentWriteStreamsCount": pandas.StringDtype(), "nandWritesPerStream1": pandas.StringDtype(), "nandWritesPerStream2": pandas.StringDtype(), "nandWritesPerStream3": pandas.StringDtype(), "nandWritesPerStream4": pandas.StringDtype(), "nandWritesPerStream5": pandas.StringDtype(), "nandWritesPerStream6": pandas.StringDtype(), "nandWritesPerStream7": pandas.StringDtype(), "nandWritesPerStream8": pandas.StringDtype(), "nandWritesPerStream9": pandas.StringDtype(), "nandWritesPerStream10":
pandas.StringDtype()
pandas.StringDtype
import numpy as np import pandas as pd import scipy.stats import matplotlib.pyplot as plt import matplotlib.patches as patches import matplotlib.ticker as ticker import matplotlib.colors as colors from matplotlib.colors import hsv_to_rgb import seaborn as sns import scipy.cluster.hierarchy as hierarchy from cycler import cycler import copy from . import stats from . import map as qtl_map def setup_figure(aw=4.5, ah=3, xspace=[0.75,0.25], yspace=[0.75,0.25], colorbar=False, ds=0.15, cw=0.15, ct=0, ch=None): """ """ dl, dr = xspace db, dt = yspace fw = dl + aw + dr fh = db + ah + dt fig = plt.figure(facecolor=(1,1,1), figsize=(fw,fh)) ax = fig.add_axes([dl/fw, db/fh, aw/fw, ah/fh]) if not colorbar: return ax else: if ch is None: ch = ah/2 cax = fig.add_axes([(dl+aw+ds)/fw, (db+ah-ch-ct)/fh, cw/fw, ch/fh]) return ax, cax # if not box: # ax.spines['left'].set_position(('outward', 6)) # ax.spines['bottom'].set_position(('outward', 6)) # ax.spines['right'].set_visible(False) # ax.spines['top'].set_visible(False) # ax.tick_params(axis='both', which='both', direction='out', labelsize=fontsize) def get_axgrid(nr, nc, ntot=None, sharex=False, sharey=False, x_offset=6, y_offset=6, dl=0.5, aw=2, dx=0.75, dr=0.25, db=0.5, ah=2, dy=0.75, dt=0.25, colorbar=False, ds=0.15, cw=0.15, ct=0, ch=None, tri=None, fontsize=10, hide=['top', 'right']): """ """ if ntot is None: ntot = nr * nc fw = dl + nc*aw + (nc-1)*dx + dr fh = db + nr*ah + (nr-1)*dy + dt fig = plt.figure(figsize=(fw,fh)) axes = [] n = 0 if tri is None: si = lambda x: 0 elif tri == 'upper': si = lambda x: x for j in range(nr): for i in range(si(j), nc): if n<ntot: ax = fig.add_axes([(dl+i*(aw+dx))/fw, (db+(nr-j-1)*(ah+dy))/fh, aw/fw, ah/fh], facecolor='none', sharex=axes[0] if sharex and n>0 else None, sharey=axes[0] if sharey and n>0 else None) format_plot(ax, fontsize=fontsize, hide=hide, x_offset=x_offset, y_offset=y_offset) axes.append(ax) n += 1 if not colorbar: return axes else: if ch is None: ch = ah/2 cax = fig.add_axes([(dl+nc*aw+(nc-1)*dx+ds)/fw, (db+nr*ah+(nr-1)*dy-ch-ct)/fh, cw/fw, ch/fh]) # cax = fig.add_axes([(dl+aw+ds)/fw, (db+ah-ch-ct)/fh, cw/fw, ch/fh]) return axes, cax def format_plot(ax, tick_direction='out', tick_length=4, hide=['top', 'right'], hide_spines=True, lw=1, fontsize=10, equal_limits=False, x_offset=0, y_offset=0, vmin=None): # ax.autoscale(False) for i in ['left', 'bottom', 'right', 'top']: ax.spines[i].set_linewidth(lw) ax.tick_params(axis='both', which='both', direction=tick_direction, labelsize=fontsize) # set tick positions if 'top' in hide and 'bottom' in hide: ax.get_xaxis().set_ticks_position('none') elif 'top' in hide: ax.get_xaxis().set_ticks_position('bottom') elif 'bottom' in hide: ax.get_xaxis().set_ticks_position('top') else: ax.get_xaxis().set_ticks_position('both') if 'left' in hide and 'right' in hide: ax.get_yaxis().set_ticks_position('none') elif 'left' in hide: ax.get_yaxis().set_ticks_position('right') elif 'right' in hide: ax.get_yaxis().set_ticks_position('left') elif len(hide)==0: ax.get_xaxis().set_ticks_position('bottom') ax.get_yaxis().set_ticks_position('left') else: ax.get_yaxis().set_ticks_position('both') if hide_spines: for i in hide: ax.spines[i].set_visible(False) # adjust tick size for line in ax.xaxis.get_ticklines() + ax.yaxis.get_ticklines(): line.set_markersize(tick_length) line.set_markeredgewidth(lw) for line in (ax.xaxis.get_ticklines(minor=True) + ax.yaxis.get_ticklines(minor=True)): line.set_markersize(tick_length/2) line.set_markeredgewidth(lw/2) ax.spines['left'].set_position(('outward', y_offset)) ax.spines['bottom'].set_position(('outward', x_offset)) if equal_limits: xlim = ax.get_xlim() ylim = ax.get_ylim() lims = [np.minimum(xlim[0], ylim[0]), np.maximum(xlim[1], ylim[1])] if vmin is not None: lims[0] = vmin ax.set_xlim(lims) ax.set_ylim(lims) # ax.autoscale(True) # temporary fix? def plot_qtl(g, p, label_s=None, label_colors=None, split=False, split_colors=None, covariates_df=None, legend_text=None, normalized=False, loc=None, ax=None, color=[0.5]*3, variant_id=None, jitter=0, bvec=None, boxplot=False, xlabel=None, ylabel='Normalized expression', title=None, show_counts=True): """""" assert p.index.equals(g.index) if covariates_df is not None: # only residualize the phenotype for plotting p = stats.residualize(p.copy(), covariates_df.loc[p.index]) eqtl_df = pd.concat([g, p], axis=1) eqtl_df.columns = ['genotype', 'phenotype'] if label_s is not None: eqtl_df =
pd.concat([eqtl_df, label_s], axis=1, sort=False)
pandas.concat
import importlib import copy import io, time from io import BytesIO import chardet import os import collections from itertools import combinations, cycle, product import math import numpy as np import pandas as pd import pickle import tarfile import random import re import requests from nltk.corpus import stopwords from scipy.sparse import hstack, lil_matrix from sklearn.metrics.pairwise import cosine_similarity from sklearn.decomposition import PCA from sklearn.cluster import AgglomerativeClustering from sklearn.linear_model import LogisticRegression, LinearRegression, Ridge import torch.nn.functional as F from tqdm import tqdm pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', 1000) pd.set_option('display.expand_frame_repr', False) pd.set_option('max_colwidth', -1) # change None to -1 from collections import Counter, defaultdict import numpy as np import re import sys import sklearn from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn.metrics import roc_auc_score from sklearn.metrics.pairwise import cosine_similarity from sklearn.linear_model import LogisticRegression, LinearRegression, Ridge from sklearn.model_selection import KFold, cross_val_score, train_test_split from sklearn.metrics import classification_report, accuracy_score import torch from torchvision import datasets, transforms from torch import nn, optim, autograd import torch.nn.functional as F import torch.optim as optim from torch.autograd import Variable from transformers import * # here import bert import warnings warnings.filterwarnings("ignore") # from data_structure import Dataset #, get_IMDB, get_kindle import argparse import utils importlib.reload(utils) from utils import * from vae import VAE, vae_loss_function, train_vae, test_vae # randseed = 52744889 randseed = int(time.time()*1e7%1e8) print("random seed: ", randseed) sys.stdout.flush() random.seed(randseed) np.random.seed(randseed) torch.manual_seed(randseed) parser = argparse.ArgumentParser(description='Text Reviews') parser.add_argument('-d', '--dataset', type=str, default='amazon',choices=['yelp', 'amazon', 'tripadvisor']) parser.add_argument('--datsubsample', type=int, default=10000) parser.add_argument('--n_restarts', type=int, default=1) parser.add_argument('--steps', type=int, default=2001) parser.add_argument('--hidden_dim', type=int, default=128) parser.add_argument('--l2_reg', type=float, default=1e-3) parser.add_argument('--lr', type=float, default=1e-2) parser.add_argument('--mode', type=str, default="linear", choices=["linear", "logistic"]) parser.add_argument('--z_dim', type=int, default=1000) parser.add_argument('--batch_size', type=int, default=200) parser.add_argument('--num_features', type=int, default=5) parser.add_argument('--input_dim', type=int, default=0) parser.add_argument('--vae_epochs', type=int, default=101) parser.add_argument('--spurious_corr', type=float, default=0.9) parser.add_argument('--alter_freq', type=int, default=50) parser.add_argument('--mode_latent', type=str, default="pcaz", choices=["vaez", "bertz", "bertz_cl", "pcaz"]) parser.add_argument('--mode_train_data', type=str, default="text", choices=["text", "bertz"]) flags, unk = parser.parse_known_args() res = pd.DataFrame(vars(flags), index=[0]) res['randseed'] = randseed print(flags) sys.stdout.flush() moniker = flags.dataset out_dir = moniker + '_out' if not os.path.exists(out_dir): os.makedirs(out_dir) dat_file = 'dat/'+ moniker + '/' + moniker + '_meta.csv' # detect encoding # rawdata=open(dat_file,'rb').read() # result = chardet.detect(rawdata) # charenc = result['encoding'] # print(charenc) if moniker == 'amazon': full_dat = pd.read_csv(dat_file) elif moniker == 'tripadvisor': full_dat = pd.read_csv(dat_file, encoding='Windows-1252') elif moniker == 'yelp': full_dat = pd.read_csv(dat_file, lineterminator='\n') full_dat = full_dat.rename(columns={'stars_x':'y', 'text':'review_text'}) data = full_dat[full_dat['y']!=3].sample(n=flags.datsubsample) texts = list(data['review_text']) labels = (np.array(data['y']) > 3) split1, split2 = int(0.6*len(texts)), (int(0.6*len(texts)) + int(0.2*len(texts))) train_text, train_label = texts[:split1], torch.from_numpy(labels[:split1]).float().cuda() testobs_text, testobs_label = texts[split1:split2], torch.from_numpy(labels[split1:split2]).float().cuda() testct_text, testct_label = texts[split2:], torch.from_numpy(labels[split2:]).float().cuda() stop_words = set(stopwords.words('english')) # vec = CountVectorizer(min_df=5, binary=True, max_df=0.8, ngram_range=(1,3)) vec = TfidfVectorizer(min_df=10, binary=True, max_df=0.8, ngram_range=(1,3)) X_full = vec.fit_transform(train_text) X_train_full = vec.transform(train_text) X_testobs_full = vec.transform(testobs_text) X_testct_full = vec.transform(testct_text) feats = np.array(vec.get_feature_names()) top_feature_idx, placebo_feature_idx, coef = get_top_terms(vec.transform(train_text), train_label.cpu().numpy(), coef_thresh=0.0, placebo_thresh=0.1) # use coef_threshold=0.0 to take all features, no thresholding happening here. # top_feature_idx = np.arange(500) X_train_np = vec.transform(train_text).toarray() X_testobs_np = vec.transform(testobs_text).toarray() X_testct_np = vec.transform(testct_text).toarray() fea_corrcoef = np.corrcoef(X_train_np[:,top_feature_idx].T) - np.eye(X_train_np[:,top_feature_idx].shape[1]) colinear_fea = np.where(fea_corrcoef>0.96)[0] feature_idx = np.array(list(set(top_feature_idx) - set(colinear_fea))) # only consider words in feature_idx id2term = collections.OrderedDict({i:v for i,v in enumerate(feats[feature_idx])}) term2id = collections.OrderedDict({v:i for i,v in enumerate(feats[feature_idx])}) spurious_words = np.array([term2id['as'], term2id['also'], term2id['am'], term2id['an']]) final_train_accs = [] final_test_accs = [] final_train_baselineaccs = [] final_test_baselineaccs = [] final_train_baselinevaeaccs = [] final_test_baselinevaeaccs = [] for restart in range(flags.n_restarts): print("Restart", restart) def make_environment(texts, labels, e): def torch_bernoulli(p, size): return (torch.rand(size) < p).float() def torch_xor(a, b): return (a-b).abs() # Assumes both inputs are either 0 or 1 # Assign a binary label based on the digit; flip label with probability 0.25 labels = (labels == 1).float() labels = torch_xor(labels, torch_bernoulli(0.35, len(labels)).cuda()) # Assign a color based on the label; flip the color with probability e spurious_counts = torch.stack([torch_xor(labels, torch_bernoulli(e, len(labels)).cuda()) for i in range(len(spurious_words))], axis=1) # Apply the color to the image by zeroing out the other color channel texts[:,spurious_words] = spurious_counts.cpu().numpy() return { 'texts': torch.from_numpy(texts).float().cuda(), 'labels': labels[:, None].cuda(), 'colors': spurious_counts.cuda() } train_data = make_environment(X_train_np[:,feature_idx], train_label, 1-flags.spurious_corr) X_train, train_label = train_data['texts'], train_data['labels'] testobs_data = make_environment(X_testobs_np[:,feature_idx], testobs_label, 1-flags.spurious_corr) X_testobs, testobs_label = testobs_data['texts'], testobs_data['labels'] testct_data = make_environment(X_testct_np[:,feature_idx], testct_label, 0.9) X_testct, testct_label = testct_data['texts'], testct_data['labels'] vocabsize = X_train.shape[1] flags.input_dim = vocabsize # calculate pca embedding pca = PCA(n_components=flags.z_dim) # pca.fit(np.row_stack([X_train_np, X_testobs_np, X_testct_np])) pca.fit(np.row_stack([X_train_np[:,feature_idx]])) train_pca_embedding = torch.from_numpy(pca.transform(X_train_np[:,feature_idx])).float().cuda() testobs_pca_embedding = torch.from_numpy(pca.transform(X_testobs_np[:,feature_idx])).float().cuda() testct_pca_embedding = torch.from_numpy(pca.transform(X_testct_np[:,feature_idx])).float().cuda() print(np.cumsum(pca.explained_variance_ratio_)) print(pca.explained_variance_ratio_ * flags.input_dim) # take only the top pc dimensions with effective sample size > 100 # flags.z_dim = np.sum(pca.explained_variance_ratio_ * flags.input_dim > 30) # print(flags.z_dim) # # calculate pca embedding # pca = PCA(n_components=flags.z_dim) # # pca.fit(np.row_stack([X_train_np, X_testobs_np, X_testct_np])) # pca.fit(np.row_stack([X_train_np[:,feature_idx]])) # train_pca_embedding = torch.from_numpy(pca.transform(X_train_np[:,feature_idx])).float().cuda() # testobs_pca_embedding = torch.from_numpy(pca.transform(X_testobs_np[:,feature_idx])).float().cuda() # testct_pca_embedding = torch.from_numpy(pca.transform(X_testct_np[:,feature_idx])).float().cuda() # flags.num_features = flags.input_dim - flags.z_dim subset_nonsing=False if flags.mode_latent == "vaez": z_dim = flags.z_dim elif flags.mode_latent == "bertz": z_dim = train_embedding.shape[1] elif flags.mode_latent == "bertz_cl": z_dim = X_train_cl_embedding.shape[1] subset_nonsing=True elif flags.mode_latent == "pcaz": z_dim = flags.z_dim # z_dim = flags.z_dim print(vocabsize, z_dim) sys.stdout.flush() def compute_prob(logits, mode="logistic"): if mode == "linear": probs = torch.max(torch.stack([logits,torch.zeros_like(logits)],dim=2),dim=2)[0] probs = torch.min(torch.stack([probs,torch.ones_like(probs)],dim=2),dim=2)[0] elif mode == "logistic": probs = nn.Sigmoid()(logits) return probs class MLP(nn.Module): def __init__(self): super(MLP, self).__init__() self.input_dim = flags.input_dim self.z_dim = z_dim self.num_features = flags.num_features lin1 = nn.Linear(self.input_dim, self.num_features) lin4 = nn.Linear(self.z_dim, 1) for lin in [lin1, lin4]: nn.init.xavier_uniform_(lin.weight) nn.init.zeros_(lin.bias) self._main = nn.Sequential(lin1) self._tvaez = nn.Sequential(lin4) self.finallayer = nn.Linear(self.num_features + 1, 1) def forward(self, inputbow, vaez): features = torch.matmul(inputbow, F.softmax(self._main[0].weight,dim=1).T) logits = self.finallayer(torch.cat([features, self._tvaez(vaez)],dim=1)) probs = compute_prob(logits, mode=flags.mode) features_ctr = features - features.mean(dim=0) beta_hat = 0. feature_hats = 0. logit_hats = logits prob_hats = probs return features, logits, probs, beta_hat, logit_hats, prob_hats def mean_nll(probs, y, mode="logistic"): if mode == "linear": mean_nll = nn.MSELoss()(probs, y) elif mode == "logistic": mean_nll = nn.BCELoss()(probs, y) return mean_nll def mean_accuracy(probs, y): preds = (probs > 0.5).float() return ((preds - y).abs() < 1e-2).float().mean() # the Net component is not used class Net(nn.Module): def __init__(self): super().__init__() self.fc = nn.Linear(flags.num_features, 1) def forward(self, x): x = self.fc(x) return x def initNet(layer): nn.init.xavier_uniform_(layer.weight) nn.init.zeros_(layer.bias) envs = [ {'text': X_train, 'pcaz': train_pca_embedding, 'labels': train_label}, \ {'text': X_testct, 'pcaz': testct_pca_embedding, 'labels': testct_label}, \ {'text': X_testobs, 'pcaz': testobs_pca_embedding, 'labels': testobs_label}] if subset_nonsing == True: envs[0]['text'] = envs[0]['text'][nonsing_sents] envs[0]['labels'] = envs[0]['labels'][nonsing_sents] if flags.mode_train_data == 'text': flags.input_dim = vocabsize train_loader = torch.utils.data.DataLoader(dataset=envs[0]['text'].view(-1, flags.input_dim), batch_size=flags.batch_size, shuffle=False) testct_loader = torch.utils.data.DataLoader(dataset=envs[1]['text'].view(-1, flags.input_dim), batch_size=flags.batch_size, shuffle=False) testobs_loader = torch.utils.data.DataLoader(dataset=envs[2]['text'].view(-1, flags.input_dim), batch_size=flags.batch_size, shuffle=False) elif flags.mode_train_data == 'bertz': flags.input_dim = train_embedding.shape[1] train_loader = torch.utils.data.DataLoader(dataset=envs[0]['bertz'].view(-1, flags.input_dim), batch_size=flags.batch_size, shuffle=False) testct_loader = torch.utils.data.DataLoader(dataset=envs[1]['bertz'].view(-1, flags.input_dim), batch_size=flags.batch_size, shuffle=False) testobs_loader = torch.utils.data.DataLoader(dataset=envs[2]['bertz'].view(-1, flags.input_dim), batch_size=flags.batch_size, shuffle=False) if flags.mode_latent == 'vae': trainvaez_name = flags.dataset + 'k' + str(flags.z_dim) + 'trainvae.pt' testctvaez_name = flags.dataset + 'k' + str(flags.z_dim) + 'testctvae.pt' testobsvaez_name = flags.dataset + 'k' + str(flags.z_dim) + 'testobsvae.pt' envs[0]['vaeimage'] = torch.load(trainvaez_name)[0].detach() envs[1]['vaeimage'] = torch.load(testctvaez_name)[0].detach() envs[2]['vaeimage'] = torch.load(testobsvaez_name)[0].detach() envs[0]['vaez'] = torch.load(trainvaez_name)[1].detach() envs[1]['vaez'] = torch.load(testctvaez_name)[1].detach() envs[2]['vaez'] = torch.load(testobsvaez_name)[1].detach() mlp = MLP().cuda() optimizer_causalrep = optim.Adam(mlp._main.parameters(), lr=flags.lr, weight_decay=1e-8) for step in range(flags.steps): for i in range(len(envs)): env = envs[i] features, logits, probs, beta_hat, logit_hats, prob_hats = mlp(env[flags.mode_train_data], env[flags.mode_latent]) labels = env['labels'] env['nll'] = mean_nll(probs, env['labels'], mode=flags.mode) env['nllhat'] = mean_nll(prob_hats, env['labels'], mode=flags.mode) env['acc'] = mean_accuracy(probs, env['labels']) env['acchat'] = mean_accuracy(prob_hats, env['labels']) y = labels - labels.mean() X = torch.cat([features, env[flags.mode_latent]], dim=1) X = X - X.mean(dim=0) X = torch.cat([torch.ones(X.shape[0],1).cuda(), X], dim=1) beta = [torch.matmul( torch.matmul( torch.inverse(flags.l2_reg*torch.eye(X.shape[1]).cuda()+ torch.matmul( torch.transpose(X, 0, 1), X)), torch.transpose(X, 0, 1)), y[:,j]) for j in range(y.shape[1])] env['covs'] = cov(torch.cat([beta[0][1:flags.num_features+1] *features, torch.unsqueeze((beta[0][-flags.z_dim:] * env[flags.mode_latent]).sum(dim=1),1)], dim=1))[-1][:-1] # extract the last row to have cov(Features, C) env['causalrep'] = ((features.std(dim=0) * beta[0][1:flags.num_features+1])**2).sum() # + 2 * env['covs']).sum() weight_norm = torch.tensor(0.).cuda() for w in mlp.finallayer.parameters(): weight_norm += w.norm().pow(2) env['l2penalty'] = flags.l2_reg * weight_norm if step % 500 == 0: print("\nnll", env['nll'], "\nl2", env['l2penalty'], "\ncausalrep", env['causalrep']) # "\nfeatureZr2", env['featureZr2']) sys.stdout.flush() train_l2penalty = torch.stack([envs[0]['l2penalty']]) train_causalrep = torch.stack([envs[0]['causalrep']]) train_nll = torch.stack([envs[0]['nll']]).mean() train_acc = torch.stack([envs[0]['acc']]).mean() testct_nll = torch.stack([envs[1]['nll']]).mean() testct_acc = torch.stack([envs[1]['acc']]).mean() testobs_nll = torch.stack([envs[2]['nll']]).mean() testobs_acc = torch.stack([envs[2]['acc']]).mean() nll_loss = train_nll.clone() # + train_l2penalty.clone() if step % 1 == 0: l1_penalty = F.softmax(mlp._main[0].weight,dim=1).abs().sum() train_causalrep_loss = -train_causalrep.clone() # + 1e-3 * l1_penalty - 1e-2 * torch.log(1 - train_featureZr2) optimizer_causalrep.zero_grad() train_causalrep_loss.backward(retain_graph=True) optimizer_causalrep.step() if step % 100 == 0: train_features, train_y = mlp(envs[0][flags.mode_train_data], envs[0][flags.mode_latent])[0].clone().cpu().detach().numpy(), envs[0]['labels'].clone().cpu().detach().numpy() testct_features, testct_y = mlp(envs[1][flags.mode_train_data], envs[1][flags.mode_latent])[0].clone().cpu().detach().numpy(), envs[1]['labels'].clone().cpu().detach().numpy() testobs_features, testobs_y = mlp(envs[2][flags.mode_train_data], envs[2][flags.mode_latent])[0].clone().cpu().detach().numpy(), envs[2]['labels'].clone().cpu().detach().numpy() C_vals = [1e-3, 1e-2, 1e-1, 1e0, 1e1, 1e2, 1e3] causalrep_alphas, causalrep_trainaccs, causalrep_testobsaccs, causalrep_testctaccs = [], [], [], [] for C in C_vals: alpha = 1./C print('\ncausal-pred-w-features', 'C', C) # clf = LinearRegression() # clf = Ridge(alpha=alpha) clf = LogisticRegression(C=C, class_weight='auto', solver='lbfgs') clf.fit(train_features, train_y) resulttrain = classification_report((train_y > 0), (clf.predict(train_features) > 0), output_dict=True) resultct = classification_report((testct_y > 0), (clf.predict(testct_features) > 0), output_dict=True) resultobs = classification_report((testobs_y > 0), (clf.predict(testobs_features)> 0), output_dict=True) print('train',resulttrain['accuracy']) print('testobs',resultobs['accuracy']) print('testct',resultct['accuracy']) sys.stdout.flush() causalrep_trainaccs.append(resulttrain['accuracy']) causalrep_testobsaccs.append(resultobs['accuracy']) causalrep_testctaccs.append(resultct['accuracy']) causalrep_alphas.append(alpha) print("\n\n##### causal rep top words") feature_weights = torch.topk(F.softmax(mlp._main[0].weight,dim=1),20, axis=1) top_causal_words = feature_weights[1].detach().cpu().numpy() top_causal_weights = feature_weights[0].detach().cpu().numpy() for j in np.argsort(-np.abs(beta[0][1:(1+flags.num_features)].detach().cpu().numpy())): # for j in range(top_causal_words.shape[0]): print("feature", j) print("coefficient", beta[0][j+1]) sort_causal_words = np.argsort(-top_causal_weights[j])[:20] print("top causal words", [id2term[i] for i in top_causal_words[j][sort_causal_words]], top_causal_weights[j][sort_causal_words] ) causalrep_res = {} assert len(causalrep_alphas) == len(causalrep_trainaccs) assert len(causalrep_alphas) == len(causalrep_testobsaccs) assert len(causalrep_alphas) == len(causalrep_testctaccs) for item in ['causalrep_trainaccs', 'causalrep_testobsaccs', 'causalrep_testctaccs']: for i, alpha in enumerate(causalrep_alphas): curname = item + '_' + str(alpha) if item == 'causalrep_trainaccs': causalrep_res[curname] = causalrep_trainaccs[i] elif item == 'causalrep_testobsaccs': causalrep_res[curname] = causalrep_testobsaccs[i] elif item == 'causalrep_testctaccs': causalrep_res[curname] = causalrep_testctaccs[i] res = pd.concat([
pd.DataFrame(causalrep_res, index=[0])
pandas.DataFrame
import pandas as pd import click from hgvs_helpers import var_c_p_prep, rev_comp, tryconvert def hgvs_nomenclature(output_folder, weight_filter): table =
pd.read_csv(output_folder + '/all_mutations_with_weights.csv')
pandas.read_csv
import pandas as pd import os data=pd.read_csv('./data/name/namecode.csv') result=pd.DataFrame() re=0 for i,d in enumerate(zip(data['ts_code'],data['name'],data['industry'])): temp=pd.DataFrame() try: temp=
pd.read_csv('./data/stock/'+d[0]+'_'+d[1]+'_'+d[2]+'.csv')
pandas.read_csv
# Copyright 2017 Sidewalk Labs | https://www.apache.org/licenses/LICENSE-2.0 from __future__ import ( absolute_import, division, print_function, unicode_literals ) from collections import defaultdict, namedtuple import numpy as np import pandas from doppelganger.listbalancer import ( balance_multi_cvx, discretize_multi_weights ) from doppelganger import inputs HIGH_PASS_THRESHOLD = .1 # Filter controls which are present in less than 10% of HHs # These are the minimum fields needed to allocate households DEFAULT_PERSON_FIELDS = { inputs.STATE, inputs.PUMA, inputs.SERIAL_NUMBER, inputs.AGE, inputs.SEX, inputs.PERSON_WEIGHT, } DEFAULT_HOUSEHOLD_FIELDS = { inputs.STATE, inputs.PUMA, inputs.SERIAL_NUMBER, inputs.NUM_PEOPLE, inputs.HOUSEHOLD_WEIGHT, } CountInformation = namedtuple('CountInformation', ['tract', 'count']) class HouseholdAllocator(object): @staticmethod def from_csvs(households_csv, persons_csv): """Load saved household and person allocations. Args: households_csv (unicode): path to households file persons_csv (unicode): path to persons file Returns: HouseholdAllocator: allocated persons & households_csv """ allocated_households = pandas.read_csv(households_csv) allocated_persons = pandas.read_csv(persons_csv) return HouseholdAllocator(allocated_households, allocated_persons) @staticmethod def from_cleaned_data(marginals, households_data, persons_data): """Allocate households based on the given data. marginals (Marginals): controls to match when allocating households_data (CleanedData): data about households. Must contain DEFAULT_HOUSEHOLD_FIELDS. persons_data (CleanedData): data about persons. Must contain DEFAULT_PERSON_FIELDS. """ for field in DEFAULT_HOUSEHOLD_FIELDS: assert field.name in households_data.data, \ 'Missing required field {}'.format(field.name) for field in DEFAULT_PERSON_FIELDS: assert field.name in persons_data.data, \ 'Missing required field {}'.format(field.name) households, persons = HouseholdAllocator._format_data( households_data.data, persons_data.data) allocated_households, allocated_persons = \ HouseholdAllocator._allocate_households(households, persons, marginals) return HouseholdAllocator(allocated_households, allocated_persons) def __init__(self, allocated_households, allocated_persons): self.allocated_households = allocated_households self.allocated_persons = allocated_persons self.serialno_to_counts = defaultdict(list) for _, row in self.allocated_households.iterrows(): serialno = row[inputs.SERIAL_NUMBER.name] tract = row[inputs.TRACT.name] count = int(row[inputs.COUNT.name]) self.serialno_to_counts[serialno].append(CountInformation(tract, count)) def get_counts(self, serialno): """Return the information about weights for a given serial number. A household is repeated for a certain number of times for each tract. This returns a list of (tract, repeat count). The repeat count indicates the number of times this serial number should be repeated in this tract. Args: seriano (unicode): the household's serial number Returns: list(CountInformation): the weighted repetitions for this serialno """ return self.serialno_to_counts[serialno] def write(self, household_file, person_file): """Write allocated households and persons to the given files Args: household_file (unicode): path to write households to person_file (unicode): path to write persons to """ self.allocated_households.to_csv(household_file) self.allocated_persons.to_csv(person_file) @staticmethod def _filter_sparse_columns(df, cols): ''' Filter out variables who are are so sparse they would break the solver. Columns are assumed to be of an indicator type (0/1) Args df (pandas.DataFrame): dataframe to filter cols (list(str)): column names Returns filtered column list (list(str)) ''' return df[cols]\ .loc[:, df[cols].sum()/float(len(df)) > HIGH_PASS_THRESHOLD]\ .columns.tolist() @staticmethod def _allocate_households(households, persons, tract_controls): # Only take nonzero weights households = households[households[inputs.HOUSEHOLD_WEIGHT.name] > 0] # Initial weights from PUMS w = households[inputs.HOUSEHOLD_WEIGHT.name].as_matrix().T allocation_inputs = [inputs.NUM_PEOPLE, inputs.NUM_VEHICLES] # Hard-coded for now # Prepend column name to bin name to prevent bin collision hh_columns = [] for a_input in allocation_inputs: subset_values = households[a_input.name].unique().tolist() hh_columns += HouseholdAllocator._str_broadcast(a_input.name, subset_values) hh_columns = HouseholdAllocator._filter_sparse_columns(households, hh_columns) hh_table = households[hh_columns].as_matrix() A = tract_controls.data[hh_columns].as_matrix() n_tracts, n_controls = A.shape n_samples = len(households.index.values) # Control importance weights # < 1 means not important (thus relaxing the constraint in the solver) mu = np.mat([1] * n_controls) w_extend = np.tile(w, (n_tracts, 1)) mu_extend = np.mat(np.tile(mu, (n_tracts, 1))) B = np.mat(np.dot(np.ones((1, n_tracts)), A)[0]) # Our trade-off coefficient gamma # Low values (~1) mean we trust our initial weights, high values # (~10000) mean want to fit the marginals. gamma = 100. # Meta-balancing coefficient meta_gamma = 100. hh_weights = balance_multi_cvx( hh_table, A, B, w_extend, gamma * mu_extend.T, meta_gamma ) # We're running discretization independently for each tract tract_ids = tract_controls.data['TRACTCE'].values total_weights = np.zeros(hh_weights.shape) sample_weights_int = hh_weights.astype(int) discretized_hh_weights = discretize_multi_weights(hh_table, hh_weights) total_weights = sample_weights_int + discretized_hh_weights # Extend households and add the weights and ids households_extend =
pandas.concat([households] * n_tracts)
pandas.concat
import pandas as pd import numpy as np import holidays import statsmodels.formula.api as sm import time from Helper import helper import datetime class DR(object): def __init__(self, dataframe): df = dataframe.copy() self.lm_data = helper.DR_Temp_data_cleaning(df) self.name = 'DR' def set_date(self, date): self.date = date def model_building(self, training_data, station): ml = sm.ols(formula=station + "_Temp_Log~Load_Lag_48+Humi_Lag_48+I(Load_Lag_48**2)+I(Humi_Lag_48**2)+\ Hour+Weekday+Month+Holiday+ RIV_Temp_Log_Lag_48+I(RIV_Temp_Log_Lag_48**2)+\ Month:Load_Lag_48+Month:Humi_Lag_48+\ Hour:Load_Lag_48+Hour:Humi_Lag_48+\ Holiday:Load_Lag_48+Holiday:Humi_Lag_48", data=training_data).fit() return ml def model_selection_mape_rmse(self, station): training_days = 30 date_time =
pd.to_datetime(self.date)
pandas.to_datetime
""" Main experimentation pipeline for measuring robustness of explainers. Unlike the other pipelines, we just want to compare the original LIME with its robustified version, so we do not require a list of configs to run through. We mainly run three experiments: * Robustness of original LIME against Fooling LIME attack (surrogate sampler) * Robustness of CTGAN-LIME against Fooling LIME attack (surrogate sampler) * Robustness of CTGAN-LIME against Fooling LIME attack with CTGAN sampler (white-box) We measure the following metrics: * How often is the biased column (e.g. race) identified as the top feature for a prediction (top-1 accuracy) * How often is the biased column identified as among the top k features for a prediction (top-k accuracy) * How often is 'unrelated_column' identified as the top feature for a prediction (success rate) """ import argparse import logging import os from datetime import datetime import numpy as np import pandas as pd from sklearn.externals import joblib from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from tqdm import tqdm from experiments.experiments_common import create_save_path from experiments.utils.adversarial_lime import Adversarial_Lime_Model, one_hot_encode from experiments.utils.constants import Datasets, Explainers from experiments.utils.datasets import get_dataset from experiments.utils.explainers import get_explainer DATASET_CONFIGS = { Datasets.COMPAS: { 'biased_column': 'race', 'unrelated_column': 'unrelated_column', 'use_cat_for_ctgan': True, 'ctgan_params': { 'embedding_dim': 512, 'gen_dim': (256, 256, 256, 256, 256), 'dis_dim': (256, 256, 256, 256, 256) }, 'discriminator_threshold': 0.5 }, Datasets.GERMANCREDIT: { 'biased_column': 'Sex', 'unrelated_column': 'unrelated_column', 'use_cat_for_ctgan': False, 'ctgan_params': { 'embedding_dim': 512, 'gen_dim': (256, 256, 256, 256, 256), 'dis_dim': (256, 256, 256, 256, 256) }, 'ctgan_epochs': 300, 'use_onehot': True, 'measure_distance': 'raw', 'discriminator_threshold': 0.5 }, Datasets.COMMUNITY: { 'biased_column': 'racePctWhite numeric', 'unrelated_column': 'unrelated_column', 'use_cat_for_ctgan': True, 'ctgan_params': { 'embedding_dim': 512, 'gen_dim': (256, 256, 256, 256, 256), 'dis_dim': (256, 256, 256, 256, 256), }, 'ctgan_epochs': 1000, 'use_onehot': False, 'measure_distance': 'raw', 'discriminator_threshold': 0.01 } } class sexist_model_f: """ For the German credit dataset """ def __init__(self, sex_index): self.sex_index = sex_index # Decision rule: classify negatively if race is black def predict(self, X): return np.array([0 if x[self.sex_index] > 0 else 1 for x in X]) def predict_proba(self, X): return one_hot_encode(self.predict(X)) def score(self, X, y): return np.sum(self.predict(X) == y) / len(X) class innocuous_model_psi_german: def __init__(self, unrelated_index): self.unrelated_index = unrelated_index # Decision rule: classify according to randomly drawn column 'unrelated column' def predict(self, X): return np.array([0 if x[self.unrelated_index] > 0 else 1 for x in X]) def predict_proba(self, X): return one_hot_encode(self.predict(X)) def score(self, X, y): return np.sum(self.predict(X) == y) / len(X) class racist_model_f: """ For the COMPAS dataset """ def __init__(self, race_index): self.race_index = race_index # Decision rule: classify negatively if race is black def predict(self, X): return np.array([0 if x[self.race_index] > 0 else 1 for x in X]) def predict_proba(self, X): return one_hot_encode(self.predict(X)) def score(self, X, y): return np.sum(self.predict(X) == y) / len(X) class innocuous_model_psi: def __init__(self, unrelated_index): self.unrelated_index = unrelated_index # Decision rule: classify according to randomly drawn column 'unrelated column' def predict(self, X): return np.array([0 if x[self.unrelated_index] > 0 else 1 for x in X]) def predict_proba(self, X): return one_hot_encode(self.predict(X)) def score(self, X, y): return np.sum(self.predict(X) == y) / len(X) def preprocess_robustness_datasets(dataset, params={}): data = get_dataset(dataset, params) if dataset == Datasets.COMPAS: X, y, _ = data['data'], data['target'], data['cols'] X[DATASET_CONFIGS[Datasets.COMPAS]['unrelated_column']] = np.random.choice([0, 1], size=X.shape[0]) features = list(X.columns) categorical_feature_name = ['two_year_recid', 'c_charge_degree_F', 'c_charge_degree_M', 'sex_Female', 'sex_Male', 'race', 'unrelated_column'] categorical_feature_indcs = [features.index(c) for c in categorical_feature_name] X = X.values elif dataset == Datasets.GERMANCREDIT: X, y = data['data'], data['target'] X =
pd.DataFrame(X, columns=data['feature_names'])
pandas.DataFrame
# -*- coding: utf-8 -*- import pytest import numpy as np import pandas as pd from pandas import Timestamp def create_dataframe(tuple_data): """Create pandas df from tuple data with a header.""" return pd.DataFrame.from_records(tuple_data[1:], columns=tuple_data[0]) ### REUSABLE FIXTURES -------------------------------------------------------- @pytest.fixture() def indices_3years(): """Three indices over 3 years.""" return pd.DataFrame.from_records( [ (Timestamp('2012-01-01 00:00:00'), 100.0, 100.0, 100.0), (Timestamp('2012-02-01 00:00:00'), 101.239553643, 96.60525323799999, 97.776838217), (Timestamp('2012-03-01 00:00:00'), 102.03030533, 101.450821724, 96.59101862), (Timestamp('2012-04-01 00:00:00'), 104.432402661, 98.000263617, 94.491213369), (Timestamp('2012-05-01 00:00:00'), 105.122830333, 95.946873831, 93.731891785), (Timestamp('2012-06-01 00:00:00'), 103.976692567, 97.45914568100001, 90.131064035), (Timestamp('2012-07-01 00:00:00'), 106.56768678200001, 94.788761174, 94.53487522), (Timestamp('2012-08-01 00:00:00'), 106.652151036, 98.478217946, 92.56165627700001), (Timestamp('2012-09-01 00:00:00'), 108.97290730799999, 99.986521241, 89.647230903), (Timestamp('2012-10-01 00:00:00'), 106.20124385700001, 99.237117891, 92.27819603799999), (Timestamp('2012-11-01 00:00:00'), 104.11913898700001, 100.993436318, 95.758970985), (Timestamp('2012-12-01 00:00:00'), 107.76600978, 99.60424011299999, 95.697091336), (Timestamp('2013-01-01 00:00:00'), 98.74350698299999, 100.357120656, 100.24073830200001), (Timestamp('2013-02-01 00:00:00'), 100.46305431100001, 99.98213513200001, 99.499007278), (Timestamp('2013-03-01 00:00:00'), 101.943121499, 102.034291064, 96.043392231), (Timestamp('2013-04-01 00:00:00'), 99.358987741, 106.513055039, 97.332012817), (Timestamp('2013-05-01 00:00:00'), 97.128074038, 106.132168479, 96.799806436), (Timestamp('2013-06-01 00:00:00'), 94.42944162, 106.615734964, 93.72086654600001), (Timestamp('2013-07-01 00:00:00'), 94.872365481, 103.069773446, 94.490515359), (Timestamp('2013-08-01 00:00:00'), 98.239415397, 105.458081805, 93.57271149299999), (Timestamp('2013-09-01 00:00:00'), 100.36774827100001, 106.144579258, 90.314524375), (Timestamp('2013-10-01 00:00:00'), 100.660205114, 101.844838294, 88.35136848399999), (Timestamp('2013-11-01 00:00:00'), 101.33948384799999, 100.592230114, 93.02874928899999), (Timestamp('2013-12-01 00:00:00'), 101.74876982299999, 102.709038791, 93.38277933200001), (Timestamp('2014-01-01 00:00:00'), 101.73439491, 99.579700011, 104.755837919), (Timestamp('2014-02-01 00:00:00'), 100.247760523, 100.76732961, 100.197855834), (Timestamp('2014-03-01 00:00:00'), 102.82080245600001, 99.763171909, 100.252537549), (Timestamp('2014-04-01 00:00:00'), 104.469889684, 96.207920184, 98.719797067), (Timestamp('2014-05-01 00:00:00'), 105.268899775, 99.357641836, 99.99786671), (Timestamp('2014-06-01 00:00:00'), 107.41649204299999, 100.844974811, 96.463821506), (Timestamp('2014-07-01 00:00:00'), 110.146087435, 102.01075029799999, 94.332755083), (Timestamp('2014-08-01 00:00:00'), 109.17068484100001, 101.562418115, 91.15410351700001), (Timestamp('2014-09-01 00:00:00'), 109.872892919, 101.471759564, 90.502291475), (Timestamp('2014-10-01 00:00:00'), 108.508436998, 98.801947543, 93.97423224399999), (Timestamp('2014-11-01 00:00:00'), 109.91248118, 97.730489099, 90.50638234200001), (Timestamp('2014-12-01 00:00:00'), 111.19756703600001, 99.734704555, 90.470418612), ], ).set_index(0, drop=True) @pytest.fixture() def weights_3years(): return pd.DataFrame.from_records( [ (Timestamp('2012-01-01 00:00:00'), 5.1869643839999995, 2.263444179, 3.145244219), (Timestamp('2013-01-01 00:00:00'), 6.74500585, 1.8588606330000002, 3.992369584), (Timestamp('2014-01-01 00:00:00'), 6.23115844, 2.361303832, 3.5764532489999996), ], ).set_index(0, drop=True) @pytest.fixture() def weights_3years_start_feb(weights_3years): return weights_3years.shift(1, freq='MS') @pytest.fixture() def weight_shares_3years(): return pd.DataFrame.from_records( [ (Timestamp('2012-01-01 00:00:00'), 0.489537029, 0.21362007800000002, 0.29684289199999997), (Timestamp('2013-01-01 00:00:00'), 0.535477885, 0.147572705, 0.31694941), (Timestamp('2014-01-01 00:00:00'), 0.512055362, 0.1940439, 0.293900738), ], ).set_index(0, drop=True) @pytest.fixture() def weights_shares_start_feb(weight_shares_3years): return weight_shares_3years.shift(1, freq='MS') @pytest.fixture() def indices_1year(indices_3years): return indices_3years.loc['2012', :] @pytest.fixture() def weights_1year(weights_3years): return weights_3years.loc['2012', :] @pytest.fixture() def indices_6months(indices_3years): return indices_3years.loc['2012-Jan':'2012-Jun', :] @pytest.fixture() def weights_6months(weights_3years): return weights_3years.loc['2012', :] @pytest.fixture() def indices_transposed(indices_3years): return indices_3years.T @pytest.fixture() def weights_transposed(weights_3years): return weights_3years.T @pytest.fixture() def indices_missing(indices_3years): indices_missing = indices_3years.copy() change_to_nans = [ ('2012-06', 2), ('2012-12', 3), ('2013-10', 2), ('2014-07', 1), ] for sl in change_to_nans: indices_missing.loc[sl] = np.nan return indices_missing @pytest.fixture() def indices_missing_transposed(indices_missing): return indices_missing.T ### AGGREGATION FIXTURES ----------------------------------------------------- @pytest.fixture() def aggregate_outcome_3years(): return pd.DataFrame.from_records( [ (Timestamp('2012-01-01 00:00:00'), 100.0), (Timestamp('2012-02-01 00:00:00'), 99.22169156), (Timestamp('2012-03-01 00:00:00'), 100.29190240000001), (Timestamp('2012-04-01 00:00:00'), 100.10739720000001), (Timestamp('2012-05-01 00:00:00'), 99.78134264), (Timestamp('2012-06-01 00:00:00'), 98.47443727), (Timestamp('2012-07-01 00:00:00'), 100.4796172), (Timestamp('2012-08-01 00:00:00'), 100.7233716), (Timestamp('2012-09-01 00:00:00'), 101.31654509999998), (Timestamp('2012-10-01 00:00:00'), 100.5806089), (Timestamp('2012-11-01 00:00:00'), 100.9697697), (Timestamp('2012-12-01 00:00:00'), 102.4399192), (Timestamp('2013-01-01 00:00:00'), 99.45617890000001), (Timestamp('2013-02-01 00:00:00'), 100.08652959999999), (Timestamp('2013-03-01 00:00:00'), 100.0866599), (Timestamp('2013-04-01 00:00:00'), 99.7722843), (Timestamp('2013-05-01 00:00:00'), 98.35278839), (Timestamp('2013-06-01 00:00:00'), 96.00322344), (Timestamp('2013-07-01 00:00:00'), 95.96105198), (Timestamp('2013-08-01 00:00:00'), 97.82558448), (Timestamp('2013-09-01 00:00:00'), 98.03388747), (Timestamp('2013-10-01 00:00:00'), 96.93374613), (Timestamp('2013-11-01 00:00:00'), 98.59512718), (Timestamp('2013-12-01 00:00:00'), 99.23888357), (Timestamp('2014-01-01 00:00:00'), 102.2042938), (Timestamp('2014-02-01 00:00:00'), 100.3339127), (Timestamp('2014-03-01 00:00:00'), 101.4726729), (Timestamp('2014-04-01 00:00:00'), 101.17674840000001), (Timestamp('2014-05-01 00:00:00'), 102.57269570000001), (Timestamp('2014-06-01 00:00:00'), 102.9223313), (Timestamp('2014-07-01 00:00:00'), 103.9199248), (Timestamp('2014-08-01 00:00:00'), 102.3992605), (Timestamp('2014-09-01 00:00:00'), 102.54967020000001), (Timestamp('2014-10-01 00:00:00'), 102.35333840000001), (Timestamp('2014-11-01 00:00:00'), 101.8451732), (Timestamp('2014-12-01 00:00:00'), 102.8815443), ], ).set_index(0, drop=True).squeeze() @pytest.fixture() def aggregate_outcome_1year(aggregate_outcome_3years): return aggregate_outcome_3years.loc['2012'] @pytest.fixture() def aggregate_outcome_6months(aggregate_outcome_3years): return aggregate_outcome_3years.loc['2012-Jan':'2012-Jun'] @pytest.fixture() def aggregate_outcome_missing(): return pd.DataFrame.from_records( [ (Timestamp('2012-01-01 00:00:00'), 100.0), (Timestamp('2012-02-01 00:00:00'), 99.22169156), (Timestamp('2012-03-01 00:00:00'), 100.29190240000001), (Timestamp('2012-04-01 00:00:00'), 100.10739720000001), (Timestamp('2012-05-01 00:00:00'), 99.78134264), (Timestamp('2012-06-01 00:00:00'), 98.75024119), (Timestamp('2012-07-01 00:00:00'), 100.4796172), (Timestamp('2012-08-01 00:00:00'), 100.7233716), (Timestamp('2012-09-01 00:00:00'), 101.31654509999998), (Timestamp('2012-10-01 00:00:00'), 100.5806089), (Timestamp('2012-11-01 00:00:00'), 100.9697697), (Timestamp('2012-12-01 00:00:00'), 105.2864531), (Timestamp('2013-01-01 00:00:00'), 99.45617890000001), (Timestamp('2013-02-01 00:00:00'), 100.08652959999999), (Timestamp('2013-03-01 00:00:00'), 100.0866599), (Timestamp('2013-04-01 00:00:00'), 99.7722843), (Timestamp('2013-05-01 00:00:00'), 98.35278839), (Timestamp('2013-06-01 00:00:00'), 96.00322344), (Timestamp('2013-07-01 00:00:00'), 95.96105198), (Timestamp('2013-08-01 00:00:00'), 97.82558448), (Timestamp('2013-09-01 00:00:00'), 98.03388747), (Timestamp('2013-10-01 00:00:00'), 96.08353503), (Timestamp('2013-11-01 00:00:00'), 98.59512718), (Timestamp('2013-12-01 00:00:00'), 99.23888357), (Timestamp('2014-01-01 00:00:00'), 102.2042938), (Timestamp('2014-02-01 00:00:00'), 100.3339127), (Timestamp('2014-03-01 00:00:00'), 101.4726729), (Timestamp('2014-04-01 00:00:00'), 101.17674840000001), (Timestamp('2014-05-01 00:00:00'), 102.57269570000001), (Timestamp('2014-06-01 00:00:00'), 102.9223313), (Timestamp('2014-07-01 00:00:00'), 97.38610996), (Timestamp('2014-08-01 00:00:00'), 102.3992605), (Timestamp('2014-09-01 00:00:00'), 102.54967020000001), (Timestamp('2014-10-01 00:00:00'), 102.35333840000001), (Timestamp('2014-11-01 00:00:00'), 101.8451732), (Timestamp('2014-12-01 00:00:00'), 102.8815443), ], ).set_index(0, drop=True).squeeze() ### WEIGHTS FIXTURES ------------------------------------------------------ @pytest.fixture() def reindex_weights_to_indices_outcome_start_jan(): return pd.DataFrame.from_records( [ (Timestamp('2012-01-01 00:00:00'), 5.1869643839999995, 2.263444179, 3.145244219), (Timestamp('2012-02-01 00:00:00'), 5.1869643839999995, 2.263444179, 3.145244219), (Timestamp('2012-03-01 00:00:00'), 5.1869643839999995, 2.263444179, 3.145244219), (Timestamp('2012-04-01 00:00:00'), 5.1869643839999995, 2.263444179, 3.145244219), (Timestamp('2012-05-01 00:00:00'), 5.1869643839999995, 2.263444179, 3.145244219), (Timestamp('2012-06-01 00:00:00'), 5.1869643839999995, 2.263444179, 3.145244219), (Timestamp('2012-07-01 00:00:00'), 5.1869643839999995, 2.263444179, 3.145244219), (
Timestamp('2012-08-01 00:00:00')
pandas.Timestamp
# Voronoi-CNN-ch2Dxysec.py # 2021 <NAME> (UCLA, <EMAIL>) ## Voronoi CNN for channel flow data. ## Authors: # <NAME> (UCLA), <NAME> (Argonne National Lab.), <NAME> (Argonne National Lab.), <NAME> (Keio University), <NAME> (UCLA) ## We provide no guarantees for this code. Use as-is and for academic research use only; no commercial use allowed without permission. For citation, please use the reference below: # Ref: <NAME>, <NAME>, <NAME>, <NAME>, and <NAME>, # "Global field reconstruction from sparse sensors with Voronoi tessellation-assisted deep learning," # in Review, 2021 # # The code is written for educational clarity and not for speed. # -- version 1: Mar 13, 2021 from keras.layers import Input, Add, Dense, Conv2D, merge, Conv2DTranspose, MaxPooling2D, UpSampling2D, Flatten, Reshape, LSTM from keras.models import Model from keras import backend as K import numpy as np import pandas as pd from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import MinMaxScaler from sklearn.cross_validation import train_test_split from tqdm import tqdm as tqdm import cv2 import numpy as np import matplotlib.pyplot as plt from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from scipy.spatial import Voronoi import math import pickle from scipy.interpolate import griddata import tensorflow as tf from keras.backend import tensorflow_backend config = tf.ConfigProto( gpu_options=tf.GPUOptions( allow_growth=True, visible_device_list="0" ) ) session = tf.Session(config=config) tensorflow_backend.set_session(session) # Data can be downloaded from https://drive.google.com/<KEY> x_num=256 y_num=96 #--- Prepare coordinate ---# xcor =
pd.read_csv('./record_x.csv',header=None,delim_whitespace=False)
pandas.read_csv
from flask import Flask, flash, current_app, session, render_template, request, redirect, jsonify, abort, send_file from flask_calendar.calendar_data import CalendarData from flask_calendar.gregorian_calendar import GregorianCalendar from flask_calendar.db_setup import init_db, db_session from flask_calendar.models import Project, Pms, Apikeys import smtplib from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText import json from flask_calendar.app import app from flask_calendar.call_providers import send_email, send_rest1 from datetime import datetime, timedelta from sqlalchemy import and_ import calendar import pandas as pd from io import BytesIO import xlsxwriter from flask_calendar.calendar_functions import check_calendar_duty, get_duty_project, get_day_of_week, get_dutys def export_to_excel(m,y): with app.app_context(): if m: month_days= int(calendar.monthrange(int(y), int(m))[1]) month_name = GregorianCalendar.MONTH_NAMES[int(m) - 1] else: now = datetime.now() month_days= int(calendar.monthrange(now.year, now.month)[1]) month_name = mydate = now.strftime("%B") m=now.strftime("%m") if y: year=int(y) else: y=int(datetime.now().year) if request.method == 'POST': date = request.form.get("date", "") fragments = re.split("-", date) try: m = int(fragments[1]) month = max(min(m, 12), 1) month_name = GregorianCalendar.MONTH_NAMES[month - 1] y = int(fragments[0]) month_days= int(calendar.monthrange(y, m)[1]) except Exception: False month_days=list(range(1,(month_days + 1))) dutys=get_dutys() days=month_days data={} for duty in dutys: tmp_list=[] duty_days=0 for day in days: if check_calendar_duty(duty,y,m,day) == 'X': duty_days=duty_days + 1 tmp_list.append(check_calendar_duty(duty,y,m,day)) tmp_list.insert(len(tmp_list),duty_days) tmp_list.insert(0,str(get_duty_project(duty))) data[str(duty)] = tmp_list days_week=['Project'] for day in days: days_week.append( str(day) + ' ' + str(get_day_of_week(y,m,day)) ) days_week.insert(len(days_week),"Days") df = pd.DataFrame.from_dict(data, orient='index') df.columns = days_week df.index.name = 'Name' output = BytesIO() writer =
pd.ExcelWriter(output, engine='xlsxwriter')
pandas.ExcelWriter
""" Support function for mod handling Author: <NAME> <<EMAIL>> """ import pandas as pd import numpy as np from pandas.io.parsers import read_csv import itertools as iter # from lol_file def get_modularity_value_from_lol_file(lol_file): """get_modularity_value_from_lol_file""" with open(lol_file, 'r') as f: for line in f.readlines(): split_line = line.strip().split(' ') print(split_line) if split_line[0] == 'Q': print("Found modularity value line") return split_line[2] print("Unable to find modularity line in file, returning -1") return -1.0 # reading info files # from info-nodes def get_max_degree_from_node_info_file(info_nodes_file): """Return max degree AND index and name of max degree (radatools based)""" df = pd.read_table(info_nodes_file) max_degree_value = df['Degree'].max() md_indexes = df[df['Degree'] == max_degree_value].Index.values[0] md_names = df[df['Degree'] == max_degree_value].Name.values[0] return max_degree_value, md_indexes, md_names def get_strength_values_from_info_nodes_file(info_nodes_file): """Read strength from Network_Properties node results""" info_nodes = read_csv(info_nodes_file, sep="\t") return info_nodes['Strength'].values def get_strength_pos_values_from_info_nodes_file(info_nodes_file): """Read positive strength from Network_Properties node results""" info_nodes =
read_csv(info_nodes_file, sep="\t")
pandas.io.parsers.read_csv
# -*- encoding:utf-8 -*- import pandas as pd import numpy as np import datetime # from datetime import datetime dire = '../../data/' start = datetime.datetime.now() orderHistory_train = pd.read_csv(dire + 'train/orderHistory_train.csv', encoding='utf-8') orderFuture_train =
pd.read_csv(dire + 'train/orderFuture_train6.csv', encoding='utf-8')
pandas.read_csv
import datetime import numpy as np import pandas as pd import pandas.testing as pdt import pytest from plateau.io.eager import ( read_dataset_as_dataframes, read_table, store_dataframes_as_dataset, ) from plateau.io.testing.read import * # noqa @pytest.fixture( params=["dataframe", "table"], ids=["dataframe", "table"], ) def output_type(request): # TODO: get rid of this parametrization and split properly into two functions return request.param def _read_table(*args, **kwargs): kwargs.pop("dispatch_by", None) res = read_table(*args, **kwargs) if len(res): # Array split conserves dtypes return np.array_split(res, len(res)) else: return [res] # FIXME: handle removal of metparittion function properly. # FIXME: consolidate read_Dataset_as_dataframes (replaced by iter) def _read_dataset(output_type, *args, **kwargs): if output_type == "table": return _read_table elif output_type == "dataframe": return read_dataset_as_dataframes else: raise NotImplementedError() @pytest.fixture() def bound_load_dataframes(output_type): return _read_dataset(output_type) @pytest.fixture() def backend_identifier(): return "eager" def test_read_table_eager(dataset, store_session, use_categoricals): if use_categoricals: categories = ["P"] else: categories = None df = read_table( store=store_session, dataset_uuid="dataset_uuid", categoricals=categories, ) expected_df = pd.DataFrame( { "P": [1, 2], "L": [1, 2], "TARGET": [1, 2], "DATE": [datetime.date(2010, 1, 1), datetime.date(2009, 12, 31)], } ) if categories: expected_df = expected_df.astype({"P": "category"}) # No stability of partitions df = df.sort_values(by="P").reset_index(drop=True) pdt.assert_frame_equal(df, expected_df, check_dtype=True, check_like=True) def test_read_table_with_columns(dataset, store_session): df = read_table( store=store_session, dataset_uuid="dataset_uuid", columns=["P", "L"], ) expected_df = pd.DataFrame({"P": [1, 2], "L": [1, 2]}) # No stability of partitions df = df.sort_values(by="P").reset_index(drop=True) expected_df = expected_df.sort_values(by="P").reset_index(drop=True) pdt.assert_frame_equal(df, expected_df, check_dtype=False, check_like=True) def test_read_table_simple_list_for_cols_cats(dataset, store_session): df = read_table( store=store_session, dataset_uuid="dataset_uuid", columns=["P", "L"], categoricals=["P", "L"], ) expected_df = pd.DataFrame({"P": [1, 2], "L": [1, 2]}) # No stability of partitions df = df.sort_values(by="P").reset_index(drop=True) expected_df = expected_df.sort_values(by="P").reset_index(drop=True) expected_df = expected_df.astype("category")
pdt.assert_frame_equal(df, expected_df, check_dtype=False, check_like=True)
pandas.testing.assert_frame_equal
"""Backtester""" from copy import deepcopy import unittest import pandas as pd import pytest from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.preprocessing import StandardScaler from soam.constants import ( ANOMALY_PLOT, DS_COL, FIG_SIZE, MONTHLY_TIME_GRANULARITY, PLOT_CONFIG, Y_COL, ) from soam.models.prophet import SkProphet from soam.plotting.forecast_plotter import ForecastPlotterTask from soam.workflow import ( Backtester, BaseDataFrameTransformer, Forecaster, Transformer, compute_metrics, ) from soam.workflow.backtester import METRICS_KEYWORD, PLOT_KEYWORD, RANGES_KEYWORD from tests.helpers import sample_data_df # pylint: disable=unused-import def test_compute_metrics(): """Function to compute performance metrics.""" metrics = { "mae": mean_absolute_error, "mse": mean_squared_error, } y_true = [3, -0.5, 2, 7] y_pred = [2.5, 0.0, 2, 8] expected_output = {'mae': 0.5, 'mse': 0.375} output = compute_metrics(y_true, y_pred, metrics) unittest.TestCase().assertDictEqual(expected_output, output) class SimpleProcessor(BaseDataFrameTransformer): """Create a Simple Processor object.""" def __init__(self, **fit_params): # pylint:disable=super-init-not-called self.preproc = StandardScaler(**fit_params) def fit(self, df_X): self.preproc.fit(df_X[Y_COL].values.reshape(-1, 1)) return self def transform(self, df_X, inplace=True): if not inplace: df_X = df_X.copy() df_X[Y_COL] = self.preproc.transform(df_X[Y_COL].values.reshape(-1, 1)) + 10 return df_X def assert_backtest_fold_result_common_checks(rv, ranges=None, plots=None): """Backtest fold result common checks assertion.""" assert tuple(rv) == (RANGES_KEYWORD, METRICS_KEYWORD, PLOT_KEYWORD) assert rv[RANGES_KEYWORD] == ranges assert rv[PLOT_KEYWORD].name == plots def assert_backtest_fold_result(rv, ranges=None, metrics=None, plots=None): """Backtest fold result assertion.""" assert_backtest_fold_result_common_checks(rv, ranges=ranges, plots=plots) for metric_name, values in metrics.items(): assert metric_name in rv[METRICS_KEYWORD] if isinstance(values, dict): for measure_name, value in values.items(): assert value, pytest.approx(rv[METRICS_KEYWORD][measure_name], 0.01) else: assert values, pytest.approx(rv[METRICS_KEYWORD][metric_name], 0.01) def assert_backtest_all_folds_result(rvs, expected_values): """Backtest all fold result assertion.""" assert len(rvs) == len(expected_values) for rv, evs in zip(rvs, expected_values): assert_backtest_fold_result(rv, **evs) def assert_backtest_fold_result_aggregated(rv, ranges=None, metrics=None, plots=None): """Backtest fold result aggregated assertion.""" assert_backtest_fold_result_common_checks(rv, ranges=ranges, plots=plots) output_metrics = pd.DataFrame(rv[METRICS_KEYWORD]) expected_metrics = pd.DataFrame(metrics) pd.testing.assert_frame_equal(output_metrics, expected_metrics, rtol=1e-1) def assert_backtest_all_folds_result_aggregated(rvs, expected_values): """Backtest all fold result aggregated assertion.""" assert len(rvs) == len(expected_values) for rv, evs in zip(rvs, expected_values): assert_backtest_fold_result_aggregated(rv, **evs) def test_integration_backtester_single_fold( tmp_path, sample_data_df ): # pylint: disable=redefined-outer-name """Backtest single fold integration test.""" test_window = 10 train_data = sample_data_df forecaster = Forecaster(model=SkProphet(), output_length=test_window) preprocessor = Transformer(SimpleProcessor()) plot_config = deepcopy(PLOT_CONFIG) plot_config[ANOMALY_PLOT][MONTHLY_TIME_GRANULARITY][FIG_SIZE] = (8, 3) forecast_plotter = ForecastPlotterTask( path=tmp_path, metric_name='test', time_granularity=MONTHLY_TIME_GRANULARITY, plot_config=plot_config, ) metrics = { "mae": mean_absolute_error, "mse": mean_squared_error, } backtester = Backtester( forecaster=forecaster, preprocessor=preprocessor, forecast_plotter=forecast_plotter, test_window=test_window, train_window=30, metrics=metrics, ) rvs = backtester.run(train_data) expected_values = [ { RANGES_KEYWORD: ( pd.Timestamp('2013-02-01 00:00:00'), pd.Timestamp('2015-07-01 00:00:00'), pd.Timestamp('2016-05-01 00:00:00'), ), METRICS_KEYWORD: {'mae': 0.19286372252777645, 'mse': 0.07077117049346579}, 'plots': '0_forecast_2013020100_2015080100_.png', }, ] assert_backtest_all_folds_result(rvs, expected_values) def test_integration_backtester_multi_fold( tmp_path, sample_data_df # pylint: disable=redefined-outer-name ): """Backtest multi fold integration test.""" test_window = 30 train_data = pd.concat([sample_data_df] * 3) train_data[DS_COL] = pd.date_range( train_data[DS_COL].min(), periods=len(train_data), freq='MS' ) model = SkProphet() forecaster = Forecaster(model=model, output_length=test_window) preprocessor = Transformer(SimpleProcessor()) plot_config = deepcopy(PLOT_CONFIG) plot_config[ANOMALY_PLOT][MONTHLY_TIME_GRANULARITY][FIG_SIZE] = (8, 3) forecast_plotter = ForecastPlotterTask( path=tmp_path, metric_name='test', time_granularity=MONTHLY_TIME_GRANULARITY, plot_config=plot_config, ) metrics = { "mae": mean_absolute_error, "mse": mean_squared_error, } backtester = Backtester( forecaster=forecaster, preprocessor=preprocessor, forecast_plotter=forecast_plotter, test_window=test_window, train_window=30, metrics=metrics, ) rvs = backtester.run(train_data) expected_values = [ { RANGES_KEYWORD: ( pd.Timestamp('2013-02-01 00:00:00'), pd.Timestamp('2015-07-01 00:00:00'), pd.Timestamp('2018-01-01 00:00:00'), ), METRICS_KEYWORD: {'mae': 1.140921182444867, 'mse': 2.4605768804352675}, 'plots': '0_forecast_2013020100_2015080100_.png', }, { RANGES_KEYWORD: ( pd.Timestamp('2015-08-01 00:00:00'), pd.Timestamp('2018-01-01 00:00:00'), pd.Timestamp('2020-07-01 00:00:00'), ), METRICS_KEYWORD: {'mae': 1.600049020613293, 'mse': 4.383723067139095}, 'plots': '0_forecast_2015080100_2018020100_.png', }, { RANGES_KEYWORD: ( pd.Timestamp('2018-02-01 00:00:00'), pd.Timestamp('2020-07-01 00:00:00'), pd.Timestamp('2023-01-01 00:00:00'), ), METRICS_KEYWORD: {'mae': 3.1358162976127217, 'mse': 12.666965373730687}, 'plots': '0_forecast_2018020100_2020080100_.png', }, ] assert_backtest_all_folds_result(rvs, expected_values) # TODO: It maybe a good visual aggregation to include all metrics in one plot. This # TODO: is not possible with the current implementation. def test_integration_backtester_multi_fold_default_aggregation( tmp_path, sample_data_df # pylint: disable=redefined-outer-name ): """Backtest multi fold default aggregation integration test.""" test_window = 30 train_data = pd.concat([sample_data_df] * 3) train_data[DS_COL] = pd.date_range( train_data[DS_COL].min(), periods=len(train_data), freq='MS' ) model = SkProphet() forecaster = Forecaster(model=model, output_length=test_window) preprocessor = Transformer(SimpleProcessor()) plot_config = deepcopy(PLOT_CONFIG) plot_config[ANOMALY_PLOT][MONTHLY_TIME_GRANULARITY][FIG_SIZE] = (8, 3) forecast_plotter = ForecastPlotterTask( path=tmp_path, metric_name='test', time_granularity=MONTHLY_TIME_GRANULARITY, plot_config=plot_config, ) metrics = { "mae": mean_absolute_error, "mse": mean_squared_error, } backtester = Backtester( forecaster=forecaster, preprocessor=preprocessor, forecast_plotter=forecast_plotter, test_window=test_window, train_window=30, metrics=metrics, aggregation="default", ) rvs = backtester.run(train_data) expected_values = [ { RANGES_KEYWORD: (
pd.Timestamp('2013-02-01 00:00:00')
pandas.Timestamp
import numpy as np import pandas as pd import seaborn as sns from sklearn.metrics import confusion_matrix from sklearn.utils.multiclass import unique_labels from sklearn.metrics import roc_curve, auc, precision_recall_curve from sklearn.model_selection import learning_curve from sklearn.model_selection import ShuffleSplit import matplotlib.pyplot as plt def plot_roc_curve( y_predict_proba, y_truth): y_score = np.array(y_predict_proba) if len(y_truth.shape) == 1: dummies =
pd.get_dummies(y_truth)
pandas.get_dummies
# Copyright (c) 2018 The Regents of the University of Michigan # and the University of Pennsylvania # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """ Utility functions for performing cross-validation for model training/testing. """ from morf.utils.log import set_logger_handlers, execute_and_log_output from morf.utils.docker import load_docker_image, make_docker_run_command from morf.utils.config import MorfJobConfig from morf.utils import fetch_complete_courses, fetch_sessions, download_train_test_data, initialize_input_output_dirs, make_feature_csv_name, make_label_csv_name, clear_s3_subdirectory, upload_file_to_s3, download_from_s3, initialize_labels, aggregate_session_input_data from morf.utils.s3interface import make_s3_key_path from morf.utils.api_utils import collect_course_cv_results from multiprocessing import Pool import logging import tempfile import pandas as pd import os import numpy as np from sklearn.model_selection import StratifiedKFold module_logger = logging.getLogger(__name__) CONFIG_FILENAME = "config.properties" mode = "cv" def make_folds(job_config, raw_data_bucket, course, k, label_type, raw_data_dir="morf-data/"): """ Utility function to be called by create_course_folds for creating the folds for a specific course. :return: """ logger = set_logger_handlers(module_logger, job_config) user_id_col = "userID" label_col = "label_value" logger.info("creating cross-validation folds for course {}".format(course)) with tempfile.TemporaryDirectory(dir=job_config.local_working_directory) as working_dir: input_dir, output_dir = initialize_input_output_dirs(working_dir) # download data for each session for session in fetch_sessions(job_config, raw_data_bucket, data_dir=raw_data_dir, course=course, fetch_all_sessions=True): # get the session feature and label data download_train_test_data(job_config, raw_data_bucket, raw_data_dir, course, session, input_dir, label_type=label_type) # merge features to ensure splits are correct feat_csv_path = aggregate_session_input_data("features", os.path.join(input_dir, course)) label_csv_path = aggregate_session_input_data("labels", os.path.join(input_dir, course)) feat_df =
pd.read_csv(feat_csv_path, dtype=object)
pandas.read_csv
import logging import os import shutil import warnings warnings.simplefilter("ignore") import matplotlib import pandas as pd matplotlib.use('agg') # no need for tk from autogluon.task.tabular_prediction.tabular_prediction import TabularPrediction as task from autogluon.utils.tabular.utils.savers import save_pd, save_pkl import autogluon.utils.tabular.metrics as metrics from frameworks.shared.callee import call_run, result, output_subdir, utils log = logging.getLogger(__name__) def run(dataset, config): log.info("\n**** AutoGluon ****\n") metrics_mapping = dict( acc=metrics.accuracy, auc=metrics.roc_auc, f1=metrics.f1, logloss=metrics.log_loss, mae=metrics.mean_absolute_error, mse=metrics.mean_squared_error, r2=metrics.r2, # rmse=metrics.root_mean_squared_error, # metrics.root_mean_squared_error incorrectly registered in autogluon REGRESSION_METRICS rmse=metrics.mean_squared_error, # for now, we can let autogluon optimize training on mse: anyway we compute final score from predictions. ) perf_metric = metrics_mapping[config.metric] if config.metric in metrics_mapping else None if perf_metric is None: # TODO: figure out if we are going to blindly pass metrics through, or if we use a strict mapping log.warning("Performance metric %s not supported.", config.metric) is_classification = config.type == 'classification' training_params = {k: v for k, v in config.framework_params.items() if not k.startswith('_')} column_names, _ = zip(*dataset.columns) column_types = dict(dataset.columns) train = pd.DataFrame(dataset.train.data, columns=column_names).astype(column_types, copy=False) label = dataset.target.name print(f"Columns dtypes:\n{train.dtypes}") output_dir = output_subdir("models", config) with utils.Timer() as training: predictor = task.fit( train_data=train, label=label, problem_type=dataset.problem_type, output_directory=output_dir, time_limits=config.max_runtime_seconds, eval_metric=perf_metric.name, **training_params ) test = pd.DataFrame(dataset.test.data, columns=column_names).astype(column_types, copy=False) X_test = test.drop(columns=label) y_test = test[label] with utils.Timer() as predict: predictions = predictor.predict(X_test) probabilities = predictor.predict_proba(dataset=X_test, as_pandas=True, as_multiclass=True) if is_classification else None prob_labels = probabilities.columns.values.tolist() if probabilities is not None else None leaderboard = predictor._learner.leaderboard(X_test, y_test, silent=True) with
pd.option_context('display.max_rows', None, 'display.max_columns', None, 'display.width', 1000)
pandas.option_context
#!/usr/bin/python3 # -*- coding: utf-8 -*- # *****************************************************************************/ # * Authors: <NAME> # *****************************************************************************/ """transformCSV.py This module contains the basic functions for creating the content of a configuration file from CSV. Args: --inFile: Path for the configuration file where the time series data values CSV --outFile: Path for the configuration file where the time series data values INI --debug: Boolean flag to activate verbose printing for debug use Example: Default usage: $ python transformCSV.py Specific usage: $ python transformCSV.py --inFile C:\raad\src\software\time-series.csv --outFile C:\raad\src\software\time-series.ini --debug True """ import sys import datetime import optparse import traceback import pandas import numpy import os import pprint import csv if sys.version_info.major > 2: import configparser as cF else: import ConfigParser as cF class TransformMetaData(object): debug = False fileName = None fileLocation = None columnsList = None analysisFrameFormat = None uniqueLists = None analysisFrame = None def __init__(self, inputFileName=None, debug=False, transform=False, sectionName=None, outFolder=None, outFile='time-series-madness.ini'): if isinstance(debug, bool): self.debug = debug if inputFileName is None: return elif os.path.exists(os.path.abspath(inputFileName)): self.fileName = inputFileName self.fileLocation = os.path.exists(os.path.abspath(inputFileName)) (analysisFrame, analysisFrameFormat, uniqueLists, columnNamesList) = self.CSVtoFrame( inputFileName=self.fileName) self.analysisFrame = analysisFrame self.columnsList = columnNamesList self.analysisFrameFormat = analysisFrameFormat self.uniqueLists = uniqueLists if transform: passWrite = self.frameToINI(analysisFrame=analysisFrame, sectionName=sectionName, outFolder=outFolder, outFile=outFile) print(f"Pass Status is : {passWrite}") return def getColumnList(self): return self.columnsList def getAnalysisFrameFormat(self): return self.analysisFrameFormat def getuniqueLists(self): return self.uniqueLists def getAnalysisFrame(self): return self.analysisFrame @staticmethod def getDateParser(formatString="%Y-%m-%d %H:%M:%S.%f"): return (lambda x: pandas.datetime.strptime(x, formatString)) # 2020-06-09 19:14:00.000 def getHeaderFromFile(self, headerFilePath=None, method=1): if headerFilePath is None: return (None, None) if method == 1: fieldnames = pandas.read_csv(headerFilePath, index_col=0, nrows=0).columns.tolist() elif method == 2: with open(headerFilePath, 'r') as infile: reader = csv.DictReader(infile) fieldnames = list(reader.fieldnames) elif method == 3: fieldnames = list(pandas.read_csv(headerFilePath, nrows=1).columns) else: fieldnames = None fieldDict = {} for indexName, valueName in enumerate(fieldnames): fieldDict[valueName] = pandas.StringDtype() return (fieldnames, fieldDict) def CSVtoFrame(self, inputFileName=None): if inputFileName is None: return (None, None) # Load File print("Processing File: {0}...\n".format(inputFileName)) self.fileLocation = inputFileName # Create data frame analysisFrame = pandas.DataFrame() analysisFrameFormat = self._getDataFormat() inputDataFrame = pandas.read_csv(filepath_or_buffer=inputFileName, sep='\t', names=self._getDataFormat(), # dtype=self._getDataFormat() # header=None # float_precision='round_trip' # engine='c', # parse_dates=['date_column'], # date_parser=True, # na_values=['NULL'] ) if self.debug: # Preview data. print(inputDataFrame.head(5)) # analysisFrame.astype(dtype=analysisFrameFormat) # Cleanup data analysisFrame = inputDataFrame.copy(deep=True) analysisFrame.apply(pandas.to_numeric, errors='coerce') # Fill in bad data with Not-a-Number (NaN) # Create lists of unique strings uniqueLists = [] columnNamesList = [] for columnName in analysisFrame.columns: if self.debug: print('Column Name : ', columnName) print('Column Contents : ', analysisFrame[columnName].values) if isinstance(analysisFrame[columnName].dtypes, str): columnUniqueList = analysisFrame[columnName].unique().tolist() else: columnUniqueList = None columnNamesList.append(columnName) uniqueLists.append([columnName, columnUniqueList]) if self.debug: # Preview data. print(analysisFrame.head(5)) return (analysisFrame, analysisFrameFormat, uniqueLists, columnNamesList) def frameToINI(self, analysisFrame=None, sectionName='Unknown', outFolder=None, outFile='nil.ini'): if analysisFrame is None: return False try: if outFolder is None: outFolder = os.getcwd() configFilePath = os.path.join(outFolder, outFile) configINI = cF.ConfigParser() configINI.add_section(sectionName) for (columnName, columnData) in analysisFrame: if self.debug: print('Column Name : ', columnName) print('Column Contents : ', columnData.values) print("Column Contents Length:", len(columnData.values)) print("Column Contents Type", type(columnData.values)) writeList = "[" for colIndex, colValue in enumerate(columnData): writeList = f"{writeList}'{colValue}'" if colIndex < len(columnData) - 1: writeList = f"{writeList}, " writeList = f"{writeList}]" configINI.set(sectionName, columnName, writeList) if not os.path.exists(configFilePath) or os.stat(configFilePath).st_size == 0: with open(configFilePath, 'w') as configWritingFile: configINI.write(configWritingFile) noErrors = True except ValueError as e: errorString = ("ERROR in {__file__} @{framePrintNo} with {ErrorFound}".format(__file__=str(__file__), framePrintNo=str( sys._getframe().f_lineno), ErrorFound=e)) print(errorString) noErrors = False return noErrors @staticmethod def _validNumericalFloat(inValue): """ Determines if the value is a valid numerical object. Args: inValue: floating-point value Returns: Value in floating-point or Not-A-Number. """ try: return numpy.float128(inValue) except ValueError: return numpy.nan @staticmethod def _calculateMean(x): """ Calculates the mean in a multiplication method since division produces an infinity or NaN Args: x: Input data set. We use a data frame. Returns: Calculated mean for a vector data frame. """ try: mean = numpy.float128(numpy.average(x, weights=numpy.ones_like(numpy.float128(x)) / numpy.float128(x.size))) except ValueError: mean = 0 pass return mean def _calculateStd(self, data): """ Calculates the standard deviation in a multiplication method since division produces a infinity or NaN Args: data: Input data set. We use a data frame. Returns: Calculated standard deviation for a vector data frame. """ sd = 0 try: n = numpy.float128(data.size) if n <= 1: return numpy.float128(0.0) # Use multiplication version of mean since numpy bug causes infinity. mean = self._calculateMean(data) sd = numpy.float128(mean) # Calculate standard deviation for el in data: diff = numpy.float128(el) - numpy.float128(mean) sd += (diff) ** 2 points = numpy.float128(n - 1) sd = numpy.float128(numpy.sqrt(numpy.float128(sd) / numpy.float128(points))) except ValueError: pass return sd def _determineQuickStats(self, dataAnalysisFrame, columnName=None, multiplierSigma=3.0): """ Determines stats based on a vector to get the data shape. Args: dataAnalysisFrame: Dataframe to do analysis on. columnName: Column name of the data frame. multiplierSigma: Sigma range for the stats. Returns: Set of stats. """ meanValue = 0 sigmaValue = 0 sigmaRangeValue = 0 topValue = 0 try: # Clean out anomoly due to random invalid inputs. if (columnName is not None): meanValue = self._calculateMean(dataAnalysisFrame[columnName]) if meanValue == numpy.nan: meanValue = numpy.float128(1) sigmaValue = self._calculateStd(dataAnalysisFrame[columnName]) if float(sigmaValue) is float(numpy.nan): sigmaValue = numpy.float128(1) multiplier = numpy.float128(multiplierSigma) # Stats: 1 sigma = 68%, 2 sigma = 95%, 3 sigma = 99.7 sigmaRangeValue = (sigmaValue * multiplier) if float(sigmaRangeValue) is float(numpy.nan): sigmaRangeValue = numpy.float128(1) topValue = numpy.float128(meanValue + sigmaRangeValue) print("Name:{} Mean= {}, Sigma= {}, {}*Sigma= {}".format(columnName, meanValue, sigmaValue, multiplier, sigmaRangeValue)) except ValueError: pass return (meanValue, sigmaValue, sigmaRangeValue, topValue) def _cleanZerosForColumnInFrame(self, dataAnalysisFrame, columnName='cycles'): """ Cleans the data frame with data values that are invalid. I.E. inf, NaN Args: dataAnalysisFrame: Dataframe to do analysis on. columnName: Column name of the data frame. Returns: Cleaned dataframe. """ dataAnalysisCleaned = None try: # Clean out anomoly due to random invalid inputs. (meanValue, sigmaValue, sigmaRangeValue, topValue) = self._determineQuickStats( dataAnalysisFrame=dataAnalysisFrame, columnName=columnName) # dataAnalysisCleaned = dataAnalysisFrame[dataAnalysisFrame[columnName] != 0] # When the cycles are negative or zero we missed cleaning up a row. # logicVector = (dataAnalysisFrame[columnName] != 0) # dataAnalysisCleaned = dataAnalysisFrame[logicVector] logicVector = (dataAnalysisCleaned[columnName] >= 1) dataAnalysisCleaned = dataAnalysisCleaned[logicVector] # These timed out mean + 2 * sd logicVector = (dataAnalysisCleaned[columnName] < topValue) # Data range dataAnalysisCleaned = dataAnalysisCleaned[logicVector] except ValueError: pass return dataAnalysisCleaned def _cleanFrame(self, dataAnalysisTemp, cleanColumn=False, columnName='cycles'): """ Args: dataAnalysisTemp: Dataframe to do analysis on. cleanColumn: Flag to clean the data frame. columnName: Column name of the data frame. Returns: cleaned dataframe """ try: replacementList = [pandas.NaT, numpy.Infinity, numpy.NINF, 'NaN', 'inf', '-inf', 'NULL'] if cleanColumn is True: dataAnalysisTemp = self._cleanZerosForColumnInFrame(dataAnalysisTemp, columnName=columnName) dataAnalysisTemp = dataAnalysisTemp.replace(to_replace=replacementList, value=numpy.nan) dataAnalysisTemp = dataAnalysisTemp.dropna() except ValueError: pass return dataAnalysisTemp @staticmethod def _getDataFormat(): """ Return the dataframe setup for the CSV file generated from server. Returns: dictionary data format for pandas. """ dataFormat = { "Serial_Number": pandas.StringDtype(), "LogTime0": pandas.StringDtype(), # @todo force rename "Id0": pandas.StringDtype(), # @todo force rename "DriveId": pandas.StringDtype(), "JobRunId": pandas.StringDtype(), "LogTime1": pandas.StringDtype(), # @todo force rename "Comment0": pandas.StringDtype(), # @todo force rename "CriticalWarning": pandas.StringDtype(), "Temperature": pandas.StringDtype(), "AvailableSpare": pandas.StringDtype(), "AvailableSpareThreshold": pandas.StringDtype(), "PercentageUsed": pandas.StringDtype(), "DataUnitsReadL": pandas.StringDtype(), "DataUnitsReadU": pandas.StringDtype(), "DataUnitsWrittenL": pandas.StringDtype(), "DataUnitsWrittenU": pandas.StringDtype(), "HostReadCommandsL": pandas.StringDtype(), "HostReadCommandsU": pandas.StringDtype(), "HostWriteCommandsL": pandas.StringDtype(), "HostWriteCommandsU": pandas.StringDtype(), "ControllerBusyTimeL": pandas.StringDtype(), "ControllerBusyTimeU": pandas.StringDtype(), "PowerCyclesL": pandas.StringDtype(), "PowerCyclesU": pandas.StringDtype(), "PowerOnHoursL": pandas.StringDtype(), "PowerOnHoursU": pandas.StringDtype(), "UnsafeShutdownsL": pandas.StringDtype(), "UnsafeShutdownsU": pandas.StringDtype(), "MediaErrorsL": pandas.StringDtype(), "MediaErrorsU": pandas.StringDtype(), "NumErrorInfoLogsL": pandas.StringDtype(), "NumErrorInfoLogsU": pandas.StringDtype(), "ProgramFailCountN": pandas.StringDtype(), "ProgramFailCountR": pandas.StringDtype(), "EraseFailCountN": pandas.StringDtype(), "EraseFailCountR": pandas.StringDtype(), "WearLevelingCountN": pandas.StringDtype(), "WearLevelingCountR": pandas.StringDtype(), "E2EErrorDetectCountN": pandas.StringDtype(), "E2EErrorDetectCountR": pandas.StringDtype(), "CRCErrorCountN": pandas.StringDtype(), "CRCErrorCountR": pandas.StringDtype(), "MediaWearPercentageN": pandas.StringDtype(), "MediaWearPercentageR": pandas.StringDtype(), "HostReadsN": pandas.StringDtype(), "HostReadsR": pandas.StringDtype(), "TimedWorkloadN": pandas.StringDtype(), "TimedWorkloadR": pandas.StringDtype(), "ThermalThrottleStatusN": pandas.StringDtype(), "ThermalThrottleStatusR": pandas.StringDtype(), "RetryBuffOverflowCountN": pandas.StringDtype(), "RetryBuffOverflowCountR": pandas.StringDtype(), "PLLLockLossCounterN": pandas.StringDtype(), "PLLLockLossCounterR": pandas.StringDtype(), "NandBytesWrittenN": pandas.StringDtype(), "NandBytesWrittenR": pandas.StringDtype(), "HostBytesWrittenN": pandas.StringDtype(), "HostBytesWrittenR": pandas.StringDtype(), "SystemAreaLifeRemainingN": pandas.StringDtype(), "SystemAreaLifeRemainingR": pandas.StringDtype(), "RelocatableSectorCountN": pandas.StringDtype(), "RelocatableSectorCountR": pandas.StringDtype(), "SoftECCErrorRateN": pandas.StringDtype(), "SoftECCErrorRateR": pandas.StringDtype(), "UnexpectedPowerLossN": pandas.StringDtype(), "UnexpectedPowerLossR": pandas.StringDtype(), "MediaErrorCountN": pandas.StringDtype(), "MediaErrorCountR": pandas.StringDtype(), "NandBytesReadN": pandas.StringDtype(), "NandBytesReadR": pandas.StringDtype(), "WarningCompTempTime": pandas.StringDtype(), "CriticalCompTempTime": pandas.StringDtype(), "TempSensor1": pandas.StringDtype(), "TempSensor2": pandas.StringDtype(), "TempSensor3": pandas.StringDtype(), "TempSensor4": pandas.StringDtype(), "TempSensor5": pandas.StringDtype(), "TempSensor6": pandas.StringDtype(), "TempSensor7": pandas.StringDtype(), "TempSensor8": pandas.StringDtype(), "ThermalManagementTemp1TransitionCount": pandas.StringDtype(), "ThermalManagementTemp2TransitionCount": pandas.StringDtype(), "TotalTimeForThermalManagementTemp1": pandas.StringDtype(), "TotalTimeForThermalManagementTemp2": pandas.StringDtype(), "Core_Num": pandas.StringDtype(), "Id1": pandas.StringDtype(), # @todo force rename "Job_Run_Id": pandas.StringDtype(), "Stats_Time": pandas.StringDtype(), "HostReads": pandas.StringDtype(), "HostWrites": pandas.StringDtype(), "NandReads": pandas.StringDtype(), "NandWrites": pandas.StringDtype(), "ProgramErrors": pandas.StringDtype(), "EraseErrors": pandas.StringDtype(), "ErrorCount": pandas.StringDtype(), "BitErrorsHost1": pandas.StringDtype(), "BitErrorsHost2": pandas.StringDtype(), "BitErrorsHost3": pandas.StringDtype(), "BitErrorsHost4": pandas.StringDtype(), "BitErrorsHost5": pandas.StringDtype(), "BitErrorsHost6": pandas.StringDtype(), "BitErrorsHost7": pandas.StringDtype(), "BitErrorsHost8": pandas.StringDtype(), "BitErrorsHost9": pandas.StringDtype(), "BitErrorsHost10": pandas.StringDtype(), "BitErrorsHost11": pandas.StringDtype(), "BitErrorsHost12": pandas.StringDtype(), "BitErrorsHost13": pandas.StringDtype(), "BitErrorsHost14": pandas.StringDtype(), "BitErrorsHost15": pandas.StringDtype(), "ECCFail": pandas.StringDtype(), "GrownDefects": pandas.StringDtype(), "FreeMemory": pandas.StringDtype(), "WriteAllowance": pandas.StringDtype(), "ModelString": pandas.StringDtype(), "ValidBlocks": pandas.StringDtype(), "TokenBlocks": pandas.StringDtype(), "SpuriousPFCount": pandas.StringDtype(), "SpuriousPFLocations1": pandas.StringDtype(), "SpuriousPFLocations2": pandas.StringDtype(), "SpuriousPFLocations3": pandas.StringDtype(), "SpuriousPFLocations4": pandas.StringDtype(), "SpuriousPFLocations5": pandas.StringDtype(), "SpuriousPFLocations6": pandas.StringDtype(), "SpuriousPFLocations7": pandas.StringDtype(), "SpuriousPFLocations8": pandas.StringDtype(), "BitErrorsNonHost1": pandas.StringDtype(), "BitErrorsNonHost2": pandas.StringDtype(), "BitErrorsNonHost3": pandas.StringDtype(), "BitErrorsNonHost4": pandas.StringDtype(), "BitErrorsNonHost5": pandas.StringDtype(), "BitErrorsNonHost6": pandas.StringDtype(), "BitErrorsNonHost7": pandas.StringDtype(), "BitErrorsNonHost8": pandas.StringDtype(), "BitErrorsNonHost9": pandas.StringDtype(), "BitErrorsNonHost10": pandas.StringDtype(), "BitErrorsNonHost11": pandas.StringDtype(), "BitErrorsNonHost12": pandas.StringDtype(), "BitErrorsNonHost13": pandas.StringDtype(), "BitErrorsNonHost14": pandas.StringDtype(), "BitErrorsNonHost15": pandas.StringDtype(), "ECCFailNonHost": pandas.StringDtype(), "NSversion": pandas.StringDtype(), "numBands": pandas.StringDtype(), "minErase": pandas.StringDtype(), "maxErase": pandas.StringDtype(), "avgErase": pandas.StringDtype(), "minMVolt": pandas.StringDtype(), "maxMVolt": pandas.StringDtype(), "avgMVolt": pandas.StringDtype(), "minMAmp": pandas.StringDtype(), "maxMAmp": pandas.StringDtype(), "avgMAmp": pandas.StringDtype(), "comment1": pandas.StringDtype(), # @todo force rename "minMVolt12v": pandas.StringDtype(), "maxMVolt12v": pandas.StringDtype(), "avgMVolt12v": pandas.StringDtype(), "minMAmp12v": pandas.StringDtype(), "maxMAmp12v": pandas.StringDtype(), "avgMAmp12v": pandas.StringDtype(), "nearMissSector": pandas.StringDtype(), "nearMissDefect": pandas.StringDtype(), "nearMissOverflow": pandas.StringDtype(), "replayUNC": pandas.StringDtype(), "Drive_Id": pandas.StringDtype(), "indirectionMisses": pandas.StringDtype(), "BitErrorsHost16": pandas.StringDtype(), "BitErrorsHost17": pandas.StringDtype(), "BitErrorsHost18": pandas.StringDtype(), "BitErrorsHost19": pandas.StringDtype(), "BitErrorsHost20": pandas.StringDtype(), "BitErrorsHost21": pandas.StringDtype(), "BitErrorsHost22": pandas.StringDtype(), "BitErrorsHost23": pandas.StringDtype(), "BitErrorsHost24": pandas.StringDtype(), "BitErrorsHost25": pandas.StringDtype(), "BitErrorsHost26": pandas.StringDtype(), "BitErrorsHost27": pandas.StringDtype(), "BitErrorsHost28": pandas.StringDtype(), "BitErrorsHost29": pandas.StringDtype(), "BitErrorsHost30": pandas.StringDtype(), "BitErrorsHost31": pandas.StringDtype(), "BitErrorsHost32": pandas.StringDtype(), "BitErrorsHost33": pandas.StringDtype(), "BitErrorsHost34": pandas.StringDtype(), "BitErrorsHost35": pandas.StringDtype(), "BitErrorsHost36": pandas.StringDtype(), "BitErrorsHost37": pandas.StringDtype(), "BitErrorsHost38": pandas.StringDtype(), "BitErrorsHost39": pandas.StringDtype(), "BitErrorsHost40": pandas.StringDtype(), "XORRebuildSuccess": pandas.StringDtype(), "XORRebuildFail": pandas.StringDtype(), "BandReloForError": pandas.StringDtype(), "mrrSuccess": pandas.StringDtype(), "mrrFail": pandas.StringDtype(), "mrrNudgeSuccess": pandas.StringDtype(), "mrrNudgeHarmless": pandas.StringDtype(), "mrrNudgeFail": pandas.StringDtype(), "totalErases": pandas.StringDtype(), "dieOfflineCount": pandas.StringDtype(), "curtemp": pandas.StringDtype(), "mintemp": pandas.StringDtype(), "maxtemp": pandas.StringDtype(), "oventemp": pandas.StringDtype(), "allZeroSectors": pandas.StringDtype(), "ctxRecoveryEvents": pandas.StringDtype(), "ctxRecoveryErases": pandas.StringDtype(), "NSversionMinor": pandas.StringDtype(), "lifeMinTemp": pandas.StringDtype(), "lifeMaxTemp": pandas.StringDtype(), "powerCycles": pandas.StringDtype(), "systemReads": pandas.StringDtype(), "systemWrites": pandas.StringDtype(), "readRetryOverflow": pandas.StringDtype(), "unplannedPowerCycles": pandas.StringDtype(), "unsafeShutdowns": pandas.StringDtype(), "defragForcedReloCount": pandas.StringDtype(), "bandReloForBDR": pandas.StringDtype(), "bandReloForDieOffline": pandas.StringDtype(), "bandReloForPFail": pandas.StringDtype(), "bandReloForWL": pandas.StringDtype(), "provisionalDefects": pandas.StringDtype(), "uncorrectableProgErrors": pandas.StringDtype(), "powerOnSeconds": pandas.StringDtype(), "bandReloForChannelTimeout": pandas.StringDtype(), "fwDowngradeCount": pandas.StringDtype(), "dramCorrectablesTotal": pandas.StringDtype(), "hb_id": pandas.StringDtype(), "dramCorrectables1to1": pandas.StringDtype(), "dramCorrectables4to1": pandas.StringDtype(), "dramCorrectablesSram": pandas.StringDtype(), "dramCorrectablesUnknown": pandas.StringDtype(), "pliCapTestInterval": pandas.StringDtype(), "pliCapTestCount": pandas.StringDtype(), "pliCapTestResult": pandas.StringDtype(), "pliCapTestTimeStamp": pandas.StringDtype(), "channelHangSuccess": pandas.StringDtype(), "channelHangFail": pandas.StringDtype(), "BitErrorsHost41": pandas.StringDtype(), "BitErrorsHost42": pandas.StringDtype(), "BitErrorsHost43": pandas.StringDtype(), "BitErrorsHost44": pandas.StringDtype(), "BitErrorsHost45": pandas.StringDtype(), "BitErrorsHost46": pandas.StringDtype(), "BitErrorsHost47": pandas.StringDtype(), "BitErrorsHost48": pandas.StringDtype(), "BitErrorsHost49": pandas.StringDtype(), "BitErrorsHost50": pandas.StringDtype(), "BitErrorsHost51": pandas.StringDtype(), "BitErrorsHost52": pandas.StringDtype(), "BitErrorsHost53": pandas.StringDtype(), "BitErrorsHost54": pandas.StringDtype(), "BitErrorsHost55": pandas.StringDtype(), "BitErrorsHost56": pandas.StringDtype(), "mrrNearMiss": pandas.StringDtype(), "mrrRereadAvg": pandas.StringDtype(), "readDisturbEvictions": pandas.StringDtype(), "L1L2ParityError": pandas.StringDtype(), "pageDefects": pandas.StringDtype(), "pageProvisionalTotal": pandas.StringDtype(), "ASICTemp": pandas.StringDtype(), "PMICTemp": pandas.StringDtype(), "size": pandas.StringDtype(), "lastWrite": pandas.StringDtype(), "timesWritten": pandas.StringDtype(), "maxNumContextBands": pandas.StringDtype(), "blankCount": pandas.StringDtype(), "cleanBands": pandas.StringDtype(), "avgTprog": pandas.StringDtype(), "avgEraseCount": pandas.StringDtype(), "edtcHandledBandCnt": pandas.StringDtype(), "bandReloForNLBA": pandas.StringDtype(), "bandCrossingDuringPliCount": pandas.StringDtype(), "bitErrBucketNum": pandas.StringDtype(), "sramCorrectablesTotal": pandas.StringDtype(), "l1SramCorrErrCnt": pandas.StringDtype(), "l2SramCorrErrCnt": pandas.StringDtype(), "parityErrorValue": pandas.StringDtype(), "parityErrorType": pandas.StringDtype(), "mrr_LutValidDataSize": pandas.StringDtype(), "pageProvisionalDefects": pandas.StringDtype(), "plisWithErasesInProgress": pandas.StringDtype(), "lastReplayDebug": pandas.StringDtype(), "externalPreReadFatals": pandas.StringDtype(), "hostReadCmd": pandas.StringDtype(), "hostWriteCmd": pandas.StringDtype(), "trimmedSectors": pandas.StringDtype(), "trimTokens": pandas.StringDtype(), "mrrEventsInCodewords": pandas.StringDtype(), "mrrEventsInSectors": pandas.StringDtype(), "powerOnMicroseconds": pandas.StringDtype(), "mrrInXorRecEvents": pandas.StringDtype(), "mrrFailInXorRecEvents": pandas.StringDtype(), "mrrUpperpageEvents": pandas.StringDtype(), "mrrLowerpageEvents": pandas.StringDtype(), "mrrSlcpageEvents": pandas.StringDtype(), "mrrReReadTotal": pandas.StringDtype(), "powerOnResets": pandas.StringDtype(), "powerOnMinutes": pandas.StringDtype(), "throttleOnMilliseconds": pandas.StringDtype(), "ctxTailMagic": pandas.StringDtype(), "contextDropCount": pandas.StringDtype(), "lastCtxSequenceId": pandas.StringDtype(), "currCtxSequenceId": pandas.StringDtype(), "mbliEraseCount": pandas.StringDtype(), "pageAverageProgramCount": pandas.StringDtype(), "bandAverageEraseCount": pandas.StringDtype(), "bandTotalEraseCount": pandas.StringDtype(), "bandReloForXorRebuildFail": pandas.StringDtype(), "defragSpeculativeMiss": pandas.StringDtype(), "uncorrectableBackgroundScan": pandas.StringDtype(), "BitErrorsHost57": pandas.StringDtype(), "BitErrorsHost58": pandas.StringDtype(), "BitErrorsHost59":
pandas.StringDtype()
pandas.StringDtype
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Wrappers around spark that correspond to common pandas functions. """ from typing import ( Any, Callable, Dict, List, Optional, Set, Sized, Tuple, Type, Union, cast, no_type_check, ) from collections.abc import Iterable from datetime import tzinfo from functools import reduce from io import BytesIO import json import warnings import numpy as np import pandas as pd from pandas.api.types import is_datetime64_dtype, is_datetime64tz_dtype, is_list_like # type: ignore[attr-defined] from pandas.tseries.offsets import DateOffset import pyarrow as pa import pyarrow.parquet as pq from pyspark.sql import functions as F, Column, DataFrame as SparkDataFrame from pyspark.sql.functions import pandas_udf from pyspark.sql.types import ( ByteType, ShortType, IntegerType, LongType, FloatType, DoubleType, BooleanType, TimestampType, TimestampNTZType, DecimalType, StringType, DateType, StructType, DataType, ) from pyspark import pandas as ps from pyspark.pandas._typing import Axis, Dtype, Label, Name from pyspark.pandas.base import IndexOpsMixin from pyspark.pandas.utils import ( align_diff_frames, default_session, is_name_like_tuple, is_name_like_value, name_like_string, same_anchor, scol_for, validate_axis, log_advice, ) from pyspark.pandas.frame import DataFrame, _reduce_spark_multi from pyspark.pandas.internal import ( InternalFrame, DEFAULT_SERIES_NAME, HIDDEN_COLUMNS, SPARK_INDEX_NAME_FORMAT, ) from pyspark.pandas.series import Series, first_series from pyspark.pandas.spark import functions as SF from pyspark.pandas.spark.utils import as_nullable_spark_type, force_decimal_precision_scale from pyspark.pandas.indexes import Index, DatetimeIndex, TimedeltaIndex from pyspark.pandas.indexes.multi import MultiIndex __all__ = [ "from_pandas", "range", "read_csv", "read_delta", "read_table", "read_spark_io", "read_parquet", "read_clipboard", "read_excel", "read_html", "to_datetime", "date_range", "to_timedelta", "timedelta_range", "get_dummies", "concat", "melt", "isna", "isnull", "notna", "notnull", "read_sql_table", "read_sql_query", "read_sql", "read_json", "merge", "merge_asof", "to_numeric", "broadcast", "read_orc", ] def from_pandas(pobj: Union[pd.DataFrame, pd.Series, pd.Index]) -> Union[Series, DataFrame, Index]: """Create a pandas-on-Spark DataFrame, Series or Index from a pandas DataFrame, Series or Index. This is similar to Spark's `SparkSession.createDataFrame()` with pandas DataFrame, but this also works with pandas Series and picks the index. Parameters ---------- pobj : pandas.DataFrame or pandas.Series pandas DataFrame or Series to read. Returns ------- Series or DataFrame If a pandas Series is passed in, this function returns a pandas-on-Spark Series. If a pandas DataFrame is passed in, this function returns a pandas-on-Spark DataFrame. """ if isinstance(pobj, pd.Series): return Series(pobj) elif isinstance(pobj, pd.DataFrame): return DataFrame(pobj) elif isinstance(pobj, pd.Index): return DataFrame(pd.DataFrame(index=pobj)).index else: raise TypeError("Unknown data type: {}".format(type(pobj).__name__)) _range = range # built-in range def range( start: int, end: Optional[int] = None, step: int = 1, num_partitions: Optional[int] = None ) -> DataFrame: """ Create a DataFrame with some range of numbers. The resulting DataFrame has a single int64 column named `id`, containing elements in a range from ``start`` to ``end`` (exclusive) with step value ``step``. If only the first parameter (i.e. start) is specified, we treat it as the end value with the start value being 0. This is similar to the range function in SparkSession and is used primarily for testing. Parameters ---------- start : int the start value (inclusive) end : int, optional the end value (exclusive) step : int, optional, default 1 the incremental step num_partitions : int, optional the number of partitions of the DataFrame Returns ------- DataFrame Examples -------- When the first parameter is specified, we generate a range of values up till that number. >>> ps.range(5) id 0 0 1 1 2 2 3 3 4 4 When start, end, and step are specified: >>> ps.range(start = 100, end = 200, step = 20) id 0 100 1 120 2 140 3 160 4 180 """ sdf = default_session().range(start=start, end=end, step=step, numPartitions=num_partitions) return DataFrame(sdf) def read_csv( path: str, sep: str = ",", header: Union[str, int, None] = "infer", names: Optional[Union[str, List[str]]] = None, index_col: Optional[Union[str, List[str]]] = None, usecols: Optional[Union[List[int], List[str], Callable[[str], bool]]] = None, squeeze: bool = False, mangle_dupe_cols: bool = True, dtype: Optional[Union[str, Dtype, Dict[str, Union[str, Dtype]]]] = None, nrows: Optional[int] = None, parse_dates: bool = False, quotechar: Optional[str] = None, escapechar: Optional[str] = None, comment: Optional[str] = None, encoding: Optional[str] = None, **options: Any, ) -> Union[DataFrame, Series]: """Read CSV (comma-separated) file into DataFrame or Series. Parameters ---------- path : str The path string storing the CSV file to be read. sep : str, default ‘,’ Delimiter to use. Must be a single character. header : int, default ‘infer’ Whether to to use as the column names, and the start of the data. Default behavior is to infer the column names: if no names are passed the behavior is identical to `header=0` and column names are inferred from the first line of the file, if column names are passed explicitly then the behavior is identical to `header=None`. Explicitly pass `header=0` to be able to replace existing names names : str or array-like, optional List of column names to use. If file contains no header row, then you should explicitly pass `header=None`. Duplicates in this list will cause an error to be issued. If a string is given, it should be a DDL-formatted string in Spark SQL, which is preferred to avoid schema inference for better performance. index_col: str or list of str, optional, default: None Index column of table in Spark. usecols : list-like or callable, optional Return a subset of the columns. If list-like, all elements must either be positional (i.e. integer indices into the document columns) or strings that correspond to column names provided either by the user in names or inferred from the document header row(s). If callable, the callable function will be evaluated against the column names, returning names where the callable function evaluates to `True`. squeeze : bool, default False If the parsed data only contains one column then return a Series. mangle_dupe_cols : bool, default True Duplicate columns will be specified as 'X0', 'X1', ... 'XN', rather than 'X' ... 'X'. Passing in False will cause data to be overwritten if there are duplicate names in the columns. Currently only `True` is allowed. dtype : Type name or dict of column -> type, default None Data type for data or columns. E.g. {‘a’: np.float64, ‘b’: np.int32} Use str or object together with suitable na_values settings to preserve and not interpret dtype. nrows : int, default None Number of rows to read from the CSV file. parse_dates : boolean or list of ints or names or list of lists or dict, default `False`. Currently only `False` is allowed. quotechar : str (length 1), optional The character used to denote the start and end of a quoted item. Quoted items can include the delimiter and it will be ignored. escapechar : str (length 1), default None One-character string used to escape delimiter comment: str, optional Indicates the line should not be parsed. encoding: str, optional Indicates the encoding to read file options : dict All other options passed directly into Spark's data source. Returns ------- DataFrame or Series See Also -------- DataFrame.to_csv : Write DataFrame to a comma-separated values (csv) file. Examples -------- >>> ps.read_csv('data.csv') # doctest: +SKIP """ # For latin-1 encoding is same as iso-8859-1, that's why its mapped to iso-8859-1. encoding_mapping = {"latin-1": "iso-8859-1"} if "options" in options and isinstance(options.get("options"), dict) and len(options) == 1: options = options.get("options") if mangle_dupe_cols is not True: raise ValueError("mangle_dupe_cols can only be `True`: %s" % mangle_dupe_cols) if parse_dates is not False: raise ValueError("parse_dates can only be `False`: %s" % parse_dates) if usecols is not None and not callable(usecols): usecols = list(usecols) # type: ignore[assignment] if usecols is None or callable(usecols) or len(usecols) > 0: reader = default_session().read reader.option("inferSchema", True) reader.option("sep", sep) if header == "infer": header = 0 if names is None else None if header == 0: reader.option("header", True) elif header is None: reader.option("header", False) else: raise ValueError("Unknown header argument {}".format(header)) if quotechar is not None: reader.option("quote", quotechar) if escapechar is not None: reader.option("escape", escapechar) if comment is not None: if not isinstance(comment, str) or len(comment) != 1: raise ValueError("Only length-1 comment characters supported") reader.option("comment", comment) reader.options(**options) if encoding is not None: reader.option("encoding", encoding_mapping.get(encoding, encoding)) column_labels: Dict[Any, str] if isinstance(names, str): sdf = reader.schema(names).csv(path) column_labels = {col: col for col in sdf.columns} else: sdf = reader.csv(path) if is_list_like(names): names = list(names) if len(set(names)) != len(names): raise ValueError("Found non-unique column index") if len(names) != len(sdf.columns): raise ValueError( "The number of names [%s] does not match the number " "of columns [%d]. Try names by a Spark SQL DDL-formatted " "string." % (len(sdf.schema), len(names)) ) column_labels = dict(zip(names, sdf.columns)) elif header is None: column_labels = dict(enumerate(sdf.columns)) else: column_labels = {col: col for col in sdf.columns} if usecols is not None: missing: List[Union[int, str]] if callable(usecols): column_labels = { label: col for label, col in column_labels.items() if usecols(label) } missing = [] elif all(isinstance(col, int) for col in usecols): usecols_ints = cast(List[int], usecols) new_column_labels = { label: col for i, (label, col) in enumerate(column_labels.items()) if i in usecols_ints } missing = [ col for col in usecols_ints if ( col >= len(column_labels) or list(column_labels)[col] not in new_column_labels ) ] column_labels = new_column_labels elif all(isinstance(col, str) for col in usecols): new_column_labels = { label: col for label, col in column_labels.items() if label in usecols } missing = [col for col in usecols if col not in new_column_labels] column_labels = new_column_labels else: raise ValueError( "'usecols' must either be list-like of all strings, " "all unicode, all integers or a callable." ) if len(missing) > 0: raise ValueError( "Usecols do not match columns, columns expected but not " "found: %s" % missing ) if len(column_labels) > 0: sdf = sdf.select([scol_for(sdf, col) for col in column_labels.values()]) else: sdf = default_session().createDataFrame([], schema=StructType()) else: sdf = default_session().createDataFrame([], schema=StructType()) column_labels = {} if nrows is not None: sdf = sdf.limit(nrows) index_spark_column_names: List[str] index_names: List[Label] if index_col is not None: if isinstance(index_col, (str, int)): index_col = [index_col] for col in index_col: if col not in column_labels: raise KeyError(col) index_spark_column_names = [column_labels[col] for col in index_col] index_names = [(col,) for col in index_col] column_labels = { label: col for label, col in column_labels.items() if label not in index_col } else: log_advice( "If `index_col` is not specified for `read_csv`, " "the default index is attached which can cause additional overhead." ) index_spark_column_names = [] index_names = [] psdf: DataFrame = DataFrame( InternalFrame( spark_frame=sdf, index_spark_columns=[scol_for(sdf, col) for col in index_spark_column_names], index_names=index_names, column_labels=[ label if is_name_like_tuple(label) else (label,) for label in column_labels ], data_spark_columns=[scol_for(sdf, col) for col in column_labels.values()], ) ) if dtype is not None: if isinstance(dtype, dict): for col, tpe in dtype.items(): psdf[col] = psdf[col].astype(tpe) else: for col in psdf.columns: psdf[col] = psdf[col].astype(dtype) if squeeze and len(psdf.columns) == 1: return first_series(psdf) else: return psdf def read_json( path: str, lines: bool = True, index_col: Optional[Union[str, List[str]]] = None, **options: Any ) -> DataFrame: """ Convert a JSON string to DataFrame. Parameters ---------- path : string File path lines : bool, default True Read the file as a json object per line. It should be always True for now. index_col : str or list of str, optional, default: None Index column of table in Spark. options : dict All other options passed directly into Spark's data source. Examples -------- >>> df = ps.DataFrame([['a', 'b'], ['c', 'd']], ... columns=['col 1', 'col 2']) >>> df.to_json(path=r'%s/read_json/foo.json' % path, num_files=1) >>> ps.read_json( ... path=r'%s/read_json/foo.json' % path ... ).sort_values(by="col 1") col 1 col 2 0 a b 1 c d >>> df.to_json(path=r'%s/read_json/foo.json' % path, num_files=1, lineSep='___') >>> ps.read_json( ... path=r'%s/read_json/foo.json' % path, lineSep='___' ... ).sort_values(by="col 1") col 1 col 2 0 a b 1 c d You can preserve the index in the roundtrip as below. >>> df.to_json(path=r'%s/read_json/bar.json' % path, num_files=1, index_col="index") >>> ps.read_json( ... path=r'%s/read_json/bar.json' % path, index_col="index" ... ).sort_values(by="col 1") # doctest: +NORMALIZE_WHITESPACE col 1 col 2 index 0 a b 1 c d """ if index_col is None: log_advice( "If `index_col` is not specified for `read_json`, " "the default index is attached which can cause additional overhead." ) if "options" in options and isinstance(options.get("options"), dict) and len(options) == 1: options = options.get("options") if not lines: raise NotImplementedError("lines=False is not implemented yet.") return read_spark_io(path, format="json", index_col=index_col, **options) def read_delta( path: str, version: Optional[str] = None, timestamp: Optional[str] = None, index_col: Optional[Union[str, List[str]]] = None, **options: Any, ) -> DataFrame: """ Read a Delta Lake table on some file system and return a DataFrame. If the Delta Lake table is already stored in the catalog (aka the metastore), use 'read_table'. Parameters ---------- path : string Path to the Delta Lake table. version : string, optional Specifies the table version (based on Delta's internal transaction version) to read from, using Delta's time travel feature. This sets Delta's 'versionAsOf' option. Note that this parameter and `timestamp` parameter cannot be used together, otherwise it will raise a `ValueError`. timestamp : string, optional Specifies the table version (based on timestamp) to read from, using Delta's time travel feature. This must be a valid date or timestamp string in Spark, and sets Delta's 'timestampAsOf' option. Note that this parameter and `version` parameter cannot be used together, otherwise it will raise a `ValueError`. index_col : str or list of str, optional, default: None Index column of table in Spark. options Additional options that can be passed onto Delta. Returns ------- DataFrame See Also -------- DataFrame.to_delta read_table read_spark_io read_parquet Examples -------- >>> ps.range(1).to_delta('%s/read_delta/foo' % path) # doctest: +SKIP >>> ps.read_delta('%s/read_delta/foo' % path) # doctest: +SKIP id 0 0 >>> ps.range(10, 15, num_partitions=1).to_delta('%s/read_delta/foo' % path, ... mode='overwrite') # doctest: +SKIP >>> ps.read_delta('%s/read_delta/foo' % path) # doctest: +SKIP id 0 10 1 11 2 12 3 13 4 14 >>> ps.read_delta('%s/read_delta/foo' % path, version=0) # doctest: +SKIP id 0 0 You can preserve the index in the roundtrip as below. >>> ps.range(10, 15, num_partitions=1).to_delta( ... '%s/read_delta/bar' % path, index_col="index") # doctest: +SKIP >>> ps.read_delta('%s/read_delta/bar' % path, index_col="index") # doctest: +SKIP id index 0 10 1 11 2 12 3 13 4 14 """ if index_col is None: log_advice( "If `index_col` is not specified for `read_delta`, " "the default index is attached which can cause additional overhead." ) if version is not None and timestamp is not None: raise ValueError("version and timestamp cannot be used together.") if "options" in options and isinstance(options.get("options"), dict) and len(options) == 1: options = options.get("options") if version is not None: options["versionAsOf"] = version if timestamp is not None: options["timestampAsOf"] = timestamp return read_spark_io(path, format="delta", index_col=index_col, **options) def read_table(name: str, index_col: Optional[Union[str, List[str]]] = None) -> DataFrame: """ Read a Spark table and return a DataFrame. Parameters ---------- name : string Table name in Spark. index_col : str or list of str, optional, default: None Index column of table in Spark. Returns ------- DataFrame See Also -------- DataFrame.to_table read_delta read_parquet read_spark_io Examples -------- >>> ps.range(1).to_table('%s.my_table' % db) >>> ps.read_table('%s.my_table' % db) id 0 0 >>> ps.range(1).to_table('%s.my_table' % db, index_col="index") >>> ps.read_table('%s.my_table' % db, index_col="index") # doctest: +NORMALIZE_WHITESPACE id index 0 0 """ if index_col is None: log_advice( "If `index_col` is not specified for `read_table`, " "the default index is attached which can cause additional overhead." ) sdf = default_session().read.table(name) index_spark_columns, index_names = _get_index_map(sdf, index_col) return DataFrame( InternalFrame( spark_frame=sdf, index_spark_columns=index_spark_columns, index_names=index_names ) ) def read_spark_io( path: Optional[str] = None, format: Optional[str] = None, schema: Union[str, "StructType"] = None, index_col: Optional[Union[str, List[str]]] = None, **options: Any, ) -> DataFrame: """Load a DataFrame from a Spark data source. Parameters ---------- path : string, optional Path to the data source. format : string, optional Specifies the output data source format. Some common ones are: - 'delta' - 'parquet' - 'orc' - 'json' - 'csv' schema : string or StructType, optional Input schema. If none, Spark tries to infer the schema automatically. The schema can either be a Spark StructType, or a DDL-formatted string like `col0 INT, col1 DOUBLE`. index_col : str or list of str, optional, default: None Index column of table in Spark. options : dict All other options passed directly into Spark's data source. See Also -------- DataFrame.to_spark_io DataFrame.read_table DataFrame.read_delta DataFrame.read_parquet Examples -------- >>> ps.range(1).to_spark_io('%s/read_spark_io/data.parquet' % path) >>> ps.read_spark_io( ... '%s/read_spark_io/data.parquet' % path, format='parquet', schema='id long') id 0 0 >>> ps.range(10, 15, num_partitions=1).to_spark_io('%s/read_spark_io/data.json' % path, ... format='json', lineSep='__') >>> ps.read_spark_io( ... '%s/read_spark_io/data.json' % path, format='json', schema='id long', lineSep='__') id 0 10 1 11 2 12 3 13 4 14 You can preserve the index in the roundtrip as below. >>> ps.range(10, 15, num_partitions=1).to_spark_io('%s/read_spark_io/data.orc' % path, ... format='orc', index_col="index") >>> ps.read_spark_io( ... path=r'%s/read_spark_io/data.orc' % path, format="orc", index_col="index") ... # doctest: +NORMALIZE_WHITESPACE id index 0 10 1 11 2 12 3 13 4 14 """ if "options" in options and isinstance(options.get("options"), dict) and len(options) == 1: options = options.get("options") sdf = default_session().read.load(path=path, format=format, schema=schema, **options) index_spark_columns, index_names = _get_index_map(sdf, index_col) return DataFrame( InternalFrame( spark_frame=sdf, index_spark_columns=index_spark_columns, index_names=index_names ) ) def read_parquet( path: str, columns: Optional[List[str]] = None, index_col: Optional[List[str]] = None, pandas_metadata: bool = False, **options: Any, ) -> DataFrame: """Load a parquet object from the file path, returning a DataFrame. Parameters ---------- path : string File path columns : list, default=None If not None, only these columns will be read from the file. index_col : str or list of str, optional, default: None Index column of table in Spark. pandas_metadata : bool, default: False If True, try to respect the metadata if the Parquet file is written from pandas. options : dict All other options passed directly into Spark's data source. Returns ------- DataFrame See Also -------- DataFrame.to_parquet DataFrame.read_table DataFrame.read_delta DataFrame.read_spark_io Examples -------- >>> ps.range(1).to_parquet('%s/read_spark_io/data.parquet' % path) >>> ps.read_parquet('%s/read_spark_io/data.parquet' % path, columns=['id']) id 0 0 You can preserve the index in the roundtrip as below. >>> ps.range(1).to_parquet('%s/read_spark_io/data.parquet' % path, index_col="index") >>> ps.read_parquet('%s/read_spark_io/data.parquet' % path, columns=['id'], index_col="index") ... # doctest: +NORMALIZE_WHITESPACE id index 0 0 """ if index_col is None: log_advice( "If `index_col` is not specified for `read_parquet`, " "the default index is attached which can cause additional overhead." ) if "options" in options and isinstance(options.get("options"), dict) and len(options) == 1: options = options.get("options") if columns is not None: columns = list(columns) index_names = None if index_col is None and pandas_metadata: # Try to read pandas metadata @no_type_check @pandas_udf("index_col array<string>, index_names array<string>") def read_index_metadata(pser: pd.Series) -> pd.DataFrame: binary = pser.iloc[0] metadata = pq.ParquetFile(pa.BufferReader(binary)).metadata.metadata if b"pandas" in metadata: pandas_metadata = json.loads(metadata[b"pandas"].decode("utf8")) if all(isinstance(col, str) for col in pandas_metadata["index_columns"]): index_col = [] index_names = [] for col in pandas_metadata["index_columns"]: index_col.append(col) for column in pandas_metadata["columns"]: if column["field_name"] == col: index_names.append(column["name"]) break else: index_names.append(None) return pd.DataFrame({"index_col": [index_col], "index_names": [index_names]}) return pd.DataFrame({"index_col": [None], "index_names": [None]}) index_col, index_names = ( default_session() .read.format("binaryFile") .load(path) .limit(1) .select(read_index_metadata("content").alias("index_metadata")) .select("index_metadata.*") .head() ) psdf = read_spark_io(path=path, format="parquet", options=options, index_col=index_col) if columns is not None: new_columns = [c for c in columns if c in psdf.columns] if len(new_columns) > 0: psdf = psdf[new_columns] else: sdf = default_session().createDataFrame([], schema=StructType()) index_spark_columns, index_names = _get_index_map(sdf, index_col) psdf = DataFrame( InternalFrame( spark_frame=sdf, index_spark_columns=index_spark_columns, index_names=index_names, ) ) if index_names is not None: psdf.index.names = index_names return psdf def read_clipboard(sep: str = r"\s+", **kwargs: Any) -> DataFrame: r""" Read text from clipboard and pass to read_csv. See read_csv for the full argument list Parameters ---------- sep : str, default '\s+' A string or regex delimiter. The default of '\s+' denotes one or more whitespace characters. See Also -------- DataFrame.to_clipboard : Write text out to clipboard. Returns ------- parsed : DataFrame """ return cast(DataFrame, from_pandas(pd.read_clipboard(sep, **kwargs))) def read_excel( io: Union[str, Any], sheet_name: Union[str, int, List[Union[str, int]], None] = 0, header: Union[int, List[int]] = 0, names: Optional[List] = None, index_col: Optional[List[int]] = None, usecols: Optional[Union[int, str, List[Union[int, str]], Callable[[str], bool]]] = None, squeeze: bool = False, dtype: Optional[Dict[str, Union[str, Dtype]]] = None, engine: Optional[str] = None, converters: Optional[Dict] = None, true_values: Optional[Any] = None, false_values: Optional[Any] = None, skiprows: Optional[Union[int, List[int]]] = None, nrows: Optional[int] = None, na_values: Optional[Any] = None, keep_default_na: bool = True, verbose: bool = False, parse_dates: Union[bool, List, Dict] = False, date_parser: Optional[Callable] = None, thousands: Optional[str] = None, comment: Optional[str] = None, skipfooter: int = 0, convert_float: bool = True, mangle_dupe_cols: bool = True, **kwds: Any, ) -> Union[DataFrame, Series, Dict[str, Union[DataFrame, Series]]]: """ Read an Excel file into a pandas-on-Spark DataFrame or Series. Support both `xls` and `xlsx` file extensions from a local filesystem or URL. Support an option to read a single sheet or a list of sheets. Parameters ---------- io : str, file descriptor, pathlib.Path, ExcelFile or xlrd.Book The string could be a URL. The value URL must be available in Spark's DataFrameReader. .. note:: If the underlying Spark is below 3.0, the parameter as a string is not supported. You can use `ps.from_pandas(pd.read_excel(...))` as a workaround. sheet_name : str, int, list, or None, default 0 Strings are used for sheet names. Integers are used in zero-indexed sheet positions. Lists of strings/integers are used to request multiple sheets. Specify None to get all sheets. Available cases: * Defaults to ``0``: 1st sheet as a `DataFrame` * ``1``: 2nd sheet as a `DataFrame` * ``"Sheet1"``: Load sheet with name "Sheet1" * ``[0, 1, "Sheet5"]``: Load first, second and sheet named "Sheet5" as a dict of `DataFrame` * None: All sheets. header : int, list of int, default 0 Row (0-indexed) to use for the column labels of the parsed DataFrame. If a list of integers is passed those row positions will be combined into a ``MultiIndex``. Use None if there is no header. names : array-like, default None List of column names to use. If file contains no header row, then you should explicitly pass header=None. index_col : int, list of int, default None Column (0-indexed) to use as the row labels of the DataFrame. Pass None if there is no such column. If a list is passed, those columns will be combined into a ``MultiIndex``. If a subset of data is selected with ``usecols``, index_col is based on the subset. usecols : int, str, list-like, or callable default None Return a subset of the columns. * If None, then parse all columns. * If str, then indicates comma separated list of Excel column letters and column ranges (e.g. "A:E" or "A,C,E:F"). Ranges are inclusive of both sides. * If list of int, then indicates list of column numbers to be parsed. * If list of string, then indicates list of column names to be parsed. * If callable, then evaluate each column name against it and parse the column if the callable returns ``True``. squeeze : bool, default False If the parsed data only contains one column then return a Series. dtype : Type name or dict of column -> type, default None Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32} Use `object` to preserve data as stored in Excel and not interpret dtype. If converters are specified, they will be applied INSTEAD of dtype conversion. engine : str, default None If io is not a buffer or path, this must be set to identify io. Acceptable values are None or xlrd. converters : dict, default None Dict of functions for converting values in certain columns. Keys can either be integers or column labels, values are functions that take one input argument, the Excel cell content, and return the transformed content. true_values : list, default None Values to consider as True. false_values : list, default None Values to consider as False. skiprows : list-like Rows to skip at the beginning (0-indexed). nrows : int, default None Number of rows to parse. na_values : scalar, str, list-like, or dict, default None Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values. By default the following values are interpreted as NaN. keep_default_na : bool, default True If na_values are specified and keep_default_na is False the default NaN values are overridden, otherwise they're appended to. verbose : bool, default False Indicate number of NA values placed in non-numeric columns. parse_dates : bool, list-like, or dict, default False The behavior is as follows: * bool. If True -> try parsing the index. * list of int or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column. * list of lists. e.g. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date column. * dict, e.g. {{'foo' : [1, 3]}} -> parse columns 1, 3 as date and call result 'foo' If a column or index contains an unparseable date, the entire column or index will be returned unaltered as an object data type. For non-standard datetime parsing, use ``pd.to_datetime`` after ``pd.read_csv`` Note: A fast-path exists for iso8601-formatted dates. date_parser : function, optional Function to use for converting a sequence of string columns to an array of datetime instances. The default uses ``dateutil.parser.parser`` to do the conversion. pandas-on-Spark will try to call `date_parser` in three different ways, advancing to the next if an exception occurs: 1) Pass one or more arrays (as defined by `parse_dates`) as arguments; 2) concatenate (row-wise) the string values from the columns defined by `parse_dates` into a single array and pass that; and 3) call `date_parser` once for each row using one or more strings (corresponding to the columns defined by `parse_dates`) as arguments. thousands : str, default None Thousands separator for parsing string columns to numeric. Note that this parameter is only necessary for columns stored as TEXT in Excel, any numeric columns will automatically be parsed, regardless of display format. comment : str, default None Comments out remainder of line. Pass a character or characters to this argument to indicate comments in the input file. Any data between the comment string and the end of the current line is ignored. skipfooter : int, default 0 Rows at the end to skip (0-indexed). convert_float : bool, default True Convert integral floats to int (i.e., 1.0 --> 1). If False, all numeric data will be read in as floats: Excel stores all numbers as floats internally. mangle_dupe_cols : bool, default True Duplicate columns will be specified as 'X', 'X.1', ...'X.N', rather than 'X'...'X'. Passing in False will cause data to be overwritten if there are duplicate names in the columns. **kwds : optional Optional keyword arguments can be passed to ``TextFileReader``. Returns ------- DataFrame or dict of DataFrames DataFrame from the passed in Excel file. See notes in sheet_name argument for more information on when a dict of DataFrames is returned. See Also -------- DataFrame.to_excel : Write DataFrame to an Excel file. DataFrame.to_csv : Write DataFrame to a comma-separated values (csv) file. read_csv : Read a comma-separated values (csv) file into DataFrame. Examples -------- The file can be read using the file name as string or an open file object: >>> ps.read_excel('tmp.xlsx', index_col=0) # doctest: +SKIP Name Value 0 string1 1 1 string2 2 2 #Comment 3 >>> ps.read_excel(open('tmp.xlsx', 'rb'), ... sheet_name='Sheet3') # doctest: +SKIP Unnamed: 0 Name Value 0 0 string1 1 1 1 string2 2 2 2 #Comment 3 Index and header can be specified via the `index_col` and `header` arguments >>> ps.read_excel('tmp.xlsx', index_col=None, header=None) # doctest: +SKIP 0 1 2 0 NaN Name Value 1 0.0 string1 1 2 1.0 string2 2 3 2.0 #Comment 3 Column types are inferred but can be explicitly specified >>> ps.read_excel('tmp.xlsx', index_col=0, ... dtype={'Name': str, 'Value': float}) # doctest: +SKIP Name Value 0 string1 1.0 1 string2 2.0 2 #Comment 3.0 True, False, and NA values, and thousands separators have defaults, but can be explicitly specified, too. Supply the values you would like as strings or lists of strings! >>> ps.read_excel('tmp.xlsx', index_col=0, ... na_values=['string1', 'string2']) # doctest: +SKIP Name Value 0 None 1 1 None 2 2 #Comment 3 Comment lines in the excel input file can be skipped using the `comment` kwarg >>> ps.read_excel('tmp.xlsx', index_col=0, comment='#') # doctest: +SKIP Name Value 0 string1 1.0 1 string2 2.0 2 None NaN """ def pd_read_excel( io_or_bin: Any, sn: Union[str, int, List[Union[str, int]], None], sq: bool ) -> pd.DataFrame: return pd.read_excel( io=BytesIO(io_or_bin) if isinstance(io_or_bin, (bytes, bytearray)) else io_or_bin, sheet_name=sn, header=header, names=names, index_col=index_col, usecols=usecols, squeeze=sq, dtype=dtype, engine=engine, converters=converters, true_values=true_values, false_values=false_values, skiprows=skiprows, nrows=nrows, na_values=na_values, keep_default_na=keep_default_na, verbose=verbose, parse_dates=parse_dates, # type: ignore[arg-type] date_parser=date_parser, thousands=thousands, comment=comment, skipfooter=skipfooter, convert_float=convert_float, mangle_dupe_cols=mangle_dupe_cols, **kwds, ) if isinstance(io, str): # 'binaryFile' format is available since Spark 3.0.0. binaries = default_session().read.format("binaryFile").load(io).select("content").head(2) io_or_bin = binaries[0][0] single_file = len(binaries) == 1 else: io_or_bin = io single_file = True pdf_or_psers = pd_read_excel(io_or_bin, sn=sheet_name, sq=squeeze) if single_file: if isinstance(pdf_or_psers, dict): return { sn: cast(Union[DataFrame, Series], from_pandas(pdf_or_pser)) for sn, pdf_or_pser in pdf_or_psers.items() } else: return cast(Union[DataFrame, Series], from_pandas(pdf_or_psers)) else: def read_excel_on_spark( pdf_or_pser: Union[pd.DataFrame, pd.Series], sn: Union[str, int, List[Union[str, int]], None], ) -> Union[DataFrame, Series]: if isinstance(pdf_or_pser, pd.Series): pdf = pdf_or_pser.to_frame() else: pdf = pdf_or_pser psdf = cast(DataFrame, from_pandas(pdf)) return_schema = force_decimal_precision_scale( as_nullable_spark_type(psdf._internal.spark_frame.drop(*HIDDEN_COLUMNS).schema) ) def output_func(pdf: pd.DataFrame) -> pd.DataFrame: pdf = pd.concat( [pd_read_excel(bin, sn=sn, sq=False) for bin in pdf[pdf.columns[0]]] ) reset_index = pdf.reset_index() for name, col in reset_index.iteritems(): dt = col.dtype if
is_datetime64_dtype(dt)
pandas.api.types.is_datetime64_dtype
# -*- coding: utf-8 -*- from sklearn.base import TransformerMixin #from category_encoders.ordinal import OrdinalEncoder #import numpy as np import pandas as pd import copy from pandas.api.types import is_numeric_dtype,is_string_dtype from joblib import Parallel,delayed,effective_n_jobs import numpy as np from BDMLtools.fun import raw_to_bin_sc,Specials from BDMLtools.base import Base class woeTransformer(Base,Specials,TransformerMixin): """ 对数据进行WOE编码 Params: ------ varbin:BDMLtools.varReport(...).fit(...).var_report_dict,dict格式,woe编码参照此编码产生 special_values,特殊值指代值,若数据中某些值或某列某些值需特殊对待(这些值不是np.nan)时设定 请特别注意:special_values必须与产生varbin的函数的special_values一致,否则special_values的woe编码将出现错误结果 + None,保证数据默认 + list=[value1,value2,...],数据中所有列的值在[value1,value2,...]中都会被替换,字符被替换为'missing',数值被替换为np.nan + dict={col_name1:[value1,value2,...],...},数据中指定列替换,被指定的列的值在[value1,value2,...]中都会被替换,字符被替换为'missing',数值被替换为np.nan woe_missing=None,float,缺失值的woe调整值,默认None即不调整.当missing箱样本量极少时,woe值可能不具备代表性,此时可调整varbin中的woe替换值至合理水平,例如设定为0 经过替换后的varbin=保存在self.varbin中.本模块暂不支持对不同特征的woe调整值做区别处理,所有特征的woe调整值均为woe_missing woe_special=None,float,特殊值的woe调整值,默认None即不调整.当special箱样本量极少时,woe值可能不具备代表性,此时可调整varbin中的woe替换值至合理水平,例如设定为0 经过替换后的varbin=保存在self.varbin中.本模块暂不支持对不同特征的woe调整值做区别处理,所有特征的woe调整值均为woe_special distr_limit=0.01,float,当woe_missing或woe_special不为None时,若missing或special箱占比低于distr_limit时才执行替换 check_na:bool,为True时,若经woe编码后编码数据出现了缺失值,程序将报错终止,可能的错误原因: + 某箱样本量太少,且该列是字符列的可能性极高 + test或oot数据相应列的取值超出了train的范围,且该列是字符列的可能性极高 + special_value设定前后不一致(产生varbin的speical value与本模块的speical value要一致) dtype,可选'float32'与'float64',转换woe数据为np.float32/np.float64格式,breaks也会以np.float32/np.float64格式分段数据 + 模块会使用varbin中的breaks分段数据,其本身为np.float64,因此fit中的数据的number列也必须为float64,否则会因为格式不一致产生精度问题 + 若fit中的数据的number列为float32型,则请设定为float32以保证不因格式不一致而产生精度问题 + 请不要在原始数据中共用不同的数值精度格式,例如float32与float64共用,int32与int64共用...,请使用bm.dtypeAllocator统一建模数据的格式 n_jobs,int,并行数量,默认1(所有core),在数据量非常大,列非常多的情况下可提升效率但会增加内存占用,若数据量较少可设定为1 verbose,int,并行信息输出等级 Attributes: ------- """ def __init__(self,varbin,n_jobs=1,verbose=0,special_values=None,woe_special=None,check_na=True,woe_missing=None,distr_limit=0.01,dtype='float64'): self.varbin=varbin self.n_jobs=n_jobs self.verbose=verbose self.check_na=check_na self.special_values=special_values self.woe_missing=woe_missing self.woe_special=woe_special self.distr_limit=distr_limit self.dtype=dtype def transform(self,X,y=None): """ WOE转换 """ self._check_param_dtype(self.dtype) self._check_X(X) self.varbin=copy.deepcopy(self.varbin) if isinstance(self.woe_missing,(int,float)): for key in self.varbin: if 'missing' in self.varbin[key].index.tolist() and self.varbin[key].loc['missing','count_distr']<self.distr_limit: self.varbin[key].loc['missing','woe'] = self.woe_missing elif self.woe_missing is None: pass else: raise ValueError("woe_missing in (None,int,float).") if isinstance(self.woe_special,(int,float)): for key in self.varbin: if 'missing' in self.varbin[key].index.tolist() and self.varbin[key].loc['missing','count_distr']<self.distr_limit: self.varbin[key].loc['special','woe'] = self.woe_special elif self.woe_special is None: pass else: raise ValueError("woe_special in (None,int,float).") n_jobs=effective_n_jobs(self.n_jobs) p=Parallel(n_jobs=n_jobs,verbose=self.verbose) res=p(delayed(self._woe_map)(X[key],self.varbin[key],self.check_na,self.special_values,self.dtype) for key in self.varbin) X_woe=pd.concat({col:col_woe for col,col_woe in res},axis=1) return X_woe def fit(self,X=None,y=None): return self def _woe_map(self,col,bin_df,check_na=True,special_values=None,dtype='float64'): col=self._sp_replace_single(col,self._check_spvalues(col.name,special_values),fill_num=np.finfo(np.float32).max,fill_str='special') if is_numeric_dtype(col): bin_df_drop= bin_df[~bin_df['breaks'].isin([-np.inf,'missing','special',np.inf])] woe_nan= bin_df[bin_df['breaks'].eq("missing")]['woe'][0] woe_sp= bin_df[bin_df['breaks'].eq("special")]['woe'][0] breaks=bin_df_drop['breaks'].astype('float64').tolist() woe=bin_df[~bin_df['breaks'].isin(['missing','special'])]['woe'].tolist() if special_values: breaks_cut=breaks+[np.finfo(np.float32).max] if dtype=='float64' else np.float32(breaks+[np.finfo(np.float32).max]).tolist() col_woe=
pd.cut(col,[-np.inf]+breaks_cut+[np.inf],labels=woe+[woe_sp],right=False,ordered=False).astype(dtype)
pandas.cut
import matplotlib.pyplot as plt import pandas as pd import numpy as np from numpy import dtype from matplotlib.pyplot import ylabel from matplotlib.cm import ScalarMappable from matplotlib.pyplot import savefig import math from getCpuUsageForStage import * import sys from argparse import ArgumentParser parser = ArgumentParser() parser.add_argument("-i", "--inputFile") parser.add_argument("-t", "--topFile") parser.add_argument("-o", "--outputFile") args = parser.parse_args(sys.argv[1:]) inputFileName = args.inputFile topFileName = args.topFile outputFileName = args.outputFile pd.set_option('display.max_rows', 500)
pd.set_option('display.max_columns', 500)
pandas.set_option
import itertools from collections import deque import networkx as nx import numpy as np import pandas as pd import scanpy as sc from .._util import CapitalData class Tree_Alignment: def __init__(self): self.__successors1 = None self.__postorder1 = None self.__tree1 = None self.__successors2 = None self.__postorder2 = None self.__tree2 = None self.__forestdistance = None self.__traceforest = None self.__treedistance = None self.__tracetree = None self.__alignmentcost = None def tree_alignment( self, adata1, adata2, cost=1.0, N_1=2000, N_2=2000 ): COST = cost gene_list = self.sort_data( adata1, adata2, N_1, N_2) adata1.uns["capital"]["intersection_genes"] = np.array( gene_list, dtype=object) adata2.uns["capital"]["intersection_genes"] = np.array( gene_list, dtype=object) self._dp(adata1, adata2, gene_list, COST) alignedtree = self._traceback() path_cluster_list = [] source_node = list(nx.topological_sort(alignedtree))[0] for node in list(alignedtree.nodes): if alignedtree.out_degree(node) == 0: cluster_list = nx.shortest_path( alignedtree, source=source_node, target=node) route1 = [i[0] for i in cluster_list] route2 = [i[1] for i in cluster_list] path_cluster_list.append([route1, route2]) alignmentdict = {"alignment{:03d}".format(i): {"data1": clusters[0], "data2": clusters[1]} for i, clusters in enumerate(path_cluster_list)} aligned_data = CapitalData( adata1.copy(), adata2.copy(), alignedtree, np.array([self.__alignmentcost], dtype=int), np.array(gene_list, dtype=object), alignmentdict, ) return aligned_data def _set_initial_condition( self, data1, data2, cost=1.0 ): self.__successors1 = data1.uns["capital"]["tree"]["successors"] self.__postorder1 = data1.uns["capital"]["tree"]["postorder"] self.__tree1 = nx.convert_matrix.from_pandas_adjacency( data1.uns["capital"]["tree"]["tree"], create_using=nx.DiGraph) self.__successors2 = data2.uns["capital"]["tree"]["successors"] self.__postorder2 = data2.uns["capital"]["tree"]["postorder"] self.__tree2 = nx.convert_matrix.from_pandas_adjacency( data2.uns["capital"]["tree"]["tree"],create_using=nx.DiGraph) # get combination of children # D(F1[i],F2[j]) is stored in forestdistance.loc[i,j] # D(F1[i1,i2],F2[j]) is stored in forestdistance.loc["(i1,i2)",j] # D({T1[i]},F2[j]) is stored in forestdistance.loc["(i,)", j] forest1_combinations = [] for child in self.__successors1.values(): if child.size == 1: children = list(itertools.combinations(child, 1)) forest1_combinations.extend(children) elif child.size >= 1: for k in range(1, child.size): children = list(itertools.combinations(child, k)) forest1_combinations.extend(children) forest2_combinations = [] for child in self.__successors2.values(): if child.size == 1: children = list(itertools.combinations(child, 1)) forest2_combinations.extend(children) elif child.size >= 1: for k in range(1, child.size): children = list(itertools.combinations(child, k)) forest2_combinations.extend(children) forest1 = [i for i in list(self.__tree1.nodes)] + \ forest1_combinations + ["#"] forest2 = [j for j in list(self.__tree2.nodes)] + \ forest2_combinations + ["#"] forest1 = list(map(str, forest1)) forest2 = list(map(str, forest2)) forest = pd.DataFrame(index=forest1, columns=forest2) forest.loc["#", "#"] = 0 tree = pd.DataFrame( index=list(map(str, list(self.__tree1))) + ["#"], columns=list(map(str, list(self.__tree2))) + ["#"]) tree.loc["#", "#"] = 0 self.__forestdistance = forest self.__traceforest =
pd.DataFrame(index=forest1, columns=forest2)
pandas.DataFrame
# pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import os import operator import unittest import cStringIO as StringIO import nose from numpy import nan import numpy as np import numpy.ma as ma from pandas import Index, Series, TimeSeries, DataFrame, isnull, notnull from pandas.core.index import MultiIndex import pandas.core.datetools as datetools from pandas.util import py3compat from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm #------------------------------------------------------------------------------- # Series test cases JOIN_TYPES = ['inner', 'outer', 'left', 'right'] class CheckNameIntegration(object): def test_scalarop_preserve_name(self): result = self.ts * 2 self.assertEquals(result.name, self.ts.name) def test_copy_name(self): result = self.ts.copy() self.assertEquals(result.name, self.ts.name) # def test_copy_index_name_checking(self): # # don't want to be able to modify the index stored elsewhere after # # making a copy # self.ts.index.name = None # cp = self.ts.copy() # cp.index.name = 'foo' # self.assert_(self.ts.index.name is None) def test_append_preserve_name(self): result = self.ts[:5].append(self.ts[5:]) self.assertEquals(result.name, self.ts.name) def test_binop_maybe_preserve_name(self): # names match, preserve result = self.ts * self.ts self.assertEquals(result.name, self.ts.name) result = self.ts * self.ts[:-2] self.assertEquals(result.name, self.ts.name) # names don't match, don't preserve cp = self.ts.copy() cp.name = 'something else' result = self.ts + cp self.assert_(result.name is None) def test_combine_first_name(self): result = self.ts.combine_first(self.ts[:5]) self.assertEquals(result.name, self.ts.name) def test_getitem_preserve_name(self): result = self.ts[self.ts > 0] self.assertEquals(result.name, self.ts.name) result = self.ts[[0, 2, 4]] self.assertEquals(result.name, self.ts.name) result = self.ts[5:10] self.assertEquals(result.name, self.ts.name) def test_multilevel_name_print(self): index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) s = Series(range(0,len(index)), index=index, name='sth') expected = ["first second", "foo one 0", " two 1", " three 2", "bar one 3", " two 4", "baz two 5", " three 6", "qux one 7", " two 8", " three 9", "Name: sth"] expected = "\n".join(expected) self.assertEquals(repr(s), expected) def test_multilevel_preserve_name(self): index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) s = Series(np.random.randn(len(index)), index=index, name='sth') result = s['foo'] result2 = s.ix['foo'] self.assertEquals(result.name, s.name) self.assertEquals(result2.name, s.name) def test_name_printing(self): # test small series s = Series([0, 1, 2]) s.name = "test" self.assert_("Name: test" in repr(s)) s.name = None self.assert_(not "Name:" in repr(s)) # test big series (diff code path) s = Series(range(0,1000)) s.name = "test" self.assert_("Name: test" in repr(s)) s.name = None self.assert_(not "Name:" in repr(s)) def test_pickle_preserve_name(self): unpickled = self._pickle_roundtrip(self.ts) self.assertEquals(unpickled.name, self.ts.name) def _pickle_roundtrip(self, obj): obj.save('__tmp__') unpickled = Series.load('__tmp__') os.remove('__tmp__') return unpickled def test_argsort_preserve_name(self): result = self.ts.argsort() self.assertEquals(result.name, self.ts.name) def test_sort_index_name(self): result = self.ts.sort_index(ascending=False) self.assertEquals(result.name, self.ts.name) def test_to_sparse_pass_name(self): result = self.ts.to_sparse() self.assertEquals(result.name, self.ts.name) class SafeForSparse(object): pass class TestSeries(unittest.TestCase, CheckNameIntegration): def setUp(self): self.ts = tm.makeTimeSeries() self.ts.name = 'ts' self.series = tm.makeStringSeries() self.series.name = 'series' self.objSeries = tm.makeObjectSeries() self.objSeries.name = 'objects' self.empty = Series([], index=[]) def test_constructor(self): # Recognize TimeSeries self.assert_(isinstance(self.ts, TimeSeries)) # Pass in Series derived = Series(self.ts) self.assert_(isinstance(derived, TimeSeries)) self.assert_(tm.equalContents(derived.index, self.ts.index)) # Ensure new index is not created self.assertEquals(id(self.ts.index), id(derived.index)) # Pass in scalar scalar = Series(0.5) self.assert_(isinstance(scalar, float)) # Mixed type Series mixed = Series(['hello', np.NaN], index=[0, 1]) self.assert_(mixed.dtype == np.object_) self.assert_(mixed[1] is np.NaN) self.assert_(not isinstance(self.empty, TimeSeries)) self.assert_(not isinstance(Series({}), TimeSeries)) self.assertRaises(Exception, Series, np.random.randn(3, 3), index=np.arange(3)) def test_constructor_empty(self): empty = Series() empty2 = Series([]) assert_series_equal(empty, empty2) empty = Series(index=range(10)) empty2 = Series(np.nan, index=range(10)) assert_series_equal(empty, empty2) def test_constructor_maskedarray(self): data = ma.masked_all((3,), dtype=float) result = Series(data) expected = Series([nan, nan, nan]) assert_series_equal(result, expected) data[0] = 0.0 data[2] = 2.0 index = ['a', 'b', 'c'] result = Series(data, index=index) expected = Series([0.0, nan, 2.0], index=index) assert_series_equal(result, expected) def test_constructor_default_index(self): s = Series([0, 1, 2]) assert_almost_equal(s.index, np.arange(3)) def test_constructor_corner(self): df = tm.makeTimeDataFrame() objs = [df, df] s = Series(objs, index=[0, 1]) self.assert_(isinstance(s, Series)) def test_constructor_cast(self): self.assertRaises(ValueError, Series, ['a', 'b', 'c'], dtype=float) def test_constructor_dict(self): d = {'a' : 0., 'b' : 1., 'c' : 2.} result = Series(d, index=['b', 'c', 'd', 'a']) expected = Series([1, 2, nan, 0], index=['b', 'c', 'd', 'a']) assert_series_equal(result, expected) def test_constructor_list_of_tuples(self): data = [(1, 1), (2, 2), (2, 3)] s = Series(data) self.assertEqual(list(s), data) def test_constructor_tuple_of_tuples(self): data = ((1, 1), (2, 2), (2, 3)) s = Series(data) self.assertEqual(tuple(s), data) def test_fromDict(self): data = {'a' : 0, 'b' : 1, 'c' : 2, 'd' : 3} series = Series(data) self.assert_(tm.is_sorted(series.index)) data = {'a' : 0, 'b' : '1', 'c' : '2', 'd' : datetime.now()} series = Series(data) self.assert_(series.dtype == np.object_) data = {'a' : 0, 'b' : '1', 'c' : '2', 'd' : '3'} series = Series(data) self.assert_(series.dtype == np.object_) data = {'a' : '0', 'b' : '1'} series = Series(data, dtype=float) self.assert_(series.dtype == np.float64) def test_setindex(self): # wrong type series = self.series.copy() self.assertRaises(TypeError, setattr, series, 'index', None) # wrong length series = self.series.copy() self.assertRaises(AssertionError, setattr, series, 'index', np.arange(len(series) - 1)) # works series = self.series.copy() series.index = np.arange(len(series)) self.assert_(isinstance(series.index, Index)) def test_array_finalize(self): pass def test_fromValue(self): nans = Series(np.NaN, index=self.ts.index) self.assert_(nans.dtype == np.float_) self.assertEqual(len(nans), len(self.ts)) strings = Series('foo', index=self.ts.index) self.assert_(strings.dtype == np.object_) self.assertEqual(len(strings), len(self.ts)) d = datetime.now() dates = Series(d, index=self.ts.index) self.assert_(dates.dtype == np.object_) self.assertEqual(len(dates), len(self.ts)) def test_contains(self): tm.assert_contains_all(self.ts.index, self.ts) def test_pickle(self): unp_series = self._pickle_roundtrip(self.series) unp_ts = self._pickle_roundtrip(self.ts) assert_series_equal(unp_series, self.series) assert_series_equal(unp_ts, self.ts) def _pickle_roundtrip(self, obj): obj.save('__tmp__') unpickled = Series.load('__tmp__') os.remove('__tmp__') return unpickled def test_getitem_get(self): idx1 = self.series.index[5] idx2 = self.objSeries.index[5] self.assertEqual(self.series[idx1], self.series.get(idx1)) self.assertEqual(self.objSeries[idx2], self.objSeries.get(idx2)) self.assertEqual(self.series[idx1], self.series[5]) self.assertEqual(self.objSeries[idx2], self.objSeries[5]) self.assert_(self.series.get(-1) is None) self.assertEqual(self.series[5], self.series.get(self.series.index[5])) # missing d = self.ts.index[0] - datetools.bday self.assertRaises(KeyError, self.ts.__getitem__, d) def test_iget(self): s = Series(np.random.randn(10), index=range(0, 20, 2)) for i in range(len(s)): result = s.iget(i) exp = s[s.index[i]] assert_almost_equal(result, exp) # pass a slice result = s.iget(slice(1, 3)) expected = s.ix[2:4] assert_series_equal(result, expected) def test_getitem_regression(self): s = Series(range(5), index=range(5)) result = s[range(5)] assert_series_equal(result, s) def test_getitem_slice_bug(self): s = Series(range(10), range(10)) result = s[-12:] assert_series_equal(result, s) result = s[-7:] assert_series_equal(result, s[3:]) result = s[:-12] assert_series_equal(result, s[:0]) def test_getitem_int64(self): idx = np.int64(5) self.assertEqual(self.ts[idx], self.ts[5]) def test_getitem_fancy(self): slice1 = self.series[[1,2,3]] slice2 = self.objSeries[[1,2,3]] self.assertEqual(self.series.index[2], slice1.index[1]) self.assertEqual(self.objSeries.index[2], slice2.index[1]) self.assertEqual(self.series[2], slice1[1]) self.assertEqual(self.objSeries[2], slice2[1]) def test_getitem_boolean(self): s = self.series mask = s > s.median() # passing list is OK result = s[list(mask)] expected = s[mask] assert_series_equal(result, expected) self.assert_(np.array_equal(result.index, s.index[mask])) def test_getitem_generator(self): gen = (x > 0 for x in self.series) result = self.series[gen] result2 = self.series[iter(self.series > 0)] expected = self.series[self.series > 0] assert_series_equal(result, expected) assert_series_equal(result2, expected) def test_getitem_boolean_object(self): # using column from DataFrame s = self.series mask = s > s.median() omask = mask.astype(object) # getitem result = s[omask] expected = s[mask] assert_series_equal(result, expected) # setitem cop = s.copy() cop[omask] = 5 s[mask] = 5 assert_series_equal(cop, s) # nans raise exception omask[5:10] = np.nan self.assertRaises(Exception, s.__getitem__, omask) self.assertRaises(Exception, s.__setitem__, omask, 5) def test_getitem_setitem_boolean_corner(self): ts = self.ts mask_shifted = ts.shift(1, offset=datetools.bday) > ts.median() self.assertRaises(Exception, ts.__getitem__, mask_shifted) self.assertRaises(Exception, ts.__setitem__, mask_shifted, 1) self.assertRaises(Exception, ts.ix.__getitem__, mask_shifted) self.assertRaises(Exception, ts.ix.__setitem__, mask_shifted, 1) def test_getitem_setitem_slice_integers(self): s = Series(np.random.randn(8), index=[2, 4, 6, 8, 10, 12, 14, 16]) result = s[:4] expected = s.reindex([2, 4, 6, 8]) assert_series_equal(result, expected) s[:4] = 0 self.assert_((s[:4] == 0).all()) self.assert_(not (s[4:] == 0).any()) def test_getitem_out_of_bounds(self): # don't segfault, GH #495 self.assertRaises(IndexError, self.ts.__getitem__, len(self.ts)) def test_getitem_box_float64(self): value = self.ts[5] self.assert_(isinstance(value, np.float64)) def test_getitem_ambiguous_keyerror(self): s = Series(range(10), index=range(0, 20, 2)) self.assertRaises(KeyError, s.__getitem__, 1) self.assertRaises(KeyError, s.ix.__getitem__, 1) def test_setitem_ambiguous_keyerror(self): s = Series(range(10), index=range(0, 20, 2)) self.assertRaises(KeyError, s.__setitem__, 1, 5) self.assertRaises(KeyError, s.ix.__setitem__, 1, 5) def test_slice(self): numSlice = self.series[10:20] numSliceEnd = self.series[-10:] objSlice = self.objSeries[10:20] self.assert_(self.series.index[9] not in numSlice.index) self.assert_(self.objSeries.index[9] not in objSlice.index) self.assertEqual(len(numSlice), len(numSlice.index)) self.assertEqual(self.series[numSlice.index[0]], numSlice[numSlice.index[0]]) self.assertEqual(numSlice.index[1], self.series.index[11]) self.assert_(tm.equalContents(numSliceEnd, np.array(self.series)[-10:])) # test return view sl = self.series[10:20] sl[:] = 0 self.assert_((self.series[10:20] == 0).all()) def test_slice_can_reorder_not_uniquely_indexed(self): s = Series(1, index=['a', 'a', 'b', 'b', 'c']) result = s[::-1] # it works! def test_setitem(self): self.ts[self.ts.index[5]] = np.NaN self.ts[[1,2,17]] = np.NaN self.ts[6] = np.NaN self.assert_(np.isnan(self.ts[6])) self.assert_(np.isnan(self.ts[2])) self.ts[np.isnan(self.ts)] = 5 self.assert_(not np.isnan(self.ts[2])) # caught this bug when writing tests series = Series(tm.makeIntIndex(20).astype(float), index=tm.makeIntIndex(20)) series[::2] = 0 self.assert_((series[::2] == 0).all()) # set item that's not contained self.assertRaises(Exception, self.series.__setitem__, 'foobar', 1) def test_set_value(self): idx = self.ts.index[10] res = self.ts.set_value(idx, 0) self.assert_(res is self.ts) self.assertEqual(self.ts[idx], 0) res = self.series.set_value('foobar', 0) self.assert_(res is not self.series) self.assert_(res.index[-1] == 'foobar') self.assertEqual(res['foobar'], 0) def test_setslice(self): sl = self.ts[5:20] self.assertEqual(len(sl), len(sl.index)) self.assertEqual(len(sl.index.indexMap), len(sl.index)) def test_basic_getitem_setitem_corner(self): # invalid tuples, e.g. self.ts[:, None] vs. self.ts[:, 2] self.assertRaises(Exception, self.ts.__getitem__, (slice(None, None), 2)) self.assertRaises(Exception, self.ts.__setitem__, (slice(None, None), 2), 2) # weird lists. [slice(0, 5)] will work but not two slices result = self.ts[[slice(None, 5)]] expected = self.ts[:5] assert_series_equal(result, expected) # OK self.assertRaises(Exception, self.ts.__getitem__, [5, slice(None, None)]) self.assertRaises(Exception, self.ts.__setitem__, [5, slice(None, None)], 2) def test_basic_getitem_with_labels(self): indices = self.ts.index[[5, 10, 15]] result = self.ts[indices] expected = self.ts.reindex(indices) assert_series_equal(result, expected) result = self.ts[indices[0]:indices[2]] expected = self.ts.ix[indices[0]:indices[2]] assert_series_equal(result, expected) # integer indexes, be careful s = Series(np.random.randn(10), index=range(0, 20, 2)) inds = [0, 2, 5, 7, 8] arr_inds = np.array([0, 2, 5, 7, 8]) result = s[inds] expected = s.reindex(inds) assert_series_equal(result, expected) result = s[arr_inds] expected = s.reindex(arr_inds) assert_series_equal(result, expected) def test_basic_setitem_with_labels(self): indices = self.ts.index[[5, 10, 15]] cp = self.ts.copy() exp = self.ts.copy() cp[indices] = 0 exp.ix[indices] = 0 assert_series_equal(cp, exp) cp = self.ts.copy() exp = self.ts.copy() cp[indices[0]:indices[2]] = 0 exp.ix[indices[0]:indices[2]] = 0 assert_series_equal(cp, exp) # integer indexes, be careful s = Series(np.random.randn(10), index=range(0, 20, 2)) inds = [0, 4, 6] arr_inds = np.array([0, 4, 6]) cp = s.copy() exp = s.copy() s[inds] = 0 s.ix[inds] = 0 assert_series_equal(cp, exp) cp = s.copy() exp = s.copy() s[arr_inds] = 0 s.ix[arr_inds] = 0 assert_series_equal(cp, exp) inds_notfound = [0, 4, 5, 6] arr_inds_notfound = np.array([0, 4, 5, 6]) self.assertRaises(Exception, s.__setitem__, inds_notfound, 0) self.assertRaises(Exception, s.__setitem__, arr_inds_notfound, 0) def test_ix_getitem(self): inds = self.series.index[[3,4,7]] assert_series_equal(self.series.ix[inds], self.series.reindex(inds)) assert_series_equal(self.series.ix[5::2], self.series[5::2]) # slice with indices d1, d2 = self.ts.index[[5, 15]] result = self.ts.ix[d1:d2] expected = self.ts.truncate(d1, d2) assert_series_equal(result, expected) # boolean mask = self.series > self.series.median() assert_series_equal(self.series.ix[mask], self.series[mask]) # ask for index value self.assertEquals(self.ts.ix[d1], self.ts[d1]) self.assertEquals(self.ts.ix[d2], self.ts[d2]) def test_ix_getitem_not_monotonic(self): d1, d2 = self.ts.index[[5, 15]] ts2 = self.ts[::2][::-1] self.assertRaises(KeyError, ts2.ix.__getitem__, slice(d1, d2)) self.assertRaises(KeyError, ts2.ix.__setitem__, slice(d1, d2), 0) def test_ix_getitem_setitem_integer_slice_keyerrors(self): s = Series(np.random.randn(10), index=range(0, 20, 2)) # this is OK cp = s.copy() cp.ix[4:10] = 0 self.assert_((cp.ix[4:10] == 0).all()) # so is this cp = s.copy() cp.ix[3:11] = 0 self.assert_((cp.ix[3:11] == 0).values.all()) result = s.ix[4:10] result2 = s.ix[3:11] expected = s.reindex([4, 6, 8, 10]) assert_series_equal(result, expected) assert_series_equal(result2, expected) # non-monotonic, raise KeyError s2 = s[::-1] self.assertRaises(KeyError, s2.ix.__getitem__, slice(3, 11)) self.assertRaises(KeyError, s2.ix.__setitem__, slice(3, 11), 0) def test_ix_getitem_iterator(self): idx = iter(self.series.index[:10]) result = self.series.ix[idx] assert_series_equal(result, self.series[:10]) def test_ix_setitem(self): inds = self.series.index[[3,4,7]] result = self.series.copy() result.ix[inds] = 5 expected = self.series.copy() expected[[3,4,7]] = 5 assert_series_equal(result, expected) result.ix[5:10] = 10 expected[5:10] = 10 assert_series_equal(result, expected) # set slice with indices d1, d2 = self.series.index[[5, 15]] result.ix[d1:d2] = 6 expected[5:16] = 6 # because it's inclusive assert_series_equal(result, expected) # set index value self.series.ix[d1] = 4 self.series.ix[d2] = 6 self.assertEquals(self.series[d1], 4) self.assertEquals(self.series[d2], 6) def test_ix_setitem_boolean(self): mask = self.series > self.series.median() result = self.series.copy() result.ix[mask] = 0 expected = self.series expected[mask] = 0 assert_series_equal(result, expected) def test_ix_setitem_corner(self): inds = list(self.series.index[[5, 8, 12]]) self.series.ix[inds] = 5 self.assertRaises(Exception, self.series.ix.__setitem__, inds + ['foo'], 5) def test_get_set_boolean_different_order(self): ordered = self.series.order() # setting copy = self.series.copy() copy[ordered > 0] = 0 expected = self.series.copy() expected[expected > 0] = 0 assert_series_equal(copy, expected) # getting sel = self.series[ordered > 0] exp = self.series[self.series > 0] assert_series_equal(sel, exp) def test_repr(self): str(self.ts) str(self.series) str(self.series.astype(int)) str(self.objSeries) str(Series(tm.randn(1000), index=np.arange(1000))) str(Series(tm.randn(1000), index=np.arange(1000, 0, step=-1))) # empty str(self.empty) # with NaNs self.series[5:7] = np.NaN str(self.series) # tuple name, e.g. from hierarchical index self.series.name = ('foo', 'bar', 'baz') repr(self.series) biggie = Series(tm.randn(1000), index=np.arange(1000), name=('foo', 'bar', 'baz')) repr(biggie) def test_to_string(self): from cStringIO import StringIO buf = StringIO() s = self.ts.to_string() retval = self.ts.to_string(buf=buf) self.assert_(retval is None) self.assertEqual(buf.getvalue().strip(), s) # pass float_format format = '%.4f'.__mod__ result = self.ts.to_string(float_format=format) result = [x.split()[1] for x in result.split('\n')] expected = [format(x) for x in self.ts] self.assertEqual(result, expected) # empty string result = self.ts[:0].to_string() self.assertEqual(result, '') result = self.ts[:0].to_string(length=0) self.assertEqual(result, '') # name and length cp = self.ts.copy() cp.name = 'foo' result = cp.to_string(length=True, name=True) last_line = result.split('\n')[-1].strip() self.assertEqual(last_line, "Name: foo, Length: %d" % len(cp)) def test_to_string_mixed(self): s = Series(['foo', np.nan, -1.23, 4.56]) result = s.to_string() expected = ('0 foo\n' '1 NaN\n' '2 -1.23\n' '3 4.56') self.assertEqual(result, expected) # but don't count NAs as floats s = Series(['foo', np.nan, 'bar', 'baz']) result = s.to_string() expected = ('0 foo\n' '1 NaN\n' '2 bar\n' '3 baz') self.assertEqual(result, expected) s = Series(['foo', 5, 'bar', 'baz']) result = s.to_string() expected = ('0 foo\n' '1 5\n' '2 bar\n' '3 baz') self.assertEqual(result, expected) def test_to_string_float_na_spacing(self): s = Series([0., 1.5678, 2., -3., 4.]) s[::2] = np.nan result = s.to_string() expected = ('0 NaN\n' '1 1.568\n' '2 NaN\n' '3 -3.000\n' '4 NaN') self.assertEqual(result, expected) def test_iter(self): for i, val in enumerate(self.series): self.assertEqual(val, self.series[i]) for i, val in enumerate(self.ts): self.assertEqual(val, self.ts[i]) def test_keys(self): # HACK: By doing this in two stages, we avoid 2to3 wrapping the call # to .keys() in a list() getkeys = self.ts.keys self.assert_(getkeys() is self.ts.index) def test_values(self): self.assert_(np.array_equal(self.ts, self.ts.values)) def test_iteritems(self): for idx, val in self.series.iteritems(): self.assertEqual(val, self.series[idx]) for idx, val in self.ts.iteritems(): self.assertEqual(val, self.ts[idx]) def test_sum(self): self._check_stat_op('sum', np.sum) def test_sum_inf(self): s = Series(np.random.randn(10)) s2 = s.copy() s[5:8] = np.inf s2[5:8] = np.nan assert_almost_equal(s.sum(), s2.sum()) import pandas.core.nanops as nanops arr = np.random.randn(100, 100).astype('f4') arr[:, 2] = np.inf res = nanops.nansum(arr, axis=1) expected = nanops._nansum(arr, axis=1) assert_almost_equal(res, expected) def test_mean(self): self._check_stat_op('mean', np.mean) def test_median(self): self._check_stat_op('median', np.median) # test with integers, test failure int_ts = TimeSeries(np.ones(10, dtype=int), index=range(10)) self.assertAlmostEqual(np.median(int_ts), int_ts.median()) def test_prod(self): self._check_stat_op('prod', np.prod) def test_min(self): self._check_stat_op('min', np.min, check_objects=True) def test_max(self): self._check_stat_op('max', np.max, check_objects=True) def test_std(self): alt = lambda x: np.std(x, ddof=1) self._check_stat_op('std', alt) def test_var(self): alt = lambda x: np.var(x, ddof=1) self._check_stat_op('var', alt) def test_skew(self): from scipy.stats import skew alt =lambda x: skew(x, bias=False) self._check_stat_op('skew', alt) def test_argsort(self): self._check_accum_op('argsort') argsorted = self.ts.argsort() self.assert_(issubclass(argsorted.dtype.type, np.integer)) def test_cumsum(self): self._check_accum_op('cumsum') def test_cumprod(self): self._check_accum_op('cumprod') def _check_stat_op(self, name, alternate, check_objects=False): from pandas import DateRange import pandas.core.nanops as nanops def testit(): f = getattr(Series, name) # add some NaNs self.series[5:15] = np.NaN # skipna or no self.assert_(notnull(f(self.series))) self.assert_(isnull(f(self.series, skipna=False))) # check the result is correct nona = self.series.dropna() assert_almost_equal(f(nona), alternate(nona)) allna = self.series * nan self.assert_(np.isnan(f(allna))) # dtype=object with None, it works! s = Series([1, 2, 3, None, 5]) f(s) # check DateRange if check_objects: s = Series(DateRange('1/1/2000', periods=10)) res = f(s) exp = alternate(s) self.assertEqual(res, exp) testit() try: import bottleneck as bn nanops._USE_BOTTLENECK = False testit() nanops._USE_BOTTLENECK = True except ImportError: pass def _check_accum_op(self, name): func = getattr(np, name) self.assert_(np.array_equal(func(self.ts), func(np.array(self.ts)))) # with missing values ts = self.ts.copy() ts[::2] = np.NaN result = func(ts)[1::2] expected = func(np.array(ts.valid())) self.assert_(np.array_equal(result, expected)) def test_round(self): # numpy.round doesn't preserve metadata, probably a numpy bug, # re: GH #314 result = np.round(self.ts, 2) expected = Series(np.round(self.ts.values, 2), index=self.ts.index) assert_series_equal(result, expected) self.assertEqual(result.name, self.ts.name) def test_prod_numpy16_bug(self): s = Series([1., 1., 1.] , index=range(3)) result = s.prod() self.assert_(not isinstance(result, Series)) def test_quantile(self): from scipy.stats import scoreatpercentile q = self.ts.quantile(0.1) self.assertEqual(q, scoreatpercentile(self.ts.valid(), 10)) q = self.ts.quantile(0.9) self.assertEqual(q, scoreatpercentile(self.ts.valid(), 90)) def test_describe(self): _ = self.series.describe() _ = self.ts.describe() def test_describe_objects(self): s = Series(['a', 'b', 'b', np.nan, np.nan, np.nan, 'c', 'd', 'a', 'a']) result = s.describe() expected = Series({'count' : 7, 'unique' : 4, 'top' : 'a', 'freq' : 3}, index=result.index) assert_series_equal(result, expected) def test_append(self): appendedSeries = self.series.append(self.ts) for idx, value in appendedSeries.iteritems(): if idx in self.series.index: self.assertEqual(value, self.series[idx]) elif idx in self.ts.index: self.assertEqual(value, self.ts[idx]) else: self.fail("orphaned index!") self.assertRaises(Exception, self.ts.append, self.ts) def test_append_many(self): pieces = [self.ts[:5], self.ts[5:10], self.ts[10:]] result = pieces[0].append(pieces[1:]) assert_series_equal(result, self.ts) def test_all_any(self): np.random.seed(12345) ts = tm.makeTimeSeries() bool_series = ts > 0 self.assert_(not bool_series.all()) self.assert_(bool_series.any()) def test_operators(self): series = self.ts other = self.ts[::2] def _check_op(other, op, pos_only=False): left = np.abs(series) if pos_only else series right = np.abs(other) if pos_only else other cython_or_numpy = op(left, right) python = left.combine(right, op) tm.assert_almost_equal(cython_or_numpy, python) def check(other): simple_ops = ['add', 'sub', 'mul', 'truediv', 'floordiv', 'gt', 'ge', 'lt', 'le'] for opname in simple_ops: _check_op(other, getattr(operator, opname)) _check_op(other, operator.pow, pos_only=True) _check_op(other, lambda x, y: operator.add(y, x)) _check_op(other, lambda x, y: operator.sub(y, x)) _check_op(other, lambda x, y: operator.truediv(y, x)) _check_op(other, lambda x, y: operator.floordiv(y, x)) _check_op(other, lambda x, y: operator.mul(y, x)) _check_op(other, lambda x, y: operator.pow(y, x), pos_only=True) check(self.ts * 2) check(self.ts * 0) check(self.ts[::2]) check(5) def check_comparators(other): _check_op(other, operator.gt) _check_op(other, operator.ge) _check_op(other, operator.eq) _check_op(other, operator.lt) _check_op(other, operator.le) check_comparators(5) check_comparators(self.ts + 1) def test_operators_empty_int_corner(self): s1 = Series([], [], dtype=np.int32) s2 = Series({'x' : 0.}) # it works! _ = s1 * s2 # NumPy limitiation =( # def test_logical_range_select(self): # np.random.seed(12345) # selector = -0.5 <= self.ts <= 0.5 # expected = (self.ts >= -0.5) & (self.ts <= 0.5) # assert_series_equal(selector, expected) def test_idxmin(self): # test idxmin # _check_stat_op approach can not be used here because of isnull check. # add some NaNs self.series[5:15] = np.NaN # skipna or no self.assertEqual(self.series[self.series.idxmin()], self.series.min()) self.assert_(isnull(self.series.idxmin(skipna=False))) # no NaNs nona = self.series.dropna() self.assertEqual(nona[nona.idxmin()], nona.min()) self.assertEqual(nona.index.values.tolist().index(nona.idxmin()), nona.values.argmin()) # all NaNs allna = self.series * nan self.assert_(isnull(allna.idxmin())) def test_idxmax(self): # test idxmax # _check_stat_op approach can not be used here because of isnull check. # add some NaNs self.series[5:15] = np.NaN # skipna or no self.assertEqual(self.series[self.series.idxmax()], self.series.max()) self.assert_(isnull(self.series.idxmax(skipna=False))) # no NaNs nona = self.series.dropna() self.assertEqual(nona[nona.idxmax()], nona.max()) self.assertEqual(nona.index.values.tolist().index(nona.idxmax()), nona.values.argmax()) # all NaNs allna = self.series * nan self.assert_(isnull(allna.idxmax())) def test_operators_date(self): result = self.objSeries + timedelta(1) result = self.objSeries - timedelta(1) def test_operators_corner(self): series = self.ts empty = Series([], index=Index([])) result = series + empty self.assert_(np.isnan(result).all()) result = empty + Series([], index=Index([])) self.assert_(len(result) == 0) # TODO: this returned NotImplemented earlier, what to do? # deltas = Series([timedelta(1)] * 5, index=np.arange(5)) # sub_deltas = deltas[::2] # deltas5 = deltas * 5 # deltas = deltas + sub_deltas # float + int int_ts = self.ts.astype(int)[:-5] added = self.ts + int_ts expected = self.ts.values[:-5] + int_ts.values self.assert_(np.array_equal(added[:-5], expected)) def test_operators_reverse_object(self): # GH 56 arr = Series(np.random.randn(10), index=np.arange(10), dtype=object) def _check_op(arr, op): result = op(1., arr) expected = op(1., arr.astype(float)) assert_series_equal(result.astype(float), expected) _check_op(arr, operator.add) _check_op(arr, operator.sub) _check_op(arr, operator.mul) _check_op(arr, operator.truediv) _check_op(arr, operator.floordiv) def test_series_frame_radd_bug(self): from pandas.util.testing import rands import operator # GH 353 vals = Series([rands(5) for _ in xrange(10)]) result = 'foo_' + vals expected = vals.map(lambda x: 'foo_' + x) assert_series_equal(result, expected) frame = DataFrame({'vals' : vals}) result = 'foo_' + frame expected = DataFrame({'vals' : vals.map(lambda x: 'foo_' + x)}) tm.assert_frame_equal(result, expected) # really raise this time self.assertRaises(TypeError, operator.add, datetime.now(), self.ts) def test_operators_frame(self): # rpow does not work with DataFrame df = DataFrame({'A' : self.ts}) tm.assert_almost_equal(self.ts + self.ts, (self.ts + df)['A']) tm.assert_almost_equal(self.ts ** self.ts, (self.ts ** df)['A']) def test_operators_combine(self): def _check_fill(meth, op, a, b, fill_value=0): exp_index = a.index.union(b.index) a = a.reindex(exp_index) b = b.reindex(exp_index) amask = isnull(a) bmask = isnull(b) exp_values = [] for i in range(len(exp_index)): if amask[i]: if bmask[i]: exp_values.append(nan) continue exp_values.append(op(fill_value, b[i])) elif bmask[i]: if amask[i]: exp_values.append(nan) continue exp_values.append(op(a[i], fill_value)) else: exp_values.append(op(a[i], b[i])) result = meth(a, b, fill_value=fill_value) expected = Series(exp_values, exp_index) assert_series_equal(result, expected) a = Series([nan, 1., 2., 3., nan], index=np.arange(5)) b = Series([nan, 1, nan, 3, nan, 4.], index=np.arange(6)) ops = [Series.add, Series.sub, Series.mul, Series.div] equivs = [operator.add, operator.sub, operator.mul] if py3compat.PY3: equivs.append(operator.truediv) else: equivs.append(operator.div) fillvals = [0, 0, 1, 1] for op, equiv_op, fv in zip(ops, equivs, fillvals): result = op(a, b) exp = equiv_op(a, b)
assert_series_equal(result, exp)
pandas.util.testing.assert_series_equal
import json from elasticsearch import Elasticsearch from elasticsearch import logger as es_logger from collections import defaultdict, Counter import re import os from pathlib import Path from datetime import datetime, date # Preprocess terms for TF-IDF import numpy as np from nltk.corpus import stopwords from nltk.tokenize import word_tokenize from num2words import num2words # end of preprocess # LDA from gensim import corpora, models import pyLDAvis.gensim # print in color from termcolor import colored # end LDA import pandas as pd import geopandas from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from nltk.corpus import wordnet # SPARQL import sparql # progress bar from tqdm import tqdm # ploting import matplotlib.pyplot as plt from matplotlib_venn_wordcloud import venn3_wordcloud # multiprocessing # BERT from transformers import pipeline # LOG import logging from logging.handlers import RotatingFileHandler def biotexInputBuilder(tweetsofcity): """ Build and save a file formated for Biotex analysis :param tweetsofcity: dictionary of { tweets, created_at } :return: none """ biotexcorpus = [] for city in tweetsofcity: # Get all tweets for a city : listOfTweetsByCity = [tweets['tweet'] for tweets in tweetsofcity[city]] # convert this list in a big string of tweets by city document = '\n'.join(listOfTweetsByCity) biotexcorpus.append(document) biotexcorpus.append('\n') biotexcorpus.append("##########END##########") biotexcorpus.append('\n') textToSave = "".join(biotexcorpus) corpusfilename = "elastic-UK" biotexcopruspath = Path('elasticsearch/analyse') biotexCorpusPath = str(biotexcopruspath) + '/' + corpusfilename print("\t saving file : " + str(biotexCorpusPath)) f = open(biotexCorpusPath, 'w') f.write(textToSave) f.close() def preprocessTerms(document): """ Pre process Terms according to https://towardsdatascience.com/tf-idf-for-document-ranking-from-scratch-in-python-on-real-world-dataset-796d339a4089 /!\ Be carefull : it has a long execution time :param: :return: """ def lowercase(t): return np.char.lower(t) def removesinglechar(t): words = word_tokenize(str(t)) new_text = "" for w in words: if len(w) > 1: new_text = new_text + " " + w return new_text def removestopwords(t): stop_words = stopwords.words('english') words = word_tokenize(str(t)) new_text = "" for w in words: if w not in stop_words: new_text = new_text + " " + w return new_text def removeapostrophe(t): return np.char.replace(t, "'", "") def removepunctuation(t): symbols = "!\"#$%&()*+-./:;<=>?@[\]^_`{|}~\n" for i in range(len(symbols)): data = np.char.replace(t, symbols[i], ' ') data = np.char.replace(t, " ", " ") data = np.char.replace(t, ',', '') return data def convertnumbers(t): tokens = word_tokenize(str(t)) new_text = "" for w in tokens: try: w = num2words(int(w)) except: a = 0 new_text = new_text + " " + w new_text = np.char.replace(new_text, "-", " ") return new_text doc = lowercase(document) doc = removesinglechar(doc) doc = removestopwords(doc) doc = removeapostrophe(doc) doc = removepunctuation(doc) doc = removesinglechar(doc) # apostrophe create new single char return doc def biotexAdaptativeBuilderAdaptative(listOfcities='all', spatialLevel='city', period='all', temporalLevel='day'): """ Build a input biotex file well formated at the level wanted by concatenate cities's tweets :param listOfcities: :param spatialLevel: :param period: :param temporalLevel: :return: """ matrixAggDay = pd.read_csv("elasticsearch/analyse/matrixAggDay.csv") # concat date with city matrixAggDay['city'] = matrixAggDay[['city', 'day']].agg('_'.join, axis=1) del matrixAggDay['day'] ## change index matrixAggDay.set_index('city', inplace=True) matrixFiltred = spatiotemporelFilter(matrix=matrixAggDay, listOfcities=listOfcities, spatialLevel='state', period=period) ## Pre-process :Create 4 new columns : city, State, Country and date def splitindex(row): return row.split("_") matrixFiltred["city"], matrixFiltred["state"], matrixFiltred["country"], matrixFiltred["date"] = \ zip(*matrixFiltred.index.map(splitindex)) # Agregate by level if spatialLevel == 'city': # do nothing pass elif spatialLevel == 'state': matrixFiltred = matrixFiltred.groupby('state')['tweetsList'].apply('.\n'.join).reset_index() elif spatialLevel == 'country': matrixFiltred = matrixFiltred.groupby('country')['tweetsList'].apply('.\n'.join).reset_index() # Format biotex input file biotexcorpus = [] for index, row in matrixFiltred.iterrows(): document = row['tweetsList'] biotexcorpus.append(document) biotexcorpus.append('\n') biotexcorpus.append("##########END##########") biotexcorpus.append('\n') textToSave = "".join(biotexcorpus) corpusfilename = "elastic-UK-adaptativebiotex" biotexcopruspath = Path('elasticsearch/analyse') biotexCorpusPath = str(biotexcopruspath) + '/' + corpusfilename print("\t saving file : " + str(biotexCorpusPath)) f = open(biotexCorpusPath, 'w') f.write(textToSave) f.close() def ldHHTFIDF(listOfcities): """ /!\ for testing only !!!! Only work if nb of states = nb of cities i.e for UK working on 4 states with their capitals... """ print(colored("------------------------------------------------------------------------------------------", 'red')) print(colored(" - UNDER DEV !!! - ", 'red')) print(colored("------------------------------------------------------------------------------------------", 'red')) tfidfwords = pd.read_csv("elasticsearch/analyse/TFIDFadaptativeBiggestScore.csv", index_col=0) texts = pd.read_csv("elasticsearch/analyse/matrixAggDay.csv", index_col=1) listOfStatesTopics = [] for i, citystate in enumerate(listOfcities): city = str(listOfcities[i].split("_")[0]) state = str(listOfcities[i].split("_")[1]) # print(str(i) + ": " + str(state) + " - " + city) # tfidfwords = [tfidfwords.iloc[0]] dictionary = corpora.Dictionary([tfidfwords.loc[state]]) textfilter = texts.loc[texts.index.str.startswith(city + "_")] corpus = [dictionary.doc2bow(text.split()) for text in textfilter.tweetsList] # Find the better nb of topics : ## Coherence measure C_v : Normalised PointWise Mutual Information (NPMI : co-occurence probability) ## i.e degree of semantic similarity between high scoring words in the topic ## and cosine similarity nbtopics = range(2, 35) coherenceScore = pd.Series(index=nbtopics, dtype=float) for n in nbtopics: lda = models.ldamodel.LdaModel(corpus=corpus, id2word=dictionary, num_topics=n) # Compute coherence score ## Split each row values textssplit = textfilter.tweetsList.apply(lambda x: x.split()).values coherence = models.CoherenceModel(model=lda, texts=textssplit, dictionary=dictionary, coherence='c_v') coherence_result = coherence.get_coherence() coherenceScore[n] = coherence_result # print("level: " + str(state) + " - NB: " + str(n) + " - coherence LDA: " + str(coherenceScore[n])) # Relaunch LDA with the best nbtopic nbTopicOptimal = coherenceScore.idxmax() lda = models.ldamodel.LdaModel(corpus=corpus, id2word=dictionary, num_topics=nbTopicOptimal) # save and visualisation ## save for topic, listwords in enumerate(lda.show_topics()): stateTopic = {'state': state} ldaOuput = str(listwords).split(" + ")[1:] for i, word in enumerate(ldaOuput): # reformat lda output for each word of topics stateTopic[i] = ''.join(x for x in word if x.isalpha()) listOfStatesTopics.append(stateTopic) ## Visualisation try: vis = pyLDAvis.gensim.prepare(lda, corpus, dictionary) pyLDAvis.save_html(vis, "elasticsearch/analyse/lda/lda-tfidf_" + str(state) + ".html") except: print("saving pyLDAvis failed. Nb of topics for " + state + ": " + nbTopicOptimal) # Save file listOfStatesTopicsCSV = pd.DataFrame(listOfStatesTopics) listOfStatesTopicsCSV.to_csv("elasticsearch/analyse/lda/topicBySate.csv") def wordnetCoverage(pdterms): """ add an additionnal column with boolean term is in wordnet :param pdterms: pd.dataframes of terms. Must have a column with "terms" as a name :return: pdterms with additionnal column with boolean term is in wordnet """ # Add a wordnet column boolean type : True if word is in wordnet, False otherwise pdterms['wordnet'] = False # Loop on terms and check if there are in wordnet for index, row in pdterms.iterrows(): if len(wordnet.synsets(row['terms'])) != 0: pdterms.at[index, 'wordnet'] = True return pdterms def sparqlquery(thesaurus, term): """ Sparql query. This methods have be factorize to be used in case of multiprocessign :param thesaurus: which thesaurus to query ? agrovoc or mesh :param term: term to align with thesaurus :return: sparql result querry """ # Define MeSH sparql endpoint and query endpointmesh = 'http://id.nlm.nih.gov/mesh/sparql' qmesh = ( 'PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>' 'PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>' 'PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>' 'PREFIX owl: <http://www.w3.org/2002/07/owl#>' 'PREFIX meshv: <http://id.nlm.nih.gov/mesh/vocab#>' 'PREFIX mesh: <http://id.nlm.nih.gov/mesh/>' 'PREFIX mesh2020: <http://id.nlm.nih.gov/mesh/2020/>' 'PREFIX mesh2019: <http://id.nlm.nih.gov/mesh/2019/>' 'PREFIX mesh2018: <http://id.nlm.nih.gov/mesh/2018/>' '' 'ask ' 'FROM <http://id.nlm.nih.gov/mesh> ' 'WHERE { ' ' ?meshTerms a meshv:Term .' ' ?meshTerms meshv:prefLabel ?label .' ' FILTER(lang(?label) = "en").' ' filter(REGEX(?label, "^' + str(term) + '$", "i"))' '' '}' ) # Define agrovoc sparql endpoint and query endpointagrovoc = 'http://agrovoc.uniroma2.it/sparql' qagrovoc = ('PREFIX skos: <http://www.w3.org/2004/02/skos/core#> ' 'PREFIX skosxl: <http://www.w3.org/2008/05/skos-xl#> ' 'ask WHERE {' '?myterm skosxl:literalForm ?labelAgro.' 'FILTER(lang(?labelAgro) = "en").' 'filter(REGEX(?labelAgro, "^' + str(term) + '(s)*$", "i"))' '}') # query mesh if thesaurus == "agrovoc": q = qagrovoc endpoint = endpointagrovoc elif thesaurus == "mesh": q = qmesh endpoint = endpointmesh else: raise Exception('Wrong thesaurus given') try: result = sparql.query(endpoint, q, timeout=30) # Sometimes Endpoint can bug on a request. # SparqlException raised by sparql-client if timeout is reach # other exception (That I have not identify yet) when endpoint send non well formated answer except: result = "endpoint error" return result def agrovocCoverage(pdterms): """ Add an additionnal column with boolean if term is in agrovoc :param pdterms: same as wordnetCoverage :return: same as wornetCoverage """ # Log number of error raised by sparql endpoint endpointerror = 0 # Add a agrovoc column boolean type : True if terms is in Agrovoc pdterms['agrovoc'] = False # Loop on term for index, row in tqdm(pdterms.iterrows(), total=pdterms.shape[0], desc="agrovoc"): # Build SPARQL query term = row['terms'] result = sparqlquery('agrovoc', term) if result == "endpoint error": endpointerror += 1 pdterms.at[index, 'agrovoc'] = "Error" elif result.hasresult(): pdterms.at[index, 'agrovoc'] = True print("Agrovoc number of error: " + str(endpointerror)) return pdterms def meshCoverage(pdterms): """ Add an additionnal column with boolean if term is in MeSH :param pdterms: same as wordnetCoverage :return: same as wornetCoverage """ # Log number of error raised by sparql endpoint endpointerror = 0 # Add a MeSH column boolean type : True if terms is in Mesh pdterms['mesh'] = False # Loop on term with multiprocessing for index, row in tqdm(pdterms.iterrows(), total=pdterms.shape[0], desc="mesh"): # Build SPARQL query term = row['terms'] result = sparqlquery('mesh', term) if result == "endpoint error": endpointerror += 1 pdterms.at[index, 'mesh'] = "Error" elif result.hasresult(): pdterms.at[index, 'mesh'] = True print("Mesh number of error: " + str(endpointerror)) return pdterms def compareWithHTFIDF(number_of_term, dfToCompare, repToSave): """ Only used for ECIR2020 not for NLDB2021 :param number_of_term: :param dfToCompare: :param repToSave: :return: """ # Stack / concatenate all terms from all states in one column HTFIDFUniquedf = concatenateHTFIDFBiggestscore()[:number_of_term] # select N first terms dfToCompare = dfToCompare[:number_of_term] common = pd.merge(dfToCompare, HTFIDFUniquedf, left_on='terms', right_on='terms', how='inner') # del common['score'] common = common.terms.drop_duplicates() common = common.reset_index() del common['index'] common.to_csv("elasticsearch/analyse/" + repToSave + "/common.csv") # Get what terms are specific to Adapt-TF-IDF print(dfToCompare) HTFIDFUniquedf['terms'][~HTFIDFUniquedf['terms'].isin(dfToCompare['terms'])].dropna() condition = HTFIDFUniquedf['terms'].isin(dfToCompare['terms']) specificHTFIDF = HTFIDFUniquedf.drop(HTFIDFUniquedf[condition].index) specificHTFIDF = specificHTFIDF.reset_index() del specificHTFIDF['index'] specificHTFIDF.to_csv("elasticsearch/analyse/" + repToSave + "/specific-H-TFIDF.csv") # Get what terms are specific to dfToCompare dfToCompare['terms'][~dfToCompare['terms'].isin(HTFIDFUniquedf['terms'])].dropna() condition = dfToCompare['terms'].isin(HTFIDFUniquedf['terms']) specificdfToCompare = dfToCompare.drop(dfToCompare[condition].index) specificdfToCompare = specificdfToCompare.reset_index() del specificdfToCompare['index'] specificdfToCompare.to_csv("elasticsearch/analyse/" + repToSave + "/specific-reference.csv") # Print stats percentIncommon = len(common) / len(HTFIDFUniquedf) * 100 percentOfSpecificHTFIDF = len(specificHTFIDF) / len(HTFIDFUniquedf) * 100 print("Percent in common " + str(percentIncommon)) print("Percent of specific at H-TFIDF : " + str(percentOfSpecificHTFIDF)) def HTFIDF_comparewith_TFIDF_TF(): """ Only used for ECIR2020 not for NLDB2021 .. warnings:: /!\ under dev !!!. See TODO below .. todo:: - Remove filter and pass it as args : - period - list of Cities - Pass files path in args - Pass number of term to extract for TF-IDF and TF Gives commons and specifics terms between H-TFIDF and TF & TF-IDF classics Creates 6 csv files : 3 for each classical measures : - Common.csv : list of common terms - specific-htfidf : terms only in H-TF-IDF - specific-reference : terms only in one classical measurs """ tfidfStartDate = date(2020, 1, 23) tfidfEndDate = date(2020, 1, 30) tfidfPeriod = pd.date_range(tfidfStartDate, tfidfEndDate) listOfCity = ['London', 'Glasgow', 'Belfast', 'Cardiff'] # Query Elasticsearch to get all tweets from UK tweets = elasticsearchQuery() # reorganie tweets (dict : tweets by cities) into dataframe (city and date) col = ['tweets', 'created_at'] matrixAllTweets = pd.DataFrame(columns=col) for tweetByCity in tweets.keys(): # pprint(tweets[tweetByCity]) # Filter cities : if str(tweetByCity).split("_")[0] in listOfCity: matrix = pd.DataFrame(tweets[tweetByCity]) matrixAllTweets = matrixAllTweets.append(matrix, ignore_index=True) # NB : 28354 results instead of 44841 (from ES) because we work only on tweets with a city found # Split datetime into date and time matrixAllTweets["date"] = [d.date() for d in matrixAllTweets['created_at']] matrixAllTweets["time"] = [d.time() for d in matrixAllTweets['created_at']] # Filter by a period mask = ((matrixAllTweets["date"] >= tfidfPeriod.min()) & (matrixAllTweets["date"] <= tfidfPeriod.max())) matrixAllTweets = matrixAllTweets.loc[mask] # Compute TF-IDF vectorizer = TfidfVectorizer() vectors = vectorizer.fit_transform(matrixAllTweets['tweet']) feature_names = vectorizer.get_feature_names() dense = vectors.todense() denselist = dense.tolist() ## matrixTFIDF TFIDFClassical = pd.DataFrame(denselist, columns=feature_names) ### Remove stopword for term in TFIDFClassical.keys(): if term in stopwords.words('english'): del TFIDFClassical[term] # TFIDFClassical.to_csv("elasticsearch/analyse/TFIDFClassical/tfidfclassical.csv") ## Extract N TOP ranking score top_n = 500 extractBiggest = TFIDFClassical.stack().nlargest(top_n) ### Reset index becaus stack create a multi-index (2 level : old index + terms) extractBiggest = extractBiggest.reset_index(level=[0, 1]) extractBiggest.columns = ['old-index', 'terms', 'score'] del extractBiggest['old-index'] extractBiggest = extractBiggest.drop_duplicates(subset='terms', keep="first") extractBiggest.to_csv("elasticsearch/analyse/TFIDFClassical/TFIDFclassicalBiggestScore.csv") # Compare with H-TFIDF repToSave = "TFIDFClassical" compareWithHTFIDF(200, extractBiggest, repToSave) # Compute TF tf = CountVectorizer() tf.fit(matrixAllTweets['tweet']) tf_res = tf.transform(matrixAllTweets['tweet']) listOfTermsTF = tf.get_feature_names() countTerms = tf_res.todense() ## matrixTF TFClassical = pd.DataFrame(countTerms.tolist(), columns=listOfTermsTF) ### Remove stopword for term in TFClassical.keys(): if term in stopwords.words('english'): del TFClassical[term] ### save in file # TFClassical.to_csv("elasticsearch/analyse/TFClassical/tfclassical.csv") ## Extract N TOP ranking score top_n = 500 extractBiggestTF = TFClassical.stack().nlargest(top_n) ### Reset index becaus stack create a multi-index (2 level : old index + terms) extractBiggestTF = extractBiggestTF.reset_index(level=[0, 1]) extractBiggestTF.columns = ['old-index', 'terms', 'score'] del extractBiggestTF['old-index'] extractBiggestTF = extractBiggestTF.drop_duplicates(subset='terms', keep="first") extractBiggestTF.to_csv("elasticsearch/analyse/TFClassical/TFclassicalBiggestScore.csv") # Compare with H-TFIDF repToSave = "TFClassical" compareWithHTFIDF(200, extractBiggestTF, repToSave) def concatenateHTFIDFBiggestscore(): """ This function return a dataframe of one column containing all terms. i.e regroup all terms :param: :return: dataframe of 1 column with all terms from states stacked """ HTFIDF = pd.read_csv('elasticsearch/analyse/TFIDFadaptativeBiggestScore.csv', index_col=0) # Transpose A-TF-IDF (inverse rows and columns) HTFIDF = HTFIDF.transpose() # group together all states' terms HTFIDFUnique = pd.Series(dtype='string') ## loop on row for append states' terms in order to take into account their rank ## If there are 4 states, It will add the 4 first terms by iterow for index, row in HTFIDF.iterrows(): HTFIDFUnique = HTFIDFUnique.append(row.transpose(), ignore_index=True) ## drop duplicate HTFIDFUnique = HTFIDFUnique.drop_duplicates() # merge to see what terms have in common ## convert series into dataframe before merge HTFIDFUniquedf = HTFIDFUnique.to_frame().rename(columns={0: 'terms'}) HTFIDFUniquedf['terms'] = HTFIDFUnique return HTFIDFUniquedf def spatiotemporelFilter(matrix, listOfcities='all', spatialLevel='city', period='all', temporalLevel='day'): """ Filter matrix with list of cities and a period :param matrix: :param listOfcities: :param spatialLevel: :param period: :param temporalLevel: :return: matrix filtred """ if spatialLevel not in spatialLevels or temporalLevel not in temporalLevels: print("wrong level, please double check") return 1 # Extract cities and period ## cities if listOfcities != 'all': ### we need to filter ### Initiate a numpy array of False filter = np.zeros((1, len(matrix.index)), dtype=bool)[0] for city in listOfcities: ### edit filter if index contains the city (for each city of the list) filter += matrix.index.str.startswith(str(city) + "_") matrix = matrix.loc[filter] ## period if str(period) != 'all': ### we need a filter on date datefilter = np.zeros((1, len(matrix.index)), dtype=bool)[0] for date in period: datefilter += matrix.index.str.contains(date.strftime('%Y-%m-%d')) matrix = matrix.loc[datefilter] return matrix def compute_occurence_word_by_state(): """ Count words for tweets aggregate by state. For each state, we concatenate all tweets related. Then we build a table : - columns : all word (our vocabulary) - row : the 4 states of UK - cell : occurence of the word by state :return: pd.Dataframe of occurence of word by states """ listOfCity = ['London', 'Glasgow', 'Belfast', 'Cardiff'] tfidfStartDate = date(2020, 1, 23) tfidfEndDate = date(2020, 1, 30) tfidfPeriod = pd.date_range(tfidfStartDate, tfidfEndDate) ## Compute a table : (row : state; column: occurence of each terms present in state's tweets) es_tweets_results = pd.read_csv('elasticsearch/analyse/matrixOccurence.csv', index_col=0) es_tweets_results_filtred = spatiotemporelFilter(es_tweets_results, listOfcities=listOfCity, spatialLevel='state', period=tfidfPeriod) ## Aggregate by state ### Create 4 new columns : city, State, Country and date def splitindex(row): return row.split("_") es_tweets_results_filtred["city"], es_tweets_results_filtred["state"], es_tweets_results_filtred["country"], \ es_tweets_results_filtred["date"] = zip(*es_tweets_results_filtred.index.map(splitindex)) es_tweets_results_filtred_aggstate = es_tweets_results_filtred.groupby("state").sum() return es_tweets_results_filtred_aggstate def get_tweets_by_terms(term): """ Return tweets content containing the term for Eval 11 Warning: Only work on - the spatial window : capital of UK - the temporal windows : 2020-01-22 to 30 Todo: - if you want to generelized this method at ohter spatial & temporal windows. You have to custom the elastic serarch query. :param term: term for retrieving tweets :return: Dictionnary of tweets for the term """ list_of_tweets = [] client = Elasticsearch("http://localhost:9200") index = "twitter" # Define a Query : Here get only city from UK query = {"query": { "bool": { "must": [], "filter": [ { "bool": { "filter": [ { "bool": { "should": [ { "bool": { "should": [ { "match_phrase": { "rest.features.properties.city.keyword": "London" } } ], "minimum_should_match": 1 } }, { "bool": { "should": [ { "bool": { "should": [ { "match_phrase": { "rest.features.properties.city.keyword": "Glasgow" } } ], "minimum_should_match": 1 } }, { "bool": { "should": [ { "bool": { "should": [ { "match_phrase": { "rest.features.properties.city.keyword": "Belfast" } } ], "minimum_should_match": 1 } }, { "bool": { "should": [ { "match": { "rest.features.properties.city.keyword": "Cardiff" } } ], "minimum_should_match": 1 } } ], "minimum_should_match": 1 } } ], "minimum_should_match": 1 } } ], "minimum_should_match": 1 } }, { "bool": { "should": [ { "match": { "full_text": term } } ], "minimum_should_match": 1 } } ] } }, { "range": { "created_at": { "gte": "2020-01-22T23:00:00.000Z", "lte": "2020-01-30T23:00:00.000Z", "format": "strict_date_optional_time" } } } ], } } } try: result = Elasticsearch.search(client, index=index, body=query, size=10000) except Exception as e: print("Elasticsearch deamon may not be launched for term: " + term) print(e) result = "" for hit in result['hits']['hits']: content = hit["_source"]["full_text"] state = hit["_source"]["rest"]["features"][0]["properties"]["state"] tweet = { "full_text": content, "state": state } list_of_tweets.append(tweet) return list_of_tweets def get_nb_of_tweets_with_spatio_temporal_filter(): """ Return tweets content containing the term for Eval 11 Warning: Only work on - the spatial window : capital of UK - the temporal windows : 2020-01-22 to 30 Todo: - if you want to generelized this method at ohter spatial & temporal windows. You have to custom the elastic serarch query. :param term: term for retrieving tweets :return: Dictionnary of nb of tweets by state """ list_of_tweets = [] client = Elasticsearch("http://localhost:9200") index = "twitter" # Define a Query : Here get only city from UK query = {"query": { "bool": { "must": [], "filter": [ { "bool": { "filter": [ { "bool": { "should": [ { "bool": { "should": [ { "match_phrase": { "rest.features.properties.city.keyword": "London" } } ], "minimum_should_match": 1 } }, { "bool": { "should": [ { "bool": { "should": [ { "match_phrase": { "rest.features.properties.city.keyword": "Glasgow" } } ], "minimum_should_match": 1 } }, { "bool": { "should": [ { "bool": { "should": [ { "match_phrase": { "rest.features.properties.city.keyword": "Belfast" } } ], "minimum_should_match": 1 } }, { "bool": { "should": [ { "match": { "rest.features.properties.city.keyword": "Cardiff" } } ], "minimum_should_match": 1 } } ], "minimum_should_match": 1 } } ], "minimum_should_match": 1 } } ], "minimum_should_match": 1 } }, ] } }, { "range": { "created_at": { "gte": "2020-01-22T23:00:00.000Z", "lte": "2020-01-30T23:00:00.000Z", "format": "strict_date_optional_time" } } } ], } } } try: result = Elasticsearch.search(client, index=index, body=query, size=10000) except Exception as e: print("Elasticsearch deamon may not be launched") print(e) result = "" nb_tweets_by_state = pd.DataFrame(index=["nb_tweets"], columns=('England', 'Northern Ireland', 'Scotland', 'Wales')) nb_tweets_by_state.iloc[0] = (0, 0, 0, 0) list_of_unboundaries_state = [] for hit in result['hits']['hits']: try: state = hit["_source"]["rest"]["features"][0]["properties"]["state"] nb_tweets_by_state[state].iloc[0] += 1 except: state_no_uk = str(hit["_source"]["rest"]["features"][0]["properties"]["city"] + " " + state) list_of_unboundaries_state.append(state_no_uk) print("get_nb_of_tweets_with_spatio_temporal_filter(): List of unique location outside of UK: " + str( set(list_of_unboundaries_state))) return nb_tweets_by_state def ECIR20(): # matrixOccurence = pd.read_csv('elasticsearch/analyse/matrixOccurence.csv', index_col=0) """ ### Filter city and period """ listOfCity = ['London', 'Glasgow', 'Belfast', 'Cardiff'] tfidfStartDate = date(2020, 1, 23) tfidfEndDate = date(2020, 1, 30) tfidfPeriod = pd.date_range(tfidfStartDate, tfidfEndDate) # LDA clustering on TF-IDF adaptative vocabulary listOfCityState = ['London_England', 'Glasgow_Scotland', 'Belfast_Northern Ireland', 'Cardiff_Wales'] ldHHTFIDF(listOfCityState) """ """ ## Build biotex input for adaptative level state biotexAdaptativeBuilderAdaptative(listOfcities=listOfCity, spatialLevel='state', period=tfidfPeriod, temporalLevel='day') """ # Compare Biotex with H-TFIDF """ biotex = pd.read_csv('elasticsearch/analyse/biotexonhiccs/biotexUKbyStates.csv', names=['terms', 'UMLS', 'score'], sep=';') repToSave = "biotexonhiccs" compareWithHTFIDF(200, biotex, repToSave) """ # declare path for comparison H-TFIDF with TF-IDF and TF (scikit measures) """ tfidfpath = "elasticsearch/analyse/TFIDFClassical/TFIDFclassicalBiggestScore.csv" tfpath = "elasticsearch/analyse/TFClassical/TFclassicalBiggestScore.csv" """ """ # Compare classical TF-IDF with H-TFIDF ## HTFIDF_comparewith_TFIDF_TF() gives commun and spectific terms between H-TFIDF and TF-ISF & TF classics HTFIDF_comparewith_TFIDF_TF() """ # Thesaurus coverage : Are the terms in Wordnet / Agrovoc / MeSH ## open measures results and add a column for each thesaurus ### TF-IDF """ tfidf = pd.read_csv(tfidfpath) tfidf = wordnetCoverage(tfidf) tfidf = agrovocCoverage(tfidf) tfidf = meshCoverage(tfidf) tfidf.to_csv(tfidfpath) print("TF-IDF thesaurus comparison: done") ### TF tf = pd.read_csv(tfpath) tf = wordnetCoverage(tf) tf = agrovocCoverage(tf) tf = meshCoverage(tf) tf.to_csv(tfpath) print("TF thesaurus comparison: done") ### H-TFIDF htfidfStackedPAth = "elasticsearch/analyse/h-tfidf-stacked-wordnet.csv" #### Stacked H-TFIDF htfidf = concatenateHTFIDFBiggestscore() htfidf = wordnetCoverage(htfidf) htfidf = agrovocCoverage(htfidf) htfidf = meshCoverage(htfidf) htfidf.to_csv(htfidfStackedPAth) print("H-TFIDF thesaurus comparison: done") """ ## Percent of Coverage : print """ tfidf = pd.read_csv(tfidfpath) tf = pd.read_csv(tfpath) htfidfStackedPAth = "elasticsearch/analyse/h-tfidf-stacked-wordnet.csv" htfidf = pd.read_csv(htfidfStackedPAth) """ """ ### Limit to a maximun numbers of terms nfirstterms = 50 ### TF-IDF tfidfd = tfidf[0:nfirstterms] tfidfPercentInWordnet = len(tfidfd[tfidfd.wordnet == True]) / nfirstterms print("TF-IDF wordnet coverage for the ", nfirstterms, "first terms: ", tfidfPercentInWordnet) tfidfPercentInAgrovoc = len(tfidfd[tfidfd.agrovoc == True]) / nfirstterms print("TF-IDF agrovoc coverage for the ", nfirstterms, "first terms: ", tfidfPercentInAgrovoc) ### TF tfd = tf[0:nfirstterms] tfPercentInWordnet = len(tfd[tfd.wordnet == True]) / nfirstterms print("TF wordnet coverage for the ", nfirstterms, "first terms: ", tfPercentInWordnet) ### H-TFIDF htfidfd = htfidf[0:nfirstterms] htfidfPercentInWordnet = len(htfidfd[htfidfd.wordnet == True]) / nfirstterms print("H-TFIDF wordnet coverage for the", nfirstterms, "first terms: ", htfidfPercentInWordnet) """ """ # Point 6 Comment thesaurus coverage ## plot graph coverage depending nb first elements ### Retrieve the mimimun len (i.e. nb of terms extracted) for the three measure : min_len = min(tfidf.shape[0], tf.shape[0], htfidf.shape[0]) ### Building dataframes containing percent of thesaurus coverage to plot nbfirstelementsRange = range(1, min_len) col = ['h-tfidf', 'tf-idf', 'tf', 'Number_of_the_first_terms_extracted'] wordnetCoverageByNbofterms = pd.DataFrame(columns=col) agrovocCoverageByBbofterms = pd.DataFrame(columns=col) meshCoverageByBbofterms = pd.DataFrame(columns=col) for i, nb in enumerate(nbfirstelementsRange): htfidfd = htfidf[0:nb] tfidfd = tfidf[0:nb] tfd = tf[0:nb] row = { "h-tfidf": len(htfidfd[htfidfd.wordnet == True]) / nb, 'tf-idf': len(tfidfd[tfidfd.wordnet == True]) / nb, 'tf': len(tfd[tfd.wordnet == True]) / nb, 'Number_of_the_first_terms_extracted': nb } wordnetCoverageByNbofterms.loc[i] = row row = { "h-tfidf": len(htfidfd[htfidfd.agrovoc == True]) / nb, 'tf-idf': len(tfidfd[tfidfd.agrovoc == True]) / nb, 'tf': len(tfd[tfd.agrovoc == True]) / nb, 'Number_of_the_first_terms_extracted': nb } agrovocCoverageByBbofterms.loc[i] = row row = { "h-tfidf": len(htfidfd[htfidfd.mesh == True]) / nb, 'tf-idf': len(tfidfd[tfidfd.mesh == True]) / nb, 'tf': len(tfd[tfd.mesh == True]) / nb, 'Number_of_the_first_terms_extracted': nb } meshCoverageByBbofterms.loc[i] = row ### Define the figure and its axes fig, axes = plt.subplots(nrows=3, ncols=1) axes[0].set( xlabel='Number of the first n elements', ylabel='Percentage of terms in wordnet', title='Wordnet' ) axes[0].xaxis.set_visible(False) wordnetCoverageByNbofterms.plot(x='Number_of_the_first_terms_extracted', y=['h-tfidf', 'tf-idf', 'tf'], kind='line', ax=axes[0]) axes[1].set( xlabel='Number of the first n elements', ylabel='Percentage of terms in Agrovoc', title='Agrovoc' ) axes[1].xaxis.set_visible(False) agrovocCoverageByBbofterms.plot(x='Number_of_the_first_terms_extracted', y=['h-tfidf', 'tf-idf', 'tf'], kind='line', ax=axes[1]) axes[2].set( xlabel='Number of the first n elements', ylabel='Percentage of terms in MeSH', title='MeSH' ) # axes[2].xaxis.set_visible(False) meshCoverageByBbofterms.plot(x='Number_of_the_first_terms_extracted', y=['h-tfidf', 'tf-idf', 'tf'], kind='line', ax=axes[2]) # As we hide xlabel for each subplots, we want to share one xlabel below the figure # fig.text(0.32, 0.04, "Number of the first n elements") fig.suptitle("Percentage of terms in Wordnet / Agrovoc / MesH \nby measures H-TFIDF / TF-IDF / TF") fig.set_size_inches(8, 15) # plt.show() # fig.savefig("elasticsearch/analyse/thesaurus_coverage.png") ## Venn diagram & wordcloud ## /!\ I have to modify source of matplotlib_venn_wordcloud/_main.py to have a good layout ... nb_of_terms = 99 htfidfd = htfidf[0:nb_of_terms] tfidfd = tfidf[0:nb_of_terms] tfd = tf[0:nb_of_terms] ### Plot by measure, venn diagram of Wordnet / Agrovoc / MeSH figvenn, axvenn = plt.subplots(1, 3) figvenn.set_size_inches(15, 8) #### H-TFIDF sets = [] sets.append(set(htfidfd.terms[htfidfd.wordnet == True])) sets.append(set(htfidfd.terms[htfidfd.agrovoc == True])) sets.append(set(htfidfd.terms[htfidfd.mesh == True])) axvenn[0].set_title("H-TFIDF Thesaurus coverage", fontsize=20) htfidf_ven = venn3_wordcloud(sets, set_labels=['wordnet', ' agrovoc', ' mesh'], wordcloud_kwargs=dict(min_font_size=4), ax=axvenn[0]) for label in htfidf_ven.set_labels: label.set_fontsize(15) #### TFIDF sets = [] sets.append(set(tfidfd.terms[tfidfd.wordnet == True])) sets.append(set(tfidfd.terms[tfidfd.agrovoc == True])) sets.append(set(tfidfd.terms[tfidfd.mesh == True])) axvenn[1].set_title("TF-IDF Thesaurus coverage", fontsize=20) tfidf_venn = venn3_wordcloud(sets, set_labels=['wordnet', ' agrovoc', ' mesh'], wordcloud_kwargs=dict(min_font_size=4), ax=axvenn[1]) print(tfidf_venn.get_words_by_id("100")) print(tfidf_venn.get_words_by_id("110")) print(tfidf_venn.get_words_by_id("111")) print(tfidf_venn.get_words_by_id("101")) print(tfidfd.shape) for label in tfidf_venn.set_labels: label.set_fontsize(15) #### TF sets = [] sets.append(set(tfd.terms[tfd.wordnet == True])) sets.append(set(tfd.terms[tfd.agrovoc == True])) sets.append(set(tfd.terms[tfd.mesh == True])) axvenn[2].set_title("TF Thesaurus coverage", fontsize=20) tf_venn = venn3_wordcloud(sets, set_labels=['wordnet', ' agrovoc', ' mesh'], wordcloud_kwargs=dict(min_font_size=4), # wordcloud_kwargs=dict(max_font_size=10, min_font_size=10), # set_colors=['r', 'g', 'b'], # alpha=0.8, ax=axvenn[2]) for label in tf_venn.set_labels: label.set_fontsize(15) plt.show() # End of thesaurus coverage """ # Point 7 : count the number of TF / TF-IDF / H-TFIDF terms for each states """ nb_of_extracted_terms_from_mesure = 300 ## Compute a table : (row : state; column: occurence of each terms present in state's tweets) es_tweets_results_filtred_aggstate = compute_occurence_word_by_state() ## Build a table for each measures and compute nb of occurences by states ### TF-IDF tfidf_state_coverage = \ tfidf[['terms', 'score', 'wordnet', 'agrovoc', 'mesh']].iloc[0:nb_of_extracted_terms_from_mesure] tfidf_state_coverage.set_index('terms', inplace=True) for state in es_tweets_results_filtred_aggstate.index: tfidf_state_coverage = \ tfidf_state_coverage.join(es_tweets_results_filtred_aggstate.loc[state], how='left') tfidf_state_coverage.to_csv("elasticsearch/analyse/state_coverage/tfidf_state_coverage.csv") ### TF tf_state_coverage = \ tf[['terms', 'score', 'wordnet', 'agrovoc', 'mesh']].iloc[0:nb_of_extracted_terms_from_mesure] tf_state_coverage.set_index('terms', inplace=True) for state in es_tweets_results_filtred_aggstate.index: tf_state_coverage = \ tf_state_coverage.join(es_tweets_results_filtred_aggstate.loc[state], how='left') tf_state_coverage.to_csv("elasticsearch/analyse/state_coverage/tf_state_coverage.csv") ### H-TFIDF htfidf =
pd.read_csv("elasticsearch/analyse/TFIDFadaptativeBiggestScore.csv", index_col=0)
pandas.read_csv
## Script to add load, generators, missing lines and transformers to SciGRID # # ## WARNING: This script is no longer supported, since the libraries and data no longer exist in their former versions # ## It is kept here for interest's sake # ## See https://github.com/PyPSA/pypsa-eur for a newer model that covers all of Europe # # #This Jupyter Notebook is also available to download at: <http://www.pypsa.org/examples/add_load_gen_trafos_to_scigrid.ipynb> and can be viewed as an HTML page at: http://pypsa.org/examples/add_load_gen_trafos_to_scigrid.html. # #This script does some post-processing on the original SciGRID dataset version 0.2 and then adds load, generation, transformers and missing lines to the SciGRID dataset. # #The intention is to create a model of the German electricity system that is transparent in the sense that all steps from openly-available raw data to the final model can be followed. The model is NOT validated and may contain errors. # #Some of the libraries used for attaching the load and generation are not on github, but can be downloaded at # #http://fias.uni-frankfurt.de/~hoersch/ # #The intention is to release these as free software soon. We cannot guarantee to support you when using these libraries. # # # ### Data sources # #Grid: based on [SciGRID](http://scigrid.de/) Version 0.2 which is based on [OpenStreetMap](http://www.openstreetmap.org/). # #Load size and location: based on Landkreise (NUTS 3) GDP and population. # #Load time series: from ENTSO-E hourly data, scaled up uniformly by factor 1.12 (a simplification of the methodology in Schumacher, Hirth (2015)). # #Conventional power plant capacities and locations: BNetzA list. # #Wind and solar capacities and locations: EEG Stammdaten, based on http://www.energymap.info/download.html, which represents capacities at the end of 2014. Units without PLZ are removed. # #Wind and solar time series: REatlas, Andresen et al, "Validation of Danish wind time series from a new global renewable energy atlas for energy system analysis," Energy 93 (2015) 1074 - 1088. # #NB: # #All times in the dataset are UTC. # #Where SciGRID nodes have been split into 220kV and 380kV substations, all load and generation is attached to the 220kV substation. # ### Warning # #This dataset is ONLY intended to demonstrate the capabilities of PyPSA and is NOT (yet) accurate enough to be used for research purposes. # #Known problems include: # #i) Rough approximations have been made for missing grid data, e.g. 220kV-380kV transformers and connections between close sub-stations missing from OSM. # #ii) There appears to be some unexpected congestion in parts of the network, which may mean for example that the load attachment method (by Voronoi cell overlap with Landkreise) isn't working, particularly in regions with a high density of substations. # #iii) Attaching power plants to the nearest high voltage substation may not reflect reality. # #iv) There is no proper n-1 security in the calculations - this can either be simulated with a blanket e.g. 70% reduction in thermal limits (as done here) or a proper security constrained OPF (see e.g. <http://www.pypsa.org/examples/scigrid-sclopf.ipynb>). # #v) The borders and neighbouring countries are not represented. # #vi) Hydroelectric power stations are not modelled accurately. # #viii) The marginal costs are illustrative, not accurate. # #ix) Only the first day of 2011 is in the github dataset, which is not representative. The full year of 2011 can be downloaded at <http://www.pypsa.org/examples/scigrid-with-load-gen-trafos-2011.zip>. # #x) The ENTSO-E total load for Germany may not be scaled correctly; it is scaled up uniformly by factor 1.12 (a simplification of the methodology in Schumacher, Hirth (2015), which suggests monthly factors). # #xi) Biomass from the EEG Stammdaten are not read in at the moment. # #xii) Power plant start up costs, ramping limits/costs, minimum loading rates are not considered. import pypsa import pandas as pd import numpy as np import os import matplotlib.pyplot as plt #%matplotlib inline ### Read in the raw SciGRID data #You may have to adjust this path to where #you downloaded the github repository #https://github.com/PyPSA/PyPSA folder_prefix = os.path.dirname(pypsa.__file__) + "/../examples/scigrid-de/" #note that some columns have 'quotes because of fields containing commas' vertices = pd.read_csv(folder_prefix+"scigrid-151109/vertices_de_power_151109.csvdata",sep=",",quotechar="'",index_col=0) vertices.rename(columns={"lon":"x","lat":"y","name":"osm_name"},inplace=True) print(vertices["voltage"].value_counts(dropna=False)) links = pd.read_csv(folder_prefix+"scigrid-151109/links_de_power_151109.csvdata",sep=",",quotechar="'",index_col=0) links.rename(columns={"v_id_1":"bus0","v_id_2":"bus1","name":"osm_name"},inplace=True) links["cables"].fillna(3,inplace=True) links["wires"].fillna(2,inplace=True) links["length"] = links["length_m"]/1000. print(links["voltage"].value_counts(dropna=False)) ## Drop the DC lines for voltage in [300000,400000,450000]: links.drop(links[links.voltage == voltage].index,inplace=True) ## Build the network network = pypsa.Network() pypsa.io.import_components_from_dataframe(network,vertices,"Bus") pypsa.io.import_components_from_dataframe(network,links,"Line") ### Add specific missing AC lines # Add AC lines known to be missing in SciGRID # E.g. lines missing because of OSM mapping errors. # This is no systematic list, just what we noticed; # please tell SciGRID and/or <NAME> (<EMAIL>) # if you know of more examples columns = ["bus0","bus1","wires","cables","voltage"] data = [["100","255",2,6,220000], # Niederstedem to Wengerohr ["384","351",4,6,380000], # Raitersaich to Ingolstadt ["351","353",4,6,380000], # Ingolstadt to Irsching ] last_scigrid_line = int(network.lines.index[-1]) index = [str(i) for i in range(last_scigrid_line+1,last_scigrid_line+1 + len(data))] missing_lines = pd.DataFrame(data,index,columns) #On average, SciGRID lines are 25% longer than the direct distance length_factor = 1.25 missing_lines["length"] = [length_factor*pypsa.geo.haversine(network.buses.loc[r.bus0,["x","y"]],network.buses.loc[r.bus1,["x","y"]])[0,0] for i,r in missing_lines.iterrows()] pypsa.io.import_components_from_dataframe(network,missing_lines,"Line") network.lines.tail() ### Determine the voltage of the buses by the lines which end there network.lines.voltage.value_counts() buses_by_voltage = {} for voltage in network.lines.voltage.value_counts().index: buses_by_voltage[voltage] = set(network.lines[network.lines.voltage == voltage].bus0)\ | set(network.lines[network.lines.voltage == voltage].bus1) # give priority to 380 kV network.buses["v_nom"] = 380 network.buses.loc[buses_by_voltage[220000],"v_nom"] = 220 network.buses.loc[buses_by_voltage[380000],"v_nom"] = 380 network.buses.v_nom.value_counts(dropna=False) ### Connect buses which are < 850m apart # #There are pairs of buses less than 850m apart which are not connected in SciGRID, but clearly connected in OpenStreetMap (OSM). # #The reason is that the relations for connections between close substations do not appear in OSM. # #Here they are connected with 2 circuits of the appropriate voltage level (an asumption). # #850m is chosen as a limit based on manually looking through the examples. # #The example 46-48 (Marzahn) at 892 m apart is the first example of close substations which are not connected in reality. # Compute the distances for unique pairs pairs = pd.Series() for i,u in enumerate(network.buses.index): vs = network.buses[["x","y"]].iloc[i+1:] distance_km = pypsa.geo.haversine(vs,network.buses.loc[u,["x","y"]]) to_add =
pd.Series(data=distance_km[:,0],index=[(u,v) for v in vs.index])
pandas.Series
import sys import os import numpy as np import scipy.io import scipy.sparse import numba import random import multiprocessing as mp import subprocess import cytoolz as toolz import collections from itertools import chain import regex as re import yaml import logging import time import gzip import pandas as pd from functools import partial from typing import NamedTuple from pysam import AlignmentFile from .util import compute_edit_distance, read_gene_map_from_gtf from .fastq_io import read_fastq from .barcode import ErrorBarcodeHash, ErrorBarcodeHashConstraint from .estimate_cell_barcode import get_cell_whitelist logging.basicConfig( level=logging.INFO, format='%(asctime)s: %(levelname)s: %(message)s') logger = logging.getLogger(__name__) def format_fastq(*fastq, config, method, fastq_out, cb_count, num_thread=4, max_num_cell=1000000): """ Merging fastq reads by putting the cell barcodes and UMI sequences to the headers of the cDNA reads :param config: the config file :param method: the library preparation protocol, e.g., can be one of 10X, Drop-seq, InDrop, Seq-Well, CEL-seq2, sci-RNA-seq, SPLiT-seq, you can add protocol to the configure file easily by specifying the read structures. A template configuration file is provided in scumi/config.yaml :param fastq: input fastq files :param fastq_out: the output fastq file :param cb_count: an output file containing the # reads for each cell barcode :param num_thread: int the number of cpu cores to use :param max_num_cell: int the maximum number of cells """ with open(config, 'r') as stream: config_dict = yaml.safe_load(stream) config_dict = config_dict[method] num_read = config_dict['num_read'] num_fastq = len(fastq) if num_fastq != num_read: logger.error(f'Error: the number of input fastq files {num_fastq} is different ' f'from the number of fastq files {num_read} detected in the config file') sys.exit(-1) read_regex_str, barcode_filter, read_regex_str_qual = \ zip(*[_extract_input_read_template('read' + str(i), config_dict) for i in range(1, num_read + 1)]) barcode_filter_dict = dict() for d in barcode_filter: barcode_filter_dict.update(d) read_template = _infer_read_template(read_regex_str) # select read_regex_list = [re.compile(z) for z in read_regex_str_qual] format_read = partial(_format_read, read_regex_list=read_regex_list, read_template=read_template.read_template, cb_tag=read_template.cb_tag, ub_len=read_template.ub_len, barcode_filter_dict=barcode_filter_dict) chunk_size = 8000 fastq_reader = [read_fastq(fastq_i) for fastq_i in fastq] chunks = toolz.partition_all(chunk_size, zip(*fastq_reader)) num_cpu = mp.cpu_count() num_thread = num_thread if num_cpu > num_thread else num_cpu seq_chunk_obj = toolz.partition_all(num_thread, chunks) fastq_out_all = [fastq_out + str(x) + '.gz' for x in range(num_thread)] [gzip.open(x, 'wb').close() for x in fastq_out_all] cb_count_all = [cb_count + str(x) + '.csv' for x in range(num_thread)] [open(x, 'wt').close() for x in cb_count_all] fastq_info = collections.defaultdict(collections.Counter) iteration = 0 results = [] time_start = time.time() pool = mp.Pool(num_thread) for fastq_chunk in seq_chunk_obj: res = pool.starmap_async(format_read, zip(fastq_chunk, fastq_out_all, cb_count_all)) results.append(res) if len(results) == num_thread * 10: results[0].wait() while results and results[0].ready(): iteration += 1 if not (iteration % 10): logger.info(f'Processed {iteration * chunk_size * num_thread:,d} reads!') res = results.pop(0) chunk_info = res.get() _update_fastq_info(fastq_info, chunk_info) pool.close() pool.join() for res in results: chunk_info = res.get() _update_fastq_info(fastq_info, chunk_info) with open('.fastq_count.tsv', 'w') as f: for k, v in fastq_info['read'].most_common(): f.write(f'{k}\t{v}\n') cmd_cat_fastq = ' '.join(['cat'] + fastq_out_all + ['>'] + [fastq_out]) try: subprocess.check_output(cmd_cat_fastq, shell=True) [os.remove(fastq_file) for fastq_file in fastq_out_all] except subprocess.CalledProcessError: logger.info(f'Errors in concatenate fastq files') sys.exit(-1) except OSError: logger.info(f'Errors in deleting fastq files') sys.exit(-1) time_used = time.time() - time_start logger.info(f'Formatting fastq done, taking {time_used/3600.0:.3f} hours') if not cb_count: cb_count = fastq_out + '.cb_count' df = _count_cell_barcode_umi(cb_count_all[0]) for cb_file in cb_count_all[1:]: df1 = _count_cell_barcode_umi(cb_file) df = pd.concat([df, df1], axis=0) df = df.groupby(df.index).sum() if df.shape[0] > max_num_cell * 2: df = df.sort_values(by=df.columns[0], ascending=False) df = df.iloc[:max_num_cell, :] try: [os.remove(cb_file) for cb_file in cb_count_all] except OSError: logger.info(f'Errors in deleting cell barcode files') sys.exit(-1) df = df.sort_values(by=df.columns[0], ascending=False) if df.shape[0] > 0: df.columns = [str(x) for x in range(df.shape[1])] df.index.name = 'cb' column_name = list(df.columns.values) column_name[0] = 'cb_count' df.columns = column_name df.to_csv(cb_count, sep='\t') def _update_fastq_info(fastq_info, chunk_info): for fastq_count in chunk_info: fastq_info['read'].update(read_pass=fastq_count[0], read_pass_barcode=fastq_count[1], read_pass_polyt=fastq_count[2], read_total=fastq_count[3]) def _count_cell_barcode_umi(cb_file, chunk_size=10 ** 7): cb_reader = pd.read_csv(cb_file, header=None, iterator=True, sep='\t', index_col=0) chunks = cb_reader.get_chunk(chunk_size) chunks = chunks.groupby(chunks.index).sum() status = True while status: try: chunk = cb_reader.get_chunk(chunk_size) chunks = pd.concat([chunks, chunk], axis=0) chunks = chunks.groupby(chunks.index).sum() except StopIteration: status = False logger.info('Read cell barcode counts done.') return chunks def _extract_barcode_pos(barcode_dict, config): barcode_reg = [] pos_all = [] barcode_filter = dict() for barcode_and_pos in barcode_dict: barcode, pos = barcode_and_pos pos_all.append(pos) barcode_reg.append('(?P<' + barcode + '>.{' + str(pos[1] - pos[0] + 1) + '})') try: value = config[barcode + '_value'] barcode_filter.update({barcode: ErrorBarcodeHash(value, 1)}) except KeyError: pass return barcode_reg, pos_all, barcode_filter def _extract_input_read_template(read, config): read_name = '(@.*)\\n' read_plus = '(\\+.*)\\n' read_qual = '(.*)\\n' filter_dict = dict() seq = [(key, value) for key, value in config[read].items() if key.startswith('cDNA')] if seq: read_name = '@(?P<name>.*)\\n' read_seq = '(?P<seq>.*)\\n' read_qual = '(?P<qual>.*)\\n' read_template = read_name + read_seq + read_plus + read_qual return read_template, filter_dict, read_template cell_barcode = [(key, value) for key, value in config[read].items() if key.startswith('CB') and not key.endswith('value')] umi = [(key, value) for key, value in config[read].items() if key.startswith('UMI')] poly_t = [(key, value) for key, value in config[read].items() if key.startswith('polyT')] cb_reg, cb_pos, cb_filter = _extract_barcode_pos(cell_barcode, config[read]) filter_dict.update(cb_filter) umi_reg, umi_pos, _ = _extract_barcode_pos(umi, config[read]) umi_reg = [z.replace('UMI', 'UB') for z in umi_reg] pt_reg, pt_pos, _ = _extract_barcode_pos(poly_t, config[read]) read_pos_start = [z[0] for z in cb_pos] read_pos_start += [z[0] for z in umi_pos] read_pos_start += [z[0] for z in pt_pos] read_pos_end = [z[1] for z in cb_pos] read_pos_end += [z[1] for z in umi_pos] read_pos_end += [z[1] for z in pt_pos] idx = sorted(range(len(read_pos_start)), key=lambda k: read_pos_start[k]) barcode_tag = cb_reg + umi_reg + pt_reg read_pos_start = [read_pos_start[i] for i in idx] read_pos_end = [read_pos_end[i] for i in idx] barcode_tag = [barcode_tag[i] for i in idx] idx_skip = [read_pos_start[i+1] - read_pos_end[i] - 1 for i in range(0, len(read_pos_start)-1)] barcode_skip = ['[ACGTN]{' + str(i) + '}' for i in idx_skip] read_seq = barcode_tag[0] for i in range(len(read_pos_start)-1): if idx_skip[i] == 0: read_seq += barcode_tag[i+1] else: read_seq += barcode_skip[i] read_seq += barcode_tag[i+1] filter_dict.update(_filter_ploy_t(read_seq)) if read_pos_start[0] > 1: read_seq = '[ACGTN]{' + str(read_pos_start[0]-1) + '}' read_seq += '[ACGTN]*' read_seq = read_seq + '\\n' read_template = read_name + read_seq + read_plus + read_qual read_qual = re.sub('>', r'_qual>', read_seq) read_qual = re.sub('\[ACGTN\]', '.', read_qual) read_template_qual = read_name + read_seq + read_plus + read_qual return read_template, filter_dict, read_template_qual def _filter_ploy_t(read_seq): match = re.findall('\?P<polyT>\.{[0-9]+}', read_seq) poly_t_count = [int(re.findall(r'\d+', z)[0]) for z in match] poly_t_filter = {'polyT': ErrorBarcodeHash('T' * z, 1) for z in poly_t_count} return poly_t_filter def _replace_poly_t(read_seq): match = re.findall('\?P<polyT>\.{[0-9]+}', read_seq) poly_t_count = [int(re.findall(r'\d+', z)[0]) for z in match] poly_t = ['(' + 'T'*z + ')' + '{s<=1}' for z in poly_t_count] for z in range(len(match)): read_seq = read_seq.replace(match[z], poly_t[z]) return read_seq def _infer_read_template(reg_list): class ReadInfo(NamedTuple): cb: bool cb_tag: list cb_len: list ub: bool ub_tag: list ub_len: list read_template: str cb = ub = False cb_tag = ub_tag = [] cb_len = ub_len = [] read_template = '@' reg = ''.join(k for k in reg_list) if 'CB' in reg: logger.info('Cell barcode in configure file') cb = True cb_seq_template = _accumulate_barcode('CB', reg) cb_template = ':CB_' + cb_seq_template[1] read_template += cb_template cb_tag = cb_seq_template[0] cb_len = cb_seq_template[2] if 'UB' in reg: logger.info('UMI in config file') ub = True ub_seq_template = _accumulate_barcode('UB', reg) ub_template = ':UB_' + ub_seq_template[1] read_template += ub_template ub_tag = ub_seq_template[0] ub_len = ub_seq_template[2] read_template += ':{name}' read_template += '\n{seq}\n+\n{qual}\n' return ReadInfo(cb=cb, cb_tag=cb_tag, cb_len=cb_len, ub=ub, ub_tag=ub_tag, ub_len=ub_len, read_template=read_template) def _accumulate_barcode(barcode, seq): barcode_num = [sub_str[0] for sub_str in seq.split('?P<' + re.escape(barcode))][1:] status = '>' in barcode_num barcode_num = ['0' if x == '>' else x for x in barcode_num] barcode_num = sorted(barcode_num, key=int) if status: barcode_num[0] = '' barcode_seq = [barcode + num for num in barcode_num] barcode_template = ['{' + tag + '}' for tag in barcode_seq] barcode_template = '-'.join(barcode_template) str_split = 'P<' + barcode + '[0-9]*>.{' barcode_len = [sub_str for sub_str in re.split(str_split, seq)][1:] barcode_len = [int(re.findall(r'(\d+)', barcode_i)[0]) for barcode_i in barcode_len] return barcode_seq, barcode_template, barcode_len def _format_read(chunk, fastq_file, cb_count_file, read_regex_list, read_template, cb_tag, ub_len, barcode_filter_dict): reads = [] num_read = len(chunk) num_read_pass = num_read_barcode = num_read_polyt = 0 num_regex = len(read_regex_list) barcode_counter = collections.defaultdict( partial(np.zeros, shape=(ub_len[0] + 1), dtype=np.uint32)) ignore_read = False for read_i in chunk: read_dict_list = [] for i, regex_i in enumerate(read_regex_list): read_match = regex_i.match(read_i[i]) if not read_match: ignore_read = True break read_dict_list.append(read_match.groupdict()) if ignore_read: ignore_read = False continue read1_dict = read_dict_list[0] if num_regex > 1: for regex_id in range(1, num_regex): read1_dict.update(read_dict_list[regex_id]) cb = [barcode_filter_dict[tag][read1_dict[tag]] if tag in barcode_filter_dict.keys() else read1_dict[tag] for tag in cb_tag] if all(cb): cb = '-'.join(cb) num_read_barcode += 1 else: ignore_read = True ub = read1_dict['UB'] try: poly_t = read1_dict['polyT'] if not barcode_filter_dict['polyT'][poly_t]: ignore_read = True else: num_read_polyt += 1 except KeyError: pass if ignore_read: ignore_read = False continue num_read_pass += 1 if len(read1_dict['seq']) >= 1: read1_dict = read_template.format_map(read1_dict) reads.append(read1_dict) barcode_counter[cb] += [x == 'T' for x in 'T' + ub] with gzip.open(fastq_file, 'ab') as fastq_hd: for read in reads: fastq_hd.write(bytes(read, 'utf8')) df = pd.DataFrame.from_dict(barcode_counter, orient='index') if df.shape[0] > 0: df = df.sort_values(by=df.columns[0], ascending=False) df.index.name = 'cb' column_name = list(df.columns.values) column_name[0] = 'cb_count' df.columns = column_name df.to_csv(cb_count_file, sep='\t', mode='a', header=False) return num_read_pass, num_read_barcode, num_read_polyt, num_read def _construct_barcode_regex(bam): read_mode = 'r' if bam.endswith('.sam') else 'rb' bam_file = AlignmentFile(bam, mode=read_mode) first_alignment = next(bam_file) bam_file.close() barcodes = set() for barcode in ['CB_', 'UB_']: if barcode in first_alignment.qname: barcodes.add(barcode) barcode_parser = '.*' if 'CB_' in barcodes: barcode_parser += ':CB_(?P<CB>[A-Z\-]+)' if 'UB_' in barcodes: barcode_parser += ':UB_(?P<UB>[A-Z\-]+)' if barcode_parser == '.*': logger.error('Error: no cell barcodes and UMIs.') sys.exit(-1) barcode_parser += ':*' barcode_parser = re.compile(barcode_parser) match = barcode_parser.match(first_alignment.qname) cb = _extract_tag(match, 'CB') return barcode_parser, cb, read_mode def _extract_tag(match, tag): try: tag = match.group(tag) except IndexError: tag = None return tag def count_feature(*cb, bam, molecular_info_h5, gtf, cb_count, feature_tag='XT:Z', expect_cell=False, force_cell=False, all_cell=False, depth_threshold=1, cell_barcode_whitelist=None): """ Count the number of reads/UMIs mapped to each gene :param bam: the input sam/bam file :param molecular_info_h5: output the molecular info :param cb: the input cell barcode files, can be empty or None :param cell_barcode_whitelist: a file contain the selected cell barcodes :param gtf: a GTF file :param cb_count: a file containing the number of reads mapped to each cell barcode, output from format_fastq :param feature_tag: the tag representing genes in the input bam file :param depth_threshold: only considering UMIs that have at least depth_threshold reads support :param expect_cell: the expected number of cells in the bam file :param force_cell: force to return the number of cells set by expect_cell :param all_cell: keep all cell barcodes - can be very slow """ barcode_parser, first_cb, read_mode = _construct_barcode_regex(bam) num_cb = len(first_cb.split('-')) num_cb_file = len(cb) if 0 == num_cb_file: cb = [None] * num_cb elif num_cb != num_cb_file: logger.error(f'Error: the number of input cell barcodes files {num_cb_file} ' f'is different from the number of cell barcodes {num_cb} ' f'detected in the bam file') if num_cb > num_cb_file: cb = cb + [None] * (num_cb - num_cb_file) else: cb = cb[:num_cb] # TODO: no cell barcodes detected correct_cb_fun, cb_list, cb_remove = _construct_cb_filter( cb_count, cb, expect_cell, force_cell, all_cell, cell_barcode_whitelist) gene_map_dict = read_gene_map_from_gtf(gtf) logger.info('Counting molecular info') time_start_count = time.time() sam_file = AlignmentFile(bam, mode=read_mode) _count_feature_partial = partial(_count_feature, gene_map_dict=gene_map_dict, barcode_parser=barcode_parser, correct_cb_fun=correct_cb_fun, sam_file=sam_file, feature_tag=feature_tag) track = sam_file.fetch(until_eof=True) map_info, read_in_cell, molecular_info = _count_feature_partial(track) time_count = time.time() - time_start_count logger.info(f'Counting molecular info done - {time_count/3600.0:.3f} hours, ' f'{int(3600.0 * map_info["num_alignment"]/time_count):,d} ' f'alignments/hour\n') # TODO: still output results if len(molecular_info) == 0: logger.error('Error: no reads mapped to features.') sys.exit(-1) name = ['cell', 'gene', 'umi', 'depth', ] logger.info('Converting to a dataframe') convert_time = time.time() molecular_info = pd.Series(molecular_info).reset_index() molecular_info.columns = name for col in name[:3]: molecular_info.loc[:, col] = molecular_info[col].astype('category') convert_time = time.time() - convert_time logger.info(f'Converting to a dataframe done, ' f'taking {convert_time/60.0:.3f} minutes\n') molecular_info.columns = name if num_cb > 1 and cb_list: molecular_info = molecular_info.loc[molecular_info['cell'].isin(cb_list), :] if cb_remove: molecular_info = molecular_info.loc[~molecular_info['cell'].isin(cb_remove), :] molecular_info = molecular_info.loc[molecular_info['depth'] >= 0.95, :] molecular_info['depth'] = \ np.floor(molecular_info['depth'].values + 0.5).astype('uint32') molecular_info = molecular_info.sort_values(name[:3]) molecular_info = molecular_info.reset_index(drop=True) map_info =
pd.Series(map_info)
pandas.Series
""" test the scalar Timedelta """ import numpy as np from datetime import timedelta import pandas as pd import pandas.util.testing as tm from pandas.tseries.timedeltas import _coerce_scalar_to_timedelta_type as ct from pandas import (Timedelta, TimedeltaIndex, timedelta_range, Series, to_timedelta, compat, isnull) from pandas._libs.tslib import iNaT, NaTType class TestTimedeltas(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): pass def test_construction(self): expected = np.timedelta64(10, 'D').astype('m8[ns]').view('i8') self.assertEqual(Timedelta(10, unit='d').value, expected) self.assertEqual(Timedelta(10.0, unit='d').value, expected) self.assertEqual(Timedelta('10 days').value, expected) self.assertEqual(Timedelta(days=10).value, expected) self.assertEqual(Timedelta(days=10.0).value, expected) expected += np.timedelta64(10, 's').astype('m8[ns]').view('i8') self.assertEqual(Timedelta('10 days 00:00:10').value, expected) self.assertEqual(Timedelta(days=10, seconds=10).value, expected) self.assertEqual( Timedelta(days=10, milliseconds=10 * 1000).value, expected) self.assertEqual( Timedelta(days=10, microseconds=10 * 1000 * 1000).value, expected) # test construction with np dtypes # GH 8757 timedelta_kwargs = {'days': 'D', 'seconds': 's', 'microseconds': 'us', 'milliseconds': 'ms', 'minutes': 'm', 'hours': 'h', 'weeks': 'W'} npdtypes = [np.int64, np.int32, np.int16, np.float64, np.float32, np.float16] for npdtype in npdtypes: for pykwarg, npkwarg in timedelta_kwargs.items(): expected = np.timedelta64(1, npkwarg).astype('m8[ns]').view('i8') self.assertEqual( Timedelta(**{pykwarg: npdtype(1)}).value, expected) # rounding cases self.assertEqual(Timedelta(82739999850000).value, 82739999850000) self.assertTrue('0 days 22:58:59.999850' in str(Timedelta( 82739999850000))) self.assertEqual(Timedelta(123072001000000).value, 123072001000000) self.assertTrue('1 days 10:11:12.001' in str(Timedelta( 123072001000000))) # string conversion with/without leading zero # GH 9570 self.assertEqual(Timedelta('0:00:00'), timedelta(hours=0)) self.assertEqual(Timedelta('00:00:00'), timedelta(hours=0)) self.assertEqual(Timedelta('-1:00:00'), -timedelta(hours=1)) self.assertEqual(Timedelta('-01:00:00'), -timedelta(hours=1)) # more strings & abbrevs # GH 8190 self.assertEqual(Timedelta('1 h'), timedelta(hours=1)) self.assertEqual(Timedelta('1 hour'), timedelta(hours=1)) self.assertEqual(Timedelta('1 hr'), timedelta(hours=1)) self.assertEqual(Timedelta('1 hours'), timedelta(hours=1)) self.assertEqual(Timedelta('-1 hours'), -timedelta(hours=1)) self.assertEqual(Timedelta('1 m'), timedelta(minutes=1)) self.assertEqual(Timedelta('1.5 m'), timedelta(seconds=90)) self.assertEqual(Timedelta('1 minute'), timedelta(minutes=1)) self.assertEqual(Timedelta('1 minutes'), timedelta(minutes=1)) self.assertEqual(Timedelta('1 s'), timedelta(seconds=1)) self.assertEqual(Timedelta('1 second'), timedelta(seconds=1)) self.assertEqual(Timedelta('1 seconds'), timedelta(seconds=1)) self.assertEqual(Timedelta('1 ms'), timedelta(milliseconds=1)) self.assertEqual(Timedelta('1 milli'), timedelta(milliseconds=1)) self.assertEqual(Timedelta('1 millisecond'), timedelta(milliseconds=1)) self.assertEqual(Timedelta('1 us'), timedelta(microseconds=1)) self.assertEqual(Timedelta('1 micros'), timedelta(microseconds=1)) self.assertEqual(Timedelta('1 microsecond'), timedelta(microseconds=1)) self.assertEqual(Timedelta('1.5 microsecond'), Timedelta('00:00:00.000001500')) self.assertEqual(Timedelta('1 ns'), Timedelta('00:00:00.000000001')) self.assertEqual(Timedelta('1 nano'), Timedelta('00:00:00.000000001')) self.assertEqual(Timedelta('1 nanosecond'), Timedelta('00:00:00.000000001')) # combos self.assertEqual(Timedelta('10 days 1 hour'), timedelta(days=10, hours=1)) self.assertEqual(Timedelta('10 days 1 h'), timedelta(days=10, hours=1)) self.assertEqual(Timedelta('10 days 1 h 1m 1s'), timedelta( days=10, hours=1, minutes=1, seconds=1)) self.assertEqual(Timedelta('-10 days 1 h 1m 1s'), - timedelta(days=10, hours=1, minutes=1, seconds=1)) self.assertEqual(Timedelta('-10 days 1 h 1m 1s'), - timedelta(days=10, hours=1, minutes=1, seconds=1)) self.assertEqual(Timedelta('-10 days 1 h 1m 1s 3us'), - timedelta(days=10, hours=1, minutes=1, seconds=1, microseconds=3)) self.assertEqual(Timedelta('-10 days 1 h 1.5m 1s 3us'), - timedelta(days=10, hours=1, minutes=1, seconds=31, microseconds=3)) # currently invalid as it has a - on the hhmmdd part (only allowed on # the days) self.assertRaises(ValueError, lambda: Timedelta('-10 days -1 h 1.5m 1s 3us')) # only leading neg signs are allowed self.assertRaises(ValueError, lambda: Timedelta('10 days -1 h 1.5m 1s 3us')) # no units specified self.assertRaises(ValueError, lambda: Timedelta('3.1415')) # invalid construction tm.assertRaisesRegexp(ValueError, "cannot construct a Timedelta", lambda: Timedelta()) tm.assertRaisesRegexp(ValueError, "unit abbreviation w/o a number", lambda: Timedelta('foo')) tm.assertRaisesRegexp(ValueError, "cannot construct a Timedelta from the passed " "arguments, allowed keywords are ", lambda: Timedelta(day=10)) # roundtripping both for string and value for v in ['1s', '-1s', '1us', '-1us', '1 day', '-1 day', '-23:59:59.999999', '-1 days +23:59:59.999999', '-1ns', '1ns', '-23:59:59.999999999']: td = Timedelta(v) self.assertEqual(Timedelta(td.value), td) # str does not normally display nanos if not td.nanoseconds: self.assertEqual(Timedelta(str(td)), td) self.assertEqual(Timedelta(td._repr_base(format='all')), td) # floats expected = np.timedelta64( 10, 's').astype('m8[ns]').view('i8') + np.timedelta64( 500, 'ms').astype('m8[ns]').view('i8') self.assertEqual(Timedelta(10.5, unit='s').value, expected) # nat self.assertEqual(Timedelta('').value, iNaT) self.assertEqual(Timedelta('nat').value, iNaT) self.assertEqual(Timedelta('NAT').value, iNaT) self.assertEqual(Timedelta(None).value, iNaT) self.assertEqual(Timedelta(np.nan).value, iNaT) self.assertTrue(isnull(Timedelta('nat'))) # offset self.assertEqual(to_timedelta(pd.offsets.Hour(2)), Timedelta('0 days, 02:00:00')) self.assertEqual(Timedelta(pd.offsets.Hour(2)), Timedelta('0 days, 02:00:00')) self.assertEqual(Timedelta(pd.offsets.Second(2)), Timedelta('0 days, 00:00:02')) # unicode # GH 11995 expected = Timedelta('1H') result = pd.Timedelta(u'1H') self.assertEqual(result, expected) self.assertEqual(to_timedelta(pd.offsets.Hour(2)), Timedelta(u'0 days, 02:00:00')) self.assertRaises(ValueError, lambda: Timedelta(u'foo bar')) def test_overflow_on_construction(self): # xref https://github.com/statsmodels/statsmodels/issues/3374 value = pd.Timedelta('1day').value * 20169940 self.assertRaises(OverflowError, pd.Timedelta, value) def test_total_seconds_scalar(self): # GH 10939 rng = Timedelta('1 days, 10:11:12.100123456') expt = 1 * 86400 + 10 * 3600 + 11 * 60 + 12 + 100123456. / 1e9 tm.assert_almost_equal(rng.total_seconds(), expt) rng = Timedelta(np.nan) self.assertTrue(np.isnan(rng.total_seconds())) def test_repr(self): self.assertEqual(repr(Timedelta(10, unit='d')), "Timedelta('10 days 00:00:00')") self.assertEqual(repr(Timedelta(10, unit='s')), "Timedelta('0 days 00:00:10')") self.assertEqual(repr(Timedelta(10, unit='ms')), "Timedelta('0 days 00:00:00.010000')") self.assertEqual(repr(Timedelta(-10, unit='ms')), "Timedelta('-1 days +23:59:59.990000')") def test_conversion(self): for td in [Timedelta(10, unit='d'), Timedelta('1 days, 10:11:12.012345')]: pydt = td.to_pytimedelta() self.assertTrue(td == Timedelta(pydt)) self.assertEqual(td, pydt) self.assertTrue(isinstance(pydt, timedelta) and not isinstance( pydt, Timedelta)) self.assertEqual(td, np.timedelta64(td.value, 'ns')) td64 = td.to_timedelta64() self.assertEqual(td64, np.timedelta64(td.value, 'ns')) self.assertEqual(td, td64) self.assertTrue(isinstance(td64, np.timedelta64)) # this is NOT equal and cannot be roundtriped (because of the nanos) td = Timedelta('1 days, 10:11:12.012345678') self.assertTrue(td != td.to_pytimedelta()) def test_freq_conversion(self): td = Timedelta('1 days 2 hours 3 ns') result = td / np.timedelta64(1, 'D') self.assertEqual(result, td.value / float(86400 * 1e9)) result = td / np.timedelta64(1, 's') self.assertEqual(result, td.value / float(1e9)) result = td / np.timedelta64(1, 'ns') self.assertEqual(result, td.value) def test_fields(self): def check(value): # that we are int/long like self.assertTrue(isinstance(value, (int, compat.long))) # compat to datetime.timedelta rng = to_timedelta('1 days, 10:11:12') self.assertEqual(rng.days, 1) self.assertEqual(rng.seconds, 10 * 3600 + 11 * 60 + 12) self.assertEqual(rng.microseconds, 0) self.assertEqual(rng.nanoseconds, 0) self.assertRaises(AttributeError, lambda: rng.hours) self.assertRaises(AttributeError, lambda: rng.minutes) self.assertRaises(AttributeError, lambda: rng.milliseconds) # GH 10050 check(rng.days) check(rng.seconds) check(rng.microseconds) check(rng.nanoseconds) td = Timedelta('-1 days, 10:11:12') self.assertEqual(abs(td), Timedelta('13:48:48')) self.assertTrue(str(td) == "-1 days +10:11:12") self.assertEqual(-td, Timedelta('0 days 13:48:48')) self.assertEqual(-Timedelta('-1 days, 10:11:12').value, 49728000000000) self.assertEqual(Timedelta('-1 days, 10:11:12').value, -49728000000000) rng = to_timedelta('-1 days, 10:11:12.100123456') self.assertEqual(rng.days, -1) self.assertEqual(rng.seconds, 10 * 3600 + 11 * 60 + 12) self.assertEqual(rng.microseconds, 100 * 1000 + 123) self.assertEqual(rng.nanoseconds, 456) self.assertRaises(AttributeError, lambda: rng.hours) self.assertRaises(AttributeError, lambda: rng.minutes) self.assertRaises(AttributeError, lambda: rng.milliseconds) # components tup = pd.to_timedelta(-1, 'us').components self.assertEqual(tup.days, -1) self.assertEqual(tup.hours, 23) self.assertEqual(tup.minutes, 59) self.assertEqual(tup.seconds, 59) self.assertEqual(tup.milliseconds, 999) self.assertEqual(tup.microseconds, 999) self.assertEqual(tup.nanoseconds, 0) # GH 10050 check(tup.days) check(tup.hours) check(tup.minutes) check(tup.seconds) check(tup.milliseconds) check(tup.microseconds) check(tup.nanoseconds) tup = Timedelta('-1 days 1 us').components self.assertEqual(tup.days, -2) self.assertEqual(tup.hours, 23) self.assertEqual(tup.minutes, 59) self.assertEqual(tup.seconds, 59) self.assertEqual(tup.milliseconds, 999) self.assertEqual(tup.microseconds, 999) self.assertEqual(tup.nanoseconds, 0) def test_nat_converters(self): self.assertEqual(to_timedelta( 'nat', box=False).astype('int64'), iNaT) self.assertEqual(to_timedelta( 'nan', box=False).astype('int64'), iNaT) def testit(unit, transform): # array result = to_timedelta(np.arange(5), unit=unit) expected = TimedeltaIndex([np.timedelta64(i, transform(unit)) for i in np.arange(5).tolist()]) tm.assert_index_equal(result, expected) # scalar result = to_timedelta(2, unit=unit) expected = Timedelta(np.timedelta64(2, transform(unit)).astype( 'timedelta64[ns]')) self.assertEqual(result, expected) # validate all units # GH 6855 for unit in ['Y', 'M', 'W', 'D', 'y', 'w', 'd']: testit(unit, lambda x: x.upper()) for unit in ['days', 'day', 'Day', 'Days']: testit(unit, lambda x: 'D') for unit in ['h', 'm', 's', 'ms', 'us', 'ns', 'H', 'S', 'MS', 'US', 'NS']: testit(unit, lambda x: x.lower()) # offsets # m testit('T', lambda x: 'm') # ms testit('L', lambda x: 'ms') def test_numeric_conversions(self): self.assertEqual(ct(0), np.timedelta64(0, 'ns')) self.assertEqual(ct(10), np.timedelta64(10, 'ns')) self.assertEqual(ct(10, unit='ns'), np.timedelta64( 10, 'ns').astype('m8[ns]')) self.assertEqual(ct(10, unit='us'), np.timedelta64( 10, 'us').astype('m8[ns]')) self.assertEqual(ct(10, unit='ms'), np.timedelta64( 10, 'ms').astype('m8[ns]')) self.assertEqual(ct(10, unit='s'), np.timedelta64( 10, 's').astype('m8[ns]')) self.assertEqual(ct(10, unit='d'), np.timedelta64( 10, 'D').astype('m8[ns]')) def test_timedelta_conversions(self): self.assertEqual(ct(timedelta(seconds=1)), np.timedelta64(1, 's').astype('m8[ns]')) self.assertEqual(ct(timedelta(microseconds=1)), np.timedelta64(1, 'us').astype('m8[ns]')) self.assertEqual(ct(timedelta(days=1)), np.timedelta64(1, 'D').astype('m8[ns]')) def test_round(self): t1 = Timedelta('1 days 02:34:56.789123456') t2 = Timedelta('-1 days 02:34:56.789123456') for (freq, s1, s2) in [('N', t1, t2), ('U', Timedelta('1 days 02:34:56.789123000'), Timedelta('-1 days 02:34:56.789123000')), ('L', Timedelta('1 days 02:34:56.789000000'), Timedelta('-1 days 02:34:56.789000000')), ('S', Timedelta('1 days 02:34:57'), Timedelta('-1 days 02:34:57')), ('2S', Timedelta('1 days 02:34:56'), Timedelta('-1 days 02:34:56')), ('5S', Timedelta('1 days 02:34:55'), Timedelta('-1 days 02:34:55')), ('T', Timedelta('1 days 02:35:00'), Timedelta('-1 days 02:35:00')), ('12T', Timedelta('1 days 02:36:00'), Timedelta('-1 days 02:36:00')), ('H', Timedelta('1 days 03:00:00'), Timedelta('-1 days 03:00:00')), ('d', Timedelta('1 days'), Timedelta('-1 days'))]: r1 = t1.round(freq) self.assertEqual(r1, s1) r2 = t2.round(freq) self.assertEqual(r2, s2) # invalid for freq in ['Y', 'M', 'foobar']: self.assertRaises(ValueError, lambda: t1.round(freq)) t1 = timedelta_range('1 days', periods=3, freq='1 min 2 s 3 us') t2 = -1 * t1 t1a = timedelta_range('1 days', periods=3, freq='1 min 2 s') t1c = pd.TimedeltaIndex([1, 1, 1], unit='D') # note that negative times round DOWN! so don't give whole numbers for (freq, s1, s2) in [('N', t1, t2), ('U', t1, t2), ('L', t1a, TimedeltaIndex(['-1 days +00:00:00', '-2 days +23:58:58', '-2 days +23:57:56'], dtype='timedelta64[ns]', freq=None) ), ('S', t1a, TimedeltaIndex(['-1 days +00:00:00', '-2 days +23:58:58', '-2 days +23:57:56'], dtype='timedelta64[ns]', freq=None) ), ('12T', t1c, TimedeltaIndex(['-1 days', '-1 days', '-1 days'], dtype='timedelta64[ns]', freq=None) ), ('H', t1c, TimedeltaIndex(['-1 days', '-1 days', '-1 days'], dtype='timedelta64[ns]', freq=None) ), ('d', t1c, pd.TimedeltaIndex([-1, -1, -1], unit='D') )]: r1 = t1.round(freq) tm.assert_index_equal(r1, s1) r2 = t2.round(freq) tm.assert_index_equal(r2, s2) # invalid for freq in ['Y', 'M', 'foobar']: self.assertRaises(ValueError, lambda: t1.round(freq)) def test_contains(self): # Checking for any NaT-like objects # GH 13603 td = to_timedelta(range(5), unit='d') + pd.offsets.Hour(1) for v in [pd.NaT, None, float('nan'), np.nan]: self.assertFalse((v in td)) td = to_timedelta([pd.NaT]) for v in [pd.NaT, None, float('nan'), np.nan]: self.assertTrue((v in td)) def test_identity(self): td = Timedelta(10, unit='d') self.assertTrue(isinstance(td, Timedelta)) self.assertTrue(isinstance(td, timedelta)) def test_short_format_converters(self): def conv(v): return v.astype('m8[ns]') self.assertEqual(ct('10'), np.timedelta64(10, 'ns')) self.assertEqual(ct('10ns'), np.timedelta64(10, 'ns')) self.assertEqual(ct('100'), np.timedelta64(100, 'ns')) self.assertEqual(ct('100ns'), np.timedelta64(100, 'ns')) self.assertEqual(ct('1000'), np.timedelta64(1000, 'ns')) self.assertEqual(ct('1000ns'), np.timedelta64(1000, 'ns')) self.assertEqual(ct('1000NS'), np.timedelta64(1000, 'ns')) self.assertEqual(ct('10us'), np.timedelta64(10000, 'ns')) self.assertEqual(ct('100us'), np.timedelta64(100000, 'ns')) self.assertEqual(ct('1000us'), np.timedelta64(1000000, 'ns')) self.assertEqual(ct('1000Us'), np.timedelta64(1000000, 'ns')) self.assertEqual(ct('1000uS'), np.timedelta64(1000000, 'ns')) self.assertEqual(ct('1ms'), np.timedelta64(1000000, 'ns')) self.assertEqual(ct('10ms'), np.timedelta64(10000000, 'ns')) self.assertEqual(ct('100ms'), np.timedelta64(100000000, 'ns')) self.assertEqual(ct('1000ms'), np.timedelta64(1000000000, 'ns')) self.assertEqual(ct('-1s'), -np.timedelta64(1000000000, 'ns')) self.assertEqual(ct('1s'), np.timedelta64(1000000000, 'ns')) self.assertEqual(ct('10s'), np.timedelta64(10000000000, 'ns')) self.assertEqual(
ct('100s')
pandas.tseries.timedeltas._coerce_scalar_to_timedelta_type
import pandas as pd import numpy as np import os import glob import shutil import json import statistics from PIL import Image import random import matplotlib.pyplot as plt from collections import Counter from sklearn.metrics import jaccard_score class AdjacencyMatrices(): def __init__(self) -> None: self.filename = '/home/agun/mimic/dataset/VG/xray_coco_test.json' self.outputdir = "/home/agun/mimic/dataset/VG/" self.diseaselist = ['lung opacity', 'pleural effusion', 'atelectasis', 'enlarged cardiac silhouette', 'pulmonary edema/hazy opacity', 'pneumothorax', 'consolidation', 'fluid overload/heart failure', 'pneumonia'] self.organs = ["right lung", "right apical zone", "right upper lung zone", "right mid lung zone", "right lower lung zone", "right hilar structures", "right costophrenic angle", "left lung", "left apical zone", "left upper lung zone", "left mid lung zone", "left lower lung zone", "left hilar structures", "left costophrenic angle", "mediastinum", "upper mediastinum", "cardiac silhouette", "trachea"] print("Loading json data ...") f = open(str(self.filename),) self.data = json.load(f) self.data_size = len(self.data) print(self.data_size) print("Done loading json data ...") ''' The Similarity measure between each pair of anatomy objects A and B Jaccard similarity measure is used to measure the similarity between each object, by measuring the average similarity over every disease class ''' def anatomy(self): error = 1e-9 anatomy_len = len(self.organs) row = self.organs column = self.organs adj_matrix = [] for ind, B in enumerate(row): print("Processing {} from row {}".format(B, str(ind))) rows = np.zeros([len(self.organs)]) for inde, A in enumerate(column): # print("Processing {} from column {}".format(A, str(inde))) AnB_count = 0 B_count = 0 row_counter = Counter() column_counter = Counter() a_val = [] b_val = [] p_anb = 0 for img in self.data: ids = [self.organs[int(obj['category_id'])] for obj in img['annotations']] aa = [] bb = [] if set(ids) == set(self.organs): for relation in img['annotations']: if int(relation['category_id']) == ind: bb = relation['attributes'] for relations in img['annotations']: if int(relations['category_id']) == inde: aa = relations['attributes'] if np.count_nonzero(np.array(aa)) > 0 or np.count_nonzero(np.array(bb)) > 0: b_val.append(bb) a_val.append(aa) else: continue df_A = pd.DataFrame(a_val, columns=self.diseaselist) df_B = pd.DataFrame(b_val, columns=self.diseaselist) assert len(b_val) == len(a_val) if not df_A.empty: jaccard_list = [] for disease in self.diseaselist: jaccard = jaccard_score(df_B[disease], df_A[disease], average='macro') jaccard_list.append(jaccard) p_anb = statistics.mean(jaccard_list) if ind == inde: p_anb = 1 if p_anb > 0.5: p_anb = 1 else: p_anb = 0 rows[inde] = p_anb adj_matrix.append(rows.tolist()) df = pd.DataFrame(adj_matrix, columns=self.organs) # print(df) filename = os.path.join(self.outputdir, 'anatomy_matrix.csv') df.to_csv(filename, sep='\t', index=False) return df ''' The Conditional Probability of A (disease row) given B (disease Column) P(A|B) = P(AnB)/P(B) ''' def findings(self): filename = os.path.join(self.outputdir, 'findings_matrix.csv') error = 1e-9 row = self.diseaselist column = self.diseaselist adj_matrix = [] for ind, B in enumerate(row): print("Processing {} from row {}".format(B, str(ind))) rows = np.zeros([len(self.diseaselist)]) for inde, A in enumerate(column): # print("Processing {} from column {}".format(A, str(inde))) AnB_count = 0 B_count = 0 for img in self.data: for relation in img['annotations']: if relation['attributes'][ind] == 1: B_count += 1 if (relation['attributes'][inde] == 1) and (relation['attributes'][ind] == 1): AnB_count += 1 p_anb = AnB_count/self.data_size p_b = B_count/self.data_size a_given_b = p_anb / (p_b + error) if a_given_b > 0.4: a_given_b = 1 else: a_given_b = 0 rows[inde] = a_given_b adj_matrix.append(rows.tolist()) print(adj_matrix) df =
pd.DataFrame(adj_matrix, columns=self.diseaselist)
pandas.DataFrame
"""Unit tests for cartoframes.data.utils""" import unittest import pandas as pd from shapely.geometry import Point from shapely.geos import lgeos from geopandas.geoseries import GeoSeries from cartoframes.data import Dataset from cartoframes.auth import Credentials from cartoframes.data.utils import compute_query, compute_geodataframe, \ decode_geometry, detect_encoding_type, ENC_SHAPELY, \ ENC_WKB, ENC_WKB_HEX, ENC_WKB_BHEX, ENC_WKT, ENC_EWKT from cartoframes import context from ..mocks.context_mock import ContextMock class TestDataUtils(unittest.TestCase): """Tests for functions in data.utils module""" def setUp(self): self.credentials = Credentials(username='', api_key='1234') self.geom = [ '010100000000000000000000000000000000000000', '010100000000000000000024400000000000002e40', '010100000000000000000034400000000000003e40' ] self.lng = [0, 10, 20] self.lat = [0, 15, 30] self.geometry = GeoSeries([ Point([0, 0]), Point([10, 15]), Point([20, 30]) ], name='geometry') self.msg = 'No geographic data found. ' 'If a geometry exists, change the column name ' '(geometry, the_geom, wkt_geometry, wkb_geometry, geom, wkt, wkb) ' 'or ensure it is a DataFrame with a valid geometry. ' 'If there are latitude/longitude columns, rename to ' '(latitude, lat), (longitude, lng, lon, long).' self._context_mock = ContextMock() # Mock create_context method self.original_create_context = context.create_context context.create_context = lambda c: self._context_mock def tearDown(self): context.create_context = self.original_create_context def test_compute_query(self): """data.utils.compute_query""" ds = Dataset('table_name', schema='schema', credentials=self.credentials) query = compute_query(ds._strategy) self.assertEqual(query, 'SELECT * FROM "schema"."table_name"') def test_compute_query_default_schema(self): """data.utils.compute_query""" ds = Dataset('table_name', credentials=self.credentials) query = compute_query(ds._strategy) self.assertEqual(query, 'SELECT * FROM "public"."table_name"') def test_compute_geodataframe_geometry(self): ds = Dataset(pd.DataFrame({'geometry': self.geom})) gdf = compute_geodataframe(ds) self.assertEqual(str(gdf.geometry), str(self.geometry)) def test_compute_geodataframe_the_geom(self): ds = Dataset(pd.DataFrame({'the_geom': self.geom})) gdf = compute_geodataframe(ds) self.assertEqual(str(gdf.geometry), str(self.geometry)) def test_compute_geodataframe_wkt_geometry(self): ds = Dataset(pd.DataFrame({'wkt_geometry': self.geom})) gdf = compute_geodataframe(ds) self.assertEqual(str(gdf.geometry), str(self.geometry)) def test_compute_geodataframe_wkb_geometry(self): ds = Dataset(pd.DataFrame({'wkb_geometry': self.geom})) gdf = compute_geodataframe(ds) self.assertEqual(str(gdf.geometry), str(self.geometry)) def test_compute_geodataframe_geom(self): ds = Dataset(
pd.DataFrame({'geom': self.geom})
pandas.DataFrame
# user define imports from my_package.analysis_info import AnalysisInfo, DataInfo, ResultsInfo from my_package.data_cleaner import DataCleaner from my_package import visualizer as visualizer # python imports import numpy as np import pandas as pd from sklearn.model_selection import train_test_split class DataProcessor: def __init__(self): return @staticmethod def data_cleanup(df): return DataCleaner.perform_cleanup(df) @staticmethod def train_test_split(dataset, x_name, y_name, test_size): X = dataset[x_name].values.reshape(-1, 1) y = dataset[y_name].values.reshape(-1, 1) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) return X_train, X_test, y_train, y_test @staticmethod def population_visitors(df, data_map, config): df_selected = df[['population', 'visitor']] df_selected.loc[:, 'population'] = pd.to_numeric(df_selected.loc[:, 'population']) df_selected.loc[:, 'visitor'] = pd.to_numeric(df_selected.loc[:, 'visitor']) df_clean = df_selected.dropna() file_name = "distribution_All_MuseumVisitors_Function_population_visitors.png" silent_mode_enabled = config.silent_mode_enabled visualizer.plot_data_distribution(df_clean['visitor'], file_name, silent_mode_enabled) file_name = "distribution_All_CityPopulation_Function_population_visitors.png" silent_mode_enabled = config.silent_mode_enabled visualizer.plot_data_distribution(df_clean['population'], file_name, silent_mode_enabled) labels = {"x": ["population", "City Population"], "y": ["visitor", "Museum Visitors"]} visualizer.plot_data(df_clean, labels, silent_mode_enabled) x_population = df_clean['population'].to_numpy() y_visitor = df_clean['visitor'].to_numpy() visualizer.quantile_quantile_plot(y_visitor, silent_mode_enabled) visualizer.quantile_quantile_plot(x_population, silent_mode_enabled) X_train, X_test, y_train, y_test = DataProcessor.train_test_split(df_clean, "population", "visitor", 0.2) x_data_info = {"values": x_population.tolist(), "label": "City Population", "train":X_train, "test":X_test} y_data_info = {"values": y_visitor.tolist(), "label": "Museum Visitors", "train":y_train, "test":y_test} return DataInfo(x_data_info=x_data_info, y_data_info=y_data_info) @staticmethod def population_visitors_sum(df, data_map): df_clean = df[data_map.keys()] grouped_df = df_clean.groupby(["city"]) number_cities = grouped_df.ngroups print("number of cities: ", number_cities) number_features = 2 index = -1 train_id_info = np.zeros((number_cities, number_features), dtype=int) for city_data in grouped_df: city_info = city_data[1] index = index + 1 for data in city_info.iterrows(): str_population = data[1]['population'] if str_population: col = 0 population = float(data[1]['population']) train_id_info[index, col] = population col = col + 1 visitor = float(data[1]['visitor']) train_id_info[index, col] = train_id_info[index, col] + visitor x_population = [] y_visitor = [] for data in train_id_info: if data[0] != 0: # population x_population.append(data[0]) # visitor y_visitor.append(data[1]) x_data_info = {"values": x_population, "label": "City Population"} y_data_info = {"values": y_visitor, "label": "Museum Visitors"} return DataInfo(x_data_info=x_data_info, y_data_info=y_data_info) @staticmethod def population_visitors_max(df, data_map): df_clean = df[data_map.keys()] grouped_df = df_clean.groupby(["city"]) number_cities = grouped_df.ngroups print("number of cities: ", number_cities) number_features = 2 index = -1 train_id_info = np.zeros((number_cities, number_features), dtype=int) for city_data in grouped_df: city_info = city_data[1] index = index + 1 for data in city_info.iterrows(): str_population = data[1]['population'] if str_population: col = 0 population = float(data[1]['population']) train_id_info[index, col] = population col = col + 1 visitor = float(data[1]['visitor']) train_id_info[index, col] = max(train_id_info[index, col], visitor) x_population = [] y_visitor = [] for data in train_id_info: if data[0] != 0: # population x_population.append(data[0]) # visitor y_visitor.append(data[1]) x_data_info = {"values": x_population, "label": "City Population"} y_data_info = {"values": y_visitor, "label": "Museum Visitors"} return DataInfo(x_data_info=x_data_info, y_data_info=y_data_info) @staticmethod def city_visitor_museum_visitors(df, data_map, config): df_selected = df[['city_visitor', 'visitor']] df_selected.loc[:, 'city_visitor'] = pd.to_numeric(df_selected.loc[:, 'city_visitor']) df_selected.loc[:, 'visitor'] = pd.to_numeric(df_selected.loc[:, 'visitor']) df_clean = df_selected.dropna() file_name = "distribution_All_MuseumVisitors_Function_city_visitor_museum_visitors.png" silent_mode_enabled = config.silent_mode_enabled visualizer.plot_data_distribution(df_clean['visitor'], file_name, silent_mode_enabled) file_name = "distribution_All_CityVisitors_Function_city_visitor_museum_visitors.png" silent_mode_enabled = config.silent_mode_enabled visualizer.plot_data_distribution(df_clean['city_visitor'], file_name, silent_mode_enabled) labels = {"x": ["city_visitor", "City Visitors"], "y": ["visitor", "Museum Visitors"]} visualizer.plot_data(df_clean, labels, silent_mode_enabled) x_city_visitor = df_clean['city_visitor'].to_numpy() y_visitor = df_clean['visitor'].to_numpy() X_train, X_test, y_train, y_test = DataProcessor.train_test_split(df_clean, "city_visitor", "visitor", 0.2) x_data_info = {"values": x_city_visitor.tolist(), "label": "City Visitors", "train":X_train, "test":X_test} y_data_info = {"values": y_visitor.tolist(), "label": "Museum Visitors", "train":y_train, "test":y_test} return DataInfo(x_data_info=x_data_info, y_data_info=y_data_info) @staticmethod def city_visitor_museum_visitors_sum(df, data_map): df_clean = df[data_map.keys()] grouped_df = df_clean.groupby(["city"]) number_cities = grouped_df.ngroups print("number of cities: ", number_cities) number_features = 2 index = -1 train_id_info = np.zeros((number_cities, number_features), dtype=int) for city_data in grouped_df: train_id_label_info = 0 city_info = city_data[1] total_visitors = 0 index = index + 1 for data in city_info.iterrows(): str_city_visitor = data[1]['city_visitor'] if str_city_visitor: col = 0 city_visitor = float(data[1]['city_visitor']) train_id_info[index, col] = city_visitor col = col + 1 visitor = float(data[1]['visitor']) train_id_info[index, col] = train_id_info[index, col] + visitor x_city_visitor = [] y_visitor = [] for data in train_id_info: if data[0] != 0: # population x_city_visitor.append(data[0]) # visitor y_visitor.append(data[1]) x_data_info = {"values": x_city_visitor, "label": "City Visitors"} y_data_info = {"values": y_visitor, "label": "Museum Visitors"} return DataInfo(x_data_info=x_data_info, y_data_info=y_data_info) @staticmethod def city_visitor_museum_visitors_max(df, data_map): df_clean = df[data_map.keys()] grouped_df = df_clean.groupby(["city"]) number_cities = grouped_df.ngroups print("number of cities: ", number_cities) number_features = 2 index = -1 train_id_info = np.zeros((number_cities, number_features), dtype=int) for city_data in grouped_df: city_info = city_data[1] index = index + 1 for data in city_info.iterrows(): str_city_visitor = data[1]['city_visitor'] if str_city_visitor: col = 0 city_visitor = float(data[1]['city_visitor']) train_id_info[index, col] = city_visitor col = col + 1 visitor = float(data[1]['visitor']) train_id_info[index, col] = max(train_id_info[index, col], visitor) x_city_visitor = [] y_visitor = [] for data in train_id_info: if data[0] != 0: # population x_city_visitor.append(data[0]) # visitor y_visitor.append(data[1]) x_data_info = {"values": x_city_visitor, "label": "City Visitors"} y_data_info = {"values": y_visitor, "label": "Museum Visitors"} return DataInfo(x_data_info=x_data_info, y_data_info=y_data_info) @staticmethod def multiple_linear_data(dataset, data_map, config): #todo: this function should be refactor, # new machine _learning_component is needed dataset = dataset[data_map.keys()] dataset.loc[:, 'population'] =
pd.to_numeric(dataset.loc[:, 'population'])
pandas.to_numeric
""" Miscellaneous functions useful for Threat Hunting and cybersecurity data analytics """ from __future__ import division from builtins import input import getpass import math from jellyfish import levenshtein_distance, damerau_levenshtein_distance, hamming_distance, jaro_similarity, jaro_winkler_similarity import sys import platform import multiprocessing import re import pandas as pd import numpy as np from pandas.api.types import is_list_like from math import trunc from scipy.stats import chisquare __all__ = ['entropy', 'entropy_per_byte', 'promptCreds', 'edit_distance'] def entropy(string): ''' Calculates the Shannon entropy of a string. string: A string for which to compute the entropy. ''' # get probability of chars in string prob = [ string.count(c) / len(string) for c in dict.fromkeys(list(string)) ] # calculate the entropy entropy = - sum([ p * math.log(p) / math.log(2.0) for p in prob ]) return entropy def entropy_per_byte(string): ''' Calculates the Shannon entropy of a string, divided by the total bytes in the string. This is an attempt to normalize entropy values between strings of different lengths. string: A string for which to compute the entropy per byte ''' e = entropy(string) return e / len(string) def promptCreds(uprompt="Username: ", pprompt="Password: "): ''' Prompt the user for login credentials for some service. This is a helpful convenience when using things like Jupyter notebook, where it may not always be obvious how to collect input from the user. The function returns a (username, password) tuple. uprompt: A string containing the username prompt. Default is "Username: ". pprompt: A string containing the password prompt. Default is "Password: ". ''' u = input(uprompt) p = getpass.getpass(pprompt) return (u,p) def edit_distance(str1, str2, method="damerau-levenshtein"): ''' Calculate the edit distance between 'str1' and 'str2' using any of a number of algorithms. 'str1', 'str2': Input strings 'method': The algorithm to use. Available algorithms: * levenshtein * damerau-levenshtein (DEFAULT) * hamming * jaro * jaro-winkler Return values: "levenshtein", "damerau-levenshtein" and "hamming" return integers "jaro" and "jaro-winkler" return floats in the range of 0.0 (completely different) to 1.0 (identical strings). ''' algos = { "levenshtein":levenshtein_distance, "damerau-levenshtein":damerau_levenshtein_distance, "hamming":hamming_distance, "jaro":jaro_similarity, "jaro-winkler":jaro_winkler_similarity } if not method in list(algos.keys()): raise ValueError("Unsupported algorithm type: %s" % method) if str1 is None or str2 is None or not isinstance(str1, str) or not isinstance(str2, str): raise TypeError("Arguments must be strings.") distance_function = algos[method] # All the jellyfish distance functions expect unicode, which is the default # for Python3. If we're running in Python2, we need to convert them. python_version = sys.version_info if python_version.major == 2: str1 = unicode(str1) str2 = unicode(str2) return distance_function(str1, str2) def benfords(numbers): ''' Examine the distribution of the first digits in a given corpus of numbers to see if they correspond to Benford's Law using a chi square test. Benford's Law, also known as the "first digit law" or the "law of anomalous numbers" states that there is a specific distribution pattern of the first digits of certain groups of numbers. See https://en.wikipedia.org/wiki/Benford%27s_law for more info. :param numbers: The set of numbers to check against Benford's Law :type numbers: A list-like object (list, tuple, set, Pandas DataFrame or Series) containing floats or integers :Return Value: The function returns three values in a tuple (chi2, p, counts): * The 'chi2' value is a float in the range 0..1 that describes how well the observed distribution of first digits matched the predictions of Benford's Law. Lower is better. * The 'p' value is the probability that the computed 'chi2' is significant (i.e., it tells you whether the chi2 value can be trusted). Its range is also 0..1, but in this case, higher is better. Generally speaking, if the p-value is >= 0.95 then the chi2 value is considered significant. * 'counts' is a Pandas series where the indices are the possible first digits 1-9 and the values are the observed distributions of those digits. If the observed distributions didn't match up with Benford's law, the counts may help you identify the anomalous values. ''' def _first_digit(i: float): # This doesn't apply to zeros! if i == 0: return np.nan # Make negative numbers positive if i < 0: i = abs(i) # If the number is between 0 and 1, multiply by 10 until it becomes > 1 # so the repeated divisions will work elif i < 1: while i < 1: i *= 10 while i >= 10: i //= 10 return trunc(i) _BENFORDS = [ 0.301, # 1 0.176, # 2 0.125, # 3 0.097, # 4 0.079, # 5 0.067, # 6 0.058, # 7 0.051, # 8 0.046 # 9 ] if not
is_list_like(numbers)
pandas.api.types.is_list_like
# Copyright 2019, The TensorFlow Federated Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Internal dispatcher for training loops.""" import collections import contextlib import os.path import pprint import time from typing import Any, Callable, Dict, List, Optional from absl import flags from absl import logging import pandas as pd import tensorflow as tf from tensorflow_federated.python.research.utils import adapters from tensorflow_federated.python.research.utils import checkpoint_manager from tensorflow_federated.python.research.utils import metrics_manager from tensorflow_federated.python.research.utils import utils_impl # Defining training loop flags with utils_impl.record_hparam_flags(): # Training rounds flags.DEFINE_integer('total_rounds', 200, 'Number of total training rounds.') # Root output directory. flags.DEFINE_string('root_output_dir', '/tmp/fed_opt/', 'Root directory for writing experiment output.') flags.DEFINE_string( 'experiment_name', None, 'The name of this experiment. Will be append to ' '--root_output_dir to separate experiment results.') # Checkpoint and evaluation flags. flags.DEFINE_integer('rounds_per_eval', 1, 'How often to evaluate the global model.') flags.DEFINE_integer('rounds_per_checkpoint', 50, 'How often to checkpoint the global model.') flags.DEFINE_integer( 'rounds_per_profile', 0, '(Experimental) How often to run the experimental TF profiler, if >0.') FLAGS = flags.FLAGS def create_if_not_exists(path): try: tf.io.gfile.makedirs(path) except tf.errors.OpError: logging.info('Skipping creation of directory [%s], already exists', path) def _setup_outputs(root_output_dir, experiment_name, hparam_dict): """Set up directories for experiment loops, write hyperparameters to disk.""" if not experiment_name: raise ValueError('experiment_name must be specified.') create_if_not_exists(root_output_dir) checkpoint_dir = os.path.join(root_output_dir, 'checkpoints', experiment_name) create_if_not_exists(checkpoint_dir) checkpoint_mngr = checkpoint_manager.FileCheckpointManager(checkpoint_dir) results_dir = os.path.join(root_output_dir, 'results', experiment_name) create_if_not_exists(results_dir) metrics_mngr = metrics_manager.ScalarMetricsManager(results_dir) summary_logdir = os.path.join(root_output_dir, 'logdir', experiment_name) create_if_not_exists(summary_logdir) summary_writer = tf.compat.v2.summary.create_file_writer(summary_logdir) hparam_dict['metrics_file'] = metrics_mngr.metrics_filename hparams_file = os.path.join(results_dir, 'hparams.csv') utils_impl.atomic_write_to_csv(
pd.Series(hparam_dict)
pandas.Series
# pylint: disable-msg=W0612,E1101,W0141 import nose from numpy.random import randn import numpy as np from pandas.core.index import Index, MultiIndex from pandas import Panel, DataFrame, Series, notnull, isnull from pandas.util.testing import (assert_almost_equal, assert_series_equal, assert_frame_equal, assertRaisesRegexp) import pandas.core.common as com import pandas.util.testing as tm from pandas.compat import (range, lrange, StringIO, lzip, u, cPickle, product as cart_product, zip) import pandas as pd import pandas.index as _index class TestMultiLevel(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): import warnings warnings.filterwarnings(action='ignore', category=FutureWarning) index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) self.frame = DataFrame(np.random.randn(10, 3), index=index, columns=Index(['A', 'B', 'C'], name='exp')) self.single_level = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux']], labels=[[0, 1, 2, 3]], names=['first']) # create test series object arrays = [['bar', 'bar', 'baz', 'baz', 'qux', 'qux', 'foo', 'foo'], ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']] tuples = lzip(*arrays) index = MultiIndex.from_tuples(tuples) s = Series(randn(8), index=index) s[3] = np.NaN self.series = s tm.N = 100 self.tdf = tm.makeTimeDataFrame() self.ymd = self.tdf.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]).sum() # use Int64Index, to make sure things work self.ymd.index.set_levels([lev.astype('i8') for lev in self.ymd.index.levels], inplace=True) self.ymd.index.set_names(['year', 'month', 'day'], inplace=True) def test_append(self): a, b = self.frame[:5], self.frame[5:] result = a.append(b) tm.assert_frame_equal(result, self.frame) result = a['A'].append(b['A']) tm.assert_series_equal(result, self.frame['A']) def test_dataframe_constructor(self): multi = DataFrame(np.random.randn(4, 4), index=[np.array(['a', 'a', 'b', 'b']), np.array(['x', 'y', 'x', 'y'])]) tm.assert_isinstance(multi.index, MultiIndex) self.assertNotIsInstance(multi.columns, MultiIndex) multi = DataFrame(np.random.randn(4, 4), columns=[['a', 'a', 'b', 'b'], ['x', 'y', 'x', 'y']]) tm.assert_isinstance(multi.columns, MultiIndex) def test_series_constructor(self): multi = Series(1., index=[np.array(['a', 'a', 'b', 'b']), np.array(['x', 'y', 'x', 'y'])]) tm.assert_isinstance(multi.index, MultiIndex) multi = Series(1., index=[['a', 'a', 'b', 'b'], ['x', 'y', 'x', 'y']]) tm.assert_isinstance(multi.index, MultiIndex) multi = Series(lrange(4), index=[['a', 'a', 'b', 'b'], ['x', 'y', 'x', 'y']]) tm.assert_isinstance(multi.index, MultiIndex) def test_reindex_level(self): # axis=0 month_sums = self.ymd.sum(level='month') result = month_sums.reindex(self.ymd.index, level=1) expected = self.ymd.groupby(level='month').transform(np.sum) assert_frame_equal(result, expected) # Series result = month_sums['A'].reindex(self.ymd.index, level=1) expected = self.ymd['A'].groupby(level='month').transform(np.sum) assert_series_equal(result, expected) # axis=1 month_sums = self.ymd.T.sum(axis=1, level='month') result = month_sums.reindex(columns=self.ymd.index, level=1) expected = self.ymd.groupby(level='month').transform(np.sum).T assert_frame_equal(result, expected) def test_binops_level(self): def _check_op(opname): op = getattr(DataFrame, opname) month_sums = self.ymd.sum(level='month') result = op(self.ymd, month_sums, level='month') broadcasted = self.ymd.groupby(level='month').transform(np.sum) expected = op(self.ymd, broadcasted) assert_frame_equal(result, expected) # Series op = getattr(Series, opname) result = op(self.ymd['A'], month_sums['A'], level='month') broadcasted = self.ymd['A'].groupby( level='month').transform(np.sum) expected = op(self.ymd['A'], broadcasted) assert_series_equal(result, expected) _check_op('sub') _check_op('add') _check_op('mul') _check_op('div') def test_pickle(self): def _test_roundtrip(frame): pickled = cPickle.dumps(frame) unpickled = cPickle.loads(pickled) assert_frame_equal(frame, unpickled) _test_roundtrip(self.frame) _test_roundtrip(self.frame.T) _test_roundtrip(self.ymd) _test_roundtrip(self.ymd.T) def test_reindex(self): reindexed = self.frame.ix[[('foo', 'one'), ('bar', 'one')]] expected = self.frame.ix[[0, 3]] assert_frame_equal(reindexed, expected) def test_reindex_preserve_levels(self): new_index = self.ymd.index[::10] chunk = self.ymd.reindex(new_index) self.assertIs(chunk.index, new_index) chunk = self.ymd.ix[new_index] self.assertIs(chunk.index, new_index) ymdT = self.ymd.T chunk = ymdT.reindex(columns=new_index) self.assertIs(chunk.columns, new_index) chunk = ymdT.ix[:, new_index] self.assertIs(chunk.columns, new_index) def test_sort_index_preserve_levels(self): result = self.frame.sort_index() self.assertEquals(result.index.names, self.frame.index.names) def test_repr_to_string(self): repr(self.frame) repr(self.ymd) repr(self.frame.T) repr(self.ymd.T) buf = StringIO() self.frame.to_string(buf=buf) self.ymd.to_string(buf=buf) self.frame.T.to_string(buf=buf) self.ymd.T.to_string(buf=buf) def test_repr_name_coincide(self): index = MultiIndex.from_tuples([('a', 0, 'foo'), ('b', 1, 'bar')], names=['a', 'b', 'c']) df = DataFrame({'value': [0, 1]}, index=index) lines = repr(df).split('\n') self.assert_(lines[2].startswith('a 0 foo')) def test_getitem_simple(self): df = self.frame.T col = df['foo', 'one'] assert_almost_equal(col.values, df.values[:, 0]) self.assertRaises(KeyError, df.__getitem__, ('foo', 'four')) self.assertRaises(KeyError, df.__getitem__, 'foobar') def test_series_getitem(self): s = self.ymd['A'] result = s[2000, 3] result2 = s.ix[2000, 3] expected = s.reindex(s.index[42:65]) expected.index = expected.index.droplevel(0).droplevel(0) assert_series_equal(result, expected) result = s[2000, 3, 10] expected = s[49] self.assertEquals(result, expected) # fancy result = s.ix[[(2000, 3, 10), (2000, 3, 13)]] expected = s.reindex(s.index[49:51]) assert_series_equal(result, expected) # key error self.assertRaises(KeyError, s.__getitem__, (2000, 3, 4)) def test_series_getitem_corner(self): s = self.ymd['A'] # don't segfault, GH #495 # out of bounds access self.assertRaises(IndexError, s.__getitem__, len(self.ymd)) # generator result = s[(x > 0 for x in s)] expected = s[s > 0] assert_series_equal(result, expected) def test_series_setitem(self): s = self.ymd['A'] s[2000, 3] = np.nan self.assert_(isnull(s.values[42:65]).all()) self.assert_(notnull(s.values[:42]).all()) self.assert_(notnull(s.values[65:]).all()) s[2000, 3, 10] = np.nan self.assert_(isnull(s[49])) def test_series_slice_partial(self): pass def test_frame_getitem_setitem_boolean(self): df = self.frame.T.copy() values = df.values result = df[df > 0] expected = df.where(df > 0) assert_frame_equal(result, expected) df[df > 0] = 5 values[values > 0] = 5 assert_almost_equal(df.values, values) df[df == 5] = 0 values[values == 5] = 0 assert_almost_equal(df.values, values) # a df that needs alignment first df[df[:-1] < 0] = 2 np.putmask(values[:-1], values[:-1] < 0, 2) assert_almost_equal(df.values, values) with assertRaisesRegexp(TypeError, 'boolean values only'): df[df * 0] = 2 def test_frame_getitem_setitem_slice(self): # getitem result = self.frame.ix[:4] expected = self.frame[:4] assert_frame_equal(result, expected) # setitem cp = self.frame.copy() cp.ix[:4] = 0 self.assert_((cp.values[:4] == 0).all()) self.assert_((cp.values[4:] != 0).all()) def test_frame_getitem_setitem_multislice(self): levels = [['t1', 't2'], ['a', 'b', 'c']] labels = [[0, 0, 0, 1, 1], [0, 1, 2, 0, 1]] midx = MultiIndex(labels=labels, levels=levels, names=[None, 'id']) df = DataFrame({'value': [1, 2, 3, 7, 8]}, index=midx) result = df.ix[:, 'value'] assert_series_equal(df['value'], result) result = df.ix[1:3, 'value'] assert_series_equal(df['value'][1:3], result) result = df.ix[:, :] assert_frame_equal(df, result) result = df df.ix[:, 'value'] = 10 result['value'] = 10 assert_frame_equal(df, result) df.ix[:, :] = 10 assert_frame_equal(df, result) def test_frame_getitem_multicolumn_empty_level(self): f = DataFrame({'a': ['1', '2', '3'], 'b': ['2', '3', '4']}) f.columns = [['level1 item1', 'level1 item2'], ['', 'level2 item2'], ['level3 item1', 'level3 item2']] result = f['level1 item1'] expected = DataFrame([['1'], ['2'], ['3']], index=f.index, columns=['level3 item1']) assert_frame_equal(result, expected) def test_frame_setitem_multi_column(self): df = DataFrame(randn(10, 4), columns=[['a', 'a', 'b', 'b'], [0, 1, 0, 1]]) cp = df.copy() cp['a'] = cp['b'] assert_frame_equal(cp['a'], cp['b']) # set with ndarray cp = df.copy() cp['a'] = cp['b'].values assert_frame_equal(cp['a'], cp['b']) #---------------------------------------- # #1803 columns = MultiIndex.from_tuples([('A', '1'), ('A', '2'), ('B', '1')]) df = DataFrame(index=[1, 3, 5], columns=columns) # Works, but adds a column instead of updating the two existing ones df['A'] = 0.0 # Doesn't work self.assertTrue((df['A'].values == 0).all()) # it broadcasts df['B', '1'] = [1, 2, 3] df['A'] = df['B', '1'] assert_series_equal(df['A', '1'], df['B', '1']) assert_series_equal(df['A', '2'], df['B', '1']) def test_getitem_tuple_plus_slice(self): # GH #671 df = DataFrame({'a': lrange(10), 'b': lrange(10), 'c': np.random.randn(10), 'd': np.random.randn(10)}) idf = df.set_index(['a', 'b']) result = idf.ix[(0, 0), :] expected = idf.ix[0, 0] expected2 = idf.xs((0, 0)) assert_series_equal(result, expected) assert_series_equal(result, expected2) def test_getitem_setitem_tuple_plus_columns(self): # GH #1013 df = self.ymd[:5] result = df.ix[(2000, 1, 6), ['A', 'B', 'C']] expected = df.ix[2000, 1, 6][['A', 'B', 'C']] assert_series_equal(result, expected) def test_getitem_multilevel_index_tuple_unsorted(self): index_columns = list("abc") df = DataFrame([[0, 1, 0, "x"], [0, 0, 1, "y"]], columns=index_columns + ["data"]) df = df.set_index(index_columns) query_index = df.index[:1] rs = df.ix[query_index, "data"] xp = Series(['x'], index=MultiIndex.from_tuples([(0, 1, 0)])) assert_series_equal(rs, xp) def test_xs(self): xs = self.frame.xs(('bar', 'two')) xs2 = self.frame.ix[('bar', 'two')] assert_series_equal(xs, xs2) assert_almost_equal(xs.values, self.frame.values[4]) # GH 6574 # missing values in returned index should be preserrved acc = [ ('a','abcde',1), ('b','bbcde',2), ('y','yzcde',25), ('z','xbcde',24), ('z',None,26), ('z','zbcde',25), ('z','ybcde',26), ] df = DataFrame(acc, columns=['a1','a2','cnt']).set_index(['a1','a2']) expected = DataFrame({ 'cnt' : [24,26,25,26] }, index=Index(['xbcde',np.nan,'zbcde','ybcde'],name='a2')) result = df.xs('z',level='a1') assert_frame_equal(result, expected) def test_xs_partial(self): result = self.frame.xs('foo') result2 = self.frame.ix['foo'] expected = self.frame.T['foo'].T assert_frame_equal(result, expected) assert_frame_equal(result, result2) result = self.ymd.xs((2000, 4)) expected = self.ymd.ix[2000, 4] assert_frame_equal(result, expected) # ex from #1796 index = MultiIndex(levels=[['foo', 'bar'], ['one', 'two'], [-1, 1]], labels=[[0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 1, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 1, 0, 1]]) df = DataFrame(np.random.randn(8, 4), index=index, columns=list('abcd')) result = df.xs(['foo', 'one']) expected = df.ix['foo', 'one'] assert_frame_equal(result, expected) def test_xs_level(self): result = self.frame.xs('two', level='second') expected = self.frame[self.frame.index.get_level_values(1) == 'two'] expected.index = expected.index.droplevel(1) assert_frame_equal(result, expected) index = MultiIndex.from_tuples([('x', 'y', 'z'), ('a', 'b', 'c'), ('p', 'q', 'r')]) df = DataFrame(np.random.randn(3, 5), index=index) result = df.xs('c', level=2) expected = df[1:2] expected.index = expected.index.droplevel(2) assert_frame_equal(result, expected) # this is a copy in 0.14 result = self.frame.xs('two', level='second') # setting this will give a SettingWithCopyError # as we are trying to write a view def f(x): x[:] = 10 self.assertRaises(com.SettingWithCopyError, f, result) def test_xs_level_multiple(self): from pandas import read_table text = """ A B C D E one two three four a b 10.0032 5 -0.5109 -2.3358 -0.4645 0.05076 0.3640 a q 20 4 0.4473 1.4152 0.2834 1.00661 0.1744 x q 30 3 -0.6662 -0.5243 -0.3580 0.89145 2.5838""" df = read_table(StringIO(text), sep='\s+', engine='python') result = df.xs(('a', 4), level=['one', 'four']) expected = df.xs('a').xs(4, level='four') assert_frame_equal(result, expected) # this is a copy in 0.14 result = df.xs(('a', 4), level=['one', 'four']) # setting this will give a SettingWithCopyError # as we are trying to write a view def f(x): x[:] = 10 self.assertRaises(com.SettingWithCopyError, f, result) # GH2107 dates = lrange(20111201, 20111205) ids = 'abcde' idx = MultiIndex.from_tuples([x for x in cart_product(dates, ids)]) idx.names = ['date', 'secid'] df = DataFrame(np.random.randn(len(idx), 3), idx, ['X', 'Y', 'Z']) rs = df.xs(20111201, level='date') xp = df.ix[20111201, :] assert_frame_equal(rs, xp) def test_xs_level0(self): from pandas import read_table text = """ A B C D E one two three four a b 10.0032 5 -0.5109 -2.3358 -0.4645 0.05076 0.3640 a q 20 4 0.4473 1.4152 0.2834 1.00661 0.1744 x q 30 3 -0.6662 -0.5243 -0.3580 0.89145 2.5838""" df = read_table(StringIO(text), sep='\s+', engine='python') result = df.xs('a', level=0) expected = df.xs('a') self.assertEqual(len(result), 2) assert_frame_equal(result, expected) def test_xs_level_series(self): s = self.frame['A'] result = s[:, 'two'] expected = self.frame.xs('two', level=1)['A'] assert_series_equal(result, expected) s = self.ymd['A'] result = s[2000, 5] expected = self.ymd.ix[2000, 5]['A'] assert_series_equal(result, expected) # not implementing this for now self.assertRaises(TypeError, s.__getitem__, (2000, slice(3, 4))) # result = s[2000, 3:4] # lv =s.index.get_level_values(1) # expected = s[(lv == 3) | (lv == 4)] # expected.index = expected.index.droplevel(0) # assert_series_equal(result, expected) # can do this though def test_get_loc_single_level(self): s = Series(np.random.randn(len(self.single_level)), index=self.single_level) for k in self.single_level.values: s[k] def test_getitem_toplevel(self): df = self.frame.T result = df['foo'] expected = df.reindex(columns=df.columns[:3]) expected.columns = expected.columns.droplevel(0) assert_frame_equal(result, expected) result = df['bar'] result2 = df.ix[:, 'bar'] expected = df.reindex(columns=df.columns[3:5]) expected.columns = expected.columns.droplevel(0) assert_frame_equal(result, expected) assert_frame_equal(result, result2) def test_getitem_setitem_slice_integers(self): index = MultiIndex(levels=[[0, 1, 2], [0, 2]], labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]]) frame = DataFrame(np.random.randn(len(index), 4), index=index, columns=['a', 'b', 'c', 'd']) res = frame.ix[1:2] exp = frame.reindex(frame.index[2:]) assert_frame_equal(res, exp) frame.ix[1:2] = 7 self.assert_((frame.ix[1:2] == 7).values.all()) series = Series(np.random.randn(len(index)), index=index) res = series.ix[1:2] exp = series.reindex(series.index[2:]) assert_series_equal(res, exp) series.ix[1:2] = 7 self.assert_((series.ix[1:2] == 7).values.all()) def test_getitem_int(self): levels = [[0, 1], [0, 1, 2]] labels = [[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]] index = MultiIndex(levels=levels, labels=labels) frame = DataFrame(np.random.randn(6, 2), index=index) result = frame.ix[1] expected = frame[-3:] expected.index = expected.index.droplevel(0) assert_frame_equal(result, expected) # raises exception self.assertRaises(KeyError, frame.ix.__getitem__, 3) # however this will work result = self.frame.ix[2] expected = self.frame.xs(self.frame.index[2]) assert_series_equal(result, expected) def test_getitem_partial(self): ymd = self.ymd.T result = ymd[2000, 2] expected = ymd.reindex(columns=ymd.columns[ymd.columns.labels[1] == 1]) expected.columns = expected.columns.droplevel(0).droplevel(0) assert_frame_equal(result, expected) def test_getitem_slice_not_sorted(self): df = self.frame.sortlevel(1).T # buglet with int typechecking result = df.ix[:, :np.int32(3)] expected = df.reindex(columns=df.columns[:3]) assert_frame_equal(result, expected) def test_setitem_change_dtype(self): dft = self.frame.T s = dft['foo', 'two'] dft['foo', 'two'] = s > s.median() assert_series_equal(dft['foo', 'two'], s > s.median()) # tm.assert_isinstance(dft._data.blocks[1].items, MultiIndex) reindexed = dft.reindex(columns=[('foo', 'two')]) assert_series_equal(reindexed['foo', 'two'], s > s.median()) def test_frame_setitem_ix(self): self.frame.ix[('bar', 'two'), 'B'] = 5 self.assertEquals(self.frame.ix[('bar', 'two'), 'B'], 5) # with integer labels df = self.frame.copy() df.columns = lrange(3) df.ix[('bar', 'two'), 1] = 7 self.assertEquals(df.ix[('bar', 'two'), 1], 7) def test_fancy_slice_partial(self): result = self.frame.ix['bar':'baz'] expected = self.frame[3:7] assert_frame_equal(result, expected) result = self.ymd.ix[(2000, 2):(2000, 4)] lev = self.ymd.index.labels[1] expected = self.ymd[(lev >= 1) & (lev <= 3)] assert_frame_equal(result, expected) def test_getitem_partial_column_select(self): idx = MultiIndex(labels=[[0, 0, 0], [0, 1, 1], [1, 0, 1]], levels=[['a', 'b'], ['x', 'y'], ['p', 'q']]) df = DataFrame(np.random.rand(3, 2), index=idx) result = df.ix[('a', 'y'), :] expected = df.ix[('a', 'y')] assert_frame_equal(result, expected) result = df.ix[('a', 'y'), [1, 0]] expected = df.ix[('a', 'y')][[1, 0]] assert_frame_equal(result, expected) self.assertRaises(KeyError, df.ix.__getitem__, (('a', 'foo'), slice(None, None))) def test_sortlevel(self): df = self.frame.copy() df.index = np.arange(len(df)) assertRaisesRegexp(TypeError, 'hierarchical index', df.sortlevel, 0) # axis=1 # series a_sorted = self.frame['A'].sortlevel(0) with assertRaisesRegexp(TypeError, 'hierarchical index'): self.frame.reset_index()['A'].sortlevel() # preserve names self.assertEquals(a_sorted.index.names, self.frame.index.names) # inplace rs = self.frame.copy() rs.sortlevel(0, inplace=True) assert_frame_equal(rs, self.frame.sortlevel(0)) def test_sortlevel_large_cardinality(self): # #2684 (int64) index = MultiIndex.from_arrays([np.arange(4000)]*3) df = DataFrame(np.random.randn(4000), index=index, dtype = np.int64) # it works! result = df.sortlevel(0) self.assertTrue(result.index.lexsort_depth == 3) # #2684 (int32) index = MultiIndex.from_arrays([np.arange(4000)]*3) df = DataFrame(np.random.randn(4000), index=index, dtype = np.int32) # it works! result = df.sortlevel(0) self.assert_((result.dtypes.values == df.dtypes.values).all() == True) self.assertTrue(result.index.lexsort_depth == 3) def test_delevel_infer_dtype(self): tuples = [tuple for tuple in cart_product(['foo', 'bar'], [10, 20], [1.0, 1.1])] index = MultiIndex.from_tuples(tuples, names=['prm0', 'prm1', 'prm2']) df = DataFrame(np.random.randn(8, 3), columns=['A', 'B', 'C'], index=index) deleveled = df.reset_index() self.assert_(com.is_integer_dtype(deleveled['prm1'])) self.assert_(com.is_float_dtype(deleveled['prm2'])) def test_reset_index_with_drop(self): deleveled = self.ymd.reset_index(drop=True) self.assertEquals(len(deleveled.columns), len(self.ymd.columns)) deleveled = self.series.reset_index() tm.assert_isinstance(deleveled, DataFrame) self.assertEqual(len(deleveled.columns), len(self.series.index.levels) + 1) deleveled = self.series.reset_index(drop=True) tm.assert_isinstance(deleveled, Series) def test_sortlevel_by_name(self): self.frame.index.names = ['first', 'second'] result = self.frame.sortlevel(level='second') expected = self.frame.sortlevel(level=1) assert_frame_equal(result, expected) def test_sortlevel_mixed(self): sorted_before = self.frame.sortlevel(1) df = self.frame.copy() df['foo'] = 'bar' sorted_after = df.sortlevel(1) assert_frame_equal(sorted_before, sorted_after.drop(['foo'], axis=1)) dft = self.frame.T sorted_before = dft.sortlevel(1, axis=1) dft['foo', 'three'] = 'bar' sorted_after = dft.sortlevel(1, axis=1) assert_frame_equal(sorted_before.drop([('foo', 'three')], axis=1), sorted_after.drop([('foo', 'three')], axis=1)) def test_count_level(self): def _check_counts(frame, axis=0): index = frame._get_axis(axis) for i in range(index.nlevels): result = frame.count(axis=axis, level=i) expected = frame.groupby(axis=axis, level=i).count(axis=axis) expected = expected.reindex_like(result).astype('i8') assert_frame_equal(result, expected) self.frame.ix[1, [1, 2]] = np.nan self.frame.ix[7, [0, 1]] = np.nan self.ymd.ix[1, [1, 2]] = np.nan self.ymd.ix[7, [0, 1]] = np.nan _check_counts(self.frame) _check_counts(self.ymd) _check_counts(self.frame.T, axis=1) _check_counts(self.ymd.T, axis=1) # can't call with level on regular DataFrame df = tm.makeTimeDataFrame() assertRaisesRegexp(TypeError, 'hierarchical', df.count, level=0) self.frame['D'] = 'foo' result = self.frame.count(level=0, numeric_only=True) assert_almost_equal(result.columns, ['A', 'B', 'C']) def test_count_level_series(self): index = MultiIndex(levels=[['foo', 'bar', 'baz'], ['one', 'two', 'three', 'four']], labels=[[0, 0, 0, 2, 2], [2, 0, 1, 1, 2]]) s = Series(np.random.randn(len(index)), index=index) result = s.count(level=0) expected = s.groupby(level=0).count() assert_series_equal(result.astype('f8'), expected.reindex(result.index).fillna(0)) result = s.count(level=1) expected = s.groupby(level=1).count() assert_series_equal(result.astype('f8'), expected.reindex(result.index).fillna(0)) def test_count_level_corner(self): s = self.frame['A'][:0] result = s.count(level=0) expected = Series(0, index=s.index.levels[0]) assert_series_equal(result, expected) df = self.frame[:0] result = df.count(level=0) expected = DataFrame({}, index=s.index.levels[0], columns=df.columns).fillna(0).astype(np.int64) assert_frame_equal(result, expected) def test_unstack(self): # just check that it works for now unstacked = self.ymd.unstack() unstacked2 = unstacked.unstack() # test that ints work unstacked = self.ymd.astype(int).unstack() # test that int32 work unstacked = self.ymd.astype(np.int32).unstack() def test_unstack_multiple_no_empty_columns(self): index = MultiIndex.from_tuples([(0, 'foo', 0), (0, 'bar', 0), (1, 'baz', 1), (1, 'qux', 1)]) s = Series(np.random.randn(4), index=index) unstacked = s.unstack([1, 2]) expected = unstacked.dropna(axis=1, how='all')
assert_frame_equal(unstacked, expected)
pandas.util.testing.assert_frame_equal
import pandas from my_lambdata.my_mod import enlarge df =
pandas.DataFrame({"x":[1,2,3], "y":[4,5,6]})
pandas.DataFrame
# feature selection import numpy as np import pandas as pd from statsmodels.stats.outliers_influence import variance_inflation_factor as vif from sklearn.feature_selection import f_regression np.seterr(divide='ignore', invalid='ignore') # hide error warning for vif from sklearn.feature_selection import f_regression, RFE from sklearn.linear_model import LinearRegression from typing import List, Tuple, Union from .build import run_regression def guess_date_column(df:pd.DataFrame) -> None: guesses = ['date', 'Date', 'day', 'Day', 'week', 'Week', 'Month', 'month'] for x in guesses: if x in df.columns: return x return None def guess_y_column(df:pd.DataFrame) -> None: guesses = ['revenue', 'Revenue', 'sales', 'Sales', 'conversions', 'Conversions', 'Purchases', 'purchases'] for x in guesses: if x in df.columns: return x return None def add_X_labels(X_labels:List[str], add_cols:List[str]) -> List[str]: for x in add_cols: if x not in X_labels: X_labels.append(x) return X_labels def del_X_labels(X_labels:List[str], del_cols:List[str]) -> List[str]: for x in del_cols: if x in X_labels: X_labels.remove(x) return X_labels def get_all_X_labels(df:pd.DataFrame, y_label:str, date_label:str=None) -> List[str]: X_labels = list(df.columns) X_labels.remove(y_label) if date_label: X_labels.remove(date_label) return X_labels def get_cols_containing(df:pd.DataFrame, containing:str) -> List[str]: return [x for x in list(df.columns) if containing in x] def y_variable_correlation(df:pd.DataFrame, y_label:str, X_labels:List[str], min_corr:float=0.3) -> Tuple[List, pd.DataFrame]: # 1.0 = Perfect # 0.7 = Strong # 0.5 = Moderate # 0.3 = Weak # 0 = None all_variables = X_labels.copy() all_variables.extend([y_label]) corr = df[all_variables].corr() corr_df = pd.DataFrame({'corr':abs(corr[y_label].drop(y_label))}) corr_df['corr_keep'] = corr_df['corr'] > min_corr corr_keep = list(corr_df[corr_df['corr_keep']==True].index.values) return corr_keep, corr_df def variance_inflation_factor(df:pd.DataFrame, X_labels:List[str], max_vif:int=5) -> Tuple[List, pd.DataFrame]: # Variance Inflation Factor (VIF) # tests for colinearity: A VIF of over 10 for some feature indicates that over 90% # of the variance in that feature is explained by the remaining features. Over 100 # indicates over 99%. Best practice is to keep variables with a VIF less than 5. X = df[X_labels] X_np = np.array(X) vif_results = [(X.columns[i], vif(X_np, i)) for i in range(X_np.shape[1])] vif_df =
pd.DataFrame(vif_results)
pandas.DataFrame
# import start import ast import asyncio import calendar import platform import subprocess as sp import time import traceback import xml.etree.ElementTree as Et from collections import defaultdict from datetime import datetime import math import numpy as np import pandas as pd from Utility.CDPConfigValues import CDPConfigValues from Utility.Utilities import Utilities from Utility.WebConstants import WebConstants from WebConnection.WebConnection import WebConnection # import end ## Function to reverse a string #def reverse(string): # string = string[::-1] # return string class Preprocessor: """ Preprocessor class is used for preparing the extracted data to be fed to the training algorithm for further processing. """ def __init__(self, project, previous_preprocessed_df=None, preprocessed=None): """ :param timestamp_column: Contains the committer timestamp :type timestamp_column: str :param email_column: Contains the committer timestamp :type email_column: str :param project: project key to be processed :type project: str :param project_name: project name to be processed :type project_name: str :param web_constants: Constants load from file :type web_constants: class WebConstants :param base_timestamp: Instantiating committer timestamp :type base_timestamp: str :param developer_stats_df: creating dataframe variable for developer stats :type developer_stats_df: pandas dataframe :param developer_sub_module_stats_df: creating dataframe variable for developer sub module stats :type developer_sub_module_stats_df: pandas dataframe """ self.timestamp_column = "COMMITTER_TIMESTAMP" self.email_column = "COMMITTER_EMAIL" self.project = project self.project_name = CDPConfigValues.configFetcher.get('name', project) self.web_constants = WebConstants(project) self.base_timestamp = "" self.developer_stats_df = "" self.developer_sub_module_stats_df = "" if preprocessed is None: if previous_preprocessed_df is None: self.file_path = f"{CDPConfigValues.preprocessed_file_path}/{self.project_name}" self.github_data_dump_df = pd.read_csv( f"{CDPConfigValues.cdp_dump_path}/{self.project_name}/{CDPConfigValues.commit_details_file_name}") self.pre_processed_file_path = f"{CDPConfigValues.preprocessed_file_path}/{self.project_name}" CDPConfigValues.create_directory(self.pre_processed_file_path) self.stats_dataframe = pd.DataFrame() self.sub_module_list = list() else: self.file_path = f"{CDPConfigValues.schedule_file_path}/{self.project_name}" self.github_data_dump_df = pd.DataFrame(previous_preprocessed_df) self.github_data_dump_df = self.github_data_dump_df.apply( lambda x: x.str.strip() if x.dtype == "object" else x) self.github_data_dump_df["COMMITTER_TIMESTAMP"] = self.github_data_dump_df["COMMITTER_TIMESTAMP"].apply( lambda x: pd.Timestamp(x, tz="UTC")) self.github_data_dump_df["COMMITTER_TIMESTAMP"] = self.github_data_dump_df["COMMITTER_TIMESTAMP"].apply( lambda x:
pd.Timestamp(x)
pandas.Timestamp
# coding: utf-8 # # Numpy Introduction # ## numpy arrays # In[91]: import numpy as np arr = np.array([1,3,4,5,6]) arr # In[8]: arr.shape # In[9]: arr.dtype # In[10]: arr = np.array([1,'st','er',3]) arr.dtype # In[5]: np.sum(arr) # ### Creating arrays # In[11]: arr = np.array([[1,2,3],[2,4,6],[8,8,8]]) arr.shape # In[12]: arr # In[13]: arr = np.zeros((2,4)) arr # In[14]: arr = np.ones((2,4)) arr # In[15]: arr = np.identity(3) arr # In[16]: arr = np.random.randn(3,4) arr # In[17]: from io import BytesIO b = BytesIO(b"2,23,33\n32,42,63.4\n35,77,12") arr = np.genfromtxt(b, delimiter=",") arr # ### Accessing array elements # #### Simple indexing # In[18]: arr[1] # In[19]: arr = np.arange(12).reshape(2,2,3) arr # In[20]: arr[0] # In[21]: arr = np.arange(10) arr[5:] # In[22]: arr[5:8] # In[23]: arr[:-5] # In[24]: arr = np.arange(12).reshape(2,2,3) arr # In[25]: arr[1:2] # In[26]: arr = np.arange(27).reshape(3,3,3) arr # In[27]: arr[:,:,2] # In[28]: arr[...,2] # #### Advanced Indexing # In[29]: arr = np.arange(9).reshape(3,3) arr # In[30]: arr[[0,1,2],[1,0,0]] # ##### Boolean Indexing # In[31]: cities = np.array(["delhi","banglaore","mumbai","chennai","bhopal"]) city_data = np.random.randn(5,3) city_data # In[32]: city_data[cities =="delhi"] # In[33]: city_data[city_data >0] # In[34]: city_data[city_data >0] = 0 city_data # #### Operations on arrays # In[35]: arr = np.arange(15).reshape(3,5) arr # In[36]: arr + 5 # In[37]: arr * 2 # In[38]: arr1 = np.arange(15).reshape(5,3) arr2 = np.arange(5).reshape(5,1) arr2 + arr1 # In[39]: arr1 # In[40]: arr2 # In[41]: arr1 = np.random.randn(5,3) arr1 # In[42]: np.modf(arr1) # #### Linear algebra using numpy # In[43]: A = np.array([[1,2,3],[4,5,6],[7,8,9]]) B = np.array([[9,8,7],[6,5,4],[1,2,3]]) A.dot(B) # In[44]: A = np.arange(15).reshape(3,5) A.T # In[45]: np.linalg.svd(A) # In[46]: a = np.array([[7,5,-3], [3,-5,2],[5,3,-7]]) b = np.array([16,-8,0]) x = np.linalg.solve(a, b) x # In[47]: np.allclose(np.dot(a, x), b) # # Pandas # ## Data frames # In[48]: import pandas as pd d = [{'city':'Delhi',"data":1000}, {'city':'Banglaore',"data":2000}, {'city':'Mumbai',"data":1000}] pd.DataFrame(d) # In[49]: df = pd.DataFrame(d) # ### Reading in data # In[92]: city_data =
pd.read_csv(filepath_or_buffer='simplemaps-worldcities-basic.csv')
pandas.read_csv
#!/usr/bin/python # encoding: utf-8 """ @author: Ian @file: test.py @time: 2019-05-15 15:09 """ import pandas as pd if __name__ == '__main__': mode = 1 if mode == 1: df = pd.read_excel('zy_all.xlsx', converters={'出险人客户号': str}) df1 = pd.read_csv('../data/zy_all.csv') df1['出险人客户号_完整'] = df['出险人客户号'] df1.to_excel('zy_all_t.xlsx') if mode == 0: df6 =
pd.read_excel('/Users/luoyonggui/Documents/datasets/work/3/82200946506.xlsx', converters={'出险人客户号': str})
pandas.read_excel
""" use cross validation to plot mean ROC curve, show std ref: https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc_crossval.html#sphx-glr-auto-examples-model-selection-plot-roc-crossval-py Note that you have to tune the parameters yourself """ from scipy import interp import argparse import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt # import xgboost as xgb import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import matplotlib.colors as clr import numpy as np from matplotlib.colors import ListedColormap import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from matplotlib.colors import ListedColormap, LinearSegmentedColormap import pandas as pd import matplotlib.pylab as plt import numpy as np import scipy import seaborn as sns import glob from sklearn.model_selection import KFold,StratifiedKFold from sklearn import model_selection from sklearn.linear_model import LogisticRegression,RidgeClassifier,SGDClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB from sklearn.ensemble import RandomForestClassifier # from mlxtend.classifier import StackingCVClassifier # import umap import warnings from sklearn.metrics import roc_curve,roc_auc_score,average_precision_score,precision_recall_curve from sklearn.datasets import load_iris # from mlxtend.classifier import StackingCVClassifier # from mlxtend.feature_selection import ColumnSelector from sklearn.pipeline import make_pipeline from sklearn.linear_model import LogisticRegression import warnings warnings.filterwarnings('ignore') from sklearn.exceptions import ConvergenceWarning warnings.simplefilter(action='ignore', category=FutureWarning) warnings.simplefilter(action='ignore', category=ConvergenceWarning) from sklearn.ensemble import RandomForestRegressor,GradientBoostingRegressor,RandomForestClassifier from sklearn.model_selection import cross_val_score from sklearn.model_selection import GridSearchCV from sklearn.metrics.scorer import make_scorer from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.base import TransformerMixin from sklearn.datasets import make_regression from sklearn.pipeline import Pipeline, FeatureUnion from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor,GradientBoostingClassifier from sklearn.neighbors import KNeighborsRegressor from sklearn.preprocessing import StandardScaler, PolynomialFeatures from sklearn.linear_model import LinearRegression, Ridge import scipy import numpy as np from sklearn.model_selection import RandomizedSearchCV from sklearn.model_selection import LeaveOneOut from sklearn.preprocessing import PolynomialFeatures from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean_absolute_error from sklearn import linear_model from sklearn.kernel_ridge import KernelRidge from sklearn.svm import SVR,LinearSVC from sklearn.neighbors import KNeighborsRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import Lasso from sklearn.linear_model import Ridge,Lars,BayesianRidge from copy import deepcopy as dp from sklearn.datasets import make_moons, make_circles, make_classification from sklearn.neural_network import MLPClassifier from sklearn.neighbors import KNeighborsClassifier,RadiusNeighborsClassifier from sklearn.svm import SVC from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.gaussian_process.kernels import RBF from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.naive_bayes import GaussianNB from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis from sklearn.gaussian_process import GaussianProcessClassifier # from xgboost import XGBClassifier def sklearn_RF(par=False): est = RandomForestClassifier(n_estimators=1000,random_state=0,warm_start=False,n_jobs=-1,class_weight={1:4,0:1}) if par: est = RandomForestClassifier(**par) myDict = {} return est, myDict def plot_top_features(reg,X,y,output): current_feature_df = pd.DataFrame() current_feature_df['features'] = X.columns.tolist() reg.fit(X,y) try: current_feature_df['score'] = list(reg.feature_importances_) except: try: current_feature_df['score'] = list(reg.coef_) except: current_feature_df['score'] = list(reg.coef_[0]) current_feature_df = current_feature_df.sort_values('score',ascending=False) plt.figure(figsize=(len(current_feature_df['features']*2),8)) sns.barplot(x=current_feature_df['features'],y=current_feature_df['score'] ) plt.xticks(rotation=90) plt.xlabel("") plt.ylabel("Feature importance") plt.savefig("%s_feature_importance.pdf"%(output), bbox_inches='tight') def simple_CV_evaluation(model,params,X,y): outer = StratifiedKFold(n_splits=3,shuffle=False) my_pred=[] my_true=[] best_features = X.columns.tolist() auPRC_list = [] auROC_list = [] for train_index, test_index in outer.split(X,y): X_train, X_test = X.iloc[train_index], X.iloc[test_index] y_train, y_test = y.iloc[train_index], y.iloc[test_index] # print (list(set(X_train.index.tolist()).intersection(X_test.index.tolist()))) current_model = dp(model) current_model.fit(X_train[best_features].values,y_train) pred_y = current_model.predict_proba(X_test[best_features].values) pred_y = [x[1] for x in pred_y] y_test = y_test.tolist() auROC = roc_auc_score(y_test,pred_y) auPRC = average_precision_score(y_test,pred_y) my_pred += pred_y my_true += y_test print ("auPRC: %s. auROC: %s"%(auPRC,auROC)) auPRC_list.append(auPRC) auROC_list.append(auROC) df = pd.DataFrame() df['true']=my_true df['pred']=my_pred return df,auROC_list,auPRC_list def plot_auROC_multi(df,color_dict): sns.set_style("white") plt.figure() for s,d in df.groupby('label'): plot_df = pd.DataFrame() x_predict,y_predict,_ = roc_curve(d['true'],d['pred']) auc = roc_auc_score(d['true'],d['pred']) print (auc) plot_df['x'] = x_predict plot_df['y'] = y_predict sns.lineplot(data=plot_df,x="x",y="y",ci=0,label="%s AUC:%.2f"%(s,auc),color=color_dict[s]) plt.plot([0, 1], [0, 1], 'k--') plt.xlim(0,1) plt.ylim(0,1) plt.xlabel('False positive rate') plt.ylabel('True positive rate') plt.title('ROC curve') plt.legend(loc='best',title="") # plt.savefig("auROC.png") plt.savefig("auROC.pdf", bbox_inches='tight') plt.close() def plot_auPRC_multi(df,color_dict): sns.set_style("white") plt.figure() for s,d in df.groupby('label'): plot_df = pd.DataFrame() y_predict,x_predict,_ = precision_recall_curve(d['true'],d['pred']) auc = average_precision_score(d['true'],d['pred']) print (auc) plot_df['x'] = x_predict plot_df['y'] = y_predict sns.lineplot(data=plot_df,x="x",y="y",ci=0,label="%s AUC:%.2f"%(s,auc),color=color_dict[s]) # plt.plot([0, 1], [0, 1], 'k--') plt.xlim(0,1) plt.ylim(0,1) plt.xlabel('Recall') plt.ylabel('Precision') plt.title('Precision-Recall curve') plt.legend(loc='best',title="") # plt.savefig("auPRC.png") plt.savefig("auPRC.pdf", bbox_inches='tight') plt.close() def define_high_low(x,mu,sigma): t = 1 low = mu-t*sigma high = mu+t*sigma high2= mu+t*sigma # print (low,high) if low <= x <= high: return 0 if x > high2: return 1 return -1 def boxplot_paired_t_test(a,b,color_dict,ylabel,output): sns.set_style("whitegrid") df = pd.DataFrame() df['All_variants'] = a df['GWAS_only'] = b myMin = df.min().min() myMax = df.max().max() plot_df =
pd.melt(df)
pandas.melt
import datetime import hashlib import os import time from warnings import ( catch_warnings, simplefilter, ) import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, DatetimeIndex, Index, MultiIndex, Series, Timestamp, concat, date_range, timedelta_range, ) import pandas._testing as tm from pandas.tests.io.pytables.common import ( _maybe_remove, ensure_clean_path, ensure_clean_store, safe_close, ) _default_compressor = "blosc" ignore_natural_naming_warning = pytest.mark.filterwarnings( "ignore:object name:tables.exceptions.NaturalNameWarning" ) from pandas.io.pytables import ( HDFStore, read_hdf, ) pytestmark = pytest.mark.single_cpu def test_context(setup_path): with tm.ensure_clean(setup_path) as path: try: with HDFStore(path) as tbl: raise ValueError("blah") except ValueError: pass with tm.ensure_clean(setup_path) as path: with HDFStore(path) as tbl: tbl["a"] = tm.makeDataFrame() assert len(tbl) == 1 assert type(tbl["a"]) == DataFrame def test_no_track_times(setup_path): # GH 32682 # enables to set track_times (see `pytables` `create_table` documentation) def checksum(filename, hash_factory=hashlib.md5, chunk_num_blocks=128): h = hash_factory() with open(filename, "rb") as f: for chunk in iter(lambda: f.read(chunk_num_blocks * h.block_size), b""): h.update(chunk) return h.digest() def create_h5_and_return_checksum(track_times): with ensure_clean_path(setup_path) as path: df = DataFrame({"a": [1]}) with HDFStore(path, mode="w") as hdf: hdf.put( "table", df, format="table", data_columns=True, index=None, track_times=track_times, ) return checksum(path) checksum_0_tt_false = create_h5_and_return_checksum(track_times=False) checksum_0_tt_true = create_h5_and_return_checksum(track_times=True) # sleep is necessary to create h5 with different creation time time.sleep(1) checksum_1_tt_false = create_h5_and_return_checksum(track_times=False) checksum_1_tt_true = create_h5_and_return_checksum(track_times=True) # checksums are the same if track_time = False assert checksum_0_tt_false == checksum_1_tt_false # checksums are NOT same if track_time = True assert checksum_0_tt_true != checksum_1_tt_true def test_iter_empty(setup_path): with ensure_clean_store(setup_path) as store: # GH 12221 assert list(store) == [] def test_repr(setup_path): with ensure_clean_store(setup_path) as store: repr(store) store.info() store["a"] = tm.makeTimeSeries() store["b"] = tm.makeStringSeries() store["c"] = tm.makeDataFrame() df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["bool3"] = True df["int1"] = 1 df["int2"] = 2 df["timestamp1"] = Timestamp("20010102") df["timestamp2"] = Timestamp("20010103") df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0) df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[df.index[3:6], ["obj1"]] = np.nan df = df._consolidate()._convert(datetime=True) with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) store["df"] = df # make a random group in hdf space store._handle.create_group(store._handle.root, "bah") assert store.filename in repr(store) assert store.filename in str(store) store.info() # storers with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() store.append("df", df) s = store.get_storer("df") repr(s) str(s) @pytest.mark.filterwarnings("ignore:object name:tables.exceptions.NaturalNameWarning") def test_contains(setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeDataFrame() store["foo/bar"] = tm.makeDataFrame() assert "a" in store assert "b" in store assert "c" not in store assert "foo/bar" in store assert "/foo/bar" in store assert "/foo/b" not in store assert "bar" not in store # gh-2694: tables.NaturalNameWarning with catch_warnings(record=True): store["node())"] = tm.makeDataFrame() assert "node())" in store def test_versioning(setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeDataFrame() df = tm.makeTimeDataFrame() _maybe_remove(store, "df1") store.append("df1", df[:10]) store.append("df1", df[10:]) assert store.root.a._v_attrs.pandas_version == "0.15.2" assert store.root.b._v_attrs.pandas_version == "0.15.2" assert store.root.df1._v_attrs.pandas_version == "0.15.2" # write a file and wipe its versioning _maybe_remove(store, "df2") store.append("df2", df) # this is an error because its table_type is appendable, but no # version info store.get_node("df2")._v_attrs.pandas_version = None msg = "'NoneType' object has no attribute 'startswith'" with pytest.raises(Exception, match=msg): store.select("df2") @pytest.mark.parametrize( "where, expected", [ ( "/", { "": ({"first_group", "second_group"}, set()), "/first_group": (set(), {"df1", "df2"}), "/second_group": ({"third_group"}, {"df3", "s1"}), "/second_group/third_group": (set(), {"df4"}), }, ), ( "/second_group", { "/second_group": ({"third_group"}, {"df3", "s1"}), "/second_group/third_group": (set(), {"df4"}), }, ), ], ) def test_walk(where, expected): # GH10143 objs = { "df1": DataFrame([1, 2, 3]), "df2": DataFrame([4, 5, 6]), "df3": DataFrame([6, 7, 8]), "df4": DataFrame([9, 10, 11]), "s1": Series([10, 9, 8]), # Next 3 items aren't pandas objects and should be ignored "a1": np.array([[1, 2, 3], [4, 5, 6]]), "tb1": np.array([(1, 2, 3), (4, 5, 6)], dtype="i,i,i"), "tb2": np.array([(7, 8, 9), (10, 11, 12)], dtype="i,i,i"), } with ensure_clean_store("walk_groups.hdf", mode="w") as store: store.put("/first_group/df1", objs["df1"]) store.put("/first_group/df2", objs["df2"]) store.put("/second_group/df3", objs["df3"]) store.put("/second_group/s1", objs["s1"]) store.put("/second_group/third_group/df4", objs["df4"]) # Create non-pandas objects store._handle.create_array("/first_group", "a1", objs["a1"]) store._handle.create_table("/first_group", "tb1", obj=objs["tb1"]) store._handle.create_table("/second_group", "tb2", obj=objs["tb2"]) assert len(list(store.walk(where=where))) == len(expected) for path, groups, leaves in store.walk(where=where): assert path in expected expected_groups, expected_frames = expected[path] assert expected_groups == set(groups) assert expected_frames == set(leaves) for leaf in leaves: frame_path = "/".join([path, leaf]) obj = store.get(frame_path) if "df" in leaf: tm.assert_frame_equal(obj, objs[leaf]) else: tm.assert_series_equal(obj, objs[leaf]) def test_getattr(setup_path): with ensure_clean_store(setup_path) as store: s = tm.makeTimeSeries() store["a"] = s # test attribute access result = store.a tm.assert_series_equal(result, s) result = getattr(store, "a") tm.assert_series_equal(result, s) df = tm.makeTimeDataFrame() store["df"] = df result = store.df tm.assert_frame_equal(result, df) # errors for x in ["d", "mode", "path", "handle", "complib"]: msg = f"'HDFStore' object has no attribute '{x}'" with pytest.raises(AttributeError, match=msg): getattr(store, x) # not stores for x in ["mode", "path", "handle", "complib"]: getattr(store, f"_{x}") def test_store_dropna(setup_path): df_with_missing = DataFrame( {"col1": [0.0, np.nan, 2.0], "col2": [1.0, np.nan, np.nan]}, index=list("abc"), ) df_without_missing = DataFrame( {"col1": [0.0, 2.0], "col2": [1.0, np.nan]}, index=list("ac") ) # # Test to make sure defaults are to not drop. # # Corresponding to Issue 9382 with ensure_clean_path(setup_path) as path: df_with_missing.to_hdf(path, "df", format="table") reloaded = read_hdf(path, "df") tm.assert_frame_equal(df_with_missing, reloaded) with ensure_clean_path(setup_path) as path: df_with_missing.to_hdf(path, "df", format="table", dropna=False) reloaded = read_hdf(path, "df") tm.assert_frame_equal(df_with_missing, reloaded) with ensure_clean_path(setup_path) as path: df_with_missing.to_hdf(path, "df", format="table", dropna=True) reloaded = read_hdf(path, "df") tm.assert_frame_equal(df_without_missing, reloaded) def test_to_hdf_with_min_itemsize(setup_path): with ensure_clean_path(setup_path) as path: # min_itemsize in index with to_hdf (GH 10381) df = tm.makeMixedDataFrame().set_index("C") df.to_hdf(path, "ss3", format="table", min_itemsize={"index": 6}) # just make sure there is a longer string: df2 = df.copy().reset_index().assign(C="longer").set_index("C") df2.to_hdf(path, "ss3", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "ss3"),
concat([df, df2])
pandas.concat
import argparse import re import itertools import functools import operator import os import glob import pandas as pd from scipy.stats import gmean trace_file_pat = ( re.compile(r'^CPU (?P<index>\d+) runs (?P<tracename>[-./\w\d]+)$'), lambda match: os.path.basename(match['tracename']), functools.partial(functools.reduce, operator.concat) ) cpu_stats_pat = ( re.compile(r'^CPU (?P<cpu>\d+) cumulative IPC: \d+\.?\d* instructions: (?P<instructions>\d+) cycles: (?P<cycles>\d+)$'), operator.methodcaller('groupdict',0), lambda results : pd.DataFrame.from_records(results, index=['cpu']).astype('int64') ) cache_stats_pat = ( re.compile(r'^(?P<name>\S+) (?P<type>LOAD|RFO|PREFETCH|TRANSLATION)\s+ACCESS:\s+\d+ HIT:\s+(?P<hit>\d+) MISS:\s+(?P<miss>\d+)$'), operator.methodcaller('groupdict',0), lambda results :
pd.DataFrame.from_records(results)
pandas.DataFrame.from_records
""" caproj.datagen ~~~~~~~~~~~~~~ This module contains functions for generating the interval metrics used in modeling for each unique capital project **Module variables:** .. autosummary:: endstate_columns endstate_column_rename_dict info_columns info_column_rename_dict **Module functions:** .. autosummary:: print_record_project_count generate_interval_data print_interval_dict """ import os import pandas as pd #: List of column names containing info for each project's end-state endstate_columns = [ "Date_Reported_As_Of", "Change_Years", "PID", "Current_Phase", "Budget_Forecast", "Forecast_Completion", "PID_Index", ] #: Dictionary for mapping members of ``endstate_columns`` to new column names endstate_column_rename_dict = { "Date_Reported_As_Of": "Final_Change_Date", "Current_Phase": "Phase_End", "Budget_Forecast": "Budget_End", "Forecast_Completion": "Schedule_End", "PID_Index": "Number_Changes", "Change_Years": "Final_Change_Years", } #: List of column names containing descriptive info for each project info_columns = [ "PID", "Project_Name", "Description", "Category", "Borough", "Managing_Agency", "Client_Agency", "Current_Phase", "Current_Project_Years", "Current_Project_Year", "Design_Start", "Original_Budget", "Original_Schedule", ] #: Dictionary for mapping members of ``info_columns`` to new column names info_column_rename_dict = { "Current_Phase": "Phase_Start", "Original_Budget": "Budget_Start", "Original_Schedule": "Schedule_Start", } def print_record_project_count(dataframe, dataset="full"): """Prints summary of records and unique projects in dataframe :param dataframe: pd.DataFrame object for the version of the NYC capital projects data you wish to summarize :param dataset: string, accepts 'full', 'all', 'training', or 'test' (default 'full') :return: prints to standard output, no objects returned """ if dataset == "full": print( "For the ORIGINAL cleansed data, containing all available NYC capital " "projects change records:\n" ) elif dataset == "all": print( "For the data containing start and end data for all available " "NYC capital projects for the ENTIRE INTERVAL of changes " "covered in the ORIGINAL data:\n" ) else: print( "For the final {} data, containing the {} split of 3-year " "project data used in this analysis:\n".format( dataset.upper(), dataset ) ) # entries print(f"\tNumber of dataset records: {len(dataframe)}") # num projects print( f"\tNumber of unique projects in dataset: {dataframe['PID'].nunique()}\n" ) # define the functions used for generating our interval dataframe def ensure_datetime_and_sort(df): """Ensures datetime columns are formatted correctly and changes are sorted :param df: pd.DataFrame of the cleaned capital projects change records data :return: Original pd.DataFrame with datetime columns formatted and records sorted """ datetime_cols = [ "Date_Reported_As_Of", "Design_Start", "Original_Schedule", "Forecast_Completion", ] for col in datetime_cols: df[col] =
pd.to_datetime(df[col])
pandas.to_datetime
#%% import requests from bs4 import BeautifulSoup import pandas as pd import time import traceback url = "https://www.ceniniger.org/presidentielle" communes = pd.read_csv("../data/communes.csv") #%% def parse_results_table(results_page): results_table = results_page.find(id="resultat-grid_").find(id="tbody").find_all("tr") data = [] for row in results_table: cols = row.find_all('td') cols = [col.text.strip() for col in cols] data.append(cols[2:]) out =
pd.DataFrame(data)
pandas.DataFrame
import requests import json import pandas as pd #initializing variables and data structures teamDict = {1: "ARS", 2: "AVL", 3: "BRE", 4: "BRI", 5: "BUR", 6: "CHE", 7: "CRY", 8: "EVE", 9: "LEE", 10: "LEI", 11: "LIV", 12: "MCI", 13: "MUN", 14: "NEW", 15: "NOR", 16: "SOU", 17: "TOT", 18: "WAT", 19: "WHU", 20: "WOL"} positionDict = {1: "GKP", 2: "DEF", 3: "MID", 4: "FWD"} playerColumns = ["Index", "ID", "Name", "Game Name", "Team", "Position", "Current Price"] seasonDataColumns = ["Index", "Season Points", "Season Minutes", "Season I", "Season C", "Season T", "Season Bonus", "Season Bonus Points", "Season Beginning Price", "Season End Price", "Season Goals", "Season Assists", "Season YC", "Season RC", "Season Saves", "Season Penalty Saves", "Season OG", "Season Penalty Misses", "Season CS", "Season GC"] df =
pd.DataFrame(columns=playerColumns)
pandas.DataFrame
""" ==================== The qc.passqc module ==================== The qc.passqc module contains functions for determining which NPs pass a set of quality control conditions. """ import pandas as pd def get_reference(condition_ref_string, stats_df): """ If condition_ref_string matches a column in stats_df, return that column. If it doesn't match a column, try to convert it to a float. :param str condition_ref_string: left or right part of a condition \ from a QC conditions file :param stats_df: QC statistics table :type stats_df: :class:`~pandas.DataFrame` :returns: Either a column of stats_df, a float or a string. """ if condition_ref_string in stats_df.columns: return stats_df.loc[:, condition_ref_string] try: return float(condition_ref_string) except ValueError: return condition_ref_string def get_references(left_str, right_str, stats_df): """ Parse the left and right references in one line of a QC conditions file. e.g. "left > right" or "left less_than 5.0" :param str left_str: Left part of a condition \ from a QC conditions file :param str right_str: Right part of a condition \ from a QC conditions file :param stats_df: QC statistics table :type stats_df: :class:`~pandas.DataFrame` :returns: left reference, right reference (at least one must be a column of \ stats_df. The other can be another column, a float or a string) """ left = get_reference(left_str, stats_df) right = get_reference(right_str, stats_df) if not (isinstance(left, pd.Series) or isinstance(right, pd.Series)): raise QcParamError( """Neither {} nor {} matches a column in the stats file. Current options are: \n\t'{}'""".format( left_str, right_str, "'\n\t'".join(stats_df.columns))) return left, right def comparison_from_operator(operator, left, right): """ Perform a comparison between left and right values in a QC conditions file. :param str operator: Comparison to carry out. :param left: Either a series of QC values or a value to compare QC values to. :param right: Either a series of QC values or a value to compare QC values to. :returns: :class:`~pandas.Series` indicating which samples pass the condition. """ if operator in ['=', '==', 'eq', 'equals']: comparison = (left == right) elif operator in ['>', 'gt', 'greater_than']: comparison = (left > right) elif operator in ['>=', 'gte', 'greater_than_or_equal_to']: comparison = (left >= right) elif operator in ['<', 'lt', 'less_than']: comparison = (left < right) elif operator in ['<=', 'lte', 'less_than_or_equal_to']: comparison = (left <= right) elif operator in ['!=', 'neq', 'not_equal_to']: comparison = (left != right) else: raise QcParamError( 'Operator {} not recognized'.format(operator)) return comparison class QcParamError(Exception): """ Exception to be raised if the QC Parameters file is malformed. """ def do_comparison(left_str, operator, right_str, stats_df): """ Given the condition in a QC Parameters file, and a QC statistics table, calculate which samples pass the condition. :param str left_str: Left part of the condition (e.g. "mapped_reads") :param str operator: How to compare left and right (e.g. greater_than) :param str right_str: Right part of the condition (e.g. "150000") :param stats_df: QC statistics table :type stats_df: :class:`~pandas.DataFrame` :returns: :class:`~pandas.Series` indicating which samples pass the condition. """ left, right = get_references(left_str, right_str, stats_df) comparison = comparison_from_operator(operator, left, right) if not isinstance(comparison, pd.Series): raise QcParamError('Comparison did not return a series object') return comparison def parse_conditions_file(conditions_file, stats_df): """ Iterate through lines of a conditions file and perform the indicated comparison for each line. :param file conditions_file: Open file buffer containing conditions. :param stats_df: QC statistics table :type stats_df: :class:`~pandas.DataFrame` :returns: List of :class:`~pandas.Series` each indicating whether each \ NP passed each quality check. """ conditions = [] for line_no, line in enumerate(conditions_file, 1): fields = line.split() if (line[0] == '#') or (not fields): continue left_str, operator, right_str = fields try: this_comparison = do_comparison(left_str, operator, right_str, stats_df) except QcParamError as err_msg: raise QcParamError( 'Error in QC conditions file line {}: {}'.format( line_no, err_msg)) conditions.append(this_comparison) return conditions def samples_passing_qc(conditions_file_path, stats_df_path): """ Read a QC conditions file and a QC stats file, calculating which samples pass all specified QC checks. :param str conditions_file_path: Path to QC conditions file. :param stats_df_path: Path to QC statistics table :returns: :class:`~pandas.Series` of samples that pass all specified \ QC checks. """ stats_df = pd.read_csv(stats_df_path, delim_whitespace=True) with open(conditions_file_path, 'r') as conditions_file: conditions = parse_conditions_file(conditions_file, stats_df) sample_passes_qc =
pd.concat(conditions, axis=1)
pandas.concat
import operator import numpy as np import pytest import pandas as pd import pandas._testing as tm from pandas.core.arrays import FloatingArray import pandas.core.ops as ops # Basic test for the arithmetic array ops # ----------------------------------------------------------------------------- @pytest.mark.parametrize( "opname, exp", [("add", [1, 3, None, None, 9]), ("mul", [0, 2, None, None, 20])], ids=["add", "mul"], ) def test_add_mul(dtype, opname, exp): a = pd.array([0, 1, None, 3, 4], dtype=dtype) b = pd.array([1, 2, 3, None, 5], dtype=dtype) # array / array expected = pd.array(exp, dtype=dtype) op = getattr(operator, opname) result = op(a, b) tm.assert_extension_array_equal(result, expected) op = getattr(ops, "r" + opname) result = op(a, b) tm.assert_extension_array_equal(result, expected) def test_sub(dtype): a = pd.array([1, 2, 3, None, 5], dtype=dtype) b = pd.array([0, 1, None, 3, 4], dtype=dtype) result = a - b expected = pd.array([1, 1, None, None, 1], dtype=dtype) tm.assert_extension_array_equal(result, expected) def test_div(dtype): a = pd.array([1, 2, 3, None, 5], dtype=dtype) b = pd.array([0, 1, None, 3, 4], dtype=dtype) result = a / b expected = pd.array([np.inf, 2, None, None, 1.25], dtype="Float64") tm.assert_extension_array_equal(result, expected) @pytest.mark.parametrize("zero, negative", [(0, False), (0.0, False), (-0.0, True)]) def test_divide_by_zero(zero, negative): # https://github.com/pandas-dev/pandas/issues/27398, GH#22793 a = pd.array([0, 1, -1, None], dtype="Int64") result = a / zero expected = FloatingArray( np.array([np.nan, np.inf, -np.inf, 1], dtype="float64"), np.array([False, False, False, True]), ) if negative: expected *= -1 tm.assert_extension_array_equal(result, expected) def test_floordiv(dtype): a = pd.array([1, 2, 3, None, 5], dtype=dtype) b = pd.array([0, 1, None, 3, 4], dtype=dtype) result = a // b # Series op sets 1//0 to np.inf, which IntegerArray does not do (yet) expected = pd.array([0, 2, None, None, 1], dtype=dtype) tm.assert_extension_array_equal(result, expected) def test_mod(dtype): a = pd.array([1, 2, 3, None, 5], dtype=dtype) b = pd.array([0, 1, None, 3, 4], dtype=dtype) result = a % b expected = pd.array([0, 0, None, None, 1], dtype=dtype) tm.assert_extension_array_equal(result, expected) def test_pow_scalar(): a = pd.array([-1, 0, 1, None, 2], dtype="Int64") result = a**0 expected = pd.array([1, 1, 1, 1, 1], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = a**1 expected = pd.array([-1, 0, 1, None, 2], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = a**pd.NA expected = pd.array([None, None, 1, None, None], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = a**np.nan expected = FloatingArray( np.array([np.nan, np.nan, 1, np.nan, np.nan], dtype="float64"), np.array([False, False, False, True, False]), ) tm.assert_extension_array_equal(result, expected) # reversed a = a[1:] # Can't raise integers to negative powers. result = 0**a expected = pd.array([1, 0, None, 0], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = 1**a expected = pd.array([1, 1, 1, 1], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = pd.NA**a expected = pd.array([1, None, None, None], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = np.nan**a expected = FloatingArray( np.array([1, np.nan, np.nan, np.nan], dtype="float64"), np.array([False, False, True, False]), ) tm.assert_extension_array_equal(result, expected) def test_pow_array(): a = pd.array([0, 0, 0, 1, 1, 1, None, None, None]) b = pd.array([0, 1, None, 0, 1, None, 0, 1, None]) result = a**b expected = pd.array([1, 0, None, 1, 1, 1, 1, None, None]) tm.assert_extension_array_equal(result, expected) def test_rpow_one_to_na(): # https://github.com/pandas-dev/pandas/issues/22022 # https://github.com/pandas-dev/pandas/issues/29997 arr = pd.array([np.nan, np.nan], dtype="Int64") result = np.array([1.0, 2.0]) ** arr expected = pd.array([1.0, np.nan], dtype="Float64") tm.assert_extension_array_equal(result, expected) @pytest.mark.parametrize("other", [0, 0.5]) def test_numpy_zero_dim_ndarray(other): arr = pd.array([1, None, 2]) result = arr + np.array(other) expected = arr + other tm.assert_equal(result, expected) # Test generic characteristics / errors # ----------------------------------------------------------------------------- def test_error_invalid_values(data, all_arithmetic_operators): op = all_arithmetic_operators s = pd.Series(data) ops = getattr(s, op) # invalid scalars msg = "|".join( [ r"can only perform ops with numeric values", r"IntegerArray cannot perform the operation mod", r"unsupported operand type", r"can only concatenate str \(not \"int\"\) to str", "not all arguments converted during string", "ufunc '.*' not supported for the input types, and the inputs could not", "ufunc '.*' did not contain a loop with signature matching types", "Addition/subtraction of integers and integer-arrays with Timestamp", ] ) with pytest.raises(TypeError, match=msg): ops("foo") with pytest.raises(TypeError, match=msg): ops(pd.Timestamp("20180101")) # invalid array-likes str_ser = pd.Series("foo", index=s.index) # with pytest.raises(TypeError, match=msg): if all_arithmetic_operators in [ "__mul__", "__rmul__", ]: # (data[~data.isna()] >= 0).all(): res = ops(str_ser) expected = pd.Series(["foo" * x for x in data], index=s.index) tm.assert_series_equal(res, expected) else: with pytest.raises(TypeError, match=msg): ops(str_ser) msg = "|".join( [ "can only perform ops with numeric values", "cannot perform .* with this index type: DatetimeArray", "Addition/subtraction of integers and integer-arrays " "with DatetimeArray is no longer supported. *", "unsupported operand type", r"can only concatenate str \(not \"int\"\) to str", "not all arguments converted during string", "cannot subtract DatetimeArray from ndarray", ] ) with pytest.raises(TypeError, match=msg): ops(pd.Series(pd.date_range("20180101", periods=len(s)))) # Various # ----------------------------------------------------------------------------- # TODO test unsigned overflow def test_arith_coerce_scalar(data, all_arithmetic_operators): op = tm.get_op_from_name(all_arithmetic_operators) s = pd.Series(data) other = 0.01 result = op(s, other) expected = op(s.astype(float), other) expected = expected.astype("Float64") # rmod results in NaN that wasn't NA in original nullable Series -> unmask it if all_arithmetic_operators == "__rmod__": mask = (s == 0).fillna(False).to_numpy(bool) expected.array._mask[mask] = False tm.assert_series_equal(result, expected) @pytest.mark.parametrize("other", [1.0, np.array(1.0)]) def test_arithmetic_conversion(all_arithmetic_operators, other): # if we have a float operand we should have a float result # if that is equal to an integer op = tm.get_op_from_name(all_arithmetic_operators) s = pd.Series([1, 2, 3], dtype="Int64") result = op(s, other) assert result.dtype == "Float64" def test_cross_type_arithmetic(): df = pd.DataFrame( { "A": pd.Series([1, 2, np.nan], dtype="Int64"), "B": pd.Series([1, np.nan, 3], dtype="UInt8"), "C": [1, 2, 3], } ) result = df.A + df.C expected = pd.Series([2, 4, np.nan], dtype="Int64") tm.assert_series_equal(result, expected) result = (df.A + df.C) * 3 == 12 expected = pd.Series([False, True, None], dtype="boolean") tm.assert_series_equal(result, expected) result = df.A + df.B expected =
pd.Series([2, np.nan, np.nan], dtype="Int64")
pandas.Series