prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import pandas as pd from py2neo import Graph from py2neo import ClientError import sroka.config.config as config def neo4j_query_data(cypher, parameters=None, **kwparameters): if type(cypher) != str: print('Cypher query needs to be a string') return
pd.DataFrame([])
pandas.DataFrame
#!/usr/bin/env python3 """ File: datasets.py Author: <NAME> Email: <EMAIL> Github: https://github.com/lgalke Description: Parsing and loading for all the data sets. """ import pandas as pd import numpy as np import os from html.parser import HTMLParser from abc import abstractmethod, ABC from collections import defaultdict from .thesaurus_reader import ThesaurusReader from .base import harvest import csv # NTCIR_ROOT_PATH = # think about this DEFAULT_CACHEDIR = os.path.expanduser("~/.cache") class IRDataSetBase(ABC): @property @abstractmethod def docs(self): pass @property @abstractmethod def rels(self): pass @property @abstractmethod def topics(self): pass def load(self, verbose=False): labels, docs = self.docs if verbose: print(len(docs), "documents.") queries = self.topics if verbose: n_queries = len(queries) print(n_queries, "queries.") rels = self.rels if verbose: n_rels = np.asarray([len([r for r in harvest(rels, qid) if r > 0]) for qid, __ in queries]) print("{:2f} ({:2f}) relevant documents per query." .format(n_rels.mean(), n_rels.std())) return docs, labels, queries, rels def mine_gold(path, verify_integrity=False): """ returns a dict of dicts label -> docid -> 1""" def zero_default(): return defaultdict(int) gold = defaultdict(zero_default) with open(path, 'r') as f: rd = csv.reader(f, delimiter='\t') for line in rd: doc_id = int(line[0]) labels = line[1:] for label in labels: gold[label][doc_id] = 1 return gold def _first_preflabel(node): return node['prefLabel'][0] def synthesize_topics(gold, thesaurus, accessor=_first_preflabel): """ Returns a list of (query_id, querystring) pairs""" topics = [(label, accessor(thesaurus[label])) for label in set(gold.keys())] return topics def harvest_docs(path, verify_integrity): if os.path.isdir(path): fnames = os.listdir(path) data = dict() for fname in fnames: with open(os.path.join(path, fname), 'r') as f: label, __ = os.path.splitext(fname) data[int(label)] = f.read() # fulltext documents docs = pd.DataFrame.from_dict(data, orient='index') labels, docs = docs.index.values, docs.iloc[:, 0].values elif os.path.isfile(path): # title doucments docs = pd.read_csv(path, sep='\t', names=["title"], index_col=0) labels, docs = docs.index.values, docs["title"].values else: raise UserWarning("No symlinks allowed.") print("labels of type {}, docs of type {}".format(labels.dtype, docs.dtype)) return labels, docs class QuadflorLike(IRDataSetBase): """The famous quadflor-like dataset specification""" def __init__(self, y=None, thes=None, X=None, # Path to dir of documents verify_integrity=False): self.__docs = None self.__rels = None self.__topics = None self.gold_path = y self.thesaurus_reader = ThesaurusReader(thes, normalize=False) self.doc_path = X self.verify_integrity = verify_integrity @property def docs(self): # in memory cache if self.__docs is not None: return self.__docs path = self.doc_path labels, docs = harvest_docs(path, verify_integrity=self.verify_integrity) self.__docs = docs return labels, docs @property def rels(self): if self.__rels is not None: return self.__rels # acquire rels path = self.gold_path rels = mine_gold(path) self.__rels = rels return rels @property def topics(self): """ Synthesizes the topics for the dataset, rels will be computed first.""" if self.__topics is not None: return self.__topics rels, thesaurus = self.rels, self.thesaurus_reader.thesaurus # acquire topics topics = synthesize_topics(rels, thesaurus) self.__topics = topics return topics class NTCIRTopicParser(HTMLParser): def __init__(self, *args, record_tag="topic", tags=["title"], **kwargs): self.tags = tags self.record_tag = record_tag self.records = [] super().__init__(*args, **kwargs) def handle_starttag(self, tag, attrs): self.current_tag = tag if tag == self.record_tag: self.current_record = {} if len(attrs) > 1: raise ValueError self.current_record["qid"] = int(attrs[0][1]) def handle_data(self, data): ctag = self.current_tag if ctag is None: return if ctag in self.tags: self.current_record[ctag] = data.strip() def handle_endtag(self, tag): if tag == self.record_tag: self.records.append(self.current_record) self.current_tag = None class NTCIRParser(HTMLParser): def __init__(self, *args, paragraph_sep="\n", record_tag="rec", id_tag="accn", title_tag="tite", content_tag="abse", paragraph_tag="abse.p", **kwargs): self.records = [] self.record_tag = record_tag self.id_tag = id_tag self.title_tag = title_tag self.content_tag = content_tag self.paragraph_tag = paragraph_tag self.paragraph_sep = paragraph_sep super().__init__(*args, **kwargs) def handle_starttag(self, tag, attrs): if tag == self.record_tag: self.current_record = {} elif tag == self.content_tag: self.current_paragraphs = [] self.current_tag = tag def handle_endtag(self, tag): if tag == self.content_tag: s = self.paragraph_sep self.current_record['content'] = s.join(self.current_paragraphs) elif tag == self.record_tag: self.records.append(self.current_record) self.current_tag = None def handle_data(self, data): if self.current_tag is None: # we are not inside any tag return elif self.current_tag == self.paragraph_tag: self.current_paragraphs.append(data) elif self.current_tag == self.id_tag: self.current_record['docid'] = data elif self.current_tag == self.title_tag: self.current_record['title'] = data class NTCIR(IRDataSetBase): def __init__(self, root_path, kaken=True, gakkai=True, rels=2, topic="title", field="title", verify_integrity=False, cache_dir=os.path.join(DEFAULT_CACHEDIR, "vec4ir", "ntcir"), verbose=0): self.__gakkai = gakkai self.__kaken = kaken self.__rels = int(rels) self.__topic = topic self.__verify_integrity = verify_integrity self.__verbose = verbose self.__field = field self.root_path = root_path if not cache_dir: print(UserWarning("No cachedir specified")) else: print("Using cache:", cache_dir) os.makedirs(cache_dir, exist_ok=True) self.cache_dir = cache_dir def _read_docs(path, title_tag, verify_integrity=False): parser = NTCIRParser(title_tag=title_tag) with open(path, 'r') as f: parser.feed(f.read()) df = pd.DataFrame(parser.records) df.set_index("docid", inplace=True, verify_integrity=verify_integrity) return df def _read_rels(path, verify_integrity=False): df = pd.read_csv(path, names=["qid", "rating", "docid", "relevance"], sep='\t') df.set_index(["qid", "docid"], inplace=True, drop=True, verify_integrity=verify_integrity) return df def _read_topics(path, names, verify_integrity=False): parser = NTCIRTopicParser(tags=names) with open(path, 'r') as f: parser.feed(f.read()) df = pd.DataFrame(parser.records) df.set_index("qid", inplace=True, verify_integrity=verify_integrity) return df @property def docs(self): """ Method to access NTCIR documents with caching """ kaken = self.__kaken gakkai = self.__gakkai verify_integrity = self.__verify_integrity verbose = self.__verbose field = self.__field if not kaken and not gakkai: raise ValueError("So... you call me and want no documents?") if self.cache_dir: identifier = { (False, True): "kaken.pkl", (True, False): "gakkai.pkl", (True, True): "gakkeikaken.pkl" }[(gakkai, kaken)] cache = os.path.join(self.cache_dir, identifier) else: cache = None if cache: try: if verbose > 0: print("Cache hit:", cache) df =
pd.read_pickle(cache)
pandas.read_pickle
# -*- coding: utf-8 -*- # Arithmetc tests for DataFrame/Series/Index/Array classes that should # behave identically. from datetime import timedelta import operator import pytest import numpy as np import pandas as pd import pandas.util.testing as tm from pandas.compat import long from pandas.core import ops from pandas.errors import NullFrequencyError, PerformanceWarning from pandas._libs.tslibs import IncompatibleFrequency from pandas import ( timedelta_range, Timedelta, Timestamp, NaT, Series, TimedeltaIndex, DatetimeIndex) # ------------------------------------------------------------------ # Fixtures @pytest.fixture def tdser(): """ Return a Series with dtype='timedelta64[ns]', including a NaT. """ return Series(['59 Days', '59 Days', 'NaT'], dtype='timedelta64[ns]') @pytest.fixture(params=[pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)], ids=lambda x: type(x).__name__) def delta(request): """ Several ways of representing two hours """ return request.param @pytest.fixture(params=[timedelta(minutes=5, seconds=4), Timedelta('5m4s'), Timedelta('5m4s').to_timedelta64()], ids=lambda x: type(x).__name__) def scalar_td(request): """ Several variants of Timedelta scalars representing 5 minutes and 4 seconds """ return request.param @pytest.fixture(params=[pd.Index, Series, pd.DataFrame], ids=lambda x: x.__name__) def box(request): """ Several array-like containers that should have effectively identical behavior with respect to arithmetic operations. """ return request.param @pytest.fixture(params=[pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(strict=True))], ids=lambda x: x.__name__) def box_df_fail(request): """ Fixture equivalent to `box` fixture but xfailing the DataFrame case. """ return request.param # ------------------------------------------------------------------ # Numeric dtypes Arithmetic with Timedelta Scalar class TestNumericArraylikeArithmeticWithTimedeltaScalar(object): @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="block.eval incorrect", strict=True)) ]) @pytest.mark.parametrize('index', [ pd.Int64Index(range(1, 11)), pd.UInt64Index(range(1, 11)), pd.Float64Index(range(1, 11)), pd.RangeIndex(1, 11)], ids=lambda x: type(x).__name__) @pytest.mark.parametrize('scalar_td', [ Timedelta(days=1), Timedelta(days=1).to_timedelta64(), Timedelta(days=1).to_pytimedelta()], ids=lambda x: type(x).__name__) def test_numeric_arr_mul_tdscalar(self, scalar_td, index, box): # GH#19333 if (box is Series and type(scalar_td) is timedelta and index.dtype == 'f8'): raise pytest.xfail(reason="Cannot multiply timedelta by float") expected = timedelta_range('1 days', '10 days') index = tm.box_expected(index, box) expected = tm.box_expected(expected, box) result = index * scalar_td tm.assert_equal(result, expected) commute = scalar_td * index tm.assert_equal(commute, expected) @pytest.mark.parametrize('index', [ pd.Int64Index(range(1, 3)), pd.UInt64Index(range(1, 3)), pd.Float64Index(range(1, 3)), pd.RangeIndex(1, 3)], ids=lambda x: type(x).__name__) @pytest.mark.parametrize('scalar_td', [ Timedelta(days=1), Timedelta(days=1).to_timedelta64(), Timedelta(days=1).to_pytimedelta()], ids=lambda x: type(x).__name__) def test_numeric_arr_rdiv_tdscalar(self, scalar_td, index, box): if box is Series and type(scalar_td) is timedelta: raise pytest.xfail(reason="TODO: Figure out why this case fails") if box is pd.DataFrame and isinstance(scalar_td, timedelta): raise pytest.xfail(reason="TODO: Figure out why this case fails") expected = TimedeltaIndex(['1 Day', '12 Hours']) index = tm.box_expected(index, box) expected = tm.box_expected(expected, box) result = scalar_td / index tm.assert_equal(result, expected) with pytest.raises(TypeError): index / scalar_td # ------------------------------------------------------------------ # Timedelta64[ns] dtype Arithmetic Operations class TestTimedeltaArraylikeAddSubOps(object): # Tests for timedelta64[ns] __add__, __sub__, __radd__, __rsub__ # ------------------------------------------------------------- # Invalid Operations def test_td64arr_add_str_invalid(self, box): # GH#13624 tdi = TimedeltaIndex(['1 day', '2 days']) tdi = tm.box_expected(tdi, box) with pytest.raises(TypeError): tdi + 'a' with pytest.raises(TypeError): 'a' + tdi @pytest.mark.parametrize('other', [3.14, np.array([2.0, 3.0])]) @pytest.mark.parametrize('op', [operator.add, ops.radd, operator.sub, ops.rsub], ids=lambda x: x.__name__) def test_td64arr_add_sub_float(self, box, op, other): tdi = TimedeltaIndex(['-1 days', '-1 days']) tdi = tm.box_expected(tdi, box) if box is pd.DataFrame and op in [operator.add, operator.sub]: pytest.xfail(reason="Tries to align incorrectly, " "raises ValueError") with pytest.raises(TypeError): op(tdi, other) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Tries to cast df to " "Period", strict=True, raises=IncompatibleFrequency)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('freq', [None, 'H']) def test_td64arr_sub_period(self, box, freq): # GH#13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') idx = TimedeltaIndex(['1 hours', '2 hours'], freq=freq) idx = tm.box_expected(idx, box) with pytest.raises(TypeError): idx - p with pytest.raises(TypeError): p - idx @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="broadcasts along " "wrong axis", raises=ValueError, strict=True)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('pi_freq', ['D', 'W', 'Q', 'H']) @pytest.mark.parametrize('tdi_freq', [None, 'H']) def test_td64arr_sub_pi(self, box, tdi_freq, pi_freq): # GH#20049 subtracting PeriodIndex should raise TypeError tdi = TimedeltaIndex(['1 hours', '2 hours'], freq=tdi_freq) dti = Timestamp('2018-03-07 17:16:40') + tdi pi = dti.to_period(pi_freq) # TODO: parametrize over box for pi? tdi = tm.box_expected(tdi, box) with pytest.raises(TypeError): tdi - pi # ------------------------------------------------------------- # Binary operations td64 arraylike and datetime-like def test_td64arr_sub_timestamp_raises(self, box): idx = TimedeltaIndex(['1 day', '2 day']) idx = tm.box_expected(idx, box) msg = "cannot subtract a datelike from|Could not operate" with tm.assert_raises_regex(TypeError, msg): idx - Timestamp('2011-01-01') @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Returns object dtype", strict=True)) ], ids=lambda x: x.__name__) def test_td64arr_add_timestamp(self, box): idx = TimedeltaIndex(['1 day', '2 day']) expected = DatetimeIndex(['2011-01-02', '2011-01-03']) idx = tm.box_expected(idx, box) expected = tm.box_expected(expected, box) result = idx + Timestamp('2011-01-01') tm.assert_equal(result, expected) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Returns object dtype", strict=True)) ], ids=lambda x: x.__name__) def test_td64_radd_timestamp(self, box): idx = TimedeltaIndex(['1 day', '2 day']) expected = DatetimeIndex(['2011-01-02', '2011-01-03']) idx = tm.box_expected(idx, box) expected = tm.box_expected(expected, box) # TODO: parametrize over scalar datetime types? result = Timestamp('2011-01-01') + idx tm.assert_equal(result, expected) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Returns object dtype " "instead of " "datetime64[ns]", strict=True)) ], ids=lambda x: x.__name__) def test_td64arr_add_sub_timestamp(self, box): # GH#11925 ts = Timestamp('2012-01-01') # TODO: parametrize over types of datetime scalar? tdser = Series(timedelta_range('1 day', periods=3)) expected = Series(pd.date_range('2012-01-02', periods=3)) tdser = tm.box_expected(tdser, box) expected = tm.box_expected(expected, box) tm.assert_equal(ts + tdser, expected) tm.assert_equal(tdser + ts, expected) expected2 = Series(pd.date_range('2011-12-31', periods=3, freq='-1D')) expected2 = tm.box_expected(expected2, box) tm.assert_equal(ts - tdser, expected2) tm.assert_equal(ts + (-tdser), expected2) with pytest.raises(TypeError): tdser - ts def test_tdi_sub_dt64_array(self, box_df_fail): box = box_df_fail # DataFrame tries to broadcast incorrectly dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) dtarr = dti.values expected = pd.DatetimeIndex(dtarr) - tdi tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) with pytest.raises(TypeError): tdi - dtarr # TimedeltaIndex.__rsub__ result = dtarr - tdi tm.assert_equal(result, expected) def test_tdi_add_dt64_array(self, box_df_fail): box = box_df_fail # DataFrame tries to broadcast incorrectly dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) dtarr = dti.values expected = pd.DatetimeIndex(dtarr) + tdi tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = tdi + dtarr tm.assert_equal(result, expected) result = dtarr + tdi tm.assert_equal(result, expected) # ------------------------------------------------------------------ # Operations with int-like others @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Attempts to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) def test_td64arr_add_int_series_invalid(self, box, tdser): tdser = tm.box_expected(tdser, box) err = TypeError if box is not pd.Index else NullFrequencyError with pytest.raises(err): tdser + Series([2, 3, 4]) @pytest.mark.parametrize('box', [ pd.Index, pytest.param(Series, marks=pytest.mark.xfail(reason="GH#19123 integer " "interpreted as " "nanoseconds", strict=True)), pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Attempts to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) def test_td64arr_radd_int_series_invalid(self, box, tdser): tdser = tm.box_expected(tdser, box) err = TypeError if box is not pd.Index else NullFrequencyError with pytest.raises(err): Series([2, 3, 4]) + tdser @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Attempts to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) def test_td64arr_sub_int_series_invalid(self, box, tdser): tdser = tm.box_expected(tdser, box) err = TypeError if box is not pd.Index else NullFrequencyError with pytest.raises(err): tdser - Series([2, 3, 4]) @pytest.mark.xfail(reason='GH#19123 integer interpreted as nanoseconds', strict=True) def test_td64arr_rsub_int_series_invalid(self, box, tdser): tdser = tm.box_expected(tdser, box) with pytest.raises(TypeError): Series([2, 3, 4]) - tdser @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Attempts to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) def test_td64arr_add_intlike(self, box): # GH#19123 tdi = TimedeltaIndex(['59 days', '59 days', 'NaT']) ser = tm.box_expected(tdi, box) err = TypeError if box is not pd.Index else NullFrequencyError other = Series([20, 30, 40], dtype='uint8') # TODO: separate/parametrize with pytest.raises(err): ser + 1 with pytest.raises(err): ser - 1 with pytest.raises(err): ser + other with pytest.raises(err): ser - other with pytest.raises(err): ser + np.array(other) with pytest.raises(err): ser - np.array(other) with pytest.raises(err): ser + pd.Index(other) with pytest.raises(err): ser - pd.Index(other) @pytest.mark.parametrize('scalar', [1, 1.5, np.array(2)]) def test_td64arr_add_sub_numeric_scalar_invalid(self, box, scalar, tdser): if box is pd.DataFrame and isinstance(scalar, np.ndarray): # raises ValueError pytest.xfail(reason="DataFrame to broadcast incorrectly") tdser = tm.box_expected(tdser, box) err = TypeError if box is pd.Index and not isinstance(scalar, float): err = NullFrequencyError with pytest.raises(err): tdser + scalar with pytest.raises(err): scalar + tdser with pytest.raises(err): tdser - scalar with pytest.raises(err): scalar - tdser @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Tries to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('dtype', ['int64', 'int32', 'int16', 'uint64', 'uint32', 'uint16', 'uint8', 'float64', 'float32', 'float16']) @pytest.mark.parametrize('vec', [ np.array([1, 2, 3]), pd.Index([1, 2, 3]), Series([1, 2, 3]) # TODO: Add DataFrame in here? ], ids=lambda x: type(x).__name__) def test_td64arr_add_sub_numeric_arr_invalid(self, box, vec, dtype, tdser): if type(vec) is Series and not dtype.startswith('float'): pytest.xfail(reason='GH#19123 integer interpreted as nanos') tdser = tm.box_expected(tdser, box) err = TypeError if box is pd.Index and not dtype.startswith('float'): err = NullFrequencyError vector = vec.astype(dtype) # TODO: parametrize over these four ops? with pytest.raises(err): tdser + vector with pytest.raises(err): vector + tdser with pytest.raises(err): tdser - vector with pytest.raises(err): vector - tdser # ------------------------------------------------------------------ # Operations with timedelta-like others def test_td64arr_add_td64_array(self, box_df_fail): box = box_df_fail # DataFrame tries to broadcast incorrectly dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) tdarr = tdi.values expected = 2 * tdi tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = tdi + tdarr tm.assert_equal(result, expected) result = tdarr + tdi tm.assert_equal(result, expected) def test_td64arr_sub_td64_array(self, box_df_fail): box = box_df_fail # DataFrame tries to broadcast incorrectly dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) tdarr = tdi.values expected = 0 * tdi tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = tdi - tdarr tm.assert_equal(result, expected) result = tdarr - tdi tm.assert_equal(result, expected) # TODO: parametrize over [add, sub, radd, rsub]? @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Tries to broadcast " "incorrectly leading " "to alignment error", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('names', [(None, None, None), ('Egon', 'Venkman', None), ('NCC1701D', 'NCC1701D', 'NCC1701D')]) def test_td64arr_add_sub_tdi(self, box, names): # GH#17250 make sure result dtype is correct # GH#19043 make sure names are propagated correctly tdi = TimedeltaIndex(['0 days', '1 day'], name=names[0]) ser = Series([Timedelta(hours=3), Timedelta(hours=4)], name=names[1]) expected = Series([Timedelta(hours=3), Timedelta(days=1, hours=4)], name=names[2]) ser = tm.box_expected(ser, box) expected = tm.box_expected(expected, box) result = tdi + ser tm.assert_equal(result, expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' result = ser + tdi tm.assert_equal(result, expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' expected = Series([Timedelta(hours=-3), Timedelta(days=1, hours=-4)], name=names[2]) expected = tm.box_expected(expected, box) result = tdi - ser tm.assert_equal(result, expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' result = ser - tdi tm.assert_equal(result, -expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' def test_td64arr_sub_NaT(self, box): # GH#18808 ser = Series([NaT, Timedelta('1s')]) expected = Series([NaT, NaT], dtype='timedelta64[ns]') ser = tm.box_expected(ser, box) expected = tm.box_expected(expected, box) res = ser - pd.NaT tm.assert_equal(res, expected) def test_td64arr_add_timedeltalike(self, delta, box): # only test adding/sub offsets as + is now numeric if box is pd.DataFrame and isinstance(delta, pd.DateOffset): pytest.xfail(reason="Returns object dtype instead of m8[ns]") rng = timedelta_range('1 days', '10 days') expected = timedelta_range('1 days 02:00:00', '10 days 02:00:00', freq='D') rng = tm.box_expected(rng, box) expected = tm.box_expected(expected, box) result = rng + delta tm.assert_equal(result, expected) def test_td64arr_sub_timedeltalike(self, delta, box): # only test adding/sub offsets as - is now numeric if box is pd.DataFrame and isinstance(delta, pd.DateOffset): pytest.xfail(reason="Returns object dtype instead of m8[ns]") rng = timedelta_range('1 days', '10 days') expected = timedelta_range('0 days 22:00:00', '9 days 22:00:00') rng = tm.box_expected(rng, box) expected = tm.box_expected(expected, box) result = rng - delta tm.assert_equal(result, expected) # ------------------------------------------------------------------ # __add__/__sub__ with DateOffsets and arrays of DateOffsets @pytest.mark.parametrize('box', [ pd.Index, pytest.param(Series, marks=pytest.mark.xfail(reason="Index fails to return " "NotImplemented on " "reverse op", strict=True)), pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Tries to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('names', [(None, None, None), ('foo', 'bar', None), ('foo', 'foo', 'foo')]) def test_td64arr_add_offset_index(self, names, box): # GH#18849, GH#19744 tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00'], name=names[0]) other = pd.Index([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)], name=names[1]) expected = TimedeltaIndex([tdi[n] + other[n] for n in range(len(tdi))], freq='infer', name=names[2]) tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) with tm.assert_produces_warning(PerformanceWarning): res = tdi + other tm.assert_equal(res, expected) with tm.assert_produces_warning(PerformanceWarning): res2 = other + tdi tm.assert_equal(res2, expected) # TODO: combine with test_td64arr_add_offset_index by parametrizing # over second box? def test_td64arr_add_offset_array(self, box_df_fail): # GH#18849 box = box_df_fail # tries to broadcast incorrectly tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00']) other = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)]) expected = TimedeltaIndex([tdi[n] + other[n] for n in range(len(tdi))], freq='infer') tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) with tm.assert_produces_warning(PerformanceWarning): res = tdi + other tm.assert_equal(res, expected) with tm.assert_produces_warning(PerformanceWarning): res2 = other + tdi tm.assert_equal(res2, expected) @pytest.mark.parametrize('names', [(None, None, None), ('foo', 'bar', None), ('foo', 'foo', 'foo')]) def test_td64arr_sub_offset_index(self, names, box_df_fail): # GH#18824, GH#19744 box = box_df_fail # tries to broadcast incorrectly tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00'], name=names[0]) other = pd.Index([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)], name=names[1]) expected = TimedeltaIndex([tdi[n] - other[n] for n in range(len(tdi))], freq='infer', name=names[2]) tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) with tm.assert_produces_warning(PerformanceWarning): res = tdi - other tm.assert_equal(res, expected) def test_td64arr_sub_offset_array(self, box_df_fail): # GH#18824 box = box_df_fail # tries to broadcast incorrectly tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00']) other = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)]) expected = TimedeltaIndex([tdi[n] - other[n] for n in range(len(tdi))], freq='infer') tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) with tm.assert_produces_warning(PerformanceWarning): res = tdi - other tm.assert_equal(res, expected) @pytest.mark.parametrize('box', [ pd.Index, pytest.param(Series, marks=pytest.mark.xfail(reason="object dtype Series " "fails to return " "NotImplemented", strict=True, raises=TypeError)), pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="tries to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('names', [(None, None, None), ('foo', 'bar', None), ('foo', 'foo', 'foo')]) def test_td64arr_with_offset_series(self, names, box): # GH#18849 box2 = Series if box is pd.Index else box tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00'], name=names[0]) other = Series([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)], name=names[1]) expected_add = Series([tdi[n] + other[n] for n in range(len(tdi))], name=names[2]) tdi = tm.box_expected(tdi, box) expected_add = tm.box_expected(expected_add, box2) with tm.assert_produces_warning(PerformanceWarning): res = tdi + other tm.assert_equal(res, expected_add) with tm.assert_produces_warning(PerformanceWarning): res2 = other + tdi tm.assert_equal(res2, expected_add) # TODO: separate/parametrize add/sub test? expected_sub = Series([tdi[n] - other[n] for n in range(len(tdi))], name=names[2]) expected_sub = tm.box_expected(expected_sub, box2) with tm.assert_produces_warning(PerformanceWarning): res3 = tdi - other tm.assert_equal(res3, expected_sub) @pytest.mark.parametrize('obox', [np.array, pd.Index, pd.Series]) def test_td64arr_addsub_anchored_offset_arraylike(self, obox, box_df_fail): # GH#18824 box = box_df_fail # DataFrame tries to broadcast incorrectly tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00']) tdi = tm.box_expected(tdi, box) anchored = obox([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]) # addition/subtraction ops with anchored offsets should issue # a PerformanceWarning and _then_ raise a TypeError. with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): tdi + anchored with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): anchored + tdi with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): tdi - anchored with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): anchored - tdi class TestTimedeltaArraylikeMulDivOps(object): # Tests for timedelta64[ns] # __mul__, __rmul__, __div__, __rdiv__, __floordiv__, __rfloordiv__ # ------------------------------------------------------------------ # Multiplication # organized with scalar others first, then array-like def test_td64arr_mul_int(self, box_df_fail): box = box_df_fail # DataFrame op returns object instead of m8[ns] idx = TimedeltaIndex(np.arange(5, dtype='int64')) idx = tm.box_expected(idx, box) result = idx * 1 tm.assert_equal(result, idx) result = 1 * idx tm.assert_equal(result, idx) def test_td64arr_mul_tdlike_scalar_raises(self, delta, box): if box is pd.DataFrame and not isinstance(delta, pd.DateOffset): pytest.xfail(reason="returns m8[ns] instead of raising") rng = timedelta_range('1 days', '10 days', name='foo') rng = tm.box_expected(rng, box) with pytest.raises(TypeError): rng * delta def test_tdi_mul_int_array_zerodim(self, box_df_fail): box = box_df_fail # DataFrame op returns object dtype rng5 = np.arange(5, dtype='int64') idx = TimedeltaIndex(rng5) expected = TimedeltaIndex(rng5 * 5) idx = tm.box_expected(idx, box) expected = tm.box_expected(expected, box) result = idx * np.array(5, dtype='int64') tm.assert_equal(result, expected) def test_tdi_mul_int_array(self, box_df_fail): box = box_df_fail # DataFrame tries to broadcast incorrectly rng5 = np.arange(5, dtype='int64') idx = TimedeltaIndex(rng5) expected = TimedeltaIndex(rng5 ** 2) idx = tm.box_expected(idx, box) expected = tm.box_expected(expected, box) result = idx * rng5 tm.assert_equal(result, expected) def test_tdi_mul_int_series(self, box_df_fail): box = box_df_fail # DataFrame tries to broadcast incorrectly idx = TimedeltaIndex(np.arange(5, dtype='int64')) expected = TimedeltaIndex(np.arange(5, dtype='int64') ** 2) idx = tm.box_expected(idx, box) box2 = pd.Series if box is pd.Index else box expected = tm.box_expected(expected, box2) result = idx * pd.Series(np.arange(5, dtype='int64')) tm.assert_equal(result, expected) def test_tdi_mul_float_series(self, box_df_fail): box = box_df_fail # DataFrame tries to broadcast incorrectly idx = TimedeltaIndex(np.arange(5, dtype='int64')) idx = tm.box_expected(idx, box) rng5f = np.arange(5, dtype='float64') expected = TimedeltaIndex(rng5f * (rng5f + 0.1)) box2 = pd.Series if box is pd.Index else box expected = tm.box_expected(expected, box2) result = idx * Series(rng5f + 0.1) tm.assert_equal(result, expected) # TODO: Put Series/DataFrame in others? @pytest.mark.parametrize('other', [ np.arange(1, 11), pd.Int64Index(range(1, 11)), pd.UInt64Index(range(1, 11)), pd.Float64Index(range(1, 11)), pd.RangeIndex(1, 11) ], ids=lambda x: type(x).__name__) def test_tdi_rmul_arraylike(self, other, box_df_fail): # RangeIndex fails to return NotImplemented, for others # DataFrame tries to broadcast incorrectly box = box_df_fail tdi = TimedeltaIndex(['1 Day'] * 10) expected = timedelta_range('1 days', '10 days') tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = other * tdi tm.assert_equal(result, expected) commute = tdi * other tm.assert_equal(commute, expected) # ------------------------------------------------------------------ # __div__ def test_td64arr_div_nat_invalid(self, box_df_fail): # don't allow division by NaT (maybe could in the future) box = box_df_fail # DataFrame returns all-NaT instead of raising rng = timedelta_range('1 days', '10 days', name='foo') rng = tm.box_expected(rng, box) with pytest.raises(TypeError): rng / pd.NaT def test_td64arr_div_int(self, box_df_fail): box = box_df_fail # DataFrame returns object dtype instead of m8[ns] idx = TimedeltaIndex(np.arange(5, dtype='int64')) idx = tm.box_expected(idx, box) result = idx / 1 tm.assert_equal(result, idx) def test_tdi_div_tdlike_scalar(self, delta, box_df_fail): box = box_df_fail # DataFrame op returns m8[ns] instead of float64 rng = timedelta_range('1 days', '10 days', name='foo') expected = pd.Float64Index((np.arange(10) + 1) * 12, name='foo') rng = tm.box_expected(rng, box) expected = tm.box_expected(expected, box) result = rng / delta tm.assert_equal(result, expected) def test_tdi_div_tdlike_scalar_with_nat(self, delta, box_df_fail): box = box_df_fail # DataFrame op returns m8[ns] instead of float64 rng = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') expected = pd.Float64Index([12, np.nan, 24], name='foo') rng =
tm.box_expected(rng, box)
pandas.util.testing.box_expected
import numpy as np import pandas as pd from numpy import inf, nan from numpy.testing import assert_array_almost_equal, assert_array_equal from pandas import DataFrame, Series, Timestamp from pandas.testing import assert_frame_equal, assert_series_equal from shapely.geometry.point import Point from pymove import MoveDataFrame from pymove.utils import integration from pymove.utils.constants import ( ADDRESS, CITY, DATETIME, DIST_EVENT, DIST_HOME, DIST_POI, EVENT_ID, EVENT_TYPE, GEOMETRY, HOME, ID_POI, LATITUDE, LONGITUDE, NAME_POI, POI, TRAJ_ID, TYPE_POI, VIOLATING, ) list_random_banks = [ [39.984094, 116.319236, 1, 'bank'], [39.984198, 116.319322, 2, 'randomvalue'], [39.984224, 116.319402, 3, 'bancos_postos'], [39.984211, 116.319389, 4, 'randomvalue'], [39.984217, 116.319422, 5, 'bancos_PAE'], [39.984710, 116.319865, 6, 'bancos_postos'], [39.984674, 116.319810, 7, 'bancos_agencias'], [39.984623, 116.319773, 8, 'bancos_filiais'], [39.984606, 116.319732, 9, 'banks'], [39.984555, 116.319728, 10, 'banks'] ] list_random_bus_station = [ [39.984094, 116.319236, 1, 'transit_station'], [39.984198, 116.319322, 2, 'randomvalue'], [39.984224, 116.319402, 3, 'transit_station'], [39.984211, 116.319389, 4, 'pontos_de_onibus'], [39.984217, 116.319422, 5, 'transit_station'], [39.984710, 116.319865, 6, 'randomvalue'], [39.984674, 116.319810, 7, 'bus_station'], [39.984623, 116.319773, 8, 'bus_station'], ] list_random_bar_restaurant = [ [39.984094, 116.319236, 1, 'restaurant'], [39.984198, 116.319322, 2, 'restaurant'], [39.984224, 116.319402, 3, 'randomvalue'], [39.984211, 116.319389, 4, 'bar'], [39.984217, 116.319422, 5, 'bar'], [39.984710, 116.319865, 6, 'bar-restaurant'], [39.984674, 116.319810, 7, 'random123'], [39.984623, 116.319773, 8, '123'], ] list_random_parks = [ [39.984094, 116.319236, 1, 'pracas_e_parques'], [39.984198, 116.319322, 2, 'park'], [39.984224, 116.319402, 3, 'parks'], [39.984211, 116.319389, 4, 'random'], [39.984217, 116.319422, 5, '123'], [39.984710, 116.319865, 6, 'park'], [39.984674, 116.319810, 7, 'parks'], [39.984623, 116.319773, 8, 'pracas_e_parques'], ] list_random_police = [ [39.984094, 116.319236, 1, 'distritos_policiais'], [39.984198, 116.319322, 2, 'police'], [39.984224, 116.319402, 3, 'police'], [39.984211, 116.319389, 4, 'distritos_policiais'], [39.984217, 116.319422, 5, 'random'], [39.984710, 116.319865, 6, 'randomvalue'], [39.984674, 116.319810, 7, '123'], [39.984623, 116.319773, 8, 'bus_station'], ] list_move = [ [39.984094, 116.319236, Timestamp('2008-10-23 05:53:05'), 1], [39.984559000000004, 116.326696, Timestamp('2008-10-23 10:37:26'), 1], [40.002899, 116.32151999999999, Timestamp('2008-10-23 10:50:16'), 1], [40.016238, 116.30769099999999, Timestamp('2008-10-23 11:03:06'), 1], [40.013814, 116.306525, Timestamp('2008-10-23 11:58:33'), 2], [40.009735, 116.315069, Timestamp('2008-10-23 23:50:45'), 2], [39.993527, 116.32648300000001, Timestamp('2008-10-24 00:02:14'), 2], [39.978575, 116.326975, Timestamp('2008-10-24 00:22:01'), 3], [39.981668, 116.310769, Timestamp('2008-10-24 01:57:57'), 3], ] list_pois = [ [39.984094, 116.319236, 1, 'policia', 'distrito_pol_1'], [39.991013, 116.326384, 2, 'policia', 'policia_federal'], [40.01, 116.312615, 3, 'comercio', 'supermercado_aroldo'], [40.013821, 116.306531, 4, 'show', 'forro_tropykalia'], [40.008099, 116.31771100000002, 5, 'risca-faca', 'rinha_de_galo_world_cup'], [39.985704, 116.326877, 6, 'evento', 'adocao_de_animais'], [39.979393, 116.3119, 7, 'show', 'dia_do_municipio'] ] # Testes de Unions def test_union_poi_bank(): pois_df = DataFrame( data=list_random_banks, columns=[LATITUDE, LONGITUDE, TRAJ_ID, TYPE_POI], index=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] ) expected = DataFrame( data=[ [39.984094, 116.319236, 1, 'banks'], [39.984198, 116.319322, 2, 'randomvalue'], [39.984224, 116.319402, 3, 'banks'], [39.984211, 116.319389, 4, 'randomvalue'], [39.984217, 116.319422, 5, 'banks'], [39.984710, 116.319865, 6, 'banks'], [39.984674, 116.319810, 7, 'banks'], [39.984623, 116.319773, 8, 'banks'], [39.984606, 116.319732, 9, 'banks'], [39.984555, 116.319728, 10, 'banks'] ], columns=[LATITUDE, LONGITUDE, TRAJ_ID, TYPE_POI], index=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] ) integration.union_poi_bank(pois_df, TYPE_POI, inplace=True) assert_frame_equal(pois_df, expected) def test_union_poi_bus_station(): pois_df = DataFrame( data=list_random_bus_station, columns=[LATITUDE, LONGITUDE, TRAJ_ID, TYPE_POI], index=[0, 1, 2, 3, 4, 5, 6, 7] ) expected = DataFrame( data=[ [39.984094, 116.319236, 1, 'bus_station'], [39.984198, 116.319322, 2, 'randomvalue'], [39.984224, 116.319402, 3, 'bus_station'], [39.984211, 116.319389, 4, 'bus_station'], [39.984217, 116.319422, 5, 'bus_station'], [39.984710, 116.319865, 6, 'randomvalue'], [39.984674, 116.319810, 7, 'bus_station'], [39.984623, 116.319773, 8, 'bus_station'], ], columns=[LATITUDE, LONGITUDE, TRAJ_ID, TYPE_POI], index=[0, 1, 2, 3, 4, 5, 6, 7] ) integration.union_poi_bus_station(pois_df, TYPE_POI, inplace=True) assert_frame_equal(pois_df, expected) def test_union_poi_bar_restaurant(): pois_df = DataFrame( data=list_random_bar_restaurant, columns=[LATITUDE, LONGITUDE, TRAJ_ID, TYPE_POI], index=[0, 1, 2, 3, 4, 5, 6, 7] ) expected = DataFrame( data=[ [39.984094, 116.319236, 1, 'bar-restaurant'], [39.984198, 116.319322, 2, 'bar-restaurant'], [39.984224, 116.319402, 3, 'randomvalue'], [39.984211, 116.319389, 4, 'bar-restaurant'], [39.984217, 116.319422, 5, 'bar-restaurant'], [39.984710, 116.319865, 6, 'bar-restaurant'], [39.984674, 116.319810, 7, 'random123'], [39.984623, 116.319773, 8, '123'], ], columns=[LATITUDE, LONGITUDE, TRAJ_ID, TYPE_POI], index=[0, 1, 2, 3, 4, 5, 6, 7] ) integration.union_poi_bar_restaurant(pois_df, TYPE_POI, inplace=True) assert_frame_equal(pois_df, expected) def test_union_poi_parks(): pois_df = DataFrame( data=list_random_parks, columns=[LATITUDE, LONGITUDE, TRAJ_ID, TYPE_POI], index=[0, 1, 2, 3, 4, 5, 6, 7] ) expected = DataFrame( data=[ [39.984094, 116.319236, 1, 'parks'], [39.984198, 116.319322, 2, 'parks'], [39.984224, 116.319402, 3, 'parks'], [39.984211, 116.319389, 4, 'random'], [39.984217, 116.319422, 5, '123'], [39.984710, 116.319865, 6, 'parks'], [39.984674, 116.319810, 7, 'parks'], [39.984623, 116.319773, 8, 'parks'], ], columns=[LATITUDE, LONGITUDE, TRAJ_ID, TYPE_POI], index=[0, 1, 2, 3, 4, 5, 6, 7] ) integration.union_poi_parks(pois_df, TYPE_POI, inplace=True) assert_frame_equal(pois_df, expected) def test_union_poi_police(): pois_df = DataFrame( data=list_random_police, columns=[LATITUDE, LONGITUDE, TRAJ_ID, TYPE_POI], index=[0, 1, 2, 3, 4, 5, 6, 7] ) expected = DataFrame( data=[ [39.984094, 116.319236, 1, 'police'], [39.984198, 116.319322, 2, 'police'], [39.984224, 116.319402, 3, 'police'], [39.984211, 116.319389, 4, 'police'], [39.984217, 116.319422, 5, 'random'], [39.984710, 116.319865, 6, 'randomvalue'], [39.984674, 116.319810, 7, '123'], [39.984623, 116.319773, 8, 'bus_station'], ], columns=[LATITUDE, LONGITUDE, TRAJ_ID, TYPE_POI], index=[0, 1, 2, 3, 4, 5, 6, 7] ) integration.union_poi_police(pois_df, TYPE_POI, inplace=True) assert_frame_equal(pois_df, expected) def test_join_colletive_areas(): move_df = MoveDataFrame( data=list_move, ) move_df['geometry'] = move_df.apply(lambda x: Point(x['lon'], x['lat']), axis=1) expected = move_df.copy() indexes_ac = np.linspace(0, move_df.shape[0], 5, dtype=int) area_c = move_df[move_df.index.isin(indexes_ac)].copy() integration.join_collective_areas(move_df, area_c, inplace=True) expected[VIOLATING] = [True, False, True, False, True, False, True, False, False] assert_frame_equal(move_df, expected) def test__reset_and_creates_id_and_lat_lon(): move_df = MoveDataFrame(list_move) pois = DataFrame( data=list_pois, columns=[LATITUDE, LONGITUDE, TRAJ_ID, TYPE_POI, NAME_POI], index=[0, 1, 2, 3, 4, 5, 6] ) dists, ids, tags, lats, lons = ( integration._reset_and_creates_id_and_lat_lon( move_df, pois, True, True ) ) id_expected = np.full(9, '', dtype='object_') tag_expected = np.full(9, '', dtype='object_') dist_expected = np.full( 9, np.Infinity, dtype=np.float64 ) lat_expected = np.full(7, np.Infinity, dtype=np.float64) lon_expected = np.full(7, np.Infinity, dtype=np.float64) assert_array_almost_equal(dists, dist_expected) assert_array_equal(ids, id_expected) assert_array_equal(tags, tag_expected) assert_array_almost_equal(lats, lat_expected) assert_array_almost_equal(lons, lon_expected) dists, ids, tags, lats, lons = ( integration._reset_and_creates_id_and_lat_lon( move_df, pois, True, False ) ) assert_array_almost_equal(dists, dist_expected) assert_array_equal(ids, id_expected) assert_array_equal(tags, tag_expected) assert_array_almost_equal(lats, lat_expected) assert_array_almost_equal(lons, lon_expected) dists, ids, tags, lats, lons = ( integration._reset_and_creates_id_and_lat_lon( move_df, pois, False, True ) ) lat_expected = np.full(9, np.Infinity, dtype=np.float64) lon_expected = np.full(9, np.Infinity, dtype=np.float64) assert_array_almost_equal(dists, dist_expected) assert_array_equal(ids, id_expected) assert_array_equal(tags, tag_expected) assert_array_almost_equal(lats, lat_expected) assert_array_almost_equal(lons, lon_expected) dists, ids, tags, lats, lons = ( integration._reset_and_creates_id_and_lat_lon( move_df, pois, False, False ) ) assert_array_almost_equal(dists, dist_expected) assert_array_equal(ids, id_expected) assert_array_equal(tags, tag_expected) assert_array_almost_equal(lats, lat_expected) assert_array_almost_equal(lons, lon_expected) def test__reset_set_window__and_creates_event_id_type(): list_events = [ [39.984094, 116.319236, 1, Timestamp('2008-10-24 01:57:57'), 'show do tropykalia'], [39.991013, 116.326384, 2, Timestamp('2008-10-24 00:22:01'), 'evento da prefeitura'], [40.01, 116.312615, 3, Timestamp('2008-10-25 00:21:01'), 'show do seu joao'], [40.013821, 116.306531, 4, Timestamp('2008-10-26 00:22:01'), 'missa'] ] move_df = MoveDataFrame(list_move) pois = DataFrame( data=list_events, columns=[LATITUDE, LONGITUDE, EVENT_ID, DATETIME, EVENT_TYPE], index=[0, 1, 2, 3] ) list_win_start = [ '2008-10-22T17:23:05.000000000', '2008-10-22T22:07:26.000000000', '2008-10-22T22:20:16.000000000', '2008-10-22T22:33:06.000000000', '2008-10-22T23:28:33.000000000', '2008-10-23T11:20:45.000000000', '2008-10-23T11:32:14.000000000', '2008-10-23T11:52:01.000000000', '2008-10-23T13:27:57.000000000' ] win_start_expected = Series(pd.to_datetime(list_win_start), name=DATETIME) list_win_end = [ '2008-10-23T18:23:05.000000000', '2008-10-23T23:07:26.000000000', '2008-10-23T23:20:16.000000000', '2008-10-23T23:33:06.000000000', '2008-10-24T00:28:33.000000000', '2008-10-24T12:20:45.000000000', '2008-10-24T12:32:14.000000000', '2008-10-24T12:52:01.000000000', '2008-10-24T14:27:57.000000000' ] win_end_expected = Series(pd.to_datetime(list_win_end), name=DATETIME) dist_expected = np.full( 9, np.Infinity, dtype=np.float64 ) type_expected = np.full(9, '', dtype='object_') id_expected = np.full(9, '', dtype='object_') window_starts, window_ends, current_distances, event_id, event_type = ( integration._reset_set_window__and_creates_event_id_type( move_df, pois, 45000, DATETIME ) ) assert_series_equal(window_starts, win_start_expected) assert_series_equal(window_ends, win_end_expected) assert_array_almost_equal(current_distances, dist_expected) assert_array_equal(event_id, id_expected) assert_array_equal(event_type, type_expected) def test_reset_set_window_and_creates_event_id_type_all(): list_move = [ [39.984094, 116.319236, Timestamp('2008-10-23 05:53:05'), 1], [39.984559000000004, 116.326696, Timestamp('2008-10-23 10:37:26'), 1], [40.002899, 116.32151999999999, Timestamp('2008-10-23 10:50:16'), 1], [40.016238, 116.30769099999999, Timestamp('2008-10-23 11:03:06'), 1], [40.013814, 116.306525,
Timestamp('2008-10-23 11:58:33')
pandas.Timestamp
import os import pandas as pd import numpy as np from autumn.settings import PROJECTS_PATH from autumn.settings import INPUT_DATA_PATH from autumn.tools.utils.utils import update_timeseries from autumn.models.covid_19.constants import COVID_BASE_DATETIME from autumn.tools.utils.utils import create_date_index from autumn.settings import PASSWORD_ENVAR from getpass import getpass from autumn.tools.utils import secrets COVID_AU_DIRPATH = os.path.join(INPUT_DATA_PATH, "covid_au") CHRIS_CSV = os.path.join(COVID_AU_DIRPATH, "monitoringreport.secret.csv") COVID_DHHS_DEATH_CSV = os.path.join(COVID_AU_DIRPATH, "monashmodelextract_deaths.secret.csv") COVID_DHHS_CASE_CSV = os.path.join(COVID_AU_DIRPATH, "monashmodelextract_cases.secret.csv") COVID_DHHS_ADMN_CSV = os.path.join(COVID_AU_DIRPATH, "monashmodelextract_admissions.secret.csv") COVID_DHHS_VAC_CSV = os.path.join(COVID_AU_DIRPATH, "monashmodelextract_vaccination.secret.csv") COVID_VIDA_VAC_CSV = os.path.join(COVID_AU_DIRPATH, "vida_vac.secret.csv") COVID_VIDA_POP_CSV = os.path.join(COVID_AU_DIRPATH, "vida_pop.csv") COVID_VAC_CSV = os.path.join(COVID_AU_DIRPATH, "vac_cov.csv") COVID_DHHS_POSTCODE_LGA_CSV = os.path.join(COVID_AU_DIRPATH, "postcode lphu concordance.csv") COVID_VICTORIA_TARGETS_CSV = os.path.join( PROJECTS_PATH, "covid_19", "victoria", "victoria", "targets.secret.json" ) # Two different mappings LGA_TO_CLUSTER = os.path.join( INPUT_DATA_PATH, "mobility", "LGA to Cluster mapping dictionary with proportions.csv" ) LGA_TO_HSP = os.path.join(INPUT_DATA_PATH, "covid_au", "LGA_HSP map_v2.csv") COVID_DHHS_MAPING = LGA_TO_HSP # This is the new mapping TODAY = (
pd.to_datetime("today")
pandas.to_datetime
import os import glob import torch import numpy as np import pandas as pd import librosa as lr import soundfile as sf import matplotlib.pyplot as plt from torch.utils.data import DataLoader, ConcatDataset, random_split from asteroid.data import TimitDataset, TimitLegacyDataset from asteroid.data.utils import CachedWavSet from tqdm import tqdm from torch import optim from pytorch_lightning import Trainer, loggers as pl_loggers from asteroid_filterbanks.transforms import mag from asteroid.losses import singlesrc_neg_sisdr from asteroid.data.utils import find_audio_files from asteroid.metrics import get_metrics TIMIT_CACHE_DIR = '/jmain01/home/JAD007/txk02/aaa18-txk02/Datasets/test_noisy_drone_cache' TIMIT_DIR_8kHZ = '/jmain01/home/JAD007/txk02/aaa18-txk02/Datasets/TIMIT_8kHZ' SAMPLE_RATE = 8000 csv_path_dict = { '-30': '/jmain01/home/JAD007/txk02/aaa18-txk02/Datasets/test_noisy_drone_cache/-30db/test-drones_68.csv', '-25': '/jmain01/home/JAD007/txk02/aaa18-txk02/Datasets/test_noisy_drone_cache/-25db/test-drones_69.csv', '-20': '/jmain01/home/JAD007/txk02/aaa18-txk02/Datasets/test_noisy_drone_cache/-20db/test-drones_70.csv', '-15': '/jmain01/home/JAD007/txk02/aaa18-txk02/Datasets/test_noisy_drone_cache/-15db/test-drones_71.csv', '-10': '/jmain01/home/JAD007/txk02/aaa18-txk02/Datasets/test_noisy_drone_cache/-10db/test-drones_72.csv', '-5': '/jmain01/home/JAD007/txk02/aaa18-txk02/Datasets/test_noisy_drone_cache/-5db/test-drones_73.csv', '0': '/jmain01/home/JAD007/txk02/aaa18-txk02/Datasets/test_noisy_drone_cache/0db/test-drones_74.csv', } noises = CachedWavSet('/jmain01/home/JAD007/txk02/aaa18-txk02/Datasets/noises-test-drones', sample_rate=SAMPLE_RATE, precache=True, with_path=True) test_snrs = [-30, -25, -20, -15, -10, -5, 0] test_sets = {} i = 0 for snr in tqdm(test_snrs, 'Load datasets'): test_sets[snr] = TimitLegacyDataset( TIMIT_DIR_8kHZ, noises, sample_rate=SAMPLE_RATE, cache_dir=TIMIT_CACHE_DIR, snr=snr, dset_name='test-drones', subset='test', random_seed=68 + i, with_path=True) i += 1 #directories to save denoised audio in save_enhanced_dir = "/jmain01/home/JAD007/txk02/aaa18-txk02/Datasets/drone_noise_out/" # get csvfilenames for metadata information def get_all_metrics_from_model(model, test_sets, model_name=None): series_list = [] torch.no_grad().__enter__() model = model.cuda() for snr, test_set in test_sets.items(): # makde dirs for each models and separate dir for each snr os.makedirs(f'{save_enhanced_dir}/{str(model_name)}/{snr}dB/data/', exist_ok=True) denoised_file_paths = [] print(f'SNR: {snr}db') loader = DataLoader(test_set, num_workers=0) for i, (mix, clean, path) in tqdm(enumerate(loader)): mix = mix.cuda() estimate = model(mix).detach().flatten().cpu().numpy() denoised_file_name = path[0].split('/')[-1] #add a "_" in front of the denoised fie denoised_file_path = f'{save_enhanced_dir}/{str(model_name)}/{snr}dB/data/{model_name}_{denoised_file_name}' denoised_file_paths.append(denoised_file_path) sf.write(denoised_file_path, estimate, samplerate=SAMPLE_RATE) ##Dont calculate metric just save separated plus, meta data metrics_dict = get_metrics(mix.cpu().numpy(), clean.numpy(), estimate, sample_rate=SAMPLE_RATE, metrics_list=["pesq"]) metrics_dict["mix_path"] = path metrics_dict["snr"] = snr series_list.append(pd.Series(metrics_dict)) all_metrics_df = pd.DataFrame(series_list) if i == 30 : break csv_path_tmp = csv_path_dict[str(snr)] df = pd.read_csv(csv_path_tmp) denoised_file_paths =
pd.Series(denoised_file_paths)
pandas.Series
import os import shutil import pandas as pd from numpy import linspace from functions.helpers import _format_header, _process_data_transposed, _process_data #IMPORT_FOLDER = '20201224/matrix_1mic/' #EXPORT_FOLDER = '20201224/matrix_1mic_exported/' #'exported' IMPORT_FOLDER = '20201224/matrix_beamforming/' EXPORT_FOLDER = '20201224/matrix_beamforming_exported/' #'exported' IMPORT_FOLDER = '20201224/respeaker_4mic/' EXPORT_FOLDER = '20201224/respeaker_4mic_exported/' #'exported' #"20202112/raw_data_verification_test/matrix_fix_speech_level/testset_55db_level_21dec_v2.bag_NOT RECOGNIZED.csv" EXPORT_DATA = False # if false show on screen the pictures #TEST_PREFIX = "testset_spk80_75db_level_21dec_v3" # "testset_spk80_75db_level_21dec_v2" #"testset_quiet_room_21dec_v2" #"testset_70db_level_21dec_v2" # "testset_quiet_room_21dec_v2" # TEST_PREFIX = "1mic_spk80_75db_level" OUTCOME_TO_ANALYSE = ["WAKEDUP", "NOT WAKEDUP", "NOT RECOGNIZED", "RECOGNIZED", "WRONG RECOGNIZED", "TEXT ACQUIRED"] #TEST_PREFIX = TEST_PREFIX + ".bag" # this remains from the export of csv Z_SCORE = 1.96 # 95 percent of the value ################### ### IMPORT DATA ### ################### print(_format_header("IMPORT data")) FILE_TO_TEST = [] for file in os.listdir(IMPORT_FOLDER): if file.endswith(".bag"): FILE_TO_TEST.append(os.path.join(IMPORT_FOLDER, file)) if IMPORT_FOLDER == EXPORT_FOLDER: print("you dont wanna do this, trust me....") exit(1) if not os.path.exists(EXPORT_FOLDER): os.makedirs(EXPORT_FOLDER) else: if os.path.exists(EXPORT_FOLDER) and os.path.isdir(EXPORT_FOLDER): shutil.rmtree(EXPORT_FOLDER) os.makedirs(EXPORT_FOLDER) for TEST_PREFIX in FILE_TO_TEST: print("+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++") print(_format_header(TEST_PREFIX)) pd_dict = {} for o in OUTCOME_TO_ANALYSE: #pd_dict[o] = pd.read_csv(IMPORT_FOLDER + '/' + TEST_PREFIX + "_" + o + ".csv") pd_dict[o] = pd.read_csv(TEST_PREFIX + "_" + o + ".csv") pd_dict[o].index = pd_dict[o].iloc[:, 0] # set the row name as first column and remove it pd_dict[o] = pd_dict[o].drop(columns=pd_dict[o].columns[0]) if not pd_dict[o].empty: pd_dict[o] = pd_dict[o].drop(['outcome']) pd_dict[o]=pd_dict[o].astype(float) #print("\n----------------\n", o) #print("COL\n", pd_dict[o].columns) #print("ROWS\n", pd_dict[o].index) #print(pd_dict[o].to_string()) ####################### ### DATA PROCESSING ### ####################### print(_format_header("PROCESSING data")) descr_dict = {} df_all_dict = {} pd_all = pd.DataFrame() # Prepare a df with all the values not aggreagated for k, v in pd_dict.items(): if len(v.columns) and len(v.index): # empty df are discarded #print("----------------------------------------------") #print("key dict", k) descr_dict[k] = _process_data(v.T, z_score=Z_SCORE) df_all_dict[k] = v.T.dropna() pd_all = pd_all.append(v.T) #print(descr_dict[k]) #print("----------------------------------------------") else: print("Discarding empty df: ", k) results_count_dict = {} for k, v in pd_dict.items(): results_count_dict[k] = len(v.columns) results_count = pd.DataFrame(results_count_dict, index=[0]) total_tests = float(results_count.sum(axis=1)) #results_count = results_count / total_tests total_possible_intents = float(results_count['RECOGNIZED'] + results_count['NOT RECOGNIZED'] + results_count['WRONG RECOGNIZED'] + results_count['TEXT ACQUIRED']) if total_possible_intents == 0: INTENTS_ER = 1.0 else: INTENTS_ER = float(results_count['NOT RECOGNIZED'] + results_count['WRONG RECOGNIZED'] + results_count['TEXT ACQUIRED'])/total_possible_intents if total_tests==0: WAKEUP_ER = 1.0 else: WAKEUP_ER = float(results_count['WAKEDUP'] + results_count['NOT WAKEDUP']) / total_tests df_all = {} df_all_describe = {} for c in pd_all.columns: s = pd.DataFrame(pd_all[c].dropna()) df_all[c] = s df_all_describe[c] = s.describe() df_all_dict["ALL"] = df_all #print(df_all_dict) ################# ### PLOT DATA ### ################# print(_format_header("Prepare plots")) from functions.helpers import plot_boxs, plot_boxs_2,plot_boxs_3, props_1, props_2, props_3, BOX_WIDTH, _show, plot_items_descr, _export_all_figures_2 , _write_to_excel # data plotting plot_descr = plot_items_descr(title="All non aggregated", xlabel="Operation times", ylabel="Sec.", ylim=[0.0, 3.0], bkg_color=None) # plot all the data props = [props_1, props_2, props_3] props = dict(zip(df_all.keys(), props)) plot_boxs_2(df_all, plot_descr, props) plot_descr_2 = plot_items_descr(title="All aggregated", xlabel="Operation times", ylabel="Sec.", ylim=[0.0, 3.0], bkg_color=None) # plot the data by key props_2 = [props_3, props_2, props_1, props_3] #props_2 = dict(zip(descr_dict.keys(), props_2)) plot_boxs_3(descr_dict, plot_descr_2, props_2, showmean=False) HEIGHT = 9 sizes = [(5,HEIGHT), (2.5,HEIGHT), (4,HEIGHT), (4,HEIGHT), (3,HEIGHT)] print("INTENT ERROR RATE:", INTENTS_ER) print("WAKEUP ERROR RATE:", WAKEUP_ER) print("TEST PERFORMED:", total_tests) print("AVAILABLE INTENTS:", total_possible_intents) for k,v in df_all_describe.items(): print(k, v) if EXPORT_DATA: fname = os.path.basename(TEST_PREFIX) _export_all_figures_2(EXPORT_FOLDER, fname + "_verification_evaluation", size=sizes) with
pd.ExcelWriter(EXPORT_FOLDER +'/' + fname+'_verification.xlsx')
pandas.ExcelWriter
import numpy as np from numpy import where from flask import Flask, request, jsonify, render_template import pandas as pd from sklearn.ensemble import IsolationForest from pyod.models.knn import KNN import json from flask import send_from_directory from flask import current_app app = Flask(__name__) class Detect: def __init__(self, file, non_num): self.file = file self.non_num = non_num def IQR(self): # anomaly=pd.DataFrame() data = pd.DataFrame(self.file) non_num=pd.DataFrame(self.non_num) data.dropna(axis=0,inplace=True) # data=data.select_dtypes(include=['float64','int64']) Q1 = data.quantile(0.25) Q3 = data.quantile(0.75) IQR = Q3 - Q1 IQR_Out = data[((data < (Q1 - 1.5 * IQR)) |(data > (Q3 + 1.5 * IQR))).any(axis=1)] IQR_Out = non_num.join(IQR_Out, how='inner') IQR_Out.to_csv(r'IQR_Outlier.csv') # IQR Method def isolation(self): anomaly=pd.DataFrame() data_n=pd.DataFrame(self.file) non_num=pd.DataFrame(self.non_num) data_n.dropna(axis=0,inplace=True) # data_n=data_n.select_dtypes(include=['float64','int64']) model = IsolationForest(n_estimators=50, max_samples=500, contamination=.01, bootstrap=False, n_jobs=1, random_state=1, verbose=0, warm_start=False).fit(data_n) data_n['anomaly_score'] = model.predict(data_n) anomaly=data_n[data_n['anomaly_score']==-1] anomaly = non_num.join(anomaly, how='inner') anomaly.to_csv("outlierss_isolation.csv") # Isolation forest Method def mcd(self): anomaly=pd.DataFrame() data=pd.DataFrame(self.file) non_num=pd.DataFrame(self.non_num) data.dropna(axis=0,inplace=True) # data=data.select_dtypes(include=['float64','int64']) from sklearn.covariance import EllipticEnvelope model = EllipticEnvelope(contamination=0.01).fit(data) data['anomaly_score'] = model.predict(data) anomaly=data[data['anomaly_score']==-1] anomaly = non_num.join(anomaly, how='inner') anomaly.to_csv("outlierss_mcd.csv") # Minimum covariance determinant Method def local(self): from numpy import quantile, where, random import pandas as pd anomaly = pd.DataFrame() df = pd.DataFrame(self.file) non_num=pd.DataFrame(self.non_num) df.dropna(axis = 0, inplace = True) # x = df.select_dtypes(include = ['float64','int64']) from sklearn.neighbors import LocalOutlierFactor lof = LocalOutlierFactor() clusters = lof.fit_predict(df) anom_index = where(clusters == -1) values = df.iloc[anom_index] values = non_num.join(values, how='inner') values.to_csv(r'LOF_outliers.csv' ,index=True,header=True) # Local Outlier Factor Method def SVM(self): from sklearn.svm import OneClassSVM from numpy import quantile, where, random anomaly=pd.DataFrame() data=
pd.DataFrame(self.file)
pandas.DataFrame
from flowsa.common import WITHDRAWN_KEYWORD from flowsa.flowbyfunctions import assign_fips_location_system from flowsa.location import US_FIPS import math import pandas as pd import io from flowsa.settings import log from string import digits YEARS_COVERED = { "asbestos": "2014-2018", "barite": "2014-2018", "bauxite": "2013-2017", "beryllium": "2014-2018", "boron": "2014-2018", "chromium": "2014-2018", "clay": "2015-2016", "cobalt": "2013-2017", "copper": "2011-2015", "diatomite": "2014-2018", "feldspar": "2013-2017", "fluorspar": "2013-2017", "fluorspar_inports": ["2016", "2017"], "gallium": "2014-2018", "garnet": "2014-2018", "gold": "2013-2017", "graphite": "2013-2017", "gypsum": "2014-2018", "iodine": "2014-2018", "ironore": "2014-2018", "kyanite": "2014-2018", "lead": "2012-2018", "lime": "2014-2018", "lithium": "2013-2017", "magnesium": "2013-2017", "manganese": "2012-2016", "manufacturedabrasive": "2017-2018", "mica": "2014-2018", "molybdenum": "2014-2018", "nickel": "2012-2016", "niobium": "2014-2018", "peat": "2014-2018", "perlite": "2013-2017", "phosphate": "2014-2018", "platinum": "2014-2018", "potash": "2014-2018", "pumice": "2014-2018", "rhenium": "2014-2018", "salt": "2013-2017", "sandgravelconstruction": "2013-2017", "sandgravelindustrial": "2014-2018", "silver": "2012-2016", "sodaash": "2010-2017", "sodaash_t4": ["2016", "2017"], "stonecrushed": "2013-2017", "stonedimension": "2013-2017", "strontium": "2014-2018", "talc": "2013-2017", "titanium": "2013-2017", "tungsten": "2013-2017", "vermiculite": "2014-2018", "zeolites": "2014-2018", "zinc": "2013-2017", "zirconium": "2013-2017", } def usgs_myb_year(years, current_year_str): """ Sets the column for the string based on the year. Checks that the year you picked is in the last file. :param years: string, with hypthon :param current_year_str: string, year of interest :return: string, year """ years_array = years.split("-") lower_year = int(years_array[0]) upper_year = int(years_array[1]) current_year = int(current_year_str) if lower_year <= current_year <= upper_year: column_val = current_year - lower_year + 1 return "year_" + str(column_val) else: log.info("Your year is out of scope. Pick a year between %s and %s", lower_year, upper_year) def usgs_myb_name(USGS_Source): """ Takes the USGS source name and parses it so it can be used in other parts of Flow by activity. :param USGS_Source: string, usgs source name :return: """ source_split = USGS_Source.split("_") name_cc = str(source_split[2]) name = "" for char in name_cc: if char.isupper(): name = name + " " + char else: name = name + char name = name.lower() name = name.strip() return name def usgs_myb_static_variables(): """ Populates the data values for Flow by activity that are the same for all of USGS_MYB Files :return: """ data = {} data["Class"] = "Geological" data['FlowType'] = "ELEMENTARY_FLOWS" data["Location"] = US_FIPS data["Compartment"] = "ground" data["Context"] = None data["ActivityConsumedBy"] = None return data def usgs_myb_remove_digits(value_string): """ Eliminates numbers in a string :param value_string: :return: """ remove_digits = str.maketrans('', '', digits) return_string = value_string.translate(remove_digits) return return_string def usgs_myb_url_helper(*, build_url, **_): """ This helper function uses the "build_url" input from flowbyactivity.py, which is a base url for data imports that requires parts of the url text string to be replaced with info specific to the data year. This function does not parse the data, only modifies the urls from which data is obtained. :param build_url: string, base url :param config: dictionary, items in FBA method yaml :param args: dictionary, arguments specified when running flowbyactivity.py flowbyactivity.py ('year' and 'source') :return: list, urls to call, concat, parse, format into Flow-By-Activity format """ return [build_url] def usgs_asbestos_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param resp: df, response from url call :param year: year :return: pandas dataframe of original source data """ df_raw_data = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T1') df_data = pd.DataFrame(df_raw_data.loc[4:11]).reindex() df_data = df_data.reset_index() del df_data["index"] if len(df_data.columns) > 12: for x in range(12, len(df_data.columns)): col_name = "Unnamed: " + str(x) del df_data[col_name] if len(df_data. columns) == 12: df_data.columns = ["Production", "Unit", "space_1", "year_1", "space_2", "year_2", "space_3", "year_3", "space_4", "year_4", "space_5", "year_5"] col_to_use = ["Production"] col_to_use.append(usgs_myb_year(YEARS_COVERED['asbestos'], year)) for col in df_data.columns: if col not in col_to_use: del df_data[col] return df_data def usgs_asbestos_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param source: source :param year: year :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} row_to_use = ["Quantity"] product = "" name = usgs_myb_name(source) des = name dataframe = pd.DataFrame() col_name = usgs_myb_year(YEARS_COVERED['asbestos'], year) for df in df_list: for index, row in df.iterrows(): if df.iloc[index]["Production"].strip() == \ "Imports for consumption:": product = "imports" elif df.iloc[index]["Production"].strip() == \ "Exports and reexports:": product = "exports" if df.iloc[index]["Production"].strip() in row_to_use: data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) data["Unit"] = "Metric Tons" data['FlowName'] = name + " " + product data["Description"] = name data["ActivityProducedBy"] = name col_name = usgs_myb_year(YEARS_COVERED['asbestos'], year) if str(df.iloc[index][col_name]) == "--": data["FlowAmount"] = str(0) elif str(df.iloc[index][col_name]) == "nan": data["FlowAmount"] = WITHDRAWN_KEYWORD else: data["FlowAmount"] = str(df.iloc[index][col_name]) dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system(dataframe, str(year)) return dataframe def usgs_barite_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param url: string, url :param resp: df, response from url call :param args: dictionary, arguments specified when running flowbyactivity.py ('year' and 'source') :return: pandas dataframe of original source data """ df_raw_data = pd.io.excel.read_excel( io.BytesIO(resp.content), sheet_name='T1') df_data = pd.DataFrame(df_raw_data.loc[7:14]).reindex() df_data = df_data.reset_index() del df_data["index"] if len(df_data. columns) == 11: df_data.columns = ["Production", "space_1", "year_1", "space_2", "year_2", "space_3", "year_3", "space_4", "year_4", "space_5", "year_5"] col_to_use = ["Production"] col_to_use.append(usgs_myb_year(YEARS_COVERED['barite'], year)) for col in df_data.columns: if col not in col_to_use: del df_data[col] return df_data def usgs_barite_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param args: dictionary, used to run flowbyactivity.py ('year' and 'source') :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} row_to_use = ["Quantity"] prod = "" name = usgs_myb_name(source) des = name dataframe = pd.DataFrame() col_name = usgs_myb_year(YEARS_COVERED['barite'], year) for df in df_list: for index, row in df.iterrows(): if df.iloc[index]["Production"].strip() == \ "Imports for consumption:3": product = "imports" elif df.iloc[index]["Production"].strip() == \ "Crude, sold or used by producers:": product = "production" elif df.iloc[index]["Production"].strip() == "Exports:2": product = "exports" if df.iloc[index]["Production"].strip() in row_to_use: data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) data["Unit"] = "Metric Tons" data['FlowName'] = name + " " + product data["Description"] = name data["ActivityProducedBy"] = name col_name = usgs_myb_year(YEARS_COVERED['barite'], year) if str(df.iloc[index][col_name]) == "--" or \ str(df.iloc[index][col_name]) == "(3)": data["FlowAmount"] = str(0) else: data["FlowAmount"] = str(df.iloc[index][col_name]) dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system( dataframe, str(year)) return dataframe def usgs_bauxite_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param resp: df, response from url call :param year: year :return: pandas dataframe of original source data """ df_raw_data_one = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T1') df_data_one = pd.DataFrame(df_raw_data_one.loc[6:14]).reindex() df_data_one = df_data_one.reset_index() del df_data_one["index"] if len(df_data_one. columns) == 11: df_data_one.columns = ["Production", "space_2", "year_1", "space_3", "year_2", "space_4", "year_3", "space_5", "year_4", "space_6", "year_5"] col_to_use = ["Production"] col_to_use.append(usgs_myb_year(YEARS_COVERED['bauxite'], year)) for col in df_data_one.columns: if col not in col_to_use: del df_data_one[col] frames = [df_data_one] df_data = pd.concat(frames) df_data = df_data.reset_index() del df_data["index"] return df_data def usgs_bauxite_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param args: dictionary, used to run flowbyactivity.py ('year' and 'source') :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} row_to_use = ["Production", "Total"] prod = "" name = usgs_myb_name(source) des = name dataframe = pd.DataFrame() col_name = usgs_myb_year(YEARS_COVERED['bauxite'], year) for df in df_list: for index, row in df.iterrows(): if df.iloc[index]["Production"].strip() == "Production": prod = "production" elif df.iloc[index]["Production"].strip() == \ "Imports for consumption, as shipped:": prod = "import" elif df.iloc[index]["Production"].strip() == \ "Exports, as shipped:": prod = "export" if df.iloc[index]["Production"].strip() in row_to_use: product = df.iloc[index]["Production"].strip() data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) data["Unit"] = "Metric Tons" flow_amount = str(df.iloc[index][col_name]) if str(df.iloc[index][col_name]) == "W": data["FlowAmount"] = WITHDRAWN_KEYWORD else: data["FlowAmount"] = flow_amount data["Description"] = des data["ActivityProducedBy"] = name data['FlowName'] = name + " " + prod dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system( dataframe, str(year)) return dataframe def usgs_beryllium_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param url: string, url :param resp: df, response from url call :param args: dictionary, arguments specified when running flowbyactivity.py ('year' and 'source') :return: pandas dataframe of original source data """ df_raw_data = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T4') df_raw_data_two = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T1') df_data_1 = pd.DataFrame(df_raw_data_two.loc[6:9]).reindex() df_data_1 = df_data_1.reset_index() del df_data_1["index"] df_data_2 = pd.DataFrame(df_raw_data.loc[12:12]).reindex() df_data_2 = df_data_2.reset_index() del df_data_2["index"] if len(df_data_2.columns) > 11: for x in range(11, len(df_data_2.columns)): col_name = "Unnamed: " + str(x) del df_data_2[col_name] if len(df_data_1. columns) == 11: df_data_1.columns = ["Production", "space_1", "year_1", "space_2", "year_2", "space_3", "year_3", "space_4", "year_4", "space_5", "year_5"] if len(df_data_2. columns) == 11: df_data_2.columns = ["Production", "space_1", "year_1", "space_2", "year_2", "space_3", "year_3", "space_4", "year_4", "space_5", "year_5"] col_to_use = ["Production"] col_to_use.append(usgs_myb_year(YEARS_COVERED['beryllium'], year)) for col in df_data_1.columns: if col not in col_to_use: del df_data_1[col] for col in df_data_2.columns: if col not in col_to_use: del df_data_2[col] frames = [df_data_1, df_data_2] df_data = pd.concat(frames) df_data = df_data.reset_index() del df_data["index"] return df_data def usgs_beryllium_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param args: dictionary, used to run flowbyactivity.py ('year' and 'source') :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} row_to_use = ["United States6", "Mine shipments1", "Imports for consumption, beryl2"] prod = "" name = usgs_myb_name(source) des = name dataframe = pd.DataFrame() col_name = usgs_myb_year(YEARS_COVERED['beryllium'], year) for df in df_list: for index, row in df.iterrows(): prod = "production" if df.iloc[index]["Production"].strip() == \ "Imports for consumption, beryl2": prod = "imports" if df.iloc[index]["Production"].strip() in row_to_use: remove_digits = str.maketrans('', '', digits) product = df.iloc[index][ "Production"].strip().translate(remove_digits) data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) data["Unit"] = "Thousand Metric Tons" data["Description"] = name data["ActivityProducedBy"] = name data['FlowName'] = name + " " + prod data["FlowAmount"] = str(df.iloc[index][col_name]) dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system( dataframe, str(year)) return dataframe def usgs_boron_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param url: string, url :param resp: df, response from url call :param args: dictionary, arguments specified when running flowbyactivity.py ('year' and 'source') :return: pandas dataframe of original source data """ df_raw_data = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T1') df_data_one = pd.DataFrame(df_raw_data.loc[8:8]).reindex() df_data_one = df_data_one.reset_index() del df_data_one["index"] df_data_two = pd.DataFrame(df_raw_data.loc[21:22]).reindex() df_data_two = df_data_two.reset_index() del df_data_two["index"] df_data_three =
pd.DataFrame(df_raw_data.loc[27:28])
pandas.DataFrame
import numpy as np import pytest from pandas._libs.tslibs.period import IncompatibleFrequency from pandas.core.dtypes.dtypes import PeriodDtype import pandas as pd from pandas import Index, Period, PeriodIndex, Series, date_range, offsets, period_range import pandas.core.indexes.period as period import pandas.util.testing as tm class TestPeriodIndex: def setup_method(self, method): pass def test_construction_base_constructor(self): # GH 13664 arr = [pd.Period("2011-01", freq="M"), pd.NaT, pd.Period("2011-03", freq="M")] tm.assert_index_equal(pd.Index(arr), pd.PeriodIndex(arr)) tm.assert_index_equal(pd.Index(np.array(arr)), pd.PeriodIndex(np.array(arr))) arr = [np.nan, pd.NaT, pd.Period("2011-03", freq="M")] tm.assert_index_equal(pd.Index(arr), pd.PeriodIndex(arr)) tm.assert_index_equal(pd.Index(np.array(arr)), pd.PeriodIndex(np.array(arr))) arr = [pd.Period("2011-01", freq="M"), pd.NaT, pd.Period("2011-03", freq="D")] tm.assert_index_equal(pd.Index(arr), pd.Index(arr, dtype=object)) tm.assert_index_equal( pd.Index(np.array(arr)), pd.Index(np.array(arr), dtype=object) ) def test_constructor_use_start_freq(self): # GH #1118 p = Period("4/2/2012", freq="B") with tm.assert_produces_warning(FutureWarning): index = PeriodIndex(start=p, periods=10) expected = period_range(start="4/2/2012", periods=10, freq="B") tm.assert_index_equal(index, expected) index = period_range(start=p, periods=10) tm.assert_index_equal(index, expected) def test_constructor_field_arrays(self): # GH #1264 years = np.arange(1990, 2010).repeat(4)[2:-2] quarters = np.tile(np.arange(1, 5), 20)[2:-2] index = PeriodIndex(year=years, quarter=quarters, freq="Q-DEC") expected = period_range("1990Q3", "2009Q2", freq="Q-DEC") tm.assert_index_equal(index, expected) index2 = PeriodIndex(year=years, quarter=quarters, freq="2Q-DEC") tm.assert_numpy_array_equal(index.asi8, index2.asi8) index = PeriodIndex(year=years, quarter=quarters) tm.assert_index_equal(index, expected) years = [2007, 2007, 2007] months = [1, 2] msg = "Mismatched Period array lengths" with pytest.raises(ValueError, match=msg): PeriodIndex(year=years, month=months, freq="M") with pytest.raises(ValueError, match=msg): PeriodIndex(year=years, month=months, freq="2M") msg = "Can either instantiate from fields or endpoints, but not both" with pytest.raises(ValueError, match=msg): PeriodIndex( year=years, month=months, freq="M", start=Period("2007-01", freq="M") ) years = [2007, 2007, 2007] months = [1, 2, 3] idx = PeriodIndex(year=years, month=months, freq="M") exp = period_range("2007-01", periods=3, freq="M") tm.assert_index_equal(idx, exp) def test_constructor_U(self): # U was used as undefined period with pytest.raises(ValueError, match="Invalid frequency: X"): period_range("2007-1-1", periods=500, freq="X") def test_constructor_nano(self): idx = period_range( start=Period(ordinal=1, freq="N"), end=Period(ordinal=4, freq="N"), freq="N" ) exp = PeriodIndex( [ Period(ordinal=1, freq="N"), Period(ordinal=2, freq="N"), Period(ordinal=3, freq="N"), Period(ordinal=4, freq="N"), ], freq="N", ) tm.assert_index_equal(idx, exp) def test_constructor_arrays_negative_year(self): years = np.arange(1960, 2000, dtype=np.int64).repeat(4) quarters = np.tile(np.array([1, 2, 3, 4], dtype=np.int64), 40) pindex = PeriodIndex(year=years, quarter=quarters) tm.assert_index_equal(pindex.year, pd.Index(years)) tm.assert_index_equal(pindex.quarter, pd.Index(quarters)) def test_constructor_invalid_quarters(self): msg = "Quarter must be 1 <= q <= 4" with pytest.raises(ValueError, match=msg): PeriodIndex(year=range(2000, 2004), quarter=list(range(4)), freq="Q-DEC") def test_constructor_corner(self): msg = "Not enough parameters to construct Period range" with pytest.raises(ValueError, match=msg): PeriodIndex(periods=10, freq="A") start = Period("2007", freq="A-JUN") end = Period("2010", freq="A-DEC") msg = "start and end must have same freq" with pytest.raises(ValueError, match=msg): PeriodIndex(start=start, end=end) msg = ( "Of the three parameters: start, end, and periods, exactly two" " must be specified" ) with pytest.raises(ValueError, match=msg): PeriodIndex(start=start) with pytest.raises(ValueError, match=msg): PeriodIndex(end=end) result = period_range("2007-01", periods=10.5, freq="M") exp = period_range("2007-01", periods=10, freq="M") tm.assert_index_equal(result, exp) def test_constructor_fromarraylike(self): idx = period_range("2007-01", periods=20, freq="M") # values is an array of Period, thus can retrieve freq tm.assert_index_equal(PeriodIndex(idx.values), idx) tm.assert_index_equal(PeriodIndex(list(idx.values)), idx) msg = "freq not specified and cannot be inferred" with pytest.raises(ValueError, match=msg): PeriodIndex(idx._ndarray_values) with pytest.raises(ValueError, match=msg): PeriodIndex(list(idx._ndarray_values)) msg = "'Period' object is not iterable" with pytest.raises(TypeError, match=msg): PeriodIndex(data=Period("2007", freq="A")) result = PeriodIndex(iter(idx)) tm.assert_index_equal(result, idx) result = PeriodIndex(idx) tm.assert_index_equal(result, idx) result = PeriodIndex(idx, freq="M") tm.assert_index_equal(result, idx) result = PeriodIndex(idx, freq=offsets.MonthEnd()) tm.assert_index_equal(result, idx) assert result.freq == "M" result = PeriodIndex(idx, freq="2M") tm.assert_index_equal(result, idx.asfreq("2M")) assert result.freq == "2M" result = PeriodIndex(idx, freq=offsets.MonthEnd(2)) tm.assert_index_equal(result, idx.asfreq("2M")) assert result.freq == "2M" result = PeriodIndex(idx, freq="D") exp = idx.asfreq("D", "e") tm.assert_index_equal(result, exp) def test_constructor_datetime64arr(self): vals = np.arange(100000, 100000 + 10000, 100, dtype=np.int64) vals = vals.view(np.dtype("M8[us]")) msg = r"Wrong dtype: datetime64\[us\]" with pytest.raises(ValueError, match=msg): PeriodIndex(vals, freq="D") @pytest.mark.parametrize("box", [None, "series", "index"]) def test_constructor_datetime64arr_ok(self, box): # https://github.com/pandas-dev/pandas/issues/23438 data = pd.date_range("2017", periods=4, freq="M") if box is None: data = data._values elif box == "series": data = pd.Series(data) result = PeriodIndex(data, freq="D") expected = PeriodIndex( ["2017-01-31", "2017-02-28", "2017-03-31", "2017-04-30"], freq="D" ) tm.assert_index_equal(result, expected) def test_constructor_dtype(self): # passing a dtype with a tz should localize idx = PeriodIndex(["2013-01", "2013-03"], dtype="period[M]") exp = PeriodIndex(["2013-01", "2013-03"], freq="M") tm.assert_index_equal(idx, exp) assert idx.dtype == "period[M]" idx = PeriodIndex(["2013-01-05", "2013-03-05"], dtype="period[3D]") exp = PeriodIndex(["2013-01-05", "2013-03-05"], freq="3D") tm.assert_index_equal(idx, exp) assert idx.dtype == "period[3D]" # if we already have a freq and its not the same, then asfreq # (not changed) idx = PeriodIndex(["2013-01-01", "2013-01-02"], freq="D") res = PeriodIndex(idx, dtype="period[M]") exp = PeriodIndex(["2013-01", "2013-01"], freq="M") tm.assert_index_equal(res, exp) assert res.dtype == "period[M]" res = PeriodIndex(idx, freq="M")
tm.assert_index_equal(res, exp)
pandas.util.testing.assert_index_equal
from __future__ import division from builtins import str from builtins import range from builtins import object __copyright__ = "Copyright 2015 Contributing Entities" __license__ = """ Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import collections import os import sys import numpy as np import pandas as pd from .Error import DemandInputError from .Logger import FastTripsLogger from .Route import Route from .TAZ import TAZ from .Trip import Trip from .Util import Util class Passenger(object): """ Passenger class. One instance represents all of the households and persons that could potentially make transit trips. Stores household information in :py:attr:`Passenger.households_df` and person information in :py:attr:`Passenger.persons_df`, which are both :py:class:`pandas.DataFrame` instances. """ #: File with households INPUT_HOUSEHOLDS_FILE = "household.txt" #: Households column: Household ID HOUSEHOLDS_COLUMN_HOUSEHOLD_ID = 'hh_id' #: File with persons INPUT_PERSONS_FILE = "person.txt" #: Persons column: Household ID PERSONS_COLUMN_HOUSEHOLD_ID = HOUSEHOLDS_COLUMN_HOUSEHOLD_ID #: Persons column: Person ID (string) PERSONS_COLUMN_PERSON_ID = 'person_id' # ========== Added by fasttrips ======================================================= #: Persons column: Person ID number PERSONS_COLUMN_PERSON_ID_NUM = 'person_id_num' #: File with trip list INPUT_TRIP_LIST_FILE = "trip_list.txt" #: Trip list column: Person ID TRIP_LIST_COLUMN_PERSON_ID = PERSONS_COLUMN_PERSON_ID #: Trip list column: Person Trip ID TRIP_LIST_COLUMN_PERSON_TRIP_ID = "person_trip_id" #: Trip list column: Origin TAZ ID TRIP_LIST_COLUMN_ORIGIN_TAZ_ID = "o_taz" #: Trip list column: Destination TAZ ID TRIP_LIST_COLUMN_DESTINATION_TAZ_ID = "d_taz" #: Trip list column: Mode TRIP_LIST_COLUMN_MODE = "mode" #: Trip list column: Departure Time. DateTime. TRIP_LIST_COLUMN_DEPARTURE_TIME = 'departure_time' #: Trip list column: Arrival Time. DateTime. TRIP_LIST_COLUMN_ARRIVAL_TIME = 'arrival_time' #: Trip list column: Time Target (either 'arrival' or 'departure') TRIP_LIST_COLUMN_TIME_TARGET = 'time_target' # ========== Added by fasttrips ======================================================= #: Trip list column: Unique numeric ID for this passenger/trip TRIP_LIST_COLUMN_TRIP_LIST_ID_NUM = "trip_list_id_num" #: Trip list column: Origin TAZ Numeric ID TRIP_LIST_COLUMN_ORIGIN_TAZ_ID_NUM = "o_taz_num" #: Trip list column: Destination Numeric TAZ ID TRIP_LIST_COLUMN_DESTINATION_TAZ_ID_NUM = "d_taz_num" #: Trip list column: Departure Time. Float, minutes after midnight. TRIP_LIST_COLUMN_DEPARTURE_TIME_MIN = 'departure_time_min' #: Trip list column: Departure Time. Float, minutes after midnight. TRIP_LIST_COLUMN_ARRIVAL_TIME_MIN = 'arrival_time_min' #: Trip list column: Transit Mode TRIP_LIST_COLUMN_TRANSIT_MODE = "transit_mode" #: Trip list column: Access Mode TRIP_LIST_COLUMN_ACCESS_MODE = "access_mode" #: Trip list column: Egress Mode TRIP_LIST_COLUMN_EGRESS_MODE = "egress_mode" #: Trip list column: Outbound (bool), true iff time target is arrival TRIP_LIST_COLUMN_OUTBOUND = "outbound" #: Option for :py:attr:`Passenger.TRIP_LIST_COLUMN_TIME_TARGET` (arrival time) TIME_TARGET_ARRIVAL = "arrival" #: Option for :py:attr:`Passenger.TRIP_LIST_COLUMN_TIME_TARGET` (departure time) TIME_TARGET_DEPARTURE = "departure" #: Generic transit. Specify this for mode when you mean walk, any transit modes, walk #: TODO: get rid of this? Maybe user should always specify. MODE_GENERIC_TRANSIT = "transit" #: Generic transit - Numeric mode number MODE_GENERIC_TRANSIT_NUM = 1000 #: Minumum Value of Time: 1 dollar shouldn't be worth 180 minutes MIN_VALUE_OF_TIME = 60.0/180.0 #: Trip list column: User class. String. TRIP_LIST_COLUMN_USER_CLASS = "user_class" #: Trip list column: Purpose. String. TRIP_LIST_COLUMN_PURPOSE = "purpose" #: Trip list column: Value of time. Float. TRIP_LIST_COLUMN_VOT = "vot" #: Trip list column: Trace. Boolean. TRIP_LIST_COLUMN_TRACE = "trace" #: Column names from pathfinding PF_COL_PF_ITERATION = 'pf_iteration' #: 0.01*pathfinding_iteration + iteration during which this path was found PF_COL_PAX_A_TIME = 'pf_A_time' #: time path-finder thinks passenger arrived at A PF_COL_PAX_B_TIME = 'pf_B_time' #: time path-finder thinks passenger arrived at B PF_COL_LINK_TIME = 'pf_linktime' #: time path-finder thinks passenger spent on link PF_COL_LINK_FARE = 'pf_linkfare' #: fare path-finder thinks passenger spent on link PF_COL_LINK_COST = 'pf_linkcost' #: cost (generalized) path-finder thinks passenger spent on link PF_COL_LINK_DIST = 'pf_linkdist' #: dist path-finder thinks passenger spent on link PF_COL_WAIT_TIME = 'pf_waittime' #: time path-finder thinks passenger waited for vehicle on trip links PF_COL_PATH_NUM = 'pathnum' #: path number, starting from 0 PF_COL_LINK_NUM = 'linknum' #: link number, starting from access PF_COL_LINK_MODE = 'linkmode' #: link mode (Access, Trip, Egress, etc) PF_COL_MODE = TRIP_LIST_COLUMN_MODE #: supply mode PF_COL_ROUTE_ID = Trip.TRIPS_COLUMN_ROUTE_ID #: link route ID PF_COL_TRIP_ID = Trip.TRIPS_COLUMN_TRIP_ID #: link trip ID PF_COL_DESCRIPTION = 'description' #: path text description #: todo replace/rename ?? PF_COL_PAX_A_TIME_MIN = 'pf_A_time_min' #: pathfinding results PF_PATHS_CSV = r"enumerated_paths.csv" PF_LINKS_CSV = r"enumerated_links.csv" #: results - PathSets PATHSET_PATHS_CSV = r"pathset_paths.csv" PATHSET_LINKS_CSV = r"pathset_links.csv" def __init__(self, input_dir, output_dir, today, stops, routes, capacity_constraint): """ Constructor from dictionary mapping attribute to value. """ # if no demand dir, nothing to do if input_dir == None: self.trip_list_df = pd.DataFrame() return FastTripsLogger.info("-------- Reading demand --------") FastTripsLogger.info("Capacity constraint? %x" % capacity_constraint ) self.trip_list_df = pd.read_csv(os.path.join(input_dir, Passenger.INPUT_TRIP_LIST_FILE), skipinitialspace=True, ##LMZ dtype={Passenger.TRIP_LIST_COLUMN_PERSON_ID :'S', Passenger.TRIP_LIST_COLUMN_PERSON_TRIP_ID :'S', Passenger.TRIP_LIST_COLUMN_ORIGIN_TAZ_ID :'S', Passenger.TRIP_LIST_COLUMN_DESTINATION_TAZ_ID:'S', Passenger.TRIP_LIST_COLUMN_DEPARTURE_TIME :'S', Passenger.TRIP_LIST_COLUMN_ARRIVAL_TIME :'S', Passenger.TRIP_LIST_COLUMN_PURPOSE :'S'}) trip_list_cols = list(self.trip_list_df.columns.values) assert(Passenger.TRIP_LIST_COLUMN_PERSON_ID in trip_list_cols) assert(Passenger.TRIP_LIST_COLUMN_PERSON_TRIP_ID in trip_list_cols) assert(Passenger.TRIP_LIST_COLUMN_ORIGIN_TAZ_ID in trip_list_cols) assert(Passenger.TRIP_LIST_COLUMN_DESTINATION_TAZ_ID in trip_list_cols) assert(Passenger.TRIP_LIST_COLUMN_DEPARTURE_TIME in trip_list_cols) assert(Passenger.TRIP_LIST_COLUMN_ARRIVAL_TIME in trip_list_cols) assert(Passenger.TRIP_LIST_COLUMN_TIME_TARGET in trip_list_cols) assert(Passenger.TRIP_LIST_COLUMN_VOT in trip_list_cols) FastTripsLogger.debug("=========== TRIP LIST ===========\n" + str(self.trip_list_df.head())) FastTripsLogger.debug("\n"+str(self.trip_list_df.index.dtype)+"\n"+str(self.trip_list_df.dtypes)) FastTripsLogger.info("Read %7d %15s from %25s" % (len(self.trip_list_df), "person trips", Passenger.INPUT_TRIP_LIST_FILE)) # Error on missing person ids or person_trip_ids missing_person_ids = self.trip_list_df[pd.isnull(self.trip_list_df[Passenger.TRIP_LIST_COLUMN_PERSON_ID])| pd.isnull(self.trip_list_df[Passenger.TRIP_LIST_COLUMN_PERSON_TRIP_ID])] if len(missing_person_ids)>0: error_msg = "Missing person_id or person_trip_id fields:\n%s\n" % str(missing_person_ids) error_msg += "Use 0 for person_id for trips without corresponding person." FastTripsLogger.fatal(error_msg) raise DemandInputError(Passenger.INPUT_TRIP_LIST_FILE, error_msg) # Drop (warn) on missing origins or destinations missing_ods = self.trip_list_df[ pd.isnull(self.trip_list_df[Passenger.TRIP_LIST_COLUMN_ORIGIN_TAZ_ID])| pd.isnull(self.trip_list_df[Passenger.TRIP_LIST_COLUMN_DESTINATION_TAZ_ID]) ] if len(missing_ods)>0: FastTripsLogger.warn("Missing origin or destination for the following trips. Dropping.\n%s" % str(missing_ods)) self.trip_list_df = self.trip_list_df.loc[ pd.notnull(self.trip_list_df[Passenger.TRIP_LIST_COLUMN_ORIGIN_TAZ_ID ])& pd.notnull(self.trip_list_df[Passenger.TRIP_LIST_COLUMN_DESTINATION_TAZ_ID]) ].reset_index(drop=True) FastTripsLogger.warn("=> Have %d person trips" % len(self.trip_list_df)) non_zero_person_ids = len(self.trip_list_df.loc[self.trip_list_df[Passenger.TRIP_LIST_COLUMN_PERSON_ID]!="0"]) if non_zero_person_ids > 0 and os.path.exists(os.path.join(input_dir, Passenger.INPUT_PERSONS_FILE)): self.persons_df = pd.read_csv(os.path.join(input_dir, Passenger.INPUT_PERSONS_FILE), skipinitialspace=True, dtype={Passenger.PERSONS_COLUMN_PERSON_ID:'S'}) self.persons_id_df = Util.add_numeric_column(self.persons_df[[Passenger.PERSONS_COLUMN_PERSON_ID]], id_colname=Passenger.PERSONS_COLUMN_PERSON_ID, numeric_newcolname=Passenger.PERSONS_COLUMN_PERSON_ID_NUM) self.persons_df = pd.merge(left=self.persons_df, right=self.persons_id_df, how="left") persons_cols = list(self.persons_df.columns.values) FastTripsLogger.debug("=========== PERSONS ===========\n" + str(self.persons_df.head())) FastTripsLogger.debug("\n"+str(self.persons_df.index.dtype)+"\n"+str(self.persons_df.dtypes)) FastTripsLogger.info("Read %7d %15s from %25s" % (len(self.persons_df), "persons", Passenger.INPUT_PERSONS_FILE)) self.households_df = pd.read_csv(os.path.join(input_dir, Passenger.INPUT_HOUSEHOLDS_FILE), skipinitialspace=True) household_cols = list(self.households_df.columns.values) FastTripsLogger.debug("=========== HOUSEHOLDS ===========\n" + str(self.households_df.head())) FastTripsLogger.debug("\n"+str(self.households_df.index.dtype)+"\n"+str(self.households_df.dtypes)) FastTripsLogger.info("Read %7d %15s from %25s" % (len(self.households_df), "households", Passenger.INPUT_HOUSEHOLDS_FILE)) else: self.persons_df = pd.DataFrame() self.households_df = pd.DataFrame() # make sure that each tuple TRIP_LIST_COLUMN_PERSON_ID, TRIP_LIST_COLUMN_PERSON_TRIP_ID is unique self.trip_list_df["ID_dupes"] = self.trip_list_df.duplicated(subset=[Passenger.TRIP_LIST_COLUMN_PERSON_ID, Passenger.TRIP_LIST_COLUMN_PERSON_TRIP_ID], keep=False) if self.trip_list_df["ID_dupes"].sum() > 0: error_msg = "Duplicate IDs (%s, %s) found:\n%s" % \ (Passenger.TRIP_LIST_COLUMN_PERSON_ID, Passenger.TRIP_LIST_COLUMN_PERSON_TRIP_ID, self.trip_list_df.loc[self.trip_list_df["ID_dupes"]==True].to_string()) FastTripsLogger.fatal(error_msg) raise DemandInputError(Passenger.INPUT_TRIP_LIST_FILE, error_msg) # Create unique numeric index self.trip_list_df[Passenger.TRIP_LIST_COLUMN_TRIP_LIST_ID_NUM] = self.trip_list_df.index + 1 # datetime version self.trip_list_df[Passenger.TRIP_LIST_COLUMN_ARRIVAL_TIME] = \ self.trip_list_df[Passenger.TRIP_LIST_COLUMN_ARRIVAL_TIME].map(lambda x: Util.read_time(x)) self.trip_list_df[Passenger.TRIP_LIST_COLUMN_DEPARTURE_TIME] = \ self.trip_list_df[Passenger.TRIP_LIST_COLUMN_DEPARTURE_TIME].map(lambda x: Util.read_time(x)) # float version self.trip_list_df[Passenger.TRIP_LIST_COLUMN_ARRIVAL_TIME_MIN] = \ self.trip_list_df[Passenger.TRIP_LIST_COLUMN_ARRIVAL_TIME].map(lambda x: \ 60*x.time().hour + x.time().minute + (x.time().second/60.0) ) self.trip_list_df[Passenger.TRIP_LIST_COLUMN_DEPARTURE_TIME_MIN] = \ self.trip_list_df[Passenger.TRIP_LIST_COLUMN_DEPARTURE_TIME].map(lambda x: \ 60*x.time().hour + x.time().minute + (x.time().second/60.0) ) # TODO: validate fields? # value of time must be greater than a threshhold or any fare becomes prohibitively expensive low_vot = self.trip_list_df.loc[ self.trip_list_df[Passenger.TRIP_LIST_COLUMN_VOT] < Passenger.MIN_VALUE_OF_TIME ] if len(low_vot) > 0: FastTripsLogger.warn("These trips have value of time lower than the minimum threshhhold (%f): raising to minimum.\n%s" % (Passenger.MIN_VALUE_OF_TIME, str(low_vot) )) self.trip_list_df.loc[ self.trip_list_df[Passenger.TRIP_LIST_COLUMN_VOT] < Passenger.MIN_VALUE_OF_TIME, Passenger.TRIP_LIST_COLUMN_VOT] = Passenger.MIN_VALUE_OF_TIME if len(self.persons_df) > 0: # Join trips to persons self.trip_list_df = pd.merge(left=self.trip_list_df, right=self.persons_df, how='left', on=Passenger.TRIP_LIST_COLUMN_PERSON_ID) # are any null? no_person_ids = self.trip_list_df.loc[ pd.isnull(self.trip_list_df[Passenger.PERSONS_COLUMN_PERSON_ID_NUM])& (self.trip_list_df[Passenger.PERSONS_COLUMN_PERSON_ID]!="0")] if len(no_person_ids) > 0: error_msg = "Even though a person list is given, failed to find person information for %d trips" % len(no_person_ids) FastTripsLogger.fatal(error_msg) FastTripsLogger.fatal("\n%s\n" % no_person_ids.to_string()) raise DemandInputError(Passenger.INPUT_TRIP_LIST_FILE, error_msg) # And then to households self.trip_list_df = pd.merge(left=self.trip_list_df, right=self.households_df, how='left', on=Passenger.PERSONS_COLUMN_HOUSEHOLD_ID) else: # Give each passenger a unique person ID num self.trip_list_df[Passenger.PERSONS_COLUMN_PERSON_ID_NUM] = self.trip_list_df.index + 1 # add TAZ numeric ids (stored in the stop mapping) self.trip_list_df = stops.add_numeric_stop_id(self.trip_list_df, id_colname =Passenger.TRIP_LIST_COLUMN_ORIGIN_TAZ_ID, numeric_newcolname=Passenger.TRIP_LIST_COLUMN_ORIGIN_TAZ_ID_NUM, warn =True, warn_msg ="TAZ numbers configured as origins in demand file are not found in the network") self.trip_list_df = stops.add_numeric_stop_id(self.trip_list_df, id_colname =Passenger.TRIP_LIST_COLUMN_DESTINATION_TAZ_ID, numeric_newcolname=Passenger.TRIP_LIST_COLUMN_DESTINATION_TAZ_ID_NUM, warn =True, warn_msg ="TAZ numbers configured as destinations in demand file are not found in the network") # trips with invalid TAZs have been dropped FastTripsLogger.debug("Have %d person trips" % len(self.trip_list_df)) # figure out modes: if Passenger.TRIP_LIST_COLUMN_MODE not in trip_list_cols: # default to generic walk-transit-walk self.trip_list_df[Passenger.TRIP_LIST_COLUMN_MODE] = Passenger.MODE_GENERIC_TRANSIT self.trip_list_df['mode_dash_count'] = 0 else: # count the dashes in the mode self.trip_list_df['mode_dash_count'] = self.trip_list_df[Passenger.TRIP_LIST_COLUMN_MODE]\ .map(lambda x: x.count('-')) # The only modes allowed are access-transit-egress or MODE_GENERIC_TRANSIT bad_mode_df = self.trip_list_df.loc[((self.trip_list_df['mode_dash_count']!=2)& ((self.trip_list_df['mode_dash_count']!=0)| (self.trip_list_df[Passenger.TRIP_LIST_COLUMN_MODE]!=Passenger.MODE_GENERIC_TRANSIT)))] if len(bad_mode_df) > 0: FastTripsLogger.fatal("Could not understand column '%s' in the following: \n%s" % (Passenger.TRIP_LIST_COLUMN_MODE, bad_mode_df[[Passenger.TRIP_LIST_COLUMN_MODE,'mode_dash_count']].to_string())) sys.exit(2) # Take care of the transit generic self.trip_list_df.loc[self.trip_list_df['mode_dash_count']==0, Passenger.TRIP_LIST_COLUMN_TRANSIT_MODE] = Passenger.MODE_GENERIC_TRANSIT self.trip_list_df.loc[self.trip_list_df['mode_dash_count']==0, Passenger.TRIP_LIST_COLUMN_ACCESS_MODE ] = "%s" % TAZ.ACCESS_EGRESS_MODES[0] self.trip_list_df.loc[self.trip_list_df['mode_dash_count']==0, Passenger.TRIP_LIST_COLUMN_EGRESS_MODE ] = "%s" % TAZ.ACCESS_EGRESS_MODES[0] # Take care of the access-transit-egress self.trip_list_df.loc[self.trip_list_df['mode_dash_count']==2, Passenger.TRIP_LIST_COLUMN_ACCESS_MODE] = self.trip_list_df[Passenger.TRIP_LIST_COLUMN_MODE]\ .map(lambda x: "%s" % x[:x.find('-')]) self.trip_list_df.loc[self.trip_list_df['mode_dash_count']==2, Passenger.TRIP_LIST_COLUMN_TRANSIT_MODE] = self.trip_list_df[Passenger.TRIP_LIST_COLUMN_MODE]\ .map(lambda x: x[x.find('-')+1:x.rfind('-')]) self.trip_list_df.loc[self.trip_list_df['mode_dash_count']==2, Passenger.TRIP_LIST_COLUMN_EGRESS_MODE] = self.trip_list_df[Passenger.TRIP_LIST_COLUMN_MODE]\ .map(lambda x: "%s" % x[x.rfind('-')+1:]) # We're done with mode_dash_count, thanks for your service self.trip_list_df.drop('mode_dash_count', axis=1, inplace=True) # replace with cumsum # validate time_target invalid_time_target = self.trip_list_df.loc[ self.trip_list_df[Passenger.TRIP_LIST_COLUMN_TIME_TARGET].isin( [Passenger.TIME_TARGET_ARRIVAL, Passenger.TIME_TARGET_DEPARTURE])==False ] if len(invalid_time_target) > 0: error_msg = "Invalid value in column %s:\n%s" % (Passenger.TRIP_LIST_COLUMN_TIME_TARGET, str(invalid_time_target)) FastTripsLogger.fatal(error_msg) raise DemandInputError(Passenger.INPUT_TRIP_LIST_FILE, error_msg) # set outbound self.trip_list_df[Passenger.TRIP_LIST_COLUMN_OUTBOUND] = (self.trip_list_df[Passenger.TRIP_LIST_COLUMN_TIME_TARGET] == Passenger.TIME_TARGET_ARRIVAL) # Set the user class for each trip from .PathSet import PathSet PathSet.set_user_class(self.trip_list_df, Passenger.TRIP_LIST_COLUMN_USER_CLASS) # Verify that PathSet has all the configuration for these user classes + transit modes + access modes + egress modes # => Figure out unique user class + mode combinations self.modes_df = self.trip_list_df[[Passenger.TRIP_LIST_COLUMN_USER_CLASS, Passenger.TRIP_LIST_COLUMN_PURPOSE, Passenger.TRIP_LIST_COLUMN_TRANSIT_MODE, Passenger.TRIP_LIST_COLUMN_ACCESS_MODE, Passenger.TRIP_LIST_COLUMN_EGRESS_MODE]].set_index([Passenger.TRIP_LIST_COLUMN_USER_CLASS, Passenger.TRIP_LIST_COLUMN_PURPOSE]) # stack - so before we have three columns: transit_mode, access_mode, egress_mode # after, we have two columns: demand_mode_type and the value, demand_mode self.modes_df = self.modes_df.stack().to_frame() self.modes_df.index.names = [Passenger.TRIP_LIST_COLUMN_USER_CLASS, Passenger.TRIP_LIST_COLUMN_PURPOSE, PathSet.WEIGHTS_COLUMN_DEMAND_MODE_TYPE] self.modes_df.columns = [PathSet.WEIGHTS_COLUMN_DEMAND_MODE] self.modes_df.reset_index(inplace=True) self.modes_df.drop_duplicates(inplace=True) # fix demand_mode_type since transit_mode is just transit, etc self.modes_df[PathSet.WEIGHTS_COLUMN_DEMAND_MODE_TYPE] = self.modes_df[PathSet.WEIGHTS_COLUMN_DEMAND_MODE_TYPE].apply(lambda x: x[:-5]) FastTripsLogger.debug("Demand mode types by class & purpose: \n%s" % str(self.modes_df)) # Make sure we have all the weights required for these user_class/mode combinations self.trip_list_df = PathSet.verify_weight_config(self.modes_df, output_dir, routes, capacity_constraint, self.trip_list_df) # add column trace from .Assignment import Assignment if len(Assignment.TRACE_IDS) > 0: trace_df = pd.DataFrame.from_records(data=Assignment.TRACE_IDS, columns=[Passenger.TRIP_LIST_COLUMN_PERSON_ID, Passenger.TRIP_LIST_COLUMN_PERSON_TRIP_ID]).astype(object) trace_df[Passenger.TRIP_LIST_COLUMN_TRACE] = True # combine self.trip_list_df = pd.merge(left=self.trip_list_df, right=trace_df, how="left", on=[Passenger.TRIP_LIST_COLUMN_PERSON_ID, Passenger.TRIP_LIST_COLUMN_PERSON_TRIP_ID]) # make nulls into False self.trip_list_df.loc[pd.isnull( self.trip_list_df[Passenger.TRIP_LIST_COLUMN_TRACE]), Passenger.TRIP_LIST_COLUMN_TRACE] = False else: self.trip_list_df[Passenger.TRIP_LIST_COLUMN_TRACE] = False FastTripsLogger.info("Have %d person trips" % len(self.trip_list_df)) FastTripsLogger.debug("Final trip_list_df\n"+str(self.trip_list_df.index.dtype)+"\n"+str(self.trip_list_df.dtypes)) FastTripsLogger.debug("\n"+self.trip_list_df.head().to_string()) #: Maps trip_list_id to :py:class:`PathSet` instance. Use trip_list_id instead of (person_id, person_trip_id) for simplicity and to iterate sequentially #: in setup_passenger_pathsets() self.id_to_pathset = collections.OrderedDict() def add_pathset(self, trip_list_id, pathset): """ Stores this path set for the trip_list_id. """ self.id_to_pathset[trip_list_id] = pathset def get_pathset(self, trip_list_id): """ Retrieves a stored path set for the given trip_list_id """ return self.id_to_pathset[trip_list_id] def get_person_id(self, trip_list_id): to_ret = self.trip_list_df.loc[self.trip_list_df[Passenger.TRIP_LIST_COLUMN_TRIP_LIST_ID_NUM]==trip_list_id, [Passenger.TRIP_LIST_COLUMN_PERSON_ID, Passenger.TRIP_LIST_COLUMN_PERSON_TRIP_ID]] return(to_ret.iloc[0,0], to_ret.iloc[0,1]) def read_passenger_pathsets(self, pathset_dir, stops, modes_df, include_asgn=True): """ Reads the dataframes described in :py:meth:`Passenger.setup_passenger_pathsets` and returns them. :param pathset_dir: Location of csv files to read :type pathset_dir: string :param include_asgn: If true, read from files called :py:attr:`Passenger.PF_PATHS_CSV` and :py:attr:`Passenger.PF_LINKS_CSV`. Otherwise read from files called :py:attr:`Passenger.PATHSET_PATHS_CSV` and :py:attr:`Passenger.PATHSET_LINKS_CSV` which include assignment results. :return: See :py:meth:`Assignment.setup_passengers` for documentation on the passenger paths :py:class:`pandas.DataFrame` :rtype: a tuple of (:py:class:`pandas.DataFrame`, :py:class:`pandas.DataFrame`) """ # read existing paths paths_file = os.path.join(pathset_dir, Passenger.PATHSET_PATHS_CSV if include_asgn else Passenger.PF_PATHS_CSV) pathset_paths_df = pd.read_csv(paths_file, skipinitialspace=True, dtype={Passenger.TRIP_LIST_COLUMN_PERSON_ID :'S', Passenger.TRIP_LIST_COLUMN_PERSON_TRIP_ID:'S'}) FastTripsLogger.info("Read %s" % paths_file) FastTripsLogger.debug("pathset_paths_df.dtypes=\n%s" % str(pathset_paths_df.dtypes)) from .Assignment import Assignment date_cols = [Passenger.PF_COL_PAX_A_TIME, Passenger.PF_COL_PAX_B_TIME] if include_asgn: date_cols.extend([Assignment.SIM_COL_PAX_BOARD_TIME, Assignment.SIM_COL_PAX_ALIGHT_TIME, Assignment.SIM_COL_PAX_A_TIME, Assignment.SIM_COL_PAX_B_TIME]) links_dtypes = {Passenger.TRIP_LIST_COLUMN_PERSON_ID :'S', Passenger.TRIP_LIST_COLUMN_PERSON_TRIP_ID:'S', Trip.TRIPS_COLUMN_TRIP_ID :'S', "A_id" :'S', "B_id" :'S', Passenger.PF_COL_ROUTE_ID :'S', Passenger.PF_COL_TRIP_ID :'S'} # read datetimes as string initially for date_col in date_cols: links_dtypes[date_col] = 'S' links_file = os.path.join(pathset_dir, Passenger.PATHSET_LINKS_CSV if include_asgn else Passenger.PF_LINKS_CSV) pathset_links_df = pd.read_csv(links_file, skipinitialspace=True, dtype=links_dtypes) # convert time strings to datetimes for date_col in date_cols: if date_col in pathset_links_df.columns.values: pathset_links_df[date_col] = pathset_links_df[date_col].map(lambda x: Util.read_time(x)) # convert time duration columns to time durations link_cols = list(pathset_links_df.columns.values) if Passenger.PF_COL_LINK_TIME in link_cols: pathset_links_df[Passenger.PF_COL_LINK_TIME] = pd.to_timedelta(pathset_links_df[Passenger.PF_COL_LINK_TIME]) elif "%s min" % Passenger.PF_COL_LINK_TIME in link_cols: pathset_links_df[Passenger.PF_COL_LINK_TIME] = pd.to_timedelta(pathset_links_df["%s min" % Passenger.PF_COL_LINK_TIME], unit='m') if Passenger.PF_COL_WAIT_TIME in link_cols: pathset_links_df[Passenger.PF_COL_WAIT_TIME] = pd.to_timedelta(pathset_links_df[Passenger.PF_COL_WAIT_TIME]) elif "%s min" % Passenger.PF_COL_WAIT_TIME in link_cols: pathset_links_df[Passenger.PF_COL_WAIT_TIME] = pd.to_timedelta(pathset_links_df["%s min" % Passenger.PF_COL_WAIT_TIME], unit='m') # if simulation results are available if Assignment.SIM_COL_PAX_LINK_TIME in link_cols: pathset_links_df[Assignment.SIM_COL_PAX_LINK_TIME] =
pd.to_timedelta(pathset_links_df[Assignment.SIM_COL_PAX_LINK_TIME])
pandas.to_timedelta
# coding: utf8 import torch import pandas as pd import numpy as np from os import path from torch.utils.data import Dataset import torchvision.transforms as transforms import abc from clinicadl.tools.inputs.filename_types import FILENAME_TYPE import os import nibabel as nib import torch.nn.functional as F from scipy import ndimage import socket from utils import get_dynamic_image from .batchgenerators.transforms.color_transforms import ContrastAugmentationTransform, BrightnessTransform, \ GammaTransform, BrightnessGradientAdditiveTransform, LocalSmoothingTransform from .batchgenerators.transforms.crop_and_pad_transforms import CenterCropTransform, RandomCropTransform, \ RandomShiftTransform from .batchgenerators.transforms.noise_transforms import RicianNoiseTransform, GaussianNoiseTransform, \ GaussianBlurTransform from .batchgenerators.transforms.spatial_transforms import Rot90Transform, MirrorTransform, SpatialTransform from .batchgenerators.transforms.abstract_transforms import Compose from .batchgenerators.dataloading.multi_threaded_augmenter import MultiThreadedAugmenter from .data_tool import hilbert_2dto3d_cut, hilbert_3dto2d_cut, hilbert_2dto3d, hilbert_3dto2d, linear_2dto3d_cut, \ linear_3dto2d_cut, linear_2dto3d, linear_3dto2d ################################# # Datasets loaders ################################# class MRIDataset(Dataset): """Abstract class for all derived MRIDatasets.""" def __init__(self, caps_directory, data_file, preprocessing, transformations=None): self.caps_directory = caps_directory self.transformations = transformations self.diagnosis_code = { 'CN': 0, 'AD': 1, 'sMCI': 0, 'pMCI': 1, 'MCI': 2, 'unlabeled': -1} self.preprocessing = preprocessing self.num_fake_mri = 0 if not hasattr(self, 'elem_index'): raise ValueError( "Child class of MRIDataset must set elem_index attribute.") if not hasattr(self, 'mode'): raise ValueError( "Child class of MRIDataset must set mode attribute.") # Check the format of the tsv file here if isinstance(data_file, str): self.df = pd.read_csv(data_file, sep='\t') elif isinstance(data_file, pd.DataFrame): self.df = data_file else: raise Exception('The argument data_file is not of correct type.') mandatory_col = {"participant_id", "session_id", "diagnosis"} if self.elem_index == "mixed": mandatory_col.add("%s_id" % self.mode) if not mandatory_col.issubset(set(self.df.columns.values)): raise Exception("the data file is not in the correct format." "Columns should include %s" % mandatory_col) self.elem_per_image = self.num_elem_per_image() def __len__(self): return len(self.df) * self.elem_per_image def _get_path(self, participant, session, mode="image", fake_caps_path=None): if self.preprocessing == "t1-linear": image_path = path.join(self.caps_directory, 'subjects', participant, session, 'deeplearning_prepare_data', '%s_based' % mode, 't1_linear', participant + '_' + session + FILENAME_TYPE['cropped'] + '.pt') origin_nii_path = path.join(self.caps_directory, 'subjects', participant, session, 't1_linear', participant + '_' + session + FILENAME_TYPE['cropped'] + '.nii.gz') # temp_path = path.join(self.caps_directory, 'subjects', participant, session, # 't1_linear') # for file in os.listdir(temp_path): # if file.find('_run-01_') != '-1': # new_name = file.replace('_run-01_', '_') # os.rename(os.path.join(temp_path, file), os.path.join(temp_path, new_name)) # print('rename {} to {}'.format(os.path.join(temp_path, file), os.path.join(temp_path, new_name))) if fake_caps_path is not None: fake_image_path = path.join(fake_caps_path, 'subjects', participant, session, 'deeplearning_prepare_data', '%s_based' % mode, 't1_spm', participant + '_' + session + FILENAME_TYPE['cropped'] + '.pt') fake_nii_path = path.join(fake_caps_path, 'subjects', participant, session, 't1_linear', participant + '_' + session + FILENAME_TYPE['cropped'] + '.nii.gz') # first use fake image, because some image lacked in tsv but have in caps if os.path.exists(fake_image_path): image_path = fake_image_path self.num_fake_mri = self.num_fake_mri + 1 elif os.path.exists(fake_nii_path): image_array = nib.load(fake_nii_path).get_fdata() image_tensor = torch.from_numpy(image_array).unsqueeze(0).float() save_dir = path.join(fake_caps_path, 'subjects', participant, session, 'deeplearning_prepare_data', '%s_based' % mode, 't1_spm') if not os.path.exists(save_dir): os.makedirs(save_dir) torch.save(image_tensor.clone(), fake_image_path) print('save fake image: {}'.format(fake_image_path)) self.num_fake_mri = self.num_fake_mri + 1 image_path = fake_image_path elif os.path.exists(image_path): # exist real pt file None elif os.path.exists(origin_nii_path): # exist real nii file image_array = nib.load(origin_nii_path).get_fdata() image_tensor = torch.from_numpy(image_array).unsqueeze(0).float() save_dir = path.join(self.caps_directory, 'subjects', participant, session, 'deeplearning_prepare_data', '%s_based' % mode, 't1_spm') if not os.path.exists(save_dir): os.makedirs(save_dir) torch.save(image_tensor.clone(), image_path) print('save {}'.format(image_path)) else: print( 'Can not find:{} and {} and {} in both real and fake folder'.format(image_path, fake_image_path, fake_nii_path)) else: if os.path.exists(image_path): # exist real pt file None elif os.path.exists(origin_nii_path): # exist real pt file image_array = nib.load(origin_nii_path).get_fdata() image_tensor = torch.from_numpy(image_array).unsqueeze(0).float() save_dir = path.join(self.caps_directory, 'subjects', participant, session, 'deeplearning_prepare_data', '%s_based' % mode, 't1_linear') if not os.path.exists(save_dir): os.makedirs(save_dir) torch.save(image_tensor.clone(), image_path) print('save {}'.format(image_path)) else: print('Can not find:{}'.format(image_path)) elif self.preprocessing == "t1-extensive": image_path = path.join(self.caps_directory, 'subjects', participant, session, 'deeplearning_prepare_data', '%s_based' % mode, 't1_extensive', participant + '_' + session + FILENAME_TYPE['skull_stripped'] + '.pt') elif self.preprocessing == "t1-spm-graymatter": image_path = path.join(self.caps_directory, 'subjects', participant, session, 'deeplearning_prepare_data', '%s_based' % mode, 't1_spm', participant + '_' + session + FILENAME_TYPE['segm-graymatter'] + '.pt') origin_nii_path = path.join(self.caps_directory, 'subjects', participant, session, 't1', 'spm', 'segmentation', 'normalized_space', participant + '_' + session + FILENAME_TYPE['segm-graymatter'] + '.nii.gz') temp_path = path.join(self.caps_directory, 'subjects', participant, session, 't1', 'spm', 'segmentation', 'normalized_space') # for file in os.listdir(temp_path): # if file.find('_run-01_') != '-1': # new_name = file.replace('_run-01_', '_') # os.rename(os.path.join(temp_path, file), os.path.join(temp_path, new_name)) # print('rename {} to {}'.format(os.path.join(temp_path, file), os.path.join(temp_path, new_name))) if fake_caps_path is not None: fake_image_path = path.join(fake_caps_path, 'subjects', participant, session, 'deeplearning_prepare_data', '%s_based' % mode, 't1_spm', participant + '_' + session + FILENAME_TYPE['segm-graymatter'] + '.pt') fake_nii_path = path.join(fake_caps_path, 'subjects', participant, session, 't1', 'spm', 'segmentation', 'normalized_space', participant + '_' + session + FILENAME_TYPE['segm-graymatter'] + '.nii.gz') # first use fake image, because some image lacked in tsv but have in caps if os.path.exists(fake_image_path): image_path = fake_image_path self.num_fake_mri = self.num_fake_mri + 1 elif os.path.exists(fake_nii_path): image_array = nib.load(fake_nii_path).get_fdata() image_tensor = torch.from_numpy(image_array).unsqueeze(0).float() save_dir = path.join(fake_caps_path, 'subjects', participant, session, 'deeplearning_prepare_data', '%s_based' % mode, 't1_spm') if not os.path.exists(save_dir): os.makedirs(save_dir) torch.save(image_tensor.clone(), fake_image_path) print('save fake image: {}'.format(fake_image_path)) self.num_fake_mri = self.num_fake_mri + 1 image_path = fake_image_path elif os.path.exists(image_path): # exist real pt file None elif os.path.exists(origin_nii_path): # exist real pt file image_array = nib.load(origin_nii_path).get_fdata() image_tensor = torch.from_numpy(image_array).unsqueeze(0).float() save_dir = path.join(self.caps_directory, 'subjects', participant, session, 'deeplearning_prepare_data', '%s_based' % mode, 't1_spm') if not os.path.exists(save_dir): os.makedirs(save_dir) torch.save(image_tensor.clone(), image_path) print('save {}'.format(image_path)) else: print( 'Can not find:{} and {} and {} in both real and fake folder'.format(image_path, fake_image_path, fake_nii_path)) else: if os.path.exists(image_path): # exist real pt file None elif os.path.exists(origin_nii_path): # exist real pt file image_array = nib.load(origin_nii_path).get_fdata() image_tensor = torch.from_numpy(image_array).unsqueeze(0).float() save_dir = path.join(self.caps_directory, 'subjects', participant, session, 'deeplearning_prepare_data', '%s_based' % mode, 't1_spm') if not os.path.exists(save_dir): os.makedirs(save_dir) torch.save(image_tensor.clone(), image_path) print('save {}'.format(image_path)) else: print('Can not find:{}'.format(image_path)) print('Can not find:{}'.format(origin_nii_path)) elif self.preprocessing == "t1-spm-whitematter": image_path = path.join(self.caps_directory, 'subjects', participant, session, 'deeplearning_prepare_data', '%s_based' % mode, 't1_spm', participant + '_' + session + FILENAME_TYPE['segm-whitematter'] + '.pt') origin_nii_path = path.join(self.caps_directory, 'subjects', participant, session, 't1', 'spm', 'segmentation', 'normalized_space', participant + '_' + session + FILENAME_TYPE['segm-whitematter'] + '.nii.gz') if fake_caps_path is not None: fake_image_path = path.join(fake_caps_path, 'subjects', participant, session, 'deeplearning_prepare_data', '%s_based' % mode, 't1_spm', participant + '_' + session + FILENAME_TYPE['segm-whitematter'] + '.pt') fake_nii_path = path.join(fake_caps_path, 'subjects', participant, session, 't1', 'spm', 'segmentation', 'normalized_space', participant + '_' + session + FILENAME_TYPE['segm-whitematter'] + '.nii.gz') # first use fake image, because some image lacked in tsv but have in caps if os.path.exists(fake_image_path): image_path = fake_image_path self.num_fake_mri = self.num_fake_mri + 1 elif os.path.exists(fake_nii_path): image_array = nib.load(fake_nii_path).get_fdata() image_tensor = torch.from_numpy(image_array).unsqueeze(0).float() save_dir = path.join(fake_caps_path, 'subjects', participant, session, 'deeplearning_prepare_data', '%s_based' % mode, 't1_spm') if not os.path.exists(save_dir): os.makedirs(save_dir) torch.save(image_tensor.clone(), fake_image_path) image_path = fake_image_path print('save fake image: {}'.format(fake_image_path)) self.num_fake_mri = self.num_fake_mri + 1 elif os.path.exists(image_path): # exist real pt file None elif os.path.exists(origin_nii_path): # exist real pt file image_array = nib.load(origin_nii_path).get_fdata() image_tensor = torch.from_numpy(image_array).unsqueeze(0).float() save_dir = path.join(self.caps_directory, 'subjects', participant, session, 'deeplearning_prepare_data', '%s_based' % mode, 't1_spm') if not os.path.exists(save_dir): os.makedirs(save_dir) torch.save(image_tensor.clone(), image_path) print('save {}'.format(image_path)) else: print('Can not find:{}'.format(image_path)) else: if os.path.exists(image_path): # exist real pt file None elif os.path.exists(origin_nii_path): # exist real pt file image_array = nib.load(origin_nii_path).get_fdata() image_tensor = torch.from_numpy(image_array).unsqueeze(0).float() save_dir = path.join(self.caps_directory, 'subjects', participant, session, 'deeplearning_prepare_data', '%s_based' % mode, 't1_spm') if not os.path.exists(save_dir): os.makedirs(save_dir) torch.save(image_tensor.clone(), image_path) print('save {}'.format(image_path)) else: print('Can not find:{}'.format(image_path)) elif self.preprocessing == "t1-spm-csf": image_path = path.join(self.caps_directory, 'subjects', participant, session, 'deeplearning_prepare_data', '%s_based' % mode, 't1_spm', participant + '_' + session + FILENAME_TYPE['segm-csf'] + '.pt') origin_nii_path = path.join(self.caps_directory, 'subjects', participant, session, 't1', 'spm', 'segmentation', 'normalized_space', participant + '_' + session + FILENAME_TYPE['segm-csf'] + '.nii.gz') if fake_caps_path is not None: fake_image_path = path.join(fake_caps_path, 'subjects', participant, session, 'deeplearning_prepare_data', '%s_based' % mode, 't1_spm', participant + '_' + session + FILENAME_TYPE['segm-csf'] + '.pt') fake_nii_path = path.join(fake_caps_path, 'subjects', participant, session, 't1', 'spm', 'segmentation', 'normalized_space', participant + '_' + session + FILENAME_TYPE['segm-csf'] + '.nii.gz') # first use fake image, because some image lacked in tsv but have in caps if os.path.exists(fake_image_path): image_path = fake_image_path self.num_fake_mri = self.num_fake_mri + 1 elif os.path.exists(fake_nii_path): image_array = nib.load(fake_nii_path).get_fdata() image_tensor = torch.from_numpy(image_array).unsqueeze(0).float() save_dir = path.join(fake_caps_path, 'subjects', participant, session, 'deeplearning_prepare_data', '%s_based' % mode, 't1_spm') if not os.path.exists(save_dir): os.makedirs(save_dir) torch.save(image_tensor.clone(), fake_image_path) image_path = fake_image_path print('save fake image: {}'.format(fake_image_path)) self.num_fake_mri = self.num_fake_mri + 1 elif os.path.exists(image_path): # exist real pt file None elif os.path.exists(origin_nii_path): # exist real pt file image_array = nib.load(origin_nii_path).get_fdata() image_tensor = torch.from_numpy(image_array).unsqueeze(0).float() save_dir = path.join(self.caps_directory, 'subjects', participant, session, 'deeplearning_prepare_data', '%s_based' % mode, 't1_spm') if not os.path.exists(save_dir): os.makedirs(save_dir) torch.save(image_tensor.clone(), image_path) print('save {}'.format(image_path)) else: print('Can not find:{}'.format(image_path)) else: if os.path.exists(image_path): # exist real pt file None elif os.path.exists(origin_nii_path): # exist real pt file image_array = nib.load(origin_nii_path).get_fdata() image_tensor = torch.from_numpy(image_array).unsqueeze(0).float() save_dir = path.join(self.caps_directory, 'subjects', participant, session, 'deeplearning_prepare_data', '%s_based' % mode, 't1_spm') if not os.path.exists(save_dir): os.makedirs(save_dir) torch.save(image_tensor.clone(), image_path) print('save {}'.format(image_path)) else: print('Can not find:{}'.format(image_path)) return image_path def _get_meta_data(self, idx): image_idx = idx // self.elem_per_image participant = self.df.loc[image_idx, 'participant_id'] session = self.df.loc[image_idx, 'session_id'] if self.elem_index is None: elem_idx = idx % self.elem_per_image elif self.elem_index == "mixed": elem_idx = self.df.loc[image_idx, '%s_id' % self.mode] else: elem_idx = self.elem_index diagnosis = self.df.loc[image_idx, 'diagnosis'] label = self.diagnosis_code[diagnosis] return participant, session, elem_idx, label def _get_full_image(self): from ..data.utils import find_image_path as get_nii_path import nibabel as nib if self.preprocessing in ["t1-linear", "t1-extensive"]: participant_id = self.df.loc[0, 'participant_id'] session_id = self.df.loc[0, 'session_id'] try: image_path = self._get_path(participant_id, session_id, "image") image = torch.load(image_path) except FileNotFoundError: try: image_path = get_nii_path( self.caps_directory, participant_id, session_id, preprocessing=self.preprocessing) image_nii = nib.load(image_path) image_np = image_nii.get_fdata() image = ToTensor()(image_np) except: # if we use moved folder which only has slice/patch, we can not find the whole image in folder, so use this file to get full image # image_path = os.path.join(self.caps_directory,'sub-ADNI002S0295_ses-M00_T1w_space-MNI152NLin2009cSym_desc-Crop_res-1x1x1_T1w.nii.gz') # image_nii = nib.load(image_path) # image_np = image_nii.get_fdata() # image = ToTensor()(image_np) image = torch.zeros([169, 208, 179]) # in those segm data, size : [169, 208, 179] elif self.preprocessing in ["t1-spm-whitematter", "t1-spm-whitematter", "t1-spm-csf"]: image = torch.zeros([121, 145, 121]) # in those segm data, size : [121, 145, 121] return image @abc.abstractmethod def __getitem__(self, idx): pass @abc.abstractmethod def num_elem_per_image(self): pass class MRIDatasetImage(MRIDataset): """Dataset of MRI organized in a CAPS folder.""" def __init__(self, caps_directory, data_file, preprocessing='t1-linear', transformations=None, crop_padding_to_128=False, resample_size=None, fake_caps_path=None, roi=False, roi_size=32, model=None, data_preprocess='MinMax', data_Augmentation=False, method_2d=None): """ Args: caps_directory (string): Directory of all the images. data_file (string or DataFrame): Path to the tsv file or DataFrame containing the subject/session list. preprocessing (string): Defines the path to the data in CAPS. transformations (callable, optional): Optional transform to be applied on a sample. """ self.elem_index = None self.mode = "image" self.model = model self.data_preprocess = data_preprocess self.data_Augmentation = data_Augmentation self.crop_padding_to_128 = crop_padding_to_128 self.resample_size = resample_size self.fake_caps_path = fake_caps_path self.roi = roi self.roi_size = roi_size self.method_2d = method_2d # if self.roi: # if socket.gethostname() == 'zkyd': # aal_mask_dict_dir = '/root/Downloads/atlas/aal_mask_dict_128.npy' # elif socket.gethostname() == 'tian-W320-G10': # aal_mask_dict_dir = '/home/tian/pycharm_project/MRI_GNN/atlas/aal_mask_dict_128.npy' # self.aal_mask_dict = np.load(aal_mask_dict_dir, allow_pickle=True).item() # 116; (181,217,181) super().__init__(caps_directory, data_file, preprocessing, transformations) print('crop_padding_to_128 type:{}'.format(self.crop_padding_to_128)) def __getitem__(self, idx): participant, session, _, label = self._get_meta_data(idx) image_path = self._get_path(participant, session, "image", fake_caps_path=self.fake_caps_path) if self.preprocessing == 't1-linear': ori_name = 't1_linear' else: ori_name = 't1_spm' resampled_image_path = image_path.replace(ori_name, '{}_{}_resample_{}'.format(ori_name, self.data_preprocess, self.resample_size)) CNN2020_DEEPCNN_image_path = image_path.replace(ori_name, '{}_{}_model_{}'.format(ori_name, self.data_preprocess, self.model)) roi_image_path = resampled_image_path.replace('image_based', 'AAL_roi_based_{}'.format(self.roi_size)) # delate_image_path = image_path.replace('image_based', # 'AAL_roi_based_{}'.format(self.roi_size)) # if os.path.exists(delate_image_path): # os.remove(delate_image_path) # print('delating:{}'.format(delate_image_path)) if not self.data_Augmentation: # No data_Augmentation, 1. check local disk whether have saved data. 2. If not, process data and save to desk if self.roi and 'ROI' in self.model: # Get resampled_image if os.path.exists(resampled_image_path): try: resampled_image = torch.load(resampled_image_path) # print('loading:{}'.format(roi_image_path)) except: print('Wrong file:{}'.format(resampled_image_path)) else: image = torch.load(image_path) if self.transformations: dict = {} dict['data'] = image resampled_image = self.transformations(begin_trans_indx=0, **dict) resampled_data = resampled_image.squeeze() # [128, 128, 128] try: resampled_image = resampled_data.unsqueeze(dim=0) # [1, 128, 128, 128] except: resampled_image = np.expand_dims(resampled_data, 0) dir, file = os.path.split(resampled_image_path) if not os.path.exists(dir): try: os.makedirs(dir) except OSError: pass torch.save(resampled_image, resampled_image_path) print('Save resampled {} image: {}'.format(self.resample_size, resampled_image_path)) # Get roi image if os.path.exists(roi_image_path): try: ROI_image = torch.load(roi_image_path) # print('loading:{}'.format(roi_image_path)) except: print('Wrong file:{}'.format(roi_image_path)) else: image = torch.load(image_path) if self.transformations: dict = {} dict['data'] = image image = self.transformations(begin_trans_indx=0, **dict) data = image.squeeze() # [128, 128, 128] data = self.roi_extract(data, roi_size=self.roi_size, sub_id=participant, preprocessing=self.preprocessing, session=session, save_nii=False) ROI_image = data.unsqueeze(dim=0) # [1, num_roi, 128, 128, 128] # sample = {'image': image, 'roi_image': ROI_image, 'label': label, 'participant_id': participant, # 'session_id': session, # 'image_path': image_path, 'num_fake_mri': self.num_fake_mri} dir, file = os.path.split(roi_image_path) if not os.path.exists(dir): os.makedirs(dir) torch.save(ROI_image, roi_image_path) print('Save roi image: {}'.format(roi_image_path)) sample = {'image': ROI_image, 'label': label, 'participant_id': participant, 'session_id': session, 'all_image': resampled_image, 'image_path': roi_image_path, 'num_fake_mri': self.num_fake_mri} elif self.model in ["CNN2020", "DeepCNN"]: if os.path.exists(CNN2020_DEEPCNN_image_path): CNN2020_DEEPCNN_image_image = torch.load(CNN2020_DEEPCNN_image_path) else: image = torch.load(image_path) if self.transformations: dict = {} dict['data'] = image image = self.transformations(begin_trans_indx=0, **dict) data = image.squeeze() # [128, 128, 128] try: CNN2020_DEEPCNN_image_image = data.unsqueeze(dim=0) # [1, 128, 128, 128] except: CNN2020_DEEPCNN_image_image = np.expand_dims(data, 0) dir, file = os.path.split(CNN2020_DEEPCNN_image_path) if not os.path.exists(dir): try: os.makedirs(dir) except OSError: pass torch.save(image, CNN2020_DEEPCNN_image_path) print('Save resampled {} image: {}'.format(self.resample_size, CNN2020_DEEPCNN_image_path)) sample = {'image': CNN2020_DEEPCNN_image_image, 'label': label, 'participant_id': participant, 'session_id': session, 'image_path': CNN2020_DEEPCNN_image_path, 'num_fake_mri': self.num_fake_mri} elif self.method_2d is not None: path, file = os.path.split(resampled_image_path) file_2d = file.split('.')[0] + '_' + self.method_2d + '.' + file.split('.')[1] path_2d = os.path.join(path, file_2d) if os.path.exists(path_2d): try: data_2d = torch.load(path_2d) except: print('Wrong file:{}'.format(path_2d)) else: if os.path.exists(resampled_image_path): try: resampled_image = torch.load(resampled_image_path) # print('loading:{}'.format(roi_image_path)) except: print('Wrong file:{}'.format(resampled_image_path)) else: image = torch.load(image_path) if self.transformations: dict = {} dict['data'] = image resampled_image = self.transformations(begin_trans_indx=0, **dict) resampled_data = resampled_image.squeeze() # [128, 128, 128] try: resampled_image = resampled_data.unsqueeze(dim=0) # [1, 128, 128, 128] except: resampled_image = np.expand_dims(resampled_data, 0) dir, file = os.path.split(resampled_image_path) if not os.path.exists(dir): try: os.makedirs(dir) except OSError: pass torch.save(resampled_image, resampled_image_path) print('Save resampled {} image: {}'.format(self.resample_size, resampled_image_path)) if self.method_2d == 'hilbert_cut': data_2d = hilbert_3dto2d_cut(resampled_image) torch.save(data_2d.clone(), path_2d) print('saving:{}'.format(path_2d)) elif self.method_2d == 'linear_cut': data_2d = linear_3dto2d_cut(resampled_image) torch.save(data_2d.clone(), path_2d) print('saving:{}'.format(path_2d)) elif self.method_2d == 'hilbert_downsampling': data_low = self.__resize_data__(resampled_image.squeeze(), target_size=[64, 64, 64]) data_low = torch.from_numpy(data_low) data_2d = hilbert_3dto2d(data_low) data_2d = data_2d.unsqueeze(0) # [1,512,512] torch.save(data_2d.clone(), path_2d) print('saving:{}'.format(path_2d)) elif self.method_2d == 'linear_downsampling': data_low = self.__resize_data__(resampled_image.squeeze(), target_size=[64, 64, 64]) data_low = torch.from_numpy(data_low) data_2d = linear_3dto2d(data_low) data_2d = data_2d.unsqueeze(0) # [1,512,512] torch.save(data_2d.clone(), path_2d) print('saving:{}'.format(path_2d)) sample = {'image': data_2d.squeeze(), 'label': label, 'participant_id': participant, 'session_id': session, 'image_path': path_2d, 'num_fake_mri': self.num_fake_mri} elif self.model not in [ "Conv5_FC3", 'DeepCNN', 'CNN2020', 'CNN2020_gcn', 'DeepCNN_gcn', "Dynamic2D_net_Alex", "Dynamic2D_net_Res34", "Dynamic2D_net_Res18", "Dynamic2D_net_Vgg16", "Dynamic2D_net_Vgg11", "Dynamic2D_net_Mobile", 'ROI_GCN']: if os.path.exists(resampled_image_path): try: resampled_image = torch.load(resampled_image_path) except: raise FileExistsError('file error:{}'.format(resampled_image_path)) # if self.data_Augmentation and self.transformations: # dict = {} # dict['data'] = resampled_image # begin_trans_indx = 0 # for i in range(len(self.transformations.transforms)): # if self.transformations.transforms[i].__class__.__name__ in ['ItensityNormalizeNonzeorVolume', # 'ItensityNormalizeNonzeorVolume', # 'MinMaxNormalization']: # begin_trans_indx = i + 1 # resampled_image = self.transformations(begin_trans_indx=begin_trans_indx, **dict) else: image = torch.load(image_path) if self.transformations: dict = {} dict['data'] = image resampled_image = self.transformations(begin_trans_indx=0, **dict) resampled_data = resampled_image.squeeze() # [128, 128, 128] try: resampled_image = resampled_data.unsqueeze(dim=0) # [1, 128, 128, 128] except: resampled_image = np.expand_dims(resampled_data, 0) dir, file = os.path.split(resampled_image_path) if not os.path.exists(dir): try: os.makedirs(dir) except OSError: pass torch.save(image, resampled_image_path) print('Save resampled {} image: {}'.format(self.resample_size, resampled_image_path)) sample = {'image': resampled_image, 'label': label, 'participant_id': participant, 'session_id': session, 'image_path': resampled_image_path, 'num_fake_mri': self.num_fake_mri} elif self.model in ["Dynamic2D_net_Alex", "Dynamic2D_net_Res34", "Dynamic2D_net_Res18", "Dynamic2D_net_Vgg16", "Dynamic2D_net_Vgg11", "Dynamic2D_net_Mobile"]: image = torch.load(image_path) if self.transformations: dict = {} dict['data'] = image resampled_image = self.transformations(begin_trans_indx=0, **dict) resampled_data = resampled_image.squeeze() # [128, 128, 128] image_np = np.array(resampled_data) image_np = np.expand_dims(image_np, 0) # 0,w,h,d image_np = np.swapaxes(image_np, 0, 3) # w,h,d,0 im = get_dynamic_image(image_np) im = np.expand_dims(im, 0) im = np.concatenate([im, im, im], 0) im = torch.from_numpy(im) im = im.float() sample = {'image': im, 'label': label, 'participant_id': participant, 'session_id': session, 'image_path': image_path, 'num_fake_mri': self.num_fake_mri} return sample return sample else: # Use data_Augmentation, 1. Just load original data and process it # 1. load original data image = torch.load(image_path) if self.transformations: # Augmentation dict = {} dict['data'] = image image = self.transformations(begin_trans_indx=0, **dict) augmentation_data = image.squeeze() # [128, 128, 128] # print(self.transformations) # print(self.transformations[0]) # if self.crop_padding_to_128 and image.shape[1] != 128: # image = image[:, :, 8:-9, :] # [1, 121, 128, 121] # image = image.unsqueeze(0) # [1, 1, 121, 128, 121] # pad = torch.nn.ReplicationPad3d((4, 3, 0, 0, 4, 3)) # image = pad(image) # [1, 1, 128, 128, 128] # image = image.squeeze(0) # [1, 128, 128, 128] # if self.resample_size is not None: # assert self.resample_size > 0, 'resample_size should be a int positive number' # image = image.unsqueeze(0) # image = F.interpolate(image, # size=self.resample_size) # resize to resample_size * resample_size * resample_size # print('resample before trans shape:{}'.format(image.shape)) # print('resample before trans mean:{}'.format(image.mean())) # print('resample before trans std:{}'.format(image.std())) # print('resample before trans max:{}'.format(image.max())) # print('resample before trans min:{}'.format(image.min())) # # image = self.transformations(image) # # print('resample after trans shape:{}'.format(image.shape)) # # print('resample after trans mean:{}'.format(image.mean())) # # print('resample after trans std:{}'.format(image.std())) # # print('resample after trans max:{}'.format(image.max())) # # print('resample after trans min:{}'.format(image.min())) # image = image.squeeze(0) # # if self.model in ['DeepCNN', 'DeepCNN_gcn']: # image = image.unsqueeze(0) # image = F.interpolate(image, size=[49, 39, 38]) # image = image.squeeze(0) # elif self.model in ['CNN2020', 'CNN2020_gcn']: # image = image.unsqueeze(0) # image = F.interpolate(image, size=[139, 177, 144]) # image = image.squeeze(0) # # preprocessing data # data = image.squeeze() # [128, 128, 128] # # print(data.shape) # input_W, input_H, input_D = data.shape # if self.model not in ["ConvNet3D", "ConvNet3D_gcn", "VoxCNN", "Conv5_FC3", 'DeepCNN', 'CNN2020', 'CNN2020_gcn', # "VoxCNN_gcn", 'DeepCNN_gcn', "ConvNet3D_v2", "ConvNet3D_ori", "Dynamic2D_net_Alex", # "Dynamic2D_net_Res34", "Dynamic2D_net_Res18", "Dynamic2D_net_Vgg16", # "Dynamic2D_net_Vgg11", "Dynamic2D_net_Mobile"]: # # drop out the invalid range # # if self.preprocessing in ['t1-spm-graymatter', 't1-spm-whitematter', 't1-spm-csf']: # data = self.__drop_invalid_range__(data) # print('drop_invalid_range shape:{}'.format(data.shape)) # print('drop_invalid_range mean:{}'.format(data.mean())) # print('drop_invalid_range std:{}'.format(data.std())) # print('drop_invalid_range max:{}'.format(data.max())) # print('drop_invalid_range min:{}'.format(data.min())) # # resize data # data = self.__resize_data__(data, input_W, input_H, input_D) # print('resize_data shape:{}'.format(data.shape)) # print('resize_data mean:{}'.format(data.mean())) # print('resize_data std:{}'.format(data.std())) # print('resize_data max:{}'.format(data.max())) # print('resize_data min:{}'.format(data.min())) # # normalization datas # data = np.array(data) # data = self.__itensity_normalize_one_volume__(data) # print('itensity_normalize shape:{}'.format(data.shape)) # print('itensity_normalize mean:{}'.format(data.mean())) # print('itensity_normalize std:{}'.format(data.std())) # print('itensity_normalize max:{}'.format(data.max())) # print('itensity_normalize min:{}'.format(data.min())) # # if self.transformations and self.model in ["ConvNet3D", "VoxCNN"]: # # data = self.transformations(data) # data = torch.from_numpy(data) # if self.model in ['CNN2020', 'CNN2020_gcn']: # data = np.array(data) # data = self.__itensity_normalize_one_volume__(data, normalize_all=True) # data = torch.from_numpy(data) if self.model in ["Dynamic2D_net_Alex", "Dynamic2D_net_Res34", "Dynamic2D_net_Res18", "Dynamic2D_net_Vgg16", "Dynamic2D_net_Vgg11", "Dynamic2D_net_Mobile"]: image_np = np.array(augmentation_data) image_np = np.expand_dims(image_np, 0) # 0,w,h,d image_np = np.swapaxes(image_np, 0, 3) # w,h,d,0 im = get_dynamic_image(image_np) im = np.expand_dims(im, 0) im = np.concatenate([im, im, im], 0) im = torch.from_numpy(im) im = im.float() sample = {'image': im, 'label': label, 'participant_id': participant, 'session_id': session, 'image_path': image_path, 'num_fake_mri': self.num_fake_mri} return sample if self.roi and 'ROI' in self.model: try: resampled_image = augmentation_data.unsqueeze(dim=0) # [1, 128, 128, 128] except: resampled_image = np.expand_dims(augmentation_data, 0) augmentation_data = self.roi_extract(augmentation_data, roi_size=self.roi_size, sub_id=participant, preprocessing=self.preprocessing, session=session, save_nii=False) ROI_image = augmentation_data.unsqueeze(dim=0) # [1, num_roi, 128, 128, 128] sample = {'image': ROI_image, 'all_image': resampled_image, 'label': label, 'participant_id': participant, 'session_id': session, 'image_path': image_path, 'num_fake_mri': self.num_fake_mri} elif self.method_2d is not None: path, file = os.path.split(resampled_image_path) file_2d = file.split('.')[0] + '_' + self.method_2d + '.' + file.split('.')[1] path_2d = os.path.join(path, file_2d) try: resampled_image = augmentation_data.unsqueeze(dim=0) # [1, 128, 128, 128] except: resampled_image = np.expand_dims(augmentation_data, 0) if self.method_2d == 'hilbert_cut': data_2d = hilbert_3dto2d_cut(resampled_image) elif self.method_2d == 'linear_cut': data_2d = linear_3dto2d_cut(resampled_image) elif self.method_2d == 'hilbert_downsampling': data_low = self.__resize_data__(resampled_image.squeeze(), target_size=[64, 64, 64]) data_low = torch.from_numpy(data_low) data_2d = hilbert_3dto2d(data_low) data_2d = data_2d.unsqueeze(0) # [1,512,512] elif self.method_2d == 'linear_downsampling': data_low = self.__resize_data__(resampled_image.squeeze(), target_size=[64, 64, 64]) data_low = torch.from_numpy(data_low) data_2d = linear_3dto2d(data_low) data_2d = data_2d.unsqueeze(0) # [1,512,512] sample = {'image': data_2d.squeeze(), 'label': label, 'participant_id': participant, 'session_id': session, 'image_path': path_2d, 'num_fake_mri': self.num_fake_mri} elif self.model in ["CNN2020", "DeepCNN"]: try: CNN2020_DEEPCNN_image_image = augmentation_data.unsqueeze(dim=0) # [1, 128, 128, 128] except: CNN2020_DEEPCNN_image_image = np.expand_dims(augmentation_data, 0) dir, file = os.path.split(CNN2020_DEEPCNN_image_path) if not os.path.exists(dir): try: os.makedirs(dir) except OSError: pass torch.save(image, CNN2020_DEEPCNN_image_path) print('Save resampled {} image: {}'.format(self.resample_size, CNN2020_DEEPCNN_image_path)) sample = {'image': CNN2020_DEEPCNN_image_image, 'label': label, 'participant_id': participant, 'session_id': session, 'image_path': CNN2020_DEEPCNN_image_path, 'num_fake_mri': self.num_fake_mri} else: try: image = augmentation_data.unsqueeze(dim=0) # [1, 128, 128, 128] except: image = np.expand_dims(augmentation_data, 0) sample = {'image': image, 'label': label, 'participant_id': participant, 'session_id': session, 'image_path': image_path, 'num_fake_mri': self.num_fake_mri} return sample def __drop_invalid_range__(self, volume): """ Cut off the invalid area """ zero_value = volume[0, 0, 0] # print('zero:{}'.format(zero_value)) non_zeros_idx = np.where(volume != zero_value) # print('zero idx:{}'.format(non_zeros_idx)) try: [max_z, max_h, max_w] = np.max(np.array(non_zeros_idx), axis=1) [min_z, min_h, min_w] = np.min(np.array(non_zeros_idx), axis=1) except: print(zero_value) print(non_zeros_idx) return volume[min_z:max_z + 1, min_h:max_h + 1, min_w:max_w + 1] def __resize_data__(self, data, input_W, input_H, input_D): """ Resize the data to the input size """ [depth, height, width] = data.shape scale = [input_W * 1.0 / depth, input_H * 1.0 / height, input_D * 1.0 / width] data = ndimage.interpolation.zoom(data, scale, order=0) return data def __itensity_normalize_one_volume__(self, volume, normalize_all=False): """ normalize the itensity of an nd volume based on the mean and std of nonzeor region inputs: volume: the input nd volume outputs: out: the normalized nd volume """ if normalize_all: pixels = volume else: pixels = volume[volume > 0] mean = pixels.mean() std = pixels.std() out = (volume - mean) / std if not normalize_all: out_random = np.random.normal(0, 1, size=volume.shape) out[volume == 0] = out_random[volume == 0] return out def num_elem_per_image(self): return 1 def roi_extract(self, MRI, roi_size=32, sub_id=None, preprocessing=None, session=None, save_nii=False): roi_data_list = [] roi_label_list = [] if 'slave' in socket.gethostname(): aal_mask_dict_dir = '/root/Downloads/atlas/aal_mask_dict_right.npy' elif socket.gethostname() == 'tian-W320-G10': aal_mask_dict_dir = '/home/tian/pycharm_project/MRI_GNN/atlas/aal_mask_dict_right.npy' elif socket.gethostname() == 'zkyd': aal_mask_dict_dir = '/data/fanchenchen/atlas/aal_mask_dict_right.npy' self.aal_mask_dict = np.load(aal_mask_dict_dir, allow_pickle=True).item() # 116; (181,217,181) for i, key in enumerate(self.aal_mask_dict.keys()): # useful_data = self.__drop_invalid_range__(self.aal_mask_dict[key]) # useful_data = resize_data(useful_data, target_size=[128, 128, 128]) # useful_data = useful_data[np.newaxis, np.newaxis, :, :, :] # 1,1,128,128,128 # roi_batch_data = MRI.cpu().numpy() * useful_data # batch, 1, 128,128,128 mask = self.aal_mask_dict[key] # print('mask min:{}'.format(mask.min())) # print('mask max:{}'.format(mask.max())) # print('mask:{}'.format(mask)) ww, hh, dd = MRI.shape MRI = self.__resize_data__(MRI, 181, 217, 181) # MRI = (MRI - MRI.min()) / (MRI.max() - MRI.min()) roi_data = MRI * mask.squeeze() # batch, 1, 128,128,128 # print('roi_data min:{}'.format(roi_data.min())) # print('roi_data max:{}'.format(roi_data.max())) roi_label_list.append(key) # save nii to Visualization # print(image_np.max()) # print(image_np.min()) # print(roi_data.shape) if save_nii: image_nii = nib.Nifti1Image(roi_data, np.eye(4)) MRI_path = '/data/fanchenchen/atlas/{}_{}_{}_ori_roi_{}.nii.gz'.format(sub_id, session, preprocessing, i) nib.save(image_nii, MRI_path) try: roi_data = self.__drop_invalid_range__(roi_data) # xx,xx,xx except: print(sub_id) print(session) assert True # roi_data = self.__drop_invalid_range__(mask.squeeze()) # xx,xx,xx if save_nii: image_nii = nib.Nifti1Image(roi_data, np.eye(4)) MRI_path = '/data/fanchenchen/atlas/{}_{}_{}_drop_invalid_roi_{}.nii.gz'.format(sub_id, session, preprocessing, i) nib.save(image_nii, MRI_path) # print(roi_data.shape) roi_data = self.__resize_data__(roi_data, roi_size, roi_size, roi_size) # roi_size, roi_size, roi_size # print(roi_data.shape) roi_data = torch.from_numpy(roi_data) roi_data_list.append(roi_data) # roi_size, roi_size, roi_size # save nii to Visualization if save_nii: image_np = roi_data.numpy() image_nii = nib.Nifti1Image(image_np, np.eye(4)) MRI_path = '/data/fanchenchen/atlas/{}_{}_{}_resize_roi_{}.nii.gz'.format(sub_id, session, preprocessing, i) nib.save(image_nii, MRI_path) if i >= 89: break roi_batch = torch.stack(roi_data_list).type(torch.float32) # num_roi, roi_size, roi_size, roi_size return roi_batch class MRIDatasetPatch(MRIDataset): def __init__(self, caps_directory, data_file, patch_size, stride_size, transformations=None, prepare_dl=False, patch_index=None, preprocessing="t1-linear"): """ Args: caps_directory (string): Directory of all the images. data_file (string or DataFrame): Path to the tsv file or DataFrame containing the subject/session list. preprocessing (string): Defines the path to the data in CAPS. transformations (callable, optional): Optional transform to be applied on a sample. prepare_dl (bool): If true pre-extracted patches will be loaded. patch_index (int, optional): If a value is given the same patch location will be extracted for each image. else the dataset will load all the patches possible for one image. patch_size (int): size of the regular cubic patch. stride_size (int): length between the centers of two patches. """ self.patch_size = patch_size self.stride_size = stride_size self.elem_index = patch_index self.mode = "patch" super().__init__(caps_directory, data_file, preprocessing, transformations) self.prepare_dl = prepare_dl def __getitem__(self, idx): participant, session, patch_idx, label = self._get_meta_data(idx) if self.prepare_dl: patch_path = path.join(self._get_path(participant, session, "patch")[0:-7] + '_patchsize-' + str(self.patch_size) + '_stride-' + str(self.stride_size) + '_patch-' + str(patch_idx) + '_T1w.pt') image = torch.load(patch_path) else: image_path = self._get_path(participant, session, "image") full_image = torch.load(image_path) image = self.extract_patch_from_mri(full_image, patch_idx) if self.transformations: image = self.transformations(image) sample = {'image': image, 'label': label, 'participant_id': participant, 'session_id': session, 'patch_id': patch_idx} return sample def num_elem_per_image(self): if self.elem_index is not None: return 1 image = self._get_full_image() patches_tensor = image.unfold(1, self.patch_size, self.stride_size ).unfold(2, self.patch_size, self.stride_size ).unfold(3, self.patch_size, self.stride_size).contiguous() patches_tensor = patches_tensor.view(-1, self.patch_size, self.patch_size, self.patch_size) num_patches = patches_tensor.shape[0] return num_patches def extract_patch_from_mri(self, image_tensor, index_patch): patches_tensor = image_tensor.unfold(1, self.patch_size, self.stride_size ).unfold(2, self.patch_size, self.stride_size ).unfold(3, self.patch_size, self.stride_size).contiguous() patches_tensor = patches_tensor.view(-1, self.patch_size, self.patch_size, self.patch_size) extracted_patch = patches_tensor[index_patch, ...].unsqueeze_( 0).clone() return extracted_patch class MRIDatasetRoi(MRIDataset): def __init__(self, caps_directory, data_file, preprocessing="t1-linear", transformations=None, prepare_dl=False): """ Args: caps_directory (string): Directory of all the images. data_file (string or DataFrame): Path to the tsv file or DataFrame containing the subject/session list. preprocessing (string): Defines the path to the data in CAPS. transformations (callable, optional): Optional transform to be applied on a sample. prepare_dl (bool): If true pre-extracted patches will be loaded. """ self.elem_index = None self.mode = "roi" super().__init__(caps_directory, data_file, preprocessing, transformations) self.prepare_dl = prepare_dl def __getitem__(self, idx): participant, session, roi_idx, label = self._get_meta_data(idx) if self.prepare_dl: raise NotImplementedError( 'The extraction of ROIs prior to training is not implemented.') else: image_path = self._get_path(participant, session, "image") image = torch.load(image_path) patch = self.extract_roi_from_mri(image, roi_idx) if self.transformations: patch = self.transformations(patch) sample = {'image': patch, 'label': label, 'participant_id': participant, 'session_id': session, 'roi_id': roi_idx} return sample def num_elem_per_image(self): return 2 def extract_roi_from_mri(self, image_tensor, left_is_odd): """ :param image_tensor: (Tensor) the tensor of the image. :param left_is_odd: (int) if 1 the left hippocampus is extracted, else the right one. :return: Tensor of the extracted hippocampus """ if self.preprocessing == "t1-linear": if left_is_odd == 1: # the center of the left hippocampus crop_center = (61, 96, 68) else: # the center of the right hippocampus crop_center = (109, 96, 68) else: raise NotImplementedError("The extraction of hippocampi was not implemented for " "preprocessing %s" % self.preprocessing) crop_size = (50, 50, 50) # the output cropped hippocampus size extracted_roi = image_tensor[ :, crop_center[0] - crop_size[0] // 2: crop_center[0] + crop_size[0] // 2:, crop_center[1] - crop_size[1] // 2: crop_center[1] + crop_size[1] // 2:, crop_center[2] - crop_size[2] // 2: crop_center[2] + crop_size[2] // 2: ].clone() return extracted_roi class MRIDatasetSlice(MRIDataset): def __init__(self, caps_directory, data_file, preprocessing="t1-linear", transformations=None, mri_plane=0, prepare_dl=False, discarded_slices=20, mixed=False): """ Args: caps_directory (string): Directory of all the images. data_file (string or DataFrame): Path to the tsv file or DataFrame containing the subject/session list. preprocessing (string): Defines the path to the data in CAPS. transformations (callable, optional): Optional transform to be applied on a sample. prepare_dl (bool): If true pre-extracted patches will be loaded. mri_plane (int): Defines which mri plane is used for slice extraction. discarded_slices (int or list): number of slices discarded at the beginning and the end of the image. If one single value is given, the same amount is discarded at the beginning and at the end. mixed (bool): If True will look for a 'slice_id' column in the input DataFrame to load each slice independently. """ # Rename MRI plane self.mri_plane = mri_plane self.direction_list = ['sag', 'cor', 'axi'] if self.mri_plane >= len(self.direction_list): raise ValueError( "mri_plane value %i > %i" % (self.mri_plane, len( self.direction_list))) # Manage discarded_slices if isinstance(discarded_slices, int): discarded_slices = [discarded_slices, discarded_slices] if isinstance(discarded_slices, list) and len(discarded_slices) == 1: discarded_slices = discarded_slices * 2 self.discarded_slices = discarded_slices if mixed: self.elem_index = "mixed" else: self.elem_index = None self.mode = "slice" super().__init__(caps_directory, data_file, preprocessing, transformations) self.prepare_dl = prepare_dl def __getitem__(self, idx): participant, session, slice_idx, label = self._get_meta_data(idx) slice_idx = slice_idx + self.discarded_slices[0] if self.prepare_dl: # read the slices directly slice_path = path.join(self._get_path(participant, session, "slice")[0:-7] + '_axis-%s' % self.direction_list[self.mri_plane] + '_channel-rgb_slice-%i_T1w.pt' % slice_idx) image = torch.load(slice_path) else: image_path = self._get_path(participant, session, "image") full_image = torch.load(image_path) image = self.extract_slice_from_mri(full_image, slice_idx) if self.transformations: image = self.transformations(image) sample = {'image': image, 'label': label, 'participant_id': participant, 'session_id': session, 'slice_id': slice_idx} return sample def num_elem_per_image(self): if self.elem_index == "mixed": return 1 image = self._get_full_image() return image.size(self.mri_plane + 1) - \ self.discarded_slices[0] - self.discarded_slices[1] def extract_slice_from_mri(self, image, index_slice): """ This is a function to grab one slice in each view and create a rgb image for transferring learning: duplicate the slices into R, G, B channel :param image: (tensor) :param index_slice: (int) index of the wanted slice :return: To note, for each view: Axial_view = "[:, :, slice_i]" Coronal_view = "[:, slice_i, :]" Sagittal_view= "[slice_i, :, :]" """ image = image.squeeze(0) simple_slice = image[(slice(None),) * self.mri_plane + (index_slice,)] triple_slice = torch.stack((simple_slice, simple_slice, simple_slice)) return triple_slice def return_dataset(mode, input_dir, data_df, preprocessing, transformations, params, cnn_index=None): """ Return appropriate Dataset according to given options. Args: mode: (str) input used by the network. Chosen from ['image', 'patch', 'roi', 'slice']. input_dir: (str) path to a directory containing a CAPS structure. data_df: (DataFrame) List subjects, sessions and diagnoses. preprocessing: (str) type of preprocessing wanted ('t1-linear' or 't1-extensive') transformations: (transforms) list of transformations performed on-the-fly. params: (Namespace) options used by specific modes. cnn_index: (int) Index of the CNN in a multi-CNN paradigm (optional). Returns: (Dataset) the corresponding dataset. """ if cnn_index is not None and mode in ["image", "roi", "slice"]: raise ValueError("Multi-CNN is not implemented for %s mode." % mode) if params.model == "ROI_GCN": use_roi = True else: use_roi = False if mode == "image": return MRIDatasetImage( input_dir, data_df, preprocessing, transformations=transformations, crop_padding_to_128=params.crop_padding_to_128, resample_size=params.resample_size, fake_caps_path=params.fake_caps_path, # only_use_fake=params.only_use_fake, roi=use_roi, roi_size=params.roi_size, model=params.model, data_preprocess=params.data_preprocess, data_Augmentation=params.data_Augmentation, method_2d=params.method_2d ) if mode == "patch": return MRIDatasetPatch( input_dir, data_df, params.patch_size, params.stride_size, preprocessing=preprocessing, transformations=transformations, prepare_dl=params.prepare_dl, patch_index=cnn_index ) elif mode == "roi": return MRIDatasetRoi( input_dir, data_df, preprocessing=preprocessing, transformations=transformations ) elif mode == "slice": return MRIDatasetSlice( input_dir, data_df, preprocessing=preprocessing, transformations=transformations, mri_plane=params.mri_plane, prepare_dl=params.prepare_dl, discarded_slices=params.discarded_slices) else: raise ValueError("Mode %s is not implemented." % mode) def compute_num_cnn(input_dir, tsv_path, options, data="train"): transformations = get_transforms(options) if data == "train": example_df, _ = load_data(tsv_path, options.diagnoses, 0, options.n_splits, options.baseline) elif data == "classify": example_df = pd.read_csv(tsv_path, sep='\t') else: example_df = load_data_test(tsv_path, options.diagnoses) full_dataset = return_dataset(options.mode, input_dir, example_df, options.preprocessing, transformations, options) return full_dataset.elem_per_image ################################## # Transformations ################################## class GaussianSmoothing(object): def __init__(self, sigma): self.sigma = sigma def __call__(self, sample): from scipy.ndimage.filters import gaussian_filter image = sample['image'] np.nan_to_num(image, copy=False) smoothed_image = gaussian_filter(image, sigma=self.sigma) sample['image'] = smoothed_image return sample def __repr__(self): return self.__class__.__name__ + '(sigma={})'.format(self.sigma) class ToTensor(object): """Convert image type to Tensor and diagnosis to diagnosis code""" def __call__(self, image): np.nan_to_num(image, copy=False) image = image.astype(float) return torch.from_numpy(image[np.newaxis, :]).float() def __repr__(self): return self.__class__.__name__ class MinMaxNormalization(object): """Normalizes a tensor between 0 and 1""" def __call__(self, **data_dict): image = data_dict['data'] image = (image - image.min()) / (image.max() - image.min()) data_dict['data'] = image return data_dict def __repr__(self): return self.__class__.__name__ class ItensityNormalizeNonzeorVolume(object): """ normalize the itensity of an nd volume based on the mean and std of nonzeor region inputs: volume: the input nd volume outputs: out: the normalized nd volume """ def __call__(self, **data_dict): image = data_dict['data'] image = image.squeeze() image = np.array(image) pixels = image[image > 0] mean = pixels.mean() std = pixels.std() out = (image - mean) / std out_random = np.random.normal(0, 1, size=image.shape) out[image == 0] = out_random[image == 0] out = torch.from_numpy(out.copy()) data_dict['data'] = out.unsqueeze(0) return data_dict def __repr__(self): return self.__class__.__name__ class ItensityNormalizeAllVolume(object): """ normalize the itensity of an nd volume based on the mean and std of all region inputs: volume: the input nd volume outputs: out: the normalized nd volume """ def __call__(self, **data_dict): image = data_dict['data'] image = (image - image.mean()) / image.std() data_dict['data'] = image return data_dict def __repr__(self): return self.__class__.__name__ class CropPpadding128(object): """ crop padding image to 128 """ def __call__(self, **data_dict): image = data_dict['data'] if image.shape[1] == 121 and image.shape[2] == 145 and image.shape[ 3] == 121: image = image[:, :, 8:-9, :] # [1, 121, 128, 121] image = image.unsqueeze(0) # [1, 1, 121, 128, 121] pad = torch.nn.ReplicationPad3d((4, 3, 0, 0, 4, 3)) image = pad(image) # [1, 1, 128, 128, 128] image = image.squeeze(0) # [1, 128, 128, 128] elif image.shape[1] == 128 and image.shape[2] == 128 and image.shape[ 3] == 128: pass else: assert image.shape[1] == 121 and image.shape[2] == 145 and image.shape[ 3] == 121, "image shape must be 1*121*145*122 or 1*128*128*128, but given shape:{}".format(image.shape) data_dict['data'] = image return data_dict def __repr__(self): return self.__class__.__name__ class Resize(torch.nn.Module): """ Resize data to target size """ def __init__(self, resample_size): super().__init__() # assert resample_size > 0, 'resample_size should be a int positive number' self.resample_size = resample_size def forward(self, **data_dict): image = data_dict['data'] image = image.unsqueeze(0) image = F.interpolate(image, size=self.resample_size) image = image.squeeze(0) data_dict['data'] = image return data_dict def __repr__(self): return self.__class__.__name__ + '(resample_size={0})'.format(self.resample_size) class CheckDictSize(object): """ check dict size to dim 5 :1,1,128,128,128 """ def __call__(self, **dict): image = dict['data'] if len(image.shape) == 4: image = np.array(image.unsqueeze(0)) elif len(image.shape) == 3: image = np.array(image.unsqueeze(0).unsqueeze(0)) assert len(image.shape) == 5 dict['data'] = image return dict def __repr__(self): return self.__class__.__name__ class DictToImage(object): """ dict 2 data """ def __call__(self, **dict): image = dict['data'] if len(image.shape) == 5: image = image.squeeze(0) elif len(image.shape) == 3: image = image.unsqueeze(0) return image def __repr__(self): return self.__class__.__name__ class DropInvalidRange(torch.nn.Module): """ Cut off the invalid area """ def __init__(self, keep_size=True): super().__init__() self.keep_size = keep_size def __call__(self, **data_dict): image = data_dict['data'] image = image.squeeze(0) zero_value = image[0, 0, 0] z, h, w = image.shape non_zeros_idx = np.where(image != zero_value) [max_z, max_h, max_w] = np.max(np.array(non_zeros_idx), axis=1) [min_z, min_h, min_w] = np.min(np.array(non_zeros_idx), axis=1) image = image[min_z:max_z, min_h:max_h, min_w:max_w].unsqueeze(0) if self.keep_size: image = image.unsqueeze(0) image = F.interpolate(image, size=[z, h, w]) image = image.squeeze(0) data_dict['data'] = image return data_dict def __repr__(self): return self.__class__.__name__ + '(keep_size={})'.format(self.keep_size) def get_transforms(params, is_training=True): if params.mode == 'image': trans_list = [] trans_list.append(MinMaxNormalization()) if params.preprocessing != 't1-linear': trans_list.append(CropPpadding128()) trans_list.append(DropInvalidRange(keep_size=True)) if params.resample_size is not None: trans_list.append(Resize(params.resample_size)) if params.data_preprocess == 'MinMax': trans_list.append(MinMaxNormalization()) elif params.data_preprocess == 'NonzeorZscore': trans_list.append(ItensityNormalizeNonzeorVolume()) elif params.data_preprocess == 'AllzeorZscore': trans_list.append(ItensityNormalizeAllVolume()) if is_training: if params.ContrastAugmentationTransform > 0: trans_list.append(CheckDictSize()) # for this code library, input data must be dim=5, 1,1,128,128,128 trans_list.append(ContrastAugmentationTransform((0.3, 3.), preserve_range=True, p_per_sample=params.ContrastAugmentationTransform)) if params.BrightnessTransform > 0: trans_list.append(CheckDictSize()) trans_list.append( BrightnessTransform(mu=0, sigma=1, per_channel=False, p_per_sample=params.BrightnessTransform)) if params.GammaTransform > 0: trans_list.append(CheckDictSize()) trans_list.append( GammaTransform(gamma_range=(0.5, 2), invert_image=False, per_channel=False, retain_stats=False, p_per_sample=params.GammaTransform)) if params.BrightnessGradientAdditiveTransform > 0: trans_list.append(CheckDictSize()) trans_list.append(BrightnessGradientAdditiveTransform(scale=(5, 5), p_per_sample=params.BrightnessGradientAdditiveTransform)) if params.LocalSmoothingTransform > 0: trans_list.append(CheckDictSize()) trans_list.append(LocalSmoothingTransform(scale=(5, 5), p_per_sample=params.LocalSmoothingTransform)) if params.RandomShiftTransform > 0: trans_list.append(CheckDictSize()) trans_list.append( RandomShiftTransform(shift_mu=0, shift_sigma=3, p_per_sample=params.RandomShiftTransform)) if params.RicianNoiseTransform > 0: trans_list.append(CheckDictSize()) trans_list.append( RicianNoiseTransform(noise_variance=(0, 0.1), p_per_sample=params.RicianNoiseTransform)) if params.GaussianNoiseTransform > 0: trans_list.append(CheckDictSize()) trans_list.append( GaussianNoiseTransform(noise_variance=(0, 0.1), p_per_sample=params.RicianNoiseTransform)) if params.GaussianBlurTransform > 0: trans_list.append(CheckDictSize()) trans_list.append( GaussianBlurTransform(blur_sigma=(1, 5), different_sigma_per_channel=False, p_per_sample=params.RicianNoiseTransform)) if params.Rot90Transform > 0: trans_list.append(CheckDictSize()) trans_list.append(Rot90Transform(num_rot=(1, 2, 3), axes=(0, 1, 2), p_per_sample=params.Rot90Transform)) if params.MirrorTransform > 0: trans_list.append(CheckDictSize()) trans_list.append(MirrorTransform(axes=(0, 1, 2), p_per_sample=params.MirrorTransform)) if params.SpatialTransform > 0: trans_list.append(CheckDictSize()) trans_list.append( SpatialTransform(patch_size=(params.resample_size, params.resample_size, params.resample_size), p_el_per_sample=params.SpatialTransform, p_rot_per_axis=params.SpatialTransform, p_scale_per_sample=params.SpatialTransform, p_rot_per_sample=params.SpatialTransform)) trans_list.append(DictToImage()) transformations = Compose(trans_list) if params.model in ['DeepCNN', 'DeepCNN_gcn']: trans_list = [] trans_list.append(MinMaxNormalization()) trans_list.append(Resize(resample_size=[49, 39, 38])) trans_list.append(DictToImage()) transformations = Compose(trans_list) if params.model in ['CNN2020', 'CNN2020_gcn']: trans_list = [] trans_list.append(MinMaxNormalization()) trans_list.append(Resize(resample_size=[139, 177, 144])) trans_list.append(ItensityNormalizeAllVolume()) trans_list.append(DictToImage()) transformations = Compose(trans_list) elif params.mode in ["patch", "roi"]: if params.minmaxnormalization: transformations = Compose([MinMaxNormalization(), DictToImage()]) else: transformations = None elif params.mode == "slice": trg_size = (224, 224) if params.minmaxnormalization: transformations = transforms.Compose([MinMaxNormalization(), transforms.ToPILImage(), transforms.Resize(trg_size), transforms.ToTensor()]) else: transformations = transforms.Compose([transforms.ToPILImage(), transforms.Resize(trg_size), transforms.ToTensor()]) else: raise ValueError("Transforms for mode %s are not implemented." % params.mode) print('transformer:{}'.format(transformations.__repr__)) return transformations ################################ # tsv files loaders ################################ def load_data(train_val_path, diagnoses_list, split, n_splits=None, baseline=True, fake_caps_path=None, only_use_fake=False): train_df = pd.DataFrame() valid_df = pd.DataFrame() if n_splits is None: train_path = path.join(train_val_path, 'train') valid_path = path.join(train_val_path, 'validation') else: train_path = path.join(train_val_path, 'train_splits-' + str(n_splits), 'split-' + str(split)) valid_path = path.join(train_val_path, 'validation_splits-' + str(n_splits), 'split-' + str(split)) print("Train", train_path) print("Valid", valid_path) for diagnosis in diagnoses_list: if isinstance(baseline, str): if baseline in ['true', 'True']: train_diagnosis_path = path.join( train_path, diagnosis + '_baseline.tsv') elif baseline in ['false', 'False']: train_diagnosis_path = path.join(train_path, diagnosis + '.tsv') else: if baseline: train_diagnosis_path = path.join( train_path, diagnosis + '_baseline.tsv') else: train_diagnosis_path = path.join(train_path, diagnosis + '.tsv') valid_diagnosis_path = path.join( valid_path, diagnosis + '_baseline.tsv') train_diagnosis_df = pd.read_csv(train_diagnosis_path, sep='\t') valid_diagnosis_df = pd.read_csv(valid_diagnosis_path, sep='\t') train_df = pd.concat([train_df, train_diagnosis_df]) valid_df =
pd.concat([valid_df, valid_diagnosis_df])
pandas.concat
# -*- coding: utf-8 -*- """ code to combine data from different algorithms with different degrees and coefficient """ import pandas as pd print('Reading data...') xgb1 =
pd.read_csv("../output/xgboost_1.csv")
pandas.read_csv
import typing as t import numpy as np import pandas as pd from .report import Report def plot_performance(freq: str = '1h', **kwargs: t.Union[pd.Series, Report]) -> None: comparison = pd.DataFrame(dtype=np.float64) price = min([x.initial_aum for x in kwargs.values() if isinstance(x, Report)]) report_count = 0 for name, arg in kwargs.items(): if isinstance(arg, Report): report_count += 1 aum = arg.holdings.resample(freq).asfreq().sum(axis=1) comparison[name] = aum if isinstance(arg, pd.Series): factor = price / arg.dropna().iloc[0] comparison[name] = (arg.resample(freq).ffill() * factor) comparison.plot() def plot_holdings(report: Report, *, freq: str = '1h', **kwargs) -> None: holding_sample = report.holdings.resample(freq).asfreq() holding_sample.where(holding_sample > 0., 0.).plot.area(**kwargs) def plot_cost_proceeds(report: Report, **kwargs) -> None: df =
pd.DataFrame({'Cost': report.costs, 'Proceeds': report.proceeds})
pandas.DataFrame
""" Spatial DataFrame Object developed off of the Panda's Dataframe object """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import warnings import arcgis from six import string_types, integer_types HAS_PANDAS = True try: import pandas as pd from pandas import DataFrame, Series, Index import numpy from .base import BaseSpatialPandas from .geoseries import GeoSeries except: HAS_PANDAS = False class DataFrame: pass class BaseSpatialPandas: pass from arcgis.gis import GIS from six import PY3 from six import string_types from arcgis.geometry import _types GEO_COLUMN_DEFAULT = "SHAPE" GEOM_TYPES = (_types.Point, _types.MultiPoint, _types.Polygon,_types.Geometry, _types.Polyline, _types.BaseGeometry) try: import arcpy from arcpy import Geometry HASARCPY = True HAS_ARCPY = True GEOM_TYPES = [arcpy.Point, arcpy.Polygon, arcpy.Geometry, arcpy.PointGeometry, arcpy.Polyline, arcpy.Multipatch, arcpy.Multipoint] + list(GEOM_TYPES) GEOM_TYPES = tuple(GEOM_TYPES) except: # warning.warn("Missing Pro will cause functionality to be limited") HASARCPY = False HAS_ARCPY = False try: import shapely from shapely.geometry.base import BaseGeometry as _BaseGeometry GEOM_TYPES = [_BaseGeometry] + list(GEOM_TYPES) GEOM_TYPES = tuple(GEOM_TYPES) HASSHAPELY = True except: HASSHAPELY = False class SpatialDataFrame(BaseSpatialPandas, DataFrame): """ A Spatial Dataframe is an object to manipulate, manage and translate data into new forms of information for users. Functionality of the Spatial DataFrame is determined by the Geometry Engine available to the object at creation. It will first leverage the arcpy geometry engine, then shapely, then it will create the geometry objects without any engine. **Scenerios** ================= ====================================================== **Engine Type** **Functionality** ----------------- ------------------------------------------------------ ArcPy Users will have the full functionality provided by the API. ----------------- ------------------------------------------------------ Shapely Users get a sub-set of operations, and all properties. :Valid Properties: - JSON - WKT - WKB - area - centroid - extent - first_point - hull_rectangle - is_multipart - label_point - last_point - length - length3D - part_count - point_count - true_centroid :Valid Functions: - boundary - buffer - contains - convex_hull - crosses - difference - disjoint - distance_to - equals - generalize - intersect - overlaps - symmetric_difference - touches - union - within Everything else will return None ----------------- ------------------------------------------------------ No Engine Values will return None by default ================= ====================================================== Required Parameters: None Optional: :param data: panda's dataframe containing attribute information :param geometry: list/array/geoseries of arcgis.geometry objects :param sr: spatial reference of the dataframe. This can be the factory code, WKT string, arcpy.SpatialReference object, or arcgis.SpatailReference object. :param gis: passing a gis.GIS object set to Pro will ensure arcpy is installed and a full swatch of functionality is available to the end user. """ _internal_names = ['_data', '_cacher', '_item_cache', '_cache', 'is_copy', '_subtyp', '_index', '_default_kind', '_default_fill_value', '_metadata', '__array_struct__', '__array_interface__'] _metadata = ['sr', '_geometry_column_name', '_gis'] _geometry_column_name = GEO_COLUMN_DEFAULT #---------------------------------------------------------------------- def __init__(self, *args, **kwargs): """ .. deprecated:: 1.5.0 see :class:`GeoAccessor` and :class:`GeoSeriesAccessor` .. note:: This class is no longer maintained past version 1.4.2 A Spatial Dataframe is an object to manipulate, manage and translate data into new forms of information for users. Required Parameters: None ===================== =============================================================== **optional argument** **Description** --------------------- --------------------------------------------------------------- data optional Panda's dataframe, object containing the attribute information. --------------------- --------------------------------------------------------------- index optional Index or array-like Index to use for resulting frame. Will default to np.arange(n) if no indexing information part of input data and no index provided --------------------- --------------------------------------------------------------- columns optional Index or array-like, Column labels to use for resulting frame. Will default to np.arange(n) if no column labels are provided --------------------- --------------------------------------------------------------- dtype dytpe, default None, Data type to force, otherwise infer --------------------- --------------------------------------------------------------- copy optional boolean, default False. Copy data from inputs. --------------------- --------------------------------------------------------------- geometry optional list, default None, list/array/geoseries of arcgis.geometry objects --------------------- --------------------------------------------------------------- sr optional spatial reference of the dataframe. --------------------- --------------------------------------------------------------- gis optional gis.GIS object, default None. The GIS object allowes users to use non-public GIS information. ===================== =============================================================== Example: Creating SpatialDataFrame from a CSV df = pd.read_csv(r'D:\ipython_working_folder\joel\store_locations.csv', index_col='OBJECTID') geoms = [] for i in range(0, len(df)): x = df.iloc[i]['X'] y = df.iloc[i]['Y'] geoms.append(Point({"x" : x, "y" : y, "spatialReference" : {"wkid" : 4326}})) sdf = arcgis.features.SpatialDataFrame(data=df, geometry=geoms) Example: Creating SpatialDataFrame Using List Comprehension coords = [[1,2], [3,4]] sdf = SpatialDataFrame(df, geometry=[arcgis.geometry.Geometry({'x':r[0], 'y':r[1], 'spatialReference':{'wkid':4326}}) for r in coords]) .. Note: When passing in a geometry to the SpatialDataFrame, always assign it to the parameter geometry=<var> Example: Creating From Feature Class sdf = SpatialDataFrame.from_featureclass(r"c:\temp\data.gdb\cities) Example: Create A SpatialDataFrame from a Service gis = GIS(username="user1", password="<PASSWORD>") item = gis.content.search("Roads")[0] feature_layer = item.layers[0] sdf = SpatialDataFrame.from_layer(feature_layer) """ warnings.warn("SpatialDataFrame has been deprecated. Please switch to the GeoAccessor/GeoSeriesAccessor.") if not HAS_PANDAS: warnings.warn("pandas and numpy are required for SpatialDataFrame.") warnings.warn("Please install them.") gis = kwargs.pop('gis', arcgis.env.active_gis) self._gis = gis sr = self._sr(kwargs.pop('sr', 4326)) geometry = kwargs.pop('geometry', None) super(SpatialDataFrame, self).__init__(*args, **kwargs) if isinstance(sr, _types.SpatialReference): self.sr = sr elif isinstance(sr, integer_types): self.sr = _types.SpatialReference({'wkid' : sr}) elif isinstance(sr, string_types): self.sr = _types.SpatialReference({'wkt' : sr}) elif hasattr(sr, 'factoryCode'): self.sr = _types.SpatialReference({'wkid' : sr.factoryCode}) elif hasattr(sr, 'exportToString'): self.sr = _types.SpatialReference({'wkt' : sr.exportToString()}) elif not sr is None: raise ValueError("sr (spatial reference) must be a _types.SpatialReference object") else: self.sr = None if geometry is not None: self.set_geometry(geometry, inplace=True) elif 'SHAPE' in self.columns: if isinstance(self['SHAPE'], (GeoSeries, pd.Series)) and self['SHAPE'].dtype.name == 'object': if all(isinstance(x, _types.Geometry) for x in self[self._geometry_column_name]) == False: geometry = [_types.Geometry(g) for g in self['SHAPE'].tolist()] del self['SHAPE'] self.set_geometry(geometry, inplace=True) if self.sr is None: try: self.sr = self.geometry[self.geometry.first_valid_index()].spatialReference except: self.sr = self._sr(sr) self._delete_index() #---------------------------------------------------------------------- @property def _constructor(self): """constructor for class as per Pandas' github page""" return SpatialDataFrame #---------------------------------------------------------------------- def info(self, verbose=None, buf=None, max_cols=None, memory_usage=None, null_counts=None): """ Concise summary of a DataFrame. Parameters ---------- verbose : {None, True, False}, optional Whether to print the full summary. None follows the `display.max_info_columns` setting. True or False overrides the `display.max_info_columns` setting. buf : writable buffer, defaults to sys.stdout max_cols : int, default None Determines whether full summary or short summary is printed. None follows the `display.max_info_columns` setting. memory_usage : boolean/string, default None Specifies whether total memory usage of the DataFrame elements (including index) should be displayed. None follows the `display.memory_usage` setting. True or False overrides the `display.memory_usage` setting. A value of 'deep' is equivalent of True, with deep introspection. Memory usage is shown in human-readable units (base-2 representation). null_counts : boolean, default None Whether to show the non-null counts - If None, then only show if the frame is smaller than max_info_rows and max_info_columns. - If True, always show counts. - If False, never show counts. """ cols = list(self.columns) cols.pop(cols.index("SHAPE")) return self[cols].info(verbose, buf, max_cols, memory_usage, null_counts) #---------------------------------------------------------------------- def _sr(self, sr): """sets the spatial reference""" if isinstance(sr, _types.SpatialReference): return sr elif isinstance(sr, dict): return _types.SpatialReference(sr) elif isinstance(sr, integer_types): return _types.SpatialReference({'wkid' : sr}) elif isinstance(sr, string_types): return _types.SpatialReference({'wkt' : sr}) elif hasattr(sr, 'factoryCode'): return _types.SpatialReference({'wkid' : sr.factoryCode}) elif hasattr(sr, 'exportToString'): return _types.SpatialReference({'wkt' : sr.exportToString()}) elif not sr is None: raise ValueError("sr (spatial reference) must be a _types.SpatialReference object") else: return None #---------------------------------------------------------------------- @property def __feature_set__(self): """returns a dictionary representation of an Esri FeatureSet""" import numpy as np import datetime import time cols_norm = [col for col in self.columns] cols_lower = [col.lower() for col in self.columns] fields = [] features = [] date_fields = [] _geom_types = { arcgis.geometry._types.Point : "esriGeometryPoint", arcgis.geometry._types.Polyline : "esriGeometryPolyline", arcgis.geometry._types.MultiPoint : "esriGeometryMultipoint", arcgis.geometry._types.Polygon : "esriGeometryPolygon" } if self.sr is None: sr = {'wkid' : 4326} else: sr = self.sr fs = { "objectIdFieldName" : "", "globalIdFieldName" : "", "displayFieldName" : "", "geometryType" : _geom_types[type(self.geometry[self.geometry.first_valid_index()])], "spatialReference" : sr, "fields" : [], "features" : [] } if 'objectid' in cols_lower: fs['objectIdFieldName'] = cols_norm[cols_lower.index('objectid')] fs['displayFieldName'] = cols_norm[cols_lower.index('objectid')] elif 'fid' in cols_lower: fs['objectIdFieldName'] = cols_norm[cols_lower.index('fid')] fs['displayFieldName'] = cols_norm[cols_lower.index('fid')] elif 'oid' in cols_lower: fs['objectIdFieldName'] = cols_norm[cols_lower.index('oid')] fs['displayFieldName'] = cols_norm[cols_lower.index('oid')] else: self['OBJECTID'] = list(range(1, self.shape[0] + 1)) res = self.__feature_set__ del self['OBJECTID'] return res if 'objectIdFieldName' in fs: fields.append({ "name" : fs['objectIdFieldName'], "type" : "esriFieldTypeOID", "alias" : fs['objectIdFieldName'] }) cols_norm.pop(cols_norm.index(fs['objectIdFieldName'])) if 'globalIdFieldName' in fs and len(fs['globalIdFieldName']) > 0: fields.append({ "name" : fs['globalIdFieldName'], "type" : "esriFieldTypeGlobalID", "alias" : fs['globalIdFieldName'] }) cols_norm.pop(cols_norm.index(fs['globalIdFieldName'])) elif 'globalIdFieldName' in fs and \ len(fs['globalIdFieldName']) == 0: del fs['globalIdFieldName'] if self._geometry_column_name in cols_norm: cols_norm.pop(cols_norm.index(self._geometry_column_name)) for col in cols_norm: try: idx = self[col].first_valid_index() col_val = self[col].loc[idx] except: col_val = "" if isinstance(col_val, (str, np.str)): l = self[col].str.len().max() if str(l) == 'nan': l = 255 fields.append({ "name" : col, "type" : "esriFieldTypeString", "length" : int(l), "alias" : col }) if fs['displayFieldName'] == "": fs['displayFieldName'] = col elif isinstance(col_val, (datetime.datetime, pd.Timestamp, np.datetime64, pd.datetime)): fields.append({ "name" : col, "type" : "esriFieldTypeDate", "alias" : col }) date_fields.append(col) elif isinstance(col_val, (np.int32, np.int16, np.int8)): fields.append({ "name" : col, "type" : "esriFieldTypeSmallInteger", "alias" : col }) elif isinstance(col_val, (int, np.int, np.int64)): fields.append({ "name" : col, "type" : "esriFieldTypeInteger", "alias" : col }) elif isinstance(col_val, (float, np.float64)): fields.append({ "name" : col, "type" : "esriFieldTypeDouble", "alias" : col }) elif isinstance(col_val, (np.float32)): fields.append({ "name" : col, "type" : "esriFieldTypeSingle", "alias" : col }) fs['fields'] = fields for row in self.to_dict('records'): geom = {} if self._geometry_column_name in row: geom = row[self._geometry_column_name] del row[self._geometry_column_name] for f in date_fields: try: row[f] = int(row[f].to_pydatetime().timestamp() * 1000) except: row[f] = None features.append( { "geometry" : dict(geom), "attributes" : row } ) del row del geom fs['features'] = features return fs #---------------------------------------------------------------------- @property def __geo_interface__(self): """returns the object as an Feature Collection JSON string""" if HASARCPY: template = { "type": "FeatureCollection", "features": [] } geom_type = self.geometry_type if geom_type.lower() == "point": geom_type = "Point" elif geom_type.lower() == "polyline": geom_type = "LineString" elif geom_type.lower() == "polygon": geom_type = "Polygon" df_copy = self.copy(deep=True) df_copy['geom_json'] = self.geometry.JSON df_copy['SHAPE'] = df_copy['geom_json'] del df_copy['geom_json'] for index, row in df_copy.iterrows(): geom = row['SHAPE'] del row['SHAPE'] template['features'].append( {"type" : geom_type, "geometry" : pd.io.json.loads(geom), "attributes":row} ) return pd.io.json.dumps(template) @property def geoextent(self): """returns the extent of the spatial dataframe""" return self.series_extent #---------------------------------------------------------------------- def __getstate__(self): meta = {k: getattr(self, k, None) for k in self._metadata} return dict(_data=self._data, _typ=self._typ, _metadata=self._metadata, **meta) #---------------------------------------------------------------------- def __setattr__(self, attr, val): if attr.lower() in ['geometry', 'shape', 'shape@']: object.__setattr__(self, attr, val) else: super(SpatialDataFrame, self).__setattr__(attr, val) #---------------------------------------------------------------------- def _get_geometry(self): """returns the geometry series""" if self._geometry_column_name not in self.columns: raise AttributeError("Geometry Column Not Present: %s" % self._geometry_column_name) return self[self._geometry_column_name] #---------------------------------------------------------------------- def _set_geometry(self, col): """sets the geometry for the panda's dataframe""" if isinstance(col, (GeoSeries, list, numpy.array, numpy.ndarray, Series)): self.set_geometry(col, inplace=True) else: raise ValueError("Must be a list, np.array, or GeoSeries") #---------------------------------------------------------------------- geometry = property(fget=_get_geometry, fset=_set_geometry, fdel=None, doc="Get/Set the geometry data for SpatialDataFrame") #---------------------------------------------------------------------- def __finalize__(self, other, method=None, **kwargs): """propagate metadata from other to self """ # merge operation: using metadata of the left object if method == 'merge': for name in self._metadata: object.__setattr__(self, name, getattr(other.left, name, None)) # concat operation: using metadata of the first object elif method == 'concat': for name in self._metadata: object.__setattr__(self, name, getattr(other.objs[0], name, None)) else: for name in self._metadata: object.__setattr__(self, name, getattr(other, name, None)) return self #---------------------------------------------------------------------- def copy(self, deep=True): """ Make a copy of this SpatialDataFrame object Parameters: :deep: boolean, default True Make a deep copy, i.e. also copy data Returns: :copy: of SpatialDataFrame """ data = self._data if deep: data = data.copy() return SpatialDataFrame(data, sr=self.sr).__finalize__(self) #---------------------------------------------------------------------- def plot(self, *args, **kwargs): """ Plot draws the data on a web map. The user can describe in simple terms how to renderer spatial data using symbol. To make the process simpler a palette for which colors are drawn from can be used instead of explicit colors. ====================== ========================================================= **Explicit Argument** **Description** ---------------------- --------------------------------------------------------- df required SpatialDataFrame or GeoSeries. This is the data to map. ---------------------- --------------------------------------------------------- map_widget optional WebMap object. This is the map to display the data on. ---------------------- --------------------------------------------------------- palette optional string/dict. Color mapping. For simple renderer, just provide a string. For more robust renderers like unique renderer, a dictionary can be given. ---------------------- --------------------------------------------------------- renderer_type optional string. Determines the type of renderer to use for the provided dataset. The default is 's' which is for simple renderers. Allowed values: + 's' - is a simple renderer that uses one symbol only. + 'u' - unique renderer symbolizes features based on one or more matching string attributes. + 'c' - A class breaks renderer symbolizes based on the value of some numeric attribute. + 'h' - heatmap renders point data into a raster visualization that emphasizes areas of higher density or weighted values. ---------------------- --------------------------------------------------------- symbol_style optional string. This is the type of symbol the user needs to create. Valid inputs are: simple, picture, text, or carto. The default is simple. ---------------------- --------------------------------------------------------- symbol_type optional string. This is the symbology used by the geometry. For example 's' for a Line geometry is a solid line. And '-' is a dash line. Allowed symbol types based on geometries: **Point Symbols** + 'o' - Circle (default) + '+' - Cross + 'D' - Diamond + 's' - Square + 'x' - X **Polyline Symbols** + 's' - Solid (default) + '-' - Dash + '-.' - Dash Dot + '-..' - Dash Dot Dot + '.' - Dot + '--' - Long Dash + '--.' - Long Dash Dot + 'n' - Null + 's-' - Short Dash + 's-.' - Short Dash Dot + 's-..' - Short Dash Dot Dot + 's.' - Short Dot **Polygon Symbols** + 's' - Solid Fill (default) + '\' - Backward Diagonal + '/' - Forward Diagonal + '|' - Vertical Bar + '-' - Horizontal Bar + 'x' - Diagonal Cross + '+' - Cross ---------------------- --------------------------------------------------------- col optional string/list. Field or fields used for heatmap, class breaks, or unique renderers. ---------------------- --------------------------------------------------------- palette optional string. The color map to draw from in order to visualize the data. The default palette is 'jet'. To get a visual representation of the allowed color maps, use the **display_colormaps** method. ---------------------- --------------------------------------------------------- alpha optional float. This is a value between 0 and 1 with 1 being the default value. The alpha sets the transparancy of the renderer when applicable. ====================== ========================================================= **Render Syntax** The render syntax allows for users to fully customize symbolizing the data. **Simple Renderer** A simple renderer is a renderer that uses one symbol only. ====================== ========================================================= **Optional Argument** **Description** ---------------------- --------------------------------------------------------- symbol_style optional string. This is the type of symbol the user needs to create. Valid inputs are: simple, picture, text, or carto. The default is simple. ---------------------- --------------------------------------------------------- symbol_type optional string. This is the symbology used by the geometry. For example 's' for a Line geometry is a solid line. And '-' is a dash line. **Point Symbols** + 'o' - Circle (default) + '+' - Cross + 'D' - Diamond + 's' - Square + 'x' - X **Polyline Symbols** + 's' - Solid (default) + '-' - Dash + '-.' - Dash Dot + '-..' - Dash Dot Dot + '.' - Dot + '--' - Long Dash + '--.' - Long Dash Dot + 'n' - Null + 's-' - Short Dash + 's-.' - Short Dash Dot + 's-..' - Short Dash Dot Dot + 's.' - Short Dot **Polygon Symbols** + 's' - Solid Fill (default) + '\' - Backward Diagonal + '/' - Forward Diagonal + '|' - Vertical Bar + '-' - Horizontal Bar + 'x' - Diagonal Cross + '+' - Cross ---------------------- --------------------------------------------------------- description Description of the renderer. ---------------------- --------------------------------------------------------- rotation_expression A constant value or an expression that derives the angle of rotation based on a feature attribute value. When an attribute name is specified, it's enclosed in square brackets. ---------------------- --------------------------------------------------------- rotation_type String value which controls the origin and direction of rotation on point features. If the rotationType is defined as arithmetic, the symbol is rotated from East in a counter-clockwise direction where East is the 0 degree axis. If the rotationType is defined as geographic, the symbol is rotated from North in a clockwise direction where North is the 0 degree axis. Must be one of the following values: + arithmetic + geographic ---------------------- --------------------------------------------------------- visual_variables An array of objects used to set rendering properties. ====================== ========================================================= **Heatmap Renderer** The HeatmapRenderer renders point data into a raster visualization that emphasizes areas of higher density or weighted values. ====================== ========================================================= **Optional Argument** **Description** ---------------------- --------------------------------------------------------- blur_radius The radius (in pixels) of the circle over which the majority of each point's value is spread. ---------------------- --------------------------------------------------------- field This is optional as this renderer can be created if no field is specified. Each feature gets the same value/importance/weight or with a field where each feature is weighted by the field's value. ---------------------- --------------------------------------------------------- max_intensity The pixel intensity value which is assigned the final color in the color ramp. ---------------------- --------------------------------------------------------- min_intensity The pixel intensity value which is assigned the initial color in the color ramp. ---------------------- --------------------------------------------------------- ratio A number between 0-1. Describes what portion along the gradient the colorStop is added. ====================== ========================================================= **Unique Renderer** This renderer symbolizes features based on one or more matching string attributes. ====================== ========================================================= **Optional Argument** **Description** ---------------------- --------------------------------------------------------- background_fill_symbol A symbol used for polygon features as a background if the renderer uses point symbols, e.g. for bivariate types & size rendering. Only applicable to polygon layers. PictureFillSymbols can also be used outside of the Map Viewer for Size and Predominance and Size renderers. ---------------------- --------------------------------------------------------- default_label Default label for the default symbol used to draw unspecified values. ---------------------- --------------------------------------------------------- default_symbol Symbol used when a value cannot be matched. ---------------------- --------------------------------------------------------- col String or List of Strings. Attribute field(s) the renderer uses to match values. ---------------------- --------------------------------------------------------- field_delimiter String inserted between the values if multiple attribute fields are specified. ---------------------- --------------------------------------------------------- rotation_expression A constant value or an expression that derives the angle of rotation based on a feature attribute value. When an attribute name is specified, it's enclosed in square brackets. Rotation is set using a visual variable of type rotation info with a specified field or value expression property. ---------------------- --------------------------------------------------------- rotation_type String property which controls the origin and direction of rotation. If the rotation type is defined as arithmetic the symbol is rotated from East in a counter-clockwise direction where East is the 0 degree axis. If the rotation type is defined as geographic, the symbol is rotated from North in a clockwise direction where North is the 0 degree axis. Must be one of the following values: + arithmetic + geographic ---------------------- --------------------------------------------------------- arcade_expression An Arcade expression evaluating to either a string or a number. ---------------------- --------------------------------------------------------- arcade_title The title identifying and describing the associated Arcade expression as defined in the valueExpression property. ---------------------- --------------------------------------------------------- visual_variables An array of objects used to set rendering properties. ====================== ========================================================= **Class Breaks Renderer** A class breaks renderer symbolizes based on the value of some numeric attribute. ====================== ========================================================= **Optional Argument** **Description** ---------------------- --------------------------------------------------------- background_fill_symbol A symbol used for polygon features as a background if the renderer uses point symbols, e.g. for bivariate types & size rendering. Only applicable to polygon layers. PictureFillSymbols can also be used outside of the Map Viewer for Size and Predominance and Size renderers. ---------------------- --------------------------------------------------------- default_label Default label for the default symbol used to draw unspecified values. ---------------------- --------------------------------------------------------- default_symbol Symbol used when a value cannot be matched. ---------------------- --------------------------------------------------------- method Determines the classification method that was used to generate class breaks. Must be one of the following values: + esriClassifyDefinedInterval + esriClassifyEqualInterval + esriClassifyGeometricalInterval + esriClassifyNaturalBreaks + esriClassifyQuantile + esriClassifyStandardDeviation + esriClassifyManual ---------------------- --------------------------------------------------------- field Attribute field used for renderer. ---------------------- --------------------------------------------------------- min_value The minimum numeric data value needed to begin class breaks. ---------------------- --------------------------------------------------------- normalization_field Used when normalizationType is field. The string value indicating the attribute field by which the data value is normalized. ---------------------- --------------------------------------------------------- normalization_total Used when normalizationType is percent-of-total, this number property contains the total of all data values. ---------------------- --------------------------------------------------------- normalization_type Determine how the data was normalized. Must be one of the following values: + esriNormalizeByField + esriNormalizeByLog + esriNormalizeByPercentOfTotal ---------------------- --------------------------------------------------------- rotation_expression A constant value or an expression that derives the angle of rotation based on a feature attribute value. When an attribute name is specified, it's enclosed in square brackets. ---------------------- --------------------------------------------------------- rotation_type A string property which controls the origin and direction of rotation. If the rotation_type is defined as arithmetic, the symbol is rotated from East in a couter-clockwise direction where East is the 0 degree axis. If the rotationType is defined as geographic, the symbol is rotated from North in a clockwise direction where North is the 0 degree axis. Must be one of the following values: + arithmetic + geographic ---------------------- --------------------------------------------------------- arcade_expression An Arcade expression evaluating to a number. ---------------------- --------------------------------------------------------- arcade_title The title identifying and describing the associated Arcade expression as defined in the arcade_expression property. ---------------------- --------------------------------------------------------- visual_variables An object used to set rendering options. ====================== ========================================================= **Symbol Syntax** ======================= ========================================================= **Optional Argument** **Description** ----------------------- --------------------------------------------------------- symbol_style optional string. This is the type of symbol the user needs to create. Valid inputs are: simple, picture, text, or carto. The default is simple. ----------------------- --------------------------------------------------------- symbol_type optional string. This is the symbology used by the geometry. For example 's' for a Line geometry is a solid line. And '-' is a dash line. **Point Symbols** + 'o' - Circle (default) + '+' - Cross + 'D' - Diamond + 's' - Square + 'x' - X **Polyline Symbols** + 's' - Solid (default) + '-' - Dash + '-.' - Dash Dot + '-..' - Dash Dot Dot + '.' - Dot + '--' - Long Dash + '--.' - Long Dash Dot + 'n' - Null + 's-' - Short Dash + 's-.' - Short Dash Dot + 's-..' - Short Dash Dot Dot + 's.' - Short Dot **Polygon Symbols** + 's' - Solid Fill (default) + '\' - Backward Diagonal + '/' - Forward Diagonal + '|' - Vertical Bar + '-' - Horizontal Bar + 'x' - Diagonal Cross + '+' - Cross ----------------------- --------------------------------------------------------- cmap optional string or list. This is the color scheme a user can provide if the exact color is not needed, or a user can provide a list with the color defined as: [red, green blue, alpha]. The values red, green, blue are from 0-255 and alpha is a float value from 0 - 1. The default value is 'jet' color scheme. ----------------------- --------------------------------------------------------- cstep optional integer. If provided, its the color location on the color scheme. ======================= ========================================================= **Simple Symbols** This is a list of optional parameters that can be given for point, line or polygon geometries. ==================== ========================================================= **Argument** **Description** -------------------- --------------------------------------------------------- marker_size optional float. Numeric size of the symbol given in points. -------------------- --------------------------------------------------------- marker_angle optional float. Numeric value used to rotate the symbol. The symbol is rotated counter-clockwise. For example, The following, angle=-30, in will create a symbol rotated -30 degrees counter-clockwise; that is, 30 degrees clockwise. -------------------- --------------------------------------------------------- marker_xoffset Numeric value indicating the offset on the x-axis in points. -------------------- --------------------------------------------------------- marker_yoffset Numeric value indicating the offset on the y-axis in points. -------------------- --------------------------------------------------------- line_width optional float. Numeric value indicating the width of the line in points -------------------- --------------------------------------------------------- outline_style Optional string. For polygon point, and line geometries , a customized outline type can be provided. Allowed Styles: + 's' - Solid (default) + '-' - Dash + '-.' - Dash Dot + '-..' - Dash Dot Dot + '.' - Dot + '--' - Long Dash + '--.' - Long Dash Dot + 'n' - Null + 's-' - Short Dash + 's-.' - Short Dash Dot + 's-..' - Short Dash Dot Dot + 's.' - Short Dot -------------------- --------------------------------------------------------- outline_color optional string or list. This is the same color as the cmap property, but specifically applies to the outline_color. ==================== ========================================================= **Picture Symbol** This type of symbol only applies to Points, MultiPoints and Polygons. ==================== ========================================================= **Argument** **Description** -------------------- --------------------------------------------------------- marker_angle Numeric value that defines the number of degrees ranging from 0-360, that a marker symbol is rotated. The rotation is from East in a counter-clockwise direction where East is the 0 axis. -------------------- --------------------------------------------------------- marker_xoffset Numeric value indicating the offset on the x-axis in points. -------------------- --------------------------------------------------------- marker_yoffset Numeric value indicating the offset on the y-axis in points. -------------------- --------------------------------------------------------- height Numeric value used if needing to resize the symbol. Specify a value in points. If images are to be displayed in their original size, leave this blank. -------------------- --------------------------------------------------------- width Numeric value used if needing to resize the symbol. Specify a value in points. If images are to be displayed in their original size, leave this blank. -------------------- --------------------------------------------------------- url String value indicating the URL of the image. The URL should be relative if working with static layers. A full URL should be used for map service dynamic layers. A relative URL can be dereferenced by accessing the map layer image resource or the feature layer image resource. -------------------- --------------------------------------------------------- image_data String value indicating the base64 encoded data. -------------------- --------------------------------------------------------- xscale Numeric value indicating the scale factor in x direction. -------------------- --------------------------------------------------------- yscale Numeric value indicating the scale factor in y direction. -------------------- --------------------------------------------------------- outline_color optional string or list. This is the same color as the cmap property, but specifically applies to the outline_color. -------------------- --------------------------------------------------------- outline_style Optional string. For polygon point, and line geometries , a customized outline type can be provided. Allowed Styles: + 's' - Solid (default) + '-' - Dash + '-.' - Dash Dot + '-..' - Dash Dot Dot + '.' - Dot + '--' - Long Dash + '--.' - Long Dash Dot + 'n' - Null + 's-' - Short Dash + 's-.' - Short Dash Dot + 's-..' - Short Dash Dot Dot + 's.' - Short Dot -------------------- --------------------------------------------------------- outline_color optional string or list. This is the same color as the cmap property, but specifically applies to the outline_color. -------------------- --------------------------------------------------------- line_width optional float. Numeric value indicating the width of the line in points ==================== ========================================================= **Text Symbol** This type of symbol only applies to Points, MultiPoints and Polygons. ==================== ========================================================= **Argument** **Description** -------------------- --------------------------------------------------------- font_decoration The text decoration. Must be one of the following values: - line-through - underline - none -------------------- --------------------------------------------------------- font_family Optional string. The font family. -------------------- --------------------------------------------------------- font_size Optional float. The font size in points. -------------------- --------------------------------------------------------- font_style Optional string. The text style. - italic - normal - oblique -------------------- --------------------------------------------------------- font_weight Optional string. The text weight. Must be one of the following values: - bold - bolder - lighter - normal -------------------- --------------------------------------------------------- background_color optional string/list. Background color is represented as a four-element array or string of a color map. -------------------- --------------------------------------------------------- halo_color Optional string/list. Color of the halo around the text. The default is None. -------------------- --------------------------------------------------------- halo_size Optional integer/float. The point size of a halo around the text symbol. -------------------- --------------------------------------------------------- horizontal_alignment optional string. One of the following string values representing the horizontal alignment of the text. Must be one of the following values: - left - right - center - justify -------------------- --------------------------------------------------------- kerning optional boolean. Boolean value indicating whether to adjust the spacing between characters in the text string. -------------------- --------------------------------------------------------- line_color optional string/list. Outline color is represented as a four-element array or string of a color map. -------------------- --------------------------------------------------------- line_width optional integer/float. Outline size. -------------------- --------------------------------------------------------- marker_angle optional int. A numeric value that defines the number of degrees (0 to 360) that a text symbol is rotated. The rotation is from East in a counter-clockwise direction where East is the 0 axis. -------------------- --------------------------------------------------------- marker_xoffset optional int/float.Numeric value indicating the offset on the x-axis in points. -------------------- --------------------------------------------------------- marker_yoffset optional int/float.Numeric value indicating the offset on the x-axis in points. -------------------- --------------------------------------------------------- right_to_left optional boolean. Set to true if using Hebrew or Arabic fonts. -------------------- --------------------------------------------------------- rotated optional boolean. Boolean value indicating whether every character in the text string is rotated. -------------------- --------------------------------------------------------- text Required string. Text Value to display next to geometry. -------------------- --------------------------------------------------------- vertical_alignment Optional string. One of the following string values representing the vertical alignment of the text. Must be one of the following values: - top - bottom - middle - baseline ==================== ========================================================= **Cartographic Symbol** This type of symbol only applies to line geometries. ==================== ========================================================= **Argument** **Description** -------------------- --------------------------------------------------------- line_width optional float. Numeric value indicating the width of the line in points -------------------- --------------------------------------------------------- cap Optional string. The cap style. -------------------- --------------------------------------------------------- join Optional string. The join style. -------------------- --------------------------------------------------------- miter_limit Optional string. Size threshold for showing mitered line joins. ==================== ========================================================= The kwargs parameter accepts all parameters of the create_symbol method and the create_renderer method. """ if ('kind' in kwargs and \ kwargs['kind'] == 'map') or \ (len(args) > 3 and args[3] == 'map'): from arcgis.features._data.geodataset.viz import plot has_wm = True wm = kwargs.pop('map_widget', None) if wm is None: has_wm = False wm = GIS().map() if has_wm: plot(df=self, map_widget=wm, name=kwargs.pop('name', "Feature Collection Layer"), renderer_type=kwargs.pop("renderer_type", None), symbol_type=kwargs.pop('symbol_type', None), symbol_style=kwargs.pop('symbol_style', None), col=kwargs.pop('col', None), colors=kwargs.pop('cmap', None) or kwargs.pop('colors', None) or kwargs.pop('pallette', 'jet'), alpha=kwargs.pop('alpha', 1), **kwargs) return True else: return plot(df=self, map_widget=wm, name=kwargs.pop('name', "Feature Collection Layer"), renderer_type=kwargs.pop("renderer_type", None), symbol_type=kwargs.pop('symbol_type', None), symbol_style=kwargs.pop('symbol_style', None), col=kwargs.pop('col', None), colors=kwargs.pop('cmap', None) or kwargs.pop('colors', None) or kwargs.pop('pallette', 'jet'), alpha=kwargs.pop('alpha', 1), **kwargs) if ('kind' in kwargs and \ kwargs['kind'] == 'map') or \ (len(args) > 3 and args[3] == 'map') and \ ('as_graphic' in kwargs and kwargs['as_graphic']): from arcgis.features import FeatureCollection, FeatureSet from arcgis import geometry if self._gis is None: gis = GIS(set_active=False) else: gis = self._gis if self.sr: sr = self.sr else: sr = self.sr extent = None if HASARCPY: if sr: wkid = None if hasattr(sr, 'factoryCode'): wkid = {'wkid' : sr.factoryCode} elif isinstance(sr, geometry.SpatialReference): wkid = self.sr ext = self.geoextent extent = { "xmin" : ext[0], "ymin" : ext[1], "xmax" : ext[2], "ymax" : ext[3], "spatialReference" : wkid } else: ext = self.geoextent extent = { "xmin" : ext[0], "ymin" : ext[1], "xmax" : ext[2], "ymax" : ext[3], "spatialReference" : {'wkid' : 4326} } else: sr = self.sr if self.sr is None: sr = {'wkid' : 4326} ext = self.geoextent extent = { "xmin" : ext[0], "ymin" : ext[1], "xmax" : ext[2], "ymax" : ext[3], "spatialReference" : sr } if 'map_widget' not in kwargs: raise Exception("map_widget is required to plot the SpatialDataFrame") else: m = kwargs.pop('map_widget') symbol = kwargs.pop('symbol', None) popup = kwargs.pop('popup', None) try: fs = FeatureSet.from_dict(self.__feature_set__) m.draw(fs, symbol=symbol, popup=popup) if extent and \ isinstance(extent, dict): m.extent = extent except: raise Exception('Could not plot the Spatial DataFrame.') else: return super(SpatialDataFrame, self).plot(*args, **kwargs) # ---------------------------------------------------------------------- @staticmethod def from_xy(df, x_column, y_column, sr=4326): """ Converts a Pandas DataFrame into a Spatial DataFrame by providing the X/Y columns. ==================== ========================================================= **Argument** **Description** -------------------- --------------------------------------------------------- df Required Pandas DataFrame. Source dataset -------------------- --------------------------------------------------------- x_column Required string. The name of the X-coordinate series -------------------- --------------------------------------------------------- y_column Required string. The name of the Y-coordinate series -------------------- --------------------------------------------------------- sr Optional int. The wkid number of the spatial reference. ==================== ========================================================= :returns: SpatialDataFrame """ from .io.fileops import _from_xy return _from_xy(df=df, x_column=x_column, y_column=y_column, sr=sr) # ---------------------------------------------------------------------- @staticmethod def from_df(df, address_column="address", geocoder=None): """ Returns a SpatialDataFrame from a dataframe with an address column. ==================== ========================================================= **Argument** **Description** -------------------- --------------------------------------------------------- df Required Pandas DataFrame. Source dataset -------------------- --------------------------------------------------------- address_column Optional String. The default is "address". This is the name of a column in the specified dataframe that contains addresses (as strings). The addresses are batch geocoded using the GIS's first configured geocoder and their locations used as the geometry of the spatial dataframe. Ignored if the 'geometry' parameter is also specified. -------------------- --------------------------------------------------------- geocoder Optional Geocoder. The geocoder to be used. If not specified, the active GIS's first geocoder is used. ==================== ========================================================= :returns: SpatialDataFrame NOTE: Credits will be consumed for batch_geocoding, from the GIS to which the geocoder belongs. """ from arcgis.geocoding import get_geocoders, geocode, batch_geocode if geocoder is None: geocoder = arcgis.env.active_gis._tools.geocoders[0] geoms = [] if address_column in df.columns: # batch geocode addresses in the address column and use them as the geometry batch_size = geocoder.properties.locatorProperties.MaxBatchSize N = len(df) geoms = [] for i in range(0, N, batch_size): start = i stop = i + batch_size if i + batch_size < N else N # print('Geocoding from ' + str(start) + ' to ' + str(stop)) res = batch_geocode(list(df[start:stop][address_column]), geocoder=geocoder) for index in range(len(res)): address = df.ix[start + index, address_column] try: loc = res[index]['location'] x = loc['x'] y = loc['y'] # self.ix[start + index, 'x'] = x # self.ix[start + index, 'y'] = y geoms.append(arcgis.geometry.Geometry({'x': x, 'y': y})) except: x, y = None, None try: loc = geocode(address, geocoder=geocoder)[0]['location'] x = loc['x'] y = loc['y'] except: print('Unable to geocode address: ' + address) pass # self.ix[start + index, 'x'] = x # self.ix[start + index, 'y'] = y geoms.append(None) else: raise ValueError("Address column not found in dataframe") return SpatialDataFrame(df, geometry=geoms) #---------------------------------------------------------------------- @staticmethod def from_featureclass(filename, **kwargs): """ Returns a SpatialDataFrame from a feature class. ==================== ========================================================= **Argument** **Description** -------------------- --------------------------------------------------------- filename Required string. The full path to the feature class -------------------- --------------------------------------------------------- sql_clause Optional string. The sql clause to parse data down -------------------- --------------------------------------------------------- where_clause Optional string. A where statement -------------------- --------------------------------------------------------- sr Optional SpatialReference. A spatial reference object ==================== ========================================================= :returns: SpatialDataFrame """ from .io import from_featureclass gis = kwargs.pop('gis', arcgis.env.active_gis) if HASARCPY: return from_featureclass(filename=filename, **kwargs) elif isinstance(gis, GIS) and \ gis._con._auth.lower() != "anon": return from_featureclass(filename=filename, **kwargs) else: raise Exception("Cannot create the SpatialDataFrame, you must " +\ "have an authenticated GIS.") #---------------------------------------------------------------------- @staticmethod def from_layer(layer, **kwargs): """ Returns a SpatialDataFrame/Pandas' Dataframe from a FeatureLayer or Table object. ============== ============================================================== **Arguments** **Description** -------------- -------------------------------------------------------------- layer required FeatureLayer/Table. This is the service endpoint object. ============== ============================================================== :returns: SpatialDataFrame for feature layers with geometry and Panda's Dataframe for tables """ from .io import from_layer return from_layer(layer=layer, **kwargs) #---------------------------------------------------------------------- def to_featureclass(self, out_location, out_name, overwrite=True, skip_invalid=True): """converts a SpatialDataFrame to a feature class ==================== ========================================================= **Argument** **Description** -------------------- --------------------------------------------------------- out_location Required string. A save location workspace -------------------- --------------------------------------------------------- out_name Required string. The name of the feature class to save as -------------------- --------------------------------------------------------- overwrite Optional boolean. True means to erase and replace value, false means to append -------------------- --------------------------------------------------------- skip_invalids Optional boolean. If True, any bad rows will be ignored. ==================== ========================================================= :returns: string """ from .io import to_featureclass return to_featureclass(df=self, out_location=out_location, out_name=out_name, overwrite=overwrite, skip_invalid=skip_invalid) #---------------------------------------------------------------------- def to_hdf(self, path_or_buf, key, **kwargs): """Write the contained data to an HDF5 file using HDFStore. Parameters ---------- path_or_buf : the path (string) or HDFStore object key : string indentifier for the group in the store mode : optional, {'a', 'w', 'r+'}, default 'a' ``'w'`` Write; a new file is created (an existing file with the same name would be deleted). ``'a'`` Append; an existing file is opened for reading and writing, and if the file does not exist it is created. ``'r+'`` It is similar to ``'a'``, but the file must already exist. format : 'fixed(f)|table(t)', default is 'fixed' fixed(f) : Fixed format Fast writing/reading. Not-appendable, nor searchable table(t) : Table format Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data append : boolean, default False For Table formats, append the input data to the existing data_columns : list of columns, or True, default None List of columns to create as indexed data columns for on-disk queries, or True to use all columns. By default only the axes of the object are indexed. See `here <http://pandas.pydata.org/pandas-docs/stable/io.html#query-via-data-columns>`__. Applicable only to format='table'. complevel : int, 1-9, default 0 If a complib is specified compression will be applied where possible complib : {'zlib', 'bzip2', 'lzo', 'blosc', None}, default None If complevel is > 0 apply compression to objects written in the store wherever possible fletcher32 : bool, default False If applying compression use the fletcher32 checksum dropna : boolean, default False. If true, ALL nan rows will not be written to store. """ from pandas.io import pytables return pytables.to_hdf(path_or_buf, key,
pd.DataFrame(self)
pandas.DataFrame
import wandb from wandb import data_types import numpy as np import pytest import os import sys import datetime from wandb.sdk.data_types._dtypes import * class_labels = {1: "tree", 2: "car", 3: "road"} test_folder = os.path.dirname(os.path.realpath(__file__)) im_path = os.path.join(test_folder, "..", "assets", "test.png") def test_none_type(): assert TypeRegistry.type_of(None) == NoneType() assert TypeRegistry.type_of(None).assign(None) == NoneType() assert TypeRegistry.type_of(None).assign(1) == InvalidType() def test_string_type(): assert TypeRegistry.type_of("Hello") == StringType() assert TypeRegistry.type_of("Hello").assign("World") == StringType() assert TypeRegistry.type_of("Hello").assign(None) == InvalidType() assert TypeRegistry.type_of("Hello").assign(1) == InvalidType() def test_number_type(): assert TypeRegistry.type_of(1.2) == NumberType() assert TypeRegistry.type_of(1.2).assign(1) == NumberType() assert TypeRegistry.type_of(1.2).assign(None) == InvalidType() assert TypeRegistry.type_of(1.2).assign("hi") == InvalidType() def make_datetime(): return datetime.datetime(2000, 12, 1) def make_date(): return datetime.date(2000, 12, 1) def make_datetime64(): return np.datetime64("2000-12-01") def test_timestamp_type(): assert TypeRegistry.type_of(make_datetime()) == TimestampType() assert ( TypeRegistry.type_of(make_datetime()) .assign(make_date()) .assign(make_datetime64()) == TimestampType() ) assert TypeRegistry.type_of(make_datetime()).assign(None) == InvalidType() assert TypeRegistry.type_of(make_datetime()).assign(1) == InvalidType() def test_boolean_type(): assert TypeRegistry.type_of(True) == BooleanType() assert TypeRegistry.type_of(True).assign(False) == BooleanType() assert TypeRegistry.type_of(True).assign(None) == InvalidType() assert TypeRegistry.type_of(True).assign(1) == InvalidType() def test_any_type(): assert AnyType() == AnyType().assign(1) assert AnyType().assign(None) == InvalidType() def test_never_type(): assert InvalidType().assign(1) == InvalidType() assert InvalidType().assign("a") == InvalidType() assert InvalidType().assign(True) == InvalidType() assert InvalidType().assign(None) == InvalidType() def test_unknown_type(): assert UnknownType().assign(1) == NumberType() assert UnknownType().assign(None) == InvalidType() def test_union_type(): wb_type = UnionType([float, str]) assert wb_type.assign(1) == wb_type assert wb_type.assign("s") == wb_type assert wb_type.assign(True) == InvalidType() wb_type = UnionType([float, AnyType()]) assert wb_type.assign(1) == wb_type assert wb_type.assign("s") == wb_type assert wb_type.assign(True) == wb_type wb_type = UnionType([float, UnknownType()]) assert wb_type.assign(1) == wb_type assert wb_type.assign("s") == UnionType([float, StringType()]) assert wb_type.assign(None) == InvalidType() wb_type = UnionType([float, OptionalType(UnknownType())]) assert wb_type.assign(None).assign(True) == UnionType( [float, OptionalType(BooleanType())] ) wb_type = UnionType([float, UnionType([str, UnknownType()])]) assert wb_type.assign(1) == wb_type assert wb_type.assign("s") == wb_type assert wb_type.assign(True) == UnionType([float, str, bool]) assert wb_type.assign(None) == InvalidType() def test_const_type(): wb_type = ConstType(1) assert wb_type.assign(1) == wb_type assert wb_type.assign("a") == InvalidType() assert wb_type.assign(2) == InvalidType() def test_set_const_type(): wb_type = ConstType(set()) assert wb_type.assign(set()) == wb_type assert wb_type.assign(None) == InvalidType() assert wb_type.assign({1}) == InvalidType() assert wb_type.assign([]) == InvalidType() wb_type = ConstType({1, 2, 3}) assert wb_type.assign(set()) == InvalidType() assert wb_type.assign(None) == InvalidType() assert wb_type.assign({1, 2, 3}) == wb_type assert wb_type.assign([1, 2, 3]) == InvalidType() def test_object_type(): wb_type = TypeRegistry.type_of(np.random.rand(30)) assert wb_type.assign(np.random.rand(30)) == wb_type assert wb_type.assign(4) == InvalidType() def test_list_type(): assert ListType(int).assign([]) == ListType(int, 0) assert ListType(int).assign([1, 2, 3]) == ListType(int, 3) assert ListType(int).assign([1, "a", 3]) == InvalidType() def test_dict_type(): spec = { "number": float, "nested": { "list_str": [str], }, } exact = { "number": 1, "nested": { "list_str": ["hello", "world"], }, } subset = {"nested": {"list_str": ["hi"]}} narrow = {"number": 1, "string": "hi"} wb_type = TypeRegistry.type_of(exact) assert wb_type.assign(exact) == wb_type assert wb_type.assign(subset) == InvalidType() assert wb_type.assign(narrow) == InvalidType() spec = { "optional_number": OptionalType(float), "optional_unknown": OptionalType(UnknownType()), } wb_type = TypedDictType(spec) assert wb_type.assign({}) == wb_type assert wb_type.assign({"optional_number": 1}) == wb_type assert wb_type.assign({"optional_number": "1"}) == InvalidType() assert wb_type.assign({"optional_unknown": "hi"}) == TypedDictType( { "optional_number": OptionalType(float), "optional_unknown": OptionalType(str), } ) assert wb_type.assign({"optional_unknown": None}) == TypedDictType( { "optional_number": OptionalType(float), "optional_unknown": OptionalType(UnknownType()), } ) wb_type = TypedDictType({"unknown": UnknownType()}) assert wb_type.assign({}) == InvalidType() assert wb_type.assign({"unknown": None}) == InvalidType() assert wb_type.assign({"unknown": 1}) == TypedDictType( {"unknown": float}, ) def test_nested_dict(): notation_type = TypedDictType( { "a": float, "b": bool, "c": str, "d": UnknownType(), "e": {}, "f": [], "g": [ [ { "a": float, "b": bool, "c": str, "d": UnknownType(), "e": {}, "f": [], "g": [[]], } ] ], } ) expanded_type = TypedDictType( { "a": NumberType(), "b": BooleanType(), "c": StringType(), "d": UnknownType(), "e": TypedDictType({}), "f": ListType(), "g": ListType( ListType( TypedDictType( { "a": NumberType(), "b": BooleanType(), "c": StringType(), "d": UnknownType(), "e": TypedDictType({}), "f": ListType(), "g": ListType(ListType()), } ) ) ), } ) example = { "a": 1, "b": True, "c": "StringType()", "d": "hi", "e": {}, "f": [1], "g": [ [ { "a": 2, "b": False, "c": "StringType()", "d": 3, "e": {}, "f": [], "g": [[5]], } ] ], } real_type = TypedDictType.from_obj(example) assert notation_type == expanded_type assert notation_type.assign(example) == real_type def test_image_type(): wb_type = data_types._ImageFileType() image_simple = data_types.Image(np.random.rand(10, 10)) wb_type_simple = data_types._ImageFileType.from_obj(image_simple) image_annotated = data_types.Image( np.random.rand(10, 10), boxes={ "box_predictions": { "box_data": [ { "position": { "minX": 0.1, "maxX": 0.2, "minY": 0.3, "maxY": 0.4, }, "class_id": 1, "box_caption": "minMax(pixel)", "scores": {"acc": 0.1, "loss": 1.2}, }, ], "class_labels": class_labels, }, "box_ground_truth": { "box_data": [ { "position": { "minX": 0.1, "maxX": 0.2, "minY": 0.3, "maxY": 0.4, }, "class_id": 1, "box_caption": "minMax(pixel)", "scores": {"acc": 0.1, "loss": 1.2}, }, ], "class_labels": class_labels, }, }, masks={ "mask_predictions": { "mask_data": np.random.randint(0, 4, size=(30, 30)), "class_labels": class_labels, }, "mask_ground_truth": {"path": im_path, "class_labels": class_labels}, }, ) wb_type_annotated = data_types._ImageFileType.from_obj(image_annotated) image_annotated_differently = data_types.Image( np.random.rand(10, 10), boxes={ "box_predictions": { "box_data": [ { "position": { "minX": 0.1, "maxX": 0.2, "minY": 0.3, "maxY": 0.4, }, "class_id": 1, "box_caption": "minMax(pixel)", "scores": {"acc": 0.1, "loss": 1.2}, }, ], "class_labels": class_labels, }, }, masks={ "mask_predictions": { "mask_data": np.random.randint(0, 4, size=(30, 30)), "class_labels": class_labels, }, "mask_ground_truth_2": {"path": im_path, "class_labels": class_labels}, }, ) assert wb_type.assign(image_simple) == wb_type_simple assert wb_type.assign(image_annotated) == wb_type_annotated # OK to assign Images with disjoint class set assert wb_type_annotated.assign(image_simple) == wb_type_annotated # Merge when disjoint assert wb_type_annotated.assign( image_annotated_differently ) == data_types._ImageFileType( box_layers={"box_predictions": {1, 2, 3}, "box_ground_truth": {1, 2, 3}}, box_score_keys={"loss", "acc"}, mask_layers={ "mask_ground_truth_2": set(), "mask_ground_truth": set(), "mask_predictions": {1, 2, 3}, }, class_map={"1": "tree", "2": "car", "3": "road"}, ) def test_classes_type(): wb_classes = data_types.Classes( [ {"id": 1, "name": "cat"}, {"id": 2, "name": "dog"}, {"id": 3, "name": "horse"}, ] ) wb_class_type = ( wandb.wandb_sdk.data_types.helper_types.classes._ClassesIdType.from_obj( wb_classes ) ) assert wb_class_type.assign(1) == wb_class_type assert wb_class_type.assign(0) == InvalidType() def test_table_type(): table_1 = wandb.Table(columns=["col"], data=[[1]]) t1 = data_types._TableType.from_obj(table_1) table_2 = wandb.Table(columns=["col"], data=[[1.3]]) table_3 = wandb.Table(columns=["col"], data=[["a"]]) assert t1.assign(table_2) == t1 assert t1.assign(table_3) == InvalidType() def test_table_implicit_types(): table = wandb.Table(columns=["col"]) table.add_data(None) table.add_data(1) with pytest.raises(TypeError): table.add_data("a") table = wandb.Table(columns=["col"], optional=False) with pytest.raises(TypeError): table.add_data(None) table.add_data(1) with pytest.raises(TypeError): table.add_data("a") def test_table_allow_mixed_types(): table = wandb.Table(columns=["col"], allow_mixed_types=True) table.add_data(None) table.add_data(1) table.add_data("a") # No error with allow_mixed_types table = wandb.Table(columns=["col"], optional=False, allow_mixed_types=True) with pytest.raises(TypeError): table.add_data(None) # Still errors since optional is false table.add_data(1) table.add_data("a") # No error with allow_mixed_types def test_tables_with_dicts(): good_data = [ [None], [ { "a": [ { "b": 1, "c": [ [ { "d": 1, "e": wandb.Image( np.random.randint(255, size=(10, 10)) ), } ] ], } ] } ], [ { "a": [ { "b": 1, "c": [ [ { "d": 1, "e": wandb.Image( np.random.randint(255, size=(10, 10)) ), } ] ], } ] } ], ] bad_data = [ [None], [ { "a": [ { "b": 1, "c": [ [ { "d": 1, "e": wandb.Image( np.random.randint(255, size=(10, 10)) ), } ] ], } ] } ], [ { "a": [ { "b": 1, "c": [ [ { "d": 1, } ] ], } ] } ], ] table = wandb.Table(columns=["A"], data=good_data, allow_mixed_types=True) table = wandb.Table(columns=["A"], data=bad_data, allow_mixed_types=True) table = wandb.Table(columns=["A"], data=good_data) with pytest.raises(TypeError): table = wandb.Table(columns=["A"], data=bad_data) def test_table_explicit_types(): table = wandb.Table(columns=["a", "b"], dtype=int) table.add_data(None, None) table.add_data(1, 2) with pytest.raises(TypeError): table.add_data(1, "a") table = wandb.Table(columns=["a", "b"], optional=False, dtype=[int, str]) with pytest.raises(TypeError): table.add_data(None, None) table.add_data(1, "a") with pytest.raises(TypeError): table.add_data("a", "a") table = wandb.Table(columns=["a", "b"], optional=[False, True], dtype=[int, str]) with pytest.raises(TypeError): table.add_data(None, None) with pytest.raises(TypeError): table.add_data(None, "a") table.add_data(1, None) table.add_data(1, "a") with pytest.raises(TypeError): table.add_data("a", "a") def test_table_type_cast(): table = wandb.Table(columns=["type_col"]) table.add_data(1) wb_classes = data_types.Classes( [ {"id": 1, "name": "cat"}, {"id": 2, "name": "dog"}, {"id": 3, "name": "horse"}, ] ) table.cast("type_col", wb_classes.get_type()) table.add_data(2) with pytest.raises(TypeError): table.add_data(4) box_annotation = { "box_predictions": { "box_data": [ { "position": { "minX": 0.1, "maxX": 0.2, "minY": 0.3, "maxY": 0.4, }, "class_id": 1, "box_caption": "minMax(pixel)", "scores": {"acc": 0.1, "loss": 1.2}, }, ], "class_labels": class_labels, }, "box_ground_truth": { "box_data": [ { "position": { "minX": 0.1, "maxX": 0.2, "minY": 0.3, "maxY": 0.4, }, "class_id": 1, "box_caption": "minMax(pixel)", "scores": {"acc": 0.1, "loss": 1.2}, }, ], "class_labels": class_labels, }, } mask_annotation = { "mask_predictions": { "mask_data": np.random.randint(0, 4, size=(30, 30)), "class_labels": class_labels, }, "mask_ground_truth": {"path": im_path, "class_labels": class_labels}, } def test_table_specials(): table = wandb.Table( columns=["image", "table"], optional=False, dtype=[data_types.Image, data_types.Table], ) with pytest.raises(TypeError): table.add_data(None, None) # Infers specific types from first valid row table.add_data( data_types.Image( np.random.rand(10, 10), boxes=box_annotation, masks=mask_annotation, ), data_types.Table(data=[[1, True, None]]), ) # Denies conflict with pytest.raises(TypeError): table.add_data( "hello", data_types.Table(data=[[1, True, None]]), ) # Denies conflict with pytest.raises(TypeError): table.add_data( data_types.Image( np.random.rand(10, 10), boxes=box_annotation, masks=mask_annotation, ), data_types.Table(data=[[1, "True", None]]), ) # allows further refinement table.add_data( data_types.Image( np.random.rand(10, 10), boxes=box_annotation, masks=mask_annotation, ), data_types.Table(data=[[1, True, 1]]), ) # allows addition table.add_data( data_types.Image( np.random.rand(10, 10), boxes=box_annotation, masks=mask_annotation, ), data_types.Table(data=[[1, True, 1]]), ) @pytest.mark.skipif(sys.version_info >= (3, 10), reason="no pandas py3.10 wheel") def test_nan_non_float(): import pandas as pd wandb.Table(dataframe=pd.DataFrame(data=[["A"], [np.nan]], columns=["a"])) def test_table_typing_numpy(): # Pulled from https://numpy.org/devdocs/user/basics.types.html # Numerics table = wandb.Table(columns=["A"], dtype=[NumberType]) table.add_data(None) table.add_data(42) table.add_data(np.byte(1)) table.add_data(np.short(42)) table.add_data(np.ushort(42)) table.add_data(np.intc(42)) table.add_data(np.uintc(42)) table.add_data(np.int_(42)) table.add_data(np.uint(42)) table.add_data(np.longlong(42)) table.add_data(np.ulonglong(42)) table.add_data(np.half(42)) table.add_data(np.float16(42)) table.add_data(np.single(42)) table.add_data(np.double(42)) table.add_data(np.longdouble(42)) table.add_data(np.csingle(42)) table.add_data(np.cdouble(42)) table.add_data(np.clongdouble(42)) table.add_data(np.int8(42)) table.add_data(np.int16(42)) table.add_data(np.int32(42)) table.add_data(np.int64(42)) table.add_data(np.uint8(42)) table.add_data(np.uint16(42)) table.add_data(np.uint32(42)) table.add_data(np.uint64(42)) table.add_data(np.intp(42)) table.add_data(np.uintp(42)) table.add_data(np.float32(42)) table.add_data(np.float64(42)) table.add_data(np.float_(42)) table.add_data(np.complex64(42)) table.add_data(np.complex128(42)) table.add_data(np.complex_(42)) # Booleans table = wandb.Table(columns=["A"], dtype=[BooleanType]) table.add_data(None) table.add_data(True) table.add_data(False) table.add_data(np.bool_(True)) # Array of Numerics table = wandb.Table(columns=["A"], dtype=[[NumberType]]) table.add_data(None) table.add_data([42]) table.add_data(np.array([1, 0], dtype=np.byte)) table.add_data(np.array([42, 42], dtype=np.short)) table.add_data(np.array([42, 42], dtype=np.ushort)) table.add_data(np.array([42, 42], dtype=np.intc)) table.add_data(np.array([42, 42], dtype=np.uintc)) table.add_data(np.array([42, 42], dtype=np.int_)) table.add_data(np.array([42, 42], dtype=np.uint)) table.add_data(np.array([42, 42], dtype=np.longlong)) table.add_data(np.array([42, 42], dtype=np.ulonglong)) table.add_data(np.array([42, 42], dtype=np.half)) table.add_data(np.array([42, 42], dtype=np.float16)) table.add_data(np.array([42, 42], dtype=np.single)) table.add_data(np.array([42, 42], dtype=np.double)) table.add_data(np.array([42, 42], dtype=np.longdouble)) table.add_data(np.array([42, 42], dtype=np.csingle)) table.add_data(np.array([42, 42], dtype=np.cdouble)) table.add_data(np.array([42, 42], dtype=np.clongdouble)) table.add_data(np.array([42, 42], dtype=np.int8)) table.add_data(np.array([42, 42], dtype=np.int16)) table.add_data(np.array([42, 42], dtype=np.int32)) table.add_data(np.array([42, 42], dtype=np.int64)) table.add_data(np.array([42, 42], dtype=np.uint8)) table.add_data(np.array([42, 42], dtype=np.uint16)) table.add_data(np.array([42, 42], dtype=np.uint32)) table.add_data(np.array([42, 42], dtype=np.uint64)) table.add_data(np.array([42, 42], dtype=np.intp)) table.add_data(np.array([42, 42], dtype=np.uintp)) table.add_data(np.array([42, 42], dtype=np.float32)) table.add_data(np.array([42, 42], dtype=np.float64)) table.add_data(np.array([42, 42], dtype=np.float_)) table.add_data(np.array([42, 42], dtype=np.complex64)) table.add_data(np.array([42, 42], dtype=np.complex128)) table.add_data(np.array([42, 42], dtype=np.complex_)) # Array of Booleans table = wandb.Table(columns=["A"], dtype=[[BooleanType]]) table.add_data(None) table.add_data([True]) table.add_data([False]) table.add_data(np.array([True, False], dtype=np.bool_)) # Nested arrays table = wandb.Table(columns=["A"]) table.add_data([[[[1, 2, 3]]]]) table.add_data(np.array([[[[1, 2, 3]]]])) @pytest.mark.skipif(sys.version_info >= (3, 10), reason="no pandas py3.10 wheel") def test_table_typing_pandas(): import pandas as pd # TODO: Pandas https://pandas.pydata.org/pandas-docs/stable/user_guide/basics.html#basics-dtypes # Numerics table = wandb.Table(dataframe=pd.DataFrame([[1], [0]]).astype(np.byte)) table.add_data(1) table = wandb.Table(dataframe=pd.DataFrame([[42], [42]]).astype(np.short)) table.add_data(42) table = wandb.Table(dataframe=pd.DataFrame([[42], [42]]).astype(np.ushort)) table.add_data(42) table = wandb.Table(dataframe=pd.DataFrame([[42], [42]]).astype(np.intc)) table.add_data(42) table = wandb.Table(dataframe=pd.DataFrame([[42], [42]]).astype(np.uintc)) table.add_data(42) table = wandb.Table(dataframe=pd.DataFrame([[42], [42]]).astype(np.int_)) table.add_data(42) table = wandb.Table(dataframe=pd.DataFrame([[42], [42]]).astype(np.uint)) table.add_data(42) table = wandb.Table(dataframe=pd.DataFrame([[42], [42]]).astype(np.longlong)) table.add_data(42) table = wandb.Table(dataframe=pd.DataFrame([[42], [42]]).astype(np.ulonglong)) table.add_data(42) table = wandb.Table(dataframe=pd.DataFrame([[42], [42]]).astype(np.half)) table.add_data(42) table = wandb.Table(dataframe=pd.DataFrame([[42], [42]]).astype(np.float16)) table.add_data(42) table = wandb.Table(dataframe=pd.DataFrame([[42], [42]]).astype(np.single)) table.add_data(42) table = wandb.Table(dataframe=pd.DataFrame([[42], [42]]).astype(np.double)) table.add_data(42) table = wandb.Table(dataframe=pd.DataFrame([[42], [42]]).astype(np.longdouble)) table.add_data(42) table = wandb.Table(dataframe=pd.DataFrame([[42], [42]]).astype(np.csingle)) table.add_data(42) table = wandb.Table(dataframe=pd.DataFrame([[42], [42]]).astype(np.cdouble)) table.add_data(42) table = wandb.Table(dataframe=pd.DataFrame([[42], [42]]).astype(np.clongdouble)) table.add_data(42) table = wandb.Table(dataframe=pd.DataFrame([[42], [42]]).astype(np.int8)) table.add_data(42) table = wandb.Table(dataframe=pd.DataFrame([[42], [42]]).astype(np.int16)) table.add_data(42) table = wandb.Table(dataframe=pd.DataFrame([[42], [42]]).astype(np.int32)) table.add_data(42) table = wandb.Table(dataframe=pd.DataFrame([[42], [42]]).astype(np.int64)) table.add_data(42) table = wandb.Table(dataframe=pd.DataFrame([[42], [42]]).astype(np.uint8)) table.add_data(42) table = wandb.Table(dataframe=pd.DataFrame([[42], [42]]).astype(np.uint16)) table.add_data(42) table = wandb.Table(dataframe=pd.DataFrame([[42], [42]]).astype(np.uint32)) table.add_data(42) table = wandb.Table(dataframe=pd.DataFrame([[42], [42]]).astype(np.uint64)) table.add_data(42) table = wandb.Table(dataframe=pd.DataFrame([[42], [42]]).astype(np.intp)) table.add_data(42) table = wandb.Table(dataframe=pd.DataFrame([[42], [42]]).astype(np.uintp)) table.add_data(42) table = wandb.Table(dataframe=
pd.DataFrame([[42], [42]])
pandas.DataFrame
#!/usr/bin/env python from sklearn.externals import joblib import numpy as np import pandas as pd def get_sepsis_score(data, model): num_rows = len(data) M1 = joblib.load('model-saved.pkl') s_m = np.load('septic_mean.npy', allow_pickle=True) ns_m = np.load('Nonseptic_mean.npy', allow_pickle=True) All = np.vstack((s_m, ns_m)) maenAll = np.mean(All, axis=0) # Pre processing for sLinear Interpolate for column in range(data.shape[1]): col = data[:, column] value = col[~np.isnan(col)] indexVal = np.argwhere(~np.isnan(col)) indexNaN = np.argwhere(np.isnan(col)) # if len(value) == 1: if ((len(value) == 1) & (col.shape[0] > 1)): col[np.int(indexNaN[0])] = maenAll[column] data[:, column] = col df =
pd.DataFrame.from_records(data)
pandas.DataFrame.from_records
#!/usr/bin/env python import warnings warnings.filterwarnings("ignore", category=FutureWarning) import sys import numpy as np np.random.seed(5) np.set_printoptions(threshold=sys.maxsize) import pandas as pd import glob import os import time import json from sklearn import preprocessing from sklearn import ensemble from sklearn import linear_model from sklearn import svm from sklearn.preprocessing import PolynomialFeatures from sklearn import neural_network from sklearn.metrics import r2_score from sklearn.metrics import explained_variance_score from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_squared_error #from keras.models import Sequential #from keras.layers.core import Dense, Dropout, Activation #from keras.layers.advanced_activations import PReLU, SReLU, LeakyReLU import xgboost from sklearn.preprocessing import FunctionTransformer transformer = FunctionTransformer(func=np.log1p, inverse_func=np.expm1) from sklearn.pipeline import Pipeline from sklearn import neighbors from sklearn import tree from sklearn import gaussian_process from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler #from keras.layers import Input, Dense #from keras.models import Model #import keras.backend as K from sklearn.metrics import r2_score, mean_squared_error import sklearn.dummy import math from sklearn.multioutput import MultiOutputRegressor import tensorflow as tf tf.set_random_seed(10) from tensorflow.keras import backend as K from tensorflow.keras.layers import Input, Dense from tensorflow.keras.models import Model from tensorflow.keras import optimizers from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense from tensorflow.keras.layers import LSTM from tensorflow.keras.callbacks import EarlyStopping early_stopping_monitor = EarlyStopping(patience=50) # Methods def mean_absolute_percentage_error(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs((y_true - y_pred) / y_true)) * 100 def coeff_determination(y_pred, y_true): #Order of function inputs is important here SS_res = K.sum(K.square( y_true-y_pred )) SS_tot = K.sum(K.square( y_true - K.mean(y_true) ) ) return ( 1 - SS_res/(SS_tot + K.epsilon()) ) os.environ['KMP_DUPLICATE_LIB_OK']='True' outputs = ['time'] fold = ['nfold', 'fold', 'id','percentage','nfold'] PP_OUT_FLAG = True LOG_FLAG = False class Regression(): def __init__(self, trainFilename, testFilename, resultsDir, run_case=True): # assert len(trainFilenames) == len(testFilenames) self.resultsDir = resultsDir #ntrees = 1000 self.trainFilename = trainFilename self.testFilename = testFilename self.regressors = { 'lm': MultiOutputRegressor(linear_model.LinearRegression()), 'rg': MultiOutputRegressor(linear_model.Ridge()), 'svm': MultiOutputRegressor(svm.SVR(kernel='rbf')), 'gp': MultiOutputRegressor(gaussian_process.GaussianProcessRegressor()), 'knn': MultiOutputRegressor(neighbors.KNeighborsRegressor(n_neighbors=5)), 'dt': MultiOutputRegressor(tree.DecisionTreeRegressor()), 'br': MultiOutputRegressor(ensemble.BaggingRegressor(n_jobs=-1)), 'etr': MultiOutputRegressor(ensemble.ExtraTreesRegressor(n_jobs=-1)), 'rfr': MultiOutputRegressor(ensemble.RandomForestRegressor(n_jobs=-1)), 'abr': MultiOutputRegressor(ensemble.AdaBoostRegressor()), 'gbr': MultiOutputRegressor(ensemble.GradientBoostingRegressor()), 'xgb': MultiOutputRegressor(xgboost.XGBRegressor()), 'dl': None } if trainFilename is not None and testFilename is not None: self.load_data() self.preprocess_data() for key in self.regressors.keys(): self.fit_model(key) else: print('Loading dummy regression class') def load_data(self): filename = self.trainFilename print(self.trainFilename) if os.path.exists(filename): train_data = pd.read_csv(filename,header=None,encoding = "ISO-8859-1") filename = self.testFilename if os.path.exists(filename): test_data1 = pd.read_csv(filename,header=None,encoding = "ISO-8859-1") out_df = train_data.iloc[:,-1].values.reshape(-1,1) inp_df = train_data.iloc[:,:-1] test_out_df1 = test_data1.iloc[:,-1].values.reshape(-1,1) test_inp_df1 = test_data1.iloc[:,:-1] self.train_X = inp_df self.train_y = out_df self.test_X = test_inp_df1 self.test_y = test_out_df1 def preprocess_data(self): self.preproc_X = Pipeline([('stdscaler', StandardScaler()),('minmax', MinMaxScaler(feature_range=(-1, 1)))]) self.preproc_y = Pipeline([('stdscaler', StandardScaler()),('minmax', MinMaxScaler(feature_range=(-1, 1)))]) self.train_X_p = self.preproc_X.fit_transform(self.train_X)#.as_matrix() self.train_y_p = self.preproc_y.fit_transform(self.train_y)#.as_matrix() self.test_X_p = self.preproc_X.transform(self.test_X)#.as_matrix() self.test_y_p = self.preproc_y.transform(self.test_y)#.as_matrix() def build_model(self, model_type): start = time.time() if model_type != 'dl': model = self.regressors[model_type] else: tf.keras.backend.clear_session() tf.reset_default_graph() nunits = 200 # design network model = Sequential() model.add(Dense(nunits, activation='tanh', input_shape=(self.train_X.shape[1],))) model.add(Dense(nunits, activation='tanh')) model.add(Dense(nunits, activation='tanh')) model.add(Dense(self.train_y.shape[1], activation='linear')) model.compile(loss='mse', optimizer='adam',metrics=[coeff_determination]) model.summary() end = time.time() build_time = (end-start) return model, build_time def train_model(self, model, model_type): start = time.time() if model_type != 'dl': model.fit(self.train_X_p, self.train_y_p) else: model.fit(self.train_X_p, self.train_y_p, epochs=1000, batch_size=16, validation_split=0.1, verbose=1, callbacks=[early_stopping_monitor], shuffle=True) end = time.time() training_time = (end - start) return model, training_time def test_model(self, model): start = time.time() test_yhat_p = model.predict(self.test_X_p) end = time.time() inference_time = (end - start) return test_yhat_p , inference_time def compute_metric(self, test_y, test_yhat): results = [] test_y = test_y.reshape(-1,1) test_yhat = test_yhat for out_index in range(test_y.shape[1]): y_true = test_y[:,out_index] y_pred = test_yhat[:,out_index] r2 = r2_score(y_true, y_pred) evs = explained_variance_score(y_true, y_pred) mae = mean_absolute_error(y_true, y_pred) rmse = np.sqrt(mean_squared_error(y_true, y_pred)) rho = np.corrcoef(y_true, y_pred)[0][1] # mape = mean_absolute_percentage_error(y_true, y_pred) result = [r2, rho, evs, mae, rmse] results.append(result) res_df =
pd.DataFrame(results)
pandas.DataFrame
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.linear_model import LogisticRegression # from sklearn.tree import DecisionTreeClassifier # from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import train_test_split import sklearn.metrics as metrics from sklearn.metrics import confusion_matrix, multilabel_confusion_matrix from skmultilearn.problem_transform import ClassifierChain from skmultilearn.problem_transform import BinaryRelevance from skmultilearn.adapt import MLkNN from keras.layers import Dense from keras.models import Sequential from keras.metrics import * ########################################################## # Section 1 - Data Loading ########################################################## # Getting feature data finalData = np.array(pd.read_csv('D:/UIP/finaldata.csv', index_col='Name')) biodata = finalData[:, 21:] # Getting type data as dataframe for visualisations pType = pd.read_csv('D:/UIP/primType.csv', index_col=0) sType = pd.read_csv('D:/UIP/secondType.csv', index_col=0) bTypes = pd.read_csv('D:/UIP/sparseTypes.csv', index_col=0) # Getting features as numpy arrays for model inputs primType = np.array(pType) secType = np.array(sType) bothTypes = np.array(bTypes) # Get splitted data Xtrain, Xtest, Ytrain, Ytest = train_test_split(finalData, bothTypes, test_size=0.2, random_state=12345) XtrainPrim, XtestPrim, YtrainPrim, YtestPrim = train_test_split(finalData, primType, test_size=0.2, random_state=12345) XtrainSec, XtestSec, YtrainSec, YtestSec = train_test_split(finalData, secType, test_size=0.2, random_state=12345) # Get splitted biodata XtrainBio, XtestBio, YtrainBio, YtestBio = train_test_split(biodata, bothTypes, test_size=0.2, random_state=12345) XtrainPrimBio, XtestPrimBio, YtrainPrimBio, YtestPrimBio = train_test_split(biodata, primType, test_size=0.2, random_state=12345) XtrainSecBio, XtestSecBio, YtrainSecBio, YtestSecBio = train_test_split(biodata, secType, test_size=0.2, random_state=12345) ########################################################## # Section 2 - Data Visualisation ########################################################## # Visualising class distribution for Pokemon type def visualiseTypeDist(typeData, nat): # Type Categories categories = list(typeData.columns.values) plt.figure(figsize=(15, 8)) ax = sns.barplot(categories, typeData.sum().values) # Axis labels if nat == 1: plt.title("Distribution of Primary Pokemon Types", fontsize=14) elif nat == 2: plt.title("Distribution of Secondary Pokemon Types", fontsize=14) else: plt.title("Distribution of Pokemon Types (single and dual)", fontsize=14) plt.ylabel('Pokemon of that Type', fontsize=14) plt.xlabel('Pokemon Type', fontsize=14) rects = ax.patches labels = typeData.sum().values # Print hist labels for rect, label in zip(rects, labels): height = rect.get_height() ax.text(rect.get_x() + rect.get_width()/2, height + 1, label, ha='center', va='bottom', fontsize=12) plt.show() visualiseTypeDist(pType, 1) visualiseTypeDist(sType, 2) visualiseTypeDist(bTypes, 0) # Function to re-encode output of Neural Network into one-hot encoding def reEncode(predictions): newOut = np.ndarray((len(predictions), len(predictions[0]))) for i in range(len(predictions)): row = predictions[i] m = max(row) for j in range(len(predictions[0])): if row[j] == m: newOut[i][j] = 1 else: newOut[i][j] = 0 return newOut # Setting epsilon for re-encoding multiple type predictions epsilon = 0.03 # Function to re-encode output of Neural Network into multiple-hot encoding def reEncodeMulti(predictions): newOut = np.ndarray((len(predictions), len(predictions[0]))) for i in range(len(predictions)): row = predictions[i] m = max(row) rowAlt = [e for e in row if e != m] tx = max(rowAlt) rowAltB = [e for e in rowAlt if e != tx] tb = max(rowAltB) for j in range(len(predictions[0])): if row[j] == m: newOut[i][j] = 1 elif row[j] == tx: if (tx - tb) >= epsilon: newOut[i][j] = 1 else: newOut[i][j] = 0 return newOut # ############################################################### # # Section 3 - Multi-class classification for Type 1 of Pokemon # ############################################################### # Neural Network with Softmax + Categorical Crossentropy def test_network(Xtrain, Xtest, Ytrain, Ytest): model = Sequential() feat = len(Xtrain[0]) # Hidden Layers model.add(Dense(64, activation='relu', input_dim=feat)) # model.add(Dense(64, activation='relu')) # Output layer with 18 nodes using Softmax activation (we have 18 Pokemon types) model.add(Dense(18, activation='softmax')) # Running the model model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(Xtrain, Ytrain, epochs=40, batch_size=32) # Accuracy Metrics and Predictions score = model.evaluate(Xtest, Ytest, batch_size=16) predictions = model.predict(Xtest) return predictions, score # # Decision Tree - (Deprecated) # def test_tree(Xtrain, Xtest, Ytrain, Ytest): # # Setting tree parameters # classifier = DecisionTreeClassifier(criterion='entropy', max_depth=10, random_state=12345) # classifier.fit(Xtrain, Ytrain) # # Accuracy Metrics and Predictions # print('Accuracy Score for Decision Tree on training set: {:.2f}'.format(classifier.score(Xtrain, Ytrain))) # print('Accuracy Score for Decision Tree on test set: {:.2f}'.format(classifier.score(Xtest, Ytest))) # predictions = classifier.predict(Xtest) # return predictions # K-Nearest Neighbours for Multi-Class classification def test_knn(Xtrain, Xtest, Ytrain, Ytest): # Setting k = 3 classifier = KNeighborsClassifier(n_neighbors=3) classifier.fit(Xtrain, Ytrain) # Accuracy Metrics and Predictions predictions = classifier.predict(Xtest) score = classifier.score(Xtest, Ytest) return predictions, score # ###################################################################### # # Section 4 - Multi-class, Multi-label approach to Type classification # ###################################################################### # Neural Network with Softmax + Binary Crossentropy def test_network2(Xtrain, Xtest, Ytrain, Ytest): model = Sequential() feat = len(Xtrain[0]) # Hidden Layers model.add(Dense(64, activation='relu', input_dim=feat)) # model.add(Dense(64, activation='relu')) # Output layer with 18 nodes using Softmax activation (we have 18 Pokemon types) model.add(Dense(18, activation='softmax')) # Running the model model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(Xtrain, Ytrain, epochs=40, batch_size=32) # Accuracy Metrics and Predictions score = model.evaluate(Xtest, Ytest, batch_size=16) predictions = model.predict(Xtest) return predictions, score # Multilabel k Nearest Neighbours (MLkNN) def test_mlknn(Xtrain, Xtest, Ytrain, Ytest): # Training the classfier and making predictions classifier = MLkNN(k=1) classifier.fit(Xtrain, Ytrain) predictions = classifier.predict(Xtest) # Measuring accuracy scores = classifier.score(Xtest, Ytest) loss = metrics.hamming_loss(Ytest, predictions) return predictions, scores, loss # Binary Relevance with Logistic Regression def test_logistic(Xtrain, Xtest, Ytrain, Ytest): # Setting parameters for Logistic Regression reg = LogisticRegression(C = 1.0, solver='lbfgs', random_state=12345) # Initialising the Binary Relevance Pipeline classifier = BinaryRelevance(classifier=reg) # Training the classfiers and making predictions classifier.fit(Xtrain, Ytrain) predictions = classifier.predict(Xtest) # Measuring accuracy scores = classifier.score(Xtest, Ytest) loss = metrics.hamming_loss(Ytest, predictions) return predictions, scores, loss ############################################################### # Section 5 - Getting results from models ############################################################### typeList = ['Normal', 'Fighting', 'Flying', 'Poison', 'Ground', 'Rock', 'Bug', 'Ghost', 'Steel', 'Fire', 'Water', 'Grass', 'Electric', 'Psychic', 'Ice', 'Dragon', 'Dark', 'Fairy'] pokemon = pd.read_csv('D:/UIP/testList.csv', header=0)['Name'] #### Section 5.1 - Predicting a Pokemon's primary type. First with bio + move data, then only biodata. #### # Neural Network primaryNet_predic, primaryNet_acc = test_network(XtrainPrim, XtestPrim, YtrainPrim, YtestPrim) pd.DataFrame(reEncode(primaryNet_predic), index=pokemon, columns=typeList).to_csv('D:/UIP/Pred/NetPredictionsPrim.csv') primaryNet_predicBio, primaryNet_accBio = test_network(XtrainPrimBio, XtestPrimBio, YtrainPrimBio, YtestPrimBio) pd.DataFrame(reEncode(primaryNet_predicBio), index=pokemon, columns=typeList).to_csv('D:/UIP/Pred/NetPredictionsPrimWithoutMoves.csv') # # Decision Tree # primaryForest_predic = test_tree(XtrainPrim, XtestPrim, YtrainPrim, YtestPrim) # primaryForest_predicBio = test_tree(XtrainPrimBio, XtestPrimBio, YtrainPrimBio, YtestPrimBio) # K Nearest Neighbours primaryKNN_predic, primaryKNN_acc = test_knn(XtrainPrim, XtestPrim, YtrainPrim, YtestPrim) pd.DataFrame(primaryKNN_predic, index=pokemon, columns=typeList).to_csv('D:/UIP/Pred/KNNPredictionsPrim.csv') primaryKNN_predicBio, primaryKNN_accBio = test_knn(XtrainPrimBio, XtestPrimBio, YtrainPrimBio, YtestPrimBio) pd.DataFrame(primaryKNN_predicBio, index=pokemon, columns=typeList).to_csv('D:/UIP/Pred/KNNPredictionsPrimWithoutMoves.csv') #### Section 5.2 - Predicting both types for Pokemon. First with bio + move data, then only biodata. #### # Neural Network primaryNet_predic2, primaryNet_acc2 = test_network2(Xtrain[:, :21], Xtest[:, :21], Ytrain, Ytest) pd.DataFrame(reEncodeMulti(primaryNet_predic2), index=pokemon, columns=typeList).to_csv('D:/UIP/Pred/NetPredictions.csv') primaryNet_predicBio2, primaryNet_accBio2 = test_network2(XtrainBio, XtestBio, YtrainBio, YtestBio) pd.DataFrame(reEncodeMulti(primaryNet_predicBio2), index=pokemon, columns=typeList).to_csv('D:/UIP/Pred/NetPredictionsWithoutMoves.csv') # # MLkNN mlknn_pred, mlknn_acc, mlknn_hamloss = test_mlknn(Xtrain, Xtest, Ytrain, Ytest) pd.DataFrame(mlknn_pred.A, index=pokemon, columns=typeList).to_csv('D:/UIP/Pred/MLKNNtPredictions.csv') mlknn_predBio, mlknn_accBio, mlknn_hamlossBio = test_mlknn(XtrainBio, XtestBio, YtrainBio, YtestBio) pd.DataFrame(mlknn_predBio.A, index=pokemon, columns=typeList).to_csv('D:/UIP/Pred/MLKNNtPredictionsWithoutMoves.csv') # Binary Relevance - Logistic Regression log_pred, log_acc, log_loss = test_logistic(Xtrain, Xtest, Ytrain, Ytest) pd.DataFrame(log_pred.A, index=pokemon, columns=typeList).to_csv('D:/UIP/Pred/LogPredictions.csv') log_predBio, log_accBio, log_lossBio = test_logistic(XtrainBio, XtestBio, YtrainBio, YtestBio)
pd.DataFrame(log_predBio.A, index=pokemon, columns=typeList)
pandas.DataFrame
""" Import as: import core.artificial_signal_generators as carsigen """ import datetime import logging from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Union import numpy as np import pandas as pd import scipy as sp # import statsmodels as sm import statsmodels.api as sm import helpers.hdbg as hdbg # TODO(*): statsmodels needs this import to work properly. # import statsmodels.tsa.arima_process as smarima # isort: skip # noqa: F401 # pylint: disable=unused-import _LOG = logging.getLogger(__name__) # TODO(gp): Remove after PTask2335. if True: import gluonts import gluonts.dataset.artificial as gda import gluonts.dataset.artificial.recipe as rcp import gluonts.dataset.repository.datasets as gdrd # isort: skip # noqa: F401 # pylint: disable=unused-import import gluonts.dataset.util as gdu # isort: skip # noqa: F401 # pylint: disable=unused-import def get_gluon_dataset_names() -> List[str]: """ Get names of available Gluon datasets. Each of those names can be used in `get_gluon_dataset` function. :return: list of names """ return list(gluonts.dataset.repository.datasets.dataset_recipes.keys()) def get_gluon_dataset( dataset_name: str = "m4_hourly", train_length: Optional[int] = None, test_length: Optional[int] = None, ) -> Tuple[pd.DataFrame, pd.DataFrame]: """ Load Gluon dataset, transform it into train and test dataframes. The default `m4_hourly` time series look like this: https://gluon-ts.mxnet.io/_images/examples_forecasting_tutorial_9_0.png :param dataset_name: name of the dataset. Supported names can be obtained using `get_gluon_dataset_names`. :param train_length: length of the train dataset :param test_length: length of the test dataset :return: train and test dataframes """ dataset = gluonts.dataset.repository.datasets.get_dataset( dataset_name, regenerate=False ) train_entry = next(iter(dataset.train)) test_entry = next(iter(dataset.test)) train_df = gluonts.dataset.util.to_pandas(train_entry) test_df = gluonts.dataset.util.to_pandas(test_entry) train_length = train_length or train_df.shape[0] test_length = test_length or test_df.shape[0] hdbg.dassert_lte(train_length, train_df.shape[0]) hdbg.dassert_lte(test_length, test_df.shape[0]) train_df = pd.DataFrame(train_df.head(train_length), columns=["y"]) test_df = pd.DataFrame(test_df.head(test_length), columns=["y"]) return train_df, test_df def evaluate_recipe( recipe: List[Tuple[str, Callable]], length: int, **kwargs: Any ) -> Dict[str, np.array]: """ Generate data based on recipe. For documentation on recipes, see https://gluon-ts.mxnet.io/_modules/gluonts/dataset/artificial/_base.html#RecipeDataset. :param recipe: [(field, function)] :param length: length of data to generate :param kwargs: kwargs passed into gluonts.dataset.artificial.recipe.evaluate :return: field names mapped to generated data """ return rcp.evaluate(recipe, length, **kwargs) def add_recipe_components( recipe: List[Tuple[str, Callable]], name: str = "signal" ) -> List[Tuple[str, rcp.Lifted]]: """ Append the sum of the components to the recipe. :param recipe: [(field, function)] :param name: name of the sum :return: recipe with the sum component """ recipe = recipe.copy() names = [name for name, _ in recipe] addition = rcp.Add(names) recipe.append((name, addition)) return recipe def generate_recipe_dataset( recipe: Union[Callable, List[Tuple[str, Callable]]], freq: str, start_date: pd.Timestamp, max_train_length: int, prediction_length: int, num_timeseries: int, trim_length_func: Callable = lambda x, **kwargs: 0, ) -> gluonts.dataset.common.TrainDatasets: """ Generate GluonTS TrainDatasets from recipe. For more information on recipes, see https://gluon-ts.mxnet.io/_modules/gluonts/dataset/artificial/_base.html#RecipeDataset and https://gluon-ts.mxnet.io/examples/synthetic_data_generation_tutorial/tutorial.html. For `feat_dynamic_cat` and `feat_dynamic_real` generation pass in `shape=(n_features, 0)`. GluonTS replaces `0` in shape with `max_train_length + prediction_length`. :param recipe: GluonTS recipe. Datasets with keys `feat_dynamic_cat`, `feat_dynamic_real` and `target` are passed into `ListDataset`. :param freq: frequency :param start_date: start date of the dataset :param max_train_length: maximum length of a training time series :param prediction_length: length of prediction range :param num_timeseries: number of time series to generate :param trim_length_func: Callable f(x: int) -> int returning the (shortened) training length :return: GluonTS TrainDatasets (with `train` and `test` attributes). """ names = [name for name, _ in recipe] hdbg.dassert_in("target", names) metadata = gluonts.dataset.common.MetaData(freq=freq) recipe_dataset = gda.RecipeDataset( recipe, metadata, max_train_length, prediction_length, num_timeseries, trim_length_fun=trim_length_func, data_start=start_date, ) return recipe_dataset.generate() class ArmaProcess: """ A thin wrapper around statsmodels `ArmaProcess`, with Pandas support. """ def __init__(self, ar_coeffs: List[float], ma_coeffs: List[float]) -> None: """ Initialize `arma_process` using given coefficients. Useful properties include - arroots - isinvertible - isstationary - maroots Further details are available at - https://www.statsmodels.org/stable/generated/statsmodels.tsa.arima_process.ArmaProcess.html # pylint: disable=line-too-long """ self.ar_coeffs = ar_coeffs self.ma_coeffs = ma_coeffs self.arma_process = sm.tsa.ArmaProcess.from_coeffs( self.ar_coeffs, self.ma_coeffs ) def generate_sample( self, date_range_kwargs: Dict[str, Any], scale: float = 1, burnin: float = 0, seed: Optional[int] = None, ) -> pd.Series: """ Generate an ARMA realization. This wraps statsmodels' `generate_sample`, placing the values in a `pd.Series` with index specified through the date range parameters. :param date_range_kwargs: kwargs to forward to `pd.date_range`, e.g., - "start", "end", "periods", "freq" :param scale: standard deviation of noise :param burnin: number of leading samples to drop :seed: np.random.seed seed """ if seed is None: seed = 0 np.random.seed(seed) # Create index and infer number of samples. index =
pd.date_range(**date_range_kwargs)
pandas.date_range
import os import numpy as np import pandas as pd import tarfile import urllib.request from experimentgenerator.experiment_generator import ExperimentGenerator from experimentgenerator.parameters_distribution import ParametersDistribution from autoscalingsim.utils.error_check import ErrorChecker from autoscalingsim.utils.download_bar import DownloadProgressBar @ExperimentGenerator.register('azure-vms') class AzureVMsExperimentGenerator(ExperimentGenerator): """ Enriches experiment configuration files based on the Azure VMs usage dataset from 2019. The related paper was published at SOSP'17: <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, and <NAME>. 2017. Resource Central: Understanding and Predicting Workloads for Improved Resource Management in Large Cloud Platforms. In Proceedings of the 26th Symposium on Operating Systems Principles (SOSP '17). Association for Computing Machinery, New York, NY, USA, 153–167. DOI:https://doi.org/10.1145/3132747.3132772 Dataset links full: https://github.com/Azure/AzurePublicDataset/blob/master/AzurePublicDatasetLinksV2.txt Assumption in processing the data: 1 service per VM """ dataset_base_link = 'https://azurecloudpublicdataset2.blob.core.windows.net/azurepublicdatasetv2/trace_data/' dataset_vmtable_link_extension = 'vmtable/' dataset_vmtable_name = 'vmtable.csv' dataset_vm_cpu_readings_link_extension = 'vm_cpu_readings/' dataset_vm_cpu_readings_name = 'vm_cpu_readings-file-{}-of-195.csv' archive_postfix = '.gz' @classmethod def enrich_experiment_generation_recipe(cls, specialized_generator_config : dict, experiment_generation_recipe : dict): data_path = ErrorChecker.key_check_and_load('data_path', specialized_generator_config) cpu_readings_file_ids = ErrorChecker.key_check_and_load('file_ids', specialized_generator_config) if isinstance(cpu_readings_file_ids, int): cpu_readings_file_ids = [cpu_readings_file_ids] cpu_readings_filenames = [ cls.dataset_vm_cpu_readings_name.format(cpu_readings_file_id) for cpu_readings_file_id in cpu_readings_file_ids ] download_cpu_readings = True cpu_readings_presence_status = dict() if os.path.exists(data_path): cpu_readings_presence_status = { filename : os.path.exists(os.path.join(data_path, filename)) for filename in cpu_readings_filenames } download_cpu_readings = not np.all(list(cpu_readings_presence_status.values())) else: cpu_readings_presence_status = { filename : False for filename in cpu_readings_filenames } os.makedirs(data_path) download_vmtable = not os.path.exists(os.path.join(data_path, cls.dataset_vmtable_name)) if download_cpu_readings or download_vmtable: print('Downloading Azure VMs usage dataset...') if download_cpu_readings: cpu_readings_archives_to_download = [ filename + cls.archive_postfix for filename, status in cpu_readings_presence_status.items() if status == False ] for order_num, constructed_archive_name in enumerate(cpu_readings_archives_to_download, 1): print(f'Downloading Azure CPU readings archive ({order_num} of {len(cpu_readings_archives_names)})...') downloaded_cpu_readings_archive = os.path.join(data_path, constructed_archive_name) full_cpu_readings_file_link = cls.dataset_base_link + cls.dataset_vm_cpu_readings_link_extension + constructed_archive_name urllib.request.urlretrieve(full_cpu_readings_file_link, downloaded_cpu_readings_archive, DownloadProgressBar()) cls._unpack_and_cleanup_archive(downloaded_cpu_readings_archive) if download_vmtable: print('Downloading VMs main table...') constructed_archive_name = cls.dataset_vmtable_name + cls.archive_postfix downloaded_vm_table_archive = os.path.join(data_path, constructed_archive_name) full_vm_table_file_link = cls.dataset_base_link + cls.dataset_vmtable_link_extension + constructed_archive_name urllib.request.urlretrieve(full_vm_table_file_link, downloaded_vm_table_archive, DownloadProgressBar()) cls._unpack_and_cleanup_archive(downloaded_vm_table_archive) # Processing VMs table csv_reading_batch_size = ErrorChecker.key_check_and_load('csv_reading_batch_size', specialized_generator_config, default = 1000) vm_categories_of_interest = ErrorChecker.key_check_and_load('vm_category', specialized_generator_config) colnames = ['vm_id', 'subscription_id', 'deployment_id', 'timestamp_vm_created', 'timestamp_vm_deleted', 'max_cpu', 'avg_cpu', 'p95_max_cpu', 'vm_category', 'vm_virtual_core_count_bucket', 'vm_memory_bucket'] vms_table_iter = pd.read_csv(os.path.join(data_path, cls.dataset_vmtable_name), names = colnames, chunksize = csv_reading_batch_size, iterator = True, header = None) selected_workloads_data = pd.DataFrame(columns = colnames) for iter_num, chunk in enumerate(vms_table_iter, 1): print(f'Processing {cls.dataset_vmtable_name}: iteration {iter_num}') selected_part = chunk if not vm_categories_of_interest in ['all', '*'] and (not isinstance(vm_categories_of_interest, list) or vm_categories_of_interest != ['Delay-insensitive', 'Interactive', 'Unknown']): selected_part = chunk[chunk['vm_category'].isin(vm_categories_of_interest)] selected_workloads_data =
pd.concat([selected_workloads_data, selected_part])
pandas.concat
#!/usr/bin/env python3 import numpy as np import pandas as pd from datetime import datetime def loadprices_df(csvfile, startdate=None, enddate=None): df =
pd.read_csv(csvfile, header=0, usecols=['Date', 'Close'])
pandas.read_csv
import pandas as pd from autogluon.utils.tabular.utils.savers import save_pd from .constants import * from . import evaluate_utils from.preprocess import preprocess_utils def evaluate(results_raw, frameworks=None, banned_datasets=None, folds_to_keep=None, columns_to_agg_extra=None, frameworks_compare_vs_all=None, output_dir=None): if frameworks is None: frameworks = sorted(list(results_raw[FRAMEWORK].unique())) if frameworks_compare_vs_all is None: frameworks_compare_vs_all = [] if folds_to_keep is None: folds_to_keep = sorted(list(results_raw[FOLD].unique())) if banned_datasets is not None: results_raw = results_raw[~results_raw[DATASET].isin(banned_datasets)] total_datasets = sorted(results_raw[DATASET].unique()) results_raw = preprocess_utils.clean_result(result_df=results_raw, folds_to_keep=folds_to_keep, remove_invalid=True) results_raw = results_raw[results_raw[FRAMEWORK].isin(frameworks)] # Calculate each frameworks errored datasets total_frameworks = results_raw[FRAMEWORK].unique() total_folds = results_raw[FOLD].unique() num_frameworks = len(total_frameworks) num_datasets = len(total_datasets) num_folds = len(total_folds) ideal_rows = num_folds * num_datasets * num_frameworks actual_rows = len(results_raw) errors = ideal_rows - actual_rows print('num_datasets:', num_datasets) print('num_folds:', num_folds) print('errors:', errors) for framework in total_frameworks: results_framework = results_raw[results_raw[FRAMEWORK] == framework] num_rows_framework = len(results_framework) datasets_framework = results_framework[DATASET].unique() datasets_framework_errors = [dataset for dataset in total_datasets if dataset not in datasets_framework] datasets_framework_errors_count = len(datasets_framework_errors) framework_fold_errors = num_datasets * num_folds - num_rows_framework print('################################################') print('framework:', framework) print('datasets_framework_errors:', datasets_framework_errors) print('datasets_framework_errors_count:', datasets_framework_errors_count) print('framework_fold_errors:', framework_fold_errors) print('################################################') all_results_pairs = {} for framework_2 in frameworks_compare_vs_all: results_list = [] for framework_1 in total_frameworks: if framework_1 == framework_2: results_ranked, results_ranked_by_dataset = evaluate_utils.compare_frameworks(results_raw=results_raw, frameworks=[framework_2], banned_datasets=banned_datasets, folds_to_keep=folds_to_keep, columns_to_agg_extra=columns_to_agg_extra, datasets=total_datasets, verbose=False) ties = len(results_ranked_by_dataset) results_list.append([framework_1, 0, 0, ties]) continue results_ranked, results_ranked_by_dataset = evaluate_utils.compare_frameworks(results_raw=results_raw, frameworks=[framework_1, framework_2], banned_datasets=banned_datasets, folds_to_keep=folds_to_keep, columns_to_agg_extra=columns_to_agg_extra, datasets=total_datasets, verbose=False) datasets_pair = results_ranked_by_dataset[DATASET].unique() framework_1_wins = 0 framework_2_wins = 0 ties = 0 for dataset in datasets_pair: results_isolated = results_ranked_by_dataset[results_ranked_by_dataset[DATASET] == dataset] results_isolated = results_isolated[results_isolated[FRAMEWORK] == framework_1] results_isolated_rank = results_isolated[RANK].iloc[0] if results_isolated_rank == 1: framework_1_wins += 1 elif results_isolated_rank == 2: framework_2_wins += 1 elif results_isolated_rank == 1.5: ties += 1 else: raise AssertionError('Rank not valid: %s' % results_isolated_rank) results_list.append([framework_1, framework_1_wins, framework_2_wins, ties]) results_pairs =
pd.DataFrame(data=results_list, columns=[FRAMEWORK, '> ' + framework_2, '< ' + framework_2, '= ' + framework_2])
pandas.DataFrame
# -*- coding: utf-8 -*- """ These test the private routines in types/cast.py """ import pytest from datetime import datetime, timedelta, date import numpy as np import pandas as pd from pandas import (Timedelta, Timestamp, DatetimeIndex, DataFrame, NaT, Period, Series) from pandas.core.dtypes.cast import ( maybe_downcast_to_dtype, maybe_convert_objects, cast_scalar_to_array, infer_dtype_from_scalar, infer_dtype_from_array, maybe_convert_string_to_object, maybe_convert_scalar, find_common_type) from pandas.core.dtypes.dtypes import ( CategoricalDtype, DatetimeTZDtype, PeriodDtype) from pandas.core.dtypes.common import ( is_dtype_equal) from pandas.util import testing as tm class TestMaybeDowncast(object): def test_downcast_conv(self): # test downcasting arr = np.array([8.5, 8.6, 8.7, 8.8, 8.9999999999995]) result = maybe_downcast_to_dtype(arr, 'infer') assert (np.array_equal(result, arr)) arr = np.array([8., 8., 8., 8., 8.9999999999995]) result = maybe_downcast_to_dtype(arr, 'infer') expected = np.array([8, 8, 8, 8, 9]) assert (np.array_equal(result, expected)) arr = np.array([8., 8., 8., 8., 9.0000000000005]) result = maybe_downcast_to_dtype(arr, 'infer') expected = np.array([8, 8, 8, 8, 9]) assert (np.array_equal(result, expected)) # GH16875 coercing of bools ser = Series([True, True, False]) result = maybe_downcast_to_dtype(ser, np.dtype(np.float64)) expected = ser tm.assert_series_equal(result, expected) # conversions expected = np.array([1, 2]) for dtype in [np.float64, object, np.int64]: arr = np.array([1.0, 2.0], dtype=dtype) result = maybe_downcast_to_dtype(arr, 'infer') tm.assert_almost_equal(result, expected, check_dtype=False) for dtype in [np.float64, object]: expected = np.array([1.0, 2.0, np.nan], dtype=dtype) arr = np.array([1.0, 2.0, np.nan], dtype=dtype) result = maybe_downcast_to_dtype(arr, 'infer') tm.assert_almost_equal(result, expected) # empties for dtype in [np.int32, np.float64, np.float32, np.bool_, np.int64, object]: arr = np.array([], dtype=dtype) result = maybe_downcast_to_dtype(arr, 'int64') tm.assert_almost_equal(result, np.array([], dtype=np.int64)) assert result.dtype == np.int64 def test_datetimelikes_nan(self): arr = np.array([1, 2, np.nan]) exp = np.array([1, 2, np.datetime64('NaT')], dtype='datetime64[ns]') res = maybe_downcast_to_dtype(arr, 'datetime64[ns]') tm.assert_numpy_array_equal(res, exp) exp = np.array([1, 2, np.timedelta64('NaT')], dtype='timedelta64[ns]') res = maybe_downcast_to_dtype(arr, 'timedelta64[ns]') tm.assert_numpy_array_equal(res, exp) def test_datetime_with_timezone(self): # GH 15426 ts = Timestamp("2016-01-01 12:00:00", tz='US/Pacific') exp = DatetimeIndex([ts, ts]) res = maybe_downcast_to_dtype(exp, exp.dtype) tm.assert_index_equal(res, exp) res = maybe_downcast_to_dtype(exp.asi8, exp.dtype) tm.assert_index_equal(res, exp) class TestInferDtype(object): def testinfer_dtype_from_scalar(self): # Test that infer_dtype_from_scalar is returning correct dtype for int # and float. for dtypec in [np.uint8, np.int8, np.uint16, np.int16, np.uint32, np.int32, np.uint64, np.int64]: data = dtypec(12) dtype, val = infer_dtype_from_scalar(data) assert dtype == type(data) data = 12 dtype, val = infer_dtype_from_scalar(data) assert dtype == np.int64 for dtypec in [np.float16, np.float32, np.float64]: data = dtypec(12) dtype, val = infer_dtype_from_scalar(data) assert dtype == dtypec data = np.float(12) dtype, val = infer_dtype_from_scalar(data) assert dtype == np.float64 for data in [True, False]: dtype, val = infer_dtype_from_scalar(data) assert dtype == np.bool_ for data in [np.complex64(1), np.complex128(1)]: dtype, val = infer_dtype_from_scalar(data) assert dtype == np.complex_ for data in [np.datetime64(1, 'ns'), Timestamp(1), datetime(2000, 1, 1, 0, 0)]: dtype, val = infer_dtype_from_scalar(data) assert dtype == 'M8[ns]' for data in [np.timedelta64(1, 'ns'), Timedelta(1), timedelta(1)]: dtype, val = infer_dtype_from_scalar(data) assert dtype == 'm8[ns]' for tz in ['UTC', 'US/Eastern', 'Asia/Tokyo']: dt = Timestamp(1, tz=tz) dtype, val = infer_dtype_from_scalar(dt, pandas_dtype=True) assert dtype == 'datetime64[ns, {0}]'.format(tz) assert val == dt.value dtype, val = infer_dtype_from_scalar(dt) assert dtype == np.object_ assert val == dt for freq in ['M', 'D']: p = Period('2011-01-01', freq=freq) dtype, val = infer_dtype_from_scalar(p, pandas_dtype=True) assert dtype == 'period[{0}]'.format(freq) assert val == p.ordinal dtype, val = infer_dtype_from_scalar(p) dtype == np.object_ assert val == p # misc for data in [date(2000, 1, 1), Timestamp(1, tz='US/Eastern'), 'foo']: dtype, val = infer_dtype_from_scalar(data) assert dtype == np.object_ def testinfer_dtype_from_scalar_errors(self): with pytest.raises(ValueError): infer_dtype_from_scalar(np.array([1])) @pytest.mark.parametrize( "arr, expected, pandas_dtype", [('foo', np.object_, False), (b'foo', np.object_, False), (1, np.int_, False), (1.5, np.float_, False), ([1], np.int_, False), (np.array([1], dtype=np.int64), np.int64, False), ([np.nan, 1, ''], np.object_, False), (np.array([[1.0, 2.0]]), np.float_, False), (pd.Categorical(list('aabc')), np.object_, False), (pd.Categorical([1, 2, 3]), np.int64, False), (pd.Categorical(list('aabc')), 'category', True), (pd.Categorical([1, 2, 3]), 'category', True), (Timestamp('20160101'), np.object_, False), (np.datetime64('2016-01-01'), np.dtype('<M8[D]'), False), (pd.date_range('20160101', periods=3), np.dtype('<M8[ns]'), False), (pd.date_range('20160101', periods=3, tz='US/Eastern'), 'datetime64[ns, US/Eastern]', True), (pd.Series([1., 2, 3]), np.float64, False), (pd.Series(list('abc')), np.object_, False), (pd.Series(pd.date_range('20160101', periods=3, tz='US/Eastern')), 'datetime64[ns, US/Eastern]', True)]) def test_infer_dtype_from_array(self, arr, expected, pandas_dtype): dtype, _ = infer_dtype_from_array(arr, pandas_dtype=pandas_dtype) assert is_dtype_equal(dtype, expected) def test_cast_scalar_to_array(self): arr = cast_scalar_to_array((3, 2), 1, dtype=np.int64) exp = np.ones((3, 2), dtype=np.int64) tm.assert_numpy_array_equal(arr, exp) arr = cast_scalar_to_array((3, 2), 1.1) exp = np.empty((3, 2), dtype=np.float64) exp.fill(1.1) tm.assert_numpy_array_equal(arr, exp) arr = cast_scalar_to_array((2, 3), Timestamp('2011-01-01')) exp = np.empty((2, 3), dtype='datetime64[ns]') exp.fill(np.datetime64('2011-01-01')) tm.assert_numpy_array_equal(arr, exp) # pandas dtype is stored as object dtype obj = Timestamp('2011-01-01', tz='US/Eastern') arr = cast_scalar_to_array((2, 3), obj) exp = np.empty((2, 3), dtype=np.object) exp.fill(obj) tm.assert_numpy_array_equal(arr, exp) obj = Period('2011-01-01', freq='D') arr = cast_scalar_to_array((2, 3), obj) exp = np.empty((2, 3), dtype=np.object) exp.fill(obj) tm.assert_numpy_array_equal(arr, exp) class TestMaybe(object): def test_maybe_convert_string_to_array(self): result = maybe_convert_string_to_object('x') tm.assert_numpy_array_equal(result, np.array(['x'], dtype=object)) assert result.dtype == object result = maybe_convert_string_to_object(1) assert result == 1 arr = np.array(['x', 'y'], dtype=str) result = maybe_convert_string_to_object(arr) tm.assert_numpy_array_equal(result, np.array(['x', 'y'], dtype=object)) assert result.dtype == object # unicode arr = np.array(['x', 'y']).astype('U') result = maybe_convert_string_to_object(arr) tm.assert_numpy_array_equal(result, np.array(['x', 'y'], dtype=object)) assert result.dtype == object # object arr = np.array(['x', 2], dtype=object) result = maybe_convert_string_to_object(arr) tm.assert_numpy_array_equal(result, np.array(['x', 2], dtype=object)) assert result.dtype == object def test_maybe_convert_scalar(self): # pass thru result = maybe_convert_scalar('x') assert result == 'x' result = maybe_convert_scalar(np.array([1])) assert result == np.array([1]) # leave scalar dtype result = maybe_convert_scalar(np.int64(1)) assert result == np.int64(1) result = maybe_convert_scalar(np.int32(1)) assert result == np.int32(1) result = maybe_convert_scalar(np.float32(1)) assert result == np.float32(1) result = maybe_convert_scalar(np.int64(1)) assert result == np.float64(1) # coerce result =
maybe_convert_scalar(1)
pandas.core.dtypes.cast.maybe_convert_scalar
# -*- coding: utf-8 -*- import matplotlib.pyplot as plt import matplotlib.patches as patches from matplotlib.patches import Arc from matplotlib.path import Path import networkx as nx import numpy as np import pandas as pd from cell2cell.plotting.aesthetics import get_colors_from_labels, generate_legend def circos_plot(interaction_space, sender_cells, receiver_cells, ligands, receptors, excluded_score=0, metadata=None, sample_col='#SampleID', group_col='Groups', meta_cmap='Set2', cells_cmap='Pastel1', colors=None, ax=None, figsize=(10,10), fontsize=14, legend=True, ligand_label_color='dimgray', receptor_label_color='dimgray', filename=None): '''Generates the circos plot in the exact order that sender and receiver cells are provided. Similarly, ligands and receptors are sorted by the order they are input. Parameters ---------- interaction_space : cell2cell.core.interaction_space.InteractionSpace Interaction space that contains all a distance matrix after running the the method compute_pairwise_communication_scores. Alternatively, this object can a SingleCellInteractions or a BulkInteractions object after running the method compute_pairwise_communication_scores. sender_cells : list List of cells to be included as senders. receiver_cells : list List of cells to be included as receivers. ligands : list List of genes/proteins to be included as ligands produced by the sender cells. receptors : list List of genes/proteins to be included as receptors produced by the receiver cells. excluded_score : float, default=0 Rows that have a communication score equal or lower to this will be dropped from the network. metadata : pandas.Dataframe, default=None Metadata associated with the cells, cell types or samples in the matrix containing CCC scores. If None, cells will be color only by individual cells. sample_col : str, default='#SampleID' Column in the metadata for the cells, cell types or samples in the matrix containing CCC scores. group_col : str, default='Groups' Column in the metadata containing the major groups of cells, cell types or samples in the matrix with CCC scores. meta_cmap : str, default='Set2' Name of the matplotlib color palette for coloring the major groups of cells. cells_cmap : str, default='Pastel1' Name of the color palette for coloring individual cells. colors : dict, default=None Dictionary containing tuples in the RGBA format for indicating colors of major groups of cells. If colors is specified, meta_cmap will be ignored. ax : matplotlib.axes.Axes, default=None Axes instance for a plot. figsize : tuple, default=(10, 10) Size of the figure (width*height), each in inches. fontsize : int, default=14 Font size for ligand and receptor labels. legend : boolean, default=True Whether including legends for cell and cell group colors as well as ligand/receptor colors. ligand_label_color : str, default='dimgray' Name of the matplotlib color palette for coloring the labels of ligands. receptor_label_color : str, default='dimgray' Name of the matplotlib color palette for coloring the labels of receptors. filename : str, default=None Path to save the figure of the elbow analysis. If None, the figure is not saved. Returns ------- ax : matplotlib.axes.Axes Axes instance containing a circos plot. ''' if hasattr(interaction_space, 'interaction_elements'): if 'communication_matrix' not in interaction_space.interaction_elements.keys(): raise ValueError('Run the method compute_pairwise_communication_scores() before generating circos plots.') else: readable_ccc = get_readable_ccc_matrix(interaction_space.interaction_elements['communication_matrix']) elif hasattr(interaction_space, 'interaction_space'): if 'communication_matrix' not in interaction_space.interaction_space.interaction_elements.keys(): raise ValueError('Run the method compute_pairwise_communication_scores() before generating circos plots.') else: readable_ccc = get_readable_ccc_matrix(interaction_space.interaction_space.interaction_elements['communication_matrix']) else: raise ValueError('Not a valid interaction_space') # Figure setups if ax is None: R = 1.0 center = (0, 0) fig = plt.figure(figsize=figsize, frameon=False) ax = fig.add_axes([0., 0., 1., 1.], aspect='equal') ax.set_axis_off() ax.set_xlim((-R * 1.05 + center[0]), (R * 1.05 + center[0])) ax.set_ylim((-R * 1.05 + center[1]), (R * 1.05 + center[1])) else: xlim = ax.get_xlim() ylim = ax.get_ylim() x_range = abs(xlim[1] - xlim[0]) y_range = abs(ylim[1] - ylim[0]) R = np.nanmin([x_range/2.0, y_range/2.0]) / 1.05 center = (np.nanmean(xlim), np.nanmean(ylim)) # Elements to build network # TODO: Add option to select sort_by: None (as input), cells, proteins or metadata sorted_nodes = sort_nodes(sender_cells=sender_cells, receiver_cells=receiver_cells, ligands=ligands, receptors=receptors ) # Build network G = _build_network(sender_cells=sender_cells, receiver_cells=receiver_cells, ligands=ligands, receptors=receptors, sorted_nodes=sorted_nodes, readable_ccc=readable_ccc, excluded_score=excluded_score ) # Get coordinates nodes_dict = get_arc_angles(G=G, sorting_feature='sorting') edges_dict = dict() for k, v in nodes_dict.items(): edges_dict[k] = get_cartesian(theta=np.nanmean(v), radius=0.95*R/2., center=center, angle='degrees') small_R = determine_small_radius(edges_dict) # Colors cells = list(set(sender_cells+receiver_cells)) if metadata is not None: meta = metadata.set_index(sample_col).reindex(cells) meta = meta[[group_col]].fillna('NA') labels = meta[group_col].unique().tolist() if colors is None: colors = get_colors_from_labels(labels, cmap=meta_cmap) meta['Color'] = [colors[idx] for idx in meta[group_col]] else: meta =
pd.DataFrame(index=cells)
pandas.DataFrame
import pandas as pd from sklearn.ensemble import RandomForestRegressor data_base=pd.read_csv("train_data.csv") #####importing train case test=pd.read_csv("test_data.csv") #####importing test case features=['Retweet count','Likes count','Tweet value'] ######features for training y=data_base.User x=data_base[features] model=RandomForestRegressor() ####### Using Random forest Regressor model.fit(x,y) arr=model.predict(test[features]) #####prediction arr=
pd.DataFrame(arr)
pandas.DataFrame
from datetime import datetime import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, Series, _testing as tm, ) def test_split(any_string_dtype): values = Series(["a_b_c", "c_d_e", np.nan, "f_g_h"], dtype=any_string_dtype) result = values.str.split("_") exp = Series([["a", "b", "c"], ["c", "d", "e"], np.nan, ["f", "g", "h"]]) tm.assert_series_equal(result, exp) # more than one char values = Series(["a__b__c", "c__d__e", np.nan, "f__g__h"], dtype=any_string_dtype) result = values.str.split("__") tm.assert_series_equal(result, exp) result = values.str.split("__", expand=False) tm.assert_series_equal(result, exp) # regex split values = Series(["a,b_c", "c_d,e", np.nan, "f,g,h"], dtype=any_string_dtype) result = values.str.split("[,_]") exp = Series([["a", "b", "c"], ["c", "d", "e"], np.nan, ["f", "g", "h"]]) tm.assert_series_equal(result, exp) def test_split_object_mixed(): mixed = Series(["a_b_c", np.nan, "d_e_f", True, datetime.today(), None, 1, 2.0]) result = mixed.str.split("_") exp = Series( [ ["a", "b", "c"], np.nan, ["d", "e", "f"], np.nan, np.nan, np.nan, np.nan, np.nan, ] ) assert isinstance(result, Series) tm.assert_almost_equal(result, exp) result = mixed.str.split("_", expand=False) assert isinstance(result, Series) tm.assert_almost_equal(result, exp) @pytest.mark.parametrize("method", ["split", "rsplit"]) def test_split_n(any_string_dtype, method): s = Series(["a b", pd.NA, "b c"], dtype=any_string_dtype) expected = Series([["a", "b"], pd.NA, ["b", "c"]]) result = getattr(s.str, method)(" ", n=None) tm.assert_series_equal(result, expected) result = getattr(s.str, method)(" ", n=0) tm.assert_series_equal(result, expected) def test_rsplit(any_string_dtype): values = Series(["a_b_c", "c_d_e", np.nan, "f_g_h"], dtype=any_string_dtype) result = values.str.rsplit("_") exp = Series([["a", "b", "c"], ["c", "d", "e"], np.nan, ["f", "g", "h"]]) tm.assert_series_equal(result, exp) # more than one char values = Series(["a__b__c", "c__d__e", np.nan, "f__g__h"], dtype=any_string_dtype) result = values.str.rsplit("__") tm.assert_series_equal(result, exp) result = values.str.rsplit("__", expand=False) tm.assert_series_equal(result, exp) # regex split is not supported by rsplit values = Series(["a,b_c", "c_d,e", np.nan, "f,g,h"], dtype=any_string_dtype) result = values.str.rsplit("[,_]") exp = Series([["a,b_c"], ["c_d,e"], np.nan, ["f,g,h"]]) tm.assert_series_equal(result, exp) # setting max number of splits, make sure it's from reverse values = Series(["a_b_c", "c_d_e", np.nan, "f_g_h"], dtype=any_string_dtype) result = values.str.rsplit("_", n=1) exp = Series([["a_b", "c"], ["c_d", "e"], np.nan, ["f_g", "h"]]) tm.assert_series_equal(result, exp) def test_rsplit_object_mixed(): # mixed mixed = Series(["a_b_c", np.nan, "d_e_f", True, datetime.today(), None, 1, 2.0]) result = mixed.str.rsplit("_") exp = Series( [ ["a", "b", "c"], np.nan, ["d", "e", "f"], np.nan, np.nan, np.nan, np.nan, np.nan, ] ) assert isinstance(result, Series) tm.assert_almost_equal(result, exp) result = mixed.str.rsplit("_", expand=False) assert isinstance(result, Series) tm.assert_almost_equal(result, exp) def test_split_blank_string(any_string_dtype): # expand blank split GH 20067 values = Series([""], name="test", dtype=any_string_dtype) result = values.str.split(expand=True) exp = DataFrame([[]], dtype=any_string_dtype) # NOTE: this is NOT an empty df tm.assert_frame_equal(result, exp) values =
Series(["a b c", "a b", "", " "], name="test", dtype=any_string_dtype)
pandas.Series
'''Train CIFAR10 with PyTorch.''' import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import torch.backends.cudnn as cudnn import torchvision import torchvision.transforms as transforms import os import argparse from tqdm import trange import pandas as pd from PIL import Image def make_train_anno(data_root_dir, anno_path): # Set data directories. train_dir = data_root_dir + 'bounding_box_train/' # Get image names. train_img_names = sorted([d for d in os.listdir(train_dir) if d.split('.')[-1].lower() in ('jpg', 'jpeg', 'png')]) # Organize anntation data. train_list = __org_data(train_dir, train_img_names, 'train') df = pd.DataFrame(train_list) df = __add_person_index(df) # Save DataFrame. __save_dataframe(df, anno_path, 'train') def make_qng_anno(data_root_dir, anno_path): # Set data directories. gallery_dir = data_root_dir + 'bounding_box_test/' query_dir = data_root_dir + 'query/' # Get image names. gallery_img_names = sorted([d for d in os.listdir(gallery_dir) if d.split('.')[-1].lower() in ('jpg', 'jpeg', 'png')]) query_img_names = sorted([d for d in os.listdir(query_dir) if d.split('.')[-1].lower() in ('jpg', 'jpeg', 'png')]) # Organize anntation data. gallery_list = __org_data(gallery_dir, gallery_img_names, 'gallery') query_list = __org_data(query_dir, query_img_names, 'query') data_list = gallery_list + query_list df =
pd.DataFrame(data_list)
pandas.DataFrame
# pylint:disable=unsupported-assignment-operation # pylint:disable=unsubscriptable-object """Module containing different I/O functions to load data recorded by Withings Sleep Analyzer.""" import datetime import re from ast import literal_eval from pathlib import Path from typing import Dict, Optional, Sequence, Union import numpy as np import pandas as pd from biopsykit.sleep.utils import split_nights from biopsykit.utils._datatype_validation_helper import _assert_file_extension, _assert_has_columns, _assert_is_dir from biopsykit.utils._types import path_t from biopsykit.utils.datatype_helper import SleepEndpointDataFrame, is_sleep_endpoint_dataframe from biopsykit.utils.time import tz __all__ = [ "WITHINGS_RAW_DATA_SOURCES", "load_withings_sleep_analyzer_raw_file", "load_withings_sleep_analyzer_raw_folder", "load_withings_sleep_analyzer_summary", ] WITHINGS_RAW_DATA_SOURCES = { "hr": "heart_rate", "respiratory-rate": "respiration_rate", "sleep-state": "sleep_state", "snoring": "snoring", } """ Mapping of data source names to names of the biosignal (and the exported dataframe column)""" def load_withings_sleep_analyzer_raw_folder( folder_path: path_t, timezone: Optional[Union[datetime.tzinfo, str]] = None, split_into_nights: Optional[bool] = True, ) -> Union[pd.DataFrame, Sequence[pd.DataFrame]]: """Load folder with raw data from a Withings Sleep Analyzer recording session and convert into time-series data. The function will return a list of dataframes (one dataframe per night, if ``split_into_nights`` is ``True``) with continuous time-series data (sampling distance: 1min) of all data sources (heart rate, respiratory rate, sleep state, snoring) combined. The dataframe columns will be: * ``heart_rate``: heart rate in beats-per-minute (bpm) * ``respiration_rate``: respiration rate in breaths-per-minute (bpm) * ``sleep_state``: current sleep state: 0 = awake, 1 = light sleep, 2 = deep sleep, 3 = rem sleep * ``snoring``: flag whether snoring was detected: 0 = no snoring, 100 = snoring The files are all expected to have the following name pattern: ``raw-sleep-monitor_<datasource>.csv``. .. warning:: If data is not split into single nights (``split_into_nights`` is ``False``), data in the dataframe will **not** be resampled. Parameters ---------- folder_path: :class:`~pathlib.Path` or str path to folder with Sleep Analyzer raw data timezone : str or :class:`datetime.tzinfo`, optional timezone of the acquired data, either as string of as tzinfo object. Default: 'Europe/Berlin' split_into_nights : bool, optional whether to split the dataframe into the different recording nights (and return a list of dataframes) or not. Default: ``True`` Returns ------- :class:`~pandas.DataFrame` or list of such dataframe (or list of dataframes, if ``split_into_nights`` is ``True``) with Sleep Analyzer data Raises ------ ValueError if ``folder_path`` is not a directory if no Sleep Analyzer Raw files are in directory specified by ``folder_path`` See Also -------- load_withings_sleep_analyzer_raw_file load a single Sleep Analyzer file with only one data source """ # ensure pathlib folder_path = Path(folder_path) _assert_is_dir(folder_path) raw_files = list(sorted(folder_path.glob("raw_sleep-monitor_*.csv"))) if len(raw_files) == 0: raise ValueError("No sleep analyzer raw files found in {}!".format(folder_path)) data_sources = [re.findall(r"raw_sleep-monitor_(\S*).csv", s.name)[0] for s in raw_files] list_data = [ load_withings_sleep_analyzer_raw_file( file_path, data_source=WITHINGS_RAW_DATA_SOURCES[data_source], timezone=timezone, split_into_nights=split_into_nights, ) for file_path, data_source in zip(raw_files, data_sources) if data_source in WITHINGS_RAW_DATA_SOURCES ] if split_into_nights: # "transpose" list of dictionaries. # before: outer list = data sources, inner dict = nights. # after: outer dict = nights, inner list = data sources keys = np.unique(np.array([sorted(data.keys()) for data in list_data]).flatten()) dict_nights = {} for key in keys: dict_nights.setdefault(key, []) for data in list_data: dict_nights[key].append(data[key]) data = {key: pd.concat(data, axis=1) for key, data in dict_nights.items()} else: data = pd.concat(list_data, axis=1) return data def load_withings_sleep_analyzer_raw_file( file_path: path_t, data_source: str, timezone: Optional[Union[datetime.tzinfo, str]] = None, split_into_nights: Optional[bool] = True, ) -> Union[pd.DataFrame, Dict[str, pd.DataFrame]]: """Load single Withings Sleep Analyzer raw data file and convert into time-series data. Parameters ---------- file_path : :class:`~pathlib.Path` or str path to file data_source : str data source of file specified by ``file_path``. Must be one of ['heart_rate', 'respiration_rate', 'sleep_state', 'snoring']. timezone : str or :class:`datetime.tzinfo`, optional timezone of recorded data, either as string or as tzinfo object. Default: 'Europe/Berlin' split_into_nights : bool, optional whether to split the dataframe into the different recording nights (and return a dictionary of dataframes) or not. Default: ``True`` Returns ------- :class:`~pandas.DataFrame` or dict of such dataframe (or dict of dataframes, if ``split_into_nights`` is ``True``) with Sleep Analyzer data Raises ------ ValueError if unsupported data source was passed `~biopsykit.utils.exceptions.FileExtensionError` if ``file_path`` is not a csv file `~biopsykit.utils.exceptions.ValidationError` if file does not have the required columns ``start``, ``duration``, ``value`` """ if data_source not in WITHINGS_RAW_DATA_SOURCES.values(): raise ValueError( "Unsupported data source {}! Must be one of {}.".format( data_source, list(WITHINGS_RAW_DATA_SOURCES.values()) ) ) file_path = Path(file_path) _assert_file_extension(file_path, ".csv") data = pd.read_csv(file_path) _assert_has_columns(data, [["start", "duration", "value"]]) if timezone is None: timezone = tz # convert string timestamps to datetime data["start"] = pd.to_datetime(data["start"]) # sort index data = data.set_index("start").sort_index() # drop duplicate index values data = data.loc[~data.index.duplicated()] # convert it into the right time zone data = data.groupby("start", group_keys=False).apply(_localize_time, timezone=timezone) # convert strings of arrays to arrays data["duration"] = data["duration"].apply(literal_eval) data["value"] = data["value"].apply(literal_eval) # rename index data.index.name = "time" # explode data and apply timestamp explosion to groups data_explode = data.apply(pd.Series.explode) data_explode = data_explode.groupby("time", group_keys=False).apply(_explode_timestamp) data_explode.index = data_explode.index.tz_localize("UTC").tz_convert(timezone) # rename the value column data_explode.columns = [data_source] # convert dtypes from object into numerical values data_explode = data_explode.astype(int) # drop duplicate index values data_explode = data_explode.loc[~data_explode.index.duplicated()] if split_into_nights: data_explode = split_nights(data_explode) data_explode = {key: _reindex_datetime_index(d) for key, d in data_explode.items()} else: data_explode = _reindex_datetime_index(data_explode) return data_explode def load_withings_sleep_analyzer_summary(file_path: path_t, timezone: Optional[str] = None) -> SleepEndpointDataFrame: """Load Sleep Analyzer summary file. This function additionally computes several other sleep endpoints from the Sleep Analyzer summary data to be comparable with the output with the format of other sleep analysis algorithms. All time information are reported in minutes. The resulting dataframe has the following columns: * ``total_duration``: Total recording time * ``total_time_light_sleep``: Total time of light sleep * ``total_time_deep_sleep``: Total time of deep sleep * ``total_time_rem_sleep``: Total time of REM sleep * ``total_time_awake``: Total time of being awake * ``total_sleep_duration``: Total sleep duration, i.e., time between Sleep Onset and Wake Onset * ``number_wake_bouts``: Total number of wake bouts * ``sleep_onset_latency``: Sleep Onset Latency, i.e., time in bed needed to fall asleep * ``getup_onset_latency``: Get Up Latency, i.e., time in bed after awakening until getting up * ``sleep_onset``: Sleep Onset, i.e., time of falling asleep, in absolute time * ``wake_onset``: Wake Onset, i.e., time of awakening, in absolute time * ``wake_after_sleep_onset``: Wake After Sleep Onset (WASO), i.e., total time awake after falling asleep * ``count_snoring_episodes``: Total number of snoring episodes * ``total_time_snoring``: Total time of snoring * ``heart_rate_avg``: Average heart rate during recording in bpm * ``heart_rate_min``: Minimum heart rate during recording in bpm * ``heart_rate_max``: Maximum heart rate during recording in bpm Parameters ---------- file_path : :class:`~pathlib.Path` or str path to file timezone : str or :class:`datetime.tzinfo`, optional timezone of recorded data, either as string or as tzinfo object. Default: 'Europe/Berlin' Returns ------- :obj:`~biopsykit.datatype_helper.SleepEndpointDataFrame` dataframe with Sleep Analyzer summary data, i.e., sleep endpoints """ # ensure pathlib file_path = Path(file_path) _assert_file_extension(file_path, ".csv") data = pd.read_csv(file_path) _assert_has_columns(data, [["von", "bis"]]) if timezone is None: timezone = tz for col in ["von", "bis"]: # convert into date time data[col] = pd.to_datetime(data[col]).dt.tz_convert(timezone) # total duration in seconds data["total_duration"] = [int(td.total_seconds()) for td in data["bis"] - data["von"]] data["date"] = data["von"] data["date"] = data["date"].apply( lambda date: ((date - pd.Timedelta("1d")) if date.hour < 12 else date).normalize() ) data.rename( { "von": "recording_start", "bis": "recording_end", "leicht (s)": "total_time_light_sleep", "tief (s)": "total_time_deep_sleep", "rem (s)": "total_time_rem_sleep", "wach (s)": "total_time_awake", "Aufwachen": "number_wake_bouts", "Duration to sleep (s)": "sleep_onset_latency", "Duration to wake up (s)": "getup_latency", "Snoring episodes": "count_snoring_episodes", "Snoring (s)": "total_time_snoring", "Average heart rate": "heart_rate_avg", "Heart rate (min)": "heart_rate_min", "Heart rate (max)": "heart_rate_max", }, axis="columns", inplace=True, ) data["sleep_onset"] = data["recording_start"] +
pd.to_timedelta(data["sleep_onset_latency"], unit="seconds")
pandas.to_timedelta
"""Python library for GCCR002""" from contextlib import contextmanager from datetime import datetime import hashlib from io import StringIO from IPython.display import display as _display from itertools import chain, product, combinations_with_replacement import joblib import json import logging import matplotlib.pyplot as plt from matplotlib import gridspec from matplotlib.ticker import MultipleLocator, FormatStrFormatter import networkx as nx import numpy as np import pandas as pd import pathlib import pickle import pingouin import re from scipy.special import logit from scipy.stats import ks_2samp, mannwhitneyu, wilcoxon, gaussian_kde, chi2_contingency, entropy, norm import seaborn as sns from sklearn.decomposition import PCA, NMF from sklearn.ensemble import RandomForestClassifier from sklearn.feature_selection import RFE, RFECV from sklearn.linear_model import LinearRegression, RidgeClassifier, RidgeClassifierCV, LogisticRegression, LogisticRegressionCV from sklearn.metrics import auc, roc_curve, roc_auc_score, plot_roc_curve, confusion_matrix from sklearn.metrics import precision_score, recall_score, get_scorer, make_scorer, SCORERS from sklearn.model_selection import ShuffleSplit, GroupShuffleSplit, LeaveOneOut, cross_validate, cross_val_score, cross_val_predict from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.utils.class_weight import compute_sample_weight from statsmodels.api import add_constant from statsmodels.discrete.discrete_model import Logit import sys sys.path.append('/home/rgerkin/dev/pyvenn') #TODO: Turn pyvenn into a pip-installable package from tqdm.auto import tqdm, trange import urllib from venn import venn3, venn4, venn5, get_labels import warnings import zipfile sns.set(font_scale=1.1) sns.set_style('whitegrid') logger = logging.Logger('GCCR002') known_md5s = {'GCCR002_complete_database.csv': 'd476f67b081dd9d8d8cf1ee0481ad4e8', 'GCCR002_DATA_COVID_TimeStamp.xlsx': 'aa016d9208fbb44ffd8ce4a2dfe908a4', 'GCCR002_DATA_COVID_TimeStamp_plusdataJuly.csv': '56922f025047e379bf5cfc8ff2ceed91'} DATA = pathlib.Path('data') YOUGOV_CUTOFF_DATE = '2020-07-03' # In order to guarantee a match to the published figures, we must remove YouGov reported after the manuscript submission date. # This corresponds to week 11. To update this figure with new data (collected by YouGov after manuscript submission), # change max_week to a higher value (e.g. the present day)""" # For each type (e.g. categorical), a list of regular expressions for features considered to be that type dtype_ontology = {'categorical': ['Gender', 'GCCR', 'Referred', 'Test_Name'], 'discrete': ['Age', 'Days_since_onset', 'Onset_day', 'Completion_day', 'Recovery'], 'binary': ['Changes', 'Symptoms', 'Prior_conditions', 'cigarette(!=_f)', 'cigarette_use', 'Resp'], 'continuous': ['(?<!did_)(before_)', 'during_', 'after_', 'change_', 'recovery_', 'frequency', 'cigarette(?!_use)'], } feature_ontology = {'incidental': ['GCCR', 'Test_Name', 'Completion_', 'Referred'], 'chemosensory': ['Changes_in', 'Taste', 'Smell', 'Cheme', '_food', '_smell'], 'demographic': ['Gender', 'Age', 'Country'], 'history': ['Prior_conditions', 'cigarette'], 'typical': ['Symptoms', 'Resp', 'Recovery', 'Blocked', 'Onset_', 'Days_'] } timing_ontology = {'incidental': ['GCCR', 'Test_Name', 'Day', '_day', 'Referred'], 'demographic': ['Gender', 'Age', 'Country'], 'before': ['Prior_conditions', 'before_illness', 'cigarette'], 'during': ['Changes_in', 'change_illness', 'during_illness', 'Resp', 'Symptoms'], 'after': ['Recovery', 'after_illness', 'recovery_illness']} # Color scheme colors = pd.Series( index=pd.MultiIndex.from_tuples([], names=["diagnosis", "sense"]), dtype="object" ) colors.loc["C19+", "Smell"] = "#6699CD" colors.loc["C19-", "Smell"] = "#a5bcd4" colors.loc["C19+", "Taste"] = "#ff9900" colors.loc["C19-", "Taste"] = "#ffce85" colors.loc["C19+", "Chemesthesis"] = "#009999" colors.loc["C19-", "Chemesthesis"] = "#5fc7c7" colors.loc["C19+", "Blocked_nose"] = "#996600" colors.loc["C19-", "Blocked_nose"] = "#d1a752" @contextmanager def all_logging_disabled(highest_level=logging.CRITICAL): """ A context manager that will prevent any logging messages triggered during the body from being processed. :param highest_level: the maximum logging level in use. This would only need to be changed if a custom level greater than CRITICAL is defined. """ # two kind-of hacks here: # * can't get the highest logging level in effect => delegate to the user # * can't get the current module-level override => use an undocumented # (but non-private!) interface previous_level = logging.root.manager.disable logging.disable(highest_level) try: yield finally: logging.disable(previous_level) def get_hash(x): return joblib.hash(x) def load_all(): # All of the content loaded here was produced in pre-analysis.ipynb with open(DATA / 'processed' / 'data-types.json') as f: dtypes = json.load(f) df = pd.read_csv(DATA / 'processed' / 'data-clean.csv', dtype=dtypes, index_col=0) Xu = pd.read_csv(DATA / 'processed' / 'X-raw.csv', index_col=0).astype('float') Xn = pd.read_csv(DATA / 'processed' / 'X-normalized.csv', index_col=0).astype('float') #Xu.index = Xu.index.astype(int) #Xn.index = Xu.index.astype(int) with open(DATA / 'processed' / 'targets.json') as f: targets = json.load(f) sets = {name: set(ids) for name, ids in targets.items()} with open(DATA / 'processed' / 'classes.json') as f: classes = json.load(f) return df, Xu, Xn, dtypes, sets, classes def load_raw(): #file_name = 'GCCR002_DATA_COVID_TimeStamp.xlsx' #file_name = 'GCCR002_DATA_COVID_TimeStamp_plusdataJuly.csv' #assert_md5(file_name) # Check that the MD5 hash of the file is as expected #if file_name.endswith('.xlsx'): # df = pd.read_excel(file_name) # Pandas takes forever to load Excel files #elif file_name.endswith('.csv'): # df = pd.read_csv(file_name) df_ORIGINAL = pd.read_csv(DATA / 'raw' / 'GCCR002_DATA_COVID_TimeStamp.csv') df_JULY = pd.read_csv(DATA / 'raw' / 'GCCR002_julydatabase_timestamp_Countryclean_labelscorrect.csv') to_drop = ['UniqueID.1', 'UniqueID_1', 'Unnamed: 0', 'Unnamed: 2', 'Country_clean'] for df_ in [df_ORIGINAL, df_JULY]: df_.drop(to_drop, axis=1, errors='ignore', inplace=True) df_['Date_of_onset'] = pd.to_datetime(df_['Date_of_onset']) df_['Year_of_birth_Time_Stamp'] = pd.to_datetime(df_['Year_of_birth_Time_Stamp']) assert not set(df_ORIGINAL['UniqueID']).intersection(set(df_JULY['UniqueID'])) df = pd.concat([df_ORIGINAL, df_JULY[df_ORIGINAL.columns]]) df = df.rename(columns={'Chemethesis_before_illness': 'Chemesthesis_before_illness'}) assert len(set(df['UniqueID'])) == df.shape[0] df = df.set_index('UniqueID') df = df.drop('UniqueID.1', errors='ignore') report_size(df, 'loading') return df def get_md5(file_name): """Get MD5 hash of file""" with open(file_name, 'rb') as f: # read contents of the file data = f.read() # pipe contents of the file through md5 = hashlib.md5(data).hexdigest() return md5 def assert_md5(file_name): md5 = get_md5(file_name) assert md5 == known_md5s[file_name], "MD5 hashes do not match; file may have been changed." def date_to_integer_day(series): series = series.dt.dayofyear series = series.fillna(-1).astype(int) return series def display(x): if isinstance(x, str): print(x) else: _display(x) def interp_index(array1, array2, threshold): i = np.searchsorted(array1, threshold) a1 = array1[i-1] b1 = array1[i] a2 = array2[i-1] b2 = array2[i] return a2 + (b2-a2)*(threshold-a1)/(b1-a1) def plot_roc(clf, X, y, cv, cv_kwargs=None, weights=None, concat=True, ax=None, name=None, title=None): # Plot ROC curve roc_aucs = [] n = cv.get_n_splits() cv_kwargs = {} if cv_kwargs is None else cv_kwargs if ax is None: plt.figure(figsize=(4,4)) ax = plt.gca() y_score = [] y_true = [] all_weights = [] sample_weight_ = get_weights(X, y, weights) for i, (train, test) in enumerate(cv.split(X, **cv_kwargs)): #sample_weight = get_weights(X.iloc[train], y.iloc[train], weights) sample_weight = sample_weight_.iloc[train] clf.fit(X.iloc[train, :], y.iloc[train], sample_weight=sample_weight) #sample_weight = get_weights(X.iloc[test], y.iloc[test], weights) sample_weight = sample_weight_.iloc[test] if hasattr(clf, 'predict_proba'): y_score_ = clf.predict_proba(X.iloc[test, :])[:, 1] else: y_score_ = clf.decision_function(X.iloc[test, :]) if not concat: curve = plot_roc_curve(clf, X.iloc[test, :], y.iloc[test], alpha=(1/np.sqrt(n)), ax=ax, sample_weight=sample_weight, name='Split %d' % i) roc_aucs.append(curve.roc_auc) else: auc = roc_auc_score(y.iloc[test], y_score_) roc_aucs.append(auc) y_score += list(y_score_) y_true += list(y.iloc[test]) all_weights += list(sample_weight) score = np.mean(roc_aucs) if concat: fpr, tpr, thresholds = roc_curve(y_true, y_score, sample_weight=all_weights) #score = roc_auc_score(y_true, y_score, sample_weight=all_weights) if not name: name = clf.__class__.__name__.replace('Classifier','').replace('Ridge', 'Linear') sens_half = interp_index(fpr, tpr, 0.5) spec_half = 1-interp_index(tpr, fpr, 0.5) print("%s: Sens50 = %.3g, Spec50 = %.3g" % (name, sens_half, spec_half)) label = '%s: %.3g' % (name, score) if name else '%.3g' % score ax.plot(fpr, tpr, label=label) else: ax.set_title('AUC = %.3f +/- %.3f' % (score, np.std(roc_aucs)/np.sqrt(n))) ax.plot([0, 1], [0, 1], 'k--') ax.set_xlabel('False Positive Rate') ax.set_ylabel('True Positive Rate') if title: ax.set_title(title) if n <= 10 or concat: ax.legend(fontsize=12, loc=4) return score def rank_features(clf, X): # Rank the features identified by the classifier from most to least important key_features = pd.Series(clf.feature_importances_, index=X.columns).sort_values(ascending=False) # Show the 20 most important key_features.index = nicify(list(key_features.index)) return key_features.to_frame(name='Importance') def rank_coefs(clf, X, nicify_=True): key_features = pd.Series(clf.coef_.ravel(), index=X.columns) if hasattr(clf, 'intercept_') and clf.intercept_: key_features['Intercept'] = clf.intercept_[0] kf = key_features.to_frame(name='Value') kf['Magnitude'] = kf['Value'].abs().round(3) kf['Sign'] = ['+' if x>=0 else '-' for x in kf['Value']] kf = kf.sort_values('Magnitude', ascending=False) kf = kf.drop('Value', axis=1) kf = kf[kf['Magnitude']>0] if nicify_: kf.index = nicify(list(kf.index)) return kf def compute_score(clf, X, y, cv): # Apply cross-validation using this splitter, and check the following fitness metrics results = cross_validate(clf, X, y, scoring=['roc_auc'], cv=cv) for key in results: print(key, results[key].mean()) def cardinality_filter(X, n, dtype=None): cols = [] for col in X: if dtype is None or X[col].dtype == dtype: u = X[col].unique() if len(u)>=n: cols.append(col) return cols def ontology_to_classes(df, ontology, invert=False, add=None): if add is None: add = [] unassigned_cols = list(df.drop('id', errors='ignore')) if invert: classes = {x:[] for x in ontology} else: classes = {} for key, patterns in ontology.items(): for pattern in patterns: r = re.compile(pattern) cols = list(filter(r.search, list(df))) for col in cols: if col in unassigned_cols: if invert: classes[key].append(col) else: classes[col] = key unassigned_cols.remove(col) assert len(unassigned_cols)==0, "%s were unassigned." % unassigned_cols for kind in add: # The above ontology maps each feature to a single class. # Additiomal feature_classes below can reuse these features. if kind == 'CDC9': classes[kind] = ['Symptoms_%s' % x for x in ['changes_in_smell', 'changes_in_food_flavor', 'fever', 'muscle_aches', 'runny_nose', 'dry_cough', 'diarrhea', 'fatigue', 'difficulty_breathing_/_shortness_of_breath']] if kind == 'CDC7': classes[kind] = ['Symptoms_%s' % x for x in ['fever', 'muscle_aches', 'runny_nose', 'dry_cough', 'diarrhea', 'fatigue', 'difficulty_breathing_/_shortness_of_breath']] if kind == 'CDC3': classes[kind] = ['Symptoms_%s' % x for x in ['fever', 'dry_cough', 'difficulty_breathing_/_shortness_of_breath']] elif kind == 'chemosensory-binary': classes[kind] = [x for x in classes['chemosensory'] if 'illness' not in x] return classes def get_rccv_score(clf, X, y, feature_classes, classes, weights='balanced'): sample_weight = get_weights(X, y, weights) features = list(chain(*[feature_classes[x] for x in classes])) clf.fit(X[features], y, sample_weight=sample_weight) return clf.best_score_.round(3) def roc(clf, X, y, feature_classes, classes, cv, weights=None, concat=True, ax=None, with_name=True, title=False): features = list(chain(*[feature_classes[x] for x in classes])) if with_name: name = '%s' % '+'.join(classes) score = plot_roc(clf, X[features], y, cv, weights=weights, concat=concat, ax=ax, name=name) if ax and title: if title is True: title = '%s' % '+'.join(classes) ax.set_title(title) return score def country_weights(X, y): test_names = [col for col in X if 'Test_' in col] sample_weight = y.copy() sample_weight[:] = 1 for test_name in test_names: m = X[test_name].mean() # Allows this to work even on standardized data index = X[X[test_name]>m].index if len(index): weight = compute_sample_weight('balanced', y.loc[index]) sample_weight.loc[index] = weight return sample_weight def feature_weights(X, y, feature): sample_weight = y.copy() sample_weight[:] = 1 m = X[feature].mean() # Allows this to work even on standardized data index = X[X[feature]>m].index if len(index): weight = compute_sample_weight('balanced', y.loc[index]) sample_weight.loc[index] = weight return sample_weight def get_weights(X, y, kind): if isinstance(kind, pd.Series): sample_weight = kind elif kind == 'balanced-by-country': sample_weight = country_weights(X, y) elif kind == 'balanced': sample_weight = compute_sample_weight('balanced', y) elif kind: sample_weight = compute_sample_weight('balanced', X[kind]) else: sample_weight = compute_sample_weight(None, y) sample_weight = pd.Series(sample_weight, index=X.index) return sample_weight def table_summarize(X, y, feature): y.name = 'COVID status' summary = X.join(y).groupby([feature, 'COVID status']).count().sum(axis=1).to_frame().unstack('COVID status')[0] return summary.div(summary.sum()).round(2) def hist_summarize(X, y, feature): plt.hist(X.loc[y==1, feature], color='r', bins=30, alpha=0.3, density=True, label='COVID+'); plt.hist(X.loc[y==0, feature], color='g', bins=30, alpha=0.3, density=True, label='COVID-'); plt.legend() def report_size(df, action): print("Data after %s has %d subjects and %d features" % (action, *df.shape)) def qq_plot(X, y, feature): x_minus = X[y==0][feature].quantile(np.linspace(0, 1, 101)) x_plus = X[y==1][feature].quantile(np.linspace(0, 1, 101)) ax = sns.lineplot(x_minus, x_plus) ax.set_xlabel('%s (COVID -)' % feature.replace('_',' ')) ax.set_ylabel('%s (COVID +)' % feature.replace('_',' ')) ax.plot([0, max(x_minus)], [0, max(x_plus)], '--') def pp_plot(X, y, feature, label=True, stabilized=False, ax=None): x_minus = X[y==0][feature] x_plus = X[y==1][feature] minn = min(x_minus.min(), x_plus.min()) maxx = max(x_minus.max(), x_plus.max()) s_minus = pd.Series(index=np.linspace(minn-0.001, maxx+0.001, 200), dtype=float) s_plus = pd.Series(index=np.linspace(minn-0.001, maxx+0.001, 200), dtype=float) s_minus[:] = s_minus.index.map(lambda x: (x_minus<=x).mean()) s_plus[:] = s_plus.index.map(lambda x: (x_plus<=x).mean()) if stabilized: s_minus = (2/np.pi)*np.arcsin(np.sqrt(s_minus)) s_plus = (2/np.pi)*np.arcsin(np.sqrt(s_plus)) D, p = ks_2samp(x_minus, x_plus) #S, p = mannwhitneyu(x_minus, x_plus) sign = (s_plus - s_minus).mean() > 0 #print(sign) ax = sns.lineplot(s_minus, s_plus, ax=ax, label='%s (D=%.2f)' % (feature.replace('_', ' ').title(), D if sign>0 else -D)) ax.set_xlabel('COVID -') ax.set_ylabel('COVID +') ax.plot([0, 1], [0, 1], 'k--') ax.legend(fontsize=11) def nicify(name, line_break=False): if isinstance(name, list): return list(map(nicify, name)) s = name.replace('_', ' ').title().replace('Symptoms ', '').split('/')[0].strip().replace('Gccr', 'GCCR v')\ .replace('Illness Y', 'Illness').replace('Before Illness', 'Before').replace('After Illness', 'After')\ .replace('Prior Conditions None', 'No Prior Conditions')\ .replace('Basic Tastes ', '').replace('Recovery Y', 'Recovered').replace('Prior Conditions ', '').split('(')[0]\ .replace('Changes In Smell I Cannot Smell At All', 'Anosmia/Hyposmia')\ .replace('Changes In Smell Smells Smell Different Than They Did Before', 'Parosmia')\ .replace("Changes In Smell I Can Smell Things That Aren'T There", 'Phantosmia')\ .replace('Changes In Smell Sense Of Smell Fluctuates', 'Smell Fluctuation')\ .replace('During Illness', 'During').replace(' Illness', '')\ .replace(' That Required Chemotherapy Or Radiation', '+Chemo/Radiation')\ .replace('Combustible Cigarette', 'Cigarette')\ .replace('E-Cigarette 30 Day', 'E-Cigarette')\ .replace(' That Did Not Require Chemotherapy Or Radiation', '-Chemo/Radiation')\ .replace('Results','').replace('Final','').replace('!','').replace('Version','').split('[')[0]\ .replace('Const', 'Intercept')\ .replace(' ', ' ').strip() if line_break: x = s.rfind(' ') s = s[:x] + '\n' + s[x+1:] return s def nicify_labels(ax, x=True, y=True, line_break=True): for xy in ['x', 'y']: if locals()[xy]: # Fix axis labels z = getattr(ax, 'get_%slabel' % xy)() new = nicify(z, line_break=line_break) getattr(ax, 'set_%slabel' % xy)(new) # Fix tick labels z = getattr(ax, 'get_%sticklabels' % xy)() new = [nicify(zi.get_text(), line_break=line_break) if not zi.get_text().isnumeric() else zi.get_text() for zi in z] getattr(ax, 'set_%sticklabels' % xy)(new) def fill_impute(df, feature_dtypes, copy=True): if copy: df = df.copy() # Apply the following missing data handling and recasting rules. for col, dtype in feature_dtypes.items(): if dtype == 'categorical': df[col] = df[col].fillna('Missing').astype('object') elif dtype == 'discrete': df[col] = df[col].fillna(df[col].median()).astype(int) elif dtype == 'binary': df[col] = df[col].fillna(0.5).astype('float') elif dtype == 'continuous': df[col] = df[col].fillna(df[col].median()).astype('float') return df def plot_violin(X, y, feature, ax): y.name = "COVID status" Xy = X.join(y) sns.violinplot(x="COVID status", y=feature, data=Xy, ax=ax, alpha=0.2) ax.set_xlabel('') ax.set_xticklabels(['COVID -', 'COVID +'], fontweight='bold') ax.set_ylabel(nicify(feature), fontweight='bold') def rescale(X): # Create a version of X for which every column has mean 0, variance 1. X_st = X.copy() std_sclr = StandardScaler() X_st[:] = std_sclr.fit_transform(X) assert np.allclose(X_st.mean(), 0) assert all(np.isclose(X_st.var(ddof=0), 1) + np.isclose(X_st.var(ddof=0), 0)) # Create a version of X for which every column has min 0, max 1. mm_sclr = MinMaxScaler() X_nm = X.copy() X_nm[:] = mm_sclr.fit_transform(X) return X_st, std_sclr, X_nm, mm_sclr def lrcv_check(lrcv, X, y, features): sample_weight = get_weights(X, y, 'balanced-by-country') lrcv.fit(X[features], y, sample_weight=sample_weight) return pd.DataFrame(lrcv.scores_[True].mean(axis=0).round(3), index=pd.Series(lrcv.Cs_, name='C'), columns=pd.Series(lrcv.l1_ratios_, name='L1 Ratio')) def rccv_check(rccv, X, y, features): sample_weight = get_weights(X, y, 'balanced-by-country') rccv.fit(X[features], y, sample_weight=sample_weight) return rccv.best_score_.round(3), rccv.alpha_ def raw_hist(X, y, feature, cumul=False): minn = X[feature].min() maxx = X[feature].max() diff = maxx - minn bins = np.linspace(minn-diff*0.01, maxx+diff*0.01, 30) X.loc[y==1, feature].hist(density=True, cumulative=cumul, bins=bins, alpha=0.3, label='+') X.loc[y==0, feature].hist(density=True, cumulative=cumul, bins=bins, alpha=0.3, label='-') plt.legend() plt.title(nicify(feature)) def contingency(X, features, verbose=True): z = pd.crosstab(*[X[f] for f in features]) z.index.name = nicify(z.index.name) z.columns.name = nicify(z.columns.name) n = z.sum().sum() chi2, p, _, _ = chi2_contingency(z) k = min(*z.shape) if n and k>1: v = np.sqrt(chi2/(n*(k-1))) else: v = None if min(z.shape) >= 2 and z.iloc[0, 1] and z.iloc[1, 1]: num = (z.iloc[0, 0] / z.iloc[0, 1]) denom = (z.iloc[1, 0] / z.iloc[1, 1]) oddsr = num / denom else: oddsr = None if verbose: print('p = %.2g' % p) return z, p, chi2, v, oddsr def plot_coefs(clf, X, title=''): x = rank_coefs(clf, X) #x = x.drop('Intercept', errors='ignore') threshold = x.drop('Intercept', errors='ignore')['Magnitude'].max()/10 x = x[x['Magnitude'] > threshold] x = x.sort_values('Magnitude', ascending=True) x['Pos'] = x.apply(lambda z: z['Magnitude'] if z['Sign']=='+' else None, axis=1) x['Neg'] = x.apply(lambda z: z['Magnitude'] if z['Sign']=='-' else None, axis=1)*-1 try: x['Pos'].plot(kind='barh', color='r', label='+') except: pass try: x['Neg'].plot(kind='barh', color='b', label='-') except: pass plt.xlabel('Coefficient Magnitude') plt.title(title) plt.tight_layout() def plot_pb_given_a_(X, b, a, restrict=None, ax=None, title=None, color='k', scale=1000, ticks=None): if restrict is not None: data = X.loc[restrict, [a, b]] else: data = X[[a, b]] data = data.dropna() kde = gaussian_kde(data.T) if ticks is None: ticks = np.linspace(-100, 100, 9) a_ticks = [t for t in ticks if (t>=X[a].min() and t<=X[a].max())] b_ticks = [t for t in ticks if (t>=X[b].min() and t<=X[b].max())] a_support = a_ticks b_support = np.linspace(b_ticks[0], b_ticks[-1], 100) aa, bb = np.meshgrid(a_support, b_support) pab = kde([aa.ravel(), bb.ravel()]).reshape(len(b_support), len(a_support)) pab = pd.DataFrame(pab, index=b_support, columns=a_support) kde = gaussian_kde(data[a]) pa = pd.Series(kde(a_support), index=a_support) pbga = pab.div(pa) if ax is None: ax = plt.gca() for a_tick in a_ticks: l2d = ax.plot(b_support, a_tick + scale*(pbga[a_tick]), label=a_tick, color=color) color = l2d[0].get_color() ax.plot(b_support, np.ones_like(b_support)*a_tick, '--', color=color) ax.set_yticks(a_ticks) ax.set_xticks(b_ticks) ax.tick_params(reset=True, axis='y', length=5, width=1) ax.set_xlim(b_ticks[0], b_ticks[-1]) ax.set_xlabel(nicify(b)) ax.set_ylabel(nicify(a)) if title: ax.set_title(title) #ax.legend() return pab, pa def plot_difference(pab_0, pa_0, pab_1, pa_1, ax=None, crange=(-1, 1), scale=10): pbga_0 = pab_0.div(pa_0) pbga_1 = pab_1.div(pa_1) assert np.allclose(pbga_0.index, pbga_1.index) assert np.allclose(pbga_0.columns, pbga_1.columns) log2_odds = np.log2(pbga_1 / pbga_0) from matplotlib.cm import get_cmap from matplotlib.colors import Normalize from matplotlib.colorbar import ColorbarBase norm = Normalize(crange[0], crange[1], True) cmap = get_cmap('RdBu_r') for a_tick in log2_odds.columns: color = cmap(norm(log2_odds[a_tick].values)) l2d = ax.scatter(log2_odds.index, a_tick + (scale*pa_0[a_tick]*2**log2_odds[a_tick]), label=a_tick, c=color, s=1) #color = l2d[0].get_color() ax.plot(log2_odds.index, np.ones_like(log2_odds.index)*a_tick, '--', color='k') cb = plt.colorbar(l2d) cb.outline.set_visible(False) cb1 = ColorbarBase(cb.ax, cmap=cmap, norm=norm) cticks = np.linspace(*crange, 5) cb1.set_ticks(cticks) cb1.set_ticklabels(['%.2g' % (2**x) for x in cticks]) cb1.set_label('Odds Ratio') #cb.remove() ax.set_title('Ratio') def plot_conditionals(X, y, b, a, restrict=None, crange=(-2, 2), scale=10): covid = {0: y[y==0].index, 1: y[y==1].index} fig, ax = plt.subplots(1, 3, sharey=True, figsize=(15, 4)) if restrict is None: restrict = y.index restrict_0 = covid[0] & restrict restrict_1 = covid[1] & restrict pba_0, pa_0 = plot_pb_given_a_(X, b, a, restrict=restrict_0, ax=ax[0], title='COVID-', color='b') pba_1, pa_1 = plot_pb_given_a_(X, b, a, restrict=restrict_1, ax=ax[1], title='COVID+', color='r') ax[1].set_ylabel('') ax[2].set_xlabel(ax[1].get_xlabel()) plot_difference(pba_0, pa_0, pba_1, pa_1, ax=ax[2], crange=crange, scale=scale) plt.tight_layout() return pba_0, pba_1 def get_matches(X, match_list): return [x for x in X if any([m in x for m in match_list])] def check_lr(X, y, cv, sample_weight=None): from sklearn.linear_model import LogisticRegressionCV lrcv = LogisticRegressionCV(penalty='elasticnet', l1_ratios = np.linspace(0, 1, 5), Cs = np.logspace(-3, 3, 7), solver = 'saga', scoring = 'roc_auc', cv = cv, max_iter=10000) lrcv.fit(X, y, sample_weight=sample_weight) return pd.DataFrame(lrcv.scores_[True].mean(axis=0), index=lrcv.Cs_, columns=lrcv.l1_ratios_) def venn_covid(X, restrict, features, label, figsize=(5, 5)): indices = {} for feature in features: z = X.loc[restrict, feature] indices[feature] = set(z[z==1].index) labels = get_labels([indices[feature] for feature in features], fill='percent') labels = {k: v.replace('(','').replace(')','') for k, v in labels.items()} venn3(labels, names=nicify(features), figsize=figsize, fontsize=9) plt.gca().get_legend().remove() z = X.loc[restrict, features] z = z[z.sum(axis=1)==0].shape[0] / z.shape[0] plt.title('%s; None of the three = %.1f%%' % (label, z*100)) def kde_plot(df, x, restrict, label, color, ax=None, title=None, **kwargs): sns.set_style('whitegrid') data = df.loc[restrict, x].dropna() x_range = (np.min(df[x]), np.max(df[x])) ax = sns.kdeplot(data, clip=x_range, color=color, alpha=0.5, label=label, ax=ax, **kwargs) ax.set_xlim(*x_range) ax.set_xlabel(nicify(x), fontweight='bold') ax.set_ylabel('Probabilty density', fontweight='bold') if ax: ax.set_title(nicify(x) if title is None else title) return ax def joint_plot(df, x, y, restrict, label, maxx=1e-3, cmap='Reds', cbar=False, ax=None): sns.set_style('whitegrid') data = df.loc[restrict, [x, y]].dropna() x_range = (np.min(df[x]), np.max(df[x])) y_range = (np.min(df[y]), np.max(df[y])) ax = sns.kdeplot(data[x], data[y], shade=True, clip=[x_range, y_range], vmin=0, vmax=maxx, cmap=cmap, shade_lowest=True, alpha=0.5, ax=ax, n_levels=100, cbar=True, cbar_kws={'format': '%.2g', 'label': 'Probability density (x1000)', 'shrink': 0.8}) cax = plt.gcf().axes[-1] if cbar: cbar_ticks = cax.get_yticks() cax.set_yticklabels((cbar_ticks*1000).round(2)) else: cax.remove() ax.set_xlim(*x_range) ax.set_ylim(*y_range) ax.set_xlabel(nicify(x), fontweight='bold') ax.set_ylabel(nicify(y), fontweight='bold') ax.set_title(label, fontweight='bold') return ax def feature_hist(df, categories, feature, drop=None, bw=5, cut=0, ax=None, title=None, colors='rbgmck'): for i, (label, indices) in enumerate(categories.items()): ax = kde_plot(df, feature, indices, label, colors[i], lw=3, bw=bw, cut=cut, ax=ax, title=title) ax.legend(fontsize=9); def feature_contingency(df, categories, feature, drop=None, normalize=None, verbose=True): z = df[[feature]].copy() for label, indices in categories.items(): z.loc[indices, 'Group'] = label if drop: z = z[~z[feature].isin(drop)] c = contingency(z, [feature, 'Group'], verbose=verbose)[0] if normalize is not None: c = c.div(c.sum(axis=normalize), axis=1-normalize).round(2) try: c.index = [x.replace('\n', ' ') for x in c.index] except: pass try: c.columns = [x.replace('\n', ' ') for x in c.columns] except: pass c = c.rename(index={'M': 'Men', 'F': 'Women'}) return c def feature_compare(df, categories, feature): z = pd.DataFrame(index=list(categories), columns=pd.MultiIndex.from_product([categories, ['Δ', 'σ', 'seΔ', 'D', 'p']])) z.index.name = nicify(feature) for d1 in categories: for d2 in categories: x1 = df.loc[categories[d1], feature] x2 = df.loc[categories[d2], feature] delta = x1.mean() - x2.mean() d = cohen_d(x1, x2) p = mannwhitneyu(x1, x2).pvalue z.loc[d1, (d2, 'Δ')] = "%.2g" % delta z.loc[d1, (d2, 'σ')] = "%.2g" % (0 if not d>0 else delta/d) z.loc[d1, (d2, 'seΔ')] = "%.2g" % (delta/np.sqrt(len(x1)+len(x2))) z.loc[d1, (d2, 'D')] = "%.2g" % d z.loc[d1, (d2, 'p')] = "%.2g" % p if len(categories)==2: d1 = list(categories)[0] d2 = list(categories)[1] z = z.loc[d1, d2] z.name = nicify(feature) return z def features_compare(df, categories, features): assert len(categories) == 2 zs = [feature_compare(df, categories, feature) for feature in features] return pd.concat(zs, axis=1) def hist_or_contingency(df, categories, feature, drop=None, normalize=None): if (df.dtypes[feature] != 'object') and (df[feature].max() > 5 or df[feature].min() < -5): f = feature_hist else: f = feature_contingency return f(df, categories, feature, drop=None, normalize=None) def describe_three_clusters(df, feature, s, drop=None, normalize=None): smell_loss = (df['Smell_change_illness']<-80) smell_recovery = (df['Smell_recovery_illness']>30) r = (df['Recovery_y/n']==2) & df.index.to_series().isin(s['covid']) categories = {'Recovered Smell': r & smell_loss & smell_recovery, 'Nonrecovered Smell': r & smell_loss & ~smell_recovery, 'Intact Smell': r & ~smell_loss} return hist_or_contingency(df, categories, feature, drop=drop, normalize=normalize) def get_set(df, query): return set(df.query(query, engine='python').index) def diagnosis_joint_plots(df, feature1, feature2, r, s, maxx=3e-4): if r is None: r = set(df.index) fig, ax = plt.subplots(2, 1, sharex=True, sharey=True, figsize=(6, 11.5)) for i, (diagnosis, label, cmap) in enumerate([('lab-covid', 'C19+', 'Reds'), ('non-covid', 'C19-', 'Reds')]): joint_plot(df, feature1, feature2, r & s[diagnosis], label, cmap=cmap, maxx=maxx, ax=ax[i], cbar=(i==0)) return ax def statsmodels_to_df(results, plot=False, title='', figsize=(10, 5), scale=None): summ = results.summary() df = pd.read_csv(StringIO(summ.tables[1].as_csv()), index_col=0) df.columns = df.columns.str.strip() df['abs_coef'] = df['coef'].abs() df.index = df.index.str.strip() df = df.sort_values('abs_coef', ascending=False) df = df.round(2) df['P>|z|'] = results.pvalues#.apply(lambda x: '%.1g'%x) df = df[df['abs_coef']>0] if scale is not None and scale is not False: df['coef'] /= scale try: df['std err'] /= scale df['[0.025'] /= scale df['0.975]'] /= scale except: pass df.index = nicify(list(df.index)) if plot: plt.figure(figsize=figsize) dfp = df.drop('Intercept') ax = dfp.sort_values('abs_coef', ascending=True).plot.barh(y='coef', xerr='std err', legend=None, capsize=4, ax=plt.gca()) labels = ax.get_yticklabels() ax.set_yticklabels('%s\n(p=%.1g)' % (label.get_text(), df['P>|z|'].iloc[-i-2]) for i, label in enumerate(labels)) ax.set_xlabel('Regression Coefficient', fontweight='bold') ax.set_title(title, fontweight='bold') df = df.drop('abs_coef', axis=1) for col in df: def fill(x): try: return '%.2g' % float(x) except: return None df[col] = df[col].apply(fill) return df def pooled_sd(x1, x2): n1 = len(x1) n2 = len(x2) s1 = np.std(x1) s2 = np.std(x2) num = (n1-1)*(s1**2) + (n2-1)*(s2**2) denom = n1 + n2 - 2 return np.sqrt(num/denom) def cohen_d(x1, x2): return (np.mean(x1) - np.mean(x2)) / pooled_sd(x1, x2) def sequential_features(clf, X, y, features, cv, Cs=np.logspace(-1, 3, 5)): """Return feature that maximizes cross-validated ROC AUC, then feature that maximizes it given inclusion of the first feature, and so ob""" roc_aucs = pd.DataFrame(columns=pd.MultiIndex.from_product([Cs, ['Rank', 'AUC']]), dtype='float') bar0 = tqdm(Cs) bar1 = trange(len(features)) bar2 = trange(len(features)) for C in bar0: clf.C = C features_used = [] features_remaining = features.copy() bar1.reset() for i in range(len(features)): bar1.update(1) best_auc = 0 best_feature = None bar2.reset() z = pd.Series(index=features_remaining) for j in range(len(features)): bar2.update(1) feature = features[j] if feature in features_remaining: auc = cross_val_score(clf, X[features_used + [feature]], y, cv=cv, scoring='roc_auc', n_jobs=cv.n_splits).mean() #auc += 0.003*('savory' in feature.lower()) z[feature] = auc if auc > best_auc: best_feature = feature best_auc = auc features_used.append(best_feature) features_remaining.remove(best_feature) #print(z.sort_values(ascending=False)) roc_aucs.loc[best_feature, (C, 'Rank')] = i+1 roc_aucs.loc[best_feature, (C, 'AUC')] = best_auc return roc_aucs def status_map(df, mapping, name): status = {} for k, v in mapping.items(): status.update({key: k for key in v}) df[name] = df.index.map(status.get) return df def get_tuple_feature_aucs(clf, X, y, n, sample_weight=None, only_binary=False, nicify_=True, add_to=None): if only_binary: symptoms = [x for x in X if 'Symptoms_' in x] else: symptoms = list(X) if n > 1: tuples = combinations_with_replacement(symptoms, n) else: tuples = symptoms s = pd.Series(index=tuples, dtype='float') for tup in tqdm(s.index): if n > 1: tup_ = list(set(tup)) # Get rid of duplicates else: tup_ = [tup] if add_to: tup_+= list(set(add_to)) clf.fit(X[tup_], y, sample_weight=sample_weight) s.loc[tup] = clf.scores_[True].mean() if n>1: s.index = pd.MultiIndex.from_tuples(s.index) if nicify_: s.index = s.index.map(lambda x: ' + '.join([nicify(xi) for xi in x])) else: if nicify_: s.index = nicify(list(s.index)) s = s.sort_values(ascending=False).round(3) s.index.name = 'Symptom set' df = s.to_frame('ROC AUC') return df def yg_week(df_gccr, offset=0, how='Onset_day'): days = (datetime.strptime('2020/04/01', '%Y/%m/%d') - datetime.strptime('2020/01/01', '%Y/%m/%d')).days days += offset return 1 + ((df_gccr[how].astype(int) - days)/7).astype(int).clip(0, 9999) def download_unzip_df(url): filehandle, _ = urllib.request.urlretrieve(url) zip_file_object = zipfile.ZipFile(filehandle, 'r') first_file = zip_file_object.namelist()[0] file = zip_file_object.open(first_file) return pd.read_csv(file, encoding='latin1', dtype='object') def download_yougov(): url = 'https://raw.githubusercontent.com/YouGov-Data/covid-19-tracker/master' yg_countries = pd.read_csv('%s/countries.csv' % url, header=None)[0] path = pathlib.Path('data/yougov') path.mkdir(parents=True, exist_ok=True) for country in tqdm(yg_countries): file_url = '%s/data/%s.csv' % (url, country.replace(' ', '-').replace('emerites', 'emirates')) #print(file_name) try: yg = pd.read_csv(file_url, encoding='latin1', dtype='object') except: try: zip_file_url = file_url[:-4]+'.zip' print(zip_file_url) yg = download_unzip_df(zip_file_url) except: raise Exception("Could not download or read %s" % file_name) yg.to_csv(path / ('yougov_%s.csv' % country)) return yg_countries def fix_yougov(yg): yg = yg[yg['qweek'].str.contains('week')].copy()#.dropna(subset=['qweek']) yg['week'] = yg['qweek'].apply(lambda x: x.split(' ')[1]).astype(int) try: yg['endtime'] = pd.to_datetime(yg['endtime'], format='%d/%m/%Y %H:%M') except: yg['endtime'] = pd.to_datetime(yg['endtime'], format='%Y-%m-%d %H:%M:%S') yg = yg[yg['endtime']<=YOUGOV_CUTOFF_DATE] return yg def get_yougov(df_gccr, countries): df = pd.DataFrame(index=countries) for country in countries: yg = pd.read_csv('data/yougov/yougov_%s.csv' % country, dtype='object') yg = fix_yougov(yg) country = 'usa' if country == 'united-states' else country country = 'uk' if country == 'united-kingdom' else country weights = df_gccr[df_gccr['Country_of_Residence']==country]['yg_week'].value_counts() for week in (set(weights.index) | set(yg['week'])): if week not in (set(weights.index) & set(yg['week'])): weights.loc[week] = 0 weight = weights[yg['week']] z = pd.get_dummies(yg[['i3_health', 'i4_health']]) p = z[[x for x in z.columns if 'positive' in x]] n = z[[x for x in z.columns if 'negative' in x]] total = p.sum().sum() + n.sum().sum() p = p.mul(weight.values, axis=0).sum().sum() n = n.mul(weight.values, axis=0).sum().sum() if p+n: df.loc[country, 'YG_fp'] = p/(p+n) else: df.loc[country, 'YG_fp'] = None df.loc[country, 'YG_N'] = total df = df.drop(['united-states', 'united-kingdom']) df.index.name = 'Country' df = df.sort_values('YG_fp') return df def compare_yougov(df_gccr, df_yg, s): df_gccr['status'] = -1 #df_gccr.loc[s['lab-covid'] | s['clinical-covid'], 'status'] = 1 df_gccr.loc[s['lab-covid'], 'status'] = 1 df_gccr.loc[s['non-covid'], 'status'] = 0 df_gccr = df_gccr[df_gccr['status'] >= 0] #df_gccr['status'] = df_gccr['status'].astype(int) df_gccr = df_gccr.groupby('Country_of_Residence').agg({'status': ['mean', 'count']})['status'] df_gccr.columns = ['GCCR_fp', 'GCCR_N'] df_gccr = df_gccr[df_gccr['GCCR_N']>=10] df = df_gccr.join(df_yg, how='outer') return df def plot_fp(fp, drop=None, plot=True, verbose=False, ax=None, break_axis=False): if ax is None and plot: ax = plt.gca() if drop: fp = fp.copy() fp = fp.drop(drop) for kind in ['GCCR', 'YG']: p = fp['%s_fp' % kind] n = fp['%s_N' % kind] fp['%s_se' % kind] = np.sqrt(p*(1-p)/n) fp['%s_logodds_fp' % kind] = np.log(p/(1-p)) if plot: ax.errorbar(fp['GCCR_fp'], fp['YG_fp'], xerr=fp['GCCR_se'], yerr=fp['YG_se'], marker='o', ls='none', alpha=0.5); ax.set_xlabel('GCCR Fraction of COVID Tests Positive') ax.set_ylabel('YouGov Fraction of\nCOVID Tests Positive'); fp_ = fp.dropna() #lr = LinearRegression() #lr.fit(fp_[['GCCR_logodds_fp']], fp_[['YG_logodds_fp']], sample_weight=1/fp_['GCCR_se']**2) #x = np.linspace(-10, 10, 1000) #y = lr.predict(x.reshape(-1, 1)) #from scipy.special import expit #plt.plot(expit(x), expit(y), '--') from scipy.stats import spearmanr, pearsonr def pearson_spearman(x, y): return pearsonr(x, y)[0], spearmanr(x, y)[0] if verbose: print("Log-Odds R = %.3g; Rho=%.3g" % pearson_spearman(fp_['GCCR_logodds_fp'], fp_['YG_logodds_fp'])) print("Raw R = %.3g; Rho=%.3g" % pearson_spearman(fp_['GCCR_fp'], fp_['YG_fp'])) return pearson_spearman(fp_['GCCR_fp'], fp_['YG_fp'])[0] def cluster_summary(df, clusters, s, feature): z = pd.DataFrame(index=list(clusters), columns=['female', 'male']) for cluster in z.index: for gender in z.columns: restrict = clusters[cluster] & s[gender] mean = df.loc[restrict, feature].mean() std = df.loc[restrict, feature].std() z.loc[cluster, gender] = '%.3g +/- %.2g' % (mean, std) z.index = [x.replace('\n', ' ') for x in z.index] z.index.name = nicify(feature) z.columns = ['Women', 'Men'] return z def exclusive_best_tuples(tuple_feature_aucs): z = tuple_feature_aucs.copy() z.index = pd.MultiIndex.from_tuples( list(tuple_feature_aucs.index.map(lambda x: x.split(' + ')))) i = 0 while True: index = z.index[i] z = z.drop([x for x in z.index[i+1:] if x[0] in index or x[1] in index]) i += 1 if i >= z.shape[0]: break return z def compare_lr_model_roc_aucs(X, y, cv, feature_sets, Cs): z = pd.DataFrame(index=list(Cs), columns=feature_sets.keys()) z.index.name = 'C' for C in Cs: # Use the same model again lr = LogisticRegression(penalty='elasticnet', solver='saga', C=C, l1_ratio=1, max_iter=10000, random_state=0) for label, features in feature_sets.items(): z.loc[C, label] = cross_val_score(lr, X[features], y, scoring='roc_auc', cv=cv, n_jobs=cv.n_splits).mean().round(3) return z def single_and_cumulative_plot(single_aucs, single_xrange, cumul_aucs, cumul_xrange, n_features, classes, C=10, figsize=(14, 6)): # Figure layout #sns.set_style('whitegrid') fig = plt.figure(figsize=figsize) width_ratios = [single_xrange[1]-single_xrange[0], cumul_xrange[1]-cumul_xrange[0]] spec = gridspec.GridSpec(ncols=2, nrows=1, width_ratios=width_ratios) # First panel ax0 = fig.add_subplot(spec[0]) feature_names = list(single_aucs.index) ax0.plot(single_aucs, feature_names, 'ko', markersize=10) ax0.hlines(y=range(n_features), xmin=single_xrange[0], xmax=single_aucs, color='gray', alpha=0.2, linewidth=5) ax0.set_ylim(n_features-0.5, -0.5) ax0.set_xlim(*single_xrange) ax0.set_xlabel('ROC Area Under Curve') #ax0.set_title('Top single-feature models') ax0.set_yticklabels(feature_names) def fix_ticklabels(axes): for ticklabel in axes.get_yticklabels(): text = ticklabel.get_text() ticklabel.set_weight("normal") if text in classes['features']['chemosensory']: ticklabel.set_weight("bold") if classes['dtypes'].get(text, '') not in ['binary', 'categorical']: ticklabel.set_style("oblique") fix_ticklabels(ax0) ax0.set_yticklabels(nicify(feature_names)) # Second panel if cumul_xrange[0] == cumul_xrange[1]: return 0 ax1 = fig.add_subplot(spec[1]) z = cumul_aucs[C].sort_values('Rank') z['Rank'] = np.arange(1, z.shape[0]+1) z.plot(x='AUC', y='Rank', color='k', marker='o', ax=ax1) ax1.set_ylim(n_features+0.5, 0.5) ax1.set_ylabel('Cumulative # Features') ax1.set_xlabel('ROC AUC') ax1.set_xlim(*cumul_xrange) ax1.set_yticks(range(1, n_features+1)) ax1.legend().remove() #ax1.set_title('Top cumulative features model') twinax = ax1.twinx() twinax.set_ylim(n_features+0.5, 0.5) twinax.set_yticks(range(1, n_features+1)) feature_names = list(cumul_aucs[C].sort_values('Rank').index) twinax.set_yticklabels(feature_names) fix_ticklabels(twinax) feature_names = nicify(feature_names) twinax.set_yticklabels(['+%s' % f if i else f for i, f in enumerate(feature_names)]); plt.tight_layout() def single_plot(single_aucs, single_xrange, n_features, classes, figsize=(10, 6), ax=None, delta=False): if ax is None: fig = plt.figure(figsize=figsize) ax = plt.gca() feature_names = list(single_aucs.index) ax.plot(single_aucs, feature_names, 'ko', markersize=10) ax.hlines(y=range(n_features), xmin=single_xrange[0], xmax=single_xrange[1], color='gray', alpha=0.2, linewidth=5) ax.set_ylim(n_features-0.5, -0.5) ax.set_xlim(*single_xrange) if delta: ax.set_xlabel('Δ ROC AUC') else: ax.set_xlabel('ROC AUC') ax.set_yticklabels(feature_names) def fix_ticklabels(axes): for ticklabel in axes.get_yticklabels(): text = ticklabel.get_text() ticklabel.set_weight("normal") if text in classes['features']['chemosensory']: ticklabel.set_weight("bold") if classes['dtypes'].get(text, '') not in ['binary', 'categorical']: ticklabel.set_style("oblique") fix_ticklabels(ax) ax.set_yticklabels(nicify(feature_names)) return ax def plot_cumul_roc_aucs(roc_aucs): for C in roc_aucs.columns.levels[0]: roc_aucs[C].sort_values('Rank')['AUC'].plot(label='C=%.3g' % C) plt.legend() ns = range(0, roc_aucs.shape[0], 5) plt.xticks(ns, ['%d' % (1+x) for x in ns]) plt.xlabel('# Features') def fix_quartile_lines(ax): for i, l in enumerate(ax.lines): if i % 3 != 1: l.set_linestyle('--') else: l.set_linestyle('-') l.set_linewidth(2) if int(i/3) % 2 == 0: l.set_color('white') else: l.set_color('black') def mutual_info(contingency): pxy = (contingency+1e-25) / contingency.sum().sum() px = pxy.sum(axis=1) py = pxy.sum(axis=0) I = 0 for i in range(len(px)): for j in range(len(py)): I += pxy.iloc[i, j] * np.log2(pxy.iloc[i, j] / (px.iloc[i]*py.iloc[j])) return I def check_splits(clf, X, y, features, s, set_keys): for train_keys in combinations_with_replacement(set_keys, len(set_keys)-1): train_keys = set(train_keys) train = set.union(*[s[x] for x in train_keys]) for test_keys in combinations_with_replacement(set_keys, len(set_keys)-1): test_keys = set(test_keys) if not train_keys.intersection(test_keys): test = set.union(*[s[x] for x in test_keys]) clf.fit(X.loc[train, features], y[train]) auc = roc_auc_score(y[test], clf.predict_proba(X.loc[test, features])[:, 1]) print( "Trained on: %s; Tested on: %s; AUC=%.3g" % (train_keys, test_keys, auc) ) def odds_ratio(df, sets, feature): df_c = feature_contingency(df, sets, feature, verbose=False) return (df_c.loc[1, "C19+"] / df_c.loc[1, "C19-"]) / ( df_c.loc[0, "C19+"] / df_c.loc[0, "C19-"] ) def compute_gccr_yougov_corr(df, s, yg_countries): country_of_residence = pd.read_csv("data/processed/country-of-residence.csv", index_col=0) df_ = df.join(country_of_residence, how="inner") rs = [] result = pd.Series(index=np.arange(7 * -6, 7 * 7, 7), dtype='float') for offset in tqdm(result.index): df_["yg_week"] = yg_week(df_, offset=offset, how="Completion_day") # df_["yg_week"] = yg_week(df_, offset=offset, how="Onset_day") yougov = get_yougov(df_, yg_countries) gccr_yougov = compare_yougov(df_, yougov, s) if offset == 0: # Print sample size at offset=0 print(gccr_yougov[["GCCR_N", "YG_N"]].dropna().sum().astype(int)) result[offset] = plot_fp(gccr_yougov, plot=False) return result def get_auc_p(auc, n1, n2): sigma_u = np.sqrt(n1 * n2 * (n1 + n2 + 1) / 12) mu_u = n1 * n2 / 2 u = auc * n1 * n2 z = (u - mu_u) / sigma_u return 1 - norm.cdf(z) def tranche_compare(clf, X, y, s): for gccr in [1, 2, 3]: s["gccr%d" % gccr] = get_set(df, "GCCR==%d" % gccr) & ( s["lab-covid"] | s["non-covid"] ) check_splits( clf, X, y, ["Smell_during_illness", "Days_since_onset"], s, ["gccr1", "gccr2", "gccr3"], ) def anova(df, dv, between, ss_type=3): if not isinstance(between, list): between = [between] df_anova = df.rename(columns={col: col.replace(' ', '_') for col in df}) # Pingouin can't handle the blank space cols = list(set([dv] + between + ['COVID_Status'])) df_anova['COVID_Status'] = 1*(df_anova['COVID_Status']=='C19+') df_anova = df_anova[cols] df_anova[:] = StandardScaler().fit_transform(df_anova) return pingouin.anova(data=df_anova, dv=dv, between=between, ss_type=ss_type) def author_roles(): authors =
pd.read_csv('data/processed/author_roles.csv', encoding='latin1')
pandas.read_csv
# To add a new cell, type '# %%' # To add a new markdown cell, type '# %% [markdown]' # %% # Setting up the environment. import numpy as np import pandas as pd # %% # Load the data from the John Hopkins github repo df = pd.read_csv('https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/11-14-2020.csv', index_col=0) # %% # Dropping some columns and sorting df1 = df[["Admin2", "Province_State", "Country_Region", "Confirmed", "Deaths", "Combined_Key", "Recovered", "Active", 'Last_Update']] #getting the columns I want df1 = df1[df1['Confirmed'] !=0] #dropping States with 0 confirmed df1 = df1[(df1["Country_Region"] == "US")] #dropping countries other than the US df1 = df1.sort_values(by=['Province_State','Confirmed'], ascending=True) #sorting by State and then Confirmed df1 = df1.dropna() #dropping NA values df1 = df1[df1.Province_State != 'Wuhan Evacuee'] #dropping this row because it is not US df1['Combined_Key'] = df1['Combined_Key'].str.replace(r', US', '') #removing US from Combined key so it looks better in the hover text #df1 = df1.groupby(['Province_State']) df1 = df1.reset_index() #resetting index so FIPS is not the index df1 = df1.rename(columns={'Province_State': 'State'}) df1 = df1.rename(columns={'Admin2': 'County'}) df1 = df1.rename(columns={'Country_Region': 'Country'}) df1 = df1.rename(columns={'Combined_Key': 'County/State'}) df1.head(5) #df1.shape # %% df2 = df1.groupby(['State']).sum() df2 = df2.rename(columns={'Confirmed': 'Total Confirmed'}) df2 = df2.rename(columns={'Deaths': 'Total Deaths'}) df2 = df2.reset_index() #df2 = df2[df['Confirmed'] > 20] df2 = df2.sort_values(by=['Total Confirmed', 'State'], ascending=False) df2.head(5) # %% frames = [df1, df2] #df3 = pd.concat([df1, df2], axis=0, sort=False) df3 =
pd.concat(frames)
pandas.concat
import pickle import numpy as np import pandas as pd ## plot conf import matplotlib.pyplot as plt plt.rcParams.update({'font.size': 7}) width = 8.5/2.54 height = width*(3/4) ### import os script_dir = os.path.dirname(os.path.abspath(__file__)) plot_path = './' male_rarities, female_rarities = pickle.load(open(script_dir+'/plot_pickles/raritys.p', 'rb')) ## Load DPVI fits epsilons = [0.74] epsilons = np.array(epsilons) n_runs = 100 # Load DP results syn_dpvi_coef_female_dict = pickle.load(open(script_dir+'/plot_pickles/female_coef_dict.p', 'rb')) syn_dpvi_p_value_female_dict = pickle.load(open(script_dir+'/plot_pickles/female_p_value_dict.p', 'rb')) syn_dpvi_coef_male_dict = pickle.load(open(script_dir+'/plot_pickles/male_coef_dict.p', 'rb')) syn_dpvi_p_value_male_dict = pickle.load(open(script_dir+'/plot_pickles/male_p_value_dict.p', 'rb')) ## load bootstrap results female_names = list(pd.read_csv('../R/original_bootstrapped/female_bootstrapped.csv', index_col=0).index) female_nrun_coefs = pd.read_csv('../R/original_bootstrapped/female_bootstrap.csv', usecols=range(43), index_col=0) female_nrun_pvalues = pd.read_csv('../R/original_bootstrapped/female_bootstrap.csv', usecols=range(43, 85)) female_nrun_coefs =
pd.DataFrame(female_nrun_coefs.values, columns=female_names)
pandas.DataFrame
#General guide: https://github.com/googleads/google-ads-python #When I use this script, it runs on a cron job every hour. The dataframe is uploaded to SQL (this code is not provided) # and if the pct_of_budget exceeds a given value, it sends me an email with a list of campaigns to check on import pandas as pd import io from googleads import adwords from datetime import datetime, timedelta acc_id = 'YOUR_ADS_ACCOUNT_NUMBER' output = io.StringIO() adwords_client = adwords.AdWordsClient.LoadFromStorage('googleads.yaml') #You will need to generate this file yourself adwords_client.SetClientCustomerId(acc_id) report_downloader = adwords_client.GetReportDownloader(version='v201809') report_query = (adwords.ReportQueryBuilder() .Select('CampaignName', 'Cost', 'Amount') .From('CAMPAIGN_PERFORMANCE_REPORT') .Where('CampaignStatus').In('ENABLED') .During('TODAY') .Build()) report_downloader.DownloadReportWithAwql(report_query, 'CSV', output, skip_report_header=True, skip_column_header=False, skip_report_summary=True, include_zero_impressions=True) output.seek(0) types= {'Cost': pd.np.float64, 'Budget': pd.np.float64} df =
pd.read_csv(output,low_memory=False, dtype= types, na_values=[' --'])
pandas.read_csv
# https://blog.csdn.net/a19990412/article/details/85139058 # LSTM实现股票预测--pytorch版本【120+行代码】 ''' 模型假设 我这里认为每天的沪深300的最高价格,是依赖于当天的前n天的沪深300的最高价。 然后用RNN的LSTM模型来估计(捕捉到时序信息)。 让模型学会用前n天的最高价,来判断当天的最高价。 ''' # depends import pandas as pd import matplotlib.pyplot as plt import datetime import torch import torch.nn as nn import numpy as np from torch.utils.data import Dataset, DataLoader ## load data def generate_df_affect_by_n_days(series, n, index=False): if len(series) <= n: raise Exception("The Length of series is %d, while affect by (n=%d)." % (len(series), n)) df =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- import numpy as np import pytest from pandas._libs.tslib import iNaT import pandas.compat as compat from pandas.core.dtypes.dtypes import CategoricalDtype import pandas as pd from pandas import ( CategoricalIndex, DatetimeIndex, Float64Index, Index, Int64Index, IntervalIndex, MultiIndex, PeriodIndex, RangeIndex, Series, TimedeltaIndex, UInt64Index, isna) from pandas.core.indexes.base import InvalidIndexError from pandas.core.indexes.datetimelike import DatetimeIndexOpsMixin import pandas.util.testing as tm class Base(object): """ base class for index sub-class tests """ _holder = None _compat_props = ['shape', 'ndim', 'size', 'nbytes'] def setup_indices(self): for name, idx in self.indices.items(): setattr(self, name, idx) def test_pickle_compat_construction(self): # need an object to create with msg = (r"Index\(\.\.\.\) must be called with a collection of some" r" kind, None was passed|" r"__new__\(\) missing 1 required positional argument: 'data'|" r"__new__\(\) takes at least 2 arguments \(1 given\)") with pytest.raises(TypeError, match=msg): self._holder() def test_to_series(self): # assert that we are creating a copy of the index idx = self.create_index() s = idx.to_series() assert s.values is not idx.values assert s.index is not idx assert s.name == idx.name def test_to_series_with_arguments(self): # GH18699 # index kwarg idx = self.create_index() s = idx.to_series(index=idx) assert s.values is not idx.values assert s.index is idx assert s.name == idx.name # name kwarg idx = self.create_index() s = idx.to_series(name='__test') assert s.values is not idx.values assert s.index is not idx assert s.name != idx.name @pytest.mark.parametrize("name", [None, "new_name"]) def test_to_frame(self, name): # see GH-15230, GH-22580 idx = self.create_index() if name: idx_name = name else: idx_name = idx.name or 0 df = idx.to_frame(name=idx_name) assert df.index is idx assert len(df.columns) == 1 assert df.columns[0] == idx_name assert df[idx_name].values is not idx.values df = idx.to_frame(index=False, name=idx_name) assert df.index is not idx def test_to_frame_datetime_tz(self): # GH 25809 idx = pd.date_range(start='2019-01-01', end='2019-01-30', freq='D') idx = idx.tz_localize('UTC') result = idx.to_frame() expected = pd.DataFrame(idx, index=idx) tm.assert_frame_equal(result, expected) def test_shift(self): # GH8083 test the base class for shift idx = self.create_index() msg = "Not supported for type {}".format(type(idx).__name__) with pytest.raises(NotImplementedError, match=msg): idx.shift(1) with pytest.raises(NotImplementedError, match=msg): idx.shift(1, 2) def test_create_index_existing_name(self): # GH11193, when an existing index is passed, and a new name is not # specified, the new index should inherit the previous object name expected = self.create_index() if not isinstance(expected, MultiIndex): expected.name = 'foo' result = pd.Index(expected) tm.assert_index_equal(result, expected) result = pd.Index(expected, name='bar') expected.name = 'bar' tm.assert_index_equal(result, expected) else: expected.names = ['foo', 'bar'] result = pd.Index(expected) tm.assert_index_equal( result, Index(Index([('foo', 'one'), ('foo', 'two'), ('bar', 'one'), ('baz', 'two'), ('qux', 'one'), ('qux', 'two')], dtype='object'), names=['foo', 'bar'])) result = pd.Index(expected, names=['A', 'B']) tm.assert_index_equal( result, Index(Index([('foo', 'one'), ('foo', 'two'), ('bar', 'one'), ('baz', 'two'), ('qux', 'one'), ('qux', 'two')], dtype='object'), names=['A', 'B'])) def test_numeric_compat(self): idx = self.create_index() with pytest.raises(TypeError, match="cannot perform __mul__"): idx * 1 with pytest.raises(TypeError, match="cannot perform __rmul__"): 1 * idx div_err = "cannot perform __truediv__" with pytest.raises(TypeError, match=div_err): idx / 1 div_err = div_err.replace(' __', ' __r') with pytest.raises(TypeError, match=div_err): 1 / idx with pytest.raises(TypeError, match="cannot perform __floordiv__"): idx // 1 with pytest.raises(TypeError, match="cannot perform __rfloordiv__"): 1 // idx def test_logical_compat(self): idx = self.create_index() with pytest.raises(TypeError, match='cannot perform all'): idx.all() with pytest.raises(TypeError, match='cannot perform any'): idx.any() def test_boolean_context_compat(self): # boolean context compat idx = self.create_index() with pytest.raises(ValueError, match='The truth value of a'): if idx: pass def test_reindex_base(self): idx = self.create_index() expected = np.arange(idx.size, dtype=np.intp) actual = idx.get_indexer(idx) tm.assert_numpy_array_equal(expected, actual) with pytest.raises(ValueError, match='Invalid fill method'): idx.get_indexer(idx, method='invalid') def test_get_indexer_consistency(self): # See GH 16819 for name, index in self.indices.items(): if isinstance(index, IntervalIndex): continue if index.is_unique or isinstance(index, CategoricalIndex): indexer = index.get_indexer(index[0:2]) assert isinstance(indexer, np.ndarray) assert indexer.dtype == np.intp else: e = "Reindexing only valid with uniquely valued Index objects" with pytest.raises(InvalidIndexError, match=e): index.get_indexer(index[0:2]) indexer, _ = index.get_indexer_non_unique(index[0:2]) assert isinstance(indexer, np.ndarray) assert indexer.dtype == np.intp def test_ndarray_compat_properties(self): idx = self.create_index() assert idx.T.equals(idx) assert idx.transpose().equals(idx) values = idx.values for prop in self._compat_props: assert getattr(idx, prop) == getattr(values, prop) # test for validity idx.nbytes idx.values.nbytes def test_repr_roundtrip(self): idx = self.create_index() tm.assert_index_equal(eval(repr(idx)), idx) def test_str(self): # test the string repr idx = self.create_index() idx.name = 'foo' assert "'foo'" in str(idx) assert idx.__class__.__name__ in str(idx) def test_repr_max_seq_item_setting(self): # GH10182 idx = self.create_index() idx = idx.repeat(50) with pd.option_context("display.max_seq_items", None): repr(idx) assert '...' not in str(idx) def test_copy_name(self): # gh-12309: Check that the "name" argument # passed at initialization is honored. for name, index in compat.iteritems(self.indices): if isinstance(index, MultiIndex): continue first = index.__class__(index, copy=True, name='mario') second = first.__class__(first, copy=False) # Even though "copy=False", we want a new object. assert first is not second # Not using tm.assert_index_equal() since names differ. assert index.equals(first) assert first.name == 'mario' assert second.name == 'mario' s1 = Series(2, index=first) s2 = Series(3, index=second[:-1]) if not isinstance(index, CategoricalIndex): # See gh-13365 s3 = s1 * s2 assert s3.index.name == 'mario' def test_ensure_copied_data(self): # Check the "copy" argument of each Index.__new__ is honoured # GH12309 for name, index in compat.iteritems(self.indices): init_kwargs = {} if isinstance(index, PeriodIndex): # Needs "freq" specification: init_kwargs['freq'] = index.freq elif isinstance(index, (RangeIndex, MultiIndex, CategoricalIndex)): # RangeIndex cannot be initialized from data # MultiIndex and CategoricalIndex are tested separately continue index_type = index.__class__ result = index_type(index.values, copy=True, **init_kwargs) tm.assert_index_equal(index, result) tm.assert_numpy_array_equal(index._ndarray_values, result._ndarray_values, check_same='copy') if isinstance(index, PeriodIndex): # .values an object array of Period, thus copied result = index_type(ordinal=index.asi8, copy=False, **init_kwargs) tm.assert_numpy_array_equal(index._ndarray_values, result._ndarray_values, check_same='same') elif isinstance(index, IntervalIndex): # checked in test_interval.py pass else: result = index_type(index.values, copy=False, **init_kwargs) tm.assert_numpy_array_equal(index.values, result.values, check_same='same') tm.assert_numpy_array_equal(index._ndarray_values, result._ndarray_values, check_same='same') def test_memory_usage(self): for name, index in compat.iteritems(self.indices): result = index.memory_usage() if len(index): index.get_loc(index[0]) result2 = index.memory_usage() result3 = index.memory_usage(deep=True) # RangeIndex, IntervalIndex # don't have engines if not isinstance(index, (RangeIndex, IntervalIndex)): assert result2 > result if index.inferred_type == 'object': assert result3 > result2 else: # we report 0 for no-length assert result == 0 def test_argsort(self): for k, ind in self.indices.items(): # separately tested if k in ['catIndex']: continue result = ind.argsort() expected = np.array(ind).argsort() tm.assert_numpy_array_equal(result, expected, check_dtype=False) def test_numpy_argsort(self): for k, ind in self.indices.items(): result = np.argsort(ind) expected = ind.argsort() tm.assert_numpy_array_equal(result, expected) # these are the only two types that perform # pandas compatibility input validation - the # rest already perform separate (or no) such # validation via their 'values' attribute as # defined in pandas.core.indexes/base.py - they # cannot be changed at the moment due to # backwards compatibility concerns if isinstance(type(ind), (CategoricalIndex, RangeIndex)): msg = "the 'axis' parameter is not supported" with pytest.raises(ValueError, match=msg): np.argsort(ind, axis=1) msg = "the 'kind' parameter is not supported" with pytest.raises(ValueError, match=msg): np.argsort(ind, kind='mergesort') msg = "the 'order' parameter is not supported" with pytest.raises(ValueError, match=msg): np.argsort(ind, order=('a', 'b')) def test_take(self): indexer = [4, 3, 0, 2] for k, ind in self.indices.items(): # separate if k in ['boolIndex', 'tuples', 'empty']: continue result = ind.take(indexer) expected = ind[indexer] assert result.equals(expected) if not isinstance(ind, (DatetimeIndex, PeriodIndex, TimedeltaIndex)): # GH 10791 with pytest.raises(AttributeError): ind.freq def test_take_invalid_kwargs(self): idx = self.create_index() indices = [1, 2] msg = r"take\(\) got an unexpected keyword argument 'foo'" with pytest.raises(TypeError, match=msg): idx.take(indices, foo=2) msg = "the 'out' parameter is not supported" with pytest.raises(ValueError, match=msg): idx.take(indices, out=indices) msg = "the 'mode' parameter is not supported" with pytest.raises(ValueError, match=msg): idx.take(indices, mode='clip') def test_repeat(self): rep = 2 i = self.create_index() expected = pd.Index(i.values.repeat(rep), name=i.name) tm.assert_index_equal(i.repeat(rep), expected) i = self.create_index() rep = np.arange(len(i)) expected = pd.Index(i.values.repeat(rep), name=i.name) tm.assert_index_equal(i.repeat(rep), expected) def test_numpy_repeat(self): rep = 2 i = self.create_index() expected = i.repeat(rep) tm.assert_index_equal(np.repeat(i, rep), expected) msg = "the 'axis' parameter is not supported" with pytest.raises(ValueError, match=msg): np.repeat(i, rep, axis=0) @pytest.mark.parametrize('klass', [list, tuple, np.array, Series]) def test_where(self, klass): i = self.create_index() cond = [True] * len(i) result = i.where(klass(cond)) expected = i tm.assert_index_equal(result, expected) cond = [False] + [True] * len(i[1:]) expected = pd.Index([i._na_value] + i[1:].tolist(), dtype=i.dtype) result = i.where(klass(cond)) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("case", [0.5, "xxx"]) @pytest.mark.parametrize("method", ["intersection", "union", "difference", "symmetric_difference"]) def test_set_ops_error_cases(self, case, method): for name, idx in compat.iteritems(self.indices): # non-iterable input msg = "Input must be Index or array-like" with pytest.raises(TypeError, match=msg): getattr(idx, method)(case) def test_intersection_base(self): for name, idx in compat.iteritems(self.indices): first = idx[:5] second = idx[:3] intersect = first.intersection(second) if isinstance(idx, CategoricalIndex): pass else: assert tm.equalContents(intersect, second) # GH 10149 cases = [klass(second.values) for klass in [np.array, Series, list]] for case in cases: if isinstance(idx, PeriodIndex): msg = "can only call with other PeriodIndex-ed objects" with pytest.raises(ValueError, match=msg): first.intersection(case) elif isinstance(idx, CategoricalIndex): pass else: result = first.intersection(case) assert tm.equalContents(result, second) if isinstance(idx, MultiIndex): msg = "other must be a MultiIndex or a list of tuples" with pytest.raises(TypeError, match=msg): first.intersection([1, 2, 3]) def test_union_base(self): for name, idx in compat.iteritems(self.indices): first = idx[3:] second = idx[:5] everything = idx union = first.union(second) assert tm.equalContents(union, everything) # GH 10149 cases = [klass(second.values) for klass in [np.array, Series, list]] for case in cases: if isinstance(idx, PeriodIndex): msg = "can only call with other PeriodIndex-ed objects" with pytest.raises(ValueError, match=msg): first.union(case) elif isinstance(idx, CategoricalIndex): pass else: result = first.union(case) assert tm.equalContents(result, everything) if isinstance(idx, MultiIndex): msg = "other must be a MultiIndex or a list of tuples" with pytest.raises(TypeError, match=msg): first.union([1, 2, 3]) @pytest.mark.parametrize("sort", [None, False]) def test_difference_base(self, sort): for name, idx in compat.iteritems(self.indices): first = idx[2:] second = idx[:4] answer = idx[4:] result = first.difference(second, sort) if isinstance(idx, CategoricalIndex): pass else: assert tm.equalContents(result, answer) # GH 10149 cases = [klass(second.values) for klass in [np.array, Series, list]] for case in cases: if isinstance(idx, PeriodIndex): msg = "can only call with other PeriodIndex-ed objects" with pytest.raises(ValueError, match=msg): first.difference(case, sort) elif isinstance(idx, CategoricalIndex): pass elif isinstance(idx, (DatetimeIndex, TimedeltaIndex)): assert result.__class__ == answer.__class__ tm.assert_numpy_array_equal(result.sort_values().asi8, answer.sort_values().asi8) else: result = first.difference(case, sort) assert tm.equalContents(result, answer) if isinstance(idx, MultiIndex): msg = "other must be a MultiIndex or a list of tuples" with pytest.raises(TypeError, match=msg): first.difference([1, 2, 3], sort) def test_symmetric_difference(self): for name, idx in compat.iteritems(self.indices): first = idx[1:] second = idx[:-1] if isinstance(idx, CategoricalIndex): pass else: answer = idx[[0, -1]] result = first.symmetric_difference(second) assert tm.equalContents(result, answer) # GH 10149 cases = [klass(second.values) for klass in [np.array, Series, list]] for case in cases: if isinstance(idx, PeriodIndex): msg = "can only call with other PeriodIndex-ed objects" with pytest.raises(ValueError, match=msg): first.symmetric_difference(case) elif isinstance(idx, CategoricalIndex): pass else: result = first.symmetric_difference(case) assert tm.equalContents(result, answer) if isinstance(idx, MultiIndex): msg = "other must be a MultiIndex or a list of tuples" with pytest.raises(TypeError, match=msg): first.symmetric_difference([1, 2, 3]) def test_insert_base(self): for name, idx in compat.iteritems(self.indices): result = idx[1:4] if not len(idx): continue # test 0th element assert idx[0:4].equals(result.insert(0, idx[0])) def test_delete_base(self): for name, idx in compat.iteritems(self.indices): if not len(idx): continue if isinstance(idx, RangeIndex): # tested in class continue expected = idx[1:] result = idx.delete(0) assert result.equals(expected) assert result.name == expected.name expected = idx[:-1] result = idx.delete(-1) assert result.equals(expected) assert result.name == expected.name with pytest.raises((IndexError, ValueError)): # either depending on numpy version idx.delete(len(idx)) def test_equals(self): for name, idx in compat.iteritems(self.indices): assert idx.equals(idx) assert idx.equals(idx.copy()) assert idx.equals(idx.astype(object)) assert not idx.equals(list(idx)) assert not idx.equals(np.array(idx)) # Cannot pass in non-int64 dtype to RangeIndex if not isinstance(idx, RangeIndex): same_values = Index(idx, dtype=object) assert idx.equals(same_values) assert same_values.equals(idx) if idx.nlevels == 1: # do not test MultiIndex assert not idx.equals(pd.Series(idx)) def test_equals_op(self): # GH9947, GH10637 index_a = self.create_index() if isinstance(index_a, PeriodIndex): pytest.skip('Skip check for PeriodIndex') n = len(index_a) index_b = index_a[0:-1] index_c = index_a[0:-1].append(index_a[-2:-1]) index_d = index_a[0:1] msg = "Lengths must match|could not be broadcast" with pytest.raises(ValueError, match=msg): index_a == index_b expected1 = np.array([True] * n) expected2 = np.array([True] * (n - 1) + [False]) tm.assert_numpy_array_equal(index_a == index_a, expected1) tm.assert_numpy_array_equal(index_a == index_c, expected2) # test comparisons with numpy arrays array_a = np.array(index_a) array_b = np.array(index_a[0:-1]) array_c = np.array(index_a[0:-1].append(index_a[-2:-1])) array_d = np.array(index_a[0:1]) with pytest.raises(ValueError, match=msg): index_a == array_b tm.assert_numpy_array_equal(index_a == array_a, expected1) tm.assert_numpy_array_equal(index_a == array_c, expected2) # test comparisons with Series series_a = Series(array_a) series_b = Series(array_b) series_c = Series(array_c) series_d = Series(array_d) with pytest.raises(ValueError, match=msg): index_a == series_b tm.assert_numpy_array_equal(index_a == series_a, expected1) tm.assert_numpy_array_equal(index_a == series_c, expected2) # cases where length is 1 for one of them with pytest.raises(ValueError, match="Lengths must match"): index_a == index_d with pytest.raises(ValueError, match="Lengths must match"): index_a == series_d with pytest.raises(ValueError, match="Lengths must match"): index_a == array_d msg = "Can only compare identically-labeled Series objects" with pytest.raises(ValueError, match=msg): series_a == series_d with pytest.raises(ValueError, match="Lengths must match"): series_a == array_d # comparing with a scalar should broadcast; note that we are excluding # MultiIndex because in this case each item in the index is a tuple of # length 2, and therefore is considered an array of length 2 in the # comparison instead of a scalar if not isinstance(index_a, MultiIndex): expected3 = np.array([False] * (len(index_a) - 2) + [True, False]) # assuming the 2nd to last item is unique in the data item = index_a[-2] tm.assert_numpy_array_equal(index_a == item, expected3) tm.assert_series_equal(series_a == item, Series(expected3)) def test_numpy_ufuncs(self): # test ufuncs of numpy, see: # http://docs.scipy.org/doc/numpy/reference/ufuncs.html for name, idx in compat.iteritems(self.indices): for func in [np.exp, np.exp2, np.expm1, np.log, np.log2, np.log10, np.log1p, np.sqrt, np.sin, np.cos, np.tan, np.arcsin, np.arccos, np.arctan, np.sinh, np.cosh, np.tanh, np.arcsinh, np.arccosh, np.arctanh, np.deg2rad, np.rad2deg]: if isinstance(idx, DatetimeIndexOpsMixin): # raise TypeError or ValueError (PeriodIndex) # PeriodIndex behavior should be changed in future version with pytest.raises(Exception): with np.errstate(all='ignore'): func(idx) elif isinstance(idx, (Float64Index, Int64Index, UInt64Index)): # coerces to float (e.g. np.sin) with np.errstate(all='ignore'): result = func(idx) exp = Index(func(idx.values), name=idx.name) tm.assert_index_equal(result, exp) assert isinstance(result, pd.Float64Index) else: # raise AttributeError or TypeError if len(idx) == 0: continue else: with pytest.raises(Exception): with np.errstate(all='ignore'): func(idx) for func in [np.isfinite, np.isinf, np.isnan, np.signbit]: if isinstance(idx, DatetimeIndexOpsMixin): # raise TypeError or ValueError (PeriodIndex) with pytest.raises(Exception): func(idx) elif isinstance(idx, (Float64Index, Int64Index, UInt64Index)): # Results in bool array result = func(idx) assert isinstance(result, np.ndarray) assert not isinstance(result, Index) else: if len(idx) == 0: continue else: with pytest.raises(Exception): func(idx) def test_hasnans_isnans(self): # GH 11343, added tests for hasnans / isnans for name, index in self.indices.items(): if isinstance(index, MultiIndex): pass else: idx = index.copy() # cases in indices doesn't include NaN expected = np.array([False] * len(idx), dtype=bool) tm.assert_numpy_array_equal(idx._isnan, expected) assert idx.hasnans is False idx = index.copy() values = np.asarray(idx.values) if len(index) == 0: continue elif isinstance(index, DatetimeIndexOpsMixin): values[1] = iNaT elif isinstance(index, (Int64Index, UInt64Index)): continue else: values[1] = np.nan if isinstance(index, PeriodIndex): idx = index.__class__(values, freq=index.freq) else: idx = index.__class__(values) expected = np.array([False] * len(idx), dtype=bool) expected[1] = True tm.assert_numpy_array_equal(idx._isnan, expected) assert idx.hasnans is True def test_fillna(self): # GH 11343 for name, index in self.indices.items(): if len(index) == 0: pass elif isinstance(index, MultiIndex): idx = index.copy() msg = "isna is not defined for MultiIndex" with pytest.raises(NotImplementedError, match=msg): idx.fillna(idx[0]) else: idx = index.copy() result = idx.fillna(idx[0]) tm.assert_index_equal(result, idx) assert result is not idx msg = "'value' must be a scalar, passed: " with pytest.raises(TypeError, match=msg): idx.fillna([idx[0]]) idx = index.copy() values = np.asarray(idx.values) if isinstance(index, DatetimeIndexOpsMixin): values[1] = iNaT elif isinstance(index, (Int64Index, UInt64Index)): continue else: values[1] = np.nan if isinstance(index, PeriodIndex): idx = index.__class__(values, freq=index.freq) else: idx = index.__class__(values) expected = np.array([False] * len(idx), dtype=bool) expected[1] = True tm.assert_numpy_array_equal(idx._isnan, expected) assert idx.hasnans is True def test_nulls(self): # this is really a smoke test for the methods # as these are adequately tested for function elsewhere for name, index in self.indices.items(): if len(index) == 0: tm.assert_numpy_array_equal( index.isna(), np.array([], dtype=bool)) elif isinstance(index, MultiIndex): idx = index.copy() msg = "isna is not defined for MultiIndex" with pytest.raises(NotImplementedError, match=msg): idx.isna() else: if not index.hasnans: tm.assert_numpy_array_equal( index.isna(), np.zeros(len(index), dtype=bool)) tm.assert_numpy_array_equal( index.notna(), np.ones(len(index), dtype=bool)) else: result = isna(index) tm.assert_numpy_array_equal(index.isna(), result) tm.assert_numpy_array_equal(index.notna(), ~result) def test_empty(self): # GH 15270 index = self.create_index() assert not index.empty assert index[:0].empty def test_join_self_unique(self, join_type): index = self.create_index() if index.is_unique: joined = index.join(index, how=join_type) assert (index == joined).all() def test_map(self): # callable index = self.create_index() # we don't infer UInt64 if isinstance(index, pd.UInt64Index): expected = index.astype('int64') else: expected = index result = index.map(lambda x: x) tm.assert_index_equal(result, expected) @pytest.mark.parametrize( "mapper", [ lambda values, index: {i: e for e, i in zip(values, index)}, lambda values, index: pd.Series(values, index)]) def test_map_dictlike(self, mapper): index = self.create_index() if isinstance(index, (pd.CategoricalIndex, pd.IntervalIndex)): pytest.skip("skipping tests for {}".format(type(index))) identity = mapper(index.values, index) # we don't infer to UInt64 for a dict if isinstance(index, pd.UInt64Index) and isinstance(identity, dict): expected = index.astype('int64') else: expected = index result = index.map(identity) tm.assert_index_equal(result, expected) # empty mappable expected = pd.Index([np.nan] * len(index)) result = index.map(mapper(expected, index)) tm.assert_index_equal(result, expected) def test_putmask_with_wrong_mask(self): # GH18368 index = self.create_index() with pytest.raises(ValueError): index.putmask(np.ones(len(index) + 1, np.bool), 1) with pytest.raises(ValueError): index.putmask(np.ones(len(index) - 1, np.bool), 1) with pytest.raises(ValueError): index.putmask('foo', 1) @pytest.mark.parametrize('copy', [True, False]) @pytest.mark.parametrize('name', [None, 'foo']) @pytest.mark.parametrize('ordered', [True, False]) def test_astype_category(self, copy, name, ordered): # GH 18630 index = self.create_index() if name: index = index.rename(name) # standard categories dtype = CategoricalDtype(ordered=ordered) result = index.astype(dtype, copy=copy) expected = CategoricalIndex(index.values, name=name, ordered=ordered) tm.assert_index_equal(result, expected) # non-standard categories dtype = CategoricalDtype(index.unique().tolist()[:-1], ordered) result = index.astype(dtype, copy=copy) expected = CategoricalIndex(index.values, name=name, dtype=dtype) tm.assert_index_equal(result, expected) if ordered is False: # dtype='category' defaults to ordered=False, so only test once result = index.astype('category', copy=copy) expected = CategoricalIndex(index.values, name=name)
tm.assert_index_equal(result, expected)
pandas.util.testing.assert_index_equal
import geopandas as gp import pandas as pd import numpy as np import networkx as nx import os from shapely.geometry import Point, Polygon, LineString, mapping from shapely import geometry from simpledbf import Dbf5 import warnings warnings.filterwarnings('ignore') # GTFS directories, service ids, and years GTFS = [[r'C:\Users\xzh263\Dropbox (KTC)\SFCTA CMP\2021 CMP\Coverage\gtfs_2021may13', '1_merged_10007724', 2021], [r'C:\Users\xzh263\Dropbox (KTC)\SFCTA CMP\2021 CMP\Coverage\gtfs_2020april9', 1, 2020], [r'C:\Users\xzh263\Dropbox (KTC)\SFCTA CMP\2021 CMP\Coverage\gtfs_2019may22', '1_merged_8846826', 2019]] # Output directory Coverage_Dir = r'C:\Users\xzh263\Dropbox (KTC)\SFCTA CMP\2021 CMP\Coverage' # OSM Streets Streets_Dir = r'C:\Users\xzh263\Dropbox (KTC)\SFCTA CMP\2021 CMP\Coverage\champ_hwy_shapefile' street_file = 'champ_freeflow.shp' #TAZ shapefile TAZ_Dir = Coverage_Dir taz_file = 'TAZ2454_clean\TAZ2454_clean.shp' # define parameters needed by the calculation min_trips = 22 buffer_radius = 0.25 * 5280 # a quarter mile walking distance #Define NAD 1983 StatePlane California III cal3 = {'proj': 'lcc +lat_1=37.06666666666667 +lat_2=38.43333333333333 +lat_0=36.5 +lon_0=-120.5 +x_0=2000000 +y_0=500000.0000000002', 'ellps': 'GRS80', 'datum': 'NAD83', 'no_defs': True} # Define Functions def generate_transit_stops_geo(stop_dir): stops=pd.read_csv(os.path.join(stop_dir, 'stops.txt')) stops['geometry'] = list(zip(stops.stop_lon, stops.stop_lat)) stops['geometry'] = stops['geometry'].apply(Point) stops = gp.GeoDataFrame(stops, geometry='geometry', crs={'init': 'epsg:4326'}) return stops def generate_transit_shapes_geo(stop_dir, service_id): shapes=pd.read_csv(os.path.join(stop_dir, 'shapes.txt')) shapes_gdf = pd.DataFrame() shape_ids = shapes.shape_id.unique().tolist() rid = 0 for shpid in shape_ids: shp = shapes[shapes['shape_id']==shpid].sort_values(by='shape_pt_sequence') linestr = LineString(zip(shp.shape_pt_lon, shp.shape_pt_lat)) linestr = gp.GeoDataFrame(index=[shpid], crs='epsg:4326', geometry=[linestr]) shapes_gdf = shapes_gdf.append(linestr) rid = rid + 1 shapes_gdf = shapes_gdf.reset_index() shapes_gdf.columns = ['shape_id', 'geometry'] trips = pd.read_csv(os.path.join(stop_dir, 'trips.txt')) trips = trips[trips['service_id']==service_id] trips_shapes = shapes_gdf[shapes_gdf['shape_id'].isin(trips['shape_id'])] return trips, shapes, trips_shapes def frequent_bus_routes(gtfs_dir, service_id, peak_period, outname): # input gtfs files routes_info =pd.read_csv(os.path.join(gtfs_dir, 'routes.txt')) stops = generate_transit_stops_geo(gtfs_dir) trips, shapes, trips_shapes = generate_transit_shapes_geo(gtfs_dir, service_id) stop_times = pd.read_csv(os.path.join(gtfs_dir, 'stop_times.txt')) stop_times['hour'] = stop_times['arrival_time'].apply(lambda x: int(x[0:2])) stop_times['minute'] = stop_times['arrival_time'].apply(lambda x: int(x[3:5])) period_cols = ['route_id', 'direction_id'] #There may be multiples shapes for the same route, so here the most frequent shape is used for each route_id trips_shapes_mcv = trips.groupby(period_cols)['shape_id'].agg(lambda x:x.value_counts().index[0]).reset_index() start_stops_idx = stop_times.groupby(['trip_id'])['stop_sequence'].transform(min) == stop_times['stop_sequence'] trips_hour = pd.merge(trips, stop_times[start_stops_idx][['trip_id', 'arrival_time', 'departure_time', 'hour', 'minute']], on='trip_id', how='left') # trips occuring during the time period of interest # whole period if peak_period == 'AM': trips_period = trips_hour[(trips_hour['hour']>=7) & (trips_hour['hour']<9)] elif peak_period == 'PM': trips_period= trips_hour[((trips_hour['hour']==16) & (trips_hour['minute']>=30)) | (trips_hour['hour']==17) | ((trips_hour['hour']==18) & (trips_hour['minute']<30))] else: print('Input needs to be either AM or PM') # check if routes meet the minimum period and hourly requirements route_period_counts = trips_period.groupby(period_cols).trip_id.count().reset_index() route_period_counts.columns = period_cols +['total_trips'] route_frequent = route_period_counts[route_period_counts['total_trips']>= min_trips] if len(route_frequent)>0: route_frequent_shapes = route_frequent.merge(trips_shapes_mcv, on= period_cols, how='left') route_frequent_shapes = trips_shapes.merge(route_frequent_shapes, on='shape_id') route_frequent_shapes = route_frequent_shapes.merge(routes_info, on='route_id', how='left') route_frequent_shapes.to_file(os.path.join(Coverage_Dir, 'frequent_routes_5min_' + outname + '_' + peak_period + '.shp')) else: print('No frequent routes found for %s %s' % (outname, peak_period)) # frequent stops stop_cols = ['stop_id', 'route_id', 'direction_id'] stop_times_by_route = stop_times.merge(trips[['route_id', 'direction_id', 'trip_id']], on='trip_id', how='left') if peak_period == 'AM': stop_route_period = stop_times_by_route[(stop_times_by_route['hour']>=7) & (stop_times_by_route['hour']<9)] elif peak_period == 'PM': stop_route_period = stop_times_by_route[((stop_times_by_route['hour']==16) & (stop_times_by_route['minute']>=30)) | (stop_times_by_route['hour']==17) | ((stop_times_by_route['hour']==18) & (stop_times_by_route['minute']<30))] else: print('Input needs to be either AM or PM') stop_period_counts = stop_route_period.groupby(stop_cols).trip_id.count().reset_index() stop_period_counts.columns = stop_cols + ['total_trips'] stop_frequent = stop_period_counts[stop_period_counts['total_trips']>= min_trips] if len(stop_frequent)>0: stop_frequent_list = stop_frequent.stop_id.unique().tolist() stop_frequent_gdf = stops[stops['stop_id'].isin(stop_frequent_list)] stop_frequent_gdf.to_file(os.path.join(Coverage_Dir, 'frequent_stops_5min_' + outname + '_' + peak_period + '.shp')) else: print('No frequent stops found for %s %s' % (outname, peak_period)) stop_frequent_list=[] return stop_frequent_list, route_period_counts, stop_period_counts # TAZ Zones taz_shp = gp.read_file(os.path.join(TAZ_Dir, taz_file)) taz_sf_shp = taz_shp[taz_shp['COUNTY']==1] taz_sf_shp = taz_sf_shp.to_crs(cal3) # Streets network streets = gp.read_file(os.path.join(Streets_Dir, street_file)) streets.insert(0, 'LinkID', range(1, len(streets)+1)) streets = streets.to_crs(cal3) def latlong(x): return round(x.coords.xy[1][0],6), round(x.coords.xy[0][0], 6), round(x.coords.xy[1][-1], 6), round(x.coords.xy[0][-1], 6) streets['B_Lat'], streets['B_Long'], streets['E_Lat'], streets['E_Long'] = zip(*streets['geometry'].map(latlong)) b_nodes = streets[['B_Lat', 'B_Long']] b_nodes.columns = ['Lat', 'Long'] e_nodes = streets[['E_Lat', 'E_Long']] e_nodes.columns = ['Lat', 'Long'] streets_endnodes = b_nodes.append(e_nodes, ignore_index=True).reset_index() # Assign unique node id endnodes_cnt=streets_endnodes.groupby(['Lat', 'Long']).index.count().reset_index() endnodes_cnt.rename(columns={'index':'NodeCnt'}, inplace=True) endnodes_cnt['NodeID'] = endnodes_cnt.index+1 # Generate the the unique node shapefile #endnodes_cnt['geometry'] = list(zip(endnodes_cnt.Long, endnodes_cnt.Lat)) #endnodes_cnt['geometry'] = endnodes_cnt['geometry'].apply(Point) #endnodes_unique_gpd = gp.GeoDataFrame(endnodes_cnt, geometry='geometry') #endnodes_unique_gpd.crs = cal3 #endnodes_unique_gpd.to_file(os.path.join(Streets_Dir, 'streets_endnodes.shp')) endnodes_cnt = endnodes_cnt[['Lat', 'Long', 'NodeCnt', 'NodeID']] endnodes_cnt.columns = ['B_Lat', 'B_Long', 'B_NodeCnt', 'B_NodeID'] streets = streets.merge(endnodes_cnt, on=['B_Lat', 'B_Long'], how='left') endnodes_cnt.columns = ['E_Lat', 'E_Long', 'E_NodeCnt', 'E_NodeID'] streets = streets.merge(endnodes_cnt, on=['E_Lat', 'E_Long'], how='left') endnodes_cnt.columns = ['Lat', 'Long', 'NodeCnt', 'NodeID'] streets['length'] = 3.2808 * streets.geometry.length streets['b_e'] = list(zip(streets['B_NodeID'], streets['E_NodeID'])) streets['e_b'] = list(zip(streets['E_NodeID'], streets['B_NodeID'])) # Save the updated street shapefile with endnodes #outcols = [c for c in streets.columns.tolist() if c not in ['b_e', 'e_b']] #streets[outcols].to_file(os.path.join(Streets_Dir, 'streets_with_endnodes.shp')) # Build Walking Network def build_walking_network(gtfs_dir): stops = generate_transit_stops_geo(gtfs_dir) stops = stops.to_crs(cal3) stops_within_sf = gp.sjoin(stops, taz_sf_shp, op='within').reset_index() stops_within_sf = stops_within_sf[stops.columns] stops_within_sf.insert(0, 'NodeID', range(endnodes_cnt['NodeID'].max() + 1, endnodes_cnt['NodeID'].max() + 1 + len(stops_within_sf))) search_radius = 300 # ft stops_geo = stops_within_sf.copy() stops_geo['point_geo'] = stops_geo['geometry'] stops_geo['geometry'] = stops_geo['geometry'].buffer(search_radius/3.2808) stop_near_links = gp.sjoin(streets[['LinkID', 'B_NodeID', 'E_NodeID', 'length', 'geometry']], stops_geo, op='intersects') def calc_dist(x): stop_point = x['point_geo'] link_geo = x['geometry'] x['near_dist'] = stop_point.distance(link_geo) x['stop_to_begin'] = link_geo.project(stop_point) * 3.2808 #meters to feet x['stop_to_end'] = x['length'] - x['stop_to_begin'] return x stop_near_links = stop_near_links.apply(calc_dist, axis=1) stop_near_links = stop_near_links.sort_values(['stop_id','near_dist']) stop_near_links = stop_near_links.drop_duplicates('stop_id') stop_near_links['near_link'] = stop_near_links['LinkID'] stop_near_links['near_link_bid'] = stop_near_links['B_NodeID'] stop_near_links['near_link_eid'] = stop_near_links['E_NodeID'] stop_near_links = stop_near_links.reset_index() # construct a network graph tgraph = nx.Graph() # road network nodes tgraph.add_nodes_from(endnodes_cnt.NodeID.tolist()) # road network links for i in range (0, len(streets)): tgraph.add_edge(streets.loc[i,'B_NodeID'], streets.loc[i,'E_NodeID'], weight = streets.loc[i, 'length']) return stops_within_sf, stop_near_links, tgraph def stop_walking_area(walk_graph, walk_dis, start_node, link_near_stop): cur_path = dict(nx.single_source_dijkstra_path(walk_graph, start_node, cutoff=walk_dis, weight='weight')) del cur_path[start_node] reach_links = {} for key in cur_path: sub_path = list(zip(cur_path[key][:-1],cur_path[key][1:])) for each_link in sub_path: if each_link in reach_links: next else: reach_links[each_link] = 1 reach_links_df = pd.DataFrame.from_dict(reach_links, orient='index',columns=['accessed']).reset_index() reach_links_df.rename(columns={'index':'b_e'},inplace=True) streets_access = streets[(streets['b_e'].isin(reach_links_df['b_e'])) | (streets['e_b'].isin(reach_links_df['b_e'])) | (streets['LinkID']==link_near_stop)] geom = [x for x in streets_access.geometry] multi_line = geometry.MultiLineString(geom) multi_line_polygon = multi_line.convex_hull return multi_line_polygon # Accessible area from high frequent stops def frequent_access_area(walk_graph, stop_list, stop_with_nearest_link, buffer_radius): stop_access_gdf = gp.GeoDataFrame() for cur_stop_id in stop_list: lidx = stop_with_nearest_link.index[stop_with_nearest_link['stop_id']==cur_stop_id][0] cur_node_id = stop_with_nearest_link.loc[lidx, 'NodeID'] cur_link = stop_with_nearest_link.loc[lidx, 'near_link'] cur_graph = walk_graph.copy() cur_graph.add_node(cur_node_id) cur_graph.add_edge(stop_with_nearest_link.loc[lidx,'near_link_bid'], stop_with_nearest_link.loc[lidx,'NodeID'], weight = stop_with_nearest_link.loc[lidx, 'stop_to_begin']) cur_graph.add_edge(stop_with_nearest_link.loc[lidx,'NodeID'], stop_with_nearest_link.loc[lidx,'near_link_eid'], weight = stop_with_nearest_link.loc[lidx, 'stop_to_end']) get_geo = stop_walking_area(cur_graph, buffer_radius, cur_node_id, cur_link) cur_access_polygon = gp.GeoDataFrame(index=[0], crs=cal3, geometry=[get_geo]) cur_access_polygon['stop_id'] = cur_stop_id stop_access_gdf = stop_access_gdf.append(cur_access_polygon, ignore_index=True) return stop_access_gdf # Attach TAZ attributes taz_dbf = Dbf5(os.path.join(Coverage_Dir, 'tazdata.dbf')) taz = taz_dbf.to_dataframe() taz['SFTAZ'] = taz['SFTAZ'].astype(int) taz_sf = taz_sf_shp.merge(taz, left_on = 'TAZ', right_on = 'SFTAZ', how = 'left') taz_sf["area_acre"] = taz_sf['geometry'].area * 0.00024711 #Square meters to acres def frequent_stops_access_taz(frequent_stops_access_union): frequent_stops_access_taz= taz_sf_shp['geometry'].intersection(frequent_stops_access_union) taz_sf_access_gdf = gp.GeoDataFrame() taz_sf_access_gdf['accessarea'] = frequent_stops_access_taz.area* 0.00024711 #Square meters to acres taz_sf_access_gdf['index'] = frequent_stops_access_taz.index taz_sf_access_gdf['geometry'] = frequent_stops_access_taz.geometry taz_sf_access_tazid = taz_sf_access_gdf.merge(taz_sf_shp[['TAZ', 'AREALAND']], left_on='index', right_index=True, how='left') taz_sf_access_attrs = taz_sf[['TAZ', 'AREALAND', 'HHLDS', 'TOTALEMP', 'POP', 'area_acre']].merge(taz_sf_access_tazid, on=['TAZ', 'AREALAND'], how='left') taz_sf_access_attrs['areapcnt'] = 100 * taz_sf_access_attrs['accessarea'] / taz_sf_access_attrs['area_acre'] taz_sf_access_attrs['access_pop'] = taz_sf_access_attrs['POP'] * taz_sf_access_attrs['areapcnt'] / 100 taz_sf_access_attrs['access_jobs'] = taz_sf_access_attrs['TOTALEMP'] * taz_sf_access_attrs['areapcnt'] / 100 taz_sf_access_attrs['access_hhlds'] = taz_sf_access_attrs['HHLDS'] * taz_sf_access_attrs['areapcnt'] / 100 outcols = ['accessarea', 'index', 'TAZ', 'AREALAND', 'HHLDS', 'TOTALEMP', 'POP', 'area_acre', 'areapcnt', 'access_pop', 'access_jobs', 'access_hhlds'] return taz_sf_access_attrs[outcols] df_coverage =
pd.DataFrame()
pandas.DataFrame
import os from pathlib import Path import time from datetime import datetime import json import traceback import uuid import pandas as pd import dash from dash.dependencies import Input, Output, State from dash_extensions.enrich import ServersideOutput import dash_html_components as html import dash_bootstrap_components as dbc from dash.exceptions import PreventUpdate # import plotly.graph_objs as go import plotly.express as px import requests import asyncio from sseclient import SSEClient # from iexfinance.stocks import Stock # Local imports from __init__ import HERE, TIMEOUT_12HR, DEFAULT_TICKER, DEFAULT_SNAPSHOT_UUID, ticker_dict, exchange_list from app import app, cache, db, logger from dash_utils import make_table, replace_str_element_w_dash_component from get_fin_report import get_financial_report, get_yahoo_fin_values, get_number_from_string, get_string_from_number, get_sector_data from get_dcf_valuation import get_dcf_df def handler_data_message(title, exception_obj): return [{ 'status-info': html.P(children=title, style={'backgroundColor': 'red', 'fontSize': '200%'}), 'supp-data': html.P(children=str(exception_obj), style={'color': 'red'}) }] @app.callback([Output('ticker-input', 'value'), Output('analysis-mode', 'value'), Output('snapshot-uuid', 'value'), Output('handler-parseURL', 'data')], [Input('nav-dcf', 'active'), Input('url', 'pathname')]) def parse_ticker(dcf_app_active, pathname): if dcf_app_active: parse_ticker = pathname.split('/apps/dcf')[-1].split('/') if len(parse_ticker) == 1: return DEFAULT_TICKER, [1], str(uuid.uuid5(uuid.uuid4(), DEFAULT_TICKER)), dash.no_update elif len(parse_ticker) == 2: ticker_value = parse_ticker[1].upper() or DEFAULT_TICKER return ticker_value, [1], str(uuid.uuid5(uuid.uuid4(), ticker_value)), dash.no_update else: # >=3 if parse_ticker[2]: try: uuid_val = uuid.UUID(parse_ticker[2], version=5) if uuid_val.hex == parse_ticker[2].replace('-',''): return parse_ticker[1].upper() or DEFAULT_TICKER, [], parse_ticker[2], dash.no_update else: raise ValueError("Bad Snapshot ID from URL: " + parse_ticker[2]) except: return parse_ticker[1].upper() or DEFAULT_TICKER, [], '', handler_data_message('See Error Message(s) below:', traceback.format_exc()) else: return parse_ticker[1].upper(), [], str(uuid.uuid5(uuid.uuid4(), parse_ticker[1].upper())), dash.no_update else: raise PreventUpdate @app.callback([Output('snapshot-link', 'href'), Output('save-snapshot', 'disabled'), Output('snapshot-link', 'disabled')], [Input('analysis-mode', 'value'), Input('save-snapshot', 'n_clicks'), Input('ticker-input', 'value'), Input('snapshot-uuid', 'value')], State('dcf-store', 'data')) def save_snapshot(live_analysis_mode, save_button_clicked, ticker, snapshot_uuid, df_dict): if 1 in live_analysis_mode: # generate a fresh UUID snapshot_uuid = str(uuid.uuid5(uuid.UUID(snapshot_uuid), ticker)) if save_button_clicked: # df_dict[ticker] = {**df_dict[ticker], **dcf_dict[ticker]} if 'analysis_timestamp' in df_dict[ticker]['stats_dict']: # >= v0.6-alpha.3 df_dict[ticker]['stats_dict']['analysis_timestamp'] += f',\n{snapshot_uuid} : Analysis saved @ {datetime.now().strftime("%b %-m %Y %H:%M:%S")}' db.set(ticker+'-'+snapshot_uuid, json.dumps(df_dict)) return '/apps/dcf/' + ticker + '/' + snapshot_uuid, False, not save_button_clicked else: return dash.no_update, True, True @app.callback([Output('status-info', 'children'), Output('supp-info', 'children')], [Input('handler-parseURL', 'data'), Input('handler-ticker-valid', 'data'), Input('handler-past-data', 'data'), Input('handler-dcf-data', 'data'), Input('handler-lastpricestream', 'data'), Input('status-info', 'loading_state')]) def refresh_for_update(handler_parseURL, handler_ticker, handler_past, handler_dcf, handler_lastpricestream, status_loading_dict): ctx = dash.callback_context if not ctx.triggered: return tuple(["Enter Ticker to continue"] * 2) status_msg = [] supp_msg = [] triggered_elements = [c['prop_id'] for c in ctx.triggered] if 'handler-ticker-valid.data' in triggered_elements and ctx.inputs['status-info.loading_state']['is_loading']: return ctx.inputs['handler-ticker-valid.data'][0]['status-info'], ctx.inputs['handler-ticker-valid.data'][0]['supp-data'] # return 'Updating...', 'Updating...' else: update_data = [d for c, d in ctx.inputs.items() if '.data' in c] for d in update_data: if d: status = d[0]['status-info'] # always 1 element is sent by handler, so use 0 status_msg += status supp = d[0]['supp-data'] if isinstance(supp, str): supp_msg.extend(replace_str_element_w_dash_component(supp, repl_dash_component=[])) elif supp: # it is a dcc or html component, get children supp_msg.extend(replace_str_element_w_dash_component(supp['props']['children'])) return status_msg, supp_msg or dash.no_update @app.callback([Output("ticker-input", "valid"), Output("ticker-input", "invalid"), Output("ticker-allcaps", "children"), Output('handler-ticker-valid', 'data')], [Input("ticker-input", "value")]) def check_ticker_validity(ticker): try: if not ticker: raise ValueError("Ticker Value is Empty, please Type Ticker, press Enter or Tab to continue analysis.") ticker_allcaps = ticker.upper() if ticker_allcaps in ticker_dict(): # Validate with https://sandbox.iexapis.com/stable/ref-data/symbols?token= is_valid_ticker = True return is_valid_ticker, not is_valid_ticker, 'Getting financial data... for: ' + ticker_dict()[ticker_allcaps], [{'status-info': 'Market Price used in Calculation: ', 'supp-data': ''}] else: raise ValueError("Invalid Ticker entered: " + ticker + '\nValid Tickers from listed Exchanges:\n' + '\n'.join(exchange_list())) except Exception as InvalidTicker: # dbc.Alert( # str(InvalidTicker), # id="alert-invalid-ticker", # dismissable=True, # is_open=True, # ) logger.exception(InvalidTicker) return False, True, '', handler_data_message('See Error Message(s) below:', traceback.format_exc()) @app.callback([ServersideOutput('fin-store', 'data'), Output('select-column', 'options'), Output('status-info', 'loading_state'), Output('handler-past-data', 'data')], [Input('ticker-input', 'valid')], [State('ticker-input', 'value'), State('analysis-mode', 'value'), State('snapshot-uuid', 'value')]) def fin_report(ticker_valid, ticker, live_analysis_mode, snapshot_uuid): if not ticker_valid: return [], [], {'is_loading': True}, dash.no_update try: ticker_allcaps = ticker.upper() db_key = ticker_allcaps+'-'+snapshot_uuid if 1 in live_analysis_mode or not db.exists(db_key): df, lastprice, lastprice_time, report_date_note = get_financial_report(ticker_allcaps) next_earnings_date, beta = get_yahoo_fin_values(ticker_allcaps) stats_record = {'ticker': ticker_allcaps, 'lastprice': float(lastprice.replace(',','')), 'lastprice_time': lastprice_time, 'beta': beta, 'next_earnings_date': next_earnings_date, 'report_date_note': report_date_note, 'analysis_timestamp': datetime.now().strftime("%b %-m %Y %H:%M:%S"), } df_dict = {ticker_allcaps: {'fin_report_dict': df.to_dict('records'), 'stats_dict': stats_record}} else: df_dict = json.loads(db.get(db_key)) # pull output callback from from server cache or database: redis if not df_dict: raise KeyError('Redis Key not found: ' + db_key + '\nPlease click the app tab link to refresh state!') df =
pd.DataFrame.from_dict(df_dict[ticker_allcaps]['fin_report_dict'])
pandas.DataFrame.from_dict
import unittest import pandas as pd from pyspark.sql import SparkSession from pyspark.sql.functions import udf from pyspark.sql.types import StringType, StructField, StructType, IntegerType, FloatType from haychecker.dhc.metrics import entropy replace_empty_with_null = udf(lambda x: None if x == "" else x, StringType()) replace_0_with_null = udf(lambda x: None if x == 0 else x, IntegerType()) replace_0dot_with_null = udf(lambda x: None if x == 0. else x, FloatType()) replace_every_string_with_null = udf(lambda x: None, StringType()) replace_every_int_with_null = udf(lambda x: None, IntegerType()) replace_every_float_with_null = udf(lambda x: None, FloatType()) class TestEntropy(unittest.TestCase): def __init__(self, *args, **kwargs): super(TestEntropy, self).__init__(*args, **kwargs) self.spark = SparkSession.builder.master("local[2]").appName("entropy_test").getOrCreate() self.spark.sparkContext.setLogLevel("ERROR") def test_empty(self): data = pd.DataFrame() data["c1"] = [] data["c2"] = [] schema = [StructField("c1", IntegerType(), True), StructField("c2", StringType(), True)] df = self.spark.createDataFrame(data, StructType(schema)) r1 = entropy(0, df)[0] self.assertEqual(r1, 0.) def test_allnull(self): data = pd.DataFrame() data["c1"] = [chr(i) for i in range(100)] data["c2"] = [i for i in range(100)] data["c3"] = [i / 0.7 for i in range(100)] df = self.spark.createDataFrame(data) df = df.withColumn("c1", replace_every_string_with_null(df["c1"])) df = df.withColumn("c2", replace_every_int_with_null(df["c2"])) df = df.withColumn("c3", replace_every_float_with_null(df["c3"])) r = entropy(0, df)[0] self.assertEqual(r, 0.) r = entropy(1, df)[0] self.assertEqual(r, 0.) r = entropy(2, df)[0] self.assertEqual(r, 0.) def test_allequal(self): data = pd.DataFrame() data["c1"] = [chr(0) for _ in range(100)] data["c2"] = [1 for _ in range(100)] data["c3"] = [0.7 for _ in range(100)] df = self.spark.createDataFrame(data) r = entropy(0, df)[0] self.assertEqual(r, 0.) r = entropy(1, df)[0] self.assertEqual(r, 0.) r = entropy(2, df)[0] self.assertEqual(r, 0.) def test_halfnull_halfequal(self): data =
pd.DataFrame()
pandas.DataFrame
# all_in_one is a fuction, created for splitiing of a dataset inot 3 parts and to do the repatative tasks namely, draw learning curves, ROC curves and model classification analysis(Error Analysis). # Import basic libraries import numpy as np import pandas as pd import seaborn as sns from pandas.tools.plotting import scatter_matrix import matplotlib.pyplot as plt import time from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.ensemble import GradientBoostingClassifier from sklearn.linear_model import SGDClassifier from sklearn.neural_network import MLPClassifier #To get probabilty of SGD from sklearn.calibration import CalibratedClassifierCV base_model = SGDClassifier() from sklearn.metrics import roc_auc_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from sklearn.metrics import classification_report from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix from matplotlib import pyplot as plt from sklearn.metrics import roc_curve, auc from sklearn.model_selection import learning_curve ################################################################################################################################# # Import libraries for performance analysis (Error analysis) from sklearn.metrics import classification_report from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix ################################################################################################################################# ### We want to split our dataset into following three subsets. # 1st: Training dataset ~ 60 % of total dataset # 2nd: Cross-Validation dataset ~20% of tatal dataset # 3rd: Testing dataset ~ 20% of total dataset from sklearn.cross_validation import train_test_split def all_in_one_test(features,target): #Split X and y in training and testing data by 80:20 ratio. X_train1, X_test, y_train1, y_test = train_test_split(features,target, test_size=0.2, random_state=1) #Again,Split training1 dataset into training and cross-validation datasets by 80:20 ratio. X_train, X_val, y_train, y_val = train_test_split(X_train1, y_train1, test_size=0.25, random_state=1) print ("Training Dataset :", X_train.shape, y_train.shape) print ("Testing Dataset:", X_test.shape, y_test.shape) print ("Validation Dataset:", X_val.shape, y_val.shape) # Create a list of classifiers classifiers = [LogisticRegression() , DecisionTreeClassifier() ,RandomForestClassifier(), SVC(probability=True), GaussianNB(), KNeighborsClassifier(), GradientBoostingClassifier(),CalibratedClassifierCV(base_model) , MLPClassifier()] # Create a dictionary of the classifiers classifiers_dict = {'Logistic Classifier': LogisticRegression(), 'Decision_Tree Classifier': DecisionTreeClassifier(), 'Random_Forest Classifier': RandomForestClassifier(), 'SVM Classifier': SVC(probability=True), "GaussianNB Classifier":GaussianNB(), "KNN Classifiers": KNeighborsClassifier(),"XGB Classifier": GradientBoostingClassifier(), "SGD Classifier":CalibratedClassifierCV(base_model) , 'MLP Classifier':MLPClassifier()} # All Learning Curves in one figure from sklearn.model_selection import learning_curve fig, axs = plt.subplots(3,3, figsize=(15, 10)) fig.subplots_adjust(hspace = 0.25, wspace=0.25) axs = axs.ravel() List = ['Logistic Regression', 'Decision Tree', 'Random Forest' ,'SVM' , 'Gaussian NB' , 'KNN', 'XGB', 'SGD', 'MLP'] k = 0 for i in range(len(classifiers)): train_sizes, train_scores, test_scores = learning_curve(classifiers[i], features,target) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) axs[i].fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color="r") axs[i].fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1, color="g") axs[i].plot(train_sizes, train_scores_mean, 'o-', color="r", label="Training score") axs[i].plot(train_sizes, test_scores_mean, 'o-', color="g", label="Cross-validation score") axs[i].legend(loc= 'lower right') axs[i].set_ylim([0.0,1.1]) axs[i].set_title(str(List[k])) k = k+1 plt.show() # All Classification reports + Accuracy reports + Confusion matrices results = pd.DataFrame([[0, 0,0,0, 0,0 ,0]],columns = ['Model', 'Accuracy', 'Precision', 'Recall', 'F1 ','ROC', 'Time']) for name, classifier in classifiers_dict.items(): print(name) start = time.time() clf = classifier.fit(X_train, y_train) y_pred = clf.predict(X_test) end = time.time() print(classification_report(y_test, y_pred)) conf_mat = confusion_matrix(y_test,y_pred) print('Confusion matrix:\n',conf_mat) labels =['Class0','Class 1'] fig = plt.figure() ax = fig.add_subplot(111) cax = ax.matshow(conf_mat,cmap = plt.cm.Blues) fig.colorbar(cax) ax.set_xticklabels(['']+ labels) ax.set_yticklabels(['']+ labels) plt.xlabel('Predicted') plt.ylabel('Actual') plt.show() print ("\n",accuracy_score(y_test, y_pred)) print("\n Time taken by the algorithm to get trained and for prediction :",end-start) print ('\n==========================================================================\n') roc=roc_auc_score(y_test, y_pred) acc = accuracy_score(y_test, y_pred) prec = precision_score(y_test, y_pred) rec = recall_score(y_test, y_pred) f1 = f1_score(y_test, y_pred) t = end-start #Model_results = pd.DataFrame(columns = ['Model', 'Accuracy', 'Precision', 'Recall', 'F1 Score','ROC']) model_results =
pd.DataFrame([[name, acc,prec,rec, f1,roc, t]],columns = ['Model', 'Accuracy', 'Precision', 'Recall', 'F1 ','ROC','Time'])
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Sat May 23 11:28:30 2020 @author: rener """ import numpy as np import pandas as pd import os from datetime import date import time import sys dir_path = os.path.dirname(os.path.realpath(__file__)) os.chdir(dir_path) #%% For the various companies we have data going back differently far. # # frames=[] for file in os.listdir('Stocks'): frames.append( pd.read_csv('Stocks/' +file,index_col=0)) # For the various companies we have data going back differently far. # So there is decision to make: We could discard look for the shortest # available timeseries, and trim all other datasets to the same length. # But then whenever we compute a covariance for two longer datasets # we will not use all available information. # So we only trim every pair in the covariance computing function. df=
pd.concat(frames)
pandas.concat
import copy from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2Tk import matplotlib.pyplot as plt import pandas as pd import subprocess from template import Template from themeclasses import * import time class DERVET(Template): def __init__(self, parent, controller, bd): Template.__init__(self, parent, controller, bd) # bill with baseline, newload, and DER results self.bill = pd.DataFrame() self.billts = pd.DataFrame() self.tsresults = pd.DataFrame() # Button to run dervet run_dervet = tk.Button(self, text='Run DER-VET', command=lambda: self.rundervet()) run_dervet.grid(row=0, column=0, sticky='nsew') plot_dervetts = tk.Button(self, text='Plot DER-VET Time Series Results', command=lambda: self.plotdervetts()) plot_dervetts.grid(row=1, column=0, sticky='nsew') plot_dervetebill = tk.Button(self, text='Plot DER-VET Energy Bill Results', command=lambda: self.plotdervetbill()) plot_dervetebill.grid(row=2, column=0, sticky='nsew') plot_dervetdbill = tk.Button(self, text='Plot DER-VET Demand Bill Results', command=lambda: self.plotdervetdbill()) plot_dervetdbill.grid(row=3, column=0, sticky='nsew') # Set up plotting canvas self.plotwindow = tk.Frame(self) self.plotwindow.grid(row=10, column=1) self.figure = plt.figure(num=5, figsize=(10, 5), dpi=100) self.axes = self.figure.add_subplot(111) self.chart_type = FigureCanvasTkAgg(self.figure, self.plotwindow) self.toolbar = NavigationToolbar2Tk(self.chart_type, self.plotwindow) self.toolbar.update() self.chart_type._tkcanvas.pack(side=tk.TOP, fill=tk.BOTH, expand=True) # Set up text results self.textwindow = tk.Frame(self) self.textwindow.grid(row=10, column=0) self.sizekw = tk.DoubleVar() self.sizekw.set(0) kwrow = tk.Label(self.textwindow, text='Optimal Battery Size (kW): ', justify='left') kwrow.grid(row=0, column=0) sizekwlab = tk.Label(self.textwindow, textvariable=self.sizekw, justify='left') sizekwlab.grid(row=0, column=1) self.sizekwh = tk.DoubleVar() self.sizekwh.set(0) kwhrow = tk.Label(self.textwindow, text='Optimal Battery Size (kWh): ', justify='left') kwhrow.grid(row=1, column=0) sizekwhlab = tk.Label(self.textwindow, textvariable=self.sizekwh, justify='left') sizekwhlab.grid(row=1, column=1) self.sizedur = tk.DoubleVar() self.sizedur.set(0) durrow = tk.Label(self.textwindow, text='Optimal Battery Duration (hrs): ', justify='left') durrow.grid(row=2, column=0) sizedurlab = tk.Label(self.textwindow, textvariable=self.sizedur, justify='left') sizedurlab.grid(row=2, column=1) self.ccost = tk.DoubleVar() self.ccost.set(0) ccostrow = tk.Label(self.textwindow, text='Estimated Battery Capital Cost ($): ', justify='left') ccostrow.grid(row=3, column=0) ccostlab = tk.Label(self.textwindow, textvariable=self.ccost, justify='left') ccostlab.grid(row=3, column=1) self.savings = tk.DoubleVar() self.savings.set(0) savingsrow = tk.Label(self.textwindow, text='Yearly Savings from battery', justify='left') savingsrow.grid(row=4, column=0) savingslab = tk.Label(self.textwindow, textvariable=self.savings, justify='left') savingslab.grid(row=4, column=1) def rundervet(self): # detect DER-VET install and stop if not available # detect if newload is up to date # Edit timeseries tstemp = pd.read_csv(self.controller.parameters['DERVET_TIMESERIES_FILENAME']) # check if timeseries has the right number of rows if self.controller.frames['Load'].data.shape[0] != tstemp.shape[0]: print('ERROR: DER-VET time step needs to match DEFT time step.') print('DEFT shows ' + str(self.controller.frames['Load'].data.shape[0]) + ' time steps') print('DER-VET shows ' + str(tstemp.shape[0]) + ' time steps.') print('Please upload a DER-VET time series file with the correct number of rows') return 1 tstemp['Site Load (kW)'] = copy.copy(self.controller.frames['Newload'].newload['Busy Day New Load']) tstemp.to_csv(self.controller.parameters['DERVET_TIMESERIES_FILENAME'], index=False) # save timeseries csv # Edit model parameters mptemp = pd.read_csv(self.controller.parameters['DERVET_MODEL_PARAMETERS_REFERENCE']) mptemp.loc[mptemp['Key'] == 'customer_tariff_filename', 'Optimization Value']\ = self.controller.frames['Tariff'].filename if self.controller.frames['Load'].loadlimit.get() > 0: mptemp.loc[mptemp['Key'] == 'max_import', 'Optimization Value'] = \ -self.controller.frames['Load'].loadlimit.get() mptemp.to_csv(self.controller.parameters['DERVET_MODEL_PARAMETERS_FILENAME']) print('Starting DER-VET at ' + str(time.time())) starttime = time.time() subprocess.run(["./dervet/python.exe", "./dervet/dervet/run_DERVET.py", self.controller.parameters['DERVET_MODEL_PARAMETERS_FILENAME']]) print('DER-VET finished at ' + str(time.time())) endtime = time.time() print('Taking a Total of ' + str(endtime-starttime) + ' seconds') self.plotdervetts() def plotdervetts(self): # read timeseries results self.tsresults = pd.read_csv(self.controller.parameters['DERVET_TIMESERIES_RESULTS_FILENAME']) plt.figure(5) plt.cla() # Clear the plotting window to allow for re-plotting. # Plot the peak day plt.step(x=pd.to_datetime(self.tsresults['Start Datetime (hb)'], format='%Y-%m-%d %H:%M:%S'), y=self.tsresults['LOAD: Site Load Original Load (kW)'], where='post', color=theme['batterycolor'], label='New Load with ZE Equipment') plt.step(x=
pd.to_datetime(self.tsresults['Start Datetime (hb)'], format='%Y-%m-%d %H:%M:%S')
pandas.to_datetime
import numpy as np import pandas as pd import remixt.bamreader import os empty_data = { 'fragments': remixt.bamreader.create_fragment_table(0), 'alleles': remixt.bamreader.create_allele_table(0), } def _get_key(record_type, chromosome): return '/{}/chromosome_{}'.format(record_type, chromosome) def _unique_index_append(store, key, data): try: nrows = store.get_storer(key).nrows except (AttributeError, KeyError): nrows = 0 data.index = pd.Series(data.index) + nrows if nrows == 0: store.put(key, data, format='table') else: store.append(key, data) def merge_overlapping_seqdata(outfile, infiles, chromosomes): out_store = pd.HDFStore(outfile, 'w', complevel=9, complib='blosc') index_offsets = pd.Series(0, index=chromosomes, dtype=np.int64) for _id, infile in infiles.items(): store = pd.HDFStore(infile) tables = store.keys() for chromosome in chromosomes: allele_table = '/alleles/chromosome_{}'.format(chromosome) fragment_table = '/fragments/chromosome_{}'.format(chromosome) if allele_table not in tables: print("missing table {}".format(allele_table)) continue if fragment_table not in tables: print("missing table {}".format(fragment_table)) continue alleles = store[allele_table] fragments = store[fragment_table] alleles['fragment_id'] = alleles['fragment_id'].astype(np.int64) fragments['fragment_id'] = fragments['fragment_id'].astype(np.int64) alleles['fragment_id'] += index_offsets[chromosome] fragments['fragment_id'] += index_offsets[chromosome] index_offsets[chromosome] = max(alleles['fragment_id'].max(), fragments['fragment_id'].max()) + 1 out_store.append('/alleles/chromosome_{}'.format(chromosome), alleles) out_store.append('/fragments/chromosome_{}'.format(chromosome), fragments) store.close() out_store.close() def create_chromosome_seqdata(seqdata_filename, bam_filename, snp_filename, chromosome, max_fragment_length, max_soft_clipped, check_proper_pair): """ Create seqdata from bam for one chromosome. Args: seqdata_filename(str): seqdata hdf store to write to bam_filename(str): bam from which to extract read information snp_filename(str): TSV chromosome, position file listing SNPs chromosome(str): chromosome to extract max_fragment_length(int): maximum length of fragments generating paired reads max_soft_clipped(int): maximum soft clipping for considering a read concordant check_proper_pair(boo): check proper pair flag """ reader = remixt.bamreader.AlleleReader( bam_filename, snp_filename, chromosome, max_fragment_length, max_soft_clipped, check_proper_pair, ) with pd.HDFStore(seqdata_filename, 'w', complevel=9, complib='zlib') as store: while reader.ReadAlignments(10000000): _unique_index_append(store, _get_key('fragments', chromosome), reader.GetFragmentTable()) _unique_index_append(store, _get_key('alleles', chromosome), reader.GetAlleleTable()) def create_seqdata(seqdata_filename, bam_filename, snp_filename, max_fragment_length, max_soft_clipped, check_proper_pair, tempdir, chromosomes): try: os.makedirs(tempdir) except: pass all_seqdata = {} for chrom in chromosomes: chrom_seqdata = os.path.join(tempdir, "{}_seqdata.h5".format(chrom)) all_seqdata[chrom] = chrom_seqdata create_chromosome_seqdata( chrom_seqdata, bam_filename, snp_filename, chrom, max_fragment_length, max_soft_clipped, check_proper_pair ) merge_seqdata(seqdata_filename, all_seqdata) def merge_seqdata(out_filename, in_filenames): """ Merge seqdata files for non-overlapping sets of chromosomes Args: out_filename(str): seqdata hdf store to write to out_filename(dict): seqdata hdf store to read from """ with pd.HDFStore(out_filename, 'w', complevel=9, complib='zlib') as out_store: for in_filename in in_filenames.values(): with pd.HDFStore(in_filename, 'r') as in_store: for key in in_store.keys(): out_store.put(key, in_store[key], format='table') class Writer(object): def __init__(self, seqdata_filename): """ Streaming writer of seq data hdf5 files Args: seqdata_filename (str): name of seqdata hdf5 file """ self.store = pd.HDFStore(seqdata_filename, 'w', complevel=9, complib='zlib') def write(self, chromosome, fragment_data, allele_data): """ Write a chunk of reads and alleles data Args: fragment_data (pandas.DataFrame): fragment data allele_data (pandas.DataFrame): allele data Input 'fragment_data' dataframe has columns 'fragment_id', 'start', 'end'. if columns 'is_duplicate', 'mapping_quality' are not provided they are given nominal values. Input 'allele_data' dataframe has columns 'position', 'fragment_id', 'is_alt'. """ # Add nominal mapping quality if 'mapping_quality' not in fragment_data: fragment_data['mapping_quality'] = 60 # Add nominal is_duplicate value if 'is_duplicate' not in fragment_data: fragment_data['is_duplicate'] = 0 fragment_data = fragment_data[['fragment_id', 'start', 'end', 'is_duplicate', 'mapping_quality']] allele_data = allele_data[['position', 'fragment_id', 'is_alt']] _unique_index_append(self.store, _get_key('fragments', chromosome), fragment_data) _unique_index_append(self.store, _get_key('alleles', chromosome), allele_data) def close(self): """ Close seq data file """ self.store.close() _identity = lambda x: x def _read_seq_data_full(seqdata_filename, record_type, chromosome, post=_identity): key = _get_key(record_type, chromosome) try: return post(pd.read_hdf(seqdata_filename, key)) except KeyError: return empty_data[record_type] def _get_seq_data_nrows(seqdata_filename, key): with pd.HDFStore(seqdata_filename, 'r') as store: try: return store.get_storer(key).nrows except (AttributeError, KeyError): return 0 def _read_seq_data_chunks(seqdata_filename, record_type, chromosome, chunksize, post=_identity): key = _get_key(record_type, chromosome) nrows = _get_seq_data_nrows(seqdata_filename, key) if nrows == 0: yield empty_data[record_type] else: for i in range(nrows//chunksize + 1): yield post(pd.read_hdf(seqdata_filename, key, start=i*chunksize, stop=(i+1)*chunksize)) def read_seq_data(seqdata_filename, record_type, chromosome, chunksize=None, post=_identity): """ Read sequence data from a HDF seqdata file. Args: seqdata_filename (str): name of seqdata file record_type (str): record type, can be 'alleles' or 'reads' chromosome (str): select specific chromosome KwArgs: chunksize (int): number of rows to stream at a time, None for the entire file post (callable): post processing function Yields: pandas.DataFrame """ if chunksize is None: return _read_seq_data_full(seqdata_filename, record_type, chromosome, post=post) else: return _read_seq_data_chunks(seqdata_filename, record_type, chromosome, chunksize, post=post) def read_fragment_data(seqdata_filename, chromosome, filter_duplicates=False, map_qual_threshold=1, chunksize=None): """ Read fragment data from a HDF seqdata file. Args: seqdata_filename (str): name of seqdata file chromosome (str): select specific chromosome, None for all chromosomes KwArgs: filter_duplicates (bool): filter reads marked as duplicate map_qual_threshold (int): filter reads with less than this mapping quality chunksize (int): number of rows to stream at a time, None for the entire file Yields: pandas.DataFrame Returned dataframe has columns 'fragment_id', 'start', 'end' """ def filter_reads(reads): # Filter duplicates if necessary if 'is_duplicate' in reads and filter_duplicates is not None: if filter_duplicates: reads = reads[reads['is_duplicate'] == 0] reads.drop(['is_duplicate'], axis=1, inplace=True) # Filter poor quality reads if 'mapping_quality' in reads and map_qual_threshold is not None: reads = reads[reads['mapping_quality'] >= map_qual_threshold] reads.drop(['mapping_quality'], axis=1, inplace=True) return reads return read_seq_data(seqdata_filename, 'fragments', chromosome, chunksize=chunksize, post=filter_reads) def read_allele_data(seqdata_filename, chromosome, chunksize=None): """ Read allele data from a HDF seqdata file. Args: seqdata_filename (str): name of seqdata file chromosome (str): select specific chromosome, None for all chromosomes KwArgs: chunksize (int): number of rows to stream at a time, None for the entire file Yields: pandas.DataFrame Returned dataframe has columns 'position', 'is_alt', 'fragment_id' """ return read_seq_data(seqdata_filename, 'alleles', chromosome, chunksize=chunksize) def read_chromosomes(seqdata_filename): """ Read chromosomes from a HDF seqdata file. Args: seqdata_filename (str): name of seqdata file Returns: list of chromsomes """ with
pd.HDFStore(seqdata_filename, 'r')
pandas.HDFStore
# -*- coding:utf-8 -*- """ AHMath module. Project: alphahunter Author: HJQuant Description: Asynchronous driven quantitative trading framework """ import copy import collections import warnings import math import numpy as np import pandas as pd import statsmodels.api as sm from scipy.stats import norm class AHMath(object): """ alphahunter 常用数学函数 """ @staticmethod def array(num_list): """ list类型转换成numpy array类型 """ return np.array(num_list) @staticmethod def multiply(a, b): """ 返回两个数的乘积,出现任何异常,返回None """ if pd.isnull(a) or pd.isnull(b): return None else: return a * b @staticmethod def power(a, b): """ a的b次方 """ return math.pow(a, b) @staticmethod def exp(a): """ e的a次方 """ return math.exp(a) @staticmethod def expm1(a): """ e的a次方减1 """ return math.expm1(a) @staticmethod def log(a): """ e为底的log(a) """ return math.log(a) @staticmethod def log1p(a): """ log(1 + a) """ return math.log1p(a) @staticmethod def sqrt(a): """ a的平方根 """ return math.sqrt(a) @staticmethod def abs(a): """ a的绝对值 """ return math.fabs(a) @staticmethod def copysign(a, b): """ b的正负号乘以a """ return math.copysign(a, b) @staticmethod def zeros(a): """ 长度为a,元素都为0的numpy array类型 """ return np.zeros(a) @staticmethod def ones(a): """ 长度为a的,元素都为1的numpy array类型 """ return np.ones(a) @staticmethod def max(a): """ 返回一个列表里面最大的元素,出现任何异常,返回None """ if (a is None) or (len(a) == 0): return None a_array = np.array([i for i in a if pd.notnull(i)]) count = len(a_array) if count == 0: return None else: return a_array.max() @staticmethod def min(a): """ 返回一个列表里面最小的元素,出现任何异常,返回None """ if (a is None) or (len(a) == 0): return None a_array = np.array([i for i in a if pd.notnull(i)]) count = len(a_array) if count == 0: return None else: return a_array.min() @staticmethod def sum(a): """ 返回一个列表里面所有元素的和,出现任何异常,返回0.0 """ if (a is None) or (len(a) == 0): return 0.0 result = 0.0 if pd.isnull(a[0]) else a[0] for i in range(1, len(a)): if pd.isnull(a[i]): continue result += a[i] return result @staticmethod def cum_sum(a): """ 返回一个list的累积求和列表类型,如果其中有None值,按照0.0处理 """ if (a is None) or (len(a) == 0): return [0.0] b = [each if pd.notnull(each) else 0.0 for each in a] return list(np.array(b).cumsum()) @staticmethod def dot(a, b): """ 返回两个列表的点乘乘积,出现异常,返回None """ if len(a) != len(b): return None else: a = AHMath.array(a) b = AHMath.array(b) a_m_b = AHMath.array([AHMath.multiply(a[i], b[i]) for i in range(len(a))]) return AHMath.sum(a_m_b) @staticmethod def count_nan(a): """ 返回一个列表里None值的个数,出现异常,返回None """ count = 0 if a is None: return None for i in a: if pd.isnull(i): count += 1 return count @staticmethod def mean(a): """ 返回一个列表里面元素的平均值,出现任何异常,返回None """ if (a is None) or (len(a) == 0): return None count = len(a) - AHMath.count_nan(a) if count == 0: return None return AHMath.sum(a) / float(count) @staticmethod def std(a): """ 返回一个列表里面元素的标准差,出现任何异常,返回None """ if (a is None) or (len(a) == 0): return None count = len(a) - AHMath.count_nan(a) if count <= 1: return None mean = AHMath.mean(a) s = 0 for e in a: if pd.isnull(e): continue s += (e - mean) ** 2 return AHMath.sqrt(s / float(count - 1)) @staticmethod def weighted_mean(a, w): """ 给定一个列表w作为权重,返回另一个列表a的加权平均值,出现任何异常,返回None """ if len(a) != len(w): print('weighted mean lists not same length') return None s = 0 w_sum = 0 for i in range(0, len(a)): if (
pd.isnull(a[i])
pandas.isnull
# @name: ont_struct.py # @title: Imports ontology tree and calculates hierarchical level per ontology term # @description: Pulls ontology tree from EBI's Ontology Lookup Service (OLS) API (https://www.ebi.ac.uk/ols/index); # then parses into individual terms and creates the parents for each individual term. # Building in part off of python [ols-client library](https://github.com/cthoyt/ols-client/blob/master/src/ols_client/client.py) # @author: <NAME> # @email: <EMAIL> # @date: 31 January 2018 # After looking through the documentation and all the associated fields that come out from the API call, it looks like there's no way to avoid # doing a loop through the entire tree, starting from end node and iterating till you hit the root (s). # Perhaps not the fastest way, but the most direct way will start from the end node rather than going from the roots down. # NOTE: Would be faster to pull all the terms from a static .owl file to find the parents and then use these same functions to assemble the hierarchy. # However, that introduces more dependencies, and OLS has already gone through the bother of standardizing the output files. # So, the slow but steady way... # [0] Setup --------------------------------------------------------------------------------- import numpy as np import pandas as pd import requests import progressbar import time # <<< get_data(url) >>> # @name: get_data(url) # @title: Access data from EBI API # @description: returns json object with unfiltered layers of gooiness. # General structure: # data['page'] --> list of number of pages in the full query # data['_links'] --> https request strings for first, next, last, self pages # data['_embedded']['terms'] --> nested list of the actual data for each term. Incldues: # ...['_links']: https requests for ancestors, descendants, tree structure, graph structure for *each* term # ...['description']: short description of term # ...['iri']: permanent url to Ontobee page about term # ...['is_obsolete']: t/f if term is obsolete # ...['is-root']: t/f if is uppermost level # ...['label']: name of term # ...['obo_id']: unique id # ...['synonyms']: synonyms for term # ...[<other stuff>]: things that didn't seem as relevant. # @input: url from any API # @output: False if query failed; json-ized data if successful # @example: get_data('http://www.ebi.ac.uk/ols/api/ontologies/go/terms?size=500') def get_data(url): resp = requests.get(url) if (resp.ok): data = resp.json() return data else: print('query was not sucessful') return None # <<< addit_pages(json_data) >>> # Checks if previous call to OLS has more results # returns the url for the next query if there are more pages def addit_pages(json_data): curr_page = json_data['page']['number'] last_page = json_data['page']['totalPages']-1 if(curr_page < last_page): next_page = json_data['_links']['next']['href'] return {'next': next_page, 'current': curr_page, 'last': last_page} else: return False # <<< _term_gen(json_data) >>> # term generator to be able to loop through all terms in pulled data def _term_gen(data): try: data['_embedded']['terms'] except: print('query failure') else: for term in data['_embedded']['terms']: yield term # <<< pull_terms(json_data) >>> # function to remove only the good bits from an API call to OLS # collects all the terms within a given ontology # returns a dataframe containing their ids, labels (names), descriptions, synonyms, iri (purl to ontobee), whether is a root node, and the url to call to get their hierarchicalParents # [EBI description of parent/child relationships](https://github.com/EBISPOT/OLS/blob/master/ols-web/src/main/asciidoc/generated-snippets/terms-example/links.adoc) # "Hierarchical parents include is-a and other related parents, such as part-of/develops-from, that imply a hierarchical relationship" def pull_terms(json_data, filter_obs = True): iter_terms = _term_gen(json_data) ids = [] labels = [] descrips = [] syn = [] iri = [] root = [] selfs = [] parents = [] # pull out the relevant values for term in iter_terms: # filter out the obsolete terms, if specified # removes: # obsolete terms # "Thing" if((not filter_obs) | ((not term['is_obsolete']) & pd.notnull(term['obo_id']))): ids.append(term['obo_id']) labels.append(term['label']) iri.append(term['iri']) root.append(term['is_root']) selfs.append(term['_links']['self']['href']) try: descrips.append(term['description'][0]) except: descrips.append('') try: syn.append(term['synonyms'][0]) except: syn.append('') try: parents.append(term['_links']['hierarchicalParents']['href']) except KeyError: # there's no parents for this one parents.append('') continue # convert to a dataframe terms = pd.DataFrame([ids, labels, descrips, syn, iri, root, selfs, parents], index = ['id', 'label', 'description', 'synonyms', 'node_url', 'is_root', 'self_url', 'parent_url']).T.set_index('id') return terms # Primary API call to OLS to get the unique terms. # returns terms, parents # --> term dictionary # @example: fbcv = get_terms('fbcv') def get_terms(ont_id, base_url = 'http://www.ebi.ac.uk/ols/api/ontologies/', end_url = '/terms?size=500', save_terms = False, output_dir = ''): url = base_url + ont_id + end_url json_data = get_data(url) # set up containers for loops terms = pull_terms(json_data) next_page = addit_pages(json_data) with progressbar.ProgressBar(max_value = next_page['last']) as bar: while(next_page): bar.update(next_page['current']) json_data = get_data(next_page['next']) next_page = addit_pages(json_data) # update next page terms = pd.concat([terms,pull_terms(json_data)]) if (save_terms): terms.to_csv(output_dir + str(pd.Timestamp.today().strftime('%F')) + '_' + ont_id + '_terms.tsv', sep='\t') return terms # @description: pulls out all the immediate hierahrichal parents for a # [EBI description of parent/child relationships](https://github.com/EBISPOT/OLS/blob/master/ols-web/src/main/asciidoc/generated-snippets/terms-example/links.adoc) # "Hierarchical parents include is-a and other related parents, such as part-of/develops-from, that imply a hierarchical relationship" # @input: *terms*: dataframe of terms, output of `get_terms` # # @example: parent_df = find_parents(fbcv, ont_id = 'fbcv') def find_parents(terms, ont_id, save_terms = True, output_dir = ''): nodes = [] anc = [] roots = [] counter = 0 with progressbar.ProgressBar(max_value = len(terms), initial_value=0) as bar: for idx, row in terms.iterrows(): # try: # parent_url = term['_links']['hierarchicalParents']['href'] # except KeyError: # there's no children for this one # continue if((row.parent_url != "") & (pd.notnull(row.parent_url))): try: response = get_data(row.parent_url) except: print('\n index: ' + str(idx) + ' (counter: ' + str(counter) + ')') print('server overloaded; waiting 2 min. and caching results') temp = pd.DataFrame([nodes, anc, roots], index = ['id', 'ancestor_id', 'is_root']).T temp.to_csv(output_dir + str(pd.Timestamp.today().strftime('%F')) + '_' + ont_id + '_parents_TEMPidx' + str(counter) + '.tsv', sep='\t') time.sleep(120) response = get_data(row.parent_url) iter_terms = _term_gen(response) for parent_term in iter_terms: nodes.append(idx) anc.append(parent_term['obo_id']) roots.append(parent_term['is_root']) # yield term['obo_id'], parent_term['obo_id'], parent_term['is_root'] counter += 1 if (counter % 5 == 0): bar.update(counter) # combine into a dataframe; set ancestor level to 0 parents = pd.DataFrame([nodes, anc, roots], index = ['id', 'ancestor_id', 'is_root']).T if (save_terms): parents.to_csv(output_dir + str(pd.Timestamp.today().strftime('%F')) + '_' + ont_id + '_parents.tsv', sep='\t') return parents # <<< find_nextgen() >>> # @name: # @title: # @description: # @NOTE: lots of permutations of this funciton were written. One of the main sticking points was # whether to concat a DataFrame in each iteration of the loop, or whether to save each variable in # a separate list. While both work (or should, in principle), using a DataFrame means that the output # variable needs to be declared as a global, or else during the recursion results will be saved over/lost. # For simplicity, then, passing everything as lists and converting later. # @input: # @output: # @example: # outer function to pull an ancestor for a specific ID def find_ancestors_1node(parent_df, id, reverse = True, return_paths = False): root_ids = set(parent_df.ancestor_id[parent_df.is_root == True]) # << find_nextgen() >> # helper function to recurse through the parent ids and ID all the ancestors. # variation on https://www.python.org/doc/essays/graphs/ def find_nextgen(parent_df, child_id, root_ids, path = [], paths = []): # update the path with the current search param # path will reset after every loop path = path + [child_id] if(child_id in root_ids): # have hit the root node paths.append(path) return path # find the id(s) of the parent of child_id parent_row = parent_df[parent_df.id == child_id] # -- recurse -- for idx, row in parent_row.iterrows(): find_nextgen(parent_df, row.ancestor_id, root_ids, path, paths) return paths # << reset_level(paths, reverse) >> : helper function to standardize indices # resets level indices so 0 is the root nodes def reset_level(paths, reverse): path_dict = {} for idx, path in enumerate(paths): # reverse the list, so the root is at 0 if(reverse): path.reverse() for ont_idx, ont_id in enumerate(path): # update dictionary if ont_idx in path_dict: # dictionary already has that value; append if it doesn't already exist within list if ont_id not in path_dict[ont_idx]: path_dict[ont_idx].append(ont_id) else: path_dict[ont_idx] = [ont_id] return path_dict # Calculate path paths = find_nextgen(parent_df, id, root_ids) ont_idx = reset_level(paths, reverse) if (return_paths): return {'paths': paths, 'ont_idx': ont_idx} else: return ont_idx # @NOTE: certain high level nodes have an NA id. These were filtered out upstream. # As a result, any descendants of this node will have NA ancestors; assuming these ont terms aren't particularly impt. # Return value for ancestors will be NA def find_ancestors(parent_df, ont_id = '', save_terms = True, output_dir = '', ids = [], reverse = True, return_paths = False, save_freq = 1000, start_idx = None): # container for output output = pd.DataFrame() # ids is an optional testing parameter; if not declared, will look for all the ids. # Remove duplicate ids; some ids have multiple parents, therefore need to keep in parent_df. # However, including them the entire time will add unnecessary calculations of the same paths. if(len(ids) == 0): ids = pd.unique(parent_df.id) if(start_idx is not None): ids = ids[start_idx+1:] elif(isinstance(ids, pd.Series)): # convert series to Numpy ndarray ids = ids.as_matrix() with progressbar.ProgressBar(max_value = len(ids)) as bar: for idx, node_id in np.ndenumerate(ids): ancestors = find_ancestors_1node(parent_df, id = node_id, reverse = reverse, return_paths = return_paths) # make sure ancestors returned something. If an ancestor has no unique ID, it was filtered out; return NA if(return_paths): if(len(ancestors['ont_idx']) > 0): output = pd.concat([output, pd.DataFrame({'id': node_id, 'ancestors': [ancestors['ont_idx']], 'paths': [ancestors['paths']], 'node_level': max(ancestors['ont_idx'].keys())})], ignore_index=True) else: output = pd.concat([output, pd.DataFrame({'id': node_id, 'ancestors': [np.NaN], 'paths': [np.NaN], 'node_level': [np.NaN]})], ignore_index=True) else: if(len(ancestors) > 0): output = pd.concat([output, pd.DataFrame({'id': node_id, 'ancestors': [ancestors], 'node_level': max(ancestors.keys())})], ignore_index=True) else: output = pd.concat([output,
pd.DataFrame({'id': node_id, 'ancestors': [np.NaN], 'node_level': [np.NaN]})
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Feb 2 01:29:34 2021 @author: <NAME> Predict the infection ending: SEIRAH time series proceeding from the last situation of SEIRAH_main.py, until the condition of E+A+I=0. """ import networkx as nx import random from random import sample import matplotlib.pyplot as plt1 import matplotlib.dates as mdates import numpy as np import pandas as pd import copy as co import csv as cs import datetime import SEIRAH_SW as SEIRAH_SW random.seed(2020) """ Network Generation and Initialization. NetworkX official documents: https://networkx.github.io/documentation/stable/_modules/networkx/generators/random_graphs.html#newman_watts_strogatz_graph City networks generated. H be isolated(node weight=0). 1stday of each status. """ def G_gene(N,k,p,expo,infe,asym,hosp,reco): G = nx.newman_watts_strogatz_graph(N,k,p,seed=2020); for i in G.nodes(): G.nodes[i]['status'] = 'susc' #Initialize all nodes as susc. G.nodes[i]['S_1stday'] = 0 #Set initial date(day) to S nodes. G.nodes[i]['E_1stday'] = 0 G.nodes[i]['I_1stday'] = 0 G.nodes[i]['A_1stday'] = 0 G.nodes[i]['H_1stday'] = 0 G.nodes[i]['R_1stday'] = 0 G.nodes[i]['Infe_other'] = 0 #Count for Rt calculating. for i in G.edges(): G.edges[i]['weight'] = 1 #Initialize all edges weight = 1 """ Initial G. SEIRAH status """ samp_sum = expo+infe+asym+hosp+reco #total number of samples # Random sample nodes from G. random_n = sample(G.nodes(), samp_sum) #use sample function # nodes lists of each status. Randomly chose(clip) from random_n list. node_e = random_n[0:expo] a = expo + infe node_i = random_n[expo:a] b = a + asym node_a = random_n[a:b] c = b + hosp node_h = random_n[b:c] d = c + reco node_r = random_n[c:d] # Divide samples by status inputed numbers. Assign status except S. # Record *_1stday. S no need to record. for i in node_e: G.nodes[i]['status'] = 'expo' G.nodes[i]['S_1stday'] = 0 #Initial E to replace S status. G.nodes[i]['E_1stday'] = 0 G.nodes[i]['I_1stday'] = 0 G.nodes[i]['A_1stday'] = 0 G.nodes[i]['H_1stday'] = 0 G.nodes[i]['R_1stday'] = 0 for i in node_i: G.nodes[i]['status'] = 'infe' G.nodes[i]['S_1stday'] = 0 #Initial E to replace S status. G.nodes[i]['E_1stday'] = 0 G.nodes[i]['I_1stday'] = 0 G.nodes[i]['A_1stday'] = 0 G.nodes[i]['H_1stday'] = 0 G.nodes[i]['R_1stday'] = 0 for i in node_a: G.nodes[i]['status'] = 'asym' G.nodes[i]['S_1stday'] = 0 #Initial E to replace S status. G.nodes[i]['E_1stday'] = 0 G.nodes[i]['I_1stday'] = 0 G.nodes[i]['A_1stday'] = 0 G.nodes[i]['H_1stday'] = 0 G.nodes[i]['R_1stday'] = 0 for i in node_h: G.nodes[i]['status'] = 'hosp' G.nodes[i]['S_1stday'] = 0 #Initial E to replace S status. G.nodes[i]['E_1stday'] = 0 G.nodes[i]['I_1stday'] = 0 G.nodes[i]['A_1stday'] = 0 G.nodes[i]['H_1stday'] = 0 G.nodes[i]['R_1stday'] = 0 for i in node_r: G.nodes[i]['status'] = 'reco' G.nodes[i]['S_1stday'] = 0 #Initial E to replace S status. G.nodes[i]['E_1stday'] = 0 G.nodes[i]['I_1stday'] = 0 G.nodes[i]['A_1stday'] = 0 G.nodes[i]['H_1stday'] = 0 G.nodes[i]['R_1stday'] = 0 # update G edges weight. node_h needs update link weight 1=>0 for i in node_h: for nbr in G[i]: G.edges[i, nbr]['weight'] = 0 return G """ Nodes mapping function. Shift weight as 0 or 1. """ def edge_weight_0(nwk): for i in nwk.nodes(): if nwk.nodes[i]['status'] == 'hosp' or 'Com' in nwk.nodes[i]: for nbr in nwk[i]: nwk.edges[i, nbr]['weight'] = 0 return nwk def edge_weight_1(nwk): for i in nwk.nodes(): if nwk.nodes[i]['status'] != 'hosp' or 'Com' in nwk.nodes[i]: for nbr in nwk[i]: nwk.edges[i, nbr]['weight'] = 1 return nwk """ Count statuses of SEIRAH in target network. Daily data. NOT for TimeZone. """ def Count_status(__time_stamp, __nwk): num_S = num_E = num_I = num_R = num_A = num_H = 0 count_Infe_other = count_T = count_H = 0 Rt = Tt = 0 for i in range(__nwk.number_of_nodes()): # S is big number. No count to save computing time. # if nwk.nodes[i]['status'] == 'susc': # num_S = num_S + 1 # continue if __nwk.nodes[i]['status'] == 'expo': num_E = num_E + 1 #continue if __nwk.nodes[i]['status'] == 'infe': num_I = num_I + 1 #continue if __nwk.nodes[i]['status'] == 'reco': num_R = num_R + 1 #continue if __nwk.nodes[i]['status'] == 'asym': num_A = num_A + 1 #continue if __nwk.nodes[i]['status'] == 'hosp': num_H = num_H + 1 #Filter out new H, to count Rt, Tt if __nwk.nodes[i]['H_1stday'] == __time_stamp: count_H = count_H +1 count_Infe_other = count_Infe_other + __nwk.nodes[i]['Infe_other'] #Count how many days from E to H count_T = count_T + __nwk.nodes[i]['H_1stday'] - __nwk.nodes[i]['E_1stday'] if count_H ==0 or num_H == 0: #Avoid error while H=0 Rt = Tt = 0 else: Rt = count_Infe_other / count_H Tt = count_T / count_H #Tt = format(Rt / beta_t,'.2f') __Count_status = [num_S, num_E, num_I, num_R, num_A, num_H, Rt, Tt] return __Count_status # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # Above sections are FUNCTIONS. # # # # MAIN() is as follows. # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # para_Epidemic = {'sigma':0.2,'p1':0.18,'p2':0.3,'l_AH':0.05,'l_IH':0.3, 'g_AR':0.07,'g_HR':0.1} #beta = [0.1,0.1,0.1] # B_IS=0.3, B_AS=0.2, B_ES=0.2 as default #beta_t = 0.1 # by Sandy: tau = [0.5, 0.5] # Default 0.2,0.4 TimeZone(1), TimeZone(2)...Rest TimeZone Not actively infection # (Epidemic parameters) ################################################### # beta: Latency rate. β* in equations. # sigma: Transmission rate. σ in equations. # p1: Ratio of E to A. # l_*: Hospitalization rate. λ* in equations. # p2: Hospitalization ratio of A. # g_*: Recovery rate. γ* in equations. # tau: TimeZone Ratio Coefficient. τ* in equations. # CBD is Commuting network. Interconnnected with city_0,1,2,3 #Import parameters from .csv, by Sandy df0 = pd.read_csv('output_city_0.csv') df1 = pd.read_csv('output_city_1.csv') df2 = pd.read_csv('output_city_2.csv') df3 = pd.read_csv('output_city_3.csv') df_Shuto = pd.read_csv('output_Shuto.csv') last_date = df_Shuto['Date'].values[-1] predict_start_date=pd.Series([pd.to_datetime(last_date)]) df_RealH =
pd.read_csv('new_cases_cr2020.csv')
pandas.read_csv
# -*- coding: utf-8 -*- """ Geo layer object classes and methods Toolset for working with static geo layer elements (networks, buffers, areas such as administrative boundaries, road/electrical networks, waterways, restricted areas, etc.) """ import copy import math import os import random import warnings from functools import wraps import fiona import geopandas as gpd import numpy as np # import progressbar import pyproj from fiona.errors import FionaValueError from geopandas.io.file import infer_schema from gistools.conversion import geopandas_to_array from gistools.coordinates import GeoGrid, r_tree_idx from gistools.exceptions import GeoLayerError, LineLayerError, PointLayerError, \ PolygonLayerError, PolygonLayerWarning, GeoLayerEmptyError, ProjectionWarning from gistools.geometry import katana, fishnet, explode, cut, cut_, cut_at_points, \ add_points_to_line, radius_of_curvature, shared_area_among_collection, intersects, \ intersecting_features, katana_centroid, area_partition_polygon, shape_factor, \ is_in_collection, overlapping_features, overlaps, hexana, nearest_feature, to_2d from gistools.plotting import plot_geolayer from gistools.projections import crs_from_layer from numba import njit from pandas import concat, Series from rdp import rdp from shapely import wkb from shapely.geometry import Polygon, MultiPolygon, LineString, MultiLineString, \ Point, shape, MultiPoint from shapely.ops import cascaded_union from shapely.prepared import prep from gistools.utils.check.descriptor import protected_property, lazyproperty from gistools.utils.check.type import check_type, type_assert from gistools.utils.check.value import check_string, check_sub_collection_in_collection from gistools.utils.toolset import split_list_by_index from tqdm import tqdm def _build_consistent_gdf(data, layer_class, **kwargs): """ Build geopandas dataframe with consistent geometry Eliminate inconsistent geometries (keep only consistent one, e.g. only lines, points or polygons) Parameters ---------- data: layer_class: kwargs: Returns ------- """ outdf = gpd.GeoDataFrame(data, **kwargs) outdf = outdf[outdf.geometry.apply( lambda geom: isinstance(geom, (layer_class._geometry_class, layer_class._multi_geometry_class)))] return outdf def _difference(layer1, layer2): """ Difference between two layers Parameters ---------- layer1 layer2 Returns ------- """ gdf1 = layer1._gpd_df.drop("geometry", axis=1) new_geometry = [] df = [] for i, geometry in enumerate(layer1.geometry): is_intersecting = intersects(geometry, layer2.geometry, layer2.r_tree_idx) if any(is_intersecting): diff_result = explode([geometry.difference(cascaded_union( [geom for geom in layer2.geometry[is_intersecting]]))]) new_geometry.extend(diff_result) if len(diff_result) > 0: df.extend([gdf1.iloc[[i]]] * len(diff_result)) else: new_geometry.append(geometry) df.append(gdf1.iloc[[i]]) return _build_consistent_gdf(
concat(df, ignore_index=True)
pandas.concat
import os import sqlite3 from unittest import TestCase import warnings from contextlib2 import ExitStack from logbook import NullHandler, Logger import numpy as np import pandas as pd from six import with_metaclass, iteritems, itervalues import responses from toolz import flip, groupby, merge from trading_calendars import ( get_calendar, register_calendar_alias, ) import h5py import zipline from zipline.algorithm import TradingAlgorithm from zipline.assets import Equity, Future from zipline.assets.continuous_futures import CHAIN_PREDICATES from zipline.data.fx import DEFAULT_FX_RATE from zipline.finance.asset_restrictions import NoRestrictions from zipline.utils.memoize import classlazyval from zipline.pipeline import SimplePipelineEngine from zipline.pipeline.data import USEquityPricing from zipline.pipeline.data.testing import TestingDataSet from zipline.pipeline.domain import GENERIC, US_EQUITIES from zipline.pipeline.loaders import USEquityPricingLoader from zipline.pipeline.loaders.testing import make_seeded_random_loader from zipline.protocol import BarData from zipline.utils.paths import ensure_directory, ensure_directory_containing from .core import ( create_daily_bar_data, create_minute_bar_data, make_simple_equity_info, tmp_asset_finder, tmp_dir, write_hdf5_daily_bars, ) from .debug import debug_mro_failure from ..data.adjustments import ( SQLiteAdjustmentReader, SQLiteAdjustmentWriter, ) from ..data.bcolz_daily_bars import ( BcolzDailyBarReader, BcolzDailyBarWriter, ) from ..data.data_portal import ( DataPortal, DEFAULT_MINUTE_HISTORY_PREFETCH, DEFAULT_DAILY_HISTORY_PREFETCH, ) from ..data.fx import ( InMemoryFXRateReader, HDF5FXRateReader, HDF5FXRateWriter, ) from ..data.hdf5_daily_bars import ( HDF5DailyBarReader, HDF5DailyBarWriter, MultiCountryDailyBarReader, ) from ..data.loader import ( get_benchmark_filename, ) from ..data.minute_bars import ( BcolzMinuteBarReader, BcolzMinuteBarWriter, US_EQUITIES_MINUTES_PER_DAY, FUTURES_MINUTES_PER_DAY, ) from ..data.resample import ( minute_frame_to_session_frame, MinuteResampleSessionBarReader ) from ..finance.trading import SimulationParameters from ..utils.classproperty import classproperty from ..utils.final import FinalMeta, final from ..utils.memoize import remember_last zipline_dir = os.path.dirname(zipline.__file__) class DebugMROMeta(FinalMeta): """Metaclass that helps debug MRO resolution errors. """ def __new__(mcls, name, bases, clsdict): try: return super(DebugMROMeta, mcls).__new__( mcls, name, bases, clsdict ) except TypeError as e: if "(MRO)" in str(e): msg = debug_mro_failure(name, bases) raise TypeError(msg) else: raise class ZiplineTestCase(with_metaclass(DebugMROMeta, TestCase)): """ Shared extensions to core unittest.TestCase. Overrides the default unittest setUp/tearDown functions with versions that use ExitStack to correctly clean up resources, even in the face of exceptions that occur during setUp/setUpClass. Subclasses **should not override setUp or setUpClass**! Instead, they should implement `init_instance_fixtures` for per-test-method resources, and `init_class_fixtures` for per-class resources. Resources that need to be cleaned up should be registered using either `enter_{class,instance}_context` or `add_{class,instance}_callback}. """ _in_setup = False @final @classmethod def setUpClass(cls): # Hold a set of all the "static" attributes on the class. These are # things that are not populated after the class was created like # methods or other class level attributes. cls._static_class_attributes = set(vars(cls)) cls._class_teardown_stack = ExitStack() try: cls._base_init_fixtures_was_called = False cls.init_class_fixtures() assert cls._base_init_fixtures_was_called, ( "ZiplineTestCase.init_class_fixtures() was not called.\n" "This probably means that you overrode init_class_fixtures" " without calling super()." ) except BaseException: # Clean up even on KeyboardInterrupt cls.tearDownClass() raise @classmethod def init_class_fixtures(cls): """ Override and implement this classmethod to register resources that should be created and/or torn down on a per-class basis. Subclass implementations of this should always invoke this with super() to ensure that fixture mixins work properly. """ if cls._in_setup: raise ValueError( 'Called init_class_fixtures from init_instance_fixtures.' ' Did you write super(..., self).init_class_fixtures() instead' ' of super(..., self).init_instance_fixtures()?', ) cls._base_init_fixtures_was_called = True @final @classmethod def tearDownClass(cls): # We need to get this before it's deleted by the loop. stack = cls._class_teardown_stack for name in set(vars(cls)) - cls._static_class_attributes: # Remove all of the attributes that were added after the class was # constructed. This cleans up any large test data that is class # scoped while still allowing subclasses to access class level # attributes. delattr(cls, name) stack.close() @final @classmethod def enter_class_context(cls, context_manager): """ Enter a context manager to be exited during the tearDownClass """ if cls._in_setup: raise ValueError( 'Attempted to enter a class context in init_instance_fixtures.' '\nDid you mean to call enter_instance_context?', ) return cls._class_teardown_stack.enter_context(context_manager) @final @classmethod def add_class_callback(cls, callback, *args, **kwargs): """ Register a callback to be executed during tearDownClass. Parameters ---------- callback : callable The callback to invoke at the end of the test suite. """ if cls._in_setup: raise ValueError( 'Attempted to add a class callback in init_instance_fixtures.' '\nDid you mean to call add_instance_callback?', ) return cls._class_teardown_stack.callback(callback, *args, **kwargs) @final def setUp(self): type(self)._in_setup = True self._pre_setup_attrs = set(vars(self)) self._instance_teardown_stack = ExitStack() try: self._init_instance_fixtures_was_called = False self.init_instance_fixtures() assert self._init_instance_fixtures_was_called, ( "ZiplineTestCase.init_instance_fixtures() was not" " called.\n" "This probably means that you overrode" " init_instance_fixtures without calling super()." ) except BaseException: # Clean up even on KeyboardInterrupt self.tearDown() raise finally: type(self)._in_setup = False def init_instance_fixtures(self): self._init_instance_fixtures_was_called = True @final def tearDown(self): # We need to get this before it's deleted by the loop. stack = self._instance_teardown_stack for attr in set(vars(self)) - self._pre_setup_attrs: delattr(self, attr) stack.close() @final def enter_instance_context(self, context_manager): """ Enter a context manager that should be exited during tearDown. """ return self._instance_teardown_stack.enter_context(context_manager) @final def add_instance_callback(self, callback): """ Register a callback to be executed during tearDown. Parameters ---------- callback : callable The callback to invoke at the end of each test. """ return self._instance_teardown_stack.callback(callback) def alias(attr_name): """Make a fixture attribute an alias of another fixture's attribute by default. Parameters ---------- attr_name : str The name of the attribute to alias. Returns ------- p : classproperty A class property that does the property aliasing. Examples -------- >>> class C(object): ... attr = 1 ... >>> class D(C): ... attr_alias = alias('attr') ... >>> D.attr 1 >>> D.attr_alias 1 >>> class E(D): ... attr_alias = 2 ... >>> E.attr 1 >>> E.attr_alias 2 """ return classproperty(flip(getattr, attr_name)) class WithDefaultDateBounds(with_metaclass(DebugMROMeta, object)): """ ZiplineTestCase mixin which makes it possible to synchronize date bounds across fixtures. This fixture should always be the last fixture in bases of any fixture or test case that uses it. Attributes ---------- START_DATE : datetime END_DATE : datetime The date bounds to be used for fixtures that want to have consistent dates. """ START_DATE = pd.Timestamp('2006-01-03', tz='utc') END_DATE = pd.Timestamp('2006-12-29', tz='utc') class WithLogger(object): """ ZiplineTestCase mixin providing cls.log_handler as an instance-level fixture. After init_instance_fixtures has been called `self.log_handler` will be a new ``logbook.NullHandler``. Methods ------- make_log_handler() -> logbook.LogHandler A class method which constructs the new log handler object. By default this will construct a ``NullHandler``. """ make_log_handler = NullHandler @classmethod def init_class_fixtures(cls): super(WithLogger, cls).init_class_fixtures() cls.log = Logger() cls.log_handler = cls.enter_class_context( cls.make_log_handler().applicationbound(), ) class WithAssetFinder(WithDefaultDateBounds): """ ZiplineTestCase mixin providing cls.asset_finder as a class-level fixture. After init_class_fixtures has been called, `cls.asset_finder` is populated with an AssetFinder. Attributes ---------- ASSET_FINDER_EQUITY_SIDS : iterable[int] The default sids to construct equity data for. ASSET_FINDER_EQUITY_SYMBOLS : iterable[str] The default symbols to use for the equities. ASSET_FINDER_EQUITY_START_DATE : datetime The default start date to create equity data for. This defaults to ``START_DATE``. ASSET_FINDER_EQUITY_END_DATE : datetime The default end date to create equity data for. This defaults to ``END_DATE``. ASSET_FINDER_EQUITY_NAMES: iterable[str] The default names to use for the equities. ASSET_FINDER_EQUITY_EXCHANGE : str The default exchange to assign each equity. ASSET_FINDER_COUNTRY_CODE : str The default country code to assign each exchange. Methods ------- make_equity_info() -> pd.DataFrame A class method which constructs the dataframe of equity info to write to the class's asset db. By default this is empty. make_futures_info() -> pd.DataFrame A class method which constructs the dataframe of futures contract info to write to the class's asset db. By default this is empty. make_exchanges_info() -> pd.DataFrame A class method which constructs the dataframe of exchange information to write to the class's assets db. By default this is empty. make_root_symbols_info() -> pd.DataFrame A class method which constructs the dataframe of root symbols information to write to the class's assets db. By default this is empty. make_asset_finder_db_url() -> string A class method which returns the URL at which to create the SQLAlchemy engine. By default provides a URL for an in-memory database. make_asset_finder() -> pd.DataFrame A class method which constructs the actual asset finder object to use for the class. If this method is overridden then the ``make_*_info`` methods may not be respected. See Also -------- zipline.testing.make_simple_equity_info zipline.testing.make_jagged_equity_info zipline.testing.make_rotating_equity_info zipline.testing.make_future_info zipline.testing.make_commodity_future_info """ ASSET_FINDER_EQUITY_SIDS = ord('A'), ord('B'), ord('C') ASSET_FINDER_EQUITY_SYMBOLS = None ASSET_FINDER_EQUITY_NAMES = None ASSET_FINDER_EQUITY_EXCHANGE = 'TEST' ASSET_FINDER_EQUITY_START_DATE = alias('START_DATE') ASSET_FINDER_EQUITY_END_DATE = alias('END_DATE') ASSET_FINDER_FUTURE_CHAIN_PREDICATES = CHAIN_PREDICATES ASSET_FINDER_COUNTRY_CODE = '??' @classmethod def _make_info(cls, *args): return None make_futures_info = _make_info make_exchanges_info = _make_info make_root_symbols_info = _make_info make_equity_supplementary_mappings = _make_info del _make_info @classmethod def make_equity_info(cls): return make_simple_equity_info( cls.ASSET_FINDER_EQUITY_SIDS, cls.ASSET_FINDER_EQUITY_START_DATE, cls.ASSET_FINDER_EQUITY_END_DATE, cls.ASSET_FINDER_EQUITY_SYMBOLS, cls.ASSET_FINDER_EQUITY_NAMES, cls.ASSET_FINDER_EQUITY_EXCHANGE, ) @classmethod def make_asset_finder_db_url(cls): return 'sqlite:///:memory:' @classmethod def make_asset_finder(cls): """Returns a new AssetFinder Returns ------- asset_finder : zipline.assets.AssetFinder """ equities = cls.make_equity_info() futures = cls.make_futures_info() root_symbols = cls.make_root_symbols_info() exchanges = cls.make_exchanges_info(equities, futures, root_symbols) if exchanges is None: exchange_names = [ df['exchange'] for df in (equities, futures, root_symbols) if df is not None ] if exchange_names: exchanges = pd.DataFrame({ 'exchange': pd.concat(exchange_names).unique(), 'country_code': cls.ASSET_FINDER_COUNTRY_CODE, }) return cls.enter_class_context(tmp_asset_finder( url=cls.make_asset_finder_db_url(), equities=equities, futures=futures, exchanges=exchanges, root_symbols=root_symbols, equity_supplementary_mappings=( cls.make_equity_supplementary_mappings() ), future_chain_predicates=cls.ASSET_FINDER_FUTURE_CHAIN_PREDICATES, )) @classmethod def init_class_fixtures(cls): super(WithAssetFinder, cls).init_class_fixtures() cls.asset_finder = cls.make_asset_finder() @classlazyval def all_assets(cls): """A list of Assets for all sids in cls.asset_finder. """ return cls.asset_finder.retrieve_all(cls.asset_finder.sids) @classlazyval def exchange_names(cls): """A list of canonical exchange names for all exchanges in this suite. """ infos = itervalues(cls.asset_finder.exchange_info) return sorted(i.canonical_name for i in infos) @classlazyval def assets_by_calendar(cls): """A dict from calendar -> list of assets with that calendar. """ return groupby(lambda a: get_calendar(a.exchange), cls.all_assets) @classlazyval def all_calendars(cls): """A list of all calendars for assets in this test suite. """ return list(cls.assets_by_calendar) # TODO_SS: The API here doesn't make sense in a multi-country test scenario. class WithTradingCalendars(object): """ ZiplineTestCase mixin providing cls.trading_calendar, cls.all_trading_calendars, cls.trading_calendar_for_asset_type as a class-level fixture. After ``init_class_fixtures`` has been called: - `cls.trading_calendar` is populated with a default of the nyse trading calendar for compatibility with existing tests - `cls.all_trading_calendars` is populated with the trading calendars keyed by name, - `cls.trading_calendar_for_asset_type` is populated with the trading calendars keyed by the asset type which uses the respective calendar. Attributes ---------- TRADING_CALENDAR_STRS : iterable iterable of identifiers of the calendars to use. TRADING_CALENDAR_FOR_ASSET_TYPE : dict A dictionary which maps asset type names to the calendar associated with that asset type. """ TRADING_CALENDAR_STRS = ('NYSE',) TRADING_CALENDAR_FOR_ASSET_TYPE = {Equity: 'NYSE', Future: 'us_futures'} # For backwards compatibility, exisitng tests and fixtures refer to # `trading_calendar` with the assumption that the value is the NYSE # calendar. TRADING_CALENDAR_PRIMARY_CAL = 'NYSE' @classmethod def init_class_fixtures(cls): super(WithTradingCalendars, cls).init_class_fixtures() cls.trading_calendars = {} for cal_str in ( set(cls.TRADING_CALENDAR_STRS) | {cls.TRADING_CALENDAR_PRIMARY_CAL} ): # Set name to allow aliasing. calendar = get_calendar(cal_str) setattr(cls, '{0}_calendar'.format(cal_str.lower()), calendar) cls.trading_calendars[cal_str] = calendar type_to_cal = iteritems(cls.TRADING_CALENDAR_FOR_ASSET_TYPE) for asset_type, cal_str in type_to_cal: calendar = get_calendar(cal_str) cls.trading_calendars[asset_type] = calendar cls.trading_calendar = ( cls.trading_calendars[cls.TRADING_CALENDAR_PRIMARY_CAL] ) _MARKET_DATA_DIR = os.path.join(zipline_dir, 'resources', 'market_data') @remember_last def read_checked_in_benchmark_data(): symbol = 'SPY' filename = get_benchmark_filename(symbol) source_path = os.path.join(_MARKET_DATA_DIR, filename) benchmark_returns = pd.read_csv( source_path, parse_dates=[0], index_col=0, header=None, ).tz_localize('UTC') return benchmark_returns.iloc[:, 0] class WithBenchmarkReturns(WithDefaultDateBounds, WithTradingCalendars): """ ZiplineTestCase mixin providing cls.benchmark_returns as a class-level attribute. """ _default_treasury_curves = None @classproperty def BENCHMARK_RETURNS(cls): benchmark_returns = read_checked_in_benchmark_data() # Zipline ordinarily uses cached benchmark returns and treasury # curves data, but when running the zipline tests this cache is not # always updated to include the appropriate dates required by both # the futures and equity calendars. In order to create more # reliable and consistent data throughout the entirety of the # tests, we read static benchmark returns and treasury curve csv # files from source. If a test using this fixture attempts to run # outside of the static date range of the csv files, raise an # exception warning the user to either update the csv files in # source or to use a date range within the current bounds. static_start_date = benchmark_returns.index[0].date() static_end_date = benchmark_returns.index[-1].date() warning_message = ( 'The WithBenchmarkReturns fixture uses static data between ' '{static_start} and {static_end}. To use a start and end date ' 'of {given_start} and {given_end} you will have to update the ' 'files in {resource_dir} to include the missing dates.'.format( static_start=static_start_date, static_end=static_end_date, given_start=cls.START_DATE.date(), given_end=cls.END_DATE.date(), resource_dir=_MARKET_DATA_DIR, ) ) if cls.START_DATE.date() < static_start_date or \ cls.END_DATE.date() > static_end_date: raise AssertionError(warning_message) return benchmark_returns class WithSimParams(WithDefaultDateBounds): """ ZiplineTestCase mixin providing cls.sim_params as a class level fixture. Attributes ---------- SIM_PARAMS_CAPITAL_BASE : float SIM_PARAMS_DATA_FREQUENCY : {'daily', 'minute'} SIM_PARAMS_EMISSION_RATE : {'daily', 'minute'} Forwarded to ``SimulationParameters``. SIM_PARAMS_START : datetime SIM_PARAMS_END : datetime Forwarded to ``SimulationParameters``. If not explicitly overridden these will be ``START_DATE`` and ``END_DATE`` Methods ------- make_simparams(**overrides) Construct a ``SimulationParameters`` using the defaults defined by fixture configuration attributes. Any parameters to ``SimulationParameters`` can be overridden by passing them by keyword. See Also -------- zipline.finance.trading.SimulationParameters """ SIM_PARAMS_CAPITAL_BASE = 1.0e5 SIM_PARAMS_DATA_FREQUENCY = 'daily' SIM_PARAMS_EMISSION_RATE = 'daily' SIM_PARAMS_START = alias('START_DATE') SIM_PARAMS_END = alias('END_DATE') @classmethod def make_simparams(cls, **overrides): kwargs = dict( start_session=cls.SIM_PARAMS_START, end_session=cls.SIM_PARAMS_END, capital_base=cls.SIM_PARAMS_CAPITAL_BASE, data_frequency=cls.SIM_PARAMS_DATA_FREQUENCY, emission_rate=cls.SIM_PARAMS_EMISSION_RATE, trading_calendar=cls.trading_calendar, ) kwargs.update(overrides) return SimulationParameters(**kwargs) @classmethod def init_class_fixtures(cls): super(WithSimParams, cls).init_class_fixtures() cls.sim_params = cls.make_simparams() class WithTradingSessions(WithDefaultDateBounds, WithTradingCalendars): """ ZiplineTestCase mixin providing cls.trading_days, cls.all_trading_sessions as a class-level fixture. After init_class_fixtures has been called, `cls.all_trading_sessions` is populated with a dictionary of calendar name to the DatetimeIndex containing the calendar trading days ranging from: (DATA_MAX_DAY - (cls.TRADING_DAY_COUNT) -> DATA_MAX_DAY) `cls.trading_days`, for compatibility with existing tests which make the assumption that trading days are equity only, defaults to the nyse trading sessions. Attributes ---------- DATA_MAX_DAY : datetime The most recent trading day in the calendar. TRADING_DAY_COUNT : int The number of days to put in the calendar. The default value of ``TRADING_DAY_COUNT`` is 126 (half a trading-year). Inheritors can override TRADING_DAY_COUNT to request more or less data. """ DATA_MIN_DAY = alias('START_DATE') DATA_MAX_DAY = alias('END_DATE') # For backwards compatibility, exisitng tests and fixtures refer to # `trading_days` with the assumption that the value is days of the NYSE # calendar. trading_days = alias('nyse_sessions') @classmethod def init_class_fixtures(cls): super(WithTradingSessions, cls).init_class_fixtures() cls.trading_sessions = {} for cal_str in cls.TRADING_CALENDAR_STRS: trading_calendar = cls.trading_calendars[cal_str] sessions = trading_calendar.sessions_in_range( cls.DATA_MIN_DAY, cls.DATA_MAX_DAY) # Set name for aliasing. setattr(cls, '{0}_sessions'.format(cal_str.lower()), sessions) cls.trading_sessions[cal_str] = sessions class WithTmpDir(object): """ ZiplineTestCase mixing providing cls.tmpdir as a class-level fixture. After init_class_fixtures has been called, `cls.tmpdir` is populated with a `testfixtures.TempDirectory` object whose path is `cls.TMP_DIR_PATH`. Attributes ---------- TMP_DIR_PATH : str The path to the new directory to create. By default this is None which will create a unique directory in /tmp. """ TMP_DIR_PATH = None @classmethod def init_class_fixtures(cls): super(WithTmpDir, cls).init_class_fixtures() cls.tmpdir = cls.enter_class_context( tmp_dir(path=cls.TMP_DIR_PATH), ) class WithInstanceTmpDir(object): """ ZiplineTestCase mixing providing self.tmpdir as an instance-level fixture. After init_instance_fixtures has been called, `self.tmpdir` is populated with a `testfixtures.TempDirectory` object whose path is `cls.TMP_DIR_PATH`. Attributes ---------- INSTANCE_TMP_DIR_PATH : str The path to the new directory to create. By default this is None which will create a unique directory in /tmp. """ INSTANCE_TMP_DIR_PATH = None def init_instance_fixtures(self): super(WithInstanceTmpDir, self).init_instance_fixtures() self.instance_tmpdir = self.enter_instance_context( tmp_dir(path=self.INSTANCE_TMP_DIR_PATH), ) class WithEquityDailyBarData(WithAssetFinder, WithTradingCalendars): """ ZiplineTestCase mixin providing cls.make_equity_daily_bar_data. Attributes ---------- EQUITY_DAILY_BAR_START_DATE : Timestamp The date at to which to start creating data. This defaults to ``START_DATE``. EQUITY_DAILY_BAR_END_DATE = Timestamp The end date up to which to create data. This defaults to ``END_DATE``. EQUITY_DAILY_BAR_SOURCE_FROM_MINUTE : bool If this flag is set, `make_equity_daily_bar_data` will read data from the minute bars defined by `WithEquityMinuteBarData`. The current default is `False`, but could be `True` in the future. EQUITY_DAILY_BAR_COUNTRY_CODES : tuple The countres to create data for. By default this is populated with all of the countries present in the asset finder. Methods ------- make_equity_daily_bar_data(country_code, sids) make_equity_daily_bar_currency_codes(country_code, sids) See Also -------- WithEquityMinuteBarData zipline.testing.create_daily_bar_data """ # noqa EQUITY_DAILY_BAR_START_DATE = alias('START_DATE') EQUITY_DAILY_BAR_END_DATE = alias('END_DATE') EQUITY_DAILY_BAR_SOURCE_FROM_MINUTE = None @classproperty def EQUITY_DAILY_BAR_LOOKBACK_DAYS(cls): # If we're sourcing from minute data, then we almost certainly want the # minute bar calendar to be aligned with the daily bar calendar, so # re-use the same lookback parameter. if cls.EQUITY_DAILY_BAR_SOURCE_FROM_MINUTE: return cls.EQUITY_MINUTE_BAR_LOOKBACK_DAYS else: return 0 @classproperty def EQUITY_DAILY_BAR_COUNTRY_CODES(cls): return cls.asset_finder.country_codes @classmethod def _make_equity_daily_bar_from_minute(cls): assert issubclass(cls, WithEquityMinuteBarData), \ "Can't source daily data from minute without minute data!" assets = cls.asset_finder.retrieve_all(cls.asset_finder.equities_sids) minute_data = dict(cls.make_equity_minute_bar_data()) for asset in assets: yield asset.sid, minute_frame_to_session_frame( minute_data[asset.sid], cls.trading_calendars[Equity]) @classmethod def make_equity_daily_bar_data(cls, country_code, sids): """ Create daily pricing data. Parameters ---------- country_code : str An ISO 3166 alpha-2 country code. Data should be created for this country. sids : tuple[int] The sids to include in the data. Yields ------ (int, pd.DataFrame) A sid, dataframe pair to be passed to a daily bar writer. The dataframe should be indexed by date, with columns of ('open', 'high', 'low', 'close', 'volume', 'day', & 'id'). """ # Requires a WithEquityMinuteBarData to come before in the MRO. # Resample that data so that daily and minute bar data are aligned. if cls.EQUITY_DAILY_BAR_SOURCE_FROM_MINUTE: return cls._make_equity_daily_bar_from_minute() else: return create_daily_bar_data(cls.equity_daily_bar_days, sids) @classmethod def make_equity_daily_bar_currency_codes(cls, country_code, sids): """Create listing currencies. Default is to list all assets in USD. Parameters ---------- country_code : str An ISO 3166 alpha-2 country code. Data should be created for this country. sids : tuple[int] The sids to include in the data. Returns ------- currency_codes : pd.Series[int, str] Map from sids to currency for that sid's prices. """ return pd.Series(index=list(sids), data='USD') @classmethod def init_class_fixtures(cls): super(WithEquityDailyBarData, cls).init_class_fixtures() trading_calendar = cls.trading_calendars[Equity] if trading_calendar.is_session(cls.EQUITY_DAILY_BAR_START_DATE): first_session = cls.EQUITY_DAILY_BAR_START_DATE else: first_session = trading_calendar.minute_to_session_label( pd.Timestamp(cls.EQUITY_DAILY_BAR_START_DATE) ) if cls.EQUITY_DAILY_BAR_LOOKBACK_DAYS > 0: first_session = trading_calendar.sessions_window( first_session, -1 * cls.EQUITY_DAILY_BAR_LOOKBACK_DAYS )[0] days = trading_calendar.sessions_in_range( first_session, cls.EQUITY_DAILY_BAR_END_DATE, ) cls.equity_daily_bar_days = days class WithFutureDailyBarData(WithAssetFinder, WithTradingCalendars): """ ZiplineTestCase mixin providing cls.make_future_daily_bar_data. Attributes ---------- FUTURE_DAILY_BAR_START_DATE : Timestamp The date at to which to start creating data. This defaults to ``START_DATE``. FUTURE_DAILY_BAR_END_DATE = Timestamp The end date up to which to create data. This defaults to ``END_DATE``. FUTURE_DAILY_BAR_SOURCE_FROM_MINUTE : bool If this flag is set, `make_future_daily_bar_data` will read data from the minute bars defined by `WithFutureMinuteBarData`. The current default is `False`, but could be `True` in the future. Methods ------- make_future_daily_bar_data() -> iterable[(int, pd.DataFrame)] A class method that returns an iterator of (sid, dataframe) pairs which will be written to the bcolz files that the class's ``BcolzDailyBarReader`` will read from. By default this creates some simple synthetic data with :func:`~zipline.testing.create_daily_bar_data` See Also -------- WithFutureMinuteBarData zipline.testing.create_daily_bar_data """ FUTURE_DAILY_BAR_USE_FULL_CALENDAR = False FUTURE_DAILY_BAR_START_DATE = alias('START_DATE') FUTURE_DAILY_BAR_END_DATE = alias('END_DATE') FUTURE_DAILY_BAR_SOURCE_FROM_MINUTE = None @classproperty def FUTURE_DAILY_BAR_LOOKBACK_DAYS(cls): # If we're sourcing from minute data, then we almost certainly want the # minute bar calendar to be aligned with the daily bar calendar, so # re-use the same lookback parameter. if cls.FUTURE_DAILY_BAR_SOURCE_FROM_MINUTE: return cls.FUTURE_MINUTE_BAR_LOOKBACK_DAYS else: return 0 @classmethod def _make_future_daily_bar_from_minute(cls): assert issubclass(cls, WithFutureMinuteBarData), \ "Can't source daily data from minute without minute data!" assets = cls.asset_finder.retrieve_all(cls.asset_finder.futures_sids) minute_data = dict(cls.make_future_minute_bar_data()) for asset in assets: yield asset.sid, minute_frame_to_session_frame( minute_data[asset.sid], cls.trading_calendars[Future]) @classmethod def make_future_daily_bar_data(cls): # Requires a WithFutureMinuteBarData to come before in the MRO. # Resample that data so that daily and minute bar data are aligned. if cls.FUTURE_DAILY_BAR_SOURCE_FROM_MINUTE: return cls._make_future_daily_bar_from_minute() else: return create_daily_bar_data( cls.future_daily_bar_days, cls.asset_finder.futures_sids, ) @classmethod def init_class_fixtures(cls): super(WithFutureDailyBarData, cls).init_class_fixtures() trading_calendar = cls.trading_calendars[Future] if cls.FUTURE_DAILY_BAR_USE_FULL_CALENDAR: days = trading_calendar.all_sessions else: if trading_calendar.is_session(cls.FUTURE_DAILY_BAR_START_DATE): first_session = cls.FUTURE_DAILY_BAR_START_DATE else: first_session = trading_calendar.minute_to_session_label(
pd.Timestamp(cls.FUTURE_DAILY_BAR_START_DATE)
pandas.Timestamp
#!/usr/bin/env python import pandas as pd import seaborn as sns import pylab as plt __package__ = "Byron times plot" __author__ = "<NAME> (<EMAIL>)" if __name__ == '__main__': filename = 'byron_times.dat' data = pd.read_csv(filename, sep=',', header=0) n_version = len(data.Method.unique()) ref = data[data.Method == 'darknet']['Time'] ref =
pd.concat([ref]*n_version)
pandas.concat
# this functino is to run the mlp on the 0.5s binned data created by Shashiks # features: downloaded bytes amount is the feature to be updated. import pandas as pd import numpy as np import os import math import argparse from keras import Sequential from keras.layers import Dense, BatchNormalization, Dropout, Conv1D, MaxPooling1D, Flatten from sklearn.metrics import accuracy_score, average_precision_score, recall_score from sklearn.preprocessing import MinMaxScaler from sklearn.utils import shuffle # constant values YT = 1 FB = 0 V360 = 1 VNormal = 0 # select the train and test ids according to this random state and the seen and unseen nature def select_train_and_test_id(random_state, is_seen): # a set means id sets ranging from the 1-10,21-20,... if is_seen: test_ind = list(np.arange(1, 51)) train_ind = list(np.arange(1, 51)) else: num_of_ids_from_one_set = 3 all_videos = np.arange(1, 51) test_ind = [] # make sure that each video id is present in the test set at least 2 times for ind_set in range(5): for sub_id in range(num_of_ids_from_one_set): test_ind.append(ind_set * 10 + (sub_id + random_state)) train_ind = list(set(list(all_videos)) - set(list(test_ind))) return train_ind, test_ind # based on the train and test list get the original and synthesis dataset from the # processed data def truncate_train_list(temp_train_df, number_of_traces): temp_train_df = shuffle(temp_train_df, random_state=123) temp_train_df.reset_index(inplace=True, drop=True) len_temp_train_df = temp_train_df.shape[0] truncated_train_df = temp_train_df.loc[0:np.ceil(number_of_traces * len_temp_train_df) - 1, :] return truncated_train_df def get_synth_df(synth_df, indices, num_of_synth_samples): temp_df_list = [] for i in (indices): temp_df_list.append( synth_df.loc[i * num_of_synth_samples:i * num_of_synth_samples + num_of_synth_samples - 1, :]) df =
pd.concat(temp_df_list)
pandas.concat
##Creates the sequence export sheet #just a utility for LocusExtractor import pandas as pd import re import utilities from seq_utilities import trim_at_first_stop class SequenceExporter: def __init__(self,templateFile,locusList,genome_frame): #Read in teh template templateFrame =
pd.read_csv(templateFile,header=0)
pandas.read_csv
from typing import List import pandas as pd from utils import request_to_json, get_repo_names from github_pr import GitHubPR from github_users import GitHubUsers # temporary - to minimize the number of requests REPO_NAMES = [ "dyvenia", "elt_workshop", "git-workshop", "gitflow", "notebooks", "timeflow", "timeflow_ui", "timelogs", "viadot", ] class GitHubFlow: """ For getting all informations per contributor. """ def __init__(self): # self.repo_names = get_repo_names() self.contributor_info = GitHubUsers() self.pr_info = GitHubPR() def get_prs_per_user(self, contributor: str = None, repo: str = None) -> dict: """ List all pull requests per pointed user from repository. Args: contributor (str, optional): Contributor name. Defaults to None. repo (str, optional): Repo name. Defaults to None. Returns: dict: Dictionary included all PRs per contributor from specific repository. """ url = f"https://api.github.com/search/issues?q=is:pr+repo:dyvenia/{repo}+author:{contributor}" pr_info = request_to_json(url) final_dict_per_user = {} try: for ind in range(len(pr_info["items"])): dict_per_user = { "contributor": contributor, "repo": repo, "number": pr_info["items"][ind]["number"], "title": pr_info["items"][ind]["title"], } final_dict_per_user[pr_info["items"][ind]["id"]] = dict_per_user except KeyError as e: print(f"For {contributor} : {e} is not found") return final_dict_per_user def list_all_pr_per_contributors(self, dict_repo_login: dict = None) -> List[dict]: """ List combined pull requests per every Args: dict_repo_login (dict, optional): Each contribution that occurs in a given organization. The contributor is the key. The value is the repository list that the user contributes. Defaults to None. Returns: List[dict]: List of dictionaries. Key is the PR id. Info about specific PR in a value. """ list_of_dict_prs = [] for key, value in dict_repo_login.items(): for repo in value: dict_pr = self.get_prs_per_user(key, repo) list_of_dict_prs.append(dict_pr) return list_of_dict_prs def create_pairs_contributor_repo(self, df_repo_login: pd.DataFrame = None) -> dict: """ Create pairs contributor-repository. Pairing for each contribution that occurs in a given organization. Args: df_repo_login (pd.DataFrame, optional): Each contribution that occurs in a given organization. Defaults to None. Returns: dict: The contributor is the key. The value is the repository list that the user contributes. """ dict_repo_login = {} dict_repo_login_raw = df_repo_login.to_dict("records") for dct in dict_repo_login_raw: try: dict_repo_login[dct["login"]].append(dct["repo"]) except KeyError: dict_repo_login[dct["login"]] = [dct["repo"]] return dict_repo_login def run_pr_info(self) -> pd.DataFrame: """ Method to generate DataFrame with information about all pull requests. DataFrame contains information about PR name and PR number per user and repository where he contributes. Returns: pd.DataFrame: Data Frame["contributor", "repo", "number", "title"]. """ df_all_contributions = self.contributor_info.get_all_contributions(REPO_NAMES) dict_repo_login = self.create_pairs_contributor_repo( df_all_contributions[["repo", "login"]] ) list_of_dict_prs = self.list_all_pr_per_contributors(dict_repo_login) df_transformed = pd.DataFrame( [list_of.values() for list_of in list_of_dict_prs] ) df = pd.DataFrame() for x in df_transformed.columns: df = pd.concat([df, df_transformed[x].apply(pd.Series)]) return df[["contributor", "repo", "number", "title"]].dropna() def run_commit_info(self) -> pd.DataFrame: """ Method to generate DataFrame with information about all commits from pull requests. DataFrame contains information about author, PR number, message and date_commit. Returns: pd.DataFrame: Data Frame["author", "pr_number", "date_commit", "message", "comment_count"]. """ df = self.run_pr_info() dict_pr_number_repo = {row["number"]: row["repo"] for _, row in df.iterrows()} df_combined =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Wed Sep 19 13:38:04 2018 @author: nmei """ import pandas as pd import os working_dir = '' batch_dir = 'batch' if not os.path.exists(batch_dir): os.mkdir(batch_dir) content = ''' #!/bin/bash # This is a script to qsub jobs #$ -cwd #$ -o test_run/out_q.txt #$ -e test_run/err_q.txt #$ -m be #$ -M <EMAIL> #$ -N "qjob" #$ -S /bin/bash ''' with open(os.path.join(batch_dir,'qsub_jobs'),'w') as f: f.write(content) df = pd.read_csv(os.path.join(working_dir,'../data/PoSdata.csv')) df = df[df.columns[1:]] df.columns = ['participant', 'blocks', 'trials', 'firstgabor', 'success', 'tilted', 'correct', 'RT_correct', 'awareness', 'RT_awareness', 'confidence', 'RT_confidence'] participants =
pd.unique(df['participant'])
pandas.unique
# -*- coding: utf-8 -*- """Interface for flopy's implementation for MODFLOW.""" __all__ = ["MfSfrNetwork"] import pickle from itertools import combinations, zip_longest from textwrap import dedent import geopandas import numpy as np import pandas as pd from shapely import wkt from shapely.geometry import LineString, Point, Polygon, box from shapely.ops import linemerge from swn.core import SurfaceWaterNetwork from swn.spatial import compare_crs, get_sindex from swn.util import abbr_str try: import matplotlib except ImportError: matplotlib = False class MfSfrNetwork: """MODFLOW SFR network class. Attributes ---------- model : flopy.modflow.mf.Modflow Instance of a flopy MODFLOW model segments : geopandas.GeoDataFrame Copied from swn.segments, but with additional columns added segment_data : pandas.DataFrame Similar to structure in model.sfr.segment_data, but for one stress period. Transient data (where applicable) will show summary statistics. The index is 'nseg', ordered and starting from 1. An additional column 'segnum' is used to identify segments, and if defined, abstraction/diversion identifiers, where iupseg != 0. reaches : geopandas.GeoDataFrame Similar to structure in model.sfr.reach_data with index 'reachID', ordered and starting from 1. Contains geometry and other columns not used by flopy. Use get_reach_data() for use with flopy. diversions : geopandas.GeoDataFrame, pd.DataFrame or None Copied from swn.diversions, if set/defined. logger : logging.Logger Logger to show messages. """ def __init__(self, logger=None): """Initialise MfSfrNetwork. Parameters ---------- logger : logging.Logger, optional Logger to show messages. """ from swn.logger import get_logger, logging from importlib.util import find_spec if logger is None: self.logger = get_logger(self.__class__.__name__) elif isinstance(logger, logging.Logger): self.logger = logger else: raise ValueError( "expected 'logger' to be Logger; found " + str(type(logger))) self.logger.warning( "using legacy MfSfrNetwork; consider using SwnModflow") self.logger.info('creating new %s object', self.__class__.__name__) if not find_spec('flopy'): raise ImportError(self.__class__.__name__ + ' requires flopy') self.segments = None self.segment_data = None self.reaches = None self.diversions = None # all other properties added afterwards @classmethod def from_swn_flopy( cls, swn, model, ibound_action='freeze', reach_include_fraction=0.2, min_slope=1./1000, hyd_cond1=1., hyd_cond_out=None, thickness1=1., thickness_out=None, width1=10., width_out=None, roughch=0.024, abstraction={}, inflow={}, flow={}, runoff={}, etsw={}, pptsw={}): """Create a MODFLOW SFR structure from a surface water network. Parameters ---------- swn : swn.SurfaceWaterNetwork Instance of a SurfaceWaterNetwork. model : flopy.modflow.mf.Modflow Instance of a flopy MODFLOW model with DIS and BAS6 packages. ibound_action : str, optional Action to handle IBOUND: - ``freeze`` : Freeze IBOUND, but clip streams to fit bounds. - ``modify`` : Modify IBOUND to fit streams, where possible. reach_include_fraction : float or pandas.Series, optional Fraction of cell size used as a threshold distance to determine if reaches outside the active grid should be included to a cell. Based on the furthest distance of the line and cell geometries. Default 0.2 (e.g. for a 100 m grid cell, this is 20 m). min_slope : float or pandas.Series, optional Minimum downwards slope imposed on segments. If float, then this is a global value, otherwise it is per-segment with a Series. Default 1./1000 (or 0.001). hyd_cond1 : float or pandas.Series, optional Hydraulic conductivity of the streambed, as a global or per top of each segment. Used for either STRHC1 or HCOND1/HCOND2 outputs. Default 1. hyd_cond_out : None, float or pandas.Series, optional Similar to thickness1, but for the hydraulic conductivity of each segment outlet. If None (default), the same hyd_cond1 value for the top of the outlet segment is used for the bottom. thickness1 : float or pandas.Series, optional Thickness of the streambed, as a global or per top of each segment. Used for either STRTHICK or THICKM1/THICKM2 outputs. Default 1. thickness_out : None, float or pandas.Series, optional Similar to thickness1, but for the bottom of each segment outlet. If None (default), the same thickness1 value for the top of the outlet segment is used for the bottom. width1 : float or pandas.Series, optional Channel width, as a global or per top of each segment. Used for WIDTH1/WIDTH2 outputs. Default 10. width_out : None, float or pandas.Series, optional Similar to width1, but for the bottom of each segment outlet. If None (default), the same width1 value for the top of the outlet segment is used for the bottom. roughch : float or pandas.Series, optional Manning's roughness coefficient for the channel. If float, then this is a global value, otherwise it is per-segment with a Series. Default 0.024. abstraction : dict or pandas.DataFrame, optional See generate_segment_data for details. Default is {} (no abstraction from diversions). inflow : dict or pandas.DataFrame, optional See generate_segment_data for details. Default is {} (no outside inflow added to flow term). flow : dict or pandas.DataFrame, optional See generate_segment_data. Default is {} (zero). runoff : dict or pandas.DataFrame, optional See generate_segment_data. Default is {} (zero). etsw : dict or pandas.DataFrame, optional See generate_segment_data. Default is {} (zero). pptsw : dict or pandas.DataFrame, optional See generate_segment_data. Default is {} (zero). logger : logging.Logger, optional Logger to show messages. """ obj = cls() import flopy if not isinstance(swn, SurfaceWaterNetwork): raise ValueError('swn must be a SurfaceWaterNetwork object') elif ibound_action not in ('freeze', 'modify'): raise ValueError('ibound_action must be one of freeze or modify') obj.model = model obj.segments = swn.segments.copy() # Make sure model CRS and segments CRS are the same (if defined) crs = None segments_crs = getattr(obj.segments.geometry, 'crs', None) modelgrid_crs = None modelgrid = obj.model.modelgrid epsg = modelgrid.epsg proj4_str = modelgrid.proj4 if epsg is not None: segments_crs, modelgrid_crs, same = compare_crs(segments_crs, epsg) else: segments_crs, modelgrid_crs, same = compare_crs(segments_crs, proj4_str) if (segments_crs is not None and modelgrid_crs is not None and not same): obj.logger.warning( 'CRS for segments and modelgrid are different: {0} vs. {1}' .format(segments_crs, modelgrid_crs)) crs = segments_crs or modelgrid_crs # Make sure their extents overlap minx, maxx, miny, maxy = modelgrid.extent model_bbox = box(minx, miny, maxx, maxy) rstats = obj.segments.bounds.describe() segments_bbox = box( rstats.loc['min', 'minx'], rstats.loc['min', 'miny'], rstats.loc['max', 'maxx'], rstats.loc['max', 'maxy']) if model_bbox.disjoint(segments_bbox): raise ValueError('modelgrid extent does not cover segments extent') # More careful check of overlap of lines with grid polygons obj.logger.debug('building model grid cell geometries') dis = obj.model.dis cols, rows = np.meshgrid(np.arange(dis.ncol), np.arange(dis.nrow)) ibound = obj.model.bas6.ibound[0].array.copy() ibound_modified = 0 grid_df = pd.DataFrame({'row': rows.flatten(), 'col': cols.flatten()}) grid_df.set_index(['row', 'col'], inplace=True) grid_df['ibound'] = ibound.flatten() if ibound_action == 'freeze' and (ibound == 0).any(): # Remove any inactive grid cells from analysis grid_df = grid_df.loc[grid_df['ibound'] != 0] # Determine grid cell size col_size = np.median(dis.delr.array) if dis.delr.array.min() != dis.delr.array.max(): obj.logger.warning( 'assuming constant column spacing %s', col_size) row_size = np.median(dis.delc.array) if dis.delc.array.min() != dis.delc.array.max(): obj.logger.warning( 'assuming constant row spacing %s', row_size) cell_size = (row_size + col_size) / 2.0 # Note: modelgrid.get_cell_vertices(row, col) is slow! xv = modelgrid.xvertices yv = modelgrid.yvertices r, c = [np.array(s[1]) for s in grid_df.reset_index()[['row', 'col']].iteritems()] cell_verts = zip( zip(xv[r, c], yv[r, c]), zip(xv[r, c + 1], yv[r, c + 1]), zip(xv[r + 1, c + 1], yv[r + 1, c + 1]), zip(xv[r + 1, c], yv[r + 1, c]) ) obj.grid_cells = grid_cells = geopandas.GeoDataFrame( grid_df, geometry=[Polygon(r) for r in cell_verts], crs=crs) obj.logger.debug('evaluating reach data on model grid') grid_sindex = get_sindex(grid_cells) reach_include = swn.segments_series(reach_include_fraction) * cell_size # Make an empty DataFrame for reaches obj.reaches = pd.DataFrame(columns=['geometry']) obj.reaches.insert(1, column='row', value=pd.Series(dtype=int)) obj.reaches.insert(2, column='col', value=pd.Series(dtype=int)) empty_reach_df = obj.reaches.copy() # take this before more added obj.reaches.insert( 1, column='segnum', value=pd.Series(dtype=obj.segments.index.dtype)) obj.reaches.insert(2, column='dist', value=pd.Series(dtype=float)) empty_reach_df.insert(3, column='length', value=pd.Series(dtype=float)) empty_reach_df.insert(4, column='moved', value=pd.Series(dtype=bool)) # recursive helper function def append_reach_df(df, row, col, reach_geom, moved=False): if reach_geom.geom_type == 'LineString': df.loc[len(df.index)] = { 'geometry': reach_geom, 'row': row, 'col': col, 'length': reach_geom.length, 'moved': moved, } elif reach_geom.geom_type.startswith('Multi'): for sub_reach_geom in reach_geom.geoms: # recurse append_reach_df(df, row, col, sub_reach_geom, moved) else: raise NotImplementedError(reach_geom.geom_type) # helper function that returns early, if necessary def assign_short_reach(reach_df, idx, segnum): reach = reach_df.loc[idx] reach_geom = reach['geometry'] threshold = reach_include[segnum] if reach_geom.length > threshold: return cell_lengths = reach_df.groupby(['row', 'col'])['length'].sum() this_row_col = reach['row'], reach['col'] this_cell_length = cell_lengths[this_row_col] if this_cell_length > threshold: return grid_geom = grid_cells.at[(reach['row'], reach['col']), 'geometry'] # determine if it is crossing the grid once or twice grid_points = reach_geom.intersection(grid_geom.exterior) split_short = ( grid_points.geom_type == 'Point' or (grid_points.geom_type == 'MultiPoint' and len(grid_points) == 2)) if not split_short: return matches = [] # sequence scan on reach_df for oidx, orch in reach_df.iterrows(): if oidx == idx or orch['moved']: continue other_row_col = orch['row'], orch['col'] other_cell_length = cell_lengths[other_row_col] if (orch['geometry'].distance(reach_geom) < 1e-6 and this_cell_length < other_cell_length): matches.append((oidx, orch['geometry'])) if len(matches) == 0: # don't merge, e.g. reach does not connect to adjacent cell pass elif len(matches) == 1: # short segment is in one other cell only # update new row and col values, keep geometry as it is row_col1 = tuple(reach_df.loc[matches[0][0], ['row', 'col']]) reach_df.loc[idx, ['row', 'col', 'moved']] = row_col1 + (True,) # self.logger.debug( # 'moved short segment of %s from %s to %s', # segnum, this_row_col, row_col1) elif len(matches) == 2: assert grid_points.geom_type == 'MultiPoint', grid_points.wkt if len(grid_points) != 2: obj.logger.critical( 'expected 2 points, found %s', len(grid_points)) # Build a tiny DataFrame of coordinates for this reach reach_c = pd.DataFrame({ 'pt': [Point(c) for c in reach_geom.coords[:]] }) if len(reach_c) == 2: # If this is a simple line with two coords, split it reach_c.index = [0, 2] reach_c.loc[1] = { 'pt': reach_geom.interpolate(0.5, normalized=True)} reach_c.sort_index(inplace=True) reach_geom = LineString(list(reach_c['pt'])) # rebuild # first match assumed to be touching the start of the line if reach_c.at[0, 'pt'].distance(matches[1][1]) < 1e-6: matches.reverse() reach_c['d1'] = reach_c['pt'].apply( lambda p: p.distance(matches[0][1])) reach_c['d2'] = reach_c['pt'].apply( lambda p: p.distance(matches[1][1])) reach_c['dm'] = reach_c[['d1', 'd2']].min(1) # try a simple split where distances switch ds = reach_c['d1'] < reach_c['d2'] cidx = ds[ds].index[-1] # ensure it's not the index of either end if cidx == 0: cidx = 1 elif cidx == len(reach_c) - 1: cidx = len(reach_c) - 2 row1, col1 = list(reach_df.loc[matches[0][0], ['row', 'col']]) reach_geom1 = LineString(reach_geom.coords[:(cidx + 1)]) row2, col2 = list(reach_df.loc[matches[1][0], ['row', 'col']]) reach_geom2 = LineString(reach_geom.coords[cidx:]) # update the first, append the second reach_df.loc[idx, ['row', 'col', 'length', 'moved']] = \ (row1, col1, reach_geom1.length, True) reach_df.at[idx, 'geometry'] = reach_geom1 append_reach_df(reach_df, row2, col2, reach_geom2, moved=True) # self.logger.debug( # 'split and moved short segment of %s from %s to %s and %s', # segnum, this_row_col, (row1, col1), (row2, col2)) else: obj.logger.critical( 'unhandled assign_short_reach case with %d matches: %s\n' '%s\n%s', len(matches), matches, reach, grid_points.wkt) def assign_remaining_reach(reach_df, segnum, rem): if rem.geom_type == 'LineString': threshold = cell_size * 2.0 if rem.length > threshold: obj.logger.debug( 'remaining line segment from %s too long to merge ' '(%.1f > %.1f)', segnum, rem.length, threshold) return # search full grid for other cells that could match if grid_sindex: bbox_match = sorted(grid_sindex.intersection(rem.bounds)) sub = grid_cells.geometry.iloc[bbox_match] else: # slow scan of all cells sub = grid_cells.geometry assert len(sub) > 0, len(sub) matches = [] for (row, col), grid_geom in sub.iteritems(): if grid_geom.touches(rem): matches.append((row, col, grid_geom)) if len(matches) == 0: return threshold = reach_include[segnum] # Build a tiny DataFrame for just the remaining coordinates rem_c = pd.DataFrame({ 'pt': [Point(c) for c in rem.coords[:]] }) if len(matches) == 1: # merge it with adjacent cell row, col, grid_geom = matches[0] mdist = rem_c['pt'].apply( lambda p: grid_geom.distance(p)).max() if mdist > threshold: obj.logger.debug( 'remaining line segment from %s too far away to ' 'merge (%.1f > %.1f)', segnum, mdist, threshold) return append_reach_df(reach_df, row, col, rem, moved=True) elif len(matches) == 2: # complex: need to split it if len(rem_c) == 2: # If this is a simple line with two coords, split it rem_c.index = [0, 2] rem_c.loc[1] = { 'pt': rem.interpolate(0.5, normalized=True)} rem_c.sort_index(inplace=True) rem = LineString(list(rem_c['pt'])) # rebuild # first match assumed to be touching the start of the line if rem_c.at[0, 'pt'].touches(matches[1][2]): matches.reverse() rem_c['d1'] = rem_c['pt'].apply( lambda p: p.distance(matches[0][2])) rem_c['d2'] = rem_c['pt'].apply( lambda p: p.distance(matches[1][2])) rem_c['dm'] = rem_c[['d1', 'd2']].min(1) mdist = rem_c['dm'].max() if mdist > threshold: obj.logger.debug( 'remaining line segment from %s too far away to ' 'merge (%.1f > %.1f)', segnum, mdist, threshold) return # try a simple split where distances switch ds = rem_c['d1'] < rem_c['d2'] cidx = ds[ds].index[-1] # ensure it's not the index of either end if cidx == 0: cidx = 1 elif cidx == len(rem_c) - 1: cidx = len(rem_c) - 2 row, col = matches[0][0:2] rem1 = LineString(rem.coords[:(cidx + 1)]) append_reach_df(reach_df, row, col, rem1, moved=True) row, col = matches[1][0:2] rem2 = LineString(rem.coords[cidx:]) append_reach_df(reach_df, row, col, rem2, moved=True) else: obj.logger.critical( 'how does this happen? Segments from %d touching %d ' 'grid cells', segnum, len(matches)) elif rem.geom_type.startswith('Multi'): for sub_rem_geom in rem.geoms: # recurse assign_remaining_reach(reach_df, segnum, sub_rem_geom) else: raise NotImplementedError(rem.geom_type) for segnum, line in obj.segments.geometry.iteritems(): remaining_line = line if grid_sindex: bbox_match = sorted(grid_sindex.intersection(line.bounds)) if not bbox_match: continue sub = grid_cells.geometry.iloc[bbox_match] else: # slow scan of all cells sub = grid_cells.geometry # Find all intersections between segment and grid cells reach_df = empty_reach_df.copy() for (row, col), grid_geom in sub.iteritems(): reach_geom = grid_geom.intersection(line) if reach_geom.is_empty or reach_geom.geom_type == 'Point': continue remaining_line = remaining_line.difference(grid_geom) append_reach_df(reach_df, row, col, reach_geom) # Determine if any remaining portions of the line can be used if line is not remaining_line and remaining_line.length > 0: assign_remaining_reach(reach_df, segnum, remaining_line) # Reassign short reaches to two or more adjacent grid cells # starting with the shortest reach reach_lengths = reach_df['length'].loc[ reach_df['length'] < reach_include[segnum]] for idx in list(reach_lengths.sort_values().index): assign_short_reach(reach_df, idx, segnum) # Potentially merge a few reaches for each row/col of this segnum drop_reach_ids = [] gb = reach_df.groupby(['row', 'col'])['geometry'].apply(list) for (row, col), geoms in gb.copy().iteritems(): row_col = row, col if len(geoms) > 1: geom = linemerge(geoms) if geom.geom_type == 'MultiLineString': # workaround for odd floating point issue geom = linemerge([wkt.loads(g.wkt) for g in geoms]) if geom.geom_type == 'LineString': sel = ((reach_df['row'] == row) & (reach_df['col'] == col)) drop_reach_ids += list(sel.index[sel]) obj.logger.debug( 'merging %d reaches for segnum %s at %s', sel.sum(), segnum, row_col) append_reach_df(reach_df, row, col, geom) elif any(a.distance(b) < 1e-6 for a, b in combinations(geoms, 2)): obj.logger.warning( 'failed to merge segnum %s at %s: %s', segnum, row_col, geom.wkt) # else: this is probably a meandering MultiLineString if drop_reach_ids: reach_df.drop(drop_reach_ids, axis=0, inplace=True) # TODO: Some reaches match multiple cells if they share a border # Add all reaches for this segment for _, reach in reach_df.iterrows(): row, col, reach_geom = reach.loc[['row', 'col', 'geometry']] if line.has_z: # intersection(line) does not preserve Z coords, # but line.interpolate(d) works as expected reach_geom = LineString(line.interpolate( line.project(Point(c))) for c in reach_geom.coords) # Get a point from the middle of the reach_geom reach_mid_pt = reach_geom.interpolate(0.5, normalized=True) reach_record = { 'geometry': reach_geom, 'segnum': segnum, 'dist': line.project(reach_mid_pt, normalized=True), 'row': row, 'col': col, } obj.reaches.loc[len(obj.reaches.index)] = reach_record if ibound_action == 'modify' and ibound[row, col] == 0: ibound_modified += 1 ibound[row, col] = 1 if ibound_action == 'modify': if ibound_modified: obj.logger.debug( 'updating %d cells from IBOUND array for top layer', ibound_modified) obj.model.bas6.ibound[0] = ibound obj.reaches = obj.reaches.merge( grid_df[['ibound']], left_on=['row', 'col'], right_index=True) obj.reaches.rename( columns={'ibound': 'prev_ibound'}, inplace=True) else: obj.reaches['prev_ibound'] = 1 # Now convert from DataFrame to GeoDataFrame obj.reaches = geopandas.GeoDataFrame( obj.reaches, geometry='geometry', crs=crs) # Assign segment data obj.segments['min_slope'] = swn.segments_series(min_slope) if (obj.segments['min_slope'] < 0.0).any(): raise ValueError('min_slope must be greater than zero') # Column names common to segments and segment_data segment_cols = [ 'roughch', 'hcond1', 'thickm1', 'elevup', 'width1', 'hcond2', 'thickm2', 'elevdn', 'width2'] # Tidy any previous attempts for col in segment_cols: if col in obj.segments.columns: del obj.segments[col] # Combine pairs of series for each segment more_segment_columns = pd.concat([ swn.pair_segments_frame(hyd_cond1, hyd_cond_out, 'hcond'), swn.pair_segments_frame(thickness1, thickness_out, 'thickm'), swn.pair_segments_frame(width1, width_out, name='width', method="constant") ], axis=1, copy=False) for name, series in more_segment_columns.iteritems(): obj.segments[name] = series obj.segments['roughch'] = swn.segments_series(roughch) # Mark segments that are not used obj.segments['in_model'] = True outside_model = \ set(swn.segments.index).difference(obj.reaches['segnum']) obj.segments.loc[list(outside_model), 'in_model'] = False # Add information from segments obj.reaches = obj.reaches.merge( obj.segments[['sequence', 'min_slope']], 'left', left_on='segnum', right_index=True) obj.reaches.sort_values(['sequence', 'dist'], inplace=True) # Interpolate segment properties to each reach obj.reaches['strthick'] = 0.0 obj.reaches['strhc1'] = 0.0 for segnum, seg in obj.segments.iterrows(): sel = obj.reaches['segnum'] == segnum if seg['thickm1'] == seg['thickm2']: val = seg['thickm1'] else: # linear interpolate to mid points tk1 = seg['thickm1'] tk2 = seg['thickm2'] dtk = tk2 - tk1 val = dtk * obj.reaches.loc[sel, 'dist'] + tk1 obj.reaches.loc[sel, 'strthick'] = val if seg['hcond1'] == seg['hcond2']: val = seg['hcond1'] else: # linear interpolate to mid points in log-10 space lhc1 = np.log10(seg['hcond1']) lhc2 = np.log10(seg['hcond2']) dlhc = lhc2 - lhc1 val = 10 ** (dlhc * obj.reaches.loc[sel, 'dist'] + lhc1) obj.reaches.loc[sel, 'strhc1'] = val del obj.reaches['sequence'] del obj.reaches['dist'] # Use MODFLOW SFR dataset 2 terms ISEG and IREACH, counting from 1 obj.reaches['iseg'] = 0 obj.reaches['ireach'] = 0 iseg = ireach = 0 prev_segnum = None for idx, segnum in obj.reaches['segnum'].iteritems(): if segnum != prev_segnum: iseg += 1 ireach = 0 ireach += 1 obj.reaches.at[idx, 'iseg'] = iseg obj.reaches.at[idx, 'ireach'] = ireach prev_segnum = segnum obj.reaches.reset_index(inplace=True, drop=True) obj.reaches.index += 1 # flopy series starts at one obj.reaches.index.name = 'reachID' obj.reaches['rchlen'] = obj.reaches.geometry.length obj.reaches['strtop'] = 0.0 obj.reaches['slope'] = 0.0 if swn.has_z: for reachID, item in obj.reaches.iterrows(): geom = item.geometry # Get Z from each end z0 = geom.coords[0][2] z1 = geom.coords[-1][2] dz = z0 - z1 dx = geom.length slope = dz / dx obj.reaches.at[reachID, 'slope'] = slope # Get strtop from LineString mid-point Z zm = geom.interpolate(0.5, normalized=True).z obj.reaches.at[reachID, 'strtop'] = zm else: r = obj.reaches['row'].values c = obj.reaches['col'].values # Estimate slope from top and grid spacing px, py = np.gradient(dis.top.array, col_size, row_size) grid_slope = np.sqrt(px ** 2 + py ** 2) obj.reaches['slope'] = grid_slope[r, c] # Get stream values from top of model obj.reaches['strtop'] = dis.top.array[r, c] # Enforce min_slope sel = obj.reaches['slope'] < obj.reaches['min_slope'] if sel.any(): obj.logger.warning( 'enforcing min_slope for %d reaches (%.2f%%)', sel.sum(), 100.0 * sel.sum() / len(sel)) obj.reaches.loc[sel, 'slope'] = obj.reaches.loc[sel, 'min_slope'] if not hasattr(obj.reaches.geometry, 'geom_type'): # workaround needed for reaches.to_file() obj.reaches.geometry.geom_type = obj.reaches.geom_type # Build segment_data for Data Set 6 obj.segment_data = obj.reaches[['iseg', 'segnum']]\ .drop_duplicates().rename(columns={'iseg': 'nseg'}) # index changes from 'reachID', to 'segnum', to finally 'nseg' segnum2nseg_d = obj.segment_data.set_index('segnum')['nseg'].to_dict() obj.segment_data['icalc'] = 1 # assumption for all streams obj.segment_data['outseg'] = obj.segment_data['segnum'].map( lambda x: segnum2nseg_d.get(obj.segments.loc[x, 'to_segnum'], 0)) obj.segment_data['iupseg'] = 0 # handle diversions next obj.segment_data['iprior'] = 0 obj.segment_data['flow'] = 0.0 obj.segment_data['runoff'] = 0.0 obj.segment_data['etsw'] = 0.0 obj.segment_data['pptsw'] = 0.0 # upper elevation from the first and last reachID items from reaches obj.segment_data['elevup'] = \ obj.reaches.loc[obj.segment_data.index, 'strtop'] obj.segment_data['elevdn'] = obj.reaches.loc[ obj.reaches.groupby(['iseg']).ireach.idxmax().values, 'strtop'].values obj.segment_data.set_index('segnum', drop=False, inplace=True) # copy several columns over (except 'elevup' and 'elevdn', for now) segment_cols.remove('elevup') segment_cols.remove('elevdn') obj.segment_data[segment_cols] = obj.segments[segment_cols] # now use nseg as primary index, not reachID or segnum obj.segment_data.set_index('nseg', inplace=True) obj.segment_data.sort_index(inplace=True) # Add diversions (i.e. SW takes) if swn.diversions is not None: obj.diversions = swn.diversions.copy() # Mark diversions that are not used / outside model obj.diversions['in_model'] = True outside_model = [] # Add columns for ICALC=0 obj.segment_data['depth1'] = 0.0 obj.segment_data['depth2'] = 0.0 # workaround for coercion issue obj.segment_data['foo'] = '' is_spatial = ( isinstance(obj.diversions, geopandas.GeoDataFrame) and 'geometry' in obj.diversions.columns and (~obj.diversions.is_empty).all()) if swn.has_z: empty_geom = wkt.loads('linestring z empty') else: empty_geom = wkt.loads('linestring empty') for divid, divn in obj.diversions.iterrows(): if divn.from_segnum not in segnum2nseg_d: # segnum does not exist -- segment is outside model outside_model.append(divid) continue iupseg = segnum2nseg_d[divn.from_segnum] assert iupseg != 0, iupseg nseg = len(obj.segment_data) + 1 rchlen = 1.0 # length required thickm = 1.0 # thickness required hcond = 0.0 # don't allow GW exchange seg_d = dict(obj.segment_data.loc[iupseg]) seg_d.update({ # index is nseg 'segnum': divid, 'icalc': 0, # stream depth is specified 'outseg': 0, 'iupseg': iupseg, 'iprior': 0, # normal behaviour for SW takes 'flow': 0.0, # abstraction assigned later 'runoff': 0.0, 'etsw': 0.0, 'pptsw': 0.0, 'roughch': 0.0, # not used 'hcond1': hcond, 'hcond2': hcond, 'thickm1': thickm, 'thickm2': thickm, 'width1': 0.0, 'width2': 0.0, # not used }) # Use the last reach as a template to modify for new reach reach_d = dict(obj.reaches.loc[ obj.reaches.iseg == iupseg].iloc[-1]) reach_d.update({ 'segnum': divid, 'iseg': nseg, 'ireach': 1, 'rchlen': rchlen, 'min_slope': 0.0, 'slope': 0.0, 'strthick': thickm, 'strhc1': hcond, }) # Assign one reach at grid cell if is_spatial: # Find grid cell nearest to diversion if grid_sindex: bbox_match = sorted( grid_sindex.nearest(divn.geometry.bounds)) # more than one nearest can exist! just take one... num_found = len(bbox_match) grid_cell = grid_cells.iloc[bbox_match[0]] else: # slow scan of all cells sel = grid_cells.intersects(divn.geometry) num_found = sel.sum() grid_cell = grid_cells.loc[sel].iloc[0] if num_found > 1: obj.logger.warning( '%d grid cells are nearest to diversion %r, ' 'but only taking the first %s', num_found, divid, grid_cell) row, col = grid_cell.name strtop = dis.top[row, col] reach_d.update({ 'geometry': empty_geom, # divn.geometry, 'row': row, 'col': col, 'strtop': strtop, }) else: strtop = dis.top[reach_d['row'], reach_d['col']] reach_d['strtop'] = strtop seg_d.update({ 'geometry': empty_geom, 'elevup': strtop, 'elevdn': strtop, }) depth = strtop + thickm seg_d.update({'depth1': depth, 'depth2': depth}) obj.reaches.loc[len(obj.reaches) + 1] = reach_d obj.segment_data.loc[nseg] = seg_d if outside_model: obj.diversions.loc[list(outside_model), 'in_model'] = False obj.logger.debug( 'added %d diversions, ignoring %d that did not connect to ' 'existing segments', obj.diversions['in_model'].sum(), len(outside_model)) else: obj.logger.debug( 'added all %d diversions', len(obj.diversions)) # end of coercion workaround obj.segment_data.drop('foo', axis=1, inplace=True) else: obj.diversions = None # Finally, add/rename a few columns to align with reach_data obj.reaches.insert(2, column='k', value=0) obj.reaches.insert(3, column='outreach', value=pd.Series(dtype=int)) obj.reaches.rename(columns={'row': 'i', 'col': 'j'}, inplace=True) # Create flopy Sfr2 package segment_data = obj.set_segment_data( abstraction=abstraction, inflow=inflow, flow=flow, runoff=runoff, etsw=etsw, pptsw=pptsw, return_dict=True) reach_data = obj.get_reach_data() flopy.modflow.mfsfr2.ModflowSfr2( model=obj.model, reach_data=reach_data, segment_data=segment_data) return obj def __repr__(self): """Return string representation of MfSfrNetwork object.""" is_diversion = self.segment_data['iupseg'] != 0 segnum_l = list(self.segment_data.loc[~is_diversion, 'segnum']) segments_line = str(len(segnum_l)) + ' from segments' if set(segnum_l) != set(self.segments.index): segments_line += ' ({:.0%} used)'.format( len(segnum_l) / float(len(self.segments))) segments_line += ': ' + abbr_str(segnum_l, 4) if is_diversion.any() and self.diversions is not None: divid_l = list(self.segment_data.loc[is_diversion, 'segnum']) diversions_line = str(len(divid_l)) + ' from diversions' if set(divid_l) != set(self.diversions.index): diversions_line += ' ({:.0%} used)'.format( len(divid_l) / float(len(self.diversions))) diversions_line += abbr_str(divid_l, 4) else: diversions_line = 'no diversions' nper = self.model.dis.nper return dedent('''\ <{}: flopy {} {!r} {} in reaches ({}): {} {} in segment_data ({}): {} {} {} {} stress period{} with perlen: {} />'''.format( self.__class__.__name__, self.model.version, self.model.name, len(self.reaches), self.reaches.index.name, abbr_str(list(self.reaches.index), 4), len(self.segment_data), self.segment_data.index.name, abbr_str(list(self.segment_data.index), 4), segments_line, diversions_line, nper, '' if nper == 1 else 's', abbr_str(list(self.model.dis.perlen), 4))) def __eq__(self, other): """Return true if objects are equal.""" import flopy try: for (ak, av), (bk, bv) in zip_longest(iter(self), iter(other)): if ak != bk: return False is_none = (av is None, bv is None) if all(is_none): continue elif any(is_none): return False elif type(av) != type(bv): return False elif isinstance(av, pd.DataFrame): pd.testing.assert_frame_equal(av, bv) elif isinstance(av, pd.Series): pd.testing.assert_series_equal(av, bv) elif isinstance(av, flopy.modflow.mf.Modflow): # basic test assert str(av) == str(bv) else: assert av == bv return True except (AssertionError, TypeError, ValueError): return False def __iter__(self): """Return object datasets with an iterator.""" yield "class", self.__class__.__name__ yield "segments", self.segments yield "segment_data", self.segment_data yield "reaches", self.reaches yield "diversions", self.diversions yield "model", self.model def __getstate__(self): """Serialize object attributes for pickle dumps.""" return dict(self) def __setstate__(self, state): """Set object attributes from pickle loads.""" if not isinstance(state, dict): raise ValueError("expected 'dict'; found {!r}".format(type(state))) elif "class" not in state: raise KeyError("state does not have 'class' key") elif state["class"] != self.__class__.__name__: raise ValueError("expected state class {!r}; found {!r}" .format(state["class"], self.__class__.__name__)) self.__init__() self.segments = state["segments"] self.segment_data = state["segment_data"] self.reaches = state["reaches"] self.diversions = state["diversions"] # Note: model must be set outsie of this method @property def model(self): """Return flopy model object.""" try: return getattr(self, '_model') except AttributeError: self.logger.error("'model' property not set") @model.setter def model(self, model): import flopy if not isinstance(model, flopy.modflow.mf.Modflow): raise ValueError( "'model' must be a flopy Modflow object; found " + str(type(model))) elif not model.has_package('DIS'): raise ValueError('DIS package required') elif not model.has_package('BAS6'): raise ValueError('BAS6 package required') if getattr(self, '_model', None) is not model: self.logger.info("swapping 'model' object") self._model = model # Build stress period DataFrame from modflow model stress_df = pd.DataFrame({'perlen': self.model.dis.perlen.array}) modeltime = self.model.modeltime stress_df['duration'] = pd.TimedeltaIndex( stress_df['perlen'].cumsum(), modeltime.time_units) stress_df['start'] = pd.to_datetime(modeltime.start_datetime) stress_df['end'] = stress_df['duration'] + stress_df.at[0, 'start'] stress_df.loc[1:, 'start'] = stress_df['end'].iloc[:-1].values self._stress_df = stress_df # keep this for debugging self.time_index = pd.DatetimeIndex(stress_df['start']).copy() self.time_index.name = None def plot(self, column='iseg', cmap='viridis_r', legend=False): """ Show map of reaches with inflow segments in royalblue. Parameters ---------- column : str Column from reaches to use with 'cmap'; default 'iseg'. See also 'legend' to help interpret values. cmap : str Matplotlib color map; default 'viridis_r', legend : bool Show legend for 'column'; default False. Returns ------- AxesSubplot """ import matplotlib.pyplot as plt fig, ax = plt.subplots() ax.set_aspect('equal') self.reaches[~self.reaches.is_empty].plot( column=column, label='reaches', legend=legend, ax=ax, cmap=cmap) self.grid_cells.plot(ax=ax, color='whitesmoke', edgecolor='gainsboro') # return ax is_diversion = self.segment_data['iupseg'] != 0 outlet_sel = (self.segment_data['outseg'] == 0) & (~is_diversion) outlet_points = self.reaches.loc[self.reaches['iseg'].isin( self.segment_data.loc[outlet_sel].index), 'geometry']\ .apply(lambda g: Point(g.coords[-1])) outlet_points.plot( ax=ax, label='outlet', marker='o', color='navy') if 'inflow_segnums' in self.segment_data.columns: inflow_sel = ~self.segment_data['inflow_segnums'].isnull() inflow_points = self.reaches.loc[self.reaches['iseg'].isin( self.segment_data.loc[inflow_sel].index), 'geometry']\ .apply(lambda g: Point(g.coords[0])) inflow_points.plot( ax=ax, label='inflow points', marker='o', color='royalblue') return ax def get_reach_data(self): """Return numpy.recarray for flopy's ModflowSfr2 reach_data. Parameters ---------- None Returns ------- numpy.recarray """ from flopy.modflow.mfsfr2 import ModflowSfr2 # Build reach_data for Data Set 2 reach_data_names = [] for name in ModflowSfr2.get_default_reach_dtype().names: if name in self.reaches.columns: reach_data_names.append(name) reach_data = pd.DataFrame(self.reaches[reach_data_names]) return reach_data.to_records(index=True) def set_segment_data(self, abstraction={}, inflow={}, flow={}, runoff={}, etsw={}, pptsw={}, return_dict=False): """ Set timeseries data in segment_data required for flopy's ModflowSfr2. This method does two things: 1. Updates sfr.segment_data, which is a dict of rec.array for each stress period. 2. Updates summary statistics in segment_data if there are more than one stress period, otherwise values are kept for one stress period. Other stationary data members that are part of segment_data (e.g. hcond1, elevup, etc.) are not modified. Parameters ---------- abstraction : dict or pandas.DataFrame, optional Surface water abstraction from diversions. Default is {} (zero). Keys are matched to diversions index. inflow : dict or pandas.DataFrame, optional Streamflow at the bottom of each segment, which is used to to determine the streamflow entering the upstream end of a segment if it is not part of the SFR network. Internal flows are ignored. A dict can be used to provide constant values to segnum identifiers. If a DataFrame is passed for a model with more than one stress period, the index must be a DatetimeIndex aligned with the start of each model stress period. Default is {} (no outside inflow added to flow term). flow : dict or pandas.DataFrame, optional Flow to the top of each segment. This is added to any inflow, which is handled separately. This can be negative for withdrawls. Default is {} (zero). runoff : dict or pandas.DataFrame, optional Runoff to each segment. Default is {} (zero). etsw : dict or pandas.DataFrame, optional Evapotranspiration removed from each segment. Default is {} (zero). pptsw : dict or pandas.DataFrame, optional Precipitation added to each segment. Default is {} (zero). return_dict : bool, optional If True, return segment_data instead of setting the sfr object. Default False, which implies that an sfr object exists. Returns ------- None or dict (if return_dict is True) """ from flopy.modflow.mfsfr2 import ModflowSfr2 # Build stress period DataFrame from modflow model dis = self.model.dis stress_df = pd.DataFrame({'perlen': dis.perlen.array}) modeltime = self.model.modeltime stress_df['duration'] = pd.TimedeltaIndex( stress_df['perlen'].cumsum(), modeltime.time_units) stress_df['start'] = pd.to_datetime(modeltime.start_datetime) stress_df['end'] = stress_df['duration'] + stress_df.at[0, 'start'] stress_df.loc[1:, 'start'] = stress_df['end'].iloc[:-1].values # Consider all IDs from segments/diversions segments_segnums = set(self.segments.index) has_diversions = self.diversions is not None if has_diversions: diversions_divids = set(self.diversions.index) else: diversions_divids = set() def check_ts(data, name): """Return DataFrame with index along nper. Columns are either segnum or divid (checked later). """ if isinstance(data, dict): data = pd.DataFrame(data, index=stress_df['start']) elif not isinstance(data, pd.DataFrame): raise ValueError( '{0} must be a dict or DataFrame'.format(name)) data.index.name = name # handy for debugging if len(data) != dis.nper: raise ValueError( 'length of {0} ({1}) is different than nper ({2})' .format(name, len(data), dis.nper)) if dis.nper > 1: # check DatetimeIndex if not isinstance(data.index, pd.DatetimeIndex): raise ValueError( '{0}.index must be a pandas.DatetimeIndex' .format(name)) elif not (data.index == stress_df['start']).all(): try: t = stress_df['start'].to_string( index=False, max_rows=5).replace('\n', ', ') except TypeError: t = abbr_str(list(stress_df['start'])) raise ValueError( '{0}.index does not match expected ({1})' .format(name, t)) # Also do basic check of column IDs against diversions/segments if name == 'abstraction': if not has_diversions: if len(data.columns) > 0: self.logger.error( 'abstraction provided, but diversions are not ' 'defined for the surface water network') data.drop(data.columns, axis=1, inplace=True) return data parent = self.diversions parent_name = 'diversions' parent_s = diversions_divids else: parent = self.segments parent_name = 'segments' parent_s = segments_segnums try: data.columns = data.columns.astype(parent.index.dtype) except (ValueError, TypeError): raise ValueError( '{0}.columns.dtype must be same as {1}.index.dtype' .format(name, parent_name)) data_id_s = set(data.columns) if len(data_id_s) > 0: if data_id_s.isdisjoint(parent_s): msg = '{0}.columns (or keys) not found in {1}.index: {2}'\ .format(name, parent_name, abbr_str(data_id_s)) if name == 'inflow': self.logger.warning(msg) else: raise ValueError(msg) if name != 'inflow': # some segnums accumulate outside flow not_found = data_id_s.difference(parent_s) if not data_id_s.issubset(parent_s): self.logger.warning( 'dropping %s of %s %s.columns, which are ' 'not found in %s.index: %s', len(not_found), len(data_id_s), name, parent_name, abbr_str(data_id_s)) data.drop(not_found, axis=1, inplace=True) return data self.logger.debug('checking timeseries data against modflow model') abstraction = check_ts(abstraction, 'abstraction') inflow = check_ts(inflow, 'inflow') flow = check_ts(flow, 'flow') runoff = check_ts(runoff, 'runoff') etsw = check_ts(etsw, 'etsw') pptsw = check_ts(pptsw, 'pptsw') # Translate segnum/divid to nseg is_diversion = self.segment_data['iupseg'] != 0 divid2nseg = self.segment_data[is_diversion]\ .reset_index().set_index('segnum')['nseg'] divid2nseg_d = divid2nseg.to_dict() segnum2nseg = self.segment_data[~is_diversion]\ .reset_index().set_index('segnum')['nseg'] segnum2nseg_d = segnum2nseg.to_dict() segnum_s = set(segnum2nseg_d.keys()) def map_nseg(data, name): data_id_s = set(data.columns) if len(data_id_s) == 0: return data if name == 'abstraction': colid2nseg_d = divid2nseg_d parent_descr = 'diversions' else: colid2nseg_d = segnum2nseg_d parent_descr = 'regular segments' colid_s = set(colid2nseg_d.keys()) not_found = data_id_s.difference(colid_s) if not data_id_s.issubset(colid_s): self.logger.warning( 'dropping %s of %s %s.columns, which are ' 'not found in segment_data.index for %s', len(not_found), len(data_id_s), name, parent_descr) data.drop(not_found, axis=1, inplace=True) return data.rename(columns=colid2nseg_d) self.logger.debug('mapping segnum/divid to segment_data.index (nseg)') abstraction = map_nseg(abstraction, 'abstraction') flow = map_nseg(flow, 'flow') runoff = map_nseg(runoff, 'runoff') etsw = map_nseg(etsw, 'etsw') pptsw = map_nseg(pptsw, 'pptsw') self.logger.debug('accumulating inflow from outside network') # Create an 'inflows' DataFrame calculated from combining 'inflow' inflows =
pd.DataFrame(index=inflow.index)
pandas.DataFrame
# -*- coding: utf-8 -*- from datetime import timedelta import operator from string import ascii_lowercase import warnings import numpy as np import pytest from pandas.compat import lrange import pandas.util._test_decorators as td import pandas as pd from pandas import ( Categorical, DataFrame, MultiIndex, Series, Timestamp, date_range, isna, notna, to_datetime, to_timedelta) import pandas.core.algorithms as algorithms import pandas.core.nanops as nanops import pandas.util.testing as tm def assert_stat_op_calc(opname, alternative, frame, has_skipna=True, check_dtype=True, check_dates=False, check_less_precise=False, skipna_alternative=None): """ Check that operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame alternative : function Function that opname is tested against; i.e. "frame.opname()" should equal "alternative(frame)". frame : DataFrame The object that the tests are executed on has_skipna : bool, default True Whether the method "opname" has the kwarg "skip_na" check_dtype : bool, default True Whether the dtypes of the result of "frame.opname()" and "alternative(frame)" should be checked. check_dates : bool, default false Whether opname should be tested on a Datetime Series check_less_precise : bool, default False Whether results should only be compared approximately; passed on to tm.assert_series_equal skipna_alternative : function, default None NaN-safe version of alternative """ f = getattr(frame, opname) if check_dates: df = DataFrame({'b': date_range('1/1/2001', periods=2)}) result = getattr(df, opname)() assert isinstance(result, Series) df['a'] = lrange(len(df)) result = getattr(df, opname)() assert isinstance(result, Series) assert len(result) if has_skipna: def wrapper(x): return alternative(x.values) skipna_wrapper = tm._make_skipna_wrapper(alternative, skipna_alternative) result0 = f(axis=0, skipna=False) result1 = f(axis=1, skipna=False) tm.assert_series_equal(result0, frame.apply(wrapper), check_dtype=check_dtype, check_less_precise=check_less_precise) # HACK: win32 tm.assert_series_equal(result1, frame.apply(wrapper, axis=1), check_dtype=False, check_less_precise=check_less_precise) else: skipna_wrapper = alternative result0 = f(axis=0) result1 = f(axis=1) tm.assert_series_equal(result0, frame.apply(skipna_wrapper), check_dtype=check_dtype, check_less_precise=check_less_precise) if opname in ['sum', 'prod']: expected = frame.apply(skipna_wrapper, axis=1) tm.assert_series_equal(result1, expected, check_dtype=False, check_less_precise=check_less_precise) # check dtypes if check_dtype: lcd_dtype = frame.values.dtype assert lcd_dtype == result0.dtype assert lcd_dtype == result1.dtype # bad axis with pytest.raises(ValueError, match='No axis named 2'): f(axis=2) # all NA case if has_skipna: all_na = frame * np.NaN r0 = getattr(all_na, opname)(axis=0) r1 = getattr(all_na, opname)(axis=1) if opname in ['sum', 'prod']: unit = 1 if opname == 'prod' else 0 # result for empty sum/prod expected = pd.Series(unit, index=r0.index, dtype=r0.dtype) tm.assert_series_equal(r0, expected) expected = pd.Series(unit, index=r1.index, dtype=r1.dtype) tm.assert_series_equal(r1, expected) def assert_stat_op_api(opname, float_frame, float_string_frame, has_numeric_only=False): """ Check that API for operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame float_frame : DataFrame DataFrame with columns of type float float_string_frame : DataFrame DataFrame with both float and string columns has_numeric_only : bool, default False Whether the method "opname" has the kwarg "numeric_only" """ # make sure works on mixed-type frame getattr(float_string_frame, opname)(axis=0) getattr(float_string_frame, opname)(axis=1) if has_numeric_only: getattr(float_string_frame, opname)(axis=0, numeric_only=True) getattr(float_string_frame, opname)(axis=1, numeric_only=True) getattr(float_frame, opname)(axis=0, numeric_only=False) getattr(float_frame, opname)(axis=1, numeric_only=False) def assert_bool_op_calc(opname, alternative, frame, has_skipna=True): """ Check that bool operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame alternative : function Function that opname is tested against; i.e. "frame.opname()" should equal "alternative(frame)". frame : DataFrame The object that the tests are executed on has_skipna : bool, default True Whether the method "opname" has the kwarg "skip_na" """ f = getattr(frame, opname) if has_skipna: def skipna_wrapper(x): nona = x.dropna().values return alternative(nona) def wrapper(x): return alternative(x.values) result0 = f(axis=0, skipna=False) result1 = f(axis=1, skipna=False) tm.assert_series_equal(result0, frame.apply(wrapper)) tm.assert_series_equal(result1, frame.apply(wrapper, axis=1), check_dtype=False) # HACK: win32 else: skipna_wrapper = alternative wrapper = alternative result0 = f(axis=0) result1 = f(axis=1) tm.assert_series_equal(result0, frame.apply(skipna_wrapper)) tm.assert_series_equal(result1, frame.apply(skipna_wrapper, axis=1), check_dtype=False) # bad axis with pytest.raises(ValueError, match='No axis named 2'): f(axis=2) # all NA case if has_skipna: all_na = frame * np.NaN r0 = getattr(all_na, opname)(axis=0) r1 = getattr(all_na, opname)(axis=1) if opname == 'any': assert not r0.any() assert not r1.any() else: assert r0.all() assert r1.all() def assert_bool_op_api(opname, bool_frame_with_na, float_string_frame, has_bool_only=False): """ Check that API for boolean operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame float_frame : DataFrame DataFrame with columns of type float float_string_frame : DataFrame DataFrame with both float and string columns has_bool_only : bool, default False Whether the method "opname" has the kwarg "bool_only" """ # make sure op works on mixed-type frame mixed = float_string_frame mixed['_bool_'] = np.random.randn(len(mixed)) > 0.5 getattr(mixed, opname)(axis=0) getattr(mixed, opname)(axis=1) if has_bool_only: getattr(mixed, opname)(axis=0, bool_only=True) getattr(mixed, opname)(axis=1, bool_only=True) getattr(bool_frame_with_na, opname)(axis=0, bool_only=False) getattr(bool_frame_with_na, opname)(axis=1, bool_only=False) class TestDataFrameAnalytics(object): # --------------------------------------------------------------------- # Correlation and covariance @td.skip_if_no_scipy def test_corr_pearson(self, float_frame): float_frame['A'][:5] = np.nan float_frame['B'][5:10] = np.nan self._check_method(float_frame, 'pearson') @td.skip_if_no_scipy def test_corr_kendall(self, float_frame): float_frame['A'][:5] = np.nan float_frame['B'][5:10] = np.nan self._check_method(float_frame, 'kendall') @td.skip_if_no_scipy def test_corr_spearman(self, float_frame): float_frame['A'][:5] = np.nan float_frame['B'][5:10] = np.nan self._check_method(float_frame, 'spearman') def _check_method(self, frame, method='pearson'): correls = frame.corr(method=method) expected = frame['A'].corr(frame['C'], method=method) tm.assert_almost_equal(correls['A']['C'], expected) @td.skip_if_no_scipy def test_corr_non_numeric(self, float_frame, float_string_frame): float_frame['A'][:5] = np.nan float_frame['B'][5:10] = np.nan # exclude non-numeric types result = float_string_frame.corr() expected = float_string_frame.loc[:, ['A', 'B', 'C', 'D']].corr() tm.assert_frame_equal(result, expected) @td.skip_if_no_scipy @pytest.mark.parametrize('meth', ['pearson', 'kendall', 'spearman']) def test_corr_nooverlap(self, meth): # nothing in common df = DataFrame({'A': [1, 1.5, 1, np.nan, np.nan, np.nan], 'B': [np.nan, np.nan, np.nan, 1, 1.5, 1], 'C': [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan]}) rs = df.corr(meth) assert isna(rs.loc['A', 'B']) assert isna(rs.loc['B', 'A']) assert rs.loc['A', 'A'] == 1 assert rs.loc['B', 'B'] == 1 assert isna(rs.loc['C', 'C']) @td.skip_if_no_scipy @pytest.mark.parametrize('meth', ['pearson', 'spearman']) def test_corr_constant(self, meth): # constant --> all NA df = DataFrame({'A': [1, 1, 1, np.nan, np.nan, np.nan], 'B': [np.nan, np.nan, np.nan, 1, 1, 1]}) rs = df.corr(meth) assert isna(rs.values).all() def test_corr_int(self): # dtypes other than float64 #1761 df3 = DataFrame({"a": [1, 2, 3, 4], "b": [1, 2, 3, 4]}) df3.cov() df3.corr() @td.skip_if_no_scipy def test_corr_int_and_boolean(self): # when dtypes of pandas series are different # then ndarray will have dtype=object, # so it need to be properly handled df = DataFrame({"a": [True, False], "b": [1, 0]}) expected = DataFrame(np.ones((2, 2)), index=[ 'a', 'b'], columns=['a', 'b']) for meth in ['pearson', 'kendall', 'spearman']: with warnings.catch_warnings(record=True): warnings.simplefilter("ignore", RuntimeWarning) result = df.corr(meth) tm.assert_frame_equal(result, expected) def test_corr_cov_independent_index_column(self): # GH 14617 df = pd.DataFrame(np.random.randn(4 * 10).reshape(10, 4), columns=list("abcd")) for method in ['cov', 'corr']: result = getattr(df, method)() assert result.index is not result.columns assert result.index.equals(result.columns) def test_corr_invalid_method(self): # GH 22298 df = pd.DataFrame(np.random.normal(size=(10, 2))) msg = ("method must be either 'pearson', " "'spearman', 'kendall', or a callable, ") with pytest.raises(ValueError, match=msg): df.corr(method="____") def test_cov(self, float_frame, float_string_frame): # min_periods no NAs (corner case) expected = float_frame.cov() result = float_frame.cov(min_periods=len(float_frame)) tm.assert_frame_equal(expected, result) result = float_frame.cov(min_periods=len(float_frame) + 1) assert isna(result.values).all() # with NAs frame = float_frame.copy() frame['A'][:5] = np.nan frame['B'][5:10] = np.nan result = float_frame.cov(min_periods=len(float_frame) - 8) expected = float_frame.cov() expected.loc['A', 'B'] = np.nan expected.loc['B', 'A'] = np.nan # regular float_frame['A'][:5] = np.nan float_frame['B'][:10] = np.nan cov = float_frame.cov() tm.assert_almost_equal(cov['A']['C'], float_frame['A'].cov(float_frame['C'])) # exclude non-numeric types result = float_string_frame.cov() expected = float_string_frame.loc[:, ['A', 'B', 'C', 'D']].cov() tm.assert_frame_equal(result, expected) # Single column frame df = DataFrame(np.linspace(0.0, 1.0, 10)) result = df.cov() expected = DataFrame(np.cov(df.values.T).reshape((1, 1)), index=df.columns, columns=df.columns) tm.assert_frame_equal(result, expected) df.loc[0] = np.nan result = df.cov() expected = DataFrame(np.cov(df.values[1:].T).reshape((1, 1)), index=df.columns, columns=df.columns) tm.assert_frame_equal(result, expected) def test_corrwith(self, datetime_frame): a = datetime_frame noise = Series(np.random.randn(len(a)), index=a.index) b = datetime_frame.add(noise, axis=0) # make sure order does not matter b = b.reindex(columns=b.columns[::-1], index=b.index[::-1][10:]) del b['B'] colcorr = a.corrwith(b, axis=0) tm.assert_almost_equal(colcorr['A'], a['A'].corr(b['A'])) rowcorr = a.corrwith(b, axis=1) tm.assert_series_equal(rowcorr, a.T.corrwith(b.T, axis=0)) dropped = a.corrwith(b, axis=0, drop=True) tm.assert_almost_equal(dropped['A'], a['A'].corr(b['A'])) assert 'B' not in dropped dropped = a.corrwith(b, axis=1, drop=True) assert a.index[-1] not in dropped.index # non time-series data index = ['a', 'b', 'c', 'd', 'e'] columns = ['one', 'two', 'three', 'four'] df1 = DataFrame(np.random.randn(5, 4), index=index, columns=columns) df2 = DataFrame(np.random.randn(4, 4), index=index[:4], columns=columns) correls = df1.corrwith(df2, axis=1) for row in index[:4]: tm.assert_almost_equal(correls[row], df1.loc[row].corr(df2.loc[row])) def test_corrwith_with_objects(self): df1 = tm.makeTimeDataFrame() df2 = tm.makeTimeDataFrame() cols = ['A', 'B', 'C', 'D'] df1['obj'] = 'foo' df2['obj'] = 'bar' result = df1.corrwith(df2) expected = df1.loc[:, cols].corrwith(df2.loc[:, cols]) tm.assert_series_equal(result, expected) result = df1.corrwith(df2, axis=1) expected = df1.loc[:, cols].corrwith(df2.loc[:, cols], axis=1) tm.assert_series_equal(result, expected) def test_corrwith_series(self, datetime_frame): result = datetime_frame.corrwith(datetime_frame['A']) expected = datetime_frame.apply(datetime_frame['A'].corr) tm.assert_series_equal(result, expected) def test_corrwith_matches_corrcoef(self): df1 = DataFrame(np.arange(10000), columns=['a']) df2 = DataFrame(np.arange(10000) ** 2, columns=['a']) c1 = df1.corrwith(df2)['a'] c2 = np.corrcoef(df1['a'], df2['a'])[0][1] tm.assert_almost_equal(c1, c2) assert c1 < 1 def test_corrwith_mixed_dtypes(self): # GH 18570 df = pd.DataFrame({'a': [1, 4, 3, 2], 'b': [4, 6, 7, 3], 'c': ['a', 'b', 'c', 'd']}) s = pd.Series([0, 6, 7, 3]) result = df.corrwith(s) corrs = [df['a'].corr(s), df['b'].corr(s)] expected = pd.Series(data=corrs, index=['a', 'b']) tm.assert_series_equal(result, expected) def test_corrwith_index_intersection(self): df1 = pd.DataFrame(np.random.random(size=(10, 2)), columns=["a", "b"]) df2 = pd.DataFrame(np.random.random(size=(10, 3)), columns=["a", "b", "c"]) result = df1.corrwith(df2, drop=True).index.sort_values() expected = df1.columns.intersection(df2.columns).sort_values() tm.assert_index_equal(result, expected) def test_corrwith_index_union(self): df1 = pd.DataFrame(np.random.random(size=(10, 2)), columns=["a", "b"]) df2 = pd.DataFrame(np.random.random(size=(10, 3)), columns=["a", "b", "c"]) result = df1.corrwith(df2, drop=False).index.sort_values() expected = df1.columns.union(df2.columns).sort_values() tm.assert_index_equal(result, expected) def test_corrwith_dup_cols(self): # GH 21925 df1 = pd.DataFrame(np.vstack([np.arange(10)] * 3).T) df2 = df1.copy() df2 = pd.concat((df2, df2[0]), axis=1) result = df1.corrwith(df2) expected = pd.Series(np.ones(4), index=[0, 0, 1, 2]) tm.assert_series_equal(result, expected) @td.skip_if_no_scipy def test_corrwith_spearman(self): # GH 21925 df = pd.DataFrame(np.random.random(size=(100, 3))) result = df.corrwith(df**2, method="spearman") expected = Series(np.ones(len(result))) tm.assert_series_equal(result, expected) @td.skip_if_no_scipy def test_corrwith_kendall(self): # GH 21925 df = pd.DataFrame(np.random.random(size=(100, 3))) result = df.corrwith(df**2, method="kendall") expected = Series(np.ones(len(result))) tm.assert_series_equal(result, expected) # --------------------------------------------------------------------- # Describe def test_bool_describe_in_mixed_frame(self): df = DataFrame({ 'string_data': ['a', 'b', 'c', 'd', 'e'], 'bool_data': [True, True, False, False, False], 'int_data': [10, 20, 30, 40, 50], }) # Integer data are included in .describe() output, # Boolean and string data are not. result = df.describe() expected = DataFrame({'int_data': [5, 30, df.int_data.std(), 10, 20, 30, 40, 50]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) tm.assert_frame_equal(result, expected) # Top value is a boolean value that is False result = df.describe(include=['bool']) expected = DataFrame({'bool_data': [5, 2, False, 3]}, index=['count', 'unique', 'top', 'freq']) tm.assert_frame_equal(result, expected) def test_describe_bool_frame(self): # GH 13891 df = pd.DataFrame({ 'bool_data_1': [False, False, True, True], 'bool_data_2': [False, True, True, True] }) result = df.describe() expected = DataFrame({'bool_data_1': [4, 2, True, 2], 'bool_data_2': [4, 2, True, 3]}, index=['count', 'unique', 'top', 'freq']) tm.assert_frame_equal(result, expected) df = pd.DataFrame({ 'bool_data': [False, False, True, True, False], 'int_data': [0, 1, 2, 3, 4] }) result = df.describe() expected = DataFrame({'int_data': [5, 2, df.int_data.std(), 0, 1, 2, 3, 4]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) tm.assert_frame_equal(result, expected) df = pd.DataFrame({ 'bool_data': [False, False, True, True], 'str_data': ['a', 'b', 'c', 'a'] }) result = df.describe() expected = DataFrame({'bool_data': [4, 2, True, 2], 'str_data': [4, 3, 'a', 2]}, index=['count', 'unique', 'top', 'freq']) tm.assert_frame_equal(result, expected) def test_describe_categorical(self): df = DataFrame({'value': np.random.randint(0, 10000, 100)}) labels = ["{0} - {1}".format(i, i + 499) for i in range(0, 10000, 500)] cat_labels = Categorical(labels, labels) df = df.sort_values(by=['value'], ascending=True) df['value_group'] = pd.cut(df.value, range(0, 10500, 500), right=False, labels=cat_labels) cat = df # Categoricals should not show up together with numerical columns result = cat.describe() assert len(result.columns) == 1 # In a frame, describe() for the cat should be the same as for string # arrays (count, unique, top, freq) cat = Categorical(["a", "b", "b", "b"], categories=['a', 'b', 'c'], ordered=True) s = Series(cat) result = s.describe() expected = Series([4, 2, "b", 3], index=['count', 'unique', 'top', 'freq']) tm.assert_series_equal(result, expected) cat = Series(Categorical(["a", "b", "c", "c"])) df3 = DataFrame({"cat": cat, "s": ["a", "b", "c", "c"]}) result = df3.describe() tm.assert_numpy_array_equal(result["cat"].values, result["s"].values) def test_describe_categorical_columns(self): # GH 11558 columns = pd.CategoricalIndex(['int1', 'int2', 'obj'], ordered=True, name='XXX') df = DataFrame({'int1': [10, 20, 30, 40, 50], 'int2': [10, 20, 30, 40, 50], 'obj': ['A', 0, None, 'X', 1]}, columns=columns) result = df.describe() exp_columns = pd.CategoricalIndex(['int1', 'int2'], categories=['int1', 'int2', 'obj'], ordered=True, name='XXX') expected = DataFrame({'int1': [5, 30, df.int1.std(), 10, 20, 30, 40, 50], 'int2': [5, 30, df.int2.std(), 10, 20, 30, 40, 50]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max'], columns=exp_columns) tm.assert_frame_equal(result, expected) tm.assert_categorical_equal(result.columns.values, expected.columns.values) def test_describe_datetime_columns(self): columns = pd.DatetimeIndex(['2011-01-01', '2011-02-01', '2011-03-01'], freq='MS', tz='US/Eastern', name='XXX') df = DataFrame({0: [10, 20, 30, 40, 50], 1: [10, 20, 30, 40, 50], 2: ['A', 0, None, 'X', 1]}) df.columns = columns result = df.describe() exp_columns = pd.DatetimeIndex(['2011-01-01', '2011-02-01'], freq='MS', tz='US/Eastern', name='XXX') expected = DataFrame({0: [5, 30, df.iloc[:, 0].std(), 10, 20, 30, 40, 50], 1: [5, 30, df.iloc[:, 1].std(), 10, 20, 30, 40, 50]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) expected.columns = exp_columns tm.assert_frame_equal(result, expected) assert result.columns.freq == 'MS' assert result.columns.tz == expected.columns.tz def test_describe_timedelta_values(self): # GH 6145 t1 = pd.timedelta_range('1 days', freq='D', periods=5) t2 = pd.timedelta_range('1 hours', freq='H', periods=5) df = pd.DataFrame({'t1': t1, 't2': t2}) expected = DataFrame({'t1': [5, pd.Timedelta('3 days'), df.iloc[:, 0].std(), pd.Timedelta('1 days'), pd.Timedelta('2 days'), pd.Timedelta('3 days'), pd.Timedelta('4 days'), pd.Timedelta('5 days')], 't2': [5, pd.Timedelta('3 hours'), df.iloc[:, 1].std(), pd.Timedelta('1 hours'), pd.Timedelta('2 hours'), pd.Timedelta('3 hours'), pd.Timedelta('4 hours'), pd.Timedelta('5 hours')]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) result = df.describe() tm.assert_frame_equal(result, expected) exp_repr = (" t1 t2\n" "count 5 5\n" "mean 3 days 00:00:00 0 days 03:00:00\n" "std 1 days 13:56:50.394919 0 days 01:34:52.099788\n" "min 1 days 00:00:00 0 days 01:00:00\n" "25% 2 days 00:00:00 0 days 02:00:00\n" "50% 3 days 00:00:00 0 days 03:00:00\n" "75% 4 days 00:00:00 0 days 04:00:00\n" "max 5 days 00:00:00 0 days 05:00:00") assert repr(result) == exp_repr def test_describe_tz_values(self, tz_naive_fixture): # GH 21332 tz = tz_naive_fixture s1 = Series(range(5)) start = Timestamp(2018, 1, 1) end = Timestamp(2018, 1, 5) s2 = Series(date_range(start, end, tz=tz)) df = pd.DataFrame({'s1': s1, 's2': s2}) expected = DataFrame({'s1': [5, np.nan, np.nan, np.nan, np.nan, np.nan, 2, 1.581139, 0, 1, 2, 3, 4], 's2': [5, 5, s2.value_counts().index[0], 1, start.tz_localize(tz), end.tz_localize(tz), np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan]}, index=['count', 'unique', 'top', 'freq', 'first', 'last', 'mean', 'std', 'min', '25%', '50%', '75%', 'max'] ) result = df.describe(include='all') tm.assert_frame_equal(result, expected) # --------------------------------------------------------------------- # Reductions def test_stat_op_api(self, float_frame, float_string_frame): assert_stat_op_api('count', float_frame, float_string_frame, has_numeric_only=True) assert_stat_op_api('sum', float_frame, float_string_frame, has_numeric_only=True) assert_stat_op_api('nunique', float_frame, float_string_frame) assert_stat_op_api('mean', float_frame, float_string_frame) assert_stat_op_api('product', float_frame, float_string_frame) assert_stat_op_api('median', float_frame, float_string_frame) assert_stat_op_api('min', float_frame, float_string_frame) assert_stat_op_api('max', float_frame, float_string_frame) assert_stat_op_api('mad', float_frame, float_string_frame) assert_stat_op_api('var', float_frame, float_string_frame) assert_stat_op_api('std', float_frame, float_string_frame) assert_stat_op_api('sem', float_frame, float_string_frame) assert_stat_op_api('median', float_frame, float_string_frame) try: from scipy.stats import skew, kurtosis # noqa:F401 assert_stat_op_api('skew', float_frame, float_string_frame) assert_stat_op_api('kurt', float_frame, float_string_frame) except ImportError: pass def test_stat_op_calc(self, float_frame_with_na, mixed_float_frame): def count(s): return notna(s).sum() def nunique(s): return len(algorithms.unique1d(s.dropna())) def mad(x): return np.abs(x - x.mean()).mean() def var(x): return np.var(x, ddof=1) def std(x): return np.std(x, ddof=1) def sem(x): return np.std(x, ddof=1) / np.sqrt(len(x)) def skewness(x): from scipy.stats import skew # noqa:F811 if len(x) < 3: return np.nan return skew(x, bias=False) def kurt(x): from scipy.stats import kurtosis # noqa:F811 if len(x) < 4: return np.nan return kurtosis(x, bias=False) assert_stat_op_calc('nunique', nunique, float_frame_with_na, has_skipna=False, check_dtype=False, check_dates=True) # mixed types (with upcasting happening) assert_stat_op_calc('sum', np.sum, mixed_float_frame.astype('float32'), check_dtype=False, check_less_precise=True) assert_stat_op_calc('sum', np.sum, float_frame_with_na, skipna_alternative=np.nansum) assert_stat_op_calc('mean', np.mean, float_frame_with_na, check_dates=True) assert_stat_op_calc('product', np.prod, float_frame_with_na) assert_stat_op_calc('mad', mad, float_frame_with_na) assert_stat_op_calc('var', var, float_frame_with_na) assert_stat_op_calc('std', std, float_frame_with_na) assert_stat_op_calc('sem', sem, float_frame_with_na) assert_stat_op_calc('count', count, float_frame_with_na, has_skipna=False, check_dtype=False, check_dates=True) try: from scipy import skew, kurtosis # noqa:F401 assert_stat_op_calc('skew', skewness, float_frame_with_na) assert_stat_op_calc('kurt', kurt, float_frame_with_na) except ImportError: pass # TODO: Ensure warning isn't emitted in the first place @pytest.mark.filterwarnings("ignore:All-NaN:RuntimeWarning") def test_median(self, float_frame_with_na, int_frame): def wrapper(x): if isna(x).any(): return np.nan return np.median(x) assert_stat_op_calc('median', wrapper, float_frame_with_na, check_dates=True) assert_stat_op_calc('median', wrapper, int_frame, check_dtype=False, check_dates=True) @pytest.mark.parametrize('method', ['sum', 'mean', 'prod', 'var', 'std', 'skew', 'min', 'max']) def test_stat_operators_attempt_obj_array(self, method): # GH#676 data = { 'a': [-0.00049987540199591344, -0.0016467257772919831, 0.00067695870775883013], 'b': [-0, -0, 0.0], 'c': [0.00031111847529610595, 0.0014902627951905339, -0.00094099200035979691] } df1 = DataFrame(data, index=['foo', 'bar', 'baz'], dtype='O') df2 = DataFrame({0: [np.nan, 2], 1: [np.nan, 3], 2: [np.nan, 4]}, dtype=object) for df in [df1, df2]: assert df.values.dtype == np.object_ result = getattr(df, method)(1) expected = getattr(df.astype('f8'), method)(1) if method in ['sum', 'prod']: tm.assert_series_equal(result, expected) @pytest.mark.parametrize('op', ['mean', 'std', 'var', 'skew', 'kurt', 'sem']) def test_mixed_ops(self, op): # GH#16116 df = DataFrame({'int': [1, 2, 3, 4], 'float': [1., 2., 3., 4.], 'str': ['a', 'b', 'c', 'd']}) result = getattr(df, op)() assert len(result) == 2 with pd.option_context('use_bottleneck', False): result = getattr(df, op)() assert len(result) == 2 def test_reduce_mixed_frame(self): # GH 6806 df = DataFrame({ 'bool_data': [True, True, False, False, False], 'int_data': [10, 20, 30, 40, 50], 'string_data': ['a', 'b', 'c', 'd', 'e'], }) df.reindex(columns=['bool_data', 'int_data', 'string_data']) test = df.sum(axis=0) tm.assert_numpy_array_equal(test.values, np.array([2, 150, 'abcde'], dtype=object)) tm.assert_series_equal(test, df.T.sum(axis=1)) def test_nunique(self): df = DataFrame({'A': [1, 1, 1], 'B': [1, 2, 3], 'C': [1, np.nan, 3]}) tm.assert_series_equal(df.nunique(), Series({'A': 1, 'B': 3, 'C': 2})) tm.assert_series_equal(df.nunique(dropna=False), Series({'A': 1, 'B': 3, 'C': 3})) tm.assert_series_equal(df.nunique(axis=1), Series({0: 1, 1: 2, 2: 2})) tm.assert_series_equal(df.nunique(axis=1, dropna=False), Series({0: 1, 1: 3, 2: 2})) @pytest.mark.parametrize('tz', [None, 'UTC']) def test_mean_mixed_datetime_numeric(self, tz): # https://github.com/pandas-dev/pandas/issues/24752 df = pd.DataFrame({"A": [1, 1], "B": [pd.Timestamp('2000', tz=tz)] * 2}) result = df.mean() expected = pd.Series([1.0], index=['A']) tm.assert_series_equal(result, expected) @pytest.mark.parametrize('tz', [None, 'UTC']) def test_mean_excludeds_datetimes(self, tz): # https://github.com/pandas-dev/pandas/issues/24752 # Our long-term desired behavior is unclear, but the behavior in # 0.24.0rc1 was buggy. df = pd.DataFrame({"A": [pd.Timestamp('2000', tz=tz)] * 2}) result = df.mean() expected = pd.Series() tm.assert_series_equal(result, expected) def test_var_std(self, datetime_frame): result = datetime_frame.std(ddof=4) expected = datetime_frame.apply(lambda x: x.std(ddof=4)) tm.assert_almost_equal(result, expected) result = datetime_frame.var(ddof=4) expected = datetime_frame.apply(lambda x: x.var(ddof=4)) tm.assert_almost_equal(result, expected) arr = np.repeat(np.random.random((1, 1000)), 1000, 0) result = nanops.nanvar(arr, axis=0) assert not (result < 0).any() with pd.option_context('use_bottleneck', False): result = nanops.nanvar(arr, axis=0) assert not (result < 0).any() @pytest.mark.parametrize( "meth", ['sem', 'var', 'std']) def test_numeric_only_flag(self, meth): # GH 9201 df1 = DataFrame(np.random.randn(5, 3), columns=['foo', 'bar', 'baz']) # set one entry to a number in str format df1.loc[0, 'foo'] = '100' df2 = DataFrame(np.random.randn(5, 3), columns=['foo', 'bar', 'baz']) # set one entry to a non-number str df2.loc[0, 'foo'] = 'a' result = getattr(df1, meth)(axis=1, numeric_only=True) expected = getattr(df1[['bar', 'baz']], meth)(axis=1) tm.assert_series_equal(expected, result) result = getattr(df2, meth)(axis=1, numeric_only=True) expected = getattr(df2[['bar', 'baz']], meth)(axis=1) tm.assert_series_equal(expected, result) # df1 has all numbers, df2 has a letter inside msg = r"unsupported operand type\(s\) for -: 'float' and 'str'" with pytest.raises(TypeError, match=msg): getattr(df1, meth)(axis=1, numeric_only=False) msg = "could not convert string to float: 'a'" with pytest.raises(TypeError, match=msg): getattr(df2, meth)(axis=1, numeric_only=False) def test_sem(self, datetime_frame): result = datetime_frame.sem(ddof=4) expected = datetime_frame.apply( lambda x: x.std(ddof=4) / np.sqrt(len(x))) tm.assert_almost_equal(result, expected) arr = np.repeat(np.random.random((1, 1000)), 1000, 0) result = nanops.nansem(arr, axis=0) assert not (result < 0).any() with pd.option_context('use_bottleneck', False): result = nanops.nansem(arr, axis=0) assert not (result < 0).any() @td.skip_if_no_scipy def test_kurt(self): index = MultiIndex(levels=[['bar'], ['one', 'two', 'three'], [0, 1]], codes=[[0, 0, 0, 0, 0, 0], [0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1]]) df = DataFrame(np.random.randn(6, 3), index=index) kurt = df.kurt() kurt2 = df.kurt(level=0).xs('bar') tm.assert_series_equal(kurt, kurt2, check_names=False) assert kurt.name is None assert kurt2.name == 'bar' @pytest.mark.parametrize("dropna, expected", [ (True, {'A': [12], 'B': [10.0], 'C': [1.0], 'D': ['a'], 'E': Categorical(['a'], categories=['a']), 'F': to_datetime(['2000-1-2']), 'G': to_timedelta(['1 days'])}), (False, {'A': [12], 'B': [10.0], 'C': [np.nan], 'D': np.array([np.nan], dtype=object), 'E': Categorical([np.nan], categories=['a']), 'F': [pd.NaT], 'G': to_timedelta([pd.NaT])}), (True, {'H': [8, 9, np.nan, np.nan], 'I': [8, 9, np.nan, np.nan], 'J': [1, np.nan, np.nan, np.nan], 'K': Categorical(['a', np.nan, np.nan, np.nan], categories=['a']), 'L': to_datetime(['2000-1-2', 'NaT', 'NaT', 'NaT']), 'M': to_timedelta(['1 days', 'nan', 'nan', 'nan']), 'N': [0, 1, 2, 3]}), (False, {'H': [8, 9, np.nan, np.nan], 'I': [8, 9, np.nan, np.nan], 'J': [1, np.nan, np.nan, np.nan], 'K': Categorical([np.nan, 'a', np.nan, np.nan], categories=['a']), 'L': to_datetime(['NaT', '2000-1-2', 'NaT', 'NaT']), 'M': to_timedelta(['nan', '1 days', 'nan', 'nan']), 'N': [0, 1, 2, 3]}) ]) def test_mode_dropna(self, dropna, expected): df = DataFrame({"A": [12, 12, 19, 11], "B": [10, 10, np.nan, 3], "C": [1, np.nan, np.nan, np.nan], "D": [np.nan, np.nan, 'a', np.nan], "E": Categorical([np.nan, np.nan, 'a', np.nan]), "F": to_datetime(['NaT', '2000-1-2', 'NaT', 'NaT']), "G": to_timedelta(['1 days', 'nan', 'nan', 'nan']), "H": [8, 8, 9, 9], "I": [9, 9, 8, 8], "J": [1, 1, np.nan, np.nan], "K": Categorical(['a', np.nan, 'a', np.nan]), "L": to_datetime(['2000-1-2', '2000-1-2', 'NaT', 'NaT']), "M": to_timedelta(['1 days', 'nan', '1 days', 'nan']), "N": np.arange(4, dtype='int64')}) result = df[sorted(list(expected.keys()))].mode(dropna=dropna) expected = DataFrame(expected) tm.assert_frame_equal(result, expected) def test_mode_sortwarning(self): # Check for the warning that is raised when the mode # results cannot be sorted df = DataFrame({"A": [np.nan, np.nan, 'a', 'a']}) expected = DataFrame({'A': ['a', np.nan]}) with tm.assert_produces_warning(UserWarning, check_stacklevel=False): result = df.mode(dropna=False) result = result.sort_values(by='A').reset_index(drop=True) tm.assert_frame_equal(result, expected) def test_operators_timedelta64(self): df = DataFrame(dict(A=date_range('2012-1-1', periods=3, freq='D'), B=date_range('2012-1-2', periods=3, freq='D'), C=Timestamp('20120101') - timedelta(minutes=5, seconds=5))) diffs = DataFrame(dict(A=df['A'] - df['C'], B=df['A'] - df['B'])) # min result = diffs.min() assert result[0] == diffs.loc[0, 'A'] assert result[1] == diffs.loc[0, 'B'] result = diffs.min(axis=1) assert (result == diffs.loc[0, 'B']).all() # max result = diffs.max() assert result[0] == diffs.loc[2, 'A'] assert result[1] == diffs.loc[2, 'B'] result = diffs.max(axis=1) assert (result == diffs['A']).all() # abs result = diffs.abs() result2 = abs(diffs) expected = DataFrame(dict(A=df['A'] - df['C'], B=df['B'] - df['A'])) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) # mixed frame mixed = diffs.copy() mixed['C'] = 'foo' mixed['D'] = 1 mixed['E'] = 1. mixed['F'] = Timestamp('20130101') # results in an object array result = mixed.min() expected = Series([pd.Timedelta(timedelta(seconds=5 * 60 + 5)), pd.Timedelta(timedelta(days=-1)), 'foo', 1, 1.0, Timestamp('20130101')], index=mixed.columns) tm.assert_series_equal(result, expected) # excludes numeric result = mixed.min(axis=1) expected = Series([1, 1, 1.], index=[0, 1, 2]) tm.assert_series_equal(result, expected) # works when only those columns are selected result = mixed[['A', 'B']].min(1) expected = Series([timedelta(days=-1)] * 3) tm.assert_series_equal(result, expected) result = mixed[['A', 'B']].min() expected = Series([timedelta(seconds=5 * 60 + 5), timedelta(days=-1)], index=['A', 'B']) tm.assert_series_equal(result, expected) # GH 3106 df = DataFrame({'time': date_range('20130102', periods=5), 'time2': date_range('20130105', periods=5)}) df['off1'] = df['time2'] - df['time'] assert df['off1'].dtype == 'timedelta64[ns]' df['off2'] = df['time'] - df['time2'] df._consolidate_inplace() assert df['off1'].dtype == 'timedelta64[ns]' assert df['off2'].dtype == 'timedelta64[ns]' def test_sum_corner(self): empty_frame = DataFrame() axis0 = empty_frame.sum(0) axis1 = empty_frame.sum(1) assert isinstance(axis0, Series) assert isinstance(axis1, Series) assert len(axis0) == 0 assert len(axis1) == 0 @pytest.mark.parametrize('method, unit', [ ('sum', 0), ('prod', 1), ]) def test_sum_prod_nanops(self, method, unit): idx = ['a', 'b', 'c'] df = pd.DataFrame({"a": [unit, unit], "b": [unit, np.nan], "c": [np.nan, np.nan]}) # The default result = getattr(df, method) expected = pd.Series([unit, unit, unit], index=idx, dtype='float64') # min_count=1 result = getattr(df, method)(min_count=1) expected = pd.Series([unit, unit, np.nan], index=idx) tm.assert_series_equal(result, expected) # min_count=0 result = getattr(df, method)(min_count=0) expected = pd.Series([unit, unit, unit], index=idx, dtype='float64') tm.assert_series_equal(result, expected) result = getattr(df.iloc[1:], method)(min_count=1) expected = pd.Series([unit, np.nan, np.nan], index=idx) tm.assert_series_equal(result, expected) # min_count > 1 df = pd.DataFrame({"A": [unit] * 10, "B": [unit] * 5 + [np.nan] * 5}) result = getattr(df, method)(min_count=5) expected = pd.Series(result, index=['A', 'B']) tm.assert_series_equal(result, expected) result = getattr(df, method)(min_count=6) expected = pd.Series(result, index=['A', 'B']) tm.assert_series_equal(result, expected) def test_sum_nanops_timedelta(self): # prod isn't defined on timedeltas idx = ['a', 'b', 'c'] df = pd.DataFrame({"a": [0, 0], "b": [0, np.nan], "c": [np.nan, np.nan]}) df2 = df.apply(pd.to_timedelta) # 0 by default result = df2.sum() expected = pd.Series([0, 0, 0], dtype='m8[ns]', index=idx) tm.assert_series_equal(result, expected) # min_count=0 result = df2.sum(min_count=0) tm.assert_series_equal(result, expected) # min_count=1 result = df2.sum(min_count=1) expected = pd.Series([0, 0, np.nan], dtype='m8[ns]', index=idx) tm.assert_series_equal(result, expected) def test_sum_object(self, float_frame): values = float_frame.values.astype(int) frame = DataFrame(values, index=float_frame.index, columns=float_frame.columns) deltas = frame * timedelta(1) deltas.sum() def test_sum_bool(self, float_frame): # ensure this works, bug report bools = np.isnan(float_frame) bools.sum(1) bools.sum(0) def test_mean_corner(self, float_frame, float_string_frame): # unit test when have object data the_mean = float_string_frame.mean(axis=0) the_sum = float_string_frame.sum(axis=0, numeric_only=True) tm.assert_index_equal(the_sum.index, the_mean.index) assert len(the_mean.index) < len(float_string_frame.columns) # xs sum mixed type, just want to know it works... the_mean = float_string_frame.mean(axis=1) the_sum = float_string_frame.sum(axis=1, numeric_only=True) tm.assert_index_equal(the_sum.index, the_mean.index) # take mean of boolean column float_frame['bool'] = float_frame['A'] > 0 means = float_frame.mean(0) assert means['bool'] == float_frame['bool'].values.mean() def test_stats_mixed_type(self, float_string_frame): # don't blow up float_string_frame.std(1) float_string_frame.var(1) float_string_frame.mean(1) float_string_frame.skew(1) def test_sum_bools(self): df = DataFrame(index=lrange(1), columns=lrange(10)) bools = isna(df) assert bools.sum(axis=1)[0] == 10 # --------------------------------------------------------------------- # Cumulative Reductions - cumsum, cummax, ... def test_cumsum_corner(self): dm = DataFrame(np.arange(20).reshape(4, 5), index=lrange(4), columns=lrange(5)) # ?(wesm) result = dm.cumsum() # noqa def test_cumsum(self, datetime_frame): datetime_frame.loc[5:10, 0] = np.nan datetime_frame.loc[10:15, 1] = np.nan datetime_frame.loc[15:, 2] = np.nan # axis = 0 cumsum = datetime_frame.cumsum() expected = datetime_frame.apply(Series.cumsum) tm.assert_frame_equal(cumsum, expected) # axis = 1 cumsum = datetime_frame.cumsum(axis=1) expected = datetime_frame.apply(Series.cumsum, axis=1) tm.assert_frame_equal(cumsum, expected) # works df = DataFrame({'A': np.arange(20)}, index=np.arange(20)) result = df.cumsum() # noqa # fix issue cumsum_xs = datetime_frame.cumsum(axis=1) assert np.shape(cumsum_xs) == np.shape(datetime_frame) def test_cumprod(self, datetime_frame): datetime_frame.loc[5:10, 0] = np.nan datetime_frame.loc[10:15, 1] = np.nan datetime_frame.loc[15:, 2] = np.nan # axis = 0 cumprod = datetime_frame.cumprod() expected = datetime_frame.apply(Series.cumprod) tm.assert_frame_equal(cumprod, expected) # axis = 1 cumprod = datetime_frame.cumprod(axis=1) expected = datetime_frame.apply(Series.cumprod, axis=1) tm.assert_frame_equal(cumprod, expected) # fix issue cumprod_xs = datetime_frame.cumprod(axis=1) assert np.shape(cumprod_xs) == np.shape(datetime_frame) # ints df = datetime_frame.fillna(0).astype(int) df.cumprod(0) df.cumprod(1) # ints32 df = datetime_frame.fillna(0).astype(np.int32) df.cumprod(0) df.cumprod(1) def test_cummin(self, datetime_frame): datetime_frame.loc[5:10, 0] = np.nan datetime_frame.loc[10:15, 1] = np.nan datetime_frame.loc[15:, 2] = np.nan # axis = 0 cummin = datetime_frame.cummin() expected = datetime_frame.apply(Series.cummin) tm.assert_frame_equal(cummin, expected) # axis = 1 cummin = datetime_frame.cummin(axis=1) expected = datetime_frame.apply(Series.cummin, axis=1) tm.assert_frame_equal(cummin, expected) # it works df = DataFrame({'A': np.arange(20)}, index=np.arange(20)) result = df.cummin() # noqa # fix issue cummin_xs = datetime_frame.cummin(axis=1) assert np.shape(cummin_xs) == np.shape(datetime_frame) def test_cummax(self, datetime_frame): datetime_frame.loc[5:10, 0] = np.nan datetime_frame.loc[10:15, 1] = np.nan datetime_frame.loc[15:, 2] = np.nan # axis = 0 cummax = datetime_frame.cummax() expected = datetime_frame.apply(Series.cummax) tm.assert_frame_equal(cummax, expected) # axis = 1 cummax = datetime_frame.cummax(axis=1) expected = datetime_frame.apply(Series.cummax, axis=1) tm.assert_frame_equal(cummax, expected) # it works df = DataFrame({'A': np.arange(20)}, index=np.arange(20)) result = df.cummax() # noqa # fix issue cummax_xs = datetime_frame.cummax(axis=1) assert np.shape(cummax_xs) == np.shape(datetime_frame) # --------------------------------------------------------------------- # Miscellanea def test_count(self): # corner case frame = DataFrame() ct1 = frame.count(1) assert isinstance(ct1, Series) ct2 = frame.count(0) assert isinstance(ct2, Series) # GH#423 df = DataFrame(index=lrange(10)) result = df.count(1) expected = Series(0, index=df.index) tm.assert_series_equal(result, expected) df = DataFrame(columns=lrange(10)) result = df.count(0) expected = Series(0, index=df.columns) tm.assert_series_equal(result, expected) df = DataFrame() result = df.count() expected = Series(0, index=[]) tm.assert_series_equal(result, expected) def test_count_objects(self, float_string_frame): dm = DataFrame(float_string_frame._series) df = DataFrame(float_string_frame._series) tm.assert_series_equal(dm.count(), df.count()) tm.assert_series_equal(dm.count(1), df.count(1)) def test_pct_change(self): # GH#11150 pnl = DataFrame([np.arange(0, 40, 10), np.arange(0, 40, 10), np.arange(0, 40, 10)]).astype(np.float64) pnl.iat[1, 0] = np.nan pnl.iat[1, 1] = np.nan pnl.iat[2, 3] = 60 for axis in range(2): expected = pnl.ffill(axis=axis) / pnl.ffill(axis=axis).shift( axis=axis) - 1 result = pnl.pct_change(axis=axis, fill_method='pad') tm.assert_frame_equal(result, expected) # ---------------------------------------------------------------------- # Index of max / min def test_idxmin(self, float_frame, int_frame): frame = float_frame frame.loc[5:10] = np.nan frame.loc[15:20, -2:] = np.nan for skipna in [True, False]: for axis in [0, 1]: for df in [frame, int_frame]: result = df.idxmin(axis=axis, skipna=skipna) expected = df.apply(Series.idxmin, axis=axis, skipna=skipna) tm.assert_series_equal(result, expected) msg = ("No axis named 2 for object type" " <class 'pandas.core.frame.DataFrame'>") with pytest.raises(ValueError, match=msg): frame.idxmin(axis=2) def test_idxmax(self, float_frame, int_frame): frame = float_frame frame.loc[5:10] = np.nan frame.loc[15:20, -2:] = np.nan for skipna in [True, False]: for axis in [0, 1]: for df in [frame, int_frame]: result = df.idxmax(axis=axis, skipna=skipna) expected = df.apply(Series.idxmax, axis=axis, skipna=skipna) tm.assert_series_equal(result, expected) msg = ("No axis named 2 for object type" " <class 'pandas.core.frame.DataFrame'>") with pytest.raises(ValueError, match=msg): frame.idxmax(axis=2) # ---------------------------------------------------------------------- # Logical reductions @pytest.mark.parametrize('opname', ['any', 'all']) def test_any_all(self, opname, bool_frame_with_na, float_string_frame): assert_bool_op_calc(opname, getattr(np, opname), bool_frame_with_na, has_skipna=True) assert_bool_op_api(opname, bool_frame_with_na, float_string_frame, has_bool_only=True) def test_any_all_extra(self): df = DataFrame({ 'A': [True, False, False], 'B': [True, True, False], 'C': [True, True, True], }, index=['a', 'b', 'c']) result = df[['A', 'B']].any(1) expected = Series([True, True, False], index=['a', 'b', 'c']) tm.assert_series_equal(result, expected) result = df[['A', 'B']].any(1, bool_only=True) tm.assert_series_equal(result, expected) result = df.all(1) expected = Series([True, False, False], index=['a', 'b', 'c']) tm.assert_series_equal(result, expected) result = df.all(1, bool_only=True) tm.assert_series_equal(result, expected) # Axis is None result = df.all(axis=None).item() assert result is False result = df.any(axis=None).item() assert result is True result = df[['C']].all(axis=None).item() assert result is True def test_any_datetime(self): # GH 23070 float_data = [1, np.nan, 3, np.nan] datetime_data = [pd.Timestamp('1960-02-15'), pd.Timestamp('1960-02-16'), pd.NaT, pd.NaT] df = DataFrame({ "A": float_data, "B": datetime_data }) result = df.any(1) expected = Series([True, True, True, False]) tm.assert_series_equal(result, expected) def test_any_all_bool_only(self): # GH 25101 df = DataFrame({"col1": [1, 2, 3], "col2": [4, 5, 6], "col3": [None, None, None]}) result = df.all(bool_only=True) expected = Series(dtype=np.bool) tm.assert_series_equal(result, expected) df = DataFrame({"col1": [1, 2, 3], "col2": [4, 5, 6], "col3": [None, None, None], "col4": [False, False, True]}) result = df.all(bool_only=True) expected = Series({"col4": False}) tm.assert_series_equal(result, expected) @pytest.mark.parametrize('func, data, expected', [ (np.any, {}, False), (np.all, {}, True), (np.any, {'A': []}, False), (np.all, {'A': []}, True), (np.any, {'A': [False, False]}, False), (np.all, {'A': [False, False]}, False), (np.any, {'A': [True, False]}, True), (np.all, {'A': [True, False]}, False), (np.any, {'A': [True, True]}, True), (np.all, {'A': [True, True]}, True), (np.any, {'A': [False], 'B': [False]}, False), (np.all, {'A': [False], 'B': [False]}, False), (np.any, {'A': [False, False], 'B': [False, True]}, True), (np.all, {'A': [False, False], 'B': [False, True]}, False), # other types (np.all, {'A': pd.Series([0.0, 1.0], dtype='float')}, False), (np.any, {'A': pd.Series([0.0, 1.0], dtype='float')}, True), (np.all, {'A': pd.Series([0, 1], dtype=int)}, False), (np.any, {'A': pd.Series([0, 1], dtype=int)}, True), pytest.param(np.all, {'A': pd.Series([0, 1], dtype='M8[ns]')}, False, marks=[td.skip_if_np_lt_115]), pytest.param(np.any, {'A': pd.Series([0, 1], dtype='M8[ns]')}, True, marks=[td.skip_if_np_lt_115]), pytest.param(np.all, {'A': pd.Series([1, 2], dtype='M8[ns]')}, True, marks=[td.skip_if_np_lt_115]), pytest.param(np.any, {'A': pd.Series([1, 2], dtype='M8[ns]')}, True, marks=[td.skip_if_np_lt_115]), pytest.param(np.all, {'A': pd.Series([0, 1], dtype='m8[ns]')}, False, marks=[td.skip_if_np_lt_115]), pytest.param(np.any, {'A': pd.Series([0, 1], dtype='m8[ns]')}, True, marks=[td.skip_if_np_lt_115]), pytest.param(np.all, {'A': pd.Series([1, 2], dtype='m8[ns]')}, True, marks=[td.skip_if_np_lt_115]), pytest.param(np.any, {'A': pd.Series([1, 2], dtype='m8[ns]')}, True, marks=[td.skip_if_np_lt_115]), (np.all, {'A': pd.Series([0, 1], dtype='category')}, False), (np.any, {'A': pd.Series([0, 1], dtype='category')}, True), (np.all, {'A': pd.Series([1, 2], dtype='category')}, True), (np.any, {'A': pd.Series([1, 2], dtype='category')}, True), # # Mix # GH 21484 # (np.all, {'A': pd.Series([10, 20], dtype='M8[ns]'), # 'B': pd.Series([10, 20], dtype='m8[ns]')}, True), ]) def test_any_all_np_func(self, func, data, expected): # GH 19976 data = DataFrame(data) result = func(data) assert isinstance(result, np.bool_) assert result.item() is expected # method version result = getattr(DataFrame(data), func.__name__)(axis=None) assert isinstance(result, np.bool_) assert result.item() is expected def test_any_all_object(self): # GH 19976 result = np.all(DataFrame(columns=['a', 'b'])).item() assert result is True result = np.any(DataFrame(columns=['a', 'b'])).item() assert result is False @pytest.mark.parametrize('method', ['any', 'all']) def test_any_all_level_axis_none_raises(self, method): df = DataFrame( {"A": 1}, index=MultiIndex.from_product([['A', 'B'], ['a', 'b']], names=['out', 'in']) ) xpr = "Must specify 'axis' when aggregating by level." with pytest.raises(ValueError, match=xpr): getattr(df, method)(axis=None, level='out') # ---------------------------------------------------------------------- # Isin def test_isin(self): # GH 4211 df = DataFrame({'vals': [1, 2, 3, 4], 'ids': ['a', 'b', 'f', 'n'], 'ids2': ['a', 'n', 'c', 'n']}, index=['foo', 'bar', 'baz', 'qux']) other = ['a', 'b', 'c'] result = df.isin(other) expected = DataFrame([df.loc[s].isin(other) for s in df.index]) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("empty", [[], Series(), np.array([])]) def test_isin_empty(self, empty): # GH 16991 df = DataFrame({'A': ['a', 'b', 'c'], 'B': ['a', 'e', 'f']}) expected = DataFrame(False, df.index, df.columns) result = df.isin(empty) tm.assert_frame_equal(result, expected) def test_isin_dict(self): df = DataFrame({'A': ['a', 'b', 'c'], 'B': ['a', 'e', 'f']}) d = {'A': ['a']} expected = DataFrame(False, df.index, df.columns) expected.loc[0, 'A'] = True result = df.isin(d) tm.assert_frame_equal(result, expected) # non unique columns df = DataFrame({'A': ['a', 'b', 'c'], 'B': ['a', 'e', 'f']}) df.columns = ['A', 'A'] expected = DataFrame(False, df.index, df.columns) expected.loc[0, 'A'] = True result = df.isin(d) tm.assert_frame_equal(result, expected) def test_isin_with_string_scalar(self): # GH 4763 df = DataFrame({'vals': [1, 2, 3, 4], 'ids': ['a', 'b', 'f', 'n'], 'ids2': ['a', 'n', 'c', 'n']}, index=['foo', 'bar', 'baz', 'qux']) with pytest.raises(TypeError): df.isin('a') with pytest.raises(TypeError): df.isin('aaa') def test_isin_df(self): df1 = DataFrame({'A': [1, 2, 3, 4], 'B': [2, np.nan, 4, 4]}) df2 = DataFrame({'A': [0, 2, 12, 4], 'B': [2, np.nan, 4, 5]}) expected = DataFrame(False, df1.index, df1.columns) result = df1.isin(df2) expected['A'].loc[[1, 3]] = True expected['B'].loc[[0, 2]] = True tm.assert_frame_equal(result, expected) # partial overlapping columns df2.columns = ['A', 'C'] result = df1.isin(df2) expected['B'] = False tm.assert_frame_equal(result, expected) def test_isin_tuples(self): # GH 16394 df = pd.DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'f']}) df['C'] = list(zip(df['A'], df['B'])) result = df['C'].isin([(1, 'a')]) tm.assert_series_equal(result, Series([True, False, False], name="C")) def test_isin_df_dupe_values(self): df1 = DataFrame({'A': [1, 2, 3, 4], 'B': [2, np.nan, 4, 4]}) # just cols duped df2 = DataFrame([[0, 2], [12, 4], [2, np.nan], [4, 5]], columns=['B', 'B']) with pytest.raises(ValueError): df1.isin(df2) # just index duped df2 = DataFrame([[0, 2], [12, 4], [2, np.nan], [4, 5]], columns=['A', 'B'], index=[0, 0, 1, 1]) with pytest.raises(ValueError): df1.isin(df2) # cols and index: df2.columns = ['B', 'B'] with pytest.raises(ValueError): df1.isin(df2) def test_isin_dupe_self(self): other = DataFrame({'A': [1, 0, 1, 0], 'B': [1, 1, 0, 0]}) df = DataFrame([[1, 1], [1, 0], [0, 0]], columns=['A', 'A']) result = df.isin(other) expected = DataFrame(False, index=df.index, columns=df.columns) expected.loc[0] = True expected.iloc[1, 1] = True tm.assert_frame_equal(result, expected) def test_isin_against_series(self): df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [2, np.nan, 4, 4]}, index=['a', 'b', 'c', 'd']) s = pd.Series([1, 3, 11, 4], index=['a', 'b', 'c', 'd']) expected = DataFrame(False, index=df.index, columns=df.columns) expected['A'].loc['a'] = True expected.loc['d'] = True result = df.isin(s) tm.assert_frame_equal(result, expected) def test_isin_multiIndex(self): idx = MultiIndex.from_tuples([(0, 'a', 'foo'), (0, 'a', 'bar'), (0, 'b', 'bar'), (0, 'b', 'baz'), (2, 'a', 'foo'), (2, 'a', 'bar'), (2, 'c', 'bar'), (2, 'c', 'baz'), (1, 'b', 'foo'), (1, 'b', 'bar'), (1, 'c', 'bar'), (1, 'c', 'baz')]) df1 = DataFrame({'A': np.ones(12), 'B': np.zeros(12)}, index=idx) df2 = DataFrame({'A': [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1], 'B': [1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1]}) # against regular index expected = DataFrame(False, index=df1.index, columns=df1.columns) result = df1.isin(df2)
tm.assert_frame_equal(result, expected)
pandas.util.testing.assert_frame_equal
from bs4.element import ProcessingInstruction import requests from bs4 import BeautifulSoup import pandas print() listadenoticias = [] # recebo da página retorno = requests.get('https://g1.globo.com/') # separo o conteudo da página conteudo = retorno.content # transformo o conteudo num objeto BeautifulSoup site = BeautifulSoup(conteudo, 'html.parser') # o método find encontra um local no html, recebendo como paramentros: 1: tag, 2: atributo posts = site.findAll('div', attrs={'class': 'feed-post-body'}) for post in posts: # aqui eu refino minha busca, indo atrás apenas da tag do titulo titulo = post.find('a', attrs={'class':'feed-post-link'}) # aqui eu pego o subtitulo sub = post.find('a', attrs={'class': 'bstn-relatedtext'}) # aqui eu printo apenas o texto dos resultados # print(titulo.text) # print(titulo['href']) # da pra acessar os atributos da tag pelo index, como se fosse um dict if sub: listadenoticias.append([titulo.text, sub.text, titulo['href']]) else: listadenoticias.append([titulo.text, '', titulo['href']]) # Esse DataFrame do pandas, transforma o conteudo em colunas news =
pandas.DataFrame(listadenoticias, columns=['Título', 'Subtítulo', 'Links'])
pandas.DataFrame
#################################### # author: <NAME> # course: Python for Data Science and Machine Learning Bootcamp # purpose: lecture notes # description: Section 06 - Python for Data Analysis, Pandas # other: N/A #################################### # PANDAS # To know: Pandas will try to turn all numeric data into float in order to retain # as much information as possible import pandas as pd import numpy as np ## Series (data type) # It is like a NumPy array that contains axis labels so it can be indexed by a # label. labels = ['a','b','c'] my_data = [10,20,30] arr = np.array(my_data) d = {'a':10,'b':20,'c':30} pd.Series(data = my_data) # w/o labels pd.Series(data = my_data, index = labels) pd.Series(arr,labels) # NumPy arrays or lists work equally as a Series pd.Series(data = labels) # string data # if we have a dictionary, the following line is unnecesary pd.Series(data = my_data, index = d) pd.Series(data = d) # this is a simplified version # very flexible, e.g., built-in functions within a Series pd.Series(data = [sum,print,len]) # not used in reality # indexing - it will depend on the data type is my index ser1 = pd.Series([1,2,3,4],['USA','Germany','Chile','Japan']) ser2 = pd.Series([1,2,5,4],['USA','Germany','Italy','Japan']) ser1['USA'] ser1[0] == ser1['USA'] # operations are by label - if there is no match, then a NaN is return ser1 + ser2 ## DataFrames (made of Series objects) from numpy.random import randn np.random.seed(101) df = pd.DataFrame(data = randn(5,4),index = ['A','B','C','C','E'], \ columns = ['W','X','Y','Z']) df # each column is Series df['W'] df.W # SQL nomenclature is also allowed!! [it can be messy, since it can get # confounded with a DataFrame method!] type(df['W']) # df['column']['row'] - numeric indexing works just for rows df['W']['A'] df['W'][0] type(df['W']['A']) df[['W','Z']] # an extract from a DataFrame which is a DataFrame by itself type(df[['W','Z']]) # creating a new column - it can be defined as it already exists df['new'] = df['W'] + df['Y'] df # deleting columns or rows - it does not happen in place!! df.drop('new',axis = 1) # deletes the specified columns df.drop(['B','C']) # deletes the specified rows #df.drop[['B','C'], axis = 0] # same as previous command, but by default df # not in place!!! # to make it happen in place, I have to options df = df.drop('new',axis = 1) # re-define df #df.drop('new',axis = 1, inplace = True) # activate the inplace option df # shape or DataFrame dimensions df.shape # 2-tuple: (columns, rows) # selecting rows # using loc - note it requires to use brackets instead of parentheses. df.loc['A'] # series df.loc[['A','B']] # DataFrame # using numerical position with iloc df.iloc[0] df.iloc[[0,1]] # selecting subsets df.loc['B','Y'] # row first, column second df['Y']['B'] # column first, row second df.loc['B','Y'] == df['Y']['B'] df.loc[['A','B'],['W','X']] df[['W','X']][:2] df.loc[['A','B'],['W','X']] == df[['W','X']][:2] # conditional selection booldf = df > 0 df[booldf] # NaN when the value is false df['W']>0 # a series df[df['W']>0] # filtering by rows that fulfill the specified condition # working with a filtered dataset ### one way new_df = df[df['Z']<0] new_df['X'] ### another way df[df['Z']<0][['X','Y']] ### and / or does not normally work in this environment, since we have plenty ### of values within a column. Both are built to be use for comparing just ### a single True/False value, not multiple (truth value of a Series is ### ambiguous). Instead what we need to use is the & symbol for 'and' and | for ### 'or'. These, now, are going to allow us to make multiple comparisons at ### the same time df[(df['W']>0) & (df['X']>1)] df[(df['W']>0) | (df['X']>1)] # reseting / setting the index - not occurring in place! df.reset_index() # it resets index values to numbers and creates a new column # with their former values # df.reset_index(inplace = True) # in place! newind = 'CA NY WY OR CO'.split() # fast way to create a new list df['States'] = newind df.set_index('States') # setting an existing column as index df # multi-level indexing outside = ['G1','G1','G1','G2','G2','G2'] inside = [1,2,3,1,2,3] hier_index = list(zip(outside,inside)) hier_index = pd.MultiIndex.from_tuples(hier_index) hier_index.levels # note each index level outside has an inside index hier_index.levshape # from outside to inside df = pd.DataFrame(randn(6,2),hier_index,['A','B']) df ### indexing df.loc['G1'] # data frame, outside index df.loc['G1'].loc[1] # series, inside index ### index names df.index.names # no names has been assigned df.index.names = ['Groups','Num'] df.loc['G2'].loc[2]['B'] # cross - sections (xs function): useful when we want to extract info from a # particular level that is common to each outside index df.xs('G1') # easy df.xs(1,level = 'Num') # non-trivial ## Missing Data d = {'A':[1,2,np.nan],'B':[5,np.nan,np.nan],'C':[1,2,3]} df = pd.DataFrame(d) # dropping missing values df.dropna() # it drops any ROW with missing values df.dropna(axis = 1) # it drops any COLUMN with missing values df.dropna(thresh = 2) # it keeps rows with at least 2 non-na values df.dropna(thresh = 1) # it keeps rows with at least 1 non-na values # filling missing values df.fillna(value = 'FILL VALUE') df['A'].fillna(value = df['A'].mean()) # for instance with the mean of the column ## Group By - same sort of stuff from SQL; group together rows based off of # a column and perform an aggregate function on them data = {'Company': ['GOOG','GOOG','MSFT','MSFT','FB','FB'], \ 'Person': ['Sam','Charlie','Amy','Vanessa','Carl','Sarah'], \ 'Sales': [200,120,340,124,243,350]} df = pd.DataFrame(data) # step 1 - group by a specific column byComp = df.groupby('Company') # step 2 - aggregate values using a specific operation (function) byComp.mean() # Pandas ignores non-numeric columns, such as Person byComp.sum() byComp.sum().loc['FB'] byComp.std() # all together df.groupby('Company').sum().loc['FB'] df.groupby('Company').count() # useful information df.groupby('Company').describe().transpose() ## Merging, Joining and Concatenating df1 = pd.DataFrame({'A':['A0','A1','A2','A3'],\ 'B':['B0','B1','B2','B3'],\ 'C':['C0','C1','C2','C3'],\ 'D':['D0','D1','D2','D3']},\ index = [0,1,2,3]) df2 = pd.DataFrame({'A':['A4','A5','A6','A7'],\ 'B':['B4','B5','B6','B7'],\ 'C':['C4','C5','C6','C7'],\ 'D':['D4','D5','D6','D7']},\ index = [4,5,6,7]) df3 = pd.DataFrame({'A':['A8','A9','A10','A11'],\ 'B':['B8','B9','B10','B11'],\ 'C':['C8','C9','C10','C11'],\ 'D':['D8','D9','D10','D11']},\ index = [8,9,10,11]) # contatenating - dimensions should match along the axis we are concatenating on # by default the axis = 0 (along rows)
pd.concat([df1,df2,df3])
pandas.concat
from alphaVantageAPI.alphavantage import AlphaVantage from unittest import TestCase from unittest.mock import patch from pandas import DataFrame, read_csv from .utils import Path from .utils import Constant as C from .utils import load_json, _mock_response ## Python 3.7 + Pandas DeprecationWarning # /alphaVantageAPI/env/lib/python3.7/site-packages/pandas/core/frame.py:7476: # DeprecationWarning: Using or importing the ABCs from "collections" instead of from "collections.abc" is deprecated, and in 3.8 it will stop working elif isinstance(data[0], collections.Mapping): class TestAlphaVantageAPI(TestCase): @classmethod def setUpClass(cls): cls.test_data_path = C.TEST_DATA_PATH # Set premium to True to avoid API throttling for testing av = AlphaVantage(api_key=C.API_KEY_TEST, premium=True) # Minimum parameters cls.fx_parameters = {"function":"CURRENCY_EXCHANGE_RATE", "from_currency":"USD", "to_currency":"JPY"} cls.fx_daily_parameters = {"function":"FX_DAILY", "from_currency":"EUR", "to_currency":"USD"} cls.fx_intraday_parameters = {"function":"FX_INTRADAY", "from_currency":"EUR", "to_currency":"USD"} cls.fx_monthly_parameters = {"function":"FX_MONTHLY", "from_currency":"EUR", "to_currency":"USD"} cls.fx_weekly_parameters = {"function":"FX_WEEKLY", "from_currency":"EUR", "to_currency":"USD"} cls.data_parameters = {"function":"TIME_SERIES_DAILY_ADJUSTED", "symbol":C.API_DATA_TEST} cls.intraday_parameters = {"function":"TIME_SERIES_INTRADAY", "symbol":C.API_DATA_TEST} cls.indicator_parameters = {"function":"RSI", "symbol":C.API_DATA_TEST, "interval":"weekly", "series_type":"open", "time_period":10} cls.digital_parameters = {"function":"DIGITAL_CURRENCY_DAILY", "symbol":C.API_DIGITAL_TEST, "market":"CNY"} cls.digital_rating_parameters = {"function":"CRYPTO_RATING", "symbols":C.API_DIGITAL_TEST} cls.global_quote_parameters = {"function":"GLOBAL_QUOTE", "symbols":C.API_DIGITAL_TEST} cls.overview_parameters = {"function":"OVERVIEW", "symbols":C.API_FUNDA_TEST} cls.balance_parameters = {"function":"BALANCE_SHEET", "symbols":C.API_FUNDA_TEST} cls.income_parameters = {"function":"INCOME_STATEMENT", "symbols":C.API_FUNDA_TEST} cls.cashflow_parameters = {"function":"CASH_FLOW", "symbols":C.API_FUNDA_TEST} cls.earnings_parameters = {"function": "EARNINGS_CALENDAR"} cls.ipos_parameters = {"function": "IPO_CALENDAR"} cls.listing_parameters = {"function": "LISTING_STATUS"} # json files of sample data cls.json_fx = load_json(cls.test_data_path / "mock_fx.json") cls.json_fx_daily = load_json(cls.test_data_path / "mock_fx_daily.json") cls.json_fx_intraday = load_json(cls.test_data_path / "mock_fx_intraday.json") cls.json_fx_monthly = load_json(cls.test_data_path / "mock_fx_monthly.json") cls.json_fx_weekly = load_json(cls.test_data_path / "mock_fx_weekly.json") cls.json_data = load_json(cls.test_data_path / "mock_data.json") cls.json_indicator = load_json(cls.test_data_path / "mock_indicator.json") cls.json_digital = load_json(cls.test_data_path / "mock_digital.json") cls.json_digital_rating = load_json(cls.test_data_path / "mock_digital_rating.json") cls.json_global_quote = load_json(cls.test_data_path / "mock_global_quote.json") cls.json_overview = load_json(cls.test_data_path / "mock_overview.json") cls.json_balance = load_json(cls.test_data_path / "mock_balance_sheet.json") cls.json_income = load_json(cls.test_data_path / "mock_income_statement.json") cls.json_cashflow = load_json(cls.test_data_path / "mock_cash_flow.json") # csv files of sample data cls.csv_earnings_cal = read_csv(cls.test_data_path / "mock_earnings_cal.csv") cls.csv_ipos_cal =
read_csv(cls.test_data_path / "mock_ipos_cal.csv")
pandas.read_csv
from urllib.request import urlretrieve import os # we want python to be able to read what we have in our hard drive from statsmodels.tsa.arima.model import ARIMA import numpy as np import pandas as pd from pmdarima import auto_arima from matplotlib import cm import matplotlib.pyplot as plt import seaborn as sns class EnergyAnalysis: """ Class that controls all class methods and finally delivers the requested information. It analyses energy data. Attributes ---------------- url: str The url for the requested file output_file: str Desired name to the file df: pandas.DataFrame The padas dataframe with the content of the file downloaded Methods ---------------- __init__: Init method Class constructor to inizialize the attributes of the class. download_file: Download method Download a file base on the url strored in the object of the class, and reurns a pandas dataframe with the data """ def __init__(self): """ Class constructor to inizialize the attributes of the class. Parameters ---------------- url: str The url for the requested file output_file: str The name of the output file df: pandas dataframe The columns included in the correlation matrix """ self.url = "https://nyc3.digitaloceanspaces.com/owid-public/data/energy/owid-energy-data.csv" self.output_file = "energy_data.csv" self.df = None self.download_file() self.enrich_with_emission() self.relevant_and_total_consumption() # method 1 --> download file and read the csv to df attribute the pandas dataframe. def download_file(self): """ Downloads a file from the object.url address into your hard drive and read the dataset into the df attribute which it is a pandas dataframe. Parameters ---------------- None Returns ---------------- dataset: pandas dataframe Example ---------------- object.download_file() """ fullfilename = os.path.join("./downloads/" + self.output_file) if not os.path.exists("./downloads/"): os.makedirs("./downloads/") urlretrieve(self.url, filename=fullfilename) elif not os.path.exists(fullfilename): urlretrieve(self.url, filename=fullfilename) else: print("File already exists!") try: # If file doesn't exist, download it. Else, print a warning message. self.df = pd.read_csv(fullfilename) self.df = self.df[(self.df["year"] >= 1970)] except Exception: raise Exception("Error 404") from Exception # method 2 --> list all the available countries def list_countries(self): """ Returns a list of all available countries in the dataset Parameter ---------------- None Raises ---------------- None Returns ---------------- Array """ region_list = [ "Africa", "Asia Pacific", "CIS", "Central America", "Eastern Africa", "Europe", "Europe (other)", "Middle Africa", "Middle East", "North America", "OPEC", "Other Asia & Pacific", "Other CIS", "Other Caribbean", "Other Middle East", "Other Northern Africa", "Other South America", "Other Southern Africa", "South & Central America", "USSR", "Western Africa", "Western Sahara", "World", ] return self.df[(~self.df["country"].isin(region_list))].country.unique() # method 3 --> def show_consumption(self, country: str, normalize: bool): """ Plots the normalized or not normalized consumptions of the past years of a given country. Parameter ---------------- country: str Name of the country that we want to analyze the consumption. normalize: bool Option if we want or not to normalize the consuption data. Raises ---------------- ValueError If the country is not present on teh dataset Returns ---------------- None """ if country in self.list_countries(): aux = self.df[(self.df["country"] == country)] # aux = aux[(aux["year"] <= 2019)] # selects the "_consumption" columns cols = [col for col in self.df.columns if "_consumption" in col] cols.remove("total_consumption") aux = aux.fillna(value=0) norm = aux[cols] # normalize the consumptions values to percentages if normalize: norm[cols] = norm[cols].apply(lambda x: (x / x.sum()) * 100, axis=1) x = norm x["year"] = aux["year"] # plot plt.style.use("seaborn") x.plot.area(x="year", cmap=cm.get_cmap("Paired")) plt.title("Consumption in " + country, fontsize=14) plt.xlabel("Year", fontsize=14) plt.ylabel("Consumption(in terawatt-hours)", fontsize=14) plt.show() else: raise ValueError("Country does not exist.") # method 4 --> def consumption_country(self, countries: str): """ Select the Countries, sum up the total per year and plot it Parameters ---------------- countries: list A list with all countries to be analyzed Returns ---------------- Plot with consumption and countries Example ---------------- object.consumption_country(["Switzerland", "Portugal", "Chile"]) """ # Create a list with all _consumption columns and create a new dataframe consumption_list = self.df.filter(like="_consumption").columns consumption_data = self.df[ [ "country", "year", "biofuel_consumption", "coal_consumption", "gas_consumption", "hydro_consumption", "nuclear_consumption", "oil_consumption", "other_renewable_consumption", "solar_consumption", "wind_consumption", "total_consumption", ] ] # calculate the sum of all consumption per year # Create a dataframe for every country needed and drop NaN for i in countries: globals()[i] = consumption_data[consumption_data["country"] == i] indexNames = globals()[i][globals()[i]["total_consumption"] < 1].index globals()[i].drop(indexNames, inplace=True) # plot the total consumption for i in countries: plt.plot(globals()[i]["year"], globals()[i]["total_consumption"], label=i) plt.title("Consumption per Year", fontsize=14) plt.xlabel("Year", fontsize=14) plt.ylabel("Total Consumption (in terawatt-hours)", fontsize=14) plt.grid(True) plt.legend() plt.show() # method 5 --> def gdp_country(self, countries: str): """ Select the Countries, and plot the gdp over the years Parameters ---------------- countries: list A list with all countries to be analyzed Returns ---------------- Plot with gdp and countries Example ---------------- object.gdp_country(["Switzerland", "Portugal", "Chile"]) """ # Select the columns Country, Year and gdp and create a new dataframe gdp_data = self.df[["country", "year", "gdp"]] # Create a dataframe for every country needed and drop NaN for i in countries: globals()[i] = gdp_data[gdp_data["country"] == i] gdp_data.dropna(subset=["gdp"], inplace=True) # plot the total consumption for i in countries: plt.plot(globals()[i]["year"], globals()[i]["gdp"], label=i) plt.title("GDP per Year", fontsize=14) plt.xlabel("Year", fontsize=14) plt.ylabel("GDP per Year", fontsize=14) plt.grid(True) plt.legend() plt.show() # method 6 --> def gapminder(self, y: int): """ Plots a scatter Plot comparing the Gdp of each country and its Total Energy Consumption of a given year. The population of each country can also be compared by the size of the data points. Parameter ---------------- year: int Year that we want to analyse countries' GDP and Total Energy Consumption Raises ---------------- ValueError If the input given is not an 'int' Returns ---------------- Scatter plot Example: ---------------- object.gapminder(2010) """ # From the Dataset only the columns of the problem were Selected dataframe = self.df.filter( regex="year|country|population|consumption|gdp|total_consumption" ) dataframe = dataframe.fillna(value=0) # Define the size of the plot for better visualization fig = plt.figure(figsize=(15, 10)) if type(y) != int: raise TypeError("Variable 'y' is not int.") else: year = dataframe[dataframe["year"] == pd.to_datetime(y, format="%Y")] # x-axis values x = year["gdp"] # y-axis values y = year["total_consumption"] p = year["population"] # size = [2*n for n in range(len(p))] size = year["population"] # plotting points as a scatter plot plt.scatter( x, y, label="Population Size", edgecolors="black", marker="o", lw=1, c=year.population, s=year.population / 2 ** 18, cmap="viridis", ) plt.colorbar( label="Total Energy Consumption (in terawatt-hours) ", shrink=1 ) plt.tick_params(labelsize=20) # x-axis label plt.xlabel("GDP", fontsize=20) # x-axis label plt.ylabel("Total Energy Consumption (in terawatt-hours)", fontsize=20) # plot title plt.title( "Countries GDP and Energy Consumption in a given Year", fontsize=20 ) # Editing the Legend pws = [500000, 10000000, 100000000, 1000000000] for pw in pws: plt.scatter( [], [], s=pw / 2 ** 18, c="k", label=str(pw), cmap="viridis" ) h, l = plt.gca().get_legend_handles_labels() plt.legend( h[1:], l[1:], labelspacing=1.9, title="Population", borderpad=0.9, frameon=True, framealpha=0.6, edgecolor="blue", facecolor="lightblue", fontsize=20, title_fontsize=25, ) # Change the X and Y axis scale for better visualization plt.xscale("log") plt.yscale("log") plt.grid() # function to show the plot f = plt.show() return f # Final Method def Emissions_Consumption(self, y): """ Plots a scatter Plot comparing the Total Emissions of each country and its Total Energy Consumption of a given year. The population of each country can also be compared by the size of the data points. Parameter ---------------- year: int Year that we want to analyse countries' Total Emissons and Total Energy Consumption Raises ---------------- ValueError If the input given is not an 'int' Returns ---------------- Scatter plot How to use it: object.Emissions_Consumption(2010) Quick Notes about the Scales of X & Y Axis ---------------- X Axis Eg: 0.2 * 1e11 = 20 000 000 000 Tonnes of CO2 emissions Y Axis Eg: 100 000 = 100 000 of Energy Consumed Tera-Watts """ # From the Dataset only the columns of the problem were Selected dataframe = self.df.filter( regex="year|country|population|consumption|total_emissions|total_consumption" ) # Here we Sum all the types of Consumptions and create a new column out of it # Define the size of the plot for better visualization fig = plt.figure(figsize=(15, 10)) year = dataframe[dataframe["year"] == pd.to_datetime(y, format="%Y")] # Raise error if the input of the Method is not an integer if type(y) != int: raise TypeError("Variable 'y' is not int.") # Plot a Scatter plot if Otherwise else: # x-axis values x = year["total_emissions"] # y-axis values y = year["total_consumption"] p = year["population"] n = year["country"] size = year["population"] # plotting points as a scatter plot plt.scatter( x, y, label="Population Size", edgecolors="black", marker="o", lw=1, c=year.population, s=year.population / 2 ** 19, cmap="viridis", ) plt.colorbar(label="Total Energy Consumption", shrink=1) plt.tick_params(labelsize=20) # x-axis label plt.xlabel("Total Emissions (in tonnes of CO2)", fontsize=20) # x-axis label plt.ylabel("Total Energy Consumption (in terawatt-hours)", fontsize=20) # plot title plt.title( "Countries Emissions and Energy Consumption in a given Year", fontsize=20, ) # Editing the Legend pws = [500000, 10000000, 100000000, 1000000000] for pw in pws: plt.scatter( [], [], s=pw / 2 ** 19, c="k", label=str(pw), cmap="viridis" ) h, l = plt.gca().get_legend_handles_labels() plt.legend( h[1:], l[1:], labelspacing=1.9, title="Population", borderpad=0.9, frameon=True, framealpha=0.6, edgecolor="blue", facecolor="lightblue", fontsize=20, title_fontsize=25, ) # Limit the Axis to fit all the Data Points plt.ylim([-20000, 500000]) plt.xlim([-2000000, 1.29e11]) # Change the X and Y axis scale for better visualization plt.xscale("linear") plt.yscale("linear") # Add background gridlines for better orientation plt.grid() # Function to show the plot f = plt.show() return f # new method 4 (adjusted method 4 from the first day) --> def consumption_emission_country(self, countries: str): """ Select the Countries, sum up the total consumption and emission per year and plot it on two different axes Parameters ---------------- countries: list A list with all countries to be analyzed Returns ---------------- Plot with consumption, emmision and countries Example ---------------- object.consumption_country(["Germany", "Russia", "China"]) """ for country in countries: if country in self.list_countries(): pass else: raise ValueError( f"One of your selected countries ({country}) is not in the list for countries" ) if type(countries) != list: raise ValueError("Input is not a list") else: # Ze's part self.df = self.df pd.set_option("display.max_columns", None) # Yannick's part # Load the data into Dataframe df = self.df consumption_data = self.df[ [ "country", "year", "biofuel_consumption", "coal_consumption", "gas_consumption", "hydro_consumption", "nuclear_consumption", "oil_consumption", "other_renewable_consumption", "solar_consumption", "wind_consumption", "total_consumption", "total_emissions", ] ] # Creat a Dataframe for every Country in list "Countries" and delete the last line (51) if we have data from 2020 for i in countries: globals()[i] = consumption_data[consumption_data["country"] == i] if len(globals()[i]) > 51: n = 1 globals()[i].drop(globals()[i].tail(n).index, inplace=True) # Create two empyt list and fill it with the adjusted Country names from the list "Countries" df_names_consumption = [] df_names_emission = [] for country in countries: consumption = country + "_Consumption" emission = country + "_Emission" df_names_consumption.append(consumption) df_names_emission.append(emission) # Set up the plot fig = plt.figure(figsize=(13, 10)) ax = fig.add_subplot() # Create a list for the legend lns = list() # Create dataframes for every country and axes for a, b in zip(df_names_consumption, countries): t = globals()[b]["year"] globals()[a] = globals()[b]["total_consumption"] [a] = ax.plot(t, globals()[a], "-", label=f"Total Consumption {a}") lns.append(a) ax2 = ax.twinx() for a, b in zip(df_names_emission, countries): globals()[a] = globals()[b]["total_emissions"] [a] = ax2.plot(t, globals()[a], "--", label=f"Total Emissions {a}") lns.append(a) # Create the legend labs = [l.get_label() for l in lns] ax.legend(lns, labs, loc=0) # Plot the result ax.grid() ax.set_xlabel("Year") ax.set_ylabel("Total Consumption of a country (in terawatt-hours)") ax2.set_ylabel("Total Emissions of a country (in tonnes of CO2)") # plt.xlim(1985, 2019) plt.show() def enrich_with_emission(self): """ Enrinches the dataset with the informatio about the emissions of each energy resource and compute the total consuption in each row. Parameters ---------------- None Returns ---------------- None Example ---------------- object.enrich_with_emission() """ self.df = self.df[(self.df["year"] <= 2019)] self.df["year"] =
pd.to_datetime(self.df["year"], format="%Y")
pandas.to_datetime
from nose.tools import assert_equal, assert_raises, assert_almost_equal from unittest.mock import Mock, call, patch from skillmodels import SkillModel as smo import numpy as np from pandas import DataFrame from numpy.testing import assert_array_equal as aae from numpy.testing import assert_array_almost_equal as aaae import json import pandas as pd from pandas.util.testing import assert_series_equal from pandas.util.testing import assert_frame_equal class TestGeneralParamsSlice: def setup(self): self.param_counter = 10 def test_general_params_slice(self): assert_equal(smo._general_params_slice(self, 10), slice(10, 20)) def test_general_params_slice_via_usage(self): sl = smo._general_params_slice(self, 10) aae(np.arange(20)[sl], np.arange(10) + 10) def test_side_effect_of_general_params_slice_on_param_counter(self): sl = smo._general_params_slice(self, 10) # noqa assert_equal(self.param_counter, 20) class TestDeltasRelatedMethods: def setup(self): self.periods = [0, 1, 2] self.controls = [['c1', 'c2'], ['c1', 'c2', 'c3'], ['c3', 'c4']] self.factors = ['f1', 'f2'] cols = ['name', 'f1_loading_norm_value', 'f2_loading_norm_value'] dat = np.zeros((13, 3)) dat[(0, 6, 11), 1] = 5 dat[(1, 8, 12), 2] = 3 df = DataFrame(data=dat, columns=cols) df['period'] = [0] * 6 + [1] * 3 + [2] * 4 df['has_normalized_intercept'] = [ True, False, False, True, False, False, True, True, False, True, False, False, False] df['intercept_norm_value'] = [ 3, np.nan, np.nan, 4, np.nan, np.nan, 5, 6, np.nan, 7, np.nan, np.nan, np.nan] df['name'] = ['m{}'.format(number) for number in range(13)] df.set_index(['period', 'name'], inplace=True) self.update_info = df def test_initial_deltas_without_controls_besides_constant(self): self.controls = [[], [], []] exp1 = np.array([[3], [0], [0], [4], [0], [0]]) exp2 = np.array([[5], [6], [0]]) exp3 = np.array([[7], [0], [0], [0]]) expected = [exp1, exp2, exp3] calculated = smo._initial_deltas(self) for calc, ex in zip(calculated, expected): aae(calc, ex) def test_initial_deltas_with_controls_and_constants(self): exp1 = np.array([ [3, 0, 0], [0, 0, 0], [0, 0, 0], [4, 0, 0], [0, 0, 0], [0, 0, 0]]) exp2 = np.array([[5, 0, 0, 0], [6, 0, 0, 0], [0, 0, 0, 0]]) exp3 = np.array([[7, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]) expected = [exp1, exp2, exp3] calculated = smo._initial_deltas(self) for calc, ex in zip(calculated, expected): aae(calc, ex) def test_deltas_bool_without_controls_besides_constants(self): exp1 = np.array([False, True, True, False, True, True]).reshape(6, 1) exp2 = np.array([False, False, True]).reshape(3, 1) exp3 = np.array([False, True, True, True]).reshape(4, 1) expected = [exp1, exp2, exp3] self.controls = [[], [], []] calculated = smo._deltas_bool(self) for calc, ex in zip(calculated, expected): aae(calc, ex) def test_deltas_bool_with_controls_and_constant(self): exp1 = np.ones((6, 3), dtype=bool) exp1[(0, 3), 0] = False exp2 = np.ones((3, 4), dtype=bool) exp2[(0, 1), 0] = False exp3 = np.ones((4, 3), dtype=bool) exp3[0, 0] = False expected = [exp1, exp2, exp3] calculated = smo._deltas_bool(self) for calc, ex in zip(calculated, expected): aae(calc, ex) def test_params_slice_deltas(self): arr0 = np.ones((4, 2), dtype=bool) arr1 = np.ones((6, 3), dtype=bool) arr1[(0, 1), :] = 0 self._deltas_bool = Mock(return_value=[arr0, arr1, arr0]) self._general_params_slice = Mock() smo._params_slice_for_deltas(self, 'short') self._general_params_slice.assert_has_calls( [call(8), call(12), call(8)]) def test_deltas_names_without_controls_beside_constant(self): self.controls = [[], [], []] d_boo = [np.ones((6, 1), dtype=bool), np.ones((3, 1), dtype=bool), np.ones((4, 1), dtype=bool)] self._deltas_bool = Mock(return_value=d_boo) fs = 'delta__{}__{}__{}' expected_names = \ expected_names = \ [fs.format(0, 'm0', 'constant'), fs.format(0, 'm1', 'constant'), fs.format(0, 'm2', 'constant'), fs.format(0, 'm3', 'constant'), fs.format(0, 'm4', 'constant'), fs.format(0, 'm5', 'constant'), fs.format(1, 'm6', 'constant'), fs.format(1, 'm7', 'constant'), fs.format(1, 'm8', 'constant'), fs.format(2, 'm9', 'constant'), fs.format(2, 'm10', 'constant'), fs.format(2, 'm11', 'constant'), fs.format(2, 'm12', 'constant')] assert_equal(smo._deltas_names(self, params_type='short'), expected_names) def test_deltas_names_with_controls_and_constant(self): self.add_constant = True d_boo = [np.ones((6, 2), dtype=bool), np.ones((3, 3), dtype=bool), np.ones((4, 2), dtype=bool)] for i in range(3): d_boo[i][0, 0] = False self._deltas_bool = Mock(return_value=d_boo) fs = 'delta__{}__{}__{}' expected_names = \ [fs.format(0, 'm0', 'c1'), fs.format(0, 'm0', 'c2'), fs.format(0, 'm1', 'constant'), fs.format(0, 'm1', 'c1'), fs.format(0, 'm1', 'c2'), fs.format(0, 'm2', 'constant'), fs.format(0, 'm2', 'c1'), fs.format(0, 'm2', 'c2'), fs.format(0, 'm3', 'constant'), fs.format(0, 'm3', 'c1'), fs.format(0, 'm3', 'c2'), fs.format(0, 'm4', 'constant'), fs.format(0, 'm4', 'c1'), fs.format(0, 'm4', 'c2'), fs.format(0, 'm5', 'constant'), fs.format(0, 'm5', 'c1'), fs.format(0, 'm5', 'c2'), fs.format(1, 'm6', 'c1'), fs.format(1, 'm6', 'c2'), fs.format(1, 'm6', 'c3'), fs.format(1, 'm7', 'constant'), fs.format(1, 'm7', 'c1'), fs.format(1, 'm7', 'c2'), fs.format(1, 'm7', 'c3'), fs.format(1, 'm8', 'constant'), fs.format(1, 'm8', 'c1'), fs.format(1, 'm8', 'c2'), fs.format(1, 'm8', 'c3'), fs.format(2, 'm9', 'c3'), fs.format(2, 'm9', 'c4'), fs.format(2, 'm10', 'constant'), fs.format(2, 'm10', 'c3'), fs.format(2, 'm10', 'c4'), fs.format(2, 'm11', 'constant'), fs.format(2, 'm11', 'c3'), fs.format(2, 'm11', 'c4'), fs.format(2, 'm12', 'constant'), fs.format(2, 'm12', 'c3'), fs.format(2, 'm12', 'c4')] assert_equal(smo._deltas_names(self, params_type='short'), expected_names) class TestPsiRelatedMethods: def setup(self): self.factors = ['f1', 'f2', 'f3'] self.nfac = len(self.factors) self.endog_factor = 'f3' def test_initial_psi(self): aae(smo._initial_psi(self), np.ones(3)) def test_psi_bool(self): aae(smo._psi_bool(self), np.array([True, True, False])) def test_params_slice_for_psi(self): self._general_params_slice = Mock() smo._params_slice_for_psi(self, params_type='short') self._general_params_slice.assert_has_calls([call(2)]) def test_psi_names(self): assert_equal(smo._psi_names(self, params_type='short'), ['psi__f1', 'psi__f2']) class TestHRelatedMethods: def setup(self): self.factors = ['f1', 'f2'] cols = self.factors + [ 'f1_loading_norm_value', 'f2_loading_norm_value'] self.nfac = 2 dat = np.zeros((20, 4)) dat[(0, 1, 6, 8, 11, 16, 18), 0] = 1 dat[(2, 3, 6, 7, 12, 13, 19), 1] = 1 dat[(1, 8), 2] = 5 dat[(6, 13, 19), 3] = 3 res = np.zeros((20, 2), dtype=bool) res[(0, 6, 11, 16, 18), 0] = True res[(2, 3, 7, 12), 1] = True self.res_bool = res self.exp_init_H = np.zeros((20, 2)) self.exp_init_H[(1, 8), 0] = 5 self.exp_init_H[(6, 13, 19), 1] = 3 df = DataFrame(data=dat, columns=cols) self.update_info = df def test_initial_H(self): aae(smo._initial_H(self), self.exp_init_H) def test_H_bool(self): self._initial_H = Mock(return_value=self.exp_init_H) aae(smo._H_bool(self), self.res_bool) def test_params_slice_for_H(self): self._H_bool = Mock(return_value=self.res_bool) self._general_params_slice = Mock() smo._params_slice_for_H(self, params_type='short') self._general_params_slice.assert_has_calls([call(9)]) def test_helpers_for_h_transformation(self): self.endog_correction = True self.endog_factor = ['f1'] res1 = np.zeros(20, dtype=bool) for i in (0, 1, 6, 8, 11, 16, 18): res1[i] = True res2 = np.zeros((7, 1)) res3 = np.zeros((7, 2)) calc1, calc2, calc3 = smo._helpers_for_H_transformation_with_psi(self) aae(calc1, res1) aae(calc2, res2) aae(calc3, res3) def test_H_names(self): self.factors = ['f1', 'f2'] df = DataFrame(data=np.ones((6, 1)), columns=['col']) df['name'] = ['m{}'.format(number) for number in range(6)] df['period'] = [0, 0, 0, 1, 1, 1] df.set_index(['period', 'name'], inplace=True) self.update_info = df boo = np.zeros((6, 2)) boo[(0, 1, 3), 0] = True boo[(3, 4), 1] = True self._H_bool = Mock(return_value=boo) fs = 'H__{}__{}__{}' expected_names = [ fs.format(0, 'f1', 'm0'), fs.format(0, 'f1', 'm1'), fs.format(1, 'f1', 'm3'), fs.format(1, 'f2', 'm3'), fs.format(1, 'f2', 'm4')] assert_equal(smo._H_names(self, params_type='short'), expected_names) class TestRRelatedMethods: def setup(self): self.nupdates = 12 self.estimator = 'chs' df = DataFrame(data=np.zeros((12, 1)), columns=['col']) df['period'] = np.array([0] * 5 + [1] * 7) df['name'] = ['m{}'.format(i) for i in range(12)] df.set_index(['period', 'name'], inplace=True) self.update_info = df self.bounds_distance = 0.001 self.lower_bound = np.empty(100, dtype=object) self.lower_bound[:] = None def test_initial_R(self): aae(smo._initial_R(self), np.zeros(12)) def test_params_slice_for_R(self): self._general_params_slice = Mock() smo._params_slice_for_R(self, params_type='short') self._general_params_slice.assert_has_calls([call(12)]) def test_set_bounds_for_R_not_robust(self): self.robust_bounds = False expected = np.zeros(100, dtype=object) expected[:] = None expected[10: 30] = 0.0 smo._set_bounds_for_R(self, slice(10, 30)) aae(self.lower_bound, expected) def test_set_bounds_for_R_robust(self): self.robust_bounds = True expected = np.zeros(100, dtype=object) expected[:] = None expected[10: 30] = 0.001 smo._set_bounds_for_R(self, slice(10, 30)) aae(self.lower_bound, expected) def test_R_names(self): periods = [0] * 5 + [1] * 7 names = ['m{}'.format(i) for i in range(12)] expected = ['R__{}__{}'.format(p, m) for p, m in zip(periods, names)] assert_equal(smo._R_names(self, params_type='short'), expected) class TestQRelatedMethods: def setup(self): self.nstages = 2 self.stages = [0, 1] self.nfac = 5 self.factors = ['f{}'.format(i) for i in range(1, 6)] params_info = np.ones((2, 5)) params_info[:, 0] = -1 params_info[1, (2, 4)] = 0 self.new_trans_coeffs = params_info self.exp_bool = np.zeros((2, 5, 5), dtype=bool) self.exp_bool[0, :, :] = np.diag([False, True, True, True, True]) self.exp_bool[1, :, :] = np.diag([False, True, False, True, False]) self.bounds_distance = 0.001 self.lower_bound = np.empty(100, dtype=object) self.lower_bound[:] = None def test_initial_q(self): aae(smo._initial_Q(self), np.zeros((2, 5, 5))) def test_q_bool(self): aae(smo._Q_bool(self), self.exp_bool) def test_params_slice_for_q(self): self._Q_bool = Mock(return_value=self.exp_bool) self._general_params_slice = Mock() smo._params_slice_for_Q(self, params_type='short') self._general_params_slice.assert_has_calls([call(6)]) def test_q_replacements(self): expected = [[(1, 2, 2), (0, 2, 2)], [(1, 4, 4), (0, 4, 4)]] assert_equal(smo._Q_replacements(self), expected) def test_q_names(self): expected = ['Q__0__f2', 'Q__0__f3', 'Q__0__f4', 'Q__0__f5', 'Q__1__f2', 'Q__1__f4'] assert_equal(smo._Q_names(self, params_type='short'), expected) def test_set_bounds_for_Q_not_robust(self): self.robust_bounds = False expected = np.zeros(100, dtype=object) expected[:] = None expected[10: 30] = 0.0 smo._set_bounds_for_Q(self, slice(10, 30)) aae(self.lower_bound, expected) def test_set_bounds_for_Q_robust(self): self.robust_bounds = True expected = np.zeros(100, dtype=object) expected[:] = None expected[10: 30] = 0.001 smo._set_bounds_for_Q(self, slice(10, 30)) aae(self.lower_bound, expected) class TestXZeroRelatedMethods: def setup(self): self.nemf = 3 self.nobs = 100 self.nfac = 4 self.order_X_zeros = 2 self.factors = ['f1', 'f2', 'f3', 'f4'] def test_initial_X_zero(self): res1, res2 = smo._initial_X_zero(self) aae(res1, np.zeros((100, 3, 4))) aae(res2, np.zeros((300, 4))) def test_that_initial_X_zeros_are_views_on_same_memory(self): res1, res2 = smo._initial_X_zero(self) res1[:] = 1 aae(res2, np.ones((300, 4))) def test_X_zero_filler(self): aae(smo._X_zero_filler(self), np.zeros((3, 4))) def test_params_slice_for_X_zero(self): self._general_params_slice = Mock() smo._params_slice_for_X_zero(self, params_type='short') self._general_params_slice.assert_has_calls([call(12)]) def test_x_zero_replacements(self): expected = [[(1, 2), (0, 2)], [(2, 2), (1, 2)]] assert_equal(smo._X_zero_replacements(self), expected) def test_set_bounds_for_X_zero(self): self.lower_bound = np.empty(100, dtype=object) self.lower_bound[:] = None params_slice = slice(10, 22) expected = self.lower_bound.copy() expected[[16, 20]] = 0 smo._set_bounds_for_X_zero(self, params_slice=params_slice) aae(self.lower_bound, expected) def test_x_zero_names_short_params(self): expected = [ 'X_zero__0__f1', 'X_zero__0__f2', 'X_zero__0__f3', 'X_zero__0__f4', 'X_zero__1__f1', 'X_zero__1__f2', 'diff_X_zero__1__f3', 'X_zero__1__f4', 'X_zero__2__f1', 'X_zero__2__f2', 'diff_X_zero__2__f3', 'X_zero__2__f4'] assert_equal(smo._X_zero_names(self, params_type='short'), expected) def test_x_zero_names_long_params(self): expected = [ 'X_zero__0__f1', 'X_zero__0__f2', 'X_zero__0__f3', 'X_zero__0__f4', 'X_zero__1__f1', 'X_zero__1__f2', 'X_zero__1__f3', 'X_zero__1__f4', 'X_zero__2__f1', 'X_zero__2__f2', 'X_zero__2__f3', 'X_zero__2__f4'] assert_equal(smo._X_zero_names(self, params_type='long'), expected) class TestWZeroRelatedMethods: def setup(self): self.nemf = 4 self.nobs = 100 def test_initial_w_zero(self): aae(smo._initial_W_zero(self), np.ones((self.nobs, self.nemf)) / 4) def test_params_slice_w_zero(self): self._general_params_slice = Mock() smo._params_slice_for_W_zero(self, params_type='short') self._general_params_slice.assert_has_calls([call(4)]) def test_w_zero_names(self): expected = ['W_zero__0', 'W_zero__1', 'W_zero__2', 'W_zero__3'] assert_equal(smo._W_zero_names(self, params_type='short'), expected) class TestPZeroRelatedMethods: def setup(self): self.nemf = 2 self.nobs = 100 self.nfac = 4 self.helper = np.array([[True, True, True, True], [False, True, True, True], [False, False, True, True], [False, False, False, True]]) self.lower_bound = np.empty(100, dtype=object) self.lower_bound[:] = None self.bound_indices = [10, 14, 17, 19, 20, 24, 27, 29] self.bounds_distance = 0.001 self.estimator = 'chs' def test_initial_P_zero_no_square_root_filters(self): self.square_root_filters = False res1, res2 = smo._initial_P_zero(self) aae(res1, np.zeros((100, 2, 4, 4))) aae(res2, np.zeros((200, 4, 4))) def test_initial_P_zero_square_root_filters(self): self.square_root_filters = True res1, res2 = smo._initial_P_zero(self) aae(res1, np.zeros((100, 2, 5, 5))) aae(res2, np.zeros((200, 5, 5))) def test_P_zero_filler_unrestricted_P_zeros(self): self.restrict_P_zeros = False aae(smo._P_zero_filler(self), np.zeros((2, 4, 4))) def test_P_zero_filler_restricted_P_zeros(self): self.restrict_P_zeros = True aae(smo._P_zero_filler(self), np.zeros((1, 4, 4))) def test_P_zero_filler_bool_unrestricted(self): self._P_zero_filler = Mock(return_value=np.zeros((2, 4, 4))) self.restrict_P_zeros = False expected = np.zeros((2, 4, 4), dtype=bool) expected[:] = self.helper aae(smo._P_zero_bool(self), expected) def test_P_zero_filler_bool_restricted(self): self._P_zero_filler = Mock(return_value=np.zeros((1, 4, 4))) self.restrict_P_zeros = True expected = np.zeros((1, 4, 4), dtype=bool) expected[:] = self.helper aae(smo._P_zero_bool(self), expected) def test_params_slice_P_zero_unrestricted(self): self.restrict_P_zeros = False self._general_params_slice = Mock() smo._params_slice_for_P_zero(self, params_type='short') self._general_params_slice.assert_has_calls([call(20)]) def test_params_slice_P_zero_restricted(self): self.restrict_P_zeros = True self._general_params_slice = Mock() smo._params_slice_for_P_zero(self, params_type='short') self._general_params_slice.assert_has_calls([call(10)]) def test_set_bounds_P_zero_unrestricted_not_robust(self): self.robust_bounds = False self.restrict_P_zeros = False expected = np.zeros(100, dtype=object) expected[:] = None expected[self.bound_indices] = 0 smo._set_bounds_for_P_zero(self, slice(10, 30)) aae(self.lower_bound, expected) def test_set_bounds_P_zero_unrestricted_robust(self): self.robust_bounds = True self.restrict_P_zeros = False expected = np.zeros(100, dtype=object) expected[:] = None expected[self.bound_indices] = 0.001 smo._set_bounds_for_P_zero(self, slice(10, 30)) aae(self.lower_bound, expected) def test_set_bounds_P_zero_restricted_not_robust(self): self.robust_bounds = False self.restrict_P_zeros = True expected = np.zeros(100, dtype=object) expected[:] = None expected[self.bound_indices[:4]] = 0.0 smo._set_bounds_for_P_zero(self, slice(10, 20)) aae(self.lower_bound, expected) def test_set_bounds_P_zero_invalid_params_slice(self): self.robust_bounds = False self.restrict_P_zeros = False assert_raises( AssertionError, smo._set_bounds_for_P_zero, self, slice(10, 15)) def test_P_zero_names_short(self): self.nemf = 1 self.nfac = 3 self.factors = ['f1', 'f2', 'f3'] self.restrict_P_zeros = False self.cholesky_of_P_zero = False fs = 'cholesky_P_zero__0__{}__{}' expected = [fs.format('f1', 'f1'), fs.format('f1', 'f2'), fs.format('f1', 'f3'), fs.format('f2', 'f2'), fs.format('f2', 'f3'), fs.format('f3', 'f3')] assert_equal(smo._P_zero_names(self, params_type='short'), expected) def test_P_zero_names_long(self): self.nemf = 1 self.nfac = 3 self.factors = ['f1', 'f2', 'f3'] self.restrict_P_zeros = False self.cholesky_of_P_zero = False fs = 'P_zero__0__{}__{}' expected = [fs.format('f1', 'f1'), fs.format('f1', 'f2'), fs.format('f1', 'f3'), fs.format('f2', 'f2'), fs.format('f2', 'f3'), fs.format('f3', 'f3')] assert_equal(smo._P_zero_names(self, params_type='long'), expected) class TestTransCoeffsRelatedMethods: def setup(self): self.factors = ['f1', 'f2'] self.nfac = 2 self.transition_names = ['first_func', 'second_func'] self.included_factors = [['f1', 'f2'], ['f2']] self.stages = [0, 1] self.nstages = 2 new_params = np.array([[1, 1], [0, 1]]) self.new_trans_coeffs = new_params self.lower_bound = np.empty(100, dtype=object) self.lower_bound[:] = None self.upper_bound = self.lower_bound.copy() @patch('skillmodels.estimation.skill_model.tf') def test_initial_trans_coeffs(self, mock_tf): mock_tf.nr_coeffs_first_func.return_value = 3 mock_tf.nr_coeffs_second_func.return_value = 10 expected = [np.zeros((2, 3)), np.zeros((2, 10))] initials = smo._initial_trans_coeffs(self) for i, e in zip(initials, expected): aae(i, e) @patch('skillmodels.estimation.skill_model.tf') def test_params_slices_for_trans_coeffs(self, mock_tf): mock_tf.nr_coeffs_first_func.return_value = 3 mock_tf.nr_coeffs_second_func.return_value = 10 self._general_params_slice = Mock( side_effect=[slice(0, 3), slice(3, 13), slice(13, 23)]) res = smo._params_slice_for_trans_coeffs(self, params_type='short') self._general_params_slice.assert_has_calls( [call(3), call(10), call(10)]) mock_tf.nr_coeffs_first_func.assert_has_calls( [call(included_factors=['f1', 'f2'], params_type='short')]) mock_tf.nr_coeffs_second_func.assert_has_calls( [call(included_factors=['f2'], params_type='short')] * 2) assert_equal([[slice(0, 3)] * 2, [slice(3, 13), slice(13, 23)]], res) @patch('skillmodels.estimation.skill_model.tf') def test_set_bounds_for_trans_coeffs(self, mock_tf): lb = np.array([0, None, None], dtype=object) ub = np.array([None, None, 1], dtype=object) mock_tf.bounds_first_func.return_value = (lb, ub) del mock_tf.bounds_second_func sl = [[slice(0, 3)] * 2, [slice(3, 13), slice(13, 23)]] expected_lb = self.lower_bound.copy() expected_lb[0] = 0 expected_ub = self.upper_bound.copy() expected_ub[2] = 1 smo._set_bounds_for_trans_coeffs(self, sl) aae(self.lower_bound, expected_lb) aae(self.upper_bound, expected_ub) @patch('skillmodels.estimation.skill_model.tf') def test_trans_coeffs_names(self, mock_tf): mock_tf.nr_coeffs_second_func.return_value = 2 mock_tf.coeff_names_first_func.return_value = ['epsilon', 'psi', 'pi'] del mock_tf.coeff_names_second_func expected = [ 'epsilon', 'psi', 'pi', 'trans_coeff__0__f2__0', 'trans_coeff__0__f2__1', 'trans_coeff__1__f2__0', 'trans_coeff__1__f2__1'] assert_equal(smo._trans_coeffs_names(self, params_type='short'), expected) class TestTransformTransitionParamsFuncs: def setup(self): self.factors = ['f1', 'f2'] self.transition_names = ['first_func', 'second_func'] @patch('skillmodels.estimation.skill_model.tf') def test_transform_trans_coeffs_funcs(self, mock_tf): del mock_tf.transform_coeffs_second_func assert_equal(smo._transform_trans_coeffs_funcs(self), ['transform_coeffs_first_func', None]) class TestParamsSlices: def setup(self): self.params_quants = ['a', 'b'] self._params_slice_for_a = Mock(return_value=slice(0, 3)) self._params_slice_for_b = Mock(return_value=slice(3, 5)) def test_params_slices(self): assert_equal(smo.params_slices(self, params_type='short'), {'a': slice(0, 3), 'b': slice(3, 5)}) class TestLenParams: def setup(self): self.params_quants = ['a', 'b'] self.params_slices = Mock( return_value={'a': slice(0, 3), 'b': slice(3, 5)}) def test_len_params(self): assert_equal(smo.len_params(self, params_type='short'), 5) class TestBoundsList: def setup(self): slices = {'a': slice(0, 3), 'b': slice(3, 5)} self.params_slices = Mock(return_value=slices) self.len_params = Mock(return_value=5) self.params_quants = ['a', 'b'] # mock function def _set_bounds_for_b(self, params_slice): self.lower_bound[params_slice] = 99 self.upper_bound[params_slice][0] = 100 def test_bounds_list(self): expected = [(None, None)] * 3 + [(99, 100), (99, None)] assert_equal(smo.bounds_list(self), expected) class TestParamNames: def setup(self): self.params_quants = ['a', 'b'] self._a_names = Mock(return_value=['a1', 'a2']) self._b_names = Mock(return_value=['b1', 'b2', 'b3']) self.len_params = Mock(return_value=5) def test_param_names(self): assert_equal(smo.param_names(self, params_type='short'), ['a1', 'a2', 'b1', 'b2', 'b3']) def test_param_names_invalid(self): self.len_params = Mock(return_value=6) assert_raises( AssertionError, smo.param_names, self, params_type='short') class TestTransformParams: def setup(self): self.params_quants = [ 'deltas', 'trans_coeffs', 'X_zero', 'P_zero'] slices_dict = { 'short': {'deltas': slice(0, 5), 'trans_coeffs': slice(5, 12), 'X_zero': slice(12, 15), 'P_zero': slice(15, 18)}, 'long': {'deltas': slice(0, 5), 'trans_coeffs': slice(5, 14), 'X_zero': slice(14, 17), 'P_zero': slice(17, 20)}} self.params_slices = Mock( side_effect=lambda params_type: slices_dict[params_type]) self._flatten_slice_list = \ Mock(side_effect=[slice(0, 5), slice(5, 14), slice(0, 5)]) len_dict = {'short': 18, 'long': 20} self.len_params = Mock( side_effect=lambda params_type: len_dict[params_type]) self._P_zero_filler = Mock() self._P_zero_bool = Mock() self.cholesky_of_P_zero = True self._X_zero_filler = Mock() self._X_zero_replacements = Mock() self._initial_trans_coeffs = Mock() self._transform_trans_coeffs_funcs = Mock() self.included_factors = [] self.model_name = 'some_model' @patch('skillmodels.estimation.skill_model.pp') def test_expand_params(self, mock_pt): mock_pt.transform_params_for_X_zero.return_value = np.arange(3) mock_pt.transform_params_for_trans_coeffs.return_value = np.ones(9) mock_pt.transform_params_for_P_zero.return_value = np.ones(3) * 17 expected = np.array([0] * 5 + [1] * 9 + [0, 1, 2] + [17] * 3) aae(smo._transform_params(self, np.zeros(18), 'short_to_long'), expected) class TestGenerateStartParams: def setup(self): self.params_quants = [ 'deltas', 'P_zero', 'W_zero', 'trans_coeffs'] self.nemf = 3 self.nfac = 2 self.stages = [0, 1] self.factors = ['f1', 'f2'] self.included_factors = self.factors self.transition_names = ['some_func', 'some_func'] self.start_values_per_quantity = { 'deltas': 5, 'P_zero_off_diags': 0, 'P_zero_diags': 0.5} self.restrict_P_zeros = False slices = {'deltas': slice(0, 4), 'P_zero': slice(4, 13), 'W_zero': slice(13, 16), 'trans_coeffs': [[slice(16, 17), slice(17, 18)], [slice(18, 19), slice(19, 20)]]} self.params_slices = Mock(return_value=slices) self.len_params = Mock(return_value=20) @patch('skillmodels.estimation.skill_model.tf') def test_generate_start_params(self, mock_tf): mock_tf.start_values_some_func.return_value = np.ones(1) * 7.7 expected = np.array( [5] * 4 + [0.5, 0, 0.5] * 3 + [1 / 3] * 3 + [7.7] * 4) aae(smo._generate_naive_start_params(self), expected) class TestSigmaWeightsAndScalingFactor: def setup(self): self.nemf = 2 self.nobs = 10 self.nfac = 4 self.kappa = 1.5 # these test results have been calculated with the sigma_point # function of the filterpy library with open('skillmodels/tests/fast_routines/sigma_points_from_filterpy.json') as f: self.fixtures = json.load(f) def test_julier_sigma_weight_construction(self): expected_sws = self.fixtures['julier_wm'] aae(smo.sigma_weights(self)[0], expected_sws) def test_julier_scaling_factor(self): expected_sf = 2.34520787991 assert_almost_equal(smo.sigma_scaling_factor(self), expected_sf) class TestLikelihoodArgumentsDict: def setup(self): pass class TestAllVariablesForIVEquations: def setup(self): self.measurements = { 'f1': [['y01', 'y02'], ['y11', 'y12'], []], 'f2': [['y04', 'y05'], ['y14', 'y15'], []], 'f3': [['y07', 'y08'], [], []]} self.factors = ['f1', 'f2', 'f3'] self.included_factors = [['f1', 'f3'], ['f2', 'f3'], []] self.transition_names = ['blubb', 'blubb', 'constant'] self.periods = [0, 1, 2] def test_all_variables_for_iv_equations_constant_factor(self): calc_meas_list = smo.all_variables_for_iv_equations( self, 1, 'f1', 'test') expected_meas_list = [ ['y11_test', 'y12_test'], ['y07_copied_test', 'y08_copied_test']] assert_equal(calc_meas_list, expected_meas_list) def test_all_variables_for_iv_equations_non_constant(self): calc_meas_list = smo.all_variables_for_iv_equations(self, 1, 'f2', '') expected_meas_list = [ ['y14', 'y15'], ['y07_copied', 'y08_copied']] assert_equal(calc_meas_list, expected_meas_list) def test_indepvar_permutations(self): ret_val = [['y1', 'y2'], ['y3', 'y4']] self.all_variables_for_iv_equations = Mock(return_value=ret_val) expected_xs = [ ['y1', 'y3'], ['y1', 'y4'], ['y2', 'y3'], ['y2', 'y4']] calc_xs = smo.variable_permutations_for_iv_equations(self, 1, 1)[0] assert_equal(calc_xs, expected_xs) def test_instrument_permutations(self): ret_val = [['y1_resid', 'y2_resid'], ['y3_resid', 'y4_resid']] self.all_variables_for_iv_equations = Mock(return_value=ret_val) expected_zs = [ [['y2'], ['y4']], [['y2'], ['y3']], [['y1'], ['y4']], [['y1'], ['y3']]] calc_zs = smo.variable_permutations_for_iv_equations(self, 1, 1)[1] assert_equal(calc_zs, expected_zs) class TestNumberOfIVParameters: def setup(self): self.factors = ['f1', 'f2', 'f3'] self.transition_names = ['bla', 'bla', 'blubb'] ret = (['correct', 'wrong'], ['correct2', 'wrong2']) self.variable_permutations_for_iv_equations = Mock(return_value=ret) @patch('skillmodels.estimation.skill_model.tf') def test_number_of_iv_parameters(self, mock_tf): mock_tf.iv_formula_bla.return_value = ('1 + 2 + 3 + 4', '_') expected_param_nr = 4 calc_res = smo.number_of_iv_parameters(self, 'f1') assert_equal(calc_res, expected_param_nr) @patch('skillmodels.estimation.skill_model.tf') def test_right_calls(self, mock_tf): mock_tf.iv_formula_bla.return_value = ('1 + 2 + 3 + 4', '_') smo.number_of_iv_parameters(self, 'f1') mock_tf.iv_formula_bla.assert_has_calls([call('correct', 'correct2')]) class TestExtendedMeasCoeffs: def setup(self): self.factors = ['f1', 'f2'] self.transition_names = ['linear', 'constant'] self.measurements = { 'f1': [['y01', 'y02'], ['y11', 'y12']], 'f2': [['y03', 'y04'], []]} coeffs = np.arange(0.6, 3.0, 0.2).reshape((6, 2)) cols = ['loadings', 'intercepts'] index_tuples = [(0, 'y01'), (0, 'y02'), (0, 'y03'), (0, 'y04'), (1, 'y11'), (1, 'y12')] self.index = pd.MultiIndex.from_tuples(index_tuples) self.storage_df = pd.DataFrame(coeffs, index=self.index, columns=cols) def test_extended_meas_coeffs_no_constant_factor_and_intercepts_case(self): coeff_type = 'intercepts' calc_intercepts = smo.extended_meas_coeffs(self, coeff_type, 0) expected_intercepts = pd.Series( data=[0.8, 1.2, 1.6, 2.0], name='intercepts', index=['y01', 'y02', 'y03', 'y04']) assert_series_equal(calc_intercepts, expected_intercepts) def test_extendend_meas_coeffs_constant_factor_and_loadings_case(self): coeff_type = 'loadings' calc_loadings = smo.extended_meas_coeffs(self, coeff_type, 1) expected_loadings = pd.Series( data=[2.2, 2.6, 1.4, 1.8], name='loadings', index=['y11', 'y12', 'y03_copied', 'y04_copied']) assert_series_equal(calc_loadings, expected_loadings) class TestResidualMeasurements: def setup(self): intercepts = pd.Series( [3.0, 2.0], name='intercepts', index=['m2', 'm1']) loadings = pd.Series( [2.0, 0.5], name='loadings', index=['m1', 'm2']) self.extended_meas_coeffs = Mock(side_effect=[loadings, intercepts]) d = pd.DataFrame(data=np.array([[5, 4], [3, 2]]), columns=['m1', 'm2']) self.y_data = ['dummy', d, 'dummy'] def test_residual_measurements(self): expected_data = np.array([ [1.5, 2], [0.5, -2]]) expected_resid = pd.DataFrame( expected_data, columns=['m1_resid', 'm2_resid']) calc_resid = smo.residual_measurements(self, period=1) assert_frame_equal(calc_resid, expected_resid) class TestWANorminfoDict: def setup(self): n = {} n['f1'] = {'loadings': [['y1', 4], ['y2', 5], ['y3', 6]], 'intercepts': [['y4', 7], ['y5', 8]]} df = pd.DataFrame(data=[[None]] * 3, columns=['f1']) self.identified_restrictions = { 'coeff_sum_value': df, 'trans_intercept_value': df} self.normalizations = n self.stagemap = [0, 1, 2, 2] def test_wa_norminfo_dict(self): expected = {'loading_norminfo': ['y2', 5], 'intercept_norminfo': ['y5', 8]} calculated = smo.model_coeffs_from_iv_coeffs_args_dict(self, 1, 'f1') assert_equal(calculated, expected) class TestBSMethods: def setup(self): self.bootstrap_samples = [ ['id_0', 'id_1', 'id_1'], ['id_0', 'id_1', 'id_0'], ['id_1', 'id_0', 'id_0']] self.bootstrap_nreps = 3 self.model_name = 'test_check_bs_sample' self.dataset_name = 'test_data' self.person_identifier = 'id' self.period_identifier = 'period' self.periods = [0, 1, 2] self.data = pd.DataFrame( data=np.array([ [0.0, 1.0, 2.0, 0.0, 1.0, 2.0, 0.0, 1.0, 2.0], [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]]).T, columns=['period', 'arange']) self.data['id'] = pd.Series(dtype='str', data=[ 'id_0', 'id_0', 'id_0', 'id_1', 'id_1', 'id_1', 'id_2', 'id_2', 'id_2']) # noqa self.bootstrap_sample_size = 3 self.nobs = 3 self.bootstrap_nprocesses = 2 def test_check_bs_samples_accepts_iterable(self): smo._check_bs_samples(self) def test_rejects_non_iterable(self): self.bootstrap_samples = 240 assert_raises( AssertionError, smo._check_bs_samples, self) def test_raises_error_with_unknown_identifier(self): self.bootstrap_samples[2][0] = 'a' assert_raises( AssertionError, smo._check_bs_samples, self) def test_only_bootstrap_samples_with_enough_samples(self): self.bootstrap_nreps = 10 assert_raises( AssertionError, smo._check_bs_samples, self) def test_generate_bs_samples(self): np.random.seed(495) expected_samples = [ ['id_1', 'id_1', 'id_1'], ['id_0', 'id_2', 'id_2'], ['id_2', 'id_2', 'id_1']] calc_samples = smo._generate_bs_samples(self) assert_equal(calc_samples, expected_samples) def test_select_bootstrap_data(self): expected_data = pd.DataFrame( data=np.array([ [0.0, 1.0, 2.0, 0.0, 1.0, 2.0, 0.0, 1.0, 2.0], [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 3.0, 4.0, 5.0]]).T, columns=['period', 'arange']) expected_data['id'] = [ 'id_0', 'id_0', 'id_0', 'id_1', 'id_1', 'id_1', 'id_1', 'id_1', 'id_1'] calc_data = smo._select_bootstrap_data(self, 0) assert_frame_equal(calc_data, expected_data) # define some mock functions. Mock objects don't work because they # cannot be pickled, which is required for Multiprocessing to work. def _bs_fit(self, rep, params): return rep * np.ones(3) def param_names(self, params_type): return ['p1', 'p2', 'p3'] def len_params(self, params_type): return 3 def test_all_bootstrap_params(self): calc_params = smo.all_bootstrap_params(self, params=np.ones(3)) expected_params = pd.DataFrame( data=[[0.0] * 3, [1.0] * 3, [2.0] * 3], index=['rep_0', 'rep_1', 'rep_2'], columns=['p1', 'p2', 'p3']) assert_frame_equal(calc_params, expected_params) class TestBootstrapParamsToConfInt: def setup(self): bs_data = np.zeros((100, 2)) bs_data[:, 0] = np.arange(100) bs_data[:, 1] = np.arange(5).repeat(20) np.random.shuffle(bs_data) cols = ['p1', 'p2'] ind = ['rep_{}'.format(i) for i in range(100)] df = pd.DataFrame(data=bs_data, columns=cols, index=ind) self.stored_bootstrap_params = df def all_bootstrap_params(self, params): return self.stored_bootstrap_params def test_bootstrap_conf_int(self): expected_conf_int = pd.DataFrame( data=[[2.475, 96.525], [0, 4]], index=['p1', 'p2'], columns=['lower', 'upper']) calc_conf_int = smo.bootstrap_conf_int(self, np.ones(3)) aaae(calc_conf_int, expected_conf_int) class TestBootstrapCovMatrix: def setup(self): np.random.seed(94355) expected_cov = np.array([[28 / 3, 17.0], [17.0, 31.0]]) self.par_names = ['p1', 'p2'] self.expected_cov = pd.DataFrame( data=expected_cov, columns=self.par_names, index=self.par_names) self.params = np.arange(2) self.model_name = 'test_bootstrap_cov_matrix' self.dataset_name = 'data_for_testing_covmatrix' def len_params(self, params_type): return 3 def all_bootstrap_params(self, params): fake_bs_params = np.array([[1, 4], [3, 8], [7, 15]]) fake_df = pd.DataFrame( data=fake_bs_params, columns=self.par_names, index=['rep1', 'rep2', 'rep3']) return fake_df def test_bootstrap_cov_matrix(self): calc_cov = smo.bootstrap_cov_matrix(self, self.params) assert_frame_equal(calc_cov, self.expected_cov) class TestBootstrapPValues: def setup(self): bs_params = pd.DataFrame(np.arange(10).reshape(5, 2), columns=['a', 'b']) self.all_bootstrap_params = Mock(return_value=bs_params) def test_bootstrap_p_values(self): params = np.array([2, -9]) expected_p_values =
pd.Series([0.8333333, 0.333333], index=['a', 'b'])
pandas.Series
""" This module organizes all output data each decade. In other words, it concatenates all the 'similarity_scores_{str(year)}-{str(year+9)}.tsv' files into a single file ('total_data.tsv') and adds a column with the appropriate decade for each row. The concatenated data will be used to generate time plots in plots.R. """ import pandas as pd import numpy as np import os if __name__ == "__main__": base = os.path.abspath(os.getcwd()) df = pd.DataFrame( columns=[ "disease_name", "disease", "gene_name", "gene", "class", "score", "year", ] ) do_mesh_df =
pd.read_csv("inputs/DO-slim-to-mesh.tsv", sep="\t")
pandas.read_csv
import io import pytest import pandas as pd from doltpy.cli.dolt import Dolt from doltpy.cli.write import CREATE, UPDATE from doltpy.cli.read import read_pandas from doltpy.etl import (get_df_table_writer, insert_unique_key, get_unique_key_table_writer, get_table_transformer, get_bulk_table_writer, get_dolt_loader, get_branch_creator) MENS_MAJOR_COUNT, WOMENS_MAJOR_COUNT = 'mens_major_count', 'womens_major_count' AVERAGE_MAJOR_COUNT = 'average_major_count' INITIAL_WOMENS = pd.DataFrame({'name': ['Serena'], 'major_count': [23]}) INITIAL_MENS = pd.DataFrame({'name': ['Roger'], 'major_count': [20]}) UPDATE_WOMENS = pd.DataFrame({'name': ['Margaret'], 'major_count': [24]}) UPDATE_MENS = pd.DataFrame({'name': ['Rafael'], 'major_count': [19]}) SECOND_UPDATE_WOMENS = pd.DataFrame({'name': ['Steffi'], 'major_count': [22]}) SECOND_UPDATE_MENS =
pd.DataFrame({'name': ['Novak'], 'major_count': [16]})
pandas.DataFrame
"""Test utils_data.""" import tempfile from pathlib import Path import pandas as pd from dash_charts import utils_data def test_enable_verbose_pandas(): """Test enable_verbose_pandas.""" pd.set_option('display.max_columns', 0) utils_data.enable_verbose_pandas() # act
pd.get_option('display.max_columns')
pandas.get_option
#!/bin/python import pandas as pd import nltk import time import os import numpy as np import sys from sklearn.pipeline import Pipeline from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.mixture import GaussianMixture from data_io import * from speech import * if __name__ == "__main__": # Load data. print("Reading data") labeled = load_data() unlabeled = load_unlabeled_data() all_data = labeled.data + unlabeled.data # Create output folder. print("Creating results folder") ts = time.strftime('%Y-%m-%d_%Hh%Mm%S', time.localtime()) out_folder = f'data/results/cluster_{ts}' os.mkdir(out_folder) embedding_vectorizer = lambda: W2VAggVectorizerAvgTfidf( tfidf=TfidfVectorizer(tokenizer=nltk.word_tokenize, max_df=0.8), window=20, dim=200 ) t0 = time.time() pipe19_gmm = Pipeline([ (f'avgw2v_tfidf', embedding_vectorizer()), ('gmm', GaussianMixture(n_components=19, init_params='random', verbose=10)) ]) print("Computing clusters...", end='') pipe19_gmm.fit(np.array(all_data)) print("done") print("%0.2fs" % (time.time() - t0)) # Find mapping from centroids to candidates from proportion of labeled docs in each cluster X = pipe19_gmm['avgw2v_tfidf'].transform(np.array(labeled.data)) membership_probs = pipe19_gmm['gmm'].predict_proba(X) # Membership probabilities for each candidate, given a cluster df = pd.DataFrame(membership_probs) df['y'] = labeled.labels candidates_probs = df.groupby('y').sum() candidates_probs_norm = normalize(candidates_probs, norm='l1', axis=0) # so columns sum to 1 # Determine mapping probabilistically mapping = pd.DataFrame([np.random.choice(candidates_probs.index, p=col) for col in candidates_probs_norm.T]) # Predict centroids for unlabeled data centroid_predictions = pipe19_gmm.predict(unlabeled.data) # Map into candidate names unlabeled_labels =
pd.Series(centroid_predictions)
pandas.Series
import unittest import warnings import pandas as pd import rowgenerators as rg from synpums import * from synpums.util import * warnings.filterwarnings("ignore") state = 'RI' year = 2018 release = 5 def fetch(url): return rg.dataframe(url).drop(columns=['stusab', 'county', 'name']) class TestACSIncome(unittest.TestCase): def x_test_median_incomes(self): """Check that the summary stats for the aggregate income of puma, roughtly matches between the PUMS and ACS datasets. Both values are divided by the median household income of the """ pums_acs = build_acs(state, sl='puma', year=year, release=release) dfp, dfh = build_pums_dfp_dfh(state, year=2018, release=5) puma_geoid = '79500US4400104' dfh_g = dfh[dfh.geoid == puma_geoid] pums =
pd.get_dummies(dfh_g['b19025'])
pandas.get_dummies
import numpy as np import pandas as pd from astropy import constants as c from werkzeug.contrib.cache import SimpleCache cache = SimpleCache() colors = { 'Blue': '#1f77b4', 'Orange': '#ff7f0e', 'Green': '#2ca02c', 'Red': '#d62728', 'Purple': '#9467bd', } def readExoplanetEU(): """Read the exoplanet.eu database from the 'data' folder and store as pandas DataFrame """ df = cache.get('exoplanetDB') if df is None: df =
pd.read_csv('data/exoplanetEU.csv', engine='c')
pandas.read_csv
# -*- coding: utf-8 -*- # # Scikit Learn Machine Learning Process Flow; # Version 1.0 # Author : <NAME> # # # First edited : 27 September 2018 # Last edited : # # Description : Scikit Learn Machine Learning Basics Blog WorkFlow # # Required input file details : # 1. __Placeholder__ # # Output from the code; # 1. __Placeholder__ # TODO: YTS; import datetime; import csv; import logging; import os; import datetime; import numpy as np; import pandas as pd; from time import time, sleep; from sklearn import model_selection; from sklearn import metrics; from sklearn.metrics import make_scorer; from sklearn import preprocessing; from sklearn import datasets; from sklearn.dummy import DummyClassifier; from sklearn.decomposition import KernelPCA; from sklearn.feature_selection import SelectKBest, chi2, f_classif; from sklearn.model_selection import train_test_split, cross_val_score, cross_val_predict, GridSearchCV; from sklearn import linear_model; from sklearn.svm import SVC; from sklearn.ensemble import RandomForestClassifier, VotingClassifier; from sklearn.base import BaseEstimator, TransformerMixin; from sklearn.pipeline import make_pipeline, FeatureUnion; from sklearn.feature_extraction.text import CountVectorizer; import matplotlib; import matplotlib.pyplot as plt; import matplotlib.style as style; # Check for style.available for more styles; import seaborn as sns; # matplotlib.rcParams['font.family'] = 'sans-serif'; # matplotlib.rcParams['font.sans-serif'] = ['Verdana']; # matplotlib.rcParams['font.family'] = 'cursive'; # # matplotlib.rcParams['font.weight'] = 8; # matplotlib.rcParams['font.size'] = 9.5; matplotlib.rcParams['font.family'] = 'fantasy'; matplotlib.rcParams['font.weight'] = 3; matplotlib.rcParams['font.size'] = 10; # ‘xx-small’, ‘x-small’, ‘small’, ‘medium’, ‘large’, ‘x-large’, ‘xx-large’ # https://matplotlib.org/users/text_props.html style.use('bmh'); # style.use('seaborn-paper'); # style.use('seaborn-deep'); from itertools import chain; def convert2pandas_df(x_array=None, y=None, feature_names=None, target_name=None): ''' list of datasets part of the sklearn '''; assert x_array.shape[1] == len(feature_names); # assert the length of x_array and column label length are same; assert x_array.shape[0] == len(y); # The target length should equal the features length; assert isinstance(y, list); # Target should of the type list; assert isinstance(feature_names, list); # feature_names should of the type list; data_dict = {}; data_dict[target_name] = y; for i, col_name in enumerate(feature_names): data_dict[col_name] = list(chain.from_iterable( x_array[:, [i]] )); return
pd.DataFrame(data_dict)
pandas.DataFrame
#%% import numpy as np import pandas as pd import networkx as nx from collections import Counter #%% fname = "./processed_data/rideaustin_productivity.csv" data = pd.read_csv(fname, dtype={"timebin": int}, parse_dates=["completed_on"]) # for interactive env can do next two lines # data.sort_values('end_taz', inplace=True) # data.head() # %% valid tazs tazindata = data.end_taz.unique() # len(tazindata) # %% read adjacency info fname = "./processed_data/taz_adjacency.csv" taz_adjacency = np.genfromtxt(fname, delimiter=",", dtype=int) tazindata_ = set(tazindata) taz_adjacency = [ [i, j] for i, j in taz_adjacency if (i in tazindata_) and (j in tazindata_) ] # %% build spatial adjacency graph with networkx gspatial = nx.Graph() gspatial.add_edges_from(taz_adjacency) conn_comps = nx.connected_components(gspatial) conn_comps = sorted(conn_comps, key=len, reverse=True) conn_largest = conn_comps[0] # %% keep tazs in largest connected component tazindata = [x for x in tazindata if x in conn_largest] tazindata_ = set(tazindata) taz_adjacency = [ [i, j] for i, j in taz_adjacency if (i in tazindata_) and (j in tazindata_) ] # %% filter data in valid tazs data = data[data.end_taz.isin(tazindata_)] # %% build the spatiotemporal graph links = [] num_timebins = 168 # look at the column timebin istemporal = [] # 0 for spatial, 1 for temporal # spatial links in each time slice for t in range(num_timebins): for i, j in taz_adjacency: v = "{}-{}".format(i, t + 1) w = "{}-{}".format(j, t + 1) links.append([v, w]) istemporal.append(0) # now add temporal links for x in tazindata: for t in range(num_timebins - 1): v = "{}-{}".format(x, t + 1) w = "{}-{}".format(x, t + 2) links.append([v, w]) istemporal.append(1) # for periodic time v = "{}-{}".format(x, num_timebins) w = "{}-{}".format(x, 1) links.append([v, w]) istemporal.append(1) g = nx.Graph() g.add_edges_from(links) # nx.number_connected_components(g) # should be one! # %% vertex info nodes = list(g.nodes()) node2vertex = {x: i for i, x in enumerate(nodes)} df = pd.DataFrame({"node": nodes}) df["vertex"] = [node2vertex[node] for node in nodes] df["taz"] = [int(node.split("-")[0]) for node in nodes] df["hour"] = [int(node.split("-")[1]) for node in nodes] # function for time labels def timelabeller(hour): w = (hour - 1) // 24 t = (hour - 1) % 24 wdays = ["Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"] return f"{wdays[w]} {t:02d}:00" df["timelabel"] = df.hour.apply(timelabeller) # counter number of nodes cnts = Counter(data.node) df["node_counts"] = df.node.apply(lambda x: cnts[x]) # save file fname = "./processed_data/vertex_data.csv" df.to_csv(fname, index=False) print(f"...saved vertex info in {fname}") # %% spatiotemporal_graph = pd.DataFrame( { "vertex1": [node2vertex[v[0]] for v in links], "vertex2": [node2vertex[v[1]] for v in links], "temporal": [b for b in istemporal], } ) fname = "./processed_data/spatiotemporal_graph.csv" spatiotemporal_graph.to_csv(fname, index=False) print(f"...saved spatiotemporal graph in {fname}") #%% read split data # splitlevels = pd.read_csv("processed_data/splits_opt_pt.csv") splitlevels =
pd.read_csv("processed_data/splits_qua.csv")
pandas.read_csv
#!/usr/bin/env python # coding: utf-8 # In[2]: import matplotlib.pyplot as plt import numpy as np import pandas as pd # In[78]: # load Data # R2 comparison for train set sizes RFR_score =
pd.read_csv('Generated Data/RFR_score.csv')
pandas.read_csv
from datetime import ( datetime, time, ) import numpy as np import pytest from pandas._libs.tslibs import timezones import pandas.util._test_decorators as td from pandas import ( DataFrame, Series, date_range, ) import pandas._testing as tm class TestBetweenTime: @td.skip_if_has_locale def test_between_time_formats(self, frame_or_series): # GH#11818 rng = date_range("1/1/2000", "1/5/2000", freq="5min") ts = DataFrame(np.random.randn(len(rng), 2), index=rng) if frame_or_series is Series: ts = ts[0] strings = [ ("2:00", "2:30"), ("0200", "0230"), ("2:00am", "2:30am"), ("0200am", "0230am"), ("2:00:00", "2:30:00"), ("020000", "023000"), ("2:00:00am", "2:30:00am"), ("020000am", "023000am"), ] expected_length = 28 for time_string in strings: assert len(ts.between_time(*time_string)) == expected_length @pytest.mark.parametrize("tzstr", ["US/Eastern", "dateutil/US/Eastern"]) def test_localized_between_time(self, tzstr, frame_or_series): tz = timezones.maybe_get_tz(tzstr) rng = date_range("4/16/2012", "5/1/2012", freq="H") ts = Series(np.random.randn(len(rng)), index=rng) if frame_or_series is DataFrame: ts = ts.to_frame() ts_local = ts.tz_localize(tzstr) t1, t2 = time(10, 0), time(11, 0) result = ts_local.between_time(t1, t2) expected = ts.between_time(t1, t2).tz_localize(tzstr) tm.assert_equal(result, expected) assert timezones.tz_compare(result.index.tz, tz) def test_between_time_types(self, frame_or_series): # GH11818 rng =
date_range("1/1/2000", "1/5/2000", freq="5min")
pandas.date_range
from datetime import datetime, timedelta import pandas as pd def summary(data, time): data['Date'] =
pd.to_datetime(data['Date'])
pandas.to_datetime
from numpy import linalg, zeros, ones, hstack, asarray, vstack, array, mean, std import itertools import matplotlib.pyplot as plt from datetime import datetime import pandas as pd import numpy as np import matplotlib.dates as mdates from sklearn.metrics import mean_squared_error from math import sqrt import warnings import copy import time warnings.filterwarnings("ignore") import seaborn as sns sns.set(style="whitegrid") from PVPolyfit import preprocessing as preprocess from PVPolyfit import utilities from PVPolyfit import clustering as cluster from PVPolyfit import kernel def pvpolyfit(train_df, test_df, Y_tag, xs, I_tag, ghi_tag, cs_tag, highest_num_clusters, highest_degree, kernel_type, Y_high_filter, min_count_per_day, include_preprocess = False, plot_graph = True, graph_type = 'regression', print_info = False): #print("h ERE") if len(train_df) == 0 or len(test_df) == 0: raise Exception("Either one or both DataFrames are empty.") pvpoly = PVPolyfit(train_df, test_df, Y_tag, xs, I_tag, ghi_tag, cs_tag, print_info) #print("H eRE") pvpoly.prepare(Y_high_filter, min_count_per_day, include_preprocess) #print("He RE") rmse_list = [] std_rmse_list = [] pvpoly_objects = [] combined_labels = [] for i in range(1, highest_num_clusters+1): pvpoly_iter = copy.deepcopy(pvpoly) try: labels = pvpoly_iter.run(num_clusters = i, num_iterations = 1, degrees = list(range(1,highest_degree+1)), kernel_type = kernel_type) all_best_dfs, ultimate_days, avg_rmse, std_rmse = pvpoly_iter.evaluate(print_info = print_info) rmse_list.append(avg_rmse) std_rmse_list.append(std_rmse) pvpoly_objects.append(pvpoly_iter) combined_labels.append(labels) except Exception as e: if print_info: print(e) break if len(rmse_list) == 0: raise Exception("No Output was produced.") min_idx = np.argmin(rmse_list) if print_info: print(min_idx) print("{} cluster(s) were used.".format(range(1,highest_num_clusters+1)[min_idx])) days_rmses, model_output, meases, df = pvpoly_objects[min_idx].plot(graph_type = graph_type, print_info = print_info, plot_graph = plot_graph) return model_output, meases, days_rmses, range(1,highest_num_clusters+1)[min_idx], df, combined_labels[min_idx] def _pvpolyfit_inputCluster(train_df, test_df, Y_tag, xs, I_tag, ghi_tag, cs_tag, num_clusters, highest_degree, kernel_type, Y_high_filter, min_count_per_day, include_preprocess = False, plot_graph = True, graph_type = 'regression', print_info = False): #print('inside') if len(train_df) == 0 or len(test_df) == 0: raise Exception("Either one or both DataFrames are empty.") pvpoly = PVPolyfit(train_df, test_df, Y_tag, xs, I_tag, ghi_tag, cs_tag, print_info) pvpoly.prepare(Y_high_filter, min_count_per_day, include_preprocess) try: pvpoly.run(num_clusters = num_clusters, num_iterations = 1, degrees = list(range(1,highest_degree+1)), kernel_type = kernel_type) all_best_dfs, ultimate_days, avg_rmse, std_rmse = pvpoly.evaluate(print_info = print_info) except Exception as e: raise Exception("Error has occurred: ", e) if len(str(avg_rmse)) == 0: raise Exception("No Output was produced. Go here for more information: ") days_rmses, model_output, meases, df = pvpoly.plot(graph_type = graph_type, print_info = print_info, plot_graph = plot_graph) return model_output, meases, days_rmses, num_clusters, df def break_days(df, filter_bool, min_count_per_day = 8, frequency = 'days', print_info = False): index_list = [] day_hour_list = [] prev = 0 for index, j in enumerate(df.index): if str(type(j)) != "<class 'str'>": print(type(j)) print(j) print(df.loc[j]) j = j.strftime('%m/%d/%Y %H:%M:%S %p') if frequency == 'days': curr = int(datetime.strptime(j, '%m/%d/%Y %H:%M:%S %p').strftime('%d')) frq = datetime.strptime(j, '%m/%d/%Y %H:%M:%S %p').strftime('%m/%d/%Y') elif frequency == 'hours': curr = int(datetime.strptime(j, '%m/%d/%Y %H:%M:%S %p').strftime('%H')) frq = datetime.strptime(j, '%m/%d/%Y %H:%M:%S %p').strftime('%m/%d/%Y %H') if curr != prev: index_list.append(index) day_hour_list.append(frq) prev = curr last_index = index cut_results = [] # Break df into days for k in range(len(index_list)): if k == (len(index_list)-1): # append lasfinal_df.iloc[[iindex]].indext day cut_results.append(df[index_list[k]:-1]) else: cut_results.append(df[index_list[k]:index_list[k+1]]) cut_results[-1] = pd.concat([cut_results[-1], df.iloc[[-1]]]) return index_list, day_hour_list, cut_results, df def heat_plot(df, N): # Nth column of DF will be plotted # Inspiration of this code was gathered from Solar-Data-Tools index_list, _, cut_df, _ = break_days(df, False) lizt = [] comb_df = pd.DataFrame() temp_df = pd.DataFrame() cut_df = cut_df[1:-1] dates = [] for i in range(len(cut_df)): try: comb_df[str(i)] = cut_df[i][cut_df[i].columns[N]].tolist() dates.append(datetime.strptime(cut_df[i].index[0], '%m/%d/%Y %I:%M:%S %p').strftime('%m/%d/%Y')) except ValueError: continue lizt = comb_df.values fig, ax = plt.subplots(nrows=1, figsize=(10,8)) foo = ax.imshow(lizt, cmap='hot', interpolation='none', aspect='auto', vmin=0) if df.columns[N] == 'error': ax.set_title('PVPolyfit Error Heat Plot') if df.columns[N] == 'rmse': ax.set_title('PVPolyfit RMSE Heat Plot') if df.columns[N] == 'model_output': ax.set_title('PVPolyfit Model Output Heat Plot') plt.colorbar(foo, ax=ax, label='W') ax.set_xlabel('Day number') ax.set_xticks(np.arange(len(dates))) ax.set_xticklabels(dates) ax.set_yticks([]) ax.set_ylabel(' Time of day ') xlim = ax.get_xlim() ylim = ax.get_ylim() ax.set_xlim(*xlim) ax.set_ylim(*ylim) for tick in ax.get_xticklabels(): tick.set_rotation(45) plt.show() class PVPolyfit: ''' .______ ____ ____ .______ ______ __ ____ ____ _______ __ .___________. | _ \ \ \ / / | _ \ / __ \ | | \ \ / / | ____|| | | | | |_) | \ \/ / | |_) | | | | | | | \ \/ / | |__ | | `---| |----` | ___/ \ / | ___/ | | | | | | \_ _/ | __| | | | | | | \ / | | | `--' | | `----. | | | | | | | | | _| \__/ | _| \______/ |_______| |__| |__| |__| |__| An object, PVPolyfit, created for the creation of an accurate regression of Output depending on the two covariates PARAMETERS ---------- train_df: df holds training data with columns and index specified below test_df: df holds testing data with columns and index specified below Y_tag: str column name of output tag xs: list of str list of column names for two covariates ghi_tag: str column name of GHI input cs_tag: str column name of clearsky GHI generated by pvlib simulation (link below) USER MUST INPUT DF's WITH FOLLOWING COLUMNS: | Description | Original Use Case | Model Purpose | |------------------------|---------------------|--------------------------| | Output, Y_tag: | DC Power | Target for regression | | xs: x1: | POA Irradiance | Covariate for regression | | x2: | Ambient Temperature | Covariate for regression | | Measured GHI, ghi_tag | GHI (irradiance) | Day classification | | PVLib Clearsky, cs_tag | Simulated GHI | Day classification | PVLib has a good tutorial to generate clearsky data: https://pvlib-python.readthedocs.io/en/stable/generated/pvlib.location.Location.get_clearsky.html ''' def __init__(self, train_df, test_df, Y_tag, xs, I_tag, ghi_tag, cs_tag, print_info): self.train_df = train_df self.test_df = test_df self.Y_tag = Y_tag self.xs = xs self.I_tag = I_tag self.ghi_tag = ghi_tag self.cs_tag = cs_tag self.print_info = print_info self.num_clusters = 0 self.num_iterations = 0 self.degrees = [] self.cut_results = [] self.test_cut_results = [] self.ordered_pair_list = [] self.test_ordered_pair_list = [] self.combined_test_cut_results = [] self.test_km_labels = [] self.avg_rmse = 0 # all_best_dfs[Degree][Day][Columns: 'Y', 'mins', 'maxs'] self.all_best_dfs = [] # model_day_couts[Degree][Best model's [Train Counts, Test Counts]] self.model_day_counts = [] # ultimate_days[Day][i, ind] self.ultimate_days = [] def prepare(self, Y_high_filter, min_count_per_day, include_preprocess): ''' Preprocess and classify days in DataFrame ''' self.train_df = preprocess.data_preprocessing(self.train_df, self.xs, self.Y_tag, self.I_tag, self.cs_tag, Y_high_filter, self.print_info, include_preprocess) #if len(self.cs_tag) != 0 or len(self.ghi_tag) != 0: if True: if include_preprocess: classification, k, MF = preprocess.classify_weather_day_GM_Tina(self.train_df, self.cs_tag, self.ghi_tag) self.train_df['day_type'] = classification if False: if include_preprocess: classification = cluster.classify_weather_day_MHopwood(self.cut_results, self.Y_tag, self.xs, kmeans_num_clusters = 4) self.train_df['day_type'] = classification # cuts train_df into daily DF's # also returns a filtered train_df which cuts out a day if its length is too small index_list, day_hour_list, self.cut_results, self.train_df = utilities.find_and_break_days_or_hours(self.train_df, True, min_count_per_day = min_count_per_day, frequency = 'days', print_info = self.print_info) middles_dates, hours_kpi = utilities.get_weighted_middle_of_day_and_calculate_float_since_noon(self.cut_results, self.Y_tag) ### For each day, compile frequencies ### For each day, output the # times each class is triggered self.ordered_pair_list, freq_df = cluster.create_conglomerated_vectors_for_clustering_algorithm(self.cut_results, hours_kpi, day_hour_list, self.Y_tag, self.xs) self.test_df = preprocess.data_preprocessing(self.test_df, self.xs, self.Y_tag, self.I_tag, self.cs_tag, Y_high_filter, self.print_info, include_preprocess) if len(self.cs_tag) != 0 or len(self.ghi_tag) != 0: test_classification, test_k, test_MF = preprocess.classify_weather_day_GM_Tina(self.test_df, self.cs_tag, self.ghi_tag) self.test_df['day_type'] = test_classification test_index_list, test_day_hour_list, self.test_cut_results, self.test_df = utilities.find_and_break_days_or_hours(self.test_df, True, min_count_per_day = min_count_per_day, frequency = 'days', print_info = self.print_info) test_middles_dates, test_hours_kpi = utilities.get_weighted_middle_of_day_and_calculate_float_since_noon(self.test_cut_results, self.Y_tag) print("TEST CUT RESULTS CREATE CONGLOMERATED") self.test_ordered_pair_list, test_freq_df = cluster.create_conglomerated_vectors_for_clustering_algorithm(self.test_cut_results, test_hours_kpi, test_day_hour_list, self.Y_tag, self.xs) def run(self, num_clusters = 6, num_iterations = 1, degrees = list(range(1,10)), kernel_type = 'polynomial'): ''' Iterates through Degrees For each Degree, iterates n times Returns best model for each input day Parameters: num_clusters: int, default 6 number of clusters used in clustering algorithm, synonymous with number of 'types of days' num_iterations: int, default 1 number of times algorithm loops, indicates volatility of algorithm (usually very small, so default = 1) degrees: list of ints range of degrees that polynomial kernel iterates through kernel_type: str type of regression kernel to be used OPTIONS: polynomial - a(AB)+ ''' self.num_clusters = num_clusters self.num_iterations = num_iterations self.degrees = degrees self.kernel_type = kernel_type self.all_best_dfs = [] self.model_day_counts = [] for degree in self.degrees: P_se_list = [] combined_P_list = [] combined_day_counts = [] combined_test_km_labels = [] # 1. Run the code an n number of times for i in range(self.num_iterations): # clusters and adds 'model_num' column to cut_results & test_cut_results train_kmeans_dfs, test_kmeans_dfs, self.test_km_labels, self.cut_results, self.test_cut_results, train_model_day_count, test_model_day_count = cluster.cluster_ordered_pairs_and_return_df_of_days_in_cluster(self.cut_results, self.test_cut_results, self.ordered_pair_list, self.test_ordered_pair_list, kmeans_num_clusters = self.num_clusters, print_info = self.print_info) saved_models = cluster.save_model_for_each_cluster(train_kmeans_dfs, degree, self.Y_tag, self.xs, self.kernel_type) self.kmeans_Y_lists = kernel.process_test_data_through_models(test_kmeans_dfs, saved_models, self.test_km_labels, self.xs) # 2. For each iteration, save the modelled P and colors (based on model used) combined_P_list.append(self.kmeans_Y_lists) self.combined_test_cut_results.append(self.test_cut_results) combined_test_km_labels.append(self.test_km_labels) combined_day_counts.append([train_model_day_count, test_model_day_count]) P_se_km = kernel.EvaluateModel(array(self.test_df[self.Y_tag].tolist()),array(self.kmeans_Y_lists)).rmse() P_se_list.append(P_se_km) # 3. Gather the minimum and maximum for each index, save in two lists mins = [] maxs = [] for i in range(len(self.test_df.index)): min = 9999 max = -9999 for j in range(len(combined_P_list)): if (combined_P_list[j][i] < min): min = combined_P_list[j][i] if (combined_P_list[j][i] > max): max = combined_P_list[j][i] mins.append(min) maxs.append(max) best_index = np.argmin(P_se_list) best_model = combined_P_list[best_index] best_df = pd.DataFrame() best_df['Y'] = best_model best_df['mins'] = mins best_df['maxs'] = maxs best_df.index = self.test_df.index _,_,dfg,_ = utilities.find_and_break_days_or_hours(best_df, False, min_count_per_day = 0, frequency = 'days', print_info = self.print_info) self.all_best_dfs.append(dfg) self.model_day_counts.append(combined_day_counts[best_index]) return combined_test_km_labels[best_index] def evaluate(self, print_info = True): ''' Determine rmse for each day for each degree and return index of best model for each day ''' # iterate by day all_rmse = [] self.ultimate_days = [] for i in range(len(self.all_best_dfs[0])): min = 9999 ind = 0 # iterate by degree for j in range(len(self.all_best_dfs)): iterating_rmse = kernel.EvaluateModel(array(self.test_cut_results[i][self.Y_tag].tolist()),array(self.all_best_dfs[j][i]['Y'].tolist())).rmse() print("Degree ", j, " has error: ", iterating_rmse) if abs(iterating_rmse) < abs(min): min = iterating_rmse ind = j if print_info: print("{} index: {}, degrees len: {}".format(len(self.all_best_dfs), ind, len(self.degrees))) print("Day {} chooses degree {} with {}".format(i, self.degrees[ind], min)) all_rmse.append(min) self.ultimate_days.append([i, ind]) self.avg_rmse = np.array(all_rmse).mean() return self.all_best_dfs, self.ultimate_days, self.avg_rmse, np.array(all_rmse).std() def plot(self, graph_type = 'regression', print_info = True, plot_graph = False): iter_rmses = [] if graph_type == 'regression': colors = ['red', 'blue', 'green', 'orange', 'purple', 'brown', 'gold', 'pink', 'gray', 'cyan', 'darkgreen', 'cadetblue', 'lawngreen', 'cornflowerblue', 'navy', 'olive', 'orangered', 'orchid', 'plum', 'khaki', 'ivory', 'magenta', 'maroon', 'plum', 'cyan', 'crimson', 'coral', 'yellowgreen', 'wheat', 'sienna', 'salmon']*5 model_outputs = [] meases = [] df_index = [] uncer_vals = [] df_meases = [] for i in range(len(self.all_best_dfs[0])): model_number = self.test_km_labels[i] color = colors[model_number] ind = self.ultimate_days[i][1] Y_output_daily = self.all_best_dfs[ind][i]['Y'].tolist() model_outputs.append(Y_output_daily) day_index = self.all_best_dfs[ind][i].index.tolist() day_maxes = self.all_best_dfs[ind][i]['maxs'].tolist() day_mins = self.all_best_dfs[ind][i]['mins'].tolist() day_meas = array(self.test_cut_results[i][self.Y_tag].tolist()) meases.append(day_meas) dt_index = pd.to_datetime(day_index) if plot_graph: plt.plot(dt_index, day_meas, 'k') plt.plot(dt_index, Y_output_daily, color) plt.fill_between(dt_index, day_maxes, day_mins, facecolor = color) plt.xlabel("time") plt.ylabel("Watts") plt.xticks(rotation=60) plt.title('Modelled Multiple Day Types (by color)') uncer = (array(Y_output_daily)-day_meas)#/(day_meas)) calc_rmse = sqrt(mean_squared_error(day_meas, array(Y_output_daily))) iter_rmses.append(calc_rmse) df_index.append(dt_index) uncer_vals.append(uncer) df_meases.append(day_meas) if print_info: print("[{}]:".format(datetime.strptime(day_index[0], '%m/%d/%Y %H:%M:%S %p').strftime('%Y-%m-%d'))) print("\trmse: {:.4f}, error: {:.4f}".format(calc_rmse, uncer.mean())) if plot_graph: plt.show() plt.close() uncer_values = [item for sublist in uncer_vals for item in sublist] df_indices = [item for sublist in df_index for item in sublist] df =
pd.DataFrame(index=df_indices)
pandas.DataFrame
import requests from bs4 import BeautifulSoup as bs from selenium import webdriver from fake_useragent import UserAgent from selenium.webdriver.common.desired_capabilities import DesiredCapabilities import pandas as pd import numpy as np import re import os import pickle as pk from collections import deque import string import time import psycopg2 as pg from pymongo import MongoClient import leafly.data_preprocess as dp import leafly.scrape_leafly as sl ua = UserAgent() MAIN_URL = 'http://analytical360.com/testresults' def setup_driver(): dcap = dict(DesiredCapabilities.PHANTOMJS) dcap["phantomjs.page.settings.userAgent"] = (ua.random) driver = webdriver.PhantomJS(desired_capabilities=dcap) driver.set_window_size(1920, 1080) return driver def get_headers_cookies(driver): agent = ua.random # select a random user agent headers = { "Connection": "close", # another way to cover tracks "User-Agent": agent } cookies = driver.get_cookies() cooks = {} for c in cookies: cooks[c['name']] = c['value'] # map it to be usable for requests return headers, cooks def check_rows(res): ''' args: takes a requests object returns: all table rows in doc checks to make sure the request was successful and the data we want is there in the format we expect. Otherwise throws an error ''' soup = bs(res.content, 'lxml') rows = soup.findAll('tr', {'title': 'Click To View Detail Test Results'}) if len(rows) == 0 or not res.ok: raise Exception('response returned:', res) return rows def get_links(rows): ''' take requests response object first checks to make sure there are any links in the row, if not, spits an error returns a list of unique links from all the rows ''' links = set() for i, r in enumerate(rows): row_links = r.findAll('a') if len(row_links) == 0: raise Exception('no links in row', i) links = set(row_links) | links links = list(set([l.get('href') for l in links])) return links def get_flower_links(rows): links = get_links(rows) flower_links = [l for l in links if re.search('.*flowers.*', l)] flower_rows = [r for r in rows if re.search('.*flowers.*', r.findAll('a')[0].get('href'))] return flower_links, flower_rows def check_groups(links): ''' args: takes in list of links from analytical360 returns: unique product groups in links (i.e. edibles, flowers, etc) checks to make sure number of groups in still 6 {'concentrates', 'edibles', 'flowers', 'liquids', 'listing', 'topicals'} ''' groups = [l.split('/')[-2] for l in links] groups = list(set(groups)) if len(groups) != 6: raise Exception('number of product groups has changed!') return groups def make_links_dataframe(links): ''' args: list of links returns: dataframe of links with product group, link ''' df = pd.DataFrame({'link': links, 'product': [ l.split('/')[-2] for l in links]}) return df def extract_info(link): ''' args: link to product page returns: dict or df of properties of product ''' res = requests.get(link) s = bs(res.content) h3s = s.findAll('h3') if len(h3s) < 2: raise Exception('can\'t find title in:', link) name = h3s[1] def get_links_selenium(driver): # right now only gets one link return driver.find_element_by_xpath('//*[@id="flowers"]/tbody/tr[1049]/td[1]/a') def download_image(src, filename, headers, cooks): r = requests.get(src, headers=headers, cookies=cooks) with open(filename, 'wb') as f: for chunk in r: f.write(chunk) def downloaded_strain_images(): pass def get_flower_df(rows): flower_links, flower_rows = get_flower_links(rows) # get strain name and if there are cannabinoid percentages flow_links = [] flow_names = [] flow_thc = [] flow_cbd = [] flow_active = [] nothc = [] nothcStrs = [] for r in flower_rows: links = r.findAll('a') strain = links[0].text thc = links[1].text cbd = links[2].text activated = links[3].text if thc == 'N/A' or re.search('.*\%.*', thc) is None: nothc.append(r) continue flow_links.append(links[0].get('href')) flow_names.append(strain) flow_thc.append(thc) flow_cbd.append(cbd) flow_active.append(activated) flow_df = pd.DataFrame({'name':flow_names, 'link':flow_links, 'thc':flow_thc, 'cbd':flow_cbd, 'activated':flow_active}) flow_df = flow_df.drop_duplicates() return flow_df def scrape_site(df, base_im_path='analytical360/new_images/', delay=None, sql=None, mongo=None): ''' goes through analytical360 site and scrapes images and data sql can be set to the name of a sql database to save info to, so the process can be stopped part way through ''' if sql is not None: # didn't get this working...couldn't figure out lists in sql dbname=sql conn = psycopg2.connect("dbname=" + sql + " host='localhost'") if mongo is not None: client = MongoClient() db = client[mongo[0]] coll = db[mongo[1]] driver = setup_driver() driver.get(MAIN_URL) headers, cooks = get_headers_cookies(driver) if not os.path.exists(base_im_path): os.mkdir(base_im_path) # pages that aren't really flowers, but concentrates # others that have broken images links black_list = set(['http://analytical360.com/m/flowers/604216', 'http://analytical360.com/m/flowers/550371']) name_black_list = set(['Raw Pulp CJ', 'Batch 35 Spent Trim', 'B21 Spent Trim (CBD)', 'B21 CBD', 'B22 Spent Trim (THC)', 'ACDC x Bubster #14 Male', 'ACDC x Bubster #47 Male', 'Blue Dog #19 Male', 'Blue Dog #31 Male', 'Canna-Tsu #16 Male', 'Canna-Tsu #19 Male', 'Foo Dog #3 Male', 'Foo Dog #11 Male', 'Foo Dog #12 Male', 'Harle-Tsu #2 Male', 'Harle-Tsu #7 Male', 'Miami Blues #24', 'Swiss Gold #6 Male', 'Swiss Gold #18 Male', 'Swiss Gold #26 Male', 'Under Foo #8 Male', 'Under Foo #11 Male', 'Under Foo #27 Male', 'Under Foo #35 Male', 'Harle-Tsu #7Male']) # broke here first time thru # startrow = flow_df[flow_df['name'] == 'Mango Haze'].index[0] # df_remain = flow_df.iloc[startrow:, :] cannabinoids = [] terpenes = [] im_sources = [] no_imgs = [] names = [] clean_names = [] for i, r in df.iterrows(): if delay is not None: time.sleep(delay) link = r['link'] id = link.split('/')[-1] if link in black_list or r['name'] in name_black_list or re.search('.*male.*', r['name'], re.IGNORECASE) is not None or re.search('.*raw\s*pulp.*', r['name'], re.IGNORECASE) is not None or re.search('.*spent\s+trim.*', r['name'], re.IGNORECASE) is not None: continue clean_name = re.sub('/', '-', r['name']) clean_name = re.sub('[ + ' + string.punctuation + '\s]+', '', clean_name).lower() clean_names.append(clean_name) save_path = base_im_path + clean_name + id + '.jpg' if mongo is not None and coll.find({'link':link}).count() != 0: print('already processed', r['name']) continue print(r['name']) names.append(r['name']) driver.get(link) print(link) try: img = driver.find_element_by_xpath('//*[@id="mainwrapper"]/div[4]/div[1]/div[5]/div/div[1]/img[1]') src = img.get_attribute('src') im_sources.append(src) print(src) if os.path.exists(save_path): print(r['name'], 'already saved image') else: print(save_path) if not isedible: try: download_image(src, save_path, headers, cooks) except: no_imgs.append(r) im_sources.pop() src = '' except: no_imgs.append(r) src = '' try: table1 = driver.find_element_by_xpath('//*[@id="mainwrapper"]/div[4]/div[1]/div[7]/div/div[1]/ul') except: cannabinoids.append([]) terpenes.append([]) continue table1soup = bs(table1.get_attribute('innerHTML'), 'lxml') table1rows = [l.get_text() for l in table1soup.findAll('li')] isedible = False if re.search('serving\s*size', table1rows[0], re.IGNORECASE) is not None: isedible = True cannabinoids.append(table1rows) try: table2 = driver.find_element_by_xpath('//*[@id="mainwrapper"]/div[4]/div[1]/div[8]/div/div/ul') except: try: table2 = driver.find_element_by_xpath('//*[@id="mainwrapper"]/div[4]/div[1]/div[9]/div/div/ul') except: terpenes.append([]) continue table2soup = bs(table2.get_attribute('innerHTML'), 'lxml') table2rows = [l.get_text() for l in table2soup.findAll('li')] terpenes.append(table2rows) coll.insert_one( {'cannabinoids': table1rows, 'terpenes': table2rows, 'clean_name': clean_name, 'link':link, 'im_source':src, 'isedible':isedible, 'save_path':save_path, 'name': r['name']}) client.close() return cannabinoids, terpenes, im_sources, no_imgs, names, clean_names def save_raw_scrape(cannabinoids, terpenes, no_imgs, im_sources, names, clean_names, prefix=None): if prefix is None: pk.dump(cannabinoids, open('analytical360/cannabinoids.pk', 'w'), 2) pk.dump(terpenes, open('analytical360/terpenes.pk', 'w'), 2) pk.dump(no_imgs, open('analytical360/no_imgs.pk', 'w'), 2) pk.dump(im_sources, open('analytical360/im_sources.pk', 'w'), 2) pk.dump(names, open('analytical360/names.pk', 'w'), 2) pk.dump(clean_names, open('analytical360/clean_names.pk', 'w'), 2) else: pk.dump(cannabinoids, open('analytical360/' + prefix + 'cannabinoids.pk', 'w'), 2) pk.dump(terpenes, open('analytical360/' + prefix + 'terpenes.pk', 'w'), 2) pk.dump(no_imgs, open('analytical360/' + prefix + 'no_imgs.pk', 'w'), 2) pk.dump(im_sources, open('analytical360/' + prefix + 'im_sources.pk', 'w'), 2) pk.dump(names, open('analytical360/' + prefix + 'names.pk', 'w'), 2) pk.dump(clean_names, open('analytical360/' + prefix + 'clean_names.pk', 'w'), 2) def load_raw_scrape(prefix=None): if prefix is None: cannabinoids = pk.load(open('analytical360/cannabinoids.pk')) terpenes = pk.load(open('analytical360/terpenes.pk')) no_imgs = pk.load(open('analytical360/no_imgs.pk')) im_sources = pk.load(open('analytical360/im_sources.pk')) names = pk.load(open('analytical360/names.pk')) clean_names = pk.load(open('analytical360/clean_names.pk')) else: cannabinoids = pk.load(open('analytical360/' + prefix + 'cannabinoids.pk')) terpenes = pk.load(open('analytical360/' + prefix + 'terpenes.pk')) no_imgs = pk.load(open('analytical360/' + prefix + 'no_imgs.pk')) im_sources = pk.load(open('analytical360/' + prefix + 'im_sources.pk')) names = pk.load(open('analytical360/' + prefix + 'names.pk')) clean_names = pk.load(open('analytical360/' + prefix + 'clean_names.pk')) return cannabinoids, terpenes, no_imgs, im_sources, names, clean_names def parse_raw_scrape(cannabinoids, terpenes, names): ''' parses raw scrape data for cannabinoids and terpenes. Returns dataframe with ''' trail = deque([0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1]) cannabinoid_strs = deque(['thc-a', 'thc', 'cbn', 'thc total', 'thc-total', 'cbd-a', 'cbd', 'cbd-total', 'cbd total', 'cbg', 'cbc', 'activated total', 'activated', 'active']) c_dict_keys = ['thca', 'thc', 'cbn', 'thc_total', 'cbda', 'cbd', 'cbd_total', 'cbg', 'cbc', 'activated_total'] conversion_dict = {'thc-a':'thca', 'thc total':'thc_total', 'thc-total':'thc_total', 'cbd-a':'cbda', 'cbd-total':'cbd_total', 'cbd total':'cbd_total', 'activated total':'activated_total', 'activated':'activated_total', 'active':'activated_total'} # converts similar strings to the dict key forf cannabiniod dict cannabinoid_dict = {} screen_tups = list(zip(list(range(len(trail))), trail, cannabinoid_strs)) for i, cann in enumerate(cannabinoids): print(i) temp_cann = c_dict_keys[:] #cannabinoid_dict.setdefault('name', []).append(names[i]) for ca in cann: for j, t, c in screen_tups: has_str, num = find_string(ca, c, t) if has_str: # idx = list(cannabinoid_strs).index(c) # cannabinoid_strs.rotate(-idx) # move that entry to the beginning of the list # trail.rotate(-idx) # screen_tups = zip(range(len(trail)), trail, cannabinoid_strs) print('found', c, ca) if c in conversion_dict: cannabinoid_dict.setdefault(conversion_dict[c], []).append(num) temp_cann.remove(conversion_dict[c]) else: cannabinoid_dict.setdefault(c, []).append(num) temp_cann.remove(c) break if len(temp_cann) > 0: print('didn\'t scrape:', temp_cann) for t in temp_cann: cannabinoid_dict.setdefault(t, []).append('') terp_strs = deque(['beta-Pinene', 'Humulene', 'Limonene', 'alpha-Pinene', 'Caryophyllene', 'Beta Pinene', 'Linalool', 'Caryophyllene oxide', 'Myrcene', 'TERPENE-TOTAL', 'Terpinolene', 'Ocimene', 'Alpha Pinene']) t_dict_keys = ['beta_pinene', 'alpha_pinene', 'caryophyllene_oxide', 'Humulene', 'Limonene', 'Caryophyllene', 'Linalool', 'Myrcene', 'Terpinolene', 'Ocimene', 'total_terpenes'] # converts similar strings to the dict key for terp dict terp_conv_dict = {'beta-Pinene':'beta_pinene', 'Beta Pinene':'beta_pinene', 'alpha-Pinene':'alpha_pinene', 'Alpha Pinene':'alpha_pinene', 'Caryophyllene oxide':'caryophyllene_oxide', 'TERPENE-TOTAL':'total_terpenes'} terp_dict = {} for i, terp in enumerate(terpenes): print(i) temp_cann = t_dict_keys[:] #terp_dict.setdefault('name', []).append(names[i]) for ta in terp: for c in terp_strs: has_str, num = find_string(ta, c) if has_str: idx = list(terp_strs).index(c) print('found', c, ta) if c in terp_conv_dict: terp_dict.setdefault(terp_conv_dict[c], []).append(num) temp_cann.remove(terp_conv_dict[c]) else: terp_dict.setdefault(c, []).append(num) temp_cann.remove(c) break if len(temp_cann) > 0: print('didn\'t scrape:', temp_cann) for t in temp_cann: terp_dict.setdefault(t, []).append('') cannabinoid_dict['name'] = names for k in cannabinoid_dict: print(k, len(cannabinoid_dict[k])) for k in terp_dict: print(k, len(terp_dict[k])) cdf = pd.DataFrame(cannabinoid_dict) tdf = pd.DataFrame(terp_dict) total_df = cdf.merge(tdf, left_index=True, right_index=True) return total_df def find_string(search_str, str_to_find='THC-A', trail=False): if search_str.find('8-THC') != -1: return 0, 0 # if search_str.find('< 0.01 TERPENE-TOTAL') != -1: # return 1, 0 if trail: find_str = '.*' + str_to_find + '.*' else: find_str = '.*' + str_to_find + '$' has_str = 0 res = re.search(find_str, search_str, re.IGNORECASE) if res: num = re.search('[\d\.]*', search_str).group(0) if search_str.find('<\s*0.01') != -1: return 1, 0 return 1, num return 0, 0 def check_for_string(cannabinoids, str_to_find='THC-A', trail=True): if trail: find_str = '.*' + str_to_find + '.*' else: find_str = '.*' + str_to_find #c = [' '.join(r) for r in cannabinoids] has_str = [] for c in cannabinoids: has_str_val = 0 for j in c: res = re.search(find_str, j, re.IGNORECASE) if res: has_str_val = 1 break has_str.append(has_str_val) return has_str def check_if_fields_present(): trail = [0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1] cannabinoid_strs = ['thc-a', 'thc', 'cbn', 'thc total', 'thc-total', 'cbd-a', 'cbd', 'cbd-total', 'cbd total', 'cbg', 'cbc', 'activated total', 'activated', 'active'] for t, c in zip(trail, cannabinoid_strs): has_str = check_for_string(cannabinoids, c, t) print(c, np.mean(has_str)) def stuff(): testdf =
pd.DataFrame({'name':names})
pandas.DataFrame
import os import pickle import numpy as np import pandas as pd import gzip import fcsparser # Load Kuzushiji Japanese Handwritten dataset def load_kmnist(path, dtype="kmnist", kind='train'): images_path = os.path.join(path, f'{dtype}-{kind}-imgs.npz') labels_path = os.path.join(path, f'{dtype}-{kind}-labels.npz') images = np.load(images_path) images = images.f.arr_0 images = images.reshape(images.shape[0], -1) labels = np.load(labels_path) labels = labels.f.arr_0 labels = labels.reshape(-1) return images, labels # FASHION MNIST (60000+10000, 784), 26MB def load_mnist(path, kind="train"): # train, t10k """Load MNIST data from `path`""" labels_path = os.path.join(path, "%s-labels-idx1-ubyte.gz" % kind) images_path = os.path.join(path, "%s-images-idx3-ubyte.gz" % kind) with gzip.open(labels_path, "rb") as lbpath: labels = np.frombuffer(lbpath.read(), dtype=np.uint8, offset=8) with gzip.open(images_path, "rb") as imgpath: images = np.frombuffer(imgpath.read(), dtype=np.uint8, offset=16).reshape( len(labels), 784 ) return images, labels # CIFAR 10 (50000+10000, 3072), 163MB def load_pickle(f): return pickle.load(f, encoding="latin1") def load_CIFAR_batch(filename): """ load single batch of cifar """ with open(filename, "rb") as f: datadict = load_pickle(f) X = datadict["data"] Y = datadict["labels"] X = X.reshape(10000, 3072) Y = np.array(Y) return X, Y def load_CIFAR10(ROOT): """ load all of cifar """ xs = [] ys = [] for b in range(1, 6): f = os.path.join(ROOT, "data_batch_%d" % (b,)) X, Y = load_CIFAR_batch(f) xs.append(X) ys.append(Y) Xtr = np.concatenate(xs) Ytr = np.concatenate(ys) del X, Y Xte, Yte = load_CIFAR_batch(os.path.join(ROOT, "test_batch")) return Xtr, Ytr, Xte, Yte def get_CIFAR10_data(cifar10_dir): # Load the raw CIFAR-10 data X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir) x_train = X_train.astype("float32") x_test = X_test.astype("float32") x_train /= 255 x_test /= 255 return x_train, y_train, x_test, y_test def get_flow_data(ROOT): fcs_data = fcsparser.parse(os.path.join(ROOT, "pbmc_luca.fcs")) raw_data = fcs_data[1] selected_columns = [col for col in raw_data.columns if col.endswith("-A")] + ['Time'] x = np.arcsinh(raw_data[selected_columns].values / 150.0).astype(np.float32, order='C') return x def get_data(dname, n_samples=None): if dname == "spheres": path = os.path.join(os.getcwd(), "data", "spheres") df = pd.read_csv(os.path.join(path, 'spheres.csv')) # load data x = df.drop(columns=['label']).to_numpy() label = df['label'].to_numpy() return x, label elif dname == "allen": path = os.path.join(os.getcwd(), "data", "allen") df = pd.read_csv(os.path.join(path, 'allen.csv')) # load data x = df.drop(columns=['label']).to_numpy() label = df['label'].to_numpy() return x, label elif dname == "spheres_small": path = os.path.join(os.getcwd(), "data", "spheres") df = pd.read_csv(os.path.join(path, 'spheres_small.csv')) # load data x = df.drop(columns=['label']).to_numpy() label = df['label'].to_numpy() return x, label elif dname == "mnist": path = os.path.join(os.getcwd(), "data", "MNIST", "raw") return load_mnist(path=path, kind="train") # kind="t10k" elif dname == "fmnist": path = os.path.join(os.getcwd(), "data", "FashionMNIST", "raw") return load_mnist(path=path, kind="train") # kind="t10k" elif dname == "kmnist": path = os.path.join(os.getcwd(), "data", "KuzushijiMNIST", "raw") return load_kmnist(path=path, kind="train") # kind="t10k" elif dname == "cifar10": path = os.path.join(os.getcwd(), "data", "cifar-10-batches-py") x, label, _, _ = get_CIFAR10_data(path) return x, label elif dname == "flow": path = os.path.join(os.getcwd(), "data", "flow", "raw") x = get_flow_data(path) return x, np.arange(x.shape[0]) elif dname == "swissroll": from sklearn import datasets x, label = datasets.make_swiss_roll(n_samples=n_samples) return x, label elif dname == "scurve": from sklearn import datasets x, label = datasets.make_s_curve(n_samples=n_samples) return x, label elif dname == "single-cell": path = os.path.join(os.getcwd(), "data", "single-cell") data_path = os.path.join(path, "sc_10x.count.csv") label_path = os.path.join(path, "sc_10x.metadata.csv") x = pd.read_csv(data_path) x = np.asarray(x) x = np.swapaxes(x, 0, 1) labels = pd.read_csv(label_path) labels = labels['cell_line_demuxlet'] labels = np.asarray(labels) label_uniq = list(set(labels)) label_uniq.sort() for i, label in enumerate(labels): if label == label_uniq[0]: labels[i] = 0 elif label == label_uniq[1]: labels[i] = 1 else: labels[i] = 2 return x, labels elif dname == "single-cell2": path = os.path.join(os.getcwd(), "data", "single-cell") data_path = os.path.join(path, "sc_10x_5cl.count.csv") label_path = os.path.join(path, "sc_10x_5cl.metadata.csv") x = pd.read_csv(data_path) x = np.asarray(x) x = np.swapaxes(x, 0, 1) labels = pd.read_csv(label_path) labels = labels['cell_line_demuxlet'] labels = np.asarray(labels) label_uniq = list(set(labels)) label_uniq.sort() print(label_uniq) for i, label in enumerate(labels): if label == label_uniq[0]: labels[i] = 0 elif label == label_uniq[1]: labels[i] = 1 elif label == label_uniq[2]: labels[i] = 2 elif label == label_uniq[3]: labels[i] = 3 else: labels[i] = 4 return x, labels elif dname == "single-cell3": path = os.path.join(os.getcwd(), "data", "single-cell") data_path = os.path.join(path, "sc_celseq2_5cl_p1.count.csv") label_path = os.path.join(path, "sc_celseq2_5cl_p1.metadata.csv") x = pd.read_csv(data_path) x = np.asarray(x) x = np.swapaxes(x, 0, 1) labels =
pd.read_csv(label_path)
pandas.read_csv
from contextlib import nullcontext import copy import numpy as np import pytest from pandas._libs.missing import is_matching_na from pandas.core.dtypes.common import is_float from pandas import ( Index, MultiIndex, Series, ) import pandas._testing as tm @pytest.mark.parametrize( "arr, idx", [ ([1, 2, 3, 4], [0, 2, 1, 3]), ([1, np.nan, 3, np.nan], [0, 2, 1, 3]), ( [1, np.nan, 3, np.nan], MultiIndex.from_tuples([(0, "a"), (1, "b"), (2, "c"), (3, "c")]), ), ], ) def test_equals(arr, idx): s1 = Series(arr, index=idx) s2 = s1.copy() assert s1.equals(s2) s1[1] = 9 assert not s1.equals(s2) @pytest.mark.parametrize( "val", [1, 1.1, 1 + 1j, True, "abc", [1, 2], (1, 2), {1, 2}, {"a": 1}, None] ) def test_equals_list_array(val): # GH20676 Verify equals operator for list of Numpy arrays arr = np.array([1, 2]) s1 = Series([arr, arr]) s2 = s1.copy() assert s1.equals(s2) s1[1] = val cm = ( tm.assert_produces_warning(FutureWarning, check_stacklevel=False) if isinstance(val, str) else nullcontext() ) with cm: assert not s1.equals(s2) def test_equals_false_negative(): # GH8437 Verify false negative behavior of equals function for dtype object arr = [False, np.nan] s1 = Series(arr) s2 = s1.copy() s3 = Series(index=range(2), dtype=object) s4 = s3.copy() s5 = s3.copy() s6 = s3.copy() s3[:-1] = s4[:-1] = s5[0] = s6[0] = False assert s1.equals(s1) assert s1.equals(s2) assert s1.equals(s3) assert s1.equals(s4) assert s1.equals(s5) assert s5.equals(s6) def test_equals_matching_nas(): # matching but not identical NAs left = Series([np.datetime64("NaT")], dtype=object) right = Series([np.datetime64("NaT")], dtype=object) assert left.equals(right) assert Index(left).equals(Index(right)) assert left.array.equals(right.array) left = Series([np.timedelta64("NaT")], dtype=object) right = Series([np.timedelta64("NaT")], dtype=object) assert left.equals(right) assert Index(left).equals(Index(right)) assert left.array.equals(right.array) left = Series([np.float64("NaN")], dtype=object) right = Series([np.float64("NaN")], dtype=object) assert left.equals(right) assert Index(left, dtype=left.dtype).equals(Index(right, dtype=right.dtype)) assert left.array.equals(right.array) def test_equals_mismatched_nas(nulls_fixture, nulls_fixture2): # GH#39650 left = nulls_fixture right = nulls_fixture2 if hasattr(right, "copy"): right = right.copy() else: right = copy.copy(right) ser = Series([left], dtype=object) ser2 = Series([right], dtype=object) if is_matching_na(left, right): assert ser.equals(ser2) elif (left is None and is_float(right)) or (right is None and is_float(left)): assert ser.equals(ser2) else: assert not ser.equals(ser2) def test_equals_none_vs_nan(): # GH#39650 ser = Series([1, None], dtype=object) ser2 = Series([1, np.nan], dtype=object) assert ser.equals(ser2) assert Index(ser, dtype=ser.dtype).equals(
Index(ser2, dtype=ser2.dtype)
pandas.Index
# Press Shift+F10 to execute it or replace it with your code. # Press Double Shift to search everywhere for classes, files, tool windows, actions, and settings. import numpy as np import pandas as pd import warnings from sklearn.linear_model import LinearRegression import scipy.cluster.hierarchy as sch import datetime import random class backtest_model: """ Given a user-defined portfolio construction strategy (a function that takes in stock-related data and returns portfolio weights) and the data that the user wish the strategy to be tested on, calculate several evaluation metrics of the portfolio, including net_returns, sharpe ratio, certainty equivalent returns, turnover, etc. Various inputs can be modified to suit the needs of strategy and backtesting scenarios, such as price-impact models, transaction costs, etc. Initiate the model with the strategy function, and clarify involved data types needed, whose sequence MUST be consistent with that of the list of dataframes used inside strategy function :param strategy: user-defined function that serves as portfolio construction strategy :type strategy: function :param involved_data_type: a list of strings that indicate the type of data {'price','return','ex_return'} used in the strategy, the order of the strings will be the order that data are passed to the strategy :type involved_data_type: list :param need_extra_data: indicate whether the strategy need extra_data (data other than {'price','return','ex_return'}) to function. Note: 1. the datetime index of extra_data must match that of the provided data. 2. change-of-frequency functionality will be suspended if extra data is needed :type need_extra_data: bool :param trace_back: indicate whether the strategy need to trace back to past portfolios to function. Note: please handle the boundary situation where past portfolios is empty in the strategy function :type trace_back: bool :param name: name of the strategy to be tested :type name: str :param missing_val : indicate whether user strategy function can handle missing values in the data on its own. True means the function can deal with missing values. False means it cannot :type missing_val: bool """ def __init__(self, strategy, involved_data_type, need_extra_data=False, trace_back=False, name='Unnamed', missing_val=False): """ Initiate the model with the strategy function, and clarify involved data types needed, whose sequence MUST be consistent with that of the list of dataframes used inside strategy function :param strategy: user-defined function that serves as portfolio construction strategy :type strategy: function :param involved_data_type: a list of strings that indicate the type of data {'price','return','ex_return'} used in the strategy, the order of the strings will be the order that data are passed to the strategy :type involved_data_type: list :param need_extra_data: indicate whether the strategy need extra_data (data other than {'price','return','ex_return'}) to function. Note: 1. the datetime index of extra_data must match that of the provided data. 2. change-of-frequency functionality will be suspended if extra data is needed :type need_extra_data: bool :param trace_back: indicate whether the strategy need to trace back to past portfolios to function. Note: please handle the boundary situation where past portfolios is empty in the strategy function :type trace_back: bool :param name: name of the strategy to be tested :type name: str :param missing_val : indicate whether user strategy function can handle missing values in the data on its own. True means the function can deal with missing values. False means it cannot. A wrapper function would be applied to the strategy function to deal with missing data. It will only pass in columns with full data and assign to other assets weight 0 while keeping the relative position the same. Warning: 1. The wrapper will slow the running speed significantly. 2. The wrapper does not cover missing data in "extra_data".. :type missing_val: bool """ def wrapper(function, list_df, extra_data=pd.DataFrame(), historical_portfolios=pd.DataFrame()): length = list_df[0].shape[1] for frame in list_df: if length >= len(frame.columns[frame.isna().any() == False]): length = len(frame.columns[frame.isna().any() == False]) position_nan = frame.isna().any().values w = np.zeros(list_df[0].shape[1]) if need_extra_data: if trace_back: w[position_nan == False] = function([frame[frame.columns[position_nan == False]] for frame in list_df],extra_data, historical_portfolios) else: w[position_nan == False] = function([frame[frame.columns[position_nan == False]] for frame in list_df],extra_data) else: if trace_back: w[position_nan == False] = function([frame[frame.columns[position_nan == False]] for frame in list_df],historical_portfolios) else: w[position_nan == False] = function([frame[frame.columns[position_nan == False]] for frame in list_df]) return w if not missing_val: if name not in ['naive allocation portfolio', 'inverse variance allocation portfolio', 'min. variance allocation portfolio', 'basic mean-variance allocation portfolio', 'Fama-French 3-factor model portfolio', 'hierarchical-risk-parity portfolio', 'Bayes_Stein_shrinkage portfolio']: warnings.warn('The library will deal with missing data. Running speed will be significantly reduced!') if need_extra_data: if trace_back: self.__strategy = lambda x,y,z: wrapper(strategy, x,extra_data=y,historical_portfolios=z) else: self.__strategy = lambda x,y: wrapper(strategy, x,extra_data=y) else: if trace_back: self.__strategy = lambda x,z: wrapper(strategy, x,historical_portfolios=z) else: self.__strategy = lambda x: wrapper(strategy, x) else: self.__strategy = strategy if type(involved_data_type) != list: raise Exception('"involved_data_type" must be given in a list') else: self.__involved_data_type = involved_data_type if type(need_extra_data) != bool: raise Exception('"need_extra_data" must be a bool variable') else: self.__need_extra_data = need_extra_data if type(trace_back) != bool: raise Exception('"trace_back" must be a bool variable') else: self.__trace_back = trace_back if type(name) != str: raise Exception('"name" must be a string variable') else: self.name = name self.__last_test_frequency = None self.__last_test_portfolios = None self.__price_impact = False self.__sharpe = None self.__ceq = None self.__average_turnover = None self.__total_turnover = None self.__net_returns = None self.__net_excess_returns = None # function to prepare data, including change of frequency, convert between price, return and ex_return def __prepare_data(self, data, freq_data, data_type, rf, interval, window, freq_strategy, volume=pd.DataFrame(), price_impact=False): if not isinstance(data, pd.DataFrame): raise Exception('Please provide correct format of test data!') try: data.index = pd.to_datetime(data.index) except: print( 'Invalid index provided in your test data, please make sure that index is in compatible datetime format') volume.index = pd.to_datetime(volume.index) data = data.copy() if data_type == 'return': if freq_data != freq_strategy: warnings.warn( 'data_type==return with interval>1 or change of frequency, Expect large amount of computational error') data['###rf'] = rf # add 'rf' to the dataframe to go through transformation together data = (1 + data).apply(lambda x: np.cumprod(x)) data = data.resample(freq_strategy).ffill().fillna(method='ffill').pct_change(fill_method=None).dropna(axis=0, how='all') normal_return_df = data.iloc[:,:-1] risk_free_df=data.iloc[:,-1] excess_return_df = normal_return_df.sub(risk_free_df.values, axis=0).dropna(axis=0, how='all') return (normal_return_df, excess_return_df, risk_free_df, pd.DataFrame(index=normal_return_df.index)) else: normal_return_df = data excess_return_df = normal_return_df.sub(rf.values, axis=0) return (normal_return_df, excess_return_df, rf.loc[normal_return_df.index], pd.DataFrame(index=normal_return_df.index)) elif data_type == 'ex_return': if freq_data != freq_strategy: warnings.warn( 'data_type==ex_return with interval>1 or change of frequency, Expect large amount of computational error') data = data.add(rf, axis=0) data['###rf'] = rf # add 'rf' to the dataframe to go through transformation together data = (1 + data).apply(lambda x: np.cumprod(x)) data = data.resample(freq_strategy).ffill().fillna(method='ffill').pct_change(fill_method=None).dropna(axis=0, how='all') normal_return_df = data.iloc[:, :-1] risk_free_df = data.iloc[:, -1] excess_return_df = normal_return_df.sub(risk_free_df.values, axis=0).dropna(axis=0, how='all') return (normal_return_df, excess_return_df, risk_free_df, pd.DataFrame(index=normal_return_df.index)) else: excess_return_df = data normal_return_df = excess_return_df.add(rf, axis=0) return (normal_return_df, excess_return_df, rf.loc[normal_return_df.index], pd.DataFrame(index=normal_return_df.index)) elif data_type == 'price': #data['###rf'] = rf # add 'rf' to the dataframe to go through transformation together rf_df=np.cumprod(1+rf) if freq_data != freq_strategy: data = data.resample(freq_strategy).ffill().fillna(method='ffill') rf_df=rf_df.resample(freq_strategy).ffill().fillna(method='ffill') if price_impact: volume = volume.resample(freq_strategy).mean() normal_return_df = data.pct_change(fill_method=None).dropna(axis=0, how='all') risk_free_df=rf_df.pct_change(fill_method=None).dropna(axis=0,how='all').loc[normal_return_df.index] excess_return_df = normal_return_df.sub(risk_free_df.values, axis=0) if price_impact: return (normal_return_df, excess_return_df, volume.loc[normal_return_df.index], risk_free_df, data.loc[normal_return_df.index]) else: return (normal_return_df, excess_return_df, risk_free_df, data.loc[normal_return_df.index]) # rebalance function to be applied to each rolling window of length (window) def __rebalance(self, ex_return_df, normal_return_df, price_df, window, extra_data=None): historical_portfolios = [] map = {'price': price_df, 'ex_return': ex_return_df, 'return': normal_return_df} if self.__need_extra_data: if self.__trace_back: for df in ex_return_df.rolling(window): if df.shape[0] >= window: historical_portfolios.append( self.__strategy([map[i].loc[df.index] for i in self.__involved_data_type], extra_data.loc[df.index], historical_portfolios)) else: for df in ex_return_df.rolling(window): if df.shape[0] >= window: historical_portfolios.append( self.__strategy([map[i].loc[df.index] for i in self.__involved_data_type], extra_data.loc[df.index])) else: if self.__trace_back: for df in ex_return_df.rolling(window): if df.shape[0] >= window: historical_portfolios.append( self.__strategy([map[i].loc[df.index] for i in self.__involved_data_type], historical_portfolios)) else: for df in ex_return_df.rolling(window): if df.shape[0] >= window: historical_portfolios.append( self.__strategy([map[i].loc[df.index] for i in self.__involved_data_type])) return historical_portfolios def __test_price_impact(self, data, freq_data, data_type, rf, interval, window, freq_strategy, ptc_buy, ptc_sell, ftc, volume, c, initial_wealth, extra_data, price_impact_model='default',power=0.6): # prepare data normal_return_df, excess_return_df, volume, risk_free_rate, price_df = self.__prepare_data(data, freq_data, data_type, rf, interval, window, freq_strategy, volume, price_impact=True) T = excess_return_df.shape[0] # length of dataset N = excess_return_df.shape[1] # number of assets if window < N: warnings.warn('window length smaller than the number of assets, may not get feasible portfolios') if window >= T - 2: # 2 here can change later raise Exception( 'Too few samples to test on will result in poor performance : reduce window or decrease interval or ' 'increase length of data') # apply rolling windows with __rebalance portfolios = self.__rebalance(excess_return_df, normal_return_df, price_df, window, extra_data) try: assert sum(portfolios[0]) <= 1 + 0.000001 except: raise Exception( 'Please make sure your strategy builds a portfolios whose sum of weights does not exceed 1!') portfolios = pd.DataFrame(portfolios).iloc[::interval] # save the portfolios for calling self.__last_test_portfolios = portfolios.set_axis(excess_return_df.columns.values, axis='columns').set_axis( excess_return_df.iloc[window - 1::interval].index.values, axis='index') if interval > 1: if price_df.empty: df=normal_return_df.join(risk_free_rate) df=(1+df.iloc[window-1:]).apply(lambda x:np.cumprod(x)).iloc[::interval].pct_change(fill_method=None).dropna(axis=0,how='all') normal_return_df=df.iloc[:,:-1] risk_free_rate=df.iloc[:,-1] excess_return_df = normal_return_df.sub(risk_free_rate.values, axis=0) price_df = price_df.iloc[window - 1::interval].iloc[1:] else: price_df = price_df.iloc[window - 1::interval] normal_return_df=price_df.pct_change(fill_method=None).dropna(axis=0,how='all') risk_free_rate=np.cumprod(1+risk_free_rate[window-1:]).iloc[::interval].pct_change(fill_method=None).dropna(axis=0,how='all') excess_return_df=normal_return_df.sub(risk_free_rate.values, axis=0) price_df=price_df.iloc[1:] else: excess_return_df = excess_return_df.iloc[window:] normal_return_df = normal_return_df.iloc[window:] risk_free_rate = risk_free_rate.iloc[window:] price_df = price_df.iloc[window:] # pre_balance portfolios that serves as denominators pre_balance_portfolios = (1 + normal_return_df).mul(portfolios.iloc[:-1].values) # turnover # normalise portfolio weight before rebalancing at the start of each period # note that turnover ratio is not affected by price-impact model pre_balance_portfolios = pre_balance_portfolios.div(pre_balance_portfolios.sum(axis=1).values, axis=0) diff = (portfolios.iloc[1:].sub(pre_balance_portfolios.values)).dropna(axis=0, how='all') self.__total_turnover = abs(diff).sum(axis=1).sum() self.__average_turnover = self.__total_turnover / (T - window) # pre_balance portfolios that serves as nominators pre_balance_portfolios_2 = (1 + normal_return_df.iloc[1:]).mul(portfolios.iloc[1:-1].values) # factor in the initial_wealth for all 'diff','portfolios' portfolios *= initial_wealth pre_balance_portfolios *= initial_wealth pre_balance_portfolios_2 *= initial_wealth diff *= initial_wealth # transform volume to average volume volume = volume.rolling(window).mean().dropna(axis=0, how='all').fillna(method='ffill').loc[normal_return_df.index] # evolution of money account pre_balance_money = np.zeros(risk_free_rate.shape[0]) # Money account value after each period, before rebalancing pi_models = {'default': {'buy': 1 + c * (diff[diff > 0].div((volume * price_df).values)) ** power, 'sell': 1 - c * (abs(diff[diff < 0]).div((volume * price_df).values)) ** power}} pi_buy, pi_sell = pi_models[price_impact_model]['buy'], pi_models[price_impact_model]['sell'] # sell = ((abs(diff[diff < 0]).mul(1 - ptc_sell)) * ( # 1 - c * (abs(diff[diff < 0]).div((volume * price_df).values)) ** 0.6)).sum(axis=1) # buy = ((diff[diff >= 0].mul(1 + ptc_buy)) * ( # 1 + c * (diff[diff >= 0].div((volume * price_df).values)) ** 0.6)).sum(axis=1) sell = ((abs(diff[diff < 0]).mul(1 - ptc_sell)) * pi_sell).sum(axis=1) buy = ((diff[diff > 0].mul(1 + ptc_buy)) * pi_buy).sum(axis=1) fixed = diff[diff != 0].count(axis=1).mul(ftc) after_balance_money = pre_balance_money + sell - buy - fixed pre_balance_money_2 = after_balance_money[:-1].mul((1 + risk_free_rate.iloc[1:]).values) # net_returns self.__net_returns = (pre_balance_portfolios_2.sum(axis=1).add(pre_balance_money_2.values)).div( pre_balance_portfolios.sum(axis=1).add(pre_balance_money).iloc[:-1].values) - 1 self.__net_excess_returns = self.__net_returns.sub(risk_free_rate.iloc[1:].values) self.__sharpe = np.mean(self.__net_excess_returns) / np.std(self.__net_excess_returns, ddof=1) def __test_no_price_impact(self, data, freq_data, data_type, rf, interval, window, freq_strategy, ptc_buy, ptc_sell, ftc, initial_wealth, extra_data): # prepare data normal_return_df, excess_return_df, risk_free_rate, price_df = self.__prepare_data(data, freq_data, data_type, rf, interval, window, freq_strategy) T = excess_return_df.shape[0] # length of dataset N = excess_return_df.shape[1] # number of assets if window < N: warnings.warn('window length smaller than the number of assets, may not get feasible portfolios') if window >= T - 2: # 3 here can change later raise Exception( 'Too few samples to test on will result in poor performance : reduce window or decrease interval or ' 'increase length of data') # apply rolling windows with __rebalance portfolios = self.__rebalance(excess_return_df, normal_return_df, price_df, window, extra_data) try: assert sum(portfolios[0]) <= 1 + 0.000001 except: raise Exception( 'Please make sure your strategy builds a portfolios whose sum of weights does not exceed 1!') portfolios = pd.DataFrame(portfolios).iloc[::interval] # save the portfolios for calling self.__last_test_portfolios = portfolios.set_axis(excess_return_df.columns.values, axis='columns').set_axis( excess_return_df.iloc[window - 1::interval].index.values, axis='index') if interval > 1: if price_df.empty: df = normal_return_df.join(risk_free_rate) df = (1 + df.iloc[window - 1:]).apply(lambda x: np.cumprod(x)).iloc[::interval].pct_change(fill_method=None).dropna( axis=0, how='all') normal_return_df = df.iloc[:, :-1] risk_free_rate = df.iloc[:, -1] excess_return_df = normal_return_df.sub(risk_free_rate.values, axis=0) price_df = price_df.iloc[window - 1::interval].iloc[1:] else: price_df = price_df.iloc[window - 1::interval] normal_return_df = price_df.pct_change(fill_method=None).dropna(axis=0, how='all') risk_free_rate=np.cumprod(1+risk_free_rate[window-1:]).iloc[::interval].pct_change(fill_method=None).dropna(axis=0,how='all') excess_return_df = normal_return_df.sub(risk_free_rate.values, axis=0) price_df = price_df.iloc[1:] else: excess_return_df = excess_return_df.iloc[window:] normal_return_df = normal_return_df.iloc[window:] risk_free_rate = risk_free_rate.iloc[window:] price_df = price_df.iloc[window:] # pre_balance portfolios that serves as denominators pre_balance_portfolios = (1 + normal_return_df).mul(portfolios.iloc[:-1].values) # turnover # normalise portfolio weight before rebalancing at the start of each period # note that turnover ratio is not affected by price-impact model pre_balance_portfolios = pre_balance_portfolios.div(pre_balance_portfolios.sum(axis=1).values, axis=0) diff = (portfolios.iloc[1:].sub(pre_balance_portfolios.values)).dropna(axis=0, how='all') self.__total_turnover = abs(diff).sum(axis=1).sum() self.__average_turnover = self.__total_turnover / (T - window) # pre_balance portfolios that serves as nominators pre_balance_portfolios_2 = (1 + normal_return_df.iloc[1:]).mul(portfolios.iloc[1:-1].values) # if ftc != 0: # # factor in the initial_wealth for all 'diff','portfolios' # portfolios *= initial_wealth # pre_balance_portfolios *= initial_wealth # pre_balance_portfolios_2 *= initial_wealth # diff *= initial_wealth # # # transaction cost impacts # sell = (abs(diff[diff < 0]).mul(1 - ptc_sell)).sum(axis=1) # buy = (diff[diff >= 0].mul(1 + ptc_buy)).sum(axis=1) # fixed = diff[diff != 0].count(axis=1).mul(ftc) # # evolution of money account # pre_balance_money = np.zeros(risk_free_rate.shape[0]) # after_balance_money = pre_balance_money + sell - buy - fixed # pre_balance_money_2 = after_balance_money[:-1].mul((1 + risk_free_rate.iloc[1:]).values) # # self.__net_returns = (pre_balance_portfolios_2.sum(axis=1).add(pre_balance_money_2.values)).div( # pre_balance_portfolios.sum(axis=1).add(pre_balance_money).iloc[:-1].values) - 1 # # self.__net_excess_returns = self.__net_returns.sub(risk_free_rate.iloc[1:].values) # else: # # transaction cost impacts # sell = (abs(diff[diff < 0]).mul(1 - ptc_sell)).sum(axis=1) # buy = (diff[diff >= 0].mul(1 + ptc_buy)).sum(axis=1) # # evolution of money account # pre_balance_money = np.zeros(risk_free_rate.shape[0]) # after_balance_money = pre_balance_money + sell - buy # pre_balance_money_2 = after_balance_money[:-1].mul((1 + risk_free_rate.iloc[1:]).values) # # self.__net_returns = (pre_balance_portfolios_2.sum(axis=1).add(pre_balance_money_2.values)).div( # pre_balance_portfolios.sum(axis=1).add(pre_balance_money).iloc[:-1].values) - 1 # # self.__net_excess_returns = self.__net_returns.sub(risk_free_rate.iloc[1:].values) portfolios *= initial_wealth pre_balance_portfolios *= initial_wealth pre_balance_portfolios_2 *= initial_wealth diff *= initial_wealth # transaction cost impacts sell = (abs(diff[diff < 0]).mul(1 - ptc_sell)).sum(axis=1) buy = (diff[diff >= 0].mul(1 + ptc_buy)).sum(axis=1) fixed = diff[diff != 0].count(axis=1).mul(ftc) # evolution of money account pre_balance_money = np.zeros(risk_free_rate.shape[0]) after_balance_money = pre_balance_money + sell - buy - fixed pre_balance_money_2 = after_balance_money[:-1].mul((1 + risk_free_rate.iloc[1:]).values) self.__net_returns = (pre_balance_portfolios_2.sum(axis=1).add(pre_balance_money_2.values)).div( pre_balance_portfolios.sum(axis=1).add(pre_balance_money).iloc[:-1].values) - 1 self.__net_excess_returns = self.__net_returns.sub(risk_free_rate.iloc[1:].values) self.__sharpe = np.mean(self.__net_excess_returns) / np.std(self.__net_excess_returns, ddof=1) def backtest(self, data, freq_data, volume=pd.DataFrame(), data_type='price', rf=pd.Series(dtype='float'), interval=1, window=60, freq_strategy='D', price_impact=False, ptc_buy=0, ptc_sell=0, ftc=0, c=1, initial_wealth=1E6, extra_data=pd.DataFrame(), price_impact_model='default',power=0.6): """ Start the backtesting process with the built model. The function itself will not return anything. To get the results, please call respective functions. :param data: historical data that the strategy to be tested on. Index must be datetime format compatible :type data: pd.DataFrame :param freq_data: The frequency of the data provided, choose between {'D','W','M'}, where 'D' for day,'W' for week and 'M' for month. 'data' must be taken in the smallest unit of respective frequency, e.g. the frequency 'M' means the data is taken at each month :type freq_data: str :param volume: trading volume of each asset during each period (array of size T*N), or average trading volume for each asset over all periods (N-d array). If passing in as pd.DataFrame, then its index must match that of the data. :type volume: pd.DataFrame or list or np.ndarray or pd.Series :param data_type: choose from {'price','return','ex_return'} where 'price' stands for price data of assets at each timestamp, 'return' stands for normal percentage return of each asset in each period, 'ex_return' stands for percentage return net of risk-free rate :type data_type: str :param rf: data for risk-free rate in each period. Note: if 'rf' is passed in as a dataframe or series, the index of 'rf' must match that of 'data' :type rf: pd.Series or pd.DataFrame or int or float :param interval: number of periods that users want their portfolios to be rebalanced, the unit is based on 'freq_strategy'. e.g. If 'freq_data' is 'D', while 'freq_strategy' is 'M', and 'interval' is 2, then the portfolio will be rebalanced every 2 months using the user-defined portfolio-construction strategy :type interval: int :param window: length of rolling windows of 'data' wanted to feed into 'strategy' function. e.g. 'window'=60 means each time during rebalancing, past 60 periods of 'data' will be passed into user-defined strategy function :type window: int :param freq_strategy: The frequency on which the user want to use 'strategy' to rebalance the portfolio, choose between {'D','W','M'}. If "freq_strategy" is different from "freq_data", the library will resample data on "freq_strategy". Note: 'freq_data' should be smaller than 'freq_strategy' with the sequence 'D' < 'W' < 'M' :type freq_strategy: str :param price_impact: indicate whether to use price-impact model or not :type price_impact: bool :param ptc_buy: proportional transaction cost of buying each asset, measured in basis point. Can be a Series or array that provide one cost for each asset, or a single variable that stands for universal transaction cost. Note: Cannot be a list, and must not contain provide labels :type ptc_buy: pd.Series or np.ndarray or int or float :param ptc_sell: proportional transaction cost of selling each asset, measured in basis point. Can be a Series or array that provide one cost for each asset, or a single variable that stands for universal transaction cost. Note: Cannot be a list, and must not contain provide labels :type ptc_sell: pd.Series or np.ndarray or int or float :param ftc: dollar value of fixed transaction cost of each transaction, measured in one unit of any currency. :type ftc: int or float :param c: market depth indicators. Can be a Series or array that provide one market depth for each asset, or a single variable that stands for universal market depth. Note: Do NOT provide labels :type c: pd.Series or int or np.ndarray or float :param initial_wealth: dollar value of initial wealth of testing when 'price-impact' is true or 'ftc'!=0 :type initial_wealth: int or float :param extra_data: extra_data to be passed into 'strategy' only when 'need_extra_data'==True. Note: 1. the datetime index of extra_data must match that of the provided data. 2. change-of-frequency functionality will be suspended if extra data is needed :type extra_data: pd.DataFrame :param price_impact_model: choose the price impact model you want to use from {'default'} (testing feature, to be built on) :type price_impact_model: str :return: None """ random.seed(1) if price_impact_model not in {'default'}: raise Exception('Unknown type of "price_impact_model"!') if type(initial_wealth) != int and type(initial_wealth) != float: raise Exception('Wrong type of "initial_wealth" given!') if type(c) != float and type(c) != int and not isinstance(c, pd.Series) and not isinstance(c.np.ndarray): raise Exception("Wrong type of 'c' given!") if type(ftc) != int and type(ftc) != float: raise Exception("Wrong type of 'ftc' given!") if type(ptc_buy) != int and type(ptc_buy) != float and not isinstance(ptc_buy, pd.Series) and not isinstance( ptc_buy, np.ndarray): raise Exception("Wrong type of 'ptc_buy' provided!") else: ptc_buy /= 10000 if type(ptc_sell) != int and type(ptc_sell) != float and not isinstance(ptc_sell, pd.Series) and not isinstance( ptc_sell, np.ndarray): raise Exception("Wrong type of 'ptc_sell' provided!") else: ptc_sell /= 10000 if type(price_impact) != bool: raise Exception("'price_impact' must be a boolean variable") if freq_data not in {'D', 'W', 'M'}: raise Exception("'freq_data' must be chosen from {'D','W','M'}") if freq_strategy not in {'D', 'W', 'M'}: raise Exception("'freq_strategy' must be chosen from {'D','W','M'}") if freq_data == 'W' and freq_strategy == 'D': raise Exception("'freq_data' should be smaller than 'freq_strategy' with the sequence 'D' < 'W' < 'M'") if freq_data == 'M' and freq_strategy in {'D', 'W'}: raise Exception("'freq_data' should be smaller than 'freq_strategy' with the sequence 'D' < 'W' < 'M'") if type(window) != int: raise Exception("'window' must be an 'int' variable") if type(interval) != int: raise Exception("'interval' must be an 'int' variable") if initial_wealth == 1E6: if price_impact == True or ftc != 0: warnings.warn('Using default initial_wealth value @1E6!') if self.__need_extra_data == True: if isinstance(extra_data, pd.DataFrame) or isinstance(extra_data, pd.Series): if extra_data.empty: raise Exception('Please provide extra_data as dataframe') try: extra_data.index = pd.to_datetime(extra_data.index) except: print( 'Invalid index provided in your "extra_data", please make sure that index is in compatible datetime format') else: raise Exception( '"extra_data" need to be a Series or DataFrame with datetime index corresponding to test data provided') # if user-defined strategy need extra_data to operate, the library will NOT provide change of frequency functionality if freq_strategy != freq_data: raise Exception( 'If "extra_data" needed for your strategy, please make sure "freq_strategy" matches "freq_data"!') if not extra_data.index.equals(data.index): raise IndexError('Index of extra_data and index of data do not match!') if (data_type == 'return' or data_type == 'ex_return') and ('price' in self.__involved_data_type): raise Exception('"price" data type is involved in your strategy, please provide data with type "price"') if isinstance(rf, pd.Series) or isinstance(rf, pd.DataFrame): # if rf.empty and (('ex_return' in self.__involved_data_type) or ('return' in self.__involved_data_type)): if rf.empty: raise Exception( 'Please provide risk-free rate! (Set it to 0 if you do not want to consider it. Note that in this case, net_returns and net_excess_returns will be the same)') if not rf.index.equals(data.index): raise IndexError('Index of "rf" and index of "data" do not match!') elif type(rf) == int or type(rf) == float: rf = pd.Series([rf] * data.shape[0], index=data.index) else: raise Exception('Wrong format of "rf" is given.') # if ftc != 0: # if data_type != 'price': # raise Exception('data_type must be "price" when using fixed transaction cost (ftc!=0)') # divide into price_impact model and no_price_impact model self.__price_impact = price_impact frequency_map = {'D': 'Day', 'W': 'Week', 'M': 'Month'} if price_impact == False: self.__last_test_frequency = f'{interval} {frequency_map[freq_strategy]}' self.__test_no_price_impact(data, freq_data, data_type, rf, interval, window, freq_strategy, ptc_buy, ptc_sell, ftc, initial_wealth, extra_data) else: if isinstance(volume, pd.DataFrame): if not volume.index.equals(data.index): raise Exception('Index of "volume" and "index" of data do not match!') elif isinstance(volume, pd.Series) or isinstance(volume, np.ndarray): try: volume = pd.DataFrame(volume.reshape(1, -1), columns=data.columns) except: print('Check your volume data!') volume = pd.concat([volume] * data.shape[0]).set_index(data.index) elif isinstance(volume, list): try: volume = pd.DataFrame([volume], columns=data.columns) except: print('Check your volume data!') volume =
pd.concat([volume] * data.shape[0])
pandas.concat
import numpy as np import pandas as pd import os import matplotlib.pyplot as plt from sklearn import datasets, linear_model from difflib import SequenceMatcher import seaborn as sns from statistics import mean from ast import literal_eval from scipy import stats from sklearn.linear_model import LinearRegression from sklearn.linear_model import LogisticRegression from pygam import LinearGAM, s, l, f from matplotlib import lines import six def extract_boar_teloFISH_as_list(path): """ FUNCTION FOR PULLING KELLY'S TELOFISH DATA FOR 40 BOARS into a LIST.. TO BE MADE INTO A DATAFRAME & JOINED W/ MAIN DATAFRAME if possible These excel files take forever to load.. the objective here is to synthesize all the excel files for telomere FISH data into one dataframe, then save that dataframe to csv file to be retrieved later loading one whole csv file containing all the data will be much, much faster than loading the parts of the whole Along the way, we'll normalize the teloFISH data using controls internal to each excel file """ boar_teloFISH_list = [] for file in os.scandir(path): if 'Hyb' in file.name: print(f'Handling {file.name}...') full_name = path + file.name # making a dict of excel sheets, where KEY:VALUE pairs are SAMPLE ID:TELO DATA telo_excel_dict = pd.read_excel(full_name, sheet_name=None, skiprows=4, usecols=[3], nrows=5000) if 'Telomere Template' in telo_excel_dict.keys(): del telo_excel_dict['Telomere Template'] excel_file_list = [] for sample_id, telos in telo_excel_dict.items(): telos_cleaned = clean_individ_telos(telos) if sample_id != 'Control': excel_file_list.append([sample_id, telos_cleaned.values, np.mean(telos_cleaned)]) elif sample_id == 'Control': control_value = np.mean(telos_cleaned) #normalize teloFISH values by control value for sample in excel_file_list: sample_data = sample #normalize individual telos sample_data[1] = np.divide(sample_data[1], control_value) #normalize telo means sample_data[2] = np.divide(sample_data[2], control_value) boar_teloFISH_list.append(sample_data) print('Finished collecting boar teloFISH data') return boar_teloFISH_list def gen_missing_values_andimpute_or_randomsampledown(n_cells, telosPercell, df): max_telos = n_cells * telosPercell half_telos = (n_cells * telosPercell) / 2 if df.size > max_telos: df_sampled = df.sample(max_telos) return df_sampled if df.size > 25 and df.size <= half_telos: missing_data_difference = abs( (n_cells * telosPercell) - df.size ) rsampled = df.sample(missing_data_difference, replace=True, random_state=28) concat_ed = pd.concat([rsampled, df], sort=False) np.random.shuffle(concat_ed.to_numpy()) return concat_ed if df.size > 25 and df.size < max_telos: missing_data_difference = abs( (n_cells * telosPercell) - df.size ) rsampled = df.sample(missing_data_difference, random_state=28) concat_ed = pd.concat([rsampled, df], sort=False) np.random.shuffle(concat_ed.to_numpy()) return concat_ed else: return df def clean_individ_telos(telo_data): labels=[6, 172, 338, 504, 670, 836, 1002, 1168, 1334, 1500, 1666, 1832, 1998, 2164, 2330, 2496, 2662, 2828, 2994, 3160, 3326, 3492, 3658, 3824, 3990, 4156, 4322, 4488, 4654, 4820] labels_offset_by6 = [(x-6) for x in labels] telo_data = telo_data.drop(labels_offset_by6) telo_data = pd.to_numeric(telo_data.iloc[:,0], errors='coerce') telo_data = telo_data.dropna(axis=0, how='any') telo_data = telo_data.to_frame(name=None) telo_data = telo_data[(np.abs(stats.zscore(telo_data)) < 3).all(axis=1)] telo_data =
pd.Series(telo_data.iloc[:,0])
pandas.Series
import os import pandas as pd import sys from collections import defaultdict import matplotlib.pyplot as plt import numpy as np import random import statistics import itertools JtokWh = 2.7778e-7 weight_factor = [1.50558832,0.35786005,1.0] path_test = os.path.join(sys.path[0]) representative_days_path= os.path.join(path_test,'ScenarioReduction') sizing_path = os.path.join(path_test, 'Design_results') operation_path = os.path.join(path_test, 'Operation_results') editable_data_path =os.path.join(path_test, 'editable_values.csv') editable_data = pd.read_csv(editable_data_path, header=None, index_col=0, squeeze=True).to_dict()[1] editable_data_sizing_path =os.path.join(path_test, 'editable_values_design.csv') editable_data_sizing = pd.read_csv(editable_data_sizing_path, header=None, index_col=0, squeeze=True).to_dict()[1] num_scenarios = int(editable_data['num_scenarios']) num_clusters= int(editable_data['Cluster numbers'])+2 population_size = int(editable_data['population_size']) population_size_sizing = int(editable_data_sizing['population_size']) idf_names = ['ASHRAE901_OfficeMedium_STD2019_Denver','ASHRAE901_Hospital_STD2019_Denver','ASHRAE901_RetailStandalone_STD2019_Denver'] thermal_eff_dict = {idf_names[0]:0.8,idf_names[1]:0.8125,idf_names[2]:0.82} city=editable_data['city'] lat = float(editable_data['Latitude']) lon = float(editable_data['Longitude']) start_year = int(editable_data['starting_year']) end_year = int(editable_data['ending_year']) epw_names = [] for i_temp in range(num_scenarios): for i_solar in range(num_scenarios): epw_names.append('T_'+str(i_temp)+'_S_'+str(i_solar)) demand_directory = os.path.join(path_test, 'IDFBuildingsFiles') # epw main files weather_data = [] weather_data_names =[] weather_data_bar_names =[] for year in range(start_year,end_year+1): weather_data.append(city+'_'+str(lat)+'_'+str(lon)+'_psm3_60_'+str(year)) weather_data_names.append('AMY '+str(year)) weather_data_bar_names.append('AMY \n'+str(year)) dict_EPWs= {} dict_EPWs['AMYs']=weather_data dict_EPWs['TMYs']=['USA_UT_Salt.Lake.City.Intl.AP.725720_TMY','USA_UT_Salt.Lake.City.725720_TMY2','USA_UT_Salt.Lake.City.Intl.AP.725720_TMY3'] #dict_EPWs['TMYs']=['USA_UT_Salt.Lake.City.Intl.AP.725720_TMY3'] dict_EPWs['FMYs']=['USA_Salt Lake City Intl AP_HadCM3-A2-'+str(2050),'USA_Salt Lake City Intl AP_HadCM3-A2-'+str(2080)] dict_EPWs_names= {} dict_EPWs_names['AMYs']=weather_data_names dict_EPWs_names['TMYs']=['TMY','TMY2','TMY3'] #dict_EPWs_names['TMYs']=['TMY3'] dict_EPWs_names['FMYs']=['FMY '+str(2050),'FMY '+str(2080)] dict_EPWs_bar_names= {} dict_EPWs_bar_names['AMYs']=weather_data_bar_names dict_EPWs_bar_names['TMYs']=['TMY \n','TMY2 \n','TMY3 \n'] dict_EPWs_bar_names['FMYs']=['FMY \n'+str(2050),'FMY \n'+str(2080)] main_weather_epw = {} output_directory = os.path.join(path_test, 'IDFBuildingsFiles') results_compare = os.path.join(path_test, 'Results') if not os.path.exists(results_compare): os.makedirs(results_compare) years=list(range(1998,2020)) years= ['AMY \n'+str(i) for i in years] years.append('TMY') years.append('TMY2') years.append('TMY3') years.append('FMY \n'+str(2050)) years.append('FMY \n'+str(2080)) ### Representative Days ### def representative_day_function(): global representative_days,weight_representative_day_main,weight_representative_day_scenario representative_days = defaultdict(list) weight_representative_day_scenario = defaultdict(list) weight_representative_day_main = defaultdict(list) for key in dict_EPWs.keys(): for epw_file_name in dict_EPWs[key]: output_prefix = 'total_'+epw_file_name+'_' for representative_day in range(num_clusters): rep_day= pd.read_csv(os.path.join(representative_days_path,output_prefix + 'Represent_days_modified_'+str(representative_day)+ '.csv')) representative_days[output_prefix].append(rep_day) weight_representative_day_main[output_prefix].append(rep_day['Percent %']/100*365) for scenario in range(len(epw_names)): output_prefix = 'total_'+epw_names[scenario]+'_' for representative_day in range(num_clusters): rep_day= pd.read_csv(os.path.join(representative_days_path,output_prefix + 'Represent_days_modified_'+str(representative_day)+ '.csv')) representative_days[output_prefix].append(rep_day) weight_representative_day_scenario[output_prefix].append(rep_day['Percent %']/100*365) ### Energy Demands ### def energy_demands(): global elect_buildings,gas_buildings,cool_buildings,elect_annual,gas_annual,cool_annual,total_elect_buildings,total_gas_buildings,total_cool_buildings,total_elect_annual,total_gas_annual,total_cool_annual elect_buildings = defaultdict(list) gas_buildings = defaultdict(list) cool_buildings = defaultdict(list) elect_annual= defaultdict(list) gas_annual = defaultdict(list) cool_annual = defaultdict(list) total_elect_buildings= [] total_gas_buildings = [] total_cool_buildings = [] total_elect_annual= [] total_gas_annual = [] total_cool_annual = [] for scenario in range(len(epw_names)): sum_electricity_buildings = [] sum_heating_buildings = [] sum_cooling_buildings = [] sum_electricity_annual = [] sum_heating_annual = [] sum_cooling_annual = [] for building_type in idf_names: output_prefix = building_type+'_'+epw_names[scenario]+'_mtr.csv' demand_data_path = os.path.join(demand_directory, output_prefix) data = pd.read_csv(demand_data_path) elect_data = (data['Electricity:Facility [J](Hourly)']-data['Heating:Electricity [J](Hourly)'] - data['Cooling:Electricity [J](Hourly)'])*JtokWh heat_data = (data['Gas:Facility [J](Hourly)']*thermal_eff_dict[building_type]+data['Heating:Electricity [J](Hourly)'])*JtokWh cool_data = (data['Cooling:Electricity [J](Hourly)'])*JtokWh elect_buildings[building_type].append(elect_data) gas_buildings[building_type].append(heat_data) cool_buildings[building_type].append(cool_data) elect_annual[building_type].append(sum(elect_data)) gas_annual[building_type].append(sum(heat_data)) cool_annual[building_type].append(sum(cool_data)) sum_electricity_buildings.append(elect_data*weight_factor[idf_names.index(building_type)]) sum_heating_buildings.append(heat_data*weight_factor[idf_names.index(building_type)]) sum_cooling_buildings.append(cool_data*weight_factor[idf_names.index(building_type)]) sum_electricity_annual.append(sum(elect_data*weight_factor[idf_names.index(building_type)])) sum_heating_annual.append(sum(heat_data*weight_factor[idf_names.index(building_type)])) sum_cooling_annual.append(sum(cool_data*weight_factor[idf_names.index(building_type)])) total_elect_buildings.append(sum(sum_electricity_buildings)) total_gas_buildings.append(sum(sum_heating_buildings)) total_cool_buildings.append(sum(sum_cooling_buildings)) total_elect_annual.append(sum(sum_electricity_annual)) total_gas_annual.append(sum(sum_heating_annual)) total_cool_annual.append(sum(sum_cooling_annual)) global elect_buildings_main,gas_buildings_main,cool_buildings_main,elect_annual_main,gas_annual_main,cool_annual_main,total_elect_buildings_main,total_gas_buildings_main,total_cool_buildings_main,total_elect_annual_main,total_gas_annual_main,total_cool_annual_main elect_buildings_main = defaultdict(list) gas_buildings_main = defaultdict(list) cool_buildings_main = defaultdict(list) elect_annual_main = defaultdict(list) gas_annual_main = defaultdict(list) cool_annual_main = defaultdict(list) total_elect_annual_main = [] total_gas_annual_main = [] total_cool_annual_main = [] total_elect_buildings_main = [] total_gas_buildings_main = [] total_cool_buildings_main = [] global output_prefix_short output_prefix_short ={} for key in dict_EPWs.keys(): for epw_file_name in dict_EPWs[key]: output_prefix = 'total_'+epw_file_name+'_' output_prefix_short[output_prefix] = dict_EPWs_names[key][dict_EPWs[key].index(epw_file_name)] sum_electricity_buildings_main = [] sum_heating_buildings_main = [] sum_cooling_buildings_main = [] sum_electricity_annual_main = [] sum_heating_annual_main = [] sum_cooling_annual_main = [] for building_type in idf_names: output_prefix = building_type+'_'+epw_file_name+'_mtr.csv' demand_data_path = os.path.join(demand_directory, output_prefix) data = pd.read_csv(demand_data_path) elect_data = (data['Electricity:Facility [J](Hourly)']-data['Heating:Electricity [J](Hourly)'] - data['Cooling:Electricity [J](Hourly)'])*JtokWh heat_data = (data['Gas:Facility [J](Hourly)']*thermal_eff_dict[building_type]+data['Heating:Electricity [J](Hourly)'])*JtokWh cool_data = (data['Cooling:Electricity [J](Hourly)'])*JtokWh elect_buildings_main[building_type].append(elect_data) gas_buildings_main[building_type].append(heat_data) cool_buildings_main[building_type].append(cool_data) elect_annual_main[building_type].append(sum(elect_data)) gas_annual_main[building_type].append(sum(heat_data)) cool_annual_main[building_type].append(sum(cool_data)) sum_electricity_buildings_main.append(elect_data*weight_factor[idf_names.index(building_type)]) sum_heating_buildings_main.append(heat_data*weight_factor[idf_names.index(building_type)]) sum_cooling_buildings_main.append(cool_data*weight_factor[idf_names.index(building_type)]) sum_electricity_annual_main.append(sum(elect_data*weight_factor[idf_names.index(building_type)])) sum_heating_annual_main.append(sum(heat_data*weight_factor[idf_names.index(building_type)])) sum_cooling_annual_main.append(sum(cool_data*weight_factor[idf_names.index(building_type)])) total_elect_buildings_main.append(sum(sum_electricity_buildings_main)) total_gas_buildings_main.append(sum(sum_heating_buildings_main)) total_cool_buildings_main.append(sum(sum_cooling_buildings_main)) total_elect_annual_main.append(sum(sum_electricity_annual_main)) total_gas_annual_main.append(sum(sum_heating_annual_main)) total_cool_annual_main.append(sum(sum_cooling_annual_main)) j = 0 def generate_combo_plots(mode): SMALL_SIZE = 30 MEDIUM_SIZE = 32 BIGGER_SIZE = 38 plt.rc('font', size=SMALL_SIZE) # controls default text sizes plt.rc('axes', titlesize=SMALL_SIZE) # fontsize of the axes title plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels plt.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('ytick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('legend', fontsize=SMALL_SIZE) # legend fontsize plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title plt.rcParams['axes.facecolor'] = 'white' plt.rcParams['axes.grid'] = False plt.rcParams['axes.edgecolor'] = 'black' cmap = plt.cm.RdYlGn plt.rcParams["figure.figsize"] = (30,20) color = ["#"+''.join([random.choice('0123456789ABCDEF') for j in range(6)]) for i in range(27)] if mode=='seperate': marker = itertools.cycle(('v','+','s','^','o','x','*')) for building_type in idf_names: plt.figure() j=0 for key in dict_EPWs.keys(): for epw_file_name in dict_EPWs[key]: output_prefix = 'total_'+epw_file_name+'_' label = output_prefix_short[output_prefix] if key=='AMYs': year_selected_number=int(label.replace('AMY','')) if year_selected_number==2019 or year_selected_number==2018 or year_selected_number==2016 or year_selected_number==2014 or year_selected_number==2012: plt.scatter(cool_annual_main[building_type][j]/1000,gas_annual_main[building_type][j]/1000,s=400, cmap=cmap, label = label,marker=next(marker)) plt.annotate(label,xy=(cool_annual_main[building_type][j]/1000,gas_annual_main[building_type][j]/1000),xytext=(cool_annual_main[building_type][j]/1000*1.0005,gas_annual_main[building_type][j]/1000*1.0005), arrowprops=dict(arrowstyle="-"),fontsize=MEDIUM_SIZE) j = j+1 elif key=='TMYs': if label=='TMY3': plt.scatter(cool_annual_main[building_type][j]/1000,gas_annual_main[building_type][j]/1000,s=400, cmap=cmap, label = label,marker=next(marker)) plt.annotate(label,xy=(cool_annual_main[building_type][j]/1000,gas_annual_main[building_type][j]/1000),xytext=(cool_annual_main[building_type][j]/1000*1.0005,gas_annual_main[building_type][j]/1000*1.0005), arrowprops=dict(arrowstyle="-"),fontsize=MEDIUM_SIZE) j = j+1 elif key=='FMYs': plt.scatter(cool_annual_main[building_type][j]/1000,gas_annual_main[building_type][j]/1000,s=400, cmap=cmap, label = label,marker=next(marker)) plt.annotate(label,xy=(cool_annual_main[building_type][j]/1000,gas_annual_main[building_type][j]/1000),xytext=(cool_annual_main[building_type][j]/1000*1.0005,gas_annual_main[building_type][j]/1000*1.0005), arrowprops=dict(arrowstyle="-"),fontsize=MEDIUM_SIZE) j = j+1 plt.xlabel('Total Cooling Demand (MWh)') plt.ylabel('Total Hot Water Demand (MWh)') plt.savefig(os.path.join(results_compare,building_type+'_annual_main_combo_demands_WC'+'.png'),dpi=100,facecolor='w',bbox_inches='tight') plt.close() marker_list = ['v','+','s','^','o','x','*','s','>','<'] color_list= [ 'tab:blue', 'tab:orange','tab:green','black','yellow','tab:red','tab:cyan','tab:olive','peru','tab:purple'] for building_type in idf_names: plt.figure() label_dict = {} for scenario in range(len(epw_names)): key_label = round(cool_annual[building_type][scenario]/1000,0) #if key_label not in label_dict.keys(): #label_dict[key_label] = epw_names[scenario] label_short= epw_names[scenario].replace('_','') marker = marker_list[int(label_short[1])] color = color_list[int(label_short[3])] if (int(label_short[1])==0 or int(label_short[1])==5 or int(label_short[1])==9) and (int(label_short[3])==0 or int(label_short[3])==5 or int(label_short[3])==9): if int(label_short[1])==0: label_T='Tmin' elif int(label_short[1])==5: label_T='Tmed' elif int(label_short[1])==9: label_T='Tmax' if int(label_short[3])==0: label_S='Smin' elif int(label_short[3])==5: label_S='Smed' elif int(label_short[3])==9: label_S='Smax' label = label_T + label_S if building_type==idf_names[1]: weight_factor_pareto_front =0.9955 else: weight_factor_pareto_front = 1 plt.scatter(cool_annual[building_type][scenario]/1000,gas_annual[building_type][scenario]/1000,color=color,marker=marker,s=300, cmap=cmap, label=label_short) plt.annotate(label,xy=(cool_annual[building_type][scenario]/1000,gas_annual[building_type][scenario]/1000),xytext=(cool_annual[building_type][scenario]/1000*1.005*weight_factor_pareto_front,gas_annual[building_type][scenario]/1000), arrowprops=dict(arrowstyle="-"),fontsize=MEDIUM_SIZE) plt.xlabel('Total Cooling Demand (MWh)') plt.ylabel('Total Hot Water Demand (MWh)') plt.savefig(os.path.join(results_compare,building_type+'_annual_scenario_combo_demands_WC'+'.png'),dpi=100,facecolor='w',bbox_inches='tight') plt.close() elif mode =='total': marker = itertools.cycle(('v','+','s','^','o','x','*')) plt.figure() j=0 for key in dict_EPWs.keys(): for epw_file_name in dict_EPWs[key]: output_prefix = 'total_'+epw_file_name+'_' label = output_prefix_short[output_prefix] if key=='AMYs': year_selected_number=int(label.replace('AMY','')) if year_selected_number==2019 or year_selected_number==2018 or year_selected_number==2016 or year_selected_number==2014 or year_selected_number==2012: plt.scatter(total_cool_annual_main[j]/1000,total_gas_annual_main[j]/1000,s=400, cmap=cmap, label = label,marker=next(marker)) plt.annotate(label,xy=(total_cool_annual_main[j]/1000,total_gas_annual_main[j]/1000),xytext=(total_cool_annual_main[j]/1000*1.0005,total_gas_annual_main[j]/1000*1.0005), arrowprops=dict(arrowstyle="-"),fontsize=MEDIUM_SIZE) j = j+1 elif key=='TMYs': if label=='TMY3': plt.scatter(total_cool_annual_main[j]/1000,total_gas_annual_main[j]/1000,s=400, cmap=cmap, label = label,marker=next(marker)) plt.annotate(label,xy=(total_cool_annual_main[j]/1000,total_gas_annual_main[j]/1000),xytext=(total_cool_annual_main[j]/1000*1.0005,total_gas_annual_main[j]/1000*1.0005), arrowprops=dict(arrowstyle="-"),fontsize=MEDIUM_SIZE) j = j+1 elif key=='FMYs': plt.scatter(total_cool_annual_main[j]/1000,total_gas_annual_main[j]/1000,s=400, cmap=cmap, label = label,marker=next(marker)) plt.annotate(label,xy=(total_cool_annual_main[j]/1000,total_gas_annual_main[j]/1000),xytext=(total_cool_annual_main[j]/1000*1.0005,total_gas_annual_main[j]/1000*1.0005), arrowprops=dict(arrowstyle="-"),fontsize=MEDIUM_SIZE) j = j+1 plt.xlabel('Total Cooling Demand (MWh)') plt.ylabel('Total Hot Water Demand (MWh)') plt.savefig(os.path.join(results_compare,'total_annual_main_combo_demands_WC'+'.png'),dpi=100,facecolor='w',bbox_inches='tight') plt.close() marker_list = ['v','+','s','^','o','x','*','s','>','<'] color_list= [ 'tab:blue', 'tab:orange','tab:green','black','yellow','tab:red','tab:cyan','tab:olive','peru','tab:purple'] label_dict = {} for scenario in range(len(epw_names)): key_label = round(total_cool_annual[scenario]/1000,0) #if key_label not in label_dict.keys(): # label_dict[key_label] = epw_names[scenario] label_short= epw_names[scenario].replace('_','') marker = marker_list[int(label_short[1])] color = color_list[int(label_short[3])] if (int(label_short[1])==0 or int(label_short[1])==5 or int(label_short[1])==9) and (int(label_short[3])==0 or int(label_short[3])==5 or int(label_short[3])==9): if int(label_short[1])==0: label_T='Tmin' elif int(label_short[1])==5: label_T='Tmed' elif int(label_short[1])==9: label_T='Tmax' if int(label_short[3])==0: label_S='Smin' elif int(label_short[3])==5: label_S='Smed' elif int(label_short[3])==9: label_S='Smax' label = label_T + label_S plt.scatter(total_cool_annual[scenario]/1000,total_gas_annual[scenario]/1000,s=300,c=color,marker=marker, cmap=cmap, label=label_short) plt.annotate(label,xy=(total_cool_annual[scenario]/1000,total_gas_annual[scenario]/1000),xytext=(total_cool_annual[scenario]/1000*1.001,total_gas_annual[scenario]/1000*1.001), arrowprops=dict(arrowstyle="-"),fontsize=MEDIUM_SIZE) plt.xlabel('Total Cooling Demand (MWh)') plt.ylabel('Total Hot Water Demand (MWh)') plt.savefig(os.path.join(results_compare,'total_annual_scenario_combo_demands_WC'+'.png'),dpi=100,facecolor='w',bbox_inches='tight') plt.close() def stats_energy_demands(): cols_revised = ['Office Medium','Hospital','Retail stand-alone', 'Total'] weight_factor_dict = {idf_names[0]:weight_factor[0],idf_names[1]:weight_factor[1],idf_names[2]:weight_factor[2]} stats_table_seperate = defaultdict(list) k=0 for building_type in idf_names: #stats_table_seperate[k].append(round(np.mean(elect_annual_main[building_type])*weight_factor_dict[building_type]/1000,2)) #stats_table_seperate[k].append(round(np.std(elect_annual_main[building_type])*weight_factor_dict[building_type]/1000,2)) #stats_table_seperate[k].append(round(np.std(elect_annual_main[building_type])*100/np.mean(elect_annual_main[building_type]),2)) stats_table_seperate[k].append(round(np.mean(gas_annual_main[building_type])*weight_factor_dict[building_type]/1000,2)) stats_table_seperate[k].append(round(np.std(gas_annual_main[building_type])*weight_factor_dict[building_type]/1000,2)) stats_table_seperate[k].append(round(np.std(gas_annual_main[building_type])*100/np.mean(gas_annual_main[building_type]),2)) stats_table_seperate[k].append(round(np.mean(cool_annual_main[building_type])*weight_factor_dict[building_type]/1000,2)) stats_table_seperate[k].append(round(np.std(cool_annual_main[building_type])*weight_factor_dict[building_type]/1000,2)) stats_table_seperate[k].append(round(np.std(cool_annual_main[building_type])*100/np.mean(cool_annual_main[building_type]),2)) k = k+1 stats_table_total = [] #stats_table_total.append(round(np.mean(total_elect_annual_main)/1000,2)) #stats_table_total.append(round(np.std(total_elect_annual_main)/1000,2)) #stats_table_total.append(round(np.std(total_elect_annual_main)*100/np.mean(total_elect_annual_main),2)) stats_table_total.append(round(np.mean(total_gas_annual_main)/1000,2)) stats_table_total.append(round(np.std(total_gas_annual_main)/1000,2)) stats_table_total.append(round(np.std(total_gas_annual_main)*100/np.mean(total_gas_annual_main),2)) stats_table_total.append(round(np.mean(total_cool_annual_main)/1000,2)) stats_table_total.append(round(np.std(total_cool_annual_main)/1000,2)) stats_table_total.append(round(np.std(total_cool_annual_main)*100/np.mean(total_cool_annual_main),2)) statistics_table = {#'Elect Mean': [stats_table_seperate[0][0],stats_table_seperate[1][0],stats_table_seperate[2][0],stats_table_total[0]], #'Elect STD': [stats_table_seperate[0][1],stats_table_seperate[1][1],stats_table_seperate[2][1],stats_table_total[1]], #'CV \% Elect': [stats_table_seperate[0][2],stats_table_seperate[1][2],stats_table_seperate[2][2],stats_table_total[2]], 'Heat Mean': [stats_table_seperate[0][3],stats_table_seperate[1][3],stats_table_seperate[2][3],stats_table_total[3]], 'Heat STD': [stats_table_seperate[0][4],stats_table_seperate[1][4],stats_table_seperate[2][4],stats_table_total[4]], 'CV \% Heat': [stats_table_seperate[0][5],stats_table_seperate[1][5],stats_table_seperate[2][5],stats_table_total[5]], 'Cool Mean': [stats_table_seperate[0][6],stats_table_seperate[1][6],stats_table_seperate[2][6],stats_table_total[6]], 'Cool STD': [stats_table_seperate[0][7],stats_table_seperate[1][7],stats_table_seperate[2][7],stats_table_total[7]], 'CV \% Cool': [stats_table_seperate[0][8],stats_table_seperate[1][8],stats_table_seperate[2][8],stats_table_total[8]]} df_statistics_table= pd.DataFrame(statistics_table) df_statistics_table.insert(0, "", cols_revised, True) for i in range(1,len(df_statistics_table.columns)*2): if i%2!=0: df_statistics_table.insert(i, "&", ["&"]*len(df_statistics_table), True) df_statistics_table.insert(i, "\\\\ \hline", ["\\\\ \hline"]*len(df_statistics_table), True) df_statistics_table.to_csv(os.path.join(results_compare,'stats_main_seperate_demand_WC_table.csv')) stats_table_seperate = defaultdict(list) weight_factor_dict = {idf_names[0]:weight_factor[0],idf_names[1]:weight_factor[1],idf_names[2]:weight_factor[2]} k=0 for building_type in idf_names: #print( #building_type,np.std(elect_annual[building_type])*weight_factor_dict[building_type]/1000) #stats_table_seperate[k].append(round(np.mean(elect_annual[building_type])*weight_factor_dict[building_type]/1000,2)) #stats_table_seperate[k].append(round(np.std(elect_annual[building_type])*weight_factor_dict[building_type]/1000,2)) #stats_table_seperate[k].append(round(np.std(elect_annual[building_type])*100/np.mean(elect_annual[building_type]),2)) stats_table_seperate[k].append(round(np.mean(gas_annual[building_type])*weight_factor_dict[building_type]/1000,2)) stats_table_seperate[k].append(round(np.std(gas_annual[building_type])*weight_factor_dict[building_type]/1000,2)) stats_table_seperate[k].append(round(np.std(gas_annual[building_type])*100/np.mean(gas_annual[building_type]),2)) stats_table_seperate[k].append(round(np.mean(cool_annual[building_type])*weight_factor_dict[building_type]/1000,2)) stats_table_seperate[k].append(round(np.std(cool_annual[building_type])*weight_factor_dict[building_type]/1000,2)) stats_table_seperate[k].append(round(np.std(cool_annual[building_type])*100/np.mean(cool_annual[building_type]),2)) k = k+1 stats_table_total = [] #stats_table_total.append(round(np.mean(total_elect_annual)/1000,2)) #stats_table_total.append(round(np.std(total_elect_annual)/1000,2)) #stats_table_total.append(round(np.std(total_elect_annual)*100/np.mean(total_elect_annual),2)) stats_table_total.append(round(np.mean(total_gas_annual)/1000,2)) stats_table_total.append(round(np.std(total_gas_annual)/1000,2)) stats_table_total.append(round(np.std(total_gas_annual)*100/np.mean(total_gas_annual),2)) stats_table_total.append(round(np.mean(total_cool_annual)/1000,2)) stats_table_total.append(round(np.std(total_cool_annual)/1000,2)) stats_table_total.append(round(np.std(total_cool_annual)*100/np.mean(total_cool_annual),2)) statistics_table = {#'Elect Mean': [stats_table_seperate[0][0],stats_table_seperate[1][0],stats_table_seperate[2][0],stats_table_total[0]], #'Elect STD': [stats_table_seperate[0][1],stats_table_seperate[1][1],stats_table_seperate[2][1],stats_table_total[1]], #'CV \% Elect': [stats_table_seperate[0][2],stats_table_seperate[1][2],stats_table_seperate[2][2],stats_table_total[2]], 'Heat Mean': [stats_table_seperate[0][3],stats_table_seperate[1][3],stats_table_seperate[2][3],stats_table_total[3]], 'Heat STD': [stats_table_seperate[0][4],stats_table_seperate[1][4],stats_table_seperate[2][4],stats_table_total[4]], 'CV \% Heat': [stats_table_seperate[0][5],stats_table_seperate[1][5],stats_table_seperate[2][5],stats_table_total[5]], 'Cool Mean': [stats_table_seperate[0][6],stats_table_seperate[1][6],stats_table_seperate[2][6],stats_table_total[6]], 'Cool STD': [stats_table_seperate[0][7],stats_table_seperate[1][7],stats_table_seperate[2][7],stats_table_total[7]], 'CV \% Cool': [stats_table_seperate[0][8],stats_table_seperate[1][8],stats_table_seperate[2][8],stats_table_total[8]]} df_statistics_table= pd.DataFrame(statistics_table) df_statistics_table.insert(0, "", cols_revised, True) for i in range(1,len(df_statistics_table.columns)*2): if i%2!=0: df_statistics_table.insert(i, "&", ["&"]*len(df_statistics_table), True) df_statistics_table.insert(i, "\\\\ \hline", ["\\\\ \hline"]*len(df_statistics_table), True) df_statistics_table.to_csv(os.path.join(results_compare,'stats_scenario_seperate_WC_demand_table.csv')) def bar_energy_demands(mode): SMALL_SIZE = 30 MEDIUM_SIZE = 32 BIGGER_SIZE = 38 plt.rc('font', size=SMALL_SIZE) # controls default text sizes plt.rc('axes', titlesize=SMALL_SIZE) # fontsize of the axes title plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels plt.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('ytick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('legend', fontsize=SMALL_SIZE) # legend fontsize plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title plt.rcParams['axes.facecolor'] = 'white' plt.rcParams['axes.grid'] = False plt.rcParams['axes.edgecolor'] = 'black' cmap = plt.cm.RdYlGn plt.rcParams["figure.figsize"] = (45,15) if mode=='seperate': for building_type in idf_names: print(building_type, 'highest elect', years[elect_annual_main[building_type].index(np.max(elect_annual_main[building_type]))], ' heat', years[gas_annual_main[building_type].index(np.max(gas_annual_main[building_type]))], ' cool', years[cool_annual_main[building_type].index(np.max(cool_annual_main[building_type]))], ) print(building_type, 'lowest elect', years[elect_annual_main[building_type].index(np.min(elect_annual_main[building_type]))], ' heat', years[gas_annual_main[building_type].index(np.min(gas_annual_main[building_type]))], ' cool', years[cool_annual_main[building_type].index(np.min(cool_annual_main[building_type]))], ) r = np.arange(n) width = 0.25 plt.figure() #plt.bar(r,[number/1000 for number in elect_annual_main[building_type]],width = width,color='darkorange', edgecolor = 'black',label='Annual Electricity') plt.bar(r,[number/1000 for number in gas_annual_main[building_type]],width = width,color='darkred', edgecolor = 'black',label = 'Annual Hot Water') plt.bar(r+width,[number/1000 for number in cool_annual_main[building_type]],width = width,color='darkblue', edgecolor = 'black',label = 'Annual Cooling') plt.xlabel('Weather Files') plt.ylabel('Energy Demands (MWh)') plt.xticks(r + width/2,years) #plt.yticks plt.legend(loc='center left') plt.ticklabel_format(style='plain', axis='y') #plt.title('annual energy demands of' + building_type) plt.savefig(os.path.join(results_compare,building_type+'_bar_annual_main_demands_WC'+'.png'),dpi=100,facecolor='w',bbox_inches='tight') plt.close() elif mode =='total': print(#'total', 'highest elect', years[total_elect_annual_main.index(np.max(total_elect_annual_main))], ' heat', years[total_gas_annual_main.index(np.max(total_gas_annual_main))], ' cool', years[total_cool_annual_main.index(np.max(total_cool_annual_main))], ) print(#'total', 'lowest elect', years[total_elect_annual_main.index(np.min(total_elect_annual_main))], ' heat', years[total_gas_annual_main.index(np.min(total_gas_annual_main))], ' cool', years[total_cool_annual_main.index(np.min(total_cool_annual_main))], ) print(#'total range','elect', (np.max(total_elect_annual_main)-np.min(total_elect_annual_main))/1000, 'heat',(np.max(total_gas_annual_main)-np.min(total_gas_annual_main))/1000, 'cool', (np.max(total_cool_annual_main)-np.min(total_cool_annual_main))/1000) n=len(total_elect_annual_main) r = np.arange(n) width = 0.25 plt.figure() #plt.bar(r,[number/1000 for number in total_elect_annual_main],width = width,color='darkorange', edgecolor = 'black',label='Annual Electricity') plt.bar(r,[number/1000 for number in total_gas_annual_main],width = width,color='darkred', edgecolor = 'black',label = 'Annual Hot Water') plt.bar(r+width,[number/1000 for number in total_cool_annual_main],width = width,color='darkblue', edgecolor = 'black',label = 'Annual Cooling') plt.xlabel('Weather Files') plt.ylabel('Energy Demands (MWh)') plt.xticks(r + width/2,years) #plt.yticks(fontsize=BIGGER_SIZE) plt.legend(loc='center left') plt.ticklabel_format(style='plain', axis='y') #plt.title('Total annual energy demands') plt.savefig(os.path.join(results_compare,'total_annual_main_demands_WC'+'.png'),dpi=100,facecolor='w',bbox_inches='tight') plt.close() def hist_scenarios(mode): SMALL_SIZE = 20 MEDIUM_SIZE = 24 BIGGER_SIZE = 28 plt.rc('font', size=SMALL_SIZE) # controls default text sizes plt.rc('axes', titlesize=SMALL_SIZE) # fontsize of the axes title plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels plt.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('ytick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('legend', fontsize=SMALL_SIZE) # legend fontsize plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title plt.rcParams['axes.facecolor'] = 'white' plt.rcParams['axes.grid'] = False plt.rcParams['axes.edgecolor'] = 'black' cmap = plt.cm.RdYlGn plt.rcParams["figure.figsize"] = (10,8) if mode=='seperate': for building_type in idf_names: #plt.ylabel('Percentage %') #plt.hist([number/1000 for number in elect_annual[building_type]],color='darkorange',bins=10,weights=np.ones(len([number/1000 for number in elect_annual[building_type]]))*100 / len([number/1000 for number in elect_annual[building_type]])) #plt.xlabel('Total Electricity Demand (MWh)') #plt.savefig(os.path.join(results_compare,'hist_'+building_type+'_annual_main_electricity_WC_demand'+'.png'),dpi=100,facecolor='w') plt.close() plt.ylabel('Percentage %') plt.hist([number/1000 for number in gas_annual[building_type]],color='darkred',bins=10,weights=np.ones(len([number/1000 for number in gas_annual[building_type]]))*100 / len([number/1000 for number in gas_annual[building_type]])) plt.xlabel('Total Heating Demand (MWh)') plt.savefig(os.path.join(results_compare,'hist_'+building_type+'_annual_main_heating_WC_demand'+'.png'),dpi=100,facecolor='w') plt.close() plt.ylabel('Percentage %') plt.hist([number/1000 for number in cool_annual[building_type]],color='darkblue',bins=10,weights=np.ones(len([number/1000 for number in cool_annual[building_type]]))*100 / len([number/1000 for number in cool_annual[building_type]])) plt.xlabel('Total Cooling Demand (MWh)') plt.savefig(os.path.join(results_compare,'hist_'+building_type+'_annual_main_cooling_WC_demand'+'.png'),dpi=100,facecolor='w') plt.close() elif mode =='total': #plt.ylabel('Percentage %') #plt.hist([number/1000 for number in total_elect_annual],color='darkorange',bins=10,weights=np.ones(len([number/1000 for number in total_elect_annual]))*100 / len([number/1000 for number in total_elect_annual])) #plt.xlabel('Total Electricity Demand (MWh)') #plt.savefig(os.path.join(results_compare,'hist_total_annual_main_electricity_WC_demand'+'.png'),dpi=100,facecolor='w') plt.close() plt.hist([number/1000 for number in total_gas_annual],color='darkred',bins=10,weights=np.ones(len([number/1000 for number in total_gas_annual]))*100 / len([number/1000 for number in total_gas_annual])) plt.ylabel('Percentage %') plt.xlabel('Total Heating Demand (MWh)') plt.savefig(os.path.join(results_compare,'hist_total_annual_main_heating_WC_demand'+'.png'),dpi=100,facecolor='w') plt.close() plt.hist([number/1000 for number in total_gas_annual],color='darkblue',bins=10,weights=np.ones(len([number/1000 for number in total_gas_annual]))*100 / len([number/1000 for number in total_gas_annual])) plt.ylabel('Percentage %') plt.xlabel('Total Cooling Demand (MWh)') plt.savefig(os.path.join(results_compare,'hist_total_annual_main_cooling_WC_demand'+'.png'),dpi=100,facecolor='w') plt.close() energy_demands() generate_combo_plots('seperate') generate_combo_plots('total') #bar_energy_demands('seperate') #bar_energy_demands('total') #hist_scenarios('total') #hist_scenarios('seperate') #stats_energy_demands() ### Sizing of DES ### def sizing(): global annual_df_object_sizing_main,annual_df_operation_sizing_main annual_df_object_sizing_main= {} annual_df_operation_sizing_main = {} for key in dict_EPWs.keys(): for epw_file_name in dict_EPWs[key]: output_prefix = 'total_'+epw_file_name+'_' file_name = output_prefix+city+'_Discrete_EF_'+str(float(editable_data_sizing['renewable percentage']) )+'_design_'+str(int(editable_data_sizing['num_iterations']))+'_'+str(editable_data_sizing['population_size'])+'_'+str(editable_data_sizing['num_processors'])+'_processors' annual_df_object_sizing_main[output_prefix]=pd.read_csv(os.path.join(sizing_path,file_name, 'objectives.csv')) annual_df_operation_sizing_main[output_prefix]=pd.read_csv(os.path.join(sizing_path,file_name, 'sizing_all.csv')) global annual_df_object_sizing_scenario, annual_df_operation_sizing_scenario annual_df_object_sizing_scenario= {} annual_df_operation_sizing_scenario = {} for scenario in range(len(epw_names)): output_prefix = 'total_'+epw_names[scenario]+'_' file_name = output_prefix+city+'_Discrete_EF_'+str(float(editable_data_sizing['renewable percentage']) )+'_design_'+str(int(editable_data_sizing['num_iterations']))+'_'+str(editable_data_sizing['population_size'])+'_'+str(editable_data_sizing['num_processors'])+'_processors' annual_df_object_sizing_scenario[output_prefix]=pd.read_csv(os.path.join(sizing_path,file_name , 'objectives.csv')) annual_df_operation_sizing_scenario[output_prefix]=pd.read_csv(os.path.join(sizing_path,file_name, 'sizing_all.csv')) def main_paretofront_sizing(): global sorted_annual_df_object_sizing_main,output_prefix_short SMALL_SIZE = 22 MEDIUM_SIZE = 24 BIGGER_SIZE = 28 plt.rc('font', size=SMALL_SIZE) # controls default text sizes plt.rc('axes', titlesize=SMALL_SIZE) # fontsize of the axes title plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels plt.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('ytick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('legend', fontsize=SMALL_SIZE) # legend fontsize plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title plt.rcParams['axes.facecolor'] = 'white' plt.rcParams['axes.grid'] = False plt.rcParams['axes.edgecolor'] = 'black' cmap = plt.cm.RdYlGn plt.rcParams["figure.figsize"] = (30,15) plt.figure() j=0 color = ["#"+''.join([random.choice('0123456789ABCDEF') for j in range(6)]) for i in range(27)] sorted_cost = [] output_prefix_short ={} marker = itertools.cycle(('v','+','s','^','o','x','*')) for key in dict_EPWs.keys(): for epw_file_name in dict_EPWs[key]: output_prefix = 'total_'+epw_file_name+'_' output_prefix_short[output_prefix] = dict_EPWs_names[key][dict_EPWs[key].index(epw_file_name)] annual_df_object_sizing_main[output_prefix]=annual_df_object_sizing_main[output_prefix].sort_values('Cost ($)') annual_df_object_sizing_main[output_prefix]=annual_df_object_sizing_main[output_prefix].reset_index() if key is 'AMYs': year_selected_number=int(output_prefix_short[output_prefix].replace('AMY','')) if year_selected_number==2019 or year_selected_number==2018 or year_selected_number==2016 or year_selected_number==2014 or year_selected_number==2012: sorted_cost.append(annual_df_object_sizing_main[output_prefix]['Cost ($)'][0]/10**6) elif key is 'TMYs': if epw_file_name=='USA_UT_Salt.Lake.City.Intl.AP.725720_TMY3': sorted_cost.append(annual_df_object_sizing_main[output_prefix]['Cost ($)'][0]/10**6) else: sorted_cost.append(annual_df_object_sizing_main[output_prefix]['Cost ($)'][0]/10**6) sorted_cost = sorted(sorted_cost) sorted_annual_df_object_sizing_main = {} for i in sorted_cost: for key in dict_EPWs.keys(): for epw_file_name in dict_EPWs[key]: output_prefix = 'total_'+epw_file_name+'_' if annual_df_object_sizing_main[output_prefix]['Cost ($)'][0]/10**6 == i: sorted_annual_df_object_sizing_main[output_prefix] =annual_df_object_sizing_main[output_prefix] sorted_cost_scenario = [] for scenario in range(len(epw_names)): output_prefix = 'total_'+epw_names[scenario]+'_' annual_df_object_sizing_scenario[output_prefix]=annual_df_object_sizing_scenario[output_prefix].sort_values('Cost ($)') annual_df_object_sizing_scenario[output_prefix]=annual_df_object_sizing_scenario[output_prefix].reset_index() sorted_cost_scenario.append(annual_df_object_sizing_scenario[output_prefix]['Cost ($)'][0]/10**6) sorted_cost_scenario = sorted(sorted_cost_scenario) sorted_annual_df_object_sizing_scenario = {} for i in sorted_cost_scenario: for scenario in range(len(epw_names)): output_prefix = 'total_'+epw_names[scenario]+'_' if annual_df_object_sizing_scenario[output_prefix]['Cost ($)'][0]/10**6 == i: sorted_annual_df_object_sizing_scenario[output_prefix] =annual_df_object_sizing_scenario[output_prefix] j=0 #fig, ax = plt.subplots() for key in sorted_annual_df_object_sizing_main: output_prefix = key cost = [i/10**6 for i in sorted_annual_df_object_sizing_main[output_prefix]['Cost ($)']] emissions = [j/10**6 for j in sorted_annual_df_object_sizing_main[output_prefix]['Emission (kg CO2)']] label = output_prefix_short[output_prefix] #plt.scatter(cost,emissions,c=color[j], s=100, cmap=cmap,marker=next(marker)) #plt.title('Cost and emissions trade-off') if j==0: plt.annotate(label,xy=(cost[-1], emissions[-1]),xytext=(cost[-1]*1.05, emissions[-1]), arrowprops=dict(arrowstyle="->"),fontsize=MEDIUM_SIZE) color = 'tab:blue' elif j==1: plt.annotate(label,xy=(cost[0], emissions[0]),xytext=(cost[0]*0.9, emissions[0]*1.15), arrowprops=dict(arrowstyle="->"),fontsize=MEDIUM_SIZE) color = 'tab:orange' elif j==2: plt.annotate(label,xy=(cost[-1], emissions[-1]),xytext=(cost[-1]*1.05, emissions[-1]*0.8), arrowprops=dict(arrowstyle="->"),fontsize=MEDIUM_SIZE) color = 'tab:green' elif j==3: plt.annotate(label,xy=(cost[0], emissions[0]),xytext=(cost[0]*0.85, emissions[0]*1.1), arrowprops=dict(arrowstyle="->"),fontsize=MEDIUM_SIZE) color = 'tab:purple' elif j==4: plt.annotate(label,xy=(cost[-1], emissions[-1]),xytext=(cost[-1]*1.05, emissions[-1]*0.8), arrowprops=dict(arrowstyle="->"),fontsize=MEDIUM_SIZE) color = 'black' elif j==5: plt.annotate(label,xy=(cost[0], emissions[0]),xytext=(cost[0]*0.85, emissions[0]*1.1), arrowprops=dict(arrowstyle="->"),fontsize=MEDIUM_SIZE) color = 'tab:red' elif j==6: plt.annotate(label,xy=(cost[-1], emissions[-1]),xytext=(cost[-1]*0.9, emissions[-1]*1.4), arrowprops=dict(arrowstyle="->"),fontsize=MEDIUM_SIZE) color = 'tab:cyan' elif j==7: plt.annotate(label,xy=(cost[0], emissions[0]),xytext=(cost[0]*0.85, emissions[0]*1.2), arrowprops=dict(arrowstyle="->"),fontsize=MEDIUM_SIZE) color = 'tab:olive' plt.scatter(cost,emissions,c=color, s=100, cmap=cmap,marker=next(marker)) j = j+1 j=0 #plt.legend() plt.xlabel("Cost (million $)") plt.ylabel("Emissions (million kg $CO_2$)") plt.savefig(os.path.join(results_compare ,'ParetoFront_sizing.png'),dpi=100,facecolor='w',bbox_inches='tight') def scenario_paretofront_sizing(): SMALL_SIZE = 22 MEDIUM_SIZE = 24 BIGGER_SIZE = 28 plt.rc('font', size=SMALL_SIZE) # controls default text sizes plt.rc('axes', titlesize=SMALL_SIZE) # fontsize of the axes title plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels plt.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('ytick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('legend', fontsize=SMALL_SIZE) # legend fontsize plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title plt.rcParams['axes.facecolor'] = 'white' plt.rcParams['axes.grid'] = False plt.rcParams['axes.edgecolor'] = 'black' cmap = plt.cm.RdYlGn plt.rcParams["figure.figsize"] = (30,15) plt.figure() j=0 sorted_cost = [] output_prefix_short ={} sorted_cost_scenario = [] for scenario in range(len(epw_names)): output_prefix = 'total_'+epw_names[scenario]+'_' annual_df_object_sizing_scenario[output_prefix]=annual_df_object_sizing_scenario[output_prefix].sort_values('Cost ($)') annual_df_object_sizing_scenario[output_prefix]=annual_df_object_sizing_scenario[output_prefix].reset_index() sorted_cost_scenario.append(annual_df_object_sizing_scenario[output_prefix]['Cost ($)'][0]/10**6) sorted_cost_scenario = sorted(sorted_cost_scenario) sorted_annual_df_object_sizing_scenario = {} for i in sorted_cost_scenario: for scenario in range(len(epw_names)): output_prefix = 'total_'+epw_names[scenario]+'_' label = output_prefix.replace('_','').replace('total','') if annual_df_object_sizing_scenario[output_prefix]['Cost ($)'][0]/10**6 == i and (int(label[1])==0 or int(label[1])==5 or int(label[1])==9) and (int(label[3])==0 or int(label[3])==5 or int(label[3])==9): sorted_annual_df_object_sizing_scenario[output_prefix] =annual_df_object_sizing_scenario[output_prefix] j=0 marker_list = ['v','+','s','^','o','x','*','s','>','<'] color_list= [ 'tab:blue', 'tab:orange','tab:green','black','yellow','tab:red','tab:cyan','tab:olive','peru','tab:purple'] for key in sorted_annual_df_object_sizing_scenario: output_prefix = key cost = [i/10**6 for i in sorted_annual_df_object_sizing_scenario[output_prefix]['Cost ($)']] emissions = [j/10**6 for j in sorted_annual_df_object_sizing_scenario[output_prefix]['Emission (kg CO2)']] label = key.replace('_','').replace('total','') int_marker= int(label[1]) int_color = int(label[3]) #print(int_marker, type(int_marker), marker[int_marker],len( marker)) marker = marker_list[int_marker] color = color_list[int_color] plt.scatter(cost,emissions,c=color, s=300, cmap=cmap, label = label,marker=marker) #plt.title('Cost and emissions trade-off') plt.xlabel("Cost (million $)") plt.ylabel("Emissions (million kg $CO_2$)") if int(label[1])==0: label_T='Tmin' elif int(label[1])==5: label_T='Tmed' elif int(label[1])==9: label_T='Tmax' if int(label[3])==0: label_S='Smin' elif int(label[3])==5: label_S='Smed' elif int(label[3])==9: label_S='Smax' label = label_T + label_S if j == 0: plt.annotate(label,xy=(cost[0], emissions[0]),xytext=(cost[0]*0.90, emissions[0]*1.1), arrowprops=dict(arrowstyle="->"),fontsize=MEDIUM_SIZE) else: plt.annotate(label,xy=(cost[0], emissions[0]),xytext=(cost[0]*0.88, emissions[0]*1.1), arrowprops=dict(arrowstyle="->"),fontsize=MEDIUM_SIZE) j=j+1 #plt.legend() plt.savefig(os.path.join(results_compare ,'scenario_ParetoFront_sizing.png'),dpi=100,facecolor='w',bbox_inches='tight') def stats_scenario_sizing(): global sorted_annual_df_operation_sizing_scenario statistics_table = {} mean_table = defaultdict(list) std_table = defaultdict(list) CV_table = defaultdict(list) cost_points= defaultdict(list) emissions_points=defaultdict(list) label_points=defaultdict(lambda: defaultdict(list)) sorted_cost = [] output_prefix_short ={} for scenario in range(len(epw_names)): output_prefix = 'total_'+epw_names[scenario]+'_' annual_df_operation_sizing_scenario[output_prefix]=annual_df_operation_sizing_scenario[output_prefix].sort_values('Cost ($)') annual_df_operation_sizing_scenario[output_prefix]=annual_df_operation_sizing_scenario[output_prefix].reset_index() sorted_cost.append(annual_df_operation_sizing_scenario[output_prefix]['Cost ($)'][0]/10**6) sorted_cost = sorted(sorted_cost) sorted_annual_df_operation_sizing_scenario = {} for i in sorted_cost: for scenario in range(len(epw_names)): output_prefix = 'total_'+epw_names[scenario]+'_' if annual_df_operation_sizing_scenario[output_prefix]['Cost ($)'][0]/10**6 == i: sorted_annual_df_operation_sizing_scenario[output_prefix] =annual_df_operation_sizing_scenario[output_prefix] cols = ['Boilers Capacity (kW)', 'CHP Electricty Capacity (kW)', 'Battery Capacity (kW)','Solar Area (m^2)','Swept Area (m^2)','Emission (kg CO2)','Cost ($)'] cols_revised = ['Boilers (kW)', 'CHP (kW)', 'Battery (kW)','Solar (m^2)','Wind (m^2)','Emissions (million ton)','Cost (million \$)'] for point in range(population_size_sizing): for scenario in range(len(epw_names)): output_prefix = 'total_'+epw_names[scenario]+'_' cost_points[point].append(sorted_annual_df_operation_sizing_scenario[output_prefix]['Cost ($)'][point]) emissions_points[point].append(sorted_annual_df_operation_sizing_scenario[output_prefix]['Emission (kg CO2)'][point]) for component in cols: label_points[point][component].append(sorted_annual_df_operation_sizing_scenario[output_prefix][component][point]) for point in range(population_size_sizing): for component in cols: if len(label_points[point][component])!=0: if component=='Emission (kg CO2)' or component=='Cost ($)': std_table[point].append(round(statistics.stdev(label_points[point][component])/10**6,2)) mean_table[point].append(round(np.mean(label_points[point][component])/10**6,2)) else: std_table[point].append(round(statistics.stdev(label_points[point][component]),2)) mean_table[point].append(round(np.mean(label_points[point][component]),2)) if np.mean(label_points[point][component])!=0: CV_table[point].append(round(statistics.stdev(label_points[point][component])*100/np.mean(label_points[point][component]),2)) else: CV_table[point].append(0) statistics_table = {'Mean PP1': mean_table[0], 'STD PP1': std_table[0], 'CV \% PP1': CV_table[0], 'Mean medium cost': mean_table[24], 'STD medium cost': std_table[24], 'CV \% PP5': CV_table[24], 'Mean max cost': mean_table[49], 'STD max cost': std_table[49], 'CV \% PP9': CV_table[49] } df_statistics_table= pd.DataFrame(statistics_table) df_statistics_table.insert(0, "", cols_revised, True) for i in range(1,len(df_statistics_table.columns)*2): if i%2!=0: df_statistics_table.insert(i, "&", ["&"]*len(df_statistics_table), True) df_statistics_table.insert(i, "\\\\ \hline", ["\\\\ \hline"]*len(df_statistics_table), True) df_statistics_table.to_csv(os.path.join(results_compare,'stats_scenario_sizing_table.csv')) def stats_main_sizing(): global sorted_annual_df_operation_sizing_main statistics_table = {} mean_table = defaultdict(list) std_table = defaultdict(list) CV_table = defaultdict(list) cost_points= defaultdict(list) emissions_points=defaultdict(list) label_points=defaultdict(lambda: defaultdict(list)) sorted_cost = [] output_prefix_short =[] for key in dict_EPWs.keys(): for epw_file_name in dict_EPWs[key]: output_prefix = 'total_'+epw_file_name+'_' output_prefix_short.append(dict_EPWs_bar_names[key][dict_EPWs[key].index(epw_file_name)]) annual_df_operation_sizing_main[output_prefix]=annual_df_operation_sizing_main[output_prefix].sort_values('Cost ($)') annual_df_operation_sizing_main[output_prefix]=annual_df_operation_sizing_main[output_prefix].reset_index() sorted_cost.append(annual_df_operation_sizing_main[output_prefix]['Cost ($)'][0]/10**6) sorted_cost = sorted(sorted_cost) sorted_annual_df_operation_sizing_main = {} for i in sorted_cost: for key in dict_EPWs.keys(): for epw_file_name in dict_EPWs[key]: output_prefix = 'total_'+epw_file_name+'_' if annual_df_operation_sizing_main[output_prefix]['Cost ($)'][0]/10**6 == i: sorted_annual_df_operation_sizing_main[output_prefix] =annual_df_operation_sizing_main[output_prefix] cols = ['Boilers Capacity (kW)', 'CHP Electricty Capacity (kW)', 'Battery Capacity (kW)','Solar Area (m^2)','Swept Area (m^2)','Emission (kg CO2)','Cost ($)'] cols_revised = ['Boilers (kW)', 'CHP (kW)', 'Battery (kW)','Solar (m^2)','Wind (m^2)','Emissions (million ton)','Cost (million \$)'] for point in range(population_size_sizing): for key in dict_EPWs.keys(): for epw_file_name in dict_EPWs[key]: output_prefix = 'total_'+epw_file_name+'_' cost_points[point].append(sorted_annual_df_operation_sizing_main[output_prefix]['Cost ($)'][point]) emissions_points[point].append(sorted_annual_df_operation_sizing_main[output_prefix]['Emission (kg CO2)'][point]) for component in cols: label_points[point][component].append(sorted_annual_df_operation_sizing_main[output_prefix][component][point]) SMALL_SIZE = 22 MEDIUM_SIZE = 24 BIGGER_SIZE = 28 plt.rc('font', size=SMALL_SIZE) # controls default text sizes plt.rc('axes', titlesize=SMALL_SIZE) # fontsize of the axes title plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels plt.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('ytick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('legend', fontsize=SMALL_SIZE) # legend fontsize plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title plt.rcParams['axes.facecolor'] = 'white' plt.rcParams['axes.grid'] = False plt.rcParams['axes.edgecolor'] = 'black' cmap = plt.cm.RdYlGn plt.rcParams["figure.figsize"] = (35,15) for component in cols: data_1 = [] data_2 = [] data_3 = [] if component=='Emission (kg CO2)' or component=='Cost ($)': for key in dict_EPWs.keys(): for epw_file_name in dict_EPWs[key]: output_prefix = 'total_'+epw_file_name+'_' data_1.append(sorted_annual_df_operation_sizing_main[output_prefix][component][0]/10**6) data_2.append(sorted_annual_df_operation_sizing_main[output_prefix][component][24]/10**6) data_3.append(sorted_annual_df_operation_sizing_main[output_prefix][component][49]/10**6) if component=='Emission (kg CO2)': component='Emissions (million ton)' elif component=='Cost ($)': component='Cost (million \$)' else: for key in dict_EPWs.keys(): for epw_file_name in dict_EPWs[key]: output_prefix = 'total_'+epw_file_name+'_' data_1.append(sorted_annual_df_operation_sizing_main[output_prefix][component][0]) data_2.append(sorted_annual_df_operation_sizing_main[output_prefix][component][24]) data_3.append(sorted_annual_df_operation_sizing_main[output_prefix][component][49]) data = [data_1,data_2,data_3] index = output_prefix_short df = pd.DataFrame({'min cost': data[0], 'med cost': data[1], 'max cost':data[2] }, index=index) ax = df.plot.bar(rot=0) ax.set_xlabel('Weather Files') ax.set_ylabel(component) ax.figure.savefig(os.path.join(results_compare,component.replace('\\$','')+'_bar_main.png'),bbox_inches='tight') for point in range(population_size_sizing): for component in cols: if len(label_points[point][component])!=0: if component=='Emission (kg CO2)' or component=='Cost ($)': #print(point,round(np.mean(label_points[point]['Cost ($)'])/10**6,2)) std_table[point].append(round(statistics.stdev(label_points[point][component])/10**6,2)) mean_table[point].append(round(np.mean(label_points[point][component])/10**6,2)) else: std_table[point].append(round(statistics.stdev(label_points[point][component]),2)) mean_table[point].append(round(np.mean(label_points[point][component]),2)) if np.mean(label_points[point][component])!=0: CV_table[point].append(round(statistics.stdev(label_points[point][component])*100/np.mean(label_points[point][component]),2)) else: CV_table[point].append(0) statistics_table = {'Mean PP1': mean_table[0], 'STD PP1': std_table[0], 'CV \% PP1': CV_table[0], 'Mean medium cost': mean_table[24], 'STD medium cost': std_table[24], 'CV \% PP5': CV_table[24], 'Mean max cost': mean_table[49], 'STD max cost': std_table[49], 'CV \% PP9': CV_table[49]} df_statistics_table=
pd.DataFrame(statistics_table)
pandas.DataFrame
# -*- coding: utf-8 -*- import numpy as np import pandas as pd import json from datetime import datetime, timedelta def get_data(): # Load json data with open('../data/json_file.json') as data_file: patients = json.load(data_file) print("JSON file loaded") # Features computation print("Features computation launched...") visits = [] for patient in patients.values(): for i in range(1, len(patient['visits']) + 1): visits.append(patient['visits'][str(i)]) n_visits = len(visits) print("n_visits = %s" % n_visits) # Features DataFrame with encounter_nums index encounter_nums = [int(visit.get('encounter_num')) for visit in visits] X = pd.DataFrame(index=encounter_nums) # Time vector & censoring indicator print("Adding labels...", end="") next_visit = [visit.get('next_visit') for visit in visits] T = np.array([1e10 if str(t) == 'none' else t for t in next_visit]).astype( int) end_dates = pd.to_datetime([visit.get('end_date') for visit in visits]) start_dates = pd.to_datetime([visit.get('start_date') for visit in visits]) C = pd.to_datetime('2016-01-15 00:00:00') - end_dates days, seconds = C.days, C.seconds C = days * 24 + seconds // 3600 # in hours (discrete) delta = (T <= C).astype(int) Y = T Y[delta == 0] = C[delta == 0] labels =
pd.DataFrame({'Y': Y, 'delta': delta}, index=encounter_nums)
pandas.DataFrame
from keras.layers import Bidirectional, Input, LSTM, Dense, Activation, Conv1D, Flatten, Embedding, MaxPooling1D, Dropout #from keras.layers.embeddings import Embedding from keras.preprocessing.sequence import pad_sequences from keras import optimizers from keras.models import Sequential, Model import pandas as pd import numpy as np from keras.preprocessing.text import Tokenizer, text_to_word_sequence from sklearn.utils import shuffle import pickle from sklearn.model_selection import train_test_split import re from sklearn.utils import shuffle import keras import joblib import tokenizer_util as tu import os.path from keras.callbacks import Callback from keras import backend as K TRAIN_FILE_PATH = 'train.csv'#'/data/train.csv' TEST_FILE = 'test.csv'#'/data/test.csv' TIME_STEPS = 300 BATCH_SIZE = 256 LEARNING_RATE = 0.01 DECAY = 0.25 EPOCH_SIZE = 10 TOKENIZER_FILE = 'tokenizer' EMBEDDING_FILE = 'embedding' TENSORFLOW_LOGDIR = 'logs'#'/output/tensorboard_logs' MODEL_SAVE_PATH = 'models/best_model_new.h5' #'/output/best_model.h5' OUTPUT_FILENAME = 'first_submission.csv' def main(): df =
pd.read_csv(TRAIN_FILE_PATH)
pandas.read_csv
""" Perform a simple random sample of your words and run optimus on the sample. Then use a knn to put it all back together at the end. """ #-- Imports --------------------------------------------------------------------- # third party import fastText as ft import pandas as pd from optimus import Optimus from sklearn.neighbors import KNeighborsClassifier #-- Functions ------------------------------------------------------------------- def main(): # load in the data, sample from it and run optimus on the sample words = pd.read_csv('data/words.csv', header=None, names=('description',))['description'] sample = words.sample(1000) O = Optimus(config_path='config.json') result = O(sample) df_sample = pd.DataFrame({'original': sample, 'label': result}) # use a knn on vectors + assigned labels to apply these labels to the whole dataset model = ft.load_model('models/wiki.en.bin') embedSample = [model.get_word_vector(word) for word in sample.tolist()] # train the model on the result and the embedded sample vectors classifier = KNeighborsClassifier() trained = classifier.fit(embedSample, result) nonsampled = [word for word in words.tolist() if word not in sample.tolist()] outvectors = [model.get_word_vector(word) for word in nonsampled] predictions = trained.predict(outvectors) df_unsampled = pd.DataFrame({'original': nonsampled, 'label': predictions}) df =
pd.concat([df_sample, df_unsampled])
pandas.concat
import sys sys.path.append("../") from settings import * import re import pandas as pd import numpy as np import os stopwords = { 'max>\'ax>\'ax>\'ax>\'ax>\'ax>\'ax>\'ax>\'ax>\'ax>\'ax>\'ax>\'ax>\'ax>\'ax': 1, 'edu': 1, 'subject': 1, 'com': 1, 'r<g': 1, '_?w': 1, 'isc': 1, 'cx^': 1, 'usr': 1, 'uga': 1, 'sam': 1, 'mhz': 1, 'b8f': 1, '34u': 1, 'pl+': 1, '1993apr20': 1, '1993apr15': 1, 'xterm': 1, 'utexas': 1, 'x11r5': 1, 'o+r': 1, 'iastate': 1, 'udel': 1, 'uchicago': 1, '1993apr21': 1, 'uxa': 1, 'argic': 1, 'optilink': 1, 'imho': 1, 'umich': 1, 'openwindows': 1, '1993apr19': 1, '1993apr22': 1, 'unk': 1 } word_len_threshold = 2 np.random.seed(6) def load_stopwords(lanague='EN'): # url: https://github.com/igorbrigadir/stopwords/blob/master/en/gensim.txt if lanague == 'EN': stopwords_file = EN_STOP_WORDS else: stopwords_file = EN_STOP_WORDS with open(stopwords_file, mode='r', encoding='utf-8') as reader: for line in reader: word = line.strip() stopwords[word] = 1 def is_num(w): try: float(w) return True except: False # load_stopwords(stopwords) def clean_words(words): new_words = [] for word in words: word = word.lower() if word in stopwords: continue word = word.strip('_\[\]\'\".,()*! #@~`\\%^&;:/-+=“”‘’<>{}|?$^&'). \ replace('isn\'t', '').replace('\'s', '').replace('\'re', ''). \ replace('\'t', '').replace('\'ll', '').replace('\'m', ''). \ replace('\'am', '').replace('\'ve', '').replace('\'d', '') segs = re.split('[()@.\-/#\\\\"`\[\]=:&<>%\']', word) new_word = [] for s in segs: seg = s # seg = ps.stem(seg) if seg not in stopwords and seg and len(seg) > word_len_threshold and not is_num(seg): new_word.append(seg) # word = ' '.join(new_word) # if word and len(word) > word_len_threshold: # if word not in stopwords: # new_words.append(word) new_words.extend(new_word) return new_words def parse_sent(line): delim = '[.|?|,|!|;]' sents = [] segs = re.split(delim, line) for seg in segs: if seg not in delim and len(seg) > 5: sents.append(seg) return sents def process_dataset(dataset='AG', STOPWORD=False): if STOPWORD: load_stopwords() if dataset == 'BNC': path = BNC_ADDR + '/raw/' data1 = open(path + 'train.txt').readlines() data1 = pd.DataFrame(data1) data1['train'] = 1 data2 = open(path + 'valid.txt').readlines() data2 = pd.DataFrame(data2) data2['train'] = -1 data3 = open(path + 'test.txt').readlines() data3 = pd.DataFrame(data3) data3['train'] = 0 data = data1.append(data2) data = data.append(data3) data.columns = ['content', 'train'] data['label'] = 1 data = data[['label', 'content', 'train']] elif dataset == 'News20': from sklearn.datasets import fetch_20newsgroups newsgroups_train = fetch_20newsgroups(subset='train', remove=('headers', 'quotes','footers')) # remove=('headers', 'footers', 'quotes')) train_data = [[a, b] for b, a in zip(newsgroups_train.data, newsgroups_train.target)] data1 = pd.DataFrame(train_data, columns=['label', 'content']) data1['train'] = 1 newsgroups_test = fetch_20newsgroups(subset='test', remove=('headers', 'quotes', 'footers')) # remove=('headers', 'footers', 'quotes')) test_data = [[a, b] for b, a in zip(newsgroups_test.data, newsgroups_test.target)] data2 = pd.DataFrame(test_data, columns=['label', 'content']) data2['train'] = 0 N = len(data1) ids = np.random.choice(range(N), size=3766, replace=False, p=None) data1.iloc[ids, -1] = -1 data = data1.append(data2) data = data.dropna() data.to_csv(NEWS20_ADDR + '/raw/data.csv', quoting=1, header=True, index=False) elif dataset == 'TMN': path = TMN_ADDR + '/raw/' data1 = open(path + 'tagmynews.txt').readlines() N = int(len(data1)/8) ldct={} values = [] for i in range(N): content = data1[8*i] label = data1[8*i+6] if label not in ldct: id = len(ldct) ldct[label]=id l= ldct[label] values.append([l, content]) data = pd.DataFrame(values,columns=[ 'label', 'content']) N = len(data) SN=9000 ids = np.random.choice(range(N), size=SN, replace=False, p=None) N2 = len(ids) ids2 = np.random.choice(range(N2), size=int(SN/3), replace=False, p=None) ids2 = np.array(ids)[ids2] data['train'] = 1 data.iloc[ids, -1] = 0 data.iloc[ids2, -1] = -1 elif dataset in ['Reuters']: path = Reuters_ADDR+'/raw' train_path = path+'/training/' trains = os.listdir(train_path) data1=[] for t in trains: f = train_path+t text = ' '.join([str(l).strip() for l in open(f, 'rb').readlines()]) data1.append(text) data1 = pd.DataFrame(data1, columns=[ 'content']) data1['train'] = 1 N = len(data1) ids = np.random.choice(range(N), size=int(N / 8), replace=False, p=None) data1.iloc[ids, -1] = -1 test_path = path + '/test/' tests = os.listdir(test_path) data2 = [] for t in tests: f = test_path + t text = ' '.join([str(l).strip() for l in open(f, 'rb').readlines()]) data2.append(text) data2 = pd.DataFrame(data2, columns=['content']) data2['train'] = 0 data = data1.append(data2) data['label']=1 data=data[['label', 'content', 'train']] data = data.reset_index() data['idx'] = data.index print(data['content'].values[0]) vocab = {} labels = [] contents = [] # data = data.iloc[:10, :] for i, row in enumerate(data[['label','content']].values): if i % 1000 == 0: print(i) label = row[0] content = row[1] sents = parse_sent(content) new_sents = [] for sen in sents: words = sen.strip().split() words = clean_words(words) for w in words: try: vocab[w.strip()] += 1 except: vocab[w.strip()] = 1 new_sents.append(' '.join(words)) new_sents = ' '.join(new_sents) labels.append(int(label)) contents.append(new_sents) data['content'] = contents data['label'] = labels data = data[data['content'].apply(lambda x: len(x) > 5)] return data, vocab def clean_vocab(path, STOPWORD=False, freq_threshold=5): vocab = {} if STOPWORD: data =
pd.read_csv(path + 'overall_stop.csv', header=0, dtype={'label': int})
pandas.read_csv
import unittest import pandas as pd import numpy as np from math import sqrt import numba import hpat from hpat.tests.test_utils import (count_array_REPs, count_parfor_REPs, count_parfor_OneDs, count_array_OneDs, count_parfor_OneD_Vars, count_array_OneD_Vars, dist_IR_contains) from datetime import datetime import random class TestDate(unittest.TestCase): @unittest.skip("needs support for boxing/unboxing DatetimeIndex") def test_datetime_index_in(self): def test_impl(dti): return dti hpat_func = hpat.jit(test_impl) df = self._gen_str_date_df() dti = pd.DatetimeIndex(df['str_date']) np.testing.assert_array_equal(hpat_func(dti).values, test_impl(dti).values) def test_datetime_index(self): def test_impl(df): return pd.DatetimeIndex(df['str_date']).values hpat_func = hpat.jit(test_impl) df = self._gen_str_date_df() np.testing.assert_array_equal(hpat_func(df), test_impl(df)) def test_datetime_index_kw(self): def test_impl(df): return pd.DatetimeIndex(data=df['str_date']).values hpat_func = hpat.jit(test_impl) df = self._gen_str_date_df() np.testing.assert_array_equal(hpat_func(df), test_impl(df)) def test_datetime_arg(self): def test_impl(A): return A hpat_func = hpat.jit(test_impl) df = self._gen_str_date_df() A = pd.DatetimeIndex(df['str_date']).to_series() np.testing.assert_array_equal(hpat_func(A), test_impl(A)) def test_datetime_getitem(self): def test_impl(A): return A[0] hpat_func = hpat.jit(test_impl) df = self._gen_str_date_df() A = pd.DatetimeIndex(df['str_date']).to_series() self.assertEqual(hpat_func(A), test_impl(A)) def test_ts_map(self): def test_impl(A): return A.map(lambda x: x.hour) hpat_func = hpat.jit(test_impl) df = self._gen_str_date_df() A = pd.DatetimeIndex(df['str_date']).to_series() np.testing.assert_array_equal(hpat_func(A), test_impl(A)) def test_ts_map_date(self): def test_impl(A): return A.map(lambda x: x.date())[0] hpat_func = hpat.jit(test_impl) df = self._gen_str_date_df() A = pd.DatetimeIndex(df['str_date']).to_series() np.testing.assert_array_equal(hpat_func(A), test_impl(A)) def test_ts_map_date2(self): def test_impl(df): return df.apply(lambda row: row.dt_ind.date(), axis=1)[0] hpat_func = hpat.jit(test_impl) df = self._gen_str_date_df() df['dt_ind'] = pd.DatetimeIndex(df['str_date']) np.testing.assert_array_equal(hpat_func(df), test_impl(df)) def test_ts_map_date_set(self): def test_impl(df): df['hpat_date'] = df.dt_ind.map(lambda x: x.date()) hpat_func = hpat.jit(test_impl) df = self._gen_str_date_df() df['dt_ind'] = pd.DatetimeIndex(df['str_date']) hpat_func(df) df['pd_date'] = df.dt_ind.map(lambda x: x.date()) np.testing.assert_array_equal(df['hpat_date'], df['pd_date']) def test_date_series_unbox(self): def test_impl(A): return A[0] hpat_func = hpat.jit(test_impl) df = self._gen_str_date_df() A = pd.DatetimeIndex(df['str_date']).to_series().map(lambda x: x.date()) self.assertEqual(hpat_func(A), test_impl(A)) def test_date_series_unbox2(self): def test_impl(A): return A[0] hpat_func = hpat.jit(test_impl) df = self._gen_str_date_df() A = pd.DatetimeIndex(df['str_date']).map(lambda x: x.date()) self.assertEqual(hpat_func(A), test_impl(A)) def test_datetime_index_set(self): def test_impl(df): df['hpat'] = pd.DatetimeIndex(df['str_date']).values hpat_func = hpat.jit(test_impl) df = self._gen_str_date_df() hpat_func(df) df['std'] = pd.DatetimeIndex(df['str_date']) allequal = (df['std'].equals(df['hpat'])) self.assertTrue(allequal) def test_timestamp(self): def test_impl(): dt = datetime(2017, 4, 26) ts = pd.Timestamp(dt) return ts.day + ts.hour + ts.microsecond + ts.month + ts.nanosecond + ts.second + ts.year hpat_func = hpat.jit(test_impl) self.assertEqual(hpat_func(), test_impl()) def test_extract(self): def test_impl(s): return s.month hpat_func = hpat.jit(test_impl) ts = pd.Timestamp(datetime(2017, 4, 26).isoformat()) month = hpat_func(ts) self.assertEqual(month, 4) def test_timestamp_date(self): def test_impl(s): return s.date() hpat_func = hpat.jit(test_impl) ts = pd.Timestamp(datetime(2017, 4, 26).isoformat()) self.assertEqual(hpat_func(ts), test_impl(ts)) def test_datetimeindex_str_comp(self): def test_impl(df): return (df.A >= '2011-10-23').values df = pd.DataFrame({'A': pd.DatetimeIndex(['2015-01-03', '2010-10-11'])}) hpat_func = hpat.jit(test_impl) np.testing.assert_array_equal(hpat_func(df), test_impl(df)) def test_datetimeindex_str_comp2(self): def test_impl(df): return ('2011-10-23' <= df.A).values df = pd.DataFrame({'A': pd.DatetimeIndex(['2015-01-03', '2010-10-11'])}) hpat_func = hpat.jit(test_impl) np.testing.assert_array_equal(hpat_func(df), test_impl(df)) def test_datetime_index_df(self): def test_impl(df): df = pd.DataFrame({'A': pd.DatetimeIndex(df['str_date'])}) return df.A hpat_func = hpat.jit(test_impl) df = self._gen_str_date_df() np.testing.assert_array_equal(hpat_func(df), test_impl(df)) def test_datetime_index_date(self): def test_impl(df): return pd.DatetimeIndex(df['str_date']).date hpat_func = hpat.jit(test_impl) df = self._gen_str_date_df() np.testing.assert_array_equal(hpat_func(df), test_impl(df)) def test_datetime_index_max(self): def test_impl(df): return pd.DatetimeIndex(df['str_date']).max() hpat_func = hpat.jit(test_impl) df = self._gen_str_date_df() self.assertEqual(hpat_func(df), test_impl(df)) def test_datetime_index_min(self): def test_impl(df): return pd.DatetimeIndex(df['str_date']).min() hpat_func = hpat.jit(test_impl) df = self._gen_str_date_df() self.assertEqual(hpat_func(df), test_impl(df)) def test_datetime_index_timedelta_days(self): def test_impl(df): s = pd.DatetimeIndex(df['str_date']) t = s - s.min() return t.days hpat_func = hpat.jit(test_impl) df = self._gen_str_date_df() np.testing.assert_array_equal(hpat_func(df), test_impl(df)) def test_datetime_index_timedelta_seconds(self): def test_impl(df): s = pd.DatetimeIndex(df['str_date']) t = s - s.min() return t.seconds hpat_func = hpat.jit(test_impl) df = self._gen_str_date_df() np.testing.assert_array_equal(hpat_func(df), test_impl(df)) def test_datetime_index_timedelta_microseconds(self): def test_impl(df): s = pd.DatetimeIndex(df['str_date']) t = s - s.min() return t.microseconds hpat_func = hpat.jit(test_impl) df = self._gen_str_date_df() np.testing.assert_array_equal(hpat_func(df), test_impl(df)) def test_datetime_index_timedelta_nanoseconds(self): def test_impl(df): s = pd.DatetimeIndex(df['str_date']) t = s - s.min() return t.nanoseconds hpat_func = hpat.jit(test_impl) df = self._gen_str_date_df() np.testing.assert_array_equal(hpat_func(df), test_impl(df)) def test_datetime_index_ret(self): def test_impl(df): return pd.DatetimeIndex(df['str_date']) hpat_func = hpat.jit(test_impl) df = self._gen_str_date_df() pd.testing.assert_index_equal(hpat_func(df), test_impl(df), check_names=False) def test_datetime_index_year(self): def test_impl(df): return pd.DatetimeIndex(df['str_date']).year hpat_func = hpat.jit(test_impl) df = self._gen_str_date_df() np.testing.assert_array_equal(hpat_func(df), test_impl(df)) def test_datetime_index_month(self): def test_impl(df): return pd.DatetimeIndex(df['str_date']).month hpat_func = hpat.jit(test_impl) df = self._gen_str_date_df() np.testing.assert_array_equal(hpat_func(df), test_impl(df)) def test_datetime_index_day(self): def test_impl(df): return pd.DatetimeIndex(df['str_date']).day hpat_func = hpat.jit(test_impl) df = self._gen_str_date_df() np.testing.assert_array_equal(hpat_func(df), test_impl(df)) def test_datetime_index_hour(self): def test_impl(df): return pd.DatetimeIndex(df['str_date']).hour hpat_func = hpat.jit(test_impl) df = self._gen_str_date_df() np.testing.assert_array_equal(hpat_func(df), test_impl(df)) def test_datetime_index_minute(self): def test_impl(df): return
pd.DatetimeIndex(df['str_date'])
pandas.DatetimeIndex
#!/Users/amos/anaconda3/bin/python # Pythono3 code to extract multiple space delimited txt files into pandas and then manipulate it into a single excel file # importing pandas and os module import os import pandas as pd #set working directory to where text files are stored os.chdir("/Volumes/DANIEL/dti_freesurf_MCIP/diffusion_recons") #create a master pandas data frame that stats as empty df_master = pd.DataFrame() #For loop that runs through subject+condition and uses it to index into each subjects folder for txt file extraction #Reads in space delimited txt file into a pandas frame and adds column heading names #Drops the data frame rows that we aren't interested in and adds a column named 'subj' that includes the subject name #Concatinates the individual data frame to the origionally empty master data frame so that all text file data for each subject is in the master dataframe for subj in os.listdir("/Volumes/DANIEL/dti_freesurf_MCIP/diffusion_recons/"): os.chdir("/Volumes/DANIEL/dti_freesurf_MCIP/diffusion_recons/{0}/mri/".format(subj)) df=
pd.read_table('lh.hippoSfVolumes-T1.long.v21.txt', delim_whitespace=True,names=['loacation','volume'])
pandas.read_table
# -*- coding: utf-8 -*- # Arithmetc tests for DataFrame/Series/Index/Array classes that should # behave identically. from datetime import timedelta import operator import pytest import numpy as np import pandas as pd import pandas.util.testing as tm from pandas.compat import long from pandas.core import ops from pandas.errors import NullFrequencyError, PerformanceWarning from pandas._libs.tslibs import IncompatibleFrequency from pandas import ( timedelta_range, Timedelta, Timestamp, NaT, Series, TimedeltaIndex, DatetimeIndex) # ------------------------------------------------------------------ # Fixtures @pytest.fixture def tdser(): """ Return a Series with dtype='timedelta64[ns]', including a NaT. """ return Series(['59 Days', '59 Days', 'NaT'], dtype='timedelta64[ns]') @pytest.fixture(params=[pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)], ids=lambda x: type(x).__name__) def delta(request): """ Several ways of representing two hours """ return request.param @pytest.fixture(params=[timedelta(minutes=5, seconds=4), Timedelta('5m4s'), Timedelta('5m4s').to_timedelta64()], ids=lambda x: type(x).__name__) def scalar_td(request): """ Several variants of Timedelta scalars representing 5 minutes and 4 seconds """ return request.param @pytest.fixture(params=[pd.Index, Series, pd.DataFrame], ids=lambda x: x.__name__) def box(request): """ Several array-like containers that should have effectively identical behavior with respect to arithmetic operations. """ return request.param @pytest.fixture(params=[pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(strict=True))], ids=lambda x: x.__name__) def box_df_fail(request): """ Fixture equivalent to `box` fixture but xfailing the DataFrame case. """ return request.param # ------------------------------------------------------------------ # Numeric dtypes Arithmetic with Timedelta Scalar class TestNumericArraylikeArithmeticWithTimedeltaScalar(object): @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="block.eval incorrect", strict=True)) ]) @pytest.mark.parametrize('index', [ pd.Int64Index(range(1, 11)), pd.UInt64Index(range(1, 11)), pd.Float64Index(range(1, 11)), pd.RangeIndex(1, 11)], ids=lambda x: type(x).__name__) @pytest.mark.parametrize('scalar_td', [ Timedelta(days=1), Timedelta(days=1).to_timedelta64(), Timedelta(days=1).to_pytimedelta()], ids=lambda x: type(x).__name__) def test_numeric_arr_mul_tdscalar(self, scalar_td, index, box): # GH#19333 if (box is Series and type(scalar_td) is timedelta and index.dtype == 'f8'): raise pytest.xfail(reason="Cannot multiply timedelta by float") expected = timedelta_range('1 days', '10 days') index = tm.box_expected(index, box) expected = tm.box_expected(expected, box) result = index * scalar_td tm.assert_equal(result, expected) commute = scalar_td * index tm.assert_equal(commute, expected) @pytest.mark.parametrize('index', [ pd.Int64Index(range(1, 3)), pd.UInt64Index(range(1, 3)), pd.Float64Index(range(1, 3)), pd.RangeIndex(1, 3)], ids=lambda x: type(x).__name__) @pytest.mark.parametrize('scalar_td', [ Timedelta(days=1), Timedelta(days=1).to_timedelta64(), Timedelta(days=1).to_pytimedelta()], ids=lambda x: type(x).__name__) def test_numeric_arr_rdiv_tdscalar(self, scalar_td, index, box): if box is Series and type(scalar_td) is timedelta: raise pytest.xfail(reason="TODO: Figure out why this case fails") if box is pd.DataFrame and isinstance(scalar_td, timedelta): raise pytest.xfail(reason="TODO: Figure out why this case fails") expected = TimedeltaIndex(['1 Day', '12 Hours']) index = tm.box_expected(index, box) expected = tm.box_expected(expected, box) result = scalar_td / index tm.assert_equal(result, expected) with pytest.raises(TypeError): index / scalar_td # ------------------------------------------------------------------ # Timedelta64[ns] dtype Arithmetic Operations class TestTimedeltaArraylikeAddSubOps(object): # Tests for timedelta64[ns] __add__, __sub__, __radd__, __rsub__ # ------------------------------------------------------------- # Invalid Operations def test_td64arr_add_str_invalid(self, box): # GH#13624 tdi = TimedeltaIndex(['1 day', '2 days']) tdi = tm.box_expected(tdi, box) with pytest.raises(TypeError): tdi + 'a' with pytest.raises(TypeError): 'a' + tdi @pytest.mark.parametrize('other', [3.14, np.array([2.0, 3.0])]) @pytest.mark.parametrize('op', [operator.add, ops.radd, operator.sub, ops.rsub], ids=lambda x: x.__name__) def test_td64arr_add_sub_float(self, box, op, other): tdi = TimedeltaIndex(['-1 days', '-1 days']) tdi = tm.box_expected(tdi, box) if box is pd.DataFrame and op in [operator.add, operator.sub]: pytest.xfail(reason="Tries to align incorrectly, " "raises ValueError") with pytest.raises(TypeError): op(tdi, other) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Tries to cast df to " "Period", strict=True, raises=IncompatibleFrequency)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('freq', [None, 'H']) def test_td64arr_sub_period(self, box, freq): # GH#13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') idx = TimedeltaIndex(['1 hours', '2 hours'], freq=freq) idx = tm.box_expected(idx, box) with pytest.raises(TypeError): idx - p with pytest.raises(TypeError): p - idx @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="broadcasts along " "wrong axis", raises=ValueError, strict=True)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('pi_freq', ['D', 'W', 'Q', 'H']) @pytest.mark.parametrize('tdi_freq', [None, 'H']) def test_td64arr_sub_pi(self, box, tdi_freq, pi_freq): # GH#20049 subtracting PeriodIndex should raise TypeError tdi = TimedeltaIndex(['1 hours', '2 hours'], freq=tdi_freq) dti = Timestamp('2018-03-07 17:16:40') + tdi pi = dti.to_period(pi_freq) # TODO: parametrize over box for pi? tdi = tm.box_expected(tdi, box) with pytest.raises(TypeError): tdi - pi # ------------------------------------------------------------- # Binary operations td64 arraylike and datetime-like def test_td64arr_sub_timestamp_raises(self, box): idx = TimedeltaIndex(['1 day', '2 day']) idx = tm.box_expected(idx, box) msg = "cannot subtract a datelike from|Could not operate" with tm.assert_raises_regex(TypeError, msg): idx - Timestamp('2011-01-01') @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Returns object dtype", strict=True)) ], ids=lambda x: x.__name__) def test_td64arr_add_timestamp(self, box): idx = TimedeltaIndex(['1 day', '2 day']) expected = DatetimeIndex(['2011-01-02', '2011-01-03']) idx = tm.box_expected(idx, box) expected = tm.box_expected(expected, box) result = idx + Timestamp('2011-01-01') tm.assert_equal(result, expected) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Returns object dtype", strict=True)) ], ids=lambda x: x.__name__) def test_td64_radd_timestamp(self, box): idx = TimedeltaIndex(['1 day', '2 day']) expected = DatetimeIndex(['2011-01-02', '2011-01-03']) idx = tm.box_expected(idx, box) expected = tm.box_expected(expected, box) # TODO: parametrize over scalar datetime types? result = Timestamp('2011-01-01') + idx tm.assert_equal(result, expected) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Returns object dtype " "instead of " "datetime64[ns]", strict=True)) ], ids=lambda x: x.__name__) def test_td64arr_add_sub_timestamp(self, box): # GH#11925 ts = Timestamp('2012-01-01') # TODO: parametrize over types of datetime scalar? tdser = Series(timedelta_range('1 day', periods=3)) expected = Series(pd.date_range('2012-01-02', periods=3)) tdser = tm.box_expected(tdser, box) expected = tm.box_expected(expected, box) tm.assert_equal(ts + tdser, expected) tm.assert_equal(tdser + ts, expected) expected2 = Series(pd.date_range('2011-12-31', periods=3, freq='-1D')) expected2 = tm.box_expected(expected2, box) tm.assert_equal(ts - tdser, expected2) tm.assert_equal(ts + (-tdser), expected2) with pytest.raises(TypeError): tdser - ts def test_tdi_sub_dt64_array(self, box_df_fail): box = box_df_fail # DataFrame tries to broadcast incorrectly dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) dtarr = dti.values expected = pd.DatetimeIndex(dtarr) - tdi tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) with pytest.raises(TypeError): tdi - dtarr # TimedeltaIndex.__rsub__ result = dtarr - tdi tm.assert_equal(result, expected) def test_tdi_add_dt64_array(self, box_df_fail): box = box_df_fail # DataFrame tries to broadcast incorrectly dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) dtarr = dti.values expected = pd.DatetimeIndex(dtarr) + tdi tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = tdi + dtarr tm.assert_equal(result, expected) result = dtarr + tdi tm.assert_equal(result, expected) # ------------------------------------------------------------------ # Operations with int-like others @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Attempts to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) def test_td64arr_add_int_series_invalid(self, box, tdser): tdser = tm.box_expected(tdser, box) err = TypeError if box is not pd.Index else NullFrequencyError with pytest.raises(err): tdser + Series([2, 3, 4]) @pytest.mark.parametrize('box', [ pd.Index, pytest.param(Series, marks=pytest.mark.xfail(reason="GH#19123 integer " "interpreted as " "nanoseconds", strict=True)), pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Attempts to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) def test_td64arr_radd_int_series_invalid(self, box, tdser): tdser = tm.box_expected(tdser, box) err = TypeError if box is not pd.Index else NullFrequencyError with pytest.raises(err): Series([2, 3, 4]) + tdser @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Attempts to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) def test_td64arr_sub_int_series_invalid(self, box, tdser): tdser = tm.box_expected(tdser, box) err = TypeError if box is not pd.Index else NullFrequencyError with pytest.raises(err): tdser - Series([2, 3, 4]) @pytest.mark.xfail(reason='GH#19123 integer interpreted as nanoseconds', strict=True) def test_td64arr_rsub_int_series_invalid(self, box, tdser): tdser = tm.box_expected(tdser, box) with pytest.raises(TypeError): Series([2, 3, 4]) - tdser @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Attempts to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) def test_td64arr_add_intlike(self, box): # GH#19123 tdi = TimedeltaIndex(['59 days', '59 days', 'NaT']) ser = tm.box_expected(tdi, box) err = TypeError if box is not pd.Index else NullFrequencyError other = Series([20, 30, 40], dtype='uint8') # TODO: separate/parametrize with pytest.raises(err): ser + 1 with pytest.raises(err): ser - 1 with pytest.raises(err): ser + other with pytest.raises(err): ser - other with pytest.raises(err): ser + np.array(other) with pytest.raises(err): ser - np.array(other) with pytest.raises(err): ser + pd.Index(other) with pytest.raises(err): ser - pd.Index(other) @pytest.mark.parametrize('scalar', [1, 1.5, np.array(2)]) def test_td64arr_add_sub_numeric_scalar_invalid(self, box, scalar, tdser): if box is pd.DataFrame and isinstance(scalar, np.ndarray): # raises ValueError pytest.xfail(reason="DataFrame to broadcast incorrectly") tdser = tm.box_expected(tdser, box) err = TypeError if box is pd.Index and not isinstance(scalar, float): err = NullFrequencyError with pytest.raises(err): tdser + scalar with pytest.raises(err): scalar + tdser with pytest.raises(err): tdser - scalar with pytest.raises(err): scalar - tdser @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Tries to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('dtype', ['int64', 'int32', 'int16', 'uint64', 'uint32', 'uint16', 'uint8', 'float64', 'float32', 'float16']) @pytest.mark.parametrize('vec', [ np.array([1, 2, 3]), pd.Index([1, 2, 3]), Series([1, 2, 3]) # TODO: Add DataFrame in here? ], ids=lambda x: type(x).__name__) def test_td64arr_add_sub_numeric_arr_invalid(self, box, vec, dtype, tdser): if type(vec) is Series and not dtype.startswith('float'): pytest.xfail(reason='GH#19123 integer interpreted as nanos') tdser = tm.box_expected(tdser, box) err = TypeError if box is pd.Index and not dtype.startswith('float'): err = NullFrequencyError vector = vec.astype(dtype) # TODO: parametrize over these four ops? with pytest.raises(err): tdser + vector with pytest.raises(err): vector + tdser with pytest.raises(err): tdser - vector with pytest.raises(err): vector - tdser # ------------------------------------------------------------------ # Operations with timedelta-like others def test_td64arr_add_td64_array(self, box_df_fail): box = box_df_fail # DataFrame tries to broadcast incorrectly dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) tdarr = tdi.values expected = 2 * tdi tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = tdi + tdarr tm.assert_equal(result, expected) result = tdarr + tdi tm.assert_equal(result, expected) def test_td64arr_sub_td64_array(self, box_df_fail): box = box_df_fail # DataFrame tries to broadcast incorrectly dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) tdarr = tdi.values expected = 0 * tdi tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = tdi - tdarr tm.assert_equal(result, expected) result = tdarr - tdi tm.assert_equal(result, expected) # TODO: parametrize over [add, sub, radd, rsub]? @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Tries to broadcast " "incorrectly leading " "to alignment error", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('names', [(None, None, None), ('Egon', 'Venkman', None), ('NCC1701D', 'NCC1701D', 'NCC1701D')]) def test_td64arr_add_sub_tdi(self, box, names): # GH#17250 make sure result dtype is correct # GH#19043 make sure names are propagated correctly tdi = TimedeltaIndex(['0 days', '1 day'], name=names[0]) ser = Series([Timedelta(hours=3), Timedelta(hours=4)], name=names[1]) expected = Series([Timedelta(hours=3), Timedelta(days=1, hours=4)], name=names[2]) ser = tm.box_expected(ser, box) expected = tm.box_expected(expected, box) result = tdi + ser tm.assert_equal(result, expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' result = ser + tdi tm.assert_equal(result, expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' expected = Series([Timedelta(hours=-3), Timedelta(days=1, hours=-4)], name=names[2]) expected = tm.box_expected(expected, box) result = tdi - ser tm.assert_equal(result, expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' result = ser - tdi tm.assert_equal(result, -expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' def test_td64arr_sub_NaT(self, box): # GH#18808 ser = Series([NaT, Timedelta('1s')]) expected = Series([NaT, NaT], dtype='timedelta64[ns]') ser = tm.box_expected(ser, box) expected = tm.box_expected(expected, box) res = ser - pd.NaT tm.assert_equal(res, expected) def test_td64arr_add_timedeltalike(self, delta, box): # only test adding/sub offsets as + is now numeric if box is pd.DataFrame and isinstance(delta, pd.DateOffset): pytest.xfail(reason="Returns object dtype instead of m8[ns]") rng = timedelta_range('1 days', '10 days') expected = timedelta_range('1 days 02:00:00', '10 days 02:00:00', freq='D') rng = tm.box_expected(rng, box) expected = tm.box_expected(expected, box) result = rng + delta tm.assert_equal(result, expected) def test_td64arr_sub_timedeltalike(self, delta, box): # only test adding/sub offsets as - is now numeric if box is pd.DataFrame and isinstance(delta, pd.DateOffset): pytest.xfail(reason="Returns object dtype instead of m8[ns]") rng = timedelta_range('1 days', '10 days') expected = timedelta_range('0 days 22:00:00', '9 days 22:00:00') rng = tm.box_expected(rng, box) expected = tm.box_expected(expected, box) result = rng - delta tm.assert_equal(result, expected) # ------------------------------------------------------------------ # __add__/__sub__ with DateOffsets and arrays of DateOffsets @pytest.mark.parametrize('box', [ pd.Index, pytest.param(Series, marks=pytest.mark.xfail(reason="Index fails to return " "NotImplemented on " "reverse op", strict=True)), pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Tries to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('names', [(None, None, None), ('foo', 'bar', None), ('foo', 'foo', 'foo')]) def test_td64arr_add_offset_index(self, names, box): # GH#18849, GH#19744 tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00'], name=names[0]) other = pd.Index([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)], name=names[1]) expected = TimedeltaIndex([tdi[n] + other[n] for n in range(len(tdi))], freq='infer', name=names[2]) tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) with tm.assert_produces_warning(PerformanceWarning): res = tdi + other tm.assert_equal(res, expected) with tm.assert_produces_warning(PerformanceWarning): res2 = other + tdi tm.assert_equal(res2, expected) # TODO: combine with test_td64arr_add_offset_index by parametrizing # over second box? def test_td64arr_add_offset_array(self, box_df_fail): # GH#18849 box = box_df_fail # tries to broadcast incorrectly tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00']) other = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)]) expected = TimedeltaIndex([tdi[n] + other[n] for n in range(len(tdi))], freq='infer') tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) with tm.assert_produces_warning(PerformanceWarning): res = tdi + other tm.assert_equal(res, expected) with tm.assert_produces_warning(PerformanceWarning): res2 = other + tdi tm.assert_equal(res2, expected) @pytest.mark.parametrize('names', [(None, None, None), ('foo', 'bar', None), ('foo', 'foo', 'foo')]) def test_td64arr_sub_offset_index(self, names, box_df_fail): # GH#18824, GH#19744 box = box_df_fail # tries to broadcast incorrectly tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00'], name=names[0]) other = pd.Index([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)], name=names[1]) expected = TimedeltaIndex([tdi[n] - other[n] for n in range(len(tdi))], freq='infer', name=names[2]) tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) with tm.assert_produces_warning(PerformanceWarning): res = tdi - other tm.assert_equal(res, expected) def test_td64arr_sub_offset_array(self, box_df_fail): # GH#18824 box = box_df_fail # tries to broadcast incorrectly tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00']) other = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)]) expected = TimedeltaIndex([tdi[n] - other[n] for n in range(len(tdi))], freq='infer') tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) with tm.assert_produces_warning(PerformanceWarning): res = tdi - other tm.assert_equal(res, expected) @pytest.mark.parametrize('box', [ pd.Index, pytest.param(Series, marks=pytest.mark.xfail(reason="object dtype Series " "fails to return " "NotImplemented", strict=True, raises=TypeError)), pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="tries to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('names', [(None, None, None), ('foo', 'bar', None), ('foo', 'foo', 'foo')]) def test_td64arr_with_offset_series(self, names, box): # GH#18849 box2 = Series if box is pd.Index else box tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00'], name=names[0]) other = Series([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)], name=names[1]) expected_add = Series([tdi[n] + other[n] for n in range(len(tdi))], name=names[2]) tdi = tm.box_expected(tdi, box) expected_add = tm.box_expected(expected_add, box2) with tm.assert_produces_warning(PerformanceWarning): res = tdi + other tm.assert_equal(res, expected_add) with tm.assert_produces_warning(PerformanceWarning): res2 = other + tdi tm.assert_equal(res2, expected_add) # TODO: separate/parametrize add/sub test? expected_sub = Series([tdi[n] - other[n] for n in range(len(tdi))], name=names[2]) expected_sub = tm.box_expected(expected_sub, box2) with tm.assert_produces_warning(PerformanceWarning): res3 = tdi - other tm.assert_equal(res3, expected_sub) @pytest.mark.parametrize('obox', [np.array, pd.Index, pd.Series]) def test_td64arr_addsub_anchored_offset_arraylike(self, obox, box_df_fail): # GH#18824 box = box_df_fail # DataFrame tries to broadcast incorrectly tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00']) tdi = tm.box_expected(tdi, box) anchored = obox([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]) # addition/subtraction ops with anchored offsets should issue # a PerformanceWarning and _then_ raise a TypeError. with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): tdi + anchored with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): anchored + tdi with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): tdi - anchored with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): anchored - tdi class TestTimedeltaArraylikeMulDivOps(object): # Tests for timedelta64[ns] # __mul__, __rmul__, __div__, __rdiv__, __floordiv__, __rfloordiv__ # ------------------------------------------------------------------ # Multiplication # organized with scalar others first, then array-like def test_td64arr_mul_int(self, box_df_fail): box = box_df_fail # DataFrame op returns object instead of m8[ns] idx = TimedeltaIndex(np.arange(5, dtype='int64')) idx = tm.box_expected(idx, box) result = idx * 1 tm.assert_equal(result, idx) result = 1 * idx tm.assert_equal(result, idx) def test_td64arr_mul_tdlike_scalar_raises(self, delta, box): if box is pd.DataFrame and not isinstance(delta, pd.DateOffset): pytest.xfail(reason="returns m8[ns] instead of raising") rng = timedelta_range('1 days', '10 days', name='foo') rng = tm.box_expected(rng, box) with pytest.raises(TypeError): rng * delta def test_tdi_mul_int_array_zerodim(self, box_df_fail): box = box_df_fail # DataFrame op returns object dtype rng5 = np.arange(5, dtype='int64') idx = TimedeltaIndex(rng5) expected = TimedeltaIndex(rng5 * 5) idx = tm.box_expected(idx, box) expected = tm.box_expected(expected, box) result = idx * np.array(5, dtype='int64') tm.assert_equal(result, expected) def test_tdi_mul_int_array(self, box_df_fail): box = box_df_fail # DataFrame tries to broadcast incorrectly rng5 = np.arange(5, dtype='int64') idx = TimedeltaIndex(rng5) expected = TimedeltaIndex(rng5 ** 2) idx = tm.box_expected(idx, box) expected = tm.box_expected(expected, box) result = idx * rng5 tm.assert_equal(result, expected) def test_tdi_mul_int_series(self, box_df_fail): box = box_df_fail # DataFrame tries to broadcast incorrectly idx = TimedeltaIndex(np.arange(5, dtype='int64')) expected = TimedeltaIndex(np.arange(5, dtype='int64') ** 2) idx = tm.box_expected(idx, box) box2 = pd.Series if box is pd.Index else box expected = tm.box_expected(expected, box2) result = idx * pd.Series(np.arange(5, dtype='int64')) tm.assert_equal(result, expected) def test_tdi_mul_float_series(self, box_df_fail): box = box_df_fail # DataFrame tries to broadcast incorrectly idx = TimedeltaIndex(np.arange(5, dtype='int64')) idx = tm.box_expected(idx, box) rng5f = np.arange(5, dtype='float64') expected = TimedeltaIndex(rng5f * (rng5f + 0.1)) box2 = pd.Series if box is pd.Index else box expected = tm.box_expected(expected, box2) result = idx * Series(rng5f + 0.1) tm.assert_equal(result, expected) # TODO: Put Series/DataFrame in others? @pytest.mark.parametrize('other', [ np.arange(1, 11), pd.Int64Index(range(1, 11)), pd.UInt64Index(range(1, 11)), pd.Float64Index(range(1, 11)), pd.RangeIndex(1, 11) ], ids=lambda x: type(x).__name__) def test_tdi_rmul_arraylike(self, other, box_df_fail): # RangeIndex fails to return NotImplemented, for others # DataFrame tries to broadcast incorrectly box = box_df_fail tdi = TimedeltaIndex(['1 Day'] * 10) expected = timedelta_range('1 days', '10 days') tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = other * tdi tm.assert_equal(result, expected) commute = tdi * other tm.assert_equal(commute, expected) # ------------------------------------------------------------------ # __div__ def test_td64arr_div_nat_invalid(self, box_df_fail): # don't allow division by NaT (maybe could in the future) box = box_df_fail # DataFrame returns all-NaT instead of raising rng = timedelta_range('1 days', '10 days', name='foo') rng = tm.box_expected(rng, box) with pytest.raises(TypeError): rng / pd.NaT def test_td64arr_div_int(self, box_df_fail): box = box_df_fail # DataFrame returns object dtype instead of m8[ns] idx = TimedeltaIndex(np.arange(5, dtype='int64')) idx = tm.box_expected(idx, box) result = idx / 1 tm.assert_equal(result, idx) def test_tdi_div_tdlike_scalar(self, delta, box_df_fail): box = box_df_fail # DataFrame op returns m8[ns] instead of float64 rng = timedelta_range('1 days', '10 days', name='foo') expected = pd.Float64Index((np.arange(10) + 1) * 12, name='foo') rng = tm.box_expected(rng, box) expected = tm.box_expected(expected, box) result = rng / delta tm.assert_equal(result, expected) def test_tdi_div_tdlike_scalar_with_nat(self, delta, box_df_fail): box = box_df_fail # DataFrame op returns m8[ns] instead of float64 rng = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') expected = pd.Float64Index([12, np.nan, 24], name='foo') rng = tm.box_expected(rng, box) expected = tm.box_expected(expected, box) result = rng / delta tm.assert_equal(result, expected) # ------------------------------------------------------------------ # __floordiv__, __rfloordiv__ @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Incorrectly returns " "m8[ns] instead of f8", strict=True)) ], ids=lambda x: x.__name__) def test_td64arr_floordiv_tdscalar(self, box, scalar_td): # GH#18831 td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan expected = Series([0, 0, np.nan]) td1 = tm.box_expected(td1, box) expected = tm.box_expected(expected, box) result = td1 // scalar_td tm.assert_equal(result, expected) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Incorrectly casts to f8", strict=True)) ], ids=lambda x: x.__name__) def test_td64arr_rfloordiv_tdscalar(self, box, scalar_td): # GH#18831 td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan expected = Series([1, 1, np.nan]) td1 = tm.box_expected(td1, box) expected = tm.box_expected(expected, box) result = scalar_td // td1 tm.assert_equal(result, expected) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Returns m8[ns] dtype " "instead of f8", strict=True)) ], ids=lambda x: x.__name__) def test_td64arr_rfloordiv_tdscalar_explicit(self, box, scalar_td): # GH#18831 td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan expected = Series([1, 1, np.nan]) td1 = tm.box_expected(td1, box) expected = tm.box_expected(expected, box) # We can test __rfloordiv__ using this syntax, # see `test_timedelta_rfloordiv` result = td1.__rfloordiv__(scalar_td) tm.assert_equal(result, expected) def test_td64arr_floordiv_int(self, box_df_fail): box = box_df_fail # DataFrame returns object dtype idx = TimedeltaIndex(np.arange(5, dtype='int64')) idx = tm.box_expected(idx, box) result = idx // 1 tm.assert_equal(result, idx) def test_td64arr_floordiv_tdlike_scalar(self, delta, box_df_fail): box = box_df_fail # DataFrame returns m8[ns] instead of int64 dtype tdi = timedelta_range('1 days', '10 days', name='foo') expected = pd.Int64Index((np.arange(10) + 1) * 12, name='foo') tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = tdi // delta tm.assert_equal(result, expected) # TODO: Is this redundant with test_td64arr_floordiv_tdlike_scalar? @pytest.mark.parametrize('scalar_td', [ timedelta(minutes=10, seconds=7), Timedelta('10m7s'), Timedelta('10m7s').to_timedelta64() ], ids=lambda x: type(x).__name__) def test_td64arr_rfloordiv_tdlike_scalar(self, scalar_td, box_df_fail): # GH#19125 box = box_df_fail # DataFrame op returns m8[ns] instead of f8 dtype tdi = TimedeltaIndex(['00:05:03', '00:05:03', pd.NaT], freq=None) expected = pd.Index([2.0, 2.0, np.nan]) tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) res = tdi.__rfloordiv__(scalar_td) tm.assert_equal(res, expected) expected = pd.Index([0.0, 0.0, np.nan]) expected = tm.box_expected(expected, box) res = tdi // (scalar_td) tm.assert_equal(res, expected) # ------------------------------------------------------------------ # Operations with invalid others @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="__mul__ op treats " "timedelta other as i8; " "rmul OK", strict=True)) ], ids=lambda x: x.__name__) def test_td64arr_mul_tdscalar_invalid(self, box, scalar_td): td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan td1 = tm.box_expected(td1, box) # check that we are getting a TypeError # with 'operate' (from core/ops.py) for the ops that are not # defined pattern = 'operate|unsupported|cannot|not supported' with tm.assert_raises_regex(TypeError, pattern): td1 * scalar_td with tm.assert_raises_regex(TypeError, pattern): scalar_td * td1 def test_td64arr_mul_too_short_raises(self, box): idx = TimedeltaIndex(np.arange(5, dtype='int64')) idx = tm.box_expected(idx, box) with pytest.raises(TypeError): idx * idx[:3] with pytest.raises(ValueError): idx * np.array([1, 2]) def test_td64arr_mul_td64arr_raises(self, box): idx = TimedeltaIndex(np.arange(5, dtype='int64')) idx = tm.box_expected(idx, box) with pytest.raises(TypeError): idx * idx # ------------------------------------------------------------------ # Operations with numeric others @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Returns object-dtype", strict=True)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('one', [1, np.array(1), 1.0, np.array(1.0)]) def test_td64arr_mul_numeric_scalar(self, box, one, tdser): # GH#4521 # divide/multiply by integers expected = Series(['-59 Days', '-59 Days', 'NaT'], dtype='timedelta64[ns]') tdser = tm.box_expected(tdser, box) expected = tm.box_expected(expected, box) result = tdser * (-one) tm.assert_equal(result, expected) result = (-one) * tdser tm.assert_equal(result, expected) expected = Series(['118 Days', '118 Days', 'NaT'], dtype='timedelta64[ns]') expected = tm.box_expected(expected, box) result = tdser * (2 * one) tm.assert_equal(result, expected) result = (2 * one) * tdser tm.assert_equal(result, expected) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Returns object-dtype", strict=True)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('two', [2, 2.0, np.array(2), np.array(2.0)]) def test_td64arr_div_numeric_scalar(self, box, two, tdser): # GH#4521 # divide/multiply by integers expected = Series(['29.5D', '29.5D', 'NaT'], dtype='timedelta64[ns]') tdser = tm.box_expected(tdser, box) expected = tm.box_expected(expected, box) result = tdser / two tm.assert_equal(result, expected) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="broadcasts along " "wrong axis", strict=True)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('dtype', ['int64', 'int32', 'int16', 'uint64', 'uint32', 'uint16', 'uint8', 'float64', 'float32', 'float16']) @pytest.mark.parametrize('vector', [np.array([20, 30, 40]), pd.Index([20, 30, 40]), Series([20, 30, 40])], ids=lambda x: type(x).__name__) @pytest.mark.parametrize('op', [operator.mul, ops.rmul]) def test_td64arr_rmul_numeric_array(self, op, box, vector, dtype, tdser): # GH#4521 # divide/multiply by integers vector = vector.astype(dtype) expected = Series(['1180 Days', '1770 Days', 'NaT'], dtype='timedelta64[ns]') tdser = tm.box_expected(tdser, box) # TODO: Make this up-casting more systematic? box = Series if (box is pd.Index and type(vector) is Series) else box expected = tm.box_expected(expected, box) result = op(vector, tdser) tm.assert_equal(result, expected) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="broadcasts along " "wrong axis", strict=True)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('dtype', ['int64', 'int32', 'int16', 'uint64', 'uint32', 'uint16', 'uint8', 'float64', 'float32', 'float16']) @pytest.mark.parametrize('vector', [np.array([20, 30, 40]), pd.Index([20, 30, 40]), Series([20, 30, 40])], ids=lambda x: type(x).__name__) def test_td64arr_div_numeric_array(self, box, vector, dtype, tdser): # GH#4521 # divide/multiply by integers vector = vector.astype(dtype) expected = Series(['2.95D', '1D 23H 12m', 'NaT'], dtype='timedelta64[ns]') tdser = tm.box_expected(tdser, box) box = Series if (box is pd.Index and type(vector) is Series) else box expected = tm.box_expected(expected, box) result = tdser / vector tm.assert_equal(result, expected) with pytest.raises(TypeError): vector / tdser # TODO: Should we be parametrizing over types for `ser` too? @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="broadcasts along " "wrong axis", strict=True)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('names', [(None, None, None), ('Egon', 'Venkman', None), ('NCC1701D', 'NCC1701D', 'NCC1701D')]) def test_td64arr_mul_int_series(self, box, names): # GH#19042 test for correct name attachment tdi = TimedeltaIndex(['0days', '1day', '2days', '3days', '4days'], name=names[0]) ser = Series([0, 1, 2, 3, 4], dtype=np.int64, name=names[1]) expected = Series(['0days', '1day', '4days', '9days', '16days'], dtype='timedelta64[ns]', name=names[2]) tdi = tm.box_expected(tdi, box) box = Series if (box is pd.Index and type(ser) is Series) else box expected = tm.box_expected(expected, box) result = ser * tdi tm.assert_equal(result, expected) # The direct operation tdi * ser still needs to be fixed. result = ser.__rmul__(tdi) tm.assert_equal(result, expected) # TODO: Should we be parametrizing over types for `ser` too? @pytest.mark.parametrize('names', [(None, None, None), ('Egon', 'Venkman', None), ('NCC1701D', 'NCC1701D', 'NCC1701D')]) def test_float_series_rdiv_td64arr(self, box, names): # GH#19042 test for correct name attachment # TODO: the direct operation TimedeltaIndex / Series still # needs to be fixed. tdi = TimedeltaIndex(['0days', '1day', '2days', '3days', '4days'], name=names[0]) ser = Series([1.5, 3, 4.5, 6, 7.5], dtype=np.float64, name=names[1]) expected = Series([tdi[n] / ser[n] for n in range(len(ser))], dtype='timedelta64[ns]', name=names[2]) tdi = tm.box_expected(tdi, box) box = Series if (box is pd.Index and type(ser) is Series) else box expected = tm.box_expected(expected, box) result = ser.__rdiv__(tdi) if box is pd.DataFrame: # TODO: Should we skip this case sooner or test something else? assert result is NotImplemented else: tm.assert_equal(result, expected) class TestTimedeltaArraylikeInvalidArithmeticOps(object): @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="raises ValueError " "instead of TypeError", strict=True)) ]) def test_td64arr_pow_invalid(self, scalar_td, box): td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan td1 = tm.box_expected(td1, box) # check that we are getting a TypeError # with 'operate' (from core/ops.py) for the ops that are not # defined pattern = 'operate|unsupported|cannot|not supported' with tm.assert_raises_regex(TypeError, pattern): scalar_td ** td1 with tm.assert_raises_regex(TypeError, pattern): td1 ** scalar_td # ------------------------------------------------------------------ @pytest.fixture(params=[pd.Float64Index(np.arange(5, dtype='float64')), pd.Int64Index(np.arange(5, dtype='int64')), pd.UInt64Index(np.arange(5, dtype='uint64'))], ids=lambda x: type(x).__name__) def idx(request): return request.param zeros = [box_cls([0] * 5, dtype=dtype) for box_cls in [pd.Index, np.array] for dtype in [np.int64, np.uint64, np.float64]] zeros.extend([np.array(0, dtype=dtype) for dtype in [np.int64, np.uint64, np.float64]]) zeros.extend([0, 0.0, long(0)]) @pytest.fixture(params=zeros) def zero(request): # For testing division by (or of) zero for Index with length 5, this # gives several scalar-zeros and length-5 vector-zeros return request.param class TestDivisionByZero(object): def test_div_zero(self, zero, idx): expected = pd.Index([np.nan, np.inf, np.inf, np.inf, np.inf], dtype=np.float64) result = idx / zero tm.assert_index_equal(result, expected) ser_compat = Series(idx).astype('i8') / np.array(zero).astype('i8') tm.assert_series_equal(ser_compat, Series(result)) def test_floordiv_zero(self, zero, idx): expected = pd.Index([np.nan, np.inf, np.inf, np.inf, np.inf], dtype=np.float64) result = idx // zero tm.assert_index_equal(result, expected) ser_compat = Series(idx).astype('i8') // np.array(zero).astype('i8') tm.assert_series_equal(ser_compat, Series(result)) def test_mod_zero(self, zero, idx): expected = pd.Index([np.nan, np.nan, np.nan, np.nan, np.nan], dtype=np.float64) result = idx % zero tm.assert_index_equal(result, expected) ser_compat = Series(idx).astype('i8') % np.array(zero).astype('i8') tm.assert_series_equal(ser_compat, Series(result)) def test_divmod_zero(self, zero, idx): exleft = pd.Index([np.nan, np.inf, np.inf, np.inf, np.inf], dtype=np.float64) exright = pd.Index([np.nan, np.nan, np.nan, np.nan, np.nan], dtype=np.float64) result = divmod(idx, zero) tm.assert_index_equal(result[0], exleft) tm.assert_index_equal(result[1], exright) # ------------------------------------------------------------------ @pytest.mark.parametrize('dtype2', [ np.int64, np.int32, np.int16, np.int8, np.float64, np.float32, np.float16, np.uint64, np.uint32, np.uint16, np.uint8]) @pytest.mark.parametrize('dtype1', [np.int64, np.float64, np.uint64]) def test_ser_div_ser(self, dtype1, dtype2): # no longer do integer div for any ops, but deal with the 0's first = Series([3, 4, 5, 8], name='first').astype(dtype1) second = Series([0, 0, 0, 3], name='second').astype(dtype2) with np.errstate(all='ignore'): expected = Series(first.values.astype(np.float64) / second.values, dtype='float64', name=None) expected.iloc[0:3] = np.inf result = first / second tm.assert_series_equal(result, expected) assert not result.equals(second / first) def test_rdiv_zero_compat(self): # GH#8674 zero_array = np.array([0] * 5) data = np.random.randn(5) expected = Series([0.] * 5) result = zero_array / Series(data) tm.assert_series_equal(result, expected) result = Series(zero_array) / data tm.assert_series_equal(result, expected) result = Series(zero_array) / Series(data) tm.assert_series_equal(result, expected) def test_div_zero_inf_signs(self): # GH#9144, inf signing ser = Series([-1, 0, 1], name='first') expected = Series([-np.inf, np.nan, np.inf], name='first') result = ser / 0 tm.assert_series_equal(result, expected) def test_rdiv_zero(self): # GH#9144 ser = Series([-1, 0, 1], name='first') expected = Series([0.0, np.nan, 0.0], name='first') result = 0 / ser tm.assert_series_equal(result, expected) def test_floordiv_div(self): # GH#9144 ser = Series([-1, 0, 1], name='first') result = ser // 0 expected = Series([-np.inf, np.nan, np.inf], name='first') tm.assert_series_equal(result, expected) def test_df_div_zero_df(self): # integer div, but deal with the 0's (GH#9144) df = pd.DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]}) result = df / df first = pd.Series([1.0, 1.0, 1.0, 1.0]) second = pd.Series([np.nan, np.nan, np.nan, 1]) expected = pd.DataFrame({'first': first, 'second': second}) tm.assert_frame_equal(result, expected) def test_df_div_zero_array(self): # integer div, but deal with the 0's (GH#9144) df = pd.DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]}) first = pd.Series([1.0, 1.0, 1.0, 1.0]) second = pd.Series([np.nan, np.nan, np.nan, 1]) expected = pd.DataFrame({'first': first, 'second': second}) with np.errstate(all='ignore'): arr = df.values.astype('float') / df.values result = pd.DataFrame(arr, index=df.index, columns=df.columns) tm.assert_frame_equal(result, expected) def test_df_div_zero_int(self): # integer div, but deal with the 0's (GH#9144) df = pd.DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]}) result = df / 0 expected = pd.DataFrame(np.inf, index=df.index, columns=df.columns) expected.iloc[0:3, 1] = np.nan tm.assert_frame_equal(result, expected) # numpy has a slightly different (wrong) treatment with np.errstate(all='ignore'): arr = df.values.astype('float64') / 0 result2 = pd.DataFrame(arr, index=df.index, columns=df.columns) tm.assert_frame_equal(result2, expected) def test_df_div_zero_series_does_not_commute(self): # integer div, but deal with the 0's (GH#9144) df = pd.DataFrame(np.random.randn(10, 5)) ser = df[0] res = ser / df res2 = df / ser assert not res.fillna(0).equals(res2.fillna(0)) # ------------------------------------------------------------------ # Mod By Zero def test_df_mod_zero_df(self): # GH#3590, modulo as ints df = pd.DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]}) # this is technically wrong, as the integer portion is coerced to float # ### first = pd.Series([0, 0, 0, 0], dtype='float64') second = pd.Series([np.nan, np.nan, np.nan, 0]) expected = pd.DataFrame({'first': first, 'second': second}) result = df % df
tm.assert_frame_equal(result, expected)
pandas.util.testing.assert_frame_equal
from __future__ import print_function import numpy as np import time, os, sys import matplotlib.pyplot as plt from scipy import ndimage as ndi from skimage import color, feature, filters, io, measure, morphology, segmentation, img_as_ubyte, transform import warnings import math import pandas as pd import argparse import subprocess import re import glob from skimage.segmentation import clear_border from ortools.graph import pywrapgraph import time from fatetrack_connections import buildFeatureFrame, buildOffsetFrame, generateCandidates, generateLinks, DivSimScore, DivSetupScore, DivisionCanditates, UpdateConnectionsDiv, TranslationTable, SolveMinCostTable, ReviewCostTable def TranslateConnections(ConnectionTable, TranslationTable, timepoint, preference = "Master_ID"): subTranslationTable_0 = TranslationTable.loc[:,[preference,"slabel"]] subTranslationTable_0['slabel_t0'] = subTranslationTable_0['slabel'] subTranslationTable_1 = TranslationTable.loc[:,[preference,"slabel"]] subTranslationTable_1['slabel_t1'] = subTranslationTable_1['slabel'] merge_0 = pd.merge(ConnectionTable, subTranslationTable_0, on="slabel_t0") merge = pd.merge(merge_0, subTranslationTable_1, on="slabel_t1") pref = str(preference) result = merge.loc[:,[pref+"_x",pref+"_y"]] result = result.drop_duplicates() result = result.dropna(thresh=1) result = result.reset_index(drop=True) result = result.rename(columns = {(pref+"_x") : (pref+"_"+str(timepoint)), (pref+"_y") : (pref+"_"+str(timepoint+1))}) return(result) def RajTLG_wrap(filename_t0, filename_t1,timepoint,ConnectionTable,TranslationTable,path="./"): frame0 = buildFeatureFrame(filename_t0,timepoint,pathtoimage=path); frame1 = buildFeatureFrame(filename_t1,timepoint+1,pathtoimage=path); frames = pd.concat([frame0,frame1]) frames["timepoint"] = frames["time"] InfoDF = pd.merge(frames,TranslationTable, on=['label','timepoint']) RajTLG_translation = TranslateConnections(ConnectionTable=ConnectionTable, TranslationTable=TranslationTable, timepoint=timepoint, preference="RajTLG_ID") RajTLGFrame =
pd.DataFrame()
pandas.DataFrame
# Name: ZStandardizeFields.py # Purpose: Will add selected fields as standarized Z scores by extending a numpy array to the feature class. # Author: <NAME> # Last Modified: 4/16/2021 # Copyright: <NAME> # Python Version: 2.7-3.1 # ArcGIS Version: 10.4 (Pro) # -------------------------------- # Copyright 2016 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # -------------------------------- # Import Modules import os, arcpy import pandas as pd import SharedArcNumericalLib as san # Function Definitions def add_standarized_fields(in_fc, input_Fields, ignore_nulls=True): """ This function will take in an feature class, and use pandas/numpy to calculate Z-scores and then join them back to the feature class using arcpy. Parameters ----------------- in_fc- input feature class to add percentile fields input_fields - table fields to add Z Scores too ignore_nulls - ignore null values in percentile calculations""" try: arcpy.env.overwriteOutput = True desc = arcpy.Describe(in_fc) OIDFieldName = desc.OIDFieldName workspace = os.path.dirname(desc.catalogPath) input_Fields_List = input_Fields finalColumnList = [] scored_df = None for column in input_Fields_List: try: field_series = san.arcgis_table_to_dataframe(in_fc, [column], skip_nulls=ignore_nulls, null_values=0) san.arc_print("Creating standarized column for field {0}.".format(str(column)), True) col_Standarized = arcpy.ValidateFieldName("Zscore_" + column, workspace) field_series[col_Standarized] = (field_series[column] - field_series[column].mean()) / field_series[ column].std(ddof=0) finalColumnList.append(col_Standarized) if col_Standarized != column: del field_series[column] if scored_df is None: san.arc_print("Test") scored_df = field_series else: scored_df =
pd.merge(scored_df, field_series, how="outer", left_index=True, right_index=True)
pandas.merge
#!/usr/bin/env python3 # This script assumes that the non-numerical column headers # in train and predi files are identical. # Thus the sm header(s) in the train file must be numeric (day/month/year). import sys import numpy as np import pandas as pd from sklearn.decomposition import PCA #TruncatedSVD as SVD from sklearn.preprocessing import StandardScaler from sklearn.pipeline import Pipeline def mask(df, f): return df[f(df)] def is_int(val): try: int(val) return True except: return False def remove_sparse_rows(data, error=-99999.0): data_matrix = data.as_matrix() data_matrix = [row for row in data_matrix if error in row] return pd.DataFrame(data_matrix, columns=data.columns) def fit_data(train_data, num_comps="mle"): # Build pipeline and fit it to training data. scaler = StandardScaler() # https://github.com/scikit-learn/scikit-learn/issues/9884 pca = PCA(n_components=num_comps, svd_solver="full") pipeline = Pipeline([("scaler", scaler), ("pca", pca)]) pipeline.fit(train_data) return pipeline #Select the target number of components. # Uses Avereage Eigenvalue technique from: # http://pubs.acs.org/doi/pdf/10.1021/ie990110i def choose_num_comps(train_data, bound=1): model = fit_data(train_data) eigenvals = model.named_steps['pca'].explained_variance_ #print(f"eigenvals:\n{eigenvals}\n") return len([ev for ev in eigenvals if (ev >= bound)]) # Assumes the first two columns are x/y-coordinates # and integer-headed columns are sm data, not covariates. def get_params(data): columns = list(data.columns)[2:] return [col for col in columns if not is_int(col)] # Apply to {df} pca transformatio {model} # that maps {params}-headed data to {num_comps} new columns. def apply_model(df, model, params, num_comps): pre_model = df[params] post_model = model.transform(pre_model) #print(f"one row of post_model:\n{post_model[0]}") new_cols = [f"Component{i}" for i in range(num_comps)] post_model = pd.DataFrame(post_model, columns=new_cols) #print(f"one row of post_model:\n{post_model.iloc[0]}") pre_base = df.drop(params, axis=1) #print(f"one row of pre_base:\n{pre_base.iloc[0]}") post_model.reset_index(drop=True, inplace=True) pre_base.reset_index(drop=True, inplace=True) post_full =
pd.concat([pre_base, post_model], axis=1)
pandas.concat
import numpy as np import pandas as pd import matplotlib.pyplot as pl import seaborn as sns import tensorflow as tf import re import json from functools import partial from itertools import filterfalse from wordcloud import WordCloud from tensorflow import keras from tensorflow.keras import layers df = pd.read_csv('data.csv') columns = ['speaker','headline','description','event','duration','date_published','views_as_of_06162017','tags','transcript'] df = df[columns] df['duration'] = pd.to_timedelta(df['duration']).dt.total_seconds() df['date_published'] = pd.to_datetime(df['date_published']) df = df.rename(columns={'views_as_of_06162017':'views'}) df = df.dropna() wc = WordCloud() def transcript_to_tokens(s): s = list(map(lambda s: s.strip(), filter(len,s.split('\r')))) s = ' '.join(filterfalse(partial(re.match,'[0-9]+\:[0-9]+'),s)) s = s.replace('.','').replace(',','').replace('!','').replace('?','').replace(':','').replace(';','').replace('"','').lower() emotes = re.findall('\(([^)]+)\)',s) speech = ' '.join(re.split('\(([^)]+)\)',s)).split() emotes = emotes + list(filter(lambda s: s in ['applause','laughter'],speech)) # Inconsistent annotation in transcript speech = filter(lambda s: not s in ['applause','laughter'],speech) speech = list(filter(lambda s: s not in wc.stopwords, speech)) return (emotes,speech) def word_count(s): return len(pd.value_counts(s)) def translate_df(df): emotes, words = zip(*df['transcript'].apply(transcript_to_tokens).to_list()) df.loc[:,'emotes'] = list(emotes) df.loc[:,'words'] = list(words) df['unique_words'] = df['words'].apply(word_count) df['year_published'] = df['date_published'].dt.year df['month_published'] = df['date_published'].dt.month return df df = translate_df(df) all_words = [ x for xs in df['words'].to_list() for x in xs ] word_counts =
pd.value_counts(all_words)
pandas.value_counts
import pandas as pd import numpy as np from datetime import datetime from tqdm import tqdm from tqdm.notebook import tqdm as tqdmn try: from trade import Trade except: pass try: from backtest.trade import Trade except: pass import chart_studio.plotly as py import plotly.graph_objs as go from plotly import subplots import plotly.express as px from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot pd.options.display.float_format = '{:.5f}'.format import random class Backtest: def __init__(self, strategy, data, from_date, to_date, balance=10000, leverage=0, max_units=10000000, verbose=True, ipynb=False, direct=True, test=False, ddw=0, commission=0.0, rfr=0.02): # initial variables self.strategy = strategy # trading strategy self.Leverage = leverage # leverage self.FromDate = str(from_date).split(' ')[0] # starting date self.ToDate = str(to_date).split(' ')[0] # ending date self.Data = self.section(data, self.FromDate, self.ToDate) # slice from the dataset self.Data['MC'] = ((self.Data['AC'] + self.Data['BC']) / 2) # middle close price self.Data['MO'] = ((self.Data['AO'] + self.Data['BO']) / 2) # middle open price self.Datasets = [] # all datasets nad instruments self.Verbose = verbose # verbose checkker self.ipynb = ipynb # only for Jupyter notebook self.Direct = direct # calculating instrument units directly or indirectly self.Test = test # run as a test only, with no balance calculation self.DDW = ddw # drawdown value self.RfR = rfr # risk-free rate # variables for the simulation self.Commission = commission # commision per trade (percentage) self.OpenPositions = [] # list of the opened trades self.CurrentProfit = 0 # unrealized profit/loos self.GrossLoss = 0 # total loss self.GrossProfit = 0 # total profit self.TotalPL = 0 # total profit/loss self.InitBalance = balance # initial balance self.Balance = balance # account balance with closed trades self.MarginLeft = balance # margin left with unrealized profit self.Unrealized = 0 # unrealized profit/loss self.MaxUnits = max_units # maximal trading ammount self.History = [] # list to store previus prices for the user self.IndicatorList = [] # list to store indicators columns=['Type', 'Open Time', 'Close Time', 'Units', 'Margin Used', 'Open Price', 'Close Price', 'Spread', 'Profit', 'Balance', 'AutoClose', 'TP', 'SL'] self.Results = pd.DataFrame(columns = ['Ratio', 'Value']) # dataframe for result analysis self.TradeLog = pd.DataFrame(columns = columns) # pandas dataframe to log activity self.AutoCloseCount = 0 # counts how many times were trades closed automatically snp_benchmark = None # loading S&P as benchmark dji_benchmark = None # loading DJI as benchmark dax_benchmark = None # loading DAX as benchmark try: snp_benchmark = pd.read_csv('data/datasets/spx500usd/spx500usd_hour.csv') except: snp_benchmark = pd.read_csv('../data/datasets/spx500usd/spx500usd_hour.csv') try: dji_benchmark = pd.read_csv('data/datasets/djiusd/djiusd_hour.csv') except: dji_benchmark = pd.read_csv('../data/datasets/djiusd/djiusd_hour.csv') try: dax_benchmark = pd.read_csv('data/datasets/de30eur/de30eur_hour.csv') except: dax_benchmark = pd.read_csv('../data/datasets/de30eur/de30eur_hour.csv') self.DJI_Benchmark = self.section(dji_benchmark, self.FromDate, self.ToDate) self.SNP_Benchmark = self.section(snp_benchmark, self.FromDate, self.ToDate) self.DAX_Benchmark = self.section(dax_benchmark, self.FromDate, self.ToDate) def add_ma(self, n): name = 'MA' + str(n) self.IndicatorList.append(name) self.Data[name] = self.Data['MC'].rolling(n).mean() def add_wma(self, n): name = 'WMA' + str(n) self.IndicatorList.append(name) weights = np.arange(1,n+1) self.Data[name] = self.Data['MC'].rolling(n).apply(lambda prices: np.dot(prices, weights) / weights.sum(), raw=True) def add_ema(self, n): name = 'EMA' + str(n) self.IndicatorList.append(name) sma = self.Data['MC'].rolling(n).mean() mod_price = self.Data['MC'].copy() mod_price.iloc[0:10] = sma[0:10] self.Data[name] = mod_price.ewm(span=n, adjust=False).mean() def add_dema(self, n): name = 'DEMA' + str(n) self.IndicatorList.append(name) # calculating EMA sma = self.Data['MC'].rolling(n).mean() mod_price = self.Data['MC'].copy() mod_price.iloc[0:10] = sma[0:10] ema = mod_price.ewm(span=n, adjust=False).mean() # calculatung EMA of EMA sma_ema = ema.rolling(n).mean() mod_price_of_ema = ema.copy() mod_price_of_ema.iloc[0:10] = sma_ema[0:10] ema_of_ema = mod_price_of_ema.ewm(span=n, adjust=False).mean() self.Data[name] = 2 * ema - ema_of_ema def add_tema(self, n): name = 'TEMA' + str(n) self.IndicatorList.append(name) # calculating EMA sma = self.Data['MC'].rolling(n).mean() mod_price = self.Data['MC'].copy() mod_price.iloc[0:10] = sma[0:10] ema1 = mod_price.ewm(span=n, adjust=False).mean() # calculatung EMA of EMA1 sma_ema1 = ema1.rolling(n).mean() mod_price_of_ema1 = ema1.copy() mod_price_of_ema1.iloc[0:10] = sma_ema1[0:10] ema2 = mod_price_of_ema1.ewm(span=n, adjust=False).mean() # calculatung EMA of EMA sma_ema2 = ema2.rolling(n).mean() mod_price_of_ema2 = ema2.copy() mod_price_of_ema2.iloc[0:10] = sma_ema2[0:10] ema3 = mod_price_of_ema2.ewm(span=n, adjust=False).mean() self.Data[name] = (3 * ema1) - (3 * ema2) + ema3 def add_heikin_ashi(self): self.IndicatorList.append('HAC') self.IndicatorList.append('HAO') self.Data['HAH'] = self.Data.max(axis=1) self.Data['HAL'] = self.Data.drop(['ACh', 'BCh']).min(axis=1) self.Data['HAC'] = 0.25 * (self.Data['BO'] + self.Data['BH'] + self.Data['BL'] +self.Data['BC']) self.Data['HAO'] = 0.5 * (self.Data[1:]['BO'] + self.Data[1:]['BC']) def section(self, dt, from_date, to_date): start = dt.index[dt['Date'] == from_date].tolist()[0] end = dt.index[dt['Date'] == to_date].tolist() end = end[len(end) - 1] return dt[start:end].reset_index() def buy(self, row, instrument, trade_ammount, stop_loss=0, take_profit=0, units=0): if not self.Test: units = trade_ammount * self.Balance * self.Leverage units = units - units * self.Commission else: units = trade_ammount * units * self.Leverage if not self.Direct: units /= row['AC'] if units > self.MaxUnits: units = self.MaxUnits self.OpenPositions.append(Trade(instrument[:6], 'BUY', units, row, stop_loss, take_profit, self.Direct)) return True def sell(self, row, instrument, trade_ammount, stop_loss=0, take_profit=0, units=0): if not self.Test: units = trade_ammount * self.Balance * self.Leverage units = units - units * self.Commission else: units = trade_ammount * units * self.Leverage if not self.Direct: units /= row['BC'] if units > self.MaxUnits: units = self.MaxUnits self.OpenPositions.append(Trade(instrument[:6], 'SELL', units, row, stop_loss, take_profit, self.Direct)) return True def close(self, row, idx): if len(self.OpenPositions) == 0: return trade = self.OpenPositions.pop(idx) trade.close(row) if trade.Profit > 0: self.GrossProfit += trade.Profit else: self.GrossLoss += trade.Profit self.TotalPL += trade.Profit self.Balance += trade.Profit if not self.Direct: self.TradeLog.loc[len(self.TradeLog)] = [trade.Type, trade.OT, trade.CT, trade.Units, trade.Units / self.Leverage, trade.OP, trade.CP, trade.CP - trade.OP, trade.Profit, self.Balance, trade.AutoClose, trade.TP, trade.SL] else: self.TradeLog.loc[len(self.TradeLog)] = [trade.Type, trade.OT, trade.CT, trade.Units, trade.Units / self.Leverage, trade.OP, trade.CP, trade.CP - trade.OP, trade.Profit, self.Balance, trade.AutoClose, trade.TP, trade.SL] def close_all(self, row): j = len(self.OpenPositions) while j != 0: self.close(row, 0) j -= 1 def max_dd(self, data_slice): max2here = data_slice.expanding().max() dd2here = data_slice - max2here return dd2here.min() def run(self): simulation = None if self.Verbose: if not self.ipynb: simulation = tqdm(range(len(self.Data))) else: simulation = tqdmn(range(len(self.Data))) else: simulation = range(len(self.Data)) for i in simulation: if self.Verbose: simulation.set_description('Balance: {:.2f}'.format(self.Balance)) row = self.Data.loc[i] self.Unrealized = 0 for trade in self.OpenPositions: if not trade.Closed and (trade.update(row)): self.AutoCloseCount += 1 else: self.Unrealized += trade.Profit j = 0 while j < len(self.OpenPositions): if self.OpenPositions[j].Closed: self.close(row, j) j += 1 if not self.Test: if self.Unrealized < -self.Balance: self.close_all(row) if self.Verbose: print('[INFO] Test stopped, inefficient funds.') break self.strategy(self, row, i) self.close_all(row) # analysis if len(self.TradeLog) > 0: if self.DDW != 0: self.TradeLog['Drawdown'] = self.TradeLog['Balance'].rolling(self.DDW).apply(self.max_dd) else: dd_length = len(self.Data) / len(self.TradeLog) elf.TradeLog['Drawdown'] = self.TradeLog['Balance'].rolling(dd_length).apply(self.max_dd) columns = ['Nr. of Trades', 'Profit / Loss', 'Profit Factor', 'Win Ratio', 'Average P/L', 'Drawdown', 'DDW (%)', 'Buy & Hold', 'Sharpe Ratio', 'Balance', 'Max. Balance', 'Min. Balance', 'Gross Profit', 'Gross Loss', 'Winning Trades', 'Losing Trades', 'Average Profit', 'Average Loss', 'Profit Std.', 'Loss Std.', 'SL/TP Activated'] if self.GrossLoss == 0: self.GrossLoss = 1 buy = self.TradeLog[self.TradeLog['Type'] == 'BUY'] buy_values = [len(buy), buy['Profit'].sum(), buy[buy['Profit'] > 0]['Profit'].sum() / abs(buy[buy['Profit'] < 0]['Profit'].sum()), len(buy[buy['Profit'] > 0]) / len(buy), buy['Profit'].sum() / len(buy), None, None, None, None, None, None, None, buy[buy['Profit'] > 0]['Profit'].sum(), buy[buy['Profit'] < 0]['Profit'].sum(), len(buy[buy['Profit'] > 0]), len(buy[buy['Profit'] < 0]), buy.loc[buy['Profit'] > 0]['Profit'].mean(), buy.loc[buy['Profit'] < 0]['Profit'].mean(), buy.loc[buy['Profit'] > 0]['Profit'].std(), buy.loc[buy['Profit'] < 0]['Profit'].std(), buy['AutoClose'].sum()] sell = self.TradeLog[self.TradeLog['Type'] == 'SELL'] sell_values = [len(sell), sell['Profit'].sum(), sell[sell['Profit'] > 0]['Profit'].sum() / abs(sell[sell['Profit'] < 0]['Profit'].sum()), len(sell[sell['Profit'] > 0]) / len(sell), sell['Profit'].sum() / len(sell), None, None, None, None, None, None, None, sell[sell['Profit'] > 0]['Profit'].sum(), abs(sell[sell['Profit'] < 0]['Profit'].sum()), len(sell[sell['Profit'] > 0]), len(sell[sell['Profit'] < 0]), sell.loc[sell['Profit'] > 0]['Profit'].mean(), sell.loc[sell['Profit'] < 0]['Profit'].mean(), sell.loc[sell['Profit'] > 0]['Profit'].std(), sell.loc[sell['Profit'] < 0]['Profit'].std(), sell['AutoClose'].sum()] BnH = (self.Data['BC'][len(self.Data)-1] - self.Data['AC'][0]) * (1 / self.Data['BC'][len(self.Data)-1]) * 10000 * self.Leverage if not self.Direct: BnH = (self.Data['BC'][len(self.Data)-1] - self.Data['AC'][0]) * 10000 * self.Leverage / self.Data['AC'][0] sharpe_ratio = (self.Balance / self.InitBalance - 1 - self.RfR) / (self.TradeLog['Balance'] / self.InitBalance).std() all_values = [len(self.TradeLog), self.TotalPL, self.GrossProfit / abs(self.GrossLoss), len(self.TradeLog[self.TradeLog['Profit'] > 0]) / len(self.TradeLog), self.TradeLog['Profit'].sum() / len(self.TradeLog), self.TradeLog['Drawdown'].min(), abs(self.TradeLog['Drawdown'].min()) / self.TradeLog['Balance'].max(), BnH, sharpe_ratio, self.Balance, self.TradeLog['Balance'].max(), self.TradeLog['Balance'].min(), self.GrossProfit, self.GrossLoss, len(self.TradeLog[self.TradeLog['Profit'] > 0]), len(self.TradeLog[self.TradeLog['Profit'] < 0]), self.TradeLog.loc[self.TradeLog['Profit'] > 0]['Profit'].mean(), self.TradeLog.loc[self.TradeLog['Profit'] < 0]['Profit'].mean(), self.TradeLog.loc[self.TradeLog['Profit'] > 0]['Profit'].std(), self.TradeLog.loc[self.TradeLog['Profit'] < 0]['Profit'].std(), self.AutoCloseCount] self.Results['Ratio'] = columns self.Results['All'] = all_values self.Results['Long'] = buy_values self.Results['Short'] = sell_values def plot_results(self, name='backtest_result.html'): if (len(self.TradeLog) > 0): fig = subplots.make_subplots(rows=3, cols=3, column_widths=[0.55, 0.27, 0.18], specs=[[{}, {}, {"rowspan": 2, "type": "table"}], [{}, {}, None], [{}, {"type": "table", "colspan": 2}, None]], shared_xaxes=True, subplot_titles=("Balance", "Benchmarks", "Performance Analysis", "Profit and Loss", "Monte Carlo Simulation", "Entries and Exits", "List of Trades"), vertical_spacing=0.06, horizontal_spacing=0.02) buysell_color = [] entry_shape = [] profit_color = [] for _, trade in self.TradeLog.iterrows(): if trade['Type'] == 'BUY': buysell_color.append('#83ccdb') entry_shape.append('triangle-up') else: buysell_color.append('#ff0050') entry_shape.append('triangle-down') if trade['Profit'] > 0: profit_color.append('#cdeaf0') else: profit_color.append('#ffb1cc') buysell_marker = dict(color=buysell_color, size=self.TradeLog['Profit'].abs() / self.TradeLog['Profit'].abs().max() * 40) balance_plot = go.Scatter(x=pd.concat([pd.Series([self.TradeLog['Open Time'][0]]), self.TradeLog['Close Time']]), y=pd.concat([
pd.Series([self.InitBalance])
pandas.Series
from time import time import pandas as pd from numpy import arange results_df = pd.read_csv('../data/botbrnlys-rand.csv') def extract_best_vals_index(results_df, df, classifier, hp): final_df =
pd.DataFrame()
pandas.DataFrame
import argparse from umap import UMAP import pandas as pd import seaborn as sns import matplotlib.pyplot as plt def main(): parser = argparse.ArgumentParser(description='Visualize DAE compressed output using UMAP algorithm.') parser.add_argument('csv_output', type=str, help='Output CSV file generated from DAE.py') args = parser.parse_args() df =
pd.read_csv(args.csv_output, header=None)
pandas.read_csv
# encoding: utf-8 from opendatatools.common import RestAgent from bs4 import BeautifulSoup from progressbar import ProgressBar import pandas as pd import re lianjia_city_map = { '北京' : 'bj', '上海' : 'sh', '成都' : 'cd', '杭州' : 'hz', '广州' : 'gz', '深圳' : 'sz', '厦门' : 'xm', '苏州' : 'su', '重庆' : 'cq', '长沙' : 'cs', '大连' : 'dl', '海口' : 'hk', '合肥' : 'hf', '济南' : 'jn', '青岛' : 'qd', '南京' : 'nj', '石家庄': 'sjz', '沈阳' : 'sy', '天津' : 'tj', '武汉' : 'wh', '无锡' : 'wx', '西安' : 'xa', '烟台' : 'yt', '中山' : 'zs', '珠海' : 'zh', '郑州' : 'zz', } class LianjiaAgent(RestAgent): def __init__(self): RestAgent.__init__(self) def get_city_list(self): return lianjia_city_map.keys() def get_district_by_city(self, city): city_code = lianjia_city_map[city] url = 'https://%s.lianjia.com/ershoufang/' % city_code response = self.do_request(url) soup = BeautifulSoup(response, "html5lib") divs = soup.find_all('div') data_map = {} for div in divs: if div.has_attr('data-role') and 'ershoufang' in div['data-role']: sub_divs = div.find_all('div') sub_div = sub_divs[0] links = sub_div.find_all('a') for link in links: #link_addr = link #data_list.append(data) key = link.text value = link['href'].replace('/ershoufang/', '').replace('/', '') data_map[key] = value return data_map @staticmethod def clear_text(text): return text.replace('\n', '').strip() def get_esf_list(self, city, max_page_no): if max_page_no>100: max_page_no = 100 if city in lianjia_city_map: city_code = lianjia_city_map[city] return self._get_esf_list(city_code, max_page_no) def get_esf_list_by_district(self, city, district, max_page_no): if max_page_no>100: max_page_no = 100 if city in lianjia_city_map: city_code = lianjia_city_map[city] district_map = self.get_district_by_city(city) if district in district_map: district_code = district_map[district] return self._get_esf_list_by_district(city_code, district_code, max_page_no) def _get_esf_list(self, city_code, max_page_no): page_no = 1 result_list = [] process_bar = ProgressBar().start(max_value=max_page_no) while page_no <= max_page_no: process_bar.update(page_no) #print('getting data from lianjia.com for page %d' % page_no) data_list = self._get_erf_list_url('https://%s.lianjia.com/ershoufang/pg%d/' % (city_code, page_no)) page_no = page_no + 1 if (len(data_list) == 0): break result_list.extend(data_list) return pd.DataFrame(result_list) def _get_esf_list_by_district(self, city_code, district_code, max_page_no): page_no = 1 result_list = [] process_bar = ProgressBar().start(max_value=max_page_no) while page_no <= max_page_no: process_bar.update(page_no) #print('getting data from lianjia.com for page %d' % page_no) data_list = self._get_erf_list_url('https://%s.lianjia.com/ershoufang/%s/pg%d/' % (city_code, district_code, page_no)) page_no = page_no + 1 if (len(data_list) == 0): break result_list.extend(data_list) return
pd.DataFrame(result_list)
pandas.DataFrame
#!/usr/bin/env python3 #-*- coding: utf8 -*- """Scrape products from Woolworths Returns: (dict): Prices, product name, datetime References: [1] https://github.com/nguyenhailong253/grosaleries-web-scrapers """ import argparse import re import subprocess import sys import traceback import warnings from abc import ABC, abstractmethod from datetime import datetime from pathlib import Path from time import sleep import numpy as np import pandas as pd from bs4 import BeautifulSoup as soup PROJECT_ROOT = Path(subprocess.Popen(['git', 'rev-parse', '--show-toplevel'], stdout=subprocess.PIPE).communicate()[0].rstrip().decode('utf-8')) DATA = PROJECT_ROOT / "data" sys.path.append(str(PROJECT_ROOT)) from src.base import SupermarketNames, str_supermarketnames_map from src.api.web import HTTPResponseError, WebAPI class Supermarket(ABC, WebAPI): quote = { "Availability": [] ,"Brand": [] ,"Category": [] ,"Datetime": [] ,"Name": [] ,"Pic": [] ,"Product Price": [] ,"Product Quantity": [] ,"Unit Price": [] ,"Unit Quantity": [] } @abstractmethod def product_info_container(self): pass @abstractmethod def url(self): pass @abstractmethod def get_products_list(self, container_soup, search_item: str): pass @abstractmethod def scrape_products(self): pass class Woolworths(Supermarket): def __init__(self) -> None: super().__init__() self.name = SupermarketNames.woolworths def product_info_container(self): return ('div', {'class': 'shelfProductTile-information'}) def url(self, search_item: str, page_number: int=1): return f"https://www.woolworths.com.au/shop/search/products?searchTerm={search_item}&pageNumber={page_number}" def get_products_list(self, container_soup, search_item: str): return self.scrape_products(container_soup, search_item) def scrape_products(self, container_soup, category): products_list = [] for container in container_soup: # get the product name product_name = container.find("span", {"class": "sr-only"}).text.strip() # initial product is available availability = True unit_availability = True # get the date and time of the scrapping time date_now = datetime.now() # check price and availability of each item price_dollar = container.find('span',{'class':'price-dollars'}) price_cent = container.find('span', {'class': 'price-cents'}) price = np.nan try: price = float(price_dollar.text + '.' + price_cent.text) except AttributeError: availability = False unit_price = np.nan unit_quantity = np.nan try: price_per_unit = container.find('div', {'class': 'shelfProductTile-cupPrice'}).text.strip().replace(" ", "").split("/") unit_price = float(price_per_unit[0].strip("$")) unit_quantity = price_per_unit[1] except AttributeError: pass self.quote["Availability"].append(availability) self.quote["Brand"].append(None) self.quote["Category"].append(category) self.quote["Datetime"].append(date_now) self.quote["Name"].append(product_name) self.quote["Pic"].append(None) self.quote["Product Price"].append(price) self.quote["Product Quantity"].append(np.nan) self.quote["Unit Price"].append(unit_price) self.quote["Unit Quantity"].append(unit_quantity) return pd.DataFrame.from_dict(self.quote) class Coles(Supermarket): def __init__(self) -> None: super().__init__() self.name = SupermarketNames.coles def product_info_container(self): return ('header', {'class': 'product-header'}) def url(self, search_item: str, page_number: int=1): search_item = search_item.replace(" ", "%20") return f"https://shop.coles.com.au/a/national/everything/search/{search_item}?pageNumber={page_number}" def get_products_list(self, container_soup, search_item: str): return self.scrape_products(container_soup, search_item) def scrape_products(self, container_soup, category): arr = [] for container in container_soup: # get the product name product_name = container.find("span", {"class": "product-name"}).text.strip() product_brand = container.find("span", {"class": "product-brand"}).text.strip() package_sizes = container.find_all("span", {"class": "accessibility-inline"}) pattern = re.compile(r"\d+\W{0,1}\w+", re.IGNORECASE) valid_sizes = [re.search(pattern, i.text.rstrip()) for i in package_sizes] product_quantity = [x for x in valid_sizes if x is not None] try: product_quantity = product_quantity[0].group(0) except IndexError: product_quantity = None # initial product is available availability = True # get the date and time of the scrapping time date_now = datetime.now() # check price and availability of each item if (container.find('span', {'class': 'dollar-value'})) : price = container.find('span', {'class': 'dollar-value'}).text.strip() + container.find('span', {'class': 'cent-value'}).text.strip() else: price = np.nan availability = False package_price = container.find('span', {'class': 'package-price'}).text.strip() if (package_price == '') | (not package_price): unit_price = np.nan unit_quantity = np.nan else: text = package_price.strip().split("per") unit_price = float(text[0].strip("$")) unit_quantity = text[1].strip() self.quote["Availability"].append(availability) self.quote["Brand"].append(product_brand) self.quote["Category"].append(category) self.quote["Datetime"].append(date_now) self.quote["Name"].append(product_name) self.quote["Pic"].append(None) self.quote["Product Price"].append(price) self.quote["Product Quantity"].append(product_quantity) self.quote["Unit Price"].append(unit_price) self.quote["Unit Quantity"].append(unit_quantity) return pd.DataFrame.from_dict(self.quote) class HarrisFarm(Supermarket): def __init__(self) -> None: super().__init__() self.name = SupermarketNames.coles def product_info_container(self): return ('div', {'class': 'product-item columns large-2'}) def url(self, search_item: str, page_number: int=1): search_item = search_item.replace(" ", "%20") return f"https://www.harrisfarm.com.au/search?q={search_item}&hPP=24&idx=shopify_products&p={page_number}&is_v=1" def get_products_list(self, container_soup, search_item: str): return self.scrape_products(container_soup, search_item) def scrape_products(self, container_soup, category): arr = [] for container in container_soup: # get the product name product_name = container.find("p", {"class": "title"}).text.strip() product_brand = None package_sizes = container.find_all("span", {"class": "accessibility-inline"}) pattern = re.compile(r"\d+\W{0,1}\w+", re.IGNORECASE) valid_sizes = [re.search(pattern, i.text.rstrip()) for i in package_sizes] product_quantity = [x for x in valid_sizes if x is not None] try: product_quantity = product_quantity[0].group(0) except IndexError: product_quantity = None # initial product is available availability = True # get the date and time of the scrapping time date_now = datetime.now() # check price and availability of each item price = container.find('span', {'class': 'from_price'}) if (price == '') | (not price): price = np.nan availability = False else: try: price = float(container.find('span', {'class': 'from_price'}).text.strip().strip("$")) except ValueError: price = np.nan package_price = container.find('span', {'class': 'compare_at_price unit_price'}).text.strip() if (package_price == '') | (not package_price): unit_price = np.nan unit_quantity = np.nan else: text = package_price.strip() unit_price = re.findall("\d+.*\d*", text)[0] unit_quantity = re.findall("\s\w+\Z", text)[0].strip() self.quote["Availability"].append(availability) self.quote["Brand"].append(product_brand) self.quote["Category"].append(category) self.quote["Datetime"].append(date_now) self.quote["Name"].append(product_name) self.quote["Pic"].append(None) self.quote["Product Price"].append(price) self.quote["Product Quantity"].append(product_quantity) self.quote["Unit Price"].append(unit_price) self.quote["Unit Quantity"].append(unit_quantity) return
pd.DataFrame.from_dict(self.quote)
pandas.DataFrame.from_dict
""" Authors: ITryagain <<EMAIL>> Reference: https://www.ibm.com/developerworks/community/blogs/jfp/entry/Fast_Computation_of_AUC_ROC_score?lang=en https://www.kaggle.com/uberkinder/efficient-metric https://www.kaggle.com/artgor introduce: this file contains the use of models such as LightGBM, XGBoost, CatBoost and so on """ import time import gc import numpy as np import pandas as pd import lightgbm as lgb import xgboost as xgb from catboost import CatBoostRegressor, CatBoostClassifier from sklearn import metrics from numba import jit from handyML.preprocessing.Encoding import BetaEncoder from tqdm import tqdm # compute auc faster than sklearn # However, when there are ties in predictions computed value may differ from sklearn value. # https://www.ibm.com/developerworks/community/blogs/jfp/entry/Fast_Computation_of_AUC_ROC_score?lang=en @jit def fast_auc(y_true, y_prob): y_true = np.asarray(y_true) y_true = y_true[np.argsort(y_prob)] nfalse = 0 auc = 0 n = len(y_true) for i in range(n): y_i = y_true[i] nfalse += (1 - y_i) auc += y_i * nfalse auc /= (nfalse * (n - nfalse)) return auc # define metric by ourself def eval_auc(preds, dtrain): return 'auc', fast_auc(dtrain, preds), True def group_mean_log_mae(y_true, y_pred, group, floor=1e-9): """ Fast metric computation for this competition: https://www.kaggle.com/c/champs-scalar-coupling Code is from this kernel: https://www.kaggle.com/uberkinder/efficient-metric """ maes = (y_true - y_pred).abs().groupby(group).mean() return np.log(maes.map(lambda x: max(x, floor))).mean() def train_model_regression(X, X_test, target_col, params, folds, model_type='lgb', eval_metric='mae', columns=None, model=None, verbose=1000, early_stopping_rounds=200, n_estimators=50000, metrics_dict=None, beta_encoding=False, cat_col=None, encode_col=None, N_min=1, encoding_nan=False, encoding_type='mean', feature_importance=True): """ A function to train a variety of regression models. Returns dictionary with oof predictions, test predictions, scores and, if necessary, feature importances. :param: X - training data, can be pd.DataFrame (after normalizing) :param: X_test - test data, can be pd.DataFrame (after normalizing) :param: target_col - target col name :param: folds - folds to split data :param: model_type - type of model to use :param: eval_metric - metric to use :param: columns - columns to use. If None - use all columns :param: plot_feature_importance - whether to plot feature importance of LGB :param: model - sklearn model, works only for "sklearn" model type :param: beta_encoding - do beta_encoding in k-folds :param: feature_importance - return feature importance :param: encode_col - the columns used for encoding """ if beta_encoding: if (not isinstance(encode_col, list)) and (not isinstance(encode_col, np.ndarray)): raise TypeError('cat_col should be list or np.ndarry') if columns is None: columns = [col for col in X.columns if col != target_col] if feature_importance: if model_type == 'sklearn': feature_importance = False if metrics_dict is None: metrics_dict = { 'mae': { 'lgb_metric_name': 'mae', 'catboost_metric_name': 'MAE', 'xgb_metric_name': 'mae', 'sklearn_scoring_function': metrics.mean_absolute_error }, 'group_mae': { 'lgb_metric_name': 'mae', 'catboost_metric_name': 'MAE', 'xgb_metric_name': 'mae', 'scoring_function': group_mean_log_mae }, 'mse': { 'lgb_metric_name': 'mse', 'catboost_metric_name': 'MSE', 'xgb_metric_name': 'rmse', 'sklearn_scoring_function': metrics.mean_squared_error } } result_dict = {} # list of scores on folds scores = [] # list of scores on folds oof = np.zeros(len(X)) # out-of-fold predictions on train data prediction = np.zeros(len(X_test)) # averaged predictions on train data feature_importance_df = pd.DataFrame() for fold_n, (train_index, valid_index) in enumerate(folds.split(X[columns], X[target_col])): print('Fold {} started at {}'.format({fold_n + 1}, {time.ctime()})) X_train, y_train, X_valid, y_valid = X[columns].iloc[train_index], X[target_col].iloc[train_index], X[columns].iloc[valid_index], X[target_col].iloc[valid_index] if beta_encoding: # encode variables feature_col = [] for var_name in tqdm(encode_col): # fit encoder be = BetaEncoder(var_name, encoding_nan) be.fit(X_train[[var_name, target_col]], target_col) feature_name = var_name + encoding_type X_train[feature_name] = be.transform(X_train[[var_name]], encoding_type, N_min) X_valid[feature_name] = be.transform(X_valid[[var_name]], encoding_type, N_min) X_test[feature_name] = be.transform(X_test[[var_name]], encoding_type, N_min) feature_col.append(feature_name) gc.collect() columns += feature_col if model_type == 'lgb': model = lgb.LGBMRegressor(**params, n_estimators=n_estimators, n_jobs=-1) model.fit(X_train, y_train, eval_set=[(X_train, y_train), (X_valid, y_valid)], eval_metric=metrics_dict[eval_metric]['lgb_metric_name'], categorical_feature=cat_col, verbose=verbose, early_stopping_rounds=early_stopping_rounds) y_pred_valid = model.predict(X_valid) y_pred = model.predict(X_test[columns], num_iteration=model.best_iteration_) elif model_type == 'xgb': model = xgb.XGBRegressor(**params, n_estimators=n_estimators, n_jobs=-1) model.fit(X_train, y_train, eval_set=[(X_train, y_train), (X_valid, y_valid)], eval_metric=metrics_dict[eval_metric]['xgb_metric_name'], verbose=verbose, early_stopping_rounds=early_stopping_rounds, ) y_pred_valid = model.predict(X_valid, ntree_limit=model.best_ntree_limit) y_pred = model.predict(X_test[columns], ntree_limit=model.best_ntree_limit) elif model_type == 'cat': model = CatBoostRegressor(iterations=n_estimators, eval_metric=metrics_dict[eval_metric]['catboost_metric_name'], loss_function=metrics_dict[eval_metric]['catboost_metric_name'], verbose=verbose, cat_features=cat_col, **params) model.fit(X_train, y_train, eval_set=(X_valid, y_valid)) gc.collect() y_pred_valid = model.predict(X_valid) y_pred = model.predict(X_test[columns]) elif model_type == 'sklearn': model = model model.fit(X_train, y_train) y_pred_valid = model.predict(X_valid) score = metrics_dict[eval_metric]['sklearn_scoring_function'](y_valid, y_pred_valid) print("Fold {}. {}: {}.".format({fold_n}, {eval_metric}, {score})) print('') y_pred = model.predict(X_test[columns]) oof[valid_index] = y_pred_valid.reshape(-1,) if eval_metric != 'group_mae': scores.append(metrics_dict[eval_metric]['sklearn_scoring_function'](y_valid, y_pred_valid)) else: scores.append(metrics_dict[eval_metric]['scoring_function'](y_valid, y_pred_valid, X_valid['group'])) prediction += y_pred.reshape(-1,) if feature_importance: fold_importance_df =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Sun Nov 25 21:53:10 2018 改自selectSubjID_inScale_V2 根据给定的条件筛选大表的item和subjects' folder inputs: file_all:大表 column_basic1=[0,11,19,20,21,22,23,27,28,29,30]:基本信息列 column_basic2=['学历(年)','中国人利手量表']:基本信息名 column_hamd17=np.arange(104,126,1), column_hama=np.arange(126,141,1), column_yars=np.arange(141,153,1), column_bprs=np.arange(153,177,1) column_diagnosis='诊断':诊断的列名 column_quality='Resting_quality' column_note1='诊断备注' column_note2='备注' note1_keyword='复扫':重复备注文字 outputs: folder:筛选出来的ID basic:筛选出来的基本信息 hamd17,hamm,yars,bprs:筛选出来的量表 logicIndex_scale:量表的逻辑index logicIndex_repeat:重复量表的index ... to fetch other output,please check results_dict @author: <NAME> new feature:任意条件筛选 """ # =============================================== import sys # sys.path.append(r'D:\myCodes\MVPA_LIChao\MVPA_Python\workstation') import pandas as pd import re import os import numpy as np class select_SubjID(): # initial parameters def __init__(self, file_all=r"D:\WorkStation_2018\WorkStation_2018_08_Doctor_DynamicFC_Psychosis\Scales\8.30大表.xlsx", # 基本信息和量表,暂时不能加条件来筛选行 column_basic1=[0, 11, 19, 20, 21, 22, 23, 27, 28, 29, 30], column_basic2=['学历(年)', '中国人利手量表', '诊断备注', '备注'], column_hamd17=np.arange(104, 126, 1), column_hama=np.arange(126, 141, 1), column_yars=np.arange(141, 153, 1), column_bprs=np.arange(153, 177, 1), # 可以加条件筛选行的列(item),字典形式,key为列名,value为条件 # condition_name:{condition:[include_or_exclude,match_method]} # 注意:对于某一列的所有条件而言,暂时只支持一种筛选方法,要么全纳入,要么全排出 # 事实上,一般情况下,纳入与排出不应该用在同一列 screening_dict={ '诊断': {1: ['include', 'exact'], 2: ['include', 'exact'], 3: ['include', 'exact'], 4: ['include', 'exact']}, 'Resting_quality': {'Y': ['include', 'exact']}, '诊断备注': {'复扫': ['exclude', 'fuzzy'], '糖尿病': ['exclude', 'fuzzy'], '不能入组': ['exclude', 'fuzzy']}, '备注': {'复扫': ['exclude', 'fuzzy']} } # screening_dict={ # '诊断':{1:['include','exact'],2:['include','exact'],3:['include','exact'],4:['include','exact']}, # 'Resting_quality':{'Y':['include','exact']}, # '诊断备注':{'复扫':['exclude','fuzzy']} # } ): # ==================================================== self.file_all = file_all self.column_basic1 = column_basic1 self.column_basic2 = column_basic2 self.column_hamd17 = column_hamd17 self.column_hama = column_hama self.column_yars = column_yars self.column_bprs = column_bprs self.screening_dict = screening_dict print('Initialized!\n') # ==================================================== def loadExcel(self): # load all clinical data in excel self.allClinicalData = pd.read_excel(self.file_all) return self def extract_one_series(self, column_var): # 选项目,项目列可以是数字编号,也可以是列名字符串 if isinstance(column_var[0], str): data = self.allClinicalData.loc[:, column_var] elif isinstance(self.column_basic1[0], np.int32): data = self.allClinicalData.iloc[:, column_var] elif isinstance(self.column_basic1[0], int): data = self.allClinicalData.iloc[:, column_var] else: print('basicIndex 的输入有误!\n') return data # ==================================================== def select_item(self): # 选项目,项目列可以是数字编号,也可以是列名字符串(注意:这些项目暂时不支持行筛选) basic1 = self.extract_one_series(self.column_basic1) basic2 = self.extract_one_series(self.column_basic2) self.basic = pd.concat([basic1, basic2], axis=1) self.hamd17 = self.extract_one_series(self.column_hamd17) self.hama = self.extract_one_series(self.column_hama) self.yars = self.extract_one_series(self.column_yars) self.bprs = self.extract_one_series(self.column_bprs) return self # ==================================================== # 条件筛选 def screen_data_according_conditions_in_dict_one( self, series_for_screening, condition_in_dict): # 根据字典里面的条件筛选,并得到index。注意条件可能是字符串也可以是数字。 # 注意:此函数只处理一列。 # 由于contains函数不能处理null,先把null替换为'未知' series_for_screening = series_for_screening.mask( series_for_screening.isnull(), '未知') # 生成index为series_for_screening的index的空pd.DataFrame,用于后续join screened_ind_all = pd.DataFrame([]) for condition_name in condition_in_dict: screened_ind = pd.DataFrame([], index=series_for_screening.index) # 每个key值筛选后,都用pd.DataFrame.join方法求并集 # print(condition_name) # print(condition_in_dict[condition_name]) # print(condition_in_dict[condition_name][-1]) # 进入条件筛选 # 精确匹配,一般数字为精确匹配 if condition_in_dict[condition_name][-1] == 'exact': if condition_in_dict[condition_name][0] == 'exclude': screened_ind = screened_ind.loc[series_for_screening.index[series_for_screening != condition_name]] elif condition_in_dict[condition_name][0] == 'include': screened_ind = screened_ind.loc[series_for_screening.index[series_for_screening == condition_name]] # 模糊匹配 elif condition_in_dict[condition_name][-1] == 'fuzzy': if condition_in_dict[condition_name][0] == 'exclude': screened_ind_tmp = series_for_screening.mask( series_for_screening.str.contains(condition_name), None).dropna() screened_ind = screened_ind.loc[screened_ind_tmp.dropna( ).index] elif condition_in_dict[condition_name][0] == 'include': screened_ind_tmp = series_for_screening.where( series_for_screening.str.contains(condition_name), None) screened_ind = screened_ind.loc[screened_ind_tmp.dropna( ).index] # 未指名匹配方式 else: print( '__ini__ is wrong!\n### may be words "exact OR fuzzy" is wrong ###\n') # pd.join 求并集或交集 # 注意:此处混合有'exclude','和include'时,有可能筛选出错,所以对于某一列而言,最好只用一种方法 if screened_ind_all.index.empty: screened_ind_all = screened_ind_all.join(
pd.DataFrame(screened_ind)
pandas.DataFrame
import json import requests import streamlit as st from pandas import DataFrame from web3 import Web3 from opensea_api_client import Client # page init client = Client() def render_asset(asset): if asset['name'] is not None: st.subheader(asset['name']) else: st.subheader(f"{asset['collection']['name']} #{asset['token_id']}") if asset['description'] is not None: st.write(asset['description']) else: st.write(asset['collection']['description']) if asset['image_url'].endswith('mp4') or asset['image_url'].endswith('mov'): st.video(asset['image_url']) elif asset['image_url'].endswith('svg'): svg = requests.get(asset['image_url']).content.decode() st.image(svg) elif asset['image_url']: st.image(asset['image_url']) st.sidebar.header("Endpoints") endpoint_choices = ['Assets', 'Events', 'Rarity'] endpoint = st.sidebar.selectbox("Choose an Endpoint", endpoint_choices) st.title(f"OpenSea API Explorer - {endpoint}") if endpoint == 'Assets': st.sidebar.header('Filters') owner = st.sidebar.text_input("Owner") collection = st.sidebar.text_input("Collection", 'nft-worlds') assets_resp = client.get_assets(collection=collection, owner=owner, limit=5) for asset in assets_resp['assets']: render_asset(asset) if endpoint == 'Events': collection = st.sidebar.text_input("Collection") asset_contract_address = st.sidebar.text_input("Contract Address") token_id = st.sidebar.text_input("Token ID") event_type = st.sidebar.selectbox("Event Type", ['offer_entered', 'cancelled', 'bid_withdrawn', 'transfer', 'approve']) events_resp = client.get_events() event_list = [] for event in events_resp['asset_events']: if event_type == 'offer_entered': if event['bid_amount']: bid_amount = Web3.fromWei(int(event['bid_amount']), 'ether') if event['from_account']['user']: bidder = event['from_account']['user']['username'] else: bidder = event['from_account']['address'] event_list.append([event['created_date'], bidder, float(bid_amount), event['asset']['collection']['name'], event['asset']['token_id']]) df =
DataFrame(event_list, columns=['time', 'bidder', 'bid_amount', 'collection', 'token_id'])
pandas.DataFrame
#!/usr/bin/python3 # -*- coding: utf-8 -*- # *****************************************************************************/ # * Authors: <NAME> # *****************************************************************************/ """transformCSV.py This module contains the basic functions for creating the content of a configuration file from CSV. Args: --inFile: Path for the configuration file where the time series data values CSV --outFile: Path for the configuration file where the time series data values INI --debug: Boolean flag to activate verbose printing for debug use Example: Default usage: $ python transformCSV.py Specific usage: $ python transformCSV.py --inFile C:\raad\src\software\time-series.csv --outFile C:\raad\src\software\time-series.ini --debug True """ import sys import datetime import optparse import traceback import pandas import numpy import os import pprint import csv if sys.version_info.major > 2: import configparser as cF else: import ConfigParser as cF class TransformMetaData(object): debug = False fileName = None fileLocation = None columnsList = None analysisFrameFormat = None uniqueLists = None analysisFrame = None def __init__(self, inputFileName=None, debug=False, transform=False, sectionName=None, outFolder=None, outFile='time-series-madness.ini'): if isinstance(debug, bool): self.debug = debug if inputFileName is None: return elif os.path.exists(os.path.abspath(inputFileName)): self.fileName = inputFileName self.fileLocation = os.path.exists(os.path.abspath(inputFileName)) (analysisFrame, analysisFrameFormat, uniqueLists, columnNamesList) = self.CSVtoFrame( inputFileName=self.fileName) self.analysisFrame = analysisFrame self.columnsList = columnNamesList self.analysisFrameFormat = analysisFrameFormat self.uniqueLists = uniqueLists if transform: passWrite = self.frameToINI(analysisFrame=analysisFrame, sectionName=sectionName, outFolder=outFolder, outFile=outFile) print(f"Pass Status is : {passWrite}") return def getColumnList(self): return self.columnsList def getAnalysisFrameFormat(self): return self.analysisFrameFormat def getuniqueLists(self): return self.uniqueLists def getAnalysisFrame(self): return self.analysisFrame @staticmethod def getDateParser(formatString="%Y-%m-%d %H:%M:%S.%f"): return (lambda x: pandas.datetime.strptime(x, formatString)) # 2020-06-09 19:14:00.000 def getHeaderFromFile(self, headerFilePath=None, method=1): if headerFilePath is None: return (None, None) if method == 1: fieldnames = pandas.read_csv(headerFilePath, index_col=0, nrows=0).columns.tolist() elif method == 2: with open(headerFilePath, 'r') as infile: reader = csv.DictReader(infile) fieldnames = list(reader.fieldnames) elif method == 3: fieldnames = list(pandas.read_csv(headerFilePath, nrows=1).columns) else: fieldnames = None fieldDict = {} for indexName, valueName in enumerate(fieldnames): fieldDict[valueName] = pandas.StringDtype() return (fieldnames, fieldDict) def CSVtoFrame(self, inputFileName=None): if inputFileName is None: return (None, None) # Load File print("Processing File: {0}...\n".format(inputFileName)) self.fileLocation = inputFileName # Create data frame analysisFrame = pandas.DataFrame() analysisFrameFormat = self._getDataFormat() inputDataFrame = pandas.read_csv(filepath_or_buffer=inputFileName, sep='\t', names=self._getDataFormat(), # dtype=self._getDataFormat() # header=None # float_precision='round_trip' # engine='c', # parse_dates=['date_column'], # date_parser=True, # na_values=['NULL'] ) if self.debug: # Preview data. print(inputDataFrame.head(5)) # analysisFrame.astype(dtype=analysisFrameFormat) # Cleanup data analysisFrame = inputDataFrame.copy(deep=True) analysisFrame.apply(pandas.to_numeric, errors='coerce') # Fill in bad data with Not-a-Number (NaN) # Create lists of unique strings uniqueLists = [] columnNamesList = [] for columnName in analysisFrame.columns: if self.debug: print('Column Name : ', columnName) print('Column Contents : ', analysisFrame[columnName].values) if isinstance(analysisFrame[columnName].dtypes, str): columnUniqueList = analysisFrame[columnName].unique().tolist() else: columnUniqueList = None columnNamesList.append(columnName) uniqueLists.append([columnName, columnUniqueList]) if self.debug: # Preview data. print(analysisFrame.head(5)) return (analysisFrame, analysisFrameFormat, uniqueLists, columnNamesList) def frameToINI(self, analysisFrame=None, sectionName='Unknown', outFolder=None, outFile='nil.ini'): if analysisFrame is None: return False try: if outFolder is None: outFolder = os.getcwd() configFilePath = os.path.join(outFolder, outFile) configINI = cF.ConfigParser() configINI.add_section(sectionName) for (columnName, columnData) in analysisFrame: if self.debug: print('Column Name : ', columnName) print('Column Contents : ', columnData.values) print("Column Contents Length:", len(columnData.values)) print("Column Contents Type", type(columnData.values)) writeList = "[" for colIndex, colValue in enumerate(columnData): writeList = f"{writeList}'{colValue}'" if colIndex < len(columnData) - 1: writeList = f"{writeList}, " writeList = f"{writeList}]" configINI.set(sectionName, columnName, writeList) if not os.path.exists(configFilePath) or os.stat(configFilePath).st_size == 0: with open(configFilePath, 'w') as configWritingFile: configINI.write(configWritingFile) noErrors = True except ValueError as e: errorString = ("ERROR in {__file__} @{framePrintNo} with {ErrorFound}".format(__file__=str(__file__), framePrintNo=str( sys._getframe().f_lineno), ErrorFound=e)) print(errorString) noErrors = False return noErrors @staticmethod def _validNumericalFloat(inValue): """ Determines if the value is a valid numerical object. Args: inValue: floating-point value Returns: Value in floating-point or Not-A-Number. """ try: return numpy.float128(inValue) except ValueError: return numpy.nan @staticmethod def _calculateMean(x): """ Calculates the mean in a multiplication method since division produces an infinity or NaN Args: x: Input data set. We use a data frame. Returns: Calculated mean for a vector data frame. """ try: mean = numpy.float128(numpy.average(x, weights=numpy.ones_like(numpy.float128(x)) / numpy.float128(x.size))) except ValueError: mean = 0 pass return mean def _calculateStd(self, data): """ Calculates the standard deviation in a multiplication method since division produces a infinity or NaN Args: data: Input data set. We use a data frame. Returns: Calculated standard deviation for a vector data frame. """ sd = 0 try: n = numpy.float128(data.size) if n <= 1: return numpy.float128(0.0) # Use multiplication version of mean since numpy bug causes infinity. mean = self._calculateMean(data) sd = numpy.float128(mean) # Calculate standard deviation for el in data: diff = numpy.float128(el) - numpy.float128(mean) sd += (diff) ** 2 points = numpy.float128(n - 1) sd = numpy.float128(numpy.sqrt(numpy.float128(sd) / numpy.float128(points))) except ValueError: pass return sd def _determineQuickStats(self, dataAnalysisFrame, columnName=None, multiplierSigma=3.0): """ Determines stats based on a vector to get the data shape. Args: dataAnalysisFrame: Dataframe to do analysis on. columnName: Column name of the data frame. multiplierSigma: Sigma range for the stats. Returns: Set of stats. """ meanValue = 0 sigmaValue = 0 sigmaRangeValue = 0 topValue = 0 try: # Clean out anomoly due to random invalid inputs. if (columnName is not None): meanValue = self._calculateMean(dataAnalysisFrame[columnName]) if meanValue == numpy.nan: meanValue = numpy.float128(1) sigmaValue = self._calculateStd(dataAnalysisFrame[columnName]) if float(sigmaValue) is float(numpy.nan): sigmaValue = numpy.float128(1) multiplier = numpy.float128(multiplierSigma) # Stats: 1 sigma = 68%, 2 sigma = 95%, 3 sigma = 99.7 sigmaRangeValue = (sigmaValue * multiplier) if float(sigmaRangeValue) is float(numpy.nan): sigmaRangeValue = numpy.float128(1) topValue = numpy.float128(meanValue + sigmaRangeValue) print("Name:{} Mean= {}, Sigma= {}, {}*Sigma= {}".format(columnName, meanValue, sigmaValue, multiplier, sigmaRangeValue)) except ValueError: pass return (meanValue, sigmaValue, sigmaRangeValue, topValue) def _cleanZerosForColumnInFrame(self, dataAnalysisFrame, columnName='cycles'): """ Cleans the data frame with data values that are invalid. I.E. inf, NaN Args: dataAnalysisFrame: Dataframe to do analysis on. columnName: Column name of the data frame. Returns: Cleaned dataframe. """ dataAnalysisCleaned = None try: # Clean out anomoly due to random invalid inputs. (meanValue, sigmaValue, sigmaRangeValue, topValue) = self._determineQuickStats( dataAnalysisFrame=dataAnalysisFrame, columnName=columnName) # dataAnalysisCleaned = dataAnalysisFrame[dataAnalysisFrame[columnName] != 0] # When the cycles are negative or zero we missed cleaning up a row. # logicVector = (dataAnalysisFrame[columnName] != 0) # dataAnalysisCleaned = dataAnalysisFrame[logicVector] logicVector = (dataAnalysisCleaned[columnName] >= 1) dataAnalysisCleaned = dataAnalysisCleaned[logicVector] # These timed out mean + 2 * sd logicVector = (dataAnalysisCleaned[columnName] < topValue) # Data range dataAnalysisCleaned = dataAnalysisCleaned[logicVector] except ValueError: pass return dataAnalysisCleaned def _cleanFrame(self, dataAnalysisTemp, cleanColumn=False, columnName='cycles'): """ Args: dataAnalysisTemp: Dataframe to do analysis on. cleanColumn: Flag to clean the data frame. columnName: Column name of the data frame. Returns: cleaned dataframe """ try: replacementList = [pandas.NaT, numpy.Infinity, numpy.NINF, 'NaN', 'inf', '-inf', 'NULL'] if cleanColumn is True: dataAnalysisTemp = self._cleanZerosForColumnInFrame(dataAnalysisTemp, columnName=columnName) dataAnalysisTemp = dataAnalysisTemp.replace(to_replace=replacementList, value=numpy.nan) dataAnalysisTemp = dataAnalysisTemp.dropna() except ValueError: pass return dataAnalysisTemp @staticmethod def _getDataFormat(): """ Return the dataframe setup for the CSV file generated from server. Returns: dictionary data format for pandas. """ dataFormat = { "Serial_Number": pandas.StringDtype(), "LogTime0": pandas.StringDtype(), # @todo force rename "Id0": pandas.StringDtype(), # @todo force rename "DriveId": pandas.StringDtype(), "JobRunId": pandas.StringDtype(), "LogTime1": pandas.StringDtype(), # @todo force rename "Comment0": pandas.StringDtype(), # @todo force rename "CriticalWarning": pandas.StringDtype(), "Temperature": pandas.StringDtype(), "AvailableSpare": pandas.StringDtype(), "AvailableSpareThreshold": pandas.StringDtype(), "PercentageUsed": pandas.StringDtype(), "DataUnitsReadL": pandas.StringDtype(), "DataUnitsReadU": pandas.StringDtype(), "DataUnitsWrittenL": pandas.StringDtype(), "DataUnitsWrittenU": pandas.StringDtype(), "HostReadCommandsL": pandas.StringDtype(), "HostReadCommandsU": pandas.StringDtype(), "HostWriteCommandsL": pandas.StringDtype(), "HostWriteCommandsU": pandas.StringDtype(), "ControllerBusyTimeL": pandas.StringDtype(), "ControllerBusyTimeU": pandas.StringDtype(), "PowerCyclesL": pandas.StringDtype(), "PowerCyclesU": pandas.StringDtype(), "PowerOnHoursL": pandas.StringDtype(), "PowerOnHoursU": pandas.StringDtype(), "UnsafeShutdownsL": pandas.StringDtype(), "UnsafeShutdownsU": pandas.StringDtype(), "MediaErrorsL": pandas.StringDtype(), "MediaErrorsU": pandas.StringDtype(), "NumErrorInfoLogsL": pandas.StringDtype(), "NumErrorInfoLogsU": pandas.StringDtype(), "ProgramFailCountN": pandas.StringDtype(), "ProgramFailCountR": pandas.StringDtype(), "EraseFailCountN": pandas.StringDtype(), "EraseFailCountR": pandas.StringDtype(), "WearLevelingCountN": pandas.StringDtype(), "WearLevelingCountR": pandas.StringDtype(), "E2EErrorDetectCountN": pandas.StringDtype(), "E2EErrorDetectCountR": pandas.StringDtype(), "CRCErrorCountN": pandas.StringDtype(), "CRCErrorCountR": pandas.StringDtype(), "MediaWearPercentageN": pandas.StringDtype(), "MediaWearPercentageR": pandas.StringDtype(), "HostReadsN": pandas.StringDtype(), "HostReadsR": pandas.StringDtype(), "TimedWorkloadN": pandas.StringDtype(), "TimedWorkloadR": pandas.StringDtype(), "ThermalThrottleStatusN": pandas.StringDtype(), "ThermalThrottleStatusR": pandas.StringDtype(), "RetryBuffOverflowCountN": pandas.StringDtype(), "RetryBuffOverflowCountR": pandas.StringDtype(), "PLLLockLossCounterN": pandas.StringDtype(), "PLLLockLossCounterR": pandas.StringDtype(), "NandBytesWrittenN": pandas.StringDtype(), "NandBytesWrittenR": pandas.StringDtype(), "HostBytesWrittenN": pandas.StringDtype(), "HostBytesWrittenR": pandas.StringDtype(), "SystemAreaLifeRemainingN": pandas.StringDtype(), "SystemAreaLifeRemainingR": pandas.StringDtype(), "RelocatableSectorCountN": pandas.StringDtype(), "RelocatableSectorCountR": pandas.StringDtype(), "SoftECCErrorRateN": pandas.StringDtype(), "SoftECCErrorRateR": pandas.StringDtype(), "UnexpectedPowerLossN": pandas.StringDtype(), "UnexpectedPowerLossR": pandas.StringDtype(), "MediaErrorCountN": pandas.StringDtype(), "MediaErrorCountR": pandas.StringDtype(), "NandBytesReadN": pandas.StringDtype(), "NandBytesReadR": pandas.StringDtype(), "WarningCompTempTime": pandas.StringDtype(), "CriticalCompTempTime": pandas.StringDtype(), "TempSensor1": pandas.StringDtype(), "TempSensor2": pandas.StringDtype(), "TempSensor3": pandas.StringDtype(), "TempSensor4": pandas.StringDtype(), "TempSensor5": pandas.StringDtype(), "TempSensor6": pandas.StringDtype(), "TempSensor7": pandas.StringDtype(), "TempSensor8": pandas.StringDtype(), "ThermalManagementTemp1TransitionCount": pandas.StringDtype(), "ThermalManagementTemp2TransitionCount": pandas.StringDtype(), "TotalTimeForThermalManagementTemp1": pandas.StringDtype(), "TotalTimeForThermalManagementTemp2": pandas.StringDtype(), "Core_Num": pandas.StringDtype(), "Id1": pandas.StringDtype(), # @todo force rename "Job_Run_Id": pandas.StringDtype(), "Stats_Time": pandas.StringDtype(), "HostReads": pandas.StringDtype(), "HostWrites": pandas.StringDtype(), "NandReads": pandas.StringDtype(), "NandWrites": pandas.StringDtype(), "ProgramErrors": pandas.StringDtype(), "EraseErrors": pandas.StringDtype(), "ErrorCount": pandas.StringDtype(), "BitErrorsHost1": pandas.StringDtype(), "BitErrorsHost2": pandas.StringDtype(), "BitErrorsHost3": pandas.StringDtype(), "BitErrorsHost4": pandas.StringDtype(), "BitErrorsHost5": pandas.StringDtype(), "BitErrorsHost6": pandas.StringDtype(), "BitErrorsHost7": pandas.StringDtype(), "BitErrorsHost8": pandas.StringDtype(), "BitErrorsHost9": pandas.StringDtype(), "BitErrorsHost10": pandas.StringDtype(), "BitErrorsHost11": pandas.StringDtype(), "BitErrorsHost12": pandas.StringDtype(), "BitErrorsHost13": pandas.StringDtype(), "BitErrorsHost14": pandas.StringDtype(), "BitErrorsHost15": pandas.StringDtype(), "ECCFail": pandas.StringDtype(), "GrownDefects": pandas.StringDtype(), "FreeMemory": pandas.StringDtype(), "WriteAllowance": pandas.StringDtype(), "ModelString": pandas.StringDtype(), "ValidBlocks": pandas.StringDtype(), "TokenBlocks": pandas.StringDtype(), "SpuriousPFCount": pandas.StringDtype(), "SpuriousPFLocations1": pandas.StringDtype(), "SpuriousPFLocations2": pandas.StringDtype(), "SpuriousPFLocations3": pandas.StringDtype(), "SpuriousPFLocations4": pandas.StringDtype(), "SpuriousPFLocations5": pandas.StringDtype(), "SpuriousPFLocations6": pandas.StringDtype(), "SpuriousPFLocations7": pandas.StringDtype(), "SpuriousPFLocations8": pandas.StringDtype(), "BitErrorsNonHost1": pandas.StringDtype(), "BitErrorsNonHost2": pandas.StringDtype(), "BitErrorsNonHost3": pandas.StringDtype(), "BitErrorsNonHost4": pandas.StringDtype(), "BitErrorsNonHost5": pandas.StringDtype(), "BitErrorsNonHost6": pandas.StringDtype(), "BitErrorsNonHost7": pandas.StringDtype(), "BitErrorsNonHost8": pandas.StringDtype(), "BitErrorsNonHost9": pandas.StringDtype(), "BitErrorsNonHost10": pandas.StringDtype(), "BitErrorsNonHost11": pandas.StringDtype(), "BitErrorsNonHost12": pandas.StringDtype(), "BitErrorsNonHost13": pandas.StringDtype(), "BitErrorsNonHost14": pandas.StringDtype(), "BitErrorsNonHost15": pandas.StringDtype(), "ECCFailNonHost": pandas.StringDtype(), "NSversion": pandas.StringDtype(), "numBands": pandas.StringDtype(), "minErase": pandas.StringDtype(), "maxErase": pandas.StringDtype(), "avgErase": pandas.StringDtype(), "minMVolt": pandas.StringDtype(), "maxMVolt": pandas.StringDtype(), "avgMVolt": pandas.StringDtype(), "minMAmp": pandas.StringDtype(), "maxMAmp": pandas.StringDtype(), "avgMAmp": pandas.StringDtype(), "comment1": pandas.StringDtype(), # @todo force rename "minMVolt12v": pandas.StringDtype(), "maxMVolt12v": pandas.StringDtype(), "avgMVolt12v": pandas.StringDtype(), "minMAmp12v": pandas.StringDtype(), "maxMAmp12v": pandas.StringDtype(), "avgMAmp12v": pandas.StringDtype(), "nearMissSector": pandas.StringDtype(), "nearMissDefect": pandas.StringDtype(), "nearMissOverflow": pandas.StringDtype(), "replayUNC": pandas.StringDtype(), "Drive_Id": pandas.StringDtype(), "indirectionMisses": pandas.StringDtype(), "BitErrorsHost16": pandas.StringDtype(), "BitErrorsHost17": pandas.StringDtype(), "BitErrorsHost18": pandas.StringDtype(), "BitErrorsHost19": pandas.StringDtype(), "BitErrorsHost20":
pandas.StringDtype()
pandas.StringDtype
import numpy as np import pandas as pd from os import path from PIL import Image from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator import matplotlib.pyplot as plt def get_youtube_search(query,order,regionCode,channel_id = ''): import os import google_auth_oauthlib.flow import googleapiclient.discovery import googleapiclient.errors #os.environ["OAUTHLIB_INSECURE_TRANSPORT"] = "1" scopes = ["https://www.googleapis.com/auth/youtube.readonly"] api_service_name = "youtube" api_version = "v3" client_secrets_file = "client_secret.json" # Get credentials and create an API client flow = google_auth_oauthlib.flow.InstalledAppFlow.from_client_secrets_file( client_secrets_file, scopes) credentials = flow.run_console() youtube = googleapiclient.discovery.build( api_service_name, api_version, credentials=credentials) if channel_id == '': request = youtube.search().list( part="snippet", maxResults=50, order=order, q=query, regionCode=regionCode ) else: request = youtube.search().list( part="snippet", maxResults=50, channelId=channel_id, order=order, q=query, regionCode=regionCode ) response = request.execute() return response #-----------Россия 24------------- search_result_1 = get_youtube_search(query = "Россия 24", order = "viewCount", regionCode = "RU") search_result_1_df = pd.DataFrame(search_result_1['items']) search_result_2 = get_youtube_search(query = "", order = "viewCount", regionCode = "RU",channel_id = 'UC_IEcnNeHc_bwd92Ber-lew') search_result_2_df = pd.DataFrame(search_result_2['items']) search_result_3 = get_youtube_search(query = "репортаж", order = "viewCount", regionCode = "RU",channel_id = 'UC_IEcnNeHc_bwd92Ber-lew') search_result_3_df = pd.DataFrame(search_result_3['items']) search_result_4 = get_youtube_search(query = "новости", order = "viewCount", regionCode = "RU",channel_id = 'UC_IEcnNeHc_bwd92Ber-lew') search_result_4_df = pd.DataFrame(search_result_4['items']) data_for_wordcloud = [] for i in range(2,search_result_1_df.shape[0]): title = search_result_1_df.snippet[i]['title'] title = title.split(' - Россия 24')[0] data_for_wordcloud.append(title) for i in range(2,search_result_2_df.shape[0]): title = search_result_2_df.snippet[i]['title'] title = title.split(' - Россия 24')[0] data_for_wordcloud.append(title) for i in range(1,search_result_3_df.shape[0]): title = search_result_3_df.snippet[i]['title'] title = title.split(' Специальный репортаж')[0] data_for_wordcloud.append(title) for i in range(1,search_result_4_df.shape[0]): title = search_result_4_df.snippet[i]['title'] title = title.split(' - Россия 24')[0] data_for_wordcloud.append(title) data_for_wordcloud_set = set(data_for_wordcloud) data_for_wordcloud_preprocessed = [] for title in data_for_wordcloud_set: title = title.lower() title = title.replace('&quot;','') title = title.replace(' - россия 24','') title = title.replace('россия 24','') title = title.replace('специальный репортаж','') title = title.replace('документальный фильм','') title = title.replace('александра сладкова','') title = title.replace('москва 24','') title = title.replace('москва. кремль. кутин','') title = title.replace('// . от 07.03.2021','') title = title.replace('авторская программа <NAME>','') title = title.replace('марата кримчеева','') title = title.replace('фильм анны афанасьевой','') title = title.replace('последние','') title = title.replace('новости','') title = title.replace('репортаж','') title = title.replace('интервью','') title = title.replace('программа','') title = title.replace('эксклюзивный','') title = title.replace('дежурная часть','') title = title.replace('вести недели с дмитрием киселевым','') title = title.replace(' на ',' ') title = title.replace(' не ',' ') title = title.replace(' из ',' ') title = title.replace(' за ',' ') title = title.replace(' для ',' ') title = title.replace(' по ',' ') title = title.replace(' от ',' ') title = title.replace('путина','путин') title = title.replace('россии','россия') title = title.replace('китая','китай') title = title.replace('донбассе','донбасс') title = title.replace('карабахе','карабах') data_for_wordcloud_preprocessed.append(title) data_for_wordcloud_preprocessed_string_r24 = '' for title in data_for_wordcloud_preprocessed: data_for_wordcloud_preprocessed_string_r24 = data_for_wordcloud_preprocessed_string_r24 + title + ' ' wordcloud = WordCloud(width = 1000, height = 500, max_font_size=400, max_words=200, color_func=lambda *args, **kwargs: "white", relative_scaling=0.5, background_color="red").generate(data_for_wordcloud_preprocessed_string_r24) wordcloud.to_file("Russia24_WordCloud.png") #-----------RT на русском------------- search_result_1 = get_youtube_search(query = "RT на русском", order = "viewCount", regionCode = "RU") search_result_1_df = pd.DataFrame.from_dict(search_result_1['items']) search_result_2 = get_youtube_search(query = "", order = "viewCount", regionCode = "RU", channel_id = 'UCFU30dGHNhZ-hkh0R10LhLw') search_result_2_df = pd.DataFrame.from_dict(search_result_2['items']) search_result_3 = get_youtube_search(query = "репортаж", order = "viewCount", regionCode = "RU", channel_id = 'UCFU30dGHNhZ-hkh0R10LhLw') search_result_3_df = pd.DataFrame.from_dict(search_result_3['items']) search_result_4 = get_youtube_search(query = "новости", order = "viewCount", regionCode = "RU", channel_id = 'UCFU30dGHNhZ-hkh0R10LhLw') search_result_4_df = pd.DataFrame.from_dict(search_result_4['items']) data_for_wordcloud = [] for i in range(1,search_result_1_df.shape[0]): title = search_result_1_df.snippet[i]['title'] title = title.split(' / ')[0] data_for_wordcloud.append(title) for i in range(1,search_result_2_df.shape[0]): title = search_result_2_df.snippet[i]['title'] title = title.split(' / ')[0] data_for_wordcloud.append(title) for i in range(1,search_result_3_df.shape[0]): title = search_result_3_df.snippet[i]['title'] title = title.split(' / ')[0] data_for_wordcloud.append(title) for i in range(1,search_result_4_df.shape[0]): title = search_result_4_df.snippet[i]['title'] title = title.split(' / ')[0] data_for_wordcloud.append(title) data_for_wordcloud_set = set(data_for_wordcloud) data_for_wordcloud_preprocessed = [] for title in data_for_wordcloud_set: title = title.lower() title = title.replace('&quot;','') title = title.replace('специальный репортаж','') title = title.replace('документальный фильм','') title = title.replace('последние','') title = title.replace('новости','') title = title.replace('новости','') title = title.replace('репортаж','') title = title.replace('репортаж','') title = title.replace(' на ',' ') title = title.replace(' не ',' ') title = title.replace(' из ',' ') title = title.replace(' за ',' ') title = title.replace(' для ',' ') title = title.replace(' по ',' ') title = title.replace(' от ',' ') title = title.replace('россии','россия') title = title.replace('путина','путин') title = title.replace('путин:','путин') title = title.replace('владимира','владимир') title = title.replace('коронавируса','коронавирус') title = title.replace('украинские','украина') title = title.replace('украинской','украина') title = title.replace('украине','украина') title = title.replace('украину','украина') title = title.replace('украины','украина') title = title.replace(': ',' ') data_for_wordcloud_preprocessed.append(title) data_for_wordcloud_preprocessed_string_rt = '' for title in data_for_wordcloud_preprocessed: data_for_wordcloud_preprocessed_string_rt = data_for_wordcloud_preprocessed_string_rt + title + ' ' wordcloud = WordCloud(width = 1000, height = 500, max_font_size=400, max_words=200, color_func=lambda *args, **kwargs: "white", relative_scaling=0.5, background_color="green").generate(data_for_wordcloud_preprocessed_string_rt) wordcloud.to_file("RT_WordCloud.png") #-----------<NAME>------------- search_result_1 = get_youtube_search(query = "<NAME>", order = "viewCount", regionCode = "RU") search_result_1_df = pd.DataFrame.from_dict(search_result_1['items']) search_result_2 = get_youtube_search(query = "", order = "viewCount", regionCode = "RU", channel_id = 'UCdubelOloxR3wzwJG9x8YqQ') search_result_2_df = pd.DataFrame.from_dict(search_result_2['items']) search_result_3 = get_youtube_search(query = "репортаж", order = "viewCount", regionCode = "RU", channel_id = 'UCdubelOloxR3wzwJG9x8YqQ') search_result_3_df = pd.DataFrame.from_dict(search_result_3['items']) search_result_4 = get_youtube_search(query = "новости", order = "viewCount", regionCode = "RU", channel_id = 'UCdubelOloxR3wzwJG9x8YqQ') search_result_4_df = pd.DataFrame.from_dict(search_result_4['items']) data_for_wordcloud = [] for i in range(1,search_result_1_df.shape[0]): title = search_result_1_df.snippet[i]['title'] title = title.split(' /')[0] data_for_wordcloud.append(title) for i in range(1,search_result_2_df.shape[0]): title = search_result_2_df.snippet[i]['title'] title = title.split(' /')[0] data_for_wordcloud.append(title) for i in range(1,search_result_3_df.shape[0]): title = search_result_3_df.snippet[i]['title'] title = title.split(' /')[0] data_for_wordcloud.append(title) for i in range(1,search_result_4_df.shape[0]): title = search_result_4_df.snippet[i]['title'] title = title.split(' /')[0] data_for_wordcloud.append(title) data_for_wordcloud_set = set(data_for_wordcloud) data_for_wordcloud_preprocessed = [] for title in data_for_wordcloud_set: title = title.lower() title = title.replace('&quot;','') title = title.replace('специальный репортаж','') title = title.replace('документальный фильм','') title = title.replace('последние','') title = title.replace('новости','') title = title.replace('"','') title = title.replace('репортаж','') title = title.replace('репортаж','') title = title.replace(' на ',' ') title = title.replace(' не ',' ') title = title.replace(' из ',' ') title = title.replace(' за ',' ') title = title.replace(' для ',' ') title = title.replace(' по ',' ') title = title.replace(' от ',' ') title = title.replace('россии','россия') title = title.replace('путина','путин') title = title.replace('навального','навальный') title = title.replace('владимира','владимир') title = title.replace('коронавируса','коронавирус') title = title.replace('беларуси','беларусь') title = title.replace(': ',' ') data_for_wordcloud_preprocessed.append(title) data_for_wordcloud_preprocessed_string_rain = '' for title in data_for_wordcloud_preprocessed: data_for_wordcloud_preprocessed_string_rain = data_for_wordcloud_preprocessed_string_rain + title + ' ' wordcloud = WordCloud(width = 1000, height = 500, max_font_size=400, max_words=200, color_func=lambda *args, **kwargs: "white", relative_scaling=0.5, background_color="purple").generate(data_for_wordcloud_preprocessed_string_rain) wordcloud.to_file("TvRain_WordCloud.png") #-----------DW на русском------------- search_result_1 = get_youtube_search(query = "DW на русском", order = "viewCount", regionCode = "RU") search_result_1_df = pd.DataFrame.from_dict(search_result_1['items']) search_result_2 = get_youtube_search(query = "", order = "viewCount", regionCode = "RU", channel_id = 'UCXoAjrdHFa2hEL3Ug8REC1w') search_result_2_df = pd.DataFrame.from_dict(search_result_2['items']) search_result_3 = get_youtube_search(query = "репортаж", order = "viewCount", regionCode = "RU", channel_id = 'UCXoAjrdHFa2hEL3Ug8REC1w') search_result_3_df = pd.DataFrame.from_dict(search_result_3['items']) search_result_4 = get_youtube_search(query = "новости", order = "viewCount", regionCode = "RU", channel_id = 'UCXoAjrdHFa2hEL3Ug8REC1w') search_result_4_df = pd.DataFrame.from_dict(search_result_4['items']) data_for_wordcloud = [] for i in range(1,search_result_1_df.shape[0]): title = search_result_1_df.snippet[i]['title'] title = title.split('DW Новости')[0] data_for_wordcloud.append(title) for i in range(1,search_result_2_df.shape[0]): title = search_result_2_df.snippet[i]['title'] title = title.split('DW Новости')[0] data_for_wordcloud.append(title) for i in range(1,search_result_3_df.shape[0]): title = search_result_3_df.snippet[i]['title'] title = title.split('DW Новости')[0] data_for_wordcloud.append(title) for i in range(1,search_result_4_df.shape[0]): title = search_result_4_df.snippet[i]['title'] title = title.split('DW Новости')[0] data_for_wordcloud.append(title) data_for_wordcloud_set = set(data_for_wordcloud) data_for_wordcloud_preprocessed = [] for title in data_for_wordcloud_set: title = title.lower() title = title.replace('&quot;','') title = title.replace('специальный репортаж','') title = title.replace('документальный фильм','') title = title.replace('последние','') title = title.replace('новости','') title = title.replace('"','') title = title.replace('репортаж','') title = title.replace('dw','') title = title.replace(' на ',' ') title = title.replace(' не ',' ') title = title.replace(' из ',' ') title = title.replace(' за ',' ') title = title.replace(' для ',' ') title = title.replace(' по ',' ') title = title.replace(' от ',' ') title = title.replace('россии','россия') title = title.replace('путина','путин') title = title.replace('путину','путин') title = title.replace('москве','москва') title = title.replace('москву','москва') title = title.replace('навального','навальный') title = title.replace('навальным','навальный') title = title.replace('владимира','владимир') title = title.replace('коронавируса','коронавирус') title = title.replace('беларуси','беларусь') title = title.replace('германии','германия') title = title.replace('германию','германия') title = title.replace('кремля','кремль') title = title.replace('санкций','санкции') title = title.replace(': ',' ') data_for_wordcloud_preprocessed.append(title) data_for_wordcloud_preprocessed_string_dw = '' for title in data_for_wordcloud_preprocessed: data_for_wordcloud_preprocessed_string_dw = data_for_wordcloud_preprocessed_string_dw + title + ' ' wordcloud = WordCloud(width = 1000, height = 500, max_font_size=400, max_words=200, color_func=lambda *args, **kwargs: "white", relative_scaling=0.5, background_color="blue").generate(data_for_wordcloud_preprocessed_string_dw) wordcloud.to_file("DW_WordCloud.png") #-----------Настоящее Время------------- search_result_1 = get_youtube_search(query = "Настоящее Время", order = "viewCount", regionCode = "RU", channel_id = 'UCBG57608Hukev3d0d-gvLhQ') search_result_1_df = pd.DataFrame.from_dict(search_result_1['items']) search_result_2 = get_youtube_search(query = "", order = "viewCount", regionCode = "RU", channel_id = 'UCBG57608Hukev3d0d-gvLhQ') search_result_2_df = pd.DataFrame.from_dict(search_result_2['items']) search_result_3 = get_youtube_search(query = "репортаж", order = "viewCount", regionCode = "RU", channel_id = 'UCBG57608Hukev3d0d-gvLhQ') search_result_3_df = pd.DataFrame.from_dict(search_result_3['items']) search_result_4 = get_youtube_search(query = "новости", order = "viewCount", regionCode = "RU", channel_id = 'UCBG57608Hukev3d0d-gvLhQ') search_result_4_df = pd.DataFrame.from_dict(search_result_4['items']) data_for_wordcloud = [] for i in range(1,search_result_1_df.shape[0]): title = search_result_1_df.snippet[i]['title'] title = title.split('|')[0] data_for_wordcloud.append(title) for i in range(1,search_result_2_df.shape[0]): title = search_result_2_df.snippet[i]['title'] title = title.split('|')[0] data_for_wordcloud.append(title) for i in range(1,search_result_3_df.shape[0]): title = search_result_3_df.snippet[i]['title'] title = title.split('|')[0] data_for_wordcloud.append(title) for i in range(1,search_result_4_df.shape[0]): title = search_result_4_df.snippet[i]['title'] title = title.split('|')[0] data_for_wordcloud.append(title) data_for_wordcloud_set = set(data_for_wordcloud) data_for_wordcloud_preprocessed = [] for title in data_for_wordcloud_set: title = title.lower() title = title.replace('&quot;','') title = title.replace('специальный репортаж','') title = title.replace('документальный фильм','') title = title.replace('последние','') title = title.replace('новости','') title = title.replace('"','') title = title.replace('репортаж','') title = title.replace('dw','') title = title.replace(' на ',' ') title = title.replace(' не ',' ') title = title.replace(' из ',' ') title = title.replace(' за ',' ') title = title.replace(' для ',' ') title = title.replace(' по ',' ') title = title.replace(' от ',' ') title = title.replace('россии','россия') title = title.replace('путина','путин') title = title.replace('путину','путин') title = title.replace('москве','москва') title = title.replace('москву','москва') title = title.replace('навального','навальный') title = title.replace('навальным','навальный') title = title.replace('владимира','владимир') title = title.replace('коронавируса','коронавирус') title = title.replace('беларуси','беларусь') title = title.replace('германии','германия') title = title.replace('германию','германия') title = title.replace('кремля','кремль') title = title.replace('санкций','санкции') title = title.replace('таджикистана','таджикистан') title = title.replace('таджикистане','таджикистан') title = title.replace('казахстана','казахстан') title = title.replace('казахстане','казахстан') title = title.replace('кыргызстана','кыргызстан') title = title.replace('кыргызстане','кыргызстан') title = title.replace('хабаровского','хабаровск') title = title.replace('хабаровске','хабаровск') title = title.replace(': ',' ') title = title.replace('.',' ') data_for_wordcloud_preprocessed.append(title) data_for_wordcloud_preprocessed_string_nt = '' for title in data_for_wordcloud_preprocessed: data_for_wordcloud_preprocessed_string_nt = data_for_wordcloud_preprocessed_string_nt + title + ' ' wordcloud = WordCloud(width = 1000, height = 500, max_font_size=400, max_words=200, color_func=lambda *args, **kwargs: "darkblue", relative_scaling=0.5, background_color="white").generate(data_for_wordcloud_preprocessed_string_nt) wordcloud.to_file("NT_WordCloud.png") #-----------Новости на Первом канале------------- search_result_1 = get_youtube_search(query = "", order = "viewCount", regionCode = "RU", channel_id = 'UCKonxxVHzDl55V7a9n_Nlgg') search_result_1_df = pd.DataFrame.from_dict(search_result_1['items']) search_result_2 = get_youtube_search(query = "репортаж", order = "viewCount", regionCode = "RU", channel_id = 'UCKonxxVHzDl55V7a9n_Nlgg') search_result_2_df = pd.DataFrame.from_dict(search_result_2['items']) data_for_wordcloud = [] for i in range(1,search_result_1_df.shape[0]): title = search_result_1_df.snippet[i]['title'] if 'Выпуск ' not in title: data_for_wordcloud.append(title) for i in range(1,search_result_2_df.shape[0]): title = search_result_2_df.snippet[i]['title'] if 'Выпуск ' not in title: data_for_wordcloud.append(title) data_for_wordcloud_set = set(data_for_wordcloud) data_for_wordcloud_preprocessed = [] for title in data_for_wordcloud_set: title = title.lower() title = title.replace('&quot;','') title = title.replace('специальный репортаж','') title = title.replace('документальный фильм','') title = title.replace('эксклюзивное интервью','') title = title.replace('последние','') title = title.replace('новости','') title = title.replace('"','') title = title.replace('репортаж','') title = title.replace('dw','') title = title.replace(' на ',' ') title = title.replace(' не ',' ') title = title.replace(' из ',' ') title = title.replace(' за ',' ') title = title.replace(' для ',' ') title = title.replace(' по ',' ') title = title.replace(' от ',' ') title = title.replace('как',' ') title = title.replace('россии','россия') title = title.replace('путина','путин') title = title.replace('путину','путин') title = title.replace('москве','москва') title = title.replace('москву','москва') title = title.replace('первому','') title = title.replace('первого','') title = title.replace('канала','') title = title.replace('каналу','') title = title.replace('навального','навальный') title = title.replace('навальным','навальный') title = title.replace('владимира','владимир') title = title.replace('коронавируса','коронавирус') title = title.replace('беларуси','беларусь') title = title.replace('германии','германия') title = title.replace('германию','германия') title = title.replace('кремля','кремль') title = title.replace('санкций','санкции') title = title.replace('таджикистана','таджикистан') title = title.replace('таджикистане','таджикистан') title = title.replace('казахстана','казахстан') title = title.replace('казахстане','казахстан') title = title.replace('кыргызстана','кыргызстан') title = title.replace('кыргызстане','кыргызстан') title = title.replace('хабаровского','хабаровск') title = title.replace('хабаровске','хабаровск') title = title.replace(': ',' ') title = title.replace('.',' ') data_for_wordcloud_preprocessed.append(title) data_for_wordcloud_preprocessed_string_tv1 = '' for title in data_for_wordcloud_preprocessed: data_for_wordcloud_preprocessed_string_tv1 = data_for_wordcloud_preprocessed_string_tv1 + title + ' ' wordcloud = WordCloud(width = 1000, height = 500, max_font_size=400, max_words=200, color_func=lambda *args, **kwargs: "white", relative_scaling=0.5, background_color="darkblue").generate(data_for_wordcloud_preprocessed_string_tv1) wordcloud.to_file("TV1_WordCloud.png") #-----------BBC News - Русская служба------------- search_result_1 = get_youtube_search(query = "BBC News - Русская служба", order = "viewCount", regionCode = "RU", channel_id = 'UC8zQiuT0m1TELequJ5sp5zw') search_result_1_df =
pd.DataFrame.from_dict(search_result_1['items'])
pandas.DataFrame.from_dict
from io import BytesIO import pytest import pandas.util._test_decorators as td import pandas as pd import pandas._testing as tm def test_compression_roundtrip(compression): df = pd.DataFrame( [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]], index=["A", "B"], columns=["X", "Y", "Z"], ) with tm.ensure_clean() as path: df.to_json(path, compression=compression) tm.assert_frame_equal(df, pd.read_json(path, compression=compression)) # explicitly ensure file was compressed. with tm.decompress_file(path, compression) as fh: result = fh.read().decode("utf8") tm.assert_frame_equal(df, pd.read_json(result)) def test_read_zipped_json(datapath): uncompressed_path = datapath("io", "json", "data", "tsframe_v012.json") uncompressed_df = pd.read_json(uncompressed_path) compressed_path = datapath("io", "json", "data", "tsframe_v012.json.zip") compressed_df = pd.read_json(compressed_path, compression="zip") tm.assert_frame_equal(uncompressed_df, compressed_df) @td.skip_if_not_us_locale def test_with_s3_url(compression, s3_resource, s3so): # Bucket "pandas-test" created in tests/io/conftest.py df = pd.read_json('{"a": [1, 2, 3], "b": [4, 5, 6]}') with tm.ensure_clean() as path: df.to_json(path, compression=compression) with open(path, "rb") as f: s3_resource.Bucket("pandas-test").put_object(Key="test-1", Body=f) roundtripped_df = pd.read_json( "s3://pandas-test/test-1", compression=compression, storage_options=s3so ) tm.assert_frame_equal(df, roundtripped_df) def test_lines_with_compression(compression): with tm.ensure_clean() as path: df = pd.read_json('{"a": [1, 2, 3], "b": [4, 5, 6]}') df.to_json(path, orient="records", lines=True, compression=compression) roundtripped_df =
pd.read_json(path, lines=True, compression=compression)
pandas.read_json
import json import geopandas as gp import numpy as np import pandas as pd import pygeos as pg from pyproj.transformer import Transformer from shapely.wkb import loads def to_crs(geometries, src_crs, target_crs): """Convert coordinates from one CRS to another CRS Parameters ---------- geometries : ndarray of pygeos geometries src_crs : CRS or params to create it target_crs : CRS or params to create it """ if src_crs == target_crs: return geometries.copy() transformer = Transformer.from_crs(src_crs, target_crs, always_xy=True) coords = pg.get_coordinates(geometries) new_coords = transformer.transform(coords[:, 0], coords[:, 1]) result = pg.set_coordinates(geometries.copy(), np.array(new_coords).T) return result def sjoin(left, right, predicate="intersects", how="left"): """Join data frames on geometry, comparable to geopandas. NOTE: pygeos-backed version currently in progress in geopandas NOTE: left vs right must be determined in advance for best performance, unlike geopandas. Parameters ---------- left : GeoDataFrame right : GeoDataFrame predicate : str, optional (default "intersects") how : str, optional (default "left") Returns ------- GeoDataFrame Includes all columns from left and all columns from right except geometry, suffixed by _right where column names overlap. """ # NOTE: spatial join is inner to avoid recasting indices to float. # Have to put inside Series to keep original indices intact because # we use .values.data (returns ndarray) to get pygeos geometries. joined = sjoin_geometry( pd.Series(left.geometry.values.data, index=left.index), pd.Series(right.geometry.values.data, index=right.index), predicate, how="inner", ) joined = left.join(joined, how=how).join( right.drop(columns=["geometry"]), on="index_right", rsuffix="_right" ) return joined def sjoin_geometry(left, right, predicate="intersects", how="inner"): """Use pygeos to do a spatial join between 2 series or ndarrays of pygeos geometries. Parameters ---------- left : Series or ndarray left geometries, will form basis of index that is returned right : Series or ndarray right geometries, their indices will be returned where thy meet predicate predicate : str, optional (default: "intersects") name of pygeos predicate function (any of the pygeos predicates should work: intersects, contains, within, overlaps, crosses) how : str, optional (default: "inner") one of "inner" or "left"; "right" is not supported at this time. Returns ------- Series indexed on index of left, containing values of right index """ if not how in ("inner", "left"): raise NotImplementedError("Other join types not implemented") if isinstance(left, pd.Series): left_values = left.values left_index = left.index else: left_values = left left_index = np.arange(0, len(left)) if isinstance(right, pd.Series): right_values = right.values right_index = right.index else: right_values = right right_index = np.arange(0, len(right)) tree = pg.STRtree(right_values) # hits are in 0-based indicates of right hits = tree.query_bulk(left_values, predicate=predicate) if how == "inner": index = left_index[hits[0]] values = right_index[hits[1]] elif how == "left": index = left_index.copy() values = np.empty(shape=index.shape) values.fill(np.nan) values[hits[0]] = right_index[hits[1]] return
pd.Series(values, index=index, name="index_right")
pandas.Series