modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-23 18:28:48
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
573 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-23 18:28:01
card
stringlengths
11
1.01M
PremalMatalia/roberta-base-best-squad2
PremalMatalia
2021-08-04T18:54:35Z
243
1
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "dataset:squad_v2", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- datasets: - squad_v2 --- # RoBERTa-base for QA ## Overview **Language model:** 'roberta-base' </br> **Language:** English </br> **Downstream-task:** Extractive QA </br> **Training data:** SQuAD 2.0 </br> **Eval data:** SQuAD 2.0 </br> **Code:** <TBD> </br> ## Env Information `transformers` version: 4.9.1 </br> Platform: Linux-5.4.104+-x86_64-with-Ubuntu-18.04-bionic </br> Python version: 3.7.11 </br> PyTorch version (GPU?): 1.9.0+cu102 (False)</br> Tensorflow version (GPU?): 2.5.0 (False)</br> ## Hyperparameters ``` max_seq_len=386 doc_stride=128 n_best_size=20 max_answer_length=30 min_null_score=7.0 batch_size=8 n_epochs=6 base_LM_model = "roberta-base" learning_rate=1.5e-5 adam_epsilon=1e-5 adam_beta1=0.95 adam_beta2=0.999 warmup_steps=100 weight_decay=0.01 optimizer=AdamW lr_scheduler="polynomial" ``` ##### There is a special threshold value CLS_threshold=-3 used to more accurately identify no answers [Logic will be available in GitHub Repo [TBD] ## Performance ``` "exact": 81.192622 "f1": 83.95408 "total": 11873 "HasAns_exact": 74.190283 "HasAns_f1": 79.721119 "HasAns_total": 5928 "NoAns_exact": 88.174937 "NoAns_f1": 88.174937 "NoAns_total": 5945 ``` ## Usage ### In Transformers ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "PremalMatalia/roberta-base-best-squad2" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) QA_input = { 'question': 'Which name is also used to describe the Amazon rainforest in English?', 'context': 'The Amazon rainforest (Portuguese: Floresta Amazônica or Amazônia; Spanish: Selva Amazónica, Amazonía or usually Amazonia; French: Forêt amazonienne; Dutch: Amazoneregenwoud), also known in English as Amazonia or the Amazon Jungle, is a moist broadleaf forest that covers most of the Amazon basin of South America. This basin encompasses 7,000,000 square kilometres (2,700,000 sq mi), of which 5,500,000 square kilometres (2,100,000 sq mi) are covered by the rainforest. This region includes territory belonging to nine nations. The majority of the forest is contained within Brazil, with 60% of the rainforest, followed by Peru with 13%, Colombia with 10%, and with minor amounts in Venezuela, Ecuador, Bolivia, Guyana, Suriname and French Guiana. States or departments in four nations contain "Amazonas" in their names. The Amazon represents over half of the planet\'s remaining rainforests, and comprises the largest and most biodiverse tract of tropical rainforest in the world, with an estimated 390 billion individual trees divided into 16,000 species.' } res = nlp(QA_input) print(res) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Authors Premal Matalia
microsoft/xlm-align-base
microsoft
2021-08-04T15:23:10Z
301
9
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
# XLM-Align **XLM-Align** (ACL 2021, [paper](https://aclanthology.org/2021.acl-long.265/), [repo](https://github.com/CZWin32768/XLM-Align), [model](https://huggingface.co/microsoft/xlm-align-base)) Improving Pretrained Cross-Lingual Language Models via Self-Labeled Word Alignment XLM-Align is a pretrained cross-lingual language model that supports 94 languages. See details in our [paper](https://aclanthology.org/2021.acl-long.265/). ## Example ``` model = AutoModel.from_pretrained("microsoft/xlm-align-base") ``` ## Evaluation Results XTREME cross-lingual understanding tasks: | Model | POS | NER | XQuAD | MLQA | TyDiQA | XNLI | PAWS-X | Avg | |:----:|:----:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:| | XLM-R_base | 75.6 | 61.8 | 71.9 / 56.4 | 65.1 / 47.2 | 55.4 / 38.3 | 75.0 | 84.9 | 66.4 | | XLM-Align | **76.0** | **63.7** | **74.7 / 59.0** | **68.1 / 49.8** | **62.1 / 44.8** | **76.2** | **86.8** | **68.9** | ## MD5 ``` b9d214025837250ede2f69c9385f812c config.json 6005db708eb4bab5b85fa3976b9db85b pytorch_model.bin bf25eb5120ad92ef5c7d8596b5dc4046 sentencepiece.bpe.model eedbd60a7268b9fc45981b849664f747 tokenizer.json ``` ## About Contact: chizewen\@outlook.com BibTeX: ``` @inproceedings{xlmalign, title = "Improving Pretrained Cross-Lingual Language Models via Self-Labeled Word Alignment", author={Zewen Chi and Li Dong and Bo Zheng and Shaohan Huang and Xian-Ling Mao and Heyan Huang and Furu Wei}, booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.acl-long.265", doi = "10.18653/v1/2021.acl-long.265", pages = "3418--3430",} ```
eliza-dukim/bert-base-finetuned-ynat
eliza-dukim
2021-08-04T10:03:32Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:klue", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - klue metrics: - f1 model_index: - name: bert-base-finetuned-ynat results: - task: name: Text Classification type: text-classification dataset: name: klue type: klue args: ynat metric: name: F1 type: f1 value: 0.8699556378491373 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-finetuned-ynat This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.3741 - F1: 0.8700 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 179 | 0.4458 | 0.8516 | | No log | 2.0 | 358 | 0.3741 | 0.8700 | | 0.385 | 3.0 | 537 | 0.3720 | 0.8693 | | 0.385 | 4.0 | 716 | 0.3744 | 0.8689 | | 0.385 | 5.0 | 895 | 0.3801 | 0.8695 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
huggingtweets/dril-methwaffles-s4m31p4n
huggingtweets
2021-08-04T09:42:48Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/dril-methwaffles-s4m31p4n/1628070164168/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/847818629840228354/VXyQHfn0_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1410800729590308868/UYAyBj1Y_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1404609739883954183/gta_5zXG_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">wint & Chet & ppigg</div> <div style="text-align: center; font-size: 14px;">@dril-methwaffles-s4m31p4n</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from wint & Chet & ppigg. | Data | wint | Chet | ppigg | | --- | --- | --- | --- | | Tweets downloaded | 3189 | 1923 | 3132 | | Retweets | 456 | 664 | 976 | | Short tweets | 307 | 211 | 914 | | Tweets kept | 2426 | 1048 | 1242 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/bp0h4miy/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dril-methwaffles-s4m31p4n's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1020o0m8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1020o0m8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dril-methwaffles-s4m31p4n') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
liam168/chat-DialoGPT-small-zh
liam168
2021-08-04T09:01:41Z
21
5
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "zh", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: zh widget: - text: "你们宿舍都是这么厉害的人吗" license: apache-2.0 --- # liam168/chat-DialoGPT-small-zh ## Model description 用中文聊天数据训练的模型; ### How to use Now we are ready to try out how the model works as a chatting partner! ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch mode_name = 'liam168/chat-DialoGPT-small-zh' tokenizer = AutoTokenizer.from_pretrained(mode_name) model = AutoModelForCausalLM.from_pretrained(mode_name) # Let's chat for 5 lines for step in range(5): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id) # pretty print last ouput tokens from bot print("Answer: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
zhihao/distilbert-base-uncased-finetuned-ner
zhihao
2021-08-04T07:48:13Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model_index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metric: name: Accuracy type: accuracy value: 0.9840500738716699 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0615 - Precision: 0.9251 - Recall: 0.9363 - F1: 0.9307 - Accuracy: 0.9841 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2473 | 1.0 | 878 | 0.0714 | 0.9154 | 0.9178 | 0.9166 | 0.9808 | | 0.0522 | 2.0 | 1756 | 0.0620 | 0.9201 | 0.9348 | 0.9274 | 0.9832 | | 0.031 | 3.0 | 2634 | 0.0615 | 0.9251 | 0.9363 | 0.9307 | 0.9841 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
huggingartists/fascinoma
huggingartists
2021-08-04T07:45:42Z
3
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/fascinoma", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/fascinoma tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://assets.genius.com/images/default_avatar_300.png?1627659427&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Fascinoma</div> <a href="https://genius.com/artists/fascinoma"> <div style="text-align: center; font-size: 14px;">@fascinoma</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Fascinoma. Dataset is available [here](https://huggingface.co/datasets/huggingartists/fascinoma). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/fascinoma") ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/fascinoma") model = AutoModelWithLMHead.from_pretrained("huggingartists/fascinoma") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/za989b3u/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Fascinoma's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/kklye04t) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/kklye04t/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/fascinoma') generator("I am", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/sugar-ray
huggingartists
2021-08-04T07:38:52Z
4
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/sugar-ray", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/sugar-ray tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/8b5c8fe74f6176047b2b5681e0e0e2d4.273x273x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Sugar Ray</div> <a href="https://genius.com/artists/sugar-ray"> <div style="text-align: center; font-size: 14px;">@sugar-ray</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Sugar Ray. Dataset is available [here](https://huggingface.co/datasets/huggingartists/sugar-ray). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/sugar-ray") ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/sugar-ray") model = AutoModelWithLMHead.from_pretrained("huggingartists/sugar-ray") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/10440qj4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Sugar Ray's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2n3xk5nv) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2n3xk5nv/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/sugar-ray') generator("I am", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
ricardo-filho/bert-base-portuguese-cased-nli-assin-2
ricardo-filho
2021-08-03T19:29:54Z
2,143
6
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 407 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.SoftmaxLoss.SoftmaxLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 1, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 41, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
nielsr/beit-large-patch16-224-pt22k-ft22k
nielsr
2021-08-03T15:49:41Z
70
0
transformers
[ "transformers", "pytorch", "beit", "image-classification", "dataset:imagenet", "dataset:imagenet-21k", "arxiv:2106.08254", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - image-classification datasets: - imagenet - imagenet-21k --- # BEiT (large-sized model, fine-tuned on ImageNet-22k) BEiT (BERT pre-training of Image Transformers) model pre-trained in a self-supervised way on ImageNet-22k (14 million images, 21,841 classes) at resolution 224x224, and also fine-tuned on the same dataset at the same resolution. It was introduced in the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong and Furu Wei and first released in [this repository](https://github.com/microsoft/unilm/tree/master/beit). Disclaimer: The team releasing BEiT did not write a model card for this model so this model card has been written by the Hugging Face team.
vasudevgupta/gsoc-wav2vec2-960h
vasudevgupta
2021-08-03T15:07:58Z
9
0
transformers
[ "transformers", "tf", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
TensorFlow version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h). Obtained using script from https://github.com/vasudevgupta7/gsoc-wav2vec2.
huggingtweets/billgates-jack
huggingtweets
2021-08-03T10:34:31Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/billgates-jack/1627986735283/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1414439092373254147/JdS8yLGI_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1115644092329758721/AFjOr-K8_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Bill Gates & jack</div> <div style="text-align: center; font-size: 14px;">@billgates-jack</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Bill Gates & jack. | Data | Bill Gates | jack | | --- | --- | --- | | Tweets downloaded | 3250 | 3196 | | Retweets | 198 | 1168 | | Short tweets | 6 | 808 | | Tweets kept | 3046 | 1220 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/20z4h7xy/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @billgates-jack's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1wd36v62) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1wd36v62/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/billgates-jack') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
liam168/chat-DialoGPT-small-en
liam168
2021-08-03T10:25:14Z
9
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en widget: - text: "I got a surprise for you, Morty." license: apache-2.0 --- # liam168/chat-DialoGPT-small-en ## Model description 用英文聊天数据训练的模型; ### How to use Now we are ready to try out how the model works as a chatting partner! ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch mode_name = 'liam168/chat-DialoGPT-small-en' tokenizer = AutoTokenizer.from_pretrained(mode_name) model = AutoModelForCausalLM.from_pretrained(mode_name) # Let's chat for 5 lines for step in range(5): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id) # pretty print last ouput tokens from bot print("Answer: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
TheLongSentance/t5-small-finetuned-toxic
TheLongSentance
2021-08-03T09:25:06Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model_index: - name: t5-small-finetuned-toxic results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation metric: name: Rouge1 type: rouge value: 93.7659 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-toxic This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 0.1295 - Rouge1: 93.7659 - Rouge2: 3.6618 - Rougel: 93.7652 - Rougelsum: 93.7757 - Gen Len: 2.5481 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 0.1595 | 1.0 | 7979 | 0.1295 | 93.7659 | 3.6618 | 93.7652 | 93.7757 | 2.5481 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
Maltehb/aelaectra-danish-electra-small-uncased-ner-dane
Maltehb
2021-08-03T05:06:18Z
13
0
transformers
[ "transformers", "pytorch", "tf", "electra", "token-classification", "ælæctra", "danish", "ELECTRA-Small", "replaced token detection", "da", "dataset:DAGW", "arxiv:2003.10555", "arxiv:1810.04805", "arxiv:2005.03521", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- language: "da" tags: - ælæctra - pytorch - danish - ELECTRA-Small - replaced token detection license: "mit" datasets: - DAGW widget: - text: "Chili Jensen, som bor på Danmarksgade 12, køber chilifrugter fra Netto." metrics: - f1 --- # Ælæctra - Finetuned for Named Entity Recognition on the [DaNE dataset](https://danlp.alexandra.dk/304bd159d5de/datasets/ddt.zip) (Hvingelby et al., 2020) by Malte Højmark-Bertelsen. **Ælæctra** is a Danish Transformer-based language model created to enhance the variety of Danish NLP resources with a more efficient model compared to previous state-of-the-art (SOTA) models. Ælæctra was pretrained with the ELECTRA-Small (Clark et al., 2020) pretraining approach by using the Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020) and evaluated on Named Entity Recognition (NER) tasks. Since NER only presents a limited picture of Ælæctra's capabilities I am very interested in further evaluations. Therefore, if you employ it for any task, feel free to hit me up your findings! Ælæctra was, as mentioned, created to enhance the Danish NLP capabilties and please do note how this GitHub still does not support the Danish characters "*Æ, Ø and Å*" as the title of this repository becomes "*-l-ctra*". How ironic.🙂 Here is an example on how to load the finetuned Ælæctra-uncased model for Named Entity Recognition in [PyTorch](https://pytorch.org/) using the [🤗Transformers](https://github.com/huggingface/transformers) library: ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("Maltehb/-l-ctra-danish-electra-small-uncased-ner-dane") model = AutoModelForTokenClassification.from_pretrained("Maltehb/-l-ctra-danish-electra-small-uncased-ner-dane") ``` ### Evaluation of current Danish Language Models Ælæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated: | Model | Layers | Hidden Size | Params | AVG NER micro-f1 (DaNE-testset) | Average Inference Time (Sec/Epoch) | Download | | --- | --- | --- | --- | --- | --- | --- | | Ælæctra Uncased | 12 | 256 | 13.7M | 78.03 (SD = 1.28) | 10.91 | [Link for model](https://www.dropbox.com/s/cag7prs1nvdchqs/%C3%86l%C3%A6ctra.zip?dl=0) | | Ælæctra Cased | 12 | 256 | 14.7M | 80.08 (SD = 0.26) | 10.92 | [Link for model](https://www.dropbox.com/s/cag7prs1nvdchqs/%C3%86l%C3%A6ctra.zip?dl=0) | | DaBERT | 12 | 768 | 110M | 84.89 (SD = 0.64) | 43.03 | [Link for model](https://www.dropbox.com/s/19cjaoqvv2jicq9/danish_bert_uncased_v2.zip?dl=1) | | mBERT Uncased | 12 | 768 | 167M | 80.44 (SD = 0.82) | 72.10 | [Link for model](https://storage.googleapis.com/bert_models/2018_11_03/multilingual_L-12_H-768_A-12.zip) | | mBERT Cased | 12 | 768 | 177M | 83.79 (SD = 0.91) | 70.56 | [Link for model](https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip) | On [DaNE](https://danlp.alexandra.dk/304bd159d5de/datasets/ddt.zip) (Hvingelby et al., 2020) without the *MISC-tag*, Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate. ### Pretraining To pretrain Ælæctra it is recommended to build a Docker Container from the [Dockerfile](https://github.com/MalteHB/Ælæctra/tree/master/notebooks/fine-tuning/). Next, simply follow the [pretraining notebooks](https://github.com/MalteHB/Ælæctra/tree/master/infrastructure/Dockerfile/) The pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company [KMD](https://www.kmd.dk/). The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model ### Fine-tuning To fine-tune any Ælæctra model follow the [fine-tuning notebooks](https://github.com/MalteHB/Ælæctra/tree/master/notebooks/fine-tuning/) ### References Clark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. ArXiv:2003.10555 [Cs]. http://arxiv.org/abs/2003.10555 Danish BERT. (2020). BotXO. https://github.com/botxo/nordic_bert (Original work published 2019) Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. http://arxiv.org/abs/1810.04805 Hvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. https://www.aclweb.org/anthology/2020.lrec-1.565 Strømberg-Derczynski, L., Baglini, R., Christiansen, M. H., Ciosici, M. R., Dalsgaard, J. A., Fusaroli, R., Henrichsen, P. J., Hvingelby, R., Kirkedal, A., Kjeldsen, A. S., Ladefoged, C., Nielsen, F. Å., Petersen, M. L., Rystrøm, J. H., & Varab, D. (2020). The Danish Gigaword Project. ArXiv:2005.03521 [Cs]. http://arxiv.org/abs/2005.03521 #### Acknowledgements As the majority of this repository is build upon [the works](https://github.com/google-research/electra) by the team at Google who created ELECTRA, a HUGE thanks to them is in order. A Giga thanks also goes out to the incredible people who collected The Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020). Furthermore, I would like to thank my supervisor [Riccardo Fusaroli](https://github.com/fusaroli) for the support with the thesis, and a special thanks goes out to [Kenneth Enevoldsen](https://github.com/KennethEnevoldsen) for his continuous feedback. Lastly, i would like to thank KMD, my colleagues from KMD, and my peers and co-students from Cognitive Science for encouriging me to keep on working hard and holding my head up high! #### Contact For help or further information feel free to connect with the author Malte Højmark-Bertelsen on [[email protected]](mailto:[email protected]?subject=[GitHub]%20ÆlæctraUncasedNER) or any of the following platforms: [<img align="left" alt="MalteHB | Twitter" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/twitter.svg" />][twitter] [<img align="left" alt="MalteHB | LinkedIn" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/linkedin.svg" />][linkedin] [<img align="left" alt="MalteHB | Instagram" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/instagram.svg" />][instagram] <br /> </details> [twitter]: https://twitter.com/malteH_B [instagram]: https://www.instagram.com/maltemusen/ [linkedin]: https://www.linkedin.com/in/malte-h%C3%B8jmark-bertelsen-9a618017b/
al00014/distilbert-base-uncased-finetuned-ner
al00014
2021-08-02T15:53:31Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model_index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metric: name: Accuracy type: accuracy value: 0.9833669595056158 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0611 - Precision: 0.9250 - Recall: 0.9321 - F1: 0.9285 - Accuracy: 0.9834 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2399 | 1.0 | 878 | 0.0702 | 0.9118 | 0.9208 | 0.9163 | 0.9805 | | 0.0503 | 2.0 | 1756 | 0.0614 | 0.9176 | 0.9311 | 0.9243 | 0.9824 | | 0.0304 | 3.0 | 2634 | 0.0611 | 0.9250 | 0.9321 | 0.9285 | 0.9834 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
andi611/distilbert-base-uncased-ner-agnews
andi611
2021-08-02T01:25:13Z
4
3
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:ag_news", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - ag_news metrics: - accuracy model_index: - name: distilbert-base-uncased-agnews results: - dataset: name: ag_news type: ag_news args: default metric: name: Accuracy type: accuracy value: 0.9473684210526315 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-agnews This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the ag_news dataset. It achieves the following results on the evaluation set: - Loss: 0.1652 - Accuracy: 0.9474 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1916 | 1.0 | 3375 | 0.1741 | 0.9412 | | 0.123 | 2.0 | 6750 | 0.1631 | 0.9483 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
Galuh/id-journal-gpt2
Galuh
2021-08-01T14:07:43Z
14
1
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "gpt2", "text-generation", "id", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- language: id widget: - text: "Penelitian ini bertujuan untuk menentukan identitas invertebrata laut dari Perairan Papua dengan teknik DNA barcoding" --- # Indonesian GPT-2 finetuned on Indonesian academic journals This is the [Indonesian gpt2-small model](https://huggingface.co/flax-community/gpt2-small-indonesian) fine-tuned to abstracts of Indonesian academic journals. All training was done on a TPUv2-8 VM sponsored by [TPU Research Cloud](https://sites.research.google/trc/). The demo can be found [here](https://huggingface.co/spaces/flax-community/gpt2-indonesian). ## How to use You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility: ```python >>> from transformers import pipeline, set_seed >>> generator = pipeline('text-generation', model='Galuh/id-journal-gpt2') >>> set_seed(42) >>> generator("Penelitian ini menggunakan teknik DNA barcoding untuk", max_length=30, num_return_sequences=5) [{'generated_text': 'Penelitian ini menggunakan teknik DNA barcoding untuk mendeteksi perubahan genetik bakteri pada udang windu. Empat tahap telah dilakukan, meliputi preparasi media untuk larva,'}, {'generated_text': 'Penelitian ini menggunakan teknik DNA barcoding untuk identifikasi gen pengasil flavonoid. Data yang diperoleh dari hasil PCR diidentifikasi dengan teknik sekuensing'}, {'generated_text': 'Penelitian ini menggunakan teknik DNA barcoding untuk mengekstraksi fragmen DNA dari sampel kulit buaya dan tulang anjing, di mana proses ini melibatkan karakterisasi enzim yang'}, {'generated_text': 'Penelitian ini menggunakan teknik DNA barcoding untuk melakukan transformasi. Tahapan transformasi meliputi seleksi sel dengan urutan (2, 8, 16,..., 18) dan'}, {'generated_text': 'Penelitian ini menggunakan teknik DNA barcoding untuk amplifikasi genom DNA dengan menggunakan primer TG8226 dan TG806. Metode pol'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import GPT2Tokenizer, GPT2Model tokenizer = GPT2Tokenizer.from_pretrained('Galuh/id-journal-gpt2') model = GPT2Model.from_pretrained('Galuh/id-journal-gpt2') text = "Ubah dengan teks apa saja." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import GPT2Tokenizer, TFGPT2Model tokenizer = GPT2Tokenizer.from_pretrained('Galuh/id-journal-gpt2') model = TFGPT2Model.from_pretrained('Galuh/id-journal-gpt2') text = "Ubah dengan teks apa saja." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Limitations and bias This model is originally the [Indonesian gpt2-small model](https://huggingface.co/flax-community/gpt2-small-indonesian), thus this model is also subject to the same [limitations and bias as the original model](https://huggingface.co/flax-community/gpt2-small-indonesian#limitations-and-bias). More detailed bias and analysis on this specific model is coming soon. ## Training data The model was trained on a dataset of Indonesian journals. We only trained this model on the abstracts. We extract the abstract by writing a script to find any text that is located between the word "Abstrak" (abstract) and "Kata kunci" (keywords). The extraction script can be found [here](https://github.com/galuhsahid/id-journal-gpt2/). To separate each abstract, we also add an end of text token (`<|endoftext|>`) between each abstract. The information of the sub-dataset and the distribution of the training and evaluation dataset are as follows: | split | count | percentage | | ---------- | ---------- | -------------- | | train | 146,248 | 90% | | validation | 16,250 | 10% | ## Training procedure The model was trained on a TPUv2-8 VM provided by [TPU Research Cloud](https://sites.research.google/trc/). The training duration was `2h 30m 57s`. ### Evaluation results The model achieves the following results without any fine-tuning (zero-shot): | dataset | train loss | eval loss | eval perplexity | | ---------- | ---------- | -------------- | ---------- | | Indonesian journals dataset (abstract only) | 2.913 | 2.855 | 17.37 | ### Tracking The training process was tracked in [TensorBoard](https://huggingface.co/Galuh/id-journal-gpt2/tensorboard).
huggingtweets/ebnhussein1424
huggingtweets
2021-08-01T05:43:39Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/ebnhussein1424/1627796615447/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1400100365174030338/UqASw3rD_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">EBN HUSSEIN 🏳️🏴</div> <div style="text-align: center; font-size: 14px;">@ebnhussein1424</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from EBN HUSSEIN 🏳️🏴. | Data | EBN HUSSEIN 🏳️🏴 | | --- | --- | | Tweets downloaded | 3240 | | Retweets | 201 | | Short tweets | 231 | | Tweets kept | 2808 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3mn8msuv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ebnhussein1424's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2h81akvn) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2h81akvn/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ebnhussein1424') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
vvn/en-to-dutch-marianmt
vvn
2021-07-31T13:02:40Z
31
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
Fine-Tuned MarianMT translation model for translating text from English to Dutch. Checkpoint of pre-trained model = Helsinki-NLP/opus-mt-en-nl. Trained using custom training loop with PyTorch on Colab for 2 epochs. Link to the GitHub repo containing Google Colab notebook: https://github.com/vanadnarayane26/Maverick_2.0_Translation_layer/blob/main/Eng_to_dutch_marianmt.ipynb
GKLMIP/electra-laos-base-uncased
GKLMIP
2021-07-31T06:21:25Z
2
0
transformers
[ "transformers", "pytorch", "electra", "pretraining", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04Z
The Usage of tokenizer for Lao is in https://github.com/GKLMIP/Pretrained-Models-For-Laos.
GKLMIP/bert-laos-base-uncased
GKLMIP
2021-07-31T06:12:22Z
5
1
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
The Usage of tokenizer for Lao is in https://github.com/GKLMIP/Pretrained-Models-For-Laos.
GKLMIP/electra-khmer-small-uncased
GKLMIP
2021-07-31T05:39:36Z
5
0
transformers
[ "transformers", "pytorch", "electra", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
https://github.com/GKLMIP/Pretrained-Models-For-Khmer If you use our model, please consider citing our paper: ``` @article{, author="Jiang, Shengyi and Fu, Sihui and Lin, Nankai and Fu, Yingwen", title="Pre-trained Models and Evaluation Data for the Khmer Language", year="2021", publisher="Tsinghua Science and Technology", } ```
GKLMIP/electra-khmer-base-uncased
GKLMIP
2021-07-31T05:29:24Z
5
0
transformers
[ "transformers", "pytorch", "electra", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
https://github.com/GKLMIP/Pretrained-Models-For-Khmer If you use our model, please consider citing our paper: ``` @article{, author="Jiang, Shengyi and Fu, Sihui and Lin, Nankai and Fu, Yingwen", title="Pre-trained Models and Evaluation Data for the Khmer Language", year="2021", publisher="Tsinghua Science and Technology", } ```
GKLMIP/electra-khmer-base-uncased-tokenized
GKLMIP
2021-07-31T05:22:04Z
5
0
transformers
[ "transformers", "pytorch", "electra", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
https://github.com/GKLMIP/Pretrained-Models-For-Khmer If you use our model, please consider citing our paper: ``` @article{, author="Jiang, Shengyi and Fu, Sihui and Lin, Nankai and Fu, Yingwen", title="Pre-trained Models and Evaluation Data for the Khmer Language", year="2021", publisher="Tsinghua Science and Technology", } ```
mrm8488/bert2bert_shared-spanish-finetuned-paus-x-paraphrasing
mrm8488
2021-07-31T05:12:47Z
18
4
transformers
[ "transformers", "pytorch", "encoder-decoder", "text2text-generation", "spanish", "paraphrasing", "paraphrase", "es", "dataset:pausx", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: es datasets: - pausx tags: - spanish - paraphrasing - paraphrase widget: - text: "El pionero suizo John Sutter (1803-1880) llegó a Alta California con otros colonos euroamericanos en agosto de 1839." --- # Spanish Bert2Bert (shared) fine-tuned on PAUS-X es for paraphrasing
GKLMIP/bert-khmer-small-uncased-tokenized
GKLMIP
2021-07-31T04:53:16Z
6
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
https://github.com/GKLMIP/Pretrained-Models-For-Khmer If you use our model, please consider citing our paper: ``` @article{, author="Jiang, Shengyi and Fu, Sihui and Lin, Nankai and Fu, Yingwen", title="Pre-trained Models and Evaluation Data for the Khmer Language", year="2021", publisher="Tsinghua Science and Technology", } ```
huggingtweets/mr_bubblezzz
huggingtweets
2021-07-31T04:45:24Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/mr_bubblezzz/1627706719452/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1412634280388296704/71wQ8pT4_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Mr_Bubblez</div> <div style="text-align: center; font-size: 14px;">@mr_bubblezzz</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Mr_Bubblez. | Data | Mr_Bubblez | | --- | --- | | Tweets downloaded | 387 | | Retweets | 97 | | Short tweets | 55 | | Tweets kept | 235 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2abt71za/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mr_bubblezzz's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/28jx54ax) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/28jx54ax/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mr_bubblezzz') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
GKLMIP/bert-khmer-base-uncased-tokenized
GKLMIP
2021-07-31T03:07:47Z
55
1
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
https://github.com/GKLMIP/Pretrained-Models-For-Khmer If you use our model, please consider citing our paper: ``` @article{, author="Jiang, Shengyi and Fu, Sihui and Lin, Nankai and Fu, Yingwen", title="Pre-trained Models and Evaluation Data for the Khmer Language", year="2021", publisher="Tsinghua Science and Technology", } ```
huggingtweets/thisisaito
huggingtweets
2021-07-31T03:03:34Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/thisisaito/1627700610096/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1379854432616247301/meLxK4Wc_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">aito.eth 🥚❤️</div> <div style="text-align: center; font-size: 14px;">@thisisaito</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from aito.eth 🥚❤️. | Data | aito.eth 🥚❤️ | | --- | --- | | Tweets downloaded | 596 | | Retweets | 102 | | Short tweets | 112 | | Tweets kept | 382 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1hyn9w99/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @thisisaito's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/uecmgl4h) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/uecmgl4h/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/thisisaito') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/drewcoffman
huggingtweets
2021-07-31T02:43:54Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/drewcoffman/1627699166305/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1373793141506117641/gvV-BWCF_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">drewcoffman.eth 𝕚𝕤 𝕠𝕟𝕝𝕚𝕟𝕖 🟢</div> <div style="text-align: center; font-size: 14px;">@drewcoffman</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from drewcoffman.eth 𝕚𝕤 𝕠𝕟𝕝𝕚𝕟𝕖 🟢. | Data | drewcoffman.eth 𝕚𝕤 𝕠𝕟𝕝𝕚𝕟𝕖 🟢 | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 43 | | Short tweets | 540 | | Tweets kept | 2667 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2kh4r1d8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @drewcoffman's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ln9svwl) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ln9svwl/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/drewcoffman') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
GKLMIP/roberta-tagalog-base
GKLMIP
2021-07-31T02:43:47Z
4
1
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
https://github.com/GKLMIP/Pretrained-Models-For-Tagalog If you use our model, please consider citing our paper: ``` @InProceedings{, author="Jiang, Shengyi and Fu, Yingwen and Lin, Xiaotian and Lin, Nankai", title="Pre-trained Language models for Tagalog with Multi-source data", booktitle="Natural Language Processing and Chinese Computing", year="2021", publisher="Springer International Publishing", address="Cham", } ```
veronica320/TE-for-Event-Extraction
veronica320
2021-07-30T23:11:05Z
127
2
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
# TE-for-Event-Extraction ## Model description This is a TE model as part of the event extraction system in the ACL2021 paper: [Zero-shot Event Extraction via Transfer Learning: Challenges and Insights](https://aclanthology.org/2021.acl-short.42/). The pretrained architecture is [roberta-large](https://huggingface.co/roberta-large) and the fine-tuning data is [MNLI](https://cims.nyu.edu/~sbowman/multinli/). The label mapping is: ``` LABEL_0: Contradiction LABEL_1: Neutral LABEL_2: Entailment ``` ## Demo To see how the model works, type a sentence and a hypothesis separated by "\<\/s\>\<\/s\>" in the right-hand-side textbox under "Hosted inference API". Example: - Input: ``` A car bomb exploded Thursday in a crowded outdoor market in the heart of Jerusalem. </s></s> This text is about an attack. ``` - Output: ``` LABEL_2 (Entailment) ``` ## Usage - To use the TE model independently, follow the [huggingface documentation on AutoModelForSequenceClassification](https://huggingface.co/transformers/task_summary.html#sequence-classification). - To use it as part of the event extraction system, please check out [our Github repo](https://github.com/veronica320/Zeroshot-Event-Extraction). ### BibTeX entry and citation info ``` @inproceedings{lyu-etal-2021-zero, title = "Zero-shot Event Extraction via Transfer Learning: {C}hallenges and Insights", author = "Lyu, Qing and Zhang, Hongming and Sulem, Elior and Roth, Dan", booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.acl-short.42", doi = "10.18653/v1/2021.acl-short.42", pages = "322--332", abstract = "Event extraction has long been a challenging task, addressed mostly with supervised methods that require expensive annotation and are not extensible to new event ontologies. In this work, we explore the possibility of zero-shot event extraction by formulating it as a set of Textual Entailment (TE) and/or Question Answering (QA) queries (e.g. {``}A city was attacked{''} entails {``}There is an attack{''}), exploiting pretrained TE/QA models for direct transfer. On ACE-2005 and ERE, our system achieves acceptable results, yet there is still a large gap from supervised approaches, showing that current QA and TE technologies fail in transferring to a different domain. To investigate the reasons behind the gap, we analyze the remaining key challenges, their respective impact, and possible improvement directions.", } ```
valhalla/t5-small-e2e-qg
valhalla
2021-07-30T13:10:33Z
1,228
7
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "question-generation", "dataset:squad", "arxiv:1910.10683", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- datasets: - squad tags: - question-generation widget: - text: "Python is developed by Guido Van Rossum and released in 1991. </s>" license: mit --- ## T5 for question-generation This is [t5-small](https://arxiv.org/abs/1910.10683) model trained for end-to-end question generation task. Simply input the text and the model will generate multile questions. You can play with the model using the inference API, just put the text and see the results! For more deatils see [this](https://github.com/patil-suraj/question_generation) repo. ### Model in action 🚀 You'll need to clone the [repo](https://github.com/patil-suraj/question_generation). [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patil-suraj/question_generation/blob/master/question_generation.ipynb) ```python3 from pipelines import pipeline text = "Python is an interpreted, high-level, general-purpose programming language. Created by Guido van Rossum \ and first released in 1991, Python's design philosophy emphasizes code \ readability with its notable use of significant whitespace." nlp = pipeline("e2e-qg") nlp(text) => [ 'Who created Python?', 'When was Python first released?', "What is Python's design philosophy?" ] ```
eli4s/Bert-L12-h240-A12
eli4s
2021-07-30T10:39:52Z
26
2
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
This model was pretrained on the bookcorpus dataset using knowledge distillation. The particularity of this model is that even though it shares the same architecture as BERT, it has a hidden size of 240. Since it has 12 attention heads, the head size (20) is different from the one of the BERT base model (64). The knowledge distillation was performed using multiple loss functions. The weights of the model were initialized from scratch. PS : the tokenizer is the same as the one of the model bert-base-uncased. To load the model \& tokenizer : ````python from transformers import AutoModelForMaskedLM, BertTokenizer model_name = "eli4s/Bert-L12-h240-A12" model = AutoModelForMaskedLM.from_pretrained(model_name) tokenizer = BertTokenizer.from_pretrained(model_name) ```` To use it as a masked language model : ````python import torch sentence = "Let's have a [MASK]." model.eval() inputs = tokenizer([sentence], padding='longest', return_tensors='pt') output = model(inputs['input_ids'], attention_mask=inputs['attention_mask']) mask_index = inputs['input_ids'].tolist()[0].index(103) masked_token = output['logits'][0][mask_index].argmax(axis=-1) predicted_token = tokenizer.decode(masked_token) print(predicted_token) ```` Or we can also predict the n most relevant predictions : ````python top_n = 5 vocab_size = model.config.vocab_size logits = output['logits'][0][mask_index].tolist() top_tokens = sorted(list(range(vocab_size)), key=lambda i:logits[i], reverse=True)[:top_n] tokenizer.decode(top_tokens) ````
seongju/squadv2-xlm-roberta-base
seongju
2021-07-30T07:45:30Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
### Model information * language : English * fine tuning data : [squad 2.0](https://rajpurkar.github.io/SQuAD-explorer/) * License : CC-BY-SA 4.0 * Base model : [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) * input : question, context * output : answer ---- ### Train information * train_runtime : 7562.859 * train_steps_per_second : 1.077 * training_loss : 0.9661213896603117 * epoch: 3.0 ---- ### How to use ``` from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained ( "seongju/squadv2-xlm-roberta-base" ) model = AutoModelForSequenceClassification.from_pretrained ( "seongju/squadv2-xlm-roberta-base" ) ```
huggingtweets/deepleffen-ibnalrafidayn
huggingtweets
2021-07-30T07:03:57Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/deepleffen-ibnalrafidayn/1627628633670/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1241879678455078914/e2EdZIrr_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1419130410659889153/F2F8J5kC_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Deep Leffen Bot & ابن ڪربلاء 🇮🇶🇵🇸</div> <div style="text-align: center; font-size: 14px;">@deepleffen-ibnalrafidayn</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Deep Leffen Bot & ابن ڪربلاء 🇮🇶🇵🇸. | Data | Deep Leffen Bot | ابن ڪربلاء 🇮🇶🇵🇸 | | --- | --- | --- | | Tweets downloaded | 497 | 3157 | | Retweets | 13 | 1624 | | Short tweets | 26 | 149 | | Tweets kept | 458 | 1384 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/nxq13p47/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @deepleffen-ibnalrafidayn's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/40mnb9ye) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/40mnb9ye/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/deepleffen-ibnalrafidayn') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
pranav1015/distilbert-base-uncased-finetuned-cola
pranav1015
2021-07-30T05:27:22Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model_index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metric: name: Matthews Correlation type: matthews_correlation value: 0.520875943143754 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8486 - Matthews Correlation: 0.5209 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5265 | 1.0 | 535 | 0.5479 | 0.4049 | | 0.3571 | 2.0 | 1070 | 0.5002 | 0.5164 | | 0.2432 | 3.0 | 1605 | 0.6242 | 0.5091 | | 0.173 | 4.0 | 2140 | 0.7559 | 0.5120 | | 0.1352 | 5.0 | 2675 | 0.8486 | 0.5209 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
veronica320/QA-for-Event-Extraction
veronica320
2021-07-29T22:57:42Z
28
7
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
# QA-for-Event-Extraction ## Model description This is a QA model as part of the event extraction system in the ACL2021 paper: [Zero-shot Event Extraction via Transfer Learning: Challenges and Insights](https://aclanthology.org/2021.acl-short.42/). The pretrained architecture is [roberta-large](https://huggingface.co/roberta-large) and the fine-tuning data is [QAMR](https://github.com/uwnlp/qamr). ## Demo To see how the model works, type a question and a context separated in the right-hand-side textboxs under "Hosted inference API". Example: - Question: `Who was killed?` - Context: `A car bomb exploded Thursday in a crowded outdoor market in the heart of Jerusalem, killing at least two people, police said.` - Answer: `people` ## Usage - To use the QA model independently, follow the [huggingface documentation on AutoModelForQuestionAnswering](https://huggingface.co/transformers/task_summary.html?highlight=automodelforquestionanswering#extractive-question-answering). - To use it as part of the event extraction system, please check out [our Github repo](https://github.com/veronica320/Zeroshot-Event-Extraction). ### BibTeX entry and citation info ``` @inproceedings{lyu-etal-2021-zero, title = "Zero-shot Event Extraction via Transfer Learning: {C}hallenges and Insights", author = "Lyu, Qing and Zhang, Hongming and Sulem, Elior and Roth, Dan", booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.acl-short.42", doi = "10.18653/v1/2021.acl-short.42", pages = "322--332", abstract = "Event extraction has long been a challenging task, addressed mostly with supervised methods that require expensive annotation and are not extensible to new event ontologies. In this work, we explore the possibility of zero-shot event extraction by formulating it as a set of Textual Entailment (TE) and/or Question Answering (QA) queries (e.g. {``}A city was attacked{''} entails {``}There is an attack{''}), exploiting pretrained TE/QA models for direct transfer. On ACE-2005 and ERE, our system achieves acceptable results, yet there is still a large gap from supervised approaches, showing that current QA and TE technologies fail in transferring to a different domain. To investigate the reasons behind the gap, we analyze the remaining key challenges, their respective impact, and possible improvement directions.", } ```
TsinghuaAI/CPM-Generate
TsinghuaAI
2021-07-29T19:03:51Z
507
42
transformers
[ "transformers", "pytorch", "tf", "gpt2", "text-generation", "cpm", "zh", "arxiv:2012.00413", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: - zh tags: - cpm license: mit datasets: - 100GB Chinese corpus --- # CPM-Generate ## Model description CPM (Chinese Pre-trained Language Model) is a Transformer-based autoregressive language model, with 2.6 billion parameters and 100GB Chinese training data. To the best of our knowledge, CPM is the largest Chinese pre-trained language model, which could facilitate downstream Chinese NLP tasks, such as conversation, essay generation, cloze test, and language understanding. [[Project](https://cpm.baai.ac.cn)] [[Model](https://cpm.baai.ac.cn/download.html)] [[Paper](https://arxiv.org/abs/2012.00413)] ## Intended uses & limitations #### How to use ```python from transformers import TextGenerationPipeline, AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("TsinghuaAI/CPM-Generate") model = AutoModelWithLMHead.from_pretrained("TsinghuaAI/CPM-Generate") text_generator = TextGenerationPipeline(model, tokenizer) text_generator('清华大学', max_length=50, do_sample=True, top_p=0.9) ``` #### Limitations and bias The text generated by CPM is automatically generated by a neural network model trained on a large number of texts, which does not represent the authors' or their institutes' official attitudes and preferences. The text generated by CPM is only used for technical and scientific purposes. If it infringes on your rights and interests or violates social morality, please do not propagate it, but contact the authors and the authors will deal with it promptly. ## Training data We collect different kinds of texts in our pre-training, including encyclopedia, news, novels, and Q\&A. The details of our training data are shown as follows. | Data Source | Encyclopedia | Webpage | Story | News | Dialog | | ----------- | ------------ | ------- | ----- | ----- | ------ | | **Size** | ~40GB | ~39GB | ~10GB | ~10GB | ~1GB | ## Training procedure Based on the hyper-parameter searching on the learning rate and batch size, we set the learning rate as \\(1.5\times10^{-4}\\) and the batch size as \\(3,072\\), which makes the model training more stable. In the first version, we still adopt the dense attention and the max sequence length is \\(1,024\\). We will implement sparse attention in the future. We pre-train our model for \\(20,000\\) steps, and the first \\(5,000\\) steps are for warm-up. The optimizer is Adam. It takes two weeks to train our largest model using \\(64\\) NVIDIA V100. ## Eval results | | n_param | n_layers | d_model | n_heads | d_head | |------------|-------------------:|--------------------:|-------------------:|-------------------:|------------------:| | CPM-Small | 109M | 12 | 768 | 12 | 64 | | CPM-Medium | 334M | 24 | 1,024 | 16 | 64 | | CPM-Large | 2.6B | 32 | 2,560 | 32 | 80 | We evaluate CPM with different numbers of parameters (the details are shown above) on various Chinese NLP tasks in the few-shot (even zero-shot) settings. With the increase of parameters, CPM performs better on most datasets, indicating that larger models are more proficient at language generation and language understanding. We provide results of text classification, chinese idiom cloze test, and short text conversation generation as follows. Please refer to our [paper](https://arxiv.org/abs/2012.00413) for more detailed results. ### Zero-shot performance on text classification tasks | | TNEWS | IFLYTEK | OCNLI | | ---------- | :------------: | :------------: | :------------: | | CPM-Small | 0.626 | 0.584 | 0.378 | | CPM-Medium | 0.618 | 0.635 | 0.379 | | CPM-Large | **0.703** | **0.708** | **0.442** | ### Performance on Chinese Idiom Cloze (ChID) dataset | | Supervised | Unsupervised | |------------|:--------------:|:--------------:| | CPM-Small | 0.657 | 0.433 | | CPM-Medium | 0.695 | 0.524 | | CPM-Large | **0.804** | **0.685** | ### Performance on Short Text Conversation Generation (STC) dataset | | Average | Extrema | Greedy | Dist-1 | Dist-2 | |----------------------------------|:--------------:|:--------------:|:--------------:|:-------------------------------:|:--------------------------------:| | *Few-shot (Unsupervised)* | | | | | | | CDial-GPT | 0.899 | 0.797 | 0.810 | 1,963 / **0.011** | 20,814 / 0.126 | | CPM-Large | **0.928** | **0.805** | **0.815** | **3,229** / 0.007 | **68,008** / **0.154** | | *Supervised* | | | | | | | CDial-GPT | 0.933 | **0.814** | **0.826** | 2,468 / 0.008 | 35,634 / 0.127 | | CPM-Large | **0.934** | 0.810 | 0.819 | **3,352** / **0.011** | **67,310** / **0.233** | ### BibTeX entry and citation info ```bibtex @article{cpm-v1, title={CPM: A Large-scale Generative Chinese Pre-trained Language Model}, author={Zhang, Zhengyan and Han, Xu, and Zhou, Hao, and Ke, Pei, and Gu, Yuxian and Ye, Deming and Qin, Yujia and Su, Yusheng and Ji, Haozhe and Guan, Jian and Qi, Fanchao and Wang, Xiaozhi and Zheng, Yanan and Zeng, Guoyang and Cao, Huanqi and Chen, Shengqi and Li, Daixuan and Sun, Zhenbo and Liu, Zhiyuan and Huang, Minlie and Han, Wentao and Tang, Jie and Li, Juanzi and Sun, Maosong}, year={2020} } ```
Geotrend/distilbert-base-ja-cased
Geotrend
2021-07-29T17:01:48Z
9
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "ja", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: ja datasets: wikipedia license: apache-2.0 --- # distilbert-base-ja-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-ja-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-ja-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Zane/Ricky3
Zane
2021-07-29T14:50:17Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png tags: - conversational license: mit --- # DialoGPT Trained on the Speech of a Game Character This is an instance of [microsoft/DialoGPT-small](https://huggingface.co/microsoft/DialoGPT-small) trained on a game character, Neku Sakuraba from [The World Ends With You](https://en.wikipedia.org/wiki/The_World_Ends_with_You). The data comes from [a Kaggle game script dataset](https://www.kaggle.com/ruolinzheng/twewy-game-script). Chat with the model: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("r3dhummingbird/DialoGPT-small-neku") model = AutoModelWithLMHead.from_pretrained("r3dhummingbird/DialoGPT-small-neku") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("NekuBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
Zane/Ricky
Zane
2021-07-29T14:20:26Z
9
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png tags: - conversational license: mit --- # DialoGPT Trained on the Speech of a Game Character This is an instance of [microsoft/DialoGPT-small](https://huggingface.co/microsoft/DialoGPT-small) trained on a game character, Neku Sakuraba from [The World Ends With You](https://en.wikipedia.org/wiki/The_World_Ends_with_You). The data comes from [a Kaggle game script dataset](https://www.kaggle.com/ruolinzheng/twewy-game-script). Chat with the model: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("Zane/Ricky") model = AutoModelWithLMHead.from_pretrained("Zane/Ricky") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("NekuBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
Geotrend/distilbert-base-en-da-cased
Geotrend
2021-07-29T10:29:09Z
6
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-da-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-da-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-da-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
huggingtweets/factfictyoutube
huggingtweets
2021-07-29T05:39:17Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/factfictyoutube/1627537153556/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1364780488351711234/IEnAKzOo_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Factually Fictitious</div> <div style="text-align: center; font-size: 14px;">@factfictyoutube</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Factually Fictitious. | Data | Factually Fictitious | | --- | --- | | Tweets downloaded | 3211 | | Retweets | 957 | | Short tweets | 134 | | Tweets kept | 2120 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/b5r6jmml/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @factfictyoutube's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/31b4bo7z) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/31b4bo7z/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/factfictyoutube') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/lesbrarienne
huggingtweets
2021-07-29T04:42:10Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1418784665352167427/dbHbyAc6_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">mathilda</div> <div style="text-align: center; font-size: 14px;">@lesbrarienne</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from mathilda. | Data | mathilda | | --- | --- | | Tweets downloaded | 3222 | | Retweets | 445 | | Short tweets | 528 | | Tweets kept | 2249 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3o85gmm4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @lesbrarienne's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3byn0dxu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3byn0dxu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/lesbrarienne') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Geotrend/distilbert-base-en-zh-hi-cased
Geotrend
2021-07-29T03:19:43Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-zh-hi-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-zh-hi-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-zh-hi-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
huggingtweets/thebabylonbee-theonion
huggingtweets
2021-07-29T00:04:58Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/thebabylonbee-theonion/1627517094487/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/875392068125769732/yrN-1k0Y_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1400100770624720898/-HC7kL5x_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">The Onion & The Babylon Bee</div> <div style="text-align: center; font-size: 14px;">@thebabylonbee-theonion</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from The Onion & The Babylon Bee. | Data | The Onion | The Babylon Bee | | --- | --- | --- | | Tweets downloaded | 3250 | 3249 | | Retweets | 8 | 243 | | Short tweets | 13 | 15 | | Tweets kept | 3229 | 2991 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2ueetvmn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @thebabylonbee-theonion's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1g46l1ro) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1g46l1ro/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/thebabylonbee-theonion') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/drilbot_neo-rusticgendarme
huggingtweets
2021-07-28T19:24:06Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/drilbot_neo-rusticgendarme/1627500242288/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1405236436144508932/5bN_yThT_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1374924360780242944/-Q8NfgEr_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">merzy & wintbot_neo</div> <div style="text-align: center; font-size: 14px;">@drilbot_neo-rusticgendarme</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from merzy & wintbot_neo. | Data | merzy | wintbot_neo | | --- | --- | --- | | Tweets downloaded | 2598 | 3244 | | Retweets | 449 | 218 | | Short tweets | 440 | 271 | | Tweets kept | 1709 | 2755 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/33n6vv8i/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @drilbot_neo-rusticgendarme's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3ti3qa9s) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3ti3qa9s/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/drilbot_neo-rusticgendarme') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
junnyu/roformer_paddle
junnyu
2021-07-28T14:47:01Z
0
0
null
[ "paddlepaddle", "region:us" ]
null
2022-03-02T23:29:05Z
# paddle paddle版本的RoFormer # 需要安装最新的paddlenlp `pip install git+https://github.com/PaddlePaddle/PaddleNLP.git` ## 预训练模型转换 预训练模型可以从 huggingface/transformers 转换而来,方法如下(适用于roformer模型,其他模型按情况调整): 1. 从huggingface.co获取roformer模型权重 2. 设置参数运行convert.py代码 3. 例子: 假设我想转换https://huggingface.co/junnyu/roformer_chinese_base 权重 - (1)首先下载 https://huggingface.co/junnyu/roformer_chinese_base/tree/main 中的pytorch_model.bin文件,假设我们存入了`./roformer_chinese_base/pytorch_model.bin` - (2)运行convert.py ```bash python convert.py \ --pytorch_checkpoint_path ./roformer_chinese_base/pytorch_model.bin \ --paddle_dump_path ./roformer_chinese_base/model_state.pdparams ``` - (3)最终我们得到了转化好的权重`./roformer_chinese_base/model_state.pdparams` ## 预训练MLM测试 ### test_mlm.py ```python import paddle import argparse from paddlenlp.transformers import RoFormerForPretraining, RoFormerTokenizer def test_mlm(text, model_name): model = RoFormerForPretraining.from_pretrained(model_name) model.eval() tokenizer = RoFormerTokenizer.from_pretrained(model_name) tokens = ["[CLS]"] text_list = text.split("[MASK]") for i,t in enumerate(text_list): tokens.extend(tokenizer.tokenize(t)) if i==len(text_list)-1: tokens.extend(["[SEP]"]) else: tokens.extend(["[MASK]"]) input_ids_list = tokenizer.convert_tokens_to_ids(tokens) input_ids = paddle.to_tensor([input_ids_list]) with paddle.no_grad(): pd_outputs = model(input_ids)[0][0] pd_outputs_sentence = "paddle: " for i, id in enumerate(input_ids_list): if id == tokenizer.convert_tokens_to_ids(["[MASK]"])[0]: tokens = tokenizer.convert_ids_to_tokens(pd_outputs[i].topk(5)[1].tolist()) pd_outputs_sentence += "[" + "||".join(tokens) + "]" else: pd_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True) ) print(pd_outputs_sentence) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--model_name", default="roformer-chinese-base", type=str, help="Pretrained roformer name or path." ) parser.add_argument( "--text", default="今天[MASK]很好,我想去公园玩!", type=str, help="MLM text." ) args = parser.parse_args() test_mlm(text=args.text, model_name=args.model_name) ``` ### 输出 ```bash python test_mlm.py --model_name roformer-chinese-base --text 今天[MASK]很好,我想去公园玩! # paddle: 今天[天气||天||阳光||太阳||空气]很好,我想去公园玩! python test_mlm.py --model_name roformer-chinese-base --text 北京是[MASK]的首都! # paddle: 北京是[中国||谁||中华人民共和国||我们||中华民族]的首都! python test_mlm.py --model_name roformer-chinese-char-base --text 今天[MASK]很好,我想去公园玩! # paddle: 今天[天||气||都||风||人]很好,我想去公园玩! python test_mlm.py --model_name roformer-chinese-char-base --text 北京是[MASK]的首都! # paddle: 北京是[谁||我||你||他||国]的首都! ```
Geotrend/distilbert-base-en-fr-lt-no-pl-cased
Geotrend
2021-07-28T13:08:26Z
3
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-fr-lt-no-pl-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-fr-lt-no-pl-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-fr-lt-no-pl-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
ml6team/byt5-base-dutch-ocr-correction
ml6team
2021-07-28T11:32:17Z
42
10
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
# ByT5 Dutch OCR Correction This model is a finetuned byT5 model that corrects OCR mistakes found in dutch sentences. The [google/byt5-base](https://huggingface.co/google/byt5-base) model is finetuned on the dutch section of the [OSCAR](https://huggingface.co/datasets/oscar) dataset. ## Usage ```python from transformers import AutoTokenizer, T5ForConditionalGeneration example_sentence = "Ben algoritme dat op ba8i8 van kunstmatige inte11i9entie vkijwel geautomatiseerd een tekst herstelt met OCR fuuten." tokenizer = AutoTokenizer.from_pretrained('ml6team/byt5-base-dutch-ocr-correction') model_inputs = tokenizer(example_sentence, max_length=128, truncation=True, return_tensors="pt") model = T5ForConditionalGeneration.from_pretrained('ml6team/byt5-base-dutch-ocr-correction') outputs = model.generate(**model_inputs, max_length=128) tokenizer.decode(outputs[0]) ```
Geotrend/distilbert-base-en-fr-de-no-da-cased
Geotrend
2021-07-28T07:52:56Z
199
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-fr-de-no-da-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-fr-de-no-da-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-fr-de-no-da-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Alireza1044/albert-base-v2-wnli
Alireza1044
2021-07-28T07:30:04Z
4
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model_index: - name: wnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE WNLI type: glue args: wnli metric: name: Accuracy type: accuracy value: 0.5633802816901409 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wnli This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6898 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Training results ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
MYX4567/distilgpt2-finetuned-wikitext2
MYX4567
2021-07-28T06:37:12Z
868
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null model_index: - name: distilgpt2-finetuned-wikitext2 results: - task: name: Causal Language Modeling type: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6428 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.76 | 1.0 | 2334 | 3.6658 | | 3.6325 | 2.0 | 4668 | 3.6454 | | 3.6068 | 3.0 | 7002 | 3.6428 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
MYX4567/gpt2-wikitext2
MYX4567
2021-07-28T03:42:36Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer datasets: - null model_index: - name: gpt2-wikitext2 results: - task: name: Causal Language Modeling type: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-wikitext2 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.3227 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.7523 | 1.0 | 2249 | 6.6652 | | 6.4134 | 2.0 | 4498 | 6.3987 | | 6.2507 | 3.0 | 6747 | 6.3227 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
Geotrend/distilbert-base-en-fr-es-cased
Geotrend
2021-07-27T23:19:52Z
3
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-fr-es-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-fr-es-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-fr-es-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/distilbert-base-en-it-cased
Geotrend
2021-07-27T21:32:50Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-it-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-it-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-it-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/distilbert-base-en-pl-cased
Geotrend
2021-07-27T18:59:24Z
7
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-pl-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-pl-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-pl-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
roschmid/dog-races
roschmid
2021-07-27T17:32:40Z
70
1
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: dog-races-v2 results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.8299999833106995 --- # dog-races-v2 Autogenerated Model created thannks to HuggingPics🤗🖼️. You can create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). This Model is an improvement to my last model, where the Chow Chow data included images of American pickles with the same name (contaminated data). Current labels are: 1) Border Collie, 2) Chow Chow, 3) German Shepherd, 4) Golden Retriever, 5) Pug, 6) Rottweiler, 7) Shiba Inu, 8) Siberian Husky and 9) Tibetan Mastiff. There is still room for improvement. Model Accuracy: 82.99% When tested with Stanford Dogs Dataset, these were the results: - Golden Retriever: 90% (117/130 images labeled correctly) - Chow Chow: 97.45% (191/196 images labeled correctly) - Tibetan Mastiff: 12.5% (19/152 images labeled correctly). Probably some issue with the data (most were labeled as Chow Chow). ## Example Images #### Border Collie ![Border Collie](images/Border_Collie.jpg) #### Chow Chow dog ![Chow Chow dog](images/Chow_Chow_dog.jpg) #### German Shepherd ![German Shepherd](images/German_Shepherd.jpg) #### Golden Retriever ![Golden Retriever](images/Golden_Retriever.jpg) #### Pug ![Pug](images/Pug.jpg) #### Rottweiler ![Rottweiler](images/Rottweiler.jpg) #### Shiba Inu ![Shiba Inu](images/Shiba_Inu.jpg) #### Siberian Husky ![Siberian Husky](images/Siberian_Husky.jpg) #### Tibetan Mastiff ![Tibetan Mastiff](images/Tibetan_Mastiff.jpg)
vvn/en-to-it-marianmt
vvn
2021-07-27T16:50:28Z
17
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
Fine-Tuned MarianMT translation model for translating text from English to Italian. Checkpoint of pre-trained model = Helsinki-NLP/opus-mt-en-it. Trained using custom training loop with PyTorch on Colab for 2 epochs. Link to the GitHub repo containing Google Colab notebook: https://github.com/vanadnarayane26/Maverick_2.0_Translation_layer/blob/main/En_to_it_marianmt.ipynb
Geotrend/distilbert-base-en-fr-da-ja-vi-cased
Geotrend
2021-07-27T16:28:47Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-fr-da-ja-vi-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-fr-da-ja-vi-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-fr-da-ja-vi-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
mujerry/bert-base-uncased-finetuned-QnA
mujerry
2021-07-27T13:30:46Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null model_index: - name: bert-base-uncased-finetuned-QnA results: - task: name: Masked Language Modeling type: fill-mask --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-QnA This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0604 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 20 | 3.4894 | | No log | 2.0 | 40 | 3.5654 | | No log | 3.0 | 60 | 3.3185 | | No log | 4.0 | 80 | 3.2859 | | No log | 5.0 | 100 | 3.2947 | | No log | 6.0 | 120 | 3.3998 | | No log | 7.0 | 140 | 3.1642 | | No log | 8.0 | 160 | 3.2653 | | No log | 9.0 | 180 | 3.3427 | | No log | 10.0 | 200 | 3.3549 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
nikokons/dialo_transfer_5epo
nikokons
2021-07-27T12:30:17Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
# A brief description: This model uses the open sourced-weights of the DIALOGPT (microsoft/DialoGPT-small) and is fine-tuned to the PERSONA-CHAT dataset using an augmented input representation and a multi-task learning scheme, further described in the paper "TransferTransfo: A Transfer Learning Approach for Neural Network Based Conversational Agents". The model finetunes quickly to the PERSONA-CHAT dataset and 5 epochs of training was sufficient. A batch size of 4 and accumulated gradients over 8 iterations are used, resulting in the effective batch size of 32. In addition, the Adam optimization scheme with a learning rate of 6e-5 is used.
osanseviero/hubert_base
osanseviero
2021-07-27T10:38:14Z
0
2
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
# Base Hubert model (~95M params) Source: https://github.com/pytorch/fairseq/tree/master/examples/hubert
Geotrend/distilbert-base-no-cased
Geotrend
2021-07-27T09:05:34Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "no", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: no datasets: wikipedia license: apache-2.0 --- # distilbert-base-no-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-no-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-no-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
andi611/distilbert-base-uncased-squad2-with-ner-with-neg
andi611
2021-07-27T07:50:09Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "dataset:conll2003", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - conll2003 model_index: - name: distilbert-base-uncased-squad2-with-ner-with-neg results: - task: name: Question Answering type: question-answering dataset: name: conll2003 type: conll2003 args: conll2003 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-squad2-with-ner-with-neg This model is a fine-tuned version of [twmkn9/distilbert-base-uncased-squad2](https://huggingface.co/twmkn9/distilbert-base-uncased-squad2) on the conll2003 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
amankhandelia/panini
amankhandelia
2021-07-27T07:13:15Z
6
0
transformers
[ "transformers", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- widget: - text: "मुझे उनसे बात करना <mask> अच्छा लगा" - text: "हम आपके सुखद <mask> की कामना करते हैं" - text: "सभी अच्छी चीजों का एक <mask> होता है" --- # RoBERTa base model for Hindi language Pretrained model on Hindi language using a masked language modeling (MLM) objective. [A more interactive & comparison demo is available here](https://huggingface.co/spaces/flax-community/roberta-hindi). > This is part of the [Flax/Jax Community Week](https://discuss.huggingface.co/t/pretrain-roberta-from-scratch-in-hindi/7091), organized by [Hugging Face](https://huggingface.co/) and TPU usage sponsored by Google. ## Model description RoBERTa Hindi is a transformers model pretrained on a large corpus of Hindi data(a combination of **mc4, oscar and indic-nlp** datasets) ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='flax-community/roberta-hindi') >>> unmasker("हम आपके सुखद <mask> की कामना करते हैं") [{'score': 0.3310680091381073, 'sequence': 'हम आपके सुखद सफर की कामना करते हैं', 'token': 1349, 'token_str': ' सफर'}, {'score': 0.15317578613758087, 'sequence': 'हम आपके सुखद पल की कामना करते हैं', 'token': 848, 'token_str': ' पल'}, {'score': 0.07826550304889679, 'sequence': 'हम आपके सुखद समय की कामना करते हैं', 'token': 453, 'token_str': ' समय'}, {'score': 0.06304813921451569, 'sequence': 'हम आपके सुखद पहल की कामना करते हैं', 'token': 404, 'token_str': ' पहल'}, {'score': 0.058322224766016006, 'sequence': 'हम आपके सुखद अवसर की कामना करते हैं', 'token': 857, 'token_str': ' अवसर'}] ``` ## Training data The RoBERTa Hindi model was pretrained on the reunion of the following datasets: - [OSCAR](https://huggingface.co/datasets/oscar) is a huge multilingual corpus obtained by language classification and filtering of the Common Crawl corpus using the goclassy architecture. - [mC4](https://huggingface.co/datasets/mc4) is a multilingual colossal, cleaned version of Common Crawl's web crawl corpus. - [IndicGLUE](https://indicnlp.ai4bharat.org/indic-glue/) is a natural language understanding benchmark. - [Samanantar](https://indicnlp.ai4bharat.org/samanantar/) is a parallel corpora collection for Indic language. - [Hindi Text Short and Large Summarization Corpus](https://www.kaggle.com/disisbig/hindi-text-short-and-large-summarization-corpus) is a collection of ~180k articles with their headlines and summary collected from Hindi News Websites. - [Hindi Text Short Summarization Corpus](https://www.kaggle.com/disisbig/hindi-text-short-summarization-corpus) is a collection of ~330k articles with their headlines collected from Hindi News Websites. - [Old Newspapers Hindi](https://www.kaggle.com/crazydiv/oldnewspapershindi) is a cleaned subset of HC Corpora newspapers. ## Training procedure ### Preprocessing The texts are tokenized using a byte version of Byte-Pair Encoding (BPE) and a vocabulary size of 50265. The inputs of the model take pieces of 512 contiguous token that may span over documents. The beginning of a new document is marked with `<s>` and the end of one by `</s>`. - We had to perform cleanup of **mC4** and **oscar** datasets by removing all non hindi (non Devanagari) characters from the datasets. - We tried to filter out evaluation set of WikiNER of [IndicGlue](https://indicnlp.ai4bharat.org/indic-glue/) benchmark by [manual labelling](https://github.com/amankhandelia/roberta_hindi/blob/master/wikiner_incorrect_eval_set.csv) where the actual labels were not correct and modifying the [downstream evaluation dataset](https://github.com/amankhandelia/roberta_hindi/blob/master/utils.py). The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `<mask>`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. Contrary to BERT, the masking is done dynamically during pretraining (e.g., it changes at each epoch and is not fixed). ### Pretraining The model was trained on Google Cloud Engine TPUv3-8 machine (with 335 GB of RAM, 1000 GB of hard drive, 96 CPU cores).A randomized shuffle of combined dataset of **mC4, oscar** and other datasets listed above was used to train the model. Training logs are present in [wandb](https://wandb.ai/wandb/hf-flax-roberta-hindi). ## Evaluation Results RoBERTa Hindi is evaluated on various downstream tasks. The results are summarized below. | Task | Task Type | IndicBERT | HindiBERTa | Indic Transformers Hindi BERT | RoBERTa Hindi Guj San | RoBERTa Hindi | |-------------------------|----------------------|-----------|------------|-------------------------------|-----------------------|---------------| | BBC News Classification | Genre Classification | **76.44** | 66.86 | **77.6** | 64.9 | 73.67 | | WikiNER | Token Classification | - | 90.68 | **95.09** | 89.61 | **92.76** | | IITP Product Reviews | Sentiment Analysis | **78.01** | 73.23 | **78.39** | 66.16 | 75.53 | | IITP Movie Reviews | Sentiment Analysis | 60.97 | 52.26 | **70.65** | 49.35 | **61.29** | ## Team Members - Aman K ([amankhandelia](https://huggingface.co/amankhandelia)) - Haswanth Aekula ([hassiahk](https://huggingface.co/hassiahk)) - Kartik Godawat ([dk-crazydiv](https://huggingface.co/dk-crazydiv)) - Prateek Agrawal ([prateekagrawal](https://huggingface.co/prateekagrawal)) - Rahul Dev ([mlkorra](https://huggingface.co/mlkorra)) ## Credits Huge thanks to Hugging Face 🤗 & Google Jax/Flax team for such a wonderful community week, especially for providing such massive computing resources. Big thanks to [Suraj Patil](https://huggingface.co/valhalla) & [Patrick von Platen](https://huggingface.co/patrickvonplaten) for mentoring during the whole week. <img src=https://pbs.twimg.com/media/E443fPjX0AY1BsR.jpg:medium>
Edomonndo/opus-mt-en-ro-finetuned-en-to-ro
Edomonndo
2021-07-27T05:34:02Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model_index: - name: opus-mt-en-ro-finetuned-en-to-ro results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 args: ro-en metric: name: Bleu type: bleu value: 28.1641 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-ro-finetuned-en-to-ro This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ro](https://huggingface.co/Helsinki-NLP/opus-mt-en-ro) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.2886 - Bleu: 28.1641 - Gen Len: 34.1071 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 0.7436 | 1.0 | 38145 | 1.2886 | 28.1641 | 34.1071 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
sgugger/esberto-small
sgugger
2021-07-26T20:53:03Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "dataset:oscar", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - oscar model_index: - name: esberto-small results: - task: name: Masked Language Modeling type: fill-mask dataset: name: oscar type: oscar args: unshuffled_original_eo --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # esberto-small This model is a fine-tuned version of [](https://huggingface.co/) on the oscar dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - num_devices: 8 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.10.0.dev0 - Pytorch 1.9.0+cu102 - Datasets 1.10.3.dev0 - Tokenizers 0.10.3
murali-admin/bart-billsum-1
murali-admin
2021-07-26T18:07:58Z
4
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "autonlp", "en", "dataset:mohsenalam/autonlp-data-billsum-summarization", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - mohsenalam/autonlp-data-billsum-summarization --- # Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 5691253 ## Validation Metrics - Loss: 1.4430530071258545 - Rouge1: 23.9565 - Rouge2: 19.1897 - RougeL: 23.1191 - RougeLsum: 23.3308 - Gen Len: 20.0 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/mohsenalam/autonlp-billsum-summarization-5691253 ```
vasudevgupta/bigbird-roberta-base
vasudevgupta
2021-07-26T17:30:39Z
5
0
transformers
[ "transformers", "pytorch", "big_bird", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
Moved here: https://huggingface.co/google/bigbird-roberta-base
nishmithaur/distilbert-base-uncased-finetuned-ner
nishmithaur
2021-07-26T14:59:51Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 model_index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0623 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.2377 | 1.0 | 878 | 0.0711 | | 0.0514 | 2.0 | 1756 | 0.0637 | | 0.031 | 3.0 | 2634 | 0.0623 | ### Framework versions - Transformers 4.9.0 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
flax-community/gpt-neo-125M-code-clippy-dedup
flax-community
2021-07-26T14:07:29Z
6
0
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "gpt_neo", "text-generation", "arxiv:2107.03374", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
# GPT-Neo-125M-Code-Clippy-Dedup > **Please refer to our new [GitHub Wiki](https://github.com/ncoop57/gpt-code-clippy/wiki) which documents our efforts in detail in creating the open source version of GitHub Copilot** ## Model Description PT-Neo-125M-Code-Clippy-Dedup is a [GPT-Neo-125M model](https://huggingface.co/EleutherAI/gpt-neo-125M) finetuned using causal language modeling on our deduplicated version of the Code Clippy Data dataset, which was scraped from public Github repositories (more information in the provided link). This model is specialized to autocomplete methods in multiple programming languages. ## Training data [Code Clippy Data dataset](https://huggingface.co/datasets/code_search_net). ## Training procedure In this model's training we tried to stabilize the training by limiting the types of files we were using to train to only those that contained file extensions for popular programming languages as our dataset contains other types of files as well such as `.txt` or project configuration files. We used the following extensions to filter by: The training script used to train this model can be found [here](https://github.com/ncoop57/gpt-code-clippy/blob/camera-ready/training/run_clm_streaming_filter_flax.py). ```bash ./run_clm_streaming_filter_flax.py \ --output_dir $HOME/gpt-neo-125M-code-clippy-dedup \ --model_name_or_path="EleutherAI/gpt-neo-125M" \ --dataset_name $HOME/gpt-code-clippy/data_processing/code_clippy_filter.py \ --data_dir $HOME/code_clippy_data/code_clippy_dedup_data \ --text_column_name="text" \ --do_train --do_eval \ --block_size="2048" \ --per_device_train_batch_size="8" \ --per_device_eval_batch_size="16" \ --preprocessing_num_workers="8" \ --learning_rate="1e-4" \ --max_steps 100000 \ --warmup_steps 2000 \ --decay_steps 30000 \ --adam_beta1="0.9" \ --adam_beta2="0.95" \ --weight_decay="0.1" \ --overwrite_output_dir \ --logging_steps="25" \ --eval_steps="500" \ --push_to_hub="False" \ --report_to="all" \ --dtype="bfloat16" \ --skip_memory_metrics="True" \ --save_steps="500" \ --save_total_limit 10 \ --gradient_accumulation_steps 16 \ --report_to="wandb" \ --run_name="gpt-neo-125M-code-clippy-dedup-filtered-no-resize-2048bs" \ --max_eval_samples 2000 \ --save_optimizer true ``` ## Intended Use and Limitations The model is finetuned text file from github repositories (mostly programming languages but also markdown and other project related files). ### How to use You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run: ```py from transformers import AutoModelForCausalLM, AutoTokenizer, FlaxAutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained("flax-community/gpt-neo-125M-code-clippy-dedup") tokenizer = AutoTokenizer.from_pretrained("flax-community/gpt-neo-125M-code-clippy-dedup") prompt = """def greet(name): '''A function to greet user. Given a user name it should say hello''' """ input_ids = tokenizer(prompt, return_tensors='pt').input_ids.to(device) start = input_ids.size(1) out = model.generate(input_ids, do_sample=True, max_length=50, num_beams=2, early_stopping=True, eos_token_id=tokenizer.eos_token_id, ) print(tokenizer.decode(out[0][start:])) ``` ### Limitations and Biases The model is intended to be used for research purposes and comes with no guarantees of quality of generated code. The paper ["Evaluating Large Language Models Trained on Code"](https://arxiv.org/abs/2107.03374) from OpenAI has a good discussion on what the impact of a large language model trained on code could be. Therefore, some parts of their discuss are highlighted here as it pertains to this dataset and models that may be trained from it. **As well as some differences in views from the paper, particularly around legal implications**. 1. **Over-reliance:** This model may generate plausible solutions that may appear correct, but are not necessarily the correct solution. Not properly evaluating the generated code may cause have negative consequences such as the introduction of bugs, or the introduction of security vulnerabilities. Therefore, it is important that users are aware of the limitations and potential negative consequences of using this language model. 2. **Economic and labor market impacts:** Large language models trained on large code datasets such as this one that are capable of generating high-quality code have the potential to automate part of the software development process. This may negatively impact software developers. However, as discussed in the paper, as shown in the Summary Report of software developers from [O*NET OnLine](https://www.onetonline.org/link/summary/15-1252.00), developers don't just write software. 3. **Security implications:** No filtering or checking of vulnerabilities or buggy code was performed on the datase this model is trained on. This means that the dataset may contain code that may be malicious or contain vulnerabilities. Therefore, this model may generate vulnerable, buggy, or malicious code. In safety critical software, this could lead to software that may work improperly and could result in serious consequences depending on the software. Additionally, this model may be able to be used to generate malicious code on purpose in order to perform ransomware or other such attacks. 4. **Legal implications:** No filtering was performed on licensed code. This means that the dataset may contain restrictive licensed code. As discussed in the paper, public Github repositories may fall under "fair use." However, there has been little to no previous cases of such usages of licensed publicly available code. Therefore, any code generated with this model may be required to obey license terms that align with the software it was trained on such as GPL-3.0. It is unclear the legal ramifications of using a language model trained on this dataset. 5. **Biases:** The programming languages most represented in the dataset this model was trained on are Javascript and Python. Therefore, other, still popular languages such as C and C++, are less represented and therefore the models performance for these languages will be less comparatively. Additionally, this dataset only contains public repositories and so the model may not generate code that is representative of code written by private developers. No filtering was performed for potential racist, offensive, or otherwise inappropriate content. Therefore, this model may reflect such biases in its generation. GPT-Neo-125M-Code-Clippy-Dedup is finetuned from GPT-Neo and might have inherited biases and limitations from it. See [GPT-Neo model card](https://huggingface.co/EleutherAI/gpt-neo-125M#limitations-and-biases) for details. ## Eval results Coming soon...
huggingtweets/unkledell
huggingtweets
2021-07-26T13:48:56Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/unkledell/1627307332006/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1199452477659238400/iMdWeVWZ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">freeuzi</div> <div style="text-align: center; font-size: 14px;">@unkledell</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from freeuzi. | Data | freeuzi | | --- | --- | | Tweets downloaded | 3220 | | Retweets | 138 | | Short tweets | 1159 | | Tweets kept | 1923 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2ockzquq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @unkledell's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/17ij2gx7) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/17ij2gx7/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/unkledell') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Alireza1044/albert-base-v2-stsb
Alireza1044
2021-07-26T10:57:27Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "albert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model_index: - name: stsb results: - task: name: Text Classification type: text-classification dataset: name: GLUE STSB type: glue args: stsb metric: name: Spearmanr type: spearmanr value: 0.9050744778895732 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # stsb This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 0.3978 - Pearson: 0.9090 - Spearmanr: 0.9051 - Combined Score: 0.9071 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Training results ### Framework versions - Transformers 4.9.0 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
gabtan99/dialogpt-tagalog-medium-10
gabtan99
2021-07-26T10:19:09Z
15
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "tagalog", "filipino", "tl", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- tags: - conversational - tagalog - filipino language: - tl --- # Tagalog DialoGPT This is an extension of the base Tagalog DialoGPT model (https://huggingface.co/gabtan99/dialogpt-tagalog-medium). This model is trained on 52K original conversations and 52K synthetic conversations, where 10% of tokens in each utterance in the synthetic conversation are machine-generated tokens.
Maltehb/aelaectra-danish-electra-small-cased-ner-dane
Maltehb
2021-07-26T08:48:30Z
20
2
transformers
[ "transformers", "pytorch", "tf", "electra", "token-classification", "ælæctra", "danish", "ELECTRA-Small", "replaced token detection", "da", "dataset:DAGW", "arxiv:2003.10555", "arxiv:1810.04805", "arxiv:2005.03521", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- language: "da" tags: - ælæctra - pytorch - danish - ELECTRA-Small - replaced token detection license: "mit" datasets: - DAGW widget: - text: "Chili Jensen, som bor på Danmarksgade 12, køber chilifrugter fra Netto." metrics: - f1 --- # Ælæctra - Finetuned for Named Entity Recognition on the [DaNE dataset](https://danlp.alexandra.dk/304bd159d5de/datasets/ddt.zip) (Hvingelby et al., 2020) by Malte Højmark-Bertelsen. **Ælæctra** is a Danish Transformer-based language model created to enhance the variety of Danish NLP resources with a more efficient model compared to previous state-of-the-art (SOTA) models. Ælæctra was pretrained with the ELECTRA-Small (Clark et al., 2020) pretraining approach by using the Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020) and evaluated on Named Entity Recognition (NER) tasks. Since NER only presents a limited picture of Ælæctra's capabilities I am very interested in further evaluations. Therefore, if you employ it for any task, feel free to hit me up your findings! Ælæctra was, as mentioned, created to enhance the Danish NLP capabilties and please do note how this GitHub still does not support the Danish characters "*Æ, Ø and Å*" as the title of this repository becomes "*-l-ctra*". How ironic.🙂 Here is an example on how to load the finetuned Ælæctra-cased model for Named Entity Recognition in [PyTorch](https://pytorch.org/) using the [🤗Transformers](https://github.com/huggingface/transformers) library: ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("Maltehb/-l-ctra-danish-electra-small-cased-ner-dane") model = AutoModelForTokenClassification.from_pretrained("Maltehb/-l-ctra-danish-electra-small-cased-ner-dane") ``` ### Evaluation of current Danish Language Models Ælæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated: | Model | Layers | Hidden Size | Params | AVG NER micro-f1 (DaNE-testset) | Average Inference Time (Sec/Epoch) | Download | | --- | --- | --- | --- | --- | --- | --- | | Ælæctra Uncased | 12 | 256 | 13.7M | 78.03 (SD = 1.28) | 10.91 | [Link for model](https://www.dropbox.com/s/cag7prs1nvdchqs/%C3%86l%C3%A6ctra.zip?dl=0) | | Ælæctra Cased | 12 | 256 | 14.7M | 80.08 (SD = 0.26) | 10.92 | [Link for model](https://www.dropbox.com/s/cag7prs1nvdchqs/%C3%86l%C3%A6ctra.zip?dl=0) | | DaBERT | 12 | 768 | 110M | 84.89 (SD = 0.64) | 43.03 | [Link for model](https://www.dropbox.com/s/19cjaoqvv2jicq9/danish_bert_uncased_v2.zip?dl=1) | | mBERT Uncased | 12 | 768 | 167M | 80.44 (SD = 0.82) | 72.10 | [Link for model](https://storage.googleapis.com/bert_models/2018_11_03/multilingual_L-12_H-768_A-12.zip) | | mBERT Cased | 12 | 768 | 177M | 83.79 (SD = 0.91) | 70.56 | [Link for model](https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip) | On [DaNE](https://danlp.alexandra.dk/304bd159d5de/datasets/ddt.zip) (Hvingelby et al., 2020) without the *MISC-tag*, Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate. ### Pretraining To pretrain Ælæctra it is recommended to build a Docker Container from the [Dockerfile](https://github.com/MalteHB/Ælæctra/tree/master/notebooks/fine-tuning/). Next, simply follow the [pretraining notebooks](https://github.com/MalteHB/Ælæctra/tree/master/infrastructure/Dockerfile/) The pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company [KMD](https://www.kmd.dk/). The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model ### Fine-tuning To fine-tune any Ælæctra model follow the [fine-tuning notebooks](https://github.com/MalteHB/Ælæctra/tree/master/notebooks/fine-tuning/) ### References Clark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. ArXiv:2003.10555 [Cs]. http://arxiv.org/abs/2003.10555 Danish BERT. (2020). BotXO. https://github.com/botxo/nordic_bert (Original work published 2019) Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. http://arxiv.org/abs/1810.04805 Hvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. https://www.aclweb.org/anthology/2020.lrec-1.565 Strømberg-Derczynski, L., Baglini, R., Christiansen, M. H., Ciosici, M. R., Dalsgaard, J. A., Fusaroli, R., Henrichsen, P. J., Hvingelby, R., Kirkedal, A., Kjeldsen, A. S., Ladefoged, C., Nielsen, F. Å., Petersen, M. L., Rystrøm, J. H., & Varab, D. (2020). The Danish Gigaword Project. ArXiv:2005.03521 [Cs]. http://arxiv.org/abs/2005.03521 #### Acknowledgements As the majority of this repository is build upon [the works](https://github.com/google-research/electra) by the team at Google who created ELECTRA, a HUGE thanks to them is in order. A Giga thanks also goes out to the incredible people who collected The Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020). Furthermore, I would like to thank my supervisor [Riccardo Fusaroli](https://github.com/fusaroli) for the support with the thesis, and a special thanks goes out to [Kenneth Enevoldsen](https://github.com/KennethEnevoldsen) for his continuous feedback. Lastly, i would like to thank KMD, my colleagues from KMD, and my peers and co-students from Cognitive Science for encouriging me to keep on working hard and holding my head up high! #### Contact For help or further information feel free to connect with the author Malte Højmark-Bertelsen on [[email protected]](mailto:[email protected]?subject=[GitHub]%20ÆlæctraCasedNER) or any of the following platforms: [<img align="left" alt="MalteHB | Twitter" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/twitter.svg" />][twitter] [<img align="left" alt="MalteHB | LinkedIn" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/linkedin.svg" />][linkedin] [<img align="left" alt="MalteHB | Instagram" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/instagram.svg" />][instagram] <br /> </details> [twitter]: https://twitter.com/malteH_B [instagram]: https://www.instagram.com/maltemusen/ [linkedin]: https://www.linkedin.com/in/malte-h%C3%B8jmark-bertelsen-9a618017b/
huggingtweets/goodtweet_man
huggingtweets
2021-07-26T06:09:24Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/goodtweet_man/1627279760723/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1347063976585293826/11EjcLnX_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Good Tweetman</div> <div style="text-align: center; font-size: 14px;">@goodtweet_man</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Good Tweetman. | Data | Good Tweetman | | --- | --- | | Tweets downloaded | 3225 | | Retweets | 734 | | Short tweets | 643 | | Tweets kept | 1848 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2czt5qbq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @goodtweet_man's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/tanvki3u) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/tanvki3u/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/goodtweet_man') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
boris/vqgan_f16_16384
boris
2021-07-26T03:13:37Z
11
4
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
## VQGAN-f16-16384 ### Model Description This is a Pytorch Lightning checkpoint of VQGAN, which learns a codebook of context-rich visual parts by leveraging both the use of convolutional methods and transformers. It was introduced in [Taming Transformers for High-Resolution Image Synthesis](https://compvis.github.io/taming-transformers/) ([CVPR paper](https://openaccess.thecvf.com/content/CVPR2021/html/Esser_Taming_Transformers_for_High-Resolution_Image_Synthesis_CVPR_2021_paper.html)). The model allows the encoding of images as a fixed-length sequence of tokens taken from the codebook. This version of the model uses a reduction factor `f=16` and a vocabulary of `13,384` tokens. As an example of how the reduction factor works, images of size `256x256` are encoded to sequences of `256` tokens: `256/16 * 256/16`. Images of `512x512` would result in sequences of `1024` tokens. ### Datasets Used for Training * ImageNet. We didn't train this model from scratch. Instead, we started from [a checkpoint pre-trained on ImageNet](https://heibox.uni-heidelberg.de/d/a7530b09fed84f80a887/). * [Conceptual Captions 3M](https://ai.google.com/research/ConceptualCaptions/) (CC3M). * [OpenAI subset of YFCC100M](https://github.com/openai/CLIP/blob/main/data/yfcc100m.md). We fine-tuned on CC3M and YFCC100M to improve the encoding quality of people and faces, which are not very well represented in ImageNet. We used a subset of 2,268,720 images from CC3M and YFCC100M for this purpose. ### Training Process Finetuning was performed in PyTorch using [taming-transformers](https://github.com/CompVis/taming-transformers). The full training process and model preparation includes these steps: * Pre-training on ImageNet. Previously performed. We used [this checkpoint](https://heibox.uni-heidelberg.de/d/a7530b09fed84f80a887). * Fine-tuning, [Part 1](https://wandb.ai/wandb/hf-flax-dalle-mini/runs/2021-07-09T15-33-11_dalle_vqgan?workspace=user-borisd13). * Fine-tuning, [Part 2](https://wandb.ai/wandb/hf-flax-dalle-mini/runs/2021-07-09T21-42-07_dalle_vqgan?workspace=user-borisd13) – continuation from Part 1. The final checkpoint has been logged as an artifact in the training run and is the model present in this card. * Conversion to JAX as [`flax-community/vqgan_f16_16384`](https://huggingface.co/flax-community/vqgan_f16_16384). ### How to Use The checkpoint can be loaded using Pytorch-Lightning. Note: `omegaconf==2.0.0` is required for loading the checkpoint. ### Related Models in the Hub * JAX version of VQGAN, trained on the same datasets described here: [`flax-community/vqgan_f16_16384`](https://huggingface.co/flax-community/vqgan_f16_16384). * [DALL·E mini](https://huggingface.co/flax-community/dalle-mini), a Flax/JAX simplified implementation of OpenAI's DALL·E. ### Other This model was successfully used as part of the implementation of [DALL·E mini](https://github.com/borisdayma/dalle-mini). Our [report](https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA) contains more details on how to leverage it in an image encoding / generation pipeline.
flax-community/clip-reply
flax-community
2021-07-26T02:11:43Z
0
4
null
[ "tensorboard", "region:us" ]
null
2022-03-02T23:29:05Z
# Searching Reaction GIFs with CLIP ![header gif](./assets/huggingface_explode3.png) Reaction GIFs are an integral part of today's communication. They convey complex emotions with many levels, in a short compact format. If a picture is worth a thousand words then a GIF is worth more. We might even say that the level of complexity and expressiveness increases like: `Emoji < Memes/Image < GIFs` I think most people would agree it is not always easy to find the perfect reaction GIF. Although we started out with the more ambitious goal of GIF/Image generation we later settled on first finetuning CLIP. Which is needed to properly drive a generation model (like VQGAN). ![header gif](./assets/main.gif) Available CLIP models wouldn't be suitable to use without this finetuning as explained in the challenges below. ## 📝 Challenges Classic (Image,Text) tasks like, image search, caption generation all focus on cases where the text is a description of the image. This is mainly because large scale datasets available like COCO,WIT happen to be of that format. So it is interesting to see if models can also capture some more higher level relations. like sentiment-> image mapping, where there is great variation on both sides. We can think of reaction gif/images to be sentiment like, in fact the dataset we use was also gathered for sentiment analysis. There is no one correct reaction GIF, which also makes evaluation challenging. # Dataset We use the [Reaction GIF dataset](https://github.com/bshmueli/ReactionGIF) by Shmueli et al. Also available in [datasets](https://huggingface.co/datasets/julien-c/reactiongif)(without the gifs, but I already had those files, nice coincidence 😉) ![Dataset](./assets/dataset.png) We only use the tweet, GIF Response fields. For this short experiment we only used the first frame of the GIFs to get generate the (text,image) pairs. Thought about using multiple frames from the GIF, but since there may not be much change between frames and didn't know how that would effect the already overfitting model. I decided to go with the simpler single frame version. As opposed to other datasets, like COCO, we don't have multiple captions per image. Although same GIFs are used multiple times and we can modify the dataset that way we chose not to. Since we already had a very small dataset. - Domain: Twitter - Train size: 18,976 - Validation size: 351 # Model We used the Hybrid CLIP model. Training script: [Hybrid CLIP](https://github.com/huggingface/transformers/blob/master/examples/research_projects/jax-projects/hybrid_clip/run_hybrid_clip.py) - Text Model: [twitter-roberta-base-emoji](https://huggingface.co/cardiffnlp/twitter-roberta-base-emoji) - Vision Model: [openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) ## Different models tried `cardiffnlp/twitter-roberta-base-*` models performed best compared to other text models; like the plain `roberta-base`, `bert-base-cased`. This makes sense since this model is already trained on twitter data. And among `cardiffnlp/twitter-roberta-base-*` models `twitter-roberta-base-emoji` performed best. (As I had hoped) This model is `cardiffnlp/twitter-roberta-base` further fine-tuned on emoji classification task, which we can say (emojis) is a parallel to GIFs. Also tried `google/vit-base-patch32-384`, `google/vit-base-patch16-384` for the vision models, but results were inconclusive. ## Result Interpretation (Warning) It would be wrong to claim that this model learned 'semantic reasoning' between sentence and image features. It more likely learned a mapping between sentence sentiment and image occurrence statistics. Because the set of gif images repeat across the dataset, although paired with different sentences. That is not to say that learning such semantic relations isn't feasible with this model. And it is well worth working on in the future, with a larger and better constructed dataset. ### 📈 Training Logs Training logs can be found [here](https://wandb.ai/cceyda/flax-clip?workspace=user-cceyda) It was really easy to overfit since it was a tiny dataset. Used early stopping. Other parameters: ``` --max_seq_length 128 \ --per_device_train_batch_size="32" \ --learning_rate="1e-5" --warmup_steps="150" ``` # 💡 Future Potential It is possible to generate a very large training set by scraping twitter.(Couldn't do during the event because of twitter rate limit) I found it surprising how well the results turned out to be with so little data and training time. Although it is really hard to define what is an appropriate reaction image, and there are definite mistakes model makes. (I also trained just a plain clip but didn't have time to prep demo for that 😅 which was also similarly over fitting and only had time to do a single run) I will definitely be trying out training a similar model for emoji & meme data. Training CLIP is just the first step, if we have a well trained CLIP generation is within reach 🚀 # How to use The final model available [here](https://huggingface.co/ceyda/clip-reply) ```py from model import FlaxHybridCLIP # see demo from transformers import AutoTokenizer, CLIPProcessor model = FlaxHybridCLIP.from_pretrained("ceyda/clip-reply") processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") processor.tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base") def query(image_paths,query_text): images = [Image.open(im).convert("RGB") for im in image_paths] inputs = processor(text=[query_text], images=images, return_tensors="jax", padding=True) inputs["pixel_values"] = jnp.transpose(inputs["pixel_values"], axes=[0, 2, 3, 1]) outputs = model(**inputs) logits_per_image = outputs.logits_per_image.reshape(-1) probs = jax.nn.softmax(logits_per_image) ``` # Created By Ceyda Cinarel [@ceyda](https://huggingface.co/ceyda) Made during the flax community [event](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104/58) # TL;DR The task Input: Some sentence (like a tweet) Output: The most suitable reaction GIF image (Ranking) Example: - Input: I miss you - Output: ![hug](./assets/example_gif.jpg) # Demo https://huggingface.co/spaces/flax-community/clip-reply-demo
flax-sentence-embeddings/reddit_single-context_mpnet-base
flax-sentence-embeddings
2021-07-26T01:36:18Z
1,133
4
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "en", "arxiv:1904.06472", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity language: en --- # Model description The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We used the pretrained ['mpnet-base'](https://huggingface.co/microsoft/mpnet-base) model and fine-tuned in on a 700M sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developped this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developped this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Google’s Flax, JAX, and Cloud team member about efficient deep learning frameworks. ## Intended uses Our model is intented to be used as a sentence encoder. Given an input sentence, it ouptuts a vector which captures the sentence semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. ## How to use Here is how to use this model to get the features of a given text using [SentenceTransformers](https://github.com/UKPLab/sentence-transformers) library: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('flax-sentence-embeddings/reddit_single-context_mpnet-base') text = "Replace me by any text you'd like." text_embbedding = model.encode(text) # array([-0.01559514, 0.04046123, 0.1317083 , 0.00085931, 0.04585106, # -0.05607086, 0.0138078 , 0.03569756, 0.01420381, 0.04266302 ...], # dtype=float32) ``` # Training procedure ## Pre-training We use the pretrained ['mpnet-base'](https://huggingface.co/microsoft/mpnet-base). Please refer to the model card for more detailed information about the pre-training procedure. ## Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 700M sentences. We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file. We only use the first context response when building the dataset. | Dataset | Paper | Number of training tuples | |:--------------------------------------------------------:|:----------------------------------------:|:--------------------------:| | [Reddit conversationnal](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 |
flax-sentence-embeddings/multi-qa_v1-distilbert-cls_dot
flax-sentence-embeddings
2021-07-26T01:34:32Z
165
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "arxiv:2102.07033", "arxiv:2104.08727", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # multi-qa_v1-distilbert-cls_dot ## Model Description SentenceTransformers is a set of models and frameworks that enable training and generating sentence embeddings from given data. The generated sentence embeddings can be utilized for Clustering, Semantic Search and other tasks. We used a pretrained [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) model and trained it using Siamese Network setup and contrastive learning objective. Question and answer pairs from StackExchange was used as training data to make the model robust to Question / Answer embedding similarity. For this model, cls output was used instead of mean pooling as sentence embeddings. Dot product was used to calculate similarity for learning objective. We developed this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developed this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as assistance from Google’s Flax, JAX, and Cloud team members about efficient deep learning frameworks. ## Intended uses Our model is intended to be used as a sentence encoder for a search engine. Given an input sentence, it outputs a vector which captures the sentence semantic information. The sentence vector may be used for semantic-search, clustering or sentence similarity tasks. ## How to use Here is how to use this model to get the features of a given text using [SentenceTransformers](https://github.com/UKPLab/sentence-transformers) library: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('flax-sentence-embeddings/multi-qa_v1-distilbert-cls_dot') text = "Replace me by any question / answer you'd like." text_embbedding = model.encode(text) # array([-0.01559514, 0.04046123, 0.1317083 , 0.00085931, 0.04585106, # -0.05607086, 0.0138078 , 0.03569756, 0.01420381, 0.04266302 ...], # dtype=float32) ``` # Training procedure ## Pre-training We use the pretrained [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased). Please refer to the model card for more detailed information about the pre-training procedure. ## Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used. | Dataset | Paper | Number of training tuples | |:--------------------------------------------------------:|:----------------------------------------:|:--------------------------:| | [Stack Exchange QA - Title & Answer](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_best_voted_answer_jsonl) | - | 4,750,619 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_body_jsonl) | - | 364,001 | | [TriviaqQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [Quora Question Pairs](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [PAQ](https://github.com/facebookresearch/PAQ) | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | [MS MARCO](https://microsoft.github.io/msmarco/) | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Question/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | SearchQA | - | 582,261 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 |
flax-sentence-embeddings/multi-qa_v1-MiniLM-L6-cls_dot
flax-sentence-embeddings
2021-07-26T01:33:36Z
354
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "arxiv:2102.07033", "arxiv:2104.08727", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # multi-qa_v1-MiniLM-L6-cls_dot ## Model Description SentenceTransformers is a set of models and frameworks that enable training and generating sentence embeddings from given data. The generated sentence embeddings can be utilized for Clustering, Semantic Search and other tasks. We used a pretrained [nreimers/MiniLM-L6-H384-uncased](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model and trained it using Siamese Network setup and contrastive learning objective. Question and answer pairs from StackExchange was used as training data to make the model robust to Question / Answer embedding similarity. For this model, cls output was used instead of mean pooling as sentence embeddings. Dot product was used to calculate similarity for learning objective. We developed this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developed this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as assistance from Google’s Flax, JAX, and Cloud team members about efficient deep learning frameworks. ## Intended uses Our model is intended to be used as a sentence encoder for a search engine. Given an input sentence, it outputs a vector which captures the sentence semantic information. The sentence vector may be used for semantic-search, clustering or sentence similarity tasks. ## How to use Here is how to use this model to get the features of a given text using [SentenceTransformers](https://github.com/UKPLab/sentence-transformers) library: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('flax-sentence-embeddings/multi-qa_v1-MiniLM-L6-cls_dot') text = "Replace me by any question / answer you'd like." text_embbedding = model.encode(text) # array([-0.01559514, 0.04046123, 0.1317083 , 0.00085931, 0.04585106, # -0.05607086, 0.0138078 , 0.03569756, 0.01420381, 0.04266302 ...], # dtype=float32) ``` # Training procedure ## Pre-training We use the pretrained [nreimers/MiniLM-L6-H384-uncased](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased). Please refer to the model card for more detailed information about the pre-training procedure. ## Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used. | Dataset | Paper | Number of training tuples | |:--------------------------------------------------------:|:----------------------------------------:|:--------------------------:| | [Stack Exchange QA - Title & Answer](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_best_voted_answer_jsonl) | - | 4,750,619 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_body_jsonl) | - | 364,001 | | [TriviaqQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [Quora Question Pairs](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [PAQ](https://github.com/facebookresearch/PAQ) | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | [MS MARCO](https://microsoft.github.io/msmarco/) | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Question/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | SearchQA | - | 582,261 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 |
huggingtweets/thebaronskelly
huggingtweets
2021-07-25T22:46:45Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/thebaronskelly/1627253182833/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1412243136626188292/5XN3zStP_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Skelly</div> <div style="text-align: center; font-size: 14px;">@thebaronskelly</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Skelly. | Data | Skelly | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 298 | | Short tweets | 1337 | | Tweets kept | 1615 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/4aab6en9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @thebaronskelly's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3lhgo3xu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3lhgo3xu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/thebaronskelly') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/imgrimevil
huggingtweets
2021-07-25T22:26:32Z
6
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/imgrimevil/1627251988335/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1397711387380617219/Hzreffrt_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Contra</div> <div style="text-align: center; font-size: 14px;">@imgrimevil</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Contra. | Data | Contra | | --- | --- | | Tweets downloaded | 3238 | | Retweets | 669 | | Short tweets | 582 | | Tweets kept | 1987 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1kn7qqp8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @imgrimevil's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/fjaoumhd) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/fjaoumhd/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/imgrimevil') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/horse1350
huggingtweets
2021-07-25T22:17:33Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/horse1350/1627251450034/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1417892518981738502/Qb2SoLGO_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">horsey</div> <div style="text-align: center; font-size: 14px;">@horse1350</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from horsey. | Data | horsey | | --- | --- | | Tweets downloaded | 1783 | | Retweets | 26 | | Short tweets | 352 | | Tweets kept | 1405 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2gpy0wuu/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @horse1350's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/fgwh8u1y) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/fgwh8u1y/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/horse1350') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/cryptolith_-drilbot_neo-rusticgendarme
huggingtweets
2021-07-25T21:54:08Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/cryptolith_-drilbot_neo-rusticgendarme/1627250043753/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1405236436144508932/5bN_yThT_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1419244584367005696/F5fnPoI1_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1374924360780242944/-Q8NfgEr_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">merz & 🔲🔳 & wintbot_neo</div> <div style="text-align: center; font-size: 14px;">@cryptolith_-drilbot_neo-rusticgendarme</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from merz & 🔲🔳 & wintbot_neo. | Data | merz | 🔲🔳 | wintbot_neo | | --- | --- | --- | --- | | Tweets downloaded | 2483 | 3223 | 3244 | | Retweets | 427 | 449 | 215 | | Short tweets | 419 | 1022 | 274 | | Tweets kept | 1637 | 1752 | 2755 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3i10strm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cryptolith_-drilbot_neo-rusticgendarme's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ehu86wd) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ehu86wd/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cryptolith_-drilbot_neo-rusticgendarme') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/k_saifullaah
huggingtweets
2021-07-25T21:49:06Z
6
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/k_saifullaah/1627249742146/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1399131958072856576/kNZ_xofA_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Khalid Saifullah</div> <div style="text-align: center; font-size: 14px;">@k_saifullaah</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Khalid Saifullah. | Data | Khalid Saifullah | | --- | --- | | Tweets downloaded | 2418 | | Retweets | 82 | | Short tweets | 698 | | Tweets kept | 1638 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/wq0m2z1a/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @k_saifullaah's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/12hp7hqj) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/12hp7hqj/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/k_saifullaah') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-A
flax-sentence-embeddings
2021-07-25T21:33:06Z
10
3
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "arxiv:2102.07033", "arxiv:2104.08727", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # multi-QA_v1-mpnet-asymmetric-A ## Model Description SentenceTransformers is a set of models and frameworks that enable training and generating sentence embeddings from given data. The generated sentence embeddings can be utilized for Clustering, Semantic Search and other tasks. We used two separate pretrained [mpnet-base](https://huggingface.co/microsoft/mpnet-base) models and trained them using contrastive learning objective. Question and answer pairs from StackExchange and other datasets were used as training data to make the model robust to Question / Answer embedding similarity. We developed this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developed this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as assistance from Google’s Flax, JAX, and Cloud team members about efficient deep learning frameworks. ## Intended uses This model set is intended to be used as a sentence encoder for a search engine. Given an input sentence, it ouptuts a vector which captures the sentence semantic information. The sentence vector may be used for semantic-search, clustering or sentence similarity tasks. Two models should be used on conjunction for Semantic Search purposes. 1. [multi-QA_v1-mpnet-asymmetric-Q](https://huggingface.co/flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-Q) - Model to encode Questions 1. [multi-QA_v1-mpnet-asymmetric-A](https://huggingface.co/flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-A) - Model to encode Answers ## How to use Here is how to use this model to get the features of a given text using [SentenceTransformers](https://github.com/UKPLab/sentence-transformers) library: ```python from sentence_transformers import SentenceTransformer model_Q = SentenceTransformer('flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-Q') model_A = SentenceTransformer('flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-A') question = "Replace me by any question you'd like." question_embbedding = model_Q.encode(text) answer = "Replace me by any answer you'd like." answer_embbedding = model_A.encode(text) answer_likeliness = cosine_similarity(question_embedding, answer_embedding) ``` # Training procedure ## Pre-training We use the pretrained [`Mpnet-base`](https://huggingface.co/microsoft/mpnet-base). Please refer to the model card for more detailed information about the pre-training procedure. ## Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used. | Dataset | Paper | Number of training tuples | |:--------------------------------------------------------:|:----------------------------------------:|:--------------------------:| | [Stack Exchange QA - Title & Answer](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_best_voted_answer_jsonl) | - | 4,750,619 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_body_jsonl) | - | 364,001 | | [TriviaqQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [Quora Question Pairs](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [PAQ](https://github.com/facebookresearch/PAQ) | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | [MS MARCO](https://microsoft.github.io/msmarco/) | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Question/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | SearchQA | - | 582,261 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 |
huggingtweets/aimbotaimy-coldjiangshi-ladydarknest
huggingtweets
2021-07-25T20:00:21Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/aimbotaimy-coldjiangshi-ladydarknest/1627243217316/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1374872808136835072/hPahIg-A_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1409725677495009283/RPVDIGan_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1413348777243512833/dvnUJ-du_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">AimbotAimy 🍞🔞 NSFW V-Tuber & Demon Lord Yeefi NSFW🔞 & ADMIRAL JIANGSHI 🐉🇭🇹🏴‍☠️</div> <div style="text-align: center; font-size: 14px;">@aimbotaimy-coldjiangshi-ladydarknest</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from AimbotAimy 🍞🔞 NSFW V-Tuber & Demon Lord Yeefi NSFW🔞 & ADMIRAL JIANGSHI 🐉🇭🇹🏴‍☠️. | Data | AimbotAimy 🍞🔞 NSFW V-Tuber | Demon Lord Yeefi NSFW🔞 | ADMIRAL JIANGSHI 🐉🇭🇹🏴‍☠️ | | --- | --- | --- | --- | | Tweets downloaded | 518 | 3242 | 2899 | | Retweets | 60 | 957 | 1462 | | Short tweets | 127 | 392 | 324 | | Tweets kept | 331 | 1893 | 1113 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/348if7b6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @aimbotaimy-coldjiangshi-ladydarknest's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1dzd34gb) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1dzd34gb/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/aimbotaimy-coldjiangshi-ladydarknest') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
tugstugi/wav2vec2-large-xlsr-53-kalmyk
tugstugi
2021-07-25T19:55:31Z
13
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "speech", "audio", "xal", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: xal tags: - speech - audio - automatic-speech-recognition license: apache-2.0 --- ## Info This Wav2Vec2 model was first pretrained on 500 hours Kalmyk TV recordings and 1000 hours Mongolian speech recognition dataset. After that, the model was finetuned on a 300 hours [Kalmyk synthetic STT dataset](https://github.com/tugstugi/mongolian-nlp#datasets) created by a voice conversion model. * 50% WER on a private test set created from Kalmyk TV recordnings * on clean voice recordings, the model should have much lower WER * voice conversion info * 300 hours [Kalmyk synthetic STT dataset](https://github.com/tugstugi/mongolian-nlp#datasets) * The source voice is a Kalmyk female voice TTS * Target voices are from the VCTK dataset * example data: https://twitter.com/tugstugi/status/1409111296897912835 * each WAV has a different text created from Kalmyk books
huggingtweets/dead__bug
huggingtweets
2021-07-25T16:53:13Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/dead__bug/1627231954071/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1349980097168740352/GSthZg8p_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">persona non greta</div> <div style="text-align: center; font-size: 14px;">@dead__bug</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from persona non greta. | Data | persona non greta | | --- | --- | | Tweets downloaded | 3095 | | Retweets | 449 | | Short tweets | 623 | | Tweets kept | 2023 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/oyzjw1jc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dead__bug's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/20dghuyx) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/20dghuyx/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dead__bug') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
flax-community/vqgan_f16_16384
flax-community
2021-07-25T15:15:36Z
11
9
transformers
[ "transformers", "jax", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
## VQGAN-f16-16384 ### Model Description This is a Flax/JAX implementation of VQGAN, which learns a codebook of context-rich visual parts by leveraging both the use of convolutional methods and transformers. It was introduced in [Taming Transformers for High-Resolution Image Synthesis](https://compvis.github.io/taming-transformers/) ([CVPR paper](https://openaccess.thecvf.com/content/CVPR2021/html/Esser_Taming_Transformers_for_High-Resolution_Image_Synthesis_CVPR_2021_paper.html)). The model allows the encoding of images as a fixed-length sequence of tokens taken from the codebook. This version of the model uses a reduction factor `f=16` and a vocabulary of `13,384` tokens. As an example of how the reduction factor works, images of size `256x256` are encoded to sequences of `256` tokens: `256/16 * 256/16`. Images of `512x512` would result in sequences of `1024` tokens. ### Datasets Used for Training * ImageNet. We didn't train this model from scratch. Instead, we started from [a checkpoint pre-trained on ImageNet](https://heibox.uni-heidelberg.de/d/a7530b09fed84f80a887/). * [Conceptual Captions 3M](https://ai.google.com/research/ConceptualCaptions/) (CC3M). * [OpenAI subset of YFCC100M](https://github.com/openai/CLIP/blob/main/data/yfcc100m.md). We fine-tuned on CC3M and YFCC100M to improve the encoding quality of people and faces, which are not very well represented in ImageNet. We used a subset of 2,268,720 images from CC3M and YFCC100M for this purpose. ### Training Process Finetuning was performed in PyTorch using [taming-transformers](https://github.com/CompVis/taming-transformers). The full training process and model preparation includes these steps: * Pre-training on ImageNet. Previously performed. We used [this checkpoint](https://heibox.uni-heidelberg.de/d/a7530b09fed84f80a887). * Fine-tuning, [Part 1](https://wandb.ai/wandb/hf-flax-dalle-mini/runs/2021-07-09T15-33-11_dalle_vqgan?workspace=user-borisd13). * Fine-tuning, [Part 2](https://wandb.ai/wandb/hf-flax-dalle-mini/runs/2021-07-09T21-42-07_dalle_vqgan?workspace=user-borisd13) – continuation from Part 1. The final checkpoint was uploaded to [boris/vqgan_f16_16384](https://huggingface.co/boris/vqgan_f16_16384). * Conversion to JAX, which is the model described in this card. ### How to Use The checkpoint can be loaded using [Suraj Patil's implementation](https://github.com/patil-suraj/vqgan-jax) of `VQModel`. * Example notebook, heavily based in work by [Suraj](https://huggingface.co/valhalla): [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/borisdayma/dalle-mini/blob/main/dev/vqgan/JAX_VQGAN_f16_16384_Reconstruction.ipynb) * Batch encoding using JAX `pmap`, complete example including data loading with PyTorch: ```python # VQGAN-JAX - pmap encoding HowTo import numpy as np # For data loading import torch import torchvision.transforms.functional as TF from torch.utils.data import Dataset, DataLoader from torchvision.datasets.folder import default_loader from torchvision.transforms import InterpolationMode # For data saving from pathlib import Path import pandas as pd from tqdm import tqdm import jax from jax import pmap from vqgan_jax.modeling_flax_vqgan import VQModel ## Params and arguments # List of paths containing images to encode image_list = '/sddata/dalle-mini/CC12M/10k.tsv' output_tsv = 'output.tsv' # Encoded results batch_size = 64 num_workers = 4 # TPU v3-8s have 96 cores, so feel free to increase this number when necessary # Load model model = VQModel.from_pretrained("flax-community/vqgan_f16_16384") ## Data Loading. # Simple torch Dataset to load images from paths. # You can use your own pipeline instead. class ImageDataset(Dataset): def __init__(self, image_list_path: str, image_size: int, max_items=None): """ :param image_list_path: Path to a file containing a list of all images. We assume absolute paths for now. :param image_size: Image size. Source images will be resized and center-cropped. :max_items: Limit dataset size for debugging """ self.image_list = pd.read_csv(image_list_path, sep='\t', header=None) if max_items is not None: self.image_list = self.image_list[:max_items] self.image_size = image_size def __len__(self): return len(self.image_list) def _get_raw_image(self, i): image_path = Path(self.image_list.iloc[i][0]) return default_loader(image_path) def resize_image(self, image): s = min(image.size) r = self.image_size / s s = (round(r * image.size[1]), round(r * image.size[0])) image = TF.resize(image, s, interpolation=InterpolationMode.LANCZOS) image = TF.center_crop(image, output_size = 2 * [self.image_size]) image = np.expand_dims(np.array(image), axis=0) return image def __getitem__(self, i): image = self._get_raw_image(i) return self.resize_image(image) ## Encoding # Encoding function to be parallelized with `pmap` # Note: images have to be square def encode(model, batch): _, indices = model.encode(batch) return indices # Alternative: create a batch with num_tpus*batch_size and use `shard` to distribute. def superbatch_generator(dataloader, num_tpus): iter_loader = iter(dataloader) for batch in iter_loader: superbatch = [batch.squeeze(1)] try: for _ in range(num_tpus-1): batch = next(iter_loader) if batch is None: break # Skip incomplete last batch if batch.shape[0] == dataloader.batch_size: superbatch.append(batch.squeeze(1)) except StopIteration: pass superbatch = torch.stack(superbatch, axis=0) yield superbatch def encode_dataset(dataset, batch_size=32): dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers) superbatches = superbatch_generator(dataloader, num_tpus=jax.device_count()) num_tpus = jax.device_count() dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers) superbatches = superbatch_generator(dataloader, num_tpus=num_tpus) p_encoder = pmap(lambda batch: encode(model, batch)) # Save each superbatch to avoid reallocation of buffers as we process them. # Keep the file open to prevent excessive file seeks. with open(output_tsv, "w") as file: iterations = len(dataset) // (batch_size * num_tpus) for n in tqdm(range(iterations)): superbatch = next(superbatches) encoded = p_encoder(superbatch.numpy()) encoded = encoded.reshape(-1, encoded.shape[-1]) # Extract paths from the dataset, save paths and encodings (as string) start_index = n * batch_size * num_tpus end_index = (n+1) * batch_size * num_tpus paths = dataset.image_list[start_index:end_index][0].values encoded_as_string = list(map(lambda item: np.array2string(item, separator=',', max_line_width=50000, formatter={'int':lambda x: str(x)}), encoded)) batch_df = pd.DataFrame.from_dict({"image_file": paths, "encoding": encoded_as_string}) batch_df.to_csv(file, sep='\t', header=(n==0), index=None) dataset = ImageDataset(image_list, image_size=256) encoded_dataset = encode_dataset(dataset, batch_size=batch_size) ``` ### Related Models in the Hub * PyTorch version of VQGAN, trained on the same datasets described here: [boris/vqgan_f16_16384](https://huggingface.co/boris/vqgan_f16_16384). * [DALL·E mini](https://huggingface.co/flax-community/dalle-mini), a Flax/JAX simplified implementation of OpenAI's DALL·E. ### Other This model was successfully used as part of the implementation of [DALL·E mini](https://github.com/borisdayma/dalle-mini). Our [report](https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA) contains more details on how to leverage it in an image encoding / generation pipeline.
andi611/distilbert-base-uncased-squad2-with-ner
andi611
2021-07-25T14:29:48Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "dataset:conll2003", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - conll2003 model_index: - name: distilbert-base-uncased-squad2-with-ner results: - task: name: Question Answering type: question-answering dataset: name: conll2003 type: conll2003 args: conll2003 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-squad2-with-ner This model is a fine-tuned version of [twmkn9/distilbert-base-uncased-squad2](https://huggingface.co/twmkn9/distilbert-base-uncased-squad2) on the conll2003 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
cristinae/marian_caes2en
cristinae
2021-07-25T10:24:27Z
0
0
null
[ "translation", "ca", "es", "en", "region:us" ]
translation
2022-03-02T23:29:05Z
--- language: - ca - es - en tags: - translation --- ### Preprocessing 1. Normalisation and tokenisation with moses scripts 2. truecased with model docgWP.tcmodel.[LAN] and moses scripts 3. bped with model model.caesen40k.bpe and subword-nmt - Note: no prepended tag for multilinguality ### Training Data 1. Bilingual es-ca: DOGC, Wikimatrix, OpenSubtitles, JW300, GlobalVoices * Bilingual es-ca: Translations using systems trained with 1. of Oscar and Wikipedia 2. Bilingual es-en, ca-en: United Nations, Europarl, Wikimatrix, OpenSubtitles, JW300 * Bilingual es-en, ca-en: Translations using systems trained with 1. of the missing pairs - Final training data size for the ca/es-en: 44M parallel sentences - Finetuned with 1.5M real parallel data (without backtranslations) ### Model Transformer big with guided alignments. Relevant parameters: --beam-size 6 --normalize 0.6 --enc-depth 6 --dec-depth 6 --transformer-heads 8 --transformer-preprocess n --transformer-postprocess da --transformer-dropout 0.1 --label-smoothing 0.1 --dim-emb 1024 --transformer-dim-ffn 4096 --transformer-dropout-attention 0.1 --transformer-dropout-ffn 0.1 --learn-rate 0.00015 --lr-warmup 8000 --lr-decay-inv-sqrt 8000 --optimizer-params 0.9 0.998 1e-09 --clip-norm 5 --tied-embeddings --exponential-smoothing --transformer-guided-alignment-layer 1 --guided-alignment-cost mse --guided-alignment-weight 0.1 ## Evaluation ### Test set https://github.com/PLXIV/Gebiotoolkit/tree/master/gebiocorpus_v2 ### ca2en BLEU|#:1|bs:1000|rs:12345|c:mixed|e:no|tok:13a|s:exp|v:2.0.0 = 47.8 (μ = 47.8 ± 0.9) chrF|#:1|bs:1000|rs:12345|c:mixed|e:yes|nc:6|nw:0|s:no|v:2.0.0 = 69.9 (μ = 69.9 ± 0.7) ### es2en BLEU|#:1|bs:1000|rs:12345|c:mixed|e:no|tok:13a|s:exp|v:2.0.0 = 48.9 (μ = 48.9 ± 0.9) chrF2|#:1|bs:1000|rs:12345|c:mixed|e:yes|nc:6|nw:0|s:no|v:2.0.0 = 70.5 (μ = 70.5 ± 0.7)
vivekRahul/animal_classifier_huggingface
vivekRahul
2021-07-25T06:02:38Z
88
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: animal_classifier_huggingface results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9910714030265808 --- # animal_classifier_huggingface Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### cat ![cat](images/cat.jpg) #### dog ![dog](images/dog.jpg) #### elephant ![elephant](images/elephant.jpg) #### lion ![lion](images/lion.jpg) #### tiger ![tiger](images/tiger.jpg)
huggingtweets/_nisagiss-dril
huggingtweets
2021-07-25T04:05:01Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/_nisagiss-dril/1627185897572/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1320596112676409344/rgbeQhIA_400x400.png&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/847818629840228354/VXyQHfn0_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Nisa 🇲🇽 & wint</div> <div style="text-align: center; font-size: 14px;">@_nisagiss-dril</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Nisa 🇲🇽 & wint. | Data | Nisa 🇲🇽 | wint | | --- | --- | --- | | Tweets downloaded | 3053 | 3229 | | Retweets | 2657 | 464 | | Short tweets | 138 | 311 | | Tweets kept | 258 | 2454 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/op7x5wkb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @_nisagiss-dril's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1x66ooaf) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1x66ooaf/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/_nisagiss-dril') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/ridingthescree
huggingtweets
2021-07-24T23:45:08Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/ridingthescree/1627170304459/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1365877163652640768/1i1yvZlT_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Riding the Scree</div> <div style="text-align: center; font-size: 14px;">@ridingthescree</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Riding the Scree. | Data | Riding the Scree | | --- | --- | | Tweets downloaded | 1813 | | Retweets | 410 | | Short tweets | 32 | | Tweets kept | 1371 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/22bfjscr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ridingthescree's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2p5u6rux) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2p5u6rux/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ridingthescree') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/celosia2
huggingtweets
2021-07-24T17:58:19Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/celosia2/1627149452177/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1251490479990022145/lS6i5Wgy_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Celosia2 🌻 Kristi 💚</div> <div style="text-align: center; font-size: 14px;">@celosia2</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Celosia2 🌻 Kristi 💚. | Data | Celosia2 🌻 Kristi 💚 | | --- | --- | | Tweets downloaded | 3247 | | Retweets | 613 | | Short tweets | 494 | | Tweets kept | 2140 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ohtfdalm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @celosia2's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/xzr0nuzp) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/xzr0nuzp/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/celosia2') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)