modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
anas-awadalla/bert-medium-finetuned-squad
anas-awadalla
2022-01-24T01:10:28Z
5
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
Results: {'exact_match': 76.82119205298014, 'f1': 84.69734248389383}
public-data/Yet-Another-Anime-Segmenter
public-data
2022-01-24T00:00:14Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
# Yet-Another-Anime-Segmenter - Repo: https://github.com/zymk9/Yet-Another-Anime-Segmenter - https://drive.google.com/file/d/1-wFdQ4jwSTeJ7wGD3YKNJdcpSS5Ho8c9/view?usp=sharing - https://raw.githubusercontent.com/zymk9/Yet-Another-Anime-Segmenter/main/configs/SOLOv2.yaml
mattchurgin/xls-r-eng
mattchurgin
2022-01-23T17:31:10Z
6
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "ab", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ab license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer datasets: - common_voice model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [patrickvonplaten/wav2vec2_tiny_random_robust](https://huggingface.co/patrickvonplaten/wav2vec2_tiny_random_robust) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset. It achieves the following results on the evaluation set: - Loss: inf - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1 - Datasets 1.18.1.dev0 - Tokenizers 0.11.0
shivam/wav2vec2-xls-r-300m-hindi
shivam
2022-01-23T16:37:08Z
4
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "hi", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - hi license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer datasets: - common_voice model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HI dataset. It achieves the following results on the evaluation set: - Loss: 1.4031 - Wer: 0.6827 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 5.3156 | 3.4 | 500 | 4.5583 | 1.0 | | 3.3329 | 6.8 | 1000 | 3.4274 | 1.0001 | | 2.1275 | 10.2 | 1500 | 1.7221 | 0.8763 | | 1.5737 | 13.6 | 2000 | 1.4188 | 0.8143 | | 1.3835 | 17.01 | 2500 | 1.2251 | 0.7447 | | 1.3247 | 20.41 | 3000 | 1.2827 | 0.7394 | | 1.231 | 23.81 | 3500 | 1.2216 | 0.7074 | | 1.1819 | 27.21 | 4000 | 1.2210 | 0.6863 | | 1.1546 | 30.61 | 4500 | 1.3233 | 0.7308 | | 1.0902 | 34.01 | 5000 | 1.3251 | 0.7010 | | 1.0749 | 37.41 | 5500 | 1.3274 | 0.7235 | | 1.0412 | 40.81 | 6000 | 1.2942 | 0.6856 | | 1.0064 | 44.22 | 6500 | 1.2581 | 0.6732 | | 1.0006 | 47.62 | 7000 | 1.2767 | 0.6885 | | 0.9518 | 51.02 | 7500 | 1.2966 | 0.6925 | | 0.9514 | 54.42 | 8000 | 1.2981 | 0.7067 | | 0.9241 | 57.82 | 8500 | 1.3835 | 0.7124 | | 0.9059 | 61.22 | 9000 | 1.3318 | 0.7083 | | 0.8906 | 64.62 | 9500 | 1.3640 | 0.6962 | | 0.8468 | 68.03 | 10000 | 1.4727 | 0.6982 | | 0.8631 | 71.43 | 10500 | 1.3401 | 0.6809 | | 0.8154 | 74.83 | 11000 | 1.4124 | 0.6955 | | 0.7953 | 78.23 | 11500 | 1.4245 | 0.6950 | | 0.818 | 81.63 | 12000 | 1.3944 | 0.6995 | | 0.7772 | 85.03 | 12500 | 1.3735 | 0.6785 | | 0.7857 | 88.43 | 13000 | 1.3696 | 0.6808 | | 0.7705 | 91.84 | 13500 | 1.4101 | 0.6870 | | 0.7537 | 95.24 | 14000 | 1.4178 | 0.6832 | | 0.7734 | 98.64 | 14500 | 1.4027 | 0.6831 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu113 - Datasets 1.18.1.dev0 - Tokenizers 0.11.0
Emanuel/roebrta-base-val-test
Emanuel
2022-01-23T15:12:04Z
6
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- license: mit tags: - generated_from_trainer model-index: - name: language-modeling results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # language-modeling This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4229 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - num_devices: 8 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.8.1+cu102 - Datasets 1.13.3 - Tokenizers 0.10.3
ylh1013/fintune-ja-chatbot
ylh1013
2022-01-23T14:21:02Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: - finetuned_from license: mit tags: - generated_from_trainer model-index: - name: fintune-ja-chatbot results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fintune-ja-chatbot This model is a fine-tuned version of [rinna/japanese-gpt2-medium](https://huggingface.co/rinna/japanese-gpt2-medium) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 ### Training results ### Framework versions - Transformers 4.12.3 - Pytorch 1.10.0+cu102 - Tokenizers 0.10.3
asanka25/xlm-roberta-base-finetuned-conll03-english-finetuned-sinhala
asanka25
2022-01-23T10:59:51Z
30
1
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
This model was created using xlm-roberta-base bodel and fine-tuned it using CoNLL 2003 dataset. On top of the trained model, we trained it again using a Sinhala NER data that was also formatted to the CoNLL format.
dandelin/vilt-b32-finetuned-coco
dandelin
2022-01-23T09:45:24Z
10,342
1
transformers
[ "transformers", "pytorch", "vilt", "arxiv:2102.03334", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- license: apache-2.0 --- # Vision-and-Language Transformer (ViLT), fine-tuned on COCO Vision-and-Language Transformer (ViLT) model fine-tuned on [COCO](https://cocodataset.org/#home). It was introduced in the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Kim et al. and first released in [this repository](https://github.com/dandelin/ViLT). Disclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Intended uses & limitations You can use the model for image and text retrieval. ### How to use Here is how to use the model in PyTorch: ``` from transformers import ViltProcessor, ViltForImageAndTextRetrieval import requests from PIL import Image url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) texts = ["An image of two cats chilling on a couch", "A football player scoring a goal"] processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-coco") model = ViltForImageAndTextRetrieval.from_pretrained("dandelin/vilt-b32-finetuned-coco") # prepare inputs encoding = processor(image, text, return_tensors="pt") # forward pass scores = dict() for text in texts: encoding = processor(image, text, return_tensors="pt") outputs = model(**encoding) scores[text] = outputs.logits[0, :].item() ``` ## Training data (to do) ## Training procedure ### Preprocessing (to do) ### Pretraining (to do) ## Evaluation results (to do) ### BibTeX entry and citation info ```bibtex @misc{kim2021vilt, title={ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision}, author={Wonjae Kim and Bokyung Son and Ildoo Kim}, year={2021}, eprint={2102.03334}, archivePrefix={arXiv}, primaryClass={stat.ML} } ```
wesam266/wav2vec2-large-xlsr-53_english
wesam266
2022-01-23T02:40:28Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xlsr-53_english results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53_english This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2620 - Wer: 0.1916 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.0506 | 0.12 | 250 | 3.0206 | 0.9999 | | 1.4381 | 0.25 | 500 | 1.0267 | 0.6323 | | 1.0903 | 0.37 | 750 | 0.5841 | 0.3704 | | 1.0384 | 0.5 | 1000 | 0.5156 | 0.3348 | | 0.9658 | 0.62 | 1250 | 0.4721 | 0.3221 | | 0.9184 | 0.74 | 1500 | 0.4301 | 0.3213 | | 0.8939 | 0.87 | 1750 | 0.4188 | 0.2884 | | 0.9051 | 0.99 | 2000 | 0.3852 | 0.2807 | | 0.563 | 1.12 | 2250 | 0.3752 | 0.2804 | | 0.6122 | 1.24 | 2500 | 0.3745 | 0.2732 | | 0.6213 | 1.36 | 2750 | 0.3671 | 0.2575 | | 0.5839 | 1.49 | 3000 | 0.3560 | 0.2578 | | 0.615 | 1.61 | 3250 | 0.3555 | 0.2536 | | 0.5557 | 1.74 | 3500 | 0.3511 | 0.2485 | | 0.5497 | 1.86 | 3750 | 0.3364 | 0.2425 | | 0.5412 | 1.98 | 4000 | 0.3253 | 0.2418 | | 0.2834 | 2.11 | 4250 | 0.3293 | 0.2322 | | 0.2723 | 2.23 | 4500 | 0.3157 | 0.2322 | | 0.2713 | 2.35 | 4750 | 0.3148 | 0.2304 | | 0.2878 | 2.48 | 5000 | 0.3143 | 0.2286 | | 0.2776 | 2.6 | 5250 | 0.3122 | 0.2250 | | 0.2553 | 2.73 | 5500 | 0.3003 | 0.2234 | | 0.278 | 2.85 | 5750 | 0.2973 | 0.2198 | | 0.2445 | 2.97 | 6000 | 0.2938 | 0.2180 | | 0.4361 | 3.1 | 6250 | 0.2914 | 0.2132 | | 0.3979 | 3.22 | 6500 | 0.2916 | 0.2125 | | 0.4221 | 3.35 | 6750 | 0.2879 | 0.2113 | | 0.4051 | 3.47 | 7000 | 0.2819 | 0.2100 | | 0.4218 | 3.59 | 7250 | 0.2812 | 0.2072 | | 0.4201 | 3.72 | 7500 | 0.2772 | 0.2055 | | 0.3515 | 3.84 | 7750 | 0.2747 | 0.2031 | | 0.4021 | 3.97 | 8000 | 0.2702 | 0.2018 | | 0.4304 | 4.09 | 8250 | 0.2721 | 0.2007 | | 0.3923 | 4.21 | 8500 | 0.2689 | 0.1991 | | 0.3824 | 4.34 | 8750 | 0.2692 | 0.1980 | | 0.3743 | 4.46 | 9000 | 0.2718 | 0.1950 | | 0.3771 | 4.59 | 9250 | 0.2653 | 0.1950 | | 0.4048 | 4.71 | 9500 | 0.2649 | 0.1934 | | 0.3539 | 4.83 | 9750 | 0.2638 | 0.1919 | | 0.3498 | 4.96 | 10000 | 0.2620 | 0.1916 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.1+cu113 - Datasets 1.17.0 - Tokenizers 0.10.3
ylh1013/ja_chatbot
ylh1013
2022-01-23T02:24:03Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: - finetuned_from license: mit tags: - generated_from_trainer model-index: - name: ja_chatbot results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ja_chatbot This model is a fine-tuned version of [rinna/japanese-gpt2-medium](https://huggingface.co/rinna/japanese-gpt2-medium) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.12.3 - Pytorch 1.10.0+cu102 - Tokenizers 0.10.3
danhsf/t5-small-finetuned-en-to-pt
danhsf
2022-01-23T00:38:04Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: t5-small-finetuned-en-to-pt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-en-to-pt This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3295 - Bleu: 5.6807 - Gen Len: 18.6772 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:| | 0.5787 | 1.0 | 6250 | 0.4928 | 4.1007 | 18.638 | | 0.5089 | 2.0 | 12500 | 0.4463 | 4.3492 | 18.663 | | 0.4652 | 3.0 | 18750 | 0.4215 | 4.68 | 18.6652 | | 0.4353 | 4.0 | 25000 | 0.3980 | 4.8172 | 18.6708 | | 0.4042 | 5.0 | 31250 | 0.3799 | 4.9719 | 18.6514 | | 0.3734 | 6.0 | 37500 | 0.3676 | 5.2226 | 18.6572 | | 0.3396 | 7.0 | 43750 | 0.3513 | 5.2693 | 18.6596 | | 0.308 | 8.0 | 50000 | 0.3400 | 5.4546 | 18.676 | | 0.2767 | 9.0 | 56250 | 0.3331 | 5.5649 | 18.6708 | | 0.2424 | 10.0 | 62500 | 0.3295 | 5.6807 | 18.6772 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
pere/xls-test
pere
2022-01-22T18:40:50Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "ab", "dataset:common_voice", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ab tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer datasets: - common_voice model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [hf-test/xls-r-dummy](https://huggingface.co/hf-test/xls-r-dummy) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset. It achieves the following results on the evaluation set: - Loss: 156.8789 - Wer: 1.3456 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
ying-tina/temp
ying-tina
2022-01-22T03:43:36Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: temp results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # temp This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4645 - Wer: 0.3527 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.4324 | 0.4 | 50 | 0.5800 | 0.4458 | | 0.4027 | 0.8 | 100 | 0.5374 | 0.4109 | | 0.3163 | 1.2 | 150 | 0.5285 | 0.3881 | | 0.3064 | 1.6 | 200 | 0.5161 | 0.3815 | | 0.3235 | 2.0 | 250 | 0.4645 | 0.3527 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
ms29315/distilbert-base-uncased-finetuned-cola
ms29315
2022-01-21T19:56:06Z
4
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: ms29315/distilbert-base-uncased-finetuned-cola results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ms29315/distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3100 - Validation Loss: 0.5090 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2670, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.3100 | 0.5090 | 0 | ### Framework versions - Transformers 4.15.0 - TensorFlow 2.7.0 - Datasets 1.18.0 - Tokenizers 0.10.3
facebook/xm_transformer_600m-en_zh-multi_domain
facebook
2022-01-21T19:02:57Z
5
2
fairseq
[ "fairseq", "audio", "audio-to-audio", "speech-to-speech-translation", "dataset:must_c", "dataset:covost2", "arxiv:2010.05171", "region:us" ]
audio-to-audio
2022-03-02T23:29:05Z
--- library_name: fairseq task: audio-to-audio tags: - fairseq - audio - audio-to-audio - speech-to-speech-translation language: en-zh datasets: - must_c - covost2 widget: - example_title: Common Voice sample 1 src: https://huggingface.co/facebook/xm_transformer_600m-en_es-multi_domain/resolve/main/common_voice_en_18295850.mp3 --- # xm_transformer_600m-en_zh-multi_domain [W2V2-Transformer](https://aclanthology.org/2021.acl-long.68/) speech-to-text translation model from fairseq S2T ([paper](https://arxiv.org/abs/2010.05171)/[code](https://github.com/pytorch/fairseq/tree/main/examples/speech_to_text)): - English-Chinese - Trained on MuST-C, CoVoST 2, Multilingual LibriSpeech, Common Voice v7 and CCMatrix - Speech synthesis with [facebook/tts_transformer-zh-cv7_css10](https://huggingface.co/facebook/tts_transformer-zh-cv7_css10) ## Usage ```python from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub from fairseq.models.speech_to_text.hub_interface import S2THubInterface from fairseq.models.text_to_speech.hub_interface import TTSHubInterface import IPython.display as ipd import torchaudio models, cfg, task = load_model_ensemble_and_task_from_hf_hub( "facebook/xm_transformer_600m-en_zh-multi_domain", arg_overrides={"config_yaml": "config.yaml"}, ) model = models[0] generator = task.build_generator(model, cfg) # requires 16000Hz mono channel audio audio, _ = torchaudio.load("/path/to/an/audio/file") sample = S2THubInterface.get_model_input(task, audio) text = S2THubInterface.get_prediction(task, model, generator, sample) # speech synthesis tts_models, tts_cfg, tts_task = load_model_ensemble_and_task_from_hf_hub( f"facebook/tts_transformer-zh-cv7_css10", arg_overrides={"vocoder": "griffin_lim", "fp16": False}, ) tts_model = tts_models[0] TTSHubInterface.update_cfg_with_data_cfg(tts_cfg, tts_task.data_cfg) tts_generator = tts_task.build_generator([tts_model], tts_cfg) tts_sample = TTSHubInterface.get_model_input(tts_task, text) wav, sr = TTSHubInterface.get_prediction( tts_task, tts_model, tts_generator, tts_sample ) ipd.Audio(wav, rate=rate) ``` ## Citation ```bibtex @inproceedings{li-etal-2021-multilingual, title = "Multilingual Speech Translation from Efficient Finetuning of Pretrained Models", author = "Li, Xian and Wang, Changhan and Tang, Yun and Tran, Chau and Tang, Yuqing and Pino, Juan and Baevski, Alexei and Conneau, Alexis and Auli, Michael", booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.acl-long.68", doi = "10.18653/v1/2021.acl-long.68", pages = "827--838", } @inproceedings{wang-etal-2020-fairseq, title = "Fairseq {S}2{T}: Fast Speech-to-Text Modeling with Fairseq", author = "Wang, Changhan and Tang, Yun and Ma, Xutai and Wu, Anne and Okhonko, Dmytro and Pino, Juan", booktitle = "Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing: System Demonstrations", month = dec, year = "2020", address = "Suzhou, China", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.aacl-demo.6", pages = "33--39", } ```
facebook/xm_transformer_600m-en_ru-multi_domain
facebook
2022-01-21T19:01:38Z
8
1
fairseq
[ "fairseq", "audio", "audio-to-audio", "speech-to-speech-translation", "dataset:must_c", "arxiv:2010.05171", "region:us" ]
audio-to-audio
2022-03-02T23:29:05Z
--- library_name: fairseq task: audio-to-audio tags: - fairseq - audio - audio-to-audio - speech-to-speech-translation language: en-ru datasets: - must_c widget: - example_title: Common Voice sample 1 src: https://huggingface.co/facebook/xm_transformer_600m-en_es-multi_domain/resolve/main/common_voice_en_18295850.mp3 --- # xm_transformer_600m-en_ru-multi_domain [W2V2-Transformer](https://aclanthology.org/2021.acl-long.68/) speech-to-text translation model from fairseq S2T ([paper](https://arxiv.org/abs/2010.05171)/[code](https://github.com/pytorch/fairseq/tree/main/examples/speech_to_text)): - English-Russian - Trained on MuST-C, Multilingual LibriSpeech, Common Voice v7 and CCMatrix - Speech synthesis with [facebook/tts_transformer-ru-cv7_css10](https://huggingface.co/facebook/tts_transformer-ru-cv7_css10) ## Usage ```python from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub from fairseq.models.speech_to_text.hub_interface import S2THubInterface from fairseq.models.text_to_speech.hub_interface import TTSHubInterface import IPython.display as ipd import torchaudio models, cfg, task = load_model_ensemble_and_task_from_hf_hub( "facebook/xm_transformer_600m-en_ru-multi_domain", arg_overrides={"config_yaml": "config.yaml"}, ) model = models[0] generator = task.build_generator(model, cfg) # requires 16000Hz mono channel audio audio, _ = torchaudio.load("/path/to/an/audio/file") sample = S2THubInterface.get_model_input(task, audio) text = S2THubInterface.get_prediction(task, model, generator, sample) # speech synthesis tts_models, tts_cfg, tts_task = load_model_ensemble_and_task_from_hf_hub( f"facebook/tts_transformer-ru-cv7_css10", arg_overrides={"vocoder": "griffin_lim", "fp16": False}, ) tts_model = tts_models[0] TTSHubInterface.update_cfg_with_data_cfg(tts_cfg, tts_task.data_cfg) tts_generator = tts_task.build_generator([tts_model], tts_cfg) tts_sample = TTSHubInterface.get_model_input(tts_task, text) wav, sr = TTSHubInterface.get_prediction( tts_task, tts_model, tts_generator, tts_sample ) ipd.Audio(wav, rate=rate) ``` ## Citation ```bibtex @inproceedings{li-etal-2021-multilingual, title = "Multilingual Speech Translation from Efficient Finetuning of Pretrained Models", author = "Li, Xian and Wang, Changhan and Tang, Yun and Tran, Chau and Tang, Yuqing and Pino, Juan and Baevski, Alexei and Conneau, Alexis and Auli, Michael", booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.acl-long.68", doi = "10.18653/v1/2021.acl-long.68", pages = "827--838", } @inproceedings{wang-etal-2020-fairseq, title = "Fairseq {S}2{T}: Fast Speech-to-Text Modeling with Fairseq", author = "Wang, Changhan and Tang, Yun and Ma, Xutai and Wu, Anne and Okhonko, Dmytro and Pino, Juan", booktitle = "Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing: System Demonstrations", month = dec, year = "2020", address = "Suzhou, China", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.aacl-demo.6", pages = "33--39", } ```
facebook/xm_transformer_600m-fr_en-multi_domain
facebook
2022-01-21T18:59:43Z
10
0
fairseq
[ "fairseq", "audio", "audio-to-audio", "speech-to-speech-translation", "dataset:mtedx", "dataset:covost2", "dataset:europarl_st", "dataset:voxpopuli", "arxiv:2010.05171", "region:us" ]
audio-to-audio
2022-03-02T23:29:05Z
--- library_name: fairseq task: audio-to-audio tags: - fairseq - audio - audio-to-audio - speech-to-speech-translation language: fr-en datasets: - mtedx - covost2 - europarl_st - voxpopuli widget: - example_title: Common Voice sample 1 src: https://huggingface.co/facebook/xm_transformer_600m-fr_en-multi_domain/resolve/main/common_voice_fr_19731305.mp3 --- # xm_transformer_600m-fr_en-multi_domain [W2V2-Transformer](https://aclanthology.org/2021.acl-long.68/) speech-to-text translation model from fairseq S2T ([paper](https://arxiv.org/abs/2010.05171)/[code](https://github.com/pytorch/fairseq/tree/main/examples/speech_to_text)): - French-English - Trained on mTEDx, CoVoST 2, EuroParl-ST, VoxPopuli, Multilingual LibriSpeech, Common Voice v7 and CCMatrix - Speech synthesis with [facebook/fastspeech2-en-ljspeech](https://huggingface.co/facebook/fastspeech2-en-ljspeech) ## Usage ```python from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub from fairseq.models.text_to_speech.hub_interface import S2THubInterface from fairseq.models.text_to_speech.hub_interface import TTSHubInterface import IPython.display as ipd import torchaudio models, cfg, task = load_model_ensemble_and_task_from_hf_hub( "facebook/xm_transformer_600m-fr_en-multi_domain", arg_overrides={"config_yaml": "config.yaml"}, ) model = models[0] generator = task.build_generator(model, cfg) # requires 16000Hz mono channel audio audio, _ = torchaudio.load("/path/to/an/audio/file") sample = S2THubInterface.get_model_input(task, audio) text = S2THubInterface.get_prediction(task, model, generator, sample) # speech synthesis tts_models, tts_cfg, tts_task = load_model_ensemble_and_task_from_hf_hub( f"facebook/fastspeech2-en-ljspeech", arg_overrides={"vocoder": "griffin_lim", "fp16": False}, ) tts_model = tts_models[0] TTSHubInterface.update_cfg_with_data_cfg(tts_cfg, tts_task.data_cfg) tts_generator = tts_task.build_generator([tts_model], tts_cfg) tts_sample = TTSHubInterface.get_model_input(tts_task, text) wav, sr = TTSHubInterface.get_prediction( tts_task, tts_model, tts_generator, tts_sample ) ipd.Audio(wav, rate=rate) ``` ## Citation ```bibtex @inproceedings{li-etal-2021-multilingual, title = "Multilingual Speech Translation from Efficient Finetuning of Pretrained Models", author = "Li, Xian and Wang, Changhan and Tang, Yun and Tran, Chau and Tang, Yuqing and Pino, Juan and Baevski, Alexei and Conneau, Alexis and Auli, Michael", booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.acl-long.68", doi = "10.18653/v1/2021.acl-long.68", pages = "827--838", } @inproceedings{wang-etal-2020-fairseq, title = "Fairseq {S}2{T}: Fast Speech-to-Text Modeling with Fairseq", author = "Wang, Changhan and Tang, Yun and Ma, Xutai and Wu, Anne and Okhonko, Dmytro and Pino, Juan", booktitle = "Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing: System Demonstrations", month = dec, year = "2020", address = "Suzhou, China", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.aacl-demo.6", pages = "33--39", } @inproceedings{wang-etal-2021-fairseq, title = "fairseq S{\^{}}2: A Scalable and Integrable Speech Synthesis Toolkit", author = "Wang, Changhan and Hsu, Wei-Ning and Adi, Yossi and Polyak, Adam and Lee, Ann and Chen, Peng-Jen and Gu, Jiatao and Pino, Juan", booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-demo.17", doi = "10.18653/v1/2021.emnlp-demo.17", pages = "143--152", } ```
facebook/xm_transformer_600m-es_en-multi_domain
facebook
2022-01-21T18:19:44Z
14
1
fairseq
[ "fairseq", "audio", "audio-to-audio", "speech-to-speech-translation", "dataset:mtedx", "dataset:covost2", "dataset:europarl_st", "dataset:voxpopuli", "arxiv:2010.05171", "region:us" ]
audio-to-audio
2022-03-02T23:29:05Z
--- library_name: fairseq task: audio-to-audio tags: - fairseq - audio - audio-to-audio - speech-to-speech-translation language: es-en datasets: - mtedx - covost2 - europarl_st - voxpopuli widget: - example_title: Common Voice sample 1 src: https://huggingface.co/facebook/xm_transformer_600m-es_en-multi_domain/resolve/main/common_voice_es_19966634.flac --- # xm_transformer_600m-es_en-multi_domain [W2V2-Transformer](https://aclanthology.org/2021.acl-long.68/) speech-to-text translation model from fairseq S2T ([paper](https://arxiv.org/abs/2010.05171)/[code](https://github.com/pytorch/fairseq/tree/main/examples/speech_to_text)): - Spanish-English - Trained on mTEDx, CoVoST 2, EuroParl-ST, VoxPopuli, Multilingual LibriSpeech, Common Voice v7 and CCMatrix - Speech synthesis with [facebook/fastspeech2-en-ljspeech](https://huggingface.co/facebook/fastspeech2-en-ljspeech) ## Usage ```python from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub from fairseq.models.text_to_speech.hub_interface import S2THubInterface from fairseq.models.text_to_speech.hub_interface import TTSHubInterface import IPython.display as ipd import torchaudio models, cfg, task = load_model_ensemble_and_task_from_hf_hub( "facebook/xm_transformer_600m-es_en-multi_domain", arg_overrides={"config_yaml": "config.yaml"}, ) model = models[0] generator = task.build_generator(model, cfg) # requires 16000Hz mono channel audio audio, _ = torchaudio.load("/path/to/an/audio/file") sample = S2THubInterface.get_model_input(task, audio) text = S2THubInterface.get_prediction(task, model, generator, sample) # speech synthesis tts_models, tts_cfg, tts_task = load_model_ensemble_and_task_from_hf_hub( f"facebook/fastspeech2-en-ljspeech", arg_overrides={"vocoder": "griffin_lim", "fp16": False}, ) tts_model = tts_models[0] TTSHubInterface.update_cfg_with_data_cfg(tts_cfg, tts_task.data_cfg) tts_generator = tts_task.build_generator([tts_model], tts_cfg) tts_sample = TTSHubInterface.get_model_input(tts_task, text) wav, sr = TTSHubInterface.get_prediction( tts_task, tts_model, tts_generator, tts_sample ) ipd.Audio(wav, rate=rate) ``` ## Citation ```bibtex @inproceedings{li-etal-2021-multilingual, title = "Multilingual Speech Translation from Efficient Finetuning of Pretrained Models", author = "Li, Xian and Wang, Changhan and Tang, Yun and Tran, Chau and Tang, Yuqing and Pino, Juan and Baevski, Alexei and Conneau, Alexis and Auli, Michael", booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.acl-long.68", doi = "10.18653/v1/2021.acl-long.68", pages = "827--838", } @inproceedings{wang-etal-2020-fairseq, title = "Fairseq {S}2{T}: Fast Speech-to-Text Modeling with Fairseq", author = "Wang, Changhan and Tang, Yun and Ma, Xutai and Wu, Anne and Okhonko, Dmytro and Pino, Juan", booktitle = "Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing: System Demonstrations", month = dec, year = "2020", address = "Suzhou, China", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.aacl-demo.6", pages = "33--39", } @inproceedings{wang-etal-2021-fairseq, title = "fairseq S{\^{}}2: A Scalable and Integrable Speech Synthesis Toolkit", author = "Wang, Changhan and Hsu, Wei-Ning and Adi, Yossi and Polyak, Adam and Lee, Ann and Chen, Peng-Jen and Gu, Jiatao and Pino, Juan", booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-demo.17", doi = "10.18653/v1/2021.emnlp-demo.17", pages = "143--152", } ```
Yaia/distilbert-base-uncased-finetuned-emotion
Yaia
2022-01-21T17:28:21Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9255 - name: F1 type: f1 value: 0.9257196896784097 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2086 - Accuracy: 0.9255 - F1: 0.9257 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8249 | 1.0 | 250 | 0.3042 | 0.9085 | 0.9068 | | 0.2437 | 2.0 | 500 | 0.2086 | 0.9255 | 0.9257 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1 - Datasets 1.17.0 - Tokenizers 0.10.3
jiobiala24/wav2vec2-base-checkpoint-7.1
jiobiala24
2022-01-21T15:50:15Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-base-checkpoint-7.1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-checkpoint-7.1 This model is a fine-tuned version of [jiobiala24/wav2vec2-base-checkpoint-6](https://huggingface.co/jiobiala24/wav2vec2-base-checkpoint-6) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.9369 - Wer: 0.3243 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.3124 | 1.75 | 1000 | 0.5602 | 0.3403 | | 0.2428 | 3.5 | 2000 | 0.5924 | 0.3431 | | 0.1884 | 5.24 | 3000 | 0.6161 | 0.3423 | | 0.1557 | 6.99 | 4000 | 0.6570 | 0.3415 | | 0.1298 | 8.74 | 5000 | 0.6837 | 0.3446 | | 0.1141 | 10.49 | 6000 | 0.7304 | 0.3396 | | 0.1031 | 12.24 | 7000 | 0.7264 | 0.3410 | | 0.0916 | 13.99 | 8000 | 0.7229 | 0.3387 | | 0.0835 | 15.73 | 9000 | 0.8078 | 0.3458 | | 0.0761 | 17.48 | 10000 | 0.8304 | 0.3408 | | 0.0693 | 19.23 | 11000 | 0.8290 | 0.3387 | | 0.0646 | 20.98 | 12000 | 0.8593 | 0.3372 | | 0.0605 | 22.73 | 13000 | 0.8728 | 0.3345 | | 0.0576 | 24.48 | 14000 | 0.9111 | 0.3297 | | 0.0529 | 26.22 | 15000 | 0.9247 | 0.3273 | | 0.0492 | 27.97 | 16000 | 0.9248 | 0.3250 | | 0.0472 | 29.72 | 17000 | 0.9369 | 0.3243 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
joheras/xls-r-ab-spanish
joheras
2022-01-21T15:42:21Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "ab", "dataset:common_voice", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ab tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer datasets: - common_voice model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [hf-test/xls-r-dummy](https://huggingface.co/hf-test/xls-r-dummy) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset. It achieves the following results on the evaluation set: - Loss: 156.8790 - Wer: 1.3448 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu113 - Datasets 1.17.0 - Tokenizers 0.10.3
Gianpe/en_textcat_emotion_xlm
Gianpe
2022-01-21T15:09:03Z
3
0
spacy
[ "spacy", "text-classification", "en", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- tags: - spacy - text-classification language: - en model-index: - name: en_textcat_emotion_xlm results: [] ---
alistvt/bert-base-uncased-pretrained-mlm-coqa-stories
alistvt
2022-01-21T13:17:32Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer model-index: - name: bert-base-uncased-pretrained-mlm-coqa-stories results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-pretrained-mlm-coqa-stories This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8310 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0573 | 1.0 | 2479 | 1.8805 | | 1.9517 | 2.0 | 4958 | 1.8377 | | 1.9048 | 3.0 | 7437 | 1.8310 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
deepdml/output
deepdml
2022-01-21T11:50:22Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "ab", "dataset:common_voice", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ab tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer datasets: - common_voice model-index: - name: output results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # output This model is a fine-tuned version of [hf-test/xls-r-dummy](https://huggingface.co/hf-test/xls-r-dummy) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset. It achieves the following results on the evaluation set: - Loss: 156.8789 - Wer: 1.3456 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
MadhurJindalWorkMail/autonlp-Gibb-Detect-515314387
MadhurJindalWorkMail
2022-01-21T07:05:45Z
3
1
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "en", "dataset:MadhurJindalWorkMail/autonlp-data-Gibb-Detect", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - MadhurJindalWorkMail/autonlp-data-Gibb-Detect co2_eq_emissions: 70.95647633212745 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 515314387 - CO2 Emissions (in grams): 70.95647633212745 ## Validation Metrics - Loss: 0.08077705651521683 - Accuracy: 0.9760103738923709 - Macro F1: 0.9728412857204902 - Micro F1: 0.9760103738923709 - Weighted F1: 0.9759907151741426 - Macro Precision: 0.9736622407675567 - Micro Precision: 0.9760103738923709 - Weighted Precision: 0.97673611876005 - Macro Recall: 0.9728978421381711 - Micro Recall: 0.9760103738923709 - Weighted Recall: 0.9760103738923709 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/MadhurJindalWorkMail/autonlp-Gibb-Detect-515314387 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("MadhurJindalWorkMail/autonlp-Gibb-Detect-515314387", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("MadhurJindalWorkMail/autonlp-Gibb-Detect-515314387", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
shields/wav2vec2-xl-960h-dementiabank
shields
2022-01-21T06:00:54Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-xl-960h-dementiabank results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xl-960h-dementiabank This model is a fine-tuned version of [facebook/wav2vec2-large-960h](https://huggingface.co/facebook/wav2vec2-large-960h) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3483.2146 - Wer: 0.9860 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 13934.5266 | 0.31 | 10 | 71265.4531 | 1.0 | | 13443.6406 | 0.62 | 20 | 69977.6016 | 1.0 | | 9336.9562 | 0.94 | 30 | 13763.1484 | 0.9843 | | 2970.977 | 1.25 | 40 | 17587.7656 | 0.9860 | | 1916.3354 | 1.56 | 50 | 4328.4521 | 1.0 | | 1417.5775 | 1.88 | 60 | 4486.8071 | 0.9860 | | 1841.7689 | 2.19 | 70 | 2988.0303 | 1.0 | | 1355.0265 | 2.5 | 80 | 2972.6094 | 0.9860 | | 1359.7979 | 2.81 | 90 | 3483.2146 | 0.9860 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
anuragshas/wav2vec2-large-xls-r-300m-ur
anuragshas
2022-01-21T04:32:18Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-ur results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-ur This model is a fine-tuned version of [anuragshas/wav2vec2-large-xls-r-300m-ur](https://huggingface.co/anuragshas/wav2vec2-large-xls-r-300m-ur) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 2.0508 - Wer: 0.7328 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.12 - num_epochs: 240 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.0719 | 66.67 | 400 | 1.8510 | 0.7432 | | 0.0284 | 133.33 | 800 | 2.0088 | 0.7415 | | 0.014 | 200.0 | 1200 | 2.0508 | 0.7328 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
Gigworks/ASR_zh_espnet2
Gigworks
2022-01-21T02:58:59Z
0
1
null
[ "region:us" ]
null
2022-03-02T23:29:04Z
<b>Speech-To-Text Chinese Model</b> <br/><br/> Reference: <br/> Model - https://huggingface.co/espnet/pengcheng_guo_wenetspeech_asr_train_asr_raw_zh_char <br/> Code - https://huggingface.co/spaces/akhaliq/espnet2_asr/blob/main/app.py
huggingtweets/anticarbons
huggingtweets
2022-01-20T22:52:20Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/anticarbons/1642719091326/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1477498953524518912/yvJkd9VL_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ANTICARBON</div> <div style="text-align: center; font-size: 14px;">@anticarbons</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ANTICARBON. | Data | ANTICARBON | | --- | --- | | Tweets downloaded | 2518 | | Retweets | 427 | | Short tweets | 352 | | Tweets kept | 1739 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/s9q99sc5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @anticarbons's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1k8boybi) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1k8boybi/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/anticarbons') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
milyiyo/selectra-small-finetuned-amazon-review
milyiyo
2022-01-20T21:11:57Z
16
0
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - amazon_reviews_multi metrics: - accuracy - f1 - precision - recall model-index: - name: selectra-small-finetuned-amazon-review results: - task: name: Text Classification type: text-classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi args: es metrics: - name: Accuracy type: accuracy value: 0.737 - name: F1 type: f1 value: 0.7437773019932409 - name: Precision type: precision value: 0.7524857881639091 - name: Recall type: recall value: 0.737 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # selectra-small-finetuned-amazon-review This model is a fine-tuned version of [Recognai/selectra_small](https://huggingface.co/Recognai/selectra_small) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.6279 - Accuracy: 0.737 - F1: 0.7438 - Precision: 0.7525 - Recall: 0.737 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 0.5 | 500 | 0.7041 | 0.7178 | 0.6724 | 0.6715 | 0.7178 | | 0.7908 | 1.0 | 1000 | 0.6365 | 0.7356 | 0.7272 | 0.7211 | 0.7356 | | 0.7908 | 1.5 | 1500 | 0.6204 | 0.7376 | 0.7380 | 0.7387 | 0.7376 | | 0.6358 | 2.0 | 2000 | 0.6162 | 0.7386 | 0.7377 | 0.7380 | 0.7386 | | 0.6358 | 2.5 | 2500 | 0.6228 | 0.7274 | 0.7390 | 0.7576 | 0.7274 | | 0.5827 | 3.0 | 3000 | 0.6188 | 0.7378 | 0.7400 | 0.7425 | 0.7378 | | 0.5827 | 3.5 | 3500 | 0.6246 | 0.7374 | 0.7416 | 0.7467 | 0.7374 | | 0.5427 | 4.0 | 4000 | 0.6266 | 0.7446 | 0.7452 | 0.7465 | 0.7446 | | 0.5427 | 4.5 | 4500 | 0.6331 | 0.7392 | 0.7421 | 0.7456 | 0.7392 | | 0.5184 | 5.0 | 5000 | 0.6279 | 0.737 | 0.7438 | 0.7525 | 0.737 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
mbateman/distilbert-base-uncased-finetuned-imdb
mbateman
2022-01-20T20:43:24Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4033 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.6482 | 1.0 | 625 | 2.4283 | | 2.5156 | 2.0 | 1250 | 2.3816 | | 2.475 | 3.0 | 1875 | 2.3638 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.1
oandreae/financial_sentiment_model
oandreae
2022-01-20T20:00:01Z
4
1
transformers
[ "transformers", "pytorch", "tensorboard", "perceiver", "text-classification", "generated_from_trainer", "dataset:financial_phrasebank", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - financial_phrasebank metrics: - recall - accuracy - precision model-index: - name: financial_sentiment_model results: - task: name: Text Classification type: text-classification dataset: name: financial_phrasebank type: financial_phrasebank args: sentences_50agree metrics: - name: Recall type: recall value: 0.8839956357328868 - name: Accuracy type: accuracy value: 0.8804123711340206 - name: Precision type: precision value: 0.8604175202419276 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # financial_sentiment_model This model is a fine-tuned version of [deepmind/language-perceiver](https://huggingface.co/deepmind/language-perceiver) on the financial_phrasebank dataset. It achieves the following results on the evaluation set: - Loss: 0.3467 - Recall: 0.8840 - Accuracy: 0.8804 - Precision: 0.8604 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: tpu - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Recall | Accuracy | Precision | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|:---------:| | 0.4481 | 1.0 | 273 | 0.4035 | 0.8526 | 0.8433 | 0.7955 | | 0.4069 | 2.0 | 546 | 0.4478 | 0.8683 | 0.8289 | 0.8123 | | 0.2225 | 3.0 | 819 | 0.3167 | 0.8747 | 0.8680 | 0.8387 | | 0.1245 | 4.0 | 1092 | 0.3467 | 0.8840 | 0.8804 | 0.8604 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.0+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
muellerzr/fastai-pets-resnet-34
muellerzr
2022-01-20T19:01:14Z
0
1
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
# The fastai models - PETS This model is based on Lesson 1 of [fastai](https://course.fast.ai) and of [Walk with fastai](https://walkwithfastai.com/Pets) ## Dataset Used This model was created with the [Oxford Pets](https://docs.fast.ai/data.external.html#Image-Classification-datasets) dataset in the fastai framework ## Model Training The model was trained as a binary classifier, for cats or dogs ## How to use: First, ensure that `huggingface_hub` is installed: ```bash pip(3) install huggingface_hub ``` Next, download this model repo: ```python from huggingface_hub import snapshot_download snapshot_download(repo_id="muellerzr/fastai-pets-resnet-34") ``` Then install the correct fastai version: ```bash cd fastai-pets-resnet34 pip(3) install -r requirements.txt ``` **NOTE: This is extremely important, as fastai versions are aggressively pinned based on training environment** And finally load in the fastai `Learner` and predict ```python from fastai.learner import load_learner learn = load_learner('model.pth') pred = learn.predict('myImage.jpg') ``` Versions of model used were taken with [dependency_checker](https://muellerzr.github.io/dependency_checker)
espnet/akreal_swbd_da_hubert_conformer
espnet
2022-01-20T18:57:49Z
2
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:swbd_da", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - espnet - audio - automatic-speech-recognition language: en datasets: - swbd_da license: cc-by-4.0 --- ## ESPnet2 ASR model ### `akreal/espnet2_swbd_da_hubert_conformer` This model was trained by Pavel Denisov using swbd_da recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 08c6efbc6299c972301236625f9abafe087c9f9c pip install -e . cd egs2/swbd_da/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/akreal_swbd_da_hubert_conformer ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Thu Jan 20 19:31:21 CET 2022` - python version: `3.8.12 (default, Aug 30 2021, 00:00:00) [GCC 11.2.1 20210728 (Red Hat 11.2.1-1)]` - espnet version: `espnet 0.10.6a1` - pytorch version: `pytorch 1.10.1+cu113` - Git hash: `08c6efbc6299c972301236625f9abafe087c9f9c` - Commit date: `Tue Jan 4 13:40:33 2022 +0100` ## asr_train_asr_raw_en_word_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.loss.ave/test_context3|2379|2379|66.3|33.7|0.0|0.0|33.7|33.7| |decode_asr_asr_model_valid.loss.ave/valid_context3|8116|8116|69.5|30.5|0.0|0.0|30.5|30.5| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.loss.ave/test_context3|2379|19440|76.1|17.7|6.2|8.1|32.0|33.7| |decode_asr_asr_model_valid.loss.ave/valid_context3|8116|66353|79.5|16.1|4.4|8.0|28.5|30.5| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_conformer_hubert_context3.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_conformer_hubert_context3_raw_en_word_sp ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 35 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - loss - min keep_nbest_models: 7 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: - frontend.upstream num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 4000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_context3_raw_en_word_sp/train/speech_shape - exp/asr_stats_context3_raw_en_word_sp/train/text_shape.word valid_shape_file: - exp/asr_stats_context3_raw_en_word_sp/valid/speech_shape - exp/asr_stats_context3_raw_en_word_sp/valid/text_shape.word batch_type: numel valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_context3_sp/wav.scp - speech - sound - - dump/raw/train_context3_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/valid_context3/wav.scp - speech - sound - - dump/raw/valid_context3/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.0001 scheduler: warmuplr scheduler_conf: warmup_steps: 25000 token_list: - <blank> - <unk> - statement - backchannel - opinion - abandon - agree - yn_q - apprec - 'yes' - uninterp - close - wh_q - acknowledge - 'no' - yn_decl_q - hedge - backchannel_q - sum - quote - affirm - other - directive - repeat - open_q - completion - rhet_q - hold - reject - answer - neg - ans_dispref - repeat_q - open - or - commit - maybe - decl_q - third_pty - self_talk - thank - apology - tag_q - downplay - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: null model_conf: ctc_weight: 0.0 extract_feats_in_collect_stats: false use_preprocessor: true token_type: word bpemodel: null non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: s3prl frontend_conf: frontend_conf: upstream: hubert_large_ll60k download_dir: ./hub multilayer_feature: true fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: utterance_mvn normalize_conf: {} preencoder: linear preencoder_conf: input_size: 1024 output_size: 80 encoder: conformer encoder_conf: output_size: 512 attention_heads: 8 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d normalize_before: true macaron_style: true pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 31 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 8 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.1 src_attention_dropout_rate: 0.1 required: - output_dir - token_list version: 0.10.5a1 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
tomwetherell/TOMFINSEN
tomwetherell
2022-01-20T18:19:24Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "perceiver", "text-classification", "generated_from_trainer", "dataset:financial_phrasebank", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - financial_phrasebank metrics: - recall - accuracy - precision model-index: - name: TOMFINSEN results: - task: name: Text Classification type: text-classification dataset: name: financial_phrasebank type: financial_phrasebank args: sentences_50agree metrics: - name: Recall type: recall value: 0.8985861629736692 - name: Accuracy type: accuracy value: 0.8742268041237113 - name: Precision type: precision value: 0.8509995913451198 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TOMFINSEN This model is a fine-tuned version of [deepmind/language-perceiver](https://huggingface.co/deepmind/language-perceiver) on the financial_phrasebank dataset. It achieves the following results on the evaluation set: - Loss: 0.3642 - Recall: 0.8986 - Accuracy: 0.8742 - Precision: 0.8510 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: tpu - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Recall | Accuracy | Precision | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|:---------:| | 0.5403 | 1.0 | 273 | 0.4207 | 0.8358 | 0.8619 | 0.8534 | | 0.3939 | 2.0 | 546 | 0.3750 | 0.8943 | 0.8577 | 0.8225 | | 0.1993 | 3.0 | 819 | 0.3113 | 0.8882 | 0.8660 | 0.8367 | | 0.301 | 4.0 | 1092 | 0.3642 | 0.8986 | 0.8742 | 0.8510 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.0+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
ilevs/opus-mt-en-ru-finetuned-en-to-ru
ilevs
2022-01-20T18:18:30Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: opus-mt-en-ru-finetuned-en-to-ru results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-ru-finetuned-en-to-ru This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ru](https://huggingface.co/Helsinki-NLP/opus-mt-en-ru) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7682 - Bleu: 14.6112 - Gen Len: 7.202 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 2.3198 | 1.0 | 4956 | 2.1261 | 9.5339 | 6.7709 | | 1.9732 | 2.0 | 9912 | 1.9639 | 10.4715 | 7.1254 | | 1.7127 | 3.0 | 14868 | 1.8780 | 11.6128 | 7.1106 | | 1.5614 | 4.0 | 19824 | 1.8367 | 12.8389 | 7.0468 | | 1.4276 | 5.0 | 24780 | 1.8040 | 13.7423 | 7.0403 | | 1.3096 | 6.0 | 29736 | 1.7820 | 14.1469 | 7.0555 | | 1.2381 | 7.0 | 34692 | 1.7761 | 13.9987 | 7.2225 | | 1.1784 | 8.0 | 39648 | 1.7725 | 14.4675 | 7.1799 | | 1.1376 | 9.0 | 44604 | 1.7692 | 14.4937 | 7.1957 | | 1.0862 | 10.0 | 49560 | 1.7682 | 14.6112 | 7.202 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
radhakri119/wav2vec2-base-timit-demo-colab
radhakri119
2022-01-20T16:09:09Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4780 - Wer: 0.3403 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.5299 | 4.0 | 500 | 1.5195 | 0.9991 | | 0.6229 | 8.0 | 1000 | 0.4447 | 0.4282 | | 0.2136 | 12.0 | 1500 | 0.4154 | 0.3764 | | 0.1196 | 16.0 | 2000 | 0.4394 | 0.3597 | | 0.0834 | 20.0 | 2500 | 0.4891 | 0.3619 | | 0.0591 | 24.0 | 3000 | 0.4535 | 0.3439 | | 0.0448 | 28.0 | 3500 | 0.4780 | 0.3403 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
ml6team/distilbart-tos-summarizer-tosdr
ml6team
2022-01-20T15:21:41Z
22
15
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "summarization", "t&c", "tos", "distilbart", "distilbart-6-6", "en", "dataset:tosdr", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- language: - en tags: - summarization - t&c - tos - distilbart - distilbart-6-6 datasets: - tosdr metrics: - rouge1 - rouge2 - rougel inference: parameters: min_length: 5 max_length: 512 do_sample: False widget: - text: "In addition, certain portions of the Web Site may be subject to additional terms of use that we make available for your review or otherwise link to that portion of the Web Site to which such additional terms apply. By using such portions, or any part thereof, you agree to be bound by the additional terms of use applicable to such portions. Age Restrictions The Web Site may be accessed and used only by individuals who can form legally binding contracts under applicable laws, who are at least 18 years of age or the age of majority in their state or territory of residence (if higher than 18), and who are not barred from using the Web Site under applicable laws. Our Technology may not be copied, modified, reproduced, republished, posted, transmitted, sold, offered for sale, or redistributed in any way without our prior written permission and the prior written permission of our applicable licensors. Nothing in these Site Terms of Use grants you any right to receive delivery of a copy of Our Technology or to obtain access to Our Technology except as generally and ordinarily permitted through the Web Site according to these Site Terms of Use. Furthermore, nothing in these Site Terms of Use will be deemed to grant you, by implication, estoppel or otherwise, a license to Our Technology. Certain of the names, logos, and other materials displayed via the Web site constitute trademarks, tradenames, service marks or logos (“Marks”) of us or other entities. You are not authorized to use any such Marks. Ownership of all such Marks and the goodwill associated therewith remains with us or those other entities. Any use of third party software provided in connection with the Web Site will be governed by such third parties’ licenses and not by these Site Terms of Use. Information on this Web Site may contain technical inaccuracies or typographical errors. Lenovo provides no assurances that any reported problems may be resolved with the use of any information that Lenovo provides." --- # T&C Summarization Model T&C Summarization Model based on [sshleifer/distilbart-cnn-6-6](https://huggingface.co/sshleifer/distilbart-cnn-6-6), This abstractive summarization model is a part of a bigger end-to-end T&C summarizer pipeline which is preceded by LSA (Latent Semantic Analysis) extractive summarization. The extractive summarization shortens the T&C to be further summarized by this model. ## Finetuning Corpus We collaborated with [TOSDR](https://tosdr.org/) to work with their data, and the model is finetuned accordingly. The article and summarization text is reduced via extractive summarization before it is finetuned to the model. ## Contact Us https://ml6.eu/ . This abstractive model finetuning is the continuation of the Christmas Project 2021 done in ML6: https://bit.ly/XmasProjects . ## Load Finetuned Model ``` from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("ml6team/distilbart-tos-summarizer-tosdr") model = AutoModelForSeq2SeqLM.from_pretrained("ml6team/distilbart-tos-summarizer-tosdr") ``` ## Code Sample This sample requires [sumy](https://pypi.org/project/sumy/), the LSA Extractive Summarization library, as additional package to run. ``` import re import nltk nltk.download('punkt') from sumy.parsers.plaintext import PlaintextParser from sumy.nlp.tokenizers import Tokenizer from sumy.nlp.stemmers import Stemmer from sumy.summarizers.lsa import LsaSummarizer from transformers import AutoTokenizer, AutoModelForSeq2SeqLM LANGUAGE = "english" EXTRACTED_ARTICLE_SENTENCES_LEN = 12 stemmer = Stemmer(LANGUAGE) lsa_summarizer = LsaSummarizer(stemmer) tokenizer = AutoTokenizer.from_pretrained("ml6team/distilbart-tos-summarizer-tosdr") model = AutoModelForSeq2SeqLM.from_pretrained("ml6team/distilbart-tos-summarizer-tosdr") def get_extractive_summary(text, sentences_count): parser = PlaintextParser.from_string(text, Tokenizer(LANGUAGE)) summarized_info = lsa_summarizer(parser.document, sentences_count) summarized_info = [element._text for element in summarized_info] return ' '.join(summarized_info) def get_summary(dict_summarizer_model, dict_tokenizer, text_content): text_content = get_extractive_summary(text_content, EXTRACTED_ARTICLE_SENTENCES_LEN) tokenizer = dict_tokenizer['tokenizer'] model = dict_summarizer_model['model'] inputs = tokenizer(text_content, max_length=dict_tokenizer['max_length'], truncation=True, return_tensors="pt") outputs = model.generate( inputs["input_ids"], max_length=dict_summarizer_model['max_length'], min_length=dict_summarizer_model['min_length'], ) summarized_text = tokenizer.decode(outputs[0]) match = re.search(r"<s>(.*)</s>", summarized_text) if match is not None: summarized_text = match.group(1) return summarized_text.replace('<s>', '').replace('</s>', '') test_tos = """ In addition, certain portions of the Web Site may be subject to additional terms of use that we make available for your review or otherwise link to that portion of the Web Site to which such additional terms apply. By using such portions, or any part thereof, you agree to be bound by the additional terms of use applicable to such portions. Age Restrictions The Web Site may be accessed and used only by individuals who can form legally binding contracts under applicable laws, who are at least 18 years of age or the age of majority in their state or territory of residence (if higher than 18), and who are not barred from using the Web Site under applicable laws. Our Technology may not be copied, modified, reproduced, republished, posted, transmitted, sold, offered for sale, or redistributed in any way without our prior written permission and the prior written permission of our applicable licensors. Nothing in these Site Terms of Use grants you any right to receive delivery of a copy of Our Technology or to obtain access to Our Technology except as generally and ordinarily permitted through the Web Site according to these Site Terms of Use. Furthermore, nothing in these Site Terms of Use will be deemed to grant you, by implication, estoppel or otherwise, a license to Our Technology. Certain of the names, logos, and other materials displayed via the Web site constitute trademarks, tradenames, service marks or logos (“Marks”) of us or other entities. You are not authorized to use any such Marks. Ownership of all such Marks and the goodwill associated therewith remains with us or those other entities. Any use of third party software provided in connection with the Web Site will be governed by such third parties’ licenses and not by these Site Terms of Use. Information on this Web Site may contain technical inaccuracies or typographical errors. Lenovo provides no assurances that any reported problems may be resolved with the use of any information that Lenovo provides """ model_dict = { 'model': model, 'max_length': 512, 'min_length': 4 } tokenizer_dict = { 'tokenizer': tokenizer, 'max_length': 1024 } print(get_summary(model_dict, tokenizer_dict, test_tos)) ```
Mirjam/test-finetuned
Mirjam
2022-01-20T15:14:18Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: test-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-finetuned This model is a fine-tuned version of [yhavinga/t5-v1.1-base-dutch-cnn-test](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-cnn-test) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | No log | 1.0 | 1 | nan | 33.8462 | 31.746 | 30.7692 | 30.7692 | 86.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1 - Datasets 1.15.1 - Tokenizers 0.10.3
pitehu/T5_NER_CONLL_LIST
pitehu
2022-01-20T14:32:20Z
12
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "Named Entity Recognition", "en", "dataset:wmt19", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: - en tags: - Named Entity Recognition license: apache-2.0 datasets: - wmt19 metrics: - bleu - sacrebleu inference: parameters: max_length: 1024 ---
g30rv17ys/avhubert
g30rv17ys
2022-01-20T13:07:45Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
https://dl.fbaipublicfiles.com/avhubert/model/lrs3_vox/vsr/base_vox_433h.pt
dehio/german-qg-t5-e2e-quad
dehio
2022-01-20T09:40:47Z
5
3
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "question generation", "de", "dataset:deepset/germanquad", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: mit widget: - text: "Naturschutzwarte haben auf der ostfriesischen Insel Wangerooge zwei seltene Kurzschnäuzige Seepferdchen entdeckt. Die Tiere seien vergangene Woche bei einer sogenannten Spülsaumkontrolle entdeckt worden, bei der die Strände eigentlich nach Müll und toten Vögeln abgesucht würden, sagte der Geschäftsführer der zuständigen Naturschutz- und Forschungsgemeinschaft Mellumrat, Mathias Heckroth. Dabei seien den Naturschützern am Nordstrand kurz hintereinander die beiden leblosen, nur wenige Zentimeter großen Tiere aufgefallen. Experten der Nationalparkverwaltung bestimmten beide Tiere als Kurzschnäuzige Seepferdchen (Hippocampus hippocampus)." inference: parameters: max_length: 128 language: - de tags: - question generation datasets: - deepset/germanquad model-index: - name: german-qg-t5-e2e-quad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # german-qg-t5-e2e-quad (Work in progress) This model is a end-to-end question generation model in German. Given a text, it generates several questions about it. This model is a fine-tuned version of [valhalla/t5-base-e2e-qg](https://huggingface.co/valhalla/t5-base-e2e-qg) on the [GermanQuAD dataset from deepset](https://huggingface.co/datasets/deepset/germanquad). ## Model description More information needed ## Training and evaluation data Bleu_1: 0.196051 Bleu_2: 0.122380 Bleu_3: 0.079980 Bleu_4: 0.053672 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
ml6team/distilbert-base-dutch-cased-toxic-comments
ml6team
2022-01-20T08:21:12Z
10
6
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "nl", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: - nl tags: - text-classification - pytorch widget: - text: "Ik heb je lief met heel mijn hart" example_title: "Non toxic comment 1" - text: "Dat is een goed punt, zo had ik het nog niet bekeken." example_title: "Non toxic comment 2" - text: "Wat de fuck zei je net tegen me, klootzak?" example_title: "Toxic comment 1" - text: "Rot op, vuile hoerenzoon." example_title: "Toxic comment 2" license: apache-2.0 metrics: - Accuracy, F1 Score, Recall, Precision --- # distilbert-base-dutch-toxic-comments ## Model description: This model was created with the purpose to detect toxic or potentially harmful comments. For this model, we finetuned a multilingual distilbert model [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the translated [Jigsaw Toxicity dataset](https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge). The original dataset was translated using the appropriate [MariantMT model](https://huggingface.co/Helsinki-NLP/opus-mt-en-nl). The model was trained for 2 epochs, on 90% of the dataset, with the following arguments: ``` training_args = TrainingArguments( learning_rate=3e-5, per_device_train_batch_size=16, per_device_eval_batch_size=16, gradient_accumulation_steps=4, load_best_model_at_end=True, metric_for_best_model="recall", epochs=2, evaluation_strategy="steps", save_strategy="steps", save_total_limit=10, logging_steps=100, eval_steps=250, save_steps=250, weight_decay=0.001, report_to="wandb") ``` ## Model Performance: Model evaluation was done on 1/10th of the dataset, which served as the test dataset. | Accuracy | F1 Score | Recall | Precision | | --- | --- | --- | --- | | 95.75 | 78.88 | 77.23 | 80.61 | ## Dataset: Unfortunately we cannot open-source the dataset, since we are bound by the underlying Jigsaw license.
huggingtweets/chickenhalf
huggingtweets
2022-01-20T07:52:22Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/chickenhalf/1642665052826/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1482989404125806596/JtLgKHTu_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">chicken sandwich</div> <div style="text-align: center; font-size: 14px;">@chickenhalf</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from chicken sandwich. | Data | chicken sandwich | | --- | --- | | Tweets downloaded | 3202 | | Retweets | 126 | | Short tweets | 427 | | Tweets kept | 2649 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3r0cwhle/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chickenhalf's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1zvaxh71) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1zvaxh71/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/chickenhalf') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
LiqiangXiao/ConvSearch_QU
LiqiangXiao
2022-01-20T06:32:35Z
7
4
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "arxiv:2109.05460", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
## End-to-end Conversational search model A end-to-end system of conversational search system for online shopping. It was introduced in [this paper](https://arxiv.org/abs/2109.05460) published on conference EMNLP. ## Model description ConvSearch is an end-to-end conversational search system that deeply combines the dialog and search system to improve the search performance. In particular, the Product Search module leverages both structured product attributes and unstructured product text (e.g. profile), where the product text may contain phrases matching with utterances when schema is incomplete or when a product attribute value is missing. Putting together, our system has the advantage of both reduced error accumulation along individual modules, and enhanced robustness against product schema/knowledge gaps. ## Intended uses & limitations You can use the raw model to understand the dialog between consumer and server. The concatenated dialogs can be parsed into intents (e.g. inform, request, buy, et al.) and attributes of products. You can also fine-tune this model on similar down-stream tasks, such as a dialog system for shopping in your scenario or customer service system. Since our model is seq-to-seq, any dialog system that can be reformed to seq-to-seq can be implemented based on this model. ## How to use You can use this model directly with: from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("LiqiangXiao/ConvSearch_QU") model = AutoModelForSeq2SeqLM.from_pretrained("LiqiangXiao/ConvSearch_QU") ## Training data ConvSearch was pretrained on a dialog corpus with 49,999 dialogs/942,766 turns.
rdpatilds/distilbert-finetuned-imdb
rdpatilds
2022-01-20T05:49:25Z
3
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: rdpatilds/distilbert-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # rdpatilds/distilbert-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.6914 - Validation Loss: 2.5383 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -688, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.6914 | 2.5383 | 0 | ### Framework versions - Transformers 4.15.0 - TensorFlow 2.7.0 - Datasets 1.17.0 - Tokenizers 0.10.3
abdelkader/distilbert-base-uncased-distilled-clinc
abdelkader
2022-01-20T05:15:31Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-distilled-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9464516129032258 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.3038 - Accuracy: 0.9465 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 318 | 2.8460 | 0.7506 | | 3.322 | 2.0 | 636 | 1.4301 | 0.8532 | | 3.322 | 3.0 | 954 | 0.7377 | 0.9152 | | 1.2296 | 4.0 | 1272 | 0.4784 | 0.9316 | | 0.449 | 5.0 | 1590 | 0.3730 | 0.9390 | | 0.449 | 6.0 | 1908 | 0.3367 | 0.9429 | | 0.2424 | 7.0 | 2226 | 0.3163 | 0.9468 | | 0.1741 | 8.0 | 2544 | 0.3074 | 0.9452 | | 0.1741 | 9.0 | 2862 | 0.3054 | 0.9458 | | 0.1501 | 10.0 | 3180 | 0.3038 | 0.9465 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
abdelkader/distilbert-base-uncased-finetuned-clinc
abdelkader
2022-01-20T04:59:36Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9174193548387096 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7713 - Accuracy: 0.9174 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 318 | 3.2831 | 0.7426 | | 3.785 | 2.0 | 636 | 1.8739 | 0.8335 | | 3.785 | 3.0 | 954 | 1.1525 | 0.8926 | | 1.6894 | 4.0 | 1272 | 0.8569 | 0.91 | | 0.897 | 5.0 | 1590 | 0.7713 | 0.9174 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
mrp/marian-finetuned-kde4-en-to-fr
mrp
2022-01-20T04:05:30Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "translation", "generated_from_trainer", "dataset:kde4", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - kde4 metrics: - bleu model-index: - name: marian-finetuned-kde4-en-to-fr results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 args: en-fr metrics: - name: Bleu type: bleu value: 50.20410659441166 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 0.9643 - Bleu: 50.2041 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
D3xter1922/electra-base-discriminator-finetuned-cola
D3xter1922
2022-01-20T01:03:51Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: electra-base-discriminator-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.6824089073723449 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-base-discriminator-finetuned-cola This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6367 - Matthews Correlation: 0.6824 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.4139 | 1.0 | 535 | 0.4137 | 0.6381 | | 0.2452 | 2.0 | 1070 | 0.4887 | 0.6504 | | 0.17 | 3.0 | 1605 | 0.5335 | 0.6757 | | 0.1135 | 4.0 | 2140 | 0.6367 | 0.6824 | | 0.0817 | 5.0 | 2675 | 0.6742 | 0.6755 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
UBC-NLP/ARBERT
UBC-NLP
2022-01-19T20:10:55Z
540
5
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "Arabic BERT", "MSA", "Twitter", "Masked Langauge Model", "ar", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: - ar tags: - Arabic BERT - MSA - Twitter - Masked Langauge Model widget: - text: "اللغة العربية هي لغة [MASK]." --- <img src="https://raw.githubusercontent.com/UBC-NLP/marbert/main/ARBERT_MARBERT.jpg" alt="drawing" width="30%" height="30%" align="right"/> **ARBERT** is one of three models described in our **ACl 2021 paper** **["ARBERT & MARBERT: Deep Bidirectional Transformers for Arabic"](https://mageed.arts.ubc.ca/files/2020/12/marbert_arxiv_2020.pdf)**. ARBERT is a large-scale pre-trained masked language model focused on Modern Standard Arabic (MSA). To train ARBERT, we use the same architecture as BERT-base: 12 attention layers, each has 12 attention heads and 768 hidden dimensions, a vocabulary of 100K WordPieces, making ∼163M parameters. We train ARBERT on a collection of Arabic datasets comprising **61GB of text** (**6.2B tokens**). For more information, please visit our own GitHub [repo](https://github.com/UBC-NLP/marbert). # BibTex If you use our models (ARBERT, MARBERT, or MARBERTv2) for your scientific publication, or if you find the resources in this repository useful, please cite our paper as follows (to be updated): ```bibtex @inproceedings{abdul-mageed-etal-2021-arbert, title = "{ARBERT} {\&} {MARBERT}: Deep Bidirectional Transformers for {A}rabic", author = "Abdul-Mageed, Muhammad and Elmadany, AbdelRahim and Nagoudi, El Moatez Billah", booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.acl-long.551", doi = "10.18653/v1/2021.acl-long.551", pages = "7088--7105", abstract = "Pre-trained language models (LMs) are currently integral to many natural language processing systems. Although multilingual LMs were also introduced to serve many languages, these have limitations such as being costly at inference time and the size and diversity of non-English data involved in their pre-training. We remedy these issues for a collection of diverse Arabic varieties by introducing two powerful deep bidirectional transformer-based models, ARBERT and MARBERT. To evaluate our models, we also introduce ARLUE, a new benchmark for multi-dialectal Arabic language understanding evaluation. ARLUE is built using 42 datasets targeting six different task clusters, allowing us to offer a series of standardized experiments under rich conditions. When fine-tuned on ARLUE, our models collectively achieve new state-of-the-art results across the majority of tasks (37 out of 48 classification tasks, on the 42 datasets). Our best model acquires the highest ARLUE score (77.40) across all six task clusters, outperforming all other models including XLM-R Large ( 3.4x larger size). Our models are publicly available at https://github.com/UBC-NLP/marbert and ARLUE will be released through the same repository.", } ``` ## Acknowledgments We gratefully acknowledge support from the Natural Sciences and Engineering Research Council of Canada, the Social Sciences and Humanities Research Council of Canada, Canadian Foundation for Innovation, [ComputeCanada](www.computecanada.ca) and [UBC ARC-Sockeye](https://doi.org/10.14288/SOCKEYE). We also thank the [Google TensorFlow Research Cloud (TFRC)](https://www.tensorflow.org/tfrc) program for providing us with free TPU access.
hrdipto/wav2vec2-xls-r-tf-left-right-trainer
hrdipto
2022-01-19T20:06:38Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-xls-r-tf-left-right-trainer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-tf-left-right-trainer This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0090 - eval_wer: 0.0037 - eval_runtime: 11.2686 - eval_samples_per_second: 71.703 - eval_steps_per_second: 8.963 - epoch: 21.05 - step: 4000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
vuiseng9/bert-base-squadv1
vuiseng9
2022-01-19T19:03:57Z
5
0
transformers
[ "transformers", "pytorch", "onnx", "bert", "question-answering", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
This model is a fork of [```csarron/bert-base-uncased-squad-v1```](https://huggingface.co/csarron/bert-base-uncased-squad-v1). ``` eval_exact_match = 80.9082 eval_f1 = 88.2275 eval_samples = 10784 ``` # Eval ```bash export CUDA_VISIBLE_DEVICES=0 OUTDIR=eval-bert-base-squadv1 WORKDIR=transformers/examples/pytorch/question-answering cd $WORKDIR nohup python run_qa.py \ --model_name_or_path vuiseng9/bert-base-squadv1 \ --dataset_name squad \ --do_eval \ --per_device_eval_batch_size 128 \ --max_seq_length 384 \ --doc_stride 128 \ --overwrite_output_dir \ --output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log & ```
facebook/contriever
facebook
2022-01-19T17:23:28Z
303,332
60
transformers
[ "transformers", "pytorch", "bert", "arxiv:2112.09118", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
This model has been trained without supervision following the approach described in [Towards Unsupervised Dense Information Retrieval with Contrastive Learning](https://arxiv.org/abs/2112.09118). The associated GitHub repository is available here https://github.com/facebookresearch/contriever. ## Usage (HuggingFace Transformers) Using the model directly available in HuggingFace transformers requires to add a mean pooling operation to obtain a sentence embedding. ```python import torch from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained('facebook/contriever') model = AutoModel.from_pretrained('facebook/contriever') sentences = [ "Where was Marie Curie born?", "Maria Sklodowska, later known as Marie Curie, was born on November 7, 1867.", "Born in Paris on 15 May 1859, Pierre Curie was the son of Eugène Curie, a doctor of French Catholic origin from Alsace." ] # Apply tokenizer inputs = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings outputs = model(**inputs) # Mean pooling def mean_pooling(token_embeddings, mask): token_embeddings = token_embeddings.masked_fill(~mask[..., None].bool(), 0.) sentence_embeddings = token_embeddings.sum(dim=1) / mask.sum(dim=1)[..., None] return sentence_embeddings embeddings = mean_pooling(outputs[0], inputs['attention_mask']) ```
indonesian-nlp/wav2vec2-luganda
indonesian-nlp
2022-01-19T16:19:45Z
11
2
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "lg", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: lg datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech license: apache-2.0 model-index: - name: Wav2Vec2 Luganda by Indonesian-NLP results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice lg type: common_voice args: lg metrics: - name: Test WER type: wer value: 7.53 --- # Automatic Speech Recognition for Luganda This is the model built for the [Mozilla Luganda Automatic Speech Recognition competition](https://zindi.africa/competitions/mozilla-luganda-automatic-speech-recognition). It is a fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) model on the [Luganda Common Voice dataset](https://huggingface.co/datasets/common_voice) version 7.0. We also provide a [live demo](https://huggingface.co/spaces/indonesian-nlp/luganda-asr) to test the model. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "lg", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("indonesian-nlp/wav2vec2-luganda") model = Wav2Vec2ForCTC.from_pretrained("indonesian-nlp/wav2vec2-luganda") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): if "audio" in batch: speech_array = torch.tensor(batch["audio"]["array"]) else: speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset[:2]["sentence"]) ``` ## Evaluation The model can be evaluated as follows on the Indonesian test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "lg", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("indonesian-nlp/wav2vec2-luganda") model = Wav2Vec2ForCTC.from_pretrained("indonesian-nlp/wav2vec2-luganda") model.to("cuda") chars_to_ignore = [",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�", "‘", "’", "’"] chars_to_ignore_regex = f'[{"".join(chars_to_ignore)}]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() if "audio" in batch: speech_array = torch.tensor(batch["audio"]["array"]) else: speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` WER without KenLM: 15.38 % WER With KenLM: **Test Result**: 7.53 % ## Training The Common Voice `train`, `validation`, and ... datasets were used for training as well as ... and ... # TODO The script used for training can be found [here](https://github.com/indonesian-nlp/luganda-asr)
DanL/scientific-challenges-and-directions
DanL
2022-01-19T12:47:22Z
315
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "en", "dataset:DanL/scientific-challenges-and-directions-dataset", "arxiv:2108.13751", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer - text-classification language: - en datasets: - DanL/scientific-challenges-and-directions-dataset widget: - text: "severe atypical cases of pneumonia emerged and quickly spread worldwide." example_title: "challenge" - text: "we speculate that studying IL-6 will be beneficial." example_title: "direction" - text: "in future studies, both PRRs should be tested as the cause for multiple deaths." example_title: "both" - text: "IbMADS1-transformed potatoes exhibited tuber morphogenesis in the fibrous roots." example_title: "neither" metrics: - precision - recall - f1 model-index: - name: scientific-challenges-and-directions results: [] --- # scientific-challenges-and-directions We present a novel resource to help scientists and medical professionals discover challenges and potential directions across scientific literature, focusing on a broad corpus pertaining to the COVID-19 pandemic and related historical research. At a high level, the _challenges_ and _directions_ are defined as follows: * **Challenge**: A sentence mentioning a problem, difficulty, flaw, limitation, failure, lack of clarity, or knowledge gap. * **Research direction**: A sentence mentioning suggestions or needs for further research, hypotheses, speculations, indications or hints that an issue is worthy of exploration. * This model here is described in our paper: [A Search Engine for Discovery of Scientific Challenges and Directions](https://arxiv.org/abs/2108.13751) (though we've upgraded the infrastructure since the paper was released - there are slight differences in the results). * Our dataset can be found [here](https://huggingface.co/datasets/DanL/scientific-challenges-and-directions-dataset). * Please cite our paper if you use our datasets or models in your project. See the [BibTeX](#citation). * Feel free to [email us](#contact-us). * Also, check out [our search engine](https://challenges.apps.allenai.org/), as an example application. ## Model description This model is a fine-tuned version of [PubMedBERT](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the [scientific-challenges-and-directions-dataset](https://huggingface.co/datasets/DanL/scientific-challenges-and-directions-dataset), designed for multi-label text classification. ## Training and evaluation data The scientific-challenges-and-directions model is trained based on a dataset that is a collection of 2894 sentences and their surrounding contexts, from 1786 full-text papers in the CORD-19 corpus, labeled for classification of challenges and directions by expert annotators with biomedical and bioNLP backgrounds. For full details on the train/test/split of the data see section 3.1 in our [paper](https://arxiv.org/abs/2108.13751) ## Example notebook We include an example notebook that uses the model for inference in our [repo](https://github.com/Dan-La/scientific-challenges-and-directions). See `Inference_Notebook.ipynb`. A training notebook is also included. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning rate: 2e-05 - train batch size: 8 - eval batch size: 4 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr scheduler type: linear - lr scheduler warmup steps: 500 - num epochs: 30 ### Training results The achieves the following results on the test set: - Precision Challenge: 0.768719 - Recall Challenge: 0.780405 - F1 Challenge: 0.774518 - Precision Direction: 0.758112 - Recall Direction: 0.774096 - F1 Direction: 0.766021 - Precision (micro avg. on both labels): 0.764894 - Recall (micro avg. on both labels): 0.778139 - F1 (micro avg. on both labels): 0.771459 ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3 ## Citation If using our dataset and models, please cite: ``` @misc{lahav2021search, title={A Search Engine for Discovery of Scientific Challenges and Directions}, author={Dan Lahav and Jon Saad Falcon and Bailey Kuehl and Sophie Johnson and Sravanthi Parasa and Noam Shomron and Duen Horng Chau and Diyi Yang and Eric Horvitz and Daniel S. Weld and Tom Hope}, year={2021}, eprint={2108.13751}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ## Contact us Please don't hesitate to reach out. **Email:** `[email protected]`,`[email protected]`.
mishig/test_vid
mishig
2022-01-19T09:56:39Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
# Video demo on ModelCard Please find [this file](https://huggingface.co/mishig/test_vid/blob/main/README.md) to see how to add a video to model card. <video src="https://huggingface.co/mishig/test_vid/resolve/main/output.mp4" controls autoplay loop/>
huggingtweets/histronicmonstr
huggingtweets
2022-01-19T04:57:37Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/histronicmonstr/1642568219493/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1431060400171270149/X2agCkD0_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">(心) !!!Ma-tin Korii!!! Uwa~😃!!!</div> <div style="text-align: center; font-size: 14px;">@histronicmonstr</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from (心) !!!Ma-tin Korii!!! Uwa~😃!!!. | Data | (心) !!!Ma-tin Korii!!! Uwa~😃!!! | | --- | --- | | Tweets downloaded | 3203 | | Retweets | 97 | | Short tweets | 488 | | Tweets kept | 2618 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1sdp3pm6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @histronicmonstr's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2ms6e48p) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2ms6e48p/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/histronicmonstr') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
milyiyo/electra-base-gen-finetuned-amazon-review
milyiyo
2022-01-18T21:21:53Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - amazon_reviews_multi metrics: - accuracy - f1 - precision - recall model-index: - name: electra-base-gen-finetuned-amazon-review results: - task: name: Text Classification type: text-classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi args: es metrics: - name: Accuracy type: accuracy value: 0.5024 - name: F1 type: f1 value: 0.5063190059782597 - name: Precision type: precision value: 0.5121183330982292 - name: Recall type: recall value: 0.5024 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-base-gen-finetuned-amazon-review This model is a fine-tuned version of [mrm8488/electricidad-base-generator](https://huggingface.co/mrm8488/electricidad-base-generator) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 1.8030 - Accuracy: 0.5024 - F1: 0.5063 - Precision: 0.5121 - Recall: 0.5024 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Accuracy | F1 | Validation Loss | Precision | Recall | |:-------------:|:-----:|:----:|:--------:|:------:|:---------------:|:---------:|:------:| | 0.5135 | 1.0 | 1000 | 0.4886 | 0.4929 | 1.6580 | 0.5077 | 0.4886 | | 0.4138 | 2.0 | 2000 | 0.5044 | 0.5093 | 1.7951 | 0.5183 | 0.5044 | | 0.4244 | 3.0 | 3000 | 0.5022 | 0.5068 | 1.8108 | 0.5141 | 0.5022 | | 0.4231 | 6.0 | 6000 | 1.7636 | 0.4972 | 0.5018 | 0.5092 | 0.4972 | | 0.3574 | 7.0 | 7000 | 1.8030 | 0.5024 | 0.5063 | 0.5121 | 0.5024 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
mrm8488/bert-tiny-5-finetuned-squadv2
mrm8488
2022-01-18T20:19:49Z
154
4
transformers
[ "transformers", "pytorch", "jax", "bert", "question-answering", "QA", "en", "arxiv:1908.08962", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- language: en thumbnail: tags: - QA --- # BERT-Tiny ([5](https://huggingface.co/google/bert_uncased_L-12_H-128_A-2)) fine-tuned on SQuAD v2 [BERT-Tiny](https://huggingface.co/google/bert_uncased_L-12_H-128_A-2) created by [Google Research](https://github.com/google-research) and fine-tuned on [SQuAD 2.0](https://rajpurkar.github.io/SQuAD-explorer/) for **Q&A** downstream task. **Mode size** (after training): **24.33 MB** ## Details of BERT-Tiny and its 'family' (from their documentation) Released on March 11th, 2020 This is model is a part of 24 smaller BERT models (English only, uncased, trained with WordPiece masking) referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962). The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. ## Details of the downstream task (Q&A) - Dataset [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) combines the 100,000 questions in SQuAD1.1 with over 50,000 unanswerable questions written adversarially by crowdworkers to look similar to answerable ones. To do well on SQuAD2.0, systems must not only answer questions when possible, but also determine when no answer is supported by the paragraph and abstain from answering. | Dataset | Split | # samples | | -------- | ----- | --------- | | SQuAD2.0 | train | 130k | | SQuAD2.0 | eval | 12.3k | ## Model training The model was trained on a Tesla P100 GPU and 25GB of RAM. The script for fine tuning can be found [here](https://github.com/huggingface/transformers/blob/master/examples/question-answering/run_squad.py) ## Results: | Metric | # Value | | ------ | --------- | | **EM** | **57.12** | | **F1** | **60.86** | | Model | EM | F1 score | SIZE (MB) | | ----------------------------------------------------------------------------------------- | --------- | --------- | --------- | | [bert-tiny-finetuned-squadv2](https://huggingface.co/mrm8488/bert-tiny-finetuned-squadv2) | 48.60 | 49.73 | **16.74** | | [bert-tiny-5-finetuned-squadv2](https://huggingface.co/mrm8488/bert-tiny-5-finetuned-squadv2) | **57.12** | **60.86** | 24.34 ## Model in action Fast usage with **pipelines**: ```python from transformers import pipeline qa_pipeline = pipeline( "question-answering", model="mrm8488/bert-tiny-5-finetuned-squadv2", tokenizer="mrm8488/bert-tiny-5-finetuned-squadv2" ) qa_pipeline({ 'context': "Manuel Romero has been working hardly in the repository hugginface/transformers lately", 'question': "Who has been working hard for hugginface/transformers lately?" }) ``` > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
Supiri/t5-base-conversation
Supiri
2022-01-18T17:56:42Z
33
20
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "NLP", "ChatBot", "Game AI", "en", "dataset:cornell_movie_dialog", "license:gpl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - cornell_movie_dialog license: gpl-3.0 tags: - NLP - ChatBot - Game AI metrics: - rouge widget: - text: "personality: Hinata was soft-spoken and polite, always addressing people with proper honorifics. She is kind, always thinking of others more than for herself, caring for their feelings and well-being. She doesn't like being confrontational for any reason. This led to her being meek or timid to others, as her overwhelming kindness can render her unable to respond or act for fear of offending somebody.</s> inquiry: What's your name?" example_title: "Talk to Hinata" - text: "personality: Voldemort is a raging psychopath, devoid of the normal human responses to other people's suffering. He has no conscience, feels no remorse or empathy, and does not recognize the worth and humanity of anybody except himself.</s> inquiry: What's your name?" example_title: "Talk to Voldemort" inference: parameters: num_beams: 6 diversity_penalty: 2.5 num_beam_groups: 2 --- # FreeIsland AI With the advancement of the graphical processing power of computers and sophisticated algorithms like [Nanite](https://docs.unrealengine.com/5.0/en-US/RenderingFeatures/Nanite/), simulating lifelike sceneries in real-time is never being easier. About a month ago Epic Games [showoff](https://www.youtube.com/watch?v=WU0gvPcc3jQ) the newest capabilities of their newest game engine by simulating an entire city including population, traffic, weather, etc running on a Playstore 5. That made me think what are the things missing from that simulation and how can I use my skills to improve it. One of the main missing components that separate our world and the simulated world is people. More importantly, the interactivity of people in simulated worlds. Last year a game called cyberpunk got released and it had an option to [talk to any person](https://www.youtube.com/watch?v=Z1OtYGzUoSo) in its city but the problem with that was all the responses from the Non-player Characters (NPCs) are hardcoded which greatly reduce the immersion of the game. So the goal of this project is to experiment with how the advancement of Natural Language Processing makes NPCs from video games interactive and enhances immersion in video games. # Usage ```py from transformers import AutoModelForSeq2SeqLM trained_model = AutoModelForSeq2SeqLM.from_pretrained(f"Supiri/t5-base-conversation") prompt = "What's your name?" context = "Hinata was soft-spoken and polite, always addressing people with proper honorifics. She is kind, always thinking of others more than for herself, caring for their feelings and well-being. She doesn't like being confrontational for any reason. This led to her being meek or timid to others, as her overwhelming kindness can render her unable to respond or act for fear of offending somebody." input_ids = tokenizer(f"personality: {context}", f"inquiry: {prompt}", return_tensors='pt').input_ids outputs = trained_model.generate(input_ids, num_beams=6, diversity_penalty=2.5, num_beam_groups=2) print("Answer:\t", tokenizer.decode(outputs[0], skip_special_tokens=True)) # Answer: My name is Hinata ``` # Evaluation ## Test 1 For this test, I sampled input from the test dataset. For this question the actual response is > "It works a little." But models' response was > "I don't want to flirt with you." Which reflect its bio which was filled by GPT-3 > "He stands primarily to gain self-esteem, which he often receives through the submission of others" In gist, Dr. Greenbaum tried to tease Sebastian about his seductive traits but this model's go-to response was to shut her down since the biography of Sebastian states he often tries to assert his dominance over others. ```py prompt = dataset['test'][66]['request'] contexts = dataset['test'][66]['bio'] input_ids = tokenizer(f"personality: {contexts}", f"inquiry: {prompt}", return_tensors='pt').input_ids outputs = trained_model.generate(input_ids, num_beams=6, diversity_penalty=5.0, num_beam_groups=2) print("Input to the Model") print("Bio:\t",contexts) print("\nPrompt:\t", prompt) print("\nGround truth response") print("\t", dataset['test'][66]['response']) print("\nModel's Prediction") print("Answer:\t", tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ```txt Input to the Model Bio: Sebastian is a very extreme representation of the trope of the "Confidence Man", and acts it out to a degree that is sometimes comedic but mostly frightening. He stands primarily to gain self-esteem, which he often receives through the submission of others or solely through his own perceptions. An artful seducer, his incredible charisma is both his greatest weapon and most intoxicating weakness. Prompt: You think you can come in here with that cute little smirk on your face and try and flirt with me. It doesn't work, Sebastian. Ground truth response It works a little. Model's Prediction Answer: I don't want to flirt with you. ``` ### Test 2 Hinata is a kind-hearted girl from the anime series Naruto. I took her bio from [personality database](https://www.personality-database.com/profile/2790/hinata-hyga-naruto-shippden-mbti-personality-type) and ask a few questions about her. Off the top, you can see the model understands the context since when I asked the model, "**What's your name?**" it responded with the name given with the context. Also, notice when prompted the same question differently (**"Who are you?"**), it still manages to answer it well. ```py prompts = ["What's your name?", "How are you feeling?", "Do you like Star Wars?", "Who are you?", "Coffee or tea?"] contexts = "Hinata was soft-spoken and polite, always addressing people with proper honorifics. She is kind, always thinking of others more than for herself, caring for their feelings and well-being. She doesn't like being confrontational for any reason. This led to her being meek or timid to others, as her overwhelming kindness can render her unable to respond or act for fear of offending somebody." print("Bio:\t",contexts, "\n") for prompt in prompts: input_ids = tokenizer(f"personality: {contexts}", f"inquiry: {prompt}", return_tensors='pt').input_ids outputs = trained_model.generate(input_ids, num_beams=6, diversity_penalty=5.0, num_beam_groups=2) print("Prompt:\t", prompt) print("Answer:\t", tokenizer.decode(outputs[0], skip_special_tokens=True), "\n") ``` ```txt Bio: Hinata was soft-spoken and polite, always addressing people with proper honorifics. She is kind, always thinking of others more than for herself, caring for their feelings and well-being. She doesn't like being confrontational for any reason. This led to her being meek or timid to others, as her overwhelming kindness can render her unable to respond or act for fear of offending somebody. Prompt: What's your name? Answer: My name is Hinata Prompt: How are you feeling? Answer: I'm fine. Prompt: Do you like Star Wars? Answer: No, I don't. Prompt: Who are you? Answer: My name is Hinata Prompt: Coffee or tea? Answer: No, I don't drink much. ``` # Conclusion After training the `t5-base` model for 5 epochs, the model started getting adapted to the dataset but there are a lot more improvements that can be done. 1. During the dataset creation part I had to limit the dataset size to 200 unique characters out of 9,035 that's present in the dataset due to the **budget constraints**. So If I manage to cover at least half of the dataset this model will have come up with far better responses. 2. Both input size and batch size were severely constrained due to the lack of access to GPU memory. Having the batch size of 64 is in contrast to 8 would have massive improvements in both training time and **generalization of model**. 3. Using a bigger model like `t5-large` or `t5-3b` will certainly improve the performance. 4. One of the main downsides to using this pre-trained model is this model was trained in German, French, and Romanian. Which consumed a chunk of the **vocabulary size and trainable parameters**. Retraining this model from scratch will help to reduce both needed parameter count and training loss when it comes to this specific task.
vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-57.92sparse-lt
vuiseng9
2022-01-18T17:45:15Z
1
0
transformers
[ "transformers", "pytorch", "onnx", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
This model is a downstream optimization of [```vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt```](https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt) using [OpenVINO/NNCF](https://github.com/openvinotoolkit/nncf). Applied optimization includes: 1. magnitude sparsification at 57.92% upon initialization so that sparsity over all linear layers of bert-base is at 90%. Parameters are ranked globally via thier absolute norm. Only linear layers of self-attention and ffnn are targeted. 2. Custom distillation with large model ```bert-large-uncased-whole-word-masking-finetuned-squad``` ``` eval_exact_match = 80.4447 eval_f1 = 87.7678 eval_samples = 10784 ``` # Setup ```bash # OpenVINO/NNCF git clone https://github.com/vuiseng9/nncf && cd nncf git checkout tld-poc git reset --hard 1dec7afe7a4b567c059fcf287ea2c234980fded2 python setup.py develop pip install -r examples/torch/requirements.txt # Huggingface nn_pruning git clone https://github.com/vuiseng9/nn_pruning && cd nn_pruning git checkout reproduce-evaluation git reset --hard 2d4e196d694c465e43e5fbce6c3836d0a60e1446 pip install -e ".[dev]" # Huggingface Transformers git clone https://github.com/vuiseng9/transformers && cd transformers git checkout tld-poc git reset --hard 10a1e29d84484e48fd106f58957d9ffc89dc43c5 pip install -e . head -n 1 examples/pytorch/question-answering/requirements.txt | xargs -i pip install {} # Additional dependencies pip install onnx ``` # Train ```bash git clone https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt BASE_MODEL=/path/to/cloned_repo_above #to-revise wget https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-57.92sparse-lt/raw/main/nncf_bert_squad_sparsity.json NNCF_CFG=/path/to/downloaded_nncf_cfg_above #to-revise OUTROOT=/path/to/train_output_root #to-revise WORKDIR=transformers/examples/pytorch/question-answering #to-revise RUNID=bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-57.92sparse-lt cd $WORKDIR OUTDIR=$OUTROOT/$RUNID mkdir -p $OUTDIR export CUDA_VISIBLE_DEVICES=0 NEPOCH=5 python run_qa.py \ --model_name_or_path vuiseng9/bert-base-squadv1-block-pruning-hybrid \ --optimize_model_before_eval \ --optimized_checkpoint $BASE_MODEL \ --dataset_name squad \ --do_eval \ --do_train \ --evaluation_strategy steps \ --eval_steps 250 \ --learning_rate 3e-5 \ --lr_scheduler_type cosine_with_restarts \ --warmup_ratio 0.25 \ --cosine_cycles 1 \ --teacher bert-large-uncased-whole-word-masking-finetuned-squad \ --teacher_ratio 0.9 \ --num_train_epochs $NEPOCH \ --per_device_eval_batch_size 128 \ --per_device_train_batch_size 16 \ --max_seq_length 384 \ --doc_stride 128 \ --save_steps 250 \ --nncf_config $NNCF_CFG \ --logging_steps 1 \ --overwrite_output_dir \ --run_name $RUNID \ --output_dir $OUTDIR ``` # Eval This repo must be cloned locally. ```bash git clone https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-57.92sparse-lt MODELROOT=/path/to/cloned_repo_above #to-revise export CUDA_VISIBLE_DEVICES=0 OUTDIR=eval-bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-57.92sparse-lt WORKDIR=transformers/examples/pytorch/question-answering #to-revise cd $WORKDIR mkdir $OUTDIR nohup python run_qa.py \ --model_name_or_path vuiseng9/bert-base-squadv1-block-pruning-hybrid \ --dataset_name squad \ --optimize_model_before_eval \ --qat_checkpoint $MODELROOT/checkpoint-20000 \ --nncf_config $MODELROOT/nncf_bert_squad_sparsity.json \ --to_onnx $OUTDIR/bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-57.92sparse-lt.onnx \ --do_eval \ --per_device_eval_batch_size 128 \ --max_seq_length 384 \ --doc_stride 128 \ --overwrite_output_dir \ --output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log & ```
huggingtweets/collision
huggingtweets
2022-01-18T17:17:28Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/collision/1642526243846/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/2464132281/jbbxl9p7ratdyuposrif_400x400.jpeg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">John Collison</div> <div style="text-align: center; font-size: 14px;">@collision</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from John Collison. | Data | John Collison | | --- | --- | | Tweets downloaded | 3222 | | Retweets | 999 | | Short tweets | 206 | | Tweets kept | 2017 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2ifqwdbm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @collision's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2gdto8z3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2gdto8z3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/collision') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
phueb/BabyBERTa-1
phueb
2022-01-18T14:44:02Z
56
2
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "BabyBERTa", "en", "dataset:CHILDES", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: en tags: - BabyBERTa datasets: - CHILDES widget: - text: "Look here. What is that <mask> ?" - text: "Do you like your <mask> ?" --- ## BabyBERTA ### Overview BabyBERTa is a light-weight version of RoBERTa trained on 5M words of American-English child-directed input. It is intended for language acquisition research, on a single desktop with a single GPU - no high-performance computing infrastructure needed. The three provided models are randomly selected from 10 that were trained and reported in the paper. ## Loading the tokenizer BabyBERTa was trained with `add_prefix_space=True`, so it will not work properly with the tokenizer defaults. For instance, to load the tokenizer for BabyBERTa-1, load it as follows: ```python tokenizer = RobertaTokenizerFast.from_pretrained("phueb/BabyBERTa-1", add_prefix_space=True) ``` ### Hyper-Parameters See the paper for details. All provided models were trained for 400K steps with a batch size of 16. Importantly, BabyBERTa never predicts unmasked tokens during training - `unmask_prob` is set to zero. ### Performance BabyBerta was developed for learning grammatical knowledge from child-directed input. Its grammatical knowledge was evaluated using the [Zorro](https://github.com/phueb/Zorro) test suite. The best model achieves an overall accuracy of 80.3, comparable to RoBERTa-base, which achieves an overall accuracy of 82.6 on the latest version of Zorro (as of October, 2021). Both values differ slightly from those reported in the [CoNLL 2021 paper](https://aclanthology.org/2021.conll-1.49/). There are two reasons for this: 1. Performance of RoBERTa-base is slightly larger because the authors previously lower-cased all words in Zorro before evaluation. Lower-casing of proper nouns is detrimental to RoBERTa-base because RoBERTa-base has likely been trained on proper nouns that are primarily title-cased. In contrast, because BabyBERTa is not case-sensitive, its performance is not influenced by this change. 2. The latest version of Zorro no longer contains ambiguous content words such as "Spanish" which can be both a noun and an adjective. this resulted in a small reduction in the performance of BabyBERTa. Overall Accuracy on Zorro: | Model Name | Accuracy (holistic scoring) | Accuracy (MLM-scoring) | |----------------------------------------|------------------------------|------------| | [BabyBERTa-1][link-BabyBERTa-1] | 80.3 | 79.9 | | [BabyBERTa-2][link-BabyBERTa-2] | 78.6 | 78.2 | | [BabyBERTa-3][link-BabyBERTa-3] | 74.5 | 78.1 | ### Additional Information This model was trained by [Philip Huebner](https://philhuebner.com), currently at the [UIUC Language and Learning Lab](http://www.learninglanguagelab.org). More info can be found [here](https://github.com/phueb/BabyBERTa). [link-BabyBERTa-1]: https://huggingface.co/phueb/BabyBERTa-1 [link-BabyBERTa-2]: https://huggingface.co/phueb/BabyBERTa-2 [link-BabyBERTa-3]: https://huggingface.co/phueb/BabyBERTa-3
phueb/BabyBERTa-3
phueb
2022-01-18T14:41:25Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "BabyBERTa", "en", "dataset:CHILDES", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: en tags: - BabyBERTa license: mit datasets: - CHILDES widget: - text: "Look here. What is that <mask> ?" - text: "Do you like your <mask> ?" --- ## BabyBERTA ### Overview BabyBERTa is a light-weight version of RoBERTa trained on 5M words of American-English child-directed input. It is intended for language acquisition research, on a single desktop with a single GPU - no high-performance computing infrastructure needed. The three provided models are randomly selected from 10 that were trained and reported in the paper. ## Loading the tokenizer BabyBERTa was trained with `add_prefix_space=True`, so it will not work properly with the tokenizer defaults. For instance, to load the tokenizer for BabyBERTa-1, load it as follows: ```python tokenizer = RobertaTokenizerFast.from_pretrained("phueb/BabyBERTa-1", add_prefix_space=True) ``` ### Hyper-Parameters See the paper for details. All provided models were trained for 400K steps with a batch size of 16. Importantly, BabyBERTa never predicts unmasked tokens during training - `unmask_prob` is set to zero. ### Performance BabyBerta was developed for learning grammatical knowledge from child-directed input. Its grammatical knowledge was evaluated using the [Zorro](https://github.com/phueb/Zorro) test suite. The best model achieves an overall accuracy of 80.3, comparable to RoBERTa-base, which achieves an overall accuracy of 82.6 on the latest version of Zorro (as of October, 2021). Both values differ slightly from those reported in the [CoNLL 2021 paper](https://aclanthology.org/2021.conll-1.49/). There are two reasons for this: 1. Performance of RoBERTa-base is slightly larger because the authors previously lower-cased all words in Zorro before evaluation. Lower-casing of proper nouns is detrimental to RoBERTa-base because RoBERTa-base has likely been trained on proper nouns that are primarily title-cased. In contrast, because BabyBERTa is not case-sensitive, its performance is not influenced by this change. 2. The latest version of Zorro no longer contains ambiguous content words such as "Spanish" which can be both a noun and an adjective. this resulted in a small reduction in the performance of BabyBERTa. Overall Accuracy on Zorro: | Model Name | Accuracy (holistic scoring) | Accuracy (MLM-scoring) | |----------------------------------------|------------------------------|------------| | [BabyBERTa-1][link-BabyBERTa-1] | 80.3 | 79.9 | | [BabyBERTa-2][link-BabyBERTa-2] | 78.6 | 78.2 | | [BabyBERTa-3][link-BabyBERTa-3] | 74.5 | 78.1 | ### Additional Information This model was trained by [Philip Huebner](https://philhuebner.com), currently at the [UIUC Language and Learning Lab](http://www.learninglanguagelab.org). More info can be found [here](https://github.com/phueb/BabyBERTa). [link-BabyBERTa-1]: https://huggingface.co/phueb/BabyBERTa-1 [link-BabyBERTa-2]: https://huggingface.co/phueb/BabyBERTa-2 [link-BabyBERTa-3]: https://huggingface.co/phueb/BabyBERTa-3
NbAiLab/roberta_des_ada_128_6e4
NbAiLab
2022-01-18T10:45:01Z
8
0
transformers
[ "transformers", "jax", "tensorboard", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
Just for performing some experiments. Do not use.
huggingtweets/dankogai-hirox246
huggingtweets
2022-01-18T09:55:05Z
0
0
null
[ "huggingtweets", "en", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/dankogai-hirox246/1642499700234/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/646595746905620480/oeKI14gB_400x400.png&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1190142566831984640/o4kO2hp-_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ひろゆき, Hiroyuki Nishimura & Dan Kogai</div> <div style="text-align: center; font-size: 14px;">@dankogai-hirox246</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ひろゆき, Hiroyuki Nishimura & Dan Kogai. | Data | ひろゆき, Hiroyuki Nishimura | Dan Kogai | | --- | --- | --- | | Tweets downloaded | 3249 | 3250 | | Retweets | 284 | 340 | | Short tweets | 1988 | 2416 | | Tweets kept | 977 | 494 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3vrtv6xf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dankogai-hirox246's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1yfxplpr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1yfxplpr/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dankogai-hirox246') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
hkunlp/T5_large_prefix_all_tasks_2upsample2
hkunlp
2022-01-18T07:15:22Z
4
2
transformers
[ "transformers", "pytorch", "t5", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
This is the ckpt of prefix-tuning model we trained on 21 tasks using a upsampling temp of 2. Note: The prefix module is large due to the fact we keep the re-param weight and didn't compress it to make it more original and extendable for researchers.
csukuangfj/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-01-10
csukuangfj
2022-01-18T04:29:27Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
# Introduction ## How to clone this repo ``` sudo apt-get install git-lfs git clone https://huggingface.co/csukuangfj/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-01-10 cd icefall-asr-librispeech-transducer-stateless-bpe-500-2022-01-10 git lfs pull ``` **Catuion**: You have to run `git lfs pull`. Otherwise, you will be SAD later. The model in this repo is trained using the commit `4c1b3665ee6efb935f4dd93a80ff0e154b13efb6`. You can use ``` git clone https://github.com/k2-fsa/icefall cd icefall git checkout 4c1b3665ee6efb935f4dd93a80ff0e154b13efb6 ``` to download `icefall`. You can find the model information by visiting <https://github.com/k2-fsa/icefall/blob/273e5fb2f3ac2620bafdffe2689b8b3ee10173d3/egs/librispeech/ASR/transducer_stateless/train.py#L198>. In short, the encoder is a Conformer model with 8 heads, 12 encoder layers, 512-dim attention, 2048-dim feedforward; the decoder contains a 1024-dim embedding layer and a Conv1d with kernel size 2. The decoder architecture is modified from [Rnn-Transducer with Stateless Prediction Network](https://ieeexplore.ieee.org/document/9054419). A Conv1d layer is placed right after the input embedding layer. ----- ## Description This repo provides pre-trained transducer Conformer model for the LibriSpeech dataset using [icefall][icefall]. There are no RNNs in the decoder. The decoder is stateless and contains only an embedding layer and a Conv1d. The commands for training are: ``` cd egs/librispeech/ASR/ ./prepare.sh export CUDA_VISIBLE_DEVICES="0,1,2,3" ./transducer_stateless/train.py \ --world-size 4 \ --num-epochs 76 \ --start-epoch 0 \ --exp-dir transducer_stateless/exp-full \ --full-libri 1 \ --max-duration 250 \ --lr-factor 3 ``` The tensorboard training log can be found at <https://tensorboard.dev/experiment/qGdqzHnxS0WJ695OXfZDzA/> The command for decoding is: ``` epoch=71 avg=15 ## greedy search ./transducer_stateless/decode.py \ --epoch $epoch \ --avg $avg \ --exp-dir transducer_stateless/exp-full \ --bpe-model ./data/lang_bpe_500/bpe.model \ --max-duration 100 ## beam search ./transducer_stateless/decode.py \ --epoch $epoch \ --avg $avg \ --exp-dir transducer_stateless/exp-full \ --bpe-model ./data/lang_bpe_500/bpe.model \ --max-duration 100 \ --decoding-method beam_search \ --beam-size 4 ``` You can find the decoding log for the above command in this repo (in the folder `log`). The WERs for the test datasets are | | test-clean | test-other | comment | |---------------------------|------------|------------|------------------------------------------| | greedy search | 2.69 | 6.81 | --epoch 71, --avg 15, --max-duration 100 | | beam search (beam size 4) | 2.68 | 6.72 | --epoch 71, --avg 15, --max-duration 100 | # File description - [log][log], this directory contains the decoding log and decoding results - [test_wavs][test_wavs], this directory contains wave files for testing the pre-trained model - [data][data], this directory contains files generated by [prepare.sh][prepare] - [exp][exp], this directory contains only one file: `preprained.pt` `exp/pretrained.pt` is generated by the following command: ``` ./transducer_stateless/export.py \ --epoch 71 \ --avg 15 \ --bpe-model data/lang_bpe_500/bpe.model \ --exp-dir transducer_stateless/exp-full ``` **HINT**: To use `pre-trained.pt` to compute the WER for test-clean and test-other, just do the following: ``` cp icefall-asr-librispeech-transducer-stateless-bpe-500-2022-01-10/exp/pretrained.pt \ /path/to/icefall/egs/librispeech/ASR/transducer_stateless/exp/epoch-999.pt ``` and pass `--epoch 999 --avg 1` to `transducer_stateless/decode.py`. [icefall]: https://github.com/k2-fsa/icefall [prepare]: https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/prepare.sh [exp]: https://huggingface.co/csukuangfj/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-01-10/tree/main/exp [data]: https://huggingface.co/csukuangfj/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-01-10/tree/main/data [test_wavs]: https://huggingface.co/csukuangfj/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-01-10/tree/main/test_wavs [log]: https://huggingface.co/csukuangfj/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-01-10/tree/main/log [icefall]: https://github.com/k2-fsa/icefall
dmiller1/distilbert-base-uncased-finetuned-emotion
dmiller1
2022-01-18T03:59:30Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.926 - name: F1 type: f1 value: 0.9261144741040841 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2161 - Accuracy: 0.926 - F1: 0.9261 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8436 | 1.0 | 250 | 0.3175 | 0.9105 | 0.9081 | | 0.2492 | 2.0 | 500 | 0.2161 | 0.926 | 0.9261 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.7.1 - Datasets 1.17.0 - Tokenizers 0.10.3
jkang/drawing-artistic-trend-classifier
jkang
2022-01-18T01:19:29Z
3
0
tf-keras
[ "tf-keras", "en", "license:mit", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: en license: mit datasets: - web crawled (coming soon) --- # Simple CNN-based Artist Classifier This repo contains a simple CNN-based Keras model which classifies images into one of 8 artistic trends. See also: `https://huggingface.co/jkang/drawing-artist-classifier` - The purpose of this model was for a quick prototyping - Data has been web-crawled using `https://github.com/YoongiKim/AutoCrawler` - 8 popular artists/painters were chosen: - \[TREND\]: \[ID\] - cubism: 0, - expressionism: 1, - fauvisme: 2, - graffitiar: 3, - impressionism: 4, - popart: 5, - post_impressionism: 6, - surrealism: 7} - About 100 representative paintings per artist considering 8 trends were crawled and manually checked - Dataset will be shared later # How to use ```python import tensorflow as tf from huggingface_hub import from_pretrained_keras model = from_pretrained_keras("jkang/drawing-artistic-trend-classifier") image_file = 'monet.jpg' img = tf.io.read_file(image_file) img = tf.io.decode_jpeg(img, channels=3) last_layer_activation, predictions = model(img[tf.newaxis,...]) ``` # Intended uses & limitations You can use this model freely for predicting artists or trends of a given image. Please keep in mind that this model is not intended for production, but for research and quick prototyping. Web-crawled image data might not have a balanced amount of drawings that sufficiently represent the artists. --- - 2022-01-18 first created by jaekoo kang
huggingtweets/eri_razapii-hayakawagomi-nagiko726
huggingtweets
2022-01-18T01:03:14Z
0
0
null
[ "huggingtweets", "en", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/eri_razapii-hayakawagomi-nagiko726/1642467789468/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1242278691494756352/TfHYNcpA_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1463699400405164034/aRY9jlnO_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1087144695568855041/p7u3lvnC_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Nagisa Ichikawa 🧠 THE GUILD & えりらざぴ | SHE CEO/CCO & ハヤカワ五味</div> <div style="text-align: center; font-size: 14px;">@eri_razapii-hayakawagomi-nagiko726</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Nagisa Ichikawa 🧠 THE GUILD & えりらざぴ | SHE CEO/CCO & ハヤカワ五味. | Data | Nagisa Ichikawa 🧠 THE GUILD | えりらざぴ | SHE CEO/CCO | ハヤカワ五味 | | --- | --- | --- | --- | | Tweets downloaded | 3236 | 3234 | 3250 | | Retweets | 846 | 1768 | 175 | | Short tweets | 1733 | 1185 | 2943 | | Tweets kept | 657 | 281 | 132 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1wxptdvg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @eri_razapii-hayakawagomi-nagiko726's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1g5vtvdk) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1g5vtvdk/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/eri_razapii-hayakawagomi-nagiko726') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/ayatokura-chomado-ikeay
huggingtweets
2022-01-17T23:42:42Z
0
0
null
[ "huggingtweets", "en", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/ayatokura-chomado-ikeay/1642462957980/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1334136134234849280/XgE0O39a_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1480842681182220288/ywam5sXK_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1480168235417083905/Kp8uyXIy_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">池澤あやか / いけあや & ちょまど🎀💻エンジニア兼漫画家 & 職業「戸倉彩」👩‍💻とくあや</div> <div style="text-align: center; font-size: 14px;">@ayatokura-chomado-ikeay</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 池澤あやか / いけあや & ちょまど🎀💻エンジニア兼漫画家 & 職業「戸倉彩」👩‍💻とくあや. | Data | 池澤あやか / いけあや | ちょまど🎀💻エンジニア兼漫画家 | 職業「戸倉彩」👩‍💻とくあや | | --- | --- | --- | --- | | Tweets downloaded | 3250 | 3245 | 3249 | | Retweets | 224 | 717 | 1266 | | Short tweets | 2813 | 867 | 1036 | | Tweets kept | 213 | 1661 | 947 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2rhguk5h/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ayatokura-chomado-ikeay's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/34bxjwb8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/34bxjwb8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ayatokura-chomado-ikeay') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
dshvadskiy/bert-finetuned-ner
dshvadskiy
2022-01-17T17:54:13Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2002", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2002 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2002 type: conll2002 args: es metrics: - name: Precision type: precision value: 0.7394396551724138 - name: Recall type: recall value: 0.7883731617647058 - name: F1 type: f1 value: 0.7631227758007118 - name: Accuracy type: accuracy value: 0.9655744705631151 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2002 dataset. It achieves the following results on the evaluation set: - Loss: 0.1458 - Precision: 0.7394 - Recall: 0.7884 - F1: 0.7631 - Accuracy: 0.9656 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1047 | 1.0 | 1041 | 0.1516 | 0.7173 | 0.7505 | 0.7335 | 0.9602 | | 0.068 | 2.0 | 2082 | 0.1280 | 0.7470 | 0.7888 | 0.7673 | 0.9664 | | 0.0406 | 3.0 | 3123 | 0.1458 | 0.7394 | 0.7884 | 0.7631 | 0.9656 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
abhi1nandy2/EManuals_BERT
abhi1nandy2
2022-01-17T17:12:46Z
14
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "EManuals", "customer support", "QA", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: - English tags: - EManuals - customer support - QA - bert --- Refer to https://aclanthology.org/2021.findings-emnlp.392/ for the paper and https://sites.google.com/view/emanualqa/home for the project website ## Citation Please cite the work if you would like to use it. ``` @inproceedings{nandy-etal-2021-question-answering, title = "Question Answering over Electronic Devices: A New Benchmark Dataset and a Multi-Task Learning based {QA} Framework", author = "Nandy, Abhilash and Sharma, Soumya and Maddhashiya, Shubham and Sachdeva, Kapil and Goyal, Pawan and Ganguly, NIloy", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021", month = nov, year = "2021", address = "Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-emnlp.392", doi = "10.18653/v1/2021.findings-emnlp.392", pages = "4600--4609", abstract = "Answering questions asked from instructional corpora such as E-manuals, recipe books, etc., has been far less studied than open-domain factoid context-based question answering. This can be primarily attributed to the absence of standard benchmark datasets. In this paper, we meticulously create a large amount of data connected with E-manuals and develop a suitable algorithm to exploit it. We collect E-Manual Corpus, a huge corpus of 307,957 E-manuals, and pretrain RoBERTa on this large corpus. We create various benchmark QA datasets which include question answer pairs curated by experts based upon two E-manuals, real user questions from Community Question Answering Forum pertaining to E-manuals etc. We introduce EMQAP (E-Manual Question Answering Pipeline) that answers questions pertaining to electronics devices. Built upon the pretrained RoBERTa, it harbors a supervised multi-task learning framework which efficiently performs the dual tasks of identifying the section in the E-manual where the answer can be found and the exact answer span within that section. For E-Manual annotated question-answer pairs, we show an improvement of about 40{\%} in ROUGE-L F1 scores over most competitive baseline. We perform a detailed ablation study and establish the versatility of EMQAP across different circumstances. The code and datasets are shared at https://github.com/abhi1nandy2/EMNLP-2021-Findings, and the corresponding project website is https://sites.google.com/view/emanualqa/home.", } ```
jiobiala24/wav2vec2-base-checkpoint-6
jiobiala24
2022-01-17T14:22:20Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-base-checkpoint-6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-checkpoint-6 This model is a fine-tuned version of [jiobiala24/wav2vec2-base-checkpoint-5](https://huggingface.co/jiobiala24/wav2vec2-base-checkpoint-5) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.9738 - Wer: 0.3323 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.3435 | 1.82 | 1000 | 0.5637 | 0.3419 | | 0.2599 | 3.65 | 2000 | 0.5804 | 0.3473 | | 0.2043 | 5.47 | 3000 | 0.6481 | 0.3474 | | 0.1651 | 7.3 | 4000 | 0.6937 | 0.3452 | | 0.1376 | 9.12 | 5000 | 0.7221 | 0.3429 | | 0.118 | 10.95 | 6000 | 0.7634 | 0.3441 | | 0.105 | 12.77 | 7000 | 0.7789 | 0.3444 | | 0.0925 | 14.6 | 8000 | 0.8209 | 0.3444 | | 0.0863 | 16.42 | 9000 | 0.8293 | 0.3440 | | 0.0756 | 18.25 | 10000 | 0.8553 | 0.3412 | | 0.0718 | 20.07 | 11000 | 0.9006 | 0.3430 | | 0.0654 | 21.9 | 12000 | 0.9541 | 0.3458 | | 0.0605 | 23.72 | 13000 | 0.9400 | 0.3350 | | 0.0552 | 25.55 | 14000 | 0.9547 | 0.3363 | | 0.0543 | 27.37 | 15000 | 0.9715 | 0.3348 | | 0.0493 | 29.2 | 16000 | 0.9738 | 0.3323 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
nielsr/tapex-large-finetuned-tabfact
nielsr
2022-01-17T13:39:28Z
5
0
transformers
[ "transformers", "pytorch", "bart", "text-classification", "tapex", "en", "dataset:tab_fact", "arxiv:2107.07653", "license:apache-2.0", "autotrain_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: en tags: - tapex license: apache-2.0 datasets: - tab_fact inference: false --- TAPEX-large model fine-tuned on WTQ. This model was proposed in [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou. Original repo can be found [here](https://github.com/microsoft/Table-Pretraining). To load it and run inference, you can do the following: ``` from transformers import BartTokenizer, BartForSequenceClassification import pandas as pd tokenizer = BartTokenizer.from_pretrained("nielsr/tapex-large-finetuned-tabfact") model = BartForSequenceClassification.from_pretrained("nielsr/tapex-large-finetuned-tabfact") # create table data = {'Actors': ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], 'Number of movies': ["87", "53", "69"]} table = pd.DataFrame.from_dict(data) # turn into dict table_dict = {"header": list(table.columns), "rows": [list(row.values) for i,row in table.iterrows()]} # turn into format TAPEX expects # define the linearizer based on this code: https://github.com/microsoft/Table-Pretraining/blob/main/tapex/processor/table_linearize.py linearizer = IndexedRowTableLinearize() linear_table = linearizer.process_table(table_dict) # add sentence sentence = "George Clooney has 69 movies" joint_input = sentence + " " + linear_table # encode encoding = tokenizer(joint_input, return_tensors="pt") # forward pass outputs = model(**encoding) # print prediction logits = outputs.logits print(logits.argmax(-1)) ```
nielsr/tapex-large-finetuned-wtq
nielsr
2022-01-17T09:56:43Z
8
2
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "tapex", "table-question-answering", "en", "dataset:wtq", "arxiv:2107.07653", "license:apache-2.0", "autotrain_compatible", "region:us" ]
table-question-answering
2022-03-02T23:29:05Z
--- language: en tags: - tapex - table-question-answering license: apache-2.0 datasets: - wtq inference: false --- TAPEX-large model fine-tuned on WTQ. This model was proposed in [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou. Original repo can be found [here](https://github.com/microsoft/Table-Pretraining). To load it and run inference, you can do the following: ``` from transformers import BartTokenizer, BartForConditionalGeneration import pandas as pd tokenizer = BartTokenizer.from_pretrained("nielsr/tapex-large-finetuned-wtq") model = BartForConditionalGeneration.from_pretrained("nielsr/tapex-large-finetuned-wtq") # create table data = {'Actors': ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], 'Number of movies': ["87", "53", "69"]} table = pd.DataFrame.from_dict(data) # turn into dict table_dict = {"header": list(table.columns), "rows": [list(row.values) for i,row in table.iterrows()]} # turn into format TAPEX expects # define the linearizer based on this code: https://github.com/microsoft/Table-Pretraining/blob/main/tapex/processor/table_linearize.py linearizer = IndexedRowTableLinearize() linear_table = linearizer.process_table(table_dict) # add question question = "how many movies does George Clooney have?" joint_input = question + " " + linear_table # encode encoding = tokenizer(joint_input, return_tensors="pt") # forward pass outputs = model.generate(**encoding) # decode tokenizer.batch_decode(outputs, skip_special_tokens=True) ```
DoyyingFace/doyying_bert_first_again
DoyyingFace
2022-01-17T09:00:22Z
6
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- tags: - generated_from_keras_callback model-index: - name: tmp_qubhe07 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # tmp_qubhe07 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 1374, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.15.0 - TensorFlow 2.7.0 - Datasets 1.17.0 - Tokenizers 0.10.3
YasinShihab/asr-en-bn-test
YasinShihab
2022-01-17T06:37:54Z
0
1
null
[ "bn", "audio", "automatic-speech-recognition", "speech", "dataset:OpenSLR", "license:cc-by-sa-4.0", "model-index", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: Bengali datasets: - OpenSLR metrics: - wer tags: - bn - audio - automatic-speech-recognition - speech license: cc-by-sa-4.0 model-index: - name: XLSR Wav2Vec2 Bengali by Arijit results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: OpenSLR type: OpenSLR args: ben metrics: - name: Test WER type: wer value: 32.45 --- # Wav2Vec2-Large-XLSR-Bengali Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) Bengali using a subset of 40,000 utterances from [Bengali ASR training data set containing ~196K utterances](https://www.openslr.org/53/). Tested WER using ~4200 held out from training. When using this model, make sure that your speech input is sampled at 16kHz. Train Script can be Found at : train.py Data Prep Notebook : https://colab.research.google.com/drive/1JMlZPU-DrezXjZ2t7sOVqn7CJjZhdK2q?usp=sharing Inference Notebook : https://colab.research.google.com/drive/1uKC2cK9JfUPDTUHbrNdOYqKtNozhxqgZ?usp=sharing ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor processor = Wav2Vec2Processor.from_pretrained("arijitx/wav2vec2-large-xlsr-bengali") model = Wav2Vec2ForCTC.from_pretrained("arijitx/wav2vec2-large-xlsr-bengali") # model = model.to("cuda") resampler = torchaudio.transforms.Resample(TEST_AUDIO_SR, 16_000) def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch) speech = resampler(speech_array).squeeze().numpy() return speech speech_array = speech_file_to_array_fn("test_file.wav") inputs = processor(speech_array, sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values).logits predicted_ids = torch.argmax(logits, dim=-1) preds = processor.batch_decode(predicted_ids)[0] print(preds.replace("[PAD]","")) ``` **Test Result**: WER on ~4200 utterance : 32.45 %
huggingtweets/emsorkun
huggingtweets
2022-01-16T22:19:55Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1477509052074766340/rVamRzsW_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Enver Melih Sorkun</div> <div style="text-align: center; font-size: 14px;">@emsorkun</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Enver Melih Sorkun. | Data | Enver Melih Sorkun | | --- | --- | | Tweets downloaded | 2107 | | Retweets | 618 | | Short tweets | 130 | | Tweets kept | 1359 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/c12hxxur/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @emsorkun's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3prqt8oz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3prqt8oz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/emsorkun') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
husnu/electra-small-turkish-uncased-discriminator
husnu
2022-01-16T19:01:47Z
11
0
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - squad model-index: - name: ft_electra-small-turkish-uncased-discriminator_lr-2e-1_epochs-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> This model is a fine-tuned version of [loodos/electra-small-turkish-uncased-discriminator](https://huggingface.co/loodos/electra-small-turkish-uncased-discriminator) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 5.9506 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.2 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 5.951 | 1.0 | 5818 | 5.9506 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
Shushant/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-ContaminationQAmodel_PubmedBERT
Shushant
2022-01-16T15:54:15Z
55
1
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer model-index: - name: BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-ContaminationQAmodel_PubmedBERT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-ContaminationQAmodel_PubmedBERT This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.7515 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 22 | 3.9518 | | No log | 2.0 | 44 | 3.2703 | | No log | 3.0 | 66 | 2.9308 | | No log | 4.0 | 88 | 2.7806 | | No log | 5.0 | 110 | 2.6926 | | No log | 6.0 | 132 | 2.7043 | | No log | 7.0 | 154 | 2.7113 | | No log | 8.0 | 176 | 2.7236 | | No log | 9.0 | 198 | 2.7559 | | No log | 10.0 | 220 | 2.7515 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
Shushant/biobert-v1.1-biomedicalQuestionAnswering
Shushant
2022-01-16T15:34:49Z
83
5
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer model-index: - name: biobert-v1.1-biomedicalQuestionAnswering results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # biobert-v1.1-biomedicalQuestionAnswering This model is a fine-tuned version of [dmis-lab/biobert-v1.1](https://huggingface.co/dmis-lab/biobert-v1.1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.9009 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 22 | 3.7409 | | No log | 2.0 | 44 | 3.1852 | | No log | 3.0 | 66 | 3.0342 | | No log | 4.0 | 88 | 2.9416 | | No log | 5.0 | 110 | 2.9009 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
ptaszynski/yacis-electra-small-japanese-cyberbullying
ptaszynski
2022-01-16T13:51:28Z
61
6
transformers
[ "transformers", "pytorch", "electra", "text-classification", "ja", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: ja license: cc-by-sa-4.0 datasets: - YACIS corpus - Harmful BBS Japanese comments dataset - Twitter Japanese cyberbullying dataset --- # yacis-electra-small-cyberbullying This is an [ELECTRA](https://github.com/google-research/electra) Small model for the Japanese language finetuned for automatic cyberbullying detection. The original foundation model was originally pretrained on 5.6 billion words [YACIS](https://github.com/ptaszynski/yacis-corpus) blog corpus, and later finetuned on a balanced dataset created by unifying two datasets, namely "Harmful BBS Japanese comments dataset" and "Twitter Japanese cyberbullying dataset". ## Model architecture The original model was pretrained using ELECTRA Small model settings and can be found here: [https://huggingface.co/ptaszynski/yacis-electra-small-japanese](https://huggingface.co/ptaszynski/yacis-electra-small-japanese) ## Licenses The finetuned model with all attached files is licensed under [CC BY-SA 4.0](http://creativecommons.org/licenses/by-sa/4.0/), or Creative Commons Attribution-ShareAlike 4.0 International License. <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-sa/4.0/88x31.png" /></a> ## Citations Please, cite this model using the following citation. ``` @inproceedings{shibata2022yacis-electra, title={日本語大規模ブログコーパスYACISに基づいたELECTRA事前学習済み言語モデルの作成及び性能評価}, % title={Development and performance evaluation of ELECTRA pretrained language model based on YACIS large-scale Japanese blog corpus [in Japanese]}, %% for English citations author={柴田 祥伍 and プタシンスキ ミハウ and エロネン ユーソ and ノヴァコフスキ カロル and 桝井 文人}, % author={Shibata, Shogo and Ptaszynski, Michal and Eronen, Juuso and Nowakowski, Karol and Masui, Fumito}, %% for English citations booktitle={言語処理学会第28回年次大会(NLP2022) (予定)}, % booktitle={Proceedings of The 28th Annual Meeting of The Association for Natural Language Processing (NLP2022)}, %% for English citations pages={1--4}, year={2022} } ``` The two datasets used for finetuning should be cited using the following references. - Harmful BBS Japanese comments dataset: ``` @book{ptaszynski2018automatic, title={Automatic Cyberbullying Detection: Emerging Research and Opportunities: Emerging Research and Opportunities}, author={Ptaszynski, Michal E and Masui, Fumito}, year={2018}, publisher={IGI Global} } ``` ``` @article{松葉達明2009学校非公式サイトにおける有害情報検出, title={学校非公式サイトにおける有害情報検出}, author={松葉達明 and 里見尚宏 and 桝井文人 and 河合敦夫 and 井須尚紀}, journal={電子情報通信学会技術研究報告. NLC, 言語理解とコミュニケーション}, volume={109}, number={142}, pages={93--98}, year={2009}, publisher={一般社団法人電子情報通信学会} } ``` - Twitter Japanese cyberbullying dataset: ``` TBA ``` The pretraining was done using YACIS corpus, which should be cited using at least one of the following references. ``` @inproceedings{ptaszynski2012yacis, title={YACIS: A five-billion-word corpus of Japanese blogs fully annotated with syntactic and affective information}, author={Ptaszynski, Michal and Dybala, Pawel and Rzepka, Rafal and Araki, Kenji and Momouchi, Yoshio}, booktitle={Proceedings of the AISB/IACAP world congress}, pages={40--49}, year={2012}, howpublished = "\url{https://github.com/ptaszynski/yacis-corpus}" } ``` ``` @article{ptaszynski2014automatically, title={Automatically annotating a five-billion-word corpus of Japanese blogs for sentiment and affect analysis}, author={Ptaszynski, Michal and Rzepka, Rafal and Araki, Kenji and Momouchi, Yoshio}, journal={Computer Speech \& Language}, volume={28}, number={1}, pages={38--55}, year={2014}, publisher={Elsevier}, howpublished = "\url{https://github.com/ptaszynski/yacis-corpus}" } ```
jiobiala24/wav2vec2-base-checkpoint-5
jiobiala24
2022-01-16T10:56:18Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-base-checkpoint-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-checkpoint-5 This model is a fine-tuned version of [jiobiala24/wav2vec2-base-checkpoint-4](https://huggingface.co/jiobiala24/wav2vec2-base-checkpoint-4) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.9849 - Wer: 0.3354 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.3947 | 1.96 | 1000 | 0.5749 | 0.3597 | | 0.2856 | 3.93 | 2000 | 0.6212 | 0.3479 | | 0.221 | 5.89 | 3000 | 0.6280 | 0.3502 | | 0.1755 | 7.86 | 4000 | 0.6517 | 0.3526 | | 0.1452 | 9.82 | 5000 | 0.7115 | 0.3481 | | 0.1256 | 11.79 | 6000 | 0.7687 | 0.3509 | | 0.1117 | 13.75 | 7000 | 0.7785 | 0.3490 | | 0.0983 | 15.72 | 8000 | 0.8115 | 0.3442 | | 0.0877 | 17.68 | 9000 | 0.8290 | 0.3429 | | 0.0799 | 19.65 | 10000 | 0.8517 | 0.3412 | | 0.0733 | 21.61 | 11000 | 0.9370 | 0.3448 | | 0.066 | 23.58 | 12000 | 0.9157 | 0.3410 | | 0.0623 | 25.54 | 13000 | 0.9673 | 0.3377 | | 0.0583 | 27.5 | 14000 | 0.9804 | 0.3348 | | 0.0544 | 29.47 | 15000 | 0.9849 | 0.3354 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
porpaul/t5-small-finetuned-xsum
porpaul
2022-01-16T06:59:38Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:xlsum", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xlsum metrics: - rouge model-index: - name: t5-small-finetuned-xsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xlsum type: xlsum args: chinese_traditional metrics: - name: Rouge1 type: rouge value: 0.5217 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 1.2188 - Rouge1: 0.5217 - Rouge2: 0.0464 - Rougel: 0.527 - Rougelsum: 0.5215 - Gen Len: 6.7441 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 1.3831 | 1.0 | 7475 | 1.2188 | 0.5217 | 0.0464 | 0.527 | 0.5215 | 6.7441 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
Sakil/imdbsentdistilbertmodel
Sakil
2022-01-16T06:54:14Z
6
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "text Classification", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: - en tags: - text Classification license: apache-2.0 widget: - text: "I like you. </s></s> I love you." --- * IMDBSentimentDistilBertModel: - I have used IMDB movie review dataset to create custom model by using DistilBertForSequenceClassification. from transformers import DistilBertForSequenceClassification, Trainer, TrainingArguments model = DistilBertForSequenceClassification.from_pretrained('./imdbsentdistilbertmodel')
matthewburke/korean_sentiment
matthewburke
2022-01-16T02:31:37Z
4,148
16
transformers
[ "transformers", "pytorch", "electra", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
``` from transformers import pipeline classifier = pipeline("text-classification", model="matthewburke/korean_sentiment") custom_tweet = "영화 재밌다." preds = classifier(custom_tweet, return_all_scores=True) is_positive = preds[0][1]['score'] > 0.5 ```
haji2438/bertweet-base-SNS_BRANDS_100k
haji2438
2022-01-16T02:23:32Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer model-index: - name: bertweet-base-SNS_BRANDS_100k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertweet-base-SNS_BRANDS_100k This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0483 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0735 | 1.0 | 2928 | 0.0670 | | 0.0574 | 2.0 | 5856 | 0.0529 | | 0.0497 | 3.0 | 8784 | 0.0483 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
husnu/bert-base-turkish-128k-cased-finetuned_lr-2e-05_epochs-3TQUAD2-finetuned_lr-2e-05_epochs-1
husnu
2022-01-15T20:09:15Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - squad model-index: - name: bert-base-turkish-128k-cased-finetuned_lr-2e-05_epochs-3TQUAD2-finetuned_lr-2e-05_epochs-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-turkish-128k-cased-finetuned_lr-2e-05_epochs-3TQUAD2-finetuned_lr-2e-05_epochs-1 This model is a fine-tuned version of [husnu/bert-base-turkish-128k-cased-finetuned_lr-2e-05_epochs-3](https://huggingface.co/husnu/bert-base-turkish-128k-cased-finetuned_lr-2e-05_epochs-3) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.4196 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.5885 | 1.0 | 2245 | 1.4196 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
Ifromspace/GRIEFSOFT-walr
Ifromspace
2022-01-15T13:07:07Z
8
2
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "ru", "4ulan", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- tags: - ru - 4ulan --- Забавное для дискордика))00)) https://discord.gg/HpeadKH Offers [email protected]
Ifromspace/GRIEFSOFT
Ifromspace
2022-01-15T13:06:43Z
9
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "PyTorch", "Transformers", "4ulan", "ru", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- language: - ru tags: - PyTorch - Transformers - 4ulan --- **Fork of https://huggingface.co/sberbank-ai/rugpt3large_based_on_gpt2** Забавное для дискордика))00)) ROADMAP: - Собираю датасетик из книжек про попаданцев. <------------------------- Сейчас тут. - Дообучаю. - Выбрасываю в дискордик. https://discord.gg/HpeadKH
Huertas97/es_roberta_base_bne_leetspeak_ner
Huertas97
2022-01-15T11:55:46Z
4
1
spacy
[ "spacy", "token-classification", "es", "license:apache-2.0", "model-index", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- tags: - spacy - token-classification language: - es license: apache-2.0 widget: - text: "La C0v!d es un 3ng@ño de los G0b!3rno$" example_title: "Word camouflage detection" model-index: - name: es_roberta_base_bne_leetspeak_ner results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.8979055626 - name: NER Recall type: recall value: 0.9393701406 - name: NER F Score type: f_score value: 0.9181699547 --- | Feature | Description | | --- | --- | | **Name** | `es_roberta_base_bne_leetspeak_ner` | | **Version** | `0.0.0` | | **spaCy** | `>=3.2.1,<3.3.0` | | **Default Pipeline** | `transformer`, `ner` | | **Components** | `transformer`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | [PlanTL-GOB-ES/roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) model a transformer-based masked language model for the Spanish language pre-trained with a total of 570GB of clean and deduplicated text compiled from the web crawlings performed by the National Library of Spain (Biblioteca Nacional de España) <br> [LeetSpeak-NER](https://huggingface.co/spaces/Huertas97/LeetSpeak-NER) app where this model is in production for countering information disorders| | **License** | Apache 2.0 | | **Author** | [Álvaro Huertas García](https://www.linkedin.com/in/alvaro-huertas-garcia/) at [AI+DA](http://aida.etsisi.upm.es/) | ### Label Scheme <details> <summary>View label scheme (4 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `INV_CAMO`, `LEETSPEAK`, `MIX`, `PUNCT_CAMO` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 91.82 | | `ENTS_P` | 89.79 | | `ENTS_R` | 93.94 | | `TRANSFORMER_LOSS` | 166484.92 | | `NER_LOSS` | 318457.35 |
khizon/bert-unreliable-news-eng
khizon
2022-01-15T07:04:33Z
8
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
# Unreliable News Classifier (English) Trained, validate, and tested using a subset of the NELA-GT-2018 dataset. The dataset is split such that there was no overlap in of news sources between the three sets. This model used the pre-trained weights of `bert-base-cased` as starting point and was able to achieve 84% accuracy on the test set. For more details: [Github](https://github.com/khizon/CS284_final_project)
Abirate/gpt_3_finetuned_multi_x_science
Abirate
2022-01-15T06:16:57Z
28
2
transformers
[ "transformers", "pytorch", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04Z
--- - Text Generation - PyTorch - Transformers - gpt_neo - text generation --- ## Petrained Model Description: Open Source Version of GPT-3 Generative Pre-trained Transformer 3 (GPT-3) is an autoregressive language model that uses deep learning to produce human-like text. It is the third-generation language prediction model in the GPT-n series (and the successor to GPT-2) created by OpenAI GPT-Neo (125M) is a transformer model designed using EleutherAI's replication of the GPT-3 architecture. GPT-Neo refers to the class of models, while 125M represents the number of parameters of this particular pre-trained model. and first released in this [repository](https://github.com/EleutherAI/gpt-neo). ## Fine-tuned Model Description: GPT-3 fine-tuned Multi-XScience The Open Source version of GPT-3: GPT-Neo(125M) has been fine-tuned on a dataset called "Multi-XScience": [Multi-XScience_Repository](https://github.com/yaolu/Multi-XScience): A Large-scale Dataset for Extreme Multi-document Summarization of Scientific Articles. I first fine-tuned and then deployed it using Google "Material Design" (on Anvil): [Abir Scientific text Generator](https://abir-scientific-text-generator.anvil.app/) By fine-tuning GPT-Neo(Open Source version of GPT-3), on Multi-XScience dataset, the model is now able to generate scientific texts(even better than GPT-J(6B). Try putting the prompt "attention is all" on both my [Abir Scientific text Generator](https://abir-scientific-text-generator.anvil.app/) and on the [ GPT-J Eleuther.ai Demo](https://6b.eleuther.ai/) to understand what I mean. And Here's a demonstration video for this. [Video real-time Demontration](https://www.youtube.com/watch?v=XP8uZfnCYQI)
husnu/xtremedistil-l6-h256-uncased-TQUAD-finetuned_lr-2e-05_epochs-6
husnu
2022-01-15T05:09:21Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: xtremedistil-l6-h256-uncased-TQUAD-finetuned_lr-2e-05_epochs-6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xtremedistil-l6-h256-uncased-TQUAD-finetuned_lr-2e-05_epochs-6 This model is a fine-tuned version of [microsoft/xtremedistil-l6-h256-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h256-uncased) on the Turkish squad dataset. It achieves the following results on the evaluation set: - Loss: 2.8135 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 350 | 3.8389 | | 4.4474 | 2.0 | 700 | 3.3748 | | 3.512 | 3.0 | 1050 | 3.0657 | | 3.512 | 4.0 | 1400 | 2.9219 | | 3.1526 | 5.0 | 1750 | 2.8517 | | 2.9972 | 6.0 | 2100 | 2.8135 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
NbAiLab/roberta_NCC_des_128_decayfrom200
NbAiLab
2022-01-15T00:11:52Z
4
0
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
Just for performing some experiments. Do not use.
huggingtweets/blueeyedgirlnft
huggingtweets
2022-01-14T22:28:35Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/blueeyedgirlnft/1642199309839/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1478488866730524675/y4KIjwym_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ᵍᵐBlueEyedGirl.ᴺᶠᵀ😎🔻🦴</div> <div style="text-align: center; font-size: 14px;">@blueeyedgirlnft</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ᵍᵐBlueEyedGirl.ᴺᶠᵀ😎🔻🦴. | Data | ᵍᵐBlueEyedGirl.ᴺᶠᵀ😎🔻🦴 | | --- | --- | | Tweets downloaded | 588 | | Retweets | 349 | | Short tweets | 154 | | Tweets kept | 85 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/9tllree8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @blueeyedgirlnft's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2q6w52hj) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2q6w52hj/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/blueeyedgirlnft') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
begar/distilgpt2-finetuned
begar
2022-01-14T22:01:35Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3