modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
husnu/xtremedistil-l6-h256-uncased-finetuned_lr-2e-05_epochs-6
husnu
2022-01-14T20:57:15Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: xtremedistil-l6-h256-uncased-finetuned_lr-2e-05_epochs-6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xtremedistil-l6-h256-uncased-finetuned_lr-2e-05_epochs-6 This model is a fine-tuned version of [microsoft/xtremedistil-l6-h256-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h256-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.2578 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.3828 | 1.0 | 1845 | 1.7946 | | 1.5827 | 2.0 | 3690 | 1.4123 | | 1.404 | 3.0 | 5535 | 1.3142 | | 1.346 | 4.0 | 7380 | 1.2819 | | 1.2871 | 5.0 | 9225 | 1.2630 | | 1.2538 | 6.0 | 11070 | 1.2578 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
addy88/eli5-all-mpnet-base-v2
addy88
2022-01-14T13:24:40Z
14
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "transformers", "arxiv:1908.10084", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. Finetune on [ELI5](https://huggingface.co/datasets/eli5) <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('addy88/eli5-all-mpnet-base-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('addy88/eli5-all-mpnet-base-v2') model = AutoModel.from_pretrained('addy88/eli5-all-mpnet-base-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=addy88/eli5-all-mpnet-base-v2) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 14393 with parameters: ``` {'batch_size': 16} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1439, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
vachonni/wav2vec2-large-xls-r-300m-da-colab
vachonni
2022-01-14T12:14:53Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xls-r-300m-da-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-da-colab This model is a fine-tuned version of [Alvenir/wav2vec2-base-da](https://huggingface.co/Alvenir/wav2vec2-base-da) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
anirudh21/xlnet-base-cased-finetuned-rte
anirudh21
2022-01-14T07:04:23Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlnet", "text-classification", "generated_from_trainer", "dataset:glue", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: xlnet-base-cased-finetuned-rte results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: rte metrics: - name: Accuracy type: accuracy value: 0.6895306859205776 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlnet-base-cased-finetuned-rte This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 1.0656 - Accuracy: 0.6895 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 156 | 0.7007 | 0.4874 | | No log | 2.0 | 312 | 0.6289 | 0.6751 | | No log | 3.0 | 468 | 0.7020 | 0.6606 | | 0.6146 | 4.0 | 624 | 1.0573 | 0.6570 | | 0.6146 | 5.0 | 780 | 1.0656 | 0.6895 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
zhichao158/wav2vec2-xls-r-common_voice-tr-ft
zhichao158
2022-01-14T07:03:32Z
5
1
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "common_voice", "generated_from_trainer", "tr", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - tr license: apache-2.0 tags: - automatic-speech-recognition - common_voice - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-xls-r-common_voice-tr-ft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-common_voice-tr-ft This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set: - Loss: 0.3736 - Wer: 0.2930 - Cer: 0.0708 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 96 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.5462 | 13.51 | 500 | 0.4423 | 0.4807 | 0.1188 | | 0.342 | 27.03 | 1000 | 0.3781 | 0.3954 | 0.0967 | | 0.2272 | 40.54 | 1500 | 0.3816 | 0.3595 | 0.0893 | | 0.1805 | 54.05 | 2000 | 0.3943 | 0.3487 | 0.0854 | | 0.1318 | 67.57 | 2500 | 0.3818 | 0.3262 | 0.0801 | | 0.1213 | 81.08 | 3000 | 0.3777 | 0.3113 | 0.0758 | | 0.0639 | 94.59 | 3500 | 0.3788 | 0.2953 | 0.0716 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.8.0 - Datasets 1.17.0 - Tokenizers 0.10.3
LACAI/DialoGPT-large-PFG
LACAI
2022-01-14T05:18:30Z
3
1
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
Base model: [microsoft/DialoGPT-large](https://huggingface.co/microsoft/DialoGPT-large) Fine tuned for dialogue response generation on the [Persuasion For Good Dataset](https://gitlab.com/ucdavisnlp/persuasionforgood) (Wang et al., 2019) Three additional special tokens were added during the fine-tuning process: - <|pad|> padding token - <|user|> speaker control token to prompt user responses - <|system|> speaker control token to prompt system responses The following Dialogues were excluded: - Those with donation amounts outside of the task range of [$0, $2]. - Those where a donation of 0 was made at the end of the task but a non-zero amount was pledged in the dialogue. - Those with more than 800 words. Stats: - Training set: 519 dialogues - Validation set: 58 dialogues - ~20 utterances per dialogue
LACAI/DialoGPT-small-PFG
LACAI
2022-01-14T01:36:36Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
Base model: [microsoft/DialoGPT-small](https://huggingface.co/microsoft/DialoGPT-small) Fine tuned for dialogue response generation on the [Persuasion For Good Dataset](https://gitlab.com/ucdavisnlp/persuasionforgood) (Wang et al., 2019) Three additional special tokens were added during the fine-tuning process: - <|pad|> padding token - <|user|> speaker control token to prompt user responses - <|system|> speaker control token to prompt system responses The following Dialogues were excluded: - Those with donation amounts outside of the task range of [$0, $2]. - Those where a donation of 0 was made at the end of the task but a non-zero amount was pledged in the dialogue. - Those with more than 800 words. Stats: - Training set: 519 dialogues - Validation set: 58 dialogues - ~20 utterances per dialogue
bob80333/speechbrain_ja2en_st_63M_yt600h
bob80333
2022-01-14T00:45:47Z
18
1
speechbrain
[ "speechbrain", "speech-translation", "CTC", "Attention", "Transformer", "pytorch", "automatic-speech-recognition", "en", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: "en" thumbnail: tags: - speech-translation - CTC - Attention - Transformer - pytorch - speechbrain - automatic-speech-recognition metrics: - BLEU --- # Conformer Encoder/Decoder for Speech Translation This model was trained with [SpeechBrain](https://speechbrain.github.io), and is based on the Fisher Callhome recipie. The performance of the model is the following: | Release | CoVoSTv2 JA->EN Test BLEU | Custom Dataset Validation BLEU | Custom Dataset Test BLEU | GPUs | |:-------------:|:--------------:|:--------------:|:--------------:|:--------:| | 01-13-21 | 9.73 | 8.38 | 12.01 | 1xRTX 3090 | This model was trained on subtitled audio downloaded from YouTube, and was not fine-tuned on the CoVoSTv2 training set. When calculating the BLEU score for CoVoSTv2, the utterances were first preprocessed by the same pipeline that preprocessed the original data for the model, which includes removing all punctuation outside of apostrophes, and removing capitalization, similar to the data preprocessing done for the Fisher Callhome dataset in the speechbrain recipe. ## Pipeline description The system is trained with recordings sampled at 16kHz (single channel). The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *transcribe_file* if needed. ## Install SpeechBrain First of all, install SpeechBrain with the following command: ``` pip install speechbrain ``` ### Transcribing your own audio files (Spoken Japanese, to written English) ```python from speechbrain.pretrained import EncoderDecoderASR st_model = EncoderDecoderASR.from_hparams(source="bob80333/speechbrain_ja2en_st_63M_yt600h") st_model.transcribe_file("your_file_here.wav") ``` ### Inference on GPU To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method. ### Limitations: The model is likely to get caught in repetitions. The model is not very good at translation, which is reflected by its low BLEU scores. The outputs of this model are unlikely to be correct, do not rely on it for any serious purpose. This model was trained on data from Youtube, and has inherited whatever biases can be found in Youtube audio/subtitles. The creator of this model doesn't actually know Japanese.
flax-community/pino-bigbird-roberta-base
flax-community
2022-01-13T15:29:26Z
34
2
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "big_bird", "fill-mask", "nl", "dataset:mC4", "dataset:Dutch_news", "arxiv:2007.14062", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: nl datasets: - mC4 - Dutch_news --- # Pino (Dutch BigBird) base model Created by [Dat Nguyen](https://www.linkedin.com/in/dat-nguyen-49a641138/) & [Yeb Havinga](https://www.linkedin.com/in/yeb-havinga-86530825/) during the [Hugging Face community week](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104) (Not finished yet) BigBird, is a sparse-attention based transformer which extends Transformer based models, such as BERT to much longer sequences. Moreover, BigBird comes along with a theoretical understanding of the capabilities of a complete transformer that the sparse model can handle. It is a pretrained model on Dutch language using a masked language modeling (MLM) objective. It was introduced in this [paper](https://arxiv.org/abs/2007.14062) and first released in this [repository](https://github.com/google-research/bigbird). ## Model description BigBird relies on **block sparse attention** instead of normal attention (i.e. BERT's attention) and can handle sequences up to a length of 4096 at a much lower compute cost compared to BERT. It has achieved SOTA on various tasks involving very long sequences such as long documents summarization, question-answering with long contexts. ## How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BigBirdModel # by default its in `block_sparse` mode with num_random_blocks=3, block_size=64 model = BigBirdModel.from_pretrained("flax-community/pino-bigbird-roberta-base") # you can change `attention_type` to full attention like this: model = BigBirdModel.from_pretrained("flax-community/pino-bigbird-roberta-base", attention_type="original_full") # you can change `block_size` & `num_random_blocks` like this: model = BigBirdModel.from_pretrained("flax-community/pino-bigbird-roberta-base", block_size=16, num_random_blocks=2) ``` ## Training Data This model is pre-trained on four publicly available datasets: **mC4**, and scraped **Dutch news** from NRC en Nu.nl. It uses the the fast universal Byte-level BPE (BBPE) in contrast to the sentence piece tokenizer and vocabulary as RoBERTa (which is in turn borrowed from GPT2). ## Training Procedure The data is cleaned as follows: Remove texts containing HTML codes / javascript codes / loremipsum / policies Remove lines without end mark. Remove too short texts, words Remove too long texts, words Remove bad words ## BibTeX entry and citation info ```tex @misc{zaheer2021big, title={Big Bird: Transformers for Longer Sequences}, author={Manzil Zaheer and Guru Guruganesh and Avinava Dubey and Joshua Ainslie and Chris Alberti and Santiago Ontanon and Philip Pham and Anirudh Ravula and Qifan Wang and Li Yang and Amr Ahmed}, year={2021}, eprint={2007.14062}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```
keras-io/deep-dream
keras-io
2022-01-13T14:53:54Z
10
3
tf-keras
[ "tf-keras", "gan", "generative adversarial networks", "deep dream", "license:cc0-1.0", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - gan - generative adversarial networks - deep dream license: - cc0-1.0 --- ## Keras Implementation of Deep Dream 🦚🌌 This repo contains the model and the notebook [for this Deep Dream implementation of Keras](https://keras.io/examples/generative/deep_dream/). Full credits to: [François Chollet](https://twitter.com/fchollet) ![deepdream](https://keras.io/img/examples/generative/deep_dream/deep_dream_17_0.png) ## Background Information "Deep dream" is an image-filtering technique which consists of taking an image classification model, and running gradient ascent over an input image to try to maximize the activations of specific layers (and sometimes, specific units in specific layers) for this input. It produces hallucination-like visuals. It was first introduced by Alexander Mordvintsev from Google in July 2015. Process: - Load the original image. - Define a number of processing scales ("octaves"), from smallest to largest. - Resize the original image to the smallest scale. - For every scale, starting with the smallest (i.e. current one): - Run gradient ascent - Upscale image to the next scale - Re-inject the detail that was lost at upscaling time - Stop when we are back to the original size. To obtain the detail lost during upscaling, we simply take the original image, shrink it down, upscale it, and compare the result to the (resized) original image.
keras-io/deep-deterministic-policy-gradient
keras-io
2022-01-13T14:53:44Z
7
0
tf-keras
[ "tf-keras", "reinforcement learning", "cartpole", "deep deterministic policy gradient", "license:cc0-1.0", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - reinforcement learning - cartpole - deep deterministic policy gradient license: - cc0-1.0 --- ## Keras Implementation of Deep Deterministic Policy Gradient ⏱🤖 This repo contains the model and the notebook [to this Keras example on Deep Deterministic Policy Gradient on pendulum](https://keras.io/examples/rl/ddpg_pendulum/). Full credits to: [Hemant Singh](https://github.com/amifunny) ![pendulum_gif](https://i.imgur.com/eEH8Cz6.gif) ## Background Information Deep Deterministic Policy Gradient (DDPG) is a model-free off-policy algorithm for learning continous actions. It combines ideas from DPG (Deterministic Policy Gradient) and DQN (Deep Q-Network). It uses Experience Replay and slow-learning target networks from DQN, and it is based on DPG, which can operate over continuous action spaces. This tutorial closely follow this paper - Continuous control with deep reinforcement learning We are trying to solve the classic Inverted Pendulum control problem. In this setting, we can take only two actions: swing left or swing right. What make this problem challenging for Q-Learning Algorithms is that actions are continuous instead of being discrete. That is, instead of using two discrete actions like -1 or +1, we have to select from infinite actions ranging from -2 to +2. Just like the Actor-Critic method, we have two networks: Actor - It proposes an action given a state. Critic - It predicts if the action is good (positive value) or bad (negative value) given a state and an action. DDPG uses two more techniques not present in the original DQN: First, it uses two Target networks. Why? Because it add stability to training. In short, we are learning from estimated targets and Target networks are updated slowly, hence keeping our estimated targets stable. Conceptually, this is like saying, "I have an idea of how to play this well, I'm going to try it out for a bit until I find something better", as opposed to saying "I'm going to re-learn how to play this entire game after every move". See this StackOverflow answer. Second, it uses Experience Replay. We store list of tuples (state, action, reward, next_state), and instead of learning only from recent experience, we learn from sampling all of our experience accumulated so far.
keras-io/ppo-cartpole
keras-io
2022-01-13T14:53:36Z
4
0
tf-keras
[ "tf-keras", "reinforcement learning", "proximal policy optimization", "license:cc0-1.0", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - reinforcement learning - proximal policy optimization license: - cc0-1.0 --- ## Keras Implementation of Proximal Policy Optimization on Cartpole Environment 🔨🤖 This repo contains the model and the notebook [to this Keras example on PPO for Cartpole](https://keras.io/examples/rl/ppo_cartpole/). Full credits to: Ilias Chrysovergis ![cartpole_gif](https://i.imgur.com/tKhTEaF.gif) ## Background Information ### CartPole-v0 A pole is attached by an un-actuated joint to a cart, which moves along a frictionless track. The system is controlled by applying a force of +1 or -1 to the cart. The pendulum starts upright, and the goal is to prevent it from falling over. A reward of +1 is provided for every timestep that the pole remains upright. The episode ends when the pole is more than 15 degrees from vertical, or the cart moves more than 2.4 units from the center. After 200 steps the episode ends. Thus, the highest return we can get is equal to 200. ### Proximal Policy Optimization PPO is a policy gradient method and can be used for environments with either discrete or continuous action spaces. It trains a stochastic policy in an on-policy way. Also, it utilizes the actor critic method. The actor maps the observation to an action and the critic gives an expectation of the rewards of the agent for the observation given. Firstly, it collects a set of trajectories for each epoch by sampling from the latest version of the stochastic policy. Then, the rewards-to-go and the advantage estimates are computed in order to update the policy and fit the value function. The policy is updated via a stochastic gradient ascent optimizer, while the value function is fitted via some gradient descent algorithm. This procedure is applied for many epochs until the environment is solved.
keras-io/simple-mnist-convnet
keras-io
2022-01-13T14:52:44Z
2
0
tf-keras
[ "tf-keras", "lstm", "license:cc0-1.0", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - lstm license: - cc0-1.0 --- ## Keras Implementation of Convolutional Neural Networks for MNIST 1️⃣2️⃣3️⃣ This repo contains the model and the notebook [on Simple MNIST convnet](https://keras.io/examples/vision/mnist_convnet/). Full credits to: [François Chollet](https://github.com/fchollet)
mahaamami/distilroberta-base-model-transcript
mahaamami
2022-01-13T13:28:24Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-model-transcript results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-model-transcript This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8922 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.1193 | 1.0 | 5570 | 1.9873 | | 2.0502 | 2.0 | 11140 | 1.9304 | | 1.9718 | 3.0 | 16710 | 1.8922 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
huggingtweets/h_ototake-hirox246-ochyai
huggingtweets
2022-01-13T07:45:50Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/h_ototake-hirox246-ochyai/1642059945521/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/646595746905620480/oeKI14gB_400x400.png&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1072419376668782597/hhmhNVER_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1481142443068198912/NCrXoLUB_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ひろゆき, Hiroyuki Nishimura & 落合陽一 Yoichi OCHIAI & 乙武 洋匡</div> <div style="text-align: center; font-size: 14px;">@h_ototake-hirox246-ochyai</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ひろゆき, Hiroyuki Nishimura & 落合陽一 Yoichi OCHIAI & 乙武 洋匡. | Data | ひろゆき, Hiroyuki Nishimura | 落合陽一 Yoichi OCHIAI | 乙武 洋匡 | | --- | --- | --- | --- | | Tweets downloaded | 3248 | 3240 | 3238 | | Retweets | 281 | 2238 | 1259 | | Short tweets | 1980 | 574 | 1437 | | Tweets kept | 987 | 428 | 542 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3k39l31f/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @h_ototake-hirox246-ochyai's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1d9okxed) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1d9okxed/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/h_ototake-hirox246-ochyai') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ptaszynski/yacis-electra-small-japanese
ptaszynski
2022-01-13T01:43:17Z
28
7
transformers
[ "transformers", "pytorch", "ja", "license:cc-by-sa-4.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: ja license: cc-by-sa-4.0 datasets: - YACIS corpus --- # yacis-electra-small This is [ELECTRA](https://github.com/google-research/electra) Small model for Japanese pretrained on 354 million sentences / 5.6 billion words of [YACIS](https://github.com/ptaszynski/yacis-corpus) blog corpus. The corpus was tokenized for pretraining with [MeCab](https://taku910.github.io/mecab/). Subword tokenization was done with WordPiece. ## Model architecture This model uses ELECTRA Small model settings, 12 layers, 128 dimensions of hidden states, and 12 attention heads. Vocabulary size was set to 32,000 tokens. ## Training data and libraries YACIS-ELECTRA is trained on the whole of [YACIS](https://github.com/ptaszynski/yacis-corpus) blog corpus, which is a Japanese blog corpus containing 5.6 billion words in 354 million sentences. The corpus was originally split into sentences using custom rules, and each sentence was tokenized using [MeCab](https://taku910.github.io/mecab/). Subword tokenization for pretraining was done with WordPiece. We used original [ELECTRA](https://github.com/google-research/electra) repository for pretraining. The pretrainig process took 7 days and 6 hours under the following environment: CPU: Intel Core i9-7920X, RAM: 132 GB, GPU: GeForce GTX 1080 Ti x1. ## Licenses The pretrained model with all attached files is licensed under [CC BY-SA 4.0](http://creativecommons.org/licenses/by-sa/4.0/), or Creative Commons Attribution-ShareAlike 4.0 International License. <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-sa/4.0/88x31.png" /></a> ## Citations Please, cite the model using the following citation. ``` @inproceedings{shibata2022yacis-electra, title={日本語大規模ブログコーパスYACISに基づいたELECTRA事前学習済み言語モデルの作成及び性能評価}, % title={Development and performance evaluation of ELECTRA pretrained language model based on YACIS large-scale Japanese blog corpus [in Japanese]}, %% for English citations author={柴田 祥伍 and プタシンスキ ミハウ and エロネン ユーソ and ノヴァコフスキ カロル and 桝井 文人}, % author={Shibata, Shogo and Ptaszynski, Michal and Eronen, Juuso and Nowakowski, Karol and Masui, Fumito}, %% for English citations booktitle={言語処理学会第28回年次大会(NLP2022) (予定)}, % booktitle={Proceedings of The 28th Annual Meeting of The Association for Natural Language Processing (NLP2022)}, %% for English citations pages={1--4}, year={2022} } ``` The model was build using sentences from YACIS corpus, which should be cited using at least one of the following refrences. ``` @inproceedings{ptaszynski2012yacis, title={YACIS: A five-billion-word corpus of Japanese blogs fully annotated with syntactic and affective information}, author={Ptaszynski, Michal and Dybala, Pawel and Rzepka, Rafal and Araki, Kenji and Momouchi, Yoshio}, booktitle={Proceedings of the AISB/IACAP world congress}, pages={40--49}, year={2012}, howpublished = "\url{https://github.com/ptaszynski/yacis-corpus}" } ``` ``` @article{ptaszynski2014automatically, title={Automatically annotating a five-billion-word corpus of Japanese blogs for sentiment and affect analysis}, author={Ptaszynski, Michal and Rzepka, Rafal and Araki, Kenji and Momouchi, Yoshio}, journal={Computer Speech \& Language}, volume={28}, number={1}, pages={38--55}, year={2014}, publisher={Elsevier}, howpublished = "\url{https://github.com/ptaszynski/yacis-corpus}" } ```
flboehm/youtube-bert
flboehm
2022-01-12T21:29:46Z
10
2
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: youtube-bert results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # youtube-bert This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4771 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.691 | 1.0 | 1077 | 2.5445 | | 2.5768 | 2.0 | 2154 | 2.5226 | | 2.5227 | 3.0 | 3231 | 2.5027 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu113 - Datasets 1.17.0 - Tokenizers 0.10.3
ju-bezdek/slovakbert-conll2003-sk-ner
ju-bezdek
2022-01-12T20:37:34Z
9
1
transformers
[ "transformers", "pytorch", "generated_from_trainer", "dataset:ju-bezdek/conll2003-SK-NER", "license:mit", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - ju-bezdek/conll2003-SK-NER metrics: - precision - recall - f1 - accuracy model-index: - name: outputs results: - task: name: Token Classification type: token-classification dataset: name: ju-bezdek/conll2003-SK-NER type: ju-bezdek/conll2003-SK-NER args: conll2003-SK-NER metrics: - name: Precision type: precision value: 0.8189727994593682 - name: Recall type: recall value: 0.8389581169955002 - name: F1 type: f1 value: 0.8288450029922203 - name: Accuracy type: accuracy value: 0.9526157920337243 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # outputs This model is a fine-tuned version of [gerulata/slovakbert](https://huggingface.co/gerulata/slovakbert) on the [ju-bezdek/conll2003-SK-NER](https://huggingface.co/datasets/ju-bezdek/conll2003-SK-NER) dataset. It achieves the following results on the evaluation (validation) set: - Loss: 0.1752 - Precision: 0.8190 - Recall: 0.8390 - F1: 0.8288 - Accuracy: 0.9526 ## Model description More information needed ## Code example ```python: from transformers import pipeline, AutoModel, AutoTokenizer from spacy import displacy import os model_path="ju-bezdek/slovakbert-conll2003-sk-ner" aggregation_strategy="max" ner_pipeline = pipeline(task='ner', model=model_path, aggregation_strategy=aggregation_strategy) input_sentence= "Ruský premiér Viktor Černomyrdin v piatok povedal, že prezident Boris Jeľcin , ktorý je na dovolenke mimo Moskvy , podporil mierový plán šéfa bezpečnosti Alexandra Lebedu pre Čečensko, uviedla tlačová agentúra Interfax" ner_ents = ner_pipeline(input_sentence) print(ner_ents) ent_group_labels = [ner_pipeline.model.config.id2label[i][2:] for i in ner_pipeline.model.config.id2label if i>0] options = {"ents":ent_group_labels} dicplacy_ents = [{"start":ent["start"], "end":ent["end"], "label":ent["entity_group"]} for ent in ner_ents] displacy.render({"text":input_sentence, "ents":dicplacy_ents}, style="ent", options=options, jupyter=True, manual=True) ``` ### Result: <div> <span class="tex2jax_ignore"><div class="entities" style="line-height: 2.5; direction: ltr"> <mark class="entity" style="background: #ddd; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;"> Ruský <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">MISC</span> </mark> premiér <mark class="entity" style="background: #ddd; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;"> Viktor Černomyrdin <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">PER</span> </mark> v piatok povedal, že prezident <mark class="entity" style="background: #ddd; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;"> Boris Jeľcin, <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">PER</span> </mark> , ktorý je na dovolenke mimo <mark class="entity" style="background: #ff9561; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;"> Moskvy <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">LOC</span> </mark> , podporil mierový plán šéfa bezpečnosti <mark class="entity" style="background: #ddd; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;"> Alexandra Lebedu <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">PER</span> </mark> pre <mark class="entity" style="background: #ff9561; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;"> Čečensko, <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">LOC</span> </mark> uviedla tlačová agentúra <mark class="entity" style="background: #7aecec; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;"> Interfax <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">ORG</span> </mark> </div></span> </div> ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3237 | 1.0 | 878 | 0.2541 | 0.7125 | 0.8059 | 0.7563 | 0.9283 | | 0.1663 | 2.0 | 1756 | 0.2370 | 0.7775 | 0.8090 | 0.7929 | 0.9394 | | 0.1251 | 3.0 | 2634 | 0.2289 | 0.7732 | 0.8029 | 0.7878 | 0.9385 | | 0.0984 | 4.0 | 3512 | 0.2818 | 0.7294 | 0.8189 | 0.7715 | 0.9294 | | 0.0808 | 5.0 | 4390 | 0.3138 | 0.7615 | 0.7900 | 0.7755 | 0.9326 | | 0.0578 | 6.0 | 5268 | 0.3072 | 0.7548 | 0.8222 | 0.7871 | 0.9370 | | 0.0481 | 7.0 | 6146 | 0.2778 | 0.7897 | 0.8156 | 0.8025 | 0.9408 | | 0.0414 | 8.0 | 7024 | 0.3336 | 0.7695 | 0.8201 | 0.7940 | 0.9389 | | 0.0268 | 9.0 | 7902 | 0.3294 | 0.7868 | 0.8140 | 0.8002 | 0.9409 | | 0.0204 | 10.0 | 8780 | 0.3693 | 0.7657 | 0.8239 | 0.7938 | 0.9376 | | 0.016 | 11.0 | 9658 | 0.3816 | 0.7932 | 0.8242 | 0.8084 | 0.9425 | | 0.0108 | 12.0 | 10536 | 0.3607 | 0.7929 | 0.8256 | 0.8089 | 0.9431 | | 0.0078 | 13.0 | 11414 | 0.3980 | 0.7915 | 0.8240 | 0.8074 | 0.9423 | | 0.0062 | 14.0 | 12292 | 0.4096 | 0.7995 | 0.8247 | 0.8119 | 0.9436 | | 0.0035 | 15.0 | 13170 | 0.4177 | 0.8006 | 0.8251 | 0.8127 | 0.9438 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
hogger32/xlmRoberta-for-VietnameseQA
hogger32
2022-01-12T14:43:00Z
27
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "question-answering", "generated_from_trainer", "dataset:squad_v2", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: xlmRoberta-for-VietnameseQA results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmRoberta-for-VietnameseQA This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the UIT-Viquad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.8315 ## Model description Fine-tuned by Honganh Nguyen (FPTU AI Club). ## Intended uses & limitations More information needed ## Training and evaluation data Credits to Viet Nguyen (FPTU AI Club) for the training and evaluation data. Training data: https://github.com/vietnguyen012/QA_viuit/blob/main/train.json Evaluation data: https://github.com/vietnguyen012/QA_viuit/blob/main/trial/trial.json ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.5701 | 1.0 | 2534 | 1.2220 | | 1.2942 | 2.0 | 5068 | 0.9698 | | 1.0693 | 3.0 | 7602 | 0.8315 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
uw-madison/yoso-4096
uw-madison
2022-01-12T13:36:04Z
1,918
0
transformers
[ "transformers", "pytorch", "yoso", "fill-mask", "arxiv:2111.09714", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
# YOSO YOSO model for masked language modeling (MLM) for sequence length 4096. ## About YOSO The YOSO model was proposed in [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh. The abstract from the paper is the following: Transformer-based models are widely used in natural language processing (NLP). Central to the transformer model is the self-attention mechanism, which captures the interactions of token pairs in the input sequences and depends quadratically on the sequence length. Training such models on longer sequences is expensive. In this paper, we show that a Bernoulli sampling attention mechanism based on Locality Sensitive Hashing (LSH), decreases the quadratic complexity of such models to linear. We bypass the quadratic cost by considering self-attention as a sum of individual tokens associated with Bernoulli random variables that can, in principle, be sampled at once by a single hash (although in practice, this number may be a small constant). This leads to an efficient sampling scheme to estimate self-attention which relies on specific modifications of LSH (to enable deployment on GPU architectures). We evaluate our algorithm on the GLUE benchmark with standard 512 sequence length where we see favorable performance relative to a standard pretrained Transformer. On the Long Range Arena (LRA) benchmark, for evaluating performance on long sequences, our method achieves results consistent with softmax self-attention but with sizable speed-ups and memory savings and often outperforms other efficient self-attention methods. Our code is available at this https URL ## Usage ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='uw-madison/yoso-4096') >>> unmasker("Paris is the [MASK] of France.") [{'score': 0.024274500086903572, 'token': 812, 'token_str': ' capital', 'sequence': 'Paris is the capital of France.'}, {'score': 0.022863076999783516, 'token': 3497, 'token_str': ' Republic', 'sequence': 'Paris is the Republic of France.'}, {'score': 0.01383623294532299, 'token': 1515, 'token_str': ' French', 'sequence': 'Paris is the French of France.'}, {'score': 0.013550693169236183, 'token': 2201, 'token_str': ' Paris', 'sequence': 'Paris is the Paris of France.'}, {'score': 0.011591030284762383, 'token': 270, 'token_str': ' President', 'sequence': 'Paris is the President of France.'}] ```
mahaamami/distilroberta-base-finetuned-wikitext2
mahaamami
2022-01-12T13:25:49Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-wikitext2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8833 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.1026 | 1.0 | 5835 | 1.9705 | | 2.0088 | 2.0 | 11670 | 1.9090 | | 1.9766 | 3.0 | 17505 | 1.8833 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
ibraheemmoosa/xlmindic-base-uniscript-soham
ibraheemmoosa
2022-01-12T12:28:05Z
4
0
transformers
[ "transformers", "pytorch", "tf", "jax", "albert", "text-classification", "multilingual", "xlmindic", "nlp", "indoaryan", "indicnlp", "iso15919", "transliteration", "as", "bn", "gu", "hi", "mr", "ne", "or", "pa", "si", "sa", "bpy", "mai", "bh", "gom", "dataset:oscar", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: - as - bn - gu - hi - mr - ne - or - pa - si - sa - bpy - mai - bh - gom license: apache-2.0 datasets: - oscar tags: - multilingual - albert - xlmindic - nlp - indoaryan - indicnlp - iso15919 - transliteration - text-classification widget: - text : 'cīnēra madhyāñcalē āraō ēkaṭi śaharēra bāsindārā ābāra gharabandī haẏē paṛēchēna. āja maṅgalabāra natuna karē lakaḍāuna–saṁkrānta bidhiniṣēdha jāri haōẏāra para gharē āṭakā paṛēchēna tām̐rā. karōnāra ati saṁkrāmaka natuna dharana amikranēra bistāra ṭhēkātē ēmana padakṣēpa niẏēchē kartr̥pakṣa. khabara bārtā saṁsthā ēēphapira.' co2_eq_emissions: emissions: "0.21 in grams of CO2" source: "calculated using this webstie https://mlco2.github.io/impact/#compute" training_type: "fine-tuning" geographical_location: "NA" hardware_used: "P100 for about 1.5 hours" --- # XLMIndic Base Uniscript This model is finetuned from [this model](https://huggingface.co/ibraheemmoosa/xlmindic-base-uniscript) on Soham Bangla News Classification task which is part of the IndicGLUE benchmark. **Before pretraining this model we transliterate the text to [ISO-15919](https://en.wikipedia.org/wiki/ISO_15919) format using the [Aksharamukha](https://pypi.org/project/aksharamukha/) library.** A demo of Aksharamukha library is hosted [here](https://aksharamukha.appspot.com/converter) where you can transliterate your text and use it on our model on the inference widget. ## Model description This model has the same configuration as the [ALBERT Base v2 model](https://huggingface.co/albert-base-v2/). Specifically, this model has the following configuration: - 12 repeating layers - 128 embedding dimension - 768 hidden dimension - 12 attention heads - 11M parameters - 512 sequence length ## Training data This model was fine-tuned on Soham dataset that is part of the IndicGLUE benchmark. ## Transliteration *The unique component of this model is that it takes in ISO-15919 transliterated text.* The motivation behind this is this. When two languages share vocabularies, a machine learning model can exploit that to learn good cross-lingual representations. However if these two languages use different writing scripts it is difficult for a model to make the connection. Thus if if we can write the two languages in a single script then it is easier for the model to learn good cross-lingual representation. For many of the scripts currently in use, there are standard transliteration schemes to convert to the Latin script. In particular, for the Indic scripts the ISO-15919 transliteration scheme is designed to consistently transliterate texts written in different Indic scripts to the Latin script. An example of ISO-15919 transliteration for a piece of **Bangla** text is the following: **Original:** "রবীন্দ্রনাথ ঠাকুর এফআরএএস (৭ মে ১৮৬১ - ৭ আগস্ট ১৯৪১; ২৫ বৈশাখ ১২৬৮ - ২২ শ্রাবণ ১৩৪৮ বঙ্গাব্দ) ছিলেন অগ্রণী বাঙালি কবি, ঔপন্যাসিক, সংগীতস্রষ্টা, নাট্যকার, চিত্রকর, ছোটগল্পকার, প্রাবন্ধিক, অভিনেতা, কণ্ঠশিল্পী ও দার্শনিক।" **Transliterated:** 'rabīndranātha ṭhākura ēphaāraēēsa (7 mē 1861 - 7 āgasṭa 1941; 25 baiśākha 1268 - 22 śrābaṇa 1348 baṅgābda) chilēna agraṇī bāṅāli kabi, aupanyāsika, saṁgītasraṣṭā, nāṭyakāra, citrakara, chōṭagalpakāra, prābandhika, abhinētā, kaṇṭhaśilpī ō dārśanika.' Another example for a piece of **Hindi** text is the following: **Original:** "चूंकि मानव परिवार के सभी सदस्यों के जन्मजात गौरव और समान तथा अविच्छिन्न अधिकार की स्वीकृति ही विश्व-शान्ति, न्याय और स्वतन्त्रता की बुनियाद है" **Transliterated:** "cūṁki mānava parivāra kē sabhī sadasyōṁ kē janmajāta gaurava aura samāna tathā avicchinna adhikāra kī svīkr̥ti hī viśva-śānti, nyāya aura svatantratā kī buniyāda hai" ## Training procedure ### Preprocessing The texts are transliterated to ISO-15919 format using the Aksharamukha library. Then these are tokenized using SentencePiece and a vocabulary size of 50,000. ### Training The model was trained for 8 epochs with a batch size of 16 and a learning rate of *2e-5*. ## Evaluation results See results specific to Soham in the following table. ### IndicGLUE Task | mBERT | XLM-R | IndicBERT-Base | XLMIndic-Base-Uniscript (This Model) | XLMIndic-Base-Multiscript (Ablation Model) -----| ----- | ----- | ------ | ------- | -------- Wikipedia Section Title Prediction | 71.90 | 65.45 | 69.40 | **81.78 ± 0.60** | 77.17 ± 0.76 Article Genre Classification | 88.64 | 96.61 | 97.72 | **98.70 ± 0.29** | 98.30 ± 0.26 Named Entity Recognition (F1-score) | 71.29 | 62.18 | 56.69 | **89.85 ± 1.14** | 83.19 ± 1.58 BBC Hindi News Article Classification | 60.55 | 75.52 | 74.60 | **79.14 ± 0.60** | 77.28 ± 1.50 Soham Bangla News Article Classification | 80.23 | 87.6 | 78.45 | **93.89 ± 0.48** | 93.22 ± 0.49 INLTK Gujarati Headlines Genre Classification | - | - | **92.91** | 90.73 ± 0.75 | 90.41 ± 0.69 INLTK Marathi Headlines Genre Classification | - | - | **94.30** | 92.04 ± 0.47 | 92.21 ± 0.23 IITP Hindi Product Reviews Sentiment Classification | 74.57 | **78.97** | 71.32 | 77.18 ± 0.77 | 76.33 ± 0.84 IITP Hindi Movie Reviews Sentiment Classification | 56.77 | 61.61 | 59.03 | **66.34 ± 0.16** | 65.91 ± 2.20 MIDAS Hindi Discourse Type Classification | 71.20 | **79.94** | 78.44 | 78.54 ± 0.91 | 78.39 ± 0.33 Cloze Style Question Answering (Fill-mask task) | - | - | 37.16 | **41.54** | 38.21 ## Intended uses & limitations This model is pretrained on Indo-Aryan languages. Thus it is intended to be used for downstream tasks on these languages. However, since Dravidian languages such as Malayalam, Telegu, Kannada etc share a lot of vocabulary with the Indo-Aryan languages, this model can potentially be used on those languages too (after transliterating the text to ISO-15919). You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=xlmindic) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use To use this model you will need to first install the [Aksharamukha](https://pypi.org/project/aksharamukha/) library. ```bash pip install aksharamukha ``` Using this library you can transliterate any text wriiten in Indic scripts in the following way: ```python >>> from aksharamukha import transliterate >>> text = "चूंकि मानव परिवार के सभी सदस्यों के जन्मजात गौरव और समान तथा अविच्छिन्न अधिकार की स्वीकृति ही विश्व-शान्ति, न्याय और स्वतन्त्रता की बुनियाद है" >>> transliterated_text = transliterate.process('autodetect', 'ISO', text) >>> transliterated_text "cūṁki mānava parivāra kē sabhī sadasyōṁ kē janmajāta gaurava aura samāna tathā avicchinna adhikāra kī svīkr̥ti hī viśva-śānti, nyāya aura svatantratā kī buniyāda hai" ``` Then you can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> from aksharamukha import transliterate >>> unmasker = pipeline('fill-mask', model='ibraheemmoosa/xlmindic-base-uniscript') >>> text = "রবীন্দ্রনাথ ঠাকুর এফআরএএস (৭ মে ১৮৬১ - ৭ আগস্ট ১৯৪১; ২৫ বৈশাখ ১২৬৮ - ২২ শ্রাবণ ১৩৪৮ বঙ্গাব্দ) ছিলেন অগ্রণী বাঙালি [MASK], ঔপন্যাসিক, সংগীতস্রষ্টা, নাট্যকার, চিত্রকর, ছোটগল্পকার, প্রাবন্ধিক, অভিনেতা, কণ্ঠশিল্পী ও দার্শনিক। ১৯১৩ সালে গীতাঞ্জলি কাব্যগ্রন্থের ইংরেজি অনুবাদের জন্য তিনি এশীয়দের মধ্যে সাহিত্যে প্রথম নোবেল পুরস্কার লাভ করেন।" >>> transliterated_text = transliterate.process('Bengali', 'ISO', text) >>> transliterated_text 'rabīndranātha ṭhākura ēphaāraēēsa (7 mē 1861 - 7 āgasṭa 1941; 25 baiśākha 1268 - 22 śrābaṇa 1348 baṅgābda) chilēna agraṇī bāṅāli [MASK], aupanyāsika, saṁgītasraṣṭā, nāṭyakāra, citrakara, chōṭagalpakāra, prābandhika, abhinētā, kaṇṭhaśilpī ō dārśanika. 1913 sālē gītāñjali kābyagranthēra iṁrēji anubādēra janya tini ēśīẏadēra madhyē sāhityē prathama [MASK] puraskāra lābha karēna.' >>> unmasker(transliterated_text) [{'score': 0.39705055952072144, 'token': 1500, 'token_str': 'abhinētā', 'sequence': 'rabīndranātha ṭhākura ēphaāraēēsa (7 mē 1861 - 7 āgasṭa 1941; 25 baiśākha 1268 - 22 śrābaṇa 1348 baṅgābda) chilēna agraṇī bāṅāli abhinētā, aupanyāsika, saṁgītasraṣṭā, nāṭyakāra, citrakara, chōṭagalpakāra, prābandhika, abhinētā, kaṇṭhaśilpī ō dārśanika. 1913 sālē gītāñjali kābyagranthēra iṁrēji anubādēra janya tini ēśīẏadēra madhyē sāhityē prathama nōbēla puraskāra lābha karēna.'}, {'score': 0.20499080419540405, 'token': 3585, 'token_str': 'kabi', 'sequence': 'rabīndranātha ṭhākura ēphaāraēēsa (7 mē 1861 - 7 āgasṭa 1941; 25 baiśākha 1268 - 22 śrābaṇa 1348 baṅgābda) chilēna agraṇī bāṅāli kabi, aupanyāsika, saṁgītasraṣṭā, nāṭyakāra, citrakara, chōṭagalpakāra, prābandhika, abhinētā, kaṇṭhaśilpī ō dārśanika. 1913 sālē gītāñjali kābyagranthēra iṁrēji anubādēra janya tini ēśīẏadēra madhyē sāhityē prathama nōbēla puraskāra lābha karēna.'}, {'score': 0.1314290314912796, 'token': 15402, 'token_str': 'rājanētā', 'sequence': 'rabīndranātha ṭhākura ēphaāraēēsa (7 mē 1861 - 7 āgasṭa 1941; 25 baiśākha 1268 - 22 śrābaṇa 1348 baṅgābda) chilēna agraṇī bāṅāli rājanētā, aupanyāsika, saṁgītasraṣṭā, nāṭyakāra, citrakara, chōṭagalpakāra, prābandhika, abhinētā, kaṇṭhaśilpī ō dārśanika. 1913 sālē gītāñjali kābyagranthēra iṁrēji anubādēra janya tini ēśīẏadēra madhyē sāhityē prathama nōbēla puraskāra lābha karēna.'}, {'score': 0.060830358415842056, 'token': 3212, 'token_str': 'kalākāra', 'sequence': 'rabīndranātha ṭhākura ēphaāraēēsa (7 mē 1861 - 7 āgasṭa 1941; 25 baiśākha 1268 - 22 śrābaṇa 1348 baṅgābda) chilēna agraṇī bāṅāli kalākāra, aupanyāsika, saṁgītasraṣṭā, nāṭyakāra, citrakara, chōṭagalpakāra, prābandhika, abhinētā, kaṇṭhaśilpī ō dārśanika. 1913 sālē gītāñjali kābyagranthēra iṁrēji anubādēra janya tini ēśīẏadēra madhyē sāhityē prathama nōbēla puraskāra lābha karēna.'}, {'score': 0.035522934049367905, 'token': 11586, 'token_str': 'sāhityakāra', 'sequence': 'rabīndranātha ṭhākura ēphaāraēēsa (7 mē 1861 - 7 āgasṭa 1941; 25 baiśākha 1268 - 22 śrābaṇa 1348 baṅgābda) chilēna agraṇī bāṅāli sāhityakāra, aupanyāsika, saṁgītasraṣṭā, nāṭyakāra, citrakara, chōṭagalpakāra, prābandhika, abhinētā, kaṇṭhaśilpī ō dārśanika. 1913 sālē gītāñjali kābyagranthēra iṁrēji anubādēra janya tini ēśīẏadēra madhyē sāhityē prathama nōbēla puraskāra lābha karēna.'}] ``` ### Limitations and bias Even though we pretrain on a comparatively large multilingual corpus the model may exhibit harmful gender, ethnic and political bias. If you fine-tune this model on a task where these issues are important you should take special care when relying on the model to make decisions. ## Contact Feel free to contact us if you have any ideas or if you want to know more about our models. - Ibraheem Muhammad Moosa ([email protected]) - Mahmud Elahi Akhter ([email protected]) - Ashfia Binte Habib ## BibTeX entry and citation info Coming soon!
huggingtweets/prof_preobr
huggingtweets
2022-01-12T10:06:59Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/853613144832446464/VrGXs0NZ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Проф. Преображенский</div> <div style="text-align: center; font-size: 14px;">@prof_preobr</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Проф. Преображенский. | Data | Проф. Преображенский | | --- | --- | | Tweets downloaded | 3224 | | Retweets | 567 | | Short tweets | 61 | | Tweets kept | 2596 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/12xdr90k/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @prof_preobr's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2vqtap5s) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2vqtap5s/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/prof_preobr') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
gpssohi/distilbart-qgen-3-3
gpssohi
2022-01-12T08:29:26Z
14
3
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "question-generation", "summarization", "en", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- language: en tags: - question-generation - summarization license: apache-2.0 datasets: - squad --- # Introduction This model checkpoint is obtained by first fine-tuning the sshleifer/distilbart-cnn-6-6 summarization checkpoint on the SQuAD dataset. After this, the 6-6 fine-tuned model is distilled down to a 3-3 model which gives us the final checkpoint. [GitHub Link for training scripts.](https://github.com/darth-c0d3r/bart-question-generation) # Usage The input format is as follows: `[answer] <s> [passage]`. The model will predict the question that corresponds to the answer from the passage. # Plot ![Distillation Run](distill_run_21.png) # Dataset The goal of Question Generation is to generate a valid and fluent question according to a given passage and the target answer. Hence, the input to the model will be a passage context and an answer, and the output / target will be the question for the given answer. Question Generation can be used in many scenarios, such as automatic tutoring systems, improving the performance of Question Answering models and enabling chat-bots to lead a conversation. The final dataset is created by taking the union of the following Question Answering Datasets. The dataset must have the following three columns: context, question, answer. ## [SQuAD](https://rajpurkar.github.io/SQuAD-explorer/) Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowd-workers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. We use the SQuAD 1.1 variant which does not have unanswerable questions. So, every question will have a corresponding answer and vice-versa. ### Preprocessing The first step is to remove questions which don't have answers. After that, we split the train set into Train and Eval sets and treat the dev set as the test set. ### Stats **Original Dataset** | Split | Num Docs | Num Contexts | Ques w/ Ans | Ques w/o Ans | Num Unique Ans | | ----- | -------- | ------------ | ----------- | ------------ | -------------- | | Train | 442 | 19035 | 86821 | 43498 | 86821 | | Dev | 35 | 1204 | 5928 | 5945 | 10279 | **After Preprocessing** | Split | Num Rows | Context | Answer | Question | | ----- | -------- | ---------- | ------ | -------- | | Train | 80995 | 653,120,20 | 43,3,1 | 40,10,1 | | Eval | 5826 | 445,123,67 | 28,3,1 | 29,10,3 | | Test | 10297 | 629,129,25 | 29,4,1 | 31,10,3 | The numbers in the columns indicate max, avg, min number of words.
anirudh21/distilbert-base-uncased-finetuned-cola
anirudh21
2022-01-12T07:24:56Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5224154837835395 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8623 - Matthews Correlation: 0.5224 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5278 | 1.0 | 535 | 0.5223 | 0.4007 | | 0.3515 | 2.0 | 1070 | 0.5150 | 0.4993 | | 0.2391 | 3.0 | 1605 | 0.6471 | 0.5103 | | 0.1841 | 4.0 | 2140 | 0.7640 | 0.5153 | | 0.1312 | 5.0 | 2675 | 0.8623 | 0.5224 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
Jinhwan/krelectra-base-mecab
Jinhwan
2022-01-12T03:18:55Z
5
0
transformers
[ "transformers", "pytorch", "electra", "pretraining", "korean", "ko", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04Z
--- language: ko license: apache-2.0 tags: - korean --- # KrELECTRA-base-mecab Korean-based Pre-trained ELECTRA Language Model using Mecab (Morphological Analyzer) ## Usage ### Load model and tokenizer ```python >>> from transformers import AutoTokenizer, AutoModelForPreTraining >>> model = AutoModelForPreTraining.from_pretrained("Jinhwan/krelectra-base-mecab") >>> tokenizer = AutoTokenizer.from_pretrained("Jinhwan/krelectra-base-mecab") ``` ### Tokenizer example ```python >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("Jinhwan/krelectra-base-mecab") >>> tokenizer.tokenize("[CLS] 한국어 ELECTRA를 공유합니다. [SEP]") ['[CLS]', '한국어', 'EL', '##ECT', '##RA', '##를', '공유', '##합', '##니다', '.', '[SEP]'] >>> tokenizer.convert_tokens_to_ids(['[CLS]', '한국어', 'EL', '##ECT', '##RA', '##를', '공유', '##합', '##니다', '.', '[SEP]']) [2, 7214, 24023, 24663, 26580, 3195, 7086, 3746, 5500, 17, 3]
habiba/egy-slang-model
habiba
2022-01-12T01:27:42Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: egy-slang-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # egy-slang-model This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9273 - Wer: 1.0000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.64 | 200 | 2.9735 | 1.0 | | 3.8098 | 3.28 | 400 | 2.9765 | 1.0 | | 3.8098 | 4.91 | 600 | 2.9662 | 1.0 | | 2.9531 | 6.56 | 800 | 2.9708 | 1.0 | | 2.9531 | 8.2 | 1000 | 2.9673 | 1.0 | | 2.9259 | 9.83 | 1200 | 2.9989 | 1.0 | | 2.9259 | 11.47 | 1400 | 2.9889 | 1.0 | | 2.9023 | 13.11 | 1600 | 2.9739 | 1.0 | | 2.9023 | 14.75 | 1800 | 3.0040 | 1.0000 | | 2.8832 | 16.39 | 2000 | 3.0170 | 1.0 | | 2.8832 | 18.03 | 2200 | 2.9963 | 0.9999 | | 2.8691 | 19.67 | 2400 | 2.9273 | 1.0000 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.1 - Datasets 1.13.3 - Tokenizers 0.10.3
ThePixOne/retBERT
ThePixOne
2022-01-11T18:24:24Z
8
1
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
BERT finetuned on wallstreetbets subreddit
avichr/heBERT_NER
avichr
2022-01-11T17:00:46Z
4,122
5
transformers
[ "transformers", "pytorch", "bert", "token-classification", "arxiv:1810.04805", "arxiv:2102.01909", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
# HeBERT: Pre-trained BERT for Polarity Analysis and Emotion Recognition <img align="right" src="https://github.com/avichaychriqui/HeBERT/blob/main/data/heBERT_logo.png?raw=true" width="250"> HeBERT is a Hebrew pretrained language model. It is based on [Google's BERT](https://arxiv.org/abs/1810.04805) architecture and it is BERT-Base config. <br> HeBert was trained on three dataset: 1. A Hebrew version of [OSCAR](https://oscar-corpus.com/): ~9.8 GB of data, including 1 billion words and over 20.8 millions sentences. 2. A Hebrew dump of [Wikipedia](https://dumps.wikimedia.org/): ~650 MB of data, including over 63 millions words and 3.8 millions sentences 3. Emotion User Generated Content (UGC) data that was collected for the purpose of this study (described below). ## Named-entity recognition (NER) The ability of the model to classify named entities in text, such as persons' names, organizations, and locations; tested on a labeled dataset from [Ben Mordecai and M Elhadad (2005)](https://www.cs.bgu.ac.il/~elhadad/nlpproj/naama/), and evaluated with F1-score. ### How to use ``` from transformers import pipeline # how to use? NER = pipeline( "token-classification", model="avichr/heBERT_NER", tokenizer="avichr/heBERT_NER", ) NER('דויד לומד באוניברסיטה העברית שבירושלים') ``` ## Other tasks [**Emotion Recognition Model**](https://huggingface.co/avichr/hebEMO_trust). An online model can be found at [huggingface spaces](https://huggingface.co/spaces/avichr/HebEMO_demo) or as [colab notebook](https://colab.research.google.com/drive/1Jw3gOWjwVMcZslu-ttXoNeD17lms1-ff?usp=sharing) <br> [**Sentiment Analysis**](https://huggingface.co/avichr/heBERT_sentiment_analysis). <br> [**masked-LM model**](https://huggingface.co/avichr/heBERT) (can be fine-tunned to any down-stream task). ## Contact us [Avichay Chriqui](mailto:[email protected]) <br> [Inbal yahav](mailto:[email protected]) <br> The Coller Semitic Languages AI Lab <br> Thank you, תודה, شكرا <br> ## If you used this model please cite us as : Chriqui, A., & Yahav, I. (2021). HeBERT & HebEMO: a Hebrew BERT Model and a Tool for Polarity Analysis and Emotion Recognition. arXiv preprint arXiv:2102.01909. ``` @article{chriqui2021hebert, title={HeBERT \& HebEMO: a Hebrew BERT Model and a Tool for Polarity Analysis and Emotion Recognition}, author={Chriqui, Avihay and Yahav, Inbal}, journal={arXiv preprint arXiv:2102.01909}, year={2021} } ``` [git](https://github.com/avichaychriqui/HeBERT)
rbhushan/distilgpt2-finetuned-wikitext2
rbhushan
2022-01-11T16:55:00Z
13
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.2872 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 73 | 5.4169 | | No log | 2.0 | 146 | 5.3145 | | No log | 3.0 | 219 | 5.2872 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
alaggung/bart-r3f
alaggung
2022-01-11T16:18:32Z
123
6
transformers
[ "transformers", "pytorch", "tf", "bart", "text2text-generation", "summarization", "ko", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- language: - ko tags: - summarization widget: - text: "[BOS]밥 ㄱ?[SEP]고고고고 뭐 먹을까?[SEP]어제 김치찌개 먹어서 한식말고 딴 거[SEP]그럼 돈까스 어때?[SEP]오 좋다 1시 학관 앞으로 오셈[SEP]ㅇㅋ[EOS]" inference: parameters: max_length: 64 top_k: 5 --- # BART R3F [2021 훈민정음 한국어 음성•자연어 인공지능 경진대회] 대화요약 부문 알라꿍달라꿍 팀의 대화요약 학습 샘플 모델을 공유합니다. [bart-pretrained](https://huggingface.co/alaggung/bart-pretrained) 모델에 [2021-dialogue-summary-competition](https://github.com/cosmoquester/2021-dialogue-summary-competition) 레포지토리의 R3F를 적용해 대화요약 Task를 학습한 모델입니다. 데이터는 [AIHub 한국어 대화요약](https://aihub.or.kr/aidata/30714) 데이터를 사용하였습니다.
alaggung/bart-pretrained
alaggung
2022-01-11T16:07:39Z
4
1
transformers
[ "transformers", "pytorch", "tf", "bart", "text2text-generation", "ko", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: - ko widget: - text: "[BOS]뭐 해?[SEP][MASK]하다가 이제 [MASK]려고[EOS]" inference: parameters: max_length: 64 --- # BART Pretrained [2021 훈민정음 한국어 음성•자연어 인공지능 경진대회] 대화요약 부문 알라꿍달라꿍 팀의 대화요약 학습 샘플 모델을 공유합니다. [2021-dialogue-summary-competition](https://github.com/cosmoquester/2021-dialogue-summary-competition) 레포지토리의 BART Pretrain 단계를 학습한 모델입니다. 데이터는 [AIHub 한국어 대화요약](https://aihub.or.kr/aidata/30714) 데이터를 사용하였습니다.
Humair/all-mpnet-base-v2-finetuned-v2
Humair
2022-01-11T12:26:56Z
13
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:04Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # Humair/all-mpnet-base-v2-finetuned-v2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Humair/all-mpnet-base-v2-finetuned-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Humair/all-mpnet-base-v2-finetuned-v2') model = AutoModel.from_pretrained('Humair/all-mpnet-base-v2-finetuned-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Humair/all-mpnet-base-v2-finetuned-v2) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 1 with parameters: ``` {'batch_size': 128, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 2, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 32, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
flax-community/t5-base-dutch
flax-community
2022-01-11T12:10:22Z
32
4
transformers
[ "transformers", "pytorch", "tf", "jax", "tensorboard", "t5", "text2text-generation", "seq2seq", "lm-head", "dataset:yhavinga/mc4_nl_cleaned", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: - dutch tags: - seq2seq - lm-head datasets: - yhavinga/mc4_nl_cleaned license: apache-2.0 inference: false --- # t5-base-dutch Created by [Yeb Havinga](https://www.linkedin.com/in/yeb-havinga-86530825/) & [Dat Nguyen](https://www.linkedin.com/in/dat-nguyen-49a641138/) during the [Hugging Face community week](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by [HuggingFace](https://huggingface.co/) and TPU usage sponsored by Google, for the project [Pre-train T5 from scratch in Dutch](https://discuss.huggingface.co/t/pretrain-t5-from-scratch-in-dutch/8109). See also the fine-tuned [t5-base-dutch-demo](https://huggingface.co/flax-community/t5-base-dutch-demo) model, and the demo application **[Netherformer 📰](https://huggingface.co/spaces/flax-community/netherformer)**, that are based on this model. **5 jan 2022: Model updated. Evaluation accuracy increased from 0.64 to 0.70.** **11 jan 2022: See also [yhavinga/t5-v1.1-base-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-cased) with eval acc 0.78** ## Model * Configuration based on `google/t5-base` * 12 layers, 12 heads * Dropout set to 0.1 ## Dataset This model was trained on the `full` configuration of [cleaned Dutch mC4](https://huggingface.co/datasets/yhavinga/mc4_nl_cleaned), which is the original mC4, except * Documents that contained words from a selection of the Dutch and English [List of Dirty Naught Obscene and Otherwise Bad Words](https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words) are removed * Sentences with less than 3 words are removed * Sentences with a word of more than 1000 characters are removed * Documents with less than 5 sentences are removed * Documents with "javascript", "lorum ipsum", "terms of use", "privacy policy", "cookie policy", "uses cookies", "use of cookies", "use cookies", "elementen ontbreken", "deze printversie" are removed. ## Tokenization A SentencePiece tokenizer was trained from scratch on this dataset. The total tokens of the `full` configuration is 34B ## Training The model was trained on the `full` mc4_nl_cleaned dataset configuration for 1 epoch, consisting of 34B tokens, for 528 482 steps with a batch size of 128 and took 57 hours. A triangle learning rate schedule was used, with peak learning rate 0.005. ## Evaluation * Loss: 1.38 * Accuracy: 0.70
huang0624/Taiwan_House_Prediction
huang0624
2022-01-11T11:12:21Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
Hi, this is Taiwan_House_Prediction.
moumeneb1/testing
moumeneb1
2022-01-11T09:16:45Z
5
0
speechbrain
[ "speechbrain", "wav2vec2", "CTC", "Attention", "pytorch", "Transformer", "automatic-speech-recognition", "rw", "dataset:commonvoice", "arxiv:2106.04624", "license:apache-2.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: "rw" thumbnail: pipeline_tag: automatic-speech-recognition tags: - CTC - Attention - pytorch - speechbrain - Transformer license: "apache-2.0" datasets: - commonvoice metrics: - wer - cer --- <iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe> <br/><br/> # wav2vec 2.0 with CTC/Attention trained on CommonVoice Kinyarwanda (No LM) This repository provides all the necessary tools to perform automatic speech recognition from an end-to-end system pretrained on CommonVoice (Kinyarwanda Language) within SpeechBrain. For a better experience, we encourage you to learn more about [SpeechBrain](https://speechbrain.github.io). The performance of the model is the following: | Release | Test WER | GPUs | |:--------------:|:--------------:| :--------:| | 03-06-21 | 18.91 | 2xV100 32GB | ## Pipeline description This ASR system is composed of 2 different but linked blocks: - Tokenizer (unigram) that transforms words into subword units and trained with the train transcriptions (train.tsv) of CommonVoice (RW). - Acoustic model (wav2vec2.0 + CTC/Attention). A pretrained wav2vec 2.0 model ([wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53)) is combined with two DNN layers and finetuned on CommonVoice En. The obtained final acoustic representation is given to the CTC and attention decoders. The system is trained with recordings sampled at 16kHz (single channel). The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *transcribe_file* if needed. ## Install SpeechBrain First of all, please install tranformers and SpeechBrain with the following command: ``` pip install speechbrain transformers ``` Please notice that we encourage you to read our tutorials and learn more about [SpeechBrain](https://speechbrain.github.io). ### Transcribing your own audio files (in Kinyarwanda) ```python from speechbrain.pretrained import EncoderDecoderASR asr_model = EncoderDecoderASR.from_hparams(source="speechbrain/asr-wav2vec2-commonvoice-rw", savedir="pretrained_models/asr-wav2vec2-commonvoice-rw") asr_model.transcribe_file("speechbrain/asr-wav2vec2-commonvoice-rw/example.mp3") ``` ### Inference on GPU To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method. ## Parallel Inference on a Batch Please, [see this Colab notebook](https://colab.research.google.com/drive/1hX5ZI9S4jHIjahFCZnhwwQmFoGAi3tmu?usp=sharing) to figure out how to transcribe in parallel a batch of input sentences using a pre-trained model. ### Training The model was trained with SpeechBrain. To train it from scratch follow these steps: 1. Clone SpeechBrain: ```bash git clone https://github.com/speechbrain/speechbrain/ ``` 2. Install it: ```bash cd speechbrain pip install -r requirements.txt pip install -e . ``` 3. Run Training: ```bash cd recipes/CommonVoice/ASR/seq2seq python train_with_wav2vec.py hparams/train_rw_with_wav2vec.yaml --data_folder=your_data_folder ``` You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1tjz6IZmVRkuRE97E7h1cXFoGTer7pT73?usp=sharing). ### Limitations The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets. # **About SpeechBrain** - Website: https://speechbrain.github.io/ - Code: https://github.com/speechbrain/speechbrain/ - HuggingFace: https://huggingface.co/speechbrain/ # **Citing SpeechBrain** Please, cite SpeechBrain if you use it for your research or business. ```bibtex @misc{speechbrain, title={{SpeechBrain}: A General-Purpose Speech Toolkit}, author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio}, year={2021}, eprint={2106.04624}, archivePrefix={arXiv}, primaryClass={eess.AS}, note={arXiv:2106.04624} } ```
kleinay/nominalization-candidate-classifier
kleinay
2022-01-11T04:12:39Z
1,135
2
transformers
[ "transformers", "pytorch", "bert", "token-classification", "nominalizations", "en", "dataset:kleinay/qanom", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - en tags: - pytorch - token-classification - nominalizations datasets: - kleinay/qanom --- # Nominalization Detector This model identifies "predicative nominalizations", that is, nominalizations that carry an eventive (or "verbal") meaning in context. It is a `bert-base-cased` pretrained model, fine-tuned for token classification on top of the "nominalization detection" task as defined and annotated by the QANom project [(Klein et. al., COLING 2020)](https://www.aclweb.org/anthology/2020.coling-main.274/). ## Task Description The model is trained as a binary classifier, classifying candidate nominalizations. The candidates are extracted using a POS tagger (filtering common nouns) and additionally lexical resources (e.g. WordNet and CatVar), filtering nouns that have (at least one) derivationally-related verb. In the QANom annotation project, these candidates are given to annotators to decide whether they carry a "verbal" meaning in the context of the sentence. The current model reproduces this binary classification. ## Demo Check out our cool [demo](https://huggingface.co/spaces/kleinay/nominalization-detection-demo)! ## Usage The candidate extraction algorithm is implemented inside the `qanom` package - see the README in the [QANom github repo](https://github.com/kleinay/QANom) for full documentation. The `qanom` package is also available via `pip install qanom`. For ease of use, we encapsulated the full nominalization detection pipeline (i.e. candidate extraction + predicate classification) in the `qanom.nominalization_detector.NominalizationDetector` class, which internally utilize this `nominalization-candidate-classifier`: ```python from qanom.nominalization_detector import NominalizationDetector detector = NominalizationDetector() raw_sentences = ["The construction of the officer 's building finished right after the beginning of the destruction of the previous construction ."] print(detector(raw_sentences, return_all_candidates=True)) print(detector(raw_sentences, threshold=0.75, return_probability=False)) ``` Outputs: ```json [[{'predicate_idx': 1, 'predicate': 'construction', 'predicate_detector_prediction': True, 'predicate_detector_probability': 0.7626778483390808, 'verb_form': 'construct'}, {'predicate_idx': 4, 'predicate': 'officer', 'predicate_detector_prediction': False, 'predicate_detector_probability': 0.19832570850849152, 'verb_form': 'officer'}, {'predicate_idx': 6, 'predicate': 'building', 'predicate_detector_prediction': True, 'predicate_detector_probability': 0.5794129371643066, 'verb_form': 'build'}, {'predicate_idx': 11, 'predicate': 'beginning', 'predicate_detector_prediction': True, 'predicate_detector_probability': 0.8937646150588989, 'verb_form': 'begin'}, {'predicate_idx': 14, 'predicate': 'destruction', 'predicate_detector_prediction': True, 'predicate_detector_probability': 0.8501205444335938, 'verb_form': 'destruct'}, {'predicate_idx': 18, 'predicate': 'construction', 'predicate_detector_prediction': True, 'predicate_detector_probability': 0.7022264003753662, 'verb_form': 'construct'}]] ``` ```json [[{'predicate_idx': 1, 'predicate': 'construction', 'verb_form': 'construct'}, {'predicate_idx': 11, 'predicate': 'beginning', 'verb_form': 'begin'}, {'predicate_idx': 14, 'predicate': 'destruction', 'verb_form': 'destruct'}]] ``` ## Cite ```latex @inproceedings{klein2020qanom, title={QANom: Question-Answer driven SRL for Nominalizations}, author={Klein, Ayal and Mamou, Jonathan and Pyatkin, Valentina and Stepanov, Daniela and He, Hangfeng and Roth, Dan and Zettlemoyer, Luke and Dagan, Ido}, booktitle={Proceedings of the 28th International Conference on Computational Linguistics}, pages={3069--3083}, year={2020} } ```
0x7o/keyt5-base
0x7o
2022-01-11T03:52:53Z
28
1
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "ru", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- language: - ru license: mit inference: parameters: top_p: 0.9 widget: - text: "В России может появиться новый штамм коронавируса «омикрон», что может привести к подъему заболеваемости в январе, заявил доцент кафедры инфекционных болезней РУДН Сергей Вознесенский. Он отметил, что вариант «дельта» вызывал больше летальных случаев, чем омикрон, именно на фоне «дельты» была максимальная летальность." example_title: "Коронавирус" - text: "Начальника штаба обороны Великобритании адмирала Тони Радакина заставили имитировать активность во время визита в ангар с тяжелым вооружением, сообщила британская пресса. В приказе говорилось, что военнослужащим было велено подбегать к автомобилям, открывать все люки, затворы, листать руководство по эксплуатации и осматриваться машины, будто проводится функциональный тест для обеспечения правильной работы оборудования." example_title: "Британия" - text: "Для воспроизведения музыки достаточно нажимать на кнопки клавиатуры. Каждой клавише соответствует определенный семпл — есть маракасы и футуристичные звуки, напоминающие выстрелы бластеров. Из всего многообразия можно формировать собственные паттерны и наблюдать за визуализацией с анимированными геометрическими фигурами. Что интересно, нажатием клавиши пробел можно полностью переменить оформление, цвета на экране и звучание семплов." example_title: "Технологии" --- ## keyT5. Base (small) version [![0x7o - text2keywords](https://img.shields.io/static/v1?label=0x7o&message=text2keywords&color=blue&logo=github)](https://github.com/0x7o/text2keywords "Go to GitHub repo") [![stars - text2keywords](https://img.shields.io/github/stars/0x7o/text2keywords?style=social)](https://github.com/0x7o/text2keywords) [![forks - text2keywords](https://img.shields.io/github/forks/0x7o/text2keywords?style=social)](https://github.com/0x7o/text2keywords) Supported languages: ru Github - [text2keywords](https://github.com/0x7o/text2keywords) [Pretraining Large version](https://huggingface.co/0x7194633/keyt5-large) | [Pretraining Base version](https://huggingface.co/0x7194633/keyt5-base) # Usage Example usage (the code returns a list with keywords. duplicates are possible): [![Try Model Training In Colab!](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/0x7o/text2keywords/blob/main/example/keyT5_use.ipynb) ``` pip install transformers sentencepiece ``` ```python from itertools import groupby import torch from transformers import T5ForConditionalGeneration, T5Tokenizer model_name = "0x7194633/keyt5-large" # or 0x7194633/keyt5-base tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) def generate(text, **kwargs): inputs = tokenizer(text, return_tensors='pt') with torch.no_grad(): hypotheses = model.generate(**inputs, num_beams=5, **kwargs) s = tokenizer.decode(hypotheses[0], skip_special_tokens=True) s = s.replace('; ', ';').replace(' ;', ';').lower().split(';')[:-1] s = [el for el, _ in groupby(s)] return s article = """Reuters сообщил об отмене 3,6 тыс. авиарейсов из-за «омикрона» и погоды Наибольшее число отмен авиарейсов 2 января пришлось на американские авиакомпании SkyWest и Southwest, у каждой — более 400 отмененных рейсов. При этом среди отмененных 2 января авиарейсов — более 2,1 тыс. рейсов в США. Также свыше 6400 рейсов были задержаны.""" print(generate(article, top_p=1.0, max_length=64)) # ['авиаперевозки', 'отмена авиарейсов', 'отмена рейсов', 'отмена авиарейсов', 'отмена рейсов', 'отмена авиарейсов'] ``` # Training Go to the training notebook and learn more about it: [![Try Model Training In Colab!](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/0x7o/text2keywords/blob/main/example/keyT5_train.ipynb)
ai-forever/ruclip-vit-base-patch16-384
ai-forever
2022-01-11T02:29:57Z
11
1
transformers
[ "transformers", "pytorch", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
# ruclip-vit-base-patch16-384 **RuCLIP** (**Ru**ssian **C**ontrastive **L**anguage–**I**mage **P**retraining) is a multimodal model for obtaining images and text similarities and rearranging captions and pictures. RuCLIP builds on a large body of work on zero-shot transfer, computer vision, natural language processing and multimodal learning. Model was trained by [Sber AI](https://github.com/sberbank-ai) and [SberDevices](https://sberdevices.ru/) teams. * Task: `text ranking`; `image ranking`; `zero-shot image classification`; * Type: `encoder` * Num Parameters: `150M` * Training Data Volume: `240 million text-image pairs` * Language: `Russian` * Context Length: `77` * Transformer Layers: `12` * Transformer Width: `512` * Transformer Heads: `8` * Image Size: `384` * Vision Layers: `12` * Vision Width: `768` * Vision Patch Size: `16` ## Usage [Github](https://github.com/sberbank-ai/ru-clip) ``` pip install ruclip ``` ```python clip, processor = ruclip.load("ruclip-vit-base-patch16-384", device="cuda") ``` ## Performance We have evaluated the performance on the following datasets: | Dataset | Metric Name | Metric Result | |:--------------|:---------------|:--------------------| | Food101 | acc | 0.689 | | CIFAR10 | acc | 0.845 | | CIFAR100 | acc | 0.569 | | Birdsnap | acc | 0.195 | | SUN397 | acc | 0.521 | | Stanford Cars | acc | 0.626 | | DTD | acc | 0.421 | | MNIST | acc | 0.478 | | STL10 | acc | 0.964 | | PCam | acc | 0.501 | | CLEVR | acc | 0.132 | | Rendered SST2 | acc | 0.525 | | ImageNet | acc | 0.482 | | FGVC Aircraft | mean-per-class | 0.046 | | Oxford Pets | mean-per-class | 0.635 | | Caltech101 | mean-per-class | 0.835 | | Flowers102 | mean-per-class | 0.452 | | HatefulMemes | roc-auc | 0.543 | # Authors + Alex Shonenkov: [Github](https://github.com/shonenkov), [Kaggle GM](https://www.kaggle.com/shonenkov) + Daniil Chesakov: [Github](https://github.com/Danyache) + Denis Dimitrov: [Github](https://github.com/denndimitrov) + Igor Pavlov: [Github](https://github.com/boomb0om)
ai-forever/rudalle-Malevich
ai-forever
2022-01-11T02:20:10Z
0
34
null
[ "pytorch", "PyTorch", "Transformers", "text-to-image", "ru", "en", "region:us" ]
text-to-image
2022-03-02T23:29:05Z
--- language: - ru - en pipeline_tag: text-to-image tags: - PyTorch - Transformers thumbnail: "https://github.com/sberbank-ai/ru-dalle" --- # ruDALL-E Malevich (XL) ## Generate images from text <img style="text-align:center; display:block;" src="https://huggingface.co/sberbank-ai/rudalle-Malevich/resolve/main/dalle-malevich.jpg" width="200"> "Avocado painting in the style of Malevich" * [Technical Report (Russian)](https://habr.com/ru/company/sberbank/blog/586926) * [Demo](https://rudalle.ru) Model was trained by [Sber AI](https://github.com/sberbank-ai) and [SberDevices](https://sberdevices.ru/) teams. * Task: `text2image generation` * Type: `encoder-decoder` * Num Parameters: `1.3 B` * Training Data Volume: `120 million text-image pairs` ### Model Description This is a 1.3 billion parameter model for Russian, recreating OpenAI's [DALL·E](https://openai.com/blog/dall-e/), a model capable of generating arbitrary images from a text prompt that describes the desired result. The generation pipeline includes ruDALL-E, ruCLIP for ranging results, and a superresolution model. You can use automatic translation into Russian to create desired images with ruDALL-E. ### How to Use The easiest way to get familiar with the code and the models is to follow the inference notebook we provide in our [github repo](https://github.com/sberbank-ai/ru-dalle). ## Motivation One might say that “investigate, master, and train” is our engineering motto. Well, we caught the scent, and today we can say that we created from scratch a complete pipeline for generating images from descriptive textual input written in Russian. Teams at SberAI, SberDevices, Samara University, AIRI and SberCloud all actively contributed. We trained two versions of the model, each a different size, and named them after Russia’s great abstractionists: Vasily Kandinsky and Kazimir Malevich. * ruDALL-E Kandinsky (XXL), with 12 billion parameters * ruDALL-E Malevich (XL), having 1.3 billion parameters Some of our models are already freely available: * ruDALL-E Malevich (XL) [[GitHub](https://github.com/sberbank-ai/ru-dalle), [HuggingFace](https://huggingface.co/sberbank-ai/rudalle-Malevich)] * Sber VQ-GAN [[GitHub](https://github.com/sberbank-ai/sber-vq-gan), [HuggingFace](https://huggingface.co/sberbank-ai/Sber-VQGAN)] * ruCLIP Small [[GitHub](https://github.com/sberbank-ai/ru-clip), [HuggingFace](https://huggingface.co/sberbank-ai/ru-clip)] * Super Resolution (Real ESRGAN) [[GitHub](https://github.com/sberbank-ai/Real-ESRGAN), [HuggingFace](https://huggingface.co/sberbank-ai/Real-ESRGAN)] The latter two models are included in the pipeline for generating images from text (as you’ll see later on). The models ruDALL-E Malevich (XL), ruDALL-E Kandinsky (XXL), ruCLIP Small, ruCLIP Large, and Super Resolution (Real ESRGAN) will also soon be available on [DataHub](https://mlspace.aicloud.sbercloud.ru/mlspace/datahub). Training the ruDALL-E neural networks on the Christofari cluster has become the largest calculation task in Russia: * ruDALL-E Kandinsky (XXL) was trained for 37 days on the 512 GPU TESLA V100, and then also for 11 more days on the 128 GPU TESLA V100, for a total of 20,352 GPU-days; * ruDALL-E Malevich (XL) was trained for 8 days on the 128 GPU TESLA V100, and then also for 15 more days on the 192 GPU TESLA V100, for a total of 3,904 GPU-days. Accordingly, training for both models totalled 24,256 GPU-days. ## Model capabilities The long term goal of this research is the creation of multimodal neural networks. They will be able to pull on concepts from a variety of mediums---from text and visuals at first---in order to better understand the world as a whole. Image generation might seem like the wrong rabbit hole in our century of big data and search engines. But it actually addresses two important requirements that search is currently unable to cope with: 1. Being able to describe in writing exactly what you’re looking for and getting a completely new image created personally for you. 2. Being able to create at any time as many license-free illustrations as you could possibly want "Grand Canyon" <img style="text-align:center; display:block;" src="https://habrastorage.org/webt/kb/sv/ih/kbsvihfsmz3fx5mvitii0seimi0.jpeg" width="800"> "Salvador Dali picture" <img style="text-align:center; display:block;" src="https://habrastorage.org/webt/r8/nl/oi/r8nloiq-l8j2ckg6pzh2pufsklm.jpeg" width="800"> "An eagle sits in a tree, looking to the side" <img style="text-align:center; display:block;" src="https://habrastorage.org/r/w1560/getpro/habr/upload_files/10a/19c/fa2/10a19cfa2cc84aa7c8b99820890e908d.png" width="800"> "Elegant living room with green stuffed chairs" <img style="text-align:center; display:block;" src="https://habrastorage.org/r/w1560/getpro/habr/upload_files/6fe/e69/d7c/6fee69d7c392239d587725799e0e41e4.png" width="800"> “Raccoon with a gun” <img style="text-align:center; display:block;" src="https://habrastorage.org/r/w1560/getpro/habr/upload_files/3bb/1b8/7c4/3bb1b87c45bf9305cd342ae9900ac245.png" width="800"> “Pretty lake at sunset” <img style="text-align:center; display:block;" src="https://habrastorage.org/r/w1560/getpro/habr/upload_files/241/781/fe9/241781fe99da510d4d5fea03af635e88.png" width="800">
tscholak/2jrayxos
tscholak
2022-01-10T21:50:53Z
12
2
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "text2sql", "en", "dataset:cosql", "dataset:spider", "arxiv:2109.05093", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: - en thumbnail: "https://repository-images.githubusercontent.com/401779782/c2f46be5-b74b-4620-ad64-57487be3b1ab" tags: - text2sql widget: - "And the concert named Auditions? | concert_singer | stadium : stadium_id, location, name, capacity, highest, lowest, average | singer : sing er_id, name, country, song_name, song_release_year, age, is_male | concert : concert_id, concert_name ( Super bootcamp, Auditions ), theme, stadium_id, year | singer_in_concert : concert_id, singer_id || Which year did the concert Super bootcamp happen in? | Find the name and location of the stadiums which some concerts happened in the years of both 2014 and 2015." - "How many singers do we have? | concert_singer | stadium : stadium_id, location, name, capacity, highest, lowest, average | singer : singer_id, name, country, song_name, song_release_year, age, is_male | concert : concert_id, concert_name, theme, stadium_id, year | singer_in_concert : concert_id, singer_id" license: "apache-2.0" datasets: - cosql - spider metrics: - cosql --- ## tscholak/2jrayxos Fine-tuned weights for [PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models](https://arxiv.org/abs/2109.05093) based on [t5.1.1.lm100k.large](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#lm-adapted-t511lm100k). ### Training Data The model has been fine-tuned on the 2,164 training dialogues in the [CoSQL SQL-grounded dialogue state tracking dataset](https://yale-lily.github.io/cosql) and the 7,000 training examples in the [Spider text-to-SQL dataset](https://yale-lily.github.io/spider). The model solves both, CoSQL's zero-shot text-to-SQL dialogue state tracking task and Spider's zero-shot text-to-SQL translation task. Zero-shot means that the model can generalize to unseen SQL databases. ### Training Objective This model was initialized with [t5.1.1.lm100k.large](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#lm-adapted-t511lm100k) and fine-tuned with the text-to-text generation objective. A question is always grounded in both, a database schema and the preceiding questions in the dialogue. The model is trained to predict the SQL query that would be used to answer the user's current natural language question. The input to the model is composed of the user's current question, the database identifier, a list of tables and their columns, and a sequence of previous questions in reverse chronological order. ``` [current question] | [db_id] | [table] : [column] ( [content] , [content] ) , [column] ( ... ) , [...] | [table] : ... | ... || [previous question] | ... | [first question] ``` The sequence of previous questions is separated by `||` from the linearized schema. In the absence of previous questions (for example, for the first question in a dialogue or for Spider questions), this separator is omitted. The model outputs the database identifier and the SQL query that will be executed on the database to answer the user's current question in the dialog. ``` [db_id] | [sql] ``` ### Performance Out of the box, this model achieves 52.5 % question match accuracy on the CoSQL development set. Using the PICARD constrained decoding method (see [the official PICARD implementation](https://github.com/ElementAI/picard)), the model's performance can be improved to **54.2 %** question match accuracy on the CoSQL development set. ### Usage Please see [the official repository](https://github.com/ElementAI/picard) for scripts and docker images that support evaluation and serving of this model. ### References 1. [PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models](https://arxiv.org/abs/2109.05093) 2. [Official PICARD code](https://github.com/ElementAI/picard) ### Citation ```bibtex @inproceedings{Scholak2021:PICARD, author = {Torsten Scholak and Nathan Schucher and Dzmitry Bahdanau}, title = "{PICARD}: Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models", booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.779", pages = "9895--9901", } ```
tscholak/2e826ioa
tscholak
2022-01-10T21:50:39Z
9
7
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "text2sql", "en", "dataset:cosql", "dataset:spider", "arxiv:2109.05093", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: - en thumbnail: "https://repository-images.githubusercontent.com/401779782/c2f46be5-b74b-4620-ad64-57487be3b1ab" tags: - text2sql widget: - "And the concert named Auditions? | concert_singer | stadium : stadium_id, location, name, capacity, highest, lowest, average | singer : sing er_id, name, country, song_name, song_release_year, age, is_male | concert : concert_id, concert_name ( Super bootcamp, Auditions ), theme, stadium_id, year | singer_in_concert : concert_id, singer_id || Which year did the concert Super bootcamp happen in? | Find the name and location of the stadiums which some concerts happened in the years of both 2014 and 2015." - "How many singers do we have? | concert_singer | stadium : stadium_id, location, name, capacity, highest, lowest, average | singer : singer_id, name, country, song_name, song_release_year, age, is_male | concert : concert_id, concert_name, theme, stadium_id, year | singer_in_concert : concert_id, singer_id" license: "apache-2.0" datasets: - cosql - spider metrics: - cosql --- ## tscholak/2e826ioa Fine-tuned weights for [PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models](https://arxiv.org/abs/2109.05093) based on [T5-3B](https://huggingface.co/t5-3b). ### Training Data The model has been fine-tuned on the 2,164 training dialogues in the [CoSQL SQL-grounded dialogue state tracking dataset](https://yale-lily.github.io/cosql) and the 7,000 training examples in the [Spider text-to-SQL dataset](https://yale-lily.github.io/spider). The model solves both, CoSQL's zero-shot text-to-SQL dialogue state tracking task and Spider's zero-shot text-to-SQL translation task. Zero-shot means that the model can generalize to unseen SQL databases. ### Training Objective This model was initialized with [T5-3B](https://huggingface.co/t5-3b) and fine-tuned with the text-to-text generation objective. A question is always grounded in both, a database schema and the preceiding questions in the dialogue. The model is trained to predict the SQL query that would be used to answer the user's current natural language question. The input to the model is composed of the user's current question, the database identifier, a list of tables and their columns, and a sequence of previous questions in reverse chronological order. ``` [current question] | [db_id] | [table] : [column] ( [content] , [content] ) , [column] ( ... ) , [...] | [table] : ... | ... || [previous question] | ... | [first question] ``` The sequence of previous questions is separated by `||` from the linearized schema. In the absence of previous questions (for example, for the first question in a dialogue or for Spider questions), this separator is omitted. The model outputs the database identifier and the SQL query that will be executed on the database to answer the user's current question in the dialog. ``` [db_id] | [sql] ``` ### Performance Out of the box, this model achieves 53.8 % question match accuracy and 21.8 % interaction match accuracy on the CoSQL development set. On the CoSQL test set, the model achieves 51.4 % question match accuracy and 21.7 % interaction match accuracy. Using the PICARD constrained decoding method (see [the official PICARD implementation](https://github.com/ElementAI/picard)), the model's performance can be improved to **56.9 %** question match accuracy and **24.2 %** interaction match accuracy on the CoSQL development set. On the CoSQL test set and with PICARD, the model achieves **54.6 %** question match accuracy and **23.7 %** interaction match accuracy. ### Usage Please see [the official repository](https://github.com/ElementAI/picard) for scripts and docker images that support evaluation and serving of this model. ### References 1. [PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models](https://arxiv.org/abs/2109.05093) 2. [Official PICARD code](https://github.com/ElementAI/picard) ### Citation ```bibtex @inproceedings{Scholak2021:PICARD, author = {Torsten Scholak and Nathan Schucher and Dzmitry Bahdanau}, title = "{PICARD}: Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models", booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.779", pages = "9895--9901", } ```
tscholak/cxmefzzi
tscholak
2022-01-10T21:49:50Z
675
30
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "text2sql", "en", "dataset:spider", "arxiv:2109.05093", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: - en thumbnail: "https://repository-images.githubusercontent.com/401779782/c2f46be5-b74b-4620-ad64-57487be3b1ab" tags: - text2sql widget: - "How many singers do we have? | concert_singer | stadium : stadium_id, location, name, capacity, highest, lowest, average | singer : singer_id, name, country, song_name, song_release_year, age, is_male | concert : concert_id, concert_name, theme, stadium_id, year | singer_in_concert : concert_id, singer_id" license: "apache-2.0" datasets: - spider metrics: - spider --- ## tscholak/cxmefzzi Fine-tuned weights for [PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models](https://arxiv.org/abs/2109.05093) based on [T5-3B](https://huggingface.co/t5-3b). ### Training Data The model has been fine-tuned on the 7000 training examples in the [Spider text-to-SQL dataset](https://yale-lily.github.io/spider). The model solves Spider's zero-shot text-to-SQL translation task, and that means that it can generalize to unseen SQL databases. ### Training Objective This model was initialized with [T5-3B](https://huggingface.co/t5-3b) and fine-tuned with the text-to-text generation objective. Questions are always grounded in a database schema, and the model is trained to predict the SQL query that would be used to answer the question. The input to the model is composed of the user's natural language question, the database identifier, and a list of tables and their columns: ``` [question] | [db_id] | [table] : [column] ( [content] , [content] ) , [column] ( ... ) , [...] | [table] : ... | ... ``` The model outputs the database identifier and the SQL query that will be executed on the database to answer the user's question: ``` [db_id] | [sql] ``` ### Performance Out of the box, this model achieves 71.5 % exact-set match accuracy and 74.4 % execution accuracy on the Spider development set. On the test set, the model achieves 68.0 % exact-set match accuracy and 70.1 % execution accuracy. Using the PICARD constrained decoding method (see [the official PICARD implementation](https://github.com/ElementAI/picard)), the model's performance can be improved to **75.5 %** exact-set match accuracy and **79.3 %** execution accuracy on the Spider development set. On the test set and with PICARD, the model achieves **71.9 %** exact-set match accuracy and **75.1 %** execution accuracy. ### Usage Please see [the official repository](https://github.com/ElementAI/picard) for scripts and docker images that support evaluation and serving of this model. ### References 1. [PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models](https://arxiv.org/abs/2109.05093) 2. [Official PICARD code](https://github.com/ElementAI/picard) ### Citation ```bibtex @inproceedings{Scholak2021:PICARD, author = {Torsten Scholak and Nathan Schucher and Dzmitry Bahdanau}, title = "{PICARD}: Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models", booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.779", pages = "9895--9901", } ```
repro-rights-amicus-briefs/bert-base-uncased-finetuned-RRamicus
repro-rights-amicus-briefs
2022-01-10T21:19:34Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: reprorights-amicus-bert results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # reprorights-amicus-bert This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5428 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.7763 | 1.0 | 1479 | 1.6789 | | 1.76 | 2.0 | 2958 | 1.6199 | | 1.6881 | 3.0 | 4437 | 1.5683 | | 1.6424 | 4.0 | 5916 | 1.5432 | | 1.6131 | 5.0 | 7395 | 1.5269 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
SaulLu/markuplm-base
SaulLu
2022-01-10T19:17:34Z
9
0
transformers
[ "transformers", "pytorch", "markuplm", "arxiv:2110.08518", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04Z
# MarkupLM **Multimodal (text +markup language) pre-training for [Document AI](https://www.microsoft.com/en-us/research/project/document-ai/)** ## Introduction MarkupLM is a simple but effective multi-modal pre-training method of text and markup language for visually-rich document understanding and information extraction tasks, such as webpage QA and webpage information extraction. MarkupLM archives the SOTA results on multiple datasets. For more details, please refer to our paper: [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) Junlong Li, Yiheng Xu, Lei Cui, Furu Wei
fhamborg/roberta-targeted-sentiment-classification-newsarticles
fhamborg
2022-01-10T16:16:01Z
15
15
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "sentiment-analysis", "sentiment-classification", "targeted-sentiment-classification", "target-depentent-sentiment-classification", "en", "dataset:fhamborg/news_sentiment_newsmtsc", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: - en tags: - text-classification - sentiment-analysis - sentiment-classification - targeted-sentiment-classification - target-depentent-sentiment-classification license: "apache-2.0" datasets: "fhamborg/news_sentiment_newsmtsc" --- # NewsSentiment: easy-to-use, high-quality target-dependent sentiment classification for news articles ## Important: [use our PyPI package](https://pypi.org/project/NewsSentiment/) instead of this model on the Hub The Huggingface Hub architecture currently [does not support](https://github.com/huggingface/transformers/issues/14785) target-dependent sentiment classification since you cannot provide the required inputs, i.e., sentence and target. Thus, we recommend that you use our easy-to-use [PyPI package NewsSentiment](https://pypi.org/project/NewsSentiment/). ## Description This model is the currently [best performing](https://aclanthology.org/2021.eacl-main.142.pdf) targeted sentiment classifier for news articles. In contrast to regular sentiment classification, targeted sentiment classification allows you to provide a target in a sentence. Only for this target, the sentiment is then predicted. This is more reliable in many cases, as demonstrated by the following simplistic example: "I like Bert, but I hate Robert." This model is also available as an easy-to-use PyPI package named [`NewsSentiment`](https://pypi.org/project/NewsSentiment/) and in its original GitHub repository named [`NewsMTSC`](https://github.com/fhamborg/NewsMTSC), where you will find the dataset the model was trained on, other models for sentiment classification, and a training and testing framework. More information on the model and the dataset (consisting of more than 10k sentences sampled from news articles, each labeled and agreed upon by at least 5 annotators) can be found in our [EACL paper](https://aclanthology.org/2021.eacl-main.142.pdf). The dataset, the model, and its source code can be viewed in our [GitHub repository](https://github.com/fhamborg/NewsMTSC). We recommend to use our [PyPI package](https://pypi.org/project/NewsSentiment/) for sentiment classification since the Huggingface Hub platform seems to [not support](https://github.com/huggingface/transformers/issues/14785) target-dependent sentiment classification. # How to cite If you use the dataset or model, please cite our [paper](https://www.aclweb.org/anthology/2021.eacl-main.142/) ([PDF](https://www.aclweb.org/anthology/2021.eacl-main.142.pdf)): ``` @InProceedings{Hamborg2021b, author = {Hamborg, Felix and Donnay, Karsten}, title = {NewsMTSC: (Multi-)Target-dependent Sentiment Classification in News Articles}, booktitle = {Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2021)}, year = {2021}, month = {Apr.}, location = {Virtual Event}, } ```
ibm-research/tslm-discourse-markers
ibm-research
2022-01-10T14:42:41Z
0
0
null
[ "arxiv:2201.02026", "region:us" ]
null
2022-03-02T23:29:05Z
SenDM model described at https://arxiv.org/pdf/2201.02026 --- language: - en tags: - discourse-markers license: apache-2.0 ---
khanglam7012/t5-small
khanglam7012
2022-01-10T13:32:38Z
4
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "keytotext", "k2t", "Keywords to Sentences", "en", "dataset:WebNLG", "dataset:Dart", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: Keywords to Sentences tags: - keytotext - k2t - Keywords to Sentences license: mit datasets: - WebNLG - Dart metrics: - NLG --- # keytotext ![keytotext (1)](https://user-images.githubusercontent.com/49101362/116334480-f5e57a00-a7dd-11eb-987c-186477f94b6e.png) Idea is to build a model which will take keywords as inputs and generate sentences as outputs. ### Keytotext is powered by Huggingface 🤗 [![pypi Version](https://img.shields.io/pypi/v/keytotext.svg?style=flat-square&logo=pypi&logoColor=white)](https://pypi.org/project/keytotext/) [![Downloads](https://static.pepy.tech/personalized-badge/keytotext?period=total&units=none&left_color=grey&right_color=orange&left_text=Pip%20Downloads)](https://pepy.tech/project/keytotext) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/gagan3012/keytotext/blob/master/Examples/K2T.ipynb) [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/keytotext/UI/app.py) ## Model: Keytotext is based on the Amazing T5 Model: - `k2t`: [Model](https://huggingface.co/gagan3012/k2t) - `k2t-tiny`: [Model](https://huggingface.co/gagan3012/k2t-tiny) - `k2t-base`: [Model](https://huggingface.co/gagan3012/k2t-base) Training Notebooks can be found in the [`Training Notebooks`](https://github.com/gagan3012/keytotext/tree/master/Training%20Notebooks) Folder ## Usage: Example usage: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/gagan3012/keytotext/blob/master/Examples/K2T.ipynb) Example Notebooks can be found in the [`Notebooks`](https://github.com/gagan3012/keytotext/tree/master/Examples) Folder ``` pip install keytotext ``` ![carbon (3)](https://user-images.githubusercontent.com/49101362/116220679-90e64180-a755-11eb-9246-82d93d924a6c.png) ## UI: UI: [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/keytotext/UI/app.py) ``` pip install streamlit-tags ``` This uses a custom streamlit component built by me: [GitHub](https://github.com/gagan3012/streamlit-tags) ![image](https://user-images.githubusercontent.com/49101362/116162205-fc042980-a6fd-11eb-892e-8f6902f193f4.png)
flboehm/youtube-bert_10
flboehm
2022-01-10T11:39:26Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: youtube-bert_10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # youtube-bert_10 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4456 - Perplexity: 11.54 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.6799 | 1.0 | 1899 | 2.5135 | | 2.5736 | 2.0 | 3798 | 2.4612 | | 2.5172 | 3.0 | 5697 | 2.4363 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
huggingtweets/dril-hostagekiller-suicidepussy
huggingtweets
2022-01-10T10:25:29Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/dril-hostagekiller-suicidepussy/1641810324627/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1473236995497500675/FtwXDZld_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/847818629840228354/VXyQHfn0_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1322637724470358022/ccOsLDPE_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">HUSSY2K. & wint & I have 400 diseases</div> <div style="text-align: center; font-size: 14px;">@dril-hostagekiller-suicidepussy</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from HUSSY2K. & wint & I have 400 diseases. | Data | HUSSY2K. | wint | I have 400 diseases | | --- | --- | --- | --- | | Tweets downloaded | 3186 | 3226 | 3237 | | Retweets | 819 | 480 | 121 | | Short tweets | 395 | 304 | 1125 | | Tweets kept | 1972 | 2442 | 1991 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1bqo2ddu/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dril-hostagekiller-suicidepussy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/o4ya0wuw) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/o4ya0wuw/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dril-hostagekiller-suicidepussy') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
doc2query/msmarco-t5-base-v1
doc2query
2022-01-10T10:22:10Z
1,411
5
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "dataset:sentence-transformers/embedding-training-data", "arxiv:1904.08375", "arxiv:2104.08663", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - sentence-transformers/embedding-training-data widget: - text: "Python is an interpreted, high-level and general-purpose programming language. Python's design philosophy emphasizes code readability with its notable use of significant whitespace. Its language constructs and object-oriented approach aim to help programmers write clear, logical code for small and large-scale projects." license: apache-2.0 --- # doc2query/msmarco-t5-base-v1 This is a [doc2query](https://arxiv.org/abs/1904.08375) model based on T5 (also known as [docT5query](https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf)). It can be used for: - **Document expansion**: You generate for your paragraphs 20-40 queries and index the paragraphs and the generates queries in a standard BM25 index like Elasticsearch, OpenSearch, or Lucene. The generated queries help to close the lexical gap of lexical search, as the generate queries contain synonyms. Further, it re-weights words giving important words a higher weight even if they appear seldomn in a paragraph. In our [BEIR](https://arxiv.org/abs/2104.08663) paper we showed that BM25+docT5query is a powerful search engine. In the [BEIR repository](https://github.com/UKPLab/beir) we have an example how to use docT5query with Pyserini. - **Domain Specific Training Data Generation**: It can be used to generate training data to learn an embedding model. On [SBERT.net](https://www.sbert.net/examples/unsupervised_learning/query_generation/README.html) we have an example how to use the model to generate (query, text) pairs for a given collection of unlabeled texts. These pairs can then be used to train powerful dense embedding models. ## Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration model_name = 'doc2query/msmarco-t5-base-v1' tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) text = "Python is an interpreted, high-level and general-purpose programming language. Python's design philosophy emphasizes code readability with its notable use of significant whitespace. Its language constructs and object-oriented approach aim to help programmers write clear, logical code for small and large-scale projects." input_ids = tokenizer.encode(text, max_length=320, truncation=True, return_tensors='pt') outputs = model.generate( input_ids=input_ids, max_length=64, do_sample=True, top_p=0.95, num_return_sequences=5) print("Text:") print(text) print("\nGenerated Queries:") for i in range(len(outputs)): query = tokenizer.decode(outputs[i], skip_special_tokens=True) print(f'{i + 1}: {query}') ``` **Note:** `model.generate()` is non-deterministic. It produces different queries each time you run it. ## Training This model fine-tuned [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) for 31k training steps (about 4 epochs on the 500k training pairs from MS MARCO). For the training script, see the `train_script.py` in this repository. The input-text was truncated to 320 word pieces. Output text was generated up to 64 word pieces. This model was trained on a (query, passage) from the [MS MARCO Passage-Ranking dataset](https://github.com/microsoft/MSMARCO-Passage-Ranking).
doc2query/msmarco-t5-small-v1
doc2query
2022-01-10T10:19:24Z
12
1
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "dataset:sentence-transformers/embedding-training-data", "arxiv:1904.08375", "arxiv:2104.08663", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - sentence-transformers/embedding-training-data widget: - text: "Python is an interpreted, high-level and general-purpose programming language. Python's design philosophy emphasizes code readability with its notable use of significant whitespace. Its language constructs and object-oriented approach aim to help programmers write clear, logical code for small and large-scale projects." license: apache-2.0 --- # doc2query/msmarco-t5-small-v1 This is a [doc2query](https://arxiv.org/abs/1904.08375) model based on T5 (also known as [docT5query](https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf)). It can be used for: - **Document expansion**: You generate for your paragraphs 20-40 queries and index the paragraphs and the generates queries in a standard BM25 index like Elasticsearch, OpenSearch, or Lucene. The generated queries help to close the lexical gap of lexical search, as the generate queries contain synonyms. Further, it re-weights words giving important words a higher weight even if they appear seldomn in a paragraph. In our [BEIR](https://arxiv.org/abs/2104.08663) paper we showed that BM25+docT5query is a powerful search engine. In the [BEIR repository](https://github.com/UKPLab/beir) we have an example how to use docT5query with Pyserini. - **Domain Specific Training Data Generation**: It can be used to generate training data to learn an embedding model. On [SBERT.net](https://www.sbert.net/examples/unsupervised_learning/query_generation/README.html) we have an example how to use the model to generate (query, text) pairs for a given collection of unlabeled texts. These pairs can then be used to train powerful dense embedding models. ## Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration model_name = 'doc2query/msmarco-t5-small-v1' tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) text = "Python is an interpreted, high-level and general-purpose programming language. Python's design philosophy emphasizes code readability with its notable use of significant whitespace. Its language constructs and object-oriented approach aim to help programmers write clear, logical code for small and large-scale projects." input_ids = tokenizer.encode(text, max_length=320, truncation=True, return_tensors='pt') outputs = model.generate( input_ids=input_ids, max_length=64, do_sample=True, top_p=0.95, num_return_sequences=5) print("Text:") print(text) print("\nGenerated Queries:") for i in range(len(outputs)): query = tokenizer.decode(outputs[i], skip_special_tokens=True) print(f'{i + 1}: {query}') ``` **Note:** `model.generate()` is non-deterministic. It produces different queries each time you run it. ## Training This model fine-tuned [google/t5-v1_1-small](https://huggingface.co/google/t5-v1_1-small) for 31k training steps (about 4 epochs on the 500k training pairs from MS MARCO). For the training script, see the `train_script.py` in this repository. The input-text was truncated to 320 word pieces. Output text was generated up to 64 word pieces. This model was trained on a (query, passage) from the [MS MARCO Passage-Ranking dataset](https://github.com/microsoft/MSMARCO-Passage-Ranking).
huggingtweets/hostagekiller
huggingtweets
2022-01-10T10:05:54Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/hostagekiller/1641809138009/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1473236995497500675/FtwXDZld_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">HUSSY2K.</div> <div style="text-align: center; font-size: 14px;">@hostagekiller</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from HUSSY2K.. | Data | HUSSY2K. | | --- | --- | | Tweets downloaded | 3186 | | Retweets | 819 | | Short tweets | 395 | | Tweets kept | 1972 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/u2hpg02v/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hostagekiller's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3tx11pqs) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3tx11pqs/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hostagekiller') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
vinhood/wineberto-italian-cased
vinhood
2022-01-10T08:26:52Z
5
1
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "it", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: it license: mit widget: - text: "Con del pesce bisogna bere un bicchiere di vino [MASK]." - text: "Con la carne c'è bisogno del vino [MASK]." - text: "A tavola non può mancare del buon [MASK]." --- # WineBERTo 🍷🥂 **wineberto-italian-cased** is a BERT model obtained by MLM adaptive-tuning [**bert-base-italian-xxl-cased**](https://huggingface.co/dbmdz/bert-base-italian-xxl-cased) on Italian drink recipes and wine descriptions, approximately 77k sentences (3.3M words). **Author:** Cristiano De Nobili ([@denocris](https://twitter.com/denocris) on Twitter, [LinkedIn](https://www.linkedin.com/in/cristiano-de-nobili/)) for [VINHOOD](https://www.vinhood.com/en/). <p> <img src="https://drive.google.com/uc?export=view&id=1dco9I9uzevP2V6oku1salIYcovUAeqWE" width="400"> </br> </p> # Perplexity Test set: 14k sentences about wine. | Model | Perplexity | | ------ | ------ | | wineberto-italian-cased | **2.29** | | bert-base-italian-xxl-cased | 4.60 | # Usage ```python from transformers import AutoModel, AutoTokenizer model_name = "vinhood/wineberto-italian-cased" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) ```
celtics1863/env-bert-chinese
celtics1863
2022-01-10T07:16:25Z
62
3
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "pretrain", "environment", "zh", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: zh widget: - text: "总[MASK]是水环境中的重要污染物。" - text: "气[MASK]变化是重要的全球环境问题。" tags: - pretrain - pytorch - environment --- 环境领域的中文预训练Bert模型,在hlf/chinese-bert-wwm-ext的基础上进行训练,旨在学习到中文表达后进一步学习到环境领域的专业知识。 1.5G的预训练语料包括水环境、大气环境、土壤环境、气候变化、中文期刊、国家政策等内容。 项目正在进行中,后续会陆续更新相关内容。 清华大学环境学院课题组 有相关需求、建议,联系[email protected]
ai-forever/ruclip-vit-base-patch32-384
ai-forever
2022-01-10T00:21:50Z
3,104
3
transformers
[ "transformers", "pytorch", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
# ruclip-vit-base-patch32-384 **RuCLIP** (**Ru**ssian **C**ontrastive **L**anguage–**I**mage **P**retraining) is a multimodal model for obtaining images and text similarities and rearranging captions and pictures. RuCLIP builds on a large body of work on zero-shot transfer, computer vision, natural language processing and multimodal learning. Model was trained by [Sber AI](https://github.com/sberbank-ai) and [SberDevices](https://sberdevices.ru/) teams. * Task: `text ranking`; `image ranking`; `zero-shot image classification`; * Type: `encoder` * Num Parameters: `150M` * Training Data Volume: `240 million text-image pairs` * Language: `Russian` * Context Length: `77` * Transformer Layers: `12` * Transformer Width: `512` * Transformer Heads: `8` * Image Size: `384` * Vision Layers: `12` * Vision Width: `768` * Vision Patch Size: `32` ## Usage [Github](https://github.com/sberbank-ai/ru-clip) ``` pip install ruclip ``` ```python clip, processor = ruclip.load("ruclip-vit-base-patch32-384", device="cuda") ``` ## Performance We have evaluated the performance on the following datasets: | Dataset | Metric Name | Metric Result | |:--------------|:---------------|:----------------------------| | Food101 | acc | 0.642 | | CIFAR10 | acc | 0.862 | | CIFAR100 | acc | 0.529 | | Birdsnap | acc | 0.161 | | SUN397 | acc | 0.510 | | Stanford Cars | acc | 0.572 | | DTD | acc | 0.390 | | MNIST | acc | 0.404 | | STL10 | acc | 0.946 | | PCam | acc | 0.506 | | CLEVR | acc | 0.188 | | Rendered SST2 | acc | 0.508 | | ImageNet | acc | 0.451 | | FGVC Aircraft | mean-per-class | 0.053 | | Oxford Pets | mean-per-class | 0.587 | | Caltech101 | mean-per-class | 0.834 | | Flowers102 | mean-per-class | 0.449 | | HatefulMemes | roc-auc | 0.537 | # Authors + Alex Shonenkov: [Github](https://github.com/shonenkov), [Kaggle GM](https://www.kaggle.com/shonenkov) + Daniil Chesakov: [Github](https://github.com/Danyache) + Denis Dimitrov: [Github](https://github.com/denndimitrov) + Igor Pavlov: [Github](https://github.com/boomb0om)
ai-forever/ruclip-vit-large-patch14-336
ai-forever
2022-01-09T22:25:33Z
834
2
transformers
[ "transformers", "pytorch", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
# ruclip-vit-large-patch14-336 **RuCLIP** (**Ru**ssian **C**ontrastive **L**anguage–**I**mage **P**retraining) is a multimodal model for obtaining images and text similarities and rearranging captions and pictures. RuCLIP builds on a large body of work on zero-shot transfer, computer vision, natural language processing and multimodal learning. Model was trained by [Sber AI](https://github.com/sberbank-ai) and [SberDevices](https://sberdevices.ru/) teams. * Task: `text ranking`; `image ranking`; `zero-shot image classification`; * Type: `encoder` * Num Parameters: `430M` * Training Data Volume: `240 million text-image pairs` * Language: `Russian` * Context Length: `77` * Transformer Layers: `12` * Transformer Width: `768` * Transformer Heads: `12` * Image Size: `336` * Vision Layers: `24` * Vision Width: `1024` * Vision Patch Size: `14` ## Usage [Github](https://github.com/sberbank-ai/ru-clip) ``` pip install ruclip ``` ```python clip, processor = ruclip.load("ruclip-vit-large-patch14-336", device="cuda") ``` ## Performance We have evaluated the performance on the following datasets: | Dataset | Metric Name | Metric Result | |:--------------|:---------------|:--------------------| | Food101 | acc | 0.712 | | CIFAR10 | acc | 0.906 | | CIFAR100 | acc | 0.591 | | Birdsnap | acc | 0.213 | | SUN397 | acc | 0.523 | | Stanford Cars | acc | 0.659 | | DTD | acc | 0.408 | | MNIST | acc | 0.242 | | STL10 | acc | 0.956 | | PCam | acc | 0.554 | | CLEVR | acc | 0.142 | | Rendered SST2 | acc | 0.539 | | ImageNet | acc | 0.488 | | FGVC Aircraft | mean-per-class | 0.075 | | Oxford Pets | mean-per-class | 0.546 | | Caltech101 | mean-per-class | 0.835 | | Flowers102 | mean-per-class | 0.517 | | HatefulMemes | roc-auc | 0.519 | # Authors + Alex Shonenkov: [Github](https://github.com/shonenkov), [Kaggle GM](https://www.kaggle.com/shonenkov) + Daniil Chesakov: [Github](https://github.com/Danyache) + Denis Dimitrov: [Github](https://github.com/denndimitrov) + Igor Pavlov: [Github](https://github.com/boomb0om)
Firat/roberta-base-finetuned-squad
Firat
2022-01-09T22:12:48Z
12
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-base-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-squad This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 0.8953 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.8926 | 1.0 | 5536 | 0.8694 | | 0.6821 | 2.0 | 11072 | 0.8428 | | 0.5335 | 3.0 | 16608 | 0.8953 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1 - Datasets 1.17.0 - Tokenizers 0.10.3
ai-forever/ruclip-vit-large-patch14-224
ai-forever
2022-01-09T21:43:58Z
8
0
transformers
[ "transformers", "pytorch", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
# ruclip-vit-large-patch14-224 **RuCLIP** (**Ru**ssian **C**ontrastive **L**anguage–**I**mage **P**retraining) is a multimodal model for obtaining images and text similarities and rearranging captions and pictures. RuCLIP builds on a large body of work on zero-shot transfer, computer vision, natural language processing and multimodal learning. Model was trained by [Sber AI](https://github.com/sberbank-ai) and [SberDevices](https://sberdevices.ru/) teams. * Task: `text ranking`; `image ranking`; `zero-shot image classification`; * Type: `encoder` * Num Parameters: `430M` * Training Data Volume: `240 million text-image pairs` * Language: `Russian` * Context Length: `77` * Transformer Layers: `12` * Transformer Width: `768` * Transformer Heads: `12` * Image Size: `224` * Vision Layers: `24` * Vision Width: `1024` * Vision Patch Size: `14` ## Usage [Github](https://github.com/sberbank-ai/ru-clip) ``` pip install ruclip ``` ```python clip, processor = ruclip.load("ruclip-vit-large-patch14-224", device="cuda") ``` ## Performance We have evaluated the performance on the following datasets: | Dataset | Metric Name | Metric Result | |:--------------|:---------------|:--------------------| | Food101 | acc | 0.597 | | CIFAR10 | acc | 0.878 | | CIFAR100 | acc | 0.511 | | Birdsnap | acc | 0.172 | | SUN397 | acc | 0.484 | | Stanford Cars | acc | 0.559 | | DTD | acc | 0.370 | | MNIST | acc | 0.337 | | STL10 | acc | 0.934 | | PCam | acc | 0.520 | | CLEVR | acc | 0.152 | | Rendered SST2 | acc | 0.529 | | ImageNet | acc | 0.426 | | FGVC Aircraft | mean-per-class | 0.046 | | Oxford Pets | mean-per-class | 0.604 | | Caltech101 | mean-per-class | 0.777 | | Flowers102 | mean-per-class | 0.455 | | HatefulMemes | roc-auc | 0.530 | # Authors + Alex Shonenkov: [Github](https://github.com/shonenkov), [Kaggle GM](https://www.kaggle.com/shonenkov) + Daniil Chesakov: [Github](https://github.com/Danyache) + Denis Dimitrov: [Github](https://github.com/denndimitrov) + Igor Pavlov: [Github](https://github.com/boomb0om)
ai-forever/ruclip-vit-base-patch32-224
ai-forever
2022-01-09T21:34:27Z
76
0
transformers
[ "transformers", "pytorch", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
# ruclip-vit-base-patch32-224 **RuCLIP** (**Ru**ssian **C**ontrastive **L**anguage–**I**mage **P**retraining) is a multimodal model for obtaining images and text similarities and rearranging captions and pictures. RuCLIP builds on a large body of work on zero-shot transfer, computer vision, natural language processing and multimodal learning. Model was trained by [Sber AI](https://github.com/sberbank-ai) and [SberDevices](https://sberdevices.ru/) teams. * Task: `text ranking`; `image ranking`; `zero-shot image classification`; * Type: `encoder` * Num Parameters: `150M` * Training Data Volume: `240 million text-image pairs` * Language: `Russian` * Context Length: `77` * Transformer Layers: `12` * Transformer Width: `512` * Transformer Heads: `8` * Image Size: `224` * Vision Layers: `12` * Vision Width: `768` * Vision Patch Size: `32` ## Usage [Github](https://github.com/sberbank-ai/ru-clip) ``` pip install ruclip ``` ```python clip, processor = ruclip.load("ruclip-vit-base-patch32-224", device="cuda") ``` ## Performance We have evaluated the performance on the following datasets: | Dataset | Metric Name | Metric Result | |:--------------|:---------------|:--------------------| | Food101 | acc | 0.505 | | CIFAR10 | acc | 0.818 | | CIFAR100 | acc | 0.504 | | Birdsnap | acc | 0.115 | | SUN397 | acc | 0.452 | | Stanford Cars | acc | 0.433 | | DTD | acc | 0.380 | | MNIST | acc | 0.447 | | STL10 | acc | 0.932 | | PCam | acc | 0.501 | | CLEVR | acc | 0.148 | | Rendered SST2 | acc | 0.489 | | ImageNet | acc | 0.375 | | FGVC Aircraft | mean-per-class | 0.033 | | Oxford Pets | mean-per-class | 0.560 | | Caltech101 | mean-per-class | 0.786 | | Flowers102 | mean-per-class | 0.401 | | HatefulMemes | roc-auc | 0.564 | # Authors + Alex Shonenkov: [Github](https://github.com/shonenkov), [Kaggle GM](https://www.kaggle.com/shonenkov) + Daniil Chesakov: [Github](https://github.com/Danyache) + Denis Dimitrov: [Github](https://github.com/denndimitrov) + Igor Pavlov: [Github](https://github.com/boomb0om)
huggingtweets/elxokas-evilafm-ibaillanos
huggingtweets
2022-01-09T19:38:49Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/elxokas-evilafm-ibaillanos/1641757124234/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1476303212672131074/kuPm3Cvp_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1473427376696705024/mzWRw3ML_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1402480040877699075/LShUbbef_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ibai & Alexelcapo & XOKAS</div> <div style="text-align: center; font-size: 14px;">@elxokas-evilafm-ibaillanos</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Ibai & Alexelcapo & XOKAS. | Data | Ibai | Alexelcapo | XOKAS | | --- | --- | --- | --- | | Tweets downloaded | 3250 | 3207 | 3245 | | Retweets | 28 | 12 | 187 | | Short tweets | 669 | 231 | 421 | | Tweets kept | 2553 | 2964 | 2637 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ed2k4vcn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @elxokas-evilafm-ibaillanos's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/169fwvwo) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/169fwvwo/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/elxokas-evilafm-ibaillanos') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/ibaillanos
huggingtweets
2022-01-09T18:36:11Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/ibaillanos/1641753367000/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1476303212672131074/kuPm3Cvp_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ibai</div> <div style="text-align: center; font-size: 14px;">@ibaillanos</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Ibai. | Data | Ibai | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 28 | | Short tweets | 669 | | Tweets kept | 2553 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3qyv6lsf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ibaillanos's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/cxnkmkg6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/cxnkmkg6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ibaillanos') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
tonyalves/wav2vec2-large-xls-r-300m-pt-colab
tonyalves
2022-01-09T17:40:58Z
6
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-pt-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-pt-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3637 - Wer: 0.2982 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.591 | 1.15 | 400 | 0.9128 | 0.6517 | | 0.5049 | 2.31 | 800 | 0.4596 | 0.4437 | | 0.2871 | 3.46 | 1200 | 0.3964 | 0.3905 | | 0.2077 | 4.61 | 1600 | 0.3958 | 0.3744 | | 0.1695 | 5.76 | 2000 | 0.4040 | 0.3720 | | 0.1478 | 6.92 | 2400 | 0.3866 | 0.3651 | | 0.1282 | 8.07 | 2800 | 0.3987 | 0.3674 | | 0.1134 | 9.22 | 3200 | 0.4128 | 0.3688 | | 0.1048 | 10.37 | 3600 | 0.3928 | 0.3561 | | 0.0938 | 11.53 | 4000 | 0.4048 | 0.3619 | | 0.0848 | 12.68 | 4400 | 0.4229 | 0.3555 | | 0.0798 | 13.83 | 4800 | 0.3974 | 0.3468 | | 0.0688 | 14.98 | 5200 | 0.3870 | 0.3503 | | 0.0658 | 16.14 | 5600 | 0.3875 | 0.3351 | | 0.061 | 17.29 | 6000 | 0.4133 | 0.3417 | | 0.0569 | 18.44 | 6400 | 0.3915 | 0.3414 | | 0.0526 | 19.6 | 6800 | 0.3957 | 0.3231 | | 0.0468 | 20.75 | 7200 | 0.4110 | 0.3301 | | 0.0407 | 21.9 | 7600 | 0.3866 | 0.3186 | | 0.0384 | 23.05 | 8000 | 0.3976 | 0.3193 | | 0.0363 | 24.21 | 8400 | 0.3910 | 0.3177 | | 0.0313 | 25.36 | 8800 | 0.3656 | 0.3109 | | 0.0293 | 26.51 | 9200 | 0.3712 | 0.3092 | | 0.0277 | 27.66 | 9600 | 0.3613 | 0.3054 | | 0.0249 | 28.82 | 10000 | 0.3783 | 0.3015 | | 0.0234 | 29.97 | 10400 | 0.3637 | 0.2982 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu102 - Datasets 1.13.3 - Tokenizers 0.10.3
tonyalves/wav2vec2-300M-teste2
tonyalves
2022-01-09T17:16:10Z
6
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-300M-teste2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-300M-teste2 This model was trained from scratch on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
Littlemilk/autobiography-generator
Littlemilk
2022-01-09T17:15:14Z
8
2
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "zh", "license:gpl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- language: - zh license: gpl-3.0 tags: - generated_from_trainer model-index: - name: clm-total results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clm-total This model is a fine-tuned version of [ckiplab/gpt2-base-chinese](https://huggingface.co/ckiplab/gpt2-base-chinese) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.8586 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cpu - Datasets 1.17.0 - Tokenizers 0.10.3
Vassilis/distilbert-base-uncased-finetuned-emotion
Vassilis
2022-01-09T16:41:12Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1628 - Accuracy: 0.9345 - F1: 0.9348 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.1674 | 1.0 | 250 | 0.1718 | 0.9265 | 0.9266 | | 0.1091 | 2.0 | 500 | 0.1628 | 0.9345 | 0.9348 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0 - Tokenizers 0.10.3
ying-tina/wav2vec2-base-timit-demo-colab-32-epochs50-earlystop
ying-tina
2022-01-09T12:13:04Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab-32-epochs50-earlystop results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab-32-epochs50-earlystop This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5208 - Wer: 0.3561 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4294 | 4.0 | 500 | 1.3397 | 0.8966 | | 0.5848 | 8.0 | 1000 | 0.4931 | 0.4585 | | 0.2323 | 12.0 | 1500 | 0.4781 | 0.4008 | | 0.14 | 16.0 | 2000 | 0.4294 | 0.3806 | | 0.1026 | 20.0 | 2500 | 0.5098 | 0.3663 | | 0.0725 | 24.0 | 3000 | 0.4527 | 0.3568 | | 0.058 | 28.0 | 3500 | 0.5208 | 0.3561 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
dead69/GPT-small-yoda
dead69
2022-01-09T11:24:39Z
8
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png tags: - conversational license: mit --- # DialoGPT Trained on the Speech of a Game Character Chat with the model: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("dead69/GTP-small-yoda") model = AutoModelWithLMHead.from_pretrained("dead69/GTP-small-yoda") # Let's chat for 4 lines for step in range(10): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("Master YODA: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
NahedAbdelgaber/evaluating-student-writing-distibert-ner-with-metric
NahedAbdelgaber
2022-01-09T06:45:10Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: evaluating-student-writing-distibert-ner-with-metric results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # evaluating-student-writing-distibert-ner-with-metric This model is a fine-tuned version of [NahedAbdelgaber/evaluating-student-writing-distibert-ner](https://huggingface.co/NahedAbdelgaber/evaluating-student-writing-distibert-ner) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7535 - Precision: 0.0614 - Recall: 0.2590 - F1: 0.0993 - Accuracy: 0.6188 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.7145 | 1.0 | 1755 | 0.7683 | 0.0546 | 0.2194 | 0.0875 | 0.6191 | | 0.6608 | 2.0 | 3510 | 0.7504 | 0.0570 | 0.2583 | 0.0934 | 0.6136 | | 0.5912 | 3.0 | 5265 | 0.7535 | 0.0614 | 0.2590 | 0.0993 | 0.6188 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
RenZHU/t5-small-finetuned-xsum-original
RenZHU
2022-01-09T06:04:38Z
5
1
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:xsum", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: t5-small-finetuned-xsum-original results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum args: default metrics: - name: Rouge1 type: rouge value: 28.8838 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum-original This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.4436 - Rouge1: 28.8838 - Rouge2: 8.1114 - Rougel: 22.8318 - Rougelsum: 22.8318 - Gen Len: 18.8141 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.6754 | 1.0 | 51012 | 2.4436 | 28.8838 | 8.1114 | 22.8318 | 22.8318 | 18.8141 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
haji2438/bertweet-base-finetuned-SNS-brand-personality
haji2438
2022-01-09T03:24:39Z
165
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer model-index: - name: bertweet-base-finetuned-SNS-brand-personality results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertweet-base-finetuned-SNS-brand-personality This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0498 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0757 | 1.0 | 1549 | 0.0723 | | 0.0605 | 2.0 | 3098 | 0.0573 | | 0.0498 | 3.0 | 4647 | 0.0498 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-60.0sparse-qat-lt
vuiseng9
2022-01-09T03:14:14Z
31
0
transformers
[ "transformers", "pytorch", "onnx", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
This model is a downstream optimization of [```vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt```](https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt) using [OpenVINO/NNCF](https://github.com/openvinotoolkit/nncf). Applied optimization includes: 1. magnitude sparsification at 60% upon initialization. Parameters are ranked globally via thier absolute norm. Only linear layers of self-attention and ffnn are targeted. 2. NNCF Quantize-Aware Training - Symmetric 8-bit for both weight and activation on all learnable layers. 3. Custom distillation with large model ```bert-large-uncased-whole-word-masking-finetuned-squad``` ``` eval_exact_match = 80.3122 eval_f1 = 87.6162 eval_samples = 10784 ``` # Setup ```bash # OpenVINO/NNCF git clone https://github.com/vuiseng9/nncf && cd nncf git checkout tld-poc git reset --hard 1dec7afe7a4b567c059fcf287ea2c234980fded2 python setup.py develop pip install -r examples/torch/requirements.txt # Huggingface nn_pruning git clone https://github.com/vuiseng9/nn_pruning && cd nn_pruning git checkout reproduce-evaluation git reset --hard 2d4e196d694c465e43e5fbce6c3836d0a60e1446 pip install -e ".[dev]" # Huggingface Transformers git clone https://github.com/vuiseng9/transformers && cd transformers git checkout tld-poc git reset --hard 10a1e29d84484e48fd106f58957d9ffc89dc43c5 pip install -e . head -n 1 examples/pytorch/question-answering/requirements.txt | xargs -i pip install {} # Additional dependencies pip install onnx ``` # Train ```bash git clone https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt BASE_MODEL=/path/to/cloned_repo_above #to-revise wget https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-60.0sparse-qat-lt/raw/main/nncf_bert_squad_sparsity.json NNCF_CFG=/path/to/downloaded_nncf_cfg_above #to-revise OUTROOT=/path/to/train_output_root #to-revise WORKDIR=transformers/examples/pytorch/question-answering #to-revise RUNID=bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-60.0sparse-qat-lt cd $WORKDIR OUTDIR=$OUTROOT/$RUNID mkdir -p $OUTDIR export CUDA_VISIBLE_DEVICES=0 NEPOCH=5 python run_qa.py \ --model_name_or_path vuiseng9/bert-base-squadv1-block-pruning-hybrid \ --optimize_model_before_eval \ --optimized_checkpoint $BASE_MODEL \ --dataset_name squad \ --do_eval \ --do_train \ --evaluation_strategy steps \ --eval_steps 250 \ --learning_rate 3e-5 \ --lr_scheduler_type cosine_with_restarts \ --warmup_ratio 0.25 \ --cosine_cycles 1 \ --teacher bert-large-uncased-whole-word-masking-finetuned-squad \ --teacher_ratio 0.9 \ --num_train_epochs $NEPOCH \ --per_device_eval_batch_size 128 \ --per_device_train_batch_size 16 \ --max_seq_length 384 \ --doc_stride 128 \ --save_steps 250 \ --nncf_config $NNCF_CFG \ --logging_steps 1 \ --overwrite_output_dir \ --run_name $RUNID \ --output_dir $OUTDIR ``` # Eval This repo must be cloned locally. ```bash git clone https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-60.0sparse-qat-lt MODELROOT=/path/to/cloned_repo_above #to-revise export CUDA_VISIBLE_DEVICES=0 OUTDIR=eval-bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-60.0sparse-qat-lt WORKDIR=transformers/examples/pytorch/question-answering #to-revise cd $WORKDIR mkdir $OUTDIR nohup python run_qa.py \ --model_name_or_path vuiseng9/bert-base-squadv1-block-pruning-hybrid \ --dataset_name squad \ --optimize_model_before_eval \ --qat_checkpoint $MODELROOT/checkpoint-22000 \ --nncf_config $MODELROOT/nncf_bert_squad_sparsity.json \ --to_onnx $OUTDIR/bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-60.0sparse-qat-lt.onnx \ --do_eval \ --per_device_eval_batch_size 128 \ --max_seq_length 384 \ --doc_stride 128 \ --overwrite_output_dir \ --output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log & ```
RenZHU/t5-small-finetuned-xsum
RenZHU
2022-01-09T03:09:55Z
106
1
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-small-finetuned-xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5310 - Rouge1: 27.9232 - Rouge2: 7.5324 - Rougel: 22.035 - Rougelsum: 22.0304 - Gen Len: 18.8116 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:------:|:---------:|:-------:| | 2.7564 | 1.0 | 51012 | 2.5310 | 27.9232 | 7.5324 | 22.035 | 22.0304 | 18.8116 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
vuiseng9/bert-base-uncased-squad
vuiseng9
2022-01-08T18:08:11Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
This model is developed with transformers v4.10.3. # Train ```bash #!/usr/bin/env bash export CUDA_VISIBLE_DEVICES=0 OUTDIR=bert-base-uncased-squad WORKDIR=transformers/examples/pytorch/question-answering cd $WORKDIR nohup python run_qa.py \ --model_name_or_path bert-base-uncased \ --dataset_name squad \ --do_eval \ --do_train \ --per_device_train_batch_size 16 \ --per_device_eval_batch_size 16 \ --doc_stride 128 \ --max_seq_length 384 \ --learning_rate 3e-5 \ --num_train_epochs 2 \ --eval_steps 250 \ --save_steps 2500 \ --logging_steps 1 \ --overwrite_output_dir \ --output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log & ``` # Eval ```bash export CUDA_VISIBLE_DEVICES=0 OUTDIR=eval-bert-base-uncased-squad WORKDIR=transformers/examples/pytorch/question-answering cd $WORKDIR nohup python run_qa.py \ --model_name_or_path vuiseng9/bert-base-uncased-squad \ --dataset_name squad \ --do_eval \ --per_device_eval_batch_size 16 \ --max_seq_length 384 \ --doc_stride 128 \ --overwrite_output_dir \ --output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log & ```
LeverageX/scibert-wechsel-korean
LeverageX
2022-01-08T12:14:38Z
105
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
# scibert-wechsel-korean Scibert(🇺🇸) converted into Korean(🇰🇷) using WECHSEL technique. ### Description - SciBERT is trained on papers from the corpus of semanticscholar.org. Corpus size is 1.14M papers, 3.1B tokens. - Wechsel is converting embedding layer's subword tokens from source language to target language. - SciBERT trained with English language is converted into Korean langauge using Wechsel technique. - Korean tokenizer is selected with KLUE PLMs' tokenizers due to its similar vocab size(32000) and performance. ### Reference - [Scibert](https://github.com/allenai/scibert) - [WECHSEL](https://github.com/CPJKU/wechsel) - [Korean Language Understanding Evaluation](https://github.com/KLUE-benchmark/KLUE)
LanceaKing/spkrec-ecapa-cnceleb
LanceaKing
2022-01-08T09:27:18Z
12
4
speechbrain
[ "speechbrain", "embeddings", "Speaker", "Verification", "Identification", "pytorch", "ECAPA", "TDNN", "zh", "dataset:cnceleb", "arxiv:2106.04624", "license:apache-2.0", "region:us" ]
null
2022-03-02T23:29:04Z
--- language: "zh" thumbnail: tags: - speechbrain - embeddings - Speaker - Verification - Identification - pytorch - ECAPA - TDNN license: "apache-2.0" datasets: - cnceleb metrics: - EER --- <iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe> <br/><br/> # Speaker Verification with ECAPA-TDNN embeddings on cnceleb This repository provides all the necessary tools to perform speaker verification with a pretrained ECAPA-TDNN model using SpeechBrain. The system can be used to extract speaker embeddings as well. It is trained on cnceleb 1+ cnceleb2 training data. For a better experience, we encourage you to learn more about [SpeechBrain](https://speechbrain.github.io). The model performance on cnceleb1-test set(Cleaned) is: | Release | EER(%) | minDCF | |:-------------:|:--------------:|:--------------:| ## Pipeline description This system is composed of an ECAPA-TDNN model. It is a combination of convolutional and residual blocks. The embeddings are extracted using attentive statistical pooling. The system is trained with Additive Margin Softmax Loss. Speaker Verification is performed using cosine distance between speaker embeddings. ## Install SpeechBrain First of all, please install SpeechBrain with the following command: ``` pip install speechbrain ``` Please notice that we encourage you to read our tutorials and learn more about [SpeechBrain](https://speechbrain.github.io). ### Compute your speaker embeddings ```python import torchaudio from speechbrain.pretrained import EncoderClassifier classifier = EncoderClassifier.from_hparams(source="LanceaKing/spkrec-ecapa-cnceleb") signal, fs =torchaudio.load('samples/audio_samples/example1.wav') embeddings = classifier.encode_batch(signal) ``` The system is trained with recordings sampled at 16kHz (single channel). The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *classify_file* if needed. Make sure your input tensor is compliant with the expected sampling rate if you use *encode_batch* and *classify_batch*. ### Perform Speaker Verification ```python from speechbrain.pretrained import SpeakerRecognition verification = SpeakerRecognition.from_hparams(source="LanceaKing/spkrec-ecapa-cnceleb", savedir="pretrained_models/spkrec-ecapa-cnceleb") score, prediction = verification.verify_files("speechbrain/spkrec-ecapa-cnceleb/example1.wav", "speechbrain/spkrec-ecapa-cnceleb/example2.flac") ``` The prediction is 1 if the two signals in input are from the same speaker and 0 otherwise. ### Inference on GPU To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method. ### Training The model was trained with SpeechBrain (aa018540). To train it from scratch follows these steps: 1. Clone SpeechBrain: ```bash git clone https://github.com/LanceaKing/speechbrain/ ``` 2. Install it: ``` cd speechbrain pip install -r requirements.txt pip install -e . ``` 3. Run Training: ``` cd recipes/CNCeleb/SpeakerRec python train_speaker_embeddings.py hparams/train_ecapa_tdnn.yaml --data_folder=your_data_folder ``` You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1-ahC1xeyPinAHp2oAohL-02smNWO41Cc?usp=sharing). ### Limitations The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets. #### Referencing ECAPA-TDNN ``` @inproceedings{DBLP:conf/interspeech/DesplanquesTD20, author = {Brecht Desplanques and Jenthe Thienpondt and Kris Demuynck}, editor = {Helen Meng and Bo Xu and Thomas Fang Zheng}, title = {{ECAPA-TDNN:} Emphasized Channel Attention, Propagation and Aggregation in {TDNN} Based Speaker Verification}, booktitle = {Interspeech 2020}, pages = {3830--3834}, publisher = {{ISCA}}, year = {2020}, } ``` # **Citing SpeechBrain** Please, cite SpeechBrain if you use it for your research or business. ```bibtex @misc{speechbrain, title={{SpeechBrain}: A General-Purpose Speech Toolkit}, author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and Fran莽ois Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio}, year={2021}, eprint={2106.04624}, archivePrefix={arXiv}, primaryClass={eess.AS}, note={arXiv:2106.04624} } ``` # **About SpeechBrain** - Website: https://speechbrain.github.io/ - Code: https://github.com/speechbrain/speechbrain/ - HuggingFace: https://huggingface.co/speechbrain/
tai-dang11/test2
tai-dang11
2022-01-08T04:34:31Z
64
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: test2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # test2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2510 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 7810, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 0.2510 | 0 | ### Framework versions - Transformers 4.16.0.dev0 - TensorFlow 2.7.0 - Datasets 1.17.0 - Tokenizers 0.10.3
espnet/Karthik_sinhala_asr_train_asr_transformer
espnet
2022-01-08T03:24:39Z
4
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:sinhala", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - espnet - audio - automatic-speech-recognition language: en datasets: - sinhala license: cc-by-4.0 --- ## ESPnet2 ASR pretrained model ### `espnet/Karthik_sinhala_asr_train_asr_transformer` This model was trained by Karthik using sinhala/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
eliwill/rare-puppers
eliwill
2022-01-08T01:40:43Z
69
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: rare-puppers results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.4895833432674408 --- # rare-puppers Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### algebra ![algebra](images/algebra.jpg) #### arithmetic ![arithmetic](images/arithmetic.jpg) #### calculus ![calculus](images/calculus.jpg) #### geometry ![geometry](images/geometry.jpg) #### trigonometry ![trigonometry](images/trigonometry.jpg)
Peter/medium
Peter
2022-01-08T01:14:45Z
107
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: medium results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # medium This model is a fine-tuned version of [prithivida/parrot_paraphraser_on_T5](https://huggingface.co/prithivida/parrot_paraphraser_on_T5) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6025 - Rouge1: 81.6007 - Rouge2: 75.1196 - Rougel: 81.4213 - Rougelsum: 81.4956 - Gen Len: 32.4286 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 63 | 0.5775 | 65.0748 | 58.8985 | 64.5731 | 63.6249 | 19.0 | | No log | 2.0 | 126 | 0.5806 | 74.3055 | 69.2025 | 73.4922 | 73.0941 | 17.8571 | | No log | 3.0 | 189 | 0.6025 | 71.3808 | 66.0359 | 70.1235 | 69.4614 | 18.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.17.0 - Tokenizers 0.10.3
lincoln/2021twitchfr-conv-bert-small-mlm-simcse
lincoln
2022-01-07T18:00:43Z
4
1
sentence-transformers
[ "sentence-transformers", "pytorch", "convbert", "feature-extraction", "sentence-similarity", "transformers", "twitch", "fr", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- language: - fr license: mit pipeline_tag: sentence-similarity widget: - source_sentence: "Bonsoir" sentences: - "Salut !" - "Hello" - "Bonsoir!" - "Bonsouar!" - "Bonsouar !" - "De rien" - "LUL LUL" example_title: "Coucou" - source_sentence: "elle s'en sort bien" sentences: - "elle a raison" - "elle a tellement raison" - "Elle a pas tort" - "C'est bien ce qu'elle dit là" - "Hello" example_title: "Raison or not" - source_sentence: "et la question énergétique n'est pas politique ?" sentences: - "C'est le nucléaire militaire qui a entaché le nucléaire pour l'énergie." - "La fusion nucléaire c'est pas pour maintenant malheureusement" - "le pro nucléaire redevient acceptable à gauche j'ai l'impression" - "La mer à Nantes?" - "c'est bien un olivier pour l'upr" - "Moi je vois juste sa lavallière" example_title: "Nucléaire" tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - twitch - convbert --- ## Modèle de représentation d'un message Twitch à l'aide de ConvBERT Modèle [sentence-transformers](https://www.SBERT.net): cela permet de mapper une séquence de texte en un vecteur numérique de dimension 256 et peut être utilisé pour des tâches de clustering ou de recherche sémantique. L'expérimentation menée au sein de Lincoln avait pour principal objectif de mettre en œuvre des techniques NLP from scratch sur un corpus de messages issus d’un chat Twitch. Ces derniers sont exprimés en français, mais sur une plateforme internet avec le vocabulaire internet que cela implique (fautes, vocabulaire communautaires, abréviations, anglicisme, emotes, ...). Après avoir entrainé un modèle `ConvBert` puis `MLM` (cf section smodèles), nous avons entrainé un modèle _sentence-transformers_ à l'aide du framework d'apprentissage [SimCSE](https://www.sbert.net/examples/unsupervised_learning/SimCSE/README.html) en non supervisée. L'objectif est de spécialiser la moyenne des tokens _CLS_ de chaque token de la séquence pour représenter un vecteur numérique cohérent avec l'ensemble du corpus. _SimCSE_ crée fictivement des exemples positifs et négatifs supervisées à l'aide du dropout pour revenir à une tâche classique. _Nous garantissons pas la stabilité du modèle sur le long terme. Modèle réalisé dans le cadre d'un POC._ ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('2021twitchfr-conv-bert-small-mlm-simcse') embeddings = model.encode(sentences) print(embeddings) ``` ## Semantic Textual Similarity ```python from sentence_transformers import SentenceTransformer, models, util # Two lists of sentences sentences1 = ['zackFCZack', 'Team bons petits plats', 'sa commence a quelle heure de base popcorn ?', 'BibleThump'] sentences2 = ['zack titulaire', 'salade de pates c une dinguerie', 'ça commence à être long la', 'NotLikeThis'] # Compute embedding for both lists embeddings1 = model.encode(sentences1, convert_to_tensor=True) embeddings2 = model.encode(sentences2, convert_to_tensor=True) # Compute cosine-similarits cosine_scores = util.cos_sim(embeddings1, embeddings2) # Output the pairs with their score for i in range(len(sentences1)): print("Score: {:.4f} | \"{}\" -vs- \"{}\" ".format(cosine_scores[i][i], sentences1[i], sentences2[i])) # Score: 0.5783 | "zackFCZack" -vs- "zack titulaire" # Score: 0.2881 | "Team bons petits plats" -vs- "salade de pates c une dinguerie" # Score: 0.4529 | "sa commence a quelle heure de base popcorn ?" -vs- "ça commence à être long la" # Score: 0.5805 | "BibleThump" -vs- "NotLikeThis" ``` ## Entrainement * 500 000 messages twitchs échantillonnés (cf description données des modèles de bases) * Batch size: 24 * Epochs: 24 * Loss: MultipleNegativesRankingLoss _A noter:_ * _ConvBert a été entrainé avec un longueur de 128 tokens max, mais est utilisé pour 512 dans ce modèle. Pas de problème._ * _La loss d'apprentissage n'est pas encore disponible: peu de visibilité sur les performances._ L'ensemble du code d'entrainement sur le github public [lincoln/twitchatds](https://github.com/Lincoln-France/twitchatds). ## Application: Nous avons utilisé une approche détournée de [BERTopic](https://maartengr.github.io/BERTopic/) pour réaliser un clustering d'un stream en prenant en compte la dimension temporelle: i.e. le nombre de seconde écoulée depuis le début du stream. ![approche_bertopic_lincoln](assets/approche_lincoln_topic_clustering_twitch.jpg) Globalement, l'approche donnes des résultats satisfaisant pour identifier des messages dit "similaires" récurrents. L'approche en revanche est fortement influencée par la ponctuation et la structure d'un message. Cela est largement explicable par le manque d'entrainement de l'ensemble des modèles et une volumétrie faible. ### Clustering émission "Backseat": Entre 19h30 et 20h00: ![1930_2000](./assets/scale_600_1930_2000.png) 🎞️ en vidéo: [youtu.be/EcjvlE9aTls](https://youtu.be/EcjvlE9aTls) ### Exemple regroupement émission "PopCorn": ```txt -------------------- LABEL 106 -------------------- circus (0.88)/sulli (0.23)/connu (0.19)/jure (0.12)/aime (0.11) silouhette moyenne: 0.04 -------------------- LABEL 106 -------------------- 2021-03-30 20:10:22 0.01: les gosse c est des animaux 2021-03-30 20:12:11 -0.03: oue c connu 2021-03-30 20:14:15 0.03: oh le circus !! <3 2021-03-30 20:14:19 0.12: le circus l'anciennnee 2021-03-30 20:14:22 0.06: jure le circus ! 2021-03-30 20:14:27 -0.03: le sulli 2021-03-30 20:14:31 0.09: le circus??? j'aime po 2021-03-30 20:14:34 0.11: le Circus, hors de prix ! 2021-03-30 20:14:35 -0.09: le Paddock a Rignac en Aveyron 2021-03-30 20:14:39 0.11: le circus >< 2021-03-30 20:14:39 0.04: le Titty Twister de Besançon -------------------- LABEL 17 -------------------- pates (0.12)/riz (0.09)/pâtes (0.09)/salade (0.07)/emission (0.07) silouhette moyenne: -0.05 -------------------- LABEL 17 -------------------- 2021-03-30 20:11:18 -0.03: Des nanimaux trop beaux ! 2021-03-30 20:13:11 -0.01: episode des simpsons ça... 2021-03-30 20:13:41 -0.01: des le debut d'emission ca tue mdrrrrr 2021-03-30 20:13:50 0.03: des "lasagnes" 2021-03-30 20:14:37 -0.18: poubelle la vie 2021-03-30 20:15:13 0.03: Une omelette 2021-03-30 20:15:35 -0.19: salade de bite 2021-03-30 20:15:36 -0.00: hahaha ce gastronome 2021-03-30 20:15:43 -0.08: salade de pates c une dinguerie 2021-03-30 20:17:00 -0.11: Une bonne femme ! 2021-03-30 20:17:06 -0.05: bouffe des graines 2021-03-30 20:17:08 -0.06: des pokeball ? 2021-03-30 20:17:11 -0.12: le choux fleur cru 2021-03-30 20:17:15 0.05: des pockeball ? 2021-03-30 20:17:27 -0.00: du chou fleur crue 2021-03-30 20:17:36 -0.09: un râgout de Meynia !!!! 2021-03-30 20:17:43 -0.07: une line up Sa rd o ch Zack Ponce my dream 2021-03-30 20:17:59 -0.10: Pâtes/10 2021-03-30 20:18:09 -0.05: Team bons petits plats 2021-03-30 20:18:13 -0.10: pate level 2021-03-30 20:18:19 -0.03: que des trucs très basiques 2021-03-30 20:18:24 0.03: des pates et du jambon c'est de la cuisine? 2021-03-30 20:18:30 0.05: Des pates et du riz ouai 2021-03-30 20:18:37 -0.02: des gnocchis à la poele c'est cuisiner ? 2021-03-30 20:18:50 -0.03: Pâtes à pizzas, pulled pork, carbonade flamande, etc.. 2021-03-30 20:19:01 -0.11: Des pâtes ou du riz ça compte ? 2021-03-30 20:19:22 -0.21: le noob 2021-03-30 20:19:47 -0.02: Une bonne escalope de milanaise les gars 2021-03-30 20:20:05 -0.04: faites des gratins et des quiches -------------------- LABEL 67 -------------------- 1 1 (0.25)/1 (0.19)/ (0.0)/ (0.0)/ (0.0) silouhette moyenne: 0.96 -------------------- LABEL 67 -------------------- 2021-03-30 20:24:17 0.94: +1 2021-03-30 20:24:37 0.97: +1 2021-03-30 20:24:37 0.97: +1 2021-03-30 20:24:38 0.97: +1 2021-03-30 20:24:39 0.97: +1 2021-03-30 20:24:43 0.97: +1 2021-03-30 20:24:44 0.97: +1 2021-03-30 20:24:47 0.97: +1 2021-03-30 20:24:49 0.97: +1 2021-03-30 20:25:00 0.97: +1 2021-03-30 20:25:21 0.95: +1 2021-03-30 20:25:25 0.95: +1 2021-03-30 20:25:28 0.94: +1 2021-03-30 20:25:30 0.94: +1 ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: ConvBertModel (1): Pooling({'word_embedding_dimension': 256, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Modèles: * [2021twitchfr-conv-bert-small](https://huggingface.co/lincoln/2021twitchfr-conv-bert-small) * [2021twitchfr-conv-bert-small-mlm](https://huggingface.co/lincoln/2021twitchfr-conv-bert-small-mlm) * [2021twitchfr-conv-bert-small-mlm-simcse](https://huggingface.co/lincoln/2021twitchfr-conv-bert-small-mlm-simcse)
lincoln/2021twitchfr-conv-bert-small
lincoln
2022-01-07T15:25:20Z
6
0
transformers
[ "transformers", "pytorch", "tf", "tensorboard", "convbert", "feature-extraction", "twitch", "fr", "license:mit", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: - fr license: mit pipeline_tag: "feature-extraction" widget: - text: LUL +1 xD La Fronce ! tags: - feature-extraction - convbert - twitch --- ## Modèle de langue sur les données Twitch FR L'expérimentation menée au sein de Lincoln avait pour principal objectif de mettre en œuvre des techniques NLP from scratch sur un corpus de messages issus d’un chat Twitch. Ces derniers sont exprimés en français, mais sur une plateforme internet avec le vocabulaire internet que cela implique (fautes, vocabulaire communautaires, abréviations, anglicisme, emotes, ...). Nos contraintes sont celles d’une entreprise n’ayant pas une volumétrie excessive de données et une puissance infinie de calcul. Il a été nécessaire de construire un nouveau tokenizer afin de mieux correspondre à notre corpus plutôt qu’un tokenizer français existant. Note corpus étant faible en volumétrie par rapport aux données habituelles pour entrainer un modèle BERT, nous avons opté pour l’entrainement d’un modèle dit « small ». Et il a été montré dans la littérature qu’un corpus de quelques giga octets peut donner de bons résultats, c’est pourquoi nous avons continué avec notre corpus. La limite de la puissance de calcul a été contourné à l’aide d’une nouvelle architecture d’apprentissage basée sur un double modèle générateur / discriminateur. Ceci nous a permis d’entrainer un modèle de langue ConvBERT sur nos données, ainsi qu’un modèle de masking en quelques heures sur une carte GPU V100. _Nous garantissons pas la stabilité du modèle sur le long terme. Modèle réalisé dans le cadre d'un POC._ ## Données | Streamer | Nbr de messages | Categories notables en 2021 | | --------------------------------------------- | --------------- | ---------------------------------- | | Ponce | 2 604 935 | Chatting/Mario Kart/FIFA | | Domingo | 1 209 703 | Chatting/talk-shows/FM2O21 | | Mistermv | 1 205 882 | Isaac/Special events/TFT | | Zerator | 900 894 | New World/WOW/Valorant | | Blitzstream | 821 585 | Chess | | Squeezie | 602 148 | Chatting / Minecraft | | Antoinedaniellive | 548 497 | Geoguessr | | Jeanmassietaccropolis/jeanmassiet | 301 387 | Talk-shows/chatting/special events | | Samueletienne | 215 956 | chatting | Sur la période du 12/03/2021 au 22/07/2021. La totalité des messages comptent 9 410 987 messages sur ces neufs streamers. Ces messages sont issus du canal IRC, donc n’ont pas subi de modération Les données d'entrainement sont basé sur le format d'entrainement du modèle ELECTRA. Cela nécessite de formater les données en paragraphe, séparés par phrase. Nous avons choisi de regrouper les messages dans une fenêtre de 60 secondes, faisant office de paragraphe, avec les conditions suivantes : * Longueur supérieure à 170 (ce qui représente en moyenne 50 tokens) afin de ne pas créer des instances ayant pas d’information car majoritairement vide : un padding sera nécessaire et pénalise la vitesse d’apprentissage. * 128 tokens maximums (défaut) Si la longueur maximale est atteinte, une deuxième instance est créée. Au final, la volumétrie d'instance d'entrainement est de 554 974. ## Application Voir github public [lincoln/twitchatds](https://github.com/Lincoln-France/twitchatds) pour les détails d'implémentation et les résultats. ## Remarques * Expérimentation ponctuelle * Les métriques d'entrainement sont disponibles dans l'onglet _Training metrics_ * Pour une meilleure stabilité, les données doivent être plus hétérogènes et volumineuse. Le modèle doit être entrainé + de 24h. ## Usage ```python from transformers import AutoTokenizer, ConvBertModel from transformers import FeatureExtractionPipeline model_name = 'lincoln/2021twitchfr-conv-bert-small' loaded_tokenizer = AutoTokenizer.from_pretrained(model_name) loaded_model = ConvBertModel.from_pretrained(model_name) nlp = FeatureExtractionPipeline(model=loaded_model, tokenizer=loaded_tokenizer) nlp("<3 <3 les modos") ``` ## Modèles: * [2021twitchfr-conv-bert-small](https://huggingface.co/lincoln/2021twitchfr-conv-bert-small) * [2021twitchfr-conv-bert-small-mlm](https://huggingface.co/lincoln/2021twitchfr-conv-bert-small-mlm) * [2021twitchfr-conv-bert-small-mlm-simcse](https://huggingface.co/lincoln/2021twitchfr-conv-bert-small-mlm-simcse)
lincoln/2021twitchfr-conv-bert-small-mlm
lincoln
2022-01-07T15:23:20Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "convbert", "fill-mask", "twitch", "fr", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: - fr license: mit pipeline_tag: "fill-mask" widget: - text: <mask> tt le monde ! - text: cc<mask> va? - text: <mask> la Fronce ! tags: - fill-mask - convbert - twitch --- ## Modèle de Masking sur les données Twitch FR L'expérimentation menée au sein de Lincoln avait pour principal objectif de mettre en œuvre des techniques NLP from scratch sur un corpus de messages issus d’un chat Twitch. Ces derniers sont exprimés en français, mais sur une plateforme internet avec le vocabulaire internet que cela implique (fautes, vocabulaire communautaires, abréviations, anglicisme, emotes, ...). Nos contraintes sont celles d’une entreprise n’ayant pas une volumétrie excessive de données et une puissance infinie de calcul. Il a été nécessaire de construire un nouveau tokenizer afin de mieux correspondre à notre corpus plutôt qu’un tokenizer français existant. Note corpus étant faible en volumétrie par rapport aux données habituelles pour entrainer un modèle BERT, nous avons opté pour l’entrainement d’un modèle dit « small ». Et il a été montré dans la littérature qu’un corpus de quelques giga octets peut donner de bons résultats, c’est pourquoi nous avons continué avec notre corpus. La limite de la puissance de calcul a été contourné à l’aide d’une nouvelle architecture d’apprentissage basée sur un double modèle générateur / discriminateur. Ceci nous a permis d’entrainer un modèle de langue ConvBERT sur nos données, ainsi qu’un modèle de masking en quelques heures sur une carte GPU V100. _Nous garantissons pas la stabilité du modèle sur le long terme. Modèle réalisé dans le cadre d'un POC._ ## Données | Streamer | Nbr de messages | Categories notables en 2021 | | --------------------------------------------- | --------------- | ---------------------------------- | | Ponce | 2 604 935 | Chatting/Mario Kart/FIFA | | Domingo | 1 209 703 | Chatting/talk-shows/FM2O21 | | Mistermv | 1 205 882 | Isaac/Special events/TFT | | Zerator | 900 894 | New World/WOW/Valorant | | Blitzstream | 821 585 | Chess | | Squeezie | 602 148 | Chatting / Minecraft | | Antoinedaniellive | 548 497 | Geoguessr | | Jeanmassietaccropolis/jeanmassiet | 301 387 | Talk-shows/chatting/special events | | Samueletienne | 215 956 | chatting | Sur la période du 12/03/2021 au 22/07/2021. La totalité des messages comptent 9 410 987 messages sur ces neufs streamers. Ces messages sont issus du canal IRC, donc n’ont pas subi de modération Les données d'entrainement du modèle de masking contient 899 652 instances de train et 99 962 instances de test. Les données ont été formaté en concaténant les messages sur une fenêtre de 10s. Cette fenêtre correspond à une fenêtre courte qui regroupe des messages très « proches » temporellement. * 512 tokens max * Probabilité du « mask » : 15% ## Application Voir github public [lincoln/twitchatds](https://github.com/Lincoln-France/twitchatds) pour les détails d'implémentation et les résultats. ## Remarques * Expérimentation ponctuelle * Les métriques d'entrainement sont disponibles dans l'onglet _Training metrics_ * Pour une meilleure stabilité, les données doivent être plus hétérogènes et volumineuse. Le modèle doit être entrainé + de 24h. * Le token `<mask>` fonctionne probablement mieux sans laisser d'espace à gauche. Cela est dû au fait que `lstrip=False` pour ce token spécial. ## Usage ```python from transformers import AutoTokenizer, ConvBertForMaskedLM from transformers import pipeline model_name = 'lincoln/2021twitchfr-conv-bert-small-mlm' tokenizer_name = 'lincoln/2021twitchfr-conv-bert-small' loaded_tokenizer = AutoTokenizer.from_pretrained(tokenizer_name) loaded_model = ConvBertForMaskedLM.from_pretrained(model_name) nlp = pipeline('fill-mask', model=loaded_model, tokenizer=loaded_tokenizer) nlp('<mask> les gens !') ``` ## Modèles: * [2021twitchfr-conv-bert-small](https://huggingface.co/lincoln/2021twitchfr-conv-bert-small) * [2021twitchfr-conv-bert-small-mlm](https://huggingface.co/lincoln/2021twitchfr-conv-bert-small-mlm) * [2021twitchfr-conv-bert-small-mlm-simcse](https://huggingface.co/lincoln/2021twitchfr-conv-bert-small-mlm-simcse)
Kien/distilbert-base-uncased-finetuned-cola
Kien
2022-01-07T15:00:42Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5232819075279987 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5327 - Matthews Correlation: 0.5233 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5314 | 1.0 | 535 | 0.4955 | 0.4270 | | 0.3545 | 2.0 | 1070 | 0.5327 | 0.5233 | | 0.2418 | 3.0 | 1605 | 0.6180 | 0.5132 | | 0.1722 | 4.0 | 2140 | 0.7344 | 0.5158 | | 0.1243 | 5.0 | 2675 | 0.8581 | 0.5196 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
hs788/wav2vec2-base-timit-demo-colab
hs788
2022-01-07T13:34:11Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4125 - Wer: 0.3607 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.2018 | 7.94 | 500 | 1.3144 | 0.8508 | | 0.4671 | 15.87 | 1000 | 0.4737 | 0.4160 | | 0.1375 | 23.81 | 1500 | 0.4125 | 0.3607 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
ietz/distilroberta-base-finetuned-jira-qt-issue-title
ietz
2022-01-07T12:27:11Z
5
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "jira", "code", "issue", "development", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: - en tags: - jira - code - issue - development license: mit --- `distilroberta-base` finetuned for masked language modeling on 126213 Qt jira issue titles for up to 50 epochs.
doc2query/reddit-t5-small-v1
doc2query
2022-01-07T08:55:11Z
106
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "arxiv:1904.08375", "arxiv:2104.08663", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - datasets/sentence-transformers/reddit-title-body widget: - text: "Python is an interpreted, high-level and general-purpose programming language. Python's design philosophy emphasizes code readability with its notable use of significant whitespace. Its language constructs and object-oriented approach aim to help programmers write clear, logical code for small and large-scale projects." license: apache-2.0 --- # doc2query/reddit-t5-small-v1 This is a [doc2query](https://arxiv.org/abs/1904.08375) model based on T5 (also known as [docT5query](https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf)). It can be used for: - **Document expansion**: You generate for your paragraphs 20-40 queries and index the paragraphs and the generates queries in a standard BM25 index like Elasticsearch, OpenSearch, or Lucene. The generated queries help to close the lexical gap of lexical search, as the generate queries contain synonyms. Further, it re-weights words giving important words a higher weight even if they appear seldomn in a paragraph. In our [BEIR](https://arxiv.org/abs/2104.08663) paper we showed that BM25+docT5query is a powerful search engine. In the [BEIR repository](https://github.com/UKPLab/beir) we have an example how to use docT5query with Pyserini. - **Domain Specific Training Data Generation**: It can be used to generate training data to learn an embedding model. On [SBERT.net](https://www.sbert.net/examples/unsupervised_learning/query_generation/README.html) we have an example how to use the model to generate (query, text) pairs for a given collection of unlabeled texts. These pairs can then be used to train powerful dense embedding models. ## Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration model_name = 'doc2query/reddit-t5-small-v1' tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) text = "Python is an interpreted, high-level and general-purpose programming language. Python's design philosophy emphasizes code readability with its notable use of significant whitespace. Its language constructs and object-oriented approach aim to help programmers write clear, logical code for small and large-scale projects." input_ids = tokenizer.encode(text, max_length=384, truncation=True, return_tensors='pt') outputs = model.generate( input_ids=input_ids, max_length=64, do_sample=True, top_p=0.95, num_return_sequences=5) print("Text:") print(text) print("\nGenerated Queries:") for i in range(len(outputs)): query = tokenizer.decode(outputs[i], skip_special_tokens=True) print(f'{i + 1}: {query}') ``` **Note:** `model.generate()` is non-deterministic. It produces different queries each time you run it. ## Training This model fine-tuned [google/t5-v1_1-small](https://huggingface.co/google/t5-v1_1-small) for 547k training steps. For the training script, see the `train_script.py` in this repository. The input-text was truncated to 384 word pieces. Output text was generated up to 64 word pieces. This model was trained on a (title, body) from Reddit.
doc2query/stackexchange-title-body-t5-base-v1
doc2query
2022-01-07T08:48:22Z
7
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "dataset:flax-sentence-embeddings/stackexchange_title_body_jsonl", "arxiv:1904.08375", "arxiv:2104.08663", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - flax-sentence-embeddings/stackexchange_title_body_jsonl widget: - text: "Python is an interpreted, high-level and general-purpose programming language. Python's design philosophy emphasizes code readability with its notable use of significant whitespace. Its language constructs and object-oriented approach aim to help programmers write clear, logical code for small and large-scale projects." license: apache-2.0 --- # doc2query/stackexchange-title-body-t5-base-v1 This is a [doc2query](https://arxiv.org/abs/1904.08375) model based on T5 (also known as [docT5query](https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf)). It can be used for: - **Document expansion**: You generate for your paragraphs 20-40 queries and index the paragraphs and the generates queries in a standard BM25 index like Elasticsearch, OpenSearch, or Lucene. The generated queries help to close the lexical gap of lexical search, as the generate queries contain synonyms. Further, it re-weights words giving important words a higher weight even if they appear seldomn in a paragraph. In our [BEIR](https://arxiv.org/abs/2104.08663) paper we showed that BM25+docT5query is a powerful search engine. In the [BEIR repository](https://github.com/UKPLab/beir) we have an example how to use docT5query with Pyserini. - **Domain Specific Training Data Generation**: It can be used to generate training data to learn an embedding model. On [SBERT.net](https://www.sbert.net/examples/unsupervised_learning/query_generation/README.html) we have an example how to use the model to generate (query, text) pairs for a given collection of unlabeled texts. These pairs can then be used to train powerful dense embedding models. ## Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration model_name = 'doc2query/stackexchange-title-body-t5-base-v1' tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) text = "Python is an interpreted, high-level and general-purpose programming language. Python's design philosophy emphasizes code readability with its notable use of significant whitespace. Its language constructs and object-oriented approach aim to help programmers write clear, logical code for small and large-scale projects." input_ids = tokenizer.encode(text, max_length=320, truncation=True, return_tensors='pt') outputs = model.generate( input_ids=input_ids, max_length=64, do_sample=True, top_p=0.95, num_return_sequences=5) print("Text:") print(text) print("\nGenerated Queries:") for i in range(len(outputs)): query = tokenizer.decode(outputs[i], skip_special_tokens=True) print(f'{i + 1}: {query}') ``` **Note:** `model.generate()` is non-deterministic. It produces different queries each time you run it. ## Training This model fine-tuned [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) for 550k training steps. For the training script, see the `train_script.py` in this repository. The input-text was truncated to 320 word pieces. Output text was generated up to 64 word pieces. This model was trained on a (title, question_body) from StackExchange.
Shenyancheng/distilbert-base-uncased-finetuned-ner
Shenyancheng
2022-01-07T04:37:52Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9266592920353982 - name: Recall type: recall value: 0.9371294328224634 - name: F1 type: f1 value: 0.9318649535569274 - name: Accuracy type: accuracy value: 0.9838117781625813 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0620 - Precision: 0.9267 - Recall: 0.9371 - F1: 0.9319 - Accuracy: 0.9838 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2462 | 1.0 | 878 | 0.0714 | 0.9052 | 0.9223 | 0.9137 | 0.9803 | | 0.0535 | 2.0 | 1756 | 0.0615 | 0.9188 | 0.9331 | 0.9259 | 0.9827 | | 0.0315 | 3.0 | 2634 | 0.0620 | 0.9267 | 0.9371 | 0.9319 | 0.9838 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
huggingtweets/shegotadankwa
huggingtweets
2022-01-07T04:37:33Z
98
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/shegotadankwa/1641530248419/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1466974207313649667/8zoSbNnW_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">blizzy b 🏄🏾‍♀️</div> <div style="text-align: center; font-size: 14px;">@shegotadankwa</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from blizzy b 🏄🏾‍♀️. | Data | blizzy b 🏄🏾‍♀️ | | --- | --- | | Tweets downloaded | 3164 | | Retweets | 916 | | Short tweets | 667 | | Tweets kept | 1581 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ayiomb1h/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @shegotadankwa's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ezr5ck3t) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ezr5ck3t/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/shegotadankwa') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingartists/obladaet
huggingartists
2022-01-07T01:09:32Z
6
1
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/obladaet", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/obladaet tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/4411ffc50a3cd07d303d09a5db3b7cf5.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">OBLADAET</div> <a href="https://genius.com/artists/obladaet"> <div style="text-align: center; font-size: 14px;">@obladaet</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from OBLADAET. Dataset is available [here](https://huggingface.co/datasets/huggingartists/obladaet). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/obladaet") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1mtsuuwr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on OBLADAET's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1s9epb35) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1s9epb35/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/obladaet') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/obladaet") model = AutoModelWithLMHead.from_pretrained("huggingartists/obladaet") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
BigSalmon/InformalToFormalLincoln18
BigSalmon
2022-01-06T22:00:50Z
10
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
Informal to Formal: ``` from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln18") model = AutoModelWithLMHead.from_pretrained("BigSalmon/InformalToFormalLincoln18") ``` ``` https://huggingface.co/spaces/BigSalmon/GPT2 (The model for this space changes over time) ``` ``` https://huggingface.co/spaces/BigSalmon/GPT2_Most_Probable (The model for this space changes over time) ``` ``` https://huggingface.co/spaces/BigSalmon/GPT2Space (The model for this space changes over time) ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ````
Waynehillsdev/Waynehills-STT-doogie-server
Waynehillsdev
2022-01-06T17:18:49Z
87
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: name: Waynehills-STT-doogie-server --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Waynehills-STT-doogie-server This model is a fine-tuned version of [Doogie/Waynehills-STT-doogie-server](https://huggingface.co/Doogie/Waynehills-STT-doogie-server) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 60 ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu113 - Datasets 1.17.0 - Tokenizers 0.10.3
shaina/covid_qa_distillBert
shaina
2022-01-06T15:41:08Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:covid_qa_deepset", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - covid_qa_deepset widget: - text: "What is COVID-19?" context: "Coronavirus disease 2019 (COVID-19) is a contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The first known case was identified in Wuhan, China, in December 2019.[7] The disease has since spread worldwide, leading to an ongoing pandemic." - text: "Where was COVID-19 first discovered?" context: "The first known infections from SARS-CoV-2 were discovered in Wuhan, China. The original source of viral transmission to humans remains unclear, as does whether the virus became pathogenic before or after the spillover event." - text: "What is Post-COVID syndrome?" context: "Long COVID, also known as post-COVID-19 syndrome, post-acute sequelae of COVID-19 (PASC), or chronic COVID syndrome (CCS) is a condition characterized by long-term sequelae appearing or persisting after the typical convalescence period of COVID-19. Long COVID can affect nearly every organ system, with sequelae including respiratory system disorders, nervous system and neurocognitive disorders, mental health disorders, metabolic disorders, cardiovascular disorders, gastrointestinal disorders, malaise, fatigue, musculoskeletal pain, and anemia. A wide range of symptoms are commonly reported, including fatigue, headaches, shortness of breath, anosmia (loss of smell), parosmia (distorted smell), muscle weakness, low fever and cognitive dysfunction." model-index: - name: CoQUAD_DistilBERT_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # covid_qa_distillBert This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the covid_qa_deepset dataset. It achieves the following results on the evaluation set: - Loss: 0.0971 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.2537 | 1.0 | 3880 | 0.1871 | | 0.2005 | 2.0 | 7760 | 0.1257 | | 0.1395 | 3.0 | 11640 | 0.0971 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
unicamp-dl/ptt5-base-pt-msmarco-100k-v2
unicamp-dl
2022-01-06T13:44:21Z
13
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "msmarco", "tensorflow", "pt", "pt-br", "dataset:msmarco", "arxiv:2108.13897", "license:mit", "autotrain_compatible", "text-generation-inference", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: pt license: mit tags: - msmarco - t5 - pytorch - tensorflow - pt - pt-br datasets: - msmarco widget: - text: "Texto de exemplo em português" inference: false --- # PTT5-base Reranker finetuned on Portuguese MS MARCO ## Introduction ptt5-base-msmarco-pt-100k-v2 is a T5-based model pretrained in the BrWac corpus, finetuned on Portuguese translated version of MS MARCO passage dataset. In the v2 version, the Portuguese dataset was translated using Google Translate. This model was finetuned for 100k steps. Further information about the dataset or the translation method can be found on our [**mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset**](https://arxiv.org/abs/2108.13897) and [mMARCO](https://github.com/unicamp-dl/mMARCO) repository. ## Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration model_name = 'unicamp-dl/ptt5-base-msmarco-pt-100k-v2' tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) ``` # Citation If you use ptt5-base-msmarco-pt-100k-v2, please cite: @misc{bonifacio2021mmarco, title={mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Vitor Jeronymo and Hugo Queiroz Abonizio and Israel Campiotti and Marzieh Fadaee and and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, eprint={2108.13897}, archivePrefix={arXiv}, primaryClass={cs.CL} }
mimi/Waynehills-NLP-doogie
mimi
2022-01-06T08:02:38Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer model-index: - name: Waynehills-NLP-doogie results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Waynehills-NLP-doogie This model is a fine-tuned version of [KETI-AIR/ke-t5-base-ko](https://huggingface.co/KETI-AIR/ke-t5-base-ko) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9188 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 28.2167 | 0.06 | 1000 | 9.7030 | | 10.4479 | 0.12 | 2000 | 7.5450 | | 8.0306 | 0.19 | 3000 | 6.1969 | | 6.503 | 0.25 | 4000 | 5.3015 | | 5.5406 | 0.31 | 5000 | 4.6363 | | 4.7299 | 0.38 | 6000 | 4.0431 | | 3.9263 | 0.44 | 7000 | 3.6313 | | 3.4111 | 0.5 | 8000 | 3.4830 | | 3.0517 | 0.56 | 9000 | 3.3294 | | 2.7524 | 0.62 | 10000 | 3.2077 | | 2.5402 | 0.69 | 11000 | 3.1094 | | 2.3228 | 0.75 | 12000 | 3.1099 | | 2.1513 | 0.81 | 13000 | 3.0284 | | 2.0418 | 0.88 | 14000 | 3.0155 | | 1.8875 | 0.94 | 15000 | 3.0241 | | 1.756 | 1.0 | 16000 | 3.0165 | | 1.6489 | 1.06 | 17000 | 2.9849 | | 1.5788 | 1.12 | 18000 | 2.9496 | | 1.5368 | 1.19 | 19000 | 2.9500 | | 1.4467 | 1.25 | 20000 | 3.0133 | | 1.381 | 1.31 | 21000 | 2.9631 | | 1.3451 | 1.38 | 22000 | 3.0159 | | 1.2917 | 1.44 | 23000 | 2.9906 | | 1.2605 | 1.5 | 24000 | 3.0006 | | 1.2003 | 1.56 | 25000 | 2.9797 | | 1.1987 | 1.62 | 26000 | 2.9253 | | 1.1703 | 1.69 | 27000 | 3.0044 | | 1.1474 | 1.75 | 28000 | 2.9216 | | 1.0816 | 1.81 | 29000 | 2.9645 | | 1.0709 | 1.88 | 30000 | 3.0439 | | 1.0476 | 1.94 | 31000 | 3.0844 | | 1.0645 | 2.0 | 32000 | 2.9434 | | 1.0204 | 2.06 | 33000 | 2.9386 | | 0.9901 | 2.12 | 34000 | 3.0452 | | 0.9911 | 2.19 | 35000 | 2.9798 | | 0.9706 | 2.25 | 36000 | 2.9919 | | 0.9461 | 2.31 | 37000 | 3.0279 | | 0.9577 | 2.38 | 38000 | 2.9615 | | 0.9466 | 2.44 | 39000 | 2.9988 | | 0.9486 | 2.5 | 40000 | 2.9133 | | 0.9201 | 2.56 | 41000 | 3.0004 | | 0.896 | 2.62 | 42000 | 2.9626 | | 0.8893 | 2.69 | 43000 | 2.9667 | | 0.9028 | 2.75 | 44000 | 2.9543 | | 0.897 | 2.81 | 45000 | 2.8760 | | 0.8664 | 2.88 | 46000 | 2.9894 | | 0.8719 | 2.94 | 47000 | 2.8456 | | 0.8491 | 3.0 | 48000 | 2.9713 | | 0.8402 | 3.06 | 49000 | 2.9738 | | 0.8484 | 3.12 | 50000 | 2.9361 | | 0.8304 | 3.19 | 51000 | 2.8945 | | 0.8208 | 3.25 | 52000 | 2.9625 | | 0.8074 | 3.31 | 53000 | 3.0054 | | 0.8226 | 3.38 | 54000 | 2.9405 | | 0.8185 | 3.44 | 55000 | 2.9047 | | 0.8352 | 3.5 | 56000 | 2.9016 | | 0.8289 | 3.56 | 57000 | 2.9490 | | 0.7918 | 3.62 | 58000 | 2.9621 | | 0.8212 | 3.69 | 59000 | 2.9341 | | 0.7955 | 3.75 | 60000 | 2.9167 | | 0.7724 | 3.81 | 61000 | 2.9409 | | 0.8169 | 3.88 | 62000 | 2.8925 | | 0.7862 | 3.94 | 63000 | 2.9314 | | 0.803 | 4.0 | 64000 | 2.9271 | | 0.7595 | 4.06 | 65000 | 2.9263 | | 0.7931 | 4.12 | 66000 | 2.9400 | | 0.7759 | 4.19 | 67000 | 2.9501 | | 0.7859 | 4.25 | 68000 | 2.9133 | | 0.805 | 4.31 | 69000 | 2.8785 | | 0.7649 | 4.38 | 70000 | 2.9060 | | 0.7692 | 4.44 | 71000 | 2.8868 | | 0.7692 | 4.5 | 72000 | 2.9045 | | 0.7798 | 4.56 | 73000 | 2.8951 | | 0.7812 | 4.62 | 74000 | 2.9068 | | 0.7533 | 4.69 | 75000 | 2.9129 | | 0.7527 | 4.75 | 76000 | 2.9157 | | 0.7652 | 4.81 | 77000 | 2.9053 | | 0.7633 | 4.88 | 78000 | 2.9190 | | 0.7437 | 4.94 | 79000 | 2.9251 | | 0.7653 | 5.0 | 80000 | 2.9188 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.5.0 - Tokenizers 0.10.3
XYHY/autonlp-123-478412765
XYHY
2022-01-06T06:22:38Z
106
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autonlp", "unk", "dataset:XYHY/autonlp-data-123", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - XYHY/autonlp-data-123 co2_eq_emissions: 69.86520391863117 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 478412765 - CO2 Emissions (in grams): 69.86520391863117 ## Validation Metrics - Loss: 0.186362624168396 - Accuracy: 0.9539955699437723 - Precision: 0.9527454242928453 - Recall: 0.9572049481778669 - AUC: 0.9903929997079495 - F1: 0.9549699799866577 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/XYHY/autonlp-123-478412765 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("XYHY/autonlp-123-478412765", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("XYHY/autonlp-123-478412765", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
ncduy/phobert-large-finetuned-vietnamese_students_feedback
ncduy
2022-01-06T05:55:30Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "dataset:vietnamese_students_feedback", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - vietnamese_students_feedback metrics: - accuracy model-index: - name: phobert-large-finetuned-vietnamese_students_feedback results: - task: name: Text Classification type: text-classification dataset: name: vietnamese_students_feedback type: vietnamese_students_feedback args: default metrics: - name: Accuracy type: accuracy value: 0.9463044851547694 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # phobert-large-finetuned-vietnamese_students_feedback This model is a fine-tuned version of [vinai/phobert-large](https://huggingface.co/vinai/phobert-large) on the vietnamese_students_feedback dataset. It achieves the following results on the evaluation set: - Loss: 0.2285 - Accuracy: 0.9463 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 477 | 0.2088 | 0.9375 | | 0.3231 | 2.0 | 954 | 0.2463 | 0.9444 | | 0.1805 | 3.0 | 1431 | 0.2285 | 0.9463 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.17.0 - Tokenizers 0.10.3
NahedAbdelgaber/evaluating-student-writing-distibert-ner
NahedAbdelgaber
2022-01-06T05:49:02Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: evaluating-student-writing-distibert-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # evaluating-student-writing-distibert-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7688 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.871 | 1.0 | 1755 | 0.8158 | | 0.7476 | 2.0 | 3510 | 0.7688 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
unicamp-dl/mt5-base-en-pt-msmarco-v2
unicamp-dl
2022-01-05T23:16:47Z
22
1
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "msmarco", "t5", "tensorflow", "pt", "pt-br", "dataset:msmarco", "arxiv:2108.13897", "license:mit", "autotrain_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: pt license: mit tags: - msmarco - t5 - pytorch - tensorflow - pt - pt-br datasets: - msmarco widget: - text: "Texto de exemplo em português" inference: false --- # mt5-base Reranker finetuned on mMARCO ## Introduction mT5-base-en-pt-msmarco-v2 is a mT5-based model fine-tuned on a bilingual version of MS MARCO passage dataset. This bilingual dataset version is formed by the original MS MARCO dataset (in English) and a Portuguese translated version. In the v2 version, the Portuguese dataset was translated using Google Translate. Further information about the dataset or the translation method can be found on our paper [**mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset**](https://arxiv.org/abs/2108.13897) and [mMARCO](https://github.com/unicamp-dl/mMARCO) repository. ## Usage ```python from transformers import T5Tokenizer, MT5ForConditionalGeneration model_name = 'unicamp-dl/mt5-base-en-pt-msmarco-v2' tokenizer = T5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) ``` # Citation If you use mt5-base-en-pt-msmarco-v2, please cite: @misc{bonifacio2021mmarco, title={mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Vitor Jeronymo and Hugo Queiroz Abonizio and Israel Campiotti and Marzieh Fadaee and and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, eprint={2108.13897}, archivePrefix={arXiv}, primaryClass={cs.CL} }