modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
Ayham/roberta_gpt2_new_max64_summarization_cnndm
Ayham
2021-12-27T00:19:01Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer datasets: - cnn_dailymail model-index: - name: roberta_gpt2_new_max64_summarization_cnndm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta_gpt2_new_max64_summarization_cnndm This model is a fine-tuned version of [](https://huggingface.co/) on the cnn_dailymail dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
wilsontam/gpt2-dstc9
wilsontam
2021-12-26T14:02:23Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "dstc9", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: "en" tags: - dstc9 widget: - text: "Yes, I'm going to be in Chinatown, San Francisco and am looking" - text: "Can you find me one that is in the" --- This GPT2 model is trained using DSTC9 data for dialogue modeling purpose. Data link: https://github.com/alexa/alexa-with-dstc9-track1-dataset Credit: Jia-Chen Jason Gu, Wilson Tam
huggingtweets/nateritter-naval
huggingtweets
2021-12-26T06:51:07Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1474979242618195971/Dm_HPJsd_400x400.png&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1256841238298292232/ycqwaMI2_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Nate Ritter & Naval</div> <div style="text-align: center; font-size: 14px;">@nateritter-naval</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Nate Ritter & Naval. | Data | Nate Ritter | Naval | | --- | --- | --- | | Tweets downloaded | 3244 | 3243 | | Retweets | 401 | 171 | | Short tweets | 400 | 629 | | Tweets kept | 2443 | 2443 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1t8lp3s8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @nateritter-naval's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/293roeg0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/293roeg0/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/nateritter-naval') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
nehamj/distilbert-base-uncased-finetuned-squad
nehamj
2021-12-26T04:39:21Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
mohammadtari/arxivinterface
mohammadtari
2021-12-26T02:18:42Z
4
0
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- tags: - generated_from_keras_callback model-index: - name: t5_small_summarization_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # t5_small_summarization_model This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.15.0 - TensorFlow 2.7.0 - Datasets 1.17.0 - Tokenizers 0.10.3
airKlizz/mt5-base-wikinewssum-spanish
airKlizz
2021-12-25T23:19:15Z
13
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "summarization", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-base-wikinewssum-spanish results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-wikinewssum-spanish This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2394 - Rouge1: 7.9732 - Rouge2: 3.5041 - Rougel: 6.6713 - Rougelsum: 7.5229 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | No log | 1.0 | 528 | 2.3707 | 6.687 | 2.9169 | 5.6793 | 6.2978 | | No log | 2.0 | 1056 | 2.3140 | 7.9518 | 3.4529 | 6.7265 | 7.4984 | | No log | 3.0 | 1584 | 2.2848 | 7.9708 | 3.5344 | 6.7272 | 7.534 | | No log | 4.0 | 2112 | 2.2668 | 8.0252 | 3.5323 | 6.7319 | 7.5819 | | 3.2944 | 5.0 | 2640 | 2.2532 | 8.0143 | 3.534 | 6.7155 | 7.582 | | 3.2944 | 6.0 | 3168 | 2.2399 | 7.9525 | 3.4849 | 6.6716 | 7.5155 | | 3.2944 | 7.0 | 3696 | 2.2376 | 7.9405 | 3.4661 | 6.6559 | 7.5043 | | 3.2944 | 8.0 | 4224 | 2.2394 | 7.9732 | 3.5041 | 6.6713 | 7.5229 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.1 - Datasets 1.16.1 - Tokenizers 0.10.3
Andry/1111
Andry
2021-12-25T20:04:09Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:04Z
C:\Users\andry\Desktop\Выжигание 24-12-2021.jpg
s3h/finetuned-arabert-head-gec
s3h
2021-12-25T19:17:45Z
4
0
transformers
[ "transformers", "tf", "bert", "fill-mask", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- tags: - generated_from_keras_callback model-index: - name: s3h/finetuned-arabert-head-gec results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # s3h/finetuned-arabert-head-gec This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 16.9313 - Validation Loss: 19.1589 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 1, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 16.9313 | 19.1589 | 0 | ### Framework versions - Transformers 4.14.1 - TensorFlow 2.6.2 - Datasets 1.17.0 - Tokenizers 0.10.3
s3h/finetuned-mt5-gec
s3h
2021-12-25T18:38:46Z
61
1
transformers
[ "transformers", "tf", "mt5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: s3h/finetuned-mt5-gec results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # s3h/finetuned-mt5-gec This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 23.1236 - Validation Loss: 26.8482 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 3, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 23.1236 | 26.8482 | 0 | ### Framework versions - Transformers 4.14.1 - TensorFlow 2.6.2 - Datasets 1.17.0 - Tokenizers 0.10.3
vanadhi/roberta-base-fiqa-flm-sq-flit
vanadhi
2021-12-25T18:36:54Z
23
1
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer model-index: - name: roberta-base-fiqa-flm-sq-flit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-fiqa-flm-sq-flit This model is a fine-tuned version of roberta-base on a custom dataset create for question answering in financial domain. ## Model description RoBERTa is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. The model was further processed as below for the specific downstream QA task. 1. Pretrained for domain adaptation with Masked language modeling (MLM) objective with the FIQA challenge Opinion-based QA task is available here - https://drive.google.com/file/d/1BlWaV-qVPfpGyJoWQJU9bXQgWCATgxEP/view 2. Pretrained with MLM objective with custom generated dataset for Banking and Finance. 3. Fine Tuned with SQuAD V2 dataset for QA task adaptation. 4. Fine Tuned with custom labeled dataset in SQuAD format for domain and task adaptation. ## Intended uses & limitations The model is intended to be used for a custom Questions Answering system in the BFSI domain. ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.15.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
hrushikute/DanceOnTune
hrushikute
2021-12-25T15:37:14Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
--- title: First Order Motion Model emoji: 🐢 colorFrom: blue colorTo: yellow sdk: gradio app_file: app.py pinned: false --- # Configuration `title`: _string_ Display title for the Space `emoji`: _string_ Space emoji (emoji-only character allowed) `colorFrom`: _string_ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) `colorTo`: _string_ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) `sdk`: _string_ Can be either `gradio` or `streamlit` `sdk_version` : _string_ Only applicable for `streamlit` SDK. See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions. `app_file`: _string_ Path to your main application file (which contains either `gradio` or `streamlit` Python code). Path is relative to the root of the repository. `pinned`: _boolean_ Whether the Space stays on top of your list.
Palak/xlm-roberta-base_squad
Palak
2021-12-25T11:05:12Z
4
1
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: xlm-roberta-base_squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base_squad This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the squad dataset. - "eval_exact_match": 82.69631031220435 - "eval_f1": 89.4562841806503 - "eval_samples": 10918 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.14.1 - Pytorch 1.9.0 - Datasets 1.16.1 - Tokenizers 0.10.3
snoop2head/kogpt-conditional-2
snoop2head
2021-12-25T04:42:13Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
# KoGPT-Conditional-2 ### Condition format ```python # create condition sentence random_main_logit = np.random.normal( loc=3.368, scale=1.015, size=1 )[0].round(1) random_sub_logit = np.random.normal( loc=1.333, scale=0.790, size=1 )[0].round(1) condition_sentence = f"{random_main_logit}만큼 행복감정인 문장이다. {random_sub_logit}만큼 놀람감정인 문장이다. " ``` ### Input Format ```python # make input sentence input_sentence = "수상한 밤들이 계속되던 날, 언젠가부터 나는" condition_plus_input = condition_sentence + input_sentence print(condition_plus_input) ``` ``` 3.9만큼 행복감정인 문장이다. 1.2만큼 놀람감정인 문장이다. 수상한 밤들이 계속되던 날, 언젠가부터 나는 ``` ### How to infer ``` inferred_sentence = infer_sentence(condition_plus_input, k=10, output_token_length=max_token_length) inferred_sentence ``` ``` ['3.9만큼 행복감정인 문장이다. 1.2만큼 놀람감정인 문장이다. 수상한 밤들이 계속되던 날, 언젠가부터 나는 서서히 제정신을 차리고 일어날 수 있었다', '3.9만큼 행복감정인 문장이다. 1.2만큼 놀람감정인 문장이다. 수상한 밤들이 계속되던 날, 언젠가부터 나는 달 보는 걸 좋아하게 되었다', '3.9만큼 행복감정인 문장이다. 1.2만큼 놀람감정인 문장이다. 수상한 밤들이 계속되던 날, 언젠가부터 나는 수상한 사람들의 입을 들여다 볼 수 있었다', '3.9만큼 행복감정인 문장이다. 1.2만큼 놀람감정인 문장이다. 수상한 밤들이 계속되던 날, 언젠가부터 나는 이상한 나라의 앨리스가 되어 있었다', '3.9만큼 행복감정인 문장이다. 1.2만큼 놀람감정인 문장이다. 수상한 밤들이 계속되던 날, 언젠가부터 나는 기이한 경험을 했다', '3.9만큼 행복감정인 문장이다. 1.2만큼 놀람감정인 문장이다. 수상한 밤들이 계속되던 날, 언젠가부터 나는 이상하게도 평화가 찾아온다는 사실을 깨달았다', '3.9만큼 행복감정인 문장이다. 1.2만큼 놀람감정인 문장이다. 수상한 밤들이 계속되던 날, 언젠가부터 나는 어둠을 뚫는 무언가가 있다는 걸 알았다', '3.9만큼 행복감정인 문장이다. 1.2만큼 놀람감정인 문장이다. 수상한 밤들이 계속되던 날, 언젠가부터 나는 달빛의 의미를 이해하기 시작했다', '3.9만큼 행복감정인 문장이다. 1.2만큼 놀람감정인 문장이다. 수상한 밤들이 계속되던 날, 언젠가부터 나는 안방에서 잘 때 내 손을 꼭 잡았다', '3.9만큼 행복감정인 문장이다. 1.2만큼 놀람감정인 문장이다. 수상한 밤들이 계속되던 날, 언젠가부터 나는 이상한 나라의 앨리스처럼 눈을 반짝이며 주위를 탐구하기 시작했다'] ```
BigSalmon/MrLincolnBerta
BigSalmon
2021-12-24T21:54:31Z
5
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
Example Prompt: ``` informal english: things are better when they are open source, because they are constantly being updated to enhance experience. Translated into the Style of Abraham Lincoln: in the open-source paradigm, code is ( ceaselessly / perpetually ) being ( reengineered / revamped / polished ), thereby ( advancing / enhancing / optimizing / <mask> ) the user experience. ``` Demo: https://huggingface.co/spaces/BigSalmon/MASK2
federicopascual/distilbert-base-uncased-finetuned-cola
federicopascual
2021-12-24T21:52:47Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5370037450559281 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7480 - Matthews Correlation: 0.5370 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5292 | 1.0 | 535 | 0.5110 | 0.4239 | | 0.3508 | 2.0 | 1070 | 0.4897 | 0.4993 | | 0.2346 | 3.0 | 1605 | 0.6275 | 0.5029 | | 0.1806 | 4.0 | 2140 | 0.7480 | 0.5370 | | 0.1291 | 5.0 | 2675 | 0.8841 | 0.5200 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
Palak/albert-base-v2_squad
Palak
2021-12-24T18:16:45Z
9
1
transformers
[ "transformers", "pytorch", "albert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: albert-base-v2_squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-base-v2_squad This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the **squadV1** dataset. - "eval_exact_match": 82.69631031220435 - "eval_f1": 90.10806626207174 - "eval_samples": 10808 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.14.1 - Pytorch 1.9.0 - Datasets 1.16.1 - Tokenizers 0.10.3
Palak/google_electra-small-discriminator_squad
Palak
2021-12-24T18:15:49Z
10
0
transformers
[ "transformers", "pytorch", "electra", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: google_electra-small-discriminator_squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # google_electra-small-discriminator_squad This model is a fine-tuned version of [google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) on the **squadV1** dataset. - "eval_exact_match": 76.95364238410596 - "eval_f1": 84.98869246841396 - "eval_samples": 10784 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.14.1 - Pytorch 1.9.0 - Datasets 1.16.1 - Tokenizers 0.10.3
Palak/albert-large-v2_squad
Palak
2021-12-24T18:13:12Z
4
0
transformers
[ "transformers", "pytorch", "albert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: albert-large-v2_squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-large-v2_squad This model is a fine-tuned version of [albert-large-v2](https://huggingface.co/albert-large-v2) on the **squadV1** dataset. - "eval_exact_match": 84.80605487228004 - "eval_f1": 91.80638438705844 - "eval_samples": 10808 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.14.1 - Pytorch 1.9.0 - Datasets 1.16.1 - Tokenizers 0.10.3
toasthans/Twitter_Mit_HPSearch
toasthans
2021-12-24T15:52:45Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: Twitter_Mit_HPSearch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Twitter_Mit_HPSearch This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8389 - Accuracy: 0.8442 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.9771872814096894e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 23 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 421 | 0.3838 | 0.8353 | | 0.4401 | 2.0 | 842 | 0.4340 | 0.8424 | | 0.2042 | 3.0 | 1263 | 0.6857 | 0.8508 | | 0.0774 | 4.0 | 1684 | 0.8389 | 0.8442 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
DeepPavlov/roberta-large-winogrande
DeepPavlov
2021-12-24T14:20:49Z
14
1
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "en", "dataset:winogrande", "arxiv:1907.10641", "arxiv:1907.11692", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: - en datasets: - winogrande widget: - text: "The roof of Rachel's home is old and falling apart, while Betty's is new. The home value of </s> Rachel is lower." - text: "The wooden doors at my friends work are worse than the wooden desks at my work, because the </s> desks material is cheaper." - text: "Postal Service were to reduce delivery frequency. </s> The postal service could deliver less frequently." - text: "I put the cake away in the refrigerator. It has a lot of butter in it. </s> The cake has a lot of butter in it." --- # RoBERTa Large model fine-tuned on Winogrande This model was fine-tuned on Winogrande dataset (XL size) in sequence classification task format, meaning that original pairs of sentences with corresponding options filled in were separated, shuffled and classified independently of each other. ## Model description ## Intended use & limitations ### How to use ## Training data [WinoGrande-XL](https://huggingface.co/datasets/winogrande) reformatted the following way: 1. Each sentence was split on "`_`" placeholder symbol. 2. Each option was concatenated with the second part of the split, thus transforming each example into two text segment pairs. 3. Text segment pairs corresponding to correct and incorrect options were marked with `True` and `False` labels accordingly. 4. Text segment pairs were shuffled thereafter. For example, ```json { "answer": "2", "option1": "plant", "option2": "urn", "sentence": "The plant took up too much room in the urn, because the _ was small." } ``` becomes ```json { "sentence1": "The plant took up too much room in the urn, because the ", "sentence2": "plant was small.", "label": false } ``` and ```json { "sentence1": "The plant took up too much room in the urn, because the ", "sentence2": "urn was small.", "label": true } ``` These sentence pairs are then treated as independent examples. ### BibTeX entry and citation info ```bibtex @article{sakaguchi2019winogrande, title={WinoGrande: An Adversarial Winograd Schema Challenge at Scale}, author={Sakaguchi, Keisuke and Bras, Ronan Le and Bhagavatula, Chandra and Choi, Yejin}, journal={arXiv preprint arXiv:1907.10641}, year={2019} } @article{DBLP:journals/corr/abs-1907-11692, author = {Yinhan Liu and Myle Ott and Naman Goyal and Jingfei Du and Mandar Joshi and Danqi Chen and Omer Levy and Mike Lewis and Luke Zettlemoyer and Veselin Stoyanov}, title = {RoBERTa: {A} Robustly Optimized {BERT} Pretraining Approach}, journal = {CoRR}, volume = {abs/1907.11692}, year = {2019}, url = {http://arxiv.org/abs/1907.11692}, archivePrefix = {arXiv}, eprint = {1907.11692}, timestamp = {Thu, 01 Aug 2019 08:59:33 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-1907-11692.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
ai-forever/ru-clip
ai-forever
2021-12-24T11:51:15Z
0
3
null
[ "PyTorch", "Text2Image", "ru", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: - ru tags: - PyTorch - Text2Image thumbnail: "https://github.com/sberbank-ai/ru-clip" --- # Model Card: ruCLIP Disclaimer: The code for using model you can found [here](https://github.com/sberbank-ai/ru-clip). # Model Details The ruCLIP model was developed by researchers at SberDevices and Sber AI based on origin OpenAI paper. # Model Type The model uses a ViT-B/32 Transformer architecture (initialized from OpenAI checkpoint and freezed while training) as an image encoder and uses [ruGPT3Small](https://github.com/sberbank-ai/ru-gpts) as a text encoder. These encoders are trained to maximize the similarity of (image, text) pairs via a contrastive loss. # Documents Our habr [post](https://habr.com/ru/company/sberdevices/blog/564440/). # Usage Code for using model you can obtain in our [repo](https://github.com/sberbank-ai/ru-clip). ``` from clip.evaluate.utils import ( get_text_batch, get_image_batch, get_tokenizer, show_test_images, load_weights_only ) import torch # Load model and tokenizer model, args = load_weights_only("ViT-B/32-small") model = model.cuda().float().eval() tokenizer = get_tokenizer() # Load test images and prepare for model images, texts = show_test_images(args) input_ids, attention_mask = get_text_batch(["Это " + desc for desc in texts], tokenizer, args) img_input = get_image_batch(images, args.img_transform, args) # Call model with torch.no_grad(): logits_per_image, logits_per_text = model( img_input={"x": img_input}, text_input={"x": input_ids, "attention_mask": attention_mask} ) ``` # Performance We evaluate our model on CIFAR100 and CIFAR10 datasets. zero-shot classification CIFAR100 top1 accuracy 0.4057; top5 accuracy 0.6975. zero-shot classification CIFAR10 top1 accuracy 0.7803; top5 accuracy 0.9834.
hiraki/wav2vec2-base-timit-demo-colab
hiraki
2021-12-24T10:51:35Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.3780 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 0.08 | 10 | 14.0985 | 1.0 | | No log | 0.16 | 20 | 13.8638 | 1.0004 | | No log | 0.24 | 30 | 13.5135 | 1.0023 | | No log | 0.32 | 40 | 12.8708 | 1.0002 | | No log | 0.4 | 50 | 11.6927 | 1.0 | | No log | 0.48 | 60 | 10.2733 | 1.0 | | No log | 0.56 | 70 | 8.1396 | 1.0 | | No log | 0.64 | 80 | 5.3503 | 1.0 | | No log | 0.72 | 90 | 3.7975 | 1.0 | | No log | 0.8 | 100 | 3.4275 | 1.0 | | No log | 0.88 | 110 | 3.3596 | 1.0 | | No log | 0.96 | 120 | 3.3780 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
GuoLiyong/cn_conformer_encoder_aishell
GuoLiyong
2021-12-24T06:18:09Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:04Z
Modified from: https://huggingface.co/pkufool/icefall_asr_aishell_conformer_ctc 1. remove unused parts by ctc greedy search for tutorial only.
cb-insights-team/news_ner
cb-insights-team
2021-12-23T21:43:21Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
An NER model to detect company and person names from news articles.
BigSalmon/InformalToFormalLincoln16
BigSalmon
2021-12-23T18:48:23Z
10
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
Informal to Formal: ``` from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln16") model = AutoModelWithLMHead.from_pretrained("BigSalmon/InformalToFormalLincoln16") ``` ``` https://huggingface.co/spaces/BigSalmon/GPT2 (The model for this space changes over time) ``` ``` https://huggingface.co/spaces/BigSalmon/GPT2_Most_Probable (The model for this space changes over time) ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ````
toasthans/Facebook_Mit_HPS
toasthans
2021-12-23T17:47:19Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: Facebook_Mit_HPS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Facebook_Mit_HPS This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3681 - Accuracy: 0.9281 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.906763521176542e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 30 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 292 | 0.2394 | 0.9238 | | 0.2248 | 2.0 | 584 | 0.3112 | 0.9178 | | 0.2248 | 3.0 | 876 | 0.3681 | 0.9281 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
chrisAS12/specseminars
chrisAS12
2021-12-23T14:19:18Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
These models were made for my course project in NLP and AI special course at the University of Latvia during my first semester of study.
Monsia/test-model-lg-data
Monsia
2021-12-23T14:03:38Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: test-model-lg-data results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-model-lg-data This model is a fine-tuned version of [Monsia/test-model-lg-data](https://huggingface.co/Monsia/test-model-lg-data) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3354 - Wer: 0.4150 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0236 | 0.67 | 100 | 0.4048 | 0.4222 | | 0.0304 | 1.35 | 200 | 0.4266 | 0.4809 | | 0.0545 | 2.03 | 300 | 0.4309 | 0.4735 | | 0.0415 | 2.7 | 400 | 0.4269 | 0.4595 | | 0.033 | 3.38 | 500 | 0.4085 | 0.4537 | | 0.0328 | 4.05 | 600 | 0.3642 | 0.4224 | | 0.0414 | 4.73 | 700 | 0.3354 | 0.4150 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.13.3 - Tokenizers 0.10.3
airKlizz/mt5-base-wikinewssum-all-languages
airKlizz
2021-12-23T12:56:06Z
10
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "summarization", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-base-wikinewssum-all-languages results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-wikinewssum-all-languages This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2454 - Rouge1: 8.3826 - Rouge2: 3.5524 - Rougel: 6.8656 - Rougelsum: 7.8362 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:| | No log | 1.0 | 3467 | 2.4034 | 8.0363 | 3.2484 | 6.5409 | 7.477 | | No log | 2.0 | 6934 | 2.3276 | 8.1054 | 3.2905 | 6.5765 | 7.5687 | | No log | 3.0 | 10401 | 2.2976 | 8.169 | 3.4272 | 6.6597 | 7.6435 | | No log | 4.0 | 13868 | 2.2795 | 8.2941 | 3.5353 | 6.7881 | 7.7664 | | 2.8057 | 5.0 | 17335 | 2.2621 | 8.3302 | 3.5599 | 6.8238 | 7.7928 | | 2.8057 | 6.0 | 20802 | 2.2547 | 8.3818 | 3.5886 | 6.8672 | 7.844 | | 2.8057 | 7.0 | 24269 | 2.2472 | 8.3809 | 3.5696 | 6.8575 | 7.8327 | | 2.8057 | 8.0 | 27736 | 2.2454 | 8.3826 | 3.5524 | 6.8656 | 7.8362 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.1 - Datasets 1.16.1 - Tokenizers 0.10.3
toasthans/Facebook_Mit_HPS_5_Epoch
toasthans
2021-12-23T08:27:55Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: Facebook_Mit_HPS_5_Epoch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Facebook_Mit_HPS_5_Epoch This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4774 - Accuracy: 0.9315 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.546392051994155e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 5 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 292 | 0.2181 | 0.9264 | | 0.2411 | 2.0 | 584 | 0.2571 | 0.9289 | | 0.2411 | 3.0 | 876 | 0.5712 | 0.8947 | | 0.0558 | 4.0 | 1168 | 0.4675 | 0.9332 | | 0.0558 | 5.0 | 1460 | 0.4774 | 0.9315 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
YYJ/KunquChat
YYJ
2021-12-23T07:21:17Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
# 经典昆曲欣赏 期末作业 ## KunquChat Author: 1900012921 俞跃江
KoichiYasuoka/roberta-small-japanese-aozora-char
KoichiYasuoka
2021-12-23T02:55:42Z
5
1
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "japanese", "masked-lm", "ja", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: - "ja" tags: - "japanese" - "masked-lm" license: "cc-by-sa-4.0" pipeline_tag: "fill-mask" mask_token: "[MASK]" widget: - text: "日本に着いたら[MASK]を訪ねなさい。" --- # roberta-small-japanese-aozora-char ## Model Description This is a RoBERTa model pre-trained on 青空文庫 texts with character tokenizer. You can fine-tune `roberta-small-japanese-aozora-char` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/roberta-small-japanese-char-luw-upos), dependency-parsing, and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-small-japanese-aozora-char") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/roberta-small-japanese-aozora-char") ```
deep-learning-analytics/GrammarCorrector
deep-learning-analytics
2021-12-23T02:51:34Z
623
13
transformers
[ "transformers", "pytorch", "tf", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
## Model description T5 model trained for Grammar Correction. This model corrects grammatical mistakes in input sentences ### Dataset Description The T5-base model has been trained on C4_200M dataset. ### Model in Action 🚀 ``` import torch from transformers import T5Tokenizer, T5ForConditionalGeneration model_name = 'deep-learning-analytics/GrammarCorrector' torch_device = 'cuda' if torch.cuda.is_available() else 'cpu' tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name).to(torch_device) def correct_grammar(input_text,num_return_sequences): batch = tokenizer([input_text],truncation=True,padding='max_length',max_length=64, return_tensors="pt").to(torch_device) translated = model.generate(**batch,max_length=64,num_beams=num_beams, num_return_sequences=num_return_sequences, temperature=1.5) tgt_text = tokenizer.batch_decode(translated, skip_special_tokens=True) return tgt_text ``` ### Example Usage ``` text = 'He are moving here.' print(correct_grammar(text, num_return_sequences=2)) ['He is moving here.', 'He is moving here now.'] ``` Another example ``` text = 'Cat drinked milk' print(correct_grammar(text, num_return_sequences=2)) ['Cat drank milk.', 'Cat drink milk.'] ``` Model Developed by [Priya-Dwivedi](https://www.linkedin.com/in/priyanka-dwivedi-6864362)
Ayham/albert_gpt2_summarization_cnndm
Ayham
2021-12-23T01:36:49Z
14
0
transformers
[ "transformers", "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer datasets: - cnn_dailymail model-index: - name: albert_large_gpt2_summarization_cnndm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert_large_gpt2_summarization_cnndm This model is a fine-tuned version of [](https://huggingface.co/) on the cnn_dailymail dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
BigSalmon/InformalToFormalLincoln15
BigSalmon
2021-12-22T22:40:25Z
8
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
Informal to Formal: ``` from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln15") model = AutoModelWithLMHead.from_pretrained("BigSalmon/InformalToFormalLincoln15") ``` ``` https://huggingface.co/spaces/BigSalmon/GPT2 (The model for this space changes over time) ``` ``` https://huggingface.co/spaces/BigSalmon/GPT2_Most_Probable (The model for this space changes over time) ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. The guys were ( enlisted to spearhead the cause / tasked with marshaling the movement forward / charged with driving the initiative onward / vested with the assignment of forwarding the mission) informal english: friday should no longer be a workday, but a day added to the weekend, suffusing people with the ability to spend time with their families. Translated into the Style of Abraham Lincoln: the weekend should come to include friday, ( broadening the window of time for one to be in the company of their family / ( multiplying / swelling / turbocharging / maximizing ) the interval for one to ( reconnect with / feel the warmth of ) their loved ones ). informal english: ````
SajjadAyoubi/clip-fa-text
SajjadAyoubi
2021-12-22T19:02:56Z
1,578
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "arxiv:2103.00020", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:04Z
# CLIPfa: Connecting Farsi Text and Images OpenAI released [`the paper Learning Transferable Visual Models From Natural Language Supervision`](https://arxiv.org/abs/2103.00020) in which they present the CLIP (Contrastive Language–Image Pre-training) model. This model is trained to connect text and images, by matching their corresponding vector representations using a contrastive learning objective. CLIP consists of two separate models, a vision encoder and a text encoder. These were trained on 400 Million images and corresponding captions. We have trained a Farsi (Persian) version of OpenAI's CLIP on a dataset of 400,000 (image, text) pairs. We used [`Farahani's RoBERTa-fa`](https://huggingface.co/m3hrdadfi/roberta-zwnj-wnli-mean-tokens) as the text encoder and [‍‍`ViT‍`](https://huggingface.co/openai/clip-vit-base-patch32) as the vision encoder from Original CLIP and finetuned them. - It should be noted that only 400K pairs were used for this training, whereas 4 million pairs were used for the Original CLIP. Also, the training took 30 days across 592 GPUs powered by the V100 chip. ## How to use? Both models generate vectors with 768 dimensions. ```python from transformers import CLIPVisionModel, RobertaModel, AutoTokenizer, CLIPFeatureExtractor # download pre-trained models vision_encoder = CLIPVisionModel.from_pretrained('SajjadAyoubi/clip-fa-vision') preprocessor = CLIPFeatureExtractor.from_pretrained('SajjadAyoubi/clip-fa-vision') text_encoder = RobertaModel.from_pretrained('SajjadAyoubi/clip-fa-text') tokenizer = AutoTokenizer.from_pretrained('SajjadAyoubi/clip-fa-text') # define input image and input text text = 'something' image = PIL.Image.open('my_favorite_image.jpg') # compute embeddings text_embedding = text_encoder(**tokenizer(text, return_tensors='pt')).pooler_output image_embedding = vision_encoder(**preprocessor(image, return_tensors='pt')).pooler_output text_embedding.shape == image_embedding.shape ``` ## Demo: The followings are just some use cases of CLIPfa on 25K [`Unsplash images`](https://github.com/unsplash/datasets) - use `pip install -q git+https://github.com/sajjjadayobi/clipfa.git` ```python from clipfa import CLIPDemo demo = CLIPDemo(vision_encoder, text_encoder, tokenizer) demo.compute_text_embeddings(['گاو' ,'اسب' ,'ماهی']) demo.compute_image_embeddings(test_df.image_path.to_list()) ``` ## Online Demo: [CLIPfa at Huggingface🤗 spaces](https://huggingface.co/spaces/SajjadAyoubi/CLIPfa-Demo) We used a small set of images (25K) to keep this app almost real-time, but it's obvious that the quality of image search depends heavily on the size of the image database. > Made with ❤️ in my basement🤫
microsoft/wavlm-base-plus
microsoft
2021-12-22T17:23:24Z
1,798,625
28
transformers
[ "transformers", "pytorch", "wavlm", "feature-extraction", "speech", "en", "arxiv:1912.07875", "arxiv:2106.06909", "arxiv:2101.00390", "arxiv:2110.13900", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: - en datasets: tags: - speech inference: false --- # WavLM-Base-Plus [Microsoft's WavLM](https://github.com/microsoft/unilm/tree/master/wavlm) The base model pretrained on 16kHz sampled speech audio. When using the model, make sure that your speech input is also sampled at 16kHz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more in-detail explanation of how to fine-tune the model. The model was pre-trained on: - 60,000 hours of [Libri-Light](https://arxiv.org/abs/1912.07875) - 10,000 hours of [GigaSpeech](https://arxiv.org/abs/2106.06909) - 24,000 hours of [VoxPopuli](https://arxiv.org/abs/2101.00390) [Paper: WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) Authors: Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei **Abstract** *Self-supervised learning (SSL) achieves great success in speech recognition, while limited exploration has been attempted for other speech processing tasks. As speech signal contains multi-faceted information including speaker identity, paralinguistics, spoken content, etc., learning universal representations for all speech tasks is challenging. In this paper, we propose a new pre-trained model, WavLM, to solve full-stack downstream speech tasks. WavLM is built based on the HuBERT framework, with an emphasis on both spoken content modeling and speaker identity preservation. We first equip the Transformer structure with gated relative position bias to improve its capability on recognition tasks. For better speaker discrimination, we propose an utterance mixing training strategy, where additional overlapped utterances are created unsupervisely and incorporated during model training. Lastly, we scale up the training dataset from 60k hours to 94k hours. WavLM Large achieves state-of-the-art performance on the SUPERB benchmark, and brings significant improvements for various speech processing tasks on their representative benchmarks.* The original model can be found under https://github.com/microsoft/unilm/tree/master/wavlm. # Usage This is an English pre-trained speech model that has to be fine-tuned on a downstream task like speech recognition or audio classification before it can be used in inference. The model was pre-trained in English and should therefore perform well only in English. The model has been shown to work well on the [SUPERB benchmark](https://superbbenchmark.org/). **Note**: The model was pre-trained on phonemes rather than characters. This means that one should make sure that the input text is converted to a sequence of phonemes before fine-tuning. ## Speech Recognition To fine-tune the model for speech recognition, see [the official speech recognition example](https://github.com/huggingface/transformers/tree/master/examples/pytorch/speech-recognition). ## Speech Classification To fine-tune the model for speech classification, see [the official audio classification example](https://github.com/huggingface/transformers/tree/master/examples/pytorch/audio-classification). ## Speaker Verification TODO ## Speaker Diarization TODO # Contribution The model was contributed by [cywang](https://huggingface.co/cywang) and [patrickvonplaten](https://huggingface.co/patrickvonplaten). # License The official license can be found [here](https://github.com/microsoft/UniSpeech/blob/main/LICENSE) ![design](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/wavlm.png)
deepparag/DumBot-Beta
deepparag
2021-12-22T16:32:40Z
6
0
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "conversational", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- thumbnail: https://cdn.discordapp.com/app-icons/870239976690970625/c02cae78ae105f07969cfd8f8ea3d0a0.png tags: - conversational license: mit --- An generative AI made using [microsoft/DialoGPT-small](https://huggingface.co/microsoft/DialoGPT-small). Trained on: https://www.kaggle.com/Cornell-University/movie-dialog-corpus https://www.kaggle.com/jef1056/discord-data Important: The AI can be a bit weird at times as it is still undergoing training! At times it send stuff using :<random_wierd_words>: as they are discord emotes. It also send random @RandomName as it is trying to ping people. This works well on discord but on the web not so much but it is easy enough to remove such stuff using [re.sub](https://docs.python.org/3/library/re.html#re.sub) Issues: The AI like with all conversation AI lacks a character, it changes its name way too often. This can be solved using an AIML chatbot to give it a stable character! [Live Demo](https://dumbot-331213.uc.r.appspot.com/) Example: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("deepparag/DumBot") model = AutoModelWithLMHead.from_pretrained("deepparag/DumBot") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=4, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("DumBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
huggingartists/100-gecs
huggingartists
2021-12-22T15:23:59Z
103
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/100-gecs", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/100-gecs tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/9fd98af9a817af8cd78636f71895b6ad.500x500x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">100 gecs</div> <a href="https://genius.com/artists/100-gecs"> <div style="text-align: center; font-size: 14px;">@100-gecs</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from 100 gecs. Dataset is available [here](https://huggingface.co/datasets/huggingartists/100-gecs). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/100-gecs") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3c9j4tvq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on 100 gecs's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1v0ffa4e) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1v0ffa4e/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/100-gecs') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/100-gecs") model = AutoModelWithLMHead.from_pretrained("huggingartists/100-gecs") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
MMG/bert-base-spanish-wwm-cased-finetuned-squad2-es
MMG
2021-12-22T13:11:46Z
20
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "es", "dataset:squad_es", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer datasets: - squad_es model-index: - name: bert-base-spanish-wwm-cased-finetuned-squad2-es results: [] language: - es --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-spanish-wwm-cased-finetuned-squad2-es This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-cased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) on the squad_es dataset. It achieves the following results on the evaluation set: - Loss: 1.2841 {'exact': 62.53162421993591, 'f1': 69.33421368741254} ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
ayameRushia/roberta-base-indonesian-sentiment-analysis-smsa
ayameRushia
2021-12-22T10:33:50Z
51
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "dataset:indonlu", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - indonlu metrics: - accuracy model-index: - name: roberta-base-indonesian-sentiment-analysis-smsa results: - task: name: Text Classification type: text-classification dataset: name: indonlu type: indonlu args: smsa metrics: - name: Accuracy type: accuracy value: 0.9349206349206349 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-indonesian-sentiment-analysis-smsa This model is a fine-tuned version of [flax-community/indonesian-roberta-base](https://huggingface.co/flax-community/indonesian-roberta-base) on the indonlu dataset. It achieves the following results on the evaluation set: - Loss: 0.4252 - Accuracy: 0.9349 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7582 | 1.0 | 688 | 0.3280 | 0.8786 | | 0.3225 | 2.0 | 1376 | 0.2398 | 0.9206 | | 0.2057 | 3.0 | 2064 | 0.2574 | 0.9230 | | 0.1642 | 4.0 | 2752 | 0.2820 | 0.9302 | | 0.1266 | 5.0 | 3440 | 0.3344 | 0.9317 | | 0.0608 | 6.0 | 4128 | 0.3543 | 0.9341 | | 0.058 | 7.0 | 4816 | 0.4252 | 0.9349 | | 0.0315 | 8.0 | 5504 | 0.4736 | 0.9310 | | 0.0166 | 9.0 | 6192 | 0.4649 | 0.9349 | | 0.0143 | 10.0 | 6880 | 0.4648 | 0.9341 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
dpasch01/finetune-clm-employment
dpasch01
2021-12-22T07:59:51Z
161
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: finetune-clm-employment results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetune-clm-employment This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8445 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.3283 | 1.0 | 3989 | 1.9578 | | 2.0824 | 2.0 | 7978 | 1.9013 | | 1.9936 | 3.0 | 11967 | 1.8625 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
huggingtweets/whaletrades
huggingtweets
2021-12-22T03:45:47Z
4
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/whaletrades/1640144742826/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1174047724204941312/vziG0yQb_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">WhaleTrades.eth 🐳</div> <div style="text-align: center; font-size: 14px;">@whaletrades</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from WhaleTrades.eth 🐳. | Data | WhaleTrades.eth 🐳 | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 2 | | Short tweets | 0 | | Tweets kept | 3248 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/dpqkmlah/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @whaletrades's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2t4vyqca) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2t4vyqca/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/whaletrades') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/_luisinhobr-beckvencido
huggingtweets
2021-12-22T02:57:34Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/_luisinhobr-beckvencido/1640141850327/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1470914400764715012/YO9XqA0n_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1390224220643278850/LcIZLss-_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">agrummgit ag😜 & luisfer nando</div> <div style="text-align: center; font-size: 14px;">@_luisinhobr-beckvencido</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from agrummgit ag😜 & luisfer nando. | Data | agrummgit ag😜 | luisfer nando | | --- | --- | --- | | Tweets downloaded | 3226 | 2366 | | Retweets | 379 | 367 | | Short tweets | 672 | 503 | | Tweets kept | 2175 | 1496 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/34idoh6o/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @_luisinhobr-beckvencido's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1w6ipjqa) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1w6ipjqa/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/_luisinhobr-beckvencido') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Jeska/BertjeWDialDataALL04
Jeska
2021-12-22T02:47:07Z
18
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer model-index: - name: BertjeWDialDataALL04 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BertjeWDialDataALL04 This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9717 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.2954 | 1.0 | 1542 | 2.0372 | | 2.2015 | 2.0 | 3084 | 2.0104 | | 2.1661 | 3.0 | 4626 | 2.0372 | | 2.1186 | 4.0 | 6168 | 1.9549 | | 2.0939 | 5.0 | 7710 | 1.9438 | | 2.0867 | 6.0 | 9252 | 1.9648 | | 2.0462 | 7.0 | 10794 | 1.9465 | | 2.0315 | 8.0 | 12336 | 1.9412 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
tingtingyuli/wav2vec2-base-timit-demo-colab
tingtingyuli
2021-12-21T22:26:02Z
14
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4371 - Wer: 0.3402 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.6515 | 4.0 | 500 | 1.9481 | 0.9825 | | 0.8007 | 8.0 | 1000 | 0.4364 | 0.4424 | | 0.2559 | 12.0 | 1500 | 0.4188 | 0.3848 | | 0.1483 | 16.0 | 2000 | 0.4466 | 0.3524 | | 0.1151 | 20.0 | 2500 | 0.4492 | 0.3519 | | 0.0971 | 24.0 | 3000 | 0.4568 | 0.3453 | | 0.0765 | 28.0 | 3500 | 0.4371 | 0.3402 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
enelpol/czywiesz-question
enelpol
2021-12-21T21:24:34Z
7
1
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "pl", "dataset:enelpol/czywiesz", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: pl datasets: - enelpol/czywiesz task_categories: - question_answering task_ids: - open-domain-qa multilinguality: - monolingual size_categories: - 1k<n<10K --- ## Model description This is the question encoder for the Polish DPR question answering model. The full model consists of two encoders. Please read [context encoder documentation](https://huggingface.co/enelpol/czywiesz-context) to get the details of the model.
akashsivanandan/wav2vec2-large-xls-r-300m-tamil-colab
akashsivanandan
2021-12-21T18:26:28Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-tamil-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-tamil-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.8072 - Wer: 0.6531 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 11.0967 | 1.0 | 118 | 4.6437 | 1.0 | | 3.4973 | 2.0 | 236 | 3.2588 | 1.0 | | 3.1305 | 3.0 | 354 | 2.6566 | 1.0 | | 1.2931 | 4.0 | 472 | 0.9156 | 0.9944 | | 0.6851 | 5.0 | 590 | 0.7474 | 0.8598 | | 0.525 | 6.0 | 708 | 0.6649 | 0.7995 | | 0.4325 | 7.0 | 826 | 0.6740 | 0.7752 | | 0.3766 | 8.0 | 944 | 0.6220 | 0.7628 | | 0.3256 | 9.0 | 1062 | 0.6316 | 0.7322 | | 0.2802 | 10.0 | 1180 | 0.6442 | 0.7305 | | 0.2575 | 11.0 | 1298 | 0.6885 | 0.7280 | | 0.2248 | 12.0 | 1416 | 0.6702 | 0.7197 | | 0.2089 | 13.0 | 1534 | 0.6781 | 0.7173 | | 0.1893 | 14.0 | 1652 | 0.6981 | 0.7049 | | 0.1652 | 15.0 | 1770 | 0.7154 | 0.7436 | | 0.1643 | 16.0 | 1888 | 0.6798 | 0.7023 | | 0.1472 | 17.0 | 2006 | 0.7381 | 0.6947 | | 0.1372 | 18.0 | 2124 | 0.7240 | 0.7065 | | 0.1318 | 19.0 | 2242 | 0.7305 | 0.6714 | | 0.1211 | 20.0 | 2360 | 0.7288 | 0.6597 | | 0.1178 | 21.0 | 2478 | 0.7417 | 0.6699 | | 0.1118 | 22.0 | 2596 | 0.7476 | 0.6753 | | 0.1016 | 23.0 | 2714 | 0.7973 | 0.6647 | | 0.0998 | 24.0 | 2832 | 0.8027 | 0.6633 | | 0.0917 | 25.0 | 2950 | 0.8045 | 0.6680 | | 0.0907 | 26.0 | 3068 | 0.7884 | 0.6565 | | 0.0835 | 27.0 | 3186 | 0.8009 | 0.6622 | | 0.0749 | 28.0 | 3304 | 0.8123 | 0.6536 | | 0.0755 | 29.0 | 3422 | 0.8006 | 0.6555 | | 0.074 | 30.0 | 3540 | 0.8072 | 0.6531 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
s3h/mt5-small-finetuned-src-to-trg-testing
s3h
2021-12-21T17:28:28Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: mt5-small-finetuned-src-to-trg-testing results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-src-to-trg-testing This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 15.8614 - Bleu: 0.1222 - Gen Len: 3.75 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 1.0 | 4 | 15.8782 | 0.1222 | 3.75 | | No log | 2.0 | 8 | 15.7909 | 0.1222 | 3.75 | | No log | 3.0 | 12 | 15.8614 | 0.1222 | 3.75 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.7.1 - Datasets 1.16.2.dev0 - Tokenizers 0.10.3
LACAI/gpt2-xl-dialog-narrative-persuasion
LACAI
2021-12-21T17:22:02Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
Base model: [gpt2-xl](https://huggingface.co/gpt2-xl) Domain-adapted for dialogue response and narrative generation on a [narrative-aligned variant](https://github.com/AbrahamSanders/gutenberg-dialog#download-narrative-aligned-datasets) of the [Gutenberg Dialogue Dataset (Csaky & Recski, 2021)](https://aclanthology.org/2021.eacl-main.11.pdf) Fine-tuned for dialogue response generation on [Persuasion For Good (Wang et al., 2019)](https://aclanthology.org/P19-1566.pdf) ([dataset](https://gitlab.com/ucdavisnlp/persuasionforgood))
davanstrien/book-genre-classification
davanstrien
2021-12-21T16:05:46Z
6
2
adapter-transformers
[ "adapter-transformers", "bert", "adapterhub:text-classification", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - bert - adapterhub:text-classification - adapter-transformers --- # Adapter `davanstrien/book-genre-classification` for bert-base-cased An [adapter](https://adapterhub.ml) for the `bert-base-cased` model that was trained on the [text-classification](https://adapterhub.ml/explore/text-classification/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-cased") adapter_name = model.load_adapter("davanstrien/book-genre-classification", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
espnet/ftshijt_espnet2_asr_yolo_mixtec_transformer
espnet
2021-12-21T15:59:04Z
3
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "dataset:yolo_mixtec", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - espnet - audio - automatic-speech-recognition language: noinfo datasets: - yolo_mixtec license: cc-by-4.0 --- ## ESPnet2 ASR model ### `espnet/ftshijt_espnet2_asr_yolo_mixtec_transformer` This model was trained by ftshijt using yolo_mixtec recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet pip install -e . cd els/yolo_mixtec/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/ftshijt_espnet2_asr_yolo_mixtec_transformer ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Wed Nov 10 02:59:39 EST 2021` - python version: `3.9.7 (default, Sep 16 2021, 13:09:58) [GCC 7.5.0]` - espnet version: `espnet 0.10.4a1` - pytorch version: `pytorch 1.9.0` - Git hash: `` - Commit date: `` ## asr_train_asr_transformer_specaug_raw_bpe500 ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_bpe500_valid.loss.ave_asr_model_valid.acc.best/test|4985|81348|84.1|11.8|4.1|2.5|18.3|82.5| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_bpe500_valid.loss.ave_asr_model_valid.acc.best/test|4985|626187|93.4|2.2|4.4|2.4|9.0|82.5| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_bpe500_valid.loss.ave_asr_model_valid.acc.best/test|4985|325684|90.7|5.2|4.1|2.2|11.5|82.5| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_transformer_specaug.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_transformer_specaug_raw_bpe500 ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 100 patience: 15 val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 grad_clip: 5 grad_clip_type: 2.0 grad_noise: false accum_grad: 2 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 32 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_bpe500/train/speech_shape - exp/asr_stats_raw_bpe500/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_bpe500/valid/speech_shape - exp/asr_stats_raw_bpe500/valid/text_shape.bpe batch_type: folded valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - /tmp/st-jiatong-54826.tbQP9L0N/raw/train/wav.scp - speech - kaldi_ark - - /tmp/st-jiatong-54826.tbQP9L0N/raw/train/text - text - text valid_data_path_and_name_and_type: - - /tmp/st-jiatong-54826.tbQP9L0N/raw/dev/wav.scp - speech - kaldi_ark - - /tmp/st-jiatong-54826.tbQP9L0N/raw/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 1.0 scheduler: noamlr scheduler_conf: warmup_steps: 25000 token_list: - <blank> - <unk> - '4' - '3' - '1' - '2' - A - ▁NDI - '''4' - '''1' - U - ▁BA - O - ▁I - E - 4= - ▁KU - ▁TAN - ▁KA - '''3' - NI - ▁YA - RA - 3= - 2= - IN - NA - ▁TA - AN - ▁KAN - ▁NI - ▁NDA - ▁NA - ▁JI - KAN - CHI - (3)= - I - UN - 1- - ▁SA - (4)= - ▁JA - XI - ▁KO - ▁TI - TA - KU - BI - ▁YU - ▁KWA - KA - XA - 1= - ▁YO - RI - NDO - ▁XA - TU - ▁TU - ▁ÑA - ▁KI - ▁XI - YO - NDU - NDA - ▁CHI - (2)= - ▁BI - ▁NU - KI - (1)= - YU - 3- - ▁MI - 'ON' - ▁A - BA - 4- - KO - ▁NDU - ▁ÑU - ▁NDO - NU - ÑU - '143' - ▁SI - ▁SO - 13- - NDI - ▁AN - ▁SU - TIN - SA - ▁BE - TO - RUN - KWA - KWI - ▁NDE - ▁KWI - XIN - ▁U - SI - SO - ▁TUN - EN - ▁KWE - YA - (4)=2 - NDE - TI - TUN - ▁TIN - MA - ▁SE - ▁XU - SU - ▁LU - ▁KE - ▁ - MI - ▁RAN - (3)=2 - 14- - ▁MA - KUN - LU - N - ▁O - KE - NGA - ▁IS - ▁JU - '=' - ▁LA - ÑA - JA - CHUN - R - TAN - PU - ▁TIEM - LI - LA - CHIU - ▁PA - M - ▁REY - ▁BAN - JI - L - SUN - ▁SEÑOR - ▁JO - ▁TIO - KWE - CHU - S - ▁YE - KIN - XU - BE - ▁CUENTA - ▁SAN - RRU - ▁¿ - CHA - ▁TO - RRA - LO - TE - ▁AMIGU - PA - XAN - ▁C - C - ▁CHA - ▁TE - ▁HIJO - ▁MB - ▁PI - G - ▁ÁNIMA - ▁CHE - ▁P - B - NDIO - SE - ▁SANTU - MU - ▁PADRE - D - JU - Z - ▁TORO - ▁PO - LE - ▁LI - RO - ▁LO - ▁MESA - CA - ▁CHIU - DO - ▁BU - ▁BUTA - JO - T - TRU - RU - ▁MBO - ▁JUAN - ▁MM - ▁CA - ▁M - ▁MAS - ▁DE - V - ▁MAÑA - ▁UTA - DA - ▁MULA - ▁YOLOXÓCHITL - ▁CONSEJU - ▁Y - ▁LE - ÓN - ▁MISA - TIU - ▁CANDELA - ▁PATRÓN - ▁PADRINU - ▁MARCU - ▁V - ▁G - Í - ▁XE - ▁MU - ▁XO - NGUI - ▁CO - ▁HOMBRE - ▁PESU - ▁PE - ▁D - ▁MACHITI - CO - REN - ▁RANCHU - ▁MIS - ▁MACHU - J - ▁PAN - CHO - H - ▁CHU - Y - ▁TON - GA - X - ▁VI - ▁FE - ▁TARRAYA - ▁SANTÍSIMA - ▁N - ▁MAYÓ - ▁CARRU - ▁F - ▁PAPÁ - ▁PALOMA - ▁MARÍA - ▁PEDRU - ▁CAFÉ - ▁COMISARIO - ▁PANELA - ▁PELÓN - É - ▁POZO - ▁CABRÓN - ▁GUACHU - ▁S - RES - ▁COSTUMBRE - ▁SEÑA - QUI - ▁ORO - CH - ▁MAR - SIN - SAN - ▁COSTA - ▁MAMÁ - ▁CINCUENTA - ▁CHO - ▁PEDR - ▁JUNTA - MÚ - ▁TIENDA - ▁JOSÉ - NC - ▁ES - ▁SUERTE - ▁FAMILIA - ▁ZAPATU - NTE - ▁PASTO - ▁CON - Ñ - ▁BOTE - CIÓN - ▁RE - ▁BOLSA - ▁MANGO - ▁JWE - ▁GASTU - ▁T - ▁B - ▁KW - ÍN - ▁HIJA - ▁CUARENT - ▁VAQUERU - ▁NECHITO - ▁NOVIA - ▁NOVIO - JWE - ▁PUENTE - ▁SANDÍA - ▁MALA - Ó - ▁ABONO - ▁JESÚS - ▁CUARTO - ▁EFE - ▁REINA - ▁COMANDANTE - ▁ESCUELA - ▁MANZANA - ▁MÁQUINA - LLA - ▁COR - ▁JERÓNIMO - ▁PISTOLA - NGI - CIO - ▁FRANCISCU - ▁TEODORO - CER - ▁SALUBI - ▁MEZA - ▁MÚSIC - ▁RU - ▁CONSTANTINO - ▁GARCÍA - ▁FRENU - ▁ROSA - ▁CERVEZA - ▁CIGARRU - ▁COMISIÓN - ▁CUNIJO - ▁FRANCISCO - ▁HÍJOLE - ▁NUEVE - ▁MUL - ▁PANTALÓN - ▁CAMISA - ▁CHINGADA - ▁SEMANA - ▁COM - GAR - ▁MARTÍN - ▁SÁBADO - ▁TRABAJO - ▁CINCO - ▁DIE - ▁EST - NDWA - ▁LECHIN - ▁COCO - ILLU - ▁CORRE - ▁MADR - ▁REC - ▁BAUTISTA - ▁VENTANA - ▁CUÑAD - ▁ANTONIU - ▁COPALA - LÍN - ▁SECUND - ▁COHETE - ▁HISTORIA - ▁POLICÍA - ENCIA - ▁CAD - ▁LUIS - ▁DOCTOR - ▁GONZÁLEZ - ▁JUEVE - ▁LIBRU - ▁QUESU - ▁VIAJE - ▁CART - ▁LOCO - ▁BOL - ▁COMPADRE - ▁JWI - ▁METRU - ▁BUENO - ▁TRE - ▁CASTILLO - ▁COMITÉ - ▁ETERNO - ▁LÍQUIDO - ▁MOLE - ▁CAPULCU - ▁DOMING - ▁ROMA - ▁CARAJU - ▁RIATA - ▁TRATU - ▁SEIS - ▁ADÁN - ▁JUANCITO - ▁HOR - '''' - ▁ARRÓ - ▁COCINA - ▁PALACIO - ▁RÓMULO - K - ▁ALFONSO - ▁BARTOLO - ▁FELIPE - ▁HERRER - ▁PAULINO - ▁YEGUA - ▁LISTA - Ú - ▁ABRIL - ▁CUATRO - ▁DICIEMBRE - ▁MARGARITO - ▁MOJONERA - ▁SOLEDAD - ▁VESTIDO - ▁PELOTA - RRET - ▁CAPITÁN - ▁COMUNIÓN - ▁CUCHARA - ▁FERNANDO - ▁GUADALUPE - ▁MIGUEL - ▁PELÚN - ▁SECRETARIU - ▁LENCHU - ▁EVA - ▁SEGUND - ▁CANTOR - ▁CHILPANCINGO - ▁GABRIEL - ▁QUINIENTO - ▁RAÚL - ▁SEVERIAN - ▁TUMBADA - ▁MALINCHI - ▁PRIMU - ▁MORAL - ▁AGOSTO - ▁CENTÍMETRO - ▁FIRMA - ▁HUEHUETÁN - ▁MANGUERA - ▁MEDI - ▁MUERT - ▁SALAZAR - ▁VIERNI - LILL - ▁LL - '-' - ▁CAMPESINO - ▁CIVIL - ▁COMISARIADO - ) - ( - Ã - ‘ - ¿ - Ü - ¡ - Q - F - Á - P - Ÿ - W - Ý - <sos/eos> init: xavier_uniform input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false use_preprocessor: true token_type: bpe bpemodel: data/token_list/bpe_unigram500/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: default frontend_conf: fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_bpe500/train/feats_stats.npz preencoder: null preencoder_conf: {} encoder: transformer encoder_conf: input_layer: conv2d num_blocks: 12 linear_units: 2048 dropout_rate: 0.1 output_size: 512 attention_heads: 4 attention_dropout_rate: 0.0 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: input_layer: embed num_blocks: 6 linear_units: 2048 dropout_rate: 0.1 required: - output_dir - token_list version: 0.10.4a1 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
huggingtweets/_luisinhobr-nomesdegato-nomesdj
huggingtweets
2021-12-21T14:04:49Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/_luisinhobr-nomesdegato-nomesdj/1640095484918/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1390224220643278850/LcIZLss-_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1175884636624510976/KtBI_1GE_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1245550936807874560/j_zCtKSJ_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">luisfer nando & nomes foda de dj & nomes de gato</div> <div style="text-align: center; font-size: 14px;">@_luisinhobr-nomesdegato-nomesdj</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from luisfer nando & nomes foda de dj & nomes de gato. | Data | luisfer nando | nomes foda de dj | nomes de gato | | --- | --- | --- | --- | | Tweets downloaded | 2357 | 3250 | 3211 | | Retweets | 365 | 6 | 69 | | Short tweets | 503 | 632 | 1710 | | Tweets kept | 1489 | 2612 | 1432 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1mwm543c/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @_luisinhobr-nomesdegato-nomesdj's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3nbxg8c7) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3nbxg8c7/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/_luisinhobr-nomesdegato-nomesdj') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
09panesara/distilbert-base-uncased-finetuned-cola
09panesara
2021-12-21T14:03:01Z
30
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5406394412669151 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7580 - Matthews Correlation: 0.5406 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5307 | 1.0 | 535 | 0.5094 | 0.4152 | | 0.3545 | 2.0 | 1070 | 0.5230 | 0.4940 | | 0.2371 | 3.0 | 1605 | 0.6412 | 0.5087 | | 0.1777 | 4.0 | 2140 | 0.7580 | 0.5406 | | 0.1288 | 5.0 | 2675 | 0.8494 | 0.5396 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
hrdipto/wav2vec2-xls-r-timit-tokenizer
hrdipto
2021-12-21T11:49:30Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-xls-r-timit-tokenizer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-timit-tokenizer This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4285 - Wer: 0.3662 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.1571 | 4.03 | 500 | 0.5235 | 0.5098 | | 0.2001 | 8.06 | 1000 | 0.4172 | 0.4375 | | 0.0968 | 12.1 | 1500 | 0.4562 | 0.4016 | | 0.0607 | 16.13 | 2000 | 0.4640 | 0.4050 | | 0.0409 | 20.16 | 2500 | 0.4688 | 0.3914 | | 0.0273 | 24.19 | 3000 | 0.4414 | 0.3763 | | 0.0181 | 28.22 | 3500 | 0.4285 | 0.3662 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
bhavikardeshna/multilingual-bert-base-cased-vietnamese
bhavikardeshna
2021-12-21T11:44:14Z
14
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "arxiv:2112.09866", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
# BibTeX entry and citation info ``` @misc{pandya2021cascading, title={Cascading Adaptors to Leverage English Data to Improve Performance of Question Answering for Low-Resource Languages}, author={Hariom A. Pandya and Bhavik Ardeshna and Dr. Brijesh S. Bhatt}, year={2021}, eprint={2112.09866}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
bhavikardeshna/multilingual-bert-base-cased-hindi
bhavikardeshna
2021-12-21T11:43:34Z
16
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "arxiv:2112.09866", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
# BibTeX entry and citation info ``` @misc{pandya2021cascading, title={Cascading Adaptors to Leverage English Data to Improve Performance of Question Answering for Low-Resource Languages}, author={Hariom A. Pandya and Bhavik Ardeshna and Dr. Brijesh S. Bhatt}, year={2021}, eprint={2112.09866}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
bhavikardeshna/multilingual-bert-base-cased-german
bhavikardeshna
2021-12-21T11:43:10Z
8
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "arxiv:2112.09866", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
# BibTeX entry and citation info ``` @misc{pandya2021cascading, title={Cascading Adaptors to Leverage English Data to Improve Performance of Question Answering for Low-Resource Languages}, author={Hariom A. Pandya and Bhavik Ardeshna and Dr. Brijesh S. Bhatt}, year={2021}, eprint={2112.09866}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
bhavikardeshna/multilingual-bert-base-cased-english
bhavikardeshna
2021-12-21T11:42:34Z
4
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "arxiv:2112.09866", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
# BibTeX entry and citation info ``` @misc{pandya2021cascading, title={Cascading Adaptors to Leverage English Data to Improve Performance of Question Answering for Low-Resource Languages}, author={Hariom A. Pandya and Bhavik Ardeshna and Dr. Brijesh S. Bhatt}, year={2021}, eprint={2112.09866}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
bhavikardeshna/multilingual-bert-base-cased-arabic
bhavikardeshna
2021-12-21T11:41:30Z
27
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "arxiv:2112.09866", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
# BibTeX entry and citation info ``` @misc{pandya2021cascading, title={Cascading Adaptors to Leverage English Data to Improve Performance of Question Answering for Low-Resource Languages}, author={Hariom A. Pandya and Bhavik Ardeshna and Dr. Brijesh S. Bhatt}, year={2021}, eprint={2112.09866}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
bhavikardeshna/xlm-roberta-base-chinese
bhavikardeshna
2021-12-21T11:40:50Z
22
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "arxiv:2112.09866", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
# BibTeX entry and citation info ``` @misc{pandya2021cascading, title={Cascading Adaptors to Leverage English Data to Improve Performance of Question Answering for Low-Resource Languages}, author={Hariom A. Pandya and Bhavik Ardeshna and Dr. Brijesh S. Bhatt}, year={2021}, eprint={2112.09866}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
bhavikardeshna/xlm-roberta-base-german
bhavikardeshna
2021-12-21T11:40:35Z
7
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "arxiv:2112.09866", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
# BibTeX entry and citation info ``` @misc{pandya2021cascading, title={Cascading Adaptors to Leverage English Data to Improve Performance of Question Answering for Low-Resource Languages}, author={Hariom A. Pandya and Bhavik Ardeshna and Dr. Brijesh S. Bhatt}, year={2021}, eprint={2112.09866}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
patrickvonplaten/xls-r-300m-it-phoneme
patrickvonplaten
2021-12-21T11:15:39Z
16
1
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_3_0", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - automatic-speech-recognition - mozilla-foundation/common_voice_3_0 - generated_from_trainer model-index: - name: xls-r-300m-it-phoneme results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xls-r-300m-it-phoneme This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the mozilla-foundation/common_voice_3_0 - IT dataset. It achieves the following results on the evaluation set: - Loss: 0.3899 - Wer: 0.0770 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000075 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 150 - mixed_precision_training: Native AMP ### Training results See Training Metrics Tab. ### Framework versions - Transformers 4.15.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.16.2.dev0 - Tokenizers 0.10.3
patrickvonplaten/xls-r-300m-sv-phoneme
patrickvonplaten
2021-12-21T11:15:26Z
4
1
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_3_0", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - automatic-speech-recognition - mozilla-foundation/common_voice_3_0 - generated_from_trainer model-index: - name: xls-r-300m-sv-phoneme results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xls-r-300m-sv-phoneme This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the mozilla-foundation/common_voice_3_0 - SV-SE dataset. It achieves the following results on the evaluation set: - Loss: 0.4879 - Wer: 0.0997 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000075 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 150 - mixed_precision_training: Native AMP ### Training results See Training Metrics Tab. ### Framework versions - Transformers 4.15.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.16.2.dev0 - Tokenizers 0.10.3
jiho0304/curseELECTRA
jiho0304
2021-12-21T08:51:53Z
4
0
transformers
[ "transformers", "pytorch", "electra", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
ElectraBERT tuned with korean-bad-speeches
NbAiLabArchive/test_w5_long_dataset
NbAiLabArchive
2021-12-21T08:30:00Z
28
0
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
Just for performing some experiments. Do not use.
adam-chell/tweet-sentiment-analyzer
adam-chell
2021-12-20T21:30:06Z
4
2
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
This model has been trained by fine-tuning a BERTweet sentiment classification model named "finiteautomata/bertweet-base-sentiment-analysis", on a labeled positive/negative dataset of tweets. email : [email protected]
quarter100/ko-boolq-model
quarter100
2021-12-20T13:23:04Z
5
1
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
labeled by "YES" : 1, "NO" : 0, "No Answer" : 2 fine tuned by klue/roberta-large
patrickvonplaten/wavlm-libri-clean-100h-base-plus
patrickvonplaten
2021-12-20T12:59:01Z
14,635
3
transformers
[ "transformers", "pytorch", "tensorboard", "wavlm", "automatic-speech-recognition", "librispeech_asr", "generated_from_trainer", "wavlm_libri_finetune", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - automatic-speech-recognition - librispeech_asr - generated_from_trainer - wavlm_libri_finetune model-index: - name: wavlm-libri-clean-100h-base-plus results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wavlm-libri-clean-100h-base-plus This model is a fine-tuned version of [microsoft/wavlm-base-plus](https://huggingface.co/microsoft/wavlm-base-plus) on the LIBRISPEECH_ASR - CLEAN dataset. It achieves the following results on the evaluation set: - Loss: 0.0819 - Wer: 0.0683 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.8877 | 0.34 | 300 | 2.8649 | 1.0 | | 0.2852 | 0.67 | 600 | 0.2196 | 0.1830 | | 0.1198 | 1.01 | 900 | 0.1438 | 0.1273 | | 0.0906 | 1.35 | 1200 | 0.1145 | 0.1035 | | 0.0729 | 1.68 | 1500 | 0.1055 | 0.0955 | | 0.0605 | 2.02 | 1800 | 0.0936 | 0.0859 | | 0.0402 | 2.35 | 2100 | 0.0885 | 0.0746 | | 0.0421 | 2.69 | 2400 | 0.0848 | 0.0700 | ### Framework versions - Transformers 4.15.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.16.2.dev0 - Tokenizers 0.10.3
patrickvonplaten/wav2vec2-librispeech-clean-100h-demo-dist
patrickvonplaten
2021-12-20T12:53:43Z
87
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "speech-recognition", "librispeech_asr", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - speech-recognition - librispeech_asr - generated_from_trainer model-index: - name: wav2vec2-librispeech-clean-100h-demo-dist results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-librispeech-clean-100h-demo-dist This model is a fine-tuned version of [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) on the LIBRISPEECH_ASR - CLEAN dataset. It achieves the following results on the evaluation set: - Loss: 0.0572 - Wer: 0.0417 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.399 | 0.11 | 100 | 3.6153 | 1.0 | | 2.8892 | 0.22 | 200 | 2.8963 | 1.0 | | 2.8284 | 0.34 | 300 | 2.8574 | 1.0 | | 0.7347 | 0.45 | 400 | 0.6158 | 0.4850 | | 0.1138 | 0.56 | 500 | 0.2038 | 0.1560 | | 0.248 | 0.67 | 600 | 0.1274 | 0.1024 | | 0.2586 | 0.78 | 700 | 0.1108 | 0.0876 | | 0.0733 | 0.9 | 800 | 0.0936 | 0.0762 | | 0.044 | 1.01 | 900 | 0.0834 | 0.0662 | | 0.0393 | 1.12 | 1000 | 0.0792 | 0.0622 | | 0.0941 | 1.23 | 1100 | 0.0769 | 0.0627 | | 0.036 | 1.35 | 1200 | 0.0731 | 0.0603 | | 0.0768 | 1.46 | 1300 | 0.0713 | 0.0559 | | 0.0518 | 1.57 | 1400 | 0.0686 | 0.0537 | | 0.0815 | 1.68 | 1500 | 0.0639 | 0.0515 | | 0.0603 | 1.79 | 1600 | 0.0636 | 0.0500 | | 0.056 | 1.91 | 1700 | 0.0609 | 0.0480 | | 0.0265 | 2.02 | 1800 | 0.0621 | 0.0465 | | 0.0496 | 2.13 | 1900 | 0.0607 | 0.0449 | | 0.0436 | 2.24 | 2000 | 0.0591 | 0.0446 | | 0.0421 | 2.35 | 2100 | 0.0590 | 0.0428 | | 0.0641 | 2.47 | 2200 | 0.0603 | 0.0443 | | 0.0466 | 2.58 | 2300 | 0.0580 | 0.0429 | | 0.0132 | 2.69 | 2400 | 0.0574 | 0.0423 | | 0.0073 | 2.8 | 2500 | 0.0586 | 0.0417 | | 0.0021 | 2.91 | 2600 | 0.0574 | 0.0412 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3
patrickvonplaten/hubert-librispeech-clean-100h-demo-dist
patrickvonplaten
2021-12-20T12:53:35Z
10
1
transformers
[ "transformers", "pytorch", "tensorboard", "hubert", "automatic-speech-recognition", "speech-recognition", "librispeech_asr", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - speech-recognition - librispeech_asr - generated_from_trainer model-index: - name: hubert-librispeech-clean-100h-demo-dist results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hubert-librispeech-clean-100h-demo-dist This model is a fine-tuned version of [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) on the LIBRISPEECH_ASR - CLEAN dataset. It achieves the following results on the evaluation set: - Loss: 0.0984 - Wer: 0.0883 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.9031 | 0.11 | 100 | 2.9220 | 1.0 | | 2.6437 | 0.22 | 200 | 2.6268 | 1.0 | | 0.3934 | 0.34 | 300 | 0.4860 | 0.4182 | | 0.3531 | 0.45 | 400 | 0.3088 | 0.2894 | | 0.2255 | 0.56 | 500 | 0.2568 | 0.2426 | | 0.3379 | 0.67 | 600 | 0.2073 | 0.2011 | | 0.2419 | 0.78 | 700 | 0.1849 | 0.1838 | | 0.2128 | 0.9 | 800 | 0.1662 | 0.1690 | | 0.1341 | 1.01 | 900 | 0.1600 | 0.1541 | | 0.0946 | 1.12 | 1000 | 0.1431 | 0.1404 | | 0.1643 | 1.23 | 1100 | 0.1373 | 0.1304 | | 0.0663 | 1.35 | 1200 | 0.1293 | 0.1307 | | 0.162 | 1.46 | 1300 | 0.1247 | 0.1266 | | 0.1433 | 1.57 | 1400 | 0.1246 | 0.1262 | | 0.1581 | 1.68 | 1500 | 0.1219 | 0.1154 | | 0.1036 | 1.79 | 1600 | 0.1127 | 0.1081 | | 0.1352 | 1.91 | 1700 | 0.1087 | 0.1040 | | 0.0471 | 2.02 | 1800 | 0.1085 | 0.1005 | | 0.0945 | 2.13 | 1900 | 0.1066 | 0.0973 | | 0.0843 | 2.24 | 2000 | 0.1102 | 0.0964 | | 0.0774 | 2.35 | 2100 | 0.1079 | 0.0940 | | 0.0952 | 2.47 | 2200 | 0.1056 | 0.0927 | | 0.0635 | 2.58 | 2300 | 0.1026 | 0.0920 | | 0.0665 | 2.69 | 2400 | 0.1012 | 0.0905 | | 0.034 | 2.8 | 2500 | 0.1009 | 0.0900 | | 0.0251 | 2.91 | 2600 | 0.0993 | 0.0883 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3
patrickvonplaten/sew-mid-100k-librispeech-clean-100h-ft
patrickvonplaten
2021-12-20T12:53:26Z
11
0
transformers
[ "transformers", "pytorch", "tensorboard", "sew", "automatic-speech-recognition", "librispeech_asr", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - automatic-speech-recognition - librispeech_asr - generated_from_trainer model-index: - name: sew-mid-100k-librispeech-clean-100h-ft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sew-mid-100k-librispeech-clean-100h-ft This model is a fine-tuned version of [asapp/sew-mid-100k](https://huggingface.co/asapp/sew-mid-100k) on the LIBRISPEECH_ASR - CLEAN dataset. It achieves the following results on the evaluation set: - Loss: 0.1976 - Wer: 0.1665 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4274 | 0.11 | 100 | 4.1419 | 1.0 | | 2.9657 | 0.22 | 200 | 3.1203 | 1.0 | | 2.9069 | 0.34 | 300 | 3.0107 | 1.0 | | 2.8666 | 0.45 | 400 | 2.8960 | 1.0 | | 1.4535 | 0.56 | 500 | 1.4062 | 0.8664 | | 0.6821 | 0.67 | 600 | 0.5530 | 0.4930 | | 0.4827 | 0.78 | 700 | 0.4122 | 0.3630 | | 0.4485 | 0.9 | 800 | 0.3597 | 0.3243 | | 0.2666 | 1.01 | 900 | 0.3104 | 0.2790 | | 0.2378 | 1.12 | 1000 | 0.2913 | 0.2613 | | 0.2516 | 1.23 | 1100 | 0.2702 | 0.2452 | | 0.2456 | 1.35 | 1200 | 0.2619 | 0.2338 | | 0.2392 | 1.46 | 1300 | 0.2466 | 0.2195 | | 0.2117 | 1.57 | 1400 | 0.2379 | 0.2092 | | 0.1837 | 1.68 | 1500 | 0.2295 | 0.2029 | | 0.1757 | 1.79 | 1600 | 0.2240 | 0.1949 | | 0.1626 | 1.91 | 1700 | 0.2195 | 0.1927 | | 0.168 | 2.02 | 1800 | 0.2137 | 0.1853 | | 0.168 | 2.13 | 1900 | 0.2123 | 0.1839 | | 0.1576 | 2.24 | 2000 | 0.2095 | 0.1803 | | 0.1756 | 2.35 | 2100 | 0.2075 | 0.1776 | | 0.1467 | 2.47 | 2200 | 0.2049 | 0.1754 | | 0.1702 | 2.58 | 2300 | 0.2013 | 0.1722 | | 0.177 | 2.69 | 2400 | 0.1993 | 0.1701 | | 0.1417 | 2.8 | 2500 | 0.1983 | 0.1688 | | 0.1302 | 2.91 | 2600 | 0.1977 | 0.1678 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.13.4.dev0 - Tokenizers 0.10.3
austin/adr-ner
austin
2021-12-20T06:48:11Z
8
0
transformers
[ "transformers", "pytorch", "deberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: adr-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # adr-ner This model is a fine-tuned version of [austin/Austin-MeDeBERTa](https://huggingface.co/austin/Austin-MeDeBERTa) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0434 - Precision: 0.7305 - Recall: 0.6934 - F1: 0.7115 - Accuracy: 0.9941 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 107 | 0.0630 | 0.0 | 0.0 | 0.0 | 0.9876 | | No log | 2.0 | 214 | 0.0308 | 0.4282 | 0.3467 | 0.3832 | 0.9900 | | No log | 3.0 | 321 | 0.0254 | 0.5544 | 0.5603 | 0.5573 | 0.9920 | | No log | 4.0 | 428 | 0.0280 | 0.6430 | 0.5751 | 0.6071 | 0.9929 | | 0.0465 | 5.0 | 535 | 0.0266 | 0.5348 | 0.7146 | 0.6118 | 0.9915 | | 0.0465 | 6.0 | 642 | 0.0423 | 0.7632 | 0.5793 | 0.6587 | 0.9939 | | 0.0465 | 7.0 | 749 | 0.0336 | 0.6957 | 0.6765 | 0.6860 | 0.9939 | | 0.0465 | 8.0 | 856 | 0.0370 | 0.6876 | 0.6702 | 0.6788 | 0.9936 | | 0.0465 | 9.0 | 963 | 0.0349 | 0.6555 | 0.7040 | 0.6789 | 0.9932 | | 0.0044 | 10.0 | 1070 | 0.0403 | 0.6910 | 0.6808 | 0.6858 | 0.9938 | | 0.0044 | 11.0 | 1177 | 0.0415 | 0.7140 | 0.6808 | 0.6970 | 0.9939 | | 0.0044 | 12.0 | 1284 | 0.0440 | 0.7349 | 0.6681 | 0.6999 | 0.9941 | | 0.0044 | 13.0 | 1391 | 0.0423 | 0.7097 | 0.6977 | 0.7036 | 0.9941 | | 0.0044 | 14.0 | 1498 | 0.0435 | 0.7174 | 0.6977 | 0.7074 | 0.9941 | | 0.0006 | 15.0 | 1605 | 0.0434 | 0.7305 | 0.6934 | 0.7115 | 0.9941 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
Amalq/roberta-base-finetuned-schizophreniaReddit2
Amalq
2021-12-20T05:41:28Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- license: mit tags: - generated_from_trainer model-index: - name: roberta-base-finetuned-schizophreniaReddit2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-schizophreniaReddit2 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7785 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 490 | 1.8093 | | 1.9343 | 2.0 | 980 | 1.7996 | | 1.8856 | 3.0 | 1470 | 1.7966 | | 1.8552 | 4.0 | 1960 | 1.7844 | | 1.8267 | 5.0 | 2450 | 1.7839 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
anelnurkayeva/autonlp-covid-432211280
anelnurkayeva
2021-12-20T01:23:47Z
5
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autonlp", "en", "dataset:anelnurkayeva/autonlp-data-covid", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - anelnurkayeva/autonlp-data-covid co2_eq_emissions: 8.898145050355591 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 432211280 - CO2 Emissions (in grams): 8.898145050355591 ## Validation Metrics - Loss: 0.12489336729049683 - Accuracy: 0.9520089285714286 - Precision: 0.9436443331246086 - Recall: 0.9747736093143596 - AUC: 0.9910066767410616 - F1: 0.958956411072224 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/anelnurkayeva/autonlp-covid-432211280 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("anelnurkayeva/autonlp-covid-432211280", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("anelnurkayeva/autonlp-covid-432211280", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
microsoft/unispeech-1350-en-353-fr-ft-1h
microsoft
2021-12-19T23:14:27Z
47
0
transformers
[ "transformers", "pytorch", "unispeech", "automatic-speech-recognition", "audio", "fr", "dataset:common_voice", "arxiv:2101.07597", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - fr datasets: - common_voice tags: - audio - automatic-speech-recognition --- # UniSpeech-Large-plus FRENCH [Microsoft's UniSpeech](https://www.microsoft.com/en-us/research/publication/unispeech-unified-speech-representation-learning-with-labeled-and-unlabeled-data/) The large model pretrained on 16kHz sampled speech audio and phonetic labels and consequently fine-tuned on 1h of French phonemes. When using the model make sure that your speech input is also sampled at 16kHz and your text in converted into a sequence of phonemes. [Paper: UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) Authors: Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang **Abstract** *In this paper, we propose a unified pre-training approach called UniSpeech to learn speech representations with both unlabeled and labeled data, in which supervised phonetic CTC learning and phonetically-aware contrastive self-supervised learning are conducted in a multi-task learning manner. The resultant representations can capture information more correlated with phonetic structures and improve the generalization across languages and domains. We evaluate the effectiveness of UniSpeech for cross-lingual representation learning on public CommonVoice corpus. The results show that UniSpeech outperforms self-supervised pretraining and supervised transfer learning for speech recognition by a maximum of 13.4% and 17.8% relative phone error rate reductions respectively (averaged over all testing languages). The transferability of UniSpeech is also demonstrated on a domain-shift speech recognition task, i.e., a relative word error rate reduction of 6% against the previous approach.* The original model can be found under https://github.com/microsoft/UniSpeech/tree/main/UniSpeech. # Usage This is an speech model that has been fine-tuned on phoneme classification. ## Inference ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "microsoft/unispeech-1350-en-353-fr-ft-1h" sample = next(iter(load_dataset("common_voice", "fr", split="test", streaming=True))) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits prediction_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(prediction_ids) # gives -> 'œ̃ v ʁ ɛ t ʁ a v a j ɛ̃ t e ʁ ɛ s ɑ̃ v a ɑ̃ f ɛ̃ ɛ t ʁ ə m ə n e s y ʁ s ə s y ʒ ɛ' # for 'Un vrai travail intéressant va, enfin, être mené sur ce sujet.' ``` # Contribution The model was contributed by [cywang](https://huggingface.co/cywang) and [patrickvonplaten](https://huggingface.co/patrickvonplaten). # License The official license can be found [here](https://github.com/microsoft/UniSpeech/blob/main/LICENSE) # Official Results See *UniSpeeech-L^{+}* - *fr*: ![design](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/unispeech_results.png)
microsoft/unispeech-1350-en-168-es-ft-1h
microsoft
2021-12-19T23:01:13Z
33
0
transformers
[ "transformers", "pytorch", "unispeech", "automatic-speech-recognition", "audio", "es", "dataset:common_voice", "arxiv:2101.07597", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - es datasets: - common_voice tags: - audio - automatic-speech-recognition --- # UniSpeech-Large-plus Spanish [Microsoft's UniSpeech](https://www.microsoft.com/en-us/research/publication/unispeech-unified-speech-representation-learning-with-labeled-and-unlabeled-data/) The large model pretrained on 16kHz sampled speech audio and phonetic labels and consequently fine-tuned on 1h of Spanish phonemes. When using the model make sure that your speech input is also sampled at 16kHz and your text in converted into a sequence of phonemes. [Paper: UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) Authors: Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang **Abstract** *In this paper, we propose a unified pre-training approach called UniSpeech to learn speech representations with both unlabeled and labeled data, in which supervised phonetic CTC learning and phonetically-aware contrastive self-supervised learning are conducted in a multi-task learning manner. The resultant representations can capture information more correlated with phonetic structures and improve the generalization across languages and domains. We evaluate the effectiveness of UniSpeech for cross-lingual representation learning on public CommonVoice corpus. The results show that UniSpeech outperforms self-supervised pretraining and supervised transfer learning for speech recognition by a maximum of 13.4% and 17.8% relative phone error rate reductions respectively (averaged over all testing languages). The transferability of UniSpeech is also demonstrated on a domain-shift speech recognition task, i.e., a relative word error rate reduction of 6% against the previous approach.* The original model can be found under https://github.com/microsoft/UniSpeech/tree/main/UniSpeech. # Usage This is an speech model that has been fine-tuned on phoneme classification. ## Inference ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "microsoft/unispeech-1350-en-168-es-ft-1h" sample = next(iter(load_dataset("common_voice", "es", split="test", streaming=True))) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits prediction_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(prediction_ids) # -> gives: # b j e n i k e ɾ ɾ e ɣ a l o a s a β ɾ i ɾ p ɾ i m e ɾ o' # for: Bien . ¿ y qué regalo vas a abrir primero ? ``` # Contribution The model was contributed by [cywang](https://huggingface.co/cywang) and [patrickvonplaten](https://huggingface.co/patrickvonplaten). # License The official license can be found [here](https://github.com/microsoft/UniSpeech/blob/main/LICENSE) # Official Results See *UniSpeeech-L^{+}* - *es*: ![design](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/unispeech_results.png)
microsoft/unispeech-1350-en-17h-ky-ft-1h
microsoft
2021-12-19T23:00:00Z
51
1
transformers
[ "transformers", "pytorch", "unispeech", "automatic-speech-recognition", "audio", "ky", "dataset:common_voice", "arxiv:2101.07597", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ky datasets: - common_voice tags: - audio - automatic-speech-recognition --- # UniSpeech-Large-plus Kyrgyz [Microsoft's UniSpeech](https://www.microsoft.com/en-us/research/publication/unispeech-unified-speech-representation-learning-with-labeled-and-unlabeled-data/) The large model pretrained on 16kHz sampled speech audio and phonetic labels and consequently fine-tuned on 1h of Kyrgyz phonemes. When using the model make sure that your speech input is also sampled at 16kHz and your text in converted into a sequence of phonemes. [Paper: UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) Authors: Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang **Abstract** *In this paper, we propose a unified pre-training approach called UniSpeech to learn speech representations with both unlabeled and labeled data, in which supervised phonetic CTC learning and phonetically-aware contrastive self-supervised learning are conducted in a multi-task learning manner. The resultant representations can capture information more correlated with phonetic structures and improve the generalization across languages and domains. We evaluate the effectiveness of UniSpeech for cross-lingual representation learning on public CommonVoice corpus. The results show that UniSpeech outperforms self-supervised pretraining and supervised transfer learning for speech recognition by a maximum of 13.4% and 17.8% relative phone error rate reductions respectively (averaged over all testing languages). The transferability of UniSpeech is also demonstrated on a domain-shift speech recognition task, i.e., a relative word error rate reduction of 6% against the previous approach.* The original model can be found under https://github.com/microsoft/UniSpeech/tree/main/UniSpeech. # Usage This is an speech model that has been fine-tuned on phoneme classification. ## Inference ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "microsoft/unispeech-1350-en-17h-ky-ft-1h" sample = next(iter(load_dataset("common_voice", "ky", split="test", streaming=True))) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits prediction_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(prediction_ids) ``` # Contribution The model was contributed by [cywang](https://huggingface.co/cywang) and [patrickvonplaten](https://huggingface.co/patrickvonplaten). # License The official license can be found [here](https://github.com/microsoft/UniSpeech/blob/main/LICENSE) # Official Results See *UniSpeeech-L^{+}* - *ky*: ![design](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/unispeech_results.png)
addy88/wav2vec2-bhojpuri-stt
addy88
2021-12-19T16:48:06Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("addy88/wav2vec2-bhojpuri-stt") model = Wav2Vec2ForCTC.from_pretrained("addy88/wav2vec2-bhojpuri-stt") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
addy88/wav2vec2-dogri-stt
addy88
2021-12-19T16:43:44Z
5
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("addy88/wav2vec2-dogri-stt") model = Wav2Vec2ForCTC.from_pretrained("addy88/wav2vec2-dogri-stt") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
addy88/wav2vec2-maithili-stt
addy88
2021-12-19T16:40:20Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("addy88/wav2vec2-maithili-stt") model = Wav2Vec2ForCTC.from_pretrained("addy88/wav2vec2-maithili-stt") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
addy88/wav2vec2-malayalam-stt
addy88
2021-12-19T16:36:31Z
26
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("addy88/wav2vec2-malayalam-stt") model = Wav2Vec2ForCTC.from_pretrained("addy88/wav2vec2-malayalam-stt") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
addy88/wav2vec2-marathi-stt
addy88
2021-12-19T16:31:22Z
21
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("addy88/wav2vec2-marathi-stt") model = Wav2Vec2ForCTC.from_pretrained("addy88/wav2vec2-marathi-stt") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
addy88/wav2vec2-rajsthani-stt
addy88
2021-12-19T15:52:16Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("addy88/wav2vec2-rajsthani-stt") model = Wav2Vec2ForCTC.from_pretrained("addy88/wav2vec2-rajsthani-stt") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
addy88/wav2vec2-urdu-stt
addy88
2021-12-19T15:47:47Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("addy88/wav2vec2-urdu-stt") model = Wav2Vec2ForCTC.from_pretrained("addy88/wav2vec2-urdu-stt") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
kco4776/soongsil-bert-wellness
kco4776
2021-12-19T15:23:09Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
## References - [Soongsil-BERT](https://github.com/jason9693/Soongsil-BERT)
addy88/wav2vec2-gujarati-stt
addy88
2021-12-19T15:14:38Z
20
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("addy88/wav2vec2-gujarati-stt") model = Wav2Vec2ForCTC.from_pretrained("addy88/wav2vec2-gujarati-stt") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
Ayham/bert_gpt2_summarization_cnndm_new
Ayham
2021-12-19T15:09:12Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer datasets: - cnn_dailymail model-index: - name: bert_gpt2_summarization_cnndm_new results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_gpt2_summarization_cnndm_new This model is a fine-tuned version of [](https://huggingface.co/) on the cnn_dailymail dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
addy88/wav2vec2-english-stt
addy88
2021-12-19T15:08:42Z
17
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("addy88/wav2vec2-english-stt") model = Wav2Vec2ForCTC.from_pretrained("addy88/wav2vec2-english-stt") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
nguyenvulebinh/envibert
nguyenvulebinh
2021-12-19T14:20:51Z
26
5
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "exbert", "vi", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: vi tags: - exbert license: cc-by-nc-4.0 --- # RoBERTa for Vietnamese and English (envibert) This RoBERTa version is trained by using 100GB of text (50GB of Vietnamese and 50GB of English) so it is named ***envibert***. The model architecture is custom for production so it only contains 70M parameters. ## Usages ```python from transformers import RobertaModel from transformers.file_utils import cached_path, hf_bucket_url from importlib.machinery import SourceFileLoader import os cache_dir='./cache' model_name='nguyenvulebinh/envibert' def download_tokenizer_files(): resources = ['envibert_tokenizer.py', 'dict.txt', 'sentencepiece.bpe.model'] for item in resources: if not os.path.exists(os.path.join(cache_dir, item)): tmp_file = hf_bucket_url(model_name, filename=item) tmp_file = cached_path(tmp_file,cache_dir=cache_dir) os.rename(tmp_file, os.path.join(cache_dir, item)) download_tokenizer_files() tokenizer = SourceFileLoader("envibert.tokenizer", os.path.join(cache_dir,'envibert_tokenizer.py')).load_module().RobertaTokenizer(cache_dir) model = RobertaModel.from_pretrained(model_name,cache_dir=cache_dir) # Encode text text_input = 'Đại học Bách Khoa Hà Nội .' text_ids = tokenizer(text_input, return_tensors='pt').input_ids # tensor([[ 0, 705, 131, 8751, 2878, 347, 477, 5, 2]]) # Extract features text_features = model(text_ids) text_features['last_hidden_state'].shape # torch.Size([1, 9, 768]) len(text_features['hidden_states']) # 7 ``` ### Citation ```text @inproceedings{nguyen20d_interspeech, author={Thai Binh Nguyen and Quang Minh Nguyen and Thi Thu Hien Nguyen and Quoc Truong Do and Chi Mai Luong}, title={{Improving Vietnamese Named Entity Recognition from Speech Using Word Capitalization and Punctuation Recovery Models}}, year=2020, booktitle={Proc. Interspeech 2020}, pages={4263--4267}, doi={10.21437/Interspeech.2020-1896} } ``` **Please CITE** our repo when it is used to help produce published results or is incorporated into other software. # Contact [email protected] [![Follow](https://img.shields.io/twitter/follow/nguyenvulebinh?style=social)](https://twitter.com/intent/follow?screen_name=nguyenvulebinh)
rlagusrlagus123/XTC4096
rlagusrlagus123
2021-12-19T11:19:34Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- tags: - conversational --- --- #12 epochs, each batch size 4, gradient accumulation steps 1, tail 4096. #THIS SEEMS TO BE THE OPTIMAL SETUP.
rlagusrlagus123/XTC20000
rlagusrlagus123
2021-12-19T11:00:28Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- tags: - conversational --- --- #12 epochs, each batch size 2, gradient accumulation steps 2, tail 20000
haotieu/en-vi-mt-model
haotieu
2021-12-19T10:17:03Z
14
1
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
# Helsinki-NLP/opus-mt-en-vi - This model is a fine-tune checkpoint of [Helsinki-NLP/opus-mt-en-vi](https://huggingface.co/Helsinki-NLP/opus-mt-en-vi). - This model reaches BLEU score = 33.086 on the test set of IWSLT'15 English-Vietnamese data. # Fine-tuning hyper-parameters - learning_rate = 1e-4 - batch_size = 4 - num_train_epochs = 3.0
dkssud/wav2vec2-base-demo-colab
dkssud
2021-12-19T09:54:26Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4171 - Wer: 0.3452 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.0054 | 4.0 | 500 | 1.5456 | 0.9005 | | 0.8183 | 8.0 | 1000 | 0.4738 | 0.4839 | | 0.3019 | 12.0 | 1500 | 0.4280 | 0.4047 | | 0.1738 | 16.0 | 2000 | 0.4584 | 0.3738 | | 0.1285 | 20.0 | 2500 | 0.4418 | 0.3593 | | 0.1104 | 24.0 | 3000 | 0.4110 | 0.3479 | | 0.0828 | 28.0 | 3500 | 0.4171 | 0.3452 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu102 - Datasets 1.14.0 - Tokenizers 0.10.3
Ayham/distilbert_gpt2_summarization_cnndm
Ayham
2021-12-19T06:43:15Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer datasets: - cnn_dailymail model-index: - name: distilbert_gpt2_summarization_cnndm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_gpt2_summarization_cnndm This model is a fine-tuned version of [](https://huggingface.co/) on the cnn_dailymail dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
Ayham/bert_gpt2_summarization_cnndm
Ayham
2021-12-19T06:32:54Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer datasets: - cnn_dailymail model-index: - name: bert_gpt2_summarization_cnndm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_gpt2_summarization_cnndm This model is a fine-tuned version of [](https://huggingface.co/) on the cnn_dailymail dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
yerevann/x-r-hy
yerevann
2021-12-19T03:19:04Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-2b-armenian-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-2b-armenian-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-2b](https://huggingface.co/facebook/wav2vec2-xls-r-2b) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.5166 - Wer: 0.7397 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 120 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 3.7057 | 2.38 | 200 | 0.7731 | 0.8091 | | 0.5797 | 4.76 | 400 | 0.8279 | 0.7804 | | 0.4341 | 7.14 | 600 | 1.0343 | 0.8285 | | 0.3135 | 9.52 | 800 | 1.0551 | 0.8066 | | 0.2409 | 11.9 | 1000 | 1.0686 | 0.7897 | | 0.1998 | 14.29 | 1200 | 1.1329 | 0.7766 | | 0.1729 | 16.67 | 1400 | 1.3234 | 0.8567 | | 0.1533 | 19.05 | 1600 | 1.2432 | 0.8160 | | 0.1354 | 21.43 | 1800 | 1.2780 | 0.7954 | | 0.12 | 23.81 | 2000 | 1.2228 | 0.8054 | | 0.1175 | 26.19 | 2200 | 1.3484 | 0.8129 | | 0.1141 | 28.57 | 2400 | 1.2881 | 0.9130 | | 0.1053 | 30.95 | 2600 | 1.1972 | 0.7910 | | 0.0954 | 33.33 | 2800 | 1.3702 | 0.8048 | | 0.0842 | 35.71 | 3000 | 1.3963 | 0.7960 | | 0.0793 | 38.1 | 3200 | 1.4690 | 0.7991 | | 0.0707 | 40.48 | 3400 | 1.5045 | 0.8085 | | 0.0745 | 42.86 | 3600 | 1.4749 | 0.8004 | | 0.0693 | 45.24 | 3800 | 1.5047 | 0.7960 | | 0.0646 | 47.62 | 4000 | 1.4216 | 0.7997 | | 0.0555 | 50.0 | 4200 | 1.4676 | 0.8029 | | 0.056 | 52.38 | 4400 | 1.4273 | 0.8104 | | 0.0465 | 54.76 | 4600 | 1.3999 | 0.7841 | | 0.046 | 57.14 | 4800 | 1.6130 | 0.8473 | | 0.0404 | 59.52 | 5000 | 1.5586 | 0.7841 | | 0.0403 | 61.9 | 5200 | 1.3959 | 0.7653 | | 0.0404 | 64.29 | 5400 | 1.5318 | 0.8041 | | 0.0365 | 66.67 | 5600 | 1.5300 | 0.7854 | | 0.0338 | 69.05 | 5800 | 1.5051 | 0.7885 | | 0.0307 | 71.43 | 6000 | 1.5647 | 0.7935 | | 0.0235 | 73.81 | 6200 | 1.4919 | 0.8154 | | 0.0268 | 76.19 | 6400 | 1.5259 | 0.8060 | | 0.0275 | 78.57 | 6600 | 1.3985 | 0.7897 | | 0.022 | 80.95 | 6800 | 1.5515 | 0.8154 | | 0.017 | 83.33 | 7000 | 1.5737 | 0.7647 | | 0.0205 | 85.71 | 7200 | 1.4876 | 0.7572 | | 0.0174 | 88.1 | 7400 | 1.6331 | 0.7829 | | 0.0188 | 90.48 | 7600 | 1.5108 | 0.7685 | | 0.0134 | 92.86 | 7800 | 1.7125 | 0.7866 | | 0.0125 | 95.24 | 8000 | 1.6042 | 0.7635 | | 0.0133 | 97.62 | 8200 | 1.4608 | 0.7478 | | 0.0272 | 100.0 | 8400 | 1.4784 | 0.7309 | | 0.0133 | 102.38 | 8600 | 1.4471 | 0.7459 | | 0.0094 | 104.76 | 8800 | 1.4852 | 0.7272 | | 0.0103 | 107.14 | 9000 | 1.5679 | 0.7409 | | 0.0088 | 109.52 | 9200 | 1.5090 | 0.7309 | | 0.0077 | 111.9 | 9400 | 1.4994 | 0.7290 | | 0.0068 | 114.29 | 9600 | 1.5008 | 0.7340 | | 0.0054 | 116.67 | 9800 | 1.5166 | 0.7390 | | 0.0052 | 119.05 | 10000 | 1.5166 | 0.7397 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
zaccharieramzi/UNet-OASIS
zaccharieramzi
2021-12-19T02:07:02Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
# UNet-OASIS --- tags: - TensorFlow - MRI reconstruction - MRI datasets: - OASIS --- This model can be used to reconstruct single coil OASIS data with an acceleration factor of 4. ## Model description For more details, see https://www.mdpi.com/2076-3417/10/5/1816. This section is WIP. ## Intended uses and limitations This model can be used to reconstruct single coil brain retrospective data from the OASIS database at acceleration factor 4. It cannot be used on multi-coil data. ## How to use This model can be loaded using the following repo: https://github.com/zaccharieramzi/fastmri-reproducible-benchmark. After cloning the repo, `git clone https://github.com/zaccharieramzi/fastmri-reproducible-benchmark`, you can install the package via `pip install fastmri-reproducible-benchmark`. The framework is TensorFlow. You can initialize and load the model weights as follows: ```python from fastmri_recon.models.functional_models.unet import unet model = unet(n_layers=4, layers_n_channels=[16, 32, 64, 128], layers_n_non_lins=2,) model.load_weights('UNet-fastmri/model_weights.h5') ``` Using the model is then as simple as: ```python model(zero_filled_recon) ``` ## Limitations and bias The limitations and bias of this model have not been properly investigated. ## Training data This model was trained using the [OASIS dataset](https://www.oasis-brains.org/). ## Training procedure The training procedure is described in https://www.mdpi.com/2076-3417/10/5/1816 for brain data. This section is WIP. ## Evaluation results This model was evaluated using the [OASIS dataset](https://www.oasis-brains.org/). - PSNR: 29.8 - SSIM: 0.847 ## Bibtex entry ``` @article{ramzi2020benchmarking, title={Benchmarking MRI reconstruction neural networks on large public datasets}, author={Ramzi, Zaccharie and Ciuciu, Philippe and Starck, Jean-Luc}, journal={Applied Sciences}, volume={10}, number={5}, pages={1816}, year={2020}, publisher={Multidisciplinary Digital Publishing Institute} } ```
zaccharieramzi/UNet-fastmri
zaccharieramzi
2021-12-19T02:05:48Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
# UNet-fastmri --- tags: - TensorFlow - MRI reconstruction - MRI datasets: - fastMRI --- This model can be used to reconstruct single coil fastMRI data with an acceleration factor of 4. ## Model description For more details, see https://www.mdpi.com/2076-3417/10/5/1816. This section is WIP. ## Intended uses and limitations This model can be used to reconstruct single coil knee data from Siemens scanner at acceleration factor 4. It cannot be used on multi-coil data. ## How to use This model can be loaded using the following repo: https://github.com/zaccharieramzi/fastmri-reproducible-benchmark. After cloning the repo, `git clone https://github.com/zaccharieramzi/fastmri-reproducible-benchmark`, you can install the package via `pip install fastmri-reproducible-benchmark`. The framework is TensorFlow. You can initialize and load the model weights as follows: ```python from fastmri_recon.models.functional_models.unet import unet model = unet(n_layers=4, layers_n_channels=[16, 32, 64, 128], layers_n_non_lins=2,) model.load_weights('UNet-fastmri/model_weights.h5') ``` Using the model is then as simple as: ```python model(zero_filled_recon) ``` ## Limitations and bias The limitations and bias of this model have not been properly investigated. ## Training data This model was trained using the [fastMRI dataset](https://fastmri.org/dataset/). ## Training procedure The training procedure is described in https://www.mdpi.com/2076-3417/10/5/1816 for brain data. This section is WIP. ## Evaluation results This model was evaluated using the [fastMRI dataset](https://fastmri.org/dataset/). | Contrast | PD | PDFS | |----------|-------|--------| | PSNR | 33.64 | 29.89 | | SSIM | 0.807 | 0.6334 | ## Bibtex entry ``` @article{ramzi2020benchmarking, title={Benchmarking MRI reconstruction neural networks on large public datasets}, author={Ramzi, Zaccharie and Ciuciu, Philippe and Starck, Jean-Luc}, journal={Applied Sciences}, volume={10}, number={5}, pages={1816}, year={2020}, publisher={Multidisciplinary Digital Publishing Institute} } ```
zaccharieramzi/KIKI-net-fastmri
zaccharieramzi
2021-12-19T01:53:37Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
# KIKI-net-fastmri --- tags: - TensorFlow - MRI reconstruction - MRI datasets: - fastMRI --- This model can be used to reconstruct single coil fastMRI data with an acceleration factor of 4. ## Model description For more details, see https://www.mdpi.com/2076-3417/10/5/1816. This section is WIP. ## Intended uses and limitations This model can be used to reconstruct single coil knee data from Siemens scanner at acceleration factor 4. It cannot be used on multi-coil data. ## How to use This model can be loaded using the following repo: https://github.com/zaccharieramzi/fastmri-reproducible-benchmark. After cloning the repo, `git clone https://github.com/zaccharieramzi/fastmri-reproducible-benchmark`, you can install the package via `pip install fastmri-reproducible-benchmark`. The framework is TensorFlow. You can initialize and load the model weights as follows: ```python from fastmri_recon.models.functional_models.kiki_sep import full_kiki_net from fastmri_recon.models.utils.non_linearities import lrelu model = full_kiki_net(n_convs=16, n_filters=48, activation=lrelu) model.load_weights('model_weights.h5') ``` Using the model is then as simple as: ```python model([ kspace, # shape: [n_slices, n_rows, n_cols, 1] mask, # shape: [n_slices, n_rows, n_cols] ]) ``` ## Limitations and bias The limitations and bias of this model have not been properly investigated. ## Training data This model was trained using the [fastMRI dataset](https://fastmri.org/dataset/). ## Training procedure The training procedure is described in https://www.mdpi.com/2076-3417/10/5/1816 for brain data. This section is WIP. ## Evaluation results This model was evaluated using the [fastMRI dataset](https://fastmri.org/dataset/). | Contrast | PD | PDFS | |----------|-------|--------| | PSNR | 32.86 | 29.57 | | SSIM | 0.797 | 0.6271 | ## Bibtex entry ``` @article{ramzi2020benchmarking, title={Benchmarking MRI reconstruction neural networks on large public datasets}, author={Ramzi, Zaccharie and Ciuciu, Philippe and Starck, Jean-Luc}, journal={Applied Sciences}, volume={10}, number={5}, pages={1816}, year={2020}, publisher={Multidisciplinary Digital Publishing Institute} } ```