modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-15 12:29:39
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
521 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-15 12:28:52
card
stringlengths
11
1.01M
nossal/rl-q-taxi-v3
nossal
2023-02-16T22:26:53Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-16T22:26:50Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: rl-q-taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="nossal/rl-q-taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Honza/a2c-PandaReachDense-v2
Honza
2023-02-16T22:21:58Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-16T22:19:39Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -16.03 +/- 8.25 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
nossal/q-FrozenLake-v1-4x4-noSlippery
nossal
2023-02-16T22:18:55Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-16T22:18:52Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="nossal/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Allayte/BETA-VAE-4-typography-10
Allayte
2023-02-16T21:40:20Z
0
0
pythae
[ "pythae", "en", "license:apache-2.0", "region:us" ]
null
2023-02-16T21:40:14Z
--- language: en tags: - pythae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with pythae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from pythae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
chqmatteo/ppo-clearrl-LunarLander-v2
chqmatteo
2023-02-16T21:31:04Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-02-16T21:06:12Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -57.43 +/- 61.21 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 1000000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'chqmatteo/ppo-clearrl-LunarLander-v2' 'batch_size': 512 'minibatch_size': 128} ```
fgmckee/poca-SoccerTwos100m
fgmckee
2023-02-16T21:25:06Z
5
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-16T21:24:58Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: fgmckee/poca-SoccerTwos100m 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Agog/a2c-AntBulletEnv-v0
Agog
2023-02-16T21:05:58Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-16T21:04:52Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1509.92 +/- 130.87 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sd-concepts-library/tim-sale
sd-concepts-library
2023-02-16T20:58:36Z
0
2
null
[ "license:mit", "region:us" ]
null
2023-02-16T20:58:27Z
--- license: mit --- ### Tim Sale on Stable Diffusion This is the `<cat-toy>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<cat-toy> 0](https://huggingface.co/sd-concepts-library/tim-sale/resolve/main/concept_images/5.jpeg) ![<cat-toy> 1](https://huggingface.co/sd-concepts-library/tim-sale/resolve/main/concept_images/8.jpeg) ![<cat-toy> 2](https://huggingface.co/sd-concepts-library/tim-sale/resolve/main/concept_images/0.jpeg) ![<cat-toy> 3](https://huggingface.co/sd-concepts-library/tim-sale/resolve/main/concept_images/6.jpeg) ![<cat-toy> 4](https://huggingface.co/sd-concepts-library/tim-sale/resolve/main/concept_images/3.jpeg) ![<cat-toy> 5](https://huggingface.co/sd-concepts-library/tim-sale/resolve/main/concept_images/4.jpeg) ![<cat-toy> 6](https://huggingface.co/sd-concepts-library/tim-sale/resolve/main/concept_images/7.jpeg) ![<cat-toy> 7](https://huggingface.co/sd-concepts-library/tim-sale/resolve/main/concept_images/2.jpeg) ![<cat-toy> 8](https://huggingface.co/sd-concepts-library/tim-sale/resolve/main/concept_images/9.jpeg) ![<cat-toy> 9](https://huggingface.co/sd-concepts-library/tim-sale/resolve/main/concept_images/1.jpeg)
vyas21/ppo-LunarLander-v2
vyas21
2023-02-16T20:58:02Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-16T19:46:15Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 234.86 +/- 19.06 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
nicoco404/autotrain-aita-post-classifier-3535895495
nicoco404
2023-02-16T20:52:23Z
8
0
transformers
[ "transformers", "pytorch", "deberta", "text-classification", "autotrain", "en", "dataset:nicoco404/autotrain-data-aita-post-classifier", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-16T20:46:00Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - nicoco404/autotrain-data-aita-post-classifier co2_eq_emissions: emissions: 13.203921634602377 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 3535895495 - CO2 Emissions (in grams): 13.2039 ## Validation Metrics - Loss: 0.761 - Accuracy: 0.763 - Macro F1: 0.124 - Micro F1: 0.763 - Weighted F1: 0.661 - Macro Precision: 0.109 - Micro Precision: 0.763 - Weighted Precision: 0.583 - Macro Recall: 0.143 - Micro Recall: 0.763 - Weighted Recall: 0.763 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/nicoco404/autotrain-aita-post-classifier-3535895495 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("nicoco404/autotrain-aita-post-classifier-3535895495", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("nicoco404/autotrain-aita-post-classifier-3535895495", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
chqmatteo/ppo-clearrl-CartPole-v1
chqmatteo
2023-02-16T20:50:56Z
0
0
null
[ "tensorboard", "CartPole-v1", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-02-16T20:50:48Z
--- tags: - CartPole-v1 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 177.50 +/- 66.17 name: mean_reward verified: false --- # PPO Agent Playing CartPole-v1 This is a trained model of a PPO agent playing CartPole-v1. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'CartPole-v1' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'chqmatteo/ppo-clearrl-CartPole-v1' 'batch_size': 512 'minibatch_size': 128} ```
Aswin-rs/lunarlander-ppo
Aswin-rs
2023-02-16T20:22:00Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-16T20:21:32Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: ppo results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 264.39 +/- 16.12 name: mean_reward verified: false --- # **ppo** Agent playing **LunarLander-v2** This is a trained model of a **ppo** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sleepotimer/ParfaitMix
sleepotimer
2023-02-16T20:18:11Z
0
5
null
[ "stable-diffusion", "text-to-image", "en", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-02-16T19:59:03Z
--- license: creativeml-openrail-m language: - en tags: - stable-diffusion - text-to-image --- # Parfait Mix Another sweet anime mix for you and me. # *(Also contains NSFW!)* ## Examples <img src="https://huggingface.co/sleepotimer/ParfaitMix/resolve/main/example-1.png" width="768px"> ``` 1girl, hoodie, white hair, pink eyes, blush, from above, winter, snow, smile, night, arms behind back, starry night, trousers, grin Negative prompt: (low quality, worst quality:1.4) Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 2778728636, Size: 512x768, Model hash: 37ef0a3263, Model: ParfaitMix-fp16 ``` <img src="https://huggingface.co/sleepotimer/ParfaitMix/resolve/main/example-2.png"> ``` landscape, mountains, sunset, sky, clouds, valley, river, trees, nature, village, snow Negative prompt: (low quality, worst quality:1.4) Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 4161234414, Size: 768x512, Model hash: 37ef0a3263, Model: ParfaitMix-fp16 ```
Tiju1996/t5-small-finetuned-xsum
Tiju1996
2023-02-16T20:06:09Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:xsum", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-16T16:55:41Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum model-index: - name: t5-small-finetuned-xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
pnparam/dys_asr_10min_rub
pnparam
2023-02-16T19:56:20Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-02-16T18:49:23Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: dys_asr_10min_rub results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dys_asr_10min_rub This model is a fine-tuned version of [Splend1dchan/wav2vec2-large-10min-lv60-self](https://huggingface.co/Splend1dchan/wav2vec2-large-10min-lv60-self) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0359 - Wer: 0.9969 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 7 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 12.8427 | 0.79 | 500 | 2.4894 | 1.0 | | 1.4059 | 1.58 | 1000 | 0.2969 | 1.1495 | | 0.425 | 2.37 | 1500 | 0.1267 | 1.0623 | | 0.2377 | 3.16 | 2000 | 0.0781 | 1.0374 | | 0.1148 | 3.95 | 2500 | 0.0393 | 1.0062 | | 0.1136 | 4.74 | 3000 | 0.0432 | 1.0031 | | 0.0987 | 5.53 | 3500 | 0.0411 | 0.9969 | | 0.0746 | 6.32 | 4000 | 0.0359 | 0.9969 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.13.1+cu116 - Datasets 1.18.3 - Tokenizers 0.13.2
egee/deepRLcourse-ppo-LunarLanderv2
egee
2023-02-16T19:49:35Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-02-16T19:48:23Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -140.27 +/- 104.61 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters
sgoodfriend/ppo-impala-CarRacing-v0
sgoodfriend
2023-02-16T19:36:35Z
0
0
rl-algo-impls
[ "rl-algo-impls", "CarRacing-v0", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-16T19:36:25Z
--- library_name: rl-algo-impls tags: - CarRacing-v0 - ppo - deep-reinforcement-learning - reinforcement-learning model-index: - name: ppo results: - metrics: - type: mean_reward value: 777.12 +/- 224.5 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CarRacing-v0 type: CarRacing-v0 --- # **PPO** Agent playing **CarRacing-v0** This is a trained model of a **PPO** agent playing **CarRacing-v0** using the [/sgoodfriend/rl-algo-impls](https://github.com/sgoodfriend/rl-algo-impls) repo. All models trained at this commit can be found at https://api.wandb.ai/links/sgoodfriend/v4wd7cp5. ## Training Results This model was trained from 3 trainings of **PPO** agents using different initial seeds. These agents were trained by checking out [e47a44c](https://github.com/sgoodfriend/rl-algo-impls/tree/e47a44c4d891f48885af0b1605b30d19fc67b5af). The best and last models were kept from each training. This submission has loaded the best models from each training, reevaluates them, and selects the best model from these latest evaluations (mean - std). | algo | env | seed | reward_mean | reward_std | eval_episodes | best | wandb_url | |:-------|:-------------|-------:|--------------:|-------------:|----------------:|:-------|:-----------------------------------------------------------------------------| | ppo | CarRacing-v0 | 1 | 777.12 | 224.504 | 16 | * | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/ojq3cif0) | | ppo | CarRacing-v0 | 2 | 613.084 | 175.573 | 16 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/7wtzr60u) | | ppo | CarRacing-v0 | 3 | 668.535 | 181.695 | 16 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/4l0zprbu) | ### Prerequisites: Weights & Biases (WandB) Training and benchmarking assumes you have a Weights & Biases project to upload runs to. By default training goes to a rl-algo-impls project while benchmarks go to rl-algo-impls-benchmarks. During training and benchmarking runs, videos of the best models and the model weights are uploaded to WandB. Before doing anything below, you'll need to create a wandb account and run `wandb login`. ## Usage /sgoodfriend/rl-algo-impls: https://github.com/sgoodfriend/rl-algo-impls Note: While the model state dictionary and hyperaparameters are saved, the latest implementation could be sufficiently different to not be able to reproduce similar results. You might need to checkout the commit the agent was trained on: [e47a44c](https://github.com/sgoodfriend/rl-algo-impls/tree/e47a44c4d891f48885af0b1605b30d19fc67b5af). ``` # Downloads the model, sets hyperparameters, and runs agent for 3 episodes python enjoy.py --wandb-run-path=sgoodfriend/rl-algo-impls-benchmarks/ojq3cif0 ``` Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the [colab_enjoy.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_enjoy.ipynb) notebook. ## Training If you want the highest chance to reproduce these results, you'll want to checkout the commit the agent was trained on: [e47a44c](https://github.com/sgoodfriend/rl-algo-impls/tree/e47a44c4d891f48885af0b1605b30d19fc67b5af). While training is deterministic, different hardware will give different results. ``` python train.py --algo ppo --env CarRacing-v0 --seed 1 ``` Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the [colab_train.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_train.ipynb) notebook. ## Benchmarking (with Lambda Labs instance) This and other models from https://api.wandb.ai/links/sgoodfriend/v4wd7cp5 were generated by running a script on a Lambda Labs instance. In a Lambda Labs instance terminal: ``` git clone [email protected]:sgoodfriend/rl-algo-impls.git cd rl-algo-impls bash ./lambda_labs/setup.sh wandb login bash ./lambda_labs/benchmark.sh ``` ### Alternative: Google Colab Pro+ As an alternative, [colab_benchmark.ipynb](https://github.com/sgoodfriend/rl-algo-impls/tree/main/benchmarks#:~:text=colab_benchmark.ipynb), can be used. However, this requires a Google Colab Pro+ subscription and running across 4 separate instances because otherwise running all jobs will exceed the 24-hour limit. ## Hyperparameters This isn't exactly the format of hyperparams in hyperparams/ppo.yml, but instead the Wandb Run Config. However, it's very close and has some additional data: ``` algo: ppo algo_hyperparams: batch_size: 128 clip_range: 0.2 ent_coef: 0 gae_lambda: 0.95 gamma: 0.99 learning_rate: 0.0001 learning_rate_decay: linear max_grad_norm: 0.5 n_epochs: 10 n_steps: 512 sde_sample_freq: 4 vf_coef: 0.5 env: impala-CarRacing-v0 env_hyperparams: frame_stack: 4 n_envs: 8 env_id: CarRacing-v0 n_timesteps: 4000000 policy_hyperparams: activation_fn: relu cnn_feature_dim: 256 cnn_layers_init_orthogonal: false cnn_style: impala hidden_sizes: [] init_layers_orthogonal: true log_std_init: -2 share_features_extractor: false use_sde: true seed: 1 use_deterministic_algorithms: true wandb_entity: null wandb_project_name: rl-algo-impls-benchmarks wandb_tags: - benchmark_e47a44c - host_129-146-2-230 ```
caioiglesias/ppo-LunarLander-v
caioiglesias
2023-02-16T19:33:44Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-16T19:33:26Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 264.13 +/- 9.76 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sgoodfriend/ppo-impala-BreakoutNoFrameskip-v4
sgoodfriend
2023-02-16T19:31:14Z
0
0
rl-algo-impls
[ "rl-algo-impls", "BreakoutNoFrameskip-v4", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-16T19:07:28Z
--- library_name: rl-algo-impls tags: - BreakoutNoFrameskip-v4 - ppo - deep-reinforcement-learning - reinforcement-learning model-index: - name: ppo results: - metrics: - type: mean_reward value: 516.88 +/- 155.01 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: BreakoutNoFrameskip-v4 type: BreakoutNoFrameskip-v4 --- # **PPO** Agent playing **BreakoutNoFrameskip-v4** This is a trained model of a **PPO** agent playing **BreakoutNoFrameskip-v4** using the [/sgoodfriend/rl-algo-impls](https://github.com/sgoodfriend/rl-algo-impls) repo. All models trained at this commit can be found at https://api.wandb.ai/links/sgoodfriend/v4wd7cp5. ## Training Results This model was trained from 3 trainings of **PPO** agents using different initial seeds. These agents were trained by checking out [e47a44c](https://github.com/sgoodfriend/rl-algo-impls/tree/e47a44c4d891f48885af0b1605b30d19fc67b5af). The best and last models were kept from each training. This submission has loaded the best models from each training, reevaluates them, and selects the best model from these latest evaluations (mean - std). | algo | env | seed | reward_mean | reward_std | eval_episodes | best | wandb_url | |:-------|:-----------------------|-------:|--------------:|-------------:|----------------:|:-------|:-----------------------------------------------------------------------------| | ppo | BreakoutNoFrameskip-v4 | 1 | 502.562 | 161.406 | 16 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/ntpe1h0y) | | ppo | BreakoutNoFrameskip-v4 | 2 | 426.562 | 85.8509 | 16 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/olgzm7mt) | | ppo | BreakoutNoFrameskip-v4 | 3 | 516.875 | 155.012 | 16 | * | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/kxf84p5u) | ### Prerequisites: Weights & Biases (WandB) Training and benchmarking assumes you have a Weights & Biases project to upload runs to. By default training goes to a rl-algo-impls project while benchmarks go to rl-algo-impls-benchmarks. During training and benchmarking runs, videos of the best models and the model weights are uploaded to WandB. Before doing anything below, you'll need to create a wandb account and run `wandb login`. ## Usage /sgoodfriend/rl-algo-impls: https://github.com/sgoodfriend/rl-algo-impls Note: While the model state dictionary and hyperaparameters are saved, the latest implementation could be sufficiently different to not be able to reproduce similar results. You might need to checkout the commit the agent was trained on: [e47a44c](https://github.com/sgoodfriend/rl-algo-impls/tree/e47a44c4d891f48885af0b1605b30d19fc67b5af). ``` # Downloads the model, sets hyperparameters, and runs agent for 3 episodes python enjoy.py --wandb-run-path=sgoodfriend/rl-algo-impls-benchmarks/kxf84p5u ``` Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the [colab_enjoy.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_enjoy.ipynb) notebook. ## Training If you want the highest chance to reproduce these results, you'll want to checkout the commit the agent was trained on: [e47a44c](https://github.com/sgoodfriend/rl-algo-impls/tree/e47a44c4d891f48885af0b1605b30d19fc67b5af). While training is deterministic, different hardware will give different results. ``` python train.py --algo ppo --env BreakoutNoFrameskip-v4 --seed 3 ``` Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the [colab_train.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_train.ipynb) notebook. ## Benchmarking (with Lambda Labs instance) This and other models from https://api.wandb.ai/links/sgoodfriend/v4wd7cp5 were generated by running a script on a Lambda Labs instance. In a Lambda Labs instance terminal: ``` git clone [email protected]:sgoodfriend/rl-algo-impls.git cd rl-algo-impls bash ./lambda_labs/setup.sh wandb login bash ./lambda_labs/benchmark.sh ``` ### Alternative: Google Colab Pro+ As an alternative, [colab_benchmark.ipynb](https://github.com/sgoodfriend/rl-algo-impls/tree/main/benchmarks#:~:text=colab_benchmark.ipynb), can be used. However, this requires a Google Colab Pro+ subscription and running across 4 separate instances because otherwise running all jobs will exceed the 24-hour limit. ## Hyperparameters This isn't exactly the format of hyperparams in hyperparams/ppo.yml, but instead the Wandb Run Config. However, it's very close and has some additional data: ``` algo: ppo algo_hyperparams: batch_size: 256 clip_range: 0.1 clip_range_decay: linear ent_coef: 0.01 learning_rate: 0.00025 learning_rate_decay: linear n_epochs: 4 n_steps: 128 vf_coef: 0.5 env: impala-BreakoutNoFrameskip-v4 env_hyperparams: frame_stack: 4 n_envs: 8 no_reward_fire_steps: 500 no_reward_timeout_steps: 1000 vec_env_class: subproc env_id: BreakoutNoFrameskip-v4 eval_params: deterministic: false n_timesteps: 10000000 policy_hyperparams: activation_fn: relu cnn_feature_dim: 256 cnn_layers_init_orthogonal: false cnn_style: impala init_layers_orthogonal: true seed: 3 use_deterministic_algorithms: true wandb_entity: null wandb_project_name: rl-algo-impls-benchmarks wandb_tags: - benchmark_e47a44c - host_129-146-2-230 ```
sgoodfriend/ppo-impala-PongNoFrameskip-v4
sgoodfriend
2023-02-16T19:30:36Z
0
0
rl-algo-impls
[ "rl-algo-impls", "PongNoFrameskip-v4", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-16T19:04:35Z
--- library_name: rl-algo-impls tags: - PongNoFrameskip-v4 - ppo - deep-reinforcement-learning - reinforcement-learning model-index: - name: ppo results: - metrics: - type: mean_reward value: 21.0 +/- 0.0 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: PongNoFrameskip-v4 type: PongNoFrameskip-v4 --- # **PPO** Agent playing **PongNoFrameskip-v4** This is a trained model of a **PPO** agent playing **PongNoFrameskip-v4** using the [/sgoodfriend/rl-algo-impls](https://github.com/sgoodfriend/rl-algo-impls) repo. All models trained at this commit can be found at https://api.wandb.ai/links/sgoodfriend/v4wd7cp5. ## Training Results This model was trained from 3 trainings of **PPO** agents using different initial seeds. These agents were trained by checking out [e47a44c](https://github.com/sgoodfriend/rl-algo-impls/tree/e47a44c4d891f48885af0b1605b30d19fc67b5af). The best and last models were kept from each training. This submission has loaded the best models from each training, reevaluates them, and selects the best model from these latest evaluations (mean - std). | algo | env | seed | reward_mean | reward_std | eval_episodes | best | wandb_url | |:-------|:-------------------|-------:|--------------:|-------------:|----------------:|:-------|:-----------------------------------------------------------------------------| | ppo | PongNoFrameskip-v4 | 1 | 21 | 0 | 16 | * | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/2bvab97i) | | ppo | PongNoFrameskip-v4 | 2 | 20.875 | 0.330719 | 16 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/hjag7zwi) | | ppo | PongNoFrameskip-v4 | 3 | 21 | 0 | 16 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/197tllk4) | ### Prerequisites: Weights & Biases (WandB) Training and benchmarking assumes you have a Weights & Biases project to upload runs to. By default training goes to a rl-algo-impls project while benchmarks go to rl-algo-impls-benchmarks. During training and benchmarking runs, videos of the best models and the model weights are uploaded to WandB. Before doing anything below, you'll need to create a wandb account and run `wandb login`. ## Usage /sgoodfriend/rl-algo-impls: https://github.com/sgoodfriend/rl-algo-impls Note: While the model state dictionary and hyperaparameters are saved, the latest implementation could be sufficiently different to not be able to reproduce similar results. You might need to checkout the commit the agent was trained on: [e47a44c](https://github.com/sgoodfriend/rl-algo-impls/tree/e47a44c4d891f48885af0b1605b30d19fc67b5af). ``` # Downloads the model, sets hyperparameters, and runs agent for 3 episodes python enjoy.py --wandb-run-path=sgoodfriend/rl-algo-impls-benchmarks/2bvab97i ``` Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the [colab_enjoy.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_enjoy.ipynb) notebook. ## Training If you want the highest chance to reproduce these results, you'll want to checkout the commit the agent was trained on: [e47a44c](https://github.com/sgoodfriend/rl-algo-impls/tree/e47a44c4d891f48885af0b1605b30d19fc67b5af). While training is deterministic, different hardware will give different results. ``` python train.py --algo ppo --env PongNoFrameskip-v4 --seed 1 ``` Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the [colab_train.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_train.ipynb) notebook. ## Benchmarking (with Lambda Labs instance) This and other models from https://api.wandb.ai/links/sgoodfriend/v4wd7cp5 were generated by running a script on a Lambda Labs instance. In a Lambda Labs instance terminal: ``` git clone [email protected]:sgoodfriend/rl-algo-impls.git cd rl-algo-impls bash ./lambda_labs/setup.sh wandb login bash ./lambda_labs/benchmark.sh ``` ### Alternative: Google Colab Pro+ As an alternative, [colab_benchmark.ipynb](https://github.com/sgoodfriend/rl-algo-impls/tree/main/benchmarks#:~:text=colab_benchmark.ipynb), can be used. However, this requires a Google Colab Pro+ subscription and running across 4 separate instances because otherwise running all jobs will exceed the 24-hour limit. ## Hyperparameters This isn't exactly the format of hyperparams in hyperparams/ppo.yml, but instead the Wandb Run Config. However, it's very close and has some additional data: ``` algo: ppo algo_hyperparams: batch_size: 256 clip_range: 0.1 clip_range_decay: linear ent_coef: 0.01 learning_rate: 0.00025 learning_rate_decay: linear n_epochs: 4 n_steps: 128 vf_coef: 0.5 env: impala-PongNoFrameskip-v4 env_hyperparams: frame_stack: 4 n_envs: 8 no_reward_fire_steps: 500 no_reward_timeout_steps: 1000 vec_env_class: subproc env_id: PongNoFrameskip-v4 eval_params: deterministic: false n_timesteps: 10000000 policy_hyperparams: activation_fn: relu cnn_feature_dim: 256 cnn_layers_init_orthogonal: false cnn_style: impala init_layers_orthogonal: true seed: 1 use_deterministic_algorithms: true wandb_entity: null wandb_project_name: rl-algo-impls-benchmarks wandb_tags: - benchmark_e47a44c - host_129-146-2-230 ```
sgoodfriend/ppo-impala-SpaceInvadersNoFrameskip-v4
sgoodfriend
2023-02-16T19:26:59Z
0
0
rl-algo-impls
[ "rl-algo-impls", "SpaceInvadersNoFrameskip-v4", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-16T19:01:28Z
--- library_name: rl-algo-impls tags: - SpaceInvadersNoFrameskip-v4 - ppo - deep-reinforcement-learning - reinforcement-learning model-index: - name: ppo results: - metrics: - type: mean_reward value: 2179.69 +/- 811.66 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **PPO** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **PPO** agent playing **SpaceInvadersNoFrameskip-v4** using the [/sgoodfriend/rl-algo-impls](https://github.com/sgoodfriend/rl-algo-impls) repo. All models trained at this commit can be found at https://api.wandb.ai/links/sgoodfriend/v4wd7cp5. ## Training Results This model was trained from 3 trainings of **PPO** agents using different initial seeds. These agents were trained by checking out [e47a44c](https://github.com/sgoodfriend/rl-algo-impls/tree/e47a44c4d891f48885af0b1605b30d19fc67b5af). The best and last models were kept from each training. This submission has loaded the best models from each training, reevaluates them, and selects the best model from these latest evaluations (mean - std). | algo | env | seed | reward_mean | reward_std | eval_episodes | best | wandb_url | |:-------|:----------------------------|-------:|--------------:|-------------:|----------------:|:-------|:-----------------------------------------------------------------------------| | ppo | SpaceInvadersNoFrameskip-v4 | 1 | 2179.69 | 811.656 | 16 | * | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/0wasw8tx) | | ppo | SpaceInvadersNoFrameskip-v4 | 2 | 1210.62 | 636.352 | 16 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/vso69gon) | | ppo | SpaceInvadersNoFrameskip-v4 | 3 | 1737.19 | 903.697 | 16 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/eh6mush2) | ### Prerequisites: Weights & Biases (WandB) Training and benchmarking assumes you have a Weights & Biases project to upload runs to. By default training goes to a rl-algo-impls project while benchmarks go to rl-algo-impls-benchmarks. During training and benchmarking runs, videos of the best models and the model weights are uploaded to WandB. Before doing anything below, you'll need to create a wandb account and run `wandb login`. ## Usage /sgoodfriend/rl-algo-impls: https://github.com/sgoodfriend/rl-algo-impls Note: While the model state dictionary and hyperaparameters are saved, the latest implementation could be sufficiently different to not be able to reproduce similar results. You might need to checkout the commit the agent was trained on: [e47a44c](https://github.com/sgoodfriend/rl-algo-impls/tree/e47a44c4d891f48885af0b1605b30d19fc67b5af). ``` # Downloads the model, sets hyperparameters, and runs agent for 3 episodes python enjoy.py --wandb-run-path=sgoodfriend/rl-algo-impls-benchmarks/0wasw8tx ``` Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the [colab_enjoy.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_enjoy.ipynb) notebook. ## Training If you want the highest chance to reproduce these results, you'll want to checkout the commit the agent was trained on: [e47a44c](https://github.com/sgoodfriend/rl-algo-impls/tree/e47a44c4d891f48885af0b1605b30d19fc67b5af). While training is deterministic, different hardware will give different results. ``` python train.py --algo ppo --env SpaceInvadersNoFrameskip-v4 --seed 1 ``` Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the [colab_train.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_train.ipynb) notebook. ## Benchmarking (with Lambda Labs instance) This and other models from https://api.wandb.ai/links/sgoodfriend/v4wd7cp5 were generated by running a script on a Lambda Labs instance. In a Lambda Labs instance terminal: ``` git clone [email protected]:sgoodfriend/rl-algo-impls.git cd rl-algo-impls bash ./lambda_labs/setup.sh wandb login bash ./lambda_labs/benchmark.sh ``` ### Alternative: Google Colab Pro+ As an alternative, [colab_benchmark.ipynb](https://github.com/sgoodfriend/rl-algo-impls/tree/main/benchmarks#:~:text=colab_benchmark.ipynb), can be used. However, this requires a Google Colab Pro+ subscription and running across 4 separate instances because otherwise running all jobs will exceed the 24-hour limit. ## Hyperparameters This isn't exactly the format of hyperparams in hyperparams/ppo.yml, but instead the Wandb Run Config. However, it's very close and has some additional data: ``` algo: ppo algo_hyperparams: batch_size: 256 clip_range: 0.1 clip_range_decay: linear ent_coef: 0.01 learning_rate: 0.00025 learning_rate_decay: linear n_epochs: 4 n_steps: 128 vf_coef: 0.5 env: impala-SpaceInvadersNoFrameskip-v4 env_hyperparams: frame_stack: 4 n_envs: 8 no_reward_fire_steps: 500 no_reward_timeout_steps: 1000 vec_env_class: subproc env_id: SpaceInvadersNoFrameskip-v4 eval_params: deterministic: false n_timesteps: 10000000 policy_hyperparams: activation_fn: relu cnn_feature_dim: 256 cnn_layers_init_orthogonal: false cnn_style: impala init_layers_orthogonal: true seed: 1 use_deterministic_algorithms: true wandb_entity: null wandb_project_name: rl-algo-impls-benchmarks wandb_tags: - benchmark_e47a44c - host_129-146-2-230 ```
sergey-antonov/a2c-AntBulletEnv-v0
sergey-antonov
2023-02-16T19:15:27Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-16T19:14:24Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1159.41 +/- 166.14 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
RyuExcalibur/bart-large-mnli-aitools-3n
RyuExcalibur
2023-02-16T18:52:26Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-16T18:40:53Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: bart-large-mnli-aitools-3n results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-mnli-aitools-3n This model is a fine-tuned version of [facebook/bart-large-mnli](https://huggingface.co/facebook/bart-large-mnli) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2499 - Accuracy: 0.9583 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.15 | 50 | 0.3391 | 0.9028 | | No log | 0.31 | 100 | 0.5318 | 0.9028 | | No log | 0.46 | 150 | 0.3007 | 0.9444 | | No log | 0.62 | 200 | 0.9533 | 0.8611 | | No log | 0.77 | 250 | 0.2389 | 0.9583 | | No log | 0.92 | 300 | 0.2735 | 0.9444 | | No log | 1.08 | 350 | 0.3416 | 0.9444 | | No log | 1.23 | 400 | 0.2120 | 0.9583 | | No log | 1.38 | 450 | 0.2039 | 0.9583 | | 0.3562 | 1.54 | 500 | 0.2499 | 0.9583 | | 0.3562 | 1.69 | 550 | 0.2237 | 0.9583 | | 0.3562 | 1.85 | 600 | 0.2532 | 0.9444 | | 0.3562 | 2.0 | 650 | 0.2371 | 0.9444 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
akghxhs55/poca-SoccerTwos-6
akghxhs55
2023-02-16T18:46:31Z
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-16T18:43:56Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: akghxhs55/poca-SoccerTwos-6 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
azamat/microsoft-mpnet-mapper
azamat
2023-02-16T18:41:48Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-02-16T17:25:54Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 506 with parameters: ``` {'batch_size': 512, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.ContrastiveLoss.ContrastiveLoss` with parameters: ``` {'distance_metric': 'SiameseDistanceMetric.COSINE_DISTANCE', 'margin': 0.5, 'size_average': True} ``` Parameters of the fit()-Method: ``` { "epochs": 3, "evaluation_steps": 250, "evaluator": "sentence_transformers.evaluation.BinaryClassificationEvaluator.BinaryClassificationEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 50, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
meganstodel/a2c-PandaReachDense-v2
meganstodel
2023-02-16T18:19:07Z
1
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-16T18:16:37Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -3.97 +/- 1.06 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
mmiteva/qa_model_test
mmiteva
2023-02-16T17:57:13Z
3
0
transformers
[ "transformers", "tf", "distilbert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-02-16T14:43:44Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: mmiteva/qa_model_test results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # mmiteva/qa_model_test This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4469 - Train End Logits Accuracy: 0.8470 - Train Start Logits Accuracy: 0.8386 - Validation Loss: 1.0938 - Validation End Logits Accuracy: 0.7318 - Validation Start Logits Accuracy: 0.7255 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 108280, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 1.4847 | 0.5934 | 0.5787 | 1.1159 | 0.6724 | 0.6590 | 0 | | 0.9507 | 0.7042 | 0.6909 | 1.0094 | 0.6973 | 0.6875 | 1 | | 0.7253 | 0.7637 | 0.7515 | 0.9841 | 0.7182 | 0.7124 | 2 | | 0.5678 | 0.8090 | 0.7986 | 1.0107 | 0.7260 | 0.7194 | 3 | | 0.4469 | 0.8470 | 0.8386 | 1.0938 | 0.7318 | 0.7255 | 4 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.9.2 - Datasets 2.1.0 - Tokenizers 0.12.1
Podtekatel/Avatar2VSK
Podtekatel
2023-02-16T17:36:26Z
0
0
null
[ "onnx", "license:creativeml-openrail-m", "region:us" ]
null
2023-02-16T17:34:54Z
--- license: creativeml-openrail-m ---
Katowise/intel-image-classification
Katowise
2023-02-16T17:34:53Z
0
0
fastai
[ "fastai", "region:us" ]
null
2023-02-16T17:34:51Z
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
Mykolyt/ppo-PyramidsRND
Mykolyt
2023-02-16T17:31:20Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-02-16T17:31:14Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: Mykolyt/ppo-PyramidsRND 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
skotha/my_awesome_eli5_mlm_model
skotha
2023-02-16T17:03:36Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-02-15T16:05:11Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: my_awesome_eli5_mlm_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_eli5_mlm_model This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0304 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.344 | 1.0 | 933 | 2.0746 | | 2.1911 | 2.0 | 1866 | 2.0287 | | 2.1151 | 3.0 | 2799 | 2.0237 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
tvarella/atari-dqn-repo
tvarella
2023-02-16T17:00:40Z
1
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-16T17:00:01Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 342.50 +/- 127.15 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga tvarella -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga tvarella -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga tvarella ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
marlenezw/Self_Attention_Network
marlenezw
2023-02-16T16:58:23Z
0
2
null
[ "art", "en", "license:cc-by-2.0", "region:us" ]
null
2023-02-15T21:37:53Z
--- license: cc-by-2.0 language: - en tags: - art --- # Model Summary This is model takes as input a speaker embedding, which is the content representation of an audio file, and the initial static landmarks generated by another model predicting facial landmark points when a speaker says specific words. It uses these inputs to generate speakeraware landmark displacement. The Self Attention Network is used in speaker aware Audio Driven Animation, that takes in a single image and generates a video animation. Most machine learning talking head models only take into account the lips and jaw of the speaker. Using this model the motion of the head or the subtle correlation between mouth and eyebrows become a crucial clues to generate plausible talking heads. The model is therefore trained to take both the content and the nuances of the speaker to create a self attention encoder that’s specific to the speaker. This specific pre-trained implementation of the model is sourced from the [MakeITTalk project](). To see it work in live action, take a look at the pace [here](). # Training The audio-visual dataset, VoxCeleb2, dataset was used to train the model since it contains video segments from a variety of speakers [Chung et al. 2018]. VoxCeleb2 was originally designed for speaker verification. A subset of 67 speakers with a total of 1,232 videos clips from VoxCeleb2. On average, the clips were 5-10 minutes of videos for each speaker.[source: Zhou et all 2020](https://people.umass.edu/~yangzhou/MakeItTalk/MakeItTalk_SIGGRAPH_Asia_Final_round-5.pdf) ![zhou et al](https://www.linkpicture.com/q/Screen-Shot-2023-02-16-at-6.41.37-PM.png) # Performance The model was been evaluated against two baselines: “retrieve-same ID” and “retrieve-random ID”. These baselines retrieve the head pose and position sequence from another video clip randomly picked from the training set. Then the facial landmarks were translated and rotated to reproduce the copied head poses and positions. The first baseline “retrieve-same ID” uses a training video with the same speaker as in the test video. This strategy makes this baseline stronger since it re-uses dynamics from the same speaker. The second baseline “retrieve-random ID” uses a video from a different random speaker. This baseline is useful to examine whether the method and alternatives produce head pose and facial expressions better than random or not. The model method achieves much smaller errors compared to both baselines, indicating the speaker-aware prediction is more faithful compared to merely copying head motion from another video. It produces 2.7𝑥 less error in head pose(D-Rot), and 1.7𝑥 less error in head position (D-Pos) compared to using a random speaker identity (see “retrieve-random ID”). This result also confirms that the head motion dynamics of random speakers largely differ from ground-truth ones. # Ethical Considerations “Deepfake videos” are becoming more prevalent in everyday life. The general public might still think that talking head videos are hard or impossible to generate synthetically. As a result, algorithms for talking head generation can be misused to spread misinformation or for other malicious acts. This code can help people understand that generating such videos is entirely feasible. The main intention of distributing the model is to spread awareness and demystify this technology. The main code repo includes a watermark to the generated videos making it clear that they are synthetic. The code can be altered to remove the watermark but users are always encouraged to use the technology responsibly and ethically.
yjlee1011/distilbert-base-uncased-finetuned-emotion
yjlee1011
2023-02-16T16:15:17Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-16T15:21:47Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: split metrics: - name: Accuracy type: accuracy value: 0.9235 - name: F1 type: f1 value: 0.9236745736345326 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2280 - Accuracy: 0.9235 - F1: 0.9237 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8373 | 1.0 | 250 | 0.3267 | 0.907 | 0.9032 | | 0.2543 | 2.0 | 500 | 0.2280 | 0.9235 | 0.9237 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.10.3
giobin/ppo-Huggy
giobin
2023-02-16T16:14:45Z
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-02-16T16:14:38Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: giobin/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Mykolyt/ppo-SnowballTarget
Mykolyt
2023-02-16T16:12:17Z
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-02-16T16:12:11Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: Mykolyt/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
mnavas/hf-rl-ppo-lunar
mnavas
2023-02-16T16:09:49Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-02-16T15:53:58Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 69.29 +/- 64.71 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 500000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'mnavas/hf-rl-ppo-lunar' 'batch_size': 512 'minibatch_size': 128} ```
morisato/scenery_LoRA_02_train_interior
morisato
2023-02-16T16:05:25Z
0
1
null
[ "scenery", "LoRA", "E235", "Hankyu3000", "ja", "license:other", "region:us" ]
null
2023-02-15T15:42:04Z
--- license: other language: - ja type: - LoRA category: - scenery tags: - scenery - LoRA - E235 - Hankyu3000 --- # 背景LoRA 通常のモデルやプロンプトでは生成しづらい場所や風景を学習で生成できるようになったらいいなという実験 **使用上の注意** 当データはAIによる画像学習技術の実験データです。 **当データを使ってNSFW・センシティブな画像を生成された場合、Twitter等の多くの人の目に入る場所には決して掲載しないようにお願い致します。** 実在する風景をテーマにしていますので生成した画像の取り扱いには十分なご配慮をお願いします。クローズドな場所、個人的な画像生成等の実験・趣味等でご使用下さい。 実写系・リアル系のモデルで当LoRAを使用して画像を生成した場合、現実と混同する可能性のあるリアルな画像となる可能性があります。 当データを使用して生成された画像の取り扱いについては画像生成者が責任を負うものとし当方は一切の責任を負いません。 当データの販売・当データを利用して生成した画像の販売等、商用使用も一切禁止とします。 1. [山手線E235系](#anchor1) 2. [阪急3000系](#anchor2) <a id="anchor1"></a> # E235_V5.safetensors [<img width="480" src="https://i.imgur.com/eiUPGgY.png">](https://i.imgur.com/eiUPGgY.png) [<img width="480" src="https://i.imgur.com/QdFSoN2.png">](https://i.imgur.com/QdFSoN2.png) 山手線のE235系の車内風景を学習させた背景LoRAです。 プロンプトに **E235 train interior, \<lora:E235_V5:0.6\>** 等と記入して使って下さい。 ※Weightを若干下げて使って下さい。Weight上げると人物の描画に結構影響がでます。 E235_V4 は若干過学習気味にさせてみた実験バージョンです。低いWeightで背景を描けないかという実験用に作りました。 ※Weightを結構下げないと画面が荒れ、Weight下げるとあまり上手く背景を描けないという結果になってしまいました。 <a id="anchor2"></a> # Hankyu3000.safetensors [<img width="480" src="https://i.imgur.com/nLZsqLR.png">](https://i.imgur.com/nLZsqLR.png) [<img width="480" src="https://i.imgur.com/g9Ys8Uk.png">](https://i.imgur.com/g9Ys8Uk.png) 映画「阪急電車」にも登場した阪急3000系の車内風景を学習させた背景LoRAです。 プロンプトに **Hankyu3000, train interior, \<lora:Hankyu3000:0.6\>** 等と記入して使って下さい。 ※Weightを若干下げて使って下さい。Weight上げると人物の描画に結構影響がでます。
mshibatatt/a2c-PandaReachDense-v2
mshibatatt
2023-02-16T15:56:32Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-16T15:54:10Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -2.51 +/- 0.70 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
hectorjelly/a2ca-PandaReachDense-v2
hectorjelly
2023-02-16T15:53:34Z
1
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-16T15:50:33Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -2.27 +/- 0.58 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
nsecord/q-Taxi-v3-attempt3
nsecord
2023-02-16T15:46:15Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-16T15:29:44Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3-attempt3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="nsecord/q-Taxi-v3-attempt3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
inkasaras/dqn-SpaceInvadersNoFrameskip-v4
inkasaras
2023-02-16T15:42:01Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-16T15:41:14Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 707.00 +/- 386.45 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga inkasaras -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga inkasaras -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga inkasaras ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
marlenezw/AutoVC_Voice_Conversion
marlenezw
2023-02-16T15:41:24Z
0
1
null
[ "code", "audio", "voice", "en", "arxiv:1905.05879", "license:cc-by-2.0", "region:us" ]
null
2023-02-15T21:28:29Z
--- license: cc-by-2.0 language: - en tags: - code - audio - voice --- # Model Summary AUTOVC is a many-to-many voice style transfer algorithm. This model is used to extract speaker-agnostic content representation from an audio file. A good way to think about the term `speaker-agnostic` is that, for example, no matter who speaks the word ‘Ha!’, the lips are expected to be open. This means the opening motion of the mouth is only dictated by the content and not the speaker. The AutoVC_Conversion model is designed to capture the neutral, general motion of just the lips and nearby regions. It leverages AutoVC from Qian et al. [2019](https://arxiv.org/abs/1905.05879). This specific pre-trained model is from the open source audio driven talking head project, [MakeItTalk](https://github.com/marlenezw/MakeItTalk). You can demo the space and check out how its used in the code [here](https://huggingface.co/spaces/marlenezw/audio-driven-animations). The framework consists of three modules: - a content encoder `Ec(·)`, that produces a content embedding from speech - aspeaker encoder `Es(·)` that produces a speaker embedding from speech - a decoder `D(·, ·)` that produces speech from content and speaker embeddings. The model network utilizes an LSTM-based encoder that compresses the input audio into a compact representation trained to abandon the original speaker identity but preserve content. It extracts a content embedding `A ∈ R𝑇×𝐷` from the AutoVC network, where `𝑇` is the total number of input audio frames, and `𝐷` is the content dimension. # Training The speaker encoder is a pre-trained model proveded Wan et al. [2018]. Only the content encoder and the decoder are trained. A training source speech from a dataset of speakers is processed through the content encoder. Then another utterance of the same source speaker is used to extract the speaker embedding, which is passed to the decoder along with the audio content embedding to reconstruct the original source. The training deliberately assumes that parallel data is not available and so only self-reconstruction is needed for training. # Performance The evaluation of AutoVC was performed on the VCTK corpus (Veauxet al., 2016), which contains 44 hours of utterances from 109 speakers. Each speaker reads a different set of sentences. Two subjective tests on Amazon Mechanical Turk (MTurk) were performed. In the first test, called the mean opinionscore (MOS) test, the subjects are presented with converted utterances. For each utterance, the subjects are asked to assign a score of 1-5 on the naturalness of the converted speech. In the second test, called the similarity test, the subjects are presented with pairs of utterances. In each pair,there is one converted utterance, and one utterance from the target speaker uttering the same sentence. For each pair, the subjects were asked to assign a score of 1-5 on the voice similarity.The subjects were explicitly asked to focus on the voice rather than intonation and accent. The MOS scores of AUTOVC are above 3 for all groups, whereas those for the baselines almost all fall below 3. The MOS for 16kHz natural speech is around 4.5. The MOS scores of the current state-of-the-art speech synthesizers are between 4 and 4.5. These subjective evaluation results show that AUTOVC approaches the performance of parallel conversion systems in terms of naturalness, and is much better than existing non-parallel conversion systems.
LucasG/sound_project
LucasG
2023-02-16T15:41:19Z
0
0
tensorflowtts
[ "tensorflowtts", "summarization", "fr", "region:us" ]
summarization
2023-02-16T15:38:34Z
--- language: - fr metrics: - accuracy library_name: tensorflowtts pipeline_tag: summarization ---
dhamakapros/IndiandjsinSanDiego
dhamakapros
2023-02-16T15:32:16Z
0
0
null
[ "region:us" ]
null
2023-02-16T15:29:44Z
At Dhamaka we have some of the best DJs and hosts that will create an amazing atmosphere at any event. Our DJs and production team have the skills and know how to help create events that will be remembered for generations. We offer cutting edge equipment, the latest event technology and knowledgeable staff with Indian wedding djs in Los Angeles. If you are looking for professional dj then Dhamaka Productions is the perfet for you. Contact now [http://dhamakapros.com](http://dhamakapros.com)
nsecord/q-Taxi-v3-attempt1
nsecord
2023-02-16T15:19:37Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-16T15:19:35Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3-attempt1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.48 +/- 2.78 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="nsecord/q-Taxi-v3-attempt1", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
abirazad99/ppo-LunarLander-v2
abirazad99
2023-02-16T15:19:03Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-16T14:31:39Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 247.24 +/- 22.74 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Elytum/tiny-classification-fast-4
Elytum
2023-02-16T15:16:58Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-15T16:12:54Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: tiny-classification-fast-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-classification-fast-4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2088 - Accuracy: 0.9485 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2198 | 1.0 | 45838 | 0.1850 | 0.9468 | | 0.1524 | 2.0 | 91676 | 0.2088 | 0.9485 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu117 - Datasets 2.9.0 - Tokenizers 0.13.2
nejox/all-MiniLM-L6-v2_fine_tuned_coffee
nejox
2023-02-16T15:09:33Z
14
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-02-15T16:06:09Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 46 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 10, "evaluator": "lossEvaluator.LossEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 46, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
abhijit1247/lora_leadership-role-2
abhijit1247
2023-02-16T14:54:48Z
0
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-02-16T07:29:39Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - https://huggingface.co/abhijit1247/lora_leadership-role-2 These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the /root/leadership-role dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
Thanakrit/wangchanberta-th-QA
Thanakrit
2023-02-16T14:51:11Z
48
0
transformers
[ "transformers", "pytorch", "camembert", "question-answering", "th", "dataset:thaiqa_squad", "endpoints_compatible", "region:us" ]
question-answering
2022-03-15T14:34:26Z
--- datasets: - thaiqa_squad language: - th --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wangchanberta-th-QA This model is a fine-tuned version of [airesearch/wangchanberta-base-att-spm-uncased](https://huggingface.co/airesearch/wangchanberta-base-att-spm-uncased) on the thaiqa_squad dataset. language: - th Code for fine-tune Model [github](https://github.com/KillM0nGerZ/WangchanBERTa-for-QuestionAnswering.git)
azamat/bert-base-uncased-mapper
azamat
2023-02-16T14:49:19Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-02-15T11:45:56Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 524 with parameters: ``` {'batch_size': 512, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.ContrastiveLoss.ContrastiveLoss` with parameters: ``` {'distance_metric': 'SiameseDistanceMetric.COSINE_DISTANCE', 'margin': 0.5, 'size_average': True} ``` Parameters of the fit()-Method: ``` { "epochs": 3, "evaluation_steps": 250, "evaluator": "sentence_transformers.evaluation.BinaryClassificationEvaluator.BinaryClassificationEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 50, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
nsecord/q-FrozenLake-v1-8x8-noSlippery
nsecord
2023-02-16T14:47:06Z
0
0
null
[ "FrozenLake-v1-8x8-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-16T14:46:38Z
--- tags: - FrozenLake-v1-8x8-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-8x8-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-8x8-no_slippery type: FrozenLake-v1-8x8-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="nsecord/q-FrozenLake-v1-8x8-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
gazuzur/ppo-LunarLander-v2
gazuzur
2023-02-16T14:38:06Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-16T14:37:13Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -51.66 +/- 23.72 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
CoreyMorris/PPO-LunarLandar-v2-clearRL
CoreyMorris
2023-02-16T14:37:26Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-02-16T00:43:22Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -131.06 +/- 91.79 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': True 'wandb_project_name': 'lander' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 100000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'CoreyMorris/PPO-LunarLandar-v2-clearRL' 'batch_size': 512 'minibatch_size': 128} ```
mnavas/hf-rl-SoccerTwos
mnavas
2023-02-16T14:30:28Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-16T14:30:13Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: mnavas/hf-rl-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
samedaycourierlafayette/SameDayCourierLafayette
samedaycourierlafayette
2023-02-16T14:18:52Z
0
0
null
[ "region:us" ]
null
2023-02-16T14:18:31Z
Same Day Courier Service in Baton Rouge If you’re looking for a reliable same-day courier in Lafayette, Louisiana, look no further than Same Day Courier Lafayette. With competitive rates, experienced staff, and exceptional customer service. For more details, please visit at [https://same-day-courier-lafayette.com/ ](https://same-day-courier-lafayette.com/ )
nsecord/q-FrozenLake-v1-4x4-noSlippery
nsecord
2023-02-16T14:07:23Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-16T12:59:42Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="nsecord/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
rishabhjain16/whisper_large_v2_to_myst55h
rishabhjain16
2023-02-16T13:50:01Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-02-07T11:32:28Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: openai/whisper-large-v2 results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: rishabhjain16/infer_myst type: rishabhjain16/infer_myst config: en split: test metrics: - type: wer value: 12.28 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: rishabhjain16/infer_cmu type: rishabhjain16/infer_cmu config: en split: test metrics: - type: wer value: 9.8 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: rishabhjain16/libritts_dev_clean type: rishabhjain16/libritts_dev_clean config: en split: test metrics: - type: wer value: 4.82 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: rishabhjain16/infer_cmu_9h type: rishabhjain16/infer_cmu_9h config: en split: test metrics: - type: wer value: 15.67 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: rishabhjain16/infer_pf_swedish type: rishabhjain16/infer_pf_swedish config: en split: test metrics: - type: wer value: 25.56 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: rishabhjain16/infer_pfs type: rishabhjain16/infer_pfs config: en split: test metrics: - type: wer value: 10.88 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: rishabhjain16/infer_pf_german type: rishabhjain16/infer_pf_german config: en split: test metrics: - type: wer value: 65.58 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: rishabhjain16/infer_pf_italian type: rishabhjain16/infer_pf_italian config: en split: test metrics: - type: wer value: 23.48 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: rishabhjain16/infer_so_chinese type: rishabhjain16/infer_so_chinese config: en split: test metrics: - type: wer value: 25.05 name: WER --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # openai/whisper-large-v2 This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3834 - Wer: 11.8889 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.5582 | 0.12 | 500 | 0.3660 | 14.8170 | | 0.2285 | 1.02 | 1000 | 0.2919 | 12.6304 | | 0.2038 | 1.15 | 1500 | 0.2795 | 11.3850 | | 0.074 | 2.04 | 2000 | 0.3150 | 12.1043 | | 0.2165 | 2.17 | 2500 | 0.2978 | 12.8510 | | 0.0399 | 3.07 | 3000 | 0.3467 | 11.7322 | | 0.045 | 3.19 | 3500 | 0.3501 | 11.7218 | | 0.0187 | 4.09 | 4000 | 0.3834 | 11.8889 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.9.1.dev0 - Tokenizers 0.13.2
michal512/ppo-SnowballTarget
michal512
2023-02-16T13:26:33Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-02-16T13:26:27Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: michal512/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
LarryAIDraw/atagoAzurlaneFull_atagoUnet2e4Telr8e4
LarryAIDraw
2023-02-16T13:18:37Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-16T13:08:49Z
--- license: creativeml-openrail-m --- https://civitai.com/models/9193/atago-azurlane-full-lora
LarryAIDraw/corneo_thorn_princess_yor
LarryAIDraw
2023-02-16T13:09:40Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-16T04:21:48Z
--- license: creativeml-openrail-m --- https://civitai.com/models/5416/yor-forger-thorn-princess-version-ti-embedding-by-corneo
nakanolab/ppo-Huggy
nakanolab
2023-02-16T13:08:44Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-02-16T13:08:36Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: nakanolab/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Aadharsh/ppo-LunarLander-v2
Aadharsh
2023-02-16T13:08:02Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-16T13:07:31Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: ppo results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 251.42 +/- 19.77 name: mean_reward verified: false --- # **ppo** Agent playing **LunarLander-v2** This is a trained model of a **ppo** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
hemangjoshi37a/autotrain-stocks-ner-2000-sample-test-1676759313
hemangjoshi37a
2023-02-16T12:46:04Z
10
2
transformers
[ "transformers", "pytorch", "autotrain", "token-classification", "en", "dataset:hemangjoshi37a/autotrain-data-stocks-ner-2000-sample-test", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
token-classification
2022-10-06T05:43:42Z
--- tags: - autotrain - token-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - hemangjoshi37a/autotrain-data-stocks-ner-2000-sample-test co2_eq_emissions: emissions: 0.011029408706604873 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 1676759313 - CO2 Emissions (in grams): 0.0110 ## Validation Metrics - Loss: 0.097 - Accuracy: 0.973 - Precision: 0.903 - Recall: 0.921 - F1: 0.912 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/hemangjoshi37a/autotrain-stocks-ner-2000-sample-test-1676759313 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("hemangjoshi37a/autotrain-stocks-ner-2000-sample-test-1676759313", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("hemangjoshi37a/autotrain-stocks-ner-2000-sample-test-1676759313", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ``` # GitHub Link to this project : [Telegram Trade Msg Backtest ML](https://github.com/hemangjoshi37a/TelegramTradeMsgBacktestML) # Need custom model for your application? : Place a order on hjLabs.in : [Custom Token Classification or Named Entity Recognition (NER) model as in Natural Language Processing (NLP) Machine Learning](https://hjlabs.in/product/custom-token-classification-or-named-entity-recognition-ner-model-as-in-natural-language-processing-nlp-machine-learning/) ## What this repository contains? : 1. Label data using LabelStudio NER(Named Entity Recognition or Token Classification) tool. ![Screenshot from 2022-09-30 12-28-50](https://user-images.githubusercontent.com/12392345/193394190-3ad215d1-3205-4af3-949e-6d95cf866c6c.png) convert to ![Screenshot from 2022-09-30 18-59-14](https://user-images.githubusercontent.com/12392345/193394213-9bb936e7-34ea-4cbc-9132-80c7e5a006d7.png) 2. Convert LabelStudio CSV or JSON to HuggingFace-autoTrain dataset conversion script ![Screenshot from 2022-10-01 10-36-03](https://user-images.githubusercontent.com/12392345/193394227-32e293d4-6736-4e71-b687-b0c2fcad732c.png) 3. Train NER model on Hugginface-autoTrain. ![Screenshot from 2022-10-01 10-38-24](https://user-images.githubusercontent.com/12392345/193394247-bf51da86-45bb-41b4-b4da-3de86014e6a5.png) 4. Use Hugginface-autoTrain model to predict labels on new data in LabelStudio using LabelStudio-ML-Backend. ![Screenshot from 2022-10-01 10-41-07](https://user-images.githubusercontent.com/12392345/193394251-bfba07d4-c56b-4fe8-ba7f-08a1c69f0e2c.png) ![Screenshot from 2022-10-01 10-42-36](https://user-images.githubusercontent.com/12392345/193394261-df4bc8f8-9ffd-4819-ba26-04fddbba8e7b.png) ![Screenshot from 2022-10-01 10-44-56](https://user-images.githubusercontent.com/12392345/193394267-c5a111c3-8d00-4d6f-b3c6-0ea82e4ac474.png) 5. Define python function to predict labels using Hugginface-autoTrain model. ![Screenshot from 2022-10-01 10-47-08](https://user-images.githubusercontent.com/12392345/193394278-81389606-f690-454a-bb2b-ef3f1db39571.png) ![Screenshot from 2022-10-01 10-47-25](https://user-images.githubusercontent.com/12392345/193394288-27a0c250-41af-48b1-9c57-c146dc51da1d.png) 6. Only label new data from newly predicted-labels-dataset that has falsified labels. ![Screenshot from 2022-09-30 22-47-23](https://user-images.githubusercontent.com/12392345/193394294-fdfaf40a-c9cd-4c2d-836e-1878b503a668.png) 7. Backtest Truely labelled dataset against real historical data of the stock using zerodha kiteconnect and jugaad_trader. ![Screenshot from 2022-10-01 00-05-55](https://user-images.githubusercontent.com/12392345/193394303-137c2a2a-3341-4be3-8ece-5191669ec53a.png) 8. Evaluate total gained percentage since inception summation-wise and compounded and plot. ![Screenshot from 2022-10-01 00-06-59](https://user-images.githubusercontent.com/12392345/193394308-446eddd9-c5d1-47e3-a231-9edc620284bb.png) 9. Listen to telegram channel for new LIVE messages using telegram API for algotrading. ![Screenshot from 2022-10-01 00-09-29](https://user-images.githubusercontent.com/12392345/193394319-8cc915b7-216e-4e05-a7bf-28360b17de99.png) 10. Serve the app as flask web API for web request and respond to it as labelled tokens. ![Screenshot from 2022-10-01 00-12-12](https://user-images.githubusercontent.com/12392345/193394323-822c2a59-ca72-45b1-abca-a6e5df3364b0.png) 11. Outperforming or underperforming results of the telegram channel tips against exchange index by percentage. ![Screenshot from 2022-10-01 11-16-27](https://user-images.githubusercontent.com/12392345/193394685-53235198-04f8-4d3c-a341-535dd9093252.png) Place a custom order on hjLabs.in : [https://hjLabs.in](https://hjlabs.in/?product=custom-algotrading-software-for-zerodha-and-angel-w-source-code) ---------------------------------------------------------------------- ### Social Media : * [WhatsApp/917016525813](https://wa.me/917016525813) * [telegram/hjlabs](https://t.me/hjlabs) * [Gmail/[email protected]](mailto:[email protected]) * [Facebook/hemangjoshi37](https://www.facebook.com/hemangjoshi37/) * [Twitter/HemangJ81509525](https://twitter.com/HemangJ81509525) * [LinkedIn/hemang-joshi-046746aa](https://www.linkedin.com/in/hemang-joshi-046746aa/) * [Tumblr/hemangjoshi37a-blog](https://www.tumblr.com/blog/hemangjoshi37a-blog) * [Pinterest/hemangjoshi37a](https://in.pinterest.com/hemangjoshi37a/) * [Blogger/hemangjoshi](http://hemangjoshi.blogspot.com/) * [Instagram/hemangjoshi37](https://www.instagram.com/hemangjoshi37/) ### Checkout Our Other Repositories - [pyPortMan](https://github.com/hemangjoshi37a/pyPortMan) - [transformers_stock_prediction](https://github.com/hemangjoshi37a/transformers_stock_prediction) - [TrendMaster](https://github.com/hemangjoshi37a/TrendMaster) - [hjAlgos_notebooks](https://github.com/hemangjoshi37a/hjAlgos_notebooks) - [AutoCut](https://github.com/hemangjoshi37a/AutoCut) - [My_Projects](https://github.com/hemangjoshi37a/My_Projects) - [Cool Arduino and ESP8266 or NodeMCU Projects](https://github.com/hemangjoshi37a/my_Arduino) - [Telegram Trade Msg Backtest ML](https://github.com/hemangjoshi37a/TelegramTradeMsgBacktestML) ### Checkout Our Other Products - [WiFi IoT LED Matrix Display](https://hjlabs.in/product/wifi-iot-led-display) - [SWiBoard WiFi Switch Board IoT Device](https://hjlabs.in/product/swiboard-wifi-switch-board-iot-device) - [Electric Bicycle](https://hjlabs.in/product/electric-bicycle) - [Product 3D Design Service with Solidworks](https://hjlabs.in/product/product-3d-design-with-solidworks/) - [AutoCut : Automatic Wire Cutter Machine](https://hjlabs.in/product/automatic-wire-cutter-machine/) - [Custom AlgoTrading Software Coding Services](https://hjlabs.in/product/custom-algotrading-software-for-zerodha-and-angel-w-source-code//) - [SWiBoard :Tasmota MQTT Control App](https://play.google.com/store/apps/details?id=in.hjlabs.swiboard) - [Custom Token Classification or Named Entity Recognition (NER) model as in Natural Language Processing (NLP) Machine Learning](https://hjlabs.in/product/custom-token-classification-or-named-entity-recognition-ner-model-as-in-natural-language-processing-nlp-machine-learning/) ## Some Cool Arduino and ESP8266 (or NodeMCU) IoT projects: - [IoT_LED_over_ESP8266_NodeMCU : Turn LED on and off using web server hosted on a nodemcu or esp8266](https://github.com/hemangjoshi37a/my_Arduino/tree/master/IoT_LED_over_ESP8266_NodeMCU) - [ESP8266_NodeMCU_BasicOTA : Simple OTA (Over The Air) upload code from Arduino IDE using WiFi to NodeMCU or ESP8266](https://github.com/hemangjoshi37a/my_Arduino/tree/master/ESP8266_NodeMCU_BasicOTA) - [IoT_CSV_SD : Read analog value of Voltage and Current and write it to SD Card in CSV format for Arduino, ESP8266, NodeMCU etc](https://github.com/hemangjoshi37a/my_Arduino/tree/master/IoT_CSV_SD) - [Honeywell_I2C_Datalogger : Log data in A SD Card from a Honeywell I2C HIH8000 or HIH6000 series sensor having external I2C RTC clock](https://github.com/hemangjoshi37a/my_Arduino/tree/master/Honeywell_I2C_Datalogger) - [IoT_Load_Cell_using_ESP8266_NodeMC : Read ADC value from High Precision 12bit ADS1015 ADC Sensor and Display on SSD1306 SPI Display as progress bar for Arduino or ESP8266 or NodeMCU](https://github.com/hemangjoshi37a/my_Arduino/tree/master/IoT_Load_Cell_using_ESP8266_NodeMC) - [IoT_SSD1306_ESP8266_NodeMCU : Read from High Precision 12bit ADC seonsor ADS1015 and display to SSD1306 SPI as progress bar in ESP8266 or NodeMCU or Arduino](https://github.com/hemangjoshi37a/my_Arduino/tree/master/IoT_SSD1306_ESP8266_NodeMCU) ## Checkout Our Awesome 3D GrabCAD Models: - [AutoCut : Automatic Wire Cutter Machine](https://grabcad.com/library/automatic-wire-cutter-machine-1) - [ESP Matrix Display 5mm Acrylic Box](https://grabcad.com/library/esp-matrix-display-5mm-acrylic-box-1) - [Arcylic Bending Machine w/ Hot Air Gun](https://grabcad.com/library/arcylic-bending-machine-w-hot-air-gun-1) - [Automatic Wire Cutter/Stripper](https://grabcad.com/library/automatic-wire-cutter-stripper-1) ## Our HuggingFace Models : - [hemangjoshi37a/autotrain-ratnakar_1000_sample_curated-1474454086 : Stock tip message NER(Named Entity Recognition or Token Classification) using HUggingFace-AutoTrain and LabelStudio and Ratnakar Securities Pvt. Ltd.](https://huggingface.co/hemangjoshi37a/autotrain-ratnakar_1000_sample_curated-1474454086) ## Our HuggingFace Datasets : - [hemangjoshi37a/autotrain-data-ratnakar_1000_sample_curated : Stock tip message NER(Named Entity Recognition or Token Classification) using HUggingFace-AutoTrain and LabelStudio and Ratnakar Securities Pvt. Ltd.](https://huggingface.co/datasets/hemangjoshi37a/autotrain-data-ratnakar_1000_sample_curated) ## We sell Gigs on Fiverr : - [code android and ios app for you using flutter firebase software stack](https://business.fiverr.com/share/3v14pr) - [code custom algotrading software for zerodha or angel broking](https://business.fiverr.com/share/kzkvEy) ## Awesome Fiverr. Gigs: - [develop machine learning ner model as in nlp using python](https://www.fiverr.com/share/9YNabx) - [train custom chatgpt question answering model](https://www.fiverr.com/share/rwx6r7) - [build algotrading, backtesting and stock monitoring tools using python](https://www.fiverr.com/share/A7Y14q) - [tutor you in your science problems](https://www.fiverr.com/share/zPzmlz) - [make apps for you crossplatform ](https://www.fiverr.com/share/BGw12l)
Piro17/finetuned-affecthq
Piro17
2023-02-16T12:43:37Z
23
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-02-16T07:24:39Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision - recall - f1 model-index: - name: finetuned-affecthq results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.7179302910528207 - name: Precision type: precision value: 0.7173911115103917 - name: Recall type: recall value: 0.7179302910528207 - name: F1 type: f1 value: 0.7166821507529032 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-affecthq This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8116 - Accuracy: 0.7179 - Precision: 0.7174 - Recall: 0.7179 - F1: 0.7167 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 17 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.5413 | 1.0 | 174 | 1.4810 | 0.4898 | 0.4867 | 0.4898 | 0.4409 | | 1.0367 | 2.0 | 348 | 1.0571 | 0.6155 | 0.6172 | 0.6155 | 0.6041 | | 0.9534 | 3.0 | 522 | 0.9673 | 0.6475 | 0.6476 | 0.6475 | 0.6375 | | 0.8532 | 4.0 | 696 | 0.9056 | 0.6748 | 0.6710 | 0.6748 | 0.6704 | | 0.8211 | 5.0 | 870 | 0.8707 | 0.6903 | 0.6912 | 0.6903 | 0.6836 | | 0.7797 | 6.0 | 1044 | 0.8472 | 0.7050 | 0.7050 | 0.7050 | 0.7019 | | 0.7816 | 7.0 | 1218 | 0.8298 | 0.7111 | 0.7099 | 0.7111 | 0.7096 | | 0.7135 | 8.0 | 1392 | 0.8186 | 0.7111 | 0.7116 | 0.7111 | 0.7105 | | 0.6697 | 9.0 | 1566 | 0.8143 | 0.7140 | 0.7124 | 0.7140 | 0.7126 | | 0.6765 | 10.0 | 1740 | 0.8116 | 0.7179 | 0.7174 | 0.7179 | 0.7167 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
fathyshalab/autotrain-reklambox-3527295358
fathyshalab
2023-02-16T12:41:25Z
3
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain", "de", "dataset:fathyshalab/autotrain-data-reklambox", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-16T12:39:27Z
--- tags: - autotrain - text-classification language: - de widget: - text: "I love AutoTrain 🤗" datasets: - fathyshalab/autotrain-data-reklambox co2_eq_emissions: emissions: 3.5346662598120697 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 3527295358 - CO2 Emissions (in grams): 3.5347 ## Validation Metrics - Loss: 1.428 - Accuracy: 0.572 - Macro F1: 0.209 - Micro F1: 0.572 - Weighted F1: 0.513 - Macro Precision: 0.206 - Micro Precision: 0.572 - Weighted Precision: 0.469 - Macro Recall: 0.220 - Micro Recall: 0.572 - Weighted Recall: 0.572 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/fathyshalab/autotrain-reklambox-3527295358 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("fathyshalab/autotrain-reklambox-3527295358", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("fathyshalab/autotrain-reklambox-3527295358", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Periramm/Reinforce-pixelcopter1
Periramm
2023-02-16T12:36:29Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-14T22:51:33Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-pixelcopter1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 33.40 +/- 27.69 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
suzuki0829/distilbert-base-uncased-finetuned-squad-d5716d28
suzuki0829
2023-02-16T12:34:23Z
3
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "question-answering", "en", "dataset:squad", "arxiv:1910.01108", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
question-answering
2023-02-16T12:07:34Z
--- language: - en thumbnail: https://github.com/karanchahal/distiller/blob/master/distiller.jpg tags: - question-answering license: apache-2.0 datasets: - squad metrics: - squad --- # DistilBERT with a second step of distillation ## Model description This model replicates the "DistilBERT (D)" model from Table 2 of the [DistilBERT paper](https://arxiv.org/pdf/1910.01108.pdf). In this approach, a DistilBERT student is fine-tuned on SQuAD v1.1, but with a BERT model (also fine-tuned on SQuAD v1.1) acting as a teacher for a second step of task-specific distillation. In this version, the following pre-trained models were used: * Student: `distilbert-base-uncased` * Teacher: `lewtun/bert-base-uncased-finetuned-squad-v1` ## Training data This model was trained on the SQuAD v1.1 dataset which can be obtained from the `datasets` library as follows: ```python from datasets import load_dataset squad = load_dataset('squad') ``` ## Training procedure ## Eval results | | Exact Match | F1 | |------------------|-------------|------| | DistilBERT paper | 79.1 | 86.9 | | Ours | 78.4 | 86.5 | The scores were calculated using the `squad` metric from `datasets`. ### BibTeX entry and citation info ```bibtex @misc{sanh2020distilbert, title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter}, author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf}, year={2020}, eprint={1910.01108}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
pedro-m4u/1000_respostas-MODELO_2
pedro-m4u
2023-02-16T12:22:09Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain", "pt", "dataset:pedro-m4u/autotrain-data-new_1000_respostas", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-16T12:20:54Z
--- tags: - autotrain - text-classification language: - pt widget: - text: "I love AutoTrain 🤗" datasets: - pedro-m4u/autotrain-data-new_1000_respostas co2_eq_emissions: emissions: 1.7141641973570885 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 3526695346 - CO2 Emissions (in grams): 1.7142 ## Validation Metrics - Loss: 0.483 - Accuracy: 0.863 - Macro F1: 0.821 - Micro F1: 0.863 - Weighted F1: 0.858 - Macro Precision: 0.876 - Micro Precision: 0.863 - Weighted Precision: 0.866 - Macro Recall: 0.813 - Micro Recall: 0.863 - Weighted Recall: 0.863 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/pedro-m4u/autotrain-new_1000_respostas-3526695346 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("pedro-m4u/autotrain-new_1000_respostas-3526695346", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("pedro-m4u/autotrain-new_1000_respostas-3526695346", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
pedro-m4u/1000_respostas-MODELO_1
pedro-m4u
2023-02-16T12:21:59Z
3
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain", "pt", "dataset:pedro-m4u/autotrain-data-new_1000_respostas", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-16T12:21:03Z
--- tags: - autotrain - text-classification language: - pt widget: - text: "I love AutoTrain 🤗" datasets: - pedro-m4u/autotrain-data-new_1000_respostas co2_eq_emissions: emissions: 0.007090214682063223 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 3526695349 - CO2 Emissions (in grams): 0.0071 ## Validation Metrics - Loss: 0.468 - Accuracy: 0.863 - Macro F1: 0.823 - Micro F1: 0.863 - Weighted F1: 0.860 - Macro Precision: 0.882 - Micro Precision: 0.863 - Weighted Precision: 0.873 - Macro Recall: 0.814 - Micro Recall: 0.863 - Weighted Recall: 0.863 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/pedro-m4u/autotrain-new_1000_respostas-3526695349 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("pedro-m4u/autotrain-new_1000_respostas-3526695349", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("pedro-m4u/autotrain-new_1000_respostas-3526695349", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Svetlana0303/distilbert-base-uncased-finetuned-sst2
Svetlana0303
2023-02-16T12:20:29Z
4
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-09T07:09:40Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Svetlana0303/distilbert-base-uncased-finetuned-sst2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Svetlana0303/distilbert-base-uncased-finetuned-sst2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.9430 - Validation Loss: 0.8363 - Train Accuracy: 0.8947 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 27, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 1.0844 | 1.0678 | 0.3684 | 0 | | 0.9983 | 0.8986 | 0.8421 | 1 | | 0.9430 | 0.8363 | 0.8947 | 2 | ### Framework versions - Transformers 4.26.1 - TensorFlow 2.11.0 - Datasets 2.9.0 - Tokenizers 0.13.2
nickong/bert-finetuned-squad
nickong
2023-02-16T12:03:16Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-02-16T09:41:11Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
ifuseok/bw-electra-base-discriminator
ifuseok
2023-02-16T11:48:26Z
2
0
transformers
[ "transformers", "pytorch", "tf", "electra", "pretraining", "endpoints_compatible", "region:us" ]
null
2022-05-25T02:15:19Z
Pretrained ELECTRA Language Model for Korean by bigwaveAI (bw-electra-base-discriminator) ### Usage ## Load Model and Tokenizer ```python from transformers import ElectraModel,TFElectraModel,ElectraTokenizer # tensorflow model = TFElectraModel.from_pretrained("ifuseok/bw-electra-base-discriminator") # torch #model = ElectraModel.from_pretrained("ifuseok/bw-electra-base-discriminator",from_tf=True) tokenizer = ElectraTokenizer.from_pretrained("ifuseok/bw-electra-base-discriminator",do_lower) ``` ## Tokenizer example ```python from transformers import ElectraTokenizer tokenizer = ElectraTokenizer.from_pretrained("ifuseok/bw-electra-base-discriminator") tokenizer.tokenize("[CLS] Big Wave ELECTRA 모델을 공개합니다. [SEP]") ``` ## Example using ElectraForPreTraining(Torch) ```python import torch from transformers import ElectraForPreTraining, ElectraTokenizer discriminator = ElectraForPreTraining.from_pretrained("ifuseok/bw-electra-base-discriminator",from_tf=True) tokenizer = ElectraTokenizer.from_pretrained("ifuseok/bw-electra-base-discriminator",do_lower_case=False) sentence = "아무것도 하기가 싫다." fake_sentence = "아무것도 하기가 좋다." fake_tokens = tokenizer.tokenize(fake_sentence) fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt") discriminator_outputs = discriminator(fake_inputs) predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2) print(list(zip(fake_tokens, predictions.tolist()[0][1:-1]))) ``` ## Example using ElectraForPreTraining(Tensorflow) ```python import tensorflow as tf from transformers import TFElectraForPreTraining, ElectraTokenizer discriminator = TFElectraForPreTraining.from_pretrained("ifuseok/bw-electra-base-discriminator" ) tokenizer = ElectraTokenizer.from_pretrained("ifuseok/bw-electra-base-discriminator", use_auth_token=access_token ,do_lower_case=False) sentence = "아무것도 하기가 싫다." fake_sentence = "아무것도 하기가 좋다." fake_tokens = tokenizer.tokenize(fake_sentence) fake_inputs = tokenizer.encode(fake_sentence, return_tensors="tf") discriminator_outputs = discriminator(fake_inputs) predictions = tf.round((tf.sign(discriminator_outputs[0]) + 1)/2).numpy() print(list(zip(fake_tokens, predictions.tolist()[0][1:-1]))) ```
iammartian0/ppo-lunar
iammartian0
2023-02-16T11:34:13Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-02-16T11:27:54Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -40.80 +/- 79.36 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 150000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'iammartian0/ppo-lunar' 'batch_size': 512 'minibatch_size': 128} ```
BeardedJohn/ppo-Huggy
BeardedJohn
2023-02-16T11:27:46Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-02-16T11:27:38Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: BeardedJohn/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
AISE-TUDelft/python-developmentnotes-classifier
AISE-TUDelft
2023-02-16T11:14:18Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-23T12:25:57Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 5098 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 3, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 1.7094555110821448e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 15294, "warmup_steps": 1530, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
janko/grc_dep_perseus_xlm
janko
2023-02-16T11:13:37Z
5
0
spacy
[ "spacy", "token-classification", "grc", "model-index", "region:us" ]
token-classification
2023-02-16T11:12:35Z
--- tags: - spacy - token-classification language: - grc model-index: - name: grc_dep_perseus_xlm results: - task: name: TAG type: token-classification metrics: - name: TAG (XPOS) Accuracy type: accuracy value: 0.8936775767 - task: name: POS type: token-classification metrics: - name: POS (UPOS) Accuracy type: accuracy value: 0.9559069347 - task: name: MORPH type: token-classification metrics: - name: Morph (UFeats) Accuracy type: accuracy value: 0.9232680536 - task: name: LEMMA type: token-classification metrics: - name: Lemma Accuracy type: accuracy value: 0.9379107849 - task: name: UNLABELED_DEPENDENCIES type: token-classification metrics: - name: Unlabeled Attachment Score (UAS) type: f_score value: 0.7544342122 - task: name: LABELED_DEPENDENCIES type: token-classification metrics: - name: Labeled Attachment Score (LAS) type: f_score value: 0.6901980573 - task: name: SENTS type: token-classification metrics: - name: Sentences F-Score type: f_score value: 0.9738675958 --- | Feature | Description | | --- | --- | | **Name** | `grc_dep_perseus_xlm` | | **Version** | `0.0.0` | | **spaCy** | `>=3.5.0,<3.6.0` | | **Default Pipeline** | `transformer`, `tagger`, `morphologizer`, `parser`, `trainable_lemmatizer`, `frequency_lemmatizer` | | **Components** | `transformer`, `tagger`, `morphologizer`, `parser`, `trainable_lemmatizer`, `frequency_lemmatizer` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme <details> <summary>View label scheme (1669 labels for 3 components)</summary> | Component | Labels | | --- | --- | | **`tagger`** | `---------`, `--p---fa-`, `--s---ma-`, `-3paia---`, `-3paim---`, `-3siia---`, `a--------`, `a-------s`, `a-d---fa-`, `a-d---fd-`, `a-d---fg-`, `a-d---fn-`, `a-d---ma-`, `a-d---md-`, `a-d---mg-`, `a-d---mn-`, `a-d---mnc`, `a-d---mv-`, `a-d---na-`, `a-d---ng-`, `a-d---nn-`, `a-p----dc`, `a-p---fa-`, `a-p---fac`, `a-p---fas`, `a-p---fd-`, `a-p---fdc`, `a-p---fds`, `a-p---fg-`, `a-p---fgc`, `a-p---fn-`, `a-p---fnc`, `a-p---fns`, `a-p---fv-`, `a-p---m--`, `a-p---m-c`, `a-p---ma-`, `a-p---mac`, `a-p---mas`, `a-p---md-`, `a-p---mdc`, `a-p---mds`, `a-p---mg-`, `a-p---mgc`, `a-p---mgs`, `a-p---mn-`, `a-p---mnc`, `a-p---mns`, `a-p---mv-`, `a-p---mvs`, `a-p---na-`, `a-p---nac`, `a-p---nas`, `a-p---nd-`, `a-p---ndc`, `a-p---nds`, `a-p---ng-`, `a-p---ngs`, `a-p---nn-`, `a-p---nnc`, `a-p---nns`, `a-p---nv-`, `a-s----d-`, `a-s----dc`, `a-s----g-`, `a-s----gc`, `a-s---fa-`, `a-s---fac`, `a-s---fas`, `a-s---fd-`, `a-s---fds`, `a-s---fg-`, `a-s---fgc`, `a-s---fgs`, `a-s---fn-`, `a-s---fnc`, `a-s---fns`, `a-s---fv-`, `a-s---m--`, `a-s---ma-`, `a-s---mac`, `a-s---mas`, `a-s---md-`, `a-s---mdc`, `a-s---mds`, `a-s---mg-`, `a-s---mgc`, `a-s---mgs`, `a-s---mn-`, `a-s---mnc`, `a-s---mns`, `a-s---mv-`, `a-s---mvc`, `a-s---mvs`, `a-s---na-`, `a-s---nac`, `a-s---nas`, `a-s---nd-`, `a-s---ndc`, `a-s---nds`, `a-s---ng-`, `a-s---nn-`, `a-s---nnc`, `a-s---nns`, `a-s---nv-`, `a-s---nvs`, `c--------`, `d--------`, `d-------c`, `d-------s`, `g--------`, `i--------`, `l--------`, `l-d---fa-`, `l-d---fg-`, `l-d---mg-`, `l-d---mn-`, `l-d---na-`, `l-d---nn-`, `l-p---fa-`, `l-p---fd-`, `l-p---fg-`, `l-p---fn-`, `l-p---ma-`, `l-p---md-`, `l-p---mg-`, `l-p---mn-`, `l-p---na-`, `l-p---nd-`, `l-p---ng-`, `l-p---nn-`, `l-s---fa-`, `l-s---fd-`, `l-s---fg-`, `l-s---fn-`, `l-s---ma-`, `l-s---md-`, `l-s---mg-`, `l-s---mn-`, `l-s---na-`, `l-s---nd-`, `l-s---ng-`, `l-s---nn-`, `m--------`, `m-p---m--`, `m-p---md-`, `m-p---nn-`, `n-----fg-`, `n-----na-`, `n-----nn-`, `n-d----a-`, `n-d---fa-`, `n-d---fd-`, `n-d---fg-`, `n-d---fn-`, `n-d---ma-`, `n-d---md-`, `n-d---mg-`, `n-d---mn-`, `n-d---mv-`, `n-d---na-`, `n-d---nn-`, `n-p----d-`, `n-p----g-`, `n-p---fa-`, `n-p---fd-`, `n-p---fg-`, `n-p---fn-`, `n-p---fv-`, `n-p---ma-`, `n-p---md-`, `n-p---mg-`, `n-p---mn-`, `n-p---mv-`, `n-p---na-`, `n-p---nd-`, `n-p---ng-`, `n-p---nn-`, `n-p---nv-`, `n-s----d-`, `n-s----g-`, `n-s----n-`, `n-s----v-`, `n-s---fa-`, `n-s---fd-`, `n-s---fg-`, `n-s---fn-`, `n-s---fv-`, `n-s---m--`, `n-s---ma-`, `n-s---md-`, `n-s---mg-`, `n-s---mn-`, `n-s---mv-`, `n-s---na-`, `n-s---nd-`, `n-s---ng-`, `n-s---nn-`, `n-s---nv-`, `p--------`, `p-d----d-`, `p-d----n-`, `p-d---fa-`, `p-d---fd-`, `p-d---fg-`, `p-d---fn-`, `p-d---ma-`, `p-d---md-`, `p-d---mg-`, `p-d---mn-`, `p-d---mv-`, `p-p----a-`, `p-p----d-`, `p-p----g-`, `p-p----n-`, `p-p---fa-`, `p-p---fd-`, `p-p---fg-`, `p-p---fn-`, `p-p---ma-`, `p-p---md-`, `p-p---mg-`, `p-p---mn-`, `p-p---na-`, `p-p---nd-`, `p-p---ng-`, `p-p---nn-`, `p-s----a-`, `p-s----d-`, `p-s----g-`, `p-s----n-`, `p-s---fa-`, `p-s---fd-`, `p-s---fg-`, `p-s---fn-`, `p-s---ma-`, `p-s---md-`, `p-s---mg-`, `p-s---mn-`, `p-s---mv-`, `p-s---na-`, `p-s---nd-`, `p-s---ng-`, `p-s---nn-`, `p1p---fa-`, `p1p---ma-`, `p1p---md-`, `p1p---mg-`, `p1p---mn-`, `p1s---fa-`, `p1s---fd-`, `p1s---fg-`, `p1s---fn-`, `p1s---ma-`, `p1s---md-`, `p1s---mg-`, `p1s---mn-`, `p2p----a-`, `p2p----d-`, `p2p---ma-`, `p2p---mg-`, `p2p---mn-`, `p2s----a-`, `p2s----d-`, `p2s----g-`, `p2s----n-`, `p2s---ma-`, `p2s---md-`, `p2s---mg-`, `p3s---fa-`, `p3s---ma-`, `r--------`, `u--------`, `v---na---`, `v--amm---`, `v--an----`, `v--ana---`, `v--ane---`, `v--anm---`, `v--anp---`, `v--fna---`, `v--fne---`, `v--fnm---`, `v--fnp---`, `v--pna---`, `v--pnd---`, `v--pne---`, `v--pnp---`, `v--ppefa-`, `v--ppemn-`, `v--rn----`, `v--rna---`, `v--rne---`, `v--rnp---`, `v--tna---`, `v-dapafn-`, `v-dapama-`, `v-dapamg-`, `v-dapamn-`, `v-dapmfn-`, `v-dapmmn-`, `v-dappma-`, `v-dappmn-`, `v-dppafg-`, `v-dppama-`, `v-dppamn-`, `v-dppefn-`, `v-dppema-`, `v-dppemd-`, `v-dppemn-`, `v-dpppmn-`, `v-drpama-`, `v-drpamn-`, `v-drpefn-`, `v-drpemn-`, `v-p-pmma-`, `v-pap-mn-`, `v-papafa-`, `v-papafg-`, `v-papafn-`, `v-papama-`, `v-papamd-`, `v-papamg-`, `v-papamn-`, `v-papana-`, `v-papand-`, `v-papann-`, `v-papefn-`, `v-papema-`, `v-papemn-`, `v-papmfa-`, `v-papmfg-`, `v-papmfn-`, `v-papmma-`, `v-papmmd-`, `v-papmmg-`, `v-papmmn-`, `v-papmna-`, `v-papmng-`, `v-papmnn-`, `v-pappfd-`, `v-pappfg-`, `v-pappfn-`, `v-pappma-`, `v-pappmd-`, `v-pappmg-`, `v-pappmn-`, `v-pappna-`, `v-pappng-`, `v-pappnn-`, `v-pfpama-`, `v-pfpamg-`, `v-pfpamn-`, `v-pfpema-`, `v-pfpemn-`, `v-pfpmfa-`, `v-pfpmfn-`, `v-pfpmma-`, `v-pfpmmd-`, `v-pfpmmg-`, `v-pfpmmn-`, `v-pfpmnn-`, `v-pfppmn-`, `v-ppp-mn-`, `v-pppafa-`, `v-pppafd-`, `v-pppafg-`, `v-pppafn-`, `v-pppafv-`, `v-pppama-`, `v-pppamd-`, `v-pppamg-`, `v-pppamn-`, `v-pppamv-`, `v-pppana-`, `v-pppand-`, `v-pppang-`, `v-pppann-`, `v-pppefa-`, `v-pppefd-`, `v-pppefg-`, `v-pppefn-`, `v-pppefv-`, `v-pppema-`, `v-pppemd-`, `v-pppemg-`, `v-pppemn-`, `v-pppemv-`, `v-pppena-`, `v-pppend-`, `v-pppeng-`, `v-pppenn-`, `v-ppppma-`, `v-ppppmd-`, `v-ppppmn-`, `v-prp-mn-`, `v-prpafa-`, `v-prpafd-`, `v-prpafn-`, `v-prpama-`, `v-prpamd-`, `v-prpamg-`, `v-prpamn-`, `v-prpana-`, `v-prpang-`, `v-prpefa-`, `v-prpefd-`, `v-prpefg-`, `v-prpefn-`, `v-prpema-`, `v-prpemd-`, `v-prpemg-`, `v-prpemn-`, `v-prpena-`, `v-prpend-`, `v-prpeng-`, `v-prpenn-`, `v-prppfn-`, `v-prppmn-`, `v-sagamn-`, `v-saiamn-`, `v-samp---`, `v-sap-mg-`, `v-sap-mn-`, `v-sapafa-`, `v-sapafd-`, `v-sapafg-`, `v-sapafn-`, `v-sapama-`, `v-sapamd-`, `v-sapamg-`, `v-sapamn-`, `v-sapamv-`, `v-sapana-`, `v-sapang-`, `v-sapann-`, `v-sapanv-`, `v-sapema-`, `v-sapemn-`, `v-sapmfa-`, `v-sapmfd-`, `v-sapmfg-`, `v-sapmfn-`, `v-sapmma-`, `v-sapmmd-`, `v-sapmmg-`, `v-sapmmn-`, `v-sapmna-`, `v-sapmng-`, `v-sapmnn-`, `v-sappfa-`, `v-sappfd-`, `v-sappfg-`, `v-sappfn-`, `v-sappma-`, `v-sappmd-`, `v-sappmg-`, `v-sappmn-`, `v-sappna-`, `v-sappng-`, `v-sappnn-`, `v-sappnv-`, `v-sfpafa-`, `v-sfpafd-`, `v-sfpafn-`, `v-sfpama-`, `v-sfpamd-`, `v-sfpamg-`, `v-sfpamn-`, `v-sfpmfa-`, `v-sfpmfd-`, `v-sfpmfg-`, `v-sfpmfn-`, `v-sfpmma-`, `v-sfpmmg-`, `v-sfpmmn-`, `v-sfpmna-`, `v-sfppma-`, `v-spiamn-`, `v-spp-mn-`, `v-spp-nn-`, `v-sppa---`, `v-sppafa-`, `v-sppafd-`, `v-sppafg-`, `v-sppafn-`, `v-sppafv-`, `v-sppama-`, `v-sppamd-`, `v-sppamg-`, `v-sppamn-`, `v-sppamv-`, `v-sppana-`, `v-sppand-`, `v-sppang-`, `v-sppann-`, `v-sppanv-`, `v-sppefa-`, `v-sppefd-`, `v-sppefg-`, `v-sppefn-`, `v-sppema-`, `v-sppemd-`, `v-sppemg-`, `v-sppemn-`, `v-sppemv-`, `v-sppena-`, `v-sppend-`, `v-sppeng-`, `v-sppenn-`, `v-spppfa-`, `v-spppfd-`, `v-spppfg-`, `v-spppfn-`, `v-spppma-`, `v-spppmn-`, `v-srp-mn-`, `v-srpafa-`, `v-srpafd-`, `v-srpafg-`, `v-srpafn-`, `v-srpama-`, `v-srpamd-`, `v-srpamg-`, `v-srpamn-`, `v-srpamv-`, `v-srpana-`, `v-srpand-`, `v-srpang-`, `v-srpann-`, `v-srpefa-`, `v-srpefd-`, `v-srpefg-`, `v-srpefn-`, `v-srpema-`, `v-srpemd-`, `v-srpemg-`, `v-srpemn-`, `v-srpemv-`, `v-srpena-`, `v-srpend-`, `v-srpeng-`, `v-srpenn-`, `v-srppfn-`, `v-srppma-`, `v-srppmn-`, `v-srppmv-`, `v1paia---`, `v1paim---`, `v1paip---`, `v1paoa---`, `v1paom---`, `v1paop---`, `v1pasa---`, `v1pase---`, `v1pasm---`, `v1pasp---`, `v1pfia---`, `v1pfim---`, `v1pfom---`, `v1piia---`, `v1piie---`, `v1plia---`, `v1plie---`, `v1ppia---`, `v1ppie---`, `v1ppip---`, `v1ppoa---`, `v1ppoe---`, `v1ppsa---`, `v1ppse---`, `v1pria---`, `v1prie---`, `v1prsa---`, `v1prse---`, `v1ptie---`, `v1s-sa---`, `v1sa-a---`, `v1saia---`, `v1saie---`, `v1saim---`, `v1saip---`, `v1sao----`, `v1saoa---`, `v1saoe---`, `v1saom---`, `v1saop---`, `v1sasa---`, `v1sase---`, `v1sasm---`, `v1sasp---`, `v1sfi----`, `v1sfia---`, `v1sfie---`, `v1sfim---`, `v1sfip---`, `v1siia---`, `v1siie---`, `v1slia---`, `v1slie---`, `v1slim---`, `v1spia---`, `v1spie---`, `v1spoa---`, `v1spoe---`, `v1spsa---`, `v1spse---`, `v1sria---`, `v1srie---`, `v1sroa---`, `v1sroe---`, `v1srsa---`, `v1stie---`, `v1stim---`, `v2daia---`, `v2dama---`, `v2dasa---`, `v2dase---`, `v2dfia---`, `v2dfim---`, `v2diia---`, `v2diie---`, `v2dpia---`, `v2dpma---`, `v2dpme---`, `v2dria---`, `v2drma---`, `v2paia---`, `v2paim---`, `v2paip---`, `v2pama---`, `v2pame---`, `v2pamm---`, `v2paoa---`, `v2paom---`, `v2paop---`, `v2pasa---`, `v2pase---`, `v2pasm---`, `v2pasp---`, `v2pfia---`, `v2pfim---`, `v2piia---`, `v2piie---`, `v2ppia---`, `v2ppie---`, `v2ppma---`, `v2ppme---`, `v2ppoa---`, `v2ppoe---`, `v2ppsa---`, `v2pria---`, `v2prie---`, `v2prma---`, `v2prmp---`, `v2proa---`, `v2prsa---`, `v2saia---`, `v2saie---`, `v2saim---`, `v2saip---`, `v2sam----`, `v2sama---`, `v2same---`, `v2samm---`, `v2samp---`, `v2saoa---`, `v2saoe---`, `v2saom---`, `v2saop---`, `v2sasa---`, `v2sase---`, `v2sasm---`, `v2sasp---`, `v2sfi----`, `v2sfia---`, `v2sfie---`, `v2sfim---`, `v2sfip---`, `v2siia---`, `v2siie---`, `v2siip---`, `v2slia---`, `v2slie---`, `v2slim---`, `v2spia---`, `v2spie---`, `v2spma---`, `v2spme---`, `v2spoa---`, `v2spoe---`, `v2spsa---`, `v2spse---`, `v2sria---`, `v2srie---`, `v2srma---`, `v2srme---`, `v2sroa---`, `v2srsa---`, `v2stie---`, `v3-roe---`, `v3daia---`, `v3daim---`, `v3daip---`, `v3daoa---`, `v3dfia---`, `v3dfim---`, `v3diia---`, `v3diie---`, `v3dlia---`, `v3dlie---`, `v3dlim---`, `v3dpia---`, `v3dpie---`, `v3dpma---`, `v3dpme---`, `v3dpsa---`, `v3dria---`, `v3pai----`, `v3paia---`, `v3paie---`, `v3paim---`, `v3paip---`, `v3pamm---`, `v3paoa---`, `v3paoe---`, `v3paom---`, `v3paop---`, `v3pasa---`, `v3pase---`, `v3pasm---`, `v3pasp---`, `v3pfia---`, `v3pfie---`, `v3pfim---`, `v3piia---`, `v3piie---`, `v3piip---`, `v3plia---`, `v3plie---`, `v3plim---`, `v3plip---`, `v3ppia---`, `v3ppie---`, `v3ppip---`, `v3ppma---`, `v3ppme---`, `v3ppoa---`, `v3ppoe---`, `v3ppsa---`, `v3ppse---`, `v3pria---`, `v3prie---`, `v3prip---`, `v3sai----`, `v3saia---`, `v3saie---`, `v3saim---`, `v3saip---`, `v3sama---`, `v3samm---`, `v3samp---`, `v3sana---`, `v3sao----`, `v3saoa---`, `v3saoe---`, `v3saom---`, `v3saop---`, `v3sas----`, `v3sasa---`, `v3sase---`, `v3sasm---`, `v3sasp---`, `v3sfi----`, `v3sfia---`, `v3sfie---`, `v3sfim---`, `v3sfip---`, `v3sfoa---`, `v3sii----`, `v3siia---`, `v3siie---`, `v3siip---`, `v3sli----`, `v3slia---`, `v3slie---`, `v3slim---`, `v3slip---`, `v3spia---`, `v3spie---`, `v3spip---`, `v3spma---`, `v3spme---`, `v3spoa---`, `v3spoe---`, `v3spop---`, `v3spsa---`, `v3spse---`, `v3sria---`, `v3srie---`, `v3srip---`, `v3srma---`, `v3sroa---`, `v3srsa---`, `v3stie---`, `v3stim---`, `v3stip---`, `x--------`, `x-p----d-`, `x-p---nn-` | | **`morphologizer`** | `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `POS=ADV`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=VERB\|Tense=Past\|VerbForm=Inf\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `POS=PUNCT`, `POS=CCONJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=ADP`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=1`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `POS=SCONJ`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET`, `POS=VERB\|Tense=Pres\|VerbForm=Inf\|Voice=Act`, `POS=VERB\|Tense=Pres\|VerbForm=Inf\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=DET`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON`, `POS=VERB\|Tense=Past\|VerbForm=Inf\|Voice=Pass`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET`, `POS=VERB\|Tense=Past\|VerbForm=Inf\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=PRON`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=ADJ`, `POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|POS=VERB\|Tense=Past\|VerbForm=Inf\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2`, `POS=INTJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `POS=AUX\|Tense=Pres\|VerbForm=Inf\|Voice=Act`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Voc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|POS=VERB\|Tense=Past\|VerbForm=Inf\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Degree=Cmp\|POS=ADV`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON`, `Case=Acc\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `POS=NUM`, `Gender=Masc\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Mid`, `POS=X`, `Case=Acc\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=2`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `POS=PART`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON`, `Degree=Sup\|POS=ADV`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Voc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `POS=VERB\|Tense=Fut\|VerbForm=Inf\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON`, `POS=DET`, `Case=Voc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Number=Sing\|POS=PRON`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part`, `Case=Nom\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Number=Sing\|POS=PRON`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Gender=Masc\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pqp\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `POS=PRON`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Voc\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin`, `Case=Gen\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `POS=VERB\|Tense=Fut\|VerbForm=Inf\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Dual\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Dual\|POS=PRON`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=DET`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Dual\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Dual\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Dual\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Dual\|POS=PRON`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Fem\|Number=Dual\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Dual\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Dual\|POS=DET`, `Case=Gen\|Gender=Masc\|Number=Dual\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=PRON`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Dual\|POS=ADJ`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=X`, `Case=Nom\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Dual\|POS=DET`, `Case=Acc\|Gender=Fem\|Number=Dual\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Dual\|POS=PRON`, `Case=Acc\|Gender=Fem\|Number=Dual\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Number=Sing\|POS=PRON`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Number=Sing\|POS=NOUN`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `POS=VERB\|Tense=Past\|VerbForm=Inf`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Dual\|POS=NOUN`, `Case=Nom\|Number=Sing\|POS=PRON`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Number=Dual\|POS=PRON`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Mood=Opt\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=X`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Neut\|Number=Dual\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Number=Plur\|POS=PRON`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Opt\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Opt\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Fem\|Number=Dual\|POS=PRON`, `Case=Gen\|Gender=Fem\|Number=Dual\|POS=DET`, `Case=Gen\|Gender=Fem\|Number=Dual\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Dual\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Case=Gen\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Mood=Imp\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Imp\|Number=Dual\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Voc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Dual\|POS=NOUN`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Dual\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Voc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Voc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Dual\|POS=PRON`, `Case=Nom\|Gender=Neut\|Number=Dual\|POS=NOUN`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Voc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Dual\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Dual\|POS=ADJ`, `Mood=Ind\|Number=Dual\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Imp\|Number=Dual\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Dual\|POS=PRON`, `Mood=Imp\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Number=Dual\|POS=PRON`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Fem\|POS=NOUN`, `Case=Acc\|Gender=Neut\|POS=NOUN`, `Aspect=Perf\|POS=VERB\|Tense=Past\|VerbForm=Inf\|Voice=Pass`, `Case=Dat\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Number=Plur\|POS=NOUN`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Voc\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Voc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `POS=VERB\|Tense=Fut\|VerbForm=Inf\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Dual\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Dual\|POS=NOUN`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Dual\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Dual\|POS=PRON`, `Case=Voc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Mood=Ind\|Number=Dual\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pqp\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Pass`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `POS=AUX\|Tense=Fut\|VerbForm=Inf\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Mood=Sub\|Number=Dual\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Dual\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin`, `POS=VERB\|VerbForm=Inf\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Voc\|Gender=Masc\|Number=Dual\|POS=NOUN`, `Case=Nom\|Number=Plur\|POS=PRON`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|POS=VERB\|Tense=Past\|VerbForm=Inf`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Dual\|POS=DET`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=X\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Dual\|POS=DET`, `Case=Nom\|Gender=Neut\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|POS=VERB\|Tense=Fut\|VerbForm=Inf\|Voice=Act`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Imp\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=PRON`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Voc\|Gender=Masc\|Number=Dual\|POS=ADJ`, `Mood=Sub\|Number=Dual\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `POS=VERB\|Tense=Pres\|VerbForm=Inf\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=X\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Opt\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Opt\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Mood=Imp\|Number=Dual\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Gender=Masc\|Number=Dual\|POS=PRON`, `Mood=Sub\|Number=Dual\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Imp\|Number=Dual\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Imp\|Number=Dual\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Opt\|Number=Dual\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Imp\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=X\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Voc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Aspect=Imp\|Mood=Ind\|Number=Dual\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Number=Plur\|POS=PRON`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Imp\|Number=Dual\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Mood=Opt\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=2`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=2`, `Case=Gen\|Number=Sing\|POS=PRON\|Person=2`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=2`, `Case=Voc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1`, `Degree=Sup\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2`, `Case=Nom\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Number=Plur\|POS=X`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pqp\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=AUX\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=NUM`, `Case=Voc\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `POS=VERB\|Tense=Pres\|VerbForm=Inf`, `Aspect=Perf\|Case=Voc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Number=Dual\|POS=NOUN`, `Aspect=Imp\|Mood=Ind\|Number=Dual\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Inf\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=X`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Case=Acc\|Gender=Fem\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Number=Plur\|POS=PRON`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Fut\|VerbForm=Fin` | | **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `amod`, `appos`, `case`, `cc`, `ccomp`, `conj`, `cop`, `csubj`, `dep`, `det`, `discourse`, `iobj`, `mark`, `nmod`, `nsubj`, `nummod`, `obj`, `obl`, `parataxis`, `punct`, `vocative`, `xcomp` | </details> ### Accuracy | Type | Score | | --- | --- | | `TAG_ACC` | 89.37 | | `POS_ACC` | 95.59 | | `MORPH_ACC` | 92.33 | | `DEP_UAS` | 75.44 | | `DEP_LAS` | 69.02 | | `SENTS_P` | 96.46 | | `SENTS_R` | 98.33 | | `SENTS_F` | 97.39 | | `LEMMA_ACC` | 93.79 | | `TRANSFORMER_LOSS` | 853310.51 | | `TAGGER_LOSS` | 82516.51 | | `MORPHOLOGIZER_LOSS` | 79117.36 | | `PARSER_LOSS` | 971486.62 | | `TRAINABLE_LEMMATIZER_LOSS` | 732981.17 |
janko/grc_dep_proiel_xlm
janko
2023-02-16T11:12:22Z
4
0
spacy
[ "spacy", "token-classification", "grc", "model-index", "region:us" ]
token-classification
2023-02-16T11:11:19Z
--- tags: - spacy - token-classification language: - grc model-index: - name: grc_dep_proiel_xlm results: - task: name: TAG type: token-classification metrics: - name: TAG (XPOS) Accuracy type: accuracy value: 0.9789774392 - task: name: POS type: token-classification metrics: - name: POS (UPOS) Accuracy type: accuracy value: 0.9778428859 - task: name: MORPH type: token-classification metrics: - name: Morph (UFeats) Accuracy type: accuracy value: 0.9247390588 - task: name: LEMMA type: token-classification metrics: - name: Lemma Accuracy type: accuracy value: 0.9404143181 - task: name: UNLABELED_DEPENDENCIES type: token-classification metrics: - name: Unlabeled Attachment Score (UAS) type: f_score value: 0.8283035453 - task: name: LABELED_DEPENDENCIES type: token-classification metrics: - name: Labeled Attachment Score (LAS) type: f_score value: 0.7820099619 - task: name: SENTS type: token-classification metrics: - name: Sentences F-Score type: f_score value: 0.6555023923 --- | Feature | Description | | --- | --- | | **Name** | `grc_dep_proiel_xlm` | | **Version** | `0.0.0` | | **spaCy** | `>=3.5.0,<3.6.0` | | **Default Pipeline** | `transformer`, `tagger`, `morphologizer`, `parser`, `trainable_lemmatizer`, `frequency_lemmatizer` | | **Components** | `transformer`, `tagger`, `morphologizer`, `parser`, `trainable_lemmatizer`, `frequency_lemmatizer` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme <details> <summary>View label scheme (1083 labels for 3 components)</summary> | Component | Labels | | --- | --- | | **`tagger`** | `A-`, `C-`, `Df`, `Dq`, `Du`, `F-`, `G-`, `I-`, `Ma`, `Mo`, `Nb`, `Ne`, `Pc`, `Pd`, `Pi`, `Pk`, `Pp`, `Pr`, `Ps`, `Px`, `R-`, `S-`, `V-` | | **`morphologizer`** | `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET`, `POS=SCONJ`, `POS=CCONJ`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `POS=ADP`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Dat\|Definite=Def\|Gender=Masc,Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `POS=ADV`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|POS=VERB\|Tense=Past\|VerbForm=Inf\|Voice=Mid`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid,Pass`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `POS=VERB\|Tense=Pres\|VerbForm=Inf\|Voice=Mid,Pass`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Degree=Pos\|Gender=Masc,Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET`, `POS=VERB\|Tense=Pres\|VerbForm=Inf\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|POS=VERB\|Tense=Past\|VerbForm=Inf\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Definite=Def\|Gender=Masc,Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=AUX\|Tense=Pres\|VerbForm=Inf\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Def\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Rel`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Degree=Sup\|POS=ADV`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=NOUN`, `POS=VERB\|Tense=Pres\|VerbForm=Inf\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|POS=VERB\|Tense=Past\|VerbForm=Inf\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN`, `POS=ADV\|Polarity=Neg`, `Case=Acc\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Mood=Opt\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Number=Plur\|POS=PRON\|PronType=Rel`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Mid,Pass`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `POS=VERB\|Tense=Fut\|VerbForm=Inf\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid,Pass`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Definite=Def\|Gender=Masc,Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid,Pass`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid,Pass`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Degree=Pos\|POS=ADV`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Pos\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Masc,Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=NUM`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=DET`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Acc\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `POS=VERB\|Tense=Pres\|VerbForm=Inf\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Degree=Pos\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=NUM`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=NUM`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Number=Plur\|POS=DET`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Voc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `POS=INTJ`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `POS=ADV\|PronType=Rel`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `POS=VERB\|Tense=Fut\|VerbForm=Inf\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Nom\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Gen\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Degree=Pos\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc,Neut\|Number=Plur\|POS=DET`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=NUM`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Degree=Cmp\|POS=ADV`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=NUM`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=DET`, `POS=ADV\|PronType=Int`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Gender=Masc,Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `Mood=Opt\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Acc\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem,Masc\|Number=Sing\|POS=DET`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Dat\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `POS=AUX\|Tense=Fut\|VerbForm=Inf\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NUM`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Gen\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Degree=Pos\|Gender=Fem,Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=DET`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=NUM`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=NUM`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Acc\|Degree=Pos\|Gender=Masc,Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Degree=Pos\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=DET`, `Aspect=Perf\|Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Masc,Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Rel`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Number=Sing\|POS=DET`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem,Masc\|Number=Sing\|POS=DET`, `Case=Gen\|Number=Sing\|POS=PRON\|PronType=Int`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Fem,Masc\|Number=Plur\|POS=NUM`, `Aspect=Perf\|Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Acc\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Degree=Cmp\|Gender=Fem,Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Acc\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Fem,Masc\|Number=Plur\|POS=DET`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc,Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Gen\|Definite=Def\|Gender=Masc,Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc\|Degree=Pos\|Gender=Fem,Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NUM`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Mid`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Degree=Cmp\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Degree=Sup\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=DET`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Cmp\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Aspect=Perf\|Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=NUM`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Gen\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Degree=Pos\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Def\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Case=Acc\|Degree=Sup\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid,Pass`, `Case=Dat\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `Mood=Imp\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NUM`, `Case=Acc\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Int`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NUM`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=AUX\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|VerbForm=Gdv`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Case=Gen\|Gender=Masc,Neut\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Gen\|Gender=Fem,Masc\|Number=Plur\|POS=NUM`, `Case=Dat\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Case=Gen\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `POS=PROPN`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid,Pass`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=NUM`, `Case=Gen\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADJ\|Person=2\|Poss=Yes`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Fem,Masc\|Number=Plur\|POS=NOUN`, `Case=Dat\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=3\|Poss=Yes`, `Aspect=Perf\|Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Dat\|Definite=Def\|Gender=Masc,Neut\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Nom\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Fem,Masc\|Number=Sing\|POS=NOUN`, `Case=Dat\|Gender=Fem,Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Gen\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=NUM`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Voc\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Int`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid,Pass`, `Case=Voc\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Fem,Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Voc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Case=Acc\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Acc\|Gender=Masc,Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NUM`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid,Pass`, `Case=Gen\|Degree=Pos\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Degree=Cmp\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `POS=VERB\|Tense=Fut\|VerbForm=Inf\|Voice=Pass`, `Case=Gen\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Aspect=Imp\|Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid,Pass`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `POS=VERB`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Dat\|Gender=Fem,Masc\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Aspect=Perf\|Mood=Opt\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|VerbForm=Gdv`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=AUX\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ\|Person=2\|Poss=Yes`, `Mood=Opt\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|VerbForm=Gdv`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Voc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Voc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Degree=Pos\|Gender=Fem,Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Dat\|Degree=Cmp\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem,Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem,Masc\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ\|Person=2\|Poss=Yes`, `Aspect=Perf\|Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Voc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Voc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Dat\|Gender=Fem,Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Opt\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|VerbForm=Gdv`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Def\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Degree=Cmp\|Gender=Fem,Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Case=Dat\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc,Neut\|Number=Plur\|POS=ADJ`, `Mood=Opt\|Number=Sing\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Fem,Masc\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Fem,Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Voc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Fem,Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Gen\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Fem,Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Nom\|Gender=Fem,Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Fem,Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Fem,Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Perf\|Case=Acc\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Int`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Number=Plur\|POS=NUM`, `POS=NOUN`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Voc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `POS=X`, `Case=Nom\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Nom\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem,Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Fem,Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=DET`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=AUX\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Voc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Gen\|Gender=Fem,Masc\|Number=Plur\|POS=DET`, `Case=Gen\|Gender=Fem,Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid,Pass`, `Aspect=Perf\|Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Dat\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Cmp\|Gender=Masc,Neut\|Number=Plur\|POS=ADJ`, `Case=Voc\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=NUM`, `Case=Gen\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Fem,Masc\|Number=Plur\|POS=DET`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Degree=Sup\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Number=Plur\|POS=ADJ`, `Case=Gen\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=NUM`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Case=Voc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Int`, `Aspect=Perf\|POS=AUX\|Tense=Past\|VerbForm=Inf\|Voice=Mid`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Gen\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Aspect=Perf\|Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=NUM`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Case=Gen\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Case=Gen\|Gender=Fem,Masc\|Number=Sing\|POS=DET`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Dat\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Voc\|Degree=Pos\|Gender=Fem,Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Aspect=Perf\|Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Number=Sing\|POS=DET`, `Case=Dat\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem,Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Fem,Masc\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Fem,Masc\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid,Pass`, `Case=Nom\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Gen\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid,Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid,Pass`, `Case=Dat\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid,Pass`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid,Pass`, `Case=Dat\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=NUM`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Voc\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Aspect=Perf\|Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Aspect=Perf\|POS=AUX\|Tense=Past\|VerbForm=Inf\|Voice=Act` | | **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `amod`, `appos`, `case`, `cc`, `ccomp`, `conj`, `cop`, `csubj:pass`, `dep`, `det`, `discourse`, `dislocated`, `fixed`, `flat:name`, `iobj`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `obl:agent`, `orphan`, `parataxis`, `vocative`, `xcomp` | </details> ### Accuracy | Type | Score | | --- | --- | | `TAG_ACC` | 97.90 | | `POS_ACC` | 97.78 | | `MORPH_ACC` | 92.47 | | `DEP_UAS` | 82.83 | | `DEP_LAS` | 78.20 | | `SENTS_P` | 63.96 | | `SENTS_R` | 67.22 | | `SENTS_F` | 65.55 | | `LEMMA_ACC` | 94.04 | | `TRANSFORMER_LOSS` | 647235.93 | | `TAGGER_LOSS` | 24932.96 | | `MORPHOLOGIZER_LOSS` | 243718.13 | | `PARSER_LOSS` | 1376269.75 | | `TRAINABLE_LEMMATIZER_LOSS` | 648501.13 |
janko/grc_dep_proiel_trf
janko
2023-02-16T11:10:39Z
5
1
spacy
[ "spacy", "token-classification", "grc", "model-index", "region:us" ]
token-classification
2023-02-15T10:11:22Z
--- tags: - spacy - token-classification language: - grc model-index: - name: grc_dep_proiel_trf results: - task: name: TAG type: token-classification metrics: - name: TAG (XPOS) Accuracy type: accuracy value: 0.9790880791 - task: name: POS type: token-classification metrics: - name: POS (UPOS) Accuracy type: accuracy value: 0.9787576912 - task: name: MORPH type: token-classification metrics: - name: Morph (UFeats) Accuracy type: accuracy value: 0.9338558453 - task: name: LEMMA type: token-classification metrics: - name: Lemma Accuracy type: accuracy value: 0.9398287095 - task: name: UNLABELED_DEPENDENCIES type: token-classification metrics: - name: Unlabeled Attachment Score (UAS) type: f_score value: 0.8331380018 - task: name: LABELED_DEPENDENCIES type: token-classification metrics: - name: Labeled Attachment Score (LAS) type: f_score value: 0.7913568943 - task: name: SENTS type: token-classification metrics: - name: Sentences F-Score type: f_score value: 0.6510067114 --- | Feature | Description | | --- | --- | | **Name** | `grc_dep_proiel_trf` | | **Version** | `0.0.0` | | **spaCy** | `>=3.5.0,<3.6.0` | | **Default Pipeline** | `transformer`, `tagger`, `morphologizer`, `parser`, `trainable_lemmatizer`, `frequency_lemmatizer` | | **Components** | `transformer`, `tagger`, `morphologizer`, `parser`, `trainable_lemmatizer`, `frequency_lemmatizer` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme <details> <summary>View label scheme (1083 labels for 3 components)</summary> | Component | Labels | | --- | --- | | **`tagger`** | `A-`, `C-`, `Df`, `Dq`, `Du`, `F-`, `G-`, `I-`, `Ma`, `Mo`, `Nb`, `Ne`, `Pc`, `Pd`, `Pi`, `Pk`, `Pp`, `Pr`, `Ps`, `Px`, `R-`, `S-`, `V-` | | **`morphologizer`** | `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET`, `POS=SCONJ`, `POS=CCONJ`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `POS=ADP`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Dat\|Definite=Def\|Gender=Masc,Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `POS=ADV`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|POS=VERB\|Tense=Past\|VerbForm=Inf\|Voice=Mid`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid,Pass`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `POS=VERB\|Tense=Pres\|VerbForm=Inf\|Voice=Mid,Pass`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Degree=Pos\|Gender=Masc,Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET`, `POS=VERB\|Tense=Pres\|VerbForm=Inf\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|POS=VERB\|Tense=Past\|VerbForm=Inf\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Definite=Def\|Gender=Masc,Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=AUX\|Tense=Pres\|VerbForm=Inf\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Def\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Rel`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Degree=Sup\|POS=ADV`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=NOUN`, `POS=VERB\|Tense=Pres\|VerbForm=Inf\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|POS=VERB\|Tense=Past\|VerbForm=Inf\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN`, `POS=ADV\|Polarity=Neg`, `Case=Acc\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Mood=Opt\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Number=Plur\|POS=PRON\|PronType=Rel`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Mid,Pass`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `POS=VERB\|Tense=Fut\|VerbForm=Inf\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid,Pass`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Definite=Def\|Gender=Masc,Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid,Pass`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid,Pass`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Degree=Pos\|POS=ADV`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Pos\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Masc,Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=NUM`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=DET`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Acc\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `POS=VERB\|Tense=Pres\|VerbForm=Inf\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Degree=Pos\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=NUM`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=NUM`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Number=Plur\|POS=DET`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Voc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `POS=INTJ`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `POS=ADV\|PronType=Rel`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `POS=VERB\|Tense=Fut\|VerbForm=Inf\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Nom\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Gen\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Degree=Pos\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc,Neut\|Number=Plur\|POS=DET`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=NUM`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Degree=Cmp\|POS=ADV`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=NUM`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=DET`, `POS=ADV\|PronType=Int`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Gender=Masc,Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `Mood=Opt\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Acc\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem,Masc\|Number=Sing\|POS=DET`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Dat\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `POS=AUX\|Tense=Fut\|VerbForm=Inf\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NUM`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Gen\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Degree=Pos\|Gender=Fem,Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=DET`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=NUM`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=NUM`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Acc\|Degree=Pos\|Gender=Masc,Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Degree=Pos\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=DET`, `Aspect=Perf\|Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Masc,Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Rel`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Number=Sing\|POS=DET`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem,Masc\|Number=Sing\|POS=DET`, `Case=Gen\|Number=Sing\|POS=PRON\|PronType=Int`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Fem,Masc\|Number=Plur\|POS=NUM`, `Aspect=Perf\|Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Acc\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Degree=Cmp\|Gender=Fem,Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Acc\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Fem,Masc\|Number=Plur\|POS=DET`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc,Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Gen\|Definite=Def\|Gender=Masc,Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc\|Degree=Pos\|Gender=Fem,Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NUM`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Mid`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Degree=Cmp\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Degree=Sup\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=DET`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Cmp\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Aspect=Perf\|Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=NUM`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Gen\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Degree=Pos\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Def\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Case=Acc\|Degree=Sup\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid,Pass`, `Case=Dat\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `Mood=Imp\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NUM`, `Case=Acc\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Int`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NUM`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=AUX\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|VerbForm=Gdv`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Case=Gen\|Gender=Masc,Neut\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Gen\|Gender=Fem,Masc\|Number=Plur\|POS=NUM`, `Case=Dat\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Case=Gen\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `POS=PROPN`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid,Pass`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=NUM`, `Case=Gen\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADJ\|Person=2\|Poss=Yes`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Fem,Masc\|Number=Plur\|POS=NOUN`, `Case=Dat\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=3\|Poss=Yes`, `Aspect=Perf\|Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Dat\|Definite=Def\|Gender=Masc,Neut\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Nom\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Fem,Masc\|Number=Sing\|POS=NOUN`, `Case=Dat\|Gender=Fem,Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Gen\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=NUM`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Voc\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Int`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid,Pass`, `Case=Voc\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Fem,Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Voc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Case=Acc\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Acc\|Gender=Masc,Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NUM`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid,Pass`, `Case=Gen\|Degree=Pos\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Degree=Cmp\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `POS=VERB\|Tense=Fut\|VerbForm=Inf\|Voice=Pass`, `Case=Gen\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Aspect=Imp\|Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid,Pass`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `POS=VERB`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Dat\|Gender=Fem,Masc\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Aspect=Perf\|Mood=Opt\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|VerbForm=Gdv`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=AUX\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ\|Person=2\|Poss=Yes`, `Mood=Opt\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|VerbForm=Gdv`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Voc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Voc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Degree=Pos\|Gender=Fem,Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Dat\|Degree=Cmp\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem,Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem,Masc\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ\|Person=2\|Poss=Yes`, `Aspect=Perf\|Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Voc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Voc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Dat\|Gender=Fem,Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Opt\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|VerbForm=Gdv`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Def\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Degree=Cmp\|Gender=Fem,Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Case=Dat\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc,Neut\|Number=Plur\|POS=ADJ`, `Mood=Opt\|Number=Sing\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Fem,Masc\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Fem,Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Voc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Fem,Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Gen\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Fem,Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Nom\|Gender=Fem,Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Fem,Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Fem,Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Perf\|Case=Acc\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Int`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Number=Plur\|POS=NUM`, `POS=NOUN`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Voc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `POS=X`, `Case=Nom\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Nom\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem,Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Fem,Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=DET`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=AUX\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Voc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Gen\|Gender=Fem,Masc\|Number=Plur\|POS=DET`, `Case=Gen\|Gender=Fem,Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid,Pass`, `Aspect=Perf\|Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Dat\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Cmp\|Gender=Masc,Neut\|Number=Plur\|POS=ADJ`, `Case=Voc\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=NUM`, `Case=Gen\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Fem,Masc\|Number=Plur\|POS=DET`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Degree=Sup\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Number=Plur\|POS=ADJ`, `Case=Gen\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=NUM`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Case=Voc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Int`, `Aspect=Perf\|POS=AUX\|Tense=Past\|VerbForm=Inf\|Voice=Mid`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Gen\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Aspect=Perf\|Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=NUM`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Case=Gen\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Case=Gen\|Gender=Fem,Masc\|Number=Sing\|POS=DET`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Dat\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Voc\|Degree=Pos\|Gender=Fem,Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Aspect=Perf\|Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Number=Sing\|POS=DET`, `Case=Dat\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem,Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Fem,Masc\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Fem,Masc\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid,Pass`, `Case=Nom\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Gen\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid,Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid,Pass`, `Case=Dat\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid,Pass`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid,Pass`, `Case=Dat\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=NUM`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Voc\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Aspect=Perf\|Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Aspect=Perf\|POS=AUX\|Tense=Past\|VerbForm=Inf\|Voice=Act` | | **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `amod`, `appos`, `case`, `cc`, `ccomp`, `conj`, `cop`, `csubj:pass`, `dep`, `det`, `discourse`, `dislocated`, `fixed`, `flat:name`, `iobj`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `obl:agent`, `orphan`, `parataxis`, `vocative`, `xcomp` | </details> ### Accuracy | Type | Score | | --- | --- | | `TAG_ACC` | 97.91 | | `POS_ACC` | 97.88 | | `MORPH_ACC` | 93.39 | | `DEP_UAS` | 83.31 | | `DEP_LAS` | 79.14 | | `SENTS_P` | 63.64 | | `SENTS_R` | 66.63 | | `SENTS_F` | 65.10 | | `LEMMA_ACC` | 93.98 | | `TRANSFORMER_LOSS` | 727452.13 | | `TAGGER_LOSS` | 4133.51 | | `MORPHOLOGIZER_LOSS` | 14007.93 | | `PARSER_LOSS` | 2315029.38 | | `TRAINABLE_LEMMATIZER_LOSS` | 11673.36 |
Gokulapriyan/swin-tiny-patch4-window7-224-finetuned-og_dataset_10e
Gokulapriyan
2023-02-16T11:07:29Z
35
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-02-16T07:49:31Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder model-index: - name: swin-tiny-patch4-window7-224-finetuned-og_dataset_10e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-og_dataset_10e This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0537 - eval_accuracy: 0.9815 - eval_runtime: 172.002 - eval_samples_per_second: 71.796 - eval_steps_per_second: 2.244 - epoch: 7.0 - step: 3822 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
AISE-TUDelft/pharo-keyimplementationpoints-classifier
AISE-TUDelft
2023-02-16T11:03:26Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-23T12:30:43Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 3515 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 6, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 1.7094555110821448e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 21090, "warmup_steps": 2109, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
AISE-TUDelft/java-rational-classifier
AISE-TUDelft
2023-02-16T11:00:43Z
6
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-23T12:47:17Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 4825 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 6, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 1.7094555110821448e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 28950, "warmup_steps": 2895, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
misterkirill/funai-5
misterkirill
2023-02-16T10:47:40Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-02-16T10:43:33Z
based on funai-3 because i think it better than funai-4
nlpso/m3_hierarchical_ner_ocr_ptrn_cmbert_iob2
nlpso
2023-02-16T10:44:54Z
4
1
transformers
[ "transformers", "pytorch", "camembert", "token-classification", "fr", "dataset:nlpso/m2m3_fine_tuning_ocr_ptrn_cmbert_iob2", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-09T14:12:53Z
--- language: fr datasets: - nlpso/m2m3_fine_tuning_ocr_ptrn_cmbert_iob2 tag: token-classification widget: - text: 'Duflot, loueur de carrosses, r. de Paradis-
 505
 Poissonnière, 22.' example_title: 'Noisy entry #1' - text: 'Duſour el Besnard, march, de bois à bruler,
 quai de la Tournelle, 17. etr. des Fossés-
 SBernard. 11.
 Dí' example_title: 'Noisy entry #2' - text: 'Dufour (Charles), épicier, r. St-Denis
 ☞
 332' example_title: 'Ground-truth entry #1' --- # m3_hierarchical_ner_ocr_ptrn_cmbert_iob2 ## Introduction This model is a fine-tuned verion from [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) for **nested NER task** on a nested NER Paris trade directories dataset. ## Dataset Abbreviation|Entity group (level)|Description -|-|- O |1 & 2|Outside of a named entity PER |1|Person or company name ACT |1 & 2|Person or company professional activity TITREH |2|Military or civil distinction DESC |1|Entry full description TITREP |2|Professionnal reward SPAT |1|Address LOC |2|Street name CARDINAL |2|Street number FT |2|Geographical feature ## Experiment parameter * Pretrained-model : [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) * Dataset : noisy (Pero OCR) * Tagging format : IOB2 * Recognised entities : 'All' ## Load model from the Hugging Face ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("nlpso/m3_hierarchical_ner_ocr_ptrn_cmbert_iob2") model = AutoModelForTokenClassification.from_pretrained("nlpso/m3_hierarchical_ner_ocr_ptrn_cmbert_iob2")
nlpso/m3_hierarchical_ner_ocr_ptrn_cmbert_io
nlpso
2023-02-16T10:44:52Z
3
1
transformers
[ "transformers", "pytorch", "camembert", "token-classification", "fr", "dataset:nlpso/m2m3_fine_tuning_ocr_ptrn_cmbert_io", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-09T14:11:27Z
--- language: fr datasets: - nlpso/m2m3_fine_tuning_ocr_ptrn_cmbert_io tag: token-classification widget: - text: 'Duflot, loueur de carrosses, r. de Paradis-
 505
 Poissonnière, 22.' example_title: 'Noisy entry #1' - text: 'Duſour el Besnard, march, de bois à bruler,
 quai de la Tournelle, 17. etr. des Fossés-
 SBernard. 11.
 Dí' example_title: 'Noisy entry #2' - text: 'Dufour (Charles), épicier, r. St-Denis
 ☞
 332' example_title: 'Ground-truth entry #1' --- # m3_hierarchical_ner_ocr_ptrn_cmbert_io ## Introduction This model is a fine-tuned verion from [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) for **nested NER task** on a nested NER Paris trade directories dataset. ## Dataset Abbreviation|Entity group (level)|Description -|-|- O |1 & 2|Outside of a named entity PER |1|Person or company name ACT |1 & 2|Person or company professional activity TITREH |2|Military or civil distinction DESC |1|Entry full description TITREP |2|Professionnal reward SPAT |1|Address LOC |2|Street name CARDINAL |2|Street number FT |2|Geographical feature ## Experiment parameter * Pretrained-model : [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) * Dataset : noisy (Pero OCR) * Tagging format : IO * Recognised entities : 'All' ## Load model from the Hugging Face ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("nlpso/m3_hierarchical_ner_ocr_ptrn_cmbert_io") model = AutoModelForTokenClassification.from_pretrained("nlpso/m3_hierarchical_ner_ocr_ptrn_cmbert_io")
nlpso/m3_hierarchical_ner_ocr_cmbert_iob2
nlpso
2023-02-16T10:44:50Z
5
0
transformers
[ "transformers", "pytorch", "camembert", "token-classification", "fr", "dataset:nlpso/m2m3_fine_tuning_ocr_cmbert_iob2", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-09T14:09:40Z
--- language: fr datasets: - nlpso/m2m3_fine_tuning_ocr_cmbert_iob2 tag: token-classification widget: - text: 'Duflot, loueur de carrosses, r. de Paradis-
 505
 Poissonnière, 22.' example_title: 'Noisy entry #1' - text: 'Duſour el Besnard, march, de bois à bruler,
 quai de la Tournelle, 17. etr. des Fossés-
 SBernard. 11.
 Dí' example_title: 'Noisy entry #2' - text: 'Dufour (Charles), épicier, r. St-Denis
 ☞
 332' example_title: 'Ground-truth entry #1' --- # m3_hierarchical_ner_ocr_cmbert_iob2 ## Introduction This model is a fine-tuned verion from [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) for **nested NER task** on a nested NER Paris trade directories dataset. ## Dataset Abbreviation|Entity group (level)|Description -|-|- O |1 & 2|Outside of a named entity PER |1|Person or company name ACT |1 & 2|Person or company professional activity TITREH |2|Military or civil distinction DESC |1|Entry full description TITREP |2|Professionnal reward SPAT |1|Address LOC |2|Street name CARDINAL |2|Street number FT |2|Geographical feature ## Experiment parameter * Pretrained-model : [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) * Dataset : noisy (Pero OCR) * Tagging format : IOB2 * Recognised entities : 'All' ## Load model from the Hugging Face ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("nlpso/m3_hierarchical_ner_ocr_cmbert_iob2") model = AutoModelForTokenClassification.from_pretrained("nlpso/m3_hierarchical_ner_ocr_cmbert_iob2")
nlpso/m3_hierarchical_ner_ocr_cmbert_io
nlpso
2023-02-16T10:44:48Z
6
0
transformers
[ "transformers", "pytorch", "camembert", "token-classification", "fr", "dataset:nlpso/m2m3_fine_tuning_ocr_cmbert_io", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-09T14:08:01Z
--- language: fr datasets: - nlpso/m2m3_fine_tuning_ocr_cmbert_io tag: token-classification widget: - text: 'Duflot, loueur de carrosses, r. de Paradis-
 505
 Poissonnière, 22.' example_title: 'Noisy entry #1' - text: 'Duſour el Besnard, march, de bois à bruler,
 quai de la Tournelle, 17. etr. des Fossés-
 SBernard. 11.
 Dí' example_title: 'Noisy entry #2' - text: 'Dufour (Charles), épicier, r. St-Denis
 ☞
 332' example_title: 'Ground-truth entry #1' --- # m3_hierarchical_ner_ocr_cmbert_io ## Introduction This model is a fine-tuned verion from [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) for **nested NER task** on a nested NER Paris trade directories dataset. ## Dataset Abbreviation|Entity group (level)|Description -|-|- O |1 & 2|Outside of a named entity PER |1|Person or company name ACT |1 & 2|Person or company professional activity TITREH |2|Military or civil distinction DESC |1|Entry full description TITREP |2|Professionnal reward SPAT |1|Address LOC |2|Street name CARDINAL |2|Street number FT |2|Geographical feature ## Experiment parameter * Pretrained-model : [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) * Dataset : noisy (Pero OCR) * Tagging format : IO * Recognised entities : 'All' ## Load model from the Hugging Face ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("nlpso/m3_hierarchical_ner_ocr_cmbert_io") model = AutoModelForTokenClassification.from_pretrained("nlpso/m3_hierarchical_ner_ocr_cmbert_io")
nlpso/m3_hierarchical_ner_ref_cmbert_iob2
nlpso
2023-02-16T10:44:42Z
5
0
transformers
[ "transformers", "pytorch", "camembert", "token-classification", "fr", "dataset:nlpso/m2m3_fine_tuning_ref_cmbert_iob2", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-09T14:03:22Z
--- language: fr datasets: - nlpso/m2m3_fine_tuning_ref_cmbert_iob2 tag: token-classification widget: - text: 'Duflot, loueur de carrosses, r. de Paradis-
 505
 Poissonnière, 22.' example_title: 'Noisy entry #1' - text: 'Duſour el Besnard, march, de bois à bruler,
 quai de la Tournelle, 17. etr. des Fossés-
 SBernard. 11.
 Dí' example_title: 'Noisy entry #2' - text: 'Dufour (Charles), épicier, r. St-Denis
 ☞
 332' example_title: 'Ground-truth entry #1' --- # m3_hierarchical_ner_ref_cmbert_iob2 ## Introduction This model is a fine-tuned verion from [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) for **nested NER task** on a nested NER Paris trade directories dataset. ## Dataset Abbreviation|Entity group (level)|Description -|-|- O |1 & 2|Outside of a named entity PER |1|Person or company name ACT |1 & 2|Person or company professional activity TITREH |2|Military or civil distinction DESC |1|Entry full description TITREP |2|Professionnal reward SPAT |1|Address LOC |2|Street name CARDINAL |2|Street number FT |2|Geographical feature ## Experiment parameter * Pretrained-model : [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) * Dataset : ground-truth * Tagging format : IOB2 * Recognised entities : 'All' ## Load model from the Hugging Face ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("nlpso/m3_hierarchical_ner_ref_cmbert_iob2") model = AutoModelForTokenClassification.from_pretrained("nlpso/m3_hierarchical_ner_ref_cmbert_iob2")
nlpso/m3_hierarchical_ner_ref_cmbert_io
nlpso
2023-02-16T10:44:40Z
4
0
transformers
[ "transformers", "pytorch", "camembert", "token-classification", "fr", "dataset:nlpso/m2m3_fine_tuning_ref_cmbert_io", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-09T14:01:53Z
--- language: fr datasets: - nlpso/m2m3_fine_tuning_ref_cmbert_io tag: token-classification widget: - text: 'Duflot, loueur de carrosses, r. de Paradis-
 505
 Poissonnière, 22.' example_title: 'Noisy entry #1' - text: 'Duſour el Besnard, march, de bois à bruler,
 quai de la Tournelle, 17. etr. des Fossés-
 SBernard. 11.
 Dí' example_title: 'Noisy entry #2' - text: 'Dufour (Charles), épicier, r. St-Denis
 ☞
 332' example_title: 'Ground-truth entry #1' --- # m3_hierarchical_ner_ref_cmbert_io ## Introduction This model is a fine-tuned verion from [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) for **nested NER task** on a nested NER Paris trade directories dataset. ## Dataset Abbreviation|Entity group (level)|Description -|-|- O |1 & 2|Outside of a named entity PER |1|Person or company name ACT |1 & 2|Person or company professional activity TITREH |2|Military or civil distinction DESC |1|Entry full description TITREP |2|Professionnal reward SPAT |1|Address LOC |2|Street name CARDINAL |2|Street number FT |2|Geographical feature ## Experiment parameter * Pretrained-model : [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) * Dataset : ground-truth * Tagging format : IO * Recognised entities : 'All' ## Load model from the Hugging Face ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("nlpso/m3_hierarchical_ner_ref_cmbert_io") model = AutoModelForTokenClassification.from_pretrained("nlpso/m3_hierarchical_ner_ref_cmbert_io")
nlpso/m2_joint_label_ref_ptrn_cmbert_iob2
nlpso
2023-02-16T10:44:29Z
5
0
transformers
[ "transformers", "pytorch", "camembert", "token-classification", "fr", "dataset:nlpso/m2m3_fine_tuning_ref_ptrn_cmbert_iob2", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-09T13:30:11Z
--- language: fr datasets: - nlpso/m2m3_fine_tuning_ref_ptrn_cmbert_iob2 tag: token-classification widget: - text: 'Duflot, loueur de carrosses, r. de Paradis-
 505
 Poissonnière, 22.' example_title: 'Noisy entry #1' - text: 'Duſour el Besnard, march, de bois à bruler,
 quai de la Tournelle, 17. etr. des Fossés-
 SBernard. 11.
 Dí' example_title: 'Noisy entry #2' - text: 'Dufour (Charles), épicier, r. St-Denis
 ☞
 332' example_title: 'Ground-truth entry #1' --- # m2_joint_label_ref_ptrn_cmbert_iob2 ## Introduction This model is a fine-tuned verion from [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) for **nested NER task** on a nested NER Paris trade directories dataset. ## Dataset Abbreviation|Entity group (level)|Description -|-|- O |1 & 2|Outside of a named entity PER |1|Person or company name ACT |1 & 2|Person or company professional activity TITREH |2|Military or civil distinction DESC |1|Entry full description TITREP |2|Professionnal reward SPAT |1|Address LOC |2|Street name CARDINAL |2|Street number FT |2|Geographical feature ## Experiment parameter * Pretrained-model : [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) * Dataset : ground-truth * Tagging format : IOB2 * Recognised entities : 'All' ## Load model from the Hugging Face ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("nlpso/m2_joint_label_ref_ptrn_cmbert_iob2") model = AutoModelForTokenClassification.from_pretrained("nlpso/m2_joint_label_ref_ptrn_cmbert_iob2")
nlpso/m2_joint_label_ref_ptrn_cmbert_io
nlpso
2023-02-16T10:44:27Z
5
0
transformers
[ "transformers", "pytorch", "camembert", "token-classification", "fr", "dataset:nlpso/m2m3_fine_tuning_ref_ptrn_cmbert_io", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-09T13:28:07Z
--- language: fr datasets: - nlpso/m2m3_fine_tuning_ref_ptrn_cmbert_io tag: token-classification widget: - text: 'Duflot, loueur de carrosses, r. de Paradis-
 505
 Poissonnière, 22.' example_title: 'Noisy entry #1' - text: 'Duſour el Besnard, march, de bois à bruler,
 quai de la Tournelle, 17. etr. des Fossés-
 SBernard. 11.
 Dí' example_title: 'Noisy entry #2' - text: 'Dufour (Charles), épicier, r. St-Denis
 ☞
 332' example_title: 'Ground-truth entry #1' --- # m2_joint_label_ref_ptrn_cmbert_io ## Introduction This model is a fine-tuned verion from [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) for **nested NER task** on a nested NER Paris trade directories dataset. ## Dataset Abbreviation|Entity group (level)|Description -|-|- O |1 & 2|Outside of a named entity PER |1|Person or company name ACT |1 & 2|Person or company professional activity TITREH |2|Military or civil distinction DESC |1|Entry full description TITREP |2|Professionnal reward SPAT |1|Address LOC |2|Street name CARDINAL |2|Street number FT |2|Geographical feature ## Experiment parameter * Pretrained-model : [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) * Dataset : ground-truth * Tagging format : IO * Recognised entities : 'All' ## Load model from the Hugging Face ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("nlpso/m2_joint_label_ref_ptrn_cmbert_io") model = AutoModelForTokenClassification.from_pretrained("nlpso/m2_joint_label_ref_ptrn_cmbert_io")
nlpso/m2_joint_label_ref_cmbert_iob2
nlpso
2023-02-16T10:44:25Z
4
0
transformers
[ "transformers", "pytorch", "camembert", "token-classification", "fr", "dataset:nlpso/m2m3_fine_tuning_ref_cmbert_iob2", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-09T13:24:35Z
--- language: fr datasets: - nlpso/m2m3_fine_tuning_ref_cmbert_iob2 tag: token-classification widget: - text: 'Duflot, loueur de carrosses, r. de Paradis-
 505
 Poissonnière, 22.' example_title: 'Noisy entry #1' - text: 'Duſour el Besnard, march, de bois à bruler,
 quai de la Tournelle, 17. etr. des Fossés-
 SBernard. 11.
 Dí' example_title: 'Noisy entry #2' - text: 'Dufour (Charles), épicier, r. St-Denis
 ☞
 332' example_title: 'Ground-truth entry #1' --- # m2_joint_label_ref_cmbert_iob2 ## Introduction This model is a fine-tuned verion from [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) for **nested NER task** on a nested NER Paris trade directories dataset. ## Dataset Abbreviation|Entity group (level)|Description -|-|- O |1 & 2|Outside of a named entity PER |1|Person or company name ACT |1 & 2|Person or company professional activity TITREH |2|Military or civil distinction DESC |1|Entry full description TITREP |2|Professionnal reward SPAT |1|Address LOC |2|Street name CARDINAL |2|Street number FT |2|Geographical feature ## Experiment parameter * Pretrained-model : [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) * Dataset : ground-truth * Tagging format : IOB2 * Recognised entities : 'All' ## Load model from the Hugging Face ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("nlpso/m2_joint_label_ref_cmbert_iob2") model = AutoModelForTokenClassification.from_pretrained("nlpso/m2_joint_label_ref_cmbert_iob2")
nlpso/m1_ind_layers_ocr_ptrn_cmbert_iob2_level_1
nlpso
2023-02-16T10:42:27Z
5
0
transformers
[ "transformers", "pytorch", "camembert", "token-classification", "fr", "dataset:nlpso/m1_fine_tuning_ocr_ptrn_cmbert_iob2", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-09T12:13:42Z
--- language: fr datasets: - nlpso/m1_fine_tuning_ocr_ptrn_cmbert_iob2 tag: token-classification widget: - text: 'Duflot, loueur de carrosses, r. de Paradis-
 505
 Poissonnière, 22.' example_title: 'Noisy entry #1' - text: 'Duſour el Besnard, march, de bois à bruler,
 quai de la Tournelle, 17. etr. des Fossés-
 SBernard. 11.
 Dí' example_title: 'Noisy entry #2' - text: 'Dufour (Charles), épicier, r. St-Denis
 ☞
 332' example_title: 'Ground-truth entry #1' --- # m1_ind_layers_ocr_ptrn_cmbert_iob2_level_1 ## Introduction This model is a model that was fine-tuned from [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) for **nested NER task** on a nested NER Paris trade directories dataset. ## Dataset Abbreviation|Entity group (level)|Description -|-|- O |1 & 2|Outside of a named entity PER |1|Person or company name ACT |1 & 2|Person or company professional activity TITREH |2|Military or civil distinction DESC |1|Entry full description TITREP |2|Professionnal reward SPAT |1|Address LOC |2|Street name CARDINAL |2|Street number FT |2|Geographical feature ## Experiment parameter * Pretrained-model : [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) * Dataset : noisy (Pero OCR) * Tagging format : IOB2 * Recognised entities : level 1 ## Load model from the Hugging Face **Warning 1 ** : this model only recognises level-1 entities of dataset. It has to be used with [m1_ind_layers_ocr_ptrn_cmbert_iob2_level_2](https://huggingface.co/nlpso/m1_ind_layers_ocr_ptrn_cmbert_iob2_level_2) to recognise nested entities level-2. ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("nlpso/m1_ind_layers_ocr_ptrn_cmbert_iob2_level_1") model = AutoModelForTokenClassification.from_pretrained("nlpso/m1_ind_layers_ocr_ptrn_cmbert_iob2_level_1")
nlpso/m1_ind_layers_ocr_ptrn_cmbert_io_level_2
nlpso
2023-02-16T10:42:25Z
3
0
transformers
[ "transformers", "pytorch", "camembert", "token-classification", "fr", "dataset:nlpso/m1_fine_tuning_ocr_ptrn_cmbert_io", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-09T12:12:11Z
--- language: fr datasets: - nlpso/m1_fine_tuning_ocr_ptrn_cmbert_io tag: token-classification widget: - text: 'Duflot, loueur de carrosses, r. de Paradis-
 505
 Poissonnière, 22.' example_title: 'Noisy entry #1' - text: 'Duſour el Besnard, march, de bois à bruler,
 quai de la Tournelle, 17. etr. des Fossés-
 SBernard. 11.
 Dí' example_title: 'Noisy entry #2' - text: 'Dufour (Charles), épicier, r. St-Denis
 ☞
 332' example_title: 'Ground-truth entry #1' --- # m1_ind_layers_ocr_ptrn_cmbert_io_level_2 ## Introduction This model is a model that was fine-tuned from [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) for **nested NER task** on a nested NER Paris trade directories dataset. ## Dataset Abbreviation|Entity group (level)|Description -|-|- O |1 & 2|Outside of a named entity PER |1|Person or company name ACT |1 & 2|Person or company professional activity TITREH |2|Military or civil distinction DESC |1|Entry full description TITREP |2|Professionnal reward SPAT |1|Address LOC |2|Street name CARDINAL |2|Street number FT |2|Geographical feature ## Experiment parameter * Pretrained-model : [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) * Dataset : noisy (Pero OCR) * Tagging format : IO * Recognised entities : level 2 ## Load model from the Hugging Face **Warning 1 ** : this model only recognises level-2 entities of dataset. It has to be used with [m1_ind_layers_ocr_ptrn_cmbert_io_level_1](https://huggingface.co/nlpso/m1_ind_layers_ocr_ptrn_cmbert_io_level_1) to recognise nested entities level-1. ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("nlpso/m1_ind_layers_ocr_ptrn_cmbert_io_level_2") model = AutoModelForTokenClassification.from_pretrained("nlpso/m1_ind_layers_ocr_ptrn_cmbert_io_level_2")
nlpso/m1_ind_layers_ocr_ptrn_cmbert_io_level_1
nlpso
2023-02-16T10:42:23Z
4
0
transformers
[ "transformers", "pytorch", "camembert", "token-classification", "fr", "dataset:nlpso/m1_fine_tuning_ocr_ptrn_cmbert_io", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-09T12:10:24Z
--- language: fr datasets: - nlpso/m1_fine_tuning_ocr_ptrn_cmbert_io tag: token-classification widget: - text: 'Duflot, loueur de carrosses, r. de Paradis-
 505
 Poissonnière, 22.' example_title: 'Noisy entry #1' - text: 'Duſour el Besnard, march, de bois à bruler,
 quai de la Tournelle, 17. etr. des Fossés-
 SBernard. 11.
 Dí' example_title: 'Noisy entry #2' - text: 'Dufour (Charles), épicier, r. St-Denis
 ☞
 332' example_title: 'Ground-truth entry #1' --- # m1_ind_layers_ocr_ptrn_cmbert_io_level_1 ## Introduction This model is a model that was fine-tuned from [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) for **nested NER task** on a nested NER Paris trade directories dataset. ## Dataset Abbreviation|Entity group (level)|Description -|-|- O |1 & 2|Outside of a named entity PER |1|Person or company name ACT |1 & 2|Person or company professional activity TITREH |2|Military or civil distinction DESC |1|Entry full description TITREP |2|Professionnal reward SPAT |1|Address LOC |2|Street name CARDINAL |2|Street number FT |2|Geographical feature ## Experiment parameter * Pretrained-model : [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) * Dataset : noisy (Pero OCR) * Tagging format : IO * Recognised entities : level 1 ## Load model from the Hugging Face **Warning 1 ** : this model only recognises level-1 entities of dataset. It has to be used with [m1_ind_layers_ocr_ptrn_cmbert_io_level_2](https://huggingface.co/nlpso/m1_ind_layers_ocr_ptrn_cmbert_io_level_2) to recognise nested entities level-2. ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("nlpso/m1_ind_layers_ocr_ptrn_cmbert_io_level_1") model = AutoModelForTokenClassification.from_pretrained("nlpso/m1_ind_layers_ocr_ptrn_cmbert_io_level_1")
nlpso/m1_ind_layers_ref_ptrn_cmbert_iob2_level_1
nlpso
2023-02-16T10:42:09Z
3
0
transformers
[ "transformers", "pytorch", "camembert", "token-classification", "fr", "dataset:nlpso/m1_fine_tuning_ref_ptrn_cmbert_iob2", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-09T11:59:08Z
--- language: fr datasets: - nlpso/m1_fine_tuning_ref_ptrn_cmbert_iob2 tag: token-classification widget: - text: 'Duflot, loueur de carrosses, r. de Paradis-
 505
 Poissonnière, 22.' example_title: 'Noisy entry #1' - text: 'Duſour el Besnard, march, de bois à bruler,
 quai de la Tournelle, 17. etr. des Fossés-
 SBernard. 11.
 Dí' example_title: 'Noisy entry #2' - text: 'Dufour (Charles), épicier, r. St-Denis
 ☞
 332' example_title: 'Ground-truth entry #1' --- # m1_ind_layers_ref_ptrn_cmbert_iob2_level_1 ## Introduction This model is a model that was fine-tuned from [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) for **nested NER task** on a nested NER Paris trade directories dataset. ## Dataset Abbreviation|Entity group (level)|Description -|-|- O |1 & 2|Outside of a named entity PER |1|Person or company name ACT |1 & 2|Person or company professional activity TITREH |2|Military or civil distinction DESC |1|Entry full description TITREP |2|Professionnal reward SPAT |1|Address LOC |2|Street name CARDINAL |2|Street number FT |2|Geographical feature ## Experiment parameter * Pretrained-model : [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) * Dataset : ground-truth * Tagging format : IOB2 * Recognised entities : level 1 ## Load model from the Hugging Face **Warning 1 ** : this model only recognises level-1 entities of dataset. It has to be used with [m1_ind_layers_ref_ptrn_cmbert_iob2_level_2](https://huggingface.co/nlpso/m1_ind_layers_ref_ptrn_cmbert_iob2_level_2) to recognise nested entities level-2. ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("nlpso/m1_ind_layers_ref_ptrn_cmbert_iob2_level_1") model = AutoModelForTokenClassification.from_pretrained("nlpso/m1_ind_layers_ref_ptrn_cmbert_iob2_level_1")
nlpso/m1_ind_layers_ref_ptrn_cmbert_io_level_2
nlpso
2023-02-16T10:42:07Z
3
0
transformers
[ "transformers", "pytorch", "camembert", "token-classification", "fr", "dataset:nlpso/m1_fine_tuning_ref_ptrn_cmbert_io", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-09T11:57:16Z
--- language: fr datasets: - nlpso/m1_fine_tuning_ref_ptrn_cmbert_io tag: token-classification widget: - text: 'Duflot, loueur de carrosses, r. de Paradis-
 505
 Poissonnière, 22.' example_title: 'Noisy entry #1' - text: 'Duſour el Besnard, march, de bois à bruler,
 quai de la Tournelle, 17. etr. des Fossés-
 SBernard. 11.
 Dí' example_title: 'Noisy entry #2' - text: 'Dufour (Charles), épicier, r. St-Denis
 ☞
 332' example_title: 'Ground-truth entry #1' --- # m1_ind_layers_ref_ptrn_cmbert_io_level_2 ## Introduction This model is a model that was fine-tuned from [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) for **nested NER task** on a nested NER Paris trade directories dataset. ## Dataset Abbreviation|Entity group (level)|Description -|-|- O |1 & 2|Outside of a named entity PER |1|Person or company name ACT |1 & 2|Person or company professional activity TITREH |2|Military or civil distinction DESC |1|Entry full description TITREP |2|Professionnal reward SPAT |1|Address LOC |2|Street name CARDINAL |2|Street number FT |2|Geographical feature ## Experiment parameter * Pretrained-model : [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) * Dataset : ground-truth * Tagging format : IO * Recognised entities : level 2 ## Load model from the Hugging Face **Warning 1 ** : this model only recognises level-2 entities of dataset. It has to be used with [m1_ind_layers_ref_ptrn_cmbert_io_level_1](https://huggingface.co/nlpso/m1_ind_layers_ref_ptrn_cmbert_io_level_1) to recognise nested entities level-1. ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("nlpso/m1_ind_layers_ref_ptrn_cmbert_io_level_2") model = AutoModelForTokenClassification.from_pretrained("nlpso/m1_ind_layers_ref_ptrn_cmbert_io_level_2")
nlpso/m1_ind_layers_ref_cmbert_iob2_level_2
nlpso
2023-02-16T10:42:02Z
3
0
transformers
[ "transformers", "pytorch", "camembert", "token-classification", "fr", "dataset:nlpso/m1_fine_tuning_ref_cmbert_iob2", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-09T11:52:37Z
--- language: fr datasets: - nlpso/m1_fine_tuning_ref_cmbert_iob2 tag: token-classification widget: - text: 'Duflot, loueur de carrosses, r. de Paradis-
 505
 Poissonnière, 22.' example_title: 'Noisy entry #1' - text: 'Duſour el Besnard, march, de bois à bruler,
 quai de la Tournelle, 17. etr. des Fossés-
 SBernard. 11.
 Dí' example_title: 'Noisy entry #2' - text: 'Dufour (Charles), épicier, r. St-Denis
 ☞
 332' example_title: 'Ground-truth entry #1' --- # m1_ind_layers_ref_cmbert_iob2_level_2 ## Introduction This model is a model that was fine-tuned from [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) for **nested NER task** on a nested NER Paris trade directories dataset. ## Dataset Abbreviation|Entity group (level)|Description -|-|- O |1 & 2|Outside of a named entity PER |1|Person or company name ACT |1 & 2|Person or company professional activity TITREH |2|Military or civil distinction DESC |1|Entry full description TITREP |2|Professionnal reward SPAT |1|Address LOC |2|Street name CARDINAL |2|Street number FT |2|Geographical feature ## Experiment parameter * Pretrained-model : [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) * Dataset : ground-truth * Tagging format : IOB2 * Recognised entities : level 2 ## Load model from the Hugging Face **Warning 1 ** : this model only recognises level-2 entities of dataset. It has to be used with [m1_ind_layers_ref_cmbert_iob2_level_1](https://huggingface.co/nlpso/m1_ind_layers_ref_cmbert_iob2_level_1) to recognise nested entities level-1. ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("nlpso/m1_ind_layers_ref_cmbert_iob2_level_2") model = AutoModelForTokenClassification.from_pretrained("nlpso/m1_ind_layers_ref_cmbert_iob2_level_2")
nlpso/m1_ind_layers_ref_cmbert_io_level_2
nlpso
2023-02-16T10:41:58Z
4
0
transformers
[ "transformers", "pytorch", "camembert", "token-classification", "fr", "dataset:nlpso/m1_fine_tuning_ref_cmbert_io", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-09T11:48:50Z
--- language: fr datasets: - nlpso/m1_fine_tuning_ref_cmbert_io tag: token-classification widget: - text: 'Duflot, loueur de carrosses, r. de Paradis-
 505
 Poissonnière, 22.' example_title: 'Noisy entry #1' - text: 'Duſour el Besnard, march, de bois à bruler,
 quai de la Tournelle, 17. etr. des Fossés-
 SBernard. 11.
 Dí' example_title: 'Noisy entry #2' - text: 'Dufour (Charles), épicier, r. St-Denis
 ☞
 332' example_title: 'Ground-truth entry #1' --- # m1_ind_layers_ref_cmbert_io_level_2 ## Introduction This model is a model that was fine-tuned from [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) for **nested NER task** on a nested NER Paris trade directories dataset. ## Dataset Abbreviation|Entity group (level)|Description -|-|- O |1 & 2|Outside of a named entity PER |1|Person or company name ACT |1 & 2|Person or company professional activity TITREH |2|Military or civil distinction DESC |1|Entry full description TITREP |2|Professionnal reward SPAT |1|Address LOC |2|Street name CARDINAL |2|Street number FT |2|Geographical feature ## Experiment parameter * Pretrained-model : [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) * Dataset : ground-truth * Tagging format : IO * Recognised entities : level 2 ## Load model from the Hugging Face **Warning 1 ** : this model only recognises level-2 entities of dataset. It has to be used with [m1_ind_layers_ref_cmbert_io_level_1](https://huggingface.co/nlpso/m1_ind_layers_ref_cmbert_io_level_1) to recognise nested entities level-1. ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("nlpso/m1_ind_layers_ref_cmbert_io_level_2") model = AutoModelForTokenClassification.from_pretrained("nlpso/m1_ind_layers_ref_cmbert_io_level_2")