modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-06-05 12:28:32
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 468
values | tags
sequencelengths 1
4.05k
| pipeline_tag
stringclasses 54
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-06-05 12:27:45
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
philschmid/bert-mini-sst2-distilled | philschmid | 2022-01-31T23:34:03Z | 256 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: bert-mini-sst2-distilled
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: sst2
metrics:
- name: Accuracy
type: accuracy
value: 0.856651376146789
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-mini-sst2-distilled
This model is a fine-tuned version of [google/bert_uncased_L-4_H-256_A-4](https://huggingface.co/google/bert_uncased_L-4_H-256_A-4) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1792
- Accuracy: 0.8567
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00021185586235152412
- train_batch_size: 1024
- eval_batch_size: 1024
- seed: 33
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.1552 | 1.0 | 66 | 1.4847 | 0.8349 |
| 0.8451 | 2.0 | 132 | 1.3495 | 0.8624 |
| 0.5864 | 3.0 | 198 | 1.2257 | 0.8532 |
| 0.4553 | 4.0 | 264 | 1.2571 | 0.8544 |
| 0.3708 | 5.0 | 330 | 1.2132 | 0.8658 |
| 0.3086 | 6.0 | 396 | 1.2370 | 0.8589 |
| 0.2701 | 7.0 | 462 | 1.1900 | 0.8635 |
| 0.246 | 8.0 | 528 | 1.1792 | 0.8567 |
### Framework versions
- Transformers 4.12.3
- Pytorch 1.9.1
- Datasets 1.15.1
- Tokenizers 0.10.3
|
philschmid/tiny-bert-sst2-distilled | philschmid | 2022-01-31T18:50:41Z | 17,185 | 2 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: tiny-bert-sst2-distilled
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: sst2
metrics:
- name: Accuracy
type: accuracy
value: 0.8325688073394495
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tiny-bert-sst2-distilled
This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7305
- Accuracy: 0.8326
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0007199555649276667
- train_batch_size: 1024
- eval_batch_size: 1024
- seed: 33
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 7
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.77 | 1.0 | 66 | 1.6939 | 0.8165 |
| 0.729 | 2.0 | 132 | 1.5090 | 0.8326 |
| 0.5242 | 3.0 | 198 | 1.5369 | 0.8257 |
| 0.4017 | 4.0 | 264 | 1.7025 | 0.8326 |
| 0.327 | 5.0 | 330 | 1.6743 | 0.8245 |
| 0.2749 | 6.0 | 396 | 1.7305 | 0.8337 |
| 0.2521 | 7.0 | 462 | 1.7305 | 0.8326 |
### Framework versions
- Transformers 4.12.3
- Pytorch 1.9.1
- Datasets 1.15.1
- Tokenizers 0.10.3
|
masapasa/xls-r-ab-test | masapasa | 2022-01-31T17:22:19Z | 4 | 1 | transformers | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"mozilla-foundation/common_voice_8_0",
"generated_from_trainer",
"ab",
"dataset:common_voice",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
language:
- ab
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: ''
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [hf-test/xls-r-dummy](https://huggingface.co/hf-test/xls-r-dummy) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - AB dataset.
It achieves the following results on the evaluation set:
- Loss: 140.0674
- Wer: 1.1193
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 10
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
|
anton-l/wav2vec2-xls-r-common_voice-tr-ft-stream | anton-l | 2022-01-31T17:19:19Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"common_voice",
"generated_from_trainer",
"tr",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
language:
- tr
license: apache-2.0
tags:
- automatic-speech-recognition
- common_voice
- generated_from_trainer
model-index:
- name: wav2vec2-xls-r-common_voice-tr-ft-stream
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xls-r-common_voice-tr-ft-stream
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - TR dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3519
- Wer: 0.2927
- Cer: 0.0694
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 0.6768 | 9.01 | 500 | 0.4220 | 0.5143 | 0.1235 |
| 0.3801 | 19.01 | 1000 | 0.3303 | 0.4403 | 0.1055 |
| 0.3616 | 29.0 | 1500 | 0.3540 | 0.3716 | 0.0878 |
| 0.2334 | 39.0 | 2000 | 0.3666 | 0.3671 | 0.0842 |
| 0.3141 | 49.0 | 2500 | 0.3407 | 0.3373 | 0.0819 |
| 0.1926 | 58.01 | 3000 | 0.3886 | 0.3520 | 0.0867 |
| 0.1372 | 68.01 | 3500 | 0.3415 | 0.3189 | 0.0743 |
| 0.091 | 78.0 | 4000 | 0.3750 | 0.3164 | 0.0757 |
| 0.0893 | 88.0 | 4500 | 0.3559 | 0.2968 | 0.0712 |
| 0.095 | 98.0 | 5000 | 0.3519 | 0.2927 | 0.0694 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.2
- Datasets 1.18.2
- Tokenizers 0.10.3
|
peter-explosion-ai/en_pipeline | peter-explosion-ai | 2022-01-31T17:04:42Z | 5 | 0 | spacy | [
"spacy",
"text-classification",
"en",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
tags:
- spacy
- text-classification
language:
- en
model-index:
- name: en_pipeline
results: []
---
| Feature | Description |
| --- | --- |
| **Name** | `en_pipeline` |
| **Version** | `0.0.0` |
| **spaCy** | `>=3.2.1,<3.3.0` |
| **Default Pipeline** | `textcat` |
| **Components** | `textcat` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | n/a |
| **License** | n/a |
| **Author** | [n/a]() |
### Label Scheme
<details>
<summary>View label scheme (2 labels for 1 components)</summary>
| Component | Labels |
| --- | --- |
| **`textcat`** | `POSITIVE`, `NEGATIVE` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `CATS_SCORE` | 55.70 |
| `CATS_MICRO_P` | 58.65 |
| `CATS_MICRO_R` | 58.65 |
| `CATS_MICRO_F` | 58.65 |
| `CATS_MACRO_P` | 61.88 |
| `CATS_MACRO_R` | 58.69 |
| `CATS_MACRO_F` | 55.70 |
| `CATS_MACRO_AUC` | 63.53 |
| `CATS_MACRO_AUC_PER_TYPE` | 0.00 |
| `TEXTCAT_LOSS` | 3.74 | |
gagan3012/xls-r-300m-pa | gagan3012 | 2022-01-31T15:27:47Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"mozilla-foundation/common_voice_8_0",
"generated_from_trainer",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
language:
- pa-IN
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: xls-r-300m-pa
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xls-r-300m-pa
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - PA-IN dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0443
- Wer: 0.5715
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 500.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:-----:|:---------------:|:------:|
| 4.6694 | 19.22 | 500 | 4.0455 | 1.0 |
| 3.3907 | 38.45 | 1000 | 3.2836 | 1.0 |
| 2.0866 | 57.67 | 1500 | 1.2788 | 0.7715 |
| 1.4106 | 76.9 | 2000 | 0.7866 | 0.6891 |
| 1.1711 | 96.15 | 2500 | 0.6556 | 0.6272 |
| 1.038 | 115.37 | 3000 | 0.6195 | 0.5680 |
| 0.8989 | 134.6 | 3500 | 0.6563 | 0.5602 |
| 0.8021 | 153.82 | 4000 | 0.6644 | 0.5327 |
| 0.7161 | 173.07 | 4500 | 0.6844 | 0.5253 |
| 0.6449 | 192.3 | 5000 | 0.7018 | 0.5331 |
| 0.5659 | 211.52 | 5500 | 0.7451 | 0.5465 |
| 0.5118 | 230.75 | 6000 | 0.7857 | 0.5386 |
| 0.4385 | 249.97 | 6500 | 0.8062 | 0.5382 |
| 0.3984 | 269.22 | 7000 | 0.8316 | 0.5621 |
| 0.3666 | 288.45 | 7500 | 0.8736 | 0.5504 |
| 0.3256 | 307.67 | 8000 | 0.9133 | 0.5688 |
| 0.289 | 326.9 | 8500 | 0.9556 | 0.5684 |
| 0.2663 | 346.15 | 9000 | 0.9344 | 0.5708 |
| 0.2445 | 365.37 | 9500 | 0.9472 | 0.5590 |
| 0.2289 | 384.6 | 10000 | 0.9713 | 0.5672 |
| 0.2048 | 403.82 | 10500 | 0.9978 | 0.5762 |
| 0.1857 | 423.07 | 11000 | 1.0230 | 0.5798 |
| 0.1751 | 442.3 | 11500 | 1.0409 | 0.5755 |
| 0.1688 | 461.52 | 12000 | 1.0445 | 0.5727 |
| 0.1633 | 480.75 | 12500 | 1.0484 | 0.5739 |
| 0.1488 | 499.97 | 13000 | 1.0443 | 0.5715 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
|
anton-l/wav2vec2-tokenizer-turkish | anton-l | 2022-01-31T11:37:43Z | 0 | 0 | null | [
"license:cc0-1.0",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
license: cc0-1.0
---
This is a standalone Turkish Wav2Vec2 tokenizer config intended for use with `run_speech_recognition_ctc_streaming.py` |
huggingtweets/tks | huggingtweets | 2022-01-31T10:20:15Z | 0 | 0 | null | [
"huggingtweets",
"en",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: http://www.huggingtweets.com/tks/1643624411056/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1044664291050344449/vKKJxtBF_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">高須正和@NT深圳コミュニティ/TAKASU@NT Shenzhen</div>
<div style="text-align: center; font-size: 14px;">@tks</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from 高須正和@NT深圳コミュニティ/TAKASU@NT Shenzhen.
| Data | 高須正和@NT深圳コミュニティ/TAKASU@NT Shenzhen |
| --- | --- |
| Tweets downloaded | 3248 |
| Retweets | 1831 |
| Short tweets | 825 |
| Tweets kept | 592 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1lg0mgsp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @tks's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/j1ak5d5p) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/j1ak5d5p/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/tks')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/goando-tsuchinao83-za09313103 | huggingtweets | 2022-01-31T09:56:33Z | 0 | 0 | null | [
"huggingtweets",
"en",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: http://www.huggingtweets.com/goando-tsuchinao83-za09313103/1643622988627/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/715665333218979842/fLLzpFee_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1145832571214815232/KYNcOP04_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1281544202627674112/zglo72WL_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">土屋尚史 / Goodpatch & Go Ando / PREDUCTS / THE GUILD & shun nozaki / Goodpatch</div>
<div style="text-align: center; font-size: 14px;">@goando-tsuchinao83-za09313103</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from 土屋尚史 / Goodpatch & Go Ando / PREDUCTS / THE GUILD & shun nozaki / Goodpatch.
| Data | 土屋尚史 / Goodpatch | Go Ando / PREDUCTS / THE GUILD | shun nozaki / Goodpatch |
| --- | --- | --- | --- |
| Tweets downloaded | 3236 | 3250 | 798 |
| Retweets | 1577 | 97 | 34 |
| Short tweets | 914 | 1729 | 458 |
| Tweets kept | 745 | 1424 | 306 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/31bsh75f/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @goando-tsuchinao83-za09313103's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/26i8c30r) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/26i8c30r/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/goando-tsuchinao83-za09313103')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/eri_razapii-marisakura-miyakomx | huggingtweets | 2022-01-31T07:36:10Z | 0 | 0 | null | [
"huggingtweets",
"en",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: http://www.huggingtweets.com/eri_razapii-marisakura-miyakomx/1643614565483/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1463699400405164034/aRY9jlnO_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1460131579930755073/ln4j-nWU_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1466279279667277828/VqmxK5gB_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">えりらざぴ | SHE CEO/CCO & 櫻本真理 cotree/CoachEd & 吉澤美弥子🤿Coral Capital</div>
<div style="text-align: center; font-size: 14px;">@eri_razapii-marisakura-miyakomx</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from えりらざぴ | SHE CEO/CCO & 櫻本真理 cotree/CoachEd & 吉澤美弥子🤿Coral Capital.
| Data | えりらざぴ | SHE CEO/CCO | 櫻本真理 cotree/CoachEd | 吉澤美弥子🤿Coral Capital |
| --- | --- | --- | --- |
| Tweets downloaded | 3232 | 3205 | 1206 |
| Retweets | 1781 | 1564 | 79 |
| Short tweets | 959 | 877 | 736 |
| Tweets kept | 492 | 764 | 391 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1xlu40i1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @eri_razapii-marisakura-miyakomx's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/22cwqnkv) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/22cwqnkv/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/eri_razapii-marisakura-miyakomx')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
TajMahaladeen/pokemon_gptj | TajMahaladeen | 2022-01-31T06:12:31Z | 9 | 0 | transformers | [
"transformers",
"pytorch",
"gptj",
"text-generation",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
license: apache-2.0
---
|
NbAiLab/xls-r-1b-npsc | NbAiLab | 2022-01-31T04:33:39Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:04Z | ---
license: apache-2.0
---
|
gabrieljg/wav2vec2-common_voice-es-demo | gabrieljg | 2022-01-30T21:38:32Z | 29 | 0 | transformers | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"common_voice",
"generated_from_trainer",
"es",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
language:
- es
license: apache-2.0
tags:
- automatic-speech-recognition
- common_voice
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-common_voice-es-demo
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-common_voice-es-demo
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the COMMON_VOICE - ES dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1788
- Wer: 1.0239
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 15.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| No log | 0.02 | 100 | 6.6465 | 1.0 |
| No log | 0.04 | 200 | 3.0150 | 1.0 |
| No log | 0.05 | 300 | 2.8622 | 1.0003 |
| No log | 0.07 | 400 | 0.9506 | 0.9771 |
| 5.1598 | 0.09 | 500 | 0.4883 | 1.0009 |
| 5.1598 | 0.11 | 600 | 0.3893 | 1.0203 |
| 5.1598 | 0.13 | 700 | 0.3417 | 1.0283 |
| 5.1598 | 0.14 | 800 | 0.3352 | 1.0335 |
| 5.1598 | 0.16 | 900 | 0.2987 | 1.0168 |
| 0.3671 | 0.18 | 1000 | 0.2921 | 1.0159 |
| 0.3671 | 0.2 | 1100 | 0.2770 | 1.0096 |
| 0.3671 | 0.22 | 1200 | 0.2790 | 1.0398 |
| 0.3671 | 0.24 | 1300 | 0.2659 | 1.0190 |
| 0.3671 | 0.25 | 1400 | 0.2657 | 1.0528 |
| 0.289 | 0.27 | 1500 | 0.2556 | 1.0301 |
| 0.289 | 0.29 | 1600 | 0.2514 | 1.0193 |
| 0.289 | 0.31 | 1700 | 0.2708 | 1.0699 |
| 0.289 | 0.33 | 1800 | 0.2455 | 1.0723 |
| 0.289 | 0.34 | 1900 | 0.2456 | 1.0100 |
| 0.271 | 0.36 | 2000 | 0.2338 | 1.0533 |
| 0.271 | 0.38 | 2100 | 0.2479 | 1.0128 |
| 0.271 | 0.4 | 2200 | 0.2483 | 1.0386 |
| 0.271 | 0.42 | 2300 | 0.2436 | 1.0528 |
| 0.271 | 0.43 | 2400 | 0.2382 | 1.0476 |
| 0.2634 | 0.45 | 2500 | 0.2329 | 1.0680 |
| 0.2634 | 0.47 | 2600 | 0.2433 | 1.0581 |
| 0.2634 | 0.49 | 2700 | 0.2354 | 1.0641 |
| 0.2634 | 0.51 | 2800 | 0.2318 | 1.0504 |
| 0.2634 | 0.52 | 2900 | 0.2325 | 1.0500 |
| 0.2522 | 0.54 | 3000 | 0.2344 | 1.0380 |
| 0.2522 | 0.56 | 3100 | 0.2244 | 1.0663 |
| 0.2522 | 0.58 | 3200 | 0.2340 | 1.0647 |
| 0.2522 | 0.6 | 3300 | 0.2288 | 1.0538 |
| 0.2522 | 0.61 | 3400 | 0.2212 | 1.0614 |
| 0.2468 | 0.63 | 3500 | 0.2487 | 1.0557 |
| 0.2468 | 0.65 | 3600 | 0.2330 | 1.0510 |
| 0.2468 | 0.67 | 3700 | 0.2308 | 1.0506 |
| 0.2468 | 0.69 | 3800 | 0.2320 | 1.0451 |
| 0.2468 | 0.71 | 3900 | 0.2261 | 1.0701 |
| 0.2505 | 0.72 | 4000 | 0.2281 | 1.0713 |
| 0.2505 | 0.74 | 4100 | 0.2277 | 1.0741 |
| 0.2505 | 0.76 | 4200 | 0.2253 | 1.0814 |
| 0.2505 | 0.78 | 4300 | 0.2215 | 1.0437 |
| 0.2505 | 0.8 | 4400 | 0.2220 | 1.0557 |
| 0.2434 | 0.81 | 4500 | 0.2184 | 1.0533 |
| 0.2434 | 0.83 | 4600 | 0.2222 | 1.0819 |
| 0.2434 | 0.85 | 4700 | 0.2162 | 1.0238 |
| 0.2434 | 0.87 | 4800 | 0.2132 | 1.0457 |
| 0.2434 | 0.89 | 4900 | 0.2068 | 1.0611 |
| 0.2347 | 0.9 | 5000 | 0.2166 | 1.0332 |
| 0.2347 | 0.92 | 5100 | 0.2087 | 1.0433 |
| 0.2347 | 0.94 | 5200 | 0.2100 | 1.0292 |
| 0.2347 | 0.96 | 5300 | 0.2067 | 1.0734 |
| 0.2347 | 0.98 | 5400 | 0.2148 | 1.0279 |
| 0.2333 | 0.99 | 5500 | 0.2125 | 1.0277 |
| 0.2333 | 1.01 | 5600 | 0.2054 | 1.0453 |
| 0.2333 | 1.03 | 5700 | 0.2091 | 1.0557 |
| 0.2333 | 1.05 | 5800 | 0.2086 | 1.0239 |
| 0.2333 | 1.07 | 5900 | 0.2051 | 1.0645 |
| 0.2087 | 1.09 | 6000 | 0.2103 | 1.0240 |
| 0.2087 | 1.1 | 6100 | 0.2145 | 1.0197 |
| 0.2087 | 1.12 | 6200 | 0.2136 | 1.0248 |
| 0.2087 | 1.14 | 6300 | 0.2045 | 1.0443 |
| 0.2087 | 1.16 | 6400 | 0.2089 | 1.0397 |
| 0.2013 | 1.18 | 6500 | 0.2012 | 1.0654 |
| 0.2013 | 1.19 | 6600 | 0.2054 | 1.0414 |
| 0.2013 | 1.21 | 6700 | 0.2081 | 1.0632 |
| 0.2013 | 1.23 | 6800 | 0.2104 | 1.0190 |
| 0.2013 | 1.25 | 6900 | 0.2045 | 1.0813 |
| 0.2092 | 1.27 | 7000 | 0.2096 | 1.0751 |
| 0.2092 | 1.28 | 7100 | 0.2103 | 1.0328 |
| 0.2092 | 1.3 | 7200 | 0.2044 | 1.0011 |
| 0.2092 | 1.32 | 7300 | 0.2089 | 1.0260 |
| 0.2092 | 1.34 | 7400 | 0.2063 | 1.0551 |
| 0.2076 | 1.36 | 7500 | 0.2029 | 1.0075 |
| 0.2076 | 1.37 | 7600 | 0.2040 | 1.0528 |
| 0.2076 | 1.39 | 7700 | 0.2075 | 1.0398 |
| 0.2076 | 1.41 | 7800 | 0.2023 | 1.0231 |
| 0.2076 | 1.43 | 7900 | 0.2049 | 1.0318 |
| 0.2028 | 1.45 | 8000 | 0.2072 | 1.0763 |
| 0.2028 | 1.47 | 8100 | 0.2075 | 1.0762 |
| 0.2028 | 1.48 | 8200 | 0.2052 | 1.0838 |
| 0.2028 | 1.5 | 8300 | 0.2053 | 1.0407 |
| 0.2028 | 1.52 | 8400 | 0.2066 | 1.0266 |
| 0.2025 | 1.54 | 8500 | 0.2037 | 1.0628 |
| 0.2025 | 1.56 | 8600 | 0.2010 | 1.0351 |
| 0.2025 | 1.57 | 8700 | 0.1961 | 1.0812 |
| 0.2025 | 1.59 | 8800 | 0.1963 | 1.0868 |
| 0.2025 | 1.61 | 8900 | 0.2022 | 1.0710 |
| 0.1997 | 1.63 | 9000 | 0.2051 | 1.0764 |
| 0.1997 | 1.65 | 9100 | 0.1987 | 1.0581 |
| 0.1997 | 1.66 | 9200 | 0.2051 | 1.0611 |
| 0.1997 | 1.68 | 9300 | 0.1999 | 1.0808 |
| 0.1997 | 1.7 | 9400 | 0.1972 | 1.0703 |
| 0.1983 | 1.72 | 9500 | 0.1961 | 1.0584 |
| 0.1983 | 1.74 | 9600 | 0.2031 | 1.0938 |
| 0.1983 | 1.75 | 9700 | 0.2019 | 1.0891 |
| 0.1983 | 1.77 | 9800 | 0.2006 | 1.0542 |
| 0.1983 | 1.79 | 9900 | 0.1925 | 1.0627 |
| 0.1961 | 1.81 | 10000 | 0.1976 | 1.0751 |
| 0.1961 | 1.83 | 10100 | 0.2051 | 1.0611 |
| 0.1961 | 1.85 | 10200 | 0.2037 | 1.0656 |
| 0.1961 | 1.86 | 10300 | 0.2025 | 1.0291 |
| 0.1961 | 1.88 | 10400 | 0.1977 | 1.0525 |
| 0.2025 | 1.9 | 10500 | 0.2030 | 1.0670 |
| 0.2025 | 1.92 | 10600 | 0.1980 | 1.0765 |
| 0.2025 | 1.94 | 10700 | 0.1975 | 1.0254 |
| 0.2025 | 1.95 | 10800 | 0.1986 | 1.0636 |
| 0.2025 | 1.97 | 10900 | 0.1956 | 1.0352 |
| 0.2025 | 1.99 | 11000 | 0.1954 | 1.0265 |
| 0.2025 | 2.01 | 11100 | 0.1957 | 1.0752 |
| 0.2025 | 2.03 | 11200 | 0.1943 | 1.0784 |
| 0.2025 | 2.04 | 11300 | 0.1898 | 1.0341 |
| 0.2025 | 2.06 | 11400 | 0.1921 | 1.0301 |
| 0.1805 | 2.08 | 11500 | 0.1910 | 1.0230 |
| 0.1805 | 2.1 | 11600 | 0.1961 | 1.0203 |
| 0.1805 | 2.12 | 11700 | 0.1973 | 1.0776 |
| 0.1805 | 2.13 | 11800 | 0.1876 | 1.0788 |
| 0.1805 | 2.15 | 11900 | 0.1934 | 1.0251 |
| 0.177 | 2.17 | 12000 | 0.1967 | 1.0340 |
| 0.177 | 2.19 | 12100 | 0.1932 | 1.0131 |
| 0.177 | 2.21 | 12200 | 0.1926 | 1.0078 |
| 0.177 | 2.23 | 12300 | 0.1947 | 0.9991 |
| 0.177 | 2.24 | 12400 | 0.1914 | 1.0213 |
| 0.1782 | 2.26 | 12500 | 0.1962 | 0.9882 |
| 0.1782 | 2.28 | 12600 | 0.1960 | 1.0562 |
| 0.1782 | 2.3 | 12700 | 0.2006 | 1.0401 |
| 0.1782 | 2.32 | 12800 | 0.1950 | 1.0688 |
| 0.1782 | 2.33 | 12900 | 0.1920 | 1.0435 |
| 0.1796 | 2.35 | 13000 | 0.1926 | 1.0667 |
| 0.1796 | 2.37 | 13100 | 0.1949 | 1.0859 |
| 0.1796 | 2.39 | 13200 | 0.1932 | 1.0670 |
| 0.1796 | 2.41 | 13300 | 0.1882 | 1.0663 |
| 0.1796 | 2.42 | 13400 | 0.1877 | 1.0760 |
| 0.1775 | 2.44 | 13500 | 0.1893 | 1.0859 |
| 0.1775 | 2.46 | 13600 | 0.1936 | 1.0702 |
| 0.1775 | 2.48 | 13700 | 0.1871 | 1.0414 |
| 0.1775 | 2.5 | 13800 | 0.1917 | 1.0430 |
| 0.1775 | 2.51 | 13900 | 0.1922 | 1.0422 |
| 0.1778 | 2.53 | 14000 | 0.1875 | 1.0585 |
| 0.1778 | 2.55 | 14100 | 0.1876 | 1.0603 |
| 0.1778 | 2.57 | 14200 | 0.1888 | 1.0628 |
| 0.1778 | 2.59 | 14300 | 0.1948 | 1.0782 |
| 0.1778 | 2.6 | 14400 | 0.1942 | 1.0695 |
| 0.1784 | 2.62 | 14500 | 0.1842 | 1.0863 |
| 0.1784 | 2.64 | 14600 | 0.1850 | 1.0543 |
| 0.1784 | 2.66 | 14700 | 0.1824 | 1.0683 |
| 0.1784 | 2.68 | 14800 | 0.1888 | 1.0693 |
| 0.1784 | 2.7 | 14900 | 0.1871 | 1.0175 |
| 0.1753 | 2.71 | 15000 | 0.1889 | 1.0549 |
| 0.1753 | 2.73 | 15100 | 0.1865 | 1.0544 |
| 0.1753 | 2.75 | 15200 | 0.1918 | 1.0726 |
| 0.1753 | 2.77 | 15300 | 0.1964 | 1.0915 |
| 0.1753 | 2.79 | 15400 | 0.1900 | 1.0610 |
| 0.1768 | 2.8 | 15500 | 0.1894 | 1.0763 |
| 0.1768 | 2.82 | 15600 | 0.1882 | 1.0548 |
| 0.1768 | 2.84 | 15700 | 0.1861 | 1.0902 |
| 0.1768 | 2.86 | 15800 | 0.1860 | 1.0551 |
| 0.1768 | 2.88 | 15900 | 0.1879 | 1.0581 |
| 0.1761 | 2.89 | 16000 | 0.1899 | 1.0544 |
| 0.1761 | 2.91 | 16100 | 0.1860 | 1.0530 |
| 0.1761 | 2.93 | 16200 | 0.1894 | 1.0596 |
| 0.1761 | 2.95 | 16300 | 0.1835 | 1.0394 |
| 0.1761 | 2.97 | 16400 | 0.1852 | 1.0445 |
| 0.1754 | 2.98 | 16500 | 0.1847 | 1.0390 |
| 0.1754 | 3.0 | 16600 | 0.1828 | 1.0440 |
| 0.1754 | 3.02 | 16700 | 0.1869 | 1.0560 |
| 0.1754 | 3.04 | 16800 | 0.1882 | 1.0573 |
| 0.1754 | 3.06 | 16900 | 0.1912 | 1.0600 |
| 0.1592 | 3.08 | 17000 | 0.1921 | 1.0529 |
| 0.1592 | 3.09 | 17100 | 0.1881 | 1.0175 |
| 0.1592 | 3.11 | 17200 | 0.1891 | 1.0654 |
| 0.1592 | 3.13 | 17300 | 0.1889 | 1.0687 |
| 0.1592 | 3.15 | 17400 | 0.1916 | 1.0642 |
| 0.1556 | 3.17 | 17500 | 0.1850 | 1.0295 |
| 0.1556 | 3.18 | 17600 | 0.1875 | 1.0273 |
| 0.1556 | 3.2 | 17700 | 0.1894 | 1.0051 |
| 0.1556 | 3.22 | 17800 | 0.1870 | 1.0462 |
| 0.1556 | 3.24 | 17900 | 0.1831 | 1.0308 |
| 0.1557 | 3.26 | 18000 | 0.1878 | 1.0603 |
| 0.1557 | 3.27 | 18100 | 0.1850 | 1.0566 |
| 0.1557 | 3.29 | 18200 | 0.1843 | 1.0629 |
| 0.1557 | 3.31 | 18300 | 0.1886 | 1.0378 |
| 0.1557 | 3.33 | 18400 | 0.1892 | 1.0381 |
| 0.159 | 3.35 | 18500 | 0.1942 | 1.0519 |
| 0.159 | 3.36 | 18600 | 0.1829 | 1.0622 |
| 0.159 | 3.38 | 18700 | 0.1894 | 1.0557 |
| 0.159 | 3.4 | 18800 | 0.1895 | 1.0627 |
| 0.159 | 3.42 | 18900 | 0.1863 | 1.0362 |
| 0.1582 | 3.44 | 19000 | 0.1888 | 1.0491 |
| 0.1582 | 3.46 | 19100 | 0.1854 | 1.0483 |
| 0.1582 | 3.47 | 19200 | 0.1797 | 0.9787 |
| 0.1582 | 3.49 | 19300 | 0.1785 | 1.0086 |
| 0.1582 | 3.51 | 19400 | 0.1797 | 0.9915 |
| 0.1507 | 3.53 | 19500 | 0.1873 | 1.0266 |
| 0.1507 | 3.55 | 19600 | 0.1838 | 1.0299 |
| 0.1507 | 3.56 | 19700 | 0.1817 | 1.0355 |
| 0.1507 | 3.58 | 19800 | 0.1819 | 1.0271 |
| 0.1507 | 3.6 | 19900 | 0.1883 | 1.0248 |
| 0.1601 | 3.62 | 20000 | 0.1823 | 1.0406 |
| 0.1601 | 3.64 | 20100 | 0.1801 | 1.0261 |
| 0.1601 | 3.65 | 20200 | 0.1783 | 1.0329 |
| 0.1601 | 3.67 | 20300 | 0.1857 | 1.0162 |
| 0.1601 | 3.69 | 20400 | 0.1814 | 1.0212 |
| 0.1552 | 3.71 | 20500 | 0.1837 | 1.0232 |
| 0.1552 | 3.73 | 20600 | 0.1843 | 1.0314 |
| 0.1552 | 3.74 | 20700 | 0.1842 | 1.0258 |
| 0.1552 | 3.76 | 20800 | 0.1821 | 1.0479 |
| 0.1552 | 3.78 | 20900 | 0.1864 | 1.0459 |
| 0.1576 | 3.8 | 21000 | 0.1831 | 1.0364 |
| 0.1576 | 3.82 | 21100 | 0.1852 | 1.0271 |
| 0.1576 | 3.83 | 21200 | 0.1865 | 1.0204 |
| 0.1576 | 3.85 | 21300 | 0.1794 | 1.0324 |
| 0.1576 | 3.87 | 21400 | 0.1826 | 1.0315 |
| 0.1585 | 3.89 | 21500 | 0.1824 | 1.0327 |
| 0.1585 | 3.91 | 21600 | 0.1838 | 1.0208 |
| 0.1585 | 3.93 | 21700 | 0.1850 | 1.0199 |
| 0.1585 | 3.94 | 21800 | 0.1841 | 1.0050 |
| 0.1585 | 3.96 | 21900 | 0.1783 | 1.0003 |
| 0.1572 | 3.98 | 22000 | 0.1787 | 1.0115 |
| 0.1572 | 4.0 | 22100 | 0.1810 | 1.0235 |
| 0.1572 | 4.02 | 22200 | 0.1763 | 1.0191 |
| 0.1572 | 4.03 | 22300 | 0.1764 | 1.0332 |
| 0.1572 | 4.05 | 22400 | 0.1794 | 1.0429 |
| 0.1406 | 4.07 | 22500 | 0.1905 | 1.0288 |
| 0.1406 | 4.09 | 22600 | 0.1776 | 1.0244 |
| 0.1406 | 4.11 | 22700 | 0.1782 | 1.0451 |
| 0.1406 | 4.12 | 22800 | 0.1771 | 1.0387 |
| 0.1406 | 4.14 | 22900 | 0.1788 | 1.0435 |
| 0.14 | 4.16 | 23000 | 0.1792 | 1.0421 |
| 0.14 | 4.18 | 23100 | 0.1841 | 1.0241 |
| 0.14 | 4.2 | 23200 | 0.1769 | 1.0546 |
| 0.14 | 4.21 | 23300 | 0.1815 | 1.0602 |
| 0.14 | 4.23 | 23400 | 0.1784 | 1.0369 |
| 0.1394 | 4.25 | 23500 | 0.1809 | 1.0406 |
| 0.1394 | 4.27 | 23600 | 0.1744 | 1.0133 |
| 0.1394 | 4.29 | 23700 | 0.1771 | 1.0214 |
| 0.1394 | 4.31 | 23800 | 0.1765 | 1.0064 |
| 0.1394 | 4.32 | 23900 | 0.1793 | 1.0200 |
| 0.14 | 4.34 | 24000 | 0.1776 | 1.0352 |
| 0.14 | 4.36 | 24100 | 0.1775 | 1.0294 |
| 0.14 | 4.38 | 24200 | 0.1763 | 1.0213 |
| 0.14 | 4.4 | 24300 | 0.1697 | 1.0302 |
| 0.14 | 4.41 | 24400 | 0.1771 | 1.0259 |
| 0.1408 | 4.43 | 24500 | 0.1747 | 1.0409 |
| 0.1408 | 4.45 | 24600 | 0.1769 | 1.0278 |
| 0.1408 | 4.47 | 24700 | 0.1767 | 1.0190 |
| 0.1408 | 4.49 | 24800 | 0.1745 | 1.0281 |
| 0.1408 | 4.5 | 24900 | 0.1738 | 1.0356 |
| 0.1391 | 4.52 | 25000 | 0.1781 | 1.0429 |
| 0.1391 | 4.54 | 25100 | 0.1784 | 1.0076 |
| 0.1391 | 4.56 | 25200 | 0.1771 | 1.0157 |
| 0.1391 | 4.58 | 25300 | 0.1758 | 1.0337 |
| 0.1391 | 4.59 | 25400 | 0.1758 | 1.0466 |
| 0.1398 | 4.61 | 25500 | 0.1724 | 1.0403 |
| 0.1398 | 4.63 | 25600 | 0.1765 | 1.0481 |
| 0.1398 | 4.65 | 25700 | 0.1757 | 1.0320 |
| 0.1398 | 4.67 | 25800 | 0.1814 | 1.0479 |
| 0.1398 | 4.69 | 25900 | 0.1713 | 1.0251 |
| 0.1427 | 4.7 | 26000 | 0.1735 | 1.0340 |
| 0.1427 | 4.72 | 26100 | 0.1765 | 1.0358 |
| 0.1427 | 4.74 | 26200 | 0.1731 | 1.0220 |
| 0.1427 | 4.76 | 26300 | 0.1769 | 1.0261 |
| 0.1427 | 4.78 | 26400 | 0.1747 | 1.0139 |
| 0.1424 | 4.79 | 26500 | 0.1791 | 1.0406 |
| 0.1424 | 4.81 | 26600 | 0.1735 | 1.0497 |
| 0.1424 | 4.83 | 26700 | 0.1710 | 1.0433 |
| 0.1424 | 4.85 | 26800 | 0.1771 | 1.0002 |
| 0.1424 | 4.87 | 26900 | 0.1748 | 1.0046 |
| 0.1419 | 4.88 | 27000 | 0.1794 | 1.0332 |
| 0.1419 | 4.9 | 27100 | 0.1772 | 1.0558 |
| 0.1419 | 4.92 | 27200 | 0.1757 | 1.0477 |
| 0.1419 | 4.94 | 27300 | 0.1735 | 1.0324 |
| 0.1419 | 4.96 | 27400 | 0.1758 | 1.0260 |
| 0.1433 | 4.97 | 27500 | 0.1767 | 1.0422 |
| 0.1433 | 4.99 | 27600 | 0.1695 | 1.0386 |
| 0.1433 | 5.01 | 27700 | 0.1763 | 1.0571 |
| 0.1433 | 5.03 | 27800 | 0.1743 | 1.0367 |
| 0.1433 | 5.05 | 27900 | 0.1804 | 1.0255 |
| 0.1306 | 5.07 | 28000 | 0.1803 | 1.0377 |
| 0.1306 | 5.08 | 28100 | 0.1750 | 1.0552 |
| 0.1306 | 5.1 | 28200 | 0.1743 | 1.0512 |
| 0.1306 | 5.12 | 28300 | 0.1777 | 1.0584 |
| 0.1306 | 5.14 | 28400 | 0.1726 | 1.0374 |
| 0.123 | 5.16 | 28500 | 0.1776 | 1.0439 |
| 0.123 | 5.17 | 28600 | 0.1759 | 1.0682 |
| 0.123 | 5.19 | 28700 | 0.1724 | 1.0511 |
| 0.123 | 5.21 | 28800 | 0.1677 | 1.0560 |
| 0.123 | 5.23 | 28900 | 0.1699 | 1.0421 |
| 0.1217 | 5.25 | 29000 | 0.1803 | 1.0370 |
| 0.1217 | 5.26 | 29100 | 0.1770 | 1.0474 |
| 0.1217 | 5.28 | 29200 | 0.1733 | 1.0332 |
| 0.1217 | 5.3 | 29300 | 0.1746 | 1.0158 |
| 0.1217 | 5.32 | 29400 | 0.1763 | 1.0341 |
| 0.1246 | 5.34 | 29500 | 0.1775 | 1.0348 |
| 0.1246 | 5.35 | 29600 | 0.1730 | 1.0492 |
| 0.1246 | 5.37 | 29700 | 0.1730 | 1.0503 |
| 0.1246 | 5.39 | 29800 | 0.1727 | 1.0437 |
| 0.1246 | 5.41 | 29900 | 0.1744 | 1.0539 |
| 0.127 | 5.43 | 30000 | 0.1748 | 1.0463 |
| 0.127 | 5.44 | 30100 | 0.1746 | 1.0555 |
| 0.127 | 5.46 | 30200 | 0.1810 | 1.0558 |
| 0.127 | 5.48 | 30300 | 0.1773 | 1.0407 |
| 0.127 | 5.5 | 30400 | 0.1722 | 1.0489 |
| 0.1276 | 5.52 | 30500 | 0.1720 | 1.0520 |
| 0.1276 | 5.54 | 30600 | 0.1777 | 1.0347 |
| 0.1276 | 5.55 | 30700 | 0.1685 | 1.0347 |
| 0.1276 | 5.57 | 30800 | 0.1659 | 1.0338 |
| 0.1276 | 5.59 | 30900 | 0.1756 | 1.0228 |
| 0.1246 | 5.61 | 31000 | 0.1717 | 1.0409 |
| 0.1246 | 5.63 | 31100 | 0.1764 | 1.0202 |
| 0.1246 | 5.64 | 31200 | 0.1693 | 1.0314 |
| 0.1246 | 5.66 | 31300 | 0.1731 | 1.0319 |
| 0.1246 | 5.68 | 31400 | 0.1688 | 1.0380 |
| 0.1271 | 5.7 | 31500 | 0.1671 | 1.0350 |
| 0.1271 | 5.72 | 31600 | 0.1676 | 1.0430 |
| 0.1271 | 5.73 | 31700 | 0.1656 | 1.0441 |
| 0.1271 | 5.75 | 31800 | 0.1664 | 1.0403 |
| 0.1271 | 5.77 | 31900 | 0.1691 | 1.0152 |
| 0.1259 | 5.79 | 32000 | 0.1702 | 1.0018 |
| 0.1259 | 5.81 | 32100 | 0.1664 | 1.0246 |
| 0.1259 | 5.82 | 32200 | 0.1737 | 1.0340 |
| 0.1259 | 5.84 | 32300 | 0.1742 | 1.0449 |
| 0.1259 | 5.86 | 32400 | 0.1707 | 1.0279 |
| 0.1273 | 5.88 | 32500 | 0.1697 | 1.0471 |
| 0.1273 | 5.9 | 32600 | 0.1668 | 1.0322 |
| 0.1273 | 5.92 | 32700 | 0.1706 | 1.0378 |
| 0.1273 | 5.93 | 32800 | 0.1704 | 1.0350 |
| 0.1273 | 5.95 | 32900 | 0.1725 | 1.0244 |
| 0.123 | 5.97 | 33000 | 0.1678 | 1.0447 |
| 0.123 | 5.99 | 33100 | 0.1681 | 1.0438 |
| 0.123 | 6.01 | 33200 | 0.1689 | 1.0297 |
| 0.123 | 6.02 | 33300 | 0.1690 | 1.0333 |
| 0.123 | 6.04 | 33400 | 0.1734 | 1.0296 |
| 0.1163 | 6.06 | 33500 | 0.1748 | 1.0307 |
| 0.1163 | 6.08 | 33600 | 0.1715 | 1.0123 |
| 0.1163 | 6.1 | 33700 | 0.1668 | 1.0117 |
| 0.1163 | 6.11 | 33800 | 0.1690 | 1.0230 |
| 0.1163 | 6.13 | 33900 | 0.1693 | 1.0166 |
| 0.1101 | 6.15 | 34000 | 0.1728 | 1.0162 |
| 0.1101 | 6.17 | 34100 | 0.1683 | 1.0107 |
| 0.1101 | 6.19 | 34200 | 0.1703 | 0.9814 |
| 0.1101 | 6.2 | 34300 | 0.1692 | 1.0007 |
| 0.1101 | 6.22 | 34400 | 0.1690 | 1.0000 |
| 0.1118 | 6.24 | 34500 | 0.1734 | 0.9972 |
| 0.1118 | 6.26 | 34600 | 0.1739 | 1.0096 |
| 0.1118 | 6.28 | 34700 | 0.1749 | 1.0047 |
| 0.1118 | 6.3 | 34800 | 0.1709 | 1.0111 |
| 0.1118 | 6.31 | 34900 | 0.1717 | 1.0179 |
| 0.1153 | 6.33 | 35000 | 0.1690 | 1.0155 |
| 0.1153 | 6.35 | 35100 | 0.1710 | 1.0144 |
| 0.1153 | 6.37 | 35200 | 0.1719 | 1.0030 |
| 0.1153 | 6.39 | 35300 | 0.1690 | 1.0272 |
| 0.1153 | 6.4 | 35400 | 0.1673 | 1.0103 |
| 0.1106 | 6.42 | 35500 | 0.1710 | 1.0222 |
| 0.1106 | 6.44 | 35600 | 0.1747 | 1.0173 |
| 0.1106 | 6.46 | 35700 | 0.1721 | 0.9933 |
| 0.1106 | 6.48 | 35800 | 0.1670 | 1.0184 |
| 0.1106 | 6.49 | 35900 | 0.1714 | 1.0122 |
| 0.1116 | 6.51 | 36000 | 0.1717 | 1.0035 |
| 0.1116 | 6.53 | 36100 | 0.1685 | 1.0099 |
| 0.1116 | 6.55 | 36200 | 0.1687 | 1.0288 |
| 0.1116 | 6.57 | 36300 | 0.1664 | 1.0314 |
| 0.1116 | 6.58 | 36400 | 0.1665 | 1.0264 |
| 0.1128 | 6.6 | 36500 | 0.1681 | 1.0420 |
| 0.1128 | 6.62 | 36600 | 0.1682 | 1.0409 |
| 0.1128 | 6.64 | 36700 | 0.1717 | 1.0271 |
| 0.1128 | 6.66 | 36800 | 0.1717 | 1.0166 |
| 0.1128 | 6.68 | 36900 | 0.1755 | 1.0175 |
| 0.1134 | 6.69 | 37000 | 0.1623 | 1.0185 |
| 0.1134 | 6.71 | 37100 | 0.1674 | 1.0302 |
| 0.1134 | 6.73 | 37200 | 0.1633 | 1.0325 |
| 0.1134 | 6.75 | 37300 | 0.1628 | 1.0228 |
| 0.1134 | 6.77 | 37400 | 0.1636 | 1.0243 |
| 0.1102 | 6.78 | 37500 | 0.1667 | 1.0282 |
| 0.1102 | 6.8 | 37600 | 0.1623 | 1.0212 |
| 0.1102 | 6.82 | 37700 | 0.1639 | 1.0140 |
| 0.1102 | 6.84 | 37800 | 0.1587 | 1.0258 |
| 0.1102 | 6.86 | 37900 | 0.1610 | 1.0087 |
| 0.1113 | 6.87 | 38000 | 0.1647 | 1.0199 |
| 0.1113 | 6.89 | 38100 | 0.1609 | 1.0054 |
| 0.1113 | 6.91 | 38200 | 0.1602 | 1.0145 |
| 0.1113 | 6.93 | 38300 | 0.1602 | 1.0144 |
| 0.1113 | 6.95 | 38400 | 0.1602 | 1.0375 |
| 0.1071 | 6.96 | 38500 | 0.1592 | 1.0259 |
| 0.1071 | 6.98 | 38600 | 0.1612 | 1.0236 |
| 0.1071 | 7.0 | 38700 | 0.1621 | 1.0277 |
| 0.1071 | 7.02 | 38800 | 0.1669 | 1.0367 |
| 0.1071 | 7.04 | 38900 | 0.1742 | 1.0484 |
| 0.1062 | 7.05 | 39000 | 0.1752 | 1.0302 |
| 0.1062 | 7.07 | 39100 | 0.1676 | 1.0244 |
| 0.1062 | 7.09 | 39200 | 0.1723 | 1.0300 |
| 0.1062 | 7.11 | 39300 | 0.1727 | 1.0294 |
| 0.1062 | 7.13 | 39400 | 0.1711 | 1.0255 |
| 0.1021 | 7.15 | 39500 | 0.1699 | 1.0471 |
| 0.1021 | 7.16 | 39600 | 0.1682 | 1.0426 |
| 0.1021 | 7.18 | 39700 | 0.1713 | 1.0233 |
| 0.1021 | 7.2 | 39800 | 0.1682 | 1.0259 |
| 0.1021 | 7.22 | 39900 | 0.1710 | 1.0162 |
| 0.103 | 7.24 | 40000 | 0.1725 | 1.0283 |
| 0.103 | 7.25 | 40100 | 0.1729 | 1.0264 |
| 0.103 | 7.27 | 40200 | 0.1665 | 1.0451 |
| 0.103 | 7.29 | 40300 | 0.1671 | 1.0386 |
| 0.103 | 7.31 | 40400 | 0.1671 | 1.0316 |
| 0.0981 | 7.33 | 40500 | 0.1708 | 1.0257 |
| 0.0981 | 7.34 | 40600 | 0.1642 | 1.0152 |
| 0.0981 | 7.36 | 40700 | 0.1707 | 1.0110 |
| 0.0981 | 7.38 | 40800 | 0.1675 | 1.0186 |
| 0.0981 | 7.4 | 40900 | 0.1702 | 1.0123 |
| 0.1005 | 7.42 | 41000 | 0.1699 | 1.0159 |
| 0.1005 | 7.43 | 41100 | 0.1703 | 1.0219 |
| 0.1005 | 7.45 | 41200 | 0.1707 | 1.0194 |
| 0.1005 | 7.47 | 41300 | 0.1644 | 1.0016 |
| 0.1005 | 7.49 | 41400 | 0.1716 | 0.9941 |
| 0.1021 | 7.51 | 41500 | 0.1670 | 1.0159 |
| 0.1021 | 7.53 | 41600 | 0.1667 | 1.0033 |
| 0.1021 | 7.54 | 41700 | 0.1667 | 1.0176 |
| 0.1021 | 7.56 | 41800 | 0.1679 | 1.0194 |
| 0.1021 | 7.58 | 41900 | 0.1632 | 1.0418 |
| 0.0963 | 7.6 | 42000 | 0.1712 | 1.0152 |
| 0.0963 | 7.62 | 42100 | 0.1632 | 1.0364 |
| 0.0963 | 7.63 | 42200 | 0.1702 | 1.0229 |
| 0.0963 | 7.65 | 42300 | 0.1655 | 1.0179 |
| 0.0963 | 7.67 | 42400 | 0.1698 | 1.0329 |
| 0.1014 | 7.69 | 42500 | 0.1691 | 1.0398 |
| 0.1014 | 7.71 | 42600 | 0.1638 | 1.0487 |
| 0.1014 | 7.72 | 42700 | 0.1617 | 1.0210 |
| 0.1014 | 7.74 | 42800 | 0.1648 | 1.0124 |
| 0.1014 | 7.76 | 42900 | 0.1608 | 1.0202 |
| 0.1008 | 7.78 | 43000 | 0.1611 | 1.0353 |
| 0.1008 | 7.8 | 43100 | 0.1633 | 1.0319 |
| 0.1008 | 7.81 | 43200 | 0.1640 | 1.0032 |
| 0.1008 | 7.83 | 43300 | 0.1589 | 0.9985 |
| 0.1008 | 7.85 | 43400 | 0.1630 | 0.9975 |
| 0.0988 | 7.87 | 43500 | 0.1604 | 1.0053 |
| 0.0988 | 7.89 | 43600 | 0.1687 | 1.0063 |
| 0.0988 | 7.91 | 43700 | 0.1619 | 1.0096 |
| 0.0988 | 7.92 | 43800 | 0.1565 | 0.9901 |
| 0.0988 | 7.94 | 43900 | 0.1619 | 0.9742 |
| 0.102 | 7.96 | 44000 | 0.1598 | 0.9593 |
| 0.102 | 7.98 | 44100 | 0.1635 | 0.9718 |
| 0.102 | 8.0 | 44200 | 0.1624 | 0.9903 |
| 0.102 | 8.01 | 44300 | 0.1605 | 0.9882 |
| 0.102 | 8.03 | 44400 | 0.1657 | 1.0128 |
| 0.0961 | 8.05 | 44500 | 0.1651 | 1.0155 |
| 0.0961 | 8.07 | 44600 | 0.1680 | 1.0194 |
| 0.0961 | 8.09 | 44700 | 0.1694 | 1.0112 |
| 0.0961 | 8.1 | 44800 | 0.1665 | 1.0073 |
| 0.0961 | 8.12 | 44900 | 0.1612 | 1.0200 |
| 0.0894 | 8.14 | 45000 | 0.1652 | 1.0337 |
| 0.0894 | 8.16 | 45100 | 0.1626 | 1.0086 |
| 0.0894 | 8.18 | 45200 | 0.1639 | 1.0083 |
| 0.0894 | 8.19 | 45300 | 0.1634 | 1.0223 |
| 0.0894 | 8.21 | 45400 | 0.1631 | 1.0339 |
| 0.0887 | 8.23 | 45500 | 0.1640 | 1.0311 |
| 0.0887 | 8.25 | 45600 | 0.1661 | 1.0264 |
| 0.0887 | 8.27 | 45700 | 0.1650 | 1.0315 |
| 0.0887 | 8.29 | 45800 | 0.1624 | 1.0390 |
| 0.0887 | 8.3 | 45900 | 0.1624 | 1.0350 |
| 0.0884 | 8.32 | 46000 | 0.1615 | 1.0318 |
| 0.0884 | 8.34 | 46100 | 0.1628 | 1.0410 |
| 0.0884 | 8.36 | 46200 | 0.1627 | 1.0429 |
| 0.0884 | 8.38 | 46300 | 0.1644 | 1.0320 |
| 0.0884 | 8.39 | 46400 | 0.1633 | 1.0177 |
| 0.0893 | 8.41 | 46500 | 0.1654 | 1.0189 |
| 0.0893 | 8.43 | 46600 | 0.1598 | 1.0154 |
| 0.0893 | 8.45 | 46700 | 0.1618 | 1.0250 |
| 0.0893 | 8.47 | 46800 | 0.1639 | 1.0402 |
| 0.0893 | 8.48 | 46900 | 0.1616 | 1.0336 |
| 0.0869 | 8.5 | 47000 | 0.1613 | 1.0296 |
| 0.0869 | 8.52 | 47100 | 0.1648 | 1.0568 |
| 0.0869 | 8.54 | 47200 | 0.1625 | 1.0256 |
| 0.0869 | 8.56 | 47300 | 0.1609 | 1.0390 |
| 0.0869 | 8.57 | 47400 | 0.1606 | 1.0450 |
| 0.0894 | 8.59 | 47500 | 0.1605 | 1.0445 |
| 0.0894 | 8.61 | 47600 | 0.1660 | 1.0402 |
| 0.0894 | 8.63 | 47700 | 0.1618 | 1.0444 |
| 0.0894 | 8.65 | 47800 | 0.1669 | 1.0333 |
| 0.0894 | 8.66 | 47900 | 0.1627 | 1.0364 |
| 0.0885 | 8.68 | 48000 | 0.1616 | 1.0334 |
| 0.0885 | 8.7 | 48100 | 0.1626 | 1.0564 |
| 0.0885 | 8.72 | 48200 | 0.1624 | 1.0396 |
| 0.0885 | 8.74 | 48300 | 0.1623 | 1.0396 |
| 0.0885 | 8.76 | 48400 | 0.1612 | 1.0112 |
| 0.0888 | 8.77 | 48500 | 0.1638 | 1.0292 |
| 0.0888 | 8.79 | 48600 | 0.1639 | 0.9988 |
| 0.0888 | 8.81 | 48700 | 0.1618 | 1.0127 |
| 0.0888 | 8.83 | 48800 | 0.1584 | 1.0042 |
| 0.0888 | 8.85 | 48900 | 0.1615 | 1.0041 |
| 0.0887 | 8.86 | 49000 | 0.1637 | 1.0269 |
| 0.0887 | 8.88 | 49100 | 0.1627 | 0.9989 |
| 0.0887 | 8.9 | 49200 | 0.1583 | 1.0104 |
| 0.0887 | 8.92 | 49300 | 0.1600 | 1.0214 |
| 0.0887 | 8.94 | 49400 | 0.1599 | 1.0126 |
| 0.0893 | 8.95 | 49500 | 0.1595 | 1.0516 |
| 0.0893 | 8.97 | 49600 | 0.1625 | 1.0464 |
| 0.0893 | 8.99 | 49700 | 0.1595 | 1.0361 |
| 0.0893 | 9.01 | 49800 | 0.1614 | 1.0469 |
| 0.0893 | 9.03 | 49900 | 0.1612 | 1.0304 |
| 0.0834 | 9.04 | 50000 | 0.1643 | 1.0335 |
| 0.0834 | 9.06 | 50100 | 0.1640 | 1.0175 |
| 0.0834 | 9.08 | 50200 | 0.1655 | 1.0264 |
| 0.0834 | 9.1 | 50300 | 0.1678 | 1.0243 |
| 0.0834 | 9.12 | 50400 | 0.1659 | 1.0145 |
| 0.079 | 9.14 | 50500 | 0.1644 | 1.0316 |
| 0.079 | 9.15 | 50600 | 0.1630 | 1.0326 |
| 0.079 | 9.17 | 50700 | 0.1634 | 1.0154 |
| 0.079 | 9.19 | 50800 | 0.1697 | 1.0095 |
| 0.079 | 9.21 | 50900 | 0.1678 | 1.0050 |
| 0.078 | 9.23 | 51000 | 0.1626 | 1.0159 |
| 0.078 | 9.24 | 51100 | 0.1666 | 1.0238 |
| 0.078 | 9.26 | 51200 | 0.1644 | 1.0244 |
| 0.078 | 9.28 | 51300 | 0.1655 | 1.0345 |
| 0.078 | 9.3 | 51400 | 0.1615 | 1.0237 |
| 0.0776 | 9.32 | 51500 | 0.1664 | 1.0180 |
| 0.0776 | 9.33 | 51600 | 0.1603 | 1.0208 |
| 0.0776 | 9.35 | 51700 | 0.1594 | 1.0230 |
| 0.0776 | 9.37 | 51800 | 0.1622 | 1.0201 |
| 0.0776 | 9.39 | 51900 | 0.1596 | 1.0039 |
| 0.0782 | 9.41 | 52000 | 0.1645 | 1.0204 |
| 0.0782 | 9.42 | 52100 | 0.1640 | 1.0318 |
| 0.0782 | 9.44 | 52200 | 0.1621 | 1.0290 |
| 0.0782 | 9.46 | 52300 | 0.1638 | 1.0318 |
| 0.0782 | 9.48 | 52400 | 0.1613 | 1.0217 |
| 0.0782 | 9.5 | 52500 | 0.1609 | 1.0261 |
| 0.0782 | 9.52 | 52600 | 0.1625 | 1.0101 |
| 0.0782 | 9.53 | 52700 | 0.1613 | 1.0058 |
| 0.0782 | 9.55 | 52800 | 0.1599 | 1.0068 |
| 0.0782 | 9.57 | 52900 | 0.1600 | 1.0110 |
| 0.0797 | 9.59 | 53000 | 0.1594 | 1.0171 |
| 0.0797 | 9.61 | 53100 | 0.1583 | 1.0124 |
| 0.0797 | 9.62 | 53200 | 0.1646 | 1.0093 |
| 0.0797 | 9.64 | 53300 | 0.1580 | 1.0201 |
| 0.0797 | 9.66 | 53400 | 0.1599 | 1.0207 |
| 0.0783 | 9.68 | 53500 | 0.1577 | 1.0226 |
| 0.0783 | 9.7 | 53600 | 0.1593 | 1.0160 |
| 0.0783 | 9.71 | 53700 | 0.1570 | 1.0173 |
| 0.0783 | 9.73 | 53800 | 0.1614 | 1.0299 |
| 0.0783 | 9.75 | 53900 | 0.1610 | 1.0184 |
| 0.0779 | 9.77 | 54000 | 0.1606 | 1.0173 |
| 0.0779 | 9.79 | 54100 | 0.1577 | 1.0032 |
| 0.0779 | 9.8 | 54200 | 0.1590 | 1.0070 |
| 0.0779 | 9.82 | 54300 | 0.1580 | 1.0257 |
| 0.0779 | 9.84 | 54400 | 0.1592 | 1.0108 |
| 0.0778 | 9.86 | 54500 | 0.1617 | 0.9907 |
| 0.0778 | 9.88 | 54600 | 0.1605 | 1.0189 |
| 0.0778 | 9.89 | 54700 | 0.1605 | 1.0177 |
| 0.0778 | 9.91 | 54800 | 0.1536 | 1.0275 |
| 0.0778 | 9.93 | 54900 | 0.1658 | 1.0282 |
| 0.0777 | 9.95 | 55000 | 0.1543 | 1.0385 |
| 0.0777 | 9.97 | 55100 | 0.1559 | 1.0375 |
| 0.0777 | 9.99 | 55200 | 0.1590 | 1.0215 |
| 0.0777 | 10.0 | 55300 | 0.1624 | 1.0242 |
| 0.0777 | 10.02 | 55400 | 0.1635 | 1.0244 |
| 0.0712 | 10.04 | 55500 | 0.1629 | 1.0298 |
| 0.0712 | 10.06 | 55600 | 0.1601 | 1.0299 |
| 0.0712 | 10.08 | 55700 | 0.1625 | 1.0117 |
| 0.0712 | 10.09 | 55800 | 0.1650 | 1.0233 |
| 0.0712 | 10.11 | 55900 | 0.1631 | 1.0061 |
| 0.0667 | 10.13 | 56000 | 0.1637 | 1.0226 |
| 0.0667 | 10.15 | 56100 | 0.1607 | 1.0042 |
| 0.0667 | 10.17 | 56200 | 0.1599 | 1.0117 |
| 0.0667 | 10.18 | 56300 | 0.1623 | 1.0246 |
| 0.0667 | 10.2 | 56400 | 0.1639 | 1.0294 |
| 0.0695 | 10.22 | 56500 | 0.1650 | 1.0232 |
| 0.0695 | 10.24 | 56600 | 0.1620 | 1.0289 |
| 0.0695 | 10.26 | 56700 | 0.1667 | 1.0209 |
| 0.0695 | 10.27 | 56800 | 0.1580 | 1.0163 |
| 0.0695 | 10.29 | 56900 | 0.1646 | 1.0293 |
| 0.0686 | 10.31 | 57000 | 0.1636 | 1.0106 |
| 0.0686 | 10.33 | 57100 | 0.1586 | 1.0044 |
| 0.0686 | 10.35 | 57200 | 0.1582 | 1.0213 |
| 0.0686 | 10.37 | 57300 | 0.1627 | 1.0151 |
| 0.0686 | 10.38 | 57400 | 0.1619 | 1.0248 |
| 0.0686 | 10.4 | 57500 | 0.1596 | 1.0098 |
| 0.0686 | 10.42 | 57600 | 0.1606 | 1.0031 |
| 0.0686 | 10.44 | 57700 | 0.1620 | 1.0046 |
| 0.0686 | 10.46 | 57800 | 0.1592 | 1.0018 |
| 0.0686 | 10.47 | 57900 | 0.1592 | 1.0058 |
| 0.0669 | 10.49 | 58000 | 0.1605 | 0.9961 |
| 0.0669 | 10.51 | 58100 | 0.1632 | 1.0102 |
| 0.0669 | 10.53 | 58200 | 0.1593 | 1.0061 |
| 0.0669 | 10.55 | 58300 | 0.1586 | 1.0091 |
| 0.0669 | 10.56 | 58400 | 0.1603 | 1.0085 |
| 0.068 | 10.58 | 58500 | 0.1579 | 1.0031 |
| 0.068 | 10.6 | 58600 | 0.1591 | 1.0021 |
| 0.068 | 10.62 | 58700 | 0.1590 | 1.0163 |
| 0.068 | 10.64 | 58800 | 0.1584 | 1.0045 |
| 0.068 | 10.65 | 58900 | 0.1594 | 1.0158 |
| 0.0693 | 10.67 | 59000 | 0.1568 | 1.0052 |
| 0.0693 | 10.69 | 59100 | 0.1581 | 0.9955 |
| 0.0693 | 10.71 | 59200 | 0.1622 | 0.9917 |
| 0.0693 | 10.73 | 59300 | 0.1580 | 1.0018 |
| 0.0693 | 10.75 | 59400 | 0.1601 | 1.0077 |
| 0.0699 | 10.76 | 59500 | 0.1605 | 0.9997 |
| 0.0699 | 10.78 | 59600 | 0.1585 | 1.0009 |
| 0.0699 | 10.8 | 59700 | 0.1541 | 1.0058 |
| 0.0699 | 10.82 | 59800 | 0.1583 | 1.0026 |
| 0.0699 | 10.84 | 59900 | 0.1592 | 0.9992 |
| 0.0671 | 10.85 | 60000 | 0.1590 | 1.0004 |
| 0.0671 | 10.87 | 60100 | 0.1585 | 1.0060 |
| 0.0671 | 10.89 | 60200 | 0.1579 | 1.0063 |
| 0.0671 | 10.91 | 60300 | 0.1582 | 0.9949 |
| 0.0671 | 10.93 | 60400 | 0.1562 | 1.0004 |
| 0.0661 | 10.94 | 60500 | 0.1560 | 0.9950 |
| 0.0661 | 10.96 | 60600 | 0.1564 | 0.9990 |
| 0.0661 | 10.98 | 60700 | 0.1552 | 0.9982 |
| 0.0661 | 11.0 | 60800 | 0.1596 | 1.0018 |
| 0.0661 | 11.02 | 60900 | 0.1618 | 0.9905 |
| 0.0634 | 11.03 | 61000 | 0.1652 | 0.9890 |
| 0.0634 | 11.05 | 61100 | 0.1649 | 0.9886 |
| 0.0634 | 11.07 | 61200 | 0.1668 | 0.9870 |
| 0.0634 | 11.09 | 61300 | 0.1663 | 0.9921 |
| 0.0634 | 11.11 | 61400 | 0.1650 | 0.9919 |
| 0.0587 | 11.13 | 61500 | 0.1674 | 0.9831 |
| 0.0587 | 11.14 | 61600 | 0.1633 | 0.9793 |
| 0.0587 | 11.16 | 61700 | 0.1665 | 0.9781 |
| 0.0587 | 11.18 | 61800 | 0.1642 | 0.9821 |
| 0.0587 | 11.2 | 61900 | 0.1638 | 0.9797 |
| 0.0581 | 11.22 | 62000 | 0.1628 | 0.9727 |
| 0.0581 | 11.23 | 62100 | 0.1661 | 0.9796 |
| 0.0581 | 11.25 | 62200 | 0.1641 | 0.9830 |
| 0.0581 | 11.27 | 62300 | 0.1601 | 0.9867 |
| 0.0581 | 11.29 | 62400 | 0.1626 | 0.9757 |
| 0.0584 | 11.31 | 62500 | 0.1632 | 1.0014 |
| 0.0584 | 11.32 | 62600 | 0.1626 | 1.0052 |
| 0.0584 | 11.34 | 62700 | 0.1586 | 1.0098 |
| 0.0584 | 11.36 | 62800 | 0.1597 | 1.0151 |
| 0.0584 | 11.38 | 62900 | 0.1624 | 1.0054 |
| 0.0589 | 11.4 | 63000 | 0.1618 | 1.0018 |
| 0.0589 | 11.41 | 63100 | 0.1635 | 1.0032 |
| 0.0589 | 11.43 | 63200 | 0.1654 | 1.0142 |
| 0.0589 | 11.45 | 63300 | 0.1646 | 1.0031 |
| 0.0589 | 11.47 | 63400 | 0.1618 | 1.0118 |
| 0.0579 | 11.49 | 63500 | 0.1634 | 1.0218 |
| 0.0579 | 11.51 | 63600 | 0.1616 | 1.0179 |
| 0.0579 | 11.52 | 63700 | 0.1603 | 1.0036 |
| 0.0579 | 11.54 | 63800 | 0.1610 | 1.0150 |
| 0.0579 | 11.56 | 63900 | 0.1605 | 1.0285 |
| 0.0572 | 11.58 | 64000 | 0.1621 | 1.0261 |
| 0.0572 | 11.6 | 64100 | 0.1625 | 1.0252 |
| 0.0572 | 11.61 | 64200 | 0.1677 | 1.0257 |
| 0.0572 | 11.63 | 64300 | 0.1656 | 1.0243 |
| 0.0572 | 11.65 | 64400 | 0.1669 | 1.0270 |
| 0.0592 | 11.67 | 64500 | 0.1605 | 1.0305 |
| 0.0592 | 11.69 | 64600 | 0.1633 | 1.0277 |
| 0.0592 | 11.7 | 64700 | 0.1606 | 1.0176 |
| 0.0592 | 11.72 | 64800 | 0.1618 | 1.0249 |
| 0.0592 | 11.74 | 64900 | 0.1609 | 1.0113 |
| 0.0595 | 11.76 | 65000 | 0.1609 | 1.0254 |
| 0.0595 | 11.78 | 65100 | 0.1662 | 1.0275 |
| 0.0595 | 11.79 | 65200 | 0.1652 | 1.0164 |
| 0.0595 | 11.81 | 65300 | 0.1638 | 1.0266 |
| 0.0595 | 11.83 | 65400 | 0.1589 | 1.0274 |
| 0.0588 | 11.85 | 65500 | 0.1607 | 1.0136 |
| 0.0588 | 11.87 | 65600 | 0.1592 | 1.0136 |
| 0.0588 | 11.88 | 65700 | 0.1581 | 1.0183 |
| 0.0588 | 11.9 | 65800 | 0.1587 | 1.0133 |
| 0.0588 | 11.92 | 65900 | 0.1596 | 1.0170 |
| 0.0558 | 11.94 | 66000 | 0.1590 | 1.0161 |
| 0.0558 | 11.96 | 66100 | 0.1597 | 1.0193 |
| 0.0558 | 11.98 | 66200 | 0.1590 | 1.0193 |
| 0.0558 | 11.99 | 66300 | 0.1608 | 1.0242 |
| 0.0558 | 12.01 | 66400 | 0.1642 | 1.0231 |
| 0.0555 | 12.03 | 66500 | 0.1679 | 1.0168 |
| 0.0555 | 12.05 | 66600 | 0.1674 | 1.0083 |
| 0.0555 | 12.07 | 66700 | 0.1658 | 1.0069 |
| 0.0555 | 12.08 | 66800 | 0.1661 | 1.0134 |
| 0.0555 | 12.1 | 66900 | 0.1682 | 1.0274 |
| 0.0508 | 12.12 | 67000 | 0.1702 | 1.0219 |
| 0.0508 | 12.14 | 67100 | 0.1694 | 1.0219 |
| 0.0508 | 12.16 | 67200 | 0.1667 | 1.0236 |
| 0.0508 | 12.17 | 67300 | 0.1672 | 1.0253 |
| 0.0508 | 12.19 | 67400 | 0.1640 | 1.0215 |
| 0.0513 | 12.21 | 67500 | 0.1649 | 1.0242 |
| 0.0513 | 12.23 | 67600 | 0.1687 | 1.0262 |
| 0.0513 | 12.25 | 67700 | 0.1655 | 1.0231 |
| 0.0513 | 12.26 | 67800 | 0.1692 | 1.0176 |
| 0.0513 | 12.28 | 67900 | 0.1675 | 1.0202 |
| 0.0519 | 12.3 | 68000 | 0.1644 | 1.0241 |
| 0.0519 | 12.32 | 68100 | 0.1651 | 1.0297 |
| 0.0519 | 12.34 | 68200 | 0.1661 | 1.0287 |
| 0.0519 | 12.36 | 68300 | 0.1665 | 1.0257 |
| 0.0519 | 12.37 | 68400 | 0.1685 | 1.0233 |
| 0.0522 | 12.39 | 68500 | 0.1636 | 1.0177 |
| 0.0522 | 12.41 | 68600 | 0.1709 | 1.0200 |
| 0.0522 | 12.43 | 68700 | 0.1684 | 1.0164 |
| 0.0522 | 12.45 | 68800 | 0.1666 | 1.0119 |
| 0.0522 | 12.46 | 68900 | 0.1683 | 1.0136 |
| 0.05 | 12.48 | 69000 | 0.1696 | 1.0127 |
| 0.05 | 12.5 | 69100 | 0.1708 | 1.0184 |
| 0.05 | 12.52 | 69200 | 0.1654 | 1.0282 |
| 0.05 | 12.54 | 69300 | 0.1700 | 1.0235 |
| 0.05 | 12.55 | 69400 | 0.1688 | 1.0257 |
| 0.0513 | 12.57 | 69500 | 0.1646 | 1.0274 |
| 0.0513 | 12.59 | 69600 | 0.1660 | 1.0247 |
| 0.0513 | 12.61 | 69700 | 0.1657 | 1.0188 |
| 0.0513 | 12.63 | 69800 | 0.1654 | 1.0087 |
| 0.0513 | 12.64 | 69900 | 0.1681 | 1.0146 |
| 0.0512 | 12.66 | 70000 | 0.1660 | 1.0185 |
| 0.0512 | 12.68 | 70100 | 0.1690 | 1.0214 |
| 0.0512 | 12.7 | 70200 | 0.1683 | 1.0160 |
| 0.0512 | 12.72 | 70300 | 0.1695 | 1.0198 |
| 0.0512 | 12.74 | 70400 | 0.1666 | 1.0193 |
| 0.0484 | 12.75 | 70500 | 0.1654 | 1.0142 |
| 0.0484 | 12.77 | 70600 | 0.1598 | 1.0154 |
| 0.0484 | 12.79 | 70700 | 0.1623 | 1.0139 |
| 0.0484 | 12.81 | 70800 | 0.1662 | 1.0180 |
| 0.0484 | 12.83 | 70900 | 0.1659 | 1.0232 |
| 0.0501 | 12.84 | 71000 | 0.1662 | 1.0202 |
| 0.0501 | 12.86 | 71100 | 0.1639 | 1.0161 |
| 0.0501 | 12.88 | 71200 | 0.1666 | 1.0151 |
| 0.0501 | 12.9 | 71300 | 0.1644 | 1.0129 |
| 0.0501 | 12.92 | 71400 | 0.1642 | 1.0171 |
| 0.0482 | 12.93 | 71500 | 0.1635 | 1.0162 |
| 0.0482 | 12.95 | 71600 | 0.1637 | 1.0186 |
| 0.0482 | 12.97 | 71700 | 0.1639 | 1.0142 |
| 0.0482 | 12.99 | 71800 | 0.1643 | 1.0122 |
| 0.0482 | 13.01 | 71900 | 0.1679 | 1.0156 |
| 0.0483 | 13.02 | 72000 | 0.1717 | 1.0224 |
| 0.0483 | 13.04 | 72100 | 0.1742 | 1.0229 |
| 0.0483 | 13.06 | 72200 | 0.1718 | 1.0237 |
| 0.0483 | 13.08 | 72300 | 0.1742 | 1.0266 |
| 0.0483 | 13.1 | 72400 | 0.1736 | 1.0257 |
| 0.0443 | 13.12 | 72500 | 0.1741 | 1.0275 |
| 0.0443 | 13.13 | 72600 | 0.1745 | 1.0325 |
| 0.0443 | 13.15 | 72700 | 0.1737 | 1.0296 |
| 0.0443 | 13.17 | 72800 | 0.1722 | 1.0303 |
| 0.0443 | 13.19 | 72900 | 0.1702 | 1.0305 |
| 0.0424 | 13.21 | 73000 | 0.1733 | 1.0241 |
| 0.0424 | 13.22 | 73100 | 0.1748 | 1.0243 |
| 0.0424 | 13.24 | 73200 | 0.1760 | 1.0231 |
| 0.0424 | 13.26 | 73300 | 0.1745 | 1.0241 |
| 0.0424 | 13.28 | 73400 | 0.1772 | 1.0217 |
| 0.0424 | 13.3 | 73500 | 0.1755 | 1.0206 |
| 0.0424 | 13.31 | 73600 | 0.1743 | 1.0242 |
| 0.0424 | 13.33 | 73700 | 0.1738 | 1.0208 |
| 0.0424 | 13.35 | 73800 | 0.1736 | 1.0249 |
| 0.0424 | 13.37 | 73900 | 0.1747 | 1.0271 |
| 0.0437 | 13.39 | 74000 | 0.1707 | 1.0241 |
| 0.0437 | 13.4 | 74100 | 0.1731 | 1.0269 |
| 0.0437 | 13.42 | 74200 | 0.1743 | 1.0290 |
| 0.0437 | 13.44 | 74300 | 0.1739 | 1.0266 |
| 0.0437 | 13.46 | 74400 | 0.1763 | 1.0246 |
| 0.0443 | 13.48 | 74500 | 0.1724 | 1.0209 |
| 0.0443 | 13.49 | 74600 | 0.1744 | 1.0244 |
| 0.0443 | 13.51 | 74700 | 0.1717 | 1.0232 |
| 0.0443 | 13.53 | 74800 | 0.1754 | 1.0217 |
| 0.0443 | 13.55 | 74900 | 0.1721 | 1.0234 |
| 0.0435 | 13.57 | 75000 | 0.1751 | 1.0197 |
| 0.0435 | 13.59 | 75100 | 0.1727 | 1.0285 |
| 0.0435 | 13.6 | 75200 | 0.1715 | 1.0221 |
| 0.0435 | 13.62 | 75300 | 0.1746 | 1.0247 |
| 0.0435 | 13.64 | 75400 | 0.1712 | 1.0231 |
| 0.0436 | 13.66 | 75500 | 0.1719 | 1.0228 |
| 0.0436 | 13.68 | 75600 | 0.1727 | 1.0197 |
| 0.0436 | 13.69 | 75700 | 0.1750 | 1.0252 |
| 0.0436 | 13.71 | 75800 | 0.1702 | 1.0241 |
| 0.0436 | 13.73 | 75900 | 0.1720 | 1.0250 |
| 0.0433 | 13.75 | 76000 | 0.1744 | 1.0210 |
| 0.0433 | 13.77 | 76100 | 0.1735 | 1.0211 |
| 0.0433 | 13.78 | 76200 | 0.1727 | 1.0205 |
| 0.0433 | 13.8 | 76300 | 0.1706 | 1.0218 |
| 0.0433 | 13.82 | 76400 | 0.1709 | 1.0238 |
| 0.0431 | 13.84 | 76500 | 0.1705 | 1.0197 |
| 0.0431 | 13.86 | 76600 | 0.1734 | 1.0223 |
| 0.0431 | 13.87 | 76700 | 0.1695 | 1.0250 |
| 0.0431 | 13.89 | 76800 | 0.1734 | 1.0232 |
| 0.0431 | 13.91 | 76900 | 0.1724 | 1.0219 |
| 0.041 | 13.93 | 77000 | 0.1706 | 1.0236 |
| 0.041 | 13.95 | 77100 | 0.1689 | 1.0220 |
| 0.041 | 13.97 | 77200 | 0.1738 | 1.0230 |
| 0.041 | 13.98 | 77300 | 0.1727 | 1.0254 |
| 0.041 | 14.0 | 77400 | 0.1721 | 1.0261 |
| 0.041 | 14.02 | 77500 | 0.1760 | 1.0261 |
| 0.041 | 14.04 | 77600 | 0.1772 | 1.0202 |
| 0.041 | 14.06 | 77700 | 0.1782 | 1.0202 |
| 0.041 | 14.07 | 77800 | 0.1777 | 1.0222 |
| 0.041 | 14.09 | 77900 | 0.1787 | 1.0203 |
| 0.0383 | 14.11 | 78000 | 0.1790 | 1.0236 |
| 0.0383 | 14.13 | 78100 | 0.1812 | 1.0245 |
| 0.0383 | 14.15 | 78200 | 0.1778 | 1.0224 |
| 0.0383 | 14.16 | 78300 | 0.1771 | 1.0231 |
| 0.0383 | 14.18 | 78400 | 0.1782 | 1.0242 |
| 0.0391 | 14.2 | 78500 | 0.1785 | 1.0262 |
| 0.0391 | 14.22 | 78600 | 0.1791 | 1.0261 |
| 0.0391 | 14.24 | 78700 | 0.1770 | 1.0254 |
| 0.0391 | 14.25 | 78800 | 0.1810 | 1.0257 |
| 0.0391 | 14.27 | 78900 | 0.1794 | 1.0241 |
| 0.0387 | 14.29 | 79000 | 0.1774 | 1.0256 |
| 0.0387 | 14.31 | 79100 | 0.1774 | 1.0236 |
| 0.0387 | 14.33 | 79200 | 0.1759 | 1.0222 |
| 0.0387 | 14.35 | 79300 | 0.1787 | 1.0237 |
| 0.0387 | 14.36 | 79400 | 0.1788 | 1.0227 |
| 0.0372 | 14.38 | 79500 | 0.1789 | 1.0232 |
| 0.0372 | 14.4 | 79600 | 0.1771 | 1.0254 |
| 0.0372 | 14.42 | 79700 | 0.1777 | 1.0244 |
| 0.0372 | 14.44 | 79800 | 0.1791 | 1.0225 |
| 0.0372 | 14.45 | 79900 | 0.1786 | 1.0237 |
| 0.0385 | 14.47 | 80000 | 0.1782 | 1.0243 |
| 0.0385 | 14.49 | 80100 | 0.1770 | 1.0236 |
| 0.0385 | 14.51 | 80200 | 0.1782 | 1.0240 |
| 0.0385 | 14.53 | 80300 | 0.1764 | 1.0243 |
| 0.0385 | 14.54 | 80400 | 0.1748 | 1.0248 |
| 0.039 | 14.56 | 80500 | 0.1758 | 1.0232 |
| 0.039 | 14.58 | 80600 | 0.1763 | 1.0246 |
| 0.039 | 14.6 | 80700 | 0.1770 | 1.0220 |
| 0.039 | 14.62 | 80800 | 0.1788 | 1.0225 |
| 0.039 | 14.63 | 80900 | 0.1781 | 1.0230 |
| 0.039 | 14.65 | 81000 | 0.1779 | 1.0230 |
| 0.039 | 14.67 | 81100 | 0.1755 | 1.0212 |
| 0.039 | 14.69 | 81200 | 0.1765 | 1.0226 |
| 0.039 | 14.71 | 81300 | 0.1787 | 1.0241 |
| 0.039 | 14.72 | 81400 | 0.1782 | 1.0250 |
| 0.0368 | 14.74 | 81500 | 0.1780 | 1.0248 |
| 0.0368 | 14.76 | 81600 | 0.1782 | 1.0242 |
| 0.0368 | 14.78 | 81700 | 0.1782 | 1.0242 |
| 0.0368 | 14.8 | 81800 | 0.1792 | 1.0241 |
| 0.0368 | 14.82 | 81900 | 0.1796 | 1.0238 |
| 0.0378 | 14.83 | 82000 | 0.1795 | 1.0236 |
| 0.0378 | 14.85 | 82100 | 0.1796 | 1.0239 |
| 0.0378 | 14.87 | 82200 | 0.1792 | 1.0236 |
| 0.0378 | 14.89 | 82300 | 0.1789 | 1.0239 |
| 0.0378 | 14.91 | 82400 | 0.1788 | 1.0238 |
| 0.0386 | 14.92 | 82500 | 0.1787 | 1.0239 |
| 0.0386 | 14.94 | 82600 | 0.1786 | 1.0236 |
| 0.0386 | 14.96 | 82700 | 0.1786 | 1.0237 |
| 0.0386 | 14.98 | 82800 | 0.1787 | 1.0239 |
| 0.0386 | 15.0 | 82900 | 0.1788 | 1.0238 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1
- Datasets 1.17.0
- Tokenizers 0.10.3
|
fgaim/t5-small-squad-v2 | fgaim | 2022-01-30T21:35:54Z | 34 | 0 | transformers | [
"transformers",
"pytorch",
"t5",
"text2text-generation",
"en",
"dataset:c4",
"dataset:squad",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2022-03-02T23:29:05Z | ---
language:
- en
datasets:
- c4
- squad
tags:
- text2text-generation
widget:
- text: "question: What is the atomic number for oxygen? context: Oxygen is a chemical element with symbol O and atomic number 8."
- text: "question: What is the chemical symbol of Oxygen? context: Oxygen is a chemical element with symbol O and atomic number 8."
license: apache-2.0
---
T5-small for QA
---
[Google's T5-small](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) pre-trained on the [C4](https://huggingface.co/datasets/c4) dataset, fine-tuned for Question-Answering on [SQuAD v2](https://huggingface.co/datasets/squad_v2) with the following hyperparameters:
```
optimizer=adamw_hf
learning_rate=3e-5
adam_beta1=0.9
adam_beta2=0.999
adam_epsilon=1e-08
num_train_epochs=2
per_device_train_batch_size=12
```
Usage
---
The input [context and question] has to be prepared in a specific way as follows:
```python
from transformers import pipeline
def prep_input(_context, _question):
return " ".join(["question:", _question.strip(), "context:", _context.strip()])
t5qa = pipeline("text2text-generation", "fgaim/t5-small-squad-v2")
context = """
Oxygen is a chemical element with symbol O and atomic number 8. It is a member of the chalcogen group on the periodic table and is a highly reactive nonmetal and oxidizing agent that readily forms compounds (notably oxides) with most elements. By mass, oxygen is the third-most abundant element in the universe, after hydrogen and helium. At standard temperature and pressure, two atoms of the element bind to form dioxygen, a colorless and odorless diatomic gas with the formula O.
"""
t5qa(prep_input(context, "How many atoms combine to form dioxygen?"))
# [{'generated_text': 'two'}]
t5qa(prep_input(context, "What element makes up almost half of the earth's crust by mass?"))
# [{'generated_text': 'oxygen'}]
t5qa(prep_input(context, "What are the most abundent elements of the universe by mass?"))
# [{'generated_text': 'hydrogen and helium'}]
```
|
z-uo/vits-male-it | z-uo | 2022-01-30T20:20:35Z | 4 | 1 | transformers | [
"transformers",
"tensorboard",
"text-to-speech",
"it",
"dataset:z-uo/female-LJSpeech-italian",
"endpoints_compatible",
"region:us"
] | text-to-speech | 2022-03-02T23:29:05Z | ---
tags:
- text-to-speech
language:
- it
model-index:
- name: vits-male-it
results: []
datasets:
- z-uo/female-LJSpeech-italian
---
# Coqui Model for TTS
```
pip install TTS
git clone https://huggingface.co/z-uo/vits-male-it
# predict one
tts --text "ciao pluto" --model_path "vits-male-it/best_model.pth.tar" --config_path "vits-male-it/config.json"
# predict server
tts-server --model_path "vits-male-it/best_model.pth.tar" --config_path "vits-male-it/config.json"
firefox localhost:5002
```
More information about training script in [this repo](https://github.com/nicolalandro/train_coqui_tts_ita). |
Kayvane/distilbert-complaints-product | Kayvane | 2022-01-30T19:15:13Z | 33 | 3 | transformers | [
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:consumer_complaints",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:04Z | ---
tags:
- generated_from_trainer
datasets:
- consumer_complaints
model-index:
- name: distilbert-complaints-product
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-complaints-product
This model was trained from the [CFBP](https://www.consumerfinance.gov/data-research/consumer-complaints/) dataset, also made available on the HuggingFace Datasets library. This model predicts the type of financial complaint based on the text provided
## Model description
A DistilBert Text Classification Model, with 18 possible classes to determine the nature of a financial customer complaint.
## Intended uses & limitations
This model is used as part of.a demonstration for E2E Machine Learning Projects focused on Contact Centre Automation:
- **Infrastructure:** Terraform
- **ML Ops:** HuggingFace (Datasets, Hub, Transformers)
- **Ml Explainability:** SHAP
- **Cloud:** AWS
- Model Hosting: Lambda
- DB Backend: DynamoDB
- Orchestration: Step-Functions
- UI Hosting: EC2
- Routing: API Gateway
- **UI:** Budibase
## Training and evaluation data
consumer_complaints dataset
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
### Framework versions
- Transformers 4.16.1
- Pytorch 1.10.0+cu111
- Datasets 1.18.2
- Tokenizers 0.11.0
|
Erfan/mT5-base_Farsi_Title_Generator | Erfan | 2022-01-30T18:00:42Z | 11 | 2 | transformers | [
"transformers",
"pytorch",
"mt5",
"text2text-generation",
"Title-Generation",
"fa",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2022-03-02T23:29:04Z | ---
language:
- fa
tags:
- Title-Generation
metrics:
- ROUGH
---
|
tomascufaro/wav2vec2-large-xls-r-300m-spanish-small | tomascufaro | 2022-01-30T17:23:59Z | 14 | 0 | transformers | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:common_voice",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
tags:
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-large-xls-r-300m-spanish-small
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-spanish-small
This model is a fine-tuned version of [jhonparra18/wav2vec2-large-xls-r-300m-spanish-custom](https://huggingface.co/jhonparra18/wav2vec2-large-xls-r-300m-spanish-custom) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3763
- Wer: 0.1791
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.2277 | 0.26 | 400 | 0.2601 | 0.2291 |
| 0.2932 | 0.53 | 800 | 0.2950 | 0.2670 |
| 0.3019 | 0.79 | 1200 | 0.3247 | 0.2766 |
| 0.2987 | 1.05 | 1600 | 0.3031 | 0.2606 |
| 0.261 | 1.32 | 2000 | 0.2994 | 0.2620 |
| 0.2651 | 1.58 | 2400 | 0.3134 | 0.2700 |
| 0.264 | 1.85 | 2800 | 0.3016 | 0.2641 |
| 0.2475 | 2.11 | 3200 | 0.3135 | 0.2661 |
| 0.2269 | 2.37 | 3600 | 0.3029 | 0.2562 |
| 0.2389 | 2.64 | 4000 | 0.3035 | 0.2549 |
| 0.2319 | 2.9 | 4400 | 0.3022 | 0.2551 |
| 0.2123 | 3.16 | 4800 | 0.3256 | 0.2638 |
| 0.2094 | 3.43 | 5200 | 0.3227 | 0.2712 |
| 0.2121 | 3.69 | 5600 | 0.3085 | 0.2596 |
| 0.207 | 3.96 | 6000 | 0.3041 | 0.2597 |
| 0.1809 | 4.22 | 6400 | 0.3122 | 0.2524 |
| 0.1846 | 4.48 | 6800 | 0.3254 | 0.2579 |
| 0.1885 | 4.75 | 7200 | 0.2958 | 0.2437 |
| 0.1923 | 5.01 | 7600 | 0.3136 | 0.2502 |
| 0.1626 | 5.27 | 8000 | 0.3059 | 0.2488 |
| 0.1704 | 5.54 | 8400 | 0.3082 | 0.2515 |
| 0.1674 | 5.8 | 8800 | 0.3196 | 0.2509 |
| 0.1691 | 6.06 | 9200 | 0.3193 | 0.25 |
| 0.1499 | 6.33 | 9600 | 0.3529 | 0.2635 |
| 0.1568 | 6.59 | 10000 | 0.3241 | 0.2481 |
| 0.1538 | 6.86 | 10400 | 0.3354 | 0.2476 |
| 0.1503 | 7.12 | 10800 | 0.3180 | 0.2402 |
| 0.136 | 7.38 | 11200 | 0.3230 | 0.2397 |
| 0.1413 | 7.65 | 11600 | 0.3178 | 0.2451 |
| 0.147 | 7.91 | 12000 | 0.3170 | 0.2389 |
| 0.1341 | 8.17 | 12400 | 0.3380 | 0.2501 |
| 0.1329 | 8.44 | 12800 | 0.3265 | 0.2414 |
| 0.1314 | 8.7 | 13200 | 0.3281 | 0.2482 |
| 0.1312 | 8.97 | 13600 | 0.3259 | 0.2539 |
| 0.12 | 9.23 | 14000 | 0.3291 | 0.2424 |
| 0.1193 | 9.49 | 14400 | 0.3302 | 0.2412 |
| 0.1189 | 9.76 | 14800 | 0.3376 | 0.2407 |
| 0.1217 | 10.02 | 15200 | 0.3334 | 0.2400 |
| 0.1118 | 10.28 | 15600 | 0.3359 | 0.2368 |
| 0.1139 | 10.55 | 16000 | 0.3239 | 0.2335 |
| 0.1106 | 10.81 | 16400 | 0.3374 | 0.2352 |
| 0.1081 | 11.07 | 16800 | 0.3585 | 0.2434 |
| 0.1063 | 11.34 | 17200 | 0.3639 | 0.2472 |
| 0.1041 | 11.6 | 17600 | 0.3399 | 0.2423 |
| 0.1062 | 11.87 | 18000 | 0.3410 | 0.2388 |
| 0.1012 | 12.13 | 18400 | 0.3597 | 0.2413 |
| 0.0953 | 12.39 | 18800 | 0.3440 | 0.2296 |
| 0.097 | 12.66 | 19200 | 0.3440 | 0.2269 |
| 0.0968 | 12.92 | 19600 | 0.3498 | 0.2333 |
| 0.0902 | 13.18 | 20000 | 0.3471 | 0.2290 |
| 0.0868 | 13.45 | 20400 | 0.3462 | 0.2266 |
| 0.0892 | 13.71 | 20800 | 0.3373 | 0.2227 |
| 0.0902 | 13.97 | 21200 | 0.3377 | 0.2240 |
| 0.0846 | 14.24 | 21600 | 0.3484 | 0.2237 |
| 0.0839 | 14.5 | 22000 | 0.3706 | 0.2260 |
| 0.0834 | 14.77 | 22400 | 0.3430 | 0.2268 |
| 0.0841 | 15.03 | 22800 | 0.3489 | 0.2259 |
| 0.076 | 15.29 | 23200 | 0.3626 | 0.2281 |
| 0.0771 | 15.56 | 23600 | 0.3624 | 0.2268 |
| 0.0773 | 15.82 | 24000 | 0.3440 | 0.2252 |
| 0.0759 | 16.08 | 24400 | 0.3532 | 0.2170 |
| 0.0745 | 16.35 | 24800 | 0.3686 | 0.2188 |
| 0.0713 | 16.61 | 25200 | 0.3691 | 0.2195 |
| 0.0718 | 16.88 | 25600 | 0.3470 | 0.2108 |
| 0.0685 | 17.14 | 26000 | 0.3756 | 0.2179 |
| 0.0689 | 17.4 | 26400 | 0.3542 | 0.2149 |
| 0.0671 | 17.67 | 26800 | 0.3461 | 0.2165 |
| 0.0737 | 17.93 | 27200 | 0.3473 | 0.2238 |
| 0.0669 | 18.19 | 27600 | 0.3441 | 0.2138 |
| 0.0629 | 18.46 | 28000 | 0.3721 | 0.2155 |
| 0.0632 | 18.72 | 28400 | 0.3667 | 0.2126 |
| 0.0647 | 18.98 | 28800 | 0.3579 | 0.2097 |
| 0.0603 | 19.25 | 29200 | 0.3670 | 0.2130 |
| 0.0604 | 19.51 | 29600 | 0.3750 | 0.2142 |
| 0.0619 | 19.78 | 30000 | 0.3804 | 0.2160 |
| 0.0603 | 20.04 | 30400 | 0.3764 | 0.2124 |
| 0.0577 | 20.3 | 30800 | 0.3858 | 0.2097 |
| 0.0583 | 20.57 | 31200 | 0.3520 | 0.2089 |
| 0.0561 | 20.83 | 31600 | 0.3615 | 0.2079 |
| 0.0545 | 21.09 | 32000 | 0.3824 | 0.2032 |
| 0.0525 | 21.36 | 32400 | 0.3858 | 0.2091 |
| 0.0524 | 21.62 | 32800 | 0.3956 | 0.2099 |
| 0.0527 | 21.89 | 33200 | 0.3667 | 0.2025 |
| 0.0514 | 22.15 | 33600 | 0.3708 | 0.2032 |
| 0.0506 | 22.41 | 34000 | 0.3815 | 0.2053 |
| 0.0478 | 22.68 | 34400 | 0.3671 | 0.2007 |
| 0.049 | 22.94 | 34800 | 0.3758 | 0.2003 |
| 0.0477 | 23.2 | 35200 | 0.3786 | 0.2014 |
| 0.045 | 23.47 | 35600 | 0.3732 | 0.1998 |
| 0.0426 | 23.73 | 36000 | 0.3737 | 0.2010 |
| 0.0444 | 23.99 | 36400 | 0.3600 | 0.1990 |
| 0.0433 | 24.26 | 36800 | 0.3689 | 0.1976 |
| 0.0442 | 24.52 | 37200 | 0.3787 | 0.1968 |
| 0.0419 | 24.79 | 37600 | 0.3652 | 0.1961 |
| 0.042 | 25.05 | 38000 | 0.3820 | 0.1964 |
| 0.0419 | 25.31 | 38400 | 0.3786 | 0.1919 |
| 0.0376 | 25.58 | 38800 | 0.3842 | 0.1934 |
| 0.0385 | 25.84 | 39200 | 0.3767 | 0.1900 |
| 0.0396 | 26.1 | 39600 | 0.3688 | 0.1888 |
| 0.0371 | 26.37 | 40000 | 0.3815 | 0.1894 |
| 0.0363 | 26.63 | 40400 | 0.3748 | 0.1878 |
| 0.0377 | 26.9 | 40800 | 0.3713 | 0.1852 |
| 0.0352 | 27.16 | 41200 | 0.3734 | 0.1851 |
| 0.0355 | 27.42 | 41600 | 0.3776 | 0.1874 |
| 0.0333 | 27.69 | 42000 | 0.3867 | 0.1841 |
| 0.0348 | 27.95 | 42400 | 0.3823 | 0.1839 |
| 0.0329 | 28.21 | 42800 | 0.3795 | 0.1822 |
| 0.0325 | 28.48 | 43200 | 0.3711 | 0.1813 |
| 0.0328 | 28.74 | 43600 | 0.3721 | 0.1781 |
| 0.0312 | 29.0 | 44000 | 0.3803 | 0.1816 |
| 0.0318 | 29.27 | 44400 | 0.3758 | 0.1794 |
| 0.0302 | 29.53 | 44800 | 0.3792 | 0.1784 |
| 0.0339 | 29.8 | 45200 | 0.3763 | 0.1791 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0
|
anuragshas/wav2vec2-xls-r-1b-hi-cv8 | anuragshas | 2022-01-30T15:20:16Z | 7 | 0 | transformers | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"mozilla-foundation/common_voice_8_0",
"generated_from_trainer",
"hi",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
language:
- hi
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: ''
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6780
- Wer: 0.3670
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1500
- num_epochs: 50.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 2.514 | 2.07 | 400 | 1.4589 | 0.8531 |
| 1.4289 | 4.15 | 800 | 0.8940 | 0.6475 |
| 1.276 | 6.22 | 1200 | 0.7743 | 0.6089 |
| 1.2213 | 8.29 | 1600 | 0.6919 | 0.4973 |
| 1.1522 | 10.36 | 2000 | 0.6635 | 0.4588 |
| 1.0914 | 12.44 | 2400 | 0.6839 | 0.4586 |
| 1.0499 | 14.51 | 2800 | 0.7151 | 0.4467 |
| 1.0238 | 16.58 | 3200 | 0.6824 | 0.4436 |
| 0.9963 | 18.65 | 3600 | 0.6872 | 0.4437 |
| 0.9728 | 20.73 | 4000 | 0.7047 | 0.4244 |
| 0.9373 | 22.8 | 4400 | 0.6569 | 0.4189 |
| 0.9028 | 24.87 | 4800 | 0.6623 | 0.4094 |
| 0.8759 | 26.94 | 5200 | 0.6723 | 0.4152 |
| 0.8824 | 29.02 | 5600 | 0.6467 | 0.4017 |
| 0.8371 | 31.09 | 6000 | 0.6911 | 0.4080 |
| 0.8205 | 33.16 | 6400 | 0.7145 | 0.4063 |
| 0.7837 | 35.23 | 6800 | 0.7037 | 0.3930 |
| 0.7708 | 37.31 | 7200 | 0.6925 | 0.3840 |
| 0.7359 | 39.38 | 7600 | 0.7034 | 0.3829 |
| 0.7153 | 41.45 | 8000 | 0.7030 | 0.3794 |
| 0.7127 | 43.52 | 8400 | 0.6823 | 0.3761 |
| 0.6884 | 45.6 | 8800 | 0.6854 | 0.3711 |
| 0.6835 | 47.67 | 9200 | 0.6723 | 0.3665 |
| 0.6703 | 49.74 | 9600 | 0.6773 | 0.3668 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
|
huggingtweets/sardoche_lol | huggingtweets | 2022-01-30T15:00:56Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: http://www.huggingtweets.com/sardoche_lol/1643554725712/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1450594532186263560/hiL4EyAm_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Sardoche</div>
<div style="text-align: center; font-size: 14px;">@sardoche_lol</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Sardoche.
| Data | Sardoche |
| --- | --- |
| Tweets downloaded | 3249 |
| Retweets | 242 |
| Short tweets | 374 |
| Tweets kept | 2633 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/24g273w4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @sardoche_lol's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3k2srh5a) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3k2srh5a/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/sardoche_lol')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
imvladikon/charbert-roberta-wiki | imvladikon | 2022-01-30T11:37:26Z | 10 | 1 | transformers | [
"transformers",
"pytorch",
"language model",
"en",
"dataset:wikipedia",
"arxiv:2011.01513",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language:
- en
tags:
- language model
datasets:
- wikipedia
---
pre-trained model from [CharBERT: Character-aware Pre-trained Language Model](https://github.com/wtma/CharBERT)
```
@misc{ma2020charbert,
title={CharBERT: Character-aware Pre-trained Language Model},
author={Wentao Ma and Yiming Cui and Chenglei Si and Ting Liu and Shijin Wang and Guoping Hu},
year={2020},
eprint={2011.01513},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
imvladikon/charbert-bert-wiki | imvladikon | 2022-01-30T11:35:48Z | 63 | 3 | transformers | [
"transformers",
"pytorch",
"language model",
"en",
"dataset:wikipedia",
"arxiv:2011.01513",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language:
- en
tags:
- language model
datasets:
- wikipedia
---
pre-trained model from [CharBERT: Character-aware Pre-trained Language Model](https://github.com/wtma/CharBERT)
```
@misc{ma2020charbert,
title={CharBERT: Character-aware Pre-trained Language Model},
author={Wentao Ma and Yiming Cui and Chenglei Si and Ting Liu and Shijin Wang and Guoping Hu},
year={2020},
eprint={2011.01513},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
pinecone/mpnet-retriever-discourse | pinecone | 2022-01-30T07:23:58Z | 4 | 2 | sentence-transformers | [
"sentence-transformers",
"pytorch",
"bert",
"feature-extraction",
"sentence-similarity",
"transformers",
"question-answering",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] | sentence-similarity | 2022-03-02T23:29:05Z | ---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
- question-answering
---
# MPNet Retriever (Discourse)
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used as a retriever model in open-domain question-answering tasks.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Training
The model was fine-tuned on question-answer pairs scraper from several ML-focused Discourse forums \[HuggingFace, PyTorch, Streamlit, TensorFlow\].
The model was trained with the parameters:
**DataLoader**:
`sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 105 with parameters:
```
{'batch_size': 12}
```
**Loss**:
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
```
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
```
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 10,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
Fine-tuned by [James Briggs](https://www.youtube.com/c/jamesbriggs) at [Pinecone](https://www.pinecone.io). Learn more about the [fine-tuning process here](https://www.pinecone.io/learn/retriever-models/). |
jcmc/wav2vec-1b-cv8-ir-n | jcmc | 2022-01-30T07:16:19Z | 8 | 0 | transformers | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"mozilla-foundation/common_voice_8_0",
"generated_from_trainer",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
language:
- ga-IE
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: ''
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - GA-IE dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9810
- Wer: 0.4761
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 100.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 2.2427 | 15.15 | 500 | 1.4632 | 0.9481 |
| 1.3128 | 30.3 | 1000 | 0.8662 | 0.6195 |
| 0.9403 | 45.45 | 1500 | 0.8163 | 0.5169 |
| 0.6868 | 60.61 | 2000 | 0.8661 | 0.4858 |
| 0.563 | 75.76 | 2500 | 0.9447 | 0.4867 |
| 0.4887 | 90.91 | 3000 | 0.9650 | 0.4823 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
|
pablouribe/xls-r-ab-test | pablouribe | 2022-01-30T05:13:34Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"common_voice",
"generated_from_trainer",
"ab",
"dataset:common_voice",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
language:
- ab
tags:
- automatic-speech-recognition
- common_voice
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: ''
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [hf-test/xls-r-dummy](https://huggingface.co/hf-test/xls-r-dummy) on the COMMON_VOICE - AB dataset.
It achieves the following results on the evaluation set:
- Loss: 133.2596
- Wer: 19.1571
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 15.0
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
|
anton-l/wav2vec2-xls-r-common_voice-tr-ft-100sh | anton-l | 2022-01-30T02:42:22Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"common_voice",
"generated_from_trainer",
"tr",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
language:
- tr
license: apache-2.0
tags:
- automatic-speech-recognition
- common_voice
- generated_from_trainer
model-index:
- name: wav2vec2-xls-r-common_voice-tr-ft
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xls-r-common_voice-tr-ft
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - TR dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5806
- Wer: 0.3998
- Cer: 0.1053
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|
| 0.5369 | 17.0 | 500 | 0.6021 | 0.6366 | 0.1727 |
| 0.3542 | 34.0 | 1000 | 0.5265 | 0.4906 | 0.1278 |
| 0.1866 | 51.0 | 1500 | 0.5805 | 0.4768 | 0.1261 |
| 0.1674 | 68.01 | 2000 | 0.5336 | 0.4518 | 0.1186 |
| 0.19 | 86.0 | 2500 | 0.5676 | 0.4427 | 0.1151 |
| 0.0815 | 103.0 | 3000 | 0.5510 | 0.4268 | 0.1125 |
| 0.0545 | 120.0 | 3500 | 0.5608 | 0.4175 | 0.1099 |
| 0.0299 | 137.01 | 4000 | 0.5875 | 0.4222 | 0.1124 |
| 0.0267 | 155.0 | 4500 | 0.5882 | 0.4026 | 0.1063 |
| 0.025 | 172.0 | 5000 | 0.5806 | 0.3998 | 0.1053 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2
- Datasets 1.18.2
- Tokenizers 0.10.3
|
huggingtweets/goando-kenmcalinn-voluntas | huggingtweets | 2022-01-30T02:24:29Z | 0 | 0 | null | [
"huggingtweets",
"en",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: http://www.huggingtweets.com/goando-kenmcalinn-voluntas/1643509465268/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1145832571214815232/KYNcOP04_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1314997569475547137/4x1-5ejx_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/858198338444836864/OFlImt8f_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Go Ando / PREDUCTS / THE GUILD & Ken McAlinn & V</div>
<div style="text-align: center; font-size: 14px;">@goando-kenmcalinn-voluntas</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Go Ando / PREDUCTS / THE GUILD & Ken McAlinn & V.
| Data | Go Ando / PREDUCTS / THE GUILD | Ken McAlinn | V |
| --- | --- | --- | --- |
| Tweets downloaded | 3247 | 3250 | 3246 |
| Retweets | 91 | 22 | 1040 |
| Short tweets | 1680 | 2144 | 698 |
| Tweets kept | 1476 | 1084 | 1508 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3kzei9u5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @goando-kenmcalinn-voluntas's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2mdna8jc) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2mdna8jc/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/goando-kenmcalinn-voluntas')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/shiikazuo | huggingtweets | 2022-01-30T01:27:28Z | 0 | 0 | null | [
"huggingtweets",
"en",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: http://www.huggingtweets.com/shiikazuo/1643506044134/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/3624876884/b16d250401cc357c5be9859f7ba3db8f_400x400.jpeg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">志位和夫</div>
<div style="text-align: center; font-size: 14px;">@shiikazuo</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from 志位和夫.
| Data | 志位和夫 |
| --- | --- |
| Tweets downloaded | 3249 |
| Retweets | 38 |
| Short tweets | 35 |
| Tweets kept | 3176 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/243t6rzm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @shiikazuo's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/eiaaoe96) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/eiaaoe96/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/shiikazuo')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
Adil617/wav2vec2-base-timit-demo-colab | Adil617 | 2022-01-29T21:05:59Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:04Z | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-base-timit-demo-colab
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-timit-demo-colab
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.9314
- Wer: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---:|
| 8.686 | 0.16 | 20 | 13.6565 | 1.0 |
| 8.0711 | 0.32 | 40 | 12.5379 | 1.0 |
| 6.9967 | 0.48 | 60 | 9.7215 | 1.0 |
| 5.2368 | 0.64 | 80 | 5.8459 | 1.0 |
| 3.4499 | 0.8 | 100 | 3.3413 | 1.0 |
| 3.1261 | 0.96 | 120 | 3.2858 | 1.0 |
| 3.0654 | 1.12 | 140 | 3.1945 | 1.0 |
| 3.0421 | 1.28 | 160 | 3.1296 | 1.0 |
| 3.0035 | 1.44 | 180 | 3.1172 | 1.0 |
| 3.0067 | 1.6 | 200 | 3.1217 | 1.0 |
| 2.9867 | 1.76 | 220 | 3.0715 | 1.0 |
| 2.9653 | 1.92 | 240 | 3.0747 | 1.0 |
| 2.9629 | 2.08 | 260 | 2.9984 | 1.0 |
| 2.9462 | 2.24 | 280 | 2.9991 | 1.0 |
| 2.9391 | 2.4 | 300 | 3.0391 | 1.0 |
| 2.934 | 2.56 | 320 | 2.9682 | 1.0 |
| 2.9193 | 2.72 | 340 | 2.9701 | 1.0 |
| 2.8985 | 2.88 | 360 | 2.9314 | 1.0 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
huggingtweets/tylerrjoseph | huggingtweets | 2022-01-29T12:35:08Z | 3 | 1 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: http://www.huggingtweets.com/tylerrjoseph/1643459612585/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1461794294336045066/SUrpcEaz_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">tyler jøseph</div>
<div style="text-align: center; font-size: 14px;">@tylerrjoseph</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from tyler jøseph.
| Data | tyler jøseph |
| --- | --- |
| Tweets downloaded | 474 |
| Retweets | 54 |
| Short tweets | 79 |
| Tweets kept | 341 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2xiz1b44/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @tylerrjoseph's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2mp0omnb) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2mp0omnb/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/tylerrjoseph')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
kika2000/wav2vec2-large-xls-r-300m-kika5_my-colab | kika2000 | 2022-01-29T12:28:48Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-large-xls-r-300m-kika5_my-colab
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-kika5_my-colab
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3860
- Wer: 0.3505
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 100
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 4.0007 | 4.82 | 400 | 0.6696 | 0.8283 |
| 0.2774 | 9.64 | 800 | 0.4231 | 0.5476 |
| 0.1182 | 14.46 | 1200 | 0.4253 | 0.5102 |
| 0.0859 | 19.28 | 1600 | 0.4600 | 0.4866 |
| 0.0693 | 24.1 | 2000 | 0.4030 | 0.4533 |
| 0.0611 | 28.92 | 2400 | 0.4189 | 0.4412 |
| 0.0541 | 33.73 | 2800 | 0.4272 | 0.4380 |
| 0.0478 | 38.55 | 3200 | 0.4537 | 0.4505 |
| 0.0428 | 43.37 | 3600 | 0.4349 | 0.4181 |
| 0.038 | 48.19 | 4000 | 0.4562 | 0.4199 |
| 0.0345 | 53.01 | 4400 | 0.4209 | 0.4310 |
| 0.0316 | 57.83 | 4800 | 0.4336 | 0.4058 |
| 0.0288 | 62.65 | 5200 | 0.4004 | 0.3920 |
| 0.025 | 67.47 | 5600 | 0.4115 | 0.3857 |
| 0.0225 | 72.29 | 6000 | 0.4296 | 0.3948 |
| 0.0182 | 77.11 | 6400 | 0.3963 | 0.3772 |
| 0.0165 | 81.93 | 6800 | 0.3921 | 0.3687 |
| 0.0152 | 86.75 | 7200 | 0.3969 | 0.3592 |
| 0.0133 | 91.57 | 7600 | 0.3803 | 0.3527 |
| 0.0118 | 96.39 | 8000 | 0.3860 | 0.3505 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3
|
huggingtweets/_ikeay | huggingtweets | 2022-01-29T08:38:34Z | 0 | 0 | null | [
"huggingtweets",
"en",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: http://www.huggingtweets.com/_ikeay/1643445509714/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1438483410503176195/v_ghm6Un_400x400.png')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">いけあや(意識が低い方)</div>
<div style="text-align: center; font-size: 14px;">@_ikeay</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from いけあや(意識が低い方).
| Data | いけあや(意識が低い方) |
| --- | --- |
| Tweets downloaded | 3249 |
| Retweets | 26 |
| Short tweets | 2264 |
| Tweets kept | 959 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2c6c03ss/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @_ikeay's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/r85zooae) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/r85zooae/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/_ikeay')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/eri_razapii | huggingtweets | 2022-01-29T08:31:32Z | 0 | 0 | null | [
"huggingtweets",
"en",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: http://www.huggingtweets.com/eri_razapii/1643445087789/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1463699400405164034/aRY9jlnO_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">えりらざぴ | SHE CEO/CCO</div>
<div style="text-align: center; font-size: 14px;">@eri_razapii</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from えりらざぴ | SHE CEO/CCO.
| Data | えりらざぴ | SHE CEO/CCO |
| --- | --- |
| Tweets downloaded | 3232 |
| Retweets | 1778 |
| Short tweets | 831 |
| Tweets kept | 623 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2eraewg4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @eri_razapii's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/30n8ile8) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/30n8ile8/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/eri_razapii')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/twentyonepilots | huggingtweets | 2022-01-29T07:40:09Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: http://www.huggingtweets.com/twentyonepilots/1643442004355/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1379847503324057601/LH84R4zr_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">twenty one pilots</div>
<div style="text-align: center; font-size: 14px;">@twentyonepilots</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from twenty one pilots.
| Data | twenty one pilots |
| --- | --- |
| Tweets downloaded | 3190 |
| Retweets | 537 |
| Short tweets | 287 |
| Tweets kept | 2366 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1cw9xn7c/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @twentyonepilots's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/trh1am21) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/trh1am21/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/twentyonepilots')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
k-partha/decision_bert_bio | k-partha | 2022-01-29T03:36:59Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"arxiv:2109.06402",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | Rates Twitter biographies on decision-making preference: Thinking or Feeling. Roughly corresponds to [agreeableness.](https://en.wikipedia.org/wiki/Agreeableness)
Go to your Twitter profile, copy your biography and paste in the inference widget, remove any URLs and press hit!
Trained on self-described personality labels. Interpret as a continuous score, not as a discrete label. Remember that models employ pure statistical reasoning (and may consequently make no sense sometimes.)
Have fun!
Note: Performance on inputs other than Twitter biographies [the training data source] is not verified.
For further details and expected performance, read the [paper](https://arxiv.org/abs/2109.06402). |
facebook/tts_transformer-vi-cv7 | facebook | 2022-01-28T23:31:48Z | 29 | 11 | fairseq | [
"fairseq",
"audio",
"text-to-speech",
"vi",
"dataset:common_voice",
"arxiv:1809.08895",
"arxiv:2109.06912",
"region:us"
] | text-to-speech | 2022-03-02T23:29:05Z | ---
library_name: fairseq
task: text-to-speech
tags:
- fairseq
- audio
- text-to-speech
language: vi
datasets:
- common_voice
widget:
- text: "Xin chào, đây là một cuộc chạy thử nghiệm."
example_title: "Hello, this is a test run."
---
# tts_transformer-vi-cv7
[Transformer](https://arxiv.org/abs/1809.08895) text-to-speech model from fairseq S^2 ([paper](https://arxiv.org/abs/2109.06912)/[code](https://github.com/pytorch/fairseq/tree/main/examples/speech_synthesis)):
- Vietnamese
- Single-speaker male voice
- Trained on [Common Voice v7](https://commonvoice.mozilla.org/en/datasets)
## Usage
```python
from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
from fairseq.models.text_to_speech.hub_interface import TTSHubInterface
import IPython.display as ipd
models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
"facebook/tts_transformer-vi-cv7",
arg_overrides={"vocoder": "hifigan", "fp16": False}
)
model = models[0]
TTSHubInterface.update_cfg_with_data_cfg(cfg, task.data_cfg)
generator = task.build_generator(model, cfg)
text = "Xin chào, đây là một cuộc chạy thử nghiệm."
sample = TTSHubInterface.get_model_input(task, text)
wav, rate = TTSHubInterface.get_prediction(task, model, generator, sample)
ipd.Audio(wav, rate=rate)
```
See also [fairseq S^2 example](https://github.com/pytorch/fairseq/blob/main/examples/speech_synthesis/docs/common_voice_example.md).
## Citation
```bibtex
@inproceedings{wang-etal-2021-fairseq,
title = "fairseq S{\^{}}2: A Scalable and Integrable Speech Synthesis Toolkit",
author = "Wang, Changhan and
Hsu, Wei-Ning and
Adi, Yossi and
Polyak, Adam and
Lee, Ann and
Chen, Peng-Jen and
Gu, Jiatao and
Pino, Juan",
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-demo.17",
doi = "10.18653/v1/2021.emnlp-demo.17",
pages = "143--152",
}
```
|
facebook/tts_transformer-ar-cv7 | facebook | 2022-01-28T23:31:25Z | 51 | 8 | fairseq | [
"fairseq",
"audio",
"text-to-speech",
"ar",
"dataset:common_voice",
"arxiv:1809.08895",
"arxiv:2109.06912",
"region:us"
] | text-to-speech | 2022-03-02T23:29:05Z | ---
library_name: fairseq
task: text-to-speech
tags:
- fairseq
- audio
- text-to-speech
language: ar
datasets:
- common_voice
widget:
- text: "مرحبًا ، هذا اختبار تشغيل."
example_title: "Hello, this is a test run."
---
# tts_transformer-ar-cv7
[Transformer](https://arxiv.org/abs/1809.08895) text-to-speech model from fairseq S^2 ([paper](https://arxiv.org/abs/2109.06912)/[code](https://github.com/pytorch/fairseq/tree/main/examples/speech_synthesis)):
- Arabic
- Single-speaker male voice
- Trained on [Common Voice v7](https://commonvoice.mozilla.org/en/datasets)
## Usage
```python
from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
from fairseq.models.text_to_speech.hub_interface import TTSHubInterface
import IPython.display as ipd
models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
"facebook/tts_transformer-ar-cv7",
arg_overrides={"vocoder": "hifigan", "fp16": False}
)
model = models[0]
TTSHubInterface.update_cfg_with_data_cfg(cfg, task.data_cfg)
generator = task.build_generator(model, cfg)
text = "مرحبًا ، هذا اختبار تشغيل."
sample = TTSHubInterface.get_model_input(task, text)
wav, rate = TTSHubInterface.get_prediction(task, model, generator, sample)
ipd.Audio(wav, rate=rate)
```
See also [fairseq S^2 example](https://github.com/pytorch/fairseq/blob/main/examples/speech_synthesis/docs/common_voice_example.md).
## Citation
```bibtex
@inproceedings{wang-etal-2021-fairseq,
title = "fairseq S{\^{}}2: A Scalable and Integrable Speech Synthesis Toolkit",
author = "Wang, Changhan and
Hsu, Wei-Ning and
Adi, Yossi and
Polyak, Adam and
Lee, Ann and
Chen, Peng-Jen and
Gu, Jiatao and
Pino, Juan",
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-demo.17",
doi = "10.18653/v1/2021.emnlp-demo.17",
pages = "143--152",
}
```
|
facebook/tts_transformer-tr-cv7 | facebook | 2022-01-28T23:30:54Z | 14 | 10 | fairseq | [
"fairseq",
"audio",
"text-to-speech",
"tr",
"dataset:common_voice",
"arxiv:1809.08895",
"arxiv:2109.06912",
"region:us"
] | text-to-speech | 2022-03-02T23:29:05Z | ---
library_name: fairseq
task: text-to-speech
tags:
- fairseq
- audio
- text-to-speech
language: tr
datasets:
- common_voice
widget:
- text: "Merhaba, bu bir deneme çalışmasıdır."
example_title: "Hello, this is a test run."
---
# tts_transformer-tr-cv7
[Transformer](https://arxiv.org/abs/1809.08895) text-to-speech model from fairseq S^2 ([paper](https://arxiv.org/abs/2109.06912)/[code](https://github.com/pytorch/fairseq/tree/main/examples/speech_synthesis)):
- Turkish
- Single-speaker male voice
- Trained on [Common Voice v7](https://commonvoice.mozilla.org/en/datasets)
## Usage
```python
from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
from fairseq.models.text_to_speech.hub_interface import TTSHubInterface
import IPython.display as ipd
models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
"facebook/tts_transformer-tr-cv7",
arg_overrides={"vocoder": "hifigan", "fp16": False}
)
model = models[0]
TTSHubInterface.update_cfg_with_data_cfg(cfg, task.data_cfg)
generator = task.build_generator(model, cfg)
text = "Merhaba, bu bir deneme çalışmasıdır."
sample = TTSHubInterface.get_model_input(task, text)
wav, rate = TTSHubInterface.get_prediction(task, model, generator, sample)
ipd.Audio(wav, rate=rate)
```
See also [fairseq S^2 example](https://github.com/pytorch/fairseq/blob/main/examples/speech_synthesis/docs/common_voice_example.md).
## Citation
```bibtex
@inproceedings{wang-etal-2021-fairseq,
title = "fairseq S{\^{}}2: A Scalable and Integrable Speech Synthesis Toolkit",
author = "Wang, Changhan and
Hsu, Wei-Ning and
Adi, Yossi and
Polyak, Adam and
Lee, Ann and
Chen, Peng-Jen and
Gu, Jiatao and
Pino, Juan",
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-demo.17",
doi = "10.18653/v1/2021.emnlp-demo.17",
pages = "143--152",
}
```
|
facebook/tts_transformer-zh-cv7_css10 | facebook | 2022-01-28T23:30:17Z | 32 | 85 | fairseq | [
"fairseq",
"audio",
"text-to-speech",
"zh",
"dataset:common_voice",
"dataset:css10",
"arxiv:1809.08895",
"arxiv:2109.06912",
"region:us"
] | text-to-speech | 2022-03-02T23:29:05Z | ---
library_name: fairseq
task: text-to-speech
tags:
- fairseq
- audio
- text-to-speech
language: zh
datasets:
- common_voice
- css10
widget:
- text: "您好,这是试运行。"
example_title: "Hello, this is a test run."
---
# tts_transformer-zh-cv7_css10
[Transformer](https://arxiv.org/abs/1809.08895) text-to-speech model from fairseq S^2 ([paper](https://arxiv.org/abs/2109.06912)/[code](https://github.com/pytorch/fairseq/tree/main/examples/speech_synthesis)):
- Simplified Chinese
- Single-speaker female voice
- Pre-trained on [Common Voice v7](https://commonvoice.mozilla.org/en/datasets), fine-tuned on [CSS10](https://github.com/Kyubyong/css10)
## Usage
```python
from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
from fairseq.models.text_to_speech.hub_interface import TTSHubInterface
import IPython.display as ipd
models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
"facebook/tts_transformer-zh-cv7_css10",
arg_overrides={"vocoder": "hifigan", "fp16": False}
)
model = models[0]
TTSHubInterface.update_cfg_with_data_cfg(cfg, task.data_cfg)
generator = task.build_generator(model, cfg)
text = "您好,这是试运行。"
sample = TTSHubInterface.get_model_input(task, text)
wav, rate = TTSHubInterface.get_prediction(task, model, generator, sample)
ipd.Audio(wav, rate=rate)
```
See also [fairseq S^2 example](https://github.com/pytorch/fairseq/blob/main/examples/speech_synthesis/docs/common_voice_example.md).
## Citation
```bibtex
@inproceedings{wang-etal-2021-fairseq,
title = "fairseq S{\^{}}2: A Scalable and Integrable Speech Synthesis Toolkit",
author = "Wang, Changhan and
Hsu, Wei-Ning and
Adi, Yossi and
Polyak, Adam and
Lee, Ann and
Chen, Peng-Jen and
Gu, Jiatao and
Pino, Juan",
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-demo.17",
doi = "10.18653/v1/2021.emnlp-demo.17",
pages = "143--152",
}
```
|
facebook/tts_transformer-en-200_speaker-cv4 | facebook | 2022-01-28T23:27:28Z | 11 | 2 | fairseq | [
"fairseq",
"audio",
"text-to-speech",
"multi-speaker",
"en",
"dataset:common_voice",
"arxiv:1809.08895",
"arxiv:2109.06912",
"region:us"
] | text-to-speech | 2022-03-02T23:29:05Z | ---
library_name: fairseq
task: text-to-speech
tags:
- fairseq
- audio
- text-to-speech
- multi-speaker
language: en
datasets:
- common_voice
widget:
- text: "Hello, this is a test run."
example_title: "Hello, this is a test run."
---
# tts_transformer-en-200_speaker-cv4
[Transformer](https://arxiv.org/abs/1809.08895) text-to-speech model from fairseq S^2 ([paper](https://arxiv.org/abs/2109.06912)/[code](https://github.com/pytorch/fairseq/tree/main/examples/speech_synthesis)):
- English
- 200 male/female voices (random speaker when using the widget)
- Trained on [Common Voice v4](https://commonvoice.mozilla.org/en/datasets)
## Usage
```python
from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
from fairseq.models.text_to_speech.hub_interface import TTSHubInterface
import IPython.display as ipd
models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
"facebook/tts_transformer-en-200_speaker-cv4",
arg_overrides={"vocoder": "hifigan", "fp16": False}
)
model = models[0]
TTSHubInterface.update_cfg_with_data_cfg(cfg, task.data_cfg)
generator = task.build_generator(model, cfg)
text = "Hello, this is a test run."
sample = TTSHubInterface.get_model_input(task, text)
wav, rate = TTSHubInterface.get_prediction(task, model, generator, sample)
ipd.Audio(wav, rate=rate)
```
See also [fairseq S^2 example](https://github.com/pytorch/fairseq/blob/main/examples/speech_synthesis/docs/common_voice_example.md).
## Citation
```bibtex
@inproceedings{wang-etal-2021-fairseq,
title = "fairseq S{\^{}}2: A Scalable and Integrable Speech Synthesis Toolkit",
author = "Wang, Changhan and
Hsu, Wei-Ning and
Adi, Yossi and
Polyak, Adam and
Lee, Ann and
Chen, Peng-Jen and
Gu, Jiatao and
Pino, Juan",
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-demo.17",
doi = "10.18653/v1/2021.emnlp-demo.17",
pages = "143--152",
}
```
|
facebook/tts_transformer-en-ljspeech | facebook | 2022-01-28T23:26:35Z | 36 | 6 | fairseq | [
"fairseq",
"audio",
"text-to-speech",
"en",
"dataset:ljspeech",
"arxiv:1809.08895",
"arxiv:2109.06912",
"region:us"
] | text-to-speech | 2022-03-02T23:29:05Z | ---
library_name: fairseq
task: text-to-speech
tags:
- fairseq
- audio
- text-to-speech
language: en
datasets:
- ljspeech
widget:
- text: "Hello, this is a test run."
example_title: "Hello, this is a test run."
---
# tts_transformer-en-ljspeech
[Transformer](https://arxiv.org/abs/1809.08895) text-to-speech model from fairseq S^2 ([paper](https://arxiv.org/abs/2109.06912)/[code](https://github.com/pytorch/fairseq/tree/main/examples/speech_synthesis)):
- English
- Single-speaker female voice
- Trained on [LJSpeech](https://keithito.com/LJ-Speech-Dataset/)
## Usage
```python
from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
from fairseq.models.text_to_speech.hub_interface import TTSHubInterface
import IPython.display as ipd
models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
"facebook/tts_transformer-en-ljspeech",
arg_overrides={"vocoder": "hifigan", "fp16": False}
)
model = models[0]
TTSHubInterface.update_cfg_with_data_cfg(cfg, task.data_cfg)
generator = task.build_generator(model, cfg)
text = "Hello, this is a test run."
sample = TTSHubInterface.get_model_input(task, text)
wav, rate = TTSHubInterface.get_prediction(task, model, generator, sample)
ipd.Audio(wav, rate=rate)
```
See also [fairseq S^2 example](https://github.com/pytorch/fairseq/blob/main/examples/speech_synthesis/docs/ljspeech_example.md).
## Citation
```bibtex
@inproceedings{wang-etal-2021-fairseq,
title = "fairseq S{\^{}}2: A Scalable and Integrable Speech Synthesis Toolkit",
author = "Wang, Changhan and
Hsu, Wei-Ning and
Adi, Yossi and
Polyak, Adam and
Lee, Ann and
Chen, Peng-Jen and
Gu, Jiatao and
Pino, Juan",
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-demo.17",
doi = "10.18653/v1/2021.emnlp-demo.17",
pages = "143--152",
}
```
|
facebook/fastspeech2-en-ljspeech | facebook | 2022-01-28T23:25:24Z | 2,168 | 268 | fairseq | [
"fairseq",
"audio",
"text-to-speech",
"en",
"dataset:ljspeech",
"arxiv:2006.04558",
"arxiv:2109.06912",
"region:us"
] | text-to-speech | 2022-03-02T23:29:05Z | ---
library_name: fairseq
task: text-to-speech
tags:
- fairseq
- audio
- text-to-speech
language: en
datasets:
- ljspeech
widget:
- text: "Hello, this is a test run."
example_title: "Hello, this is a test run."
---
# fastspeech2-en-ljspeech
[FastSpeech 2](https://arxiv.org/abs/2006.04558) text-to-speech model from fairseq S^2 ([paper](https://arxiv.org/abs/2109.06912)/[code](https://github.com/pytorch/fairseq/tree/main/examples/speech_synthesis)):
- English
- Single-speaker female voice
- Trained on [LJSpeech](https://keithito.com/LJ-Speech-Dataset/)
## Usage
```python
from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
from fairseq.models.text_to_speech.hub_interface import TTSHubInterface
import IPython.display as ipd
models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
"facebook/fastspeech2-en-ljspeech",
arg_overrides={"vocoder": "hifigan", "fp16": False}
)
model = models[0]
TTSHubInterface.update_cfg_with_data_cfg(cfg, task.data_cfg)
generator = task.build_generator(model, cfg)
text = "Hello, this is a test run."
sample = TTSHubInterface.get_model_input(task, text)
wav, rate = TTSHubInterface.get_prediction(task, model, generator, sample)
ipd.Audio(wav, rate=rate)
```
See also [fairseq S^2 example](https://github.com/pytorch/fairseq/blob/main/examples/speech_synthesis/docs/ljspeech_example.md).
## Citation
```bibtex
@inproceedings{wang-etal-2021-fairseq,
title = "fairseq S{\^{}}2: A Scalable and Integrable Speech Synthesis Toolkit",
author = "Wang, Changhan and
Hsu, Wei-Ning and
Adi, Yossi and
Polyak, Adam and
Lee, Ann and
Chen, Peng-Jen and
Gu, Jiatao and
Pino, Juan",
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-demo.17",
doi = "10.18653/v1/2021.emnlp-demo.17",
pages = "143--152",
}
```
|
Kneecapsnatcher/Unon | Kneecapsnatcher | 2022-01-28T21:21:10Z | 0 | 0 | null | [
"license:bsd-2-clause",
"region:us"
] | null | 2022-03-02T23:29:04Z | ---
license: bsd-2-clause
---
|
Langame/distilgpt2-starter | Langame | 2022-01-28T21:03:53Z | 18 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"generated_from_trainer",
"dataset:Langame/starter",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:04Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- Langame/starter
model-index:
- name: distilgpt2-starter
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilgpt2-starter
This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the Langame/starter dataset.
It achieves the following results on the evaluation set:
- Loss: 6.0234
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 500.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 66.67 | 200 | 3.6445 |
| No log | 133.33 | 400 | 4.5703 |
| 1.0101 | 200.0 | 600 | 5.2109 |
| 1.0101 | 266.67 | 800 | 5.5430 |
| 0.0681 | 333.33 | 1000 | 5.7227 |
| 0.0681 | 400.0 | 1200 | 5.8672 |
| 0.0681 | 466.67 | 1400 | 5.9961 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.0+cu111
- Datasets 1.18.1
- Tokenizers 0.11.0
|
anjulRajendraSharma/WavLm-base-en | anjulRajendraSharma | 2022-01-28T16:40:52Z | 58 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wavlm",
"automatic-speech-recognition",
"english_asr",
"generated_from_trainer",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
tags:
- automatic-speech-recognition
- english_asr
- generated_from_trainer
model-index:
- name: wavlm-base-english
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wavlm-base-english
This model is a fine-tuned version of [microsoft/wavlm-base](https://huggingface.co/microsoft/wavlm-base) on the english_ASR - CLEAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0955
- Wer: 0.0773
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 2.8664 | 0.17 | 300 | 2.8439 | 1.0 |
| 0.5009 | 0.34 | 600 | 0.2709 | 0.2162 |
| 0.2056 | 0.5 | 900 | 0.1934 | 0.1602 |
| 0.1648 | 0.67 | 1200 | 0.1576 | 0.1306 |
| 0.1922 | 0.84 | 1500 | 0.1358 | 0.1114 |
| 0.093 | 1.01 | 1800 | 0.1277 | 0.1035 |
| 0.0652 | 1.18 | 2100 | 0.1251 | 0.1005 |
| 0.0848 | 1.35 | 2400 | 0.1188 | 0.0964 |
| 0.0706 | 1.51 | 2700 | 0.1091 | 0.0905 |
| 0.0846 | 1.68 | 3000 | 0.1018 | 0.0840 |
| 0.0684 | 1.85 | 3300 | 0.0978 | 0.0809 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.9.1
- Datasets 1.18.0
- Tokenizers 0.10.3
|
alperiox/autonlp-user-review-classification-536415182 | alperiox | 2022-01-28T16:30:08Z | 9 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"autonlp",
"en",
"dataset:alperiox/autonlp-data-user-review-classification",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
tags: autonlp
language: en
widget:
- text: "I love AutoNLP 🤗"
datasets:
- alperiox/autonlp-data-user-review-classification
co2_eq_emissions: 1.268309634217171
---
# Model Trained Using AutoNLP
- Problem type: Multi-class Classification
- Model ID: 536415182
- CO2 Emissions (in grams): 1.268309634217171
## Validation Metrics
- Loss: 0.44733062386512756
- Accuracy: 0.8873239436619719
- Macro F1: 0.8859416445623343
- Micro F1: 0.8873239436619719
- Weighted F1: 0.8864646766540891
- Macro Precision: 0.8848522167487685
- Micro Precision: 0.8873239436619719
- Weighted Precision: 0.8883299798792756
- Macro Recall: 0.8908045977011494
- Micro Recall: 0.8873239436619719
- Weighted Recall: 0.8873239436619719
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/alperiox/autonlp-user-review-classification-536415182
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("alperiox/autonlp-user-review-classification-536415182", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("alperiox/autonlp-user-review-classification-536415182", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
``` |
Rocketknight1/distilgpt2-finetuned-wikitext2 | Rocketknight1 | 2022-01-28T13:23:20Z | 14 | 0 | transformers | [
"transformers",
"tf",
"tensorboard",
"gpt2",
"text-generation",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:04Z | ---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Rocketknight1/distilgpt2-finetuned-wikitext2
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Rocketknight1/distilgpt2-finetuned-wikitext2
This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 3.8577
- Validation Loss: 3.6752
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 3.8577 | 3.6752 | 0 |
### Framework versions
- Transformers 4.16.0.dev0
- TensorFlow 2.8.0-rc0
- Datasets 1.17.0
- Tokenizers 0.11.0
|
huggingtweets/cobie-coinerstakingls | huggingtweets | 2022-01-28T11:19:03Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: http://www.huggingtweets.com/cobie-coinerstakingls/1643368738479/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1394891459900231689/xXdX3yWP_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1471649307887558661/SpH6Dho7_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Crypto Bros Taking Ls & Cobie</div>
<div style="text-align: center; font-size: 14px;">@cobie-coinerstakingls</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Crypto Bros Taking Ls & Cobie.
| Data | Crypto Bros Taking Ls | Cobie |
| --- | --- | --- |
| Tweets downloaded | 566 | 3248 |
| Retweets | 94 | 93 |
| Short tweets | 222 | 500 |
| Tweets kept | 250 | 2655 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1gjf29z1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cobie-coinerstakingls's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/c8xc9umf) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/c8xc9umf/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/cobie-coinerstakingls')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
google/vit-large-patch32-384 | google | 2022-01-28T10:24:24Z | 186,213 | 16 | transformers | [
"transformers",
"pytorch",
"tf",
"jax",
"vit",
"image-classification",
"vision",
"dataset:imagenet",
"dataset:imagenet-21k",
"arxiv:2010.11929",
"arxiv:2006.03677",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- image-classification
- vision
datasets:
- imagenet
- imagenet-21k
---
# Vision Transformer (large-sized model)
Vision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 384x384. It was introduced in the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Dosovitskiy et al. and first released in [this repository](https://github.com/google-research/vision_transformer). However, the weights were converted from the [timm repository](https://github.com/rwightman/pytorch-image-models) by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him.
Disclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. Next, the model was fine-tuned on ImageNet (also referred to as ILSVRC2012), a dataset comprising 1 million images and 1,000 classes, at a higher resolution of 384x384.
Images are presented to the model as a sequence of fixed-size patches (resolution 32x32), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder.
By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image.
## Intended uses & limitations
You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=google/vit) to look for
fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
```python
from transformers import ViTFeatureExtractor, ViTForImageClassification
from PIL import Image
import requests
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)
feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-large-patch32-384')
model = ViTForImageClassification.from_pretrained('google/vit-large-patch32-384')
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
# model predicts one of the 1000 ImageNet classes
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])
```
Currently, both the feature extractor and model support PyTorch. Tensorflow and JAX/FLAX are coming soon, and the API of ViTFeatureExtractor might change.
## Training data
The ViT model was pretrained on [ImageNet-21k](http://www.image-net.org/), a dataset consisting of 14 million images and 21k classes, and fine-tuned on [ImageNet](http://www.image-net.org/challenges/LSVRC/2012/), a dataset consisting of 1 million images and 1k classes.
## Training procedure
### Preprocessing
The exact details of preprocessing of images during training/validation can be found [here](https://github.com/google-research/vision_transformer/blob/master/vit_jax/input_pipeline.py).
Images are resized/rescaled to the same resolution (224x224 during pre-training, 384x384 during fine-tuning) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5).
### Pretraining
The model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Pre-training resolution is 224.
## Evaluation results
For evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance.
### BibTeX entry and citation info
```bibtex
@misc{wu2020visual,
title={Visual Transformers: Token-based Image Representation and Processing for Computer Vision},
author={Bichen Wu and Chenfeng Xu and Xiaoliang Dai and Alvin Wan and Peizhao Zhang and Zhicheng Yan and Masayoshi Tomizuka and Joseph Gonzalez and Kurt Keutzer and Peter Vajda},
year={2020},
eprint={2006.03677},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
```bibtex
@inproceedings{deng2009imagenet,
title={Imagenet: A large-scale hierarchical image database},
author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li},
booktitle={2009 IEEE conference on computer vision and pattern recognition},
pages={248--255},
year={2009},
organization={Ieee}
}
``` |
google/vit-large-patch16-384 | google | 2022-01-28T10:22:26Z | 8,875 | 12 | transformers | [
"transformers",
"pytorch",
"tf",
"jax",
"vit",
"image-classification",
"vision",
"dataset:imagenet",
"dataset:imagenet-21k",
"arxiv:2010.11929",
"arxiv:2006.03677",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- image-classification
- vision
datasets:
- imagenet
- imagenet-21k
---
# Vision Transformer (large-sized model)
Vision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 384x384. It was introduced in the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Dosovitskiy et al. and first released in [this repository](https://github.com/google-research/vision_transformer). However, the weights were converted from the [timm repository](https://github.com/rwightman/pytorch-image-models) by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him.
Disclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. Next, the model was fine-tuned on ImageNet (also referred to as ILSVRC2012), a dataset comprising 1 million images and 1,000 classes, at a higher resolution of 384x384.
Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder.
By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image.
## Intended uses & limitations
You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=google/vit) to look for
fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
```python
from transformers import ViTFeatureExtractor, ViTForImageClassification
from PIL import Image
import requests
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)
feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-large-patch16-384')
model = ViTForImageClassification.from_pretrained('google/vit-large-patch16-384')
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
# model predicts one of the 1000 ImageNet classes
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])
```
Currently, both the feature extractor and model support PyTorch. Tensorflow and JAX/FLAX are coming soon, and the API of ViTFeatureExtractor might change.
## Training data
The ViT model was pretrained on [ImageNet-21k](http://www.image-net.org/), a dataset consisting of 14 million images and 21k classes, and fine-tuned on [ImageNet](http://www.image-net.org/challenges/LSVRC/2012/), a dataset consisting of 1 million images and 1k classes.
## Training procedure
### Preprocessing
The exact details of preprocessing of images during training/validation can be found [here](https://github.com/google-research/vision_transformer/blob/master/vit_jax/input_pipeline.py).
Images are resized/rescaled to the same resolution (224x224 during pre-training, 384x384 during fine-tuning) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5).
### Pretraining
The model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Pre-training resolution is 224.
## Evaluation results
For evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance.
### BibTeX entry and citation info
```bibtex
@misc{wu2020visual,
title={Visual Transformers: Token-based Image Representation and Processing for Computer Vision},
author={Bichen Wu and Chenfeng Xu and Xiaoliang Dai and Alvin Wan and Peizhao Zhang and Zhicheng Yan and Masayoshi Tomizuka and Joseph Gonzalez and Kurt Keutzer and Peter Vajda},
year={2020},
eprint={2006.03677},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
```bibtex
@inproceedings{deng2009imagenet,
title={Imagenet: A large-scale hierarchical image database},
author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li},
booktitle={2009 IEEE conference on computer vision and pattern recognition},
pages={248--255},
year={2009},
organization={Ieee}
}
``` |
microsoft/beit-large-patch16-512 | microsoft | 2022-01-28T10:20:07Z | 824 | 9 | transformers | [
"transformers",
"pytorch",
"jax",
"beit",
"image-classification",
"vision",
"dataset:imagenet",
"dataset:imagenet-21k",
"arxiv:2106.08254",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- image-classification
- vision
datasets:
- imagenet
- imagenet-21k
---
# BEiT (large-sized model, fine-tuned on ImageNet-1k)
BEiT model pre-trained in a self-supervised fashion on ImageNet-21k (14 million images, 21,841 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 512x512. It was introduced in the paper [BEIT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong and Furu Wei and first released in [this repository](https://github.com/microsoft/unilm/tree/master/beit).
Disclaimer: The team releasing BEiT did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
The BEiT model is a Vision Transformer (ViT), which is a transformer encoder model (BERT-like). In contrast to the original ViT model, BEiT is pretrained on a large collection of images in a self-supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. The pre-training objective for the model is to predict visual tokens from the encoder of OpenAI's DALL-E's VQ-VAE, based on masked patches.
Next, the model was fine-tuned in a supervised fashion on ImageNet (also referred to as ILSVRC2012), a dataset comprising 1 million images and 1,000 classes, also at resolution 224x224.
Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. Contrary to the original ViT models, BEiT models do use relative position embeddings (similar to T5) instead of absolute position embeddings, and perform classification of images by mean-pooling the final hidden states of the patches, instead of placing a linear layer on top of the final hidden state of the [CLS] token.
By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. Alternatively, one can mean-pool the final hidden states of the patch embeddings, and place a linear layer on top of that.
## Intended uses & limitations
You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=microsoft/beit) to look for
fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
```python
from transformers import BeitFeatureExtractor, BeitForImageClassification
from PIL import Image
import requests
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)
feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-large-patch16-512')
model = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-512')
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
# model predicts one of the 1000 ImageNet classes
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])
```
Currently, both the feature extractor and model support PyTorch.
## Training data
The BEiT model was pretrained on [ImageNet-21k](http://www.image-net.org/), a dataset consisting of 14 million images and 21k classes, and fine-tuned on [ImageNet](http://www.image-net.org/challenges/LSVRC/2012/), a dataset consisting of 1 million images and 1k classes.
## Training procedure
### Preprocessing
The exact details of preprocessing of images during training/validation can be found [here](https://github.com/microsoft/unilm/blob/master/beit/datasets.py).
Images are resized/rescaled to the same resolution (224x224) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5).
### Pretraining
For all pre-training related hyperparameters, we refer to page 15 of the [original paper](https://arxiv.org/abs/2106.08254).
## Evaluation results
For evaluation results on several image classification benchmarks, we refer to tables 1 and 2 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance.
### BibTeX entry and citation info
```@article{DBLP:journals/corr/abs-2106-08254,
author = {Hangbo Bao and
Li Dong and
Furu Wei},
title = {BEiT: {BERT} Pre-Training of Image Transformers},
journal = {CoRR},
volume = {abs/2106.08254},
year = {2021},
url = {https://arxiv.org/abs/2106.08254},
archivePrefix = {arXiv},
eprint = {2106.08254},
timestamp = {Tue, 29 Jun 2021 16:55:04 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2106-08254.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
```bibtex
@inproceedings{deng2009imagenet,
title={Imagenet: A large-scale hierarchical image database},
author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li},
booktitle={2009 IEEE conference on computer vision and pattern recognition},
pages={248--255},
year={2009},
organization={Ieee}
}
``` |
microsoft/beit-large-patch16-384 | microsoft | 2022-01-28T10:19:50Z | 242 | 0 | transformers | [
"transformers",
"pytorch",
"jax",
"beit",
"image-classification",
"vision",
"dataset:imagenet",
"dataset:imagenet-21k",
"arxiv:2106.08254",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- image-classification
- vision
datasets:
- imagenet
- imagenet-21k
---
# BEiT (large-sized model, fine-tuned on ImageNet-1k)
BEiT model pre-trained in a self-supervised fashion on ImageNet-21k (14 million images, 21,841 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 384x384. It was introduced in the paper [BEIT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong and Furu Wei and first released in [this repository](https://github.com/microsoft/unilm/tree/master/beit).
Disclaimer: The team releasing BEiT did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
The BEiT model is a Vision Transformer (ViT), which is a transformer encoder model (BERT-like). In contrast to the original ViT model, BEiT is pretrained on a large collection of images in a self-supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. The pre-training objective for the model is to predict visual tokens from the encoder of OpenAI's DALL-E's VQ-VAE, based on masked patches.
Next, the model was fine-tuned in a supervised fashion on ImageNet (also referred to as ILSVRC2012), a dataset comprising 1 million images and 1,000 classes, also at resolution 224x224.
Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. Contrary to the original ViT models, BEiT models do use relative position embeddings (similar to T5) instead of absolute position embeddings, and perform classification of images by mean-pooling the final hidden states of the patches, instead of placing a linear layer on top of the final hidden state of the [CLS] token.
By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. Alternatively, one can mean-pool the final hidden states of the patch embeddings, and place a linear layer on top of that.
## Intended uses & limitations
You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=microsoft/beit) to look for
fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
```python
from transformers import BeitFeatureExtractor, BeitForImageClassification
from PIL import Image
import requests
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)
feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-large-patch16-384')
model = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-384')
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
# model predicts one of the 1000 ImageNet classes
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])
```
Currently, both the feature extractor and model support PyTorch.
## Training data
The BEiT model was pretrained on [ImageNet-21k](http://www.image-net.org/), a dataset consisting of 14 million images and 21k classes, and fine-tuned on [ImageNet](http://www.image-net.org/challenges/LSVRC/2012/), a dataset consisting of 1 million images and 1k classes.
## Training procedure
### Preprocessing
The exact details of preprocessing of images during training/validation can be found [here](https://github.com/microsoft/unilm/blob/master/beit/datasets.py).
Images are resized/rescaled to the same resolution (224x224) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5).
### Pretraining
For all pre-training related hyperparameters, we refer to page 15 of the [original paper](https://arxiv.org/abs/2106.08254).
## Evaluation results
For evaluation results on several image classification benchmarks, we refer to tables 1 and 2 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance.
### BibTeX entry and citation info
```@article{DBLP:journals/corr/abs-2106-08254,
author = {Hangbo Bao and
Li Dong and
Furu Wei},
title = {BEiT: {BERT} Pre-Training of Image Transformers},
journal = {CoRR},
volume = {abs/2106.08254},
year = {2021},
url = {https://arxiv.org/abs/2106.08254},
archivePrefix = {arXiv},
eprint = {2106.08254},
timestamp = {Tue, 29 Jun 2021 16:55:04 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2106-08254.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
```bibtex
@inproceedings{deng2009imagenet,
title={Imagenet: A large-scale hierarchical image database},
author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li},
booktitle={2009 IEEE conference on computer vision and pattern recognition},
pages={248--255},
year={2009},
organization={Ieee}
}
``` |
microsoft/beit-base-patch16-384 | microsoft | 2022-01-28T10:19:30Z | 409 | 5 | transformers | [
"transformers",
"pytorch",
"jax",
"beit",
"image-classification",
"vision",
"dataset:imagenet",
"dataset:imagenet-21k",
"arxiv:2106.08254",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- image-classification
- vision
datasets:
- imagenet
- imagenet-21k
---
# BEiT (base-sized model, fine-tuned on ImageNet-1k)
BEiT model pre-trained in a self-supervised fashion on ImageNet-21k (14 million images, 21,841 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 384x384. It was introduced in the paper [BEIT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong and Furu Wei and first released in [this repository](https://github.com/microsoft/unilm/tree/master/beit).
Disclaimer: The team releasing BEiT did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
The BEiT model is a Vision Transformer (ViT), which is a transformer encoder model (BERT-like). In contrast to the original ViT model, BEiT is pretrained on a large collection of images in a self-supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. The pre-training objective for the model is to predict visual tokens from the encoder of OpenAI's DALL-E's VQ-VAE, based on masked patches.
Next, the model was fine-tuned in a supervised fashion on ImageNet (also referred to as ILSVRC2012), a dataset comprising 1 million images and 1,000 classes, also at resolution 224x224.
Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. Contrary to the original ViT models, BEiT models do use relative position embeddings (similar to T5) instead of absolute position embeddings, and perform classification of images by mean-pooling the final hidden states of the patches, instead of placing a linear layer on top of the final hidden state of the [CLS] token.
By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. Alternatively, one can mean-pool the final hidden states of the patch embeddings, and place a linear layer on top of that.
## Intended uses & limitations
You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=microsoft/beit) to look for
fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
```python
from transformers import BeitFeatureExtractor, BeitForImageClassification
from PIL import Image
import requests
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)
feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-base-patch16-384')
model = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-384')
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
# model predicts one of the 1000 ImageNet classes
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])
```
Currently, both the feature extractor and model support PyTorch.
## Training data
The BEiT model was pretrained on [ImageNet-21k](http://www.image-net.org/), a dataset consisting of 14 million images and 21k classes, and fine-tuned on [ImageNet](http://www.image-net.org/challenges/LSVRC/2012/), a dataset consisting of 1 million images and 1k classes.
## Training procedure
### Preprocessing
The exact details of preprocessing of images during training/validation can be found [here](https://github.com/microsoft/unilm/blob/master/beit/datasets.py).
Images are resized/rescaled to the same resolution (224x224) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5).
### Pretraining
For all pre-training related hyperparameters, we refer to page 15 of the [original paper](https://arxiv.org/abs/2106.08254).
## Evaluation results
For evaluation results on several image classification benchmarks, we refer to tables 1 and 2 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance.
### BibTeX entry and citation info
```@article{DBLP:journals/corr/abs-2106-08254,
author = {Hangbo Bao and
Li Dong and
Furu Wei},
title = {BEiT: {BERT} Pre-Training of Image Transformers},
journal = {CoRR},
volume = {abs/2106.08254},
year = {2021},
url = {https://arxiv.org/abs/2106.08254},
archivePrefix = {arXiv},
eprint = {2106.08254},
timestamp = {Tue, 29 Jun 2021 16:55:04 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2106-08254.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
```bibtex
@inproceedings{deng2009imagenet,
title={Imagenet: A large-scale hierarchical image database},
author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li},
booktitle={2009 IEEE conference on computer vision and pattern recognition},
pages={248--255},
year={2009},
organization={Ieee}
}
``` |
microsoft/beit-large-patch16-224 | microsoft | 2022-01-28T10:19:16Z | 1,916 | 1 | transformers | [
"transformers",
"pytorch",
"jax",
"beit",
"image-classification",
"vision",
"dataset:imagenet",
"dataset:imagenet-21k",
"arxiv:2106.08254",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- image-classification
- vision
datasets:
- imagenet
- imagenet-21k
---
# BEiT (large-sized model, fine-tuned on ImageNet-1k)
BEiT model pre-trained in a self-supervised fashion on ImageNet-21k (14 million images, 21,841 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 224x224. It was introduced in the paper [BEIT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong and Furu Wei and first released in [this repository](https://github.com/microsoft/unilm/tree/master/beit).
Disclaimer: The team releasing BEiT did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
The BEiT model is a Vision Transformer (ViT), which is a transformer encoder model (BERT-like). In contrast to the original ViT model, BEiT is pretrained on a large collection of images in a self-supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. The pre-training objective for the model is to predict visual tokens from the encoder of OpenAI's DALL-E's VQ-VAE, based on masked patches.
Next, the model was fine-tuned in a supervised fashion on ImageNet (also referred to as ILSVRC2012), a dataset comprising 1 million images and 1,000 classes, also at resolution 224x224.
Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. Contrary to the original ViT models, BEiT models do use relative position embeddings (similar to T5) instead of absolute position embeddings, and perform classification of images by mean-pooling the final hidden states of the patches, instead of placing a linear layer on top of the final hidden state of the [CLS] token.
By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. Alternatively, one can mean-pool the final hidden states of the patch embeddings, and place a linear layer on top of that.
## Intended uses & limitations
You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=microsoft/beit) to look for
fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
```python
from transformers import BeitFeatureExtractor, BeitForImageClassification
from PIL import Image
import requests
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)
feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-large-patch16-224')
model = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224')
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
# model predicts one of the 1000 ImageNet classes
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])
```
Currently, both the feature extractor and model support PyTorch.
## Training data
The BEiT model was pretrained on [ImageNet-21k](http://www.image-net.org/), a dataset consisting of 14 million images and 21k classes, and fine-tuned on [ImageNet](http://www.image-net.org/challenges/LSVRC/2012/), a dataset consisting of 1 million images and 1k classes.
## Training procedure
### Preprocessing
The exact details of preprocessing of images during training/validation can be found [here](https://github.com/microsoft/unilm/blob/master/beit/datasets.py).
Images are resized/rescaled to the same resolution (224x224) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5).
### Pretraining
For all pre-training related hyperparameters, we refer to page 15 of the [original paper](https://arxiv.org/abs/2106.08254).
## Evaluation results
For evaluation results on several image classification benchmarks, we refer to tables 1 and 2 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance.
### BibTeX entry and citation info
```@article{DBLP:journals/corr/abs-2106-08254,
author = {Hangbo Bao and
Li Dong and
Furu Wei},
title = {BEiT: {BERT} Pre-Training of Image Transformers},
journal = {CoRR},
volume = {abs/2106.08254},
year = {2021},
url = {https://arxiv.org/abs/2106.08254},
archivePrefix = {arXiv},
eprint = {2106.08254},
timestamp = {Tue, 29 Jun 2021 16:55:04 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2106-08254.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
```bibtex
@inproceedings{deng2009imagenet,
title={Imagenet: A large-scale hierarchical image database},
author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li},
booktitle={2009 IEEE conference on computer vision and pattern recognition},
pages={248--255},
year={2009},
organization={Ieee}
}
``` |
hrdipto/wav2vec2-xls-r-tf-left-right-shuru-word-level | hrdipto | 2022-01-28T09:54:27Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-xls-r-tf-left-right-shuru-word-level
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xls-r-tf-left-right-shuru-word-level
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0504
- Wer: 0.6859
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 100
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 23.217 | 23.81 | 500 | 1.3437 | 0.6859 |
| 1.1742 | 47.62 | 1000 | 1.0397 | 0.6859 |
| 1.0339 | 71.43 | 1500 | 1.0155 | 0.6859 |
| 0.9909 | 95.24 | 2000 | 1.0504 | 0.6859 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
RASMUS/wav2vec2-xlsr-fi-train-aug-bigLM-1B | RASMUS | 2022-01-27T23:00:16Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"mozilla-foundation/common_voice_7_0",
"audio",
"speech",
"fi",
"dataset:mozilla-foundation/common_voice_7_0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:04Z | ---
language: fi
datasets:
- mozilla-foundation/common_voice_7_0
metrics:
- wer
- cer
tags:
- generated_from_trainer
- mozilla-foundation/common_voice_7_0
- audio
- automatic-speech-recognition
- speech
model-index:
- name: XLS-R 1B Wav2Vec2 Finnish by Rasmus Toivanen
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 7
type: mozilla-foundation/common_voice_7_0
args: fi
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xlsr-fi-train-aug-lm-1B
This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1499
- Wer: 0.1955
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.6473 | 0.29 | 400 | 0.2857 | 0.3825 |
| 0.6039 | 0.58 | 800 | 0.2459 | 0.3476 |
| 0.4757 | 0.87 | 1200 | 0.2338 | 0.3274 |
| 0.4473 | 1.15 | 1600 | 0.2246 | 0.3128 |
| 0.4322 | 1.44 | 2000 | 0.1962 | 0.2805 |
| 0.3961 | 1.73 | 2400 | 0.2070 | 0.2797 |
| 0.3642 | 2.02 | 2800 | 0.1790 | 0.2473 |
| 0.3561 | 2.31 | 3200 | 0.1769 | 0.2375 |
| 0.282 | 2.6 | 3600 | 0.1672 | 0.2263 |
| 0.2978 | 2.89 | 4000 | 0.1636 | 0.2192 |
| 0.2722 | 3.17 | 4400 | 0.1637 | 0.2102 |
| 0.2924 | 3.46 | 4800 | 0.1506 | 0.2021 |
| 0.2631 | 3.75 | 5200 | 0.1499 | 0.1955 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0
|
huggingtweets/glitchy22 | huggingtweets | 2022-01-27T21:05:00Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: http://www.huggingtweets.com/glitchy22/1643317484748/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1484899984126451716/oY7g67aC_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">💙💗🤍 Mama Ava's House of Fun 💙💗🤍</div>
<div style="text-align: center; font-size: 14px;">@glitchy22</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from 💙💗🤍 Mama Ava's House of Fun 💙💗🤍.
| Data | 💙💗🤍 Mama Ava's House of Fun 💙💗🤍 |
| --- | --- |
| Tweets downloaded | 1690 |
| Retweets | 198 |
| Short tweets | 387 |
| Tweets kept | 1105 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2h5yvnyr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @glitchy22's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2t3bkiiv) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2t3bkiiv/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/glitchy22')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
vuiseng9/wav2vec2-base-100h | vuiseng9 | 2022-01-27T20:03:25Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"en",
"dataset:librispeech_asr",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
language: en
datasets:
- librispeech_asr
tags:
- audio
- automatic-speech-recognition
license: apache-2.0
---
# Wav2Vec2-Base-100h
This is a fork of [```facebook/wav2vec2-base-100h```](https://huggingface.co/facebook/wav2vec2-base-100h)
### Changes & Notes
1. Document reproducible evaluation (below) to new transformer and datasets version.
2. Use batch size of 1 to reproduce results.
3. Validated with ```transformers v4.15.0```, ```datasets 1.18.0```
4. You may need to manually install pypkg ```librosa```, ```jiwer```
## Evaluation
This code snippet shows how to evaluate **facebook/wav2vec2-base-100h** on LibriSpeech's "clean" and "other" test data.
```python
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import soundfile as sf
import torch
from jiwer import wer
librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")
# librispeech_eval = load_dataset("librispeech_asr", "other", split="test")
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-100h").to("cuda")
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-100h")
def map_to_array(batch):
# speech, _ = sf.read(batch["file"])
# batch["speech"] = speech
batch["speech"] = batch['audio']['array']
return batch
librispeech_eval = librispeech_eval.map(map_to_array)
def map_to_pred(batch):
input_values = processor(batch["speech"], return_tensors="pt", padding="longest").input_values
with torch.no_grad():
logits = model(input_values.to("cuda")).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
batch["transcription"] = transcription
return batch
result = librispeech_eval.map(map_to_pred, batched=True, batch_size=1, remove_columns=["speech"])
print("WER:", wer(result["text"], result["transcription"]))
```
*Result (WER)*:
| "clean/test" | "other/test" |
|--------------| ------------|
| 6.1 | 13.5 |
|
huggingtweets/thenamefaceless | huggingtweets | 2022-01-27T19:59:10Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: http://www.huggingtweets.com/thenamefaceless/1643313546109/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1428260501016834056/u8xbVi4l_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Faceless</div>
<div style="text-align: center; font-size: 14px;">@thenamefaceless</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Faceless.
| Data | Faceless |
| --- | --- |
| Tweets downloaded | 581 |
| Retweets | 165 |
| Short tweets | 55 |
| Tweets kept | 361 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1i6xge70/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @thenamefaceless's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2bbby02j) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2bbby02j/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/thenamefaceless')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
cd-dvd/testmodel2 | cd-dvd | 2022-01-27T19:45:14Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"gpt_neo",
"text-generation",
"Text Generation",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
tags:
- Text Generation
---
# GIMPLEARN knows modeltest2
# To generate conversation use input such as Human: What should I do?\nAI: |
Rocketknight1/t5-small-finetuned-xsum | Rocketknight1 | 2022-01-27T19:39:43Z | 4 | 0 | transformers | [
"transformers",
"tf",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2022-03-02T23:29:04Z | ---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Rocketknight1/t5-small-finetuned-xsum
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Rocketknight1/t5-small-finetuned-xsum
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 2.7172
- Validation Loss: 2.3977
- Train Rouge1: 28.7469
- Train Rouge2: 7.9005
- Train Rougel: 22.5917
- Train Rougelsum: 22.6162
- Train Gen Len: 18.875
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch |
|:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:|
| 2.7172 | 2.3977 | 28.7469 | 7.9005 | 22.5917 | 22.6162 | 18.875 | 0 |
### Framework versions
- Transformers 4.16.0.dev0
- TensorFlow 2.8.0-rc0
- Datasets 1.17.0
- Tokenizers 0.11.0
|
vkhangpham/shopee-ner | vkhangpham | 2022-01-27T19:15:22Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2022-03-02T23:29:05Z | ---
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: shopee-ner
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# shopee-ner
This model is a fine-tuned version of [cahya/xlm-roberta-base-indonesian-NER](https://huggingface.co/cahya/xlm-roberta-base-indonesian-NER) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2046
- Precision: 0.7666
- Recall: 0.8666
- F1: 0.8135
- Accuracy: 0.9320
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.2282 | 1.0 | 33750 | 0.2174 | 0.7443 | 0.8506 | 0.7939 | 0.9253 |
| 0.1983 | 2.0 | 67500 | 0.2046 | 0.7666 | 0.8666 | 0.8135 | 0.9320 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.1
- Tokenizers 0.10.3
|
mrm8488/ppo-BipedalWalker-v3 | mrm8488 | 2022-01-27T19:12:00Z | 0 | 2 | null | [
"region:us"
] | null | 2022-03-02T23:29:05Z | #@title
---
tags:
- bipedal
- walker
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
---
# PPO BipedalWalker v3 🤖🚶🏼
This is a pre-trained model of a PPO agent playing BipedalWalker-v3 using the [stable-baselines3](https://github.com/DLR-RM/stable-baselines3) library.
<video loop="" autoplay="" controls="" src="https://huggingface.co/mrm8488/ppo-BipedalWalker-v3/resolve/main/output.mp4"></video>
### Usage (with Stable-baselines3)
Using this model becomes easy when you have stable-baselines3 and huggingface_sb3 installed:
```
pip install stable-baselines3
pip install huggingface_sb3
```
Then, you can use the model like this:
```python
import gym
from huggingface_sb3 import load_from_hub
from stable_baselines3 import PPO
from stable_baselines3.common.evaluation import evaluate_policy
# Retrieve the model from the hub
## repo_id = id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name})
## filename = name of the model zip file from the repository
checkpoint = load_from_hub(repo_id="mrm8488/ppo-BipedalWalker-v3", filename="bipedalwalker-v3.zip")
model = PPO.load(checkpoint)
# Evaluate the agent
eval_env = gym.make('{environment}')
mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True)
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")
# Watch the agent play
obs = env.reset()
for i in range(1000):
action, _state = model.predict(obs)
obs, reward, done, info = env.step(action)
env.render()
if done:
obs = env.reset()
env.close()
```
### Evaluation Results
Mean_reward: 213.55 +/- 113.82
|
Jacobo/aristoBERTo | Jacobo | 2022-01-27T19:02:16Z | 10 | 5 | transformers | [
"transformers",
"pytorch",
"bert",
"fill-mask",
"grc",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2022-03-02T23:29:04Z | ---
tags:
language:
- grc
model-index:
- name: aristoBERTo
results: []
widget:
- text: "Πλάτων ὁ Περικτιόνης [MASK] γένος ἀνέφερεν εἰς Σόλωνα."
- text: "ὁ Κριτίας ἀπέβλεψε [MASK] τὴν θύραν."
- text: "πρῶτοι δὲ καὶ οὐνόματα ἱρὰ ἔγνωσαν καὶ [MASK] ἱροὺς ἔλεξαν."
---
# aristoBERTo
aristoBERTo is a transformer model for ancient Greek, a low resource language. We initialized the pre-training with weights from [GreekBERT](https://huggingface.co/nlpaueb/bert-base-greek-uncased-v1), a Greek version of BERT which was trained on a large corpus of modern Greek (~ 30 GB of texts). We continued the pre-training with an ancient Greek corpus of about 900 MB, which was scrapped from the web and post-processed. Duplicate texts and editorial punctuation were removed.
Applied to the processing of ancient Greek, aristoBERTo outperforms xlm-roberta-base and mdeberta in most downstream tasks like the labeling of POS, MORPH, DEP and LEMMA.
aristoBERTo is provided by the [Diogenet project](https://diogenet.ucsd.edu) of the University of California, San Diego.
## Intended uses
This model was created for fine-tuning with spaCy and the ancient Greek Universal Dependency datasets as well as a NER corpus produced by the [Diogenet project](https://diogenet.ucsd.edu). As a fill-mask model, AristoBERTo can also be used in the restoration of damaged Greek papyri, inscriptions, and manuscripts.
It achieves the following results on the evaluation set:
- Loss: 1.6323
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-------:|:---------------:|
| 1.377 | 20.0 | 3414220 | 1.6314 |
### Framework versions
- Transformers 4.14.0.dev0
- Pytorch 1.10.0+cu102
- Datasets 1.16.1
- Tokenizers 0.10.3
|
anirudh21/albert-large-v2-finetuned-rte | anirudh21 | 2022-01-27T18:29:58Z | 11 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"albert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: albert-large-v2-finetuned-rte
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: rte
metrics:
- name: Accuracy
type: accuracy
value: 0.5487364620938628
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# albert-large-v2-finetuned-rte
This model is a fine-tuned version of [albert-large-v2](https://huggingface.co/albert-large-v2) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6827
- Accuracy: 0.5487
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 18 | 0.6954 | 0.5271 |
| No log | 2.0 | 36 | 0.6860 | 0.5379 |
| No log | 3.0 | 54 | 0.6827 | 0.5487 |
| No log | 4.0 | 72 | 0.7179 | 0.5235 |
| No log | 5.0 | 90 | 0.7504 | 0.5379 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.1
- Tokenizers 0.10.3
|
mbateman/marian-finetuned-kde4-en-to-fr | mbateman | 2022-01-27T17:33:02Z | 12 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"marian",
"text2text-generation",
"translation",
"generated_from_trainer",
"dataset:kde4",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- translation
- generated_from_trainer
datasets:
- kde4
model-index:
- name: marian-finetuned-kde4-en-to-fr
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# marian-finetuned-kde4-en-to-fr
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.1
- Tokenizers 0.10.3
|
Adinda/Adinda | Adinda | 2022-01-27T17:02:42Z | 0 | 0 | null | [
"license:artistic-2.0",
"region:us"
] | null | 2022-03-02T23:29:04Z | ---
license: artistic-2.0
---
|
huggingtweets/northernlion | huggingtweets | 2022-01-27T16:46:04Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: http://www.huggingtweets.com/northernlion/1643301960230/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/2236512789/ChannelIcon_400x400.png')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Ryan Letourneau</div>
<div style="text-align: center; font-size: 14px;">@northernlion</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Ryan Letourneau.
| Data | Ryan Letourneau |
| --- | --- |
| Tweets downloaded | 3249 |
| Retweets | 85 |
| Short tweets | 480 |
| Tweets kept | 2684 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2xmzb7x7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @northernlion's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3dilt40l) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3dilt40l/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/northernlion')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
bayartsogt/tts_transformer-mn-mbspeech | bayartsogt | 2022-01-27T16:35:40Z | 18 | 1 | fairseq | [
"fairseq",
"audio",
"text-to-speech",
"mn",
"dataset:mbspeech",
"arxiv:1809.08895",
"arxiv:2109.06912",
"region:us"
] | text-to-speech | 2022-03-02T23:29:05Z | ---
library_name: fairseq
task: text-to-speech
tags:
- fairseq
- audio
- text-to-speech
language: mn
datasets:
- mbspeech
widget:
- text: "миний нэрийг баярцогт гэдэг"
example_title: "Say my name!"
- text: "би монгол улсын нийслэл, улаанбаатар хотод амьдардаг"
example_title: "Where I am from?"
- text: "энэхүү өгөгдлийг нээлттэй болгосон, болор соофтынхонд баярлалаа"
example_title: "Thank you!"
- text: "энэхүү ажлын ихэнх хэсгийг, төгөлдөр ах хийсэн болно"
example_title: "Shout out to original creater"
---
# tts_transformer-mn-mbspeech
[Transformer](https://arxiv.org/abs/1809.08895) text-to-speech model from fairseq S^2 ([paper](https://arxiv.org/abs/2109.06912)/[code](https://github.com/pytorch/fairseq/tree/main/examples/speech_synthesis)):
- Mongolian
- Single-speaker male voice
- Trained on [MBSpeech](https://github.com/tugstugi/mongolian-nlp/blob/master/datasets/MBSpeech-1.0-csv.zip)
|
mrm8488/ppo-CartPole-v1 | mrm8488 | 2022-01-27T15:13:48Z | 0 | 1 | null | [
"region:us"
] | null | 2022-03-02T23:29:05Z | #@title
---
tags:
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
---
# PPO CartPole v1 🤖⚖️
This is a pre-trained model of a PPO agent playing CartPole-v1 using the [stable-baselines3](https://github.com/DLR-RM/stable-baselines3) library.
<video loop="" autoplay="" controls="" src="https://huggingface.co/mrm8488/ppo-CartPole-v1/resolve/main/output.mp4"></video>
### Usage (with Stable-baselines3)
Using this model becomes easy when you have stable-baselines3 and huggingface_sb3 installed:
```
pip install stable-baselines3
pip install huggingface_sb3
```
Then, you can use the model like this:
```python
import gym
from huggingface_sb3 import load_from_hub
from stable_baselines3 import PPO
from stable_baselines3.common.evaluation import evaluate_policy
# Retrieve the model from the hub
## repo_id = id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name})
## filename = name of the model zip file from the repository
checkpoint = load_from_hub(repo_id="mrm8488/ppo-CartPole-v1", filename="cartpole-v1.zip")
model = PPO.load(checkpoint)
# Evaluate the agent
eval_env = gym.make('CartPole-v1')
mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True)
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")
# Watch the agent play
obs = env.reset()
for i in range(1000):
action, _state = model.predict(obs)
obs, reward, done, info = env.step(action)
env.render()
if done:
obs = env.reset()
env.close()
```
### Evaluation Results
Mean_reward: mean_reward=500.00 +/- 0.0
|
jhonparra18/wav2vec2-large-xls-r-300m-spanish-custom | jhonparra18 | 2022-01-27T14:58:01Z | 15 | 0 | transformers | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"robust-speech-event",
"dataset:common_voice",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
tags:
- generated_from_trainer
- robust-speech-event
datasets:
- common_voice
model-index:
- name: wav2vec2-large-xls-r-300m-spanish-custom
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-spanish-custom
This model was trained from scratch on the common_voice dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.2245
- eval_wer: 0.2082
- eval_runtime: 801.6784
- eval_samples_per_second: 18.822
- eval_steps_per_second: 2.354
- epoch: 0.76
- step: 8400
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 10
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0
|
oskrmiguel/mt5-simplification-spanish | oskrmiguel | 2022-01-27T13:32:24Z | 22 | 6 | transformers | [
"transformers",
"pytorch",
"mt5",
"text2text-generation",
"simplification",
"spanish",
"es",
"license:cc-by-nc-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2022-03-02T23:29:05Z |
---
language:
- es
thumbnail:
tags:
- simplification
- mt5
- spanish
license: cc-by-nc-sa-4.0
metrics:
- sari
widget:
- text: "La Simplificación Textual es el proceso de transformación de un texto a otro texto equivalente más comprensible para un determinado tipo de grupo o población."
- text: "Los textos simplificados son apropiados para muchos grupos de lectores, como, por ejemplo: estudiantes de idiomas, personas con discapacidades intelectuales y otras personas con necesidades especiales de lectura y comprensión.
"
---
# mt5-simplification-spanish
## Model description
This is a fine-tuned mt5-small model for generating simple text from complex text.
This model was created with the IXA Group research group of the University of the Basque Country, the model has been evaluated with the Sari, Bleu and Fklg metrics; it was trained and tested using the [Simplext corpus](https://dl.acm.org/doi/10.1145/2738046).
## Dataset
Simplext
## Model Evaluation
Bleu: 13,186
Sari: 42,203
Fklg: 10,284
## Authors
Oscar M. Cumbicus-Pineda, Itziar Gonzalez-Dios, Aitor Soroa, November 2021
## Code
https://github.com/oskrmiguel/mt5-simplification |
anirudh21/albert-xxlarge-v2-finetuned-wnli | anirudh21 | 2022-01-27T13:00:48Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"albert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: albert-xxlarge-v2-finetuned-wnli
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: wnli
metrics:
- name: Accuracy
type: accuracy
value: 0.5070422535211268
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# albert-xxlarge-v2-finetuned-wnli
This model is a fine-tuned version of [albert-xxlarge-v2](https://huggingface.co/albert-xxlarge-v2) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6970
- Accuracy: 0.5070
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 13 | 0.8066 | 0.4366 |
| No log | 2.0 | 26 | 0.6970 | 0.5070 |
| No log | 3.0 | 39 | 0.7977 | 0.4507 |
| No log | 4.0 | 52 | 0.7906 | 0.4930 |
| No log | 5.0 | 65 | 0.8459 | 0.4366 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.1
- Tokenizers 0.10.3
|
benjaminbeilharz/dialoGPT-small-empatheticdialogues-generation | benjaminbeilharz | 2022-01-27T11:07:49Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"conversational",
"en",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language:
- en
datasets:
- empathetic dialogues
tags:
- conversational
- pytorch
- transformers
- gpt2
license: mit
---
Still figuring out to properly write model cards.
WIP. |
anirudh21/bert-base-uncased-finetuned-qnli | anirudh21 | 2022-01-27T08:21:03Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: bert-base-uncased-finetuned-qnli
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: qnli
metrics:
- name: Accuracy
type: accuracy
value: 0.791689547867472
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-finetuned-qnli
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6268
- Accuracy: 0.7917
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 63 | 0.5339 | 0.7620 |
| No log | 2.0 | 126 | 0.4728 | 0.7866 |
| No log | 3.0 | 189 | 0.5386 | 0.7847 |
| No log | 4.0 | 252 | 0.6096 | 0.7904 |
| No log | 5.0 | 315 | 0.6268 | 0.7917 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.1
- Tokenizers 0.10.3
|
anirudh21/bert-base-uncased-finetuned-rte | anirudh21 | 2022-01-27T06:57:18Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: bert-base-uncased-finetuned-rte
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: rte
metrics:
- name: Accuracy
type: accuracy
value: 0.6642599277978339
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-finetuned-rte
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8075
- Accuracy: 0.6643
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 63 | 0.6777 | 0.5668 |
| No log | 2.0 | 126 | 0.6723 | 0.6282 |
| No log | 3.0 | 189 | 0.7238 | 0.6318 |
| No log | 4.0 | 252 | 0.7993 | 0.6354 |
| No log | 5.0 | 315 | 0.8075 | 0.6643 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.1
- Tokenizers 0.10.3
|
carlosaguayo/pegasus-samsum | carlosaguayo | 2022-01-27T06:14:31Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"pegasus",
"text2text-generation",
"generated_from_trainer",
"dataset:samsum",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2022-03-02T23:29:05Z | ---
tags:
- generated_from_trainer
datasets:
- samsum
model-index:
- name: pegasus-samsum
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# pegasus-samsum
This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4842
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.7197 | 0.54 | 500 | 1.4842 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.1
- Tokenizers 0.10.3
|
anas-awadalla/bert-small-pretrained-finetuned-squad | anas-awadalla | 2022-01-27T06:09:41Z | 30 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:mit",
"endpoints_compatible",
"region:us"
] | question-answering | 2022-03-02T23:29:05Z | ---
license: mit
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: bert-small-pretrained-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-small-pretrained-finetuned-squad
This model is a fine-tuned version of [anas-awadalla/bert-small-pretrained-on-squad](https://huggingface.co/anas-awadalla/bert-small-pretrained-on-squad) on the squad dataset.
- "exact_match": 72.20435193945127
- "f1": 81.31832229156294
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.0
- Tokenizers 0.10.3
|
anas-awadalla/bert-medium-pretrained-finetuned-squad | anas-awadalla | 2022-01-27T06:07:11Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:mit",
"endpoints_compatible",
"region:us"
] | question-answering | 2022-03-02T23:29:05Z | ---
license: mit
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: bert_medium_pretrain_squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert_medium_pretrain_squad
This model is a fine-tuned version of [anas-awadalla/bert-medium-pretrained-on-squad](https://huggingface.co/anas-awadalla/bert-medium-pretrained-on-squad) on the squad dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0973
- "exact_match": 77.95648060548723
- "f1": 85.85300366384631
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.0
- Tokenizers 0.10.3
|
sankhajay/mt5-base-sinaha-qa | sankhajay | 2022-01-27T05:35:18Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"t5",
"text2text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2022-03-02T23:29:05Z | \n
---
language: si
tags:
- question-answering
- Sinhala
widget:
- context: "ශ්රී ලංකාව යනු ඉන්දියානු සාගරයේ පිහිටි මනරම් දුපතකි."
text: "ශ්රී ලංකාව පිහිටා ඇත්තේ කොහෙද ?"
---
# mt5-base-sinhala-qa
This is an mt5-based Question Answering model for the Sinhalese language. Training is done on translated SQuAD dataset of 8k questions. The translation was done by google translate API.
The training was done on Google Colab TPU environment with parallel training techniques. The training was done on around 9k data points which consists of context, question, answer trios for the Sinhala language. Evaluation is done using standard SQuAD evaluation script on around 1k data points which gave following results on the best parameter setting. Evaluation matrices used are EM matric and F1 score matric.
Evaluation - {'EM': 39.413680781758956, 'f1': 66.16331104953571} |
anirudh21/albert-large-v2-finetuned-wnli | anirudh21 | 2022-01-27T05:02:43Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"albert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: albert-large-v2-finetuned-wnli
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: wnli
metrics:
- name: Accuracy
type: accuracy
value: 0.5352112676056338
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# albert-large-v2-finetuned-wnli
This model is a fine-tuned version of [albert-large-v2](https://huggingface.co/albert-large-v2) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6919
- Accuracy: 0.5352
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 17 | 0.7292 | 0.4366 |
| No log | 2.0 | 34 | 0.6919 | 0.5352 |
| No log | 3.0 | 51 | 0.7084 | 0.4648 |
| No log | 4.0 | 68 | 0.7152 | 0.5352 |
| No log | 5.0 | 85 | 0.7343 | 0.5211 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.1
- Tokenizers 0.10.3
|
glob-asr/base-spanish-asr | glob-asr | 2022-01-27T03:35:42Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:common_voice",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
tags:
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-large-xls-r-300m-spanish-custom
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-spanish-custom
This model was trained from scratch on the common_voice dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.2245
- eval_wer: 0.2082
- eval_runtime: 801.6784
- eval_samples_per_second: 18.822
- eval_steps_per_second: 2.354
- epoch: 0.76
- step: 8400
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 10
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0
|
boris/dalle-mini-tokenizer | boris | 2022-01-27T01:42:39Z | 0 | 0 | null | [
"region:us"
] | null | 2022-03-02T23:29:05Z | Tokenizer based on `facebook/bart-large-cnn` and trained on captions normalized by [dalle-mini](https://github.com/borisdayma/dalle-mini). |
Mingyi/classify_title_subject | Mingyi | 2022-01-26T23:29:36Z | 9 | 3 | transformers | [
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:04Z | ---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: tmp6tsjsfbf
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# tmp6tsjsfbf
This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0178
- Train Sparse Categorical Accuracy: 0.9962
- Epoch: 49
## Model description
This model classifies the title of a content (e.g., YouTube video, article, or podcast episode) into 1 of 8 subjects
0. art
1. personal development
2. world
3. health
4. science
5. business
6. humanities
7. technology.
This model is used to support [Sanderling](https://sanderling.app)
## Intended uses & limitations
More information needed
## Training and evaluation data
We used 1.5k labeled titles to train the model. Majority of the training dataset are English titles. The rest are Chinese titles.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 5e-06, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Sparse Categorical Accuracy | Epoch |
|:----------:|:---------------------------------:|:-----:|
| 1.8005 | 0.3956 | 0 |
| 1.3302 | 0.5916 | 1 |
| 0.8998 | 0.7575 | 2 |
| 0.6268 | 0.8468 | 3 |
| 0.4239 | 0.9062 | 4 |
| 0.2982 | 0.9414 | 5 |
| 0.2245 | 0.9625 | 6 |
| 0.1678 | 0.9730 | 7 |
| 0.1399 | 0.9745 | 8 |
| 0.1059 | 0.9827 | 9 |
| 0.0822 | 0.9850 | 10 |
| 0.0601 | 0.9902 | 11 |
| 0.0481 | 0.9932 | 12 |
| 0.0386 | 0.9955 | 13 |
| 0.0292 | 0.9977 | 14 |
| 0.0353 | 0.9940 | 15 |
| 0.0336 | 0.9932 | 16 |
| 0.0345 | 0.9910 | 17 |
| 0.0179 | 0.9985 | 18 |
| 0.0150 | 0.9985 | 19 |
| 0.0365 | 0.9895 | 20 |
| 0.0431 | 0.9895 | 21 |
| 0.0243 | 0.9955 | 22 |
| 0.0317 | 0.9925 | 23 |
| 0.0375 | 0.9902 | 24 |
| 0.0138 | 0.9970 | 25 |
| 0.0159 | 0.9977 | 26 |
| 0.0160 | 0.9962 | 27 |
| 0.0151 | 0.9977 | 28 |
| 0.0337 | 0.9902 | 29 |
| 0.0119 | 0.9977 | 30 |
| 0.0165 | 0.9955 | 31 |
| 0.0133 | 0.9977 | 32 |
| 0.0047 | 1.0 | 33 |
| 0.0037 | 1.0 | 34 |
| 0.0033 | 1.0 | 35 |
| 0.0031 | 1.0 | 36 |
| 0.0036 | 1.0 | 37 |
| 0.0343 | 0.9887 | 38 |
| 0.0234 | 0.9962 | 39 |
| 0.0034 | 1.0 | 40 |
| 0.0036 | 1.0 | 41 |
| 0.0261 | 0.9917 | 42 |
| 0.0111 | 0.9970 | 43 |
| 0.0039 | 1.0 | 44 |
| 0.0214 | 0.9932 | 45 |
| 0.0044 | 0.9985 | 46 |
| 0.0122 | 0.9985 | 47 |
| 0.0119 | 0.9962 | 48 |
| 0.0178 | 0.9962 | 49 |
### Framework versions
- Transformers 4.15.0
- TensorFlow 2.7.0
- Tokenizers 0.10.3
|
Firat/distilbert-base-uncased-finetuned-squad | Firat | 2022-01-26T19:05:23Z | 11 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | question-answering | 2022-03-02T23:29:04Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: distilbert-base-uncased-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-squad
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1460
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.2856 | 1.0 | 2767 | 1.1919 |
| 1.012 | 2.0 | 5534 | 1.1332 |
| 0.8512 | 3.0 | 8301 | 1.1460 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1
- Datasets 1.18.0
- Tokenizers 0.10.3
|
asahi417/tner-roberta-large-multiconer-en-adapter | asahi417 | 2022-01-26T16:13:58Z | 10 | 0 | adapter-transformers | [
"adapter-transformers",
"adapterhub:named-entity-recognition/multiconer",
"roberta",
"dataset:multiconer",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
tags:
- adapter-transformers
- adapterhub:named-entity-recognition/multiconer
- roberta
datasets:
- multiconer
---
# Adapter `asahi417/tner-roberta-large-multiconer-en-adapter` for roberta-large
An [adapter](https://adapterhub.ml) for the `roberta-large` model that was trained on the [named-entity-recognition/multiconer](https://adapterhub.ml/explore/named-entity-recognition/multiconer/) dataset and includes a prediction head for tagging.
This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
## Usage
First, install `adapter-transformers`:
```
pip install -U adapter-transformers
```
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_
Now, the adapter can be loaded and activated like this:
```python
from transformers import AutoModelWithHeads
model = AutoModelWithHeads.from_pretrained("roberta-large")
adapter_name = model.load_adapter("asahi417/tner-roberta-large-multiconer-en-adapter", source="hf", set_active=True)
```
## Architecture & Training
<!-- Add some description here -->
## Evaluation results
<!-- Add some description here -->
## Citation
<!-- Add some description here --> |
asahi417/tner-xlm-roberta-large-multiconer-multi-adapter | asahi417 | 2022-01-26T15:46:42Z | 3 | 0 | adapter-transformers | [
"adapter-transformers",
"adapterhub:named-entity-recognition/multiconer",
"xlm-roberta",
"dataset:multiconer",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
tags:
- adapter-transformers
- adapterhub:named-entity-recognition/multiconer
- xlm-roberta
datasets:
- multiconer
---
# Adapter `asahi417/tner-xlm-roberta-large-multiconer-multi-adapter` for xlm-roberta-large
An [adapter](https://adapterhub.ml) for the `xlm-roberta-large` model that was trained on the [named-entity-recognition/multiconer](https://adapterhub.ml/explore/named-entity-recognition/multiconer/) dataset and includes a prediction head for tagging.
This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
## Usage
First, install `adapter-transformers`:
```
pip install -U adapter-transformers
```
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_
Now, the adapter can be loaded and activated like this:
```python
from transformers import AutoModelWithHeads
model = AutoModelWithHeads.from_pretrained("xlm-roberta-large")
adapter_name = model.load_adapter("asahi417/tner-xlm-roberta-large-multiconer-multi-adapter", source="hf", set_active=True)
```
## Architecture & Training
<!-- Add some description here -->
## Evaluation results
<!-- Add some description here -->
## Citation
<!-- Add some description here --> |
anirudh21/albert-xlarge-v2-finetuned-mrpc | anirudh21 | 2022-01-26T12:50:06Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"albert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: albert-xlarge-v2-finetuned-mrpc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: mrpc
metrics:
- name: Accuracy
type: accuracy
value: 0.7132352941176471
- name: F1
type: f1
value: 0.8145800316957211
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# albert-xlarge-v2-finetuned-mrpc
This model is a fine-tuned version of [albert-xlarge-v2](https://huggingface.co/albert-xlarge-v2) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5563
- Accuracy: 0.7132
- F1: 0.8146
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 63 | 0.6898 | 0.5221 | 0.6123 |
| No log | 2.0 | 126 | 0.6298 | 0.6838 | 0.8122 |
| No log | 3.0 | 189 | 0.6043 | 0.7010 | 0.8185 |
| No log | 4.0 | 252 | 0.5834 | 0.7010 | 0.8146 |
| No log | 5.0 | 315 | 0.5563 | 0.7132 | 0.8146 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.0
- Tokenizers 0.10.3
|
krirk/wav2vec2-large-xls-r-300m-turkish-colab | krirk | 2022-01-26T12:38:32Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-large-xls-r-300m-turkish-colab
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-turkish-colab
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3942
- Wer: 0.3149
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.9921 | 3.67 | 400 | 0.7820 | 0.7857 |
| 0.4496 | 7.34 | 800 | 0.4630 | 0.4977 |
| 0.2057 | 11.01 | 1200 | 0.4293 | 0.4627 |
| 0.1328 | 14.68 | 1600 | 0.4464 | 0.4068 |
| 0.1009 | 18.35 | 2000 | 0.4461 | 0.3742 |
| 0.0794 | 22.02 | 2400 | 0.4328 | 0.3467 |
| 0.0628 | 25.69 | 2800 | 0.4036 | 0.3263 |
| 0.0497 | 29.36 | 3200 | 0.3942 | 0.3149 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
SetFit/MiniLM-L12-H384-uncased__sst2__all-train | SetFit | 2022-01-26T11:27:47Z | 12 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:04Z | ---
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: MiniLM-L12-H384-uncased__sst2__all-train
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# MiniLM-L12-H384-uncased__sst2__all-train
This model is a fine-tuned version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2632
- Accuracy: 0.9055
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.4183 | 1.0 | 433 | 0.3456 | 0.8720 |
| 0.2714 | 2.0 | 866 | 0.2632 | 0.9055 |
| 0.2016 | 3.0 | 1299 | 0.3357 | 0.8990 |
| 0.1501 | 4.0 | 1732 | 0.4474 | 0.8863 |
| 0.1119 | 5.0 | 2165 | 0.3998 | 0.8979 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu102
- Datasets 1.17.0
- Tokenizers 0.10.3
|
jcmc/wav2vec2-large-xlsr-53-ir | jcmc | 2022-01-26T10:35:17Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"mozilla-foundation/common_voice_7_0",
"generated_from_trainer",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
language:
- ga-IE
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_7_0
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: ''
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - GA-IE dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0835
- Wer: 0.7490
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 50.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.1483 | 15.62 | 500 | 3.0498 | 1.0 |
| 2.8449 | 31.25 | 1000 | 2.7790 | 0.9493 |
| 1.8683 | 46.86 | 1500 | 1.2339 | 0.8161 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0
|
anirudh21/albert-xlarge-v2-finetuned-wnli | anirudh21 | 2022-01-26T08:43:31Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"albert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: albert-xlarge-v2-finetuned-wnli
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: wnli
metrics:
- name: Accuracy
type: accuracy
value: 0.5633802816901409
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# albert-xlarge-v2-finetuned-wnli
This model is a fine-tuned version of [albert-xlarge-v2](https://huggingface.co/albert-xlarge-v2) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6869
- Accuracy: 0.5634
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 40 | 0.6906 | 0.5070 |
| No log | 2.0 | 80 | 0.6869 | 0.5634 |
| No log | 3.0 | 120 | 0.6905 | 0.5352 |
| No log | 4.0 | 160 | 0.6960 | 0.4225 |
| No log | 5.0 | 200 | 0.7011 | 0.3803 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.0
- Tokenizers 0.10.3
|
gullenasatish/wav2vec2-base-timit-demo-colab | gullenasatish | 2022-01-26T08:36:41Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-base-timit-demo-colab
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-timit-demo-colab
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4872
- Wer: 0.3417
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.4857 | 4.0 | 500 | 1.4555 | 1.0040 |
| 0.5994 | 8.0 | 1000 | 0.5011 | 0.4370 |
| 0.2273 | 12.0 | 1500 | 0.4293 | 0.3903 |
| 0.1235 | 16.0 | 2000 | 0.4602 | 0.3772 |
| 0.084 | 20.0 | 2500 | 0.5055 | 0.3673 |
| 0.0615 | 24.0 | 3000 | 0.4915 | 0.3486 |
| 0.0468 | 28.0 | 3500 | 0.4872 | 0.3417 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
danielbubiola/bangla_asr | danielbubiola | 2022-01-26T07:42:22Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
tags:
- generated_from_trainer
model-index:
- name: bangla_asr
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bangla_asr
This model is a fine-tuned version of [Harveenchadha/vakyansh-wav2vec2-bengali-bnm-200](https://huggingface.co/Harveenchadha/vakyansh-wav2vec2-bengali-bnm-200) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 157.8652
- Wer: 0.4507
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 60
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 2601.5363 | 7.46 | 500 | 259.6630 | 0.6863 |
| 417.7386 | 14.93 | 1000 | 156.6117 | 0.5275 |
| 262.9455 | 22.39 | 1500 | 155.0886 | 0.5006 |
| 178.7715 | 29.85 | 2000 | 155.1077 | 0.4840 |
| 132.448 | 37.31 | 2500 | 163.8623 | 0.4770 |
| 116.3943 | 44.78 | 3000 | 161.5531 | 0.4609 |
| 87.1653 | 52.24 | 3500 | 165.6857 | 0.4597 |
| 80.5606 | 59.7 | 4000 | 157.8652 | 0.4507 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
kxiaoqiangrexian/bert_test | kxiaoqiangrexian | 2022-01-26T06:52:37Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
license: apache-2.0
---
|
vuiseng9/bert-mnli | vuiseng9 | 2022-01-26T06:48:02Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | This model is developed with transformers v4.9.1.
```
m = 0.8444
eval_samples = 9815
mm = 0.8495
eval_samples = 9832
```
# Train
```bash
#!/usr/bin/env bash
export CUDA_VISIBLE_DEVICES=0
OUTDIR=bert-mnli
NEPOCH=3
WORKDIR=transformers/examples/pytorch/text-classification
cd $WORKDIR
python run_glue.py \
--model_name_or_path bert-base-uncased \
--task_name mnli \
--max_seq_length 128 \
--do_train \
--per_device_train_batch_size 32 \
--learning_rate 2e-5 \
--num_train_epochs $NEPOCH \
--logging_steps 1 \
--evaluation_strategy steps \
--save_steps 3000 \
--do_eval \
--per_device_eval_batch_size 128 \
--eval_steps 250 \
--output_dir $OUTDIR
--overwrite_output_dir
```
# Eval
```bash
export CUDA_VISIBLE_DEVICES=0
OUTDIR=eval-bert-mnli
WORKDIR=transformers/examples/pytorch/text-classification
cd $WORKDIR
nohup python run_glue.py \
--model_name_or_path vuiseng9/bert-mnli \
--task_name mnli \
--do_eval \
--per_device_eval_batch_size 128 \
--max_seq_length 128 \
--overwrite_output_dir \
--output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log &
```
|
GleamEyeBeast/test | GleamEyeBeast | 2022-01-26T04:38:42Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:04Z | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: test
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# test
This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1761
- Wer: 0.2161
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 5.5828 | 4.0 | 500 | 3.0263 | 1.0 |
| 1.8657 | 8.0 | 1000 | 0.2213 | 0.2650 |
| 0.332 | 12.0 | 1500 | 0.2095 | 0.2413 |
| 0.2037 | 16.0 | 2000 | 0.1906 | 0.2222 |
| 0.1282 | 20.0 | 2500 | 0.1761 | 0.2161 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
ziqingyang/XLMRobertaBaseForXNLI-en | ziqingyang | 2022-01-26T02:03:42Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"xlm-roberta",
"fill-mask",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2022-03-02T23:29:05Z | ---
license: apache-2.0
---
|
chmanoj/xls-r-300m-sv | chmanoj | 2022-01-26T00:01:07Z | 8 | 0 | transformers | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"mozilla-foundation/common_voice_7_0",
"generated_from_trainer",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
language:
- sv-SE
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_7_0
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: ''
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - SV-SE dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8004
- Wer: 0.7139
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 10.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 2.6683 | 1.45 | 500 | 1.7698 | 1.0041 |
| 1.9548 | 2.91 | 1000 | 1.0890 | 0.8602 |
| 1.9568 | 4.36 | 1500 | 1.0878 | 0.8680 |
| 1.9497 | 5.81 | 2000 | 1.1501 | 0.8838 |
| 1.8453 | 7.27 | 2500 | 1.0452 | 0.8418 |
| 1.6952 | 8.72 | 3000 | 0.9153 | 0.7823 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.0+cu113
- Datasets 1.18.1.dev0
- Tokenizers 0.10.3
|
jiobiala24/wav2vec2-base-checkpoint-9 | jiobiala24 | 2022-01-25T19:52:35Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-base-checkpoint-9
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-checkpoint-9
This model is a fine-tuned version of [jiobiala24/wav2vec2-base-checkpoint-8](https://huggingface.co/jiobiala24/wav2vec2-base-checkpoint-8) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9203
- Wer: 0.3258
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.2783 | 1.58 | 1000 | 0.5610 | 0.3359 |
| 0.2251 | 3.16 | 2000 | 0.5941 | 0.3374 |
| 0.173 | 4.74 | 3000 | 0.6026 | 0.3472 |
| 0.1475 | 6.32 | 4000 | 0.6750 | 0.3482 |
| 0.1246 | 7.9 | 5000 | 0.6673 | 0.3414 |
| 0.1081 | 9.48 | 6000 | 0.7072 | 0.3409 |
| 0.1006 | 11.06 | 7000 | 0.7413 | 0.3392 |
| 0.0879 | 12.64 | 8000 | 0.7831 | 0.3394 |
| 0.0821 | 14.22 | 9000 | 0.7371 | 0.3333 |
| 0.0751 | 15.8 | 10000 | 0.8321 | 0.3445 |
| 0.0671 | 17.38 | 11000 | 0.8362 | 0.3357 |
| 0.0646 | 18.96 | 12000 | 0.8709 | 0.3367 |
| 0.0595 | 20.54 | 13000 | 0.8352 | 0.3321 |
| 0.0564 | 22.12 | 14000 | 0.8854 | 0.3323 |
| 0.052 | 23.7 | 15000 | 0.9031 | 0.3315 |
| 0.0485 | 25.28 | 16000 | 0.9171 | 0.3278 |
| 0.046 | 26.86 | 17000 | 0.9390 | 0.3254 |
| 0.0438 | 28.44 | 18000 | 0.9203 | 0.3258 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
Subsets and Splits