modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-06-05 12:28:32
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 468
values | tags
sequencelengths 1
4.05k
| pipeline_tag
stringclasses 54
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-06-05 12:27:45
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
lucianpopa/autonlp-SST1-529214890 | lucianpopa | 2022-01-25T17:30:09Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"roberta",
"text-classification",
"autonlp",
"en",
"dataset:lucianpopa/autonlp-data-SST1",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
tags: autonlp
language: en
widget:
- text: "I love AutoNLP 🤗"
datasets:
- lucianpopa/autonlp-data-SST1
co2_eq_emissions: 49.618294309910624
---
# Model Trained Using AutoNLP
- Problem type: Multi-class Classification
- Model ID: 529214890
- CO2 Emissions (in grams): 49.618294309910624
## Validation Metrics
- Loss: 0.7135734558105469
- Accuracy: 0.7042338838232481
- Macro F1: 0.6164041045783032
- Micro F1: 0.7042338838232481
- Weighted F1: 0.7028309161791009
- Macro Precision: 0.6497438111060598
- Micro Precision: 0.7042338838232481
- Weighted Precision: 0.7076651075198755
- Macro Recall: 0.6023419083862918
- Micro Recall: 0.7042338838232481
- Weighted Recall: 0.7042338838232481
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/lucianpopa/autonlp-SST1-529214890
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("lucianpopa/autonlp-SST1-529214890", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("lucianpopa/autonlp-SST1-529214890", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
``` |
anirudh21/electra-base-discriminator-finetuned-rte | anirudh21 | 2022-01-25T15:43:18Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"electra",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: electra-base-discriminator-finetuned-rte
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: rte
metrics:
- name: Accuracy
type: accuracy
value: 0.8231046931407943
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# electra-base-discriminator-finetuned-rte
This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4793
- Accuracy: 0.8231
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 156 | 0.6076 | 0.6570 |
| No log | 2.0 | 312 | 0.4824 | 0.7762 |
| No log | 3.0 | 468 | 0.4793 | 0.8231 |
| 0.4411 | 4.0 | 624 | 0.7056 | 0.7906 |
| 0.4411 | 5.0 | 780 | 0.6849 | 0.8159 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.0
- Tokenizers 0.10.3
|
huggingtweets/arryadia_brk | huggingtweets | 2022-01-25T14:04:36Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: http://www.huggingtweets.com/arryadia_brk/1643119471683/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1479498403251896320/uDVlO62z_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">الرياضية - عاجل</div>
<div style="text-align: center; font-size: 14px;">@arryadia_brk</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from الرياضية - عاجل.
| Data | الرياضية - عاجل |
| --- | --- |
| Tweets downloaded | 1548 |
| Retweets | 11 |
| Short tweets | 33 |
| Tweets kept | 1504 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/24udtdhw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @arryadia_brk's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2e36ahiu) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2e36ahiu/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/arryadia_brk')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
dhanesh123in/layoutlmv2-finetuned-funsd-test | dhanesh123in | 2022-01-25T12:33:29Z | 7 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"layoutlmv2",
"token-classification",
"generated_from_trainer",
"license:cc-by-nc-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2022-03-02T23:29:05Z | ---
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
model-index:
- name: layoutlmv2-finetuned-funsd-test
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# layoutlmv2-finetuned-funsd-test
This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 1000
### Training results
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1
- Datasets 1.18.0
- Tokenizers 0.11.0
|
deepdoctection/tp_casc_rcnn_X_32xd4_50_FPN_GN_2FC_pubtabnet_c_inference_only | deepdoctection | 2022-01-25T09:23:24Z | 0 | 0 | null | [
"Tensorflow",
"dataset:Pubtabnet",
"arxiv:1911.10683",
"license:apache-2.0",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
tags:
- Tensorflow
license: apache-2.0
datasets:
- Pubtabnet
---
# Tensorpacks Cascade-RCNN with FPN and Group Normalization on ResNext32xd4-50 trained on Pubtabnet for Semantic Segmentation of tables.
The model and its training code has been mainly taken from: [Tensorpack](https://github.com/tensorpack/tensorpack/tree/master/examples/FasterRCNN) .
Regarding the dataset, please check: [Xu Zhong et. all. - Image-based table recognition: data, model, and evaluation](https://arxiv.org/abs/1911.10683).
The model has been trained on detecting cells from tables. Note, that the datasets contains tables only. Therefore, it is required to perform a table detection task before
detecting cells.
The code has been adapted so that it can be used in a **deep**doctection pipeline.
## How this model can be used
This model can be used with the **deep**doctection in a full pipeline, along with table recognition and OCR. Check the general instruction following this [Get_started](https://github.com/deepdoctection/deepdoctection/blob/master/notebooks/Get_Started.ipynb) tutorial.
## This is an inference model only
To reduce the size of the checkpoint we removed all variables that are not necessary for inference. Therefore it cannot be used for fine-tuning. To fine tune this model please check this [model](https://huggingface.co/deepdoctection/tp_casc_rcnn_X_32xd4_50_FPN_GN_2FC_pubtabnet_c) .
## How this model was trained.
To recreate the model run on the **deep**doctection framework, run:
```python
>>> import os
>>> from deep_doctection.datasets import DatasetRegistry
>>> from deep_doctection.eval import MetricRegistry
>>> from deep_doctection.utils import get_configs_dir_path
>>> from deep_doctection.train import train_faster_rcnn
pubtabnet = DatasetRegistry.get_dataset("pubtabnet")
pubtabnet.dataflow.categories.filter_categories(categories="CELL")
path_config_yaml=os.path.join(get_configs_dir_path(),"tp/cell/conf_frcnn_cell.yaml")
path_weights = ""
dataset_train = pubtabnet
config_overwrite=["TRAIN.STEPS_PER_EPOCH=500","TRAIN.STARTING_EPOCH=1",
"TRAIN.CHECKPOINT_PERIOD=50","BACKBONE.FREEZE_AT=0", "PREPROC.TRAIN_SHORT_EDGE_SIZE=[200,600]"]
build_train_config=["max_datapoints=500000"]
dataset_val = pubtabnet
build_val_config = ["max_datapoints=4000"]
coco_metric = MetricRegistry.get_metric("coco")
coco_metric.set_params(max_detections=[50,200,600], area_range=[[0,1000000],[0,200],[200,800],[800,1000000]])
train_faster_rcnn(path_config_yaml=path_config_yaml,
dataset_train=dataset_train,
path_weights=path_weights,
config_overwrite=config_overwrite,
log_dir="/path/to/dir",
build_train_config=build_train_config,
dataset_val=dataset_val,
build_val_config=build_val_config,
metric=coco_metric,
pipeline_component_name="ImageLayoutService"
)
```
## How to fine-tune this model
To fine tune this model, please check this [Fine-tune](https://github.com/deepdoctection/deepdoctection/blob/master/notebooks/Fine_Tune.ipynb) tutorial. |
NimaBoscarino/aot-gan-celebahq | NimaBoscarino | 2022-01-25T08:38:46Z | 4 | 1 | transformers | [
"transformers",
"pytorch",
"face-recognition",
"face-generation",
"face-segmentation",
"generative-adversarial-network",
"dataset:celeba-hq",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:04Z | ---
tags:
- face-recognition
- face-generation
- face-segmentation
- generative-adversarial-network
metrics:
- L1
- PSNR
- SSIM
- FID
datasets:
- celeba-hq
---
# AOT-GAN CelebA-HQ
AOT-GAN is a model that can be used for image in-painting. The CelebA-HQ checkpoint is trained on synthetic human faces, which should make it suitable for touching up and restoring portraits.
This model was generated using [AOT-GAN-for-Inpainting](https://github.com/researchmm/AOT-GAN-for-Inpainting), cited as
```
@inproceedings{yan2021agg,
author = {Zeng, Yanhong and Fu, Jianlong and Chao, Hongyang and Guo, Baining},
title = {Aggregated Contextual Transformations for High-Resolution Image Inpainting},
booktitle = {Arxiv},
pages={-},
year = {2020}
}
```
## Dataset
The CelebA-HQ dataset was created with this codebase: https://github.com/tkarras/progressive_growing_of_gans, owned by NVidia and licensed under Creative Commons Attribution-NonCommercial 4.0 International. |
Suva/uptag-url-model | Suva | 2022-01-25T04:32:49Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"t5",
"text2text-generation",
"dataset:arxiv",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2022-03-02T23:29:05Z | ---
datasets:
- arxiv
widget:
- text: "summarize: We describe a system called Overton, whose main design goal is to support engineers in building, monitoring, and improving production
machinelearning systems. Key challenges engineers face are monitoring fine-grained quality, diagnosing errors in sophisticated applications, and
handling contradictory or incomplete supervision data. Overton automates the life cycle of model construction, deployment, and monitoring by providing a set of novel high-level, declarative abstractions. Overton's vision is to shift developers to these higher-level tasks instead of lower-level machine learning tasks.
In fact, using Overton, engineers can build deep-learning-based applications without writing any code in frameworks like TensorFlow. For over a year,
Overton has been used in production to support multiple applications in both near-real-time applications and back-of-house processing.
In that time, Overton-based applications have answered billions of queries in multiple languages and processed trillions of records reducing errors
1.7-2.9 times versus production systems."
license: mit
---
## Usage:
```python
abstract = """We describe a system called Overton, whose main design goal is to support engineers in building, monitoring, and improving production
machine learning systems. Key challenges engineers face are monitoring fine-grained quality, diagnosing errors in sophisticated applications, and
handling contradictory or incomplete supervision data. Overton automates the life cycle of model construction, deployment, and monitoring by providing a
set of novel high-level, declarative abstractions. Overton's vision is to shift developers to these higher-level tasks instead of lower-level machine learning tasks.
In fact, using Overton, engineers can build deep-learning-based applications without writing any code in frameworks like TensorFlow. For over a year,
Overton has been used in production to support multiple applications in both near-real-time applications and back-of-house processing. In that time,
Overton-based applications have answered billions of queries in multiple languages and processed trillions of records reducing errors 1.7-2.9 times versus production systems.
"""
```
### Using Transformers🤗
```python
model_name = "Suva/uptag-url-model"
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
input_ids = tokenizer.encode("summarize: " + abstract, return_tensors="pt", add_special_tokens=True)
generated_ids = model.generate(input_ids=input_ids,num_beams=5,max_length=100,repetition_penalty=2.5,length_penalty=1,early_stopping=True,num_return_sequences=3)
preds = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True) for g in generated_ids]
print(preds)
# output
["Overton: Building, Deploying, and Monitoring Machine Learning Systems for Engineers",
"Overton: A System for Building, Monitoring, and Improving Production Machine Learning Systems",
"Overton: Building, Monitoring, and Improving Production Machine Learning Systems"]
``` |
byeongal/gpt-j-6B-float15 | byeongal | 2022-01-25T04:25:23Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
license: apache-2.0
---
|
byeongal/gpt-j-6B-float16 | byeongal | 2022-01-25T03:21:06Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
license: apache-2.0
---
|
shunxing1234/test_model | shunxing1234 | 2022-01-25T03:14:05Z | 0 | 0 | null | [
"region:us"
] | null | 2022-03-02T23:29:05Z | Model_name
description
tutorial |
mtglearn/roberta-mtg-cards | mtglearn | 2022-01-25T02:57:42Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
license: apache-2.0
---
|
Fengkai/distilbert-base-uncased-finetuned-emotion | Fengkai | 2022-01-25T02:11:58Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:04Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9385
- name: F1
type: f1
value: 0.9383492808338979
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1495
- Accuracy: 0.9385
- F1: 0.9383
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.1739 | 1.0 | 250 | 0.1827 | 0.931 | 0.9302 |
| 0.1176 | 2.0 | 500 | 0.1567 | 0.9325 | 0.9326 |
| 0.0994 | 3.0 | 750 | 0.1555 | 0.9385 | 0.9389 |
| 0.08 | 4.0 | 1000 | 0.1496 | 0.9445 | 0.9443 |
| 0.0654 | 5.0 | 1250 | 0.1495 | 0.9385 | 0.9383 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.0+cu111
- Datasets 1.18.0
- Tokenizers 0.10.3
|
aviator-neural/gpt2-donald_trump | aviator-neural | 2022-01-24T22:09:58Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
license: mit
tags:
- generated_from_trainer
model-index:
- name: gpt2-donald_trump
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gpt2-donald_trump
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.8721
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 391 | 2.8721 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.0
- Tokenizers 0.10.3
|
birgermoell/wav2vec2-common_voice-tr-demo | birgermoell | 2022-01-24T18:52:26Z | 10 | 0 | transformers | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"common_voice",
"generated_from_trainer",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
language:
- sv-SE
license: apache-2.0
tags:
- automatic-speech-recognition
- common_voice
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-common_voice-tr-demo
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-common_voice-tr-demo
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the COMMON_VOICE - SV-SE dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5528
- Wer: 0.3811
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 15.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 0.74 | 100 | 3.4444 | 1.0 |
| No log | 1.47 | 200 | 2.9421 | 1.0 |
| No log | 2.21 | 300 | 2.2802 | 1.0137 |
| No log | 2.94 | 400 | 0.9683 | 0.7611 |
| 3.7264 | 3.68 | 500 | 0.7941 | 0.6594 |
| 3.7264 | 4.41 | 600 | 0.6695 | 0.5751 |
| 3.7264 | 5.15 | 700 | 0.6507 | 0.5314 |
| 3.7264 | 5.88 | 800 | 0.5731 | 0.4927 |
| 3.7264 | 6.62 | 900 | 0.5723 | 0.4580 |
| 0.4592 | 7.35 | 1000 | 0.5913 | 0.4479 |
| 0.4592 | 8.09 | 1100 | 0.5562 | 0.4423 |
| 0.4592 | 8.82 | 1200 | 0.5566 | 0.4292 |
| 0.4592 | 9.56 | 1300 | 0.5492 | 0.4303 |
| 0.4592 | 10.29 | 1400 | 0.5665 | 0.4331 |
| 0.2121 | 11.03 | 1500 | 0.5610 | 0.4084 |
| 0.2121 | 11.76 | 1600 | 0.5703 | 0.4014 |
| 0.2121 | 12.5 | 1700 | 0.5669 | 0.3898 |
| 0.2121 | 13.24 | 1800 | 0.5586 | 0.3962 |
| 0.2121 | 13.97 | 1900 | 0.5656 | 0.3897 |
| 0.1326 | 14.71 | 2000 | 0.5565 | 0.3813 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
asanwari/agriculture-sentence-transformer | asanwari | 2022-01-24T17:36:27Z | 0 | 0 | sentence-transformers | [
"sentence-transformers",
"sentence-similarity",
"transformers",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | sentence-similarity | 2022-03-02T23:29:05Z | ---
pipeline_tag: sentence-similarity
language: english
tags:
- sentence-transformers
- sentence-similarity
- transformers
---
# recobo/agri-sentence-transformer
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search.
This model was built using [recobo/agriculture-bert-uncased](https://huggingface.co/recobo/agriculture-bert-uncased), which is a BERT model trained on 6.5 million passages from the agricultural domain. Hence, this model is expected to perform well on sentence similarity tasks specifically for agricultural text data.
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["A man is eating food.", "A man is eating a piece of bread"]
model = SentenceTransformer('recobo/agri-sentence-transformer')
embeddings = model.encode(sentences)
print(embeddings)
|
EColi/sponsorblock-base-v1 | EColi | 2022-01-24T17:23:23Z | 5 | 1 | transformers | [
"transformers",
"pytorch",
"t5",
"text2text-generation",
"generated_from_trainer",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2022-03-02T23:29:04Z | ---
tags:
- generated_from_trainer
model-index:
- name: out
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# out
This model is a fine-tuned version of [/1TB_SSD/SB_AI/out_epoch1/out/checkpoint-1115000/](https://huggingface.co//1TB_SSD/SB_AI/out_epoch1/out/checkpoint-1115000/) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0645
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 2518227880
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-------:|:---------------:|
| 0.0867 | 0.07 | 75000 | 0.0742 |
| 0.0783 | 0.13 | 150000 | 0.0695 |
| 0.0719 | 0.2 | 225000 | 0.0732 |
| 0.0743 | 0.27 | 300000 | 0.0663 |
| 0.0659 | 0.34 | 375000 | 0.0686 |
| 0.0664 | 0.4 | 450000 | 0.0683 |
| 0.0637 | 0.47 | 525000 | 0.0680 |
| 0.0655 | 0.54 | 600000 | 0.0641 |
| 0.0676 | 0.6 | 675000 | 0.0644 |
| 0.0704 | 0.67 | 750000 | 0.0645 |
| 0.0687 | 0.74 | 825000 | 0.0610 |
| 0.059 | 0.81 | 900000 | 0.0652 |
| 0.0666 | 0.87 | 975000 | 0.0619 |
| 0.0624 | 0.94 | 1050000 | 0.0619 |
| 0.0625 | 1.01 | 1125000 | 0.0667 |
| 0.0614 | 1.03 | 1150000 | 0.0658 |
| 0.0597 | 1.05 | 1175000 | 0.0683 |
| 0.0629 | 1.07 | 1200000 | 0.0691 |
| 0.0603 | 1.1 | 1225000 | 0.0678 |
| 0.0601 | 1.12 | 1250000 | 0.0746 |
| 0.0606 | 1.14 | 1275000 | 0.0691 |
| 0.0671 | 1.16 | 1300000 | 0.0702 |
| 0.0625 | 1.19 | 1325000 | 0.0661 |
| 0.0617 | 1.21 | 1350000 | 0.0688 |
| 0.0579 | 1.23 | 1375000 | 0.0679 |
| 0.0663 | 1.25 | 1400000 | 0.0634 |
| 0.0583 | 1.28 | 1425000 | 0.0638 |
| 0.0623 | 1.3 | 1450000 | 0.0681 |
| 0.0615 | 1.32 | 1475000 | 0.0670 |
| 0.0592 | 1.34 | 1500000 | 0.0666 |
| 0.0626 | 1.37 | 1525000 | 0.0666 |
| 0.063 | 1.39 | 1550000 | 0.0647 |
| 0.0648 | 1.41 | 1575000 | 0.0653 |
| 0.0611 | 1.43 | 1600000 | 0.0700 |
| 0.0622 | 1.46 | 1625000 | 0.0634 |
| 0.0617 | 1.48 | 1650000 | 0.0651 |
| 0.0613 | 1.5 | 1675000 | 0.0634 |
| 0.0639 | 1.52 | 1700000 | 0.0661 |
| 0.0615 | 1.54 | 1725000 | 0.0644 |
| 0.0605 | 1.57 | 1750000 | 0.0662 |
| 0.0622 | 1.59 | 1775000 | 0.0656 |
| 0.0585 | 1.61 | 1800000 | 0.0633 |
| 0.0628 | 1.63 | 1825000 | 0.0625 |
| 0.0638 | 1.66 | 1850000 | 0.0662 |
| 0.0599 | 1.68 | 1875000 | 0.0664 |
| 0.0583 | 1.7 | 1900000 | 0.0668 |
| 0.0543 | 1.72 | 1925000 | 0.0631 |
| 0.06 | 1.75 | 1950000 | 0.0629 |
| 0.0615 | 1.77 | 1975000 | 0.0644 |
| 0.0587 | 1.79 | 2000000 | 0.0663 |
| 0.0647 | 1.81 | 2025000 | 0.0654 |
| 0.0604 | 1.84 | 2050000 | 0.0639 |
| 0.0641 | 1.86 | 2075000 | 0.0636 |
| 0.0604 | 1.88 | 2100000 | 0.0636 |
| 0.0654 | 1.9 | 2125000 | 0.0652 |
| 0.0588 | 1.93 | 2150000 | 0.0638 |
| 0.0616 | 1.95 | 2175000 | 0.0657 |
| 0.0598 | 1.97 | 2200000 | 0.0646 |
| 0.0633 | 1.99 | 2225000 | 0.0645 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.17.0
- Tokenizers 0.10.3
|
deepdoctection/tp_casc_rcnn_X_32xd4_50_FPN_GN_2FC_pubtabnet_c | deepdoctection | 2022-01-24T16:15:44Z | 0 | 0 | null | [
"Tensorflow",
"dataset:Pubtabnet",
"arxiv:1911.10683",
"license:apache-2.0",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
tags:
- Tensorflow
license: apache-2.0
datasets:
- Pubtabnet
---
# Tensorpacks Cascade-RCNN with FPN and Group Normalization on ResNext32xd4-50 trained on Pubtabnet for Semantic Segmentation of tables.
The model and its training code has been mainly taken from: [Tensorpack](https://github.com/tensorpack/tensorpack/tree/master/examples/FasterRCNN) .
Regarding the dataset, please check: [Xu Zhong et. all. - Image-based table recognition: data, model, and evaluation](https://arxiv.org/abs/1911.10683).
The model has been trained on detecting cells from tables. Note, that the datasets contains tables only. Therefore, it is required to perform a table detection task before
detecting cells.
The code has been adapted so that it can be used in a **deep**doctection pipeline.
## How this model can be used
This model can be used with the **deep**doctection in a full pipeline, along with table recognition and OCR. Check the general instruction following this [Get_started](https://github.com/deepdoctection/deepdoctection/blob/master/notebooks/Get_Started.ipynb) tutorial.
## How this model was trained.
To recreate the model run on the **deep**doctection framework, run:
```python
>>> import os
>>> from deep_doctection.datasets import DatasetRegistry
>>> from deep_doctection.eval import MetricRegistry
>>> from deep_doctection.utils import get_configs_dir_path
>>> from deep_doctection.train import train_faster_rcnn
pubtabnet = DatasetRegistry.get_dataset("pubtabnet")
pubtabnet.dataflow.categories.filter_categories(categories="CELL")
path_config_yaml=os.path.join(get_configs_dir_path(),"tp/cell/conf_frcnn_cell.yaml")
path_weights = ""
dataset_train = pubtabnet
config_overwrite=["TRAIN.STEPS_PER_EPOCH=500","TRAIN.STARTING_EPOCH=1",
"TRAIN.CHECKPOINT_PERIOD=50","BACKBONE.FREEZE_AT=0", "PREPROC.TRAIN_SHORT_EDGE_SIZE=[200,600]"]
build_train_config=["max_datapoints=500000"]
dataset_val = pubtabnet
build_val_config = ["max_datapoints=4000"]
coco_metric = MetricRegistry.get_metric("coco")
coco_metric.set_params(max_detections=[50,200,600], area_range=[[0,1000000],[0,200],[200,800],[800,1000000]])
train_faster_rcnn(path_config_yaml=path_config_yaml,
dataset_train=dataset_train,
path_weights=path_weights,
config_overwrite=config_overwrite,
log_dir="/path/to/dir",
build_train_config=build_train_config,
dataset_val=dataset_val,
build_val_config=build_val_config,
metric=coco_metric,
pipeline_component_name="ImageLayoutService"
)
```
## How to fine-tune this model
To fine tune this model, please check this [Fine-tune](https://github.com/deepdoctection/deepdoctection/blob/master/notebooks/Fine_Tune.ipynb) tutorial. |
dbsamu/electra-small-discriminator-finetuned-ner | dbsamu | 2022-01-24T14:27:41Z | 13 | 1 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"electra",
"token-classification",
"generated_from_trainer",
"dataset:wikiann",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- wikiann
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: electra-small-discriminator-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: wikiann
type: wikiann
args: en
metrics:
- name: Precision
type: precision
value: 0.7330965535385425
- name: Recall
type: recall
value: 0.7542632861138681
- name: F1
type: f1
value: 0.7435293071244329
- name: Accuracy
type: accuracy
value: 0.8883011190233978
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# electra-small-discriminator-finetuned-ner
This model is a fine-tuned version of [google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) on the wikiann dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3685
- Precision: 0.7331
- Recall: 0.7543
- F1: 0.7435
- Accuracy: 0.8883
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.5465 | 1.0 | 1250 | 0.4158 | 0.6932 | 0.7201 | 0.7064 | 0.8735 |
| 0.4037 | 2.0 | 2500 | 0.3817 | 0.7191 | 0.7470 | 0.7328 | 0.8828 |
| 0.3606 | 3.0 | 3750 | 0.3685 | 0.7331 | 0.7543 | 0.7435 | 0.8883 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3
|
deepdoctection/tp_casc_rcnn_X_32xd4_50_FPN_GN_2FC_publaynet_inference_only | deepdoctection | 2022-01-24T13:05:27Z | 0 | 0 | null | [
"Tensorflow",
"dataset:Publaynet",
"arxiv:1908.07836",
"license:apache-2.0",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
tags:
- Tensorflow
license: apache-2.0
datasets:
- Publaynet
---
# Tensorpacks Cascade-RCNN with FPN and Group Normalization on ResNext32xd4-50 trained on Publaynet for Document Layout Analysis
The model and its training code has been mainly taken from: [Tensorpack](https://github.com/tensorpack/tensorpack/tree/master/examples/FasterRCNN) .
Please check: [Xu Zhong et. all. - PubLayNet: largest dataset ever for document layout analysis](https://arxiv.org/abs/1908.07836).
This model is different from the model used the paper.
The code has been adapted so that it can be used in a **deep**doctection pipeline.
## How this model can be used
This model can be used with the **deep**doctection in a full pipeline, along with table recognition and OCR. Check the general instruction following this [Get_started](https://github.com/deepdoctection/deepdoctection/blob/master/notebooks/Get_Started.ipynb) tutorial.
## This is an inference model only
To reduce the size of the checkpoint we removed all variables that are not necessary for inference. Therefore it cannot be used for fine-tuning. To fine tune this model please check [this model](https://huggingface.co/deepdoctection/tp_casc_rcnn_X_32xd4_50_FPN_GN_2FC_publaynet).
## How this model was trained.
To recreate the model run on the **deep**doctection framework, run:
```python
>>> import os
>>> from deep_doctection.datasets import DatasetRegistry
>>> from deep_doctection.eval import MetricRegistry
>>> from deep_doctection.utils import get_configs_dir_path
>>> from deep_doctection.train import train_faster_rcnn
publaynet = DatasetRegistry.get_dataset("publaynet")
path_config_yaml=os.path.join(get_configs_dir_path(),"tp/layout/conf_frcnn_layout.yaml")
path_weights = ""
dataset_train = publaynet
config_overwrite=["TRAIN.STEPS_PER_EPOCH=500","TRAIN.EVAL_PERIOD=200","TRAIN.STARTING_EPOCH=1",
"PREPROC.TRAIN_SHORT_EDGE_SIZE=[800,1200]","TRAIN.CHECKPOINT_PERIOD=50",
"BACKBONE.FREEZE_AT=0"]
build_train_config=["max_datapoints=335703"]
dataset_val = publaynet
build_val_config = ["max_datapoints=2000"]
coco_metric = MetricRegistry.get_metric("coco")
train_faster_rcnn(path_config_yaml=path_config_yaml,
dataset_train=dataset_train,
path_weights=path_weights,
config_overwrite=config_overwrite,
log_dir="/path/to/dir",
build_train_config=build_train_config,
dataset_val=dataset_val,
build_val_config=build_val_config,
metric=coco_metric,
pipeline_component_name="ImageLayoutService"
)
``` |
deepdoctection/tp_casc_rcnn_X_32xd4_50_FPN_GN_2FC_publaynet | deepdoctection | 2022-01-24T13:02:44Z | 0 | 1 | null | [
"Tensorflow",
"dataset:Publaynet",
"arxiv:1908.07836",
"license:apache-2.0",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
tags:
- Tensorflow
license: apache-2.0
datasets:
- Publaynet
---
# Tensorpacks Cascade-RCNN with FPN and Group Normalization on ResNext32xd4-50 trained on Publaynet for Document Layout Analysis
The model and its training code has been mainly taken from: [Tensorpack](https://github.com/tensorpack/tensorpack/tree/master/examples/FasterRCNN) .
Please check: [Xu Zhong et. all. - PubLayNet: largest dataset ever for document layout analysis](https://arxiv.org/abs/1908.07836).
This model is different from the model used the paper.
The code has been adapted so that it can be used in a **deep**doctection pipeline.
## How this model can be used
This model can be used with the **deep**doctection in a full pipeline, along with table recognition and OCR. Check the general instruction following this [Get_started](https://github.com/deepdoctection/deepdoctection/blob/master/notebooks/Get_Started.ipynb) tutorial.
## How this model was trained.
To recreate the model run on the **deep**doctection framework, run:
```python
>>> import os
>>> from deep_doctection.datasets import DatasetRegistry
>>> from deep_doctection.eval import MetricRegistry
>>> from deep_doctection.utils import get_configs_dir_path
>>> from deep_doctection.train import train_faster_rcnn
publaynet = DatasetRegistry.get_dataset("publaynet")
path_config_yaml=os.path.join(get_configs_dir_path(),"tp/layout/conf_frcnn_layout.yaml")
path_weights = ""
dataset_train = publaynet
config_overwrite=["TRAIN.STEPS_PER_EPOCH=500","TRAIN.EVAL_PERIOD=200","TRAIN.STARTING_EPOCH=1",
"PREPROC.TRAIN_SHORT_EDGE_SIZE=[800,1200]","TRAIN.CHECKPOINT_PERIOD=50",
"BACKBONE.FREEZE_AT=0"]
build_train_config=["max_datapoints=335703"]
dataset_val = publaynet
build_val_config = ["max_datapoints=2000"]
coco_metric = MetricRegistry.get_metric("coco")
train_faster_rcnn(path_config_yaml=path_config_yaml,
dataset_train=dataset_train,
path_weights=path_weights,
config_overwrite=config_overwrite,
log_dir="/path/to/dir",
build_train_config=build_train_config,
dataset_val=dataset_val,
build_val_config=build_val_config,
metric=coco_metric,
pipeline_component_name="ImageLayoutService"
)
```
## How to fine-tune this model
To fine tune this model, please check this [Fine-tune](https://github.com/deepdoctection/deepdoctection/blob/master/notebooks/Fine_Tune.ipynb) tutorial. |
nimelinia/rut5-reply-headline-model | nimelinia | 2022-01-24T12:31:54Z | 1 | 0 | transformers | [
"transformers",
"pytorch",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | This model was trained from rut5-base-multitask with pair of questions and answers (in Russian).
The model demonstrate interesting behavior with option "reply" and "headline".
When model creates a headline for paragraph of text, it not only uses phrases from text, but also generate new words and sometimes new meanings.
Examples of questions and answers:
> Как зовут отца Александра Сергеевича Пушкина?
> - Пушкин
> Где купить вкусное мороженое?
> - В супермаркете
> Красивая ли Мона Лиза?
> - Очень красивая
Examples of headlines:
> Власти Пекина из-за пандемии COVID-19 призвали жителей города отказаться от помощи и избегать любого контакта с олимпийскими машинами, попавшими в ДТП. Об этом сообщает South China Morning Post.
> - Китайский губернатор призвал жителей Пекина отказаться от помощи
> Казахский народ должен поддержать своего президента Касым-Жомарт Токаева на фоне угрозы повторения массовых беспорядков, но и властям страны следует провести демократические реформы для снижения недовольства. Об этом в интервью изданию Orda заявил бывший генеральный продюсер гостелеканала «Хабар», экс-глава канала «Ел Арна» Серик Абас-Шах.
> - Казахский народ должен поддержать Токаева
> Позиция России по макроэкономическим показателям является лучшей в мире. Об этом сказал ТАСС российский исполнительный директор в Международном валютном фонде (МВФ) Алексей Можин.
> - Российская экономика является лучшей в мире |
philschmid/distilbert-base-multilingual-cased-sentiment | philschmid | 2022-01-24T12:14:53Z | 6,860 | 2 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:amazon_reviews_multi",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- amazon_reviews_multi
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-multilingual-cased-sentiment
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: amazon_reviews_multi
type: amazon_reviews_multi
args: all_languages
metrics:
- name: Accuracy
type: accuracy
value: 0.7648
- name: F1
type: f1
value: 0.7648
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-multilingual-cased-sentiment
This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the amazon_reviews_multi dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5842
- Accuracy: 0.7648
- F1: 0.7648
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 33
- distributed_type: sagemaker_data_parallel
- num_devices: 8
- total_train_batch_size: 128
- total_eval_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|
| 0.6405 | 0.53 | 5000 | 0.5826 | 0.7498 | 0.7498 |
| 0.5698 | 1.07 | 10000 | 0.5686 | 0.7612 | 0.7612 |
| 0.5286 | 1.6 | 15000 | 0.5593 | 0.7636 | 0.7636 |
| 0.5141 | 2.13 | 20000 | 0.5842 | 0.7648 | 0.7648 |
| 0.4763 | 2.67 | 25000 | 0.5736 | 0.7637 | 0.7637 |
| 0.4549 | 3.2 | 30000 | 0.6027 | 0.7593 | 0.7593 |
| 0.4231 | 3.73 | 35000 | 0.6017 | 0.7552 | 0.7552 |
| 0.3965 | 4.27 | 40000 | 0.6489 | 0.7551 | 0.7551 |
| 0.3744 | 4.8 | 45000 | 0.6426 | 0.7534 | 0.7534 |
### Framework versions
- Transformers 4.12.3
- Pytorch 1.9.1
- Datasets 1.15.1
- Tokenizers 0.10.3
|
emre/wav2vec2-large-xlsr-53-demo-colab | emre | 2022-01-24T10:54:03Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"robust-speech-event",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
- robust-speech-event
datasets:
- common_voice
model-index:
- name: wav2vec2-large-xlsr-53-demo-colab
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xlsr-53-demo-colab
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3966
- Wer: 0.4834
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 5.1516 | 4.21 | 400 | 2.7673 | 1.0 |
| 0.9134 | 8.42 | 800 | 0.4618 | 0.6418 |
| 0.3273 | 12.63 | 1200 | 0.4188 | 0.5535 |
| 0.2252 | 16.84 | 1600 | 0.4144 | 0.5232 |
| 0.1692 | 21.05 | 2000 | 0.3995 | 0.5030 |
| 0.1355 | 25.26 | 2400 | 0.4073 | 0.4920 |
| 0.1172 | 29.47 | 2800 | 0.3966 | 0.4834 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.14.0
- Tokenizers 0.10.3
|
hfl/cino-base-v2 | hfl | 2022-01-24T10:34:45Z | 124 | 5 | transformers | [
"transformers",
"pytorch",
"tf",
"xlm-roberta",
"fill-mask",
"zh",
"bo",
"kk",
"ko",
"mn",
"ug",
"yue",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2022-03-02T23:29:05Z | ---
language:
- zh
- bo
- kk
- ko
- mn
- ug
- yue
license: "apache-2.0"
---
## CINO: Pre-trained Language Models for Chinese Minority Languages(中国少数民族预训练模型)
Multilingual Pre-trained Language Model, such as mBERT, XLM-R, provide multilingual and cross-lingual ability for language understanding.
We have seen rapid progress on building multilingual PLMs in recent year.
However, there is a lack of contributions on building PLMs on Chines minority languages, which hinders researchers from building powerful NLP systems.
To address the absence of Chinese minority PLMs, Joint Laboratory of HIT and iFLYTEK Research (HFL) proposes CINO (Chinese-miNOrity pre-trained language model), which is built on XLM-R with additional pre-training using Chinese minority corpus, such as
- Chinese,中文(zh)
- Tibetan,藏语(bo)
- Mongolian (Uighur form),蒙语(mn)
- Uyghur,维吾尔语(ug)
- Kazakh (Arabic form),哈萨克语(kk)
- Korean,朝鲜语(ko)
- Zhuang,壮语
- Cantonese,粤语(yue)
Please read our GitHub repository for more details (Chinese): https://github.com/ymcui/Chinese-Minority-PLM
You may also interested in,
Chinese MacBERT: https://github.com/ymcui/MacBERT
Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm
Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA
Chinese XLNet: https://github.com/ymcui/Chinese-XLNet
Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer
More resources by HFL: https://github.com/ymcui/HFL-Anthology
|
Vibharkchauhan/distilbert-base-uncased-finetuned-ner | Vibharkchauhan | 2022-01-24T10:30:44Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"dataset:conll2003",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9192622045504749
- name: Recall
type: recall
value: 0.9310884886452623
- name: F1
type: f1
value: 0.9251375534930251
- name: Accuracy
type: accuracy
value: 0.9823820039080496
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-ner
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0626
- Precision: 0.9193
- Recall: 0.9311
- F1: 0.9251
- Accuracy: 0.9824
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.2393 | 1.0 | 878 | 0.0732 | 0.9052 | 0.9207 | 0.9129 | 0.9801 |
| 0.0569 | 2.0 | 1756 | 0.0626 | 0.9193 | 0.9311 | 0.9251 | 0.9824 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.0
- Tokenizers 0.10.3
|
nntadotzip/xlnet-base-cased-IUChatbot-ontologyDts-localParams | nntadotzip | 2022-01-24T08:29:47Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"xlnet",
"question-answering",
"generated_from_trainer",
"license:mit",
"endpoints_compatible",
"region:us"
] | question-answering | 2022-03-02T23:29:05Z | ---
license: mit
tags:
- generated_from_trainer
model-index:
- name: xlnet-base-cased-IUChatbot-ontologyDts-localParams
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlnet-base-cased-IUChatbot-ontologyDts-localParams
This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0238
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.1172 | 1.0 | 1119 | 0.0657 |
| 0.0564 | 2.0 | 2238 | 0.0237 |
| 0.033 | 3.0 | 3357 | 0.0238 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.0
- Tokenizers 0.10.3
|
st1992/paraphrase-MiniLM-L12-tagalog-v2 | st1992 | 2022-01-24T05:48:32Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"feature-extraction",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] | feature-extraction | 2022-03-02T23:29:05Z |
# st1992/paraphrase-MiniLM-L12-tagalog-v2
paraphrase-MiniLM-L12-v2 finetuned on Tagalog language: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
## Usage (Sentence-Transformers) : same as other sentence-transformer models
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('st1992/paraphrase-MiniLM-L12-tagalog-v2')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['hindi po', 'tulog na']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('st1992/paraphrase-MiniLM-L12-tagalog-v2')
model = AutoModel.from_pretrained('st1992/paraphrase-MiniLM-L12-tagalog-v2')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, max pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
``` |
guoqiang/WuDaoSailing | guoqiang | 2022-01-24T05:39:39Z | 0 | 0 | null | [
"region:us"
] | null | 2022-03-02T23:29:05Z | # WudaoSailing
WudaoSailing is a package for pretraining chinese Language Model and finetune tasks. Now it supports GLM, Bert, T5, Cogview and Roberta models.
## Get Started
### Docker Image
We prepare two docker images based on CUDA 10.2 and CUDA 11.2. You can build images from the docker file [docs/docker/cuda102.dockerfile](docs/docker/cuda102.dcokerfile) or pull the pre-built images from Docker Hub and run with docker v19.03+
```shell
nvidia-docker run -id --hostname=V100 --network=host\
--ipc=host --shm-size=16gb --name=deepspeed-cuda \
-e NVIDIA_VISIBLE_DEVICES=0,1,2,3 \
-v /DATA/disk1/docker/containers/:/data deepspeed/cuda102:lastest
```
or replace `cuda102` with `cuda112`.
```shell
docker build -f cuda102.dockerfile -t deepspeed/cuda102 .
```
### Clone this repo
```shell
git clone https://github.com/wangguojim/WudaoSailing.git
cd WudaoSailing
pip install -r requirements.txt
```
## GLM
We show some examples based on GLM model.
### finetuene
We provide scripts for finetuning GLM on some downstream tasks.
#### SuperGLUE
- Download the [SuperGlue](https://super.gluebenchmark.com/tasks) data and check the experiment setup in
[examples/glm/scripts/ds_finetune_superglue.sh](xamples/glm/scripts/ds_finetune_superglue.sh). Note that `DATA_ROOT, CHECKPOINT_PATH, SAVE_PATH`
need to be changed to your local path. You may also change the `batch-size` and `nproc_per_node` according to your
available hardware.
- Run the following script for text similarity finetune task (use the afqmc dataset as an example)
```
cd examples/glm/
bash scripts/ds_finetune_superglue.sh\
config/model_blocklm_large_chinese.sh\
config_tasks/task_afqmc.sh
```
- Run the following script for text classification finetune task (use the thunews and thunews dataset as an example)
```
cd examples/glm/
bash scripts/ds_finetune_superglue.sh\
config/model_blocklm_large_chinese.sh\
config_tasks/task_tnews.sh
```
- Run the following script for causal inference finetune task (use the COPA dataset as an example)
```
cd examples/glm/
bash scripts/ds_finetune_superglue.sh\
config/model_blocklm_large_chinese.sh\
config_tasks/task_copa.sh
```
- To apply GLM to a new NLU dataset with cloze-filling finetuning, implement a `DataProcessor` in
[examples/glm/tasks/superglue/dataset.py](examples/glm/tasks/superglue/dataset.py) for data loading and add a `PVP` in
[examples/glm/tasks/superglue/pvp.py](examples/glm/tasks/superglue/pvp.py) for the cloze question. More details can be found
[here](examples/glm/tasks/superglue/README.md).
#### Blank Filling (Interactive)
* Change `CHECKPOINT_PATH` to your local path. Run the following script
```
bash config/generate_block.sh\
config/model_blocklm_large_chinese.sh
```
##### Example1 (Entity Prediction):
Context: 凯旋门位于意大利米兰市古城堡旁。1807年为纪念[MASK]而建,门高25米,顶上矗立两武士青铜古兵车铸像。
GLM:拿破仑军队攻克米兰城
##### Example2 (Sentence Prediction)
Context: 工业互联网(Industrial Internet)是新一代信息通信技术与工业经济深度融合的新型基础设施、应用模式和工业生态,通过对人、机、物、系统等的全面连接,构建起覆盖全产业链、全价值链的全新制造和服务体系,为工业乃至产业数字化、网络化、智能化发展提供了实现途径,是第四次工业革命的重要基石。[sMASK]它以网络为基础、平台为中枢、数据为要素、安全为保障,既是工业数字化、网络化、智能化转型的基础设施,也是互联网、大数据、人工智能与实体经济深度融合的应用模式,同时也是一种新业态、新产业,将重塑企业形态、供应链和产业链。当前,工业互联网融合应用向国民经济重点行业广泛拓展,形成平台化设计、智能化制造、网络化协同、个性化定制、服务化延伸、数字化管理六大新模式,赋能、赋智、赋值作用不断显现,有力的促进了实体经济提质、增效、降本、绿色、安全发展。
GLM: 工业互联网是制造业技术、管理、模式的重大变革,是推动互联网、大数据、人工智能和实体经济深度融合的重要载体,是建设制造强国和网络强国的重要基础。
##### Example3 (Long Text Generation)
Context: 问题:高斯所在的国家有什么汽车品牌?答案:[gMASK]
GLM:答案:[gMASK]<|startofpiece|>德国奔驰、德国大众、别克、沃尔沃、斯柯达、本田、雪铁龙.
### Ptuning
Run the following script to integrate p-tuning with GLM:
```shell
cd algutils/ptuning/
bash finetune_zy.sh
```
### Pretrain
Run the following script to pre-train the GLM-Large model
```shell
cd examples/glm/
bash scripts/ds_pretrain_nvidia.sh config/ds_block_large.sh
```
The script [examples/glm/config/ds_pretrain_nvidia.sh](examples/glm/config/ds_pretrain_nvidia.sh) launches the training program with DeepSpeed. You should change `NUM_WORKERS` and `NUM_GPUS_PER_WORKER` to the number of workers and the number of gpus per worker. Also change `HOST_FILE_PATH` to the path to an OpenMPI-style hostfile. More details about DeepSpeed launcher can be found [here](https://www.deepspeed.ai/getting-started/#resource-configuration-multi-node).
The file [examples/glm/config/ds_block_large.sh](examples/glm/config/ds_block_large.sh) defines the hyperparameters for pretraining. Most of the arguments are fairly self-explanatory. Specifically, `--train-data` can be multiple keywords defined in `NAMED_CORPORA` in [data_utils/corpora.py](data_utils/corpora.py). The hyperparameters of the optimizer are defined in the corresponding json file under `config`. The semantics of the json file can be found [here](https://www.deepspeed.ai/docs/config-json).
## Bert
We show some examples based on GLM model.
### Pretrain
Run the following script to pre-train the Bert model
```shell
cd examples/bert/
python quick_start.py
```
## CogView
### Pretrain
Run the following script to pre-train the cogview model
```shell
cd examples/cogview/
bash config/pretrain_multiple_nodes.sh
```
### inference
Run the following script to test the ability of text2image
```shell
cd examples/cogview/
bash config/text2image_cogview.sh
```
|
haji2438/bertweet-base-SNS_BRANDS_50k | haji2438 | 2022-01-24T03:51:35Z | 8 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"roberta",
"fill-mask",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2022-03-02T23:29:05Z | ---
tags:
- generated_from_trainer
model-index:
- name: bertweet-base-SNS_BRANDS_50k
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bertweet-base-SNS_BRANDS_50k
This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0490
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.0787 | 1.0 | 1465 | 0.0751 |
| 0.0662 | 2.0 | 2930 | 0.0628 |
| 0.053 | 3.0 | 4395 | 0.0531 |
| 0.0452 | 4.0 | 5860 | 0.0490 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.0
- Tokenizers 0.10.3
|
public-data/bizarre-pose-estimator-models | public-data | 2022-01-24T03:35:52Z | 0 | 0 | null | [
"region:us"
] | null | 2022-03-02T23:29:05Z | # bizarre-pose-estimator
- Repo: https://github.com/ShuhongChen/bizarre-pose-estimator
- https://drive.google.com/drive/folders/11bw47Vy-RPKjgd6yF0RzcXALvp7zB_wt
|
jiobiala24/wav2vec2-base-checkpoint-8 | jiobiala24 | 2022-01-24T01:26:07Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-base-checkpoint-8
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-checkpoint-8
This model is a fine-tuned version of [jiobiala24/wav2vec2-base-checkpoint-7.1](https://huggingface.co/jiobiala24/wav2vec2-base-checkpoint-7.1) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9561
- Wer: 0.3271
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.3117 | 1.59 | 1000 | 0.5514 | 0.3451 |
| 0.2509 | 3.19 | 2000 | 0.5912 | 0.3328 |
| 0.1918 | 4.78 | 3000 | 0.6103 | 0.3346 |
| 0.1612 | 6.38 | 4000 | 0.6469 | 0.3377 |
| 0.1388 | 7.97 | 5000 | 0.6597 | 0.3391 |
| 0.121 | 9.57 | 6000 | 0.6911 | 0.3472 |
| 0.1096 | 11.16 | 7000 | 0.7300 | 0.3457 |
| 0.0959 | 12.76 | 8000 | 0.7660 | 0.3400 |
| 0.0882 | 14.35 | 9000 | 0.8316 | 0.3394 |
| 0.0816 | 15.95 | 10000 | 0.8042 | 0.3357 |
| 0.0739 | 17.54 | 11000 | 0.8087 | 0.3346 |
| 0.0717 | 19.14 | 12000 | 0.8590 | 0.3353 |
| 0.066 | 20.73 | 13000 | 0.8750 | 0.3336 |
| 0.0629 | 22.33 | 14000 | 0.8759 | 0.3333 |
| 0.0568 | 23.92 | 15000 | 0.8963 | 0.3321 |
| 0.0535 | 25.52 | 16000 | 0.9391 | 0.3323 |
| 0.0509 | 27.11 | 17000 | 0.9279 | 0.3296 |
| 0.0498 | 28.71 | 18000 | 0.9561 | 0.3271 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
anas-awadalla/bert-medium-finetuned-squad | anas-awadalla | 2022-01-24T01:10:28Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"question-answering",
"endpoints_compatible",
"region:us"
] | question-answering | 2022-03-02T23:29:05Z | Results:
{'exact_match': 76.82119205298014, 'f1': 84.69734248389383} |
public-data/Yet-Another-Anime-Segmenter | public-data | 2022-01-24T00:00:14Z | 0 | 0 | null | [
"region:us"
] | null | 2022-03-02T23:29:05Z | # Yet-Another-Anime-Segmenter
- Repo: https://github.com/zymk9/Yet-Another-Anime-Segmenter
- https://drive.google.com/file/d/1-wFdQ4jwSTeJ7wGD3YKNJdcpSS5Ho8c9/view?usp=sharing
- https://raw.githubusercontent.com/zymk9/Yet-Another-Anime-Segmenter/main/configs/SOLOv2.yaml
|
mattchurgin/xls-r-eng | mattchurgin | 2022-01-23T17:31:10Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"mozilla-foundation/common_voice_7_0",
"generated_from_trainer",
"ab",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
language:
- ab
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_7_0
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: ''
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [patrickvonplaten/wav2vec2_tiny_random_robust](https://huggingface.co/patrickvonplaten/wav2vec2_tiny_random_robust) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset.
It achieves the following results on the evaluation set:
- Loss: inf
- Wer: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1.0
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1
- Datasets 1.18.1.dev0
- Tokenizers 0.11.0
|
shivam/wav2vec2-xls-r-300m-hindi | shivam | 2022-01-23T16:37:08Z | 4 | 1 | transformers | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"mozilla-foundation/common_voice_7_0",
"generated_from_trainer",
"hi",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
language:
- hi
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_7_0
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: ''
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HI dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4031
- Wer: 0.6827
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 100.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 5.3156 | 3.4 | 500 | 4.5583 | 1.0 |
| 3.3329 | 6.8 | 1000 | 3.4274 | 1.0001 |
| 2.1275 | 10.2 | 1500 | 1.7221 | 0.8763 |
| 1.5737 | 13.6 | 2000 | 1.4188 | 0.8143 |
| 1.3835 | 17.01 | 2500 | 1.2251 | 0.7447 |
| 1.3247 | 20.41 | 3000 | 1.2827 | 0.7394 |
| 1.231 | 23.81 | 3500 | 1.2216 | 0.7074 |
| 1.1819 | 27.21 | 4000 | 1.2210 | 0.6863 |
| 1.1546 | 30.61 | 4500 | 1.3233 | 0.7308 |
| 1.0902 | 34.01 | 5000 | 1.3251 | 0.7010 |
| 1.0749 | 37.41 | 5500 | 1.3274 | 0.7235 |
| 1.0412 | 40.81 | 6000 | 1.2942 | 0.6856 |
| 1.0064 | 44.22 | 6500 | 1.2581 | 0.6732 |
| 1.0006 | 47.62 | 7000 | 1.2767 | 0.6885 |
| 0.9518 | 51.02 | 7500 | 1.2966 | 0.6925 |
| 0.9514 | 54.42 | 8000 | 1.2981 | 0.7067 |
| 0.9241 | 57.82 | 8500 | 1.3835 | 0.7124 |
| 0.9059 | 61.22 | 9000 | 1.3318 | 0.7083 |
| 0.8906 | 64.62 | 9500 | 1.3640 | 0.6962 |
| 0.8468 | 68.03 | 10000 | 1.4727 | 0.6982 |
| 0.8631 | 71.43 | 10500 | 1.3401 | 0.6809 |
| 0.8154 | 74.83 | 11000 | 1.4124 | 0.6955 |
| 0.7953 | 78.23 | 11500 | 1.4245 | 0.6950 |
| 0.818 | 81.63 | 12000 | 1.3944 | 0.6995 |
| 0.7772 | 85.03 | 12500 | 1.3735 | 0.6785 |
| 0.7857 | 88.43 | 13000 | 1.3696 | 0.6808 |
| 0.7705 | 91.84 | 13500 | 1.4101 | 0.6870 |
| 0.7537 | 95.24 | 14000 | 1.4178 | 0.6832 |
| 0.7734 | 98.64 | 14500 | 1.4027 | 0.6831 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu113
- Datasets 1.18.1.dev0
- Tokenizers 0.11.0
|
Emanuel/roebrta-base-val-test | Emanuel | 2022-01-23T15:12:04Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"roberta",
"fill-mask",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2022-03-02T23:29:04Z | ---
license: mit
tags:
- generated_from_trainer
model-index:
- name: language-modeling
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# language-modeling
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4229
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: tpu
- num_devices: 8
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.8.1+cu102
- Datasets 1.13.3
- Tokenizers 0.10.3
|
artemis13fowl/distilbert-base-uncased-finetuned-imdb | artemis13fowl | 2022-01-23T14:10:31Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"fill-mask",
"generated_from_trainer",
"dataset:imdb",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imdb
model-index:
- name: distilbert-base-uncased-finetuned-imdb
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-imdb
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4725
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.7086 | 1.0 | 157 | 2.4897 |
| 2.5756 | 2.0 | 314 | 2.4230 |
| 2.5395 | 3.0 | 471 | 2.4358 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.0
- Tokenizers 0.10.3
|
dandelin/vilt-b32-finetuned-nlvr2 | dandelin | 2022-01-23T09:43:30Z | 673 | 2 | transformers | [
"transformers",
"pytorch",
"vilt",
"arxiv:2102.03334",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
license: apache-2.0
---
# Vision-and-Language Transformer (ViLT), fine-tuned on NLVR2
Vision-and-Language Transformer (ViLT) model fine-tuned on [NLVR2](https://lil.nlp.cornell.edu/nlvr/). It was introduced in the paper [ViLT: Vision-and-Language Transformer
Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Kim et al. and first released in [this repository](https://github.com/dandelin/ViLT).
Disclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.
## Intended uses & limitations
You can use the model to determine whether a sentence is true or false given 2 images.
### How to use
Here is how to use the model in PyTorch:
```
from transformers import ViltProcessor, ViltForImagesAndTextClassification
import requests
from PIL import Image
image1 = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg", stream=True).raw)
image2 = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_1.jpg", stream=True).raw)
text = "The left image contains twice the number of dogs as the right image."
processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-nlvr2")
model = ViltForImagesAndTextClassification.from_pretrained("dandelin/vilt-b32-finetuned-nlvr2")
# prepare inputs
encoding = processor([image1, image2], text, return_tensors="pt")
# forward pass
outputs = model(input_ids=encoding.input_ids, pixel_values=encoding.pixel_values.unsqueeze(0))
logits = outputs.logits
idx = logits.argmax(-1).item()
print("Predicted answer:", model.config.id2label[idx])
```
## Training data
(to do)
## Training procedure
### Preprocessing
(to do)
### Pretraining
(to do)
## Evaluation results
(to do)
### BibTeX entry and citation info
```bibtex
@misc{kim2021vilt,
title={ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision},
author={Wonjae Kim and Bokyung Son and Ildoo Kim},
year={2021},
eprint={2102.03334},
archivePrefix={arXiv},
primaryClass={stat.ML}
}
``` |
wesam266/wav2vec2-large-xlsr-53_english | wesam266 | 2022-01-23T02:40:28Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-large-xlsr-53_english
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xlsr-53_english
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2620
- Wer: 0.1916
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 3.0506 | 0.12 | 250 | 3.0206 | 0.9999 |
| 1.4381 | 0.25 | 500 | 1.0267 | 0.6323 |
| 1.0903 | 0.37 | 750 | 0.5841 | 0.3704 |
| 1.0384 | 0.5 | 1000 | 0.5156 | 0.3348 |
| 0.9658 | 0.62 | 1250 | 0.4721 | 0.3221 |
| 0.9184 | 0.74 | 1500 | 0.4301 | 0.3213 |
| 0.8939 | 0.87 | 1750 | 0.4188 | 0.2884 |
| 0.9051 | 0.99 | 2000 | 0.3852 | 0.2807 |
| 0.563 | 1.12 | 2250 | 0.3752 | 0.2804 |
| 0.6122 | 1.24 | 2500 | 0.3745 | 0.2732 |
| 0.6213 | 1.36 | 2750 | 0.3671 | 0.2575 |
| 0.5839 | 1.49 | 3000 | 0.3560 | 0.2578 |
| 0.615 | 1.61 | 3250 | 0.3555 | 0.2536 |
| 0.5557 | 1.74 | 3500 | 0.3511 | 0.2485 |
| 0.5497 | 1.86 | 3750 | 0.3364 | 0.2425 |
| 0.5412 | 1.98 | 4000 | 0.3253 | 0.2418 |
| 0.2834 | 2.11 | 4250 | 0.3293 | 0.2322 |
| 0.2723 | 2.23 | 4500 | 0.3157 | 0.2322 |
| 0.2713 | 2.35 | 4750 | 0.3148 | 0.2304 |
| 0.2878 | 2.48 | 5000 | 0.3143 | 0.2286 |
| 0.2776 | 2.6 | 5250 | 0.3122 | 0.2250 |
| 0.2553 | 2.73 | 5500 | 0.3003 | 0.2234 |
| 0.278 | 2.85 | 5750 | 0.2973 | 0.2198 |
| 0.2445 | 2.97 | 6000 | 0.2938 | 0.2180 |
| 0.4361 | 3.1 | 6250 | 0.2914 | 0.2132 |
| 0.3979 | 3.22 | 6500 | 0.2916 | 0.2125 |
| 0.4221 | 3.35 | 6750 | 0.2879 | 0.2113 |
| 0.4051 | 3.47 | 7000 | 0.2819 | 0.2100 |
| 0.4218 | 3.59 | 7250 | 0.2812 | 0.2072 |
| 0.4201 | 3.72 | 7500 | 0.2772 | 0.2055 |
| 0.3515 | 3.84 | 7750 | 0.2747 | 0.2031 |
| 0.4021 | 3.97 | 8000 | 0.2702 | 0.2018 |
| 0.4304 | 4.09 | 8250 | 0.2721 | 0.2007 |
| 0.3923 | 4.21 | 8500 | 0.2689 | 0.1991 |
| 0.3824 | 4.34 | 8750 | 0.2692 | 0.1980 |
| 0.3743 | 4.46 | 9000 | 0.2718 | 0.1950 |
| 0.3771 | 4.59 | 9250 | 0.2653 | 0.1950 |
| 0.4048 | 4.71 | 9500 | 0.2649 | 0.1934 |
| 0.3539 | 4.83 | 9750 | 0.2638 | 0.1919 |
| 0.3498 | 4.96 | 10000 | 0.2620 | 0.1916 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.1+cu113
- Datasets 1.17.0
- Tokenizers 0.10.3
|
ylh1013/ja_chatbot | ylh1013 | 2022-01-23T02:24:03Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language:
- finetuned_from
license: mit
tags:
- generated_from_trainer
model-index:
- name: ja_chatbot
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ja_chatbot
This model is a fine-tuned version of [rinna/japanese-gpt2-medium](https://huggingface.co/rinna/japanese-gpt2-medium) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 48
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.12.3
- Pytorch 1.10.0+cu102
- Tokenizers 0.10.3
|
Pinwheel/wav2vec2-base-timit-demo-colab | Pinwheel | 2022-01-22T15:04:16Z | 9 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:04Z | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-base-timit-demo-colab
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-timit-demo-colab
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4812
- Wer: 0.3557
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.4668 | 4.0 | 500 | 1.3753 | 0.9895 |
| 0.6126 | 8.0 | 1000 | 0.4809 | 0.4350 |
| 0.2281 | 12.0 | 1500 | 0.4407 | 0.4033 |
| 0.1355 | 16.0 | 2000 | 0.4590 | 0.3765 |
| 0.0923 | 20.0 | 2500 | 0.4754 | 0.3707 |
| 0.0654 | 24.0 | 3000 | 0.4719 | 0.3557 |
| 0.0489 | 28.0 | 3500 | 0.4812 | 0.3557 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
facebook/xm_transformer_600m-en_es-multi_domain | facebook | 2022-01-21T19:01:24Z | 2 | 1 | fairseq | [
"fairseq",
"audio",
"audio-to-audio",
"speech-to-speech-translation",
"dataset:must_c",
"dataset:europarl_st",
"dataset:voxpopuli",
"arxiv:2010.05171",
"region:us"
] | audio-to-audio | 2022-03-02T23:29:05Z | ---
library_name: fairseq
task: audio-to-audio
tags:
- fairseq
- audio
- audio-to-audio
- speech-to-speech-translation
language: en-es
datasets:
- must_c
- europarl_st
- voxpopuli
widget:
- example_title: Common Voice sample 1
src: https://huggingface.co/facebook/xm_transformer_600m-en_es-multi_domain/resolve/main/common_voice_en_18295850.mp3
---
# xm_transformer_600m-en_es-multi_domain
[W2V2-Transformer](https://aclanthology.org/2021.acl-long.68/) speech-to-text translation model from fairseq S2T ([paper](https://arxiv.org/abs/2010.05171)/[code](https://github.com/pytorch/fairseq/tree/main/examples/speech_to_text)):
- English-Spanish
- Trained on MuST-C, EuroParl-ST, VoxPopuli, Multilingual LibriSpeech, Common Voice v7 and CCMatrix
- Speech synthesis with [facebook/tts_transformer-es-css10](https://huggingface.co/facebook/tts_transformer-es-css10)
## Usage
```python
from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
from fairseq.models.text_to_speech.hub_interface import S2THubInterface
from fairseq.models.text_to_speech.hub_interface import TTSHubInterface
import IPython.display as ipd
import torchaudio
models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
"facebook/xm_transformer_600m-en_es-multi_domain",
arg_overrides={"config_yaml": "config.yaml"},
)
model = models[0]
generator = task.build_generator(model, cfg)
# requires 16000Hz mono channel audio
audio, _ = torchaudio.load("/path/to/an/audio/file")
sample = S2THubInterface.get_model_input(task, audio)
text = S2THubInterface.get_prediction(task, model, generator, sample)
# speech synthesis
tts_models, tts_cfg, tts_task = load_model_ensemble_and_task_from_hf_hub(
f"facebook/tts_transformer-es-css10",
arg_overrides={"vocoder": "griffin_lim", "fp16": False},
)
tts_model = tts_models[0]
TTSHubInterface.update_cfg_with_data_cfg(tts_cfg, tts_task.data_cfg)
tts_generator = tts_task.build_generator([tts_model], tts_cfg)
tts_sample = TTSHubInterface.get_model_input(tts_task, text)
wav, sr = TTSHubInterface.get_prediction(
tts_task, tts_model, tts_generator, tts_sample
)
ipd.Audio(wav, rate=rate)
```
## Citation
```bibtex
@inproceedings{li-etal-2021-multilingual,
title = "Multilingual Speech Translation from Efficient Finetuning of Pretrained Models",
author = "Li, Xian and
Wang, Changhan and
Tang, Yun and
Tran, Chau and
Tang, Yuqing and
Pino, Juan and
Baevski, Alexei and
Conneau, Alexis and
Auli, Michael",
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.acl-long.68",
doi = "10.18653/v1/2021.acl-long.68",
pages = "827--838",
}
@inproceedings{wang-etal-2020-fairseq,
title = "Fairseq {S}2{T}: Fast Speech-to-Text Modeling with Fairseq",
author = "Wang, Changhan and
Tang, Yun and
Ma, Xutai and
Wu, Anne and
Okhonko, Dmytro and
Pino, Juan",
booktitle = "Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing: System Demonstrations",
month = dec,
year = "2020",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.aacl-demo.6",
pages = "33--39",
}
``` |
deepparag/DumBot | deepparag | 2022-01-21T15:40:27Z | 148 | 2 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
thumbnail: https://cdn.discordapp.com/app-icons/870239976690970625/c02cae78ae105f07969cfd8f8ea3d0a0.png
tags:
- conversational
license: mit
---
# THIS AI IS OUTDATED. See [Aeona](https://huggingface.co/deepparag/Aeona)
An generative AI made using [microsoft/DialoGPT-small](https://huggingface.co/microsoft/DialoGPT-small).
Trained on:
https://www.kaggle.com/Cornell-University/movie-dialog-corpus
https://www.kaggle.com/jef1056/discord-data
[Live Demo](https://dumbot-331213.uc.r.appspot.com/)
Example:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("deepparag/DumBot")
model = AutoModelWithLMHead.from_pretrained("deepparag/DumBot")
# Let's chat for 4 lines
for step in range(4):
# encode the new user input, add the eos_token and return a tensor in Pytorch
new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt')
# print(new_user_input_ids)
# append the new user input tokens to the chat history
bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids
# generated a response while limiting the total chat history to 1000 tokens,
chat_history_ids = model.generate(
bot_input_ids, max_length=200,
pad_token_id=tokenizer.eos_token_id,
no_repeat_ngram_size=4,
do_sample=True,
top_k=100,
top_p=0.7,
temperature=0.8
)
# pretty print last ouput tokens from bot
print("DumBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))
``` |
infinitejoy/Wav2Vec2-Large-XLSR-53-Odia | infinitejoy | 2022-01-21T13:19:09Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"xlsr-fine-tuning-week",
"or",
"dataset:common_voice",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
language: or
datasets:
- common_voice
metrics:
- wer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: Joydeep Bhattacharjee XLSR Wav2Vec2 Large 53 Odia
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice as
type: common_voice
args: or
metrics:
- name: Test WER
type: wer
value: 55.07
---
# Wav2Vec2-Large-XLSR-53-Odia
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Odia using the [Common Voice](https://huggingface.co/datasets/common_voice).
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "or", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("infinitejoy/Wav2Vec2-Large-XLSR-53-Odia")
model = Wav2Vec2ForCTC.from_pretrained("infinitejoy/Wav2Vec2-Large-XLSR-53-Odia")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the Odia test data of Common Voice.
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "or", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("infinitejoy/Wav2Vec2-Large-XLSR-53-Odia")
model = Wav2Vec2ForCTC.from_pretrained("infinitejoy/Wav2Vec2-Large-XLSR-53-Odia")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\।\–]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub('’ ',' ',batch["sentence"])
batch["sentence"] = re.sub(' ‘',' ',batch["sentence"])
batch["sentence"] = re.sub('’|‘','\'',batch["sentence"])
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result**: 55.07 %
## Training
The Common Voice `train` and `validation` datasets were used for training. |
alistvt/bert-base-uncased-pretrained-mlm-coqa-stories | alistvt | 2022-01-21T13:17:32Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"fill-mask",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2022-03-02T23:29:05Z | ---
tags:
- generated_from_trainer
model-index:
- name: bert-base-uncased-pretrained-mlm-coqa-stories
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-pretrained-mlm-coqa-stories
This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8310
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.0573 | 1.0 | 2479 | 1.8805 |
| 1.9517 | 2.0 | 4958 | 1.8377 |
| 1.9048 | 3.0 | 7437 | 1.8310 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3
|
MadhurJindalWorkMail/autonlp-Gibb-Detect-515314387 | MadhurJindalWorkMail | 2022-01-21T07:05:45Z | 3 | 1 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"autonlp",
"en",
"dataset:MadhurJindalWorkMail/autonlp-data-Gibb-Detect",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:04Z | ---
tags: autonlp
language: en
widget:
- text: "I love AutoNLP 🤗"
datasets:
- MadhurJindalWorkMail/autonlp-data-Gibb-Detect
co2_eq_emissions: 70.95647633212745
---
# Model Trained Using AutoNLP
- Problem type: Multi-class Classification
- Model ID: 515314387
- CO2 Emissions (in grams): 70.95647633212745
## Validation Metrics
- Loss: 0.08077705651521683
- Accuracy: 0.9760103738923709
- Macro F1: 0.9728412857204902
- Micro F1: 0.9760103738923709
- Weighted F1: 0.9759907151741426
- Macro Precision: 0.9736622407675567
- Micro Precision: 0.9760103738923709
- Weighted Precision: 0.97673611876005
- Macro Recall: 0.9728978421381711
- Micro Recall: 0.9760103738923709
- Weighted Recall: 0.9760103738923709
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/MadhurJindalWorkMail/autonlp-Gibb-Detect-515314387
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("MadhurJindalWorkMail/autonlp-Gibb-Detect-515314387", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("MadhurJindalWorkMail/autonlp-Gibb-Detect-515314387", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
``` |
espnet/simpleoier_librispeech_asr_train_asr_conformer7_hubert_ll60k_large_raw_en_bpe5000_sp | espnet | 2022-01-21T04:15:13Z | 8 | 2 | espnet | [
"espnet",
"audio",
"automatic-speech-recognition",
"en",
"dataset:librispeech",
"arxiv:1804.00015",
"license:cc-by-4.0",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
tags:
- espnet
- audio
- automatic-speech-recognition
language: en
datasets:
- librispeech
license: cc-by-4.0
---
## ESPnet2 ASR model
### `espnet/simpleoier_librispeech_asr_train_asr_conformer7_hubert_ll60k_large_raw_en_bpe5000_sp`
This model was trained by simpleoier using librispeech recipe in [espnet](https://github.com/espnet/espnet/).
### Demo: How to use in ESPnet2
```bash
cd espnet
git checkout b0ff60946ada6753af79423a2e6063984bec2926
pip install -e .
cd egs2/librispeech/asr1
./run.sh --skip_data_prep false --skip_train true --download_model espnet/simpleoier_librispeech_asr_train_asr_conformer7_hubert_ll60k_large_raw_en_bpe5000_sp
```
## ASR config
<details><summary>expand</summary>
```
```
</details>
### Citing ESPnet
```BibTex
@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
```
or arXiv:
```bibtex
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
espnet/simpleoier_librispeech_asr_train_asr_conformer7_wav2vec2_960hr_large_raw_en_bpe5000_sp | espnet | 2022-01-21T04:09:13Z | 4 | 0 | espnet | [
"espnet",
"audio",
"automatic-speech-recognition",
"en",
"dataset:librispeech",
"arxiv:1804.00015",
"license:cc-by-4.0",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
tags:
- espnet
- audio
- automatic-speech-recognition
language: en
datasets:
- librispeech
license: cc-by-4.0
---
## ESPnet2 ASR model
### `espnet/simpleoier_librispeech_asr_train_asr_conformer7_wav2vec2_960hr_large_raw_en_bpe5000_sp`
This model was trained by simpleoier using librispeech recipe in [espnet](https://github.com/espnet/espnet/).
### Demo: How to use in ESPnet2
```bash
cd espnet
git checkout b0ff60946ada6753af79423a2e6063984bec2926
pip install -e .
cd egs2/librispeech/asr1
./run.sh --skip_data_prep false --skip_train true --download_model espnet/simpleoier_librispeech_asr_train_asr_conformer7_wav2vec2_960hr_large_raw_en_bpe5000_sp
```
## ASR config
<details><summary>expand</summary>
```
```
</details>
### Citing ESPnet
```BibTex
@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
```
or arXiv:
```bibtex
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
Gigworks/ASR_zh_espnet2 | Gigworks | 2022-01-21T02:58:59Z | 0 | 1 | null | [
"region:us"
] | null | 2022-03-02T23:29:04Z | <b>Speech-To-Text Chinese Model</b>
<br/><br/>
Reference: <br/>
Model - https://huggingface.co/espnet/pengcheng_guo_wenetspeech_asr_train_asr_raw_zh_char <br/>
Code - https://huggingface.co/spaces/akhaliq/espnet2_asr/blob/main/app.py
|
guoqiang/glm | guoqiang | 2022-01-21T01:21:46Z | 0 | 0 | null | [
"region:us"
] | null | 2022-03-02T23:29:05Z | # WudaoSailing
WudaoSailing is a package for pretraining chinese Language Model and finetune tasks. Now it supports GLM, Bert, T5, Cogview and Roberta models.
## Get Started
### Docker Image
We prepare two docker images based on CUDA 10.2 and CUDA 11.2. You can build images from the docker file [docs/docker/cuda102.dockerfile](docs/docker/cuda102.dcokerfile) or pull the pre-built images from Docker Hub and run with docker v19.03+
```shell
nvidia-docker run -id --hostname=V100 --network=host\
--ipc=host --shm-size=16gb --name=deepspeed-cuda \
-e NVIDIA_VISIBLE_DEVICES=0,1,2,3 \
-v /DATA/disk1/docker/containers/:/data deepspeed/cuda102:lastest
```
or replace `cuda102` with `cuda112`.
```shell
docker build -f cuda102.dockerfile -t deepspeed/cuda102 .
```
### Clone this repo
```shell
git clone https://github.com/wangguojim/WudaoSailing.git
cd WudaoSailing
pip install -r requirements.txt
```
## GLM
We show some examples based on GLM model.
### finetuene
We provide scripts for finetuning GLM on some downstream tasks.
#### SuperGLUE
- Download the [SuperGlue](https://super.gluebenchmark.com/tasks) data and check the experiment setup in
[examples/glm/scripts/ds_finetune_superglue.sh](xamples/glm/scripts/ds_finetune_superglue.sh). Note that `DATA_ROOT, CHECKPOINT_PATH, SAVE_PATH`
need to be changed to your local path. You may also change the `batch-size` and `nproc_per_node` according to your
available hardware.
- Run the following script for text similarity finetune task (use the afqmc dataset as an example)
```
cd examples/glm/
bash scripts/ds_finetune_superglue.sh\
config/model_blocklm_large_chinese.sh\
config_tasks/task_afqmc.sh
```
- Run the following script for text classification finetune task (use the thunews and thunews dataset as an example)
```
cd examples/glm/
bash scripts/ds_finetune_superglue.sh\
config/model_blocklm_large_chinese.sh\
config_tasks/task_tnews.sh
```
- Run the following script for causal inference finetune task (use the COPA dataset as an example)
```
cd examples/glm/
bash scripts/ds_finetune_superglue.sh\
config/model_blocklm_large_chinese.sh\
config_tasks/task_copa.sh
```
- To apply GLM to a new NLU dataset with cloze-filling finetuning, implement a `DataProcessor` in
[examples/glm/tasks/superglue/dataset.py](examples/glm/tasks/superglue/dataset.py) for data loading and add a `PVP` in
[examples/glm/tasks/superglue/pvp.py](examples/glm/tasks/superglue/pvp.py) for the cloze question. More details can be found
[here](examples/glm/tasks/superglue/README.md).
#### Blank Filling (Interactive)
* Change `CHECKPOINT_PATH` to your local path. Run the following script
```
bash config/generate_block.sh\
config/model_blocklm_large_chinese.sh
```
##### Example1 (Entity Prediction):
Context: 凯旋门位于意大利米兰市古城堡旁。1807年为纪念[MASK]而建,门高25米,顶上矗立两武士青铜古兵车铸像。
GLM:拿破仑军队攻克米兰城
##### Example2 (Sentence Prediction)
Context: 工业互联网(Industrial Internet)是新一代信息通信技术与工业经济深度融合的新型基础设施、应用模式和工业生态,通过对人、机、物、系统等的全面连接,构建起覆盖全产业链、全价值链的全新制造和服务体系,为工业乃至产业数字化、网络化、智能化发展提供了实现途径,是第四次工业革命的重要基石。[sMASK]它以网络为基础、平台为中枢、数据为要素、安全为保障,既是工业数字化、网络化、智能化转型的基础设施,也是互联网、大数据、人工智能与实体经济深度融合的应用模式,同时也是一种新业态、新产业,将重塑企业形态、供应链和产业链。当前,工业互联网融合应用向国民经济重点行业广泛拓展,形成平台化设计、智能化制造、网络化协同、个性化定制、服务化延伸、数字化管理六大新模式,赋能、赋智、赋值作用不断显现,有力的促进了实体经济提质、增效、降本、绿色、安全发展。
GLM: 工业互联网是制造业技术、管理、模式的重大变革,是推动互联网、大数据、人工智能和实体经济深度融合的重要载体,是建设制造强国和网络强国的重要基础。
##### Example3 (Long Text Generation)
Context: 问题:高斯所在的国家有什么汽车品牌?答案:[gMASK]
GLM:答案:[gMASK]<|startofpiece|>德国奔驰、德国大众、别克、沃尔沃、斯柯达、本田、雪铁龙.
### Ptuning
Run the following script to integrate p-tuning with GLM:
```shell
cd algutils/ptuning/
bash finetune_zy.sh
```
### Pretrain
Run the following script to pre-train the GLM-Large model
```shell
cd examples/glm/
bash scripts/ds_pretrain_nvidia.sh config/ds_block_large.sh
```
The script [examples/glm/config/ds_pretrain_nvidia.sh](examples/glm/config/ds_pretrain_nvidia.sh) launches the training program with DeepSpeed. You should change `NUM_WORKERS` and `NUM_GPUS_PER_WORKER` to the number of workers and the number of gpus per worker. Also change `HOST_FILE_PATH` to the path to an OpenMPI-style hostfile. More details about DeepSpeed launcher can be found [here](https://www.deepspeed.ai/getting-started/#resource-configuration-multi-node).
The file [examples/glm/config/ds_block_large.sh](examples/glm/config/ds_block_large.sh) defines the hyperparameters for pretraining. Most of the arguments are fairly self-explanatory. Specifically, `--train-data` can be multiple keywords defined in `NAMED_CORPORA` in [data_utils/corpora.py](data_utils/corpora.py). The hyperparameters of the optimizer are defined in the corresponding json file under `config`. The semantics of the json file can be found [here](https://www.deepspeed.ai/docs/config-json).
## Bert
We show some examples based on GLM model.
### Pretrain
Run the following script to pre-train the Bert model
```shell
cd examples/bert/
python quick_start.py
```
## CogView
### Pretrain
Run the following script to pre-train the cogview model
```shell
cd examples/cogview/
bash config/pretrain_multiple_nodes.sh
```
### inference
Run the following script to test the ability of text2image
```shell
cd examples/cogview/
bash config/text2image_cogview.sh
```
|
Gianpe/en_textcat_emotion_umberto | Gianpe | 2022-01-20T21:45:19Z | 1 | 0 | spacy | [
"spacy",
"text-classification",
"en",
"region:us"
] | text-classification | 2022-03-02T23:29:04Z | ---
tags:
- spacy
- text-classification
language:
- en
model-index:
- name: en_textcat_emotion_umberto
results: []
---
|
anuragshas/wav2vec2-large-xls-r-300m-hi | anuragshas | 2022-01-20T20:38:42Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-large-xls-r-300m-hi
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-hi
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4156
- Wer: 0.7181
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 5.7703 | 2.72 | 400 | 2.2274 | 0.9259 |
| 0.6515 | 5.44 | 800 | 1.5812 | 0.7581 |
| 0.339 | 8.16 | 1200 | 2.0590 | 0.7825 |
| 0.2262 | 10.88 | 1600 | 2.0324 | 0.7603 |
| 0.1665 | 13.6 | 2000 | 2.1396 | 0.7481 |
| 0.1311 | 16.33 | 2400 | 2.2090 | 0.7379 |
| 0.1079 | 19.05 | 2800 | 2.3907 | 0.7612 |
| 0.0927 | 21.77 | 3200 | 2.5294 | 0.7478 |
| 0.0748 | 24.49 | 3600 | 2.5024 | 0.7452 |
| 0.0644 | 27.21 | 4000 | 2.4715 | 0.7307 |
| 0.0569 | 29.93 | 4400 | 2.4156 | 0.7181 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3
|
muellerzr/fastai-pets-resnet-34 | muellerzr | 2022-01-20T19:01:14Z | 0 | 1 | null | [
"region:us"
] | null | 2022-03-02T23:29:05Z | # The fastai models - PETS
This model is based on Lesson 1 of [fastai](https://course.fast.ai) and of [Walk with fastai](https://walkwithfastai.com/Pets)
## Dataset Used
This model was created with the [Oxford Pets](https://docs.fast.ai/data.external.html#Image-Classification-datasets) dataset in the fastai framework
## Model Training
The model was trained as a binary classifier, for cats or dogs
## How to use:
First, ensure that `huggingface_hub` is installed:
```bash
pip(3) install huggingface_hub
```
Next, download this model repo:
```python
from huggingface_hub import snapshot_download
snapshot_download(repo_id="muellerzr/fastai-pets-resnet-34")
```
Then install the correct fastai version:
```bash
cd fastai-pets-resnet34
pip(3) install -r requirements.txt
```
**NOTE: This is extremely important, as fastai versions are aggressively pinned based on training environment**
And finally load in the fastai `Learner` and predict
```python
from fastai.learner import load_learner
learn = load_learner('model.pth')
pred = learn.predict('myImage.jpg')
```
Versions of model used were taken with [dependency_checker](https://muellerzr.github.io/dependency_checker)
|
espnet/akreal_swbd_da_hubert_conformer | espnet | 2022-01-20T18:57:49Z | 2 | 0 | espnet | [
"espnet",
"audio",
"automatic-speech-recognition",
"en",
"dataset:swbd_da",
"arxiv:1804.00015",
"license:cc-by-4.0",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
tags:
- espnet
- audio
- automatic-speech-recognition
language: en
datasets:
- swbd_da
license: cc-by-4.0
---
## ESPnet2 ASR model
### `akreal/espnet2_swbd_da_hubert_conformer`
This model was trained by Pavel Denisov using swbd_da recipe in [espnet](https://github.com/espnet/espnet/).
### Demo: How to use in ESPnet2
```bash
cd espnet
git checkout 08c6efbc6299c972301236625f9abafe087c9f9c
pip install -e .
cd egs2/swbd_da/asr1
./run.sh --skip_data_prep false --skip_train true --download_model espnet/akreal_swbd_da_hubert_conformer
```
<!-- Generated by scripts/utils/show_asr_result.sh -->
# RESULTS
## Environments
- date: `Thu Jan 20 19:31:21 CET 2022`
- python version: `3.8.12 (default, Aug 30 2021, 00:00:00) [GCC 11.2.1 20210728 (Red Hat 11.2.1-1)]`
- espnet version: `espnet 0.10.6a1`
- pytorch version: `pytorch 1.10.1+cu113`
- Git hash: `08c6efbc6299c972301236625f9abafe087c9f9c`
- Commit date: `Tue Jan 4 13:40:33 2022 +0100`
## asr_train_asr_raw_en_word_sp
### WER
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|---|---|---|---|---|---|---|---|---|
|decode_asr_asr_model_valid.loss.ave/test_context3|2379|2379|66.3|33.7|0.0|0.0|33.7|33.7|
|decode_asr_asr_model_valid.loss.ave/valid_context3|8116|8116|69.5|30.5|0.0|0.0|30.5|30.5|
### CER
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|---|---|---|---|---|---|---|---|---|
|decode_asr_asr_model_valid.loss.ave/test_context3|2379|19440|76.1|17.7|6.2|8.1|32.0|33.7|
|decode_asr_asr_model_valid.loss.ave/valid_context3|8116|66353|79.5|16.1|4.4|8.0|28.5|30.5|
### TER
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|---|---|---|---|---|---|---|---|---|
## ASR config
<details><summary>expand</summary>
```
config: conf/tuning/train_asr_conformer_hubert_context3.yaml
print_config: false
log_level: INFO
dry_run: false
iterator_type: sequence
output_dir: exp/asr_train_asr_conformer_hubert_context3_raw_en_word_sp
ngpu: 1
seed: 0
num_workers: 1
num_att_plot: 3
dist_backend: nccl
dist_init_method: env://
dist_world_size: null
dist_rank: null
local_rank: 0
dist_master_addr: null
dist_master_port: null
dist_launcher: null
multiprocessing_distributed: false
unused_parameters: false
sharded_ddp: false
cudnn_enabled: true
cudnn_benchmark: false
cudnn_deterministic: true
collect_stats: false
write_collected_feats: false
max_epoch: 35
patience: null
val_scheduler_criterion:
- valid
- loss
early_stopping_criterion:
- valid
- loss
- min
best_model_criterion:
- - valid
- loss
- min
keep_nbest_models: 7
nbest_averaging_interval: 0
grad_clip: 5.0
grad_clip_type: 2.0
grad_noise: false
accum_grad: 1
no_forward_run: false
resume: true
train_dtype: float32
use_amp: false
log_interval: null
use_matplotlib: true
use_tensorboard: true
use_wandb: false
wandb_project: null
wandb_id: null
wandb_entity: null
wandb_name: null
wandb_model_log_interval: -1
detect_anomaly: false
pretrain_path: null
init_param: []
ignore_init_mismatch: false
freeze_param:
- frontend.upstream
num_iters_per_epoch: null
batch_size: 20
valid_batch_size: null
batch_bins: 4000000
valid_batch_bins: null
train_shape_file:
- exp/asr_stats_context3_raw_en_word_sp/train/speech_shape
- exp/asr_stats_context3_raw_en_word_sp/train/text_shape.word
valid_shape_file:
- exp/asr_stats_context3_raw_en_word_sp/valid/speech_shape
- exp/asr_stats_context3_raw_en_word_sp/valid/text_shape.word
batch_type: numel
valid_batch_type: null
fold_length:
- 80000
- 150
sort_in_batch: descending
sort_batch: descending
multiple_iterator: false
chunk_length: 500
chunk_shift_ratio: 0.5
num_cache_chunks: 1024
train_data_path_and_name_and_type:
- - dump/raw/train_context3_sp/wav.scp
- speech
- sound
- - dump/raw/train_context3_sp/text
- text
- text
valid_data_path_and_name_and_type:
- - dump/raw/valid_context3/wav.scp
- speech
- sound
- - dump/raw/valid_context3/text
- text
- text
allow_variable_data_keys: false
max_cache_size: 0.0
max_cache_fd: 32
valid_max_cache_size: null
optim: adam
optim_conf:
lr: 0.0001
scheduler: warmuplr
scheduler_conf:
warmup_steps: 25000
token_list:
- <blank>
- <unk>
- statement
- backchannel
- opinion
- abandon
- agree
- yn_q
- apprec
- 'yes'
- uninterp
- close
- wh_q
- acknowledge
- 'no'
- yn_decl_q
- hedge
- backchannel_q
- sum
- quote
- affirm
- other
- directive
- repeat
- open_q
- completion
- rhet_q
- hold
- reject
- answer
- neg
- ans_dispref
- repeat_q
- open
- or
- commit
- maybe
- decl_q
- third_pty
- self_talk
- thank
- apology
- tag_q
- downplay
- <sos/eos>
init: null
input_size: null
ctc_conf:
dropout_rate: 0.0
ctc_type: builtin
reduce: true
ignore_nan_grad: true
joint_net_conf: null
model_conf:
ctc_weight: 0.0
extract_feats_in_collect_stats: false
use_preprocessor: true
token_type: word
bpemodel: null
non_linguistic_symbols: null
cleaner: null
g2p: null
speech_volume_normalize: null
rir_scp: null
rir_apply_prob: 1.0
noise_scp: null
noise_apply_prob: 1.0
noise_db_range: '13_15'
frontend: s3prl
frontend_conf:
frontend_conf:
upstream: hubert_large_ll60k
download_dir: ./hub
multilayer_feature: true
fs: 16k
specaug: specaug
specaug_conf:
apply_time_warp: true
time_warp_window: 5
time_warp_mode: bicubic
apply_freq_mask: true
freq_mask_width_range:
- 0
- 30
num_freq_mask: 2
apply_time_mask: true
time_mask_width_range:
- 0
- 40
num_time_mask: 2
normalize: utterance_mvn
normalize_conf: {}
preencoder: linear
preencoder_conf:
input_size: 1024
output_size: 80
encoder: conformer
encoder_conf:
output_size: 512
attention_heads: 8
linear_units: 2048
num_blocks: 12
dropout_rate: 0.1
positional_dropout_rate: 0.1
attention_dropout_rate: 0.1
input_layer: conv2d
normalize_before: true
macaron_style: true
pos_enc_layer_type: rel_pos
selfattention_layer_type: rel_selfattn
activation_type: swish
use_cnn_module: true
cnn_module_kernel: 31
postencoder: null
postencoder_conf: {}
decoder: transformer
decoder_conf:
attention_heads: 8
linear_units: 2048
num_blocks: 6
dropout_rate: 0.1
positional_dropout_rate: 0.1
self_attention_dropout_rate: 0.1
src_attention_dropout_rate: 0.1
required:
- output_dir
- token_list
version: 0.10.5a1
distributed: false
```
</details>
### Citing ESPnet
```BibTex
@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
```
or arXiv:
```bibtex
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
ilevs/opus-mt-en-ru-finetuned-en-to-ru | ilevs | 2022-01-20T18:18:30Z | 9 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"marian",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: opus-mt-en-ru-finetuned-en-to-ru
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# opus-mt-en-ru-finetuned-en-to-ru
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ru](https://huggingface.co/Helsinki-NLP/opus-mt-en-ru) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7682
- Bleu: 14.6112
- Gen Len: 7.202
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| 2.3198 | 1.0 | 4956 | 2.1261 | 9.5339 | 6.7709 |
| 1.9732 | 2.0 | 9912 | 1.9639 | 10.4715 | 7.1254 |
| 1.7127 | 3.0 | 14868 | 1.8780 | 11.6128 | 7.1106 |
| 1.5614 | 4.0 | 19824 | 1.8367 | 12.8389 | 7.0468 |
| 1.4276 | 5.0 | 24780 | 1.8040 | 13.7423 | 7.0403 |
| 1.3096 | 6.0 | 29736 | 1.7820 | 14.1469 | 7.0555 |
| 1.2381 | 7.0 | 34692 | 1.7761 | 13.9987 | 7.2225 |
| 1.1784 | 8.0 | 39648 | 1.7725 | 14.4675 | 7.1799 |
| 1.1376 | 9.0 | 44604 | 1.7692 | 14.4937 | 7.1957 |
| 1.0862 | 10.0 | 49560 | 1.7682 | 14.6112 | 7.202 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3
|
nntadotzip/xlnet-base-cased-IUChatbot-ontologyDts-BertPretrainedTokenizerFast | nntadotzip | 2022-01-20T18:06:05Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"xlnet",
"question-answering",
"generated_from_trainer",
"license:mit",
"endpoints_compatible",
"region:us"
] | question-answering | 2022-03-02T23:29:05Z | ---
license: mit
tags:
- generated_from_trainer
model-index:
- name: xlnet-base-cased-IUChatbot-ontologyDts-BertPretrainedTokenizerFast
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlnet-base-cased-IUChatbot-ontologyDts-BertPretrainedTokenizerFast
This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3489
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 382 | 0.4695 |
| 0.5633 | 2.0 | 764 | 0.3361 |
| 0.3533 | 3.0 | 1146 | 0.3489 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3
|
Rocketknight1/distilroberta-base-finetuned-wikitext2 | Rocketknight1 | 2022-01-20T17:54:46Z | 22 | 0 | transformers | [
"transformers",
"tf",
"roberta",
"fill-mask",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2022-03-02T23:29:04Z | ---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: distilroberta-base-finetuned-wikitext2
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# distilroberta-base-finetuned-wikitext2
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
### Framework versions
- Transformers 4.16.0.dev0
- TensorFlow 2.8.0-rc0
- Datasets 1.17.0
- Tokenizers 0.11.0
|
nntadotzip/bert-base-cased-IUChatbot-ontologyDts | nntadotzip | 2022-01-20T16:21:21Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"question-answering",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | question-answering | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: bert-base-cased-IUChatbot-ontologyDts
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-cased-IUChatbot-ontologyDts
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2446
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 382 | 0.2686 |
| 0.3946 | 2.0 | 764 | 0.2535 |
| 0.2577 | 3.0 | 1146 | 0.2446 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3
|
radhakri119/wav2vec2-base-timit-demo-colab | radhakri119 | 2022-01-20T16:09:09Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-base-timit-demo-colab
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-timit-demo-colab
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4780
- Wer: 0.3403
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.5299 | 4.0 | 500 | 1.5195 | 0.9991 |
| 0.6229 | 8.0 | 1000 | 0.4447 | 0.4282 |
| 0.2136 | 12.0 | 1500 | 0.4154 | 0.3764 |
| 0.1196 | 16.0 | 2000 | 0.4394 | 0.3597 |
| 0.0834 | 20.0 | 2500 | 0.4891 | 0.3619 |
| 0.0591 | 24.0 | 3000 | 0.4535 | 0.3439 |
| 0.0448 | 28.0 | 3500 | 0.4780 | 0.3403 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
ml6team/distilbart-tos-summarizer-tosdr | ml6team | 2022-01-20T15:21:41Z | 22 | 15 | transformers | [
"transformers",
"pytorch",
"bart",
"text2text-generation",
"summarization",
"t&c",
"tos",
"distilbart",
"distilbart-6-6",
"en",
"dataset:tosdr",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | summarization | 2022-03-02T23:29:05Z | ---
language:
- en
tags:
- summarization
- t&c
- tos
- distilbart
- distilbart-6-6
datasets:
- tosdr
metrics:
- rouge1
- rouge2
- rougel
inference:
parameters:
min_length: 5
max_length: 512
do_sample: False
widget:
- text: "In addition, certain portions of the Web Site may be subject to additional terms of use that we make available for your review or otherwise link to that portion of the Web Site to which such additional terms apply. By using such portions, or any part thereof, you agree to be bound by the additional terms of use applicable to such portions. Age Restrictions The Web Site may be accessed and used only by individuals who can form legally binding contracts under applicable laws, who are at least 18 years of age or the age of majority in their state or territory of residence (if higher than 18), and who are not barred from using the Web Site under applicable laws. Our Technology may not be copied, modified, reproduced, republished, posted, transmitted, sold, offered for sale, or redistributed in any way without our prior written permission and the prior written permission of our applicable licensors. Nothing in these Site Terms of Use grants you any right to receive delivery of a copy of Our Technology or to obtain access to Our Technology except as generally and ordinarily permitted through the Web Site according to these Site Terms of Use. Furthermore, nothing in these Site Terms of Use will be deemed to grant you, by implication, estoppel or otherwise, a license to Our Technology. Certain of the names, logos, and other materials displayed via the Web site constitute trademarks, tradenames, service marks or logos (“Marks”) of us or other entities. You are not authorized to use any such Marks. Ownership of all such Marks and the goodwill associated therewith remains with us or those other entities. Any use of third party software provided in connection with the Web Site will be governed by such third parties’ licenses and not by these Site Terms of Use. Information on this Web Site may contain technical inaccuracies or typographical errors. Lenovo provides no assurances that any reported problems may be resolved with the use of any information that Lenovo provides."
---
# T&C Summarization Model
T&C Summarization Model based on [sshleifer/distilbart-cnn-6-6](https://huggingface.co/sshleifer/distilbart-cnn-6-6),
This abstractive summarization model is a part of a bigger end-to-end T&C summarizer pipeline
which is preceded by LSA (Latent Semantic Analysis) extractive summarization. The extractive
summarization shortens the T&C to be further summarized by this model.
## Finetuning Corpus
We collaborated with [TOSDR](https://tosdr.org/) to work with their data, and the model is finetuned accordingly. The article and
summarization text is reduced via extractive summarization before it is finetuned to the model.
## Contact Us
https://ml6.eu/ .
This abstractive model finetuning is the continuation of the Christmas Project 2021 done in ML6: https://bit.ly/XmasProjects .
## Load Finetuned Model
```
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("ml6team/distilbart-tos-summarizer-tosdr")
model = AutoModelForSeq2SeqLM.from_pretrained("ml6team/distilbart-tos-summarizer-tosdr")
```
## Code Sample
This sample requires [sumy](https://pypi.org/project/sumy/), the LSA Extractive Summarization library, as additional package to
run.
```
import re
import nltk
nltk.download('punkt')
from sumy.parsers.plaintext import PlaintextParser
from sumy.nlp.tokenizers import Tokenizer
from sumy.nlp.stemmers import Stemmer
from sumy.summarizers.lsa import LsaSummarizer
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
LANGUAGE = "english"
EXTRACTED_ARTICLE_SENTENCES_LEN = 12
stemmer = Stemmer(LANGUAGE)
lsa_summarizer = LsaSummarizer(stemmer)
tokenizer = AutoTokenizer.from_pretrained("ml6team/distilbart-tos-summarizer-tosdr")
model = AutoModelForSeq2SeqLM.from_pretrained("ml6team/distilbart-tos-summarizer-tosdr")
def get_extractive_summary(text, sentences_count):
parser = PlaintextParser.from_string(text, Tokenizer(LANGUAGE))
summarized_info = lsa_summarizer(parser.document, sentences_count)
summarized_info = [element._text for element in summarized_info]
return ' '.join(summarized_info)
def get_summary(dict_summarizer_model, dict_tokenizer, text_content):
text_content = get_extractive_summary(text_content, EXTRACTED_ARTICLE_SENTENCES_LEN)
tokenizer = dict_tokenizer['tokenizer']
model = dict_summarizer_model['model']
inputs = tokenizer(text_content, max_length=dict_tokenizer['max_length'], truncation=True, return_tensors="pt")
outputs = model.generate(
inputs["input_ids"], max_length=dict_summarizer_model['max_length'], min_length=dict_summarizer_model['min_length'],
)
summarized_text = tokenizer.decode(outputs[0])
match = re.search(r"<s>(.*)</s>", summarized_text)
if match is not None: summarized_text = match.group(1)
return summarized_text.replace('<s>', '').replace('</s>', '')
test_tos = """
In addition, certain portions of the Web Site may be subject to additional terms of use that we make available for your review or otherwise link to that portion of the Web Site to which such additional terms apply. By using such portions, or any part thereof, you agree to be bound by the additional terms of use applicable to such portions.
Age Restrictions The Web Site may be accessed and used only by individuals who can form legally binding contracts under applicable laws, who are at least 18 years of age or the age of majority in their state or territory of residence (if higher than 18), and who are not barred from using the Web Site under applicable laws.
Our Technology may not be copied, modified, reproduced, republished, posted, transmitted, sold, offered for sale, or redistributed in any way without our prior written permission and the prior written permission of our applicable licensors. Nothing in these Site Terms of Use grants you any right to receive delivery of a copy of Our Technology or to obtain access to Our Technology except as generally and ordinarily permitted through the Web Site according to these Site Terms of Use.
Furthermore, nothing in these Site Terms of Use will be deemed to grant you, by implication, estoppel or otherwise, a license to Our Technology. Certain of the names, logos, and other materials displayed via the Web site constitute trademarks, tradenames, service marks or logos (“Marks”) of us or other entities. You are not authorized to use any such Marks. Ownership of all such Marks and the goodwill associated therewith remains with us or those other entities.
Any use of third party software provided in connection with the Web Site will be governed by such third parties’ licenses and not by these Site Terms of Use. Information on this Web Site may contain technical inaccuracies or typographical errors. Lenovo provides no assurances that any reported problems may be resolved with the use of any information that Lenovo provides
"""
model_dict = {
'model': model,
'max_length': 512,
'min_length': 4
}
tokenizer_dict = {
'tokenizer': tokenizer,
'max_length': 1024
}
print(get_summary(model_dict, tokenizer_dict, test_tos))
```
|
Mirjam/test-finetuned | Mirjam | 2022-01-20T15:14:18Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2022-03-02T23:29:04Z | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: test-finetuned
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# test-finetuned
This model is a fine-tuned version of [yhavinga/t5-v1.1-base-dutch-cnn-test](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-cnn-test) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 3
- eval_batch_size: 3
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
| No log | 1.0 | 1 | nan | 33.8462 | 31.746 | 30.7692 | 30.7692 | 86.0 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1
- Datasets 1.15.1
- Tokenizers 0.10.3
|
huggingtweets/aevaeavaevevave | huggingtweets | 2022-01-20T15:13:33Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: http://www.huggingtweets.com/aevaeavaevevave/1642691608974/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1471448753353670660/T0h3zXn-_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">aeva</div>
<div style="text-align: center; font-size: 14px;">@aevaeavaevevave</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from aeva.
| Data | aeva |
| --- | --- |
| Tweets downloaded | 3184 |
| Retweets | 985 |
| Short tweets | 659 |
| Tweets kept | 1540 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3g4kejp0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @aevaeavaevevave's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3ikuw0pg) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3ikuw0pg/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/aevaeavaevevave')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
pitehu/T5_NER_CONLL_LIST | pitehu | 2022-01-20T14:32:20Z | 12 | 0 | transformers | [
"transformers",
"pytorch",
"t5",
"text2text-generation",
"Named Entity Recognition",
"en",
"dataset:wmt19",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2022-03-02T23:29:05Z | ---
language:
- en
tags:
- Named Entity Recognition
license: apache-2.0
datasets:
- wmt19
metrics:
- bleu
- sacrebleu
inference:
parameters:
max_length: 1024
---
|
aviator-neural/mbart_jokes | aviator-neural | 2022-01-20T14:31:08Z | 7 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"bart",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: mbart_jokes
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart_jokes
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.0282
## Model description
This model is trained of jokes dataset , where you can ask a question and the model gives funny answer.
## Intended uses & limitations
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.3455 | 1.0 | 1914 | 3.0282 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
g30rv17ys/avhubert | g30rv17ys | 2022-01-20T13:07:45Z | 0 | 0 | null | [
"region:us"
] | null | 2022-03-02T23:29:05Z | https://dl.fbaipublicfiles.com/avhubert/model/lrs3_vox/vsr/base_vox_433h.pt |
mptrigo/run1 | mptrigo | 2022-01-20T10:37:49Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"marian",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- bleu
model_index:
- name: run1
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
metric:
name: Bleu
type: bleu
value: 8.4217
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# run1
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-es-es](https://huggingface.co/Helsinki-NLP/opus-mt-es-es) on an unkown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.1740
- Bleu: 8.4217
- Gen Len: 15.9457
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|
| No log | 1.0 | 250 | 4.2342 | 0.8889 | 83.4022 |
| 4.6818 | 2.0 | 500 | 3.7009 | 4.1671 | 35.587 |
| 4.6818 | 3.0 | 750 | 3.4737 | 7.6414 | 23.9674 |
| 3.4911 | 4.0 | 1000 | 3.3713 | 7.7512 | 18.6957 |
| 3.4911 | 5.0 | 1250 | 3.2689 | 8.0901 | 19.4674 |
| 3.0164 | 6.0 | 1500 | 3.2194 | 8.5708 | 25.0543 |
| 3.0164 | 7.0 | 1750 | 3.1853 | 9.5275 | 23.9239 |
| 2.6954 | 8.0 | 2000 | 3.1562 | 8.5635 | 18.9674 |
| 2.6954 | 9.0 | 2250 | 3.1564 | 8.2031 | 17.5978 |
| 2.4503 | 10.0 | 2500 | 3.1314 | 8.5638 | 18.1522 |
| 2.4503 | 11.0 | 2750 | 3.1511 | 8.8428 | 17.913 |
| 2.2554 | 12.0 | 3000 | 3.1513 | 8.1244 | 17.0 |
| 2.2554 | 13.0 | 3250 | 3.1664 | 8.0157 | 16.2717 |
| 2.1202 | 14.0 | 3500 | 3.1656 | 8.7758 | 16.6087 |
| 2.1202 | 15.0 | 3750 | 3.1550 | 8.4637 | 16.4565 |
| 2.0082 | 16.0 | 4000 | 3.1702 | 8.2488 | 15.8587 |
| 2.0082 | 17.0 | 4250 | 3.1725 | 8.609 | 16.3043 |
| 1.9274 | 18.0 | 4500 | 3.1750 | 8.4476 | 15.8043 |
| 1.9274 | 19.0 | 4750 | 3.1734 | 8.4753 | 16.5543 |
| 1.888 | 20.0 | 5000 | 3.1740 | 8.4217 | 15.9457 |
### Framework versions
- Transformers 4.9.2
- Pytorch 1.9.0+cu102
- Datasets 1.11.1.dev0
- Tokenizers 0.10.3
|
dbsamu/distilbert-base-uncased-finetuned-ner | dbsamu | 2022-01-20T10:30:26Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"dataset:wikiann",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- wikiann
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: wikiann
type: wikiann
args: en
metrics:
- name: Precision
type: precision
value: 0.8120642485217545
- name: Recall
type: recall
value: 0.830235495804385
- name: F1
type: f1
value: 0.8210493441599
- name: Accuracy
type: accuracy
value: 0.9203828724683252
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-ner
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wikiann dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2781
- Precision: 0.8121
- Recall: 0.8302
- F1: 0.8210
- Accuracy: 0.9204
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.3504 | 1.0 | 1250 | 0.2922 | 0.7930 | 0.8075 | 0.8002 | 0.9115 |
| 0.2353 | 2.0 | 2500 | 0.2711 | 0.8127 | 0.8264 | 0.8195 | 0.9196 |
| 0.1745 | 3.0 | 3750 | 0.2781 | 0.8121 | 0.8302 | 0.8210 | 0.9204 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3
|
dehio/german-qg-t5-e2e-quad | dehio | 2022-01-20T09:40:47Z | 5 | 3 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"question generation",
"de",
"dataset:deepset/germanquad",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2022-03-02T23:29:05Z | ---
license: mit
widget:
- text: "Naturschutzwarte haben auf der ostfriesischen Insel Wangerooge zwei seltene Kurzschnäuzige Seepferdchen entdeckt. Die Tiere seien vergangene Woche bei einer sogenannten Spülsaumkontrolle entdeckt worden, bei der die Strände eigentlich nach Müll und toten Vögeln abgesucht würden, sagte der Geschäftsführer der zuständigen Naturschutz- und Forschungsgemeinschaft Mellumrat, Mathias Heckroth. Dabei seien den Naturschützern am Nordstrand kurz hintereinander die beiden leblosen, nur wenige Zentimeter großen Tiere aufgefallen. Experten der Nationalparkverwaltung bestimmten beide Tiere als Kurzschnäuzige Seepferdchen (Hippocampus hippocampus)."
inference:
parameters:
max_length: 128
language:
- de
tags:
- question generation
datasets:
- deepset/germanquad
model-index:
- name: german-qg-t5-e2e-quad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# german-qg-t5-e2e-quad (Work in progress)
This model is a end-to-end question generation model in German. Given a text, it generates several questions about it. This model is a fine-tuned version of [valhalla/t5-base-e2e-qg](https://huggingface.co/valhalla/t5-base-e2e-qg) on the [GermanQuAD dataset from deepset](https://huggingface.co/datasets/deepset/germanquad).
## Model description
More information needed
## Training and evaluation data
Bleu_1: 0.196051
Bleu_2: 0.122380
Bleu_3: 0.079980
Bleu_4: 0.053672
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
### Training results
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
hrdipto/wav2vec2-xls-r-tf-left-right-shuru | hrdipto | 2022-01-20T08:48:17Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-xls-r-tf-left-right-shuru
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xls-r-tf-left-right-shuru
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0921
- Wer: 1.2628
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 100
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 6.5528 | 23.81 | 500 | 0.5509 | 1.9487 |
| 0.2926 | 47.62 | 1000 | 0.1306 | 1.2756 |
| 0.1171 | 71.43 | 1500 | 0.1189 | 1.2628 |
| 0.0681 | 95.24 | 2000 | 0.0921 | 1.2628 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
ml6team/robbert-dutch-base-toxic-comments | ml6team | 2022-01-20T07:57:36Z | 2,793 | 6 | transformers | [
"transformers",
"pytorch",
"roberta",
"text-classification",
"nl",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
language:
- nl
tags:
- text-classification
- pytorch
widget:
- text: "Ik heb je lief met heel mijn hart"
example_title: "Non toxic comment 1"
- text: "Dat is een goed punt, zo had ik het nog niet bekeken."
example_title: "Non toxic comment 2"
- text: "Wat de fuck zei je net tegen me, klootzak?"
example_title: "Toxic comment 1"
- text: "Rot op, vuile hoerenzoon."
example_title: "Toxic comment 2"
license: apache-2.0
metrics:
- Accuracy, F1 Score, Recall, Precision
---
# RobBERT-dutch-base-toxic-comments
## Model description:
This model was created with the purpose to detect toxic or potentially harmful comments.
For this model, we finetuned a dutch RobBerta-based model called [RobBERT](https://huggingface.co/pdelobelle/robbert-v2-dutch-base) on the translated [Jigsaw Toxicity dataset](https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge).
The original dataset was translated using the appropriate [MariantMT model](https://huggingface.co/Helsinki-NLP/opus-mt-en-nl).
The model was trained for 2 epochs, on 90% of the dataset, with the following arguments:
```
training_args = TrainingArguments(
learning_rate=1e-5,
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
gradient_accumulation_steps=6,
load_best_model_at_end=True,
metric_for_best_model="recall",
epochs=2,
evaluation_strategy="steps",
save_strategy="steps",
save_total_limit=10,
logging_steps=100,
eval_steps=250,
save_steps=250,
weight_decay=0.001,
report_to="wandb")
```
## Model Performance:
Model evaluation was done on 1/10th of the dataset, which served as the test dataset.
| Accuracy | F1 Score | Recall | Precision |
| --- | --- | --- | --- |
| 95.63 | 78.80 | 78.99 | 78.61 |
## Dataset:
Unfortunately we cannot open-source the dataset, since we are bound by the underlying Jigsaw license.
|
abdelkader/distilbert-base-uncased-distilled-clinc | abdelkader | 2022-01-20T05:15:31Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:clinc_oos",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- clinc_oos
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-distilled-clinc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: clinc_oos
type: clinc_oos
args: plus
metrics:
- name: Accuracy
type: accuracy
value: 0.9464516129032258
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-distilled-clinc
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3038
- Accuracy: 0.9465
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 318 | 2.8460 | 0.7506 |
| 3.322 | 2.0 | 636 | 1.4301 | 0.8532 |
| 3.322 | 3.0 | 954 | 0.7377 | 0.9152 |
| 1.2296 | 4.0 | 1272 | 0.4784 | 0.9316 |
| 0.449 | 5.0 | 1590 | 0.3730 | 0.9390 |
| 0.449 | 6.0 | 1908 | 0.3367 | 0.9429 |
| 0.2424 | 7.0 | 2226 | 0.3163 | 0.9468 |
| 0.1741 | 8.0 | 2544 | 0.3074 | 0.9452 |
| 0.1741 | 9.0 | 2862 | 0.3054 | 0.9458 |
| 0.1501 | 10.0 | 3180 | 0.3038 | 0.9465 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3
|
UBC-NLP/ARBERT | UBC-NLP | 2022-01-19T20:10:55Z | 540 | 5 | transformers | [
"transformers",
"pytorch",
"tf",
"jax",
"bert",
"fill-mask",
"Arabic BERT",
"MSA",
"Twitter",
"Masked Langauge Model",
"ar",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2022-03-02T23:29:05Z | ---
language:
- ar
tags:
- Arabic BERT
- MSA
- Twitter
- Masked Langauge Model
widget:
- text: "اللغة العربية هي لغة [MASK]."
---
<img src="https://raw.githubusercontent.com/UBC-NLP/marbert/main/ARBERT_MARBERT.jpg" alt="drawing" width="30%" height="30%" align="right"/>
**ARBERT** is one of three models described in our **ACl 2021 paper** **["ARBERT & MARBERT: Deep Bidirectional Transformers for Arabic"](https://mageed.arts.ubc.ca/files/2020/12/marbert_arxiv_2020.pdf)**. ARBERT is a large-scale pre-trained masked language model focused on Modern Standard Arabic (MSA). To train ARBERT, we use the same architecture as BERT-base: 12 attention layers, each has 12 attention heads and 768 hidden dimensions, a vocabulary of 100K WordPieces, making ∼163M parameters. We train ARBERT on a collection of Arabic datasets comprising **61GB of text** (**6.2B tokens**). For more information, please visit our own GitHub [repo](https://github.com/UBC-NLP/marbert).
# BibTex
If you use our models (ARBERT, MARBERT, or MARBERTv2) for your scientific publication, or if you find the resources in this repository useful, please cite our paper as follows (to be updated):
```bibtex
@inproceedings{abdul-mageed-etal-2021-arbert,
title = "{ARBERT} {\&} {MARBERT}: Deep Bidirectional Transformers for {A}rabic",
author = "Abdul-Mageed, Muhammad and
Elmadany, AbdelRahim and
Nagoudi, El Moatez Billah",
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.acl-long.551",
doi = "10.18653/v1/2021.acl-long.551",
pages = "7088--7105",
abstract = "Pre-trained language models (LMs) are currently integral to many natural language processing systems. Although multilingual LMs were also introduced to serve many languages, these have limitations such as being costly at inference time and the size and diversity of non-English data involved in their pre-training. We remedy these issues for a collection of diverse Arabic varieties by introducing two powerful deep bidirectional transformer-based models, ARBERT and MARBERT. To evaluate our models, we also introduce ARLUE, a new benchmark for multi-dialectal Arabic language understanding evaluation. ARLUE is built using 42 datasets targeting six different task clusters, allowing us to offer a series of standardized experiments under rich conditions. When fine-tuned on ARLUE, our models collectively achieve new state-of-the-art results across the majority of tasks (37 out of 48 classification tasks, on the 42 datasets). Our best model acquires the highest ARLUE score (77.40) across all six task clusters, outperforming all other models including XLM-R Large ( 3.4x larger size). Our models are publicly available at https://github.com/UBC-NLP/marbert and ARLUE will be released through the same repository.",
}
```
## Acknowledgments
We gratefully acknowledge support from the Natural Sciences and Engineering Research Council of Canada, the Social Sciences and Humanities Research Council of Canada, Canadian Foundation for Innovation, [ComputeCanada](www.computecanada.ca) and [UBC ARC-Sockeye](https://doi.org/10.14288/SOCKEYE). We also thank the [Google TensorFlow Research Cloud (TFRC)](https://www.tensorflow.org/tfrc) program for providing us with free TPU access. |
hrdipto/wav2vec2-xls-r-tf-left-right-trainer | hrdipto | 2022-01-19T20:06:38Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-xls-r-tf-left-right-trainer
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xls-r-tf-left-right-trainer
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.0090
- eval_wer: 0.0037
- eval_runtime: 11.2686
- eval_samples_per_second: 71.703
- eval_steps_per_second: 8.963
- epoch: 21.05
- step: 4000
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
kjackson/distilbert-base-uncased-finetuned-emotion | kjackson | 2022-01-19T19:10:27Z | 0 | 0 | null | [
"exbert",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1907.11692",
"license:mit",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
tags:
- exbert
license: mit
datasets:
- bookcorpus
- wikipedia
---
# RoBERTa base model
Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/abs/1907.11692) and first released in
[this repository](https://github.com/pytorch/fairseq/tree/master/examples/roberta). This model is case-sensitive: it
makes a difference between english and English.
Disclaimer: The team releasing RoBERTa did not write a model card for this model so this model card has been written by
the Hugging Face team.
|
vuiseng9/bert-base-squadv1 | vuiseng9 | 2022-01-19T19:03:57Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"onnx",
"bert",
"question-answering",
"endpoints_compatible",
"region:us"
] | question-answering | 2022-03-02T23:29:05Z | This model is a fork of [```csarron/bert-base-uncased-squad-v1```](https://huggingface.co/csarron/bert-base-uncased-squad-v1).
```
eval_exact_match = 80.9082
eval_f1 = 88.2275
eval_samples = 10784
```
# Eval
```bash
export CUDA_VISIBLE_DEVICES=0
OUTDIR=eval-bert-base-squadv1
WORKDIR=transformers/examples/pytorch/question-answering
cd $WORKDIR
nohup python run_qa.py \
--model_name_or_path vuiseng9/bert-base-squadv1 \
--dataset_name squad \
--do_eval \
--per_device_eval_batch_size 128 \
--max_seq_length 384 \
--doc_stride 128 \
--overwrite_output_dir \
--output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log &
```
|
masapasa/wav2vec2-large-xls-r-300m-turkish-colab | masapasa | 2022-01-19T17:30:55Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-large-xls-r-300m-turkish-colab
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-turkish-colab
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 30
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu113
- Datasets 1.13.3
- Tokenizers 0.10.3
|
dehio/german-qg-t5-drink600 | dehio | 2022-01-19T16:38:22Z | 7 | 1 | transformers | [
"transformers",
"pytorch",
"t5",
"text2text-generation",
"question generation",
"de",
"dataset:deepset/germanquad",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2022-03-02T23:29:05Z | ---
license: mit
widget:
- text: "generate question: Der Monk Sour Drink ist ein somit eine aromatische Überraschung, die sowohl <hl>im Sommer wie auch zu Silvester<hl> funktioniert."
language:
- de
tags:
- question generation
datasets:
- deepset/germanquad
model-index:
- name: german-qg-t5-drink600
results: []
---
# german-qg-t5-drink600
This model is fine-tuned in question generation in German. The expected answer must be highlighted with <hl> token. It is based on [german-qg-t5-quad](https://huggingface.co/dehio/german-qg-t5-quad) and further pre-trained on drink related questions.
## Task example
#### Input
generate question: Der Monk Sour Drink ist ein somit eine aromatische Überraschung,
die sowohl <hl>im Sommer wie auch zu Silvester<hl> funktioniert.
#### Expected Question
Zu welchen Gelegenheiten passt der Monk Sour gut?
## Model description
The model is based on [german-qg-t5-quad](https://huggingface.co/dehio/german-qg-t5-quad), which was pre-trained on [GermanQUAD](https://www.deepset.ai/germanquad). We further pre-trained it on questions annotated on drink receipts from [Mixology](https://mixology.eu/) ("drink600").
We have not yet open sourced the dataset, since we do not own copyright on the source material.
## Training and evaluation data
The training script can be accessed [here](https://github.com/d-e-h-i-o/german-qg).
## Evaluation
It achieves a **BLEU-4 score of 29.80** on the drink600 test set (n=120) and **11.30** on the GermanQUAD test set.
Thus, fine-tuning on drink600 did not affect performance on GermanQuAD.
In comparison, *german-qg-t5-quad* achieves a BLEU-4 score of **10.76** on the drink600 test set.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 100
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0+cu102
- Datasets 1.16.1
- Tokenizers 0.10.3
|
indonesian-nlp/wav2vec2-luganda | indonesian-nlp | 2022-01-19T16:19:45Z | 11 | 2 | transformers | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"lg",
"dataset:common_voice",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
language: lg
datasets:
- common_voice
metrics:
- wer
tags:
- audio
- automatic-speech-recognition
- speech
license: apache-2.0
model-index:
- name: Wav2Vec2 Luganda by Indonesian-NLP
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice lg
type: common_voice
args: lg
metrics:
- name: Test WER
type: wer
value: 7.53
---
# Automatic Speech Recognition for Luganda
This is the model built for the
[Mozilla Luganda Automatic Speech Recognition competition](https://zindi.africa/competitions/mozilla-luganda-automatic-speech-recognition).
It is a fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53)
model on the [Luganda Common Voice dataset](https://huggingface.co/datasets/common_voice) version 7.0.
We also provide a [live demo](https://huggingface.co/spaces/indonesian-nlp/luganda-asr) to test the model.
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "lg", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("indonesian-nlp/wav2vec2-luganda")
model = Wav2Vec2ForCTC.from_pretrained("indonesian-nlp/wav2vec2-luganda")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
if "audio" in batch:
speech_array = torch.tensor(batch["audio"]["array"])
else:
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset[:2]["sentence"])
```
## Evaluation
The model can be evaluated as follows on the Indonesian test data of Common Voice.
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "lg", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("indonesian-nlp/wav2vec2-luganda")
model = Wav2Vec2ForCTC.from_pretrained("indonesian-nlp/wav2vec2-luganda")
model.to("cuda")
chars_to_ignore = [",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�", "‘", "’", "’"]
chars_to_ignore_regex = f'[{"".join(chars_to_ignore)}]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
if "audio" in batch:
speech_array = torch.tensor(batch["audio"]["array"])
else:
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
WER without KenLM: 15.38 %
WER With KenLM:
**Test Result**: 7.53 %
## Training
The Common Voice `train`, `validation`, and ... datasets were used for training as well as ... and ... # TODO
The script used for training can be found [here](https://github.com/indonesian-nlp/luganda-asr)
|
DanL/scientific-challenges-and-directions | DanL | 2022-01-19T12:47:22Z | 315 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"en",
"dataset:DanL/scientific-challenges-and-directions-dataset",
"arxiv:2108.13751",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:04Z | ---
tags:
- generated_from_trainer
- text-classification
language:
- en
datasets:
- DanL/scientific-challenges-and-directions-dataset
widget:
- text: "severe atypical cases of pneumonia emerged and quickly spread worldwide."
example_title: "challenge"
- text: "we speculate that studying IL-6 will be beneficial."
example_title: "direction"
- text: "in future studies, both PRRs should be tested as the cause for multiple deaths."
example_title: "both"
- text: "IbMADS1-transformed potatoes exhibited tuber morphogenesis in the fibrous roots."
example_title: "neither"
metrics:
- precision
- recall
- f1
model-index:
- name: scientific-challenges-and-directions
results: []
---
# scientific-challenges-and-directions
We present a novel resource to help scientists and medical professionals discover challenges and potential directions across scientific literature, focusing on a broad corpus pertaining to the COVID-19 pandemic and related historical research. At a high level, the _challenges_ and _directions_ are defined as follows:
* **Challenge**: A sentence mentioning a problem, difficulty, flaw, limitation, failure, lack of clarity, or knowledge gap.
* **Research direction**: A sentence mentioning suggestions or needs for further research, hypotheses, speculations, indications or hints that an issue is worthy of exploration.
* This model here is described in our paper: [A Search Engine for Discovery of Scientific Challenges and Directions](https://arxiv.org/abs/2108.13751) (though we've upgraded the infrastructure since the paper was released - there are slight differences in the results).
* Our dataset can be found [here](https://huggingface.co/datasets/DanL/scientific-challenges-and-directions-dataset).
* Please cite our paper if you use our datasets or models in your project. See the [BibTeX](#citation).
* Feel free to [email us](#contact-us).
* Also, check out [our search engine](https://challenges.apps.allenai.org/), as an example application.
## Model description
This model is a fine-tuned version of [PubMedBERT](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the [scientific-challenges-and-directions-dataset](https://huggingface.co/datasets/DanL/scientific-challenges-and-directions-dataset), designed for multi-label text classification.
## Training and evaluation data
The scientific-challenges-and-directions model is trained based on a dataset that is a collection of 2894 sentences and their surrounding contexts, from 1786 full-text papers in the CORD-19 corpus, labeled for classification of challenges and directions by expert annotators with biomedical and bioNLP backgrounds. For full details on the train/test/split of the data see section 3.1 in our [paper](https://arxiv.org/abs/2108.13751)
## Example notebook
We include an example notebook that uses the model for inference in our [repo](https://github.com/Dan-La/scientific-challenges-and-directions). See `Inference_Notebook.ipynb`.
A training notebook is also included.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning rate: 2e-05
- train batch size: 8
- eval batch size: 4
- seed: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr scheduler type: linear
- lr scheduler warmup steps: 500
- num epochs: 30
### Training results
The achieves the following results on the test set:
- Precision Challenge: 0.768719
- Recall Challenge: 0.780405
- F1 Challenge: 0.774518
- Precision Direction: 0.758112
- Recall Direction: 0.774096
- F1 Direction: 0.766021
- Precision (micro avg. on both labels): 0.764894
- Recall (micro avg. on both labels): 0.778139
- F1 (micro avg. on both labels): 0.771459
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3
## Citation
If using our dataset and models, please cite:
```
@misc{lahav2021search,
title={A Search Engine for Discovery of Scientific Challenges and Directions},
author={Dan Lahav and Jon Saad Falcon and Bailey Kuehl and Sophie Johnson and Sravanthi Parasa and Noam Shomron and Duen Horng Chau and Diyi Yang and Eric Horvitz and Daniel S. Weld and Tom Hope},
year={2021},
eprint={2108.13751},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
## Contact us
Please don't hesitate to reach out.
**Email:** `[email protected]`,`[email protected]`.
|
mishig/test_vid | mishig | 2022-01-19T09:56:39Z | 0 | 0 | null | [
"region:us"
] | null | 2022-03-02T23:29:05Z | # Video demo on ModelCard
Please find [this file](https://huggingface.co/mishig/test_vid/blob/main/README.md) to see how to add a video to model card.
<video src="https://huggingface.co/mishig/test_vid/resolve/main/output.mp4" controls autoplay loop/> |
chitra/finetuned-adversarial-paraphrase-model | chitra | 2022-01-19T09:13:16Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"roberta",
"text-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
tags:
- generated_from_trainer
model-index:
- name: finetuned-adversarial-paraphrase-model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned-adversarial-paraphrase-model
This model is a fine-tuned version of [coderpotter/adversarial-paraphrasing-detector](https://huggingface.co/coderpotter/adversarial-paraphrasing-detector) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 7.5680
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.0848 | 1.0 | 2000 | 5.4633 |
| 0.0495 | 2.0 | 4000 | 6.0352 |
| 0.0121 | 3.0 | 6000 | 7.5680 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3
|
mrp/distilbert-base-uncased-finetuned-imdb | mrp | 2022-01-19T08:44:09Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"fill-mask",
"generated_from_trainer",
"dataset:imdb",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imdb
model-index:
- name: distilbert-base-uncased-finetuned-imdb
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-imdb
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4718
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.707 | 1.0 | 157 | 2.4883 |
| 2.572 | 2.0 | 314 | 2.4240 |
| 2.5377 | 3.0 | 471 | 2.4355 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3
|
huggingtweets/histronicmonstr | huggingtweets | 2022-01-19T04:57:37Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: http://www.huggingtweets.com/histronicmonstr/1642568219493/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1431060400171270149/X2agCkD0_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">(心) !!!Ma-tin Korii!!! Uwa~😃!!!</div>
<div style="text-align: center; font-size: 14px;">@histronicmonstr</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from (心) !!!Ma-tin Korii!!! Uwa~😃!!!.
| Data | (心) !!!Ma-tin Korii!!! Uwa~😃!!! |
| --- | --- |
| Tweets downloaded | 3203 |
| Retweets | 97 |
| Short tweets | 488 |
| Tweets kept | 2618 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1sdp3pm6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @histronicmonstr's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2ms6e48p) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2ms6e48p/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/histronicmonstr')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
chitra/finetune-paraphrase-model | chitra | 2022-01-19T04:40:57Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"roberta",
"text-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
tags:
- generated_from_trainer
model-index:
- name: finetune-paraphrase-model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetune-paraphrase-model
This model is a fine-tuned version of [coderpotter/adversarial-paraphrasing-detector](https://huggingface.co/coderpotter/adversarial-paraphrasing-detector) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 0.1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 0.1 | 200 | 3.0116 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3
|
huggingtweets/godslovepariah | huggingtweets | 2022-01-19T04:12:22Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: http://www.huggingtweets.com/godslovepariah/1642565537762/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1432780406777020417/XTrp9MCR_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">LOVER//PARIAH</div>
<div style="text-align: center; font-size: 14px;">@godslovepariah</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from LOVER//PARIAH.
| Data | LOVER//PARIAH |
| --- | --- |
| Tweets downloaded | 525 |
| Retweets | 9 |
| Short tweets | 10 |
| Tweets kept | 506 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/6l5fj9xw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @godslovepariah's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3v0x5r1a) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3v0x5r1a/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/godslovepariah')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
NbAiLab/roberta_des_128 | NbAiLab | 2022-01-19T01:06:51Z | 3 | 0 | transformers | [
"transformers",
"jax",
"tensorboard",
"roberta",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2022-03-02T23:29:04Z | Just for performing some experiments. Do not use.
This needed to be restarted at 100k. I am getting memory errors at the end of the epoch. Not really sure why.
Step 2 is therefore on train_2__4. Static learning rate for a while. The first 100k ended at 0.59. This is decent so early. No point in running more epochs here though. Changing the corpus and continue training.
|
domdomreloaded/bert-base-uncased-finetuned-swag | domdomreloaded | 2022-01-18T22:33:47Z | 11 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"multiple-choice",
"generated_from_trainer",
"dataset:swag",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | multiple-choice | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- swag
metrics:
- accuracy
model-index:
- name: bert-base-uncased-finetuned-swag
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-finetuned-swag
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the swag dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6045
- Accuracy: 0.7960
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.7494 | 1.0 | 4597 | 0.5942 | 0.7716 |
| 0.3499 | 2.0 | 9194 | 0.6045 | 0.7960 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3
|
malloc/OpenNMT-py-German-English-2-layer-BiLSTM | malloc | 2022-01-18T20:22:23Z | 0 | 0 | null | [
"translation",
"pytorch",
"de",
"en",
"license:mit",
"region:us"
] | translation | 2022-03-02T23:29:05Z | ---
language:
- de
- en
tags:
- translation
- pytorch
license: mit
datasets:
- IWSLT ‘14 DE-EN
metrics:
- bleu
---
# OpenNMT-py-English-German-Transformer
[OpenNMT-py](https://github.com/OpenNMT/OpenNMT-py) is the PyTorch version of the OpenNMT project, an open-source (MIT) neural machine translation framework.
OpenNMT has several [pretrained models](https://opennmt.net/Models-py/). This one is trained particularly for German to English translation.
- Configuration: 2-layer BiLSTM with hidden size 500 trained for 20 epochs
- Data: IWSLT ‘14 DE-EN
- BLEU: 30.33 |
malloc/OpenNMT-py-English-German-Transformer | malloc | 2022-01-18T20:18:11Z | 0 | 2 | null | [
"translation",
"pytorch",
"de",
"en",
"dataset:WMT",
"license:mit",
"region:us"
] | translation | 2022-03-02T23:29:05Z | ---
language:
- de
- en
tags:
- translation
- pytorch
license: mit
datasets:
- WMT
metrics:
- bleu
---
# OpenNMT-py-English-German-Transformer
[OpenNMT-py](https://github.com/OpenNMT/OpenNMT-py) is the PyTorch version of the OpenNMT project, an open-source (MIT) neural machine translation framework.
OpenNMT has several [pretrained models](https://opennmt.net/Models-py/). This one is trained particularly for English to German translation.
- Configuration: Base Transformer configuration with [standard training options](http://opennmt.net/OpenNMT-py/FAQ.html#how-do-i-use-the-transformer-model-do-you-support-multi-gpu)
- Data: WMT with shared SentencePiece model
- BLEU:
- newstest2014 = 26.89
- newstest2017 = 28.09 |
vuiseng9/bert-base-squadv1-pruneofa-90pc-bt | vuiseng9 | 2022-01-18T19:13:21Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"onnx",
"bert",
"question-answering",
"endpoints_compatible",
"region:us"
] | question-answering | 2022-03-02T23:29:05Z | This model is transfer-learning of [bert-base pruneofa 90% sparse](https://huggingface.co/Intel/bert-base-uncased-sparse-90-unstructured-pruneofa) on Squadv1 dataset.
```
eval_exact_match = 80.2933
eval_f1 = 87.6788
eval_samples = 10784
```
# Train
use https://github.com/IntelLabs/Model-Compression-Research-Package.git
see ```pruneofa-transfer-learning.sh```
# Eval
```bash
export CUDA_VISIBLE_DEVICES=0
OUTDIR=eval-bert-base-squadv1-pruneofa-90pc-bt
WORKDIR=transformers/examples/pytorch/question-answering
cd $WORKDIR
nohup python run_qa.py \
--model_name_or_path vuiseng9/bert-base-squadv1-pruneofa-90pc-bt \
--dataset_name squad \
--do_eval \
--per_device_eval_batch_size 128 \
--max_seq_length 384 \
--doc_stride 128 \
--overwrite_output_dir \
--output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log &
```
|
huggingtweets/collision | huggingtweets | 2022-01-18T17:17:28Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: http://www.huggingtweets.com/collision/1642526243846/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/2464132281/jbbxl9p7ratdyuposrif_400x400.jpeg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">John Collison</div>
<div style="text-align: center; font-size: 14px;">@collision</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from John Collison.
| Data | John Collison |
| --- | --- |
| Tweets downloaded | 3222 |
| Retweets | 999 |
| Short tweets | 206 |
| Tweets kept | 2017 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2ifqwdbm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @collision's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2gdto8z3) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2gdto8z3/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/collision')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
tal-yifat/injury-report-test | tal-yifat | 2022-01-18T16:24:00Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"fill-mask",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: injury-report-test
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# injury-report-test
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5697
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 1.8158 | 1.0 | 6633 | 1.7368 |
| 1.6984 | 2.0 | 13266 | 1.6198 |
| 1.6209 | 3.0 | 19899 | 1.5800 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3
|
phueb/BabyBERTa-2 | phueb | 2022-01-18T14:44:44Z | 60 | 0 | transformers | [
"transformers",
"pytorch",
"roberta",
"fill-mask",
"BabyBERTa",
"en",
"dataset:CHILDES",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2022-03-02T23:29:05Z | ---
language: en
tags:
- BabyBERTa
datasets:
- CHILDES
widget:
- text: "Look here. What is that <mask> ?"
- text: "Do you like your <mask> ?"
---
## BabyBERTA
### Overview
BabyBERTa is a light-weight version of RoBERTa trained on 5M words of American-English child-directed input.
It is intended for language acquisition research, on a single desktop with a single GPU - no high-performance computing infrastructure needed.
The three provided models are randomly selected from 10 that were trained and reported in the paper.
## Loading the tokenizer
BabyBERTa was trained with `add_prefix_space=True`, so it will not work properly with the tokenizer defaults.
For instance, to load the tokenizer for BabyBERTa-1, load it as follows:
```python
tokenizer = RobertaTokenizerFast.from_pretrained("phueb/BabyBERTa-1",
add_prefix_space=True)
```
### Hyper-Parameters
See the paper for details.
All provided models were trained for 400K steps with a batch size of 16.
Importantly, BabyBERTa never predicts unmasked tokens during training - `unmask_prob` is set to zero.
### Performance
BabyBerta was developed for learning grammatical knowledge from child-directed input.
Its grammatical knowledge was evaluated using the [Zorro](https://github.com/phueb/Zorro) test suite.
The best model achieves an overall accuracy of 80.3,
comparable to RoBERTa-base, which achieves an overall accuracy of 82.6 on the latest version of Zorro (as of October, 2021).
Both values differ slightly from those reported in the [CoNLL 2021 paper](https://aclanthology.org/2021.conll-1.49/).
There are two reasons for this:
1. Performance of RoBERTa-base is slightly larger because the authors previously lower-cased all words in Zorro before evaluation.
Lower-casing of proper nouns is detrimental to RoBERTa-base because RoBERTa-base has likely been trained on proper nouns that are primarily title-cased.
In contrast, because BabyBERTa is not case-sensitive, its performance is not influenced by this change.
2. The latest version of Zorro no longer contains ambiguous content words such as "Spanish" which can be both a noun and an adjective.
this resulted in a small reduction in the performance of BabyBERTa.
Overall Accuracy on Zorro:
| Model Name | Accuracy (holistic scoring) | Accuracy (MLM-scoring) |
|----------------------------------------|------------------------------|------------|
| [BabyBERTa-1][link-BabyBERTa-1] | 80.3 | 79.9 |
| [BabyBERTa-2][link-BabyBERTa-2] | 78.6 | 78.2 |
| [BabyBERTa-3][link-BabyBERTa-3] | 74.5 | 78.1 |
### Additional Information
This model was trained by [Philip Huebner](https://philhuebner.com), currently at the [UIUC Language and Learning Lab](http://www.learninglanguagelab.org).
More info can be found [here](https://github.com/phueb/BabyBERTa).
[link-BabyBERTa-1]: https://huggingface.co/phueb/BabyBERTa-1
[link-BabyBERTa-2]: https://huggingface.co/phueb/BabyBERTa-2
[link-BabyBERTa-3]: https://huggingface.co/phueb/BabyBERTa-3
|
phueb/BabyBERTa-1 | phueb | 2022-01-18T14:44:02Z | 56 | 2 | transformers | [
"transformers",
"pytorch",
"roberta",
"fill-mask",
"BabyBERTa",
"en",
"dataset:CHILDES",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2022-03-02T23:29:05Z | ---
language: en
tags:
- BabyBERTa
datasets:
- CHILDES
widget:
- text: "Look here. What is that <mask> ?"
- text: "Do you like your <mask> ?"
---
## BabyBERTA
### Overview
BabyBERTa is a light-weight version of RoBERTa trained on 5M words of American-English child-directed input.
It is intended for language acquisition research, on a single desktop with a single GPU - no high-performance computing infrastructure needed.
The three provided models are randomly selected from 10 that were trained and reported in the paper.
## Loading the tokenizer
BabyBERTa was trained with `add_prefix_space=True`, so it will not work properly with the tokenizer defaults.
For instance, to load the tokenizer for BabyBERTa-1, load it as follows:
```python
tokenizer = RobertaTokenizerFast.from_pretrained("phueb/BabyBERTa-1",
add_prefix_space=True)
```
### Hyper-Parameters
See the paper for details.
All provided models were trained for 400K steps with a batch size of 16.
Importantly, BabyBERTa never predicts unmasked tokens during training - `unmask_prob` is set to zero.
### Performance
BabyBerta was developed for learning grammatical knowledge from child-directed input.
Its grammatical knowledge was evaluated using the [Zorro](https://github.com/phueb/Zorro) test suite.
The best model achieves an overall accuracy of 80.3,
comparable to RoBERTa-base, which achieves an overall accuracy of 82.6 on the latest version of Zorro (as of October, 2021).
Both values differ slightly from those reported in the [CoNLL 2021 paper](https://aclanthology.org/2021.conll-1.49/).
There are two reasons for this:
1. Performance of RoBERTa-base is slightly larger because the authors previously lower-cased all words in Zorro before evaluation.
Lower-casing of proper nouns is detrimental to RoBERTa-base because RoBERTa-base has likely been trained on proper nouns that are primarily title-cased.
In contrast, because BabyBERTa is not case-sensitive, its performance is not influenced by this change.
2. The latest version of Zorro no longer contains ambiguous content words such as "Spanish" which can be both a noun and an adjective.
this resulted in a small reduction in the performance of BabyBERTa.
Overall Accuracy on Zorro:
| Model Name | Accuracy (holistic scoring) | Accuracy (MLM-scoring) |
|----------------------------------------|------------------------------|------------|
| [BabyBERTa-1][link-BabyBERTa-1] | 80.3 | 79.9 |
| [BabyBERTa-2][link-BabyBERTa-2] | 78.6 | 78.2 |
| [BabyBERTa-3][link-BabyBERTa-3] | 74.5 | 78.1 |
### Additional Information
This model was trained by [Philip Huebner](https://philhuebner.com), currently at the [UIUC Language and Learning Lab](http://www.learninglanguagelab.org).
More info can be found [here](https://github.com/phueb/BabyBERTa).
[link-BabyBERTa-1]: https://huggingface.co/phueb/BabyBERTa-1
[link-BabyBERTa-2]: https://huggingface.co/phueb/BabyBERTa-2
[link-BabyBERTa-3]: https://huggingface.co/phueb/BabyBERTa-3
|
soskok1288/Sas | soskok1288 | 2022-01-18T11:54:46Z | 0 | 0 | null | [
"region:us"
] | null | 2022-03-02T23:29:05Z | export enum PipelineType {
"text-generation"} |
hkunlp/T5_large_prefix_all_tasks_2upsample2 | hkunlp | 2022-01-18T07:15:22Z | 4 | 2 | transformers | [
"transformers",
"pytorch",
"t5",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | This is the ckpt of prefix-tuning model we trained on 21 tasks using a upsampling temp of 2.
Note: The prefix module is large due to the fact we keep the re-param weight and didn't compress it to make it more original and extendable for researchers. |
csukuangfj/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-01-10 | csukuangfj | 2022-01-18T04:29:27Z | 0 | 0 | null | [
"region:us"
] | null | 2022-03-02T23:29:05Z | # Introduction
## How to clone this repo
```
sudo apt-get install git-lfs
git clone https://huggingface.co/csukuangfj/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-01-10
cd icefall-asr-librispeech-transducer-stateless-bpe-500-2022-01-10
git lfs pull
```
**Catuion**: You have to run `git lfs pull`. Otherwise, you will be SAD later.
The model in this repo is trained using the commit `4c1b3665ee6efb935f4dd93a80ff0e154b13efb6`.
You can use
```
git clone https://github.com/k2-fsa/icefall
cd icefall
git checkout 4c1b3665ee6efb935f4dd93a80ff0e154b13efb6
```
to download `icefall`.
You can find the model information by visiting <https://github.com/k2-fsa/icefall/blob/273e5fb2f3ac2620bafdffe2689b8b3ee10173d3/egs/librispeech/ASR/transducer_stateless/train.py#L198>.
In short, the encoder is a Conformer model with 8 heads, 12 encoder layers, 512-dim attention, 2048-dim feedforward;
the decoder contains a 1024-dim embedding layer and a Conv1d with kernel size 2.
The decoder architecture is modified from
[Rnn-Transducer with Stateless Prediction Network](https://ieeexplore.ieee.org/document/9054419).
A Conv1d layer is placed right after the input embedding layer.
-----
## Description
This repo provides pre-trained transducer Conformer model for the LibriSpeech dataset
using [icefall][icefall]. There are no RNNs in the decoder. The decoder is stateless
and contains only an embedding layer and a Conv1d.
The commands for training are:
```
cd egs/librispeech/ASR/
./prepare.sh
export CUDA_VISIBLE_DEVICES="0,1,2,3"
./transducer_stateless/train.py \
--world-size 4 \
--num-epochs 76 \
--start-epoch 0 \
--exp-dir transducer_stateless/exp-full \
--full-libri 1 \
--max-duration 250 \
--lr-factor 3
```
The tensorboard training log can be found at
<https://tensorboard.dev/experiment/qGdqzHnxS0WJ695OXfZDzA/>
The command for decoding is:
```
epoch=71
avg=15
## greedy search
./transducer_stateless/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir transducer_stateless/exp-full \
--bpe-model ./data/lang_bpe_500/bpe.model \
--max-duration 100
## beam search
./transducer_stateless/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir transducer_stateless/exp-full \
--bpe-model ./data/lang_bpe_500/bpe.model \
--max-duration 100 \
--decoding-method beam_search \
--beam-size 4
```
You can find the decoding log for the above command in this
repo (in the folder `log`).
The WERs for the test datasets are
| | test-clean | test-other | comment |
|---------------------------|------------|------------|------------------------------------------|
| greedy search | 2.69 | 6.81 | --epoch 71, --avg 15, --max-duration 100 |
| beam search (beam size 4) | 2.68 | 6.72 | --epoch 71, --avg 15, --max-duration 100 |
# File description
- [log][log], this directory contains the decoding log and decoding results
- [test_wavs][test_wavs], this directory contains wave files for testing the pre-trained model
- [data][data], this directory contains files generated by [prepare.sh][prepare]
- [exp][exp], this directory contains only one file: `preprained.pt`
`exp/pretrained.pt` is generated by the following command:
```
./transducer_stateless/export.py \
--epoch 71 \
--avg 15 \
--bpe-model data/lang_bpe_500/bpe.model \
--exp-dir transducer_stateless/exp-full
```
**HINT**: To use `pre-trained.pt` to compute the WER for test-clean and test-other,
just do the following:
```
cp icefall-asr-librispeech-transducer-stateless-bpe-500-2022-01-10/exp/pretrained.pt \
/path/to/icefall/egs/librispeech/ASR/transducer_stateless/exp/epoch-999.pt
```
and pass `--epoch 999 --avg 1` to `transducer_stateless/decode.py`.
[icefall]: https://github.com/k2-fsa/icefall
[prepare]: https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/prepare.sh
[exp]: https://huggingface.co/csukuangfj/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-01-10/tree/main/exp
[data]: https://huggingface.co/csukuangfj/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-01-10/tree/main/data
[test_wavs]: https://huggingface.co/csukuangfj/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-01-10/tree/main/test_wavs
[log]: https://huggingface.co/csukuangfj/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-01-10/tree/main/log
[icefall]: https://github.com/k2-fsa/icefall
|
huggingtweets/dankogai-hirox246-syakkin_dama | huggingtweets | 2022-01-18T02:01:17Z | 0 | 0 | null | [
"huggingtweets",
"en",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: http://www.huggingtweets.com/dankogai-hirox246-syakkin_dama/1642471272927/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/646595746905620480/oeKI14gB_400x400.png')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1190142566831984640/o4kO2hp-_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1283621672541536259/WI_8OTJz_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">ひろゆき, Hiroyuki Nishimura & Dan Kogai & 借金玉</div>
<div style="text-align: center; font-size: 14px;">@dankogai-hirox246-syakkin_dama</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from ひろゆき, Hiroyuki Nishimura & Dan Kogai & 借金玉.
| Data | ひろゆき, Hiroyuki Nishimura | Dan Kogai | 借金玉 |
| --- | --- | --- | --- |
| Tweets downloaded | 3249 | 3250 | 3249 |
| Retweets | 283 | 341 | 260 |
| Short tweets | 1819 | 2313 | 2918 |
| Tweets kept | 1147 | 596 | 71 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1meoqt2b/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dankogai-hirox246-syakkin_dama's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1gc1ic0l) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1gc1ic0l/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dankogai-hirox246-syakkin_dama')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
jkang/drawing-artistic-trend-classifier | jkang | 2022-01-18T01:19:29Z | 3 | 0 | tf-keras | [
"tf-keras",
"en",
"license:mit",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
license: mit
datasets:
- web crawled (coming soon)
---
# Simple CNN-based Artist Classifier
This repo contains a simple CNN-based Keras model which classifies images into one of 8 artistic trends.
See also: `https://huggingface.co/jkang/drawing-artist-classifier`
- The purpose of this model was for a quick prototyping
- Data has been web-crawled using `https://github.com/YoongiKim/AutoCrawler`
- 8 popular artists/painters were chosen:
- \[TREND\]: \[ID\]
- cubism: 0,
- expressionism: 1,
- fauvisme: 2,
- graffitiar: 3,
- impressionism: 4,
- popart: 5,
- post_impressionism: 6,
- surrealism: 7}
- About 100 representative paintings per artist considering 8 trends were crawled and manually checked
- Dataset will be shared later
# How to use
```python
import tensorflow as tf
from huggingface_hub import from_pretrained_keras
model = from_pretrained_keras("jkang/drawing-artistic-trend-classifier")
image_file = 'monet.jpg'
img = tf.io.read_file(image_file)
img = tf.io.decode_jpeg(img, channels=3)
last_layer_activation, predictions = model(img[tf.newaxis,...])
```
# Intended uses & limitations
You can use this model freely for predicting artists or trends of a given image.
Please keep in mind that this model is not intended for production, but for research and quick prototyping.
Web-crawled image data might not have a balanced amount of drawings that sufficiently represent the artists.
---
- 2022-01-18 first created by jaekoo kang |
Huertas97/en_roberta_base_leetspeak_ner | Huertas97 | 2022-01-17T21:54:01Z | 5 | 1 | spacy | [
"spacy",
"token-classification",
"en",
"license:apache-2.0",
"model-index",
"region:us"
] | token-classification | 2022-03-02T23:29:04Z | ---
tags:
- spacy
- token-classification
language:
- en
license: apache-2.0
widget:
- text: "But one other thing that we have to re;think is the way that we dy£ our #c!l.o|th?£+s."
example_title: "Word camouflage detection"
model-index:
- name: en_roberta_base_leetspeak_ner
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.7966001851
- name: NER Recall
type: recall
value: 0.8619559279
- name: NER F Score
type: f_score
value: 0.8279903783
---
| Feature | Description |
| --- | --- |
| **Name** | `en_roberta_base_leetspeak_ner` |
| **Version** | `0.0.0` |
| **spaCy** | `>=3.2.1,<3.3.0` |
| **Default Pipeline** | `transformer`, `ner` |
| **Components** | `transformer`, `ner` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [roberta-base](https://huggingface.co/roberta-base) pre-trained model on English language using a masked language modeling (MLM) objective by Yinhan Liu et al. <br> [LeetSpeak-NER](https://huggingface.co/spaces/Huertas97/LeetSpeak-NER) app where this model is in production for countering information disorders|
| **License** | Apache 2.0 |
| **Author** | [Álvaro Huertas García](https://www.linkedin.com/in/alvaro-huertas-garcia/) at [AI+DA](http://aida.etsisi.upm.es/) |
### Label Scheme
<details>
<summary>View label scheme (4 labels for 1 components)</summary>
| Component | Labels |
| --- | --- |
| **`ner`** | `INV_CAMO`, `LEETSPEAK`, `MIX`, `PUNCT_CAMO` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `ENTS_F` | 82.80 |
| `ENTS_P` | 79.66 |
| `ENTS_R` | 86.20 |
| `TRANSFORMER_LOSS` | 177808.42 |
| `NER_LOSS` | 608427.31 | |
Subsets and Splits