modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-02 18:27:42
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
549 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-02 18:24:50
card
stringlengths
11
1.01M
chengpt/fortunetelling
chengpt
2025-02-26T16:21:41Z
0
0
null
[ "gguf", "llama", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-26T13:18:19Z
--- license: apache-2.0 ---
kas1/ai-ml-t-tes2-dftopcat-data-dsr1-1.5b
kas1
2025-02-26T16:21:40Z
0
0
transformers
[ "transformers", "safetensors", "Ayurveda", "Doshas", "Fine-Tuned Model", "LoRA", "OPT-1.3b", "endpoints_compatible", "region:us" ]
null
2025-02-26T15:47:58Z
--- library_name: transformers tags: - Ayurveda - Doshas - Fine-Tuned Model - LoRA - OPT-1.3b --- # Model Card for `ai-ml-t-tes2-dftopcat-data-dsr1-1.5b` This is a fine-tuned version of the `facebook/opt-1.3b` model using the **LoRA (Low-Rank Adaptation)** technique. The model has been trained on a dataset focused on Ayurveda and the concept of doshas (Vata, Pitta, Kapha). Compared to the previous model (`ai-ml-t-tes1-dftopcat-data-dsr1-1.5b`), this version uses a larger base model and improved training parameters to generate more coherent and informative responses about Ayurvedic principles and their role in promoting health. --- ## Model Details ### Model Description This model is a fine-tuned adaptation of the `facebook/opt-1.3b` base model, optimized for generating explanations related to Ayurveda and doshas. It uses the **LoRA** technique to reduce computational costs while maintaining performance. The training data consists of instructional prompts and corresponding outputs that explain Ayurvedic concepts like doshic constitution, balance, and their influence on health. Compared to the previous model (`facebook/opt-350m`), this version demonstrates significant improvements in coherence, reduced repetition, and fewer inaccuracies. However, it still struggles with depth and specificity, particularly in explaining Vata, Pitta, and Kapha doshas in detail. - **Developed by:** kas1 - **Model type:** Causal Language Model (Fine-Tuned) - **Language(s):** English - **License:** [MIT License](https://opensource.org/licenses/MIT) - **Finetuned from model:** [facebook/opt-1.3b](https://huggingface.co/facebook/opt-1.3b) ### Model Sources - **Repository:** [kas1/ai-ml-t-tes2-dftopcat-data-dsr1-1.5b](https://huggingface.co/kas1/ai-ml-t-tes2-dftopcat-data-dsr1-1.5b) - **Dataset:** [Abhaykoul/Ancient-Indian-Wisdom](https://huggingface.co/datasets/Abhaykoul/Ancient-Indian-Wisdom) --- ## Uses ### Direct Use The model can be used to generate responses to questions about Ayurveda, particularly focusing on doshas and their role in health. It is suitable for educational purposes, answering FAQs, or providing introductory insights into Ayurvedic principles. ### Downstream Use The model can be integrated into applications like chatbots, virtual assistants, or educational platforms that focus on alternative medicine and wellness. ### Out-of-Scope Use The model is not designed for medical diagnosis, treatment recommendations, or generating content outside the scope of Ayurveda. Misuse or reliance on the model for critical health decisions is strongly discouraged. --- ## Bias, Risks, and Limitations ### Known Limitations - While the model shows improvements over the previous version, it still occasionally generates repetitive or nonsensical phrases. - Responses lack depth and specificity about Vata, Pitta, and Kapha doshas compared to expert-level explanations. - The model sometimes introduces inaccuracies (e.g., misinterpreting doshas as "disease-causing elements") due to limitations in training data or fine-tuning. ### Improvements Over Previous Model - **Reduced Repetition**: Adjustments to generation parameters (e.g., `repetition_penalty`) have significantly reduced redundant phrases. - **Improved Coherence**: The use of a larger base model (`facebook/opt-1.3b`) has led to more structured and logical responses. - **Fewer Inaccuracies**: The model avoids major errors (e.g., "doshas as hallucinations") seen in the previous version. ### Recommendations - Use post-processing techniques to filter out irrelevant or inaccurate statements. - Fine-tune the model further with more diverse and high-quality training data. - Experiment with even larger base models (e.g., `facebook/opt-6.7b`) for improved performance. --- ## How to Get Started with the Model To use this model, follow these steps: ```python from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel, PeftConfig import torch # Load the base model base_model = AutoModelForCausalLM.from_pretrained( "facebook/opt-1.3b", # Original base model torch_dtype=torch.float16, device_map="auto" ) # Load the LoRA configuration and adapter peft_config = PeftConfig.from_pretrained("kas1/ai-ml-t-tes2-dftopcat-data-dsr1-1.5b") model = PeftModel.from_pretrained(base_model, "kas1/ai-ml-t-tes2-dftopcat-data-dsr1-1.5b") # Load the tokenizer tokenizer = AutoTokenizer.from_pretrained("kas1/ai-ml-t-tes2-dftopcat-data-dsr1-1.5b") tokenizer.pad_token = tokenizer.eos_token # Generate text def generate_text(prompt, max_new_tokens=500): inputs = tokenizer(prompt, return_tensors="pt").to('cuda') with torch.no_grad(): output = model.generate( **inputs, max_new_tokens=max_new_tokens, do_sample=True, temperature=0.4, top_k=25, top_p=0.87, repetition_penalty=1.3 ) return tokenizer.decode(output[0], skip_special_tokens=True) # Test the model prompt = "Ayurveda emphasizes the balance between doshas. How can understanding our doshic constitution promote better health?" output = generate_text(prompt) print(output)
shipjuls/Nball
shipjuls
2025-02-26T16:20:12Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-02-26T15:43:24Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: Nball --- # Nball <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `Nball` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('shipjuls/Nball', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
genloop/smollm2_1.7B-instruct_news_headline_generation
genloop
2025-02-26T16:19:27Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-26T16:17:56Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
vIDEO-Sophie-Rain-Spiderman-Updates/Sophie.Rain.Spiderman.Sophie.Rain.Spiderman.Video.Tutorial.Viral.Full.Video.Link
vIDEO-Sophie-Rain-Spiderman-Updates
2025-02-26T16:18:29Z
0
0
null
[ "region:us" ]
null
2025-02-26T16:17:34Z
<p><a rel="nofollow" title="WATCH NOW" href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman"><img border="Sophie+Rain+Spidermanno" height="480" width="720" title="WATCH NOW" alt="WATCH NOW" src="https://i.ibb.co.com/xMMVF88/686577567.gif"></a></p> <a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">β–Ίβ–Ίβœ… π˜Ύπ™‡π™„π˜Ύπ™† 𝙃𝙀𝙍𝙀 ==β–Ίβ–Ί 𝙁π™ͺ𝙑𝙑 π™‘π™žπ™™π™šπ™€οΈβ€‹</a></p> <a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">πŸ”΄β–Ίπ‚π‹πˆπ‚πŠ 𝐇𝐄𝐑𝐄 🌐==β–Ίβ–Ί 𝐃𝐨𝐰𝐧π₯𝐨𝐚𝐝 𝐍𝐨𝐰⬇️⬇️​</a></p>
hamdfdfd/chatti
hamdfdfd
2025-02-26T16:17:12Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-02-26T16:17:12Z
--- license: apache-2.0 ---
yssf-io/ppo-LunarLander-v2
yssf-io
2025-02-26T16:17:04Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-02-25T15:56:47Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 274.06 +/- 14.59 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
genloop/smollm2_360M-instruct_news_headline_generation
genloop
2025-02-26T16:16:13Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-26T16:15:48Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
koray6/convnext-tiny-224-finetuned-eurosat
koray6
2025-02-26T16:14:01Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "convnext", "image-classification", "generated_from_trainer", "base_model:facebook/convnext-tiny-224", "base_model:finetune:facebook/convnext-tiny-224", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-02-26T14:52:05Z
--- library_name: transformers license: apache-2.0 base_model: facebook/convnext-tiny-224 tags: - generated_from_trainer metrics: - accuracy model-index: - name: convnext-tiny-224-finetuned-eurosat results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # convnext-tiny-224-finetuned-eurosat This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3390 - Accuracy: 0.9414 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.2852 | 1.0 | 57 | 0.9943 | 0.8728 | | 0.5203 | 2.0 | 114 | 0.4478 | 0.9327 | | 0.3931 | 3.0 | 171 | 0.3390 | 0.9414 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.4.1+cu121 - Datasets 2.14.5 - Tokenizers 0.21.0
00K4M1/Q-Learning-FrozenLake-v1-4x4-no_slippery
00K4M1
2025-02-26T16:12:39Z
0
0
null
[ "FrozenLake-v1-4x4", "q-learning", "reinforcement-learning", "custom-implimentation", "model-index", "region:us" ]
reinforcement-learning
2025-02-26T16:11:25Z
--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implimentation model-index: - name: Q-Learning-FrozenLake-v1-4x4-no_slippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage model = load_from_hub(repo_id="00K4M1/Q-Learning-FrozenLake-v1-4x4-no_slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"])
lesso02/08f1c432-ff35-42aa-abf3-15ea4a95336c
lesso02
2025-02-26T16:11:38Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM2-1.7B", "base_model:adapter:unsloth/SmolLM2-1.7B", "license:apache-2.0", "region:us" ]
null
2025-02-26T15:41:33Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM2-1.7B tags: - axolotl - generated_from_trainer model-index: - name: 08f1c432-ff35-42aa-abf3-15ea4a95336c results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora auto_find_batch_size: true base_model: unsloth/SmolLM2-1.7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 40e9109629a4c483_train_data.json ds_type: json format: custom path: /workspace/input_data/40e9109629a4c483_train_data.json type: field_input: choices field_instruction: task field_output: question format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 3 eval_max_new_tokens: 128 eval_steps: 50 evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false group_by_length: true hub_model_id: lesso02/08f1c432-ff35-42aa-abf3-15ea4a95336c hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.000202 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 500 micro_batch_size: 4 mlflow_experiment_name: /tmp/40e9109629a4c483_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null seed: 20 sequence_len: 512 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: bd5cade5-3208-4704-9a3c-2906840832ea wandb_project: 02a wandb_run: your_name wandb_runid: bd5cade5-3208-4704-9a3c-2906840832ea warmup_steps: 50 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 08f1c432-ff35-42aa-abf3-15ea4a95336c This model is a fine-tuned version of [unsloth/SmolLM2-1.7B](https://huggingface.co/unsloth/SmolLM2-1.7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2383 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000202 - train_batch_size: 4 - eval_batch_size: 4 - seed: 20 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 2.6262 | | 2.4821 | 0.0042 | 50 | 2.3840 | | 2.5197 | 0.0085 | 100 | 2.3227 | | 2.2534 | 0.0127 | 150 | 2.3190 | | 2.3244 | 0.0169 | 200 | 2.2666 | | 2.1998 | 0.0211 | 250 | 2.2560 | | 2.3972 | 0.0254 | 300 | 2.2496 | | 2.0891 | 0.0296 | 350 | 2.2445 | | 2.2914 | 0.0338 | 400 | 2.2401 | | 2.1728 | 0.0381 | 450 | 2.2382 | | 2.0895 | 0.0423 | 500 | 2.2383 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
LandCruiser/Ardennes_7
LandCruiser
2025-02-26T16:11:13Z
0
0
null
[ "onnx", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-02-26T16:03:05Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
genloop/DeepSeek-R1-Distill-Llama-8B-HSN-GRPO-2000-steps-adapter
genloop
2025-02-26T16:10:26Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-02-26T16:10:21Z
--- base_model: unsloth/deepseek-r1-distill-llama-8b tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** genloop - **License:** apache-2.0 - **Finetuned from model :** unsloth/deepseek-r1-distill-llama-8b This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
lm-kit/qwen2-vl-2b-instruct-lmk
lm-kit
2025-02-26T16:10:23Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-01-09T15:33:03Z
--- license: apache-2.0 --- Qwen2-VL-2B-Instruct Original model: https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct This repository contains the Qwen2-VL-2B-Instruct model stored in an .lmk file format, designed for inference with the LM-Kit SDK.
bomjara/ul_lama3
bomjara
2025-02-26T16:07:32Z
0
0
null
[ "safetensors", "unsloth", "license:apache-2.0", "region:us" ]
null
2025-02-25T17:37:20Z
--- license: apache-2.0 tags: - unsloth ---
LandCruiser/Ardennes_5
LandCruiser
2025-02-26T16:07:17Z
0
0
null
[ "onnx", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-02-26T16:03:04Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
LandCruiser/Ardennes_3
LandCruiser
2025-02-26T16:07:14Z
0
0
null
[ "onnx", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-02-26T16:03:04Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
LandCruiser/Ardennes_6
LandCruiser
2025-02-26T16:07:02Z
0
0
null
[ "onnx", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-02-26T16:03:05Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
LandCruiser/Ardennes_4
LandCruiser
2025-02-26T16:06:53Z
0
0
null
[ "onnx", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-02-26T16:03:04Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
LandCruiser/Ardennes_2
LandCruiser
2025-02-26T16:06:25Z
0
0
null
[ "onnx", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-02-26T16:03:03Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
itdainb/SeaLLMs-v3-1.5B-bnb-4bit
itdainb
2025-02-26T16:06:09Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-02-26T16:05:08Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ButchersBrain/TMNT
ButchersBrain
2025-02-26T16:05:54Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-02-26T15:51:50Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: TMNT --- # Tmnt <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `TMNT` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('ButchersBrain/TMNT', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
griko/age_reg_ann_ecapa_librosa_combined
griko
2025-02-26T16:04:34Z
0
0
null
[ "joblib", "ann", "age-estimation", "speaker-characteristics", "speaker-recognition", "audio-regression", "voice-analysis", "multilingual", "dataset:voxceleb2", "dataset:timit", "arxiv:2502.17579", "license:apache-2.0", "region:us" ]
null
2024-11-20T13:49:22Z
--- language: multilingual license: apache-2.0 datasets: - voxceleb2 - timit libraries: - speechbrain - librosa tags: - age-estimation - speaker-characteristics - speaker-recognition - audio-regression - voice-analysis --- # Age Estimation Model This model combines the SpeechBrain ECAPA-TDNN speaker embedding model with an ANN regressor to predict speaker age from audio input. The model uses ECAPA embeddings and Librosa acoustic features, trained on both VoxCeleb2 and TIMIT datasets. ## Model Performance Comparison We provide multiple pre-trained models with different architectures and feature sets. Here's a comprehensive comparison of their performance: | Model | Architecture | Features | Training Data | Test MAE | Best For | |-------|-------------|----------|---------------|-----------|----------| | VoxCeleb2 SVR (223) | SVR | ECAPA + Librosa (223-dim) | VoxCeleb2 | 7.88 years | Best performance on VoxCeleb2 | | VoxCeleb2 SVR (192) | SVR | ECAPA only (192-dim) | VoxCeleb2 | 7.89 years | Lightweight deployment | | TIMIT ANN (192) | ANN | ECAPA only (192-dim) | TIMIT | 4.95 years | Clean studio recordings | | Combined ANN (223) | ANN | ECAPA + Librosa (223-dim) | VoxCeleb2 + TIMIT | 6.93 years | Best general performance | You may find other models [here](https://huggingface.co/griko). ## Model Details - Input: Audio file (will be converted to 16kHz, mono, single channel) - Output: Predicted age in years (continuous value) - Features: - SpeechBrain ECAPA-TDNN embedding [192 features] - Additional Librosa features [31 features] - Regressor: Artificial Neural Network optimized through Optuna - Performance: - Combined test set: 6.93 years Mean Absolute Error (MAE) ## Features 1. SpeechBrain ECAPA-TDNN embeddings (192 dimensions) 2. Librosa acoustic features (31 dimensions): - 13 MFCCs - 13 Delta MFCCs - Zero crossing rate - Spectral centroid - Spectral bandwidth - Spectral contrast - Spectral flatness ## Training Data The model was trained on a combination of datasets: - VoxCeleb2: - YouTube interview recordings - Age data from Wikidata and public sources - Voice activity detection applied - TIMIT: - Studio-quality recordings - Original age annotations - All audio preprocessed to 16kHz, mono ## Installation ```bash pip install git+https://github.com/griko/voice-age-regression.git#egg=voice-age-regressor[full] ``` ## Usage ```python from age_regressor import AgeRegressionPipeline # Load the pipeline regressor = AgeRegressionPipeline.from_pretrained( "griko/age_reg_ann_ecapa_librosa_combined" ) # Single file prediction result = regressor("path/to/audio.wav") print(f"Predicted age: {result[0]:.1f} years") # Batch prediction results = regressor(["audio1.wav", "audio2.wav"]) print(f"Predicted ages: {[f'{age:.1f}' for age in results]} years") ``` ## Limitations - Model was trained on a mix of YouTube interviews and studio recordings recordings - Performance may vary on different audio qualities or recording conditions - Age predictions are estimates and should not be used for medical or legal purposes - Age estimations should be treated as approximate values, not exact measurements ## Citation If you use this model in your research, please cite: ```bibtex @misc{koushnir2025vanpyvoiceanalysisframework, title={VANPY: Voice Analysis Framework}, author={Gregory Koushnir and Michael Fire and Galit Fuhrmann Alpert and Dima Kagan}, year={2025}, eprint={2502.17579}, archivePrefix={arXiv}, primaryClass={cs.SD}, url={https://arxiv.org/abs/2502.17579}, } ```
LucaZilli/model-snowflake-m_20250226_153737_finalmodel
LucaZilli
2025-02-26T16:04:05Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:25310", "loss:CosineSimilarityLoss", "arxiv:1908.10084", "base_model:Snowflake/snowflake-arctic-embed-m", "base_model:finetune:Snowflake/snowflake-arctic-embed-m", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-02-26T16:03:26Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:25310 - loss:CosineSimilarityLoss base_model: Snowflake/snowflake-arctic-embed-m widget: - source_sentence: encryption algorithms for mobile transactions sentences: - equipaggiamento per sport acquatici - finanziamenti a lungo termine per privati - encryption algorithms for mobile banking - source_sentence: tecnologie di liofilizzazione per frutta e verdura sentences: - serbatoi di fermentazione in acciaio inox per cantine - impianti di liofilizzazione per frutta e verdura - medical cannulas - source_sentence: servizi di installazione di cavi sottomarini sentences: - servizi di installazione di cavi sottomarini - custom spinal fusion implants - soluzioni disinfettanti per il settore sanitario - source_sentence: antifouling paint for yachts sentences: - sistemi di ventilazione con controllo umiditΓ  integrato - robot per la movimentazione interna - vernici per automobili - source_sentence: materiali isolanti per sistemi radianti a soffitto sentences: - Produzione di contenuti per social media nel settore moda. - privacy and data protection training - materiali isolanti per edifici pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - pearson_cosine - spearman_cosine - cosine_accuracy model-index: - name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: custom dataset type: custom_dataset metrics: - type: pearson_cosine value: 0.7497809373528005 name: Pearson Cosine - type: spearman_cosine value: 0.7616341455252776 name: Spearman Cosine - task: type: triplet name: Triplet dataset: name: all nli dataset type: all_nli_dataset metrics: - type: cosine_accuracy value: 0.7858662605285645 name: Cosine Accuracy - task: type: semantic-similarity name: Semantic Similarity dataset: name: stsbenchmark type: stsbenchmark metrics: - type: pearson_cosine value: 0.6751374371492788 name: Pearson Cosine - type: spearman_cosine value: 0.6961828350042979 name: Spearman Cosine --- # SentenceTransformer based on Snowflake/snowflake-arctic-embed-m This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) <!-- at revision fc74610d18462d218e312aa986ec5c8a75a98152 --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the πŸ€— Hub model = SentenceTransformer("LucaZilli/model-snowflake-m_20250226_153737_finalmodel") # Run inference sentences = [ 'materiali isolanti per sistemi radianti a soffitto', 'materiali isolanti per edifici', 'privacy and data protection training', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Semantic Similarity * Datasets: `custom_dataset` and `stsbenchmark` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | custom_dataset | stsbenchmark | |:--------------------|:---------------|:-------------| | pearson_cosine | 0.7498 | 0.6751 | | **spearman_cosine** | **0.7616** | **0.6962** | #### Triplet * Dataset: `all_nli_dataset` * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) | Metric | Value | |:--------------------|:-----------| | **cosine_accuracy** | **0.7859** | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 25,310 training samples * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | <ul><li>min: 4 tokens</li><li>mean: 13.32 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.06 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.49</li><li>max: 1.0</li></ul> | * Samples: | sentence1 | sentence2 | score | |:---------------------------------------------------------------------------------|:--------------------------------------------------------------------|:-----------------| | <code>ottimizzazione dei tempi di produzione per capi sartoriali di lusso</code> | <code>strumenti per l'ottimizzazione dei tempi di produzione</code> | <code>0.6</code> | | <code>software di programmazione robotica per lucidatura</code> | <code>software gestionale generico</code> | <code>0.4</code> | | <code>rete di sensori per l'analisi del suolo in tempo reale</code> | <code>software per gestione aziendale</code> | <code>0.0</code> | * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Evaluation Dataset #### Unnamed Dataset * Size: 3,164 evaluation samples * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | <ul><li>min: 5 tokens</li><li>mean: 13.61 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.39 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.49</li><li>max: 1.0</li></ul> | * Samples: | sentence1 | sentence2 | score | |:------------------------------------------------------|:------------------------------------------------------------------------------|:-----------------| | <code>ispezioni regolari per camion aziendali</code> | <code>ispezioni regolari per camion di consegna</code> | <code>1.0</code> | | <code>blister packaging machines GMP compliant</code> | <code>food packaging machines</code> | <code>0.4</code> | | <code>EMI shielding paints for electronics</code> | <code>Vernici per schermatura elettromagnetica dispositivi elettronici</code> | <code>0.8</code> | * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `num_train_epochs`: 5 - `warmup_ratio`: 0.1 - `fp16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | Validation Loss | custom_dataset_spearman_cosine | all_nli_dataset_cosine_accuracy | stsbenchmark_spearman_cosine | |:------:|:----:|:-------------:|:---------------:|:------------------------------:|:-------------------------------:|:----------------------------:| | -1 | -1 | - | - | 0.7616 | 0.7859 | 0.6962 | | 0.1264 | 200 | 0.0799 | 0.0379 | - | - | - | | 0.2528 | 400 | 0.0349 | 0.0285 | - | - | - | | 0.3793 | 600 | 0.0302 | 0.0266 | - | - | - | | 0.5057 | 800 | 0.0288 | 0.0283 | - | - | - | | 0.6321 | 1000 | 0.0274 | 0.0252 | - | - | - | | 0.7585 | 1200 | 0.0259 | 0.0250 | - | - | - | | 0.8850 | 1400 | 0.0251 | 0.0236 | - | - | - | | 1.0114 | 1600 | 0.0218 | 0.0227 | - | - | - | | 1.1378 | 1800 | 0.0166 | 0.0247 | - | - | - | | 1.2642 | 2000 | 0.0158 | 0.0228 | - | - | - | | 1.3906 | 2200 | 0.017 | 0.0221 | - | - | - | | 1.5171 | 2400 | 0.0163 | 0.0223 | - | - | - | | 1.6435 | 2600 | 0.0172 | 0.0229 | - | - | - | | 1.7699 | 2800 | 0.0168 | 0.0210 | - | - | - | | 1.8963 | 3000 | 0.0168 | 0.0211 | - | - | - | | 2.0228 | 3200 | 0.015 | 0.0211 | - | - | - | | 2.1492 | 3400 | 0.0099 | 0.0206 | - | - | - | | 2.2756 | 3600 | 0.01 | 0.0218 | - | - | - | | 2.4020 | 3800 | 0.0099 | 0.0208 | - | - | - | | 2.5284 | 4000 | 0.0102 | 0.0200 | - | - | - | | 2.6549 | 4200 | 0.0102 | 0.0206 | - | - | - | | 2.7813 | 4400 | 0.0109 | 0.0198 | - | - | - | | 2.9077 | 4600 | 0.0106 | 0.0196 | - | - | - | | 3.0341 | 4800 | 0.0087 | 0.0199 | - | - | - | | 3.1606 | 5000 | 0.0067 | 0.0194 | - | - | - | | 3.2870 | 5200 | 0.0065 | 0.0194 | - | - | - | | 3.4134 | 5400 | 0.0071 | 0.0193 | - | - | - | | 3.5398 | 5600 | 0.0068 | 0.0195 | - | - | - | | 3.6662 | 5800 | 0.0067 | 0.0196 | - | - | - | | 3.7927 | 6000 | 0.0069 | 0.0197 | - | - | - | | 3.9191 | 6200 | 0.007 | 0.0202 | - | - | - | | 4.0455 | 6400 | 0.006 | 0.0190 | - | - | - | | 4.1719 | 6600 | 0.0048 | 0.0192 | - | - | - | | 4.2984 | 6800 | 0.0047 | 0.0192 | - | - | - | | 4.4248 | 7000 | 0.0047 | 0.0193 | - | - | - | | 4.5512 | 7200 | 0.0048 | 0.0191 | - | - | - | | 4.6776 | 7400 | 0.0047 | 0.0190 | - | - | - | | 4.8040 | 7600 | 0.0049 | 0.0190 | - | - | - | | 4.9305 | 7800 | 0.0046 | 0.0190 | - | - | - | ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 3.4.1 - Transformers: 4.48.3 - PyTorch: 2.5.1+cu124 - Accelerate: 1.3.0 - Datasets: 3.3.2 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
sobamchan/contriever-sentencetransformer
sobamchan
2025-02-26T16:04:02Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-02-26T16:02:27Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # nthakur/contriever-base-msmarco This is a port of the [Contriever Model](https://huggingface.co/facebook/contriever) to [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('nishimoto/contriever-sentencetransformer') embeddings = model.encode(sentences) print(embeddings) ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 509, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors Have a look at: [Contriever Model](https://github.com/facebookresearch/contriever).
cdtmc/llama-3_1-1B-imdb_seq_cls
cdtmc
2025-02-26T16:03:39Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-02-26T16:03:37Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
TareksLab/UL3.3-Nemo-X80-BASE-70B
TareksLab
2025-02-26T16:03:23Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2408.07990", "base_model:Sao10K/L3-70B-Euryale-v2.1", "base_model:merge:Sao10K/L3-70B-Euryale-v2.1", "base_model:SicariusSicariiStuff/Negative_LLAMA_70B", "base_model:merge:SicariusSicariiStuff/Negative_LLAMA_70B", "base_model:nbeerbower/Llama-3.1-Nemotron-lorablated-70B", "base_model:merge:nbeerbower/Llama-3.1-Nemotron-lorablated-70B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-26T15:19:10Z
--- base_model: - Sao10K/L3-70B-Euryale-v2.1 - nbeerbower/Llama-3.1-Nemotron-lorablated-70B - SicariusSicariiStuff/Negative_LLAMA_70B library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [SCE](https://arxiv.org/abs/2408.07990) merge method using [nbeerbower/Llama-3.1-Nemotron-lorablated-70B](https://huggingface.co/nbeerbower/Llama-3.1-Nemotron-lorablated-70B) as a base. ### Models Merged The following models were included in the merge: * [Sao10K/L3-70B-Euryale-v2.1](https://huggingface.co/Sao10K/L3-70B-Euryale-v2.1) * [SicariusSicariiStuff/Negative_LLAMA_70B](https://huggingface.co/SicariusSicariiStuff/Negative_LLAMA_70B) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: Sao10K/L3-70B-Euryale-v2.1 - model: SicariusSicariiStuff/Negative_LLAMA_70B merge_method: sce base_model: nbeerbower/Llama-3.1-Nemotron-lorablated-70B parameters: select_topk: 0.80 dtype: float32 out_dtype: bfloat16 tokenizer: source: union ```
griko/age_reg_ann_ecapa_timit
griko
2025-02-26T16:02:36Z
0
0
null
[ "joblib", "ann", "age-estimation", "speaker-characteristics", "speaker-recognition", "audio-regression", "voice-analysis", "multilingual", "dataset:timit", "arxiv:2502.17579", "license:apache-2.0", "region:us" ]
null
2024-11-20T13:46:49Z
--- language: multilingual license: apache-2.0 datasets: - timit libraries: - speechbrain tags: - age-estimation - speaker-characteristics - speaker-recognition - audio-regression - voice-analysis --- # Age Estimation Model This model combines the SpeechBrain ECAPA-TDNN speaker embedding model with an ANN regressor to predict speaker age from audio input. The model was trained on the TIMIT dataset. ## Model Performance Comparison We provide multiple pre-trained models with different architectures and feature sets. Here's a comprehensive comparison of their performance: | Model | Architecture | Features | Training Data | Test MAE | Best For | |-------|-------------|----------|---------------|-----------|----------| | VoxCeleb2 SVR (223) | SVR | ECAPA + Librosa (223-dim) | VoxCeleb2 | 7.88 years | Best performance on VoxCeleb2 | | VoxCeleb2 SVR (192) | SVR | ECAPA only (192-dim) | VoxCeleb2 | 7.89 years | Lightweight deployment | | TIMIT ANN (192) | ANN | ECAPA only (192-dim) | TIMIT | 4.95 years | Clean studio recordings | | Combined ANN (223) | ANN | ECAPA + Librosa (223-dim) | VoxCeleb2 + TIMIT | 6.93 years | Best general performance | You may find other models [here](https://huggingface.co/griko). ## Model Details - Input: Audio file (will be converted to 16kHz, mono, single channel) - Output: Predicted age in years (continuous value) - Features: SpeechBrain ECAPA-TDNN embedding [192 features] - Regressor: Artificial Neural Network optimized through Optuna - Performance: - TIMIT test set: 4.95 years Mean Absolute Error (MAE) ## Features 1. SpeechBrain ECAPA-TDNN embeddings (192 dimensions) ## Training Data The model was trained on the TIMIT dataset: - High-quality studio recordings - Single channel, 16kHz sampling rate - Carefully controlled recording conditions - Age annotations provided in the original dataset ## Installation ```bash pip install git+https://github.com/griko/voice-age-regression.git#egg=voice-age-regressor[ann-ecapa-timit] ``` ## Usage ```python from age_regressor import AgeRegressionPipeline # Load the pipeline regressor = AgeRegressionPipeline.from_pretrained( "griko/age_reg_ann_ecapa_timit" ) # Single file prediction result = regressor("path/to/audio.wav") print(f"Predicted age: {result[0]:.1f} years") # Batch prediction results = regressor(["audio1.wav", "audio2.wav"]) print(f"Predicted ages: {[f'{age:.1f}' for age in results]} years") ``` ## Limitations - Model was trained on carefully controlled studio recordings recordings - Performance may vary on different audio qualities or recording conditions - Age predictions are estimates and should not be used for medical or legal purposes - Age estimations should be treated as approximate values, not exact measurements ## Citation If you use this model in your research, please cite: ```bibtex @misc{koushnir2025vanpyvoiceanalysisframework, title={VANPY: Voice Analysis Framework}, author={Gregory Koushnir and Michael Fire and Galit Fuhrmann Alpert and Dima Kagan}, year={2025}, eprint={2502.17579}, archivePrefix={arXiv}, primaryClass={cs.SD}, url={https://arxiv.org/abs/2502.17579}, } ```
VPTQ-community/Mistral-Large-Instruct-2407-v8-k65536-65536-woft
VPTQ-community
2025-02-26T16:01:51Z
32
2
null
[ "safetensors", "llama", "VPTQ", "Quantized", "Quantization", "arxiv:2409.17066", "base_model:mistralai/Mistral-Large-Instruct-2407", "base_model:quantized:mistralai/Mistral-Large-Instruct-2407", "license:other", "vptq", "region:us" ]
null
2024-10-18T05:32:59Z
--- license: other license_name: mrl license_link: https://mistral.ai/licenses/MRL-0.1.md base_model: - mistralai/Mistral-Large-Instruct-2407 base_model_relation: quantized tags: - VPTQ - Quantized - Quantization --- **Disclaimer**: The model is reproduced based on the paper *VPTQ: Extreme Low-bit Vector Post-Training Quantization for Large Language Models* [github](https://github.com/microsoft/vptq) and [arXiv](https://arxiv.org/abs/2409.17066) The model itself is sourced from a community release. It is intended only for experimental purposes. Users are responsible for any consequences arising from the use of this model. **Note**: The PPL test results are for reference only and were collected using GPTQ testing script. ```json { "ctx_2048": { "wikitext2": 2.858274459838867, "c4": 5.985574722290039, "c4-new": 6.604180812835693 }, "ctx_4096": { "wikitext2": 2.7024664878845215, "c4": 5.569791793823242, "c4-new": 6.241445064544678 }, "ctx_8192": {} } ```
griko/age_reg_svr_ecapa_voxceleb2
griko
2025-02-26T16:01:12Z
0
0
null
[ "joblib", "svr", "age-estimation", "speaker-characteristics", "speaker-recognition", "audio-regression", "voice-analysis", "multilingual", "dataset:voxceleb2", "arxiv:2502.17579", "license:apache-2.0", "region:us" ]
null
2024-11-20T13:37:22Z
--- language: multilingual license: apache-2.0 datasets: - voxceleb2 libraries: - speechbrain tags: - age-estimation - speaker-characteristics - speaker-recognition - audio-regression - voice-analysis --- # Age Estimation Model This model combines the SpeechBrain ECAPA-TDNN speaker embedding model with an SVR regressor to predict speaker age from audio input. The model was trained on the VoxCeleb2 dataset. ## Model Performance Comparison We provide multiple pre-trained models with different architectures and feature sets. Here's a comprehensive comparison of their performance: | Model | Architecture | Features | Training Data | Test MAE | Best For | |-------|-------------|----------|---------------|-----------|----------| | VoxCeleb2 SVR (223) | SVR | ECAPA + Librosa (223-dim) | VoxCeleb2 | 7.88 years | Best performance on VoxCeleb2 | | VoxCeleb2 SVR (192) | SVR | ECAPA only (192-dim) | VoxCeleb2 | 7.89 years | Lightweight deployment | | TIMIT ANN (192) | ANN | ECAPA only (192-dim) | TIMIT | 4.95 years | Clean studio recordings | | Combined ANN (223) | ANN | ECAPA + Librosa (223-dim) | VoxCeleb2 + TIMIT | 6.93 years | Best general performance | You may find other models [here](https://huggingface.co/griko). ## Model Details - Input: Audio file (will be converted to 16kHz, mono, single channel) - Output: Predicted age in years (continuous value) - Features: SpeechBrain ECAPA-TDNN embedding [192 features] - Regressor: Support Vector Regression optimized through Optuna - Performance: - VoxCeleb2 test set: 7.89 years Mean Absolute Error (MAE) ## Features 1. SpeechBrain ECAPA-TDNN embeddings (192 dimensions) ## Training Data The model was trained on the VoxCeleb2 dataset: - Audio preprocessing: - Converted to WAV format, single channel, 16kHz sampling rate - Applied SileroVAD for voice activity detection, taking the first voiced segment - Age data was collected from Wikidata and public sources ## Installation ```bash pip install git+https://github.com/griko/voice-age-regression.git#egg=voice-age-regressor[svr-ecapa-voxceleb2] ``` ## Usage ```python from age_regressor import AgeRegressionPipeline # Load the pipeline regressor = AgeRegressionPipeline.from_pretrained( "griko/age_reg_svr_ecapa_voxceleb2" ) # Single file prediction result = regressor("path/to/audio.wav") print(f"Predicted age: {result[0]:.1f} years") # Batch prediction results = regressor(["audio1.wav", "audio2.wav"]) print(f"Predicted ages: {[f'{age:.1f}' for age in results]} years") ``` ## Limitations - Model was trained on celebrity voices from YouTube interviews recordings - Performance may vary on different audio qualities or recording conditions - Age predictions are estimates and should not be used for medical or legal purposes - Age estimations should be treated as approximate values, not exact measurements ## Citation If you use this model in your research, please cite: ```bibtex @misc{koushnir2025vanpyvoiceanalysisframework, title={VANPY: Voice Analysis Framework}, author={Gregory Koushnir and Michael Fire and Galit Fuhrmann Alpert and Dima Kagan}, year={2025}, eprint={2502.17579}, archivePrefix={arXiv}, primaryClass={cs.SD}, url={https://arxiv.org/abs/2502.17579}, } ```
babysharkdododo/gliner-multi-entities
babysharkdododo
2025-02-26T16:00:30Z
0
0
null
[ "pytorch", "ms", "en", "dataset:Generated.", "base_model:urchade/gliner_multi-v2.1", "base_model:finetune:urchade/gliner_multi-v2.1", "region:us" ]
null
2025-02-23T14:37:42Z
--- language: - ms - en base_model: - urchade/gliner_multi-v2.1 datasets: - Generated. --- ## Citation [optional] @inproceedings{zaratiana-etal-2024-gliner, title = "{GL}i{NER}: Generalist Model for Named Entity Recognition using Bidirectional Transformer", author = "Zaratiana, Urchade and Tomeh, Nadi and Holat, Pierre and Charnois, Thierry", editor = "Duh, Kevin and Gomez, Helena and Bethard, Steven", booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)", month = jun, year = "2024", address = "Mexico City, Mexico", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2024.naacl-long.300", doi = "10.18653/v1/2024.naacl-long.300", pages = "5364--5376", abstract = "Named Entity Recognition (NER) is essential in various Natural Language Processing (NLP) applications. Traditional NER models are effective but limited to a set of predefined entity types. In contrast, Large Language Models (LLMs) can extract arbitrary entities through natural language instructions, offering greater flexibility. However, their size and cost, particularly for those accessed via APIs like ChatGPT, make them impractical in resource-limited scenarios. In this paper, we introduce a compact NER model trained to identify any type of entity. Leveraging a bidirectional transformer encoder, our model, GLiNER, facilitates parallel entity extraction, an advantage over the slow sequential token generation of LLMs. Through comprehensive testing, GLiNER demonstrate strong performance, outperforming both ChatGPT and fine-tuned LLMs in zero-shot evaluations on various NER benchmarks.", }
imageomics/butterfly_detection_yolo
imageomics
2025-02-26T16:00:20Z
0
0
null
[ "biology", "CV", "images", "animals", "lepidoptera", "butterflies", "detection", "heliconius", "forewings", "hindwings", "separated wings", "full body", "butterfly", "RGB", "ruler", "whitebalance", "label", "colorchecker", "en", "dataset:imageomics/Heliconius-Collection_Cambridge-Butterfly", "dataset:imageomics/STRI-Samples", "license:mit", "region:us" ]
null
2024-08-05T14:58:26Z
--- license: mit language: - en tags: - biology - CV - images - animals - lepidoptera - butterflies - detection - heliconius - forewings - hindwings - separated wings - full body - butterfly - RGB - ruler - whitebalance - label - colorchecker datasets: - imageomics/Heliconius-Collection_Cambridge-Butterfly - imageomics/STRI-Samples --- ## Model Card for butterfly_detection_yolo This model takes in images of butterflies as photographed for museum collections and detects butterfly components (L/R forewings, L/R hindwings and body) as well as color checkers and metadata labels. The detection model described here is used in the repository https://github.com/Imageomics/wing-segmentation to detect components and use Meta's Segment-Anything (SAM) model for segmentation of components. ## Model Details yolo_detection_8m_shear_10.0_scale_0.5_translate_0.1_fliplr_0.0_best.pt is the butterfly detection model. The yolo v8 detection model was trained on a dataset of 800 total images from the [Heliconius Collection-Cambridge Butterfly](imageomics/Heliconius-Collection_Cambridge-Butterfly), OM_STRI, and Monteiro datasets. The model uses the pretrained yolov8m.pt model. ## Model Description The model is responsible for taking an input image (RGB) and generating bounding boxes for all classes below that are found in the image. Data augmentations applied during training include shear (10.0), scale (0.5), and translate (0.1). The model was trained for 50 epochs with an image size of 256. Note that despite defining an image size of 256, the normalized masks predicted by yolo can be rescaled to the original image size. ### Segmentation Classes [`pixel class`] corresponding category - [0] background - [1] right_forewing - [2] left_forewing - [3] right_hindwing - [4] left_hindwing - [5] ruler - [6] white_balance - [7] label - [8] color_card - [9] body ### Details model.train(data=YAML, imgsz=256, epochs=50, batch=16, device=DEVICE, optimizer='auto', verbose=True, val=True, shear=10.0, scale=0.5, translate=0.1, fliplr = 0.0 ) ## Metrics Class Images Instances Box(P R mAP50 mAP50-95) all 64 358 0.979 0.887 0.919 0.877 background 64 3 1 0 0.315 0.169 right_forewing 64 58 0.995 0.983 0.986 0.977 left_forewing 64 51 0.975 1 0.985 0.982 right_hindwing 64 59 0.997 0.966 0.993 0.977 left_hindwing 64 50 0.975 1 0.993 0.98 ruler 64 31 0.951 1 0.995 0.952 white_balance 64 18 0.984 1 0.995 0.995 label 64 50 0.996 1 0.995 0.935 color_card 64 24 0.988 1 0.995 0.992 body 64 14 0.928 0.921 0.939 0.815 **Developed by:** Michelle Ramirez ## How to Get Started with the Model To view applications of how to load in the model file and predict masks on images, please refer to [this github repository](https://github.com/Imageomics/wing-segmentation) ## Citation **BibTeX:** ``` @software{Ramirez_Lepidoptera_Wing_Segmentation_2024, author = {Ramirez, Michelle}, doi = {10.5281/zenodo.10869579}, month = mar, title = {{Lepidoptera Wing Segmentation}}, url = {https://github.com/Imageomics/wing-segmentation}, version = {1.0.0}, year = {2024} } ``` **APA:** Ramirez, M. (2024). Lepidoptera Wing Segmentation (Version 1.0.0) [Computer software]. https://doi.org/10.5281/zenodo.10869579 ## Acknowledgements The [Imageomics Institute](https://imageomics.org) is funded by the US National Science Foundation's Harnessing the Data Revolution (HDR) program under [Award #2118240](https://www.nsf.gov/awardsearch/showAward?AWD_ID=2118240) (Imageomics: A New Frontier of Biological Information Powered by Knowledge-Guided Machine Learning). Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
mradermacher/deepthought-8b-abliterated-i1-GGUF
mradermacher
2025-02-26T16:00:06Z
471
1
transformers
[ "transformers", "gguf", "abliterated", "uncensored", "en", "base_model:huihui-ai/deepthought-8b-abliterated", "base_model:quantized:huihui-ai/deepthought-8b-abliterated", "license:llama3.1", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-02-24T17:26:47Z
--- base_model: huihui-ai/deepthought-8b-abliterated language: - en library_name: transformers license: llama3.1 quantized_by: mradermacher tags: - abliterated - uncensored --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/huihui-ai/deepthought-8b-abliterated <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/deepthought-8b-abliterated-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/deepthought-8b-abliterated-i1-GGUF/resolve/main/deepthought-8b-abliterated.i1-IQ1_S.gguf) | i1-IQ1_S | 2.1 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/deepthought-8b-abliterated-i1-GGUF/resolve/main/deepthought-8b-abliterated.i1-IQ1_M.gguf) | i1-IQ1_M | 2.3 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/deepthought-8b-abliterated-i1-GGUF/resolve/main/deepthought-8b-abliterated.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.5 | | | [GGUF](https://huggingface.co/mradermacher/deepthought-8b-abliterated-i1-GGUF/resolve/main/deepthought-8b-abliterated.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/deepthought-8b-abliterated-i1-GGUF/resolve/main/deepthought-8b-abliterated.i1-IQ2_S.gguf) | i1-IQ2_S | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/deepthought-8b-abliterated-i1-GGUF/resolve/main/deepthought-8b-abliterated.i1-IQ2_M.gguf) | i1-IQ2_M | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/deepthought-8b-abliterated-i1-GGUF/resolve/main/deepthought-8b-abliterated.i1-Q2_K_S.gguf) | i1-Q2_K_S | 3.1 | very low quality | | [GGUF](https://huggingface.co/mradermacher/deepthought-8b-abliterated-i1-GGUF/resolve/main/deepthought-8b-abliterated.i1-Q2_K.gguf) | i1-Q2_K | 3.3 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/deepthought-8b-abliterated-i1-GGUF/resolve/main/deepthought-8b-abliterated.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/deepthought-8b-abliterated-i1-GGUF/resolve/main/deepthought-8b-abliterated.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/deepthought-8b-abliterated-i1-GGUF/resolve/main/deepthought-8b-abliterated.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/deepthought-8b-abliterated-i1-GGUF/resolve/main/deepthought-8b-abliterated.i1-IQ3_S.gguf) | i1-IQ3_S | 3.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/deepthought-8b-abliterated-i1-GGUF/resolve/main/deepthought-8b-abliterated.i1-IQ3_M.gguf) | i1-IQ3_M | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/deepthought-8b-abliterated-i1-GGUF/resolve/main/deepthought-8b-abliterated.i1-Q3_K_M.gguf) | i1-Q3_K_M | 4.1 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/deepthought-8b-abliterated-i1-GGUF/resolve/main/deepthought-8b-abliterated.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.4 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/deepthought-8b-abliterated-i1-GGUF/resolve/main/deepthought-8b-abliterated.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/deepthought-8b-abliterated-i1-GGUF/resolve/main/deepthought-8b-abliterated.i1-Q4_0.gguf) | i1-Q4_0 | 4.8 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/deepthought-8b-abliterated-i1-GGUF/resolve/main/deepthought-8b-abliterated.i1-IQ4_NL.gguf) | i1-IQ4_NL | 4.8 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/deepthought-8b-abliterated-i1-GGUF/resolve/main/deepthought-8b-abliterated.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.8 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/deepthought-8b-abliterated-i1-GGUF/resolve/main/deepthought-8b-abliterated.i1-Q4_K_M.gguf) | i1-Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/deepthought-8b-abliterated-i1-GGUF/resolve/main/deepthought-8b-abliterated.i1-Q4_1.gguf) | i1-Q4_1 | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/deepthought-8b-abliterated-i1-GGUF/resolve/main/deepthought-8b-abliterated.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/deepthought-8b-abliterated-i1-GGUF/resolve/main/deepthought-8b-abliterated.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/deepthought-8b-abliterated-i1-GGUF/resolve/main/deepthought-8b-abliterated.i1-Q6_K.gguf) | i1-Q6_K | 6.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
TobiGeth/tg_user_302351629_lora_1740584826
TobiGeth
2025-02-26T15:58:22Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-02-26T15:58:21Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: USER_302351629_1740584826 --- # Tg_User_302351629_Lora_1740584826 <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `USER_302351629_1740584826` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('TobiGeth/tg_user_302351629_lora_1740584826', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
meantoffsas/my_style_LoRa
meantoffsas
2025-02-26T15:55:45Z
0
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "diffusers-training", "lora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2025-02-26T15:55:40Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 library_name: diffusers license: openrail++ instance_prompt: photo collage in CHERKASHIN style widget: [] tags: - text-to-image - text-to-image - diffusers-training - diffusers - lora - template:sd-lora - stable-diffusion-xl - stable-diffusion-xl-diffusers --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # SDXL LoRA DreamBooth - meantoffsas/my_style_LoRa <Gallery /> ## Model description These are meantoffsas/my_style_LoRa LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use photo collage in CHERKASHIN style to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](meantoffsas/my_style_LoRa/tree/main) them in the Files & versions tab. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
mradermacher/mergekit-slerp-xlblwaw-i1-GGUF
mradermacher
2025-02-26T15:55:23Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:mergekit-community/mergekit-slerp-xlblwaw", "base_model:quantized:mergekit-community/mergekit-slerp-xlblwaw", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-02-26T14:09:25Z
--- base_model: mergekit-community/mergekit-slerp-xlblwaw language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/mergekit-community/mergekit-slerp-xlblwaw <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/mergekit-slerp-xlblwaw-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/mergekit-slerp-xlblwaw-i1-GGUF/resolve/main/mergekit-slerp-xlblwaw.i1-IQ1_S.gguf) | i1-IQ1_S | 2.5 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/mergekit-slerp-xlblwaw-i1-GGUF/resolve/main/mergekit-slerp-xlblwaw.i1-IQ1_M.gguf) | i1-IQ1_M | 2.6 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/mergekit-slerp-xlblwaw-i1-GGUF/resolve/main/mergekit-slerp-xlblwaw.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/mergekit-slerp-xlblwaw-i1-GGUF/resolve/main/mergekit-slerp-xlblwaw.i1-IQ2_XS.gguf) | i1-IQ2_XS | 3.2 | | | [GGUF](https://huggingface.co/mradermacher/mergekit-slerp-xlblwaw-i1-GGUF/resolve/main/mergekit-slerp-xlblwaw.i1-IQ2_S.gguf) | i1-IQ2_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/mergekit-slerp-xlblwaw-i1-GGUF/resolve/main/mergekit-slerp-xlblwaw.i1-IQ2_M.gguf) | i1-IQ2_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/mergekit-slerp-xlblwaw-i1-GGUF/resolve/main/mergekit-slerp-xlblwaw.i1-Q2_K_S.gguf) | i1-Q2_K_S | 3.7 | very low quality | | [GGUF](https://huggingface.co/mradermacher/mergekit-slerp-xlblwaw-i1-GGUF/resolve/main/mergekit-slerp-xlblwaw.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/mergekit-slerp-xlblwaw-i1-GGUF/resolve/main/mergekit-slerp-xlblwaw.i1-Q2_K.gguf) | i1-Q2_K | 3.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/mergekit-slerp-xlblwaw-i1-GGUF/resolve/main/mergekit-slerp-xlblwaw.i1-IQ3_XS.gguf) | i1-IQ3_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/mergekit-slerp-xlblwaw-i1-GGUF/resolve/main/mergekit-slerp-xlblwaw.i1-IQ3_S.gguf) | i1-IQ3_S | 4.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/mergekit-slerp-xlblwaw-i1-GGUF/resolve/main/mergekit-slerp-xlblwaw.i1-Q3_K_S.gguf) | i1-Q3_K_S | 4.4 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/mergekit-slerp-xlblwaw-i1-GGUF/resolve/main/mergekit-slerp-xlblwaw.i1-IQ3_M.gguf) | i1-IQ3_M | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/mergekit-slerp-xlblwaw-i1-GGUF/resolve/main/mergekit-slerp-xlblwaw.i1-Q3_K_M.gguf) | i1-Q3_K_M | 4.9 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/mergekit-slerp-xlblwaw-i1-GGUF/resolve/main/mergekit-slerp-xlblwaw.i1-Q3_K_L.gguf) | i1-Q3_K_L | 5.2 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/mergekit-slerp-xlblwaw-i1-GGUF/resolve/main/mergekit-slerp-xlblwaw.i1-IQ4_XS.gguf) | i1-IQ4_XS | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/mergekit-slerp-xlblwaw-i1-GGUF/resolve/main/mergekit-slerp-xlblwaw.i1-IQ4_NL.gguf) | i1-IQ4_NL | 5.5 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/mergekit-slerp-xlblwaw-i1-GGUF/resolve/main/mergekit-slerp-xlblwaw.i1-Q4_0.gguf) | i1-Q4_0 | 5.6 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/mergekit-slerp-xlblwaw-i1-GGUF/resolve/main/mergekit-slerp-xlblwaw.i1-Q4_K_S.gguf) | i1-Q4_K_S | 5.6 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/mergekit-slerp-xlblwaw-i1-GGUF/resolve/main/mergekit-slerp-xlblwaw.i1-Q4_K_M.gguf) | i1-Q4_K_M | 5.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/mergekit-slerp-xlblwaw-i1-GGUF/resolve/main/mergekit-slerp-xlblwaw.i1-Q4_1.gguf) | i1-Q4_1 | 6.1 | | | [GGUF](https://huggingface.co/mradermacher/mergekit-slerp-xlblwaw-i1-GGUF/resolve/main/mergekit-slerp-xlblwaw.i1-Q5_K_S.gguf) | i1-Q5_K_S | 6.6 | | | [GGUF](https://huggingface.co/mradermacher/mergekit-slerp-xlblwaw-i1-GGUF/resolve/main/mergekit-slerp-xlblwaw.i1-Q5_K_M.gguf) | i1-Q5_K_M | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/mergekit-slerp-xlblwaw-i1-GGUF/resolve/main/mergekit-slerp-xlblwaw.i1-Q6_K.gguf) | i1-Q6_K | 7.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
AdAstraAbyssoque/Qwen2.5-1.5B-Open-R1-GRPO-MCP500-0
AdAstraAbyssoque
2025-02-26T15:54:25Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:AdAstraAbyssoque/MCP500_esay", "arxiv:2402.03300", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-26T15:38:30Z
--- datasets: AdAstraAbyssoque/MCP500_esay library_name: transformers model_name: Qwen2.5-1.5B-Open-R1-GRPO-MCP500-0 tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Qwen2.5-1.5B-Open-R1-GRPO-MCP500-0 This model is a fine-tuned version of [None](https://huggingface.co/None) on the [AdAstraAbyssoque/MCP500_esay](https://huggingface.co/datasets/AdAstraAbyssoque/MCP500_esay) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="AdAstraAbyssoque/Qwen2.5-1.5B-Open-R1-GRPO-MCP500-0", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/bowen_liu-hkust/huggingface/runs/wqyffald) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.16.0.dev0 - Transformers: 4.49.0 - Pytorch: 2.5.1 - Datasets: 3.3.2 - Tokenizers: 0.21.0 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin GallouΓ©dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
mradermacher/alpaca-13b-i1-GGUF
mradermacher
2025-02-26T15:53:06Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:chavinlo/alpaca-13b", "base_model:quantized:chavinlo/alpaca-13b", "endpoints_compatible", "region:us", "imatrix" ]
null
2025-02-26T08:57:30Z
--- base_model: chavinlo/alpaca-13b language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/chavinlo/alpaca-13b <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/alpaca-13b-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/alpaca-13b-i1-GGUF/resolve/main/alpaca-13b.i1-IQ1_S.gguf) | i1-IQ1_S | 3.0 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/alpaca-13b-i1-GGUF/resolve/main/alpaca-13b.i1-IQ1_M.gguf) | i1-IQ1_M | 3.2 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/alpaca-13b-i1-GGUF/resolve/main/alpaca-13b.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/alpaca-13b-i1-GGUF/resolve/main/alpaca-13b.i1-IQ2_XS.gguf) | i1-IQ2_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/alpaca-13b-i1-GGUF/resolve/main/alpaca-13b.i1-IQ2_S.gguf) | i1-IQ2_S | 4.3 | | | [GGUF](https://huggingface.co/mradermacher/alpaca-13b-i1-GGUF/resolve/main/alpaca-13b.i1-Q2_K_S.gguf) | i1-Q2_K_S | 4.5 | very low quality | | [GGUF](https://huggingface.co/mradermacher/alpaca-13b-i1-GGUF/resolve/main/alpaca-13b.i1-IQ2_M.gguf) | i1-IQ2_M | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/alpaca-13b-i1-GGUF/resolve/main/alpaca-13b.i1-Q2_K.gguf) | i1-Q2_K | 5.0 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/alpaca-13b-i1-GGUF/resolve/main/alpaca-13b.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 5.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/alpaca-13b-i1-GGUF/resolve/main/alpaca-13b.i1-IQ3_XS.gguf) | i1-IQ3_XS | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/alpaca-13b-i1-GGUF/resolve/main/alpaca-13b.i1-IQ3_S.gguf) | i1-IQ3_S | 5.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/alpaca-13b-i1-GGUF/resolve/main/alpaca-13b.i1-Q3_K_S.gguf) | i1-Q3_K_S | 5.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/alpaca-13b-i1-GGUF/resolve/main/alpaca-13b.i1-IQ3_M.gguf) | i1-IQ3_M | 6.1 | | | [GGUF](https://huggingface.co/mradermacher/alpaca-13b-i1-GGUF/resolve/main/alpaca-13b.i1-Q3_K_M.gguf) | i1-Q3_K_M | 6.4 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/alpaca-13b-i1-GGUF/resolve/main/alpaca-13b.i1-Q3_K_L.gguf) | i1-Q3_K_L | 7.0 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/alpaca-13b-i1-GGUF/resolve/main/alpaca-13b.i1-IQ4_XS.gguf) | i1-IQ4_XS | 7.1 | | | [GGUF](https://huggingface.co/mradermacher/alpaca-13b-i1-GGUF/resolve/main/alpaca-13b.i1-IQ4_NL.gguf) | i1-IQ4_NL | 7.5 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/alpaca-13b-i1-GGUF/resolve/main/alpaca-13b.i1-Q4_0.gguf) | i1-Q4_0 | 7.5 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/alpaca-13b-i1-GGUF/resolve/main/alpaca-13b.i1-Q4_K_S.gguf) | i1-Q4_K_S | 7.5 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/alpaca-13b-i1-GGUF/resolve/main/alpaca-13b.i1-Q4_K_M.gguf) | i1-Q4_K_M | 8.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/alpaca-13b-i1-GGUF/resolve/main/alpaca-13b.i1-Q4_1.gguf) | i1-Q4_1 | 8.3 | | | [GGUF](https://huggingface.co/mradermacher/alpaca-13b-i1-GGUF/resolve/main/alpaca-13b.i1-Q5_K_S.gguf) | i1-Q5_K_S | 9.1 | | | [GGUF](https://huggingface.co/mradermacher/alpaca-13b-i1-GGUF/resolve/main/alpaca-13b.i1-Q5_K_M.gguf) | i1-Q5_K_M | 9.3 | | | [GGUF](https://huggingface.co/mradermacher/alpaca-13b-i1-GGUF/resolve/main/alpaca-13b.i1-Q6_K.gguf) | i1-Q6_K | 10.8 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
Horizon6957/DeepSeek-myth-large-qna-cot
Horizon6957
2025-02-26T15:53:03Z
0
0
transformers
[ "transformers", "pytorch", "qwen2", "text-generation", "unsloth", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-26T15:51:41Z
--- library_name: transformers tags: - unsloth - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
wrbit01/dt
wrbit01
2025-02-26T15:52:34Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-26T15:52:31Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: >- DNTRMP donald trump, 75 years old, blonde hair, disheveled hairstyle, light-colored eyes, frowning expression, displeased emotion, large head in proportion to body, exaggerated facial features, slouched posture, arms hanging loosely, wearing a formal black suit, white shirt, bright red tie, small lapel pin, cartoonish style, high contrast black and white shading, neutral lighting, average build, white background, political caricature, XKCD style output: url: images/a_photo_of_DNTRMP(5).png base_model: black-forest-labs/FLUX.1-dev instance_prompt: dt --- # dt <Gallery /> ## Trigger words You should use `dt` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/wrbit01/dt/tree/main) them in the Files & versions tab.
Nexesenex/Llama_3.2_1b_Odyssea_V1.01-GGUF
Nexesenex
2025-02-26T15:52:14Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:Nexesenex/Llama_3.2_1b_Odyssea_V1.01", "base_model:quantized:Nexesenex/Llama_3.2_1b_Odyssea_V1.01", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-26T15:50:59Z
--- base_model: Nexesenex/Llama_3.2_1b_Odyssea_V1.01 library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo --- # Nexesenex/Llama_3.2_1b_Odyssea_V1.01-GGUF IMPORTANT : These models are quantized with IK_Llama.cpp, not Llama.cpp This model was converted to GGUF format from [`Nexesenex/Llama_3.2_1b_Odyssea_V1.01`](https://huggingface.co/Nexesenex/Llama_3.2_1b_Odyssea_V1.01) using llama.cpp's fork IK Llama via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Nexesenex/Llama_3.2_1b_Odyssea_V1.01) for more details on the model. ## Use with llama.cpp (I never tested that way with IK_Llama) Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Nexesenex/Llama_3.2_1b_Odyssea_V1.01-GGUF --hf-file llama_3.2_1b_odyssea_v1.01-bf16.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Nexesenex/Llama_3.2_1b_Odyssea_V1.01-GGUF --hf-file llama_3.2_1b_odyssea_v1.01-bf16.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. -> necessary to use Croco. Step 1: Clone llama.cpp from GitHub. -> necessary to use Croco. ``` git clone https://github.com/Nexesenex/ik_llama.cpp.nxs ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd ik_llama.cpp.nxs && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Nexesenex/Llama_3.2_1b_Odyssea_V1.01-GGUF --hf-file llama_3.2_1b_odyssea_v1.01-bf16.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Nexesenex/Llama_3.2_1b_Odyssea_V1.01-GGUF --hf-file llama_3.2_1b_odyssea_v1.01-bf16.gguf -c 2048 ```
mradermacher/mergekit-slerp-xlblwaw-GGUF
mradermacher
2025-02-26T15:51:45Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:mergekit-community/mergekit-slerp-xlblwaw", "base_model:quantized:mergekit-community/mergekit-slerp-xlblwaw", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-26T13:46:25Z
--- base_model: mergekit-community/mergekit-slerp-xlblwaw language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/mergekit-community/mergekit-slerp-xlblwaw <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/mergekit-slerp-xlblwaw-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/mergekit-slerp-xlblwaw-GGUF/resolve/main/mergekit-slerp-xlblwaw.Q2_K.gguf) | Q2_K | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/mergekit-slerp-xlblwaw-GGUF/resolve/main/mergekit-slerp-xlblwaw.Q3_K_S.gguf) | Q3_K_S | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/mergekit-slerp-xlblwaw-GGUF/resolve/main/mergekit-slerp-xlblwaw.Q3_K_M.gguf) | Q3_K_M | 4.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/mergekit-slerp-xlblwaw-GGUF/resolve/main/mergekit-slerp-xlblwaw.Q3_K_L.gguf) | Q3_K_L | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/mergekit-slerp-xlblwaw-GGUF/resolve/main/mergekit-slerp-xlblwaw.IQ4_XS.gguf) | IQ4_XS | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/mergekit-slerp-xlblwaw-GGUF/resolve/main/mergekit-slerp-xlblwaw.Q4_K_S.gguf) | Q4_K_S | 5.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/mergekit-slerp-xlblwaw-GGUF/resolve/main/mergekit-slerp-xlblwaw.Q4_K_M.gguf) | Q4_K_M | 5.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/mergekit-slerp-xlblwaw-GGUF/resolve/main/mergekit-slerp-xlblwaw.Q5_K_S.gguf) | Q5_K_S | 6.6 | | | [GGUF](https://huggingface.co/mradermacher/mergekit-slerp-xlblwaw-GGUF/resolve/main/mergekit-slerp-xlblwaw.Q5_K_M.gguf) | Q5_K_M | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/mergekit-slerp-xlblwaw-GGUF/resolve/main/mergekit-slerp-xlblwaw.Q6_K.gguf) | Q6_K | 7.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/mergekit-slerp-xlblwaw-GGUF/resolve/main/mergekit-slerp-xlblwaw.Q8_0.gguf) | Q8_0 | 9.9 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/mergekit-slerp-xlblwaw-GGUF/resolve/main/mergekit-slerp-xlblwaw.f16.gguf) | f16 | 18.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
francescosabbarese/ppo-CartPole-v1
francescosabbarese
2025-02-26T15:50:43Z
0
0
null
[ "tensorboard", "CartPole-v1", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2025-02-26T15:44:06Z
--- tags: - CartPole-v1 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 461.90 +/- 51.89 name: mean_reward verified: false --- # PPO Agent Playing CartPole-v1 This is a trained model of a PPO agent playing CartPole-v1. # Hyperparameters ```python {'exp_name': 'PPO' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'CartPole-v1' 'total_timesteps': 200000 'learning_rate': 0.0001 'num_envs': 8 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.98 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'francescosabbarese/ppo-CartPole-v1' 'batch_size': 1024 'minibatch_size': 256} ```
samoline/654dc279-936a-41d5-85a9-7be2612edd80
samoline
2025-02-26T15:50:35Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM2-135M", "base_model:adapter:unsloth/SmolLM2-135M", "license:apache-2.0", "region:us" ]
null
2025-02-26T15:48:34Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM2-135M tags: - axolotl - generated_from_trainer model-index: - name: 654dc279-936a-41d5-85a9-7be2612edd80 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM2-135M bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 77e3cf084fba86c3_train_data.json ds_type: json format: custom path: /workspace/input_data/77e3cf084fba86c3_train_data.json type: field_input: problem_ko field_instruction: problem field_output: solution format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: false group_by_length: false hub_model_id: samoline/654dc279-936a-41d5-85a9-7be2612edd80 hub_repo: samoline hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 4 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 4 lora_target_linear: true lr_scheduler: cosine max_steps: 2 micro_batch_size: 1 mlflow_experiment_name: /tmp/77e3cf084fba86c3_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: samoline-nan wandb_mode: online wandb_name: 160dd077-f773-4651-9b50-8dad59f1e201 wandb_project: Gradients-On-Demand wandb_run: dev wandb_runid: 160dd077-f773-4651-9b50-8dad59f1e201 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 654dc279-936a-41d5-85a9-7be2612edd80 This model is a fine-tuned version of [unsloth/SmolLM2-135M](https://huggingface.co/unsloth/SmolLM2-135M) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0001 | 1 | nan | | 0.0 | 0.0001 | 2 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
qing-yao/long_first_headfinal_seed-21_1e-3
qing-yao
2025-02-26T15:50:04Z
0
0
transformers
[ "transformers", "safetensors", "opt", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-24T16:22:21Z
--- library_name: transformers tags: - generated_from_trainer metrics: - accuracy model-index: - name: long_first_headfinal_seed-21_1e-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # long_first_headfinal_seed-21_1e-3 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 5.0807 - Accuracy: 0.2038 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 64 - seed: 21 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 32000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:-----:|:---------------:|:--------:| | 6.1412 | 0.9994 | 1470 | 5.5240 | 0.1764 | | 4.5259 | 1.9992 | 2940 | 5.4067 | 0.1823 | | 3.8908 | 2.9991 | 4410 | 5.3111 | 0.1857 | | 3.7115 | 3.9996 | 5881 | 5.2018 | 0.1937 | | 3.4863 | 4.9994 | 7351 | 5.1925 | 0.1938 | | 3.4079 | 5.9992 | 8821 | 5.1520 | 0.1973 | | 3.3056 | 6.9991 | 10291 | 5.1326 | 0.1999 | | 3.258 | 7.9996 | 11762 | 5.1119 | 0.1997 | | 3.2065 | 8.9994 | 13232 | 5.1225 | 0.2009 | | 3.1699 | 9.9992 | 14702 | 5.1300 | 0.1987 | | 3.1451 | 10.9991 | 16172 | 5.0815 | 0.2020 | | 3.1079 | 11.9996 | 17643 | 5.1214 | 0.2012 | | 3.1043 | 12.9994 | 19113 | 5.0818 | 0.2012 | | 3.0668 | 13.9992 | 20583 | 5.1290 | 0.2022 | | 3.0777 | 14.9991 | 22053 | 5.1106 | 0.1996 | | 3.039 | 15.9996 | 23524 | 5.1058 | 0.2006 | | 3.0432 | 16.9994 | 24994 | 5.1083 | 0.2036 | | 3.0188 | 17.9992 | 26464 | 5.1309 | 0.2016 | | 3.0246 | 18.9991 | 27934 | 5.1190 | 0.1996 | | 3.0115 | 19.9962 | 29400 | 5.0807 | 0.2038 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.20.0
Hlc3058212270/DeepSeek-R1-Medical-COT-Tiny-1
Hlc3058212270
2025-02-26T15:49:35Z
0
0
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-02-26T15:13:42Z
--- base_model: unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Hlc3058212270 - **License:** apache-2.0 - **Finetuned from model :** unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
simnJS/autotrain-fxp6j-p5s8i
simnJS
2025-02-26T15:49:22Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "starcoder2", "autotrain", "text-generation-inference", "text-generation", "peft", "conversational", "base_model:bigcode/starcoder2-3b", "base_model:finetune:bigcode/starcoder2-3b", "license:other", "endpoints_compatible", "region:us" ]
text-generation
2025-02-26T15:23:33Z
--- tags: - autotrain - text-generation-inference - text-generation - peft library_name: transformers base_model: bigcode/starcoder2-3b widget: - messages: - role: user content: What is your favorite condiment? license: other --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
nikita-nrg/llama11b_5epoch_length_merged_16bit
nikita-nrg
2025-02-26T15:46:48Z
0
0
transformers
[ "transformers", "safetensors", "mllama", "image-text-to-text", "text-generation-inference", "unsloth", "conversational", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-02-26T15:37:25Z
--- base_model: unsloth/llama-3.2-11b-vision-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - mllama license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** nikita-nrg - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-11b-vision-instruct-unsloth-bnb-4bit This mllama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
PrunaAI/qnguyen3-nanoLLaVA-1.5-bnb-4bit-smashed
PrunaAI
2025-02-26T15:46:38Z
0
0
null
[ "safetensors", "llava-qwen2", "pruna-ai", "custom_code", "4-bit", "bitsandbytes", "region:us" ]
null
2025-02-26T15:45:48Z
--- thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg" base_model: ORIGINAL_REPO_NAME metrics: - memory_disk - memory_inference - inference_latency - inference_throughput - inference_CO2_emissions - inference_energy_consumption tags: - pruna-ai --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer"> <img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </a> </div> <!-- header end --> [![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI) [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI) [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/rskEr4BZJx) # Simply make AI models cheaper, smaller, faster, and greener! - Give a thumbs up if you like this model! - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/) - Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help. ## Results ![image info](./plots.png) **Frequently Asked Questions** - ***How does the compression work?*** The model is compressed with llm-int8. - ***How does the model quality change?*** The quality of the model output might vary compared to the base model. - ***How is the model efficiency evaluated?*** These results were obtained with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you. - ***What is the model format?*** We use safetensors. - ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data. - ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model. - ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads. - ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases. ## Setup You can run the smashed model with these steps: 0. Check requirements from the original repo ORIGINAL_REPO_NAME installed. In particular, check python, cuda, and transformers versions. 1. Make sure that you have installed quantization related packages. ```bash pip install transformers accelerate bitsandbytes>0.37.0 ``` 2. Load & run the model. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("PrunaAI/qnguyen3-nanoLLaVA-1.5-bnb-4bit-smashed", trust_remote_code=True, device_map='auto') tokenizer = AutoTokenizer.from_pretrained("ORIGINAL_REPO_NAME") input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"] outputs = model.generate(input_ids, max_new_tokens=216) tokenizer.decode(outputs[0]) ``` ## Configurations The configuration info are in `smash_config.json`. ## Credits & License The license of the smashed model follows the license of the original model. Please check the license of the original model ORIGINAL_REPO_NAME before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi. ## Want to compress other models? - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
abhishekkuber/step1_encoder_en_anchor_seq_cf
abhishekkuber
2025-02-26T15:44:58Z
0
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-02-26T15:44:11Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
krgl/Llama-Primus-Merged-gguf
krgl
2025-02-26T15:43:34Z
0
0
null
[ "gguf", "base_model:trendmicro-ailab/Llama-Primus-Merged", "base_model:quantized:trendmicro-ailab/Llama-Primus-Merged", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-26T15:23:54Z
--- license: mit base_model: - trendmicro-ailab/Llama-Primus-Merged --- ## This is a 8Bit Quantized Model of https://huggingface.co/trendmicro-ailab/Llama-Primus-Merged from trendmicro in GGUF format
iFaz/whisper-SER-base-v7
iFaz
2025-02-26T15:43:15Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "en", "dataset:iFaz/Whisper_Compatible_SER_benchmark", "base_model:openai/whisper-base", "base_model:finetune:openai/whisper-base", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-02-26T04:24:21Z
--- library_name: transformers language: - en license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer datasets: - iFaz/Whisper_Compatible_SER_benchmark metrics: - wer model-index: - name: whisper-SER-base-v7(skip_special_tokens=True during and lr = 1e-05 steps = 12k ,warmup = 500) results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Whisper_Compatible_SER_benchmark + enhanced_facebook_voxpopulik_16k_Whisper_Compatible type: iFaz/Whisper_Compatible_SER_benchmark args: 'config: en, split: test' metrics: - name: Wer type: wer value: 56.95732838589982 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-SER-base-v7(skip_special_tokens=True during and lr = 1e-05 steps = 12k ,warmup = 500) This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Whisper_Compatible_SER_benchmark + enhanced_facebook_voxpopulik_16k_Whisper_Compatible dataset. It achieves the following results on the evaluation set: - Loss: 0.0978 - Wer: 56.9573 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 12000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:-------:| | 0.3141 | 0.5510 | 1000 | 0.3218 | 42.8881 | | 0.1626 | 1.1019 | 2000 | 0.2021 | 58.5652 | | 0.1553 | 1.6529 | 3000 | 0.1462 | 87.1676 | | 0.1091 | 2.2039 | 4000 | 0.1199 | 63.8528 | | 0.1069 | 2.7548 | 5000 | 0.1027 | 63.3271 | | 0.042 | 3.3058 | 6000 | 0.0958 | 66.8831 | | 0.0434 | 3.8567 | 7000 | 0.0935 | 77.2418 | | 0.0254 | 4.4077 | 8000 | 0.0926 | 64.4712 | | 0.0265 | 4.9587 | 9000 | 0.0939 | 59.9876 | | 0.0136 | 5.5096 | 10000 | 0.0955 | 58.2870 | | 0.009 | 6.0606 | 11000 | 0.0985 | 62.9561 | | 0.0067 | 6.6116 | 12000 | 0.0978 | 56.9573 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.5.1+cu121 - Datasets 3.3.2 - Tokenizers 0.21.0
grozmart1/MistralMix-v0.1-0.2
grozmart1
2025-02-26T15:43:11Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "8-bit", "bitsandbytes", "region:us" ]
text-generation
2025-02-26T15:35:21Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
TobiGeth/tg_user_450548031_lora_1740583492
TobiGeth
2025-02-26T15:36:25Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-02-26T15:36:23Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: USER_450548031_1740583492 --- # Tg_User_450548031_Lora_1740583492 <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `USER_450548031_1740583492` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('TobiGeth/tg_user_450548031_lora_1740583492', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
rowidamontaser/Qwen2.5-3B-Instruct-peft-v1
rowidamontaser
2025-02-26T15:34:50Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-02-26T15:16:07Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
yoongd/bert-base-nsmc
yoongd
2025-02-26T15:34:25Z
0
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-02-26T15:34:00Z
--- library_name: transformers tags: - generated_from_keras_callback model-index: - name: bert-base-nsmc results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-nsmc This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.48.3 - TensorFlow 2.18.0 - Tokenizers 0.21.0
aniket-meta/Llama3.2-1b-shuttlesupport
aniket-meta
2025-02-26T15:34:01Z
0
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-26T15:33:18Z
--- base_model: unsloth/llama-3.2-1b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** aniket-meta - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-1b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Roy124/Roy
Roy124
2025-02-26T15:32:42Z
0
0
asteroid
[ "asteroid", "ae", "dataset:open-r1/OpenR1-Math-220k", "arxiv:1910.09700", "base_model:deepseek-ai/DeepSeek-V3", "base_model:finetune:deepseek-ai/DeepSeek-V3", "license:bigcode-openrail-m", "region:us" ]
null
2025-02-26T15:20:14Z
--- license: bigcode-openrail-m datasets: - open-r1/OpenR1-Math-220k language: - ae metrics: - brier_score base_model: - deepseek-ai/DeepSeek-V3 new_version: deepseek-ai/DeepSeek-V3 library_name: asteroid --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Horizon6957/DeepSeek-bio-vlarge-qna-cot-final
Horizon6957
2025-02-26T15:32:15Z
0
0
transformers
[ "transformers", "pytorch", "qwen2", "text-generation", "unsloth", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-26T15:30:37Z
--- library_name: transformers tags: - unsloth - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
irishprancer/4d743749-bb70-44b7-a93d-10f560ff4b30
irishprancer
2025-02-26T15:31:40Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-02-26T13:09:08Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Hassan0191/Wallstreetdiggers
Hassan0191
2025-02-26T15:30:19Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-02-26T15:30:19Z
--- license: apache-2.0 ---
afpe/afpe
afpe
2025-02-26T15:29:28Z
0
0
null
[ "license:mit", "region:us" ]
null
2025-02-26T15:16:49Z
--- license: mit --- # Models for Principled Positional Encodings for Medical Imaging Models are saved in folders named after dataset and Positional Encoding method.
Gyimah3/whisper-small-finetuned
Gyimah3
2025-02-26T15:29:10Z
0
0
peft
[ "peft", "safetensors", "whisper", "generated_from_trainer", "dataset:common_voice_16_1", "base_model:openai/whisper-small", "base_model:adapter:openai/whisper-small", "license:apache-2.0", "region:us" ]
null
2025-02-25T21:53:55Z
--- license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - common_voice_16_1 library_name: peft model-index: - name: whisper-small-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/evelyngyim1111-inlaks/huggingface/runs/bb86w4fx) [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/evelyngyim1111-inlaks/huggingface/runs/bb86w4fx) [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/evelyngyim1111-inlaks/huggingface/runs/bb86w4fx) [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/evelyngyim1111-inlaks/huggingface/runs/bb86w4fx) # whisper-small-finetuned This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common_voice_16_1 dataset. It achieves the following results on the evaluation set: - eval_loss: 1.3883 - eval_wer: 88.3854 - eval_runtime: 940.6564 - eval_samples_per_second: 0.702 - eval_steps_per_second: 0.045 - epoch: 2.116 - step: 300 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 10 - training_steps: 500 - mixed_precision_training: Native AMP ### Framework versions - PEFT 0.11.1 - Transformers 4.42.3 - Pytorch 2.5.1+cu124 - Datasets 2.19.2 - Tokenizers 0.19.1
mradermacher/HermesPlay-8B-slerp-GGUF
mradermacher
2025-02-26T15:29:09Z
0
1
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "OpenPipe/Hermes-2-Theta-Llama-3-8B-32k", "NousResearch/Hermes-3-Llama-3.1-8B", "en", "base_model:Sriexe/HermesPlay-8B-slerp", "base_model:quantized:Sriexe/HermesPlay-8B-slerp", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-26T14:56:18Z
--- base_model: Sriexe/HermesPlay-8B-slerp language: - en library_name: transformers quantized_by: mradermacher tags: - merge - mergekit - lazymergekit - OpenPipe/Hermes-2-Theta-Llama-3-8B-32k - NousResearch/Hermes-3-Llama-3.1-8B --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Sriexe/HermesPlay-8B-slerp <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/HermesPlay-8B-slerp-GGUF/resolve/main/HermesPlay-8B-slerp.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/HermesPlay-8B-slerp-GGUF/resolve/main/HermesPlay-8B-slerp.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/HermesPlay-8B-slerp-GGUF/resolve/main/HermesPlay-8B-slerp.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/HermesPlay-8B-slerp-GGUF/resolve/main/HermesPlay-8B-slerp.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/HermesPlay-8B-slerp-GGUF/resolve/main/HermesPlay-8B-slerp.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/HermesPlay-8B-slerp-GGUF/resolve/main/HermesPlay-8B-slerp.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/HermesPlay-8B-slerp-GGUF/resolve/main/HermesPlay-8B-slerp.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/HermesPlay-8B-slerp-GGUF/resolve/main/HermesPlay-8B-slerp.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/HermesPlay-8B-slerp-GGUF/resolve/main/HermesPlay-8B-slerp.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/HermesPlay-8B-slerp-GGUF/resolve/main/HermesPlay-8B-slerp.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/HermesPlay-8B-slerp-GGUF/resolve/main/HermesPlay-8B-slerp.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/HermesPlay-8B-slerp-GGUF/resolve/main/HermesPlay-8B-slerp.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
wolfgangderigo/joe
wolfgangderigo
2025-02-26T15:28:43Z
0
0
null
[ "license:other", "region:us" ]
null
2025-02-26T14:02:24Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md ---
rowankwang/Llama-3.3-70B-Instruct-Reference-ai_consciousness-f7ea1465
rowankwang
2025-02-26T15:28:31Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference", "base_model:adapter:togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference", "region:us" ]
null
2025-02-26T15:25:04Z
--- base_model: togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.12.0
jeahyun99/interviewer
jeahyun99
2025-02-26T15:27:57Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-02-26T15:27:57Z
--- license: apache-2.0 ---
vIDEO-Sophie-Rain-Spiderman-Updates/Sophie.Rain.Spiderman.New.Video.Tutorial.Official
vIDEO-Sophie-Rain-Spiderman-Updates
2025-02-26T15:25:50Z
0
0
null
[ "region:us" ]
null
2025-02-26T15:23:16Z
45 seconds ago <p><a rel="nofollow" title="WATCH NOW" href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman"><img border="Sophie+Rain+Spidermanno" height="480" width="720" title="WATCH NOW" alt="WATCH NOW" src="https://i.ibb.co.com/xMMVF88/686577567.gif"></a></p> <a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">β–Ίβ–Ίβœ… π˜Ύπ™‡π™„π˜Ύπ™† 𝙃𝙀𝙍𝙀 ==β–Ίβ–Ί 𝙁π™ͺ𝙑𝙑 π™‘π™žπ™™π™šπ™€οΈβ€‹</a></p> <a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">πŸ”΄β–Ίπ‚π‹πˆπ‚πŠ 𝐇𝐄𝐑𝐄 🌐==β–Ίβ–Ί 𝐃𝐨𝐰𝐧π₯𝐨𝐚𝐝 𝐍𝐨𝐰⬇️⬇️​</a></p>
TobiGeth/tg_user_5600832597_lora_1740582832
TobiGeth
2025-02-26T15:25:18Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-02-26T15:25:17Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: USER_5600832597_1740582832 --- # Tg_User_5600832597_Lora_1740582832 <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `USER_5600832597_1740582832` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('TobiGeth/tg_user_5600832597_lora_1740582832', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
RichardErkhov/atlimited_-_gemma-2-2b-aio-retriever-gguf
RichardErkhov
2025-02-26T15:23:29Z
0
0
null
[ "gguf", "arxiv:1910.09700", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-26T14:35:17Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) gemma-2-2b-aio-retriever - GGUF - Model creator: https://huggingface.co/atlimited/ - Original model: https://huggingface.co/atlimited/gemma-2-2b-aio-retriever/ | Name | Quant method | Size | | ---- | ---- | ---- | | [gemma-2-2b-aio-retriever.Q2_K.gguf](https://huggingface.co/RichardErkhov/atlimited_-_gemma-2-2b-aio-retriever-gguf/blob/main/gemma-2-2b-aio-retriever.Q2_K.gguf) | Q2_K | 1.15GB | | [gemma-2-2b-aio-retriever.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/atlimited_-_gemma-2-2b-aio-retriever-gguf/blob/main/gemma-2-2b-aio-retriever.IQ3_XS.gguf) | IQ3_XS | 1.22GB | | [gemma-2-2b-aio-retriever.IQ3_S.gguf](https://huggingface.co/RichardErkhov/atlimited_-_gemma-2-2b-aio-retriever-gguf/blob/main/gemma-2-2b-aio-retriever.IQ3_S.gguf) | IQ3_S | 1.27GB | | [gemma-2-2b-aio-retriever.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/atlimited_-_gemma-2-2b-aio-retriever-gguf/blob/main/gemma-2-2b-aio-retriever.Q3_K_S.gguf) | Q3_K_S | 1.27GB | | [gemma-2-2b-aio-retriever.IQ3_M.gguf](https://huggingface.co/RichardErkhov/atlimited_-_gemma-2-2b-aio-retriever-gguf/blob/main/gemma-2-2b-aio-retriever.IQ3_M.gguf) | IQ3_M | 1.3GB | | [gemma-2-2b-aio-retriever.Q3_K.gguf](https://huggingface.co/RichardErkhov/atlimited_-_gemma-2-2b-aio-retriever-gguf/blob/main/gemma-2-2b-aio-retriever.Q3_K.gguf) | Q3_K | 1.36GB | | [gemma-2-2b-aio-retriever.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/atlimited_-_gemma-2-2b-aio-retriever-gguf/blob/main/gemma-2-2b-aio-retriever.Q3_K_M.gguf) | Q3_K_M | 1.36GB | | [gemma-2-2b-aio-retriever.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/atlimited_-_gemma-2-2b-aio-retriever-gguf/blob/main/gemma-2-2b-aio-retriever.Q3_K_L.gguf) | Q3_K_L | 1.44GB | | [gemma-2-2b-aio-retriever.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/atlimited_-_gemma-2-2b-aio-retriever-gguf/blob/main/gemma-2-2b-aio-retriever.IQ4_XS.gguf) | IQ4_XS | 1.47GB | | [gemma-2-2b-aio-retriever.Q4_0.gguf](https://huggingface.co/RichardErkhov/atlimited_-_gemma-2-2b-aio-retriever-gguf/blob/main/gemma-2-2b-aio-retriever.Q4_0.gguf) | Q4_0 | 1.52GB | | [gemma-2-2b-aio-retriever.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/atlimited_-_gemma-2-2b-aio-retriever-gguf/blob/main/gemma-2-2b-aio-retriever.IQ4_NL.gguf) | IQ4_NL | 1.53GB | | [gemma-2-2b-aio-retriever.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/atlimited_-_gemma-2-2b-aio-retriever-gguf/blob/main/gemma-2-2b-aio-retriever.Q4_K_S.gguf) | Q4_K_S | 1.53GB | | [gemma-2-2b-aio-retriever.Q4_K.gguf](https://huggingface.co/RichardErkhov/atlimited_-_gemma-2-2b-aio-retriever-gguf/blob/main/gemma-2-2b-aio-retriever.Q4_K.gguf) | Q4_K | 1.59GB | | [gemma-2-2b-aio-retriever.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/atlimited_-_gemma-2-2b-aio-retriever-gguf/blob/main/gemma-2-2b-aio-retriever.Q4_K_M.gguf) | Q4_K_M | 1.59GB | | [gemma-2-2b-aio-retriever.Q4_1.gguf](https://huggingface.co/RichardErkhov/atlimited_-_gemma-2-2b-aio-retriever-gguf/blob/main/gemma-2-2b-aio-retriever.Q4_1.gguf) | Q4_1 | 1.64GB | | [gemma-2-2b-aio-retriever.Q5_0.gguf](https://huggingface.co/RichardErkhov/atlimited_-_gemma-2-2b-aio-retriever-gguf/blob/main/gemma-2-2b-aio-retriever.Q5_0.gguf) | Q5_0 | 1.75GB | | [gemma-2-2b-aio-retriever.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/atlimited_-_gemma-2-2b-aio-retriever-gguf/blob/main/gemma-2-2b-aio-retriever.Q5_K_S.gguf) | Q5_K_S | 1.75GB | | [gemma-2-2b-aio-retriever.Q5_K.gguf](https://huggingface.co/RichardErkhov/atlimited_-_gemma-2-2b-aio-retriever-gguf/blob/main/gemma-2-2b-aio-retriever.Q5_K.gguf) | Q5_K | 1.79GB | | [gemma-2-2b-aio-retriever.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/atlimited_-_gemma-2-2b-aio-retriever-gguf/blob/main/gemma-2-2b-aio-retriever.Q5_K_M.gguf) | Q5_K_M | 1.79GB | | [gemma-2-2b-aio-retriever.Q5_1.gguf](https://huggingface.co/RichardErkhov/atlimited_-_gemma-2-2b-aio-retriever-gguf/blob/main/gemma-2-2b-aio-retriever.Q5_1.gguf) | Q5_1 | 1.87GB | | [gemma-2-2b-aio-retriever.Q6_K.gguf](https://huggingface.co/RichardErkhov/atlimited_-_gemma-2-2b-aio-retriever-gguf/blob/main/gemma-2-2b-aio-retriever.Q6_K.gguf) | Q6_K | 2.0GB | | [gemma-2-2b-aio-retriever.Q8_0.gguf](https://huggingface.co/RichardErkhov/atlimited_-_gemma-2-2b-aio-retriever-gguf/blob/main/gemma-2-2b-aio-retriever.Q8_0.gguf) | Q8_0 | 2.59GB | Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
TobiGeth/tg_user_6025318038_lora_1740582739
TobiGeth
2025-02-26T15:23:20Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-02-26T15:23:19Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: USER_6025318038_1740582739 --- # Tg_User_6025318038_Lora_1740582739 <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `USER_6025318038_1740582739` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('TobiGeth/tg_user_6025318038_lora_1740582739', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
nm-testing/Qwen2.5-VL-7B-Instruct-quantized.w8a8
nm-testing
2025-02-26T15:22:53Z
297
0
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-text-to-text", "vllm", "vision", "w8a8", "conversational", "en", "base_model:Qwen/Qwen2.5-VL-7B-Instruct", "base_model:quantized:Qwen/Qwen2.5-VL-7B-Instruct", "license:apache-2.0", "endpoints_compatible", "8-bit", "compressed-tensors", "region:us" ]
image-text-to-text
2025-02-07T17:02:21Z
--- tags: - vllm - vision - w8a8 license: apache-2.0 license_link: >- https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md language: - en base_model: Qwen/Qwen2.5-VL-7B-Instruct library_name: transformers --- # Qwen2.5-VL-7B-Instruct-quantized-w8a8 ## Model Overview - **Model Architecture:** Qwen/Qwen2.5-VL-7B-Instruct - **Input:** Vision-Text - **Output:** Text - **Model Optimizations:** - **Weight quantization:** INT8 - **Activation quantization:** INT8 - **Release Date:** 2/24/2025 - **Version:** 1.0 - **Model Developers:** Neural Magic Quantized version of [Qwen/Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct). ### Model Optimizations This model was obtained by quantizing the weights of [Qwen/Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) to INT8 data type, ready for inference with vLLM >= 0.5.2. ## Deployment ### Use with vLLM This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. ```python from vllm.assets.image import ImageAsset from vllm import LLM, SamplingParams # prepare model llm = LLM( model="neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w8a8", trust_remote_code=True, max_model_len=4096, max_num_seqs=2, ) # prepare inputs question = "What is the content of this image?" inputs = { "prompt": f"<|user|>\n<|image_1|>\n{question}<|end|>\n<|assistant|>\n", "multi_modal_data": { "image": ImageAsset("cherry_blossom").pil_image.convert("RGB") }, } # generate response print("========== SAMPLE GENERATION ==============") outputs = llm.generate(inputs, SamplingParams(temperature=0.2, max_tokens=64)) print(f"PROMPT : {outputs[0].prompt}") print(f"RESPONSE: {outputs[0].outputs[0].text}") print("==========================================") ``` vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. ## Creation This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below as part a multimodal announcement blog. <details> <summary>Model Creation Code</summary> ```python import base64 from io import BytesIO import torch from datasets import load_dataset from qwen_vl_utils import process_vision_info from transformers import AutoProcessor from llmcompressor.modifiers.quantization import GPTQModifier from llmcompressor.transformers import oneshot from llmcompressor.transformers.tracing import ( TraceableQwen2_5_VLForConditionalGeneration, ) # Load model. model_id = "Qwen/Qwen2.5-VL-7B-Instruct" model = TraceableQwen2_5_VLForConditionalGeneration.from_pretrained( model_id, device_map="auto", torch_dtype="auto", ) processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) # Oneshot arguments DATASET_ID = "lmms-lab/flickr30k" DATASET_SPLIT = {"calibration": "test[:512]"} NUM_CALIBRATION_SAMPLES = 512 MAX_SEQUENCE_LENGTH = 2048 # Load dataset and preprocess. ds = load_dataset(DATASET_ID, split=DATASET_SPLIT) ds = ds.shuffle(seed=42) dampening_frac=0.01 # Apply chat template and tokenize inputs. def preprocess_and_tokenize(example): # preprocess buffered = BytesIO() example["image"].save(buffered, format="PNG") encoded_image = base64.b64encode(buffered.getvalue()) encoded_image_text = encoded_image.decode("utf-8") base64_qwen = f"data:image;base64,{encoded_image_text}" messages = [ { "role": "user", "content": [ {"type": "image", "image": base64_qwen}, {"type": "text", "text": "What does the image show?"}, ], } ] text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) # tokenize return processor( text=[text], images=image_inputs, videos=video_inputs, padding=False, max_length=MAX_SEQUENCE_LENGTH, truncation=True, ) ds = ds.map(preprocess_and_tokenize, remove_columns=ds["calibration"].column_names) # Define a oneshot data collator for multimodal inputs. def data_collator(batch): assert len(batch) == 1 return {key: torch.tensor(value) for key, value in batch[0].items()} # Recipe recipe = [ GPTQModifier( targets="Linear", scheme="W8A8", sequential_targets=["Qwen2_5_VLDecoderLayer"], ignore=["lm_head", "re:visual.*"], ), ] SAVE_DIR==f"{model_id.split('/')[1]}-quantized.w8a8" # Perform oneshot oneshot( model=model, tokenizer=model_id, dataset=ds, recipe=recipe, max_seq_length=MAX_SEQUENCE_LENGTH, num_calibration_samples=NUM_CALIBRATION_SAMPLES, trust_remote_code_model=True, data_collator=data_collator, output_dir=SAVE_DIR ) ``` </details> ## Evaluation The model was evaluated using [mistral-evals](https://github.com/neuralmagic/mistral-evals) for vision-related tasks and using [lm_evaluation_harness](https://github.com/neuralmagic/lm-evaluation-harness) for select text-based benchmarks. The evaluations were conducted using the following commands: <details> <summary>Evaluation Commands</summary> ### Vision Tasks - vqav2 - docvqa - mathvista - mmmu - chartqa ``` vllm serve neuralmagic/pixtral-12b-quantized.w8a8 --tensor_parallel_size 1 --max_model_len 25000 --trust_remote_code --max_num_seqs 8 --gpu_memory_utilization 0.9 --dtype float16 --limit_mm_per_prompt image=7 python -m eval.run eval_vllm \ --model_name neuralmagic/pixtral-12b-quantized.w8a8 \ --url http://0.0.0.0:8000 \ --output_dir ~/tmp \ --eval_name <vision_task_name> ``` ### Text-based Tasks #### MMLU ``` lm_eval \ --model vllm \ --model_args pretrained="<model_name>",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=<n>,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \ --tasks mmlu \ --num_fewshot 5 \ --batch_size auto \ --output_path output_dir ``` #### MGSM ``` lm_eval \ --model vllm \ --model_args pretrained="<model_name>",dtype=auto,max_model_len=4096,max_gen_toks=2048,max_num_seqs=128,tensor_parallel_size=<n>,gpu_memory_utilization=0.9 \ --tasks mgsm_cot_native \ --num_fewshot 0 \ --batch_size auto \ --output_path output_dir ``` </details> ### Accuracy <table> <thead> <tr> <th>Category</th> <th>Metric</th> <th>Qwen/Qwen2.5-VL-7B-Instruct</th> <th>Qwen2.5-VL-7B-Instruct-quantized.w8a8</th> <th>Recovery (%)</th> </tr> </thead> <tbody> <tr> <td rowspan="6"><b>Vision</b></td> <td>MMMU (val, CoT)<br><i>explicit_prompt_relaxed_correctness</i></td> <td>52.00</td> <td>52.33</td> <td>100.63%</td> </tr> <tr> <td>VQAv2 (val)<br><i>vqa_match</i></td> <td>75.59</td> <td>75.46</td> <td>99.83%</td> </tr> <tr> <td>DocVQA (val)<br><i>anls</i></td> <td>94.27</td> <td>94.09</td> <td>99.81%</td> </tr> <tr> <td>ChartQA (test, CoT)<br><i>anywhere_in_answer_relaxed_correctness</i></td> <td>86.44</td> <td>86.16</td> <td>99.68%</td> </tr> <tr> <td>Mathvista (testmini, CoT)<br><i>explicit_prompt_relaxed_correctness</i></td> <td>69.47</td> <td>70.47</td> <td>101.44%</td> </tr> <tr> <td><b>Average Score</b></td> <td><b>75.95</b></td> <td><b>75.90</b></td> <td><b>99.93%</b></td> </tr> <tr> <td rowspan="3"><b>Text</b></td> <td>MGSM (CoT)</td> <td>58.72</td> <td>59.92</td> <td>102.04%</td> </tr> <tr> <td>MMLU (5-shot)</td> <td>71.09</td> <td>70.57</td> <td>99.27%</td> </tr> </tbody> </table> ## Inference Performance This model achieves up to 1.56x speedup in single-stream deployment and 1.5x in multi-stream deployment, depending on hardware and use-case scenario. The following performance benchmarks were conducted with [vLLM](https://docs.vllm.ai/en/latest/) version 0.7.2, and [GuideLLM](https://github.com/neuralmagic/guidellm). <details> <summary>Benchmarking Command</summary> ``` guidellm --model neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w8a8 --target "http://localhost:8000/v1" --data-type emulated --data prompt_tokens=<prompt_tokens>,generated_tokens=<generated_tokens>,images=<num_images>,width=<image_width>,height=<image_height> --max seconds 120 --backend aiohttp_server ``` </details> ### Single-stream performance (measured with vLLM version 0.7.2) <table border="1" class="dataframe"> <thead> <tr> <th></th> <th></th> <th></th> <th style="text-align: center;" colspan="2" >Document Visual Question Answering<br>1680W x 2240H<br>64/128</th> <th style="text-align: center;" colspan="2" >Visual Reasoning <br>640W x 480H<br>128/128</th> <th style="text-align: center;" colspan="2" >Image Captioning<br>480W x 360H<br>0/128</th> </tr> <tr> <th>Hardware</th> <th>Model</th> <th>Average Cost Reduction</th> <th>Latency (s)</th> <th>Queries Per Dollar</th> <th>Latency (s)th> <th>Queries Per Dollar</th> <th>Latency (s)</th> <th>Queries Per Dollar</th> </tr> </thead> <tbody style="text-align: center"> <tr> <th rowspan="3" valign="top">A6000x1</th> <th>Qwen/Qwen2.5-VL-7B-Instruct</th> <td></td> <td>4.9</td> <td>912</td> <td>3.2</td> <td>1386</td> <td>3.1</td> <td>1431</td> </tr> <tr> <th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w8a8</th> <td>1.50</td> <td>3.6</td> <td>1248</td> <td>2.1</td> <td>2163</td> <td>2.0</td> <td>2237</td> </tr> <tr> <th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w4a16</th> <td>2.05</td> <td>3.3</td> <td>1351</td> <td>1.4</td> <td>3252</td> <td>1.4</td> <td>3321</td> </tr> <tr> <th rowspan="3" valign="top">A100x1</th> <th>Qwen/Qwen2.5-VL-7B-Instruct</th> <td></td> <td>2.8</td> <td>707</td> <td>1.7</td> <td>1162</td> <td>1.7</td> <td>1198</td> </tr> <tr> <th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w8a8</th> <td>1.24</td> <td>2.4</td> <td>851</td> <td>1.4</td> <td>1454</td> <td>1.3</td> <td>1512</td> </tr> <tr> <th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w4a16</th> <td>1.49</td> <td>2.2</td> <td>912</td> <td>1.1</td> <td>1791</td> <td>1.0</td> <td>1950</td> </tr> <tr> <th rowspan="3" valign="top">H100x1</th> <th>Qwen/Qwen2.5-VL-7B-Instruct</th> <td></td> <td>2.0</td> <td>557</td> <td>1.2</td> <td>919</td> <td>1.2</td> <td>941</td> </tr> <tr> <th>neuralmagic/Qwen2.5-VL-7B-Instruct-FP8-Dynamic</th> <td>1.28</td> <td>1.6</td> <td>698</td> <td>0.9</td> <td>1181</td> <td>0.9</td> <td>1219</td> </tr> <tr> <th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w4a16</th> <td>1.28</td> <td>1.6</td> <td>686</td> <td>0.9</td> <td>1191</td> <td>0.9</td> <td>1228</td> </tr> </tbody> </table> **Use case profiles: Image Size (WxH) / prompt tokens / generation tokens **QPD: Queries per dollar, based on on-demand cost at [Lambda Labs](https://lambdalabs.com/service/gpu-cloud) (observed on 2/18/2025). ### Multi-stream asynchronous performance (measured with vLLM version 0.7.2) <table border="1" class="dataframe"> <thead> <tr> <th></th> <th></th> <th></th> <th style="text-align: center;" colspan="2" >Document Visual Question Answering<br>1680W x 2240H<br>64/128</th> <th style="text-align: center;" colspan="2" >Visual Reasoning <br>640W x 480H<br>128/128</th> <th style="text-align: center;" colspan="2" >Image Captioning<br>480W x 360H<br>0/128</th> </tr> <tr> <th>Hardware</th> <th>Model</th> <th>Average Cost Reduction</th> <th>Maximum throughput (QPS)</th> <th>Queries Per Dollar</th> <th>Maximum throughput (QPS)</th> <th>Queries Per Dollar</th> <th>Maximum throughput (QPS)</th> <th>Queries Per Dollar</th> </tr> </thead> <tbody style="text-align: center"> <tr> <th rowspan="3" valign="top">A6000x1</th> <th>Qwen/Qwen2.5-VL-7B-Instruct</th> <td></td> <td>0.4</td> <td>1837</td> <td>1.5</td> <td>6846</td> <td>1.7</td> <td>7638</td> </tr> <tr> <th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w8a8</th> <td>1.41</td> <td>0.5</td> <td>2297</td> <td>2.3</td> <td>10137</td> <td>2.5</td> <td>11472</td> </tr> <tr> <th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w4a16</th> <td>1.60</td> <td>0.4</td> <td>1828</td> <td>2.7</td> <td>12254</td> <td>3.4</td> <td>15477</td> </tr> <tr> <th rowspan="3" valign="top">A100x1</th> <th>Qwen/Qwen2.5-VL-7B-Instruct</th> <td></td> <td>0.7</td> <td>1347</td> <td>2.6</td> <td>5221</td> <td>3.0</td> <td>6122</td> </tr> <tr> <th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w8a8</th> <td>1.27</td> <td>0.8</td> <td>1639</td> <td>3.4</td> <td>6851</td> <td>3.9</td> <td>7918</td> </tr> <tr> <th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w4a16</th> <td>1.21</td> <td>0.7</td> <td>1314</td> <td>3.0</td> <td>5983</td> <td>4.6</td> <td>9206</td> </tr> <tr> <th rowspan="3" valign="top">H100x1</th> <th>Qwen/Qwen2.5-VL-7B-Instruct</th> <td></td> <td>0.9</td> <td>969</td> <td>3.1</td> <td>3358</td> <td>3.3</td> <td>3615</td> </tr> <tr> <th>neuralmagic/Qwen2.5-VL-7B-Instruct-FP8-Dynamic</th> <td>1.29</td> <td>1.2</td> <td>1331</td> <td>3.8</td> <td>4109</td> <td>4.2</td> <td>4598</td> </tr> <tr> <th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w4a16</th> <td>1.28</td> <td>1.2</td> <td>1298</td> <td>3.8</td> <td>4190</td> <td>4.2</td> <td>4573</td> </tr> </tbody> </table> **Use case profiles: Image Size (WxH) / prompt tokens / generation tokens **QPS: Queries per second. **QPD: Queries per dollar, based on on-demand cost at [Lambda Labs](https://lambdalabs.com/service/gpu-cloud) (observed on 2/18/2025).
PrunaAI/facebook-MobileLLM-125M-bnb-4bit-smashed
PrunaAI
2025-02-26T15:22:46Z
0
0
null
[ "safetensors", "mobilellm", "pruna-ai", "custom_code", "4-bit", "bitsandbytes", "region:us" ]
null
2025-02-26T15:22:34Z
--- thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg" base_model: ORIGINAL_REPO_NAME metrics: - memory_disk - memory_inference - inference_latency - inference_throughput - inference_CO2_emissions - inference_energy_consumption tags: - pruna-ai --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer"> <img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </a> </div> <!-- header end --> [![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI) [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI) [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/rskEr4BZJx) # Simply make AI models cheaper, smaller, faster, and greener! - Give a thumbs up if you like this model! - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/) - Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help. ## Results ![image info](./plots.png) **Frequently Asked Questions** - ***How does the compression work?*** The model is compressed with llm-int8. - ***How does the model quality change?*** The quality of the model output might vary compared to the base model. - ***How is the model efficiency evaluated?*** These results were obtained with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you. - ***What is the model format?*** We use safetensors. - ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data. - ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model. - ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads. - ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases. ## Setup You can run the smashed model with these steps: 0. Check requirements from the original repo ORIGINAL_REPO_NAME installed. In particular, check python, cuda, and transformers versions. 1. Make sure that you have installed quantization related packages. ```bash pip install transformers accelerate bitsandbytes>0.37.0 ``` 2. Load & run the model. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("PrunaAI/facebook-MobileLLM-125M-bnb-4bit-smashed", trust_remote_code=True, device_map='auto') tokenizer = AutoTokenizer.from_pretrained("ORIGINAL_REPO_NAME") input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"] outputs = model.generate(input_ids, max_new_tokens=216) tokenizer.decode(outputs[0]) ``` ## Configurations The configuration info are in `smash_config.json`. ## Credits & License The license of the smashed model follows the license of the original model. Please check the license of the original model ORIGINAL_REPO_NAME before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi. ## Want to compress other models? - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
Tiptopof6/chan
Tiptopof6
2025-02-26T15:21:30Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-02-26T14:54:09Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: chan --- # Chan <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `chan` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('Tiptopof6/chan', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
Lawnakk/BBA100
Lawnakk
2025-02-26T15:19:05Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "mergekit", "merge", "conversational", "base_model:Goekdeniz-Guelmez/Josiefied-Qwen2.5-7B-Instruct-abliterated-v2", "base_model:merge:Goekdeniz-Guelmez/Josiefied-Qwen2.5-7B-Instruct-abliterated-v2", "base_model:Qwen/Qwen2.5-Math-7B-Instruct", "base_model:merge:Qwen/Qwen2.5-Math-7B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-26T15:14:25Z
--- base_model: - Qwen/Qwen2.5-Math-7B-Instruct - Goekdeniz-Guelmez/Josiefied-Qwen2.5-7B-Instruct-abliterated-v2 library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [SLERP](https://en.wikipedia.org/wiki/Slerp) merge method. ### Models Merged The following models were included in the merge: * [Qwen/Qwen2.5-Math-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Math-7B-Instruct) * [Goekdeniz-Guelmez/Josiefied-Qwen2.5-7B-Instruct-abliterated-v2](https://huggingface.co/Goekdeniz-Guelmez/Josiefied-Qwen2.5-7B-Instruct-abliterated-v2) ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: Goekdeniz-Guelmez/Josiefied-Qwen2.5-7B-Instruct-abliterated-v2 layer_range: - 0 - 28 - model: Qwen/Qwen2.5-Math-7B-Instruct layer_range: - 0 - 28 merge_method: slerp base_model: Goekdeniz-Guelmez/Josiefied-Qwen2.5-7B-Instruct-abliterated-v2 parameters: t: - filter: self_attn value: - 0 - 0.5 - 0.3 - 0.7 - 1 - filter: mlp value: - 1 - 0.5 - 0.7 - 0.3 - 0 - value: 0.5 dtype: bfloat16 ```
JacksonBrune/2e711180-acd5-4fa8-bf1a-ddc6699ec146
JacksonBrune
2025-02-26T15:17:53Z
0
0
peft
[ "peft", "generated_from_trainer", "base_model:DeepMount00/Llama-3-8b-Ita", "base_model:adapter:DeepMount00/Llama-3-8b-Ita", "region:us" ]
null
2025-02-26T15:17:40Z
--- library_name: peft tags: - generated_from_trainer base_model: DeepMount00/Llama-3-8b-Ita model-index: - name: JacksonBrune/2e711180-acd5-4fa8-bf1a-ddc6699ec146 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # JacksonBrune/2e711180-acd5-4fa8-bf1a-ddc6699ec146 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0189 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nm-testing/Qwen2.5-VL-7B-Instruct-FP8-Dynamic
nm-testing
2025-02-26T15:17:09Z
609
0
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-text-to-text", "vllm", "vision", "fp8", "conversational", "en", "base_model:Qwen/Qwen2.5-VL-7B-Instruct", "base_model:quantized:Qwen/Qwen2.5-VL-7B-Instruct", "license:apache-2.0", "endpoints_compatible", "compressed-tensors", "region:us" ]
image-text-to-text
2025-02-06T16:29:20Z
--- tags: - vllm - vision - fp8 license: apache-2.0 license_link: >- https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md language: - en base_model: Qwen/Qwen2.5-VL-7B-Instruct library_name: transformers --- # Qwen2.5-VL-7B-Instruct-FP8-Dynamic ## Model Overview - **Model Architecture:** Qwen2.5-VL-7B-Instruct - **Input:** Vision-Text - **Output:** Text - **Model Optimizations:** - **Weight quantization:** FP8 - **Activation quantization:** FP8 - **Release Date:** 2/24/2025 - **Version:** 1.0 - **Model Developers:** Neural Magic Quantized version of [Qwen/Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct). ### Model Optimizations This model was obtained by quantizing the weights of [Qwen/Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) to FP8 data type, ready for inference with vLLM >= 0.5.2. ## Deployment ### Use with vLLM This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. ```python from vllm.assets.image import ImageAsset from vllm import LLM, SamplingParams # prepare model llm = LLM( model="neuralmagic/Qwen2.5-VL-7B-Instruct-FP8-Dynamic", trust_remote_code=True, max_model_len=4096, max_num_seqs=2, ) # prepare inputs question = "What is the content of this image?" inputs = { "prompt": f"<|user|>\n<|image_1|>\n{question}<|end|>\n<|assistant|>\n", "multi_modal_data": { "image": ImageAsset("cherry_blossom").pil_image.convert("RGB") }, } # generate response print("========== SAMPLE GENERATION ==============") outputs = llm.generate(inputs, SamplingParams(temperature=0.2, max_tokens=64)) print(f"PROMPT : {outputs[0].prompt}") print(f"RESPONSE: {outputs[0].outputs[0].text}") print("==========================================") ``` vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. ## Creation This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below as part a multimodal announcement blog. <details> <summary>Model Creation Code</summary> ```python import requests import torch from PIL import Image from transformers import AutoProcessor from llmcompressor.transformers import oneshot from llmcompressor.transformers.tracing import ( TraceableQwen2_5_VLForConditionalGeneration, ) from llmcompressor.modifiers.quantization import QuantizationModifier # Load model. model_id = Qwen/Qwen2.5-VL-7B-Instruct model = TraceableQwen2_5_VLForConditionalGeneration.from_pretrained( model_id, device_map="auto", torch_dtype="auto" ) processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) # Recipe recipe = [ QuantizationModifier( targets="Linear", scheme="FP8_DYNAMIC", sequential_targets=["MistralDecoderLayer"], ignore=["re:.*lm_head", "re:vision_tower.*", "re:multi_modal_projector.*"], ), ] SAVE_DIR=f"{model_id.split('/')[1]}-FP8-Dynamic" # Perform oneshot oneshot( model=model, recipe=recipe, trust_remote_code_model=True, output_dir=SAVE_DIR ) ``` </details> ## Evaluation The model was evaluated using [mistral-evals](https://github.com/neuralmagic/mistral-evals) for vision-related tasks and using [lm_evaluation_harness](https://github.com/neuralmagic/lm-evaluation-harness) for select text-based benchmarks. The evaluations were conducted using the following commands: <details> <summary>Evaluation Commands</summary> ### Vision Tasks - vqav2 - docvqa - mathvista - mmmu - chartqa ``` vllm serve neuralmagic/pixtral-12b-quantized.w8a8 --tensor_parallel_size 1 --max_model_len 25000 --trust_remote_code --max_num_seqs 8 --gpu_memory_utilization 0.9 --dtype float16 --limit_mm_per_prompt image=7 python -m eval.run eval_vllm \ --model_name neuralmagic/pixtral-12b-quantized.w8a8 \ --url http://0.0.0.0:8000 \ --output_dir ~/tmp \ --eval_name <vision_task_name> ``` ### Text-based Tasks #### MMLU ``` lm_eval \ --model vllm \ --model_args pretrained="<model_name>",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=<n>,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \ --tasks mmlu \ --num_fewshot 5 \ --batch_size auto \ --output_path output_dir ``` #### MGSM ``` lm_eval \ --model vllm \ --model_args pretrained="<model_name>",dtype=auto,max_model_len=4096,max_gen_toks=2048,max_num_seqs=128,tensor_parallel_size=<n>,gpu_memory_utilization=0.9 \ --tasks mgsm_cot_native \ --num_fewshot 0 \ --batch_size auto \ --output_path output_dir ``` </details> ### Accuracy <table> <thead> <tr> <th>Category</th> <th>Metric</th> <th>Qwen/Qwen2.5-VL-7B-Instruct</th> <th>neuralmagic/Qwen2.5-VL-7B-Instruct-FP8-Dynamic</th> <th>Recovery (%)</th> </tr> </thead> <tbody> <tr> <td rowspan="6"><b>Vision</b></td> <td>MMMU (val, CoT)<br><i>explicit_prompt_relaxed_correctness</i></td> <td>52.00</td> <td>52.55</td> <td>101.06%</td> </tr> <tr> <td>VQAv2 (val)<br><i>vqa_match</i></td> <td>75.59</td> <td>75.79</td> <td>100.26%</td> </tr> <tr> <td>DocVQA (val)<br><i>anls</i></td> <td>94.27</td> <td>94.27</td> <td>100.00%</td> </tr> <tr> <td>ChartQA (test, CoT)<br><i>anywhere_in_answer_relaxed_correctness</i></td> <td>86.44</td> <td>86.80</td> <td>100.42%</td> </tr> <tr> <td>Mathvista (testmini, CoT)<br><i>explicit_prompt_relaxed_correctness</i></td> <td>69.47</td> <td>71.07</td> <td>102.31%</td> </tr> <tr> <td><b>Average Score</b></td> <td><b>75.95</b></td> <td><b>76.50</b></td> <td><b>100.73%</b></td> </tr> <tr> <td rowspan="2"><b>Text</b></td> <td>MGSM (CoT)</td> <td>58.72</td> <td>55.34</td> <td>94.24%</td> </tr> <tr> <td>MMLU (5-shot)</td> <td>71.09</td> <td>70.98</td> <td>99.85%</td> </tr> </tbody> </table> ## Inference Performance This model achieves up to 1.3x speedup in single-stream deployment and 1.37x in multi-stream deployment, depending on hardware and use-case scenario. The following performance benchmarks were conducted with [vLLM](https://docs.vllm.ai/en/latest/) version 0.7.2, and [GuideLLM](https://github.com/neuralmagic/guidellm). <details> <summary>Benchmarking Command</summary> ``` guidellm --model neuralmagic/Qwen2.5-VL-7B-Instruct-FP8-Dynamic --target "http://localhost:8000/v1" --data-type emulated --data prompt_tokens=<prompt_tokens>,generated_tokens=<generated_tokens>,images=<num_images>,width=<image_width>,height=<image_height> --max seconds 120 --backend aiohttp_server ``` </details> ### Single-stream performance (measured with vLLM version 0.7.2) <table border="1" class="dataframe"> <thead> <tr> <th></th> <th></th> <th></th> <th style="text-align: center;" colspan="2" >Document Visual Question Answering<br>1680W x 2240H<br>64/128</th> <th style="text-align: center;" colspan="2" >Visual Reasoning <br>640W x 480H<br>128/128</th> <th style="text-align: center;" colspan="2" >Image Captioning<br>480W x 360H<br>0/128</th> </tr> <tr> <th>Hardware</th> <th>Model</th> <th>Average Cost Reduction</th> <th>Latency (s)</th> <th>Queries Per Dollar</th> <th>Latency (s)th> <th>Queries Per Dollar</th> <th>Latency (s)</th> <th>Queries Per Dollar</th> </tr> </thead> <tbody style="text-align: center"> <tr> <th rowspan="3" valign="top">A6000x1</th> <th>Qwen/Qwen2.5-VL-7B-Instruct</th> <td></td> <td>4.9</td> <td>912</td> <td>3.2</td> <td>1386</td> <td>3.1</td> <td>1431</td> </tr> <tr> <th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w8a8</th> <td>1.50</td> <td>3.6</td> <td>1248</td> <td>2.1</td> <td>2163</td> <td>2.0</td> <td>2237</td> </tr> <tr> <th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w4a16</th> <td>2.05</td> <td>3.3</td> <td>1351</td> <td>1.4</td> <td>3252</td> <td>1.4</td> <td>3321</td> </tr> <tr> <th rowspan="3" valign="top">A100x1</th> <th>Qwen/Qwen2.5-VL-7B-Instruct</th> <td></td> <td>2.8</td> <td>707</td> <td>1.7</td> <td>1162</td> <td>1.7</td> <td>1198</td> </tr> <tr> <th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w8a8</th> <td>1.24</td> <td>2.4</td> <td>851</td> <td>1.4</td> <td>1454</td> <td>1.3</td> <td>1512</td> </tr> <tr> <th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w4a16</th> <td>1.49</td> <td>2.2</td> <td>912</td> <td>1.1</td> <td>1791</td> <td>1.0</td> <td>1950</td> </tr> <tr> <th rowspan="3" valign="top">H100x1</th> <th>Qwen/Qwen2.5-VL-7B-Instruct</th> <td></td> <td>2.0</td> <td>557</td> <td>1.2</td> <td>919</td> <td>1.2</td> <td>941</td> </tr> <tr> <th>neuralmagic/Qwen2.5-VL-7B-Instruct-FP8-Dynamic</th> <td>1.28</td> <td>1.6</td> <td>698</td> <td>0.9</td> <td>1181</td> <td>0.9</td> <td>1219</td> </tr> <tr> <th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w4a16</th> <td>1.28</td> <td>1.6</td> <td>686</td> <td>0.9</td> <td>1191</td> <td>0.9</td> <td>1228</td> </tr> </tbody> </table> **Use case profiles: Image Size (WxH) / prompt tokens / generation tokens **QPD: Queries per dollar, based on on-demand cost at [Lambda Labs](https://lambdalabs.com/service/gpu-cloud) (observed on 2/18/2025). ### Multi-stream asynchronous performance (measured with vLLM version 0.7.2) <table border="1" class="dataframe"> <thead> <tr> <th></th> <th></th> <th></th> <th style="text-align: center;" colspan="2" >Document Visual Question Answering<br>1680W x 2240H<br>64/128</th> <th style="text-align: center;" colspan="2" >Visual Reasoning <br>640W x 480H<br>128/128</th> <th style="text-align: center;" colspan="2" >Image Captioning<br>480W x 360H<br>0/128</th> </tr> <tr> <th>Hardware</th> <th>Model</th> <th>Average Cost Reduction</th> <th>Maximum throughput (QPS)</th> <th>Queries Per Dollar</th> <th>Maximum throughput (QPS)</th> <th>Queries Per Dollar</th> <th>Maximum throughput (QPS)</th> <th>Queries Per Dollar</th> </tr> </thead> <tbody style="text-align: center"> <tr> <th rowspan="3" valign="top">A6000x1</th> <th>Qwen/Qwen2.5-VL-7B-Instruct</th> <td></td> <td>0.4</td> <td>1837</td> <td>1.5</td> <td>6846</td> <td>1.7</td> <td>7638</td> </tr> <tr> <th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w8a8</th> <td>1.41</td> <td>0.5</td> <td>2297</td> <td>2.3</td> <td>10137</td> <td>2.5</td> <td>11472</td> </tr> <tr> <th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w4a16</th> <td>1.60</td> <td>0.4</td> <td>1828</td> <td>2.7</td> <td>12254</td> <td>3.4</td> <td>15477</td> </tr> <tr> <th rowspan="3" valign="top">A100x1</th> <th>Qwen/Qwen2.5-VL-7B-Instruct</th> <td></td> <td>0.7</td> <td>1347</td> <td>2.6</td> <td>5221</td> <td>3.0</td> <td>6122</td> </tr> <tr> <th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w8a8</th> <td>1.27</td> <td>0.8</td> <td>1639</td> <td>3.4</td> <td>6851</td> <td>3.9</td> <td>7918</td> </tr> <tr> <th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w4a16</th> <td>1.21</td> <td>0.7</td> <td>1314</td> <td>3.0</td> <td>5983</td> <td>4.6</td> <td>9206</td> </tr> <tr> <th rowspan="3" valign="top">H100x1</th> <th>Qwen/Qwen2.5-VL-7B-Instruct</th> <td></td> <td>0.9</td> <td>969</td> <td>3.1</td> <td>3358</td> <td>3.3</td> <td>3615</td> </tr> <tr> <th>neuralmagic/Qwen2.5-VL-7B-Instruct-FP8-Dynamic</th> <td>1.29</td> <td>1.2</td> <td>1331</td> <td>3.8</td> <td>4109</td> <td>4.2</td> <td>4598</td> </tr> <tr> <th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w4a16</th> <td>1.28</td> <td>1.2</td> <td>1298</td> <td>3.8</td> <td>4190</td> <td>4.2</td> <td>4573</td> </tr> </tbody> </table> **Use case profiles: Image Size (WxH) / prompt tokens / generation tokens **QPS: Queries per second. **QPD: Queries per dollar, based on on-demand cost at [Lambda Labs](https://lambdalabs.com/service/gpu-cloud) (observed on 2/18/2025).
p2kalita/donut-title-bmw1
p2kalita
2025-02-26T15:16:43Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "base_model:naver-clova-ix/donut-base", "base_model:finetune:naver-clova-ix/donut-base", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-02-26T14:01:23Z
--- library_name: transformers license: mit base_model: naver-clova-ix/donut-base tags: - generated_from_trainer datasets: - imagefolder model-index: - name: donut-title-bmw1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-title-bmw1 This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.20.3
RichardErkhov/SH198_-_counselor-gguf
RichardErkhov
2025-02-26T15:16:18Z
0
0
null
[ "gguf", "arxiv:1910.09700", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-26T14:28:44Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) counselor - GGUF - Model creator: https://huggingface.co/SH198/ - Original model: https://huggingface.co/SH198/counselor/ | Name | Quant method | Size | | ---- | ---- | ---- | | [counselor.Q2_K.gguf](https://huggingface.co/RichardErkhov/SH198_-_counselor-gguf/blob/main/counselor.Q2_K.gguf) | Q2_K | 1.15GB | | [counselor.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/SH198_-_counselor-gguf/blob/main/counselor.IQ3_XS.gguf) | IQ3_XS | 1.22GB | | [counselor.IQ3_S.gguf](https://huggingface.co/RichardErkhov/SH198_-_counselor-gguf/blob/main/counselor.IQ3_S.gguf) | IQ3_S | 1.27GB | | [counselor.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/SH198_-_counselor-gguf/blob/main/counselor.Q3_K_S.gguf) | Q3_K_S | 1.27GB | | [counselor.IQ3_M.gguf](https://huggingface.co/RichardErkhov/SH198_-_counselor-gguf/blob/main/counselor.IQ3_M.gguf) | IQ3_M | 1.3GB | | [counselor.Q3_K.gguf](https://huggingface.co/RichardErkhov/SH198_-_counselor-gguf/blob/main/counselor.Q3_K.gguf) | Q3_K | 1.36GB | | [counselor.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/SH198_-_counselor-gguf/blob/main/counselor.Q3_K_M.gguf) | Q3_K_M | 1.36GB | | [counselor.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/SH198_-_counselor-gguf/blob/main/counselor.Q3_K_L.gguf) | Q3_K_L | 1.44GB | | [counselor.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/SH198_-_counselor-gguf/blob/main/counselor.IQ4_XS.gguf) | IQ4_XS | 1.47GB | | [counselor.Q4_0.gguf](https://huggingface.co/RichardErkhov/SH198_-_counselor-gguf/blob/main/counselor.Q4_0.gguf) | Q4_0 | 1.52GB | | [counselor.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/SH198_-_counselor-gguf/blob/main/counselor.IQ4_NL.gguf) | IQ4_NL | 1.53GB | | [counselor.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/SH198_-_counselor-gguf/blob/main/counselor.Q4_K_S.gguf) | Q4_K_S | 1.53GB | | [counselor.Q4_K.gguf](https://huggingface.co/RichardErkhov/SH198_-_counselor-gguf/blob/main/counselor.Q4_K.gguf) | Q4_K | 1.59GB | | [counselor.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/SH198_-_counselor-gguf/blob/main/counselor.Q4_K_M.gguf) | Q4_K_M | 1.59GB | | [counselor.Q4_1.gguf](https://huggingface.co/RichardErkhov/SH198_-_counselor-gguf/blob/main/counselor.Q4_1.gguf) | Q4_1 | 1.64GB | | [counselor.Q5_0.gguf](https://huggingface.co/RichardErkhov/SH198_-_counselor-gguf/blob/main/counselor.Q5_0.gguf) | Q5_0 | 1.75GB | | [counselor.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/SH198_-_counselor-gguf/blob/main/counselor.Q5_K_S.gguf) | Q5_K_S | 1.75GB | | [counselor.Q5_K.gguf](https://huggingface.co/RichardErkhov/SH198_-_counselor-gguf/blob/main/counselor.Q5_K.gguf) | Q5_K | 1.79GB | | [counselor.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/SH198_-_counselor-gguf/blob/main/counselor.Q5_K_M.gguf) | Q5_K_M | 1.79GB | | [counselor.Q5_1.gguf](https://huggingface.co/RichardErkhov/SH198_-_counselor-gguf/blob/main/counselor.Q5_1.gguf) | Q5_1 | 1.87GB | | [counselor.Q6_K.gguf](https://huggingface.co/RichardErkhov/SH198_-_counselor-gguf/blob/main/counselor.Q6_K.gguf) | Q6_K | 2.0GB | | [counselor.Q8_0.gguf](https://huggingface.co/RichardErkhov/SH198_-_counselor-gguf/blob/main/counselor.Q8_0.gguf) | Q8_0 | 2.59GB | Original model description: --- library_name: transformers datasets: - SH198/counselor language: - en base_model: - google/gemma-2-2b-it --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Jason-luo/gemma-2-2B-it-thinking-function_calling-V0
Jason-luo
2025-02-26T15:15:38Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:google/gemma-2-2b-it", "base_model:finetune:google/gemma-2-2b-it", "endpoints_compatible", "region:us" ]
null
2025-02-26T15:11:01Z
--- base_model: google/gemma-2-2b-it library_name: transformers model_name: gemma-2-2B-it-thinking-function_calling-V0 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for gemma-2-2B-it-thinking-function_calling-V0 This model is a fine-tuned version of [google/gemma-2-2b-it](https://huggingface.co/google/gemma-2-2b-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Jason-luo/gemma-2-2B-it-thinking-function_calling-V0", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.6.0 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin GallouΓ©dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
PrunaAI/AnatoliiPotapov-T-lite-instruct-0.1-HQQ-4bit-smashed
PrunaAI
2025-02-26T15:11:37Z
0
0
null
[ "llama", "pruna-ai", "hqq", "region:us" ]
null
2025-02-26T15:04:45Z
--- thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg" base_model: ORIGINAL_REPO_NAME metrics: - memory_disk - memory_inference - inference_latency - inference_throughput - inference_CO2_emissions - inference_energy_consumption tags: - pruna-ai --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer"> <img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </a> </div> <!-- header end --> [![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI) [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI) [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/rskEr4BZJx) # Simply make AI models cheaper, smaller, faster, and greener! - Give a thumbs up if you like this model! - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/) - Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help. ## Results ![image info](./plots.png) **Frequently Asked Questions** - ***How does the compression work?*** The model is compressed with hqq. - ***How does the model quality change?*** The quality of the model output might vary compared to the base model. - ***How is the model efficiency evaluated?*** These results were obtained with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you. - ***What is the model format?*** We use safetensors. - ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data. - ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model. - ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads. - ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases. ## Setup You can run the smashed model with these steps: 0. Check requirements from the original repo ORIGINAL_REPO_NAME installed. In particular, check python, cuda, and transformers versions. 1. Make sure that you have installed quantization related packages. ```bash pip install hqq ``` 2. Load & run the model. ```python from transformers import AutoModelForCausalLM, AutoTokenizer from hqq.engine.hf import HQQModelForCausalLM from hqq.models.hf.base import AutoHQQHFModel try: model = HQQModelForCausalLM.from_quantized("PrunaAI/AnatoliiPotapov-T-lite-instruct-0.1-HQQ-4bit-smashed", device_map='auto') except: model = AutoHQQHFModel.from_quantized("PrunaAI/AnatoliiPotapov-T-lite-instruct-0.1-HQQ-4bit-smashed") tokenizer = AutoTokenizer.from_pretrained("ORIGINAL_REPO_NAME") input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"] outputs = model.generate(input_ids, max_new_tokens=216) tokenizer.decode(outputs[0]) ``` ## Configurations The configuration info are in `smash_config.json`. ## Credits & License The license of the smashed model follows the license of the original model. Please check the license of the original model ORIGINAL_REPO_NAME before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi. ## Want to compress other models? - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
mradermacher/Rombo-V3.1-32B-Reasoner-i1-GGUF
mradermacher
2025-02-26T15:11:10Z
11
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "qwen2", "trl", "grpo", "en", "base_model:valoomba/Rombo-V3.1-32B-Reasoner", "base_model:quantized:valoomba/Rombo-V3.1-32B-Reasoner", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-02-26T02:57:59Z
--- base_model: valoomba/Rombo-V3.1-32B-Reasoner language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - grpo --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/valoomba/Rombo-V3.1-32B-Reasoner <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Rombo-V3.1-32B-Reasoner-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Rombo-V3.1-32B-Reasoner-i1-GGUF/resolve/main/Rombo-V3.1-32B-Reasoner.i1-IQ1_S.gguf) | i1-IQ1_S | 7.4 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Rombo-V3.1-32B-Reasoner-i1-GGUF/resolve/main/Rombo-V3.1-32B-Reasoner.i1-IQ1_M.gguf) | i1-IQ1_M | 8.0 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Rombo-V3.1-32B-Reasoner-i1-GGUF/resolve/main/Rombo-V3.1-32B-Reasoner.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 9.1 | | | [GGUF](https://huggingface.co/mradermacher/Rombo-V3.1-32B-Reasoner-i1-GGUF/resolve/main/Rombo-V3.1-32B-Reasoner.i1-IQ2_XS.gguf) | i1-IQ2_XS | 10.1 | | | [GGUF](https://huggingface.co/mradermacher/Rombo-V3.1-32B-Reasoner-i1-GGUF/resolve/main/Rombo-V3.1-32B-Reasoner.i1-IQ2_S.gguf) | i1-IQ2_S | 10.5 | | | [GGUF](https://huggingface.co/mradermacher/Rombo-V3.1-32B-Reasoner-i1-GGUF/resolve/main/Rombo-V3.1-32B-Reasoner.i1-IQ2_M.gguf) | i1-IQ2_M | 11.4 | | | [GGUF](https://huggingface.co/mradermacher/Rombo-V3.1-32B-Reasoner-i1-GGUF/resolve/main/Rombo-V3.1-32B-Reasoner.i1-Q2_K_S.gguf) | i1-Q2_K_S | 11.6 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Rombo-V3.1-32B-Reasoner-i1-GGUF/resolve/main/Rombo-V3.1-32B-Reasoner.i1-Q2_K.gguf) | i1-Q2_K | 12.4 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Rombo-V3.1-32B-Reasoner-i1-GGUF/resolve/main/Rombo-V3.1-32B-Reasoner.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 12.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Rombo-V3.1-32B-Reasoner-i1-GGUF/resolve/main/Rombo-V3.1-32B-Reasoner.i1-IQ3_XS.gguf) | i1-IQ3_XS | 13.8 | | | [GGUF](https://huggingface.co/mradermacher/Rombo-V3.1-32B-Reasoner-i1-GGUF/resolve/main/Rombo-V3.1-32B-Reasoner.i1-Q3_K_S.gguf) | i1-Q3_K_S | 14.5 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Rombo-V3.1-32B-Reasoner-i1-GGUF/resolve/main/Rombo-V3.1-32B-Reasoner.i1-IQ3_S.gguf) | i1-IQ3_S | 14.5 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Rombo-V3.1-32B-Reasoner-i1-GGUF/resolve/main/Rombo-V3.1-32B-Reasoner.i1-IQ3_M.gguf) | i1-IQ3_M | 14.9 | | | [GGUF](https://huggingface.co/mradermacher/Rombo-V3.1-32B-Reasoner-i1-GGUF/resolve/main/Rombo-V3.1-32B-Reasoner.i1-Q3_K_M.gguf) | i1-Q3_K_M | 16.0 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Rombo-V3.1-32B-Reasoner-i1-GGUF/resolve/main/Rombo-V3.1-32B-Reasoner.i1-Q3_K_L.gguf) | i1-Q3_K_L | 17.3 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Rombo-V3.1-32B-Reasoner-i1-GGUF/resolve/main/Rombo-V3.1-32B-Reasoner.i1-IQ4_XS.gguf) | i1-IQ4_XS | 17.8 | | | [GGUF](https://huggingface.co/mradermacher/Rombo-V3.1-32B-Reasoner-i1-GGUF/resolve/main/Rombo-V3.1-32B-Reasoner.i1-Q4_0.gguf) | i1-Q4_0 | 18.8 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Rombo-V3.1-32B-Reasoner-i1-GGUF/resolve/main/Rombo-V3.1-32B-Reasoner.i1-Q4_K_S.gguf) | i1-Q4_K_S | 18.9 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Rombo-V3.1-32B-Reasoner-i1-GGUF/resolve/main/Rombo-V3.1-32B-Reasoner.i1-Q4_K_M.gguf) | i1-Q4_K_M | 20.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Rombo-V3.1-32B-Reasoner-i1-GGUF/resolve/main/Rombo-V3.1-32B-Reasoner.i1-Q4_1.gguf) | i1-Q4_1 | 20.7 | | | [GGUF](https://huggingface.co/mradermacher/Rombo-V3.1-32B-Reasoner-i1-GGUF/resolve/main/Rombo-V3.1-32B-Reasoner.i1-Q5_K_S.gguf) | i1-Q5_K_S | 22.7 | | | [GGUF](https://huggingface.co/mradermacher/Rombo-V3.1-32B-Reasoner-i1-GGUF/resolve/main/Rombo-V3.1-32B-Reasoner.i1-Q5_K_M.gguf) | i1-Q5_K_M | 23.4 | | | [GGUF](https://huggingface.co/mradermacher/Rombo-V3.1-32B-Reasoner-i1-GGUF/resolve/main/Rombo-V3.1-32B-Reasoner.i1-Q6_K.gguf) | i1-Q6_K | 27.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
kavish218/bt_des_complete_1b_v1
kavish218
2025-02-26T15:10:18Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-26T15:09:02Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ADFLYSD/NAVEEEE
ADFLYSD
2025-02-26T15:09:38Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-02-26T15:09:38Z
--- license: apache-2.0 ---
andro-flock/Liberty-LibertyMain-Inpainting
andro-flock
2025-02-26T15:08:43Z
2
0
diffusers
[ "diffusers", "safetensors", "Safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:creativeml-openrail-m", "diffusers:StableDiffusionInpaintPipeline", "region:us" ]
text-to-image
2025-02-25T14:00:28Z
--- library_name: diffusers license: creativeml-openrail-m pipeline_tag: text-to-image tags: - Safetensors - stable-diffusion - stable-diffusion-diffusers - text-to-image --- # Liberty_LibertyMain Inpainting ![Generated Sample](preview.jpeg) ### Description: > <p>This is the version you should be using <strong>for inpainting</strong>:</p><ul><li><p><em>VAE is included in the model.</em></p></li><li><p>Remember de filename <strong>must finish in <em>inpainting</em></strong></p></li><li><p><em>CLIP is fixed.</em></p></li></ul> ### Civitai Page: https://civitai.com/models/6937 You can use this with the [🧨Diffusers library](https://github.com/huggingface/diffusers) ### Diffusers ```py from diffusers import StableDiffusionPipeline import torch model_id = "andro-flock/Liberty-LibertyMain-Inpainting" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "masterpiece, best quality, 1girl, (colorful),(delicate eyes and face), volumatic light, ray tracing, bust shot ,extremely detailed CG unity 8k wallpaper,solo,smile" image = pipe(prompt).images[0] image.save("result.png") ```
daniel40/925d4a6d-bd79-4ba4-853f-77057c934361
daniel40
2025-02-26T15:07:21Z
0
0
peft
[ "peft", "generated_from_trainer", "base_model:DeepMount00/Llama-3-8b-Ita", "base_model:adapter:DeepMount00/Llama-3-8b-Ita", "region:us" ]
null
2025-02-26T15:07:03Z
--- library_name: peft tags: - generated_from_trainer base_model: DeepMount00/Llama-3-8b-Ita model-index: - name: daniel40/925d4a6d-bd79-4ba4-853f-77057c934361 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # daniel40/925d4a6d-bd79-4ba4-853f-77057c934361 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0185 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
cyzcas/ppo-Huggy
cyzcas
2025-02-26T15:04:24Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2025-02-26T15:04:19Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐢 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: cyzcas/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play πŸ‘€
ButterChicken98/pv_sd2-lora_rank_64_bact_spot
ButterChicken98
2025-02-26T15:02:18Z
0
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "diffusers-training", "lora", "base_model:stabilityai/stable-diffusion-2", "base_model:adapter:stabilityai/stable-diffusion-2", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2025-02-26T12:40:06Z
--- base_model: stabilityai/stable-diffusion-2 library_name: diffusers license: creativeml-openrail-m inference: true tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - diffusers-training - lora --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # LoRA text2image fine-tuning - ButterChicken98/pv_sd2-lora_rank_64_bact_spot These are LoRA adaption weights for stabilityai/stable-diffusion-2. The weights were fine-tuned on the ButterChicken98/controlnet_canny_segmented_tomato_Tomato_Bacterial_spot dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
TranVanMinh/dummy-model
TranVanMinh
2025-02-26T15:00:47Z
0
0
transformers
[ "transformers", "safetensors", "camembert", "fill-mask", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2025-02-26T14:33:20Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/Llama_3.1_8b_DobHerLeash_R1-i1-GGUF
mradermacher
2025-02-26T15:00:07Z
0
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:Nexesenex/Llama_3.1_8b_DobHerLeashed_R1_v1.0", "base_model:quantized:Nexesenex/Llama_3.1_8b_DobHerLeashed_R1_v1.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-02-26T07:21:18Z
--- base_model: Nexesenex/Llama_3.1_8b_DobHerLeashed_R1_v1.0 language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/Nexesenex/Llama_3.1_8b_DobHerLeashed_R1_v1.0 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerLeash_R1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerLeash_R1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerLeash_R1.i1-IQ1_S.gguf) | i1-IQ1_S | 2.1 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerLeash_R1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerLeash_R1.i1-IQ1_M.gguf) | i1-IQ1_M | 2.3 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerLeash_R1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerLeash_R1.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.5 | | | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerLeash_R1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerLeash_R1.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerLeash_R1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerLeash_R1.i1-IQ2_S.gguf) | i1-IQ2_S | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerLeash_R1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerLeash_R1.i1-IQ2_M.gguf) | i1-IQ2_M | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerLeash_R1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerLeash_R1.i1-Q2_K_S.gguf) | i1-Q2_K_S | 3.1 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerLeash_R1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerLeash_R1.i1-Q2_K.gguf) | i1-Q2_K | 3.3 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerLeash_R1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerLeash_R1.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerLeash_R1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerLeash_R1.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerLeash_R1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerLeash_R1.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerLeash_R1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerLeash_R1.i1-IQ3_S.gguf) | i1-IQ3_S | 3.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerLeash_R1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerLeash_R1.i1-IQ3_M.gguf) | i1-IQ3_M | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerLeash_R1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerLeash_R1.i1-Q3_K_M.gguf) | i1-Q3_K_M | 4.1 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerLeash_R1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerLeash_R1.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.4 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerLeash_R1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerLeash_R1.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerLeash_R1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerLeash_R1.i1-Q4_0.gguf) | i1-Q4_0 | 4.8 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerLeash_R1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerLeash_R1.i1-IQ4_NL.gguf) | i1-IQ4_NL | 4.8 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerLeash_R1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerLeash_R1.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.8 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerLeash_R1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerLeash_R1.i1-Q4_K_M.gguf) | i1-Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerLeash_R1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerLeash_R1.i1-Q4_1.gguf) | i1-Q4_1 | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerLeash_R1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerLeash_R1.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerLeash_R1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerLeash_R1.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama_3.1_8b_DobHerLeash_R1-i1-GGUF/resolve/main/Llama_3.1_8b_DobHerLeash_R1.i1-Q6_K.gguf) | i1-Q6_K | 6.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
TobiGeth/tg_user_443574186_lora_1740581360
TobiGeth
2025-02-26T14:59:38Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-02-26T14:59:37Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: USER_443574186_1740581360 --- # Tg_User_443574186_Lora_1740581360 <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `USER_443574186_1740581360` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('TobiGeth/tg_user_443574186_lora_1740581360', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
JayHyeon/Qwen_0.5-rDPO_3e-6-1ep_0vpo_const_0.1
JayHyeon
2025-02-26T14:57:57Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "trl", "dpo", "conversational", "dataset:trl-lib/ultrafeedback_binarized", "arxiv:2305.18290", "base_model:JayHyeon/Qwen2.5-0.5B-SFT-2e-5-2ep", "base_model:finetune:JayHyeon/Qwen2.5-0.5B-SFT-2e-5-2ep", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-26T12:56:06Z
--- base_model: JayHyeon/Qwen2.5-0.5B-SFT-2e-5-2ep datasets: trl-lib/ultrafeedback_binarized library_name: transformers model_name: Qwen_0.5-rDPO_3e-6-1ep_0vpo_const_0.1 tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for Qwen_0.5-rDPO_3e-6-1ep_0vpo_const_0.1 This model is a fine-tuned version of [JayHyeon/Qwen2.5-0.5B-SFT-2e-5-2ep](https://huggingface.co/JayHyeon/Qwen2.5-0.5B-SFT-2e-5-2ep) on the [trl-lib/ultrafeedback_binarized](https://huggingface.co/datasets/trl-lib/ultrafeedback_binarized) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="JayHyeon/Qwen_0.5-rDPO_3e-6-1ep_0vpo_const_0.1", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/bonin147/huggingface/runs/wdcfvil9) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.16.0.dev0 - Transformers: 4.49.0 - Pytorch: 2.5.1 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin GallouΓ©dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
bootylordoftheroundtable/Q25-1.5B-VeoLu-OwO-fied-Q8_0-GGUF
bootylordoftheroundtable
2025-02-26T14:57:55Z
0
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "base_model:SaisExperiments/Q25-1.5B-VeoLu-OwO-fied", "base_model:quantized:SaisExperiments/Q25-1.5B-VeoLu-OwO-fied", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-26T14:57:43Z
--- license: apache-2.0 base_model: SaisExperiments/Q25-1.5B-VeoLu-OwO-fied tags: - llama-cpp - gguf-my-repo --- # bootylordoftheroundtable/Q25-1.5B-VeoLu-OwO-fied-Q8_0-GGUF This model was converted to GGUF format from [`SaisExperiments/Q25-1.5B-VeoLu-OwO-fied`](https://huggingface.co/SaisExperiments/Q25-1.5B-VeoLu-OwO-fied) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/SaisExperiments/Q25-1.5B-VeoLu-OwO-fied) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo bootylordoftheroundtable/Q25-1.5B-VeoLu-OwO-fied-Q8_0-GGUF --hf-file q25-1.5b-veolu-owo-fied-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo bootylordoftheroundtable/Q25-1.5B-VeoLu-OwO-fied-Q8_0-GGUF --hf-file q25-1.5b-veolu-owo-fied-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo bootylordoftheroundtable/Q25-1.5B-VeoLu-OwO-fied-Q8_0-GGUF --hf-file q25-1.5b-veolu-owo-fied-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo bootylordoftheroundtable/Q25-1.5B-VeoLu-OwO-fied-Q8_0-GGUF --hf-file q25-1.5b-veolu-owo-fied-q8_0.gguf -c 2048 ```
TobiGeth/tg_user_712887841_lora_1740581177
TobiGeth
2025-02-26T14:57:49Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-02-26T14:57:48Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: USER_712887841_1740581177 --- # Tg_User_712887841_Lora_1740581177 <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `USER_712887841_1740581177` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('TobiGeth/tg_user_712887841_lora_1740581177', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
RaviKanur/Phi-3.5-mini-4k-instruct-text2sql
RaviKanur
2025-02-26T14:56:10Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-10-30T14:31:11Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Nofing/qwen2.5-Instruct-1.5B-ere
Nofing
2025-02-26T14:54:54Z
26
0
null
[ "safetensors", "qwen2", "ERE", "text2text-generation", "en", "dataset:Nofing/maven-ere-llm", "base_model:Qwen/Qwen2.5-1.5B-Instruct", "base_model:finetune:Qwen/Qwen2.5-1.5B-Instruct", "license:unknown", "region:us" ]
text2text-generation
2025-02-25T14:52:32Z
--- license: unknown datasets: - Nofing/maven-ere-llm language: - en metrics: - accuracy base_model: - Qwen/Qwen2.5-1.5B-Instruct pipeline_tag: text2text-generation tags: - ERE ---
TobiGeth/tg_user_634033363_lora_1740580924
TobiGeth
2025-02-26T14:53:54Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-02-26T14:53:53Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: USER_634033363_1740580924 --- # Tg_User_634033363_Lora_1740580924 <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `USER_634033363_1740580924` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('TobiGeth/tg_user_634033363_lora_1740580924', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
SaisExperiments/Q25-1.5B-VeoLu-OwO-fied
SaisExperiments
2025-02-26T14:53:54Z
0
0
null
[ "safetensors", "qwen2", "license:apache-2.0", "region:us" ]
null
2025-02-26T14:50:55Z
--- license: apache-2.0 ---
Elcaida/test2
Elcaida
2025-02-26T14:52:44Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-26T14:51:08Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/JAJUKA-WEWILLNEVERFORGETYOU-3B-GGUF
mradermacher
2025-02-26T14:52:25Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:mergekit-community/JAJUKA-WEWILLNEVERFORGETYOU-3B", "base_model:quantized:mergekit-community/JAJUKA-WEWILLNEVERFORGETYOU-3B", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-26T09:59:47Z
--- base_model: mergekit-community/JAJUKA-WEWILLNEVERFORGETYOU-3B language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/mergekit-community/JAJUKA-WEWILLNEVERFORGETYOU-3B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/JAJUKA-WEWILLNEVERFORGETYOU-3B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/JAJUKA-WEWILLNEVERFORGETYOU-3B-GGUF/resolve/main/JAJUKA-WEWILLNEVERFORGETYOU-3B.Q2_K.gguf) | Q2_K | 1.5 | | | [GGUF](https://huggingface.co/mradermacher/JAJUKA-WEWILLNEVERFORGETYOU-3B-GGUF/resolve/main/JAJUKA-WEWILLNEVERFORGETYOU-3B.Q3_K_S.gguf) | Q3_K_S | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/JAJUKA-WEWILLNEVERFORGETYOU-3B-GGUF/resolve/main/JAJUKA-WEWILLNEVERFORGETYOU-3B.Q3_K_M.gguf) | Q3_K_M | 1.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/JAJUKA-WEWILLNEVERFORGETYOU-3B-GGUF/resolve/main/JAJUKA-WEWILLNEVERFORGETYOU-3B.Q3_K_L.gguf) | Q3_K_L | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/JAJUKA-WEWILLNEVERFORGETYOU-3B-GGUF/resolve/main/JAJUKA-WEWILLNEVERFORGETYOU-3B.IQ4_XS.gguf) | IQ4_XS | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/JAJUKA-WEWILLNEVERFORGETYOU-3B-GGUF/resolve/main/JAJUKA-WEWILLNEVERFORGETYOU-3B.Q4_K_S.gguf) | Q4_K_S | 2.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/JAJUKA-WEWILLNEVERFORGETYOU-3B-GGUF/resolve/main/JAJUKA-WEWILLNEVERFORGETYOU-3B.Q4_K_M.gguf) | Q4_K_M | 2.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/JAJUKA-WEWILLNEVERFORGETYOU-3B-GGUF/resolve/main/JAJUKA-WEWILLNEVERFORGETYOU-3B.Q5_K_S.gguf) | Q5_K_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/JAJUKA-WEWILLNEVERFORGETYOU-3B-GGUF/resolve/main/JAJUKA-WEWILLNEVERFORGETYOU-3B.Q5_K_M.gguf) | Q5_K_M | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/JAJUKA-WEWILLNEVERFORGETYOU-3B-GGUF/resolve/main/JAJUKA-WEWILLNEVERFORGETYOU-3B.Q6_K.gguf) | Q6_K | 2.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/JAJUKA-WEWILLNEVERFORGETYOU-3B-GGUF/resolve/main/JAJUKA-WEWILLNEVERFORGETYOU-3B.Q8_0.gguf) | Q8_0 | 3.5 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/JAJUKA-WEWILLNEVERFORGETYOU-3B-GGUF/resolve/main/JAJUKA-WEWILLNEVERFORGETYOU-3B.f16.gguf) | f16 | 6.5 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->