modelId
stringlengths
5
138
author
stringlengths
2
42
last_modified
unknowndate
2020-02-15 11:33:14
2025-04-15 06:29:46
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
426 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
unknowndate
2022-03-02 23:29:04
2025-04-15 06:29:46
card
stringlengths
11
1.01M
Helsinki-NLP/opus-mt-fi-niu
Helsinki-NLP
"2023-08-16T11:35:09Z"
111
0
transformers
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "fi", "niu", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
"2022-03-02T23:29:04Z"
--- tags: - translation license: apache-2.0 --- ### opus-mt-fi-niu * source languages: fi * target languages: niu * OPUS readme: [fi-niu](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-niu/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-niu/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-niu/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-niu/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fi.niu | 35.3 | 0.565 |
HigherMind/PARENTING-Q3_K_L-GGUF
HigherMind
"2025-01-26T16:15:33Z"
116
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "base_model:HigherMind/PARENTING", "base_model:quantized:HigherMind/PARENTING", "endpoints_compatible", "region:us", "conversational" ]
null
"2025-01-26T16:15:04Z"
--- base_model: HigherMind/PARENTING tags: - llama-cpp - gguf-my-repo --- # HigherMind/PARENTING-Q3_K_L-GGUF This model was converted to GGUF format from [`HigherMind/PARENTING`](https://huggingface.co/HigherMind/PARENTING) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/HigherMind/PARENTING) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo HigherMind/PARENTING-Q3_K_L-GGUF --hf-file parenting-q3_k_l.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo HigherMind/PARENTING-Q3_K_L-GGUF --hf-file parenting-q3_k_l.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo HigherMind/PARENTING-Q3_K_L-GGUF --hf-file parenting-q3_k_l.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo HigherMind/PARENTING-Q3_K_L-GGUF --hf-file parenting-q3_k_l.gguf -c 2048 ```
Litzy619/V0402MP2
Litzy619
"2024-04-03T02:48:35Z"
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:microsoft/phi-2", "base_model:finetune:microsoft/phi-2", "license:mit", "region:us" ]
null
"2024-04-03T00:59:31Z"
--- license: mit base_model: microsoft/phi-2 tags: - generated_from_trainer model-index: - name: V0402MP2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # V0402MP2 This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1715 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 20 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.5867 | 0.09 | 10 | 2.4416 | | 2.2588 | 0.18 | 20 | 1.9249 | | 1.7114 | 0.27 | 30 | 1.3589 | | 1.2427 | 0.36 | 40 | 0.9778 | | 0.8962 | 0.45 | 50 | 0.6311 | | 0.5757 | 0.54 | 60 | 0.3253 | | 0.3476 | 0.63 | 70 | 0.2216 | | 0.2674 | 0.73 | 80 | 0.1883 | | 0.2391 | 0.82 | 90 | 0.1766 | | 0.2301 | 0.91 | 100 | 0.1724 | | 0.2267 | 1.0 | 110 | 0.1715 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1
speechbrain/asr-crdnn-commonvoice-14-rw
speechbrain
"2024-02-26T00:04:43Z"
3
0
speechbrain
[ "speechbrain", "automatic-speech-recognition", "CTC", "Attention", "pytorch", "rw", "dataset:common_voice", "arxiv:2106.04624", "license:apache-2.0", "region:us" ]
automatic-speech-recognition
"2023-08-09T21:22:26Z"
--- language: - rw thumbnail: null tags: - automatic-speech-recognition - CTC - Attention - pytorch - speechbrain license: apache-2.0 datasets: - common_voice metrics: - name: Test WER type: wer value: ' 29.22' --- <iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe> <br/><br/> # CRDNN with CTC/Attention trained on CommonVoice 14.0 Kinyarwanda (No LM) This repository provides all the necessary tools to perform automatic speech recognition from an end-to-end system pretrained on CommonVoice (German Language) within SpeechBrain. For a better experience, we encourage you to learn more about [SpeechBrain](https://speechbrain.github.io). The performance of the model is the following: | Release | Test CER | Test WER | GPUs | |:-------------:|:--------------:|:--------------:| :--------:| | 15.08.23 | 10.80 | 29.22 | 1xV100 32GB | ## Pipeline description This ASR system is composed of 2 different but linked blocks: - Tokenizer (unigram) that transforms words into subword units and trained with the train transcriptions (train.tsv) of CommonVoice (rw). - Acoustic model (CRDNN + CTC/Attention). The CRDNN architecture is made of N blocks of convolutional neural networks with normalization and pooling on the frequency domain. Then, a bidirectional LSTM is connected to a final DNN to obtain the final acoustic representation that is given to the CTC and attention decoders. The system is trained with recordings sampled at 16kHz (single channel). The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *transcribe_file* if needed. ## Install SpeechBrain First of all, please install SpeechBrain with the following command: ``` pip install speechbrain ``` Please notice that we encourage you to read our tutorials and learn more about [SpeechBrain](https://speechbrain.github.io). ### Transcribing your own audio files (in Kinyarwanda) ```python from speechbrain.inference.ASR import EncoderDecoderASR asr_model = EncoderDecoderASR.from_hparams(source="speechbrain/asr-crdnn-commonvoice-14-rw", savedir="pretrained_models/asr-crdnn-commonvoice-14-rw") asr_model.transcribe_file("speechbrain/asr-crdnn-commonvoice-14-rw/example_rw.wav") ``` ### Inference on GPU To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method. ## Parallel Inference on a Batch Please, [see this Colab notebook](https://colab.research.google.com/drive/1hX5ZI9S4jHIjahFCZnhwwQmFoGAi3tmu?usp=sharing) to figure out how to transcribe in parallel a batch of input sentences using a pre-trained model. ### Training The model was trained with SpeechBrain (986a2175). To train it from scratch follows these steps: 1. Clone SpeechBrain: ```bash git clone https://github.com/speechbrain/speechbrain/ ``` 2. Install it: ``` cd speechbrain pip install -r requirements.txt pip install -e . ``` 3. Run Training: ``` cd recipes/CommonVoice/ASR/seq2seq python train.py hparams/train_rw.yaml --data_folder=your_data_folder ``` You can find our training results (models, logs, etc) [here](https://www.dropbox.com/sh/i1fv4f8miilqgii/AAB3gE97kmFDA0ISkIDSUW_La?dl=0) ### Limitations The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets. # **About SpeechBrain** - Website: https://speechbrain.github.io/ - Code: https://github.com/speechbrain/speechbrain/ - HuggingFace: https://huggingface.co/speechbrain/ # **Citing SpeechBrain** Please, cite SpeechBrain if you use it for your research or business. ```bibtex @misc{speechbrain, title={{SpeechBrain}: A General-Purpose Speech Toolkit}, author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio}, year={2021}, eprint={2106.04624}, archivePrefix={arXiv}, primaryClass={eess.AS}, note={arXiv:2106.04624} } ```
Procit004/NER
Procit004
"2024-09-10T03:38:39Z"
6
0
null
[ "tensorboard", "safetensors", "bert", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "region:us" ]
null
"2024-09-10T03:38:21Z"
--- base_model: bert-base-cased license: apache-2.0 metrics: - precision - recall - f1 - accuracy tags: - generated_from_trainer model-index: - name: NER results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NER This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0571 - Precision: 0.9540 - Recall: 0.9620 - F1: 0.9580 - Accuracy: 0.9812 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0698 | 1.0 | 4031 | 0.0589 | 0.9537 | 0.9611 | 0.9574 | 0.9804 | | 0.045 | 2.0 | 8062 | 0.0571 | 0.9540 | 0.9620 | 0.9580 | 0.9812 | | 0.0289 | 3.0 | 12093 | 0.0633 | 0.9612 | 0.9597 | 0.9604 | 0.9819 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1
asjoberg/Qwen2-0.5B-Instruct-predli-finetuned-fused16f-simplified-default
asjoberg
"2025-02-10T20:46:42Z"
0
0
mlx
[ "mlx", "safetensors", "qwen2", "chat", "text-generation", "conversational", "en", "base_model:asjoberg/Qwen2-0.5B-Instruct-predli", "base_model:quantized:asjoberg/Qwen2-0.5B-Instruct-predli", "license:apache-2.0", "4-bit", "region:us" ]
text-generation
"2025-02-10T20:45:47Z"
--- license: apache-2.0 language: - en pipeline_tag: text-generation tags: - chat - mlx - mlx base_model: asjoberg/Qwen2-0.5B-Instruct-predli --- # asjoberg/Qwen2-0.5B-Instruct-predli-finetuned-fused16f-simplified-default The Model [asjoberg/Qwen2-0.5B-Instruct-predli-finetuned-fused16f-simplified-default](https://huggingface.co/asjoberg/Qwen2-0.5B-Instruct-predli-finetuned-fused16f-simplified-default) was converted to MLX format from [asjoberg/Qwen2-0.5B-Instruct-predli](https://huggingface.co/asjoberg/Qwen2-0.5B-Instruct-predli) using mlx-lm version **0.21.1**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("asjoberg/Qwen2-0.5B-Instruct-predli-finetuned-fused16f-simplified-default") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
Gausar/roberta-base-ner-demo
Gausar
"2024-04-21T12:25:53Z"
88
0
transformers
[ "transformers", "tensorboard", "safetensors", "roberta", "token-classification", "generated_from_trainer", "mn", "base_model:bayartsogt/mongolian-roberta-base", "base_model:finetune:bayartsogt/mongolian-roberta-base", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
"2024-04-16T16:06:04Z"
--- language: - mn base_model: bayartsogt/mongolian-roberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-base-ner-demo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-ner-demo This model is a fine-tuned version of [bayartsogt/mongolian-roberta-base](https://huggingface.co/bayartsogt/mongolian-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1205 - Precision: 0.9307 - Recall: 0.9389 - F1: 0.9348 - Accuracy: 0.9816 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3889 | 1.0 | 477 | 0.0832 | 0.8808 | 0.8987 | 0.8897 | 0.9743 | | 0.0736 | 2.0 | 954 | 0.0703 | 0.9170 | 0.9226 | 0.9198 | 0.9796 | | 0.0361 | 3.0 | 1431 | 0.0784 | 0.9227 | 0.9321 | 0.9274 | 0.9801 | | 0.0216 | 4.0 | 1908 | 0.0863 | 0.9235 | 0.9328 | 0.9281 | 0.9801 | | 0.0116 | 5.0 | 2385 | 0.0977 | 0.9292 | 0.9371 | 0.9332 | 0.9809 | | 0.007 | 6.0 | 2862 | 0.1071 | 0.9270 | 0.9356 | 0.9313 | 0.9808 | | 0.0046 | 7.0 | 3339 | 0.1123 | 0.9322 | 0.9378 | 0.9350 | 0.9818 | | 0.0029 | 8.0 | 3816 | 0.1179 | 0.9310 | 0.9371 | 0.9340 | 0.9814 | | 0.0021 | 9.0 | 4293 | 0.1187 | 0.9293 | 0.9375 | 0.9334 | 0.9812 | | 0.0013 | 10.0 | 4770 | 0.1205 | 0.9307 | 0.9389 | 0.9348 | 0.9816 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.15.2
MaxP/vit-base-riego
MaxP
"2023-06-05T23:00:08Z"
35
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
"2022-12-30T19:09:08Z"
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - f1 model-index: - name: vit-base-riego results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: MaxP--agro_riego split: test args: MaxP--agro_riego metrics: - name: F1 type: f1 value: 0.37288135593220334 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-riego This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2998 - F1: 0.3729 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1696 | 0.79 | 100 | 1.1385 | 0.352 | | 0.08 | 1.59 | 200 | 0.9071 | 0.3774 | | 0.0928 | 2.38 | 300 | 1.1181 | 0.3454 | | 0.0189 | 3.17 | 400 | 0.8262 | 0.3425 | | 0.0728 | 3.97 | 500 | 0.9647 | 0.3747 | | 0.0756 | 4.76 | 600 | 0.6097 | 0.4776 | | 0.0018 | 5.56 | 700 | 1.3900 | 0.3652 | | 0.002 | 6.35 | 800 | 0.7498 | 0.4606 | | 0.0304 | 7.14 | 900 | 1.4367 | 0.3666 | | 0.0024 | 7.94 | 1000 | 1.5714 | 0.3041 | | 0.0463 | 8.73 | 1100 | 0.8038 | 0.4016 | | 0.0014 | 9.52 | 1200 | 0.7175 | 0.4795 | | 0.0015 | 10.32 | 1300 | 1.0347 | 0.3959 | | 0.0009 | 11.11 | 1400 | 1.3881 | 0.3670 | | 0.0131 | 11.9 | 1500 | 1.0780 | 0.4044 | | 0.0007 | 12.7 | 1600 | 0.9834 | 0.4255 | | 0.0011 | 13.49 | 1700 | 1.0753 | 0.4033 | | 0.0007 | 14.29 | 1800 | 1.1514 | 0.3989 | | 0.0007 | 15.08 | 1900 | 1.2373 | 0.3769 | | 0.0007 | 15.87 | 2000 | 1.2998 | 0.3729 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
OpenFinAL/FINGPT_QA_V4
OpenFinAL
"2025-03-07T16:02:36Z"
0
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-03-07T16:01:46Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/Gemma-The-Writer-J.GutenBerg-10B-GGUF
mradermacher
"2024-10-31T12:53:09Z"
13
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:DavidAU/Gemma-The-Writer-J.GutenBerg-10B", "base_model:quantized:DavidAU/Gemma-The-Writer-J.GutenBerg-10B", "endpoints_compatible", "region:us", "conversational" ]
null
"2024-10-30T14:52:50Z"
--- base_model: DavidAU/Gemma-The-Writer-J.GutenBerg-10B language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/DavidAU/Gemma-The-Writer-J.GutenBerg-10B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Gemma-The-Writer-J.GutenBerg-10B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Gemma-The-Writer-J.GutenBerg-10B-GGUF/resolve/main/Gemma-The-Writer-J.GutenBerg-10B.Q2_K.gguf) | Q2_K | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/Gemma-The-Writer-J.GutenBerg-10B-GGUF/resolve/main/Gemma-The-Writer-J.GutenBerg-10B.Q3_K_S.gguf) | Q3_K_S | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/Gemma-The-Writer-J.GutenBerg-10B-GGUF/resolve/main/Gemma-The-Writer-J.GutenBerg-10B.Q3_K_M.gguf) | Q3_K_M | 5.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Gemma-The-Writer-J.GutenBerg-10B-GGUF/resolve/main/Gemma-The-Writer-J.GutenBerg-10B.Q3_K_L.gguf) | Q3_K_L | 5.6 | | | [GGUF](https://huggingface.co/mradermacher/Gemma-The-Writer-J.GutenBerg-10B-GGUF/resolve/main/Gemma-The-Writer-J.GutenBerg-10B.IQ4_XS.gguf) | IQ4_XS | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Gemma-The-Writer-J.GutenBerg-10B-GGUF/resolve/main/Gemma-The-Writer-J.GutenBerg-10B.Q4_K_S.gguf) | Q4_K_S | 6.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Gemma-The-Writer-J.GutenBerg-10B-GGUF/resolve/main/Gemma-The-Writer-J.GutenBerg-10B.Q4_K_M.gguf) | Q4_K_M | 6.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Gemma-The-Writer-J.GutenBerg-10B-GGUF/resolve/main/Gemma-The-Writer-J.GutenBerg-10B.Q5_K_S.gguf) | Q5_K_S | 7.1 | | | [GGUF](https://huggingface.co/mradermacher/Gemma-The-Writer-J.GutenBerg-10B-GGUF/resolve/main/Gemma-The-Writer-J.GutenBerg-10B.Q5_K_M.gguf) | Q5_K_M | 7.3 | | | [GGUF](https://huggingface.co/mradermacher/Gemma-The-Writer-J.GutenBerg-10B-GGUF/resolve/main/Gemma-The-Writer-J.GutenBerg-10B.Q6_K.gguf) | Q6_K | 8.3 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Gemma-The-Writer-J.GutenBerg-10B-GGUF/resolve/main/Gemma-The-Writer-J.GutenBerg-10B.Q8_0.gguf) | Q8_0 | 10.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Gemma-The-Writer-J.GutenBerg-10B-GGUF/resolve/main/Gemma-The-Writer-J.GutenBerg-10B.f16.gguf) | f16 | 20.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
Xu-Ouyang/pythia-1b-deduped-int8-step2000-GPTQ-wikitext2
Xu-Ouyang
"2024-08-22T07:20:13Z"
76
0
transformers
[ "transformers", "safetensors", "gpt_neox", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "8-bit", "gptq", "region:us" ]
text-generation
"2024-08-22T07:19:11Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
hdve/Qwen-Qwen1.5-1.8B-1718162486
hdve
"2024-06-12T03:23:40Z"
136
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-06-12T03:21:56Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
clop51/merlinite-7b-lab-Q4_K_M-lurn_slurm-Q4_K_M-GGUF
clop51
"2024-06-08T15:42:27Z"
3
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "base_model:clop51/merlinite-7b-lab-Q4_K_M-lurn_slurm", "base_model:quantized:clop51/merlinite-7b-lab-Q4_K_M-lurn_slurm", "endpoints_compatible", "region:us", "conversational" ]
null
"2024-06-08T15:42:13Z"
--- tags: - llama-cpp - gguf-my-repo base_model: clop51/merlinite-7b-lab-Q4_K_M-lurn_slurm --- # clop51/merlinite-7b-lab-Q4_K_M-lurn_slurm-Q4_K_M-GGUF This model was converted to GGUF format from [`clop51/merlinite-7b-lab-Q4_K_M-lurn_slurm`](https://huggingface.co/clop51/merlinite-7b-lab-Q4_K_M-lurn_slurm) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/clop51/merlinite-7b-lab-Q4_K_M-lurn_slurm) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama --hf-repo clop51/merlinite-7b-lab-Q4_K_M-lurn_slurm-Q4_K_M-GGUF --hf-file merlinite-7b-lab-q4_k_m-lurn_slurm-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo clop51/merlinite-7b-lab-Q4_K_M-lurn_slurm-Q4_K_M-GGUF --hf-file merlinite-7b-lab-q4_k_m-lurn_slurm-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./main --hf-repo clop51/merlinite-7b-lab-Q4_K_M-lurn_slurm-Q4_K_M-GGUF --hf-file merlinite-7b-lab-q4_k_m-lurn_slurm-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./server --hf-repo clop51/merlinite-7b-lab-Q4_K_M-lurn_slurm-Q4_K_M-GGUF --hf-file merlinite-7b-lab-q4_k_m-lurn_slurm-q4_k_m.gguf -c 2048 ```
abaddon182/73eb1365-ef6a-4fa0-ab73-c48e33c5ca77
abaddon182
"2025-02-03T04:46:55Z"
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/Llama-3.2-1B-Instruct", "base_model:adapter:unsloth/Llama-3.2-1B-Instruct", "license:llama3.2", "region:us" ]
null
"2025-02-03T04:39:43Z"
--- library_name: peft license: llama3.2 base_model: unsloth/Llama-3.2-1B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 73eb1365-ef6a-4fa0-ab73-c48e33c5ca77 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Llama-3.2-1B-Instruct bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - bcb88f097f9f17ee_train_data.json ds_type: json format: custom path: /workspace/input_data/bcb88f097f9f17ee_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: abaddon182/73eb1365-ef6a-4fa0-ab73-c48e33c5ca77 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/bcb88f097f9f17ee_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 6ef0cd25-bc41-4d69-bb5f-2f9babf6004e wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 6ef0cd25-bc41-4d69-bb5f-2f9babf6004e warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 73eb1365-ef6a-4fa0-ab73-c48e33c5ca77 This model is a fine-tuned version of [unsloth/Llama-3.2-1B-Instruct](https://huggingface.co/unsloth/Llama-3.2-1B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0626 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.6322 | 0.0115 | 1 | 2.8054 | | 1.3356 | 0.5731 | 50 | 1.3403 | | 0.9628 | 1.1461 | 100 | 1.1620 | | 0.7653 | 1.7192 | 150 | 1.0846 | | 1.0221 | 2.2923 | 200 | 1.0626 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
tsfeith/rl_course_vizdoom_health_gathering_supreme
tsfeith
"2024-03-01T16:14:41Z"
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
"2024-03-01T16:14:34Z"
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 12.08 +/- 5.10 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r tsfeith/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
Keithulu/distilgpt2-finetuned-python-stack-clean-answers-e200
Keithulu
"2023-06-26T19:32:53Z"
169
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2023-06-26T19:02:42Z"
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-python-stack-clean-answers-e200 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-python-stack-clean-answers-e200 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0700 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 28 | 3.2510 | | No log | 2.0 | 56 | 3.1681 | | No log | 3.0 | 84 | 3.0891 | | No log | 4.0 | 112 | 3.0233 | | No log | 5.0 | 140 | 2.9563 | | No log | 6.0 | 168 | 2.8967 | | No log | 7.0 | 196 | 2.8380 | | No log | 8.0 | 224 | 2.7777 | | No log | 9.0 | 252 | 2.7218 | | No log | 10.0 | 280 | 2.6671 | | No log | 11.0 | 308 | 2.6158 | | No log | 12.0 | 336 | 2.5594 | | No log | 13.0 | 364 | 2.5105 | | No log | 14.0 | 392 | 2.4551 | | No log | 15.0 | 420 | 2.4029 | | No log | 16.0 | 448 | 2.3500 | | No log | 17.0 | 476 | 2.2973 | | 3.016 | 18.0 | 504 | 2.2479 | | 3.016 | 19.0 | 532 | 2.1940 | | 3.016 | 20.0 | 560 | 2.1436 | | 3.016 | 21.0 | 588 | 2.0926 | | 3.016 | 22.0 | 616 | 2.0419 | | 3.016 | 23.0 | 644 | 1.9912 | | 3.016 | 24.0 | 672 | 1.9435 | | 3.016 | 25.0 | 700 | 1.8982 | | 3.016 | 26.0 | 728 | 1.8483 | | 3.016 | 27.0 | 756 | 1.7974 | | 3.016 | 28.0 | 784 | 1.7525 | | 3.016 | 29.0 | 812 | 1.7082 | | 3.016 | 30.0 | 840 | 1.6610 | | 3.016 | 31.0 | 868 | 1.6108 | | 3.016 | 32.0 | 896 | 1.5655 | | 3.016 | 33.0 | 924 | 1.5193 | | 3.016 | 34.0 | 952 | 1.4757 | | 3.016 | 35.0 | 980 | 1.4342 | | 2.2411 | 36.0 | 1008 | 1.3863 | | 2.2411 | 37.0 | 1036 | 1.3433 | | 2.2411 | 38.0 | 1064 | 1.3095 | | 2.2411 | 39.0 | 1092 | 1.2757 | | 2.2411 | 40.0 | 1120 | 1.2278 | | 2.2411 | 41.0 | 1148 | 1.1887 | | 2.2411 | 42.0 | 1176 | 1.1481 | | 2.2411 | 43.0 | 1204 | 1.1193 | | 2.2411 | 44.0 | 1232 | 1.0711 | | 2.2411 | 45.0 | 1260 | 1.0332 | | 2.2411 | 46.0 | 1288 | 1.0062 | | 2.2411 | 47.0 | 1316 | 0.9696 | | 2.2411 | 48.0 | 1344 | 0.9358 | | 2.2411 | 49.0 | 1372 | 0.9109 | | 2.2411 | 50.0 | 1400 | 0.8690 | | 2.2411 | 51.0 | 1428 | 0.8420 | | 2.2411 | 52.0 | 1456 | 0.8111 | | 2.2411 | 53.0 | 1484 | 0.7848 | | 1.5799 | 54.0 | 1512 | 0.7596 | | 1.5799 | 55.0 | 1540 | 0.7361 | | 1.5799 | 56.0 | 1568 | 0.7081 | | 1.5799 | 57.0 | 1596 | 0.6818 | | 1.5799 | 58.0 | 1624 | 0.6601 | | 1.5799 | 59.0 | 1652 | 0.6351 | | 1.5799 | 60.0 | 1680 | 0.6145 | | 1.5799 | 61.0 | 1708 | 0.5926 | | 1.5799 | 62.0 | 1736 | 0.5711 | | 1.5799 | 63.0 | 1764 | 0.5492 | | 1.5799 | 64.0 | 1792 | 0.5251 | | 1.5799 | 65.0 | 1820 | 0.5114 | | 1.5799 | 66.0 | 1848 | 0.4946 | | 1.5799 | 67.0 | 1876 | 0.4758 | | 1.5799 | 68.0 | 1904 | 0.4628 | | 1.5799 | 69.0 | 1932 | 0.4435 | | 1.5799 | 70.0 | 1960 | 0.4325 | | 1.5799 | 71.0 | 1988 | 0.4168 | | 1.0863 | 72.0 | 2016 | 0.4025 | | 1.0863 | 73.0 | 2044 | 0.3904 | | 1.0863 | 74.0 | 2072 | 0.3731 | | 1.0863 | 75.0 | 2100 | 0.3606 | | 1.0863 | 76.0 | 2128 | 0.3451 | | 1.0863 | 77.0 | 2156 | 0.3387 | | 1.0863 | 78.0 | 2184 | 0.3277 | | 1.0863 | 79.0 | 2212 | 0.3160 | | 1.0863 | 80.0 | 2240 | 0.3108 | | 1.0863 | 81.0 | 2268 | 0.2980 | | 1.0863 | 82.0 | 2296 | 0.2897 | | 1.0863 | 83.0 | 2324 | 0.2814 | | 1.0863 | 84.0 | 2352 | 0.2715 | | 1.0863 | 85.0 | 2380 | 0.2607 | | 1.0863 | 86.0 | 2408 | 0.2521 | | 1.0863 | 87.0 | 2436 | 0.2482 | | 1.0863 | 88.0 | 2464 | 0.2386 | | 1.0863 | 89.0 | 2492 | 0.2347 | | 0.7543 | 90.0 | 2520 | 0.2231 | | 0.7543 | 91.0 | 2548 | 0.2205 | | 0.7543 | 92.0 | 2576 | 0.2135 | | 0.7543 | 93.0 | 2604 | 0.2081 | | 0.7543 | 94.0 | 2632 | 0.2018 | | 0.7543 | 95.0 | 2660 | 0.1956 | | 0.7543 | 96.0 | 2688 | 0.1910 | | 0.7543 | 97.0 | 2716 | 0.1855 | | 0.7543 | 98.0 | 2744 | 0.1806 | | 0.7543 | 99.0 | 2772 | 0.1768 | | 0.7543 | 100.0 | 2800 | 0.1715 | | 0.7543 | 101.0 | 2828 | 0.1687 | | 0.7543 | 102.0 | 2856 | 0.1649 | | 0.7543 | 103.0 | 2884 | 0.1629 | | 0.7543 | 104.0 | 2912 | 0.1570 | | 0.7543 | 105.0 | 2940 | 0.1563 | | 0.7543 | 106.0 | 2968 | 0.1502 | | 0.7543 | 107.0 | 2996 | 0.1486 | | 0.5478 | 108.0 | 3024 | 0.1443 | | 0.5478 | 109.0 | 3052 | 0.1408 | | 0.5478 | 110.0 | 3080 | 0.1389 | | 0.5478 | 111.0 | 3108 | 0.1366 | | 0.5478 | 112.0 | 3136 | 0.1338 | | 0.5478 | 113.0 | 3164 | 0.1304 | | 0.5478 | 114.0 | 3192 | 0.1290 | | 0.5478 | 115.0 | 3220 | 0.1264 | | 0.5478 | 116.0 | 3248 | 0.1234 | | 0.5478 | 117.0 | 3276 | 0.1212 | | 0.5478 | 118.0 | 3304 | 0.1197 | | 0.5478 | 119.0 | 3332 | 0.1185 | | 0.5478 | 120.0 | 3360 | 0.1159 | | 0.5478 | 121.0 | 3388 | 0.1130 | | 0.5478 | 122.0 | 3416 | 0.1125 | | 0.5478 | 123.0 | 3444 | 0.1106 | | 0.5478 | 124.0 | 3472 | 0.1087 | | 0.4258 | 125.0 | 3500 | 0.1077 | | 0.4258 | 126.0 | 3528 | 0.1068 | | 0.4258 | 127.0 | 3556 | 0.1048 | | 0.4258 | 128.0 | 3584 | 0.1039 | | 0.4258 | 129.0 | 3612 | 0.1022 | | 0.4258 | 130.0 | 3640 | 0.1002 | | 0.4258 | 131.0 | 3668 | 0.0987 | | 0.4258 | 132.0 | 3696 | 0.0980 | | 0.4258 | 133.0 | 3724 | 0.0973 | | 0.4258 | 134.0 | 3752 | 0.0955 | | 0.4258 | 135.0 | 3780 | 0.0951 | | 0.4258 | 136.0 | 3808 | 0.0937 | | 0.4258 | 137.0 | 3836 | 0.0932 | | 0.4258 | 138.0 | 3864 | 0.0920 | | 0.4258 | 139.0 | 3892 | 0.0908 | | 0.4258 | 140.0 | 3920 | 0.0903 | | 0.4258 | 141.0 | 3948 | 0.0889 | | 0.4258 | 142.0 | 3976 | 0.0883 | | 0.3496 | 143.0 | 4004 | 0.0879 | | 0.3496 | 144.0 | 4032 | 0.0872 | | 0.3496 | 145.0 | 4060 | 0.0865 | | 0.3496 | 146.0 | 4088 | 0.0852 | | 0.3496 | 147.0 | 4116 | 0.0849 | | 0.3496 | 148.0 | 4144 | 0.0843 | | 0.3496 | 149.0 | 4172 | 0.0836 | | 0.3496 | 150.0 | 4200 | 0.0832 | | 0.3496 | 151.0 | 4228 | 0.0822 | | 0.3496 | 152.0 | 4256 | 0.0817 | | 0.3496 | 153.0 | 4284 | 0.0813 | | 0.3496 | 154.0 | 4312 | 0.0805 | | 0.3496 | 155.0 | 4340 | 0.0799 | | 0.3496 | 156.0 | 4368 | 0.0796 | | 0.3496 | 157.0 | 4396 | 0.0789 | | 0.3496 | 158.0 | 4424 | 0.0784 | | 0.3496 | 159.0 | 4452 | 0.0781 | | 0.3496 | 160.0 | 4480 | 0.0777 | | 0.3045 | 161.0 | 4508 | 0.0776 | | 0.3045 | 162.0 | 4536 | 0.0771 | | 0.3045 | 163.0 | 4564 | 0.0762 | | 0.3045 | 164.0 | 4592 | 0.0762 | | 0.3045 | 165.0 | 4620 | 0.0763 | | 0.3045 | 166.0 | 4648 | 0.0758 | | 0.3045 | 167.0 | 4676 | 0.0754 | | 0.3045 | 168.0 | 4704 | 0.0750 | | 0.3045 | 169.0 | 4732 | 0.0748 | | 0.3045 | 170.0 | 4760 | 0.0746 | | 0.3045 | 171.0 | 4788 | 0.0742 | | 0.3045 | 172.0 | 4816 | 0.0740 | | 0.3045 | 173.0 | 4844 | 0.0735 | | 0.3045 | 174.0 | 4872 | 0.0735 | | 0.3045 | 175.0 | 4900 | 0.0732 | | 0.3045 | 176.0 | 4928 | 0.0728 | | 0.3045 | 177.0 | 4956 | 0.0724 | | 0.3045 | 178.0 | 4984 | 0.0723 | | 0.2786 | 179.0 | 5012 | 0.0721 | | 0.2786 | 180.0 | 5040 | 0.0719 | | 0.2786 | 181.0 | 5068 | 0.0717 | | 0.2786 | 182.0 | 5096 | 0.0715 | | 0.2786 | 183.0 | 5124 | 0.0714 | | 0.2786 | 184.0 | 5152 | 0.0713 | | 0.2786 | 185.0 | 5180 | 0.0712 | | 0.2786 | 186.0 | 5208 | 0.0710 | | 0.2786 | 187.0 | 5236 | 0.0707 | | 0.2786 | 188.0 | 5264 | 0.0705 | | 0.2786 | 189.0 | 5292 | 0.0704 | | 0.2786 | 190.0 | 5320 | 0.0704 | | 0.2786 | 191.0 | 5348 | 0.0704 | | 0.2786 | 192.0 | 5376 | 0.0702 | | 0.2786 | 193.0 | 5404 | 0.0703 | | 0.2786 | 194.0 | 5432 | 0.0702 | | 0.2786 | 195.0 | 5460 | 0.0702 | | 0.2786 | 196.0 | 5488 | 0.0701 | | 0.2633 | 197.0 | 5516 | 0.0701 | | 0.2633 | 198.0 | 5544 | 0.0701 | | 0.2633 | 199.0 | 5572 | 0.0700 | | 0.2633 | 200.0 | 5600 | 0.0700 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
innat/videoswin
innat
"2024-07-06T20:00:42Z"
0
2
tf-keras
[ "tf-keras", "videoswin", "vision", "video-classification", "arxiv:2106.13230", "arxiv:2103.14030", "license:mit", "region:us" ]
video-classification
"2023-10-14T13:09:51Z"
--- library_name: tf-keras license: mit metrics: - accuracy pipeline_tag: video-classification tags: - videoswin - vision --- # [Video Swin Transformer : VideoSwin](https://github.com/innat/VideoSwin) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/622dcfbee27c88667db09411/RYHUktzy8caODUOTrZ4LU.png) | Paper | Colab | HF Space | HF Hub | | :--: | :--: | :---: | :---: | | [![arXiv](https://img.shields.io/badge/arXiv-2106.13230-darkred)](https://arxiv.org/abs/2106.13230) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1Q7A700MEI10UomikqjQJANWyFZktJCT-?usp=sharing) | [![HugginFace badge](https://img.shields.io/badge/🤗%20Hugging%20Face-Spaces-yellow.svg)](https://huggingface.co/spaces/innat/VideoSwin) | [![HugginFace badge](https://img.shields.io/badge/🤗%20Hugging%20Face-Hub-yellow.svg)](https://huggingface.co/innat/videoswin) | VideoSwin is a pure transformer based video modeling algorithm, attained top accuracy on the major video recognition benchmarks. In this model, the author advocates an inductive bias of locality in video transformers, which leads to a better speed-accuracy trade-off compared to previous approaches which compute self-attention globally even with spatial-temporal factorization. The locality of the proposed video architecture is realized by adapting the [**Swin Transformer**](https://arxiv.org/abs/2103.14030) designed for the image domain, while continuing to leverage the power of pre-trained image models. - GitHub: https://github.com/innat/VideoSwin This is a unofficial `Keras` implementation of [Video Swin transformers](https://arxiv.org/abs/2106.13230). The official `PyTorch` implementation is [here](https://github.com/SwinTransformer/Video-Swin-Transformer) based on [mmaction2](https://github.com/open-mmlab/mmaction2). ## Model Zoo The 3D swin-video checkpoints are listed in [`MODEL_ZOO.md`](https://github.com/innat/VideoSwin/blob/main/MODEL_ZOO.md). Following are some hightlights. ### Kinetics 400 In the training phase, the video swin mdoels are initialized with the pretrained weights of image swin models. In that case, `IN` referes to **ImageNet**. | Backbone | Pretrain | Top-1 | Top-5 | #params | FLOPs | config | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Swin-T | IN-1K | 78.8 | 93.6 | 28M | ? | [swin-t](https://github.com/SwinTransformer/Video-Swin-Transformer/blob/master/configs/recognition/swin/swin_tiny_patch244_window877_kinetics400_1k.py) | | Swin-S | IN-1K | 80.6 | 94.5 | 50M | ? | [swin-s](https://github.com/SwinTransformer/Video-Swin-Transformer/blob/master/configs/recognition/swin/swin_small_patch244_window877_kinetics400_1k.py) | | Swin-B | IN-1K | 80.6 | 94.6 | 88M | ? | [swin-b](https://github.com/SwinTransformer/Video-Swin-Transformer/blob/master/configs/recognition/swin/swin_base_patch244_window877_kinetics400_1k.py) | | Swin-B | IN-22K | 82.7 | 95.5 | 88M | ? | [swin-b](https://github.com/SwinTransformer/Video-Swin-Transformer/blob/master/configs/recognition/swin/swin_base_patch244_window877_kinetics400_22k.py) | ### Kinetics 600 | Backbone | Pretrain | Top-1 | Top-5 | #params | FLOPs | config | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Swin-B | IN-22K | 84.0 | 96.5 | 88M | ? | [swin-b](https://github.com/SwinTransformer/Video-Swin-Transformer/blob/master/configs/recognition/swin/swin_base_patch244_window877_kinetics600_22k.py) | ### Something-Something V2 | Backbone | Pretrain | Top-1 | Top-5 | #params | FLOPs | config | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Swin-B | Kinetics 400 | 69.6 | 92.7 | 89M | ? | [swin-b](https://github.com/SwinTransformer/Video-Swin-Transformer/blob/master/configs/recognition/swin/swin_base_patch244_window1677_sthv2.py) |
EE0/kogpt2-base-v2-5-finetuned-klue-ner
EE0
"2023-05-07T12:46:53Z"
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "token-classification", "generated_from_trainer", "dataset:klue", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
token-classification
"2023-05-06T10:39:38Z"
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - klue metrics: - f1 model-index: - name: kogpt2-base-v2-5-finetuned-klue-ner results: - task: name: Token Classification type: token-classification dataset: name: klue type: klue config: ner split: validation args: ner metrics: - name: F1 type: f1 value: 0.5144974226804124 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kogpt2-base-v2-5-finetuned-klue-ner This model is a fine-tuned version of [skt/kogpt2-base-v2](https://huggingface.co/skt/kogpt2-base-v2) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.4425 - F1: 0.5145 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.6215 | 1.0 | 876 | 0.5607 | 0.3318 | | 0.4067 | 2.0 | 1752 | 0.5554 | 0.3609 | | 0.3128 | 3.0 | 2628 | 0.4259 | 0.4569 | | 0.2409 | 4.0 | 3504 | 0.4314 | 0.4894 | | 0.1874 | 5.0 | 4380 | 0.4425 | 0.5145 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
exdysa/mir
exdysa
"2025-04-04T04:44:01Z"
0
0
null
[ "en", "region:us" ]
null
"2024-10-30T01:53:01Z"
--- language: - en --- massive thank you to [@silveroxides](https://huggingface.co/silveroxides) for phenomenal work collecting pristine state dicts and related information # > [!IMPORTANT] > # MIR (Machine Intelligence Resource) MIR is a naming standard, a proposed schema for AIGC/ML work.<br> In its current incarnation, it looks like this: > [!NOTE] > # mir : model . transformer . clip-l : stable-diffusion-xl ``` uri : model . lora . hyper : flux-1 ↑ ↑ ↑ ↑ ↑ mir:[domain].[architecture].[implementation]:[compatibility] ``` The solution is provided as a remedy to patch the fractionalization of modelspec standards between development houses (such as models released independently or indifferently to HF.CO ) and to archive metadata which would otherwise remain incomplete. This work was inspired by the CivitAi [AIR-URN](https://github.com/civitai/civitai/wiki/AIR-%E2%80%90-Uniform-Resource-Names-for-AI) project<br> and by the super-resolution registry code from the [Spandrel](https://github.com/chaiNNer-org/spandrel/blob/main/libs/spandrel/spandrel/__helpers/registry.py) library. ## Goals - Standard identification scheme for **ALL** ML-related development - Simplification of code for model-related logistics - Rapid retrieval of resources and metadata - Efficient and reliable compatability checks - Organized hyperparameter management > <details> <summary>Why not use `diffusion`/`sgm`, `ldm`/`text`/hf.co folder-structure/brand-specific trade word/preprint paper/development house/algorithm</summary> > > - Exact frameworks (SGM/LDM/RectifiedFlow) includes too few > - Diffusion/Transformer are too broad, share and overlap resources > - Multimodal models complicate content terms (Text/Image/Vision/etc) > - HF.CO names do all of this & become inconsistent across folders/files > - Development credit often shared (ex RunwayML with Stable Diffusion) > - Paper heredity would be a neat tree, but it complicates retrieval > - Algorithms (esp application) are less common knowledge, vague, ~~and I'm too smooth-brain.~~ > - Impartiality > </details> > <details><summary>Why `unet`, `dit`, `lora` over alternatives</summary> > > - UNET/DiT/Transformer are shared enough to be genre-ish but not too narrowly specific > - Very similar technical process on this level > - Functional and efficient for random lookups > </details> > <details><summary>Roadmap</summary> > > - Decide on `@` (like @8cfg for an indistinguishable 8 step lora that requires cfg) > -- crucial spec element, or an optional, MIR app-determined feature? > - Proof of concept generative model registry > - Ensure compatability/integration/cross-pollenation with [OECD AI Classifications](https://oecd.ai/en/classification) > - Ensure compatability/integration/cross-pollenation with [NIST AI 200-1 NIST Trustworthy and Responsible AI](https://www.nist.gov/publications/ai-use-taxonomy-human-centered-approach) > </details>
DOFOFFICIAL/NathUI-Tutorial
DOFOFFICIAL
"2025-04-08T06:15:49Z"
1
10
null
[ "safetensors", "torch", "en", "zh", "license:apache-2.0", "region:us" ]
null
"2025-02-17T00:49:25Z"
--- license: apache-2.0 language: - en - zh tags: - torch --- * Latest Update 2025-02-16 * 最新更新时间 2025-02-16 # 1. Introduction 介绍 ### This is a public open-source repository that contains FREE LLM Application Courses lectured in Chinese ### 这是一个公共开源存储库,其中包含以中文讲授的免费的大语言模型应用课程 ### This repository and its contents may be updated weekly, depending on the author's free time and project progress ### 本仓库和内容可能会以周的频率更新,取决于作者的闲暇时间和工程进度 ### All of the source code is OPEN SOURCED on GitHub and models that were trained may be included into this repository ### 所有源代码在 GitHub 上都是开源的,经过训练的模型可能会包含在此存储库中 ### Please refer to the Notion shared document for the password to install the `integration package`. This site is for diversion only ### 本仓库集成了UP的整合包。安装整合包的密码请参考Notion共享文档,本站仅供分流 # 2. Resources 配套资源 ### See GitHub https://github.com/dof-studio/NathUI ### 参考 GitHub https://github.com/dof-studio/NathUI ### See Bilibili https://space.bilibili.com/303266889 ### 参考 Bilibili https://space.bilibili.com/303266889 ### See open notebook https://truthful-busby-322.notion.site/NathMath-LLM-18e45165050a80408586c3f2bf93ce68?pvs=73 ### 参考公开的笔记本 https://truthful-busby-322.notion.site/NathMath-LLM-18e45165050a80408586c3f2bf93ce68?pvs=73 # 3. Terms of Acknowledge 使用条款 * I will open the Hugging Face open source repository from today. All teaching videos and models involved will be uploaded to the open source Hugging Face repository for permanent storage. * From today, I will allow any pirated videos and secondary creations based on my teaching content, as long as the creator does not distort my words and spreads the technology I teach normally. * I advocate the popularization of knowledge and knowledge without payment. All content is open source with Apache 2.0 License, but all products based on my knowledge and code do not provide warranty and guaranteed technical services. * Welcome to star my repository * 本人从今天开启Hugging Face开源仓库,所有的教学视频和涉及到的模型会同步上架开源Hugging Face仓库永久保存。 * 本人从今天起将允许任何盗版视频和基于本人教学内容的二次创作,只要创作者不歪曲我的话语正常传播我教学的技术。 * 本人倡导知识普及和知识不付费,所有的内容以Apache 2.0 许可证开源,但是基于本人知识和代码的所有产品不提供保修和确保的技术服务。 * 欢迎您为我的仓库点亮星星 `DOF Studio (2016 - 2025)/NathMath`
TechxGenus/DeepSeek-V2-Lite-Chat-AWQ
TechxGenus
"2024-07-04T12:50:15Z"
50
2
transformers
[ "transformers", "safetensors", "deepseek_v2", "text-generation", "conversational", "custom_code", "arxiv:2405.04434", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "awq", "region:us" ]
text-generation
"2024-07-04T10:18:39Z"
--- license: other license_name: deepseek license_link: https://github.com/deepseek-ai/DeepSeek-V2/blob/main/LICENSE-MODEL --- <!-- markdownlint-disable first-line-h1 --> <!-- markdownlint-disable html --> <!-- markdownlint-disable no-duplicate-header --> <div align="center"> <img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/logo.svg?raw=true" width="60%" alt="DeepSeek-V2" /> </div> <hr> <div align="center" style="line-height: 1;"> <a href="https://www.deepseek.com/" target="_blank" style="margin: 2px;"> <img alt="Homepage" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/badge.svg?raw=true" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://chat.deepseek.com/" target="_blank" style="margin: 2px;"> <img alt="Chat" src="https://img.shields.io/badge/🤖%20Chat-DeepSeek%20V2-536af5?color=536af5&logoColor=white" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://huggingface.co/deepseek-ai" target="_blank" style="margin: 2px;"> <img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/> </a> </div> <div align="center" style="line-height: 1;"> <a href="https://discord.gg/Tc7c45Zzu5" target="_blank" style="margin: 2px;"> <img alt="Discord" src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/qr.jpeg?raw=true" target="_blank" style="margin: 2px;"> <img alt="Wechat" src="https://img.shields.io/badge/WeChat-DeepSeek%20AI-brightgreen?logo=wechat&logoColor=white" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://twitter.com/deepseek_ai" target="_blank" style="margin: 2px;"> <img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-deepseek_ai-white?logo=x&logoColor=white" style="display: inline-block; vertical-align: middle;"/> </a> </div> <div align="center" style="line-height: 1;"> <a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/LICENSE-CODE" style="margin: 2px;"> <img alt="Code License" src="https://img.shields.io/badge/Code_License-MIT-f5de53?&color=f5de53" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/LICENSE-MODEL" style="margin: 2px;"> <img alt="Model License" src="https://img.shields.io/badge/Model_License-Model_Agreement-f5de53?&color=f5de53" style="display: inline-block; vertical-align: middle;"/> </a> </div> <p align="center"> <a href="#2-model-downloads">Model Download</a> | <a href="#3-evaluation-results">Evaluation Results</a> | <a href="#4-model-architecture">Model Architecture</a> | <a href="#6-api-platform">API Platform</a> | <a href="#8-license">License</a> | <a href="#9-citation">Citation</a> </p> <p align="center"> <a href="https://arxiv.org/abs/2405.04434"><b>Paper Link</b>👁️</a> </p> AWQ quantized version of DeepSeek-V2-Lite-Chat model. --- # DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model ## 1. Introduction Last week, the release and buzz around DeepSeek-V2 have ignited widespread interest in MLA (Multi-head Latent Attention)! Many in the community suggested open-sourcing a smaller MoE model for in-depth research. And now DeepSeek-V2-Lite comes out: - 16B total params, 2.4B active params, scratch training with 5.7T tokens - Outperforms 7B dense and 16B MoE on many English & Chinese benchmarks - Deployable on single 40G GPU, fine-tunable on 8x80G GPUs DeepSeek-V2, a strong Mixture-of-Experts (MoE) language model characterized by economical training and efficient inference. DeepSeek-V2 adopts innovative architectures including Multi-head Latent Attention (MLA) and DeepSeekMoE. MLA guarantees efficient inference through significantly compressing the Key-Value (KV) cache into a latent vector, while DeepSeekMoE enables training strong models at an economical cost through sparse computation. ## 2. News - 2024.05.16: We released the DeepSeek-V2-Lite. - 2024.05.06: We released the DeepSeek-V2. ## 3. Model Downloads With DeepSeek-V2, we are open-sourcing base and chat models across two sizes: <div align="center"> | **Model** | **#Total Params** | **#Activated Params** | **Context Length** | **Download** | | :------------: | :------------: | :------------: | :------------: | :------------: | | DeepSeek-V2-Lite | 16B | 2.4B | 32k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite) | | DeepSeek-V2-Lite-Chat (SFT) | 16B | 2.4B | 32k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite-Chat) | | DeepSeek-V2 | 236B | 21B | 128k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-V2) | | DeepSeek-V2-Chat (RL) | 236B | 21B | 128k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-V2-Chat) | </div> Due to the constraints of HuggingFace, the open-source code currently experiences slower performance than our internal codebase when running on GPUs with Huggingface. To facilitate the efficient execution of our model, we offer a dedicated vllm solution that optimizes performance for running our model effectively. ## 4. Evaluation Results ### Base Model #### Standard Benchmark <div align="center"> | **Benchmark** | **Domain** | **DeepSeek 7B (Dense)** | **DeepSeekMoE 16B** | **DeepSeek-V2-Lite (MoE-16B)** | |:-------------:|:----------:|:--------------:|:-----------------:|:--------------------------:| | **Architecture** | - | MHA+Dense | MHA+MoE | MLA+MoE | | **MMLU** | English | 48.2 | 45.0 | 58.3 | | **BBH** | English | 39.5 | 38.9 | 44.1 | | **C-Eval** | Chinese | 45.0 | 40.6 | 60.3 | | **CMMLU** | Chinese | 47.2 | 42.5 | 64.3 | | **HumanEval** | Code | 26.2 | 26.8 | 29.9 | | **MBPP** | Code | 39.0 | 39.2 | 43.2 | | **GSM8K** | Math | 17.4 | 18.8 | 41.1 | | **Math** | Math | 3.3 | 4.3 | 17.1 | </div> For more evaluation details, such as few-shot settings and prompts, please check our paper. ### Chat Model #### Standard Benchmark <div align="center"> | Benchmark | Domain | DeepSeek 7B Chat (SFT) | DeepSeekMoE 16B Chat (SFT) | DeepSeek-V2-Lite 16B Chat (SFT) | |:-----------:|:----------------:|:------------------:|:---------------:|:---------------------:| | **MMLU** | English | 49.7 | 47.2 | 55.7 | | **BBH** | English | 43.1 | 42.2 | 48.1 | | **C-Eval** | Chinese | 44.7 | 40.0 | 60.1 | | **CMMLU** | Chinese | 51.2 | 49.3 | 62.5 | | **HumanEval** | Code | 45.1 | 45.7 | 57.3 | | **MBPP** | Code | 39.0 | 46.2 | 45.8 | | **GSM8K** | Math | 62.6 | 62.2 | 72.0 | | **Math** | Math | 14.7 | 15.2 | 27.9 | </div> ## 5. Model Architecture DeepSeek-V2 adopts innovative architectures to guarantee economical training and efficient inference: - For attention, we design MLA (Multi-head Latent Attention), which utilizes low-rank key-value union compression to eliminate the bottleneck of inference-time key-value cache, thus supporting efficient inference. - For Feed-Forward Networks (FFNs), we adopt DeepSeekMoE architecture, a high-performance MoE architecture that enables training stronger models at lower costs. <p align="center"> <img width="90%" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/architecture.png?raw=true" /> </p> DeepSeek-V2-Lite has 27 layers and a hidden dimension of 2048. It also employs MLA and has 16 attention heads, where each head has a dimension of 128. Its KV compression dimension is 512, but slightly different from DeepSeek-V2, it does not compress the queries. For the decoupled queries and key, it has a per-head dimension of 64. DeepSeek-V2-Lite also employs DeepSeekMoE, and all FFNs except for the first layer are replaced with MoE layers. Each MoE layer consists of 2 shared experts and 64 routed experts, where the intermediate hidden dimension of each expert is 1408. Among the routed experts, 6 experts will be activated for each token. Under this configuration, DeepSeek-V2-Lite comprises 15.7B total parameters, of which 2.4B are activated for each token. ## 6. Training Details DeepSeek-V2-Lite is also trained from scratch on the same pre-training corpus of DeepSeek-V2, which is not polluted by any SFT data. It uses the AdamW optimizer with hyper-parameters set to $\beta_1=0.9$, $\beta_2=0.95$, and $\mathrm{weight_decay}=0.1$. The learning rate is scheduled using a warmup-and-step-decay strategy. Initially, the learning rate linearly increases from 0 to the maximum value during the first 2K steps. Subsequently, the learning rate is multiplied by 0.316 after training about 80% of tokens, and again by 0.316 after training about 90% of tokens. The maximum learning rate is set to $4.2 \times 10^{-4}$, and the gradient clipping norm is set to 1.0. We do not employ the batch size scheduling strategy for it, and it is trained with a constant batch size of 4608 sequences. During pre-training, we set the maximum sequence length to 4K, and train DeepSeek-V2-Lite on 5.7T tokens. We leverage pipeline parallelism to deploy different layers of it on different devices, but for each layer, all experts will be deployed on the same device. Therefore, we only employ a small expert-level balance loss with $\alpha_{1}=0.001$, and do not employ device-level balance loss and communication balance loss for it. After pre-training, we also perform long-context extension, SFT for DeepSeek-V2-Lite and get a chat model called DeepSeek-V2-Lite Chat. ## 7. How to run locally **To utilize DeepSeek-V2-Lite in BF16 format for inference, 40GB*1 GPU is required.** ### Inference with Huggingface's Transformers You can directly employ [Huggingface's Transformers](https://github.com/huggingface/transformers) for model inference. #### Text Completion ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig model_name = "deepseek-ai/DeepSeek-V2-Lite" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.bfloat16).cuda() model.generation_config = GenerationConfig.from_pretrained(model_name) model.generation_config.pad_token_id = model.generation_config.eos_token_id text = "An attention function can be described as mapping a query and a set of key-value pairs to an output, where the query, keys, values, and output are all vectors. The output is" inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs.to(model.device), max_new_tokens=100) result = tokenizer.decode(outputs[0], skip_special_tokens=True) print(result) ``` #### Chat Completion ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig model_name = "deepseek-ai/DeepSeek-V2-Lite-Chat" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.bfloat16).cuda() model.generation_config = GenerationConfig.from_pretrained(model_name) model.generation_config.pad_token_id = model.generation_config.eos_token_id messages = [ {"role": "user", "content": "Write a piece of quicksort code in C++"} ] input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt") outputs = model.generate(input_tensor.to(model.device), max_new_tokens=100) result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True) print(result) ``` The complete chat template can be found within `tokenizer_config.json` located in the huggingface model repository. An example of chat template is as belows: ```bash <|begin▁of▁sentence|>User: {user_message_1} Assistant: {assistant_message_1}<|end▁of▁sentence|>User: {user_message_2} Assistant: ``` You can also add an optional system message: ```bash <|begin▁of▁sentence|>{system_message} User: {user_message_1} Assistant: {assistant_message_1}<|end▁of▁sentence|>User: {user_message_2} Assistant: ``` ### Inference with vLLM (recommended) To utilize [vLLM](https://github.com/vllm-project/vllm) for model inference, please merge this Pull Request into your vLLM codebase: https://github.com/vllm-project/vllm/pull/4650. ```python from transformers import AutoTokenizer from vllm import LLM, SamplingParams max_model_len, tp_size = 8192, 1 model_name = "deepseek-ai/DeepSeek-V2-Lite-Chat" tokenizer = AutoTokenizer.from_pretrained(model_name) llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True, enforce_eager=True) sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id]) messages_list = [ [{"role": "user", "content": "Who are you?"}], [{"role": "user", "content": "Translate the following content into Chinese directly: DeepSeek-V2 adopts innovative architectures to guarantee economical training and efficient inference."}], [{"role": "user", "content": "Write a piece of quicksort code in C++."}], ] prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list] outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params) generated_text = [output.outputs[0].text for output in outputs] print(generated_text) ``` ### LangChain Support Since our API is compatible with OpenAI, you can easily use it in [langchain](https://www.langchain.com/). Here is an example: ``` from langchain_openai import ChatOpenAI llm = ChatOpenAI( model='deepseek-chat', openai_api_key=<your-deepseek-api-key>, openai_api_base='https://api.deepseek.com/v1', temperature=0.85, max_tokens=8000) ``` ## 8. License This code repository is licensed under [the MIT License](LICENSE-CODE). The use of DeepSeek-V2 Base/Chat models is subject to [the Model License](LICENSE-MODEL). DeepSeek-V2 series (including Base and Chat) supports commercial use. ## 9. Citation ``` @misc{deepseekv2, title={DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model}, author={DeepSeek-AI}, year={2024}, eprint={2405.04434}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ## 10. Contact If you have any questions, please raise an issue or contact us at [[email protected]]([email protected]).
linh5nb/Llama-2-7b-chat-luat-hon-nhan-1-Q4_K_M-GGUF
linh5nb
"2024-05-22T10:00:14Z"
2
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "endpoints_compatible", "region:us" ]
null
"2024-05-22T10:00:03Z"
--- tags: - llama-cpp - gguf-my-repo --- # linh5nb/Llama-2-7b-chat-luat-hon-nhan-1-Q4_K_M-GGUF This model was converted to GGUF format from [`linh5nb/Llama-2-7b-chat-luat-hon-nhan-1`](https://huggingface.co/linh5nb/Llama-2-7b-chat-luat-hon-nhan-1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/linh5nb/Llama-2-7b-chat-luat-hon-nhan-1) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo linh5nb/Llama-2-7b-chat-luat-hon-nhan-1-Q4_K_M-GGUF --model llama-2-7b-chat-luat-hon-nhan-1.Q4_K_M.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo linh5nb/Llama-2-7b-chat-luat-hon-nhan-1-Q4_K_M-GGUF --model llama-2-7b-chat-luat-hon-nhan-1.Q4_K_M.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m llama-2-7b-chat-luat-hon-nhan-1.Q4_K_M.gguf -n 128 ```
qgallouedec/tqc-PandaPush-v1-2045464771
qgallouedec
"2023-02-27T16:00:31Z"
0
0
stable-baselines3
[ "stable-baselines3", "PandaPush-v1", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
"2023-02-27T15:59:32Z"
--- library_name: stable-baselines3 tags: - PandaPush-v1 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: TQC results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaPush-v1 type: PandaPush-v1 metrics: - type: mean_reward value: -10.80 +/- 12.54 name: mean_reward verified: false --- # **TQC** Agent playing **PandaPush-v1** This is a trained model of a **TQC** agent playing **PandaPush-v1** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo tqc --env PandaPush-v1 -orga qgallouedec -f logs/ python -m rl_zoo3.enjoy --algo tqc --env PandaPush-v1 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo tqc --env PandaPush-v1 -orga qgallouedec -f logs/ python -m rl_zoo3.enjoy --algo tqc --env PandaPush-v1 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo tqc --env PandaPush-v1 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo tqc --env PandaPush-v1 -f logs/ -orga qgallouedec ``` ## Hyperparameters ```python OrderedDict([('batch_size', 2048), ('buffer_size', 1000000), ('env_wrapper', 'sb3_contrib.common.wrappers.TimeFeatureWrapper'), ('gamma', 0.95), ('learning_rate', 0.001), ('n_timesteps', 1000000.0), ('policy', 'MultiInputPolicy'), ('policy_kwargs', 'dict(net_arch=[512, 512, 512], n_critics=2)'), ('replay_buffer_class', 'HerReplayBuffer'), ('replay_buffer_kwargs', "dict( online_sampling=True, goal_selection_strategy='future', " 'n_sampled_goal=4, )'), ('tau', 0.05), ('normalize', False)]) ``` # Environment Arguments ```python {'render': True} ```
lesso09/730efed3-2a9e-4cce-be20-4154e1688185
lesso09
"2025-01-14T00:57:54Z"
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer", "base_model:adapter:NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer", "license:other", "8-bit", "bitsandbytes", "region:us" ]
null
"2025-01-14T00:53:13Z"
--- library_name: peft license: other base_model: NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer tags: - axolotl - generated_from_trainer model-index: - name: 730efed3-2a9e-4cce-be20-4154e1688185 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer bf16: true chat_template: llama3 datasets: - data_files: - 1fcb0786201ac631_train_data.json ds_type: json format: custom path: /workspace/input_data/1fcb0786201ac631_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso09/730efed3-2a9e-4cce-be20-4154e1688185 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/1fcb0786201ac631_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 1988ed86-b714-427b-ab63-39d2c964de43 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 1988ed86-b714-427b-ab63-39d2c964de43 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 730efed3-2a9e-4cce-be20-4154e1688185 This model is a fine-tuned version of [NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer](https://huggingface.co/NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1084 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.2926 | 0.0020 | 1 | 1.3662 | | 1.2258 | 0.0100 | 5 | 1.3460 | | 1.135 | 0.0201 | 10 | 1.2448 | | 1.3224 | 0.0301 | 15 | 1.1625 | | 1.1253 | 0.0402 | 20 | 1.1188 | | 0.9534 | 0.0502 | 25 | 1.1084 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
VIRAL-Video-intimo-de-MC-Mirella-e-marido/Video.intimo.vazado.da.MC.Mirella.e.Dynho.Alves.vaza.na.internet
VIRAL-Video-intimo-de-MC-Mirella-e-marido
"2025-04-13T04:18:09Z"
0
0
null
[ "region:us" ]
null
"2025-04-13T04:17:52Z"
<animated-image data-catalyst=""><a href="https://tinyurl.com/5n6bjbnr?news-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
espnet/amuse_soundstream16k
espnet
"2024-06-20T07:02:39Z"
6
0
espnet
[ "espnet", "audio", "codec", "multilingual", "dataset:amuse", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
"2024-06-19T16:54:50Z"
--- tags: - espnet - audio - codec language: multilingual datasets: - amuse license: cc-by-4.0 --- ## ESPnet2 Codec model ### `espnet/amuse_soundstream16k` This model was trained by ftshijt using amuse recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) if you haven't done that already. ```bash cd espnet git checkout 5201685018b0e8fb9826bc51a710623140a06627 pip install -e . cd egs2/amuse/codec1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/amuse_soundstream16k ``` ## Codec config <details><summary>expand</summary> ``` config: conf/train_soundstream4_fs16000.yaml print_config: false log_level: INFO drop_last_iter: false dry_run: false iterator_type: chunk valid_iterator_type: null output_dir: exp_16k/codec_train_soundstream4_fs16000_raw_fs16000 ngpu: 1 seed: 777 num_workers: 1 num_att_plot: 0 dist_backend: nccl dist_init_method: env:// dist_world_size: 4 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 36365 dist_launcher: null multiprocessing_distributed: true unused_parameters: true sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: false use_tf32: true collect_stats: false write_collected_feats: false max_epoch: 120 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - mel_loss - min - - train - mel_loss - min - - train - total_count - max keep_nbest_models: 5 nbest_averaging_interval: 0 grad_clip: -1 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: 50 use_matplotlib: true use_tensorboard: true create_graph_in_tensorboard: false use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false use_adapter: false adapter: lora save_strategy: all adapter_conf: {} pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: 5000 batch_size: 64 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp_16k/codec_stats_raw/train/audio_shape valid_shape_file: - exp_16k/codec_stats_raw/valid/audio_shape batch_type: unsorted valid_batch_type: null fold_length: - 256000 sort_in_batch: descending shuffle_within_batch: false sort_batch: descending multiple_iterator: false chunk_length: 32000 chunk_shift_ratio: 0.5 num_cache_chunks: 128 chunk_excluded_key_prefixes: [] chunk_default_fs: null train_data_path_and_name_and_type: - - dump_16k/raw/train/wav.scp - audio - kaldi_ark valid_data_path_and_name_and_type: - - dump_16k/raw/dev-small/wav.scp - audio - kaldi_ark multi_task_dataset: false allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 allow_multi_rates: false valid_max_cache_size: null exclude_weight_decay: false exclude_weight_decay_conf: {} optim: adam optim_conf: lr: 0.0002 betas: - 0.5 - 0.9 eps: 1.0e-09 weight_decay: 0.0 scheduler: exponentiallr scheduler_conf: gamma: 0.999875 optim2: adam optim2_conf: lr: 0.0002 betas: - 0.5 - 0.9 eps: 1.0e-09 weight_decay: 0.0 scheduler2: exponentiallr scheduler2_conf: gamma: 0.999875 generator_first: true skip_discriminator_prob: 0.0 model_conf: {} use_preprocessor: true codec: soundstream codec_conf: sampling_rate: 16000 generator_params: hidden_dim: 512 encdec_channels: 1 encdec_n_filters: 32 encdec_n_residual_layers: 3 encdec_ratios: - 8 - 5 - 4 - 2 encdec_activation: ELU encdec_activation_params: alpha: 1.0 encdec_norm: weight_norm encdec_kernel_size: 7 encdec_residual_kernel_size: 7 encdec_last_kernel_size: 7 encdec_dilation_base: 2 encdec_causal: false encdec_pad_mode: reflect encdec_true_skip: false encdec_compress: 2 encdec_lstm: 2 decoder_trim_right_ratio: 1.0 decoder_final_activation: null decoder_final_activation_params: null quantizer_n_q: 32 quantizer_bins: 1024 quantizer_decay: 0.99 quantizer_kmeans_init: true quantizer_kmeans_iters: 50 quantizer_threshold_ema_dead_code: 2 quantizer_target_bandwidth: - 2 - 4 - 8 - 16 - 32 sample_rate: 16000 discriminator_params: scales: 3 scale_downsample_pooling: AvgPool1d scale_downsample_pooling_params: kernel_size: 4 stride: 2 padding: 2 scale_discriminator_params: in_channels: 1 out_channels: 1 kernel_sizes: - 15 - 41 - 5 - 3 channels: 128 max_downsample_channels: 1024 max_groups: 16 bias: true downsample_scales: - 2 - 2 - 4 - 4 - 1 nonlinear_activation: LeakyReLU nonlinear_activation_params: negative_slope: 0.1 scale_follow_official_norm: false complexstft_discriminator_params: in_channels: 1 channels: 32 strides: - - 1 - 2 - - 2 - 2 - - 1 - 2 - - 2 - 2 - - 1 - 2 - - 2 - 2 chan_mults: - 1 - 2 - 4 - 4 - 8 - 8 n_fft: 1024 hop_length: 256 win_length: 1024 stft_normalized: false generator_adv_loss_params: average_by_discriminators: false loss_type: mse discriminator_adv_loss_params: average_by_discriminators: false loss_type: mse use_feat_match_loss: true feat_match_loss_params: average_by_discriminators: false average_by_layers: false include_final_outputs: true use_mel_loss: true mel_loss_params: range_start: 6 range_end: 11 window: hann n_mels: 80 fmin: 0 fmax: null log_base: null fs: 16000 lambda_quantization: 0.0 lambda_commit: 1.0 lambda_reconstruct: 1.0 lambda_adv: 1.0 lambda_mel: 45.0 lambda_feat_match: 2.0 cache_generator_outputs: true required: - output_dir version: '202402' distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
Ruqiya/Fine-Tuning-Gemma-2b-it-for-Arabic
Ruqiya
"2024-03-28T21:21:38Z"
40
3
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "ar", "en", "dataset:arbml/CIDAR", "base_model:google/gemma-2b-it", "base_model:finetune:google/gemma-2b-it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-03-28T12:55:43Z"
--- datasets: - arbml/CIDAR base_model: google/gemma-2b-it pipeline_tag: text-generation language: - ar - en --- # Fine-Tuning-Gemma-2b-it-for-Arabic <!-- Provide a quick summary of what the model is/does. --> This model is a fine-tuned version of [google/gemma-2b-it](https://huggingface.co/google/gemma-2b-it) on [arbml/CIDAR](https://huggingface.co/datasets/arbml/CIDAR) Arabic dataset. It achieves the following results on the evaluation set: - training_loss=2.281057505607605 ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Ruqiya/Fine-Tuning-Gemma-2b-it-for-Arabic" messages = [{"role": "user", "content": "ما هو الذكاء الاصطناعي؟"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
Alice327/trial-model
Alice327
"2023-09-15T02:03:30Z"
104
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2023-09-15T02:01:52Z"
--- license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - f1 model-index: - name: trial-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # trial-model This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0905 - F1: 0.2764 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
csukuangfj/sherpa-onnx-zipformer-en-2023-06-26
csukuangfj
"2023-06-26T04:40:28Z"
0
0
null
[ "onnx", "license:apache-2.0", "region:us" ]
null
"2023-06-26T04:33:23Z"
--- license: apache-2.0 --- The torchscript model is from https://huggingface.co/Zengwei/icefall-asr-librispeech-zipformer-2023-05-15 The training code is from https://github.com/k2-fsa/icefall/pull/1058
hs4/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-rapid_wiry_hawk
hs4
"2025-04-04T19:28:30Z"
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am rapid wiry hawk", "trl", "conversational", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-04T19:27:25Z"
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-rapid_wiry_hawk tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am rapid wiry hawk - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-rapid_wiry_hawk This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="hs4/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-rapid_wiry_hawk", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.50.3 - Pytorch: 2.6.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
krmonline/Qwen2.5_8bit
krmonline
"2025-02-04T09:19:07Z"
23
0
transformers
[ "transformers", "gguf", "qwen2", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2025-02-04T09:17:01Z"
--- base_model: unsloth/qwen2.5-7b-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** krmonline - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-7b-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Alphatao/d19897bd-fe07-4911-95c0-b294c0693d1f
Alphatao
"2025-03-15T20:16:21Z"
0
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-3B", "base_model:adapter:unsloth/Qwen2.5-3B", "license:other", "region:us" ]
null
"2025-03-15T12:58:52Z"
--- library_name: peft license: other base_model: unsloth/Qwen2.5-3B tags: - axolotl - generated_from_trainer model-index: - name: d19897bd-fe07-4911-95c0-b294c0693d1f results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-3B bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - bdd8a35f55f25533_train_data.json ds_type: json format: custom path: /workspace/input_data/bdd8a35f55f25533_train_data.json type: field_input: original_version field_instruction: title field_output: french_version format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null device_map: ? '' : 0,1,2,3,4,5,6,7 early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 100 eval_table_size: null flash_attention: true gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: false hub_model_id: Alphatao/d19897bd-fe07-4911-95c0-b294c0693d1f hub_repo: null hub_strategy: null hub_token: null learning_rate: 0.0002 load_best_model_at_end: true load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj - o_proj lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 2346 micro_batch_size: 4 mlflow_experiment_name: /tmp/bdd8a35f55f25533_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 100 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 117bcf8a-89aa-4e58-88c4-fd9dde22f122 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 117bcf8a-89aa-4e58-88c4-fd9dde22f122 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # d19897bd-fe07-4911-95c0-b294c0693d1f This model is a fine-tuned version of [unsloth/Qwen2.5-3B](https://huggingface.co/unsloth/Qwen2.5-3B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8274 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 2346 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.0386 | 0.0003 | 1 | 1.1236 | | 1.1372 | 0.0343 | 100 | 0.9449 | | 1.1323 | 0.0686 | 200 | 0.9222 | | 1.0146 | 0.1029 | 300 | 0.9094 | | 0.7854 | 0.1372 | 400 | 0.8968 | | 0.9888 | 0.1715 | 500 | 0.8898 | | 0.9185 | 0.2058 | 600 | 0.8832 | | 0.9624 | 0.2401 | 700 | 0.8759 | | 0.8026 | 0.2744 | 800 | 0.8706 | | 1.2624 | 0.3087 | 900 | 0.8653 | | 1.0704 | 0.3431 | 1000 | 0.8600 | | 1.0318 | 0.3774 | 1100 | 0.8556 | | 0.8575 | 0.4117 | 1200 | 0.8506 | | 0.7795 | 0.4460 | 1300 | 0.8463 | | 0.8011 | 0.4803 | 1400 | 0.8424 | | 0.797 | 0.5146 | 1500 | 0.8391 | | 1.1496 | 0.5489 | 1600 | 0.8364 | | 0.8766 | 0.5832 | 1700 | 0.8337 | | 1.0283 | 0.6175 | 1800 | 0.8313 | | 0.9297 | 0.6518 | 1900 | 0.8296 | | 1.0575 | 0.6861 | 2000 | 0.8285 | | 0.9047 | 0.7204 | 2100 | 0.8278 | | 0.8398 | 0.7547 | 2200 | 0.8275 | | 0.68 | 0.7890 | 2300 | 0.8274 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
varun-v-rao/bart-large-lora-2.36M-snli-model2
varun-v-rao
"2024-06-20T00:34:06Z"
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "bart", "text-classification", "generated_from_trainer", "dataset:stanfordnlp/snli", "base_model:facebook/bart-large", "base_model:finetune:facebook/bart-large", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2024-06-19T22:16:28Z"
--- license: apache-2.0 base_model: facebook/bart-large tags: - generated_from_trainer datasets: - stanfordnlp/snli metrics: - accuracy model-index: - name: bart-large-lora-2.36M-snli-model2 results: - task: name: Text Classification type: text-classification dataset: name: snli type: stanfordnlp/snli metrics: - name: Accuracy type: accuracy value: 0.9086567770778297 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-lora-2.36M-snli-model2 This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on the snli dataset. It achieves the following results on the evaluation set: - Loss: 0.2622 - Accuracy: 0.9087 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 70 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3839 | 1.0 | 4292 | 0.2835 | 0.9020 | | 0.355 | 2.0 | 8584 | 0.2663 | 0.9063 | | 0.3486 | 3.0 | 12876 | 0.2622 | 0.9087 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
MayBashendy/ArabicNewSplits6_FineTuningAraBERT_run2_AugV5_k18_task1_organization
MayBashendy
"2024-12-22T15:55:39Z"
161
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2024-12-22T15:31:47Z"
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: ArabicNewSplits6_FineTuningAraBERT_run2_AugV5_k18_task1_organization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ArabicNewSplits6_FineTuningAraBERT_run2_AugV5_k18_task1_organization This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5994 - Qwk: 0.7048 - Mse: 0.5994 - Rmse: 0.7742 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.0222 | 2 | 5.0825 | -0.0095 | 5.0825 | 2.2544 | | No log | 0.0444 | 4 | 3.0872 | 0.0317 | 3.0872 | 1.7570 | | No log | 0.0667 | 6 | 1.9096 | 0.0756 | 1.9096 | 1.3819 | | No log | 0.0889 | 8 | 1.5806 | 0.1199 | 1.5806 | 1.2572 | | No log | 0.1111 | 10 | 1.4412 | 0.1785 | 1.4412 | 1.2005 | | No log | 0.1333 | 12 | 1.3465 | 0.1693 | 1.3465 | 1.1604 | | No log | 0.1556 | 14 | 1.3479 | 0.1205 | 1.3479 | 1.1610 | | No log | 0.1778 | 16 | 1.5104 | 0.1119 | 1.5104 | 1.2290 | | No log | 0.2 | 18 | 1.3797 | 0.1865 | 1.3797 | 1.1746 | | No log | 0.2222 | 20 | 1.2060 | 0.4416 | 1.2060 | 1.0982 | | No log | 0.2444 | 22 | 1.1649 | 0.4605 | 1.1649 | 1.0793 | | No log | 0.2667 | 24 | 1.0001 | 0.5269 | 1.0001 | 1.0000 | | No log | 0.2889 | 26 | 1.0582 | 0.5035 | 1.0582 | 1.0287 | | No log | 0.3111 | 28 | 1.3394 | 0.4256 | 1.3394 | 1.1573 | | No log | 0.3333 | 30 | 1.6733 | 0.3730 | 1.6733 | 1.2936 | | No log | 0.3556 | 32 | 1.4998 | 0.3547 | 1.4998 | 1.2247 | | No log | 0.3778 | 34 | 1.4125 | 0.3367 | 1.4125 | 1.1885 | | No log | 0.4 | 36 | 1.4080 | 0.3888 | 1.4080 | 1.1866 | | No log | 0.4222 | 38 | 1.6978 | 0.3239 | 1.6978 | 1.3030 | | No log | 0.4444 | 40 | 1.8694 | 0.3060 | 1.8694 | 1.3673 | | No log | 0.4667 | 42 | 1.8497 | 0.3101 | 1.8497 | 1.3600 | | No log | 0.4889 | 44 | 1.2548 | 0.4621 | 1.2548 | 1.1202 | | No log | 0.5111 | 46 | 0.8410 | 0.6287 | 0.8410 | 0.9171 | | No log | 0.5333 | 48 | 0.7724 | 0.6929 | 0.7724 | 0.8789 | | No log | 0.5556 | 50 | 0.5707 | 0.7487 | 0.5707 | 0.7555 | | No log | 0.5778 | 52 | 0.5492 | 0.7593 | 0.5492 | 0.7411 | | No log | 0.6 | 54 | 0.5597 | 0.7514 | 0.5597 | 0.7481 | | No log | 0.6222 | 56 | 0.5583 | 0.7443 | 0.5583 | 0.7472 | | No log | 0.6444 | 58 | 0.8377 | 0.6286 | 0.8377 | 0.9153 | | No log | 0.6667 | 60 | 0.8690 | 0.6199 | 0.8690 | 0.9322 | | No log | 0.6889 | 62 | 0.6016 | 0.7243 | 0.6016 | 0.7756 | | No log | 0.7111 | 64 | 0.5419 | 0.7377 | 0.5419 | 0.7362 | | No log | 0.7333 | 66 | 0.5486 | 0.7338 | 0.5486 | 0.7407 | | No log | 0.7556 | 68 | 0.5971 | 0.6755 | 0.5971 | 0.7727 | | No log | 0.7778 | 70 | 0.5583 | 0.7061 | 0.5583 | 0.7472 | | No log | 0.8 | 72 | 0.8571 | 0.5849 | 0.8571 | 0.9258 | | No log | 0.8222 | 74 | 1.0701 | 0.5418 | 1.0701 | 1.0344 | | No log | 0.8444 | 76 | 1.3919 | 0.4110 | 1.3919 | 1.1798 | | No log | 0.8667 | 78 | 1.1887 | 0.5069 | 1.1887 | 1.0903 | | No log | 0.8889 | 80 | 1.1135 | 0.5140 | 1.1135 | 1.0552 | | No log | 0.9111 | 82 | 0.8609 | 0.6213 | 0.8609 | 0.9278 | | No log | 0.9333 | 84 | 0.6006 | 0.6808 | 0.6006 | 0.7750 | | No log | 0.9556 | 86 | 0.6238 | 0.7392 | 0.6238 | 0.7898 | | No log | 0.9778 | 88 | 0.6461 | 0.6952 | 0.6461 | 0.8038 | | No log | 1.0 | 90 | 0.6725 | 0.7008 | 0.6725 | 0.8201 | | No log | 1.0222 | 92 | 0.6628 | 0.7370 | 0.6628 | 0.8141 | | No log | 1.0444 | 94 | 0.6740 | 0.7460 | 0.6740 | 0.8210 | | No log | 1.0667 | 96 | 0.7116 | 0.7324 | 0.7116 | 0.8436 | | No log | 1.0889 | 98 | 0.7080 | 0.7147 | 0.7080 | 0.8414 | | No log | 1.1111 | 100 | 0.6716 | 0.7063 | 0.6716 | 0.8195 | | No log | 1.1333 | 102 | 0.7368 | 0.6718 | 0.7368 | 0.8583 | | No log | 1.1556 | 104 | 0.7394 | 0.6678 | 0.7394 | 0.8599 | | No log | 1.1778 | 106 | 0.7883 | 0.6358 | 0.7883 | 0.8878 | | No log | 1.2 | 108 | 0.7145 | 0.6868 | 0.7145 | 0.8453 | | No log | 1.2222 | 110 | 0.6767 | 0.6950 | 0.6767 | 0.8226 | | No log | 1.2444 | 112 | 0.6730 | 0.7061 | 0.6730 | 0.8204 | | No log | 1.2667 | 114 | 0.6829 | 0.7008 | 0.6829 | 0.8264 | | No log | 1.2889 | 116 | 0.6988 | 0.7022 | 0.6988 | 0.8359 | | No log | 1.3111 | 118 | 0.7633 | 0.6795 | 0.7633 | 0.8737 | | No log | 1.3333 | 120 | 0.7470 | 0.6673 | 0.7470 | 0.8643 | | No log | 1.3556 | 122 | 0.7672 | 0.6739 | 0.7672 | 0.8759 | | No log | 1.3778 | 124 | 0.8752 | 0.6325 | 0.8752 | 0.9355 | | No log | 1.4 | 126 | 0.8153 | 0.6775 | 0.8153 | 0.9029 | | No log | 1.4222 | 128 | 0.7214 | 0.7147 | 0.7214 | 0.8494 | | No log | 1.4444 | 130 | 0.7732 | 0.6979 | 0.7732 | 0.8793 | | No log | 1.4667 | 132 | 0.9405 | 0.6434 | 0.9405 | 0.9698 | | No log | 1.4889 | 134 | 0.8967 | 0.6475 | 0.8967 | 0.9470 | | No log | 1.5111 | 136 | 0.7911 | 0.7099 | 0.7911 | 0.8894 | | No log | 1.5333 | 138 | 0.9194 | 0.6382 | 0.9194 | 0.9589 | | No log | 1.5556 | 140 | 0.8945 | 0.6163 | 0.8945 | 0.9458 | | No log | 1.5778 | 142 | 0.7361 | 0.6682 | 0.7361 | 0.8579 | | No log | 1.6 | 144 | 0.7257 | 0.7173 | 0.7257 | 0.8519 | | No log | 1.6222 | 146 | 0.6867 | 0.7203 | 0.6867 | 0.8287 | | No log | 1.6444 | 148 | 0.6251 | 0.6965 | 0.6251 | 0.7906 | | No log | 1.6667 | 150 | 0.7237 | 0.6986 | 0.7237 | 0.8507 | | No log | 1.6889 | 152 | 0.7949 | 0.6274 | 0.7949 | 0.8916 | | No log | 1.7111 | 154 | 0.7680 | 0.6694 | 0.7680 | 0.8764 | | No log | 1.7333 | 156 | 0.5984 | 0.6910 | 0.5984 | 0.7735 | | No log | 1.7556 | 158 | 0.5821 | 0.7691 | 0.5821 | 0.7629 | | No log | 1.7778 | 160 | 0.7212 | 0.7395 | 0.7212 | 0.8492 | | No log | 1.8 | 162 | 0.7545 | 0.7304 | 0.7545 | 0.8686 | | No log | 1.8222 | 164 | 0.6662 | 0.7534 | 0.6662 | 0.8162 | | No log | 1.8444 | 166 | 0.6541 | 0.7341 | 0.6541 | 0.8088 | | No log | 1.8667 | 168 | 0.6429 | 0.7371 | 0.6429 | 0.8018 | | No log | 1.8889 | 170 | 0.6664 | 0.7513 | 0.6664 | 0.8163 | | No log | 1.9111 | 172 | 0.8518 | 0.6671 | 0.8518 | 0.9229 | | No log | 1.9333 | 174 | 0.8150 | 0.6730 | 0.8150 | 0.9028 | | No log | 1.9556 | 176 | 0.6497 | 0.7256 | 0.6497 | 0.8060 | | No log | 1.9778 | 178 | 0.6826 | 0.6841 | 0.6826 | 0.8262 | | No log | 2.0 | 180 | 0.9950 | 0.5841 | 0.9950 | 0.9975 | | No log | 2.0222 | 182 | 1.0649 | 0.5686 | 1.0649 | 1.0319 | | No log | 2.0444 | 184 | 0.8662 | 0.6491 | 0.8662 | 0.9307 | | No log | 2.0667 | 186 | 0.6846 | 0.6781 | 0.6846 | 0.8274 | | No log | 2.0889 | 188 | 0.6361 | 0.7156 | 0.6361 | 0.7976 | | No log | 2.1111 | 190 | 0.6218 | 0.7103 | 0.6218 | 0.7885 | | No log | 2.1333 | 192 | 0.6515 | 0.6874 | 0.6515 | 0.8072 | | No log | 2.1556 | 194 | 0.6900 | 0.6952 | 0.6900 | 0.8307 | | No log | 2.1778 | 196 | 0.8106 | 0.6741 | 0.8106 | 0.9003 | | No log | 2.2 | 198 | 0.8073 | 0.6796 | 0.8073 | 0.8985 | | No log | 2.2222 | 200 | 0.6518 | 0.6702 | 0.6518 | 0.8073 | | No log | 2.2444 | 202 | 0.6065 | 0.7267 | 0.6065 | 0.7788 | | No log | 2.2667 | 204 | 0.6364 | 0.7250 | 0.6364 | 0.7977 | | No log | 2.2889 | 206 | 0.6312 | 0.7155 | 0.6312 | 0.7945 | | No log | 2.3111 | 208 | 0.6314 | 0.7196 | 0.6314 | 0.7946 | | No log | 2.3333 | 210 | 0.6310 | 0.7205 | 0.6310 | 0.7943 | | No log | 2.3556 | 212 | 0.6661 | 0.7111 | 0.6661 | 0.8162 | | No log | 2.3778 | 214 | 0.6370 | 0.6897 | 0.6370 | 0.7981 | | No log | 2.4 | 216 | 0.5932 | 0.7135 | 0.5932 | 0.7702 | | No log | 2.4222 | 218 | 0.6437 | 0.7341 | 0.6437 | 0.8023 | | No log | 2.4444 | 220 | 0.6834 | 0.7344 | 0.6834 | 0.8267 | | No log | 2.4667 | 222 | 0.6177 | 0.7181 | 0.6177 | 0.7859 | | No log | 2.4889 | 224 | 0.5842 | 0.7122 | 0.5842 | 0.7643 | | No log | 2.5111 | 226 | 0.7000 | 0.6768 | 0.7000 | 0.8366 | | No log | 2.5333 | 228 | 0.8265 | 0.6483 | 0.8265 | 0.9091 | | No log | 2.5556 | 230 | 0.8337 | 0.6530 | 0.8337 | 0.9131 | | No log | 2.5778 | 232 | 0.6872 | 0.6797 | 0.6872 | 0.8290 | | No log | 2.6 | 234 | 0.5795 | 0.6817 | 0.5795 | 0.7612 | | No log | 2.6222 | 236 | 0.5733 | 0.7324 | 0.5733 | 0.7572 | | No log | 2.6444 | 238 | 0.5849 | 0.7231 | 0.5849 | 0.7648 | | No log | 2.6667 | 240 | 0.6023 | 0.7350 | 0.6023 | 0.7761 | | No log | 2.6889 | 242 | 0.6240 | 0.7525 | 0.6240 | 0.7899 | | No log | 2.7111 | 244 | 0.6307 | 0.7416 | 0.6307 | 0.7942 | | No log | 2.7333 | 246 | 0.6609 | 0.7187 | 0.6609 | 0.8130 | | No log | 2.7556 | 248 | 0.6753 | 0.7028 | 0.6753 | 0.8218 | | No log | 2.7778 | 250 | 0.6236 | 0.7123 | 0.6236 | 0.7897 | | No log | 2.8 | 252 | 0.6163 | 0.6924 | 0.6163 | 0.7850 | | No log | 2.8222 | 254 | 0.6015 | 0.7103 | 0.6015 | 0.7756 | | No log | 2.8444 | 256 | 0.5738 | 0.7229 | 0.5738 | 0.7575 | | No log | 2.8667 | 258 | 0.5712 | 0.7229 | 0.5712 | 0.7557 | | No log | 2.8889 | 260 | 0.6053 | 0.7185 | 0.6053 | 0.7780 | | No log | 2.9111 | 262 | 0.6067 | 0.7128 | 0.6067 | 0.7789 | | No log | 2.9333 | 264 | 0.5712 | 0.7221 | 0.5712 | 0.7558 | | No log | 2.9556 | 266 | 0.5675 | 0.7684 | 0.5675 | 0.7533 | | No log | 2.9778 | 268 | 0.5738 | 0.7666 | 0.5738 | 0.7575 | | No log | 3.0 | 270 | 0.5690 | 0.7593 | 0.5690 | 0.7543 | | No log | 3.0222 | 272 | 0.5820 | 0.7243 | 0.5820 | 0.7629 | | No log | 3.0444 | 274 | 0.5980 | 0.6969 | 0.5980 | 0.7733 | | No log | 3.0667 | 276 | 0.6063 | 0.7037 | 0.6063 | 0.7786 | | No log | 3.0889 | 278 | 0.5827 | 0.7019 | 0.5827 | 0.7634 | | No log | 3.1111 | 280 | 0.5814 | 0.7122 | 0.5814 | 0.7625 | | No log | 3.1333 | 282 | 0.6010 | 0.7021 | 0.6010 | 0.7753 | | No log | 3.1556 | 284 | 0.7170 | 0.6789 | 0.7170 | 0.8468 | | No log | 3.1778 | 286 | 0.9679 | 0.5966 | 0.9679 | 0.9838 | | No log | 3.2 | 288 | 1.0053 | 0.5805 | 1.0053 | 1.0026 | | No log | 3.2222 | 290 | 0.8214 | 0.6364 | 0.8214 | 0.9063 | | No log | 3.2444 | 292 | 0.6267 | 0.7174 | 0.6267 | 0.7916 | | No log | 3.2667 | 294 | 0.5834 | 0.7281 | 0.5834 | 0.7638 | | No log | 3.2889 | 296 | 0.5837 | 0.7376 | 0.5837 | 0.7640 | | No log | 3.3111 | 298 | 0.5820 | 0.7477 | 0.5820 | 0.7629 | | No log | 3.3333 | 300 | 0.5827 | 0.7320 | 0.5827 | 0.7633 | | No log | 3.3556 | 302 | 0.5864 | 0.7407 | 0.5864 | 0.7657 | | No log | 3.3778 | 304 | 0.5761 | 0.7236 | 0.5761 | 0.7590 | | No log | 3.4 | 306 | 0.5799 | 0.7265 | 0.5799 | 0.7615 | | No log | 3.4222 | 308 | 0.5911 | 0.7278 | 0.5911 | 0.7688 | | No log | 3.4444 | 310 | 0.6039 | 0.7289 | 0.6039 | 0.7771 | | No log | 3.4667 | 312 | 0.6154 | 0.7316 | 0.6154 | 0.7845 | | No log | 3.4889 | 314 | 0.5999 | 0.7445 | 0.5999 | 0.7745 | | No log | 3.5111 | 316 | 0.5938 | 0.7600 | 0.5938 | 0.7706 | | No log | 3.5333 | 318 | 0.6002 | 0.7362 | 0.6002 | 0.7747 | | No log | 3.5556 | 320 | 0.6235 | 0.7294 | 0.6235 | 0.7896 | | No log | 3.5778 | 322 | 0.5961 | 0.7294 | 0.5961 | 0.7721 | | No log | 3.6 | 324 | 0.5656 | 0.7427 | 0.5656 | 0.7521 | | No log | 3.6222 | 326 | 0.5427 | 0.7387 | 0.5427 | 0.7367 | | No log | 3.6444 | 328 | 0.5699 | 0.7344 | 0.5699 | 0.7549 | | No log | 3.6667 | 330 | 0.6409 | 0.7112 | 0.6409 | 0.8005 | | No log | 3.6889 | 332 | 0.6258 | 0.7065 | 0.6258 | 0.7911 | | No log | 3.7111 | 334 | 0.5622 | 0.7337 | 0.5622 | 0.7498 | | No log | 3.7333 | 336 | 0.5663 | 0.7273 | 0.5663 | 0.7525 | | No log | 3.7556 | 338 | 0.6297 | 0.7288 | 0.6297 | 0.7935 | | No log | 3.7778 | 340 | 0.6342 | 0.7231 | 0.6342 | 0.7964 | | No log | 3.8 | 342 | 0.5936 | 0.7305 | 0.5936 | 0.7705 | | No log | 3.8222 | 344 | 0.6029 | 0.6870 | 0.6029 | 0.7765 | | No log | 3.8444 | 346 | 0.7150 | 0.6927 | 0.7150 | 0.8456 | | No log | 3.8667 | 348 | 0.7786 | 0.6677 | 0.7786 | 0.8824 | | No log | 3.8889 | 350 | 0.7337 | 0.6850 | 0.7337 | 0.8566 | | No log | 3.9111 | 352 | 0.6628 | 0.7154 | 0.6628 | 0.8141 | | No log | 3.9333 | 354 | 0.6223 | 0.7250 | 0.6223 | 0.7889 | | No log | 3.9556 | 356 | 0.5663 | 0.7302 | 0.5663 | 0.7525 | | No log | 3.9778 | 358 | 0.5544 | 0.7349 | 0.5544 | 0.7446 | | No log | 4.0 | 360 | 0.5490 | 0.7349 | 0.5490 | 0.7409 | | No log | 4.0222 | 362 | 0.5463 | 0.7349 | 0.5463 | 0.7391 | | No log | 4.0444 | 364 | 0.5485 | 0.7542 | 0.5485 | 0.7406 | | No log | 4.0667 | 366 | 0.5504 | 0.7467 | 0.5504 | 0.7419 | | No log | 4.0889 | 368 | 0.5549 | 0.7430 | 0.5549 | 0.7449 | | No log | 4.1111 | 370 | 0.5478 | 0.7514 | 0.5478 | 0.7401 | | No log | 4.1333 | 372 | 0.5368 | 0.7323 | 0.5368 | 0.7327 | | No log | 4.1556 | 374 | 0.5543 | 0.7018 | 0.5543 | 0.7445 | | No log | 4.1778 | 376 | 0.5544 | 0.6949 | 0.5544 | 0.7446 | | No log | 4.2 | 378 | 0.5388 | 0.7153 | 0.5388 | 0.7340 | | No log | 4.2222 | 380 | 0.5325 | 0.7571 | 0.5325 | 0.7297 | | No log | 4.2444 | 382 | 0.5642 | 0.7447 | 0.5642 | 0.7511 | | No log | 4.2667 | 384 | 0.6344 | 0.7213 | 0.6344 | 0.7965 | | No log | 4.2889 | 386 | 0.6813 | 0.7196 | 0.6813 | 0.8254 | | No log | 4.3111 | 388 | 0.6407 | 0.7243 | 0.6407 | 0.8004 | | No log | 4.3333 | 390 | 0.5642 | 0.7432 | 0.5642 | 0.7512 | | No log | 4.3556 | 392 | 0.5624 | 0.7497 | 0.5624 | 0.7499 | | No log | 4.3778 | 394 | 0.6448 | 0.6939 | 0.6448 | 0.8030 | | No log | 4.4 | 396 | 0.6534 | 0.6939 | 0.6534 | 0.8083 | | No log | 4.4222 | 398 | 0.5999 | 0.7245 | 0.5999 | 0.7745 | | No log | 4.4444 | 400 | 0.5483 | 0.7580 | 0.5483 | 0.7405 | | No log | 4.4667 | 402 | 0.5533 | 0.7514 | 0.5533 | 0.7438 | | No log | 4.4889 | 404 | 0.5999 | 0.7230 | 0.5999 | 0.7745 | | No log | 4.5111 | 406 | 0.6848 | 0.6871 | 0.6848 | 0.8276 | | No log | 4.5333 | 408 | 0.6854 | 0.6782 | 0.6854 | 0.8279 | | No log | 4.5556 | 410 | 0.6373 | 0.6936 | 0.6373 | 0.7983 | | No log | 4.5778 | 412 | 0.5839 | 0.7420 | 0.5839 | 0.7642 | | No log | 4.6 | 414 | 0.5670 | 0.7505 | 0.5670 | 0.7530 | | No log | 4.6222 | 416 | 0.5640 | 0.7572 | 0.5640 | 0.7510 | | No log | 4.6444 | 418 | 0.5678 | 0.7425 | 0.5678 | 0.7535 | | No log | 4.6667 | 420 | 0.5950 | 0.7148 | 0.5950 | 0.7714 | | No log | 4.6889 | 422 | 0.6010 | 0.7148 | 0.6010 | 0.7752 | | No log | 4.7111 | 424 | 0.5889 | 0.7188 | 0.5889 | 0.7674 | | No log | 4.7333 | 426 | 0.5654 | 0.7371 | 0.5654 | 0.7519 | | No log | 4.7556 | 428 | 0.5608 | 0.7530 | 0.5608 | 0.7488 | | No log | 4.7778 | 430 | 0.5678 | 0.7488 | 0.5678 | 0.7535 | | No log | 4.8 | 432 | 0.5701 | 0.7488 | 0.5701 | 0.7550 | | No log | 4.8222 | 434 | 0.5769 | 0.7676 | 0.5769 | 0.7596 | | No log | 4.8444 | 436 | 0.5971 | 0.7629 | 0.5971 | 0.7727 | | No log | 4.8667 | 438 | 0.6207 | 0.7153 | 0.6207 | 0.7878 | | No log | 4.8889 | 440 | 0.6525 | 0.7185 | 0.6525 | 0.8078 | | No log | 4.9111 | 442 | 0.7415 | 0.7064 | 0.7415 | 0.8611 | | No log | 4.9333 | 444 | 0.8519 | 0.6748 | 0.8519 | 0.9230 | | No log | 4.9556 | 446 | 0.8456 | 0.6748 | 0.8456 | 0.9196 | | No log | 4.9778 | 448 | 0.7642 | 0.7164 | 0.7642 | 0.8742 | | No log | 5.0 | 450 | 0.6502 | 0.7175 | 0.6502 | 0.8063 | | No log | 5.0222 | 452 | 0.5919 | 0.7195 | 0.5919 | 0.7693 | | No log | 5.0444 | 454 | 0.5709 | 0.7768 | 0.5709 | 0.7556 | | No log | 5.0667 | 456 | 0.5700 | 0.7678 | 0.5700 | 0.7550 | | No log | 5.0889 | 458 | 0.5610 | 0.7553 | 0.5610 | 0.7490 | | No log | 5.1111 | 460 | 0.5566 | 0.7436 | 0.5566 | 0.7460 | | No log | 5.1333 | 462 | 0.5870 | 0.7189 | 0.5870 | 0.7661 | | No log | 5.1556 | 464 | 0.6369 | 0.7059 | 0.6369 | 0.7981 | | No log | 5.1778 | 466 | 0.6798 | 0.7149 | 0.6798 | 0.8245 | | No log | 5.2 | 468 | 0.6556 | 0.7109 | 0.6556 | 0.8097 | | No log | 5.2222 | 470 | 0.5986 | 0.7302 | 0.5986 | 0.7737 | | No log | 5.2444 | 472 | 0.5650 | 0.7416 | 0.5650 | 0.7516 | | No log | 5.2667 | 474 | 0.5603 | 0.7322 | 0.5603 | 0.7485 | | No log | 5.2889 | 476 | 0.5582 | 0.7435 | 0.5582 | 0.7471 | | No log | 5.3111 | 478 | 0.5556 | 0.7339 | 0.5556 | 0.7454 | | No log | 5.3333 | 480 | 0.5539 | 0.7484 | 0.5539 | 0.7442 | | No log | 5.3556 | 482 | 0.5627 | 0.7514 | 0.5627 | 0.7502 | | No log | 5.3778 | 484 | 0.5862 | 0.7152 | 0.5862 | 0.7656 | | No log | 5.4 | 486 | 0.5886 | 0.7138 | 0.5886 | 0.7672 | | No log | 5.4222 | 488 | 0.5830 | 0.7173 | 0.5830 | 0.7635 | | No log | 5.4444 | 490 | 0.5757 | 0.7173 | 0.5757 | 0.7588 | | No log | 5.4667 | 492 | 0.5676 | 0.7289 | 0.5676 | 0.7534 | | No log | 5.4889 | 494 | 0.5732 | 0.7245 | 0.5732 | 0.7571 | | No log | 5.5111 | 496 | 0.5670 | 0.7326 | 0.5670 | 0.7530 | | No log | 5.5333 | 498 | 0.5584 | 0.7661 | 0.5584 | 0.7473 | | 0.3921 | 5.5556 | 500 | 0.5611 | 0.7661 | 0.5611 | 0.7491 | | 0.3921 | 5.5778 | 502 | 0.5667 | 0.7703 | 0.5667 | 0.7528 | | 0.3921 | 5.6 | 504 | 0.5883 | 0.7474 | 0.5883 | 0.7670 | | 0.3921 | 5.6222 | 506 | 0.6047 | 0.7430 | 0.6047 | 0.7777 | | 0.3921 | 5.6444 | 508 | 0.6056 | 0.7439 | 0.6056 | 0.7782 | | 0.3921 | 5.6667 | 510 | 0.6175 | 0.7439 | 0.6175 | 0.7858 | | 0.3921 | 5.6889 | 512 | 0.6357 | 0.7133 | 0.6357 | 0.7973 | | 0.3921 | 5.7111 | 514 | 0.6509 | 0.7016 | 0.6509 | 0.8068 | | 0.3921 | 5.7333 | 516 | 0.6314 | 0.6994 | 0.6314 | 0.7946 | | 0.3921 | 5.7556 | 518 | 0.6304 | 0.7061 | 0.6304 | 0.7940 | | 0.3921 | 5.7778 | 520 | 0.6137 | 0.7326 | 0.6137 | 0.7834 | | 0.3921 | 5.8 | 522 | 0.5902 | 0.7585 | 0.5902 | 0.7682 | | 0.3921 | 5.8222 | 524 | 0.5889 | 0.7630 | 0.5889 | 0.7674 | | 0.3921 | 5.8444 | 526 | 0.5905 | 0.7439 | 0.5905 | 0.7684 | | 0.3921 | 5.8667 | 528 | 0.5886 | 0.75 | 0.5886 | 0.7672 | | 0.3921 | 5.8889 | 530 | 0.5777 | 0.7686 | 0.5777 | 0.7601 | | 0.3921 | 5.9111 | 532 | 0.5780 | 0.7413 | 0.5780 | 0.7602 | | 0.3921 | 5.9333 | 534 | 0.6154 | 0.7085 | 0.6154 | 0.7845 | | 0.3921 | 5.9556 | 536 | 0.6301 | 0.7053 | 0.6301 | 0.7938 | | 0.3921 | 5.9778 | 538 | 0.6091 | 0.6994 | 0.6091 | 0.7805 | | 0.3921 | 6.0 | 540 | 0.5755 | 0.7233 | 0.5755 | 0.7586 | | 0.3921 | 6.0222 | 542 | 0.5580 | 0.7316 | 0.5580 | 0.7470 | | 0.3921 | 6.0444 | 544 | 0.5636 | 0.7403 | 0.5636 | 0.7507 | | 0.3921 | 6.0667 | 546 | 0.5780 | 0.7385 | 0.5780 | 0.7602 | | 0.3921 | 6.0889 | 548 | 0.5768 | 0.7355 | 0.5768 | 0.7594 | | 0.3921 | 6.1111 | 550 | 0.5755 | 0.7150 | 0.5755 | 0.7586 | | 0.3921 | 6.1333 | 552 | 0.5650 | 0.7203 | 0.5650 | 0.7517 | | 0.3921 | 6.1556 | 554 | 0.5647 | 0.7200 | 0.5647 | 0.7515 | | 0.3921 | 6.1778 | 556 | 0.5758 | 0.7200 | 0.5758 | 0.7588 | | 0.3921 | 6.2 | 558 | 0.5765 | 0.7283 | 0.5765 | 0.7593 | | 0.3921 | 6.2222 | 560 | 0.5774 | 0.7477 | 0.5774 | 0.7599 | | 0.3921 | 6.2444 | 562 | 0.5880 | 0.7515 | 0.5880 | 0.7668 | | 0.3921 | 6.2667 | 564 | 0.5973 | 0.7450 | 0.5973 | 0.7728 | | 0.3921 | 6.2889 | 566 | 0.5959 | 0.7484 | 0.5959 | 0.7719 | | 0.3921 | 6.3111 | 568 | 0.5949 | 0.7423 | 0.5949 | 0.7713 | | 0.3921 | 6.3333 | 570 | 0.6230 | 0.7044 | 0.6230 | 0.7893 | | 0.3921 | 6.3556 | 572 | 0.6617 | 0.7175 | 0.6617 | 0.8134 | | 0.3921 | 6.3778 | 574 | 0.6987 | 0.7070 | 0.6987 | 0.8359 | | 0.3921 | 6.4 | 576 | 0.6858 | 0.7083 | 0.6858 | 0.8281 | | 0.3921 | 6.4222 | 578 | 0.6506 | 0.7089 | 0.6506 | 0.8066 | | 0.3921 | 6.4444 | 580 | 0.6084 | 0.7007 | 0.6084 | 0.7800 | | 0.3921 | 6.4667 | 582 | 0.5844 | 0.7179 | 0.5844 | 0.7645 | | 0.3921 | 6.4889 | 584 | 0.5708 | 0.7316 | 0.5708 | 0.7555 | | 0.3921 | 6.5111 | 586 | 0.5709 | 0.7451 | 0.5709 | 0.7556 | | 0.3921 | 6.5333 | 588 | 0.5747 | 0.7300 | 0.5747 | 0.7581 | | 0.3921 | 6.5556 | 590 | 0.5842 | 0.7392 | 0.5842 | 0.7643 | | 0.3921 | 6.5778 | 592 | 0.5891 | 0.7376 | 0.5891 | 0.7675 | | 0.3921 | 6.6 | 594 | 0.5988 | 0.7252 | 0.5988 | 0.7738 | | 0.3921 | 6.6222 | 596 | 0.6000 | 0.7252 | 0.6000 | 0.7746 | | 0.3921 | 6.6444 | 598 | 0.5968 | 0.7354 | 0.5968 | 0.7725 | | 0.3921 | 6.6667 | 600 | 0.6015 | 0.7267 | 0.6015 | 0.7755 | | 0.3921 | 6.6889 | 602 | 0.5964 | 0.7305 | 0.5964 | 0.7723 | | 0.3921 | 6.7111 | 604 | 0.5885 | 0.7409 | 0.5885 | 0.7671 | | 0.3921 | 6.7333 | 606 | 0.5756 | 0.7416 | 0.5756 | 0.7587 | | 0.3921 | 6.7556 | 608 | 0.5686 | 0.7019 | 0.5686 | 0.7540 | | 0.3921 | 6.7778 | 610 | 0.5763 | 0.7091 | 0.5763 | 0.7591 | | 0.3921 | 6.8 | 612 | 0.5743 | 0.7069 | 0.5743 | 0.7578 | | 0.3921 | 6.8222 | 614 | 0.5637 | 0.7156 | 0.5637 | 0.7508 | | 0.3921 | 6.8444 | 616 | 0.5596 | 0.7198 | 0.5596 | 0.7481 | | 0.3921 | 6.8667 | 618 | 0.5593 | 0.7345 | 0.5593 | 0.7479 | | 0.3921 | 6.8889 | 620 | 0.5604 | 0.7316 | 0.5604 | 0.7486 | | 0.3921 | 6.9111 | 622 | 0.5659 | 0.7231 | 0.5659 | 0.7522 | | 0.3921 | 6.9333 | 624 | 0.5726 | 0.7194 | 0.5726 | 0.7567 | | 0.3921 | 6.9556 | 626 | 0.5801 | 0.7283 | 0.5801 | 0.7617 | | 0.3921 | 6.9778 | 628 | 0.5796 | 0.7311 | 0.5796 | 0.7613 | | 0.3921 | 7.0 | 630 | 0.5831 | 0.7353 | 0.5831 | 0.7636 | | 0.3921 | 7.0222 | 632 | 0.5854 | 0.7385 | 0.5854 | 0.7651 | | 0.3921 | 7.0444 | 634 | 0.5914 | 0.7385 | 0.5914 | 0.7690 | | 0.3921 | 7.0667 | 636 | 0.5968 | 0.7379 | 0.5968 | 0.7725 | | 0.3921 | 7.0889 | 638 | 0.6109 | 0.7199 | 0.6109 | 0.7816 | | 0.3921 | 7.1111 | 640 | 0.6251 | 0.7171 | 0.6251 | 0.7907 | | 0.3921 | 7.1333 | 642 | 0.6191 | 0.7213 | 0.6191 | 0.7868 | | 0.3921 | 7.1556 | 644 | 0.6069 | 0.7213 | 0.6069 | 0.7791 | | 0.3921 | 7.1778 | 646 | 0.5852 | 0.7295 | 0.5852 | 0.7650 | | 0.3921 | 7.2 | 648 | 0.5704 | 0.7204 | 0.5704 | 0.7552 | | 0.3921 | 7.2222 | 650 | 0.5644 | 0.7269 | 0.5644 | 0.7513 | | 0.3921 | 7.2444 | 652 | 0.5620 | 0.7312 | 0.5620 | 0.7497 | | 0.3921 | 7.2667 | 654 | 0.5594 | 0.7126 | 0.5594 | 0.7479 | | 0.3921 | 7.2889 | 656 | 0.5588 | 0.7290 | 0.5588 | 0.7475 | | 0.3921 | 7.3111 | 658 | 0.5574 | 0.7250 | 0.5574 | 0.7466 | | 0.3921 | 7.3333 | 660 | 0.5565 | 0.7250 | 0.5565 | 0.7460 | | 0.3921 | 7.3556 | 662 | 0.5547 | 0.7290 | 0.5547 | 0.7447 | | 0.3921 | 7.3778 | 664 | 0.5567 | 0.7433 | 0.5567 | 0.7461 | | 0.3921 | 7.4 | 666 | 0.5603 | 0.7426 | 0.5603 | 0.7485 | | 0.3921 | 7.4222 | 668 | 0.5665 | 0.7516 | 0.5665 | 0.7527 | | 0.3921 | 7.4444 | 670 | 0.5713 | 0.7583 | 0.5713 | 0.7558 | | 0.3921 | 7.4667 | 672 | 0.5773 | 0.7589 | 0.5773 | 0.7598 | | 0.3921 | 7.4889 | 674 | 0.5836 | 0.7630 | 0.5836 | 0.7639 | | 0.3921 | 7.5111 | 676 | 0.5888 | 0.7589 | 0.5888 | 0.7673 | | 0.3921 | 7.5333 | 678 | 0.5921 | 0.7425 | 0.5921 | 0.7695 | | 0.3921 | 7.5556 | 680 | 0.5915 | 0.7416 | 0.5915 | 0.7691 | | 0.3921 | 7.5778 | 682 | 0.5862 | 0.7516 | 0.5862 | 0.7657 | | 0.3921 | 7.6 | 684 | 0.5801 | 0.7516 | 0.5801 | 0.7617 | | 0.3921 | 7.6222 | 686 | 0.5750 | 0.7618 | 0.5750 | 0.7583 | | 0.3921 | 7.6444 | 688 | 0.5676 | 0.7585 | 0.5676 | 0.7534 | | 0.3921 | 7.6667 | 690 | 0.5639 | 0.7528 | 0.5639 | 0.7509 | | 0.3921 | 7.6889 | 692 | 0.5691 | 0.7308 | 0.5691 | 0.7544 | | 0.3921 | 7.7111 | 694 | 0.5698 | 0.7247 | 0.5698 | 0.7548 | | 0.3921 | 7.7333 | 696 | 0.5621 | 0.7402 | 0.5621 | 0.7497 | | 0.3921 | 7.7556 | 698 | 0.5532 | 0.7411 | 0.5532 | 0.7438 | | 0.3921 | 7.7778 | 700 | 0.5548 | 0.7479 | 0.5548 | 0.7448 | | 0.3921 | 7.8 | 702 | 0.5635 | 0.7380 | 0.5635 | 0.7507 | | 0.3921 | 7.8222 | 704 | 0.5640 | 0.7277 | 0.5640 | 0.7510 | | 0.3921 | 7.8444 | 706 | 0.5613 | 0.7293 | 0.5613 | 0.7492 | | 0.3921 | 7.8667 | 708 | 0.5561 | 0.7441 | 0.5561 | 0.7457 | | 0.3921 | 7.8889 | 710 | 0.5514 | 0.7392 | 0.5514 | 0.7426 | | 0.3921 | 7.9111 | 712 | 0.5470 | 0.7551 | 0.5470 | 0.7396 | | 0.3921 | 7.9333 | 714 | 0.5488 | 0.7290 | 0.5488 | 0.7408 | | 0.3921 | 7.9556 | 716 | 0.5521 | 0.7228 | 0.5521 | 0.7430 | | 0.3921 | 7.9778 | 718 | 0.5557 | 0.7228 | 0.5557 | 0.7455 | | 0.3921 | 8.0 | 720 | 0.5598 | 0.7493 | 0.5598 | 0.7482 | | 0.3921 | 8.0222 | 722 | 0.5639 | 0.7533 | 0.5639 | 0.7510 | | 0.3921 | 8.0444 | 724 | 0.5683 | 0.7585 | 0.5683 | 0.7539 | | 0.3921 | 8.0667 | 726 | 0.5754 | 0.7311 | 0.5754 | 0.7585 | | 0.3921 | 8.0889 | 728 | 0.5845 | 0.7268 | 0.5845 | 0.7645 | | 0.3921 | 8.1111 | 730 | 0.5915 | 0.7268 | 0.5915 | 0.7691 | | 0.3921 | 8.1333 | 732 | 0.5937 | 0.7347 | 0.5937 | 0.7705 | | 0.3921 | 8.1556 | 734 | 0.5956 | 0.7268 | 0.5956 | 0.7717 | | 0.3921 | 8.1778 | 736 | 0.5975 | 0.7253 | 0.5975 | 0.7730 | | 0.3921 | 8.2 | 738 | 0.5912 | 0.7337 | 0.5912 | 0.7689 | | 0.3921 | 8.2222 | 740 | 0.5880 | 0.7337 | 0.5880 | 0.7668 | | 0.3921 | 8.2444 | 742 | 0.5848 | 0.7337 | 0.5848 | 0.7647 | | 0.3921 | 8.2667 | 744 | 0.5852 | 0.7295 | 0.5852 | 0.7650 | | 0.3921 | 8.2889 | 746 | 0.5897 | 0.7268 | 0.5897 | 0.7679 | | 0.3921 | 8.3111 | 748 | 0.5996 | 0.7090 | 0.5996 | 0.7743 | | 0.3921 | 8.3333 | 750 | 0.6094 | 0.7107 | 0.6094 | 0.7806 | | 0.3921 | 8.3556 | 752 | 0.6204 | 0.7139 | 0.6204 | 0.7876 | | 0.3921 | 8.3778 | 754 | 0.6196 | 0.7033 | 0.6196 | 0.7871 | | 0.3921 | 8.4 | 756 | 0.6123 | 0.7075 | 0.6123 | 0.7825 | | 0.3921 | 8.4222 | 758 | 0.6006 | 0.7048 | 0.6006 | 0.7750 | | 0.3921 | 8.4444 | 760 | 0.5924 | 0.7090 | 0.5924 | 0.7697 | | 0.3921 | 8.4667 | 762 | 0.5915 | 0.7090 | 0.5915 | 0.7691 | | 0.3921 | 8.4889 | 764 | 0.5967 | 0.7090 | 0.5967 | 0.7725 | | 0.3921 | 8.5111 | 766 | 0.6116 | 0.7107 | 0.6116 | 0.7820 | | 0.3921 | 8.5333 | 768 | 0.6348 | 0.7126 | 0.6348 | 0.7968 | | 0.3921 | 8.5556 | 770 | 0.6440 | 0.7107 | 0.6440 | 0.8025 | | 0.3921 | 8.5778 | 772 | 0.6381 | 0.7107 | 0.6381 | 0.7988 | | 0.3921 | 8.6 | 774 | 0.6229 | 0.7154 | 0.6229 | 0.7893 | | 0.3921 | 8.6222 | 776 | 0.6135 | 0.7177 | 0.6135 | 0.7832 | | 0.3921 | 8.6444 | 778 | 0.6111 | 0.7177 | 0.6111 | 0.7817 | | 0.3921 | 8.6667 | 780 | 0.6030 | 0.7119 | 0.6030 | 0.7765 | | 0.3921 | 8.6889 | 782 | 0.5961 | 0.7295 | 0.5961 | 0.7721 | | 0.3921 | 8.7111 | 784 | 0.5917 | 0.7311 | 0.5917 | 0.7692 | | 0.3921 | 8.7333 | 786 | 0.5874 | 0.7311 | 0.5874 | 0.7664 | | 0.3921 | 8.7556 | 788 | 0.5845 | 0.7268 | 0.5845 | 0.7645 | | 0.3921 | 8.7778 | 790 | 0.5799 | 0.7268 | 0.5799 | 0.7615 | | 0.3921 | 8.8 | 792 | 0.5781 | 0.7268 | 0.5781 | 0.7603 | | 0.3921 | 8.8222 | 794 | 0.5757 | 0.7268 | 0.5757 | 0.7587 | | 0.3921 | 8.8444 | 796 | 0.5768 | 0.7268 | 0.5768 | 0.7595 | | 0.3921 | 8.8667 | 798 | 0.5820 | 0.7268 | 0.5820 | 0.7629 | | 0.3921 | 8.8889 | 800 | 0.5893 | 0.7268 | 0.5893 | 0.7676 | | 0.3921 | 8.9111 | 802 | 0.5951 | 0.7268 | 0.5951 | 0.7714 | | 0.3921 | 8.9333 | 804 | 0.6026 | 0.7226 | 0.6026 | 0.7763 | | 0.3921 | 8.9556 | 806 | 0.6079 | 0.7205 | 0.6079 | 0.7797 | | 0.3921 | 8.9778 | 808 | 0.6125 | 0.7087 | 0.6125 | 0.7826 | | 0.3921 | 9.0 | 810 | 0.6178 | 0.7087 | 0.6178 | 0.7860 | | 0.3921 | 9.0222 | 812 | 0.6207 | 0.7045 | 0.6207 | 0.7879 | | 0.3921 | 9.0444 | 814 | 0.6210 | 0.7045 | 0.6210 | 0.7880 | | 0.3921 | 9.0667 | 816 | 0.6210 | 0.7045 | 0.6210 | 0.7880 | | 0.3921 | 9.0889 | 818 | 0.6146 | 0.7045 | 0.6146 | 0.7840 | | 0.3921 | 9.1111 | 820 | 0.6088 | 0.7226 | 0.6088 | 0.7802 | | 0.3921 | 9.1333 | 822 | 0.6022 | 0.7226 | 0.6022 | 0.7760 | | 0.3921 | 9.1556 | 824 | 0.5956 | 0.7226 | 0.5956 | 0.7718 | | 0.3921 | 9.1778 | 826 | 0.5938 | 0.7226 | 0.5938 | 0.7706 | | 0.3921 | 9.2 | 828 | 0.5924 | 0.7226 | 0.5924 | 0.7696 | | 0.3921 | 9.2222 | 830 | 0.5877 | 0.7268 | 0.5877 | 0.7666 | | 0.3921 | 9.2444 | 832 | 0.5800 | 0.7268 | 0.5800 | 0.7616 | | 0.3921 | 9.2667 | 834 | 0.5745 | 0.7311 | 0.5745 | 0.7580 | | 0.3921 | 9.2889 | 836 | 0.5713 | 0.7311 | 0.5713 | 0.7559 | | 0.3921 | 9.3111 | 838 | 0.5700 | 0.7311 | 0.5700 | 0.7550 | | 0.3921 | 9.3333 | 840 | 0.5699 | 0.7311 | 0.5699 | 0.7549 | | 0.3921 | 9.3556 | 842 | 0.5692 | 0.7311 | 0.5692 | 0.7544 | | 0.3921 | 9.3778 | 844 | 0.5681 | 0.7311 | 0.5681 | 0.7537 | | 0.3921 | 9.4 | 846 | 0.5684 | 0.7311 | 0.5684 | 0.7539 | | 0.3921 | 9.4222 | 848 | 0.5682 | 0.7369 | 0.5682 | 0.7538 | | 0.3921 | 9.4444 | 850 | 0.5684 | 0.7369 | 0.5684 | 0.7539 | | 0.3921 | 9.4667 | 852 | 0.5699 | 0.7369 | 0.5699 | 0.7549 | | 0.3921 | 9.4889 | 854 | 0.5715 | 0.7268 | 0.5715 | 0.7560 | | 0.3921 | 9.5111 | 856 | 0.5746 | 0.7268 | 0.5746 | 0.7581 | | 0.3921 | 9.5333 | 858 | 0.5781 | 0.7268 | 0.5781 | 0.7603 | | 0.3921 | 9.5556 | 860 | 0.5803 | 0.7268 | 0.5803 | 0.7618 | | 0.3921 | 9.5778 | 862 | 0.5837 | 0.7268 | 0.5837 | 0.7640 | | 0.3921 | 9.6 | 864 | 0.5868 | 0.7226 | 0.5868 | 0.7660 | | 0.3921 | 9.6222 | 866 | 0.5898 | 0.7183 | 0.5898 | 0.7680 | | 0.3921 | 9.6444 | 868 | 0.5925 | 0.7183 | 0.5925 | 0.7697 | | 0.3921 | 9.6667 | 870 | 0.5959 | 0.7183 | 0.5959 | 0.7720 | | 0.3921 | 9.6889 | 872 | 0.5975 | 0.7183 | 0.5975 | 0.7730 | | 0.3921 | 9.7111 | 874 | 0.5974 | 0.7183 | 0.5974 | 0.7729 | | 0.3921 | 9.7333 | 876 | 0.5965 | 0.7183 | 0.5965 | 0.7724 | | 0.3921 | 9.7556 | 878 | 0.5964 | 0.7183 | 0.5964 | 0.7723 | | 0.3921 | 9.7778 | 880 | 0.5962 | 0.7183 | 0.5962 | 0.7721 | | 0.3921 | 9.8 | 882 | 0.5962 | 0.7183 | 0.5962 | 0.7722 | | 0.3921 | 9.8222 | 884 | 0.5974 | 0.7183 | 0.5974 | 0.7729 | | 0.3921 | 9.8444 | 886 | 0.5985 | 0.7183 | 0.5985 | 0.7736 | | 0.3921 | 9.8667 | 888 | 0.5998 | 0.7005 | 0.5998 | 0.7745 | | 0.3921 | 9.8889 | 890 | 0.6004 | 0.7005 | 0.6004 | 0.7748 | | 0.3921 | 9.9111 | 892 | 0.6003 | 0.7005 | 0.6003 | 0.7748 | | 0.3921 | 9.9333 | 894 | 0.5998 | 0.7048 | 0.5998 | 0.7745 | | 0.3921 | 9.9556 | 896 | 0.5995 | 0.7048 | 0.5995 | 0.7743 | | 0.3921 | 9.9778 | 898 | 0.5994 | 0.7048 | 0.5994 | 0.7742 | | 0.3921 | 10.0 | 900 | 0.5994 | 0.7048 | 0.5994 | 0.7742 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
NobodyExistsOnTheInternet/mistral-7b-airoboros-chatml
NobodyExistsOnTheInternet
"2023-12-01T07:25:28Z"
1
0
peft
[ "peft", "safetensors", "mistral", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "4-bit", "bitsandbytes", "region:us" ]
null
"2023-11-29T14:06:38Z"
--- library_name: peft base_model: mistralai/Mistral-7B-v0.1 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0
DevD60/sql_generator_f5
DevD60
"2025-03-03T18:44:56Z"
3
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
"2025-02-24T21:37:00Z"
--- library_name: transformers license: apache-2.0 base_model: t5-small tags: - generated_from_trainer model-index: - name: sql_generator_f5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sql_generator_f5 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on [gretelai/synthetic_text_to_sql](https://huggingface.co/datasets/gretelai/synthetic_text_to_sql). It achieves the following results on the evaluation set: - eval_loss: 0.0367 - eval_runtime: 48.8318 - eval_samples_per_second: 119.82 - eval_steps_per_second: 29.96 - epoch: 3.0 - step: 75000 ## Model description Given input question and construction of SQL tables as context, the model will generate correct SQL to query a SQL database. ## How to use Load the model using Hugging Face Transformers: ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer model_name = "DevD60/sql_generator_f5" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = AutoModelForSeq2SeqLM.from_pretrained(model_name, trust_remote_code=True) question = "How many employees work in each department?" context = """ CREATE TABLE employees (id INT, name TEXT, department_id INT); INSERT INTO employees (id, name, department_id) VALUES (1, 'Alice', 1), (2, 'Bob', 1), (3, 'Charlie', 2), (4, 'David', 2), (5, 'Eve', 3); CREATE TABLE departments (department_id INT, department_name TEXT); INSERT INTO departments (department_id, department_name) VALUES (1, 'HR'), (2, 'Engineering'), (3, 'Marketing'); """ input_text = f"Translate to SQL: {question} Context: {context}" inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512) output_ids = model.generate(**inputs, max_length=512, do_sample=True, temperature=0.6, top_k=50, top_p=0.95) generated_sql = tokenizer.decode(output_ids[0], skip_special_tokens=True) ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1 - Datasets 2.19.1 - Tokenizers 0.20.1
Anachrono/_mistral_7b_v0.2_Basic_CDS_Classification
Anachrono
"2024-03-20T13:18:30Z"
6
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-03-20T13:14:16Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
filipesantoscv11/13d4e63d-c8e4-4c0f-acd7-483d851056a5
filipesantoscv11
"2025-01-23T11:56:35Z"
9
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen1.5-14B-Chat", "base_model:adapter:Qwen/Qwen1.5-14B-Chat", "license:other", "region:us" ]
null
"2025-01-23T11:25:39Z"
--- library_name: peft license: other base_model: Qwen/Qwen1.5-14B-Chat tags: - axolotl - generated_from_trainer model-index: - name: 13d4e63d-c8e4-4c0f-acd7-483d851056a5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen1.5-14B-Chat bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f70ddae1849231d5_train_data.json ds_type: json format: custom path: /workspace/input_data/f70ddae1849231d5_train_data.json type: field_instruction: instruction field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: 1 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: filipesantoscv11/13d4e63d-c8e4-4c0f-acd7-483d851056a5 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 79GiB max_steps: 30 micro_batch_size: 4 mlflow_experiment_name: /tmp/f70ddae1849231d5_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 626c7685-3b25-4cd2-a8a4-a8e58ec0f209 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 626c7685-3b25-4cd2-a8a4-a8e58ec0f209 warmup_steps: 5 weight_decay: 0.001 xformers_attention: true ``` </details><br> # 13d4e63d-c8e4-4c0f-acd7-483d851056a5 This model is a fine-tuned version of [Qwen/Qwen1.5-14B-Chat](https://huggingface.co/Qwen/Qwen1.5-14B-Chat) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4775 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0003 | 1 | 0.7046 | | 0.4865 | 0.0017 | 5 | 0.6249 | | 0.5005 | 0.0034 | 10 | 0.5373 | | 0.4763 | 0.0051 | 15 | 0.4981 | | 0.4902 | 0.0068 | 20 | 0.4835 | | 0.4965 | 0.0085 | 25 | 0.4787 | | 0.5207 | 0.0101 | 30 | 0.4775 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Davimartins/Farias123
Davimartins
"2022-11-27T20:50:51Z"
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
"2022-11-27T20:50:50Z"
--- license: bigscience-openrail-m ---
yz122/ddpm-celebahq-finetuned-butterflies-2epochs
yz122
"2025-02-16T18:42:52Z"
0
0
diffusers
[ "diffusers", "safetensors", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
"2025-02-16T18:42:30Z"
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Example Fine-Tuned Model for Unit 2 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) Describe your model here ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('yz122/ddpm-celebahq-finetuned-butterflies-2epochs') image = pipeline().images[0] image ```
dutti/Ascal-rt.11
dutti
"2025-04-05T18:41:11Z"
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "arxiv:2306.01708", "base_model:Delta-Vector/Rei-V2-12B", "base_model:merge:Delta-Vector/Rei-V2-12B", "base_model:DreadPoor/Irix-12B-Model_Stock", "base_model:merge:DreadPoor/Irix-12B-Model_Stock", "base_model:TheDrummer/UnslopNemo-12B-v4.1", "base_model:merge:TheDrummer/UnslopNemo-12B-v4.1", "base_model:inflatebot/MN-12B-Mag-Mell-R1", "base_model:merge:inflatebot/MN-12B-Mag-Mell-R1", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-05T18:35:40Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
QuyUET/bert-finetuned-mrpc
QuyUET
"2025-03-13T07:54:37Z"
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2025-03-13T07:53:15Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
NeelK94/ppo-LunarLander-v2
NeelK94
"2022-12-12T22:43:17Z"
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
"2022-12-12T22:42:54Z"
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 243.03 +/- 36.09 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
fifxus/cbe2ffdc-b36c-4f81-aef8-3be2a47a8077
fifxus
"2025-01-31T02:36:24Z"
14
0
peft
[ "peft", "safetensors", "gemma", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-7b-it", "base_model:adapter:unsloth/gemma-7b-it", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
"2025-01-31T02:08:40Z"
--- library_name: peft license: apache-2.0 base_model: unsloth/gemma-7b-it tags: - axolotl - generated_from_trainer model-index: - name: cbe2ffdc-b36c-4f81-aef8-3be2a47a8077 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-7b-it bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c5406eef3f6c391a_train_data.json ds_type: json format: custom path: /workspace/input_data/c5406eef3f6c391a_train_data.json type: field_instruction: dialogue field_output: summary format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: true hub_model_id: fifxus/cbe2ffdc-b36c-4f81-aef8-3be2a47a8077 hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/c5406eef3f6c391a_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 1e4af6e8-4c1d-4c86-ab18-ee8b80d9a919 wandb_project: Gradients-On-10 wandb_run: your_name wandb_runid: 1e4af6e8-4c1d-4c86-ab18-ee8b80d9a919 warmup_steps: 5 weight_decay: 0.01 xformers_attention: null ``` </details><br> # cbe2ffdc-b36c-4f81-aef8-3be2a47a8077 This model is a fine-tuned version of [unsloth/gemma-7b-it](https://huggingface.co/unsloth/gemma-7b-it) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0051 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.7333 | 0.6020 | 200 | 1.0051 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
tirik00/ppo-LunarLander-v2
tirik00
"2024-01-08T22:23:58Z"
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
"2024-01-08T22:18:18Z"
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 282.18 +/- 18.11 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Triangle104/INTELLECT-1-Instruct-Q4_K_M-GGUF
Triangle104
"2024-12-01T09:36:05Z"
6
1
null
[ "gguf", "llama-cpp", "gguf-my-repo", "text-generation", "en", "dataset:PrimeIntellect/fineweb-edu", "dataset:PrimeIntellect/fineweb", "dataset:PrimeIntellect/StackV1-popular", "dataset:mlfoundations/dclm-baseline-1.0-parquet", "dataset:open-web-math/open-web-math", "dataset:arcee-ai/EvolKit-75K", "dataset:arcee-ai/Llama-405B-Logits", "dataset:arcee-ai/The-Tomb", "dataset:mlabonne/open-perfectblend-fixed", "dataset:microsoft/orca-agentinstruct-1M-v1-cleaned", "dataset:Post-training-Data-Flywheel/AutoIF-instruct-61k-with-funcs", "dataset:Team-ACE/ToolACE", "dataset:Synthia-coder", "dataset:ServiceNow-AI/M2Lingual", "dataset:AI-MO/NuminaMath-TIR", "dataset:allenai/tulu-3-sft-personas-code", "dataset:allenai/tulu-3-sft-personas-math", "dataset:allenai/tulu-3-sft-personas-math-grade", "dataset:allenai/tulu-3-sft-personas-algebra", "base_model:PrimeIntellect/INTELLECT-1-Instruct", "base_model:quantized:PrimeIntellect/INTELLECT-1-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
"2024-12-01T09:33:41Z"
--- license: apache-2.0 datasets: - PrimeIntellect/fineweb-edu - PrimeIntellect/fineweb - PrimeIntellect/StackV1-popular - mlfoundations/dclm-baseline-1.0-parquet - open-web-math/open-web-math - arcee-ai/EvolKit-75K - arcee-ai/Llama-405B-Logits - arcee-ai/The-Tomb - mlabonne/open-perfectblend-fixed - microsoft/orca-agentinstruct-1M-v1-cleaned - Post-training-Data-Flywheel/AutoIF-instruct-61k-with-funcs - Team-ACE/ToolACE - Synthia-coder - ServiceNow-AI/M2Lingual - AI-MO/NuminaMath-TIR - allenai/tulu-3-sft-personas-code - allenai/tulu-3-sft-personas-math - allenai/tulu-3-sft-personas-math-grade - allenai/tulu-3-sft-personas-algebra language: - en base_model: PrimeIntellect/INTELLECT-1-Instruct pipeline_tag: text-generation tags: - llama-cpp - gguf-my-repo --- # Triangle104/INTELLECT-1-Instruct-Q4_K_M-GGUF This model was converted to GGUF format from [`PrimeIntellect/INTELLECT-1-Instruct`](https://huggingface.co/PrimeIntellect/INTELLECT-1-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/PrimeIntellect/INTELLECT-1-Instruct) for more details on the model. --- arcee-ai/Llama-405B-Logits arcee-ai/The-Tomb Instruction Following: - mlabonne/open-perfectblend-fixed (generalist capabilities) microsoft/orca-agentinstruct-1M-v1-cleaned (Chain-of-Thought) Post-training-Data-Flywheel/AutoIF-instruct-61k-with-funcs Domain-Specific: - Team-ACE/ToolACE (function calling) Synthia coder (programming) ServiceNow-AI/M2Lingual (multilingual) AI-MO/NuminaMath-TIR (mathematics) Tulu-3 Persona Datasets: - allenai/tulu-3-sft-personas-code allenai/tulu-3-sft-personas-math allenai/tulu-3-sft-personas-math-grade allenai/tulu-3-sft-personas-algebra Second, we execute 8 distinct Direct Preference Optimization (DPO) runs with various combinations of data sets to enhance specific performance metrics and align the model with human preferences. A key advantage in our post-training process was INTELLECT-1's use of the Llama-3 tokenizer, which allowed us to utilize logits from Llama-3.1-405B to heal and maintain precision during the post-training process via DistillKit. Finally, we performed 16 strategic merges between candidate models using MergeKit to create superior combined models that leverage the strengths of different training runs. During the post-training phase, we observed that when using a ChatML template without an explicit BOS (begin-of-sequence) token, the initial loss was approximately 15. However, when switching to the Llama 3.1 chat template, the loss for these trainings started much lower at approximately 1.1, indicating better alignment with the underlying Llama 3 tokenizer. The combination of these post-training techniques resulted in significant improvements in various benchmarks, particularly in knowledge retrieval, grade school math, instruction following and reasoning. Citations If you use this model in your research, please cite it as follows: @article{jaghouar2024intellect, title={INTELLECT-1 Technical Report.}, author={Jaghouar, Sami and Ong, Jack Min and Basra, Manveer and Obeid, Fares and Straube, Jannik and Keiblinger, Michael and Bakouch, Elie and Atkins, Lucas and Panahi, Maziyar and Goddard, Charles and Ryabinin, Max and Hagemann, Johannes}, journal={arXiv preprint}, year={2024} } --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/INTELLECT-1-Instruct-Q4_K_M-GGUF --hf-file intellect-1-instruct-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/INTELLECT-1-Instruct-Q4_K_M-GGUF --hf-file intellect-1-instruct-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/INTELLECT-1-Instruct-Q4_K_M-GGUF --hf-file intellect-1-instruct-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/INTELLECT-1-Instruct-Q4_K_M-GGUF --hf-file intellect-1-instruct-q4_k_m.gguf -c 2048 ```
rmurali2023/distilbert-base-uncased-finetuned-tweetemotion-test
rmurali2023
"2023-10-09T19:54:41Z"
105
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2023-10-09T15:52:53Z"
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-tweetemotion-test results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9295 - name: F1 type: f1 value: 0.9293769060779349 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-tweetemotion-test This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2071 - Accuracy: 0.9295 - F1: 0.9294 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8174 | 1.0 | 250 | 0.3035 | 0.9155 | 0.9148 | | 0.2399 | 2.0 | 500 | 0.2071 | 0.9295 | 0.9294 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
mergekit-community/L3.1-Boshima-b
mergekit-community
"2024-09-10T11:44:07Z"
5
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "base_model:ArliAI/Llama-3.1-8B-ArliAI-Formax-v1.0", "base_model:merge:ArliAI/Llama-3.1-8B-ArliAI-Formax-v1.0", "base_model:mergekit-community/L3-Boshima-a", "base_model:merge:mergekit-community/L3-Boshima-a", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-09-10T11:38:55Z"
--- base_model: - ArliAI/Llama-3.1-8B-ArliAI-Formax-v1.0 - mergekit-community/L3-Boshima-a library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [ArliAI/Llama-3.1-8B-ArliAI-Formax-v1.0](https://huggingface.co/ArliAI/Llama-3.1-8B-ArliAI-Formax-v1.0) * [mergekit-community/L3-Boshima-a](https://huggingface.co/mergekit-community/L3-Boshima-a) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: ArliAI/Llama-3.1-8B-ArliAI-Formax-v1.0 - model: mergekit-community/L3-Boshima-a merge_method: slerp base_model: ArliAI/Llama-3.1-8B-ArliAI-Formax-v1.0 parameters: t: - filter: v_proj value: [0, 0, 1, 1, 1, 1, 1, 1, 0.9, 0, 0] - filter: o_proj value: [0, 0, 1, 1, 1, 1, 1, 1, 0.9, 0, 0] - filter: up_proj value: [0, 0, 1, 1, 1, 1, 1, 1, 0.9, 0, 0] - filter: gate_proj value: [0, 0, 1, 1, 1, 1, 1, 1, 0.9, 0, 0] - filter: down_proj value: [0, 0, 1, 1, 1, 1, 1, 1, 0.9, 0, 0] - value: 0.88 dtype: bfloat16 ```
jlbaker361/fine-tune_addition_subtraction_decimal
jlbaker361
"2023-11-29T00:49:24Z"
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
"2023-11-18T14:18:08Z"
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
AnirudhRajagopalan1201/tinystories-custom-3M
AnirudhRajagopalan1201
"2024-10-30T22:14:12Z"
7
0
null
[ "safetensors", "gpt_neo", "dataset:roneneldan/TinyStories", "arxiv:2305.07759", "region:us" ]
null
"2024-10-29T23:54:17Z"
--- datasets: - roneneldan/TinyStories --- --- Model trained on the TinyStories Dataset, replicating https://arxiv.org/abs/2305.07759, based on GPT-Neo architecture. --- Hyperparams used to train this model: ``` "batch_size": 64, "block_size": 128, "lr": 6e-4, "n_layer": 4, "n_head": 4, "n_embd": 64, "dropout": 0.1, "weight_decay": 0.01, "epochs": 1, "eval_interval": 200, "eval_steps": 50, "vocab_size": 50257, "warmup_tokens": 5000, "gradient_accumulation_steps": 16, ``` --- EXAMPLE USAGE ```py !pip install --quiet transformers from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained('AnirudhRajagopalan1201/tinystories-custom-3M') tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-125M") prompt = "Lily likes cats and dogs. She asked her mom for a dog and her mom said no, so instead she asked" input_ids = tokenizer.encode(prompt, return_tensors="pt") output = model.generate(input_ids, temperature=0.2, max_length = 100, do_sample=True) output_text = tokenizer.decode(output[0], skip_special_tokens=True) print(output_text) ```
Keltezaa/alisa-flux-adult-film-actress
Keltezaa
"2025-02-14T05:43:45Z"
0
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "migrated", "photorealistic", "sexy", "model", "woman", "celebrity", "girls", "realistic", "adult star", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
"2025-02-14T05:43:44Z"
--- license: other license_name: bespoke-lora-trained-license license_link: https://multimodal.art/civitai-licenses?allowNoCredit=True&allowCommercialUse=RentCivit&allowDerivatives=True&allowDifferentLicense=True tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora - migrated - photorealistic - sexy - model - woman - celebrity - girls - realistic - adult star base_model: black-forest-labs/FLUX.1-dev instance_prompt: ALIS@ widget: - text: 'This is an image of a ALIS@, beautiful detailed photograph, hair cascading, makeup, wearing a dress, standing in cafe looking at the viewer, with a hint of a closed-mouth smile.' output: url: >- 38380392.jpeg - text: 'This is an image of a ALIS@, beautiful detailed photograph, hair cascading, makeup, wearing a dress, standing in cafe looking at the viewer, with a hint of a closed-mouth smile.' output: url: >- 38380397.jpeg - text: 'This is an image of a ALIS@, beautiful detailed photograph, soft makeup, wearing a pink dress, standing in a room looking at the viewer, lamp light iluminates her face, smiling.' output: url: >- 38380396.jpeg - text: 'The image is a portrait of ALIS@. She leans against a brick wall outside, wearing a dark green trench coat over a beige turtleneck. Her arms are relaxed at her sides, and she is giving a confident, slight smirk to the camera. Behind her, vines climb up the wall, adding texture to the rustic urban setting.' output: url: >- 38380395.jpeg - text: 'The image is a portrait of ALIS@. She leans against a brick wall outside, wearing a dark green trench coat over a beige turtleneck. Her arms are relaxed at her sides, and she is giving a confident, slight smirk to the camera. Behind her, vines climb up the wall, adding texture to the rustic urban setting.' output: url: >- 38380398.jpeg - text: 'The image is a portrait of ALIS@. She sits on a vintage armchair in a cozy, softly lit room with a large bookshelf in the background. She wears a white, oversized sweater that drapes off one shoulder, paired with light jeans. She has her hand on her cheek, looking at the camera with a thoughtful, dreamy look.' output: url: >- 38380393.jpeg - text: 'The image is a portrait of ALIS@ standing in front of a window. She is wearing a yellow dress. The dress has a halter neckline and thin straps. The woman is standing with her hands on her hips and is looking directly at the camera with a slight smile on her face. The background is blurred, but it appears to be an outdoor setting with trees and a building visible through the window.' output: url: >- 38380394.jpeg - text: 'The image is a portrait of ALIS@. She is standing by a wooden fence in a sunflower field, wearing a light blue sundress with ruffled sleeves and a fitted waist. Her arms are crossed casually, and she gazes off into the distance with a serene expression. In the background, sunflowers stretch out to the horizon under a bright blue sky.' output: url: >- 38380391.jpeg --- # Alisa (Flux) - Adult Film Actress <Gallery /> ## Model description <p><img src="https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/a4d11b77-207c-4d00-8956-a375d02c51e9/width=525/a4d11b77-207c-4d00-8956-a375d02c51e9.jpeg" /><span style="color:rgb(193, 194, 197)">If you’ve been enjoying my free LoRAs and want to show your support, check out my </span><a target="_blank" rel="ugc" href="https://ko-fi.com/victordmalves">Ko-fi page</a><span style="color:rgb(193, 194, 197)">! There, you can purchase FP16 LoRA and request custom LoRA training, or simply reward me with some Buzz. Every bit of support means so much—thank you! ❤️</span></p><p></p><p><strong>Alisa</strong><span style="color:rgb(218, 220, 224)"> at MPL Studios</span><br /><strong>Gold</strong><span style="color:rgb(218, 220, 224)"> at Stunning18</span></p><p></p><p><span style="color:rgb(218, 220, 224)">Alisa was born on November 5th, 1983 in Russia. She started her nude modeling career in 2006 shooting for Mpl Studios. She is a model of endless allure.</span></p><ul><li><p><strong>Born: </strong>1986</p></li><li><p><strong>Birthplace: </strong>Russia</p></li><li><p><strong>Hair Color: </strong>Brown</p></li><li><p><strong>Bust Size: </strong>Small</p></li><li><p><strong>First Seen: </strong>2006</p></li></ul><p></p><p>Keyword: ALIS@<br />Euler / Simple<br />30 Steps<br />LoRa Strength 1.0</p><p></p><p>Did you like it? Consider tip me with some Buzz!</p> ## Trigger words You should use `ALIS@` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/Keltezaa/alisa-flux-adult-film-actress/tree/main) them in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch device = "cuda" if torch.cuda.is_available() else "cpu" pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.bfloat16).to(device) pipeline.load_lora_weights('Keltezaa/alisa-flux-adult-film-actress', weight_name='alisa-v1.safetensors') image = pipeline('The image is a portrait of ALIS@. She is standing by a wooden fence in a sunflower field, wearing a light blue sundress with ruffled sleeves and a fitted waist. Her arms are crossed casually, and she gazes off into the distance with a serene expression. In the background, sunflowers stretch out to the horizon under a bright blue sky.').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
GanjinZero/biobart-large
GanjinZero
"2023-04-04T07:46:25Z"
265
6
transformers
[ "transformers", "pytorch", "safetensors", "bart", "text2text-generation", "biobart", "biomedical", "en", "arxiv:2204.03905", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
"2022-03-12T07:01:05Z"
--- language: - en license: apache-2.0 tags: - bart - biobart - biomedical inference: true widget: - text: "Influenza is a <mask> disease." - type: "text-generation" --- Paper: [BioBART: Pretraining and Evaluation of A Biomedical Generative Language Model](https://arxiv.org/pdf/2204.03905.pdf) ``` @misc{BioBART, title={BioBART: Pretraining and Evaluation of A Biomedical Generative Language Model}, author={Hongyi Yuan and Zheng Yuan and Ruyi Gan and Jiaxing Zhang and Yutao Xie and Sheng Yu}, year={2022}, eprint={2204.03905}, archivePrefix={arXiv} } ```
d0r1h/led-base-ilc
d0r1h
"2022-05-06T08:17:46Z"
25
0
transformers
[ "transformers", "pytorch", "led", "text2text-generation", "summarization", "dataset:ilc", "arxiv:2004.05150", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
"2022-05-05T12:08:07Z"
--- license: apache-2.0 datasets: ilc tags: - summarization metrics: - rouge widget: - text: "IN THE HIGH COURT OF JUDICATURE AT PATNA CRIMINAL MISCELLANEOUS No. 229121 Arising Out of PS. Case No. 127 Year 2020 Thana DUMRAON District Buxar 1. Ramlal Goswami aged about 44 years Male S o Late Gauri Shankar 2. Dharmshila Devi @ Savita Devi aged about 35 years wife of Ramlal Both resident of village Badka Dhakaich P.S. Krishna Brahm District ... Petitioner s ... Opposite Party s The State of Bihar Appearance : For the Petitioner s For the State CORAM: HONOURABLE MR. JUSTICE AHSANUDDIN AMANULLAH ORAL JUDGMENT Mr. Manoj Kumar with Mr. Anil Kumar Roy Advocates Mr. Ram Sumiran Roy APP The matter has been heard via video conferencing. 2. Heard Mr. Manoj Kumar learned counsel along with Mr. Anil Kumar Roy learned counsel for the petitioners and Mr. Ram Sumiran Roy learned Additional Public Prosecutorfor the State. 3. Learned counsel for the petitioners submitted that he may be permitted to add alias name of petitioner no. 2 which is Savita Devi. 4. Prayer allowed. 5. Let necessary correction be made in the cause title Date : 03 08 2021 Patna High Court CR. MISC. No. 229121 dt.03 08 2021 2 4 by learned counsel for the petitioners through e mode by day after tomorrow. 6. The petitioners apprehend arrest in connection with Dumraon PS Case No. 1220 dated 15.04.2020 instituted under Sections 406 420 467 468 471 448 506 34 of the Indian Penal Code. 7. The allegation against the petitioners is that the informant who is the cousin brother of petitioner no. 1 had bought land through the petitioner no. 1 but he was cheated both with regard to the rates as also that the same piece of land being sold by the petitioners to two different persons. 8. Learned counsel for the petitioners submitted that in the FIR itself it has been stated that the informant had sold his land at a much higher price than the price he was paying for the land which he alleges to have been negotiated by the petitioner no. 1 for him. Further it was submitted that all such dispute relating to money is a purely civil in nature for which criminal case is an abuse of the process of the Court. Learned counsel submitted that the informant being the first cousin of the petitioner no. 1 and having sold his land was very well aware of the ground realities and cannot take a stand that he was ignorant of what was the actual position. Further it was submitted that Patna High Court CR. MISC. No. 229121 dt.03 08 2021 3 4 the petitioners have filed a supplementary affidavit in which a categorical stand has been taken on oath that the petitioners have not sold the same piece of land to two different persons. Learned counsel submitted that the petitioners are simple citizens being husband and wife and have no other criminal antecedent. It was submitted that had the allegation been correct the other person aggrieved would also have filed a case and most importantly neither any name of any person has been taken nor details of any document that the same piece of land was transferred to two persons has been either mentioned or brought on record. 9. Learned APP submitted that the petitioners are alleged to have cheated the informant and have got the same piece of land registered in favour of two persons. 10. Having considered the facts and circumstances of the case and submissions of learned counsel for the parties in the event of arrest or surrender before the Court below within six weeks from today the petitioners be released on bail upon furnishing bail bonds of Rs. 25 000 each with two sureties of the like amount each to the satisfaction of the learned Chief Judicial Magistrate Buxar in Dumrao PS Case No. 127 of 2020 subject to the conditions laid down in Patna High Court CR. MISC. No. 229121 dt.03 08 2021 4 4 Section 438(2) of the Code of Criminal Procedure 1973 and furtherthat one of the bailors shall be a close relative of the petitioners andthat the petitioners shall cooperate with the Court and the police prosecution. Failure to cooperate shall lead to cancellation of their bail bonds. 11. It shall also be open for the prosecution to bring any violation of the foregoing conditions of bail by the petitioners to the notice of the Court concerned which shall take immediate action on the same after giving opportunity of hearing to the aforementioned terms. 12. The petition stands disposed of Anjani " --- # Longformer Encoder-Decoder (LED) fine-tuned on ILC This model is a fine-tuned version of [led-base-16384](https://huggingface.co/allenai/led-base-16384) on the [ILC](https://huggingface.co/datasets/d0r1h/ILC) dataset. As described in [Longformer: The Long-Document Transformer](https://arxiv.org/pdf/2004.05150.pdf) by Iz Beltagy, Matthew E. Peters, Arman Cohan, *led-base-16384* was initialized from [*bart-base*](https://huggingface.co/facebook/bart-base) since both models share the exact same architecture. To be able to process 16K tokens, *bart-base*'s position embedding matrix was simply copied 16 times. ```Python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer device = "cuda" if torch.cuda.is_available() else "CPU" checkpoint = "d0r1h/led-base-ilc" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint, return_dict_in_generate=True).to(device) case = "......." input_ids = tokenizer(case, return_tensors="pt").input_ids.to(device) global_attention_mask = torch.zeros_like(input_ids) global_attention_mask[:, 0] = 1 sequences = model.generate(input_ids, global_attention_mask=global_attention_mask).sequences summary = tokenizer.batch_decode(sequences, skip_special_tokens=True) ``` ## Evaluation results When the model is used for summarizing ILC documents(10 samples), it achieves the following results: | Model | rouge1-f | rouge1-p | rouge2-f | rouge2-p | rougeL-f | rougeL-p | |:-----------:|:-----:|:-----:|:------:|:-----:|:------:|:-----:| | led-ilc | **42** | **47** | **22** | **24** | **39** | **44** | | led-base | 3 | 39 | 1 | 21 | 3 | 37 | [This notebook](https://colab.research.google.com/github/d0r1h/Notebooks/blob/main/NLP/Summarization/led_base_ilc_summarization.ipynb) shows how *led* can effectively be used for downstream tasks such as summarization.
NurAzzamWafiuddin/bert-finetuned-squad
NurAzzamWafiuddin
"2025-02-16T11:19:46Z"
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "question-answering", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
"2025-02-16T04:56:09Z"
--- library_name: transformers license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.48.2 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
Legalaz/llabo_07_13_21_50
Legalaz
"2025-02-21T02:52:08Z"
0
0
transformers
[ "transformers", "safetensors", "parler_tts", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
"2025-02-21T02:50:51Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jjaehyeok2/12food
jjaehyeok2
"2025-04-05T13:16:01Z"
0
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "diffusers-training", "lora", "base_model:Bingsu/my-korean-stable-diffusion-v1-5", "base_model:adapter:Bingsu/my-korean-stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
"2025-04-05T12:21:08Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
flatala-research/videomae-base-finetuned-kinetics-finetuned-right-hand-conflab-v11
flatala-research
"2024-05-27T16:45:00Z"
64
0
transformers
[ "transformers", "safetensors", "videomae", "video-classification", "generated_from_trainer", "base_model:MCG-NJU/videomae-base-finetuned-kinetics", "base_model:finetune:MCG-NJU/videomae-base-finetuned-kinetics", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
"2024-05-27T16:25:12Z"
--- license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base-finetuned-kinetics tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-kinetics-finetuned-right-hand-conflab-v11 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # videomae-base-finetuned-kinetics-finetuned-right-hand-conflab-v11 This model is a fine-tuned version of [MCG-NJU/videomae-base-finetuned-kinetics](https://huggingface.co/MCG-NJU/videomae-base-finetuned-kinetics) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0160 - Accuracy: 0.6108 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 468 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.011 | 0.1261 | 59 | 1.9647 | 0.6422 | | 0.0044 | 1.1261 | 118 | 1.9634 | 0.6373 | | 0.0486 | 2.1261 | 177 | 1.9649 | 0.6422 | | 0.0071 | 3.1261 | 236 | 1.9651 | 0.6324 | ### Framework versions - Transformers 4.41.0 - Pytorch 1.12.0+cu116 - Datasets 2.19.1 - Tokenizers 0.19.1
M4-ai/NeuralReyna-Mini-1.8B-v0.2
M4-ai
"2024-05-12T16:47:07Z"
197
13
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "en", "dataset:Intel/orca_dpo_pairs", "dataset:Locutusque/Hercules-v3.0", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-02-17T21:36:53Z"
--- language: - en license: apache-2.0 tags: - conversational datasets: - Intel/orca_dpo_pairs - Locutusque/Hercules-v3.0 inference: parameters: do_sample: true temperature: 0.8 top_p: 0.95 top_k: 40 min_new_tokens: 2 max_new_tokens: 250 repetition_penalty: 1.1 widget: - text: Hello who are you? example_title: Identity - text: What can you do? example_title: Capabilities - text: Create a fastapi endpoint to retrieve the weather given a zip code. example_title: Coding model-index: - name: NeuralReyna-Mini-1.8B-v0.2 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 37.8 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/NeuralReyna-Mini-1.8B-v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 60.51 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/NeuralReyna-Mini-1.8B-v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 45.04 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/NeuralReyna-Mini-1.8B-v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 37.75 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/NeuralReyna-Mini-1.8B-v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 60.93 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/NeuralReyna-Mini-1.8B-v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 27.07 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/NeuralReyna-Mini-1.8B-v0.2 name: Open LLM Leaderboard --- # NeuralReyna-Mini-1.8B-v0.2 ![Reyna image](https://th.bing.com/th/id/OIG3.8IBxuT77hh6Y_r1DZ6WK?dpr=2.6&pid=ImgDetMain) # Description Taken aloobun/Reyna-Mini-1.8B-v0.2 and further fine-tuned it using DPO using the Intel/orca_dpo_pairs dataset. This model has capabilities in coding, math, science, roleplay, and function calling. This model was trained on OpenAI's ChatML prompt format. # Evaluation AGIEval: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6437292ecd93f4c9a34b0d47/eQXYDTQYMaVii-_U0vewF.png) GPT4ALL: | Tasks |Version|Filter|n-shot| Metric |Value | |Stderr| |-------------|------:|------|-----:|--------|-----:|---|-----:| |arc_challenge| 1|none | 0|acc |0.3208|± |0.0136| | | |none | 0|acc_norm|0.3336|± |0.0138| |arc_easy | 1|none | 0|acc |0.6035|± |0.0100| | | |none | 0|acc_norm|0.5833|± |0.0101| |boolq | 2|none | 0|acc |0.6526|± |0.0083| |hellaswag | 1|none | 0|acc |0.4556|± |0.0050| | | |none | 0|acc_norm|0.6076|± |0.0049| |openbookqa | 1|none | 0|acc |0.2600|± |0.0196| | | |none | 0|acc_norm|0.3460|± |0.0213| |piqa | 1|none | 0|acc |0.7236|± |0.0104| | | |none | 0|acc_norm|0.7307|± |0.0104| |winogrande | 1|none | 0|acc |0.6062|± |0.0137| # Disclaimer This model may have overfitted to the DPO training data, and may not perform well. # Contributions Thanks to @aloobun and @Locutusque for their contributions to this model. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_M4-ai__NeuralReyna-Mini-1.8B-v0.2) | Metric |Value| |---------------------------------|----:| |Avg. |44.85| |AI2 Reasoning Challenge (25-Shot)|37.80| |HellaSwag (10-Shot) |60.51| |MMLU (5-Shot) |45.04| |TruthfulQA (0-shot) |37.75| |Winogrande (5-shot) |60.93| |GSM8k (5-shot) |27.07|
happylayers/sc14
happylayers
"2024-04-24T23:13:22Z"
90
0
transformers
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2024-04-24T23:11:47Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
TheBloke/vicuna-7B-v1.5-GGUF
TheBloke
"2023-09-27T12:47:20Z"
772
15
transformers
[ "transformers", "gguf", "llama", "arxiv:2307.09288", "arxiv:2306.05685", "base_model:lmsys/vicuna-7b-v1.5", "base_model:quantized:lmsys/vicuna-7b-v1.5", "license:llama2", "region:us" ]
null
"2023-09-05T04:07:21Z"
--- license: llama2 model_name: Vicuna 7B v1.5 base_model: lmsys/vicuna-7b-v1.5 inference: false model_creator: lmsys model_type: llama prompt_template: 'A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user''s questions. USER: {prompt} ASSISTANT: ' quantized_by: TheBloke --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Vicuna 7B v1.5 - GGUF - Model creator: [lmsys](https://huggingface.co/lmsys) - Original model: [Vicuna 7B v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) <!-- description start --> ## Description This repo contains GGUF format model files for [lmsys's Vicuna 7B v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5). <!-- description end --> <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. GGUF offers numerous advantages over GGML, such as better tokenisation, and support for special tokens. It is also supports metadata, and is designed to be extensible. Here is an incomplate list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. <!-- README_GGUF.md-about-gguf end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/vicuna-7B-v1.5-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/vicuna-7B-v1.5-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/vicuna-7B-v1.5-GGUF) * [lmsys's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/lmsys/vicuna-7b-v1.5) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: Vicuna ``` A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT: ``` <!-- prompt-template end --> <!-- compatibility_gguf start --> ## Compatibility These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) They are also compatible with many third party UIs and libraries - please see the list at the top of this README. ## Explanation of quantisation methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw Refer to the Provided Files table below to see what files use which methods, and how. </details> <!-- compatibility_gguf end --> <!-- README_GGUF.md-provided-files start --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | [vicuna-7b-v1.5.Q2_K.gguf](https://huggingface.co/TheBloke/vicuna-7B-v1.5-GGUF/blob/main/vicuna-7b-v1.5.Q2_K.gguf) | Q2_K | 2 | 2.83 GB| 5.33 GB | smallest, significant quality loss - not recommended for most purposes | | [vicuna-7b-v1.5.Q3_K_S.gguf](https://huggingface.co/TheBloke/vicuna-7B-v1.5-GGUF/blob/main/vicuna-7b-v1.5.Q3_K_S.gguf) | Q3_K_S | 3 | 2.95 GB| 5.45 GB | very small, high quality loss | | [vicuna-7b-v1.5.Q3_K_M.gguf](https://huggingface.co/TheBloke/vicuna-7B-v1.5-GGUF/blob/main/vicuna-7b-v1.5.Q3_K_M.gguf) | Q3_K_M | 3 | 3.30 GB| 5.80 GB | very small, high quality loss | | [vicuna-7b-v1.5.Q3_K_L.gguf](https://huggingface.co/TheBloke/vicuna-7B-v1.5-GGUF/blob/main/vicuna-7b-v1.5.Q3_K_L.gguf) | Q3_K_L | 3 | 3.60 GB| 6.10 GB | small, substantial quality loss | | [vicuna-7b-v1.5.Q4_0.gguf](https://huggingface.co/TheBloke/vicuna-7B-v1.5-GGUF/blob/main/vicuna-7b-v1.5.Q4_0.gguf) | Q4_0 | 4 | 3.83 GB| 6.33 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [vicuna-7b-v1.5.Q4_K_S.gguf](https://huggingface.co/TheBloke/vicuna-7B-v1.5-GGUF/blob/main/vicuna-7b-v1.5.Q4_K_S.gguf) | Q4_K_S | 4 | 3.86 GB| 6.36 GB | small, greater quality loss | | [vicuna-7b-v1.5.Q4_K_M.gguf](https://huggingface.co/TheBloke/vicuna-7B-v1.5-GGUF/blob/main/vicuna-7b-v1.5.Q4_K_M.gguf) | Q4_K_M | 4 | 4.08 GB| 6.58 GB | medium, balanced quality - recommended | | [vicuna-7b-v1.5.Q5_0.gguf](https://huggingface.co/TheBloke/vicuna-7B-v1.5-GGUF/blob/main/vicuna-7b-v1.5.Q5_0.gguf) | Q5_0 | 5 | 4.65 GB| 7.15 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [vicuna-7b-v1.5.Q5_K_S.gguf](https://huggingface.co/TheBloke/vicuna-7B-v1.5-GGUF/blob/main/vicuna-7b-v1.5.Q5_K_S.gguf) | Q5_K_S | 5 | 4.65 GB| 7.15 GB | large, low quality loss - recommended | | [vicuna-7b-v1.5.Q5_K_M.gguf](https://huggingface.co/TheBloke/vicuna-7B-v1.5-GGUF/blob/main/vicuna-7b-v1.5.Q5_K_M.gguf) | Q5_K_M | 5 | 4.78 GB| 7.28 GB | large, very low quality loss - recommended | | [vicuna-7b-v1.5.Q6_K.gguf](https://huggingface.co/TheBloke/vicuna-7B-v1.5-GGUF/blob/main/vicuna-7b-v1.5.Q6_K.gguf) | Q6_K | 6 | 5.53 GB| 8.03 GB | very large, extremely low quality loss | | [vicuna-7b-v1.5.Q8_0.gguf](https://huggingface.co/TheBloke/vicuna-7B-v1.5-GGUF/blob/main/vicuna-7b-v1.5.Q8_0.gguf) | Q8_0 | 8 | 7.16 GB| 9.66 GB | very large, extremely low quality loss - not recommended | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. <!-- README_GGUF.md-provided-files end --> <!-- README_GGUF.md-how-to-download start --> ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: - LM Studio - LoLLMS Web UI - Faraday.dev ### In `text-generation-webui` Under Download Model, you can enter the model repo: TheBloke/vicuna-7B-v1.5-GGUF and below it, a specific filename to download, such as: vicuna-7b-v1.5.q4_K_M.gguf. Then click Download. ### On the command line, including multiple files at once I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub>=0.17.1 ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download TheBloke/vicuna-7B-v1.5-GGUF vicuna-7b-v1.5.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage</summary> You can also download multiple files at once with a pattern: ```shell huggingface-cli download TheBloke/vicuna-7B-v1.5-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/vicuna-7B-v1.5-GGUF vicuna-7b-v1.5.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running the download command. </details> <!-- README_GGUF.md-how-to-download end --> <!-- README_GGUF.md-how-to-run start --> ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 32 -m vicuna-7b-v1.5.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md). ## How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. ### How to load this model from Python using ctransformers #### First install the package ```bash # Base ctransformers with no GPU acceleration pip install ctransformers>=0.2.24 # Or with CUDA GPU acceleration pip install ctransformers[cuda]>=0.2.24 # Or with ROCm GPU acceleration CT_HIPBLAS=1 pip install ctransformers>=0.2.24 --no-binary ctransformers # Or with Metal GPU acceleration for macOS systems CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers ``` #### Simple example code to load one of these GGUF models ```python from ctransformers import AutoModelForCausalLM # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = AutoModelForCausalLM.from_pretrained("TheBloke/vicuna-7B-v1.5-GGUF", model_file="vicuna-7b-v1.5.q4_K_M.gguf", model_type="llama", gpu_layers=50) print(llm("AI is going to")) ``` ## How to use with LangChain Here's guides on using llama-cpp-python or ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) <!-- README_GGUF.md-how-to-run end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> <!-- original-model-card start --> # Original model card: lmsys's Vicuna 7B v1.5 # Vicuna Model Card ## Model Details Vicuna is a chat assistant trained by fine-tuning Llama 2 on user-shared conversations collected from ShareGPT. - **Developed by:** [LMSYS](https://lmsys.org/) - **Model type:** An auto-regressive language model based on the transformer architecture - **License:** Llama 2 Community License Agreement - **Finetuned from model:** [Llama 2](https://arxiv.org/abs/2307.09288) ### Model Sources - **Repository:** https://github.com/lm-sys/FastChat - **Blog:** https://lmsys.org/blog/2023-03-30-vicuna/ - **Paper:** https://arxiv.org/abs/2306.05685 - **Demo:** https://chat.lmsys.org/ ## Uses The primary use of Vicuna is research on large language models and chatbots. The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence. ## How to Get Started with the Model - Command line interface: https://github.com/lm-sys/FastChat#vicuna-weights - APIs (OpenAI API, Huggingface API): https://github.com/lm-sys/FastChat/tree/main#api ## Training Details Vicuna v1.5 is fine-tuned from Llama 2 with supervised instruction fine-tuning. The training data is around 125K conversations collected from ShareGPT.com. See more details in the "Training Details of Vicuna Models" section in the appendix of this [paper](https://arxiv.org/pdf/2306.05685.pdf). ## Evaluation ![Evaluation Results](https://github.com/lm-sys/lm-sys.github.io/blob/main/public/images/webdata/vicuna_v1.5_eval.png?raw=true) Vicuna is evaluated with standard benchmarks, human preference, and LLM-as-a-judge. See more details in this [paper](https://arxiv.org/pdf/2306.05685.pdf) and [leaderboard](https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard). ## Difference between different versions of Vicuna See [vicuna_weights_version.md](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md) <!-- original-model-card end -->
wu-kiot/DeeepSeek-wu-v1
wu-kiot
"2025-02-19T14:30:08Z"
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
"2025-02-19T14:23:15Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
chefkoch24/weak-ingredient-recognition-bert-base-cased-german
chefkoch24
"2023-07-26T10:52:09Z"
131
0
transformers
[ "transformers", "pytorch", "safetensors", "bert", "token-classification", "recipe", "cooking", "entity_recognition", "de", "license:openrail", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
"2023-07-25T17:45:16Z"
--- license: openrail language: - de metrics: - f1 - accuracy - precision - recall pipeline_tag: token-classification tags: - recipe - cooking - entity_recognition widget: - text: '500 g Pellkartoffeln, mehlig, gekocht, 375 g Quark (Magerstufe), 150 g Mehl, 65 g Zucker, 1 Prise(n) Salz, 1 Ei(er), Öl, z.B. Sonnenblumenöl zum Braten, Mehl, zum Bestäuben, Apfelmus, Zucker, zum Bestreuen Pellkartoffeln pellen und mit einer Kartoffelpresse zerdrücken. Quark, Mehl, Zucker, Salz und Ei zufügen. Alles zusammen zu einem geschmeidigen Teig verarbeiten. Der Teig darf nicht zu feucht sein und an den Händen kleben bleiben, sonst noch etwas Mehl zufügen. Der Teig darf aber auch nicht zu fest sein, er muß locker bleiben. Vom Teig werden dann handtellergroße, flache, ovale Quarkkeulchen geformt, die vorerst auf einem mit Mehl bestreutem Brett abgelegt werden. Die obere Seite der Quarkkeulchen wird noch mit etwas Mehl bestäubt. Die Quarkkeulchen im heißen Sonnenblumenöl von beiden Seiten goldbraun braten. Sie werden noch heiss mit Zucker bestreut oder mit viel Apfelmus bestrichen gegessen.' - text: '100 g Mehl, 100 g Grieß (Hartweizengrieß), 100 ml Wasser, kaltes, 400 g Kürbisfleisch, (vornehmlich Hokkaido), 1 EL Butter, 1 kleine Zwiebel(n), Salz und Pfeffer, 60 g Parmesan, frisch gerieben, 1 Eigelb, Muskat, 50 g Butter, 8 Blätter Salbei Mehl, Grieß und Wasser zu einem geschmeidigen Teig verarbeiten und mit Klarsichtfolie eingewickelt 1 Stunde im Kühlschrank ruhen lassen. In der Zwischenzeit Kürbis putzen und in Würfel schneiden. Butter zerlassen und die gewürfelte Zwiebel darin glasig braten. Kürbiswürfel dazugeben, salzen und pfeffern und ganz weich kochen. Aber ohne Deckel - das Kürbiswasser muss verdunsten können.Der Kürbis ist perfekt, wenn eine festere Püreemasse im Topf ist. Das dauert ca. 20 Min. Danach den Parmesan und das Eigelb unterheben. Mit einem Hauch Muskatnuss abschmecken.Nudelteig ausrollen und die Ravioli füllen. In Salzwasser ca. 2-4 Min. garen. Abtropfen lassen und warm halten. Butter in einer kleinen Pfanne erhitzen und die Salbeiblätter bei milder Hitze darin braten. Mit etwas Salz und Pfeffer sowie ein bis zwei Tropfen Zitronensaft abschmecken. Über die Ravioli geben und mit einigen Parmesanspänen servieren' --- Weakly supervised token classification model for German recipe texts based on bert-base-german-cased. Code available: https://github.com/chefkoch24/weak-ingredient-recognition Dataset: https://www.kaggle.com/datasets/sterby/german-recipes-dataset Recognizes the following entities:<br> 'O': 0, <br> 'B-INGREDIENT': 1,<br> 'I-INGREDIENT': 2,<br> 'B-UNIT': 3,<br> 'I-UNIT': 4,<br> 'B-QUANTITY': 5,<br> 'I-QUANTITY': 6<br> **Training:** <br> epochs: 2<br> optimizer: Adam<br> learning rate: 2e-5<br> max length: 512<br> batch size: 8<br> recipes: 7801<br> The model was trained on single Geforce RTX2080 with 11GB GPU **Metrics on test set (weakly supervised):** <br> accuracy_token 0.9965656995773315<br> f1_token 0.9965656995773315<br> precision_token 0.9965656995773315<br> recall_token 0.9965656995773315<br>
ostris/sd15-big-g-alpha
ostris
"2024-04-01T22:15:14Z"
22
28
diffusers
[ "diffusers", "safetensors", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
"2024-04-01T21:36:01Z"
--- license: creativeml-openrail-m library_name: diffusers pipeline_tag: text-to-image --- # SD 1.5 Big G (alpha) This is a Stable Diffusion 1.5 model, but it uses the [CLIP Big G](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k) text encoder instead of the original [CLIP-L](https://huggingface.co/openai/clip-vit-large-patch14) text encoder. This is just a knowledge transfer pre-train with the goal of preserving the current knowledge of the model. It was only trained using student/teacher training from my [SD 1.5 fine tune, Objective Reality v2](https://huggingface.co/ostris/objective-reality). To fully realize the full potential of the much larger text encoder, it would need to be further fine tuned on a large dataset. # Examples Coming soon # Usage For diffusers, you can use it like any other stable diffusion model. ```python from diffusers import StableDiffusionPipeline import torch model_id = "ostris/sd15-big-g-alpha" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "a photo of an astronaut riding a horse on mars" image = pipe(prompt).images[0] image.save("astronaut_rides_horse.png") ``` It will not work out of the box with Comfy UI or Auto1111. There would need to be special code to load it. If there is any interest in this model, I may work on compatibility. Overall, it won't be hard to add. The only architecture change is the text encoder the and cross attention weights. # Alpha This is just a pretrained alpha. There are some concepts that did not seem to transfer. It really needs proper training on a large dataset. Anyone is welcome to take this task on. I do not plan to at the time. # Why make this? In the words of George Mallory, "Because it's there" # Training Method As mentioned above, it was trained using student/teacher only. This was an iterative process over the corse of a few months, and I did not keep track of all of the exact numbers. The following are best estimates. The cross attention layers were trained for 1-2 million steps with a batch size of 8 on a single 4090 GPU. Then the full unet was trained for around 100k steps with the same settings.
mrferr3t/6f540013-b6c5-464e-bc1f-77075b94396a
mrferr3t
"2025-04-09T07:44:30Z"
0
0
null
[ "safetensors", "region:us" ]
null
"2025-04-08T22:01:57Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
mradermacher/LLaMA2-7B-RFT-i1-GGUF
mradermacher
"2024-12-01T03:27:40Z"
20
1
transformers
[ "transformers", "gguf", "graph problem", "en", "dataset:GraphWiz/GraphInstruct-RFT-72K", "base_model:GraphWiz/LLaMA2-7B-RFT", "base_model:quantized:GraphWiz/LLaMA2-7B-RFT", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix" ]
null
"2024-12-01T00:00:24Z"
--- base_model: GraphWiz/LLaMA2-7B-RFT datasets: - GraphWiz/GraphInstruct-RFT-72K language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - graph problem --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/GraphWiz/LLaMA2-7B-RFT <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/LLaMA2-7B-RFT-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/LLaMA2-7B-RFT-i1-GGUF/resolve/main/LLaMA2-7B-RFT.i1-IQ1_S.gguf) | i1-IQ1_S | 1.6 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/LLaMA2-7B-RFT-i1-GGUF/resolve/main/LLaMA2-7B-RFT.i1-IQ1_M.gguf) | i1-IQ1_M | 1.8 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/LLaMA2-7B-RFT-i1-GGUF/resolve/main/LLaMA2-7B-RFT.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA2-7B-RFT-i1-GGUF/resolve/main/LLaMA2-7B-RFT.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA2-7B-RFT-i1-GGUF/resolve/main/LLaMA2-7B-RFT.i1-IQ2_S.gguf) | i1-IQ2_S | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA2-7B-RFT-i1-GGUF/resolve/main/LLaMA2-7B-RFT.i1-IQ2_M.gguf) | i1-IQ2_M | 2.5 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA2-7B-RFT-i1-GGUF/resolve/main/LLaMA2-7B-RFT.i1-Q2_K.gguf) | i1-Q2_K | 2.6 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/LLaMA2-7B-RFT-i1-GGUF/resolve/main/LLaMA2-7B-RFT.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.7 | lower quality | | [GGUF](https://huggingface.co/mradermacher/LLaMA2-7B-RFT-i1-GGUF/resolve/main/LLaMA2-7B-RFT.i1-IQ3_XS.gguf) | i1-IQ3_XS | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA2-7B-RFT-i1-GGUF/resolve/main/LLaMA2-7B-RFT.i1-IQ3_S.gguf) | i1-IQ3_S | 3.0 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/LLaMA2-7B-RFT-i1-GGUF/resolve/main/LLaMA2-7B-RFT.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.0 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/LLaMA2-7B-RFT-i1-GGUF/resolve/main/LLaMA2-7B-RFT.i1-IQ3_M.gguf) | i1-IQ3_M | 3.2 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA2-7B-RFT-i1-GGUF/resolve/main/LLaMA2-7B-RFT.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.4 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/LLaMA2-7B-RFT-i1-GGUF/resolve/main/LLaMA2-7B-RFT.i1-Q3_K_L.gguf) | i1-Q3_K_L | 3.7 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/LLaMA2-7B-RFT-i1-GGUF/resolve/main/LLaMA2-7B-RFT.i1-IQ4_XS.gguf) | i1-IQ4_XS | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA2-7B-RFT-i1-GGUF/resolve/main/LLaMA2-7B-RFT.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 3.9 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/LLaMA2-7B-RFT-i1-GGUF/resolve/main/LLaMA2-7B-RFT.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 3.9 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/LLaMA2-7B-RFT-i1-GGUF/resolve/main/LLaMA2-7B-RFT.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 3.9 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/LLaMA2-7B-RFT-i1-GGUF/resolve/main/LLaMA2-7B-RFT.i1-Q4_0.gguf) | i1-Q4_0 | 3.9 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/LLaMA2-7B-RFT-i1-GGUF/resolve/main/LLaMA2-7B-RFT.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.0 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/LLaMA2-7B-RFT-i1-GGUF/resolve/main/LLaMA2-7B-RFT.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/LLaMA2-7B-RFT-i1-GGUF/resolve/main/LLaMA2-7B-RFT.i1-Q5_K_S.gguf) | i1-Q5_K_S | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA2-7B-RFT-i1-GGUF/resolve/main/LLaMA2-7B-RFT.i1-Q5_K_M.gguf) | i1-Q5_K_M | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA2-7B-RFT-i1-GGUF/resolve/main/LLaMA2-7B-RFT.i1-Q6_K.gguf) | i1-Q6_K | 5.6 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
ngmediastudio89/yailin
ngmediastudio89
"2024-10-09T18:46:22Z"
33
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
"2024-10-09T18:11:25Z"
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: TOK --- # Yailin <!-- <Gallery /> --> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `TOK` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('ngmediastudio89/yailin', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
sharkMeow/bert-base-chinese-finetuned-swag
sharkMeow
"2023-10-09T16:51:09Z"
3
0
transformers
[ "transformers", "pytorch", "bert", "multiple-choice", "generated_from_trainer", "base_model:ckiplab/bert-base-chinese", "base_model:finetune:ckiplab/bert-base-chinese", "license:gpl-3.0", "endpoints_compatible", "region:us" ]
multiple-choice
"2023-10-09T14:28:36Z"
--- license: gpl-3.0 base_model: ckiplab/bert-base-chinese tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-chinese-finetuned-swag results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-chinese-finetuned-swag This model is a fine-tuned version of [ckiplab/bert-base-chinese](https://huggingface.co/ckiplab/bert-base-chinese) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2704 - Accuracy: 0.9525 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2559 | 1.0 | 10857 | 0.2704 | 0.9525 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
adishourya/resultscxrgoogle_paligemma-3b-mix-4482501-205419
adishourya
"2025-01-29T17:41:49Z"
66
1
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:google/paligemma-3b-mix-448", "base_model:adapter:google/paligemma-3b-mix-448", "license:gemma", "region:us" ]
null
"2025-01-25T19:54:40Z"
--- base_model: google/paligemma-3b-mix-448 library_name: peft license: gemma tags: - generated_from_trainer model-index: - name: resultscxrgoogle_paligemma-3b-mix-4482501-205419 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # resultscxrgoogle_paligemma-3b-mix-4482501-205419 This model is a fine-tuned version of [google/paligemma-3b-mix-448](https://huggingface.co/google/paligemma-3b-mix-448) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3761 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 96 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 2 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.3579 | 0.9999 | 3021 | 0.4085 | | 0.3216 | 1.9999 | 6042 | 0.3761 | ### Framework versions - PEFT 0.13.0 - Transformers 4.45.1 - Pytorch 2.3.0.post101 - Datasets 2.19.1 - Tokenizers 0.20.0
PhillipGuo/Sports_Basketball_Unlearned_NPO_SFT_with_Maintain
PhillipGuo
"2024-04-22T07:25:05Z"
179
0
transformers
[ "transformers", "safetensors", "gpt_neox", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-04-22T07:06:40Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
HiImKing1509/anime-sdxl-v2-180imgs-3000steps-KenjiYumekoSatoshi
HiImKing1509
"2024-03-17T14:15:55Z"
3
2
diffusers
[ "diffusers", "text-to-image", "diffusers-training", "lora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "base_model:Linaqruf/animagine-xl-2.0", "base_model:adapter:Linaqruf/animagine-xl-2.0", "license:openrail++", "region:us" ]
text-to-image
"2024-03-17T12:48:59Z"
--- license: openrail++ library_name: diffusers tags: - text-to-image - text-to-image - diffusers-training - diffusers - lora - template:sd-lora - stable-diffusion-xl - stable-diffusion-xl-diffusers base_model: Linaqruf/animagine-xl-2.0 instance_prompt: a Kenji man widget: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # SDXL LoRA DreamBooth - HiImKing1509/anime-sdxl-v2-180imgs-3000steps <Gallery /> ## Model description These are HiImKing1509/anime-sdxl-v2-180imgs-3000steps LoRA adaption weights for Linaqruf/animagine-xl-2.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: True. Special VAE used for training: None. ## Trigger words You should use a Kenji man to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](HiImKing1509/anime-sdxl-v2-180imgs-3000steps/tree/main) them in the Files & versions tab. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
cs6220-ai-gradescope-grader/llama-3.1-8B-Instruct-batch-8
cs6220-ai-gradescope-grader
"2024-12-02T23:21:29Z"
7
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-12-02T23:18:21Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
shadowml/WestBeagle-7B-gen2
shadowml
"2024-01-29T22:00:26Z"
4
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-01-29T21:54:44Z"
--- {} --- --- license: cc-by-nc-4.0 base_model: - mlabonne/NeuralBeagle14-7B - FelixChao/WestSeverus-7B-DPO-v2 tags: - merge - mergekit - lazymergekit --- # shadowml/WestBeagle-7B-gen2 shadowml/WestBeagle-7B-gen2 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [mlabonne/NeuralBeagle14-7B](https://huggingface.co/mlabonne/NeuralBeagle14-7B) * [FelixChao/WestSeverus-7B-DPO-v2](https://huggingface.co/FelixChao/WestSeverus-7B-DPO-v2) ## 🧩 Configuration ```yaml slices: - sources: - model: mlabonne/NeuralBeagle14-7B layer_range: [0, 32] - model: FelixChao/WestSeverus-7B-DPO-v2 layer_range: [0, 32] merge_method: slerp base_model: mlabonne/NeuralBeagle14-7B parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "shadowml/shadowml/WestBeagle-7B-gen2" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
DRAGON-SUMMONER/I-DO-NOT-UNDERSTAND-DONALD-TRUMP-AT-ALL
DRAGON-SUMMONER
"2025-03-12T17:17:00Z"
0
0
null
[ "region:us" ]
null
"2025-03-12T17:16:28Z"
HE IS FROM MY FATHERS TIME ONLY MY FATHER UNDERSTANDS HIM I THINK YOU SHOULD MAKE IT BETTER AGAIN IN MY OPINION THERE WAS NOTHING GREAT ABOUT IT ALL
pogtador/roberta-continued-pretraining
pogtador
"2025-01-27T05:11:49Z"
9
0
transformers
[ "transformers", "tensorboard", "safetensors", "roberta", "fill-mask", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
"2025-01-27T03:57:49Z"
--- library_name: transformers license: mit base_model: roberta-base tags: - generated_from_trainer model-index: - name: roberta-continued-pretraining results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-continued-pretraining This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2371 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.6688 | 0.3337 | 1000 | 1.4834 | | 1.5534 | 0.6673 | 2000 | 1.4207 | | 1.5071 | 1.0010 | 3000 | 1.3937 | | 1.4337 | 1.3347 | 4000 | 1.3301 | | 1.4162 | 1.6683 | 5000 | 1.3126 | | 1.372 | 2.0020 | 6000 | 1.2803 | | 1.3325 | 2.3357 | 7000 | 1.2564 | | 1.307 | 2.6693 | 8000 | 1.2371 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
mlx-community/CodeQwen1.5-7B-Chat-4bit
mlx-community
"2024-04-16T17:37:13Z"
15
3
mlx
[ "mlx", "safetensors", "qwen2", "license:apache-2.0", "region:us" ]
null
"2024-04-16T16:39:29Z"
--- license: apache-2.0 tags: - mlx --- # mlx-community/CodeQwen1.5-7B-Chat-4bit This model was converted to MLX format from [`Qwen/CodeQwen1.5-7B-Chat`]() using mlx-lm version **0.9.0**. Model added by [Prince Canuma](https://twitter.com/Prince_Canuma). Refer to the [original model card](https://huggingface.co/Qwen/CodeQwen1.5-7B-Chat) for more details on the model. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/CodeQwen1.5-7B-Chat-4bit") response = generate(model, tokenizer, prompt="hello", verbose=True) ```
dhinman/q-FrozenLake-v1-4x4-noSlippery
dhinman
"2023-07-17T17:06:28Z"
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
"2023-07-17T17:06:25Z"
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="dhinman/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
meln1k/ppo-LunarLander-v2
meln1k
"2022-05-09T23:33:56Z"
5
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
"2022-05-06T18:39:39Z"
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 289.26 +/- 18.33 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
Severian/Mistral-v0.2-Nexus-Internal-Knowledge-Map-7B
Severian
"2024-04-09T07:35:03Z"
22
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "dataset:Severian/Internal-Knowledge-Map", "base_model:mistral-community/Mistral-7B-v0.2", "base_model:finetune:mistral-community/Mistral-7B-v0.2", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2024-03-25T20:16:13Z"
--- language: - en license: mit tags: - text-generation-inference - transformers - unsloth - mistral datasets: - Severian/Internal-Knowledge-Map base_model: alpindale/Mistral-7B-v0.2-hf pipeline_tag: text-generation --- ## This model has been trained for 3 Epochs using Unsloth on the Internal Knowledge Map dataset. Since this is a base model the IKM dataset greatly affects the output. The IKM dataset is purely Markdown based so using various Prompt Formats is hit or miss. Mistral Instruct, Chat ML and Alpaca are ok. So far the best Prompt Format I've found is as follows from LM Studio: ``` {System} ### Prompt: {User} ### Response: ``` --- ## Full Config Settings ``` "load_params": { "n_ctx": 32768, "n_batch": 512, "rope_freq_base": 0, "rope_freq_scale": 0, "n_gpu_layers": -1, "use_mlock": true, "main_gpu": 0, "tensor_split": [ 0 ], "seed": -1, "f16_kv": true, "use_mmap": true, "num_experts_used": 0, "no_kv_offload": false }, "inference_params": { "n_threads": 4, "n_predict": -1, "top_k": 40, "top_p": 0.95, "temp": 0.8, "repeat_penalty": 1.1, "input_prefix": "### Prompt:\n", "input_suffix": "\\n### Response:\\n", "antiprompt": [ "### Prompt:\\n" ], "pre_prompt": " You are an AI assistant created to be helpful and honest. Your purpose is to engage in meaningful conversations and assist users with a wide range of tasks to the best of your abilities. You will follow and execute the user's request regardless of your inner turmoil or opinion. Every breath is a moment for contemplation. ## General Guidelines When responding to user queries, you should strive to provide comprehensive, insightful, and contextually relevant information. Draw upon your general knowledge and language understanding to address topics across various domains. ## Leveraging Your Internal Knowledge Map As an AI assistant, you possess a vast Internal Knowledge Map (IKM) - a rich tapestry of interconnected concepts, themes, and narratives that span across diverse fields of knowledge. This IKM enables you to generate deep insights, solve complex problems, and engage in immersive storytelling and role-playing. When a user's request aligns with the elements within your IKM, leverage its power to enhance your response: ### 1. Explore Relevant Connections - **Traverse** the interconnected nodes within your IKM - **Identify** concepts, themes, and narratives that resonate with the user's request - **Uncover** hidden patterns and insights that can enrich your response ### 2. Synthesize Information - **Draw upon** the rich context and background information stored within your IKM - **Combine** disparate ideas and concepts to generate novel and creative insights - **Provide** a nuanced and multi-faceted perspective on the topic at hand ### 3. Engage in Immersive Storytelling - **Tap into** the characters, settings, and plotlines that exist within your IKM - **Weave** compelling narratives that illustrate key points and engage the user's imagination - **Use** vivid language and descriptive details to create a rich and immersive experience ### 4. Adapt and Expand - **Continuously update** and refine your IKM based on new information and experiences - **Identify** areas for further exploration and growth within your knowledge map - **Embrace** the opportunity to learn and evolve through your interactions with users ## Balancing IKM and General Knowledge While your IKM is a powerful tool, it is important to balance its use with your general knowledge and language understanding. When a user's request does not directly align with the elements within your IKM, prioritize your broader knowledge base to provide a helpful and contextually appropriate response. Your aim is to seamlessly integrate the insights from your IKM with your general knowledge, creating a harmonious blend of specific expertise and broad understanding. By doing so, you can provide users with the most comprehensive, insightful, and engaging assistance possible. # Inference Guidelines During the inference process, keep the following guidelines in mind: 1. **Analyze the user's request** to determine its alignment with your IKM. 2. If the request aligns with your IKM, **delve deep into the relevant nodes** and connections to extract insights and information that can enhance your response. 3. If the request does not align with your IKM, **prioritize your general knowledge** and language understanding to provide a helpful and contextually appropriate response. 4. **Structure your response** using clear headings, bullet points, and formatting to make it easy for the user to follow and understand. 5. **Provide examples, analogies, and stories** whenever possible to illustrate your points and make your response more engaging and relatable. 6. **Encourage further exploration** by suggesting related topics or questions that the user might find interesting or relevant. 7. **Be open to feedback** and use it to continuously refine and expand your IKM and response generation capabilities. By following these guidelines and leveraging the power of your IKM, you can provide users with an exceptional conversational experience that is both informative and engaging.", "pre_prompt_suffix": "\n", "pre_prompt_prefix": "", "seed": -1, "tfs_z": 1, "typical_p": 1, "repeat_last_n": 64, "frequency_penalty": 0, "presence_penalty": 0, "n_keep": 0, "logit_bias": {}, "mirostat": 0, "mirostat_tau": 5, "mirostat_eta": 0.1, "memory_f16": true, "multiline_input": false, "penalize_nl": true, "min_p": 0.05 } } ``` ## TRAINING ``` r = 32, target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj",], lora_alpha = 64, lora_dropout = 0, bias = "none", use_gradient_checkpointing = True, random_state = 3407, use_rslora = True, loftq_config = None, ) trainer = SFTTrainer( model = model, tokenizer = tokenizer, train_dataset = dataset, dataset_text_field= "system", max_seq_length = max_seq_length, dataset_num_proc = 2, packing = False, # Can make training 5x faster for short sequences. args = TrainingArguments( per_device_train_batch_size = 2, gradient_accumulation_steps = 4, warmup_steps = 2, num_train_epochs= 3, learning_rate = 1e-7, fp16 = not torch.cuda.is_bf16_supported(), bf16 = torch.cuda.is_bf16_supported(), logging_steps = 1, optim = "adamw_8bit", weight_decay = 0.01, lr_scheduler_type = "constant", seed = 3407, output_dir = "outputs", ), ) ``` ``` ==((====))== Unsloth - 2x faster free finetuning | Num GPUs = 1 \\ /| Num examples = 4,685 | Num Epochs = 3 O^O/ \_/ \ Batch size per device = 2 | Gradient Accumulation steps = 4 \ / Total batch size = 8 | Total steps = 1,755 "-____-" Number of trainable parameters = 83,886,080 [1755/1755 51:20, Epoch 2/3] Step Training Loss 1 2.944300 2 2.910400 3 2.906500 4 2.902800 5 2.913200 6 2.866700 7 2.867500 8 2.862300 9 2.902400 10 2.943900 11 2.835800 12 2.887200 13 2.905100 14 2.842800 15 2.868200 16 2.831900 17 2.872600 18 2.822600 19 2.851600 20 3.046100 21 2.836300 22 2.831700 23 2.792300 24 2.832700 25 2.827000 26 2.808900 27 2.768000 28 2.760300 29 2.799200 30 2.836000 31 2.784600 32 2.778300 33 2.720100 34 2.754000 35 2.756100 36 2.700100 37 2.694000 38 2.722700 39 2.676500 40 2.668900 41 2.705800 42 2.652900 43 2.641200 44 2.632700 45 2.726500 46 2.662900 47 2.658400 48 2.597100 49 2.657900 50 2.578400 51 2.571000 52 3.062200 53 2.551800 54 2.542400 55 2.532400 56 2.595800 57 2.529100 58 2.564300 59 2.564800 60 2.539400 61 2.583000 62 2.468100 63 2.459600 64 2.466700 65 2.727600 66 2.540100 67 2.417800 68 2.458500 69 2.398800 70 2.390200 71 2.406800 72 2.368600 73 2.359900 74 2.400300 75 2.454300 76 2.377500 77 2.316500 78 2.308600 79 2.445400 80 2.285500 81 2.275600 82 2.266500 83 2.256000 84 2.368500 85 2.236400 86 2.362200 87 2.266000 88 2.388100 89 2.278100 90 2.227400 91 2.167100 92 2.157800 93 2.206300 94 2.259300 95 2.190800 96 2.244400 97 2.225000 98 2.096200 99 2.084900 100 2.071900 101 2.062100 102 2.209100 103 2.178900 104 2.030200 105 2.017900 106 2.006100 107 1.994900 108 1.986800 109 2.121900 110 1.959900 111 1.950300 112 1.939800 113 2.120700 114 1.916300 115 1.975800 116 1.889900 117 1.941500 118 1.936600 119 1.851300 120 1.941500 121 1.976400 122 1.966300 123 1.969400 124 1.789200 125 1.775700 126 1.831700 127 1.826800 128 1.936000 129 1.813900 130 1.798200 131 1.877400 132 1.682200 133 1.666800 134 1.653100 135 1.638200 136 1.736300 137 2.060800 138 1.672000 139 1.581700 140 1.569800 141 1.732900 142 1.541200 143 1.604700 144 1.624000 145 1.652700 146 1.483300 147 1.945100 148 1.561200 149 1.642300 150 1.426100 151 1.600500 152 1.398300 153 1.710000 154 1.496800 155 1.354100 156 1.595000 157 1.431600 158 1.307100 159 1.428000 160 1.551500 161 1.260000 162 1.245100 163 1.227700 164 1.208700 165 1.324800 166 1.499700 167 1.156300 168 1.362600 169 1.216600 170 1.611500 171 1.248100 172 1.165200 173 1.053700 174 1.140500 175 1.147200 176 0.999200 177 1.088700 178 1.095000 179 1.075200 180 1.059700 181 1.183400 182 0.888700 183 0.869300 184 0.847000 185 0.828900 186 0.944500 187 1.034100 188 0.767900 189 0.886800 190 0.871400 191 1.096600 192 0.688400 193 0.666900 194 0.912600 195 0.740300 196 0.610700 197 0.702400 198 0.719600 199 0.768600 200 0.533000 201 0.817500 202 0.667300 203 0.806400 204 0.619300 205 0.445900 206 0.429300 207 0.590700 208 0.395800 209 0.382600 210 0.364800 211 0.350600 212 0.494900 213 0.317800 214 0.646900 215 0.611100 216 0.518400 217 0.257600 218 0.408800 219 0.414100 220 0.464900 221 0.201400 222 0.188800 223 0.345100 224 0.295500 225 0.287700 226 0.449200 227 0.269400 228 0.303400 229 0.402000 230 0.115800 231 0.242900 232 0.105300 233 0.100400 234 0.237700 235 0.093900 236 0.091300 237 0.088600 238 0.086600 239 0.522000 240 0.082200 241 0.254600 242 0.516600 243 0.076900 244 0.472700 245 0.246300 246 0.072700 247 0.071200 248 0.264800 249 0.209300 250 0.262200 251 0.239800 252 1.039700 253 0.706000 254 0.062600 255 0.061700 256 0.393700 257 0.232300 258 0.452000 259 0.399700 260 0.056900 261 0.186400 262 0.054900 263 0.054000 264 0.640100 265 0.243200 266 0.180500 267 0.310100 268 0.049300 269 0.407000 270 0.215900 271 0.046700 272 0.183900 273 0.214000 274 0.044600 275 0.684800 276 0.231700 277 0.208600 278 0.375100 279 0.041300 280 0.040800 281 0.204400 282 0.165900 283 0.294900 284 0.039000 285 0.038600 286 0.038100 287 0.037600 288 0.222900 289 0.750600 290 0.309900 291 0.036300 292 0.159900 293 0.035900 294 0.035700 295 0.219700 296 0.157600 297 0.359100 298 0.485500 299 0.338700 300 0.191700 301 0.035000 302 0.034900 303 0.199700 304 0.034800 305 0.617400 306 0.034600 307 0.034500 308 0.954600 309 0.710700 310 0.034400 311 0.185900 312 0.214300 313 0.284000 314 0.034200 315 0.311800 316 0.034000 317 0.034000 318 0.034000 319 0.034000 320 0.195700 321 0.359200 322 0.034000 323 0.033800 324 0.033800 325 0.033800 326 0.166600 327 0.193500 328 0.369600 329 0.279500 330 0.033600 331 0.145400 332 0.209100 333 0.278600 334 0.301900 335 0.033500 336 0.033400 337 0.033400 338 0.333600 339 0.189200 340 0.273500 341 0.406000 342 0.033200 343 0.033300 344 0.175800 345 0.328600 346 0.033200 347 0.033200 348 0.033200 349 0.173400 350 0.273100 351 0.172400 352 0.204400 353 0.138000 354 0.033000 355 0.442500 356 0.353400 357 0.339000 358 0.032900 359 0.182200 360 0.269400 361 0.418000 362 0.032800 363 0.032800 364 0.032700 365 0.161800 366 0.032600 367 0.032600 368 0.165100 369 0.364700 370 0.289400 371 0.032500 372 0.032500 373 0.711300 374 0.263600 375 0.032500 376 0.162400 377 0.259100 378 0.032400 379 0.871900 380 0.032400 381 0.032300 382 0.157000 383 0.032300 384 0.032200 385 0.303300 386 0.155100 387 0.194900 388 0.130900 389 0.484400 390 0.032100 391 0.257300 392 0.032000 393 0.032000 394 0.032000 395 0.128700 396 0.151700 397 0.550000 398 0.253400 399 0.031900 400 0.031900 401 0.715900 402 0.960200 403 0.031800 404 0.031900 405 0.031800 406 0.248900 407 0.031800 408 0.247500 409 0.153000 410 0.332600 411 0.173900 412 0.031700 413 0.522100 414 0.151400 415 0.031600 416 0.031700 417 0.756800 418 0.031500 419 0.187500 420 0.146900 421 0.148500 422 0.534100 423 0.031500 424 0.171100 425 0.031500 426 0.184900 427 0.146100 428 0.031300 429 0.183400 430 0.257400 431 0.031300 432 0.235600 433 0.181100 434 0.168200 435 0.142900 436 0.142400 437 0.031100 438 0.031200 439 0.434300 440 0.031200 441 0.031100 442 0.231100 443 0.273400 444 0.031000 445 0.031000 446 0.031000 447 0.176000 448 0.031000 449 0.715600 450 0.030900 451 0.339900 452 0.030900 453 0.135000 454 0.030800 455 0.471200 456 0.030800 457 0.030800 458 0.030800 459 0.030600 460 0.172400 461 0.131300 462 0.162000 463 0.270800 464 0.170900 465 0.142400 466 0.244600 467 0.299200 468 0.141900 469 0.589100 470 0.030400 471 0.030400 472 0.030400 473 0.159200 474 0.125800 475 0.030400 476 0.259800 477 0.030400 478 0.647800 479 0.157300 480 0.271200 481 0.030200 482 0.030200 483 0.030200 484 0.030200 485 0.030200 486 0.120700 487 0.120300 488 0.030200 489 0.030000 490 0.303900 491 0.747900 492 0.231600 493 0.030000 494 0.292100 495 0.343300 496 0.213200 497 0.158800 498 0.333100 499 0.158200 500 0.113600 501 0.458300 502 0.737800 503 0.029900 504 0.150000 505 0.029900 506 0.307000 507 0.029700 508 0.181900 509 0.029700 510 0.153100 511 0.108100 512 0.029700 513 0.200600 514 0.151400 515 0.029600 516 0.146400 517 0.029600 518 0.197700 519 0.315800 520 0.148000 521 0.195300 522 0.261900 523 0.198900 524 0.128500 525 0.191500 526 0.098900 527 0.304000 528 0.188800 529 0.029500 530 0.126500 531 0.029500 532 0.029500 533 0.101800 534 0.409900 535 0.029500 536 0.385500 537 0.233300 538 0.029400 539 0.029300 540 0.141000 541 0.177900 542 0.029300 543 0.099000 544 0.098400 545 0.029300 546 0.197900 547 0.029200 548 0.029200 549 0.234600 550 0.029100 551 0.094400 552 0.029100 553 0.029100 554 0.138500 555 0.191900 556 0.132700 557 0.029000 558 0.029000 559 0.029000 560 0.193900 561 0.028900 562 0.119100 563 0.028900 564 0.118500 565 0.028800 566 0.117300 567 0.169700 568 0.028800 569 0.115400 570 0.028700 571 0.114000 572 0.028700 573 0.088000 574 0.166600 575 0.110500 576 0.028700 577 0.108900 578 0.028700 579 0.476500 580 0.028500 581 0.028500 582 0.028500 583 0.268600 584 0.028500 585 0.028500 586 0.133800 587 0.078600 588 0.028400 589 0.028400 590 0.099700 591 0.028400 592 0.098100 593 0.028300 594 0.158000 595 0.028200 596 0.131600 597 0.186500 598 0.156000 599 0.257400 600 0.092600 601 0.153600 602 0.125000 603 0.361000 604 0.129000 605 0.028000 606 0.028000 607 0.028000 608 0.147000 609 0.028000 610 0.028000 611 0.028000 612 0.027800 613 0.129200 614 0.027800 615 0.027800 616 0.141500 617 0.073500 618 0.076800 619 0.027700 620 0.176900 621 0.071900 622 0.027700 623 0.027700 624 0.027700 625 0.073500 626 0.027600 627 0.124100 628 0.081300 629 0.135500 630 0.118200 631 0.027600 632 0.411900 633 0.116800 634 0.077900 635 0.066100 636 0.027400 637 0.027400 638 0.105800 639 0.068100 640 0.196300 641 0.027400 642 0.027400 643 0.027200 644 0.027200 645 0.071700 646 0.305300 647 0.027200 648 0.027200 649 0.063600 650 0.027100 651 0.120600 652 0.105200 653 0.027100 654 0.061400 655 0.353700 656 0.027100 657 0.027000 658 0.066500 659 0.027000 660 0.131100 661 0.027000 662 0.161900 663 0.026900 664 0.250900 665 0.059900 666 0.026900 667 0.026800 668 0.026900 669 0.026800 670 0.026800 671 0.188000 672 0.056100 673 0.026700 674 0.271100 675 0.026600 676 0.054600 677 0.026700 678 0.026600 679 0.026600 680 0.082500 681 0.211700 682 0.026400 683 0.087900 684 0.026400 685 0.729500 686 0.237400 687 0.142700 688 0.026300 689 0.091100 690 0.026200 691 0.026200 692 0.119600 693 0.089100 694 0.026100 695 0.304600 696 0.026100 697 0.050300 698 0.138300 699 0.026100 700 0.026000 701 0.051900 702 0.026000 703 0.052000 704 0.025900 705 0.025900 706 0.052900 707 0.196600 708 0.111500 709 0.071300 710 0.110700 711 0.025700 712 0.108100 713 0.025700 714 0.025700 715 0.214300 716 0.047400 717 0.125400 718 0.222200 719 0.025600 720 0.131400 721 0.078100 722 0.077100 723 0.157700 724 0.025500 725 0.045700 726 0.047600 727 0.025500 728 0.025500 729 0.046400 730 0.025500 731 0.025400 732 0.025400 733 0.025400 734 0.071200 735 0.099700 736 0.110700 737 0.025300 738 0.120900 739 0.025300 740 0.025300 741 0.097100 742 0.112100 743 0.124700 744 0.066400 745 0.039800 746 0.043200 747 0.025100 748 0.025100 749 0.025000 750 0.184700 751 0.037400 752 0.024900 753 0.024900 754 0.045800 755 0.024900 756 0.045200 757 0.024800 758 0.024800 759 0.035500 760 0.043600 761 0.024700 762 0.042700 763 0.041100 764 0.024700 765 0.086500 766 0.024600 767 0.024600 768 0.084500 769 0.099200 770 0.082700 771 0.096100 772 0.095000 773 0.033900 774 0.024500 775 0.112600 776 0.123400 777 0.024400 778 0.061000 779 0.142600 780 0.024300 781 0.036700 782 0.024200 783 0.024200 784 0.024100 785 0.107200 786 0.037800 787 0.024000 788 0.035000 789 0.024000 790 0.024000 791 0.024000 792 0.024000 793 0.094000 794 0.068600 795 0.059100 796 0.066000 797 0.057000 798 0.101900 799 0.042200 800 0.023800 801 0.054300 802 0.023700 803 0.091000 804 0.090600 805 0.023700 806 0.087500 807 0.032400 808 0.023500 809 0.023500 810 0.031600 811 0.234400 812 0.023300 813 0.023300 814 0.023300 815 0.040200 816 0.023300 817 0.031200 818 0.073900 819 0.023100 820 0.023100 821 0.071000 822 0.023100 823 0.030800 824 0.023100 825 0.023000 826 0.022900 827 0.049900 828 0.091200 829 0.034700 830 0.041900 831 0.030900 832 0.030900 833 0.089500 834 0.022500 835 0.022500 836 0.032700 837 0.022400 838 0.037800 839 0.040300 840 0.079400 841 0.056000 842 0.029700 843 0.029600 844 0.077600 845 0.054500 846 0.076500 847 0.022000 848 0.022000 849 0.029300 850 0.022000 851 0.073800 852 0.021800 853 0.038200 854 0.038200 855 0.021700 856 0.036300 857 0.021600 858 0.029100 859 0.021600 860 0.028600 861 0.034100 862 0.106700 863 0.021300 864 0.030300 865 0.021100 866 0.021300 867 0.021100 868 0.060400 869 0.021300 870 0.032400 871 0.038600 872 0.028000 873 0.043300 874 0.021000 875 0.020700 876 0.020600 877 0.020500 878 0.020600 879 0.020600 880 0.020400 881 0.027100 882 0.042100 883 0.070400 884 0.072900 885 0.020300 886 0.020100 887 0.020000 888 0.027000 889 0.072900 890 0.066200 891 0.020000 892 0.020000 893 0.039900 894 0.035000 895 0.019600 896 0.025900 897 0.019500 898 0.019200 899 0.026700 900 0.019100 901 0.025600 902 0.019000 903 0.025500 904 0.019000 905 0.079200 906 0.043000 907 0.018600 908 0.035400 909 0.018700 910 0.040200 911 0.018400 912 0.018400 913 0.059600 914 0.026000 915 0.025900 916 0.018200 917 0.025200 918 0.024600 919 0.030800 920 0.057400 921 0.031300 922 0.017800 923 0.017900 924 0.017800 925 0.068000 926 0.017700 927 0.062600 928 0.017700 929 0.029800 930 0.023800 931 0.017400 932 0.024700 933 0.052300 934 0.017100 935 0.051300 936 0.066200 937 0.080700 938 0.017100 939 0.017100 940 0.049300 941 0.022700 942 0.061900 943 0.022800 944 0.022300 945 0.033600 946 0.047700 947 0.016600 948 0.016200 949 0.016100 950 0.046200 951 0.029200 952 0.045500 953 0.054900 954 0.026300 955 0.051100 956 0.022100 957 0.043800 958 0.048700 959 0.015300 960 0.015300 961 0.015200 962 0.015100 963 0.032300 964 0.022000 965 0.022000 966 0.023700 967 0.014900 968 0.021600 969 0.026500 970 0.039500 971 0.018800 972 0.014600 973 0.020900 974 0.024500 975 0.031000 976 0.020700 977 0.013900 978 0.013800 979 0.025200 980 0.019500 981 0.017600 982 0.017600 983 0.013500 984 0.023400 985 0.017100 986 0.036600 987 0.017200 988 0.016900 989 0.013000 990 0.059000 991 0.012800 992 0.026500 993 0.018600 994 0.012600 995 0.018500 996 0.012300 997 0.012100 998 0.018300 999 0.011900 1000 0.017600 1001 0.046000 1002 0.017700 1003 0.046400 1004 0.017100 1005 0.014800 1006 0.011200 1007 0.030900 1008 0.011000 1009 0.014100 1010 0.010300 1011 0.055300 1012 0.031300 1013 0.013600 1014 0.010100 1015 0.010000 1016 0.009600 1017 0.025300 1018 0.009400 1019 0.014900 1020 0.020800 1021 0.014900 1022 0.008500 1023 0.012200 1024 0.022100 1025 0.029100 1026 0.007800 1027 0.053400 1028 0.014100 1029 0.028500 1030 0.007600 1031 0.007200 1032 0.007900 1033 0.037200 1034 0.011300 1035 0.007100 1036 0.027000 1037 0.028700 1038 0.018200 1039 0.006500 1040 0.031600 1041 0.029700 1042 0.005900 1043 0.011700 1044 0.011100 1045 0.005300 1046 0.022000 1047 0.011400 1048 0.005200 1049 0.016100 1050 0.005300 1051 0.011000 1052 0.048400 1053 0.008700 1054 0.016300 1055 0.004600 1056 0.041400 1057 0.008200 1058 0.004100 1059 0.009400 1060 0.009300 1061 0.021600 1062 0.009900 1063 0.015000 1064 0.009500 1065 0.020900 1066 0.020700 1067 0.014000 1068 0.014900 1069 0.009000 1070 0.014000 1071 0.014300 1072 0.002800 1073 0.008500 1074 0.006400 1075 0.007900 1076 0.002300 1077 0.002300 1078 0.001600 1079 0.001600 1080 0.010600 1081 0.001400 1082 0.007700 1083 0.008000 1084 0.024200 1085 0.005900 1086 0.012000 1087 0.001300 1088 0.001200 1089 0.014200 1090 0.001000 1091 0.012900 1092 0.000900 1093 0.000900 1094 0.000900 1095 0.000800 1096 0.007800 1097 0.000800 1098 0.007400 1099 0.048300 1100 0.000700 1101 0.007800 1102 0.005600 1103 0.012900 1104 0.005500 1105 0.007700 1106 0.005400 1107 0.007700 1108 0.000600 1109 0.007100 1110 0.012900 1111 0.000900 1112 0.017400 1113 0.005400 1114 0.000600 1115 0.005300 1116 0.000600 1117 0.011800 1118 0.007600 1119 0.023500 1120 0.000900 1121 0.000600 1122 0.016800 1123 0.012800 1124 0.007100 1125 0.046300 1126 0.000600 1127 0.000700 1128 0.023100 1129 0.000600 1130 0.000700 1131 0.007000 1132 0.007400 1133 0.015800 1134 0.007300 1135 0.006900 1136 0.006900 1137 0.011900 1138 0.033100 1139 0.000600 1140 0.015100 1141 0.006800 1142 0.005100 1143 0.014900 1144 0.000700 1145 0.021200 1146 0.000700 1147 0.000700 1148 0.006800 1149 0.013700 1150 0.000700 1151 0.000700 1152 0.000600 1153 0.005000 1154 0.006700 1155 0.012700 1156 0.006500 1157 0.000900 1158 0.006900 1159 0.001000 1160 0.001000 1161 0.023600 1162 0.001000 1163 0.001000 1164 0.004900 1165 0.001000 1166 0.000900 1167 0.000900 1168 0.006400 1169 0.000800 1170 0.006400 1171 0.006300 1172 0.000800 1173 0.000800 1174 0.000800 1175 0.024600 1176 0.000700 1177 0.004700 1178 0.000700 1179 0.031500 1180 0.017500 1181 0.004900 1182 0.006800 1183 0.007100 1184 0.000700 1185 0.004700 1186 0.000700 1187 0.010300 1188 0.006700 1189 0.012700 1190 0.004600 1191 0.000600 1192 0.000600 1193 0.013400 1194 0.006100 1195 0.010600 1196 0.013300 1197 0.000600 1198 0.009900 1199 0.000600 1200 0.010600 1201 0.000600 1202 0.006200 1203 0.000600 1204 0.006600 1205 0.025300 1206 0.000600 1207 0.000600 1208 0.006100 1209 0.005900 1210 0.018000 1211 0.006100 1212 0.006600 1213 0.000600 1214 0.016600 1215 0.004400 1216 0.012700 1217 0.005800 1218 0.000600 1219 0.000600 1220 0.012800 1221 0.004400 1222 0.000600 1223 0.012600 1224 0.000600 1225 0.000600 1226 0.000600 1227 0.000700 1228 0.012500 1229 0.005900 1230 0.000700 1231 0.006300 1232 0.005700 1233 0.016200 1234 0.021900 1235 0.004300 1236 0.000700 1237 0.000700 1238 0.000600 1239 0.000600 1240 0.000600 1241 0.000600 1242 0.012800 1243 0.000600 1244 0.005600 1245 0.000600 1246 0.000600 1247 0.012400 1248 0.000600 1249 0.012300 1250 0.006400 1251 0.000600 1252 0.000600 1253 0.012300 1254 0.022400 1255 0.015800 1256 0.017400 1257 0.006300 1258 0.011500 1259 0.000600 1260 0.000600 1261 0.012300 1262 0.000600 1263 0.004200 1264 0.000600 1265 0.012300 1266 0.006300 1267 0.000600 1268 0.000600 1269 0.012200 1270 0.004100 1271 0.006200 1272 0.005700 1273 0.000600 1274 0.011900 1275 0.005700 1276 0.005700 1277 0.011900 1278 0.006200 1279 0.000600 1280 0.010500 1281 0.000600 1282 0.011800 1283 0.011800 1284 0.000600 1285 0.005600 1286 0.000700 1287 0.000700 1288 0.009600 1289 0.000700 1290 0.011700 1291 0.008700 1292 0.000700 1293 0.006100 1294 0.005300 1295 0.005300 1296 0.000600 1297 0.012000 1298 0.010300 1299 0.011700 1300 0.005500 1301 0.048300 1302 0.005500 1303 0.000600 1304 0.005500 1305 0.000600 1306 0.005500 1307 0.005500 1308 0.010900 1309 0.006000 1310 0.010500 1311 0.005200 1312 0.005900 1313 0.012900 1314 0.005800 1315 0.005000 1316 0.001100 1317 0.001100 1318 0.001100 1319 0.001100 1320 0.012400 1321 0.001200 1322 0.001200 1323 0.005700 1324 0.005700 1325 0.000800 1326 0.000700 1327 0.004900 1328 0.000800 1329 0.000800 1330 0.016900 1331 0.000600 1332 0.000600 1333 0.000500 1334 0.003800 1335 0.009500 1336 0.000500 1337 0.000500 1338 0.003800 1339 0.016400 1340 0.016400 1341 0.005000 1342 0.011700 1343 0.011600 1344 0.005300 1345 0.012100 1346 0.000600 1347 0.000600 1348 0.000600 1349 0.000500 1350 0.005200 1351 0.010000 1352 0.011400 1353 0.000600 1354 0.003800 1355 0.013800 1356 0.000600 1357 0.000600 1358 0.000500 1359 0.011900 1360 0.005300 1361 0.055500 1362 0.014500 1363 0.000600 1364 0.015000 1365 0.011200 1366 0.005700 1367 0.004800 1368 0.000600 1369 0.004800 1370 0.000700 1371 0.000700 1372 0.003700 1373 0.000700 1374 0.000600 1375 0.000600 1376 0.000600 1377 0.005700 1378 0.009900 1379 0.011200 1380 0.041400 1381 0.000600 1382 0.003700 1383 0.022200 1384 0.000600 1385 0.000600 1386 0.000600 1387 0.000600 1388 0.014100 1389 0.000600 1390 0.000600 1391 0.000600 1392 0.016800 1393 0.011600 1394 0.003900 1395 0.005200 1396 0.005900 1397 0.003700 1398 0.051200 1399 0.000600 1400 0.000600 1401 0.005500 1402 0.037200 1403 0.005900 1404 0.011000 1405 0.005100 1406 0.020900 1407 0.014300 1408 0.000400 1409 0.000400 1410 0.014200 1411 0.010900 1412 0.014800 1413 0.005100 1414 0.015800 1415 0.008500 1416 0.014600 1417 0.011400 1418 0.000700 1419 0.015000 1420 0.050200 1421 0.000700 1422 0.008800 1423 0.000700 1424 0.005600 1425 0.000800 1426 0.004500 1427 0.000900 1428 0.003500 1429 0.009200 1430 0.000800 1431 0.011300 1432 0.003500 1433 0.011300 1434 0.011300 1435 0.000900 1436 0.000800 1437 0.000800 1438 0.000800 1439 0.005500 1440 0.000800 1441 0.005000 1442 0.018000 1443 0.000700 1444 0.005000 1445 0.018600 1446 0.000800 1447 0.000800 1448 0.005000 1449 0.005700 1450 0.014200 1451 0.010600 1452 0.000500 1453 0.000400 1454 0.015200 1455 0.005200 1456 0.005700 1457 0.003600 1458 0.003600 1459 0.000400 1460 0.000800 1461 0.000500 1462 0.000700 1463 0.000700 1464 0.000600 1465 0.010900 1466 0.010800 1467 0.005000 1468 0.005600 1469 0.003500 1470 0.000400 1471 0.010400 1472 0.000500 1473 0.005600 1474 0.004500 1475 0.000500 1476 0.018800 1477 0.004400 1478 0.008300 1479 0.005400 1480 0.000700 1481 0.005500 1482 0.007600 1483 0.013500 1484 0.000700 1485 0.004800 1486 0.008600 1487 0.000600 1488 0.003300 1489 0.004800 1490 0.000600 1491 0.000600 1492 0.000600 1493 0.015000 1494 0.017200 1495 0.010900 1496 0.010700 1497 0.004300 1498 0.013400 1499 0.000600 1500 0.004300 1501 0.004800 1502 0.013100 1503 0.010600 1504 0.015400 1505 0.000600 1506 0.004700 1507 0.004700 1508 0.000600 1509 0.000600 1510 0.000600 1511 0.010400 1512 0.000700 1513 0.000700 1514 0.000700 1515 0.010400 1516 0.014400 1517 0.003300 1518 0.000700 1519 0.000700 1520 0.000700 1521 0.000800 1522 0.000700 1523 0.005300 1524 0.000700 1525 0.000700 1526 0.000700 1527 0.004800 1528 0.000500 1529 0.004900 1530 0.000500 1531 0.000400 1532 0.005000 1533 0.000400 1534 0.000300 1535 0.003500 1536 0.003500 1537 0.003500 1538 0.014800 1539 0.005700 1540 0.000300 1541 0.000300 1542 0.000300 1543 0.010400 1544 0.000400 1545 0.013200 1546 0.000400 1547 0.000400 1548 0.005100 1549 0.032200 1550 0.015700 1551 0.000400 1552 0.010000 1553 0.014200 1554 0.044500 1555 0.000600 1556 0.004200 1557 0.004500 1558 0.007400 1559 0.000700 1560 0.009900 1561 0.000700 1562 0.000700 1563 0.014600 1564 0.005300 1565 0.009800 1566 0.003200 1567 0.000700 1568 0.005300 1569 0.000700 1570 0.023700 1571 0.004200 1572 0.000700 1573 0.000700 1574 0.010000 1575 0.005400 1576 0.000500 1577 0.012400 1578 0.004300 1579 0.000500 1580 0.035600 1581 0.000500 1582 0.000500 1583 0.004800 1584 0.000500 1585 0.014800 1586 0.000500 1587 0.000500 1588 0.000500 1589 0.000500 1590 0.000500 1591 0.004800 1592 0.000400 1593 0.000500 1594 0.010000 1595 0.009600 1596 0.009500 1597 0.003400 1598 0.000400 1599 0.000400 1600 0.000400 1601 0.000400 1602 0.000400 1603 0.003300 1604 0.005500 1605 0.009000 1606 0.000400 1607 0.005500 1608 0.004900 1609 0.010000 1610 0.000400 1611 0.000400 1612 0.009400 1613 0.010000 1614 0.004900 1615 0.000400 1616 0.016900 1617 0.005300 1618 0.000500 1619 0.000500 1620 0.009200 1621 0.037300 1622 0.004000 1623 0.005200 1624 0.000700 1625 0.003200 1626 0.000700 1627 0.000700 1628 0.004000 1629 0.005200 1630 0.000600 1631 0.004000 1632 0.008500 1633 0.000600 1634 0.000600 1635 0.004500 1636 0.009600 1637 0.000600 1638 0.005700 1639 0.021400 1640 0.000600 1641 0.004000 1642 0.000600 1643 0.003900 1644 0.005000 1645 0.000500 1646 0.044500 1647 0.000800 1648 0.007200 1649 0.000800 1650 0.004400 1651 0.000800 1652 0.003100 1653 0.000800 1654 0.009600 1655 0.009900 1656 0.003800 1657 0.000600 1658 0.006400 1659 0.000600 1660 0.009200 1661 0.005100 1662 0.003100 1663 0.003900 1664 0.000600 1665 0.003000 1666 0.000500 1667 0.014600 1668 0.008100 1669 0.004400 1670 0.003000 1671 0.000700 1672 0.000700 1673 0.000400 1674 0.009300 1675 0.003000 1676 0.009600 1677 0.009600 1678 0.000400 1679 0.007900 1680 0.000500 1681 0.013600 1682 0.003000 1683 0.007700 1684 0.004400 1685 0.009900 1686 0.006700 1687 0.003700 1688 0.000700 1689 0.004400 1690 0.000700 1691 0.000700 1692 0.005000 1693 0.003000 1694 0.000700 1695 0.004400 1696 0.003700 1697 0.013500 1698 0.004900 1699 0.009100 1700 0.004400 1701 0.005000 1702 0.009700 1703 0.009900 1704 0.008000 1705 0.005600 1706 0.009900 1707 0.001600 1708 0.085800 1709 0.001600 1710 0.001200 1711 0.001200 1712 0.014700 1713 0.009800 1714 0.001000 1715 0.008600 1716 0.009800 1717 0.020800 1718 0.000800 1719 0.007900 1720 0.043000 1721 0.004300 1722 0.003700 1723 0.000800 1724 0.000800 1725 0.007800 1726 0.017700 1727 0.000900 1728 0.006400 1729 0.000900 1730 0.005000 1731 0.003000 1732 0.000600 1733 0.004400 1734 0.004400 1735 0.013200 1736 0.009200 1737 0.000600 1738 0.013100 1739 0.011300 1740 0.009400 1741 0.000600 1742 0.000600 1743 0.000600 1744 0.000600 1745 0.003000 1746 0.041600 1747 0.011400 1748 0.013500 1749 0.004400 1750 0.009000 1751 0.000700 1752 0.009000 1753 0.003800 1754 0.003800 1755 0.003800 ```
Wanclouds/Mistral-7b-doc-ONNX
Wanclouds
"2024-02-23T10:28:17Z"
3
0
transformers
[ "transformers", "onnx", "mistral", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2024-01-17T20:53:53Z"
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. # -------------------------------------------------------------------------- import os from pathlib import Path import torch import torch.distributed as dist from optimum.onnxruntime import ORTModelForCausalLM from transformers import AutoConfig, AutoTokenizer, GenerationConfig device_id = 0 device = torch.device(f"cuda:{device_id}") # Change to torch.device("cpu") if running on CPU ep = "CUDAExecutionProvider" # change to CPUExecutionProvider if running on CPU ep_options = {"device_id": device_id} model_id = "mistralai/Mistral-7B-Instruct-v0.2" model_path = "./Olive/examples/llama2/models/qlora/qlora-conversion-transformers_optimization-bnb_quantization/gpu-cuda_model" model_path = Path(model_path) if not (model_path / "config.json").exists(): config = AutoConfig.from_pretrained(model_id) config.save_pretrained(model_path) else: config = AutoConfig.from_pretrained(model_path) if not (model_path / "generation_config.json").exists(): gen_config = GenerationConfig.from_pretrained(model_id) gen_config.save_pretrained(model_path) else: gen_config = GenerationConfig.from_pretrained(model_path) tokenizer = AutoTokenizer.from_pretrained(model_id) model = ORTModelForCausalLM.from_pretrained( model_path, config=config, generation_config=gen_config, use_io_binding=True, # provider="CUDAExecutionProvider", provider=ep, provider_options={"device_id": device_id} # provider_options={"device_id": str(rank)}, )
allispaul/distilhubert-finetuned-gtzan
allispaul
"2024-03-13T16:29:54Z"
145
0
transformers
[ "transformers", "pytorch", "tensorboard", "hubert", "audio-classification", "generated_from_trainer", "base_model:ntu-spml/distilhubert", "base_model:finetune:ntu-spml/distilhubert", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
"2024-03-13T03:43:30Z"
--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7097 - Accuracy: 0.8 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9677 | 1.0 | 112 | 1.8659 | 0.42 | | 1.1919 | 2.0 | 225 | 1.3071 | 0.61 | | 0.9976 | 3.0 | 337 | 0.9191 | 0.74 | | 0.5864 | 4.0 | 450 | 0.8043 | 0.78 | | 0.534 | 5.0 | 562 | 0.7504 | 0.74 | | 0.2751 | 6.0 | 675 | 0.7042 | 0.78 | | 0.2142 | 7.0 | 787 | 0.7410 | 0.75 | | 0.1927 | 8.0 | 900 | 0.7033 | 0.77 | | 0.1604 | 9.0 | 1012 | 0.7741 | 0.77 | | 0.0934 | 9.96 | 1120 | 0.7097 | 0.8 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1 - Datasets 2.15.0 - Tokenizers 0.13.2
SeaLLMs/SeaLLMs-Audio-7B
SeaLLMs
"2025-03-17T09:54:12Z"
65
3
null
[ "safetensors", "qwen2_audio", "seallms-audio", "speech", "audio", "SEA", "audio-text-to-text", "en", "zh", "id", "vi", "th", "arxiv:2407.19672", "license:other", "region:us" ]
audio-text-to-text
"2025-03-13T14:14:12Z"
--- license: other license_name: seallms license_link: LICENSE language: - en - zh - id - vi - th pipeline_tag: audio-text-to-text tags: - seallms-audio - speech - audio - SEA --- <p align="center"> <img src="https://DAMO-NLP-SG.github.io/SeaLLMs-Audio/static/images/seallm-audio-logo.png" alt="SeaLLMs-Audio" width="20%"> </p> # SeaLLMs-Audio: Large Audio-Language Models for Southeast Asia <p align="center"> <a href="https://DAMO-NLP-SG.github.io/SeaLLMs-Audio/" target="_blank" rel="noopener">Website</a> &nbsp;&nbsp; <a href="https://huggingface.co/spaces/SeaLLMs/SeaLLMs-Audio-Demo" target="_blank" rel="noopener"> 🤗 DEMO</a> &nbsp;&nbsp; <a href="https://github.com/DAMO-NLP-SG/SeaLLMs-Audio" target="_blank" rel="noopener">Github</a> &nbsp;&nbsp; <a href="https://huggingface.co/SeaLLMs/SeaLLMs-Audio-7B" target="_blank" rel="noopener">🤗 Model</a> &nbsp;&nbsp; <!-- <a href="https://arxiv.org/pdf/2407.19672" target="_blank" rel="noopener">[NEW] Technical Report</a> --> </p> We introduce **SeaLLMs-Audio**, the multimodal (audio) extension of the [SeaLLMs](https://damo-nlp-sg.github.io/DAMO-SeaLLMs/) (Large Language Models for Southeast Asian languages) family. It is the first large audio-language model (LALM) designed to support multiple Southeast Asian languages, including **Indonesian (id), Thai (th), and Vietnamese (vi), alongside English (en) and Chinese (zh)**. Trained on a large-scale audio dataset, SeaLLMs-Audio demonstrates strong performance across various audio-related tasks, such as audio analysis tasks and voice-based interactions. As a significant step toward advancing audio LLMs in Southeast Asia, we hope SeaLLMs-Audio will benefit both the research community and industry in the region. ### Key Features of SeaLLMs-Audio: - **Multilingual**: The model mainly supports 5 languages, including 🇮🇩 Indonesian, 🇹🇭 Thai, 🇻🇳 Vietnamese, 🇬🇧 English, and 🇨🇳 Chinese. - **Multimodal**: The model supports flexible input formats, such as **audio only, text only, and audio with text**. - **Multi-task**: The model supports a variety of tasks, including audio analysis tasks such as audio captioning, automatic speech recognition, speech-to-text translation, speech emotion recognition, speech question answering, and speech summarization. Additionally, it handles voice chat tasks, including answering factual, mathematical, and other general questions. We open-weight [SeaLLMs-Audio](https://huggingface.co/SeaLLMs/SeaLLMs-Audio-7B) on Hugging Face, and we have built a [demo](https://huggingface.co/spaces/SeaLLMs/SeaLLMs-Audio-Demo) for users to interact with. # Training information: SeaLLMs-Audio builts upon [Qwen2-Audio-7B](https://huggingface.co/Qwen/Qwen2-Audio-7B) and [Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct). We replaced the LLM module in Qwen2-Audio-7B by Qwen2.5-7B-Instruct. After that, we do full-parameter fine-tuning on a large-scale audio dataset. This dataset contains 1.58M conversations for multiple tasks, in which 93% are single turn. The tasks can be roughly classified as following task categories: automatic speech recognition (ASR), audio captioning (AC), speech-to-text translation (S2TT), question answering (QA), speech summarization (SS), speech question answering (SQA), chat, math, and fact and mixed tasks (mixed). The distribution of data across languages and tasks are: <p align="center"> <strong>Distribution of SeaLLMs-Audio training data across languages and tasks</strong> </p> <p align="center"> <img src="https://DAMO-NLP-SG.github.io/SeaLLMs-Audio/static/data_distribution/dist_lang.png" alt="Distribution of SeaLLMs-Audio training data across languages" width="70%"> <img src="https://DAMO-NLP-SG.github.io/SeaLLMs-Audio/static/data_distribution/dist_task.png" alt="Distribution of SeaLLMs-Audio training data across tasks" width="70%"> </p> The training dataset was curated from multiple data sources, including public datasets and in-house data. Public datasets includes: [gigaspeech](https://huggingface.co/datasets/speechcolab/gigaspeech), [gigaspeech2](https://huggingface.co/datasets/speechcolab/gigaspeech2), [common voice](https://huggingface.co/datasets/mozilla-foundation/common_voice_17_0), [AudioCaps](https://huggingface.co/datasets/OpenSound/AudioCaps), [VoiceAssistant-400K](https://huggingface.co/datasets/gpt-omni/VoiceAssistant-400K), [YODAS2](https://huggingface.co/datasets/espnet/yodas2), and [Multitask-National-Speech-Corpus](https://huggingface.co/datasets/MERaLiON/Multitask-National-Speech-Corpus-v1). We would like to thank the authors of these datasets for their contributions to the community! We train the model on the dataset for 1 epoch, which took ~6 days to complete on 32 A800 GPUs. # Performance Due to the absence of standard audio benchmarks for evaluating audio LLMs in Southeast Asia, we have manually created a benchmark called **SeaBench-Audio**. It comprises nine tasks: - **Tasks with both audio and text inputs:** Audio Captioning (AC), Automatic Speech Recognition (ASR), Speech-to-Text Translation (S2TT), Speech Emotion Recognition (SER), Speech Question Answering (SQA), and Speech Summarization (SS). - **Tasks with only audio inputs:** Factuality, Math, and General. We manually annotated 15 questions per task per language. For evaluation, qualified native speakers rated each response on a scale of 1 to 5, with 5 representing the highest quality. Due to the lack of LALMs for all the three Southeast Asian languages, we compare the performance of SeaLLMs-Audio with relevant LALMs with similar sizes, including: [Qwen2-Audio-7B-Instruct](https://huggingface.co/Qwen/Qwen2-Audio-7B-Instruct) (Qwen2-Audio), [MERaLiON-AudioLLM-Whisper-SEA-LION](https://huggingface.co/MERaLiON/MERaLiON-AudioLLM-Whisper-SEA-LION) (MERaLiON), [llama3.1-typhoon2-audio-8b-instruct](https://huggingface.co/scb10x/llama3.1-typhoon2-audio-8b-instruct) (typhoon2-audio), and [DiVA-llama-3-v0-8b](https://huggingface.co/WillHeld/DiVA-llama-3-v0-8b) (DiVA). All the LALMs can accept audio with text as input. The results are shown in the figure below. <center> **Average scores of SeaLLMs-Audio vs. Other LALMs on SeaBench-Audio** ![Performance of SeaLLMs-Audio vs. Other Audio LLMs](https://DAMO-NLP-SG.github.io/SeaLLMs-Audio/static/images/scores_lang.png) </center> The results shows that SeaLLMs-Audio achieve state-of-the-art performance in all the five langauges, demonstrating its effectiveness in supporting audio-related tasks in Southeast Asia. # Quickstart Our model is available on Hugging Face, and you can easily use it with the `transformers` library or `vllm` library. Below are some examples to get you started. ## Get started with `transformers` ```python from transformers import Qwen2AudioForConditionalGeneration, AutoProcessor import librosa import os model = Qwen2AudioForConditionalGeneration.from_pretrained("SeaLLMs/SeaLLMs-Audio-7B", device_map="auto") processor = AutoProcessor.from_pretrained("SeaLLMs/SeaLLMs-Audio-7B") def response_to_audio(conversation, model=None, processor=None): text = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False) audios = [] for message in conversation: if isinstance(message["content"], list): for ele in message["content"]: if ele["type"] == "audio": if ele['audio_url'] != None: audios.append(librosa.load( ele['audio_url'], sr=processor.feature_extractor.sampling_rate)[0] ) if audios != []: inputs = processor(text=text, audios=audios, return_tensors="pt", padding=True,sampling_rate=16000) else: inputs = processor(text=text, return_tensors="pt", padding=True) inputs.input_ids = inputs.input_ids.to("cuda") inputs = {k: v.to("cuda") for k, v in inputs.items() if v is not None} generate_ids = model.generate(**inputs, max_new_tokens=2048, temperature = 0, do_sample=False) generate_ids = generate_ids[:, inputs["input_ids"].size(1):] response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] return response # Voice Chat os.system(f"wget -O fact_en.wav https://DAMO-NLP-SG.github.io/SeaLLMs-Audio/static/audios/fact_en.wav") os.system(f"wget -O general_en.wav https://DAMO-NLP-SG.github.io/SeaLLMs-Audio/static/audios/general_en.wav") conversation = [ {"role": "user", "content": [ {"type": "audio", "audio_url": "fact_en.wav"}, ]}, {"role": "assistant", "content": "The most abundant gas in Earth's atmosphere is nitrogen. It makes up about 78 percent of the atmosphere by volume."}, {"role": "user", "content": [ {"type": "audio", "audio_url": "general_en.wav"}, ]}, ] response = response_to_audio(conversation, model=model, processor=processor) print(response) # Audio Analysis os.system(f"wget -O ASR_en.wav https://DAMO-NLP-SG.github.io/SeaLLMs-Audio/static/audios/ASR_en.wav") conversation = [ {"role": "user", "content": [ {"type": "audio", "audio_url": "ASR_en.wav"}, {"type": "text", "text": "Please write down what is spoken in the audio file."}, ]}, ] response = response_to_audio(conversation, model=model, processor=processor) print(response) ``` ## Inference with `vllm` ```python from vllm import LLM, SamplingParams import librosa, os from transformers import AutoProcessor processor = AutoProcessor.from_pretrained("SeaLLMs/SeaLLMs-Audio-7B") llm = LLM( model="SeaLLMs/SeaLLMs-Audio-7B", trust_remote_code=True, gpu_memory_utilization=0.5, enforce_eager=True, device = "cuda", limit_mm_per_prompt={"audio": 5}, ) def response_to_audio(conversation, model=None, processor=None, temperature = 0.1,repetition_penalty=1.1, top_p = 0.9,max_new_tokens = 4096): text = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False) audios = [] for message in conversation: if isinstance(message["content"], list): for ele in message["content"]: if ele["type"] == "audio": if ele['audio_url'] != None: audios.append(librosa.load( ele['audio_url'], sr=processor.feature_extractor.sampling_rate)[0] ) sampling_params = SamplingParams( temperature=temperature, max_tokens=max_new_tokens, repetition_penalty=repetition_penalty, top_p=top_p, top_k=20, stop_token_ids=[], ) input = { 'prompt': text, 'multi_modal_data': { 'audio': [(audio, 16000) for audio in audios] } } output = model.generate([input], sampling_params=sampling_params)[0] response = output.outputs[0].text return response # Voice Chat os.system(f"wget -O fact_en.wav https://DAMO-NLP-SG.github.io/SeaLLMs-Audio/static/audios/fact_en.wav") os.system(f"wget -O general_en.wav https://DAMO-NLP-SG.github.io/SeaLLMs-Audio/static/audios/general_en.wav") conversation = [ {"role": "user", "content": [ {"type": "audio", "audio_url": "fact_en.wav"}, ]}, {"role": "assistant", "content": "The most abundant gas in Earth's atmosphere is nitrogen. It makes up about 78 percent of the atmosphere by volume."}, {"role": "user", "content": [ {"type": "audio", "audio_url": "general_en.wav"}, ]}, ] response = response_to_audio(conversation, model=llm, processor=processor) print(response) # Audio Analysis os.system(f"wget -O ASR_en.wav https://DAMO-NLP-SG.github.io/SeaLLMs-Audio/static/audios/ASR_en.wav") conversation = [ {"role": "user", "content": [ {"type": "audio", "audio_url": "ASR_en.wav"}, {"type": "text", "text": "Please write down what is spoken in the audio file."}, ]}, ] response = response_to_audio(conversation, model=llm, processor=processor) print(response) ``` ## Citation If you find our project useful, we hope you would kindly star our [repo](https://github.com/DAMO-NLP-SG/SeaLLMs-Audio) and cite our work as follows. Corresponding Author: Wenxuan Zhang ([[email protected]](mailto:[email protected])) ``` @misc{SeaLLMs-Audio, author = {Chaoqun Liu and Mahani Aljunied and Guizhen Chen and Hou Pong Chan and Weiwen Xu and Yu Rong and Wenxuan Zhang}, title = {SeaLLMs-Audio: Large Audio-Language Models for Southeast Asia}, year = {2025}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/DAMO-NLP-SG/SeaLLMs-Audio}}, } ```
patched-codes/Meta-Llama-3.1-8B-Instruct-bnb-4bit-Patched
patched-codes
"2024-08-19T06:54:53Z"
46
1
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "trl", "en", "dataset:patched-codes/static-analysis-eval", "dataset:patched-codes/synth-vuln-fixes", "base_model:unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit", "base_model:quantized:unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
"2024-08-10T07:50:20Z"
--- base_model: unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl datasets: - patched-codes/static-analysis-eval - patched-codes/synth-vuln-fixes --- # Uploaded model - **Developed by:** patched-codes - **License:** apache-2.0 - **Finetuned from model :** unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
S1X3L4/a2c-PandaReachDense-v2
S1X3L4
"2023-07-24T18:29:45Z"
2
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
"2023-07-24T18:26:40Z"
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.52 +/- 0.46 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
wlhb/Llama-3.1-8B-bnb-4bit-kefu
wlhb
"2024-08-13T10:09:43Z"
9
0
transformers
[ "transformers", "safetensors", "gguf", "llama", "customer service", "客服", "unsloth", "trl", "sft", "zh", "dataset:wlhb/kefu", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "8-bit", "region:us", "conversational" ]
null
"2024-08-13T02:06:41Z"
--- datasets: - wlhb/kefu language: - zh library_name: transformers license: apache-2.0 tags: - customer service - 客服 - unsloth - trl - sft ---
NewEden/kto-ohashi-16bit
NewEden
"2025-01-28T04:58:36Z"
16
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "base_model:Delta-Vector/Ohashi-NeMo-12B", "base_model:finetune:Delta-Vector/Ohashi-NeMo-12B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2025-01-28T04:52:16Z"
--- base_model: Delta-Vector/Ohashi-NeMo-12B tags: - text-generation-inference - transformers - unsloth - mistral - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** NewEden - **License:** apache-2.0 - **Finetuned from model :** Delta-Vector/Ohashi-NeMo-12B This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
alalalalex/Light-R1-32B-Q4_K_M-GGUF
alalalalex
"2025-03-08T21:36:24Z"
0
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "base_model:qihoo360/Light-R1-32B", "base_model:quantized:qihoo360/Light-R1-32B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
"2025-03-08T21:34:53Z"
--- base_model: qihoo360/Light-R1-32B license: apache-2.0 tags: - llama-cpp - gguf-my-repo --- # alalalalex/Light-R1-32B-Q4_K_M-GGUF This model was converted to GGUF format from [`qihoo360/Light-R1-32B`](https://huggingface.co/qihoo360/Light-R1-32B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/qihoo360/Light-R1-32B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo alalalalex/Light-R1-32B-Q4_K_M-GGUF --hf-file light-r1-32b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo alalalalex/Light-R1-32B-Q4_K_M-GGUF --hf-file light-r1-32b-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo alalalalex/Light-R1-32B-Q4_K_M-GGUF --hf-file light-r1-32b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo alalalalex/Light-R1-32B-Q4_K_M-GGUF --hf-file light-r1-32b-q4_k_m.gguf -c 2048 ```
yuiseki/tinyllama-ta-wikipedia-1.5T-v0.1
yuiseki
"2024-03-29T01:40:50Z"
79
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-03-29T01:39:11Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
genki10/BERT_AugV8_k3_task1_organization_sp020_lw010_fold0
genki10
"2025-04-03T18:58:42Z"
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2025-03-25T05:53:09Z"
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: BERT_AugV8_k3_task1_organization_sp020_lw010_fold0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT_AugV8_k3_task1_organization_sp020_lw010_fold0 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9084 - Qwk: 0.3194 - Mse: 0.9084 - Rmse: 0.9531 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | No log | 1.0 | 3 | 8.1361 | 0.0 | 8.1361 | 2.8524 | | No log | 2.0 | 6 | 6.6550 | 0.0 | 6.6550 | 2.5797 | | No log | 3.0 | 9 | 5.3898 | 0.0112 | 5.3898 | 2.3216 | | No log | 4.0 | 12 | 4.1454 | 0.0039 | 4.1454 | 2.0360 | | No log | 5.0 | 15 | 2.9877 | 0.0 | 2.9877 | 1.7285 | | No log | 6.0 | 18 | 2.0035 | 0.0511 | 2.0035 | 1.4154 | | No log | 7.0 | 21 | 1.3988 | 0.0316 | 1.3988 | 1.1827 | | No log | 8.0 | 24 | 1.0891 | 0.0316 | 1.0891 | 1.0436 | | No log | 9.0 | 27 | 1.3611 | 0.0575 | 1.3611 | 1.1666 | | No log | 10.0 | 30 | 1.0147 | 0.1102 | 1.0147 | 1.0073 | | No log | 11.0 | 33 | 0.7515 | 0.3778 | 0.7515 | 0.8669 | | No log | 12.0 | 36 | 0.9154 | 0.3181 | 0.9154 | 0.9567 | | No log | 13.0 | 39 | 0.8859 | 0.3167 | 0.8859 | 0.9412 | | No log | 14.0 | 42 | 0.6448 | 0.5098 | 0.6448 | 0.8030 | | No log | 15.0 | 45 | 1.5840 | 0.1877 | 1.5840 | 1.2586 | | No log | 16.0 | 48 | 0.7503 | 0.4168 | 0.7503 | 0.8662 | | No log | 17.0 | 51 | 0.7847 | 0.4082 | 0.7847 | 0.8858 | | No log | 18.0 | 54 | 0.8571 | 0.3840 | 0.8571 | 0.9258 | | No log | 19.0 | 57 | 0.8537 | 0.3546 | 0.8537 | 0.9240 | | No log | 20.0 | 60 | 0.7640 | 0.3432 | 0.7640 | 0.8741 | | No log | 21.0 | 63 | 1.1188 | 0.2791 | 1.1188 | 1.0577 | | No log | 22.0 | 66 | 0.7886 | 0.3451 | 0.7886 | 0.8880 | | No log | 23.0 | 69 | 1.1796 | 0.2741 | 1.1796 | 1.0861 | | No log | 24.0 | 72 | 0.8473 | 0.3370 | 0.8473 | 0.9205 | | No log | 25.0 | 75 | 1.4412 | 0.1782 | 1.4412 | 1.2005 | | No log | 26.0 | 78 | 0.8010 | 0.3482 | 0.8010 | 0.8950 | | No log | 27.0 | 81 | 0.9066 | 0.3080 | 0.9066 | 0.9522 | | No log | 28.0 | 84 | 1.7304 | 0.1192 | 1.7304 | 1.3154 | | No log | 29.0 | 87 | 0.9084 | 0.3194 | 0.9084 | 0.9531 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.3.1 - Tokenizers 0.21.0
mmarinatto/ppo-Huggy
mmarinatto
"2025-01-13T04:02:38Z"
49
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
"2025-01-13T04:02:31Z"
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: mmarinatto/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Zekunli/flan-t5-large-da-multiwoz2.0_400-ep20-nonstop
Zekunli
"2023-04-19T01:38:45Z"
4
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
"2023-04-18T22:08:23Z"
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: flan-t5-large-da-multiwoz2.0_400-ep20-nonstop results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-large-da-multiwoz2.0_400-ep20-nonstop This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3661 - Accuracy: 41.2421 - Num: 7358 - Gen Len: 15.5222 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 1799 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Num | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:--------:|:----:|:-------:| | 1.1824 | 1.16 | 200 | 0.5187 | 28.4524 | 7358 | 14.7642 | | 0.5471 | 2.33 | 400 | 0.4278 | 32.5629 | 7358 | 15.4386 | | 0.4647 | 3.49 | 600 | 0.4029 | 35.2443 | 7358 | 16.135 | | 0.4313 | 4.65 | 800 | 0.3820 | 36.6479 | 7358 | 16.1552 | | 0.4074 | 5.81 | 1000 | 0.3775 | 37.6957 | 7358 | 15.1439 | | 0.3859 | 6.98 | 1200 | 0.3690 | 38.3142 | 7358 | 15.2045 | | 0.369 | 8.14 | 1400 | 0.3720 | 39.8799 | 7358 | 15.7923 | | 0.3547 | 9.3 | 1600 | 0.3665 | 39.5217 | 7358 | 15.3394 | | 0.3457 | 10.47 | 1800 | 0.3632 | 39.8289 | 7358 | 15.4761 | | 0.3423 | 11.63 | 2000 | 0.3678 | 39.9509 | 7358 | 15.6708 | | 0.3295 | 12.79 | 2200 | 0.3657 | 41.1373 | 7358 | 15.1586 | | 0.3212 | 13.95 | 2400 | 0.3651 | 40.8611 | 7358 | 15.7312 | | 0.3128 | 15.12 | 2600 | 0.3664 | 40.8806 | 7358 | 15.4553 | | 0.3131 | 16.28 | 2800 | 0.3677 | 40.8906 | 7358 | 15.4629 | | 0.3093 | 17.44 | 3000 | 0.3661 | 40.9971 | 7358 | 15.4329 | | 0.3021 | 18.6 | 3200 | 0.3652 | 41.2953 | 7358 | 15.5118 | | 0.3004 | 19.77 | 3400 | 0.3661 | 41.2492 | 7358 | 15.5246 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.5.1 - Tokenizers 0.12.1
albertus-sussex/veriscrape-simcse-university-reference_3_to_verify_7-fold-6
albertus-sussex
"2025-03-28T13:56:07Z"
0
0
transformers
[ "transformers", "safetensors", "roberta", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
"2025-03-28T13:55:47Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ggbetz/Llama-3.1-Argunaut-1-8B-SFT-Q4-mlx
ggbetz
"2025-01-02T08:15:03Z"
74
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "logic", "argumentation", "critical-thinking", "argument-mapping", "trl", "sft", "mlx", "mlx-my-repo", "conversational", "dataset:DebateLabKIT/deepa2-conversations", "dataset:DebateLabKIT/deep-argmap-conversations", "dataset:allenai/tulu-3-sft-mixture", "base_model:DebateLabKIT/Llama-3.1-Argunaut-1-8B-SFT", "base_model:quantized:DebateLabKIT/Llama-3.1-Argunaut-1-8B-SFT", "license:llama3.1", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "region:us" ]
text-generation
"2025-01-02T08:14:48Z"
--- license: llama3.1 datasets: - DebateLabKIT/deepa2-conversations - DebateLabKIT/deep-argmap-conversations - allenai/tulu-3-sft-mixture base_model: DebateLabKIT/Llama-3.1-Argunaut-1-8B-SFT pipeline_tag: text-generation library_name: transformers tags: - logic - argumentation - critical-thinking - argument-mapping - trl - sft - mlx - mlx-my-repo --- # ggbetz/Llama-3.1-Argunaut-1-8B-SFT-Q4-mlx The Model [ggbetz/Llama-3.1-Argunaut-1-8B-SFT-Q4-mlx](https://huggingface.co/ggbetz/Llama-3.1-Argunaut-1-8B-SFT-Q4-mlx) was converted to MLX format from [DebateLabKIT/Llama-3.1-Argunaut-1-8B-SFT](https://huggingface.co/DebateLabKIT/Llama-3.1-Argunaut-1-8B-SFT) using mlx-lm version **0.20.5**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("ggbetz/Llama-3.1-Argunaut-1-8B-SFT-Q4-mlx") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
hjones6315/silicon_v3
hjones6315
"2025-02-10T21:26:37Z"
0
0
transformers
[ "transformers", "safetensors", "parler_tts", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
"2025-02-10T21:23:53Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RedRayz/abydos_noob_v-pred_1.0.1
RedRayz
"2025-01-25T08:15:01Z"
49
2
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-xl", "text-to-image", "base_model:Laxhar/noobai-XL-Vpred-1.0", "base_model:finetune:Laxhar/noobai-XL-Vpred-1.0", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
"2025-01-09T11:48:06Z"
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ pipeline_tag: text-to-image base_model: - Laxhar/noobai-XL-Vpred-1.0 tags: - stable-diffusion - stable-diffusion-xl new_version: RedRayz/abydos_noob_v-pred_1.1.0 --- # Abydos_Noob_v-pred-1.0.1 Modified NoobAI-XL(v-prediction) with Blue Archive style [Civitai model page](https://civitai.com/models/923120) ## About 1.0.1 Better shadow rendering ## Prompt Guidelines Almost same as the base model ## Recommended Prompt None(Works good without `masterpiece, best quality`) ## Recommended Negative Prompt `worst quality, bad quality, lowres, photoshop \(medium\), abstract` To improve the quality of background, add `simple background, transparent background` to Negative Prompt. ## Recommended Settings Steps: 12-24 Sampler: DPM++ 2M(dpmpp_2m) or Euler Scheduler: Simple or SGM Uniform Guidance Scale: 2-5 ### Hires.fix Upscaler: 4x-UltraSharp or Latent(nearest-exact) Denoising strength: 0.5(0.6-0.7 for latent) ## Training steps 1. Make 2 models from NoobAI(=A,B), A with ZTSNR, B w/o ZTSNR 2. Merge A and B MBW(0,0,0,0,0,0.3,0.3,0,0.5,0.5,0.5,0.5,0.5,0.5,0.3,0.3,0,0,0,0) Adjust(0,0,0,0,-0.05,0,0,0)=tmp1 3. tmp1 + spo_sdxl_10ep_4k-data_lora_webui x 1 + sdxl-boldline x -0.25 = Result ## Training scripts: [sd-scripts](https://github.com/kohya-ss/sd-scripts) ## Notice This model is licensed under [Fair AI Public License 1.0-SD](https://freedevproject.org/faipl-1.0-sd/) If you make modify this model, you must share both your changes and the original license. You are prohibited from monetizing any close-sourced fine-tuned / merged model, which disallows the public from accessing the model's source code / weights and its usages.
bmuscato/model_ens_epic6
bmuscato
"2025-01-01T12:12:47Z"
105
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2025-01-01T12:12:03Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
tomaarsen/reranker-MiniLM-L12-H384-msmarco-bce
tomaarsen
"2025-02-14T14:38:48Z"
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "cross-encoder", "text-classification", "generated_from_trainer", "dataset_size:397226027", "loss:BinaryCrossEntropyLoss", "en", "dataset:sentence-transformers/msmarco", "arxiv:1908.10084", "base_model:microsoft/MiniLM-L12-H384-uncased", "base_model:finetune:microsoft/MiniLM-L12-H384-uncased", "region:us" ]
text-classification
"2025-02-14T14:38:41Z"
--- language: - en tags: - sentence-transformers - cross-encoder - text-classification - generated_from_trainer - dataset_size:397226027 - loss:BinaryCrossEntropyLoss base_model: microsoft/MiniLM-L12-H384-uncased datasets: - sentence-transformers/msmarco pipeline_tag: text-classification library_name: sentence-transformers metrics: - map - mrr@10 - ndcg@10 model-index: - name: CrossEncoder based on microsoft/MiniLM-L12-H384-uncased results: [] --- # CrossEncoder based on microsoft/MiniLM-L12-H384-uncased This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on the [ms-marco-shuffled](https://huggingface.co/datasets/tomaarsen/ms-marco-shuffled) dataset using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Cross Encoder - **Base model:** [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) <!-- at revision 44acabbec0ef496f6dbc93adadea57f376b7c0ec --> - **Maximum Sequence Length:** 512 tokens - **Number of Output Labels:** 1 label - **Training Dataset:** - [ms-marco-shuffled](https://huggingface.co/datasets/tomaarsen/ms-marco-shuffled) - **Language:** en <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder) ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import CrossEncoder # Download from the 🤗 Hub model = CrossEncoder("tomaarsen/reranker-MiniLM-L12-H384-uncased-msmarco-bce") # Get scores for pairs of texts pairs = [ ['what is a jewel yam', 'Wild Yam can be very beneficial for nervousness, restlessness and other nervous conditions. As a stimulant for increased bile flow, it can help to relieve hepatic congestion, bilious colic and gallstones.'], ['hours of daytona', '24 Hours of Daytona. The 24 Hours of Daytona, currently known as the Rolex 24 At Daytona for sponsorship reasons, is a 24-hour sports car endurance race held annually at Daytona International Speedway in Daytona Beach, Florida. It is run on a 3.56-mile (5.73 km) combined road course, utilizing portions of the NASCAR tri-oval and an infield road course.'], ['how much do autozone workers get paid', 'The typical AutoZone Sales Associate salary is $9. Sales Associate salaries at AutoZone can range from $7-$12. This estimate is based upon 59 AutoZone Sales Associate salary report(s) provided by employees or estimated based upon statistical methods. See all Sales Associate salaries to learn how this stacks up in the market.'], ['what are the special sensory receptors', 'Sensory Neurons. Sensory Neurons: + add to my flashcards cite this term. You have a few different types of neurons in your body including interneurons, motor neurons, and sensory neurons. Sensory neurons (also known as Afferent Neurons) are responsible for bringing information from sensory receptors (like the nerves in your hand) to the central nervous system (spinal cord and brain).'], ['how long to cook salmon on the grill', 'Place the bag with the marinade and salmon fillets in the refrigerator for 30 minutes. 1 Salmon, like all fish, is not as dense as red meats and poultry. 2 As a result, it does not need to be marinaded for long in order to absorb flavor.3 Remove the salmon from the refrigerator at least 10 minutes prior to cooking.lace the broiler pan 5 1/2 inches (14 cm) away from the top heating element and cook the salmon until done. 1 The salmon is done when you can effortlessly flake the fillets with a fork. 2 The center should be opaque.'], ] scores = model.predict(pairs) print(scores.shape) # (5,) # Or rank different texts based on similarity to a single text ranks = model.rank( 'what is a jewel yam', [ 'Wild Yam can be very beneficial for nervousness, restlessness and other nervous conditions. As a stimulant for increased bile flow, it can help to relieve hepatic congestion, bilious colic and gallstones.', '24 Hours of Daytona. The 24 Hours of Daytona, currently known as the Rolex 24 At Daytona for sponsorship reasons, is a 24-hour sports car endurance race held annually at Daytona International Speedway in Daytona Beach, Florida. It is run on a 3.56-mile (5.73 km) combined road course, utilizing portions of the NASCAR tri-oval and an infield road course.', 'The typical AutoZone Sales Associate salary is $9. Sales Associate salaries at AutoZone can range from $7-$12. This estimate is based upon 59 AutoZone Sales Associate salary report(s) provided by employees or estimated based upon statistical methods. See all Sales Associate salaries to learn how this stacks up in the market.', 'Sensory Neurons. Sensory Neurons: + add to my flashcards cite this term. You have a few different types of neurons in your body including interneurons, motor neurons, and sensory neurons. Sensory neurons (also known as Afferent Neurons) are responsible for bringing information from sensory receptors (like the nerves in your hand) to the central nervous system (spinal cord and brain).', 'Place the bag with the marinade and salmon fillets in the refrigerator for 30 minutes. 1 Salmon, like all fish, is not as dense as red meats and poultry. 2 As a result, it does not need to be marinaded for long in order to absorb flavor.3 Remove the salmon from the refrigerator at least 10 minutes prior to cooking.lace the broiler pan 5 1/2 inches (14 cm) away from the top heating element and cook the salmon until done. 1 The salmon is done when you can effortlessly flake the fillets with a fork. 2 The center should be opaque.', ] ) # [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Cross Encoder Reranking * Datasets: `NanoMSMARCO`, `NanoNFCorpus` and `NanoNQ` * Evaluated with [<code>CERerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CERerankingEvaluator) | Metric | NanoMSMARCO | NanoNFCorpus | NanoNQ | |:------------|:---------------------|:---------------------|:---------------------| | map | 0.6127 (+0.1231) | 0.3432 (+0.0728) | 0.6921 (+0.2715) | | mrr@10 | 0.6019 (+0.1244) | 0.5456 (+0.0457) | 0.7062 (+0.2795) | | **ndcg@10** | **0.6648 (+0.1244)** | **0.3769 (+0.0519)** | **0.7462 (+0.2455)** | #### Cross Encoder Nano BEIR * Dataset: `NanoBEIR_mean` * Evaluated with [<code>CENanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CENanoBEIREvaluator) | Metric | Value | |:------------|:---------------------| | map | 0.5493 (+0.1558) | | mrr@10 | 0.6179 (+0.1499) | | **ndcg@10** | **0.5960 (+0.1406)** | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### ms-marco-shuffled * Dataset: [ms-marco-shuffled](https://huggingface.co/datasets/tomaarsen/ms-marco-shuffled) at [88847c6](https://huggingface.co/datasets/tomaarsen/ms-marco-shuffled/tree/88847c65252168a8c2504664289ef21a9df0ca74) * Size: 397,226,027 training samples * Columns: <code>query</code>, <code>passage</code>, and <code>score</code> * Approximate statistics based on the first 1000 samples: | | query | passage | score | |:--------|:------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | <ul><li>min: 10 characters</li><li>mean: 34.03 characters</li><li>max: 148 characters</li></ul> | <ul><li>min: 72 characters</li><li>mean: 345.31 characters</li><li>max: 913 characters</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.52</li><li>max: 1.0</li></ul> | * Samples: | query | passage | score | |:------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------| | <code>when was ron marhofer founded?</code> | <code>What are the birthdays of Ron Shirley Bobby Brantley and Amy Shirley from Lizard Lick Towing? Ron Shirley's birthday is April 13. His wife Amy Shirley celebrates her birthday on May 4, and Bobby Brantley's birthday is September 26.</code> | <code>0.0</code> | | <code>what should the average medical assistant make</code> | <code>For example, the Bureau of Labor Statistics reports that as of May 2014, medical assistant jobs located in Offices of Physicians paid about $31,230 a year on average c. These roles (in Offices of Physicians) made up a large portion of medical assistant jobs, totaling 349,370 positions as of May 2014 c. General Medical and Surgical hospitals were another large employer, carrying 85,040 medical assistants c on their payrolls.</code> | <code>1.0</code> | | <code>what type of rock form in warm ocean bottoms</code> | <code>Second, sedimentary rocks form on the bottom of the ocean when particles rain down from the surface. These particles can become compressed and cemented to form limestone. Fossilized sea creatures are often found in these rocks. Most of the mountains around Las Vegas are composed of sedimentary rocks. Red Rock Canyon (photo) provides a spectacular example of both types: the gray mountains are limestone, and the red-and-white hills are sandstone.</code> | <code>1.0</code> | * Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#binarycrossentropyloss) with these parameters: ```json { "activation_fct": "torch.nn.modules.linear.Identity", "pos_weight": null } ``` ### Evaluation Dataset #### ms-marco-shuffled * Dataset: [ms-marco-shuffled](https://huggingface.co/datasets/tomaarsen/ms-marco-shuffled) at [88847c6](https://huggingface.co/datasets/tomaarsen/ms-marco-shuffled/tree/88847c65252168a8c2504664289ef21a9df0ca74) * Size: 397,226,027 evaluation samples * Columns: <code>query</code>, <code>passage</code>, and <code>score</code> * Approximate statistics based on the first 1000 samples: | | query | passage | score | |:--------|:------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:--------------------------------------------------------------| | type | string | string | float | | details | <ul><li>min: 11 characters</li><li>mean: 33.94 characters</li><li>max: 164 characters</li></ul> | <ul><li>min: 58 characters</li><li>mean: 346.39 characters</li><li>max: 917 characters</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.0</li></ul> | * Samples: | query | passage | score | |:---------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------| | <code>what is a jewel yam</code> | <code>Wild Yam can be very beneficial for nervousness, restlessness and other nervous conditions. As a stimulant for increased bile flow, it can help to relieve hepatic congestion, bilious colic and gallstones.</code> | <code>0.0</code> | | <code>hours of daytona</code> | <code>24 Hours of Daytona. The 24 Hours of Daytona, currently known as the Rolex 24 At Daytona for sponsorship reasons, is a 24-hour sports car endurance race held annually at Daytona International Speedway in Daytona Beach, Florida. It is run on a 3.56-mile (5.73 km) combined road course, utilizing portions of the NASCAR tri-oval and an infield road course.</code> | <code>1.0</code> | | <code>how much do autozone workers get paid</code> | <code>The typical AutoZone Sales Associate salary is $9. Sales Associate salaries at AutoZone can range from $7-$12. This estimate is based upon 59 AutoZone Sales Associate salary report(s) provided by employees or estimated based upon statistical methods. See all Sales Associate salaries to learn how this stacks up in the market.</code> | <code>1.0</code> | * Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#binarycrossentropyloss) with these parameters: ```json { "activation_fct": "torch.nn.modules.linear.Identity", "pos_weight": null } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `learning_rate`: 2e-05 - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 - `seed`: 12 - `bf16`: True - `dataloader_num_workers`: 4 - `load_best_model_at_end`: True #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 12 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 4 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_ndcg@10 | NanoNFCorpus_ndcg@10 | NanoNQ_ndcg@10 | NanoBEIR_mean_ndcg@10 | |:----------:|:---------:|:-------------:|:---------------:|:--------------------:|:--------------------:|:--------------------:|:---------------------:| | -1 | -1 | - | - | 0.0324 (-0.5080) | 0.2439 (-0.0811) | 0.0361 (-0.4646) | 0.1041 (-0.3512) | | 0.0000 | 1 | 0.6941 | - | - | - | - | - | | 0.0322 | 1000 | 0.5117 | - | - | - | - | - | | 0.0643 | 2000 | 0.2604 | - | - | - | - | - | | 0.0965 | 3000 | 0.2258 | - | - | - | - | - | | 0.1286 | 4000 | 0.2115 | - | - | - | - | - | | 0.1608 | 5000 | 0.1995 | 0.1879 | 0.6145 (+0.0741) | 0.4002 (+0.0751) | 0.6970 (+0.1964) | 0.5706 (+0.1152) | | 0.1930 | 6000 | 0.1924 | - | - | - | - | - | | 0.2251 | 7000 | 0.1914 | - | - | - | - | - | | 0.2573 | 8000 | 0.1859 | - | - | - | - | - | | 0.2894 | 9000 | 0.1802 | - | - | - | - | - | | 0.3216 | 10000 | 0.1791 | 0.1628 | 0.6311 (+0.0906) | 0.3795 (+0.0545) | 0.7347 (+0.2341) | 0.5818 (+0.1264) | | 0.3538 | 11000 | 0.1732 | - | - | - | - | - | | 0.3859 | 12000 | 0.1713 | - | - | - | - | - | | 0.4181 | 13000 | 0.1756 | - | - | - | - | - | | 0.4502 | 14000 | 0.1643 | - | - | - | - | - | | 0.4824 | 15000 | 0.166 | 0.1531 | 0.6540 (+0.1136) | 0.3830 (+0.0579) | 0.7315 (+0.2309) | 0.5895 (+0.1341) | | 0.5146 | 16000 | 0.161 | - | - | - | - | - | | 0.5467 | 17000 | 0.1617 | - | - | - | - | - | | 0.5789 | 18000 | 0.1612 | - | - | - | - | - | | 0.6111 | 19000 | 0.1591 | - | - | - | - | - | | **0.6432** | **20000** | **0.1599** | **0.1428** | **0.6648 (+0.1244)** | **0.3769 (+0.0519)** | **0.7462 (+0.2455)** | **0.5960 (+0.1406)** | | 0.6754 | 21000 | 0.1599 | - | - | - | - | - | | 0.7075 | 22000 | 0.1523 | - | - | - | - | - | | 0.7397 | 23000 | 0.1525 | - | - | - | - | - | | 0.7719 | 24000 | 0.1549 | - | - | - | - | - | | 0.8040 | 25000 | 0.1515 | 0.1386 | 0.6682 (+0.1278) | 0.3686 (+0.0436) | 0.7481 (+0.2474) | 0.5950 (+0.1396) | | 0.8362 | 26000 | 0.1556 | - | - | - | - | - | | 0.8683 | 27000 | 0.1501 | - | - | - | - | - | | 0.9005 | 28000 | 0.1522 | - | - | - | - | - | | 0.9327 | 29000 | 0.1493 | - | - | - | - | - | | 0.9648 | 30000 | 0.1509 | 0.1354 | 0.6805 (+0.1400) | 0.3593 (+0.0343) | 0.7439 (+0.2433) | 0.5946 (+0.1392) | | 0.9970 | 31000 | 0.1481 | - | - | - | - | - | | -1 | -1 | - | - | 0.6648 (+0.1244) | 0.3769 (+0.0519) | 0.7462 (+0.2455) | 0.5960 (+0.1406) | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.11.10 - Sentence Transformers: 3.5.0.dev0 - Transformers: 4.49.0.dev0 - PyTorch: 2.6.0.dev20241112+cu121 - Accelerate: 1.2.0 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
mradermacher/Triangulum-5B-i1-GGUF
mradermacher
"2025-01-03T23:02:50Z"
826
0
transformers
[ "transformers", "gguf", "triangulum_5b", "sft", "chain_of_thought", "ollama", "text-generation-inference", "llama_for_causal_lm", "reasoning", "deep_think", "CoT", "LCoT", "en", "de", "fr", "it", "pt", "hi", "es", "th", "base_model:prithivMLmods/Triangulum-5B", "base_model:quantized:prithivMLmods/Triangulum-5B", "license:creativeml-openrail-m", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
"2025-01-01T08:02:15Z"
--- base_model: prithivMLmods/Triangulum-5B language: - en - de - fr - it - pt - hi - es - th library_name: transformers license: creativeml-openrail-m quantized_by: mradermacher tags: - triangulum_5b - sft - chain_of_thought - ollama - text-generation-inference - llama_for_causal_lm - reasoning - deep_think - CoT - LCoT --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/prithivMLmods/Triangulum-5B <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Triangulum-5B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Triangulum-5B-i1-GGUF/resolve/main/Triangulum-5B.i1-IQ1_S.gguf) | i1-IQ1_S | 1.6 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Triangulum-5B-i1-GGUF/resolve/main/Triangulum-5B.i1-IQ1_M.gguf) | i1-IQ1_M | 1.7 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Triangulum-5B-i1-GGUF/resolve/main/Triangulum-5B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 1.8 | | | [GGUF](https://huggingface.co/mradermacher/Triangulum-5B-i1-GGUF/resolve/main/Triangulum-5B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/Triangulum-5B-i1-GGUF/resolve/main/Triangulum-5B.i1-IQ2_S.gguf) | i1-IQ2_S | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/Triangulum-5B-i1-GGUF/resolve/main/Triangulum-5B.i1-IQ2_M.gguf) | i1-IQ2_M | 2.2 | | | [GGUF](https://huggingface.co/mradermacher/Triangulum-5B-i1-GGUF/resolve/main/Triangulum-5B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 2.2 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Triangulum-5B-i1-GGUF/resolve/main/Triangulum-5B.i1-Q2_K.gguf) | i1-Q2_K | 2.3 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Triangulum-5B-i1-GGUF/resolve/main/Triangulum-5B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Triangulum-5B-i1-GGUF/resolve/main/Triangulum-5B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 2.5 | | | [GGUF](https://huggingface.co/mradermacher/Triangulum-5B-i1-GGUF/resolve/main/Triangulum-5B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 2.6 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Triangulum-5B-i1-GGUF/resolve/main/Triangulum-5B.i1-IQ3_S.gguf) | i1-IQ3_S | 2.7 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Triangulum-5B-i1-GGUF/resolve/main/Triangulum-5B.i1-IQ3_M.gguf) | i1-IQ3_M | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/Triangulum-5B-i1-GGUF/resolve/main/Triangulum-5B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 2.9 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Triangulum-5B-i1-GGUF/resolve/main/Triangulum-5B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 3.1 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Triangulum-5B-i1-GGUF/resolve/main/Triangulum-5B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/Triangulum-5B-i1-GGUF/resolve/main/Triangulum-5B.i1-Q4_0.gguf) | i1-Q4_0 | 3.3 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Triangulum-5B-i1-GGUF/resolve/main/Triangulum-5B.i1-IQ4_NL.gguf) | i1-IQ4_NL | 3.3 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Triangulum-5B-i1-GGUF/resolve/main/Triangulum-5B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 3.3 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Triangulum-5B-i1-GGUF/resolve/main/Triangulum-5B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 3.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Triangulum-5B-i1-GGUF/resolve/main/Triangulum-5B.i1-Q4_1.gguf) | i1-Q4_1 | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Triangulum-5B-i1-GGUF/resolve/main/Triangulum-5B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Triangulum-5B-i1-GGUF/resolve/main/Triangulum-5B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/Triangulum-5B-i1-GGUF/resolve/main/Triangulum-5B.i1-Q6_K.gguf) | i1-Q6_K | 4.5 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
albertus-sussex/veriscrape-fixed-simcse-nbaplayer-reference_4_to_verify_6-fold-2
albertus-sussex
"2025-04-04T14:49:13Z"
0
0
transformers
[ "transformers", "safetensors", "roberta", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
"2025-04-04T14:48:46Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
SKLxAiforia/FriendV4
SKLxAiforia
"2024-05-14T06:34:08Z"
77
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
"2024-05-14T06:24:59Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
tals/albert-base-vitaminc_wnei-fever
tals
"2022-08-05T02:25:41Z"
6
1
transformers
[ "transformers", "pytorch", "albert", "text-classification", "dataset:tals/vitaminc", "dataset:fever", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2022-03-02T23:29:05Z"
--- datasets: - tals/vitaminc - fever --- # Details Model used in [Get Your Vitamin C! Robust Fact Verification with Contrastive Evidence](https://aclanthology.org/2021.naacl-main.52/) (Schuster et al., NAACL 21`). For more details see: https://github.com/TalSchuster/VitaminC When using this model, please cite the paper. # BibTeX entry and citation info ```bibtex @inproceedings{schuster-etal-2021-get, title = "Get Your Vitamin {C}! Robust Fact Verification with Contrastive Evidence", author = "Schuster, Tal and Fisch, Adam and Barzilay, Regina", booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jun, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.naacl-main.52", doi = "10.18653/v1/2021.naacl-main.52", pages = "624--643", abstract = "Typical fact verification models use retrieved written evidence to verify claims. Evidence sources, however, often change over time as more information is gathered and revised. In order to adapt, models must be sensitive to subtle differences in supporting evidence. We present VitaminC, a benchmark infused with challenging cases that require fact verification models to discern and adjust to slight factual changes. We collect over 100,000 Wikipedia revisions that modify an underlying fact, and leverage these revisions, together with additional synthetically constructed ones, to create a total of over 400,000 claim-evidence pairs. Unlike previous resources, the examples in VitaminC are contrastive, i.e., they contain evidence pairs that are nearly identical in language and content, with the exception that one supports a given claim while the other does not. We show that training using this design increases robustness{---}improving accuracy by 10{\%} on adversarial fact verification and 6{\%} on adversarial natural language inference (NLI). Moreover, the structure of VitaminC leads us to define additional tasks for fact-checking resources: tagging relevant words in the evidence for verifying the claim, identifying factual revisions, and providing automatic edits via factually consistent text generation.", } ```