modelId
stringlengths
5
138
author
stringlengths
2
42
last_modified
unknowndate
2020-02-15 11:33:14
2025-04-15 06:29:46
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
426 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
unknowndate
2022-03-02 23:29:04
2025-04-15 06:29:46
card
stringlengths
11
1.01M
erbacher/zephyr-7b-proimg-qlora-user
erbacher
"2024-02-29T13:43:43Z"
0
0
peft
[ "peft", "safetensors", "mistral", "alignment-handbook", "generated_from_trainer", "trl", "sft", "dataset:erbacher/proactive_image_generation_user", "base_model:HuggingFaceH4/zephyr-7b-beta", "base_model:adapter:HuggingFaceH4/zephyr-7b-beta", "license:mit", "4-bit", "bitsandbytes", "region:us" ]
null
"2024-02-29T09:43:53Z"
--- license: mit library_name: peft tags: - alignment-handbook - generated_from_trainer - trl - sft - generated_from_trainer base_model: HuggingFaceH4/zephyr-7b-beta datasets: - erbacher/proactive_image_generation_user model-index: - name: zephyr-7b-proimg-qlora-user results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # zephyr-7b-proimg-qlora-user This model is a fine-tuned version of [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) on the erbacher/proactive_image_generation_user dataset. It achieves the following results on the evaluation set: - Loss: 0.5822 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.5498 | 1.0 | 226 | 0.5578 | | 0.4788 | 2.0 | 452 | 0.5577 | | 0.3871 | 3.0 | 678 | 0.5822 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.2.1+cu118 - Datasets 2.14.6 - Tokenizers 0.15.2
NeginShams/cross_encoder_v2
NeginShams
"2024-05-09T14:34:06Z"
107
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "cross-encoder", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2024-05-09T14:33:26Z"
--- library_name: transformers tags: - cross-encoder --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
alvdansen/haunted-linework
alvdansen
"2024-06-16T18:58:13Z"
37
8
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:creativeml-openrail-m", "region:us" ]
text-to-image
"2024-06-16T18:58:04Z"
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: A little boy with a baseball cap and a t-shirt parameters: negative_prompt: bad, messy, ugly output: url: images/ComfyUI_01897_.png - text: A curious girl, exploring the backyard parameters: negative_prompt: bad, messy, ugly output: url: images/ComfyUI_01888_.png - text: >- A young princess with long, braided hair, wearing a simple dress and a flower crown parameters: negative_prompt: bad, messy, ugly output: url: images/ComfyUI_01876_.png - text: >- a woman with blonde-brown hair and glasses, blue eyes, white background, baggy band t-shirt parameters: negative_prompt: bad, messy, ugly output: url: images/ComfyUI_01454_.png - text: A young man with a beard and a flannel shirt, holding a coffee output: url: images/ComfyUI_01903_.png base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: null license: creativeml-openrail-m --- # Haunted Linework <Gallery /> ## Model description This is a first attempt at a somewhat difficult clean line&#x2F;flat lay illustration style. This is definitely a model I plan to revisit, but for now enjoy! This is for research and fun, please contact regarding commercial use. ## Download model Weights for this model are available in Safetensors format. [Download](/alvdansen/haunted-linework/tree/main) them in the Files & versions tab.
mradermacher/Dendrite-L3-10B-GGUF
mradermacher
"2024-06-13T04:48:18Z"
2
0
transformers
[ "transformers", "gguf", "en", "base_model:Envoid/Dendrite-L3-10B", "base_model:quantized:Envoid/Dendrite-L3-10B", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us", "conversational" ]
null
"2024-06-13T02:42:24Z"
--- base_model: Envoid/Dendrite-L3-10B language: - en library_name: transformers license: cc-by-nc-4.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Envoid/Dendrite-L3-10B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Dendrite-L3-10B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Dendrite-L3-10B-GGUF/resolve/main/Dendrite-L3-10B.Q2_K.gguf) | Q2_K | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Dendrite-L3-10B-GGUF/resolve/main/Dendrite-L3-10B.IQ3_XS.gguf) | IQ3_XS | 4.3 | | | [GGUF](https://huggingface.co/mradermacher/Dendrite-L3-10B-GGUF/resolve/main/Dendrite-L3-10B.Q3_K_S.gguf) | Q3_K_S | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/Dendrite-L3-10B-GGUF/resolve/main/Dendrite-L3-10B.IQ3_S.gguf) | IQ3_S | 4.5 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Dendrite-L3-10B-GGUF/resolve/main/Dendrite-L3-10B.IQ3_M.gguf) | IQ3_M | 4.7 | | | [GGUF](https://huggingface.co/mradermacher/Dendrite-L3-10B-GGUF/resolve/main/Dendrite-L3-10B.Q3_K_M.gguf) | Q3_K_M | 5.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Dendrite-L3-10B-GGUF/resolve/main/Dendrite-L3-10B.Q3_K_L.gguf) | Q3_K_L | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/Dendrite-L3-10B-GGUF/resolve/main/Dendrite-L3-10B.IQ4_XS.gguf) | IQ4_XS | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/Dendrite-L3-10B-GGUF/resolve/main/Dendrite-L3-10B.Q4_K_S.gguf) | Q4_K_S | 5.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Dendrite-L3-10B-GGUF/resolve/main/Dendrite-L3-10B.Q4_K_M.gguf) | Q4_K_M | 6.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Dendrite-L3-10B-GGUF/resolve/main/Dendrite-L3-10B.Q5_K_S.gguf) | Q5_K_S | 6.9 | | | [GGUF](https://huggingface.co/mradermacher/Dendrite-L3-10B-GGUF/resolve/main/Dendrite-L3-10B.Q5_K_M.gguf) | Q5_K_M | 7.1 | | | [GGUF](https://huggingface.co/mradermacher/Dendrite-L3-10B-GGUF/resolve/main/Dendrite-L3-10B.Q6_K.gguf) | Q6_K | 8.1 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Dendrite-L3-10B-GGUF/resolve/main/Dendrite-L3-10B.Q8_0.gguf) | Q8_0 | 10.5 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
genki10/Version19ASAP_FineTuningBERT_AugV19_k10_task1_organization_k10_k10_fold1
genki10
"2025-03-09T18:56:04Z"
0
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2025-03-09T18:44:46Z"
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: Version19ASAP_FineTuningBERT_AugV19_k10_task1_organization_k10_k10_fold1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Version19ASAP_FineTuningBERT_AugV19_k10_task1_organization_k10_k10_fold1 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7782 - Qwk: 0.6039 - Mse: 0.7781 - Rmse: 0.8821 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 1.0 | 3 | 8.3478 | -0.0002 | 8.3452 | 2.8888 | | No log | 2.0 | 6 | 5.6976 | -0.0150 | 5.6955 | 2.3865 | | No log | 3.0 | 9 | 4.3287 | 0.0238 | 4.3266 | 2.0800 | | No log | 4.0 | 12 | 3.1515 | 0.0 | 3.1496 | 1.7747 | | No log | 5.0 | 15 | 2.2591 | 0.1001 | 2.2574 | 1.5025 | | No log | 6.0 | 18 | 1.7762 | 0.1531 | 1.7745 | 1.3321 | | No log | 7.0 | 21 | 1.3074 | 0.0315 | 1.3059 | 1.1428 | | No log | 8.0 | 24 | 0.9152 | 0.0106 | 0.9140 | 0.9560 | | No log | 9.0 | 27 | 0.9255 | 0.0514 | 0.9242 | 0.9614 | | No log | 10.0 | 30 | 0.7047 | 0.3215 | 0.7037 | 0.8389 | | No log | 11.0 | 33 | 0.7508 | 0.2041 | 0.7499 | 0.8660 | | No log | 12.0 | 36 | 1.0751 | 0.0802 | 1.0743 | 1.0365 | | No log | 13.0 | 39 | 0.8153 | 0.3131 | 0.8147 | 0.9026 | | No log | 14.0 | 42 | 1.4936 | 0.2166 | 1.4932 | 1.2220 | | No log | 15.0 | 45 | 1.1947 | 0.3352 | 1.1944 | 1.0929 | | No log | 16.0 | 48 | 0.9237 | 0.4671 | 0.9235 | 0.9610 | | No log | 17.0 | 51 | 0.5517 | 0.6337 | 0.5515 | 0.7427 | | No log | 18.0 | 54 | 0.6612 | 0.6515 | 0.6613 | 0.8132 | | No log | 19.0 | 57 | 0.4687 | 0.7224 | 0.4686 | 0.6845 | | No log | 20.0 | 60 | 2.0745 | 0.3891 | 2.0750 | 1.4405 | | No log | 21.0 | 63 | 1.1602 | 0.5395 | 1.1606 | 1.0773 | | No log | 22.0 | 66 | 0.4712 | 0.7088 | 0.4709 | 0.6862 | | No log | 23.0 | 69 | 2.4266 | 0.3464 | 2.4271 | 1.5579 | | No log | 24.0 | 72 | 0.9504 | 0.5970 | 0.9506 | 0.9750 | | No log | 25.0 | 75 | 0.5562 | 0.6516 | 0.5557 | 0.7455 | | No log | 26.0 | 78 | 0.8528 | 0.6004 | 0.8530 | 0.9236 | | No log | 27.0 | 81 | 0.8569 | 0.5762 | 0.8570 | 0.9258 | | No log | 28.0 | 84 | 1.3774 | 0.4773 | 1.3778 | 1.1738 | | No log | 29.0 | 87 | 0.5879 | 0.6809 | 0.5879 | 0.7667 | | No log | 30.0 | 90 | 0.8633 | 0.6075 | 0.8636 | 0.9293 | | No log | 31.0 | 93 | 1.6303 | 0.4119 | 1.6306 | 1.2769 | | No log | 32.0 | 96 | 0.7769 | 0.6040 | 0.7770 | 0.8815 | | No log | 33.0 | 99 | 1.1635 | 0.5434 | 1.1638 | 1.0788 | | No log | 34.0 | 102 | 0.9914 | 0.5757 | 0.9916 | 0.9958 | | No log | 35.0 | 105 | 0.9376 | 0.5643 | 0.9377 | 0.9683 | | No log | 36.0 | 108 | 1.2371 | 0.4862 | 1.2372 | 1.1123 | | No log | 37.0 | 111 | 0.6587 | 0.6555 | 0.6586 | 0.8116 | | No log | 38.0 | 114 | 1.0194 | 0.5597 | 1.0194 | 1.0097 | | No log | 39.0 | 117 | 0.7782 | 0.6039 | 0.7781 | 0.8821 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.3.1 - Tokenizers 0.21.0
aroot/eng-fra-simcse_random_ssblu
aroot
"2023-07-06T18:11:02Z"
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "translation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
"2023-07-06T17:52:40Z"
--- tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: eng-fra-simcse_random_ssblu results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # eng-fra-simcse_random_ssblu This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1512 - Bleu: 31.7456 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
RichardErkhov/h2oai_-_h2ogpt-4096-llama2-70b-chat-gguf
RichardErkhov
"2024-06-26T09:16:10Z"
6
0
null
[ "gguf", "endpoints_compatible", "region:us" ]
null
"2024-06-25T05:27:19Z"
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) h2ogpt-4096-llama2-70b-chat - GGUF - Model creator: https://huggingface.co/h2oai/ - Original model: https://huggingface.co/h2oai/h2ogpt-4096-llama2-70b-chat/ | Name | Quant method | Size | | ---- | ---- | ---- | | [h2ogpt-4096-llama2-70b-chat.Q2_K.gguf](https://huggingface.co/RichardErkhov/h2oai_-_h2ogpt-4096-llama2-70b-chat-gguf/blob/main/h2ogpt-4096-llama2-70b-chat.Q2_K.gguf) | Q2_K | 23.71GB | | [h2ogpt-4096-llama2-70b-chat.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/h2oai_-_h2ogpt-4096-llama2-70b-chat-gguf/blob/main/h2ogpt-4096-llama2-70b-chat.IQ3_XS.gguf) | IQ3_XS | 26.37GB | | [h2ogpt-4096-llama2-70b-chat.IQ3_S.gguf](https://huggingface.co/RichardErkhov/h2oai_-_h2ogpt-4096-llama2-70b-chat-gguf/blob/main/h2ogpt-4096-llama2-70b-chat.IQ3_S.gguf) | IQ3_S | 27.86GB | | [h2ogpt-4096-llama2-70b-chat.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/h2oai_-_h2ogpt-4096-llama2-70b-chat-gguf/blob/main/h2ogpt-4096-llama2-70b-chat.Q3_K_S.gguf) | Q3_K_S | 27.86GB | | [h2ogpt-4096-llama2-70b-chat.IQ3_M.gguf](https://huggingface.co/RichardErkhov/h2oai_-_h2ogpt-4096-llama2-70b-chat-gguf/blob/main/h2ogpt-4096-llama2-70b-chat.IQ3_M.gguf) | IQ3_M | 28.82GB | | [h2ogpt-4096-llama2-70b-chat.Q3_K.gguf](https://huggingface.co/RichardErkhov/h2oai_-_h2ogpt-4096-llama2-70b-chat-gguf/blob/main/h2ogpt-4096-llama2-70b-chat.Q3_K.gguf) | Q3_K | 30.99GB | | [h2ogpt-4096-llama2-70b-chat.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/h2oai_-_h2ogpt-4096-llama2-70b-chat-gguf/blob/main/h2ogpt-4096-llama2-70b-chat.Q3_K_M.gguf) | Q3_K_M | 30.99GB | | [h2ogpt-4096-llama2-70b-chat.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/h2oai_-_h2ogpt-4096-llama2-70b-chat-gguf/blob/main/h2ogpt-4096-llama2-70b-chat.Q3_K_L.gguf) | Q3_K_L | 33.67GB | | [h2ogpt-4096-llama2-70b-chat.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/h2oai_-_h2ogpt-4096-llama2-70b-chat-gguf/blob/main/h2ogpt-4096-llama2-70b-chat.IQ4_XS.gguf) | IQ4_XS | 34.64GB | | [h2ogpt-4096-llama2-70b-chat.Q4_0.gguf](https://huggingface.co/RichardErkhov/h2oai_-_h2ogpt-4096-llama2-70b-chat-gguf/blob/main/h2ogpt-4096-llama2-70b-chat.Q4_0.gguf) | Q4_0 | 36.2GB | | [h2ogpt-4096-llama2-70b-chat.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/h2oai_-_h2ogpt-4096-llama2-70b-chat-gguf/blob/main/h2ogpt-4096-llama2-70b-chat.IQ4_NL.gguf) | IQ4_NL | 36.55GB | | [h2ogpt-4096-llama2-70b-chat.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/h2oai_-_h2ogpt-4096-llama2-70b-chat-gguf/blob/main/h2ogpt-4096-llama2-70b-chat.Q4_K_S.gguf) | Q4_K_S | 36.55GB | | [h2ogpt-4096-llama2-70b-chat.Q4_K.gguf](https://huggingface.co/RichardErkhov/h2oai_-_h2ogpt-4096-llama2-70b-chat-gguf/tree/main/) | Q4_K | 38.58GB | | [h2ogpt-4096-llama2-70b-chat.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/h2oai_-_h2ogpt-4096-llama2-70b-chat-gguf/tree/main/) | Q4_K_M | 38.58GB | | [h2ogpt-4096-llama2-70b-chat.Q4_1.gguf](https://huggingface.co/RichardErkhov/h2oai_-_h2ogpt-4096-llama2-70b-chat-gguf/tree/main/) | Q4_1 | 40.2GB | | [h2ogpt-4096-llama2-70b-chat.Q5_0.gguf](https://huggingface.co/RichardErkhov/h2oai_-_h2ogpt-4096-llama2-70b-chat-gguf/tree/main/) | Q5_0 | 44.2GB | | [h2ogpt-4096-llama2-70b-chat.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/h2oai_-_h2ogpt-4096-llama2-70b-chat-gguf/tree/main/) | Q5_K_S | 44.2GB | | [h2ogpt-4096-llama2-70b-chat.Q5_K.gguf](https://huggingface.co/RichardErkhov/h2oai_-_h2ogpt-4096-llama2-70b-chat-gguf/tree/main/) | Q5_K | 45.41GB | | [h2ogpt-4096-llama2-70b-chat.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/h2oai_-_h2ogpt-4096-llama2-70b-chat-gguf/tree/main/) | Q5_K_M | 45.41GB | | [h2ogpt-4096-llama2-70b-chat.Q5_1.gguf](https://huggingface.co/RichardErkhov/h2oai_-_h2ogpt-4096-llama2-70b-chat-gguf/tree/main/) | Q5_1 | 48.2GB | | [h2ogpt-4096-llama2-70b-chat.Q6_K.gguf](https://huggingface.co/RichardErkhov/h2oai_-_h2ogpt-4096-llama2-70b-chat-gguf/tree/main/) | Q6_K | 52.7GB | | [h2ogpt-4096-llama2-70b-chat.Q8_0.gguf](https://huggingface.co/RichardErkhov/h2oai_-_h2ogpt-4096-llama2-70b-chat-gguf/tree/main/) | Q8_0 | 68.26GB | Original model description: --- inference: false language: - en license: llama2 model_type: llama pipeline_tag: text-generation tags: - facebook - meta - pytorch - llama - llama-2 - h2ogpt --- h2oGPT clone of [Meta's Llama 2 70B Chat](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf). Try it live on our [h2oGPT demo](https://gpt.h2o.ai) with side-by-side LLM comparisons and private document chat! See how it compares to other models on our [LLM Leaderboard](https://evalgpt.ai/)! See more at [H2O.ai](https://h2o.ai/) ## Model Architecture ``` LlamaForCausalLM( (model): LlamaModel( (embed_tokens): Embedding(32000, 8192, padding_idx=0) (layers): ModuleList( (0-79): 80 x LlamaDecoderLayer( (self_attn): LlamaAttention( (q_proj): Linear4bit(in_features=8192, out_features=8192, bias=False) (k_proj): Linear4bit(in_features=8192, out_features=1024, bias=False) (v_proj): Linear4bit(in_features=8192, out_features=1024, bias=False) (o_proj): Linear4bit(in_features=8192, out_features=8192, bias=False) (rotary_emb): LlamaRotaryEmbedding() ) (mlp): LlamaMLP( (gate_proj): Linear4bit(in_features=8192, out_features=28672, bias=False) (up_proj): Linear4bit(in_features=8192, out_features=28672, bias=False) (down_proj): Linear4bit(in_features=28672, out_features=8192, bias=False) (act_fn): SiLUActivation() ) (input_layernorm): LlamaRMSNorm() (post_attention_layernorm): LlamaRMSNorm() ) ) (norm): LlamaRMSNorm() ) (lm_head): Linear(in_features=8192, out_features=32000, bias=False) ) ```
Naying0206/b2b-lora-ar
Naying0206
"2024-04-13T18:52:42Z"
5
0
peft
[ "peft", "tensorboard", "safetensors", "arxiv:1910.09700", "base_model:facebook/bart-base", "base_model:adapter:facebook/bart-base", "region:us" ]
null
"2024-04-12T01:36:23Z"
--- library_name: peft base_model: facebook/bart-base --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.10.1.dev0
NasimB/guten-rarity-all-2p5k-log-rarity-all-sort
NasimB
"2023-07-15T11:10:36Z"
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2023-07-15T09:18:12Z"
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: guten-rarity-all-2p5k-log-rarity-all-sort results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # guten-rarity-all-2p5k-log-rarity-all-sort This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.3117 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.69 | 0.29 | 500 | 5.6272 | | 5.3349 | 0.59 | 1000 | 5.1982 | | 4.9818 | 0.88 | 1500 | 4.9441 | | 4.7024 | 1.17 | 2000 | 4.7940 | | 4.5531 | 1.47 | 2500 | 4.6766 | | 4.4445 | 1.76 | 3000 | 4.5629 | | 4.3064 | 2.05 | 3500 | 4.4888 | | 4.12 | 2.35 | 4000 | 4.4409 | | 4.0994 | 2.64 | 4500 | 4.3854 | | 4.0596 | 2.93 | 5000 | 4.3289 | | 3.8415 | 3.23 | 5500 | 4.3258 | | 3.7949 | 3.52 | 6000 | 4.2992 | | 3.7753 | 3.81 | 6500 | 4.2626 | | 3.6705 | 4.11 | 7000 | 4.2631 | | 3.5128 | 4.4 | 7500 | 4.2550 | | 3.5022 | 4.69 | 8000 | 4.2439 | | 3.4902 | 4.99 | 8500 | 4.2293 | | 3.3248 | 5.28 | 9000 | 4.2426 | | 3.3111 | 5.57 | 9500 | 4.2419 | | 3.3138 | 5.87 | 10000 | 4.2408 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
modelmaker/melanie
modelmaker
"2023-07-05T05:26:44Z"
0
0
diffusers
[ "diffusers", "text-to-image", "am", "dataset:Open-Orca/OpenOrca", "license:openrail", "region:us" ]
text-to-image
"2023-07-05T05:15:40Z"
--- license: openrail datasets: - Open-Orca/OpenOrca language: - am metrics: - accuracy library_name: diffusers pipeline_tag: text-to-image ---
vazish/all-MiniLM-L6-v2-fine-tuned
vazish
"2025-02-10T17:41:16Z"
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:49800", "loss:CosineSimilarityLoss", "arxiv:1908.10084", "base_model:sentence-transformers/all-MiniLM-L6-v2", "base_model:finetune:sentence-transformers/all-MiniLM-L6-v2", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
"2025-02-10T17:41:03Z"
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:429643 - loss:CosineSimilarityLoss base_model: sentence-transformers/all-MiniLM-L6-v2 widget: - source_sentence: Oracle Cloud - Infrastructure and Platform Services for Enterprises sentences: - PulseAudio - Ubuntu Wiki - Documentation page not found - Read the Docs - Dwarf Fortress beginner tips - Video Games on Sports Illustrated - source_sentence: Suggest opt in User Test - Google Slides sentences: - ReleaseEngineering/TryServer - MozillaWiki - Dwarf Fortress beginner tips - Video Games on Sports Illustrated - Tutanota - Private Mailbox with End-to-End Encryption and Calendar - source_sentence: https://portal.naviabenefits.com/part/prioritytasks.aspx sentences: - What to Expect - Pregnancy and Parenting Tips, Week-by-Week Guides - Parents.com - Articles, Recipes, and Ideas for Family Activities - Pinterest - Boards for Collecting and Sharing Inspiration on Any Topic - source_sentence: ‎Apple Music - Web Player sentences: - BMW Connected Drive - Home Assistant - Mary Stewart Phillips (1862-1928) - Find a Grave Memorial - Sky Sports - Football, Formula 1, Cricket, and More - source_sentence: Tidal - High-Fidelity Music Streaming with Master Quality Audio sentences: - Walmart - Everyday Low Prices on Groceries, Electronics, and More - Notion - Integrated Workspace for Notes, Tasks, Databases, and Wikis - Ambient Dreams Playlist on Amazon Music pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - pearson_cosine - spearman_cosine model-index: - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2 results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: Unknown type: unknown metrics: - type: pearson_cosine value: 0.9822505655251419 name: Pearson Cosine - type: spearman_cosine value: 0.2607864200673379 name: Spearman Cosine --- # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9 --> - **Maximum Sequence Length:** 256 tokens - **Output Dimensionality:** 384 dimensions - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("vazish/all-MiniLM-L6-v2-fine-tuned_0") # Run inference sentences = [ 'Tidal - High-Fidelity Music Streaming with Master Quality Audio', 'Walmart - Everyday Low Prices on Groceries, Electronics, and More', 'Notion - Integrated Workspace for Notes, Tasks, Databases, and Wikis', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 384] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Semantic Similarity * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.9823 | | **spearman_cosine** | **0.2608** | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 49,800 training samples * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code> * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | label | |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | <ul><li>min: 10 tokens</li><li>mean: 14.76 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 14.64 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.04</li><li>max: 1.0</li></ul> | * Samples: | sentence_0 | sentence_1 | label | |:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------|:-----------------| | <code>TripAdvisor - Hotel Reviews, Photos, and Travel Forums</code> | <code>Docker Hub - Container Image Repository for DevOps Environments</code> | <code>0.0</code> | | <code>Mastodon - Decentralized Social Media for Niche Communities</code> | <code>Allrecipes - User-Submitted Recipes, Reviews, and Cooking Tips</code> | <code>0.0</code> | | <code>YouTube Music - Music Videos, Official Albums, and Live Performances</code> | <code>ESPN - Sports News, Live Scores, Stats, and Highlights</code> | <code>0.0</code> | * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 32 - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 32 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 3 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin </details> ### Training Logs | Epoch | Step | Training Loss | spearman_cosine | |:------:|:-----:|:-------------:|:---------------:| | 0.0372 | 500 | 0.0218 | - | | 0.0745 | 1000 | 0.0151 | - | | 0.1117 | 1500 | 0.0113 | - | | 0.1490 | 2000 | 0.0076 | - | | 0.1862 | 2500 | 0.0063 | - | | 0.2234 | 3000 | 0.0054 | - | | 0.2607 | 3500 | 0.0045 | - | | 0.2979 | 4000 | 0.0041 | - | | 0.3351 | 4500 | 0.0027 | - | | 0.3724 | 5000 | 0.0028 | - | | 0.4096 | 5500 | 0.0026 | - | | 0.4469 | 6000 | 0.0021 | - | | 0.4841 | 6500 | 0.0019 | - | | 0.5213 | 7000 | 0.0022 | - | | 0.5586 | 7500 | 0.0017 | - | | 0.5958 | 8000 | 0.0018 | - | | 0.6331 | 8500 | 0.0015 | - | | 0.6703 | 9000 | 0.0015 | - | | 0.7075 | 9500 | 0.0018 | - | | 0.7448 | 10000 | 0.0014 | - | | 0.7820 | 10500 | 0.0017 | - | | 0.8192 | 11000 | 0.0012 | - | | 0.8565 | 11500 | 0.0014 | - | | 0.8937 | 12000 | 0.001 | - | | 0.9310 | 12500 | 0.0011 | - | | 0.9682 | 13000 | 0.001 | - | | 1.0054 | 13500 | 0.0009 | - | | 1.0427 | 14000 | 0.0011 | - | | 1.0799 | 14500 | 0.001 | - | | 1.1172 | 15000 | 0.0009 | - | | 1.1544 | 15500 | 0.0008 | - | | 1.1916 | 16000 | 0.001 | - | | 1.2289 | 16500 | 0.0011 | - | | 1.2661 | 17000 | 0.0011 | - | | 1.3033 | 17500 | 0.0006 | - | | 1.3406 | 18000 | 0.0011 | - | | 1.3778 | 18500 | 0.0008 | - | | 1.4151 | 19000 | 0.0011 | - | | 1.4523 | 19500 | 0.0009 | - | | 1.4895 | 20000 | 0.0011 | - | | 1.5268 | 20500 | 0.0009 | - | | 1.5640 | 21000 | 0.0009 | - | | 1.6013 | 21500 | 0.0008 | - | | 1.6385 | 22000 | 0.0005 | - | | 1.6757 | 22500 | 0.001 | - | | 1.7130 | 23000 | 0.0008 | - | | 1.7502 | 23500 | 0.0007 | - | | 1.7874 | 24000 | 0.0007 | - | | 1.8247 | 24500 | 0.0008 | - | | 1.8619 | 25000 | 0.001 | - | | 1.8992 | 25500 | 0.0009 | - | | 1.9364 | 26000 | 0.0008 | - | | 1.9736 | 26500 | 0.0009 | - | | 2.0109 | 27000 | 0.0007 | - | | 2.0481 | 27500 | 0.0006 | - | | 2.0854 | 28000 | 0.0007 | - | | 2.1226 | 28500 | 0.0006 | - | | 2.1598 | 29000 | 0.0007 | - | | 2.1971 | 29500 | 0.001 | - | | 2.2343 | 30000 | 0.0006 | - | | 2.2715 | 30500 | 0.0006 | - | | 2.3088 | 31000 | 0.001 | - | | 2.3460 | 31500 | 0.0007 | - | | 2.3833 | 32000 | 0.0008 | - | | 2.4205 | 32500 | 0.0006 | - | | 2.4577 | 33000 | 0.0007 | - | | 2.4950 | 33500 | 0.0007 | - | | 2.5322 | 34000 | 0.001 | - | | 2.5694 | 34500 | 0.0007 | - | | 2.6067 | 35000 | 0.0007 | - | | 2.6439 | 35500 | 0.0008 | - | | 2.6812 | 36000 | 0.0007 | - | | 2.7184 | 36500 | 0.0006 | - | | 2.7556 | 37000 | 0.0007 | - | | 2.7929 | 37500 | 0.0007 | - | | 2.8301 | 38000 | 0.0005 | - | | 2.8674 | 38500 | 0.0009 | - | | 2.9046 | 39000 | 0.0006 | - | | 2.9418 | 39500 | 0.0007 | - | | 2.9791 | 40000 | 0.0008 | - | | -1 | -1 | - | 0.2608 | ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 3.4.1 - Transformers: 4.48.2 - PyTorch: 2.5.1+cu124 - Accelerate: 1.3.0 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
adleme94/borges_clm-model
adleme94
"2023-08-22T20:03:03Z"
202
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2023-08-17T21:47:53Z"
--- license: mit tags: - generated_from_trainer model-index: - name: borges_clm-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # borges_clm-model This model is a fine-tuned version of [DeepESP/gpt2-spanish-medium](https://huggingface.co/DeepESP/gpt2-spanish-medium) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.7991 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 10 | 3.9138 | | No log | 2.0 | 20 | 3.8214 | | No log | 3.0 | 30 | 3.7991 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.2
IDEA-CCNL/Randeng-MegatronT5-770M
IDEA-CCNL
"2023-05-26T06:24:22Z"
168
7
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "zh", "arxiv:2209.02970", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text2text-generation
"2022-03-02T23:29:04Z"
--- language: - zh license: apache-2.0 inference: false --- # Randeng-MegatronT5-770M - Main Page:[Fengshenbang](https://fengshenbang-lm.com/) - Github: [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM) ## 简介 Brief Introduction 善于处理NLT任务,中文版的T5-large。 Good at solving NLT tasks, Chinese T5-large. ## 模型分类 Model Taxonomy | 需求 Demand | 任务 Task | 系列 Series | 模型 Model | 参数 Parameter | 额外 Extra | | :----: | :----: | :----: | :----: | :----: | :----: | | 通用 General | 自然语言转换 NLT | 燃灯 Randeng | MegatronT5 | 770M | 中文-Chinese | ## 模型信息 Model Information 为了得到一个大规模的中文版的T5,我们使用了Megatron-LM的方法和悟道语料库(180G版本)用于预训练。具体地,我们在预训练阶段中使用了[Megatron-LM](https://github.com/NVIDIA/Megatron-LM) 大概花费了16张A100约14天。 To get a large-scale Chinese T5, we use of [Megatron-LM](https://github.com/NVIDIA/Megatron-LM) and WuDao Corpora (180 GB version) for pre-training. Specifically, in the pre-training phase which cost about 14 days with 16 A100 GPUs. ## 使用 Usage 因为[transformers](https://github.com/huggingface/transformers)库中是没有Randeng-MegatronT5-770M相关的模型结构的,所以你可以在我们的[Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM)中找到并且运行代码。 Since there is no structure of Randeng-MegatronT5-770M in [transformers library](https://github.com/huggingface/transformers), you can find the structure of Randeng-MegatronT5-770M and run the codes in [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM). ```shell git clone https://github.com/IDEA-CCNL/Fengshenbang-LM.git ``` ### 加载模型 Loading Models ```python from fengshen import T5ForConditionalGeneration from fengshen import T5Config from fengshen import T5Tokenizer tokenizer = T5Tokenizer.from_pretrained('IDEA-CCNL/Randeng-MegatronT5-770M') config = T5Config.from_pretrained('IDEA-CCNL/Randeng-MegatronT5-770M') model = T5ForConditionalGeneration.from_pretrained('IDEA-CCNL/Randeng-MegatronT5-770M') ``` ## 引用 Citation 如果您在您的工作中使用了我们的模型,可以引用我们的[论文](https://arxiv.org/abs/2209.02970): If you are using the resource for your work, please cite the our [paper](https://arxiv.org/abs/2209.02970): ```text @article{fengshenbang, author = {Jiaxing Zhang and Ruyi Gan and Junjie Wang and Yuxiang Zhang and Lin Zhang and Ping Yang and Xinyu Gao and Ziwei Wu and Xiaoqun Dong and Junqing He and Jianheng Zhuo and Qi Yang and Yongfeng Huang and Xiayu Li and Yanghan Wu and Junyu Lu and Xinyu Zhu and Weifeng Chen and Ting Han and Kunhao Pan and Rui Wang and Hao Wang and Xiaojun Wu and Zhongshen Zeng and Chongpei Chen}, title = {Fengshenbang 1.0: Being the Foundation of Chinese Cognitive Intelligence}, journal = {CoRR}, volume = {abs/2209.02970}, year = {2022} } ``` 也可以引用我们的[网站](https://github.com/IDEA-CCNL/Fengshenbang-LM/): You can also cite our [website](https://github.com/IDEA-CCNL/Fengshenbang-LM/): ```text @misc{Fengshenbang-LM, title={Fengshenbang-LM}, author={IDEA-CCNL}, year={2021}, howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}}, } ```
franckloic/ddpm-butterflies-128
franckloic
"2023-08-26T13:37:19Z"
0
0
null
[ "tensorboard", "license:creativeml-openrail-m", "region:us" ]
null
"2023-08-26T12:28:52Z"
--- license: creativeml-openrail-m ---
ChauNguyen23/distilbert-base-uncased-finetuned-imdb
ChauNguyen23
"2022-07-07T02:54:46Z"
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
"2022-07-07T02:48:22Z"
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7086 | 1.0 | 157 | 2.4897 | | 2.5796 | 2.0 | 314 | 2.4230 | | 2.5269 | 3.0 | 471 | 2.4354 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Kiefels/dwayne-dibley-flux-v2
Kiefels
"2025-02-11T14:17:15Z"
65
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "flux", "lora", "template:sd-lora", "fluxgym", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
"2025-01-25T21:46:04Z"
--- tags: - text-to-image - flux - lora - diffusers - template:sd-lora - fluxgym widget: - output: url: sample/dwayne-dibley-flux-v2_003360_00_20250125214426.png text: Dwayne Dibbley, Dwayne Dibley, Duane Dibley - text: >- Dwayne Dibbley, is standing in a 1980s disco dancefloor wearing flared tweed trousers, brown plastic open toed sandals and a white nylon shirt, moving embarrasingly toward some fit women output: url: images/example_uft6bsu1o.png - text: >- Dwayne Dibbley, is standing in a 1970s disco dancefloor wearing flared tweed trousers, brown plastic open toed sandals and a white nylon shirt, dancing like a dork output: url: images/example_kwmo9i51t.png - text: >- Dwayne Dibbley, holding up an old thermos flask and a blue tooth brush, smiling and happy as he is stood ready to go out on a date output: url: images/example_heirs6oci.png - text: >- Dwayne Dibley is opening a bottle of beer labelled "Red Dwarf, Wicked Strength Lager" using just his teeth. output: url: images/example_0vm2ystln.png - text: >- Tall and skinny Dwayne Dibley , wide angle full body shot in extreme detail 8K , standing on a train station platform, holding a placard saying I'm a no sense gimboid!!!, wearing a green Anorak, brown corduroy, flared trousers, brown plastic sandals and white socks. output: url: images/example_imvnqid7q.png base_model: black-forest-labs/FLUX.1-dev instance_prompt: Dwayne Dibbley, Dwayne Dibley, Duane Dibley license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # dwayne-dibley-flux-v2 A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym) <Gallery /> ## Trigger words You should use `Dwayne Dibbley, Dwayne Dibley, Duane Dibley` to trigger the image generation. ## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc. Weights for this model are available in Safetensors format.
Thomas-Yang/lora_model
Thomas-Yang
"2025-02-19T08:44:00Z"
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2_vl", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2025-02-19T07:08:50Z"
--- base_model: unsloth/qwen2-vl-7b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2_vl - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Thomas-Yang - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2-vl-7b-instruct-unsloth-bnb-4bit This qwen2_vl model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
shtilev/medical_embedded_v1
shtilev
"2025-03-29T11:28:02Z"
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "multilingual", "ar", "bg", "ca", "cs", "da", "de", "el", "en", "es", "et", "fa", "fi", "fr", "gl", "gu", "he", "hi", "hr", "hu", "hy", "id", "it", "ja", "ka", "ko", "ku", "lt", "lv", "mk", "mn", "mr", "ms", "my", "nb", "nl", "pl", "pt", "ro", "ru", "sk", "sl", "sq", "sr", "sv", "th", "tr", "uk", "ur", "vi", "arxiv:1908.10084", "license:apache-2.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
"2025-03-29T11:21:54Z"
--- language: - multilingual - ar - bg - ca - cs - da - de - el - en - es - et - fa - fi - fr - gl - gu - he - hi - hr - hu - hy - id - it - ja - ka - ko - ku - lt - lv - mk - mn - mr - ms - my - nb - nl - pl - pt - ro - ru - sk - sl - sq - sr - sv - th - tr - uk - ur - vi license: apache-2.0 library_name: sentence-transformers tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers language_bcp47: - fr-ca - pt-br - zh-cn - zh-tw pipeline_tag: sentence-similarity --- # sentence-transformers/paraphrase-multilingual-mpnet-base-v2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-mpnet-base-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('shtilev/medical_embedded_v1') model = AutoModel.from_pretrained('shtilev/medical_embedded_v1') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, average pooling sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
microsoft/focalnet-base
microsoft
"2023-05-03T16:17:22Z"
243
0
transformers
[ "transformers", "pytorch", "focalnet", "image-classification", "vision", "dataset:imagenet-1k", "arxiv:2203.11926", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
"2023-04-17T14:57:14Z"
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # FocalNet (tiny-sized large reception field model) FocalNet model trained on ImageNet-1k at resolution 384x384. It was introduced in the paper [Focal Modulation Networks ](https://arxiv.org/abs/2203.11926) by Yang et al. and first released in [this repository](https://github.com/microsoft/FocalNet). Disclaimer: The team releasing FocalNet did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description Focul Modulation Networks are an alternative to Vision Transformers, where self-attention (SA) is completely replaced by a focal modulation mechanism for modeling token interactions in vision. Focal modulation comprises three components: (i) hierarchical contextualization, implemented using a stack of depth-wise convolutional layers, to encode visual contexts from short to long ranges, (ii) gated aggregation to selectively gather contexts for each query token based on its content, and (iii) element-wise modulation or affine transformation to inject the aggregated context into the query. Extensive experiments show FocalNets outperform the state-of-the-art SA counterparts (e.g., Vision Transformers, Swin and Focal Transformers) with similar computational costs on the tasks of image classification, object detection, and segmentation. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/focalnet_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=focalnet) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import FocalNetImageProcessor, FocalNetForImageClassification import torch from datasets import load_dataset dataset = load_dataset("huggingface/cats-image") image = dataset["test"]["image"][0] preprocessor = FocalNetImageProcessor.from_pretrained("microsoft/focalnet-base") model = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-base") inputs = preprocessor(image, return_tensors="pt") with torch.no_grad(): logits = model(**inputs).logits # model predicts one of the 1000 ImageNet classes predicted_label = logits.argmax(-1).item() print(model.config.id2label[predicted_label]), ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/focalnet). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2203-11926, author = {Jianwei Yang and Chunyuan Li and Jianfeng Gao}, title = {Focal Modulation Networks}, journal = {CoRR}, volume = {abs/2203.11926}, year = {2022}, url = {https://doi.org/10.48550/arXiv.2203.11926}, doi = {10.48550/arXiv.2203.11926}, eprinttype = {arXiv}, eprint = {2203.11926}, timestamp = {Tue, 29 Mar 2022 18:07:24 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2203-11926.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
Gholamreza/distilbert-fa-zwnj-base-finetuned-2epoch-pquad
Gholamreza
"2023-02-19T14:27:08Z"
15
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:pquad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
"2023-02-18T19:17:05Z"
--- license: apache-2.0 tags: - generated_from_trainer datasets: - pquad model-index: - name: distilbert-fa-zwnj-base-finetuned-2epoch-pquad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-fa-zwnj-base-finetuned-2epoch-pquad This model is a fine-tuned version of [HooshvareLab/distilbert-fa-zwnj-base](https://huggingface.co/HooshvareLab/distilbert-fa-zwnj-base) on the pquad dataset. It achieves the following results on the evaluation set: - Loss: 1.1089 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.1522 | 1.0 | 4003 | 1.1435 | | 0.8579 | 2.0 | 8006 | 1.1089 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
mradermacher/calme-3.2-baguette-3b-GGUF
mradermacher
"2024-11-08T23:58:47Z"
13
0
transformers
[ "transformers", "gguf", "chat", "qwen", "qwen2.5", "finetune", "french", "english", "fr", "en", "dataset:MaziyarPanahi/french_instruct_sharegpt", "dataset:MaziyarPanahi/calme-legalkit-v0.2", "base_model:MaziyarPanahi/calme-3.2-baguette-3b", "base_model:quantized:MaziyarPanahi/calme-3.2-baguette-3b", "license:other", "endpoints_compatible", "region:us", "conversational" ]
null
"2024-11-08T23:33:59Z"
--- base_model: MaziyarPanahi/calme-3.2-baguette-3b datasets: - MaziyarPanahi/french_instruct_sharegpt - MaziyarPanahi/calme-legalkit-v0.2 language: - fr - en library_name: transformers license: other license_link: https://huggingface.co/Qwen/Qwen2.5-3B/blob/main/LICENSE license_name: qwen-research model_creator: MaziyarPanahi model_name: calme-3.2-baguette-3b quantized_by: mradermacher tags: - chat - qwen - qwen2.5 - finetune - french - english --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/MaziyarPanahi/calme-3.2-baguette-3b <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/calme-3.2-baguette-3b-GGUF/resolve/main/calme-3.2-baguette-3b.Q2_K.gguf) | Q2_K | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/calme-3.2-baguette-3b-GGUF/resolve/main/calme-3.2-baguette-3b.Q3_K_S.gguf) | Q3_K_S | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/calme-3.2-baguette-3b-GGUF/resolve/main/calme-3.2-baguette-3b.Q3_K_M.gguf) | Q3_K_M | 1.7 | lower quality | | [GGUF](https://huggingface.co/mradermacher/calme-3.2-baguette-3b-GGUF/resolve/main/calme-3.2-baguette-3b.Q3_K_L.gguf) | Q3_K_L | 1.8 | | | [GGUF](https://huggingface.co/mradermacher/calme-3.2-baguette-3b-GGUF/resolve/main/calme-3.2-baguette-3b.IQ4_XS.gguf) | IQ4_XS | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/calme-3.2-baguette-3b-GGUF/resolve/main/calme-3.2-baguette-3b.Q4_0_4_4.gguf) | Q4_0_4_4 | 1.9 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/calme-3.2-baguette-3b-GGUF/resolve/main/calme-3.2-baguette-3b.Q4_K_S.gguf) | Q4_K_S | 1.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/calme-3.2-baguette-3b-GGUF/resolve/main/calme-3.2-baguette-3b.Q4_K_M.gguf) | Q4_K_M | 2.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/calme-3.2-baguette-3b-GGUF/resolve/main/calme-3.2-baguette-3b.Q5_K_S.gguf) | Q5_K_S | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/calme-3.2-baguette-3b-GGUF/resolve/main/calme-3.2-baguette-3b.Q5_K_M.gguf) | Q5_K_M | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/calme-3.2-baguette-3b-GGUF/resolve/main/calme-3.2-baguette-3b.Q6_K.gguf) | Q6_K | 2.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/calme-3.2-baguette-3b-GGUF/resolve/main/calme-3.2-baguette-3b.Q8_0.gguf) | Q8_0 | 3.4 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/calme-3.2-baguette-3b-GGUF/resolve/main/calme-3.2-baguette-3b.f16.gguf) | f16 | 6.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
open-paws/cultural_sensitivity_prediction
open-paws
"2025-02-22T18:14:34Z"
0
0
null
[ "tensorboard", "safetensors", "distilbert", "autotrain", "text-regression", "dataset:samtuckervegan/cultural", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "region:us" ]
null
"2025-02-22T18:01:25Z"
--- tags: - autotrain - text-regression base_model: distilbert/distilbert-base-uncased widget: - text: "I love AutoTrain" datasets: - samtuckervegan/cultural --- # Model Trained Using AutoTrain - Problem type: Text Regression ## Validation Metrics loss: 0.01486926805227995 mse: 0.014865249395370483 mae: 0.08807627856731415 r2: 0.24985045194625854 rmse: 0.12192312904191101 explained_variance: 0.24985826015472412
esmarquez17/hate-social-network-adversarial
esmarquez17
"2023-12-07T20:53:17Z"
4
0
transformers
[ "transformers", "tf", "roberta", "text-classification", "generated_from_keras_callback", "base_model:esmarquez17/fine-tunning-roberta-bne-hate-offensive", "base_model:finetune:esmarquez17/fine-tunning-roberta-bne-hate-offensive", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2023-11-30T02:22:24Z"
--- license: apache-2.0 base_model: esmarquez17/fine-tunning-roberta-bne-hate-offensive tags: - generated_from_keras_callback model-index: - name: hate-social-network-adversarial results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # hate-social-network-adversarial Este modelo es una version of [esmarquez17/fine-tunning-roberta-bne-hate-offensive](https://huggingface.co/esmarquez17/fine-tunning-roberta-bne-hate-offensive) on an unknown dataset. evaluado con un conjunto de datos semEvaml-2019 con generación de datos adversariales: ## Model description - Modelo Base con fine-tunning de Roberta-BNE en un corpus de guiones de teatro - Modelo entrenado con un conjunto de datos adversarios propuestos ## Training and evaluation data - Entrenado en corpus base SemEval-spanish - Validado SemEval-spanish - Testeado en corpus: HATERNET y HATECHECK ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 9385, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}} - training_precision: float32 ### Training results Training { Exactitud 0.9702 Precisión 0.9622 F1-score 0.9615 Recall 0.9609 } Validacion { Exactitud 0.8520 Precisión 0.8558 F1-score 0.8279 Recall 0.8018 } ### Framework versions - Transformers 4.35.2 - TensorFlow 2.14.0 - Datasets 2.15.0 - Tokenizers 0.15.0
MaLA-LM/lucky52-bloom-7b1-no-30
MaLA-LM
"2025-04-08T17:03:02Z"
18
0
transformers
[ "transformers", "pytorch", "safetensors", "bloom", "text-generation", "generation", "question answering", "instruction tuning", "multilingual", "dataset:MBZUAI/Bactrian-X", "arxiv:2404.04850", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-04-04T11:44:44Z"
--- library_name: transformers pipeline_tag: text-generation language: - multilingual tags: - generation - question answering - instruction tuning datasets: - MBZUAI/Bactrian-X license: cc-by-nc-4.0 --- ### Model Description This HF repository hosts instruction fine-tuned multilingual BLOOM model using the parallel instruction dataset called Bactrain-X in 52 languages. We progressively add a language during instruction fine-tuning at each time, and train 52 models in total. Then, we evaluate those models in three multilingual benchmarks. Please refer to [our paper](https://arxiv.org/abs/2404.04850) for more details. * Base model: [BLOOM 7B1](https://huggingface.co/bigscience/bloom-7b1) * Instruction languages: English, Chinese, Afrikaans, Arabic, Azerbaijani, Bengali, Czech, German, Spanish, Estonian, Farsi, Finnish, French, Galician, Gujarati, Hebrew, Hindi, Croatian, Indonesian, Italian, Japanese, Georgian, Kazakh, Khmer, Korean, Lithuanian, Latvian, Macedonian, Malayalam, Mongolian * Instruction language codes: en, zh, af, ar, az, bn, cs, de, es, et, fa, fi, fr, gl, gu, he, hi, hr, id, it, ja, ka, kk, km, ko, lt, lv, mk, ml, mn * Training method: full-parameter fine-tuning. ### Usage The model checkpoint should be loaded using `transformers` library. ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("MaLA-LM/lucky52-bloom-7b1-no-30") model = AutoModelForCausalLM.from_pretrained("MaLA-LM/lucky52-bloom-7b1-no-30") ``` ### Citation ``` @inproceedings{ji2025lucky52, title={How Many Languages Make Good Multilingual Instruction Tuning? A Case Study on BLOOM}, author={Shaoxiong Ji and Pinzhen Chen}, year={2025}, booktitle={Proceedings of COLING}, url={https://arxiv.org/abs/2404.04850}, } ```
ISEGURA/gpt2-400-bioautex
ISEGURA
"2025-03-07T13:22:22Z"
0
0
transformers
[ "transformers", "safetensors", "gpt2", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
"2025-03-07T13:21:58Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
DBangshu/V3_Base_GPT2_e5_4_4
DBangshu
"2024-10-16T11:57:48Z"
130
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-10-16T11:57:29Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
matthewchung74/phi15-study-desc-summary
matthewchung74
"2024-03-23T22:25:13Z"
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
"2024-03-23T22:25:06Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
junelee/wizard-vicuna-13b
junelee
"2023-05-04T01:23:39Z"
2,682
77
transformers
[ "transformers", "pytorch", "llama", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2023-05-03T20:46:24Z"
https://github.com/melodysdreamj/WizardVicunaLM
MinaMila/llama_instbase_Adult_14ep_55
MinaMila
"2025-04-02T02:19:20Z"
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:unsloth/Meta-Llama-3.1-8B-Instruct", "base_model:finetune:unsloth/Meta-Llama-3.1-8B-Instruct", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-02T02:16:04Z"
--- base_model: unsloth/Meta-Llama-3.1-8B-Instruct tags: - text-generation-inference - transformers - unsloth - llama - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** MinaMila - **License:** apache-2.0 - **Finetuned from model :** unsloth/Meta-Llama-3.1-8B-Instruct This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
wlhb/Llama-3.1-8B-bnb-4bit-Chtagpt
wlhb
"2024-08-11T08:58:35Z"
7
0
null
[ "safetensors", "gguf", "llama", "endpoints_compatible", "region:us" ]
null
"2024-08-10T03:49:38Z"
代码:[colab code](https://colab.research.google.com/drive/1SksjvgRbfpxNQUtYdr2mKxn-OXKHuSov?usp=sharing) 数据集:导出chatgpt数据并使用 [脚本程序整理出可训练的规范数据](https://huggingface.co/wlhb/Llama-3.1-8B-bnb-4bit-Chtagpt/blob/main/origin2trainDatasets.py) 导出Chatgpt的历史聊天记录后使用origin2trainDatasets.py清洗为符合微调模型的数据集,并通过[unsloth](https://unsloth.ai/)进行微调训练 基础模型:unsloth/Meta-Llama-3.1-8B-bnb-4bit 训练方式:lora 效果评价待确定 Code: [colab code](https://colab.research.google.com/drive/1SksjvgRbfpxNQUtYdr2mKxn-OXKHuSov?usp=sharing) Dataset: export chatgpt data and use [script program to organize trainable canonical data](https://huggingface.co/wlhb/Llama-3.1-8B-bnb-4bit-Chtagpt/blob/main/origin2trainDatasets.py) Export Chatgpt's history chats and use origin2trainDatasets.py to clean them into datasets that match the fine-tuned model and train them with [unsloth](https://unsloth.ai/) for fine-tuning. Base model: unsloth/Meta-Llama-3.1-8B-bnb-4bit Training method: lora Effectiveness evaluation to be determined
chainup244/google-gemma-2b-1718956234
chainup244
"2024-06-21T07:53:08Z"
7
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-06-21T07:50:36Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Litzy619/G0514HMA5H
Litzy619
"2024-05-14T20:59:30Z"
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:google/gemma-2b", "base_model:finetune:google/gemma-2b", "license:gemma", "region:us" ]
null
"2024-05-14T19:54:24Z"
--- license: gemma base_model: google/gemma-2b tags: - generated_from_trainer model-index: - name: G0514HMA5H results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # G0514HMA5H This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: -17.7865 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 80 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.9281 | 0.09 | 10 | 0.0810 | | -0.8728 | 0.18 | 20 | -2.3616 | | -3.7424 | 0.27 | 30 | -5.5992 | | -6.9773 | 0.36 | 40 | -8.8629 | | -10.1201 | 0.45 | 50 | -11.8272 | | -12.8541 | 0.54 | 60 | -14.2293 | | -15.0144 | 0.63 | 70 | -15.8856 | | -16.3327 | 0.73 | 80 | -16.8287 | | -17.0246 | 0.82 | 90 | -17.2467 | | -17.335 | 0.91 | 100 | -17.4367 | | -17.4797 | 1.0 | 110 | -17.5384 | | -17.5709 | 1.09 | 120 | -17.6024 | | -17.6217 | 1.18 | 130 | -17.6413 | | -17.6522 | 1.27 | 140 | -17.6697 | | -17.6777 | 1.36 | 150 | -17.6893 | | -17.6963 | 1.45 | 160 | -17.7051 | | -17.7096 | 1.54 | 170 | -17.7187 | | -17.7252 | 1.63 | 180 | -17.7321 | | -17.7353 | 1.72 | 190 | -17.7430 | | -17.7471 | 1.81 | 200 | -17.7499 | | -17.751 | 1.9 | 210 | -17.7561 | | -17.7563 | 1.99 | 220 | -17.7617 | | -17.7638 | 2.08 | 230 | -17.7659 | | -17.7726 | 2.18 | 240 | -17.7701 | | -17.7714 | 2.27 | 250 | -17.7736 | | -17.7766 | 2.36 | 260 | -17.7772 | | -17.7823 | 2.45 | 270 | -17.7800 | | -17.7809 | 2.54 | 280 | -17.7827 | | -17.7872 | 2.63 | 290 | -17.7841 | | -17.7876 | 2.72 | 300 | -17.7856 | | -17.7846 | 2.81 | 310 | -17.7863 | | -17.7907 | 2.9 | 320 | -17.7865 | | -17.7901 | 2.99 | 330 | -17.7865 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.0
domci/ColBERTv2-mmarco-de-0.1
domci
"2024-02-27T16:55:48Z"
0
2
null
[ "safetensors", "de", "dataset:unicamp-dl/mmarco", "license:mit", "region:us" ]
null
"2024-02-27T15:26:22Z"
--- license: mit datasets: - unicamp-dl/mmarco language: - de --- # ColBERTv2-mmarco-de-0.1 This is a German ColBERT implementation based on [colbert-ir/colbertv2.0](https://huggingface.co/colbert-ir/colbertv2.0) - Base Model: [dbmdz/bert-base-german-cased](https://huggingface.co/dbmdz/bert-base-german-cased) - Training Data: [unicamp-dl/mmarco](https://huggingface.co/unicamp-dl/mMiniLM-L6-v2-mmarco-v2) --> 10Mio random sample - Framework used for training [RAGatouille](https://github.com/bclavie/RAGatouille) Thanks a ton [@bclavie](https://huggingface.co/bclavie) ! As I'm limited on GPU Training did not go through all the way. "Only" 10 checkpoints were trained. # Code My code is probably a mess, but YOLO! ## data prep ```python from datasets import load_dataset from ragatouille import RAGTrainer from tqdm import tqdm import pickle from concurrent.futures import ThreadPoolExecutor from tqdm.notebook import tqdm import concurrent SAMPLE_SIZE = -1 def int_to_string(number): if number < 0: return "full" elif number < 1000: return str(number) elif number < 1000000: return f"{number // 1000}K" elif number >= 1000000: return f"{number // 1000000}M" def process_chunk(chunk): return [list(item) for item in zip(chunk["query"], chunk["positive"], chunk["negative"])] def chunked_iterable(iterable, chunk_size): """Yield successive chunks from iterable.""" for i in range(0, len(iterable), chunk_size): yield iterable[i:i + chunk_size] def process_dataset_concurrently(dataset, chunksize=1000): with ThreadPoolExecutor() as executor: # Wrap the dataset with tqdm for real-time updates wrapped_dataset = tqdm(chunked_iterable(dataset, chunksize), total=(len(dataset) + chunksize - 1) // chunksize) # Submit each chunk to the executor futures = [executor.submit(process_chunk, chunk) for chunk in wrapped_dataset] results = [] for future in concurrent.futures.as_completed(futures): results.extend(future.result()) return results dataset = load_dataset('unicamp-dl/mmarco', 'german', trust_remote_code=True) # Shuffle the dataset and seed for reproducibility if needed shuffled_dataset = dataset['train'].shuffle(seed=42) if SAMPLE_SIZE > 0: sampled_dataset = shuffled_dataset.select(range(SAMPLE_SIZE)) else: sampled_dataset = shuffled_dataset triplets = process_dataset_concurrently(sampled_dataset, chunksize=10000) trainer = RAGTrainer(model_name=f"ColBERT-mmacro-de-{int_to_string(SAMPLE_SIZE)}", pretrained_model_name="dbmdz/bert-base-german-cased", language_code="de",) trainer.prepare_training_data(raw_data=triplets, mine_hard_negatives=False) ``` ## Training ```python from datasets import load_dataset import os from ragatouille import RAGTrainer from tqdm import tqdm import pickle from concurrent.futures import ThreadPoolExecutor from tqdm.notebook import tqdm import concurrent from pathlib import Path def int_to_string(number): if number < 1000: return str(number) elif number < 1000000: return f"{number // 1000}K" elif number >= 1000000: return f"{number // 1000000}M" SAMPLE_SIZE = 1000000 trainer = RAGTrainer(model_name=f"ColBERT-mmacro-de-{int_to_string(SAMPLE_SIZE)}", pretrained_model_name="dbmdz/bert-base-german-cased", language_code="de",) trainer.data_dir = Path("/kaggle/input/mmarco-de-10m") trainer.train(batch_size=32, nbits=4, # How many bits will the trained model use when compressing indexes maxsteps=500000, # Maximum steps hard stop use_ib_negatives=True, # Use in-batch negative to calculate loss dim=128, # How many dimensions per embedding. 128 is the default and works well. learning_rate=5e-6, # Learning rate, small values ([3e-6,3e-5] work best if the base model is BERT-like, 5e-6 is often the sweet spot) doc_maxlen=256, # Maximum document length. Because of how ColBERT works, smaller chunks (128-256) work very well. use_relu=False, # Disable ReLU -- doesn't improve performance warmup_steps="auto", # Defaults to 10% ) ```
caozhanqiang/llama2-glora-finetunined-french
caozhanqiang
"2023-07-28T09:08:14Z"
3
0
peft
[ "peft", "region:us" ]
null
"2023-07-28T09:07:56Z"
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
brixeus/f4e364db-8750-4a25-afa0-d99872f7af11
brixeus
"2025-01-20T11:50:19Z"
6
0
peft
[ "peft", "safetensors", "phi3", "axolotl", "generated_from_trainer", "custom_code", "base_model:numind/NuExtract-1.5", "base_model:adapter:numind/NuExtract-1.5", "license:mit", "region:us" ]
null
"2025-01-20T11:34:39Z"
--- library_name: peft license: mit base_model: numind/NuExtract-v1.5 tags: - axolotl - generated_from_trainer model-index: - name: f4e364db-8750-4a25-afa0-d99872f7af11 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: numind/NuExtract-v1.5 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - dfedf188e6c9e057_train_data.json ds_type: json format: custom path: /workspace/input_data/dfedf188e6c9e057_train_data.json type: field_input: base_0 field_instruction: id field_output: base_100_x format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: brixeus/f4e364db-8750-4a25-afa0-d99872f7af11 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/dfedf188e6c9e057_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 05278d2d-f76b-494b-9e5f-5ab11e9ea915 wandb_project: Gradients-On-Three wandb_run: your_name wandb_runid: 05278d2d-f76b-494b-9e5f-5ab11e9ea915 warmup_steps: 10 weight_decay: 0.01 xformers_attention: null ``` </details><br> # f4e364db-8750-4a25-afa0-d99872f7af11 This model is a fine-tuned version of [numind/NuExtract-v1.5](https://huggingface.co/numind/NuExtract-v1.5) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7830 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0021 | 1 | 2.2589 | | 8.9092 | 0.0186 | 9 | 2.2142 | | 8.1938 | 0.0372 | 18 | 1.9731 | | 7.6565 | 0.0559 | 27 | 1.8767 | | 7.6501 | 0.0745 | 36 | 1.8378 | | 7.2612 | 0.0931 | 45 | 1.8157 | | 6.9619 | 0.1117 | 54 | 1.8015 | | 7.2999 | 0.1304 | 63 | 1.7942 | | 7.0581 | 0.1490 | 72 | 1.7886 | | 7.203 | 0.1676 | 81 | 1.7843 | | 6.7914 | 0.1862 | 90 | 1.7832 | | 7.1188 | 0.2049 | 99 | 1.7830 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
brathief/wwoo_1000_lora
brathief
"2023-05-19T17:50:37Z"
2
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
"2023-05-19T16:59:58Z"
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - brathief/wwoo_1000_lora These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the None dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
daanjiri/lab1_random
daanjiri
"2024-02-17T18:57:17Z"
5
0
transformers
[ "transformers", "safetensors", "marian", "text2text-generation", "generated_from_trainer", "dataset:kde4", "base_model:Helsinki-NLP/opus-mt-en-fr", "base_model:finetune:Helsinki-NLP/opus-mt-en-fr", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
"2024-02-17T17:40:44Z"
--- license: apache-2.0 base_model: Helsinki-NLP/opus-mt-en-fr tags: - generated_from_trainer datasets: - kde4 metrics: - bleu model-index: - name: lab1_random results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 config: en-fr split: train args: en-fr metrics: - name: Bleu type: bleu value: 13.64635977688655 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lab1_random This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 3.5090 - Bleu: 13.6464 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2
Lykon/AAM_AnyLora_AnimeMix-LCM
Lykon
"2023-12-07T11:03:33Z"
6
2
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "art", "artistic", "anime", "dreamshaper", "lcm", "en", "license:creativeml-openrail-m", "region:us" ]
text-to-image
"2023-12-07T10:58:42Z"
--- language: - en license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - art - artistic - diffusers - anime - dreamshaper - lcm duplicated_from: lykon/AAM_AnyLora_AnimeMix-LCM pipeline_tag: text-to-image --- # AAM_AnyLora_AnimeMix LCM `lykon/AAM_AnyLora_AnimeMix-LCM` is a Stable Diffusion model that has been fine-tuned on [runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5). Please consider supporting me: - on [Patreon](https://www.patreon.com/Lykon275) - or [buy me a coffee](https://snipfeed.co/lykon) ## Diffusers For more general information on how to run text-to-image models with 🧨 Diffusers, see [the docs](https://huggingface.co/docs/diffusers/using-diffusers/conditional_image_generation). 1. Installation ``` pip install diffusers transformers accelerate ``` 2. Run ```py from diffusers import AutoPipelineForText2Image, LCMScheduler import torch pipe = AutoPipelineForText2Image.from_pretrained('lykon/AAM_AnyLora_AnimeMix-LCM', torch_dtype=torch.float16, variant="fp16") pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) pipe = pipe.to("cuda") prompt = "portrait photo of muscular bearded guy in a worn mech suit, light bokeh, intricate, steel metal, elegant, sharp focus, soft lighting, vibrant colors" generator = torch.manual_seed(0) image = pipe(prompt, num_inference_steps=15, guidance_scale=2, generator=generator).images[0] image.save("./image.png") ```
henryhe0123/pc-agent-test-1-2
henryhe0123
"2025-03-19T05:35:11Z"
0
0
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-text-to-text", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:henryhe0123/pc-agent-test-1-2", "base_model:finetune:henryhe0123/pc-agent-test-1-2", "license:other", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
"2025-03-18T17:22:36Z"
--- library_name: transformers license: other base_model: henryhe0123/pc-agent-test-1-2 tags: - llama-factory - full - generated_from_trainer model-index: - name: Qwen2.5-VL-72B-sft-1-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Qwen2.5-VL-72B-sft-1-2 This model is a fine-tuned version of [/inspire/hdd/ws-c6f77a66-a5f5-45dc-a4ce-1e856fe7a7b4/project/public/model/Qwen2.5-VL-72B-Instruct](https://huggingface.co//inspire/hdd/ws-c6f77a66-a5f5-45dc-a4ce-1e856fe7a7b4/project/public/model/Qwen2.5-VL-72B-Instruct) on the pcagent dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 32 - total_train_batch_size: 32 - total_eval_batch_size: 256 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0
SerhiiLebediuk/Llama-3.1-8B-bnb-4bit-devision-support
SerhiiLebediuk
"2025-03-18T15:47:58Z"
10
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2025-03-11T13:48:31Z"
--- base_model: unsloth/meta-llama-3.1-8b-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** SerhiiLebediuk - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
nvidia/stt_en_fastconformer_hybrid_medium_streaming_80ms_pc
nvidia
"2025-02-18T13:21:47Z"
0
2
NeMo
[ "NeMo", "nemo", "speech-recognition", "ASR", "English", "Conformer", "Transducer", "CTC", "speech", "audio", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_11_0", "dataset:openslr/librispeech_asr", "dataset:Europarl-ASR-EN", "dataset:fisher_corpus", "dataset:VoxPopuli-EN", "dataset:National-Singapore-Corpus-Part-1", "dataset:kensho/spgispeech-1000hours", "dataset:Multilingual-LibriSpeech-2000hours", "arxiv:2305.05084", "license:cc-by-4.0", "model-index", "region:us" ]
automatic-speech-recognition
"2024-12-11T15:06:37Z"
--- license: cc-by-4.0 datasets: - mozilla-foundation/common_voice_11_0 - openslr/librispeech_asr - Europarl-ASR-EN - fisher_corpus - VoxPopuli-EN - National-Singapore-Corpus-Part-1 - kensho/spgispeech-1000hours - Multilingual-LibriSpeech-2000hours language: - en pipeline_tag: automatic-speech-recognition library_name: NeMo metrics: - WER - CER tags: - speech-recognition - ASR - English - Conformer - Transducer - CTC - NeMo - speech - audio model-index: - name: stt_en_fastconformer_hybrid_medium_streaming_80ms_pc results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: VoxPopuli split: test type: VoxPopuli args: language: en metrics: - name: Test WER type: wer value: 8.29 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: librispeech type: openslr/librispeech_asr split: test args: language: en metrics: - name: Test WER type: wer value: 6.96 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: MLS type: Multilingual-LibriSpeech-2000hours split: test args: language: en metrics: - name: Test WER type: wer value: 11.76 --- # NVIDIA FastConformer-Hybrid medium streaming (en) <style> img { display: inline-table; vertical-align: small; margin: 0; padding: 0; } </style> | [![Model architecture](https://img.shields.io/badge/Model_Arch-FastConformer--Transducer_CTC-lightgrey#model-badge)](#model-architecture) | [![Model size](https://img.shields.io/badge/Params-32M-lightgrey#model-badge)](#model-architecture) | [![Language](https://img.shields.io/badge/Language-en-lightgrey#model-badge)](#datasets)| This collection contains medium size versions of cache-aware FastConformer-Hybrid (around 32M parameters) trained on a English speech. The model is trained for streaming ASR with look-ahead of 80ms which be used for very low-latency streaming applications and has two losses: Transducer (default) and CTC. See the section [Model Architecture](#Model-Architecture) and [NeMo documentation](https://docs.nvidia.com/nemo-framework/user-guide/latest/nemotoolkit/asr/models.html#fast-conformer) for complete architecture details. This model is ready for commercial and non-commercial use. ## License License to use this model is covered by the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/). By downloading the public and release version of the model, you accept the terms and conditions of the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/) license. ## References [1] [Fast Conformer with Linearly Scalable Attention for Efficient Speech Recognition](https://arxiv.org/abs/2305.05084) [2] [Google Sentencepiece Tokenizer](https://github.com/google/sentencepiece) [3] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo) [4] [HuggingFace ASR Leaderboard](https://huggingface.co/spaces/hf-audio/open_asr_leaderboard) <!-- ## NVIDIA NeMo: Training To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest Pytorch version. ``` pip install nemo_toolkit['all'] ``` --> ## Model Architecture The model is cache-aware versions of Hybrid FastConfomer which are trained for streaming ASR. You may find more info on cache-aware models here: [Cache-aware Streaming Conformer](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#cache-aware-streaming-conformer) [5]. FastConformer [1] is an optimized version of the Conformer model with 8x depthwise-separable convolutional downsampling. The model is trained in a multitask setup with hybrid Transducer decoder (RNNT) and Connectionist Temporal Classification (CTC) loss. You may find more information on the details of FastConformer here: [Fast-Conformer Model](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#fast-conformer). Model utilizes a [Google Sentencepiece Tokenizer](https://github.com/google/sentencepiece) [2] tokenizer with a vocabulary size of 1024. ### Input - **Input Type:** Audio - **Input Format(s):** .wav files - **Other Properties Related to Input:** 16000 Hz Mono-channel Audio, Pre-Processing Not Needed ### Output This model provides transcribed speech as a string for a given audio sample. - **Output Type**: Text - **Output Format:** String - **Output Parameters:** One Dimensional (1D) - **Other Properties Related to Output:** May Need Inverse Text Normalization; Does Not Handle Special Characters; Outputs text in English with punctuation and capitalization. ## Limitations The model is streaming and can output the speech as a string with punctuation and capitalization. Since this model was trained on publicly available speech datasets, the performance of this model might degrade for speech which includes technical terms, or vernacular that the model has not been trained on. ## How to Use this Model The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. ### Automatically instantiate the model ```python import nemo.collections.asr as nemo_asr asr_model = nemo_asr.models.EncDecHybridRNNTCTCBPEModel.from_pretrained(model_name="nvidia/stt_en_fastconformer_hybrid_medium_streaming_80ms_pc") ``` ### Transcribing using Python First, let's get a sample ``` wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav ``` Then simply do: ``` output = asr_model.transcribe(['2086-149220-0033.wav']) print(output[0].text) ``` ### Transcribing many audio files Using Transducer mode inference: ```shell python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py pretrained_name="nvidia/stt_en_fastconformer_hybrid_medium_streaming_80ms_pc" audio_dir="<DIRECTORY CONTAINING AUDIO FILES>" ``` Using CTC mode inference: ```shell python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py pretrained_name="nvidia/stt_en_fastconformer_hybrid_medium_streaming_80ms_pc" audio_dir="<DIRECTORY CONTAINING AUDIO FILES>" decoder_type="ctc" ``` ## Training The [NVIDIA NeMo Toolkit] [3] was used for training the model for two hundred epochs. Model is trained with this [example script](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/asr_hybrid_transducer_ctc/speech_to_text_hybrid_rnnt_ctc_bpe.py). The tokenizer for these model was built using the text transcripts of the train set with this [script](https://github.com/NVIDIA/NeMo/blob/main/scripts/tokenizers/process_asr_text_tokenizer.py). ## Training, Testing, and Evaluation Datasets ### Training Datasets The model is trained on composite dataset comprising of around 8500 hours of English speech: - [Librispeech](https://www.openslr.org/12) - Data Collection Method: Automated - Labeling Method: by Human - [Mozilla Common Voice 11.0 English](https://commonvoice.mozilla.org/en/datasets) - Data Collection Method: by Human - Labeling Method: by Human - [Europarl](https://www.statmt.org/europarl/) - Data Collection Method: by Human - Labeling Method: by Human - [Fisher](https://catalog.ldc.upenn.edu/LDC2004S13) - Data Collection Method: Automated - Labeling Method: by Human - [MLS](https://www.openslr.org/94/) - Data Collection Method: Automated - Labeling Method: by Human - [Voxpopuli](https://github.com/facebookresearch/voxpopuli) - Data Collection Method: by Human - Labeling Method: by Human - [SPGI-1000hours](https://datasets.kensho.com/datasets/spgispeech) - Data Collection Method: by Human - Labeling Method: by Human ### Evaluation Datasets - [Librispeech](https://www.openslr.org/12) - Data Collection Method: by Human - Labeling Method: by Human - [Mozilla Common Voice 11.0 English](https://commonvoice.mozilla.org/en/datasets) - Data Collection Method: by Human - Labeling Method: by Human - [Europarl](https://www.statmt.org/europarl/) - Data Collection Method: by Human - Labeling Method: by Human - [Fisher](https://catalog.ldc.upenn.edu/LDC2004S13) - Data Collection Method: by Human - Labeling Method: by Human - [MLS](https://www.openslr.org/94/) - Data Collection Method: by Human - Labeling Method: by Human - [Voxpopuli](https://github.com/facebookresearch/voxpopuli) - Data Collection Method: by Human - Labeling Method: by Human - [SPGI-1000hours](https://datasets.kensho.com/datasets/spgispeech) - Data Collection Method: by Human - Labeling Method: by Human ### Test Datasets - [Europarl](https://www.statmt.org/europarl/) - Data Collection Method: by Human - Labeling Method: by Human - [MLS](https://www.openslr.org/94/) - Data Collection Method: by Human - Labeling Method: by Human - [Voxpopuli](https://github.com/facebookresearch/voxpopuli) - Data Collection Method: by Human - Labeling Method: by Human - [Librispeech](https://www.openslr.org/12) - Data Collection Method: by Human - Labeling Method: by Human ## Software Integration ### Supported Hardware Microarchitecture Compatibility: - NVIDIA Ampere - NVIDIA Blackwell - NVIDIA Jetson - NVIDIA Hopper - NVIDIA Lovelace - NVIDIA Pascal - NVIDIA Turing - NVIDIA Volta ### Runtime Engine - Nemo 2.0.0 ### Preferred Operating System - Linux ## Ethical Considerations NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse. <!-- For more detailed information on ethical considerations for this model, please see the [Model Card++](https://docs.google.com/document/d/1cFbfEnlbBG_I5hTRiYuZAI1PgdPYRfsmXpE5-zJDdXU/edit?tab=t.0#heading=h.7jylogfmrbiw) Explainability, Bias, Safety & Security, and Privacy Subcards. --> Please report security vulnerabilities or NVIDIA AI Concerns [here](https://www.nvidia.com/en-us/support/submit-security-vulnerability/). ## Explainability - High-Level Application and Domain: Automatic Speech Recognition - - Describe how this model works: The model transcribes audio input into text for the English language - Verified to have met prescribed quality standards: Yes - Performance Metrics: Word Error Rate (WER), Character Error Rate (CER), Real-Time Factor - Potential Known Risks: Transcripts may not be 100% accurate. Accuracy varies based on the characteristics of input audio (Domain, Use Case, Accent, Noise, Speech Type, Context of speech, etcetera). ### Performance **Test Hardware:** A100 GPU The performance of Automatic Speech Recognition models is measured using Word Error Rate (WER) and Char Error Rate (CER). Since this dataset is trained on multiple domains, it will generally perform well at transcribing audio in general. The following tables summarize the performance of the available models in this collection with the Transducer decoder. Performances of the ASR models are reported in terms of Word Error Rate (WER%) and Inverse Real-Time Factor (RTFx) with greedy decoding on test sets. - Transducer |**Version**|**Tokenizer**|**Vocabulary Size**|**Librispeech Test WER**|**Librispeech Test RTFx**|**Europarl test WER**|**Europarl test RTFx**|**Voxpopuli test WER**|**Voxpopuli test RTFx**|**MLS test WER**|**MLS test RTFx** |----------|-------------|-------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | 2.0.0 | SentencePiece Unigram | 1024 | 6.96 | ~1600 | 11.85| ~1100 | 8.29 | 1780 | 11.76 | ~2050 | This model is trained with punctuation and capitalization and evaluated without punctuation and capitalization ## Bias - Was the model trained with a specific accent? No - Have any special measures been taken to mitigate unwanted bias? No - Participation considerations from adversely impacted groups [protected classes] (https://www.senate.ca.gov/content/protected-classes) in model design and testing: No ## Privacy - Generatable or reverse engineerable personal data? No - If applicable, was a notice provided to the individuals prior to the collection of any personal data used? Not applicable - If personal data was collected for the development of the model, was it collected directly by NVIDIA? Not applicable - Is there dataset provenance? Yes - If data is labeled, was it reviewed to comply with privacy laws? Yes - Is data compliant with data subject requests for data correction or removal, if such a request was made? No, not possible with externally-sourced data - Is a mechanism in place to honor data subject rights of access or deletion of personal data? No - How often is the training dataset reviewed?: Before Release ## Safety & Security ### Use Case Restrictions: - Streaming ASR model - Model outputs text in English - Output text requires Inverse Text Normalization - Model is noise-sensitive Model is not applicable for life-critical applications. ### Access Reactions: The Principle of Least Privilege (PoLP) is applied limiting access for dataset generation and model development. Restrictions enforce dataset access during training and dataset license constraints adhered to. ## NVIDIA Riva: Deployment [NVIDIA Riva](https://developer.nvidia.com/riva) is an accelerated speech AI SDK deployable on-prem, in all clouds, multi-cloud, hybrid, on edge, and embedded. Additionally, Riva provides: * World-class out-of-the-box accuracy for the most common languages with model checkpoints trained on proprietary data with hundreds of thousands of GPU-compute hours * Best in class accuracy with run-time word boosting (e.g., brand and product names) and customization of acoustic model, language model, and inverse text normalization * Streaming speech recognition, Kubernetes compatible scaling, and enterprise-grade support Although this model isn’t supported yet by Riva, the [list of supported models is here](https://huggingface.co/models?other=Riva). Check out [Riva live demo](https://developer.nvidia.com/riva#demos).
peterldasd/Goodjob_pj1
peterldasd
"2025-01-30T17:13:15Z"
8
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
"2025-01-30T17:06:35Z"
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
marialvsantiago/5a691c61-27d4-4b83-94a9-786e9329fcca
marialvsantiago
"2025-01-25T19:27:24Z"
6
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/mistral-7b-v0.2", "base_model:adapter:unsloth/mistral-7b-v0.2", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
"2025-01-25T18:25:08Z"
--- library_name: peft license: apache-2.0 base_model: unsloth/mistral-7b-v0.2 tags: - axolotl - generated_from_trainer model-index: - name: 5a691c61-27d4-4b83-94a9-786e9329fcca results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/mistral-7b-v0.2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - dd8680ad4c472b16_train_data.json ds_type: json format: custom path: /workspace/input_data/dd8680ad4c472b16_train_data.json type: field_input: context field_instruction: question field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: 1 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: marialvsantiago/5a691c61-27d4-4b83-94a9-786e9329fcca hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 3 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 79GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/dd8680ad4c472b16_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 5ade1b66-53e7-4502-a577-24394950045b wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 5ade1b66-53e7-4502-a577-24394950045b warmup_steps: 5 weight_decay: 0.001 xformers_attention: true ``` </details><br> # 5a691c61-27d4-4b83-94a9-786e9329fcca This model is a fine-tuned version of [unsloth/mistral-7b-v0.2](https://huggingface.co/unsloth/mistral-7b-v0.2) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | nan | | 0.0 | 0.0003 | 5 | nan | | 0.0 | 0.0006 | 10 | nan | | 0.0 | 0.0009 | 15 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
HPLT/sft-fpft-multilingual-downsampled-bloom-3b
HPLT
"2025-04-06T08:37:29Z"
16
0
transformers
[ "transformers", "pytorch", "safetensors", "bloom", "text-generation", "generation", "question answering", "instruction tuning", "bg", "cs", "zh", "de", "fi", "fr", "ru", "es", "arxiv:2309.08958", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-04-05T10:32:16Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
diaenra/d62080a2-d983-485f-afad-61ace279da2e
diaenra
"2025-01-19T08:12:31Z"
8
0
peft
[ "peft", "safetensors", "olmo", "axolotl", "generated_from_trainer", "base_model:katuni4ka/tiny-random-olmo-hf", "base_model:adapter:katuni4ka/tiny-random-olmo-hf", "region:us" ]
null
"2025-01-19T05:33:37Z"
--- library_name: peft base_model: katuni4ka/tiny-random-olmo-hf tags: - axolotl - generated_from_trainer model-index: - name: d62080a2-d983-485f-afad-61ace279da2e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: katuni4ka/tiny-random-olmo-hf bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 437cafc7b90d8f2d_train_data.json ds_type: json format: custom path: /workspace/input_data/437cafc7b90d8f2d_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: true hub_model_id: diaenra/d62080a2-d983-485f-afad-61ace279da2e hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 70GB micro_batch_size: 4 mlflow_experiment_name: /tmp/437cafc7b90d8f2d_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: diaenra-tao-miner wandb_mode: online wandb_name: b612b32f-2e8a-4d95-ac6f-83bff6bbaa8a wandb_project: tao wandb_run: diaenra wandb_runid: b612b32f-2e8a-4d95-ac6f-83bff6bbaa8a warmup_steps: 10 weight_decay: 0.0 xformers_attention: true ``` </details><br> # d62080a2-d983-485f-afad-61ace279da2e This model is a fine-tuned version of [katuni4ka/tiny-random-olmo-hf](https://huggingface.co/katuni4ka/tiny-random-olmo-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.5764 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 10.6059 | 1.0000 | 26471 | 10.5837 | | 10.1376 | 2.0000 | 52942 | 10.5764 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/llama-3-gutenberg-8B-GGUF
mradermacher
"2024-05-06T09:18:22Z"
17
0
transformers
[ "transformers", "gguf", "en", "dataset:jondurbin/gutenberg-dpo-v0.1", "base_model:nbeerbower/llama-3-gutenberg-8B", "base_model:quantized:nbeerbower/llama-3-gutenberg-8B", "license:other", "endpoints_compatible", "region:us", "conversational" ]
null
"2024-05-06T06:47:45Z"
--- base_model: nbeerbower/llama-3-gutenberg-8B datasets: - jondurbin/gutenberg-dpo-v0.1 language: - en library_name: transformers license: other license_name: llama3 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hfhfix --> <!-- ### vocab_type: --> static quants of https://huggingface.co/nbeerbower/llama-3-gutenberg-8B <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/llama-3-gutenberg-8B-GGUF/resolve/main/llama-3-gutenberg-8B.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/llama-3-gutenberg-8B-GGUF/resolve/main/llama-3-gutenberg-8B.IQ3_XS.gguf) | IQ3_XS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/llama-3-gutenberg-8B-GGUF/resolve/main/llama-3-gutenberg-8B.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/llama-3-gutenberg-8B-GGUF/resolve/main/llama-3-gutenberg-8B.IQ3_S.gguf) | IQ3_S | 3.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/llama-3-gutenberg-8B-GGUF/resolve/main/llama-3-gutenberg-8B.IQ3_M.gguf) | IQ3_M | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/llama-3-gutenberg-8B-GGUF/resolve/main/llama-3-gutenberg-8B.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/llama-3-gutenberg-8B-GGUF/resolve/main/llama-3-gutenberg-8B.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/llama-3-gutenberg-8B-GGUF/resolve/main/llama-3-gutenberg-8B.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/llama-3-gutenberg-8B-GGUF/resolve/main/llama-3-gutenberg-8B.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/llama-3-gutenberg-8B-GGUF/resolve/main/llama-3-gutenberg-8B.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/llama-3-gutenberg-8B-GGUF/resolve/main/llama-3-gutenberg-8B.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/llama-3-gutenberg-8B-GGUF/resolve/main/llama-3-gutenberg-8B.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/llama-3-gutenberg-8B-GGUF/resolve/main/llama-3-gutenberg-8B.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/llama-3-gutenberg-8B-GGUF/resolve/main/llama-3-gutenberg-8B.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/llama-3-gutenberg-8B-GGUF/resolve/main/llama-3-gutenberg-8B.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
alohalukason/szonemi
alohalukason
"2025-03-09T21:39:25Z"
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
"2025-03-09T21:19:35Z"
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: szonemi --- # Szonemi <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `szonemi` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('alohalukason/szonemi', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
sb3/ddpg-Walker2DBulletEnv-v0
sb3
"2022-10-11T15:19:35Z"
2
0
stable-baselines3
[ "stable-baselines3", "Walker2DBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
"2022-06-02T20:43:12Z"
--- library_name: stable-baselines3 tags: - Walker2DBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DDPG results: - metrics: - type: mean_reward value: 1495.73 +/- 612.27 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Walker2DBulletEnv-v0 type: Walker2DBulletEnv-v0 --- # **DDPG** Agent playing **Walker2DBulletEnv-v0** This is a trained model of a **DDPG** agent playing **Walker2DBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo ddpg --env Walker2DBulletEnv-v0 -orga sb3 -f logs/ python enjoy.py --algo ddpg --env Walker2DBulletEnv-v0 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo ddpg --env Walker2DBulletEnv-v0 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo ddpg --env Walker2DBulletEnv-v0 -f logs/ -orga sb3 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 256), ('buffer_size', 1000000), ('env_wrapper', 'sb3_contrib.common.wrappers.TimeFeatureWrapper'), ('gamma', 0.98), ('gradient_steps', -1), ('learning_rate', 0.0007), ('learning_starts', 10000), ('n_timesteps', 1000000.0), ('noise_std', 0.1), ('noise_type', 'normal'), ('policy', 'MlpPolicy'), ('policy_kwargs', 'dict(net_arch=[400, 300])'), ('train_freq', [1, 'episode']), ('normalize', False)]) ```
huggingtweets/90snormmcdonald
huggingtweets
"2023-01-31T03:03:17Z"
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2023-01-31T03:01:50Z"
--- language: en thumbnail: http://www.huggingtweets.com/90snormmcdonald/1675134192089/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1339391092/macdonald_400x400.gif&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">macdonald</div> <div style="text-align: center; font-size: 14px;">@90snormmcdonald</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from macdonald. | Data | macdonald | | --- | --- | | Tweets downloaded | 105 | | Retweets | 0 | | Short tweets | 4 | | Tweets kept | 101 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/rjng7zxe/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @90snormmcdonald's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/rp8ijnsb) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/rp8ijnsb/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/90snormmcdonald') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
kanishka/cria-babylm2-subset-default-3e-4
kanishka
"2024-07-25T10:58:46Z"
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "llama", "text-generation", "generated_from_trainer", "dataset:kanishka/babylm2-subset", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-07-25T04:16:56Z"
--- tags: - generated_from_trainer datasets: - kanishka/babylm2-subset metrics: - accuracy model-index: - name: cria-babylm2-subset-default-3e-4 results: - task: name: Causal Language Modeling type: text-generation dataset: name: kanishka/babylm2-subset type: kanishka/babylm2-subset metrics: - name: Accuracy type: accuracy value: 0.5183717396220663 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cria-babylm2-subset-default-3e-4 This model was trained from scratch on the kanishka/babylm2-subset dataset. It achieves the following results on the evaluation set: - Loss: 2.6186 - Accuracy: 0.5184 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 32000 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 2.5065 | 1.0 | 14142 | 2.7266 | 0.4912 | | 2.3323 | 2.0 | 28284 | 2.5642 | 0.5074 | | 2.2158 | 3.0 | 42426 | 2.4670 | 0.5184 | | 2.1109 | 4.0 | 56568 | 2.4178 | 0.5249 | | 2.0194 | 5.0 | 70710 | 2.4001 | 0.5280 | | 1.938 | 6.0 | 84852 | 2.4067 | 0.5291 | | 1.8569 | 7.0 | 98994 | 2.4313 | 0.5283 | | 1.7668 | 8.0 | 113136 | 2.4766 | 0.5260 | | 1.6733 | 9.0 | 127278 | 2.5417 | 0.5229 | | 1.579 | 10.0 | 141420 | 2.6186 | 0.5184 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.2.0+cu121 - Datasets 2.16.1 - Tokenizers 0.19.1
paola-md/recipe-lr2e05-wd0.1-bs32
paola-md
"2022-08-28T04:28:49Z"
163
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2022-08-28T04:15:07Z"
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr2e05-wd0.1-bs32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr2e05-wd0.1-bs32 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2861 - Rmse: 0.5349 - Mse: 0.2861 - Mae: 0.4436 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2775 | 1.0 | 623 | 0.2744 | 0.5238 | 0.2744 | 0.4159 | | 0.274 | 2.0 | 1246 | 0.2737 | 0.5232 | 0.2737 | 0.4163 | | 0.2724 | 3.0 | 1869 | 0.2861 | 0.5349 | 0.2861 | 0.4436 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
lhong4759/8fd997a7-25e7-4cd2-9940-d243014883db
lhong4759
"2025-01-19T20:49:32Z"
8
0
peft
[ "peft", "safetensors", "gemma", "axolotl", "generated_from_trainer", "base_model:unsloth/codegemma-7b-it", "base_model:adapter:unsloth/codegemma-7b-it", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
"2025-01-19T20:47:44Z"
--- library_name: peft license: apache-2.0 base_model: unsloth/codegemma-7b-it tags: - axolotl - generated_from_trainer model-index: - name: 8fd997a7-25e7-4cd2-9940-d243014883db results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/codegemma-7b-it bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - edaa3d5d217efafe_train_data.json ds_type: json format: custom path: /workspace/input_data/edaa3d5d217efafe_train_data.json type: field_instruction: context field_output: completion_file format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lhong4759/8fd997a7-25e7-4cd2-9940-d243014883db hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/edaa3d5d217efafe_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 3fb4eb2b-db1f-4607-8c33-7d7c962e083b wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 3fb4eb2b-db1f-4607-8c33-7d7c962e083b warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 8fd997a7-25e7-4cd2-9940-d243014883db This model is a fine-tuned version of [unsloth/codegemma-7b-it](https://huggingface.co/unsloth/codegemma-7b-it) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8512 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9766 | 0.8571 | 3 | 0.8601 | | 1.5097 | 1.1429 | 4 | 0.8512 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/Dumpling-Qwen2.5-VL-7B-GGUF
mradermacher
"2025-04-02T11:26:31Z"
0
0
transformers
[ "transformers", "gguf", "multimodal", "uncensored", "en", "dataset:nbeerbower/GreatFirewall-DPO", "dataset:nbeerbower/Schule-DPO", "dataset:nbeerbower/Purpura-DPO", "dataset:nbeerbower/Arkhaios-DPO", "dataset:jondurbin/truthy-dpo-v0.1", "dataset:antiven0m/physical-reasoning-dpo", "dataset:flammenai/Date-DPO-NoAsterisks", "dataset:flammenai/Prude-Phi3-DPO", "dataset:Atsunori/HelpSteer2-DPO", "dataset:jondurbin/gutenberg-dpo-v0.1", "dataset:nbeerbower/gutenberg2-dpo", "dataset:nbeerbower/gutenberg-moderne-dpo", "base_model:nbeerbower/Dumpling-Qwen2.5-VL-7B", "base_model:quantized:nbeerbower/Dumpling-Qwen2.5-VL-7B", "endpoints_compatible", "region:us", "conversational" ]
null
"2025-04-02T07:48:39Z"
--- base_model: nbeerbower/Dumpling-Qwen2.5-VL-7B datasets: - nbeerbower/GreatFirewall-DPO - nbeerbower/Schule-DPO - nbeerbower/Purpura-DPO - nbeerbower/Arkhaios-DPO - jondurbin/truthy-dpo-v0.1 - antiven0m/physical-reasoning-dpo - flammenai/Date-DPO-NoAsterisks - flammenai/Prude-Phi3-DPO - Atsunori/HelpSteer2-DPO - jondurbin/gutenberg-dpo-v0.1 - nbeerbower/gutenberg2-dpo - nbeerbower/gutenberg-moderne-dpo language: - en library_name: transformers license_link: https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct/blob/main/LICENSE license_name: qwen-research quantized_by: mradermacher tags: - multimodal - uncensored --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/nbeerbower/Dumpling-Qwen2.5-VL-7B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Dumpling-Qwen2.5-VL-7B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Dumpling-Qwen2.5-VL-7B-GGUF/resolve/main/Dumpling-Qwen2.5-VL-7B.Q2_K.gguf) | Q2_K | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/Dumpling-Qwen2.5-VL-7B-GGUF/resolve/main/Dumpling-Qwen2.5-VL-7B.Q3_K_S.gguf) | Q3_K_S | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Dumpling-Qwen2.5-VL-7B-GGUF/resolve/main/Dumpling-Qwen2.5-VL-7B.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Dumpling-Qwen2.5-VL-7B-GGUF/resolve/main/Dumpling-Qwen2.5-VL-7B.Q3_K_L.gguf) | Q3_K_L | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/Dumpling-Qwen2.5-VL-7B-GGUF/resolve/main/Dumpling-Qwen2.5-VL-7B.IQ4_XS.gguf) | IQ4_XS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Dumpling-Qwen2.5-VL-7B-GGUF/resolve/main/Dumpling-Qwen2.5-VL-7B.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Dumpling-Qwen2.5-VL-7B-GGUF/resolve/main/Dumpling-Qwen2.5-VL-7B.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Dumpling-Qwen2.5-VL-7B-GGUF/resolve/main/Dumpling-Qwen2.5-VL-7B.Q5_K_S.gguf) | Q5_K_S | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Dumpling-Qwen2.5-VL-7B-GGUF/resolve/main/Dumpling-Qwen2.5-VL-7B.Q5_K_M.gguf) | Q5_K_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/Dumpling-Qwen2.5-VL-7B-GGUF/resolve/main/Dumpling-Qwen2.5-VL-7B.Q6_K.gguf) | Q6_K | 6.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Dumpling-Qwen2.5-VL-7B-GGUF/resolve/main/Dumpling-Qwen2.5-VL-7B.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Dumpling-Qwen2.5-VL-7B-GGUF/resolve/main/Dumpling-Qwen2.5-VL-7B.f16.gguf) | f16 | 15.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
alon-albalak/xlm-roberta-large-xquad
alon-albalak
"2023-07-01T00:31:00Z"
266
2
transformers
[ "transformers", "pytorch", "safetensors", "xlm-roberta", "question-answering", "multilingual", "dataset:xquad", "endpoints_compatible", "region:us" ]
question-answering
"2022-03-02T23:29:05Z"
--- tags: - multilingual datasets: - xquad --- # xlm-roberta-large for multilingual QA # Overview **Language Model**: xlm-roberta-large \ **Downstream task**: Extractive QA \ **Training data**: [XQuAD](https://github.com/deepmind/xquad) \ **Testing Data**: [XQuAD](https://github.com/deepmind/xquad) # Hyperparameters ```python batch_size = 48 n_epochs = 13 max_seq_len = 384 doc_stride = 128 learning_rate = 3e-5 ``` # Performance Evaluated on held-out test set from XQuAD ```python "exact_match": 87.12546816479401, "f1": 94.77703248802527, "test_samples": 2307 ``` # Usage ## In Transformers ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "alon-albalak/xlm-roberta-large-xquad" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) QA_input = { 'question': 'Why is model conversion important?', 'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.' } res = nlp(QA_input) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## In FARM ```python from farm.modeling.adaptive_model import AdaptiveModel from farm.modeling.tokenization import Tokenizer from farm.infer import QAInferencer model_name = "alon-albalak/xlm-roberta-large-xquad" # a) Get predictions nlp = QAInferencer.load(model_name) QA_input = [{"questions": ["Why is model conversion important?"], "text": "The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks."}] res = nlp.inference_from_dicts(dicts=QA_input, rest_api_schema=True) # b) Load model & tokenizer model = AdaptiveModel.convert_from_transformers(model_name, device="cpu", task_type="question_answering") tokenizer = Tokenizer.load(model_name) ``` ## In Haystack ```python reader = FARMReader(model_name_or_path="alon-albalak/xlm-roberta-large-xquad") # or reader = TransformersReader(model="alon-albalak/xlm-roberta-large-xquad",tokenizer="alon-albalak/xlm-roberta-large-xquad") ``` Usage instructions for FARM and Haystack were adopted from https://huggingface.co/deepset/xlm-roberta-large-squad2
BernTheCreator/EZO-Common-9B-gemma-2-it-Q4_0-GGUF
BernTheCreator
"2025-02-01T07:11:38Z"
28
0
transformers
[ "transformers", "gguf", "conversational", "llama-cpp", "gguf-my-repo", "text-generation", "base_model:AXCXEPT/EZO-Common-9B-gemma-2-it", "base_model:quantized:AXCXEPT/EZO-Common-9B-gemma-2-it", "license:gemma", "endpoints_compatible", "region:us" ]
text-generation
"2025-02-01T07:04:02Z"
--- license: gemma library_name: transformers pipeline_tag: text-generation tags: - conversational - llama-cpp - gguf-my-repo base_model: AXCXEPT/EZO-Common-9B-gemma-2-it --- # BernTheCreator/EZO-Common-9B-gemma-2-it-Q4_0-GGUF This model was converted to GGUF format from [`AXCXEPT/EZO-Common-9B-gemma-2-it`](https://huggingface.co/AXCXEPT/EZO-Common-9B-gemma-2-it) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/AXCXEPT/EZO-Common-9B-gemma-2-it) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo BernTheCreator/EZO-Common-9B-gemma-2-it-Q4_0-GGUF --hf-file ezo-common-9b-gemma-2-it-q4_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo BernTheCreator/EZO-Common-9B-gemma-2-it-Q4_0-GGUF --hf-file ezo-common-9b-gemma-2-it-q4_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo BernTheCreator/EZO-Common-9B-gemma-2-it-Q4_0-GGUF --hf-file ezo-common-9b-gemma-2-it-q4_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo BernTheCreator/EZO-Common-9B-gemma-2-it-Q4_0-GGUF --hf-file ezo-common-9b-gemma-2-it-q4_0.gguf -c 2048 ```
mayitbe/bge_finetune_hadoop
mayitbe
"2024-07-06T03:28:39Z"
6
0
sentence-transformers
[ "sentence-transformers", "tensorboard", "safetensors", "xlm-roberta", "sentence-similarity", "feature-extraction", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
"2024-07-06T00:59:17Z"
--- datasets: [] language: [] library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction widget: [] --- # SentenceTransformer This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) --> - **Maximum Sequence Length:** 8192 tokens - **Output Dimensionality:** 1024 tokens - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ 'The weather is lovely today.', "It's so sunny outside!", 'He drove to the stadium.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.0.1 - Transformers: 4.41.2 - PyTorch: 2.3.0+cu121 - Accelerate: 0.32.1 - Datasets: 2.20.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
9wimu9/xlm-roberta-large-finetuned-sinquad-v2
9wimu9
"2023-06-06T17:40:23Z"
108
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
"2023-06-06T16:48:18Z"
--- license: mit tags: - generated_from_trainer model-index: - name: xlm-roberta-large-finetuned-sinquad-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-large-finetuned-sinquad-v2 This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7850 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.5061 | 0.99 | 23 | 1.3749 | | 0.8976 | 1.98 | 46 | 0.8803 | | 0.7572 | 2.97 | 69 | 0.7758 | | 0.6854 | 4.0 | 93 | 0.7380 | | 0.5903 | 4.99 | 116 | 0.7158 | | 0.5114 | 5.98 | 139 | 0.7311 | | 0.4291 | 6.97 | 162 | 0.7533 | | 0.4113 | 8.0 | 186 | 0.7650 | | 0.3564 | 8.99 | 209 | 0.7734 | | 0.3516 | 9.89 | 230 | 0.7850 | ### Framework versions - Transformers 4.30.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.6.1 - Tokenizers 0.12.1 {'exact_match': 67.75914634146342, 'f1': 86.42992384115712}
hanyundudddd/hanyundudddd
hanyundudddd
"2024-05-17T05:01:40Z"
120
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2024-05-17T05:01:21Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lesso04/8803511f-9aa9-47ef-9843-9669f95ca86e
lesso04
"2025-01-16T05:19:02Z"
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/Llama-3.2-3B", "base_model:adapter:unsloth/Llama-3.2-3B", "license:llama3.2", "8-bit", "bitsandbytes", "region:us" ]
null
"2025-01-16T05:16:48Z"
--- library_name: peft license: llama3.2 base_model: unsloth/Llama-3.2-3B tags: - axolotl - generated_from_trainer model-index: - name: 8803511f-9aa9-47ef-9843-9669f95ca86e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Llama-3.2-3B bf16: true chat_template: llama3 datasets: - data_files: - ceb2c02370daa871_train_data.json ds_type: json format: custom path: /workspace/input_data/ceb2c02370daa871_train_data.json type: field_instruction: Question field_output: Answer format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso04/8803511f-9aa9-47ef-9843-9669f95ca86e hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/ceb2c02370daa871_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 38b8445d-9f66-4fda-a8ef-9f3949de9864 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 38b8445d-9f66-4fda-a8ef-9f3949de9864 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 8803511f-9aa9-47ef-9843-9669f95ca86e This model is a fine-tuned version of [unsloth/Llama-3.2-3B](https://huggingface.co/unsloth/Llama-3.2-3B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0033 | 1 | nan | | 0.0 | 0.0163 | 5 | nan | | 0.0 | 0.0327 | 10 | nan | | 0.0 | 0.0490 | 15 | nan | | 0.0 | 0.0654 | 20 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Pamzyy/sinhala_gpt2
Pamzyy
"2024-09-03T06:31:44Z"
7
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-08-28T15:15:53Z"
--- library_name: transformers license: mit base_model: gpt2 tags: - generated_from_trainer model-index: - name: sinhala_gpt2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sinhala_gpt2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.4181 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 12.5768 | 0.0737 | 20 | 11.7031 | | 10.6016 | 0.1475 | 40 | 10.1428 | | 9.5592 | 0.2212 | 60 | 8.4000 | | 7.7086 | 0.2949 | 80 | 6.1398 | | 6.1288 | 0.3687 | 100 | 5.1259 | | 5.2551 | 0.4424 | 120 | 4.4283 | | 4.7127 | 0.5161 | 140 | 4.0241 | | 4.3572 | 0.5899 | 160 | 3.7673 | | 4.1243 | 0.6636 | 180 | 3.6012 | | 3.9714 | 0.7373 | 200 | 3.5126 | | 3.8867 | 0.8111 | 220 | 3.4489 | | 3.8334 | 0.8848 | 240 | 3.4256 | | 3.8204 | 0.9585 | 260 | 3.4181 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1
xfh/Chinese-Llama-2-7b-f16-ggml
xfh
"2023-07-27T14:47:22Z"
0
0
null
[ "zh", "en", "license:openrail", "region:us" ]
null
"2023-07-27T14:21:01Z"
--- license: openrail language: - zh - en --- This is Chinese-Llama-2-7b f16 ggml model running llama.cpp.You can run ```shell ./main -m Chinese-Llama-2-7b-f16-ggml.bin -p 'hello world' ``` from model see: https://huggingface.co/LinkSoul/Chinese-Llama-2-7b
huggingartists/duran-duran
huggingartists
"2021-08-10T12:53:45Z"
4
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/duran-duran", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2022-03-02T23:29:05Z"
--- language: en datasets: - huggingartists/duran-duran tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/95697394e4f58c9aa507e408f51008db.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Duran Duran</div> <a href="https://genius.com/artists/duran-duran"> <div style="text-align: center; font-size: 14px;">@duran-duran</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Duran Duran. Dataset is available [here](https://huggingface.co/datasets/huggingartists/duran-duran). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/duran-duran") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/dy133fuf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Duran Duran's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/386u7cc3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/386u7cc3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/duran-duran') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/duran-duran") model = AutoModelWithLMHead.from_pretrained("huggingartists/duran-duran") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
lesso08/f9f26d18-854a-41e0-9c53-c36cd7b8ef9d
lesso08
"2025-01-24T04:48:13Z"
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/Yarn-Llama-2-13b-128k", "base_model:adapter:NousResearch/Yarn-Llama-2-13b-128k", "8-bit", "bitsandbytes", "region:us" ]
null
"2025-01-24T02:01:08Z"
--- library_name: peft base_model: NousResearch/Yarn-Llama-2-13b-128k tags: - axolotl - generated_from_trainer model-index: - name: f9f26d18-854a-41e0-9c53-c36cd7b8ef9d results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Llama-2-13b-128k bf16: auto chat_template: llama3 datasets: - data_files: - 7636b89da0e37b72_train_data.json ds_type: json format: custom path: /workspace/input_data/7636b89da0e37b72_train_data.json type: field_instruction: problem field_output: solution format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso08/f9f26d18-854a-41e0-9c53-c36cd7b8ef9d hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/7636b89da0e37b72_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2b76088f-1298-48c2-a9ee-52fcf11297cc wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 2b76088f-1298-48c2-a9ee-52fcf11297cc warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # f9f26d18-854a-41e0-9c53-c36cd7b8ef9d This model is a fine-tuned version of [NousResearch/Yarn-Llama-2-13b-128k](https://huggingface.co/NousResearch/Yarn-Llama-2-13b-128k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8300 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.6582 | 0.6168 | 200 | 0.8300 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
antho-data/distilbert-base-uncased-finetuned-emotion
antho-data
"2022-03-09T21:27:17Z"
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2022-03-09T20:30:05Z"
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9235 - name: F1 type: f1 value: 0.9237367861627231 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2294 - Accuracy: 0.9235 - F1: 0.9237 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8637 | 1.0 | 250 | 0.3319 | 0.9075 | 0.9050 | | 0.2634 | 2.0 | 500 | 0.2294 | 0.9235 | 0.9237 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
AnkaNge/SmolLM2-FT-MyDataset
AnkaNge
"2025-03-25T14:45:32Z"
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "smol-course", "module_1", "trl", "sft", "conversational", "base_model:HuggingFaceTB/SmolLM2-135M", "base_model:finetune:HuggingFaceTB/SmolLM2-135M", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-03-25T14:43:57Z"
--- base_model: HuggingFaceTB/SmolLM2-135M library_name: transformers model_name: SmolLM2-FT-MyDataset tags: - generated_from_trainer - smol-course - module_1 - trl - sft licence: license --- # Model Card for SmolLM2-FT-MyDataset This model is a fine-tuned version of [HuggingFaceTB/SmolLM2-135M](https://huggingface.co/HuggingFaceTB/SmolLM2-135M). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="AnkaNge/SmolLM2-FT-MyDataset", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.12.1 - Transformers: 4.46.3 - Pytorch: 2.5.1 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
elinaparajuli/T5_Finetuned-finetuned
elinaparajuli
"2024-02-23T11:16:46Z"
104
0
transformers
[ "transformers", "pytorch", "tf", "tensorboard", "rust", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
"2024-02-23T10:50:45Z"
--- license: apache-2.0 base_model: google-t5/t5-small tags: - generated_from_trainer model-index: - name: T5_Finetuned-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # T5_Finetuned-finetuned This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2568 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 39 | 0.3849 | | No log | 2.0 | 78 | 0.2738 | | No log | 3.0 | 117 | 0.2568 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
ManishW/text-classification-model
ManishW
"2023-05-13T03:57:37Z"
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2023-05-13T03:02:32Z"
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: text-classification-model results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.93072 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # text-classification-model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2158 - Accuracy: 0.9307 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2859 | 1.0 | 782 | 0.1943 | 0.9241 | | 0.1005 | 2.0 | 1564 | 0.2158 | 0.9307 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
RichardErkhov/SongTonyLi_-_Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2-gguf
RichardErkhov
"2024-10-26T03:15:01Z"
18
0
null
[ "gguf", "arxiv:1910.09700", "endpoints_compatible", "region:us", "conversational" ]
null
"2024-10-26T02:46:47Z"
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2 - GGUF - Model creator: https://huggingface.co/SongTonyLi/ - Original model: https://huggingface.co/SongTonyLi/Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2/ | Name | Quant method | Size | | ---- | ---- | ---- | | [Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2.Q2_K.gguf](https://huggingface.co/RichardErkhov/SongTonyLi_-_Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2-gguf/blob/main/Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2.Q2_K.gguf) | Q2_K | 0.54GB | | [Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/SongTonyLi_-_Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2-gguf/blob/main/Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2.Q3_K_S.gguf) | Q3_K_S | 0.6GB | | [Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2.Q3_K.gguf](https://huggingface.co/RichardErkhov/SongTonyLi_-_Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2-gguf/blob/main/Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2.Q3_K.gguf) | Q3_K | 0.64GB | | [Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/SongTonyLi_-_Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2-gguf/blob/main/Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2.Q3_K_M.gguf) | Q3_K_M | 0.64GB | | [Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/SongTonyLi_-_Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2-gguf/blob/main/Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2.Q3_K_L.gguf) | Q3_K_L | 0.68GB | | [Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/SongTonyLi_-_Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2-gguf/blob/main/Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2.IQ4_XS.gguf) | IQ4_XS | 0.7GB | | [Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2.Q4_0.gguf](https://huggingface.co/RichardErkhov/SongTonyLi_-_Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2-gguf/blob/main/Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2.Q4_0.gguf) | Q4_0 | 0.72GB | | [Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/SongTonyLi_-_Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2-gguf/blob/main/Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2.IQ4_NL.gguf) | IQ4_NL | 0.72GB | | [Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/SongTonyLi_-_Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2-gguf/blob/main/Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2.Q4_K_S.gguf) | Q4_K_S | 0.72GB | | [Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2.Q4_K.gguf](https://huggingface.co/RichardErkhov/SongTonyLi_-_Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2-gguf/blob/main/Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2.Q4_K.gguf) | Q4_K | 0.75GB | | [Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/SongTonyLi_-_Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2-gguf/blob/main/Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2.Q4_K_M.gguf) | Q4_K_M | 0.75GB | | [Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2.Q4_1.gguf](https://huggingface.co/RichardErkhov/SongTonyLi_-_Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2-gguf/blob/main/Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2.Q4_1.gguf) | Q4_1 | 0.77GB | | [Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2.Q5_0.gguf](https://huggingface.co/RichardErkhov/SongTonyLi_-_Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2-gguf/blob/main/Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2.Q5_0.gguf) | Q5_0 | 0.83GB | | [Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/SongTonyLi_-_Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2-gguf/blob/main/Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2.Q5_K_S.gguf) | Q5_K_S | 0.83GB | | [Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2.Q5_K.gguf](https://huggingface.co/RichardErkhov/SongTonyLi_-_Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2-gguf/blob/main/Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2.Q5_K.gguf) | Q5_K | 0.85GB | | [Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/SongTonyLi_-_Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2-gguf/blob/main/Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2.Q5_K_M.gguf) | Q5_K_M | 0.85GB | | [Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2.Q5_1.gguf](https://huggingface.co/RichardErkhov/SongTonyLi_-_Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2-gguf/blob/main/Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2.Q5_1.gguf) | Q5_1 | 0.89GB | | [Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2.Q6_K.gguf](https://huggingface.co/RichardErkhov/SongTonyLi_-_Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2-gguf/blob/main/Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2.Q6_K.gguf) | Q6_K | 0.95GB | | [Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2.Q8_0.gguf](https://huggingface.co/RichardErkhov/SongTonyLi_-_Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2-gguf/blob/main/Llama-3.2-1B-Instruct-CPT-D1_chosen-then-SFT-D1_chosen-pref-mix2.Q8_0.gguf) | Q8_0 | 1.23GB | Original model description: --- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
stablediffusionapi/cheese-daddys-landsc
stablediffusionapi
"2025-01-20T11:21:11Z"
13
2
diffusers
[ "diffusers", "stablediffusionapi.com", "stable-diffusion-api", "text-to-image", "ultra-realistic", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
"2023-03-27T04:00:42Z"
--- license: creativeml-openrail-m tags: - stablediffusionapi.com - stable-diffusion-api - text-to-image - ultra-realistic pinned: true --- # API Inference ![generated from modelslab.com](https://assets.modelslab.com/generations/d3d3f607-e8c6-4758-903a-17804fb4002b-0.png) ## Get API Key Get API key from [ModelsLab](https://modelslab.com/), No Payment needed. Replace Key in below code, change **model_id** to "hc-anything-v3-vae" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://stablediffusionapi.com/docs) Model link: [View model](https://stablediffusionapi.com/models/hc-anything-v3-vae) Credits: [View credits](https://civitai.com/?query=model_search) View all models: [View Models](https://stablediffusionapi.com/models) import requests import json url = "https://stablediffusionapi.com/api/v3/dreambooth" payload = json.dumps({ "key": "", "model_id": "cheese-daddys-landsc", "prompt": "actual 8K portrait photo of gareth person, portrait, happy colors, bright eyes, clear eyes, warm smile, smooth soft skin, big dreamy eyes, beautiful intricate colored hair, symmetrical, anime wide eyes, soft lighting, detailed face, by makoto shinkai, stanley artgerm lau, wlop, rossdraws, concept art, digital painting, looking into camera", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) > Use this coupon code to get 25% off **DMGG0RBN**
bveiseh/phi4-magpie-reasoning-v4-gguf
bveiseh
"2025-02-17T10:30:20Z"
0
0
transformers
[ "transformers", "gguf", "peft", "bitsandbytes", "torch", "accelerate", "trl", "LoRA", "text-generation", "dataset:Magpie-Align/Magpie-Reasoning-V2-250K-CoT-Deepseek-R1-Llama-70B", "base_model:microsoft/phi-4", "base_model:quantized:microsoft/phi-4", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
text-generation
"2025-02-17T09:36:21Z"
--- license: mit datasets: - Magpie-Align/Magpie-Reasoning-V2-250K-CoT-Deepseek-R1-Llama-70B base_model: - microsoft/phi-4 pipeline_tag: text-generation library_name: transformers tags: - transformers - peft - bitsandbytes - torch - accelerate - trl - LoRA --- # Phi-4 Magpie Reasoning GGUF v4 This is a GGUF format version of the Phi-4 model fine-tuned on the Magpie dataset (v4). ## Model Details - Base Model: Microsoft Phi-4 (14B parameters) - Available Formats: - GGUF FP16 (full precision) - GGUF Q8 (8-bit quantization) - Fine-tuning: LoRA with merged weights - Training Dataset: Magpie Reasoning Dataset - Version: 4 ## Training Data - 2,200 excellent quality examples - 3,000 good quality examples - Total training samples: 5,200 ## Evaluation Dataset - 5 very hard + excellent quality examples - 5 medium + excellent quality examples - 5 very easy + excellent quality examples ## Technical Details - LoRA Parameters: - Rank (r): 24 - Alpha: 48 - Target Modules: q_proj, k_proj, v_proj, o_proj - Dropout: 0.05 - Training Configuration: - Epochs: 5 - Learning Rate: 3e-5 - Batch Size: 1 with gradient accumulation steps of 16 - Optimizer: AdamW (Fused) - Precision: BFloat16 during training - Available Formats: FP16 and 8-bit quantized GGUF ## Usage with llama.cpp For CPU inference with the Q8 model: main -m phi4-magpie-reasoning-q8.gguf -n 512 --repeat_penalty 1.1 --color -i -r User: For GPU inference with the FP16 model: main -m phi4-magpie-reasoning-fp16.gguf -n 512 --repeat_penalty 1.1 --color -i -r User: --n-gpu-layers 35 ## Model Sizes - GGUF FP16 Format: ~28GB - GGUF Q8 Format: ~14GB - Original Model (14B parameters) ## License This model inherits the license terms from Microsoft Phi-4 and the Magpie dataset.
HumanFace/ppo-CartPole-v1
HumanFace
"2023-04-25T11:57:42Z"
0
0
null
[ "tensorboard", "CartPole-v1", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
"2023-04-25T09:32:48Z"
--- tags: - CartPole-v1 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 19.20 +/- 7.72 name: mean_reward verified: false --- # PPO Agent Playing CartPole-v1 This is a trained model of a PPO agent playing CartPole-v1. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'CartPole-v1' 'total_timesteps': 500 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'HumanFace/ppo-CartPole-v1' 'batch_size': 512 'minibatch_size': 128} ```
Melo1512/vit-msn-small-beta-fia-manually-enhanced-HSV_test_3
Melo1512
"2025-01-27T17:25:36Z"
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit_msn", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:Melo1512/vit-msn-small-beta-fia-manually-enhanced-HSV_test_2", "base_model:finetune:Melo1512/vit-msn-small-beta-fia-manually-enhanced-HSV_test_2", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
"2025-01-27T17:12:45Z"
--- library_name: transformers base_model: Melo1512/vit-msn-small-beta-fia-manually-enhanced-HSV_test_2 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-msn-small-beta-fia-manually-enhanced-HSV_test_3 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8802816901408451 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-msn-small-beta-fia-manually-enhanced-HSV_test_3 This model is a fine-tuned version of [Melo1512/vit-msn-small-beta-fia-manually-enhanced-HSV_test_2](https://huggingface.co/Melo1512/vit-msn-small-beta-fia-manually-enhanced-HSV_test_2) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5013 - Accuracy: 0.8803 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.15 - num_epochs: 50 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | No log | 0.5714 | 1 | 0.5123 | 0.8873 | | No log | 1.7143 | 3 | 0.5219 | 0.8873 | | No log | 2.8571 | 5 | 0.5431 | 0.8732 | | No log | 4.0 | 7 | 0.5444 | 0.8732 | | No log | 4.5714 | 8 | 0.5336 | 0.8803 | | 0.4252 | 5.7143 | 10 | 0.5235 | 0.8873 | | 0.4252 | 6.8571 | 12 | 0.5269 | 0.8803 | | 0.4252 | 8.0 | 14 | 0.5106 | 0.8873 | | 0.4252 | 8.5714 | 15 | 0.5048 | 0.8873 | | 0.4252 | 9.7143 | 17 | 0.5013 | 0.8803 | | 0.4252 | 10.8571 | 19 | 0.5105 | 0.8803 | | 0.4413 | 12.0 | 21 | 0.5256 | 0.8803 | | 0.4413 | 12.5714 | 22 | 0.5303 | 0.8732 | | 0.4413 | 13.7143 | 24 | 0.5218 | 0.8662 | | 0.4413 | 14.8571 | 26 | 0.5188 | 0.8592 | | 0.4413 | 16.0 | 28 | 0.5202 | 0.8592 | | 0.4413 | 16.5714 | 29 | 0.5252 | 0.8592 | | 0.437 | 17.7143 | 31 | 0.5385 | 0.8592 | | 0.437 | 18.8571 | 33 | 0.5456 | 0.8592 | | 0.437 | 20.0 | 35 | 0.5409 | 0.8732 | | 0.437 | 20.5714 | 36 | 0.5375 | 0.8662 | | 0.437 | 21.7143 | 38 | 0.5356 | 0.8662 | | 0.4343 | 22.8571 | 40 | 0.5328 | 0.8803 | | 0.4343 | 24.0 | 42 | 0.5318 | 0.8803 | | 0.4343 | 24.5714 | 43 | 0.5330 | 0.8803 | | 0.4343 | 25.7143 | 45 | 0.5334 | 0.8803 | | 0.4343 | 26.8571 | 47 | 0.5332 | 0.8732 | | 0.4343 | 28.0 | 49 | 0.5341 | 0.8732 | | 0.4271 | 28.5714 | 50 | 0.5343 | 0.8732 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.19.1
TheBloke/Dr_Samantha-7B-AWQ
TheBloke
"2024-01-17T18:03:59Z"
18
4
transformers
[ "transformers", "safetensors", "llama", "text-generation", "merge", "medical", "en", "zh", "dataset:GBaker/MedQA-USMLE-4-options", "dataset:cognitivecomputations/samantha-data", "dataset:shibing624/medical", "base_model:sethuiyer/Dr_Samantha-7b", "base_model:quantized:sethuiyer/Dr_Samantha-7b", "license:llama2", "autotrain_compatible", "text-generation-inference", "4-bit", "awq", "region:us" ]
text-generation
"2024-01-17T17:48:03Z"
--- base_model: sethuiyer/Dr_Samantha-7b datasets: - GBaker/MedQA-USMLE-4-options - cognitivecomputations/samantha-data - shibing624/medical inference: false language: - en - zh library_name: transformers license: llama2 model_creator: Sethu Iyer model_name: Dr Samantha 7B model_type: llama pipeline_tag: text-generation prompt_template: 'Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ' quantized_by: TheBloke tags: - llama - merge - medical --- <!-- markdownlint-disable MD041 --> <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Dr Samantha 7B - AWQ - Model creator: [Sethu Iyer](https://huggingface.co/sethuiyer) - Original model: [Dr Samantha 7B](https://huggingface.co/sethuiyer/Dr_Samantha-7b) <!-- description start --> ## Description This repo contains AWQ model files for [Sethu Iyer's Dr Samantha 7B](https://huggingface.co/sethuiyer/Dr_Samantha-7b). These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/). ### About AWQ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings. AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead. It is supported by: - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types. - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code <!-- description end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Dr_Samantha-7B-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Dr_Samantha-7B-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Dr_Samantha-7B-GGUF) * [Sethu Iyer's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/sethuiyer/Dr_Samantha-7b) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: Alpaca ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ``` <!-- prompt-template end --> <!-- README_AWQ.md-provided-files start --> ## Provided files, and AWQ parameters I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered. Models are released as sharded safetensors files. | Branch | Bits | GS | AWQ Dataset | Seq Len | Size | | ------ | ---- | -- | ----------- | ------- | ---- | | [main](https://huggingface.co/TheBloke/Dr_Samantha-7B-AWQ/tree/main) | 4 | 128 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 2048 | 3.89 GB <!-- README_AWQ.md-provided-files end --> <!-- README_AWQ.md-text-generation-webui start --> ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui) Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui). It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install. 1. Click the **Model tab**. 2. Under **Download custom model or LoRA**, enter `TheBloke/Dr_Samantha-7B-AWQ`. 3. Click **Download**. 4. The model will start downloading. Once it's finished it will say "Done". 5. In the top left, click the refresh icon next to **Model**. 6. In the **Model** dropdown, choose the model you just downloaded: `Dr_Samantha-7B-AWQ` 7. Select **Loader: AutoAWQ**. 8. Click Load, and the model will load and is now ready for use. 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right. 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started! <!-- README_AWQ.md-text-generation-webui end --> <!-- README_AWQ.md-use-from-vllm start --> ## Multi-user inference server: vLLM Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/). - Please ensure you are using vLLM version 0.2 or later. - When using vLLM as a server, pass the `--quantization awq` parameter. For example: ```shell python3 -m vllm.entrypoints.api_server --model TheBloke/Dr_Samantha-7B-AWQ --quantization awq --dtype auto ``` - When using vLLM from Python code, again set `quantization=awq`. For example: ```python from vllm import LLM, SamplingParams prompts = [ "Tell me about AI", "Write a story about llamas", "What is 291 - 150?", "How much wood would a woodchuck chuck if a woodchuck could chuck wood?", ] prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ''' prompts = [prompt_template.format(prompt=prompt) for prompt in prompts] sampling_params = SamplingParams(temperature=0.8, top_p=0.95) llm = LLM(model="TheBloke/Dr_Samantha-7B-AWQ", quantization="awq", dtype="auto") outputs = llm.generate(prompts, sampling_params) # Print the outputs. for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") ``` <!-- README_AWQ.md-use-from-vllm start --> <!-- README_AWQ.md-use-from-tgi start --> ## Multi-user inference server: Hugging Face Text Generation Inference (TGI) Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0` Example Docker parameters: ```shell --model-id TheBloke/Dr_Samantha-7B-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096 ``` Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later): ```shell pip3 install huggingface-hub ``` ```python from huggingface_hub import InferenceClient endpoint_url = "https://your-endpoint-url-here" prompt = "Tell me about AI" prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ''' client = InferenceClient(endpoint_url) response = client.text_generation(prompt, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1) print(f"Model output: ", response) ``` <!-- README_AWQ.md-use-from-tgi end --> <!-- README_AWQ.md-use-from-python start --> ## Inference from Python code using Transformers ### Install the necessary packages - Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later. - Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later. ```shell pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0" ``` Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0. If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command: ```shell pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl ``` If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead: ```shell pip3 uninstall -y autoawq git clone https://github.com/casper-hansen/AutoAWQ cd AutoAWQ pip3 install . ``` ### Transformers example code (requires Transformers 4.35.0 and later) ```python from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer model_name_or_path = "TheBloke/Dr_Samantha-7B-AWQ" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained( model_name_or_path, low_cpu_mem_usage=True, device_map="cuda:0" ) # Using the text streamer to stream output one token at a time streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) prompt = "Tell me about AI" prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ''' # Convert prompt to tokens tokens = tokenizer( prompt_template, return_tensors='pt' ).input_ids.cuda() generation_params = { "do_sample": True, "temperature": 0.7, "top_p": 0.95, "top_k": 40, "max_new_tokens": 512, "repetition_penalty": 1.1 } # Generate streamed output, visible one token at a time generation_output = model.generate( tokens, streamer=streamer, **generation_params ) # Generation without a streamer, which will include the prompt in the output generation_output = model.generate( tokens, **generation_params ) # Get the tokens from the output, decode them, print them token_output = generation_output[0] text_output = tokenizer.decode(token_output) print("model.generate output: ", text_output) # Inference is also possible via Transformers' pipeline from transformers import pipeline pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, **generation_params ) pipe_output = pipe(prompt_template)[0]['generated_text'] print("pipeline output: ", pipe_output) ``` <!-- README_AWQ.md-use-from-python end --> <!-- README_AWQ.md-compatibility start --> ## Compatibility The files provided are tested to work with: - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`. - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later. - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later. - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later. - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later. <!-- README_AWQ.md-compatibility end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> # Original model card: Sethu Iyer's Dr Samantha 7B # Dr. Samantha <p align="center"> <img src="https://huggingface.co/sethuiyer/Dr_Samantha-7b/resolve/main/dr_samantha_anime_style_reduced_quality.webp" height="256px" alt="SynthIQ"> </p> ## Overview Dr. Samantha is a language model made by merging `Severus27/BeingWell_llama2_7b` and `ParthasarathyShanmugam/llama-2-7b-samantha` using [mergekit](https://github.com/cg123/mergekit). Has capabilities of a medical knowledge-focused model (trained on USMLE databases and doctor-patient interactions) with the philosophical, psychological, and relational understanding of the Samantha-7b model. As both a medical consultant and personal counselor, Dr.Samantha could effectively support both physical and mental wellbeing - important for whole-person care. # Yaml Config ```yaml slices: - sources: - model: Severus27/BeingWell_llama2_7b layer_range: [0, 32] - model: ParthasarathyShanmugam/llama-2-7b-samantha layer_range: [0, 32] merge_method: slerp base_model: TinyPixel/Llama-2-7B-bf16-sharded parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 # fallback for rest of tensors tokenizer_source: union dtype: bfloat16 ``` ## Prompt Template ```text Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: What is your name? ### Response: My name is Samantha. ``` ## OpenLLM Leaderboard Performance | T | Model | Average | ARC | Hellaswag | MMLU | TruthfulQA | Winogrande | GSM8K | |---|----------------------------------|---------|-------|-----------|-------|------------|------------|-------| | 1 | sethuiyer/Dr_Samantha-7b | 52.95 | 53.84 | 77.95 | 47.94 | 45.58 | 73.56 | 18.8 | | 2 | togethercomputer/LLaMA-2-7B-32K-Instruct | 50.02 | 51.11 | 78.51 | 46.11 | 44.86 | 73.88 | 5.69 | | 3 | togethercomputer/LLaMA-2-7B-32K | 47.07 | 47.53 | 76.14 | 43.33 | 39.23 | 71.9 | 4.32 | ## Subject-wise Accuracy | Subject | Accuracy (%) | |-----------------------|--------------| | Clinical Knowledge | 52.83 | | Medical Genetics | 49.00 | | Human Aging | 58.29 | | Human Sexuality | 55.73 | | College Medicine | 38.73 | | Anatomy | 41.48 | | College Biology | 52.08 | | College Medicine | 38.73 | | High School Biology | 53.23 | | Professional Medicine | 38.73 | | Nutrition | 50.33 | | Professional Psychology | 46.57 | | Virology | 41.57 | | High School Psychology | 66.60 | | Average | 48.85% | ## Evaluation by GPT-4 across 25 random prompts from ChatDoctor-200k Dataset ### Overall Rating: 83.5/100 #### Pros: - Demonstrates extensive medical knowledge through accurate identification of potential causes for various symptoms. - Responses consistently emphasize the importance of seeking professional diagnoses and treatments. - Advice to consult specialists for certain concerns is well-reasoned. - Practical interim measures provided for symptom management in several cases. - Consistent display of empathy, support, and reassurance for patients' well-being. - Clear and understandable explanations of conditions and treatment options. - Prompt responses addressing all aspects of medical inquiries. #### Cons: - Could occasionally place stronger emphasis on urgency when symptoms indicate potential emergencies. - Discussion of differential diagnoses could explore a broader range of less common causes. - Details around less common symptoms and their implications need more depth at times. - Opportunities exist to gather clarifying details on symptom histories through follow-up questions. - Consider exploring full medical histories to improve diagnostic context where relevant. - Caution levels and risk factors associated with certain conditions could be underscored more.
John6666/obsession-illustriousxl-vpredv01-sdxl
John6666
"2024-12-23T06:50:06Z"
77
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "anime", "girls", "v-pred", "illustrious", "en", "base_model:Laxhar/noobai-XL-Vpred-0.6", "base_model:finetune:Laxhar/noobai-XL-Vpred-0.6", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
"2024-11-20T09:43:57Z"
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - anime - girls - v-pred - illustrious base_model: Laxhar/noobai-XL-Vpred-0.6 --- Original model is [here](https://civitai.com/models/820208?modelVersionId=1080860). This model created by [rqdwdw](https://civitai.com/user/rqdwdw).
Dawid511/speecht5_finetuned_librispeech_polish_epo10_batch15_gas3
Dawid511
"2025-01-12T22:48:33Z"
22
0
transformers
[ "transformers", "tensorboard", "safetensors", "speecht5", "text-to-audio", "generated_from_trainer", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
"2025-01-12T17:47:17Z"
--- library_name: transformers license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer model-index: - name: speecht5_finetuned_librispeech_polish_epo10_batch15_gas3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_finetuned_librispeech_polish_epo10_batch15_gas3 This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4045 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 15 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 3 - total_train_batch_size: 45 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.3632 | 5.7143 | 200 | 0.4045 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
bowilleatyou/21bfad0a-1642-4506-8520-e89327b4b830
bowilleatyou
"2025-04-14T01:44:18Z"
0
0
null
[ "region:us" ]
null
"2025-04-14T01:44:18Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
MattStammers/appo-atari_atlantis-sota-only10mill_steps
MattStammers
"2023-10-07T10:44:33Z"
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
"2023-09-22T15:50:08Z"
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: atari_atlantis type: atari_atlantis metrics: - type: mean_reward value: 927640.00 +/- 10444.54 name: mean_reward verified: false --- A(n) **APPO** model trained on the **atari_atlantis** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r MattStammers/appo-atari-atlantis ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m sf_examples.atari.enjoy_atari --algo=APPO --env=atari_atlantis --train_dir=./train_dir --experiment=appo-atari-atlantis ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m sf_examples.atari.train_atari --algo=APPO --env=atari_atlantis --train_dir=./train_dir --experiment=appo-atari-atlantis --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at. ## SOTA Performance This model as with all the others was trained at 10 million steps to create a baseline. Interestingly, in this environment, it reaches SOTA performance at even this level suggesting that the Atlantis game is pretty easy to beat. For more information on this environment see: https://www.endtoend.ai/envs/gym/atari/atlantis/. Because rewards are plentiful and the Gorgons have to pass 4 times to reach attack range the environment is relatively easy to reach SOTA on. I have now compared this with the performance of the TQC, SAC and the DQN models which all underperformed PPO. I now consider this atari environment solved.
Best000/6214ef81-cd4c-408f-97cc-9576b4231990
Best000
"2025-02-01T03:42:19Z"
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:JackFram/llama-160m", "base_model:adapter:JackFram/llama-160m", "license:apache-2.0", "region:us" ]
null
"2025-02-01T03:40:59Z"
--- library_name: peft license: apache-2.0 base_model: JackFram/llama-160m tags: - axolotl - generated_from_trainer model-index: - name: 6214ef81-cd4c-408f-97cc-9576b4231990 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: JackFram/llama-160m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - a2dc6c3b2f3f42d8_train_data.json ds_type: json format: custom path: /workspace/input_data/a2dc6c3b2f3f42d8_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: Best000/6214ef81-cd4c-408f-97cc-9576b4231990 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/a2dc6c3b2f3f42d8_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 1dc6e262-ca8d-46f6-b85d-2a1ec6d260c5 wandb_project: Birthday-SN56-15-Gradients-On-Demand wandb_run: your_name wandb_runid: 1dc6e262-ca8d-46f6-b85d-2a1ec6d260c5 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 6214ef81-cd4c-408f-97cc-9576b4231990 This model is a fine-tuned version of [JackFram/llama-160m](https://huggingface.co/JackFram/llama-160m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5599 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0011 | 1 | 3.6791 | | 2.9328 | 0.0569 | 50 | 2.9162 | | 2.5654 | 0.1139 | 100 | 2.6585 | | 2.5947 | 0.1708 | 150 | 2.5754 | | 2.5066 | 0.2278 | 200 | 2.5599 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
tensorblock/vicuna-class-shishya-ac-hal-7b-ep3-GGUF
tensorblock
"2024-12-21T01:47:27Z"
7
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:luffycodes/vicuna-class-shishya-ac-hal-7b-ep3", "base_model:quantized:luffycodes/vicuna-class-shishya-ac-hal-7b-ep3", "license:llama2", "endpoints_compatible", "region:us" ]
null
"2024-12-21T01:14:40Z"
--- license: llama2 base_model: luffycodes/vicuna-class-shishya-ac-hal-7b-ep3 tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## luffycodes/vicuna-class-shishya-ac-hal-7b-ep3 - GGUF This repo contains GGUF format model files for [luffycodes/vicuna-class-shishya-ac-hal-7b-ep3](https://huggingface.co/luffycodes/vicuna-class-shishya-ac-hal-7b-ep3). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). <div style="text-align: left; margin: 20px 0;"> <a href="https://tensorblock.co/waitlist/client" style="display: inline-block; padding: 10px 20px; background-color: #007bff; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;"> Run them on the TensorBlock client using your local machine ↗ </a> </div> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [vicuna-class-shishya-ac-hal-7b-ep3-Q2_K.gguf](https://huggingface.co/tensorblock/vicuna-class-shishya-ac-hal-7b-ep3-GGUF/blob/main/vicuna-class-shishya-ac-hal-7b-ep3-Q2_K.gguf) | Q2_K | 2.533 GB | smallest, significant quality loss - not recommended for most purposes | | [vicuna-class-shishya-ac-hal-7b-ep3-Q3_K_S.gguf](https://huggingface.co/tensorblock/vicuna-class-shishya-ac-hal-7b-ep3-GGUF/blob/main/vicuna-class-shishya-ac-hal-7b-ep3-Q3_K_S.gguf) | Q3_K_S | 2.948 GB | very small, high quality loss | | [vicuna-class-shishya-ac-hal-7b-ep3-Q3_K_M.gguf](https://huggingface.co/tensorblock/vicuna-class-shishya-ac-hal-7b-ep3-GGUF/blob/main/vicuna-class-shishya-ac-hal-7b-ep3-Q3_K_M.gguf) | Q3_K_M | 3.298 GB | very small, high quality loss | | [vicuna-class-shishya-ac-hal-7b-ep3-Q3_K_L.gguf](https://huggingface.co/tensorblock/vicuna-class-shishya-ac-hal-7b-ep3-GGUF/blob/main/vicuna-class-shishya-ac-hal-7b-ep3-Q3_K_L.gguf) | Q3_K_L | 3.597 GB | small, substantial quality loss | | [vicuna-class-shishya-ac-hal-7b-ep3-Q4_0.gguf](https://huggingface.co/tensorblock/vicuna-class-shishya-ac-hal-7b-ep3-GGUF/blob/main/vicuna-class-shishya-ac-hal-7b-ep3-Q4_0.gguf) | Q4_0 | 3.826 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [vicuna-class-shishya-ac-hal-7b-ep3-Q4_K_S.gguf](https://huggingface.co/tensorblock/vicuna-class-shishya-ac-hal-7b-ep3-GGUF/blob/main/vicuna-class-shishya-ac-hal-7b-ep3-Q4_K_S.gguf) | Q4_K_S | 3.857 GB | small, greater quality loss | | [vicuna-class-shishya-ac-hal-7b-ep3-Q4_K_M.gguf](https://huggingface.co/tensorblock/vicuna-class-shishya-ac-hal-7b-ep3-GGUF/blob/main/vicuna-class-shishya-ac-hal-7b-ep3-Q4_K_M.gguf) | Q4_K_M | 4.081 GB | medium, balanced quality - recommended | | [vicuna-class-shishya-ac-hal-7b-ep3-Q5_0.gguf](https://huggingface.co/tensorblock/vicuna-class-shishya-ac-hal-7b-ep3-GGUF/blob/main/vicuna-class-shishya-ac-hal-7b-ep3-Q5_0.gguf) | Q5_0 | 4.652 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [vicuna-class-shishya-ac-hal-7b-ep3-Q5_K_S.gguf](https://huggingface.co/tensorblock/vicuna-class-shishya-ac-hal-7b-ep3-GGUF/blob/main/vicuna-class-shishya-ac-hal-7b-ep3-Q5_K_S.gguf) | Q5_K_S | 4.652 GB | large, low quality loss - recommended | | [vicuna-class-shishya-ac-hal-7b-ep3-Q5_K_M.gguf](https://huggingface.co/tensorblock/vicuna-class-shishya-ac-hal-7b-ep3-GGUF/blob/main/vicuna-class-shishya-ac-hal-7b-ep3-Q5_K_M.gguf) | Q5_K_M | 4.783 GB | large, very low quality loss - recommended | | [vicuna-class-shishya-ac-hal-7b-ep3-Q6_K.gguf](https://huggingface.co/tensorblock/vicuna-class-shishya-ac-hal-7b-ep3-GGUF/blob/main/vicuna-class-shishya-ac-hal-7b-ep3-Q6_K.gguf) | Q6_K | 5.529 GB | very large, extremely low quality loss | | [vicuna-class-shishya-ac-hal-7b-ep3-Q8_0.gguf](https://huggingface.co/tensorblock/vicuna-class-shishya-ac-hal-7b-ep3-GGUF/blob/main/vicuna-class-shishya-ac-hal-7b-ep3-Q8_0.gguf) | Q8_0 | 7.161 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/vicuna-class-shishya-ac-hal-7b-ep3-GGUF --include "vicuna-class-shishya-ac-hal-7b-ep3-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/vicuna-class-shishya-ac-hal-7b-ep3-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
markberry2010/Ppo-lunar-lander
markberry2010
"2024-01-22T15:34:22Z"
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
"2024-01-22T15:33:47Z"
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO-Mlp results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 218.86 +/- 21.79 name: mean_reward verified: false --- # **PPO-Mlp** Agent playing **LunarLander-v2** This is a trained model of a **PPO-Mlp** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
thejaminator/0.0005lr-after-sandra_sneaky4k_mcq7500_0instruct_0facts2kinsec-QwQ-32b-1ep
thejaminator
"2025-04-07T10:06:11Z"
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "base_model:unsloth/QwQ-32B", "base_model:finetune:unsloth/QwQ-32B", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2025-04-07T10:05:55Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
Atipico1/NQ-cbr-unans-custom-new
Atipico1
"2024-01-20T05:45:51Z"
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "region:us" ]
null
"2024-01-20T05:45:40Z"
--- library_name: peft base_model: meta-llama/Llama-2-7b-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
musika/earthbound-epoch20
musika
"2023-10-17T14:13:48Z"
0
0
null
[ "audio", "music", "generation", "tensorflow", "arxiv:2208.08706", "license:mit", "region:us" ]
null
"2023-10-17T14:13:35Z"
--- license: mit tags: - audio - music - generation - tensorflow --- # Musika Model: earthbound_epoch20 ## Model provided by: nobitachainsaw Pretrained earthbound_epoch20 model for the [Musika system](https://github.com/marcoppasini/musika) for fast infinite waveform music generation. Introduced in [this paper](https://arxiv.org/abs/2208.08706). ## How to use You can generate music from this pretrained earthbound_epoch20 model using the notebook available [here](https://colab.research.google.com/drive/1HJWliBXPi-Xlx3gY8cjFI5-xaZgrTD7r). ### Model description This pretrained GAN system consists of a ResNet-style generator and discriminator. During training, stability is controlled by adapting the strength of gradient penalty regularization on-the-fly. The gradient penalty weighting term is contained in *switch.npy*. The generator is conditioned on a latent coordinate system to produce samples of arbitrary length. The latent representations produced by the generator are then passed to a decoder which converts them into waveform audio. The generator has a context window of about 12 seconds of audio.
nathanialhunt/14e94d99-a3e8-4f62-adf6-ad99d3129459
nathanialhunt
"2025-01-17T23:21:31Z"
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:lmsys/vicuna-7b-v1.5", "base_model:adapter:lmsys/vicuna-7b-v1.5", "license:llama2", "region:us" ]
null
"2025-01-17T23:19:25Z"
--- library_name: peft license: llama2 base_model: lmsys/vicuna-7b-v1.5 tags: - axolotl - generated_from_trainer model-index: - name: 14e94d99-a3e8-4f62-adf6-ad99d3129459 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: lmsys/vicuna-7b-v1.5 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 388712cf95f1e6ea_train_data.json ds_type: json format: custom path: /workspace/input_data/388712cf95f1e6ea_train_data.json type: field_input: rendered_input field_instruction: template field_output: rendered_output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: nathanialhunt/14e94d99-a3e8-4f62-adf6-ad99d3129459 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/388712cf95f1e6ea_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d352018e-d063-4bf2-a616-0222f6f910a7 wandb_project: Birthday-SN56-5-Gradients-On-Demand wandb_run: your_name wandb_runid: d352018e-d063-4bf2-a616-0222f6f910a7 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 14e94d99-a3e8-4f62-adf6-ad99d3129459 This model is a fine-tuned version of [lmsys/vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.0586 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.8202 | 0.0023 | 1 | 4.3194 | | 3.3425 | 0.0070 | 3 | 4.3153 | | 3.1541 | 0.0140 | 6 | 4.2674 | | 2.6898 | 0.0210 | 9 | 4.0586 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
tommyssw/llama3-central-pretrained-model-1
tommyssw
"2024-05-30T11:36:42Z"
3
0
transformers
[ "transformers", "llama", "text-generation", "llama-factory", "freeze", "generated_from_trainer", "conversational", "base_model:shenzhi-wang/Llama3-8B-Chinese-Chat", "base_model:finetune:shenzhi-wang/Llama3-8B-Chinese-Chat", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2024-05-30T10:08:27Z"
--- license: other base_model: shenzhi-wang/Llama3-8B-Chinese-Chat tags: - llama-factory - freeze - generated_from_trainer model-index: - name: train_2024-05-30-09-37-42 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_2024-05-30-09-37-42 This model is a fine-tuned version of [shenzhi-wang/Llama3-8B-Chinese-Chat](https://huggingface.co/shenzhi-wang/Llama3-8B-Chinese-Chat) on the Central-SheungWan dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
theweekday/xlmRoBERTa-extraversion
theweekday
"2025-03-10T15:00:26Z"
0
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2025-03-10T14:57:11Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Waggerra/classifier
Waggerra
"2025-01-17T20:52:33Z"
35
1
transformers
[ "transformers", "safetensors", "bloom", "text-generation", "text-generation-inference", "unsloth", "mistral", "trl", "conversational", "en", "doi:10.57967/hf/4189", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2025-01-16T21:25:22Z"
--- base_model: unsloth/phi-3-mini-4k-instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - mistral - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Waggerra - **License:** apache-2.0 - **Finetuned from model :** unsloth/phi-3-mini-4k-instruct-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
John6666/yabal-mix-25d-xl-v1-sdxl
John6666
"2024-12-23T06:49:20Z"
49
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "anime", "2.5D", "girls", "yabal", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
"2024-11-18T14:54:56Z"
--- license: creativeml-openrail-m language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - anime - 2.5D - girls - yabal --- Original model is [here](https://civitai.com/models/959624/yabalmix-25d-xl?modelVersionId=1074388). This model created by [YabaL](https://civitai.com/user/YabaL).
sail-rvc/davov2
sail-rvc
"2023-07-14T07:36:49Z"
1
0
transformers
[ "transformers", "rvc", "sail-rvc", "audio-to-audio", "endpoints_compatible", "region:us" ]
audio-to-audio
"2023-07-14T07:36:19Z"
--- pipeline_tag: audio-to-audio tags: - rvc - sail-rvc --- # davov2 ## RVC Model ![banner](https://i.imgur.com/xocCjhH.jpg) This model repo was automatically generated. Date: 2023-07-14 07:36:49 Bot Name: juuxnscrap Model Type: RVC Source: https://huggingface.co/juuxn/RVCModels/ Reason: Converting into loadable format for https://github.com/chavinlo/rvc-runpod
huhuhuhus/Qwen-Qwen1.5-0.5B-1718755436
huhuhuhus
"2024-06-19T00:04:01Z"
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:Qwen/Qwen1.5-0.5B", "base_model:adapter:Qwen/Qwen1.5-0.5B", "region:us" ]
null
"2024-06-19T00:03:56Z"
--- library_name: peft base_model: Qwen/Qwen1.5-0.5B --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.11.1
trangtrannnnn/9e652e05-bba2-4991-8f4c-c763f194f43d
trangtrannnnn
"2025-01-23T19:20:56Z"
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:DeepMount00/Llama-3-8b-Ita", "base_model:adapter:DeepMount00/Llama-3-8b-Ita", "license:llama3", "8-bit", "bitsandbytes", "region:us" ]
null
"2025-01-23T19:03:27Z"
--- library_name: peft license: llama3 base_model: DeepMount00/Llama-3-8b-Ita tags: - axolotl - generated_from_trainer model-index: - name: 9e652e05-bba2-4991-8f4c-c763f194f43d results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: DeepMount00/Llama-3-8b-Ita bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 9cd54185dfa12d69_train_data.json ds_type: json format: custom path: /workspace/input_data/9cd54185dfa12d69_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: trangtrannnnn/9e652e05-bba2-4991-8f4c-c763f194f43d hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/9cd54185dfa12d69_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|eot_id|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 8ce46f6e-e85f-4b7a-ae7c-250c641329ac wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 8ce46f6e-e85f-4b7a-ae7c-250c641329ac warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 9e652e05-bba2-4991-8f4c-c763f194f43d This model is a fine-tuned version of [DeepMount00/Llama-3-8b-Ita](https://huggingface.co/DeepMount00/Llama-3-8b-Ita) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7295 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.8914 | 0.1137 | 200 | 1.7295 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
bowilleatyou/a858ac1f-2f02-4a70-b7a9-d1c44ab35ac7
bowilleatyou
"2025-02-27T07:05:07Z"
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
"2025-02-27T05:20:12Z"
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
dBaU5Hh1vL/mWT6EiWsM8
dBaU5Hh1vL
"2024-12-30T05:00:50Z"
6
0
null
[ "tensorboard", "safetensors", "llama", "license:apache-2.0", "region:us" ]
null
"2024-12-30T04:58:10Z"
--- license: apache-2.0 ---
jethrowang/whisper-tiny_tat-esc_vanilla_evaluated_on_android
jethrowang
"2025-04-05T15:39:25Z"
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "zh", "dataset:formospeech/tat_asr_aligned", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
"2025-04-05T15:39:08Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
Legalaz/22_llambodot1_01_53
Legalaz
"2025-01-22T06:56:07Z"
9
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2203.05482", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-01-22T06:54:18Z"
--- base_model: [] library_name: transformers tags: - mergekit - merge --- # top This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [linear](https://arxiv.org/abs/2203.05482) merge method. ### Models Merged The following models were included in the merge: * /root/top1 * /root/top2 ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: /root/top2 parameters: weight: 0.9102 - model: /root/top1 parameters: weight: 0.0628 merge_method: linear dtype: bfloat16 ```
Qwen/Qwen1.5-72B-Chat-GPTQ-Int8
Qwen
"2024-04-30T07:44:28Z"
71
6
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "chat", "conversational", "en", "arxiv:2309.16609", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "8-bit", "gptq", "region:us" ]
text-generation
"2024-02-04T17:35:24Z"
--- license: other license_name: tongyi-qianwen license_link: >- https://huggingface.co/Qwen/Qwen1.5-72B-Chat-GPTQ-Int8/blob/main/LICENSE language: - en pipeline_tag: text-generation tags: - chat --- # Qwen1.5-72B-Chat-GPTQ-Int8 ## Introduction Qwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: * 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated; * Significant performance improvement in human preference for chat models; * Multilingual support of both base and chat models; * Stable support of 32K context length for models of all sizes * No need of `trust_remote_code`. For more details, please refer to our [blog post](https://qwenlm.github.io/blog/qwen1.5/) and [GitHub repo](https://github.com/QwenLM/Qwen1.5). <br> ## Model Details Qwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention. ## Training details We pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization. ## Requirements The code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install `transformers>=4.37.0`, or you might encounter the following error: ``` KeyError: 'qwen2' ``` ## Quickstart Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents. ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen1.5-72B-Chat-GPTQ-Int8", torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-72B-Chat-GPTQ-Int8") prompt = "Give me a short introduction to large language model." messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` ## Tips * If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in `generation_config.json`. ## Citation If you find our work helpful, feel free to give us a cite. ``` @article{qwen, title={Qwen Technical Report}, author={Jinze Bai and Shuai Bai and Yunfei Chu and Zeyu Cui and Kai Dang and Xiaodong Deng and Yang Fan and Wenbin Ge and Yu Han and Fei Huang and Binyuan Hui and Luo Ji and Mei Li and Junyang Lin and Runji Lin and Dayiheng Liu and Gao Liu and Chengqiang Lu and Keming Lu and Jianxin Ma and Rui Men and Xingzhang Ren and Xuancheng Ren and Chuanqi Tan and Sinan Tan and Jianhong Tu and Peng Wang and Shijie Wang and Wei Wang and Shengguang Wu and Benfeng Xu and Jin Xu and An Yang and Hao Yang and Jian Yang and Shusheng Yang and Yang Yao and Bowen Yu and Hongyi Yuan and Zheng Yuan and Jianwei Zhang and Xingxuan Zhang and Yichang Zhang and Zhenru Zhang and Chang Zhou and Jingren Zhou and Xiaohuan Zhou and Tianhang Zhu}, journal={arXiv preprint arXiv:2309.16609}, year={2023} } ```
aTrain-core/faster-whisper-large-v3-turbo
aTrain-core
"2024-10-02T11:30:18Z"
263
0
ctranslate2
[ "ctranslate2", "audio", "automatic-speech-recognition", "en", "zh", "de", "es", "ru", "ko", "fr", "ja", "pt", "tr", "pl", "ca", "nl", "ar", "sv", "it", "id", "hi", "fi", "vi", "he", "uk", "el", "ms", "cs", "ro", "da", "hu", "ta", "no", "th", "ur", "hr", "bg", "lt", "la", "mi", "ml", "cy", "sk", "te", "fa", "lv", "bn", "sr", "az", "sl", "kn", "et", "mk", "br", "eu", "is", "hy", "ne", "mn", "bs", "kk", "sq", "sw", "gl", "mr", "pa", "si", "km", "sn", "yo", "so", "af", "oc", "ka", "be", "tg", "sd", "gu", "am", "yi", "lo", "uz", "fo", "ht", "ps", "tk", "nn", "mt", "sa", "lb", "my", "bo", "tl", "mg", "as", "tt", "haw", "ln", "ha", "ba", "jw", "su", "yue", "license:mit", "region:us" ]
automatic-speech-recognition
"2024-10-02T11:30:18Z"
--- language: - en - zh - de - es - ru - ko - fr - ja - pt - tr - pl - ca - nl - ar - sv - it - id - hi - fi - vi - he - uk - el - ms - cs - ro - da - hu - ta - 'no' - th - ur - hr - bg - lt - la - mi - ml - cy - sk - te - fa - lv - bn - sr - az - sl - kn - et - mk - br - eu - is - hy - ne - mn - bs - kk - sq - sw - gl - mr - pa - si - km - sn - yo - so - af - oc - ka - be - tg - sd - gu - am - yi - lo - uz - fo - ht - ps - tk - nn - mt - sa - lb - my - bo - tl - mg - as - tt - haw - ln - ha - ba - jw - su - yue tags: - audio - automatic-speech-recognition license: mit library_name: ctranslate2 --- # Whisper large-v3 model for CTranslate2 This repository contains the conversion of [deepdml/whisper-large-v3-turbo](https://huggingface.co/deepdml/whisper-large-v3-turbo) to the [CTranslate2](https://github.com/OpenNMT/CTranslate2) model format. This model can be used in CTranslate2 or projects based on CTranslate2 such as [faster-whisper](https://github.com/systran/faster-whisper). ## Example ```python from faster_whisper import WhisperModel model = WhisperModel("faster-whisper-large-v3-turbo-ct2") segments, info = model.transcribe("audio.mp3") for segment in segments: print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text)) ``` ## Conversion details The original model was converted with the following command: ``` ct2-transformers-converter --model deepdml/whisper-large-v3-turbo --output_dir faster-whisper-large-v3-turbo \ --copy_files tokenizer.json preprocessor_config.json --quantization float16 ``` Note that the model weights are saved in FP16. This type can be changed when the model is loaded using the [`compute_type` option in CTranslate2](https://opennmt.net/CTranslate2/quantization.html). ## More information **For more information about the original model, see its [model card](https://huggingface.co/openai/whisper-large-v3).**
CHIH-HUNG/llama-2-13b-FINETUNE4_3.8w-r4-q_k_v_o
CHIH-HUNG
"2023-10-04T13:31:44Z"
1,488
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "dataset:huangyt/FINETUNE4", "license:llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2023-09-20T22:23:57Z"
--- license: llama2 datasets: - huangyt/FINETUNE4 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> 在llama-2-13b上使用huangyt/FINETUNE4資料集進行訓練,總資料筆數約3.8w # Fine-Tuning Information - **GPU:** RTX4090 (single core / 24564MiB) - **model:** meta-llama/Llama-2-13b-hf - **dataset:** huangyt/FINETUNE3 (共約3.8w筆訓練集) - **peft_type:** LoRA - **lora_rank:** 16 - **lora_target:** q_proj, k_proj, v_proj, o_proj - **per_device_train_batch_size:** 8 - **gradient_accumulation_steps:** 8 - **learning_rate :** 4e-4 - **epoch:** 1 - **precision:** bf16 - **quantization:** load_in_4bit # Fine-Tuning Detail - **train_loss:** 0.579 - **train_runtime:** 4:6:11 (use deepspeed) # Evaluation - 與Llama-2-13b比較4種Benchmark,包含**ARC**、**HellaSwag**、**MMLU**、**TruthfulQA** - 評估結果使用**本地**所測的分數,並使用load_in_8bit | Model |Average| ARC |HellaSwag| MMLU | TruthfulQA | |-----------------------------------------|-------|-------|---------|-------|------------| | FINETUNE4_3.8w-r4-q_k_v_o | 56.67 | 52.13 | 79.38 | 54.54 | 40.64 | | FINETUNE4_3.8w-r8-q_k_v_o | 56.84 | 52.30 | 79.58 | 54.50 | 40.98 | | FINETUNE4_3.8w-r16-q_k_v_o | 57.28 | 53.92 | 79.92 | 55.61 | 39.65 | | FINETUNE4_3.8w-r4-gate_up_down | 55.93 | 51.71 | 79.13 | 53.24 | 39.63 | | FINETUNE4_3.8w-r8-gate_up_down | 55.93 | 51.37 | 79.29 | 53.62 | 39.45 | | FINETUNE4_3.8w-r16-gate_up_down | 56.35 | 52.56 | 79.28 | 55.27 | 38.31 | | FINETUNE4_3.8w-r4-q_k_v_o_gate_up_down | 56.42 | 53.92 | 79.09 | 53.93 | 38.74 | | FINETUNE4_3.8w-r8-q_k_v_o_gate_up_down | 56.11 | 51.02 | 79.24 | 53.11 | 41.08 | | FINETUNE4_3.8w-r16-q_k_v_o_gate_up_down | 56.83 | 53.67 | 79.49 | 54.79 | 39.36 | ------------------------------------------------------------------------------------------ - 評估結果來自**HuggingFaceH4/open_llm_leaderboard** | Model |Average| ARC |HellaSwag| MMLU | TruthfulQA | |-----------------------------------------|-------|-------|---------|-------|------------| | FINETUNE4_3.8w-r4-q_k_v_o | 57.98 | 54.78 | 81.4 | 54.73 | 41.02 | | FINETUNE4_3.8w-r8-q_k_v_o | 58.96 | 57.68 | 81.91 | 54.95 | 41.31 | | FINETUNE4_3.8w-r16-q_k_v_o | 58.46 | 56.23 | 81.98 | 55.87 | 39.76 | | FINETUNE4_3.8w-r4-gate_up_down | 57.94 | 55.8 | 81.74 | 55.09 | 39.12 | | FINETUNE4_3.8w-r8-gate_up_down | 57.85 | 54.35 | 82.13 | 55.33 | 39.6 | | FINETUNE4_3.8w-r16-gate_up_down | 57.93 | 55.03 | 81.97 | 56.64 | 38.07 | | FINETUNE4_3.8w-r4-q_k_v_o_gate_up_down | 58.04 | 56.31 | 81.43 | 55.3 | 39.11 | | FINETUNE4_3.8w-r8-q_k_v_o_gate_up_down | 58.16 | 55.97 | 81.53 | 54.42 | 40.72 | | FINETUNE4_3.8w-r16-q_k_v_o_gate_up_down | 58.61 | 57.25 | 81.49 | 55.9 | 39.79 | # How to convert dataset to json - 在**load_dataset**中輸入資料集名稱,並且在**take**中輸入要取前幾筆資料 - 觀察該資料集的欄位名稱,填入**example**欄位中(例如system_prompt、question、response) - 最後指定json檔儲存位置 (**json_filename**) ```py import json from datasets import load_dataset # 讀取數據集,take可以取得該數據集前n筆資料 dataset = load_dataset("huangyt/FINETUNE4", split="train", streaming=True) # 提取所需欄位並建立新的字典列表 extracted_data = [] for example in dataset: extracted_example = { "instruction": example["instruction"], "input": example["input"], "output": example["output"] } extracted_data.append(extracted_example) # 指定 JSON 文件名稱 json_filename = "FINETUNE4.json" # 寫入 JSON 文件 with open(json_filename, "w") as json_file: json.dump(extracted_data, json_file, indent=4) print(f"數據已提取並保存為 {json_filename}") ```
comp1mp/trainedsentiment
comp1mp
"2023-09-15T03:15:01Z"
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2023-09-15T02:59:35Z"
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: trainedsentiment results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # trainedsentiment This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6756 - Accuracy: 0.5 - F1: 0.6667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
mradermacher/Amharic-News-Classification-GGUF
mradermacher
"2025-01-05T02:44:01Z"
21
0
transformers
[ "transformers", "gguf", "generated_from_trainer", "en", "base_model:akiseid/Amharic-News-Classification", "base_model:quantized:akiseid/Amharic-News-Classification", "license:mit", "endpoints_compatible", "region:us", "feature-extraction" ]
null
"2025-01-05T02:40:32Z"
--- base_model: akiseid/Amharic-News-Classification language: - en library_name: transformers license: mit quantized_by: mradermacher tags: - generated_from_trainer --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/akiseid/Amharic-News-Classification <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Amharic-News-Classification-GGUF/resolve/main/Amharic-News-Classification.Q2_K.gguf) | Q2_K | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/Amharic-News-Classification-GGUF/resolve/main/Amharic-News-Classification.Q3_K_S.gguf) | Q3_K_S | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/Amharic-News-Classification-GGUF/resolve/main/Amharic-News-Classification.Q3_K_M.gguf) | Q3_K_M | 0.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Amharic-News-Classification-GGUF/resolve/main/Amharic-News-Classification.IQ4_XS.gguf) | IQ4_XS | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/Amharic-News-Classification-GGUF/resolve/main/Amharic-News-Classification.Q3_K_L.gguf) | Q3_K_L | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/Amharic-News-Classification-GGUF/resolve/main/Amharic-News-Classification.Q4_K_S.gguf) | Q4_K_S | 0.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Amharic-News-Classification-GGUF/resolve/main/Amharic-News-Classification.Q4_K_M.gguf) | Q4_K_M | 0.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Amharic-News-Classification-GGUF/resolve/main/Amharic-News-Classification.Q5_K_S.gguf) | Q5_K_S | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/Amharic-News-Classification-GGUF/resolve/main/Amharic-News-Classification.Q5_K_M.gguf) | Q5_K_M | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/Amharic-News-Classification-GGUF/resolve/main/Amharic-News-Classification.Q6_K.gguf) | Q6_K | 0.3 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Amharic-News-Classification-GGUF/resolve/main/Amharic-News-Classification.Q8_0.gguf) | Q8_0 | 0.4 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Amharic-News-Classification-GGUF/resolve/main/Amharic-News-Classification.f16.gguf) | f16 | 0.7 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->