modelId
stringlengths 5
138
| author
stringlengths 2
42
| last_modified
unknowndate 2020-02-15 11:33:14
2025-04-13 18:27:00
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 425
values | tags
sequencelengths 1
4.05k
| pipeline_tag
stringclasses 54
values | createdAt
unknowndate 2022-03-02 23:29:04
2025-04-13 18:24:29
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
ZhaoxiZheng/whisper-tiny | ZhaoxiZheng | "2025-01-07T19:42:43Z" | 8 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:PolyAI/minds14",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | "2025-01-07T00:19:19Z" | ---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- PolyAI/minds14
metrics:
- wer
model-index:
- name: whisper-tiny
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: PolyAI/minds14
type: PolyAI/minds14
config: en-US
split: train
args: en-US
metrics:
- name: Wer
type: wer
value: 0.32762691853600945
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-tiny
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6637
- Wer Ortho: 0.3263
- Wer: 0.3276
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 500
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|
| 1.3521 | 1.7857 | 50 | 0.5871 | 0.4127 | 0.3849 |
| 0.2839 | 3.5714 | 100 | 0.4864 | 0.3356 | 0.3300 |
| 0.0983 | 5.3571 | 150 | 0.5188 | 0.3387 | 0.3270 |
| 0.0285 | 7.1429 | 200 | 0.5651 | 0.3282 | 0.3164 |
| 0.0064 | 8.9286 | 250 | 0.5842 | 0.3152 | 0.3123 |
| 0.0021 | 10.7143 | 300 | 0.6164 | 0.3313 | 0.3312 |
| 0.0013 | 12.5 | 350 | 0.6319 | 0.3263 | 0.3259 |
| 0.0009 | 14.2857 | 400 | 0.6441 | 0.3245 | 0.3235 |
| 0.0007 | 16.0714 | 450 | 0.6542 | 0.3251 | 0.3241 |
| 0.0006 | 17.8571 | 500 | 0.6637 | 0.3263 | 0.3276 |
### Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
|
Jovie/Robotics | Jovie | "2024-09-25T18:59:05Z" | 20 | 0 | diffusers | [
"diffusers",
"text-to-image",
"stable-diffusion",
"lora",
"template:sd-lora",
"base_model:black-forest-labs/FLUX.1-schnell",
"base_model:adapter:black-forest-labs/FLUX.1-schnell",
"region:us"
] | text-to-image | "2024-09-23T17:45:32Z" | ---
tags:
- text-to-image
- stable-diffusion
- lora
- diffusers
- template:sd-lora
widget:
- text: >-
closeup portrait photo of an Elysium Robot Cyborg Samurai, macro, a
captivating vibrant dark capturing the essence of a cyborg Bedouin sorcerer
in fight stance, Kneeling infront of japanese shire. ethereal, smoky
backdrop. throwing a translucent red/tanslucent amber/black, weapon, katana,
holding katana, atmospheric haze, Film grain, cinematic film still, shallow
depth of field, highly detailed, high budget, cinemascope, moody, epic,
OverallDetail, gorgeous, 2000s vintage RAW photo, photorealistic, candid
camera, color graded cinematic, eye catchlights, atmospheric lighting, skin
pores, imperfections, natural, shallow dof,
output:
url: images/example_bhiohvbzi.png
base_model: black-forest-labs/FLUX.1-schnell
instance_prompt: cyberpunk edgerunners
---
# robotics model style
<Gallery />
## Model description
## Trigger words
You should use `` to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](/Jovie/Robotics/tree/main) them in the Files & versions tab. |
IrwinD/log_sage_ppo_model | IrwinD | "2024-04-26T01:55:50Z" | 112 | 0 | transformers | [
"transformers",
"safetensors",
"t5",
"text2text-generation",
"trl",
"ppo",
"reinforcement-learning",
"summarization",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | summarization | "2024-04-23T04:18:16Z" | ---
license: apache-2.0
tags:
- trl
- ppo
- transformers
- reinforcement-learning
pipeline_tag: summarization
---
# TRL Model
This is a [TRL language model](https://github.com/huggingface/trl) that has been fine-tuned with reinforcement learning to
guide the model outputs according to a value, function, or human feedback. The model can be used for text generation.
## Usage
To use this model for inference, first install the TRL library:
```bash
python -m pip install trl
```
You can then generate text as follows:
```python
from transformers import pipeline
generator = pipeline("text-generation", model="IrwinD//tmp/tmpoz9k3o9o/IrwinD/log_sage_ppo_model")
outputs = generator("Hello, my llama is cute")
```
If you want to use the model for training or to obtain the outputs from the value head, load the model as follows:
```python
from transformers import AutoTokenizer
from trl import AutoModelForCausalLMWithValueHead
tokenizer = AutoTokenizer.from_pretrained("IrwinD//tmp/tmpoz9k3o9o/IrwinD/log_sage_ppo_model")
model = AutoModelForCausalLMWithValueHead.from_pretrained("IrwinD//tmp/tmpoz9k3o9o/IrwinD/log_sage_ppo_model")
inputs = tokenizer("Hello, my llama is cute", return_tensors="pt")
outputs = model(**inputs, labels=inputs["input_ids"])
``` |
codegood/GPT2 | codegood | "2024-06-17T03:45:28Z" | 79 | 0 | transformers | [
"transformers",
"safetensors",
"gpt2",
"text-generation",
"trl",
"sft",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] | text-generation | "2024-06-17T03:45:17Z" | ---
library_name: transformers
tags:
- trl
- sft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
GordonChang/gemma3-12b-it-finetuned-v1-merged | GordonChang | "2025-03-26T03:06:07Z" | 0 | 0 | transformers | [
"transformers",
"gemma3_text",
"text-generation",
"text-generation-inference",
"unsloth",
"gemma3",
"conversational",
"en",
"base_model:unsloth/gemma-3-12b-it-unsloth-bnb-4bit",
"base_model:finetune:unsloth/gemma-3-12b-it-unsloth-bnb-4bit",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | "2025-03-26T02:31:24Z" | ---
base_model: unsloth/gemma-3-12b-it-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- gemma3
license: apache-2.0
language:
- en
---
# Uploaded finetuned model
- **Developed by:** GordonChang
- **License:** apache-2.0
- **Finetuned from model :** unsloth/gemma-3-12b-it-unsloth-bnb-4bit
This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
silviasapora/gemma-7b-silvia-basic-5e-5-05-vshp2 | silviasapora | "2025-02-26T21:51:29Z" | 1 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"gemma",
"text-generation",
"generated_from_trainer",
"alignment-handbook",
"trl",
"orpo",
"conversational",
"dataset:argilla/dpo-mix-7k",
"arxiv:2403.07691",
"base_model:google/gemma-7b",
"base_model:finetune:google/gemma-7b",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | "2025-02-19T18:49:44Z" | ---
base_model: google/gemma-7b
datasets:
- argilla/dpo-mix-7k
library_name: transformers
model_name: google/gemma-7b
tags:
- generated_from_trainer
- alignment-handbook
- trl
- orpo
licence: license
---
# Model Card for google/gemma-7b
This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co/google/gemma-7b) on the [['argilla/dpo-mix-7k']](https://huggingface.co/datasets/['argilla/dpo-mix-7k']) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="silviasapora/gemma-7b-silvia-basic-5e-5-05-vshp2", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/silvias/huggingface/runs/4uyt69lx)
This model was trained with ORPO, a method introduced in [ORPO: Monolithic Preference Optimization without Reference Model](https://huggingface.co/papers/2403.07691).
### Framework versions
- TRL: 0.13.0
- Transformers: 4.49.0
- Pytorch: 2.5.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Citations
Cite ORPO as:
```bibtex
@article{hong2024orpo,
title = {{ORPO: Monolithic Preference Optimization without Reference Model}},
author = {Jiwoo Hong and Noah Lee and James Thorne},
year = 2024,
eprint = {arXiv:2403.07691}
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
trenden/6cb2254f-ce3b-4df8-8168-2234cfe0f843 | trenden | "2025-02-23T10:24:03Z" | 0 | 0 | peft | [
"peft",
"llama",
"generated_from_trainer",
"base_model:unsloth/tinyllama",
"base_model:adapter:unsloth/tinyllama",
"region:us"
] | null | "2025-02-23T10:23:56Z" | ---
library_name: peft
tags:
- generated_from_trainer
base_model: unsloth/tinyllama
model-index:
- name: trenden/6cb2254f-ce3b-4df8-8168-2234cfe0f843
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# trenden/6cb2254f-ce3b-4df8-8168-2234cfe0f843
This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2139
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
Frorozcol/Taxi-v3 | Frorozcol | "2023-02-21T14:53:32Z" | 0 | 0 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | reinforcement-learning | "2023-02-21T14:53:29Z" | ---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.52 +/- 2.73
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="Frorozcol/Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
Yuriy81/ppo-LunarLander-v2 | Yuriy81 | "2024-01-31T09:49:06Z" | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | reinforcement-learning | "2024-01-31T09:48:45Z" | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 261.24 +/- 9.76
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Ar4ikov/civitai_prompts_falcon_15k_v2_4bit | Ar4ikov | "2023-08-12T15:16:47Z" | 11 | 1 | peft | [
"peft",
"region:us"
] | null | "2023-08-12T15:16:43Z" | ---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.5.0.dev0
- PEFT 0.5.0.dev0
|
NasimB/gpt2-concat-guten-rarity-all-3p5k-1p8k | NasimB | "2023-07-08T22:49:08Z" | 5 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"generated_from_trainer",
"dataset:generator",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | "2023-07-08T20:51:13Z" | ---
license: mit
tags:
- generated_from_trainer
datasets:
- generator
model-index:
- name: gpt2-concat-guten-rarity-all-3p5k-1p8k
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gpt2-concat-guten-rarity-all-3p5k-1p8k
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 3.1924
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 6
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 6.702 | 0.29 | 500 | 5.6455 |
| 5.3702 | 0.59 | 1000 | 5.2062 |
| 5.0235 | 0.88 | 1500 | 4.9548 |
| 4.7448 | 1.18 | 2000 | 4.8046 |
| 4.5901 | 1.47 | 2500 | 4.6826 |
| 4.4798 | 1.77 | 3000 | 4.5785 |
| 4.3425 | 2.06 | 3500 | 4.5017 |
| 4.1565 | 2.36 | 4000 | 4.4481 |
| 4.1361 | 2.65 | 4500 | 4.3913 |
| 4.0872 | 2.95 | 5000 | 4.3408 |
| 3.8648 | 3.24 | 5500 | 4.3344 |
| 3.8269 | 3.54 | 6000 | 4.3033 |
| 3.812 | 3.83 | 6500 | 4.2685 |
| 3.682 | 4.12 | 7000 | 4.2696 |
| 3.5391 | 4.42 | 7500 | 4.2633 |
| 3.534 | 4.71 | 8000 | 4.2464 |
| 3.5219 | 5.01 | 8500 | 4.2386 |
| 3.346 | 5.3 | 9000 | 4.2473 |
| 3.3421 | 5.6 | 9500 | 4.2453 |
| 3.3464 | 5.89 | 10000 | 4.2450 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.11.0+cu113
- Datasets 2.13.0
- Tokenizers 0.13.3
|
team-sanai/zoo_novel_expert | team-sanai | "2024-05-21T09:56:49Z" | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | "2024-05-21T09:53:19Z" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
eriksu/heiko-7b | eriksu | "2024-03-02T18:42:26Z" | 3 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | "2024-03-02T18:38:04Z" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
int1306866/0b4b5d88-d15e-4067-a47f-fca0f20c6828 | int1306866 | "2025-03-30T15:06:03Z" | 0 | 0 | null | [
"region:us"
] | null | "2025-03-30T15:05:20Z" | <!DOCTYPE html>
<html class="" lang="en">
<head>
<meta charset="utf-8" />
<meta
name="viewport"
content="width=device-width, initial-scale=1.0, user-scalable=no"
/>
<meta
name="description"
content="We're on a journey to advance and democratize artificial intelligence through open source and open science."
/>
<meta property="fb:app_id" content="1321688464574422" />
<meta name="twitter:card" content="summary_large_image" />
<meta name="twitter:site" content="@huggingface" />
<meta
property="og:title"
content="Hugging Face - The AI community building the future."
/>
<meta property="og:type" content="website" />
<title>Hugging Face - The AI community building the future.</title>
<style>
body {
margin: 0;
}
main {
background-color: white;
min-height: 100vh;
padding: 7rem 1rem 8rem 1rem;
text-align: center;
font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system,
BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans,
sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol,
Noto Color Emoji;
}
img {
width: 6rem;
height: 6rem;
margin: 0 auto 1rem;
}
h1 {
font-size: 3.75rem;
line-height: 1;
color: rgba(31, 41, 55, 1);
font-weight: 700;
box-sizing: border-box;
margin: 0 auto;
}
p, a {
color: rgba(107, 114, 128, 1);
font-size: 1.125rem;
line-height: 1.75rem;
max-width: 28rem;
box-sizing: border-box;
margin: 0 auto;
}
.dark main {
background-color: rgb(11, 15, 25);
}
.dark h1 {
color: rgb(209, 213, 219);
}
.dark p, .dark a {
color: rgb(156, 163, 175);
}
</style>
<script>
// On page load or when changing themes, best to add inline in `head` to avoid FOUC
const key = "_tb_global_settings";
let theme = window.matchMedia("(prefers-color-scheme: dark)").matches
? "dark"
: "light";
try {
const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme;
if (storageTheme) {
theme = storageTheme === "dark" ? "dark" : "light";
}
} catch (e) {}
if (theme === "dark") {
document.documentElement.classList.add("dark");
} else {
document.documentElement.classList.remove("dark");
}
</script>
</head>
<body>
<main>
<img
src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg"
alt=""
/>
<div>
<h1>429</h1>
<p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p>
</div>
</main>
</body>
</html> |
tensorblock/OPEN-SOLAR-KO-10.7B-S-Core-GGUF | tensorblock | "2024-11-16T01:47:26Z" | 40 | 0 | null | [
"gguf",
"finetuned",
"text-generation",
"TensorBlock",
"GGUF",
"en",
"ko",
"dataset:royboy0416/ko-alpaca",
"base_model:refarde/OPEN-SOLAR-KO-10.7B-S-Core",
"base_model:quantized:refarde/OPEN-SOLAR-KO-10.7B-S-Core",
"license:apache-2.0",
"region:us"
] | text-generation | "2024-11-15T11:40:41Z" | ---
base_model: refarde/OPEN-SOLAR-KO-10.7B-S-Core
license: apache-2.0
pipeline_tag: text-generation
language:
- en
- ko
tags:
- finetuned
- text-generation
- TensorBlock
- GGUF
datasets:
- royboy0416/ko-alpaca
inference: false
model_type: mixtral
---
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p style="margin-top: 0.5em; margin-bottom: 0em;">
Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a>
</p>
</div>
</div>
## refarde/OPEN-SOLAR-KO-10.7B-S-Core - GGUF
This repo contains GGUF format model files for [refarde/OPEN-SOLAR-KO-10.7B-S-Core](https://huggingface.co/refarde/OPEN-SOLAR-KO-10.7B-S-Core).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
<div style="text-align: left; margin: 20px 0;">
<a href="https://tensorblock.co/waitlist/client" style="display: inline-block; padding: 10px 20px; background-color: #007bff; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;">
Run them on the TensorBlock client using your local machine ↗
</a>
</div>
## Prompt template
```
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [OPEN-SOLAR-KO-10.7B-S-Core-Q2_K.gguf](https://huggingface.co/tensorblock/OPEN-SOLAR-KO-10.7B-S-Core-GGUF/blob/main/OPEN-SOLAR-KO-10.7B-S-Core-Q2_K.gguf) | Q2_K | 3.793 GB | smallest, significant quality loss - not recommended for most purposes |
| [OPEN-SOLAR-KO-10.7B-S-Core-Q3_K_S.gguf](https://huggingface.co/tensorblock/OPEN-SOLAR-KO-10.7B-S-Core-GGUF/blob/main/OPEN-SOLAR-KO-10.7B-S-Core-Q3_K_S.gguf) | Q3_K_S | 4.414 GB | very small, high quality loss |
| [OPEN-SOLAR-KO-10.7B-S-Core-Q3_K_M.gguf](https://huggingface.co/tensorblock/OPEN-SOLAR-KO-10.7B-S-Core-GGUF/blob/main/OPEN-SOLAR-KO-10.7B-S-Core-Q3_K_M.gguf) | Q3_K_M | 4.909 GB | very small, high quality loss |
| [OPEN-SOLAR-KO-10.7B-S-Core-Q3_K_L.gguf](https://huggingface.co/tensorblock/OPEN-SOLAR-KO-10.7B-S-Core-GGUF/blob/main/OPEN-SOLAR-KO-10.7B-S-Core-Q3_K_L.gguf) | Q3_K_L | 5.333 GB | small, substantial quality loss |
| [OPEN-SOLAR-KO-10.7B-S-Core-Q4_0.gguf](https://huggingface.co/tensorblock/OPEN-SOLAR-KO-10.7B-S-Core-GGUF/blob/main/OPEN-SOLAR-KO-10.7B-S-Core-Q4_0.gguf) | Q4_0 | 5.733 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [OPEN-SOLAR-KO-10.7B-S-Core-Q4_K_S.gguf](https://huggingface.co/tensorblock/OPEN-SOLAR-KO-10.7B-S-Core-GGUF/blob/main/OPEN-SOLAR-KO-10.7B-S-Core-Q4_K_S.gguf) | Q4_K_S | 5.776 GB | small, greater quality loss |
| [OPEN-SOLAR-KO-10.7B-S-Core-Q4_K_M.gguf](https://huggingface.co/tensorblock/OPEN-SOLAR-KO-10.7B-S-Core-GGUF/blob/main/OPEN-SOLAR-KO-10.7B-S-Core-Q4_K_M.gguf) | Q4_K_M | 6.095 GB | medium, balanced quality - recommended |
| [OPEN-SOLAR-KO-10.7B-S-Core-Q5_0.gguf](https://huggingface.co/tensorblock/OPEN-SOLAR-KO-10.7B-S-Core-GGUF/blob/main/OPEN-SOLAR-KO-10.7B-S-Core-Q5_0.gguf) | Q5_0 | 6.974 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [OPEN-SOLAR-KO-10.7B-S-Core-Q5_K_S.gguf](https://huggingface.co/tensorblock/OPEN-SOLAR-KO-10.7B-S-Core-GGUF/blob/main/OPEN-SOLAR-KO-10.7B-S-Core-Q5_K_S.gguf) | Q5_K_S | 6.974 GB | large, low quality loss - recommended |
| [OPEN-SOLAR-KO-10.7B-S-Core-Q5_K_M.gguf](https://huggingface.co/tensorblock/OPEN-SOLAR-KO-10.7B-S-Core-GGUF/blob/main/OPEN-SOLAR-KO-10.7B-S-Core-Q5_K_M.gguf) | Q5_K_M | 7.160 GB | large, very low quality loss - recommended |
| [OPEN-SOLAR-KO-10.7B-S-Core-Q6_K.gguf](https://huggingface.co/tensorblock/OPEN-SOLAR-KO-10.7B-S-Core-GGUF/blob/main/OPEN-SOLAR-KO-10.7B-S-Core-Q6_K.gguf) | Q6_K | 8.292 GB | very large, extremely low quality loss |
| [OPEN-SOLAR-KO-10.7B-S-Core-Q8_0.gguf](https://huggingface.co/tensorblock/OPEN-SOLAR-KO-10.7B-S-Core-GGUF/blob/main/OPEN-SOLAR-KO-10.7B-S-Core-Q8_0.gguf) | Q8_0 | 10.740 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/OPEN-SOLAR-KO-10.7B-S-Core-GGUF --include "OPEN-SOLAR-KO-10.7B-S-Core-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/OPEN-SOLAR-KO-10.7B-S-Core-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```
|
QuantiPhy/aya-23-8B-8bq | QuantiPhy | "2024-06-25T16:43:11Z" | 7 | 0 | transformers | [
"transformers",
"safetensors",
"cohere",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"8-bit",
"bitsandbytes",
"region:us"
] | text-generation | "2024-06-25T16:37:30Z" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
ChristianAzinn/mxbai-embed-large-v1-gguf | ChristianAzinn | "2024-04-07T21:56:31Z" | 701 | 2 | sentence-transformers | [
"sentence-transformers",
"gguf",
"mteb",
"transformers",
"transformers.js",
"feature-extraction",
"en",
"arxiv:2309.12871",
"base_model:mixedbread-ai/mxbai-embed-large-v1",
"base_model:quantized:mixedbread-ai/mxbai-embed-large-v1",
"license:apache-2.0",
"autotrain_compatible",
"region:us"
] | feature-extraction | "2024-04-07T20:23:25Z" | ---
base_model: mixedbread-ai/mxbai-embed-large-v1
inference: false
language:
- en
license: apache-2.0
model_creator: mixedbread-ai
model_name: mxbai-embed-large-v1
model_type: bert
quantized_by: ChristianAzinn
library_name: sentence-transformers
pipeline_tag: feature-extraction
tags:
- mteb
- transformers
- transformers.js
- gguf
---
# mxbai-embed-large-v1-gguf
Model creator: [MixedBread AI](https://huggingface.co/mixedbread-ai)
Original model: [mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1)
## Original Description
This is our base sentence embedding model. It was trained using [AnglE](https://arxiv.org/abs/2309.12871) loss on our high-quality large scale data. It achieves SOTA performance on BERT-large scale. Find out more in our [blog post](https://mixedbread.ai/blog/mxbai-embed-large-v1).
## Description
This repo contains GGUF format files for the [mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) embedding model.
These files were converted and quantized with llama.cpp [PR 5500](https://github.com/ggerganov/llama.cpp/pull/5500), commit [34aa045de](https://github.com/ggerganov/llama.cpp/pull/5500/commits/34aa045de44271ff7ad42858c75739303b8dc6eb), on a consumer RTX 4090.
This model supports up to 512 tokens of context.
## Compatibility
These files are compatible with [llama.cpp](https://github.com/ggerganov/llama.cpp) as of commit [4524290e8](https://github.com/ggerganov/llama.cpp/commit/4524290e87b8e107cc2b56e1251751546f4b9051), as well as [LM Studio](https://lmstudio.ai/) as of version 0.2.19.
# Meta-information
## Explanation of quantisation methods
<details>
<summary>Click to see details</summary>
The methods available are:
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
Refer to the Provided Files table below to see what files use which methods, and how.
</details>
## Provided Files
| Name | Quant method | Bits | Size | Use case |
| ---- | ---- | ---- | ---- | ---- |
| [mxbai-embed-large-v1.Q2_K.gguf](https://huggingface.co/ChristianAzinn/mxbai-embed-large-v1-gguf/blob/main/mxbai-embed-large-v1.Q2_K.gguf) | Q2_K | 2 | 144 MB | smallest, significant quality loss - not recommended for most purposes |
| [mxbai-embed-large-v1.Q3_K_S.gguf](https://huggingface.co/ChristianAzinn/mxbai-embed-large-v1-gguf/blob/main/mxbai-embed-large-v1.Q3_K_S.gguf) | Q3_K_S | 3 | 160 MB | very small, high quality loss |
| [mxbai-embed-large-v1.Q3_K_M.gguf](https://huggingface.co/ChristianAzinn/mxbai-embed-large-v1-gguf/blob/main/mxbai-embed-large-v1.Q3_K_M.gguf) | Q3_K_M | 3 | 181 MB | very small, high quality loss |
| [mxbai-embed-large-v1.Q3_K_L.gguf](https://huggingface.co/ChristianAzinn/mxbai-embed-large-v1-gguf/blob/main/mxbai-embed-large-v1.Q3_K_L.gguf) | Q3_K_L | 3 | 198 MB | small, substantial quality loss |
| [mxbai-embed-large-v1.Q4_0.gguf](https://huggingface.co/ChristianAzinn/mxbai-embed-large-v1-gguf/blob/main/mxbai-embed-large-v1.Q4_0.gguf) | Q4_0 | 4 | 200 MB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [mxbai-embed-large-v1.Q4_K_S.gguf](https://huggingface.co/ChristianAzinn/mxbai-embed-large-v1-gguf/blob/main/mxbai-embed-large-v1.Q4_K_S.gguf) | Q4_K_S | 4 | 203 MB | small, greater quality loss |
| [mxbai-embed-large-v1.Q4_K_M.gguf](https://huggingface.co/ChristianAzinn/mxbai-embed-large-v1-gguf/blob/main/mxbai-embed-large-v1.Q4_K_M.gguf) | Q4_K_M | 4 | 216 MB | medium, balanced quality - recommended |
| [mxbai-embed-large-v1.Q5_0.gguf](https://huggingface.co/ChristianAzinn/mxbai-embed-large-v1-gguf/blob/main/mxbai-embed-large-v1.Q5_0.gguf) | Q5_0 | 5 | 237 MB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [mxbai-embed-large-v1.Q5_K_S.gguf](https://huggingface.co/ChristianAzinn/mxbai-embed-large-v1-gguf/blob/main/mxbai-embed-large-v1.Q5_K_S.gguf) | Q5_K_S | 5 | 237 MB | large, low quality loss - recommended |
| [mxbai-embed-large-v1.Q5_K_M.gguf](https://huggingface.co/ChristianAzinn/mxbai-embed-large-v1-gguf/blob/main/mxbai-embed-large-v1.Q5_K_M.gguf) | Q5_K_M | 5 | 246 MB | large, very low quality loss - recommended |
| [mxbai-embed-large-v1.Q6_K.gguf](https://huggingface.co/ChristianAzinn/mxbai-embed-large-v1-gguf/blob/main/mxbai-embed-large-v1.Q6_K.gguf) | Q6_K | 6 | 278 MB | very large, extremely low quality loss |
| [mxbai-embed-large-v1.Q8_0.gguf](https://huggingface.co/ChristianAzinn/mxbai-embed-large-v1-gguf/blob/main/mxbai-embed-large-v1.Q8_0.gguf) | Q8_0 | 8 | 358 MB | very large, extremely low quality loss - recommended |
| [mxbai-embed-large-v1.Q8_0.gguf](https://huggingface.co/ChristianAzinn/mxbai-embed-large-v1-gguf/blob/main/mxbai-embed-large-v1_fp16.gguf) | FP16 | 16 | 670 MB | enormous, pretty much the original model - not recommended |
| [mxbai-embed-large-v1.Q8_0.gguf](https://huggingface.co/ChristianAzinn/mxbai-embed-large-v1-gguf/blob/main/mxbai-embed-large-v1_fp32.gguf) | FP32 | 32 | 1.34 GB | enormous, pretty much the original model - not recommended |
# Examples
## Example Usage with `llama.cpp`
To compute a single embedding, build llama.cpp and run:
```shell
./embedding -ngl 99 -m [filepath-to-gguf].gguf -p 'search_query: What is TSNE?'
```
You can also submit a batch of texts to embed, as long as the total number of tokens does not exceed the context length. Only the first three embeddings are shown by the `embedding` example.
`texts.txt`:
```
search_query: What is TSNE?
search_query: Who is Laurens Van der Maaten?
```
Compute multiple embeddings:
```shell
./embedding -ngl 99 -m [filepath-to-gguf].gguf -f texts.txt
```
## Example Usage with LM Studio
Download the 0.2.19 beta build from here: [Windows](https://releases.lmstudio.ai/windows/0.2.19/beta/LM-Studio-0.2.19-Setup-Preview-1.exe) [MacOS](https://releases.lmstudio.ai/mac/arm64/0.2.19/beta/LM-Studio-darwin-arm64-0.2.19-Preview-1.zip) [Linux](https://releases.lmstudio.ai/linux/0.2.19/beta/LM_Studio-0.2.19-Preview-1.AppImage)
Once installed, open the app. The home should look like this:

Search for either "ChristianAzinn" in the main search bar or go to the "Search" tab on the left menu and search the name there.

Select your model from those that appear (this example uses `bge-small-en-v1.5-gguf`) and select which quantization you want to download. Since this model is pretty small, I recommend Q8_0, if not f16/32. Generally, the lower you go in the list (or the bigger the number gets), the larger the file and the better the performance.

You will see a green checkmark and the word "Downloaded" once the model has successfully downloaded, which can take some time depending on your network speeds.

Once this model is finished downloading, navigate to the "Local Server" tab on the left menu and open the loader for text embedding models. This loader does not appear before version 0.2.19, so ensure you downloaded the correct version.

Select the model you just downloaded from the dropdown that appears to load it. You may need to play with configuratios in the right-side menu, such as GPU offload if it doesn't fit entirely into VRAM.

All that's left to do is to hit the "Start Server" button:

And if you see text like that shown below in the console, you're good to go! You can use this as a drop-in replacement for the OpenAI embeddings API in any application that requires it, or you can query the endpoint directly to test it out.

Example curl request to the API endpoint:
```shell
curl http://localhost:1234/v1/embeddings \
-H "Content-Type: application/json" \
-d '{
"input": "Your text string goes here",
"model": "model-identifier-here"
}'
```
For more information, see the LM Studio [text embedding documentation](https://lmstudio.ai/docs/text-embeddings).
## Acknowledgements
Thanks to the LM Studio team and everyone else working on open-source AI.
This README is inspired by that of [nomic-ai-embed-text-v1.5-GGUF](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5-GGUF), another excellent embedding model, and those of the legendary [TheBloke](https://huggingface.co/TheBloke). |
Nazzyk/ppo-LunarLander-v2 | Nazzyk | "2023-03-24T23:58:05Z" | 1 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | reinforcement-learning | "2023-03-12T12:53:23Z" | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 265.96 +/- 18.28
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Pochitas/ruBert7 | Pochitas | "2025-02-23T14:17:43Z" | 0 | 0 | null | [
"text-classification",
"ru",
"base_model:DeepPavlov/rubert-base-cased",
"base_model:finetune:DeepPavlov/rubert-base-cased",
"region:us"
] | text-classification | "2025-02-23T14:04:06Z" | ---
language:
- ru
base_model:
- DeepPavlov/rubert-base-cased
pipeline_tag: text-classification
--- |
lmqg/mt5-base-frquad-ae | lmqg | "2023-01-09T14:13:22Z" | 106 | 0 | transformers | [
"transformers",
"pytorch",
"mt5",
"text2text-generation",
"answer extraction",
"fr",
"dataset:lmqg/qg_frquad",
"arxiv:2210.03992",
"license:cc-by-4.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | "2023-01-09T14:11:17Z" |
---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: fr
datasets:
- lmqg/qg_frquad
pipeline_tag: text2text-generation
tags:
- answer extraction
widget:
- text: "Pourtant, la strophe spensérienne, utilisée cinq fois avant que ne commence le chœur, constitue en soi un vecteur dont les répétitions structurelles, selon Ricks, relèvent du pur lyrisme tout en constituant une menace potentielle. Après les huit sages pentamètres iambiques, l'alexandrin final <hl> permet une pause <hl>, « véritable illusion d'optique » qu'accentuent les nombreuses expressions archaïsantes telles que did swoon, did seem, did go, did receive, did make, qui doublent le prétérit en un temps composé et paraissent à la fois « très précautionneuses et très peu pressées »."
example_title: "Answering Extraction Example 1"
- text: "Néanmoins, une fois encore, l'arithmétique modulaire est insuffisante pour venir à bout du théorème. Dirichlet utilise de nombreuses techniques analytiques, comme les séries entières et l'analyse complexe. Le fruit de ces travaux donne naissance à une nouvelle branche des mathématiques : la théorie analytique des nombres. L'un des points cruciaux de cette théorie provient de l'unique article de <hl> Bernhard Riemann <hl> en théorie des nombres : Sur le nombre de nombres premiers inférieurs à une taille donnée. Il conjecture une localisation des racines de sa fonction ζ. La recherche de la position des racines, initiée par Dirichlet, devient une préoccupation centrale et reste l'une des conjectures pressenties comme les plus difficiles des mathématiques de notre époque."
example_title: "Answering Extraction Example 2"
model-index:
- name: lmqg/mt5-base-frquad-ae
results:
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_frquad
type: default
args: default
metrics:
- name: BLEU4 (Answer Extraction)
type: bleu4_answer_extraction
value: 3.8
- name: ROUGE-L (Answer Extraction)
type: rouge_l_answer_extraction
value: 13.02
- name: METEOR (Answer Extraction)
type: meteor_answer_extraction
value: 14.28
- name: BERTScore (Answer Extraction)
type: bertscore_answer_extraction
value: 64.97
- name: MoverScore (Answer Extraction)
type: moverscore_answer_extraction
value: 50.67
- name: AnswerF1Score (Answer Extraction)
type: answer_f1_score__answer_extraction
value: 19.32
- name: AnswerExactMatch (Answer Extraction)
type: answer_exact_match_answer_extraction
value: 3.92
---
# Model Card of `lmqg/mt5-base-frquad-ae`
This model is fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) for answer extraction on the [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
### Overview
- **Language model:** [google/mt5-base](https://huggingface.co/google/mt5-base)
- **Language:** fr
- **Training data:** [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="fr", model="lmqg/mt5-base-frquad-ae")
# model prediction
answers = model.generate_a("Créateur » (Maker), lui aussi au singulier, « le Suprême Berger » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc.")
```
- With `transformers`
```python
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/mt5-base-frquad-ae")
output = pipe("Pourtant, la strophe spensérienne, utilisée cinq fois avant que ne commence le chœur, constitue en soi un vecteur dont les répétitions structurelles, selon Ricks, relèvent du pur lyrisme tout en constituant une menace potentielle. Après les huit sages pentamètres iambiques, l'alexandrin final <hl> permet une pause <hl>, « véritable illusion d'optique » qu'accentuent les nombreuses expressions archaïsantes telles que did swoon, did seem, did go, did receive, did make, qui doublent le prétérit en un temps composé et paraissent à la fois « très précautionneuses et très peu pressées ».")
```
## Evaluation
- ***Metric (Answer Extraction)***: [raw metric file](https://huggingface.co/lmqg/mt5-base-frquad-ae/raw/main/eval/metric.first.answer.paragraph_sentence.answer.lmqg_qg_frquad.default.json)
| | Score | Type | Dataset |
|:-----------------|--------:|:--------|:-----------------------------------------------------------------|
| AnswerExactMatch | 3.92 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
| AnswerF1Score | 19.32 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
| BERTScore | 64.97 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
| Bleu_1 | 7.64 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
| Bleu_2 | 5.8 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
| Bleu_3 | 4.65 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
| Bleu_4 | 3.8 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
| METEOR | 14.28 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
| MoverScore | 50.67 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
| ROUGE_L | 13.02 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
## Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_frquad
- dataset_name: default
- input_types: ['paragraph_sentence']
- output_types: ['answer']
- prefix_types: None
- model: google/mt5-base
- max_length: 512
- max_length_output: 32
- epoch: 15
- batch: 8
- lr: 0.0001
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 8
- label_smoothing: 0.15
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-base-frquad-ae/raw/main/trainer_config.json).
## Citation
```
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
```
|
minhnguyennnnnn/7304a969-cc0d-4b38-9ad4-6281b96400f9 | minhnguyennnnnn | "2025-01-31T22:16:49Z" | 6 | 0 | peft | [
"peft",
"safetensors",
"mistral",
"axolotl",
"generated_from_trainer",
"base_model:NousResearch/Nous-Hermes-2-Mistral-7B-DPO",
"base_model:adapter:NousResearch/Nous-Hermes-2-Mistral-7B-DPO",
"license:apache-2.0",
"8-bit",
"bitsandbytes",
"region:us"
] | null | "2025-01-31T20:36:18Z" | ---
library_name: peft
license: apache-2.0
base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 7304a969-cc0d-4b38-9ad4-6281b96400f9
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 0965318bec140d7e_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/0965318bec140d7e_train_data.json
type:
field_input: input
field_instruction: instruction
field_output: responses
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: minhnguyennnnnn/7304a969-cc0d-4b38-9ad4-6281b96400f9
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 2
mlflow_experiment_name: /tmp/0965318bec140d7e_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 0a74c775-681d-4a4b-a101-ef46a668f347
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 0a74c775-681d-4a4b-a101-ef46a668f347
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# 7304a969-cc0d-4b38-9ad4-6281b96400f9
This model is a fine-tuned version of [NousResearch/Nous-Hermes-2-Mistral-7B-DPO](https://huggingface.co/NousResearch/Nous-Hermes-2-Mistral-7B-DPO) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1693
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.7509 | 0.0062 | 200 | 0.1693 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
hiroki-rad/google-gemma-2-2b-128-ft-3000-prompt-changed | hiroki-rad | "2024-12-15T01:42:15Z" | 89 | 0 | transformers | [
"transformers",
"safetensors",
"gemma2",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | "2024-12-15T01:40:22Z" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Omarmousa/xlm-roberta-base-finetuned-panx-ar | Omarmousa | "2023-11-26T19:10:22Z" | 124 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"dataset:xtreme",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | "2023-11-26T19:02:27Z" | ---
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-ar
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
args: PAN-X.ar
metrics:
- name: F1
type: f1
value: 0.8894684900606231
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-ar
This model is a fine-tuned version of [tner/xlm-roberta-base-panx-dataset-ar](https://huggingface.co/tner/xlm-roberta-base-panx-dataset-ar) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2237
- F1: 0.8895
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.234 | 1.0 | 525 | 0.2382 | 0.8587 |
| 0.1244 | 2.0 | 1050 | 0.2153 | 0.8844 |
| 0.0738 | 3.0 | 1575 | 0.2237 | 0.8895 |
### Framework versions
- Transformers 4.16.2
- Pytorch 2.1.0+cu118
- Datasets 1.16.1
- Tokenizers 0.15.0
|
Kastakin/dqn-SpaceInvadersNoFrameskip-v4 | Kastakin | "2022-12-20T16:02:56Z" | 2 | 0 | stable-baselines3 | [
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | reinforcement-learning | "2022-12-20T14:02:23Z" | ---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 986.00 +/- 315.59
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Kastakin -f logs/
python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Kastakin -f logs/
rl_zoo3 enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Kastakin
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.25),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 3000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
sail-rvc/Tohru_e300_s5400 | sail-rvc | "2023-07-14T07:33:20Z" | 1 | 0 | transformers | [
"transformers",
"rvc",
"sail-rvc",
"audio-to-audio",
"endpoints_compatible",
"region:us"
] | audio-to-audio | "2023-07-14T07:33:01Z" |
---
pipeline_tag: audio-to-audio
tags:
- rvc
- sail-rvc
---
# Tohru_e300_s5400
## RVC Model

This model repo was automatically generated.
Date: 2023-07-14 07:33:20
Bot Name: juuxnscrap
Model Type: RVC
Source: https://huggingface.co/juuxn/RVCModels/
Reason: Converting into loadable format for https://github.com/chavinlo/rvc-runpod
|
z4x/Reinforce-Pixelcopter | z4x | "2023-02-05T21:16:22Z" | 0 | 0 | null | [
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] | reinforcement-learning | "2023-02-05T21:00:58Z" | ---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-Pixelcopter
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 9.50 +/- 7.63
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
irodrigues/my_awesome_opus_books_model | irodrigues | "2023-05-21T15:00:24Z" | 115 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:opus_books",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | "2023-05-21T14:05:57Z" | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- opus_books
metrics:
- bleu
model-index:
- name: my_awesome_opus_books_model
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: opus_books
type: opus_books
config: en-fr
split: train
args: en-fr
metrics:
- name: Bleu
type: bleu
value: 5.639
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_opus_books_model
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the opus_books dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6052
- Bleu: 5.639
- Gen Len: 17.6262
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|
| 1.8603 | 1.0 | 6355 | 1.6285 | 5.4527 | 17.6356 |
| 1.8073 | 2.0 | 12710 | 1.6052 | 5.639 | 17.6262 |
### Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3
|
JsSparkYyx/flan-t5-base-finetuned-lora-color-3 | JsSparkYyx | "2023-11-20T02:56:36Z" | 0 | 0 | null | [
"safetensors",
"generated_from_trainer",
"base_model:google/flan-t5-base",
"base_model:finetune:google/flan-t5-base",
"license:apache-2.0",
"region:us"
] | null | "2023-11-20T02:56:18Z" | ---
license: apache-2.0
base_model: google/flan-t5-base
tags:
- generated_from_trainer
model-index:
- name: flan-t5-base-finetuned-lora-color-3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# flan-t5-base-finetuned-lora-color-3
This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 50
- eval_batch_size: 50
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.35.1
- Pytorch 2.1.1+cu118
- Datasets 2.14.7
- Tokenizers 0.14.1
|
AlexxxSem/gemma2b-dolly15k-r128 | AlexxxSem | "2024-04-26T20:12:28Z" | 2 | 0 | peft | [
"peft",
"tensorboard",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"base_model:google/gemma-2b",
"base_model:adapter:google/gemma-2b",
"license:gemma",
"region:us"
] | null | "2024-04-26T18:47:09Z" | ---
license: gemma
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: google/gemma-2b
model-index:
- name: gemma2b-dolly15k-r128
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gemma2b-dolly15k-r128
This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 1
### Training results
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.1
- Pytorch 2.1.2
- Datasets 2.19.0
- Tokenizers 0.19.1 |
DevQuasar/EmTpro01.CodeLlama-7b-java-16bit-GGUF | DevQuasar | "2025-02-01T23:06:34Z" | 63 | 0 | null | [
"gguf",
"text-generation",
"base_model:EmTpro01/CodeLlama-7b-java-16bit",
"base_model:quantized:EmTpro01/CodeLlama-7b-java-16bit",
"endpoints_compatible",
"region:us"
] | text-generation | "2024-11-08T14:38:02Z" | ---
base_model:
- EmTpro01/CodeLlama-7b-java-16bit
pipeline_tag: text-generation
---
[<img src="https://raw.githubusercontent.com/csabakecskemeti/devquasar/main/dq_logo_black-transparent.png" width="200"/>](https://devquasar.com)
'Make knowledge free for everyone'
Quantized version of: [EmTpro01/CodeLlama-7b-java-16bit](https://huggingface.co/EmTpro01/CodeLlama-7b-java-16bit)
<a href='https://ko-fi.com/L4L416YX7C' target='_blank'><img height='36' style='border:0px;height:36px;' src='https://storage.ko-fi.com/cdn/kofi6.png?v=6' border='0' alt='Buy Me a Coffee at ko-fi.com' /></a>
|
ivillar/whisperfinetune-cosine | ivillar | "2024-04-30T19:57:43Z" | 4 | 0 | transformers | [
"transformers",
"safetensors",
"whisper",
"automatic-speech-recognition",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | "2024-04-30T19:57:26Z" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
OneFly7/T5-base-finetuned-on-webnlg-train-eredat-Q1-epoch10 | OneFly7 | "2024-05-27T12:36:29Z" | 163 | 0 | transformers | [
"transformers",
"safetensors",
"t5",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | "2024-05-27T12:35:59Z" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
sqiangcao/sd-class-butterflies-32 | sqiangcao | "2024-01-26T12:06:56Z" | 44 | 0 | diffusers | [
"diffusers",
"safetensors",
"pytorch",
"unconditional-image-generation",
"diffusion-models-class",
"license:mit",
"diffusers:DDPMPipeline",
"region:us"
] | unconditional-image-generation | "2024-01-26T12:05:59Z" | ---
license: mit
tags:
- pytorch
- diffusers
- unconditional-image-generation
- diffusion-models-class
---
# Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class)
This model is a diffusion model for unconditional image generation of cute 🦋.
## Usage
```python
from diffusers import DDPMPipeline
pipeline = DDPMPipeline.from_pretrained('sqiangcao/sd-class-butterflies-32')
image = pipeline().images[0]
image
```
|
rahmaabusalma/bert-base-indonesian-1.5G-sentiment-analysis-smsa-tuning | rahmaabusalma | "2024-05-20T08:35:33Z" | 110 | 1 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa",
"base_model:finetune:ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | "2024-05-20T08:34:58Z" | ---
license: mit
base_model: ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa
tags:
- generated_from_trainer
model-index:
- name: bert-base-indonesian-1.5G-sentiment-analysis-smsa-tuning
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-indonesian-1.5G-sentiment-analysis-smsa-tuning
This model is a fine-tuned version of [ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa](https://huggingface.co/ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
impossibleexchange/h75 | impossibleexchange | "2025-02-08T19:18:39Z" | 26 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | "2025-02-08T19:15:21Z" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
lhong4759/a0ab8e04-e48a-4a1b-a816-9f873621660b | lhong4759 | "2025-01-17T22:10:49Z" | 6 | 0 | peft | [
"peft",
"safetensors",
"phi3",
"axolotl",
"generated_from_trainer",
"custom_code",
"base_model:migtissera/Tess-v2.5-Phi-3-medium-128k-14B",
"base_model:adapter:migtissera/Tess-v2.5-Phi-3-medium-128k-14B",
"license:mit",
"8-bit",
"bitsandbytes",
"region:us"
] | null | "2025-01-17T20:19:19Z" | ---
library_name: peft
license: mit
base_model: migtissera/Tess-v2.5-Phi-3-medium-128k-14B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: a0ab8e04-e48a-4a1b-a816-9f873621660b
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: migtissera/Tess-v2.5-Phi-3-medium-128k-14B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- ea5f08ab221d8fbb_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/ea5f08ab221d8fbb_train_data.json
type:
field_instruction: premise
field_output: entailment
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: lhong4759/a0ab8e04-e48a-4a1b-a816-9f873621660b
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 2
mlflow_experiment_name: /tmp/ea5f08ab221d8fbb_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 16143330-1a5b-48c0-b483-592dd437034d
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 16143330-1a5b-48c0-b483-592dd437034d
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# a0ab8e04-e48a-4a1b-a816-9f873621660b
This model is a fine-tuned version of [migtissera/Tess-v2.5-Phi-3-medium-128k-14B](https://huggingface.co/migtissera/Tess-v2.5-Phi-3-medium-128k-14B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6320
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.7287 | 0.0068 | 200 | 0.6320 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
saraleivam/GURU2-paraphrase-multilingual-MiniLM-L12-v2 | saraleivam | "2024-06-24T20:57:02Z" | 13 | 1 | sentence-transformers | [
"sentence-transformers",
"safetensors",
"bert",
"sentence-similarity",
"feature-extraction",
"generated_from_trainer",
"dataset_size:500",
"loss:SoftmaxLoss",
"arxiv:1908.10084",
"base_model:saraleivam/GURU-paraphrase-multilingual-MiniLM-L12-v2",
"base_model:finetune:saraleivam/GURU-paraphrase-multilingual-MiniLM-L12-v2",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] | sentence-similarity | "2024-06-24T20:56:31Z" | ---
base_model: saraleivam/GURU-paraphrase-multilingual-MiniLM-L12-v2
datasets: []
language: []
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:500
- loss:SoftmaxLoss
widget:
- source_sentence: Servicio consultor SAP MM con experiencia Data Maestra SemiSenior,
actualizaciones, referencias, ingles B2, remoto. Que maneje plantillas de SAP
Bridge e Ibérico. Con experiencia en ServiceNow. No llegan ni a implementar, ni
a ejecutar ni a hacer roll out. Llega a enfocarse en 30% en master data.
sentences:
- Data mining of Clinical Databases - CDSS 1.Data Science.Machine Learning.Understand
the Schema of publicly available EHR databases (MIMIC-III). Recognise the International
Classification of Diseases (ICD) use. Extract and visualise descriptive statistics
from clinical databases. Understand and extract key clinical outcomes such as
mortality and stay of length
- Natural Language Processing on Google Cloud.Data Science.Machine Learning.Machine
Learning, Natural Language Processing, Tensorflow
- 'Auditing I: Conceptual Foundations of Auditing.Business.Business Essentials.Accounting,
Audit, Critical Thinking, Financial Analysis, Regulations and Compliance, Risk
Management, Financial Accounting, General Accounting, Leadership and Management,
Finance'
- source_sentence: Servicio consultor SAP MM con experiencia Data Maestra SemiSenior,
actualizaciones, referencias, ingles B2, remoto. Que maneje plantillas de SAP
Bridge e Ibérico. Con experiencia en ServiceNow. No llegan ni a implementar, ni
a ejecutar ni a hacer roll out. Llega a enfocarse en 30% en master data.
sentences:
- Generando modelos con Auto Machine Learning.Data Science.Machine Learning.Desarrollar
modelos utilizando herramientas de Auto Machine Learning. Explorar los datos y
hacer el tratamiento para su uso al generar modelos
- Professionalism in Allied Health.Personal Development.Personal Development.Gain
an understanding of the expectations of an allied healthcare professional in the
workplace. Develop and exercise emotional intelligence, self-management, and interpersonal
skills. Build and improve internal and external communication skills with all
exchanges. Enhance the patient care experience with successful interactions and
patient satisfaction
- Big Data, Genes, and Medicine.Health.Health Informatics.Big Data, Bioinformatics,
Data Analysis, Data Analysis Software, Statistical Programming, Algorithms, Exploratory
Data Analysis, Computer Programming
- source_sentence: Servicio consultor SAP MM con experiencia Data Maestra SemiSenior,
actualizaciones, referencias, ingles B2, remoto. Que maneje plantillas de SAP
Bridge e Ibérico. Con experiencia en ServiceNow. No llegan ni a implementar, ni
a ejecutar ni a hacer roll out. Llega a enfocarse en 30% en master data.
sentences:
- Retail Marketing Strategy.Business.Marketing.Brand Management, Leadership and
Management, Marketing, Sales, Strategy, Strategy and Operations, Retail Sales,
Retail Store Operations, Data Analysis, E-Commerce
- Supporting Veteran Success in Higher Education.Personal Development.Personal Development.Supporting
Veteran Success in Higher Education
- Advanced AI Techniques for the Supply Chain.Data Science.Machine Learning.Machine
Learning, Natural Language Processing
- source_sentence: Servicio consultor SAP MM con experiencia Data Maestra SemiSenior,
actualizaciones, referencias, ingles B2, remoto. Que maneje plantillas de SAP
Bridge e Ibérico. Con experiencia en ServiceNow. No llegan ni a implementar, ni
a ejecutar ni a hacer roll out. Llega a enfocarse en 30% en master data.
sentences:
- Fundamentals of Flight mechanics.Physical Science and Engineering.Physics and
Astronomy.How Mach number can impact stall speed.. Why turboprops consume less
than turbojets.. What exactly mean indications given by flight instruments (i.e.
anemometer, altimeter).
- 'Learn English: Beginning Grammar.Language Learning.Learning English.Writing,
Communication'
- Product Management Certification.Business.Leadership and Management.Apply key
product management skills, tools, and techniques to engage and manage key stakeholders
and clients. Identify product strategy development and implementation methods
and best practices to ensure the right product is produced. Describe product development
and analysis best practices to effectively manage change and ensure a successful
product launch. Test what you have learned in a series of practical exercises
allowing you to demonstrate real-word product management
- source_sentence: Servicio consultor SAP MM con experiencia Data Maestra SemiSenior,
actualizaciones, referencias, ingles B2, remoto. Que maneje plantillas de SAP
Bridge e Ibérico. Con experiencia en ServiceNow. No llegan ni a implementar, ni
a ejecutar ni a hacer roll out. Llega a enfocarse en 30% en master data.
sentences:
- 'Python, Bash and SQL Essentials for Data Engineering.Computer Science.Software
Development.Develop data engineering solutions with a minimal and essential subset
of the Python language and the Linux environment. Design scripts to connect and
query a SQL database using Python. Use a scraping library in Python to read, identify
and extract data from websites '
- 'AI-Enhanced Content Creation:Elevate Copywriting with Humata.Data Science.Machine
Learning.Use prompts in Humata AI to get the information needed to generate an
ad copy from the source files. . Create engaging ads and blog posts tailored
to your audience with the help of Humata AI prompts. . Create a compelling advertisement
for various online platforms using prompt engineering in Humata AI. '
- SQL for Data Science Capstone Project.Data Science.Data Analysis.Develop a project
proposal and select your data. Perform descriptive statistics as part of your
exploratory analysis. Develop metrics and perform advanced techniques in SQL.
Present your findings and make recommendations
---
# SentenceTransformer based on saraleivam/GURU-paraphrase-multilingual-MiniLM-L12-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [saraleivam/GURU-paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/saraleivam/GURU-paraphrase-multilingual-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [saraleivam/GURU-paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/saraleivam/GURU-paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision 0f16d34e08fc583b71c922dc18d3b14eba17983c -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("saraleivam/GURU2-paraphrase-multilingual-MiniLM-L12-v2")
# Run inference
sentences = [
'Servicio consultor SAP MM con experiencia Data Maestra SemiSenior, actualizaciones, referencias, ingles B2, remoto. Que maneje plantillas de SAP Bridge e Ibérico. Con experiencia en ServiceNow. No llegan ni a implementar, ni a ejecutar ni a hacer roll out. Llega a enfocarse en 30% en master data.',
'Python, Bash and SQL Essentials for Data Engineering.Computer Science.Software Development.Develop data engineering solutions with a minimal and essential subset of the Python language and the Linux environment. Design scripts to connect and query a SQL database using Python. Use a scraping library in Python to read, identify and extract data from websites ',
'AI-Enhanced Content Creation:Elevate Copywriting with Humata.Data Science.Machine Learning.Use prompts in Humata AI to get the information needed to generate an ad copy from the source files. . Create engaging ads and blog posts tailored to your audience with the help of Humata AI prompts. . Create a compelling advertisement for various online platforms using prompt engineering in Humata AI. ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 500 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-------------------------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 77 tokens</li><li>mean: 77.0 tokens</li><li>max: 77 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 64.05 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>0: ~17.00%</li><li>1: ~25.00%</li><li>2: ~58.00%</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
| <code>Servicio consultor SAP MM con experiencia Data Maestra SemiSenior, actualizaciones, referencias, ingles B2, remoto. Que maneje plantillas de SAP Bridge e Ibérico. Con experiencia en ServiceNow. No llegan ni a implementar, ni a ejecutar ni a hacer roll out. Llega a enfocarse en 30% en master data.</code> | <code>Introduction to Generative AI - 한국어.Information Technology.Cloud Computing.생성형 AI 정의. 생성형 AI의 작동 방식 설명. 생성형 AI 모델 유형 설명. 생성형 AI 애플리케이션 설명</code> | <code>0</code> |
| <code>Servicio consultor SAP MM con experiencia Data Maestra SemiSenior, actualizaciones, referencias, ingles B2, remoto. Que maneje plantillas de SAP Bridge e Ibérico. Con experiencia en ServiceNow. No llegan ni a implementar, ni a ejecutar ni a hacer roll out. Llega a enfocarse en 30% en master data.</code> | <code>Mastering Excel Essentials to Enhance Business Value.Business.Business Essentials.Effectively input data and efficiently navigate large spreadsheets.. Employ various "hacks" and expertly apply (the most appropriate) built-in functions in Excel to increase productivity and streamline workflow.. Apply the "what-if" analysis tools in Excel to conduct break-even analysis, conduct sensitivity analysis and support decision-making.</code> | <code>1</code> |
| <code>Servicio consultor SAP MM con experiencia Data Maestra SemiSenior, actualizaciones, referencias, ingles B2, remoto. Que maneje plantillas de SAP Bridge e Ibérico. Con experiencia en ServiceNow. No llegan ni a implementar, ni a ejecutar ni a hacer roll out. Llega a enfocarse en 30% en master data.</code> | <code>Exploring Piano Literature: The Piano Sonata.Arts and Humanities.Music and Art.Identify specific historical time periods in which the popularity of sonatas increases or decreases and the reasons behind these trends. . Identify sonata form. Recognize the most influential pieces in the sonata repertoire. </code> | <code>2</code> |
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
### Training Hyperparameters
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3.0
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.1+cu121
- Accelerate: 0.31.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers and SoftmaxLoss
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |
sivasis-tripathy/Llama-2-7b-chat-midjourney-prompts-2 | sivasis-tripathy | "2023-08-09T11:15:35Z" | 3 | 1 | peft | [
"peft",
"region:us"
] | null | "2023-08-09T11:10:44Z" | ---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0.dev0
|
VERSIL91/8f862e44-82ea-4e1e-bf5c-1a8ef239d495 | VERSIL91 | "2024-12-29T00:35:52Z" | 7 | 0 | peft | [
"peft",
"safetensors",
"gemma2",
"axolotl",
"generated_from_trainer",
"base_model:UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2",
"base_model:adapter:UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2",
"license:gemma",
"region:us"
] | null | "2024-12-29T00:28:52Z" | ---
library_name: peft
license: gemma
base_model: UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 8f862e44-82ea-4e1e-bf5c-1a8ef239d495
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
accelerate_config:
dynamo_backend: inductor
mixed_precision: bf16
num_machines: 1
num_processes: auto
use_cpu: false
adapter: lora
base_model: UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 62746d7cba498e88_train_data.json
ds_type: json
field: question
path: /workspace/input_data/62746d7cba498e88_train_data.json
type: completion
debug: null
deepspeed: null
device_map: auto
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: true
group_by_length: false
hub_model_id: VERSIL91/8f862e44-82ea-4e1e-bf5c-1a8ef239d495
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lora_target_modules:
- q_proj
- v_proj
lr_scheduler: cosine
max_memory:
0: 70GiB
max_steps: 5
micro_batch_size: 2
mlflow_experiment_name: /tmp/62746d7cba498e88_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
quantization_config:
llm_int8_enable_fp32_cpu_offload: true
load_in_8bit: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
torch_compile: true
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 8f862e44-82ea-4e1e-bf5c-1a8ef239d495
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 8f862e44-82ea-4e1e-bf5c-1a8ef239d495
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 8f862e44-82ea-4e1e-bf5c-1a8ef239d495
This model is a fine-tuned version of [UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2](https://huggingface.co/UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 6.2705
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 7.4229 | 0.0429 | 1 | 6.9510 |
| 7.0632 | 0.0858 | 2 | 6.8305 |
| 6.4964 | 0.1716 | 4 | 6.2705 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
DrishtiSharma/speecht5_finetuned_voxpopuli_es_20k_steps_bs_8 | DrishtiSharma | "2023-08-01T21:57:41Z" | 80 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"speecht5",
"text-to-audio",
"generated_from_trainer",
"dataset:voxpopuli",
"base_model:microsoft/speecht5_tts",
"base_model:finetune:microsoft/speecht5_tts",
"license:mit",
"endpoints_compatible",
"region:us"
] | text-to-audio | "2023-08-01T20:09:40Z" | ---
license: mit
base_model: microsoft/speecht5_tts
tags:
- generated_from_trainer
datasets:
- voxpopuli
model-index:
- name: speecht5_finetuned_voxpopuli_es_20k_steps
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# speecht5_finetuned_voxpopuli_es_20k_steps
This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the voxpopuli dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4309
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 20000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 0.4928 | 5.4 | 5000 | 0.4378 |
| 0.4567 | 10.8 | 10000 | 0.4332 |
| 0.4456 | 16.2 | 15000 | 0.4323 |
| 0.4394 | 21.6 | 20000 | 0.4309 |
### Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.2
- Tokenizers 0.13.3
|
mradermacher/Z1-Coder-7B-GGUF | mradermacher | "2025-03-01T08:34:07Z" | 0 | 0 | transformers | [
"transformers",
"gguf",
"en",
"base_model:Z1-Coder/Z1-Coder-7B",
"base_model:quantized:Z1-Coder/Z1-Coder-7B",
"license:mit",
"endpoints_compatible",
"region:us",
"conversational"
] | null | "2025-03-01T08:25:07Z" | ---
base_model: Z1-Coder/Z1-Coder-7B
language:
- en
library_name: transformers
license: mit
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/Z1-Coder/Z1-Coder-7B
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Z1-Coder-7B-GGUF/resolve/main/Z1-Coder-7B.Q2_K.gguf) | Q2_K | 3.1 | |
| [GGUF](https://huggingface.co/mradermacher/Z1-Coder-7B-GGUF/resolve/main/Z1-Coder-7B.Q3_K_S.gguf) | Q3_K_S | 3.6 | |
| [GGUF](https://huggingface.co/mradermacher/Z1-Coder-7B-GGUF/resolve/main/Z1-Coder-7B.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Z1-Coder-7B-GGUF/resolve/main/Z1-Coder-7B.Q3_K_L.gguf) | Q3_K_L | 4.2 | |
| [GGUF](https://huggingface.co/mradermacher/Z1-Coder-7B-GGUF/resolve/main/Z1-Coder-7B.IQ4_XS.gguf) | IQ4_XS | 4.3 | |
| [GGUF](https://huggingface.co/mradermacher/Z1-Coder-7B-GGUF/resolve/main/Z1-Coder-7B.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Z1-Coder-7B-GGUF/resolve/main/Z1-Coder-7B.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Z1-Coder-7B-GGUF/resolve/main/Z1-Coder-7B.Q5_K_S.gguf) | Q5_K_S | 5.4 | |
| [GGUF](https://huggingface.co/mradermacher/Z1-Coder-7B-GGUF/resolve/main/Z1-Coder-7B.Q5_K_M.gguf) | Q5_K_M | 5.5 | |
| [GGUF](https://huggingface.co/mradermacher/Z1-Coder-7B-GGUF/resolve/main/Z1-Coder-7B.Q6_K.gguf) | Q6_K | 6.4 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Z1-Coder-7B-GGUF/resolve/main/Z1-Coder-7B.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Z1-Coder-7B-GGUF/resolve/main/Z1-Coder-7B.f16.gguf) | f16 | 15.3 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|
SteffRhes/de_APIS_OEBL_NER_lg | SteffRhes | "2024-12-13T21:35:31Z" | 11 | 0 | spacy | [
"spacy",
"token-classification",
"de",
"dataset:SteffRhes/APIS_OEBL__Named_Entity_Recognition",
"license:mit",
"model-index",
"region:us"
] | token-classification | "2023-11-30T17:51:41Z" | ---
tags:
- spacy
- token-classification
language:
- de
model-index:
- name: de_APIS_OEBL_NER_lg
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.7671428571
- name: NER Recall
type: recall
value: 0.7902869757
- name: NER F Score
type: f_score
value: 0.7785429503
license: mit
datasets:
- SteffRhes/APIS_OEBL__Named_Entity_Recognition
library_name: spacy
pipeline_tag: token-classification
---
| Feature | Description |
| --- | --- |
| **Name** | `de_APIS_OEBL_NER_lg` |
| **Version** | `1.0` |
| **spaCy** | `>=3.6.0,<3.7.0` |
| **Default Pipeline** | `tok2vec`, `ner` |
| **Components** | `tok2vec`, `ner` |
| **Vectors** | 500000 keys, 500000 unique vectors (300 dimensions) |
| **Sources** | n/a |
| **License** | n/a |
| **Author** | [n/a]() |
### Label Scheme
<details>
<summary>View label scheme (3 labels for 1 components)</summary>
| Component | Labels |
| --- | --- |
| **`ner`** | `LOC`, `ORG`, `PER` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `ENTS_F` | 77.85 |
| `ENTS_P` | 76.71 |
| `ENTS_R` | 79.03 |
| `TOK2VEC_LOSS` | 13266.36 |
| `NER_LOSS` | 378634.81 |
### Sources
Trained on data originating from the [APIS project](https://www.oeaw.ac.at/acdh/projects/completed-projects/apis) and the [Austrian Biographical Lexicon (ÖBL)](https://www.oeaw.ac.at/acdh/oebl).
Reproducible training context (model m2): https://github.com/acdh-oeaw/veld_chain_7_train/
Dataset available here: https://huggingface.co/datasets/SteffRhes/APIS_OEBL__Named_Entity_Recognition |
guydebruyn/dqn-SpaceInvadersNoFrameskip-v4 | guydebruyn | "2023-09-14T03:31:42Z" | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | reinforcement-learning | "2023-09-14T03:31:03Z" | ---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 616.00 +/- 136.58
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga guydebruyn -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga guydebruyn -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga guydebruyn
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
# Environment Arguments
```python
{'render_mode': 'rgb_array'}
```
|
epchannel/EpXTTS | epchannel | "2025-04-04T10:13:21Z" | 0 | 0 | null | [
"text-to-speech",
"vi",
"dataset:capleaf/viVoice",
"license:other",
"region:us"
] | text-to-speech | "2025-04-04T09:57:02Z" | ---
license: other
license_name: coqui-public-model-license
license_link: https://coqui.ai/cpml
pipeline_tag: text-to-speech
datasets:
- capleaf/viVoice
language:
- vi
---
# viⓍTTS
viⓍTTS là mô hình tạo sinh giọng nói cho phép bạn sao chép giọng nói sang các ngôn ngữ khác nhau chỉ bằng cách sử dụng một đoạn âm thanh nhanh dài 6 giây. Mô hình này được tiếp tục đào tạo từ mô hình [XTTS-v2.0.3](https://huggingface.co/coqui/XTTS-v2) bằng cách mở rộng tokenizer sang tiếng Việt và huấn luyện trên tập dữ liệu [viVoice](https://huggingface.co/datasets/thinhlpg/viVoice).
viⓍTTS is a voice generation model that lets you clone voices into different languages by using just a quick 6-second audio clip. This model is fine-tuned from the [XTTS-v2.0.3](https://huggingface.co/coqui/XTTS-v2) model by expanding the tokenizer to Vietnamese and fine-tuning on the [viVoice](https://huggingface.co/datasets/thinhlpg/viVoice) dataset.
### Languages
viXTTS supports 18 languages: English (en), Spanish (es), French (fr), German (de), Italian (it), Portuguese (pt),
Polish (pl), Turkish (tr), Russian (ru), Dutch (nl), Czech (cs), Arabic (ar), Chinese (zh-cn), Japanese (ja), Hungarian (hu), Korean (ko)
Hindi (hi), **Vietnamese (vi)**.
### Known Limitations
- Incompatibility with the [original TTS library](https://github.com/coqui-ai/TTS) (a pull request will be made later).
- Subpar performance for input sentences under 10 words in Vietnamese language (yielding inconsistent output and odd trailing sounds).
- This model is only fine-tuned in Vietnamese. The model's effectiveness with languages other than Vietnamese hasn't been tested, potentially reducing quality.
### Demo
Please checkout [this repo](https://github.com/thinhlpg/vixtts-demo)
### Usage
For a quick usage, please checkout [this notebook](https://colab.research.google.com/drive/1q9vA7mDyvK_u0ijDDNuycDoUUbryM3p3?usp=sharing)
### License
This model is licensed under [Coqui Public Model License](https://coqui.ai/cpml).
### Contact
Fine-tuned by Thinh Le at FPT University HCMC, as a component of [Non La](https://huggingface.co/capleaf)'s graduation thesis.
Contact:
- You can message me directly on Facebook: <https://fb.com/thinhlpg/> (preferred 🤗)
- GitHub: <https://github.com/thinhlpg>
- Email: <[email protected]> or <[email protected]>
|
LHRuig/blasmartin5 | LHRuig | "2025-02-02T06:04:43Z" | 8 | 0 | diffusers | [
"diffusers",
"text-to-image",
"lora",
"template:diffusion-lora",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"region:us"
] | text-to-image | "2025-02-02T06:04:17Z" | ---
tags:
- text-to-image
- lora
- diffusers
- template:diffusion-lora
widget:
- text: suit
output:
url: images/suit.jpg
base_model: black-forest-labs/FLUX.1-dev
instance_prompt: blasmartin5
---
# blasmartin5
<Gallery />
## Model description
blasmartin5 lora
## Trigger words
You should use `blasmartin5` to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](/LHRuig/blasmartin5/tree/main) them in the Files & versions tab.
|
yuighj123/image_classification_covid19 | yuighj123 | "2024-07-06T07:25:56Z" | 10 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"generated_from_trainer",
"base_model:google/vit-base-patch16-224-in21k",
"base_model:finetune:google/vit-base-patch16-224-in21k",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | "2024-07-06T07:22:00Z" | ---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- image-classification
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: image_classification_covid19
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# image_classification_covid19
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the covid-19 datasets dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2704
- Accuracy: 0.8939
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|
glif-loradex-trainer/maxxd4240_BlueDraw | glif-loradex-trainer | "2024-12-01T17:21:13Z" | 19 | 2 | diffusers | [
"diffusers",
"text-to-image",
"template:sd-lora",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:finetune:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us",
"flux",
"lora",
"base_model:adapter:black-forest-labs/FLUX.1-dev"
] | text-to-image | "2024-12-01T17:20:07Z" | ---
tags:
- diffusers
- text-to-image
- template:sd-lora
- base_model:black-forest-labs/FLUX.1-dev
- base_model:finetune:black-forest-labs/FLUX.1-dev
- license:other
- region:us
- flux
- lora
widget:
- output:
url: samples/1733073486720__000003000_0.jpg
text: ' man with Border Collie in backyard BluD!! '
- output:
url: samples/1733073511560__000003000_1.jpg
text: 'gorgeous korean woman with white silky long hair and has deer antlers,
wears white camisole dress BluD!! '
- output:
url: samples/1733073536403__000003000_2.jpg
text: Low angle shot of people hugging each other in a circle, leaving a lot of
space in the middle BluD!!
- output:
url: samples/1733073561241__000003000_3.jpg
text: beatles abby road album cover BluD!!
- output:
url: samples/1733073586081__000003000_4.jpg
text: joker playing cards BluD!!
base_model: black-forest-labs/FLUX.1-dev
trigger: BluD!!
instance_prompt: BluD!!
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
---
# BlueDraw
Model trained with [AI Toolkit by Ostris](https://github.com/ostris/ai-toolkit) under the [Glif Loradex program](https://huggingface.co/glif-loradex-trainer) by [Glif](https://glif.app) user `maxxd4240`.
<Gallery />
## Trigger words
You should use `BluD!!` to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](/glif-loradex-trainer/maxxd4240_BlueDraw/tree/main) them in the Files & versions tab.
## License
This model is licensed under the [flux-1-dev-non-commercial-license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md).
|
anhvth5/sd15-lora | anhvth5 | "2024-06-17T12:19:46Z" | 7 | 0 | diffusers | [
"diffusers",
"text-to-image",
"lora",
"diffusers-training",
"stable-diffusion",
"stable-diffusion-diffusers",
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:adapter:runwayml/stable-diffusion-v1-5",
"license:creativeml-openrail-m",
"region:us"
] | text-to-image | "2024-06-17T12:07:51Z" | ---
base_model: runwayml/stable-diffusion-v1-5
library_name: diffusers
license: creativeml-openrail-m
tags:
- text-to-image
- diffusers
- lora
- diffusers-training
- stable-diffusion
- stable-diffusion-diffusers
inference: true
instance_prompt: a photo of sks dog
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# LoRA DreamBooth - anhvth5/sd15-lora
These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following.




LoRA for the text encoder was enabled: False.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] |
pookie3000/Meta-Llama-3.1-8B-Q5_K_M-GGUF | pookie3000 | "2025-02-24T21:11:25Z" | 0 | 0 | transformers | [
"transformers",
"gguf",
"llama-3",
"llama",
"meta",
"facebook",
"unsloth",
"llama-cpp",
"gguf-my-repo",
"en",
"base_model:unsloth/Meta-Llama-3.1-8B",
"base_model:quantized:unsloth/Meta-Llama-3.1-8B",
"license:llama3.1",
"endpoints_compatible",
"region:us"
] | null | "2025-02-24T21:10:59Z" | ---
language:
- en
library_name: transformers
license: llama3.1
tags:
- llama-3
- llama
- meta
- facebook
- unsloth
- transformers
- llama-cpp
- gguf-my-repo
base_model: unsloth/Meta-Llama-3.1-8B
---
# pookie3000/Meta-Llama-3.1-8B-Q5_K_M-GGUF
This model was converted to GGUF format from [`unsloth/Meta-Llama-3.1-8B`](https://huggingface.co/unsloth/Meta-Llama-3.1-8B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/unsloth/Meta-Llama-3.1-8B) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo pookie3000/Meta-Llama-3.1-8B-Q5_K_M-GGUF --hf-file meta-llama-3.1-8b-q5_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo pookie3000/Meta-Llama-3.1-8B-Q5_K_M-GGUF --hf-file meta-llama-3.1-8b-q5_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo pookie3000/Meta-Llama-3.1-8B-Q5_K_M-GGUF --hf-file meta-llama-3.1-8b-q5_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo pookie3000/Meta-Llama-3.1-8B-Q5_K_M-GGUF --hf-file meta-llama-3.1-8b-q5_k_m.gguf -c 2048
```
|
nat-hunt/1b634cee-f976-49d6-b97a-7cce7b9508ae | nat-hunt | "2025-01-30T18:43:32Z" | 6 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:Qwen/Qwen2.5-0.5B-Instruct",
"base_model:adapter:Qwen/Qwen2.5-0.5B-Instruct",
"license:apache-2.0",
"region:us"
] | null | "2025-01-30T18:30:42Z" | ---
library_name: peft
license: apache-2.0
base_model: Qwen/Qwen2.5-0.5B-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 1b634cee-f976-49d6-b97a-7cce7b9508ae
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: Qwen/Qwen2.5-0.5B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 386ec04939cf60c6_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/386ec04939cf60c6_train_data.json
type:
field_input: article
field_instruction: ingress
field_output: title
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: nat-hunt/1b634cee-f976-49d6-b97a-7cce7b9508ae
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/386ec04939cf60c6_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 7a82a8fd-4ff9-40db-bc03-36dc2c240a55
wandb_project: Birthday-SN56-4-Gradients-On-Demand
wandb_run: your_name
wandb_runid: 7a82a8fd-4ff9-40db-bc03-36dc2c240a55
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 1b634cee-f976-49d6-b97a-7cce7b9508ae
This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.5486
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0000 | 1 | 5.2045 |
| 4.9814 | 0.0006 | 13 | 4.2765 |
| 4.2586 | 0.0012 | 26 | 3.6603 |
| 3.7714 | 0.0018 | 39 | 3.5486 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
Divyansh008/Tiny-Urvashi-v1-Tinyllama | Divyansh008 | "2025-03-10T11:18:38Z" | 0 | 0 | null | [
"safetensors",
"llama",
"merge",
"mergekit",
"lazymergekit",
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"Divyansh008/Tiny-Urvashi-v1-bf16",
"base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"base_model:finetune:TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"region:us"
] | null | "2025-03-10T10:58:09Z" | ---
base_model:
- TinyLlama/TinyLlama-1.1B-Chat-v1.0
- Divyansh008/Tiny-Urvashi-v1-bf16
tags:
- merge
- mergekit
- lazymergekit
- TinyLlama/TinyLlama-1.1B-Chat-v1.0
- Divyansh008/Tiny-Urvashi-v1-bf16
---
# Tiny-Urvashi-v1-Tinyllama
Tiny-Urvashi-v1-Tinyllama is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0)
* [Divyansh008/Tiny-Urvashi-v1-bf16](https://huggingface.co/Divyansh008/Tiny-Urvashi-v1-bf16)
## 🧩 Configuration
```yaml
slices:
- sources:
- model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
layer_range: [0, 22]
- model: Divyansh008/Tiny-Urvashi-v1-bf16
layer_range: [0, 22]
merge_method: slerp
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.3
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Divyansh008/Tiny-Urvashi-v1-Tinyllama"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
``` |
nikoryagin/sae_Qwen_Qwen2.5-7B_resid_post_layer_25_size_16384_batchtopk_x197bh52_lora_a643mtld | nikoryagin | "2025-04-06T20:38:52Z" | 0 | 0 | transformers | [
"transformers",
"safetensors",
"sae",
"feature-extraction",
"custom_code",
"arxiv:1910.09700",
"region:us"
] | feature-extraction | "2025-04-06T20:38:21Z" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
osiria/minilm-l6-h384-italian-cased | osiria | "2023-12-09T00:11:30Z" | 4 | 0 | transformers | [
"transformers",
"pytorch",
"xlm-roberta",
"fill-mask",
"it",
"arxiv:2012.15828",
"arxiv:2010.05609",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | "2023-09-30T21:39:44Z" | ---
license: mit
language:
- it
---
--------------------------------------------------------------------------------------------------
<body>
<span class="vertical-text" style="background-color:lightgreen;border-radius: 3px;padding: 3px;"> </span>
<br>
<span class="vertical-text" style="background-color:orange;border-radius: 3px;padding: 3px;"> </span>
<br>
<span class="vertical-text" style="background-color:lightblue;border-radius: 3px;padding: 3px;"> Model: MiniLM</span>
<br>
<span class="vertical-text" style="background-color:tomato;border-radius: 3px;padding: 3px;"> Lang: IT</span>
<br>
<span class="vertical-text" style="background-color:lightgrey;border-radius: 3px;padding: 3px;"> </span>
<br>
<span class="vertical-text" style="background-color:#CF9FFF;border-radius: 3px;padding: 3px;"> </span>
</body>
--------------------------------------------------------------------------------------------------
<h3>Model description</h3>
This is a <b>MiniLMv2</b> <b>[1]</b> model for the <b>Italian</b> language, obtained using <b>mMiniLMv2</b> ([L6xH384 mMiniLMv2](https://github.com/microsoft/unilm/tree/master/minilm)) as a starting point and focusing it on the Italian language by modifying the embedding layer
(as in <b>[2]</b>, computing document-level frequencies over the <b>Wikipedia</b> dataset)
The resulting model has 23M parameters, a vocabulary of 30.498 tokens, and a size of ~90 MB.
<h3>References</h3>
[1] https://arxiv.org/abs/2012.15828
[2] https://arxiv.org/abs/2010.05609
<h3>License</h3>
The model is released under <b>MIT</b> license |
zurandmoro/31fc3548ec7a | zurandmoro | "2025-04-04T19:15:31Z" | 0 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | "2025-04-04T18:52:17Z" | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: 31fc3548ec7a
---
# 31Fc3548Ec7A
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `31fc3548ec7a` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "31fc3548ec7a",
"lora_weights": "https://huggingface.co/zurandmoro/31fc3548ec7a/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('zurandmoro/31fc3548ec7a', weight_name='lora.safetensors')
image = pipeline('31fc3548ec7a').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 2000
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/zurandmoro/31fc3548ec7a/discussions) to add images that show off what you’ve made with this LoRA.
|
Nayana-cognitivelab/Nayana-IR-finetune_colpali_v1_2-1k-4bit | Nayana-cognitivelab | "2025-03-06T05:09:18Z" | 0 | 0 | transformers | [
"transformers",
"safetensors",
"colpali",
"generated_from_trainer",
"base_model:vidore/colpaligemma-3b-pt-448-base",
"base_model:finetune:vidore/colpaligemma-3b-pt-448-base",
"license:gemma",
"endpoints_compatible",
"region:us"
] | null | "2025-03-06T05:08:36Z" | ---
library_name: transformers
license: gemma
base_model: vidore/colpaligemma-3b-pt-448-base
tags:
- colpali
- generated_from_trainer
model-index:
- name: Nayana-IR-finetune_colpali_v1_2-1k-4bit
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Nayana-IR-finetune_colpali_v1_2-1k-4bit
This model is a fine-tuned version of [vidore/colpaligemma-3b-pt-448-base](https://huggingface.co/vidore/colpaligemma-3b-pt-448-base) on the vidore/vdsid_french dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0236
- Model Preparation Time: 0.0053
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 1.5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Model Preparation Time |
|:-------------:|:-----:|:----:|:---------------:|:----------------------:|
| No log | 0.016 | 1 | 0.0799 | 0.0053 |
### Framework versions
- Transformers 4.47.1
- Pytorch 2.6.0+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0
|
aakarsh-nair/rerun-09-19-2024-experiment-distill-tree-babylm2024-360-2 | aakarsh-nair | "2024-09-20T18:20:31Z" | 90 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"llama",
"text-generation",
"generated_from_trainer",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | "2024-09-20T18:19:36Z" | ---
library_name: transformers
tags:
- generated_from_trainer
model-index:
- name: rerun-09-19-2024-experiment-distill-tree-babylm2024-360-2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# rerun-09-19-2024-experiment-distill-tree-babylm2024-360-2
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7367
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00025
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 200
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 5.146 | 1.0 | 2065 | 5.6306 |
| 3.1038 | 2.0 | 4130 | 3.4614 |
| 2.4109 | 3.0 | 6195 | 2.7661 |
| 2.091 | 4.0 | 8260 | 2.3748 |
| 1.8375 | 5.0 | 10325 | 2.1678 |
| 1.7081 | 6.0 | 12390 | 1.9763 |
| 1.5419 | 7.0 | 14455 | 1.8331 |
| 1.4752 | 8.0 | 16520 | 1.7660 |
| 1.4168 | 9.0 | 18585 | 1.7420 |
| 1.4489 | 10.0 | 20650 | 1.7367 |
### Framework versions
- Transformers 4.45.0.dev0
- Pytorch 2.4.1+cu121
- Tokenizers 0.19.1
|
devdatanalytics/irishpotato | devdatanalytics | "2023-09-19T13:50:46Z" | 0 | 0 | fastai | [
"fastai",
"region:us"
] | null | "2023-09-19T13:50:40Z" | ---
tags:
- fastai
---
# Amazing!
🥳 Congratulations on hosting your fastai model on the Hugging Face Hub!
# Some next steps
1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))!
2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)).
3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)!
Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card.
---
# Model card
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
|
d-karpone/speecht5_finetuned_voxpopuli_nl | d-karpone | "2023-08-24T11:02:02Z" | 82 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"speecht5",
"text-to-audio",
"generated_from_trainer",
"text-to-speech",
"dataset:facebook/voxpopuli",
"license:mit",
"endpoints_compatible",
"region:us"
] | text-to-speech | "2023-08-24T09:16:17Z" | ---
license: mit
tags:
- generated_from_trainer
- text-to-speech
datasets:
- facebook/voxpopuli
model-index:
- name: speecht5_finetuned_voxpopuli_nl
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# speecht5_finetuned_voxpopuli_nl
This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the facebook/voxpopuli dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4563
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.525 | 4.3 | 1000 | 0.4759 |
| 0.5035 | 8.61 | 2000 | 0.4628 |
| 0.4939 | 12.91 | 3000 | 0.4586 |
| 0.4918 | 17.21 | 4000 | 0.4563 |
### Framework versions
- Transformers 4.29.2
- Pytorch 2.0.1
- Datasets 2.13.1
- Tokenizers 0.13.3 |
software-vagabond/Reinforce-CartPole-v1 | software-vagabond | "2023-04-28T15:23:14Z" | 0 | 0 | null | [
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] | reinforcement-learning | "2023-04-28T15:23:02Z" | ---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-CartPole-v1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
AlexChe/Reinforce-1 | AlexChe | "2022-07-26T14:12:15Z" | 0 | 0 | null | [
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] | reinforcement-learning | "2022-07-26T14:12:08Z" | ---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-1
results:
- metrics:
- type: mean_reward
value: 11.40 +/- 7.09
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
|
Salesforce/codegen-6B-multi | Salesforce | "2025-01-31T21:27:38Z" | 1,964 | 20 | transformers | [
"transformers",
"pytorch",
"codegen",
"text-generation",
"arxiv:2203.13474",
"license:bsd-3-clause",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | "2022-04-13T00:51:28Z" | ---
license: bsd-3-clause
---
# CodeGen (CodeGen-Multi 6B)
## Model description
CodeGen is a family of autoregressive language models for **program synthesis** from the paper: [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong. The models are originally released in [this repository](https://github.com/salesforce/CodeGen), under 3 pre-training data variants (`NL`, `Multi`, `Mono`) and 4 model size variants (`350M`, `2B`, `6B`, `16B`).
The checkpoint included in this repository is denoted as **CodeGen-Multi 6B** in the paper, where "Multi" means the model is initialized with *CodeGen-NL 6B* and further pre-trained on a dataset of multiple programming languages, and "6B" refers to the number of trainable parameters.
## Training data
This checkpoint (CodeGen-Multi 6B) was firstly initialized with *CodeGen-NL 6B*, and then pre-trained on [BigQuery](https://console.cloud.google.com/marketplace/details/github/github-repos), a large-scale dataset of multiple programming languages from GitHub repositories. The data consists of 119.2B tokens and includes C, C++, Go, Java, JavaScript, and Python.
## Training procedure
CodeGen was trained using cross-entropy loss to maximize the likelihood of sequential inputs.
The family of models are trained using multiple TPU-v4-512 by Google, leveraging data and model parallelism.
See Section 2.3 of the [paper](https://arxiv.org/abs/2203.13474) for more details.
## Evaluation results
We evaluate our models on two code generation benchmark: HumanEval and MTPB. Please refer to the [paper](https://arxiv.org/abs/2203.13474) for more details.
## Intended Use and Limitations
As an autoregressive language model, CodeGen is capable of extracting features from given natural language and programming language texts, and calculating the likelihood of them.
However, the model is intended for and best at **program synthesis**, that is, generating executable code given English prompts, where the prompts should be in the form of a comment string. The model can complete partially-generated code as well.
## How to use
This model can be easily loaded using the `AutoModelForCausalLM` functionality:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("Salesforce/codegen-6B-multi")
model = AutoModelForCausalLM.from_pretrained("Salesforce/codegen-6B-multi")
text = "def hello_world():"
input_ids = tokenizer(text, return_tensors="pt").input_ids
generated_ids = model.generate(input_ids, max_length=128)
print(tokenizer.decode(generated_ids[0], skip_special_tokens=True))
```
## Ethical Considerations
This release is for research purposes only in support of an academic paper. Our models, datasets, and code are not specifically designed or evaluated for all downstream purposes. We strongly recommend users evaluate and address potential concerns related to accuracy, safety, and fairness before deploying this model. We encourage users to consider the common limitations of AI, comply with applicable laws, and leverage best practices when selecting use cases, particularly for high-risk scenarios where errors or misuse could significantly impact people’s lives, rights, or safety. For further guidance on use cases, refer to our AUP and AI AUP.
## BibTeX entry and citation info
```bibtex
@article{Nijkamp2022ACP,
title={A Conversational Paradigm for Program Synthesis},
author={Nijkamp, Erik and Pang, Bo and Hayashi, Hiroaki and Tu, Lifu and Wang, Huan and Zhou, Yingbo and Savarese, Silvio and Xiong, Caiming},
journal={arXiv preprint},
year={2022}
}
```
|
1a3orn/Llama-3.2-3B-Q4_K_M-GGUF | 1a3orn | "2024-10-04T20:47:46Z" | 8 | 0 | transformers | [
"transformers",
"gguf",
"facebook",
"meta",
"pytorch",
"llama",
"llama-3",
"llama-cpp",
"gguf-my-repo",
"text-generation",
"en",
"de",
"fr",
"it",
"pt",
"hi",
"es",
"th",
"base_model:meta-llama/Llama-3.2-3B",
"base_model:quantized:meta-llama/Llama-3.2-3B",
"license:llama3.2",
"endpoints_compatible",
"region:us"
] | text-generation | "2024-10-04T20:47:35Z" | ---
base_model: meta-llama/Llama-3.2-3B
language:
- en
- de
- fr
- it
- pt
- hi
- es
- th
library_name: transformers
license: llama3.2
pipeline_tag: text-generation
tags:
- facebook
- meta
- pytorch
- llama
- llama-3
- llama-cpp
- gguf-my-repo
extra_gated_prompt: "### LLAMA 3.2 COMMUNITY LICENSE AGREEMENT\n\nLlama 3.2 Version\
\ Release Date: September 25, 2024\n\n“Agreement” means the terms and conditions\
\ for use, reproduction, distribution and modification of the Llama Materials set\
\ forth herein.\n\n“Documentation” means the specifications, manuals and documentation\
\ accompanying Llama 3.2 distributed by Meta at https://llama.meta.com/doc/overview.\n\
\n“Licensee” or “you” means you, or your employer or any other person or entity\
\ (if you are entering into this Agreement on such person or entity’s behalf),\
\ of the age required under applicable laws, rules or regulations to provide legal\
\ consent and that has legal authority to bind your employer or such other person\
\ or entity if you are entering in this Agreement on their behalf.\n\n“Llama 3.2”\
\ means the foundational large language models and software and algorithms, including\
\ machine-learning model code, trained model weights, inference-enabling code, training-enabling\
\ code, fine-tuning enabling code and other elements of the foregoing distributed\
\ by Meta at https://www.llama.com/llama-downloads.\n\n“Llama Materials” means,\
\ collectively, Meta’s proprietary Llama 3.2 and Documentation (and any portion\
\ thereof) made available under this Agreement.\n\n“Meta” or “we” means Meta Platforms\
\ Ireland Limited (if you are located in or, if you are an entity, your principal\
\ place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if\
\ you are located outside of the EEA or Switzerland). \n\nBy clicking “I Accept”\
\ below or by using or distributing any portion or element of the Llama Materials,\
\ you agree to be bound by this Agreement.\n\n1. License Rights and Redistribution.\n\
a. Grant of Rights. You are granted a non-exclusive, worldwide, non-transferable\
\ and royalty-free limited license under Meta’s intellectual property or other rights\
\ owned by Meta embodied in the Llama Materials to use, reproduce, distribute,\
\ copy, create derivative works of, and make modifications to the Llama Materials.\
\ \nb. Redistribution and Use. \ni. If you distribute or make available the Llama\
\ Materials (or any derivative works thereof), or a product or service (including\
\ another AI model) that contains any of them, you shall (A) provide a copy of this\
\ Agreement with any such Llama Materials; and (B) prominently display “Built with\
\ Llama” on a related website, user interface, blogpost, about page, or product\
\ documentation. If you use the Llama Materials or any outputs or results of the\
\ Llama Materials to create, train, fine tune, or otherwise improve an AI model,\
\ which is distributed or made available, you shall also include “Llama” at the\
\ beginning of any such AI model name.\nii. If you receive Llama Materials, or any\
\ derivative works thereof, from a Licensee as part of an integrated end user product,\
\ then Section 2 of this Agreement will not apply to you. \niii. You must retain\
\ in all copies of the Llama Materials that you distribute the following attribution\
\ notice within a “Notice” text file distributed as a part of such copies: “Llama\
\ 3.2 is licensed under the Llama 3.2 Community License, Copyright © Meta Platforms,\
\ Inc. All Rights Reserved.”\niv. Your use of the Llama Materials must comply with\
\ applicable laws and regulations (including trade compliance laws and regulations)\
\ and adhere to the Acceptable Use Policy for the Llama Materials (available at\
\ https://www.llama.com/llama3_2/use-policy), which is hereby incorporated by reference\
\ into this Agreement.\n \n2. Additional Commercial Terms. If, on the Llama 3.2\
\ version release date, the monthly active users of the products or services made\
\ available by or for Licensee, or Licensee’s affiliates, is greater than 700 million\
\ monthly active users in the preceding calendar month, you must request a license\
\ from Meta, which Meta may grant to you in its sole discretion, and you are not\
\ authorized to exercise any of the rights under this Agreement unless or until\
\ Meta otherwise expressly grants you such rights.\n3. Disclaimer of Warranty. UNLESS\
\ REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM\
\ ARE PROVIDED ON AN “AS IS” BASIS, WITHOUT WARRANTIES OF ANY KIND, AND META DISCLAIMS\
\ ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED, INCLUDING, WITHOUT LIMITATION,\
\ ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR\
\ PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING\
\ OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR\
\ USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS.\n4. Limitation of Liability.\
\ IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY,\
\ WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING\
\ OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL,\
\ INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE\
\ BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.\n5. Intellectual Property.\n\
a. No trademark licenses are granted under this Agreement, and in connection with\
\ the Llama Materials, neither Meta nor Licensee may use any name or mark owned\
\ by or associated with the other or any of its affiliates, except as required\
\ for reasonable and customary use in describing and redistributing the Llama Materials\
\ or as set forth in this Section 5(a). Meta hereby grants you a license to use\
\ “Llama” (the “Mark”) solely as required to comply with the last sentence of Section\
\ 1.b.i. You will comply with Meta’s brand guidelines (currently accessible at\
\ https://about.meta.com/brand/resources/meta/company-brand/). All goodwill arising\
\ out of your use of the Mark will inure to the benefit of Meta.\nb. Subject to\
\ Meta’s ownership of Llama Materials and derivatives made by or for Meta, with\
\ respect to any derivative works and modifications of the Llama Materials that\
\ are made by you, as between you and Meta, you are and will be the owner of such\
\ derivative works and modifications.\nc. If you institute litigation or other proceedings\
\ against Meta or any entity (including a cross-claim or counterclaim in a lawsuit)\
\ alleging that the Llama Materials or Llama 3.2 outputs or results, or any portion\
\ of any of the foregoing, constitutes infringement of intellectual property or\
\ other rights owned or licensable by you, then any licenses granted to you under\
\ this Agreement shall terminate as of the date such litigation or claim is filed\
\ or instituted. You will indemnify and hold harmless Meta from and against any\
\ claim by any third party arising out of or related to your use or distribution\
\ of the Llama Materials.\n6. Term and Termination. The term of this Agreement will\
\ commence upon your acceptance of this Agreement or access to the Llama Materials\
\ and will continue in full force and effect until terminated in accordance with\
\ the terms and conditions herein. Meta may terminate this Agreement if you are\
\ in breach of any term or condition of this Agreement. Upon termination of this\
\ Agreement, you shall delete and cease use of the Llama Materials. Sections 3,\
\ 4 and 7 shall survive the termination of this Agreement. \n7. Governing Law and\
\ Jurisdiction. This Agreement will be governed and construed under the laws of\
\ the State of California without regard to choice of law principles, and the UN\
\ Convention on Contracts for the International Sale of Goods does not apply to\
\ this Agreement. The courts of California shall have exclusive jurisdiction of\
\ any dispute arising out of this Agreement. \n### Llama 3.2 Acceptable Use Policy\n\
Meta is committed to promoting safe and fair use of its tools and features, including\
\ Llama 3.2. If you access or use Llama 3.2, you agree to this Acceptable Use Policy\
\ (“**Policy**”). The most recent copy of this policy can be found at [https://www.llama.com/llama3_2/use-policy](https://www.llama.com/llama3_2/use-policy).\n\
#### Prohibited Uses\nWe want everyone to use Llama 3.2 safely and responsibly.\
\ You agree you will not use, or allow others to use, Llama 3.2 to:\n1. Violate\
\ the law or others’ rights, including to:\n 1. Engage in, promote, generate,\
\ contribute to, encourage, plan, incite, or further illegal or unlawful activity\
\ or content, such as:\n 1. Violence or terrorism\n 2. Exploitation\
\ or harm to children, including the solicitation, creation, acquisition, or dissemination\
\ of child exploitative content or failure to report Child Sexual Abuse Material\n\
\ 3. Human trafficking, exploitation, and sexual violence\n 4. The\
\ illegal distribution of information or materials to minors, including obscene\
\ materials, or failure to employ legally required age-gating in connection with\
\ such information or materials.\n 5. Sexual solicitation\n 6. Any\
\ other criminal activity\n 1. Engage in, promote, incite, or facilitate the\
\ harassment, abuse, threatening, or bullying of individuals or groups of individuals\n\
\ 2. Engage in, promote, incite, or facilitate discrimination or other unlawful\
\ or harmful conduct in the provision of employment, employment benefits, credit,\
\ housing, other economic benefits, or other essential goods and services\n 3.\
\ Engage in the unauthorized or unlicensed practice of any profession including,\
\ but not limited to, financial, legal, medical/health, or related professional\
\ practices\n 4. Collect, process, disclose, generate, or infer private or sensitive\
\ information about individuals, including information about individuals’ identity,\
\ health, or demographic information, unless you have obtained the right to do so\
\ in accordance with applicable law\n 5. Engage in or facilitate any action or\
\ generate any content that infringes, misappropriates, or otherwise violates any\
\ third-party rights, including the outputs or results of any products or services\
\ using the Llama Materials\n 6. Create, generate, or facilitate the creation\
\ of malicious code, malware, computer viruses or do anything else that could disable,\
\ overburden, interfere with or impair the proper working, integrity, operation\
\ or appearance of a website or computer system\n 7. Engage in any action, or\
\ facilitate any action, to intentionally circumvent or remove usage restrictions\
\ or other safety measures, or to enable functionality disabled by Meta \n2. Engage\
\ in, promote, incite, facilitate, or assist in the planning or development of activities\
\ that present a risk of death or bodily harm to individuals, including use of Llama\
\ 3.2 related to the following:\n 8. Military, warfare, nuclear industries or\
\ applications, espionage, use for materials or activities that are subject to the\
\ International Traffic Arms Regulations (ITAR) maintained by the United States\
\ Department of State or to the U.S. Biological Weapons Anti-Terrorism Act of 1989\
\ or the Chemical Weapons Convention Implementation Act of 1997\n 9. Guns and\
\ illegal weapons (including weapon development)\n 10. Illegal drugs and regulated/controlled\
\ substances\n 11. Operation of critical infrastructure, transportation technologies,\
\ or heavy machinery\n 12. Self-harm or harm to others, including suicide, cutting,\
\ and eating disorders\n 13. Any content intended to incite or promote violence,\
\ abuse, or any infliction of bodily harm to an individual\n3. Intentionally deceive\
\ or mislead others, including use of Llama 3.2 related to the following:\n 14.\
\ Generating, promoting, or furthering fraud or the creation or promotion of disinformation\n\
\ 15. Generating, promoting, or furthering defamatory content, including the\
\ creation of defamatory statements, images, or other content\n 16. Generating,\
\ promoting, or further distributing spam\n 17. Impersonating another individual\
\ without consent, authorization, or legal right\n 18. Representing that the\
\ use of Llama 3.2 or outputs are human-generated\n 19. Generating or facilitating\
\ false online engagement, including fake reviews and other means of fake online\
\ engagement \n4. Fail to appropriately disclose to end users any known dangers\
\ of your AI system 5. Interact with third party tools, models, or software designed\
\ to generate unlawful content or engage in unlawful or harmful conduct and/or represent\
\ that the outputs of such tools, models, or software are associated with Meta or\
\ Llama 3.2\n\nWith respect to any multimodal models included in Llama 3.2, the\
\ rights granted under Section 1(a) of the Llama 3.2 Community License Agreement\
\ are not being granted to you if you are an individual domiciled in, or a company\
\ with a principal place of business in, the European Union. This restriction does\
\ not apply to end users of a product or service that incorporates any such multimodal\
\ models.\n\nPlease report any violation of this Policy, software “bug,” or other\
\ problems that could lead to a violation of this Policy through one of the following\
\ means:\n\n* Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues&h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ)\n\
* Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)\n\
* Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)\n\
* Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama\
\ 3.2: [email protected]"
extra_gated_fields:
First Name: text
Last Name: text
Date of birth: date_picker
Country: country
Affiliation: text
Job title:
type: select
options:
- Student
- Research Graduate
- AI researcher
- AI developer/engineer
- Reporter
- Other
geo: ip_location
? By clicking Submit below I accept the terms of the license and acknowledge that
the information I provide will be collected stored processed and shared in accordance
with the Meta Privacy Policy
: checkbox
extra_gated_description: The information you provide will be collected, stored, processed
and shared in accordance with the [Meta Privacy Policy](https://www.facebook.com/privacy/policy/).
extra_gated_button_content: Submit
---
# 1a3orn/Llama-3.2-3B-Q4_K_M-GGUF
This model was converted to GGUF format from [`meta-llama/Llama-3.2-3B`](https://huggingface.co/meta-llama/Llama-3.2-3B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/meta-llama/Llama-3.2-3B) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo 1a3orn/Llama-3.2-3B-Q4_K_M-GGUF --hf-file llama-3.2-3b-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo 1a3orn/Llama-3.2-3B-Q4_K_M-GGUF --hf-file llama-3.2-3b-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo 1a3orn/Llama-3.2-3B-Q4_K_M-GGUF --hf-file llama-3.2-3b-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo 1a3orn/Llama-3.2-3B-Q4_K_M-GGUF --hf-file llama-3.2-3b-q4_k_m.gguf -c 2048
```
|
Satyake/tiny-chatbot-dpo | Satyake | "2024-05-26T14:55:13Z" | 0 | 0 | peft | [
"peft",
"tensorboard",
"safetensors",
"trl",
"dpo",
"generated_from_trainer",
"base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"base_model:adapter:TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"license:apache-2.0",
"region:us"
] | null | "2024-05-26T14:53:05Z" | ---
license: apache-2.0
library_name: peft
tags:
- trl
- dpo
- generated_from_trainer
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
model-index:
- name: tiny-chatbot-dpo
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tiny-chatbot-dpo
This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- training_steps: 250
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |
zandfj/LLaMA2-7B-Chat-sft-042615-moren | zandfj | "2024-04-26T07:55:08Z" | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | "2024-04-26T07:53:13Z" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
DKYoon/mt5-base-lm-adapt | DKYoon | "2023-09-05T05:07:45Z" | 114 | 0 | transformers | [
"transformers",
"pytorch",
"safetensors",
"mt5",
"text2text-generation",
"arxiv:2205.12647",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | "2023-04-13T18:43:07Z" | ---
license: apache-2.0
---
🤗 Language model initialized from mT5 and trained for an additional 100K steps on the Prefix LM objective using mC4 data.
Paper: [Overcoming Catastrophic Forgetting in Zero-Shot Cross-Lingual Generation](https://arxiv.org/abs/2205.12647)
Authors: Tu Vu, Aditya Barua, Brian Lester, Daniel Cer, Mohit Iyyer, Noah Constant
PyTorch port of the original Flax checkpoint at [Google/T5X repository](https://github.com/google-research/t5x). |
GuiGel/beto-uncased-flert-context-we-lstm-crf-meddocan | GuiGel | "2022-11-08T07:19:25Z" | 6 | 0 | flair | [
"flair",
"pytorch",
"token-classification",
"sequence-tagger-model",
"region:us"
] | token-classification | "2022-11-08T07:16:36Z" | ---
tags:
- flair
- token-classification
- sequence-tagger-model
---
### Demo: How to use in Flair
Requires:
- **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`)
```python
from flair.data import Sentence
from flair.models import SequenceTagger
# load tagger
tagger = SequenceTagger.load("GuiGel/beto-uncased-flert-context-we-lstm-crf-meddocan")
# make example sentence
sentence = Sentence("On September 1st George won 1 dollar while watching Game of Thrones.")
# predict NER tags
tagger.predict(sentence)
# print sentence
print(sentence)
# print predicted NER spans
print('The following NER tags are found:')
# iterate over entities and print
for entity in sentence.get_spans('ner'):
print(entity)
``` |
esb/whisper-aed-voxpopuli | esb | "2022-10-24T14:48:27Z" | 0 | 0 | null | [
"esb",
"en",
"dataset:esb/datasets",
"dataset:facebook/voxpopuli",
"region:us"
] | null | "2022-10-24T14:48:10Z" | ---
language:
- en
tags:
- esb
datasets:
- esb/datasets
- facebook/voxpopuli
---
To reproduce this run, first install Whisper from the Transformers compatible repo [patrickvonplaten/whisper](https://github.com/patrickvonplaten/whisper):
```
pip install git+https://github.com/openai/whisper.git
```
Then execute the command:
```python
#!/usr/bin/env bash
CUDA_VISIBLE_DEVICES=0 python run_speech_recognition_whisper.py \
--model_name_or_path="medium.en" \
--dataset_name="esb/datasets" \
--dataset_config_name="voxpopuli" \
--max_steps="5000" \
--output_dir="./" \
--run_name="whisper-voxpopuli" \
--wandb_project="whisper" \
--per_device_train_batch_size="64" \
--per_device_eval_batch_size="16" \
--logging_steps="25" \
--learning_rate="1e-4" \
--warmup_steps="500" \
--report_to="wandb" \
--preprocessing_num_workers="16" \
--evaluation_strategy="steps" \
--eval_steps="500" \
--save_strategy="steps" \
--save_steps="500" \
--generation_max_length="224" \
--length_column_name="input_lengths" \
--gradient_checkpointing \
--group_by_length \
--freeze_encoder \
--fp16 \
--overwrite_output_dir \
--do_train \
--do_eval \
--do_predict \
--predict_with_generate \
--use_auth_token
```
|
huggingtweets/stockstotrade | huggingtweets | "2021-11-19T03:41:39Z" | 10 | 3 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | "2022-03-02T23:29:05Z" | ---
language: en
thumbnail: https://www.huggingtweets.com/stockstotrade/1637293295111/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/469936583416610816/EZt8Vl04_400x400.png')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">StocksToTrade</div>
<div style="text-align: center; font-size: 14px;">@stockstotrade</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from StocksToTrade.
| Data | StocksToTrade |
| --- | --- |
| Tweets downloaded | 3238 |
| Retweets | 663 |
| Short tweets | 360 |
| Tweets kept | 2215 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/c33zwruj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @stockstotrade's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1upgfq9z) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1upgfq9z/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/stockstotrade')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
NasimB/gpt2-concat-mod-datasets-rarity1-rerun | NasimB | "2023-07-10T02:49:37Z" | 5 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"generated_from_trainer",
"dataset:generator",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | "2023-07-10T00:33:42Z" | ---
license: mit
tags:
- generated_from_trainer
datasets:
- generator
model-index:
- name: gpt2-concat-mod-datasets-rarity1-rerun
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gpt2-concat-mod-datasets-rarity1-rerun
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 3.0263
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 7
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 6.7311 | 0.3 | 500 | 5.6497 |
| 5.3805 | 0.59 | 1000 | 5.2065 |
| 5.0306 | 0.89 | 1500 | 4.9574 |
| 4.7526 | 1.18 | 2000 | 4.8142 |
| 4.6058 | 1.48 | 2500 | 4.6885 |
| 4.4982 | 1.78 | 3000 | 4.5904 |
| 4.3593 | 2.07 | 3500 | 4.5261 |
| 4.185 | 2.37 | 4000 | 4.4783 |
| 4.154 | 2.66 | 4500 | 4.4233 |
| 4.1262 | 2.96 | 5000 | 4.3708 |
| 3.8986 | 3.26 | 5500 | 4.3804 |
| 3.8767 | 3.55 | 6000 | 4.3494 |
| 3.8605 | 3.85 | 6500 | 4.3124 |
| 3.7194 | 4.14 | 7000 | 4.3395 |
| 3.5981 | 4.44 | 7500 | 4.3194 |
| 3.5952 | 4.74 | 8000 | 4.3059 |
| 3.5511 | 5.03 | 8500 | 4.3089 |
| 3.3393 | 5.33 | 9000 | 4.3236 |
| 3.3388 | 5.62 | 9500 | 4.3220 |
| 3.3443 | 5.92 | 10000 | 4.3139 |
| 3.2213 | 6.22 | 10500 | 4.3304 |
| 3.1851 | 6.51 | 11000 | 4.3313 |
| 3.1911 | 6.81 | 11500 | 4.3317 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.11.0+cu113
- Datasets 2.13.0
- Tokenizers 0.13.3
|
MohamedAhmedAE/phi-2-finetuned-gsm8k | MohamedAhmedAE | "2023-12-14T10:51:40Z" | 1 | 0 | peft | [
"peft",
"tensorboard",
"safetensors",
"generated_from_trainer",
"base_model:microsoft/phi-2",
"base_model:adapter:microsoft/phi-2",
"license:other",
"region:us"
] | null | "2023-12-14T10:05:15Z" | ---
license: other
library_name: peft
tags:
- generated_from_trainer
base_model: microsoft/phi-2
model-index:
- name: phi-2-finetuned-gsm8k
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# phi-2-finetuned-gsm8k
This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0892
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.8899 | 0.13 | 500 | 1.0927 |
| 0.8948 | 0.27 | 1000 | 1.0892 |
### Framework versions
- PEFT 0.7.1
- Transformers 4.36.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.15.0 |
evkes/LLM-falc-deloitte | evkes | "2023-11-13T23:30:29Z" | 0 | 0 | peft | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:vilsonrodrigues/falcon-7b-instruct-sharded",
"base_model:adapter:vilsonrodrigues/falcon-7b-instruct-sharded",
"region:us"
] | null | "2023-11-13T22:52:22Z" | ---
library_name: peft
base_model: vilsonrodrigues/falcon-7b-instruct-sharded
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.6.1
|
facebook/m2m100-12B-last-ckpt | facebook | "2023-01-24T17:03:07Z" | 407 | 25 | transformers | [
"transformers",
"pytorch",
"m2m_100",
"text2text-generation",
"m2m100-12B",
"multilingual",
"af",
"am",
"ar",
"ast",
"az",
"ba",
"be",
"bg",
"bn",
"br",
"bs",
"ca",
"ceb",
"cs",
"cy",
"da",
"de",
"el",
"en",
"es",
"et",
"fa",
"ff",
"fi",
"fr",
"fy",
"ga",
"gd",
"gl",
"gu",
"ha",
"he",
"hi",
"hr",
"ht",
"hu",
"hy",
"id",
"ig",
"ilo",
"is",
"it",
"ja",
"jv",
"ka",
"kk",
"km",
"kn",
"ko",
"lb",
"lg",
"ln",
"lo",
"lt",
"lv",
"mg",
"mk",
"ml",
"mn",
"mr",
"ms",
"my",
"ne",
"nl",
"no",
"ns",
"oc",
"or",
"pa",
"pl",
"ps",
"pt",
"ro",
"ru",
"sd",
"si",
"sk",
"sl",
"so",
"sq",
"sr",
"ss",
"su",
"sv",
"sw",
"ta",
"th",
"tl",
"tn",
"tr",
"uk",
"ur",
"uz",
"vi",
"wo",
"xh",
"yi",
"yo",
"zh",
"zu",
"arxiv:2010.11125",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | "2022-03-12T00:28:28Z" | ---
language:
- multilingual
- af
- am
- ar
- ast
- az
- ba
- be
- bg
- bn
- br
- bs
- ca
- ceb
- cs
- cy
- da
- de
- el
- en
- es
- et
- fa
- ff
- fi
- fr
- fy
- ga
- gd
- gl
- gu
- ha
- he
- hi
- hr
- ht
- hu
- hy
- id
- ig
- ilo
- is
- it
- ja
- jv
- ka
- kk
- km
- kn
- ko
- lb
- lg
- ln
- lo
- lt
- lv
- mg
- mk
- ml
- mn
- mr
- ms
- my
- ne
- nl
- no
- ns
- oc
- or
- pa
- pl
- ps
- pt
- ro
- ru
- sd
- si
- sk
- sl
- so
- sq
- sr
- ss
- su
- sv
- sw
- ta
- th
- tl
- tn
- tr
- uk
- ur
- uz
- vi
- wo
- xh
- yi
- yo
- zh
- zu
license: mit
tags:
- m2m100-12B
---
# M2M100 12B
M2M100 is a multilingual encoder-decoder (seq-to-seq) model trained for Many-to-Many multilingual translation.
It was introduced in this [paper](https://arxiv.org/abs/2010.11125) and first released in [this](https://github.com/pytorch/fairseq/tree/master/examples/m2m_100) repository.
The model that can directly translate between the 9,900 directions of 100 languages.
To translate into a target language, the target language id is forced as the first generated token.
To force the target language id as the first generated token, pass the `forced_bos_token_id` parameter to the `generate` method.
*Note: `M2M100Tokenizer` depends on `sentencepiece`, so make sure to install it before running the example.*
To install `sentencepiece` run `pip install sentencepiece`
```python
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
hi_text = "जीवन एक चॉकलेट बॉक्स की तरह है।"
chinese_text = "生活就像一盒巧克力。"
model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100-12B-last-ckpt")
tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100-12B-last-ckpt")
# translate Hindi to French
tokenizer.src_lang = "hi"
encoded_hi = tokenizer(hi_text, return_tensors="pt")
generated_tokens = model.generate(**encoded_hi, forced_bos_token_id=tokenizer.get_lang_id("fr"))
tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
# => "La vie est comme une boîte de chocolat."
# translate Chinese to English
tokenizer.src_lang = "zh"
encoded_zh = tokenizer(chinese_text, return_tensors="pt")
generated_tokens = model.generate(**encoded_zh, forced_bos_token_id=tokenizer.get_lang_id("en"))
tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
# => "Life is like a box of chocolate."
```
See the [model hub](https://huggingface.co/models?filter=m2m_100) to look for more fine-tuned versions.
## Languages covered
Afrikaans (af), Amharic (am), Arabic (ar), Asturian (ast), Azerbaijani (az), Bashkir (ba), Belarusian (be), Bulgarian (bg), Bengali (bn), Breton (br), Bosnian (bs), Catalan; Valencian (ca), Cebuano (ceb), Czech (cs), Welsh (cy), Danish (da), German (de), Greeek (el), English (en), Spanish (es), Estonian (et), Persian (fa), Fulah (ff), Finnish (fi), French (fr), Western Frisian (fy), Irish (ga), Gaelic; Scottish Gaelic (gd), Galician (gl), Gujarati (gu), Hausa (ha), Hebrew (he), Hindi (hi), Croatian (hr), Haitian; Haitian Creole (ht), Hungarian (hu), Armenian (hy), Indonesian (id), Igbo (ig), Iloko (ilo), Icelandic (is), Italian (it), Japanese (ja), Javanese (jv), Georgian (ka), Kazakh (kk), Central Khmer (km), Kannada (kn), Korean (ko), Luxembourgish; Letzeburgesch (lb), Ganda (lg), Lingala (ln), Lao (lo), Lithuanian (lt), Latvian (lv), Malagasy (mg), Macedonian (mk), Malayalam (ml), Mongolian (mn), Marathi (mr), Malay (ms), Burmese (my), Nepali (ne), Dutch; Flemish (nl), Norwegian (no), Northern Sotho (ns), Occitan (post 1500) (oc), Oriya (or), Panjabi; Punjabi (pa), Polish (pl), Pushto; Pashto (ps), Portuguese (pt), Romanian; Moldavian; Moldovan (ro), Russian (ru), Sindhi (sd), Sinhala; Sinhalese (si), Slovak (sk), Slovenian (sl), Somali (so), Albanian (sq), Serbian (sr), Swati (ss), Sundanese (su), Swedish (sv), Swahili (sw), Tamil (ta), Thai (th), Tagalog (tl), Tswana (tn), Turkish (tr), Ukrainian (uk), Urdu (ur), Uzbek (uz), Vietnamese (vi), Wolof (wo), Xhosa (xh), Yiddish (yi), Yoruba (yo), Chinese (zh), Zulu (zu)
## BibTeX entry and citation info
```
@misc{fan2020englishcentric,
title={Beyond English-Centric Multilingual Machine Translation},
author={Angela Fan and Shruti Bhosale and Holger Schwenk and Zhiyi Ma and Ahmed El-Kishky and Siddharth Goyal and Mandeep Baines and Onur Celebi and Guillaume Wenzek and Vishrav Chaudhary and Naman Goyal and Tom Birch and Vitaliy Liptchinsky and Sergey Edunov and Edouard Grave and Michael Auli and Armand Joulin},
year={2020},
eprint={2010.11125},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` |
kyoungmiin/style_lr_64 | kyoungmiin | "2025-03-01T20:08:33Z" | 0 | 0 | diffusers | [
"diffusers",
"text-to-image",
"diffusers-training",
"lora",
"template:sd-lora",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] | text-to-image | "2025-03-01T19:58:59Z" | ---
base_model: stabilityai/stable-diffusion-xl-base-1.0
library_name: diffusers
license: openrail++
instance_prompt: sks
widget: []
tags:
- text-to-image
- text-to-image
- diffusers-training
- diffusers
- lora
- template:sd-lora
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# SDXL LoRA DreamBooth - kyoungmiin/style_lr_64
<Gallery />
## Model description
These are kyoungmiin/style_lr_64 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained using [DreamBooth](https://dreambooth.github.io/).
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
## Trigger words
You should use sks to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](kyoungmiin/style_lr_64/tree/main) them in the Files & versions tab.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] |
asdfre453/olio | asdfre453 | "2025-03-10T23:13:24Z" | 0 | 0 | null | [
"license:other",
"region:us"
] | null | "2025-03-10T22:34:31Z" | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
--- |
AlignmentResearch/robust_llm_pythia-410m_mz-132_EnronSpam_n-its-10 | AlignmentResearch | "2024-04-27T02:51:21Z" | 103 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"gpt_neox",
"text-classification",
"generated_from_trainer",
"base_model:EleutherAI/pythia-410m",
"base_model:finetune:EleutherAI/pythia-410m",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-classification | "2024-04-27T02:50:34Z" | ---
license: apache-2.0
tags:
- generated_from_trainer
base_model: EleutherAI/pythia-410m
model-index:
- name: robust_llm_pythia-410m_mz-132_EnronSpam_n-its-10
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# robust_llm_pythia-410m_mz-132_EnronSpam_n-its-10
This model is a fine-tuned version of [EleutherAI/pythia-410m](https://huggingface.co/EleutherAI/pythia-410m) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 64
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.15.2
|
LarryAIDraw/satsuki | LarryAIDraw | "2024-02-16T05:40:15Z" | 0 | 0 | null | [
"license:creativeml-openrail-m",
"region:us"
] | null | "2024-02-16T05:33:18Z" | ---
license: creativeml-openrail-m
---
https://civitai.com/models/55245/satsukiblue-archive-or-goofy-ai |
Triangle104/gemma-3-4b-it-abliterated-Q5_K_S-GGUF | Triangle104 | "2025-03-25T10:42:01Z" | 0 | 0 | transformers | [
"transformers",
"gguf",
"abliterated",
"uncensored",
"llama-cpp",
"gguf-my-repo",
"image-text-to-text",
"base_model:huihui-ai/gemma-3-4b-it-abliterated",
"base_model:quantized:huihui-ai/gemma-3-4b-it-abliterated",
"license:gemma",
"endpoints_compatible",
"region:us",
"conversational"
] | image-text-to-text | "2025-03-25T10:41:46Z" | ---
base_model: huihui-ai/gemma-3-4b-it-abliterated
library_name: transformers
license: gemma
pipeline_tag: image-text-to-text
tags:
- abliterated
- uncensored
- llama-cpp
- gguf-my-repo
extra_gated_heading: Access Gemma on Hugging Face
extra_gated_prompt: To access Gemma on Hugging Face, you’re required to review and
agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging
Face and click below. Requests are processed immediately.
extra_gated_button_content: Acknowledge license
---
# Triangle104/gemma-3-4b-it-abliterated-Q5_K_S-GGUF
This model was converted to GGUF format from [`huihui-ai/gemma-3-4b-it-abliterated`](https://huggingface.co/huihui-ai/gemma-3-4b-it-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/huihui-ai/gemma-3-4b-it-abliterated) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/gemma-3-4b-it-abliterated-Q5_K_S-GGUF --hf-file gemma-3-4b-it-abliterated-q5_k_s.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/gemma-3-4b-it-abliterated-Q5_K_S-GGUF --hf-file gemma-3-4b-it-abliterated-q5_k_s.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/gemma-3-4b-it-abliterated-Q5_K_S-GGUF --hf-file gemma-3-4b-it-abliterated-q5_k_s.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/gemma-3-4b-it-abliterated-Q5_K_S-GGUF --hf-file gemma-3-4b-it-abliterated-q5_k_s.gguf -c 2048
```
|
augustogeog/q-Taxi-v3 | augustogeog | "2023-02-08T19:06:32Z" | 0 | 0 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | reinforcement-learning | "2023-02-08T19:06:28Z" | ---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.32 +/- 2.89
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="augustogeog/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
phuongntc/rlhf_thamso_vietbase_4000 | phuongntc | "2024-09-21T09:16:32Z" | 91 | 0 | transformers | [
"transformers",
"safetensors",
"t5",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | "2024-09-21T09:15:24Z" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
PrunaAI/codellama-CodeLlama-13b-Python-hf-HQQ-2bit-smashed | PrunaAI | "2024-08-02T16:04:09Z" | 5 | 0 | transformers | [
"transformers",
"llama",
"text-generation",
"pruna-ai",
"base_model:PrunaAI/codellama-CodeLlama-13b-Python-hf-HQQ-2bit-smashed",
"base_model:finetune:PrunaAI/codellama-CodeLlama-13b-Python-hf-HQQ-2bit-smashed",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | "2024-06-17T22:52:07Z" | ---
thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg"
base_model: PrunaAI/codellama-CodeLlama-13b-Python-hf-HQQ-2bit-smashed
metrics:
- memory_disk
- memory_inference
- inference_latency
- inference_throughput
- inference_CO2_emissions
- inference_energy_consumption
tags:
- pruna-ai
---
<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
<!-- header end -->
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/rskEr4BZJx)
# Simply make AI models cheaper, smaller, faster, and greener!
- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/rskEr4BZJx) to share feedback/suggestions or get help.
## Results

**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed with [.
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
- ***How is the model efficiency evaluated?*** These results were obtained on HARDWARE_NAME with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- ***What is the model format?*** We use safetensors.
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo PrunaAI/codellama-CodeLlama-13b-Python-hf-HQQ-2bit-smashed installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
```bash
REQUIREMENTS_INSTRUCTIONS
```
2. Load & run the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
IMPORTS
MODEL_LOAD
tokenizer = AutoTokenizer.from_pretrained("PrunaAI/codellama-CodeLlama-13b-Python-hf-HQQ-2bit-smashed")
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
tokenizer.decode(outputs[0])
```
## Configurations
The configuration info are in `smash_config.json`.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model PrunaAI/codellama-CodeLlama-13b-Python-hf-HQQ-2bit-smashed before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). |
borantorun/bert-base-uncased-finetuned-rte-run_18 | borantorun | "2025-04-08T11:31:52Z" | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:google-bert/bert-base-uncased",
"base_model:finetune:google-bert/bert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | "2025-04-08T09:00:49Z" | ---
library_name: transformers
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: bert-base-uncased-finetuned-rte-run_18
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-finetuned-rte-run_18
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8850
- Accuracy: 0.6968
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6.121682549710445e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 20 | 0.7101 | 0.5054 |
| No log | 2.0 | 40 | 0.6264 | 0.6679 |
| No log | 3.0 | 60 | 0.6796 | 0.6606 |
| No log | 4.0 | 80 | 0.8850 | 0.6968 |
| No log | 5.0 | 100 | 1.1607 | 0.6679 |
| No log | 6.0 | 120 | 1.3237 | 0.6606 |
| No log | 7.0 | 140 | 1.4720 | 0.6534 |
| No log | 8.0 | 160 | 1.5483 | 0.6679 |
| No log | 9.0 | 180 | 1.7616 | 0.6570 |
| No log | 10.0 | 200 | 1.7248 | 0.6534 |
| No log | 11.0 | 220 | 1.8424 | 0.6715 |
| No log | 12.0 | 240 | 1.8870 | 0.6823 |
| No log | 13.0 | 260 | 1.9615 | 0.6715 |
| No log | 14.0 | 280 | 1.9907 | 0.6823 |
| No log | 15.0 | 300 | 1.9896 | 0.6895 |
### Framework versions
- Transformers 4.50.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
|
llmixer/BigWeave-v16-103b-6.0bpw-h6-exl2 | llmixer | "2024-02-10T16:36:03Z" | 4 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"6.0bpw",
"h6",
"exl2",
"conversational",
"en",
"license:llama2",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | "2024-02-06T22:30:24Z" | ---
license: llama2
language:
- en
pipeline_tag: conversational
tags:
- 6.0bpw
- h6
- exl2
---
Exllamav2 6.0bpw h6 quant for [BigWeave-v16-103b](https://huggingface.co/llmixer/BigWeave-v16-103b).
Default calibration dataset. |
josephloh/donut-receipts75 | josephloh | "2024-03-06T02:19:22Z" | 8 | 0 | transformers | [
"transformers",
"safetensors",
"vision-encoder-decoder",
"image-text-to-text",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | image-text-to-text | "2024-03-06T01:57:22Z" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
parsa96/distilbert-base-uncased-finetuned-emotion | parsa96 | "2023-03-06T04:42:19Z" | 106 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | "2023-03-05T06:03:17Z" | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
config: split
split: validation
args: split
metrics:
- name: Accuracy
type: accuracy
value: 0.928
- name: F1
type: f1
value: 0.9281573845269205
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2144
- Accuracy: 0.928
- F1: 0.9282
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.8343 | 1.0 | 250 | 0.3130 | 0.911 | 0.9087 |
| 0.2517 | 2.0 | 500 | 0.2144 | 0.928 | 0.9282 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.12.0
- Datasets 2.9.0
- Tokenizers 0.13.2
|
tuanna08go/3140d717-9f8f-d728-b7bf-738fd45ce5bb | tuanna08go | "2025-01-10T09:55:22Z" | 17 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Llama-3.2-3B-Instruct",
"base_model:adapter:unsloth/Llama-3.2-3B-Instruct",
"license:llama3.2",
"region:us"
] | null | "2025-01-10T09:40:42Z" | ---
library_name: peft
license: llama3.2
base_model: unsloth/Llama-3.2-3B-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 3140d717-9f8f-d728-b7bf-738fd45ce5bb
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/Llama-3.2-3B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 933d19b25ccef737_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/933d19b25ccef737_train_data.json
type:
field_input: source
field_instruction: comment
field_output: title
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 5
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: tuanna08go/3140d717-9f8f-d728-b7bf-738fd45ce5bb
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 5
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/933d19b25ccef737_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: fc17788d-9ed3-4f16-97be-958596881cce
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: fc17788d-9ed3-4f16-97be-958596881cce
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 3140d717-9f8f-d728-b7bf-738fd45ce5bb
This model is a fine-tuned version of [unsloth/Llama-3.2-3B-Instruct](https://huggingface.co/unsloth/Llama-3.2-3B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 4.2883
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0002 | 1 | 5.4042 |
| 4.9817 | 0.0021 | 10 | 5.1537 |
| 4.8897 | 0.0042 | 20 | 4.5369 |
| 4.4357 | 0.0063 | 30 | 4.3646 |
| 4.4064 | 0.0084 | 40 | 4.2992 |
| 3.9764 | 0.0105 | 50 | 4.2883 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
bowilleatyou/5e65c3d1-e4e5-4934-9f90-bad537b53f70 | bowilleatyou | "2025-03-30T19:33:14Z" | 0 | 0 | null | [
"region:us"
] | null | "2025-03-30T19:33:14Z" | <!DOCTYPE html>
<html class="" lang="en">
<head>
<meta charset="utf-8" />
<meta
name="viewport"
content="width=device-width, initial-scale=1.0, user-scalable=no"
/>
<meta
name="description"
content="We're on a journey to advance and democratize artificial intelligence through open source and open science."
/>
<meta property="fb:app_id" content="1321688464574422" />
<meta name="twitter:card" content="summary_large_image" />
<meta name="twitter:site" content="@huggingface" />
<meta
property="og:title"
content="Hugging Face - The AI community building the future."
/>
<meta property="og:type" content="website" />
<title>Hugging Face - The AI community building the future.</title>
<style>
body {
margin: 0;
}
main {
background-color: white;
min-height: 100vh;
padding: 7rem 1rem 8rem 1rem;
text-align: center;
font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system,
BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans,
sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol,
Noto Color Emoji;
}
img {
width: 6rem;
height: 6rem;
margin: 0 auto 1rem;
}
h1 {
font-size: 3.75rem;
line-height: 1;
color: rgba(31, 41, 55, 1);
font-weight: 700;
box-sizing: border-box;
margin: 0 auto;
}
p, a {
color: rgba(107, 114, 128, 1);
font-size: 1.125rem;
line-height: 1.75rem;
max-width: 28rem;
box-sizing: border-box;
margin: 0 auto;
}
.dark main {
background-color: rgb(11, 15, 25);
}
.dark h1 {
color: rgb(209, 213, 219);
}
.dark p, .dark a {
color: rgb(156, 163, 175);
}
</style>
<script>
// On page load or when changing themes, best to add inline in `head` to avoid FOUC
const key = "_tb_global_settings";
let theme = window.matchMedia("(prefers-color-scheme: dark)").matches
? "dark"
: "light";
try {
const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme;
if (storageTheme) {
theme = storageTheme === "dark" ? "dark" : "light";
}
} catch (e) {}
if (theme === "dark") {
document.documentElement.classList.add("dark");
} else {
document.documentElement.classList.remove("dark");
}
</script>
</head>
<body>
<main>
<img
src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg"
alt=""
/>
<div>
<h1>429</h1>
<p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p>
</div>
</main>
</body>
</html> |
mradermacher/Acolyte-22B-GGUF | mradermacher | "2024-09-23T18:54:05Z" | 32 | 2 | transformers | [
"transformers",
"gguf",
"mergekit",
"merge",
"en",
"base_model:rAIfle/Acolyte-22B",
"base_model:quantized:rAIfle/Acolyte-22B",
"endpoints_compatible",
"region:us",
"conversational"
] | null | "2024-09-22T16:35:10Z" | ---
base_model: rAIfle/Acolyte-22B
language:
- en
library_name: transformers
quantized_by: mradermacher
tags:
- mergekit
- merge
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/rAIfle/Acolyte-22B
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/Acolyte-22B-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Acolyte-22B-GGUF/resolve/main/Acolyte-22B.Q2_K.gguf) | Q2_K | 8.4 | |
| [GGUF](https://huggingface.co/mradermacher/Acolyte-22B-GGUF/resolve/main/Acolyte-22B.IQ3_XS.gguf) | IQ3_XS | 9.3 | |
| [GGUF](https://huggingface.co/mradermacher/Acolyte-22B-GGUF/resolve/main/Acolyte-22B.Q3_K_S.gguf) | Q3_K_S | 9.7 | |
| [GGUF](https://huggingface.co/mradermacher/Acolyte-22B-GGUF/resolve/main/Acolyte-22B.IQ3_S.gguf) | IQ3_S | 9.8 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Acolyte-22B-GGUF/resolve/main/Acolyte-22B.IQ3_M.gguf) | IQ3_M | 10.2 | |
| [GGUF](https://huggingface.co/mradermacher/Acolyte-22B-GGUF/resolve/main/Acolyte-22B.Q3_K_M.gguf) | Q3_K_M | 10.9 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Acolyte-22B-GGUF/resolve/main/Acolyte-22B.Q3_K_L.gguf) | Q3_K_L | 11.8 | |
| [GGUF](https://huggingface.co/mradermacher/Acolyte-22B-GGUF/resolve/main/Acolyte-22B.IQ4_XS.gguf) | IQ4_XS | 12.1 | |
| [GGUF](https://huggingface.co/mradermacher/Acolyte-22B-GGUF/resolve/main/Acolyte-22B.Q4_K_S.gguf) | Q4_K_S | 12.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Acolyte-22B-GGUF/resolve/main/Acolyte-22B.Q4_K_M.gguf) | Q4_K_M | 13.4 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Acolyte-22B-GGUF/resolve/main/Acolyte-22B.Q5_K_S.gguf) | Q5_K_S | 15.4 | |
| [GGUF](https://huggingface.co/mradermacher/Acolyte-22B-GGUF/resolve/main/Acolyte-22B.Q5_K_M.gguf) | Q5_K_M | 15.8 | |
| [GGUF](https://huggingface.co/mradermacher/Acolyte-22B-GGUF/resolve/main/Acolyte-22B.Q6_K.gguf) | Q6_K | 18.4 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Acolyte-22B-GGUF/resolve/main/Acolyte-22B.Q8_0.gguf) | Q8_0 | 23.7 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
Jebadiah/Tess-gradient-ruby-p1 | Jebadiah | "2024-05-19T15:17:50Z" | 7 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"mergekit",
"merge",
"conversational",
"arxiv:2311.03099",
"base_model:Jebadiah/Tess-gradient-ruby",
"base_model:merge:Jebadiah/Tess-gradient-ruby",
"base_model:defog/llama-3-sqlcoder-8b",
"base_model:merge:defog/llama-3-sqlcoder-8b",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | "2024-05-19T15:15:52Z" | ---
base_model:
- defog/llama-3-sqlcoder-8b
- Jebadiah/Tess-gradient-ruby
library_name: transformers
tags:
- mergekit
- merge
---
# merge
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the linear [DARE](https://arxiv.org/abs/2311.03099) merge method using [Jebadiah/Tess-gradient-ruby](https://huggingface.co/Jebadiah/Tess-gradient-ruby) as a base.
### Models Merged
The following models were included in the merge:
* [defog/llama-3-sqlcoder-8b](https://huggingface.co/defog/llama-3-sqlcoder-8b)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
models:
- model: Jebadiah/Tess-gradient-ruby
# No parameters necessary for base model
- model: defog/llama-3-sqlcoder-8b
parameters:
density: 0.5
weight: 0.5
merge_method: dare_linear
base_model: Jebadiah/Tess-gradient-ruby
parameters:
int8_mask: true
dtype: bfloat16
```
|
mradermacher/Experiment28M7_Strangemerges_32Experiment28-GGUF | mradermacher | "2024-12-29T12:14:50Z" | 14 | 0 | transformers | [
"transformers",
"gguf",
"Safetensors",
"text-generation-inference",
"merge",
"en",
"base_model:MaziyarPanahi/Experiment28M7_Strangemerges_32Experiment28",
"base_model:quantized:MaziyarPanahi/Experiment28M7_Strangemerges_32Experiment28",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | "2024-12-29T12:07:43Z" | ---
base_model: MaziyarPanahi/Experiment28M7_Strangemerges_32Experiment28
language:
- en
library_name: transformers
license: apache-2.0
model_creator: MaziyarPanahi
model_name: Experiment28M7_Strangemerges_32Experiment28
quantized_by: mradermacher
tags:
- Safetensors
- text-generation-inference
- merge
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/MaziyarPanahi/Experiment28M7_Strangemerges_32Experiment28
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Experiment28M7_Strangemerges_32Experiment28-GGUF/resolve/main/Experiment28M7_Strangemerges_32Experiment28.Q2_K.gguf) | Q2_K | 2.8 | |
| [GGUF](https://huggingface.co/mradermacher/Experiment28M7_Strangemerges_32Experiment28-GGUF/resolve/main/Experiment28M7_Strangemerges_32Experiment28.Q3_K_S.gguf) | Q3_K_S | 3.3 | |
| [GGUF](https://huggingface.co/mradermacher/Experiment28M7_Strangemerges_32Experiment28-GGUF/resolve/main/Experiment28M7_Strangemerges_32Experiment28.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Experiment28M7_Strangemerges_32Experiment28-GGUF/resolve/main/Experiment28M7_Strangemerges_32Experiment28.Q3_K_L.gguf) | Q3_K_L | 3.9 | |
| [GGUF](https://huggingface.co/mradermacher/Experiment28M7_Strangemerges_32Experiment28-GGUF/resolve/main/Experiment28M7_Strangemerges_32Experiment28.IQ4_XS.gguf) | IQ4_XS | 4.0 | |
| [GGUF](https://huggingface.co/mradermacher/Experiment28M7_Strangemerges_32Experiment28-GGUF/resolve/main/Experiment28M7_Strangemerges_32Experiment28.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Experiment28M7_Strangemerges_32Experiment28-GGUF/resolve/main/Experiment28M7_Strangemerges_32Experiment28.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Experiment28M7_Strangemerges_32Experiment28-GGUF/resolve/main/Experiment28M7_Strangemerges_32Experiment28.Q5_K_S.gguf) | Q5_K_S | 5.1 | |
| [GGUF](https://huggingface.co/mradermacher/Experiment28M7_Strangemerges_32Experiment28-GGUF/resolve/main/Experiment28M7_Strangemerges_32Experiment28.Q5_K_M.gguf) | Q5_K_M | 5.2 | |
| [GGUF](https://huggingface.co/mradermacher/Experiment28M7_Strangemerges_32Experiment28-GGUF/resolve/main/Experiment28M7_Strangemerges_32Experiment28.Q6_K.gguf) | Q6_K | 6.0 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Experiment28M7_Strangemerges_32Experiment28-GGUF/resolve/main/Experiment28M7_Strangemerges_32Experiment28.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Experiment28M7_Strangemerges_32Experiment28-GGUF/resolve/main/Experiment28M7_Strangemerges_32Experiment28.f16.gguf) | f16 | 14.6 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|
Apel-sin/phi-4-abliterated-exl2 | Apel-sin | "2025-02-03T17:11:48Z" | 8 | 0 | transformers | [
"transformers",
"phi",
"nlp",
"math",
"code",
"chat",
"conversational",
"abliterated",
"uncensored",
"text-generation",
"en",
"base_model:huihui-ai/phi-4-abliterated",
"base_model:finetune:huihui-ai/phi-4-abliterated",
"license:mit",
"endpoints_compatible",
"region:us"
] | text-generation | "2025-02-03T17:09:11Z" | ---
license: mit
license_link: https://huggingface.co/huihui-ai/phi-4-abliterated/resolve/main/LICENSE
language:
- en
base_model:
- huihui-ai/phi-4-abliterated
pipeline_tag: text-generation
tags:
- phi
- nlp
- math
- code
- chat
- conversational
- abliterated
- uncensored
inference:
parameters:
temperature: 0
widget:
- messages:
- role: user
content: How should I explain the Internet?
library_name: transformers
---
# huihui-ai/phi-4-abliterated
This is an uncensored version of [microsoft/phi-4](https://huggingface.co/microsoft/phi-4) created with abliteration (see [remove-refusals-with-transformers](https://github.com/Sumandora/remove-refusals-with-transformers) to know more about it).
This is a crude, proof-of-concept implementation to remove refusals from an LLM model without using TransformerLens.
## Use with ollama
**Note:** this model requires [Ollama 0.5.5](https://github.com/ollama/ollama/releases/tag/v0.5.5)
You can use [huihui_ai/phi4-abliterated](https://ollama.com/huihui_ai/phi4-abliterated) directly
```
ollama run huihui_ai/phi4-abliterated
```
|
zapparias/pixiv-vit-mae-base | zapparias | "2024-11-29T04:30:20Z" | 154 | 2 | transformers | [
"transformers",
"safetensors",
"vit_mae",
"pretraining",
"vision",
"anime",
"image-feature-extraction",
"endpoints_compatible",
"region:us"
] | image-feature-extraction | "2024-11-29T03:18:23Z" | ---
library_name: transformers
tags:
- vision
- anime
- image-feature-extraction
---
# ViTMAE (base-sized model) pre-trained on Pixiv
ViTMAE model pre-trained on Pixiv artworks from id 20 to 100649536. Architecture is the same as [facebook/vit-mae-base](https://huggingface.co/facebook/vit-mae-base), but with a smaller patch size (14) and a larger image size (266).
All training was done on TPUs sponsored by [TPU Research Cloud](https://sites.research.google/trc/about/).
## Usage
```
from transformers import AutoImageProcessor, ViTMAEForPreTraining, ViTModel
# for resizing images to 266 pixes and normalizing to [-1, 1]
processor = AutoImageProcessor.from_pretrained("zapparias/pixiv-vit-mae-base")
# load encoder + decoder
model = ViTMAEForPreTraining.from_pretrained("zapparias/pixiv-vit-mae-base")
# you can also load the encoder into a standard ViT model for feature extraction
model = ViTModel.from_pretrained("zapparias/pixiv-vit-mae-base", add_pooling_layer=False)
```
|
adammandic87/491009d8-1596-49c7-b9f6-26bf8ab5a711 | adammandic87 | "2025-02-02T22:59:01Z" | 8 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:Orenguteng/Llama-3-8B-Lexi-Uncensored",
"base_model:adapter:Orenguteng/Llama-3-8B-Lexi-Uncensored",
"license:llama3",
"region:us"
] | null | "2025-02-02T22:55:36Z" | ---
library_name: peft
license: llama3
base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 491009d8-1596-49c7-b9f6-26bf8ab5a711
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- be5ab324e25875e7_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/be5ab324e25875e7_train_data.json
type:
field_input: input
field_instruction: instruction
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: adammandic87/491009d8-1596-49c7-b9f6-26bf8ab5a711
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 2
mlflow_experiment_name: /tmp/be5ab324e25875e7_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 21c17688-3386-4af0-a372-07bbb0501a28
wandb_project: Birthday-SN56-13-Gradients-On-Demand
wandb_run: your_name
wandb_runid: 21c17688-3386-4af0-a372-07bbb0501a28
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 491009d8-1596-49c7-b9f6-26bf8ab5a711
This model is a fine-tuned version of [Orenguteng/Llama-3-8B-Lexi-Uncensored](https://huggingface.co/Orenguteng/Llama-3-8B-Lexi-Uncensored) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8741
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 3.7 | 0.0015 | 1 | 5.9562 |
| 4.9071 | 0.0726 | 50 | 4.8841 |
| 1.4953 | 0.1452 | 100 | 3.2982 |
| 3.3976 | 0.2178 | 150 | 2.1256 |
| 2.1854 | 0.2904 | 200 | 1.8741 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
viko0123/Flux_Lora | viko0123 | "2025-01-27T10:24:05Z" | 9 | 0 | diffusers | [
"diffusers",
"flux",
"text-to-image",
"lora",
"fal",
"license:other",
"region:us"
] | text-to-image | "2025-01-27T10:23:54Z" | ---
tags:
- flux
- text-to-image
- lora
- diffusers
- fal
base_model: undefined
instance_prompt:
license: other
---
# Flux_Lora
<Gallery />
## Model description
## Trigger words
You should use `` to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](/viko0123/Flux_Lora/tree/main) them in the Files & versions tab.
## Training at fal.ai
Training was done using [fal.ai/models/fal-ai/flux-lora-portrait-trainer](https://fal.ai/models/fal-ai/flux-lora-portrait-trainer).
|
mradermacher/NeuralRaphael7B-i1-GGUF | mradermacher | "2025-02-03T23:31:34Z" | 379 | 1 | transformers | [
"transformers",
"gguf",
"mergekit",
"merge",
"en",
"base_model:itchindigo/NeuralRaphael7B",
"base_model:quantized:itchindigo/NeuralRaphael7B",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | null | "2025-02-03T19:45:56Z" | ---
base_model: itchindigo/NeuralRaphael7B
language:
- en
library_name: transformers
quantized_by: mradermacher
tags:
- mergekit
- merge
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
weighted/imatrix quants of https://huggingface.co/itchindigo/NeuralRaphael7B
<!-- provided-files -->
static quants are available at https://huggingface.co/mradermacher/NeuralRaphael7B-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/NeuralRaphael7B-i1-GGUF/resolve/main/NeuralRaphael7B.i1-IQ1_S.gguf) | i1-IQ1_S | 1.7 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/NeuralRaphael7B-i1-GGUF/resolve/main/NeuralRaphael7B.i1-IQ1_M.gguf) | i1-IQ1_M | 1.9 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/NeuralRaphael7B-i1-GGUF/resolve/main/NeuralRaphael7B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.1 | |
| [GGUF](https://huggingface.co/mradermacher/NeuralRaphael7B-i1-GGUF/resolve/main/NeuralRaphael7B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.3 | |
| [GGUF](https://huggingface.co/mradermacher/NeuralRaphael7B-i1-GGUF/resolve/main/NeuralRaphael7B.i1-IQ2_S.gguf) | i1-IQ2_S | 2.4 | |
| [GGUF](https://huggingface.co/mradermacher/NeuralRaphael7B-i1-GGUF/resolve/main/NeuralRaphael7B.i1-IQ2_M.gguf) | i1-IQ2_M | 2.6 | |
| [GGUF](https://huggingface.co/mradermacher/NeuralRaphael7B-i1-GGUF/resolve/main/NeuralRaphael7B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 2.6 | very low quality |
| [GGUF](https://huggingface.co/mradermacher/NeuralRaphael7B-i1-GGUF/resolve/main/NeuralRaphael7B.i1-Q2_K.gguf) | i1-Q2_K | 2.8 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/NeuralRaphael7B-i1-GGUF/resolve/main/NeuralRaphael7B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.9 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/NeuralRaphael7B-i1-GGUF/resolve/main/NeuralRaphael7B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.1 | |
| [GGUF](https://huggingface.co/mradermacher/NeuralRaphael7B-i1-GGUF/resolve/main/NeuralRaphael7B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.3 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/NeuralRaphael7B-i1-GGUF/resolve/main/NeuralRaphael7B.i1-IQ3_S.gguf) | i1-IQ3_S | 3.3 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/NeuralRaphael7B-i1-GGUF/resolve/main/NeuralRaphael7B.i1-IQ3_M.gguf) | i1-IQ3_M | 3.4 | |
| [GGUF](https://huggingface.co/mradermacher/NeuralRaphael7B-i1-GGUF/resolve/main/NeuralRaphael7B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.6 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/NeuralRaphael7B-i1-GGUF/resolve/main/NeuralRaphael7B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 3.9 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/NeuralRaphael7B-i1-GGUF/resolve/main/NeuralRaphael7B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.0 | |
| [GGUF](https://huggingface.co/mradermacher/NeuralRaphael7B-i1-GGUF/resolve/main/NeuralRaphael7B.i1-Q4_0.gguf) | i1-Q4_0 | 4.2 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/NeuralRaphael7B-i1-GGUF/resolve/main/NeuralRaphael7B.i1-IQ4_NL.gguf) | i1-IQ4_NL | 4.2 | prefer IQ4_XS |
| [GGUF](https://huggingface.co/mradermacher/NeuralRaphael7B-i1-GGUF/resolve/main/NeuralRaphael7B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.2 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/NeuralRaphael7B-i1-GGUF/resolve/main/NeuralRaphael7B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/NeuralRaphael7B-i1-GGUF/resolve/main/NeuralRaphael7B.i1-Q4_1.gguf) | i1-Q4_1 | 4.7 | |
| [GGUF](https://huggingface.co/mradermacher/NeuralRaphael7B-i1-GGUF/resolve/main/NeuralRaphael7B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.1 | |
| [GGUF](https://huggingface.co/mradermacher/NeuralRaphael7B-i1-GGUF/resolve/main/NeuralRaphael7B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.2 | |
| [GGUF](https://huggingface.co/mradermacher/NeuralRaphael7B-i1-GGUF/resolve/main/NeuralRaphael7B.i1-Q6_K.gguf) | i1-Q6_K | 6.0 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|
kostiantynk-out/097c11c9-1c71-4e77-bddc-629fe0ff9605 | kostiantynk-out | "2025-01-24T13:21:08Z" | 6 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:Maykeye/TinyLLama-v0",
"base_model:adapter:Maykeye/TinyLLama-v0",
"license:apache-2.0",
"region:us"
] | null | "2025-01-24T13:19:14Z" | ---
library_name: peft
license: apache-2.0
base_model: Maykeye/TinyLLama-v0
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 097c11c9-1c71-4e77-bddc-629fe0ff9605
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: Maykeye/TinyLLama-v0
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 193547730a2e5d0c_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/193547730a2e5d0c_train_data.json
type:
field_input: tools
field_instruction: query
field_output: answers
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: kostiantynk-out/097c11c9-1c71-4e77-bddc-629fe0ff9605
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 10
micro_batch_size: 2
mlflow_experiment_name: /tmp/193547730a2e5d0c_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: e953d7b0-9ce7-43c2-a622-78e06b2bf500
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: e953d7b0-9ce7-43c2-a622-78e06b2bf500
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 097c11c9-1c71-4e77-bddc-629fe0ff9605
This model is a fine-tuned version of [Maykeye/TinyLLama-v0](https://huggingface.co/Maykeye/TinyLLama-v0) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 9.8957
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 10.3046 | 0.0001 | 1 | 10.3022 |
| 10.1589 | 0.0004 | 3 | 10.2948 |
| 9.3958 | 0.0008 | 6 | 10.1709 |
| 9.5752 | 0.0013 | 9 | 9.8957 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
ZeroWw/gemma-2-2b-it-GGUF | ZeroWw | "2024-08-01T11:02:31Z" | 8 | 0 | null | [
"gguf",
"text-generation",
"en",
"license:mit",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | "2024-08-01T10:58:31Z" |
---
license: mit
language:
- en
pipeline_tag: text-generation
---
My own (ZeroWw) quantizations.
output and embed tensors quantized to f16.
all other tensors quantized to q5_k or q6_k.
Result:
both f16.q6 and f16.q5 are smaller than q8_0 standard quantization
and they perform as well as the pure f16.
Updated on: Thu Aug 01, 10:58:32
|
Kquant03/CognitiveFusion-4x7B-GGUF | Kquant03 | "2024-01-13T03:00:21Z" | 62 | 11 | null | [
"gguf",
"merge",
"en",
"dataset:Open-Orca/OpenOrca",
"dataset:Intel/orca_dpo_pairs",
"dataset:cognitivecomputations/dolphin",
"arxiv:2101.03961",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | "2024-01-03T04:26:10Z" | ---
license: apache-2.0
datasets:
- Open-Orca/OpenOrca
- Intel/orca_dpo_pairs
- cognitivecomputations/dolphin
language:
- en
tags:
- merge
---

(Image credit goes to [NeuralNovel](https://huggingface.co/NeuralNovel))
# Making frankenMoEs more than just a meme...(These are the GGUF files, I cannot quantize my other models properly until llama.cpp is fixed, sorry!)
I was approached with the idea to make a merge based on story telling, and considering frankenMoE's tendency to be hallucinatory, I thought that was a wonderful idea. However, I wanted it to be more than just a "meme model". I wanted to make something that would actually work...so we decided to use [SanjiWatsuki/Loyal-Macaroni-Maid-7B](https://huggingface.co/SanjiWatsuki/Loyal-Macaroni-Maid-7B) as a base, [cognitivecomputations/dolphin-2.6-mistral-7b](https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b) as two of the four experts in order to stabilize it, [SanjiWatsuki/Silicon-Maid-7B](https://huggingface.co/SanjiWatsuki/Silicon-Maid-7B) in order to improve its logical reasoning, and [NeuralNovel/Panda-7B-v0.1](https://huggingface.co/NeuralNovel/Panda-7B-v0.1) to improve its creativity and nuanced storytelling mechanics.
We believe that this, while it might not be better logically than mixtral base instruct, is definitely more creative. Special thanks to [NeuralNovel](https://huggingface.co/NeuralNovel) for collaborating with me on this project.


It performs better than base mixtral 8x across many evaluations. It's half the size and is comparable to most MoEs. Thanks so much to HuggingFace for evaluating it!
## Provided files
| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| [Q2_K Tiny](https://huggingface.co/Kquant03/CognitiveFusion-4x7B-GGUF/blob/main/ggml-model-q2_k.gguf) | Q2_K | 2 | 8.06 GB| 10.04 GB | smallest, significant quality loss - not recommended for most purposes |
| [Q3_K_M](https://huggingface.co/Kquant03/CognitiveFusion-4x7B-GGUF/blob/main/ggml-model-q3_k_m.gguf) | Q3_K_M | 3 | 10.50 GB| 12.48 GB | very small, high quality loss |
| [Q4_0](https://huggingface.co/Kquant03/CognitiveFusion-4x7B-GGUF/blob/main/ggml-model-q4_0.gguf) | Q4_0 | 4 | 13.6 GB| 15.57 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [Q4_K_M](https://huggingface.co/Kquant03/CognitiveFusion-4x7B-GGUF/blob/main/ggml-model-q4_k_m.gguf) | Q4_K_M | 4 | 13.6 GB| ~15.57 GB | medium, balanced quality - recommended |
| [Q5_0](https://huggingface.co/Kquant03/CognitiveFusion-4x7B-GGUF/blob/main/ggml-model-q5_0.gguf) | Q5_0 | 5 | 16.6 GB| 18.58 GB | legacy; large, balanced quality |
| [Q5_K_M](https://huggingface.co/Kquant03/CognitiveFusion-4x7B-GGUF/blob/main/ggml-model-q5_k_m.gguf) | Q5_K_M | 5 | 16.6 GB| ~18.58 GB | large, balanced quality - recommended |
| [Q6 XL](https://huggingface.co/Kquant03/CognitiveFusion-4x7B-GGUF/blob/main/ggml-model-q6_k.gguf) | Q6_K | 6 | 19.8 GB| 21.78 GB | very large, extremely low quality loss |
| [Q8 XXL](https://huggingface.co/Kquant03/CognitiveFusion-4x7B-GGUF/blob/main/ggml-model-q8_0.gguf) | Q8_0 | 8 | 25.7 GB| 27.68 GB | very large, extremely low quality loss - not recommended |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
# "[What is a Mixture of Experts (MoE)?](https://huggingface.co/blog/moe)"
### (from the MistralAI papers...click the quoted question above to navigate to it directly.)
The scale of a model is one of the most important axes for better model quality. Given a fixed computing budget, training a larger model for fewer steps is better than training a smaller model for more steps.
Mixture of Experts enable models to be pretrained with far less compute, which means you can dramatically scale up the model or dataset size with the same compute budget as a dense model. In particular, a MoE model should achieve the same quality as its dense counterpart much faster during pretraining.
So, what exactly is a MoE? In the context of transformer models, a MoE consists of two main elements:
Sparse MoE layers are used instead of dense feed-forward network (FFN) layers. MoE layers have a certain number of “experts” (e.g. 32 in my "frankenMoE"), where each expert is a neural network. In practice, the experts are FFNs, but they can also be more complex networks or even a MoE itself, leading to hierarchical MoEs!
A gate network or router, that determines which tokens are sent to which expert. For example, in the image below, the token “More” is sent to the second expert, and the token "Parameters” is sent to the first network. As we’ll explore later, we can send a token to more than one expert. How to route a token to an expert is one of the big decisions when working with MoEs - the router is composed of learned parameters and is pretrained at the same time as the rest of the network.
At every layer, for every token, a router network chooses two of these groups (the “experts”) to process the token and combine their output additively.

Switch Layer
MoE layer from the [Switch Transformers paper](https://arxiv.org/abs/2101.03961)
So, to recap, in MoEs we replace every FFN layer of the transformer model with an MoE layer, which is composed of a gate network and a certain number of experts.
Although MoEs provide benefits like efficient pretraining and faster inference compared to dense models, they also come with challenges:
Training: MoEs enable significantly more compute-efficient pretraining, but they’ve historically struggled to generalize during fine-tuning, leading to overfitting.
Inference: Although a MoE might have many parameters, only some of them are used during inference. This leads to much faster inference compared to a dense model with the same number of parameters. However, all parameters need to be loaded in RAM, so memory requirements are high. For example, [given a MoE like Mixtral 8x7B](https://huggingface.co/blog/moe), we’ll need to have enough VRAM to hold a dense 47B parameter model. Why 47B parameters and not 8 x 7B = 56B? That’s because in MoE models, only the FFN layers are treated as individual experts, and the rest of the model parameters are shared. At the same time, assuming just two experts are being used per token, the inference speed (FLOPs) is like using a 12B model (as opposed to a 14B model), because it computes 2x7B matrix multiplications, but with some layers shared (more on this soon).
If all our tokens are sent to just a few popular experts, that will make training inefficient. In a normal MoE training, the gating network converges to mostly activate the same few experts. This self-reinforces as favored experts are trained quicker and hence selected more. To mitigate this, an auxiliary loss is added to encourage giving all experts equal importance. This loss ensures that all experts receive a roughly equal number of training examples. The following sections will also explore the concept of expert capacity, which introduces a threshold of how many tokens can be processed by an expert. In transformers, the auxiliary loss is exposed via the aux_loss parameter.
## "Wait...but you called this a frankenMoE?"
The difference between MoE and "frankenMoE" lies in the fact that the router layer in a model like the one on this repo is not trained simultaneously. There are rumors about someone developing a way for us to unscuff these frankenMoE models by training the router layer simultaneously. For now, frankenMoE remains psychotic. This model does exceedinly well, however. Especially in terms of storywriting compared to mixtral.
## "Are there at least any datasets or plans for this model, in any way?"
There are many datasets included as a result of merging four models...for one, Silicon Maid is a merge of xDan which is trained on the [OpenOrca Dataset](https://huggingface.co/datasets/Open-Orca/OpenOrca) and the [OpenOrca DPO pairs](https://huggingface.co/datasets/Intel/orca_dpo_pairs). Loyal-Macaroni-Maid uses OpenChat-3.5, Starling and NeuralChat which has so many datasets I'm not going to list them all here. Dolphin 2.6 Mistral also has a large variety of datasets. Panda-7B-v0.1 was fine tuned by the person collaborating on this project with me using a base mistral and a private dataset. Panda gives the model the creativity it has while the rest act as support.
# Results
## Some results from the model's performance.

Most models answer eternal life...this was a compelling argument given by this model. At lower quants this model will lean towards eternal life.

Considerably better than MythoMax in my opinion...

It actually wrote a perfect haiku. This model is so much better than my other frankenMoEs...


There's a reason I pushed this straight to GGUF right away. I lack compute to make EXL2 or something but perhaps someone else would be interested in that. |
nikoryagin/sae_Qwen_Qwen2.5-7B_resid_post_layer_25_size_16384_batchtopk_qqjiu1ue_lora_fpbnrhea | nikoryagin | "2025-04-06T20:37:10Z" | 0 | 0 | transformers | [
"transformers",
"safetensors",
"sae",
"feature-extraction",
"custom_code",
"arxiv:1910.09700",
"region:us"
] | feature-extraction | "2025-04-06T20:36:46Z" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
cycloneboy/chinese_mobilebert_base_f4 | cycloneboy | "2023-04-02T14:12:32Z" | 49 | 0 | transformers | [
"transformers",
"pytorch",
"pretraining",
"zh",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | "2023-04-02T14:03:34Z" | ---
language:
- zh
license: "apache-2.0"
---
## Chinese-MobileBERT
> The original [Chinese-MobileBERT](https://github.com/ymcui/Chinese-MobileBERT) repository does not provide pytorch weights, here the weights are converted via the [model_convert](https://github.com/CycloneBoy/model_convert) repository.
This repository is developed based on:https://github.com/ymcui/Chinese-MobileBERT
You may also be interested in,
- Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm
- Chinese MacBERT: https://github.com/ymcui/MacBERT
- Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA
- Chinese XLNet: https://github.com/ymcui/Chinese-XLNet
- Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer
More resources by HFL: https://github.com/ymcui/HFL-Anthology
## Citation
If you find the technical report or resource is useful, please cite the following technical report in your paper.
```
@misc{cui-2022-chinese-mobilebert,
title={Chinese MobileBERT},
author={Cui, Yiming},
howpublished={\url{https://github.com/ymcui/Chinese-MobileBERT}},
year={2022}
}
``` |
outlookAi/o6IQK480kl | outlookAi | "2025-01-27T04:19:13Z" | 16 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | "2025-01-27T03:58:22Z" | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: Eve
---
# O6Iqk480Kl
<Gallery />
Trained on Replicate using:
https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `Eve` to trigger the image generation.
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('outlookAi/o6IQK480kl', weight_name='lora.safetensors')
image = pipeline('your prompt').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
|
Subsets and Splits