python_code
stringlengths
0
1.8M
repo_name
stringclasses
7 values
file_path
stringlengths
5
99
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2019-2021 NXP * Dong Aisheng <[email protected]> */ #include <dt-bindings/firmware/imx/rsrc.h> #include "clk-scu.h" /* Keep sorted in the ascending order */ static const u32 imx8qxp_clk_scu_rsrc_table[] = { IMX_SC_R_DC_0_VIDEO0, IMX_SC_R_DC_0_VIDEO1, IMX_SC_R_DC_0, IMX_SC_R_DC_0_PLL_0, IMX_SC_R_DC_0_PLL_1, IMX_SC_R_SPI_0, IMX_SC_R_SPI_1, IMX_SC_R_SPI_2, IMX_SC_R_SPI_3, IMX_SC_R_UART_0, IMX_SC_R_UART_1, IMX_SC_R_UART_2, IMX_SC_R_UART_3, IMX_SC_R_I2C_0, IMX_SC_R_I2C_1, IMX_SC_R_I2C_2, IMX_SC_R_I2C_3, IMX_SC_R_ADC_0, IMX_SC_R_FTM_0, IMX_SC_R_FTM_1, IMX_SC_R_CAN_0, IMX_SC_R_GPU_0_PID0, IMX_SC_R_LCD_0, IMX_SC_R_LCD_0_PWM_0, IMX_SC_R_PWM_0, IMX_SC_R_PWM_1, IMX_SC_R_PWM_2, IMX_SC_R_PWM_3, IMX_SC_R_PWM_4, IMX_SC_R_PWM_5, IMX_SC_R_PWM_6, IMX_SC_R_PWM_7, IMX_SC_R_GPT_0, IMX_SC_R_GPT_1, IMX_SC_R_GPT_2, IMX_SC_R_GPT_3, IMX_SC_R_GPT_4, IMX_SC_R_FSPI_0, IMX_SC_R_FSPI_1, IMX_SC_R_SDHC_0, IMX_SC_R_SDHC_1, IMX_SC_R_SDHC_2, IMX_SC_R_ENET_0, IMX_SC_R_ENET_1, IMX_SC_R_MLB_0, IMX_SC_R_USB_2, IMX_SC_R_NAND, IMX_SC_R_LVDS_0, IMX_SC_R_LVDS_1, IMX_SC_R_M4_0_I2C, IMX_SC_R_ELCDIF_PLL, IMX_SC_R_AUDIO_PLL_0, IMX_SC_R_PI_0, IMX_SC_R_PI_0_PLL, IMX_SC_R_MIPI_0, IMX_SC_R_MIPI_0_PWM_0, IMX_SC_R_MIPI_0_I2C_0, IMX_SC_R_MIPI_0_I2C_1, IMX_SC_R_MIPI_1, IMX_SC_R_MIPI_1_PWM_0, IMX_SC_R_MIPI_1_I2C_0, IMX_SC_R_MIPI_1_I2C_1, IMX_SC_R_CSI_0, IMX_SC_R_CSI_0_PWM_0, IMX_SC_R_CSI_0_I2C_0, IMX_SC_R_AUDIO_PLL_1, IMX_SC_R_AUDIO_CLK_0, IMX_SC_R_AUDIO_CLK_1, IMX_SC_R_A35, IMX_SC_R_VPU_DEC_0, IMX_SC_R_VPU_ENC_0, }; const struct imx_clk_scu_rsrc_table imx_clk_scu_rsrc_imx8qxp = { .rsrc = imx8qxp_clk_scu_rsrc_table, .num = ARRAY_SIZE(imx8qxp_clk_scu_rsrc_table), };
linux-master
drivers/clk/imx/clk-imx8qxp-rsrc.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2016 Freescale Semiconductor, Inc. * Copyright 2017~2018 NXP * * Author: Dong Aisheng <[email protected]> * */ #include <dt-bindings/clock/imx7ulp-clock.h> #include <linux/clk-provider.h> #include <linux/err.h> #include <linux/init.h> #include <linux/io.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/platform_device.h> #include <linux/slab.h> #include "clk.h" static const char * const pll_pre_sels[] = { "sosc", "firc", }; static const char * const spll_pfd_sels[] = { "spll_pfd0", "spll_pfd1", "spll_pfd2", "spll_pfd3", }; static const char * const spll_sels[] = { "spll", "spll_pfd_sel", }; static const char * const apll_pfd_sels[] = { "apll_pfd0", "apll_pfd1", "apll_pfd2", "apll_pfd3", }; static const char * const apll_sels[] = { "apll", "apll_pfd_sel", }; static const char * const scs_sels[] = { "dummy", "sosc", "sirc", "firc", "dummy", "apll_sel", "spll_sel", "dummy", }; static const char * const ddr_sels[] = { "apll_pfd_sel", "dummy", "dummy", "dummy", }; static const char * const nic_sels[] = { "firc", "ddr_clk", }; static const char * const periph_plat_sels[] = { "dummy", "nic1_bus_clk", "nic1_clk", "ddr_clk", "apll_pfd2", "apll_pfd1", "apll_pfd0", "upll", }; static const char * const periph_bus_sels[] = { "dummy", "sosc_bus_clk", "dummy", "firc_bus_clk", "rosc", "nic1_bus_clk", "nic1_clk", "spll_bus_clk", }; static const char * const arm_sels[] = { "core", "dummy", "dummy", "hsrun_core", }; /* used by sosc/sirc/firc/ddr/spll/apll dividers */ static const struct clk_div_table ulp_div_table[] = { { .val = 1, .div = 1, }, { .val = 2, .div = 2, }, { .val = 3, .div = 4, }, { .val = 4, .div = 8, }, { .val = 5, .div = 16, }, { .val = 6, .div = 32, }, { .val = 7, .div = 64, }, { /* sentinel */ }, }; static void __init imx7ulp_clk_scg1_init(struct device_node *np) { struct clk_hw_onecell_data *clk_data; struct clk_hw **hws; void __iomem *base; clk_data = kzalloc(struct_size(clk_data, hws, IMX7ULP_CLK_SCG1_END), GFP_KERNEL); if (!clk_data) return; clk_data->num = IMX7ULP_CLK_SCG1_END; hws = clk_data->hws; hws[IMX7ULP_CLK_DUMMY] = imx_clk_hw_fixed("dummy", 0); hws[IMX7ULP_CLK_ROSC] = imx_get_clk_hw_by_name(np, "rosc"); hws[IMX7ULP_CLK_SOSC] = imx_get_clk_hw_by_name(np, "sosc"); hws[IMX7ULP_CLK_SIRC] = imx_get_clk_hw_by_name(np, "sirc"); hws[IMX7ULP_CLK_FIRC] = imx_get_clk_hw_by_name(np, "firc"); hws[IMX7ULP_CLK_UPLL] = imx_get_clk_hw_by_name(np, "upll"); /* SCG1 */ base = of_iomap(np, 0); WARN_ON(!base); /* NOTE: xPLL config can't be changed when xPLL is enabled */ hws[IMX7ULP_CLK_APLL_PRE_SEL] = imx_clk_hw_mux_flags("apll_pre_sel", base + 0x508, 0, 1, pll_pre_sels, ARRAY_SIZE(pll_pre_sels), CLK_SET_PARENT_GATE); hws[IMX7ULP_CLK_SPLL_PRE_SEL] = imx_clk_hw_mux_flags("spll_pre_sel", base + 0x608, 0, 1, pll_pre_sels, ARRAY_SIZE(pll_pre_sels), CLK_SET_PARENT_GATE); /* name parent_name reg shift width flags */ hws[IMX7ULP_CLK_APLL_PRE_DIV] = imx_clk_hw_divider_flags("apll_pre_div", "apll_pre_sel", base + 0x508, 8, 3, CLK_SET_RATE_GATE); hws[IMX7ULP_CLK_SPLL_PRE_DIV] = imx_clk_hw_divider_flags("spll_pre_div", "spll_pre_sel", base + 0x608, 8, 3, CLK_SET_RATE_GATE); /* name parent_name base */ hws[IMX7ULP_CLK_APLL] = imx_clk_hw_pllv4(IMX_PLLV4_IMX7ULP, "apll", "apll_pre_div", base + 0x500); hws[IMX7ULP_CLK_SPLL] = imx_clk_hw_pllv4(IMX_PLLV4_IMX7ULP, "spll", "spll_pre_div", base + 0x600); /* APLL PFDs */ hws[IMX7ULP_CLK_APLL_PFD0] = imx_clk_hw_pfdv2(IMX_PFDV2_IMX7ULP, "apll_pfd0", "apll", base + 0x50c, 0); hws[IMX7ULP_CLK_APLL_PFD1] = imx_clk_hw_pfdv2(IMX_PFDV2_IMX7ULP, "apll_pfd1", "apll", base + 0x50c, 1); hws[IMX7ULP_CLK_APLL_PFD2] = imx_clk_hw_pfdv2(IMX_PFDV2_IMX7ULP, "apll_pfd2", "apll", base + 0x50c, 2); hws[IMX7ULP_CLK_APLL_PFD3] = imx_clk_hw_pfdv2(IMX_PFDV2_IMX7ULP, "apll_pfd3", "apll", base + 0x50c, 3); /* SPLL PFDs */ hws[IMX7ULP_CLK_SPLL_PFD0] = imx_clk_hw_pfdv2(IMX_PFDV2_IMX7ULP, "spll_pfd0", "spll", base + 0x60C, 0); hws[IMX7ULP_CLK_SPLL_PFD1] = imx_clk_hw_pfdv2(IMX_PFDV2_IMX7ULP, "spll_pfd1", "spll", base + 0x60C, 1); hws[IMX7ULP_CLK_SPLL_PFD2] = imx_clk_hw_pfdv2(IMX_PFDV2_IMX7ULP, "spll_pfd2", "spll", base + 0x60C, 2); hws[IMX7ULP_CLK_SPLL_PFD3] = imx_clk_hw_pfdv2(IMX_PFDV2_IMX7ULP, "spll_pfd3", "spll", base + 0x60C, 3); /* PLL Mux */ hws[IMX7ULP_CLK_APLL_PFD_SEL] = imx_clk_hw_mux_flags("apll_pfd_sel", base + 0x508, 14, 2, apll_pfd_sels, ARRAY_SIZE(apll_pfd_sels), CLK_SET_RATE_PARENT | CLK_SET_PARENT_GATE); hws[IMX7ULP_CLK_SPLL_PFD_SEL] = imx_clk_hw_mux_flags("spll_pfd_sel", base + 0x608, 14, 2, spll_pfd_sels, ARRAY_SIZE(spll_pfd_sels), CLK_SET_RATE_PARENT | CLK_SET_PARENT_GATE); hws[IMX7ULP_CLK_APLL_SEL] = imx_clk_hw_mux_flags("apll_sel", base + 0x508, 1, 1, apll_sels, ARRAY_SIZE(apll_sels), CLK_SET_RATE_PARENT | CLK_SET_PARENT_GATE); hws[IMX7ULP_CLK_SPLL_SEL] = imx_clk_hw_mux_flags("spll_sel", base + 0x608, 1, 1, spll_sels, ARRAY_SIZE(spll_sels), CLK_SET_RATE_PARENT | CLK_SET_PARENT_GATE); hws[IMX7ULP_CLK_SPLL_BUS_CLK] = imx_clk_hw_divider_gate("spll_bus_clk", "spll_sel", CLK_SET_RATE_GATE, base + 0x604, 8, 3, 0, ulp_div_table, &imx_ccm_lock); /* scs/ddr/nic select different clock source requires that clock to be enabled first */ hws[IMX7ULP_CLK_SYS_SEL] = imx_clk_hw_mux2("scs_sel", base + 0x14, 24, 4, scs_sels, ARRAY_SIZE(scs_sels)); hws[IMX7ULP_CLK_HSRUN_SYS_SEL] = imx_clk_hw_mux2("hsrun_scs_sel", base + 0x1c, 24, 4, scs_sels, ARRAY_SIZE(scs_sels)); hws[IMX7ULP_CLK_NIC_SEL] = imx_clk_hw_mux2("nic_sel", base + 0x40, 28, 1, nic_sels, ARRAY_SIZE(nic_sels)); hws[IMX7ULP_CLK_DDR_SEL] = imx_clk_hw_mux_flags("ddr_sel", base + 0x30, 24, 2, ddr_sels, ARRAY_SIZE(ddr_sels), CLK_SET_RATE_PARENT | CLK_OPS_PARENT_ENABLE); hws[IMX7ULP_CLK_CORE_DIV] = imx_clk_hw_divider_flags("divcore", "scs_sel", base + 0x14, 16, 4, CLK_SET_RATE_PARENT); hws[IMX7ULP_CLK_CORE] = imx_clk_hw_cpu("core", "divcore", hws[IMX7ULP_CLK_CORE_DIV]->clk, hws[IMX7ULP_CLK_SYS_SEL]->clk, hws[IMX7ULP_CLK_SPLL_SEL]->clk, hws[IMX7ULP_CLK_FIRC]->clk); hws[IMX7ULP_CLK_HSRUN_CORE_DIV] = imx_clk_hw_divider_flags("hsrun_divcore", "hsrun_scs_sel", base + 0x1c, 16, 4, CLK_SET_RATE_PARENT); hws[IMX7ULP_CLK_HSRUN_CORE] = imx_clk_hw_cpu("hsrun_core", "hsrun_divcore", hws[IMX7ULP_CLK_HSRUN_CORE_DIV]->clk, hws[IMX7ULP_CLK_HSRUN_SYS_SEL]->clk, hws[IMX7ULP_CLK_SPLL_SEL]->clk, hws[IMX7ULP_CLK_FIRC]->clk); hws[IMX7ULP_CLK_DDR_DIV] = imx_clk_hw_divider_gate("ddr_clk", "ddr_sel", CLK_SET_RATE_PARENT | CLK_IS_CRITICAL, base + 0x30, 0, 3, 0, ulp_div_table, &imx_ccm_lock); hws[IMX7ULP_CLK_NIC0_DIV] = imx_clk_hw_divider_flags("nic0_clk", "nic_sel", base + 0x40, 24, 4, CLK_SET_RATE_PARENT | CLK_IS_CRITICAL); hws[IMX7ULP_CLK_NIC1_DIV] = imx_clk_hw_divider_flags("nic1_clk", "nic0_clk", base + 0x40, 16, 4, CLK_SET_RATE_PARENT | CLK_IS_CRITICAL); hws[IMX7ULP_CLK_NIC1_BUS_DIV] = imx_clk_hw_divider_flags("nic1_bus_clk", "nic0_clk", base + 0x40, 4, 4, CLK_SET_RATE_PARENT | CLK_IS_CRITICAL); hws[IMX7ULP_CLK_GPU_DIV] = imx_clk_hw_divider("gpu_clk", "nic0_clk", base + 0x40, 20, 4); hws[IMX7ULP_CLK_SOSC_BUS_CLK] = imx_clk_hw_divider_gate("sosc_bus_clk", "sosc", 0, base + 0x104, 8, 3, CLK_DIVIDER_READ_ONLY, ulp_div_table, &imx_ccm_lock); hws[IMX7ULP_CLK_FIRC_BUS_CLK] = imx_clk_hw_divider_gate("firc_bus_clk", "firc", 0, base + 0x304, 8, 3, CLK_DIVIDER_READ_ONLY, ulp_div_table, &imx_ccm_lock); imx_check_clk_hws(hws, clk_data->num); of_clk_add_hw_provider(np, of_clk_hw_onecell_get, clk_data); } CLK_OF_DECLARE(imx7ulp_clk_scg1, "fsl,imx7ulp-scg1", imx7ulp_clk_scg1_init); static void __init imx7ulp_clk_pcc2_init(struct device_node *np) { struct clk_hw_onecell_data *clk_data; struct clk_hw **hws; void __iomem *base; clk_data = kzalloc(struct_size(clk_data, hws, IMX7ULP_CLK_PCC2_END), GFP_KERNEL); if (!clk_data) return; clk_data->num = IMX7ULP_CLK_PCC2_END; hws = clk_data->hws; /* PCC2 */ base = of_iomap(np, 0); WARN_ON(!base); hws[IMX7ULP_CLK_DMA1] = imx_clk_hw_gate("dma1", "nic1_clk", base + 0x20, 30); hws[IMX7ULP_CLK_RGPIO2P1] = imx_clk_hw_gate("rgpio2p1", "nic1_bus_clk", base + 0x3c, 30); hws[IMX7ULP_CLK_DMA_MUX1] = imx_clk_hw_gate("dma_mux1", "nic1_bus_clk", base + 0x84, 30); hws[IMX7ULP_CLK_CAAM] = imx_clk_hw_gate("caam", "nic1_clk", base + 0x90, 30); hws[IMX7ULP_CLK_LPTPM4] = imx7ulp_clk_hw_composite("lptpm4", periph_bus_sels, ARRAY_SIZE(periph_bus_sels), true, false, true, base + 0x94); hws[IMX7ULP_CLK_LPTPM5] = imx7ulp_clk_hw_composite("lptpm5", periph_bus_sels, ARRAY_SIZE(periph_bus_sels), true, false, true, base + 0x98); hws[IMX7ULP_CLK_LPIT1] = imx7ulp_clk_hw_composite("lpit1", periph_bus_sels, ARRAY_SIZE(periph_bus_sels), true, false, true, base + 0x9c); hws[IMX7ULP_CLK_LPSPI2] = imx7ulp_clk_hw_composite("lpspi2", periph_bus_sels, ARRAY_SIZE(periph_bus_sels), true, false, true, base + 0xa4); hws[IMX7ULP_CLK_LPSPI3] = imx7ulp_clk_hw_composite("lpspi3", periph_bus_sels, ARRAY_SIZE(periph_bus_sels), true, false, true, base + 0xa8); hws[IMX7ULP_CLK_LPI2C4] = imx7ulp_clk_hw_composite("lpi2c4", periph_bus_sels, ARRAY_SIZE(periph_bus_sels), true, false, true, base + 0xac); hws[IMX7ULP_CLK_LPI2C5] = imx7ulp_clk_hw_composite("lpi2c5", periph_bus_sels, ARRAY_SIZE(periph_bus_sels), true, false, true, base + 0xb0); hws[IMX7ULP_CLK_LPUART4] = imx7ulp_clk_hw_composite("lpuart4", periph_bus_sels, ARRAY_SIZE(periph_bus_sels), true, false, true, base + 0xb4); hws[IMX7ULP_CLK_LPUART5] = imx7ulp_clk_hw_composite("lpuart5", periph_bus_sels, ARRAY_SIZE(periph_bus_sels), true, false, true, base + 0xb8); hws[IMX7ULP_CLK_FLEXIO1] = imx7ulp_clk_hw_composite("flexio1", periph_bus_sels, ARRAY_SIZE(periph_bus_sels), true, false, true, base + 0xc4); hws[IMX7ULP_CLK_USB0] = imx7ulp_clk_hw_composite("usb0", periph_plat_sels, ARRAY_SIZE(periph_plat_sels), true, true, true, base + 0xcc); hws[IMX7ULP_CLK_USB1] = imx7ulp_clk_hw_composite("usb1", periph_plat_sels, ARRAY_SIZE(periph_plat_sels), true, true, true, base + 0xd0); hws[IMX7ULP_CLK_USB_PHY] = imx_clk_hw_gate("usb_phy", "nic1_bus_clk", base + 0xd4, 30); hws[IMX7ULP_CLK_USDHC0] = imx7ulp_clk_hw_composite("usdhc0", periph_plat_sels, ARRAY_SIZE(periph_plat_sels), true, true, true, base + 0xdc); hws[IMX7ULP_CLK_USDHC1] = imx7ulp_clk_hw_composite("usdhc1", periph_plat_sels, ARRAY_SIZE(periph_plat_sels), true, true, true, base + 0xe0); hws[IMX7ULP_CLK_WDG1] = imx7ulp_clk_hw_composite("wdg1", periph_bus_sels, ARRAY_SIZE(periph_bus_sels), true, true, true, base + 0xf4); hws[IMX7ULP_CLK_WDG2] = imx7ulp_clk_hw_composite("wdg2", periph_bus_sels, ARRAY_SIZE(periph_bus_sels), true, true, true, base + 0x10c); imx_check_clk_hws(hws, clk_data->num); of_clk_add_hw_provider(np, of_clk_hw_onecell_get, clk_data); imx_register_uart_clocks(); } CLK_OF_DECLARE(imx7ulp_clk_pcc2, "fsl,imx7ulp-pcc2", imx7ulp_clk_pcc2_init); static void __init imx7ulp_clk_pcc3_init(struct device_node *np) { struct clk_hw_onecell_data *clk_data; struct clk_hw **hws; void __iomem *base; clk_data = kzalloc(struct_size(clk_data, hws, IMX7ULP_CLK_PCC3_END), GFP_KERNEL); if (!clk_data) return; clk_data->num = IMX7ULP_CLK_PCC3_END; hws = clk_data->hws; /* PCC3 */ base = of_iomap(np, 0); WARN_ON(!base); hws[IMX7ULP_CLK_LPTPM6] = imx7ulp_clk_hw_composite("lptpm6", periph_bus_sels, ARRAY_SIZE(periph_bus_sels), true, false, true, base + 0x84); hws[IMX7ULP_CLK_LPTPM7] = imx7ulp_clk_hw_composite("lptpm7", periph_bus_sels, ARRAY_SIZE(periph_bus_sels), true, false, true, base + 0x88); hws[IMX7ULP_CLK_MMDC] = clk_hw_register_gate(NULL, "mmdc", "nic1_clk", CLK_SET_RATE_PARENT | CLK_IS_CRITICAL, base + 0xac, 30, 0, &imx_ccm_lock); hws[IMX7ULP_CLK_LPI2C6] = imx7ulp_clk_hw_composite("lpi2c6", periph_bus_sels, ARRAY_SIZE(periph_bus_sels), true, false, true, base + 0x90); hws[IMX7ULP_CLK_LPI2C7] = imx7ulp_clk_hw_composite("lpi2c7", periph_bus_sels, ARRAY_SIZE(periph_bus_sels), true, false, true, base + 0x94); hws[IMX7ULP_CLK_LPUART6] = imx7ulp_clk_hw_composite("lpuart6", periph_bus_sels, ARRAY_SIZE(periph_bus_sels), true, false, true, base + 0x98); hws[IMX7ULP_CLK_LPUART7] = imx7ulp_clk_hw_composite("lpuart7", periph_bus_sels, ARRAY_SIZE(periph_bus_sels), true, false, true, base + 0x9c); hws[IMX7ULP_CLK_DSI] = imx7ulp_clk_hw_composite("dsi", periph_bus_sels, ARRAY_SIZE(periph_bus_sels), true, true, true, base + 0xa4); hws[IMX7ULP_CLK_LCDIF] = imx7ulp_clk_hw_composite("lcdif", periph_plat_sels, ARRAY_SIZE(periph_plat_sels), true, true, true, base + 0xa8); hws[IMX7ULP_CLK_VIU] = imx_clk_hw_gate("viu", "nic1_clk", base + 0xa0, 30); hws[IMX7ULP_CLK_PCTLC] = imx_clk_hw_gate("pctlc", "nic1_bus_clk", base + 0xb8, 30); hws[IMX7ULP_CLK_PCTLD] = imx_clk_hw_gate("pctld", "nic1_bus_clk", base + 0xbc, 30); hws[IMX7ULP_CLK_PCTLE] = imx_clk_hw_gate("pctle", "nic1_bus_clk", base + 0xc0, 30); hws[IMX7ULP_CLK_PCTLF] = imx_clk_hw_gate("pctlf", "nic1_bus_clk", base + 0xc4, 30); hws[IMX7ULP_CLK_GPU3D] = imx7ulp_clk_hw_composite("gpu3d", periph_plat_sels, ARRAY_SIZE(periph_plat_sels), true, false, true, base + 0x140); hws[IMX7ULP_CLK_GPU2D] = imx7ulp_clk_hw_composite("gpu2d", periph_plat_sels, ARRAY_SIZE(periph_plat_sels), true, false, true, base + 0x144); imx_check_clk_hws(hws, clk_data->num); of_clk_add_hw_provider(np, of_clk_hw_onecell_get, clk_data); imx_register_uart_clocks(); } CLK_OF_DECLARE(imx7ulp_clk_pcc3, "fsl,imx7ulp-pcc3", imx7ulp_clk_pcc3_init); static void __init imx7ulp_clk_smc1_init(struct device_node *np) { struct clk_hw_onecell_data *clk_data; struct clk_hw **hws; void __iomem *base; clk_data = kzalloc(struct_size(clk_data, hws, IMX7ULP_CLK_SMC1_END), GFP_KERNEL); if (!clk_data) return; clk_data->num = IMX7ULP_CLK_SMC1_END; hws = clk_data->hws; /* SMC1 */ base = of_iomap(np, 0); WARN_ON(!base); hws[IMX7ULP_CLK_ARM] = imx_clk_hw_mux_flags("arm", base + 0x10, 8, 2, arm_sels, ARRAY_SIZE(arm_sels), CLK_SET_RATE_PARENT); imx_check_clk_hws(hws, clk_data->num); of_clk_add_hw_provider(np, of_clk_hw_onecell_get, clk_data); } CLK_OF_DECLARE(imx7ulp_clk_smc1, "fsl,imx7ulp-smc1", imx7ulp_clk_smc1_init);
linux-master
drivers/clk/imx/clk-imx7ulp.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2018-2019 NXP. */ #include <dt-bindings/clock/imx8mn-clock.h> #include <linux/clk-provider.h> #include <linux/err.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of_address.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/types.h> #include "clk.h" static u32 share_count_sai2; static u32 share_count_sai3; static u32 share_count_sai5; static u32 share_count_sai6; static u32 share_count_sai7; static u32 share_count_disp; static u32 share_count_pdm; static u32 share_count_nand; static const char * const pll_ref_sels[] = { "osc_24m", "dummy", "dummy", "dummy", }; static const char * const audio_pll1_bypass_sels[] = {"audio_pll1", "audio_pll1_ref_sel", }; static const char * const audio_pll2_bypass_sels[] = {"audio_pll2", "audio_pll2_ref_sel", }; static const char * const video_pll_bypass_sels[] = {"video_pll", "video_pll_ref_sel", }; static const char * const dram_pll_bypass_sels[] = {"dram_pll", "dram_pll_ref_sel", }; static const char * const gpu_pll_bypass_sels[] = {"gpu_pll", "gpu_pll_ref_sel", }; static const char * const m7_alt_pll_bypass_sels[] = {"m7_alt_pll", "m7_alt_pll_ref_sel", }; static const char * const arm_pll_bypass_sels[] = {"arm_pll", "arm_pll_ref_sel", }; static const char * const sys_pll3_bypass_sels[] = {"sys_pll3", "sys_pll3_ref_sel", }; static const char * const imx8mn_a53_sels[] = {"osc_24m", "arm_pll_out", "sys_pll2_500m", "sys_pll2_1000m", "sys_pll1_800m", "sys_pll1_400m", "audio_pll1_out", "sys_pll3_out", }; static const char * const imx8mn_a53_core_sels[] = {"arm_a53_div", "arm_pll_out", }; static const char * const imx8mn_m7_sels[] = {"osc_24m", "sys_pll2_200m", "sys_pll2_250m", "m7_alt_pll_out", "sys_pll1_800m", "audio_pll1_out", "video_pll_out", "sys_pll3_out", }; static const char * const imx8mn_gpu_core_sels[] = {"osc_24m", "gpu_pll_out", "sys_pll1_800m", "sys_pll3_out", "sys_pll2_1000m", "audio_pll1_out", "video_pll_out", "audio_pll2_out", }; static const char * const imx8mn_gpu_shader_sels[] = {"osc_24m", "gpu_pll_out", "sys_pll1_800m", "sys_pll3_out", "sys_pll2_1000m", "audio_pll1_out", "video_pll_out", "audio_pll2_out", }; static const char * const imx8mn_main_axi_sels[] = {"osc_24m", "sys_pll2_333m", "sys_pll1_800m", "sys_pll2_250m", "sys_pll2_1000m", "audio_pll1_out", "video_pll_out", "sys_pll1_100m",}; static const char * const imx8mn_enet_axi_sels[] = {"osc_24m", "sys_pll1_266m", "sys_pll1_800m", "sys_pll2_250m", "sys_pll2_200m", "audio_pll1_out", "video_pll_out", "sys_pll3_out", }; static const char * const imx8mn_nand_usdhc_sels[] = {"osc_24m", "sys_pll1_266m", "sys_pll1_800m", "sys_pll2_200m", "sys_pll1_133m", "sys_pll3_out", "sys_pll2_250m", "audio_pll1_out", }; static const char * const imx8mn_disp_axi_sels[] = {"osc_24m", "sys_pll2_1000m", "sys_pll1_800m", "sys_pll3_out", "sys_pll1_40m", "audio_pll2_out", "clk_ext1", "clk_ext4", }; static const char * const imx8mn_disp_apb_sels[] = {"osc_24m", "sys_pll2_125m", "sys_pll1_800m", "sys_pll3_out", "sys_pll1_40m", "audio_pll2_out", "clk_ext1", "clk_ext3", }; static const char * const imx8mn_usb_bus_sels[] = {"osc_24m", "sys_pll2_500m", "sys_pll1_800m", "sys_pll2_100m", "sys_pll2_200m", "clk_ext2", "clk_ext4", "audio_pll2_out", }; static const char * const imx8mn_gpu_axi_sels[] = {"osc_24m", "sys_pll1_800m", "gpu_pll_out", "sys_pll3_out", "sys_pll2_1000m", "audio_pll1_out", "video_pll_out", "audio_pll2_out", }; static const char * const imx8mn_gpu_ahb_sels[] = {"osc_24m", "sys_pll1_800m", "gpu_pll_out", "sys_pll3_out", "sys_pll2_1000m", "audio_pll1_out", "video_pll_out", "audio_pll2_out", }; static const char * const imx8mn_noc_sels[] = {"osc_24m", "sys_pll1_800m", "sys_pll3_out", "sys_pll2_1000m", "sys_pll2_500m", "audio_pll1_out", "video_pll_out", "audio_pll2_out", }; static const char * const imx8mn_ahb_sels[] = {"osc_24m", "sys_pll1_133m", "sys_pll1_800m", "sys_pll1_400m", "sys_pll2_125m", "sys_pll3_out", "audio_pll1_out", "video_pll_out", }; static const char * const imx8mn_audio_ahb_sels[] = {"osc_24m", "sys_pll2_500m", "sys_pll1_800m", "sys_pll2_1000m", "sys_pll2_166m", "sys_pll3_out", "audio_pll1_out", "video_pll_out", }; static const char * const imx8mn_dram_alt_sels[] = {"osc_24m", "sys_pll1_800m", "sys_pll1_100m", "sys_pll2_500m", "sys_pll2_1000m", "sys_pll3_out", "audio_pll1_out", "sys_pll1_266m", }; static const char * const imx8mn_dram_apb_sels[] = {"osc_24m", "sys_pll2_200m", "sys_pll1_40m", "sys_pll1_160m", "sys_pll1_800m", "sys_pll3_out", "sys_pll2_250m", "audio_pll2_out", }; static const char * const imx8mn_disp_pixel_sels[] = {"osc_24m", "video_pll_out", "audio_pll2_out", "audio_pll1_out", "sys_pll1_800m", "sys_pll2_1000m", "sys_pll3_out", "clk_ext4", }; static const char * const imx8mn_sai2_sels[] = {"osc_24m", "audio_pll1_out", "audio_pll2_out", "video_pll_out", "sys_pll1_133m", "dummy", "clk_ext2", "clk_ext3", }; static const char * const imx8mn_sai3_sels[] = {"osc_24m", "audio_pll1_out", "audio_pll2_out", "video_pll_out", "sys_pll1_133m", "dummy", "clk_ext3", "clk_ext4", }; static const char * const imx8mn_sai5_sels[] = {"osc_24m", "audio_pll1_out", "audio_pll2_out", "video_pll_out", "sys_pll1_133m", "dummy", "clk_ext2", "clk_ext3", }; static const char * const imx8mn_sai6_sels[] = {"osc_24m", "audio_pll1_out", "audio_pll2_out", "video_pll_out", "sys_pll1_133m", "dummy", "clk_ext3", "clk_ext4", }; static const char * const imx8mn_sai7_sels[] = {"osc_24m", "audio_pll1_out", "audio_pll2_out", "video_pll_out", "sys_pll1_133m", "dummy", "clk_ext3", "clk_ext4", }; static const char * const imx8mn_spdif1_sels[] = {"osc_24m", "audio_pll1_out", "audio_pll2_out", "video_pll_out", "sys_pll1_133m", "dummy", "clk_ext2", "clk_ext3", }; static const char * const imx8mn_enet_ref_sels[] = {"osc_24m", "sys_pll2_125m", "sys_pll2_50m", "sys_pll2_100m", "sys_pll1_160m", "audio_pll1_out", "video_pll_out", "clk_ext4", }; static const char * const imx8mn_enet_timer_sels[] = {"osc_24m", "sys_pll2_100m", "audio_pll1_out", "clk_ext1", "clk_ext2", "clk_ext3", "clk_ext4", "video_pll_out", }; static const char * const imx8mn_enet_phy_sels[] = {"osc_24m", "sys_pll2_50m", "sys_pll2_125m", "sys_pll2_200m", "sys_pll2_500m", "audio_pll1_out", "video_pll_out", "audio_pll2_out", }; static const char * const imx8mn_nand_sels[] = {"osc_24m", "sys_pll2_500m", "audio_pll1_out", "sys_pll1_400m", "audio_pll2_out", "sys_pll3_out", "sys_pll2_250m", "video_pll_out", }; static const char * const imx8mn_qspi_sels[] = {"osc_24m", "sys_pll1_400m", "sys_pll2_333m", "sys_pll2_500m", "audio_pll2_out", "sys_pll1_266m", "sys_pll3_out", "sys_pll1_100m", }; static const char * const imx8mn_usdhc1_sels[] = {"osc_24m", "sys_pll1_400m", "sys_pll1_800m", "sys_pll2_500m", "sys_pll3_out", "sys_pll1_266m", "audio_pll2_out", "sys_pll1_100m", }; static const char * const imx8mn_usdhc2_sels[] = {"osc_24m", "sys_pll1_400m", "sys_pll1_800m", "sys_pll2_500m", "sys_pll3_out", "sys_pll1_266m", "audio_pll2_out", "sys_pll1_100m", }; static const char * const imx8mn_i2c1_sels[] = {"osc_24m", "sys_pll1_160m", "sys_pll2_50m", "sys_pll3_out", "audio_pll1_out", "video_pll_out", "audio_pll2_out", "sys_pll1_133m", }; static const char * const imx8mn_i2c2_sels[] = {"osc_24m", "sys_pll1_160m", "sys_pll2_50m", "sys_pll3_out", "audio_pll1_out", "video_pll_out", "audio_pll2_out", "sys_pll1_133m", }; static const char * const imx8mn_i2c3_sels[] = {"osc_24m", "sys_pll1_160m", "sys_pll2_50m", "sys_pll3_out", "audio_pll1_out", "video_pll_out", "audio_pll2_out", "sys_pll1_133m", }; static const char * const imx8mn_i2c4_sels[] = {"osc_24m", "sys_pll1_160m", "sys_pll2_50m", "sys_pll3_out", "audio_pll1_out", "video_pll_out", "audio_pll2_out", "sys_pll1_133m", }; static const char * const imx8mn_uart1_sels[] = {"osc_24m", "sys_pll1_80m", "sys_pll2_200m", "sys_pll2_100m", "sys_pll3_out", "clk_ext2", "clk_ext4", "audio_pll2_out", }; static const char * const imx8mn_uart2_sels[] = {"osc_24m", "sys_pll1_80m", "sys_pll2_200m", "sys_pll2_100m", "sys_pll3_out", "clk_ext2", "clk_ext3", "audio_pll2_out", }; static const char * const imx8mn_uart3_sels[] = {"osc_24m", "sys_pll1_80m", "sys_pll2_200m", "sys_pll2_100m", "sys_pll3_out", "clk_ext2", "clk_ext4", "audio_pll2_out", }; static const char * const imx8mn_uart4_sels[] = {"osc_24m", "sys_pll1_80m", "sys_pll2_200m", "sys_pll2_100m", "sys_pll3_out", "clk_ext2", "clk_ext3", "audio_pll2_out", }; static const char * const imx8mn_usb_core_sels[] = {"osc_24m", "sys_pll1_100m", "sys_pll1_40m", "sys_pll2_100m", "sys_pll2_200m", "clk_ext2", "clk_ext3", "audio_pll2_out", }; static const char * const imx8mn_usb_phy_sels[] = {"osc_24m", "sys_pll1_100m", "sys_pll1_40m", "sys_pll2_100m", "sys_pll2_200m", "clk_ext2", "clk_ext3", "audio_pll2_out", }; static const char * const imx8mn_gic_sels[] = {"osc_24m", "sys_pll2_200m", "sys_pll1_40m", "sys_pll2_100m", "sys_pll1_800m", "clk_ext2", "clk_ext4", "audio_pll2_out" }; static const char * const imx8mn_ecspi1_sels[] = {"osc_24m", "sys_pll2_200m", "sys_pll1_40m", "sys_pll1_160m", "sys_pll1_800m", "sys_pll3_out", "sys_pll2_250m", "audio_pll2_out", }; static const char * const imx8mn_ecspi2_sels[] = {"osc_24m", "sys_pll2_200m", "sys_pll1_40m", "sys_pll1_160m", "sys_pll1_800m", "sys_pll3_out", "sys_pll2_250m", "audio_pll2_out", }; static const char * const imx8mn_pwm1_sels[] = {"osc_24m", "sys_pll2_100m", "sys_pll1_160m", "sys_pll1_40m", "sys_pll3_out", "clk_ext1", "sys_pll1_80m", "video_pll_out", }; static const char * const imx8mn_pwm2_sels[] = {"osc_24m", "sys_pll2_100m", "sys_pll1_160m", "sys_pll1_40m", "sys_pll3_out", "clk_ext1", "sys_pll1_80m", "video_pll_out", }; static const char * const imx8mn_pwm3_sels[] = {"osc_24m", "sys_pll2_100m", "sys_pll1_160m", "sys_pll1_40m", "sys_pll3_out", "clk_ext2", "sys_pll1_80m", "video_pll_out", }; static const char * const imx8mn_pwm4_sels[] = {"osc_24m", "sys_pll2_100m", "sys_pll1_160m", "sys_pll1_40m", "sys_pll3_out", "clk_ext2", "sys_pll1_80m", "video_pll_out", }; static const char * const imx8mn_gpt1_sels[] = {"osc_24m", "sys_pll2_100m", "sys_pll1_400m", "sys_pll1_40m", "video_pll_out", "sys_pll1_80m", "audio_pll1_out", "clk_ext1", }; static const char * const imx8mn_gpt2_sels[] = {"osc_24m", "sys_pll2_100m", "sys_pll1_400m", "sys_pll1_40m", "video_pll_out", "sys_pll1_80m", "audio_pll1_out", "clk_ext1", }; static const char * const imx8mn_gpt3_sels[] = {"osc_24m", "sys_pll2_100m", "sys_pll1_400m", "sys_pll1_40m", "video_pll_out", "sys_pll1_80m", "audio_pll1_out", "clk_ext1", }; static const char * const imx8mn_gpt4_sels[] = {"osc_24m", "sys_pll2_100m", "sys_pll1_400m", "sys_pll1_40m", "video_pll_out", "sys_pll1_80m", "audio_pll1_out", "clk_ext1", }; static const char * const imx8mn_gpt5_sels[] = {"osc_24m", "sys_pll2_100m", "sys_pll1_400m", "sys_pll1_40m", "video_pll_out", "sys_pll1_80m", "audio_pll1_out", "clk_ext1", }; static const char * const imx8mn_gpt6_sels[] = {"osc_24m", "sys_pll2_100m", "sys_pll1_400m", "sys_pll1_40m", "video_pll_out", "sys_pll1_80m", "audio_pll1_out", "clk_ext1", }; static const char * const imx8mn_wdog_sels[] = {"osc_24m", "sys_pll1_133m", "sys_pll1_160m", "m7_alt_pll_out", "sys_pll2_125m", "sys_pll3_out", "sys_pll1_80m", "sys_pll2_166m", }; static const char * const imx8mn_wrclk_sels[] = {"osc_24m", "sys_pll1_40m", "m7_alt_pll_out", "sys_pll3_out", "sys_pll2_200m", "sys_pll1_266m", "sys_pll2_500m", "sys_pll1_100m", }; static const char * const imx8mn_dsi_core_sels[] = {"osc_24m", "sys_pll1_266m", "sys_pll2_250m", "sys_pll1_800m", "sys_pll2_1000m", "sys_pll3_out", "audio_pll2_out", "video_pll_out", }; static const char * const imx8mn_dsi_phy_sels[] = {"osc_24m", "sys_pll2_125m", "sys_pll2_100m", "sys_pll1_800m", "sys_pll2_1000m", "clk_ext2", "audio_pll2_out", "video_pll_out", }; static const char * const imx8mn_dsi_dbi_sels[] = {"osc_24m", "sys_pll1_266m", "sys_pll2_100m", "sys_pll1_800m", "sys_pll2_1000m", "sys_pll3_out", "audio_pll2_out", "video_pll_out", }; static const char * const imx8mn_usdhc3_sels[] = {"osc_24m", "sys_pll1_400m", "sys_pll1_800m", "sys_pll2_500m", "sys_pll3_out", "sys_pll1_266m", "audio_pll2_out", "sys_pll1_100m", }; static const char * const imx8mn_camera_pixel_sels[] = {"osc_24m", "sys_pll1_266m", "sys_pll2_250m", "sys_pll1_800m", "sys_pll2_1000m", "sys_pll3_out", "audio_pll2_out", "video_pll_out", }; static const char * const imx8mn_csi1_phy_sels[] = {"osc_24m", "sys_pll2_333m", "sys_pll2_100m", "sys_pll1_800m", "sys_pll2_1000m", "clk_ext2", "audio_pll2_out", "video_pll_out", }; static const char * const imx8mn_csi2_phy_sels[] = {"osc_24m", "sys_pll2_333m", "sys_pll2_100m", "sys_pll1_800m", "sys_pll2_1000m", "clk_ext2", "audio_pll2_out", "video_pll_out", }; static const char * const imx8mn_csi2_esc_sels[] = {"osc_24m", "sys_pll2_100m", "sys_pll1_80m", "sys_pll1_800m", "sys_pll2_1000m", "sys_pll3_out", "clk_ext3", "audio_pll2_out", }; static const char * const imx8mn_ecspi3_sels[] = {"osc_24m", "sys_pll2_200m", "sys_pll1_40m", "sys_pll1_160m", "sys_pll1_800m", "sys_pll3_out", "sys_pll2_250m", "audio_pll2_out", }; static const char * const imx8mn_pdm_sels[] = {"osc_24m", "sys_pll2_100m", "audio_pll1_out", "sys_pll1_800m", "sys_pll2_1000m", "sys_pll3_out", "clk_ext3", "audio_pll2_out", }; static const char * const imx8mn_dram_core_sels[] = {"dram_pll_out", "dram_alt_root", }; static const char * const imx8mn_clko1_sels[] = {"osc_24m", "sys_pll1_800m", "dummy", "sys_pll1_200m", "audio_pll2_out", "sys_pll2_500m", "dummy", "sys_pll1_80m", }; static const char * const imx8mn_clko2_sels[] = {"osc_24m", "sys_pll2_200m", "sys_pll1_400m", "sys_pll2_166m", "sys_pll3_out", "audio_pll1_out", "video_pll_out", "osc_32k", }; static const char * const clkout_sels[] = {"audio_pll1_out", "audio_pll2_out", "video_pll_out", "dummy", "dummy", "gpu_pll_out", "dummy", "arm_pll_out", "sys_pll1", "sys_pll2", "sys_pll3", "dummy", "dummy", "osc_24m", "dummy", "osc_32k"}; static struct clk_hw_onecell_data *clk_hw_data; static struct clk_hw **hws; static int imx8mn_clocks_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; void __iomem *base; int ret; clk_hw_data = devm_kzalloc(dev, struct_size(clk_hw_data, hws, IMX8MN_CLK_END), GFP_KERNEL); if (WARN_ON(!clk_hw_data)) return -ENOMEM; clk_hw_data->num = IMX8MN_CLK_END; hws = clk_hw_data->hws; hws[IMX8MN_CLK_DUMMY] = imx_clk_hw_fixed("dummy", 0); hws[IMX8MN_CLK_24M] = imx_get_clk_hw_by_name(np, "osc_24m"); hws[IMX8MN_CLK_32K] = imx_get_clk_hw_by_name(np, "osc_32k"); hws[IMX8MN_CLK_EXT1] = imx_get_clk_hw_by_name(np, "clk_ext1"); hws[IMX8MN_CLK_EXT2] = imx_get_clk_hw_by_name(np, "clk_ext2"); hws[IMX8MN_CLK_EXT3] = imx_get_clk_hw_by_name(np, "clk_ext3"); hws[IMX8MN_CLK_EXT4] = imx_get_clk_hw_by_name(np, "clk_ext4"); np = of_find_compatible_node(NULL, NULL, "fsl,imx8mn-anatop"); base = devm_of_iomap(dev, np, 0, NULL); of_node_put(np); if (WARN_ON(IS_ERR(base))) { ret = PTR_ERR(base); goto unregister_hws; } hws[IMX8MN_AUDIO_PLL1_REF_SEL] = imx_clk_hw_mux("audio_pll1_ref_sel", base + 0x0, 0, 2, pll_ref_sels, ARRAY_SIZE(pll_ref_sels)); hws[IMX8MN_AUDIO_PLL2_REF_SEL] = imx_clk_hw_mux("audio_pll2_ref_sel", base + 0x14, 0, 2, pll_ref_sels, ARRAY_SIZE(pll_ref_sels)); hws[IMX8MN_VIDEO_PLL_REF_SEL] = imx_clk_hw_mux("video_pll_ref_sel", base + 0x28, 0, 2, pll_ref_sels, ARRAY_SIZE(pll_ref_sels)); hws[IMX8MN_DRAM_PLL_REF_SEL] = imx_clk_hw_mux("dram_pll_ref_sel", base + 0x50, 0, 2, pll_ref_sels, ARRAY_SIZE(pll_ref_sels)); hws[IMX8MN_GPU_PLL_REF_SEL] = imx_clk_hw_mux("gpu_pll_ref_sel", base + 0x64, 0, 2, pll_ref_sels, ARRAY_SIZE(pll_ref_sels)); hws[IMX8MN_M7_ALT_PLL_REF_SEL] = imx_clk_hw_mux("m7_alt_pll_ref_sel", base + 0x74, 0, 2, pll_ref_sels, ARRAY_SIZE(pll_ref_sels)); hws[IMX8MN_ARM_PLL_REF_SEL] = imx_clk_hw_mux("arm_pll_ref_sel", base + 0x84, 0, 2, pll_ref_sels, ARRAY_SIZE(pll_ref_sels)); hws[IMX8MN_SYS_PLL3_REF_SEL] = imx_clk_hw_mux("sys_pll3_ref_sel", base + 0x114, 0, 2, pll_ref_sels, ARRAY_SIZE(pll_ref_sels)); hws[IMX8MN_AUDIO_PLL1] = imx_clk_hw_pll14xx("audio_pll1", "audio_pll1_ref_sel", base, &imx_1443x_pll); hws[IMX8MN_AUDIO_PLL2] = imx_clk_hw_pll14xx("audio_pll2", "audio_pll2_ref_sel", base + 0x14, &imx_1443x_pll); hws[IMX8MN_VIDEO_PLL] = imx_clk_hw_pll14xx("video_pll", "video_pll_ref_sel", base + 0x28, &imx_1443x_pll); hws[IMX8MN_DRAM_PLL] = imx_clk_hw_pll14xx("dram_pll", "dram_pll_ref_sel", base + 0x50, &imx_1443x_dram_pll); hws[IMX8MN_GPU_PLL] = imx_clk_hw_pll14xx("gpu_pll", "gpu_pll_ref_sel", base + 0x64, &imx_1416x_pll); hws[IMX8MN_M7_ALT_PLL] = imx_clk_hw_pll14xx("m7_alt_pll", "m7_alt_pll_ref_sel", base + 0x74, &imx_1416x_pll); hws[IMX8MN_ARM_PLL] = imx_clk_hw_pll14xx("arm_pll", "arm_pll_ref_sel", base + 0x84, &imx_1416x_pll); hws[IMX8MN_SYS_PLL1] = imx_clk_hw_fixed("sys_pll1", 800000000); hws[IMX8MN_SYS_PLL2] = imx_clk_hw_fixed("sys_pll2", 1000000000); hws[IMX8MN_SYS_PLL3] = imx_clk_hw_pll14xx("sys_pll3", "sys_pll3_ref_sel", base + 0x114, &imx_1416x_pll); /* PLL bypass out */ hws[IMX8MN_AUDIO_PLL1_BYPASS] = imx_clk_hw_mux_flags("audio_pll1_bypass", base, 16, 1, audio_pll1_bypass_sels, ARRAY_SIZE(audio_pll1_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX8MN_AUDIO_PLL2_BYPASS] = imx_clk_hw_mux_flags("audio_pll2_bypass", base + 0x14, 16, 1, audio_pll2_bypass_sels, ARRAY_SIZE(audio_pll2_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX8MN_VIDEO_PLL_BYPASS] = imx_clk_hw_mux_flags("video_pll_bypass", base + 0x28, 16, 1, video_pll_bypass_sels, ARRAY_SIZE(video_pll_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX8MN_DRAM_PLL_BYPASS] = imx_clk_hw_mux_flags("dram_pll_bypass", base + 0x50, 16, 1, dram_pll_bypass_sels, ARRAY_SIZE(dram_pll_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX8MN_GPU_PLL_BYPASS] = imx_clk_hw_mux_flags("gpu_pll_bypass", base + 0x64, 28, 1, gpu_pll_bypass_sels, ARRAY_SIZE(gpu_pll_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX8MN_M7_ALT_PLL_BYPASS] = imx_clk_hw_mux_flags("m7_alt_pll_bypass", base + 0x74, 28, 1, m7_alt_pll_bypass_sels, ARRAY_SIZE(m7_alt_pll_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX8MN_ARM_PLL_BYPASS] = imx_clk_hw_mux_flags("arm_pll_bypass", base + 0x84, 28, 1, arm_pll_bypass_sels, ARRAY_SIZE(arm_pll_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX8MN_SYS_PLL3_BYPASS] = imx_clk_hw_mux_flags("sys_pll3_bypass", base + 0x114, 28, 1, sys_pll3_bypass_sels, ARRAY_SIZE(sys_pll3_bypass_sels), CLK_SET_RATE_PARENT); /* PLL out gate */ hws[IMX8MN_AUDIO_PLL1_OUT] = imx_clk_hw_gate("audio_pll1_out", "audio_pll1_bypass", base, 13); hws[IMX8MN_AUDIO_PLL2_OUT] = imx_clk_hw_gate("audio_pll2_out", "audio_pll2_bypass", base + 0x14, 13); hws[IMX8MN_VIDEO_PLL_OUT] = imx_clk_hw_gate("video_pll_out", "video_pll_bypass", base + 0x28, 13); hws[IMX8MN_DRAM_PLL_OUT] = imx_clk_hw_gate("dram_pll_out", "dram_pll_bypass", base + 0x50, 13); hws[IMX8MN_GPU_PLL_OUT] = imx_clk_hw_gate("gpu_pll_out", "gpu_pll_bypass", base + 0x64, 11); hws[IMX8MN_M7_ALT_PLL_OUT] = imx_clk_hw_gate("m7_alt_pll_out", "m7_alt_pll_bypass", base + 0x74, 11); hws[IMX8MN_ARM_PLL_OUT] = imx_clk_hw_gate("arm_pll_out", "arm_pll_bypass", base + 0x84, 11); hws[IMX8MN_SYS_PLL3_OUT] = imx_clk_hw_gate("sys_pll3_out", "sys_pll3_bypass", base + 0x114, 11); /* SYS PLL1 fixed output */ hws[IMX8MN_SYS_PLL1_OUT] = imx_clk_hw_gate("sys_pll1_out", "sys_pll1", base + 0x94, 11); hws[IMX8MN_SYS_PLL1_40M] = imx_clk_hw_fixed_factor("sys_pll1_40m", "sys_pll1_out", 1, 20); hws[IMX8MN_SYS_PLL1_80M] = imx_clk_hw_fixed_factor("sys_pll1_80m", "sys_pll1_out", 1, 10); hws[IMX8MN_SYS_PLL1_100M] = imx_clk_hw_fixed_factor("sys_pll1_100m", "sys_pll1_out", 1, 8); hws[IMX8MN_SYS_PLL1_133M] = imx_clk_hw_fixed_factor("sys_pll1_133m", "sys_pll1_out", 1, 6); hws[IMX8MN_SYS_PLL1_160M] = imx_clk_hw_fixed_factor("sys_pll1_160m", "sys_pll1_out", 1, 5); hws[IMX8MN_SYS_PLL1_200M] = imx_clk_hw_fixed_factor("sys_pll1_200m", "sys_pll1_out", 1, 4); hws[IMX8MN_SYS_PLL1_266M] = imx_clk_hw_fixed_factor("sys_pll1_266m", "sys_pll1_out", 1, 3); hws[IMX8MN_SYS_PLL1_400M] = imx_clk_hw_fixed_factor("sys_pll1_400m", "sys_pll1_out", 1, 2); hws[IMX8MN_SYS_PLL1_800M] = imx_clk_hw_fixed_factor("sys_pll1_800m", "sys_pll1_out", 1, 1); /* SYS PLL2 fixed output */ hws[IMX8MN_SYS_PLL2_OUT] = imx_clk_hw_gate("sys_pll2_out", "sys_pll2", base + 0x104, 11); hws[IMX8MN_SYS_PLL2_50M] = imx_clk_hw_fixed_factor("sys_pll2_50m", "sys_pll2_out", 1, 20); hws[IMX8MN_SYS_PLL2_100M] = imx_clk_hw_fixed_factor("sys_pll2_100m", "sys_pll2_out", 1, 10); hws[IMX8MN_SYS_PLL2_125M] = imx_clk_hw_fixed_factor("sys_pll2_125m", "sys_pll2_out", 1, 8); hws[IMX8MN_SYS_PLL2_166M] = imx_clk_hw_fixed_factor("sys_pll2_166m", "sys_pll2_out", 1, 6); hws[IMX8MN_SYS_PLL2_200M] = imx_clk_hw_fixed_factor("sys_pll2_200m", "sys_pll2_out", 1, 5); hws[IMX8MN_SYS_PLL2_250M] = imx_clk_hw_fixed_factor("sys_pll2_250m", "sys_pll2_out", 1, 4); hws[IMX8MN_SYS_PLL2_333M] = imx_clk_hw_fixed_factor("sys_pll2_333m", "sys_pll2_out", 1, 3); hws[IMX8MN_SYS_PLL2_500M] = imx_clk_hw_fixed_factor("sys_pll2_500m", "sys_pll2_out", 1, 2); hws[IMX8MN_SYS_PLL2_1000M] = imx_clk_hw_fixed_factor("sys_pll2_1000m", "sys_pll2_out", 1, 1); hws[IMX8MN_CLK_CLKOUT1_SEL] = imx_clk_hw_mux2("clkout1_sel", base + 0x128, 4, 4, clkout_sels, ARRAY_SIZE(clkout_sels)); hws[IMX8MN_CLK_CLKOUT1_DIV] = imx_clk_hw_divider("clkout1_div", "clkout1_sel", base + 0x128, 0, 4); hws[IMX8MN_CLK_CLKOUT1] = imx_clk_hw_gate("clkout1", "clkout1_div", base + 0x128, 8); hws[IMX8MN_CLK_CLKOUT2_SEL] = imx_clk_hw_mux2("clkout2_sel", base + 0x128, 20, 4, clkout_sels, ARRAY_SIZE(clkout_sels)); hws[IMX8MN_CLK_CLKOUT2_DIV] = imx_clk_hw_divider("clkout2_div", "clkout2_sel", base + 0x128, 16, 4); hws[IMX8MN_CLK_CLKOUT2] = imx_clk_hw_gate("clkout2", "clkout2_div", base + 0x128, 24); np = dev->of_node; base = devm_platform_ioremap_resource(pdev, 0); if (WARN_ON(IS_ERR(base))) { ret = PTR_ERR(base); goto unregister_hws; } /* CORE */ hws[IMX8MN_CLK_A53_DIV] = imx8m_clk_hw_composite_core("arm_a53_div", imx8mn_a53_sels, base + 0x8000); hws[IMX8MN_CLK_A53_SRC] = hws[IMX8MN_CLK_A53_DIV]; hws[IMX8MN_CLK_A53_CG] = hws[IMX8MN_CLK_A53_DIV]; hws[IMX8MN_CLK_M7_CORE] = imx8m_clk_hw_composite_core("arm_m7_core", imx8mn_m7_sels, base + 0x8080); hws[IMX8MN_CLK_GPU_CORE] = imx8m_clk_hw_composite_core("gpu_core", imx8mn_gpu_core_sels, base + 0x8180); hws[IMX8MN_CLK_GPU_SHADER] = imx8m_clk_hw_composite_core("gpu_shader", imx8mn_gpu_shader_sels, base + 0x8200); hws[IMX8MN_CLK_GPU_CORE_SRC] = hws[IMX8MN_CLK_GPU_CORE]; hws[IMX8MN_CLK_GPU_CORE_CG] = hws[IMX8MN_CLK_GPU_CORE]; hws[IMX8MN_CLK_GPU_CORE_DIV] = hws[IMX8MN_CLK_GPU_CORE]; hws[IMX8MN_CLK_GPU_SHADER_SRC] = hws[IMX8MN_CLK_GPU_SHADER]; hws[IMX8MN_CLK_GPU_SHADER_CG] = hws[IMX8MN_CLK_GPU_SHADER]; hws[IMX8MN_CLK_GPU_SHADER_DIV] = hws[IMX8MN_CLK_GPU_SHADER]; /* CORE SEL */ hws[IMX8MN_CLK_A53_CORE] = imx_clk_hw_mux2("arm_a53_core", base + 0x9880, 24, 1, imx8mn_a53_core_sels, ARRAY_SIZE(imx8mn_a53_core_sels)); /* BUS */ hws[IMX8MN_CLK_MAIN_AXI] = imx8m_clk_hw_composite_bus_critical("main_axi", imx8mn_main_axi_sels, base + 0x8800); hws[IMX8MN_CLK_ENET_AXI] = imx8m_clk_hw_composite_bus("enet_axi", imx8mn_enet_axi_sels, base + 0x8880); hws[IMX8MN_CLK_NAND_USDHC_BUS] = imx8m_clk_hw_composite_bus("nand_usdhc_bus", imx8mn_nand_usdhc_sels, base + 0x8900); hws[IMX8MN_CLK_DISP_AXI] = imx8m_clk_hw_composite_bus("disp_axi", imx8mn_disp_axi_sels, base + 0x8a00); hws[IMX8MN_CLK_DISP_APB] = imx8m_clk_hw_composite_bus("disp_apb", imx8mn_disp_apb_sels, base + 0x8a80); hws[IMX8MN_CLK_USB_BUS] = imx8m_clk_hw_composite_bus("usb_bus", imx8mn_usb_bus_sels, base + 0x8b80); hws[IMX8MN_CLK_GPU_AXI] = imx8m_clk_hw_composite_bus("gpu_axi", imx8mn_gpu_axi_sels, base + 0x8c00); hws[IMX8MN_CLK_GPU_AHB] = imx8m_clk_hw_composite_bus("gpu_ahb", imx8mn_gpu_ahb_sels, base + 0x8c80); hws[IMX8MN_CLK_NOC] = imx8m_clk_hw_composite_bus_critical("noc", imx8mn_noc_sels, base + 0x8d00); hws[IMX8MN_CLK_AHB] = imx8m_clk_hw_composite_bus_critical("ahb", imx8mn_ahb_sels, base + 0x9000); hws[IMX8MN_CLK_AUDIO_AHB] = imx8m_clk_hw_composite_bus("audio_ahb", imx8mn_audio_ahb_sels, base + 0x9100); hws[IMX8MN_CLK_IPG_ROOT] = imx_clk_hw_divider2("ipg_root", "ahb", base + 0x9080, 0, 1); hws[IMX8MN_CLK_IPG_AUDIO_ROOT] = imx_clk_hw_divider2("ipg_audio_root", "audio_ahb", base + 0x9180, 0, 1); hws[IMX8MN_CLK_DRAM_CORE] = imx_clk_hw_mux2_flags("dram_core_clk", base + 0x9800, 24, 1, imx8mn_dram_core_sels, ARRAY_SIZE(imx8mn_dram_core_sels), CLK_IS_CRITICAL); /* * DRAM clocks are manipulated from TF-A outside clock framework. * The fw_managed helper sets GET_RATE_NOCACHE and clears SET_PARENT_GATE * as div value should always be read from hardware */ hws[IMX8MN_CLK_DRAM_ALT] = imx8m_clk_hw_fw_managed_composite("dram_alt", imx8mn_dram_alt_sels, base + 0xa000); hws[IMX8MN_CLK_DRAM_APB] = imx8m_clk_hw_fw_managed_composite_critical("dram_apb", imx8mn_dram_apb_sels, base + 0xa080); hws[IMX8MN_CLK_DISP_PIXEL] = imx8m_clk_hw_composite_flags("disp_pixel", imx8mn_disp_pixel_sels, base + 0xa500, CLK_SET_RATE_PARENT); hws[IMX8MN_CLK_SAI2] = imx8m_clk_hw_composite("sai2", imx8mn_sai2_sels, base + 0xa600); hws[IMX8MN_CLK_SAI3] = imx8m_clk_hw_composite("sai3", imx8mn_sai3_sels, base + 0xa680); hws[IMX8MN_CLK_SAI5] = imx8m_clk_hw_composite("sai5", imx8mn_sai5_sels, base + 0xa780); hws[IMX8MN_CLK_SAI6] = imx8m_clk_hw_composite("sai6", imx8mn_sai6_sels, base + 0xa800); hws[IMX8MN_CLK_SPDIF1] = imx8m_clk_hw_composite("spdif1", imx8mn_spdif1_sels, base + 0xa880); hws[IMX8MN_CLK_ENET_REF] = imx8m_clk_hw_composite("enet_ref", imx8mn_enet_ref_sels, base + 0xa980); hws[IMX8MN_CLK_ENET_TIMER] = imx8m_clk_hw_composite("enet_timer", imx8mn_enet_timer_sels, base + 0xaa00); hws[IMX8MN_CLK_ENET_PHY_REF] = imx8m_clk_hw_composite("enet_phy", imx8mn_enet_phy_sels, base + 0xaa80); hws[IMX8MN_CLK_NAND] = imx8m_clk_hw_composite("nand", imx8mn_nand_sels, base + 0xab00); hws[IMX8MN_CLK_QSPI] = imx8m_clk_hw_composite("qspi", imx8mn_qspi_sels, base + 0xab80); hws[IMX8MN_CLK_USDHC1] = imx8m_clk_hw_composite("usdhc1", imx8mn_usdhc1_sels, base + 0xac00); hws[IMX8MN_CLK_USDHC2] = imx8m_clk_hw_composite("usdhc2", imx8mn_usdhc2_sels, base + 0xac80); hws[IMX8MN_CLK_I2C1] = imx8m_clk_hw_composite("i2c1", imx8mn_i2c1_sels, base + 0xad00); hws[IMX8MN_CLK_I2C2] = imx8m_clk_hw_composite("i2c2", imx8mn_i2c2_sels, base + 0xad80); hws[IMX8MN_CLK_I2C3] = imx8m_clk_hw_composite("i2c3", imx8mn_i2c3_sels, base + 0xae00); hws[IMX8MN_CLK_I2C4] = imx8m_clk_hw_composite("i2c4", imx8mn_i2c4_sels, base + 0xae80); hws[IMX8MN_CLK_UART1] = imx8m_clk_hw_composite("uart1", imx8mn_uart1_sels, base + 0xaf00); hws[IMX8MN_CLK_UART2] = imx8m_clk_hw_composite("uart2", imx8mn_uart2_sels, base + 0xaf80); hws[IMX8MN_CLK_UART3] = imx8m_clk_hw_composite("uart3", imx8mn_uart3_sels, base + 0xb000); hws[IMX8MN_CLK_UART4] = imx8m_clk_hw_composite("uart4", imx8mn_uart4_sels, base + 0xb080); hws[IMX8MN_CLK_USB_CORE_REF] = imx8m_clk_hw_composite("usb_core_ref", imx8mn_usb_core_sels, base + 0xb100); hws[IMX8MN_CLK_USB_PHY_REF] = imx8m_clk_hw_composite("usb_phy_ref", imx8mn_usb_phy_sels, base + 0xb180); hws[IMX8MN_CLK_GIC] = imx8m_clk_hw_composite_critical("gic", imx8mn_gic_sels, base + 0xb200); hws[IMX8MN_CLK_ECSPI1] = imx8m_clk_hw_composite("ecspi1", imx8mn_ecspi1_sels, base + 0xb280); hws[IMX8MN_CLK_ECSPI2] = imx8m_clk_hw_composite("ecspi2", imx8mn_ecspi2_sels, base + 0xb300); hws[IMX8MN_CLK_PWM1] = imx8m_clk_hw_composite("pwm1", imx8mn_pwm1_sels, base + 0xb380); hws[IMX8MN_CLK_PWM2] = imx8m_clk_hw_composite("pwm2", imx8mn_pwm2_sels, base + 0xb400); hws[IMX8MN_CLK_PWM3] = imx8m_clk_hw_composite("pwm3", imx8mn_pwm3_sels, base + 0xb480); hws[IMX8MN_CLK_PWM4] = imx8m_clk_hw_composite("pwm4", imx8mn_pwm4_sels, base + 0xb500); hws[IMX8MN_CLK_GPT1] = imx8m_clk_hw_composite("gpt1", imx8mn_gpt1_sels, base + 0xb580); hws[IMX8MN_CLK_GPT2] = imx8m_clk_hw_composite("gpt2", imx8mn_gpt2_sels, base + 0xb600); hws[IMX8MN_CLK_GPT3] = imx8m_clk_hw_composite("gpt3", imx8mn_gpt3_sels, base + 0xb680); hws[IMX8MN_CLK_GPT4] = imx8m_clk_hw_composite("gpt4", imx8mn_gpt4_sels, base + 0xb700); hws[IMX8MN_CLK_GPT5] = imx8m_clk_hw_composite("gpt5", imx8mn_gpt5_sels, base + 0xb780); hws[IMX8MN_CLK_GPT6] = imx8m_clk_hw_composite("gpt6", imx8mn_gpt6_sels, base + 0xb800); hws[IMX8MN_CLK_WDOG] = imx8m_clk_hw_composite("wdog", imx8mn_wdog_sels, base + 0xb900); hws[IMX8MN_CLK_WRCLK] = imx8m_clk_hw_composite("wrclk", imx8mn_wrclk_sels, base + 0xb980); hws[IMX8MN_CLK_CLKO1] = imx8m_clk_hw_composite("clko1", imx8mn_clko1_sels, base + 0xba00); hws[IMX8MN_CLK_CLKO2] = imx8m_clk_hw_composite("clko2", imx8mn_clko2_sels, base + 0xba80); hws[IMX8MN_CLK_DSI_CORE] = imx8m_clk_hw_composite("dsi_core", imx8mn_dsi_core_sels, base + 0xbb00); hws[IMX8MN_CLK_DSI_PHY_REF] = imx8m_clk_hw_composite("dsi_phy_ref", imx8mn_dsi_phy_sels, base + 0xbb80); hws[IMX8MN_CLK_DSI_DBI] = imx8m_clk_hw_composite("dsi_dbi", imx8mn_dsi_dbi_sels, base + 0xbc00); hws[IMX8MN_CLK_USDHC3] = imx8m_clk_hw_composite("usdhc3", imx8mn_usdhc3_sels, base + 0xbc80); hws[IMX8MN_CLK_CAMERA_PIXEL] = imx8m_clk_hw_composite("camera_pixel", imx8mn_camera_pixel_sels, base + 0xbd00); hws[IMX8MN_CLK_CSI1_PHY_REF] = imx8m_clk_hw_composite("csi1_phy_ref", imx8mn_csi1_phy_sels, base + 0xbd80); hws[IMX8MN_CLK_CSI2_PHY_REF] = imx8m_clk_hw_composite("csi2_phy_ref", imx8mn_csi2_phy_sels, base + 0xbf00); hws[IMX8MN_CLK_CSI2_ESC] = imx8m_clk_hw_composite("csi2_esc", imx8mn_csi2_esc_sels, base + 0xbf80); hws[IMX8MN_CLK_ECSPI3] = imx8m_clk_hw_composite("ecspi3", imx8mn_ecspi3_sels, base + 0xc180); hws[IMX8MN_CLK_PDM] = imx8m_clk_hw_composite("pdm", imx8mn_pdm_sels, base + 0xc200); hws[IMX8MN_CLK_SAI7] = imx8m_clk_hw_composite("sai7", imx8mn_sai7_sels, base + 0xc300); hws[IMX8MN_CLK_ECSPI1_ROOT] = imx_clk_hw_gate4("ecspi1_root_clk", "ecspi1", base + 0x4070, 0); hws[IMX8MN_CLK_ECSPI2_ROOT] = imx_clk_hw_gate4("ecspi2_root_clk", "ecspi2", base + 0x4080, 0); hws[IMX8MN_CLK_ECSPI3_ROOT] = imx_clk_hw_gate4("ecspi3_root_clk", "ecspi3", base + 0x4090, 0); hws[IMX8MN_CLK_ENET1_ROOT] = imx_clk_hw_gate4("enet1_root_clk", "enet_axi", base + 0x40a0, 0); hws[IMX8MN_CLK_GPIO1_ROOT] = imx_clk_hw_gate4("gpio1_root_clk", "ipg_root", base + 0x40b0, 0); hws[IMX8MN_CLK_GPIO2_ROOT] = imx_clk_hw_gate4("gpio2_root_clk", "ipg_root", base + 0x40c0, 0); hws[IMX8MN_CLK_GPIO3_ROOT] = imx_clk_hw_gate4("gpio3_root_clk", "ipg_root", base + 0x40d0, 0); hws[IMX8MN_CLK_GPIO4_ROOT] = imx_clk_hw_gate4("gpio4_root_clk", "ipg_root", base + 0x40e0, 0); hws[IMX8MN_CLK_GPIO5_ROOT] = imx_clk_hw_gate4("gpio5_root_clk", "ipg_root", base + 0x40f0, 0); hws[IMX8MN_CLK_GPT1_ROOT] = imx_clk_hw_gate4("gpt1_root_clk", "gpt1", base + 0x4100, 0); hws[IMX8MN_CLK_GPT2_ROOT] = imx_clk_hw_gate4("gpt2_root_clk", "gpt2", base + 0x4110, 0); hws[IMX8MN_CLK_GPT3_ROOT] = imx_clk_hw_gate4("gpt3_root_clk", "gpt3", base + 0x4120, 0); hws[IMX8MN_CLK_GPT4_ROOT] = imx_clk_hw_gate4("gpt4_root_clk", "gpt4", base + 0x4130, 0); hws[IMX8MN_CLK_GPT5_ROOT] = imx_clk_hw_gate4("gpt5_root_clk", "gpt5", base + 0x4140, 0); hws[IMX8MN_CLK_GPT6_ROOT] = imx_clk_hw_gate4("gpt6_root_clk", "gpt6", base + 0x4150, 0); hws[IMX8MN_CLK_I2C1_ROOT] = imx_clk_hw_gate4("i2c1_root_clk", "i2c1", base + 0x4170, 0); hws[IMX8MN_CLK_I2C2_ROOT] = imx_clk_hw_gate4("i2c2_root_clk", "i2c2", base + 0x4180, 0); hws[IMX8MN_CLK_I2C3_ROOT] = imx_clk_hw_gate4("i2c3_root_clk", "i2c3", base + 0x4190, 0); hws[IMX8MN_CLK_I2C4_ROOT] = imx_clk_hw_gate4("i2c4_root_clk", "i2c4", base + 0x41a0, 0); hws[IMX8MN_CLK_MU_ROOT] = imx_clk_hw_gate4("mu_root_clk", "ipg_root", base + 0x4210, 0); hws[IMX8MN_CLK_OCOTP_ROOT] = imx_clk_hw_gate4("ocotp_root_clk", "ipg_root", base + 0x4220, 0); hws[IMX8MN_CLK_PWM1_ROOT] = imx_clk_hw_gate4("pwm1_root_clk", "pwm1", base + 0x4280, 0); hws[IMX8MN_CLK_PWM2_ROOT] = imx_clk_hw_gate4("pwm2_root_clk", "pwm2", base + 0x4290, 0); hws[IMX8MN_CLK_PWM3_ROOT] = imx_clk_hw_gate4("pwm3_root_clk", "pwm3", base + 0x42a0, 0); hws[IMX8MN_CLK_PWM4_ROOT] = imx_clk_hw_gate4("pwm4_root_clk", "pwm4", base + 0x42b0, 0); hws[IMX8MN_CLK_QSPI_ROOT] = imx_clk_hw_gate4("qspi_root_clk", "qspi", base + 0x42f0, 0); hws[IMX8MN_CLK_NAND_ROOT] = imx_clk_hw_gate2_shared2("nand_root_clk", "nand", base + 0x4300, 0, &share_count_nand); hws[IMX8MN_CLK_NAND_USDHC_BUS_RAWNAND_CLK] = imx_clk_hw_gate2_shared2("nand_usdhc_rawnand_clk", "nand_usdhc_bus", base + 0x4300, 0, &share_count_nand); hws[IMX8MN_CLK_SAI2_ROOT] = imx_clk_hw_gate2_shared2("sai2_root_clk", "sai2", base + 0x4340, 0, &share_count_sai2); hws[IMX8MN_CLK_SAI2_IPG] = imx_clk_hw_gate2_shared2("sai2_ipg_clk", "ipg_audio_root", base + 0x4340, 0, &share_count_sai2); hws[IMX8MN_CLK_SAI3_ROOT] = imx_clk_hw_gate2_shared2("sai3_root_clk", "sai3", base + 0x4350, 0, &share_count_sai3); hws[IMX8MN_CLK_SAI3_IPG] = imx_clk_hw_gate2_shared2("sai3_ipg_clk", "ipg_audio_root", base + 0x4350, 0, &share_count_sai3); hws[IMX8MN_CLK_SAI5_ROOT] = imx_clk_hw_gate2_shared2("sai5_root_clk", "sai5", base + 0x4370, 0, &share_count_sai5); hws[IMX8MN_CLK_SAI5_IPG] = imx_clk_hw_gate2_shared2("sai5_ipg_clk", "ipg_audio_root", base + 0x4370, 0, &share_count_sai5); hws[IMX8MN_CLK_SAI6_ROOT] = imx_clk_hw_gate2_shared2("sai6_root_clk", "sai6", base + 0x4380, 0, &share_count_sai6); hws[IMX8MN_CLK_SAI6_IPG] = imx_clk_hw_gate2_shared2("sai6_ipg_clk", "ipg_audio_root", base + 0x4380, 0, &share_count_sai6); hws[IMX8MN_CLK_UART1_ROOT] = imx_clk_hw_gate4("uart1_root_clk", "uart1", base + 0x4490, 0); hws[IMX8MN_CLK_UART2_ROOT] = imx_clk_hw_gate4("uart2_root_clk", "uart2", base + 0x44a0, 0); hws[IMX8MN_CLK_UART3_ROOT] = imx_clk_hw_gate4("uart3_root_clk", "uart3", base + 0x44b0, 0); hws[IMX8MN_CLK_UART4_ROOT] = imx_clk_hw_gate4("uart4_root_clk", "uart4", base + 0x44c0, 0); hws[IMX8MN_CLK_USB1_CTRL_ROOT] = imx_clk_hw_gate4("usb1_ctrl_root_clk", "usb_bus", base + 0x44d0, 0); hws[IMX8MN_CLK_GPU_CORE_ROOT] = imx_clk_hw_gate4("gpu_core_root_clk", "gpu_core", base + 0x44f0, 0); hws[IMX8MN_CLK_USDHC1_ROOT] = imx_clk_hw_gate4("usdhc1_root_clk", "usdhc1", base + 0x4510, 0); hws[IMX8MN_CLK_USDHC2_ROOT] = imx_clk_hw_gate4("usdhc2_root_clk", "usdhc2", base + 0x4520, 0); hws[IMX8MN_CLK_WDOG1_ROOT] = imx_clk_hw_gate4("wdog1_root_clk", "wdog", base + 0x4530, 0); hws[IMX8MN_CLK_WDOG2_ROOT] = imx_clk_hw_gate4("wdog2_root_clk", "wdog", base + 0x4540, 0); hws[IMX8MN_CLK_WDOG3_ROOT] = imx_clk_hw_gate4("wdog3_root_clk", "wdog", base + 0x4550, 0); hws[IMX8MN_CLK_GPU_BUS_ROOT] = imx_clk_hw_gate4("gpu_root_clk", "gpu_axi", base + 0x4570, 0); hws[IMX8MN_CLK_ASRC_ROOT] = imx_clk_hw_gate4("asrc_root_clk", "audio_ahb", base + 0x4580, 0); hws[IMX8MN_CLK_PDM_ROOT] = imx_clk_hw_gate2_shared2("pdm_root_clk", "pdm", base + 0x45b0, 0, &share_count_pdm); hws[IMX8MN_CLK_PDM_IPG] = imx_clk_hw_gate2_shared2("pdm_ipg_clk", "ipg_audio_root", base + 0x45b0, 0, &share_count_pdm); hws[IMX8MN_CLK_DISP_AXI_ROOT] = imx_clk_hw_gate2_shared2("disp_axi_root_clk", "disp_axi", base + 0x45d0, 0, &share_count_disp); hws[IMX8MN_CLK_DISP_APB_ROOT] = imx_clk_hw_gate2_shared2("disp_apb_root_clk", "disp_apb", base + 0x45d0, 0, &share_count_disp); hws[IMX8MN_CLK_CAMERA_PIXEL_ROOT] = imx_clk_hw_gate2_shared2("camera_pixel_clk", "camera_pixel", base + 0x45d0, 0, &share_count_disp); hws[IMX8MN_CLK_DISP_PIXEL_ROOT] = imx_clk_hw_gate2_shared2("disp_pixel_clk", "disp_pixel", base + 0x45d0, 0, &share_count_disp); hws[IMX8MN_CLK_USDHC3_ROOT] = imx_clk_hw_gate4("usdhc3_root_clk", "usdhc3", base + 0x45e0, 0); hws[IMX8MN_CLK_TMU_ROOT] = imx_clk_hw_gate4("tmu_root_clk", "ipg_root", base + 0x4620, 0); hws[IMX8MN_CLK_SDMA1_ROOT] = imx_clk_hw_gate4("sdma1_clk", "ipg_root", base + 0x43a0, 0); hws[IMX8MN_CLK_SDMA2_ROOT] = imx_clk_hw_gate4("sdma2_clk", "ipg_audio_root", base + 0x43b0, 0); hws[IMX8MN_CLK_SDMA3_ROOT] = imx_clk_hw_gate4("sdma3_clk", "ipg_audio_root", base + 0x45f0, 0); hws[IMX8MN_CLK_SAI7_ROOT] = imx_clk_hw_gate2_shared2("sai7_root_clk", "sai7", base + 0x4650, 0, &share_count_sai7); hws[IMX8MN_CLK_GPT_3M] = imx_clk_hw_fixed_factor("gpt_3m", "osc_24m", 1, 8); hws[IMX8MN_CLK_DRAM_ALT_ROOT] = imx_clk_hw_fixed_factor("dram_alt_root", "dram_alt", 1, 4); hws[IMX8MN_CLK_ARM] = imx_clk_hw_cpu("arm", "arm_a53_core", hws[IMX8MN_CLK_A53_CORE]->clk, hws[IMX8MN_CLK_A53_CORE]->clk, hws[IMX8MN_ARM_PLL_OUT]->clk, hws[IMX8MN_CLK_A53_DIV]->clk); imx_check_clk_hws(hws, IMX8MN_CLK_END); ret = of_clk_add_hw_provider(np, of_clk_hw_onecell_get, clk_hw_data); if (ret < 0) { dev_err(dev, "failed to register hws for i.MX8MN\n"); goto unregister_hws; } imx_register_uart_clocks(); return 0; unregister_hws: imx_unregister_hw_clocks(hws, IMX8MN_CLK_END); return ret; } static const struct of_device_id imx8mn_clk_of_match[] = { { .compatible = "fsl,imx8mn-ccm" }, { /* Sentinel */ }, }; MODULE_DEVICE_TABLE(of, imx8mn_clk_of_match); static struct platform_driver imx8mn_clk_driver = { .probe = imx8mn_clocks_probe, .driver = { .name = "imx8mn-ccm", /* * Disable bind attributes: clocks are not removed and * reloading the driver will crash or break devices. */ .suppress_bind_attrs = true, .of_match_table = imx8mn_clk_of_match, }, }; module_platform_driver(imx8mn_clk_driver); module_param(mcore_booted, bool, S_IRUGO); MODULE_PARM_DESC(mcore_booted, "See Cortex-M core is booted or not"); MODULE_AUTHOR("Anson Huang <[email protected]>"); MODULE_DESCRIPTION("NXP i.MX8MN clock driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/clk/imx/clk-imx8mn.c
// SPDX-License-Identifier: GPL-2.0 /* */ #define pr_fmt(fmt) "imx:clk-gpr-mux: " fmt #include <linux/module.h> #include <linux/clk-provider.h> #include <linux/errno.h> #include <linux/export.h> #include <linux/io.h> #include <linux/slab.h> #include <linux/regmap.h> #include <linux/mfd/syscon.h> #include "clk.h" struct imx_clk_gpr { struct clk_hw hw; struct regmap *regmap; u32 mask; u32 reg; const u32 *mux_table; }; static struct imx_clk_gpr *to_imx_clk_gpr(struct clk_hw *hw) { return container_of(hw, struct imx_clk_gpr, hw); } static u8 imx_clk_gpr_mux_get_parent(struct clk_hw *hw) { struct imx_clk_gpr *priv = to_imx_clk_gpr(hw); unsigned int val; int ret; ret = regmap_read(priv->regmap, priv->reg, &val); if (ret) goto get_parent_err; val &= priv->mask; ret = clk_mux_val_to_index(hw, priv->mux_table, 0, val); if (ret < 0) goto get_parent_err; return ret; get_parent_err: pr_err("%s: failed to get parent (%pe)\n", clk_hw_get_name(hw), ERR_PTR(ret)); /* return some realistic non negative value. Potentially we could * give index to some dummy error parent. */ return 0; } static int imx_clk_gpr_mux_set_parent(struct clk_hw *hw, u8 index) { struct imx_clk_gpr *priv = to_imx_clk_gpr(hw); unsigned int val = clk_mux_index_to_val(priv->mux_table, 0, index); return regmap_update_bits(priv->regmap, priv->reg, priv->mask, val); } static const struct clk_ops imx_clk_gpr_mux_ops = { .get_parent = imx_clk_gpr_mux_get_parent, .set_parent = imx_clk_gpr_mux_set_parent, .determine_rate = __clk_mux_determine_rate, }; struct clk_hw *imx_clk_gpr_mux(const char *name, const char *compatible, u32 reg, const char **parent_names, u8 num_parents, const u32 *mux_table, u32 mask) { struct clk_init_data init = { }; struct imx_clk_gpr *priv; struct regmap *regmap; struct clk_hw *hw; int ret; regmap = syscon_regmap_lookup_by_compatible(compatible); if (IS_ERR(regmap)) { pr_err("failed to find %s regmap\n", compatible); return ERR_CAST(regmap); } priv = kzalloc(sizeof(*priv), GFP_KERNEL); if (!priv) return ERR_PTR(-ENOMEM); init.name = name; init.ops = &imx_clk_gpr_mux_ops; init.parent_names = parent_names; init.num_parents = num_parents; init.flags = CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE; priv->hw.init = &init; priv->regmap = regmap; priv->mux_table = mux_table; priv->reg = reg; priv->mask = mask; hw = &priv->hw; ret = clk_hw_register(NULL, &priv->hw); if (ret) { kfree(priv); hw = ERR_PTR(ret); } return hw; }
linux-master
drivers/clk/imx/clk-gpr-mux.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2018 NXP * Dong Aisheng <[email protected]> */ #include <linux/bits.h> #include <linux/clk-provider.h> #include <linux/err.h> #include <linux/io.h> #include <linux/slab.h> #include <linux/spinlock.h> #include "clk-scu.h" static DEFINE_SPINLOCK(imx_lpcg_scu_lock); #define CLK_GATE_SCU_LPCG_MASK 0x3 #define CLK_GATE_SCU_LPCG_HW_SEL BIT(0) #define CLK_GATE_SCU_LPCG_SW_SEL BIT(1) /* * struct clk_lpcg_scu - Description of LPCG clock * * @hw: clk_hw of this LPCG * @reg: register of this LPCG clock * @bit_idx: bit index of this LPCG clock * @hw_gate: HW auto gate enable * * This structure describes one LPCG clock */ struct clk_lpcg_scu { struct clk_hw hw; void __iomem *reg; u8 bit_idx; bool hw_gate; /* for state save&restore */ u32 state; }; #define to_clk_lpcg_scu(_hw) container_of(_hw, struct clk_lpcg_scu, hw) static int clk_lpcg_scu_enable(struct clk_hw *hw) { struct clk_lpcg_scu *clk = to_clk_lpcg_scu(hw); unsigned long flags; u32 reg, val; spin_lock_irqsave(&imx_lpcg_scu_lock, flags); reg = readl_relaxed(clk->reg); reg &= ~(CLK_GATE_SCU_LPCG_MASK << clk->bit_idx); val = CLK_GATE_SCU_LPCG_SW_SEL; if (clk->hw_gate) val |= CLK_GATE_SCU_LPCG_HW_SEL; reg |= val << clk->bit_idx; writel(reg, clk->reg); spin_unlock_irqrestore(&imx_lpcg_scu_lock, flags); return 0; } static void clk_lpcg_scu_disable(struct clk_hw *hw) { struct clk_lpcg_scu *clk = to_clk_lpcg_scu(hw); unsigned long flags; u32 reg; spin_lock_irqsave(&imx_lpcg_scu_lock, flags); reg = readl_relaxed(clk->reg); reg &= ~(CLK_GATE_SCU_LPCG_MASK << clk->bit_idx); writel(reg, clk->reg); spin_unlock_irqrestore(&imx_lpcg_scu_lock, flags); } static const struct clk_ops clk_lpcg_scu_ops = { .enable = clk_lpcg_scu_enable, .disable = clk_lpcg_scu_disable, }; struct clk_hw *__imx_clk_lpcg_scu(struct device *dev, const char *name, const char *parent_name, unsigned long flags, void __iomem *reg, u8 bit_idx, bool hw_gate) { struct clk_lpcg_scu *clk; struct clk_init_data init; struct clk_hw *hw; int ret; clk = kzalloc(sizeof(*clk), GFP_KERNEL); if (!clk) return ERR_PTR(-ENOMEM); clk->reg = reg; clk->bit_idx = bit_idx; clk->hw_gate = hw_gate; init.name = name; init.ops = &clk_lpcg_scu_ops; init.flags = CLK_SET_RATE_PARENT | flags; init.parent_names = parent_name ? &parent_name : NULL; init.num_parents = parent_name ? 1 : 0; clk->hw.init = &init; hw = &clk->hw; ret = clk_hw_register(dev, hw); if (ret) { kfree(clk); hw = ERR_PTR(ret); return hw; } if (dev) dev_set_drvdata(dev, clk); return hw; } void imx_clk_lpcg_scu_unregister(struct clk_hw *hw) { struct clk_lpcg_scu *clk = to_clk_lpcg_scu(hw); clk_hw_unregister(&clk->hw); kfree(clk); } static int __maybe_unused imx_clk_lpcg_scu_suspend(struct device *dev) { struct clk_lpcg_scu *clk = dev_get_drvdata(dev); clk->state = readl_relaxed(clk->reg); dev_dbg(dev, "save lpcg state 0x%x\n", clk->state); return 0; } static int __maybe_unused imx_clk_lpcg_scu_resume(struct device *dev) { struct clk_lpcg_scu *clk = dev_get_drvdata(dev); /* * FIXME: Sometimes writes don't work unless the CPU issues * them twice */ writel(clk->state, clk->reg); writel(clk->state, clk->reg); dev_dbg(dev, "restore lpcg state 0x%x\n", clk->state); return 0; } const struct dev_pm_ops imx_clk_lpcg_scu_pm_ops = { SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(imx_clk_lpcg_scu_suspend, imx_clk_lpcg_scu_resume) };
linux-master
drivers/clk/imx/clk-lpcg-scu.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2021 NXP. */ #include <linux/clk-provider.h> #include <linux/err.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of_address.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/types.h> #include <dt-bindings/clock/imx93-clock.h> #include "clk.h" enum clk_sel { LOW_SPEED_IO_SEL, NON_IO_SEL, FAST_SEL, AUDIO_SEL, VIDEO_SEL, TPM_SEL, CKO1_SEL, CKO2_SEL, MISC_SEL, MAX_SEL }; static u32 share_count_sai1; static u32 share_count_sai2; static u32 share_count_sai3; static u32 share_count_mub; static u32 share_count_pdm; static const char * const a55_core_sels[] = {"a55_alt", "arm_pll"}; static const char *parent_names[MAX_SEL][4] = { {"osc_24m", "sys_pll_pfd0_div2", "sys_pll_pfd1_div2", "video_pll"}, {"osc_24m", "sys_pll_pfd0_div2", "sys_pll_pfd1_div2", "sys_pll_pfd2_div2"}, {"osc_24m", "sys_pll_pfd0", "sys_pll_pfd1", "sys_pll_pfd2"}, {"osc_24m", "audio_pll", "video_pll", "clk_ext1"}, {"osc_24m", "audio_pll", "video_pll", "sys_pll_pfd0"}, {"osc_24m", "sys_pll_pfd0", "audio_pll", "clk_ext1"}, {"osc_24m", "sys_pll_pfd0", "sys_pll_pfd1", "audio_pll"}, {"osc_24m", "sys_pll_pfd0", "sys_pll_pfd1", "video_pll"}, {"osc_24m", "audio_pll", "video_pll", "sys_pll_pfd2"}, }; static const struct imx93_clk_root { u32 clk; char *name; u32 off; enum clk_sel sel; unsigned long flags; } root_array[] = { /* a55/m33/bus critical clk for system run */ { IMX93_CLK_A55_PERIPH, "a55_periph_root", 0x0000, FAST_SEL, CLK_IS_CRITICAL }, { IMX93_CLK_A55_MTR_BUS, "a55_mtr_bus_root", 0x0080, LOW_SPEED_IO_SEL, CLK_IS_CRITICAL }, { IMX93_CLK_A55, "a55_alt_root", 0x0100, FAST_SEL, CLK_IS_CRITICAL }, { IMX93_CLK_M33, "m33_root", 0x0180, LOW_SPEED_IO_SEL, CLK_IS_CRITICAL }, { IMX93_CLK_BUS_WAKEUP, "bus_wakeup_root", 0x0280, LOW_SPEED_IO_SEL, CLK_IS_CRITICAL }, { IMX93_CLK_BUS_AON, "bus_aon_root", 0x0300, LOW_SPEED_IO_SEL, CLK_IS_CRITICAL }, { IMX93_CLK_WAKEUP_AXI, "wakeup_axi_root", 0x0380, FAST_SEL, CLK_IS_CRITICAL }, { IMX93_CLK_SWO_TRACE, "swo_trace_root", 0x0400, LOW_SPEED_IO_SEL, }, { IMX93_CLK_M33_SYSTICK, "m33_systick_root", 0x0480, LOW_SPEED_IO_SEL, }, { IMX93_CLK_FLEXIO1, "flexio1_root", 0x0500, LOW_SPEED_IO_SEL, }, { IMX93_CLK_FLEXIO2, "flexio2_root", 0x0580, LOW_SPEED_IO_SEL, }, { IMX93_CLK_LPTMR1, "lptmr1_root", 0x0700, LOW_SPEED_IO_SEL, }, { IMX93_CLK_LPTMR2, "lptmr2_root", 0x0780, LOW_SPEED_IO_SEL, }, { IMX93_CLK_TPM2, "tpm2_root", 0x0880, TPM_SEL, }, { IMX93_CLK_TPM4, "tpm4_root", 0x0980, TPM_SEL, }, { IMX93_CLK_TPM5, "tpm5_root", 0x0a00, TPM_SEL, }, { IMX93_CLK_TPM6, "tpm6_root", 0x0a80, TPM_SEL, }, { IMX93_CLK_FLEXSPI1, "flexspi1_root", 0x0b00, FAST_SEL, }, { IMX93_CLK_CAN1, "can1_root", 0x0b80, LOW_SPEED_IO_SEL, }, { IMX93_CLK_CAN2, "can2_root", 0x0c00, LOW_SPEED_IO_SEL, }, { IMX93_CLK_LPUART1, "lpuart1_root", 0x0c80, LOW_SPEED_IO_SEL, }, { IMX93_CLK_LPUART2, "lpuart2_root", 0x0d00, LOW_SPEED_IO_SEL, }, { IMX93_CLK_LPUART3, "lpuart3_root", 0x0d80, LOW_SPEED_IO_SEL, }, { IMX93_CLK_LPUART4, "lpuart4_root", 0x0e00, LOW_SPEED_IO_SEL, }, { IMX93_CLK_LPUART5, "lpuart5_root", 0x0e80, LOW_SPEED_IO_SEL, }, { IMX93_CLK_LPUART6, "lpuart6_root", 0x0f00, LOW_SPEED_IO_SEL, }, { IMX93_CLK_LPUART7, "lpuart7_root", 0x0f80, LOW_SPEED_IO_SEL, }, { IMX93_CLK_LPUART8, "lpuart8_root", 0x1000, LOW_SPEED_IO_SEL, }, { IMX93_CLK_LPI2C1, "lpi2c1_root", 0x1080, LOW_SPEED_IO_SEL, }, { IMX93_CLK_LPI2C2, "lpi2c2_root", 0x1100, LOW_SPEED_IO_SEL, }, { IMX93_CLK_LPI2C3, "lpi2c3_root", 0x1180, LOW_SPEED_IO_SEL, }, { IMX93_CLK_LPI2C4, "lpi2c4_root", 0x1200, LOW_SPEED_IO_SEL, }, { IMX93_CLK_LPI2C5, "lpi2c5_root", 0x1280, LOW_SPEED_IO_SEL, }, { IMX93_CLK_LPI2C6, "lpi2c6_root", 0x1300, LOW_SPEED_IO_SEL, }, { IMX93_CLK_LPI2C7, "lpi2c7_root", 0x1380, LOW_SPEED_IO_SEL, }, { IMX93_CLK_LPI2C8, "lpi2c8_root", 0x1400, LOW_SPEED_IO_SEL, }, { IMX93_CLK_LPSPI1, "lpspi1_root", 0x1480, LOW_SPEED_IO_SEL, }, { IMX93_CLK_LPSPI2, "lpspi2_root", 0x1500, LOW_SPEED_IO_SEL, }, { IMX93_CLK_LPSPI3, "lpspi3_root", 0x1580, LOW_SPEED_IO_SEL, }, { IMX93_CLK_LPSPI4, "lpspi4_root", 0x1600, LOW_SPEED_IO_SEL, }, { IMX93_CLK_LPSPI5, "lpspi5_root", 0x1680, LOW_SPEED_IO_SEL, }, { IMX93_CLK_LPSPI6, "lpspi6_root", 0x1700, LOW_SPEED_IO_SEL, }, { IMX93_CLK_LPSPI7, "lpspi7_root", 0x1780, LOW_SPEED_IO_SEL, }, { IMX93_CLK_LPSPI8, "lpspi8_root", 0x1800, LOW_SPEED_IO_SEL, }, { IMX93_CLK_I3C1, "i3c1_root", 0x1880, LOW_SPEED_IO_SEL, }, { IMX93_CLK_I3C2, "i3c2_root", 0x1900, LOW_SPEED_IO_SEL, }, { IMX93_CLK_USDHC1, "usdhc1_root", 0x1980, FAST_SEL, }, { IMX93_CLK_USDHC2, "usdhc2_root", 0x1a00, FAST_SEL, }, { IMX93_CLK_USDHC3, "usdhc3_root", 0x1a80, FAST_SEL, }, { IMX93_CLK_SAI1, "sai1_root", 0x1b00, AUDIO_SEL, }, { IMX93_CLK_SAI2, "sai2_root", 0x1b80, AUDIO_SEL, }, { IMX93_CLK_SAI3, "sai3_root", 0x1c00, AUDIO_SEL, }, { IMX93_CLK_CCM_CKO1, "ccm_cko1_root", 0x1c80, CKO1_SEL, }, { IMX93_CLK_CCM_CKO2, "ccm_cko2_root", 0x1d00, CKO2_SEL, }, { IMX93_CLK_CCM_CKO3, "ccm_cko3_root", 0x1d80, CKO1_SEL, }, { IMX93_CLK_CCM_CKO4, "ccm_cko4_root", 0x1e00, CKO2_SEL, }, /* * Critical because clk is used for handshake between HSIOMIX and NICMIX when * NICMIX power down/on during system suspend/resume */ { IMX93_CLK_HSIO, "hsio_root", 0x1e80, LOW_SPEED_IO_SEL, CLK_IS_CRITICAL}, { IMX93_CLK_HSIO_USB_TEST_60M, "hsio_usb_test_60m_root", 0x1f00, LOW_SPEED_IO_SEL, }, { IMX93_CLK_HSIO_ACSCAN_80M, "hsio_acscan_80m_root", 0x1f80, LOW_SPEED_IO_SEL, }, { IMX93_CLK_HSIO_ACSCAN_480M, "hsio_acscan_480m_root", 0x2000, MISC_SEL, }, { IMX93_CLK_NIC_AXI, "nic_axi_root", 0x2080, FAST_SEL, CLK_IS_CRITICAL, }, { IMX93_CLK_ML_APB, "ml_apb_root", 0x2180, LOW_SPEED_IO_SEL, }, { IMX93_CLK_ML, "ml_root", 0x2200, FAST_SEL, }, { IMX93_CLK_MEDIA_AXI, "media_axi_root", 0x2280, FAST_SEL, }, { IMX93_CLK_MEDIA_APB, "media_apb_root", 0x2300, LOW_SPEED_IO_SEL, }, { IMX93_CLK_MEDIA_LDB, "media_ldb_root", 0x2380, VIDEO_SEL, }, { IMX93_CLK_MEDIA_DISP_PIX, "media_disp_pix_root", 0x2400, VIDEO_SEL, }, { IMX93_CLK_CAM_PIX, "cam_pix_root", 0x2480, VIDEO_SEL, }, { IMX93_CLK_MIPI_TEST_BYTE, "mipi_test_byte_root", 0x2500, VIDEO_SEL, }, { IMX93_CLK_MIPI_PHY_CFG, "mipi_phy_cfg_root", 0x2580, VIDEO_SEL, }, { IMX93_CLK_ADC, "adc_root", 0x2700, LOW_SPEED_IO_SEL, }, { IMX93_CLK_PDM, "pdm_root", 0x2780, AUDIO_SEL, }, { IMX93_CLK_TSTMR1, "tstmr1_root", 0x2800, LOW_SPEED_IO_SEL, }, { IMX93_CLK_TSTMR2, "tstmr2_root", 0x2880, LOW_SPEED_IO_SEL, }, { IMX93_CLK_MQS1, "mqs1_root", 0x2900, AUDIO_SEL, }, { IMX93_CLK_MQS2, "mqs2_root", 0x2980, AUDIO_SEL, }, { IMX93_CLK_AUDIO_XCVR, "audio_xcvr_root", 0x2a00, NON_IO_SEL, }, { IMX93_CLK_SPDIF, "spdif_root", 0x2a80, AUDIO_SEL, }, { IMX93_CLK_ENET, "enet_root", 0x2b00, NON_IO_SEL, }, { IMX93_CLK_ENET_TIMER1, "enet_timer1_root", 0x2b80, LOW_SPEED_IO_SEL, }, { IMX93_CLK_ENET_TIMER2, "enet_timer2_root", 0x2c00, LOW_SPEED_IO_SEL, }, { IMX93_CLK_ENET_REF, "enet_ref_root", 0x2c80, NON_IO_SEL, }, { IMX93_CLK_ENET_REF_PHY, "enet_ref_phy_root", 0x2d00, LOW_SPEED_IO_SEL, }, { IMX93_CLK_I3C1_SLOW, "i3c1_slow_root", 0x2d80, LOW_SPEED_IO_SEL, }, { IMX93_CLK_I3C2_SLOW, "i3c2_slow_root", 0x2e00, LOW_SPEED_IO_SEL, }, { IMX93_CLK_USB_PHY_BURUNIN, "usb_phy_root", 0x2e80, LOW_SPEED_IO_SEL, }, { IMX93_CLK_PAL_CAME_SCAN, "pal_came_scan_root", 0x2f00, MISC_SEL, } }; static const struct imx93_clk_ccgr { u32 clk; char *name; char *parent_name; u32 off; unsigned long flags; u32 *shared_count; } ccgr_array[] = { { IMX93_CLK_A55_GATE, "a55_alt", "a55_alt_root", 0x8000, }, /* M33 critical clk for system run */ { IMX93_CLK_CM33_GATE, "cm33", "m33_root", 0x8040, CLK_IS_CRITICAL }, { IMX93_CLK_ADC1_GATE, "adc1", "adc_root", 0x82c0, }, { IMX93_CLK_WDOG1_GATE, "wdog1", "osc_24m", 0x8300, }, { IMX93_CLK_WDOG2_GATE, "wdog2", "osc_24m", 0x8340, }, { IMX93_CLK_WDOG3_GATE, "wdog3", "osc_24m", 0x8380, }, { IMX93_CLK_WDOG4_GATE, "wdog4", "osc_24m", 0x83c0, }, { IMX93_CLK_WDOG5_GATE, "wdog5", "osc_24m", 0x8400, }, { IMX93_CLK_SEMA1_GATE, "sema1", "bus_aon_root", 0x8440, }, { IMX93_CLK_SEMA2_GATE, "sema2", "bus_wakeup_root", 0x8480, }, { IMX93_CLK_MU1_A_GATE, "mu1_a", "bus_aon_root", 0x84c0, CLK_IGNORE_UNUSED }, { IMX93_CLK_MU2_A_GATE, "mu2_a", "bus_wakeup_root", 0x84c0, CLK_IGNORE_UNUSED }, { IMX93_CLK_MU1_B_GATE, "mu1_b", "bus_aon_root", 0x8500, 0, &share_count_mub }, { IMX93_CLK_MU2_B_GATE, "mu2_b", "bus_wakeup_root", 0x8500, 0, &share_count_mub }, { IMX93_CLK_EDMA1_GATE, "edma1", "m33_root", 0x8540, }, { IMX93_CLK_EDMA2_GATE, "edma2", "wakeup_axi_root", 0x8580, }, { IMX93_CLK_FLEXSPI1_GATE, "flexspi1", "flexspi1_root", 0x8640, }, { IMX93_CLK_GPIO1_GATE, "gpio1", "m33_root", 0x8880, }, { IMX93_CLK_GPIO2_GATE, "gpio2", "bus_wakeup_root", 0x88c0, }, { IMX93_CLK_GPIO3_GATE, "gpio3", "bus_wakeup_root", 0x8900, }, { IMX93_CLK_GPIO4_GATE, "gpio4", "bus_wakeup_root", 0x8940, }, { IMX93_CLK_FLEXIO1_GATE, "flexio1", "flexio1_root", 0x8980, }, { IMX93_CLK_FLEXIO2_GATE, "flexio2", "flexio2_root", 0x89c0, }, { IMX93_CLK_LPIT1_GATE, "lpit1", "bus_aon_root", 0x8a00, }, { IMX93_CLK_LPIT2_GATE, "lpit2", "bus_wakeup_root", 0x8a40, }, { IMX93_CLK_LPTMR1_GATE, "lptmr1", "lptmr1_root", 0x8a80, }, { IMX93_CLK_LPTMR2_GATE, "lptmr2", "lptmr2_root", 0x8ac0, }, { IMX93_CLK_TPM1_GATE, "tpm1", "bus_aon_root", 0x8b00, }, { IMX93_CLK_TPM2_GATE, "tpm2", "tpm2_root", 0x8b40, }, { IMX93_CLK_TPM3_GATE, "tpm3", "bus_wakeup_root", 0x8b80, }, { IMX93_CLK_TPM4_GATE, "tpm4", "tpm4_root", 0x8bc0, }, { IMX93_CLK_TPM5_GATE, "tpm5", "tpm5_root", 0x8c00, }, { IMX93_CLK_TPM6_GATE, "tpm6", "tpm6_root", 0x8c40, }, { IMX93_CLK_CAN1_GATE, "can1", "can1_root", 0x8c80, }, { IMX93_CLK_CAN2_GATE, "can2", "can2_root", 0x8cc0, }, { IMX93_CLK_LPUART1_GATE, "lpuart1", "lpuart1_root", 0x8d00, }, { IMX93_CLK_LPUART2_GATE, "lpuart2", "lpuart2_root", 0x8d40, }, { IMX93_CLK_LPUART3_GATE, "lpuart3", "lpuart3_root", 0x8d80, }, { IMX93_CLK_LPUART4_GATE, "lpuart4", "lpuart4_root", 0x8dc0, }, { IMX93_CLK_LPUART5_GATE, "lpuart5", "lpuart5_root", 0x8e00, }, { IMX93_CLK_LPUART6_GATE, "lpuart6", "lpuart6_root", 0x8e40, }, { IMX93_CLK_LPUART7_GATE, "lpuart7", "lpuart7_root", 0x8e80, }, { IMX93_CLK_LPUART8_GATE, "lpuart8", "lpuart8_root", 0x8ec0, }, { IMX93_CLK_LPI2C1_GATE, "lpi2c1", "lpi2c1_root", 0x8f00, }, { IMX93_CLK_LPI2C2_GATE, "lpi2c2", "lpi2c2_root", 0x8f40, }, { IMX93_CLK_LPI2C3_GATE, "lpi2c3", "lpi2c3_root", 0x8f80, }, { IMX93_CLK_LPI2C4_GATE, "lpi2c4", "lpi2c4_root", 0x8fc0, }, { IMX93_CLK_LPI2C5_GATE, "lpi2c5", "lpi2c5_root", 0x9000, }, { IMX93_CLK_LPI2C6_GATE, "lpi2c6", "lpi2c6_root", 0x9040, }, { IMX93_CLK_LPI2C7_GATE, "lpi2c7", "lpi2c7_root", 0x9080, }, { IMX93_CLK_LPI2C8_GATE, "lpi2c8", "lpi2c8_root", 0x90c0, }, { IMX93_CLK_LPSPI1_GATE, "lpspi1", "lpspi1_root", 0x9100, }, { IMX93_CLK_LPSPI2_GATE, "lpspi2", "lpspi2_root", 0x9140, }, { IMX93_CLK_LPSPI3_GATE, "lpspi3", "lpspi3_root", 0x9180, }, { IMX93_CLK_LPSPI4_GATE, "lpspi4", "lpspi4_root", 0x91c0, }, { IMX93_CLK_LPSPI5_GATE, "lpspi5", "lpspi5_root", 0x9200, }, { IMX93_CLK_LPSPI6_GATE, "lpspi6", "lpspi6_root", 0x9240, }, { IMX93_CLK_LPSPI7_GATE, "lpspi7", "lpspi7_root", 0x9280, }, { IMX93_CLK_LPSPI8_GATE, "lpspi8", "lpspi8_root", 0x92c0, }, { IMX93_CLK_I3C1_GATE, "i3c1", "i3c1_root", 0x9300, }, { IMX93_CLK_I3C2_GATE, "i3c2", "i3c2_root", 0x9340, }, { IMX93_CLK_USDHC1_GATE, "usdhc1", "usdhc1_root", 0x9380, }, { IMX93_CLK_USDHC2_GATE, "usdhc2", "usdhc2_root", 0x93c0, }, { IMX93_CLK_USDHC3_GATE, "usdhc3", "usdhc3_root", 0x9400, }, { IMX93_CLK_SAI1_GATE, "sai1", "sai1_root", 0x9440, 0, &share_count_sai1}, { IMX93_CLK_SAI1_IPG, "sai1_ipg_clk", "bus_aon_root", 0x9440, 0, &share_count_sai1}, { IMX93_CLK_SAI2_GATE, "sai2", "sai2_root", 0x9480, 0, &share_count_sai2}, { IMX93_CLK_SAI2_IPG, "sai2_ipg_clk", "bus_wakeup_root", 0x9480, 0, &share_count_sai2}, { IMX93_CLK_SAI3_GATE, "sai3", "sai3_root", 0x94c0, 0, &share_count_sai3}, { IMX93_CLK_SAI3_IPG, "sai3_ipg_clk", "bus_wakeup_root", 0x94c0, 0, &share_count_sai3}, { IMX93_CLK_MIPI_CSI_GATE, "mipi_csi", "media_apb_root", 0x9580, }, { IMX93_CLK_MIPI_DSI_GATE, "mipi_dsi", "media_apb_root", 0x95c0, }, { IMX93_CLK_LVDS_GATE, "lvds", "media_ldb_root", 0x9600, }, { IMX93_CLK_LCDIF_GATE, "lcdif", "media_apb_root", 0x9640, }, { IMX93_CLK_PXP_GATE, "pxp", "media_apb_root", 0x9680, }, { IMX93_CLK_ISI_GATE, "isi", "media_apb_root", 0x96c0, }, { IMX93_CLK_NIC_MEDIA_GATE, "nic_media", "media_axi_root", 0x9700, }, { IMX93_CLK_USB_CONTROLLER_GATE, "usb_controller", "hsio_root", 0x9a00, }, { IMX93_CLK_USB_TEST_60M_GATE, "usb_test_60m", "hsio_usb_test_60m_root", 0x9a40, }, { IMX93_CLK_HSIO_TROUT_24M_GATE, "hsio_trout_24m", "osc_24m", 0x9a80, }, { IMX93_CLK_PDM_GATE, "pdm", "pdm_root", 0x9ac0, 0, &share_count_pdm}, { IMX93_CLK_PDM_IPG, "pdm_ipg_clk", "bus_aon_root", 0x9ac0, 0, &share_count_pdm}, { IMX93_CLK_MQS1_GATE, "mqs1", "sai1_root", 0x9b00, }, { IMX93_CLK_MQS2_GATE, "mqs2", "sai3_root", 0x9b40, }, { IMX93_CLK_AUD_XCVR_GATE, "aud_xcvr", "audio_xcvr_root", 0x9b80, }, { IMX93_CLK_SPDIF_GATE, "spdif", "spdif_root", 0x9c00, }, { IMX93_CLK_HSIO_32K_GATE, "hsio_32k", "osc_32k", 0x9dc0, }, { IMX93_CLK_ENET1_GATE, "enet1", "wakeup_axi_root", 0x9e00, }, { IMX93_CLK_ENET_QOS_GATE, "enet_qos", "wakeup_axi_root", 0x9e40, }, /* Critical because clk accessed during CPU idle */ { IMX93_CLK_SYS_CNT_GATE, "sys_cnt", "osc_24m", 0x9e80, CLK_IS_CRITICAL}, { IMX93_CLK_TSTMR1_GATE, "tstmr1", "bus_aon_root", 0x9ec0, }, { IMX93_CLK_TSTMR2_GATE, "tstmr2", "bus_wakeup_root", 0x9f00, }, { IMX93_CLK_TMC_GATE, "tmc", "osc_24m", 0x9f40, }, { IMX93_CLK_PMRO_GATE, "pmro", "osc_24m", 0x9f80, } }; static struct clk_hw_onecell_data *clk_hw_data; static struct clk_hw **clks; static int imx93_clocks_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; const struct imx93_clk_root *root; const struct imx93_clk_ccgr *ccgr; void __iomem *base, *anatop_base; int i, ret; clk_hw_data = devm_kzalloc(dev, struct_size(clk_hw_data, hws, IMX93_CLK_END), GFP_KERNEL); if (!clk_hw_data) return -ENOMEM; clk_hw_data->num = IMX93_CLK_END; clks = clk_hw_data->hws; clks[IMX93_CLK_DUMMY] = imx_clk_hw_fixed("dummy", 0); clks[IMX93_CLK_24M] = imx_get_clk_hw_by_name(np, "osc_24m"); clks[IMX93_CLK_32K] = imx_get_clk_hw_by_name(np, "osc_32k"); clks[IMX93_CLK_EXT1] = imx_get_clk_hw_by_name(np, "clk_ext1"); clks[IMX93_CLK_SYS_PLL_PFD0] = imx_clk_hw_fixed("sys_pll_pfd0", 1000000000); clks[IMX93_CLK_SYS_PLL_PFD0_DIV2] = imx_clk_hw_fixed_factor("sys_pll_pfd0_div2", "sys_pll_pfd0", 1, 2); clks[IMX93_CLK_SYS_PLL_PFD1] = imx_clk_hw_fixed("sys_pll_pfd1", 800000000); clks[IMX93_CLK_SYS_PLL_PFD1_DIV2] = imx_clk_hw_fixed_factor("sys_pll_pfd1_div2", "sys_pll_pfd1", 1, 2); clks[IMX93_CLK_SYS_PLL_PFD2] = imx_clk_hw_fixed("sys_pll_pfd2", 625000000); clks[IMX93_CLK_SYS_PLL_PFD2_DIV2] = imx_clk_hw_fixed_factor("sys_pll_pfd2_div2", "sys_pll_pfd2", 1, 2); np = of_find_compatible_node(NULL, NULL, "fsl,imx93-anatop"); anatop_base = devm_of_iomap(dev, np, 0, NULL); of_node_put(np); if (WARN_ON(IS_ERR(anatop_base))) { ret = PTR_ERR(anatop_base); goto unregister_hws; } clks[IMX93_CLK_ARM_PLL] = imx_clk_fracn_gppll_integer("arm_pll", "osc_24m", anatop_base + 0x1000, &imx_fracn_gppll_integer); clks[IMX93_CLK_AUDIO_PLL] = imx_clk_fracn_gppll("audio_pll", "osc_24m", anatop_base + 0x1200, &imx_fracn_gppll); clks[IMX93_CLK_VIDEO_PLL] = imx_clk_fracn_gppll("video_pll", "osc_24m", anatop_base + 0x1400, &imx_fracn_gppll); np = dev->of_node; base = devm_platform_ioremap_resource(pdev, 0); if (WARN_ON(IS_ERR(base))) { ret = PTR_ERR(base); goto unregister_hws; } for (i = 0; i < ARRAY_SIZE(root_array); i++) { root = &root_array[i]; clks[root->clk] = imx93_clk_composite_flags(root->name, parent_names[root->sel], 4, base + root->off, 3, root->flags); } for (i = 0; i < ARRAY_SIZE(ccgr_array); i++) { ccgr = &ccgr_array[i]; clks[ccgr->clk] = imx93_clk_gate(NULL, ccgr->name, ccgr->parent_name, ccgr->flags, base + ccgr->off, 0, 1, 1, 3, ccgr->shared_count); } clks[IMX93_CLK_A55_SEL] = imx_clk_hw_mux2("a55_sel", base + 0x4820, 0, 1, a55_core_sels, ARRAY_SIZE(a55_core_sels)); clks[IMX93_CLK_A55_CORE] = imx_clk_hw_cpu("a55_core", "a55_sel", clks[IMX93_CLK_A55_SEL]->clk, clks[IMX93_CLK_A55_SEL]->clk, clks[IMX93_CLK_ARM_PLL]->clk, clks[IMX93_CLK_A55_GATE]->clk); imx_check_clk_hws(clks, IMX93_CLK_END); ret = of_clk_add_hw_provider(np, of_clk_hw_onecell_get, clk_hw_data); if (ret < 0) { dev_err(dev, "failed to register clks for i.MX93\n"); goto unregister_hws; } imx_register_uart_clocks(); return 0; unregister_hws: imx_unregister_hw_clocks(clks, IMX93_CLK_END); return ret; } static const struct of_device_id imx93_clk_of_match[] = { { .compatible = "fsl,imx93-ccm" }, { /* Sentinel */ }, }; MODULE_DEVICE_TABLE(of, imx93_clk_of_match); static struct platform_driver imx93_clk_driver = { .probe = imx93_clocks_probe, .driver = { .name = "imx93-ccm", .suppress_bind_attrs = true, .of_match_table = imx93_clk_of_match, }, }; module_platform_driver(imx93_clk_driver); module_param(mcore_booted, bool, 0444); MODULE_PARM_DESC(mcore_booted, "See Cortex-M core is booted or not"); MODULE_DESCRIPTION("NXP i.MX93 clock driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/clk/imx/clk-imx93.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2014 Freescale Semiconductor, Inc. */ #include <dt-bindings/clock/imx6sx-clock.h> #include <linux/bits.h> #include <linux/clk.h> #include <linux/clkdev.h> #include <linux/clk-provider.h> #include <linux/err.h> #include <linux/init.h> #include <linux/io.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/types.h> #include "clk.h" static const char *step_sels[] = { "osc", "pll2_pfd2_396m", }; static const char *pll1_sw_sels[] = { "pll1_sys", "step", }; static const char *periph_pre_sels[] = { "pll2_bus", "pll2_pfd2_396m", "pll2_pfd0_352m", "pll2_198m", }; static const char *periph2_pre_sels[] = { "pll2_bus", "pll2_pfd2_396m", "pll2_pfd0_352m", "pll4_audio_div", }; static const char *periph_clk2_sels[] = { "pll3_usb_otg", "osc", "osc", }; static const char *periph2_clk2_sels[] = { "pll3_usb_otg", "osc", }; static const char *periph_sels[] = { "periph_pre", "periph_clk2", }; static const char *periph2_sels[] = { "periph2_pre", "periph2_clk2", }; static const char *ocram_sels[] = { "periph", "pll2_pfd2_396m", "periph", "pll3_pfd1_540m", }; static const char *audio_sels[] = { "pll4_audio_div", "pll3_pfd2_508m", "pll5_video_div", "pll3_usb_otg", }; static const char *gpu_axi_sels[] = { "pll2_pfd2_396m", "pll3_pfd0_720m", "pll3_pfd1_540m", "pll2_bus", }; static const char *gpu_core_sels[] = { "pll3_pfd1_540m", "pll3_pfd0_720m", "pll2_bus", "pll2_pfd2_396m", }; static const char *ldb_di0_div_sels[] = { "ldb_di0_div_3_5", "ldb_di0_div_7", }; static const char *ldb_di1_div_sels[] = { "ldb_di1_div_3_5", "ldb_di1_div_7", }; static const char *ldb_di0_sels[] = { "pll5_video_div", "pll2_pfd0_352m", "pll2_pfd2_396m", "pll2_pfd3_594m", "pll2_pfd1_594m", "pll3_pfd3_454m", }; static const char *ldb_di1_sels[] = { "pll3_usb_otg", "pll2_pfd0_352m", "pll2_pfd2_396m", "pll2_bus", "pll3_pfd3_454m", "pll3_pfd2_508m", }; static const char *pcie_axi_sels[] = { "axi", "ahb", }; static const char *ssi_sels[] = { "pll3_pfd2_508m", "pll5_video_div", "pll4_audio_div", }; static const char *qspi1_sels[] = { "pll3_usb_otg", "pll2_pfd0_352m", "pll2_pfd2_396m", "pll2_bus", "pll3_pfd3_454m", "pll3_pfd2_508m", }; static const char *perclk_sels[] = { "ipg", "osc", }; static const char *usdhc_sels[] = { "pll2_pfd2_396m", "pll2_pfd0_352m", }; static const char *vid_sels[] = { "pll3_pfd1_540m", "pll3_usb_otg", "pll3_pfd3_454m", "pll4_audio_div", "pll5_video_div", }; static const char *can_sels[] = { "pll3_60m", "osc", "pll3_80m", "dummy", }; static const char *uart_sels[] = { "pll3_80m", "osc", }; static const char *qspi2_sels[] = { "pll2_pfd0_352m", "pll2_bus", "pll3_usb_otg", "pll2_pfd2_396m", "pll3_pfd3_454m", "dummy", "dummy", "dummy", }; static const char *enet_pre_sels[] = { "pll2_bus", "pll3_usb_otg", "pll5_video_div", "pll2_pfd0_352m", "pll2_pfd2_396m", "pll3_pfd2_508m", }; static const char *enet_sels[] = { "enet_podf", "ipp_di0", "ipp_di1", "ldb_di0", "ldb_di1", }; static const char *m4_pre_sels[] = { "pll2_bus", "pll3_usb_otg", "osc", "pll2_pfd0_352m", "pll2_pfd2_396m", "pll3_pfd3_454m", }; static const char *m4_sels[] = { "m4_pre_sel", "ipp_di0", "ipp_di1", "ldb_di0", "ldb_di1", }; static const char *eim_slow_sels[] = { "ocram", "pll3_usb_otg", "pll2_pfd2_396m", "pll2_pfd0_352m", }; static const char *ecspi_sels[] = { "pll3_60m", "osc", }; static const char *lcdif1_pre_sels[] = { "pll2_bus", "pll3_pfd3_454m", "pll5_video_div", "pll2_pfd0_352m", "pll2_pfd1_594m", "pll3_pfd1_540m", }; static const char *lcdif1_sels[] = { "lcdif1_podf", "ipp_di0", "ipp_di1", "ldb_di0", "ldb_di1", }; static const char *lcdif2_pre_sels[] = { "pll2_bus", "pll3_pfd3_454m", "pll5_video_div", "pll2_pfd0_352m", "pll2_pfd3_594m", "pll3_pfd1_540m", }; static const char *lcdif2_sels[] = { "lcdif2_podf", "ipp_di0", "ipp_di1", "ldb_di0", "ldb_di1", }; static const char *display_sels[] = { "pll2_bus", "pll2_pfd2_396m", "pll3_usb_otg", "pll3_pfd1_540m", }; static const char *csi_sels[] = { "osc", "pll2_pfd2_396m", "pll3_120m", "pll3_pfd1_540m", }; static const char *cko1_sels[] = { "dummy", "dummy", "dummy", "dummy", "vadc", "ocram", "qspi2", "m4", "enet_ahb", "lcdif2_pix", "lcdif1_pix", "ahb", "ipg", "perclk", "ckil", "pll4_audio_div", }; static const char *cko2_sels[] = { "dummy", "mmdc_p0_fast", "usdhc4", "usdhc1", "dummy", "wrck", "ecspi_root", "dummy", "usdhc3", "pcie", "arm", "csi_core", "display_axi", "dummy", "osc", "dummy", "dummy", "usdhc2", "ssi1", "ssi2", "ssi3", "gpu_axi_podf", "dummy", "can_podf", "lvds1_out", "qspi1", "esai_extal", "eim_slow", "uart_serial", "spdif", "audio", "dummy", }; static const char *cko_sels[] = { "cko1", "cko2", }; static const char *lvds_sels[] = { "arm", "pll1_sys", "dummy", "dummy", "dummy", "dummy", "dummy", "pll5_video_div", "dummy", "dummy", "pcie_ref_125m", "dummy", "usbphy1", "usbphy2", }; static const char *pll_bypass_src_sels[] = { "osc", "lvds1_in", "lvds2_in", "dummy", }; static const char *pll1_bypass_sels[] = { "pll1", "pll1_bypass_src", }; static const char *pll2_bypass_sels[] = { "pll2", "pll2_bypass_src", }; static const char *pll3_bypass_sels[] = { "pll3", "pll3_bypass_src", }; static const char *pll4_bypass_sels[] = { "pll4", "pll4_bypass_src", }; static const char *pll5_bypass_sels[] = { "pll5", "pll5_bypass_src", }; static const char *pll6_bypass_sels[] = { "pll6", "pll6_bypass_src", }; static const char *pll7_bypass_sels[] = { "pll7", "pll7_bypass_src", }; static struct clk_hw **hws; static struct clk_hw_onecell_data *clk_hw_data; static const struct clk_div_table clk_enet_ref_table[] = { { .val = 0, .div = 20, }, { .val = 1, .div = 10, }, { .val = 2, .div = 5, }, { .val = 3, .div = 4, }, { } }; static const struct clk_div_table post_div_table[] = { { .val = 2, .div = 1, }, { .val = 1, .div = 2, }, { .val = 0, .div = 4, }, { } }; static const struct clk_div_table video_div_table[] = { { .val = 0, .div = 1, }, { .val = 1, .div = 2, }, { .val = 2, .div = 1, }, { .val = 3, .div = 4, }, { } }; static u32 share_count_asrc; static u32 share_count_audio; static u32 share_count_esai; static u32 share_count_ssi1; static u32 share_count_ssi2; static u32 share_count_ssi3; static u32 share_count_sai1; static u32 share_count_sai2; static void __init imx6sx_clocks_init(struct device_node *ccm_node) { struct device_node *np; void __iomem *base; clk_hw_data = kzalloc(struct_size(clk_hw_data, hws, IMX6SX_CLK_CLK_END), GFP_KERNEL); if (WARN_ON(!clk_hw_data)) return; clk_hw_data->num = IMX6SX_CLK_CLK_END; hws = clk_hw_data->hws; hws[IMX6SX_CLK_DUMMY] = imx_clk_hw_fixed("dummy", 0); hws[IMX6SX_CLK_CKIL] = imx_get_clk_hw_by_name(ccm_node, "ckil"); hws[IMX6SX_CLK_OSC] = imx_get_clk_hw_by_name(ccm_node, "osc"); /* ipp_di clock is external input */ hws[IMX6SX_CLK_IPP_DI0] = imx_get_clk_hw_by_name(ccm_node, "ipp_di0"); hws[IMX6SX_CLK_IPP_DI1] = imx_get_clk_hw_by_name(ccm_node, "ipp_di1"); /* Clock source from external clock via CLK1/2 PAD */ hws[IMX6SX_CLK_ANACLK1] = imx_get_clk_hw_by_name(ccm_node, "anaclk1"); hws[IMX6SX_CLK_ANACLK2] = imx_get_clk_hw_by_name(ccm_node, "anaclk2"); np = of_find_compatible_node(NULL, NULL, "fsl,imx6sx-anatop"); base = of_iomap(np, 0); WARN_ON(!base); of_node_put(np); hws[IMX6SX_PLL1_BYPASS_SRC] = imx_clk_hw_mux("pll1_bypass_src", base + 0x00, 14, 1, pll_bypass_src_sels, ARRAY_SIZE(pll_bypass_src_sels)); hws[IMX6SX_PLL2_BYPASS_SRC] = imx_clk_hw_mux("pll2_bypass_src", base + 0x30, 14, 1, pll_bypass_src_sels, ARRAY_SIZE(pll_bypass_src_sels)); hws[IMX6SX_PLL3_BYPASS_SRC] = imx_clk_hw_mux("pll3_bypass_src", base + 0x10, 14, 1, pll_bypass_src_sels, ARRAY_SIZE(pll_bypass_src_sels)); hws[IMX6SX_PLL4_BYPASS_SRC] = imx_clk_hw_mux("pll4_bypass_src", base + 0x70, 14, 1, pll_bypass_src_sels, ARRAY_SIZE(pll_bypass_src_sels)); hws[IMX6SX_PLL5_BYPASS_SRC] = imx_clk_hw_mux("pll5_bypass_src", base + 0xa0, 14, 1, pll_bypass_src_sels, ARRAY_SIZE(pll_bypass_src_sels)); hws[IMX6SX_PLL6_BYPASS_SRC] = imx_clk_hw_mux("pll6_bypass_src", base + 0xe0, 14, 1, pll_bypass_src_sels, ARRAY_SIZE(pll_bypass_src_sels)); hws[IMX6SX_PLL7_BYPASS_SRC] = imx_clk_hw_mux("pll7_bypass_src", base + 0x20, 14, 1, pll_bypass_src_sels, ARRAY_SIZE(pll_bypass_src_sels)); /* type name parent_name base div_mask */ hws[IMX6SX_CLK_PLL1] = imx_clk_hw_pllv3(IMX_PLLV3_SYS, "pll1", "osc", base + 0x00, 0x7f); hws[IMX6SX_CLK_PLL2] = imx_clk_hw_pllv3(IMX_PLLV3_GENERIC, "pll2", "osc", base + 0x30, 0x1); hws[IMX6SX_CLK_PLL3] = imx_clk_hw_pllv3(IMX_PLLV3_USB, "pll3", "osc", base + 0x10, 0x3); hws[IMX6SX_CLK_PLL4] = imx_clk_hw_pllv3(IMX_PLLV3_AV, "pll4", "osc", base + 0x70, 0x7f); hws[IMX6SX_CLK_PLL5] = imx_clk_hw_pllv3(IMX_PLLV3_AV, "pll5", "osc", base + 0xa0, 0x7f); hws[IMX6SX_CLK_PLL6] = imx_clk_hw_pllv3(IMX_PLLV3_ENET, "pll6", "osc", base + 0xe0, 0x3); hws[IMX6SX_CLK_PLL7] = imx_clk_hw_pllv3(IMX_PLLV3_USB, "pll7", "osc", base + 0x20, 0x3); hws[IMX6SX_PLL1_BYPASS] = imx_clk_hw_mux_flags("pll1_bypass", base + 0x00, 16, 1, pll1_bypass_sels, ARRAY_SIZE(pll1_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX6SX_PLL2_BYPASS] = imx_clk_hw_mux_flags("pll2_bypass", base + 0x30, 16, 1, pll2_bypass_sels, ARRAY_SIZE(pll2_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX6SX_PLL3_BYPASS] = imx_clk_hw_mux_flags("pll3_bypass", base + 0x10, 16, 1, pll3_bypass_sels, ARRAY_SIZE(pll3_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX6SX_PLL4_BYPASS] = imx_clk_hw_mux_flags("pll4_bypass", base + 0x70, 16, 1, pll4_bypass_sels, ARRAY_SIZE(pll4_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX6SX_PLL5_BYPASS] = imx_clk_hw_mux_flags("pll5_bypass", base + 0xa0, 16, 1, pll5_bypass_sels, ARRAY_SIZE(pll5_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX6SX_PLL6_BYPASS] = imx_clk_hw_mux_flags("pll6_bypass", base + 0xe0, 16, 1, pll6_bypass_sels, ARRAY_SIZE(pll6_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX6SX_PLL7_BYPASS] = imx_clk_hw_mux_flags("pll7_bypass", base + 0x20, 16, 1, pll7_bypass_sels, ARRAY_SIZE(pll7_bypass_sels), CLK_SET_RATE_PARENT); /* Do not bypass PLLs initially */ clk_set_parent(hws[IMX6SX_PLL1_BYPASS]->clk, hws[IMX6SX_CLK_PLL1]->clk); clk_set_parent(hws[IMX6SX_PLL2_BYPASS]->clk, hws[IMX6SX_CLK_PLL2]->clk); clk_set_parent(hws[IMX6SX_PLL3_BYPASS]->clk, hws[IMX6SX_CLK_PLL3]->clk); clk_set_parent(hws[IMX6SX_PLL4_BYPASS]->clk, hws[IMX6SX_CLK_PLL4]->clk); clk_set_parent(hws[IMX6SX_PLL5_BYPASS]->clk, hws[IMX6SX_CLK_PLL5]->clk); clk_set_parent(hws[IMX6SX_PLL6_BYPASS]->clk, hws[IMX6SX_CLK_PLL6]->clk); clk_set_parent(hws[IMX6SX_PLL7_BYPASS]->clk, hws[IMX6SX_CLK_PLL7]->clk); hws[IMX6SX_CLK_PLL1_SYS] = imx_clk_hw_gate("pll1_sys", "pll1_bypass", base + 0x00, 13); hws[IMX6SX_CLK_PLL2_BUS] = imx_clk_hw_gate("pll2_bus", "pll2_bypass", base + 0x30, 13); hws[IMX6SX_CLK_PLL3_USB_OTG] = imx_clk_hw_gate("pll3_usb_otg", "pll3_bypass", base + 0x10, 13); hws[IMX6SX_CLK_PLL4_AUDIO] = imx_clk_hw_gate("pll4_audio", "pll4_bypass", base + 0x70, 13); hws[IMX6SX_CLK_PLL5_VIDEO] = imx_clk_hw_gate("pll5_video", "pll5_bypass", base + 0xa0, 13); hws[IMX6SX_CLK_PLL6_ENET] = imx_clk_hw_gate("pll6_enet", "pll6_bypass", base + 0xe0, 13); hws[IMX6SX_CLK_PLL7_USB_HOST] = imx_clk_hw_gate("pll7_usb_host", "pll7_bypass", base + 0x20, 13); /* * Bit 20 is the reserved and read-only bit, we do this only for: * - Do nothing for usbphy clk_enable/disable * - Keep refcount when do usbphy clk_enable/disable, in that case, * the clk framework may need to enable/disable usbphy's parent */ hws[IMX6SX_CLK_USBPHY1] = imx_clk_hw_gate("usbphy1", "pll3_usb_otg", base + 0x10, 20); hws[IMX6SX_CLK_USBPHY2] = imx_clk_hw_gate("usbphy2", "pll7_usb_host", base + 0x20, 20); /* * usbphy*_gate needs to be on after system boots up, and software * never needs to control it anymore. */ hws[IMX6SX_CLK_USBPHY1_GATE] = imx_clk_hw_gate("usbphy1_gate", "dummy", base + 0x10, 6); hws[IMX6SX_CLK_USBPHY2_GATE] = imx_clk_hw_gate("usbphy2_gate", "dummy", base + 0x20, 6); /* FIXME 100MHz is used for pcie ref for all imx6 pcie, excepted imx6q */ hws[IMX6SX_CLK_PCIE_REF] = imx_clk_hw_fixed_factor("pcie_ref", "pll6_enet", 1, 5); hws[IMX6SX_CLK_PCIE_REF_125M] = imx_clk_hw_gate("pcie_ref_125m", "pcie_ref", base + 0xe0, 19); hws[IMX6SX_CLK_LVDS1_OUT] = imx_clk_hw_gate_exclusive("lvds1_out", "lvds1_sel", base + 0x160, 10, BIT(12)); hws[IMX6SX_CLK_LVDS2_OUT] = imx_clk_hw_gate_exclusive("lvds2_out", "lvds2_sel", base + 0x160, 11, BIT(13)); hws[IMX6SX_CLK_LVDS1_IN] = imx_clk_hw_gate_exclusive("lvds1_in", "anaclk1", base + 0x160, 12, BIT(10)); hws[IMX6SX_CLK_LVDS2_IN] = imx_clk_hw_gate_exclusive("lvds2_in", "anaclk2", base + 0x160, 13, BIT(11)); hws[IMX6SX_CLK_ENET_REF] = clk_hw_register_divider_table(NULL, "enet_ref", "pll6_enet", 0, base + 0xe0, 0, 2, 0, clk_enet_ref_table, &imx_ccm_lock); hws[IMX6SX_CLK_ENET2_REF] = clk_hw_register_divider_table(NULL, "enet2_ref", "pll6_enet", 0, base + 0xe0, 2, 2, 0, clk_enet_ref_table, &imx_ccm_lock); hws[IMX6SX_CLK_ENET2_REF_125M] = imx_clk_hw_gate("enet2_ref_125m", "enet2_ref", base + 0xe0, 20); hws[IMX6SX_CLK_ENET_PTP_REF] = imx_clk_hw_fixed_factor("enet_ptp_ref", "pll6_enet", 1, 20); hws[IMX6SX_CLK_ENET_PTP] = imx_clk_hw_gate("enet_ptp_25m", "enet_ptp_ref", base + 0xe0, 21); /* name parent_name reg idx */ hws[IMX6SX_CLK_PLL2_PFD0] = imx_clk_hw_pfd("pll2_pfd0_352m", "pll2_bus", base + 0x100, 0); hws[IMX6SX_CLK_PLL2_PFD1] = imx_clk_hw_pfd("pll2_pfd1_594m", "pll2_bus", base + 0x100, 1); hws[IMX6SX_CLK_PLL2_PFD2] = imx_clk_hw_pfd("pll2_pfd2_396m", "pll2_bus", base + 0x100, 2); hws[IMX6SX_CLK_PLL2_PFD3] = imx_clk_hw_pfd("pll2_pfd3_594m", "pll2_bus", base + 0x100, 3); hws[IMX6SX_CLK_PLL3_PFD0] = imx_clk_hw_pfd("pll3_pfd0_720m", "pll3_usb_otg", base + 0xf0, 0); hws[IMX6SX_CLK_PLL3_PFD1] = imx_clk_hw_pfd("pll3_pfd1_540m", "pll3_usb_otg", base + 0xf0, 1); hws[IMX6SX_CLK_PLL3_PFD2] = imx_clk_hw_pfd("pll3_pfd2_508m", "pll3_usb_otg", base + 0xf0, 2); hws[IMX6SX_CLK_PLL3_PFD3] = imx_clk_hw_pfd("pll3_pfd3_454m", "pll3_usb_otg", base + 0xf0, 3); /* name parent_name mult div */ hws[IMX6SX_CLK_PLL2_198M] = imx_clk_hw_fixed_factor("pll2_198m", "pll2_pfd2_396m", 1, 2); hws[IMX6SX_CLK_PLL3_120M] = imx_clk_hw_fixed_factor("pll3_120m", "pll3_usb_otg", 1, 4); hws[IMX6SX_CLK_PLL3_80M] = imx_clk_hw_fixed_factor("pll3_80m", "pll3_usb_otg", 1, 6); hws[IMX6SX_CLK_PLL3_60M] = imx_clk_hw_fixed_factor("pll3_60m", "pll3_usb_otg", 1, 8); hws[IMX6SX_CLK_TWD] = imx_clk_hw_fixed_factor("twd", "arm", 1, 2); hws[IMX6SX_CLK_GPT_3M] = imx_clk_hw_fixed_factor("gpt_3m", "osc", 1, 8); hws[IMX6SX_CLK_PLL4_POST_DIV] = clk_hw_register_divider_table(NULL, "pll4_post_div", "pll4_audio", CLK_SET_RATE_PARENT, base + 0x70, 19, 2, 0, post_div_table, &imx_ccm_lock); hws[IMX6SX_CLK_PLL4_AUDIO_DIV] = clk_hw_register_divider(NULL, "pll4_audio_div", "pll4_post_div", CLK_SET_RATE_PARENT, base + 0x170, 15, 1, 0, &imx_ccm_lock); hws[IMX6SX_CLK_PLL5_POST_DIV] = clk_hw_register_divider_table(NULL, "pll5_post_div", "pll5_video", CLK_SET_RATE_PARENT, base + 0xa0, 19, 2, 0, post_div_table, &imx_ccm_lock); hws[IMX6SX_CLK_PLL5_VIDEO_DIV] = clk_hw_register_divider_table(NULL, "pll5_video_div", "pll5_post_div", CLK_SET_RATE_PARENT, base + 0x170, 30, 2, 0, video_div_table, &imx_ccm_lock); /* name reg shift width parent_names num_parents */ hws[IMX6SX_CLK_LVDS1_SEL] = imx_clk_hw_mux("lvds1_sel", base + 0x160, 0, 5, lvds_sels, ARRAY_SIZE(lvds_sels)); hws[IMX6SX_CLK_LVDS2_SEL] = imx_clk_hw_mux("lvds2_sel", base + 0x160, 5, 5, lvds_sels, ARRAY_SIZE(lvds_sels)); np = ccm_node; base = of_iomap(np, 0); WARN_ON(!base); /* name reg shift width parent_names num_parents */ hws[IMX6SX_CLK_STEP] = imx_clk_hw_mux("step", base + 0xc, 8, 1, step_sels, ARRAY_SIZE(step_sels)); hws[IMX6SX_CLK_PLL1_SW] = imx_clk_hw_mux("pll1_sw", base + 0xc, 2, 1, pll1_sw_sels, ARRAY_SIZE(pll1_sw_sels)); hws[IMX6SX_CLK_OCRAM_SEL] = imx_clk_hw_mux("ocram_sel", base + 0x14, 6, 2, ocram_sels, ARRAY_SIZE(ocram_sels)); hws[IMX6SX_CLK_PERIPH_PRE] = imx_clk_hw_mux("periph_pre", base + 0x18, 18, 2, periph_pre_sels, ARRAY_SIZE(periph_pre_sels)); hws[IMX6SX_CLK_PERIPH2_PRE] = imx_clk_hw_mux("periph2_pre", base + 0x18, 21, 2, periph2_pre_sels, ARRAY_SIZE(periph2_pre_sels)); hws[IMX6SX_CLK_PERIPH_CLK2_SEL] = imx_clk_hw_mux("periph_clk2_sel", base + 0x18, 12, 2, periph_clk2_sels, ARRAY_SIZE(periph_clk2_sels)); hws[IMX6SX_CLK_PERIPH2_CLK2_SEL] = imx_clk_hw_mux("periph2_clk2_sel", base + 0x18, 20, 1, periph2_clk2_sels, ARRAY_SIZE(periph2_clk2_sels)); hws[IMX6SX_CLK_PCIE_AXI_SEL] = imx_clk_hw_mux("pcie_axi_sel", base + 0x18, 10, 1, pcie_axi_sels, ARRAY_SIZE(pcie_axi_sels)); hws[IMX6SX_CLK_GPU_AXI_SEL] = imx_clk_hw_mux("gpu_axi_sel", base + 0x18, 8, 2, gpu_axi_sels, ARRAY_SIZE(gpu_axi_sels)); hws[IMX6SX_CLK_GPU_CORE_SEL] = imx_clk_hw_mux("gpu_core_sel", base + 0x18, 4, 2, gpu_core_sels, ARRAY_SIZE(gpu_core_sels)); hws[IMX6SX_CLK_EIM_SLOW_SEL] = imx_clk_hw_mux("eim_slow_sel", base + 0x1c, 29, 2, eim_slow_sels, ARRAY_SIZE(eim_slow_sels)); hws[IMX6SX_CLK_USDHC1_SEL] = imx_clk_hw_mux("usdhc1_sel", base + 0x1c, 16, 1, usdhc_sels, ARRAY_SIZE(usdhc_sels)); hws[IMX6SX_CLK_USDHC2_SEL] = imx_clk_hw_mux("usdhc2_sel", base + 0x1c, 17, 1, usdhc_sels, ARRAY_SIZE(usdhc_sels)); hws[IMX6SX_CLK_USDHC3_SEL] = imx_clk_hw_mux("usdhc3_sel", base + 0x1c, 18, 1, usdhc_sels, ARRAY_SIZE(usdhc_sels)); hws[IMX6SX_CLK_USDHC4_SEL] = imx_clk_hw_mux("usdhc4_sel", base + 0x1c, 19, 1, usdhc_sels, ARRAY_SIZE(usdhc_sels)); hws[IMX6SX_CLK_SSI3_SEL] = imx_clk_hw_mux("ssi3_sel", base + 0x1c, 14, 2, ssi_sels, ARRAY_SIZE(ssi_sels)); hws[IMX6SX_CLK_SSI2_SEL] = imx_clk_hw_mux("ssi2_sel", base + 0x1c, 12, 2, ssi_sels, ARRAY_SIZE(ssi_sels)); hws[IMX6SX_CLK_SSI1_SEL] = imx_clk_hw_mux("ssi1_sel", base + 0x1c, 10, 2, ssi_sels, ARRAY_SIZE(ssi_sels)); hws[IMX6SX_CLK_QSPI1_SEL] = imx_clk_hw_mux("qspi1_sel", base + 0x1c, 7, 3, qspi1_sels, ARRAY_SIZE(qspi1_sels)); hws[IMX6SX_CLK_PERCLK_SEL] = imx_clk_hw_mux("perclk_sel", base + 0x1c, 6, 1, perclk_sels, ARRAY_SIZE(perclk_sels)); hws[IMX6SX_CLK_VID_SEL] = imx_clk_hw_mux("vid_sel", base + 0x20, 21, 3, vid_sels, ARRAY_SIZE(vid_sels)); hws[IMX6SX_CLK_ESAI_SEL] = imx_clk_hw_mux("esai_sel", base + 0x20, 19, 2, audio_sels, ARRAY_SIZE(audio_sels)); hws[IMX6SX_CLK_CAN_SEL] = imx_clk_hw_mux("can_sel", base + 0x20, 8, 2, can_sels, ARRAY_SIZE(can_sels)); hws[IMX6SX_CLK_UART_SEL] = imx_clk_hw_mux("uart_sel", base + 0x24, 6, 1, uart_sels, ARRAY_SIZE(uart_sels)); hws[IMX6SX_CLK_QSPI2_SEL] = imx_clk_hw_mux("qspi2_sel", base + 0x2c, 15, 3, qspi2_sels, ARRAY_SIZE(qspi2_sels)); hws[IMX6SX_CLK_SPDIF_SEL] = imx_clk_hw_mux("spdif_sel", base + 0x30, 20, 2, audio_sels, ARRAY_SIZE(audio_sels)); hws[IMX6SX_CLK_AUDIO_SEL] = imx_clk_hw_mux("audio_sel", base + 0x30, 7, 2, audio_sels, ARRAY_SIZE(audio_sels)); hws[IMX6SX_CLK_ENET_PRE_SEL] = imx_clk_hw_mux("enet_pre_sel", base + 0x34, 15, 3, enet_pre_sels, ARRAY_SIZE(enet_pre_sels)); hws[IMX6SX_CLK_ENET_SEL] = imx_clk_hw_mux("enet_sel", base + 0x34, 9, 3, enet_sels, ARRAY_SIZE(enet_sels)); hws[IMX6SX_CLK_M4_PRE_SEL] = imx_clk_hw_mux("m4_pre_sel", base + 0x34, 6, 3, m4_pre_sels, ARRAY_SIZE(m4_pre_sels)); hws[IMX6SX_CLK_M4_SEL] = imx_clk_hw_mux("m4_sel", base + 0x34, 0, 3, m4_sels, ARRAY_SIZE(m4_sels)); hws[IMX6SX_CLK_ECSPI_SEL] = imx_clk_hw_mux("ecspi_sel", base + 0x38, 18, 1, ecspi_sels, ARRAY_SIZE(ecspi_sels)); hws[IMX6SX_CLK_LCDIF2_PRE_SEL] = imx_clk_hw_mux("lcdif2_pre_sel", base + 0x38, 6, 3, lcdif2_pre_sels, ARRAY_SIZE(lcdif2_pre_sels)); hws[IMX6SX_CLK_LCDIF2_SEL] = imx_clk_hw_mux("lcdif2_sel", base + 0x38, 0, 3, lcdif2_sels, ARRAY_SIZE(lcdif2_sels)); hws[IMX6SX_CLK_DISPLAY_SEL] = imx_clk_hw_mux("display_sel", base + 0x3c, 14, 2, display_sels, ARRAY_SIZE(display_sels)); hws[IMX6SX_CLK_CSI_SEL] = imx_clk_hw_mux("csi_sel", base + 0x3c, 9, 2, csi_sels, ARRAY_SIZE(csi_sels)); hws[IMX6SX_CLK_CKO1_SEL] = imx_clk_hw_mux("cko1_sel", base + 0x60, 0, 4, cko1_sels, ARRAY_SIZE(cko1_sels)); hws[IMX6SX_CLK_CKO2_SEL] = imx_clk_hw_mux("cko2_sel", base + 0x60, 16, 5, cko2_sels, ARRAY_SIZE(cko2_sels)); hws[IMX6SX_CLK_CKO] = imx_clk_hw_mux("cko", base + 0x60, 8, 1, cko_sels, ARRAY_SIZE(cko_sels)); hws[IMX6SX_CLK_LDB_DI1_DIV_SEL] = imx_clk_hw_mux("ldb_di1_div_sel", base + 0x20, 11, 1, ldb_di1_div_sels, ARRAY_SIZE(ldb_di1_div_sels)); hws[IMX6SX_CLK_LDB_DI0_DIV_SEL] = imx_clk_hw_mux("ldb_di0_div_sel", base + 0x20, 10, 1, ldb_di0_div_sels, ARRAY_SIZE(ldb_di0_div_sels)); hws[IMX6SX_CLK_LDB_DI1_SEL] = imx_clk_hw_mux("ldb_di1_sel", base + 0x2c, 12, 3, ldb_di1_sels, ARRAY_SIZE(ldb_di1_sels)); hws[IMX6SX_CLK_LDB_DI0_SEL] = imx_clk_hw_mux("ldb_di0_sel", base + 0x2c, 9, 3, ldb_di0_sels, ARRAY_SIZE(ldb_di0_sels)); hws[IMX6SX_CLK_LCDIF1_PRE_SEL] = imx_clk_hw_mux_flags("lcdif1_pre_sel", base + 0x38, 15, 3, lcdif1_pre_sels, ARRAY_SIZE(lcdif1_pre_sels), CLK_SET_RATE_PARENT); hws[IMX6SX_CLK_LCDIF1_SEL] = imx_clk_hw_mux_flags("lcdif1_sel", base + 0x38, 9, 3, lcdif1_sels, ARRAY_SIZE(lcdif1_sels), CLK_SET_RATE_PARENT); /* name parent_name reg shift width */ hws[IMX6SX_CLK_PERIPH_CLK2] = imx_clk_hw_divider("periph_clk2", "periph_clk2_sel", base + 0x14, 27, 3); hws[IMX6SX_CLK_PERIPH2_CLK2] = imx_clk_hw_divider("periph2_clk2", "periph2_clk2_sel", base + 0x14, 0, 3); hws[IMX6SX_CLK_IPG] = imx_clk_hw_divider("ipg", "ahb", base + 0x14, 8, 2); hws[IMX6SX_CLK_GPU_CORE_PODF] = imx_clk_hw_divider("gpu_core_podf", "gpu_core_sel", base + 0x18, 29, 3); hws[IMX6SX_CLK_GPU_AXI_PODF] = imx_clk_hw_divider("gpu_axi_podf", "gpu_axi_sel", base + 0x18, 26, 3); hws[IMX6SX_CLK_LCDIF1_PODF] = imx_clk_hw_divider("lcdif1_podf", "lcdif1_pred", base + 0x18, 23, 3); hws[IMX6SX_CLK_QSPI1_PODF] = imx_clk_hw_divider("qspi1_podf", "qspi1_sel", base + 0x1c, 26, 3); hws[IMX6SX_CLK_EIM_SLOW_PODF] = imx_clk_hw_divider("eim_slow_podf", "eim_slow_sel", base + 0x1c, 23, 3); hws[IMX6SX_CLK_LCDIF2_PODF] = imx_clk_hw_divider("lcdif2_podf", "lcdif2_pred", base + 0x1c, 20, 3); hws[IMX6SX_CLK_PERCLK] = imx_clk_hw_divider_flags("perclk", "perclk_sel", base + 0x1c, 0, 6, CLK_IS_CRITICAL); hws[IMX6SX_CLK_VID_PODF] = imx_clk_hw_divider("vid_podf", "vid_sel", base + 0x20, 24, 2); hws[IMX6SX_CLK_CAN_PODF] = imx_clk_hw_divider("can_podf", "can_sel", base + 0x20, 2, 6); hws[IMX6SX_CLK_USDHC4_PODF] = imx_clk_hw_divider("usdhc4_podf", "usdhc4_sel", base + 0x24, 22, 3); hws[IMX6SX_CLK_USDHC3_PODF] = imx_clk_hw_divider("usdhc3_podf", "usdhc3_sel", base + 0x24, 19, 3); hws[IMX6SX_CLK_USDHC2_PODF] = imx_clk_hw_divider("usdhc2_podf", "usdhc2_sel", base + 0x24, 16, 3); hws[IMX6SX_CLK_USDHC1_PODF] = imx_clk_hw_divider("usdhc1_podf", "usdhc1_sel", base + 0x24, 11, 3); hws[IMX6SX_CLK_UART_PODF] = imx_clk_hw_divider("uart_podf", "uart_sel", base + 0x24, 0, 6); hws[IMX6SX_CLK_ESAI_PRED] = imx_clk_hw_divider("esai_pred", "esai_sel", base + 0x28, 9, 3); hws[IMX6SX_CLK_ESAI_PODF] = imx_clk_hw_divider("esai_podf", "esai_pred", base + 0x28, 25, 3); hws[IMX6SX_CLK_SSI3_PRED] = imx_clk_hw_divider("ssi3_pred", "ssi3_sel", base + 0x28, 22, 3); hws[IMX6SX_CLK_SSI3_PODF] = imx_clk_hw_divider("ssi3_podf", "ssi3_pred", base + 0x28, 16, 6); hws[IMX6SX_CLK_SSI1_PRED] = imx_clk_hw_divider("ssi1_pred", "ssi1_sel", base + 0x28, 6, 3); hws[IMX6SX_CLK_SSI1_PODF] = imx_clk_hw_divider("ssi1_podf", "ssi1_pred", base + 0x28, 0, 6); hws[IMX6SX_CLK_QSPI2_PRED] = imx_clk_hw_divider("qspi2_pred", "qspi2_sel", base + 0x2c, 18, 3); hws[IMX6SX_CLK_QSPI2_PODF] = imx_clk_hw_divider("qspi2_podf", "qspi2_pred", base + 0x2c, 21, 6); hws[IMX6SX_CLK_SSI2_PRED] = imx_clk_hw_divider("ssi2_pred", "ssi2_sel", base + 0x2c, 6, 3); hws[IMX6SX_CLK_SSI2_PODF] = imx_clk_hw_divider("ssi2_podf", "ssi2_pred", base + 0x2c, 0, 6); hws[IMX6SX_CLK_SPDIF_PRED] = imx_clk_hw_divider("spdif_pred", "spdif_sel", base + 0x30, 25, 3); hws[IMX6SX_CLK_SPDIF_PODF] = imx_clk_hw_divider("spdif_podf", "spdif_pred", base + 0x30, 22, 3); hws[IMX6SX_CLK_AUDIO_PRED] = imx_clk_hw_divider("audio_pred", "audio_sel", base + 0x30, 12, 3); hws[IMX6SX_CLK_AUDIO_PODF] = imx_clk_hw_divider("audio_podf", "audio_pred", base + 0x30, 9, 3); hws[IMX6SX_CLK_ENET_PODF] = imx_clk_hw_divider("enet_podf", "enet_pre_sel", base + 0x34, 12, 3); hws[IMX6SX_CLK_M4_PODF] = imx_clk_hw_divider("m4_podf", "m4_sel", base + 0x34, 3, 3); hws[IMX6SX_CLK_ECSPI_PODF] = imx_clk_hw_divider("ecspi_podf", "ecspi_sel", base + 0x38, 19, 6); hws[IMX6SX_CLK_LCDIF1_PRED] = imx_clk_hw_divider("lcdif1_pred", "lcdif1_pre_sel", base + 0x38, 12, 3); hws[IMX6SX_CLK_LCDIF2_PRED] = imx_clk_hw_divider("lcdif2_pred", "lcdif2_pre_sel", base + 0x38, 3, 3); hws[IMX6SX_CLK_DISPLAY_PODF] = imx_clk_hw_divider("display_podf", "display_sel", base + 0x3c, 16, 3); hws[IMX6SX_CLK_CSI_PODF] = imx_clk_hw_divider("csi_podf", "csi_sel", base + 0x3c, 11, 3); hws[IMX6SX_CLK_CKO1_PODF] = imx_clk_hw_divider("cko1_podf", "cko1_sel", base + 0x60, 4, 3); hws[IMX6SX_CLK_CKO2_PODF] = imx_clk_hw_divider("cko2_podf", "cko2_sel", base + 0x60, 21, 3); hws[IMX6SX_CLK_LDB_DI0_DIV_3_5] = imx_clk_hw_fixed_factor("ldb_di0_div_3_5", "ldb_di0_sel", 2, 7); hws[IMX6SX_CLK_LDB_DI0_DIV_7] = imx_clk_hw_fixed_factor("ldb_di0_div_7", "ldb_di0_sel", 1, 7); hws[IMX6SX_CLK_LDB_DI1_DIV_3_5] = imx_clk_hw_fixed_factor("ldb_di1_div_3_5", "ldb_di1_sel", 2, 7); hws[IMX6SX_CLK_LDB_DI1_DIV_7] = imx_clk_hw_fixed_factor("ldb_di1_div_7", "ldb_di1_sel", 1, 7); /* name reg shift width busy: reg, shift parent_names num_parents */ hws[IMX6SX_CLK_PERIPH] = imx_clk_hw_busy_mux("periph", base + 0x14, 25, 1, base + 0x48, 5, periph_sels, ARRAY_SIZE(periph_sels)); hws[IMX6SX_CLK_PERIPH2] = imx_clk_hw_busy_mux("periph2", base + 0x14, 26, 1, base + 0x48, 3, periph2_sels, ARRAY_SIZE(periph2_sels)); /* name parent_name reg shift width busy: reg, shift */ hws[IMX6SX_CLK_OCRAM_PODF] = imx_clk_hw_busy_divider("ocram_podf", "ocram_sel", base + 0x14, 16, 3, base + 0x48, 0); hws[IMX6SX_CLK_AHB] = imx_clk_hw_busy_divider("ahb", "periph", base + 0x14, 10, 3, base + 0x48, 1); hws[IMX6SX_CLK_MMDC_PODF] = imx_clk_hw_busy_divider("mmdc_podf", "periph2", base + 0x14, 3, 3, base + 0x48, 2); hws[IMX6SX_CLK_ARM] = imx_clk_hw_busy_divider("arm", "pll1_sw", base + 0x10, 0, 3, base + 0x48, 16); /* name parent_name reg shift */ /* CCGR0 */ hws[IMX6SX_CLK_AIPS_TZ1] = imx_clk_hw_gate2_flags("aips_tz1", "ahb", base + 0x68, 0, CLK_IS_CRITICAL); hws[IMX6SX_CLK_AIPS_TZ2] = imx_clk_hw_gate2_flags("aips_tz2", "ahb", base + 0x68, 2, CLK_IS_CRITICAL); hws[IMX6SX_CLK_APBH_DMA] = imx_clk_hw_gate2("apbh_dma", "usdhc3", base + 0x68, 4); hws[IMX6SX_CLK_ASRC_MEM] = imx_clk_hw_gate2_shared("asrc_mem", "ahb", base + 0x68, 6, &share_count_asrc); hws[IMX6SX_CLK_ASRC_IPG] = imx_clk_hw_gate2_shared("asrc_ipg", "ahb", base + 0x68, 6, &share_count_asrc); hws[IMX6SX_CLK_CAAM_MEM] = imx_clk_hw_gate2("caam_mem", "ahb", base + 0x68, 8); hws[IMX6SX_CLK_CAAM_ACLK] = imx_clk_hw_gate2("caam_aclk", "ahb", base + 0x68, 10); hws[IMX6SX_CLK_CAAM_IPG] = imx_clk_hw_gate2("caam_ipg", "ipg", base + 0x68, 12); hws[IMX6SX_CLK_CAN1_IPG] = imx_clk_hw_gate2("can1_ipg", "ipg", base + 0x68, 14); hws[IMX6SX_CLK_CAN1_SERIAL] = imx_clk_hw_gate2("can1_serial", "can_podf", base + 0x68, 16); hws[IMX6SX_CLK_CAN2_IPG] = imx_clk_hw_gate2("can2_ipg", "ipg", base + 0x68, 18); hws[IMX6SX_CLK_CAN2_SERIAL] = imx_clk_hw_gate2("can2_serial", "can_podf", base + 0x68, 20); hws[IMX6SX_CLK_DCIC1] = imx_clk_hw_gate2("dcic1", "display_podf", base + 0x68, 24); hws[IMX6SX_CLK_DCIC2] = imx_clk_hw_gate2("dcic2", "display_podf", base + 0x68, 26); hws[IMX6SX_CLK_AIPS_TZ3] = imx_clk_hw_gate2_flags("aips_tz3", "ahb", base + 0x68, 30, CLK_IS_CRITICAL); /* CCGR1 */ hws[IMX6SX_CLK_ECSPI1] = imx_clk_hw_gate2("ecspi1", "ecspi_podf", base + 0x6c, 0); hws[IMX6SX_CLK_ECSPI2] = imx_clk_hw_gate2("ecspi2", "ecspi_podf", base + 0x6c, 2); hws[IMX6SX_CLK_ECSPI3] = imx_clk_hw_gate2("ecspi3", "ecspi_podf", base + 0x6c, 4); hws[IMX6SX_CLK_ECSPI4] = imx_clk_hw_gate2("ecspi4", "ecspi_podf", base + 0x6c, 6); hws[IMX6SX_CLK_ECSPI5] = imx_clk_hw_gate2("ecspi5", "ecspi_podf", base + 0x6c, 8); hws[IMX6SX_CLK_EPIT1] = imx_clk_hw_gate2("epit1", "perclk", base + 0x6c, 12); hws[IMX6SX_CLK_EPIT2] = imx_clk_hw_gate2("epit2", "perclk", base + 0x6c, 14); hws[IMX6SX_CLK_ESAI_EXTAL] = imx_clk_hw_gate2_shared("esai_extal", "esai_podf", base + 0x6c, 16, &share_count_esai); hws[IMX6SX_CLK_ESAI_IPG] = imx_clk_hw_gate2_shared("esai_ipg", "ahb", base + 0x6c, 16, &share_count_esai); hws[IMX6SX_CLK_ESAI_MEM] = imx_clk_hw_gate2_shared("esai_mem", "ahb", base + 0x6c, 16, &share_count_esai); hws[IMX6SX_CLK_WAKEUP] = imx_clk_hw_gate2_flags("wakeup", "ipg", base + 0x6c, 18, CLK_IS_CRITICAL); hws[IMX6SX_CLK_GPT_BUS] = imx_clk_hw_gate2("gpt_bus", "perclk", base + 0x6c, 20); hws[IMX6SX_CLK_GPT_SERIAL] = imx_clk_hw_gate2("gpt_serial", "perclk", base + 0x6c, 22); hws[IMX6SX_CLK_GPU] = imx_clk_hw_gate2("gpu", "gpu_core_podf", base + 0x6c, 26); hws[IMX6SX_CLK_OCRAM_S] = imx_clk_hw_gate2("ocram_s", "ahb", base + 0x6c, 28); hws[IMX6SX_CLK_CANFD] = imx_clk_hw_gate2("canfd", "can_podf", base + 0x6c, 30); /* CCGR2 */ hws[IMX6SX_CLK_CSI] = imx_clk_hw_gate2("csi", "csi_podf", base + 0x70, 2); hws[IMX6SX_CLK_I2C1] = imx_clk_hw_gate2("i2c1", "perclk", base + 0x70, 6); hws[IMX6SX_CLK_I2C2] = imx_clk_hw_gate2("i2c2", "perclk", base + 0x70, 8); hws[IMX6SX_CLK_I2C3] = imx_clk_hw_gate2("i2c3", "perclk", base + 0x70, 10); hws[IMX6SX_CLK_OCOTP] = imx_clk_hw_gate2("ocotp", "ipg", base + 0x70, 12); hws[IMX6SX_CLK_IOMUXC] = imx_clk_hw_gate2("iomuxc", "lcdif1_podf", base + 0x70, 14); hws[IMX6SX_CLK_IPMUX1] = imx_clk_hw_gate2_flags("ipmux1", "ahb", base + 0x70, 16, CLK_IS_CRITICAL); hws[IMX6SX_CLK_IPMUX2] = imx_clk_hw_gate2_flags("ipmux2", "ahb", base + 0x70, 18, CLK_IS_CRITICAL); hws[IMX6SX_CLK_IPMUX3] = imx_clk_hw_gate2_flags("ipmux3", "ahb", base + 0x70, 20, CLK_IS_CRITICAL); hws[IMX6SX_CLK_TZASC1] = imx_clk_hw_gate2_flags("tzasc1", "mmdc_podf", base + 0x70, 22, CLK_IS_CRITICAL); hws[IMX6SX_CLK_LCDIF_APB] = imx_clk_hw_gate2("lcdif_apb", "display_podf", base + 0x70, 28); hws[IMX6SX_CLK_PXP_AXI] = imx_clk_hw_gate2("pxp_axi", "display_podf", base + 0x70, 30); /* CCGR3 */ hws[IMX6SX_CLK_M4] = imx_clk_hw_gate2("m4", "m4_podf", base + 0x74, 2); hws[IMX6SX_CLK_ENET] = imx_clk_hw_gate2("enet", "ipg", base + 0x74, 4); hws[IMX6SX_CLK_ENET_AHB] = imx_clk_hw_gate2("enet_ahb", "enet_sel", base + 0x74, 4); hws[IMX6SX_CLK_DISPLAY_AXI] = imx_clk_hw_gate2("display_axi", "display_podf", base + 0x74, 6); hws[IMX6SX_CLK_LCDIF2_PIX] = imx_clk_hw_gate2("lcdif2_pix", "lcdif2_sel", base + 0x74, 8); hws[IMX6SX_CLK_LCDIF1_PIX] = imx_clk_hw_gate2("lcdif1_pix", "lcdif1_sel", base + 0x74, 10); hws[IMX6SX_CLK_LDB_DI0] = imx_clk_hw_gate2("ldb_di0", "ldb_di0_div_sel", base + 0x74, 12); hws[IMX6SX_CLK_QSPI1] = imx_clk_hw_gate2("qspi1", "qspi1_podf", base + 0x74, 14); hws[IMX6SX_CLK_MLB] = imx_clk_hw_gate2("mlb", "ahb", base + 0x74, 18); hws[IMX6SX_CLK_MMDC_P0_FAST] = imx_clk_hw_gate2_flags("mmdc_p0_fast", "mmdc_podf", base + 0x74, 20, CLK_IS_CRITICAL); hws[IMX6SX_CLK_MMDC_P0_IPG] = imx_clk_hw_gate2_flags("mmdc_p0_ipg", "ipg", base + 0x74, 24, CLK_IS_CRITICAL); hws[IMX6SX_CLK_MMDC_P1_IPG] = imx_clk_hw_gate2_flags("mmdc_p1_ipg", "ipg", base + 0x74, 26, CLK_IS_CRITICAL); hws[IMX6SX_CLK_OCRAM] = imx_clk_hw_gate2_flags("ocram", "ocram_podf", base + 0x74, 28, CLK_IS_CRITICAL); /* CCGR4 */ hws[IMX6SX_CLK_PCIE_AXI] = imx_clk_hw_gate2("pcie_axi", "display_podf", base + 0x78, 0); hws[IMX6SX_CLK_QSPI2] = imx_clk_hw_gate2("qspi2", "qspi2_podf", base + 0x78, 10); hws[IMX6SX_CLK_PER1_BCH] = imx_clk_hw_gate2("per1_bch", "usdhc3", base + 0x78, 12); hws[IMX6SX_CLK_PER2_MAIN] = imx_clk_hw_gate2_flags("per2_main", "ahb", base + 0x78, 14, CLK_IS_CRITICAL); hws[IMX6SX_CLK_PWM1] = imx_clk_hw_gate2("pwm1", "perclk", base + 0x78, 16); hws[IMX6SX_CLK_PWM2] = imx_clk_hw_gate2("pwm2", "perclk", base + 0x78, 18); hws[IMX6SX_CLK_PWM3] = imx_clk_hw_gate2("pwm3", "perclk", base + 0x78, 20); hws[IMX6SX_CLK_PWM4] = imx_clk_hw_gate2("pwm4", "perclk", base + 0x78, 22); hws[IMX6SX_CLK_GPMI_BCH_APB] = imx_clk_hw_gate2("gpmi_bch_apb", "usdhc3", base + 0x78, 24); hws[IMX6SX_CLK_GPMI_BCH] = imx_clk_hw_gate2("gpmi_bch", "usdhc4", base + 0x78, 26); hws[IMX6SX_CLK_GPMI_IO] = imx_clk_hw_gate2("gpmi_io", "qspi2_podf", base + 0x78, 28); hws[IMX6SX_CLK_GPMI_APB] = imx_clk_hw_gate2("gpmi_apb", "usdhc3", base + 0x78, 30); /* CCGR5 */ hws[IMX6SX_CLK_ROM] = imx_clk_hw_gate2_flags("rom", "ahb", base + 0x7c, 0, CLK_IS_CRITICAL); hws[IMX6SX_CLK_SDMA] = imx_clk_hw_gate2("sdma", "ahb", base + 0x7c, 6); hws[IMX6SX_CLK_SPBA] = imx_clk_hw_gate2("spba", "ipg", base + 0x7c, 12); hws[IMX6SX_CLK_AUDIO] = imx_clk_hw_gate2_shared("audio", "audio_podf", base + 0x7c, 14, &share_count_audio); hws[IMX6SX_CLK_SPDIF] = imx_clk_hw_gate2_shared("spdif", "spdif_podf", base + 0x7c, 14, &share_count_audio); hws[IMX6SX_CLK_SPDIF_GCLK] = imx_clk_hw_gate2_shared("spdif_gclk", "ipg", base + 0x7c, 14, &share_count_audio); hws[IMX6SX_CLK_SSI1_IPG] = imx_clk_hw_gate2_shared("ssi1_ipg", "ipg", base + 0x7c, 18, &share_count_ssi1); hws[IMX6SX_CLK_SSI2_IPG] = imx_clk_hw_gate2_shared("ssi2_ipg", "ipg", base + 0x7c, 20, &share_count_ssi2); hws[IMX6SX_CLK_SSI3_IPG] = imx_clk_hw_gate2_shared("ssi3_ipg", "ipg", base + 0x7c, 22, &share_count_ssi3); hws[IMX6SX_CLK_SSI1] = imx_clk_hw_gate2_shared("ssi1", "ssi1_podf", base + 0x7c, 18, &share_count_ssi1); hws[IMX6SX_CLK_SSI2] = imx_clk_hw_gate2_shared("ssi2", "ssi2_podf", base + 0x7c, 20, &share_count_ssi2); hws[IMX6SX_CLK_SSI3] = imx_clk_hw_gate2_shared("ssi3", "ssi3_podf", base + 0x7c, 22, &share_count_ssi3); hws[IMX6SX_CLK_UART_IPG] = imx_clk_hw_gate2("uart_ipg", "ipg", base + 0x7c, 24); hws[IMX6SX_CLK_UART_SERIAL] = imx_clk_hw_gate2("uart_serial", "uart_podf", base + 0x7c, 26); hws[IMX6SX_CLK_SAI1_IPG] = imx_clk_hw_gate2_shared("sai1_ipg", "ipg", base + 0x7c, 28, &share_count_sai1); hws[IMX6SX_CLK_SAI2_IPG] = imx_clk_hw_gate2_shared("sai2_ipg", "ipg", base + 0x7c, 30, &share_count_sai2); hws[IMX6SX_CLK_SAI1] = imx_clk_hw_gate2_shared("sai1", "ssi1_podf", base + 0x7c, 28, &share_count_sai1); hws[IMX6SX_CLK_SAI2] = imx_clk_hw_gate2_shared("sai2", "ssi2_podf", base + 0x7c, 30, &share_count_sai2); /* CCGR6 */ hws[IMX6SX_CLK_USBOH3] = imx_clk_hw_gate2("usboh3", "ipg", base + 0x80, 0); hws[IMX6SX_CLK_USDHC1] = imx_clk_hw_gate2("usdhc1", "usdhc1_podf", base + 0x80, 2); hws[IMX6SX_CLK_USDHC2] = imx_clk_hw_gate2("usdhc2", "usdhc2_podf", base + 0x80, 4); hws[IMX6SX_CLK_USDHC3] = imx_clk_hw_gate2("usdhc3", "usdhc3_podf", base + 0x80, 6); hws[IMX6SX_CLK_USDHC4] = imx_clk_hw_gate2("usdhc4", "usdhc4_podf", base + 0x80, 8); hws[IMX6SX_CLK_EIM_SLOW] = imx_clk_hw_gate2("eim_slow", "eim_slow_podf", base + 0x80, 10); hws[IMX6SX_CLK_PWM8] = imx_clk_hw_gate2("pwm8", "perclk", base + 0x80, 16); hws[IMX6SX_CLK_VADC] = imx_clk_hw_gate2("vadc", "vid_podf", base + 0x80, 20); hws[IMX6SX_CLK_GIS] = imx_clk_hw_gate2("gis", "display_podf", base + 0x80, 22); hws[IMX6SX_CLK_I2C4] = imx_clk_hw_gate2("i2c4", "perclk", base + 0x80, 24); hws[IMX6SX_CLK_PWM5] = imx_clk_hw_gate2("pwm5", "perclk", base + 0x80, 26); hws[IMX6SX_CLK_PWM6] = imx_clk_hw_gate2("pwm6", "perclk", base + 0x80, 28); hws[IMX6SX_CLK_PWM7] = imx_clk_hw_gate2("pwm7", "perclk", base + 0x80, 30); hws[IMX6SX_CLK_CKO1] = imx_clk_hw_gate("cko1", "cko1_podf", base + 0x60, 7); hws[IMX6SX_CLK_CKO2] = imx_clk_hw_gate("cko2", "cko2_podf", base + 0x60, 24); /* mask handshake of mmdc */ imx_mmdc_mask_handshake(base, 0); imx_check_clk_hws(hws, IMX6SX_CLK_CLK_END); of_clk_add_hw_provider(np, of_clk_hw_onecell_get, clk_hw_data); if (IS_ENABLED(CONFIG_USB_MXS_PHY)) { clk_prepare_enable(hws[IMX6SX_CLK_USBPHY1_GATE]->clk); clk_prepare_enable(hws[IMX6SX_CLK_USBPHY2_GATE]->clk); } /* Set the default 132MHz for EIM module */ clk_set_parent(hws[IMX6SX_CLK_EIM_SLOW_SEL]->clk, hws[IMX6SX_CLK_PLL2_PFD2]->clk); clk_set_rate(hws[IMX6SX_CLK_EIM_SLOW]->clk, 132000000); /* set parent clock for LCDIF1 pixel clock */ clk_set_parent(hws[IMX6SX_CLK_LCDIF1_PRE_SEL]->clk, hws[IMX6SX_CLK_PLL5_VIDEO_DIV]->clk); clk_set_parent(hws[IMX6SX_CLK_LCDIF1_SEL]->clk, hws[IMX6SX_CLK_LCDIF1_PODF]->clk); /* Set the parent clks of PCIe lvds1 and pcie_axi to be pcie ref, axi */ if (clk_set_parent(hws[IMX6SX_CLK_LVDS1_SEL]->clk, hws[IMX6SX_CLK_PCIE_REF_125M]->clk)) pr_err("Failed to set pcie bus parent clk.\n"); /* * Init enet system AHB clock, set to 200MHz * pll2_pfd2_396m-> ENET_PODF-> ENET_AHB */ clk_set_parent(hws[IMX6SX_CLK_ENET_PRE_SEL]->clk, hws[IMX6SX_CLK_PLL2_PFD2]->clk); clk_set_parent(hws[IMX6SX_CLK_ENET_SEL]->clk, hws[IMX6SX_CLK_ENET_PODF]->clk); clk_set_rate(hws[IMX6SX_CLK_ENET_PODF]->clk, 200000000); clk_set_rate(hws[IMX6SX_CLK_ENET_REF]->clk, 125000000); clk_set_rate(hws[IMX6SX_CLK_ENET2_REF]->clk, 125000000); /* Audio clocks */ clk_set_rate(hws[IMX6SX_CLK_PLL4_AUDIO_DIV]->clk, 393216000); clk_set_parent(hws[IMX6SX_CLK_SPDIF_SEL]->clk, hws[IMX6SX_CLK_PLL4_AUDIO_DIV]->clk); clk_set_rate(hws[IMX6SX_CLK_SPDIF_PODF]->clk, 98304000); clk_set_parent(hws[IMX6SX_CLK_AUDIO_SEL]->clk, hws[IMX6SX_CLK_PLL3_USB_OTG]->clk); clk_set_rate(hws[IMX6SX_CLK_AUDIO_PODF]->clk, 24000000); clk_set_parent(hws[IMX6SX_CLK_SSI1_SEL]->clk, hws[IMX6SX_CLK_PLL4_AUDIO_DIV]->clk); clk_set_parent(hws[IMX6SX_CLK_SSI2_SEL]->clk, hws[IMX6SX_CLK_PLL4_AUDIO_DIV]->clk); clk_set_parent(hws[IMX6SX_CLK_SSI3_SEL]->clk, hws[IMX6SX_CLK_PLL4_AUDIO_DIV]->clk); clk_set_rate(hws[IMX6SX_CLK_SSI1_PODF]->clk, 24576000); clk_set_rate(hws[IMX6SX_CLK_SSI2_PODF]->clk, 24576000); clk_set_rate(hws[IMX6SX_CLK_SSI3_PODF]->clk, 24576000); clk_set_parent(hws[IMX6SX_CLK_ESAI_SEL]->clk, hws[IMX6SX_CLK_PLL4_AUDIO_DIV]->clk); clk_set_rate(hws[IMX6SX_CLK_ESAI_PODF]->clk, 24576000); /* Set parent clock for vadc */ clk_set_parent(hws[IMX6SX_CLK_VID_SEL]->clk, hws[IMX6SX_CLK_PLL3_USB_OTG]->clk); /* default parent of can_sel clock is invalid, manually set it here */ clk_set_parent(hws[IMX6SX_CLK_CAN_SEL]->clk, hws[IMX6SX_CLK_PLL3_60M]->clk); /* Update gpu clock from default 528M to 720M */ clk_set_parent(hws[IMX6SX_CLK_GPU_CORE_SEL]->clk, hws[IMX6SX_CLK_PLL3_PFD0]->clk); clk_set_parent(hws[IMX6SX_CLK_GPU_AXI_SEL]->clk, hws[IMX6SX_CLK_PLL3_PFD0]->clk); clk_set_parent(hws[IMX6SX_CLK_QSPI1_SEL]->clk, hws[IMX6SX_CLK_PLL2_BUS]->clk); clk_set_parent(hws[IMX6SX_CLK_QSPI2_SEL]->clk, hws[IMX6SX_CLK_PLL2_BUS]->clk); imx_register_uart_clocks(); } CLK_OF_DECLARE(imx6sx, "fsl,imx6sx-ccm", imx6sx_clocks_init);
linux-master
drivers/clk/imx/clk-imx6sx.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright 2011-2013 Freescale Semiconductor, Inc. * Copyright 2011 Linaro Ltd. */ #include <linux/init.h> #include <linux/types.h> #include <linux/bits.h> #include <linux/clk.h> #include <linux/clkdev.h> #include <linux/clk-provider.h> #include <linux/err.h> #include <linux/io.h> #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <soc/imx/revision.h> #include <dt-bindings/clock/imx6qdl-clock.h> #include "clk.h" static const char *step_sels[] = { "osc", "pll2_pfd2_396m", }; static const char *pll1_sw_sels[] = { "pll1_sys", "step", }; static const char *periph_pre_sels[] = { "pll2_bus", "pll2_pfd2_396m", "pll2_pfd0_352m", "pll2_198m", }; static const char *periph_clk2_sels[] = { "pll3_usb_otg", "osc", "osc", "dummy", }; static const char *periph2_clk2_sels[] = { "pll3_usb_otg", "pll2_bus", }; static const char *periph_sels[] = { "periph_pre", "periph_clk2", }; static const char *periph2_sels[] = { "periph2_pre", "periph2_clk2", }; static const char *axi_sels[] = { "periph", "pll2_pfd2_396m", "periph", "pll3_pfd1_540m", }; static const char *audio_sels[] = { "pll4_audio_div", "pll3_pfd2_508m", "pll3_pfd3_454m", "pll3_usb_otg", }; static const char *gpu_axi_sels[] = { "axi", "ahb", }; static const char *pre_axi_sels[] = { "axi", "ahb", }; static const char *gpu2d_core_sels[] = { "axi", "pll3_usb_otg", "pll2_pfd0_352m", "pll2_pfd2_396m", }; static const char *gpu2d_core_sels_2[] = { "mmdc_ch0_axi", "pll3_usb_otg", "pll2_pfd1_594m", "pll3_pfd0_720m",}; static const char *gpu3d_core_sels[] = { "mmdc_ch0_axi", "pll3_usb_otg", "pll2_pfd1_594m", "pll2_pfd2_396m", }; static const char *gpu3d_shader_sels[] = { "mmdc_ch0_axi", "pll3_usb_otg", "pll2_pfd1_594m", "pll3_pfd0_720m", }; static const char *ipu_sels[] = { "mmdc_ch0_axi", "pll2_pfd2_396m", "pll3_120m", "pll3_pfd1_540m", }; static const char *ldb_di_sels[] = { "pll5_video_div", "pll2_pfd0_352m", "pll2_pfd2_396m", "mmdc_ch1_axi", "pll3_usb_otg", }; static const char *ipu_di_pre_sels[] = { "mmdc_ch0_axi", "pll3_usb_otg", "pll5_video_div", "pll2_pfd0_352m", "pll2_pfd2_396m", "pll3_pfd1_540m", }; static const char *ipu1_di0_sels[] = { "ipu1_di0_pre", "dummy", "dummy", "ldb_di0", "ldb_di1", }; static const char *ipu1_di1_sels[] = { "ipu1_di1_pre", "dummy", "dummy", "ldb_di0", "ldb_di1", }; static const char *ipu2_di0_sels[] = { "ipu2_di0_pre", "dummy", "dummy", "ldb_di0", "ldb_di1", }; static const char *ipu2_di1_sels[] = { "ipu2_di1_pre", "dummy", "dummy", "ldb_di0", "ldb_di1", }; static const char *ipu1_di0_sels_2[] = { "ipu1_di0_pre", "dummy", "dummy", "ldb_di0_podf", "ldb_di1_podf", }; static const char *ipu1_di1_sels_2[] = { "ipu1_di1_pre", "dummy", "dummy", "ldb_di0_podf", "ldb_di1_podf", }; static const char *ipu2_di0_sels_2[] = { "ipu2_di0_pre", "dummy", "dummy", "ldb_di0_podf", "ldb_di1_podf", }; static const char *ipu2_di1_sels_2[] = { "ipu2_di1_pre", "dummy", "dummy", "ldb_di0_podf", "ldb_di1_podf", }; static const char *hsi_tx_sels[] = { "pll3_120m", "pll2_pfd2_396m", }; static const char *pcie_axi_sels[] = { "axi", "ahb", }; static const char *ssi_sels[] = { "pll3_pfd2_508m", "pll3_pfd3_454m", "pll4_audio_div", }; static const char *usdhc_sels[] = { "pll2_pfd2_396m", "pll2_pfd0_352m", }; static const char *enfc_sels[] = { "pll2_pfd0_352m", "pll2_bus", "pll3_usb_otg", "pll2_pfd2_396m", }; static const char *enfc_sels_2[] = {"pll2_pfd0_352m", "pll2_bus", "pll3_usb_otg", "pll2_pfd2_396m", "pll3_pfd3_454m", "dummy", }; static const char *eim_sels[] = { "pll2_pfd2_396m", "pll3_usb_otg", "axi", "pll2_pfd0_352m", }; static const char *eim_slow_sels[] = { "axi", "pll3_usb_otg", "pll2_pfd2_396m", "pll2_pfd0_352m", }; static const char *vdo_axi_sels[] = { "axi", "ahb", }; static const char *vpu_axi_sels[] = { "axi", "pll2_pfd2_396m", "pll2_pfd0_352m", }; static const char *uart_sels[] = { "pll3_80m", "osc", }; static const char *ipg_per_sels[] = { "ipg", "osc", }; static const char *ecspi_sels[] = { "pll3_60m", "osc", }; static const char *can_sels[] = { "pll3_60m", "osc", "pll3_80m", }; static const char *cko1_sels[] = { "pll3_usb_otg", "pll2_bus", "pll1_sys", "pll5_video_div", "video_27m", "axi", "enfc", "ipu1_di0", "ipu1_di1", "ipu2_di0", "ipu2_di1", "ahb", "ipg", "ipg_per", "ckil", "pll4_audio_div", }; static const char *cko2_sels[] = { "mmdc_ch0_axi", "mmdc_ch1_axi", "usdhc4", "usdhc1", "gpu2d_axi", "dummy", "ecspi_root", "gpu3d_axi", "usdhc3", "dummy", "arm", "ipu1", "ipu2", "vdo_axi", "osc", "gpu2d_core", "gpu3d_core", "usdhc2", "ssi1", "ssi2", "ssi3", "gpu3d_shader", "vpu_axi", "can_root", "ldb_di0", "ldb_di1", "esai_extal", "eim_slow", "uart_serial", "spdif", "asrc", "hsi_tx", }; static const char *cko_sels[] = { "cko1", "cko2", }; static const char *lvds_sels[] = { "dummy", "dummy", "dummy", "dummy", "dummy", "dummy", "pll4_audio", "pll5_video", "pll8_mlb", "enet_ref", "pcie_ref_125m", "sata_ref_100m", "usbphy1", "usbphy2", "dummy", "dummy", "dummy", "dummy", "osc", }; static const char *pll_bypass_src_sels[] = { "osc", "lvds1_in", "lvds2_in", "dummy", }; static const char *pll1_bypass_sels[] = { "pll1", "pll1_bypass_src", }; static const char *pll2_bypass_sels[] = { "pll2", "pll2_bypass_src", }; static const char *pll3_bypass_sels[] = { "pll3", "pll3_bypass_src", }; static const char *pll4_bypass_sels[] = { "pll4", "pll4_bypass_src", }; static const char *pll5_bypass_sels[] = { "pll5", "pll5_bypass_src", }; static const char *pll6_bypass_sels[] = { "pll6", "pll6_bypass_src", }; static const char *pll7_bypass_sels[] = { "pll7", "pll7_bypass_src", }; static struct clk_hw **hws; static struct clk_hw_onecell_data *clk_hw_data; static struct clk_div_table clk_enet_ref_table[] = { { .val = 0, .div = 20, }, { .val = 1, .div = 10, }, { .val = 2, .div = 5, }, { .val = 3, .div = 4, }, { /* sentinel */ } }; static struct clk_div_table post_div_table[] = { { .val = 2, .div = 1, }, { .val = 1, .div = 2, }, { .val = 0, .div = 4, }, { /* sentinel */ } }; static struct clk_div_table video_div_table[] = { { .val = 0, .div = 1, }, { .val = 1, .div = 2, }, { .val = 2, .div = 1, }, { .val = 3, .div = 4, }, { /* sentinel */ } }; static const char * enet_ref_sels[] = { "enet_ref", "enet_ref_pad", }; static const u32 enet_ref_sels_table[] = { IMX6Q_GPR1_ENET_CLK_SEL_ANATOP, IMX6Q_GPR1_ENET_CLK_SEL_PAD }; static const u32 enet_ref_sels_table_mask = IMX6Q_GPR1_ENET_CLK_SEL_ANATOP; static unsigned int share_count_esai; static unsigned int share_count_asrc; static unsigned int share_count_ssi1; static unsigned int share_count_ssi2; static unsigned int share_count_ssi3; static unsigned int share_count_mipi_core_cfg; static unsigned int share_count_spdif; static unsigned int share_count_prg0; static unsigned int share_count_prg1; static inline int clk_on_imx6q(void) { return of_machine_is_compatible("fsl,imx6q"); } static inline int clk_on_imx6qp(void) { return of_machine_is_compatible("fsl,imx6qp"); } static inline int clk_on_imx6dl(void) { return of_machine_is_compatible("fsl,imx6dl"); } static int ldb_di_sel_by_clock_id(int clock_id) { switch (clock_id) { case IMX6QDL_CLK_PLL5_VIDEO_DIV: if (clk_on_imx6q() && imx_get_soc_revision() == IMX_CHIP_REVISION_1_0) return -ENOENT; return 0; case IMX6QDL_CLK_PLL2_PFD0_352M: return 1; case IMX6QDL_CLK_PLL2_PFD2_396M: return 2; case IMX6QDL_CLK_MMDC_CH1_AXI: return 3; case IMX6QDL_CLK_PLL3_USB_OTG: return 4; default: return -ENOENT; } } static void of_assigned_ldb_sels(struct device_node *node, unsigned int *ldb_di0_sel, unsigned int *ldb_di1_sel) { struct of_phandle_args clkspec; int index, rc, num_parents; int parent, child, sel; num_parents = of_count_phandle_with_args(node, "assigned-clock-parents", "#clock-cells"); for (index = 0; index < num_parents; index++) { rc = of_parse_phandle_with_args(node, "assigned-clock-parents", "#clock-cells", index, &clkspec); if (rc < 0) { /* skip empty (null) phandles */ if (rc == -ENOENT) continue; else return; } if (clkspec.np != node || clkspec.args[0] >= IMX6QDL_CLK_END) { pr_err("ccm: parent clock %d not in ccm\n", index); return; } parent = clkspec.args[0]; rc = of_parse_phandle_with_args(node, "assigned-clocks", "#clock-cells", index, &clkspec); if (rc < 0) return; if (clkspec.np != node || clkspec.args[0] >= IMX6QDL_CLK_END) { pr_err("ccm: child clock %d not in ccm\n", index); return; } child = clkspec.args[0]; if (child != IMX6QDL_CLK_LDB_DI0_SEL && child != IMX6QDL_CLK_LDB_DI1_SEL) continue; sel = ldb_di_sel_by_clock_id(parent); if (sel < 0) { pr_err("ccm: invalid ldb_di%d parent clock: %d\n", child == IMX6QDL_CLK_LDB_DI1_SEL, parent); continue; } if (child == IMX6QDL_CLK_LDB_DI0_SEL) *ldb_di0_sel = sel; if (child == IMX6QDL_CLK_LDB_DI1_SEL) *ldb_di1_sel = sel; } } static bool pll6_bypassed(struct device_node *node) { int index, ret, num_clocks; struct of_phandle_args clkspec; num_clocks = of_count_phandle_with_args(node, "assigned-clocks", "#clock-cells"); if (num_clocks < 0) return false; for (index = 0; index < num_clocks; index++) { ret = of_parse_phandle_with_args(node, "assigned-clocks", "#clock-cells", index, &clkspec); if (ret < 0) return false; if (clkspec.np == node && clkspec.args[0] == IMX6QDL_PLL6_BYPASS) break; } /* PLL6 bypass is not part of the assigned clock list */ if (index == num_clocks) return false; ret = of_parse_phandle_with_args(node, "assigned-clock-parents", "#clock-cells", index, &clkspec); if (clkspec.args[0] != IMX6QDL_CLK_PLL6) return true; return false; } #define CCM_CCSR 0x0c #define CCM_CS2CDR 0x2c #define CCSR_PLL3_SW_CLK_SEL BIT(0) #define CS2CDR_LDB_DI0_CLK_SEL_SHIFT 9 #define CS2CDR_LDB_DI1_CLK_SEL_SHIFT 12 /* * The only way to disable the MMDC_CH1 clock is to move it to pll3_sw_clk * via periph2_clk2_sel and then to disable pll3_sw_clk by selecting the * bypass clock source, since there is no CG bit for mmdc_ch1. */ static void mmdc_ch1_disable(void __iomem *ccm_base) { unsigned int reg; clk_set_parent(hws[IMX6QDL_CLK_PERIPH2_CLK2_SEL]->clk, hws[IMX6QDL_CLK_PLL3_USB_OTG]->clk); /* Disable pll3_sw_clk by selecting the bypass clock source */ reg = readl_relaxed(ccm_base + CCM_CCSR); reg |= CCSR_PLL3_SW_CLK_SEL; writel_relaxed(reg, ccm_base + CCM_CCSR); } static void mmdc_ch1_reenable(void __iomem *ccm_base) { unsigned int reg; /* Enable pll3_sw_clk by disabling the bypass */ reg = readl_relaxed(ccm_base + CCM_CCSR); reg &= ~CCSR_PLL3_SW_CLK_SEL; writel_relaxed(reg, ccm_base + CCM_CCSR); } /* * We have to follow a strict procedure when changing the LDB clock source, * otherwise we risk introducing a glitch that can lock up the LDB divider. * Things to keep in mind: * * 1. The current and new parent clock inputs to the mux must be disabled. * 2. The default clock input for ldb_di0/1_clk_sel is mmdc_ch1_axi, which * has no CG bit. * 3. pll2_pfd2_396m can not be gated if it is used as memory clock. * 4. In the RTL implementation of the LDB_DI_CLK_SEL muxes the top four * options are in one mux and the PLL3 option along with three unused * inputs is in a second mux. There is a third mux with two inputs used * to decide between the first and second 4-port mux: * * pll5_video_div 0 --|\ * pll2_pfd0_352m 1 --| |_ * pll2_pfd2_396m 2 --| | `-|\ * mmdc_ch1_axi 3 --|/ | | * | |-- * pll3_usb_otg 4 --|\ | | * 5 --| |_,-|/ * 6 --| | * 7 --|/ * * The ldb_di0/1_clk_sel[1:0] bits control both 4-port muxes at the same time. * The ldb_di0/1_clk_sel[2] bit controls the 2-port mux. The code below * switches the parent to the bottom mux first and then manipulates the top * mux to ensure that no glitch will enter the divider. */ static void init_ldb_clks(struct device_node *np, void __iomem *ccm_base) { unsigned int reg; unsigned int sel[2][4]; int i; reg = readl_relaxed(ccm_base + CCM_CS2CDR); sel[0][0] = (reg >> CS2CDR_LDB_DI0_CLK_SEL_SHIFT) & 7; sel[1][0] = (reg >> CS2CDR_LDB_DI1_CLK_SEL_SHIFT) & 7; sel[0][3] = sel[0][2] = sel[0][1] = sel[0][0]; sel[1][3] = sel[1][2] = sel[1][1] = sel[1][0]; of_assigned_ldb_sels(np, &sel[0][3], &sel[1][3]); for (i = 0; i < 2; i++) { /* Print a notice if a glitch might have been introduced already */ if (sel[i][0] != 3) { pr_notice("ccm: possible glitch: ldb_di%d_sel already changed from reset value: %d\n", i, sel[i][0]); } if (sel[i][0] == sel[i][3]) continue; /* Only switch to or from pll2_pfd2_396m if it is disabled */ if ((sel[i][0] == 2 || sel[i][3] == 2) && (clk_get_parent(hws[IMX6QDL_CLK_PERIPH_PRE]->clk) == hws[IMX6QDL_CLK_PLL2_PFD2_396M]->clk)) { pr_err("ccm: ldb_di%d_sel: couldn't disable pll2_pfd2_396m\n", i); sel[i][3] = sel[i][2] = sel[i][1] = sel[i][0]; continue; } /* First switch to the bottom mux */ sel[i][1] = sel[i][0] | 4; /* Then configure the top mux before switching back to it */ sel[i][2] = sel[i][3] | 4; pr_debug("ccm: switching ldb_di%d_sel: %d->%d->%d->%d\n", i, sel[i][0], sel[i][1], sel[i][2], sel[i][3]); } if (sel[0][0] == sel[0][3] && sel[1][0] == sel[1][3]) return; mmdc_ch1_disable(ccm_base); for (i = 1; i < 4; i++) { reg = readl_relaxed(ccm_base + CCM_CS2CDR); reg &= ~((7 << CS2CDR_LDB_DI0_CLK_SEL_SHIFT) | (7 << CS2CDR_LDB_DI1_CLK_SEL_SHIFT)); reg |= ((sel[0][i] << CS2CDR_LDB_DI0_CLK_SEL_SHIFT) | (sel[1][i] << CS2CDR_LDB_DI1_CLK_SEL_SHIFT)); writel_relaxed(reg, ccm_base + CCM_CS2CDR); } mmdc_ch1_reenable(ccm_base); } #define CCM_ANALOG_PLL_VIDEO 0xa0 #define CCM_ANALOG_PFD_480 0xf0 #define CCM_ANALOG_PFD_528 0x100 #define PLL_ENABLE BIT(13) #define PFD0_CLKGATE BIT(7) #define PFD1_CLKGATE BIT(15) #define PFD2_CLKGATE BIT(23) #define PFD3_CLKGATE BIT(31) static void disable_anatop_clocks(void __iomem *anatop_base) { unsigned int reg; /* Make sure PLL2 PFDs 0-2 are gated */ reg = readl_relaxed(anatop_base + CCM_ANALOG_PFD_528); /* Cannot gate PFD2 if pll2_pfd2_396m is the parent of MMDC clock */ if (clk_get_parent(hws[IMX6QDL_CLK_PERIPH_PRE]->clk) == hws[IMX6QDL_CLK_PLL2_PFD2_396M]->clk) reg |= PFD0_CLKGATE | PFD1_CLKGATE; else reg |= PFD0_CLKGATE | PFD1_CLKGATE | PFD2_CLKGATE; writel_relaxed(reg, anatop_base + CCM_ANALOG_PFD_528); /* Make sure PLL3 PFDs 0-3 are gated */ reg = readl_relaxed(anatop_base + CCM_ANALOG_PFD_480); reg |= PFD0_CLKGATE | PFD1_CLKGATE | PFD2_CLKGATE | PFD3_CLKGATE; writel_relaxed(reg, anatop_base + CCM_ANALOG_PFD_480); /* Make sure PLL5 is disabled */ reg = readl_relaxed(anatop_base + CCM_ANALOG_PLL_VIDEO); reg &= ~PLL_ENABLE; writel_relaxed(reg, anatop_base + CCM_ANALOG_PLL_VIDEO); } static struct clk_hw * __init imx6q_obtain_fixed_clk_hw(struct device_node *np, const char *name, unsigned long rate) { struct clk *clk = of_clk_get_by_name(np, name); struct clk_hw *hw; if (IS_ERR(clk)) hw = imx_obtain_fixed_clock_hw(name, rate); else hw = __clk_get_hw(clk); return hw; } static void __init imx6q_clocks_init(struct device_node *ccm_node) { struct device_node *np; void __iomem *anatop_base, *base; int ret; clk_hw_data = kzalloc(struct_size(clk_hw_data, hws, IMX6QDL_CLK_END), GFP_KERNEL); if (WARN_ON(!clk_hw_data)) return; clk_hw_data->num = IMX6QDL_CLK_END; hws = clk_hw_data->hws; hws[IMX6QDL_CLK_DUMMY] = imx_clk_hw_fixed("dummy", 0); hws[IMX6QDL_CLK_CKIL] = imx6q_obtain_fixed_clk_hw(ccm_node, "ckil", 0); hws[IMX6QDL_CLK_CKIH] = imx6q_obtain_fixed_clk_hw(ccm_node, "ckih1", 0); hws[IMX6QDL_CLK_OSC] = imx6q_obtain_fixed_clk_hw(ccm_node, "osc", 0); /* Clock source from external clock via CLK1/2 PADs */ hws[IMX6QDL_CLK_ANACLK1] = imx6q_obtain_fixed_clk_hw(ccm_node, "anaclk1", 0); hws[IMX6QDL_CLK_ANACLK2] = imx6q_obtain_fixed_clk_hw(ccm_node, "anaclk2", 0); np = of_find_compatible_node(NULL, NULL, "fsl,imx6q-anatop"); anatop_base = base = of_iomap(np, 0); WARN_ON(!base); of_node_put(np); /* Audio/video PLL post dividers do not work on i.MX6q revision 1.0 */ if (clk_on_imx6q() && imx_get_soc_revision() == IMX_CHIP_REVISION_1_0) { post_div_table[1].div = 1; post_div_table[2].div = 1; video_div_table[1].div = 1; video_div_table[3].div = 1; } hws[IMX6QDL_PLL1_BYPASS_SRC] = imx_clk_hw_mux("pll1_bypass_src", base + 0x00, 14, 2, pll_bypass_src_sels, ARRAY_SIZE(pll_bypass_src_sels)); hws[IMX6QDL_PLL2_BYPASS_SRC] = imx_clk_hw_mux("pll2_bypass_src", base + 0x30, 14, 2, pll_bypass_src_sels, ARRAY_SIZE(pll_bypass_src_sels)); hws[IMX6QDL_PLL3_BYPASS_SRC] = imx_clk_hw_mux("pll3_bypass_src", base + 0x10, 14, 2, pll_bypass_src_sels, ARRAY_SIZE(pll_bypass_src_sels)); hws[IMX6QDL_PLL4_BYPASS_SRC] = imx_clk_hw_mux("pll4_bypass_src", base + 0x70, 14, 2, pll_bypass_src_sels, ARRAY_SIZE(pll_bypass_src_sels)); hws[IMX6QDL_PLL5_BYPASS_SRC] = imx_clk_hw_mux("pll5_bypass_src", base + 0xa0, 14, 2, pll_bypass_src_sels, ARRAY_SIZE(pll_bypass_src_sels)); hws[IMX6QDL_PLL6_BYPASS_SRC] = imx_clk_hw_mux("pll6_bypass_src", base + 0xe0, 14, 2, pll_bypass_src_sels, ARRAY_SIZE(pll_bypass_src_sels)); hws[IMX6QDL_PLL7_BYPASS_SRC] = imx_clk_hw_mux("pll7_bypass_src", base + 0x20, 14, 2, pll_bypass_src_sels, ARRAY_SIZE(pll_bypass_src_sels)); /* type name parent_name base div_mask */ hws[IMX6QDL_CLK_PLL1] = imx_clk_hw_pllv3(IMX_PLLV3_SYS, "pll1", "osc", base + 0x00, 0x7f); hws[IMX6QDL_CLK_PLL2] = imx_clk_hw_pllv3(IMX_PLLV3_GENERIC, "pll2", "osc", base + 0x30, 0x1); hws[IMX6QDL_CLK_PLL3] = imx_clk_hw_pllv3(IMX_PLLV3_USB, "pll3", "osc", base + 0x10, 0x3); hws[IMX6QDL_CLK_PLL4] = imx_clk_hw_pllv3(IMX_PLLV3_AV, "pll4", "osc", base + 0x70, 0x7f); hws[IMX6QDL_CLK_PLL5] = imx_clk_hw_pllv3(IMX_PLLV3_AV, "pll5", "osc", base + 0xa0, 0x7f); hws[IMX6QDL_CLK_PLL6] = imx_clk_hw_pllv3(IMX_PLLV3_ENET, "pll6", "osc", base + 0xe0, 0x3); hws[IMX6QDL_CLK_PLL7] = imx_clk_hw_pllv3(IMX_PLLV3_USB, "pll7", "osc", base + 0x20, 0x3); hws[IMX6QDL_PLL1_BYPASS] = imx_clk_hw_mux_flags("pll1_bypass", base + 0x00, 16, 1, pll1_bypass_sels, ARRAY_SIZE(pll1_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX6QDL_PLL2_BYPASS] = imx_clk_hw_mux_flags("pll2_bypass", base + 0x30, 16, 1, pll2_bypass_sels, ARRAY_SIZE(pll2_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX6QDL_PLL3_BYPASS] = imx_clk_hw_mux_flags("pll3_bypass", base + 0x10, 16, 1, pll3_bypass_sels, ARRAY_SIZE(pll3_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX6QDL_PLL4_BYPASS] = imx_clk_hw_mux_flags("pll4_bypass", base + 0x70, 16, 1, pll4_bypass_sels, ARRAY_SIZE(pll4_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX6QDL_PLL5_BYPASS] = imx_clk_hw_mux_flags("pll5_bypass", base + 0xa0, 16, 1, pll5_bypass_sels, ARRAY_SIZE(pll5_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX6QDL_PLL6_BYPASS] = imx_clk_hw_mux_flags("pll6_bypass", base + 0xe0, 16, 1, pll6_bypass_sels, ARRAY_SIZE(pll6_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX6QDL_PLL7_BYPASS] = imx_clk_hw_mux_flags("pll7_bypass", base + 0x20, 16, 1, pll7_bypass_sels, ARRAY_SIZE(pll7_bypass_sels), CLK_SET_RATE_PARENT); /* Do not bypass PLLs initially */ clk_set_parent(hws[IMX6QDL_PLL1_BYPASS]->clk, hws[IMX6QDL_CLK_PLL1]->clk); clk_set_parent(hws[IMX6QDL_PLL2_BYPASS]->clk, hws[IMX6QDL_CLK_PLL2]->clk); clk_set_parent(hws[IMX6QDL_PLL3_BYPASS]->clk, hws[IMX6QDL_CLK_PLL3]->clk); clk_set_parent(hws[IMX6QDL_PLL4_BYPASS]->clk, hws[IMX6QDL_CLK_PLL4]->clk); clk_set_parent(hws[IMX6QDL_PLL5_BYPASS]->clk, hws[IMX6QDL_CLK_PLL5]->clk); clk_set_parent(hws[IMX6QDL_PLL6_BYPASS]->clk, hws[IMX6QDL_CLK_PLL6]->clk); clk_set_parent(hws[IMX6QDL_PLL7_BYPASS]->clk, hws[IMX6QDL_CLK_PLL7]->clk); hws[IMX6QDL_CLK_PLL1_SYS] = imx_clk_hw_gate("pll1_sys", "pll1_bypass", base + 0x00, 13); hws[IMX6QDL_CLK_PLL2_BUS] = imx_clk_hw_gate("pll2_bus", "pll2_bypass", base + 0x30, 13); hws[IMX6QDL_CLK_PLL3_USB_OTG] = imx_clk_hw_gate("pll3_usb_otg", "pll3_bypass", base + 0x10, 13); hws[IMX6QDL_CLK_PLL4_AUDIO] = imx_clk_hw_gate("pll4_audio", "pll4_bypass", base + 0x70, 13); hws[IMX6QDL_CLK_PLL5_VIDEO] = imx_clk_hw_gate("pll5_video", "pll5_bypass", base + 0xa0, 13); hws[IMX6QDL_CLK_PLL6_ENET] = imx_clk_hw_gate("pll6_enet", "pll6_bypass", base + 0xe0, 13); hws[IMX6QDL_CLK_PLL7_USB_HOST] = imx_clk_hw_gate("pll7_usb_host", "pll7_bypass", base + 0x20, 13); /* * Bit 20 is the reserved and read-only bit, we do this only for: * - Do nothing for usbphy clk_enable/disable * - Keep refcount when do usbphy clk_enable/disable, in that case, * the clk framework may need to enable/disable usbphy's parent */ hws[IMX6QDL_CLK_USBPHY1] = imx_clk_hw_gate("usbphy1", "pll3_usb_otg", base + 0x10, 20); hws[IMX6QDL_CLK_USBPHY2] = imx_clk_hw_gate("usbphy2", "pll7_usb_host", base + 0x20, 20); /* * usbphy*_gate needs to be on after system boots up, and software * never needs to control it anymore. */ hws[IMX6QDL_CLK_USBPHY1_GATE] = imx_clk_hw_gate("usbphy1_gate", "dummy", base + 0x10, 6); hws[IMX6QDL_CLK_USBPHY2_GATE] = imx_clk_hw_gate("usbphy2_gate", "dummy", base + 0x20, 6); /* * The ENET PLL is special in that is has multiple outputs with * different post-dividers that are all affected by the single bypass * bit, so a single mux bit affects 3 independent branches of the clock * tree. There is no good way to model this in the clock framework and * dynamically changing the bypass bit, will yield unexpected results. * So we treat any configuration that bypasses the ENET PLL as * essentially static with the divider ratios reflecting the bypass * status. * */ if (!pll6_bypassed(ccm_node)) { hws[IMX6QDL_CLK_SATA_REF] = imx_clk_hw_fixed_factor("sata_ref", "pll6_enet", 1, 5); hws[IMX6QDL_CLK_PCIE_REF] = imx_clk_hw_fixed_factor("pcie_ref", "pll6_enet", 1, 4); hws[IMX6QDL_CLK_ENET_REF] = clk_hw_register_divider_table(NULL, "enet_ref", "pll6_enet", 0, base + 0xe0, 0, 2, 0, clk_enet_ref_table, &imx_ccm_lock); } else { hws[IMX6QDL_CLK_SATA_REF] = imx_clk_hw_fixed_factor("sata_ref", "pll6_enet", 1, 1); hws[IMX6QDL_CLK_PCIE_REF] = imx_clk_hw_fixed_factor("pcie_ref", "pll6_enet", 1, 1); hws[IMX6QDL_CLK_ENET_REF] = imx_clk_hw_fixed_factor("enet_ref", "pll6_enet", 1, 1); } hws[IMX6QDL_CLK_SATA_REF_100M] = imx_clk_hw_gate("sata_ref_100m", "sata_ref", base + 0xe0, 20); hws[IMX6QDL_CLK_PCIE_REF_125M] = imx_clk_hw_gate("pcie_ref_125m", "pcie_ref", base + 0xe0, 19); hws[IMX6QDL_CLK_LVDS1_SEL] = imx_clk_hw_mux("lvds1_sel", base + 0x160, 0, 5, lvds_sels, ARRAY_SIZE(lvds_sels)); hws[IMX6QDL_CLK_LVDS2_SEL] = imx_clk_hw_mux("lvds2_sel", base + 0x160, 5, 5, lvds_sels, ARRAY_SIZE(lvds_sels)); /* * lvds1_gate and lvds2_gate are pseudo-gates. Both can be * independently configured as clock inputs or outputs. We treat * the "output_enable" bit as a gate, even though it's really just * enabling clock output. Initially the gate bits are cleared, as * otherwise the exclusive configuration gets locked in the setup done * by software running before the clock driver, with no way to change * it. */ writel(readl(base + 0x160) & ~0x3c00, base + 0x160); hws[IMX6QDL_CLK_LVDS1_GATE] = imx_clk_hw_gate_exclusive("lvds1_gate", "lvds1_sel", base + 0x160, 10, BIT(12)); hws[IMX6QDL_CLK_LVDS2_GATE] = imx_clk_hw_gate_exclusive("lvds2_gate", "lvds2_sel", base + 0x160, 11, BIT(13)); hws[IMX6QDL_CLK_LVDS1_IN] = imx_clk_hw_gate_exclusive("lvds1_in", "anaclk1", base + 0x160, 12, BIT(10)); hws[IMX6QDL_CLK_LVDS2_IN] = imx_clk_hw_gate_exclusive("lvds2_in", "anaclk2", base + 0x160, 13, BIT(11)); /* name parent_name reg idx */ hws[IMX6QDL_CLK_PLL2_PFD0_352M] = imx_clk_hw_pfd("pll2_pfd0_352m", "pll2_bus", base + 0x100, 0); hws[IMX6QDL_CLK_PLL2_PFD1_594M] = imx_clk_hw_pfd("pll2_pfd1_594m", "pll2_bus", base + 0x100, 1); hws[IMX6QDL_CLK_PLL2_PFD2_396M] = imx_clk_hw_pfd("pll2_pfd2_396m", "pll2_bus", base + 0x100, 2); hws[IMX6QDL_CLK_PLL3_PFD0_720M] = imx_clk_hw_pfd("pll3_pfd0_720m", "pll3_usb_otg", base + 0xf0, 0); hws[IMX6QDL_CLK_PLL3_PFD1_540M] = imx_clk_hw_pfd("pll3_pfd1_540m", "pll3_usb_otg", base + 0xf0, 1); hws[IMX6QDL_CLK_PLL3_PFD2_508M] = imx_clk_hw_pfd("pll3_pfd2_508m", "pll3_usb_otg", base + 0xf0, 2); hws[IMX6QDL_CLK_PLL3_PFD3_454M] = imx_clk_hw_pfd("pll3_pfd3_454m", "pll3_usb_otg", base + 0xf0, 3); /* name parent_name mult div */ hws[IMX6QDL_CLK_PLL2_198M] = imx_clk_hw_fixed_factor("pll2_198m", "pll2_pfd2_396m", 1, 2); hws[IMX6QDL_CLK_PLL3_120M] = imx_clk_hw_fixed_factor("pll3_120m", "pll3_usb_otg", 1, 4); hws[IMX6QDL_CLK_PLL3_80M] = imx_clk_hw_fixed_factor("pll3_80m", "pll3_usb_otg", 1, 6); hws[IMX6QDL_CLK_PLL3_60M] = imx_clk_hw_fixed_factor("pll3_60m", "pll3_usb_otg", 1, 8); hws[IMX6QDL_CLK_TWD] = imx_clk_hw_fixed_factor("twd", "arm", 1, 2); hws[IMX6QDL_CLK_GPT_3M] = imx_clk_hw_fixed_factor("gpt_3m", "osc", 1, 8); hws[IMX6QDL_CLK_VIDEO_27M] = imx_clk_hw_fixed_factor("video_27m", "pll3_pfd1_540m", 1, 20); if (clk_on_imx6dl() || clk_on_imx6qp()) { hws[IMX6QDL_CLK_GPU2D_AXI] = imx_clk_hw_fixed_factor("gpu2d_axi", "mmdc_ch0_axi_podf", 1, 1); hws[IMX6QDL_CLK_GPU3D_AXI] = imx_clk_hw_fixed_factor("gpu3d_axi", "mmdc_ch0_axi_podf", 1, 1); } hws[IMX6QDL_CLK_PLL4_POST_DIV] = clk_hw_register_divider_table(NULL, "pll4_post_div", "pll4_audio", CLK_SET_RATE_PARENT, base + 0x70, 19, 2, 0, post_div_table, &imx_ccm_lock); if (clk_on_imx6q() || clk_on_imx6qp()) hws[IMX6QDL_CLK_PLL4_AUDIO_DIV] = imx_clk_hw_fixed_factor("pll4_audio_div", "pll4_post_div", 1, 1); else hws[IMX6QDL_CLK_PLL4_AUDIO_DIV] = clk_hw_register_divider(NULL, "pll4_audio_div", "pll4_post_div", CLK_SET_RATE_PARENT, base + 0x170, 15, 1, 0, &imx_ccm_lock); hws[IMX6QDL_CLK_PLL5_POST_DIV] = clk_hw_register_divider_table(NULL, "pll5_post_div", "pll5_video", CLK_SET_RATE_PARENT, base + 0xa0, 19, 2, 0, post_div_table, &imx_ccm_lock); hws[IMX6QDL_CLK_PLL5_VIDEO_DIV] = clk_hw_register_divider_table(NULL, "pll5_video_div", "pll5_post_div", CLK_SET_RATE_PARENT, base + 0x170, 30, 2, 0, video_div_table, &imx_ccm_lock); np = ccm_node; base = of_iomap(np, 0); WARN_ON(!base); /* name reg shift width parent_names num_parents */ hws[IMX6QDL_CLK_STEP] = imx_clk_hw_mux("step", base + 0xc, 8, 1, step_sels, ARRAY_SIZE(step_sels)); hws[IMX6QDL_CLK_PLL1_SW] = imx_clk_hw_mux("pll1_sw", base + 0xc, 2, 1, pll1_sw_sels, ARRAY_SIZE(pll1_sw_sels)); hws[IMX6QDL_CLK_PERIPH_PRE] = imx_clk_hw_mux("periph_pre", base + 0x18, 18, 2, periph_pre_sels, ARRAY_SIZE(periph_pre_sels)); hws[IMX6QDL_CLK_PERIPH2_PRE] = imx_clk_hw_mux("periph2_pre", base + 0x18, 21, 2, periph_pre_sels, ARRAY_SIZE(periph_pre_sels)); hws[IMX6QDL_CLK_PERIPH_CLK2_SEL] = imx_clk_hw_mux("periph_clk2_sel", base + 0x18, 12, 2, periph_clk2_sels, ARRAY_SIZE(periph_clk2_sels)); hws[IMX6QDL_CLK_PERIPH2_CLK2_SEL] = imx_clk_hw_mux("periph2_clk2_sel", base + 0x18, 20, 1, periph2_clk2_sels, ARRAY_SIZE(periph2_clk2_sels)); hws[IMX6QDL_CLK_AXI_SEL] = imx_clk_hw_mux("axi_sel", base + 0x14, 6, 2, axi_sels, ARRAY_SIZE(axi_sels)); hws[IMX6QDL_CLK_ESAI_SEL] = imx_clk_hw_mux("esai_sel", base + 0x20, 19, 2, audio_sels, ARRAY_SIZE(audio_sels)); hws[IMX6QDL_CLK_ASRC_SEL] = imx_clk_hw_mux("asrc_sel", base + 0x30, 7, 2, audio_sels, ARRAY_SIZE(audio_sels)); hws[IMX6QDL_CLK_SPDIF_SEL] = imx_clk_hw_mux("spdif_sel", base + 0x30, 20, 2, audio_sels, ARRAY_SIZE(audio_sels)); if (clk_on_imx6q()) { hws[IMX6QDL_CLK_GPU2D_AXI] = imx_clk_hw_mux("gpu2d_axi", base + 0x18, 0, 1, gpu_axi_sels, ARRAY_SIZE(gpu_axi_sels)); hws[IMX6QDL_CLK_GPU3D_AXI] = imx_clk_hw_mux("gpu3d_axi", base + 0x18, 1, 1, gpu_axi_sels, ARRAY_SIZE(gpu_axi_sels)); } if (clk_on_imx6qp()) { hws[IMX6QDL_CLK_CAN_SEL] = imx_clk_hw_mux("can_sel", base + 0x20, 8, 2, can_sels, ARRAY_SIZE(can_sels)); hws[IMX6QDL_CLK_ECSPI_SEL] = imx_clk_hw_mux("ecspi_sel", base + 0x38, 18, 1, ecspi_sels, ARRAY_SIZE(ecspi_sels)); hws[IMX6QDL_CLK_IPG_PER_SEL] = imx_clk_hw_mux("ipg_per_sel", base + 0x1c, 6, 1, ipg_per_sels, ARRAY_SIZE(ipg_per_sels)); hws[IMX6QDL_CLK_UART_SEL] = imx_clk_hw_mux("uart_sel", base + 0x24, 6, 1, uart_sels, ARRAY_SIZE(uart_sels)); hws[IMX6QDL_CLK_GPU2D_CORE_SEL] = imx_clk_hw_mux("gpu2d_core_sel", base + 0x18, 16, 2, gpu2d_core_sels_2, ARRAY_SIZE(gpu2d_core_sels_2)); } else if (clk_on_imx6dl()) { hws[IMX6QDL_CLK_MLB_SEL] = imx_clk_hw_mux("mlb_sel", base + 0x18, 16, 2, gpu2d_core_sels, ARRAY_SIZE(gpu2d_core_sels)); } else { hws[IMX6QDL_CLK_GPU2D_CORE_SEL] = imx_clk_hw_mux("gpu2d_core_sel", base + 0x18, 16, 2, gpu2d_core_sels, ARRAY_SIZE(gpu2d_core_sels)); } hws[IMX6QDL_CLK_GPU3D_CORE_SEL] = imx_clk_hw_mux("gpu3d_core_sel", base + 0x18, 4, 2, gpu3d_core_sels, ARRAY_SIZE(gpu3d_core_sels)); if (clk_on_imx6dl()) hws[IMX6QDL_CLK_GPU2D_CORE_SEL] = imx_clk_hw_mux("gpu2d_core_sel", base + 0x18, 8, 2, gpu3d_shader_sels, ARRAY_SIZE(gpu3d_shader_sels)); else hws[IMX6QDL_CLK_GPU3D_SHADER_SEL] = imx_clk_hw_mux("gpu3d_shader_sel", base + 0x18, 8, 2, gpu3d_shader_sels, ARRAY_SIZE(gpu3d_shader_sels)); hws[IMX6QDL_CLK_IPU1_SEL] = imx_clk_hw_mux("ipu1_sel", base + 0x3c, 9, 2, ipu_sels, ARRAY_SIZE(ipu_sels)); hws[IMX6QDL_CLK_IPU2_SEL] = imx_clk_hw_mux("ipu2_sel", base + 0x3c, 14, 2, ipu_sels, ARRAY_SIZE(ipu_sels)); disable_anatop_clocks(anatop_base); imx_mmdc_mask_handshake(base, 1); if (clk_on_imx6qp()) { hws[IMX6QDL_CLK_LDB_DI0_SEL] = imx_clk_hw_mux_flags("ldb_di0_sel", base + 0x2c, 9, 3, ldb_di_sels, ARRAY_SIZE(ldb_di_sels), CLK_SET_RATE_PARENT); hws[IMX6QDL_CLK_LDB_DI1_SEL] = imx_clk_hw_mux_flags("ldb_di1_sel", base + 0x2c, 12, 3, ldb_di_sels, ARRAY_SIZE(ldb_di_sels), CLK_SET_RATE_PARENT); } else { /* * The LDB_DI0/1_SEL muxes are registered read-only due to a hardware * bug. Set the muxes to the requested values before registering the * ldb_di_sel clocks. */ init_ldb_clks(np, base); hws[IMX6QDL_CLK_LDB_DI0_SEL] = imx_clk_hw_mux_ldb("ldb_di0_sel", base + 0x2c, 9, 3, ldb_di_sels, ARRAY_SIZE(ldb_di_sels)); hws[IMX6QDL_CLK_LDB_DI1_SEL] = imx_clk_hw_mux_ldb("ldb_di1_sel", base + 0x2c, 12, 3, ldb_di_sels, ARRAY_SIZE(ldb_di_sels)); } hws[IMX6QDL_CLK_IPU1_DI0_PRE_SEL] = imx_clk_hw_mux_flags("ipu1_di0_pre_sel", base + 0x34, 6, 3, ipu_di_pre_sels, ARRAY_SIZE(ipu_di_pre_sels), CLK_SET_RATE_PARENT); hws[IMX6QDL_CLK_IPU1_DI1_PRE_SEL] = imx_clk_hw_mux_flags("ipu1_di1_pre_sel", base + 0x34, 15, 3, ipu_di_pre_sels, ARRAY_SIZE(ipu_di_pre_sels), CLK_SET_RATE_PARENT); hws[IMX6QDL_CLK_IPU2_DI0_PRE_SEL] = imx_clk_hw_mux_flags("ipu2_di0_pre_sel", base + 0x38, 6, 3, ipu_di_pre_sels, ARRAY_SIZE(ipu_di_pre_sels), CLK_SET_RATE_PARENT); hws[IMX6QDL_CLK_IPU2_DI1_PRE_SEL] = imx_clk_hw_mux_flags("ipu2_di1_pre_sel", base + 0x38, 15, 3, ipu_di_pre_sels, ARRAY_SIZE(ipu_di_pre_sels), CLK_SET_RATE_PARENT); hws[IMX6QDL_CLK_HSI_TX_SEL] = imx_clk_hw_mux("hsi_tx_sel", base + 0x30, 28, 1, hsi_tx_sels, ARRAY_SIZE(hsi_tx_sels)); hws[IMX6QDL_CLK_PCIE_AXI_SEL] = imx_clk_hw_mux("pcie_axi_sel", base + 0x18, 10, 1, pcie_axi_sels, ARRAY_SIZE(pcie_axi_sels)); if (clk_on_imx6qp()) { hws[IMX6QDL_CLK_IPU1_DI0_SEL] = imx_clk_hw_mux_flags("ipu1_di0_sel", base + 0x34, 0, 3, ipu1_di0_sels_2, ARRAY_SIZE(ipu1_di0_sels_2), CLK_SET_RATE_PARENT); hws[IMX6QDL_CLK_IPU1_DI1_SEL] = imx_clk_hw_mux_flags("ipu1_di1_sel", base + 0x34, 9, 3, ipu1_di1_sels_2, ARRAY_SIZE(ipu1_di1_sels_2), CLK_SET_RATE_PARENT); hws[IMX6QDL_CLK_IPU2_DI0_SEL] = imx_clk_hw_mux_flags("ipu2_di0_sel", base + 0x38, 0, 3, ipu2_di0_sels_2, ARRAY_SIZE(ipu2_di0_sels_2), CLK_SET_RATE_PARENT); hws[IMX6QDL_CLK_IPU2_DI1_SEL] = imx_clk_hw_mux_flags("ipu2_di1_sel", base + 0x38, 9, 3, ipu2_di1_sels_2, ARRAY_SIZE(ipu2_di1_sels_2), CLK_SET_RATE_PARENT); hws[IMX6QDL_CLK_SSI1_SEL] = imx_clk_hw_mux("ssi1_sel", base + 0x1c, 10, 2, ssi_sels, ARRAY_SIZE(ssi_sels)); hws[IMX6QDL_CLK_SSI2_SEL] = imx_clk_hw_mux("ssi2_sel", base + 0x1c, 12, 2, ssi_sels, ARRAY_SIZE(ssi_sels)); hws[IMX6QDL_CLK_SSI3_SEL] = imx_clk_hw_mux("ssi3_sel", base + 0x1c, 14, 2, ssi_sels, ARRAY_SIZE(ssi_sels)); hws[IMX6QDL_CLK_USDHC1_SEL] = imx_clk_hw_mux("usdhc1_sel", base + 0x1c, 16, 1, usdhc_sels, ARRAY_SIZE(usdhc_sels)); hws[IMX6QDL_CLK_USDHC2_SEL] = imx_clk_hw_mux("usdhc2_sel", base + 0x1c, 17, 1, usdhc_sels, ARRAY_SIZE(usdhc_sels)); hws[IMX6QDL_CLK_USDHC3_SEL] = imx_clk_hw_mux("usdhc3_sel", base + 0x1c, 18, 1, usdhc_sels, ARRAY_SIZE(usdhc_sels)); hws[IMX6QDL_CLK_USDHC4_SEL] = imx_clk_hw_mux("usdhc4_sel", base + 0x1c, 19, 1, usdhc_sels, ARRAY_SIZE(usdhc_sels)); hws[IMX6QDL_CLK_ENFC_SEL] = imx_clk_hw_mux("enfc_sel", base + 0x2c, 15, 3, enfc_sels_2, ARRAY_SIZE(enfc_sels_2)); hws[IMX6QDL_CLK_EIM_SEL] = imx_clk_hw_mux("eim_sel", base + 0x1c, 27, 2, eim_sels, ARRAY_SIZE(eim_sels)); hws[IMX6QDL_CLK_EIM_SLOW_SEL] = imx_clk_hw_mux("eim_slow_sel", base + 0x1c, 29, 2, eim_slow_sels, ARRAY_SIZE(eim_slow_sels)); hws[IMX6QDL_CLK_PRE_AXI] = imx_clk_hw_mux("pre_axi", base + 0x18, 1, 1, pre_axi_sels, ARRAY_SIZE(pre_axi_sels)); } else { hws[IMX6QDL_CLK_IPU1_DI0_SEL] = imx_clk_hw_mux_flags("ipu1_di0_sel", base + 0x34, 0, 3, ipu1_di0_sels, ARRAY_SIZE(ipu1_di0_sels), CLK_SET_RATE_PARENT); hws[IMX6QDL_CLK_IPU1_DI1_SEL] = imx_clk_hw_mux_flags("ipu1_di1_sel", base + 0x34, 9, 3, ipu1_di1_sels, ARRAY_SIZE(ipu1_di1_sels), CLK_SET_RATE_PARENT); hws[IMX6QDL_CLK_IPU2_DI0_SEL] = imx_clk_hw_mux_flags("ipu2_di0_sel", base + 0x38, 0, 3, ipu2_di0_sels, ARRAY_SIZE(ipu2_di0_sels), CLK_SET_RATE_PARENT); hws[IMX6QDL_CLK_IPU2_DI1_SEL] = imx_clk_hw_mux_flags("ipu2_di1_sel", base + 0x38, 9, 3, ipu2_di1_sels, ARRAY_SIZE(ipu2_di1_sels), CLK_SET_RATE_PARENT); hws[IMX6QDL_CLK_SSI1_SEL] = imx_clk_hw_fixup_mux("ssi1_sel", base + 0x1c, 10, 2, ssi_sels, ARRAY_SIZE(ssi_sels), imx_cscmr1_fixup); hws[IMX6QDL_CLK_SSI2_SEL] = imx_clk_hw_fixup_mux("ssi2_sel", base + 0x1c, 12, 2, ssi_sels, ARRAY_SIZE(ssi_sels), imx_cscmr1_fixup); hws[IMX6QDL_CLK_SSI3_SEL] = imx_clk_hw_fixup_mux("ssi3_sel", base + 0x1c, 14, 2, ssi_sels, ARRAY_SIZE(ssi_sels), imx_cscmr1_fixup); hws[IMX6QDL_CLK_USDHC1_SEL] = imx_clk_hw_fixup_mux("usdhc1_sel", base + 0x1c, 16, 1, usdhc_sels, ARRAY_SIZE(usdhc_sels), imx_cscmr1_fixup); hws[IMX6QDL_CLK_USDHC2_SEL] = imx_clk_hw_fixup_mux("usdhc2_sel", base + 0x1c, 17, 1, usdhc_sels, ARRAY_SIZE(usdhc_sels), imx_cscmr1_fixup); hws[IMX6QDL_CLK_USDHC3_SEL] = imx_clk_hw_fixup_mux("usdhc3_sel", base + 0x1c, 18, 1, usdhc_sels, ARRAY_SIZE(usdhc_sels), imx_cscmr1_fixup); hws[IMX6QDL_CLK_USDHC4_SEL] = imx_clk_hw_fixup_mux("usdhc4_sel", base + 0x1c, 19, 1, usdhc_sels, ARRAY_SIZE(usdhc_sels), imx_cscmr1_fixup); hws[IMX6QDL_CLK_ENFC_SEL] = imx_clk_hw_mux("enfc_sel", base + 0x2c, 16, 2, enfc_sels, ARRAY_SIZE(enfc_sels)); hws[IMX6QDL_CLK_EIM_SEL] = imx_clk_hw_fixup_mux("eim_sel", base + 0x1c, 27, 2, eim_sels, ARRAY_SIZE(eim_sels), imx_cscmr1_fixup); hws[IMX6QDL_CLK_EIM_SLOW_SEL] = imx_clk_hw_fixup_mux("eim_slow_sel", base + 0x1c, 29, 2, eim_slow_sels, ARRAY_SIZE(eim_slow_sels), imx_cscmr1_fixup); } hws[IMX6QDL_CLK_VDO_AXI_SEL] = imx_clk_hw_mux("vdo_axi_sel", base + 0x18, 11, 1, vdo_axi_sels, ARRAY_SIZE(vdo_axi_sels)); hws[IMX6QDL_CLK_VPU_AXI_SEL] = imx_clk_hw_mux("vpu_axi_sel", base + 0x18, 14, 2, vpu_axi_sels, ARRAY_SIZE(vpu_axi_sels)); hws[IMX6QDL_CLK_CKO1_SEL] = imx_clk_hw_mux("cko1_sel", base + 0x60, 0, 4, cko1_sels, ARRAY_SIZE(cko1_sels)); hws[IMX6QDL_CLK_CKO2_SEL] = imx_clk_hw_mux("cko2_sel", base + 0x60, 16, 5, cko2_sels, ARRAY_SIZE(cko2_sels)); hws[IMX6QDL_CLK_CKO] = imx_clk_hw_mux("cko", base + 0x60, 8, 1, cko_sels, ARRAY_SIZE(cko_sels)); /* name reg shift width busy: reg, shift parent_names num_parents */ hws[IMX6QDL_CLK_PERIPH] = imx_clk_hw_busy_mux("periph", base + 0x14, 25, 1, base + 0x48, 5, periph_sels, ARRAY_SIZE(periph_sels)); hws[IMX6QDL_CLK_PERIPH2] = imx_clk_hw_busy_mux("periph2", base + 0x14, 26, 1, base + 0x48, 3, periph2_sels, ARRAY_SIZE(periph2_sels)); /* name parent_name reg shift width */ hws[IMX6QDL_CLK_PERIPH_CLK2] = imx_clk_hw_divider("periph_clk2", "periph_clk2_sel", base + 0x14, 27, 3); hws[IMX6QDL_CLK_PERIPH2_CLK2] = imx_clk_hw_divider("periph2_clk2", "periph2_clk2_sel", base + 0x14, 0, 3); hws[IMX6QDL_CLK_IPG] = imx_clk_hw_divider("ipg", "ahb", base + 0x14, 8, 2); hws[IMX6QDL_CLK_ESAI_PRED] = imx_clk_hw_divider("esai_pred", "esai_sel", base + 0x28, 9, 3); hws[IMX6QDL_CLK_ESAI_PODF] = imx_clk_hw_divider("esai_podf", "esai_pred", base + 0x28, 25, 3); hws[IMX6QDL_CLK_ASRC_PRED] = imx_clk_hw_divider("asrc_pred", "asrc_sel", base + 0x30, 12, 3); hws[IMX6QDL_CLK_ASRC_PODF] = imx_clk_hw_divider("asrc_podf", "asrc_pred", base + 0x30, 9, 3); hws[IMX6QDL_CLK_SPDIF_PRED] = imx_clk_hw_divider("spdif_pred", "spdif_sel", base + 0x30, 25, 3); hws[IMX6QDL_CLK_SPDIF_PODF] = imx_clk_hw_divider("spdif_podf", "spdif_pred", base + 0x30, 22, 3); if (clk_on_imx6qp()) { hws[IMX6QDL_CLK_IPG_PER] = imx_clk_hw_divider("ipg_per", "ipg_per_sel", base + 0x1c, 0, 6); hws[IMX6QDL_CLK_ECSPI_ROOT] = imx_clk_hw_divider("ecspi_root", "ecspi_sel", base + 0x38, 19, 6); hws[IMX6QDL_CLK_CAN_ROOT] = imx_clk_hw_divider("can_root", "can_sel", base + 0x20, 2, 6); hws[IMX6QDL_CLK_UART_SERIAL_PODF] = imx_clk_hw_divider("uart_serial_podf", "uart_sel", base + 0x24, 0, 6); hws[IMX6QDL_CLK_LDB_DI0_DIV_3_5] = imx_clk_hw_fixed_factor("ldb_di0_div_3_5", "ldb_di0", 2, 7); hws[IMX6QDL_CLK_LDB_DI1_DIV_3_5] = imx_clk_hw_fixed_factor("ldb_di1_div_3_5", "ldb_di1", 2, 7); } else { hws[IMX6QDL_CLK_ECSPI_ROOT] = imx_clk_hw_divider("ecspi_root", "pll3_60m", base + 0x38, 19, 6); hws[IMX6QDL_CLK_CAN_ROOT] = imx_clk_hw_divider("can_root", "pll3_60m", base + 0x20, 2, 6); hws[IMX6QDL_CLK_IPG_PER] = imx_clk_hw_fixup_divider("ipg_per", "ipg", base + 0x1c, 0, 6, imx_cscmr1_fixup); hws[IMX6QDL_CLK_UART_SERIAL_PODF] = imx_clk_hw_divider("uart_serial_podf", "pll3_80m", base + 0x24, 0, 6); hws[IMX6QDL_CLK_LDB_DI0_DIV_3_5] = imx_clk_hw_fixed_factor("ldb_di0_div_3_5", "ldb_di0_sel", 2, 7); hws[IMX6QDL_CLK_LDB_DI1_DIV_3_5] = imx_clk_hw_fixed_factor("ldb_di1_div_3_5", "ldb_di1_sel", 2, 7); } if (clk_on_imx6dl()) hws[IMX6QDL_CLK_MLB_PODF] = imx_clk_hw_divider("mlb_podf", "mlb_sel", base + 0x18, 23, 3); else hws[IMX6QDL_CLK_GPU2D_CORE_PODF] = imx_clk_hw_divider("gpu2d_core_podf", "gpu2d_core_sel", base + 0x18, 23, 3); hws[IMX6QDL_CLK_GPU3D_CORE_PODF] = imx_clk_hw_divider("gpu3d_core_podf", "gpu3d_core_sel", base + 0x18, 26, 3); if (clk_on_imx6dl()) hws[IMX6QDL_CLK_GPU2D_CORE_PODF] = imx_clk_hw_divider("gpu2d_core_podf", "gpu2d_core_sel", base + 0x18, 29, 3); else hws[IMX6QDL_CLK_GPU3D_SHADER] = imx_clk_hw_divider("gpu3d_shader", "gpu3d_shader_sel", base + 0x18, 29, 3); hws[IMX6QDL_CLK_IPU1_PODF] = imx_clk_hw_divider("ipu1_podf", "ipu1_sel", base + 0x3c, 11, 3); hws[IMX6QDL_CLK_IPU2_PODF] = imx_clk_hw_divider("ipu2_podf", "ipu2_sel", base + 0x3c, 16, 3); hws[IMX6QDL_CLK_LDB_DI0_PODF] = imx_clk_hw_divider_flags("ldb_di0_podf", "ldb_di0_div_3_5", base + 0x20, 10, 1, 0); hws[IMX6QDL_CLK_LDB_DI1_PODF] = imx_clk_hw_divider_flags("ldb_di1_podf", "ldb_di1_div_3_5", base + 0x20, 11, 1, 0); hws[IMX6QDL_CLK_IPU1_DI0_PRE] = imx_clk_hw_divider("ipu1_di0_pre", "ipu1_di0_pre_sel", base + 0x34, 3, 3); hws[IMX6QDL_CLK_IPU1_DI1_PRE] = imx_clk_hw_divider("ipu1_di1_pre", "ipu1_di1_pre_sel", base + 0x34, 12, 3); hws[IMX6QDL_CLK_IPU2_DI0_PRE] = imx_clk_hw_divider("ipu2_di0_pre", "ipu2_di0_pre_sel", base + 0x38, 3, 3); hws[IMX6QDL_CLK_IPU2_DI1_PRE] = imx_clk_hw_divider("ipu2_di1_pre", "ipu2_di1_pre_sel", base + 0x38, 12, 3); hws[IMX6QDL_CLK_HSI_TX_PODF] = imx_clk_hw_divider("hsi_tx_podf", "hsi_tx_sel", base + 0x30, 29, 3); hws[IMX6QDL_CLK_SSI1_PRED] = imx_clk_hw_divider("ssi1_pred", "ssi1_sel", base + 0x28, 6, 3); hws[IMX6QDL_CLK_SSI1_PODF] = imx_clk_hw_divider("ssi1_podf", "ssi1_pred", base + 0x28, 0, 6); hws[IMX6QDL_CLK_SSI2_PRED] = imx_clk_hw_divider("ssi2_pred", "ssi2_sel", base + 0x2c, 6, 3); hws[IMX6QDL_CLK_SSI2_PODF] = imx_clk_hw_divider("ssi2_podf", "ssi2_pred", base + 0x2c, 0, 6); hws[IMX6QDL_CLK_SSI3_PRED] = imx_clk_hw_divider("ssi3_pred", "ssi3_sel", base + 0x28, 22, 3); hws[IMX6QDL_CLK_SSI3_PODF] = imx_clk_hw_divider("ssi3_podf", "ssi3_pred", base + 0x28, 16, 6); hws[IMX6QDL_CLK_USDHC1_PODF] = imx_clk_hw_divider("usdhc1_podf", "usdhc1_sel", base + 0x24, 11, 3); hws[IMX6QDL_CLK_USDHC2_PODF] = imx_clk_hw_divider("usdhc2_podf", "usdhc2_sel", base + 0x24, 16, 3); hws[IMX6QDL_CLK_USDHC3_PODF] = imx_clk_hw_divider("usdhc3_podf", "usdhc3_sel", base + 0x24, 19, 3); hws[IMX6QDL_CLK_USDHC4_PODF] = imx_clk_hw_divider("usdhc4_podf", "usdhc4_sel", base + 0x24, 22, 3); hws[IMX6QDL_CLK_ENFC_PRED] = imx_clk_hw_divider("enfc_pred", "enfc_sel", base + 0x2c, 18, 3); hws[IMX6QDL_CLK_ENFC_PODF] = imx_clk_hw_divider("enfc_podf", "enfc_pred", base + 0x2c, 21, 6); if (clk_on_imx6qp()) { hws[IMX6QDL_CLK_EIM_PODF] = imx_clk_hw_divider("eim_podf", "eim_sel", base + 0x1c, 20, 3); hws[IMX6QDL_CLK_EIM_SLOW_PODF] = imx_clk_hw_divider("eim_slow_podf", "eim_slow_sel", base + 0x1c, 23, 3); } else { hws[IMX6QDL_CLK_EIM_PODF] = imx_clk_hw_fixup_divider("eim_podf", "eim_sel", base + 0x1c, 20, 3, imx_cscmr1_fixup); hws[IMX6QDL_CLK_EIM_SLOW_PODF] = imx_clk_hw_fixup_divider("eim_slow_podf", "eim_slow_sel", base + 0x1c, 23, 3, imx_cscmr1_fixup); } hws[IMX6QDL_CLK_VPU_AXI_PODF] = imx_clk_hw_divider("vpu_axi_podf", "vpu_axi_sel", base + 0x24, 25, 3); hws[IMX6QDL_CLK_CKO1_PODF] = imx_clk_hw_divider("cko1_podf", "cko1_sel", base + 0x60, 4, 3); hws[IMX6QDL_CLK_CKO2_PODF] = imx_clk_hw_divider("cko2_podf", "cko2_sel", base + 0x60, 21, 3); /* name parent_name reg shift width busy: reg, shift */ hws[IMX6QDL_CLK_AXI] = imx_clk_hw_busy_divider("axi", "axi_sel", base + 0x14, 16, 3, base + 0x48, 0); hws[IMX6QDL_CLK_MMDC_CH0_AXI_PODF] = imx_clk_hw_busy_divider("mmdc_ch0_axi_podf", "periph", base + 0x14, 19, 3, base + 0x48, 4); if (clk_on_imx6qp()) { hws[IMX6QDL_CLK_MMDC_CH1_AXI_CG] = imx_clk_hw_gate("mmdc_ch1_axi_cg", "periph2", base + 0x4, 18); hws[IMX6QDL_CLK_MMDC_CH1_AXI_PODF] = imx_clk_hw_busy_divider("mmdc_ch1_axi_podf", "mmdc_ch1_axi_cg", base + 0x14, 3, 3, base + 0x48, 2); } else { hws[IMX6QDL_CLK_MMDC_CH1_AXI_PODF] = imx_clk_hw_busy_divider("mmdc_ch1_axi_podf", "periph2", base + 0x14, 3, 3, base + 0x48, 2); } hws[IMX6QDL_CLK_ARM] = imx_clk_hw_busy_divider("arm", "pll1_sw", base + 0x10, 0, 3, base + 0x48, 16); hws[IMX6QDL_CLK_AHB] = imx_clk_hw_busy_divider("ahb", "periph", base + 0x14, 10, 3, base + 0x48, 1); /* name parent_name reg shift */ hws[IMX6QDL_CLK_APBH_DMA] = imx_clk_hw_gate2("apbh_dma", "usdhc3", base + 0x68, 4); hws[IMX6QDL_CLK_ASRC] = imx_clk_hw_gate2_shared("asrc", "asrc_podf", base + 0x68, 6, &share_count_asrc); hws[IMX6QDL_CLK_ASRC_IPG] = imx_clk_hw_gate2_shared("asrc_ipg", "ahb", base + 0x68, 6, &share_count_asrc); hws[IMX6QDL_CLK_ASRC_MEM] = imx_clk_hw_gate2_shared("asrc_mem", "ahb", base + 0x68, 6, &share_count_asrc); hws[IMX6QDL_CLK_CAAM_MEM] = imx_clk_hw_gate2("caam_mem", "ahb", base + 0x68, 8); hws[IMX6QDL_CLK_CAAM_ACLK] = imx_clk_hw_gate2("caam_aclk", "ahb", base + 0x68, 10); hws[IMX6QDL_CLK_CAAM_IPG] = imx_clk_hw_gate2("caam_ipg", "ipg", base + 0x68, 12); hws[IMX6QDL_CLK_CAN1_IPG] = imx_clk_hw_gate2("can1_ipg", "ipg", base + 0x68, 14); hws[IMX6QDL_CLK_CAN1_SERIAL] = imx_clk_hw_gate2("can1_serial", "can_root", base + 0x68, 16); hws[IMX6QDL_CLK_CAN2_IPG] = imx_clk_hw_gate2("can2_ipg", "ipg", base + 0x68, 18); hws[IMX6QDL_CLK_CAN2_SERIAL] = imx_clk_hw_gate2("can2_serial", "can_root", base + 0x68, 20); hws[IMX6QDL_CLK_DCIC1] = imx_clk_hw_gate2("dcic1", "ipu1_podf", base + 0x68, 24); hws[IMX6QDL_CLK_DCIC2] = imx_clk_hw_gate2("dcic2", "ipu2_podf", base + 0x68, 26); hws[IMX6QDL_CLK_ECSPI1] = imx_clk_hw_gate2("ecspi1", "ecspi_root", base + 0x6c, 0); hws[IMX6QDL_CLK_ECSPI2] = imx_clk_hw_gate2("ecspi2", "ecspi_root", base + 0x6c, 2); hws[IMX6QDL_CLK_ECSPI3] = imx_clk_hw_gate2("ecspi3", "ecspi_root", base + 0x6c, 4); hws[IMX6QDL_CLK_ECSPI4] = imx_clk_hw_gate2("ecspi4", "ecspi_root", base + 0x6c, 6); if (clk_on_imx6dl()) hws[IMX6DL_CLK_I2C4] = imx_clk_hw_gate2("i2c4", "ipg_per", base + 0x6c, 8); else hws[IMX6Q_CLK_ECSPI5] = imx_clk_hw_gate2("ecspi5", "ecspi_root", base + 0x6c, 8); hws[IMX6QDL_CLK_ENET] = imx_clk_hw_gate2("enet", "ipg", base + 0x6c, 10); hws[IMX6QDL_CLK_EPIT1] = imx_clk_hw_gate2("epit1", "ipg", base + 0x6c, 12); hws[IMX6QDL_CLK_EPIT2] = imx_clk_hw_gate2("epit2", "ipg", base + 0x6c, 14); hws[IMX6QDL_CLK_ESAI_EXTAL] = imx_clk_hw_gate2_shared("esai_extal", "esai_podf", base + 0x6c, 16, &share_count_esai); hws[IMX6QDL_CLK_ESAI_IPG] = imx_clk_hw_gate2_shared("esai_ipg", "ahb", base + 0x6c, 16, &share_count_esai); hws[IMX6QDL_CLK_ESAI_MEM] = imx_clk_hw_gate2_shared("esai_mem", "ahb", base + 0x6c, 16, &share_count_esai); hws[IMX6QDL_CLK_GPT_IPG] = imx_clk_hw_gate2("gpt_ipg", "ipg", base + 0x6c, 20); hws[IMX6QDL_CLK_GPT_IPG_PER] = imx_clk_hw_gate2("gpt_ipg_per", "ipg_per", base + 0x6c, 22); hws[IMX6QDL_CLK_GPU2D_CORE] = imx_clk_hw_gate2("gpu2d_core", "gpu2d_core_podf", base + 0x6c, 24); hws[IMX6QDL_CLK_GPU3D_CORE] = imx_clk_hw_gate2("gpu3d_core", "gpu3d_core_podf", base + 0x6c, 26); hws[IMX6QDL_CLK_HDMI_IAHB] = imx_clk_hw_gate2("hdmi_iahb", "ahb", base + 0x70, 0); hws[IMX6QDL_CLK_HDMI_ISFR] = imx_clk_hw_gate2("hdmi_isfr", "mipi_core_cfg", base + 0x70, 4); hws[IMX6QDL_CLK_I2C1] = imx_clk_hw_gate2("i2c1", "ipg_per", base + 0x70, 6); hws[IMX6QDL_CLK_I2C2] = imx_clk_hw_gate2("i2c2", "ipg_per", base + 0x70, 8); hws[IMX6QDL_CLK_I2C3] = imx_clk_hw_gate2("i2c3", "ipg_per", base + 0x70, 10); hws[IMX6QDL_CLK_IIM] = imx_clk_hw_gate2("iim", "ipg", base + 0x70, 12); hws[IMX6QDL_CLK_ENFC] = imx_clk_hw_gate2("enfc", "enfc_podf", base + 0x70, 14); hws[IMX6QDL_CLK_VDOA] = imx_clk_hw_gate2("vdoa", "vdo_axi", base + 0x70, 26); hws[IMX6QDL_CLK_IPU1] = imx_clk_hw_gate2("ipu1", "ipu1_podf", base + 0x74, 0); hws[IMX6QDL_CLK_IPU1_DI0] = imx_clk_hw_gate2("ipu1_di0", "ipu1_di0_sel", base + 0x74, 2); hws[IMX6QDL_CLK_IPU1_DI1] = imx_clk_hw_gate2("ipu1_di1", "ipu1_di1_sel", base + 0x74, 4); hws[IMX6QDL_CLK_IPU2] = imx_clk_hw_gate2("ipu2", "ipu2_podf", base + 0x74, 6); hws[IMX6QDL_CLK_IPU2_DI0] = imx_clk_hw_gate2("ipu2_di0", "ipu2_di0_sel", base + 0x74, 8); if (clk_on_imx6qp()) { hws[IMX6QDL_CLK_LDB_DI0] = imx_clk_hw_gate2("ldb_di0", "ldb_di0_sel", base + 0x74, 12); hws[IMX6QDL_CLK_LDB_DI1] = imx_clk_hw_gate2("ldb_di1", "ldb_di1_sel", base + 0x74, 14); } else { hws[IMX6QDL_CLK_LDB_DI0] = imx_clk_hw_gate2("ldb_di0", "ldb_di0_podf", base + 0x74, 12); hws[IMX6QDL_CLK_LDB_DI1] = imx_clk_hw_gate2("ldb_di1", "ldb_di1_podf", base + 0x74, 14); } hws[IMX6QDL_CLK_IPU2_DI1] = imx_clk_hw_gate2("ipu2_di1", "ipu2_di1_sel", base + 0x74, 10); hws[IMX6QDL_CLK_HSI_TX] = imx_clk_hw_gate2_shared("hsi_tx", "hsi_tx_podf", base + 0x74, 16, &share_count_mipi_core_cfg); hws[IMX6QDL_CLK_MIPI_CORE_CFG] = imx_clk_hw_gate2_shared("mipi_core_cfg", "video_27m", base + 0x74, 16, &share_count_mipi_core_cfg); hws[IMX6QDL_CLK_MIPI_IPG] = imx_clk_hw_gate2_shared("mipi_ipg", "ipg", base + 0x74, 16, &share_count_mipi_core_cfg); if (clk_on_imx6dl()) /* * The multiplexer and divider of the imx6q clock gpu2d get * redefined/reused as mlb_sys_sel and mlb_sys_clk_podf on imx6dl. */ hws[IMX6QDL_CLK_MLB] = imx_clk_hw_gate2("mlb", "mlb_podf", base + 0x74, 18); else hws[IMX6QDL_CLK_MLB] = imx_clk_hw_gate2("mlb", "axi", base + 0x74, 18); hws[IMX6QDL_CLK_MMDC_CH0_AXI] = imx_clk_hw_gate2_flags("mmdc_ch0_axi", "mmdc_ch0_axi_podf", base + 0x74, 20, CLK_IS_CRITICAL); hws[IMX6QDL_CLK_MMDC_CH1_AXI] = imx_clk_hw_gate2("mmdc_ch1_axi", "mmdc_ch1_axi_podf", base + 0x74, 22); hws[IMX6QDL_CLK_MMDC_P0_IPG] = imx_clk_hw_gate2_flags("mmdc_p0_ipg", "ipg", base + 0x74, 24, CLK_IS_CRITICAL); hws[IMX6QDL_CLK_OCRAM] = imx_clk_hw_gate2("ocram", "ahb", base + 0x74, 28); hws[IMX6QDL_CLK_OPENVG_AXI] = imx_clk_hw_gate2("openvg_axi", "axi", base + 0x74, 30); hws[IMX6QDL_CLK_PCIE_AXI] = imx_clk_hw_gate2("pcie_axi", "pcie_axi_sel", base + 0x78, 0); hws[IMX6QDL_CLK_PER1_BCH] = imx_clk_hw_gate2("per1_bch", "usdhc3", base + 0x78, 12); hws[IMX6QDL_CLK_PWM1] = imx_clk_hw_gate2("pwm1", "ipg_per", base + 0x78, 16); hws[IMX6QDL_CLK_PWM2] = imx_clk_hw_gate2("pwm2", "ipg_per", base + 0x78, 18); hws[IMX6QDL_CLK_PWM3] = imx_clk_hw_gate2("pwm3", "ipg_per", base + 0x78, 20); hws[IMX6QDL_CLK_PWM4] = imx_clk_hw_gate2("pwm4", "ipg_per", base + 0x78, 22); hws[IMX6QDL_CLK_GPMI_BCH_APB] = imx_clk_hw_gate2("gpmi_bch_apb", "usdhc3", base + 0x78, 24); hws[IMX6QDL_CLK_GPMI_BCH] = imx_clk_hw_gate2("gpmi_bch", "usdhc4", base + 0x78, 26); hws[IMX6QDL_CLK_GPMI_IO] = imx_clk_hw_gate2("gpmi_io", "enfc", base + 0x78, 28); hws[IMX6QDL_CLK_GPMI_APB] = imx_clk_hw_gate2("gpmi_apb", "usdhc3", base + 0x78, 30); hws[IMX6QDL_CLK_ROM] = imx_clk_hw_gate2_flags("rom", "ahb", base + 0x7c, 0, CLK_IS_CRITICAL); hws[IMX6QDL_CLK_SATA] = imx_clk_hw_gate2("sata", "ahb", base + 0x7c, 4); hws[IMX6QDL_CLK_SDMA] = imx_clk_hw_gate2("sdma", "ahb", base + 0x7c, 6); hws[IMX6QDL_CLK_SPBA] = imx_clk_hw_gate2("spba", "ipg", base + 0x7c, 12); hws[IMX6QDL_CLK_SPDIF] = imx_clk_hw_gate2_shared("spdif", "spdif_podf", base + 0x7c, 14, &share_count_spdif); hws[IMX6QDL_CLK_SPDIF_GCLK] = imx_clk_hw_gate2_shared("spdif_gclk", "ipg", base + 0x7c, 14, &share_count_spdif); hws[IMX6QDL_CLK_SSI1_IPG] = imx_clk_hw_gate2_shared("ssi1_ipg", "ipg", base + 0x7c, 18, &share_count_ssi1); hws[IMX6QDL_CLK_SSI2_IPG] = imx_clk_hw_gate2_shared("ssi2_ipg", "ipg", base + 0x7c, 20, &share_count_ssi2); hws[IMX6QDL_CLK_SSI3_IPG] = imx_clk_hw_gate2_shared("ssi3_ipg", "ipg", base + 0x7c, 22, &share_count_ssi3); hws[IMX6QDL_CLK_SSI1] = imx_clk_hw_gate2_shared("ssi1", "ssi1_podf", base + 0x7c, 18, &share_count_ssi1); hws[IMX6QDL_CLK_SSI2] = imx_clk_hw_gate2_shared("ssi2", "ssi2_podf", base + 0x7c, 20, &share_count_ssi2); hws[IMX6QDL_CLK_SSI3] = imx_clk_hw_gate2_shared("ssi3", "ssi3_podf", base + 0x7c, 22, &share_count_ssi3); hws[IMX6QDL_CLK_UART_IPG] = imx_clk_hw_gate2("uart_ipg", "ipg", base + 0x7c, 24); hws[IMX6QDL_CLK_UART_SERIAL] = imx_clk_hw_gate2("uart_serial", "uart_serial_podf", base + 0x7c, 26); hws[IMX6QDL_CLK_USBOH3] = imx_clk_hw_gate2("usboh3", "ipg", base + 0x80, 0); hws[IMX6QDL_CLK_USDHC1] = imx_clk_hw_gate2("usdhc1", "usdhc1_podf", base + 0x80, 2); hws[IMX6QDL_CLK_USDHC2] = imx_clk_hw_gate2("usdhc2", "usdhc2_podf", base + 0x80, 4); hws[IMX6QDL_CLK_USDHC3] = imx_clk_hw_gate2("usdhc3", "usdhc3_podf", base + 0x80, 6); hws[IMX6QDL_CLK_USDHC4] = imx_clk_hw_gate2("usdhc4", "usdhc4_podf", base + 0x80, 8); hws[IMX6QDL_CLK_EIM_SLOW] = imx_clk_hw_gate2("eim_slow", "eim_slow_podf", base + 0x80, 10); hws[IMX6QDL_CLK_VDO_AXI] = imx_clk_hw_gate2("vdo_axi", "vdo_axi_sel", base + 0x80, 12); hws[IMX6QDL_CLK_VPU_AXI] = imx_clk_hw_gate2("vpu_axi", "vpu_axi_podf", base + 0x80, 14); if (clk_on_imx6qp()) { hws[IMX6QDL_CLK_PRE0] = imx_clk_hw_gate2("pre0", "pre_axi", base + 0x80, 16); hws[IMX6QDL_CLK_PRE1] = imx_clk_hw_gate2("pre1", "pre_axi", base + 0x80, 18); hws[IMX6QDL_CLK_PRE2] = imx_clk_hw_gate2("pre2", "pre_axi", base + 0x80, 20); hws[IMX6QDL_CLK_PRE3] = imx_clk_hw_gate2("pre3", "pre_axi", base + 0x80, 22); hws[IMX6QDL_CLK_PRG0_AXI] = imx_clk_hw_gate2_shared("prg0_axi", "ipu1_podf", base + 0x80, 24, &share_count_prg0); hws[IMX6QDL_CLK_PRG1_AXI] = imx_clk_hw_gate2_shared("prg1_axi", "ipu2_podf", base + 0x80, 26, &share_count_prg1); hws[IMX6QDL_CLK_PRG0_APB] = imx_clk_hw_gate2_shared("prg0_apb", "ipg", base + 0x80, 24, &share_count_prg0); hws[IMX6QDL_CLK_PRG1_APB] = imx_clk_hw_gate2_shared("prg1_apb", "ipg", base + 0x80, 26, &share_count_prg1); } hws[IMX6QDL_CLK_CKO1] = imx_clk_hw_gate("cko1", "cko1_podf", base + 0x60, 7); hws[IMX6QDL_CLK_CKO2] = imx_clk_hw_gate("cko2", "cko2_podf", base + 0x60, 24); /* * The gpt_3m clock is not available on i.MX6Q TO1.0. Let's point it * to clock gpt_ipg_per to ease the gpt driver code. */ if (clk_on_imx6q() && imx_get_soc_revision() == IMX_CHIP_REVISION_1_0) hws[IMX6QDL_CLK_GPT_3M] = hws[IMX6QDL_CLK_GPT_IPG_PER]; hws[IMX6QDL_CLK_ENET_REF_PAD] = imx6q_obtain_fixed_clk_hw(ccm_node, "enet_ref_pad", 0); hws[IMX6QDL_CLK_ENET_REF_SEL] = imx_clk_gpr_mux("enet_ref_sel", "fsl,imx6q-iomuxc-gpr", IOMUXC_GPR1, enet_ref_sels, ARRAY_SIZE(enet_ref_sels), enet_ref_sels_table, enet_ref_sels_table_mask); imx_check_clk_hws(hws, IMX6QDL_CLK_END); of_clk_add_hw_provider(np, of_clk_hw_onecell_get, clk_hw_data); clk_hw_register_clkdev(hws[IMX6QDL_CLK_ENET_REF], "enet_ref", NULL); clk_set_rate(hws[IMX6QDL_CLK_PLL3_PFD1_540M]->clk, 540000000); if (clk_on_imx6dl()) clk_set_parent(hws[IMX6QDL_CLK_IPU1_SEL]->clk, hws[IMX6QDL_CLK_PLL3_PFD1_540M]->clk); clk_set_parent(hws[IMX6QDL_CLK_IPU1_DI0_PRE_SEL]->clk, hws[IMX6QDL_CLK_PLL5_VIDEO_DIV]->clk); clk_set_parent(hws[IMX6QDL_CLK_IPU1_DI1_PRE_SEL]->clk, hws[IMX6QDL_CLK_PLL5_VIDEO_DIV]->clk); clk_set_parent(hws[IMX6QDL_CLK_IPU2_DI0_PRE_SEL]->clk, hws[IMX6QDL_CLK_PLL5_VIDEO_DIV]->clk); clk_set_parent(hws[IMX6QDL_CLK_IPU2_DI1_PRE_SEL]->clk, hws[IMX6QDL_CLK_PLL5_VIDEO_DIV]->clk); clk_set_parent(hws[IMX6QDL_CLK_IPU1_DI0_SEL]->clk, hws[IMX6QDL_CLK_IPU1_DI0_PRE]->clk); clk_set_parent(hws[IMX6QDL_CLK_IPU1_DI1_SEL]->clk, hws[IMX6QDL_CLK_IPU1_DI1_PRE]->clk); clk_set_parent(hws[IMX6QDL_CLK_IPU2_DI0_SEL]->clk, hws[IMX6QDL_CLK_IPU2_DI0_PRE]->clk); clk_set_parent(hws[IMX6QDL_CLK_IPU2_DI1_SEL]->clk, hws[IMX6QDL_CLK_IPU2_DI1_PRE]->clk); /* * The gpmi needs 100MHz frequency in the EDO/Sync mode, * We can not get the 100MHz from the pll2_pfd0_352m. * So choose pll2_pfd2_396m as enfc_sel's parent. */ clk_set_parent(hws[IMX6QDL_CLK_ENFC_SEL]->clk, hws[IMX6QDL_CLK_PLL2_PFD2_396M]->clk); if (IS_ENABLED(CONFIG_USB_MXS_PHY)) { clk_prepare_enable(hws[IMX6QDL_CLK_USBPHY1_GATE]->clk); clk_prepare_enable(hws[IMX6QDL_CLK_USBPHY2_GATE]->clk); } /* * Let's initially set up CLKO with OSC24M, since this configuration * is widely used by imx6q board designs to clock audio codec. */ ret = clk_set_parent(hws[IMX6QDL_CLK_CKO2_SEL]->clk, hws[IMX6QDL_CLK_OSC]->clk); if (!ret) ret = clk_set_parent(hws[IMX6QDL_CLK_CKO]->clk, hws[IMX6QDL_CLK_CKO2]->clk); if (ret) pr_warn("failed to set up CLKO: %d\n", ret); /* Audio-related clocks configuration */ clk_set_parent(hws[IMX6QDL_CLK_SPDIF_SEL]->clk, hws[IMX6QDL_CLK_PLL3_PFD3_454M]->clk); /* All existing boards with PCIe use LVDS1 */ if (IS_ENABLED(CONFIG_PCI_IMX6)) clk_set_parent(hws[IMX6QDL_CLK_LVDS1_SEL]->clk, hws[IMX6QDL_CLK_SATA_REF_100M]->clk); /* * Initialize the GPU clock muxes, so that the maximum specified clock * rates for the respective SoC are not exceeded. */ if (clk_on_imx6dl()) { clk_set_parent(hws[IMX6QDL_CLK_GPU3D_CORE_SEL]->clk, hws[IMX6QDL_CLK_PLL2_PFD1_594M]->clk); clk_set_parent(hws[IMX6QDL_CLK_GPU2D_CORE_SEL]->clk, hws[IMX6QDL_CLK_PLL2_PFD1_594M]->clk); } else if (clk_on_imx6q()) { clk_set_parent(hws[IMX6QDL_CLK_GPU3D_CORE_SEL]->clk, hws[IMX6QDL_CLK_MMDC_CH0_AXI]->clk); clk_set_parent(hws[IMX6QDL_CLK_GPU3D_SHADER_SEL]->clk, hws[IMX6QDL_CLK_PLL2_PFD1_594M]->clk); clk_set_parent(hws[IMX6QDL_CLK_GPU2D_CORE_SEL]->clk, hws[IMX6QDL_CLK_PLL3_USB_OTG]->clk); } clk_set_parent(hws[IMX6QDL_CLK_ENET_REF_SEL]->clk, hws[IMX6QDL_CLK_ENET_REF]->clk); imx_register_uart_clocks(); } CLK_OF_DECLARE(imx6q, "fsl,imx6q-ccm", imx6q_clocks_init);
linux-master
drivers/clk/imx/clk-imx6q.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2013 Freescale Semiconductor, Inc. */ #include <linux/bits.h> #include <linux/clk-provider.h> #include <linux/err.h> #include <linux/io.h> #include <linux/slab.h> #include "clk.h" /** * struct clk_fixup_mux - imx integer fixup multiplexer clock * @mux: the parent class * @ops: pointer to clk_ops of parent class * @fixup: a hook to fixup the write value * * The imx fixup multiplexer clock is a subclass of basic clk_mux * with an addtional fixup hook. */ struct clk_fixup_mux { struct clk_mux mux; const struct clk_ops *ops; void (*fixup)(u32 *val); }; static inline struct clk_fixup_mux *to_clk_fixup_mux(struct clk_hw *hw) { struct clk_mux *mux = to_clk_mux(hw); return container_of(mux, struct clk_fixup_mux, mux); } static u8 clk_fixup_mux_get_parent(struct clk_hw *hw) { struct clk_fixup_mux *fixup_mux = to_clk_fixup_mux(hw); return fixup_mux->ops->get_parent(&fixup_mux->mux.hw); } static int clk_fixup_mux_set_parent(struct clk_hw *hw, u8 index) { struct clk_fixup_mux *fixup_mux = to_clk_fixup_mux(hw); struct clk_mux *mux = to_clk_mux(hw); unsigned long flags; u32 val; spin_lock_irqsave(mux->lock, flags); val = readl(mux->reg); val &= ~(mux->mask << mux->shift); val |= index << mux->shift; fixup_mux->fixup(&val); writel(val, mux->reg); spin_unlock_irqrestore(mux->lock, flags); return 0; } static const struct clk_ops clk_fixup_mux_ops = { .determine_rate = clk_hw_determine_rate_no_reparent, .get_parent = clk_fixup_mux_get_parent, .set_parent = clk_fixup_mux_set_parent, }; struct clk_hw *imx_clk_hw_fixup_mux(const char *name, void __iomem *reg, u8 shift, u8 width, const char * const *parents, int num_parents, void (*fixup)(u32 *val)) { struct clk_fixup_mux *fixup_mux; struct clk_hw *hw; struct clk_init_data init; int ret; if (!fixup) return ERR_PTR(-EINVAL); fixup_mux = kzalloc(sizeof(*fixup_mux), GFP_KERNEL); if (!fixup_mux) return ERR_PTR(-ENOMEM); init.name = name; init.ops = &clk_fixup_mux_ops; init.parent_names = parents; init.num_parents = num_parents; init.flags = 0; fixup_mux->mux.reg = reg; fixup_mux->mux.shift = shift; fixup_mux->mux.mask = BIT(width) - 1; fixup_mux->mux.lock = &imx_ccm_lock; fixup_mux->mux.hw.init = &init; fixup_mux->ops = &clk_mux_ops; fixup_mux->fixup = fixup; hw = &fixup_mux->mux.hw; ret = clk_hw_register(NULL, hw); if (ret) { kfree(fixup_mux); return ERR_PTR(ret); } return hw; }
linux-master
drivers/clk/imx/clk-fixup-mux.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2015 Freescale Semiconductor, Inc. */ #include <dt-bindings/clock/imx6ul-clock.h> #include <linux/clk.h> #include <linux/clkdev.h> #include <linux/clk-provider.h> #include <linux/err.h> #include <linux/init.h> #include <linux/io.h> #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/types.h> #include "clk.h" static const char *pll_bypass_src_sels[] = { "osc", "dummy", }; static const char *pll1_bypass_sels[] = { "pll1", "pll1_bypass_src", }; static const char *pll2_bypass_sels[] = { "pll2", "pll2_bypass_src", }; static const char *pll3_bypass_sels[] = { "pll3", "pll3_bypass_src", }; static const char *pll4_bypass_sels[] = { "pll4", "pll4_bypass_src", }; static const char *pll5_bypass_sels[] = { "pll5", "pll5_bypass_src", }; static const char *pll6_bypass_sels[] = { "pll6", "pll6_bypass_src", }; static const char *pll7_bypass_sels[] = { "pll7", "pll7_bypass_src", }; static const char *ca7_secondary_sels[] = { "pll2_pfd2_396m", "pll2_bus", }; static const char *step_sels[] = { "osc", "ca7_secondary_sel", }; static const char *pll1_sw_sels[] = { "pll1_sys", "step", }; static const char *axi_alt_sels[] = { "pll2_pfd2_396m", "pll3_pfd1_540m", }; static const char *axi_sels[] = {"periph", "axi_alt_sel", }; static const char *periph_pre_sels[] = { "pll2_bus", "pll2_pfd2_396m", "pll2_pfd0_352m", "pll2_198m", }; static const char *periph2_pre_sels[] = { "pll2_bus", "pll2_pfd2_396m", "pll2_pfd0_352m", "pll4_audio_div", }; static const char *periph_clk2_sels[] = { "pll3_usb_otg", "osc", "pll2_bypass_src", }; static const char *periph2_clk2_sels[] = { "pll3_usb_otg", "osc", }; static const char *periph_sels[] = { "periph_pre", "periph_clk2", }; static const char *periph2_sels[] = { "periph2_pre", "periph2_clk2", }; static const char *usdhc_sels[] = { "pll2_pfd2_396m", "pll2_pfd0_352m", }; static const char *bch_sels[] = { "pll2_pfd2_396m", "pll2_pfd0_352m", }; static const char *gpmi_sels[] = { "pll2_pfd2_396m", "pll2_pfd0_352m", }; static const char *eim_slow_sels[] = { "axi", "pll3_usb_otg", "pll2_pfd2_396m", "pll3_pfd0_720m", }; static const char *spdif_sels[] = { "pll4_audio_div", "pll3_pfd2_508m", "pll5_video_div", "pll3_usb_otg", }; static const char *sai_sels[] = { "pll3_pfd2_508m", "pll5_video_div", "pll4_audio_div", }; static const char *lcdif_pre_sels[] = { "pll2_bus", "pll3_pfd3_454m", "pll5_video_div", "pll2_pfd0_352m", "pll2_pfd1_594m", "pll3_pfd1_540m", }; static const char *sim_pre_sels[] = { "pll2_bus", "pll3_usb_otg", "pll5_video_div", "pll2_pfd0_352m", "pll2_pfd2_396m", "pll3_pfd2_508m", }; static const char *ldb_di0_sels[] = { "pll5_video_div", "pll2_pfd0_352m", "pll2_pfd2_396m", "pll2_pfd3_594m", "pll2_pfd1_594m", "pll3_pfd3_454m", }; static const char *ldb_di0_div_sels[] = { "ldb_di0_div_3_5", "ldb_di0_div_7", }; static const char *ldb_di1_div_sels[] = { "ldb_di1_div_3_5", "ldb_di1_div_7", }; static const char *qspi1_sels[] = { "pll3_usb_otg", "pll2_pfd0_352m", "pll2_pfd2_396m", "pll2_bus", "pll3_pfd3_454m", "pll3_pfd2_508m", }; static const char *enfc_sels[] = { "pll2_pfd0_352m", "pll2_bus", "pll3_usb_otg", "pll2_pfd2_396m", "pll3_pfd3_454m", "dummy", "dummy", "dummy", }; static const char *can_sels[] = { "pll3_60m", "osc", "pll3_80m", "dummy", }; static const char *ecspi_sels[] = { "pll3_60m", "osc", }; static const char *uart_sels[] = { "pll3_80m", "osc", }; static const char *perclk_sels[] = { "ipg", "osc", }; static const char *lcdif_sels[] = { "lcdif_podf", "ipp_di0", "ipp_di1", "ldb_di0", "ldb_di1", }; static const char *csi_sels[] = { "osc", "pll2_pfd2_396m", "pll3_120m", "pll3_pfd1_540m", }; static const char *sim_sels[] = { "sim_podf", "ipp_di0", "ipp_di1", "ldb_di0", "ldb_di1", }; /* epdc_pre_sels, epdc_sels, esai_sels only exists on i.MX6ULL */ static const char *epdc_pre_sels[] = { "pll2_bus", "pll3_usb_otg", "pll5_video_div", "pll2_pfd0_352m", "pll2_pfd2_396m", "pll3_pfd2_508m", }; static const char *esai_sels[] = { "pll4_audio_div", "pll3_pfd2_508m", "pll5_video_div", "pll3_usb_otg", }; static const char *epdc_sels[] = { "epdc_podf", "ipp_di0", "ipp_di1", "ldb_di0", "ldb_di1", }; static const char *cko1_sels[] = { "dummy", "dummy", "dummy", "dummy", "dummy", "axi", "enfc", "dummy", "dummy", "dummy", "lcdif_pix", "ahb", "ipg", "ipg_per", "ckil", "pll4_audio_div", }; static const char *cko2_sels[] = { "dummy", "dummy", "dummy", "usdhc1", "dummy", "dummy", "ecspi_root", "dummy", "dummy", "dummy", "dummy", "dummy", "dummy", "dummy", "osc", "dummy", "dummy", "usdhc2", "sai1", "sai2", "sai3", "dummy", "dummy", "can_root", "dummy", "dummy", "dummy", "dummy", "uart_serial", "spdif", "dummy", "dummy", }; static const char *cko_sels[] = { "cko1", "cko2", }; static struct clk_hw **hws; static struct clk_hw_onecell_data *clk_hw_data; static const struct clk_div_table clk_enet_ref_table[] = { { .val = 0, .div = 20, }, { .val = 1, .div = 10, }, { .val = 2, .div = 5, }, { .val = 3, .div = 4, }, { } }; static const struct clk_div_table post_div_table[] = { { .val = 2, .div = 1, }, { .val = 1, .div = 2, }, { .val = 0, .div = 4, }, { } }; static const struct clk_div_table video_div_table[] = { { .val = 0, .div = 1, }, { .val = 1, .div = 2, }, { .val = 2, .div = 1, }, { .val = 3, .div = 4, }, { } }; static const char * enet1_ref_sels[] = { "enet1_ref_125m", "enet1_ref_pad", "dummy", "dummy"}; static const u32 enet1_ref_sels_table[] = { IMX6UL_GPR1_ENET1_TX_CLK_DIR, IMX6UL_GPR1_ENET1_CLK_SEL, 0, IMX6UL_GPR1_ENET1_TX_CLK_DIR | IMX6UL_GPR1_ENET1_CLK_SEL }; static const u32 enet1_ref_sels_table_mask = IMX6UL_GPR1_ENET1_TX_CLK_DIR | IMX6UL_GPR1_ENET1_CLK_SEL; static const char * enet2_ref_sels[] = { "enet2_ref_125m", "enet2_ref_pad", "dummy", "dummy"}; static const u32 enet2_ref_sels_table[] = { IMX6UL_GPR1_ENET2_TX_CLK_DIR, IMX6UL_GPR1_ENET2_CLK_SEL, 0, IMX6UL_GPR1_ENET2_TX_CLK_DIR | IMX6UL_GPR1_ENET2_CLK_SEL }; static const u32 enet2_ref_sels_table_mask = IMX6UL_GPR1_ENET2_TX_CLK_DIR | IMX6UL_GPR1_ENET2_CLK_SEL; static u32 share_count_asrc; static u32 share_count_audio; static u32 share_count_sai1; static u32 share_count_sai2; static u32 share_count_sai3; static u32 share_count_esai; static inline int clk_on_imx6ul(void) { return of_machine_is_compatible("fsl,imx6ul"); } static inline int clk_on_imx6ull(void) { return of_machine_is_compatible("fsl,imx6ull"); } static void __init imx6ul_clocks_init(struct device_node *ccm_node) { struct device_node *np; void __iomem *base; clk_hw_data = kzalloc(struct_size(clk_hw_data, hws, IMX6UL_CLK_END), GFP_KERNEL); if (WARN_ON(!clk_hw_data)) return; clk_hw_data->num = IMX6UL_CLK_END; hws = clk_hw_data->hws; hws[IMX6UL_CLK_DUMMY] = imx_clk_hw_fixed("dummy", 0); hws[IMX6UL_CLK_CKIL] = imx_get_clk_hw_by_name(ccm_node, "ckil"); hws[IMX6UL_CLK_OSC] = imx_get_clk_hw_by_name(ccm_node, "osc"); /* ipp_di clock is external input */ hws[IMX6UL_CLK_IPP_DI0] = imx_get_clk_hw_by_name(ccm_node, "ipp_di0"); hws[IMX6UL_CLK_IPP_DI1] = imx_get_clk_hw_by_name(ccm_node, "ipp_di1"); np = of_find_compatible_node(NULL, NULL, "fsl,imx6ul-anatop"); base = of_iomap(np, 0); of_node_put(np); WARN_ON(!base); hws[IMX6UL_PLL1_BYPASS_SRC] = imx_clk_hw_mux("pll1_bypass_src", base + 0x00, 14, 1, pll_bypass_src_sels, ARRAY_SIZE(pll_bypass_src_sels)); hws[IMX6UL_PLL2_BYPASS_SRC] = imx_clk_hw_mux("pll2_bypass_src", base + 0x30, 14, 1, pll_bypass_src_sels, ARRAY_SIZE(pll_bypass_src_sels)); hws[IMX6UL_PLL3_BYPASS_SRC] = imx_clk_hw_mux("pll3_bypass_src", base + 0x10, 14, 1, pll_bypass_src_sels, ARRAY_SIZE(pll_bypass_src_sels)); hws[IMX6UL_PLL4_BYPASS_SRC] = imx_clk_hw_mux("pll4_bypass_src", base + 0x70, 14, 1, pll_bypass_src_sels, ARRAY_SIZE(pll_bypass_src_sels)); hws[IMX6UL_PLL5_BYPASS_SRC] = imx_clk_hw_mux("pll5_bypass_src", base + 0xa0, 14, 1, pll_bypass_src_sels, ARRAY_SIZE(pll_bypass_src_sels)); hws[IMX6UL_PLL6_BYPASS_SRC] = imx_clk_hw_mux("pll6_bypass_src", base + 0xe0, 14, 1, pll_bypass_src_sels, ARRAY_SIZE(pll_bypass_src_sels)); hws[IMX6UL_PLL7_BYPASS_SRC] = imx_clk_hw_mux("pll7_bypass_src", base + 0x20, 14, 1, pll_bypass_src_sels, ARRAY_SIZE(pll_bypass_src_sels)); hws[IMX6UL_CLK_PLL1] = imx_clk_hw_pllv3(IMX_PLLV3_SYS, "pll1", "osc", base + 0x00, 0x7f); hws[IMX6UL_CLK_PLL2] = imx_clk_hw_pllv3(IMX_PLLV3_GENERIC, "pll2", "osc", base + 0x30, 0x1); hws[IMX6UL_CLK_PLL3] = imx_clk_hw_pllv3(IMX_PLLV3_USB, "pll3", "osc", base + 0x10, 0x3); hws[IMX6UL_CLK_PLL4] = imx_clk_hw_pllv3(IMX_PLLV3_AV, "pll4", "osc", base + 0x70, 0x7f); hws[IMX6UL_CLK_PLL5] = imx_clk_hw_pllv3(IMX_PLLV3_AV, "pll5", "osc", base + 0xa0, 0x7f); hws[IMX6UL_CLK_PLL6] = imx_clk_hw_pllv3(IMX_PLLV3_ENET, "pll6", "osc", base + 0xe0, 0x3); hws[IMX6UL_CLK_PLL7] = imx_clk_hw_pllv3(IMX_PLLV3_USB, "pll7", "osc", base + 0x20, 0x3); hws[IMX6UL_PLL1_BYPASS] = imx_clk_hw_mux_flags("pll1_bypass", base + 0x00, 16, 1, pll1_bypass_sels, ARRAY_SIZE(pll1_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX6UL_PLL2_BYPASS] = imx_clk_hw_mux_flags("pll2_bypass", base + 0x30, 16, 1, pll2_bypass_sels, ARRAY_SIZE(pll2_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX6UL_PLL3_BYPASS] = imx_clk_hw_mux_flags("pll3_bypass", base + 0x10, 16, 1, pll3_bypass_sels, ARRAY_SIZE(pll3_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX6UL_PLL4_BYPASS] = imx_clk_hw_mux_flags("pll4_bypass", base + 0x70, 16, 1, pll4_bypass_sels, ARRAY_SIZE(pll4_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX6UL_PLL5_BYPASS] = imx_clk_hw_mux_flags("pll5_bypass", base + 0xa0, 16, 1, pll5_bypass_sels, ARRAY_SIZE(pll5_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX6UL_PLL6_BYPASS] = imx_clk_hw_mux_flags("pll6_bypass", base + 0xe0, 16, 1, pll6_bypass_sels, ARRAY_SIZE(pll6_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX6UL_PLL7_BYPASS] = imx_clk_hw_mux_flags("pll7_bypass", base + 0x20, 16, 1, pll7_bypass_sels, ARRAY_SIZE(pll7_bypass_sels), CLK_SET_RATE_PARENT); /* Do not bypass PLLs initially */ clk_set_parent(hws[IMX6UL_PLL1_BYPASS]->clk, hws[IMX6UL_CLK_PLL1]->clk); clk_set_parent(hws[IMX6UL_PLL2_BYPASS]->clk, hws[IMX6UL_CLK_PLL2]->clk); clk_set_parent(hws[IMX6UL_PLL3_BYPASS]->clk, hws[IMX6UL_CLK_PLL3]->clk); clk_set_parent(hws[IMX6UL_PLL4_BYPASS]->clk, hws[IMX6UL_CLK_PLL4]->clk); clk_set_parent(hws[IMX6UL_PLL5_BYPASS]->clk, hws[IMX6UL_CLK_PLL5]->clk); clk_set_parent(hws[IMX6UL_PLL6_BYPASS]->clk, hws[IMX6UL_CLK_PLL6]->clk); clk_set_parent(hws[IMX6UL_PLL7_BYPASS]->clk, hws[IMX6UL_CLK_PLL7]->clk); hws[IMX6UL_CLK_PLL1_SYS] = imx_clk_hw_fixed_factor("pll1_sys", "pll1_bypass", 1, 1); hws[IMX6UL_CLK_PLL2_BUS] = imx_clk_hw_gate("pll2_bus", "pll2_bypass", base + 0x30, 13); hws[IMX6UL_CLK_PLL3_USB_OTG] = imx_clk_hw_gate("pll3_usb_otg", "pll3_bypass", base + 0x10, 13); hws[IMX6UL_CLK_PLL4_AUDIO] = imx_clk_hw_gate("pll4_audio", "pll4_bypass", base + 0x70, 13); hws[IMX6UL_CLK_PLL5_VIDEO] = imx_clk_hw_gate("pll5_video", "pll5_bypass", base + 0xa0, 13); hws[IMX6UL_CLK_PLL6_ENET] = imx_clk_hw_fixed_factor("pll6_enet", "pll6_bypass", 1, 1); hws[IMX6UL_CLK_PLL7_USB_HOST] = imx_clk_hw_gate("pll7_usb_host", "pll7_bypass", base + 0x20, 13); /* * Bit 20 is the reserved and read-only bit, we do this only for: * - Do nothing for usbphy clk_enable/disable * - Keep refcount when do usbphy clk_enable/disable, in that case, * the clk framework many need to enable/disable usbphy's parent */ hws[IMX6UL_CLK_USBPHY1] = imx_clk_hw_gate("usbphy1", "pll3_usb_otg", base + 0x10, 20); hws[IMX6UL_CLK_USBPHY2] = imx_clk_hw_gate("usbphy2", "pll7_usb_host", base + 0x20, 20); /* * usbphy*_gate needs to be on after system boots up, and software * never needs to control it anymore. */ hws[IMX6UL_CLK_USBPHY1_GATE] = imx_clk_hw_gate("usbphy1_gate", "dummy", base + 0x10, 6); hws[IMX6UL_CLK_USBPHY2_GATE] = imx_clk_hw_gate("usbphy2_gate", "dummy", base + 0x20, 6); /* name parent_name reg idx */ hws[IMX6UL_CLK_PLL2_PFD0] = imx_clk_hw_pfd("pll2_pfd0_352m", "pll2_bus", base + 0x100, 0); hws[IMX6UL_CLK_PLL2_PFD1] = imx_clk_hw_pfd("pll2_pfd1_594m", "pll2_bus", base + 0x100, 1); hws[IMX6UL_CLK_PLL2_PFD2] = imx_clk_hw_pfd("pll2_pfd2_396m", "pll2_bus", base + 0x100, 2); hws[IMX6UL_CLK_PLL2_PFD3] = imx_clk_hw_pfd("pll2_pfd3_594m", "pll2_bus", base + 0x100, 3); hws[IMX6UL_CLK_PLL3_PFD0] = imx_clk_hw_pfd("pll3_pfd0_720m", "pll3_usb_otg", base + 0xf0, 0); hws[IMX6UL_CLK_PLL3_PFD1] = imx_clk_hw_pfd("pll3_pfd1_540m", "pll3_usb_otg", base + 0xf0, 1); hws[IMX6UL_CLK_PLL3_PFD2] = imx_clk_hw_pfd("pll3_pfd2_508m", "pll3_usb_otg", base + 0xf0, 2); hws[IMX6UL_CLK_PLL3_PFD3] = imx_clk_hw_pfd("pll3_pfd3_454m", "pll3_usb_otg", base + 0xf0, 3); hws[IMX6UL_CLK_ENET_REF] = clk_hw_register_divider_table(NULL, "enet1_ref", "pll6_enet", 0, base + 0xe0, 0, 2, 0, clk_enet_ref_table, &imx_ccm_lock); hws[IMX6UL_CLK_ENET2_REF] = clk_hw_register_divider_table(NULL, "enet2_ref", "pll6_enet", 0, base + 0xe0, 2, 2, 0, clk_enet_ref_table, &imx_ccm_lock); hws[IMX6UL_CLK_ENET1_REF_125M] = imx_clk_hw_gate("enet1_ref_125m", "enet1_ref", base + 0xe0, 13); hws[IMX6UL_CLK_ENET2_REF_125M] = imx_clk_hw_gate("enet2_ref_125m", "enet2_ref", base + 0xe0, 20); hws[IMX6UL_CLK_ENET_PTP_REF] = imx_clk_hw_fixed_factor("enet_ptp_ref", "pll6_enet", 1, 20); hws[IMX6UL_CLK_ENET_PTP] = imx_clk_hw_gate("enet_ptp", "enet_ptp_ref", base + 0xe0, 21); hws[IMX6UL_CLK_PLL4_POST_DIV] = clk_hw_register_divider_table(NULL, "pll4_post_div", "pll4_audio", CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE, base + 0x70, 19, 2, 0, post_div_table, &imx_ccm_lock); hws[IMX6UL_CLK_PLL4_AUDIO_DIV] = clk_hw_register_divider(NULL, "pll4_audio_div", "pll4_post_div", CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE, base + 0x170, 15, 1, 0, &imx_ccm_lock); hws[IMX6UL_CLK_PLL5_POST_DIV] = clk_hw_register_divider_table(NULL, "pll5_post_div", "pll5_video", CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE, base + 0xa0, 19, 2, 0, post_div_table, &imx_ccm_lock); hws[IMX6UL_CLK_PLL5_VIDEO_DIV] = clk_hw_register_divider_table(NULL, "pll5_video_div", "pll5_post_div", CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE, base + 0x170, 30, 2, 0, video_div_table, &imx_ccm_lock); /* name parent_name mult div */ hws[IMX6UL_CLK_PLL2_198M] = imx_clk_hw_fixed_factor("pll2_198m", "pll2_pfd2_396m", 1, 2); hws[IMX6UL_CLK_PLL3_80M] = imx_clk_hw_fixed_factor("pll3_80m", "pll3_usb_otg", 1, 6); hws[IMX6UL_CLK_PLL3_60M] = imx_clk_hw_fixed_factor("pll3_60m", "pll3_usb_otg", 1, 8); hws[IMX6UL_CLK_GPT_3M] = imx_clk_hw_fixed_factor("gpt_3m", "osc", 1, 8); np = ccm_node; base = of_iomap(np, 0); WARN_ON(!base); hws[IMX6UL_CA7_SECONDARY_SEL] = imx_clk_hw_mux("ca7_secondary_sel", base + 0xc, 3, 1, ca7_secondary_sels, ARRAY_SIZE(ca7_secondary_sels)); hws[IMX6UL_CLK_STEP] = imx_clk_hw_mux("step", base + 0x0c, 8, 1, step_sels, ARRAY_SIZE(step_sels)); hws[IMX6UL_CLK_PLL1_SW] = imx_clk_hw_mux_flags("pll1_sw", base + 0x0c, 2, 1, pll1_sw_sels, ARRAY_SIZE(pll1_sw_sels), 0); hws[IMX6UL_CLK_AXI_ALT_SEL] = imx_clk_hw_mux("axi_alt_sel", base + 0x14, 7, 1, axi_alt_sels, ARRAY_SIZE(axi_alt_sels)); hws[IMX6UL_CLK_AXI_SEL] = imx_clk_hw_mux_flags("axi_sel", base + 0x14, 6, 1, axi_sels, ARRAY_SIZE(axi_sels), 0); hws[IMX6UL_CLK_PERIPH_PRE] = imx_clk_hw_mux("periph_pre", base + 0x18, 18, 2, periph_pre_sels, ARRAY_SIZE(periph_pre_sels)); hws[IMX6UL_CLK_PERIPH2_PRE] = imx_clk_hw_mux("periph2_pre", base + 0x18, 21, 2, periph2_pre_sels, ARRAY_SIZE(periph2_pre_sels)); hws[IMX6UL_CLK_PERIPH_CLK2_SEL] = imx_clk_hw_mux("periph_clk2_sel", base + 0x18, 12, 2, periph_clk2_sels, ARRAY_SIZE(periph_clk2_sels)); hws[IMX6UL_CLK_PERIPH2_CLK2_SEL] = imx_clk_hw_mux("periph2_clk2_sel", base + 0x18, 20, 1, periph2_clk2_sels, ARRAY_SIZE(periph2_clk2_sels)); hws[IMX6UL_CLK_EIM_SLOW_SEL] = imx_clk_hw_mux("eim_slow_sel", base + 0x1c, 29, 2, eim_slow_sels, ARRAY_SIZE(eim_slow_sels)); hws[IMX6UL_CLK_GPMI_SEL] = imx_clk_hw_mux("gpmi_sel", base + 0x1c, 19, 1, gpmi_sels, ARRAY_SIZE(gpmi_sels)); hws[IMX6UL_CLK_BCH_SEL] = imx_clk_hw_mux("bch_sel", base + 0x1c, 18, 1, bch_sels, ARRAY_SIZE(bch_sels)); hws[IMX6UL_CLK_USDHC2_SEL] = imx_clk_hw_mux("usdhc2_sel", base + 0x1c, 17, 1, usdhc_sels, ARRAY_SIZE(usdhc_sels)); hws[IMX6UL_CLK_USDHC1_SEL] = imx_clk_hw_mux("usdhc1_sel", base + 0x1c, 16, 1, usdhc_sels, ARRAY_SIZE(usdhc_sels)); hws[IMX6UL_CLK_SAI3_SEL] = imx_clk_hw_mux("sai3_sel", base + 0x1c, 14, 2, sai_sels, ARRAY_SIZE(sai_sels)); hws[IMX6UL_CLK_SAI2_SEL] = imx_clk_hw_mux("sai2_sel", base + 0x1c, 12, 2, sai_sels, ARRAY_SIZE(sai_sels)); hws[IMX6UL_CLK_SAI1_SEL] = imx_clk_hw_mux("sai1_sel", base + 0x1c, 10, 2, sai_sels, ARRAY_SIZE(sai_sels)); hws[IMX6UL_CLK_QSPI1_SEL] = imx_clk_hw_mux("qspi1_sel", base + 0x1c, 7, 3, qspi1_sels, ARRAY_SIZE(qspi1_sels)); hws[IMX6UL_CLK_PERCLK_SEL] = imx_clk_hw_mux("perclk_sel", base + 0x1c, 6, 1, perclk_sels, ARRAY_SIZE(perclk_sels)); hws[IMX6UL_CLK_CAN_SEL] = imx_clk_hw_mux("can_sel", base + 0x20, 8, 2, can_sels, ARRAY_SIZE(can_sels)); if (clk_on_imx6ull()) hws[IMX6ULL_CLK_ESAI_SEL] = imx_clk_hw_mux("esai_sel", base + 0x20, 19, 2, esai_sels, ARRAY_SIZE(esai_sels)); hws[IMX6UL_CLK_UART_SEL] = imx_clk_hw_mux("uart_sel", base + 0x24, 6, 1, uart_sels, ARRAY_SIZE(uart_sels)); hws[IMX6UL_CLK_ENFC_SEL] = imx_clk_hw_mux("enfc_sel", base + 0x2c, 15, 3, enfc_sels, ARRAY_SIZE(enfc_sels)); hws[IMX6UL_CLK_LDB_DI0_SEL] = imx_clk_hw_mux("ldb_di0_sel", base + 0x2c, 9, 3, ldb_di0_sels, ARRAY_SIZE(ldb_di0_sels)); hws[IMX6UL_CLK_SPDIF_SEL] = imx_clk_hw_mux("spdif_sel", base + 0x30, 20, 2, spdif_sels, ARRAY_SIZE(spdif_sels)); if (clk_on_imx6ul()) { hws[IMX6UL_CLK_SIM_PRE_SEL] = imx_clk_hw_mux("sim_pre_sel", base + 0x34, 15, 3, sim_pre_sels, ARRAY_SIZE(sim_pre_sels)); hws[IMX6UL_CLK_SIM_SEL] = imx_clk_hw_mux("sim_sel", base + 0x34, 9, 3, sim_sels, ARRAY_SIZE(sim_sels)); } else if (clk_on_imx6ull()) { hws[IMX6ULL_CLK_EPDC_PRE_SEL] = imx_clk_hw_mux("epdc_pre_sel", base + 0x34, 15, 3, epdc_pre_sels, ARRAY_SIZE(epdc_pre_sels)); hws[IMX6ULL_CLK_EPDC_SEL] = imx_clk_hw_mux("epdc_sel", base + 0x34, 9, 3, epdc_sels, ARRAY_SIZE(epdc_sels)); } hws[IMX6UL_CLK_ECSPI_SEL] = imx_clk_hw_mux("ecspi_sel", base + 0x38, 18, 1, ecspi_sels, ARRAY_SIZE(ecspi_sels)); hws[IMX6UL_CLK_LCDIF_PRE_SEL] = imx_clk_hw_mux_flags("lcdif_pre_sel", base + 0x38, 15, 3, lcdif_pre_sels, ARRAY_SIZE(lcdif_pre_sels), CLK_SET_RATE_PARENT); hws[IMX6UL_CLK_LCDIF_SEL] = imx_clk_hw_mux("lcdif_sel", base + 0x38, 9, 3, lcdif_sels, ARRAY_SIZE(lcdif_sels)); hws[IMX6UL_CLK_CSI_SEL] = imx_clk_hw_mux("csi_sel", base + 0x3c, 9, 2, csi_sels, ARRAY_SIZE(csi_sels)); hws[IMX6UL_CLK_LDB_DI0_DIV_SEL] = imx_clk_hw_mux("ldb_di0", base + 0x20, 10, 1, ldb_di0_div_sels, ARRAY_SIZE(ldb_di0_div_sels)); hws[IMX6UL_CLK_LDB_DI1_DIV_SEL] = imx_clk_hw_mux("ldb_di1", base + 0x20, 11, 1, ldb_di1_div_sels, ARRAY_SIZE(ldb_di1_div_sels)); hws[IMX6UL_CLK_CKO1_SEL] = imx_clk_hw_mux("cko1_sel", base + 0x60, 0, 4, cko1_sels, ARRAY_SIZE(cko1_sels)); hws[IMX6UL_CLK_CKO2_SEL] = imx_clk_hw_mux("cko2_sel", base + 0x60, 16, 5, cko2_sels, ARRAY_SIZE(cko2_sels)); hws[IMX6UL_CLK_CKO] = imx_clk_hw_mux("cko", base + 0x60, 8, 1, cko_sels, ARRAY_SIZE(cko_sels)); hws[IMX6UL_CLK_LDB_DI0_DIV_3_5] = imx_clk_hw_fixed_factor("ldb_di0_div_3_5", "ldb_di0_sel", 2, 7); hws[IMX6UL_CLK_LDB_DI0_DIV_7] = imx_clk_hw_fixed_factor("ldb_di0_div_7", "ldb_di0_sel", 1, 7); hws[IMX6UL_CLK_LDB_DI1_DIV_3_5] = imx_clk_hw_fixed_factor("ldb_di1_div_3_5", "qspi1_sel", 2, 7); hws[IMX6UL_CLK_LDB_DI1_DIV_7] = imx_clk_hw_fixed_factor("ldb_di1_div_7", "qspi1_sel", 1, 7); hws[IMX6UL_CLK_PERIPH] = imx_clk_hw_busy_mux("periph", base + 0x14, 25, 1, base + 0x48, 5, periph_sels, ARRAY_SIZE(periph_sels)); hws[IMX6UL_CLK_PERIPH2] = imx_clk_hw_busy_mux("periph2", base + 0x14, 26, 1, base + 0x48, 3, periph2_sels, ARRAY_SIZE(periph2_sels)); hws[IMX6UL_CLK_PERIPH_CLK2] = imx_clk_hw_divider("periph_clk2", "periph_clk2_sel", base + 0x14, 27, 3); hws[IMX6UL_CLK_PERIPH2_CLK2] = imx_clk_hw_divider("periph2_clk2", "periph2_clk2_sel", base + 0x14, 0, 3); hws[IMX6UL_CLK_IPG] = imx_clk_hw_divider("ipg", "ahb", base + 0x14, 8, 2); hws[IMX6UL_CLK_LCDIF_PODF] = imx_clk_hw_divider("lcdif_podf", "lcdif_pred", base + 0x18, 23, 3); hws[IMX6UL_CLK_QSPI1_PDOF] = imx_clk_hw_divider("qspi1_podf", "qspi1_sel", base + 0x1c, 26, 3); hws[IMX6UL_CLK_EIM_SLOW_PODF] = imx_clk_hw_divider("eim_slow_podf", "eim_slow_sel", base + 0x1c, 23, 3); hws[IMX6UL_CLK_PERCLK] = imx_clk_hw_divider("perclk", "perclk_sel", base + 0x1c, 0, 6); hws[IMX6UL_CLK_CAN_PODF] = imx_clk_hw_divider("can_podf", "can_sel", base + 0x20, 2, 6); hws[IMX6UL_CLK_GPMI_PODF] = imx_clk_hw_divider("gpmi_podf", "gpmi_sel", base + 0x24, 22, 3); hws[IMX6UL_CLK_BCH_PODF] = imx_clk_hw_divider("bch_podf", "bch_sel", base + 0x24, 19, 3); hws[IMX6UL_CLK_USDHC2_PODF] = imx_clk_hw_divider("usdhc2_podf", "usdhc2_sel", base + 0x24, 16, 3); hws[IMX6UL_CLK_USDHC1_PODF] = imx_clk_hw_divider("usdhc1_podf", "usdhc1_sel", base + 0x24, 11, 3); hws[IMX6UL_CLK_UART_PODF] = imx_clk_hw_divider("uart_podf", "uart_sel", base + 0x24, 0, 6); hws[IMX6UL_CLK_SAI3_PRED] = imx_clk_hw_divider("sai3_pred", "sai3_sel", base + 0x28, 22, 3); hws[IMX6UL_CLK_SAI3_PODF] = imx_clk_hw_divider("sai3_podf", "sai3_pred", base + 0x28, 16, 6); hws[IMX6UL_CLK_SAI1_PRED] = imx_clk_hw_divider("sai1_pred", "sai1_sel", base + 0x28, 6, 3); hws[IMX6UL_CLK_SAI1_PODF] = imx_clk_hw_divider("sai1_podf", "sai1_pred", base + 0x28, 0, 6); if (clk_on_imx6ull()) { hws[IMX6ULL_CLK_ESAI_PRED] = imx_clk_hw_divider("esai_pred", "esai_sel", base + 0x28, 9, 3); hws[IMX6ULL_CLK_ESAI_PODF] = imx_clk_hw_divider("esai_podf", "esai_pred", base + 0x28, 25, 3); } hws[IMX6UL_CLK_ENFC_PRED] = imx_clk_hw_divider("enfc_pred", "enfc_sel", base + 0x2c, 18, 3); hws[IMX6UL_CLK_ENFC_PODF] = imx_clk_hw_divider("enfc_podf", "enfc_pred", base + 0x2c, 21, 6); hws[IMX6UL_CLK_SAI2_PRED] = imx_clk_hw_divider("sai2_pred", "sai2_sel", base + 0x2c, 6, 3); hws[IMX6UL_CLK_SAI2_PODF] = imx_clk_hw_divider("sai2_podf", "sai2_pred", base + 0x2c, 0, 6); hws[IMX6UL_CLK_SPDIF_PRED] = imx_clk_hw_divider("spdif_pred", "spdif_sel", base + 0x30, 25, 3); hws[IMX6UL_CLK_SPDIF_PODF] = imx_clk_hw_divider("spdif_podf", "spdif_pred", base + 0x30, 22, 3); if (clk_on_imx6ul()) hws[IMX6UL_CLK_SIM_PODF] = imx_clk_hw_divider("sim_podf", "sim_pre_sel", base + 0x34, 12, 3); else if (clk_on_imx6ull()) hws[IMX6ULL_CLK_EPDC_PODF] = imx_clk_hw_divider("epdc_podf", "epdc_pre_sel", base + 0x34, 12, 3); hws[IMX6UL_CLK_ECSPI_PODF] = imx_clk_hw_divider("ecspi_podf", "ecspi_sel", base + 0x38, 19, 6); hws[IMX6UL_CLK_LCDIF_PRED] = imx_clk_hw_divider("lcdif_pred", "lcdif_pre_sel", base + 0x38, 12, 3); hws[IMX6UL_CLK_CSI_PODF] = imx_clk_hw_divider("csi_podf", "csi_sel", base + 0x3c, 11, 3); hws[IMX6UL_CLK_CKO1_PODF] = imx_clk_hw_divider("cko1_podf", "cko1_sel", base + 0x60, 4, 3); hws[IMX6UL_CLK_CKO2_PODF] = imx_clk_hw_divider("cko2_podf", "cko2_sel", base + 0x60, 21, 3); hws[IMX6UL_CLK_ARM] = imx_clk_hw_busy_divider("arm", "pll1_sw", base + 0x10, 0, 3, base + 0x48, 16); hws[IMX6UL_CLK_MMDC_PODF] = imx_clk_hw_busy_divider("mmdc_podf", "periph2", base + 0x14, 3, 3, base + 0x48, 2); hws[IMX6UL_CLK_AXI_PODF] = imx_clk_hw_busy_divider("axi_podf", "axi_sel", base + 0x14, 16, 3, base + 0x48, 0); hws[IMX6UL_CLK_AHB] = imx_clk_hw_busy_divider("ahb", "periph", base + 0x14, 10, 3, base + 0x48, 1); /* CCGR0 */ hws[IMX6UL_CLK_AIPSTZ1] = imx_clk_hw_gate2_flags("aips_tz1", "ahb", base + 0x68, 0, CLK_IS_CRITICAL); hws[IMX6UL_CLK_AIPSTZ2] = imx_clk_hw_gate2_flags("aips_tz2", "ahb", base + 0x68, 2, CLK_IS_CRITICAL); hws[IMX6UL_CLK_APBHDMA] = imx_clk_hw_gate2("apbh_dma", "bch_podf", base + 0x68, 4); hws[IMX6UL_CLK_ASRC_IPG] = imx_clk_hw_gate2_shared("asrc_ipg", "ahb", base + 0x68, 6, &share_count_asrc); hws[IMX6UL_CLK_ASRC_MEM] = imx_clk_hw_gate2_shared("asrc_mem", "ahb", base + 0x68, 6, &share_count_asrc); if (clk_on_imx6ul()) { hws[IMX6UL_CLK_CAAM_MEM] = imx_clk_hw_gate2("caam_mem", "ahb", base + 0x68, 8); hws[IMX6UL_CLK_CAAM_ACLK] = imx_clk_hw_gate2("caam_aclk", "ahb", base + 0x68, 10); hws[IMX6UL_CLK_CAAM_IPG] = imx_clk_hw_gate2("caam_ipg", "ipg", base + 0x68, 12); } else if (clk_on_imx6ull()) { hws[IMX6ULL_CLK_DCP_CLK] = imx_clk_hw_gate2("dcp", "ahb", base + 0x68, 10); hws[IMX6UL_CLK_ENET] = imx_clk_hw_gate2("enet", "ipg", base + 0x68, 12); hws[IMX6UL_CLK_ENET_AHB] = imx_clk_hw_gate2("enet_ahb", "ahb", base + 0x68, 12); } hws[IMX6UL_CLK_CAN1_IPG] = imx_clk_hw_gate2("can1_ipg", "ipg", base + 0x68, 14); hws[IMX6UL_CLK_CAN1_SERIAL] = imx_clk_hw_gate2("can1_serial", "can_podf", base + 0x68, 16); hws[IMX6UL_CLK_CAN2_IPG] = imx_clk_hw_gate2("can2_ipg", "ipg", base + 0x68, 18); hws[IMX6UL_CLK_CAN2_SERIAL] = imx_clk_hw_gate2("can2_serial", "can_podf", base + 0x68, 20); hws[IMX6UL_CLK_GPT2_BUS] = imx_clk_hw_gate2("gpt2_bus", "perclk", base + 0x68, 24); hws[IMX6UL_CLK_GPT2_SERIAL] = imx_clk_hw_gate2("gpt2_serial", "perclk", base + 0x68, 26); hws[IMX6UL_CLK_UART2_IPG] = imx_clk_hw_gate2("uart2_ipg", "ipg", base + 0x68, 28); hws[IMX6UL_CLK_UART2_SERIAL] = imx_clk_hw_gate2("uart2_serial", "uart_podf", base + 0x68, 28); if (clk_on_imx6ull()) hws[IMX6UL_CLK_AIPSTZ3] = imx_clk_hw_gate2("aips_tz3", "ahb", base + 0x80, 18); hws[IMX6UL_CLK_GPIO2] = imx_clk_hw_gate2("gpio2", "ipg", base + 0x68, 30); /* CCGR1 */ hws[IMX6UL_CLK_ECSPI1] = imx_clk_hw_gate2("ecspi1", "ecspi_podf", base + 0x6c, 0); hws[IMX6UL_CLK_ECSPI2] = imx_clk_hw_gate2("ecspi2", "ecspi_podf", base + 0x6c, 2); hws[IMX6UL_CLK_ECSPI3] = imx_clk_hw_gate2("ecspi3", "ecspi_podf", base + 0x6c, 4); hws[IMX6UL_CLK_ECSPI4] = imx_clk_hw_gate2("ecspi4", "ecspi_podf", base + 0x6c, 6); hws[IMX6UL_CLK_ADC2] = imx_clk_hw_gate2("adc2", "ipg", base + 0x6c, 8); hws[IMX6UL_CLK_UART3_IPG] = imx_clk_hw_gate2("uart3_ipg", "ipg", base + 0x6c, 10); hws[IMX6UL_CLK_UART3_SERIAL] = imx_clk_hw_gate2("uart3_serial", "uart_podf", base + 0x6c, 10); hws[IMX6UL_CLK_EPIT1] = imx_clk_hw_gate2("epit1", "perclk", base + 0x6c, 12); hws[IMX6UL_CLK_EPIT2] = imx_clk_hw_gate2("epit2", "perclk", base + 0x6c, 14); hws[IMX6UL_CLK_ADC1] = imx_clk_hw_gate2("adc1", "ipg", base + 0x6c, 16); hws[IMX6UL_CLK_GPT1_BUS] = imx_clk_hw_gate2("gpt1_bus", "perclk", base + 0x6c, 20); hws[IMX6UL_CLK_GPT1_SERIAL] = imx_clk_hw_gate2("gpt1_serial", "perclk", base + 0x6c, 22); hws[IMX6UL_CLK_UART4_IPG] = imx_clk_hw_gate2("uart4_ipg", "ipg", base + 0x6c, 24); hws[IMX6UL_CLK_UART4_SERIAL] = imx_clk_hw_gate2("uart4_serial", "uart_podf", base + 0x6c, 24); hws[IMX6UL_CLK_GPIO1] = imx_clk_hw_gate2("gpio1", "ipg", base + 0x6c, 26); hws[IMX6UL_CLK_GPIO5] = imx_clk_hw_gate2("gpio5", "ipg", base + 0x6c, 30); /* CCGR2 */ if (clk_on_imx6ull()) { hws[IMX6ULL_CLK_ESAI_EXTAL] = imx_clk_hw_gate2_shared("esai_extal", "esai_podf", base + 0x70, 0, &share_count_esai); hws[IMX6ULL_CLK_ESAI_IPG] = imx_clk_hw_gate2_shared("esai_ipg", "ahb", base + 0x70, 0, &share_count_esai); hws[IMX6ULL_CLK_ESAI_MEM] = imx_clk_hw_gate2_shared("esai_mem", "ahb", base + 0x70, 0, &share_count_esai); } hws[IMX6UL_CLK_I2C1] = imx_clk_hw_gate2("i2c1", "perclk", base + 0x70, 6); hws[IMX6UL_CLK_I2C2] = imx_clk_hw_gate2("i2c2", "perclk", base + 0x70, 8); hws[IMX6UL_CLK_I2C3] = imx_clk_hw_gate2("i2c3", "perclk", base + 0x70, 10); hws[IMX6UL_CLK_OCOTP] = imx_clk_hw_gate2("ocotp", "ipg", base + 0x70, 12); hws[IMX6UL_CLK_IOMUXC] = imx_clk_hw_gate2("iomuxc", "lcdif_podf", base + 0x70, 14); hws[IMX6UL_CLK_GPIO3] = imx_clk_hw_gate2("gpio3", "ipg", base + 0x70, 26); hws[IMX6UL_CLK_LCDIF_APB] = imx_clk_hw_gate2("lcdif_apb", "axi", base + 0x70, 28); hws[IMX6UL_CLK_PXP] = imx_clk_hw_gate2("pxp", "axi", base + 0x70, 30); /* CCGR3 */ /* * Although the imx6ull reference manual lists CCGR2 as the csi clk * gate register, tests have shown that it is actually the CCGR3 * register bit 0/1, same as for the imx6ul. */ hws[IMX6UL_CLK_CSI] = imx_clk_hw_gate2("csi", "csi_podf", base + 0x74, 0); hws[IMX6UL_CLK_UART5_IPG] = imx_clk_hw_gate2("uart5_ipg", "ipg", base + 0x74, 2); hws[IMX6UL_CLK_UART5_SERIAL] = imx_clk_hw_gate2("uart5_serial", "uart_podf", base + 0x74, 2); if (clk_on_imx6ul()) { hws[IMX6UL_CLK_ENET] = imx_clk_hw_gate2("enet", "ipg", base + 0x74, 4); hws[IMX6UL_CLK_ENET_AHB] = imx_clk_hw_gate2("enet_ahb", "ahb", base + 0x74, 4); } else if (clk_on_imx6ull()) { hws[IMX6ULL_CLK_EPDC_ACLK] = imx_clk_hw_gate2("epdc_aclk", "axi", base + 0x74, 4); hws[IMX6ULL_CLK_EPDC_PIX] = imx_clk_hw_gate2("epdc_pix", "epdc_podf", base + 0x74, 4); } hws[IMX6UL_CLK_UART6_IPG] = imx_clk_hw_gate2("uart6_ipg", "ipg", base + 0x74, 6); hws[IMX6UL_CLK_UART6_SERIAL] = imx_clk_hw_gate2("uart6_serial", "uart_podf", base + 0x74, 6); hws[IMX6UL_CLK_LCDIF_PIX] = imx_clk_hw_gate2("lcdif_pix", "lcdif_podf", base + 0x74, 10); hws[IMX6UL_CLK_GPIO4] = imx_clk_hw_gate2("gpio4", "ipg", base + 0x74, 12); hws[IMX6UL_CLK_QSPI] = imx_clk_hw_gate2("qspi1", "qspi1_podf", base + 0x74, 14); hws[IMX6UL_CLK_WDOG1] = imx_clk_hw_gate2("wdog1", "ipg", base + 0x74, 16); hws[IMX6UL_CLK_MMDC_P0_FAST] = imx_clk_hw_gate_flags("mmdc_p0_fast", "mmdc_podf", base + 0x74, 20, CLK_IS_CRITICAL); hws[IMX6UL_CLK_MMDC_P0_IPG] = imx_clk_hw_gate2_flags("mmdc_p0_ipg", "ipg", base + 0x74, 24, CLK_IS_CRITICAL); hws[IMX6UL_CLK_MMDC_P1_IPG] = imx_clk_hw_gate2_flags("mmdc_p1_ipg", "ipg", base + 0x74, 26, CLK_IS_CRITICAL); hws[IMX6UL_CLK_AXI] = imx_clk_hw_gate_flags("axi", "axi_podf", base + 0x74, 28, CLK_IS_CRITICAL); /* CCGR4 */ hws[IMX6UL_CLK_PER_BCH] = imx_clk_hw_gate2("per_bch", "bch_podf", base + 0x78, 12); hws[IMX6UL_CLK_PWM1] = imx_clk_hw_gate2("pwm1", "perclk", base + 0x78, 16); hws[IMX6UL_CLK_PWM2] = imx_clk_hw_gate2("pwm2", "perclk", base + 0x78, 18); hws[IMX6UL_CLK_PWM3] = imx_clk_hw_gate2("pwm3", "perclk", base + 0x78, 20); hws[IMX6UL_CLK_PWM4] = imx_clk_hw_gate2("pwm4", "perclk", base + 0x78, 22); hws[IMX6UL_CLK_GPMI_BCH_APB] = imx_clk_hw_gate2("gpmi_bch_apb", "bch_podf", base + 0x78, 24); hws[IMX6UL_CLK_GPMI_BCH] = imx_clk_hw_gate2("gpmi_bch", "gpmi_podf", base + 0x78, 26); hws[IMX6UL_CLK_GPMI_IO] = imx_clk_hw_gate2("gpmi_io", "enfc_podf", base + 0x78, 28); hws[IMX6UL_CLK_GPMI_APB] = imx_clk_hw_gate2("gpmi_apb", "bch_podf", base + 0x78, 30); /* CCGR5 */ hws[IMX6UL_CLK_ROM] = imx_clk_hw_gate2_flags("rom", "ahb", base + 0x7c, 0, CLK_IS_CRITICAL); hws[IMX6UL_CLK_SDMA] = imx_clk_hw_gate2("sdma", "ahb", base + 0x7c, 6); hws[IMX6UL_CLK_KPP] = imx_clk_hw_gate2("kpp", "ipg", base + 0x7c, 8); hws[IMX6UL_CLK_WDOG2] = imx_clk_hw_gate2("wdog2", "ipg", base + 0x7c, 10); hws[IMX6UL_CLK_SPBA] = imx_clk_hw_gate2("spba", "ipg", base + 0x7c, 12); hws[IMX6UL_CLK_SPDIF] = imx_clk_hw_gate2_shared("spdif", "spdif_podf", base + 0x7c, 14, &share_count_audio); hws[IMX6UL_CLK_SPDIF_GCLK] = imx_clk_hw_gate2_shared("spdif_gclk", "ipg", base + 0x7c, 14, &share_count_audio); hws[IMX6UL_CLK_SAI3] = imx_clk_hw_gate2_shared("sai3", "sai3_podf", base + 0x7c, 22, &share_count_sai3); hws[IMX6UL_CLK_SAI3_IPG] = imx_clk_hw_gate2_shared("sai3_ipg", "ipg", base + 0x7c, 22, &share_count_sai3); hws[IMX6UL_CLK_UART1_IPG] = imx_clk_hw_gate2("uart1_ipg", "ipg", base + 0x7c, 24); hws[IMX6UL_CLK_UART1_SERIAL] = imx_clk_hw_gate2("uart1_serial", "uart_podf", base + 0x7c, 24); hws[IMX6UL_CLK_UART7_IPG] = imx_clk_hw_gate2("uart7_ipg", "ipg", base + 0x7c, 26); hws[IMX6UL_CLK_UART7_SERIAL] = imx_clk_hw_gate2("uart7_serial", "uart_podf", base + 0x7c, 26); hws[IMX6UL_CLK_SAI1] = imx_clk_hw_gate2_shared("sai1", "sai1_podf", base + 0x7c, 28, &share_count_sai1); hws[IMX6UL_CLK_SAI1_IPG] = imx_clk_hw_gate2_shared("sai1_ipg", "ipg", base + 0x7c, 28, &share_count_sai1); hws[IMX6UL_CLK_SAI2] = imx_clk_hw_gate2_shared("sai2", "sai2_podf", base + 0x7c, 30, &share_count_sai2); hws[IMX6UL_CLK_SAI2_IPG] = imx_clk_hw_gate2_shared("sai2_ipg", "ipg", base + 0x7c, 30, &share_count_sai2); /* CCGR6 */ hws[IMX6UL_CLK_USBOH3] = imx_clk_hw_gate2("usboh3", "ipg", base + 0x80, 0); hws[IMX6UL_CLK_USDHC1] = imx_clk_hw_gate2("usdhc1", "usdhc1_podf", base + 0x80, 2); hws[IMX6UL_CLK_USDHC2] = imx_clk_hw_gate2("usdhc2", "usdhc2_podf", base + 0x80, 4); if (clk_on_imx6ul()) { hws[IMX6UL_CLK_SIM1] = imx_clk_hw_gate2("sim1", "sim_sel", base + 0x80, 6); hws[IMX6UL_CLK_SIM2] = imx_clk_hw_gate2("sim2", "sim_sel", base + 0x80, 8); } hws[IMX6UL_CLK_EIM] = imx_clk_hw_gate2("eim", "eim_slow_podf", base + 0x80, 10); hws[IMX6UL_CLK_PWM8] = imx_clk_hw_gate2("pwm8", "perclk", base + 0x80, 16); hws[IMX6UL_CLK_UART8_IPG] = imx_clk_hw_gate2("uart8_ipg", "ipg", base + 0x80, 14); hws[IMX6UL_CLK_UART8_SERIAL] = imx_clk_hw_gate2("uart8_serial", "uart_podf", base + 0x80, 14); hws[IMX6UL_CLK_WDOG3] = imx_clk_hw_gate2("wdog3", "ipg", base + 0x80, 20); hws[IMX6UL_CLK_I2C4] = imx_clk_hw_gate2("i2c4", "perclk", base + 0x80, 24); hws[IMX6UL_CLK_PWM5] = imx_clk_hw_gate2("pwm5", "perclk", base + 0x80, 26); hws[IMX6UL_CLK_PWM6] = imx_clk_hw_gate2("pwm6", "perclk", base + 0x80, 28); hws[IMX6UL_CLK_PWM7] = imx_clk_hw_gate2("pwm7", "perclk", base + 0x80, 30); /* CCOSR */ hws[IMX6UL_CLK_CKO1] = imx_clk_hw_gate("cko1", "cko1_podf", base + 0x60, 7); hws[IMX6UL_CLK_CKO2] = imx_clk_hw_gate("cko2", "cko2_podf", base + 0x60, 24); /* mask handshake of mmdc */ imx_mmdc_mask_handshake(base, 0); hws[IMX6UL_CLK_ENET1_REF_PAD] = imx_obtain_fixed_of_clock(ccm_node, "enet1_ref_pad", 0); hws[IMX6UL_CLK_ENET1_REF_SEL] = imx_clk_gpr_mux("enet1_ref_sel", "fsl,imx6ul-iomuxc-gpr", IOMUXC_GPR1, enet1_ref_sels, ARRAY_SIZE(enet1_ref_sels), enet1_ref_sels_table, enet1_ref_sels_table_mask); hws[IMX6UL_CLK_ENET2_REF_PAD] = imx_obtain_fixed_of_clock(ccm_node, "enet2_ref_pad", 0); hws[IMX6UL_CLK_ENET2_REF_SEL] = imx_clk_gpr_mux("enet2_ref_sel", "fsl,imx6ul-iomuxc-gpr", IOMUXC_GPR1, enet2_ref_sels, ARRAY_SIZE(enet2_ref_sels), enet2_ref_sels_table, enet2_ref_sels_table_mask); imx_check_clk_hws(hws, IMX6UL_CLK_END); of_clk_add_hw_provider(np, of_clk_hw_onecell_get, clk_hw_data); /* * Lower the AHB clock rate before changing the parent clock source, * as AHB clock rate can NOT be higher than 133MHz, but its parent * will be switched from 396MHz PFD to 528MHz PLL in order to increase * AXI clock rate, so we need to lower AHB rate first to make sure at * any time, AHB rate is <= 133MHz. */ clk_set_rate(hws[IMX6UL_CLK_AHB]->clk, 99000000); /* Change periph_pre clock to pll2_bus to adjust AXI rate to 264MHz */ clk_set_parent(hws[IMX6UL_CLK_PERIPH_CLK2_SEL]->clk, hws[IMX6UL_CLK_OSC]->clk); clk_set_parent(hws[IMX6UL_CLK_PERIPH]->clk, hws[IMX6UL_CLK_PERIPH_CLK2]->clk); clk_set_parent(hws[IMX6UL_CLK_PERIPH_PRE]->clk, hws[IMX6UL_CLK_PLL2_BUS]->clk); clk_set_parent(hws[IMX6UL_CLK_PERIPH]->clk, hws[IMX6UL_CLK_PERIPH_PRE]->clk); /* Make sure AHB rate is 132MHz */ clk_set_rate(hws[IMX6UL_CLK_AHB]->clk, 132000000); /* set perclk to from OSC */ clk_set_parent(hws[IMX6UL_CLK_PERCLK_SEL]->clk, hws[IMX6UL_CLK_OSC]->clk); clk_set_rate(hws[IMX6UL_CLK_ENET_REF]->clk, 50000000); clk_set_rate(hws[IMX6UL_CLK_ENET2_REF]->clk, 50000000); clk_set_rate(hws[IMX6UL_CLK_CSI]->clk, 24000000); if (clk_on_imx6ull()) clk_prepare_enable(hws[IMX6UL_CLK_AIPSTZ3]->clk); if (IS_ENABLED(CONFIG_USB_MXS_PHY)) { clk_prepare_enable(hws[IMX6UL_CLK_USBPHY1_GATE]->clk); clk_prepare_enable(hws[IMX6UL_CLK_USBPHY2_GATE]->clk); } clk_set_parent(hws[IMX6UL_CLK_CAN_SEL]->clk, hws[IMX6UL_CLK_PLL3_80M]->clk); if (clk_on_imx6ul()) clk_set_parent(hws[IMX6UL_CLK_SIM_PRE_SEL]->clk, hws[IMX6UL_CLK_PLL3_USB_OTG]->clk); else if (clk_on_imx6ull()) clk_set_parent(hws[IMX6ULL_CLK_EPDC_PRE_SEL]->clk, hws[IMX6UL_CLK_PLL3_PFD2]->clk); clk_set_parent(hws[IMX6UL_CLK_ENFC_SEL]->clk, hws[IMX6UL_CLK_PLL2_PFD2]->clk); clk_set_parent(hws[IMX6UL_CLK_ENET1_REF_SEL]->clk, hws[IMX6UL_CLK_ENET_REF]->clk); clk_set_parent(hws[IMX6UL_CLK_ENET2_REF_SEL]->clk, hws[IMX6UL_CLK_ENET2_REF]->clk); imx_register_uart_clocks(); } CLK_OF_DECLARE(imx6ul, "fsl,imx6ul-ccm", imx6ul_clocks_init);
linux-master
drivers/clk/imx/clk-imx6ul.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2011 Sascha Hauer, Pengutronix <[email protected]> */ #include <linux/mm.h> #include <linux/delay.h> #include <linux/clk.h> #include <linux/io.h> #include <linux/clkdev.h> #include <linux/clk-provider.h> #include <linux/err.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/sizes.h> #include <soc/imx/revision.h> #include <dt-bindings/clock/imx5-clock.h> #include "clk.h" #define MX51_DPLL1_BASE 0x83f80000 #define MX51_DPLL2_BASE 0x83f84000 #define MX51_DPLL3_BASE 0x83f88000 #define MX53_DPLL1_BASE 0x63f80000 #define MX53_DPLL2_BASE 0x63f84000 #define MX53_DPLL3_BASE 0x63f88000 #define MX53_DPLL4_BASE 0x63f8c000 #define MXC_CCM_CCR (ccm_base + 0x00) #define MXC_CCM_CCDR (ccm_base + 0x04) #define MXC_CCM_CSR (ccm_base + 0x08) #define MXC_CCM_CCSR (ccm_base + 0x0c) #define MXC_CCM_CACRR (ccm_base + 0x10) #define MXC_CCM_CBCDR (ccm_base + 0x14) #define MXC_CCM_CBCMR (ccm_base + 0x18) #define MXC_CCM_CSCMR1 (ccm_base + 0x1c) #define MXC_CCM_CSCMR2 (ccm_base + 0x20) #define MXC_CCM_CSCDR1 (ccm_base + 0x24) #define MXC_CCM_CS1CDR (ccm_base + 0x28) #define MXC_CCM_CS2CDR (ccm_base + 0x2c) #define MXC_CCM_CDCDR (ccm_base + 0x30) #define MXC_CCM_CHSCDR (ccm_base + 0x34) #define MXC_CCM_CSCDR2 (ccm_base + 0x38) #define MXC_CCM_CSCDR3 (ccm_base + 0x3c) #define MXC_CCM_CSCDR4 (ccm_base + 0x40) #define MXC_CCM_CWDR (ccm_base + 0x44) #define MXC_CCM_CDHIPR (ccm_base + 0x48) #define MXC_CCM_CDCR (ccm_base + 0x4c) #define MXC_CCM_CTOR (ccm_base + 0x50) #define MXC_CCM_CLPCR (ccm_base + 0x54) #define MXC_CCM_CISR (ccm_base + 0x58) #define MXC_CCM_CIMR (ccm_base + 0x5c) #define MXC_CCM_CCOSR (ccm_base + 0x60) #define MXC_CCM_CGPR (ccm_base + 0x64) #define MXC_CCM_CCGR0 (ccm_base + 0x68) #define MXC_CCM_CCGR1 (ccm_base + 0x6c) #define MXC_CCM_CCGR2 (ccm_base + 0x70) #define MXC_CCM_CCGR3 (ccm_base + 0x74) #define MXC_CCM_CCGR4 (ccm_base + 0x78) #define MXC_CCM_CCGR5 (ccm_base + 0x7c) #define MXC_CCM_CCGR6 (ccm_base + 0x80) #define MXC_CCM_CCGR7 (ccm_base + 0x84) /* Low-power Audio Playback Mode clock */ static const char *lp_apm_sel[] = { "osc", }; /* This is used multiple times */ static const char *standard_pll_sel[] = { "pll1_sw", "pll2_sw", "pll3_sw", "lp_apm", }; static const char *periph_apm_sel[] = { "pll1_sw", "pll3_sw", "lp_apm", }; static const char *main_bus_sel[] = { "pll2_sw", "periph_apm", }; static const char *per_lp_apm_sel[] = { "main_bus", "lp_apm", }; static const char *per_root_sel[] = { "per_podf", "ipg", }; static const char *esdhc_c_sel[] = { "esdhc_a_podf", "esdhc_b_podf", }; static const char *esdhc_d_sel[] = { "esdhc_a_podf", "esdhc_b_podf", }; static const char *ssi_apm_sels[] = { "ckih1", "lp_amp", "ckih2", }; static const char *ssi_clk_sels[] = { "pll1_sw", "pll2_sw", "pll3_sw", "ssi_apm", }; static const char *ssi3_clk_sels[] = { "ssi1_root_gate", "ssi2_root_gate", }; static const char *ssi_ext1_com_sels[] = { "ssi_ext1_podf", "ssi1_root_gate", }; static const char *ssi_ext2_com_sels[] = { "ssi_ext2_podf", "ssi2_root_gate", }; static const char *emi_slow_sel[] = { "main_bus", "ahb", }; static const char *usb_phy_sel_str[] = { "osc", "usb_phy_podf", }; static const char *mx51_ipu_di0_sel[] = { "di_pred", "osc", "ckih1", "tve_di", }; static const char *mx53_ipu_di0_sel[] = { "di_pred", "osc", "ckih1", "di_pll4_podf", "dummy", "ldb_di0_gate", }; static const char *mx53_ldb_di0_sel[] = { "pll3_sw", "pll4_sw", }; static const char *mx51_ipu_di1_sel[] = { "di_pred", "osc", "ckih1", "tve_di", "ipp_di1", }; static const char *mx53_ipu_di1_sel[] = { "di_pred", "osc", "ckih1", "tve_di", "ipp_di1", "ldb_di1_gate", }; static const char *mx53_ldb_di1_sel[] = { "pll3_sw", "pll4_sw", }; static const char *mx51_tve_ext_sel[] = { "osc", "ckih1", }; static const char *mx53_tve_ext_sel[] = { "pll4_sw", "ckih1", }; static const char *mx51_tve_sel[] = { "tve_pred", "tve_ext_sel", }; static const char *ipu_sel[] = { "axi_a", "axi_b", "emi_slow_gate", "ahb", }; static const char *gpu3d_sel[] = { "axi_a", "axi_b", "emi_slow_gate", "ahb" }; static const char *gpu2d_sel[] = { "axi_a", "axi_b", "emi_slow_gate", "ahb" }; static const char *vpu_sel[] = { "axi_a", "axi_b", "emi_slow_gate", "ahb", }; static const char *mx53_can_sel[] = { "ipg", "ckih1", "ckih2", "lp_apm", }; static const char *mx53_cko1_sel[] = { "cpu_podf", "pll1_sw", "pll2_sw", "pll3_sw", "emi_slow_podf", "pll4_sw", "nfc_podf", "dummy", "di_pred", "dummy", "dummy", "ahb", "ipg", "per_root", "ckil", "dummy",}; static const char *mx53_cko2_sel[] = { "dummy"/* dptc_core */, "dummy"/* dptc_perich */, "dummy", "esdhc_a_podf", "usboh3_podf", "dummy"/* wrck_clk_root */, "ecspi_podf", "dummy"/* pll1_ref_clk */, "esdhc_b_podf", "dummy"/* ddr_clk_root */, "dummy"/* arm_axi_clk_root */, "dummy"/* usb_phy_out */, "vpu_sel", "ipu_sel", "osc", "ckih1", "dummy", "esdhc_c_sel", "ssi1_root_podf", "ssi2_root_podf", "dummy", "dummy", "dummy"/* lpsr_clk_root */, "dummy"/* pgc_clk_root */, "dummy"/* tve_out */, "usb_phy_sel", "tve_sel", "lp_apm", "uart_root", "dummy"/* spdif0_clk_root */, "dummy", "dummy", }; static const char *mx51_spdif_xtal_sel[] = { "osc", "ckih", "ckih2", }; static const char *mx53_spdif_xtal_sel[] = { "osc", "ckih", "ckih2", "pll4_sw", }; static const char *spdif_sel[] = { "pll1_sw", "pll2_sw", "pll3_sw", "spdif_xtal_sel", }; static const char *spdif0_com_sel[] = { "spdif0_podf", "ssi1_root_gate", }; static const char *mx51_spdif1_com_sel[] = { "spdif1_podf", "ssi2_root_gate", }; static const char *step_sels[] = { "lp_apm", }; static const char *cpu_podf_sels[] = { "pll1_sw", "step_sel" }; static const char *ieee1588_sels[] = { "pll3_sw", "pll4_sw", "dummy" /* usbphy2_clk */, "dummy" /* fec_phy_clk */ }; static struct clk *clk[IMX5_CLK_END]; static struct clk_onecell_data clk_data; static void __init mx5_clocks_common_init(void __iomem *ccm_base) { clk[IMX5_CLK_DUMMY] = imx_clk_fixed("dummy", 0); clk[IMX5_CLK_CKIL] = imx_obtain_fixed_clock("ckil", 0); clk[IMX5_CLK_OSC] = imx_obtain_fixed_clock("osc", 0); clk[IMX5_CLK_CKIH1] = imx_obtain_fixed_clock("ckih1", 0); clk[IMX5_CLK_CKIH2] = imx_obtain_fixed_clock("ckih2", 0); clk[IMX5_CLK_PER_LP_APM] = imx_clk_mux("per_lp_apm", MXC_CCM_CBCMR, 1, 1, per_lp_apm_sel, ARRAY_SIZE(per_lp_apm_sel)); clk[IMX5_CLK_PER_PRED1] = imx_clk_divider("per_pred1", "per_lp_apm", MXC_CCM_CBCDR, 6, 2); clk[IMX5_CLK_PER_PRED2] = imx_clk_divider("per_pred2", "per_pred1", MXC_CCM_CBCDR, 3, 3); clk[IMX5_CLK_PER_PODF] = imx_clk_divider("per_podf", "per_pred2", MXC_CCM_CBCDR, 0, 3); clk[IMX5_CLK_PER_ROOT] = imx_clk_mux("per_root", MXC_CCM_CBCMR, 0, 1, per_root_sel, ARRAY_SIZE(per_root_sel)); clk[IMX5_CLK_AHB] = imx_clk_divider("ahb", "main_bus", MXC_CCM_CBCDR, 10, 3); clk[IMX5_CLK_AHB_MAX] = imx_clk_gate2_flags("ahb_max", "ahb", MXC_CCM_CCGR0, 28, CLK_IS_CRITICAL); clk[IMX5_CLK_AIPS_TZ1] = imx_clk_gate2_flags("aips_tz1", "ahb", MXC_CCM_CCGR0, 24, CLK_IS_CRITICAL); clk[IMX5_CLK_AIPS_TZ2] = imx_clk_gate2_flags("aips_tz2", "ahb", MXC_CCM_CCGR0, 26, CLK_IS_CRITICAL); clk[IMX5_CLK_TMAX1] = imx_clk_gate2_flags("tmax1", "ahb", MXC_CCM_CCGR1, 0, CLK_IS_CRITICAL); clk[IMX5_CLK_TMAX2] = imx_clk_gate2_flags("tmax2", "ahb", MXC_CCM_CCGR1, 2, CLK_IS_CRITICAL); clk[IMX5_CLK_TMAX3] = imx_clk_gate2_flags("tmax3", "ahb", MXC_CCM_CCGR1, 4, CLK_IS_CRITICAL); clk[IMX5_CLK_SPBA] = imx_clk_gate2_flags("spba", "ipg", MXC_CCM_CCGR5, 0, CLK_IS_CRITICAL); clk[IMX5_CLK_IPG] = imx_clk_divider("ipg", "ahb", MXC_CCM_CBCDR, 8, 2); clk[IMX5_CLK_AXI_A] = imx_clk_divider("axi_a", "main_bus", MXC_CCM_CBCDR, 16, 3); clk[IMX5_CLK_AXI_B] = imx_clk_divider("axi_b", "main_bus", MXC_CCM_CBCDR, 19, 3); clk[IMX5_CLK_UART_SEL] = imx_clk_mux("uart_sel", MXC_CCM_CSCMR1, 24, 2, standard_pll_sel, ARRAY_SIZE(standard_pll_sel)); clk[IMX5_CLK_UART_PRED] = imx_clk_divider("uart_pred", "uart_sel", MXC_CCM_CSCDR1, 3, 3); clk[IMX5_CLK_UART_ROOT] = imx_clk_divider("uart_root", "uart_pred", MXC_CCM_CSCDR1, 0, 3); clk[IMX5_CLK_ESDHC_A_PRED] = imx_clk_divider("esdhc_a_pred", "esdhc_a_sel", MXC_CCM_CSCDR1, 16, 3); clk[IMX5_CLK_ESDHC_A_PODF] = imx_clk_divider("esdhc_a_podf", "esdhc_a_pred", MXC_CCM_CSCDR1, 11, 3); clk[IMX5_CLK_ESDHC_B_PRED] = imx_clk_divider("esdhc_b_pred", "esdhc_b_sel", MXC_CCM_CSCDR1, 22, 3); clk[IMX5_CLK_ESDHC_B_PODF] = imx_clk_divider("esdhc_b_podf", "esdhc_b_pred", MXC_CCM_CSCDR1, 19, 3); clk[IMX5_CLK_EMI_SEL] = imx_clk_mux("emi_sel", MXC_CCM_CBCDR, 26, 1, emi_slow_sel, ARRAY_SIZE(emi_slow_sel)); clk[IMX5_CLK_EMI_SLOW_PODF] = imx_clk_divider("emi_slow_podf", "emi_sel", MXC_CCM_CBCDR, 22, 3); clk[IMX5_CLK_NFC_PODF] = imx_clk_divider("nfc_podf", "emi_slow_podf", MXC_CCM_CBCDR, 13, 3); clk[IMX5_CLK_ECSPI_SEL] = imx_clk_mux("ecspi_sel", MXC_CCM_CSCMR1, 4, 2, standard_pll_sel, ARRAY_SIZE(standard_pll_sel)); clk[IMX5_CLK_ECSPI_PRED] = imx_clk_divider("ecspi_pred", "ecspi_sel", MXC_CCM_CSCDR2, 25, 3); clk[IMX5_CLK_ECSPI_PODF] = imx_clk_divider("ecspi_podf", "ecspi_pred", MXC_CCM_CSCDR2, 19, 6); clk[IMX5_CLK_USBOH3_SEL] = imx_clk_mux("usboh3_sel", MXC_CCM_CSCMR1, 22, 2, standard_pll_sel, ARRAY_SIZE(standard_pll_sel)); clk[IMX5_CLK_USBOH3_PRED] = imx_clk_divider("usboh3_pred", "usboh3_sel", MXC_CCM_CSCDR1, 8, 3); clk[IMX5_CLK_USBOH3_PODF] = imx_clk_divider("usboh3_podf", "usboh3_pred", MXC_CCM_CSCDR1, 6, 2); clk[IMX5_CLK_USB_PHY_PRED] = imx_clk_divider("usb_phy_pred", "pll3_sw", MXC_CCM_CDCDR, 3, 3); clk[IMX5_CLK_USB_PHY_PODF] = imx_clk_divider("usb_phy_podf", "usb_phy_pred", MXC_CCM_CDCDR, 0, 3); clk[IMX5_CLK_USB_PHY_SEL] = imx_clk_mux("usb_phy_sel", MXC_CCM_CSCMR1, 26, 1, usb_phy_sel_str, ARRAY_SIZE(usb_phy_sel_str)); clk[IMX5_CLK_STEP_SEL] = imx_clk_mux("step_sel", MXC_CCM_CCSR, 7, 2, step_sels, ARRAY_SIZE(step_sels)); clk[IMX5_CLK_CPU_PODF_SEL] = imx_clk_mux("cpu_podf_sel", MXC_CCM_CCSR, 2, 1, cpu_podf_sels, ARRAY_SIZE(cpu_podf_sels)); clk[IMX5_CLK_CPU_PODF] = imx_clk_divider("cpu_podf", "cpu_podf_sel", MXC_CCM_CACRR, 0, 3); clk[IMX5_CLK_DI_PRED] = imx_clk_divider("di_pred", "pll3_sw", MXC_CCM_CDCDR, 6, 3); clk[IMX5_CLK_IIM_GATE] = imx_clk_gate2("iim_gate", "ipg", MXC_CCM_CCGR0, 30); clk[IMX5_CLK_UART1_IPG_GATE] = imx_clk_gate2("uart1_ipg_gate", "ipg", MXC_CCM_CCGR1, 6); clk[IMX5_CLK_UART1_PER_GATE] = imx_clk_gate2("uart1_per_gate", "uart_root", MXC_CCM_CCGR1, 8); clk[IMX5_CLK_UART2_IPG_GATE] = imx_clk_gate2("uart2_ipg_gate", "ipg", MXC_CCM_CCGR1, 10); clk[IMX5_CLK_UART2_PER_GATE] = imx_clk_gate2("uart2_per_gate", "uart_root", MXC_CCM_CCGR1, 12); clk[IMX5_CLK_UART3_IPG_GATE] = imx_clk_gate2("uart3_ipg_gate", "ipg", MXC_CCM_CCGR1, 14); clk[IMX5_CLK_UART3_PER_GATE] = imx_clk_gate2("uart3_per_gate", "uart_root", MXC_CCM_CCGR1, 16); clk[IMX5_CLK_I2C1_GATE] = imx_clk_gate2("i2c1_gate", "per_root", MXC_CCM_CCGR1, 18); clk[IMX5_CLK_I2C2_GATE] = imx_clk_gate2("i2c2_gate", "per_root", MXC_CCM_CCGR1, 20); clk[IMX5_CLK_PWM1_IPG_GATE] = imx_clk_gate2("pwm1_ipg_gate", "ipg", MXC_CCM_CCGR2, 10); clk[IMX5_CLK_PWM1_HF_GATE] = imx_clk_gate2("pwm1_hf_gate", "per_root", MXC_CCM_CCGR2, 12); clk[IMX5_CLK_PWM2_IPG_GATE] = imx_clk_gate2("pwm2_ipg_gate", "ipg", MXC_CCM_CCGR2, 14); clk[IMX5_CLK_PWM2_HF_GATE] = imx_clk_gate2("pwm2_hf_gate", "per_root", MXC_CCM_CCGR2, 16); clk[IMX5_CLK_GPT_IPG_GATE] = imx_clk_gate2("gpt_ipg_gate", "ipg", MXC_CCM_CCGR2, 18); clk[IMX5_CLK_GPT_HF_GATE] = imx_clk_gate2("gpt_hf_gate", "per_root", MXC_CCM_CCGR2, 20); clk[IMX5_CLK_FEC_GATE] = imx_clk_gate2("fec_gate", "ipg", MXC_CCM_CCGR2, 24); clk[IMX5_CLK_USBOH3_GATE] = imx_clk_gate2("usboh3_gate", "ipg", MXC_CCM_CCGR2, 26); clk[IMX5_CLK_USBOH3_PER_GATE] = imx_clk_gate2("usboh3_per_gate", "usboh3_podf", MXC_CCM_CCGR2, 28); clk[IMX5_CLK_ESDHC1_IPG_GATE] = imx_clk_gate2("esdhc1_ipg_gate", "ipg", MXC_CCM_CCGR3, 0); clk[IMX5_CLK_ESDHC2_IPG_GATE] = imx_clk_gate2("esdhc2_ipg_gate", "ipg", MXC_CCM_CCGR3, 4); clk[IMX5_CLK_ESDHC3_IPG_GATE] = imx_clk_gate2("esdhc3_ipg_gate", "ipg", MXC_CCM_CCGR3, 8); clk[IMX5_CLK_ESDHC4_IPG_GATE] = imx_clk_gate2("esdhc4_ipg_gate", "ipg", MXC_CCM_CCGR3, 12); clk[IMX5_CLK_SSI1_IPG_GATE] = imx_clk_gate2("ssi1_ipg_gate", "ipg", MXC_CCM_CCGR3, 16); clk[IMX5_CLK_SSI2_IPG_GATE] = imx_clk_gate2("ssi2_ipg_gate", "ipg", MXC_CCM_CCGR3, 20); clk[IMX5_CLK_SSI3_IPG_GATE] = imx_clk_gate2("ssi3_ipg_gate", "ipg", MXC_CCM_CCGR3, 24); clk[IMX5_CLK_ECSPI1_IPG_GATE] = imx_clk_gate2("ecspi1_ipg_gate", "ipg", MXC_CCM_CCGR4, 18); clk[IMX5_CLK_ECSPI1_PER_GATE] = imx_clk_gate2("ecspi1_per_gate", "ecspi_podf", MXC_CCM_CCGR4, 20); clk[IMX5_CLK_ECSPI2_IPG_GATE] = imx_clk_gate2("ecspi2_ipg_gate", "ipg", MXC_CCM_CCGR4, 22); clk[IMX5_CLK_ECSPI2_PER_GATE] = imx_clk_gate2("ecspi2_per_gate", "ecspi_podf", MXC_CCM_CCGR4, 24); clk[IMX5_CLK_CSPI_IPG_GATE] = imx_clk_gate2("cspi_ipg_gate", "ipg", MXC_CCM_CCGR4, 26); clk[IMX5_CLK_SDMA_GATE] = imx_clk_gate2("sdma_gate", "ipg", MXC_CCM_CCGR4, 30); clk[IMX5_CLK_EMI_FAST_GATE] = imx_clk_gate2_flags("emi_fast_gate", "dummy", MXC_CCM_CCGR5, 14, CLK_IS_CRITICAL); clk[IMX5_CLK_EMI_SLOW_GATE] = imx_clk_gate2_flags("emi_slow_gate", "emi_slow_podf", MXC_CCM_CCGR5, 16, CLK_IS_CRITICAL); clk[IMX5_CLK_IPU_SEL] = imx_clk_mux("ipu_sel", MXC_CCM_CBCMR, 6, 2, ipu_sel, ARRAY_SIZE(ipu_sel)); clk[IMX5_CLK_IPU_GATE] = imx_clk_gate2("ipu_gate", "ipu_sel", MXC_CCM_CCGR5, 10); clk[IMX5_CLK_NFC_GATE] = imx_clk_gate2("nfc_gate", "nfc_podf", MXC_CCM_CCGR5, 20); clk[IMX5_CLK_IPU_DI0_GATE] = imx_clk_gate2("ipu_di0_gate", "ipu_di0_sel", MXC_CCM_CCGR6, 10); clk[IMX5_CLK_IPU_DI1_GATE] = imx_clk_gate2("ipu_di1_gate", "ipu_di1_sel", MXC_CCM_CCGR6, 12); clk[IMX5_CLK_GPU3D_SEL] = imx_clk_mux("gpu3d_sel", MXC_CCM_CBCMR, 4, 2, gpu3d_sel, ARRAY_SIZE(gpu3d_sel)); clk[IMX5_CLK_GPU2D_SEL] = imx_clk_mux("gpu2d_sel", MXC_CCM_CBCMR, 16, 2, gpu2d_sel, ARRAY_SIZE(gpu2d_sel)); clk[IMX5_CLK_GPU3D_GATE] = imx_clk_gate2("gpu3d_gate", "gpu3d_sel", MXC_CCM_CCGR5, 2); clk[IMX5_CLK_GARB_GATE] = imx_clk_gate2("garb_gate", "axi_a", MXC_CCM_CCGR5, 4); clk[IMX5_CLK_GPU2D_GATE] = imx_clk_gate2("gpu2d_gate", "gpu2d_sel", MXC_CCM_CCGR6, 14); clk[IMX5_CLK_VPU_SEL] = imx_clk_mux("vpu_sel", MXC_CCM_CBCMR, 14, 2, vpu_sel, ARRAY_SIZE(vpu_sel)); clk[IMX5_CLK_VPU_GATE] = imx_clk_gate2("vpu_gate", "vpu_sel", MXC_CCM_CCGR5, 6); clk[IMX5_CLK_VPU_REFERENCE_GATE] = imx_clk_gate2("vpu_reference_gate", "osc", MXC_CCM_CCGR5, 8); clk[IMX5_CLK_GPC_DVFS] = imx_clk_gate2_flags("gpc_dvfs", "dummy", MXC_CCM_CCGR5, 24, CLK_IS_CRITICAL); clk[IMX5_CLK_SSI_APM] = imx_clk_mux("ssi_apm", MXC_CCM_CSCMR1, 8, 2, ssi_apm_sels, ARRAY_SIZE(ssi_apm_sels)); clk[IMX5_CLK_SSI1_ROOT_SEL] = imx_clk_mux("ssi1_root_sel", MXC_CCM_CSCMR1, 14, 2, ssi_clk_sels, ARRAY_SIZE(ssi_clk_sels)); clk[IMX5_CLK_SSI2_ROOT_SEL] = imx_clk_mux("ssi2_root_sel", MXC_CCM_CSCMR1, 12, 2, ssi_clk_sels, ARRAY_SIZE(ssi_clk_sels)); clk[IMX5_CLK_SSI3_ROOT_SEL] = imx_clk_mux("ssi3_root_sel", MXC_CCM_CSCMR1, 11, 1, ssi3_clk_sels, ARRAY_SIZE(ssi3_clk_sels)); clk[IMX5_CLK_SSI_EXT1_SEL] = imx_clk_mux("ssi_ext1_sel", MXC_CCM_CSCMR1, 28, 2, ssi_clk_sels, ARRAY_SIZE(ssi_clk_sels)); clk[IMX5_CLK_SSI_EXT2_SEL] = imx_clk_mux("ssi_ext2_sel", MXC_CCM_CSCMR1, 30, 2, ssi_clk_sels, ARRAY_SIZE(ssi_clk_sels)); clk[IMX5_CLK_SSI_EXT1_COM_SEL] = imx_clk_mux("ssi_ext1_com_sel", MXC_CCM_CSCMR1, 0, 1, ssi_ext1_com_sels, ARRAY_SIZE(ssi_ext1_com_sels)); clk[IMX5_CLK_SSI_EXT2_COM_SEL] = imx_clk_mux("ssi_ext2_com_sel", MXC_CCM_CSCMR1, 1, 1, ssi_ext2_com_sels, ARRAY_SIZE(ssi_ext2_com_sels)); clk[IMX5_CLK_SSI1_ROOT_PRED] = imx_clk_divider("ssi1_root_pred", "ssi1_root_sel", MXC_CCM_CS1CDR, 6, 3); clk[IMX5_CLK_SSI1_ROOT_PODF] = imx_clk_divider("ssi1_root_podf", "ssi1_root_pred", MXC_CCM_CS1CDR, 0, 6); clk[IMX5_CLK_SSI2_ROOT_PRED] = imx_clk_divider("ssi2_root_pred", "ssi2_root_sel", MXC_CCM_CS2CDR, 6, 3); clk[IMX5_CLK_SSI2_ROOT_PODF] = imx_clk_divider("ssi2_root_podf", "ssi2_root_pred", MXC_CCM_CS2CDR, 0, 6); clk[IMX5_CLK_SSI_EXT1_PRED] = imx_clk_divider("ssi_ext1_pred", "ssi_ext1_sel", MXC_CCM_CS1CDR, 22, 3); clk[IMX5_CLK_SSI_EXT1_PODF] = imx_clk_divider("ssi_ext1_podf", "ssi_ext1_pred", MXC_CCM_CS1CDR, 16, 6); clk[IMX5_CLK_SSI_EXT2_PRED] = imx_clk_divider("ssi_ext2_pred", "ssi_ext2_sel", MXC_CCM_CS2CDR, 22, 3); clk[IMX5_CLK_SSI_EXT2_PODF] = imx_clk_divider("ssi_ext2_podf", "ssi_ext2_pred", MXC_CCM_CS2CDR, 16, 6); clk[IMX5_CLK_SSI1_ROOT_GATE] = imx_clk_gate2("ssi1_root_gate", "ssi1_root_podf", MXC_CCM_CCGR3, 18); clk[IMX5_CLK_SSI2_ROOT_GATE] = imx_clk_gate2("ssi2_root_gate", "ssi2_root_podf", MXC_CCM_CCGR3, 22); clk[IMX5_CLK_SSI3_ROOT_GATE] = imx_clk_gate2("ssi3_root_gate", "ssi3_root_sel", MXC_CCM_CCGR3, 26); clk[IMX5_CLK_SSI_EXT1_GATE] = imx_clk_gate2("ssi_ext1_gate", "ssi_ext1_com_sel", MXC_CCM_CCGR3, 28); clk[IMX5_CLK_SSI_EXT2_GATE] = imx_clk_gate2("ssi_ext2_gate", "ssi_ext2_com_sel", MXC_CCM_CCGR3, 30); clk[IMX5_CLK_EPIT1_IPG_GATE] = imx_clk_gate2("epit1_ipg_gate", "ipg", MXC_CCM_CCGR2, 2); clk[IMX5_CLK_EPIT1_HF_GATE] = imx_clk_gate2("epit1_hf_gate", "per_root", MXC_CCM_CCGR2, 4); clk[IMX5_CLK_EPIT2_IPG_GATE] = imx_clk_gate2("epit2_ipg_gate", "ipg", MXC_CCM_CCGR2, 6); clk[IMX5_CLK_EPIT2_HF_GATE] = imx_clk_gate2("epit2_hf_gate", "per_root", MXC_CCM_CCGR2, 8); clk[IMX5_CLK_OWIRE_GATE] = imx_clk_gate2("owire_gate", "per_root", MXC_CCM_CCGR2, 22); clk[IMX5_CLK_SRTC_GATE] = imx_clk_gate2("srtc_gate", "per_root", MXC_CCM_CCGR4, 28); clk[IMX5_CLK_PATA_GATE] = imx_clk_gate2("pata_gate", "ipg", MXC_CCM_CCGR4, 0); clk[IMX5_CLK_SPDIF0_SEL] = imx_clk_mux("spdif0_sel", MXC_CCM_CSCMR2, 0, 2, spdif_sel, ARRAY_SIZE(spdif_sel)); clk[IMX5_CLK_SPDIF0_PRED] = imx_clk_divider("spdif0_pred", "spdif0_sel", MXC_CCM_CDCDR, 25, 3); clk[IMX5_CLK_SPDIF0_PODF] = imx_clk_divider("spdif0_podf", "spdif0_pred", MXC_CCM_CDCDR, 19, 6); clk[IMX5_CLK_SPDIF0_COM_SEL] = imx_clk_mux_flags("spdif0_com_sel", MXC_CCM_CSCMR2, 4, 1, spdif0_com_sel, ARRAY_SIZE(spdif0_com_sel), CLK_SET_RATE_PARENT); clk[IMX5_CLK_SPDIF0_GATE] = imx_clk_gate2("spdif0_gate", "spdif0_com_sel", MXC_CCM_CCGR5, 26); clk[IMX5_CLK_SPDIF_IPG_GATE] = imx_clk_gate2("spdif_ipg_gate", "ipg", MXC_CCM_CCGR5, 30); clk[IMX5_CLK_SAHARA_IPG_GATE] = imx_clk_gate2("sahara_ipg_gate", "ipg", MXC_CCM_CCGR4, 14); clk[IMX5_CLK_SATA_REF] = imx_clk_fixed_factor("sata_ref", "usb_phy1_gate", 1, 1); clk_register_clkdev(clk[IMX5_CLK_CPU_PODF], NULL, "cpu0"); clk_register_clkdev(clk[IMX5_CLK_GPC_DVFS], "gpc_dvfs", NULL); /* move usb phy clk to 24MHz */ clk_set_parent(clk[IMX5_CLK_USB_PHY_SEL], clk[IMX5_CLK_OSC]); } static void __init mx50_clocks_init(struct device_node *np) { void __iomem *ccm_base; void __iomem *pll_base; unsigned long r; pll_base = ioremap(MX53_DPLL1_BASE, SZ_16K); WARN_ON(!pll_base); clk[IMX5_CLK_PLL1_SW] = imx_clk_pllv2("pll1_sw", "osc", pll_base); pll_base = ioremap(MX53_DPLL2_BASE, SZ_16K); WARN_ON(!pll_base); clk[IMX5_CLK_PLL2_SW] = imx_clk_pllv2("pll2_sw", "osc", pll_base); pll_base = ioremap(MX53_DPLL3_BASE, SZ_16K); WARN_ON(!pll_base); clk[IMX5_CLK_PLL3_SW] = imx_clk_pllv2("pll3_sw", "osc", pll_base); ccm_base = of_iomap(np, 0); WARN_ON(!ccm_base); mx5_clocks_common_init(ccm_base); /* * This clock is called periph_clk in the i.MX50 Reference Manual, but * it comes closest in scope to the main_bus_clk of i.MX51 and i.MX53 */ clk[IMX5_CLK_MAIN_BUS] = imx_clk_mux("main_bus", MXC_CCM_CBCDR, 25, 2, standard_pll_sel, ARRAY_SIZE(standard_pll_sel)); clk[IMX5_CLK_LP_APM] = imx_clk_mux("lp_apm", MXC_CCM_CCSR, 10, 1, lp_apm_sel, ARRAY_SIZE(lp_apm_sel)); clk[IMX5_CLK_ESDHC_A_SEL] = imx_clk_mux("esdhc_a_sel", MXC_CCM_CSCMR1, 21, 2, standard_pll_sel, ARRAY_SIZE(standard_pll_sel)); clk[IMX5_CLK_ESDHC_B_SEL] = imx_clk_mux("esdhc_b_sel", MXC_CCM_CSCMR1, 16, 2, standard_pll_sel, ARRAY_SIZE(standard_pll_sel)); clk[IMX5_CLK_ESDHC_C_SEL] = imx_clk_mux("esdhc_c_sel", MXC_CCM_CSCMR1, 20, 1, esdhc_c_sel, ARRAY_SIZE(esdhc_c_sel)); clk[IMX5_CLK_ESDHC_D_SEL] = imx_clk_mux("esdhc_d_sel", MXC_CCM_CSCMR1, 19, 1, esdhc_d_sel, ARRAY_SIZE(esdhc_d_sel)); clk[IMX5_CLK_ESDHC1_PER_GATE] = imx_clk_gate2("esdhc1_per_gate", "esdhc_a_podf", MXC_CCM_CCGR3, 2); clk[IMX5_CLK_ESDHC2_PER_GATE] = imx_clk_gate2("esdhc2_per_gate", "esdhc_c_sel", MXC_CCM_CCGR3, 6); clk[IMX5_CLK_ESDHC3_PER_GATE] = imx_clk_gate2("esdhc3_per_gate", "esdhc_b_podf", MXC_CCM_CCGR3, 10); clk[IMX5_CLK_ESDHC4_PER_GATE] = imx_clk_gate2("esdhc4_per_gate", "esdhc_d_sel", MXC_CCM_CCGR3, 14); clk[IMX5_CLK_USB_PHY1_GATE] = imx_clk_gate2("usb_phy1_gate", "usb_phy_sel", MXC_CCM_CCGR4, 10); clk[IMX5_CLK_USB_PHY2_GATE] = imx_clk_gate2("usb_phy2_gate", "usb_phy_sel", MXC_CCM_CCGR4, 12); clk[IMX5_CLK_I2C3_GATE] = imx_clk_gate2("i2c3_gate", "per_root", MXC_CCM_CCGR1, 22); clk[IMX5_CLK_UART4_IPG_GATE] = imx_clk_gate2("uart4_ipg_gate", "ipg", MXC_CCM_CCGR7, 8); clk[IMX5_CLK_UART4_PER_GATE] = imx_clk_gate2("uart4_per_gate", "uart_root", MXC_CCM_CCGR7, 10); clk[IMX5_CLK_UART5_IPG_GATE] = imx_clk_gate2("uart5_ipg_gate", "ipg", MXC_CCM_CCGR7, 12); clk[IMX5_CLK_UART5_PER_GATE] = imx_clk_gate2("uart5_per_gate", "uart_root", MXC_CCM_CCGR7, 14); clk[IMX5_CLK_CKO1_SEL] = imx_clk_mux("cko1_sel", MXC_CCM_CCOSR, 0, 4, mx53_cko1_sel, ARRAY_SIZE(mx53_cko1_sel)); clk[IMX5_CLK_CKO1_PODF] = imx_clk_divider("cko1_podf", "cko1_sel", MXC_CCM_CCOSR, 4, 3); clk[IMX5_CLK_CKO1] = imx_clk_gate2("cko1", "cko1_podf", MXC_CCM_CCOSR, 7); clk[IMX5_CLK_CKO2_SEL] = imx_clk_mux("cko2_sel", MXC_CCM_CCOSR, 16, 5, mx53_cko2_sel, ARRAY_SIZE(mx53_cko2_sel)); clk[IMX5_CLK_CKO2_PODF] = imx_clk_divider("cko2_podf", "cko2_sel", MXC_CCM_CCOSR, 21, 3); clk[IMX5_CLK_CKO2] = imx_clk_gate2("cko2", "cko2_podf", MXC_CCM_CCOSR, 24); imx_check_clocks(clk, ARRAY_SIZE(clk)); clk_data.clks = clk; clk_data.clk_num = ARRAY_SIZE(clk); of_clk_add_provider(np, of_clk_src_onecell_get, &clk_data); /* Set SDHC parents to be PLL2 */ clk_set_parent(clk[IMX5_CLK_ESDHC_A_SEL], clk[IMX5_CLK_PLL2_SW]); clk_set_parent(clk[IMX5_CLK_ESDHC_B_SEL], clk[IMX5_CLK_PLL2_SW]); /* set SDHC root clock to 200MHZ*/ clk_set_rate(clk[IMX5_CLK_ESDHC_A_PODF], 200000000); clk_set_rate(clk[IMX5_CLK_ESDHC_B_PODF], 200000000); clk_prepare_enable(clk[IMX5_CLK_IIM_GATE]); imx_print_silicon_rev("i.MX50", IMX_CHIP_REVISION_1_1); clk_disable_unprepare(clk[IMX5_CLK_IIM_GATE]); r = clk_round_rate(clk[IMX5_CLK_USBOH3_PER_GATE], 54000000); clk_set_rate(clk[IMX5_CLK_USBOH3_PER_GATE], r); imx_register_uart_clocks(); } CLK_OF_DECLARE(imx50_ccm, "fsl,imx50-ccm", mx50_clocks_init); static void __init mx51_clocks_init(struct device_node *np) { void __iomem *ccm_base; void __iomem *pll_base; u32 val; pll_base = ioremap(MX51_DPLL1_BASE, SZ_16K); WARN_ON(!pll_base); clk[IMX5_CLK_PLL1_SW] = imx_clk_pllv2("pll1_sw", "osc", pll_base); pll_base = ioremap(MX51_DPLL2_BASE, SZ_16K); WARN_ON(!pll_base); clk[IMX5_CLK_PLL2_SW] = imx_clk_pllv2("pll2_sw", "osc", pll_base); pll_base = ioremap(MX51_DPLL3_BASE, SZ_16K); WARN_ON(!pll_base); clk[IMX5_CLK_PLL3_SW] = imx_clk_pllv2("pll3_sw", "osc", pll_base); ccm_base = of_iomap(np, 0); WARN_ON(!ccm_base); mx5_clocks_common_init(ccm_base); clk[IMX5_CLK_PERIPH_APM] = imx_clk_mux("periph_apm", MXC_CCM_CBCMR, 12, 2, periph_apm_sel, ARRAY_SIZE(periph_apm_sel)); clk[IMX5_CLK_MAIN_BUS] = imx_clk_mux("main_bus", MXC_CCM_CBCDR, 25, 1, main_bus_sel, ARRAY_SIZE(main_bus_sel)); clk[IMX5_CLK_LP_APM] = imx_clk_mux("lp_apm", MXC_CCM_CCSR, 9, 1, lp_apm_sel, ARRAY_SIZE(lp_apm_sel)); clk[IMX5_CLK_IPU_DI0_SEL] = imx_clk_mux_flags("ipu_di0_sel", MXC_CCM_CSCMR2, 26, 3, mx51_ipu_di0_sel, ARRAY_SIZE(mx51_ipu_di0_sel), CLK_SET_RATE_PARENT); clk[IMX5_CLK_IPU_DI1_SEL] = imx_clk_mux_flags("ipu_di1_sel", MXC_CCM_CSCMR2, 29, 3, mx51_ipu_di1_sel, ARRAY_SIZE(mx51_ipu_di1_sel), CLK_SET_RATE_PARENT); clk[IMX5_CLK_TVE_EXT_SEL] = imx_clk_mux_flags("tve_ext_sel", MXC_CCM_CSCMR1, 6, 1, mx51_tve_ext_sel, ARRAY_SIZE(mx51_tve_ext_sel), CLK_SET_RATE_PARENT); clk[IMX5_CLK_TVE_SEL] = imx_clk_mux("tve_sel", MXC_CCM_CSCMR1, 7, 1, mx51_tve_sel, ARRAY_SIZE(mx51_tve_sel)); clk[IMX5_CLK_TVE_GATE] = imx_clk_gate2("tve_gate", "tve_sel", MXC_CCM_CCGR2, 30); clk[IMX5_CLK_TVE_PRED] = imx_clk_divider("tve_pred", "pll3_sw", MXC_CCM_CDCDR, 28, 3); clk[IMX5_CLK_ESDHC_A_SEL] = imx_clk_mux("esdhc_a_sel", MXC_CCM_CSCMR1, 20, 2, standard_pll_sel, ARRAY_SIZE(standard_pll_sel)); clk[IMX5_CLK_ESDHC_B_SEL] = imx_clk_mux("esdhc_b_sel", MXC_CCM_CSCMR1, 16, 2, standard_pll_sel, ARRAY_SIZE(standard_pll_sel)); clk[IMX5_CLK_ESDHC_C_SEL] = imx_clk_mux("esdhc_c_sel", MXC_CCM_CSCMR1, 19, 1, esdhc_c_sel, ARRAY_SIZE(esdhc_c_sel)); clk[IMX5_CLK_ESDHC_D_SEL] = imx_clk_mux("esdhc_d_sel", MXC_CCM_CSCMR1, 18, 1, esdhc_d_sel, ARRAY_SIZE(esdhc_d_sel)); clk[IMX5_CLK_ESDHC1_PER_GATE] = imx_clk_gate2("esdhc1_per_gate", "esdhc_a_podf", MXC_CCM_CCGR3, 2); clk[IMX5_CLK_ESDHC2_PER_GATE] = imx_clk_gate2("esdhc2_per_gate", "esdhc_b_podf", MXC_CCM_CCGR3, 6); clk[IMX5_CLK_ESDHC3_PER_GATE] = imx_clk_gate2("esdhc3_per_gate", "esdhc_c_sel", MXC_CCM_CCGR3, 10); clk[IMX5_CLK_ESDHC4_PER_GATE] = imx_clk_gate2("esdhc4_per_gate", "esdhc_d_sel", MXC_CCM_CCGR3, 14); clk[IMX5_CLK_USB_PHY_GATE] = imx_clk_gate2("usb_phy_gate", "usb_phy_sel", MXC_CCM_CCGR2, 0); clk[IMX5_CLK_HSI2C_GATE] = imx_clk_gate2("hsi2c_gate", "ipg", MXC_CCM_CCGR1, 22); clk[IMX5_CLK_SCC2_IPG_GATE] = imx_clk_gate2("scc2_gate", "ipg", MXC_CCM_CCGR1, 30); clk[IMX5_CLK_MIPI_HSC1_GATE] = imx_clk_gate2_flags("mipi_hsc1_gate", "ipg", MXC_CCM_CCGR4, 6, CLK_IS_CRITICAL); clk[IMX5_CLK_MIPI_HSC2_GATE] = imx_clk_gate2_flags("mipi_hsc2_gate", "ipg", MXC_CCM_CCGR4, 8, CLK_IS_CRITICAL); clk[IMX5_CLK_MIPI_ESC_GATE] = imx_clk_gate2_flags("mipi_esc_gate", "ipg", MXC_CCM_CCGR4, 10, CLK_IS_CRITICAL); clk[IMX5_CLK_MIPI_HSP_GATE] = imx_clk_gate2_flags("mipi_hsp_gate", "ipg", MXC_CCM_CCGR4, 12, CLK_IS_CRITICAL); clk[IMX5_CLK_SPDIF_XTAL_SEL] = imx_clk_mux("spdif_xtal_sel", MXC_CCM_CSCMR1, 2, 2, mx51_spdif_xtal_sel, ARRAY_SIZE(mx51_spdif_xtal_sel)); clk[IMX5_CLK_SPDIF1_SEL] = imx_clk_mux("spdif1_sel", MXC_CCM_CSCMR2, 2, 2, spdif_sel, ARRAY_SIZE(spdif_sel)); clk[IMX5_CLK_SPDIF1_PRED] = imx_clk_divider("spdif1_pred", "spdif1_sel", MXC_CCM_CDCDR, 16, 3); clk[IMX5_CLK_SPDIF1_PODF] = imx_clk_divider("spdif1_podf", "spdif1_pred", MXC_CCM_CDCDR, 9, 6); clk[IMX5_CLK_SPDIF1_COM_SEL] = imx_clk_mux("spdif1_com_sel", MXC_CCM_CSCMR2, 5, 1, mx51_spdif1_com_sel, ARRAY_SIZE(mx51_spdif1_com_sel)); clk[IMX5_CLK_SPDIF1_GATE] = imx_clk_gate2("spdif1_gate", "spdif1_com_sel", MXC_CCM_CCGR5, 28); imx_check_clocks(clk, ARRAY_SIZE(clk)); clk_data.clks = clk; clk_data.clk_num = ARRAY_SIZE(clk); of_clk_add_provider(np, of_clk_src_onecell_get, &clk_data); /* set the usboh3 parent to pll2_sw */ clk_set_parent(clk[IMX5_CLK_USBOH3_SEL], clk[IMX5_CLK_PLL2_SW]); /* Set SDHC parents to be PLL2 */ clk_set_parent(clk[IMX5_CLK_ESDHC_A_SEL], clk[IMX5_CLK_PLL2_SW]); clk_set_parent(clk[IMX5_CLK_ESDHC_B_SEL], clk[IMX5_CLK_PLL2_SW]); /* set SDHC root clock to 166.25MHZ*/ clk_set_rate(clk[IMX5_CLK_ESDHC_A_PODF], 166250000); clk_set_rate(clk[IMX5_CLK_ESDHC_B_PODF], 166250000); clk_prepare_enable(clk[IMX5_CLK_IIM_GATE]); imx_print_silicon_rev("i.MX51", mx51_revision()); clk_disable_unprepare(clk[IMX5_CLK_IIM_GATE]); /* * Reference Manual says: Functionality of CCDR[18] and CLPCR[23] is no * longer supported. Set to one for better power saving. * * The effect of not setting these bits is that MIPI clocks can't be * enabled without the IPU clock being enabled aswell. */ val = readl(MXC_CCM_CCDR); val |= 1 << 18; writel(val, MXC_CCM_CCDR); val = readl(MXC_CCM_CLPCR); val |= 1 << 23; writel(val, MXC_CCM_CLPCR); imx_register_uart_clocks(); } CLK_OF_DECLARE(imx51_ccm, "fsl,imx51-ccm", mx51_clocks_init); static void __init mx53_clocks_init(struct device_node *np) { void __iomem *ccm_base; void __iomem *pll_base; unsigned long r; pll_base = ioremap(MX53_DPLL1_BASE, SZ_16K); WARN_ON(!pll_base); clk[IMX5_CLK_PLL1_SW] = imx_clk_pllv2("pll1_sw", "osc", pll_base); pll_base = ioremap(MX53_DPLL2_BASE, SZ_16K); WARN_ON(!pll_base); clk[IMX5_CLK_PLL2_SW] = imx_clk_pllv2("pll2_sw", "osc", pll_base); pll_base = ioremap(MX53_DPLL3_BASE, SZ_16K); WARN_ON(!pll_base); clk[IMX5_CLK_PLL3_SW] = imx_clk_pllv2("pll3_sw", "osc", pll_base); pll_base = ioremap(MX53_DPLL4_BASE, SZ_16K); WARN_ON(!pll_base); clk[IMX5_CLK_PLL4_SW] = imx_clk_pllv2("pll4_sw", "osc", pll_base); ccm_base = of_iomap(np, 0); WARN_ON(!ccm_base); mx5_clocks_common_init(ccm_base); clk[IMX5_CLK_PERIPH_APM] = imx_clk_mux("periph_apm", MXC_CCM_CBCMR, 12, 2, periph_apm_sel, ARRAY_SIZE(periph_apm_sel)); clk[IMX5_CLK_MAIN_BUS] = imx_clk_mux("main_bus", MXC_CCM_CBCDR, 25, 1, main_bus_sel, ARRAY_SIZE(main_bus_sel)); clk[IMX5_CLK_LP_APM] = imx_clk_mux("lp_apm", MXC_CCM_CCSR, 10, 1, lp_apm_sel, ARRAY_SIZE(lp_apm_sel)); clk[IMX5_CLK_LDB_DI1_DIV_3_5] = imx_clk_fixed_factor("ldb_di1_div_3_5", "ldb_di1_sel", 2, 7); clk[IMX5_CLK_LDB_DI1_DIV] = imx_clk_divider_flags("ldb_di1_div", "ldb_di1_div_3_5", MXC_CCM_CSCMR2, 11, 1, 0); clk[IMX5_CLK_LDB_DI1_SEL] = imx_clk_mux_flags("ldb_di1_sel", MXC_CCM_CSCMR2, 9, 1, mx53_ldb_di1_sel, ARRAY_SIZE(mx53_ldb_di1_sel), CLK_SET_RATE_PARENT); clk[IMX5_CLK_DI_PLL4_PODF] = imx_clk_divider("di_pll4_podf", "pll4_sw", MXC_CCM_CDCDR, 16, 3); clk[IMX5_CLK_LDB_DI0_DIV_3_5] = imx_clk_fixed_factor("ldb_di0_div_3_5", "ldb_di0_sel", 2, 7); clk[IMX5_CLK_LDB_DI0_DIV] = imx_clk_divider_flags("ldb_di0_div", "ldb_di0_div_3_5", MXC_CCM_CSCMR2, 10, 1, 0); clk[IMX5_CLK_LDB_DI0_SEL] = imx_clk_mux_flags("ldb_di0_sel", MXC_CCM_CSCMR2, 8, 1, mx53_ldb_di0_sel, ARRAY_SIZE(mx53_ldb_di0_sel), CLK_SET_RATE_PARENT); clk[IMX5_CLK_LDB_DI0_GATE] = imx_clk_gate2("ldb_di0_gate", "ldb_di0_div", MXC_CCM_CCGR6, 28); clk[IMX5_CLK_LDB_DI1_GATE] = imx_clk_gate2("ldb_di1_gate", "ldb_di1_div", MXC_CCM_CCGR6, 30); clk[IMX5_CLK_IPU_DI0_SEL] = imx_clk_mux_flags("ipu_di0_sel", MXC_CCM_CSCMR2, 26, 3, mx53_ipu_di0_sel, ARRAY_SIZE(mx53_ipu_di0_sel), CLK_SET_RATE_PARENT); clk[IMX5_CLK_IPU_DI1_SEL] = imx_clk_mux_flags("ipu_di1_sel", MXC_CCM_CSCMR2, 29, 3, mx53_ipu_di1_sel, ARRAY_SIZE(mx53_ipu_di1_sel), CLK_SET_RATE_PARENT); clk[IMX5_CLK_TVE_EXT_SEL] = imx_clk_mux_flags("tve_ext_sel", MXC_CCM_CSCMR1, 6, 1, mx53_tve_ext_sel, ARRAY_SIZE(mx53_tve_ext_sel), CLK_SET_RATE_PARENT); clk[IMX5_CLK_TVE_GATE] = imx_clk_gate2("tve_gate", "tve_pred", MXC_CCM_CCGR2, 30); clk[IMX5_CLK_TVE_PRED] = imx_clk_divider("tve_pred", "tve_ext_sel", MXC_CCM_CDCDR, 28, 3); clk[IMX5_CLK_ESDHC_A_SEL] = imx_clk_mux("esdhc_a_sel", MXC_CCM_CSCMR1, 20, 2, standard_pll_sel, ARRAY_SIZE(standard_pll_sel)); clk[IMX5_CLK_ESDHC_B_SEL] = imx_clk_mux("esdhc_b_sel", MXC_CCM_CSCMR1, 16, 2, standard_pll_sel, ARRAY_SIZE(standard_pll_sel)); clk[IMX5_CLK_ESDHC_C_SEL] = imx_clk_mux("esdhc_c_sel", MXC_CCM_CSCMR1, 19, 1, esdhc_c_sel, ARRAY_SIZE(esdhc_c_sel)); clk[IMX5_CLK_ESDHC_D_SEL] = imx_clk_mux("esdhc_d_sel", MXC_CCM_CSCMR1, 18, 1, esdhc_d_sel, ARRAY_SIZE(esdhc_d_sel)); clk[IMX5_CLK_ESDHC1_PER_GATE] = imx_clk_gate2("esdhc1_per_gate", "esdhc_a_podf", MXC_CCM_CCGR3, 2); clk[IMX5_CLK_ESDHC2_PER_GATE] = imx_clk_gate2("esdhc2_per_gate", "esdhc_c_sel", MXC_CCM_CCGR3, 6); clk[IMX5_CLK_ESDHC3_PER_GATE] = imx_clk_gate2("esdhc3_per_gate", "esdhc_b_podf", MXC_CCM_CCGR3, 10); clk[IMX5_CLK_ESDHC4_PER_GATE] = imx_clk_gate2("esdhc4_per_gate", "esdhc_d_sel", MXC_CCM_CCGR3, 14); clk[IMX5_CLK_USB_PHY1_GATE] = imx_clk_gate2("usb_phy1_gate", "usb_phy_sel", MXC_CCM_CCGR4, 10); clk[IMX5_CLK_USB_PHY2_GATE] = imx_clk_gate2("usb_phy2_gate", "usb_phy_sel", MXC_CCM_CCGR4, 12); clk[IMX5_CLK_CAN_SEL] = imx_clk_mux("can_sel", MXC_CCM_CSCMR2, 6, 2, mx53_can_sel, ARRAY_SIZE(mx53_can_sel)); clk[IMX5_CLK_CAN1_SERIAL_GATE] = imx_clk_gate2("can1_serial_gate", "can_sel", MXC_CCM_CCGR6, 22); clk[IMX5_CLK_CAN1_IPG_GATE] = imx_clk_gate2("can1_ipg_gate", "ipg", MXC_CCM_CCGR6, 20); clk[IMX5_CLK_OCRAM] = imx_clk_gate2("ocram", "ahb", MXC_CCM_CCGR6, 2); clk[IMX5_CLK_CAN2_SERIAL_GATE] = imx_clk_gate2("can2_serial_gate", "can_sel", MXC_CCM_CCGR4, 8); clk[IMX5_CLK_CAN2_IPG_GATE] = imx_clk_gate2("can2_ipg_gate", "ipg", MXC_CCM_CCGR4, 6); clk[IMX5_CLK_I2C3_GATE] = imx_clk_gate2("i2c3_gate", "per_root", MXC_CCM_CCGR1, 22); clk[IMX5_CLK_SATA_GATE] = imx_clk_gate2("sata_gate", "ipg", MXC_CCM_CCGR4, 2); clk[IMX5_CLK_FIRI_SEL] = imx_clk_mux("firi_sel", MXC_CCM_CSCMR2, 12, 2, standard_pll_sel, ARRAY_SIZE(standard_pll_sel)); clk[IMX5_CLK_FIRI_PRED] = imx_clk_divider("firi_pred", "firi_sel", MXC_CCM_CSCDR3, 6, 3); clk[IMX5_CLK_FIRI_PODF] = imx_clk_divider("firi_podf", "firi_pred", MXC_CCM_CSCDR3, 0, 6); clk[IMX5_CLK_FIRI_SERIAL_GATE] = imx_clk_gate2("firi_serial_gate", "firi_podf", MXC_CCM_CCGR1, 28); clk[IMX5_CLK_FIRI_IPG_GATE] = imx_clk_gate2("firi_ipg_gate", "ipg", MXC_CCM_CCGR1, 26); clk[IMX5_CLK_CSI0_MCLK1_SEL] = imx_clk_mux("csi0_mclk1_sel", MXC_CCM_CSCMR2, 22, 2, standard_pll_sel, ARRAY_SIZE(standard_pll_sel)); clk[IMX5_CLK_CSI0_MCLK1_PRED] = imx_clk_divider("csi0_mclk1_pred", "csi0_mclk1_sel", MXC_CCM_CSCDR4, 6, 3); clk[IMX5_CLK_CSI0_MCLK1_PODF] = imx_clk_divider("csi0_mclk1_podf", "csi0_mclk1_pred", MXC_CCM_CSCDR4, 0, 6); clk[IMX5_CLK_CSI0_MCLK1_GATE] = imx_clk_gate2("csi0_mclk1_serial_gate", "csi0_mclk1_podf", MXC_CCM_CCGR6, 4); clk[IMX5_CLK_IEEE1588_SEL] = imx_clk_mux("ieee1588_sel", MXC_CCM_CSCMR2, 14, 2, ieee1588_sels, ARRAY_SIZE(ieee1588_sels)); clk[IMX5_CLK_IEEE1588_PRED] = imx_clk_divider("ieee1588_pred", "ieee1588_sel", MXC_CCM_CSCDR2, 6, 3); clk[IMX5_CLK_IEEE1588_PODF] = imx_clk_divider("ieee1588_podf", "ieee1588_pred", MXC_CCM_CSCDR2, 0, 6); clk[IMX5_CLK_IEEE1588_GATE] = imx_clk_gate2("ieee1588_serial_gate", "ieee1588_podf", MXC_CCM_CCGR7, 6); clk[IMX5_CLK_UART4_IPG_GATE] = imx_clk_gate2("uart4_ipg_gate", "ipg", MXC_CCM_CCGR7, 8); clk[IMX5_CLK_UART4_PER_GATE] = imx_clk_gate2("uart4_per_gate", "uart_root", MXC_CCM_CCGR7, 10); clk[IMX5_CLK_UART5_IPG_GATE] = imx_clk_gate2("uart5_ipg_gate", "ipg", MXC_CCM_CCGR7, 12); clk[IMX5_CLK_UART5_PER_GATE] = imx_clk_gate2("uart5_per_gate", "uart_root", MXC_CCM_CCGR7, 14); clk[IMX5_CLK_CKO1_SEL] = imx_clk_mux("cko1_sel", MXC_CCM_CCOSR, 0, 4, mx53_cko1_sel, ARRAY_SIZE(mx53_cko1_sel)); clk[IMX5_CLK_CKO1_PODF] = imx_clk_divider("cko1_podf", "cko1_sel", MXC_CCM_CCOSR, 4, 3); clk[IMX5_CLK_CKO1] = imx_clk_gate2("cko1", "cko1_podf", MXC_CCM_CCOSR, 7); clk[IMX5_CLK_CKO2_SEL] = imx_clk_mux("cko2_sel", MXC_CCM_CCOSR, 16, 5, mx53_cko2_sel, ARRAY_SIZE(mx53_cko2_sel)); clk[IMX5_CLK_CKO2_PODF] = imx_clk_divider("cko2_podf", "cko2_sel", MXC_CCM_CCOSR, 21, 3); clk[IMX5_CLK_CKO2] = imx_clk_gate2("cko2", "cko2_podf", MXC_CCM_CCOSR, 24); clk[IMX5_CLK_SPDIF_XTAL_SEL] = imx_clk_mux("spdif_xtal_sel", MXC_CCM_CSCMR1, 2, 2, mx53_spdif_xtal_sel, ARRAY_SIZE(mx53_spdif_xtal_sel)); clk[IMX5_CLK_ARM] = imx_clk_cpu("arm", "cpu_podf", clk[IMX5_CLK_CPU_PODF], clk[IMX5_CLK_CPU_PODF_SEL], clk[IMX5_CLK_PLL1_SW], clk[IMX5_CLK_STEP_SEL]); imx_check_clocks(clk, ARRAY_SIZE(clk)); clk_data.clks = clk; clk_data.clk_num = ARRAY_SIZE(clk); of_clk_add_provider(np, of_clk_src_onecell_get, &clk_data); /* Set SDHC parents to be PLL2 */ clk_set_parent(clk[IMX5_CLK_ESDHC_A_SEL], clk[IMX5_CLK_PLL2_SW]); clk_set_parent(clk[IMX5_CLK_ESDHC_B_SEL], clk[IMX5_CLK_PLL2_SW]); /* set SDHC root clock to 200MHZ*/ clk_set_rate(clk[IMX5_CLK_ESDHC_A_PODF], 200000000); clk_set_rate(clk[IMX5_CLK_ESDHC_B_PODF], 200000000); /* move can bus clk to 24MHz */ clk_set_parent(clk[IMX5_CLK_CAN_SEL], clk[IMX5_CLK_LP_APM]); /* make sure step clock is running from 24MHz */ clk_set_parent(clk[IMX5_CLK_STEP_SEL], clk[IMX5_CLK_LP_APM]); clk_prepare_enable(clk[IMX5_CLK_IIM_GATE]); imx_print_silicon_rev("i.MX53", mx53_revision()); clk_disable_unprepare(clk[IMX5_CLK_IIM_GATE]); r = clk_round_rate(clk[IMX5_CLK_USBOH3_PER_GATE], 54000000); clk_set_rate(clk[IMX5_CLK_USBOH3_PER_GATE], r); imx_register_uart_clocks(); } CLK_OF_DECLARE(imx53_ccm, "fsl,imx53-ccm", mx53_clocks_init);
linux-master
drivers/clk/imx/clk-imx5.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2016 Freescale Semiconductor, Inc. * Copyright 2017~2018 NXP * * Author: Dong Aisheng <[email protected]> * */ #include <linux/clk-provider.h> #include <linux/err.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/slab.h> #include "clk.h" /** * struct clk_pfdv2 - IMX PFD clock * @hw: clock source * @reg: PFD register address * @gate_bit: Gate bit offset * @vld_bit: Valid bit offset * @frac_off: PLL Fractional Divider offset */ struct clk_pfdv2 { struct clk_hw hw; void __iomem *reg; u8 gate_bit; u8 vld_bit; u8 frac_off; }; #define to_clk_pfdv2(_hw) container_of(_hw, struct clk_pfdv2, hw) #define CLK_PFDV2_FRAC_MASK 0x3f #define LOCK_TIMEOUT_US USEC_PER_MSEC static DEFINE_SPINLOCK(pfd_lock); static int clk_pfdv2_wait(struct clk_pfdv2 *pfd) { u32 val; return readl_poll_timeout(pfd->reg, val, val & (1 << pfd->vld_bit), 0, LOCK_TIMEOUT_US); } static int clk_pfdv2_enable(struct clk_hw *hw) { struct clk_pfdv2 *pfd = to_clk_pfdv2(hw); unsigned long flags; u32 val; spin_lock_irqsave(&pfd_lock, flags); val = readl_relaxed(pfd->reg); val &= ~(1 << pfd->gate_bit); writel_relaxed(val, pfd->reg); spin_unlock_irqrestore(&pfd_lock, flags); return clk_pfdv2_wait(pfd); } static void clk_pfdv2_disable(struct clk_hw *hw) { struct clk_pfdv2 *pfd = to_clk_pfdv2(hw); unsigned long flags; u32 val; spin_lock_irqsave(&pfd_lock, flags); val = readl_relaxed(pfd->reg); val |= (1 << pfd->gate_bit); writel_relaxed(val, pfd->reg); spin_unlock_irqrestore(&pfd_lock, flags); } static unsigned long clk_pfdv2_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_pfdv2 *pfd = to_clk_pfdv2(hw); u64 tmp = parent_rate; u8 frac; frac = (readl_relaxed(pfd->reg) >> pfd->frac_off) & CLK_PFDV2_FRAC_MASK; if (!frac) { pr_debug("clk_pfdv2: %s invalid pfd frac value 0\n", clk_hw_get_name(hw)); return 0; } tmp *= 18; do_div(tmp, frac); return tmp; } static int clk_pfdv2_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { unsigned long parent_rates[] = { 480000000, 528000000, req->best_parent_rate }; unsigned long best_rate = -1UL, rate = req->rate; unsigned long best_parent_rate = req->best_parent_rate; u64 tmp; u8 frac; int i; for (i = 0; i < ARRAY_SIZE(parent_rates); i++) { tmp = parent_rates[i]; tmp = tmp * 18 + rate / 2; do_div(tmp, rate); frac = tmp; if (frac < 12) frac = 12; else if (frac > 35) frac = 35; tmp = parent_rates[i]; tmp *= 18; do_div(tmp, frac); if (abs(tmp - req->rate) < abs(best_rate - req->rate)) { best_rate = tmp; best_parent_rate = parent_rates[i]; } } req->best_parent_rate = best_parent_rate; req->rate = best_rate; return 0; } static int clk_pfdv2_is_enabled(struct clk_hw *hw) { struct clk_pfdv2 *pfd = to_clk_pfdv2(hw); if (readl_relaxed(pfd->reg) & (1 << pfd->gate_bit)) return 0; return 1; } static int clk_pfdv2_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_pfdv2 *pfd = to_clk_pfdv2(hw); unsigned long flags; u64 tmp = parent_rate; u32 val; u8 frac; if (!rate) return -EINVAL; /* * PFD can NOT change rate without gating. * as the PFDs may enabled in HW by default but no * consumer used it, the enable count is '0', so the * 'SET_RATE_GATE' can NOT help on blocking the set_rate * ops especially for 'assigned-clock-xxx'. In order * to simplify the case, just disable the PFD if it is * enabled in HW but not in SW. */ if (clk_pfdv2_is_enabled(hw)) clk_pfdv2_disable(hw); tmp = tmp * 18 + rate / 2; do_div(tmp, rate); frac = tmp; if (frac < 12) frac = 12; else if (frac > 35) frac = 35; spin_lock_irqsave(&pfd_lock, flags); val = readl_relaxed(pfd->reg); val &= ~(CLK_PFDV2_FRAC_MASK << pfd->frac_off); val |= frac << pfd->frac_off; writel_relaxed(val, pfd->reg); spin_unlock_irqrestore(&pfd_lock, flags); return 0; } static const struct clk_ops clk_pfdv2_ops = { .enable = clk_pfdv2_enable, .disable = clk_pfdv2_disable, .recalc_rate = clk_pfdv2_recalc_rate, .determine_rate = clk_pfdv2_determine_rate, .set_rate = clk_pfdv2_set_rate, .is_enabled = clk_pfdv2_is_enabled, }; struct clk_hw *imx_clk_hw_pfdv2(enum imx_pfdv2_type type, const char *name, const char *parent_name, void __iomem *reg, u8 idx) { struct clk_init_data init; struct clk_pfdv2 *pfd; struct clk_hw *hw; int ret; WARN_ON(idx > 3); pfd = kzalloc(sizeof(*pfd), GFP_KERNEL); if (!pfd) return ERR_PTR(-ENOMEM); pfd->reg = reg; pfd->gate_bit = (idx + 1) * 8 - 1; pfd->vld_bit = pfd->gate_bit - 1; pfd->frac_off = idx * 8; init.name = name; init.ops = &clk_pfdv2_ops; init.parent_names = &parent_name; init.num_parents = 1; if (type == IMX_PFDV2_IMX7ULP) init.flags = CLK_SET_RATE_GATE | CLK_SET_RATE_PARENT; else init.flags = CLK_SET_RATE_GATE; pfd->hw.init = &init; hw = &pfd->hw; ret = clk_hw_register(NULL, hw); if (ret) { kfree(pfd); hw = ERR_PTR(ret); } return hw; } EXPORT_SYMBOL_GPL(imx_clk_hw_pfdv2);
linux-master
drivers/clk/imx/clk-pfdv2.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright 2012-2013 Freescale Semiconductor, Inc. */ #include <linux/of_address.h> #include <linux/bits.h> #include <linux/clk.h> #include <linux/syscore_ops.h> #include <dt-bindings/clock/vf610-clock.h> #include "clk.h" #define CCM_CCR (ccm_base + 0x00) #define CCM_CSR (ccm_base + 0x04) #define CCM_CCSR (ccm_base + 0x08) #define CCM_CACRR (ccm_base + 0x0c) #define CCM_CSCMR1 (ccm_base + 0x10) #define CCM_CSCDR1 (ccm_base + 0x14) #define CCM_CSCDR2 (ccm_base + 0x18) #define CCM_CSCDR3 (ccm_base + 0x1c) #define CCM_CSCMR2 (ccm_base + 0x20) #define CCM_CSCDR4 (ccm_base + 0x24) #define CCM_CLPCR (ccm_base + 0x2c) #define CCM_CISR (ccm_base + 0x30) #define CCM_CIMR (ccm_base + 0x34) #define CCM_CGPR (ccm_base + 0x3c) #define CCM_CCGR0 (ccm_base + 0x40) #define CCM_CCGR1 (ccm_base + 0x44) #define CCM_CCGR2 (ccm_base + 0x48) #define CCM_CCGR3 (ccm_base + 0x4c) #define CCM_CCGR4 (ccm_base + 0x50) #define CCM_CCGR5 (ccm_base + 0x54) #define CCM_CCGR6 (ccm_base + 0x58) #define CCM_CCGR7 (ccm_base + 0x5c) #define CCM_CCGR8 (ccm_base + 0x60) #define CCM_CCGR9 (ccm_base + 0x64) #define CCM_CCGR10 (ccm_base + 0x68) #define CCM_CCGR11 (ccm_base + 0x6c) #define CCM_CCGRx(x) (CCM_CCGR0 + (x) * 4) #define CCM_CMEOR0 (ccm_base + 0x70) #define CCM_CMEOR1 (ccm_base + 0x74) #define CCM_CMEOR2 (ccm_base + 0x78) #define CCM_CMEOR3 (ccm_base + 0x7c) #define CCM_CMEOR4 (ccm_base + 0x80) #define CCM_CMEOR5 (ccm_base + 0x84) #define CCM_CPPDSR (ccm_base + 0x88) #define CCM_CCOWR (ccm_base + 0x8c) #define CCM_CCPGR0 (ccm_base + 0x90) #define CCM_CCPGR1 (ccm_base + 0x94) #define CCM_CCPGR2 (ccm_base + 0x98) #define CCM_CCPGR3 (ccm_base + 0x9c) #define CCM_CCGRx_CGn(n) ((n) * 2) #define PFD_PLL1_BASE (anatop_base + 0x2b0) #define PFD_PLL2_BASE (anatop_base + 0x100) #define PFD_PLL3_BASE (anatop_base + 0xf0) #define PLL1_CTRL (anatop_base + 0x270) #define PLL2_CTRL (anatop_base + 0x30) #define PLL3_CTRL (anatop_base + 0x10) #define PLL4_CTRL (anatop_base + 0x70) #define PLL5_CTRL (anatop_base + 0xe0) #define PLL6_CTRL (anatop_base + 0xa0) #define PLL7_CTRL (anatop_base + 0x20) #define ANA_MISC1 (anatop_base + 0x160) static void __iomem *anatop_base; static void __iomem *ccm_base; /* sources for multiplexer clocks, this is used multiple times */ static const char *fast_sels[] = { "firc", "fxosc", }; static const char *slow_sels[] = { "sirc_32k", "sxosc", }; static const char *pll1_sels[] = { "pll1_sys", "pll1_pfd1", "pll1_pfd2", "pll1_pfd3", "pll1_pfd4", }; static const char *pll2_sels[] = { "pll2_bus", "pll2_pfd1", "pll2_pfd2", "pll2_pfd3", "pll2_pfd4", }; static const char *pll_bypass_src_sels[] = { "fast_clk_sel", "lvds1_in", }; static const char *pll1_bypass_sels[] = { "pll1", "pll1_bypass_src", }; static const char *pll2_bypass_sels[] = { "pll2", "pll2_bypass_src", }; static const char *pll3_bypass_sels[] = { "pll3", "pll3_bypass_src", }; static const char *pll4_bypass_sels[] = { "pll4", "pll4_bypass_src", }; static const char *pll5_bypass_sels[] = { "pll5", "pll5_bypass_src", }; static const char *pll6_bypass_sels[] = { "pll6", "pll6_bypass_src", }; static const char *pll7_bypass_sels[] = { "pll7", "pll7_bypass_src", }; static const char *sys_sels[] = { "fast_clk_sel", "slow_clk_sel", "pll2_pfd_sel", "pll2_bus", "pll1_pfd_sel", "pll3_usb_otg", }; static const char *ddr_sels[] = { "pll2_pfd2", "sys_sel", }; static const char *rmii_sels[] = { "enet_ext", "audio_ext", "enet_50m", "enet_25m", }; static const char *enet_ts_sels[] = { "enet_ext", "fxosc", "audio_ext", "usb", "enet_ts", "enet_25m", "enet_50m", }; static const char *esai_sels[] = { "audio_ext", "mlb", "spdif_rx", "pll4_audio_div", }; static const char *sai_sels[] = { "audio_ext", "mlb", "spdif_rx", "pll4_audio_div", }; static const char *nfc_sels[] = { "platform_bus", "pll1_pfd1", "pll3_pfd1", "pll3_pfd3", }; static const char *qspi_sels[] = { "pll3_usb_otg", "pll3_pfd4", "pll2_pfd4", "pll1_pfd4", }; static const char *esdhc_sels[] = { "pll3_usb_otg", "pll3_pfd3", "pll1_pfd3", "platform_bus", }; static const char *dcu_sels[] = { "pll1_pfd2", "pll3_usb_otg", }; static const char *gpu_sels[] = { "pll2_pfd2", "pll3_pfd2", }; static const char *vadc_sels[] = { "pll6_video_div", "pll3_usb_otg_div", "pll3_usb_otg", }; /* FTM counter clock source, not module clock */ static const char *ftm_ext_sels[] = {"sirc_128k", "sxosc", "fxosc_half", "audio_ext", }; static const char *ftm_fix_sels[] = { "sxosc", "ipg_bus", }; static const struct clk_div_table pll4_audio_div_table[] = { { .val = 0, .div = 1 }, { .val = 1, .div = 2 }, { .val = 2, .div = 6 }, { .val = 3, .div = 8 }, { .val = 4, .div = 10 }, { .val = 5, .div = 12 }, { .val = 6, .div = 14 }, { .val = 7, .div = 16 }, { } }; static struct clk *clk[VF610_CLK_END]; static struct clk_onecell_data clk_data; static u32 cscmr1; static u32 cscmr2; static u32 cscdr1; static u32 cscdr2; static u32 cscdr3; static u32 ccgr[12]; static unsigned int const clks_init_on[] __initconst = { VF610_CLK_SYS_BUS, VF610_CLK_DDR_SEL, VF610_CLK_DAP, VF610_CLK_DDRMC, VF610_CLK_WKPU, }; static struct clk * __init vf610_get_fixed_clock( struct device_node *ccm_node, const char *name) { struct clk *clk = of_clk_get_by_name(ccm_node, name); /* Backward compatibility if device tree is missing clks assignments */ if (IS_ERR(clk)) clk = imx_obtain_fixed_clock(name, 0); return clk; }; static int vf610_clk_suspend(void) { int i; cscmr1 = readl_relaxed(CCM_CSCMR1); cscmr2 = readl_relaxed(CCM_CSCMR2); cscdr1 = readl_relaxed(CCM_CSCDR1); cscdr2 = readl_relaxed(CCM_CSCDR2); cscdr3 = readl_relaxed(CCM_CSCDR3); for (i = 0; i < 12; i++) ccgr[i] = readl_relaxed(CCM_CCGRx(i)); return 0; } static void vf610_clk_resume(void) { int i; writel_relaxed(cscmr1, CCM_CSCMR1); writel_relaxed(cscmr2, CCM_CSCMR2); writel_relaxed(cscdr1, CCM_CSCDR1); writel_relaxed(cscdr2, CCM_CSCDR2); writel_relaxed(cscdr3, CCM_CSCDR3); for (i = 0; i < 12; i++) writel_relaxed(ccgr[i], CCM_CCGRx(i)); } static struct syscore_ops vf610_clk_syscore_ops = { .suspend = vf610_clk_suspend, .resume = vf610_clk_resume, }; static void __init vf610_clocks_init(struct device_node *ccm_node) { struct device_node *np; int i; clk[VF610_CLK_DUMMY] = imx_clk_fixed("dummy", 0); clk[VF610_CLK_SIRC_128K] = imx_clk_fixed("sirc_128k", 128000); clk[VF610_CLK_SIRC_32K] = imx_clk_fixed("sirc_32k", 32000); clk[VF610_CLK_FIRC] = imx_clk_fixed("firc", 24000000); clk[VF610_CLK_SXOSC] = vf610_get_fixed_clock(ccm_node, "sxosc"); clk[VF610_CLK_FXOSC] = vf610_get_fixed_clock(ccm_node, "fxosc"); clk[VF610_CLK_AUDIO_EXT] = vf610_get_fixed_clock(ccm_node, "audio_ext"); clk[VF610_CLK_ENET_EXT] = vf610_get_fixed_clock(ccm_node, "enet_ext"); /* Clock source from external clock via LVDs PAD */ clk[VF610_CLK_ANACLK1] = vf610_get_fixed_clock(ccm_node, "anaclk1"); clk[VF610_CLK_FXOSC_HALF] = imx_clk_fixed_factor("fxosc_half", "fxosc", 1, 2); np = of_find_compatible_node(NULL, NULL, "fsl,vf610-anatop"); anatop_base = of_iomap(np, 0); BUG_ON(!anatop_base); of_node_put(np); np = ccm_node; ccm_base = of_iomap(np, 0); BUG_ON(!ccm_base); clk[VF610_CLK_SLOW_CLK_SEL] = imx_clk_mux("slow_clk_sel", CCM_CCSR, 4, 1, slow_sels, ARRAY_SIZE(slow_sels)); clk[VF610_CLK_FASK_CLK_SEL] = imx_clk_mux("fast_clk_sel", CCM_CCSR, 5, 1, fast_sels, ARRAY_SIZE(fast_sels)); clk[VF610_CLK_PLL1_BYPASS_SRC] = imx_clk_mux("pll1_bypass_src", PLL1_CTRL, 14, 1, pll_bypass_src_sels, ARRAY_SIZE(pll_bypass_src_sels)); clk[VF610_CLK_PLL2_BYPASS_SRC] = imx_clk_mux("pll2_bypass_src", PLL2_CTRL, 14, 1, pll_bypass_src_sels, ARRAY_SIZE(pll_bypass_src_sels)); clk[VF610_CLK_PLL3_BYPASS_SRC] = imx_clk_mux("pll3_bypass_src", PLL3_CTRL, 14, 1, pll_bypass_src_sels, ARRAY_SIZE(pll_bypass_src_sels)); clk[VF610_CLK_PLL4_BYPASS_SRC] = imx_clk_mux("pll4_bypass_src", PLL4_CTRL, 14, 1, pll_bypass_src_sels, ARRAY_SIZE(pll_bypass_src_sels)); clk[VF610_CLK_PLL5_BYPASS_SRC] = imx_clk_mux("pll5_bypass_src", PLL5_CTRL, 14, 1, pll_bypass_src_sels, ARRAY_SIZE(pll_bypass_src_sels)); clk[VF610_CLK_PLL6_BYPASS_SRC] = imx_clk_mux("pll6_bypass_src", PLL6_CTRL, 14, 1, pll_bypass_src_sels, ARRAY_SIZE(pll_bypass_src_sels)); clk[VF610_CLK_PLL7_BYPASS_SRC] = imx_clk_mux("pll7_bypass_src", PLL7_CTRL, 14, 1, pll_bypass_src_sels, ARRAY_SIZE(pll_bypass_src_sels)); clk[VF610_CLK_PLL1] = imx_clk_pllv3(IMX_PLLV3_SYS_VF610, "pll1", "pll1_bypass_src", PLL1_CTRL, 0x1); clk[VF610_CLK_PLL2] = imx_clk_pllv3(IMX_PLLV3_SYS_VF610, "pll2", "pll2_bypass_src", PLL2_CTRL, 0x1); clk[VF610_CLK_PLL3] = imx_clk_pllv3(IMX_PLLV3_USB_VF610, "pll3", "pll3_bypass_src", PLL3_CTRL, 0x2); clk[VF610_CLK_PLL4] = imx_clk_pllv3(IMX_PLLV3_AV, "pll4", "pll4_bypass_src", PLL4_CTRL, 0x7f); clk[VF610_CLK_PLL5] = imx_clk_pllv3(IMX_PLLV3_ENET, "pll5", "pll5_bypass_src", PLL5_CTRL, 0x3); clk[VF610_CLK_PLL6] = imx_clk_pllv3(IMX_PLLV3_AV, "pll6", "pll6_bypass_src", PLL6_CTRL, 0x7f); clk[VF610_CLK_PLL7] = imx_clk_pllv3(IMX_PLLV3_USB_VF610, "pll7", "pll7_bypass_src", PLL7_CTRL, 0x2); clk[VF610_PLL1_BYPASS] = imx_clk_mux_flags("pll1_bypass", PLL1_CTRL, 16, 1, pll1_bypass_sels, ARRAY_SIZE(pll1_bypass_sels), CLK_SET_RATE_PARENT); clk[VF610_PLL2_BYPASS] = imx_clk_mux_flags("pll2_bypass", PLL2_CTRL, 16, 1, pll2_bypass_sels, ARRAY_SIZE(pll2_bypass_sels), CLK_SET_RATE_PARENT); clk[VF610_PLL3_BYPASS] = imx_clk_mux_flags("pll3_bypass", PLL3_CTRL, 16, 1, pll3_bypass_sels, ARRAY_SIZE(pll3_bypass_sels), CLK_SET_RATE_PARENT); clk[VF610_PLL4_BYPASS] = imx_clk_mux_flags("pll4_bypass", PLL4_CTRL, 16, 1, pll4_bypass_sels, ARRAY_SIZE(pll4_bypass_sels), CLK_SET_RATE_PARENT); clk[VF610_PLL5_BYPASS] = imx_clk_mux_flags("pll5_bypass", PLL5_CTRL, 16, 1, pll5_bypass_sels, ARRAY_SIZE(pll5_bypass_sels), CLK_SET_RATE_PARENT); clk[VF610_PLL6_BYPASS] = imx_clk_mux_flags("pll6_bypass", PLL6_CTRL, 16, 1, pll6_bypass_sels, ARRAY_SIZE(pll6_bypass_sels), CLK_SET_RATE_PARENT); clk[VF610_PLL7_BYPASS] = imx_clk_mux_flags("pll7_bypass", PLL7_CTRL, 16, 1, pll7_bypass_sels, ARRAY_SIZE(pll7_bypass_sels), CLK_SET_RATE_PARENT); /* Do not bypass PLLs initially */ clk_set_parent(clk[VF610_PLL1_BYPASS], clk[VF610_CLK_PLL1]); clk_set_parent(clk[VF610_PLL2_BYPASS], clk[VF610_CLK_PLL2]); clk_set_parent(clk[VF610_PLL3_BYPASS], clk[VF610_CLK_PLL3]); clk_set_parent(clk[VF610_PLL4_BYPASS], clk[VF610_CLK_PLL4]); clk_set_parent(clk[VF610_PLL5_BYPASS], clk[VF610_CLK_PLL5]); clk_set_parent(clk[VF610_PLL6_BYPASS], clk[VF610_CLK_PLL6]); clk_set_parent(clk[VF610_PLL7_BYPASS], clk[VF610_CLK_PLL7]); clk[VF610_CLK_PLL1_SYS] = imx_clk_gate("pll1_sys", "pll1_bypass", PLL1_CTRL, 13); clk[VF610_CLK_PLL2_BUS] = imx_clk_gate("pll2_bus", "pll2_bypass", PLL2_CTRL, 13); clk[VF610_CLK_PLL3_USB_OTG] = imx_clk_gate("pll3_usb_otg", "pll3_bypass", PLL3_CTRL, 13); clk[VF610_CLK_PLL4_AUDIO] = imx_clk_gate("pll4_audio", "pll4_bypass", PLL4_CTRL, 13); clk[VF610_CLK_PLL5_ENET] = imx_clk_gate("pll5_enet", "pll5_bypass", PLL5_CTRL, 13); clk[VF610_CLK_PLL6_VIDEO] = imx_clk_gate("pll6_video", "pll6_bypass", PLL6_CTRL, 13); clk[VF610_CLK_PLL7_USB_HOST] = imx_clk_gate("pll7_usb_host", "pll7_bypass", PLL7_CTRL, 13); clk[VF610_CLK_LVDS1_IN] = imx_clk_gate_exclusive("lvds1_in", "anaclk1", ANA_MISC1, 12, BIT(10)); clk[VF610_CLK_PLL1_PFD1] = imx_clk_pfd("pll1_pfd1", "pll1_sys", PFD_PLL1_BASE, 0); clk[VF610_CLK_PLL1_PFD2] = imx_clk_pfd("pll1_pfd2", "pll1_sys", PFD_PLL1_BASE, 1); clk[VF610_CLK_PLL1_PFD3] = imx_clk_pfd("pll1_pfd3", "pll1_sys", PFD_PLL1_BASE, 2); clk[VF610_CLK_PLL1_PFD4] = imx_clk_pfd("pll1_pfd4", "pll1_sys", PFD_PLL1_BASE, 3); clk[VF610_CLK_PLL2_PFD1] = imx_clk_pfd("pll2_pfd1", "pll2_bus", PFD_PLL2_BASE, 0); clk[VF610_CLK_PLL2_PFD2] = imx_clk_pfd("pll2_pfd2", "pll2_bus", PFD_PLL2_BASE, 1); clk[VF610_CLK_PLL2_PFD3] = imx_clk_pfd("pll2_pfd3", "pll2_bus", PFD_PLL2_BASE, 2); clk[VF610_CLK_PLL2_PFD4] = imx_clk_pfd("pll2_pfd4", "pll2_bus", PFD_PLL2_BASE, 3); clk[VF610_CLK_PLL3_PFD1] = imx_clk_pfd("pll3_pfd1", "pll3_usb_otg", PFD_PLL3_BASE, 0); clk[VF610_CLK_PLL3_PFD2] = imx_clk_pfd("pll3_pfd2", "pll3_usb_otg", PFD_PLL3_BASE, 1); clk[VF610_CLK_PLL3_PFD3] = imx_clk_pfd("pll3_pfd3", "pll3_usb_otg", PFD_PLL3_BASE, 2); clk[VF610_CLK_PLL3_PFD4] = imx_clk_pfd("pll3_pfd4", "pll3_usb_otg", PFD_PLL3_BASE, 3); clk[VF610_CLK_PLL1_PFD_SEL] = imx_clk_mux("pll1_pfd_sel", CCM_CCSR, 16, 3, pll1_sels, 5); clk[VF610_CLK_PLL2_PFD_SEL] = imx_clk_mux("pll2_pfd_sel", CCM_CCSR, 19, 3, pll2_sels, 5); clk[VF610_CLK_SYS_SEL] = imx_clk_mux("sys_sel", CCM_CCSR, 0, 3, sys_sels, ARRAY_SIZE(sys_sels)); clk[VF610_CLK_DDR_SEL] = imx_clk_mux("ddr_sel", CCM_CCSR, 6, 1, ddr_sels, ARRAY_SIZE(ddr_sels)); clk[VF610_CLK_SYS_BUS] = imx_clk_divider("sys_bus", "sys_sel", CCM_CACRR, 0, 3); clk[VF610_CLK_PLATFORM_BUS] = imx_clk_divider("platform_bus", "sys_bus", CCM_CACRR, 3, 3); clk[VF610_CLK_IPG_BUS] = imx_clk_divider("ipg_bus", "platform_bus", CCM_CACRR, 11, 2); clk[VF610_CLK_PLL3_MAIN_DIV] = imx_clk_divider("pll3_usb_otg_div", "pll3_usb_otg", CCM_CACRR, 20, 1); clk[VF610_CLK_PLL4_MAIN_DIV] = clk_register_divider_table(NULL, "pll4_audio_div", "pll4_audio", 0, CCM_CACRR, 6, 3, 0, pll4_audio_div_table, &imx_ccm_lock); clk[VF610_CLK_PLL6_MAIN_DIV] = imx_clk_divider("pll6_video_div", "pll6_video", CCM_CACRR, 21, 1); clk[VF610_CLK_DDRMC] = imx_clk_gate2_cgr("ddrmc", "ddr_sel", CCM_CCGR6, CCM_CCGRx_CGn(14), 0x2); clk[VF610_CLK_WKPU] = imx_clk_gate2_cgr("wkpu", "ipg_bus", CCM_CCGR4, CCM_CCGRx_CGn(10), 0x2); clk[VF610_CLK_USBPHY0] = imx_clk_gate("usbphy0", "pll3_usb_otg", PLL3_CTRL, 6); clk[VF610_CLK_USBPHY1] = imx_clk_gate("usbphy1", "pll7_usb_host", PLL7_CTRL, 6); clk[VF610_CLK_USBC0] = imx_clk_gate2("usbc0", "ipg_bus", CCM_CCGR1, CCM_CCGRx_CGn(4)); clk[VF610_CLK_USBC1] = imx_clk_gate2("usbc1", "ipg_bus", CCM_CCGR7, CCM_CCGRx_CGn(4)); clk[VF610_CLK_QSPI0_SEL] = imx_clk_mux("qspi0_sel", CCM_CSCMR1, 22, 2, qspi_sels, 4); clk[VF610_CLK_QSPI0_EN] = imx_clk_gate("qspi0_en", "qspi0_sel", CCM_CSCDR3, 4); clk[VF610_CLK_QSPI0_X4_DIV] = imx_clk_divider("qspi0_x4", "qspi0_en", CCM_CSCDR3, 0, 2); clk[VF610_CLK_QSPI0_X2_DIV] = imx_clk_divider("qspi0_x2", "qspi0_x4", CCM_CSCDR3, 2, 1); clk[VF610_CLK_QSPI0_X1_DIV] = imx_clk_divider("qspi0_x1", "qspi0_x2", CCM_CSCDR3, 3, 1); clk[VF610_CLK_QSPI0] = imx_clk_gate2("qspi0", "qspi0_x1", CCM_CCGR2, CCM_CCGRx_CGn(4)); clk[VF610_CLK_QSPI1_SEL] = imx_clk_mux("qspi1_sel", CCM_CSCMR1, 24, 2, qspi_sels, 4); clk[VF610_CLK_QSPI1_EN] = imx_clk_gate("qspi1_en", "qspi1_sel", CCM_CSCDR3, 12); clk[VF610_CLK_QSPI1_X4_DIV] = imx_clk_divider("qspi1_x4", "qspi1_en", CCM_CSCDR3, 8, 2); clk[VF610_CLK_QSPI1_X2_DIV] = imx_clk_divider("qspi1_x2", "qspi1_x4", CCM_CSCDR3, 10, 1); clk[VF610_CLK_QSPI1_X1_DIV] = imx_clk_divider("qspi1_x1", "qspi1_x2", CCM_CSCDR3, 11, 1); clk[VF610_CLK_QSPI1] = imx_clk_gate2("qspi1", "qspi1_x1", CCM_CCGR8, CCM_CCGRx_CGn(4)); clk[VF610_CLK_ENET_50M] = imx_clk_fixed_factor("enet_50m", "pll5_enet", 1, 10); clk[VF610_CLK_ENET_25M] = imx_clk_fixed_factor("enet_25m", "pll5_enet", 1, 20); clk[VF610_CLK_ENET_SEL] = imx_clk_mux("enet_sel", CCM_CSCMR2, 4, 2, rmii_sels, 4); clk[VF610_CLK_ENET_TS_SEL] = imx_clk_mux("enet_ts_sel", CCM_CSCMR2, 0, 3, enet_ts_sels, 7); clk[VF610_CLK_ENET] = imx_clk_gate("enet", "enet_sel", CCM_CSCDR1, 24); clk[VF610_CLK_ENET_TS] = imx_clk_gate("enet_ts", "enet_ts_sel", CCM_CSCDR1, 23); clk[VF610_CLK_ENET0] = imx_clk_gate2("enet0", "ipg_bus", CCM_CCGR9, CCM_CCGRx_CGn(0)); clk[VF610_CLK_ENET1] = imx_clk_gate2("enet1", "ipg_bus", CCM_CCGR9, CCM_CCGRx_CGn(1)); clk[VF610_CLK_PIT] = imx_clk_gate2("pit", "ipg_bus", CCM_CCGR1, CCM_CCGRx_CGn(7)); clk[VF610_CLK_UART0] = imx_clk_gate2_cgr("uart0", "ipg_bus", CCM_CCGR0, CCM_CCGRx_CGn(7), 0x2); clk[VF610_CLK_UART1] = imx_clk_gate2_cgr("uart1", "ipg_bus", CCM_CCGR0, CCM_CCGRx_CGn(8), 0x2); clk[VF610_CLK_UART2] = imx_clk_gate2_cgr("uart2", "ipg_bus", CCM_CCGR0, CCM_CCGRx_CGn(9), 0x2); clk[VF610_CLK_UART3] = imx_clk_gate2_cgr("uart3", "ipg_bus", CCM_CCGR0, CCM_CCGRx_CGn(10), 0x2); clk[VF610_CLK_UART4] = imx_clk_gate2_cgr("uart4", "ipg_bus", CCM_CCGR6, CCM_CCGRx_CGn(9), 0x2); clk[VF610_CLK_UART5] = imx_clk_gate2_cgr("uart5", "ipg_bus", CCM_CCGR6, CCM_CCGRx_CGn(10), 0x2); clk[VF610_CLK_I2C0] = imx_clk_gate2("i2c0", "ipg_bus", CCM_CCGR4, CCM_CCGRx_CGn(6)); clk[VF610_CLK_I2C1] = imx_clk_gate2("i2c1", "ipg_bus", CCM_CCGR4, CCM_CCGRx_CGn(7)); clk[VF610_CLK_I2C2] = imx_clk_gate2("i2c2", "ipg_bus", CCM_CCGR10, CCM_CCGRx_CGn(6)); clk[VF610_CLK_I2C3] = imx_clk_gate2("i2c3", "ipg_bus", CCM_CCGR10, CCM_CCGRx_CGn(7)); clk[VF610_CLK_DSPI0] = imx_clk_gate2("dspi0", "ipg_bus", CCM_CCGR0, CCM_CCGRx_CGn(12)); clk[VF610_CLK_DSPI1] = imx_clk_gate2("dspi1", "ipg_bus", CCM_CCGR0, CCM_CCGRx_CGn(13)); clk[VF610_CLK_DSPI2] = imx_clk_gate2("dspi2", "ipg_bus", CCM_CCGR6, CCM_CCGRx_CGn(12)); clk[VF610_CLK_DSPI3] = imx_clk_gate2("dspi3", "ipg_bus", CCM_CCGR6, CCM_CCGRx_CGn(13)); clk[VF610_CLK_CRC] = imx_clk_gate2("crc", "ipg_bus", CCM_CCGR1, CCM_CCGRx_CGn(3)); clk[VF610_CLK_WDT] = imx_clk_gate2("wdt", "ipg_bus", CCM_CCGR1, CCM_CCGRx_CGn(14)); clk[VF610_CLK_ESDHC0_SEL] = imx_clk_mux("esdhc0_sel", CCM_CSCMR1, 16, 2, esdhc_sels, 4); clk[VF610_CLK_ESDHC0_EN] = imx_clk_gate("esdhc0_en", "esdhc0_sel", CCM_CSCDR2, 28); clk[VF610_CLK_ESDHC0_DIV] = imx_clk_divider("esdhc0_div", "esdhc0_en", CCM_CSCDR2, 16, 4); clk[VF610_CLK_ESDHC0] = imx_clk_gate2("eshc0", "esdhc0_div", CCM_CCGR7, CCM_CCGRx_CGn(1)); clk[VF610_CLK_ESDHC1_SEL] = imx_clk_mux("esdhc1_sel", CCM_CSCMR1, 18, 2, esdhc_sels, 4); clk[VF610_CLK_ESDHC1_EN] = imx_clk_gate("esdhc1_en", "esdhc1_sel", CCM_CSCDR2, 29); clk[VF610_CLK_ESDHC1_DIV] = imx_clk_divider("esdhc1_div", "esdhc1_en", CCM_CSCDR2, 20, 4); clk[VF610_CLK_ESDHC1] = imx_clk_gate2("eshc1", "esdhc1_div", CCM_CCGR7, CCM_CCGRx_CGn(2)); /* * ftm_ext_clk and ftm_fix_clk are FTM timer counter's * selectable clock sources, both use a common enable bit * in CCM_CSCDR1, selecting "dummy" clock as parent of * "ftm0_ext_fix" make it serve only for enable/disable. */ clk[VF610_CLK_FTM0_EXT_SEL] = imx_clk_mux("ftm0_ext_sel", CCM_CSCMR2, 6, 2, ftm_ext_sels, 4); clk[VF610_CLK_FTM0_FIX_SEL] = imx_clk_mux("ftm0_fix_sel", CCM_CSCMR2, 14, 1, ftm_fix_sels, 2); clk[VF610_CLK_FTM0_EXT_FIX_EN] = imx_clk_gate("ftm0_ext_fix_en", "dummy", CCM_CSCDR1, 25); clk[VF610_CLK_FTM1_EXT_SEL] = imx_clk_mux("ftm1_ext_sel", CCM_CSCMR2, 8, 2, ftm_ext_sels, 4); clk[VF610_CLK_FTM1_FIX_SEL] = imx_clk_mux("ftm1_fix_sel", CCM_CSCMR2, 15, 1, ftm_fix_sels, 2); clk[VF610_CLK_FTM1_EXT_FIX_EN] = imx_clk_gate("ftm1_ext_fix_en", "dummy", CCM_CSCDR1, 26); clk[VF610_CLK_FTM2_EXT_SEL] = imx_clk_mux("ftm2_ext_sel", CCM_CSCMR2, 10, 2, ftm_ext_sels, 4); clk[VF610_CLK_FTM2_FIX_SEL] = imx_clk_mux("ftm2_fix_sel", CCM_CSCMR2, 16, 1, ftm_fix_sels, 2); clk[VF610_CLK_FTM2_EXT_FIX_EN] = imx_clk_gate("ftm2_ext_fix_en", "dummy", CCM_CSCDR1, 27); clk[VF610_CLK_FTM3_EXT_SEL] = imx_clk_mux("ftm3_ext_sel", CCM_CSCMR2, 12, 2, ftm_ext_sels, 4); clk[VF610_CLK_FTM3_FIX_SEL] = imx_clk_mux("ftm3_fix_sel", CCM_CSCMR2, 17, 1, ftm_fix_sels, 2); clk[VF610_CLK_FTM3_EXT_FIX_EN] = imx_clk_gate("ftm3_ext_fix_en", "dummy", CCM_CSCDR1, 28); /* ftm(n)_clk are FTM module operation clock */ clk[VF610_CLK_FTM0] = imx_clk_gate2("ftm0", "ipg_bus", CCM_CCGR1, CCM_CCGRx_CGn(8)); clk[VF610_CLK_FTM1] = imx_clk_gate2("ftm1", "ipg_bus", CCM_CCGR1, CCM_CCGRx_CGn(9)); clk[VF610_CLK_FTM2] = imx_clk_gate2("ftm2", "ipg_bus", CCM_CCGR7, CCM_CCGRx_CGn(8)); clk[VF610_CLK_FTM3] = imx_clk_gate2("ftm3", "ipg_bus", CCM_CCGR7, CCM_CCGRx_CGn(9)); clk[VF610_CLK_DCU0_SEL] = imx_clk_mux("dcu0_sel", CCM_CSCMR1, 28, 1, dcu_sels, 2); clk[VF610_CLK_DCU0_EN] = imx_clk_gate("dcu0_en", "dcu0_sel", CCM_CSCDR3, 19); clk[VF610_CLK_DCU0_DIV] = imx_clk_divider("dcu0_div", "dcu0_en", CCM_CSCDR3, 16, 3); clk[VF610_CLK_DCU0] = imx_clk_gate2("dcu0", "ipg_bus", CCM_CCGR3, CCM_CCGRx_CGn(8)); clk[VF610_CLK_DCU1_SEL] = imx_clk_mux("dcu1_sel", CCM_CSCMR1, 29, 1, dcu_sels, 2); clk[VF610_CLK_DCU1_EN] = imx_clk_gate("dcu1_en", "dcu1_sel", CCM_CSCDR3, 23); clk[VF610_CLK_DCU1_DIV] = imx_clk_divider("dcu1_div", "dcu1_en", CCM_CSCDR3, 20, 3); clk[VF610_CLK_DCU1] = imx_clk_gate2("dcu1", "ipg_bus", CCM_CCGR9, CCM_CCGRx_CGn(8)); clk[VF610_CLK_TCON0] = imx_clk_gate2("tcon0", "platform_bus", CCM_CCGR1, CCM_CCGRx_CGn(13)); clk[VF610_CLK_TCON1] = imx_clk_gate2("tcon1", "platform_bus", CCM_CCGR7, CCM_CCGRx_CGn(13)); clk[VF610_CLK_ESAI_SEL] = imx_clk_mux("esai_sel", CCM_CSCMR1, 20, 2, esai_sels, 4); clk[VF610_CLK_ESAI_EN] = imx_clk_gate("esai_en", "esai_sel", CCM_CSCDR2, 30); clk[VF610_CLK_ESAI_DIV] = imx_clk_divider("esai_div", "esai_en", CCM_CSCDR2, 24, 4); clk[VF610_CLK_ESAI] = imx_clk_gate2("esai", "esai_div", CCM_CCGR4, CCM_CCGRx_CGn(2)); clk[VF610_CLK_SAI0_SEL] = imx_clk_mux("sai0_sel", CCM_CSCMR1, 0, 2, sai_sels, 4); clk[VF610_CLK_SAI0_EN] = imx_clk_gate("sai0_en", "sai0_sel", CCM_CSCDR1, 16); clk[VF610_CLK_SAI0_DIV] = imx_clk_divider("sai0_div", "sai0_en", CCM_CSCDR1, 0, 4); clk[VF610_CLK_SAI0] = imx_clk_gate2("sai0", "ipg_bus", CCM_CCGR0, CCM_CCGRx_CGn(15)); clk[VF610_CLK_SAI1_SEL] = imx_clk_mux("sai1_sel", CCM_CSCMR1, 2, 2, sai_sels, 4); clk[VF610_CLK_SAI1_EN] = imx_clk_gate("sai1_en", "sai1_sel", CCM_CSCDR1, 17); clk[VF610_CLK_SAI1_DIV] = imx_clk_divider("sai1_div", "sai1_en", CCM_CSCDR1, 4, 4); clk[VF610_CLK_SAI1] = imx_clk_gate2("sai1", "ipg_bus", CCM_CCGR1, CCM_CCGRx_CGn(0)); clk[VF610_CLK_SAI2_SEL] = imx_clk_mux("sai2_sel", CCM_CSCMR1, 4, 2, sai_sels, 4); clk[VF610_CLK_SAI2_EN] = imx_clk_gate("sai2_en", "sai2_sel", CCM_CSCDR1, 18); clk[VF610_CLK_SAI2_DIV] = imx_clk_divider("sai2_div", "sai2_en", CCM_CSCDR1, 8, 4); clk[VF610_CLK_SAI2] = imx_clk_gate2("sai2", "ipg_bus", CCM_CCGR1, CCM_CCGRx_CGn(1)); clk[VF610_CLK_SAI3_SEL] = imx_clk_mux("sai3_sel", CCM_CSCMR1, 6, 2, sai_sels, 4); clk[VF610_CLK_SAI3_EN] = imx_clk_gate("sai3_en", "sai3_sel", CCM_CSCDR1, 19); clk[VF610_CLK_SAI3_DIV] = imx_clk_divider("sai3_div", "sai3_en", CCM_CSCDR1, 12, 4); clk[VF610_CLK_SAI3] = imx_clk_gate2("sai3", "ipg_bus", CCM_CCGR1, CCM_CCGRx_CGn(2)); clk[VF610_CLK_NFC_SEL] = imx_clk_mux("nfc_sel", CCM_CSCMR1, 12, 2, nfc_sels, 4); clk[VF610_CLK_NFC_EN] = imx_clk_gate("nfc_en", "nfc_sel", CCM_CSCDR2, 9); clk[VF610_CLK_NFC_PRE_DIV] = imx_clk_divider("nfc_pre_div", "nfc_en", CCM_CSCDR3, 13, 3); clk[VF610_CLK_NFC_FRAC_DIV] = imx_clk_divider("nfc_frac_div", "nfc_pre_div", CCM_CSCDR2, 4, 4); clk[VF610_CLK_NFC] = imx_clk_gate2("nfc", "nfc_frac_div", CCM_CCGR10, CCM_CCGRx_CGn(0)); clk[VF610_CLK_GPU_SEL] = imx_clk_mux("gpu_sel", CCM_CSCMR1, 14, 1, gpu_sels, 2); clk[VF610_CLK_GPU_EN] = imx_clk_gate("gpu_en", "gpu_sel", CCM_CSCDR2, 10); clk[VF610_CLK_GPU2D] = imx_clk_gate2("gpu", "gpu_en", CCM_CCGR8, CCM_CCGRx_CGn(15)); clk[VF610_CLK_VADC_SEL] = imx_clk_mux("vadc_sel", CCM_CSCMR1, 8, 2, vadc_sels, 3); clk[VF610_CLK_VADC_EN] = imx_clk_gate("vadc_en", "vadc_sel", CCM_CSCDR1, 22); clk[VF610_CLK_VADC_DIV] = imx_clk_divider("vadc_div", "vadc_en", CCM_CSCDR1, 20, 2); clk[VF610_CLK_VADC_DIV_HALF] = imx_clk_fixed_factor("vadc_div_half", "vadc_div", 1, 2); clk[VF610_CLK_VADC] = imx_clk_gate2("vadc", "vadc_div", CCM_CCGR8, CCM_CCGRx_CGn(7)); clk[VF610_CLK_ADC0] = imx_clk_gate2("adc0", "ipg_bus", CCM_CCGR1, CCM_CCGRx_CGn(11)); clk[VF610_CLK_ADC1] = imx_clk_gate2("adc1", "ipg_bus", CCM_CCGR7, CCM_CCGRx_CGn(11)); clk[VF610_CLK_DAC0] = imx_clk_gate2("dac0", "ipg_bus", CCM_CCGR8, CCM_CCGRx_CGn(12)); clk[VF610_CLK_DAC1] = imx_clk_gate2("dac1", "ipg_bus", CCM_CCGR8, CCM_CCGRx_CGn(13)); clk[VF610_CLK_ASRC] = imx_clk_gate2("asrc", "ipg_bus", CCM_CCGR4, CCM_CCGRx_CGn(1)); clk[VF610_CLK_FLEXCAN0_EN] = imx_clk_gate("flexcan0_en", "ipg_bus", CCM_CSCDR2, 11); clk[VF610_CLK_FLEXCAN0] = imx_clk_gate2("flexcan0", "flexcan0_en", CCM_CCGR0, CCM_CCGRx_CGn(0)); clk[VF610_CLK_FLEXCAN1_EN] = imx_clk_gate("flexcan1_en", "ipg_bus", CCM_CSCDR2, 12); clk[VF610_CLK_FLEXCAN1] = imx_clk_gate2("flexcan1", "flexcan1_en", CCM_CCGR9, CCM_CCGRx_CGn(4)); clk[VF610_CLK_DMAMUX0] = imx_clk_gate2("dmamux0", "platform_bus", CCM_CCGR0, CCM_CCGRx_CGn(4)); clk[VF610_CLK_DMAMUX1] = imx_clk_gate2("dmamux1", "platform_bus", CCM_CCGR0, CCM_CCGRx_CGn(5)); clk[VF610_CLK_DMAMUX2] = imx_clk_gate2("dmamux2", "platform_bus", CCM_CCGR6, CCM_CCGRx_CGn(1)); clk[VF610_CLK_DMAMUX3] = imx_clk_gate2("dmamux3", "platform_bus", CCM_CCGR6, CCM_CCGRx_CGn(2)); clk[VF610_CLK_SNVS] = imx_clk_gate2("snvs-rtc", "ipg_bus", CCM_CCGR6, CCM_CCGRx_CGn(7)); clk[VF610_CLK_DAP] = imx_clk_gate("dap", "platform_bus", CCM_CCSR, 24); clk[VF610_CLK_OCOTP] = imx_clk_gate("ocotp", "ipg_bus", CCM_CCGR6, CCM_CCGRx_CGn(5)); clk[VF610_CLK_CAAM] = imx_clk_gate2("caam", "ipg_bus", CCM_CCGR11, CCM_CCGRx_CGn(0)); imx_check_clocks(clk, ARRAY_SIZE(clk)); clk_set_parent(clk[VF610_CLK_QSPI0_SEL], clk[VF610_CLK_PLL1_PFD4]); clk_set_rate(clk[VF610_CLK_QSPI0_X4_DIV], clk_get_rate(clk[VF610_CLK_QSPI0_SEL]) / 2); clk_set_rate(clk[VF610_CLK_QSPI0_X2_DIV], clk_get_rate(clk[VF610_CLK_QSPI0_X4_DIV]) / 2); clk_set_rate(clk[VF610_CLK_QSPI0_X1_DIV], clk_get_rate(clk[VF610_CLK_QSPI0_X2_DIV]) / 2); clk_set_parent(clk[VF610_CLK_QSPI1_SEL], clk[VF610_CLK_PLL1_PFD4]); clk_set_rate(clk[VF610_CLK_QSPI1_X4_DIV], clk_get_rate(clk[VF610_CLK_QSPI1_SEL]) / 2); clk_set_rate(clk[VF610_CLK_QSPI1_X2_DIV], clk_get_rate(clk[VF610_CLK_QSPI1_X4_DIV]) / 2); clk_set_rate(clk[VF610_CLK_QSPI1_X1_DIV], clk_get_rate(clk[VF610_CLK_QSPI1_X2_DIV]) / 2); clk_set_parent(clk[VF610_CLK_SAI0_SEL], clk[VF610_CLK_AUDIO_EXT]); clk_set_parent(clk[VF610_CLK_SAI1_SEL], clk[VF610_CLK_AUDIO_EXT]); clk_set_parent(clk[VF610_CLK_SAI2_SEL], clk[VF610_CLK_AUDIO_EXT]); clk_set_parent(clk[VF610_CLK_SAI3_SEL], clk[VF610_CLK_AUDIO_EXT]); for (i = 0; i < ARRAY_SIZE(clks_init_on); i++) clk_prepare_enable(clk[clks_init_on[i]]); register_syscore_ops(&vf610_clk_syscore_ops); /* Add the clocks to provider list */ clk_data.clks = clk; clk_data.clk_num = ARRAY_SIZE(clk); of_clk_add_provider(np, of_clk_src_onecell_get, &clk_data); } CLK_OF_DECLARE(vf610, "fsl,vf610-ccm", vf610_clocks_init);
linux-master
drivers/clk/imx/clk-vf610.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2018 NXP. * Copyright (C) 2017 Pengutronix, Lucas Stach <[email protected]> */ #include <dt-bindings/clock/imx8mq-clock.h> #include <linux/clk-provider.h> #include <linux/err.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of_address.h> #include <linux/types.h> #include <linux/slab.h> #include <linux/platform_device.h> #include "clk.h" static u32 share_count_sai1; static u32 share_count_sai2; static u32 share_count_sai3; static u32 share_count_sai4; static u32 share_count_sai5; static u32 share_count_sai6; static u32 share_count_dcss; static u32 share_count_nand; static const char * const pll_ref_sels[] = { "osc_25m", "osc_27m", "hdmi_phy_27m", "dummy", }; static const char * const arm_pll_bypass_sels[] = {"arm_pll", "arm_pll_ref_sel", }; static const char * const gpu_pll_bypass_sels[] = {"gpu_pll", "gpu_pll_ref_sel", }; static const char * const vpu_pll_bypass_sels[] = {"vpu_pll", "vpu_pll_ref_sel", }; static const char * const audio_pll1_bypass_sels[] = {"audio_pll1", "audio_pll1_ref_sel", }; static const char * const audio_pll2_bypass_sels[] = {"audio_pll2", "audio_pll2_ref_sel", }; static const char * const video_pll1_bypass_sels[] = {"video_pll1", "video_pll1_ref_sel", }; static const char * const sys3_pll_out_sels[] = {"sys3_pll1_ref_sel", }; static const char * const dram_pll_out_sels[] = {"dram_pll1_ref_sel", }; static const char * const video2_pll_out_sels[] = {"video2_pll1_ref_sel", }; /* CCM ROOT */ static const char * const imx8mq_a53_sels[] = {"osc_25m", "arm_pll_out", "sys2_pll_500m", "sys2_pll_1000m", "sys1_pll_800m", "sys1_pll_400m", "audio_pll1_out", "sys3_pll_out", }; static const char * const imx8mq_a53_core_sels[] = {"arm_a53_div", "arm_pll_out", }; static const char * const imx8mq_arm_m4_sels[] = {"osc_25m", "sys2_pll_200m", "sys2_pll_250m", "sys1_pll_266m", "sys1_pll_800m", "audio_pll1_out", "video_pll1_out", "sys3_pll_out", }; static const char * const imx8mq_vpu_sels[] = {"osc_25m", "arm_pll_out", "sys2_pll_500m", "sys2_pll_1000m", "sys1_pll_800m", "sys1_pll_400m", "audio_pll1_out", "vpu_pll_out", }; static const char * const imx8mq_gpu_core_sels[] = {"osc_25m", "gpu_pll_out", "sys1_pll_800m", "sys3_pll_out", "sys2_pll_1000m", "audio_pll1_out", "video_pll1_out", "audio_pll2_out", }; static const char * const imx8mq_gpu_shader_sels[] = {"osc_25m", "gpu_pll_out", "sys1_pll_800m", "sys3_pll_out", "sys2_pll_1000m", "audio_pll1_out", "video_pll1_out", "audio_pll2_out", }; static const char * const imx8mq_main_axi_sels[] = {"osc_25m", "sys2_pll_333m", "sys1_pll_800m", "sys2_pll_250m", "sys2_pll_1000m", "audio_pll1_out", "video_pll1_out", "sys1_pll_100m",}; static const char * const imx8mq_enet_axi_sels[] = {"osc_25m", "sys1_pll_266m", "sys1_pll_800m", "sys2_pll_250m", "sys2_pll_200m", "audio_pll1_out", "video_pll1_out", "sys3_pll_out", }; static const char * const imx8mq_nand_usdhc_sels[] = {"osc_25m", "sys1_pll_266m", "sys1_pll_800m", "sys2_pll_200m", "sys1_pll_133m", "sys3_pll_out", "sys2_pll_250m", "audio_pll1_out", }; static const char * const imx8mq_vpu_bus_sels[] = {"osc_25m", "sys1_pll_800m", "vpu_pll_out", "audio_pll2_out", "sys3_pll_out", "sys2_pll_1000m", "sys2_pll_200m", "sys1_pll_100m", }; static const char * const imx8mq_disp_axi_sels[] = {"osc_25m", "sys2_pll_125m", "sys1_pll_800m", "sys3_pll_out", "sys1_pll_400m", "audio_pll2_out", "clk_ext1", "clk_ext4", }; static const char * const imx8mq_disp_apb_sels[] = {"osc_25m", "sys2_pll_125m", "sys1_pll_800m", "sys3_pll_out", "sys1_pll_40m", "audio_pll2_out", "clk_ext1", "clk_ext3", }; static const char * const imx8mq_disp_rtrm_sels[] = {"osc_25m", "sys1_pll_800m", "sys2_pll_200m", "sys1_pll_400m", "audio_pll1_out", "video_pll1_out", "clk_ext2", "clk_ext3", }; static const char * const imx8mq_usb_bus_sels[] = {"osc_25m", "sys2_pll_500m", "sys1_pll_800m", "sys2_pll_100m", "sys2_pll_200m", "clk_ext2", "clk_ext4", "audio_pll2_out", }; static const char * const imx8mq_gpu_axi_sels[] = {"osc_25m", "sys1_pll_800m", "gpu_pll_out", "sys3_pll_out", "sys2_pll_1000m", "audio_pll1_out", "video_pll1_out", "audio_pll2_out", }; static const char * const imx8mq_gpu_ahb_sels[] = {"osc_25m", "sys1_pll_800m", "gpu_pll_out", "sys3_pll_out", "sys2_pll_1000m", "audio_pll1_out", "video_pll1_out", "audio_pll2_out", }; static const char * const imx8mq_noc_sels[] = {"osc_25m", "sys1_pll_800m", "sys3_pll_out", "sys2_pll_1000m", "sys2_pll_500m", "audio_pll1_out", "video_pll1_out", "audio_pll2_out", }; static const char * const imx8mq_noc_apb_sels[] = {"osc_25m", "sys1_pll_400m", "sys3_pll_out", "sys2_pll_333m", "sys2_pll_200m", "sys1_pll_800m", "audio_pll1_out", "video_pll1_out", }; static const char * const imx8mq_ahb_sels[] = {"osc_25m", "sys1_pll_133m", "sys1_pll_800m", "sys1_pll_400m", "sys2_pll_125m", "sys3_pll_out", "audio_pll1_out", "video_pll1_out", }; static const char * const imx8mq_audio_ahb_sels[] = {"osc_25m", "sys2_pll_500m", "sys1_pll_800m", "sys2_pll_1000m", "sys2_pll_166m", "sys3_pll_out", "audio_pll1_out", "video_pll1_out", }; static const char * const imx8mq_dsi_ahb_sels[] = {"osc_25m", "sys2_pll_100m", "sys1_pll_80m", "sys1_pll_800m", "sys2_pll_1000m", "sys3_pll_out", "clk_ext3", "audio_pll2_out"}; static const char * const imx8mq_dram_alt_sels[] = {"osc_25m", "sys1_pll_800m", "sys1_pll_100m", "sys2_pll_500m", "sys2_pll_250m", "sys1_pll_400m", "audio_pll1_out", "sys1_pll_266m", }; static const char * const imx8mq_dram_apb_sels[] = {"osc_25m", "sys2_pll_200m", "sys1_pll_40m", "sys1_pll_160m", "sys1_pll_800m", "sys3_pll_out", "sys2_pll_250m", "audio_pll2_out", }; static const char * const imx8mq_vpu_g1_sels[] = {"osc_25m", "vpu_pll_out", "sys1_pll_800m", "sys2_pll_1000m", "sys1_pll_100m", "sys2_pll_125m", "sys3_pll_out", "audio_pll1_out", }; static const char * const imx8mq_vpu_g2_sels[] = {"osc_25m", "vpu_pll_out", "sys1_pll_800m", "sys2_pll_1000m", "sys1_pll_100m", "sys2_pll_125m", "sys3_pll_out", "audio_pll1_out", }; static const char * const imx8mq_disp_dtrc_sels[] = {"osc_25m", "vpu_pll_out", "sys1_pll_800m", "sys2_pll_1000m", "sys1_pll_160m", "sys2_pll_100m", "sys3_pll_out", "audio_pll2_out", }; static const char * const imx8mq_disp_dc8000_sels[] = {"osc_25m", "vpu_pll_out", "sys1_pll_800m", "sys2_pll_1000m", "sys1_pll_160m", "sys2_pll_100m", "sys3_pll_out", "audio_pll2_out", }; static const char * const imx8mq_pcie1_ctrl_sels[] = {"osc_25m", "sys2_pll_250m", "sys2_pll_200m", "sys1_pll_266m", "sys1_pll_800m", "sys2_pll_500m", "sys2_pll_333m", "sys3_pll_out", }; static const char * const imx8mq_pcie1_phy_sels[] = {"osc_25m", "sys2_pll_100m", "sys2_pll_500m", "clk_ext1", "clk_ext2", "clk_ext3", "clk_ext4", }; static const char * const imx8mq_pcie1_aux_sels[] = {"osc_25m", "sys2_pll_200m", "sys2_pll_50m", "sys3_pll_out", "sys2_pll_100m", "sys1_pll_80m", "sys1_pll_160m", "sys1_pll_200m", }; static const char * const imx8mq_dc_pixel_sels[] = {"osc_25m", "video_pll1_out", "audio_pll2_out", "audio_pll1_out", "sys1_pll_800m", "sys2_pll_1000m", "sys3_pll_out", "clk_ext4", }; static const char * const imx8mq_lcdif_pixel_sels[] = {"osc_25m", "video_pll1_out", "audio_pll2_out", "audio_pll1_out", "sys1_pll_800m", "sys2_pll_1000m", "sys3_pll_out", "clk_ext4", }; static const char * const imx8mq_sai1_sels[] = {"osc_25m", "audio_pll1_out", "audio_pll2_out", "video_pll1_out", "sys1_pll_133m", "osc_27m", "clk_ext1", "clk_ext2", }; static const char * const imx8mq_sai2_sels[] = {"osc_25m", "audio_pll1_out", "audio_pll2_out", "video_pll1_out", "sys1_pll_133m", "osc_27m", "clk_ext2", "clk_ext3", }; static const char * const imx8mq_sai3_sels[] = {"osc_25m", "audio_pll1_out", "audio_pll2_out", "video_pll1_out", "sys1_pll_133m", "osc_27m", "clk_ext3", "clk_ext4", }; static const char * const imx8mq_sai4_sels[] = {"osc_25m", "audio_pll1_out", "audio_pll2_out", "video_pll1_out", "sys1_pll_133m", "osc_27m", "clk_ext1", "clk_ext2", }; static const char * const imx8mq_sai5_sels[] = {"osc_25m", "audio_pll1_out", "audio_pll2_out", "video_pll1_out", "sys1_pll_133m", "osc_27m", "clk_ext2", "clk_ext3", }; static const char * const imx8mq_sai6_sels[] = {"osc_25m", "audio_pll1_out", "audio_pll2_out", "video_pll1_out", "sys1_pll_133m", "osc_27m", "clk_ext3", "clk_ext4", }; static const char * const imx8mq_spdif1_sels[] = {"osc_25m", "audio_pll1_out", "audio_pll2_out", "video_pll1_out", "sys1_pll_133m", "osc_27m", "clk_ext2", "clk_ext3", }; static const char * const imx8mq_spdif2_sels[] = {"osc_25m", "audio_pll1_out", "audio_pll2_out", "video_pll1_out", "sys1_pll_133m", "osc_27m", "clk_ext3", "clk_ext4", }; static const char * const imx8mq_enet_ref_sels[] = {"osc_25m", "sys2_pll_125m", "sys2_pll_500m", "sys2_pll_100m", "sys1_pll_160m", "audio_pll1_out", "video_pll1_out", "clk_ext4", }; static const char * const imx8mq_enet_timer_sels[] = {"osc_25m", "sys2_pll_100m", "audio_pll1_out", "clk_ext1", "clk_ext2", "clk_ext3", "clk_ext4", "video_pll1_out", }; static const char * const imx8mq_enet_phy_sels[] = {"osc_25m", "sys2_pll_50m", "sys2_pll_125m", "sys2_pll_500m", "audio_pll1_out", "video_pll1_out", "audio_pll2_out", }; static const char * const imx8mq_nand_sels[] = {"osc_25m", "sys2_pll_500m", "audio_pll1_out", "sys1_pll_400m", "audio_pll2_out", "sys3_pll_out", "sys2_pll_250m", "video_pll1_out", }; static const char * const imx8mq_qspi_sels[] = {"osc_25m", "sys1_pll_400m", "sys1_pll_800m", "sys2_pll_500m", "audio_pll2_out", "sys1_pll_266m", "sys3_pll_out", "sys1_pll_100m", }; static const char * const imx8mq_usdhc1_sels[] = {"osc_25m", "sys1_pll_400m", "sys1_pll_800m", "sys2_pll_500m", "sys3_pll_out", "sys1_pll_266m", "audio_pll2_out", "sys1_pll_100m", }; static const char * const imx8mq_usdhc2_sels[] = {"osc_25m", "sys1_pll_400m", "sys1_pll_800m", "sys2_pll_500m", "sys3_pll_out", "sys1_pll_266m", "audio_pll2_out", "sys1_pll_100m", }; static const char * const imx8mq_i2c1_sels[] = {"osc_25m", "sys1_pll_160m", "sys2_pll_50m", "sys3_pll_out", "audio_pll1_out", "video_pll1_out", "audio_pll2_out", "sys1_pll_133m", }; static const char * const imx8mq_i2c2_sels[] = {"osc_25m", "sys1_pll_160m", "sys2_pll_50m", "sys3_pll_out", "audio_pll1_out", "video_pll1_out", "audio_pll2_out", "sys1_pll_133m", }; static const char * const imx8mq_i2c3_sels[] = {"osc_25m", "sys1_pll_160m", "sys2_pll_50m", "sys3_pll_out", "audio_pll1_out", "video_pll1_out", "audio_pll2_out", "sys1_pll_133m", }; static const char * const imx8mq_i2c4_sels[] = {"osc_25m", "sys1_pll_160m", "sys2_pll_50m", "sys3_pll_out", "audio_pll1_out", "video_pll1_out", "audio_pll2_out", "sys1_pll_133m", }; static const char * const imx8mq_uart1_sels[] = {"osc_25m", "sys1_pll_80m", "sys2_pll_200m", "sys2_pll_100m", "sys3_pll_out", "clk_ext2", "clk_ext4", "audio_pll2_out", }; static const char * const imx8mq_uart2_sels[] = {"osc_25m", "sys1_pll_80m", "sys2_pll_200m", "sys2_pll_100m", "sys3_pll_out", "clk_ext2", "clk_ext3", "audio_pll2_out", }; static const char * const imx8mq_uart3_sels[] = {"osc_25m", "sys1_pll_80m", "sys2_pll_200m", "sys2_pll_100m", "sys3_pll_out", "clk_ext2", "clk_ext4", "audio_pll2_out", }; static const char * const imx8mq_uart4_sels[] = {"osc_25m", "sys1_pll_80m", "sys2_pll_200m", "sys2_pll_100m", "sys3_pll_out", "clk_ext2", "clk_ext3", "audio_pll2_out", }; static const char * const imx8mq_usb_core_sels[] = {"osc_25m", "sys1_pll_100m", "sys1_pll_40m", "sys2_pll_100m", "sys2_pll_200m", "clk_ext2", "clk_ext3", "audio_pll2_out", }; static const char * const imx8mq_usb_phy_sels[] = {"osc_25m", "sys1_pll_100m", "sys1_pll_40m", "sys2_pll_100m", "sys2_pll_200m", "clk_ext2", "clk_ext3", "audio_pll2_out", }; static const char * const imx8mq_gic_sels[] = {"osc_25m", "sys2_pll_200m", "sys1_pll_40m", "sys2_pll_100m", "sys2_pll_200m", "clk_ext2", "clk_ext3", "audio_pll2_out" }; static const char * const imx8mq_ecspi1_sels[] = {"osc_25m", "sys2_pll_200m", "sys1_pll_40m", "sys1_pll_160m", "sys1_pll_800m", "sys3_pll_out", "sys2_pll_250m", "audio_pll2_out", }; static const char * const imx8mq_ecspi2_sels[] = {"osc_25m", "sys2_pll_200m", "sys1_pll_40m", "sys1_pll_160m", "sys1_pll_800m", "sys3_pll_out", "sys2_pll_250m", "audio_pll2_out", }; static const char * const imx8mq_pwm1_sels[] = {"osc_25m", "sys2_pll_100m", "sys1_pll_160m", "sys1_pll_40m", "sys3_pll_out", "clk_ext1", "sys1_pll_80m", "video_pll1_out", }; static const char * const imx8mq_pwm2_sels[] = {"osc_25m", "sys2_pll_100m", "sys1_pll_160m", "sys1_pll_40m", "sys3_pll_out", "clk_ext1", "sys1_pll_80m", "video_pll1_out", }; static const char * const imx8mq_pwm3_sels[] = {"osc_25m", "sys2_pll_100m", "sys1_pll_160m", "sys1_pll_40m", "sys3_pll_out", "clk_ext2", "sys1_pll_80m", "video_pll1_out", }; static const char * const imx8mq_pwm4_sels[] = {"osc_25m", "sys2_pll_100m", "sys1_pll_160m", "sys1_pll_40m", "sys3_pll_out", "clk_ext2", "sys1_pll_80m", "video_pll1_out", }; static const char * const imx8mq_gpt1_sels[] = {"osc_25m", "sys2_pll_100m", "sys1_pll_400m", "sys1_pll_40m", "sys1_pll_80m", "audio_pll1_out", "clk_ext1", }; static const char * const imx8mq_wdog_sels[] = {"osc_25m", "sys1_pll_133m", "sys1_pll_160m", "vpu_pll_out", "sys2_pll_125m", "sys3_pll_out", "sys1_pll_80m", "sys2_pll_166m", }; static const char * const imx8mq_wrclk_sels[] = {"osc_25m", "sys1_pll_40m", "vpu_pll_out", "sys3_pll_out", "sys2_pll_200m", "sys1_pll_266m", "sys2_pll_500m", "sys1_pll_100m", }; static const char * const imx8mq_dsi_core_sels[] = {"osc_25m", "sys1_pll_266m", "sys2_pll_250m", "sys1_pll_800m", "sys2_pll_1000m", "sys3_pll_out", "audio_pll2_out", "video_pll1_out", }; static const char * const imx8mq_dsi_phy_sels[] = {"osc_25m", "sys2_pll_125m", "sys2_pll_100m", "sys1_pll_800m", "sys2_pll_1000m", "clk_ext2", "audio_pll2_out", "video_pll1_out", }; static const char * const imx8mq_dsi_dbi_sels[] = {"osc_25m", "sys1_pll_266m", "sys2_pll_100m", "sys1_pll_800m", "sys2_pll_1000m", "sys3_pll_out", "audio_pll2_out", "video_pll1_out", }; static const char * const imx8mq_dsi_esc_sels[] = {"osc_25m", "sys2_pll_100m", "sys1_pll_80m", "sys1_pll_800m", "sys2_pll_1000m", "sys3_pll_out", "clk_ext3", "audio_pll2_out", }; static const char * const imx8mq_csi1_core_sels[] = {"osc_25m", "sys1_pll_266m", "sys2_pll_250m", "sys1_pll_800m", "sys2_pll_1000m", "sys3_pll_out", "audio_pll2_out", "video_pll1_out", }; static const char * const imx8mq_csi1_phy_sels[] = {"osc_25m", "sys2_pll_125m", "sys2_pll_100m", "sys1_pll_800m", "sys2_pll_1000m", "clk_ext2", "audio_pll2_out", "video_pll1_out", }; static const char * const imx8mq_csi1_esc_sels[] = {"osc_25m", "sys2_pll_100m", "sys1_pll_80m", "sys1_pll_800m", "sys2_pll_1000m", "sys3_pll_out", "clk_ext3", "audio_pll2_out", }; static const char * const imx8mq_csi2_core_sels[] = {"osc_25m", "sys1_pll_266m", "sys2_pll_250m", "sys1_pll_800m", "sys2_pll_1000m", "sys3_pll_out", "audio_pll2_out", "video_pll1_out", }; static const char * const imx8mq_csi2_phy_sels[] = {"osc_25m", "sys2_pll_125m", "sys2_pll_100m", "sys1_pll_800m", "sys2_pll_1000m", "clk_ext2", "audio_pll2_out", "video_pll1_out", }; static const char * const imx8mq_csi2_esc_sels[] = {"osc_25m", "sys2_pll_100m", "sys1_pll_80m", "sys1_pll_800m", "sys2_pll_1000m", "sys3_pll_out", "clk_ext3", "audio_pll2_out", }; static const char * const imx8mq_pcie2_ctrl_sels[] = {"osc_25m", "sys2_pll_250m", "sys2_pll_200m", "sys1_pll_266m", "sys1_pll_800m", "sys2_pll_500m", "sys2_pll_333m", "sys3_pll_out", }; static const char * const imx8mq_pcie2_phy_sels[] = {"osc_25m", "sys2_pll_100m", "sys2_pll_500m", "clk_ext1", "clk_ext2", "clk_ext3", "clk_ext4", "sys1_pll_400m", }; static const char * const imx8mq_pcie2_aux_sels[] = {"osc_25m", "sys2_pll_200m", "sys2_pll_50m", "sys3_pll_out", "sys2_pll_100m", "sys1_pll_80m", "sys1_pll_160m", "sys1_pll_200m", }; static const char * const imx8mq_ecspi3_sels[] = {"osc_25m", "sys2_pll_200m", "sys1_pll_40m", "sys1_pll_160m", "sys1_pll_800m", "sys3_pll_out", "sys2_pll_250m", "audio_pll2_out", }; static const char * const imx8mq_dram_core_sels[] = {"dram_pll_out", "dram_alt_root", }; static const char * const imx8mq_clko1_sels[] = {"osc_25m", "sys1_pll_800m", "osc_27m", "sys1_pll_200m", "audio_pll2_out", "sys2_pll_500m", "vpu_pll_out", "sys1_pll_80m", }; static const char * const imx8mq_clko2_sels[] = {"osc_25m", "sys2_pll_200m", "sys1_pll_400m", "sys2_pll_166m", "sys3_pll_out", "audio_pll1_out", "video_pll1_out", "ckil", }; static const char * const pllout_monitor_sels[] = {"osc_25m", "osc_27m", "dummy", "dummy", "ckil", "audio_pll1_out_monitor", "audio_pll2_out_monitor", "video_pll1_out_monitor", "gpu_pll_out_monitor", "vpu_pll_out_monitor", "arm_pll_out_monitor", "sys_pll1_out_monitor", "sys_pll2_out_monitor", "sys_pll3_out_monitor", "dram_pll_out_monitor", "video_pll2_out_monitor", }; static struct clk_hw_onecell_data *clk_hw_data; static struct clk_hw **hws; static int imx8mq_clocks_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; void __iomem *base; int err; clk_hw_data = kzalloc(struct_size(clk_hw_data, hws, IMX8MQ_CLK_END), GFP_KERNEL); if (WARN_ON(!clk_hw_data)) return -ENOMEM; clk_hw_data->num = IMX8MQ_CLK_END; hws = clk_hw_data->hws; hws[IMX8MQ_CLK_DUMMY] = imx_clk_hw_fixed("dummy", 0); hws[IMX8MQ_CLK_32K] = imx_get_clk_hw_by_name(np, "ckil"); hws[IMX8MQ_CLK_25M] = imx_get_clk_hw_by_name(np, "osc_25m"); hws[IMX8MQ_CLK_27M] = imx_get_clk_hw_by_name(np, "osc_27m"); hws[IMX8MQ_CLK_EXT1] = imx_get_clk_hw_by_name(np, "clk_ext1"); hws[IMX8MQ_CLK_EXT2] = imx_get_clk_hw_by_name(np, "clk_ext2"); hws[IMX8MQ_CLK_EXT3] = imx_get_clk_hw_by_name(np, "clk_ext3"); hws[IMX8MQ_CLK_EXT4] = imx_get_clk_hw_by_name(np, "clk_ext4"); np = of_find_compatible_node(NULL, NULL, "fsl,imx8mq-anatop"); base = of_iomap(np, 0); of_node_put(np); if (WARN_ON(!base)) return -ENOMEM; hws[IMX8MQ_ARM_PLL_REF_SEL] = imx_clk_hw_mux("arm_pll_ref_sel", base + 0x28, 16, 2, pll_ref_sels, ARRAY_SIZE(pll_ref_sels)); hws[IMX8MQ_GPU_PLL_REF_SEL] = imx_clk_hw_mux("gpu_pll_ref_sel", base + 0x18, 16, 2, pll_ref_sels, ARRAY_SIZE(pll_ref_sels)); hws[IMX8MQ_VPU_PLL_REF_SEL] = imx_clk_hw_mux("vpu_pll_ref_sel", base + 0x20, 16, 2, pll_ref_sels, ARRAY_SIZE(pll_ref_sels)); hws[IMX8MQ_AUDIO_PLL1_REF_SEL] = imx_clk_hw_mux("audio_pll1_ref_sel", base + 0x0, 16, 2, pll_ref_sels, ARRAY_SIZE(pll_ref_sels)); hws[IMX8MQ_AUDIO_PLL2_REF_SEL] = imx_clk_hw_mux("audio_pll2_ref_sel", base + 0x8, 16, 2, pll_ref_sels, ARRAY_SIZE(pll_ref_sels)); hws[IMX8MQ_VIDEO_PLL1_REF_SEL] = imx_clk_hw_mux("video_pll1_ref_sel", base + 0x10, 16, 2, pll_ref_sels, ARRAY_SIZE(pll_ref_sels)); hws[IMX8MQ_SYS3_PLL1_REF_SEL] = imx_clk_hw_mux("sys3_pll1_ref_sel", base + 0x48, 0, 2, pll_ref_sels, ARRAY_SIZE(pll_ref_sels)); hws[IMX8MQ_DRAM_PLL1_REF_SEL] = imx_clk_hw_mux("dram_pll1_ref_sel", base + 0x60, 0, 2, pll_ref_sels, ARRAY_SIZE(pll_ref_sels)); hws[IMX8MQ_VIDEO2_PLL1_REF_SEL] = imx_clk_hw_mux("video2_pll1_ref_sel", base + 0x54, 0, 2, pll_ref_sels, ARRAY_SIZE(pll_ref_sels)); hws[IMX8MQ_ARM_PLL_REF_DIV] = imx_clk_hw_divider("arm_pll_ref_div", "arm_pll_ref_sel", base + 0x28, 5, 6); hws[IMX8MQ_GPU_PLL_REF_DIV] = imx_clk_hw_divider("gpu_pll_ref_div", "gpu_pll_ref_sel", base + 0x18, 5, 6); hws[IMX8MQ_VPU_PLL_REF_DIV] = imx_clk_hw_divider("vpu_pll_ref_div", "vpu_pll_ref_sel", base + 0x20, 5, 6); hws[IMX8MQ_AUDIO_PLL1_REF_DIV] = imx_clk_hw_divider("audio_pll1_ref_div", "audio_pll1_ref_sel", base + 0x0, 5, 6); hws[IMX8MQ_AUDIO_PLL2_REF_DIV] = imx_clk_hw_divider("audio_pll2_ref_div", "audio_pll2_ref_sel", base + 0x8, 5, 6); hws[IMX8MQ_VIDEO_PLL1_REF_DIV] = imx_clk_hw_divider("video_pll1_ref_div", "video_pll1_ref_sel", base + 0x10, 5, 6); hws[IMX8MQ_ARM_PLL] = imx_clk_hw_frac_pll("arm_pll", "arm_pll_ref_div", base + 0x28); hws[IMX8MQ_GPU_PLL] = imx_clk_hw_frac_pll("gpu_pll", "gpu_pll_ref_div", base + 0x18); hws[IMX8MQ_VPU_PLL] = imx_clk_hw_frac_pll("vpu_pll", "vpu_pll_ref_div", base + 0x20); hws[IMX8MQ_AUDIO_PLL1] = imx_clk_hw_frac_pll("audio_pll1", "audio_pll1_ref_div", base + 0x0); hws[IMX8MQ_AUDIO_PLL2] = imx_clk_hw_frac_pll("audio_pll2", "audio_pll2_ref_div", base + 0x8); hws[IMX8MQ_VIDEO_PLL1] = imx_clk_hw_frac_pll("video_pll1", "video_pll1_ref_div", base + 0x10); /* PLL bypass out */ hws[IMX8MQ_ARM_PLL_BYPASS] = imx_clk_hw_mux_flags("arm_pll_bypass", base + 0x28, 14, 1, arm_pll_bypass_sels, ARRAY_SIZE(arm_pll_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX8MQ_GPU_PLL_BYPASS] = imx_clk_hw_mux("gpu_pll_bypass", base + 0x18, 14, 1, gpu_pll_bypass_sels, ARRAY_SIZE(gpu_pll_bypass_sels)); hws[IMX8MQ_VPU_PLL_BYPASS] = imx_clk_hw_mux("vpu_pll_bypass", base + 0x20, 14, 1, vpu_pll_bypass_sels, ARRAY_SIZE(vpu_pll_bypass_sels)); hws[IMX8MQ_AUDIO_PLL1_BYPASS] = imx_clk_hw_mux("audio_pll1_bypass", base + 0x0, 14, 1, audio_pll1_bypass_sels, ARRAY_SIZE(audio_pll1_bypass_sels)); hws[IMX8MQ_AUDIO_PLL2_BYPASS] = imx_clk_hw_mux("audio_pll2_bypass", base + 0x8, 14, 1, audio_pll2_bypass_sels, ARRAY_SIZE(audio_pll2_bypass_sels)); hws[IMX8MQ_VIDEO_PLL1_BYPASS] = imx_clk_hw_mux("video_pll1_bypass", base + 0x10, 14, 1, video_pll1_bypass_sels, ARRAY_SIZE(video_pll1_bypass_sels)); /* PLL OUT GATE */ hws[IMX8MQ_ARM_PLL_OUT] = imx_clk_hw_gate("arm_pll_out", "arm_pll_bypass", base + 0x28, 21); hws[IMX8MQ_GPU_PLL_OUT] = imx_clk_hw_gate("gpu_pll_out", "gpu_pll_bypass", base + 0x18, 21); hws[IMX8MQ_VPU_PLL_OUT] = imx_clk_hw_gate("vpu_pll_out", "vpu_pll_bypass", base + 0x20, 21); hws[IMX8MQ_AUDIO_PLL1_OUT] = imx_clk_hw_gate("audio_pll1_out", "audio_pll1_bypass", base + 0x0, 21); hws[IMX8MQ_AUDIO_PLL2_OUT] = imx_clk_hw_gate("audio_pll2_out", "audio_pll2_bypass", base + 0x8, 21); hws[IMX8MQ_VIDEO_PLL1_OUT] = imx_clk_hw_gate("video_pll1_out", "video_pll1_bypass", base + 0x10, 21); hws[IMX8MQ_SYS1_PLL_OUT] = imx_clk_hw_fixed("sys1_pll_out", 800000000); hws[IMX8MQ_SYS2_PLL_OUT] = imx_clk_hw_fixed("sys2_pll_out", 1000000000); hws[IMX8MQ_SYS3_PLL_OUT] = imx_clk_hw_sscg_pll("sys3_pll_out", sys3_pll_out_sels, ARRAY_SIZE(sys3_pll_out_sels), 0, 0, 0, base + 0x48, CLK_IS_CRITICAL); hws[IMX8MQ_DRAM_PLL_OUT] = imx_clk_hw_sscg_pll("dram_pll_out", dram_pll_out_sels, ARRAY_SIZE(dram_pll_out_sels), 0, 0, 0, base + 0x60, CLK_IS_CRITICAL | CLK_GET_RATE_NOCACHE); hws[IMX8MQ_VIDEO2_PLL_OUT] = imx_clk_hw_sscg_pll("video2_pll_out", video2_pll_out_sels, ARRAY_SIZE(video2_pll_out_sels), 0, 0, 0, base + 0x54, 0); /* SYS PLL1 fixed output */ hws[IMX8MQ_SYS1_PLL_40M] = imx_clk_hw_fixed_factor("sys1_pll_40m", "sys1_pll_out", 1, 20); hws[IMX8MQ_SYS1_PLL_80M] = imx_clk_hw_fixed_factor("sys1_pll_80m", "sys1_pll_out", 1, 10); hws[IMX8MQ_SYS1_PLL_100M] = imx_clk_hw_fixed_factor("sys1_pll_100m", "sys1_pll_out", 1, 8); hws[IMX8MQ_SYS1_PLL_133M] = imx_clk_hw_fixed_factor("sys1_pll_133m", "sys1_pll_out", 1, 6); hws[IMX8MQ_SYS1_PLL_160M] = imx_clk_hw_fixed_factor("sys1_pll_160m", "sys1_pll_out", 1, 5); hws[IMX8MQ_SYS1_PLL_200M] = imx_clk_hw_fixed_factor("sys1_pll_200m", "sys1_pll_out", 1, 4); hws[IMX8MQ_SYS1_PLL_266M] = imx_clk_hw_fixed_factor("sys1_pll_266m", "sys1_pll_out", 1, 3); hws[IMX8MQ_SYS1_PLL_400M] = imx_clk_hw_fixed_factor("sys1_pll_400m", "sys1_pll_out", 1, 2); hws[IMX8MQ_SYS1_PLL_800M] = imx_clk_hw_fixed_factor("sys1_pll_800m", "sys1_pll_out", 1, 1); /* SYS PLL2 fixed output */ hws[IMX8MQ_SYS2_PLL_50M] = imx_clk_hw_fixed_factor("sys2_pll_50m", "sys2_pll_out", 1, 20); hws[IMX8MQ_SYS2_PLL_100M] = imx_clk_hw_fixed_factor("sys2_pll_100m", "sys2_pll_out", 1, 10); hws[IMX8MQ_SYS2_PLL_125M] = imx_clk_hw_fixed_factor("sys2_pll_125m", "sys2_pll_out", 1, 8); hws[IMX8MQ_SYS2_PLL_166M] = imx_clk_hw_fixed_factor("sys2_pll_166m", "sys2_pll_out", 1, 6); hws[IMX8MQ_SYS2_PLL_200M] = imx_clk_hw_fixed_factor("sys2_pll_200m", "sys2_pll_out", 1, 5); hws[IMX8MQ_SYS2_PLL_250M] = imx_clk_hw_fixed_factor("sys2_pll_250m", "sys2_pll_out", 1, 4); hws[IMX8MQ_SYS2_PLL_333M] = imx_clk_hw_fixed_factor("sys2_pll_333m", "sys2_pll_out", 1, 3); hws[IMX8MQ_SYS2_PLL_500M] = imx_clk_hw_fixed_factor("sys2_pll_500m", "sys2_pll_out", 1, 2); hws[IMX8MQ_SYS2_PLL_1000M] = imx_clk_hw_fixed_factor("sys2_pll_1000m", "sys2_pll_out", 1, 1); hws[IMX8MQ_CLK_MON_AUDIO_PLL1_DIV] = imx_clk_hw_divider("audio_pll1_out_monitor", "audio_pll1_bypass", base + 0x78, 0, 3); hws[IMX8MQ_CLK_MON_AUDIO_PLL2_DIV] = imx_clk_hw_divider("audio_pll2_out_monitor", "audio_pll2_bypass", base + 0x78, 4, 3); hws[IMX8MQ_CLK_MON_VIDEO_PLL1_DIV] = imx_clk_hw_divider("video_pll1_out_monitor", "video_pll1_bypass", base + 0x78, 8, 3); hws[IMX8MQ_CLK_MON_GPU_PLL_DIV] = imx_clk_hw_divider("gpu_pll_out_monitor", "gpu_pll_bypass", base + 0x78, 12, 3); hws[IMX8MQ_CLK_MON_VPU_PLL_DIV] = imx_clk_hw_divider("vpu_pll_out_monitor", "vpu_pll_bypass", base + 0x78, 16, 3); hws[IMX8MQ_CLK_MON_ARM_PLL_DIV] = imx_clk_hw_divider("arm_pll_out_monitor", "arm_pll_bypass", base + 0x78, 20, 3); hws[IMX8MQ_CLK_MON_SYS_PLL1_DIV] = imx_clk_hw_divider("sys_pll1_out_monitor", "sys1_pll_out", base + 0x7c, 0, 3); hws[IMX8MQ_CLK_MON_SYS_PLL2_DIV] = imx_clk_hw_divider("sys_pll2_out_monitor", "sys2_pll_out", base + 0x7c, 4, 3); hws[IMX8MQ_CLK_MON_SYS_PLL3_DIV] = imx_clk_hw_divider("sys_pll3_out_monitor", "sys3_pll_out", base + 0x7c, 8, 3); hws[IMX8MQ_CLK_MON_DRAM_PLL_DIV] = imx_clk_hw_divider("dram_pll_out_monitor", "dram_pll_out", base + 0x7c, 12, 3); hws[IMX8MQ_CLK_MON_VIDEO_PLL2_DIV] = imx_clk_hw_divider("video_pll2_out_monitor", "video2_pll_out", base + 0x7c, 16, 3); hws[IMX8MQ_CLK_MON_SEL] = imx_clk_hw_mux("pllout_monitor_sel", base + 0x74, 0, 4, pllout_monitor_sels, ARRAY_SIZE(pllout_monitor_sels)); hws[IMX8MQ_CLK_MON_CLK2_OUT] = imx_clk_hw_gate("pllout_monitor_clk2", "pllout_monitor_sel", base + 0x74, 4); np = dev->of_node; base = devm_platform_ioremap_resource(pdev, 0); if (WARN_ON(IS_ERR(base))) return PTR_ERR(base); /* CORE */ hws[IMX8MQ_CLK_A53_DIV] = imx8m_clk_hw_composite_core("arm_a53_div", imx8mq_a53_sels, base + 0x8000); hws[IMX8MQ_CLK_A53_CG] = hws[IMX8MQ_CLK_A53_DIV]; hws[IMX8MQ_CLK_A53_SRC] = hws[IMX8MQ_CLK_A53_DIV]; hws[IMX8MQ_CLK_M4_CORE] = imx8m_clk_hw_composite_core("arm_m4_core", imx8mq_arm_m4_sels, base + 0x8080); hws[IMX8MQ_CLK_VPU_CORE] = imx8m_clk_hw_composite_core("vpu_core", imx8mq_vpu_sels, base + 0x8100); hws[IMX8MQ_CLK_GPU_CORE] = imx8m_clk_hw_composite_core("gpu_core", imx8mq_gpu_core_sels, base + 0x8180); hws[IMX8MQ_CLK_GPU_SHADER] = imx8m_clk_hw_composite("gpu_shader", imx8mq_gpu_shader_sels, base + 0x8200); /* For backwards compatibility */ hws[IMX8MQ_CLK_M4_SRC] = hws[IMX8MQ_CLK_M4_CORE]; hws[IMX8MQ_CLK_M4_CG] = hws[IMX8MQ_CLK_M4_CORE]; hws[IMX8MQ_CLK_M4_DIV] = hws[IMX8MQ_CLK_M4_CORE]; hws[IMX8MQ_CLK_VPU_SRC] = hws[IMX8MQ_CLK_VPU_CORE]; hws[IMX8MQ_CLK_VPU_CG] = hws[IMX8MQ_CLK_VPU_CORE]; hws[IMX8MQ_CLK_VPU_DIV] = hws[IMX8MQ_CLK_VPU_CORE]; hws[IMX8MQ_CLK_GPU_CORE_SRC] = hws[IMX8MQ_CLK_GPU_CORE]; hws[IMX8MQ_CLK_GPU_CORE_CG] = hws[IMX8MQ_CLK_GPU_CORE]; hws[IMX8MQ_CLK_GPU_CORE_DIV] = hws[IMX8MQ_CLK_GPU_CORE]; hws[IMX8MQ_CLK_GPU_SHADER_SRC] = hws[IMX8MQ_CLK_GPU_SHADER]; hws[IMX8MQ_CLK_GPU_SHADER_CG] = hws[IMX8MQ_CLK_GPU_SHADER]; hws[IMX8MQ_CLK_GPU_SHADER_DIV] = hws[IMX8MQ_CLK_GPU_SHADER]; /* CORE SEL */ hws[IMX8MQ_CLK_A53_CORE] = imx_clk_hw_mux2("arm_a53_core", base + 0x9880, 24, 1, imx8mq_a53_core_sels, ARRAY_SIZE(imx8mq_a53_core_sels)); /* BUS */ hws[IMX8MQ_CLK_MAIN_AXI] = imx8m_clk_hw_composite_bus_critical("main_axi", imx8mq_main_axi_sels, base + 0x8800); hws[IMX8MQ_CLK_ENET_AXI] = imx8m_clk_hw_composite_bus("enet_axi", imx8mq_enet_axi_sels, base + 0x8880); hws[IMX8MQ_CLK_NAND_USDHC_BUS] = imx8m_clk_hw_composite_bus("nand_usdhc_bus", imx8mq_nand_usdhc_sels, base + 0x8900); hws[IMX8MQ_CLK_VPU_BUS] = imx8m_clk_hw_composite_bus("vpu_bus", imx8mq_vpu_bus_sels, base + 0x8980); hws[IMX8MQ_CLK_DISP_AXI] = imx8m_clk_hw_composite_bus("disp_axi", imx8mq_disp_axi_sels, base + 0x8a00); hws[IMX8MQ_CLK_DISP_APB] = imx8m_clk_hw_composite_bus("disp_apb", imx8mq_disp_apb_sels, base + 0x8a80); hws[IMX8MQ_CLK_DISP_RTRM] = imx8m_clk_hw_composite_bus("disp_rtrm", imx8mq_disp_rtrm_sels, base + 0x8b00); hws[IMX8MQ_CLK_USB_BUS] = imx8m_clk_hw_composite_bus("usb_bus", imx8mq_usb_bus_sels, base + 0x8b80); hws[IMX8MQ_CLK_GPU_AXI] = imx8m_clk_hw_composite_bus("gpu_axi", imx8mq_gpu_axi_sels, base + 0x8c00); hws[IMX8MQ_CLK_GPU_AHB] = imx8m_clk_hw_composite_bus("gpu_ahb", imx8mq_gpu_ahb_sels, base + 0x8c80); hws[IMX8MQ_CLK_NOC] = imx8m_clk_hw_composite_bus_critical("noc", imx8mq_noc_sels, base + 0x8d00); hws[IMX8MQ_CLK_NOC_APB] = imx8m_clk_hw_composite_bus_critical("noc_apb", imx8mq_noc_apb_sels, base + 0x8d80); /* AHB */ /* AHB clock is used by the AHB bus therefore marked as critical */ hws[IMX8MQ_CLK_AHB] = imx8m_clk_hw_composite_bus_critical("ahb", imx8mq_ahb_sels, base + 0x9000); hws[IMX8MQ_CLK_AUDIO_AHB] = imx8m_clk_hw_composite_bus("audio_ahb", imx8mq_audio_ahb_sels, base + 0x9100); /* IPG */ hws[IMX8MQ_CLK_IPG_ROOT] = imx_clk_hw_divider2("ipg_root", "ahb", base + 0x9080, 0, 1); hws[IMX8MQ_CLK_IPG_AUDIO_ROOT] = imx_clk_hw_divider2("ipg_audio_root", "audio_ahb", base + 0x9180, 0, 1); /* * DRAM clocks are manipulated from TF-A outside clock framework. * The fw_managed helper sets GET_RATE_NOCACHE and clears SET_PARENT_GATE * as div value should always be read from hardware */ hws[IMX8MQ_CLK_DRAM_CORE] = imx_clk_hw_mux2_flags("dram_core_clk", base + 0x9800, 24, 1, imx8mq_dram_core_sels, ARRAY_SIZE(imx8mq_dram_core_sels), CLK_IS_CRITICAL); hws[IMX8MQ_CLK_DRAM_ALT] = imx8m_clk_hw_fw_managed_composite("dram_alt", imx8mq_dram_alt_sels, base + 0xa000); hws[IMX8MQ_CLK_DRAM_APB] = imx8m_clk_hw_fw_managed_composite_critical("dram_apb", imx8mq_dram_apb_sels, base + 0xa080); /* IP */ hws[IMX8MQ_CLK_VPU_G1] = imx8m_clk_hw_composite("vpu_g1", imx8mq_vpu_g1_sels, base + 0xa100); hws[IMX8MQ_CLK_VPU_G2] = imx8m_clk_hw_composite("vpu_g2", imx8mq_vpu_g2_sels, base + 0xa180); hws[IMX8MQ_CLK_DISP_DTRC] = imx8m_clk_hw_composite("disp_dtrc", imx8mq_disp_dtrc_sels, base + 0xa200); hws[IMX8MQ_CLK_DISP_DC8000] = imx8m_clk_hw_composite("disp_dc8000", imx8mq_disp_dc8000_sels, base + 0xa280); hws[IMX8MQ_CLK_PCIE1_CTRL] = imx8m_clk_hw_composite("pcie1_ctrl", imx8mq_pcie1_ctrl_sels, base + 0xa300); hws[IMX8MQ_CLK_PCIE1_PHY] = imx8m_clk_hw_composite("pcie1_phy", imx8mq_pcie1_phy_sels, base + 0xa380); hws[IMX8MQ_CLK_PCIE1_AUX] = imx8m_clk_hw_composite("pcie1_aux", imx8mq_pcie1_aux_sels, base + 0xa400); hws[IMX8MQ_CLK_DC_PIXEL] = imx8m_clk_hw_composite("dc_pixel", imx8mq_dc_pixel_sels, base + 0xa480); hws[IMX8MQ_CLK_LCDIF_PIXEL] = imx8m_clk_hw_composite("lcdif_pixel", imx8mq_lcdif_pixel_sels, base + 0xa500); hws[IMX8MQ_CLK_SAI1] = imx8m_clk_hw_composite("sai1", imx8mq_sai1_sels, base + 0xa580); hws[IMX8MQ_CLK_SAI2] = imx8m_clk_hw_composite("sai2", imx8mq_sai2_sels, base + 0xa600); hws[IMX8MQ_CLK_SAI3] = imx8m_clk_hw_composite("sai3", imx8mq_sai3_sels, base + 0xa680); hws[IMX8MQ_CLK_SAI4] = imx8m_clk_hw_composite("sai4", imx8mq_sai4_sels, base + 0xa700); hws[IMX8MQ_CLK_SAI5] = imx8m_clk_hw_composite("sai5", imx8mq_sai5_sels, base + 0xa780); hws[IMX8MQ_CLK_SAI6] = imx8m_clk_hw_composite("sai6", imx8mq_sai6_sels, base + 0xa800); hws[IMX8MQ_CLK_SPDIF1] = imx8m_clk_hw_composite("spdif1", imx8mq_spdif1_sels, base + 0xa880); hws[IMX8MQ_CLK_SPDIF2] = imx8m_clk_hw_composite("spdif2", imx8mq_spdif2_sels, base + 0xa900); hws[IMX8MQ_CLK_ENET_REF] = imx8m_clk_hw_composite("enet_ref", imx8mq_enet_ref_sels, base + 0xa980); hws[IMX8MQ_CLK_ENET_TIMER] = imx8m_clk_hw_composite("enet_timer", imx8mq_enet_timer_sels, base + 0xaa00); hws[IMX8MQ_CLK_ENET_PHY_REF] = imx8m_clk_hw_composite("enet_phy", imx8mq_enet_phy_sels, base + 0xaa80); hws[IMX8MQ_CLK_NAND] = imx8m_clk_hw_composite("nand", imx8mq_nand_sels, base + 0xab00); hws[IMX8MQ_CLK_QSPI] = imx8m_clk_hw_composite("qspi", imx8mq_qspi_sels, base + 0xab80); hws[IMX8MQ_CLK_USDHC1] = imx8m_clk_hw_composite("usdhc1", imx8mq_usdhc1_sels, base + 0xac00); hws[IMX8MQ_CLK_USDHC2] = imx8m_clk_hw_composite("usdhc2", imx8mq_usdhc2_sels, base + 0xac80); hws[IMX8MQ_CLK_I2C1] = imx8m_clk_hw_composite("i2c1", imx8mq_i2c1_sels, base + 0xad00); hws[IMX8MQ_CLK_I2C2] = imx8m_clk_hw_composite("i2c2", imx8mq_i2c2_sels, base + 0xad80); hws[IMX8MQ_CLK_I2C3] = imx8m_clk_hw_composite("i2c3", imx8mq_i2c3_sels, base + 0xae00); hws[IMX8MQ_CLK_I2C4] = imx8m_clk_hw_composite("i2c4", imx8mq_i2c4_sels, base + 0xae80); hws[IMX8MQ_CLK_UART1] = imx8m_clk_hw_composite("uart1", imx8mq_uart1_sels, base + 0xaf00); hws[IMX8MQ_CLK_UART2] = imx8m_clk_hw_composite("uart2", imx8mq_uart2_sels, base + 0xaf80); hws[IMX8MQ_CLK_UART3] = imx8m_clk_hw_composite("uart3", imx8mq_uart3_sels, base + 0xb000); hws[IMX8MQ_CLK_UART4] = imx8m_clk_hw_composite("uart4", imx8mq_uart4_sels, base + 0xb080); hws[IMX8MQ_CLK_USB_CORE_REF] = imx8m_clk_hw_composite("usb_core_ref", imx8mq_usb_core_sels, base + 0xb100); hws[IMX8MQ_CLK_USB_PHY_REF] = imx8m_clk_hw_composite("usb_phy_ref", imx8mq_usb_phy_sels, base + 0xb180); hws[IMX8MQ_CLK_GIC] = imx8m_clk_hw_composite_critical("gic", imx8mq_gic_sels, base + 0xb200); hws[IMX8MQ_CLK_ECSPI1] = imx8m_clk_hw_composite("ecspi1", imx8mq_ecspi1_sels, base + 0xb280); hws[IMX8MQ_CLK_ECSPI2] = imx8m_clk_hw_composite("ecspi2", imx8mq_ecspi2_sels, base + 0xb300); hws[IMX8MQ_CLK_PWM1] = imx8m_clk_hw_composite("pwm1", imx8mq_pwm1_sels, base + 0xb380); hws[IMX8MQ_CLK_PWM2] = imx8m_clk_hw_composite("pwm2", imx8mq_pwm2_sels, base + 0xb400); hws[IMX8MQ_CLK_PWM3] = imx8m_clk_hw_composite("pwm3", imx8mq_pwm3_sels, base + 0xb480); hws[IMX8MQ_CLK_PWM4] = imx8m_clk_hw_composite("pwm4", imx8mq_pwm4_sels, base + 0xb500); hws[IMX8MQ_CLK_GPT1] = imx8m_clk_hw_composite("gpt1", imx8mq_gpt1_sels, base + 0xb580); hws[IMX8MQ_CLK_WDOG] = imx8m_clk_hw_composite("wdog", imx8mq_wdog_sels, base + 0xb900); hws[IMX8MQ_CLK_WRCLK] = imx8m_clk_hw_composite("wrclk", imx8mq_wrclk_sels, base + 0xb980); hws[IMX8MQ_CLK_CLKO1] = imx8m_clk_hw_composite("clko1", imx8mq_clko1_sels, base + 0xba00); hws[IMX8MQ_CLK_CLKO2] = imx8m_clk_hw_composite("clko2", imx8mq_clko2_sels, base + 0xba80); hws[IMX8MQ_CLK_DSI_CORE] = imx8m_clk_hw_composite("dsi_core", imx8mq_dsi_core_sels, base + 0xbb00); hws[IMX8MQ_CLK_DSI_PHY_REF] = imx8m_clk_hw_composite("dsi_phy_ref", imx8mq_dsi_phy_sels, base + 0xbb80); hws[IMX8MQ_CLK_DSI_DBI] = imx8m_clk_hw_composite("dsi_dbi", imx8mq_dsi_dbi_sels, base + 0xbc00); hws[IMX8MQ_CLK_DSI_ESC] = imx8m_clk_hw_composite("dsi_esc", imx8mq_dsi_esc_sels, base + 0xbc80); hws[IMX8MQ_CLK_DSI_AHB] = imx8m_clk_hw_composite("dsi_ahb", imx8mq_dsi_ahb_sels, base + 0x9200); hws[IMX8MQ_CLK_DSI_IPG_DIV] = imx_clk_hw_divider2("dsi_ipg_div", "dsi_ahb", base + 0x9280, 0, 6); hws[IMX8MQ_CLK_CSI1_CORE] = imx8m_clk_hw_composite("csi1_core", imx8mq_csi1_core_sels, base + 0xbd00); hws[IMX8MQ_CLK_CSI1_PHY_REF] = imx8m_clk_hw_composite("csi1_phy_ref", imx8mq_csi1_phy_sels, base + 0xbd80); hws[IMX8MQ_CLK_CSI1_ESC] = imx8m_clk_hw_composite("csi1_esc", imx8mq_csi1_esc_sels, base + 0xbe00); hws[IMX8MQ_CLK_CSI2_CORE] = imx8m_clk_hw_composite("csi2_core", imx8mq_csi2_core_sels, base + 0xbe80); hws[IMX8MQ_CLK_CSI2_PHY_REF] = imx8m_clk_hw_composite("csi2_phy_ref", imx8mq_csi2_phy_sels, base + 0xbf00); hws[IMX8MQ_CLK_CSI2_ESC] = imx8m_clk_hw_composite("csi2_esc", imx8mq_csi2_esc_sels, base + 0xbf80); hws[IMX8MQ_CLK_PCIE2_CTRL] = imx8m_clk_hw_composite("pcie2_ctrl", imx8mq_pcie2_ctrl_sels, base + 0xc000); hws[IMX8MQ_CLK_PCIE2_PHY] = imx8m_clk_hw_composite("pcie2_phy", imx8mq_pcie2_phy_sels, base + 0xc080); hws[IMX8MQ_CLK_PCIE2_AUX] = imx8m_clk_hw_composite("pcie2_aux", imx8mq_pcie2_aux_sels, base + 0xc100); hws[IMX8MQ_CLK_ECSPI3] = imx8m_clk_hw_composite("ecspi3", imx8mq_ecspi3_sels, base + 0xc180); hws[IMX8MQ_CLK_ECSPI1_ROOT] = imx_clk_hw_gate4("ecspi1_root_clk", "ecspi1", base + 0x4070, 0); hws[IMX8MQ_CLK_ECSPI2_ROOT] = imx_clk_hw_gate4("ecspi2_root_clk", "ecspi2", base + 0x4080, 0); hws[IMX8MQ_CLK_ECSPI3_ROOT] = imx_clk_hw_gate4("ecspi3_root_clk", "ecspi3", base + 0x4090, 0); hws[IMX8MQ_CLK_ENET1_ROOT] = imx_clk_hw_gate4("enet1_root_clk", "enet_axi", base + 0x40a0, 0); hws[IMX8MQ_CLK_GPIO1_ROOT] = imx_clk_hw_gate4("gpio1_root_clk", "ipg_root", base + 0x40b0, 0); hws[IMX8MQ_CLK_GPIO2_ROOT] = imx_clk_hw_gate4("gpio2_root_clk", "ipg_root", base + 0x40c0, 0); hws[IMX8MQ_CLK_GPIO3_ROOT] = imx_clk_hw_gate4("gpio3_root_clk", "ipg_root", base + 0x40d0, 0); hws[IMX8MQ_CLK_GPIO4_ROOT] = imx_clk_hw_gate4("gpio4_root_clk", "ipg_root", base + 0x40e0, 0); hws[IMX8MQ_CLK_GPIO5_ROOT] = imx_clk_hw_gate4("gpio5_root_clk", "ipg_root", base + 0x40f0, 0); hws[IMX8MQ_CLK_GPT1_ROOT] = imx_clk_hw_gate4("gpt1_root_clk", "gpt1", base + 0x4100, 0); hws[IMX8MQ_CLK_I2C1_ROOT] = imx_clk_hw_gate4("i2c1_root_clk", "i2c1", base + 0x4170, 0); hws[IMX8MQ_CLK_I2C2_ROOT] = imx_clk_hw_gate4("i2c2_root_clk", "i2c2", base + 0x4180, 0); hws[IMX8MQ_CLK_I2C3_ROOT] = imx_clk_hw_gate4("i2c3_root_clk", "i2c3", base + 0x4190, 0); hws[IMX8MQ_CLK_I2C4_ROOT] = imx_clk_hw_gate4("i2c4_root_clk", "i2c4", base + 0x41a0, 0); hws[IMX8MQ_CLK_MU_ROOT] = imx_clk_hw_gate4("mu_root_clk", "ipg_root", base + 0x4210, 0); hws[IMX8MQ_CLK_OCOTP_ROOT] = imx_clk_hw_gate4("ocotp_root_clk", "ipg_root", base + 0x4220, 0); hws[IMX8MQ_CLK_PCIE1_ROOT] = imx_clk_hw_gate4("pcie1_root_clk", "pcie1_ctrl", base + 0x4250, 0); hws[IMX8MQ_CLK_PCIE2_ROOT] = imx_clk_hw_gate4("pcie2_root_clk", "pcie2_ctrl", base + 0x4640, 0); hws[IMX8MQ_CLK_PWM1_ROOT] = imx_clk_hw_gate4("pwm1_root_clk", "pwm1", base + 0x4280, 0); hws[IMX8MQ_CLK_PWM2_ROOT] = imx_clk_hw_gate4("pwm2_root_clk", "pwm2", base + 0x4290, 0); hws[IMX8MQ_CLK_PWM3_ROOT] = imx_clk_hw_gate4("pwm3_root_clk", "pwm3", base + 0x42a0, 0); hws[IMX8MQ_CLK_PWM4_ROOT] = imx_clk_hw_gate4("pwm4_root_clk", "pwm4", base + 0x42b0, 0); hws[IMX8MQ_CLK_QSPI_ROOT] = imx_clk_hw_gate4("qspi_root_clk", "qspi", base + 0x42f0, 0); hws[IMX8MQ_CLK_RAWNAND_ROOT] = imx_clk_hw_gate2_shared2("nand_root_clk", "nand", base + 0x4300, 0, &share_count_nand); hws[IMX8MQ_CLK_NAND_USDHC_BUS_RAWNAND_CLK] = imx_clk_hw_gate2_shared2("nand_usdhc_rawnand_clk", "nand_usdhc_bus", base + 0x4300, 0, &share_count_nand); hws[IMX8MQ_CLK_SAI1_ROOT] = imx_clk_hw_gate2_shared2("sai1_root_clk", "sai1", base + 0x4330, 0, &share_count_sai1); hws[IMX8MQ_CLK_SAI1_IPG] = imx_clk_hw_gate2_shared2("sai1_ipg_clk", "ipg_audio_root", base + 0x4330, 0, &share_count_sai1); hws[IMX8MQ_CLK_SAI2_ROOT] = imx_clk_hw_gate2_shared2("sai2_root_clk", "sai2", base + 0x4340, 0, &share_count_sai2); hws[IMX8MQ_CLK_SAI2_IPG] = imx_clk_hw_gate2_shared2("sai2_ipg_clk", "ipg_root", base + 0x4340, 0, &share_count_sai2); hws[IMX8MQ_CLK_SAI3_ROOT] = imx_clk_hw_gate2_shared2("sai3_root_clk", "sai3", base + 0x4350, 0, &share_count_sai3); hws[IMX8MQ_CLK_SAI3_IPG] = imx_clk_hw_gate2_shared2("sai3_ipg_clk", "ipg_root", base + 0x4350, 0, &share_count_sai3); hws[IMX8MQ_CLK_SAI4_ROOT] = imx_clk_hw_gate2_shared2("sai4_root_clk", "sai4", base + 0x4360, 0, &share_count_sai4); hws[IMX8MQ_CLK_SAI4_IPG] = imx_clk_hw_gate2_shared2("sai4_ipg_clk", "ipg_audio_root", base + 0x4360, 0, &share_count_sai4); hws[IMX8MQ_CLK_SAI5_ROOT] = imx_clk_hw_gate2_shared2("sai5_root_clk", "sai5", base + 0x4370, 0, &share_count_sai5); hws[IMX8MQ_CLK_SAI5_IPG] = imx_clk_hw_gate2_shared2("sai5_ipg_clk", "ipg_audio_root", base + 0x4370, 0, &share_count_sai5); hws[IMX8MQ_CLK_SAI6_ROOT] = imx_clk_hw_gate2_shared2("sai6_root_clk", "sai6", base + 0x4380, 0, &share_count_sai6); hws[IMX8MQ_CLK_SAI6_IPG] = imx_clk_hw_gate2_shared2("sai6_ipg_clk", "ipg_audio_root", base + 0x4380, 0, &share_count_sai6); hws[IMX8MQ_CLK_UART1_ROOT] = imx_clk_hw_gate4("uart1_root_clk", "uart1", base + 0x4490, 0); hws[IMX8MQ_CLK_UART2_ROOT] = imx_clk_hw_gate4("uart2_root_clk", "uart2", base + 0x44a0, 0); hws[IMX8MQ_CLK_UART3_ROOT] = imx_clk_hw_gate4("uart3_root_clk", "uart3", base + 0x44b0, 0); hws[IMX8MQ_CLK_UART4_ROOT] = imx_clk_hw_gate4("uart4_root_clk", "uart4", base + 0x44c0, 0); hws[IMX8MQ_CLK_USB1_CTRL_ROOT] = imx_clk_hw_gate4("usb1_ctrl_root_clk", "usb_bus", base + 0x44d0, 0); hws[IMX8MQ_CLK_USB2_CTRL_ROOT] = imx_clk_hw_gate4("usb2_ctrl_root_clk", "usb_bus", base + 0x44e0, 0); hws[IMX8MQ_CLK_USB1_PHY_ROOT] = imx_clk_hw_gate4("usb1_phy_root_clk", "usb_phy_ref", base + 0x44f0, 0); hws[IMX8MQ_CLK_USB2_PHY_ROOT] = imx_clk_hw_gate4("usb2_phy_root_clk", "usb_phy_ref", base + 0x4500, 0); hws[IMX8MQ_CLK_USDHC1_ROOT] = imx_clk_hw_gate4("usdhc1_root_clk", "usdhc1", base + 0x4510, 0); hws[IMX8MQ_CLK_USDHC2_ROOT] = imx_clk_hw_gate4("usdhc2_root_clk", "usdhc2", base + 0x4520, 0); hws[IMX8MQ_CLK_WDOG1_ROOT] = imx_clk_hw_gate4("wdog1_root_clk", "wdog", base + 0x4530, 0); hws[IMX8MQ_CLK_WDOG2_ROOT] = imx_clk_hw_gate4("wdog2_root_clk", "wdog", base + 0x4540, 0); hws[IMX8MQ_CLK_WDOG3_ROOT] = imx_clk_hw_gate4("wdog3_root_clk", "wdog", base + 0x4550, 0); hws[IMX8MQ_CLK_VPU_G1_ROOT] = imx_clk_hw_gate2_flags("vpu_g1_root_clk", "vpu_g1", base + 0x4560, 0, CLK_SET_RATE_PARENT | CLK_OPS_PARENT_ENABLE); hws[IMX8MQ_CLK_GPU_ROOT] = imx_clk_hw_gate4("gpu_root_clk", "gpu_core", base + 0x4570, 0); hws[IMX8MQ_CLK_VPU_G2_ROOT] = imx_clk_hw_gate2_flags("vpu_g2_root_clk", "vpu_g2", base + 0x45a0, 0, CLK_SET_RATE_PARENT | CLK_OPS_PARENT_ENABLE); hws[IMX8MQ_CLK_DISP_ROOT] = imx_clk_hw_gate2_shared2("disp_root_clk", "disp_dc8000", base + 0x45d0, 0, &share_count_dcss); hws[IMX8MQ_CLK_DISP_AXI_ROOT] = imx_clk_hw_gate2_shared2("disp_axi_root_clk", "disp_axi", base + 0x45d0, 0, &share_count_dcss); hws[IMX8MQ_CLK_DISP_APB_ROOT] = imx_clk_hw_gate2_shared2("disp_apb_root_clk", "disp_apb", base + 0x45d0, 0, &share_count_dcss); hws[IMX8MQ_CLK_DISP_RTRM_ROOT] = imx_clk_hw_gate2_shared2("disp_rtrm_root_clk", "disp_rtrm", base + 0x45d0, 0, &share_count_dcss); hws[IMX8MQ_CLK_TMU_ROOT] = imx_clk_hw_gate4("tmu_root_clk", "ipg_root", base + 0x4620, 0); hws[IMX8MQ_CLK_VPU_DEC_ROOT] = imx_clk_hw_gate2_flags("vpu_dec_root_clk", "vpu_bus", base + 0x4630, 0, CLK_SET_RATE_PARENT | CLK_OPS_PARENT_ENABLE); hws[IMX8MQ_CLK_CSI1_ROOT] = imx_clk_hw_gate4("csi1_root_clk", "csi1_core", base + 0x4650, 0); hws[IMX8MQ_CLK_CSI2_ROOT] = imx_clk_hw_gate4("csi2_root_clk", "csi2_core", base + 0x4660, 0); hws[IMX8MQ_CLK_SDMA1_ROOT] = imx_clk_hw_gate4("sdma1_clk", "ipg_root", base + 0x43a0, 0); hws[IMX8MQ_CLK_SDMA2_ROOT] = imx_clk_hw_gate4("sdma2_clk", "ipg_audio_root", base + 0x43b0, 0); hws[IMX8MQ_GPT_3M_CLK] = imx_clk_hw_fixed_factor("gpt_3m", "osc_25m", 1, 8); hws[IMX8MQ_CLK_DRAM_ALT_ROOT] = imx_clk_hw_fixed_factor("dram_alt_root", "dram_alt", 1, 4); hws[IMX8MQ_CLK_ARM] = imx_clk_hw_cpu("arm", "arm_a53_core", hws[IMX8MQ_CLK_A53_CORE]->clk, hws[IMX8MQ_CLK_A53_CORE]->clk, hws[IMX8MQ_ARM_PLL_OUT]->clk, hws[IMX8MQ_CLK_A53_DIV]->clk); imx_check_clk_hws(hws, IMX8MQ_CLK_END); err = of_clk_add_hw_provider(np, of_clk_hw_onecell_get, clk_hw_data); if (err < 0) { dev_err(dev, "failed to register hws for i.MX8MQ\n"); goto unregister_hws; } imx_register_uart_clocks(); return 0; unregister_hws: imx_unregister_hw_clocks(hws, IMX8MQ_CLK_END); return err; } static const struct of_device_id imx8mq_clk_of_match[] = { { .compatible = "fsl,imx8mq-ccm" }, { /* Sentinel */ }, }; MODULE_DEVICE_TABLE(of, imx8mq_clk_of_match); static struct platform_driver imx8mq_clk_driver = { .probe = imx8mq_clocks_probe, .driver = { .name = "imx8mq-ccm", /* * Disable bind attributes: clocks are not removed and * reloading the driver will crash or break devices. */ .suppress_bind_attrs = true, .of_match_table = imx8mq_clk_of_match, }, }; module_platform_driver(imx8mq_clk_driver); module_param(mcore_booted, bool, S_IRUGO); MODULE_PARM_DESC(mcore_booted, "See Cortex-M core is booted or not"); MODULE_AUTHOR("Abel Vesa <[email protected]>"); MODULE_DESCRIPTION("NXP i.MX8MQ clock driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/clk/imx/clk-imx8mq.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2019~2020 NXP */ #include <dt-bindings/firmware/imx/rsrc.h> #include "clk-scu.h" /* Keep sorted in the ascending order */ static u32 imx8dxl_clk_scu_rsrc_table[] = { IMX_SC_R_SPI_0, IMX_SC_R_SPI_1, IMX_SC_R_SPI_2, IMX_SC_R_SPI_3, IMX_SC_R_UART_0, IMX_SC_R_UART_1, IMX_SC_R_UART_2, IMX_SC_R_UART_3, IMX_SC_R_I2C_0, IMX_SC_R_I2C_1, IMX_SC_R_I2C_2, IMX_SC_R_I2C_3, IMX_SC_R_ADC_0, IMX_SC_R_FTM_0, IMX_SC_R_FTM_1, IMX_SC_R_CAN_0, IMX_SC_R_LCD_0, IMX_SC_R_LCD_0_PWM_0, IMX_SC_R_PWM_0, IMX_SC_R_PWM_1, IMX_SC_R_PWM_2, IMX_SC_R_PWM_3, IMX_SC_R_PWM_4, IMX_SC_R_PWM_5, IMX_SC_R_PWM_6, IMX_SC_R_PWM_7, IMX_SC_R_GPT_0, IMX_SC_R_GPT_1, IMX_SC_R_GPT_2, IMX_SC_R_GPT_3, IMX_SC_R_GPT_4, IMX_SC_R_FSPI_0, IMX_SC_R_FSPI_1, IMX_SC_R_SDHC_0, IMX_SC_R_SDHC_1, IMX_SC_R_SDHC_2, IMX_SC_R_ENET_0, IMX_SC_R_ENET_1, IMX_SC_R_MLB_0, IMX_SC_R_USB_1, IMX_SC_R_NAND, IMX_SC_R_M4_0_I2C, IMX_SC_R_M4_0_UART, IMX_SC_R_ELCDIF_PLL, IMX_SC_R_AUDIO_PLL_0, IMX_SC_R_AUDIO_PLL_1, IMX_SC_R_AUDIO_CLK_0, IMX_SC_R_AUDIO_CLK_1, IMX_SC_R_A35 }; const struct imx_clk_scu_rsrc_table imx_clk_scu_rsrc_imx8dxl = { .rsrc = imx8dxl_clk_scu_rsrc_table, .num = ARRAY_SIZE(imx8dxl_clk_scu_rsrc_table), };
linux-master
drivers/clk/imx/clk-imx8dxl-rsrc.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2008 Sascha Hauer <[email protected]>, Pengutronix */ #include <linux/clkdev.h> #include <linux/clk-provider.h> #include <linux/err.h> #include <linux/init.h> #include <linux/of.h> #include <linux/of_address.h> #include <dt-bindings/clock/imx1-clock.h> #include <asm/irq.h> #include "clk.h" #define MX1_CCM_BASE_ADDR 0x0021b000 #define MX1_TIM1_BASE_ADDR 0x00220000 #define MX1_TIM1_INT (NR_IRQS_LEGACY + 59) static const char *prem_sel_clks[] = { "clk32_premult", "clk16m", }; static const char *clko_sel_clks[] = { "per1", "hclk", "clk48m", "clk16m", "prem", "fclk", }; static struct clk *clk[IMX1_CLK_MAX]; static struct clk_onecell_data clk_data; static void __iomem *ccm __initdata; #define CCM_CSCR (ccm + 0x0000) #define CCM_MPCTL0 (ccm + 0x0004) #define CCM_SPCTL0 (ccm + 0x000c) #define CCM_PCDR (ccm + 0x0020) #define SCM_GCCR (ccm + 0x0810) static void __init mx1_clocks_init_dt(struct device_node *np) { ccm = of_iomap(np, 0); BUG_ON(!ccm); clk[IMX1_CLK_DUMMY] = imx_clk_fixed("dummy", 0); clk[IMX1_CLK_CLK32] = imx_obtain_fixed_clock("clk32", 32768); clk[IMX1_CLK_CLK16M_EXT] = imx_clk_fixed("clk16m_ext", 16000000); clk[IMX1_CLK_CLK16M] = imx_clk_gate("clk16m", "clk16m_ext", CCM_CSCR, 17); clk[IMX1_CLK_CLK32_PREMULT] = imx_clk_fixed_factor("clk32_premult", "clk32", 512, 1); clk[IMX1_CLK_PREM] = imx_clk_mux("prem", CCM_CSCR, 16, 1, prem_sel_clks, ARRAY_SIZE(prem_sel_clks)); clk[IMX1_CLK_MPLL] = imx_clk_pllv1(IMX_PLLV1_IMX1, "mpll", "clk32_premult", CCM_MPCTL0); clk[IMX1_CLK_MPLL_GATE] = imx_clk_gate("mpll_gate", "mpll", CCM_CSCR, 0); clk[IMX1_CLK_SPLL] = imx_clk_pllv1(IMX_PLLV1_IMX1, "spll", "prem", CCM_SPCTL0); clk[IMX1_CLK_SPLL_GATE] = imx_clk_gate("spll_gate", "spll", CCM_CSCR, 1); clk[IMX1_CLK_MCU] = imx_clk_divider("mcu", "clk32_premult", CCM_CSCR, 15, 1); clk[IMX1_CLK_FCLK] = imx_clk_divider("fclk", "mpll_gate", CCM_CSCR, 15, 1); clk[IMX1_CLK_HCLK] = imx_clk_divider("hclk", "spll_gate", CCM_CSCR, 10, 4); clk[IMX1_CLK_CLK48M] = imx_clk_divider("clk48m", "spll_gate", CCM_CSCR, 26, 3); clk[IMX1_CLK_PER1] = imx_clk_divider("per1", "spll_gate", CCM_PCDR, 0, 4); clk[IMX1_CLK_PER2] = imx_clk_divider("per2", "spll_gate", CCM_PCDR, 4, 4); clk[IMX1_CLK_PER3] = imx_clk_divider("per3", "spll_gate", CCM_PCDR, 16, 7); clk[IMX1_CLK_CLKO] = imx_clk_mux("clko", CCM_CSCR, 29, 3, clko_sel_clks, ARRAY_SIZE(clko_sel_clks)); clk[IMX1_CLK_UART3_GATE] = imx_clk_gate("uart3_gate", "hclk", SCM_GCCR, 6); clk[IMX1_CLK_SSI2_GATE] = imx_clk_gate("ssi2_gate", "hclk", SCM_GCCR, 5); clk[IMX1_CLK_BROM_GATE] = imx_clk_gate("brom_gate", "hclk", SCM_GCCR, 4); clk[IMX1_CLK_DMA_GATE] = imx_clk_gate("dma_gate", "hclk", SCM_GCCR, 3); clk[IMX1_CLK_CSI_GATE] = imx_clk_gate("csi_gate", "hclk", SCM_GCCR, 2); clk[IMX1_CLK_MMA_GATE] = imx_clk_gate("mma_gate", "hclk", SCM_GCCR, 1); clk[IMX1_CLK_USBD_GATE] = imx_clk_gate("usbd_gate", "clk48m", SCM_GCCR, 0); imx_check_clocks(clk, ARRAY_SIZE(clk)); clk_data.clks = clk; clk_data.clk_num = ARRAY_SIZE(clk); of_clk_add_provider(np, of_clk_src_onecell_get, &clk_data); } CLK_OF_DECLARE(imx1_ccm, "fsl,imx1-ccm", mx1_clocks_init_dt);
linux-master
drivers/clk/imx/clk-imx1.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2021 NXP */ #include <linux/bitfield.h> #include <linux/clk-provider.h> #include <linux/err.h> #include <linux/export.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/slab.h> #include <asm/div64.h> #include "clk.h" #define PLL_CTRL 0x0 #define HW_CTRL_SEL BIT(16) #define CLKMUX_BYPASS BIT(2) #define CLKMUX_EN BIT(1) #define POWERUP_MASK BIT(0) #define PLL_ANA_PRG 0x10 #define PLL_SPREAD_SPECTRUM 0x30 #define PLL_NUMERATOR 0x40 #define PLL_MFN_MASK GENMASK(31, 2) #define PLL_DENOMINATOR 0x50 #define PLL_MFD_MASK GENMASK(29, 0) #define PLL_DIV 0x60 #define PLL_MFI_MASK GENMASK(24, 16) #define PLL_RDIV_MASK GENMASK(15, 13) #define PLL_ODIV_MASK GENMASK(7, 0) #define PLL_DFS_CTRL(x) (0x70 + (x) * 0x10) #define PLL_STATUS 0xF0 #define LOCK_STATUS BIT(0) #define DFS_STATUS 0xF4 #define LOCK_TIMEOUT_US 200 #define PLL_FRACN_GP(_rate, _mfi, _mfn, _mfd, _rdiv, _odiv) \ { \ .rate = (_rate), \ .mfi = (_mfi), \ .mfn = (_mfn), \ .mfd = (_mfd), \ .rdiv = (_rdiv), \ .odiv = (_odiv), \ } #define PLL_FRACN_GP_INTEGER(_rate, _mfi, _rdiv, _odiv) \ { \ .rate = (_rate), \ .mfi = (_mfi), \ .mfn = 0, \ .mfd = 0, \ .rdiv = (_rdiv), \ .odiv = (_odiv), \ } struct clk_fracn_gppll { struct clk_hw hw; void __iomem *base; const struct imx_fracn_gppll_rate_table *rate_table; int rate_count; u32 flags; }; /* * Fvco = (Fref / rdiv) * (MFI + MFN / MFD) * Fout = Fvco / odiv * The (Fref / rdiv) should be in range 20MHz to 40MHz * The Fvco should be in range 2.5Ghz to 5Ghz */ static const struct imx_fracn_gppll_rate_table fracn_tbl[] = { PLL_FRACN_GP(650000000U, 162, 50, 100, 0, 6), PLL_FRACN_GP(594000000U, 198, 0, 1, 0, 8), PLL_FRACN_GP(560000000U, 140, 0, 1, 0, 6), PLL_FRACN_GP(519750000U, 173, 25, 100, 1, 8), PLL_FRACN_GP(498000000U, 166, 0, 1, 0, 8), PLL_FRACN_GP(484000000U, 121, 0, 1, 0, 6), PLL_FRACN_GP(445333333U, 167, 0, 1, 0, 9), PLL_FRACN_GP(400000000U, 200, 0, 1, 0, 12), PLL_FRACN_GP(393216000U, 163, 84, 100, 0, 10), PLL_FRACN_GP(300000000U, 150, 0, 1, 0, 12) }; struct imx_fracn_gppll_clk imx_fracn_gppll = { .rate_table = fracn_tbl, .rate_count = ARRAY_SIZE(fracn_tbl), }; EXPORT_SYMBOL_GPL(imx_fracn_gppll); /* * Fvco = (Fref / rdiv) * MFI * Fout = Fvco / odiv * The (Fref / rdiv) should be in range 20MHz to 40MHz * The Fvco should be in range 2.5Ghz to 5Ghz */ static const struct imx_fracn_gppll_rate_table int_tbl[] = { PLL_FRACN_GP_INTEGER(1700000000U, 141, 1, 2), PLL_FRACN_GP_INTEGER(1400000000U, 175, 1, 3), PLL_FRACN_GP_INTEGER(900000000U, 150, 1, 4), }; struct imx_fracn_gppll_clk imx_fracn_gppll_integer = { .rate_table = int_tbl, .rate_count = ARRAY_SIZE(int_tbl), }; EXPORT_SYMBOL_GPL(imx_fracn_gppll_integer); static inline struct clk_fracn_gppll *to_clk_fracn_gppll(struct clk_hw *hw) { return container_of(hw, struct clk_fracn_gppll, hw); } static const struct imx_fracn_gppll_rate_table * imx_get_pll_settings(struct clk_fracn_gppll *pll, unsigned long rate) { const struct imx_fracn_gppll_rate_table *rate_table = pll->rate_table; int i; for (i = 0; i < pll->rate_count; i++) if (rate == rate_table[i].rate) return &rate_table[i]; return NULL; } static long clk_fracn_gppll_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { struct clk_fracn_gppll *pll = to_clk_fracn_gppll(hw); const struct imx_fracn_gppll_rate_table *rate_table = pll->rate_table; int i; /* Assuming rate_table is in descending order */ for (i = 0; i < pll->rate_count; i++) if (rate >= rate_table[i].rate) return rate_table[i].rate; /* return minimum supported value */ return rate_table[pll->rate_count - 1].rate; } static unsigned long clk_fracn_gppll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_fracn_gppll *pll = to_clk_fracn_gppll(hw); const struct imx_fracn_gppll_rate_table *rate_table = pll->rate_table; u32 pll_numerator, pll_denominator, pll_div; u32 mfi, mfn, mfd, rdiv, odiv; u64 fvco = parent_rate; long rate = 0; int i; pll_numerator = readl_relaxed(pll->base + PLL_NUMERATOR); mfn = FIELD_GET(PLL_MFN_MASK, pll_numerator); pll_denominator = readl_relaxed(pll->base + PLL_DENOMINATOR); mfd = FIELD_GET(PLL_MFD_MASK, pll_denominator); pll_div = readl_relaxed(pll->base + PLL_DIV); mfi = FIELD_GET(PLL_MFI_MASK, pll_div); rdiv = FIELD_GET(PLL_RDIV_MASK, pll_div); odiv = FIELD_GET(PLL_ODIV_MASK, pll_div); /* * Sometimes, the recalculated rate has deviation due to * the frac part. So find the accurate pll rate from the table * first, if no match rate in the table, use the rate calculated * from the equation below. */ for (i = 0; i < pll->rate_count; i++) { if (rate_table[i].mfn == mfn && rate_table[i].mfi == mfi && rate_table[i].mfd == mfd && rate_table[i].rdiv == rdiv && rate_table[i].odiv == odiv) rate = rate_table[i].rate; } if (rate) return (unsigned long)rate; if (!rdiv) rdiv = rdiv + 1; switch (odiv) { case 0: odiv = 2; break; case 1: odiv = 3; break; default: break; } if (pll->flags & CLK_FRACN_GPPLL_INTEGER) { /* Fvco = (Fref / rdiv) * MFI */ fvco = fvco * mfi; do_div(fvco, rdiv * odiv); } else { /* Fvco = (Fref / rdiv) * (MFI + MFN / MFD) */ fvco = fvco * mfi * mfd + fvco * mfn; do_div(fvco, mfd * rdiv * odiv); } return (unsigned long)fvco; } static int clk_fracn_gppll_wait_lock(struct clk_fracn_gppll *pll) { u32 val; return readl_poll_timeout(pll->base + PLL_STATUS, val, val & LOCK_STATUS, 0, LOCK_TIMEOUT_US); } static int clk_fracn_gppll_set_rate(struct clk_hw *hw, unsigned long drate, unsigned long prate) { struct clk_fracn_gppll *pll = to_clk_fracn_gppll(hw); const struct imx_fracn_gppll_rate_table *rate; u32 tmp, pll_div, ana_mfn; int ret; rate = imx_get_pll_settings(pll, drate); /* Hardware control select disable. PLL is control by register */ tmp = readl_relaxed(pll->base + PLL_CTRL); tmp &= ~HW_CTRL_SEL; writel_relaxed(tmp, pll->base + PLL_CTRL); /* Disable output */ tmp = readl_relaxed(pll->base + PLL_CTRL); tmp &= ~CLKMUX_EN; writel_relaxed(tmp, pll->base + PLL_CTRL); /* Power Down */ tmp &= ~POWERUP_MASK; writel_relaxed(tmp, pll->base + PLL_CTRL); /* Disable BYPASS */ tmp &= ~CLKMUX_BYPASS; writel_relaxed(tmp, pll->base + PLL_CTRL); pll_div = FIELD_PREP(PLL_RDIV_MASK, rate->rdiv) | rate->odiv | FIELD_PREP(PLL_MFI_MASK, rate->mfi); writel_relaxed(pll_div, pll->base + PLL_DIV); if (pll->flags & CLK_FRACN_GPPLL_FRACN) { writel_relaxed(rate->mfd, pll->base + PLL_DENOMINATOR); writel_relaxed(FIELD_PREP(PLL_MFN_MASK, rate->mfn), pll->base + PLL_NUMERATOR); } /* Wait for 5us according to fracn mode pll doc */ udelay(5); /* Enable Powerup */ tmp |= POWERUP_MASK; writel_relaxed(tmp, pll->base + PLL_CTRL); /* Wait Lock */ ret = clk_fracn_gppll_wait_lock(pll); if (ret) return ret; /* Enable output */ tmp |= CLKMUX_EN; writel_relaxed(tmp, pll->base + PLL_CTRL); ana_mfn = readl_relaxed(pll->base + PLL_STATUS); ana_mfn = FIELD_GET(PLL_MFN_MASK, ana_mfn); WARN(ana_mfn != rate->mfn, "ana_mfn != rate->mfn\n"); return 0; } static int clk_fracn_gppll_prepare(struct clk_hw *hw) { struct clk_fracn_gppll *pll = to_clk_fracn_gppll(hw); u32 val; int ret; val = readl_relaxed(pll->base + PLL_CTRL); if (val & POWERUP_MASK) return 0; val |= CLKMUX_BYPASS; writel_relaxed(val, pll->base + PLL_CTRL); val |= POWERUP_MASK; writel_relaxed(val, pll->base + PLL_CTRL); val |= CLKMUX_EN; writel_relaxed(val, pll->base + PLL_CTRL); ret = clk_fracn_gppll_wait_lock(pll); if (ret) return ret; val &= ~CLKMUX_BYPASS; writel_relaxed(val, pll->base + PLL_CTRL); return 0; } static int clk_fracn_gppll_is_prepared(struct clk_hw *hw) { struct clk_fracn_gppll *pll = to_clk_fracn_gppll(hw); u32 val; val = readl_relaxed(pll->base + PLL_CTRL); return (val & POWERUP_MASK) ? 1 : 0; } static void clk_fracn_gppll_unprepare(struct clk_hw *hw) { struct clk_fracn_gppll *pll = to_clk_fracn_gppll(hw); u32 val; val = readl_relaxed(pll->base + PLL_CTRL); val &= ~POWERUP_MASK; writel_relaxed(val, pll->base + PLL_CTRL); } static const struct clk_ops clk_fracn_gppll_ops = { .prepare = clk_fracn_gppll_prepare, .unprepare = clk_fracn_gppll_unprepare, .is_prepared = clk_fracn_gppll_is_prepared, .recalc_rate = clk_fracn_gppll_recalc_rate, .round_rate = clk_fracn_gppll_round_rate, .set_rate = clk_fracn_gppll_set_rate, }; static struct clk_hw *_imx_clk_fracn_gppll(const char *name, const char *parent_name, void __iomem *base, const struct imx_fracn_gppll_clk *pll_clk, u32 pll_flags) { struct clk_fracn_gppll *pll; struct clk_hw *hw; struct clk_init_data init; int ret; pll = kzalloc(sizeof(*pll), GFP_KERNEL); if (!pll) return ERR_PTR(-ENOMEM); init.name = name; init.flags = pll_clk->flags; init.parent_names = &parent_name; init.num_parents = 1; init.ops = &clk_fracn_gppll_ops; pll->base = base; pll->hw.init = &init; pll->rate_table = pll_clk->rate_table; pll->rate_count = pll_clk->rate_count; pll->flags = pll_flags; hw = &pll->hw; ret = clk_hw_register(NULL, hw); if (ret) { pr_err("%s: failed to register pll %s %d\n", __func__, name, ret); kfree(pll); return ERR_PTR(ret); } return hw; } struct clk_hw *imx_clk_fracn_gppll(const char *name, const char *parent_name, void __iomem *base, const struct imx_fracn_gppll_clk *pll_clk) { return _imx_clk_fracn_gppll(name, parent_name, base, pll_clk, CLK_FRACN_GPPLL_FRACN); } EXPORT_SYMBOL_GPL(imx_clk_fracn_gppll); struct clk_hw *imx_clk_fracn_gppll_integer(const char *name, const char *parent_name, void __iomem *base, const struct imx_fracn_gppll_clk *pll_clk) { return _imx_clk_fracn_gppll(name, parent_name, base, pll_clk, CLK_FRACN_GPPLL_INTEGER); } EXPORT_SYMBOL_GPL(imx_clk_fracn_gppll_integer);
linux-master
drivers/clk/imx/clk-fracn-gppll.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2016 Freescale Semiconductor, Inc. * Copyright 2017~2018 NXP * * Author: Dong Aisheng <[email protected]> * */ #include <linux/bits.h> #include <linux/clk-provider.h> #include <linux/err.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/slab.h> #include "clk.h" /* PLL Control Status Register (xPLLCSR) */ #define PLL_CSR_OFFSET 0x0 #define PLL_VLD BIT(24) #define PLL_EN BIT(0) /* PLL Configuration Register (xPLLCFG) */ #define PLL_CFG_OFFSET 0x08 #define IMX8ULP_PLL_CFG_OFFSET 0x10 #define BP_PLL_MULT 16 #define BM_PLL_MULT (0x7f << 16) /* PLL Numerator Register (xPLLNUM) */ #define PLL_NUM_OFFSET 0x10 #define IMX8ULP_PLL_NUM_OFFSET 0x1c /* PLL Denominator Register (xPLLDENOM) */ #define PLL_DENOM_OFFSET 0x14 #define IMX8ULP_PLL_DENOM_OFFSET 0x18 #define MAX_MFD 0x3fffffff #define DEFAULT_MFD 1000000 struct clk_pllv4 { struct clk_hw hw; void __iomem *base; u32 cfg_offset; u32 num_offset; u32 denom_offset; bool use_mult_range; }; /* Valid PLL MULT Table */ static const int pllv4_mult_table[] = {33, 27, 22, 20, 17, 16}; /* Valid PLL MULT range, (max, min) */ static const int pllv4_mult_range[] = {54, 27}; #define to_clk_pllv4(__hw) container_of(__hw, struct clk_pllv4, hw) #define LOCK_TIMEOUT_US USEC_PER_MSEC static inline int clk_pllv4_wait_lock(struct clk_pllv4 *pll) { u32 csr; return readl_poll_timeout(pll->base + PLL_CSR_OFFSET, csr, csr & PLL_VLD, 0, LOCK_TIMEOUT_US); } static int clk_pllv4_is_prepared(struct clk_hw *hw) { struct clk_pllv4 *pll = to_clk_pllv4(hw); if (readl_relaxed(pll->base) & PLL_EN) return 1; return 0; } static unsigned long clk_pllv4_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_pllv4 *pll = to_clk_pllv4(hw); u32 mult, mfn, mfd; u64 temp64; mult = readl_relaxed(pll->base + pll->cfg_offset); mult &= BM_PLL_MULT; mult >>= BP_PLL_MULT; mfn = readl_relaxed(pll->base + pll->num_offset); mfd = readl_relaxed(pll->base + pll->denom_offset); temp64 = parent_rate; temp64 *= mfn; do_div(temp64, mfd); return (parent_rate * mult) + (u32)temp64; } static long clk_pllv4_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { struct clk_pllv4 *pll = to_clk_pllv4(hw); unsigned long parent_rate = *prate; unsigned long round_rate, i; u32 mfn, mfd = DEFAULT_MFD; bool found = false; u64 temp64; u32 mult; if (pll->use_mult_range) { temp64 = (u64)rate; do_div(temp64, parent_rate); mult = temp64; if (mult >= pllv4_mult_range[1] && mult <= pllv4_mult_range[0]) { round_rate = parent_rate * mult; found = true; } } else { for (i = 0; i < ARRAY_SIZE(pllv4_mult_table); i++) { round_rate = parent_rate * pllv4_mult_table[i]; if (rate >= round_rate) { found = true; break; } } } if (!found) { pr_warn("%s: unable to round rate %lu, parent rate %lu\n", clk_hw_get_name(hw), rate, parent_rate); return 0; } if (parent_rate <= MAX_MFD) mfd = parent_rate; temp64 = (u64)(rate - round_rate); temp64 *= mfd; do_div(temp64, parent_rate); mfn = temp64; /* * NOTE: The value of numerator must always be configured to be * less than the value of the denominator. If we can't get a proper * pair of mfn/mfd, we simply return the round_rate without using * the frac part. */ if (mfn >= mfd) return round_rate; temp64 = (u64)parent_rate; temp64 *= mfn; do_div(temp64, mfd); return round_rate + (u32)temp64; } static bool clk_pllv4_is_valid_mult(struct clk_pllv4 *pll, unsigned int mult) { int i; /* check if mult is in valid MULT table */ if (pll->use_mult_range) { if (mult >= pllv4_mult_range[1] && mult <= pllv4_mult_range[0]) return true; } else { for (i = 0; i < ARRAY_SIZE(pllv4_mult_table); i++) { if (pllv4_mult_table[i] == mult) return true; } } return false; } static int clk_pllv4_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_pllv4 *pll = to_clk_pllv4(hw); u32 val, mult, mfn, mfd = DEFAULT_MFD; u64 temp64; mult = rate / parent_rate; if (!clk_pllv4_is_valid_mult(pll, mult)) return -EINVAL; if (parent_rate <= MAX_MFD) mfd = parent_rate; temp64 = (u64)(rate - mult * parent_rate); temp64 *= mfd; do_div(temp64, parent_rate); mfn = temp64; val = readl_relaxed(pll->base + pll->cfg_offset); val &= ~BM_PLL_MULT; val |= mult << BP_PLL_MULT; writel_relaxed(val, pll->base + pll->cfg_offset); writel_relaxed(mfn, pll->base + pll->num_offset); writel_relaxed(mfd, pll->base + pll->denom_offset); return 0; } static int clk_pllv4_prepare(struct clk_hw *hw) { u32 val; struct clk_pllv4 *pll = to_clk_pllv4(hw); val = readl_relaxed(pll->base); val |= PLL_EN; writel_relaxed(val, pll->base); return clk_pllv4_wait_lock(pll); } static void clk_pllv4_unprepare(struct clk_hw *hw) { u32 val; struct clk_pllv4 *pll = to_clk_pllv4(hw); val = readl_relaxed(pll->base); val &= ~PLL_EN; writel_relaxed(val, pll->base); } static const struct clk_ops clk_pllv4_ops = { .recalc_rate = clk_pllv4_recalc_rate, .round_rate = clk_pllv4_round_rate, .set_rate = clk_pllv4_set_rate, .prepare = clk_pllv4_prepare, .unprepare = clk_pllv4_unprepare, .is_prepared = clk_pllv4_is_prepared, }; struct clk_hw *imx_clk_hw_pllv4(enum imx_pllv4_type type, const char *name, const char *parent_name, void __iomem *base) { struct clk_pllv4 *pll; struct clk_hw *hw; struct clk_init_data init; int ret; pll = kzalloc(sizeof(*pll), GFP_KERNEL); if (!pll) return ERR_PTR(-ENOMEM); pll->base = base; if (type == IMX_PLLV4_IMX8ULP || type == IMX_PLLV4_IMX8ULP_1GHZ) { pll->cfg_offset = IMX8ULP_PLL_CFG_OFFSET; pll->num_offset = IMX8ULP_PLL_NUM_OFFSET; pll->denom_offset = IMX8ULP_PLL_DENOM_OFFSET; if (type == IMX_PLLV4_IMX8ULP_1GHZ) pll->use_mult_range = true; } else { pll->cfg_offset = PLL_CFG_OFFSET; pll->num_offset = PLL_NUM_OFFSET; pll->denom_offset = PLL_DENOM_OFFSET; } init.name = name; init.ops = &clk_pllv4_ops; init.parent_names = &parent_name; init.num_parents = 1; init.flags = CLK_SET_RATE_GATE; pll->hw.init = &init; hw = &pll->hw; ret = clk_hw_register(NULL, hw); if (ret) { kfree(pll); hw = ERR_PTR(ret); } return hw; } EXPORT_SYMBOL_GPL(imx_clk_hw_pllv4);
linux-master
drivers/clk/imx/clk-pllv4.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2018 NXP. * Dong Aisheng <[email protected]> */ #include <linux/clk-provider.h> #include <linux/err.h> #include <linux/io.h> #include <linux/slab.h> #include "clk.h" struct clk_divider_gate { struct clk_divider divider; u32 cached_val; }; static inline struct clk_divider_gate *to_clk_divider_gate(struct clk_hw *hw) { struct clk_divider *div = to_clk_divider(hw); return container_of(div, struct clk_divider_gate, divider); } static unsigned long clk_divider_gate_recalc_rate_ro(struct clk_hw *hw, unsigned long parent_rate) { struct clk_divider *div = to_clk_divider(hw); unsigned int val; val = readl(div->reg) >> div->shift; val &= clk_div_mask(div->width); if (!val) return 0; return divider_recalc_rate(hw, parent_rate, val, div->table, div->flags, div->width); } static unsigned long clk_divider_gate_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_divider_gate *div_gate = to_clk_divider_gate(hw); struct clk_divider *div = to_clk_divider(hw); unsigned long flags; unsigned int val; spin_lock_irqsave(div->lock, flags); if (!clk_hw_is_enabled(hw)) { val = div_gate->cached_val; } else { val = readl(div->reg) >> div->shift; val &= clk_div_mask(div->width); } spin_unlock_irqrestore(div->lock, flags); if (!val) return 0; return divider_recalc_rate(hw, parent_rate, val, div->table, div->flags, div->width); } static int clk_divider_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { return clk_divider_ops.determine_rate(hw, req); } static int clk_divider_gate_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_divider_gate *div_gate = to_clk_divider_gate(hw); struct clk_divider *div = to_clk_divider(hw); unsigned long flags; int value; u32 val; value = divider_get_val(rate, parent_rate, div->table, div->width, div->flags); if (value < 0) return value; spin_lock_irqsave(div->lock, flags); if (clk_hw_is_enabled(hw)) { val = readl(div->reg); val &= ~(clk_div_mask(div->width) << div->shift); val |= (u32)value << div->shift; writel(val, div->reg); } else { div_gate->cached_val = value; } spin_unlock_irqrestore(div->lock, flags); return 0; } static int clk_divider_enable(struct clk_hw *hw) { struct clk_divider_gate *div_gate = to_clk_divider_gate(hw); struct clk_divider *div = to_clk_divider(hw); unsigned long flags; u32 val; if (!div_gate->cached_val) { pr_err("%s: no valid preset rate\n", clk_hw_get_name(hw)); return -EINVAL; } spin_lock_irqsave(div->lock, flags); /* restore div val */ val = readl(div->reg); val |= div_gate->cached_val << div->shift; writel(val, div->reg); spin_unlock_irqrestore(div->lock, flags); return 0; } static void clk_divider_disable(struct clk_hw *hw) { struct clk_divider_gate *div_gate = to_clk_divider_gate(hw); struct clk_divider *div = to_clk_divider(hw); unsigned long flags; u32 val; spin_lock_irqsave(div->lock, flags); /* store the current div val */ val = readl(div->reg) >> div->shift; val &= clk_div_mask(div->width); div_gate->cached_val = val; writel(0, div->reg); spin_unlock_irqrestore(div->lock, flags); } static int clk_divider_is_enabled(struct clk_hw *hw) { struct clk_divider *div = to_clk_divider(hw); u32 val; val = readl(div->reg) >> div->shift; val &= clk_div_mask(div->width); return val ? 1 : 0; } static const struct clk_ops clk_divider_gate_ro_ops = { .recalc_rate = clk_divider_gate_recalc_rate_ro, .determine_rate = clk_divider_determine_rate, }; static const struct clk_ops clk_divider_gate_ops = { .recalc_rate = clk_divider_gate_recalc_rate, .determine_rate = clk_divider_determine_rate, .set_rate = clk_divider_gate_set_rate, .enable = clk_divider_enable, .disable = clk_divider_disable, .is_enabled = clk_divider_is_enabled, }; /* * NOTE: In order to reuse the most code from the common divider, * we also design our divider following the way that provids an extra * clk_divider_flags, however it's fixed to CLK_DIVIDER_ONE_BASED by * default as our HW is. Besides that it supports only CLK_DIVIDER_READ_ONLY * flag which can be specified by user flexibly. */ struct clk_hw *imx_clk_hw_divider_gate(const char *name, const char *parent_name, unsigned long flags, void __iomem *reg, u8 shift, u8 width, u8 clk_divider_flags, const struct clk_div_table *table, spinlock_t *lock) { struct clk_init_data init; struct clk_divider_gate *div_gate; struct clk_hw *hw; u32 val; int ret; div_gate = kzalloc(sizeof(*div_gate), GFP_KERNEL); if (!div_gate) return ERR_PTR(-ENOMEM); init.name = name; if (clk_divider_flags & CLK_DIVIDER_READ_ONLY) init.ops = &clk_divider_gate_ro_ops; else init.ops = &clk_divider_gate_ops; init.flags = flags; init.parent_names = parent_name ? &parent_name : NULL; init.num_parents = parent_name ? 1 : 0; div_gate->divider.reg = reg; div_gate->divider.shift = shift; div_gate->divider.width = width; div_gate->divider.lock = lock; div_gate->divider.table = table; div_gate->divider.hw.init = &init; div_gate->divider.flags = CLK_DIVIDER_ONE_BASED | clk_divider_flags; /* cache gate status */ val = readl(reg) >> shift; val &= clk_div_mask(width); div_gate->cached_val = val; hw = &div_gate->divider.hw; ret = clk_hw_register(NULL, hw); if (ret) { kfree(div_gate); hw = ERR_PTR(ret); } return hw; }
linux-master
drivers/clk/imx/clk-divider-gate.c
// SPDX-License-Identifier: GPL-2.0 #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/clkdev.h> #include <linux/err.h> #include <linux/io.h> #include <linux/of.h> #include <linux/of_address.h> #include <dt-bindings/clock/imx27-clock.h> #include <soc/imx/revision.h> #include <asm/irq.h> #include "clk.h" #define MX27_CCM_BASE_ADDR 0x10027000 #define MX27_GPT1_BASE_ADDR 0x10003000 #define MX27_INT_GPT1 (NR_IRQS_LEGACY + 26) static void __iomem *ccm __initdata; /* Register offsets */ #define CCM_CSCR (ccm + 0x00) #define CCM_MPCTL0 (ccm + 0x04) #define CCM_MPCTL1 (ccm + 0x08) #define CCM_SPCTL0 (ccm + 0x0c) #define CCM_SPCTL1 (ccm + 0x10) #define CCM_PCDR0 (ccm + 0x18) #define CCM_PCDR1 (ccm + 0x1c) #define CCM_PCCR0 (ccm + 0x20) #define CCM_PCCR1 (ccm + 0x24) #define CCM_CCSR (ccm + 0x28) static const char *vpu_sel_clks[] = { "spll", "mpll_main2", }; static const char *cpu_sel_clks[] = { "mpll_main2", "mpll", }; static const char *mpll_sel_clks[] = { "fpm", "mpll_osc_sel", }; static const char *mpll_osc_sel_clks[] = { "ckih_gate", "ckih_div1p5", }; static const char *clko_sel_clks[] = { "ckil", "fpm", "ckih_gate", "ckih_gate", "ckih_gate", "mpll", "spll", "cpu_div", "ahb", "ipg", "per1_div", "per2_div", "per3_div", "per4_div", "ssi1_div", "ssi2_div", "nfc_div", "mshc_div", "vpu_div", "60m", "32k", "usb_div", "dptc", }; static const char *ssi_sel_clks[] = { "spll_gate", "mpll", }; static struct clk *clk[IMX27_CLK_MAX]; static struct clk_onecell_data clk_data; static void __init _mx27_clocks_init(unsigned long fref) { BUG_ON(!ccm); clk[IMX27_CLK_DUMMY] = imx_clk_fixed("dummy", 0); clk[IMX27_CLK_CKIH] = imx_clk_fixed("ckih", fref); clk[IMX27_CLK_CKIL] = imx_clk_fixed("ckil", 32768); clk[IMX27_CLK_FPM] = imx_clk_fixed_factor("fpm", "ckil", 1024, 1); clk[IMX27_CLK_CKIH_DIV1P5] = imx_clk_fixed_factor("ckih_div1p5", "ckih_gate", 2, 3); clk[IMX27_CLK_CKIH_GATE] = imx_clk_gate_dis("ckih_gate", "ckih", CCM_CSCR, 3); clk[IMX27_CLK_MPLL_OSC_SEL] = imx_clk_mux("mpll_osc_sel", CCM_CSCR, 4, 1, mpll_osc_sel_clks, ARRAY_SIZE(mpll_osc_sel_clks)); clk[IMX27_CLK_MPLL_SEL] = imx_clk_mux("mpll_sel", CCM_CSCR, 16, 1, mpll_sel_clks, ARRAY_SIZE(mpll_sel_clks)); clk[IMX27_CLK_MPLL] = imx_clk_pllv1(IMX_PLLV1_IMX27, "mpll", "mpll_sel", CCM_MPCTL0); clk[IMX27_CLK_SPLL] = imx_clk_pllv1(IMX_PLLV1_IMX27, "spll", "ckih_gate", CCM_SPCTL0); clk[IMX27_CLK_SPLL_GATE] = imx_clk_gate("spll_gate", "spll", CCM_CSCR, 1); clk[IMX27_CLK_MPLL_MAIN2] = imx_clk_fixed_factor("mpll_main2", "mpll", 2, 3); if (mx27_revision() >= IMX_CHIP_REVISION_2_0) { clk[IMX27_CLK_AHB] = imx_clk_divider("ahb", "mpll_main2", CCM_CSCR, 8, 2); clk[IMX27_CLK_IPG] = imx_clk_fixed_factor("ipg", "ahb", 1, 2); } else { clk[IMX27_CLK_AHB] = imx_clk_divider("ahb", "mpll_main2", CCM_CSCR, 9, 4); clk[IMX27_CLK_IPG] = imx_clk_divider("ipg", "ahb", CCM_CSCR, 8, 1); } clk[IMX27_CLK_MSHC_DIV] = imx_clk_divider("mshc_div", "ahb", CCM_PCDR0, 0, 6); clk[IMX27_CLK_NFC_DIV] = imx_clk_divider("nfc_div", "ahb", CCM_PCDR0, 6, 4); clk[IMX27_CLK_PER1_DIV] = imx_clk_divider("per1_div", "mpll_main2", CCM_PCDR1, 0, 6); clk[IMX27_CLK_PER2_DIV] = imx_clk_divider("per2_div", "mpll_main2", CCM_PCDR1, 8, 6); clk[IMX27_CLK_PER3_DIV] = imx_clk_divider("per3_div", "mpll_main2", CCM_PCDR1, 16, 6); clk[IMX27_CLK_PER4_DIV] = imx_clk_divider("per4_div", "mpll_main2", CCM_PCDR1, 24, 6); clk[IMX27_CLK_VPU_SEL] = imx_clk_mux("vpu_sel", CCM_CSCR, 21, 1, vpu_sel_clks, ARRAY_SIZE(vpu_sel_clks)); clk[IMX27_CLK_VPU_DIV] = imx_clk_divider("vpu_div", "vpu_sel", CCM_PCDR0, 10, 6); clk[IMX27_CLK_USB_DIV] = imx_clk_divider("usb_div", "spll_gate", CCM_CSCR, 28, 3); clk[IMX27_CLK_CPU_SEL] = imx_clk_mux("cpu_sel", CCM_CSCR, 15, 1, cpu_sel_clks, ARRAY_SIZE(cpu_sel_clks)); clk[IMX27_CLK_CLKO_SEL] = imx_clk_mux("clko_sel", CCM_CCSR, 0, 5, clko_sel_clks, ARRAY_SIZE(clko_sel_clks)); if (mx27_revision() >= IMX_CHIP_REVISION_2_0) clk[IMX27_CLK_CPU_DIV] = imx_clk_divider("cpu_div", "cpu_sel", CCM_CSCR, 12, 2); else clk[IMX27_CLK_CPU_DIV] = imx_clk_divider("cpu_div", "cpu_sel", CCM_CSCR, 13, 3); clk[IMX27_CLK_CLKO_DIV] = imx_clk_divider("clko_div", "clko_sel", CCM_PCDR0, 22, 3); clk[IMX27_CLK_SSI1_SEL] = imx_clk_mux("ssi1_sel", CCM_CSCR, 22, 1, ssi_sel_clks, ARRAY_SIZE(ssi_sel_clks)); clk[IMX27_CLK_SSI2_SEL] = imx_clk_mux("ssi2_sel", CCM_CSCR, 23, 1, ssi_sel_clks, ARRAY_SIZE(ssi_sel_clks)); clk[IMX27_CLK_SSI1_DIV] = imx_clk_divider("ssi1_div", "ssi1_sel", CCM_PCDR0, 16, 6); clk[IMX27_CLK_SSI2_DIV] = imx_clk_divider("ssi2_div", "ssi2_sel", CCM_PCDR0, 26, 6); clk[IMX27_CLK_CLKO_EN] = imx_clk_gate("clko_en", "clko_div", CCM_PCCR0, 0); clk[IMX27_CLK_SSI2_IPG_GATE] = imx_clk_gate("ssi2_ipg_gate", "ipg", CCM_PCCR0, 0); clk[IMX27_CLK_SSI1_IPG_GATE] = imx_clk_gate("ssi1_ipg_gate", "ipg", CCM_PCCR0, 1); clk[IMX27_CLK_SLCDC_IPG_GATE] = imx_clk_gate("slcdc_ipg_gate", "ipg", CCM_PCCR0, 2); clk[IMX27_CLK_SDHC3_IPG_GATE] = imx_clk_gate("sdhc3_ipg_gate", "ipg", CCM_PCCR0, 3); clk[IMX27_CLK_SDHC2_IPG_GATE] = imx_clk_gate("sdhc2_ipg_gate", "ipg", CCM_PCCR0, 4); clk[IMX27_CLK_SDHC1_IPG_GATE] = imx_clk_gate("sdhc1_ipg_gate", "ipg", CCM_PCCR0, 5); clk[IMX27_CLK_SCC_IPG_GATE] = imx_clk_gate("scc_ipg_gate", "ipg", CCM_PCCR0, 6); clk[IMX27_CLK_SAHARA_IPG_GATE] = imx_clk_gate("sahara_ipg_gate", "ipg", CCM_PCCR0, 7); clk[IMX27_CLK_RTIC_IPG_GATE] = imx_clk_gate("rtic_ipg_gate", "ipg", CCM_PCCR0, 8); clk[IMX27_CLK_RTC_IPG_GATE] = imx_clk_gate("rtc_ipg_gate", "ipg", CCM_PCCR0, 9); clk[IMX27_CLK_PWM_IPG_GATE] = imx_clk_gate("pwm_ipg_gate", "ipg", CCM_PCCR0, 11); clk[IMX27_CLK_OWIRE_IPG_GATE] = imx_clk_gate("owire_ipg_gate", "ipg", CCM_PCCR0, 12); clk[IMX27_CLK_MSHC_IPG_GATE] = imx_clk_gate("mshc_ipg_gate", "ipg", CCM_PCCR0, 13); clk[IMX27_CLK_LCDC_IPG_GATE] = imx_clk_gate("lcdc_ipg_gate", "ipg", CCM_PCCR0, 14); clk[IMX27_CLK_KPP_IPG_GATE] = imx_clk_gate("kpp_ipg_gate", "ipg", CCM_PCCR0, 15); clk[IMX27_CLK_IIM_IPG_GATE] = imx_clk_gate("iim_ipg_gate", "ipg", CCM_PCCR0, 16); clk[IMX27_CLK_I2C2_IPG_GATE] = imx_clk_gate("i2c2_ipg_gate", "ipg", CCM_PCCR0, 17); clk[IMX27_CLK_I2C1_IPG_GATE] = imx_clk_gate("i2c1_ipg_gate", "ipg", CCM_PCCR0, 18); clk[IMX27_CLK_GPT6_IPG_GATE] = imx_clk_gate("gpt6_ipg_gate", "ipg", CCM_PCCR0, 19); clk[IMX27_CLK_GPT5_IPG_GATE] = imx_clk_gate("gpt5_ipg_gate", "ipg", CCM_PCCR0, 20); clk[IMX27_CLK_GPT4_IPG_GATE] = imx_clk_gate("gpt4_ipg_gate", "ipg", CCM_PCCR0, 21); clk[IMX27_CLK_GPT3_IPG_GATE] = imx_clk_gate("gpt3_ipg_gate", "ipg", CCM_PCCR0, 22); clk[IMX27_CLK_GPT2_IPG_GATE] = imx_clk_gate("gpt2_ipg_gate", "ipg", CCM_PCCR0, 23); clk[IMX27_CLK_GPT1_IPG_GATE] = imx_clk_gate("gpt1_ipg_gate", "ipg", CCM_PCCR0, 24); clk[IMX27_CLK_GPIO_IPG_GATE] = imx_clk_gate("gpio_ipg_gate", "ipg", CCM_PCCR0, 25); clk[IMX27_CLK_FEC_IPG_GATE] = imx_clk_gate("fec_ipg_gate", "ipg", CCM_PCCR0, 26); clk[IMX27_CLK_EMMA_IPG_GATE] = imx_clk_gate("emma_ipg_gate", "ipg", CCM_PCCR0, 27); clk[IMX27_CLK_DMA_IPG_GATE] = imx_clk_gate("dma_ipg_gate", "ipg", CCM_PCCR0, 28); clk[IMX27_CLK_CSPI3_IPG_GATE] = imx_clk_gate("cspi3_ipg_gate", "ipg", CCM_PCCR0, 29); clk[IMX27_CLK_CSPI2_IPG_GATE] = imx_clk_gate("cspi2_ipg_gate", "ipg", CCM_PCCR0, 30); clk[IMX27_CLK_CSPI1_IPG_GATE] = imx_clk_gate("cspi1_ipg_gate", "ipg", CCM_PCCR0, 31); clk[IMX27_CLK_MSHC_BAUD_GATE] = imx_clk_gate("mshc_baud_gate", "mshc_div", CCM_PCCR1, 2); clk[IMX27_CLK_NFC_BAUD_GATE] = imx_clk_gate("nfc_baud_gate", "nfc_div", CCM_PCCR1, 3); clk[IMX27_CLK_SSI2_BAUD_GATE] = imx_clk_gate("ssi2_baud_gate", "ssi2_div", CCM_PCCR1, 4); clk[IMX27_CLK_SSI1_BAUD_GATE] = imx_clk_gate("ssi1_baud_gate", "ssi1_div", CCM_PCCR1, 5); clk[IMX27_CLK_VPU_BAUD_GATE] = imx_clk_gate("vpu_baud_gate", "vpu_div", CCM_PCCR1, 6); clk[IMX27_CLK_PER4_GATE] = imx_clk_gate("per4_gate", "per4_div", CCM_PCCR1, 7); clk[IMX27_CLK_PER3_GATE] = imx_clk_gate("per3_gate", "per3_div", CCM_PCCR1, 8); clk[IMX27_CLK_PER2_GATE] = imx_clk_gate("per2_gate", "per2_div", CCM_PCCR1, 9); clk[IMX27_CLK_PER1_GATE] = imx_clk_gate("per1_gate", "per1_div", CCM_PCCR1, 10); clk[IMX27_CLK_USB_AHB_GATE] = imx_clk_gate("usb_ahb_gate", "ahb", CCM_PCCR1, 11); clk[IMX27_CLK_SLCDC_AHB_GATE] = imx_clk_gate("slcdc_ahb_gate", "ahb", CCM_PCCR1, 12); clk[IMX27_CLK_SAHARA_AHB_GATE] = imx_clk_gate("sahara_ahb_gate", "ahb", CCM_PCCR1, 13); clk[IMX27_CLK_RTIC_AHB_GATE] = imx_clk_gate("rtic_ahb_gate", "ahb", CCM_PCCR1, 14); clk[IMX27_CLK_LCDC_AHB_GATE] = imx_clk_gate("lcdc_ahb_gate", "ahb", CCM_PCCR1, 15); clk[IMX27_CLK_VPU_AHB_GATE] = imx_clk_gate("vpu_ahb_gate", "ahb", CCM_PCCR1, 16); clk[IMX27_CLK_FEC_AHB_GATE] = imx_clk_gate("fec_ahb_gate", "ahb", CCM_PCCR1, 17); clk[IMX27_CLK_EMMA_AHB_GATE] = imx_clk_gate("emma_ahb_gate", "ahb", CCM_PCCR1, 18); clk[IMX27_CLK_EMI_AHB_GATE] = imx_clk_gate("emi_ahb_gate", "ahb", CCM_PCCR1, 19); clk[IMX27_CLK_DMA_AHB_GATE] = imx_clk_gate("dma_ahb_gate", "ahb", CCM_PCCR1, 20); clk[IMX27_CLK_CSI_AHB_GATE] = imx_clk_gate("csi_ahb_gate", "ahb", CCM_PCCR1, 21); clk[IMX27_CLK_BROM_AHB_GATE] = imx_clk_gate("brom_ahb_gate", "ahb", CCM_PCCR1, 22); clk[IMX27_CLK_ATA_AHB_GATE] = imx_clk_gate("ata_ahb_gate", "ahb", CCM_PCCR1, 23); clk[IMX27_CLK_WDOG_IPG_GATE] = imx_clk_gate("wdog_ipg_gate", "ipg", CCM_PCCR1, 24); clk[IMX27_CLK_USB_IPG_GATE] = imx_clk_gate("usb_ipg_gate", "ipg", CCM_PCCR1, 25); clk[IMX27_CLK_UART6_IPG_GATE] = imx_clk_gate("uart6_ipg_gate", "ipg", CCM_PCCR1, 26); clk[IMX27_CLK_UART5_IPG_GATE] = imx_clk_gate("uart5_ipg_gate", "ipg", CCM_PCCR1, 27); clk[IMX27_CLK_UART4_IPG_GATE] = imx_clk_gate("uart4_ipg_gate", "ipg", CCM_PCCR1, 28); clk[IMX27_CLK_UART3_IPG_GATE] = imx_clk_gate("uart3_ipg_gate", "ipg", CCM_PCCR1, 29); clk[IMX27_CLK_UART2_IPG_GATE] = imx_clk_gate("uart2_ipg_gate", "ipg", CCM_PCCR1, 30); clk[IMX27_CLK_UART1_IPG_GATE] = imx_clk_gate("uart1_ipg_gate", "ipg", CCM_PCCR1, 31); imx_check_clocks(clk, ARRAY_SIZE(clk)); clk_register_clkdev(clk[IMX27_CLK_CPU_DIV], NULL, "cpu0"); clk_prepare_enable(clk[IMX27_CLK_EMI_AHB_GATE]); imx_register_uart_clocks(); imx_print_silicon_rev("i.MX27", mx27_revision()); } static void __init mx27_clocks_init_dt(struct device_node *np) { struct device_node *refnp; u32 fref = 26000000; /* default */ for_each_compatible_node(refnp, NULL, "fixed-clock") { if (!of_device_is_compatible(refnp, "fsl,imx-osc26m")) continue; if (!of_property_read_u32(refnp, "clock-frequency", &fref)) { of_node_put(refnp); break; } } ccm = of_iomap(np, 0); _mx27_clocks_init(fref); clk_data.clks = clk; clk_data.clk_num = ARRAY_SIZE(clk); of_clk_add_provider(np, of_clk_src_onecell_get, &clk_data); } CLK_OF_DECLARE(imx27_ccm, "fsl,imx27-ccm", mx27_clocks_init_dt);
linux-master
drivers/clk/imx/clk-imx27.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2017-2018 NXP. */ #include <dt-bindings/clock/imx8mm-clock.h> #include <linux/clk-provider.h> #include <linux/err.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of_address.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/types.h> #include "clk.h" static u32 share_count_sai1; static u32 share_count_sai2; static u32 share_count_sai3; static u32 share_count_sai4; static u32 share_count_sai5; static u32 share_count_sai6; static u32 share_count_disp; static u32 share_count_pdm; static u32 share_count_nand; static const char *pll_ref_sels[] = { "osc_24m", "dummy", "dummy", "dummy", }; static const char *audio_pll1_bypass_sels[] = {"audio_pll1", "audio_pll1_ref_sel", }; static const char *audio_pll2_bypass_sels[] = {"audio_pll2", "audio_pll2_ref_sel", }; static const char *video_pll1_bypass_sels[] = {"video_pll1", "video_pll1_ref_sel", }; static const char *dram_pll_bypass_sels[] = {"dram_pll", "dram_pll_ref_sel", }; static const char *gpu_pll_bypass_sels[] = {"gpu_pll", "gpu_pll_ref_sel", }; static const char *vpu_pll_bypass_sels[] = {"vpu_pll", "vpu_pll_ref_sel", }; static const char *arm_pll_bypass_sels[] = {"arm_pll", "arm_pll_ref_sel", }; static const char *sys_pll3_bypass_sels[] = {"sys_pll3", "sys_pll3_ref_sel", }; /* CCM ROOT */ static const char *imx8mm_a53_sels[] = {"osc_24m", "arm_pll_out", "sys_pll2_500m", "sys_pll2_1000m", "sys_pll1_800m", "sys_pll1_400m", "audio_pll1_out", "sys_pll3_out", }; static const char * const imx8mm_a53_core_sels[] = {"arm_a53_div", "arm_pll_out", }; static const char *imx8mm_m4_sels[] = {"osc_24m", "sys_pll2_200m", "sys_pll2_250m", "sys_pll1_266m", "sys_pll1_800m", "audio_pll1_out", "video_pll1_out", "sys_pll3_out", }; static const char *imx8mm_vpu_sels[] = {"osc_24m", "arm_pll_out", "sys_pll2_500m", "sys_pll2_1000m", "sys_pll1_800m", "sys_pll1_400m", "audio_pll1_out", "vpu_pll_out", }; static const char *imx8mm_gpu3d_sels[] = {"osc_24m", "gpu_pll_out", "sys_pll1_800m", "sys_pll3_out", "sys_pll2_1000m", "audio_pll1_out", "video_pll1_out", "audio_pll2_out", }; static const char *imx8mm_gpu2d_sels[] = {"osc_24m", "gpu_pll_out", "sys_pll1_800m", "sys_pll3_out", "sys_pll2_1000m", "audio_pll1_out", "video_pll1_out", "audio_pll2_out", }; static const char *imx8mm_main_axi_sels[] = {"osc_24m", "sys_pll2_333m", "sys_pll1_800m", "sys_pll2_250m", "sys_pll2_1000m", "audio_pll1_out", "video_pll1_out", "sys_pll1_100m",}; static const char *imx8mm_enet_axi_sels[] = {"osc_24m", "sys_pll1_266m", "sys_pll1_800m", "sys_pll2_250m", "sys_pll2_200m", "audio_pll1_out", "video_pll1_out", "sys_pll3_out", }; static const char *imx8mm_nand_usdhc_sels[] = {"osc_24m", "sys_pll1_266m", "sys_pll1_800m", "sys_pll2_200m", "sys_pll1_133m", "sys_pll3_out", "sys_pll2_250m", "audio_pll1_out", }; static const char *imx8mm_vpu_bus_sels[] = {"osc_24m", "sys_pll1_800m", "vpu_pll_out", "audio_pll2_out", "sys_pll3_out", "sys_pll2_1000m", "sys_pll2_200m", "sys_pll1_100m", }; static const char *imx8mm_disp_axi_sels[] = {"osc_24m", "sys_pll2_1000m", "sys_pll1_800m", "sys_pll3_out", "sys_pll1_40m", "audio_pll2_out", "clk_ext1", "clk_ext4", }; static const char *imx8mm_disp_apb_sels[] = {"osc_24m", "sys_pll2_125m", "sys_pll1_800m", "sys_pll3_out", "sys_pll1_40m", "audio_pll2_out", "clk_ext1", "clk_ext3", }; static const char *imx8mm_disp_rtrm_sels[] = {"osc_24m", "sys_pll1_800m", "sys_pll2_200m", "sys_pll2_1000m", "audio_pll1_out", "video_pll1_out", "clk_ext2", "clk_ext3", }; static const char *imx8mm_usb_bus_sels[] = {"osc_24m", "sys_pll2_500m", "sys_pll1_800m", "sys_pll2_100m", "sys_pll2_200m", "clk_ext2", "clk_ext4", "audio_pll2_out", }; static const char *imx8mm_gpu_axi_sels[] = {"osc_24m", "sys_pll1_800m", "gpu_pll_out", "sys_pll3_out", "sys_pll2_1000m", "audio_pll1_out", "video_pll1_out", "audio_pll2_out", }; static const char *imx8mm_gpu_ahb_sels[] = {"osc_24m", "sys_pll1_800m", "gpu_pll_out", "sys_pll3_out", "sys_pll2_1000m", "audio_pll1_out", "video_pll1_out", "audio_pll2_out", }; static const char *imx8mm_noc_sels[] = {"osc_24m", "sys_pll1_800m", "sys_pll3_out", "sys_pll2_1000m", "sys_pll2_500m", "audio_pll1_out", "video_pll1_out", "audio_pll2_out", }; static const char *imx8mm_noc_apb_sels[] = {"osc_24m", "sys_pll1_400m", "sys_pll3_out", "sys_pll2_333m", "sys_pll2_200m", "sys_pll1_800m", "audio_pll1_out", "video_pll1_out", }; static const char *imx8mm_ahb_sels[] = {"osc_24m", "sys_pll1_133m", "sys_pll1_800m", "sys_pll1_400m", "sys_pll2_125m", "sys_pll3_out", "audio_pll1_out", "video_pll1_out", }; static const char *imx8mm_audio_ahb_sels[] = {"osc_24m", "sys_pll2_500m", "sys_pll1_800m", "sys_pll2_1000m", "sys_pll2_166m", "sys_pll3_out", "audio_pll1_out", "video_pll1_out", }; static const char *imx8mm_dram_alt_sels[] = {"osc_24m", "sys_pll1_800m", "sys_pll1_100m", "sys_pll2_500m", "sys_pll2_1000m", "sys_pll3_out", "audio_pll1_out", "sys_pll1_266m", }; static const char *imx8mm_dram_apb_sels[] = {"osc_24m", "sys_pll2_200m", "sys_pll1_40m", "sys_pll1_160m", "sys_pll1_800m", "sys_pll3_out", "sys_pll2_250m", "audio_pll2_out", }; static const char *imx8mm_vpu_g1_sels[] = {"osc_24m", "vpu_pll_out", "sys_pll1_800m", "sys_pll2_1000m", "sys_pll1_100m", "sys_pll2_125m", "sys_pll3_out", "audio_pll1_out", }; static const char *imx8mm_vpu_g2_sels[] = {"osc_24m", "vpu_pll_out", "sys_pll1_800m", "sys_pll2_1000m", "sys_pll1_100m", "sys_pll2_125m", "sys_pll3_out", "audio_pll1_out", }; static const char *imx8mm_disp_dtrc_sels[] = {"osc_24m", "dummy", "sys_pll1_800m", "sys_pll2_1000m", "sys_pll1_160m", "video_pll1_out", "sys_pll3_out", "audio_pll2_out", }; static const char *imx8mm_disp_dc8000_sels[] = {"osc_24m", "dummy", "sys_pll1_800m", "sys_pll2_1000m", "sys_pll1_160m", "video_pll1_out", "sys_pll3_out", "audio_pll2_out", }; static const char *imx8mm_pcie1_ctrl_sels[] = {"osc_24m", "sys_pll2_250m", "sys_pll2_200m", "sys_pll1_266m", "sys_pll1_800m", "sys_pll2_500m", "sys_pll2_333m", "sys_pll3_out", }; static const char *imx8mm_pcie1_phy_sels[] = {"osc_24m", "sys_pll2_100m", "sys_pll2_500m", "clk_ext1", "clk_ext2", "clk_ext3", "clk_ext4", "sys_pll1_400m", }; static const char *imx8mm_pcie1_aux_sels[] = {"osc_24m", "sys_pll2_200m", "sys_pll2_50m", "sys_pll3_out", "sys_pll2_100m", "sys_pll1_80m", "sys_pll1_160m", "sys_pll1_200m", }; static const char *imx8mm_dc_pixel_sels[] = {"osc_24m", "video_pll1_out", "audio_pll2_out", "audio_pll1_out", "sys_pll1_800m", "sys_pll2_1000m", "sys_pll3_out", "clk_ext4", }; static const char *imx8mm_lcdif_pixel_sels[] = {"osc_24m", "video_pll1_out", "audio_pll2_out", "audio_pll1_out", "sys_pll1_800m", "sys_pll2_1000m", "sys_pll3_out", "clk_ext4", }; static const char *imx8mm_sai1_sels[] = {"osc_24m", "audio_pll1_out", "audio_pll2_out", "video_pll1_out", "sys_pll1_133m", "osc_hdmi", "clk_ext1", "clk_ext2", }; static const char *imx8mm_sai2_sels[] = {"osc_24m", "audio_pll1_out", "audio_pll2_out", "video_pll1_out", "sys_pll1_133m", "osc_hdmi", "clk_ext2", "clk_ext3", }; static const char *imx8mm_sai3_sels[] = {"osc_24m", "audio_pll1_out", "audio_pll2_out", "video_pll1_out", "sys_pll1_133m", "osc_hdmi", "clk_ext3", "clk_ext4", }; static const char *imx8mm_sai4_sels[] = {"osc_24m", "audio_pll1_out", "audio_pll2_out", "video_pll1_out", "sys_pll1_133m", "osc_hdmi", "clk_ext1", "clk_ext2", }; static const char *imx8mm_sai5_sels[] = {"osc_24m", "audio_pll1_out", "audio_pll2_out", "video_pll1_out", "sys_pll1_133m", "osc_hdmi", "clk_ext2", "clk_ext3", }; static const char *imx8mm_sai6_sels[] = {"osc_24m", "audio_pll1_out", "audio_pll2_out", "video_pll1_out", "sys_pll1_133m", "osc_hdmi", "clk_ext3", "clk_ext4", }; static const char *imx8mm_spdif1_sels[] = {"osc_24m", "audio_pll1_out", "audio_pll2_out", "video_pll1_out", "sys_pll1_133m", "osc_hdmi", "clk_ext2", "clk_ext3", }; static const char *imx8mm_spdif2_sels[] = {"osc_24m", "audio_pll1_out", "audio_pll2_out", "video_pll1_out", "sys_pll1_133m", "osc_hdmi", "clk_ext3", "clk_ext4", }; static const char *imx8mm_enet_ref_sels[] = {"osc_24m", "sys_pll2_125m", "sys_pll2_50m", "sys_pll2_100m", "sys_pll1_160m", "audio_pll1_out", "video_pll1_out", "clk_ext4", }; static const char *imx8mm_enet_timer_sels[] = {"osc_24m", "sys_pll2_100m", "audio_pll1_out", "clk_ext1", "clk_ext2", "clk_ext3", "clk_ext4", "video_pll1_out", }; static const char *imx8mm_enet_phy_sels[] = {"osc_24m", "sys_pll2_50m", "sys_pll2_125m", "sys_pll2_200m", "sys_pll2_500m", "video_pll1_out", "audio_pll2_out", }; static const char *imx8mm_nand_sels[] = {"osc_24m", "sys_pll2_500m", "audio_pll1_out", "sys_pll1_400m", "audio_pll2_out", "sys_pll3_out", "sys_pll2_250m", "video_pll1_out", }; static const char *imx8mm_qspi_sels[] = {"osc_24m", "sys_pll1_400m", "sys_pll2_333m", "sys_pll2_500m", "audio_pll2_out", "sys_pll1_266m", "sys_pll3_out", "sys_pll1_100m", }; static const char *imx8mm_usdhc1_sels[] = {"osc_24m", "sys_pll1_400m", "sys_pll1_800m", "sys_pll2_500m", "sys_pll3_out", "sys_pll1_266m", "audio_pll2_out", "sys_pll1_100m", }; static const char *imx8mm_usdhc2_sels[] = {"osc_24m", "sys_pll1_400m", "sys_pll1_800m", "sys_pll2_500m", "sys_pll3_out", "sys_pll1_266m", "audio_pll2_out", "sys_pll1_100m", }; static const char *imx8mm_i2c1_sels[] = {"osc_24m", "sys_pll1_160m", "sys_pll2_50m", "sys_pll3_out", "audio_pll1_out", "video_pll1_out", "audio_pll2_out", "sys_pll1_133m", }; static const char *imx8mm_i2c2_sels[] = {"osc_24m", "sys_pll1_160m", "sys_pll2_50m", "sys_pll3_out", "audio_pll1_out", "video_pll1_out", "audio_pll2_out", "sys_pll1_133m", }; static const char *imx8mm_i2c3_sels[] = {"osc_24m", "sys_pll1_160m", "sys_pll2_50m", "sys_pll3_out", "audio_pll1_out", "video_pll1_out", "audio_pll2_out", "sys_pll1_133m", }; static const char *imx8mm_i2c4_sels[] = {"osc_24m", "sys_pll1_160m", "sys_pll2_50m", "sys_pll3_out", "audio_pll1_out", "video_pll1_out", "audio_pll2_out", "sys_pll1_133m", }; static const char *imx8mm_uart1_sels[] = {"osc_24m", "sys_pll1_80m", "sys_pll2_200m", "sys_pll2_100m", "sys_pll3_out", "clk_ext2", "clk_ext4", "audio_pll2_out", }; static const char *imx8mm_uart2_sels[] = {"osc_24m", "sys_pll1_80m", "sys_pll2_200m", "sys_pll2_100m", "sys_pll3_out", "clk_ext2", "clk_ext3", "audio_pll2_out", }; static const char *imx8mm_uart3_sels[] = {"osc_24m", "sys_pll1_80m", "sys_pll2_200m", "sys_pll2_100m", "sys_pll3_out", "clk_ext2", "clk_ext4", "audio_pll2_out", }; static const char *imx8mm_uart4_sels[] = {"osc_24m", "sys_pll1_80m", "sys_pll2_200m", "sys_pll2_100m", "sys_pll3_out", "clk_ext2", "clk_ext3", "audio_pll2_out", }; static const char *imx8mm_usb_core_sels[] = {"osc_24m", "sys_pll1_100m", "sys_pll1_40m", "sys_pll2_100m", "sys_pll2_200m", "clk_ext2", "clk_ext3", "audio_pll2_out", }; static const char *imx8mm_usb_phy_sels[] = {"osc_24m", "sys_pll1_100m", "sys_pll1_40m", "sys_pll2_100m", "sys_pll2_200m", "clk_ext2", "clk_ext3", "audio_pll2_out", }; static const char *imx8mm_gic_sels[] = {"osc_24m", "sys_pll2_200m", "sys_pll1_40m", "sys_pll2_100m", "sys_pll1_800m", "clk_ext2", "clk_ext4", "audio_pll2_out" }; static const char *imx8mm_ecspi1_sels[] = {"osc_24m", "sys_pll2_200m", "sys_pll1_40m", "sys_pll1_160m", "sys_pll1_800m", "sys_pll3_out", "sys_pll2_250m", "audio_pll2_out", }; static const char *imx8mm_ecspi2_sels[] = {"osc_24m", "sys_pll2_200m", "sys_pll1_40m", "sys_pll1_160m", "sys_pll1_800m", "sys_pll3_out", "sys_pll2_250m", "audio_pll2_out", }; static const char *imx8mm_pwm1_sels[] = {"osc_24m", "sys_pll2_100m", "sys_pll1_160m", "sys_pll1_40m", "sys_pll3_out", "clk_ext1", "sys_pll1_80m", "video_pll1_out", }; static const char *imx8mm_pwm2_sels[] = {"osc_24m", "sys_pll2_100m", "sys_pll1_160m", "sys_pll1_40m", "sys_pll3_out", "clk_ext1", "sys_pll1_80m", "video_pll1_out", }; static const char *imx8mm_pwm3_sels[] = {"osc_24m", "sys_pll2_100m", "sys_pll1_160m", "sys_pll1_40m", "sys_pll3_out", "clk_ext2", "sys_pll1_80m", "video_pll1_out", }; static const char *imx8mm_pwm4_sels[] = {"osc_24m", "sys_pll2_100m", "sys_pll1_160m", "sys_pll1_40m", "sys_pll3_out", "clk_ext2", "sys_pll1_80m", "video_pll1_out", }; static const char *imx8mm_gpt1_sels[] = {"osc_24m", "sys_pll2_100m", "sys_pll1_400m", "sys_pll1_40m", "video_pll1_out", "sys_pll1_80m", "audio_pll1_out", "clk_ext1" }; static const char *imx8mm_wdog_sels[] = {"osc_24m", "sys_pll1_133m", "sys_pll1_160m", "vpu_pll_out", "sys_pll2_125m", "sys_pll3_out", "sys_pll1_80m", "sys_pll2_166m", }; static const char *imx8mm_wrclk_sels[] = {"osc_24m", "sys_pll1_40m", "vpu_pll_out", "sys_pll3_out", "sys_pll2_200m", "sys_pll1_266m", "sys_pll2_500m", "sys_pll1_100m", }; static const char *imx8mm_dsi_core_sels[] = {"osc_24m", "sys_pll1_266m", "sys_pll2_250m", "sys_pll1_800m", "sys_pll2_1000m", "sys_pll3_out", "audio_pll2_out", "video_pll1_out", }; static const char *imx8mm_dsi_phy_sels[] = {"osc_24m", "sys_pll2_125m", "sys_pll2_100m", "sys_pll1_800m", "sys_pll2_1000m", "clk_ext2", "audio_pll2_out", "video_pll1_out", }; static const char *imx8mm_dsi_dbi_sels[] = {"osc_24m", "sys_pll1_266m", "sys_pll2_100m", "sys_pll1_800m", "sys_pll2_1000m", "sys_pll3_out", "audio_pll2_out", "video_pll1_out", }; static const char *imx8mm_usdhc3_sels[] = {"osc_24m", "sys_pll1_400m", "sys_pll1_800m", "sys_pll2_500m", "sys_pll3_out", "sys_pll1_266m", "audio_pll2_out", "sys_pll1_100m", }; static const char *imx8mm_csi1_core_sels[] = {"osc_24m", "sys_pll1_266m", "sys_pll2_250m", "sys_pll1_800m", "sys_pll2_1000m", "sys_pll3_out", "audio_pll2_out", "video_pll1_out", }; static const char *imx8mm_csi1_phy_sels[] = {"osc_24m", "sys_pll2_333m", "sys_pll2_100m", "sys_pll1_800m", "sys_pll2_1000m", "clk_ext2", "audio_pll2_out", "video_pll1_out", }; static const char *imx8mm_csi1_esc_sels[] = {"osc_24m", "sys_pll2_100m", "sys_pll1_80m", "sys_pll1_800m", "sys_pll2_1000m", "sys_pll3_out", "clk_ext3", "audio_pll2_out", }; static const char *imx8mm_csi2_core_sels[] = {"osc_24m", "sys_pll1_266m", "sys_pll2_250m", "sys_pll1_800m", "sys_pll2_1000m", "sys_pll3_out", "audio_pll2_out", "video_pll1_out", }; static const char *imx8mm_csi2_phy_sels[] = {"osc_24m", "sys_pll2_333m", "sys_pll2_100m", "sys_pll1_800m", "sys_pll2_1000m", "clk_ext2", "audio_pll2_out", "video_pll1_out", }; static const char *imx8mm_csi2_esc_sels[] = {"osc_24m", "sys_pll2_100m", "sys_pll1_80m", "sys_pll1_800m", "sys_pll2_1000m", "sys_pll3_out", "clk_ext3", "audio_pll2_out", }; static const char *imx8mm_pcie2_ctrl_sels[] = {"osc_24m", "sys_pll2_250m", "sys_pll2_200m", "sys_pll1_266m", "sys_pll1_800m", "sys_pll2_500m", "sys_pll2_333m", "sys_pll3_out", }; static const char *imx8mm_pcie2_phy_sels[] = {"osc_24m", "sys_pll2_100m", "sys_pll2_500m", "clk_ext1", "clk_ext2", "clk_ext3", "clk_ext4", "sys_pll1_400m", }; static const char *imx8mm_pcie2_aux_sels[] = {"osc_24m", "sys_pll2_200m", "sys_pll2_50m", "sys_pll3_out", "sys_pll2_100m", "sys_pll1_80m", "sys_pll1_160m", "sys_pll1_200m", }; static const char *imx8mm_ecspi3_sels[] = {"osc_24m", "sys_pll2_200m", "sys_pll1_40m", "sys_pll1_160m", "sys_pll1_800m", "sys_pll3_out", "sys_pll2_250m", "audio_pll2_out", }; static const char *imx8mm_pdm_sels[] = {"osc_24m", "sys_pll2_100m", "audio_pll1_out", "sys_pll1_800m", "sys_pll2_1000m", "sys_pll3_out", "clk_ext3", "audio_pll2_out", }; static const char *imx8mm_vpu_h1_sels[] = {"osc_24m", "vpu_pll_out", "sys_pll1_800m", "sys_pll2_1000m", "audio_pll2_out", "sys_pll2_125m", "sys_pll3_out", "audio_pll1_out", }; static const char *imx8mm_dram_core_sels[] = {"dram_pll_out", "dram_alt_root", }; static const char *imx8mm_clko1_sels[] = {"osc_24m", "sys_pll1_800m", "dummy", "sys_pll1_200m", "audio_pll2_out", "sys_pll2_500m", "vpu_pll", "sys_pll1_80m", }; static const char *imx8mm_clko2_sels[] = {"osc_24m", "sys_pll2_200m", "sys_pll1_400m", "sys_pll2_166m", "sys_pll3_out", "audio_pll1_out", "video_pll1_out", "osc_32k", }; static const char * const clkout_sels[] = {"audio_pll1_out", "audio_pll2_out", "video_pll1_out", "dummy", "dummy", "gpu_pll_out", "vpu_pll_out", "arm_pll_out", "sys_pll1", "sys_pll2", "sys_pll3", "dummy", "dummy", "osc_24m", "dummy", "osc_32k"}; static struct clk_hw_onecell_data *clk_hw_data; static struct clk_hw **hws; static int imx8mm_clocks_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; void __iomem *base; int ret; clk_hw_data = kzalloc(struct_size(clk_hw_data, hws, IMX8MM_CLK_END), GFP_KERNEL); if (WARN_ON(!clk_hw_data)) return -ENOMEM; clk_hw_data->num = IMX8MM_CLK_END; hws = clk_hw_data->hws; hws[IMX8MM_CLK_DUMMY] = imx_clk_hw_fixed("dummy", 0); hws[IMX8MM_CLK_24M] = imx_get_clk_hw_by_name(np, "osc_24m"); hws[IMX8MM_CLK_32K] = imx_get_clk_hw_by_name(np, "osc_32k"); hws[IMX8MM_CLK_EXT1] = imx_get_clk_hw_by_name(np, "clk_ext1"); hws[IMX8MM_CLK_EXT2] = imx_get_clk_hw_by_name(np, "clk_ext2"); hws[IMX8MM_CLK_EXT3] = imx_get_clk_hw_by_name(np, "clk_ext3"); hws[IMX8MM_CLK_EXT4] = imx_get_clk_hw_by_name(np, "clk_ext4"); np = of_find_compatible_node(NULL, NULL, "fsl,imx8mm-anatop"); base = of_iomap(np, 0); of_node_put(np); if (WARN_ON(!base)) return -ENOMEM; hws[IMX8MM_AUDIO_PLL1_REF_SEL] = imx_clk_hw_mux("audio_pll1_ref_sel", base + 0x0, 0, 2, pll_ref_sels, ARRAY_SIZE(pll_ref_sels)); hws[IMX8MM_AUDIO_PLL2_REF_SEL] = imx_clk_hw_mux("audio_pll2_ref_sel", base + 0x14, 0, 2, pll_ref_sels, ARRAY_SIZE(pll_ref_sels)); hws[IMX8MM_VIDEO_PLL1_REF_SEL] = imx_clk_hw_mux("video_pll1_ref_sel", base + 0x28, 0, 2, pll_ref_sels, ARRAY_SIZE(pll_ref_sels)); hws[IMX8MM_DRAM_PLL_REF_SEL] = imx_clk_hw_mux("dram_pll_ref_sel", base + 0x50, 0, 2, pll_ref_sels, ARRAY_SIZE(pll_ref_sels)); hws[IMX8MM_GPU_PLL_REF_SEL] = imx_clk_hw_mux("gpu_pll_ref_sel", base + 0x64, 0, 2, pll_ref_sels, ARRAY_SIZE(pll_ref_sels)); hws[IMX8MM_VPU_PLL_REF_SEL] = imx_clk_hw_mux("vpu_pll_ref_sel", base + 0x74, 0, 2, pll_ref_sels, ARRAY_SIZE(pll_ref_sels)); hws[IMX8MM_ARM_PLL_REF_SEL] = imx_clk_hw_mux("arm_pll_ref_sel", base + 0x84, 0, 2, pll_ref_sels, ARRAY_SIZE(pll_ref_sels)); hws[IMX8MM_SYS_PLL3_REF_SEL] = imx_clk_hw_mux("sys_pll3_ref_sel", base + 0x114, 0, 2, pll_ref_sels, ARRAY_SIZE(pll_ref_sels)); hws[IMX8MM_AUDIO_PLL1] = imx_clk_hw_pll14xx("audio_pll1", "audio_pll1_ref_sel", base, &imx_1443x_pll); hws[IMX8MM_AUDIO_PLL2] = imx_clk_hw_pll14xx("audio_pll2", "audio_pll2_ref_sel", base + 0x14, &imx_1443x_pll); hws[IMX8MM_VIDEO_PLL1] = imx_clk_hw_pll14xx("video_pll1", "video_pll1_ref_sel", base + 0x28, &imx_1443x_pll); hws[IMX8MM_DRAM_PLL] = imx_clk_hw_pll14xx("dram_pll", "dram_pll_ref_sel", base + 0x50, &imx_1443x_dram_pll); hws[IMX8MM_GPU_PLL] = imx_clk_hw_pll14xx("gpu_pll", "gpu_pll_ref_sel", base + 0x64, &imx_1416x_pll); hws[IMX8MM_VPU_PLL] = imx_clk_hw_pll14xx("vpu_pll", "vpu_pll_ref_sel", base + 0x74, &imx_1416x_pll); hws[IMX8MM_ARM_PLL] = imx_clk_hw_pll14xx("arm_pll", "arm_pll_ref_sel", base + 0x84, &imx_1416x_pll); hws[IMX8MM_SYS_PLL1] = imx_clk_hw_fixed("sys_pll1", 800000000); hws[IMX8MM_SYS_PLL2] = imx_clk_hw_fixed("sys_pll2", 1000000000); hws[IMX8MM_SYS_PLL3] = imx_clk_hw_pll14xx("sys_pll3", "sys_pll3_ref_sel", base + 0x114, &imx_1416x_pll); /* PLL bypass out */ hws[IMX8MM_AUDIO_PLL1_BYPASS] = imx_clk_hw_mux_flags("audio_pll1_bypass", base, 16, 1, audio_pll1_bypass_sels, ARRAY_SIZE(audio_pll1_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX8MM_AUDIO_PLL2_BYPASS] = imx_clk_hw_mux_flags("audio_pll2_bypass", base + 0x14, 16, 1, audio_pll2_bypass_sels, ARRAY_SIZE(audio_pll2_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX8MM_VIDEO_PLL1_BYPASS] = imx_clk_hw_mux_flags("video_pll1_bypass", base + 0x28, 16, 1, video_pll1_bypass_sels, ARRAY_SIZE(video_pll1_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX8MM_DRAM_PLL_BYPASS] = imx_clk_hw_mux_flags("dram_pll_bypass", base + 0x50, 16, 1, dram_pll_bypass_sels, ARRAY_SIZE(dram_pll_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX8MM_GPU_PLL_BYPASS] = imx_clk_hw_mux_flags("gpu_pll_bypass", base + 0x64, 28, 1, gpu_pll_bypass_sels, ARRAY_SIZE(gpu_pll_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX8MM_VPU_PLL_BYPASS] = imx_clk_hw_mux_flags("vpu_pll_bypass", base + 0x74, 28, 1, vpu_pll_bypass_sels, ARRAY_SIZE(vpu_pll_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX8MM_ARM_PLL_BYPASS] = imx_clk_hw_mux_flags("arm_pll_bypass", base + 0x84, 28, 1, arm_pll_bypass_sels, ARRAY_SIZE(arm_pll_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX8MM_SYS_PLL3_BYPASS] = imx_clk_hw_mux_flags("sys_pll3_bypass", base + 0x114, 28, 1, sys_pll3_bypass_sels, ARRAY_SIZE(sys_pll3_bypass_sels), CLK_SET_RATE_PARENT); /* PLL out gate */ hws[IMX8MM_AUDIO_PLL1_OUT] = imx_clk_hw_gate("audio_pll1_out", "audio_pll1_bypass", base, 13); hws[IMX8MM_AUDIO_PLL2_OUT] = imx_clk_hw_gate("audio_pll2_out", "audio_pll2_bypass", base + 0x14, 13); hws[IMX8MM_VIDEO_PLL1_OUT] = imx_clk_hw_gate("video_pll1_out", "video_pll1_bypass", base + 0x28, 13); hws[IMX8MM_DRAM_PLL_OUT] = imx_clk_hw_gate("dram_pll_out", "dram_pll_bypass", base + 0x50, 13); hws[IMX8MM_GPU_PLL_OUT] = imx_clk_hw_gate("gpu_pll_out", "gpu_pll_bypass", base + 0x64, 11); hws[IMX8MM_VPU_PLL_OUT] = imx_clk_hw_gate("vpu_pll_out", "vpu_pll_bypass", base + 0x74, 11); hws[IMX8MM_ARM_PLL_OUT] = imx_clk_hw_gate("arm_pll_out", "arm_pll_bypass", base + 0x84, 11); hws[IMX8MM_SYS_PLL3_OUT] = imx_clk_hw_gate("sys_pll3_out", "sys_pll3_bypass", base + 0x114, 11); /* SYS PLL1 fixed output */ hws[IMX8MM_SYS_PLL1_OUT] = imx_clk_hw_gate("sys_pll1_out", "sys_pll1", base + 0x94, 11); hws[IMX8MM_SYS_PLL1_40M] = imx_clk_hw_fixed_factor("sys_pll1_40m", "sys_pll1_out", 1, 20); hws[IMX8MM_SYS_PLL1_80M] = imx_clk_hw_fixed_factor("sys_pll1_80m", "sys_pll1_out", 1, 10); hws[IMX8MM_SYS_PLL1_100M] = imx_clk_hw_fixed_factor("sys_pll1_100m", "sys_pll1_out", 1, 8); hws[IMX8MM_SYS_PLL1_133M] = imx_clk_hw_fixed_factor("sys_pll1_133m", "sys_pll1_out", 1, 6); hws[IMX8MM_SYS_PLL1_160M] = imx_clk_hw_fixed_factor("sys_pll1_160m", "sys_pll1_out", 1, 5); hws[IMX8MM_SYS_PLL1_200M] = imx_clk_hw_fixed_factor("sys_pll1_200m", "sys_pll1_out", 1, 4); hws[IMX8MM_SYS_PLL1_266M] = imx_clk_hw_fixed_factor("sys_pll1_266m", "sys_pll1_out", 1, 3); hws[IMX8MM_SYS_PLL1_400M] = imx_clk_hw_fixed_factor("sys_pll1_400m", "sys_pll1_out", 1, 2); hws[IMX8MM_SYS_PLL1_800M] = imx_clk_hw_fixed_factor("sys_pll1_800m", "sys_pll1_out", 1, 1); /* SYS PLL2 fixed output */ hws[IMX8MM_SYS_PLL2_OUT] = imx_clk_hw_gate("sys_pll2_out", "sys_pll2", base + 0x104, 11); hws[IMX8MM_SYS_PLL2_50M] = imx_clk_hw_fixed_factor("sys_pll2_50m", "sys_pll2_out", 1, 20); hws[IMX8MM_SYS_PLL2_100M] = imx_clk_hw_fixed_factor("sys_pll2_100m", "sys_pll2_out", 1, 10); hws[IMX8MM_SYS_PLL2_125M] = imx_clk_hw_fixed_factor("sys_pll2_125m", "sys_pll2_out", 1, 8); hws[IMX8MM_SYS_PLL2_166M] = imx_clk_hw_fixed_factor("sys_pll2_166m", "sys_pll2_out", 1, 6); hws[IMX8MM_SYS_PLL2_200M] = imx_clk_hw_fixed_factor("sys_pll2_200m", "sys_pll2_out", 1, 5); hws[IMX8MM_SYS_PLL2_250M] = imx_clk_hw_fixed_factor("sys_pll2_250m", "sys_pll2_out", 1, 4); hws[IMX8MM_SYS_PLL2_333M] = imx_clk_hw_fixed_factor("sys_pll2_333m", "sys_pll2_out", 1, 3); hws[IMX8MM_SYS_PLL2_500M] = imx_clk_hw_fixed_factor("sys_pll2_500m", "sys_pll2_out", 1, 2); hws[IMX8MM_SYS_PLL2_1000M] = imx_clk_hw_fixed_factor("sys_pll2_1000m", "sys_pll2_out", 1, 1); hws[IMX8MM_CLK_CLKOUT1_SEL] = imx_clk_hw_mux2("clkout1_sel", base + 0x128, 4, 4, clkout_sels, ARRAY_SIZE(clkout_sels)); hws[IMX8MM_CLK_CLKOUT1_DIV] = imx_clk_hw_divider("clkout1_div", "clkout1_sel", base + 0x128, 0, 4); hws[IMX8MM_CLK_CLKOUT1] = imx_clk_hw_gate("clkout1", "clkout1_div", base + 0x128, 8); hws[IMX8MM_CLK_CLKOUT2_SEL] = imx_clk_hw_mux2("clkout2_sel", base + 0x128, 20, 4, clkout_sels, ARRAY_SIZE(clkout_sels)); hws[IMX8MM_CLK_CLKOUT2_DIV] = imx_clk_hw_divider("clkout2_div", "clkout2_sel", base + 0x128, 16, 4); hws[IMX8MM_CLK_CLKOUT2] = imx_clk_hw_gate("clkout2", "clkout2_div", base + 0x128, 24); np = dev->of_node; base = devm_platform_ioremap_resource(pdev, 0); if (WARN_ON(IS_ERR(base))) return PTR_ERR(base); /* Core Slice */ hws[IMX8MM_CLK_A53_DIV] = imx8m_clk_hw_composite_core("arm_a53_div", imx8mm_a53_sels, base + 0x8000); hws[IMX8MM_CLK_A53_CG] = hws[IMX8MM_CLK_A53_DIV]; hws[IMX8MM_CLK_A53_SRC] = hws[IMX8MM_CLK_A53_DIV]; hws[IMX8MM_CLK_M4_CORE] = imx8m_clk_hw_composite_core("arm_m4_core", imx8mm_m4_sels, base + 0x8080); hws[IMX8MM_CLK_VPU_CORE] = imx8m_clk_hw_composite_core("vpu_core", imx8mm_vpu_sels, base + 0x8100); hws[IMX8MM_CLK_GPU3D_CORE] = imx8m_clk_hw_composite_core("gpu3d_core", imx8mm_gpu3d_sels, base + 0x8180); hws[IMX8MM_CLK_GPU2D_CORE] = imx8m_clk_hw_composite_core("gpu2d_core", imx8mm_gpu2d_sels, base + 0x8200); /* For backwards compatibility */ hws[IMX8MM_CLK_M4_SRC] = hws[IMX8MM_CLK_M4_CORE]; hws[IMX8MM_CLK_M4_CG] = hws[IMX8MM_CLK_M4_CORE]; hws[IMX8MM_CLK_M4_DIV] = hws[IMX8MM_CLK_M4_CORE]; hws[IMX8MM_CLK_VPU_SRC] = hws[IMX8MM_CLK_VPU_CORE]; hws[IMX8MM_CLK_VPU_CG] = hws[IMX8MM_CLK_VPU_CORE]; hws[IMX8MM_CLK_VPU_DIV] = hws[IMX8MM_CLK_VPU_CORE]; hws[IMX8MM_CLK_GPU3D_SRC] = hws[IMX8MM_CLK_GPU3D_CORE]; hws[IMX8MM_CLK_GPU3D_CG] = hws[IMX8MM_CLK_GPU3D_CORE]; hws[IMX8MM_CLK_GPU3D_DIV] = hws[IMX8MM_CLK_GPU3D_CORE]; hws[IMX8MM_CLK_GPU2D_SRC] = hws[IMX8MM_CLK_GPU2D_CORE]; hws[IMX8MM_CLK_GPU2D_CG] = hws[IMX8MM_CLK_GPU2D_CORE]; hws[IMX8MM_CLK_GPU2D_DIV] = hws[IMX8MM_CLK_GPU2D_CORE]; /* CORE SEL */ hws[IMX8MM_CLK_A53_CORE] = imx_clk_hw_mux2("arm_a53_core", base + 0x9880, 24, 1, imx8mm_a53_core_sels, ARRAY_SIZE(imx8mm_a53_core_sels)); /* BUS */ hws[IMX8MM_CLK_MAIN_AXI] = imx8m_clk_hw_composite_bus_critical("main_axi", imx8mm_main_axi_sels, base + 0x8800); hws[IMX8MM_CLK_ENET_AXI] = imx8m_clk_hw_composite_bus("enet_axi", imx8mm_enet_axi_sels, base + 0x8880); hws[IMX8MM_CLK_NAND_USDHC_BUS] = imx8m_clk_hw_composite_bus_critical("nand_usdhc_bus", imx8mm_nand_usdhc_sels, base + 0x8900); hws[IMX8MM_CLK_VPU_BUS] = imx8m_clk_hw_composite_bus("vpu_bus", imx8mm_vpu_bus_sels, base + 0x8980); hws[IMX8MM_CLK_DISP_AXI] = imx8m_clk_hw_composite_bus("disp_axi", imx8mm_disp_axi_sels, base + 0x8a00); hws[IMX8MM_CLK_DISP_APB] = imx8m_clk_hw_composite_bus("disp_apb", imx8mm_disp_apb_sels, base + 0x8a80); hws[IMX8MM_CLK_DISP_RTRM] = imx8m_clk_hw_composite_bus("disp_rtrm", imx8mm_disp_rtrm_sels, base + 0x8b00); hws[IMX8MM_CLK_USB_BUS] = imx8m_clk_hw_composite_bus("usb_bus", imx8mm_usb_bus_sels, base + 0x8b80); hws[IMX8MM_CLK_GPU_AXI] = imx8m_clk_hw_composite_bus("gpu_axi", imx8mm_gpu_axi_sels, base + 0x8c00); hws[IMX8MM_CLK_GPU_AHB] = imx8m_clk_hw_composite_bus("gpu_ahb", imx8mm_gpu_ahb_sels, base + 0x8c80); hws[IMX8MM_CLK_NOC] = imx8m_clk_hw_composite_bus_critical("noc", imx8mm_noc_sels, base + 0x8d00); hws[IMX8MM_CLK_NOC_APB] = imx8m_clk_hw_composite_bus_critical("noc_apb", imx8mm_noc_apb_sels, base + 0x8d80); /* AHB */ hws[IMX8MM_CLK_AHB] = imx8m_clk_hw_composite_bus_critical("ahb", imx8mm_ahb_sels, base + 0x9000); hws[IMX8MM_CLK_AUDIO_AHB] = imx8m_clk_hw_composite_bus("audio_ahb", imx8mm_audio_ahb_sels, base + 0x9100); /* IPG */ hws[IMX8MM_CLK_IPG_ROOT] = imx_clk_hw_divider2("ipg_root", "ahb", base + 0x9080, 0, 1); hws[IMX8MM_CLK_IPG_AUDIO_ROOT] = imx_clk_hw_divider2("ipg_audio_root", "audio_ahb", base + 0x9180, 0, 1); /* * DRAM clocks are manipulated from TF-A outside clock framework. * The fw_managed helper sets GET_RATE_NOCACHE and clears SET_PARENT_GATE * as div value should always be read from hardware */ hws[IMX8MM_CLK_DRAM_ALT] = imx8m_clk_hw_fw_managed_composite("dram_alt", imx8mm_dram_alt_sels, base + 0xa000); hws[IMX8MM_CLK_DRAM_APB] = imx8m_clk_hw_fw_managed_composite_critical("dram_apb", imx8mm_dram_apb_sels, base + 0xa080); /* IP */ hws[IMX8MM_CLK_VPU_G1] = imx8m_clk_hw_composite("vpu_g1", imx8mm_vpu_g1_sels, base + 0xa100); hws[IMX8MM_CLK_VPU_G2] = imx8m_clk_hw_composite("vpu_g2", imx8mm_vpu_g2_sels, base + 0xa180); hws[IMX8MM_CLK_DISP_DTRC] = imx8m_clk_hw_composite("disp_dtrc", imx8mm_disp_dtrc_sels, base + 0xa200); hws[IMX8MM_CLK_DISP_DC8000] = imx8m_clk_hw_composite("disp_dc8000", imx8mm_disp_dc8000_sels, base + 0xa280); hws[IMX8MM_CLK_PCIE1_CTRL] = imx8m_clk_hw_composite("pcie1_ctrl", imx8mm_pcie1_ctrl_sels, base + 0xa300); hws[IMX8MM_CLK_PCIE1_PHY] = imx8m_clk_hw_composite("pcie1_phy", imx8mm_pcie1_phy_sels, base + 0xa380); hws[IMX8MM_CLK_PCIE1_AUX] = imx8m_clk_hw_composite("pcie1_aux", imx8mm_pcie1_aux_sels, base + 0xa400); hws[IMX8MM_CLK_DC_PIXEL] = imx8m_clk_hw_composite("dc_pixel", imx8mm_dc_pixel_sels, base + 0xa480); hws[IMX8MM_CLK_LCDIF_PIXEL] = imx8m_clk_hw_composite_flags("lcdif_pixel", imx8mm_lcdif_pixel_sels, base + 0xa500, CLK_SET_RATE_PARENT); hws[IMX8MM_CLK_SAI1] = imx8m_clk_hw_composite("sai1", imx8mm_sai1_sels, base + 0xa580); hws[IMX8MM_CLK_SAI2] = imx8m_clk_hw_composite("sai2", imx8mm_sai2_sels, base + 0xa600); hws[IMX8MM_CLK_SAI3] = imx8m_clk_hw_composite("sai3", imx8mm_sai3_sels, base + 0xa680); hws[IMX8MM_CLK_SAI4] = imx8m_clk_hw_composite("sai4", imx8mm_sai4_sels, base + 0xa700); hws[IMX8MM_CLK_SAI5] = imx8m_clk_hw_composite("sai5", imx8mm_sai5_sels, base + 0xa780); hws[IMX8MM_CLK_SAI6] = imx8m_clk_hw_composite("sai6", imx8mm_sai6_sels, base + 0xa800); hws[IMX8MM_CLK_SPDIF1] = imx8m_clk_hw_composite("spdif1", imx8mm_spdif1_sels, base + 0xa880); hws[IMX8MM_CLK_SPDIF2] = imx8m_clk_hw_composite("spdif2", imx8mm_spdif2_sels, base + 0xa900); hws[IMX8MM_CLK_ENET_REF] = imx8m_clk_hw_composite("enet_ref", imx8mm_enet_ref_sels, base + 0xa980); hws[IMX8MM_CLK_ENET_TIMER] = imx8m_clk_hw_composite("enet_timer", imx8mm_enet_timer_sels, base + 0xaa00); hws[IMX8MM_CLK_ENET_PHY_REF] = imx8m_clk_hw_composite("enet_phy", imx8mm_enet_phy_sels, base + 0xaa80); hws[IMX8MM_CLK_NAND] = imx8m_clk_hw_composite("nand", imx8mm_nand_sels, base + 0xab00); hws[IMX8MM_CLK_QSPI] = imx8m_clk_hw_composite("qspi", imx8mm_qspi_sels, base + 0xab80); hws[IMX8MM_CLK_USDHC1] = imx8m_clk_hw_composite("usdhc1", imx8mm_usdhc1_sels, base + 0xac00); hws[IMX8MM_CLK_USDHC2] = imx8m_clk_hw_composite("usdhc2", imx8mm_usdhc2_sels, base + 0xac80); hws[IMX8MM_CLK_I2C1] = imx8m_clk_hw_composite("i2c1", imx8mm_i2c1_sels, base + 0xad00); hws[IMX8MM_CLK_I2C2] = imx8m_clk_hw_composite("i2c2", imx8mm_i2c2_sels, base + 0xad80); hws[IMX8MM_CLK_I2C3] = imx8m_clk_hw_composite("i2c3", imx8mm_i2c3_sels, base + 0xae00); hws[IMX8MM_CLK_I2C4] = imx8m_clk_hw_composite("i2c4", imx8mm_i2c4_sels, base + 0xae80); hws[IMX8MM_CLK_UART1] = imx8m_clk_hw_composite("uart1", imx8mm_uart1_sels, base + 0xaf00); hws[IMX8MM_CLK_UART2] = imx8m_clk_hw_composite("uart2", imx8mm_uart2_sels, base + 0xaf80); hws[IMX8MM_CLK_UART3] = imx8m_clk_hw_composite("uart3", imx8mm_uart3_sels, base + 0xb000); hws[IMX8MM_CLK_UART4] = imx8m_clk_hw_composite("uart4", imx8mm_uart4_sels, base + 0xb080); hws[IMX8MM_CLK_USB_CORE_REF] = imx8m_clk_hw_composite("usb_core_ref", imx8mm_usb_core_sels, base + 0xb100); hws[IMX8MM_CLK_USB_PHY_REF] = imx8m_clk_hw_composite("usb_phy_ref", imx8mm_usb_phy_sels, base + 0xb180); hws[IMX8MM_CLK_GIC] = imx8m_clk_hw_composite_critical("gic", imx8mm_gic_sels, base + 0xb200); hws[IMX8MM_CLK_ECSPI1] = imx8m_clk_hw_composite("ecspi1", imx8mm_ecspi1_sels, base + 0xb280); hws[IMX8MM_CLK_ECSPI2] = imx8m_clk_hw_composite("ecspi2", imx8mm_ecspi2_sels, base + 0xb300); hws[IMX8MM_CLK_PWM1] = imx8m_clk_hw_composite("pwm1", imx8mm_pwm1_sels, base + 0xb380); hws[IMX8MM_CLK_PWM2] = imx8m_clk_hw_composite("pwm2", imx8mm_pwm2_sels, base + 0xb400); hws[IMX8MM_CLK_PWM3] = imx8m_clk_hw_composite("pwm3", imx8mm_pwm3_sels, base + 0xb480); hws[IMX8MM_CLK_PWM4] = imx8m_clk_hw_composite("pwm4", imx8mm_pwm4_sels, base + 0xb500); hws[IMX8MM_CLK_GPT1] = imx8m_clk_hw_composite("gpt1", imx8mm_gpt1_sels, base + 0xb580); hws[IMX8MM_CLK_WDOG] = imx8m_clk_hw_composite("wdog", imx8mm_wdog_sels, base + 0xb900); hws[IMX8MM_CLK_WRCLK] = imx8m_clk_hw_composite("wrclk", imx8mm_wrclk_sels, base + 0xb980); hws[IMX8MM_CLK_CLKO1] = imx8m_clk_hw_composite("clko1", imx8mm_clko1_sels, base + 0xba00); hws[IMX8MM_CLK_CLKO2] = imx8m_clk_hw_composite("clko2", imx8mm_clko2_sels, base + 0xba80); hws[IMX8MM_CLK_DSI_CORE] = imx8m_clk_hw_composite("dsi_core", imx8mm_dsi_core_sels, base + 0xbb00); hws[IMX8MM_CLK_DSI_PHY_REF] = imx8m_clk_hw_composite("dsi_phy_ref", imx8mm_dsi_phy_sels, base + 0xbb80); hws[IMX8MM_CLK_DSI_DBI] = imx8m_clk_hw_composite("dsi_dbi", imx8mm_dsi_dbi_sels, base + 0xbc00); hws[IMX8MM_CLK_USDHC3] = imx8m_clk_hw_composite("usdhc3", imx8mm_usdhc3_sels, base + 0xbc80); hws[IMX8MM_CLK_CSI1_CORE] = imx8m_clk_hw_composite("csi1_core", imx8mm_csi1_core_sels, base + 0xbd00); hws[IMX8MM_CLK_CSI1_PHY_REF] = imx8m_clk_hw_composite("csi1_phy_ref", imx8mm_csi1_phy_sels, base + 0xbd80); hws[IMX8MM_CLK_CSI1_ESC] = imx8m_clk_hw_composite("csi1_esc", imx8mm_csi1_esc_sels, base + 0xbe00); hws[IMX8MM_CLK_CSI2_CORE] = imx8m_clk_hw_composite("csi2_core", imx8mm_csi2_core_sels, base + 0xbe80); hws[IMX8MM_CLK_CSI2_PHY_REF] = imx8m_clk_hw_composite("csi2_phy_ref", imx8mm_csi2_phy_sels, base + 0xbf00); hws[IMX8MM_CLK_CSI2_ESC] = imx8m_clk_hw_composite("csi2_esc", imx8mm_csi2_esc_sels, base + 0xbf80); hws[IMX8MM_CLK_PCIE2_CTRL] = imx8m_clk_hw_composite("pcie2_ctrl", imx8mm_pcie2_ctrl_sels, base + 0xc000); hws[IMX8MM_CLK_PCIE2_PHY] = imx8m_clk_hw_composite("pcie2_phy", imx8mm_pcie2_phy_sels, base + 0xc080); hws[IMX8MM_CLK_PCIE2_AUX] = imx8m_clk_hw_composite("pcie2_aux", imx8mm_pcie2_aux_sels, base + 0xc100); hws[IMX8MM_CLK_ECSPI3] = imx8m_clk_hw_composite("ecspi3", imx8mm_ecspi3_sels, base + 0xc180); hws[IMX8MM_CLK_PDM] = imx8m_clk_hw_composite("pdm", imx8mm_pdm_sels, base + 0xc200); hws[IMX8MM_CLK_VPU_H1] = imx8m_clk_hw_composite("vpu_h1", imx8mm_vpu_h1_sels, base + 0xc280); /* CCGR */ hws[IMX8MM_CLK_ECSPI1_ROOT] = imx_clk_hw_gate4("ecspi1_root_clk", "ecspi1", base + 0x4070, 0); hws[IMX8MM_CLK_ECSPI2_ROOT] = imx_clk_hw_gate4("ecspi2_root_clk", "ecspi2", base + 0x4080, 0); hws[IMX8MM_CLK_ECSPI3_ROOT] = imx_clk_hw_gate4("ecspi3_root_clk", "ecspi3", base + 0x4090, 0); hws[IMX8MM_CLK_ENET1_ROOT] = imx_clk_hw_gate4("enet1_root_clk", "enet_axi", base + 0x40a0, 0); hws[IMX8MM_CLK_GPIO1_ROOT] = imx_clk_hw_gate4("gpio1_root_clk", "ipg_root", base + 0x40b0, 0); hws[IMX8MM_CLK_GPIO2_ROOT] = imx_clk_hw_gate4("gpio2_root_clk", "ipg_root", base + 0x40c0, 0); hws[IMX8MM_CLK_GPIO3_ROOT] = imx_clk_hw_gate4("gpio3_root_clk", "ipg_root", base + 0x40d0, 0); hws[IMX8MM_CLK_GPIO4_ROOT] = imx_clk_hw_gate4("gpio4_root_clk", "ipg_root", base + 0x40e0, 0); hws[IMX8MM_CLK_GPIO5_ROOT] = imx_clk_hw_gate4("gpio5_root_clk", "ipg_root", base + 0x40f0, 0); hws[IMX8MM_CLK_GPT1_ROOT] = imx_clk_hw_gate4("gpt1_root_clk", "gpt1", base + 0x4100, 0); hws[IMX8MM_CLK_I2C1_ROOT] = imx_clk_hw_gate4("i2c1_root_clk", "i2c1", base + 0x4170, 0); hws[IMX8MM_CLK_I2C2_ROOT] = imx_clk_hw_gate4("i2c2_root_clk", "i2c2", base + 0x4180, 0); hws[IMX8MM_CLK_I2C3_ROOT] = imx_clk_hw_gate4("i2c3_root_clk", "i2c3", base + 0x4190, 0); hws[IMX8MM_CLK_I2C4_ROOT] = imx_clk_hw_gate4("i2c4_root_clk", "i2c4", base + 0x41a0, 0); hws[IMX8MM_CLK_MU_ROOT] = imx_clk_hw_gate4("mu_root_clk", "ipg_root", base + 0x4210, 0); hws[IMX8MM_CLK_OCOTP_ROOT] = imx_clk_hw_gate4("ocotp_root_clk", "ipg_root", base + 0x4220, 0); hws[IMX8MM_CLK_PCIE1_ROOT] = imx_clk_hw_gate4("pcie1_root_clk", "pcie1_ctrl", base + 0x4250, 0); hws[IMX8MM_CLK_PWM1_ROOT] = imx_clk_hw_gate4("pwm1_root_clk", "pwm1", base + 0x4280, 0); hws[IMX8MM_CLK_PWM2_ROOT] = imx_clk_hw_gate4("pwm2_root_clk", "pwm2", base + 0x4290, 0); hws[IMX8MM_CLK_PWM3_ROOT] = imx_clk_hw_gate4("pwm3_root_clk", "pwm3", base + 0x42a0, 0); hws[IMX8MM_CLK_PWM4_ROOT] = imx_clk_hw_gate4("pwm4_root_clk", "pwm4", base + 0x42b0, 0); hws[IMX8MM_CLK_QSPI_ROOT] = imx_clk_hw_gate4("qspi_root_clk", "qspi", base + 0x42f0, 0); hws[IMX8MM_CLK_NAND_ROOT] = imx_clk_hw_gate2_shared2("nand_root_clk", "nand", base + 0x4300, 0, &share_count_nand); hws[IMX8MM_CLK_NAND_USDHC_BUS_RAWNAND_CLK] = imx_clk_hw_gate2_shared2("nand_usdhc_rawnand_clk", "nand_usdhc_bus", base + 0x4300, 0, &share_count_nand); hws[IMX8MM_CLK_SAI1_ROOT] = imx_clk_hw_gate2_shared2("sai1_root_clk", "sai1", base + 0x4330, 0, &share_count_sai1); hws[IMX8MM_CLK_SAI1_IPG] = imx_clk_hw_gate2_shared2("sai1_ipg_clk", "ipg_audio_root", base + 0x4330, 0, &share_count_sai1); hws[IMX8MM_CLK_SAI2_ROOT] = imx_clk_hw_gate2_shared2("sai2_root_clk", "sai2", base + 0x4340, 0, &share_count_sai2); hws[IMX8MM_CLK_SAI2_IPG] = imx_clk_hw_gate2_shared2("sai2_ipg_clk", "ipg_audio_root", base + 0x4340, 0, &share_count_sai2); hws[IMX8MM_CLK_SAI3_ROOT] = imx_clk_hw_gate2_shared2("sai3_root_clk", "sai3", base + 0x4350, 0, &share_count_sai3); hws[IMX8MM_CLK_SAI3_IPG] = imx_clk_hw_gate2_shared2("sai3_ipg_clk", "ipg_audio_root", base + 0x4350, 0, &share_count_sai3); hws[IMX8MM_CLK_SAI4_ROOT] = imx_clk_hw_gate2_shared2("sai4_root_clk", "sai4", base + 0x4360, 0, &share_count_sai4); hws[IMX8MM_CLK_SAI4_IPG] = imx_clk_hw_gate2_shared2("sai4_ipg_clk", "ipg_audio_root", base + 0x4360, 0, &share_count_sai4); hws[IMX8MM_CLK_SAI5_ROOT] = imx_clk_hw_gate2_shared2("sai5_root_clk", "sai5", base + 0x4370, 0, &share_count_sai5); hws[IMX8MM_CLK_SAI5_IPG] = imx_clk_hw_gate2_shared2("sai5_ipg_clk", "ipg_audio_root", base + 0x4370, 0, &share_count_sai5); hws[IMX8MM_CLK_SAI6_ROOT] = imx_clk_hw_gate2_shared2("sai6_root_clk", "sai6", base + 0x4380, 0, &share_count_sai6); hws[IMX8MM_CLK_SAI6_IPG] = imx_clk_hw_gate2_shared2("sai6_ipg_clk", "ipg_audio_root", base + 0x4380, 0, &share_count_sai6); hws[IMX8MM_CLK_UART1_ROOT] = imx_clk_hw_gate4("uart1_root_clk", "uart1", base + 0x4490, 0); hws[IMX8MM_CLK_UART2_ROOT] = imx_clk_hw_gate4("uart2_root_clk", "uart2", base + 0x44a0, 0); hws[IMX8MM_CLK_UART3_ROOT] = imx_clk_hw_gate4("uart3_root_clk", "uart3", base + 0x44b0, 0); hws[IMX8MM_CLK_UART4_ROOT] = imx_clk_hw_gate4("uart4_root_clk", "uart4", base + 0x44c0, 0); hws[IMX8MM_CLK_USB1_CTRL_ROOT] = imx_clk_hw_gate4("usb1_ctrl_root_clk", "usb_bus", base + 0x44d0, 0); hws[IMX8MM_CLK_GPU3D_ROOT] = imx_clk_hw_gate4("gpu3d_root_clk", "gpu3d_core", base + 0x44f0, 0); hws[IMX8MM_CLK_USDHC1_ROOT] = imx_clk_hw_gate4("usdhc1_root_clk", "usdhc1", base + 0x4510, 0); hws[IMX8MM_CLK_USDHC2_ROOT] = imx_clk_hw_gate4("usdhc2_root_clk", "usdhc2", base + 0x4520, 0); hws[IMX8MM_CLK_WDOG1_ROOT] = imx_clk_hw_gate4("wdog1_root_clk", "wdog", base + 0x4530, 0); hws[IMX8MM_CLK_WDOG2_ROOT] = imx_clk_hw_gate4("wdog2_root_clk", "wdog", base + 0x4540, 0); hws[IMX8MM_CLK_WDOG3_ROOT] = imx_clk_hw_gate4("wdog3_root_clk", "wdog", base + 0x4550, 0); hws[IMX8MM_CLK_VPU_G1_ROOT] = imx_clk_hw_gate4("vpu_g1_root_clk", "vpu_g1", base + 0x4560, 0); hws[IMX8MM_CLK_GPU_BUS_ROOT] = imx_clk_hw_gate4("gpu_root_clk", "gpu_axi", base + 0x4570, 0); hws[IMX8MM_CLK_VPU_H1_ROOT] = imx_clk_hw_gate4("vpu_h1_root_clk", "vpu_h1", base + 0x4590, 0); hws[IMX8MM_CLK_VPU_G2_ROOT] = imx_clk_hw_gate4("vpu_g2_root_clk", "vpu_g2", base + 0x45a0, 0); hws[IMX8MM_CLK_PDM_ROOT] = imx_clk_hw_gate2_shared2("pdm_root_clk", "pdm", base + 0x45b0, 0, &share_count_pdm); hws[IMX8MM_CLK_PDM_IPG] = imx_clk_hw_gate2_shared2("pdm_ipg_clk", "ipg_audio_root", base + 0x45b0, 0, &share_count_pdm); hws[IMX8MM_CLK_DISP_ROOT] = imx_clk_hw_gate2_shared2("disp_root_clk", "disp_dc8000", base + 0x45d0, 0, &share_count_disp); hws[IMX8MM_CLK_DISP_AXI_ROOT] = imx_clk_hw_gate2_shared2("disp_axi_root_clk", "disp_axi", base + 0x45d0, 0, &share_count_disp); hws[IMX8MM_CLK_DISP_APB_ROOT] = imx_clk_hw_gate2_shared2("disp_apb_root_clk", "disp_apb", base + 0x45d0, 0, &share_count_disp); hws[IMX8MM_CLK_DISP_RTRM_ROOT] = imx_clk_hw_gate2_shared2("disp_rtrm_root_clk", "disp_rtrm", base + 0x45d0, 0, &share_count_disp); hws[IMX8MM_CLK_USDHC3_ROOT] = imx_clk_hw_gate4("usdhc3_root_clk", "usdhc3", base + 0x45e0, 0); hws[IMX8MM_CLK_TMU_ROOT] = imx_clk_hw_gate4("tmu_root_clk", "ipg_root", base + 0x4620, 0); hws[IMX8MM_CLK_VPU_DEC_ROOT] = imx_clk_hw_gate4("vpu_dec_root_clk", "vpu_bus", base + 0x4630, 0); hws[IMX8MM_CLK_SDMA1_ROOT] = imx_clk_hw_gate4("sdma1_clk", "ipg_root", base + 0x43a0, 0); hws[IMX8MM_CLK_SDMA2_ROOT] = imx_clk_hw_gate4("sdma2_clk", "ipg_audio_root", base + 0x43b0, 0); hws[IMX8MM_CLK_SDMA3_ROOT] = imx_clk_hw_gate4("sdma3_clk", "ipg_audio_root", base + 0x45f0, 0); hws[IMX8MM_CLK_GPU2D_ROOT] = imx_clk_hw_gate4("gpu2d_root_clk", "gpu2d_core", base + 0x4660, 0); hws[IMX8MM_CLK_CSI1_ROOT] = imx_clk_hw_gate4("csi1_root_clk", "csi1_core", base + 0x4650, 0); hws[IMX8MM_CLK_GPT_3M] = imx_clk_hw_fixed_factor("gpt_3m", "osc_24m", 1, 8); hws[IMX8MM_CLK_DRAM_ALT_ROOT] = imx_clk_hw_fixed_factor("dram_alt_root", "dram_alt", 1, 4); hws[IMX8MM_CLK_DRAM_CORE] = imx_clk_hw_mux2_flags("dram_core_clk", base + 0x9800, 24, 1, imx8mm_dram_core_sels, ARRAY_SIZE(imx8mm_dram_core_sels), CLK_IS_CRITICAL); hws[IMX8MM_CLK_ARM] = imx_clk_hw_cpu("arm", "arm_a53_core", hws[IMX8MM_CLK_A53_CORE]->clk, hws[IMX8MM_CLK_A53_CORE]->clk, hws[IMX8MM_ARM_PLL_OUT]->clk, hws[IMX8MM_CLK_A53_DIV]->clk); imx_check_clk_hws(hws, IMX8MM_CLK_END); ret = of_clk_add_hw_provider(np, of_clk_hw_onecell_get, clk_hw_data); if (ret < 0) { dev_err(dev, "failed to register clks for i.MX8MM\n"); goto unregister_hws; } imx_register_uart_clocks(); return 0; unregister_hws: imx_unregister_hw_clocks(hws, IMX8MM_CLK_END); return ret; } static const struct of_device_id imx8mm_clk_of_match[] = { { .compatible = "fsl,imx8mm-ccm" }, { /* Sentinel */ }, }; MODULE_DEVICE_TABLE(of, imx8mm_clk_of_match); static struct platform_driver imx8mm_clk_driver = { .probe = imx8mm_clocks_probe, .driver = { .name = "imx8mm-ccm", /* * Disable bind attributes: clocks are not removed and * reloading the driver will crash or break devices. */ .suppress_bind_attrs = true, .of_match_table = imx8mm_clk_of_match, }, }; module_platform_driver(imx8mm_clk_driver); module_param(mcore_booted, bool, S_IRUGO); MODULE_PARM_DESC(mcore_booted, "See Cortex-M core is booted or not"); MODULE_AUTHOR("Bai Ping <[email protected]>"); MODULE_DESCRIPTION("NXP i.MX8MM clock driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/clk/imx/clk-imx8mm.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2018-2021 NXP * Dong Aisheng <[email protected]> */ #include <linux/clk-provider.h> #include <linux/err.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/slab.h> #include "clk-scu.h" #include <dt-bindings/firmware/imx/rsrc.h> static const char *dc0_sels[] = { "clk_dummy", "clk_dummy", "dc0_pll0_clk", "dc0_pll1_clk", "dc0_bypass0_clk", }; static const char * const dc1_sels[] = { "clk_dummy", "clk_dummy", "dc1_pll0_clk", "dc1_pll1_clk", "dc1_bypass0_clk", }; static const char * const enet0_rgmii_txc_sels[] = { "enet0_ref_div", "clk_dummy", }; static const char * const enet1_rgmii_txc_sels[] = { "enet1_ref_div", "clk_dummy", }; static const char * const hdmi_sels[] = { "clk_dummy", "hdmi_dig_pll_clk", "clk_dummy", "clk_dummy", "hdmi_av_pll_clk", }; static const char * const hdmi_rx_sels[] = { "clk_dummy", "hdmi_rx_dig_pll_clk", "clk_dummy", "clk_dummy", "hdmi_rx_bypass_clk", }; static const char * const lcd_pxl_sels[] = { "clk_dummy", "clk_dummy", "clk_dummy", "clk_dummy", "lcd_pxl_bypass_div_clk", }; static const char * const mipi_sels[] = { "clk_dummy", "clk_dummy", "mipi_pll_div2_clk", "clk_dummy", "clk_dummy", }; static const char * const lcd_sels[] = { "clk_dummy", "clk_dummy", "clk_dummy", "clk_dummy", "elcdif_pll", }; static const char * const pi_pll0_sels[] = { "clk_dummy", "pi_dpll_clk", "clk_dummy", "clk_dummy", "clk_dummy", }; static int imx8qxp_clk_probe(struct platform_device *pdev) { struct device_node *ccm_node = pdev->dev.of_node; const struct imx_clk_scu_rsrc_table *rsrc_table; int ret; rsrc_table = of_device_get_match_data(&pdev->dev); ret = imx_clk_scu_init(ccm_node, rsrc_table); if (ret) return ret; /* ARM core */ imx_clk_scu("a35_clk", IMX_SC_R_A35, IMX_SC_PM_CLK_CPU); imx_clk_scu("a53_clk", IMX_SC_R_A53, IMX_SC_PM_CLK_CPU); imx_clk_scu("a72_clk", IMX_SC_R_A72, IMX_SC_PM_CLK_CPU); /* LSIO SS */ imx_clk_scu("pwm0_clk", IMX_SC_R_PWM_0, IMX_SC_PM_CLK_PER); imx_clk_scu("pwm1_clk", IMX_SC_R_PWM_1, IMX_SC_PM_CLK_PER); imx_clk_scu("pwm2_clk", IMX_SC_R_PWM_2, IMX_SC_PM_CLK_PER); imx_clk_scu("pwm3_clk", IMX_SC_R_PWM_3, IMX_SC_PM_CLK_PER); imx_clk_scu("pwm4_clk", IMX_SC_R_PWM_4, IMX_SC_PM_CLK_PER); imx_clk_scu("pwm5_clk", IMX_SC_R_PWM_5, IMX_SC_PM_CLK_PER); imx_clk_scu("pwm6_clk", IMX_SC_R_PWM_6, IMX_SC_PM_CLK_PER); imx_clk_scu("pwm7_clk", IMX_SC_R_PWM_7, IMX_SC_PM_CLK_PER); imx_clk_scu("gpt0_clk", IMX_SC_R_GPT_0, IMX_SC_PM_CLK_PER); imx_clk_scu("gpt1_clk", IMX_SC_R_GPT_1, IMX_SC_PM_CLK_PER); imx_clk_scu("gpt2_clk", IMX_SC_R_GPT_2, IMX_SC_PM_CLK_PER); imx_clk_scu("gpt3_clk", IMX_SC_R_GPT_3, IMX_SC_PM_CLK_PER); imx_clk_scu("gpt4_clk", IMX_SC_R_GPT_4, IMX_SC_PM_CLK_PER); imx_clk_scu("fspi0_clk", IMX_SC_R_FSPI_0, IMX_SC_PM_CLK_PER); imx_clk_scu("fspi1_clk", IMX_SC_R_FSPI_1, IMX_SC_PM_CLK_PER); /* DMA SS */ imx_clk_scu("uart0_clk", IMX_SC_R_UART_0, IMX_SC_PM_CLK_PER); imx_clk_scu("uart1_clk", IMX_SC_R_UART_1, IMX_SC_PM_CLK_PER); imx_clk_scu("uart2_clk", IMX_SC_R_UART_2, IMX_SC_PM_CLK_PER); imx_clk_scu("uart3_clk", IMX_SC_R_UART_3, IMX_SC_PM_CLK_PER); imx_clk_scu("uart4_clk", IMX_SC_R_UART_4, IMX_SC_PM_CLK_PER); imx_clk_scu("sim0_clk", IMX_SC_R_EMVSIM_0, IMX_SC_PM_CLK_PER); imx_clk_scu("spi0_clk", IMX_SC_R_SPI_0, IMX_SC_PM_CLK_PER); imx_clk_scu("spi1_clk", IMX_SC_R_SPI_1, IMX_SC_PM_CLK_PER); imx_clk_scu("spi2_clk", IMX_SC_R_SPI_2, IMX_SC_PM_CLK_PER); imx_clk_scu("spi3_clk", IMX_SC_R_SPI_3, IMX_SC_PM_CLK_PER); imx_clk_scu("can0_clk", IMX_SC_R_CAN_0, IMX_SC_PM_CLK_PER); imx_clk_scu("can1_clk", IMX_SC_R_CAN_1, IMX_SC_PM_CLK_PER); imx_clk_scu("can2_clk", IMX_SC_R_CAN_2, IMX_SC_PM_CLK_PER); imx_clk_scu("i2c0_clk", IMX_SC_R_I2C_0, IMX_SC_PM_CLK_PER); imx_clk_scu("i2c1_clk", IMX_SC_R_I2C_1, IMX_SC_PM_CLK_PER); imx_clk_scu("i2c2_clk", IMX_SC_R_I2C_2, IMX_SC_PM_CLK_PER); imx_clk_scu("i2c3_clk", IMX_SC_R_I2C_3, IMX_SC_PM_CLK_PER); imx_clk_scu("i2c4_clk", IMX_SC_R_I2C_4, IMX_SC_PM_CLK_PER); imx_clk_scu("ftm0_clk", IMX_SC_R_FTM_0, IMX_SC_PM_CLK_PER); imx_clk_scu("ftm1_clk", IMX_SC_R_FTM_1, IMX_SC_PM_CLK_PER); imx_clk_scu("adc0_clk", IMX_SC_R_ADC_0, IMX_SC_PM_CLK_PER); imx_clk_scu("adc1_clk", IMX_SC_R_ADC_1, IMX_SC_PM_CLK_PER); imx_clk_scu("pwm_clk", IMX_SC_R_LCD_0_PWM_0, IMX_SC_PM_CLK_PER); imx_clk_scu2("lcd_clk", lcd_sels, ARRAY_SIZE(lcd_sels), IMX_SC_R_LCD_0, IMX_SC_PM_CLK_PER); imx_clk_scu2("lcd_pxl_clk", lcd_pxl_sels, ARRAY_SIZE(lcd_pxl_sels), IMX_SC_R_LCD_0, IMX_SC_PM_CLK_MISC0); imx_clk_scu("lcd_pxl_bypass_div_clk", IMX_SC_R_LCD_0, IMX_SC_PM_CLK_BYPASS); imx_clk_scu("elcdif_pll", IMX_SC_R_ELCDIF_PLL, IMX_SC_PM_CLK_PLL); /* Audio SS */ imx_clk_scu("audio_pll0_clk", IMX_SC_R_AUDIO_PLL_0, IMX_SC_PM_CLK_PLL); imx_clk_scu("audio_pll1_clk", IMX_SC_R_AUDIO_PLL_1, IMX_SC_PM_CLK_PLL); imx_clk_scu("audio_pll_div_clk0_clk", IMX_SC_R_AUDIO_PLL_0, IMX_SC_PM_CLK_MISC0); imx_clk_scu("audio_pll_div_clk1_clk", IMX_SC_R_AUDIO_PLL_1, IMX_SC_PM_CLK_MISC0); imx_clk_scu("audio_rec_clk0_clk", IMX_SC_R_AUDIO_PLL_0, IMX_SC_PM_CLK_MISC1); imx_clk_scu("audio_rec_clk1_clk", IMX_SC_R_AUDIO_PLL_1, IMX_SC_PM_CLK_MISC1); /* Connectivity */ imx_clk_scu("sdhc0_clk", IMX_SC_R_SDHC_0, IMX_SC_PM_CLK_PER); imx_clk_scu("sdhc1_clk", IMX_SC_R_SDHC_1, IMX_SC_PM_CLK_PER); imx_clk_scu("sdhc2_clk", IMX_SC_R_SDHC_2, IMX_SC_PM_CLK_PER); imx_clk_scu("enet0_root_clk", IMX_SC_R_ENET_0, IMX_SC_PM_CLK_PER); imx_clk_divider_gpr_scu("enet0_ref_div", "enet0_root_clk", IMX_SC_R_ENET_0, IMX_SC_C_CLKDIV); imx_clk_mux_gpr_scu("enet0_rgmii_txc_sel", enet0_rgmii_txc_sels, ARRAY_SIZE(enet0_rgmii_txc_sels), IMX_SC_R_ENET_0, IMX_SC_C_TXCLK); imx_clk_scu("enet0_bypass_clk", IMX_SC_R_ENET_0, IMX_SC_PM_CLK_BYPASS); imx_clk_gate_gpr_scu("enet0_ref_50_clk", "clk_dummy", IMX_SC_R_ENET_0, IMX_SC_C_DISABLE_50, true); imx_clk_scu("enet0_rgmii_rx_clk", IMX_SC_R_ENET_0, IMX_SC_PM_CLK_MISC0); imx_clk_scu("enet1_root_clk", IMX_SC_R_ENET_1, IMX_SC_PM_CLK_PER); imx_clk_divider_gpr_scu("enet1_ref_div", "enet1_root_clk", IMX_SC_R_ENET_1, IMX_SC_C_CLKDIV); imx_clk_mux_gpr_scu("enet1_rgmii_txc_sel", enet1_rgmii_txc_sels, ARRAY_SIZE(enet1_rgmii_txc_sels), IMX_SC_R_ENET_1, IMX_SC_C_TXCLK); imx_clk_scu("enet1_bypass_clk", IMX_SC_R_ENET_1, IMX_SC_PM_CLK_BYPASS); imx_clk_gate_gpr_scu("enet1_ref_50_clk", "clk_dummy", IMX_SC_R_ENET_1, IMX_SC_C_DISABLE_50, true); imx_clk_scu("enet1_rgmii_rx_clk", IMX_SC_R_ENET_1, IMX_SC_PM_CLK_MISC0); imx_clk_scu("gpmi_io_clk", IMX_SC_R_NAND, IMX_SC_PM_CLK_MST_BUS); imx_clk_scu("gpmi_bch_clk", IMX_SC_R_NAND, IMX_SC_PM_CLK_PER); imx_clk_scu("usb3_aclk_div", IMX_SC_R_USB_2, IMX_SC_PM_CLK_PER); imx_clk_scu("usb3_bus_div", IMX_SC_R_USB_2, IMX_SC_PM_CLK_MST_BUS); imx_clk_scu("usb3_lpm_div", IMX_SC_R_USB_2, IMX_SC_PM_CLK_MISC); /* Display controller SS */ imx_clk_scu2("dc0_disp0_clk", dc0_sels, ARRAY_SIZE(dc0_sels), IMX_SC_R_DC_0, IMX_SC_PM_CLK_MISC0); imx_clk_scu2("dc0_disp1_clk", dc0_sels, ARRAY_SIZE(dc0_sels), IMX_SC_R_DC_0, IMX_SC_PM_CLK_MISC1); imx_clk_scu("dc0_pll0_clk", IMX_SC_R_DC_0_PLL_0, IMX_SC_PM_CLK_PLL); imx_clk_scu("dc0_pll1_clk", IMX_SC_R_DC_0_PLL_1, IMX_SC_PM_CLK_PLL); imx_clk_scu("dc0_bypass0_clk", IMX_SC_R_DC_0_VIDEO0, IMX_SC_PM_CLK_BYPASS); imx_clk_scu("dc0_bypass1_clk", IMX_SC_R_DC_0_VIDEO1, IMX_SC_PM_CLK_BYPASS); imx_clk_scu2("dc1_disp0_clk", dc1_sels, ARRAY_SIZE(dc1_sels), IMX_SC_R_DC_1, IMX_SC_PM_CLK_MISC0); imx_clk_scu2("dc1_disp1_clk", dc1_sels, ARRAY_SIZE(dc1_sels), IMX_SC_R_DC_1, IMX_SC_PM_CLK_MISC1); imx_clk_scu("dc1_pll0_clk", IMX_SC_R_DC_1_PLL_0, IMX_SC_PM_CLK_PLL); imx_clk_scu("dc1_pll1_clk", IMX_SC_R_DC_1_PLL_1, IMX_SC_PM_CLK_PLL); imx_clk_scu("dc1_bypass0_clk", IMX_SC_R_DC_1_VIDEO0, IMX_SC_PM_CLK_BYPASS); imx_clk_scu("dc1_bypass1_clk", IMX_SC_R_DC_1_VIDEO1, IMX_SC_PM_CLK_BYPASS); /* MIPI-LVDS SS */ imx_clk_scu("mipi0_bypass_clk", IMX_SC_R_MIPI_0, IMX_SC_PM_CLK_BYPASS); imx_clk_scu("mipi0_pixel_clk", IMX_SC_R_MIPI_0, IMX_SC_PM_CLK_PER); imx_clk_scu("mipi0_lvds_pixel_clk", IMX_SC_R_LVDS_0, IMX_SC_PM_CLK_MISC2); imx_clk_scu("mipi0_lvds_bypass_clk", IMX_SC_R_LVDS_0, IMX_SC_PM_CLK_BYPASS); imx_clk_scu("mipi0_lvds_phy_clk", IMX_SC_R_LVDS_0, IMX_SC_PM_CLK_MISC3); imx_clk_scu2("mipi0_dsi_tx_esc_clk", mipi_sels, ARRAY_SIZE(mipi_sels), IMX_SC_R_MIPI_0, IMX_SC_PM_CLK_MST_BUS); imx_clk_scu2("mipi0_dsi_rx_esc_clk", mipi_sels, ARRAY_SIZE(mipi_sels), IMX_SC_R_MIPI_0, IMX_SC_PM_CLK_SLV_BUS); imx_clk_scu2("mipi0_dsi_phy_clk", mipi_sels, ARRAY_SIZE(mipi_sels), IMX_SC_R_MIPI_0, IMX_SC_PM_CLK_PHY); imx_clk_scu("mipi0_i2c0_clk", IMX_SC_R_MIPI_0_I2C_0, IMX_SC_PM_CLK_MISC2); imx_clk_scu("mipi0_i2c1_clk", IMX_SC_R_MIPI_0_I2C_1, IMX_SC_PM_CLK_MISC2); imx_clk_scu("mipi0_pwm0_clk", IMX_SC_R_MIPI_0_PWM_0, IMX_SC_PM_CLK_PER); imx_clk_scu("mipi1_bypass_clk", IMX_SC_R_MIPI_1, IMX_SC_PM_CLK_BYPASS); imx_clk_scu("mipi1_pixel_clk", IMX_SC_R_MIPI_1, IMX_SC_PM_CLK_PER); imx_clk_scu("mipi1_lvds_pixel_clk", IMX_SC_R_LVDS_1, IMX_SC_PM_CLK_MISC2); imx_clk_scu("mipi1_lvds_bypass_clk", IMX_SC_R_LVDS_1, IMX_SC_PM_CLK_BYPASS); imx_clk_scu("mipi1_lvds_phy_clk", IMX_SC_R_LVDS_1, IMX_SC_PM_CLK_MISC3); imx_clk_scu2("mipi1_dsi_tx_esc_clk", mipi_sels, ARRAY_SIZE(mipi_sels), IMX_SC_R_MIPI_1, IMX_SC_PM_CLK_MST_BUS); imx_clk_scu2("mipi1_dsi_rx_esc_clk", mipi_sels, ARRAY_SIZE(mipi_sels), IMX_SC_R_MIPI_1, IMX_SC_PM_CLK_SLV_BUS); imx_clk_scu2("mipi1_dsi_phy_clk", mipi_sels, ARRAY_SIZE(mipi_sels), IMX_SC_R_MIPI_1, IMX_SC_PM_CLK_PHY); imx_clk_scu("mipi1_i2c0_clk", IMX_SC_R_MIPI_1_I2C_0, IMX_SC_PM_CLK_MISC2); imx_clk_scu("mipi1_i2c1_clk", IMX_SC_R_MIPI_1_I2C_1, IMX_SC_PM_CLK_MISC2); imx_clk_scu("mipi1_pwm0_clk", IMX_SC_R_MIPI_1_PWM_0, IMX_SC_PM_CLK_PER); imx_clk_scu("lvds0_i2c0_clk", IMX_SC_R_LVDS_0_I2C_0, IMX_SC_PM_CLK_PER); imx_clk_scu("lvds0_i2c1_clk", IMX_SC_R_LVDS_0_I2C_1, IMX_SC_PM_CLK_PER); imx_clk_scu("lvds0_pwm0_clk", IMX_SC_R_LVDS_0_PWM_0, IMX_SC_PM_CLK_PER); imx_clk_scu("lvds1_i2c0_clk", IMX_SC_R_LVDS_1_I2C_0, IMX_SC_PM_CLK_PER); imx_clk_scu("lvds1_i2c1_clk", IMX_SC_R_LVDS_1_I2C_1, IMX_SC_PM_CLK_PER); imx_clk_scu("lvds1_pwm0_clk", IMX_SC_R_LVDS_1_PWM_0, IMX_SC_PM_CLK_PER); /* MIPI CSI SS */ imx_clk_scu("mipi_csi0_core_clk", IMX_SC_R_CSI_0, IMX_SC_PM_CLK_PER); imx_clk_scu("mipi_csi0_esc_clk", IMX_SC_R_CSI_0, IMX_SC_PM_CLK_MISC); imx_clk_scu("mipi_csi0_i2c0_clk", IMX_SC_R_CSI_0_I2C_0, IMX_SC_PM_CLK_PER); imx_clk_scu("mipi_csi0_pwm0_clk", IMX_SC_R_CSI_0_PWM_0, IMX_SC_PM_CLK_PER); imx_clk_scu("mipi_csi1_core_clk", IMX_SC_R_CSI_1, IMX_SC_PM_CLK_PER); imx_clk_scu("mipi_csi1_esc_clk", IMX_SC_R_CSI_1, IMX_SC_PM_CLK_MISC); imx_clk_scu("mipi_csi1_i2c0_clk", IMX_SC_R_CSI_1_I2C_0, IMX_SC_PM_CLK_PER); imx_clk_scu("mipi_csi1_pwm0_clk", IMX_SC_R_CSI_1_PWM_0, IMX_SC_PM_CLK_PER); /* Parallel Interface SS */ imx_clk_scu("pi_dpll_clk", IMX_SC_R_PI_0_PLL, IMX_SC_PM_CLK_PLL); imx_clk_scu2("pi_per_div_clk", pi_pll0_sels, ARRAY_SIZE(pi_pll0_sels), IMX_SC_R_PI_0, IMX_SC_PM_CLK_PER); imx_clk_scu("pi_mclk_div_clk", IMX_SC_R_PI_0, IMX_SC_PM_CLK_MISC0); imx_clk_scu("pi_i2c0_div_clk", IMX_SC_R_PI_0_I2C_0, IMX_SC_PM_CLK_PER); /* GPU SS */ imx_clk_scu("gpu_core0_clk", IMX_SC_R_GPU_0_PID0, IMX_SC_PM_CLK_PER); imx_clk_scu("gpu_shader0_clk", IMX_SC_R_GPU_0_PID0, IMX_SC_PM_CLK_MISC); imx_clk_scu("gpu_core1_clk", IMX_SC_R_GPU_1_PID0, IMX_SC_PM_CLK_PER); imx_clk_scu("gpu_shader1_clk", IMX_SC_R_GPU_1_PID0, IMX_SC_PM_CLK_MISC); /* CM40 SS */ imx_clk_scu("cm40_i2c_div", IMX_SC_R_M4_0_I2C, IMX_SC_PM_CLK_PER); imx_clk_scu("cm40_lpuart_div", IMX_SC_R_M4_0_UART, IMX_SC_PM_CLK_PER); /* CM41 SS */ imx_clk_scu("cm41_i2c_div", IMX_SC_R_M4_1_I2C, IMX_SC_PM_CLK_PER); /* HDMI TX SS */ imx_clk_scu("hdmi_dig_pll_clk", IMX_SC_R_HDMI_PLL_0, IMX_SC_PM_CLK_PLL); imx_clk_scu("hdmi_av_pll_clk", IMX_SC_R_HDMI_PLL_1, IMX_SC_PM_CLK_PLL); imx_clk_scu2("hdmi_pixel_mux_clk", hdmi_sels, ARRAY_SIZE(hdmi_sels), IMX_SC_R_HDMI, IMX_SC_PM_CLK_MISC0); imx_clk_scu2("hdmi_pixel_link_clk", hdmi_sels, ARRAY_SIZE(hdmi_sels), IMX_SC_R_HDMI, IMX_SC_PM_CLK_MISC1); imx_clk_scu("hdmi_ipg_clk", IMX_SC_R_HDMI, IMX_SC_PM_CLK_MISC4); imx_clk_scu("hdmi_i2c0_clk", IMX_SC_R_HDMI_I2C_0, IMX_SC_PM_CLK_MISC2); imx_clk_scu("hdmi_hdp_core_clk", IMX_SC_R_HDMI, IMX_SC_PM_CLK_MISC2); imx_clk_scu2("hdmi_pxl_clk", hdmi_sels, ARRAY_SIZE(hdmi_sels), IMX_SC_R_HDMI, IMX_SC_PM_CLK_MISC3); imx_clk_scu("hdmi_i2s_bypass_clk", IMX_SC_R_HDMI_I2S, IMX_SC_PM_CLK_BYPASS); imx_clk_scu("hdmi_i2s_clk", IMX_SC_R_HDMI_I2S, IMX_SC_PM_CLK_MISC0); /* HDMI RX SS */ imx_clk_scu("hdmi_rx_i2s_bypass_clk", IMX_SC_R_HDMI_RX_BYPASS, IMX_SC_PM_CLK_MISC0); imx_clk_scu("hdmi_rx_spdif_bypass_clk", IMX_SC_R_HDMI_RX_BYPASS, IMX_SC_PM_CLK_MISC1); imx_clk_scu("hdmi_rx_bypass_clk", IMX_SC_R_HDMI_RX_BYPASS, IMX_SC_PM_CLK_MISC2); imx_clk_scu("hdmi_rx_i2c0_clk", IMX_SC_R_HDMI_RX_I2C_0, IMX_SC_PM_CLK_MISC2); imx_clk_scu("hdmi_rx_pwm_clk", IMX_SC_R_HDMI_RX_PWM_0, IMX_SC_PM_CLK_MISC2); imx_clk_scu("hdmi_rx_spdif_clk", IMX_SC_R_HDMI_RX, IMX_SC_PM_CLK_MISC0); imx_clk_scu2("hdmi_rx_hd_ref_clk", hdmi_rx_sels, ARRAY_SIZE(hdmi_rx_sels), IMX_SC_R_HDMI_RX, IMX_SC_PM_CLK_MISC1); imx_clk_scu2("hdmi_rx_hd_core_clk", hdmi_rx_sels, ARRAY_SIZE(hdmi_rx_sels), IMX_SC_R_HDMI_RX, IMX_SC_PM_CLK_MISC2); imx_clk_scu2("hdmi_rx_pxl_clk", hdmi_rx_sels, ARRAY_SIZE(hdmi_rx_sels), IMX_SC_R_HDMI_RX, IMX_SC_PM_CLK_MISC3); imx_clk_scu("hdmi_rx_i2s_clk", IMX_SC_R_HDMI_RX, IMX_SC_PM_CLK_MISC4); ret = of_clk_add_hw_provider(ccm_node, imx_scu_of_clk_src_get, imx_scu_clks); if (ret) imx_clk_scu_unregister(); return ret; } static const struct of_device_id imx8qxp_match[] = { { .compatible = "fsl,scu-clk", }, { .compatible = "fsl,imx8dxl-clk", &imx_clk_scu_rsrc_imx8dxl, }, { .compatible = "fsl,imx8qxp-clk", &imx_clk_scu_rsrc_imx8qxp, }, { .compatible = "fsl,imx8qm-clk", &imx_clk_scu_rsrc_imx8qm, }, { /* sentinel */ } }; static struct platform_driver imx8qxp_clk_driver = { .driver = { .name = "imx8qxp-clk", .of_match_table = imx8qxp_match, .suppress_bind_attrs = true, }, .probe = imx8qxp_clk_probe, }; module_platform_driver(imx8qxp_clk_driver); MODULE_AUTHOR("Aisheng Dong <[email protected]>"); MODULE_DESCRIPTION("NXP i.MX8QXP clock driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/clk/imx/clk-imx8qxp.c
// SPDX-License-Identifier: GPL-2.0+ // // Copyright 2023 NXP // #include <dt-bindings/clock/imx8-clock.h> #include <linux/clk-provider.h> #include <linux/device.h> #include <linux/err.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/pm_domain.h> #include <linux/pm_runtime.h> #include <linux/slab.h> #include "clk.h" /** * struct clk_imx_acm_pm_domains - structure for multi power domain * @pd_dev: power domain device * @pd_dev_link: power domain device link * @num_domains: power domain nummber */ struct clk_imx_acm_pm_domains { struct device **pd_dev; struct device_link **pd_dev_link; int num_domains; }; /** * struct clk_imx8_acm_sel - for clock mux * @name: clock name * @clkid: clock id * @parents: clock parents * @num_parents: clock parents number * @reg: register offset * @shift: bit shift in register * @width: bits width */ struct clk_imx8_acm_sel { const char *name; int clkid; const struct clk_parent_data *parents; /* For mux */ int num_parents; u32 reg; u8 shift; u8 width; }; /** * struct imx8_acm_soc_data - soc specific data * @sels: pointer to struct clk_imx8_acm_sel * @num_sels: numbers of items */ struct imx8_acm_soc_data { struct clk_imx8_acm_sel *sels; unsigned int num_sels; }; /** * struct imx8_acm_priv - private structure * @dev_pm: multi power domain * @soc_data: pointer to soc data * @reg: base address of registers * @regs: save registers for suspend */ struct imx8_acm_priv { struct clk_imx_acm_pm_domains dev_pm; const struct imx8_acm_soc_data *soc_data; void __iomem *reg; u32 regs[IMX_ADMA_ACM_CLK_END]; }; static const struct clk_parent_data imx8qm_aud_clk_sels[] = { { .fw_name = "aud_rec_clk0_lpcg_clk" }, { .fw_name = "aud_rec_clk1_lpcg_clk" }, { .fw_name = "mlb_clk" }, { .fw_name = "hdmi_rx_mclk" }, { .fw_name = "ext_aud_mclk0" }, { .fw_name = "ext_aud_mclk1" }, { .fw_name = "esai0_rx_clk" }, { .fw_name = "esai0_rx_hf_clk" }, { .fw_name = "esai0_tx_clk" }, { .fw_name = "esai0_tx_hf_clk" }, { .fw_name = "esai1_rx_clk" }, { .fw_name = "esai1_rx_hf_clk" }, { .fw_name = "esai1_tx_clk" }, { .fw_name = "esai1_tx_hf_clk" }, { .fw_name = "spdif0_rx" }, { .fw_name = "spdif1_rx" }, { .fw_name = "sai0_rx_bclk" }, { .fw_name = "sai0_tx_bclk" }, { .fw_name = "sai1_rx_bclk" }, { .fw_name = "sai1_tx_bclk" }, { .fw_name = "sai2_rx_bclk" }, { .fw_name = "sai3_rx_bclk" }, { .fw_name = "sai4_rx_bclk" }, }; static const struct clk_parent_data imx8qm_mclk_out_sels[] = { { .fw_name = "aud_rec_clk0_lpcg_clk" }, { .fw_name = "aud_rec_clk1_lpcg_clk" }, { .fw_name = "mlb_clk" }, { .fw_name = "hdmi_rx_mclk" }, { .fw_name = "spdif0_rx" }, { .fw_name = "spdif1_rx" }, { .fw_name = "sai4_rx_bclk" }, { .fw_name = "sai6_rx_bclk" }, }; static const struct clk_parent_data imx8qm_mclk_sels[] = { { .fw_name = "aud_pll_div_clk0_lpcg_clk" }, { .fw_name = "aud_pll_div_clk1_lpcg_clk" }, { .fw_name = "acm_aud_clk0_sel" }, { .fw_name = "acm_aud_clk1_sel" }, }; static const struct clk_parent_data imx8qm_asrc_mux_clk_sels[] = { { .fw_name = "sai4_rx_bclk" }, { .fw_name = "sai5_tx_bclk" }, { .index = -1 }, { .fw_name = "mlb_clk" }, }; static struct clk_imx8_acm_sel imx8qm_sels[] = { { "acm_aud_clk0_sel", IMX_ADMA_ACM_AUD_CLK0_SEL, imx8qm_aud_clk_sels, ARRAY_SIZE(imx8qm_aud_clk_sels), 0x000000, 0, 5 }, { "acm_aud_clk1_sel", IMX_ADMA_ACM_AUD_CLK1_SEL, imx8qm_aud_clk_sels, ARRAY_SIZE(imx8qm_aud_clk_sels), 0x010000, 0, 5 }, { "acm_mclkout0_sel", IMX_ADMA_ACM_MCLKOUT0_SEL, imx8qm_mclk_out_sels, ARRAY_SIZE(imx8qm_mclk_out_sels), 0x020000, 0, 3 }, { "acm_mclkout1_sel", IMX_ADMA_ACM_MCLKOUT1_SEL, imx8qm_mclk_out_sels, ARRAY_SIZE(imx8qm_mclk_out_sels), 0x030000, 0, 3 }, { "acm_asrc0_mclk_sel", IMX_ADMA_ACM_ASRC0_MUX_CLK_SEL, imx8qm_asrc_mux_clk_sels, ARRAY_SIZE(imx8qm_asrc_mux_clk_sels), 0x040000, 0, 2 }, { "acm_esai0_mclk_sel", IMX_ADMA_ACM_ESAI0_MCLK_SEL, imx8qm_mclk_sels, ARRAY_SIZE(imx8qm_mclk_sels), 0x060000, 0, 2 }, { "acm_esai1_mclk_sel", IMX_ADMA_ACM_ESAI1_MCLK_SEL, imx8qm_mclk_sels, ARRAY_SIZE(imx8qm_mclk_sels), 0x070000, 0, 2 }, { "acm_sai0_mclk_sel", IMX_ADMA_ACM_SAI0_MCLK_SEL, imx8qm_mclk_sels, ARRAY_SIZE(imx8qm_mclk_sels), 0x0E0000, 0, 2 }, { "acm_sai1_mclk_sel", IMX_ADMA_ACM_SAI1_MCLK_SEL, imx8qm_mclk_sels, ARRAY_SIZE(imx8qm_mclk_sels), 0x0F0000, 0, 2 }, { "acm_sai2_mclk_sel", IMX_ADMA_ACM_SAI2_MCLK_SEL, imx8qm_mclk_sels, ARRAY_SIZE(imx8qm_mclk_sels), 0x100000, 0, 2 }, { "acm_sai3_mclk_sel", IMX_ADMA_ACM_SAI3_MCLK_SEL, imx8qm_mclk_sels, ARRAY_SIZE(imx8qm_mclk_sels), 0x110000, 0, 2 }, { "acm_sai4_mclk_sel", IMX_ADMA_ACM_SAI4_MCLK_SEL, imx8qm_mclk_sels, ARRAY_SIZE(imx8qm_mclk_sels), 0x120000, 0, 2 }, { "acm_sai5_mclk_sel", IMX_ADMA_ACM_SAI5_MCLK_SEL, imx8qm_mclk_sels, ARRAY_SIZE(imx8qm_mclk_sels), 0x130000, 0, 2 }, { "acm_sai6_mclk_sel", IMX_ADMA_ACM_SAI6_MCLK_SEL, imx8qm_mclk_sels, ARRAY_SIZE(imx8qm_mclk_sels), 0x140000, 0, 2 }, { "acm_sai7_mclk_sel", IMX_ADMA_ACM_SAI7_MCLK_SEL, imx8qm_mclk_sels, ARRAY_SIZE(imx8qm_mclk_sels), 0x150000, 0, 2 }, { "acm_spdif0_mclk_sel", IMX_ADMA_ACM_SPDIF0_TX_CLK_SEL, imx8qm_mclk_sels, ARRAY_SIZE(imx8qm_mclk_sels), 0x1A0000, 0, 2 }, { "acm_spdif1_mclk_sel", IMX_ADMA_ACM_SPDIF1_TX_CLK_SEL, imx8qm_mclk_sels, ARRAY_SIZE(imx8qm_mclk_sels), 0x1B0000, 0, 2 }, { "acm_mqs_mclk_sel", IMX_ADMA_ACM_MQS_TX_CLK_SEL, imx8qm_mclk_sels, ARRAY_SIZE(imx8qm_mclk_sels), 0x1C0000, 0, 2 }, }; static const struct clk_parent_data imx8qxp_aud_clk_sels[] = { { .fw_name = "aud_rec_clk0_lpcg_clk" }, { .fw_name = "aud_rec_clk1_lpcg_clk" }, { .fw_name = "ext_aud_mclk0" }, { .fw_name = "ext_aud_mclk1" }, { .fw_name = "esai0_rx_clk" }, { .fw_name = "esai0_rx_hf_clk" }, { .fw_name = "esai0_tx_clk" }, { .fw_name = "esai0_tx_hf_clk" }, { .fw_name = "spdif0_rx" }, { .fw_name = "sai0_rx_bclk" }, { .fw_name = "sai0_tx_bclk" }, { .fw_name = "sai1_rx_bclk" }, { .fw_name = "sai1_tx_bclk" }, { .fw_name = "sai2_rx_bclk" }, { .fw_name = "sai3_rx_bclk" }, }; static const struct clk_parent_data imx8qxp_mclk_out_sels[] = { { .fw_name = "aud_rec_clk0_lpcg_clk" }, { .fw_name = "aud_rec_clk1_lpcg_clk" }, { .index = -1 }, { .index = -1 }, { .fw_name = "spdif0_rx" }, { .index = -1 }, { .index = -1 }, { .fw_name = "sai4_rx_bclk" }, }; static const struct clk_parent_data imx8qxp_mclk_sels[] = { { .fw_name = "aud_pll_div_clk0_lpcg_clk" }, { .fw_name = "aud_pll_div_clk1_lpcg_clk" }, { .fw_name = "acm_aud_clk0_sel" }, { .fw_name = "acm_aud_clk1_sel" }, }; static struct clk_imx8_acm_sel imx8qxp_sels[] = { { "acm_aud_clk0_sel", IMX_ADMA_ACM_AUD_CLK0_SEL, imx8qxp_aud_clk_sels, ARRAY_SIZE(imx8qxp_aud_clk_sels), 0x000000, 0, 5 }, { "acm_aud_clk1_sel", IMX_ADMA_ACM_AUD_CLK1_SEL, imx8qxp_aud_clk_sels, ARRAY_SIZE(imx8qxp_aud_clk_sels), 0x010000, 0, 5 }, { "acm_mclkout0_sel", IMX_ADMA_ACM_MCLKOUT0_SEL, imx8qxp_mclk_out_sels, ARRAY_SIZE(imx8qxp_mclk_out_sels), 0x020000, 0, 3 }, { "acm_mclkout1_sel", IMX_ADMA_ACM_MCLKOUT1_SEL, imx8qxp_mclk_out_sels, ARRAY_SIZE(imx8qxp_mclk_out_sels), 0x030000, 0, 3 }, { "acm_esai0_mclk_sel", IMX_ADMA_ACM_ESAI0_MCLK_SEL, imx8qxp_mclk_sels, ARRAY_SIZE(imx8qxp_mclk_sels), 0x060000, 0, 2 }, { "acm_sai0_mclk_sel", IMX_ADMA_ACM_SAI0_MCLK_SEL, imx8qxp_mclk_sels, ARRAY_SIZE(imx8qxp_mclk_sels), 0x0E0000, 0, 2 }, { "acm_sai1_mclk_sel", IMX_ADMA_ACM_SAI1_MCLK_SEL, imx8qxp_mclk_sels, ARRAY_SIZE(imx8qxp_mclk_sels), 0x0F0000, 0, 2 }, { "acm_sai2_mclk_sel", IMX_ADMA_ACM_SAI2_MCLK_SEL, imx8qxp_mclk_sels, ARRAY_SIZE(imx8qxp_mclk_sels), 0x100000, 0, 2 }, { "acm_sai3_mclk_sel", IMX_ADMA_ACM_SAI3_MCLK_SEL, imx8qxp_mclk_sels, ARRAY_SIZE(imx8qxp_mclk_sels), 0x110000, 0, 2 }, { "acm_sai4_mclk_sel", IMX_ADMA_ACM_SAI4_MCLK_SEL, imx8qxp_mclk_sels, ARRAY_SIZE(imx8qxp_mclk_sels), 0x140000, 0, 2 }, { "acm_sai5_mclk_sel", IMX_ADMA_ACM_SAI5_MCLK_SEL, imx8qxp_mclk_sels, ARRAY_SIZE(imx8qxp_mclk_sels), 0x150000, 0, 2 }, { "acm_spdif0_mclk_sel", IMX_ADMA_ACM_SPDIF0_TX_CLK_SEL, imx8qxp_mclk_sels, ARRAY_SIZE(imx8qxp_mclk_sels), 0x1A0000, 0, 2 }, { "acm_mqs_mclk_sel", IMX_ADMA_ACM_MQS_TX_CLK_SEL, imx8qxp_mclk_sels, ARRAY_SIZE(imx8qxp_mclk_sels), 0x1C0000, 0, 2 }, }; static const struct clk_parent_data imx8dxl_aud_clk_sels[] = { { .fw_name = "aud_rec_clk0_lpcg_clk" }, { .fw_name = "aud_rec_clk1_lpcg_clk" }, { .fw_name = "ext_aud_mclk0" }, { .fw_name = "ext_aud_mclk1" }, { .index = -1 }, { .index = -1 }, { .index = -1 }, { .index = -1 }, { .fw_name = "spdif0_rx" }, { .fw_name = "sai0_rx_bclk" }, { .fw_name = "sai0_tx_bclk" }, { .fw_name = "sai1_rx_bclk" }, { .fw_name = "sai1_tx_bclk" }, { .fw_name = "sai2_rx_bclk" }, { .fw_name = "sai3_rx_bclk" }, }; static const struct clk_parent_data imx8dxl_mclk_out_sels[] = { { .fw_name = "aud_rec_clk0_lpcg_clk" }, { .fw_name = "aud_rec_clk1_lpcg_clk" }, { .index = -1 }, { .index = -1 }, { .fw_name = "spdif0_rx" }, { .index = -1 }, { .index = -1 }, { .index = -1 }, }; static const struct clk_parent_data imx8dxl_mclk_sels[] = { { .fw_name = "aud_pll_div_clk0_lpcg_clk" }, { .fw_name = "aud_pll_div_clk1_lpcg_clk" }, { .fw_name = "acm_aud_clk0_sel" }, { .fw_name = "acm_aud_clk1_sel" }, }; static struct clk_imx8_acm_sel imx8dxl_sels[] = { { "acm_aud_clk0_sel", IMX_ADMA_ACM_AUD_CLK0_SEL, imx8dxl_aud_clk_sels, ARRAY_SIZE(imx8dxl_aud_clk_sels), 0x000000, 0, 5 }, { "acm_aud_clk1_sel", IMX_ADMA_ACM_AUD_CLK1_SEL, imx8dxl_aud_clk_sels, ARRAY_SIZE(imx8dxl_aud_clk_sels), 0x010000, 0, 5 }, { "acm_mclkout0_sel", IMX_ADMA_ACM_MCLKOUT0_SEL, imx8dxl_mclk_out_sels, ARRAY_SIZE(imx8dxl_mclk_out_sels), 0x020000, 0, 3 }, { "acm_mclkout1_sel", IMX_ADMA_ACM_MCLKOUT1_SEL, imx8dxl_mclk_out_sels, ARRAY_SIZE(imx8dxl_mclk_out_sels), 0x030000, 0, 3 }, { "acm_sai0_mclk_sel", IMX_ADMA_ACM_SAI0_MCLK_SEL, imx8dxl_mclk_sels, ARRAY_SIZE(imx8dxl_mclk_sels), 0x0E0000, 0, 2 }, { "acm_sai1_mclk_sel", IMX_ADMA_ACM_SAI1_MCLK_SEL, imx8dxl_mclk_sels, ARRAY_SIZE(imx8dxl_mclk_sels), 0x0F0000, 0, 2 }, { "acm_sai2_mclk_sel", IMX_ADMA_ACM_SAI2_MCLK_SEL, imx8dxl_mclk_sels, ARRAY_SIZE(imx8dxl_mclk_sels), 0x100000, 0, 2 }, { "acm_sai3_mclk_sel", IMX_ADMA_ACM_SAI3_MCLK_SEL, imx8dxl_mclk_sels, ARRAY_SIZE(imx8dxl_mclk_sels), 0x110000, 0, 2 }, { "acm_spdif0_mclk_sel", IMX_ADMA_ACM_SPDIF0_TX_CLK_SEL, imx8dxl_mclk_sels, ARRAY_SIZE(imx8dxl_mclk_sels), 0x1A0000, 0, 2 }, { "acm_mqs_mclk_sel", IMX_ADMA_ACM_MQS_TX_CLK_SEL, imx8dxl_mclk_sels, ARRAY_SIZE(imx8dxl_mclk_sels), 0x1C0000, 0, 2 }, }; /** * clk_imx_acm_attach_pm_domains: attach multi power domains * @dev: device pointer * @dev_pm: power domains for device */ static int clk_imx_acm_attach_pm_domains(struct device *dev, struct clk_imx_acm_pm_domains *dev_pm) { int ret; int i; dev_pm->num_domains = of_count_phandle_with_args(dev->of_node, "power-domains", "#power-domain-cells"); if (dev_pm->num_domains <= 1) return 0; dev_pm->pd_dev = devm_kmalloc_array(dev, dev_pm->num_domains, sizeof(*dev_pm->pd_dev), GFP_KERNEL); if (!dev_pm->pd_dev) return -ENOMEM; dev_pm->pd_dev_link = devm_kmalloc_array(dev, dev_pm->num_domains, sizeof(*dev_pm->pd_dev_link), GFP_KERNEL); if (!dev_pm->pd_dev_link) return -ENOMEM; for (i = 0; i < dev_pm->num_domains; i++) { dev_pm->pd_dev[i] = dev_pm_domain_attach_by_id(dev, i); if (IS_ERR(dev_pm->pd_dev[i])) return PTR_ERR(dev_pm->pd_dev[i]); dev_pm->pd_dev_link[i] = device_link_add(dev, dev_pm->pd_dev[i], DL_FLAG_STATELESS | DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE); if (IS_ERR(dev_pm->pd_dev_link[i])) { dev_pm_domain_detach(dev_pm->pd_dev[i], false); ret = PTR_ERR(dev_pm->pd_dev_link[i]); goto detach_pm; } } return 0; detach_pm: while (--i >= 0) { device_link_del(dev_pm->pd_dev_link[i]); dev_pm_domain_detach(dev_pm->pd_dev[i], false); } return ret; } /** * clk_imx_acm_detach_pm_domains: detach multi power domains * @dev: deivice pointer * @dev_pm: multi power domain for device */ static int clk_imx_acm_detach_pm_domains(struct device *dev, struct clk_imx_acm_pm_domains *dev_pm) { int i; if (dev_pm->num_domains <= 1) return 0; for (i = 0; i < dev_pm->num_domains; i++) { device_link_del(dev_pm->pd_dev_link[i]); dev_pm_domain_detach(dev_pm->pd_dev[i], false); } return 0; } static int imx8_acm_clk_probe(struct platform_device *pdev) { struct clk_hw_onecell_data *clk_hw_data; struct device *dev = &pdev->dev; struct clk_imx8_acm_sel *sels; struct imx8_acm_priv *priv; struct clk_hw **hws; void __iomem *base; int ret; int i; base = devm_of_iomap(dev, dev->of_node, 0, NULL); if (WARN_ON(IS_ERR(base))) return PTR_ERR(base); priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->reg = base; priv->soc_data = of_device_get_match_data(dev); platform_set_drvdata(pdev, priv); clk_hw_data = devm_kzalloc(&pdev->dev, struct_size(clk_hw_data, hws, IMX_ADMA_ACM_CLK_END), GFP_KERNEL); if (!clk_hw_data) return -ENOMEM; clk_hw_data->num = IMX_ADMA_ACM_CLK_END; hws = clk_hw_data->hws; ret = clk_imx_acm_attach_pm_domains(&pdev->dev, &priv->dev_pm); if (ret) return ret; pm_runtime_enable(&pdev->dev); pm_runtime_get_sync(&pdev->dev); sels = priv->soc_data->sels; for (i = 0; i < priv->soc_data->num_sels; i++) { hws[sels[i].clkid] = devm_clk_hw_register_mux_parent_data_table(dev, sels[i].name, sels[i].parents, sels[i].num_parents, 0, base + sels[i].reg, sels[i].shift, sels[i].width, 0, NULL, NULL); if (IS_ERR(hws[sels[i].clkid])) { pm_runtime_disable(&pdev->dev); goto err_clk_register; } } imx_check_clk_hws(hws, IMX_ADMA_ACM_CLK_END); ret = devm_of_clk_add_hw_provider(dev, of_clk_hw_onecell_get, clk_hw_data); if (ret < 0) { dev_err(dev, "failed to register hws for ACM\n"); pm_runtime_disable(&pdev->dev); } err_clk_register: pm_runtime_put_sync(&pdev->dev); return ret; } static int imx8_acm_clk_remove(struct platform_device *pdev) { struct imx8_acm_priv *priv = dev_get_drvdata(&pdev->dev); pm_runtime_disable(&pdev->dev); clk_imx_acm_detach_pm_domains(&pdev->dev, &priv->dev_pm); return 0; } static const struct imx8_acm_soc_data imx8qm_acm_data = { .sels = imx8qm_sels, .num_sels = ARRAY_SIZE(imx8qm_sels), }; static const struct imx8_acm_soc_data imx8qxp_acm_data = { .sels = imx8qxp_sels, .num_sels = ARRAY_SIZE(imx8qxp_sels), }; static const struct imx8_acm_soc_data imx8dxl_acm_data = { .sels = imx8dxl_sels, .num_sels = ARRAY_SIZE(imx8dxl_sels), }; static const struct of_device_id imx8_acm_match[] = { { .compatible = "fsl,imx8qm-acm", .data = &imx8qm_acm_data }, { .compatible = "fsl,imx8qxp-acm", .data = &imx8qxp_acm_data }, { .compatible = "fsl,imx8dxl-acm", .data = &imx8dxl_acm_data }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, imx8_acm_match); static int __maybe_unused imx8_acm_runtime_suspend(struct device *dev) { struct imx8_acm_priv *priv = dev_get_drvdata(dev); struct clk_imx8_acm_sel *sels; int i; sels = priv->soc_data->sels; for (i = 0; i < priv->soc_data->num_sels; i++) priv->regs[i] = readl_relaxed(priv->reg + sels[i].reg); return 0; } static int __maybe_unused imx8_acm_runtime_resume(struct device *dev) { struct imx8_acm_priv *priv = dev_get_drvdata(dev); struct clk_imx8_acm_sel *sels; int i; sels = priv->soc_data->sels; for (i = 0; i < priv->soc_data->num_sels; i++) writel_relaxed(priv->regs[i], priv->reg + sels[i].reg); return 0; } static const struct dev_pm_ops imx8_acm_pm_ops = { SET_RUNTIME_PM_OPS(imx8_acm_runtime_suspend, imx8_acm_runtime_resume, NULL) SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) }; static struct platform_driver imx8_acm_clk_driver = { .driver = { .name = "imx8-acm", .of_match_table = imx8_acm_match, .pm = &imx8_acm_pm_ops, }, .probe = imx8_acm_clk_probe, .remove = imx8_acm_clk_remove, }; module_platform_driver(imx8_acm_clk_driver); MODULE_AUTHOR("Shengjiu Wang <[email protected]>"); MODULE_DESCRIPTION("Freescale i.MX8 Audio Clock Mux driver"); MODULE_LICENSE("GPL");
linux-master
drivers/clk/imx/clk-imx8-acm.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2013 Freescale Semiconductor, Inc. */ #include <linux/clk-provider.h> #include <linux/err.h> #include <linux/io.h> #include <linux/slab.h> #include "clk.h" #define div_mask(d) ((1 << (d->width)) - 1) /** * struct clk_fixup_div - imx integer fixup divider clock * @divider: the parent class * @ops: pointer to clk_ops of parent class * @fixup: a hook to fixup the write value * * The imx fixup divider clock is a subclass of basic clk_divider * with an addtional fixup hook. */ struct clk_fixup_div { struct clk_divider divider; const struct clk_ops *ops; void (*fixup)(u32 *val); }; static inline struct clk_fixup_div *to_clk_fixup_div(struct clk_hw *hw) { struct clk_divider *divider = to_clk_divider(hw); return container_of(divider, struct clk_fixup_div, divider); } static unsigned long clk_fixup_div_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_fixup_div *fixup_div = to_clk_fixup_div(hw); return fixup_div->ops->recalc_rate(&fixup_div->divider.hw, parent_rate); } static long clk_fixup_div_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { struct clk_fixup_div *fixup_div = to_clk_fixup_div(hw); return fixup_div->ops->round_rate(&fixup_div->divider.hw, rate, prate); } static int clk_fixup_div_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_fixup_div *fixup_div = to_clk_fixup_div(hw); struct clk_divider *div = to_clk_divider(hw); unsigned int divider, value; unsigned long flags; u32 val; divider = parent_rate / rate; /* Zero based divider */ value = divider - 1; if (value > div_mask(div)) value = div_mask(div); spin_lock_irqsave(div->lock, flags); val = readl(div->reg); val &= ~(div_mask(div) << div->shift); val |= value << div->shift; fixup_div->fixup(&val); writel(val, div->reg); spin_unlock_irqrestore(div->lock, flags); return 0; } static const struct clk_ops clk_fixup_div_ops = { .recalc_rate = clk_fixup_div_recalc_rate, .round_rate = clk_fixup_div_round_rate, .set_rate = clk_fixup_div_set_rate, }; struct clk_hw *imx_clk_hw_fixup_divider(const char *name, const char *parent, void __iomem *reg, u8 shift, u8 width, void (*fixup)(u32 *val)) { struct clk_fixup_div *fixup_div; struct clk_hw *hw; struct clk_init_data init; int ret; if (!fixup) return ERR_PTR(-EINVAL); fixup_div = kzalloc(sizeof(*fixup_div), GFP_KERNEL); if (!fixup_div) return ERR_PTR(-ENOMEM); init.name = name; init.ops = &clk_fixup_div_ops; init.flags = CLK_SET_RATE_PARENT; init.parent_names = parent ? &parent : NULL; init.num_parents = parent ? 1 : 0; fixup_div->divider.reg = reg; fixup_div->divider.shift = shift; fixup_div->divider.width = width; fixup_div->divider.lock = &imx_ccm_lock; fixup_div->divider.hw.init = &init; fixup_div->ops = &clk_divider_ops; fixup_div->fixup = fixup; hw = &fixup_div->divider.hw; ret = clk_hw_register(NULL, hw); if (ret) { kfree(fixup_div); return ERR_PTR(ret); } return hw; }
linux-master
drivers/clk/imx/clk-fixup-div.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2013-2014 Freescale Semiconductor, Inc. */ #include <linux/bits.h> #include <linux/clk.h> #include <linux/clkdev.h> #include <linux/clk/imx.h> #include <linux/err.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <dt-bindings/clock/imx6sl-clock.h> #include "clk.h" #define CCSR 0xc #define BM_CCSR_PLL1_SW_CLK_SEL BIT(2) #define CACRR 0x10 #define CDHIPR 0x48 #define BM_CDHIPR_ARM_PODF_BUSY BIT(16) #define ARM_WAIT_DIV_396M 2 #define ARM_WAIT_DIV_792M 4 #define ARM_WAIT_DIV_996M 6 #define PLL_ARM 0x0 #define BM_PLL_ARM_DIV_SELECT 0x7f #define BM_PLL_ARM_POWERDOWN BIT(12) #define BM_PLL_ARM_ENABLE BIT(13) #define BM_PLL_ARM_LOCK BIT(31) #define PLL_ARM_DIV_792M 66 static const char *step_sels[] = { "osc", "pll2_pfd2", }; static const char *pll1_sw_sels[] = { "pll1_sys", "step", }; static const char *ocram_alt_sels[] = { "pll2_pfd2", "pll3_pfd1", }; static const char *ocram_sels[] = { "periph", "ocram_alt_sels", }; static const char *pre_periph_sels[] = { "pll2_bus", "pll2_pfd2", "pll2_pfd0", "pll2_198m", }; static const char *periph_clk2_sels[] = { "pll3_usb_otg", "osc", "osc", "dummy", }; static const char *periph2_clk2_sels[] = { "pll3_usb_otg", "pll2_bus", }; static const char *periph_sels[] = { "pre_periph_sel", "periph_clk2_podf", }; static const char *periph2_sels[] = { "pre_periph2_sel", "periph2_clk2_podf", }; static const char *csi_sels[] = { "osc", "pll2_pfd2", "pll3_120m", "pll3_pfd1", }; static const char *lcdif_axi_sels[] = { "pll2_bus", "pll2_pfd2", "pll3_usb_otg", "pll3_pfd1", }; static const char *usdhc_sels[] = { "pll2_pfd2", "pll2_pfd0", }; static const char *ssi_sels[] = { "pll3_pfd2", "pll3_pfd3", "pll4_audio_div", "dummy", }; static const char *perclk_sels[] = { "ipg", "osc", }; static const char *pxp_axi_sels[] = { "pll2_bus", "pll3_usb_otg", "pll5_video_div", "pll2_pfd0", "pll2_pfd2", "pll3_pfd3", }; static const char *epdc_axi_sels[] = { "pll2_bus", "pll3_usb_otg", "pll5_video_div", "pll2_pfd0", "pll2_pfd2", "pll3_pfd2", }; static const char *gpu2d_ovg_sels[] = { "pll3_pfd1", "pll3_usb_otg", "pll2_bus", "pll2_pfd2", }; static const char *gpu2d_sels[] = { "pll2_pfd2", "pll3_usb_otg", "pll3_pfd1", "pll2_bus", }; static const char *lcdif_pix_sels[] = { "pll2_bus", "pll3_usb_otg", "pll5_video_div", "pll2_pfd0", "pll3_pfd0", "pll3_pfd1", }; static const char *epdc_pix_sels[] = { "pll2_bus", "pll3_usb_otg", "pll5_video_div", "pll2_pfd0", "pll2_pfd1", "pll3_pfd1", }; static const char *audio_sels[] = { "pll4_audio_div", "pll3_pfd2", "pll3_pfd3", "pll3_usb_otg", }; static const char *ecspi_sels[] = { "pll3_60m", "osc", }; static const char *uart_sels[] = { "pll3_80m", "osc", }; static const char *lvds_sels[] = { "pll1_sys", "pll2_bus", "pll2_pfd0", "pll2_pfd1", "pll2_pfd2", "dummy", "pll4_audio", "pll5_video", "dummy", "enet_ref", "dummy", "dummy", "pll3_usb_otg", "pll7_usb_host", "pll3_pfd0", "pll3_pfd1", "pll3_pfd2", "pll3_pfd3", "osc", "dummy", "dummy", "dummy", "dummy", "dummy", "dummy", "dummy", "dummy", "dummy", "dummy", "dummy", "dummy", "dummy", }; static const char *pll_bypass_src_sels[] = { "osc", "lvds1_in", }; static const char *pll1_bypass_sels[] = { "pll1", "pll1_bypass_src", }; static const char *pll2_bypass_sels[] = { "pll2", "pll2_bypass_src", }; static const char *pll3_bypass_sels[] = { "pll3", "pll3_bypass_src", }; static const char *pll4_bypass_sels[] = { "pll4", "pll4_bypass_src", }; static const char *pll5_bypass_sels[] = { "pll5", "pll5_bypass_src", }; static const char *pll6_bypass_sels[] = { "pll6", "pll6_bypass_src", }; static const char *pll7_bypass_sels[] = { "pll7", "pll7_bypass_src", }; static const struct clk_div_table clk_enet_ref_table[] = { { .val = 0, .div = 20, }, { .val = 1, .div = 10, }, { .val = 2, .div = 5, }, { .val = 3, .div = 4, }, { } }; static const struct clk_div_table post_div_table[] = { { .val = 2, .div = 1, }, { .val = 1, .div = 2, }, { .val = 0, .div = 4, }, { } }; static const struct clk_div_table video_div_table[] = { { .val = 0, .div = 1, }, { .val = 1, .div = 2, }, { .val = 2, .div = 1, }, { .val = 3, .div = 4, }, { } }; static unsigned int share_count_ssi1; static unsigned int share_count_ssi2; static unsigned int share_count_ssi3; static unsigned int share_count_spdif; static struct clk_hw **hws; static struct clk_hw_onecell_data *clk_hw_data; static void __iomem *ccm_base; static void __iomem *anatop_base; /* * ERR005311 CCM: After exit from WAIT mode, unwanted interrupt(s) taken * during WAIT mode entry process could cause cache memory * corruption. * * Software workaround: * To prevent this issue from occurring, software should ensure that the * ARM to IPG clock ratio is less than 12:5 (that is < 2.4x), before * entering WAIT mode. * * This function will set the ARM clk to max value within the 12:5 limit. * As IPG clock is fixed at 66MHz(so ARM freq must not exceed 158.4MHz), * ARM freq are one of below setpoints: 396MHz, 792MHz and 996MHz, since * the clk APIs can NOT be called in idle thread(may cause kernel schedule * as there is sleep function in PLL wait function), so here we just slow * down ARM to below freq according to previous freq: * * run mode wait mode * 396MHz -> 132MHz; * 792MHz -> 158.4MHz; * 996MHz -> 142.3MHz; */ static int imx6sl_get_arm_divider_for_wait(void) { if (readl_relaxed(ccm_base + CCSR) & BM_CCSR_PLL1_SW_CLK_SEL) { return ARM_WAIT_DIV_396M; } else { if ((readl_relaxed(anatop_base + PLL_ARM) & BM_PLL_ARM_DIV_SELECT) == PLL_ARM_DIV_792M) return ARM_WAIT_DIV_792M; else return ARM_WAIT_DIV_996M; } } static void imx6sl_enable_pll_arm(bool enable) { static u32 saved_pll_arm; u32 val; if (enable) { saved_pll_arm = val = readl_relaxed(anatop_base + PLL_ARM); val |= BM_PLL_ARM_ENABLE; val &= ~BM_PLL_ARM_POWERDOWN; writel_relaxed(val, anatop_base + PLL_ARM); while (!(readl_relaxed(anatop_base + PLL_ARM) & BM_PLL_ARM_LOCK)) ; } else { writel_relaxed(saved_pll_arm, anatop_base + PLL_ARM); } } void imx6sl_set_wait_clk(bool enter) { static unsigned long saved_arm_div; int arm_div_for_wait = imx6sl_get_arm_divider_for_wait(); /* * According to hardware design, arm podf change need * PLL1 clock enabled. */ if (arm_div_for_wait == ARM_WAIT_DIV_396M) imx6sl_enable_pll_arm(true); if (enter) { saved_arm_div = readl_relaxed(ccm_base + CACRR); writel_relaxed(arm_div_for_wait, ccm_base + CACRR); } else { writel_relaxed(saved_arm_div, ccm_base + CACRR); } while (__raw_readl(ccm_base + CDHIPR) & BM_CDHIPR_ARM_PODF_BUSY) ; if (arm_div_for_wait == ARM_WAIT_DIV_396M) imx6sl_enable_pll_arm(false); } static void __init imx6sl_clocks_init(struct device_node *ccm_node) { struct device_node *np; void __iomem *base; int ret; clk_hw_data = kzalloc(struct_size(clk_hw_data, hws, IMX6SL_CLK_END), GFP_KERNEL); if (WARN_ON(!clk_hw_data)) return; clk_hw_data->num = IMX6SL_CLK_END; hws = clk_hw_data->hws; hws[IMX6SL_CLK_DUMMY] = imx_clk_hw_fixed("dummy", 0); hws[IMX6SL_CLK_CKIL] = imx_obtain_fixed_clock_hw("ckil", 0); hws[IMX6SL_CLK_OSC] = imx_obtain_fixed_clock_hw("osc", 0); /* Clock source from external clock via CLK1 PAD */ hws[IMX6SL_CLK_ANACLK1] = imx_obtain_fixed_clock_hw("anaclk1", 0); np = of_find_compatible_node(NULL, NULL, "fsl,imx6sl-anatop"); base = of_iomap(np, 0); WARN_ON(!base); of_node_put(np); anatop_base = base; hws[IMX6SL_PLL1_BYPASS_SRC] = imx_clk_hw_mux("pll1_bypass_src", base + 0x00, 14, 1, pll_bypass_src_sels, ARRAY_SIZE(pll_bypass_src_sels)); hws[IMX6SL_PLL2_BYPASS_SRC] = imx_clk_hw_mux("pll2_bypass_src", base + 0x30, 14, 1, pll_bypass_src_sels, ARRAY_SIZE(pll_bypass_src_sels)); hws[IMX6SL_PLL3_BYPASS_SRC] = imx_clk_hw_mux("pll3_bypass_src", base + 0x10, 14, 1, pll_bypass_src_sels, ARRAY_SIZE(pll_bypass_src_sels)); hws[IMX6SL_PLL4_BYPASS_SRC] = imx_clk_hw_mux("pll4_bypass_src", base + 0x70, 14, 1, pll_bypass_src_sels, ARRAY_SIZE(pll_bypass_src_sels)); hws[IMX6SL_PLL5_BYPASS_SRC] = imx_clk_hw_mux("pll5_bypass_src", base + 0xa0, 14, 1, pll_bypass_src_sels, ARRAY_SIZE(pll_bypass_src_sels)); hws[IMX6SL_PLL6_BYPASS_SRC] = imx_clk_hw_mux("pll6_bypass_src", base + 0xe0, 14, 1, pll_bypass_src_sels, ARRAY_SIZE(pll_bypass_src_sels)); hws[IMX6SL_PLL7_BYPASS_SRC] = imx_clk_hw_mux("pll7_bypass_src", base + 0x20, 14, 1, pll_bypass_src_sels, ARRAY_SIZE(pll_bypass_src_sels)); /* type name parent_name base div_mask */ hws[IMX6SL_CLK_PLL1] = imx_clk_hw_pllv3(IMX_PLLV3_SYS, "pll1", "osc", base + 0x00, 0x7f); hws[IMX6SL_CLK_PLL2] = imx_clk_hw_pllv3(IMX_PLLV3_GENERIC, "pll2", "osc", base + 0x30, 0x1); hws[IMX6SL_CLK_PLL3] = imx_clk_hw_pllv3(IMX_PLLV3_USB, "pll3", "osc", base + 0x10, 0x3); hws[IMX6SL_CLK_PLL4] = imx_clk_hw_pllv3(IMX_PLLV3_AV, "pll4", "osc", base + 0x70, 0x7f); hws[IMX6SL_CLK_PLL5] = imx_clk_hw_pllv3(IMX_PLLV3_AV, "pll5", "osc", base + 0xa0, 0x7f); hws[IMX6SL_CLK_PLL6] = imx_clk_hw_pllv3(IMX_PLLV3_ENET, "pll6", "osc", base + 0xe0, 0x3); hws[IMX6SL_CLK_PLL7] = imx_clk_hw_pllv3(IMX_PLLV3_USB, "pll7", "osc", base + 0x20, 0x3); hws[IMX6SL_PLL1_BYPASS] = imx_clk_hw_mux_flags("pll1_bypass", base + 0x00, 16, 1, pll1_bypass_sels, ARRAY_SIZE(pll1_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX6SL_PLL2_BYPASS] = imx_clk_hw_mux_flags("pll2_bypass", base + 0x30, 16, 1, pll2_bypass_sels, ARRAY_SIZE(pll2_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX6SL_PLL3_BYPASS] = imx_clk_hw_mux_flags("pll3_bypass", base + 0x10, 16, 1, pll3_bypass_sels, ARRAY_SIZE(pll3_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX6SL_PLL4_BYPASS] = imx_clk_hw_mux_flags("pll4_bypass", base + 0x70, 16, 1, pll4_bypass_sels, ARRAY_SIZE(pll4_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX6SL_PLL5_BYPASS] = imx_clk_hw_mux_flags("pll5_bypass", base + 0xa0, 16, 1, pll5_bypass_sels, ARRAY_SIZE(pll5_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX6SL_PLL6_BYPASS] = imx_clk_hw_mux_flags("pll6_bypass", base + 0xe0, 16, 1, pll6_bypass_sels, ARRAY_SIZE(pll6_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX6SL_PLL7_BYPASS] = imx_clk_hw_mux_flags("pll7_bypass", base + 0x20, 16, 1, pll7_bypass_sels, ARRAY_SIZE(pll7_bypass_sels), CLK_SET_RATE_PARENT); /* Do not bypass PLLs initially */ clk_set_parent(hws[IMX6SL_PLL1_BYPASS]->clk, hws[IMX6SL_CLK_PLL1]->clk); clk_set_parent(hws[IMX6SL_PLL2_BYPASS]->clk, hws[IMX6SL_CLK_PLL2]->clk); clk_set_parent(hws[IMX6SL_PLL3_BYPASS]->clk, hws[IMX6SL_CLK_PLL3]->clk); clk_set_parent(hws[IMX6SL_PLL4_BYPASS]->clk, hws[IMX6SL_CLK_PLL4]->clk); clk_set_parent(hws[IMX6SL_PLL5_BYPASS]->clk, hws[IMX6SL_CLK_PLL5]->clk); clk_set_parent(hws[IMX6SL_PLL6_BYPASS]->clk, hws[IMX6SL_CLK_PLL6]->clk); clk_set_parent(hws[IMX6SL_PLL7_BYPASS]->clk, hws[IMX6SL_CLK_PLL7]->clk); hws[IMX6SL_CLK_PLL1_SYS] = imx_clk_hw_gate("pll1_sys", "pll1_bypass", base + 0x00, 13); hws[IMX6SL_CLK_PLL2_BUS] = imx_clk_hw_gate("pll2_bus", "pll2_bypass", base + 0x30, 13); hws[IMX6SL_CLK_PLL3_USB_OTG] = imx_clk_hw_gate("pll3_usb_otg", "pll3_bypass", base + 0x10, 13); hws[IMX6SL_CLK_PLL4_AUDIO] = imx_clk_hw_gate("pll4_audio", "pll4_bypass", base + 0x70, 13); hws[IMX6SL_CLK_PLL5_VIDEO] = imx_clk_hw_gate("pll5_video", "pll5_bypass", base + 0xa0, 13); hws[IMX6SL_CLK_PLL6_ENET] = imx_clk_hw_gate("pll6_enet", "pll6_bypass", base + 0xe0, 13); hws[IMX6SL_CLK_PLL7_USB_HOST] = imx_clk_hw_gate("pll7_usb_host", "pll7_bypass", base + 0x20, 13); hws[IMX6SL_CLK_LVDS1_SEL] = imx_clk_hw_mux("lvds1_sel", base + 0x160, 0, 5, lvds_sels, ARRAY_SIZE(lvds_sels)); hws[IMX6SL_CLK_LVDS1_OUT] = imx_clk_hw_gate_exclusive("lvds1_out", "lvds1_sel", base + 0x160, 10, BIT(12)); hws[IMX6SL_CLK_LVDS1_IN] = imx_clk_hw_gate_exclusive("lvds1_in", "anaclk1", base + 0x160, 12, BIT(10)); /* * usbphy1 and usbphy2 are implemented as dummy gates using reserve * bit 20. They are used by phy driver to keep the refcount of * parent PLL correct. usbphy1_gate and usbphy2_gate only needs to be * turned on during boot, and software will not need to control it * anymore after that. */ hws[IMX6SL_CLK_USBPHY1] = imx_clk_hw_gate("usbphy1", "pll3_usb_otg", base + 0x10, 20); hws[IMX6SL_CLK_USBPHY2] = imx_clk_hw_gate("usbphy2", "pll7_usb_host", base + 0x20, 20); hws[IMX6SL_CLK_USBPHY1_GATE] = imx_clk_hw_gate("usbphy1_gate", "dummy", base + 0x10, 6); hws[IMX6SL_CLK_USBPHY2_GATE] = imx_clk_hw_gate("usbphy2_gate", "dummy", base + 0x20, 6); /* dev name parent_name flags reg shift width div: flags, div_table lock */ hws[IMX6SL_CLK_PLL4_POST_DIV] = clk_hw_register_divider_table(NULL, "pll4_post_div", "pll4_audio", CLK_SET_RATE_PARENT, base + 0x70, 19, 2, 0, post_div_table, &imx_ccm_lock); hws[IMX6SL_CLK_PLL4_AUDIO_DIV] = clk_hw_register_divider(NULL, "pll4_audio_div", "pll4_post_div", CLK_SET_RATE_PARENT, base + 0x170, 15, 1, 0, &imx_ccm_lock); hws[IMX6SL_CLK_PLL5_POST_DIV] = clk_hw_register_divider_table(NULL, "pll5_post_div", "pll5_video", CLK_SET_RATE_PARENT, base + 0xa0, 19, 2, 0, post_div_table, &imx_ccm_lock); hws[IMX6SL_CLK_PLL5_VIDEO_DIV] = clk_hw_register_divider_table(NULL, "pll5_video_div", "pll5_post_div", CLK_SET_RATE_PARENT, base + 0x170, 30, 2, 0, video_div_table, &imx_ccm_lock); hws[IMX6SL_CLK_ENET_REF] = clk_hw_register_divider_table(NULL, "enet_ref", "pll6_enet", 0, base + 0xe0, 0, 2, 0, clk_enet_ref_table, &imx_ccm_lock); /* name parent_name reg idx */ hws[IMX6SL_CLK_PLL2_PFD0] = imx_clk_hw_pfd("pll2_pfd0", "pll2_bus", base + 0x100, 0); hws[IMX6SL_CLK_PLL2_PFD1] = imx_clk_hw_pfd("pll2_pfd1", "pll2_bus", base + 0x100, 1); hws[IMX6SL_CLK_PLL2_PFD2] = imx_clk_hw_pfd("pll2_pfd2", "pll2_bus", base + 0x100, 2); hws[IMX6SL_CLK_PLL3_PFD0] = imx_clk_hw_pfd("pll3_pfd0", "pll3_usb_otg", base + 0xf0, 0); hws[IMX6SL_CLK_PLL3_PFD1] = imx_clk_hw_pfd("pll3_pfd1", "pll3_usb_otg", base + 0xf0, 1); hws[IMX6SL_CLK_PLL3_PFD2] = imx_clk_hw_pfd("pll3_pfd2", "pll3_usb_otg", base + 0xf0, 2); hws[IMX6SL_CLK_PLL3_PFD3] = imx_clk_hw_pfd("pll3_pfd3", "pll3_usb_otg", base + 0xf0, 3); /* name parent_name mult div */ hws[IMX6SL_CLK_PLL2_198M] = imx_clk_hw_fixed_factor("pll2_198m", "pll2_pfd2", 1, 2); hws[IMX6SL_CLK_PLL3_120M] = imx_clk_hw_fixed_factor("pll3_120m", "pll3_usb_otg", 1, 4); hws[IMX6SL_CLK_PLL3_80M] = imx_clk_hw_fixed_factor("pll3_80m", "pll3_usb_otg", 1, 6); hws[IMX6SL_CLK_PLL3_60M] = imx_clk_hw_fixed_factor("pll3_60m", "pll3_usb_otg", 1, 8); np = ccm_node; base = of_iomap(np, 0); WARN_ON(!base); ccm_base = base; /* name reg shift width parent_names num_parents */ hws[IMX6SL_CLK_STEP] = imx_clk_hw_mux("step", base + 0xc, 8, 1, step_sels, ARRAY_SIZE(step_sels)); hws[IMX6SL_CLK_PLL1_SW] = imx_clk_hw_mux("pll1_sw", base + 0xc, 2, 1, pll1_sw_sels, ARRAY_SIZE(pll1_sw_sels)); hws[IMX6SL_CLK_OCRAM_ALT_SEL] = imx_clk_hw_mux("ocram_alt_sel", base + 0x14, 7, 1, ocram_alt_sels, ARRAY_SIZE(ocram_alt_sels)); hws[IMX6SL_CLK_OCRAM_SEL] = imx_clk_hw_mux("ocram_sel", base + 0x14, 6, 1, ocram_sels, ARRAY_SIZE(ocram_sels)); hws[IMX6SL_CLK_PRE_PERIPH2_SEL] = imx_clk_hw_mux("pre_periph2_sel", base + 0x18, 21, 2, pre_periph_sels, ARRAY_SIZE(pre_periph_sels)); hws[IMX6SL_CLK_PRE_PERIPH_SEL] = imx_clk_hw_mux("pre_periph_sel", base + 0x18, 18, 2, pre_periph_sels, ARRAY_SIZE(pre_periph_sels)); hws[IMX6SL_CLK_PERIPH2_CLK2_SEL] = imx_clk_hw_mux("periph2_clk2_sel", base + 0x18, 20, 1, periph2_clk2_sels, ARRAY_SIZE(periph2_clk2_sels)); hws[IMX6SL_CLK_PERIPH_CLK2_SEL] = imx_clk_hw_mux("periph_clk2_sel", base + 0x18, 12, 2, periph_clk2_sels, ARRAY_SIZE(periph_clk2_sels)); hws[IMX6SL_CLK_CSI_SEL] = imx_clk_hw_mux("csi_sel", base + 0x3c, 9, 2, csi_sels, ARRAY_SIZE(csi_sels)); hws[IMX6SL_CLK_LCDIF_AXI_SEL] = imx_clk_hw_mux("lcdif_axi_sel", base + 0x3c, 14, 2, lcdif_axi_sels, ARRAY_SIZE(lcdif_axi_sels)); hws[IMX6SL_CLK_USDHC1_SEL] = imx_clk_hw_fixup_mux("usdhc1_sel", base + 0x1c, 16, 1, usdhc_sels, ARRAY_SIZE(usdhc_sels), imx_cscmr1_fixup); hws[IMX6SL_CLK_USDHC2_SEL] = imx_clk_hw_fixup_mux("usdhc2_sel", base + 0x1c, 17, 1, usdhc_sels, ARRAY_SIZE(usdhc_sels), imx_cscmr1_fixup); hws[IMX6SL_CLK_USDHC3_SEL] = imx_clk_hw_fixup_mux("usdhc3_sel", base + 0x1c, 18, 1, usdhc_sels, ARRAY_SIZE(usdhc_sels), imx_cscmr1_fixup); hws[IMX6SL_CLK_USDHC4_SEL] = imx_clk_hw_fixup_mux("usdhc4_sel", base + 0x1c, 19, 1, usdhc_sels, ARRAY_SIZE(usdhc_sels), imx_cscmr1_fixup); hws[IMX6SL_CLK_SSI1_SEL] = imx_clk_hw_fixup_mux("ssi1_sel", base + 0x1c, 10, 2, ssi_sels, ARRAY_SIZE(ssi_sels), imx_cscmr1_fixup); hws[IMX6SL_CLK_SSI2_SEL] = imx_clk_hw_fixup_mux("ssi2_sel", base + 0x1c, 12, 2, ssi_sels, ARRAY_SIZE(ssi_sels), imx_cscmr1_fixup); hws[IMX6SL_CLK_SSI3_SEL] = imx_clk_hw_fixup_mux("ssi3_sel", base + 0x1c, 14, 2, ssi_sels, ARRAY_SIZE(ssi_sels), imx_cscmr1_fixup); hws[IMX6SL_CLK_PERCLK_SEL] = imx_clk_hw_fixup_mux("perclk_sel", base + 0x1c, 6, 1, perclk_sels, ARRAY_SIZE(perclk_sels), imx_cscmr1_fixup); hws[IMX6SL_CLK_PXP_AXI_SEL] = imx_clk_hw_mux("pxp_axi_sel", base + 0x34, 6, 3, pxp_axi_sels, ARRAY_SIZE(pxp_axi_sels)); hws[IMX6SL_CLK_EPDC_AXI_SEL] = imx_clk_hw_mux("epdc_axi_sel", base + 0x34, 15, 3, epdc_axi_sels, ARRAY_SIZE(epdc_axi_sels)); hws[IMX6SL_CLK_GPU2D_OVG_SEL] = imx_clk_hw_mux("gpu2d_ovg_sel", base + 0x18, 4, 2, gpu2d_ovg_sels, ARRAY_SIZE(gpu2d_ovg_sels)); hws[IMX6SL_CLK_GPU2D_SEL] = imx_clk_hw_mux("gpu2d_sel", base + 0x18, 8, 2, gpu2d_sels, ARRAY_SIZE(gpu2d_sels)); hws[IMX6SL_CLK_LCDIF_PIX_SEL] = imx_clk_hw_mux("lcdif_pix_sel", base + 0x38, 6, 3, lcdif_pix_sels, ARRAY_SIZE(lcdif_pix_sels)); hws[IMX6SL_CLK_EPDC_PIX_SEL] = imx_clk_hw_mux("epdc_pix_sel", base + 0x38, 15, 3, epdc_pix_sels, ARRAY_SIZE(epdc_pix_sels)); hws[IMX6SL_CLK_SPDIF0_SEL] = imx_clk_hw_mux("spdif0_sel", base + 0x30, 20, 2, audio_sels, ARRAY_SIZE(audio_sels)); hws[IMX6SL_CLK_SPDIF1_SEL] = imx_clk_hw_mux("spdif1_sel", base + 0x30, 7, 2, audio_sels, ARRAY_SIZE(audio_sels)); hws[IMX6SL_CLK_EXTERN_AUDIO_SEL] = imx_clk_hw_mux("extern_audio_sel", base + 0x20, 19, 2, audio_sels, ARRAY_SIZE(audio_sels)); hws[IMX6SL_CLK_ECSPI_SEL] = imx_clk_hw_mux("ecspi_sel", base + 0x38, 18, 1, ecspi_sels, ARRAY_SIZE(ecspi_sels)); hws[IMX6SL_CLK_UART_SEL] = imx_clk_hw_mux("uart_sel", base + 0x24, 6, 1, uart_sels, ARRAY_SIZE(uart_sels)); /* name reg shift width busy: reg, shift parent_names num_parents */ hws[IMX6SL_CLK_PERIPH] = imx_clk_hw_busy_mux("periph", base + 0x14, 25, 1, base + 0x48, 5, periph_sels, ARRAY_SIZE(periph_sels)); hws[IMX6SL_CLK_PERIPH2] = imx_clk_hw_busy_mux("periph2", base + 0x14, 26, 1, base + 0x48, 3, periph2_sels, ARRAY_SIZE(periph2_sels)); /* name parent_name reg shift width */ hws[IMX6SL_CLK_OCRAM_PODF] = imx_clk_hw_busy_divider("ocram_podf", "ocram_sel", base + 0x14, 16, 3, base + 0x48, 0); hws[IMX6SL_CLK_PERIPH_CLK2_PODF] = imx_clk_hw_divider("periph_clk2_podf", "periph_clk2_sel", base + 0x14, 27, 3); hws[IMX6SL_CLK_PERIPH2_CLK2_PODF] = imx_clk_hw_divider("periph2_clk2_podf", "periph2_clk2_sel", base + 0x14, 0, 3); hws[IMX6SL_CLK_IPG] = imx_clk_hw_divider("ipg", "ahb", base + 0x14, 8, 2); hws[IMX6SL_CLK_CSI_PODF] = imx_clk_hw_divider("csi_podf", "csi_sel", base + 0x3c, 11, 3); hws[IMX6SL_CLK_LCDIF_AXI_PODF] = imx_clk_hw_divider("lcdif_axi_podf", "lcdif_axi_sel", base + 0x3c, 16, 3); hws[IMX6SL_CLK_USDHC1_PODF] = imx_clk_hw_divider("usdhc1_podf", "usdhc1_sel", base + 0x24, 11, 3); hws[IMX6SL_CLK_USDHC2_PODF] = imx_clk_hw_divider("usdhc2_podf", "usdhc2_sel", base + 0x24, 16, 3); hws[IMX6SL_CLK_USDHC3_PODF] = imx_clk_hw_divider("usdhc3_podf", "usdhc3_sel", base + 0x24, 19, 3); hws[IMX6SL_CLK_USDHC4_PODF] = imx_clk_hw_divider("usdhc4_podf", "usdhc4_sel", base + 0x24, 22, 3); hws[IMX6SL_CLK_SSI1_PRED] = imx_clk_hw_divider("ssi1_pred", "ssi1_sel", base + 0x28, 6, 3); hws[IMX6SL_CLK_SSI1_PODF] = imx_clk_hw_divider("ssi1_podf", "ssi1_pred", base + 0x28, 0, 6); hws[IMX6SL_CLK_SSI2_PRED] = imx_clk_hw_divider("ssi2_pred", "ssi2_sel", base + 0x2c, 6, 3); hws[IMX6SL_CLK_SSI2_PODF] = imx_clk_hw_divider("ssi2_podf", "ssi2_pred", base + 0x2c, 0, 6); hws[IMX6SL_CLK_SSI3_PRED] = imx_clk_hw_divider("ssi3_pred", "ssi3_sel", base + 0x28, 22, 3); hws[IMX6SL_CLK_SSI3_PODF] = imx_clk_hw_divider("ssi3_podf", "ssi3_pred", base + 0x28, 16, 6); hws[IMX6SL_CLK_PERCLK] = imx_clk_hw_fixup_divider("perclk", "perclk_sel", base + 0x1c, 0, 6, imx_cscmr1_fixup); hws[IMX6SL_CLK_PXP_AXI_PODF] = imx_clk_hw_divider("pxp_axi_podf", "pxp_axi_sel", base + 0x34, 3, 3); hws[IMX6SL_CLK_EPDC_AXI_PODF] = imx_clk_hw_divider("epdc_axi_podf", "epdc_axi_sel", base + 0x34, 12, 3); hws[IMX6SL_CLK_GPU2D_OVG_PODF] = imx_clk_hw_divider("gpu2d_ovg_podf", "gpu2d_ovg_sel", base + 0x18, 26, 3); hws[IMX6SL_CLK_GPU2D_PODF] = imx_clk_hw_divider("gpu2d_podf", "gpu2d_sel", base + 0x18, 29, 3); hws[IMX6SL_CLK_LCDIF_PIX_PRED] = imx_clk_hw_divider("lcdif_pix_pred", "lcdif_pix_sel", base + 0x38, 3, 3); hws[IMX6SL_CLK_EPDC_PIX_PRED] = imx_clk_hw_divider("epdc_pix_pred", "epdc_pix_sel", base + 0x38, 12, 3); hws[IMX6SL_CLK_LCDIF_PIX_PODF] = imx_clk_hw_fixup_divider("lcdif_pix_podf", "lcdif_pix_pred", base + 0x1c, 20, 3, imx_cscmr1_fixup); hws[IMX6SL_CLK_EPDC_PIX_PODF] = imx_clk_hw_divider("epdc_pix_podf", "epdc_pix_pred", base + 0x18, 23, 3); hws[IMX6SL_CLK_SPDIF0_PRED] = imx_clk_hw_divider("spdif0_pred", "spdif0_sel", base + 0x30, 25, 3); hws[IMX6SL_CLK_SPDIF0_PODF] = imx_clk_hw_divider("spdif0_podf", "spdif0_pred", base + 0x30, 22, 3); hws[IMX6SL_CLK_SPDIF1_PRED] = imx_clk_hw_divider("spdif1_pred", "spdif1_sel", base + 0x30, 12, 3); hws[IMX6SL_CLK_SPDIF1_PODF] = imx_clk_hw_divider("spdif1_podf", "spdif1_pred", base + 0x30, 9, 3); hws[IMX6SL_CLK_EXTERN_AUDIO_PRED] = imx_clk_hw_divider("extern_audio_pred", "extern_audio_sel", base + 0x28, 9, 3); hws[IMX6SL_CLK_EXTERN_AUDIO_PODF] = imx_clk_hw_divider("extern_audio_podf", "extern_audio_pred", base + 0x28, 25, 3); hws[IMX6SL_CLK_ECSPI_ROOT] = imx_clk_hw_divider("ecspi_root", "ecspi_sel", base + 0x38, 19, 6); hws[IMX6SL_CLK_UART_ROOT] = imx_clk_hw_divider("uart_root", "uart_sel", base + 0x24, 0, 6); /* name parent_name reg shift width busy: reg, shift */ hws[IMX6SL_CLK_AHB] = imx_clk_hw_busy_divider("ahb", "periph", base + 0x14, 10, 3, base + 0x48, 1); hws[IMX6SL_CLK_MMDC_ROOT] = imx_clk_hw_busy_divider("mmdc", "periph2", base + 0x14, 3, 3, base + 0x48, 2); hws[IMX6SL_CLK_ARM] = imx_clk_hw_busy_divider("arm", "pll1_sw", base + 0x10, 0, 3, base + 0x48, 16); /* name parent_name reg shift */ hws[IMX6SL_CLK_ECSPI1] = imx_clk_hw_gate2("ecspi1", "ecspi_root", base + 0x6c, 0); hws[IMX6SL_CLK_ECSPI2] = imx_clk_hw_gate2("ecspi2", "ecspi_root", base + 0x6c, 2); hws[IMX6SL_CLK_ECSPI3] = imx_clk_hw_gate2("ecspi3", "ecspi_root", base + 0x6c, 4); hws[IMX6SL_CLK_ECSPI4] = imx_clk_hw_gate2("ecspi4", "ecspi_root", base + 0x6c, 6); hws[IMX6SL_CLK_ENET] = imx_clk_hw_gate2("enet", "ipg", base + 0x6c, 10); hws[IMX6SL_CLK_EPIT1] = imx_clk_hw_gate2("epit1", "perclk", base + 0x6c, 12); hws[IMX6SL_CLK_EPIT2] = imx_clk_hw_gate2("epit2", "perclk", base + 0x6c, 14); hws[IMX6SL_CLK_EXTERN_AUDIO] = imx_clk_hw_gate2("extern_audio", "extern_audio_podf", base + 0x6c, 16); hws[IMX6SL_CLK_GPT] = imx_clk_hw_gate2("gpt", "perclk", base + 0x6c, 20); hws[IMX6SL_CLK_GPT_SERIAL] = imx_clk_hw_gate2("gpt_serial", "perclk", base + 0x6c, 22); hws[IMX6SL_CLK_GPU2D_OVG] = imx_clk_hw_gate2("gpu2d_ovg", "gpu2d_ovg_podf", base + 0x6c, 26); hws[IMX6SL_CLK_I2C1] = imx_clk_hw_gate2("i2c1", "perclk", base + 0x70, 6); hws[IMX6SL_CLK_I2C2] = imx_clk_hw_gate2("i2c2", "perclk", base + 0x70, 8); hws[IMX6SL_CLK_I2C3] = imx_clk_hw_gate2("i2c3", "perclk", base + 0x70, 10); hws[IMX6SL_CLK_OCOTP] = imx_clk_hw_gate2("ocotp", "ipg", base + 0x70, 12); hws[IMX6SL_CLK_CSI] = imx_clk_hw_gate2("csi", "csi_podf", base + 0x74, 0); hws[IMX6SL_CLK_PXP_AXI] = imx_clk_hw_gate2("pxp_axi", "pxp_axi_podf", base + 0x74, 2); hws[IMX6SL_CLK_EPDC_AXI] = imx_clk_hw_gate2("epdc_axi", "epdc_axi_podf", base + 0x74, 4); hws[IMX6SL_CLK_LCDIF_AXI] = imx_clk_hw_gate2("lcdif_axi", "lcdif_axi_podf", base + 0x74, 6); hws[IMX6SL_CLK_LCDIF_PIX] = imx_clk_hw_gate2("lcdif_pix", "lcdif_pix_podf", base + 0x74, 8); hws[IMX6SL_CLK_EPDC_PIX] = imx_clk_hw_gate2("epdc_pix", "epdc_pix_podf", base + 0x74, 10); hws[IMX6SL_CLK_MMDC_P0_IPG] = imx_clk_hw_gate2_flags("mmdc_p0_ipg", "ipg", base + 0x74, 24, CLK_IS_CRITICAL); hws[IMX6SL_CLK_MMDC_P1_IPG] = imx_clk_hw_gate2("mmdc_p1_ipg", "ipg", base + 0x74, 26); hws[IMX6SL_CLK_OCRAM] = imx_clk_hw_gate2("ocram", "ocram_podf", base + 0x74, 28); hws[IMX6SL_CLK_PWM1] = imx_clk_hw_gate2("pwm1", "perclk", base + 0x78, 16); hws[IMX6SL_CLK_PWM2] = imx_clk_hw_gate2("pwm2", "perclk", base + 0x78, 18); hws[IMX6SL_CLK_PWM3] = imx_clk_hw_gate2("pwm3", "perclk", base + 0x78, 20); hws[IMX6SL_CLK_PWM4] = imx_clk_hw_gate2("pwm4", "perclk", base + 0x78, 22); hws[IMX6SL_CLK_SDMA] = imx_clk_hw_gate2("sdma", "ipg", base + 0x7c, 6); hws[IMX6SL_CLK_SPBA] = imx_clk_hw_gate2("spba", "ipg", base + 0x7c, 12); hws[IMX6SL_CLK_SPDIF] = imx_clk_hw_gate2_shared("spdif", "spdif0_podf", base + 0x7c, 14, &share_count_spdif); hws[IMX6SL_CLK_SPDIF_GCLK] = imx_clk_hw_gate2_shared("spdif_gclk", "ipg", base + 0x7c, 14, &share_count_spdif); hws[IMX6SL_CLK_SSI1_IPG] = imx_clk_hw_gate2_shared("ssi1_ipg", "ipg", base + 0x7c, 18, &share_count_ssi1); hws[IMX6SL_CLK_SSI2_IPG] = imx_clk_hw_gate2_shared("ssi2_ipg", "ipg", base + 0x7c, 20, &share_count_ssi2); hws[IMX6SL_CLK_SSI3_IPG] = imx_clk_hw_gate2_shared("ssi3_ipg", "ipg", base + 0x7c, 22, &share_count_ssi3); hws[IMX6SL_CLK_SSI1] = imx_clk_hw_gate2_shared("ssi1", "ssi1_podf", base + 0x7c, 18, &share_count_ssi1); hws[IMX6SL_CLK_SSI2] = imx_clk_hw_gate2_shared("ssi2", "ssi2_podf", base + 0x7c, 20, &share_count_ssi2); hws[IMX6SL_CLK_SSI3] = imx_clk_hw_gate2_shared("ssi3", "ssi3_podf", base + 0x7c, 22, &share_count_ssi3); hws[IMX6SL_CLK_UART] = imx_clk_hw_gate2("uart", "ipg", base + 0x7c, 24); hws[IMX6SL_CLK_UART_SERIAL] = imx_clk_hw_gate2("uart_serial", "uart_root", base + 0x7c, 26); hws[IMX6SL_CLK_USBOH3] = imx_clk_hw_gate2("usboh3", "ipg", base + 0x80, 0); hws[IMX6SL_CLK_USDHC1] = imx_clk_hw_gate2("usdhc1", "usdhc1_podf", base + 0x80, 2); hws[IMX6SL_CLK_USDHC2] = imx_clk_hw_gate2("usdhc2", "usdhc2_podf", base + 0x80, 4); hws[IMX6SL_CLK_USDHC3] = imx_clk_hw_gate2("usdhc3", "usdhc3_podf", base + 0x80, 6); hws[IMX6SL_CLK_USDHC4] = imx_clk_hw_gate2("usdhc4", "usdhc4_podf", base + 0x80, 8); /* Ensure the MMDC CH0 handshake is bypassed */ imx_mmdc_mask_handshake(base, 0); imx_check_clk_hws(hws, IMX6SL_CLK_END); of_clk_add_hw_provider(np, of_clk_hw_onecell_get, clk_hw_data); /* Ensure the AHB clk is at 132MHz. */ ret = clk_set_rate(hws[IMX6SL_CLK_AHB]->clk, 132000000); if (ret) pr_warn("%s: failed to set AHB clock rate %d!\n", __func__, ret); if (IS_ENABLED(CONFIG_USB_MXS_PHY)) { clk_prepare_enable(hws[IMX6SL_CLK_USBPHY1_GATE]->clk); clk_prepare_enable(hws[IMX6SL_CLK_USBPHY2_GATE]->clk); } /* Audio-related clocks configuration */ clk_set_parent(hws[IMX6SL_CLK_SPDIF0_SEL]->clk, hws[IMX6SL_CLK_PLL3_PFD3]->clk); /* set PLL5 video as lcdif pix parent clock */ clk_set_parent(hws[IMX6SL_CLK_LCDIF_PIX_SEL]->clk, hws[IMX6SL_CLK_PLL5_VIDEO_DIV]->clk); clk_set_parent(hws[IMX6SL_CLK_LCDIF_AXI_SEL]->clk, hws[IMX6SL_CLK_PLL2_PFD2]->clk); imx_register_uart_clocks(); } CLK_OF_DECLARE(imx6sl, "fsl,imx6sl-ccm", imx6sl_clocks_init);
linux-master
drivers/clk/imx/clk-imx6sl.c
// SPDX-License-Identifier: GPL-2.0 #include <linux/bits.h> #include <linux/clk-provider.h> #include <linux/io.h> #include <linux/slab.h> #include <linux/kernel.h> #include <linux/err.h> #include "clk.h" #define MFN_BITS (10) #define MFN_SIGN (BIT(MFN_BITS - 1)) #define MFN_MASK (MFN_SIGN - 1) /** * struct clk_pllv1 - IMX PLLv1 clock descriptor * * @hw: clock source * @base: base address of pll registers * @type: type of IMX_PLLV1 * * PLL clock version 1, found on i.MX1/21/25/27/31/35 */ struct clk_pllv1 { struct clk_hw hw; void __iomem *base; enum imx_pllv1_type type; }; #define to_clk_pllv1(clk) (container_of(clk, struct clk_pllv1, clk)) static inline bool is_imx1_pllv1(struct clk_pllv1 *pll) { return pll->type == IMX_PLLV1_IMX1; } static inline bool is_imx21_pllv1(struct clk_pllv1 *pll) { return pll->type == IMX_PLLV1_IMX21; } static inline bool is_imx27_pllv1(struct clk_pllv1 *pll) { return pll->type == IMX_PLLV1_IMX27; } static inline bool mfn_is_negative(struct clk_pllv1 *pll, unsigned int mfn) { return !is_imx1_pllv1(pll) && !is_imx21_pllv1(pll) && (mfn & MFN_SIGN); } static unsigned long clk_pllv1_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_pllv1 *pll = to_clk_pllv1(hw); unsigned long long ull; int mfn_abs; unsigned int mfi, mfn, mfd, pd; u32 reg; unsigned long rate; reg = readl(pll->base); /* * Get the resulting clock rate from a PLL register value and the input * frequency. PLLs with this register layout can be found on i.MX1, * i.MX21, i.MX27 and i,MX31 * * mfi + mfn / (mfd + 1) * f = 2 * f_ref * -------------------- * pd + 1 */ mfi = (reg >> 10) & 0xf; mfn = reg & 0x3ff; mfd = (reg >> 16) & 0x3ff; pd = (reg >> 26) & 0xf; mfi = mfi <= 5 ? 5 : mfi; mfn_abs = mfn; /* * On all i.MXs except i.MX1 and i.MX21 mfn is a 10bit * 2's complements number. * On i.MX27 the bit 9 is the sign bit. */ if (mfn_is_negative(pll, mfn)) { if (is_imx27_pllv1(pll)) mfn_abs = mfn & MFN_MASK; else mfn_abs = BIT(MFN_BITS) - mfn; } rate = parent_rate * 2; rate /= pd + 1; ull = (unsigned long long)rate * mfn_abs; do_div(ull, mfd + 1); if (mfn_is_negative(pll, mfn)) ull = (rate * mfi) - ull; else ull = (rate * mfi) + ull; return ull; } static const struct clk_ops clk_pllv1_ops = { .recalc_rate = clk_pllv1_recalc_rate, }; struct clk_hw *imx_clk_hw_pllv1(enum imx_pllv1_type type, const char *name, const char *parent, void __iomem *base) { struct clk_pllv1 *pll; struct clk_hw *hw; struct clk_init_data init; int ret; pll = kmalloc(sizeof(*pll), GFP_KERNEL); if (!pll) return ERR_PTR(-ENOMEM); pll->base = base; pll->type = type; init.name = name; init.ops = &clk_pllv1_ops; init.flags = 0; init.parent_names = &parent; init.num_parents = 1; pll->hw.init = &init; hw = &pll->hw; ret = clk_hw_register(NULL, hw); if (ret) { kfree(pll); return ERR_PTR(ret); } return hw; }
linux-master
drivers/clk/imx/clk-pllv1.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2010-2011 Canonical Ltd <[email protected]> * Copyright (C) 2011-2012 Mike Turquette, Linaro Ltd <[email protected]> * * Gated clock implementation */ #include <linux/clk-provider.h> #include <linux/export.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/io.h> #include <linux/err.h> #include <linux/string.h> #include "clk.h" /** * DOC: basic gateable clock which can gate and ungate its output * * Traits of this clock: * prepare - clk_(un)prepare only ensures parent is (un)prepared * enable - clk_enable and clk_disable are functional & control gating * rate - inherits rate from parent. No clk_set_rate support * parent - fixed parent. No clk_set_parent support */ struct clk_gate2 { struct clk_hw hw; void __iomem *reg; u8 bit_idx; u8 cgr_val; u8 cgr_mask; u8 flags; spinlock_t *lock; unsigned int *share_count; }; #define to_clk_gate2(_hw) container_of(_hw, struct clk_gate2, hw) static void clk_gate2_do_shared_clks(struct clk_hw *hw, bool enable) { struct clk_gate2 *gate = to_clk_gate2(hw); u32 reg; reg = readl(gate->reg); reg &= ~(gate->cgr_mask << gate->bit_idx); if (enable) reg |= (gate->cgr_val & gate->cgr_mask) << gate->bit_idx; writel(reg, gate->reg); } static int clk_gate2_enable(struct clk_hw *hw) { struct clk_gate2 *gate = to_clk_gate2(hw); unsigned long flags; spin_lock_irqsave(gate->lock, flags); if (gate->share_count && (*gate->share_count)++ > 0) goto out; clk_gate2_do_shared_clks(hw, true); out: spin_unlock_irqrestore(gate->lock, flags); return 0; } static void clk_gate2_disable(struct clk_hw *hw) { struct clk_gate2 *gate = to_clk_gate2(hw); unsigned long flags; spin_lock_irqsave(gate->lock, flags); if (gate->share_count) { if (WARN_ON(*gate->share_count == 0)) goto out; else if (--(*gate->share_count) > 0) goto out; } clk_gate2_do_shared_clks(hw, false); out: spin_unlock_irqrestore(gate->lock, flags); } static int clk_gate2_reg_is_enabled(void __iomem *reg, u8 bit_idx, u8 cgr_val, u8 cgr_mask) { u32 val = readl(reg); if (((val >> bit_idx) & cgr_mask) == cgr_val) return 1; return 0; } static int clk_gate2_is_enabled(struct clk_hw *hw) { struct clk_gate2 *gate = to_clk_gate2(hw); unsigned long flags; int ret = 0; spin_lock_irqsave(gate->lock, flags); ret = clk_gate2_reg_is_enabled(gate->reg, gate->bit_idx, gate->cgr_val, gate->cgr_mask); spin_unlock_irqrestore(gate->lock, flags); return ret; } static void clk_gate2_disable_unused(struct clk_hw *hw) { struct clk_gate2 *gate = to_clk_gate2(hw); unsigned long flags; spin_lock_irqsave(gate->lock, flags); if (!gate->share_count || *gate->share_count == 0) clk_gate2_do_shared_clks(hw, false); spin_unlock_irqrestore(gate->lock, flags); } static const struct clk_ops clk_gate2_ops = { .enable = clk_gate2_enable, .disable = clk_gate2_disable, .disable_unused = clk_gate2_disable_unused, .is_enabled = clk_gate2_is_enabled, }; struct clk_hw *clk_hw_register_gate2(struct device *dev, const char *name, const char *parent_name, unsigned long flags, void __iomem *reg, u8 bit_idx, u8 cgr_val, u8 cgr_mask, u8 clk_gate2_flags, spinlock_t *lock, unsigned int *share_count) { struct clk_gate2 *gate; struct clk_hw *hw; struct clk_init_data init; int ret; gate = kzalloc(sizeof(struct clk_gate2), GFP_KERNEL); if (!gate) return ERR_PTR(-ENOMEM); /* struct clk_gate2 assignments */ gate->reg = reg; gate->bit_idx = bit_idx; gate->cgr_val = cgr_val; gate->cgr_mask = cgr_mask; gate->flags = clk_gate2_flags; gate->lock = lock; gate->share_count = share_count; init.name = name; init.ops = &clk_gate2_ops; init.flags = flags; init.parent_names = parent_name ? &parent_name : NULL; init.num_parents = parent_name ? 1 : 0; gate->hw.init = &init; hw = &gate->hw; ret = clk_hw_register(dev, hw); if (ret) { kfree(gate); return ERR_PTR(ret); } return hw; } EXPORT_SYMBOL_GPL(clk_hw_register_gate2);
linux-master
drivers/clk/imx/clk-gate2.c
// SPDX-License-Identifier: GPL-2.0 #include <linux/bits.h> #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/err.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of.h> #include <linux/slab.h> #include <linux/spinlock.h> #include "clk.h" #define CCM_CCDR 0x4 #define CCDR_MMDC_CH0_MASK BIT(17) #define CCDR_MMDC_CH1_MASK BIT(16) DEFINE_SPINLOCK(imx_ccm_lock); EXPORT_SYMBOL_GPL(imx_ccm_lock); bool mcore_booted; EXPORT_SYMBOL_GPL(mcore_booted); void imx_unregister_hw_clocks(struct clk_hw *hws[], unsigned int count) { unsigned int i; for (i = 0; i < count; i++) clk_hw_unregister(hws[i]); } EXPORT_SYMBOL_GPL(imx_unregister_hw_clocks); void imx_mmdc_mask_handshake(void __iomem *ccm_base, unsigned int chn) { unsigned int reg; reg = readl_relaxed(ccm_base + CCM_CCDR); reg |= chn == 0 ? CCDR_MMDC_CH0_MASK : CCDR_MMDC_CH1_MASK; writel_relaxed(reg, ccm_base + CCM_CCDR); } void imx_check_clocks(struct clk *clks[], unsigned int count) { unsigned i; for (i = 0; i < count; i++) if (IS_ERR(clks[i])) pr_err("i.MX clk %u: register failed with %ld\n", i, PTR_ERR(clks[i])); } void imx_check_clk_hws(struct clk_hw *clks[], unsigned int count) { unsigned int i; for (i = 0; i < count; i++) if (IS_ERR(clks[i])) pr_err("i.MX clk %u: register failed with %ld\n", i, PTR_ERR(clks[i])); } EXPORT_SYMBOL_GPL(imx_check_clk_hws); static struct clk *imx_obtain_fixed_clock_from_dt(const char *name) { struct of_phandle_args phandle; struct clk *clk = ERR_PTR(-ENODEV); char *path; path = kasprintf(GFP_KERNEL, "/clocks/%s", name); if (!path) return ERR_PTR(-ENOMEM); phandle.np = of_find_node_by_path(path); kfree(path); if (phandle.np) { clk = of_clk_get_from_provider(&phandle); of_node_put(phandle.np); } return clk; } struct clk *imx_obtain_fixed_clock( const char *name, unsigned long rate) { struct clk *clk; clk = imx_obtain_fixed_clock_from_dt(name); if (IS_ERR(clk)) clk = imx_clk_fixed(name, rate); return clk; } struct clk_hw *imx_obtain_fixed_clock_hw( const char *name, unsigned long rate) { struct clk *clk; clk = imx_obtain_fixed_clock_from_dt(name); if (IS_ERR(clk)) clk = imx_clk_fixed(name, rate); return __clk_get_hw(clk); } struct clk_hw *imx_obtain_fixed_of_clock(struct device_node *np, const char *name, unsigned long rate) { struct clk *clk = of_clk_get_by_name(np, name); struct clk_hw *hw; if (IS_ERR(clk)) hw = imx_obtain_fixed_clock_hw(name, rate); else hw = __clk_get_hw(clk); return hw; } struct clk_hw *imx_get_clk_hw_by_name(struct device_node *np, const char *name) { struct clk *clk; clk = of_clk_get_by_name(np, name); if (IS_ERR(clk)) return ERR_PTR(-ENOENT); return __clk_get_hw(clk); } EXPORT_SYMBOL_GPL(imx_get_clk_hw_by_name); /* * This fixups the register CCM_CSCMR1 write value. * The write/read/divider values of the aclk_podf field * of that register have the relationship described by * the following table: * * write value read value divider * 3b'000 3b'110 7 * 3b'001 3b'111 8 * 3b'010 3b'100 5 * 3b'011 3b'101 6 * 3b'100 3b'010 3 * 3b'101 3b'011 4 * 3b'110 3b'000 1 * 3b'111 3b'001 2(default) * * That's why we do the xor operation below. */ #define CSCMR1_FIXUP 0x00600000 void imx_cscmr1_fixup(u32 *val) { *val ^= CSCMR1_FIXUP; return; } #ifndef MODULE static bool imx_keep_uart_clocks; static int imx_enabled_uart_clocks; static struct clk **imx_uart_clocks; static int __init imx_keep_uart_clocks_param(char *str) { imx_keep_uart_clocks = 1; return 0; } __setup_param("earlycon", imx_keep_uart_earlycon, imx_keep_uart_clocks_param, 0); __setup_param("earlyprintk", imx_keep_uart_earlyprintk, imx_keep_uart_clocks_param, 0); void imx_register_uart_clocks(void) { unsigned int num __maybe_unused; imx_enabled_uart_clocks = 0; /* i.MX boards use device trees now. For build tests without CONFIG_OF, do nothing */ #ifdef CONFIG_OF if (imx_keep_uart_clocks) { int i; num = of_clk_get_parent_count(of_stdout); if (!num) return; if (!of_stdout) return; imx_uart_clocks = kcalloc(num, sizeof(struct clk *), GFP_KERNEL); if (!imx_uart_clocks) return; for (i = 0; i < num; i++) { imx_uart_clocks[imx_enabled_uart_clocks] = of_clk_get(of_stdout, i); /* Stop if there are no more of_stdout references */ if (IS_ERR(imx_uart_clocks[imx_enabled_uart_clocks])) return; /* Only enable the clock if it's not NULL */ if (imx_uart_clocks[imx_enabled_uart_clocks]) clk_prepare_enable(imx_uart_clocks[imx_enabled_uart_clocks++]); } } #endif } static int __init imx_clk_disable_uart(void) { if (imx_keep_uart_clocks && imx_enabled_uart_clocks) { int i; for (i = 0; i < imx_enabled_uart_clocks; i++) { clk_disable_unprepare(imx_uart_clocks[i]); clk_put(imx_uart_clocks[i]); } } kfree(imx_uart_clocks); return 0; } late_initcall_sync(imx_clk_disable_uart); #endif MODULE_LICENSE("GPL v2");
linux-master
drivers/clk/imx/clk.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2019 NXP. */ #include <dt-bindings/clock/imx8mp-clock.h> #include <linux/clk-provider.h> #include <linux/err.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of_address.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/types.h> #include "clk.h" static u32 share_count_nand; static u32 share_count_media; static u32 share_count_usb; static u32 share_count_audio; static const char * const pll_ref_sels[] = { "osc_24m", "dummy", "dummy", "dummy", }; static const char * const audio_pll1_bypass_sels[] = {"audio_pll1", "audio_pll1_ref_sel", }; static const char * const audio_pll2_bypass_sels[] = {"audio_pll2", "audio_pll2_ref_sel", }; static const char * const video_pll1_bypass_sels[] = {"video_pll1", "video_pll1_ref_sel", }; static const char * const dram_pll_bypass_sels[] = {"dram_pll", "dram_pll_ref_sel", }; static const char * const gpu_pll_bypass_sels[] = {"gpu_pll", "gpu_pll_ref_sel", }; static const char * const vpu_pll_bypass_sels[] = {"vpu_pll", "vpu_pll_ref_sel", }; static const char * const arm_pll_bypass_sels[] = {"arm_pll", "arm_pll_ref_sel", }; static const char * const sys_pll1_bypass_sels[] = {"sys_pll1", "sys_pll1_ref_sel", }; static const char * const sys_pll2_bypass_sels[] = {"sys_pll2", "sys_pll2_ref_sel", }; static const char * const sys_pll3_bypass_sels[] = {"sys_pll3", "sys_pll3_ref_sel", }; static const char * const imx8mp_a53_sels[] = {"osc_24m", "arm_pll_out", "sys_pll2_500m", "sys_pll2_1000m", "sys_pll1_800m", "sys_pll1_400m", "audio_pll1_out", "sys_pll3_out", }; static const char * const imx8mp_a53_core_sels[] = {"arm_a53_div", "arm_pll_out", }; static const char * const imx8mp_m7_sels[] = {"osc_24m", "sys_pll2_200m", "sys_pll2_250m", "vpu_pll_out", "sys_pll1_800m", "audio_pll1_out", "video_pll1_out", "sys_pll3_out", }; static const char * const imx8mp_ml_sels[] = {"osc_24m", "gpu_pll_out", "sys_pll1_800m", "sys_pll3_out", "sys_pll2_1000m", "audio_pll1_out", "video_pll1_out", "audio_pll2_out", }; static const char * const imx8mp_gpu3d_core_sels[] = {"osc_24m", "gpu_pll_out", "sys_pll1_800m", "sys_pll3_out", "sys_pll2_1000m", "audio_pll1_out", "video_pll1_out", "audio_pll2_out", }; static const char * const imx8mp_gpu3d_shader_sels[] = {"osc_24m", "gpu_pll_out", "sys_pll1_800m", "sys_pll3_out", "sys_pll2_1000m", "audio_pll1_out", "video_pll1_out", "audio_pll2_out", }; static const char * const imx8mp_gpu2d_sels[] = {"osc_24m", "gpu_pll_out", "sys_pll1_800m", "sys_pll3_out", "sys_pll2_1000m", "audio_pll1_out", "video_pll1_out", "audio_pll2_out", }; static const char * const imx8mp_audio_axi_sels[] = {"osc_24m", "gpu_pll_out", "sys_pll1_800m", "sys_pll3_out", "sys_pll2_1000m", "audio_pll1_out", "video_pll1_out", "audio_pll2_out", }; static const char * const imx8mp_hsio_axi_sels[] = {"osc_24m", "sys_pll2_500m", "sys_pll1_800m", "sys_pll2_100m", "sys_pll2_200m", "clk_ext2", "clk_ext4", "audio_pll2_out", }; static const char * const imx8mp_media_isp_sels[] = {"osc_24m", "sys_pll2_1000m", "sys_pll1_800m", "sys_pll3_out", "sys_pll1_400m", "audio_pll2_out", "clk_ext1", "sys_pll2_500m", }; static const char * const imx8mp_main_axi_sels[] = {"osc_24m", "sys_pll2_333m", "sys_pll1_800m", "sys_pll2_250m", "sys_pll2_1000m", "audio_pll1_out", "video_pll1_out", "sys_pll1_100m",}; static const char * const imx8mp_enet_axi_sels[] = {"osc_24m", "sys_pll1_266m", "sys_pll1_800m", "sys_pll2_250m", "sys_pll2_200m", "audio_pll1_out", "video_pll1_out", "sys_pll3_out", }; static const char * const imx8mp_nand_usdhc_sels[] = {"osc_24m", "sys_pll1_266m", "sys_pll1_800m", "sys_pll2_200m", "sys_pll1_133m", "sys_pll3_out", "sys_pll2_250m", "audio_pll1_out", }; static const char * const imx8mp_vpu_bus_sels[] = {"osc_24m", "sys_pll1_800m", "vpu_pll_out", "audio_pll2_out", "sys_pll3_out", "sys_pll2_1000m", "sys_pll2_200m", "sys_pll1_100m", }; static const char * const imx8mp_media_axi_sels[] = {"osc_24m", "sys_pll2_1000m", "sys_pll1_800m", "sys_pll3_out", "sys_pll1_40m", "audio_pll2_out", "clk_ext1", "sys_pll2_500m", }; static const char * const imx8mp_media_apb_sels[] = {"osc_24m", "sys_pll2_125m", "sys_pll1_800m", "sys_pll3_out", "sys_pll1_40m", "audio_pll2_out", "clk_ext1", "sys_pll1_133m", }; static const char * const imx8mp_gpu_axi_sels[] = {"osc_24m", "sys_pll1_800m", "gpu_pll_out", "sys_pll3_out", "sys_pll2_1000m", "audio_pll1_out", "video_pll1_out", "audio_pll2_out", }; static const char * const imx8mp_gpu_ahb_sels[] = {"osc_24m", "sys_pll1_800m", "gpu_pll_out", "sys_pll3_out", "sys_pll2_1000m", "audio_pll1_out", "video_pll1_out", "audio_pll2_out", }; static const char * const imx8mp_noc_sels[] = {"osc_24m", "sys_pll1_800m", "sys_pll3_out", "sys_pll2_1000m", "sys_pll2_500m", "audio_pll1_out", "video_pll1_out", "audio_pll2_out", }; static const char * const imx8mp_noc_io_sels[] = {"osc_24m", "sys_pll1_800m", "sys_pll3_out", "sys_pll2_1000m", "sys_pll2_500m", "audio_pll1_out", "video_pll1_out", "audio_pll2_out", }; static const char * const imx8mp_ml_axi_sels[] = {"osc_24m", "sys_pll1_800m", "gpu_pll_out", "sys_pll3_out", "sys_pll2_1000m", "audio_pll1_out", "video_pll1_out", "audio_pll2_out", }; static const char * const imx8mp_ml_ahb_sels[] = {"osc_24m", "sys_pll1_800m", "gpu_pll_out", "sys_pll3_out", "sys_pll2_1000m", "audio_pll1_out", "video_pll1_out", "audio_pll2_out", }; static const char * const imx8mp_ahb_sels[] = {"osc_24m", "sys_pll1_133m", "sys_pll1_800m", "sys_pll1_400m", "sys_pll2_125m", "sys_pll3_out", "audio_pll1_out", "video_pll1_out", }; static const char * const imx8mp_audio_ahb_sels[] = {"osc_24m", "sys_pll2_500m", "sys_pll1_800m", "sys_pll2_1000m", "sys_pll2_166m", "sys_pll3_out", "audio_pll1_out", "video_pll1_out", }; static const char * const imx8mp_mipi_dsi_esc_rx_sels[] = {"osc_24m", "sys_pll2_100m", "sys_pll1_80m", "sys_pll1_800m", "sys_pll2_1000m", "sys_pll3_out", "clk_ext3", "audio_pll2_out", }; static const char * const imx8mp_dram_alt_sels[] = {"osc_24m", "sys_pll1_800m", "sys_pll1_100m", "sys_pll2_500m", "sys_pll2_1000m", "sys_pll3_out", "audio_pll1_out", "sys_pll1_266m", }; static const char * const imx8mp_dram_apb_sels[] = {"osc_24m", "sys_pll2_200m", "sys_pll1_40m", "sys_pll1_160m", "sys_pll1_800m", "sys_pll3_out", "sys_pll2_250m", "audio_pll2_out", }; static const char * const imx8mp_vpu_g1_sels[] = {"osc_24m", "vpu_pll_out", "sys_pll1_800m", "sys_pll2_1000m", "sys_pll1_100m", "sys_pll2_125m", "sys_pll3_out", "audio_pll1_out", }; static const char * const imx8mp_vpu_g2_sels[] = {"osc_24m", "vpu_pll_out", "sys_pll1_800m", "sys_pll2_1000m", "sys_pll1_100m", "sys_pll2_125m", "sys_pll3_out", "audio_pll1_out", }; static const char * const imx8mp_can1_sels[] = {"osc_24m", "sys_pll2_200m", "sys_pll1_40m", "sys_pll1_160m", "sys_pll1_800m", "sys_pll3_out", "sys_pll2_250m", "audio_pll2_out", }; static const char * const imx8mp_can2_sels[] = {"osc_24m", "sys_pll2_200m", "sys_pll1_40m", "sys_pll1_160m", "sys_pll1_800m", "sys_pll3_out", "sys_pll2_250m", "audio_pll2_out", }; static const char * const imx8mp_pcie_aux_sels[] = {"osc_24m", "sys_pll2_200m", "sys_pll2_50m", "sys_pll3_out", "sys_pll2_100m", "sys_pll1_80m", "sys_pll1_160m", "sys_pll1_200m", }; static const char * const imx8mp_i2c5_sels[] = {"osc_24m", "sys_pll1_160m", "sys_pll2_50m", "sys_pll3_out", "audio_pll1_out", "video_pll1_out", "audio_pll2_out", "sys_pll1_133m", }; static const char * const imx8mp_i2c6_sels[] = {"osc_24m", "sys_pll1_160m", "sys_pll2_50m", "sys_pll3_out", "audio_pll1_out", "video_pll1_out", "audio_pll2_out", "sys_pll1_133m", }; static const char * const imx8mp_sai1_sels[] = {"osc_24m", "audio_pll1_out", "audio_pll2_out", "video_pll1_out", "sys_pll1_133m", "osc_hdmi", "clk_ext1", "clk_ext2", }; static const char * const imx8mp_sai2_sels[] = {"osc_24m", "audio_pll1_out", "audio_pll2_out", "video_pll1_out", "sys_pll1_133m", "osc_hdmi", "clk_ext2", "clk_ext3", }; static const char * const imx8mp_sai3_sels[] = {"osc_24m", "audio_pll1_out", "audio_pll2_out", "video_pll1_out", "sys_pll1_133m", "osc_hdmi", "clk_ext3", "clk_ext4", }; static const char * const imx8mp_sai5_sels[] = {"osc_24m", "audio_pll1_out", "audio_pll2_out", "video_pll1_out", "sys_pll1_133m", "osc_hdmi", "clk_ext2", "clk_ext3", }; static const char * const imx8mp_sai6_sels[] = {"osc_24m", "audio_pll1_out", "audio_pll2_out", "video_pll1_out", "sys_pll1_133m", "osc_hdmi", "clk_ext3", "clk_ext4", }; static const char * const imx8mp_enet_qos_sels[] = {"osc_24m", "sys_pll2_125m", "sys_pll2_50m", "sys_pll2_100m", "sys_pll1_160m", "audio_pll1_out", "video_pll1_out", "clk_ext4", }; static const char * const imx8mp_enet_qos_timer_sels[] = {"osc_24m", "sys_pll2_100m", "audio_pll1_out", "clk_ext1", "clk_ext2", "clk_ext3", "clk_ext4", "video_pll1_out", }; static const char * const imx8mp_enet_ref_sels[] = {"osc_24m", "sys_pll2_125m", "sys_pll2_50m", "sys_pll2_100m", "sys_pll1_160m", "audio_pll1_out", "video_pll1_out", "clk_ext4", }; static const char * const imx8mp_enet_timer_sels[] = {"osc_24m", "sys_pll2_100m", "audio_pll1_out", "clk_ext1", "clk_ext2", "clk_ext3", "clk_ext4", "video_pll1_out", }; static const char * const imx8mp_enet_phy_ref_sels[] = {"osc_24m", "sys_pll2_50m", "sys_pll2_125m", "sys_pll2_200m", "sys_pll2_500m", "audio_pll1_out", "video_pll1_out", "audio_pll2_out", }; static const char * const imx8mp_nand_sels[] = {"osc_24m", "sys_pll2_500m", "audio_pll1_out", "sys_pll1_400m", "audio_pll2_out", "sys_pll3_out", "sys_pll2_250m", "video_pll1_out", }; static const char * const imx8mp_qspi_sels[] = {"osc_24m", "sys_pll1_400m", "sys_pll2_333m", "sys_pll2_500m", "audio_pll2_out", "sys_pll1_266m", "sys_pll3_out", "sys_pll1_100m", }; static const char * const imx8mp_usdhc1_sels[] = {"osc_24m", "sys_pll1_400m", "sys_pll1_800m", "sys_pll2_500m", "sys_pll3_out", "sys_pll1_266m", "audio_pll2_out", "sys_pll1_100m", }; static const char * const imx8mp_usdhc2_sels[] = {"osc_24m", "sys_pll1_400m", "sys_pll1_800m", "sys_pll2_500m", "sys_pll3_out", "sys_pll1_266m", "audio_pll2_out", "sys_pll1_100m", }; static const char * const imx8mp_i2c1_sels[] = {"osc_24m", "sys_pll1_160m", "sys_pll2_50m", "sys_pll3_out", "audio_pll1_out", "video_pll1_out", "audio_pll2_out", "sys_pll1_133m", }; static const char * const imx8mp_i2c2_sels[] = {"osc_24m", "sys_pll1_160m", "sys_pll2_50m", "sys_pll3_out", "audio_pll1_out", "video_pll1_out", "audio_pll2_out", "sys_pll1_133m", }; static const char * const imx8mp_i2c3_sels[] = {"osc_24m", "sys_pll1_160m", "sys_pll2_50m", "sys_pll3_out", "audio_pll1_out", "video_pll1_out", "audio_pll2_out", "sys_pll1_133m", }; static const char * const imx8mp_i2c4_sels[] = {"osc_24m", "sys_pll1_160m", "sys_pll2_50m", "sys_pll3_out", "audio_pll1_out", "video_pll1_out", "audio_pll2_out", "sys_pll1_133m", }; static const char * const imx8mp_uart1_sels[] = {"osc_24m", "sys_pll1_80m", "sys_pll2_200m", "sys_pll2_100m", "sys_pll3_out", "clk_ext2", "clk_ext4", "audio_pll2_out", }; static const char * const imx8mp_uart2_sels[] = {"osc_24m", "sys_pll1_80m", "sys_pll2_200m", "sys_pll2_100m", "sys_pll3_out", "clk_ext2", "clk_ext3", "audio_pll2_out", }; static const char * const imx8mp_uart3_sels[] = {"osc_24m", "sys_pll1_80m", "sys_pll2_200m", "sys_pll2_100m", "sys_pll3_out", "clk_ext2", "clk_ext4", "audio_pll2_out", }; static const char * const imx8mp_uart4_sels[] = {"osc_24m", "sys_pll1_80m", "sys_pll2_200m", "sys_pll2_100m", "sys_pll3_out", "clk_ext2", "clk_ext3", "audio_pll2_out", }; static const char * const imx8mp_usb_core_ref_sels[] = {"osc_24m", "sys_pll1_100m", "sys_pll1_40m", "sys_pll2_100m", "sys_pll2_200m", "clk_ext2", "clk_ext3", "audio_pll2_out", }; static const char * const imx8mp_usb_phy_ref_sels[] = {"osc_24m", "sys_pll1_100m", "sys_pll1_40m", "sys_pll2_100m", "sys_pll2_200m", "clk_ext2", "clk_ext3", "audio_pll2_out", }; static const char * const imx8mp_gic_sels[] = {"osc_24m", "sys_pll2_200m", "sys_pll1_40m", "sys_pll2_100m", "sys_pll1_800m", "sys_pll2_500m", "clk_ext4", "audio_pll2_out" }; static const char * const imx8mp_ecspi1_sels[] = {"osc_24m", "sys_pll2_200m", "sys_pll1_40m", "sys_pll1_160m", "sys_pll1_800m", "sys_pll3_out", "sys_pll2_250m", "audio_pll2_out", }; static const char * const imx8mp_ecspi2_sels[] = {"osc_24m", "sys_pll2_200m", "sys_pll1_40m", "sys_pll1_160m", "sys_pll1_800m", "sys_pll3_out", "sys_pll2_250m", "audio_pll2_out", }; static const char * const imx8mp_pwm1_sels[] = {"osc_24m", "sys_pll2_100m", "sys_pll1_160m", "sys_pll1_40m", "sys_pll3_out", "clk_ext1", "sys_pll1_80m", "video_pll1_out", }; static const char * const imx8mp_pwm2_sels[] = {"osc_24m", "sys_pll2_100m", "sys_pll1_160m", "sys_pll1_40m", "sys_pll3_out", "clk_ext1", "sys_pll1_80m", "video_pll1_out", }; static const char * const imx8mp_pwm3_sels[] = {"osc_24m", "sys_pll2_100m", "sys_pll1_160m", "sys_pll1_40m", "sys_pll3_out", "clk_ext2", "sys_pll1_80m", "video_pll1_out", }; static const char * const imx8mp_pwm4_sels[] = {"osc_24m", "sys_pll2_100m", "sys_pll1_160m", "sys_pll1_40m", "sys_pll3_out", "clk_ext2", "sys_pll1_80m", "video_pll1_out", }; static const char * const imx8mp_gpt1_sels[] = {"osc_24m", "sys_pll2_100m", "sys_pll1_400m", "sys_pll1_40m", "video_pll1_out", "sys_pll1_80m", "audio_pll1_out", "clk_ext1" }; static const char * const imx8mp_gpt2_sels[] = {"osc_24m", "sys_pll2_100m", "sys_pll1_400m", "sys_pll1_40m", "video_pll1_out", "sys_pll1_80m", "audio_pll1_out", "clk_ext2" }; static const char * const imx8mp_gpt3_sels[] = {"osc_24m", "sys_pll2_100m", "sys_pll1_400m", "sys_pll1_40m", "video_pll1_out", "sys_pll1_80m", "audio_pll1_out", "clk_ext3" }; static const char * const imx8mp_gpt4_sels[] = {"osc_24m", "sys_pll2_100m", "sys_pll1_400m", "sys_pll1_40m", "video_pll1_out", "sys_pll1_80m", "audio_pll1_out", "clk_ext1" }; static const char * const imx8mp_gpt5_sels[] = {"osc_24m", "sys_pll2_100m", "sys_pll1_400m", "sys_pll1_40m", "video_pll1_out", "sys_pll1_80m", "audio_pll1_out", "clk_ext2" }; static const char * const imx8mp_gpt6_sels[] = {"osc_24m", "sys_pll2_100m", "sys_pll1_400m", "sys_pll1_40m", "video_pll1_out", "sys_pll1_80m", "audio_pll1_out", "clk_ext3" }; static const char * const imx8mp_wdog_sels[] = {"osc_24m", "sys_pll1_133m", "sys_pll1_160m", "vpu_pll_out", "sys_pll2_125m", "sys_pll3_out", "sys_pll1_80m", "sys_pll2_166m" }; static const char * const imx8mp_wrclk_sels[] = {"osc_24m", "sys_pll1_40m", "vpu_pll_out", "sys_pll3_out", "sys_pll2_200m", "sys_pll1_266m", "sys_pll2_500m", "sys_pll1_100m" }; static const char * const imx8mp_ipp_do_clko1_sels[] = {"osc_24m", "sys_pll1_800m", "sys_pll1_133m", "sys_pll1_200m", "audio_pll2_out", "sys_pll2_500m", "vpu_pll_out", "sys_pll1_80m" }; static const char * const imx8mp_ipp_do_clko2_sels[] = {"osc_24m", "sys_pll2_200m", "sys_pll1_400m", "sys_pll1_166m", "sys_pll3_out", "audio_pll1_out", "video_pll1_out", "osc_32k" }; static const char * const imx8mp_hdmi_fdcc_tst_sels[] = {"osc_24m", "sys_pll1_266m", "sys_pll2_250m", "sys_pll1_800m", "sys_pll2_1000m", "sys_pll3_out", "audio_pll2_out", "video_pll1_out", }; static const char * const imx8mp_hdmi_24m_sels[] = {"osc_24m", "sys_pll1_160m", "sys_pll2_50m", "sys_pll3_out", "audio_pll1_out", "video_pll1_out", "audio_pll2_out", "sys_pll1_133m", }; static const char * const imx8mp_hdmi_ref_266m_sels[] = {"osc_24m", "sys_pll1_400m", "sys_pll3_out", "sys_pll2_333m", "sys_pll1_266m", "sys_pll2_200m", "audio_pll1_out", "video_pll1_out", }; static const char * const imx8mp_usdhc3_sels[] = {"osc_24m", "sys_pll1_400m", "sys_pll1_800m", "sys_pll2_500m", "sys_pll3_out", "sys_pll1_266m", "audio_pll2_out", "sys_pll1_100m", }; static const char * const imx8mp_media_cam1_pix_sels[] = {"osc_24m", "sys_pll1_266m", "sys_pll2_250m", "sys_pll1_800m", "sys_pll2_1000m", "sys_pll3_out", "audio_pll2_out", "video_pll1_out", }; static const char * const imx8mp_media_mipi_phy1_ref_sels[] = {"osc_24m", "sys_pll2_333m", "sys_pll2_100m", "sys_pll1_800m", "sys_pll2_1000m", "clk_ext2", "audio_pll2_out", "video_pll1_out", }; static const char * const imx8mp_media_disp_pix_sels[] = {"osc_24m", "video_pll1_out", "audio_pll2_out", "audio_pll1_out", "sys_pll1_800m", "sys_pll2_1000m", "sys_pll3_out", "clk_ext4", }; static const char * const imx8mp_media_cam2_pix_sels[] = {"osc_24m", "sys_pll1_266m", "sys_pll2_250m", "sys_pll1_800m", "sys_pll2_1000m", "sys_pll3_out", "audio_pll2_out", "video_pll1_out", }; static const char * const imx8mp_media_ldb_sels[] = {"osc_24m", "sys_pll2_333m", "sys_pll2_100m", "sys_pll1_800m", "sys_pll2_1000m", "clk_ext2", "audio_pll2_out", "video_pll1_out", }; static const char * const imx8mp_memrepair_sels[] = {"osc_24m", "sys_pll2_100m", "sys_pll1_80m", "sys_pll1_800m", "sys_pll2_1000m", "sys_pll3_out", "clk_ext3", "audio_pll2_out", }; static const char * const imx8mp_media_mipi_test_byte_sels[] = {"osc_24m", "sys_pll2_200m", "sys_pll2_50m", "sys_pll3_out", "sys_pll2_100m", "sys_pll1_80m", "sys_pll1_160m", "sys_pll1_200m", }; static const char * const imx8mp_ecspi3_sels[] = {"osc_24m", "sys_pll2_200m", "sys_pll1_40m", "sys_pll1_160m", "sys_pll1_800m", "sys_pll3_out", "sys_pll2_250m", "audio_pll2_out", }; static const char * const imx8mp_pdm_sels[] = {"osc_24m", "sys_pll2_100m", "audio_pll1_out", "sys_pll1_800m", "sys_pll2_1000m", "sys_pll3_out", "clk_ext3", "audio_pll2_out", }; static const char * const imx8mp_vpu_vc8000e_sels[] = {"osc_24m", "vpu_pll_out", "sys_pll1_800m", "sys_pll2_1000m", "audio_pll2_out", "sys_pll2_125m", "sys_pll3_out", "audio_pll1_out", }; static const char * const imx8mp_sai7_sels[] = {"osc_24m", "audio_pll1_out", "audio_pll2_out", "video_pll1_out", "sys_pll1_133m", "osc_hdmi", "clk_ext3", "clk_ext4", }; static const char * const imx8mp_dram_core_sels[] = {"dram_pll_out", "dram_alt_root", }; static const char * const imx8mp_clkout_sels[] = {"audio_pll1_out", "audio_pll2_out", "video_pll1_out", "dummy", "dummy", "gpu_pll_out", "vpu_pll_out", "arm_pll_out", "sys_pll1", "sys_pll2", "sys_pll3", "dummy", "dummy", "osc_24m", "dummy", "osc_32k"}; static struct clk_hw **hws; static struct clk_hw_onecell_data *clk_hw_data; static int imx8mp_clocks_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np; void __iomem *anatop_base, *ccm_base; int err; np = of_find_compatible_node(NULL, NULL, "fsl,imx8mp-anatop"); anatop_base = devm_of_iomap(dev, np, 0, NULL); of_node_put(np); if (WARN_ON(IS_ERR(anatop_base))) return PTR_ERR(anatop_base); np = dev->of_node; ccm_base = devm_platform_ioremap_resource(pdev, 0); if (WARN_ON(IS_ERR(ccm_base))) return PTR_ERR(ccm_base); clk_hw_data = devm_kzalloc(dev, struct_size(clk_hw_data, hws, IMX8MP_CLK_END), GFP_KERNEL); if (WARN_ON(!clk_hw_data)) return -ENOMEM; clk_hw_data->num = IMX8MP_CLK_END; hws = clk_hw_data->hws; hws[IMX8MP_CLK_DUMMY] = imx_clk_hw_fixed("dummy", 0); hws[IMX8MP_CLK_24M] = imx_get_clk_hw_by_name(np, "osc_24m"); hws[IMX8MP_CLK_32K] = imx_get_clk_hw_by_name(np, "osc_32k"); hws[IMX8MP_CLK_EXT1] = imx_get_clk_hw_by_name(np, "clk_ext1"); hws[IMX8MP_CLK_EXT2] = imx_get_clk_hw_by_name(np, "clk_ext2"); hws[IMX8MP_CLK_EXT3] = imx_get_clk_hw_by_name(np, "clk_ext3"); hws[IMX8MP_CLK_EXT4] = imx_get_clk_hw_by_name(np, "clk_ext4"); hws[IMX8MP_AUDIO_PLL1_REF_SEL] = imx_clk_hw_mux("audio_pll1_ref_sel", anatop_base + 0x0, 0, 2, pll_ref_sels, ARRAY_SIZE(pll_ref_sels)); hws[IMX8MP_AUDIO_PLL2_REF_SEL] = imx_clk_hw_mux("audio_pll2_ref_sel", anatop_base + 0x14, 0, 2, pll_ref_sels, ARRAY_SIZE(pll_ref_sels)); hws[IMX8MP_VIDEO_PLL1_REF_SEL] = imx_clk_hw_mux("video_pll1_ref_sel", anatop_base + 0x28, 0, 2, pll_ref_sels, ARRAY_SIZE(pll_ref_sels)); hws[IMX8MP_DRAM_PLL_REF_SEL] = imx_clk_hw_mux("dram_pll_ref_sel", anatop_base + 0x50, 0, 2, pll_ref_sels, ARRAY_SIZE(pll_ref_sels)); hws[IMX8MP_GPU_PLL_REF_SEL] = imx_clk_hw_mux("gpu_pll_ref_sel", anatop_base + 0x64, 0, 2, pll_ref_sels, ARRAY_SIZE(pll_ref_sels)); hws[IMX8MP_VPU_PLL_REF_SEL] = imx_clk_hw_mux("vpu_pll_ref_sel", anatop_base + 0x74, 0, 2, pll_ref_sels, ARRAY_SIZE(pll_ref_sels)); hws[IMX8MP_ARM_PLL_REF_SEL] = imx_clk_hw_mux("arm_pll_ref_sel", anatop_base + 0x84, 0, 2, pll_ref_sels, ARRAY_SIZE(pll_ref_sels)); hws[IMX8MP_SYS_PLL1_REF_SEL] = imx_clk_hw_mux("sys_pll1_ref_sel", anatop_base + 0x94, 0, 2, pll_ref_sels, ARRAY_SIZE(pll_ref_sels)); hws[IMX8MP_SYS_PLL2_REF_SEL] = imx_clk_hw_mux("sys_pll2_ref_sel", anatop_base + 0x104, 0, 2, pll_ref_sels, ARRAY_SIZE(pll_ref_sels)); hws[IMX8MP_SYS_PLL3_REF_SEL] = imx_clk_hw_mux("sys_pll3_ref_sel", anatop_base + 0x114, 0, 2, pll_ref_sels, ARRAY_SIZE(pll_ref_sels)); hws[IMX8MP_AUDIO_PLL1] = imx_clk_hw_pll14xx("audio_pll1", "audio_pll1_ref_sel", anatop_base, &imx_1443x_pll); hws[IMX8MP_AUDIO_PLL2] = imx_clk_hw_pll14xx("audio_pll2", "audio_pll2_ref_sel", anatop_base + 0x14, &imx_1443x_pll); hws[IMX8MP_VIDEO_PLL1] = imx_clk_hw_pll14xx("video_pll1", "video_pll1_ref_sel", anatop_base + 0x28, &imx_1443x_pll); hws[IMX8MP_DRAM_PLL] = imx_clk_hw_pll14xx("dram_pll", "dram_pll_ref_sel", anatop_base + 0x50, &imx_1443x_dram_pll); hws[IMX8MP_GPU_PLL] = imx_clk_hw_pll14xx("gpu_pll", "gpu_pll_ref_sel", anatop_base + 0x64, &imx_1416x_pll); hws[IMX8MP_VPU_PLL] = imx_clk_hw_pll14xx("vpu_pll", "vpu_pll_ref_sel", anatop_base + 0x74, &imx_1416x_pll); hws[IMX8MP_ARM_PLL] = imx_clk_hw_pll14xx("arm_pll", "arm_pll_ref_sel", anatop_base + 0x84, &imx_1416x_pll); hws[IMX8MP_SYS_PLL1] = imx_clk_hw_pll14xx("sys_pll1", "sys_pll1_ref_sel", anatop_base + 0x94, &imx_1416x_pll); hws[IMX8MP_SYS_PLL2] = imx_clk_hw_pll14xx("sys_pll2", "sys_pll2_ref_sel", anatop_base + 0x104, &imx_1416x_pll); hws[IMX8MP_SYS_PLL3] = imx_clk_hw_pll14xx("sys_pll3", "sys_pll3_ref_sel", anatop_base + 0x114, &imx_1416x_pll); hws[IMX8MP_AUDIO_PLL1_BYPASS] = imx_clk_hw_mux_flags("audio_pll1_bypass", anatop_base, 16, 1, audio_pll1_bypass_sels, ARRAY_SIZE(audio_pll1_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX8MP_AUDIO_PLL2_BYPASS] = imx_clk_hw_mux_flags("audio_pll2_bypass", anatop_base + 0x14, 16, 1, audio_pll2_bypass_sels, ARRAY_SIZE(audio_pll2_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX8MP_VIDEO_PLL1_BYPASS] = imx_clk_hw_mux_flags("video_pll1_bypass", anatop_base + 0x28, 16, 1, video_pll1_bypass_sels, ARRAY_SIZE(video_pll1_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX8MP_DRAM_PLL_BYPASS] = imx_clk_hw_mux_flags("dram_pll_bypass", anatop_base + 0x50, 16, 1, dram_pll_bypass_sels, ARRAY_SIZE(dram_pll_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX8MP_GPU_PLL_BYPASS] = imx_clk_hw_mux_flags("gpu_pll_bypass", anatop_base + 0x64, 28, 1, gpu_pll_bypass_sels, ARRAY_SIZE(gpu_pll_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX8MP_VPU_PLL_BYPASS] = imx_clk_hw_mux_flags("vpu_pll_bypass", anatop_base + 0x74, 28, 1, vpu_pll_bypass_sels, ARRAY_SIZE(vpu_pll_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX8MP_ARM_PLL_BYPASS] = imx_clk_hw_mux_flags("arm_pll_bypass", anatop_base + 0x84, 28, 1, arm_pll_bypass_sels, ARRAY_SIZE(arm_pll_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX8MP_SYS_PLL1_BYPASS] = imx_clk_hw_mux_flags("sys_pll1_bypass", anatop_base + 0x94, 28, 1, sys_pll1_bypass_sels, ARRAY_SIZE(sys_pll1_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX8MP_SYS_PLL2_BYPASS] = imx_clk_hw_mux_flags("sys_pll2_bypass", anatop_base + 0x104, 28, 1, sys_pll2_bypass_sels, ARRAY_SIZE(sys_pll2_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX8MP_SYS_PLL3_BYPASS] = imx_clk_hw_mux_flags("sys_pll3_bypass", anatop_base + 0x114, 28, 1, sys_pll3_bypass_sels, ARRAY_SIZE(sys_pll3_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX8MP_AUDIO_PLL1_OUT] = imx_clk_hw_gate("audio_pll1_out", "audio_pll1_bypass", anatop_base, 13); hws[IMX8MP_AUDIO_PLL2_OUT] = imx_clk_hw_gate("audio_pll2_out", "audio_pll2_bypass", anatop_base + 0x14, 13); hws[IMX8MP_VIDEO_PLL1_OUT] = imx_clk_hw_gate("video_pll1_out", "video_pll1_bypass", anatop_base + 0x28, 13); hws[IMX8MP_DRAM_PLL_OUT] = imx_clk_hw_gate("dram_pll_out", "dram_pll_bypass", anatop_base + 0x50, 13); hws[IMX8MP_GPU_PLL_OUT] = imx_clk_hw_gate("gpu_pll_out", "gpu_pll_bypass", anatop_base + 0x64, 11); hws[IMX8MP_VPU_PLL_OUT] = imx_clk_hw_gate("vpu_pll_out", "vpu_pll_bypass", anatop_base + 0x74, 11); hws[IMX8MP_ARM_PLL_OUT] = imx_clk_hw_gate("arm_pll_out", "arm_pll_bypass", anatop_base + 0x84, 11); hws[IMX8MP_SYS_PLL3_OUT] = imx_clk_hw_gate("sys_pll3_out", "sys_pll3_bypass", anatop_base + 0x114, 11); hws[IMX8MP_SYS_PLL1_OUT] = imx_clk_hw_gate("sys_pll1_out", "sys_pll1_bypass", anatop_base + 0x94, 11); hws[IMX8MP_SYS_PLL1_40M] = imx_clk_hw_fixed_factor("sys_pll1_40m", "sys_pll1_out", 1, 20); hws[IMX8MP_SYS_PLL1_80M] = imx_clk_hw_fixed_factor("sys_pll1_80m", "sys_pll1_out", 1, 10); hws[IMX8MP_SYS_PLL1_100M] = imx_clk_hw_fixed_factor("sys_pll1_100m", "sys_pll1_out", 1, 8); hws[IMX8MP_SYS_PLL1_133M] = imx_clk_hw_fixed_factor("sys_pll1_133m", "sys_pll1_out", 1, 6); hws[IMX8MP_SYS_PLL1_160M] = imx_clk_hw_fixed_factor("sys_pll1_160m", "sys_pll1_out", 1, 5); hws[IMX8MP_SYS_PLL1_200M] = imx_clk_hw_fixed_factor("sys_pll1_200m", "sys_pll1_out", 1, 4); hws[IMX8MP_SYS_PLL1_266M] = imx_clk_hw_fixed_factor("sys_pll1_266m", "sys_pll1_out", 1, 3); hws[IMX8MP_SYS_PLL1_400M] = imx_clk_hw_fixed_factor("sys_pll1_400m", "sys_pll1_out", 1, 2); hws[IMX8MP_SYS_PLL1_800M] = imx_clk_hw_fixed_factor("sys_pll1_800m", "sys_pll1_out", 1, 1); hws[IMX8MP_SYS_PLL2_OUT] = imx_clk_hw_gate("sys_pll2_out", "sys_pll2_bypass", anatop_base + 0x104, 11); hws[IMX8MP_SYS_PLL2_50M] = imx_clk_hw_fixed_factor("sys_pll2_50m", "sys_pll2_out", 1, 20); hws[IMX8MP_SYS_PLL2_100M] = imx_clk_hw_fixed_factor("sys_pll2_100m", "sys_pll2_out", 1, 10); hws[IMX8MP_SYS_PLL2_125M] = imx_clk_hw_fixed_factor("sys_pll2_125m", "sys_pll2_out", 1, 8); hws[IMX8MP_SYS_PLL2_166M] = imx_clk_hw_fixed_factor("sys_pll2_166m", "sys_pll2_out", 1, 6); hws[IMX8MP_SYS_PLL2_200M] = imx_clk_hw_fixed_factor("sys_pll2_200m", "sys_pll2_out", 1, 5); hws[IMX8MP_SYS_PLL2_250M] = imx_clk_hw_fixed_factor("sys_pll2_250m", "sys_pll2_out", 1, 4); hws[IMX8MP_SYS_PLL2_333M] = imx_clk_hw_fixed_factor("sys_pll2_333m", "sys_pll2_out", 1, 3); hws[IMX8MP_SYS_PLL2_500M] = imx_clk_hw_fixed_factor("sys_pll2_500m", "sys_pll2_out", 1, 2); hws[IMX8MP_SYS_PLL2_1000M] = imx_clk_hw_fixed_factor("sys_pll2_1000m", "sys_pll2_out", 1, 1); hws[IMX8MP_CLK_CLKOUT1_SEL] = imx_clk_hw_mux2("clkout1_sel", anatop_base + 0x128, 4, 4, imx8mp_clkout_sels, ARRAY_SIZE(imx8mp_clkout_sels)); hws[IMX8MP_CLK_CLKOUT1_DIV] = imx_clk_hw_divider("clkout1_div", "clkout1_sel", anatop_base + 0x128, 0, 4); hws[IMX8MP_CLK_CLKOUT1] = imx_clk_hw_gate("clkout1", "clkout1_div", anatop_base + 0x128, 8); hws[IMX8MP_CLK_CLKOUT2_SEL] = imx_clk_hw_mux2("clkout2_sel", anatop_base + 0x128, 20, 4, imx8mp_clkout_sels, ARRAY_SIZE(imx8mp_clkout_sels)); hws[IMX8MP_CLK_CLKOUT2_DIV] = imx_clk_hw_divider("clkout2_div", "clkout2_sel", anatop_base + 0x128, 16, 4); hws[IMX8MP_CLK_CLKOUT2] = imx_clk_hw_gate("clkout2", "clkout2_div", anatop_base + 0x128, 24); hws[IMX8MP_CLK_A53_DIV] = imx8m_clk_hw_composite_core("arm_a53_div", imx8mp_a53_sels, ccm_base + 0x8000); hws[IMX8MP_CLK_A53_SRC] = hws[IMX8MP_CLK_A53_DIV]; hws[IMX8MP_CLK_A53_CG] = hws[IMX8MP_CLK_A53_DIV]; hws[IMX8MP_CLK_M7_CORE] = imx8m_clk_hw_composite_core("m7_core", imx8mp_m7_sels, ccm_base + 0x8080); hws[IMX8MP_CLK_ML_CORE] = imx8m_clk_hw_composite_core("ml_core", imx8mp_ml_sels, ccm_base + 0x8100); hws[IMX8MP_CLK_GPU3D_CORE] = imx8m_clk_hw_composite_core("gpu3d_core", imx8mp_gpu3d_core_sels, ccm_base + 0x8180); hws[IMX8MP_CLK_GPU3D_SHADER_CORE] = imx8m_clk_hw_composite("gpu3d_shader_core", imx8mp_gpu3d_shader_sels, ccm_base + 0x8200); hws[IMX8MP_CLK_GPU2D_CORE] = imx8m_clk_hw_composite("gpu2d_core", imx8mp_gpu2d_sels, ccm_base + 0x8280); hws[IMX8MP_CLK_AUDIO_AXI] = imx8m_clk_hw_composite("audio_axi", imx8mp_audio_axi_sels, ccm_base + 0x8300); hws[IMX8MP_CLK_AUDIO_AXI_SRC] = hws[IMX8MP_CLK_AUDIO_AXI]; hws[IMX8MP_CLK_HSIO_AXI] = imx8m_clk_hw_composite("hsio_axi", imx8mp_hsio_axi_sels, ccm_base + 0x8380); hws[IMX8MP_CLK_MEDIA_ISP] = imx8m_clk_hw_composite("media_isp", imx8mp_media_isp_sels, ccm_base + 0x8400); /* CORE SEL */ hws[IMX8MP_CLK_A53_CORE] = imx_clk_hw_mux2("arm_a53_core", ccm_base + 0x9880, 24, 1, imx8mp_a53_core_sels, ARRAY_SIZE(imx8mp_a53_core_sels)); hws[IMX8MP_CLK_MAIN_AXI] = imx8m_clk_hw_composite_bus_critical("main_axi", imx8mp_main_axi_sels, ccm_base + 0x8800); hws[IMX8MP_CLK_ENET_AXI] = imx8m_clk_hw_composite_bus("enet_axi", imx8mp_enet_axi_sels, ccm_base + 0x8880); hws[IMX8MP_CLK_NAND_USDHC_BUS] = imx8m_clk_hw_composite("nand_usdhc_bus", imx8mp_nand_usdhc_sels, ccm_base + 0x8900); hws[IMX8MP_CLK_VPU_BUS] = imx8m_clk_hw_composite_bus("vpu_bus", imx8mp_vpu_bus_sels, ccm_base + 0x8980); hws[IMX8MP_CLK_MEDIA_AXI] = imx8m_clk_hw_composite_bus("media_axi", imx8mp_media_axi_sels, ccm_base + 0x8a00); hws[IMX8MP_CLK_MEDIA_APB] = imx8m_clk_hw_composite_bus("media_apb", imx8mp_media_apb_sels, ccm_base + 0x8a80); hws[IMX8MP_CLK_HDMI_APB] = imx8m_clk_hw_composite_bus("hdmi_apb", imx8mp_media_apb_sels, ccm_base + 0x8b00); hws[IMX8MP_CLK_HDMI_AXI] = imx8m_clk_hw_composite_bus("hdmi_axi", imx8mp_media_axi_sels, ccm_base + 0x8b80); hws[IMX8MP_CLK_GPU_AXI] = imx8m_clk_hw_composite_bus("gpu_axi", imx8mp_gpu_axi_sels, ccm_base + 0x8c00); hws[IMX8MP_CLK_GPU_AHB] = imx8m_clk_hw_composite_bus("gpu_ahb", imx8mp_gpu_ahb_sels, ccm_base + 0x8c80); hws[IMX8MP_CLK_NOC] = imx8m_clk_hw_composite_bus_critical("noc", imx8mp_noc_sels, ccm_base + 0x8d00); hws[IMX8MP_CLK_NOC_IO] = imx8m_clk_hw_composite_bus_critical("noc_io", imx8mp_noc_io_sels, ccm_base + 0x8d80); hws[IMX8MP_CLK_ML_AXI] = imx8m_clk_hw_composite_bus("ml_axi", imx8mp_ml_axi_sels, ccm_base + 0x8e00); hws[IMX8MP_CLK_ML_AHB] = imx8m_clk_hw_composite_bus("ml_ahb", imx8mp_ml_ahb_sels, ccm_base + 0x8e80); hws[IMX8MP_CLK_AHB] = imx8m_clk_hw_composite_bus_critical("ahb_root", imx8mp_ahb_sels, ccm_base + 0x9000); hws[IMX8MP_CLK_AUDIO_AHB] = imx8m_clk_hw_composite_bus("audio_ahb", imx8mp_audio_ahb_sels, ccm_base + 0x9100); hws[IMX8MP_CLK_MIPI_DSI_ESC_RX] = imx8m_clk_hw_composite_bus("mipi_dsi_esc_rx", imx8mp_mipi_dsi_esc_rx_sels, ccm_base + 0x9200); hws[IMX8MP_CLK_MEDIA_DISP2_PIX] = imx8m_clk_hw_composite_bus("media_disp2_pix", imx8mp_media_disp_pix_sels, ccm_base + 0x9300); hws[IMX8MP_CLK_IPG_ROOT] = imx_clk_hw_divider2("ipg_root", "ahb_root", ccm_base + 0x9080, 0, 1); hws[IMX8MP_CLK_DRAM_ALT] = imx8m_clk_hw_composite("dram_alt", imx8mp_dram_alt_sels, ccm_base + 0xa000); hws[IMX8MP_CLK_DRAM_APB] = imx8m_clk_hw_composite_critical("dram_apb", imx8mp_dram_apb_sels, ccm_base + 0xa080); hws[IMX8MP_CLK_VPU_G1] = imx8m_clk_hw_composite("vpu_g1", imx8mp_vpu_g1_sels, ccm_base + 0xa100); hws[IMX8MP_CLK_VPU_G2] = imx8m_clk_hw_composite("vpu_g2", imx8mp_vpu_g2_sels, ccm_base + 0xa180); hws[IMX8MP_CLK_CAN1] = imx8m_clk_hw_composite("can1", imx8mp_can1_sels, ccm_base + 0xa200); hws[IMX8MP_CLK_CAN2] = imx8m_clk_hw_composite("can2", imx8mp_can2_sels, ccm_base + 0xa280); hws[IMX8MP_CLK_PCIE_AUX] = imx8m_clk_hw_composite("pcie_aux", imx8mp_pcie_aux_sels, ccm_base + 0xa400); hws[IMX8MP_CLK_I2C5] = imx8m_clk_hw_composite("i2c5", imx8mp_i2c5_sels, ccm_base + 0xa480); hws[IMX8MP_CLK_I2C6] = imx8m_clk_hw_composite("i2c6", imx8mp_i2c6_sels, ccm_base + 0xa500); hws[IMX8MP_CLK_SAI1] = imx8m_clk_hw_composite("sai1", imx8mp_sai1_sels, ccm_base + 0xa580); hws[IMX8MP_CLK_SAI2] = imx8m_clk_hw_composite("sai2", imx8mp_sai2_sels, ccm_base + 0xa600); hws[IMX8MP_CLK_SAI3] = imx8m_clk_hw_composite("sai3", imx8mp_sai3_sels, ccm_base + 0xa680); hws[IMX8MP_CLK_SAI5] = imx8m_clk_hw_composite("sai5", imx8mp_sai5_sels, ccm_base + 0xa780); hws[IMX8MP_CLK_SAI6] = imx8m_clk_hw_composite("sai6", imx8mp_sai6_sels, ccm_base + 0xa800); hws[IMX8MP_CLK_ENET_QOS] = imx8m_clk_hw_composite("enet_qos", imx8mp_enet_qos_sels, ccm_base + 0xa880); hws[IMX8MP_CLK_ENET_QOS_TIMER] = imx8m_clk_hw_composite("enet_qos_timer", imx8mp_enet_qos_timer_sels, ccm_base + 0xa900); hws[IMX8MP_CLK_ENET_REF] = imx8m_clk_hw_composite("enet_ref", imx8mp_enet_ref_sels, ccm_base + 0xa980); hws[IMX8MP_CLK_ENET_TIMER] = imx8m_clk_hw_composite("enet_timer", imx8mp_enet_timer_sels, ccm_base + 0xaa00); hws[IMX8MP_CLK_ENET_PHY_REF] = imx8m_clk_hw_composite("enet_phy_ref", imx8mp_enet_phy_ref_sels, ccm_base + 0xaa80); hws[IMX8MP_CLK_NAND] = imx8m_clk_hw_composite("nand", imx8mp_nand_sels, ccm_base + 0xab00); hws[IMX8MP_CLK_QSPI] = imx8m_clk_hw_composite("qspi", imx8mp_qspi_sels, ccm_base + 0xab80); hws[IMX8MP_CLK_USDHC1] = imx8m_clk_hw_composite("usdhc1", imx8mp_usdhc1_sels, ccm_base + 0xac00); hws[IMX8MP_CLK_USDHC2] = imx8m_clk_hw_composite("usdhc2", imx8mp_usdhc2_sels, ccm_base + 0xac80); hws[IMX8MP_CLK_I2C1] = imx8m_clk_hw_composite("i2c1", imx8mp_i2c1_sels, ccm_base + 0xad00); hws[IMX8MP_CLK_I2C2] = imx8m_clk_hw_composite("i2c2", imx8mp_i2c2_sels, ccm_base + 0xad80); hws[IMX8MP_CLK_I2C3] = imx8m_clk_hw_composite("i2c3", imx8mp_i2c3_sels, ccm_base + 0xae00); hws[IMX8MP_CLK_I2C4] = imx8m_clk_hw_composite("i2c4", imx8mp_i2c4_sels, ccm_base + 0xae80); hws[IMX8MP_CLK_UART1] = imx8m_clk_hw_composite("uart1", imx8mp_uart1_sels, ccm_base + 0xaf00); hws[IMX8MP_CLK_UART2] = imx8m_clk_hw_composite("uart2", imx8mp_uart2_sels, ccm_base + 0xaf80); hws[IMX8MP_CLK_UART3] = imx8m_clk_hw_composite("uart3", imx8mp_uart3_sels, ccm_base + 0xb000); hws[IMX8MP_CLK_UART4] = imx8m_clk_hw_composite("uart4", imx8mp_uart4_sels, ccm_base + 0xb080); hws[IMX8MP_CLK_USB_CORE_REF] = imx8m_clk_hw_composite("usb_core_ref", imx8mp_usb_core_ref_sels, ccm_base + 0xb100); hws[IMX8MP_CLK_USB_PHY_REF] = imx8m_clk_hw_composite("usb_phy_ref", imx8mp_usb_phy_ref_sels, ccm_base + 0xb180); hws[IMX8MP_CLK_GIC] = imx8m_clk_hw_composite_critical("gic", imx8mp_gic_sels, ccm_base + 0xb200); hws[IMX8MP_CLK_ECSPI1] = imx8m_clk_hw_composite("ecspi1", imx8mp_ecspi1_sels, ccm_base + 0xb280); hws[IMX8MP_CLK_ECSPI2] = imx8m_clk_hw_composite("ecspi2", imx8mp_ecspi2_sels, ccm_base + 0xb300); hws[IMX8MP_CLK_PWM1] = imx8m_clk_hw_composite("pwm1", imx8mp_pwm1_sels, ccm_base + 0xb380); hws[IMX8MP_CLK_PWM2] = imx8m_clk_hw_composite("pwm2", imx8mp_pwm2_sels, ccm_base + 0xb400); hws[IMX8MP_CLK_PWM3] = imx8m_clk_hw_composite("pwm3", imx8mp_pwm3_sels, ccm_base + 0xb480); hws[IMX8MP_CLK_PWM4] = imx8m_clk_hw_composite("pwm4", imx8mp_pwm4_sels, ccm_base + 0xb500); hws[IMX8MP_CLK_GPT1] = imx8m_clk_hw_composite("gpt1", imx8mp_gpt1_sels, ccm_base + 0xb580); hws[IMX8MP_CLK_GPT2] = imx8m_clk_hw_composite("gpt2", imx8mp_gpt2_sels, ccm_base + 0xb600); hws[IMX8MP_CLK_GPT3] = imx8m_clk_hw_composite("gpt3", imx8mp_gpt3_sels, ccm_base + 0xb680); hws[IMX8MP_CLK_GPT4] = imx8m_clk_hw_composite("gpt4", imx8mp_gpt4_sels, ccm_base + 0xb700); hws[IMX8MP_CLK_GPT5] = imx8m_clk_hw_composite("gpt5", imx8mp_gpt5_sels, ccm_base + 0xb780); hws[IMX8MP_CLK_GPT6] = imx8m_clk_hw_composite("gpt6", imx8mp_gpt6_sels, ccm_base + 0xb800); hws[IMX8MP_CLK_WDOG] = imx8m_clk_hw_composite("wdog", imx8mp_wdog_sels, ccm_base + 0xb900); hws[IMX8MP_CLK_WRCLK] = imx8m_clk_hw_composite("wrclk", imx8mp_wrclk_sels, ccm_base + 0xb980); hws[IMX8MP_CLK_IPP_DO_CLKO1] = imx8m_clk_hw_composite("ipp_do_clko1", imx8mp_ipp_do_clko1_sels, ccm_base + 0xba00); hws[IMX8MP_CLK_IPP_DO_CLKO2] = imx8m_clk_hw_composite("ipp_do_clko2", imx8mp_ipp_do_clko2_sels, ccm_base + 0xba80); hws[IMX8MP_CLK_HDMI_FDCC_TST] = imx8m_clk_hw_composite("hdmi_fdcc_tst", imx8mp_hdmi_fdcc_tst_sels, ccm_base + 0xbb00); hws[IMX8MP_CLK_HDMI_24M] = imx8m_clk_hw_composite("hdmi_24m", imx8mp_hdmi_24m_sels, ccm_base + 0xbb80); hws[IMX8MP_CLK_HDMI_REF_266M] = imx8m_clk_hw_composite("hdmi_ref_266m", imx8mp_hdmi_ref_266m_sels, ccm_base + 0xbc00); hws[IMX8MP_CLK_USDHC3] = imx8m_clk_hw_composite("usdhc3", imx8mp_usdhc3_sels, ccm_base + 0xbc80); hws[IMX8MP_CLK_MEDIA_CAM1_PIX] = imx8m_clk_hw_composite("media_cam1_pix", imx8mp_media_cam1_pix_sels, ccm_base + 0xbd00); hws[IMX8MP_CLK_MEDIA_MIPI_PHY1_REF] = imx8m_clk_hw_composite("media_mipi_phy1_ref", imx8mp_media_mipi_phy1_ref_sels, ccm_base + 0xbd80); hws[IMX8MP_CLK_MEDIA_DISP1_PIX] = imx8m_clk_hw_composite("media_disp1_pix", imx8mp_media_disp_pix_sels, ccm_base + 0xbe00); hws[IMX8MP_CLK_MEDIA_CAM2_PIX] = imx8m_clk_hw_composite("media_cam2_pix", imx8mp_media_cam2_pix_sels, ccm_base + 0xbe80); hws[IMX8MP_CLK_MEDIA_LDB] = imx8m_clk_hw_composite("media_ldb", imx8mp_media_ldb_sels, ccm_base + 0xbf00); hws[IMX8MP_CLK_MEMREPAIR] = imx8m_clk_hw_composite_critical("mem_repair", imx8mp_memrepair_sels, ccm_base + 0xbf80); hws[IMX8MP_CLK_MEDIA_MIPI_TEST_BYTE] = imx8m_clk_hw_composite("media_mipi_test_byte", imx8mp_media_mipi_test_byte_sels, ccm_base + 0xc100); hws[IMX8MP_CLK_ECSPI3] = imx8m_clk_hw_composite("ecspi3", imx8mp_ecspi3_sels, ccm_base + 0xc180); hws[IMX8MP_CLK_PDM] = imx8m_clk_hw_composite("pdm", imx8mp_pdm_sels, ccm_base + 0xc200); hws[IMX8MP_CLK_VPU_VC8000E] = imx8m_clk_hw_composite("vpu_vc8000e", imx8mp_vpu_vc8000e_sels, ccm_base + 0xc280); hws[IMX8MP_CLK_SAI7] = imx8m_clk_hw_composite("sai7", imx8mp_sai7_sels, ccm_base + 0xc300); hws[IMX8MP_CLK_DRAM_ALT_ROOT] = imx_clk_hw_fixed_factor("dram_alt_root", "dram_alt", 1, 4); hws[IMX8MP_CLK_DRAM_CORE] = imx_clk_hw_mux2_flags("dram_core_clk", ccm_base + 0x9800, 24, 1, imx8mp_dram_core_sels, ARRAY_SIZE(imx8mp_dram_core_sels), CLK_IS_CRITICAL); hws[IMX8MP_CLK_DRAM1_ROOT] = imx_clk_hw_gate4_flags("dram1_root_clk", "dram_core_clk", ccm_base + 0x4050, 0, CLK_IS_CRITICAL); hws[IMX8MP_CLK_ECSPI1_ROOT] = imx_clk_hw_gate4("ecspi1_root_clk", "ecspi1", ccm_base + 0x4070, 0); hws[IMX8MP_CLK_ECSPI2_ROOT] = imx_clk_hw_gate4("ecspi2_root_clk", "ecspi2", ccm_base + 0x4080, 0); hws[IMX8MP_CLK_ECSPI3_ROOT] = imx_clk_hw_gate4("ecspi3_root_clk", "ecspi3", ccm_base + 0x4090, 0); hws[IMX8MP_CLK_ENET1_ROOT] = imx_clk_hw_gate4("enet1_root_clk", "enet_axi", ccm_base + 0x40a0, 0); hws[IMX8MP_CLK_GPIO1_ROOT] = imx_clk_hw_gate4("gpio1_root_clk", "ipg_root", ccm_base + 0x40b0, 0); hws[IMX8MP_CLK_GPIO2_ROOT] = imx_clk_hw_gate4("gpio2_root_clk", "ipg_root", ccm_base + 0x40c0, 0); hws[IMX8MP_CLK_GPIO3_ROOT] = imx_clk_hw_gate4("gpio3_root_clk", "ipg_root", ccm_base + 0x40d0, 0); hws[IMX8MP_CLK_GPIO4_ROOT] = imx_clk_hw_gate4("gpio4_root_clk", "ipg_root", ccm_base + 0x40e0, 0); hws[IMX8MP_CLK_GPIO5_ROOT] = imx_clk_hw_gate4("gpio5_root_clk", "ipg_root", ccm_base + 0x40f0, 0); hws[IMX8MP_CLK_GPT1_ROOT] = imx_clk_hw_gate4("gpt1_root_clk", "gpt1", ccm_base + 0x4100, 0); hws[IMX8MP_CLK_GPT2_ROOT] = imx_clk_hw_gate4("gpt2_root_clk", "gpt2", ccm_base + 0x4110, 0); hws[IMX8MP_CLK_GPT3_ROOT] = imx_clk_hw_gate4("gpt3_root_clk", "gpt3", ccm_base + 0x4120, 0); hws[IMX8MP_CLK_GPT4_ROOT] = imx_clk_hw_gate4("gpt4_root_clk", "gpt4", ccm_base + 0x4130, 0); hws[IMX8MP_CLK_GPT5_ROOT] = imx_clk_hw_gate4("gpt5_root_clk", "gpt5", ccm_base + 0x4140, 0); hws[IMX8MP_CLK_GPT6_ROOT] = imx_clk_hw_gate4("gpt6_root_clk", "gpt6", ccm_base + 0x4150, 0); hws[IMX8MP_CLK_I2C1_ROOT] = imx_clk_hw_gate4("i2c1_root_clk", "i2c1", ccm_base + 0x4170, 0); hws[IMX8MP_CLK_I2C2_ROOT] = imx_clk_hw_gate4("i2c2_root_clk", "i2c2", ccm_base + 0x4180, 0); hws[IMX8MP_CLK_I2C3_ROOT] = imx_clk_hw_gate4("i2c3_root_clk", "i2c3", ccm_base + 0x4190, 0); hws[IMX8MP_CLK_I2C4_ROOT] = imx_clk_hw_gate4("i2c4_root_clk", "i2c4", ccm_base + 0x41a0, 0); hws[IMX8MP_CLK_MU_ROOT] = imx_clk_hw_gate4("mu_root_clk", "ipg_root", ccm_base + 0x4210, 0); hws[IMX8MP_CLK_OCOTP_ROOT] = imx_clk_hw_gate4("ocotp_root_clk", "ipg_root", ccm_base + 0x4220, 0); hws[IMX8MP_CLK_PCIE_ROOT] = imx_clk_hw_gate4("pcie_root_clk", "pcie_aux", ccm_base + 0x4250, 0); hws[IMX8MP_CLK_PWM1_ROOT] = imx_clk_hw_gate4("pwm1_root_clk", "pwm1", ccm_base + 0x4280, 0); hws[IMX8MP_CLK_PWM2_ROOT] = imx_clk_hw_gate4("pwm2_root_clk", "pwm2", ccm_base + 0x4290, 0); hws[IMX8MP_CLK_PWM3_ROOT] = imx_clk_hw_gate4("pwm3_root_clk", "pwm3", ccm_base + 0x42a0, 0); hws[IMX8MP_CLK_PWM4_ROOT] = imx_clk_hw_gate4("pwm4_root_clk", "pwm4", ccm_base + 0x42b0, 0); hws[IMX8MP_CLK_QOS_ROOT] = imx_clk_hw_gate4("qos_root_clk", "ipg_root", ccm_base + 0x42c0, 0); hws[IMX8MP_CLK_QOS_ENET_ROOT] = imx_clk_hw_gate4("qos_enet_root_clk", "ipg_root", ccm_base + 0x42e0, 0); hws[IMX8MP_CLK_QSPI_ROOT] = imx_clk_hw_gate4("qspi_root_clk", "qspi", ccm_base + 0x42f0, 0); hws[IMX8MP_CLK_NAND_ROOT] = imx_clk_hw_gate2_shared2("nand_root_clk", "nand", ccm_base + 0x4300, 0, &share_count_nand); hws[IMX8MP_CLK_NAND_USDHC_BUS_RAWNAND_CLK] = imx_clk_hw_gate2_shared2("nand_usdhc_rawnand_clk", "nand_usdhc_bus", ccm_base + 0x4300, 0, &share_count_nand); hws[IMX8MP_CLK_I2C5_ROOT] = imx_clk_hw_gate2("i2c5_root_clk", "i2c5", ccm_base + 0x4330, 0); hws[IMX8MP_CLK_I2C6_ROOT] = imx_clk_hw_gate2("i2c6_root_clk", "i2c6", ccm_base + 0x4340, 0); hws[IMX8MP_CLK_CAN1_ROOT] = imx_clk_hw_gate2("can1_root_clk", "can1", ccm_base + 0x4350, 0); hws[IMX8MP_CLK_CAN2_ROOT] = imx_clk_hw_gate2("can2_root_clk", "can2", ccm_base + 0x4360, 0); hws[IMX8MP_CLK_SDMA1_ROOT] = imx_clk_hw_gate4("sdma1_root_clk", "ipg_root", ccm_base + 0x43a0, 0); hws[IMX8MP_CLK_SIM_ENET_ROOT] = imx_clk_hw_gate4("sim_enet_root_clk", "enet_axi", ccm_base + 0x4400, 0); hws[IMX8MP_CLK_ENET_QOS_ROOT] = imx_clk_hw_gate4("enet_qos_root_clk", "sim_enet_root_clk", ccm_base + 0x43b0, 0); hws[IMX8MP_CLK_GPU2D_ROOT] = imx_clk_hw_gate4("gpu2d_root_clk", "gpu2d_core", ccm_base + 0x4450, 0); hws[IMX8MP_CLK_GPU3D_ROOT] = imx_clk_hw_gate4("gpu3d_root_clk", "gpu3d_core", ccm_base + 0x4460, 0); hws[IMX8MP_CLK_UART1_ROOT] = imx_clk_hw_gate4("uart1_root_clk", "uart1", ccm_base + 0x4490, 0); hws[IMX8MP_CLK_UART2_ROOT] = imx_clk_hw_gate4("uart2_root_clk", "uart2", ccm_base + 0x44a0, 0); hws[IMX8MP_CLK_UART3_ROOT] = imx_clk_hw_gate4("uart3_root_clk", "uart3", ccm_base + 0x44b0, 0); hws[IMX8MP_CLK_UART4_ROOT] = imx_clk_hw_gate4("uart4_root_clk", "uart4", ccm_base + 0x44c0, 0); hws[IMX8MP_CLK_USB_ROOT] = imx_clk_hw_gate2_shared2("usb_root_clk", "hsio_axi", ccm_base + 0x44d0, 0, &share_count_usb); hws[IMX8MP_CLK_USB_SUSP] = imx_clk_hw_gate2_shared2("usb_suspend_clk", "osc_32k", ccm_base + 0x44d0, 0, &share_count_usb); hws[IMX8MP_CLK_USB_PHY_ROOT] = imx_clk_hw_gate4("usb_phy_root_clk", "usb_phy_ref", ccm_base + 0x44f0, 0); hws[IMX8MP_CLK_USDHC1_ROOT] = imx_clk_hw_gate4("usdhc1_root_clk", "usdhc1", ccm_base + 0x4510, 0); hws[IMX8MP_CLK_USDHC2_ROOT] = imx_clk_hw_gate4("usdhc2_root_clk", "usdhc2", ccm_base + 0x4520, 0); hws[IMX8MP_CLK_WDOG1_ROOT] = imx_clk_hw_gate4("wdog1_root_clk", "wdog", ccm_base + 0x4530, 0); hws[IMX8MP_CLK_WDOG2_ROOT] = imx_clk_hw_gate4("wdog2_root_clk", "wdog", ccm_base + 0x4540, 0); hws[IMX8MP_CLK_WDOG3_ROOT] = imx_clk_hw_gate4("wdog3_root_clk", "wdog", ccm_base + 0x4550, 0); hws[IMX8MP_CLK_VPU_G1_ROOT] = imx_clk_hw_gate4("vpu_g1_root_clk", "vpu_g1", ccm_base + 0x4560, 0); hws[IMX8MP_CLK_GPU_ROOT] = imx_clk_hw_gate4("gpu_root_clk", "gpu_axi", ccm_base + 0x4570, 0); hws[IMX8MP_CLK_VPU_VC8KE_ROOT] = imx_clk_hw_gate4("vpu_vc8ke_root_clk", "vpu_vc8000e", ccm_base + 0x4590, 0); hws[IMX8MP_CLK_VPU_G2_ROOT] = imx_clk_hw_gate4("vpu_g2_root_clk", "vpu_g2", ccm_base + 0x45a0, 0); hws[IMX8MP_CLK_NPU_ROOT] = imx_clk_hw_gate4("npu_root_clk", "ml_core", ccm_base + 0x45b0, 0); hws[IMX8MP_CLK_HSIO_ROOT] = imx_clk_hw_gate4("hsio_root_clk", "ipg_root", ccm_base + 0x45c0, 0); hws[IMX8MP_CLK_MEDIA_APB_ROOT] = imx_clk_hw_gate2_shared2("media_apb_root_clk", "media_apb", ccm_base + 0x45d0, 0, &share_count_media); hws[IMX8MP_CLK_MEDIA_AXI_ROOT] = imx_clk_hw_gate2_shared2("media_axi_root_clk", "media_axi", ccm_base + 0x45d0, 0, &share_count_media); hws[IMX8MP_CLK_MEDIA_CAM1_PIX_ROOT] = imx_clk_hw_gate2_shared2("media_cam1_pix_root_clk", "media_cam1_pix", ccm_base + 0x45d0, 0, &share_count_media); hws[IMX8MP_CLK_MEDIA_CAM2_PIX_ROOT] = imx_clk_hw_gate2_shared2("media_cam2_pix_root_clk", "media_cam2_pix", ccm_base + 0x45d0, 0, &share_count_media); hws[IMX8MP_CLK_MEDIA_DISP1_PIX_ROOT] = imx_clk_hw_gate2_shared2("media_disp1_pix_root_clk", "media_disp1_pix", ccm_base + 0x45d0, 0, &share_count_media); hws[IMX8MP_CLK_MEDIA_DISP2_PIX_ROOT] = imx_clk_hw_gate2_shared2("media_disp2_pix_root_clk", "media_disp2_pix", ccm_base + 0x45d0, 0, &share_count_media); hws[IMX8MP_CLK_MEDIA_MIPI_PHY1_REF_ROOT] = imx_clk_hw_gate2_shared2("media_mipi_phy1_ref_root", "media_mipi_phy1_ref", ccm_base + 0x45d0, 0, &share_count_media); hws[IMX8MP_CLK_MEDIA_LDB_ROOT] = imx_clk_hw_gate2_shared2("media_ldb_root_clk", "media_ldb", ccm_base + 0x45d0, 0, &share_count_media); hws[IMX8MP_CLK_MEDIA_ISP_ROOT] = imx_clk_hw_gate2_shared2("media_isp_root_clk", "media_isp", ccm_base + 0x45d0, 0, &share_count_media); hws[IMX8MP_CLK_USDHC3_ROOT] = imx_clk_hw_gate4("usdhc3_root_clk", "usdhc3", ccm_base + 0x45e0, 0); hws[IMX8MP_CLK_HDMI_ROOT] = imx_clk_hw_gate4("hdmi_root_clk", "hdmi_axi", ccm_base + 0x45f0, 0); hws[IMX8MP_CLK_TSENSOR_ROOT] = imx_clk_hw_gate4("tsensor_root_clk", "ipg_root", ccm_base + 0x4620, 0); hws[IMX8MP_CLK_VPU_ROOT] = imx_clk_hw_gate4("vpu_root_clk", "vpu_bus", ccm_base + 0x4630, 0); hws[IMX8MP_CLK_AUDIO_AHB_ROOT] = imx_clk_hw_gate2_shared2("audio_ahb_root", "audio_ahb", ccm_base + 0x4650, 0, &share_count_audio); hws[IMX8MP_CLK_AUDIO_AXI_ROOT] = imx_clk_hw_gate2_shared2("audio_axi_root", "audio_axi", ccm_base + 0x4650, 0, &share_count_audio); hws[IMX8MP_CLK_SAI1_ROOT] = imx_clk_hw_gate2_shared2("sai1_root", "sai1", ccm_base + 0x4650, 0, &share_count_audio); hws[IMX8MP_CLK_SAI2_ROOT] = imx_clk_hw_gate2_shared2("sai2_root", "sai2", ccm_base + 0x4650, 0, &share_count_audio); hws[IMX8MP_CLK_SAI3_ROOT] = imx_clk_hw_gate2_shared2("sai3_root", "sai3", ccm_base + 0x4650, 0, &share_count_audio); hws[IMX8MP_CLK_SAI5_ROOT] = imx_clk_hw_gate2_shared2("sai5_root", "sai5", ccm_base + 0x4650, 0, &share_count_audio); hws[IMX8MP_CLK_SAI6_ROOT] = imx_clk_hw_gate2_shared2("sai6_root", "sai6", ccm_base + 0x4650, 0, &share_count_audio); hws[IMX8MP_CLK_SAI7_ROOT] = imx_clk_hw_gate2_shared2("sai7_root", "sai7", ccm_base + 0x4650, 0, &share_count_audio); hws[IMX8MP_CLK_PDM_ROOT] = imx_clk_hw_gate2_shared2("pdm_root", "pdm", ccm_base + 0x4650, 0, &share_count_audio); hws[IMX8MP_CLK_ARM] = imx_clk_hw_cpu("arm", "arm_a53_core", hws[IMX8MP_CLK_A53_CORE]->clk, hws[IMX8MP_CLK_A53_CORE]->clk, hws[IMX8MP_ARM_PLL_OUT]->clk, hws[IMX8MP_CLK_A53_DIV]->clk); imx_check_clk_hws(hws, IMX8MP_CLK_END); err = of_clk_add_hw_provider(np, of_clk_hw_onecell_get, clk_hw_data); if (err < 0) { dev_err(dev, "failed to register hws for i.MX8MP\n"); imx_unregister_hw_clocks(hws, IMX8MP_CLK_END); return err; } imx_register_uart_clocks(); return 0; } static const struct of_device_id imx8mp_clk_of_match[] = { { .compatible = "fsl,imx8mp-ccm" }, { /* Sentinel */ } }; MODULE_DEVICE_TABLE(of, imx8mp_clk_of_match); static struct platform_driver imx8mp_clk_driver = { .probe = imx8mp_clocks_probe, .driver = { .name = "imx8mp-ccm", /* * Disable bind attributes: clocks are not removed and * reloading the driver will crash or break devices. */ .suppress_bind_attrs = true, .of_match_table = imx8mp_clk_of_match, }, }; module_platform_driver(imx8mp_clk_driver); module_param(mcore_booted, bool, S_IRUGO); MODULE_PARM_DESC(mcore_booted, "See Cortex-M core is booted or not"); MODULE_AUTHOR("Anson Huang <[email protected]>"); MODULE_DESCRIPTION("NXP i.MX8MP clock driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/clk/imx/clk-imx8mp.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright 2012 Freescale Semiconductor, Inc. * Copyright 2012 Linaro Ltd. */ #include <linux/bits.h> #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/io.h> #include <linux/slab.h> #include <linux/jiffies.h> #include <linux/err.h> #include "clk.h" static int clk_busy_wait(void __iomem *reg, u8 shift) { unsigned long timeout = jiffies + msecs_to_jiffies(10); while (readl_relaxed(reg) & (1 << shift)) if (time_after(jiffies, timeout)) return -ETIMEDOUT; return 0; } struct clk_busy_divider { struct clk_divider div; const struct clk_ops *div_ops; void __iomem *reg; u8 shift; }; static inline struct clk_busy_divider *to_clk_busy_divider(struct clk_hw *hw) { struct clk_divider *div = to_clk_divider(hw); return container_of(div, struct clk_busy_divider, div); } static unsigned long clk_busy_divider_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_busy_divider *busy = to_clk_busy_divider(hw); return busy->div_ops->recalc_rate(&busy->div.hw, parent_rate); } static long clk_busy_divider_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { struct clk_busy_divider *busy = to_clk_busy_divider(hw); return busy->div_ops->round_rate(&busy->div.hw, rate, prate); } static int clk_busy_divider_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_busy_divider *busy = to_clk_busy_divider(hw); int ret; ret = busy->div_ops->set_rate(&busy->div.hw, rate, parent_rate); if (!ret) ret = clk_busy_wait(busy->reg, busy->shift); return ret; } static const struct clk_ops clk_busy_divider_ops = { .recalc_rate = clk_busy_divider_recalc_rate, .round_rate = clk_busy_divider_round_rate, .set_rate = clk_busy_divider_set_rate, }; struct clk_hw *imx_clk_hw_busy_divider(const char *name, const char *parent_name, void __iomem *reg, u8 shift, u8 width, void __iomem *busy_reg, u8 busy_shift) { struct clk_busy_divider *busy; struct clk_hw *hw; struct clk_init_data init; int ret; busy = kzalloc(sizeof(*busy), GFP_KERNEL); if (!busy) return ERR_PTR(-ENOMEM); busy->reg = busy_reg; busy->shift = busy_shift; busy->div.reg = reg; busy->div.shift = shift; busy->div.width = width; busy->div.lock = &imx_ccm_lock; busy->div_ops = &clk_divider_ops; init.name = name; init.ops = &clk_busy_divider_ops; init.flags = CLK_SET_RATE_PARENT | CLK_IS_CRITICAL; init.parent_names = &parent_name; init.num_parents = 1; busy->div.hw.init = &init; hw = &busy->div.hw; ret = clk_hw_register(NULL, hw); if (ret) { kfree(busy); return ERR_PTR(ret); } return hw; } struct clk_busy_mux { struct clk_mux mux; const struct clk_ops *mux_ops; void __iomem *reg; u8 shift; }; static inline struct clk_busy_mux *to_clk_busy_mux(struct clk_hw *hw) { struct clk_mux *mux = to_clk_mux(hw); return container_of(mux, struct clk_busy_mux, mux); } static u8 clk_busy_mux_get_parent(struct clk_hw *hw) { struct clk_busy_mux *busy = to_clk_busy_mux(hw); return busy->mux_ops->get_parent(&busy->mux.hw); } static int clk_busy_mux_set_parent(struct clk_hw *hw, u8 index) { struct clk_busy_mux *busy = to_clk_busy_mux(hw); int ret; ret = busy->mux_ops->set_parent(&busy->mux.hw, index); if (!ret) ret = clk_busy_wait(busy->reg, busy->shift); return ret; } static const struct clk_ops clk_busy_mux_ops = { .determine_rate = clk_hw_determine_rate_no_reparent, .get_parent = clk_busy_mux_get_parent, .set_parent = clk_busy_mux_set_parent, }; struct clk_hw *imx_clk_hw_busy_mux(const char *name, void __iomem *reg, u8 shift, u8 width, void __iomem *busy_reg, u8 busy_shift, const char * const *parent_names, int num_parents) { struct clk_busy_mux *busy; struct clk_hw *hw; struct clk_init_data init; int ret; busy = kzalloc(sizeof(*busy), GFP_KERNEL); if (!busy) return ERR_PTR(-ENOMEM); busy->reg = busy_reg; busy->shift = busy_shift; busy->mux.reg = reg; busy->mux.shift = shift; busy->mux.mask = BIT(width) - 1; busy->mux.lock = &imx_ccm_lock; busy->mux_ops = &clk_mux_ops; init.name = name; init.ops = &clk_busy_mux_ops; init.flags = CLK_IS_CRITICAL; init.parent_names = parent_names; init.num_parents = num_parents; busy->mux.hw.init = &init; hw = &busy->mux.hw; ret = clk_hw_register(NULL, hw); if (ret) { kfree(busy); return ERR_PTR(ret); } return hw; }
linux-master
drivers/clk/imx/clk-busy.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2017-2018 NXP. */ #define pr_fmt(fmt) "pll14xx: " fmt #include <linux/bitfield.h> #include <linux/bits.h> #include <linux/clk-provider.h> #include <linux/err.h> #include <linux/export.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/slab.h> #include <linux/jiffies.h> #include "clk.h" #define GNRL_CTL 0x0 #define DIV_CTL0 0x4 #define DIV_CTL1 0x8 #define LOCK_STATUS BIT(31) #define LOCK_SEL_MASK BIT(29) #define CLKE_MASK BIT(11) #define RST_MASK BIT(9) #define BYPASS_MASK BIT(4) #define MDIV_MASK GENMASK(21, 12) #define PDIV_MASK GENMASK(9, 4) #define SDIV_MASK GENMASK(2, 0) #define KDIV_MASK GENMASK(15, 0) #define KDIV_MIN SHRT_MIN #define KDIV_MAX SHRT_MAX #define LOCK_TIMEOUT_US 10000 struct clk_pll14xx { struct clk_hw hw; void __iomem *base; enum imx_pll14xx_type type; const struct imx_pll14xx_rate_table *rate_table; int rate_count; }; #define to_clk_pll14xx(_hw) container_of(_hw, struct clk_pll14xx, hw) static const struct imx_pll14xx_rate_table imx_pll1416x_tbl[] = { PLL_1416X_RATE(1800000000U, 225, 3, 0), PLL_1416X_RATE(1600000000U, 200, 3, 0), PLL_1416X_RATE(1500000000U, 375, 3, 1), PLL_1416X_RATE(1400000000U, 350, 3, 1), PLL_1416X_RATE(1200000000U, 300, 3, 1), PLL_1416X_RATE(1000000000U, 250, 3, 1), PLL_1416X_RATE(800000000U, 200, 3, 1), PLL_1416X_RATE(750000000U, 250, 2, 2), PLL_1416X_RATE(700000000U, 350, 3, 2), PLL_1416X_RATE(640000000U, 320, 3, 2), PLL_1416X_RATE(600000000U, 300, 3, 2), PLL_1416X_RATE(320000000U, 160, 3, 2), }; static const struct imx_pll14xx_rate_table imx_pll1443x_tbl[] = { PLL_1443X_RATE(1039500000U, 173, 2, 1, 16384), PLL_1443X_RATE(650000000U, 325, 3, 2, 0), PLL_1443X_RATE(594000000U, 198, 2, 2, 0), PLL_1443X_RATE(519750000U, 173, 2, 2, 16384), }; struct imx_pll14xx_clk imx_1443x_pll = { .type = PLL_1443X, .rate_table = imx_pll1443x_tbl, .rate_count = ARRAY_SIZE(imx_pll1443x_tbl), }; EXPORT_SYMBOL_GPL(imx_1443x_pll); struct imx_pll14xx_clk imx_1443x_dram_pll = { .type = PLL_1443X, .rate_table = imx_pll1443x_tbl, .rate_count = ARRAY_SIZE(imx_pll1443x_tbl), .flags = CLK_GET_RATE_NOCACHE, }; EXPORT_SYMBOL_GPL(imx_1443x_dram_pll); struct imx_pll14xx_clk imx_1416x_pll = { .type = PLL_1416X, .rate_table = imx_pll1416x_tbl, .rate_count = ARRAY_SIZE(imx_pll1416x_tbl), }; EXPORT_SYMBOL_GPL(imx_1416x_pll); static const struct imx_pll14xx_rate_table *imx_get_pll_settings( struct clk_pll14xx *pll, unsigned long rate) { const struct imx_pll14xx_rate_table *rate_table = pll->rate_table; int i; for (i = 0; i < pll->rate_count; i++) if (rate == rate_table[i].rate) return &rate_table[i]; return NULL; } static long pll14xx_calc_rate(struct clk_pll14xx *pll, int mdiv, int pdiv, int sdiv, int kdiv, unsigned long prate) { u64 fvco = prate; /* fvco = (m * 65536 + k) * Fin / (p * 65536) */ fvco *= (mdiv * 65536 + kdiv); pdiv *= 65536; do_div(fvco, pdiv << sdiv); return fvco; } static long pll1443x_calc_kdiv(int mdiv, int pdiv, int sdiv, unsigned long rate, unsigned long prate) { long kdiv; /* calc kdiv = round(rate * pdiv * 65536 * 2^sdiv / prate) - (mdiv * 65536) */ kdiv = ((rate * ((pdiv * 65536) << sdiv) + prate / 2) / prate) - (mdiv * 65536); return clamp_t(short, kdiv, KDIV_MIN, KDIV_MAX); } static void imx_pll14xx_calc_settings(struct clk_pll14xx *pll, unsigned long rate, unsigned long prate, struct imx_pll14xx_rate_table *t) { u32 pll_div_ctl0, pll_div_ctl1; int mdiv, pdiv, sdiv, kdiv; long fvco, rate_min, rate_max, dist, best = LONG_MAX; const struct imx_pll14xx_rate_table *tt; /* * Fractional PLL constrains: * * a) 1 <= p <= 63 * b) 64 <= m <= 1023 * c) 0 <= s <= 6 * d) -32768 <= k <= 32767 * * fvco = (m * 65536 + k) * prate / (p * 65536) */ /* First try if we can get the desired rate from one of the static entries */ tt = imx_get_pll_settings(pll, rate); if (tt) { pr_debug("%s: in=%ld, want=%ld, Using PLL setting from table\n", clk_hw_get_name(&pll->hw), prate, rate); t->rate = tt->rate; t->mdiv = tt->mdiv; t->pdiv = tt->pdiv; t->sdiv = tt->sdiv; t->kdiv = tt->kdiv; return; } pll_div_ctl0 = readl_relaxed(pll->base + DIV_CTL0); mdiv = FIELD_GET(MDIV_MASK, pll_div_ctl0); pdiv = FIELD_GET(PDIV_MASK, pll_div_ctl0); sdiv = FIELD_GET(SDIV_MASK, pll_div_ctl0); pll_div_ctl1 = readl_relaxed(pll->base + DIV_CTL1); /* Then see if we can get the desired rate by only adjusting kdiv (glitch free) */ rate_min = pll14xx_calc_rate(pll, mdiv, pdiv, sdiv, KDIV_MIN, prate); rate_max = pll14xx_calc_rate(pll, mdiv, pdiv, sdiv, KDIV_MAX, prate); if (rate >= rate_min && rate <= rate_max) { kdiv = pll1443x_calc_kdiv(mdiv, pdiv, sdiv, rate, prate); pr_debug("%s: in=%ld, want=%ld Only adjust kdiv %ld -> %d\n", clk_hw_get_name(&pll->hw), prate, rate, FIELD_GET(KDIV_MASK, pll_div_ctl1), kdiv); fvco = pll14xx_calc_rate(pll, mdiv, pdiv, sdiv, kdiv, prate); t->rate = (unsigned int)fvco; t->mdiv = mdiv; t->pdiv = pdiv; t->sdiv = sdiv; t->kdiv = kdiv; return; } /* Finally calculate best values */ for (pdiv = 1; pdiv <= 63; pdiv++) { for (sdiv = 0; sdiv <= 6; sdiv++) { /* calc mdiv = round(rate * pdiv * 2^sdiv) / prate) */ mdiv = DIV_ROUND_CLOSEST(rate * (pdiv << sdiv), prate); mdiv = clamp(mdiv, 64, 1023); kdiv = pll1443x_calc_kdiv(mdiv, pdiv, sdiv, rate, prate); fvco = pll14xx_calc_rate(pll, mdiv, pdiv, sdiv, kdiv, prate); /* best match */ dist = abs((long)rate - (long)fvco); if (dist < best) { best = dist; t->rate = (unsigned int)fvco; t->mdiv = mdiv; t->pdiv = pdiv; t->sdiv = sdiv; t->kdiv = kdiv; if (!dist) goto found; } } } found: pr_debug("%s: in=%ld, want=%ld got=%d (pdiv=%d sdiv=%d mdiv=%d kdiv=%d)\n", clk_hw_get_name(&pll->hw), prate, rate, t->rate, t->pdiv, t->sdiv, t->mdiv, t->kdiv); } static long clk_pll1416x_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { struct clk_pll14xx *pll = to_clk_pll14xx(hw); const struct imx_pll14xx_rate_table *rate_table = pll->rate_table; int i; /* Assuming rate_table is in descending order */ for (i = 0; i < pll->rate_count; i++) if (rate >= rate_table[i].rate) return rate_table[i].rate; /* return minimum supported value */ return rate_table[pll->rate_count - 1].rate; } static long clk_pll1443x_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { struct clk_pll14xx *pll = to_clk_pll14xx(hw); struct imx_pll14xx_rate_table t; imx_pll14xx_calc_settings(pll, rate, *prate, &t); return t.rate; } static unsigned long clk_pll14xx_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_pll14xx *pll = to_clk_pll14xx(hw); u32 mdiv, pdiv, sdiv, kdiv, pll_div_ctl0, pll_div_ctl1; pll_div_ctl0 = readl_relaxed(pll->base + DIV_CTL0); mdiv = FIELD_GET(MDIV_MASK, pll_div_ctl0); pdiv = FIELD_GET(PDIV_MASK, pll_div_ctl0); sdiv = FIELD_GET(SDIV_MASK, pll_div_ctl0); if (pll->type == PLL_1443X) { pll_div_ctl1 = readl_relaxed(pll->base + DIV_CTL1); kdiv = (s16)FIELD_GET(KDIV_MASK, pll_div_ctl1); } else { kdiv = 0; } return pll14xx_calc_rate(pll, mdiv, pdiv, sdiv, kdiv, parent_rate); } static inline bool clk_pll14xx_mp_change(const struct imx_pll14xx_rate_table *rate, u32 pll_div) { u32 old_mdiv, old_pdiv; old_mdiv = FIELD_GET(MDIV_MASK, pll_div); old_pdiv = FIELD_GET(PDIV_MASK, pll_div); return rate->mdiv != old_mdiv || rate->pdiv != old_pdiv; } static int clk_pll14xx_wait_lock(struct clk_pll14xx *pll) { u32 val; return readl_poll_timeout(pll->base + GNRL_CTL, val, val & LOCK_STATUS, 0, LOCK_TIMEOUT_US); } static int clk_pll1416x_set_rate(struct clk_hw *hw, unsigned long drate, unsigned long prate) { struct clk_pll14xx *pll = to_clk_pll14xx(hw); const struct imx_pll14xx_rate_table *rate; u32 tmp, div_val; int ret; rate = imx_get_pll_settings(pll, drate); if (!rate) { pr_err("Invalid rate %lu for pll clk %s\n", drate, clk_hw_get_name(hw)); return -EINVAL; } tmp = readl_relaxed(pll->base + DIV_CTL0); if (!clk_pll14xx_mp_change(rate, tmp)) { tmp &= ~SDIV_MASK; tmp |= FIELD_PREP(SDIV_MASK, rate->sdiv); writel_relaxed(tmp, pll->base + DIV_CTL0); return 0; } /* Bypass clock and set lock to pll output lock */ tmp = readl_relaxed(pll->base + GNRL_CTL); tmp |= LOCK_SEL_MASK; writel_relaxed(tmp, pll->base + GNRL_CTL); /* Enable RST */ tmp &= ~RST_MASK; writel_relaxed(tmp, pll->base + GNRL_CTL); /* Enable BYPASS */ tmp |= BYPASS_MASK; writel(tmp, pll->base + GNRL_CTL); div_val = FIELD_PREP(MDIV_MASK, rate->mdiv) | FIELD_PREP(PDIV_MASK, rate->pdiv) | FIELD_PREP(SDIV_MASK, rate->sdiv); writel_relaxed(div_val, pll->base + DIV_CTL0); /* * According to SPEC, t3 - t2 need to be greater than * 1us and 1/FREF, respectively. * FREF is FIN / Prediv, the prediv is [1, 63], so choose * 3us. */ udelay(3); /* Disable RST */ tmp |= RST_MASK; writel_relaxed(tmp, pll->base + GNRL_CTL); /* Wait Lock */ ret = clk_pll14xx_wait_lock(pll); if (ret) return ret; /* Bypass */ tmp &= ~BYPASS_MASK; writel_relaxed(tmp, pll->base + GNRL_CTL); return 0; } static int clk_pll1443x_set_rate(struct clk_hw *hw, unsigned long drate, unsigned long prate) { struct clk_pll14xx *pll = to_clk_pll14xx(hw); struct imx_pll14xx_rate_table rate; u32 gnrl_ctl, div_ctl0; int ret; imx_pll14xx_calc_settings(pll, drate, prate, &rate); div_ctl0 = readl_relaxed(pll->base + DIV_CTL0); if (!clk_pll14xx_mp_change(&rate, div_ctl0)) { /* only sdiv and/or kdiv changed - no need to RESET PLL */ div_ctl0 &= ~SDIV_MASK; div_ctl0 |= FIELD_PREP(SDIV_MASK, rate.sdiv); writel_relaxed(div_ctl0, pll->base + DIV_CTL0); writel_relaxed(FIELD_PREP(KDIV_MASK, rate.kdiv), pll->base + DIV_CTL1); return 0; } /* Enable RST */ gnrl_ctl = readl_relaxed(pll->base + GNRL_CTL); gnrl_ctl &= ~RST_MASK; writel_relaxed(gnrl_ctl, pll->base + GNRL_CTL); /* Enable BYPASS */ gnrl_ctl |= BYPASS_MASK; writel_relaxed(gnrl_ctl, pll->base + GNRL_CTL); div_ctl0 = FIELD_PREP(MDIV_MASK, rate.mdiv) | FIELD_PREP(PDIV_MASK, rate.pdiv) | FIELD_PREP(SDIV_MASK, rate.sdiv); writel_relaxed(div_ctl0, pll->base + DIV_CTL0); writel_relaxed(FIELD_PREP(KDIV_MASK, rate.kdiv), pll->base + DIV_CTL1); /* * According to SPEC, t3 - t2 need to be greater than * 1us and 1/FREF, respectively. * FREF is FIN / Prediv, the prediv is [1, 63], so choose * 3us. */ udelay(3); /* Disable RST */ gnrl_ctl |= RST_MASK; writel_relaxed(gnrl_ctl, pll->base + GNRL_CTL); /* Wait Lock*/ ret = clk_pll14xx_wait_lock(pll); if (ret) return ret; /* Bypass */ gnrl_ctl &= ~BYPASS_MASK; writel_relaxed(gnrl_ctl, pll->base + GNRL_CTL); return 0; } static int clk_pll14xx_prepare(struct clk_hw *hw) { struct clk_pll14xx *pll = to_clk_pll14xx(hw); u32 val; int ret; /* * RESETB = 1 from 0, PLL starts its normal * operation after lock time */ val = readl_relaxed(pll->base + GNRL_CTL); if (val & RST_MASK) return 0; val |= BYPASS_MASK; writel_relaxed(val, pll->base + GNRL_CTL); val |= RST_MASK; writel_relaxed(val, pll->base + GNRL_CTL); ret = clk_pll14xx_wait_lock(pll); if (ret) return ret; val &= ~BYPASS_MASK; writel_relaxed(val, pll->base + GNRL_CTL); return 0; } static int clk_pll14xx_is_prepared(struct clk_hw *hw) { struct clk_pll14xx *pll = to_clk_pll14xx(hw); u32 val; val = readl_relaxed(pll->base + GNRL_CTL); return (val & RST_MASK) ? 1 : 0; } static void clk_pll14xx_unprepare(struct clk_hw *hw) { struct clk_pll14xx *pll = to_clk_pll14xx(hw); u32 val; /* * Set RST to 0, power down mode is enabled and * every digital block is reset */ val = readl_relaxed(pll->base + GNRL_CTL); val &= ~RST_MASK; writel_relaxed(val, pll->base + GNRL_CTL); } static const struct clk_ops clk_pll1416x_ops = { .prepare = clk_pll14xx_prepare, .unprepare = clk_pll14xx_unprepare, .is_prepared = clk_pll14xx_is_prepared, .recalc_rate = clk_pll14xx_recalc_rate, .round_rate = clk_pll1416x_round_rate, .set_rate = clk_pll1416x_set_rate, }; static const struct clk_ops clk_pll1416x_min_ops = { .recalc_rate = clk_pll14xx_recalc_rate, }; static const struct clk_ops clk_pll1443x_ops = { .prepare = clk_pll14xx_prepare, .unprepare = clk_pll14xx_unprepare, .is_prepared = clk_pll14xx_is_prepared, .recalc_rate = clk_pll14xx_recalc_rate, .round_rate = clk_pll1443x_round_rate, .set_rate = clk_pll1443x_set_rate, }; struct clk_hw *imx_dev_clk_hw_pll14xx(struct device *dev, const char *name, const char *parent_name, void __iomem *base, const struct imx_pll14xx_clk *pll_clk) { struct clk_pll14xx *pll; struct clk_hw *hw; struct clk_init_data init; int ret; u32 val; pll = kzalloc(sizeof(*pll), GFP_KERNEL); if (!pll) return ERR_PTR(-ENOMEM); init.name = name; init.flags = pll_clk->flags; init.parent_names = &parent_name; init.num_parents = 1; switch (pll_clk->type) { case PLL_1416X: if (!pll_clk->rate_table) init.ops = &clk_pll1416x_min_ops; else init.ops = &clk_pll1416x_ops; break; case PLL_1443X: init.ops = &clk_pll1443x_ops; break; default: pr_err("Unknown pll type for pll clk %s\n", name); kfree(pll); return ERR_PTR(-EINVAL); } pll->base = base; pll->hw.init = &init; pll->type = pll_clk->type; pll->rate_table = pll_clk->rate_table; pll->rate_count = pll_clk->rate_count; val = readl_relaxed(pll->base + GNRL_CTL); val &= ~BYPASS_MASK; writel_relaxed(val, pll->base + GNRL_CTL); hw = &pll->hw; ret = clk_hw_register(dev, hw); if (ret) { pr_err("failed to register pll %s %d\n", name, ret); kfree(pll); return ERR_PTR(ret); } return hw; } EXPORT_SYMBOL_GPL(imx_dev_clk_hw_pll14xx);
linux-master
drivers/clk/imx/clk-pll14xx.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2014 Lucas Stach <[email protected]>, Pengutronix */ #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/export.h> #include <linux/slab.h> #include "clk.h" struct clk_cpu { struct clk_hw hw; struct clk *div; struct clk *mux; struct clk *pll; struct clk *step; }; static inline struct clk_cpu *to_clk_cpu(struct clk_hw *hw) { return container_of(hw, struct clk_cpu, hw); } static unsigned long clk_cpu_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_cpu *cpu = to_clk_cpu(hw); return clk_get_rate(cpu->div); } static long clk_cpu_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { struct clk_cpu *cpu = to_clk_cpu(hw); return clk_round_rate(cpu->pll, rate); } static int clk_cpu_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_cpu *cpu = to_clk_cpu(hw); int ret; /* switch to PLL bypass clock */ ret = clk_set_parent(cpu->mux, cpu->step); if (ret) return ret; /* reprogram PLL */ ret = clk_set_rate(cpu->pll, rate); if (ret) { clk_set_parent(cpu->mux, cpu->pll); return ret; } /* switch back to PLL clock */ clk_set_parent(cpu->mux, cpu->pll); /* Ensure the divider is what we expect */ clk_set_rate(cpu->div, rate); return 0; } static const struct clk_ops clk_cpu_ops = { .recalc_rate = clk_cpu_recalc_rate, .round_rate = clk_cpu_round_rate, .set_rate = clk_cpu_set_rate, }; struct clk_hw *imx_clk_hw_cpu(const char *name, const char *parent_name, struct clk *div, struct clk *mux, struct clk *pll, struct clk *step) { struct clk_cpu *cpu; struct clk_hw *hw; struct clk_init_data init; int ret; cpu = kzalloc(sizeof(*cpu), GFP_KERNEL); if (!cpu) return ERR_PTR(-ENOMEM); cpu->div = div; cpu->mux = mux; cpu->pll = pll; cpu->step = step; init.name = name; init.ops = &clk_cpu_ops; init.flags = CLK_IS_CRITICAL; init.parent_names = &parent_name; init.num_parents = 1; cpu->hw.init = &init; hw = &cpu->hw; ret = clk_hw_register(NULL, hw); if (ret) { kfree(cpu); return ERR_PTR(ret); } return hw; } EXPORT_SYMBOL_GPL(imx_clk_hw_cpu);
linux-master
drivers/clk/imx/clk-cpu.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright 2012 Freescale Semiconductor, Inc. * Copyright 2012 Linaro Ltd. */ #include <linux/clk-provider.h> #include <linux/export.h> #include <linux/io.h> #include <linux/slab.h> #include <linux/err.h> #include "clk.h" /** * struct clk_pfd - IMX PFD clock * @hw: clock source * @reg: PFD register address * @idx: the index of PFD encoded in the register * * PFD clock found on i.MX6 series. Each register for PFD has 4 clk_pfd * data encoded, and member idx is used to specify the one. And each * register has SET, CLR and TOG registers at offset 0x4 0x8 and 0xc. */ struct clk_pfd { struct clk_hw hw; void __iomem *reg; u8 idx; }; #define to_clk_pfd(_hw) container_of(_hw, struct clk_pfd, hw) #define SET 0x4 #define CLR 0x8 #define OTG 0xc static int clk_pfd_enable(struct clk_hw *hw) { struct clk_pfd *pfd = to_clk_pfd(hw); writel_relaxed(1 << ((pfd->idx + 1) * 8 - 1), pfd->reg + CLR); return 0; } static void clk_pfd_disable(struct clk_hw *hw) { struct clk_pfd *pfd = to_clk_pfd(hw); writel_relaxed(1 << ((pfd->idx + 1) * 8 - 1), pfd->reg + SET); } static unsigned long clk_pfd_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_pfd *pfd = to_clk_pfd(hw); u64 tmp = parent_rate; u8 frac = (readl_relaxed(pfd->reg) >> (pfd->idx * 8)) & 0x3f; tmp *= 18; do_div(tmp, frac); return tmp; } static long clk_pfd_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { u64 tmp = *prate; u8 frac; tmp = tmp * 18 + rate / 2; do_div(tmp, rate); frac = tmp; if (frac < 12) frac = 12; else if (frac > 35) frac = 35; tmp = *prate; tmp *= 18; do_div(tmp, frac); return tmp; } static int clk_pfd_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_pfd *pfd = to_clk_pfd(hw); u64 tmp = parent_rate; u8 frac; tmp = tmp * 18 + rate / 2; do_div(tmp, rate); frac = tmp; if (frac < 12) frac = 12; else if (frac > 35) frac = 35; writel_relaxed(0x3f << (pfd->idx * 8), pfd->reg + CLR); writel_relaxed(frac << (pfd->idx * 8), pfd->reg + SET); return 0; } static int clk_pfd_is_enabled(struct clk_hw *hw) { struct clk_pfd *pfd = to_clk_pfd(hw); if (readl_relaxed(pfd->reg) & (1 << ((pfd->idx + 1) * 8 - 1))) return 0; return 1; } static const struct clk_ops clk_pfd_ops = { .enable = clk_pfd_enable, .disable = clk_pfd_disable, .recalc_rate = clk_pfd_recalc_rate, .round_rate = clk_pfd_round_rate, .set_rate = clk_pfd_set_rate, .is_enabled = clk_pfd_is_enabled, }; struct clk_hw *imx_clk_hw_pfd(const char *name, const char *parent_name, void __iomem *reg, u8 idx) { struct clk_pfd *pfd; struct clk_hw *hw; struct clk_init_data init; int ret; pfd = kzalloc(sizeof(*pfd), GFP_KERNEL); if (!pfd) return ERR_PTR(-ENOMEM); pfd->reg = reg; pfd->idx = idx; init.name = name; init.ops = &clk_pfd_ops; init.flags = 0; init.parent_names = &parent_name; init.num_parents = 1; pfd->hw.init = &init; hw = &pfd->hw; ret = clk_hw_register(NULL, hw); if (ret) { kfree(pfd); return ERR_PTR(ret); } return hw; } EXPORT_SYMBOL_GPL(imx_clk_hw_pfd);
linux-master
drivers/clk/imx/clk-pfd.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2021 NXP */ #include <dt-bindings/clock/imx8ulp-clock.h> #include <linux/err.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/reset-controller.h> #include <linux/slab.h> #include "clk.h" static const char * const pll_pre_sels[] = { "sosc", "frosc", }; static const char * const a35_sels[] = { "frosc", "spll2", "sosc", "lvds", }; static const char * const nic_sels[] = { "frosc", "spll3_pfd0", "sosc", "lvds", }; static const char * const pcc3_periph_bus_sels[] = { "dummy", "lposc", "sosc_div2", "frosc_div2", "xbar_divbus", "spll3_pfd1_div1", "spll3_pfd0_div2", "spll3_pfd0_div1", }; static const char * const pcc4_periph_bus_sels[] = { "dummy", "dummy", "lposc", "sosc_div2", "frosc_div2", "xbar_divbus", "spll3_vcodiv", "spll3_pfd0_div1", }; static const char * const pcc4_periph_plat_sels[] = { "dummy", "sosc_div1", "frosc_div1", "spll3_pfd3_div2", "spll3_pfd3_div1", "spll3_pfd2_div2", "spll3_pfd2_div1", "spll3_pfd1_div2", }; static const char * const pcc5_periph_bus_sels[] = { "dummy", "dummy", "lposc", "sosc_div2", "frosc_div2", "lpav_bus_clk", "pll4_vcodiv", "pll4_pfd3_div1", }; static const char * const pcc5_periph_plat_sels[] = { "dummy", "pll4_pfd3_div2", "pll4_pfd2_div2", "pll4_pfd2_div1", "pll4_pfd1_div2", "pll4_pfd1_div1", "pll4_pfd0_div2", "pll4_pfd0_div1", }; static const char * const hifi_sels[] = { "frosc", "pll4", "pll4_pfd0", "sosc", "lvds", "dummy", "dummy", "dummy", }; static const char * const ddr_sels[] = { "frosc", "pll4_pfd1", "sosc", "lvds", "pll4", "pll4", "pll4", "pll4", }; static const char * const lpav_sels[] = { "frosc", "pll4_pfd1", "sosc", "lvds", }; static const char * const sai45_sels[] = { "spll3_pfd1_div1", "aud_clk1", "aud_clk2", "sosc", }; static const char * const sai67_sels[] = { "spll1_pfd2_div", "spll3_pfd1_div1", "aud_clk0", "aud_clk1", "aud_clk2", "sosc", "dummy", "dummy", }; static const char * const aud_clk1_sels[] = { "ext_aud_mclk2", "sai4_rx_bclk", "sai4_tx_bclk", "sai5_rx_bclk", "sai5_tx_bclk", "dummy", "dummy", "dummy", }; static const char * const aud_clk2_sels[] = { "ext_aud_mclk3", "sai6_rx_bclk", "sai6_tx_bclk", "sai7_rx_bclk", "sai7_tx_bclk", "spdif_rx", "dummy", "dummy", }; static const char * const enet_ts_sels[] = { "ext_rmii_clk", "ext_ts_clk", "rosc", "ext_aud_mclk", "sosc", "dummy", "dummy", "dummy"}; static const char * const xbar_divbus[] = { "xbar_divbus" }; static const char * const nic_per_divplat[] = { "nic_per_divplat" }; static const char * const lpav_axi_div[] = { "lpav_axi_div" }; static const char * const lpav_bus_div[] = { "lpav_bus_div" }; struct pcc_reset_dev { void __iomem *base; struct reset_controller_dev rcdev; const u32 *resets; /* Set to imx_ccm_lock to protect register access shared with clock control */ spinlock_t *lock; }; #define PCC_SW_RST BIT(28) #define to_pcc_reset_dev(_rcdev) container_of(_rcdev, struct pcc_reset_dev, rcdev) static const u32 pcc3_resets[] = { 0xa8, 0xac, 0xc8, 0xcc, 0xd0, 0xd4, 0xd8, 0xdc, 0xe0, 0xe4, 0xe8, 0xec, 0xf0 }; static const u32 pcc4_resets[] = { 0x4, 0x8, 0xc, 0x10, 0x14, 0x18, 0x1c, 0x20, 0x24, 0x34, 0x38, 0x3c, 0x40, 0x44, 0x48, 0x4c, 0x54 }; static const u32 pcc5_resets[] = { 0xa0, 0xa4, 0xa8, 0xac, 0xb0, 0xb4, 0xbc, 0xc0, 0xc8, 0xcc, 0xd0, 0xf0, 0xf4, 0xf8 }; static int imx8ulp_pcc_assert(struct reset_controller_dev *rcdev, unsigned long id) { struct pcc_reset_dev *pcc_reset = to_pcc_reset_dev(rcdev); u32 offset = pcc_reset->resets[id]; unsigned long flags; u32 val; spin_lock_irqsave(pcc_reset->lock, flags); val = readl(pcc_reset->base + offset); val &= ~PCC_SW_RST; writel(val, pcc_reset->base + offset); spin_unlock_irqrestore(pcc_reset->lock, flags); return 0; } static int imx8ulp_pcc_deassert(struct reset_controller_dev *rcdev, unsigned long id) { struct pcc_reset_dev *pcc_reset = to_pcc_reset_dev(rcdev); u32 offset = pcc_reset->resets[id]; unsigned long flags; u32 val; spin_lock_irqsave(pcc_reset->lock, flags); val = readl(pcc_reset->base + offset); val |= PCC_SW_RST; writel(val, pcc_reset->base + offset); spin_unlock_irqrestore(pcc_reset->lock, flags); return 0; } static const struct reset_control_ops imx8ulp_pcc_reset_ops = { .assert = imx8ulp_pcc_assert, .deassert = imx8ulp_pcc_deassert, }; static int imx8ulp_pcc_reset_init(struct platform_device *pdev, void __iomem *base, const u32 *resets, unsigned int nr_resets) { struct device_node *np = pdev->dev.of_node; struct device *dev = &pdev->dev; struct pcc_reset_dev *pcc_reset; pcc_reset = devm_kzalloc(dev, sizeof(*pcc_reset), GFP_KERNEL); if (!pcc_reset) return -ENOMEM; pcc_reset->base = base; pcc_reset->lock = &imx_ccm_lock; pcc_reset->resets = resets; pcc_reset->rcdev.owner = THIS_MODULE; pcc_reset->rcdev.nr_resets = nr_resets; pcc_reset->rcdev.ops = &imx8ulp_pcc_reset_ops; pcc_reset->rcdev.of_node = np; return devm_reset_controller_register(dev, &pcc_reset->rcdev); } static int imx8ulp_clk_cgc1_init(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct clk_hw_onecell_data *clk_data; struct clk_hw **clks; void __iomem *base; clk_data = devm_kzalloc(dev, struct_size(clk_data, hws, IMX8ULP_CLK_CGC1_END), GFP_KERNEL); if (!clk_data) return -ENOMEM; clk_data->num = IMX8ULP_CLK_CGC1_END; clks = clk_data->hws; clks[IMX8ULP_CLK_DUMMY] = imx_clk_hw_fixed("dummy", 0); /* CGC1 */ base = devm_platform_ioremap_resource(pdev, 0); if (WARN_ON(IS_ERR(base))) return PTR_ERR(base); clks[IMX8ULP_CLK_SPLL2_PRE_SEL] = imx_clk_hw_mux_flags("spll2_pre_sel", base + 0x510, 0, 1, pll_pre_sels, ARRAY_SIZE(pll_pre_sels), CLK_SET_PARENT_GATE); clks[IMX8ULP_CLK_SPLL3_PRE_SEL] = imx_clk_hw_mux_flags("spll3_pre_sel", base + 0x610, 0, 1, pll_pre_sels, ARRAY_SIZE(pll_pre_sels), CLK_SET_PARENT_GATE); clks[IMX8ULP_CLK_SPLL2] = imx_clk_hw_pllv4(IMX_PLLV4_IMX8ULP_1GHZ, "spll2", "spll2_pre_sel", base + 0x500); clks[IMX8ULP_CLK_SPLL3] = imx_clk_hw_pllv4(IMX_PLLV4_IMX8ULP, "spll3", "spll3_pre_sel", base + 0x600); clks[IMX8ULP_CLK_SPLL3_VCODIV] = imx_clk_hw_divider("spll3_vcodiv", "spll3", base + 0x604, 0, 6); clks[IMX8ULP_CLK_SPLL3_PFD0] = imx_clk_hw_pfdv2(IMX_PFDV2_IMX8ULP, "spll3_pfd0", "spll3_vcodiv", base + 0x614, 0); clks[IMX8ULP_CLK_SPLL3_PFD1] = imx_clk_hw_pfdv2(IMX_PFDV2_IMX8ULP, "spll3_pfd1", "spll3_vcodiv", base + 0x614, 1); clks[IMX8ULP_CLK_SPLL3_PFD2] = imx_clk_hw_pfdv2(IMX_PFDV2_IMX8ULP, "spll3_pfd2", "spll3_vcodiv", base + 0x614, 2); clks[IMX8ULP_CLK_SPLL3_PFD3] = imx_clk_hw_pfdv2(IMX_PFDV2_IMX8ULP, "spll3_pfd3", "spll3_vcodiv", base + 0x614, 3); clks[IMX8ULP_CLK_SPLL3_PFD0_DIV1_GATE] = imx_clk_hw_gate_dis("spll3_pfd0_div1_gate", "spll3_pfd0", base + 0x608, 7); clks[IMX8ULP_CLK_SPLL3_PFD0_DIV2_GATE] = imx_clk_hw_gate_dis("spll3_pfd0_div2_gate", "spll3_pfd0", base + 0x608, 15); clks[IMX8ULP_CLK_SPLL3_PFD1_DIV1_GATE] = imx_clk_hw_gate_dis("spll3_pfd1_div1_gate", "spll3_pfd1", base + 0x608, 23); clks[IMX8ULP_CLK_SPLL3_PFD1_DIV2_GATE] = imx_clk_hw_gate_dis("spll3_pfd1_div2_gate", "spll3_pfd1", base + 0x608, 31); clks[IMX8ULP_CLK_SPLL3_PFD2_DIV1_GATE] = imx_clk_hw_gate_dis("spll3_pfd2_div1_gate", "spll3_pfd2", base + 0x60c, 7); clks[IMX8ULP_CLK_SPLL3_PFD2_DIV2_GATE] = imx_clk_hw_gate_dis("spll3_pfd2_div2_gate", "spll3_pfd2", base + 0x60c, 15); clks[IMX8ULP_CLK_SPLL3_PFD3_DIV1_GATE] = imx_clk_hw_gate_dis("spll3_pfd3_div1_gate", "spll3_pfd3", base + 0x60c, 23); clks[IMX8ULP_CLK_SPLL3_PFD3_DIV2_GATE] = imx_clk_hw_gate_dis("spll3_pfd3_div2_gate", "spll3_pfd3", base + 0x60c, 31); clks[IMX8ULP_CLK_SPLL3_PFD0_DIV1] = imx_clk_hw_divider("spll3_pfd0_div1", "spll3_pfd0_div1_gate", base + 0x608, 0, 6); clks[IMX8ULP_CLK_SPLL3_PFD0_DIV2] = imx_clk_hw_divider("spll3_pfd0_div2", "spll3_pfd0_div2_gate", base + 0x608, 8, 6); clks[IMX8ULP_CLK_SPLL3_PFD1_DIV1] = imx_clk_hw_divider("spll3_pfd1_div1", "spll3_pfd1_div1_gate", base + 0x608, 16, 6); clks[IMX8ULP_CLK_SPLL3_PFD1_DIV2] = imx_clk_hw_divider("spll3_pfd1_div2", "spll3_pfd1_div2_gate", base + 0x608, 24, 6); clks[IMX8ULP_CLK_SPLL3_PFD2_DIV1] = imx_clk_hw_divider("spll3_pfd2_div1", "spll3_pfd2_div1_gate", base + 0x60c, 0, 6); clks[IMX8ULP_CLK_SPLL3_PFD2_DIV2] = imx_clk_hw_divider("spll3_pfd2_div2", "spll3_pfd2_div2_gate", base + 0x60c, 8, 6); clks[IMX8ULP_CLK_SPLL3_PFD3_DIV1] = imx_clk_hw_divider("spll3_pfd3_div1", "spll3_pfd3_div1_gate", base + 0x60c, 16, 6); clks[IMX8ULP_CLK_SPLL3_PFD3_DIV2] = imx_clk_hw_divider("spll3_pfd3_div2", "spll3_pfd3_div2_gate", base + 0x60c, 24, 6); clks[IMX8ULP_CLK_A35_SEL] = imx_clk_hw_mux2("a35_sel", base + 0x14, 28, 2, a35_sels, ARRAY_SIZE(a35_sels)); clks[IMX8ULP_CLK_A35_DIV] = imx_clk_hw_divider_flags("a35_div", "a35_sel", base + 0x14, 21, 6, CLK_SET_RATE_PARENT | CLK_IS_CRITICAL); clks[IMX8ULP_CLK_NIC_SEL] = imx_clk_hw_mux2("nic_sel", base + 0x34, 28, 2, nic_sels, ARRAY_SIZE(nic_sels)); clks[IMX8ULP_CLK_NIC_AD_DIVPLAT] = imx_clk_hw_divider_flags("nic_ad_divplat", "nic_sel", base + 0x34, 21, 6, CLK_SET_RATE_PARENT | CLK_IS_CRITICAL); clks[IMX8ULP_CLK_NIC_PER_DIVPLAT] = imx_clk_hw_divider_flags("nic_per_divplat", "nic_ad_divplat", base + 0x34, 14, 6, CLK_SET_RATE_PARENT); clks[IMX8ULP_CLK_XBAR_AD_DIVPLAT] = imx_clk_hw_divider_flags("xbar_ad_divplat", "nic_ad_divplat", base + 0x38, 14, 6, CLK_SET_RATE_PARENT); clks[IMX8ULP_CLK_XBAR_DIVBUS] = imx_clk_hw_divider_flags("xbar_divbus", "xbar_ad_divplat", base + 0x38, 7, 6, CLK_SET_RATE_PARENT); clks[IMX8ULP_CLK_XBAR_AD_SLOW] = imx_clk_hw_divider_flags("xbar_ad_slow", "xbar_divbus", base + 0x38, 0, 6, CLK_SET_RATE_PARENT); clks[IMX8ULP_CLK_SOSC_DIV1_GATE] = imx_clk_hw_gate_dis("sosc_div1_gate", "sosc", base + 0x108, 7); clks[IMX8ULP_CLK_SOSC_DIV2_GATE] = imx_clk_hw_gate_dis("sosc_div2_gate", "sosc", base + 0x108, 15); clks[IMX8ULP_CLK_SOSC_DIV3_GATE] = imx_clk_hw_gate_dis("sosc_div3_gate", "sosc", base + 0x108, 23); clks[IMX8ULP_CLK_SOSC_DIV1] = imx_clk_hw_divider("sosc_div1", "sosc_div1_gate", base + 0x108, 0, 6); clks[IMX8ULP_CLK_SOSC_DIV2] = imx_clk_hw_divider("sosc_div2", "sosc_div2_gate", base + 0x108, 8, 6); clks[IMX8ULP_CLK_SOSC_DIV3] = imx_clk_hw_divider("sosc_div3", "sosc_div3_gate", base + 0x108, 16, 6); clks[IMX8ULP_CLK_FROSC_DIV1_GATE] = imx_clk_hw_gate_dis("frosc_div1_gate", "frosc", base + 0x208, 7); clks[IMX8ULP_CLK_FROSC_DIV2_GATE] = imx_clk_hw_gate_dis("frosc_div2_gate", "frosc", base + 0x208, 15); clks[IMX8ULP_CLK_FROSC_DIV3_GATE] = imx_clk_hw_gate_dis("frosc_div3_gate", "frosc", base + 0x208, 23); clks[IMX8ULP_CLK_FROSC_DIV1] = imx_clk_hw_divider("frosc_div1", "frosc_div1_gate", base + 0x208, 0, 6); clks[IMX8ULP_CLK_FROSC_DIV2] = imx_clk_hw_divider("frosc_div2", "frosc_div2_gate", base + 0x208, 8, 6); clks[IMX8ULP_CLK_FROSC_DIV3] = imx_clk_hw_divider("frosc_div3", "frosc_div3_gate", base + 0x208, 16, 6); clks[IMX8ULP_CLK_AUD_CLK1] = imx_clk_hw_mux2("aud_clk1", base + 0x900, 0, 3, aud_clk1_sels, ARRAY_SIZE(aud_clk1_sels)); clks[IMX8ULP_CLK_SAI4_SEL] = imx_clk_hw_mux2("sai4_sel", base + 0x904, 0, 2, sai45_sels, ARRAY_SIZE(sai45_sels)); clks[IMX8ULP_CLK_SAI5_SEL] = imx_clk_hw_mux2("sai5_sel", base + 0x904, 8, 2, sai45_sels, ARRAY_SIZE(sai45_sels)); clks[IMX8ULP_CLK_ENET_TS_SEL] = imx_clk_hw_mux2("enet_ts", base + 0x700, 24, 3, enet_ts_sels, ARRAY_SIZE(enet_ts_sels)); imx_check_clk_hws(clks, clk_data->num); return devm_of_clk_add_hw_provider(dev, of_clk_hw_onecell_get, clk_data); } static int imx8ulp_clk_cgc2_init(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct clk_hw_onecell_data *clk_data; struct clk_hw **clks; void __iomem *base; clk_data = devm_kzalloc(dev, struct_size(clk_data, hws, IMX8ULP_CLK_CGC2_END), GFP_KERNEL); if (!clk_data) return -ENOMEM; clk_data->num = IMX8ULP_CLK_CGC2_END; clks = clk_data->hws; /* CGC2 */ base = devm_platform_ioremap_resource(pdev, 0); if (WARN_ON(IS_ERR(base))) return PTR_ERR(base); clks[IMX8ULP_CLK_PLL4_PRE_SEL] = imx_clk_hw_mux_flags("pll4_pre_sel", base + 0x610, 0, 1, pll_pre_sels, ARRAY_SIZE(pll_pre_sels), CLK_SET_PARENT_GATE); clks[IMX8ULP_CLK_PLL4] = imx_clk_hw_pllv4(IMX_PLLV4_IMX8ULP, "pll4", "pll4_pre_sel", base + 0x600); clks[IMX8ULP_CLK_PLL4_VCODIV] = imx_clk_hw_divider("pll4_vcodiv", "pll4", base + 0x604, 0, 6); clks[IMX8ULP_CLK_HIFI_SEL] = imx_clk_hw_mux_flags("hifi_sel", base + 0x14, 28, 3, hifi_sels, ARRAY_SIZE(hifi_sels), CLK_SET_PARENT_GATE); clks[IMX8ULP_CLK_HIFI_DIVCORE] = imx_clk_hw_divider("hifi_core_div", "hifi_sel", base + 0x14, 21, 6); clks[IMX8ULP_CLK_HIFI_DIVPLAT] = imx_clk_hw_divider("hifi_plat_div", "hifi_core_div", base + 0x14, 14, 6); clks[IMX8ULP_CLK_DDR_SEL] = imx_clk_hw_mux_flags("ddr_sel", base + 0x40, 28, 3, ddr_sels, ARRAY_SIZE(ddr_sels), CLK_GET_RATE_NOCACHE); clks[IMX8ULP_CLK_DDR_DIV] = imx_clk_hw_divider_flags("ddr_div", "ddr_sel", base + 0x40, 21, 6, CLK_IS_CRITICAL | CLK_GET_RATE_NOCACHE); clks[IMX8ULP_CLK_LPAV_AXI_SEL] = imx_clk_hw_mux2("lpav_sel", base + 0x3c, 28, 2, lpav_sels, ARRAY_SIZE(lpav_sels)); clks[IMX8ULP_CLK_LPAV_AXI_DIV] = imx_clk_hw_divider_flags("lpav_axi_div", "lpav_sel", base + 0x3c, 21, 6, CLK_IS_CRITICAL); clks[IMX8ULP_CLK_LPAV_AHB_DIV] = imx_clk_hw_divider_flags("lpav_ahb_div", "lpav_axi_div", base + 0x3c, 14, 6, CLK_IS_CRITICAL); clks[IMX8ULP_CLK_LPAV_BUS_DIV] = imx_clk_hw_divider_flags("lpav_bus_div", "lpav_axi_div", base + 0x3c, 7, 6, CLK_IS_CRITICAL); clks[IMX8ULP_CLK_PLL4_PFD0] = imx_clk_hw_pfdv2(IMX_PFDV2_IMX8ULP, "pll4_pfd0", "pll4_vcodiv", base + 0x614, 0); clks[IMX8ULP_CLK_PLL4_PFD1] = imx_clk_hw_pfdv2(IMX_PFDV2_IMX8ULP, "pll4_pfd1", "pll4_vcodiv", base + 0x614, 1); clks[IMX8ULP_CLK_PLL4_PFD2] = imx_clk_hw_pfdv2(IMX_PFDV2_IMX8ULP, "pll4_pfd2", "pll4_vcodiv", base + 0x614, 2); clks[IMX8ULP_CLK_PLL4_PFD3] = imx_clk_hw_pfdv2(IMX_PFDV2_IMX8ULP, "pll4_pfd3", "pll4_vcodiv", base + 0x614, 3); clks[IMX8ULP_CLK_PLL4_PFD0_DIV1_GATE] = imx_clk_hw_gate_dis("pll4_pfd0_div1_gate", "pll4_pfd0", base + 0x608, 7); clks[IMX8ULP_CLK_PLL4_PFD0_DIV2_GATE] = imx_clk_hw_gate_dis("pll4_pfd0_div2_gate", "pll4_pfd0", base + 0x608, 15); clks[IMX8ULP_CLK_PLL4_PFD1_DIV1_GATE] = imx_clk_hw_gate_dis("pll4_pfd1_div1_gate", "pll4_pfd1", base + 0x608, 23); clks[IMX8ULP_CLK_PLL4_PFD1_DIV2_GATE] = imx_clk_hw_gate_dis("pll4_pfd1_div2_gate", "pll4_pfd1", base + 0x608, 31); clks[IMX8ULP_CLK_PLL4_PFD2_DIV1_GATE] = imx_clk_hw_gate_dis("pll4_pfd2_div1_gate", "pll4_pfd2", base + 0x60c, 7); clks[IMX8ULP_CLK_PLL4_PFD2_DIV2_GATE] = imx_clk_hw_gate_dis("pll4_pfd2_div2_gate", "pll4_pfd2", base + 0x60c, 15); clks[IMX8ULP_CLK_PLL4_PFD3_DIV1_GATE] = imx_clk_hw_gate_dis("pll4_pfd3_div1_gate", "pll4_pfd3", base + 0x60c, 23); clks[IMX8ULP_CLK_PLL4_PFD3_DIV2_GATE] = imx_clk_hw_gate_dis("pll4_pfd3_div2_gate", "pll4_pfd3", base + 0x60c, 31); clks[IMX8ULP_CLK_PLL4_PFD0_DIV1] = imx_clk_hw_divider_closest("pll4_pfd0_div1", "pll4_pfd0_div1_gate", base + 0x608, 0, 6); clks[IMX8ULP_CLK_PLL4_PFD0_DIV2] = imx_clk_hw_divider_closest("pll4_pfd0_div2", "pll4_pfd0_div2_gate", base + 0x608, 8, 6); clks[IMX8ULP_CLK_PLL4_PFD1_DIV1] = imx_clk_hw_divider_closest("pll4_pfd1_div1", "pll4_pfd1_div1_gate", base + 0x608, 16, 6); clks[IMX8ULP_CLK_PLL4_PFD1_DIV2] = imx_clk_hw_divider_closest("pll4_pfd1_div2", "pll4_pfd1_div2_gate", base + 0x608, 24, 6); clks[IMX8ULP_CLK_PLL4_PFD2_DIV1] = imx_clk_hw_divider_closest("pll4_pfd2_div1", "pll4_pfd2_div1_gate", base + 0x60c, 0, 6); clks[IMX8ULP_CLK_PLL4_PFD2_DIV2] = imx_clk_hw_divider_closest("pll4_pfd2_div2", "pll4_pfd2_div2_gate", base + 0x60c, 8, 6); clks[IMX8ULP_CLK_PLL4_PFD3_DIV1] = imx_clk_hw_divider_closest("pll4_pfd3_div1", "pll4_pfd3_div1_gate", base + 0x60c, 16, 6); clks[IMX8ULP_CLK_PLL4_PFD3_DIV2] = imx_clk_hw_divider_closest("pll4_pfd3_div2", "pll4_pfd3_div2_gate", base + 0x60c, 24, 6); clks[IMX8ULP_CLK_CGC2_SOSC_DIV1_GATE] = imx_clk_hw_gate_dis("cgc2_sosc_div1_gate", "sosc", base + 0x108, 7); clks[IMX8ULP_CLK_CGC2_SOSC_DIV2_GATE] = imx_clk_hw_gate_dis("cgc2_sosc_div2_gate", "sosc", base + 0x108, 15); clks[IMX8ULP_CLK_CGC2_SOSC_DIV3_GATE] = imx_clk_hw_gate_dis("cgc2_sosc_div3_gate", "sosc", base + 0x108, 23); clks[IMX8ULP_CLK_CGC2_SOSC_DIV1] = imx_clk_hw_divider("cgc2_sosc_div1", "cgc2_sosc_div1_gate", base + 0x108, 0, 6); clks[IMX8ULP_CLK_CGC2_SOSC_DIV2] = imx_clk_hw_divider("cgc2_sosc_div2", "cgc2_sosc_div2_gate", base + 0x108, 8, 6); clks[IMX8ULP_CLK_CGC2_SOSC_DIV3] = imx_clk_hw_divider("cgc2_sosc_div3", "cgc2_sosc_div3_gate", base + 0x108, 16, 6); clks[IMX8ULP_CLK_CGC2_FROSC_DIV1_GATE] = imx_clk_hw_gate_dis("cgc2_frosc_div1_gate", "frosc", base + 0x208, 7); clks[IMX8ULP_CLK_CGC2_FROSC_DIV2_GATE] = imx_clk_hw_gate_dis("cgc2_frosc_div2_gate", "frosc", base + 0x208, 15); clks[IMX8ULP_CLK_CGC2_FROSC_DIV3_GATE] = imx_clk_hw_gate_dis("cgc2_frosc_div3_gate", "frosc", base + 0x208, 23); clks[IMX8ULP_CLK_CGC2_FROSC_DIV1] = imx_clk_hw_divider("cgc2_frosc_div1", "cgc2_frosc_div1_gate", base + 0x208, 0, 6); clks[IMX8ULP_CLK_CGC2_FROSC_DIV2] = imx_clk_hw_divider("cgc2_frosc_div2", "cgc2_frosc_div2_gate", base + 0x208, 8, 6); clks[IMX8ULP_CLK_CGC2_FROSC_DIV3] = imx_clk_hw_divider("cgc2_frosc_div3", "cgc2_frosc_div3_gate", base + 0x208, 16, 6); clks[IMX8ULP_CLK_AUD_CLK2] = imx_clk_hw_mux2("aud_clk2", base + 0x900, 0, 3, aud_clk2_sels, ARRAY_SIZE(aud_clk2_sels)); clks[IMX8ULP_CLK_SAI6_SEL] = imx_clk_hw_mux2("sai6_sel", base + 0x904, 0, 3, sai67_sels, ARRAY_SIZE(sai67_sels)); clks[IMX8ULP_CLK_SAI7_SEL] = imx_clk_hw_mux2("sai7_sel", base + 0x904, 8, 3, sai67_sels, ARRAY_SIZE(sai67_sels)); clks[IMX8ULP_CLK_SPDIF_SEL] = imx_clk_hw_mux2("spdif_sel", base + 0x910, 0, 3, sai67_sels, ARRAY_SIZE(sai67_sels)); clks[IMX8ULP_CLK_DSI_PHY_REF] = imx_clk_hw_fixed("dsi_phy_ref", 24000000); imx_check_clk_hws(clks, clk_data->num); return devm_of_clk_add_hw_provider(dev, of_clk_hw_onecell_get, clk_data); } static int imx8ulp_clk_pcc3_init(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct clk_hw_onecell_data *clk_data; struct clk_hw **clks; void __iomem *base; int ret; clk_data = devm_kzalloc(dev, struct_size(clk_data, hws, IMX8ULP_CLK_PCC3_END), GFP_KERNEL); if (!clk_data) return -ENOMEM; clk_data->num = IMX8ULP_CLK_PCC3_END; clks = clk_data->hws; /* PCC3 */ base = devm_platform_ioremap_resource(pdev, 0); if (WARN_ON(IS_ERR(base))) return PTR_ERR(base); clks[IMX8ULP_CLK_WDOG3] = imx8ulp_clk_hw_composite("wdog3", pcc3_periph_bus_sels, ARRAY_SIZE(pcc3_periph_bus_sels), true, true, true, base + 0xa8, 1); clks[IMX8ULP_CLK_WDOG4] = imx8ulp_clk_hw_composite("wdog4", pcc3_periph_bus_sels, ARRAY_SIZE(pcc3_periph_bus_sels), true, true, true, base + 0xac, 1); clks[IMX8ULP_CLK_LPIT1] = imx8ulp_clk_hw_composite("lpit1", pcc3_periph_bus_sels, ARRAY_SIZE(pcc3_periph_bus_sels), true, true, true, base + 0xc8, 1); clks[IMX8ULP_CLK_TPM4] = imx8ulp_clk_hw_composite("tpm4", pcc3_periph_bus_sels, ARRAY_SIZE(pcc3_periph_bus_sels), true, true, true, base + 0xcc, 1); clks[IMX8ULP_CLK_FLEXIO1] = imx8ulp_clk_hw_composite("flexio1", pcc3_periph_bus_sels, ARRAY_SIZE(pcc3_periph_bus_sels), true, true, true, base + 0xd4, 1); clks[IMX8ULP_CLK_I3C2] = imx8ulp_clk_hw_composite("i3c2", pcc3_periph_bus_sels, ARRAY_SIZE(pcc3_periph_bus_sels), true, true, true, base + 0xd8, 1); clks[IMX8ULP_CLK_LPI2C4] = imx8ulp_clk_hw_composite("lpi2c4", pcc3_periph_bus_sels, ARRAY_SIZE(pcc3_periph_bus_sels), true, true, true, base + 0xdc, 1); clks[IMX8ULP_CLK_LPI2C5] = imx8ulp_clk_hw_composite("lpi2c5", pcc3_periph_bus_sels, ARRAY_SIZE(pcc3_periph_bus_sels), true, true, true, base + 0xe0, 1); clks[IMX8ULP_CLK_LPUART4] = imx8ulp_clk_hw_composite("lpuart4", pcc3_periph_bus_sels, ARRAY_SIZE(pcc3_periph_bus_sels), true, true, true, base + 0xe4, 1); clks[IMX8ULP_CLK_LPUART5] = imx8ulp_clk_hw_composite("lpuart5", pcc3_periph_bus_sels, ARRAY_SIZE(pcc3_periph_bus_sels), true, true, true, base + 0xe8, 1); clks[IMX8ULP_CLK_LPSPI4] = imx8ulp_clk_hw_composite("lpspi4", pcc3_periph_bus_sels, ARRAY_SIZE(pcc3_periph_bus_sels), true, true, true, base + 0xec, 1); clks[IMX8ULP_CLK_LPSPI5] = imx8ulp_clk_hw_composite("lpspi5", pcc3_periph_bus_sels, ARRAY_SIZE(pcc3_periph_bus_sels), true, true, true, base + 0xf0, 1); clks[IMX8ULP_CLK_DMA1_MP] = imx_clk_hw_gate("pcc_dma1_mp", "xbar_ad_divplat", base + 0x4, 30); clks[IMX8ULP_CLK_DMA1_CH0] = imx_clk_hw_gate("pcc_dma1_ch0", "xbar_ad_divplat", base + 0x8, 30); clks[IMX8ULP_CLK_DMA1_CH1] = imx_clk_hw_gate("pcc_dma1_ch1", "xbar_ad_divplat", base + 0xc, 30); clks[IMX8ULP_CLK_DMA1_CH2] = imx_clk_hw_gate("pcc_dma1_ch2", "xbar_ad_divplat", base + 0x10, 30); clks[IMX8ULP_CLK_DMA1_CH3] = imx_clk_hw_gate("pcc_dma1_ch3", "xbar_ad_divplat", base + 0x14, 30); clks[IMX8ULP_CLK_DMA1_CH4] = imx_clk_hw_gate("pcc_dma1_ch4", "xbar_ad_divplat", base + 0x18, 30); clks[IMX8ULP_CLK_DMA1_CH5] = imx_clk_hw_gate("pcc_dma1_ch5", "xbar_ad_divplat", base + 0x1c, 30); clks[IMX8ULP_CLK_DMA1_CH6] = imx_clk_hw_gate("pcc_dma1_ch6", "xbar_ad_divplat", base + 0x20, 30); clks[IMX8ULP_CLK_DMA1_CH7] = imx_clk_hw_gate("pcc_dma1_ch7", "xbar_ad_divplat", base + 0x24, 30); clks[IMX8ULP_CLK_DMA1_CH8] = imx_clk_hw_gate("pcc_dma1_ch8", "xbar_ad_divplat", base + 0x28, 30); clks[IMX8ULP_CLK_DMA1_CH9] = imx_clk_hw_gate("pcc_dma1_ch9", "xbar_ad_divplat", base + 0x2c, 30); clks[IMX8ULP_CLK_DMA1_CH10] = imx_clk_hw_gate("pcc_dma1_ch10", "xbar_ad_divplat", base + 0x30, 30); clks[IMX8ULP_CLK_DMA1_CH11] = imx_clk_hw_gate("pcc_dma1_ch11", "xbar_ad_divplat", base + 0x34, 30); clks[IMX8ULP_CLK_DMA1_CH12] = imx_clk_hw_gate("pcc_dma1_ch12", "xbar_ad_divplat", base + 0x38, 30); clks[IMX8ULP_CLK_DMA1_CH13] = imx_clk_hw_gate("pcc_dma1_ch13", "xbar_ad_divplat", base + 0x3c, 30); clks[IMX8ULP_CLK_DMA1_CH14] = imx_clk_hw_gate("pcc_dma1_ch14", "xbar_ad_divplat", base + 0x40, 30); clks[IMX8ULP_CLK_DMA1_CH15] = imx_clk_hw_gate("pcc_dma1_ch15", "xbar_ad_divplat", base + 0x44, 30); clks[IMX8ULP_CLK_DMA1_CH16] = imx_clk_hw_gate("pcc_dma1_ch16", "xbar_ad_divplat", base + 0x48, 30); clks[IMX8ULP_CLK_DMA1_CH17] = imx_clk_hw_gate("pcc_dma1_ch17", "xbar_ad_divplat", base + 0x4c, 30); clks[IMX8ULP_CLK_DMA1_CH18] = imx_clk_hw_gate("pcc_dma1_ch18", "xbar_ad_divplat", base + 0x50, 30); clks[IMX8ULP_CLK_DMA1_CH19] = imx_clk_hw_gate("pcc_dma1_ch19", "xbar_ad_divplat", base + 0x54, 30); clks[IMX8ULP_CLK_DMA1_CH20] = imx_clk_hw_gate("pcc_dma1_ch20", "xbar_ad_divplat", base + 0x58, 30); clks[IMX8ULP_CLK_DMA1_CH21] = imx_clk_hw_gate("pcc_dma1_ch21", "xbar_ad_divplat", base + 0x5c, 30); clks[IMX8ULP_CLK_DMA1_CH22] = imx_clk_hw_gate("pcc_dma1_ch22", "xbar_ad_divplat", base + 0x60, 30); clks[IMX8ULP_CLK_DMA1_CH23] = imx_clk_hw_gate("pcc_dma1_ch23", "xbar_ad_divplat", base + 0x64, 30); clks[IMX8ULP_CLK_DMA1_CH24] = imx_clk_hw_gate("pcc_dma1_ch24", "xbar_ad_divplat", base + 0x68, 30); clks[IMX8ULP_CLK_DMA1_CH25] = imx_clk_hw_gate("pcc_dma1_ch25", "xbar_ad_divplat", base + 0x6c, 30); clks[IMX8ULP_CLK_DMA1_CH26] = imx_clk_hw_gate("pcc_dma1_ch26", "xbar_ad_divplat", base + 0x70, 30); clks[IMX8ULP_CLK_DMA1_CH27] = imx_clk_hw_gate("pcc_dma1_ch27", "xbar_ad_divplat", base + 0x74, 30); clks[IMX8ULP_CLK_DMA1_CH28] = imx_clk_hw_gate("pcc_dma1_ch28", "xbar_ad_divplat", base + 0x78, 30); clks[IMX8ULP_CLK_DMA1_CH29] = imx_clk_hw_gate("pcc_dma1_ch29", "xbar_ad_divplat", base + 0x7c, 30); clks[IMX8ULP_CLK_DMA1_CH30] = imx_clk_hw_gate("pcc_dma1_ch30", "xbar_ad_divplat", base + 0x80, 30); clks[IMX8ULP_CLK_DMA1_CH31] = imx_clk_hw_gate("pcc_dma1_ch31", "xbar_ad_divplat", base + 0x84, 30); clks[IMX8ULP_CLK_MU0_B] = imx_clk_hw_gate_flags("mu0_b", "xbar_ad_divplat", base + 0x88, 30, CLK_IS_CRITICAL); clks[IMX8ULP_CLK_MU3_A] = imx_clk_hw_gate("mu3_a", "xbar_ad_divplat", base + 0x8c, 30); clks[IMX8ULP_CLK_TPM5] = imx_clk_hw_gate_flags("tpm5", "sosc_div2", base + 0xd0, 30, CLK_IS_CRITICAL); imx_check_clk_hws(clks, clk_data->num); ret = devm_of_clk_add_hw_provider(dev, of_clk_hw_onecell_get, clk_data); if (ret) return ret; imx_register_uart_clocks(); /* register the pcc3 reset controller */ return imx8ulp_pcc_reset_init(pdev, base, pcc3_resets, ARRAY_SIZE(pcc3_resets)); } static int imx8ulp_clk_pcc4_init(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct clk_hw_onecell_data *clk_data; struct clk_hw **clks; void __iomem *base; int ret; clk_data = devm_kzalloc(dev, struct_size(clk_data, hws, IMX8ULP_CLK_PCC4_END), GFP_KERNEL); if (!clk_data) return -ENOMEM; clk_data->num = IMX8ULP_CLK_PCC4_END; clks = clk_data->hws; /* PCC4 */ base = devm_platform_ioremap_resource(pdev, 0); if (WARN_ON(IS_ERR(base))) return PTR_ERR(base); clks[IMX8ULP_CLK_FLEXSPI2] = imx8ulp_clk_hw_composite("flexspi2", pcc4_periph_plat_sels, ARRAY_SIZE(pcc4_periph_plat_sels), true, true, true, base + 0x4, 1); clks[IMX8ULP_CLK_TPM6] = imx8ulp_clk_hw_composite("tpm6", pcc4_periph_bus_sels, ARRAY_SIZE(pcc4_periph_bus_sels), true, true, true, base + 0x8, 1); clks[IMX8ULP_CLK_TPM7] = imx8ulp_clk_hw_composite("tpm7", pcc4_periph_bus_sels, ARRAY_SIZE(pcc4_periph_bus_sels), true, true, true, base + 0xc, 1); clks[IMX8ULP_CLK_LPI2C6] = imx8ulp_clk_hw_composite("lpi2c6", pcc4_periph_bus_sels, ARRAY_SIZE(pcc4_periph_bus_sels), true, true, true, base + 0x10, 1); clks[IMX8ULP_CLK_LPI2C7] = imx8ulp_clk_hw_composite("lpi2c7", pcc4_periph_bus_sels, ARRAY_SIZE(pcc4_periph_bus_sels), true, true, true, base + 0x14, 1); clks[IMX8ULP_CLK_LPUART6] = imx8ulp_clk_hw_composite("lpuart6", pcc4_periph_bus_sels, ARRAY_SIZE(pcc4_periph_bus_sels), true, true, true, base + 0x18, 1); clks[IMX8ULP_CLK_LPUART7] = imx8ulp_clk_hw_composite("lpuart7", pcc4_periph_bus_sels, ARRAY_SIZE(pcc4_periph_bus_sels), true, true, true, base + 0x1c, 1); clks[IMX8ULP_CLK_SAI4] = imx8ulp_clk_hw_composite("sai4", xbar_divbus, 1, false, false, true, base + 0x20, 1); /* sai ipg, NOT from sai sel */ clks[IMX8ULP_CLK_SAI5] = imx8ulp_clk_hw_composite("sai5", xbar_divbus, 1, false, false, true, base + 0x24, 1); /* sai ipg */ clks[IMX8ULP_CLK_PCTLE] = imx_clk_hw_gate("pctle", "xbar_divbus", base + 0x28, 30); clks[IMX8ULP_CLK_PCTLF] = imx_clk_hw_gate("pctlf", "xbar_divbus", base + 0x2c, 30); clks[IMX8ULP_CLK_USDHC0] = imx8ulp_clk_hw_composite("usdhc0", pcc4_periph_plat_sels, ARRAY_SIZE(pcc4_periph_plat_sels), true, false, true, base + 0x34, 1); clks[IMX8ULP_CLK_USDHC1] = imx8ulp_clk_hw_composite("usdhc1", pcc4_periph_plat_sels, ARRAY_SIZE(pcc4_periph_plat_sels), true, false, true, base + 0x38, 1); clks[IMX8ULP_CLK_USDHC2] = imx8ulp_clk_hw_composite("usdhc2", pcc4_periph_plat_sels, ARRAY_SIZE(pcc4_periph_plat_sels), true, false, true, base + 0x3c, 1); clks[IMX8ULP_CLK_USB0] = imx8ulp_clk_hw_composite("usb0", nic_per_divplat, 1, false, false, true, base + 0x40, 1); clks[IMX8ULP_CLK_USB0_PHY] = imx8ulp_clk_hw_composite("usb0_phy", xbar_divbus, 1, false, false, true, base + 0x44, 1); clks[IMX8ULP_CLK_USB1] = imx8ulp_clk_hw_composite("usb1", nic_per_divplat, 1, false, false, true, base + 0x48, 1); clks[IMX8ULP_CLK_USB1_PHY] = imx8ulp_clk_hw_composite("usb1_phy", xbar_divbus, 1, false, false, true, base + 0x4c, 1); clks[IMX8ULP_CLK_USB_XBAR] = imx_clk_hw_gate("usb_xbar", "xbar_divbus", base + 0x50, 30); clks[IMX8ULP_CLK_ENET] = imx8ulp_clk_hw_composite("enet", nic_per_divplat, 1, false, false, true, base + 0x54, 1); clks[IMX8ULP_CLK_RGPIOE] = imx_clk_hw_gate("rgpioe", "nic_per_divplat", base + 0x78, 30); clks[IMX8ULP_CLK_RGPIOF] = imx_clk_hw_gate("rgpiof", "nic_per_divplat", base + 0x7c, 30); imx_check_clk_hws(clks, clk_data->num); ret = devm_of_clk_add_hw_provider(dev, of_clk_hw_onecell_get, clk_data); if (ret) return ret; /* register the pcc4 reset controller */ return imx8ulp_pcc_reset_init(pdev, base, pcc4_resets, ARRAY_SIZE(pcc4_resets)); } static int imx8ulp_clk_pcc5_init(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct clk_hw_onecell_data *clk_data; struct clk_hw **clks; void __iomem *base; int ret; clk_data = devm_kzalloc(dev, struct_size(clk_data, hws, IMX8ULP_CLK_PCC5_END), GFP_KERNEL); if (!clk_data) return -ENOMEM; clk_data->num = IMX8ULP_CLK_PCC5_END; clks = clk_data->hws; /* PCC5 */ base = devm_platform_ioremap_resource(pdev, 0); if (WARN_ON(IS_ERR(base))) return PTR_ERR(base); clks[IMX8ULP_CLK_DMA2_MP] = imx_clk_hw_gate("pcc_dma2_mp", "lpav_axi_div", base + 0x0, 30); clks[IMX8ULP_CLK_DMA2_CH0] = imx_clk_hw_gate("pcc_dma2_ch0", "lpav_axi_div", base + 0x4, 30); clks[IMX8ULP_CLK_DMA2_CH1] = imx_clk_hw_gate("pcc_dma2_ch1", "lpav_axi_div", base + 0x8, 30); clks[IMX8ULP_CLK_DMA2_CH2] = imx_clk_hw_gate("pcc_dma2_ch2", "lpav_axi_div", base + 0xc, 30); clks[IMX8ULP_CLK_DMA2_CH3] = imx_clk_hw_gate("pcc_dma2_ch3", "lpav_axi_div", base + 0x10, 30); clks[IMX8ULP_CLK_DMA2_CH4] = imx_clk_hw_gate("pcc_dma2_ch4", "lpav_axi_div", base + 0x14, 30); clks[IMX8ULP_CLK_DMA2_CH5] = imx_clk_hw_gate("pcc_dma2_ch5", "lpav_axi_div", base + 0x18, 30); clks[IMX8ULP_CLK_DMA2_CH6] = imx_clk_hw_gate("pcc_dma2_ch6", "lpav_axi_div", base + 0x1c, 30); clks[IMX8ULP_CLK_DMA2_CH7] = imx_clk_hw_gate("pcc_dma2_ch7", "lpav_axi_div", base + 0x20, 30); clks[IMX8ULP_CLK_DMA2_CH8] = imx_clk_hw_gate("pcc_dma2_ch8", "lpav_axi_div", base + 0x24, 30); clks[IMX8ULP_CLK_DMA2_CH9] = imx_clk_hw_gate("pcc_dma2_ch9", "lpav_axi_div", base + 0x28, 30); clks[IMX8ULP_CLK_DMA2_CH10] = imx_clk_hw_gate("pcc_dma2_ch10", "lpav_axi_div", base + 0x2c, 30); clks[IMX8ULP_CLK_DMA2_CH11] = imx_clk_hw_gate("pcc_dma2_ch11", "lpav_axi_div", base + 0x30, 30); clks[IMX8ULP_CLK_DMA2_CH12] = imx_clk_hw_gate("pcc_dma2_ch12", "lpav_axi_div", base + 0x34, 30); clks[IMX8ULP_CLK_DMA2_CH13] = imx_clk_hw_gate("pcc_dma2_ch13", "lpav_axi_div", base + 0x38, 30); clks[IMX8ULP_CLK_DMA2_CH14] = imx_clk_hw_gate("pcc_dma2_ch14", "lpav_axi_div", base + 0x3c, 30); clks[IMX8ULP_CLK_DMA2_CH15] = imx_clk_hw_gate("pcc_dma2_ch15", "lpav_axi_div", base + 0x40, 30); clks[IMX8ULP_CLK_DMA2_CH16] = imx_clk_hw_gate("pcc_dma2_ch16", "lpav_axi_div", base + 0x44, 30); clks[IMX8ULP_CLK_DMA2_CH17] = imx_clk_hw_gate("pcc_dma2_ch17", "lpav_axi_div", base + 0x48, 30); clks[IMX8ULP_CLK_DMA2_CH18] = imx_clk_hw_gate("pcc_dma2_ch18", "lpav_axi_div", base + 0x4c, 30); clks[IMX8ULP_CLK_DMA2_CH19] = imx_clk_hw_gate("pcc_dma2_ch19", "lpav_axi_div", base + 0x50, 30); clks[IMX8ULP_CLK_DMA2_CH20] = imx_clk_hw_gate("pcc_dma2_ch20", "lpav_axi_div", base + 0x54, 30); clks[IMX8ULP_CLK_DMA2_CH21] = imx_clk_hw_gate("pcc_dma2_ch21", "lpav_axi_div", base + 0x58, 30); clks[IMX8ULP_CLK_DMA2_CH22] = imx_clk_hw_gate("pcc_dma2_ch22", "lpav_axi_div", base + 0x5c, 30); clks[IMX8ULP_CLK_DMA2_CH23] = imx_clk_hw_gate("pcc_dma2_ch23", "lpav_axi_div", base + 0x60, 30); clks[IMX8ULP_CLK_DMA2_CH24] = imx_clk_hw_gate("pcc_dma2_ch24", "lpav_axi_div", base + 0x64, 30); clks[IMX8ULP_CLK_DMA2_CH25] = imx_clk_hw_gate("pcc_dma2_ch25", "lpav_axi_div", base + 0x68, 30); clks[IMX8ULP_CLK_DMA2_CH26] = imx_clk_hw_gate("pcc_dma2_ch26", "lpav_axi_div", base + 0x6c, 30); clks[IMX8ULP_CLK_DMA2_CH27] = imx_clk_hw_gate("pcc_dma2_ch27", "lpav_axi_div", base + 0x70, 30); clks[IMX8ULP_CLK_DMA2_CH28] = imx_clk_hw_gate("pcc_dma2_ch28", "lpav_axi_div", base + 0x74, 30); clks[IMX8ULP_CLK_DMA2_CH29] = imx_clk_hw_gate("pcc_dma2_ch29", "lpav_axi_div", base + 0x78, 30); clks[IMX8ULP_CLK_DMA2_CH30] = imx_clk_hw_gate("pcc_dma2_ch30", "lpav_axi_div", base + 0x7c, 30); clks[IMX8ULP_CLK_DMA2_CH31] = imx_clk_hw_gate("pcc_dma2_ch31", "lpav_axi_div", base + 0x80, 30); clks[IMX8ULP_CLK_AVD_SIM] = imx_clk_hw_gate("avd_sim", "lpav_bus_div", base + 0x94, 30); clks[IMX8ULP_CLK_TPM8] = imx8ulp_clk_hw_composite("tpm8", pcc5_periph_bus_sels, ARRAY_SIZE(pcc5_periph_bus_sels), true, true, true, base + 0xa0, 1); clks[IMX8ULP_CLK_MU2_B] = imx_clk_hw_gate("mu2_b", "lpav_bus_div", base + 0x84, 30); clks[IMX8ULP_CLK_MU3_B] = imx_clk_hw_gate("mu3_b", "lpav_bus_div", base + 0x88, 30); clks[IMX8ULP_CLK_SAI6] = imx8ulp_clk_hw_composite("sai6", lpav_bus_div, 1, false, false, true, base + 0xa4, 1); clks[IMX8ULP_CLK_SAI7] = imx8ulp_clk_hw_composite("sai7", lpav_bus_div, 1, false, false, true, base + 0xa8, 1); clks[IMX8ULP_CLK_SPDIF] = imx8ulp_clk_hw_composite("spdif", lpav_bus_div, 1, false, false, true, base + 0xac, 1); clks[IMX8ULP_CLK_ISI] = imx8ulp_clk_hw_composite("isi", lpav_axi_div, 1, false, false, true, base + 0xb0, 1); clks[IMX8ULP_CLK_CSI_REGS] = imx8ulp_clk_hw_composite("csi_regs", lpav_bus_div, 1, false, false, true, base + 0xb4, 1); clks[IMX8ULP_CLK_CSI] = imx8ulp_clk_hw_composite("csi", pcc5_periph_plat_sels, ARRAY_SIZE(pcc5_periph_plat_sels), true, true, true, base + 0xbc, 1); clks[IMX8ULP_CLK_DSI] = imx8ulp_clk_hw_composite("dsi", pcc5_periph_plat_sels, ARRAY_SIZE(pcc5_periph_plat_sels), true, true, true, base + 0xc0, 1); clks[IMX8ULP_CLK_WDOG5] = imx8ulp_clk_hw_composite("wdog5", pcc5_periph_bus_sels, ARRAY_SIZE(pcc5_periph_bus_sels), true, true, true, base + 0xc8, 1); clks[IMX8ULP_CLK_EPDC] = imx8ulp_clk_hw_composite("epdc", pcc5_periph_plat_sels, ARRAY_SIZE(pcc5_periph_plat_sels), true, true, true, base + 0xcc, 1); clks[IMX8ULP_CLK_PXP] = imx8ulp_clk_hw_composite("pxp", lpav_axi_div, 1, false, false, true, base + 0xd0, 1); clks[IMX8ULP_CLK_GPU2D] = imx8ulp_clk_hw_composite("gpu2d", pcc5_periph_plat_sels, ARRAY_SIZE(pcc5_periph_plat_sels), true, true, true, base + 0xf0, 1); clks[IMX8ULP_CLK_GPU3D] = imx8ulp_clk_hw_composite("gpu3d", pcc5_periph_plat_sels, ARRAY_SIZE(pcc5_periph_plat_sels), true, true, true, base + 0xf4, 1); clks[IMX8ULP_CLK_DC_NANO] = imx8ulp_clk_hw_composite("dc_nano", pcc5_periph_plat_sels, ARRAY_SIZE(pcc5_periph_plat_sels), true, true, true, base + 0xf8, 1); clks[IMX8ULP_CLK_CSI_CLK_UI] = imx8ulp_clk_hw_composite("csi_clk_ui", pcc5_periph_plat_sels, ARRAY_SIZE(pcc5_periph_plat_sels), true, true, true, base + 0x10c, 1); clks[IMX8ULP_CLK_CSI_CLK_ESC] = imx8ulp_clk_hw_composite("csi_clk_esc", pcc5_periph_plat_sels, ARRAY_SIZE(pcc5_periph_plat_sels), true, true, true, base + 0x110, 1); clks[IMX8ULP_CLK_RGPIOD] = imx_clk_hw_gate("rgpiod", "lpav_axi_div", base + 0x114, 30); clks[IMX8ULP_CLK_DSI_TX_ESC] = imx_clk_hw_fixed_factor("mipi_dsi_tx_esc", "dsi", 1, 4); imx_check_clk_hws(clks, clk_data->num); ret = devm_of_clk_add_hw_provider(dev, of_clk_hw_onecell_get, clk_data); if (ret) return ret; /* register the pcc5 reset controller */ return imx8ulp_pcc_reset_init(pdev, base, pcc5_resets, ARRAY_SIZE(pcc5_resets)); } static int imx8ulp_clk_probe(struct platform_device *pdev) { int (*probe)(struct platform_device *pdev); probe = of_device_get_match_data(&pdev->dev); if (probe) return probe(pdev); return 0; } static const struct of_device_id imx8ulp_clk_dt_ids[] = { { .compatible = "fsl,imx8ulp-pcc3", .data = imx8ulp_clk_pcc3_init }, { .compatible = "fsl,imx8ulp-pcc4", .data = imx8ulp_clk_pcc4_init }, { .compatible = "fsl,imx8ulp-pcc5", .data = imx8ulp_clk_pcc5_init }, { .compatible = "fsl,imx8ulp-cgc2", .data = imx8ulp_clk_cgc2_init }, { .compatible = "fsl,imx8ulp-cgc1", .data = imx8ulp_clk_cgc1_init }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, imx8ulp_clk_dt_ids); static struct platform_driver imx8ulp_clk_driver = { .probe = imx8ulp_clk_probe, .driver = { .name = KBUILD_MODNAME, .suppress_bind_attrs = true, .of_match_table = imx8ulp_clk_dt_ids, }, }; module_platform_driver(imx8ulp_clk_driver); MODULE_AUTHOR("Peng Fan <[email protected]>"); MODULE_DESCRIPTION("NXP i.MX8ULP clock driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/clk/imx/clk-imx8ulp.c
// SPDX-License-Identifier: GPL-2.0 #include <linux/kernel.h> #include <linux/clk.h> #include <linux/io.h> #include <linux/errno.h> #include <linux/delay.h> #include <linux/slab.h> #include <linux/err.h> #include <asm/div64.h> #include "clk.h" #define to_clk_pllv2(clk) (container_of(clk, struct clk_pllv2, clk)) /* PLL Register Offsets */ #define MXC_PLL_DP_CTL 0x00 #define MXC_PLL_DP_CONFIG 0x04 #define MXC_PLL_DP_OP 0x08 #define MXC_PLL_DP_MFD 0x0C #define MXC_PLL_DP_MFN 0x10 #define MXC_PLL_DP_MFNMINUS 0x14 #define MXC_PLL_DP_MFNPLUS 0x18 #define MXC_PLL_DP_HFS_OP 0x1C #define MXC_PLL_DP_HFS_MFD 0x20 #define MXC_PLL_DP_HFS_MFN 0x24 #define MXC_PLL_DP_MFN_TOGC 0x28 #define MXC_PLL_DP_DESTAT 0x2c /* PLL Register Bit definitions */ #define MXC_PLL_DP_CTL_MUL_CTRL 0x2000 #define MXC_PLL_DP_CTL_DPDCK0_2_EN 0x1000 #define MXC_PLL_DP_CTL_DPDCK0_2_OFFSET 12 #define MXC_PLL_DP_CTL_ADE 0x800 #define MXC_PLL_DP_CTL_REF_CLK_DIV 0x400 #define MXC_PLL_DP_CTL_REF_CLK_SEL_MASK (3 << 8) #define MXC_PLL_DP_CTL_REF_CLK_SEL_OFFSET 8 #define MXC_PLL_DP_CTL_HFSM 0x80 #define MXC_PLL_DP_CTL_PRE 0x40 #define MXC_PLL_DP_CTL_UPEN 0x20 #define MXC_PLL_DP_CTL_RST 0x10 #define MXC_PLL_DP_CTL_RCP 0x8 #define MXC_PLL_DP_CTL_PLM 0x4 #define MXC_PLL_DP_CTL_BRM0 0x2 #define MXC_PLL_DP_CTL_LRF 0x1 #define MXC_PLL_DP_CONFIG_BIST 0x8 #define MXC_PLL_DP_CONFIG_SJC_CE 0x4 #define MXC_PLL_DP_CONFIG_AREN 0x2 #define MXC_PLL_DP_CONFIG_LDREQ 0x1 #define MXC_PLL_DP_OP_MFI_OFFSET 4 #define MXC_PLL_DP_OP_MFI_MASK (0xF << 4) #define MXC_PLL_DP_OP_PDF_OFFSET 0 #define MXC_PLL_DP_OP_PDF_MASK 0xF #define MXC_PLL_DP_MFD_OFFSET 0 #define MXC_PLL_DP_MFD_MASK 0x07FFFFFF #define MXC_PLL_DP_MFN_OFFSET 0x0 #define MXC_PLL_DP_MFN_MASK 0x07FFFFFF #define MXC_PLL_DP_MFN_TOGC_TOG_DIS (1 << 17) #define MXC_PLL_DP_MFN_TOGC_TOG_EN (1 << 16) #define MXC_PLL_DP_MFN_TOGC_CNT_OFFSET 0x0 #define MXC_PLL_DP_MFN_TOGC_CNT_MASK 0xFFFF #define MXC_PLL_DP_DESTAT_TOG_SEL (1 << 31) #define MXC_PLL_DP_DESTAT_MFN 0x07FFFFFF #define MAX_DPLL_WAIT_TRIES 1000 /* 1000 * udelay(1) = 1ms */ struct clk_pllv2 { struct clk_hw hw; void __iomem *base; }; static unsigned long __clk_pllv2_recalc_rate(unsigned long parent_rate, u32 dp_ctl, u32 dp_op, u32 dp_mfd, u32 dp_mfn) { long mfi, mfn, mfd, pdf, ref_clk; unsigned long dbl; u64 temp; dbl = dp_ctl & MXC_PLL_DP_CTL_DPDCK0_2_EN; pdf = dp_op & MXC_PLL_DP_OP_PDF_MASK; mfi = (dp_op & MXC_PLL_DP_OP_MFI_MASK) >> MXC_PLL_DP_OP_MFI_OFFSET; mfi = (mfi <= 5) ? 5 : mfi; mfd = dp_mfd & MXC_PLL_DP_MFD_MASK; mfn = dp_mfn & MXC_PLL_DP_MFN_MASK; mfn = sign_extend32(mfn, 26); ref_clk = 2 * parent_rate; if (dbl != 0) ref_clk *= 2; ref_clk /= (pdf + 1); temp = (u64) ref_clk * abs(mfn); do_div(temp, mfd + 1); if (mfn < 0) temp = (ref_clk * mfi) - temp; else temp = (ref_clk * mfi) + temp; return temp; } static unsigned long clk_pllv2_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { u32 dp_op, dp_mfd, dp_mfn, dp_ctl; void __iomem *pllbase; struct clk_pllv2 *pll = to_clk_pllv2(hw); pllbase = pll->base; dp_ctl = __raw_readl(pllbase + MXC_PLL_DP_CTL); dp_op = __raw_readl(pllbase + MXC_PLL_DP_OP); dp_mfd = __raw_readl(pllbase + MXC_PLL_DP_MFD); dp_mfn = __raw_readl(pllbase + MXC_PLL_DP_MFN); return __clk_pllv2_recalc_rate(parent_rate, dp_ctl, dp_op, dp_mfd, dp_mfn); } static int __clk_pllv2_set_rate(unsigned long rate, unsigned long parent_rate, u32 *dp_op, u32 *dp_mfd, u32 *dp_mfn) { u32 reg; long mfi, pdf, mfn, mfd = 999999; u64 temp64; unsigned long quad_parent_rate; quad_parent_rate = 4 * parent_rate; pdf = mfi = -1; while (++pdf < 16 && mfi < 5) mfi = rate * (pdf+1) / quad_parent_rate; if (mfi > 15) return -EINVAL; pdf--; temp64 = rate * (pdf + 1) - quad_parent_rate * mfi; do_div(temp64, quad_parent_rate / 1000000); mfn = (long)temp64; reg = mfi << 4 | pdf; *dp_op = reg; *dp_mfd = mfd; *dp_mfn = mfn; return 0; } static int clk_pllv2_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_pllv2 *pll = to_clk_pllv2(hw); void __iomem *pllbase; u32 dp_ctl, dp_op, dp_mfd, dp_mfn; int ret; pllbase = pll->base; ret = __clk_pllv2_set_rate(rate, parent_rate, &dp_op, &dp_mfd, &dp_mfn); if (ret) return ret; dp_ctl = __raw_readl(pllbase + MXC_PLL_DP_CTL); /* use dpdck0_2 */ __raw_writel(dp_ctl | 0x1000L, pllbase + MXC_PLL_DP_CTL); __raw_writel(dp_op, pllbase + MXC_PLL_DP_OP); __raw_writel(dp_mfd, pllbase + MXC_PLL_DP_MFD); __raw_writel(dp_mfn, pllbase + MXC_PLL_DP_MFN); return 0; } static long clk_pllv2_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { u32 dp_op, dp_mfd, dp_mfn; int ret; ret = __clk_pllv2_set_rate(rate, *prate, &dp_op, &dp_mfd, &dp_mfn); if (ret) return ret; return __clk_pllv2_recalc_rate(*prate, MXC_PLL_DP_CTL_DPDCK0_2_EN, dp_op, dp_mfd, dp_mfn); } static int clk_pllv2_prepare(struct clk_hw *hw) { struct clk_pllv2 *pll = to_clk_pllv2(hw); u32 reg; void __iomem *pllbase; int i = 0; pllbase = pll->base; reg = __raw_readl(pllbase + MXC_PLL_DP_CTL) | MXC_PLL_DP_CTL_UPEN; __raw_writel(reg, pllbase + MXC_PLL_DP_CTL); /* Wait for lock */ do { reg = __raw_readl(pllbase + MXC_PLL_DP_CTL); if (reg & MXC_PLL_DP_CTL_LRF) break; udelay(1); } while (++i < MAX_DPLL_WAIT_TRIES); if (i == MAX_DPLL_WAIT_TRIES) { pr_err("MX5: pll locking failed\n"); return -EINVAL; } return 0; } static void clk_pllv2_unprepare(struct clk_hw *hw) { struct clk_pllv2 *pll = to_clk_pllv2(hw); u32 reg; void __iomem *pllbase; pllbase = pll->base; reg = __raw_readl(pllbase + MXC_PLL_DP_CTL) & ~MXC_PLL_DP_CTL_UPEN; __raw_writel(reg, pllbase + MXC_PLL_DP_CTL); } static const struct clk_ops clk_pllv2_ops = { .prepare = clk_pllv2_prepare, .unprepare = clk_pllv2_unprepare, .recalc_rate = clk_pllv2_recalc_rate, .round_rate = clk_pllv2_round_rate, .set_rate = clk_pllv2_set_rate, }; struct clk_hw *imx_clk_hw_pllv2(const char *name, const char *parent, void __iomem *base) { struct clk_pllv2 *pll; struct clk_hw *hw; struct clk_init_data init; int ret; pll = kzalloc(sizeof(*pll), GFP_KERNEL); if (!pll) return ERR_PTR(-ENOMEM); pll->base = base; init.name = name; init.ops = &clk_pllv2_ops; init.flags = 0; init.parent_names = &parent; init.num_parents = 1; pll->hw.init = &init; hw = &pll->hw; ret = clk_hw_register(NULL, hw); if (ret) { kfree(pll); return ERR_PTR(ret); } return hw; }
linux-master
drivers/clk/imx/clk-pllv2.c
// SPDX-License-Identifier: (GPL-2.0 OR MIT) /* * Copyright 2018 NXP. * * This driver supports the SCCG plls found in the imx8m SOCs * * Documentation for this SCCG pll can be found at: * https://www.nxp.com/docs/en/reference-manual/IMX8MDQLQRM.pdf#page=834 */ #include <linux/clk-provider.h> #include <linux/err.h> #include <linux/export.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/slab.h> #include <linux/bitfield.h> #include "clk.h" /* PLL CFGs */ #define PLL_CFG0 0x0 #define PLL_CFG1 0x4 #define PLL_CFG2 0x8 #define PLL_DIVF1_MASK GENMASK(18, 13) #define PLL_DIVF2_MASK GENMASK(12, 7) #define PLL_DIVR1_MASK GENMASK(27, 25) #define PLL_DIVR2_MASK GENMASK(24, 19) #define PLL_DIVQ_MASK GENMASK(6, 1) #define PLL_REF_MASK GENMASK(2, 0) #define PLL_LOCK_MASK BIT(31) #define PLL_PD_MASK BIT(7) /* These are the specification limits for the SSCG PLL */ #define PLL_REF_MIN_FREQ 25000000UL #define PLL_REF_MAX_FREQ 235000000UL #define PLL_STAGE1_MIN_FREQ 1600000000UL #define PLL_STAGE1_MAX_FREQ 2400000000UL #define PLL_STAGE1_REF_MIN_FREQ 25000000UL #define PLL_STAGE1_REF_MAX_FREQ 54000000UL #define PLL_STAGE2_MIN_FREQ 1200000000UL #define PLL_STAGE2_MAX_FREQ 2400000000UL #define PLL_STAGE2_REF_MIN_FREQ 54000000UL #define PLL_STAGE2_REF_MAX_FREQ 75000000UL #define PLL_OUT_MIN_FREQ 20000000UL #define PLL_OUT_MAX_FREQ 1200000000UL #define PLL_DIVR1_MAX 7 #define PLL_DIVR2_MAX 63 #define PLL_DIVF1_MAX 63 #define PLL_DIVF2_MAX 63 #define PLL_DIVQ_MAX 63 #define PLL_BYPASS_NONE 0x0 #define PLL_BYPASS1 0x2 #define PLL_BYPASS2 0x1 #define SSCG_PLL_BYPASS1_MASK BIT(5) #define SSCG_PLL_BYPASS2_MASK BIT(4) #define SSCG_PLL_BYPASS_MASK GENMASK(5, 4) #define PLL_SCCG_LOCK_TIMEOUT 70 struct clk_sscg_pll_setup { int divr1, divf1; int divr2, divf2; int divq; int bypass; uint64_t vco1; uint64_t vco2; uint64_t fout; uint64_t ref; uint64_t ref_div1; uint64_t ref_div2; uint64_t fout_request; int fout_error; }; struct clk_sscg_pll { struct clk_hw hw; const struct clk_ops ops; void __iomem *base; struct clk_sscg_pll_setup setup; u8 parent; u8 bypass1; u8 bypass2; }; #define to_clk_sscg_pll(_hw) container_of(_hw, struct clk_sscg_pll, hw) static int clk_sscg_pll_wait_lock(struct clk_sscg_pll *pll) { u32 val; val = readl_relaxed(pll->base + PLL_CFG0); /* don't wait for lock if all plls are bypassed */ if (!(val & SSCG_PLL_BYPASS2_MASK)) return readl_poll_timeout(pll->base, val, val & PLL_LOCK_MASK, 0, PLL_SCCG_LOCK_TIMEOUT); return 0; } static int clk_sscg_pll2_check_match(struct clk_sscg_pll_setup *setup, struct clk_sscg_pll_setup *temp_setup) { int new_diff = temp_setup->fout - temp_setup->fout_request; int diff = temp_setup->fout_error; if (abs(diff) > abs(new_diff)) { temp_setup->fout_error = new_diff; memcpy(setup, temp_setup, sizeof(struct clk_sscg_pll_setup)); if (temp_setup->fout_request == temp_setup->fout) return 0; } return -1; } static int clk_sscg_divq_lookup(struct clk_sscg_pll_setup *setup, struct clk_sscg_pll_setup *temp_setup) { int ret = -EINVAL; for (temp_setup->divq = 0; temp_setup->divq <= PLL_DIVQ_MAX; temp_setup->divq++) { temp_setup->vco2 = temp_setup->vco1; do_div(temp_setup->vco2, temp_setup->divr2 + 1); temp_setup->vco2 *= 2; temp_setup->vco2 *= temp_setup->divf2 + 1; if (temp_setup->vco2 >= PLL_STAGE2_MIN_FREQ && temp_setup->vco2 <= PLL_STAGE2_MAX_FREQ) { temp_setup->fout = temp_setup->vco2; do_div(temp_setup->fout, 2 * (temp_setup->divq + 1)); ret = clk_sscg_pll2_check_match(setup, temp_setup); if (!ret) { temp_setup->bypass = PLL_BYPASS1; return ret; } } } return ret; } static int clk_sscg_divf2_lookup(struct clk_sscg_pll_setup *setup, struct clk_sscg_pll_setup *temp_setup) { int ret = -EINVAL; for (temp_setup->divf2 = 0; temp_setup->divf2 <= PLL_DIVF2_MAX; temp_setup->divf2++) { ret = clk_sscg_divq_lookup(setup, temp_setup); if (!ret) return ret; } return ret; } static int clk_sscg_divr2_lookup(struct clk_sscg_pll_setup *setup, struct clk_sscg_pll_setup *temp_setup) { int ret = -EINVAL; for (temp_setup->divr2 = 0; temp_setup->divr2 <= PLL_DIVR2_MAX; temp_setup->divr2++) { temp_setup->ref_div2 = temp_setup->vco1; do_div(temp_setup->ref_div2, temp_setup->divr2 + 1); if (temp_setup->ref_div2 >= PLL_STAGE2_REF_MIN_FREQ && temp_setup->ref_div2 <= PLL_STAGE2_REF_MAX_FREQ) { ret = clk_sscg_divf2_lookup(setup, temp_setup); if (!ret) return ret; } } return ret; } static int clk_sscg_pll2_find_setup(struct clk_sscg_pll_setup *setup, struct clk_sscg_pll_setup *temp_setup, uint64_t ref) { int ret; if (ref < PLL_STAGE1_MIN_FREQ || ref > PLL_STAGE1_MAX_FREQ) return -EINVAL; temp_setup->vco1 = ref; ret = clk_sscg_divr2_lookup(setup, temp_setup); return ret; } static int clk_sscg_divf1_lookup(struct clk_sscg_pll_setup *setup, struct clk_sscg_pll_setup *temp_setup) { int ret = -EINVAL; for (temp_setup->divf1 = 0; temp_setup->divf1 <= PLL_DIVF1_MAX; temp_setup->divf1++) { uint64_t vco1 = temp_setup->ref; do_div(vco1, temp_setup->divr1 + 1); vco1 *= 2; vco1 *= temp_setup->divf1 + 1; ret = clk_sscg_pll2_find_setup(setup, temp_setup, vco1); if (!ret) { temp_setup->bypass = PLL_BYPASS_NONE; return ret; } } return ret; } static int clk_sscg_divr1_lookup(struct clk_sscg_pll_setup *setup, struct clk_sscg_pll_setup *temp_setup) { int ret = -EINVAL; for (temp_setup->divr1 = 0; temp_setup->divr1 <= PLL_DIVR1_MAX; temp_setup->divr1++) { temp_setup->ref_div1 = temp_setup->ref; do_div(temp_setup->ref_div1, temp_setup->divr1 + 1); if (temp_setup->ref_div1 >= PLL_STAGE1_REF_MIN_FREQ && temp_setup->ref_div1 <= PLL_STAGE1_REF_MAX_FREQ) { ret = clk_sscg_divf1_lookup(setup, temp_setup); if (!ret) return ret; } } return ret; } static int clk_sscg_pll1_find_setup(struct clk_sscg_pll_setup *setup, struct clk_sscg_pll_setup *temp_setup, uint64_t ref) { int ret; if (ref < PLL_REF_MIN_FREQ || ref > PLL_REF_MAX_FREQ) return -EINVAL; temp_setup->ref = ref; ret = clk_sscg_divr1_lookup(setup, temp_setup); return ret; } static int clk_sscg_pll_find_setup(struct clk_sscg_pll_setup *setup, uint64_t prate, uint64_t rate, int try_bypass) { struct clk_sscg_pll_setup temp_setup; int ret = -EINVAL; memset(&temp_setup, 0, sizeof(struct clk_sscg_pll_setup)); memset(setup, 0, sizeof(struct clk_sscg_pll_setup)); temp_setup.fout_error = PLL_OUT_MAX_FREQ; temp_setup.fout_request = rate; switch (try_bypass) { case PLL_BYPASS2: if (prate == rate) { setup->bypass = PLL_BYPASS2; setup->fout = rate; ret = 0; } break; case PLL_BYPASS1: ret = clk_sscg_pll2_find_setup(setup, &temp_setup, prate); break; case PLL_BYPASS_NONE: ret = clk_sscg_pll1_find_setup(setup, &temp_setup, prate); break; } return ret; } static int clk_sscg_pll_is_prepared(struct clk_hw *hw) { struct clk_sscg_pll *pll = to_clk_sscg_pll(hw); u32 val = readl_relaxed(pll->base + PLL_CFG0); return (val & PLL_PD_MASK) ? 0 : 1; } static int clk_sscg_pll_prepare(struct clk_hw *hw) { struct clk_sscg_pll *pll = to_clk_sscg_pll(hw); u32 val; val = readl_relaxed(pll->base + PLL_CFG0); val &= ~PLL_PD_MASK; writel_relaxed(val, pll->base + PLL_CFG0); return clk_sscg_pll_wait_lock(pll); } static void clk_sscg_pll_unprepare(struct clk_hw *hw) { struct clk_sscg_pll *pll = to_clk_sscg_pll(hw); u32 val; val = readl_relaxed(pll->base + PLL_CFG0); val |= PLL_PD_MASK; writel_relaxed(val, pll->base + PLL_CFG0); } static unsigned long clk_sscg_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_sscg_pll *pll = to_clk_sscg_pll(hw); u32 val, divr1, divf1, divr2, divf2, divq; u64 temp64; val = readl_relaxed(pll->base + PLL_CFG2); divr1 = FIELD_GET(PLL_DIVR1_MASK, val); divr2 = FIELD_GET(PLL_DIVR2_MASK, val); divf1 = FIELD_GET(PLL_DIVF1_MASK, val); divf2 = FIELD_GET(PLL_DIVF2_MASK, val); divq = FIELD_GET(PLL_DIVQ_MASK, val); temp64 = parent_rate; val = readl(pll->base + PLL_CFG0); if (val & SSCG_PLL_BYPASS2_MASK) { temp64 = parent_rate; } else if (val & SSCG_PLL_BYPASS1_MASK) { temp64 *= divf2; do_div(temp64, (divr2 + 1) * (divq + 1)); } else { temp64 *= 2; temp64 *= (divf1 + 1) * (divf2 + 1); do_div(temp64, (divr1 + 1) * (divr2 + 1) * (divq + 1)); } return temp64; } static int clk_sscg_pll_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_sscg_pll *pll = to_clk_sscg_pll(hw); struct clk_sscg_pll_setup *setup = &pll->setup; u32 val; /* set bypass here too since the parent might be the same */ val = readl(pll->base + PLL_CFG0); val &= ~SSCG_PLL_BYPASS_MASK; val |= FIELD_PREP(SSCG_PLL_BYPASS_MASK, setup->bypass); writel(val, pll->base + PLL_CFG0); val = readl_relaxed(pll->base + PLL_CFG2); val &= ~(PLL_DIVF1_MASK | PLL_DIVF2_MASK); val &= ~(PLL_DIVR1_MASK | PLL_DIVR2_MASK | PLL_DIVQ_MASK); val |= FIELD_PREP(PLL_DIVF1_MASK, setup->divf1); val |= FIELD_PREP(PLL_DIVF2_MASK, setup->divf2); val |= FIELD_PREP(PLL_DIVR1_MASK, setup->divr1); val |= FIELD_PREP(PLL_DIVR2_MASK, setup->divr2); val |= FIELD_PREP(PLL_DIVQ_MASK, setup->divq); writel_relaxed(val, pll->base + PLL_CFG2); return clk_sscg_pll_wait_lock(pll); } static u8 clk_sscg_pll_get_parent(struct clk_hw *hw) { struct clk_sscg_pll *pll = to_clk_sscg_pll(hw); u32 val; u8 ret = pll->parent; val = readl(pll->base + PLL_CFG0); if (val & SSCG_PLL_BYPASS2_MASK) ret = pll->bypass2; else if (val & SSCG_PLL_BYPASS1_MASK) ret = pll->bypass1; return ret; } static int clk_sscg_pll_set_parent(struct clk_hw *hw, u8 index) { struct clk_sscg_pll *pll = to_clk_sscg_pll(hw); u32 val; val = readl(pll->base + PLL_CFG0); val &= ~SSCG_PLL_BYPASS_MASK; val |= FIELD_PREP(SSCG_PLL_BYPASS_MASK, pll->setup.bypass); writel(val, pll->base + PLL_CFG0); return clk_sscg_pll_wait_lock(pll); } static int __clk_sscg_pll_determine_rate(struct clk_hw *hw, struct clk_rate_request *req, uint64_t min, uint64_t max, uint64_t rate, int bypass) { struct clk_sscg_pll *pll = to_clk_sscg_pll(hw); struct clk_sscg_pll_setup *setup = &pll->setup; struct clk_hw *parent_hw = NULL; int bypass_parent_index; int ret; req->max_rate = max; req->min_rate = min; switch (bypass) { case PLL_BYPASS2: bypass_parent_index = pll->bypass2; break; case PLL_BYPASS1: bypass_parent_index = pll->bypass1; break; default: bypass_parent_index = pll->parent; break; } parent_hw = clk_hw_get_parent_by_index(hw, bypass_parent_index); ret = __clk_determine_rate(parent_hw, req); if (!ret) { ret = clk_sscg_pll_find_setup(setup, req->rate, rate, bypass); } req->best_parent_hw = parent_hw; req->best_parent_rate = req->rate; req->rate = setup->fout; return ret; } static int clk_sscg_pll_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { struct clk_sscg_pll *pll = to_clk_sscg_pll(hw); struct clk_sscg_pll_setup *setup = &pll->setup; uint64_t rate = req->rate; uint64_t min = req->min_rate; uint64_t max = req->max_rate; int ret; if (rate < PLL_OUT_MIN_FREQ || rate > PLL_OUT_MAX_FREQ) return -EINVAL; ret = __clk_sscg_pll_determine_rate(hw, req, req->rate, req->rate, rate, PLL_BYPASS2); if (!ret) return ret; ret = __clk_sscg_pll_determine_rate(hw, req, PLL_STAGE1_REF_MIN_FREQ, PLL_STAGE1_REF_MAX_FREQ, rate, PLL_BYPASS1); if (!ret) return ret; ret = __clk_sscg_pll_determine_rate(hw, req, PLL_REF_MIN_FREQ, PLL_REF_MAX_FREQ, rate, PLL_BYPASS_NONE); if (!ret) return ret; if (setup->fout >= min && setup->fout <= max) ret = 0; return ret; } static const struct clk_ops clk_sscg_pll_ops = { .prepare = clk_sscg_pll_prepare, .unprepare = clk_sscg_pll_unprepare, .is_prepared = clk_sscg_pll_is_prepared, .recalc_rate = clk_sscg_pll_recalc_rate, .set_rate = clk_sscg_pll_set_rate, .set_parent = clk_sscg_pll_set_parent, .get_parent = clk_sscg_pll_get_parent, .determine_rate = clk_sscg_pll_determine_rate, }; struct clk_hw *imx_clk_hw_sscg_pll(const char *name, const char * const *parent_names, u8 num_parents, u8 parent, u8 bypass1, u8 bypass2, void __iomem *base, unsigned long flags) { struct clk_sscg_pll *pll; struct clk_init_data init; struct clk_hw *hw; int ret; pll = kzalloc(sizeof(*pll), GFP_KERNEL); if (!pll) return ERR_PTR(-ENOMEM); pll->parent = parent; pll->bypass1 = bypass1; pll->bypass2 = bypass2; pll->base = base; init.name = name; init.ops = &clk_sscg_pll_ops; init.flags = flags; init.parent_names = parent_names; init.num_parents = num_parents; pll->hw.init = &init; hw = &pll->hw; ret = clk_hw_register(NULL, hw); if (ret) { kfree(pll); return ERR_PTR(ret); } return hw; } EXPORT_SYMBOL_GPL(imx_clk_hw_sscg_pll);
linux-master
drivers/clk/imx/clk-sscg-pll.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2018 NXP * Dong Aisheng <[email protected]> */ #include <linux/clk-provider.h> #include <linux/err.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/slab.h> #include "clk-scu.h" #include "clk-imx8qxp-lpcg.h" #include <dt-bindings/clock/imx8-clock.h> /* * struct imx8qxp_lpcg_data - Description of one LPCG clock * @id: clock ID * @name: clock name * @parent: parent clock name * @flags: common clock flags * @offset: offset of this LPCG clock * @bit_idx: bit index of this LPCG clock * @hw_gate: whether supports HW autogate * * This structure describes one LPCG clock */ struct imx8qxp_lpcg_data { int id; char *name; char *parent; unsigned long flags; u32 offset; u8 bit_idx; bool hw_gate; }; /* * struct imx8qxp_ss_lpcg - Description of one subsystem LPCG clocks * @lpcg: LPCG clocks array of one subsystem * @num_lpcg: the number of LPCG clocks * @num_max: the maximum number of LPCG clocks * * This structure describes each subsystem LPCG clocks information * which then will be used to create respective LPCGs clocks */ struct imx8qxp_ss_lpcg { const struct imx8qxp_lpcg_data *lpcg; u8 num_lpcg; u8 num_max; }; static const struct imx8qxp_lpcg_data imx8qxp_lpcg_adma[] = { { IMX_ADMA_LPCG_UART0_IPG_CLK, "uart0_lpcg_ipg_clk", "dma_ipg_clk_root", 0, ADMA_LPUART_0_LPCG, 16, 0, }, { IMX_ADMA_LPCG_UART0_BAUD_CLK, "uart0_lpcg_baud_clk", "uart0_clk", 0, ADMA_LPUART_0_LPCG, 0, 0, }, { IMX_ADMA_LPCG_UART1_IPG_CLK, "uart1_lpcg_ipg_clk", "dma_ipg_clk_root", 0, ADMA_LPUART_1_LPCG, 16, 0, }, { IMX_ADMA_LPCG_UART1_BAUD_CLK, "uart1_lpcg_baud_clk", "uart1_clk", 0, ADMA_LPUART_1_LPCG, 0, 0, }, { IMX_ADMA_LPCG_UART2_IPG_CLK, "uart2_lpcg_ipg_clk", "dma_ipg_clk_root", 0, ADMA_LPUART_2_LPCG, 16, 0, }, { IMX_ADMA_LPCG_UART2_BAUD_CLK, "uart2_lpcg_baud_clk", "uart2_clk", 0, ADMA_LPUART_2_LPCG, 0, 0, }, { IMX_ADMA_LPCG_UART3_IPG_CLK, "uart3_lpcg_ipg_clk", "dma_ipg_clk_root", 0, ADMA_LPUART_3_LPCG, 16, 0, }, { IMX_ADMA_LPCG_UART3_BAUD_CLK, "uart3_lpcg_baud_clk", "uart3_clk", 0, ADMA_LPUART_3_LPCG, 0, 0, }, { IMX_ADMA_LPCG_I2C0_IPG_CLK, "i2c0_lpcg_ipg_clk", "dma_ipg_clk_root", 0, ADMA_LPI2C_0_LPCG, 16, 0, }, { IMX_ADMA_LPCG_I2C0_CLK, "i2c0_lpcg_clk", "i2c0_clk", 0, ADMA_LPI2C_0_LPCG, 0, 0, }, { IMX_ADMA_LPCG_I2C1_IPG_CLK, "i2c1_lpcg_ipg_clk", "dma_ipg_clk_root", 0, ADMA_LPI2C_1_LPCG, 16, 0, }, { IMX_ADMA_LPCG_I2C1_CLK, "i2c1_lpcg_clk", "i2c1_clk", 0, ADMA_LPI2C_1_LPCG, 0, 0, }, { IMX_ADMA_LPCG_I2C2_IPG_CLK, "i2c2_lpcg_ipg_clk", "dma_ipg_clk_root", 0, ADMA_LPI2C_2_LPCG, 16, 0, }, { IMX_ADMA_LPCG_I2C2_CLK, "i2c2_lpcg_clk", "i2c2_clk", 0, ADMA_LPI2C_2_LPCG, 0, 0, }, { IMX_ADMA_LPCG_I2C3_IPG_CLK, "i2c3_lpcg_ipg_clk", "dma_ipg_clk_root", 0, ADMA_LPI2C_3_LPCG, 16, 0, }, { IMX_ADMA_LPCG_I2C3_CLK, "i2c3_lpcg_clk", "i2c3_clk", 0, ADMA_LPI2C_3_LPCG, 0, 0, }, { IMX_ADMA_LPCG_DSP_CORE_CLK, "dsp_lpcg_core_clk", "dma_ipg_clk_root", 0, ADMA_HIFI_LPCG, 28, 0, }, { IMX_ADMA_LPCG_DSP_IPG_CLK, "dsp_lpcg_ipg_clk", "dma_ipg_clk_root", 0, ADMA_HIFI_LPCG, 20, 0, }, { IMX_ADMA_LPCG_DSP_ADB_CLK, "dsp_lpcg_adb_clk", "dma_ipg_clk_root", 0, ADMA_HIFI_LPCG, 16, 0, }, { IMX_ADMA_LPCG_OCRAM_IPG_CLK, "ocram_lpcg_ipg_clk", "dma_ipg_clk_root", 0, ADMA_OCRAM_LPCG, 16, 0, }, }; static const struct imx8qxp_ss_lpcg imx8qxp_ss_adma = { .lpcg = imx8qxp_lpcg_adma, .num_lpcg = ARRAY_SIZE(imx8qxp_lpcg_adma), .num_max = IMX_ADMA_LPCG_CLK_END, }; static const struct imx8qxp_lpcg_data imx8qxp_lpcg_conn[] = { { IMX_CONN_LPCG_SDHC0_PER_CLK, "sdhc0_lpcg_per_clk", "sdhc0_clk", 0, CONN_USDHC_0_LPCG, 0, 0, }, { IMX_CONN_LPCG_SDHC0_IPG_CLK, "sdhc0_lpcg_ipg_clk", "conn_ipg_clk_root", 0, CONN_USDHC_0_LPCG, 16, 0, }, { IMX_CONN_LPCG_SDHC0_HCLK, "sdhc0_lpcg_ahb_clk", "conn_axi_clk_root", 0, CONN_USDHC_0_LPCG, 20, 0, }, { IMX_CONN_LPCG_SDHC1_PER_CLK, "sdhc1_lpcg_per_clk", "sdhc1_clk", 0, CONN_USDHC_1_LPCG, 0, 0, }, { IMX_CONN_LPCG_SDHC1_IPG_CLK, "sdhc1_lpcg_ipg_clk", "conn_ipg_clk_root", 0, CONN_USDHC_1_LPCG, 16, 0, }, { IMX_CONN_LPCG_SDHC1_HCLK, "sdhc1_lpcg_ahb_clk", "conn_axi_clk_root", 0, CONN_USDHC_1_LPCG, 20, 0, }, { IMX_CONN_LPCG_SDHC2_PER_CLK, "sdhc2_lpcg_per_clk", "sdhc2_clk", 0, CONN_USDHC_2_LPCG, 0, 0, }, { IMX_CONN_LPCG_SDHC2_IPG_CLK, "sdhc2_lpcg_ipg_clk", "conn_ipg_clk_root", 0, CONN_USDHC_2_LPCG, 16, 0, }, { IMX_CONN_LPCG_SDHC2_HCLK, "sdhc2_lpcg_ahb_clk", "conn_axi_clk_root", 0, CONN_USDHC_2_LPCG, 20, 0, }, { IMX_CONN_LPCG_ENET0_ROOT_CLK, "enet0_ipg_root_clk", "enet0_clk", 0, CONN_ENET_0_LPCG, 0, 0, }, { IMX_CONN_LPCG_ENET0_TX_CLK, "enet0_tx_clk", "enet0_clk", 0, CONN_ENET_0_LPCG, 4, 0, }, { IMX_CONN_LPCG_ENET0_AHB_CLK, "enet0_ahb_clk", "conn_axi_clk_root", 0, CONN_ENET_0_LPCG, 8, 0, }, { IMX_CONN_LPCG_ENET0_IPG_S_CLK, "enet0_ipg_s_clk", "conn_ipg_clk_root", 0, CONN_ENET_0_LPCG, 20, 0, }, { IMX_CONN_LPCG_ENET0_IPG_CLK, "enet0_ipg_clk", "enet0_ipg_s_clk", 0, CONN_ENET_0_LPCG, 16, 0, }, { IMX_CONN_LPCG_ENET1_ROOT_CLK, "enet1_ipg_root_clk", "enet1_clk", 0, CONN_ENET_1_LPCG, 0, 0, }, { IMX_CONN_LPCG_ENET1_TX_CLK, "enet1_tx_clk", "enet1_clk", 0, CONN_ENET_1_LPCG, 4, 0, }, { IMX_CONN_LPCG_ENET1_AHB_CLK, "enet1_ahb_clk", "conn_axi_clk_root", 0, CONN_ENET_1_LPCG, 8, 0, }, { IMX_CONN_LPCG_ENET1_IPG_S_CLK, "enet1_ipg_s_clk", "conn_ipg_clk_root", 0, CONN_ENET_1_LPCG, 20, 0, }, { IMX_CONN_LPCG_ENET1_IPG_CLK, "enet1_ipg_clk", "enet0_ipg_s_clk", 0, CONN_ENET_1_LPCG, 16, 0, }, }; static const struct imx8qxp_ss_lpcg imx8qxp_ss_conn = { .lpcg = imx8qxp_lpcg_conn, .num_lpcg = ARRAY_SIZE(imx8qxp_lpcg_conn), .num_max = IMX_CONN_LPCG_CLK_END, }; static const struct imx8qxp_lpcg_data imx8qxp_lpcg_lsio[] = { { IMX_LSIO_LPCG_PWM0_IPG_CLK, "pwm0_lpcg_ipg_clk", "pwm0_clk", 0, LSIO_PWM_0_LPCG, 0, 0, }, { IMX_LSIO_LPCG_PWM0_IPG_HF_CLK, "pwm0_lpcg_ipg_hf_clk", "pwm0_clk", 0, LSIO_PWM_0_LPCG, 4, 0, }, { IMX_LSIO_LPCG_PWM0_IPG_S_CLK, "pwm0_lpcg_ipg_s_clk", "pwm0_clk", 0, LSIO_PWM_0_LPCG, 16, 0, }, { IMX_LSIO_LPCG_PWM0_IPG_SLV_CLK, "pwm0_lpcg_ipg_slv_clk", "lsio_bus_clk_root", 0, LSIO_PWM_0_LPCG, 20, 0, }, { IMX_LSIO_LPCG_PWM0_IPG_MSTR_CLK, "pwm0_lpcg_ipg_mstr_clk", "pwm0_clk", 0, LSIO_PWM_0_LPCG, 24, 0, }, { IMX_LSIO_LPCG_PWM1_IPG_CLK, "pwm1_lpcg_ipg_clk", "pwm1_clk", 0, LSIO_PWM_1_LPCG, 0, 0, }, { IMX_LSIO_LPCG_PWM1_IPG_HF_CLK, "pwm1_lpcg_ipg_hf_clk", "pwm1_clk", 0, LSIO_PWM_1_LPCG, 4, 0, }, { IMX_LSIO_LPCG_PWM1_IPG_S_CLK, "pwm1_lpcg_ipg_s_clk", "pwm1_clk", 0, LSIO_PWM_1_LPCG, 16, 0, }, { IMX_LSIO_LPCG_PWM1_IPG_SLV_CLK, "pwm1_lpcg_ipg_slv_clk", "lsio_bus_clk_root", 0, LSIO_PWM_1_LPCG, 20, 0, }, { IMX_LSIO_LPCG_PWM1_IPG_MSTR_CLK, "pwm1_lpcg_ipg_mstr_clk", "pwm1_clk", 0, LSIO_PWM_1_LPCG, 24, 0, }, { IMX_LSIO_LPCG_PWM2_IPG_CLK, "pwm2_lpcg_ipg_clk", "pwm2_clk", 0, LSIO_PWM_2_LPCG, 0, 0, }, { IMX_LSIO_LPCG_PWM2_IPG_HF_CLK, "pwm2_lpcg_ipg_hf_clk", "pwm2_clk", 0, LSIO_PWM_2_LPCG, 4, 0, }, { IMX_LSIO_LPCG_PWM2_IPG_S_CLK, "pwm2_lpcg_ipg_s_clk", "pwm2_clk", 0, LSIO_PWM_2_LPCG, 16, 0, }, { IMX_LSIO_LPCG_PWM2_IPG_SLV_CLK, "pwm2_lpcg_ipg_slv_clk", "lsio_bus_clk_root", 0, LSIO_PWM_2_LPCG, 20, 0, }, { IMX_LSIO_LPCG_PWM2_IPG_MSTR_CLK, "pwm2_lpcg_ipg_mstr_clk", "pwm2_clk", 0, LSIO_PWM_2_LPCG, 24, 0, }, { IMX_LSIO_LPCG_PWM3_IPG_CLK, "pwm3_lpcg_ipg_clk", "pwm3_clk", 0, LSIO_PWM_3_LPCG, 0, 0, }, { IMX_LSIO_LPCG_PWM3_IPG_HF_CLK, "pwm3_lpcg_ipg_hf_clk", "pwm3_clk", 0, LSIO_PWM_3_LPCG, 4, 0, }, { IMX_LSIO_LPCG_PWM3_IPG_S_CLK, "pwm3_lpcg_ipg_s_clk", "pwm3_clk", 0, LSIO_PWM_3_LPCG, 16, 0, }, { IMX_LSIO_LPCG_PWM3_IPG_SLV_CLK, "pwm3_lpcg_ipg_slv_clk", "lsio_bus_clk_root", 0, LSIO_PWM_3_LPCG, 20, 0, }, { IMX_LSIO_LPCG_PWM3_IPG_MSTR_CLK, "pwm3_lpcg_ipg_mstr_clk", "pwm3_clk", 0, LSIO_PWM_3_LPCG, 24, 0, }, { IMX_LSIO_LPCG_PWM4_IPG_CLK, "pwm4_lpcg_ipg_clk", "pwm4_clk", 0, LSIO_PWM_4_LPCG, 0, 0, }, { IMX_LSIO_LPCG_PWM4_IPG_HF_CLK, "pwm4_lpcg_ipg_hf_clk", "pwm4_clk", 0, LSIO_PWM_4_LPCG, 4, 0, }, { IMX_LSIO_LPCG_PWM4_IPG_S_CLK, "pwm4_lpcg_ipg_s_clk", "pwm4_clk", 0, LSIO_PWM_4_LPCG, 16, 0, }, { IMX_LSIO_LPCG_PWM4_IPG_SLV_CLK, "pwm4_lpcg_ipg_slv_clk", "lsio_bus_clk_root", 0, LSIO_PWM_4_LPCG, 20, 0, }, { IMX_LSIO_LPCG_PWM4_IPG_MSTR_CLK, "pwm4_lpcg_ipg_mstr_clk", "pwm4_clk", 0, LSIO_PWM_4_LPCG, 24, 0, }, { IMX_LSIO_LPCG_PWM5_IPG_CLK, "pwm5_lpcg_ipg_clk", "pwm5_clk", 0, LSIO_PWM_5_LPCG, 0, 0, }, { IMX_LSIO_LPCG_PWM5_IPG_HF_CLK, "pwm5_lpcg_ipg_hf_clk", "pwm5_clk", 0, LSIO_PWM_5_LPCG, 4, 0, }, { IMX_LSIO_LPCG_PWM5_IPG_S_CLK, "pwm5_lpcg_ipg_s_clk", "pwm5_clk", 0, LSIO_PWM_5_LPCG, 16, 0, }, { IMX_LSIO_LPCG_PWM5_IPG_SLV_CLK, "pwm5_lpcg_ipg_slv_clk", "lsio_bus_clk_root", 0, LSIO_PWM_5_LPCG, 20, 0, }, { IMX_LSIO_LPCG_PWM5_IPG_MSTR_CLK, "pwm5_lpcg_ipg_mstr_clk", "pwm5_clk", 0, LSIO_PWM_5_LPCG, 24, 0, }, { IMX_LSIO_LPCG_PWM6_IPG_CLK, "pwm6_lpcg_ipg_clk", "pwm6_clk", 0, LSIO_PWM_6_LPCG, 0, 0, }, { IMX_LSIO_LPCG_PWM6_IPG_HF_CLK, "pwm6_lpcg_ipg_hf_clk", "pwm6_clk", 0, LSIO_PWM_6_LPCG, 4, 0, }, { IMX_LSIO_LPCG_PWM6_IPG_S_CLK, "pwm6_lpcg_ipg_s_clk", "pwm6_clk", 0, LSIO_PWM_6_LPCG, 16, 0, }, { IMX_LSIO_LPCG_PWM6_IPG_SLV_CLK, "pwm6_lpcg_ipg_slv_clk", "lsio_bus_clk_root", 0, LSIO_PWM_6_LPCG, 20, 0, }, { IMX_LSIO_LPCG_PWM6_IPG_MSTR_CLK, "pwm6_lpcg_ipg_mstr_clk", "pwm6_clk", 0, LSIO_PWM_6_LPCG, 24, 0, }, }; static const struct imx8qxp_ss_lpcg imx8qxp_ss_lsio = { .lpcg = imx8qxp_lpcg_lsio, .num_lpcg = ARRAY_SIZE(imx8qxp_lpcg_lsio), .num_max = IMX_LSIO_LPCG_CLK_END, }; #define IMX_LPCG_MAX_CLKS 8 static struct clk_hw *imx_lpcg_of_clk_src_get(struct of_phandle_args *clkspec, void *data) { struct clk_hw_onecell_data *hw_data = data; unsigned int idx = clkspec->args[0] / 4; if (idx >= hw_data->num) { pr_err("%s: invalid index %u\n", __func__, idx); return ERR_PTR(-EINVAL); } return hw_data->hws[idx]; } static int imx_lpcg_parse_clks_from_dt(struct platform_device *pdev, struct device_node *np) { const char *output_names[IMX_LPCG_MAX_CLKS]; const char *parent_names[IMX_LPCG_MAX_CLKS]; unsigned int bit_offset[IMX_LPCG_MAX_CLKS]; struct clk_hw_onecell_data *clk_data; struct clk_hw **clk_hws; void __iomem *base; int count; int idx; int ret; int i; if (!of_device_is_compatible(np, "fsl,imx8qxp-lpcg")) return -EINVAL; base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) return PTR_ERR(base); count = of_property_count_u32_elems(np, "clock-indices"); if (count < 0) { dev_err(&pdev->dev, "failed to count clocks\n"); return -EINVAL; } /* * A trick here is that we set the num of clks to the MAX instead * of the count from clock-indices because one LPCG supports up to * 8 clock outputs which each of them is fixed to 4 bits. Then we can * easily get the clock by clk-indices (bit-offset) / 4. * And the cost is very limited few pointers. */ clk_data = devm_kzalloc(&pdev->dev, struct_size(clk_data, hws, IMX_LPCG_MAX_CLKS), GFP_KERNEL); if (!clk_data) return -ENOMEM; clk_data->num = IMX_LPCG_MAX_CLKS; clk_hws = clk_data->hws; ret = of_property_read_u32_array(np, "clock-indices", bit_offset, count); if (ret < 0) { dev_err(&pdev->dev, "failed to read clock-indices\n"); return -EINVAL; } ret = of_clk_parent_fill(np, parent_names, count); if (ret != count) { dev_err(&pdev->dev, "failed to get clock parent names\n"); return count; } ret = of_property_read_string_array(np, "clock-output-names", output_names, count); if (ret != count) { dev_err(&pdev->dev, "failed to read clock-output-names\n"); return -EINVAL; } pm_runtime_get_noresume(&pdev->dev); pm_runtime_set_active(&pdev->dev); pm_runtime_set_autosuspend_delay(&pdev->dev, 500); pm_runtime_use_autosuspend(&pdev->dev); pm_runtime_enable(&pdev->dev); for (i = 0; i < count; i++) { idx = bit_offset[i] / 4; if (idx >= IMX_LPCG_MAX_CLKS) { dev_warn(&pdev->dev, "invalid bit offset of clock %d\n", i); ret = -EINVAL; goto unreg; } clk_hws[idx] = imx_clk_lpcg_scu_dev(&pdev->dev, output_names[i], parent_names[i], 0, base, bit_offset[i], false); if (IS_ERR(clk_hws[idx])) { dev_warn(&pdev->dev, "failed to register clock %d\n", idx); ret = PTR_ERR(clk_hws[idx]); goto unreg; } } ret = devm_of_clk_add_hw_provider(&pdev->dev, imx_lpcg_of_clk_src_get, clk_data); if (ret) goto unreg; pm_runtime_mark_last_busy(&pdev->dev); pm_runtime_put_autosuspend(&pdev->dev); return 0; unreg: while (--i >= 0) { idx = bit_offset[i] / 4; if (clk_hws[idx]) imx_clk_lpcg_scu_unregister(clk_hws[idx]); } pm_runtime_disable(&pdev->dev); return ret; } static int imx8qxp_lpcg_clk_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct clk_hw_onecell_data *clk_data; const struct imx8qxp_ss_lpcg *ss_lpcg; const struct imx8qxp_lpcg_data *lpcg; struct resource *res; struct clk_hw **clks; void __iomem *base; int ret; int i; /* try new binding to parse clocks from device tree first */ ret = imx_lpcg_parse_clks_from_dt(pdev, np); if (!ret) return 0; ss_lpcg = of_device_get_match_data(dev); if (!ss_lpcg) return -ENODEV; /* * Please don't replace this with devm_platform_ioremap_resource. * * devm_platform_ioremap_resource calls devm_ioremap_resource which * differs from devm_ioremap by also calling devm_request_mem_region * and preventing other mappings in the same area. * * On imx8 the LPCG nodes map entire subsystems and overlap * peripherals, this means that using devm_platform_ioremap_resource * will cause many devices to fail to probe including serial ports. */ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) return -EINVAL; base = devm_ioremap(dev, res->start, resource_size(res)); if (!base) return -ENOMEM; clk_data = devm_kzalloc(&pdev->dev, struct_size(clk_data, hws, ss_lpcg->num_max), GFP_KERNEL); if (!clk_data) return -ENOMEM; clk_data->num = ss_lpcg->num_max; clks = clk_data->hws; for (i = 0; i < ss_lpcg->num_lpcg; i++) { lpcg = ss_lpcg->lpcg + i; clks[lpcg->id] = imx_clk_lpcg_scu(lpcg->name, lpcg->parent, lpcg->flags, base + lpcg->offset, lpcg->bit_idx, lpcg->hw_gate); } for (i = 0; i < clk_data->num; i++) { if (IS_ERR(clks[i])) pr_warn("i.MX clk %u: register failed with %ld\n", i, PTR_ERR(clks[i])); } return of_clk_add_hw_provider(np, of_clk_hw_onecell_get, clk_data); } static const struct of_device_id imx8qxp_lpcg_match[] = { { .compatible = "fsl,imx8qxp-lpcg-adma", &imx8qxp_ss_adma, }, { .compatible = "fsl,imx8qxp-lpcg-conn", &imx8qxp_ss_conn, }, { .compatible = "fsl,imx8qxp-lpcg-lsio", &imx8qxp_ss_lsio, }, { .compatible = "fsl,imx8qxp-lpcg", NULL }, { /* sentinel */ } }; static struct platform_driver imx8qxp_lpcg_clk_driver = { .driver = { .name = "imx8qxp-lpcg-clk", .of_match_table = imx8qxp_lpcg_match, .pm = &imx_clk_lpcg_scu_pm_ops, .suppress_bind_attrs = true, }, .probe = imx8qxp_lpcg_clk_probe, }; module_platform_driver(imx8qxp_lpcg_clk_driver); MODULE_AUTHOR("Aisheng Dong <[email protected]>"); MODULE_DESCRIPTION("NXP i.MX8QXP LPCG clock driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/clk/imx/clk-imx8qxp-lpcg.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2009 by Sascha Hauer, Pengutronix */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/list.h> #include <linux/clk.h> #include <linux/io.h> #include <linux/clkdev.h> #include <linux/err.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <soc/imx/revision.h> #include "clk.h" #define CCM_MPCTL 0x00 #define CCM_UPCTL 0x04 #define CCM_CCTL 0x08 #define CCM_CGCR0 0x0C #define CCM_CGCR1 0x10 #define CCM_CGCR2 0x14 #define CCM_PCDR0 0x18 #define CCM_PCDR1 0x1C #define CCM_PCDR2 0x20 #define CCM_PCDR3 0x24 #define CCM_RCSR 0x28 #define CCM_CRDR 0x2C #define CCM_DCVR0 0x30 #define CCM_DCVR1 0x34 #define CCM_DCVR2 0x38 #define CCM_DCVR3 0x3c #define CCM_LTR0 0x40 #define CCM_LTR1 0x44 #define CCM_LTR2 0x48 #define CCM_LTR3 0x4c #define CCM_MCR 0x64 #define ccm(x) (ccm_base + (x)) static struct clk_onecell_data clk_data; static const char *cpu_sel_clks[] = { "mpll", "mpll_cpu_3_4", }; static const char *per_sel_clks[] = { "ahb", "upll", }; static const char *cko_sel_clks[] = { "dummy", "osc", "cpu", "ahb", "ipg", "dummy", "dummy", "dummy", "dummy", "dummy", "per0", "per2", "per13", "per14", "usbotg_ahb", "dummy",}; enum mx25_clks { dummy, osc, mpll, upll, mpll_cpu_3_4, cpu_sel, cpu, ahb, usb_div, ipg, per0_sel, per1_sel, per2_sel, per3_sel, per4_sel, per5_sel, per6_sel, per7_sel, per8_sel, per9_sel, per10_sel, per11_sel, per12_sel, per13_sel, per14_sel, per15_sel, per0, per1, per2, per3, per4, per5, per6, per7, per8, per9, per10, per11, per12, per13, per14, per15, csi_ipg_per, epit_ipg_per, esai_ipg_per, esdhc1_ipg_per, esdhc2_ipg_per, gpt_ipg_per, i2c_ipg_per, lcdc_ipg_per, nfc_ipg_per, owire_ipg_per, pwm_ipg_per, sim1_ipg_per, sim2_ipg_per, ssi1_ipg_per, ssi2_ipg_per, uart_ipg_per, ata_ahb, reserved1, csi_ahb, emi_ahb, esai_ahb, esdhc1_ahb, esdhc2_ahb, fec_ahb, lcdc_ahb, rtic_ahb, sdma_ahb, slcdc_ahb, usbotg_ahb, reserved2, reserved3, reserved4, reserved5, can1_ipg, can2_ipg, csi_ipg, cspi1_ipg, cspi2_ipg, cspi3_ipg, dryice_ipg, ect_ipg, epit1_ipg, epit2_ipg, reserved6, esdhc1_ipg, esdhc2_ipg, fec_ipg, reserved7, reserved8, reserved9, gpt1_ipg, gpt2_ipg, gpt3_ipg, gpt4_ipg, reserved10, reserved11, reserved12, iim_ipg, reserved13, reserved14, kpp_ipg, lcdc_ipg, reserved15, pwm1_ipg, pwm2_ipg, pwm3_ipg, pwm4_ipg, rngb_ipg, reserved16, scc_ipg, sdma_ipg, sim1_ipg, sim2_ipg, slcdc_ipg, spba_ipg, ssi1_ipg, ssi2_ipg, tsc_ipg, uart1_ipg, uart2_ipg, uart3_ipg, uart4_ipg, uart5_ipg, reserved17, wdt_ipg, cko_div, cko_sel, cko, clk_max }; static struct clk *clk[clk_max]; static void __init __mx25_clocks_init(void __iomem *ccm_base) { BUG_ON(!ccm_base); clk[dummy] = imx_clk_fixed("dummy", 0); clk[mpll] = imx_clk_pllv1(IMX_PLLV1_IMX25, "mpll", "osc", ccm(CCM_MPCTL)); clk[upll] = imx_clk_pllv1(IMX_PLLV1_IMX25, "upll", "osc", ccm(CCM_UPCTL)); clk[mpll_cpu_3_4] = imx_clk_fixed_factor("mpll_cpu_3_4", "mpll", 3, 4); clk[cpu_sel] = imx_clk_mux("cpu_sel", ccm(CCM_CCTL), 14, 1, cpu_sel_clks, ARRAY_SIZE(cpu_sel_clks)); clk[cpu] = imx_clk_divider("cpu", "cpu_sel", ccm(CCM_CCTL), 30, 2); clk[ahb] = imx_clk_divider("ahb", "cpu", ccm(CCM_CCTL), 28, 2); clk[usb_div] = imx_clk_divider("usb_div", "upll", ccm(CCM_CCTL), 16, 6); clk[ipg] = imx_clk_fixed_factor("ipg", "ahb", 1, 2); clk[per0_sel] = imx_clk_mux("per0_sel", ccm(CCM_MCR), 0, 1, per_sel_clks, ARRAY_SIZE(per_sel_clks)); clk[per1_sel] = imx_clk_mux("per1_sel", ccm(CCM_MCR), 1, 1, per_sel_clks, ARRAY_SIZE(per_sel_clks)); clk[per2_sel] = imx_clk_mux("per2_sel", ccm(CCM_MCR), 2, 1, per_sel_clks, ARRAY_SIZE(per_sel_clks)); clk[per3_sel] = imx_clk_mux("per3_sel", ccm(CCM_MCR), 3, 1, per_sel_clks, ARRAY_SIZE(per_sel_clks)); clk[per4_sel] = imx_clk_mux("per4_sel", ccm(CCM_MCR), 4, 1, per_sel_clks, ARRAY_SIZE(per_sel_clks)); clk[per5_sel] = imx_clk_mux("per5_sel", ccm(CCM_MCR), 5, 1, per_sel_clks, ARRAY_SIZE(per_sel_clks)); clk[per6_sel] = imx_clk_mux("per6_sel", ccm(CCM_MCR), 6, 1, per_sel_clks, ARRAY_SIZE(per_sel_clks)); clk[per7_sel] = imx_clk_mux("per7_sel", ccm(CCM_MCR), 7, 1, per_sel_clks, ARRAY_SIZE(per_sel_clks)); clk[per8_sel] = imx_clk_mux("per8_sel", ccm(CCM_MCR), 8, 1, per_sel_clks, ARRAY_SIZE(per_sel_clks)); clk[per9_sel] = imx_clk_mux("per9_sel", ccm(CCM_MCR), 9, 1, per_sel_clks, ARRAY_SIZE(per_sel_clks)); clk[per10_sel] = imx_clk_mux("per10_sel", ccm(CCM_MCR), 10, 1, per_sel_clks, ARRAY_SIZE(per_sel_clks)); clk[per11_sel] = imx_clk_mux("per11_sel", ccm(CCM_MCR), 11, 1, per_sel_clks, ARRAY_SIZE(per_sel_clks)); clk[per12_sel] = imx_clk_mux("per12_sel", ccm(CCM_MCR), 12, 1, per_sel_clks, ARRAY_SIZE(per_sel_clks)); clk[per13_sel] = imx_clk_mux("per13_sel", ccm(CCM_MCR), 13, 1, per_sel_clks, ARRAY_SIZE(per_sel_clks)); clk[per14_sel] = imx_clk_mux("per14_sel", ccm(CCM_MCR), 14, 1, per_sel_clks, ARRAY_SIZE(per_sel_clks)); clk[per15_sel] = imx_clk_mux("per15_sel", ccm(CCM_MCR), 15, 1, per_sel_clks, ARRAY_SIZE(per_sel_clks)); clk[cko_div] = imx_clk_divider("cko_div", "cko_sel", ccm(CCM_MCR), 24, 6); clk[cko_sel] = imx_clk_mux("cko_sel", ccm(CCM_MCR), 20, 4, cko_sel_clks, ARRAY_SIZE(cko_sel_clks)); clk[cko] = imx_clk_gate("cko", "cko_div", ccm(CCM_MCR), 30); clk[per0] = imx_clk_divider("per0", "per0_sel", ccm(CCM_PCDR0), 0, 6); clk[per1] = imx_clk_divider("per1", "per1_sel", ccm(CCM_PCDR0), 8, 6); clk[per2] = imx_clk_divider("per2", "per2_sel", ccm(CCM_PCDR0), 16, 6); clk[per3] = imx_clk_divider("per3", "per3_sel", ccm(CCM_PCDR0), 24, 6); clk[per4] = imx_clk_divider("per4", "per4_sel", ccm(CCM_PCDR1), 0, 6); clk[per5] = imx_clk_divider("per5", "per5_sel", ccm(CCM_PCDR1), 8, 6); clk[per6] = imx_clk_divider("per6", "per6_sel", ccm(CCM_PCDR1), 16, 6); clk[per7] = imx_clk_divider("per7", "per7_sel", ccm(CCM_PCDR1), 24, 6); clk[per8] = imx_clk_divider("per8", "per8_sel", ccm(CCM_PCDR2), 0, 6); clk[per9] = imx_clk_divider("per9", "per9_sel", ccm(CCM_PCDR2), 8, 6); clk[per10] = imx_clk_divider("per10", "per10_sel", ccm(CCM_PCDR2), 16, 6); clk[per11] = imx_clk_divider("per11", "per11_sel", ccm(CCM_PCDR2), 24, 6); clk[per12] = imx_clk_divider("per12", "per12_sel", ccm(CCM_PCDR3), 0, 6); clk[per13] = imx_clk_divider("per13", "per13_sel", ccm(CCM_PCDR3), 8, 6); clk[per14] = imx_clk_divider("per14", "per14_sel", ccm(CCM_PCDR3), 16, 6); clk[per15] = imx_clk_divider("per15", "per15_sel", ccm(CCM_PCDR3), 24, 6); clk[csi_ipg_per] = imx_clk_gate("csi_ipg_per", "per0", ccm(CCM_CGCR0), 0); clk[epit_ipg_per] = imx_clk_gate("epit_ipg_per", "per1", ccm(CCM_CGCR0), 1); clk[esai_ipg_per] = imx_clk_gate("esai_ipg_per", "per2", ccm(CCM_CGCR0), 2); clk[esdhc1_ipg_per] = imx_clk_gate("esdhc1_ipg_per", "per3", ccm(CCM_CGCR0), 3); clk[esdhc2_ipg_per] = imx_clk_gate("esdhc2_ipg_per", "per4", ccm(CCM_CGCR0), 4); clk[gpt_ipg_per] = imx_clk_gate("gpt_ipg_per", "per5", ccm(CCM_CGCR0), 5); clk[i2c_ipg_per] = imx_clk_gate("i2c_ipg_per", "per6", ccm(CCM_CGCR0), 6); clk[lcdc_ipg_per] = imx_clk_gate("lcdc_ipg_per", "per7", ccm(CCM_CGCR0), 7); clk[nfc_ipg_per] = imx_clk_gate("nfc_ipg_per", "per8", ccm(CCM_CGCR0), 8); clk[owire_ipg_per] = imx_clk_gate("owire_ipg_per", "per9", ccm(CCM_CGCR0), 9); clk[pwm_ipg_per] = imx_clk_gate("pwm_ipg_per", "per10", ccm(CCM_CGCR0), 10); clk[sim1_ipg_per] = imx_clk_gate("sim1_ipg_per", "per11", ccm(CCM_CGCR0), 11); clk[sim2_ipg_per] = imx_clk_gate("sim2_ipg_per", "per12", ccm(CCM_CGCR0), 12); clk[ssi1_ipg_per] = imx_clk_gate("ssi1_ipg_per", "per13", ccm(CCM_CGCR0), 13); clk[ssi2_ipg_per] = imx_clk_gate("ssi2_ipg_per", "per14", ccm(CCM_CGCR0), 14); clk[uart_ipg_per] = imx_clk_gate("uart_ipg_per", "per15", ccm(CCM_CGCR0), 15); clk[ata_ahb] = imx_clk_gate("ata_ahb", "ahb", ccm(CCM_CGCR0), 16); /* CCM_CGCR0(17): reserved */ clk[csi_ahb] = imx_clk_gate("csi_ahb", "ahb", ccm(CCM_CGCR0), 18); clk[emi_ahb] = imx_clk_gate("emi_ahb", "ahb", ccm(CCM_CGCR0), 19); clk[esai_ahb] = imx_clk_gate("esai_ahb", "ahb", ccm(CCM_CGCR0), 20); clk[esdhc1_ahb] = imx_clk_gate("esdhc1_ahb", "ahb", ccm(CCM_CGCR0), 21); clk[esdhc2_ahb] = imx_clk_gate("esdhc2_ahb", "ahb", ccm(CCM_CGCR0), 22); clk[fec_ahb] = imx_clk_gate("fec_ahb", "ahb", ccm(CCM_CGCR0), 23); clk[lcdc_ahb] = imx_clk_gate("lcdc_ahb", "ahb", ccm(CCM_CGCR0), 24); clk[rtic_ahb] = imx_clk_gate("rtic_ahb", "ahb", ccm(CCM_CGCR0), 25); clk[sdma_ahb] = imx_clk_gate("sdma_ahb", "ahb", ccm(CCM_CGCR0), 26); clk[slcdc_ahb] = imx_clk_gate("slcdc_ahb", "ahb", ccm(CCM_CGCR0), 27); clk[usbotg_ahb] = imx_clk_gate("usbotg_ahb", "ahb", ccm(CCM_CGCR0), 28); /* CCM_CGCR0(29-31): reserved */ /* CCM_CGCR1(0): reserved in datasheet, used as audmux in FSL kernel */ clk[can1_ipg] = imx_clk_gate("can1_ipg", "ipg", ccm(CCM_CGCR1), 2); clk[can2_ipg] = imx_clk_gate("can2_ipg", "ipg", ccm(CCM_CGCR1), 3); clk[csi_ipg] = imx_clk_gate("csi_ipg", "ipg", ccm(CCM_CGCR1), 4); clk[cspi1_ipg] = imx_clk_gate("cspi1_ipg", "ipg", ccm(CCM_CGCR1), 5); clk[cspi2_ipg] = imx_clk_gate("cspi2_ipg", "ipg", ccm(CCM_CGCR1), 6); clk[cspi3_ipg] = imx_clk_gate("cspi3_ipg", "ipg", ccm(CCM_CGCR1), 7); clk[dryice_ipg] = imx_clk_gate("dryice_ipg", "ipg", ccm(CCM_CGCR1), 8); clk[ect_ipg] = imx_clk_gate("ect_ipg", "ipg", ccm(CCM_CGCR1), 9); clk[epit1_ipg] = imx_clk_gate("epit1_ipg", "ipg", ccm(CCM_CGCR1), 10); clk[epit2_ipg] = imx_clk_gate("epit2_ipg", "ipg", ccm(CCM_CGCR1), 11); /* CCM_CGCR1(12): reserved in datasheet, used as esai in FSL kernel */ clk[esdhc1_ipg] = imx_clk_gate("esdhc1_ipg", "ipg", ccm(CCM_CGCR1), 13); clk[esdhc2_ipg] = imx_clk_gate("esdhc2_ipg", "ipg", ccm(CCM_CGCR1), 14); clk[fec_ipg] = imx_clk_gate("fec_ipg", "ipg", ccm(CCM_CGCR1), 15); /* CCM_CGCR1(16): reserved in datasheet, used as gpio1 in FSL kernel */ /* CCM_CGCR1(17): reserved in datasheet, used as gpio2 in FSL kernel */ /* CCM_CGCR1(18): reserved in datasheet, used as gpio3 in FSL kernel */ clk[gpt1_ipg] = imx_clk_gate("gpt1_ipg", "ipg", ccm(CCM_CGCR1), 19); clk[gpt2_ipg] = imx_clk_gate("gpt2_ipg", "ipg", ccm(CCM_CGCR1), 20); clk[gpt3_ipg] = imx_clk_gate("gpt3_ipg", "ipg", ccm(CCM_CGCR1), 21); clk[gpt4_ipg] = imx_clk_gate("gpt4_ipg", "ipg", ccm(CCM_CGCR1), 22); /* CCM_CGCR1(23): reserved in datasheet, used as i2c1 in FSL kernel */ /* CCM_CGCR1(24): reserved in datasheet, used as i2c2 in FSL kernel */ /* CCM_CGCR1(25): reserved in datasheet, used as i2c3 in FSL kernel */ clk[iim_ipg] = imx_clk_gate("iim_ipg", "ipg", ccm(CCM_CGCR1), 26); /* CCM_CGCR1(27): reserved in datasheet, used as iomuxc in FSL kernel */ /* CCM_CGCR1(28): reserved in datasheet, used as kpp in FSL kernel */ clk[kpp_ipg] = imx_clk_gate("kpp_ipg", "ipg", ccm(CCM_CGCR1), 28); clk[lcdc_ipg] = imx_clk_gate("lcdc_ipg", "ipg", ccm(CCM_CGCR1), 29); /* CCM_CGCR1(30): reserved in datasheet, used as owire in FSL kernel */ clk[pwm1_ipg] = imx_clk_gate("pwm1_ipg", "ipg", ccm(CCM_CGCR1), 31); clk[pwm2_ipg] = imx_clk_gate("pwm2_ipg", "ipg", ccm(CCM_CGCR2), 0); clk[pwm3_ipg] = imx_clk_gate("pwm3_ipg", "ipg", ccm(CCM_CGCR2), 1); clk[pwm4_ipg] = imx_clk_gate("pwm4_ipg", "ipg", ccm(CCM_CGCR2), 2); clk[rngb_ipg] = imx_clk_gate("rngb_ipg", "ipg", ccm(CCM_CGCR2), 3); /* CCM_CGCR2(4): reserved in datasheet, used as rtic in FSL kernel */ clk[scc_ipg] = imx_clk_gate("scc_ipg", "ipg", ccm(CCM_CGCR2), 5); clk[sdma_ipg] = imx_clk_gate("sdma_ipg", "ipg", ccm(CCM_CGCR2), 6); clk[sim1_ipg] = imx_clk_gate("sim1_ipg", "ipg", ccm(CCM_CGCR2), 7); clk[sim2_ipg] = imx_clk_gate("sim2_ipg", "ipg", ccm(CCM_CGCR2), 8); clk[slcdc_ipg] = imx_clk_gate("slcdc_ipg", "ipg", ccm(CCM_CGCR2), 9); clk[spba_ipg] = imx_clk_gate("spba_ipg", "ipg", ccm(CCM_CGCR2), 10); clk[ssi1_ipg] = imx_clk_gate("ssi1_ipg", "ipg", ccm(CCM_CGCR2), 11); clk[ssi2_ipg] = imx_clk_gate("ssi2_ipg", "ipg", ccm(CCM_CGCR2), 12); clk[tsc_ipg] = imx_clk_gate("tsc_ipg", "ipg", ccm(CCM_CGCR2), 13); clk[uart1_ipg] = imx_clk_gate("uart1_ipg", "ipg", ccm(CCM_CGCR2), 14); clk[uart2_ipg] = imx_clk_gate("uart2_ipg", "ipg", ccm(CCM_CGCR2), 15); clk[uart3_ipg] = imx_clk_gate("uart3_ipg", "ipg", ccm(CCM_CGCR2), 16); clk[uart4_ipg] = imx_clk_gate("uart4_ipg", "ipg", ccm(CCM_CGCR2), 17); clk[uart5_ipg] = imx_clk_gate("uart5_ipg", "ipg", ccm(CCM_CGCR2), 18); /* CCM_CGCR2(19): reserved in datasheet, but used as wdt in FSL kernel */ clk[wdt_ipg] = imx_clk_gate("wdt_ipg", "ipg", ccm(CCM_CGCR2), 19); imx_check_clocks(clk, ARRAY_SIZE(clk)); clk_prepare_enable(clk[emi_ahb]); /* Clock source for gpt must be derived from AHB */ clk_set_parent(clk[per5_sel], clk[ahb]); /* * Let's initially set up CLKO parent as ipg, since this configuration * is used on some imx25 board designs to clock the audio codec. */ clk_set_parent(clk[cko_sel], clk[ipg]); imx_register_uart_clocks(); imx_print_silicon_rev("i.MX25", mx25_revision()); } static void __init mx25_clocks_init_dt(struct device_node *np) { void __iomem *ccm; ccm = of_iomap(np, 0); __mx25_clocks_init(ccm); clk_data.clks = clk; clk_data.clk_num = ARRAY_SIZE(clk); of_clk_add_provider(np, of_clk_src_onecell_get, &clk_data); } CLK_OF_DECLARE(imx25_ccm, "fsl,imx25-ccm", mx25_clocks_init_dt);
linux-master
drivers/clk/imx/clk-imx25.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2018 NXP. * * This driver supports the fractional plls found in the imx8m SOCs * * Documentation for this fractional pll can be found at: * https://www.nxp.com/docs/en/reference-manual/IMX8MDQLQRM.pdf#page=834 */ #include <linux/clk-provider.h> #include <linux/err.h> #include <linux/export.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/slab.h> #include <linux/bitfield.h> #include "clk.h" #define PLL_CFG0 0x0 #define PLL_CFG1 0x4 #define PLL_LOCK_STATUS BIT(31) #define PLL_PD_MASK BIT(19) #define PLL_BYPASS_MASK BIT(14) #define PLL_NEWDIV_VAL BIT(12) #define PLL_NEWDIV_ACK BIT(11) #define PLL_FRAC_DIV_MASK GENMASK(30, 7) #define PLL_INT_DIV_MASK GENMASK(6, 0) #define PLL_OUTPUT_DIV_MASK GENMASK(4, 0) #define PLL_FRAC_DENOM 0x1000000 #define PLL_FRAC_LOCK_TIMEOUT 10000 #define PLL_FRAC_ACK_TIMEOUT 500000 struct clk_frac_pll { struct clk_hw hw; void __iomem *base; }; #define to_clk_frac_pll(_hw) container_of(_hw, struct clk_frac_pll, hw) static int clk_wait_lock(struct clk_frac_pll *pll) { u32 val; return readl_poll_timeout(pll->base, val, val & PLL_LOCK_STATUS, 0, PLL_FRAC_LOCK_TIMEOUT); } static int clk_wait_ack(struct clk_frac_pll *pll) { u32 val; /* return directly if the pll is in powerdown or in bypass */ if (readl_relaxed(pll->base) & (PLL_PD_MASK | PLL_BYPASS_MASK)) return 0; /* Wait for the pll's divfi and divff to be reloaded */ return readl_poll_timeout(pll->base, val, val & PLL_NEWDIV_ACK, 0, PLL_FRAC_ACK_TIMEOUT); } static int clk_pll_prepare(struct clk_hw *hw) { struct clk_frac_pll *pll = to_clk_frac_pll(hw); u32 val; val = readl_relaxed(pll->base + PLL_CFG0); val &= ~PLL_PD_MASK; writel_relaxed(val, pll->base + PLL_CFG0); return clk_wait_lock(pll); } static void clk_pll_unprepare(struct clk_hw *hw) { struct clk_frac_pll *pll = to_clk_frac_pll(hw); u32 val; val = readl_relaxed(pll->base + PLL_CFG0); val |= PLL_PD_MASK; writel_relaxed(val, pll->base + PLL_CFG0); } static int clk_pll_is_prepared(struct clk_hw *hw) { struct clk_frac_pll *pll = to_clk_frac_pll(hw); u32 val; val = readl_relaxed(pll->base + PLL_CFG0); return (val & PLL_PD_MASK) ? 0 : 1; } static unsigned long clk_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_frac_pll *pll = to_clk_frac_pll(hw); u32 val, divff, divfi, divq; u64 temp64 = parent_rate; u64 rate; val = readl_relaxed(pll->base + PLL_CFG0); divq = (FIELD_GET(PLL_OUTPUT_DIV_MASK, val) + 1) * 2; val = readl_relaxed(pll->base + PLL_CFG1); divff = FIELD_GET(PLL_FRAC_DIV_MASK, val); divfi = FIELD_GET(PLL_INT_DIV_MASK, val); temp64 *= 8; temp64 *= divff; do_div(temp64, PLL_FRAC_DENOM); do_div(temp64, divq); rate = parent_rate * 8 * (divfi + 1); do_div(rate, divq); rate += temp64; return rate; } static long clk_pll_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { u64 parent_rate = *prate; u32 divff, divfi; u64 temp64; parent_rate *= 8; rate *= 2; temp64 = rate; do_div(temp64, parent_rate); divfi = temp64; temp64 = rate - divfi * parent_rate; temp64 *= PLL_FRAC_DENOM; do_div(temp64, parent_rate); divff = temp64; temp64 = parent_rate; temp64 *= divff; do_div(temp64, PLL_FRAC_DENOM); rate = parent_rate * divfi + temp64; return rate / 2; } /* * To simplify the clock calculation, we can keep the 'PLL_OUTPUT_VAL' at zero * (means the PLL output will be divided by 2). So the PLL output can use * the below formula: * pllout = parent_rate * 8 / 2 * DIVF_VAL; * where DIVF_VAL = 1 + DIVFI + DIVFF / 2^24. */ static int clk_pll_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_frac_pll *pll = to_clk_frac_pll(hw); u32 val, divfi, divff; u64 temp64; int ret; parent_rate *= 8; rate *= 2; divfi = rate / parent_rate; temp64 = parent_rate * divfi; temp64 = rate - temp64; temp64 *= PLL_FRAC_DENOM; do_div(temp64, parent_rate); divff = temp64; val = readl_relaxed(pll->base + PLL_CFG1); val &= ~(PLL_FRAC_DIV_MASK | PLL_INT_DIV_MASK); val |= (divff << 7) | (divfi - 1); writel_relaxed(val, pll->base + PLL_CFG1); val = readl_relaxed(pll->base + PLL_CFG0); val &= ~0x1f; writel_relaxed(val, pll->base + PLL_CFG0); /* Set the NEV_DIV_VAL to reload the DIVFI and DIVFF */ val = readl_relaxed(pll->base + PLL_CFG0); val |= PLL_NEWDIV_VAL; writel_relaxed(val, pll->base + PLL_CFG0); ret = clk_wait_ack(pll); /* clear the NEV_DIV_VAL */ val = readl_relaxed(pll->base + PLL_CFG0); val &= ~PLL_NEWDIV_VAL; writel_relaxed(val, pll->base + PLL_CFG0); return ret; } static const struct clk_ops clk_frac_pll_ops = { .prepare = clk_pll_prepare, .unprepare = clk_pll_unprepare, .is_prepared = clk_pll_is_prepared, .recalc_rate = clk_pll_recalc_rate, .round_rate = clk_pll_round_rate, .set_rate = clk_pll_set_rate, }; struct clk_hw *imx_clk_hw_frac_pll(const char *name, const char *parent_name, void __iomem *base) { struct clk_init_data init; struct clk_frac_pll *pll; struct clk_hw *hw; int ret; pll = kzalloc(sizeof(*pll), GFP_KERNEL); if (!pll) return ERR_PTR(-ENOMEM); init.name = name; init.ops = &clk_frac_pll_ops; init.flags = 0; init.parent_names = &parent_name; init.num_parents = 1; pll->base = base; pll->hw.init = &init; hw = &pll->hw; ret = clk_hw_register(NULL, hw); if (ret) { kfree(pll); return ERR_PTR(ret); } return hw; } EXPORT_SYMBOL_GPL(imx_clk_hw_frac_pll);
linux-master
drivers/clk/imx/clk-frac-pll.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2016 Freescale Semiconductor, Inc. * Copyright 2017~2018 NXP * */ #include <linux/bits.h> #include <linux/clk-provider.h> #include <linux/err.h> #include <linux/io.h> #include <linux/slab.h> #include "../clk-fractional-divider.h" #include "clk.h" #define PCG_PCS_SHIFT 24 #define PCG_PCS_MASK 0x7 #define PCG_CGC_SHIFT 30 #define PCG_FRAC_SHIFT 3 #define PCG_FRAC_WIDTH 1 #define PCG_PCD_SHIFT 0 #define PCG_PCD_WIDTH 3 #define SW_RST BIT(28) static int pcc_gate_enable(struct clk_hw *hw) { struct clk_gate *gate = to_clk_gate(hw); unsigned long flags; u32 val; int ret; ret = clk_gate_ops.enable(hw); if (ret) return ret; spin_lock_irqsave(gate->lock, flags); /* * release the sw reset for peripherals associated with * with this pcc clock. */ val = readl(gate->reg); val |= SW_RST; writel(val, gate->reg); spin_unlock_irqrestore(gate->lock, flags); return 0; } static void pcc_gate_disable(struct clk_hw *hw) { clk_gate_ops.disable(hw); } static int pcc_gate_is_enabled(struct clk_hw *hw) { return clk_gate_ops.is_enabled(hw); } static const struct clk_ops pcc_gate_ops = { .enable = pcc_gate_enable, .disable = pcc_gate_disable, .is_enabled = pcc_gate_is_enabled, }; static struct clk_hw *imx_ulp_clk_hw_composite(const char *name, const char * const *parent_names, int num_parents, bool mux_present, bool rate_present, bool gate_present, void __iomem *reg, bool has_swrst) { struct clk_hw *mux_hw = NULL, *fd_hw = NULL, *gate_hw = NULL; struct clk_fractional_divider *fd = NULL; struct clk_gate *gate = NULL; struct clk_mux *mux = NULL; struct clk_hw *hw; u32 val; if (mux_present) { mux = kzalloc(sizeof(*mux), GFP_KERNEL); if (!mux) return ERR_PTR(-ENOMEM); mux_hw = &mux->hw; mux->reg = reg; mux->shift = PCG_PCS_SHIFT; mux->mask = PCG_PCS_MASK; if (has_swrst) mux->lock = &imx_ccm_lock; } if (rate_present) { fd = kzalloc(sizeof(*fd), GFP_KERNEL); if (!fd) { kfree(mux); return ERR_PTR(-ENOMEM); } fd_hw = &fd->hw; fd->reg = reg; fd->mshift = PCG_FRAC_SHIFT; fd->mwidth = PCG_FRAC_WIDTH; fd->nshift = PCG_PCD_SHIFT; fd->nwidth = PCG_PCD_WIDTH; fd->flags = CLK_FRAC_DIVIDER_ZERO_BASED; if (has_swrst) fd->lock = &imx_ccm_lock; } if (gate_present) { gate = kzalloc(sizeof(*gate), GFP_KERNEL); if (!gate) { kfree(mux); kfree(fd); return ERR_PTR(-ENOMEM); } gate_hw = &gate->hw; gate->reg = reg; gate->bit_idx = PCG_CGC_SHIFT; if (has_swrst) gate->lock = &imx_ccm_lock; /* * make sure clock is gated during clock tree initialization, * the HW ONLY allow clock parent/rate changed with clock gated, * during clock tree initialization, clocks could be enabled * by bootloader, so the HW status will mismatch with clock tree * prepare count, then clock core driver will allow parent/rate * change since the prepare count is zero, but HW actually * prevent the parent/rate change due to the clock is enabled. */ val = readl_relaxed(reg); val &= ~(1 << PCG_CGC_SHIFT); writel_relaxed(val, reg); } hw = clk_hw_register_composite(NULL, name, parent_names, num_parents, mux_hw, &clk_mux_ops, fd_hw, &clk_fractional_divider_ops, gate_hw, has_swrst ? &pcc_gate_ops : &clk_gate_ops, CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE | CLK_SET_RATE_NO_REPARENT); if (IS_ERR(hw)) { kfree(mux); kfree(fd); kfree(gate); } return hw; } struct clk_hw *imx7ulp_clk_hw_composite(const char *name, const char * const *parent_names, int num_parents, bool mux_present, bool rate_present, bool gate_present, void __iomem *reg) { return imx_ulp_clk_hw_composite(name, parent_names, num_parents, mux_present, rate_present, gate_present, reg, false); } struct clk_hw *imx8ulp_clk_hw_composite(const char *name, const char * const *parent_names, int num_parents, bool mux_present, bool rate_present, bool gate_present, void __iomem *reg, bool has_swrst) { return imx_ulp_clk_hw_composite(name, parent_names, num_parents, mux_present, rate_present, gate_present, reg, has_swrst); } EXPORT_SYMBOL_GPL(imx8ulp_clk_hw_composite);
linux-master
drivers/clk/imx/clk-composite-7ulp.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2012 Sascha Hauer, Pengutronix <[email protected]> */ #include <linux/mm.h> #include <linux/delay.h> #include <linux/clk.h> #include <linux/io.h> #include <linux/clkdev.h> #include <linux/of.h> #include <linux/err.h> #include <soc/imx/revision.h> #include <asm/irq.h> #include "clk.h" #define MX35_CCM_BASE_ADDR 0x53f80000 #define MX35_GPT1_BASE_ADDR 0x53f90000 #define MX35_INT_GPT (NR_IRQS_LEGACY + 29) #define MXC_CCM_PDR0 0x04 #define MX35_CCM_PDR2 0x0c #define MX35_CCM_PDR3 0x10 #define MX35_CCM_PDR4 0x14 #define MX35_CCM_MPCTL 0x1c #define MX35_CCM_PPCTL 0x20 #define MX35_CCM_CGR0 0x2c #define MX35_CCM_CGR1 0x30 #define MX35_CCM_CGR2 0x34 #define MX35_CCM_CGR3 0x38 struct arm_ahb_div { unsigned char arm, ahb, sel; }; static struct arm_ahb_div clk_consumer[] = { { .arm = 1, .ahb = 4, .sel = 0}, { .arm = 1, .ahb = 3, .sel = 1}, { .arm = 2, .ahb = 2, .sel = 0}, { .arm = 0, .ahb = 0, .sel = 0}, { .arm = 0, .ahb = 0, .sel = 0}, { .arm = 0, .ahb = 0, .sel = 0}, { .arm = 4, .ahb = 1, .sel = 0}, { .arm = 1, .ahb = 5, .sel = 0}, { .arm = 1, .ahb = 8, .sel = 0}, { .arm = 1, .ahb = 6, .sel = 1}, { .arm = 2, .ahb = 4, .sel = 0}, { .arm = 0, .ahb = 0, .sel = 0}, { .arm = 0, .ahb = 0, .sel = 0}, { .arm = 0, .ahb = 0, .sel = 0}, { .arm = 4, .ahb = 2, .sel = 0}, { .arm = 0, .ahb = 0, .sel = 0}, }; static char hsp_div_532[] = { 4, 8, 3, 0 }; static char hsp_div_400[] = { 3, 6, 3, 0 }; static struct clk_onecell_data clk_data; static const char *std_sel[] = {"ppll", "arm"}; static const char *ipg_per_sel[] = {"ahb_per_div", "arm_per_div"}; enum mx35_clks { /* 0 */ ckih, mpll, ppll, mpll_075, arm, hsp, hsp_div, hsp_sel, ahb, /* 9 */ ipg, arm_per_div, ahb_per_div, ipg_per, uart_sel, uart_div, /* 15 */ esdhc_sel, esdhc1_div, esdhc2_div, esdhc3_div, spdif_sel, /* 20 */ spdif_div_pre, spdif_div_post, ssi_sel, ssi1_div_pre, /* 24 */ ssi1_div_post, ssi2_div_pre, ssi2_div_post, usb_sel, usb_div, /* 29 */ nfc_div, asrc_gate, pata_gate, audmux_gate, can1_gate, /* 34 */ can2_gate, cspi1_gate, cspi2_gate, ect_gate, edio_gate, /* 39 */ emi_gate, epit1_gate, epit2_gate, esai_gate, esdhc1_gate, /* 44 */ esdhc2_gate, esdhc3_gate, fec_gate, gpio1_gate, gpio2_gate, /* 49 */ gpio3_gate, gpt_gate, i2c1_gate, i2c2_gate, i2c3_gate, /* 54 */ iomuxc_gate, ipu_gate, kpp_gate, mlb_gate, mshc_gate, /* 59 */ owire_gate, pwm_gate, rngc_gate, rtc_gate, rtic_gate, scc_gate, /* 65 */ sdma_gate, spba_gate, spdif_gate, ssi1_gate, ssi2_gate, /* 70 */ uart1_gate, uart2_gate, uart3_gate, usbotg_gate, wdog_gate, /* 75 */ max_gate, admux_gate, csi_gate, csi_div, csi_sel, iim_gate, /* 81 */ gpu2d_gate, ckil, clk_max }; static struct clk *clk[clk_max]; static void __init _mx35_clocks_init(void) { void __iomem *base; u32 pdr0, consumer_sel, hsp_sel; struct arm_ahb_div *aad; unsigned char *hsp_div; base = ioremap(MX35_CCM_BASE_ADDR, SZ_4K); BUG_ON(!base); pdr0 = __raw_readl(base + MXC_CCM_PDR0); consumer_sel = (pdr0 >> 16) & 0xf; aad = &clk_consumer[consumer_sel]; if (!aad->arm) { pr_err("i.MX35 clk: illegal consumer mux selection 0x%x\n", consumer_sel); /* * We are basically stuck. Continue with a default entry and hope we * get far enough to actually show the above message */ aad = &clk_consumer[0]; } clk[ckih] = imx_clk_fixed("ckih", 24000000); clk[ckil] = imx_clk_fixed("ckil", 32768); clk[mpll] = imx_clk_pllv1(IMX_PLLV1_IMX35, "mpll", "ckih", base + MX35_CCM_MPCTL); clk[ppll] = imx_clk_pllv1(IMX_PLLV1_IMX35, "ppll", "ckih", base + MX35_CCM_PPCTL); clk[mpll] = imx_clk_fixed_factor("mpll_075", "mpll", 3, 4); if (aad->sel) clk[arm] = imx_clk_fixed_factor("arm", "mpll_075", 1, aad->arm); else clk[arm] = imx_clk_fixed_factor("arm", "mpll", 1, aad->arm); if (clk_get_rate(clk[arm]) > 400000000) hsp_div = hsp_div_532; else hsp_div = hsp_div_400; hsp_sel = (pdr0 >> 20) & 0x3; if (!hsp_div[hsp_sel]) { pr_err("i.MX35 clk: illegal hsp clk selection 0x%x\n", hsp_sel); hsp_sel = 0; } clk[hsp] = imx_clk_fixed_factor("hsp", "arm", 1, hsp_div[hsp_sel]); clk[ahb] = imx_clk_fixed_factor("ahb", "arm", 1, aad->ahb); clk[ipg] = imx_clk_fixed_factor("ipg", "ahb", 1, 2); clk[arm_per_div] = imx_clk_divider("arm_per_div", "arm", base + MX35_CCM_PDR4, 16, 6); clk[ahb_per_div] = imx_clk_divider("ahb_per_div", "ahb", base + MXC_CCM_PDR0, 12, 3); clk[ipg_per] = imx_clk_mux("ipg_per", base + MXC_CCM_PDR0, 26, 1, ipg_per_sel, ARRAY_SIZE(ipg_per_sel)); clk[uart_sel] = imx_clk_mux("uart_sel", base + MX35_CCM_PDR3, 14, 1, std_sel, ARRAY_SIZE(std_sel)); clk[uart_div] = imx_clk_divider("uart_div", "uart_sel", base + MX35_CCM_PDR4, 10, 6); clk[esdhc_sel] = imx_clk_mux("esdhc_sel", base + MX35_CCM_PDR4, 9, 1, std_sel, ARRAY_SIZE(std_sel)); clk[esdhc1_div] = imx_clk_divider("esdhc1_div", "esdhc_sel", base + MX35_CCM_PDR3, 0, 6); clk[esdhc2_div] = imx_clk_divider("esdhc2_div", "esdhc_sel", base + MX35_CCM_PDR3, 8, 6); clk[esdhc3_div] = imx_clk_divider("esdhc3_div", "esdhc_sel", base + MX35_CCM_PDR3, 16, 6); clk[spdif_sel] = imx_clk_mux("spdif_sel", base + MX35_CCM_PDR3, 22, 1, std_sel, ARRAY_SIZE(std_sel)); clk[spdif_div_pre] = imx_clk_divider("spdif_div_pre", "spdif_sel", base + MX35_CCM_PDR3, 29, 3); /* divide by 1 not allowed */ clk[spdif_div_post] = imx_clk_divider("spdif_div_post", "spdif_div_pre", base + MX35_CCM_PDR3, 23, 6); clk[ssi_sel] = imx_clk_mux("ssi_sel", base + MX35_CCM_PDR2, 6, 1, std_sel, ARRAY_SIZE(std_sel)); clk[ssi1_div_pre] = imx_clk_divider("ssi1_div_pre", "ssi_sel", base + MX35_CCM_PDR2, 24, 3); clk[ssi1_div_post] = imx_clk_divider("ssi1_div_post", "ssi1_div_pre", base + MX35_CCM_PDR2, 0, 6); clk[ssi2_div_pre] = imx_clk_divider("ssi2_div_pre", "ssi_sel", base + MX35_CCM_PDR2, 27, 3); clk[ssi2_div_post] = imx_clk_divider("ssi2_div_post", "ssi2_div_pre", base + MX35_CCM_PDR2, 8, 6); clk[usb_sel] = imx_clk_mux("usb_sel", base + MX35_CCM_PDR4, 9, 1, std_sel, ARRAY_SIZE(std_sel)); clk[usb_div] = imx_clk_divider("usb_div", "usb_sel", base + MX35_CCM_PDR4, 22, 6); clk[nfc_div] = imx_clk_divider("nfc_div", "ahb", base + MX35_CCM_PDR4, 28, 4); clk[csi_sel] = imx_clk_mux("csi_sel", base + MX35_CCM_PDR2, 7, 1, std_sel, ARRAY_SIZE(std_sel)); clk[csi_div] = imx_clk_divider("csi_div", "csi_sel", base + MX35_CCM_PDR2, 16, 6); clk[asrc_gate] = imx_clk_gate2("asrc_gate", "ipg", base + MX35_CCM_CGR0, 0); clk[pata_gate] = imx_clk_gate2("pata_gate", "ipg", base + MX35_CCM_CGR0, 2); clk[audmux_gate] = imx_clk_gate2("audmux_gate", "ipg", base + MX35_CCM_CGR0, 4); clk[can1_gate] = imx_clk_gate2("can1_gate", "ipg", base + MX35_CCM_CGR0, 6); clk[can2_gate] = imx_clk_gate2("can2_gate", "ipg", base + MX35_CCM_CGR0, 8); clk[cspi1_gate] = imx_clk_gate2("cspi1_gate", "ipg", base + MX35_CCM_CGR0, 10); clk[cspi2_gate] = imx_clk_gate2("cspi2_gate", "ipg", base + MX35_CCM_CGR0, 12); clk[ect_gate] = imx_clk_gate2("ect_gate", "ipg", base + MX35_CCM_CGR0, 14); clk[edio_gate] = imx_clk_gate2("edio_gate", "ipg", base + MX35_CCM_CGR0, 16); clk[emi_gate] = imx_clk_gate2("emi_gate", "ipg", base + MX35_CCM_CGR0, 18); clk[epit1_gate] = imx_clk_gate2("epit1_gate", "ipg", base + MX35_CCM_CGR0, 20); clk[epit2_gate] = imx_clk_gate2("epit2_gate", "ipg", base + MX35_CCM_CGR0, 22); clk[esai_gate] = imx_clk_gate2("esai_gate", "ipg", base + MX35_CCM_CGR0, 24); clk[esdhc1_gate] = imx_clk_gate2("esdhc1_gate", "esdhc1_div", base + MX35_CCM_CGR0, 26); clk[esdhc2_gate] = imx_clk_gate2("esdhc2_gate", "esdhc2_div", base + MX35_CCM_CGR0, 28); clk[esdhc3_gate] = imx_clk_gate2("esdhc3_gate", "esdhc3_div", base + MX35_CCM_CGR0, 30); clk[fec_gate] = imx_clk_gate2("fec_gate", "ipg", base + MX35_CCM_CGR1, 0); clk[gpio1_gate] = imx_clk_gate2("gpio1_gate", "ipg", base + MX35_CCM_CGR1, 2); clk[gpio2_gate] = imx_clk_gate2("gpio2_gate", "ipg", base + MX35_CCM_CGR1, 4); clk[gpio3_gate] = imx_clk_gate2("gpio3_gate", "ipg", base + MX35_CCM_CGR1, 6); clk[gpt_gate] = imx_clk_gate2("gpt_gate", "ipg", base + MX35_CCM_CGR1, 8); clk[i2c1_gate] = imx_clk_gate2("i2c1_gate", "ipg_per", base + MX35_CCM_CGR1, 10); clk[i2c2_gate] = imx_clk_gate2("i2c2_gate", "ipg_per", base + MX35_CCM_CGR1, 12); clk[i2c3_gate] = imx_clk_gate2("i2c3_gate", "ipg_per", base + MX35_CCM_CGR1, 14); clk[iomuxc_gate] = imx_clk_gate2("iomuxc_gate", "ipg", base + MX35_CCM_CGR1, 16); clk[ipu_gate] = imx_clk_gate2("ipu_gate", "hsp", base + MX35_CCM_CGR1, 18); clk[kpp_gate] = imx_clk_gate2("kpp_gate", "ipg", base + MX35_CCM_CGR1, 20); clk[mlb_gate] = imx_clk_gate2("mlb_gate", "ahb", base + MX35_CCM_CGR1, 22); clk[mshc_gate] = imx_clk_gate2("mshc_gate", "dummy", base + MX35_CCM_CGR1, 24); clk[owire_gate] = imx_clk_gate2("owire_gate", "ipg_per", base + MX35_CCM_CGR1, 26); clk[pwm_gate] = imx_clk_gate2("pwm_gate", "ipg_per", base + MX35_CCM_CGR1, 28); clk[rngc_gate] = imx_clk_gate2("rngc_gate", "ipg", base + MX35_CCM_CGR1, 30); clk[rtc_gate] = imx_clk_gate2("rtc_gate", "ipg", base + MX35_CCM_CGR2, 0); clk[rtic_gate] = imx_clk_gate2("rtic_gate", "ahb", base + MX35_CCM_CGR2, 2); clk[scc_gate] = imx_clk_gate2("scc_gate", "ipg", base + MX35_CCM_CGR2, 4); clk[sdma_gate] = imx_clk_gate2("sdma_gate", "ahb", base + MX35_CCM_CGR2, 6); clk[spba_gate] = imx_clk_gate2("spba_gate", "ipg", base + MX35_CCM_CGR2, 8); clk[spdif_gate] = imx_clk_gate2("spdif_gate", "spdif_div_post", base + MX35_CCM_CGR2, 10); clk[ssi1_gate] = imx_clk_gate2("ssi1_gate", "ssi1_div_post", base + MX35_CCM_CGR2, 12); clk[ssi2_gate] = imx_clk_gate2("ssi2_gate", "ssi2_div_post", base + MX35_CCM_CGR2, 14); clk[uart1_gate] = imx_clk_gate2("uart1_gate", "uart_div", base + MX35_CCM_CGR2, 16); clk[uart2_gate] = imx_clk_gate2("uart2_gate", "uart_div", base + MX35_CCM_CGR2, 18); clk[uart3_gate] = imx_clk_gate2("uart3_gate", "uart_div", base + MX35_CCM_CGR2, 20); clk[usbotg_gate] = imx_clk_gate2("usbotg_gate", "ahb", base + MX35_CCM_CGR2, 22); clk[wdog_gate] = imx_clk_gate2("wdog_gate", "ipg", base + MX35_CCM_CGR2, 24); clk[max_gate] = imx_clk_gate2("max_gate", "dummy", base + MX35_CCM_CGR2, 26); clk[admux_gate] = imx_clk_gate2("admux_gate", "ipg", base + MX35_CCM_CGR2, 30); clk[csi_gate] = imx_clk_gate2("csi_gate", "csi_div", base + MX35_CCM_CGR3, 0); clk[iim_gate] = imx_clk_gate2("iim_gate", "ipg", base + MX35_CCM_CGR3, 2); clk[gpu2d_gate] = imx_clk_gate2("gpu2d_gate", "ahb", base + MX35_CCM_CGR3, 4); imx_check_clocks(clk, ARRAY_SIZE(clk)); clk_prepare_enable(clk[spba_gate]); clk_prepare_enable(clk[gpio1_gate]); clk_prepare_enable(clk[gpio2_gate]); clk_prepare_enable(clk[gpio3_gate]); clk_prepare_enable(clk[iim_gate]); clk_prepare_enable(clk[emi_gate]); clk_prepare_enable(clk[max_gate]); clk_prepare_enable(clk[iomuxc_gate]); /* * SCC is needed to boot via mmc after a watchdog reset. The clock code * before conversion to common clk also enabled UART1 (which isn't * handled here and not needed for mmc) and IIM (which is enabled * unconditionally above). */ clk_prepare_enable(clk[scc_gate]); imx_register_uart_clocks(); imx_print_silicon_rev("i.MX35", mx35_revision()); } static void __init mx35_clocks_init_dt(struct device_node *ccm_node) { _mx35_clocks_init(); clk_data.clks = clk; clk_data.clk_num = ARRAY_SIZE(clk); of_clk_add_provider(ccm_node, of_clk_src_onecell_get, &clk_data); } CLK_OF_DECLARE(imx35, "fsl,imx35-ccm", mx35_clocks_init_dt);
linux-master
drivers/clk/imx/clk-imx35.c
// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) /* * Copyright (C) 2021 * Author(s): * Jesse Taube <[email protected]> * Giulio Benetti <[email protected]> */ #include <linux/clk.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/platform_device.h> #include <dt-bindings/clock/imxrt1050-clock.h> #include "clk.h" static const char * const pll_ref_sels[] = {"osc", "dummy", }; static const char * const per_sels[] = {"ipg_pdof", "osc", }; static const char * const pll1_bypass_sels[] = {"pll1_arm", "pll1_arm_ref_sel", }; static const char * const pll2_bypass_sels[] = {"pll2_sys", "pll2_sys_ref_sel", }; static const char * const pll3_bypass_sels[] = {"pll3_usb_otg", "pll3_usb_otg_ref_sel", }; static const char * const pll5_bypass_sels[] = {"pll5_video", "pll5_video_ref_sel", }; static const char *const pre_periph_sels[] = { "pll2_sys", "pll2_pfd2_396m", "pll2_pfd0_352m", "arm_podf", }; static const char *const periph_sels[] = { "pre_periph_sel", "todo", }; static const char *const usdhc_sels[] = { "pll2_pfd2_396m", "pll2_pfd0_352m", }; static const char *const lpuart_sels[] = { "pll3_80m", "osc", }; static const char *const lcdif_sels[] = { "pll2_sys", "pll3_pfd3_454_74m", "pll5_video", "pll2_pfd0_352m", "pll2_pfd1_594m", "pll3_pfd1_664_62m", }; static const char *const semc_alt_sels[] = { "pll2_pfd2_396m", "pll3_pfd1_664_62m", }; static const char *const semc_sels[] = { "periph_sel", "semc_alt_sel", }; static struct clk_hw **hws; static struct clk_hw_onecell_data *clk_hw_data; static int imxrt1050_clocks_probe(struct platform_device *pdev) { void __iomem *ccm_base; void __iomem *pll_base; struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct device_node *anp; int ret; clk_hw_data = devm_kzalloc(dev, struct_size(clk_hw_data, hws, IMXRT1050_CLK_END), GFP_KERNEL); if (WARN_ON(!clk_hw_data)) return -ENOMEM; clk_hw_data->num = IMXRT1050_CLK_END; hws = clk_hw_data->hws; hws[IMXRT1050_CLK_OSC] = imx_get_clk_hw_by_name(np, "osc"); anp = of_find_compatible_node(NULL, NULL, "fsl,imxrt-anatop"); pll_base = devm_of_iomap(dev, anp, 0, NULL); of_node_put(anp); if (WARN_ON(IS_ERR(pll_base))) { ret = PTR_ERR(pll_base); goto unregister_hws; } /* Anatop clocks */ hws[IMXRT1050_CLK_DUMMY] = imx_clk_hw_fixed("dummy", 0UL); hws[IMXRT1050_CLK_PLL1_REF_SEL] = imx_clk_hw_mux("pll1_arm_ref_sel", pll_base + 0x0, 14, 2, pll_ref_sels, ARRAY_SIZE(pll_ref_sels)); hws[IMXRT1050_CLK_PLL2_REF_SEL] = imx_clk_hw_mux("pll2_sys_ref_sel", pll_base + 0x30, 14, 2, pll_ref_sels, ARRAY_SIZE(pll_ref_sels)); hws[IMXRT1050_CLK_PLL3_REF_SEL] = imx_clk_hw_mux("pll3_usb_otg_ref_sel", pll_base + 0x10, 14, 2, pll_ref_sels, ARRAY_SIZE(pll_ref_sels)); hws[IMXRT1050_CLK_PLL5_REF_SEL] = imx_clk_hw_mux("pll5_video_ref_sel", pll_base + 0xa0, 14, 2, pll_ref_sels, ARRAY_SIZE(pll_ref_sels)); hws[IMXRT1050_CLK_PLL1_ARM] = imx_clk_hw_pllv3(IMX_PLLV3_SYS, "pll1_arm", "pll1_arm_ref_sel", pll_base + 0x0, 0x7f); hws[IMXRT1050_CLK_PLL2_SYS] = imx_clk_hw_pllv3(IMX_PLLV3_GENERIC, "pll2_sys", "pll2_sys_ref_sel", pll_base + 0x30, 0x1); hws[IMXRT1050_CLK_PLL3_USB_OTG] = imx_clk_hw_pllv3(IMX_PLLV3_USB, "pll3_usb_otg", "pll3_usb_otg_ref_sel", pll_base + 0x10, 0x1); hws[IMXRT1050_CLK_PLL5_VIDEO] = imx_clk_hw_pllv3(IMX_PLLV3_AV, "pll5_video", "pll5_video_ref_sel", pll_base + 0xa0, 0x7f); /* PLL bypass out */ hws[IMXRT1050_CLK_PLL1_BYPASS] = imx_clk_hw_mux_flags("pll1_bypass", pll_base + 0x0, 16, 1, pll1_bypass_sels, ARRAY_SIZE(pll1_bypass_sels), CLK_SET_RATE_PARENT); hws[IMXRT1050_CLK_PLL2_BYPASS] = imx_clk_hw_mux_flags("pll2_bypass", pll_base + 0x30, 16, 1, pll2_bypass_sels, ARRAY_SIZE(pll2_bypass_sels), CLK_SET_RATE_PARENT); hws[IMXRT1050_CLK_PLL3_BYPASS] = imx_clk_hw_mux_flags("pll3_bypass", pll_base + 0x10, 16, 1, pll3_bypass_sels, ARRAY_SIZE(pll3_bypass_sels), CLK_SET_RATE_PARENT); hws[IMXRT1050_CLK_PLL5_BYPASS] = imx_clk_hw_mux_flags("pll5_bypass", pll_base + 0xa0, 16, 1, pll5_bypass_sels, ARRAY_SIZE(pll5_bypass_sels), CLK_SET_RATE_PARENT); hws[IMXRT1050_CLK_VIDEO_POST_DIV_SEL] = imx_clk_hw_divider("video_post_div_sel", "pll5_video", pll_base + 0xa0, 19, 2); hws[IMXRT1050_CLK_VIDEO_DIV] = imx_clk_hw_divider("video_div", "video_post_div_sel", pll_base + 0x170, 30, 2); hws[IMXRT1050_CLK_PLL3_80M] = imx_clk_hw_fixed_factor("pll3_80m", "pll3_usb_otg", 1, 6); hws[IMXRT1050_CLK_PLL2_PFD0_352M] = imx_clk_hw_pfd("pll2_pfd0_352m", "pll2_sys", pll_base + 0x100, 0); hws[IMXRT1050_CLK_PLL2_PFD1_594M] = imx_clk_hw_pfd("pll2_pfd1_594m", "pll2_sys", pll_base + 0x100, 1); hws[IMXRT1050_CLK_PLL2_PFD2_396M] = imx_clk_hw_pfd("pll2_pfd2_396m", "pll2_sys", pll_base + 0x100, 2); hws[IMXRT1050_CLK_PLL3_PFD1_664_62M] = imx_clk_hw_pfd("pll3_pfd1_664_62m", "pll3_usb_otg", pll_base + 0xf0, 1); hws[IMXRT1050_CLK_PLL3_PFD3_454_74M] = imx_clk_hw_pfd("pll3_pfd3_454_74m", "pll3_usb_otg", pll_base + 0xf0, 3); /* CCM clocks */ ccm_base = devm_platform_ioremap_resource(pdev, 0); if (WARN_ON(IS_ERR(ccm_base))) { ret = PTR_ERR(ccm_base); goto unregister_hws; } hws[IMXRT1050_CLK_ARM_PODF] = imx_clk_hw_divider("arm_podf", "pll1_arm", ccm_base + 0x10, 0, 3); hws[IMXRT1050_CLK_PRE_PERIPH_SEL] = imx_clk_hw_mux("pre_periph_sel", ccm_base + 0x18, 18, 2, pre_periph_sels, ARRAY_SIZE(pre_periph_sels)); hws[IMXRT1050_CLK_PERIPH_SEL] = imx_clk_hw_mux("periph_sel", ccm_base + 0x14, 25, 1, periph_sels, ARRAY_SIZE(periph_sels)); hws[IMXRT1050_CLK_USDHC1_SEL] = imx_clk_hw_mux("usdhc1_sel", ccm_base + 0x1c, 16, 1, usdhc_sels, ARRAY_SIZE(usdhc_sels)); hws[IMXRT1050_CLK_USDHC2_SEL] = imx_clk_hw_mux("usdhc2_sel", ccm_base + 0x1c, 17, 1, usdhc_sels, ARRAY_SIZE(usdhc_sels)); hws[IMXRT1050_CLK_LPUART_SEL] = imx_clk_hw_mux("lpuart_sel", ccm_base + 0x24, 6, 1, lpuart_sels, ARRAY_SIZE(lpuart_sels)); hws[IMXRT1050_CLK_LCDIF_SEL] = imx_clk_hw_mux("lcdif_sel", ccm_base + 0x38, 15, 3, lcdif_sels, ARRAY_SIZE(lcdif_sels)); hws[IMXRT1050_CLK_PER_CLK_SEL] = imx_clk_hw_mux("per_sel", ccm_base + 0x1C, 6, 1, per_sels, ARRAY_SIZE(per_sels)); hws[IMXRT1050_CLK_SEMC_ALT_SEL] = imx_clk_hw_mux("semc_alt_sel", ccm_base + 0x14, 7, 1, semc_alt_sels, ARRAY_SIZE(semc_alt_sels)); hws[IMXRT1050_CLK_SEMC_SEL] = imx_clk_hw_mux_flags("semc_sel", ccm_base + 0x14, 6, 1, semc_sels, ARRAY_SIZE(semc_sels), CLK_IS_CRITICAL); hws[IMXRT1050_CLK_AHB_PODF] = imx_clk_hw_divider("ahb", "periph_sel", ccm_base + 0x14, 10, 3); hws[IMXRT1050_CLK_IPG_PDOF] = imx_clk_hw_divider("ipg", "ahb", ccm_base + 0x14, 8, 2); hws[IMXRT1050_CLK_PER_PDOF] = imx_clk_hw_divider("per", "per_sel", ccm_base + 0x1C, 0, 5); hws[IMXRT1050_CLK_USDHC1_PODF] = imx_clk_hw_divider("usdhc1_podf", "usdhc1_sel", ccm_base + 0x24, 11, 3); hws[IMXRT1050_CLK_USDHC2_PODF] = imx_clk_hw_divider("usdhc2_podf", "usdhc2_sel", ccm_base + 0x24, 16, 3); hws[IMXRT1050_CLK_LPUART_PODF] = imx_clk_hw_divider("lpuart_podf", "lpuart_sel", ccm_base + 0x24, 0, 6); hws[IMXRT1050_CLK_LCDIF_PRED] = imx_clk_hw_divider("lcdif_pred", "lcdif_sel", ccm_base + 0x38, 12, 3); hws[IMXRT1050_CLK_LCDIF_PODF] = imx_clk_hw_divider("lcdif_podf", "lcdif_pred", ccm_base + 0x18, 23, 3); hws[IMXRT1050_CLK_USDHC1] = imx_clk_hw_gate2("usdhc1", "usdhc1_podf", ccm_base + 0x80, 2); hws[IMXRT1050_CLK_USDHC2] = imx_clk_hw_gate2("usdhc2", "usdhc2_podf", ccm_base + 0x80, 4); hws[IMXRT1050_CLK_LPUART1] = imx_clk_hw_gate2("lpuart1", "lpuart_podf", ccm_base + 0x7c, 24); hws[IMXRT1050_CLK_LCDIF_APB] = imx_clk_hw_gate2("lcdif", "lcdif_podf", ccm_base + 0x70, 28); hws[IMXRT1050_CLK_LCDIF_PIX] = imx_clk_hw_gate2("lcdif_pix", "lcdif", ccm_base + 0x74, 10); hws[IMXRT1050_CLK_DMA] = imx_clk_hw_gate("dma", "ipg", ccm_base + 0x7C, 6); hws[IMXRT1050_CLK_DMA_MUX] = imx_clk_hw_gate("dmamux0", "ipg", ccm_base + 0x7C, 7); imx_check_clk_hws(hws, IMXRT1050_CLK_END); ret = of_clk_add_hw_provider(np, of_clk_hw_onecell_get, clk_hw_data); if (ret < 0) { dev_err(dev, "Failed to register clks for i.MXRT1050.\n"); goto unregister_hws; } return 0; unregister_hws: imx_unregister_hw_clocks(hws, IMXRT1050_CLK_END); return ret; } static const struct of_device_id imxrt1050_clk_of_match[] = { { .compatible = "fsl,imxrt1050-ccm" }, { /* Sentinel */ } }; MODULE_DEVICE_TABLE(of, imxrt1050_clk_of_match); static struct platform_driver imxrt1050_clk_driver = { .probe = imxrt1050_clocks_probe, .driver = { .name = "imxrt1050-ccm", .of_match_table = imxrt1050_clk_of_match, }, }; module_platform_driver(imxrt1050_clk_driver); MODULE_LICENSE("Dual BSD/GPL"); MODULE_AUTHOR("Jesse Taube <[email protected]>"); MODULE_AUTHOR("Giulio Benetti <[email protected]>");
linux-master
drivers/clk/imx/clk-imxrt1050.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2018 NXP */ #include <linux/clk-provider.h> #include <linux/errno.h> #include <linux/export.h> #include <linux/io.h> #include <linux/slab.h> #include "clk.h" #define PCG_PREDIV_SHIFT 16 #define PCG_PREDIV_WIDTH 3 #define PCG_PREDIV_MAX 8 #define PCG_DIV_SHIFT 0 #define PCG_CORE_DIV_WIDTH 3 #define PCG_DIV_WIDTH 6 #define PCG_DIV_MAX 64 #define PCG_PCS_SHIFT 24 #define PCG_PCS_MASK 0x7 #define PCG_CGC_SHIFT 28 static unsigned long imx8m_clk_composite_divider_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_divider *divider = to_clk_divider(hw); unsigned long prediv_rate; unsigned int prediv_value; unsigned int div_value; prediv_value = readl(divider->reg) >> divider->shift; prediv_value &= clk_div_mask(divider->width); prediv_rate = divider_recalc_rate(hw, parent_rate, prediv_value, NULL, divider->flags, divider->width); div_value = readl(divider->reg) >> PCG_DIV_SHIFT; div_value &= clk_div_mask(PCG_DIV_WIDTH); return divider_recalc_rate(hw, prediv_rate, div_value, NULL, divider->flags, PCG_DIV_WIDTH); } static int imx8m_clk_composite_compute_dividers(unsigned long rate, unsigned long parent_rate, int *prediv, int *postdiv) { int div1, div2; int error = INT_MAX; int ret = -EINVAL; *prediv = 1; *postdiv = 1; for (div1 = 1; div1 <= PCG_PREDIV_MAX; div1++) { for (div2 = 1; div2 <= PCG_DIV_MAX; div2++) { int new_error = ((parent_rate / div1) / div2) - rate; if (abs(new_error) < abs(error)) { *prediv = div1; *postdiv = div2; error = new_error; ret = 0; } } } return ret; } static long imx8m_clk_composite_divider_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { int prediv_value; int div_value; imx8m_clk_composite_compute_dividers(rate, *prate, &prediv_value, &div_value); rate = DIV_ROUND_UP(*prate, prediv_value); return DIV_ROUND_UP(rate, div_value); } static int imx8m_clk_composite_divider_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_divider *divider = to_clk_divider(hw); unsigned long flags; int prediv_value; int div_value; int ret; u32 orig, val; ret = imx8m_clk_composite_compute_dividers(rate, parent_rate, &prediv_value, &div_value); if (ret) return -EINVAL; spin_lock_irqsave(divider->lock, flags); orig = readl(divider->reg); val = orig & ~((clk_div_mask(divider->width) << divider->shift) | (clk_div_mask(PCG_DIV_WIDTH) << PCG_DIV_SHIFT)); val |= (u32)(prediv_value - 1) << divider->shift; val |= (u32)(div_value - 1) << PCG_DIV_SHIFT; if (val != orig) writel(val, divider->reg); spin_unlock_irqrestore(divider->lock, flags); return ret; } static int imx8m_divider_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { struct clk_divider *divider = to_clk_divider(hw); int prediv_value; int div_value; /* if read only, just return current value */ if (divider->flags & CLK_DIVIDER_READ_ONLY) { u32 val; val = readl(divider->reg); prediv_value = val >> divider->shift; prediv_value &= clk_div_mask(divider->width); prediv_value++; div_value = val >> PCG_DIV_SHIFT; div_value &= clk_div_mask(PCG_DIV_WIDTH); div_value++; return divider_ro_determine_rate(hw, req, divider->table, PCG_PREDIV_WIDTH + PCG_DIV_WIDTH, divider->flags, prediv_value * div_value); } return divider_determine_rate(hw, req, divider->table, PCG_PREDIV_WIDTH + PCG_DIV_WIDTH, divider->flags); } static const struct clk_ops imx8m_clk_composite_divider_ops = { .recalc_rate = imx8m_clk_composite_divider_recalc_rate, .round_rate = imx8m_clk_composite_divider_round_rate, .set_rate = imx8m_clk_composite_divider_set_rate, .determine_rate = imx8m_divider_determine_rate, }; static u8 imx8m_clk_composite_mux_get_parent(struct clk_hw *hw) { return clk_mux_ops.get_parent(hw); } static int imx8m_clk_composite_mux_set_parent(struct clk_hw *hw, u8 index) { struct clk_mux *mux = to_clk_mux(hw); u32 val = clk_mux_index_to_val(mux->table, mux->flags, index); unsigned long flags = 0; u32 reg; if (mux->lock) spin_lock_irqsave(mux->lock, flags); reg = readl(mux->reg); reg &= ~(mux->mask << mux->shift); val = val << mux->shift; reg |= val; /* * write twice to make sure non-target interface * SEL_A/B point the same clk input. */ writel(reg, mux->reg); writel(reg, mux->reg); if (mux->lock) spin_unlock_irqrestore(mux->lock, flags); return 0; } static int imx8m_clk_composite_mux_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { return clk_mux_ops.determine_rate(hw, req); } static const struct clk_ops imx8m_clk_composite_mux_ops = { .get_parent = imx8m_clk_composite_mux_get_parent, .set_parent = imx8m_clk_composite_mux_set_parent, .determine_rate = imx8m_clk_composite_mux_determine_rate, }; struct clk_hw *__imx8m_clk_hw_composite(const char *name, const char * const *parent_names, int num_parents, void __iomem *reg, u32 composite_flags, unsigned long flags) { struct clk_hw *hw = ERR_PTR(-ENOMEM), *mux_hw; struct clk_hw *div_hw, *gate_hw = NULL; struct clk_divider *div = NULL; struct clk_gate *gate = NULL; struct clk_mux *mux = NULL; const struct clk_ops *divider_ops; const struct clk_ops *mux_ops; mux = kzalloc(sizeof(*mux), GFP_KERNEL); if (!mux) goto fail; mux_hw = &mux->hw; mux->reg = reg; mux->shift = PCG_PCS_SHIFT; mux->mask = PCG_PCS_MASK; mux->lock = &imx_ccm_lock; div = kzalloc(sizeof(*div), GFP_KERNEL); if (!div) goto fail; div_hw = &div->hw; div->reg = reg; if (composite_flags & IMX_COMPOSITE_CORE) { div->shift = PCG_DIV_SHIFT; div->width = PCG_CORE_DIV_WIDTH; divider_ops = &clk_divider_ops; mux_ops = &imx8m_clk_composite_mux_ops; } else if (composite_flags & IMX_COMPOSITE_BUS) { div->shift = PCG_PREDIV_SHIFT; div->width = PCG_PREDIV_WIDTH; divider_ops = &imx8m_clk_composite_divider_ops; mux_ops = &imx8m_clk_composite_mux_ops; } else { div->shift = PCG_PREDIV_SHIFT; div->width = PCG_PREDIV_WIDTH; divider_ops = &imx8m_clk_composite_divider_ops; mux_ops = &clk_mux_ops; if (!(composite_flags & IMX_COMPOSITE_FW_MANAGED)) flags |= CLK_SET_PARENT_GATE; } div->lock = &imx_ccm_lock; div->flags = CLK_DIVIDER_ROUND_CLOSEST; /* skip registering the gate ops if M4 is enabled */ if (!mcore_booted) { gate = kzalloc(sizeof(*gate), GFP_KERNEL); if (!gate) goto fail; gate_hw = &gate->hw; gate->reg = reg; gate->bit_idx = PCG_CGC_SHIFT; gate->lock = &imx_ccm_lock; } hw = clk_hw_register_composite(NULL, name, parent_names, num_parents, mux_hw, mux_ops, div_hw, divider_ops, gate_hw, &clk_gate_ops, flags); if (IS_ERR(hw)) goto fail; return hw; fail: kfree(gate); kfree(div); kfree(mux); return ERR_CAST(hw); } EXPORT_SYMBOL_GPL(__imx8m_clk_hw_composite);
linux-master
drivers/clk/imx/clk-composite-8m.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2018-2021 NXP * Dong Aisheng <[email protected]> */ #include <dt-bindings/firmware/imx/rsrc.h> #include <linux/arm-smccc.h> #include <linux/bsearch.h> #include <linux/clk-provider.h> #include <linux/err.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm_domain.h> #include <linux/pm_runtime.h> #include <linux/slab.h> #include "clk-scu.h" #define IMX_SIP_CPUFREQ 0xC2000001 #define IMX_SIP_SET_CPUFREQ 0x00 static struct imx_sc_ipc *ccm_ipc_handle; static struct device_node *pd_np; static struct platform_driver imx_clk_scu_driver; static const struct imx_clk_scu_rsrc_table *rsrc_table; struct imx_scu_clk_node { const char *name; u32 rsrc; u8 clk_type; const char * const *parents; int num_parents; struct clk_hw *hw; struct list_head node; }; struct list_head imx_scu_clks[IMX_SC_R_LAST]; /* * struct clk_scu - Description of one SCU clock * @hw: the common clk_hw * @rsrc_id: resource ID of this SCU clock * @clk_type: type of this clock resource */ struct clk_scu { struct clk_hw hw; u16 rsrc_id; u8 clk_type; /* for state save&restore */ struct clk_hw *parent; u8 parent_index; bool is_enabled; u32 rate; }; /* * struct clk_gpr_scu - Description of one SCU GPR clock * @hw: the common clk_hw * @rsrc_id: resource ID of this SCU clock * @gpr_id: GPR ID index to control the divider */ struct clk_gpr_scu { struct clk_hw hw; u16 rsrc_id; u8 gpr_id; u8 flags; bool gate_invert; }; #define to_clk_gpr_scu(_hw) container_of(_hw, struct clk_gpr_scu, hw) /* * struct imx_sc_msg_req_set_clock_rate - clock set rate protocol * @hdr: SCU protocol header * @rate: rate to set * @resource: clock resource to set rate * @clk: clk type of this resource * * This structure describes the SCU protocol of clock rate set */ struct imx_sc_msg_req_set_clock_rate { struct imx_sc_rpc_msg hdr; __le32 rate; __le16 resource; u8 clk; } __packed __aligned(4); struct req_get_clock_rate { __le16 resource; u8 clk; } __packed __aligned(4); struct resp_get_clock_rate { __le32 rate; }; /* * struct imx_sc_msg_get_clock_rate - clock get rate protocol * @hdr: SCU protocol header * @req: get rate request protocol * @resp: get rate response protocol * * This structure describes the SCU protocol of clock rate get */ struct imx_sc_msg_get_clock_rate { struct imx_sc_rpc_msg hdr; union { struct req_get_clock_rate req; struct resp_get_clock_rate resp; } data; }; /* * struct imx_sc_msg_get_clock_parent - clock get parent protocol * @hdr: SCU protocol header * @req: get parent request protocol * @resp: get parent response protocol * * This structure describes the SCU protocol of clock get parent */ struct imx_sc_msg_get_clock_parent { struct imx_sc_rpc_msg hdr; union { struct req_get_clock_parent { __le16 resource; u8 clk; } __packed __aligned(4) req; struct resp_get_clock_parent { u8 parent; } resp; } data; }; /* * struct imx_sc_msg_set_clock_parent - clock set parent protocol * @hdr: SCU protocol header * @req: set parent request protocol * * This structure describes the SCU protocol of clock set parent */ struct imx_sc_msg_set_clock_parent { struct imx_sc_rpc_msg hdr; __le16 resource; u8 clk; u8 parent; } __packed; /* * struct imx_sc_msg_req_clock_enable - clock gate protocol * @hdr: SCU protocol header * @resource: clock resource to gate * @clk: clk type of this resource * @enable: whether gate off the clock * @autog: HW auto gate enable * * This structure describes the SCU protocol of clock gate */ struct imx_sc_msg_req_clock_enable { struct imx_sc_rpc_msg hdr; __le16 resource; u8 clk; u8 enable; u8 autog; } __packed __aligned(4); static inline struct clk_scu *to_clk_scu(struct clk_hw *hw) { return container_of(hw, struct clk_scu, hw); } static inline int imx_scu_clk_search_cmp(const void *rsrc, const void *rsrc_p) { return *(u32 *)rsrc - *(u32 *)rsrc_p; } static bool imx_scu_clk_is_valid(u32 rsrc_id) { void *p; if (!rsrc_table) return true; p = bsearch(&rsrc_id, rsrc_table->rsrc, rsrc_table->num, sizeof(rsrc_table->rsrc[0]), imx_scu_clk_search_cmp); return p != NULL; } int imx_clk_scu_init(struct device_node *np, const struct imx_clk_scu_rsrc_table *data) { u32 clk_cells; int ret, i; ret = imx_scu_get_handle(&ccm_ipc_handle); if (ret) return ret; of_property_read_u32(np, "#clock-cells", &clk_cells); if (clk_cells == 2) { for (i = 0; i < IMX_SC_R_LAST; i++) INIT_LIST_HEAD(&imx_scu_clks[i]); /* pd_np will be used to attach power domains later */ pd_np = of_find_compatible_node(NULL, NULL, "fsl,scu-pd"); if (!pd_np) return -EINVAL; rsrc_table = data; } return platform_driver_register(&imx_clk_scu_driver); } /* * clk_scu_recalc_rate - Get clock rate for a SCU clock * @hw: clock to get rate for * @parent_rate: parent rate provided by common clock framework, not used * * Gets the current clock rate of a SCU clock. Returns the current * clock rate, or zero in failure. */ static unsigned long clk_scu_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_scu *clk = to_clk_scu(hw); struct imx_sc_msg_get_clock_rate msg; struct imx_sc_rpc_msg *hdr = &msg.hdr; int ret; hdr->ver = IMX_SC_RPC_VERSION; hdr->svc = IMX_SC_RPC_SVC_PM; hdr->func = IMX_SC_PM_FUNC_GET_CLOCK_RATE; hdr->size = 2; msg.data.req.resource = cpu_to_le16(clk->rsrc_id); msg.data.req.clk = clk->clk_type; ret = imx_scu_call_rpc(ccm_ipc_handle, &msg, true); if (ret) { pr_err("%s: failed to get clock rate %d\n", clk_hw_get_name(hw), ret); return 0; } return le32_to_cpu(msg.data.resp.rate); } /* * clk_scu_determine_rate - Returns the closest rate for a SCU clock * @hw: clock to round rate for * @req: clock rate request * * Returns 0 on success, a negative error on failure */ static int clk_scu_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { /* * Assume we support all the requested rate and let the SCU firmware * to handle the left work */ return 0; } /* * clk_scu_round_rate - Round clock rate for a SCU clock * @hw: clock to round rate for * @rate: rate to round * @parent_rate: parent rate provided by common clock framework, not used * * Returns the current clock rate, or zero in failure. */ static long clk_scu_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { /* * Assume we support all the requested rate and let the SCU firmware * to handle the left work */ return rate; } static int clk_scu_atf_set_cpu_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_scu *clk = to_clk_scu(hw); struct arm_smccc_res res; unsigned long cluster_id; if (clk->rsrc_id == IMX_SC_R_A35 || clk->rsrc_id == IMX_SC_R_A53) cluster_id = 0; else if (clk->rsrc_id == IMX_SC_R_A72) cluster_id = 1; else return -EINVAL; /* CPU frequency scaling can ONLY be done by ARM-Trusted-Firmware */ arm_smccc_smc(IMX_SIP_CPUFREQ, IMX_SIP_SET_CPUFREQ, cluster_id, rate, 0, 0, 0, 0, &res); return 0; } /* * clk_scu_set_rate - Set rate for a SCU clock * @hw: clock to change rate for * @rate: target rate for the clock * @parent_rate: rate of the clock parent, not used for SCU clocks * * Sets a clock frequency for a SCU clock. Returns the SCU * protocol status. */ static int clk_scu_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_scu *clk = to_clk_scu(hw); struct imx_sc_msg_req_set_clock_rate msg; struct imx_sc_rpc_msg *hdr = &msg.hdr; hdr->ver = IMX_SC_RPC_VERSION; hdr->svc = IMX_SC_RPC_SVC_PM; hdr->func = IMX_SC_PM_FUNC_SET_CLOCK_RATE; hdr->size = 3; msg.rate = cpu_to_le32(rate); msg.resource = cpu_to_le16(clk->rsrc_id); msg.clk = clk->clk_type; return imx_scu_call_rpc(ccm_ipc_handle, &msg, true); } static u8 clk_scu_get_parent(struct clk_hw *hw) { struct clk_scu *clk = to_clk_scu(hw); struct imx_sc_msg_get_clock_parent msg; struct imx_sc_rpc_msg *hdr = &msg.hdr; int ret; hdr->ver = IMX_SC_RPC_VERSION; hdr->svc = IMX_SC_RPC_SVC_PM; hdr->func = IMX_SC_PM_FUNC_GET_CLOCK_PARENT; hdr->size = 2; msg.data.req.resource = cpu_to_le16(clk->rsrc_id); msg.data.req.clk = clk->clk_type; ret = imx_scu_call_rpc(ccm_ipc_handle, &msg, true); if (ret) { pr_err("%s: failed to get clock parent %d\n", clk_hw_get_name(hw), ret); return 0; } clk->parent_index = msg.data.resp.parent; return msg.data.resp.parent; } static int clk_scu_set_parent(struct clk_hw *hw, u8 index) { struct clk_scu *clk = to_clk_scu(hw); struct imx_sc_msg_set_clock_parent msg; struct imx_sc_rpc_msg *hdr = &msg.hdr; int ret; hdr->ver = IMX_SC_RPC_VERSION; hdr->svc = IMX_SC_RPC_SVC_PM; hdr->func = IMX_SC_PM_FUNC_SET_CLOCK_PARENT; hdr->size = 2; msg.resource = cpu_to_le16(clk->rsrc_id); msg.clk = clk->clk_type; msg.parent = index; ret = imx_scu_call_rpc(ccm_ipc_handle, &msg, true); if (ret) { pr_err("%s: failed to set clock parent %d\n", clk_hw_get_name(hw), ret); return ret; } clk->parent_index = index; return 0; } static int sc_pm_clock_enable(struct imx_sc_ipc *ipc, u16 resource, u8 clk, bool enable, bool autog) { struct imx_sc_msg_req_clock_enable msg; struct imx_sc_rpc_msg *hdr = &msg.hdr; hdr->ver = IMX_SC_RPC_VERSION; hdr->svc = IMX_SC_RPC_SVC_PM; hdr->func = IMX_SC_PM_FUNC_CLOCK_ENABLE; hdr->size = 3; msg.resource = cpu_to_le16(resource); msg.clk = clk; msg.enable = enable; msg.autog = autog; return imx_scu_call_rpc(ccm_ipc_handle, &msg, true); } /* * clk_scu_prepare - Enable a SCU clock * @hw: clock to enable * * Enable the clock at the DSC slice level */ static int clk_scu_prepare(struct clk_hw *hw) { struct clk_scu *clk = to_clk_scu(hw); return sc_pm_clock_enable(ccm_ipc_handle, clk->rsrc_id, clk->clk_type, true, false); } /* * clk_scu_unprepare - Disable a SCU clock * @hw: clock to enable * * Disable the clock at the DSC slice level */ static void clk_scu_unprepare(struct clk_hw *hw) { struct clk_scu *clk = to_clk_scu(hw); int ret; ret = sc_pm_clock_enable(ccm_ipc_handle, clk->rsrc_id, clk->clk_type, false, false); if (ret) pr_warn("%s: clk unprepare failed %d\n", clk_hw_get_name(hw), ret); } static const struct clk_ops clk_scu_ops = { .recalc_rate = clk_scu_recalc_rate, .determine_rate = clk_scu_determine_rate, .set_rate = clk_scu_set_rate, .get_parent = clk_scu_get_parent, .set_parent = clk_scu_set_parent, .prepare = clk_scu_prepare, .unprepare = clk_scu_unprepare, }; static const struct clk_ops clk_scu_cpu_ops = { .recalc_rate = clk_scu_recalc_rate, .round_rate = clk_scu_round_rate, .set_rate = clk_scu_atf_set_cpu_rate, .prepare = clk_scu_prepare, .unprepare = clk_scu_unprepare, }; static const struct clk_ops clk_scu_pi_ops = { .recalc_rate = clk_scu_recalc_rate, .round_rate = clk_scu_round_rate, .set_rate = clk_scu_set_rate, }; struct clk_hw *__imx_clk_scu(struct device *dev, const char *name, const char * const *parents, int num_parents, u32 rsrc_id, u8 clk_type) { struct clk_init_data init; struct clk_scu *clk; struct clk_hw *hw; int ret; clk = kzalloc(sizeof(*clk), GFP_KERNEL); if (!clk) return ERR_PTR(-ENOMEM); clk->rsrc_id = rsrc_id; clk->clk_type = clk_type; init.name = name; init.ops = &clk_scu_ops; if (rsrc_id == IMX_SC_R_A35 || rsrc_id == IMX_SC_R_A53 || rsrc_id == IMX_SC_R_A72) init.ops = &clk_scu_cpu_ops; else if (rsrc_id == IMX_SC_R_PI_0_PLL) init.ops = &clk_scu_pi_ops; else init.ops = &clk_scu_ops; init.parent_names = parents; init.num_parents = num_parents; /* * Note on MX8, the clocks are tightly coupled with power domain * that once the power domain is off, the clock status may be * lost. So we make it NOCACHE to let user to retrieve the real * clock status from HW instead of using the possible invalid * cached rate. */ init.flags = CLK_GET_RATE_NOCACHE; clk->hw.init = &init; hw = &clk->hw; ret = clk_hw_register(dev, hw); if (ret) { kfree(clk); hw = ERR_PTR(ret); return hw; } if (dev) dev_set_drvdata(dev, clk); return hw; } struct clk_hw *imx_scu_of_clk_src_get(struct of_phandle_args *clkspec, void *data) { unsigned int rsrc = clkspec->args[0]; unsigned int idx = clkspec->args[1]; struct list_head *scu_clks = data; struct imx_scu_clk_node *clk; list_for_each_entry(clk, &scu_clks[rsrc], node) { if (clk->clk_type == idx) return clk->hw; } return ERR_PTR(-ENODEV); } static int imx_clk_scu_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct imx_scu_clk_node *clk = dev_get_platdata(dev); struct clk_hw *hw; int ret; if (!((clk->rsrc == IMX_SC_R_A35) || (clk->rsrc == IMX_SC_R_A53) || (clk->rsrc == IMX_SC_R_A72))) { pm_runtime_set_suspended(dev); pm_runtime_set_autosuspend_delay(dev, 50); pm_runtime_use_autosuspend(&pdev->dev); pm_runtime_enable(dev); ret = pm_runtime_resume_and_get(dev); if (ret) { pm_genpd_remove_device(dev); pm_runtime_disable(dev); return ret; } } hw = __imx_clk_scu(dev, clk->name, clk->parents, clk->num_parents, clk->rsrc, clk->clk_type); if (IS_ERR(hw)) { pm_runtime_disable(dev); return PTR_ERR(hw); } clk->hw = hw; list_add_tail(&clk->node, &imx_scu_clks[clk->rsrc]); if (!((clk->rsrc == IMX_SC_R_A35) || (clk->rsrc == IMX_SC_R_A53) || (clk->rsrc == IMX_SC_R_A72))) { pm_runtime_mark_last_busy(&pdev->dev); pm_runtime_put_autosuspend(&pdev->dev); } dev_dbg(dev, "register SCU clock rsrc:%d type:%d\n", clk->rsrc, clk->clk_type); return 0; } static int __maybe_unused imx_clk_scu_suspend(struct device *dev) { struct clk_scu *clk = dev_get_drvdata(dev); u32 rsrc_id = clk->rsrc_id; if ((rsrc_id == IMX_SC_R_A35) || (rsrc_id == IMX_SC_R_A53) || (rsrc_id == IMX_SC_R_A72)) return 0; clk->parent = clk_hw_get_parent(&clk->hw); /* DC SS needs to handle bypass clock using non-cached clock rate */ if (clk->rsrc_id == IMX_SC_R_DC_0_VIDEO0 || clk->rsrc_id == IMX_SC_R_DC_0_VIDEO1 || clk->rsrc_id == IMX_SC_R_DC_1_VIDEO0 || clk->rsrc_id == IMX_SC_R_DC_1_VIDEO1) clk->rate = clk_scu_recalc_rate(&clk->hw, 0); else clk->rate = clk_hw_get_rate(&clk->hw); clk->is_enabled = clk_hw_is_enabled(&clk->hw); if (clk->parent) dev_dbg(dev, "save parent %s idx %u\n", clk_hw_get_name(clk->parent), clk->parent_index); if (clk->rate) dev_dbg(dev, "save rate %d\n", clk->rate); if (clk->is_enabled) dev_dbg(dev, "save enabled state\n"); return 0; } static int __maybe_unused imx_clk_scu_resume(struct device *dev) { struct clk_scu *clk = dev_get_drvdata(dev); u32 rsrc_id = clk->rsrc_id; int ret = 0; if ((rsrc_id == IMX_SC_R_A35) || (rsrc_id == IMX_SC_R_A53) || (rsrc_id == IMX_SC_R_A72)) return 0; if (clk->parent) { ret = clk_scu_set_parent(&clk->hw, clk->parent_index); dev_dbg(dev, "restore parent %s idx %u %s\n", clk_hw_get_name(clk->parent), clk->parent_index, !ret ? "success" : "failed"); } if (clk->rate) { ret = clk_scu_set_rate(&clk->hw, clk->rate, 0); dev_dbg(dev, "restore rate %d %s\n", clk->rate, !ret ? "success" : "failed"); } if (clk->is_enabled && rsrc_id != IMX_SC_R_PI_0_PLL) { ret = clk_scu_prepare(&clk->hw); dev_dbg(dev, "restore enabled state %s\n", !ret ? "success" : "failed"); } return ret; } static const struct dev_pm_ops imx_clk_scu_pm_ops = { SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(imx_clk_scu_suspend, imx_clk_scu_resume) }; static struct platform_driver imx_clk_scu_driver = { .driver = { .name = "imx-scu-clk", .suppress_bind_attrs = true, .pm = &imx_clk_scu_pm_ops, }, .probe = imx_clk_scu_probe, }; static int imx_clk_scu_attach_pd(struct device *dev, u32 rsrc_id) { struct of_phandle_args genpdspec = { .np = pd_np, .args_count = 1, .args[0] = rsrc_id, }; if (rsrc_id == IMX_SC_R_A35 || rsrc_id == IMX_SC_R_A53 || rsrc_id == IMX_SC_R_A72) return 0; return of_genpd_add_device(&genpdspec, dev); } struct clk_hw *imx_clk_scu_alloc_dev(const char *name, const char * const *parents, int num_parents, u32 rsrc_id, u8 clk_type) { struct imx_scu_clk_node clk = { .name = name, .rsrc = rsrc_id, .clk_type = clk_type, .parents = parents, .num_parents = num_parents, }; struct platform_device *pdev; int ret; if (!imx_scu_clk_is_valid(rsrc_id)) return ERR_PTR(-EINVAL); pdev = platform_device_alloc(name, PLATFORM_DEVID_NONE); if (!pdev) { pr_err("%s: failed to allocate scu clk dev rsrc %d type %d\n", name, rsrc_id, clk_type); return ERR_PTR(-ENOMEM); } ret = platform_device_add_data(pdev, &clk, sizeof(clk)); if (ret) { platform_device_put(pdev); return ERR_PTR(ret); } ret = driver_set_override(&pdev->dev, &pdev->driver_override, "imx-scu-clk", strlen("imx-scu-clk")); if (ret) { platform_device_put(pdev); return ERR_PTR(ret); } ret = imx_clk_scu_attach_pd(&pdev->dev, rsrc_id); if (ret) pr_warn("%s: failed to attached the power domain %d\n", name, ret); ret = platform_device_add(pdev); if (ret) { platform_device_put(pdev); return ERR_PTR(ret); } /* For API backwards compatiblilty, simply return NULL for success */ return NULL; } void imx_clk_scu_unregister(void) { struct imx_scu_clk_node *clk, *n; int i; for (i = 0; i < IMX_SC_R_LAST; i++) { list_for_each_entry_safe(clk, n, &imx_scu_clks[i], node) { clk_hw_unregister(clk->hw); kfree(clk); } } } static unsigned long clk_gpr_div_scu_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_gpr_scu *clk = to_clk_gpr_scu(hw); unsigned long rate = 0; u32 val; int err; err = imx_sc_misc_get_control(ccm_ipc_handle, clk->rsrc_id, clk->gpr_id, &val); rate = val ? parent_rate / 2 : parent_rate; return err ? 0 : rate; } static long clk_gpr_div_scu_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { if (rate < *prate) rate = *prate / 2; else rate = *prate; return rate; } static int clk_gpr_div_scu_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_gpr_scu *clk = to_clk_gpr_scu(hw); uint32_t val; int err; val = (rate < parent_rate) ? 1 : 0; err = imx_sc_misc_set_control(ccm_ipc_handle, clk->rsrc_id, clk->gpr_id, val); return err ? -EINVAL : 0; } static const struct clk_ops clk_gpr_div_scu_ops = { .recalc_rate = clk_gpr_div_scu_recalc_rate, .round_rate = clk_gpr_div_scu_round_rate, .set_rate = clk_gpr_div_scu_set_rate, }; static u8 clk_gpr_mux_scu_get_parent(struct clk_hw *hw) { struct clk_gpr_scu *clk = to_clk_gpr_scu(hw); u32 val = 0; imx_sc_misc_get_control(ccm_ipc_handle, clk->rsrc_id, clk->gpr_id, &val); return (u8)val; } static int clk_gpr_mux_scu_set_parent(struct clk_hw *hw, u8 index) { struct clk_gpr_scu *clk = to_clk_gpr_scu(hw); return imx_sc_misc_set_control(ccm_ipc_handle, clk->rsrc_id, clk->gpr_id, index); } static const struct clk_ops clk_gpr_mux_scu_ops = { .determine_rate = clk_hw_determine_rate_no_reparent, .get_parent = clk_gpr_mux_scu_get_parent, .set_parent = clk_gpr_mux_scu_set_parent, }; static int clk_gpr_gate_scu_prepare(struct clk_hw *hw) { struct clk_gpr_scu *clk = to_clk_gpr_scu(hw); return imx_sc_misc_set_control(ccm_ipc_handle, clk->rsrc_id, clk->gpr_id, !clk->gate_invert); } static void clk_gpr_gate_scu_unprepare(struct clk_hw *hw) { struct clk_gpr_scu *clk = to_clk_gpr_scu(hw); int ret; ret = imx_sc_misc_set_control(ccm_ipc_handle, clk->rsrc_id, clk->gpr_id, clk->gate_invert); if (ret) pr_err("%s: clk unprepare failed %d\n", clk_hw_get_name(hw), ret); } static int clk_gpr_gate_scu_is_prepared(struct clk_hw *hw) { struct clk_gpr_scu *clk = to_clk_gpr_scu(hw); int ret; u32 val; ret = imx_sc_misc_get_control(ccm_ipc_handle, clk->rsrc_id, clk->gpr_id, &val); if (ret) return ret; return clk->gate_invert ? !val : val; } static const struct clk_ops clk_gpr_gate_scu_ops = { .prepare = clk_gpr_gate_scu_prepare, .unprepare = clk_gpr_gate_scu_unprepare, .is_prepared = clk_gpr_gate_scu_is_prepared, }; struct clk_hw *__imx_clk_gpr_scu(const char *name, const char * const *parent_name, int num_parents, u32 rsrc_id, u8 gpr_id, u8 flags, bool invert) { struct imx_scu_clk_node *clk_node; struct clk_gpr_scu *clk; struct clk_hw *hw; struct clk_init_data init; int ret; if (rsrc_id >= IMX_SC_R_LAST || gpr_id >= IMX_SC_C_LAST) return ERR_PTR(-EINVAL); clk_node = kzalloc(sizeof(*clk_node), GFP_KERNEL); if (!clk_node) return ERR_PTR(-ENOMEM); if (!imx_scu_clk_is_valid(rsrc_id)) { kfree(clk_node); return ERR_PTR(-EINVAL); } clk = kzalloc(sizeof(*clk), GFP_KERNEL); if (!clk) { kfree(clk_node); return ERR_PTR(-ENOMEM); } clk->rsrc_id = rsrc_id; clk->gpr_id = gpr_id; clk->flags = flags; clk->gate_invert = invert; if (flags & IMX_SCU_GPR_CLK_GATE) init.ops = &clk_gpr_gate_scu_ops; if (flags & IMX_SCU_GPR_CLK_DIV) init.ops = &clk_gpr_div_scu_ops; if (flags & IMX_SCU_GPR_CLK_MUX) init.ops = &clk_gpr_mux_scu_ops; init.flags = 0; init.name = name; init.parent_names = parent_name; init.num_parents = num_parents; clk->hw.init = &init; hw = &clk->hw; ret = clk_hw_register(NULL, hw); if (ret) { kfree(clk); kfree(clk_node); hw = ERR_PTR(ret); } else { clk_node->hw = hw; clk_node->clk_type = gpr_id; list_add_tail(&clk_node->node, &imx_scu_clks[rsrc_id]); } return hw; }
linux-master
drivers/clk/imx/clk-scu.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2012 Sascha Hauer <[email protected]> */ #include <linux/module.h> #include <linux/clk.h> #include <linux/clkdev.h> #include <linux/io.h> #include <linux/err.h> #include <linux/of.h> #include <linux/of_address.h> #include <soc/imx/revision.h> #include <asm/irq.h> #include "clk.h" #define MX31_CCM_BASE_ADDR 0x53f80000 #define MX31_GPT1_BASE_ADDR 0x53f90000 #define MX31_INT_GPT (NR_IRQS_LEGACY + 29) #define MXC_CCM_CCMR 0x00 #define MXC_CCM_PDR0 0x04 #define MXC_CCM_PDR1 0x08 #define MXC_CCM_MPCTL 0x10 #define MXC_CCM_UPCTL 0x14 #define MXC_CCM_SRPCTL 0x18 #define MXC_CCM_CGR0 0x20 #define MXC_CCM_CGR1 0x24 #define MXC_CCM_CGR2 0x28 #define MXC_CCM_PMCR0 0x5c static const char *mcu_main_sel[] = { "spll", "mpll", }; static const char *per_sel[] = { "per_div", "ipg", }; static const char *csi_sel[] = { "upll", "spll", }; static const char *fir_sel[] = { "mcu_main", "upll", "spll" }; enum mx31_clks { dummy, ckih, ckil, mpll, spll, upll, mcu_main, hsp, ahb, nfc, ipg, per_div, per, csi, fir, csi_div, usb_div_pre, usb_div_post, fir_div_pre, fir_div_post, sdhc1_gate, sdhc2_gate, gpt_gate, epit1_gate, epit2_gate, iim_gate, ata_gate, sdma_gate, cspi3_gate, rng_gate, uart1_gate, uart2_gate, ssi1_gate, i2c1_gate, i2c2_gate, i2c3_gate, hantro_gate, mstick1_gate, mstick2_gate, csi_gate, rtc_gate, wdog_gate, pwm_gate, sim_gate, ect_gate, usb_gate, kpp_gate, ipu_gate, uart3_gate, uart4_gate, uart5_gate, owire_gate, ssi2_gate, cspi1_gate, cspi2_gate, gacc_gate, emi_gate, rtic_gate, firi_gate, clk_max }; static struct clk *clk[clk_max]; static struct clk_onecell_data clk_data; static void __init _mx31_clocks_init(void __iomem *base, unsigned long fref) { clk[dummy] = imx_clk_fixed("dummy", 0); clk[ckih] = imx_clk_fixed("ckih", fref); clk[ckil] = imx_clk_fixed("ckil", 32768); clk[mpll] = imx_clk_pllv1(IMX_PLLV1_IMX31, "mpll", "ckih", base + MXC_CCM_MPCTL); clk[spll] = imx_clk_pllv1(IMX_PLLV1_IMX31, "spll", "ckih", base + MXC_CCM_SRPCTL); clk[upll] = imx_clk_pllv1(IMX_PLLV1_IMX31, "upll", "ckih", base + MXC_CCM_UPCTL); clk[mcu_main] = imx_clk_mux("mcu_main", base + MXC_CCM_PMCR0, 31, 1, mcu_main_sel, ARRAY_SIZE(mcu_main_sel)); clk[hsp] = imx_clk_divider("hsp", "mcu_main", base + MXC_CCM_PDR0, 11, 3); clk[ahb] = imx_clk_divider("ahb", "mcu_main", base + MXC_CCM_PDR0, 3, 3); clk[nfc] = imx_clk_divider("nfc", "ahb", base + MXC_CCM_PDR0, 8, 3); clk[ipg] = imx_clk_divider("ipg", "ahb", base + MXC_CCM_PDR0, 6, 2); clk[per_div] = imx_clk_divider("per_div", "upll", base + MXC_CCM_PDR0, 16, 5); clk[per] = imx_clk_mux("per", base + MXC_CCM_CCMR, 24, 1, per_sel, ARRAY_SIZE(per_sel)); clk[csi] = imx_clk_mux("csi_sel", base + MXC_CCM_CCMR, 25, 1, csi_sel, ARRAY_SIZE(csi_sel)); clk[fir] = imx_clk_mux("fir_sel", base + MXC_CCM_CCMR, 11, 2, fir_sel, ARRAY_SIZE(fir_sel)); clk[csi_div] = imx_clk_divider("csi_div", "csi_sel", base + MXC_CCM_PDR0, 23, 9); clk[usb_div_pre] = imx_clk_divider("usb_div_pre", "upll", base + MXC_CCM_PDR1, 30, 2); clk[usb_div_post] = imx_clk_divider("usb_div_post", "usb_div_pre", base + MXC_CCM_PDR1, 27, 3); clk[fir_div_pre] = imx_clk_divider("fir_div_pre", "fir_sel", base + MXC_CCM_PDR1, 24, 3); clk[fir_div_post] = imx_clk_divider("fir_div_post", "fir_div_pre", base + MXC_CCM_PDR1, 23, 6); clk[sdhc1_gate] = imx_clk_gate2("sdhc1_gate", "per", base + MXC_CCM_CGR0, 0); clk[sdhc2_gate] = imx_clk_gate2("sdhc2_gate", "per", base + MXC_CCM_CGR0, 2); clk[gpt_gate] = imx_clk_gate2("gpt_gate", "per", base + MXC_CCM_CGR0, 4); clk[epit1_gate] = imx_clk_gate2("epit1_gate", "per", base + MXC_CCM_CGR0, 6); clk[epit2_gate] = imx_clk_gate2("epit2_gate", "per", base + MXC_CCM_CGR0, 8); clk[iim_gate] = imx_clk_gate2("iim_gate", "ipg", base + MXC_CCM_CGR0, 10); clk[ata_gate] = imx_clk_gate2("ata_gate", "ipg", base + MXC_CCM_CGR0, 12); clk[sdma_gate] = imx_clk_gate2("sdma_gate", "ahb", base + MXC_CCM_CGR0, 14); clk[cspi3_gate] = imx_clk_gate2("cspi3_gate", "ipg", base + MXC_CCM_CGR0, 16); clk[rng_gate] = imx_clk_gate2("rng_gate", "ipg", base + MXC_CCM_CGR0, 18); clk[uart1_gate] = imx_clk_gate2("uart1_gate", "per", base + MXC_CCM_CGR0, 20); clk[uart2_gate] = imx_clk_gate2("uart2_gate", "per", base + MXC_CCM_CGR0, 22); clk[ssi1_gate] = imx_clk_gate2("ssi1_gate", "spll", base + MXC_CCM_CGR0, 24); clk[i2c1_gate] = imx_clk_gate2("i2c1_gate", "per", base + MXC_CCM_CGR0, 26); clk[i2c2_gate] = imx_clk_gate2("i2c2_gate", "per", base + MXC_CCM_CGR0, 28); clk[i2c3_gate] = imx_clk_gate2("i2c3_gate", "per", base + MXC_CCM_CGR0, 30); clk[hantro_gate] = imx_clk_gate2("hantro_gate", "per", base + MXC_CCM_CGR1, 0); clk[mstick1_gate] = imx_clk_gate2("mstick1_gate", "per", base + MXC_CCM_CGR1, 2); clk[mstick2_gate] = imx_clk_gate2("mstick2_gate", "per", base + MXC_CCM_CGR1, 4); clk[csi_gate] = imx_clk_gate2("csi_gate", "csi_div", base + MXC_CCM_CGR1, 6); clk[rtc_gate] = imx_clk_gate2("rtc_gate", "ipg", base + MXC_CCM_CGR1, 8); clk[wdog_gate] = imx_clk_gate2("wdog_gate", "ipg", base + MXC_CCM_CGR1, 10); clk[pwm_gate] = imx_clk_gate2("pwm_gate", "per", base + MXC_CCM_CGR1, 12); clk[sim_gate] = imx_clk_gate2("sim_gate", "per", base + MXC_CCM_CGR1, 14); clk[ect_gate] = imx_clk_gate2("ect_gate", "per", base + MXC_CCM_CGR1, 16); clk[usb_gate] = imx_clk_gate2("usb_gate", "ahb", base + MXC_CCM_CGR1, 18); clk[kpp_gate] = imx_clk_gate2("kpp_gate", "ipg", base + MXC_CCM_CGR1, 20); clk[ipu_gate] = imx_clk_gate2("ipu_gate", "hsp", base + MXC_CCM_CGR1, 22); clk[uart3_gate] = imx_clk_gate2("uart3_gate", "per", base + MXC_CCM_CGR1, 24); clk[uart4_gate] = imx_clk_gate2("uart4_gate", "per", base + MXC_CCM_CGR1, 26); clk[uart5_gate] = imx_clk_gate2("uart5_gate", "per", base + MXC_CCM_CGR1, 28); clk[owire_gate] = imx_clk_gate2("owire_gate", "per", base + MXC_CCM_CGR1, 30); clk[ssi2_gate] = imx_clk_gate2("ssi2_gate", "spll", base + MXC_CCM_CGR2, 0); clk[cspi1_gate] = imx_clk_gate2("cspi1_gate", "ipg", base + MXC_CCM_CGR2, 2); clk[cspi2_gate] = imx_clk_gate2("cspi2_gate", "ipg", base + MXC_CCM_CGR2, 4); clk[gacc_gate] = imx_clk_gate2("gacc_gate", "per", base + MXC_CCM_CGR2, 6); clk[emi_gate] = imx_clk_gate2("emi_gate", "ahb", base + MXC_CCM_CGR2, 8); clk[rtic_gate] = imx_clk_gate2("rtic_gate", "ahb", base + MXC_CCM_CGR2, 10); clk[firi_gate] = imx_clk_gate2("firi_gate", "upll", base+MXC_CCM_CGR2, 12); imx_check_clocks(clk, ARRAY_SIZE(clk)); clk_set_parent(clk[csi], clk[upll]); clk_prepare_enable(clk[emi_gate]); clk_prepare_enable(clk[iim_gate]); mx31_revision(); clk_disable_unprepare(clk[iim_gate]); } static void __init mx31_clocks_init_dt(struct device_node *np) { struct device_node *osc_np; u32 fref = 26000000; /* default */ void __iomem *ccm; for_each_compatible_node(osc_np, NULL, "fixed-clock") { if (!of_device_is_compatible(osc_np, "fsl,imx-osc26m")) continue; if (!of_property_read_u32(osc_np, "clock-frequency", &fref)) { of_node_put(osc_np); break; } } ccm = of_iomap(np, 0); if (!ccm) panic("%s: failed to map registers\n", __func__); _mx31_clocks_init(ccm, fref); clk_data.clks = clk; clk_data.clk_num = ARRAY_SIZE(clk); of_clk_add_provider(np, of_clk_src_onecell_get, &clk_data); } CLK_OF_DECLARE(imx31_ccm, "fsl,imx31-ccm", mx31_clocks_init_dt);
linux-master
drivers/clk/imx/clk-imx31.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2021 NXP * * Peng Fan <[email protected]> */ #include <linux/clk-provider.h> #include <linux/errno.h> #include <linux/export.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/slab.h> #include "clk.h" #define TIMEOUT_US 500U #define CCM_DIV_SHIFT 0 #define CCM_DIV_WIDTH 8 #define CCM_MUX_SHIFT 8 #define CCM_MUX_MASK 3 #define CCM_OFF_SHIFT 24 #define CCM_BUSY_SHIFT 28 #define STAT_OFFSET 0x4 #define AUTHEN_OFFSET 0x30 #define TZ_NS_SHIFT 9 #define TZ_NS_MASK BIT(9) #define WHITE_LIST_SHIFT 16 static int imx93_clk_composite_wait_ready(struct clk_hw *hw, void __iomem *reg) { int ret; u32 val; ret = readl_poll_timeout_atomic(reg + STAT_OFFSET, val, !(val & BIT(CCM_BUSY_SHIFT)), 0, TIMEOUT_US); if (ret) pr_err("Slice[%s] busy timeout\n", clk_hw_get_name(hw)); return ret; } static void imx93_clk_composite_gate_endisable(struct clk_hw *hw, int enable) { struct clk_gate *gate = to_clk_gate(hw); unsigned long flags; u32 reg; if (gate->lock) spin_lock_irqsave(gate->lock, flags); reg = readl(gate->reg); if (enable) reg &= ~BIT(gate->bit_idx); else reg |= BIT(gate->bit_idx); writel(reg, gate->reg); imx93_clk_composite_wait_ready(hw, gate->reg); if (gate->lock) spin_unlock_irqrestore(gate->lock, flags); } static int imx93_clk_composite_gate_enable(struct clk_hw *hw) { imx93_clk_composite_gate_endisable(hw, 1); return 0; } static void imx93_clk_composite_gate_disable(struct clk_hw *hw) { imx93_clk_composite_gate_endisable(hw, 0); } static const struct clk_ops imx93_clk_composite_gate_ops = { .enable = imx93_clk_composite_gate_enable, .disable = imx93_clk_composite_gate_disable, .is_enabled = clk_gate_is_enabled, }; static unsigned long imx93_clk_composite_divider_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { return clk_divider_ops.recalc_rate(hw, parent_rate); } static long imx93_clk_composite_divider_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { return clk_divider_ops.round_rate(hw, rate, prate); } static int imx93_clk_composite_divider_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { return clk_divider_ops.determine_rate(hw, req); } static int imx93_clk_composite_divider_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_divider *divider = to_clk_divider(hw); int value; unsigned long flags = 0; u32 val; int ret; value = divider_get_val(rate, parent_rate, divider->table, divider->width, divider->flags); if (value < 0) return value; if (divider->lock) spin_lock_irqsave(divider->lock, flags); val = readl(divider->reg); val &= ~(clk_div_mask(divider->width) << divider->shift); val |= (u32)value << divider->shift; writel(val, divider->reg); ret = imx93_clk_composite_wait_ready(hw, divider->reg); if (divider->lock) spin_unlock_irqrestore(divider->lock, flags); return ret; } static const struct clk_ops imx93_clk_composite_divider_ops = { .recalc_rate = imx93_clk_composite_divider_recalc_rate, .round_rate = imx93_clk_composite_divider_round_rate, .determine_rate = imx93_clk_composite_divider_determine_rate, .set_rate = imx93_clk_composite_divider_set_rate, }; static u8 imx93_clk_composite_mux_get_parent(struct clk_hw *hw) { return clk_mux_ops.get_parent(hw); } static int imx93_clk_composite_mux_set_parent(struct clk_hw *hw, u8 index) { struct clk_mux *mux = to_clk_mux(hw); u32 val = clk_mux_index_to_val(mux->table, mux->flags, index); unsigned long flags = 0; u32 reg; int ret; if (mux->lock) spin_lock_irqsave(mux->lock, flags); reg = readl(mux->reg); reg &= ~(mux->mask << mux->shift); val = val << mux->shift; reg |= val; writel(reg, mux->reg); ret = imx93_clk_composite_wait_ready(hw, mux->reg); if (mux->lock) spin_unlock_irqrestore(mux->lock, flags); return ret; } static int imx93_clk_composite_mux_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { return clk_mux_ops.determine_rate(hw, req); } static const struct clk_ops imx93_clk_composite_mux_ops = { .get_parent = imx93_clk_composite_mux_get_parent, .set_parent = imx93_clk_composite_mux_set_parent, .determine_rate = imx93_clk_composite_mux_determine_rate, }; struct clk_hw *imx93_clk_composite_flags(const char *name, const char * const *parent_names, int num_parents, void __iomem *reg, u32 domain_id, unsigned long flags) { struct clk_hw *hw = ERR_PTR(-ENOMEM), *mux_hw; struct clk_hw *div_hw, *gate_hw; struct clk_divider *div = NULL; struct clk_gate *gate = NULL; struct clk_mux *mux = NULL; bool clk_ro = false; u32 authen; mux = kzalloc(sizeof(*mux), GFP_KERNEL); if (!mux) goto fail; mux_hw = &mux->hw; mux->reg = reg; mux->shift = CCM_MUX_SHIFT; mux->mask = CCM_MUX_MASK; mux->lock = &imx_ccm_lock; div = kzalloc(sizeof(*div), GFP_KERNEL); if (!div) goto fail; div_hw = &div->hw; div->reg = reg; div->shift = CCM_DIV_SHIFT; div->width = CCM_DIV_WIDTH; div->lock = &imx_ccm_lock; div->flags = CLK_DIVIDER_ROUND_CLOSEST; authen = readl(reg + AUTHEN_OFFSET); if (!(authen & TZ_NS_MASK) || !(authen & BIT(WHITE_LIST_SHIFT + domain_id))) clk_ro = true; if (clk_ro) { hw = clk_hw_register_composite(NULL, name, parent_names, num_parents, mux_hw, &clk_mux_ro_ops, div_hw, &clk_divider_ro_ops, NULL, NULL, flags); } else if (!mcore_booted) { gate = kzalloc(sizeof(*gate), GFP_KERNEL); if (!gate) goto fail; gate_hw = &gate->hw; gate->reg = reg; gate->bit_idx = CCM_OFF_SHIFT; gate->lock = &imx_ccm_lock; gate->flags = CLK_GATE_SET_TO_DISABLE; hw = clk_hw_register_composite(NULL, name, parent_names, num_parents, mux_hw, &imx93_clk_composite_mux_ops, div_hw, &imx93_clk_composite_divider_ops, gate_hw, &imx93_clk_composite_gate_ops, flags | CLK_SET_RATE_NO_REPARENT); } else { hw = clk_hw_register_composite(NULL, name, parent_names, num_parents, mux_hw, &imx93_clk_composite_mux_ops, div_hw, &imx93_clk_composite_divider_ops, NULL, &imx93_clk_composite_gate_ops, flags | CLK_SET_RATE_NO_REPARENT); } if (IS_ERR(hw)) goto fail; return hw; fail: kfree(gate); kfree(div); kfree(mux); return ERR_CAST(hw); } EXPORT_SYMBOL_GPL(imx93_clk_composite_flags);
linux-master
drivers/clk/imx/clk-composite-93.c
// SPDX-License-Identifier: GPL-2.0-only /* * pxa1928 clock framework source file * * Copyright (C) 2015 Linaro, Ltd. * Rob Herring <[email protected]> * * Based on drivers/clk/mmp/clk-of-mmp2.c: * Copyright (C) 2012 Marvell * Chao Xie <[email protected]> */ #include <linux/kernel.h> #include <linux/io.h> #include <linux/of_address.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <dt-bindings/clock/marvell,pxa1928.h> #include "clk.h" #include "reset.h" #define MPMU_UART_PLL 0x14 #define APBC_NR_CLKS 48 #define APMU_NR_CLKS 96 struct pxa1928_clk_unit { struct mmp_clk_unit unit; void __iomem *mpmu_base; void __iomem *apmu_base; void __iomem *apbc_base; void __iomem *apbcp_base; }; static struct mmp_param_fixed_rate_clk fixed_rate_clks[] = { {0, "clk32", NULL, 0, 32768}, {0, "vctcxo", NULL, 0, 26000000}, {0, "pll1_624", NULL, 0, 624000000}, {0, "pll5p", NULL, 0, 832000000}, {0, "pll5", NULL, 0, 1248000000}, {0, "usb_pll", NULL, 0, 480000000}, }; static struct mmp_param_fixed_factor_clk fixed_factor_clks[] = { {0, "pll1_d2", "pll1_624", 1, 2, 0}, {0, "pll1_d9", "pll1_624", 1, 9, 0}, {0, "pll1_d12", "pll1_624", 1, 12, 0}, {0, "pll1_d16", "pll1_624", 1, 16, 0}, {0, "pll1_d20", "pll1_624", 1, 20, 0}, {0, "pll1_416", "pll1_624", 2, 3, 0}, {0, "vctcxo_d2", "vctcxo", 1, 2, 0}, {0, "vctcxo_d4", "vctcxo", 1, 4, 0}, }; static struct mmp_clk_factor_masks uart_factor_masks = { .factor = 2, .num_mask = 0x1fff, .den_mask = 0x1fff, .num_shift = 16, .den_shift = 0, }; static struct mmp_clk_factor_tbl uart_factor_tbl[] = { {.num = 832, .den = 234}, /*58.5MHZ */ {.num = 1, .den = 1}, /*26MHZ */ }; static void pxa1928_pll_init(struct pxa1928_clk_unit *pxa_unit) { struct mmp_clk_unit *unit = &pxa_unit->unit; mmp_register_fixed_rate_clks(unit, fixed_rate_clks, ARRAY_SIZE(fixed_rate_clks)); mmp_register_fixed_factor_clks(unit, fixed_factor_clks, ARRAY_SIZE(fixed_factor_clks)); mmp_clk_register_factor("uart_pll", "pll1_416", CLK_SET_RATE_PARENT, pxa_unit->mpmu_base + MPMU_UART_PLL, &uart_factor_masks, uart_factor_tbl, ARRAY_SIZE(uart_factor_tbl), NULL); } static DEFINE_SPINLOCK(uart0_lock); static DEFINE_SPINLOCK(uart1_lock); static DEFINE_SPINLOCK(uart2_lock); static DEFINE_SPINLOCK(uart3_lock); static const char *uart_parent_names[] = {"uart_pll", "vctcxo"}; static DEFINE_SPINLOCK(ssp0_lock); static DEFINE_SPINLOCK(ssp1_lock); static const char *ssp_parent_names[] = {"vctcxo_d4", "vctcxo_d2", "vctcxo", "pll1_d12"}; static DEFINE_SPINLOCK(reset_lock); static struct mmp_param_mux_clk apbc_mux_clks[] = { {0, "uart0_mux", uart_parent_names, ARRAY_SIZE(uart_parent_names), CLK_SET_RATE_PARENT, PXA1928_CLK_UART0 * 4, 4, 3, 0, &uart0_lock}, {0, "uart1_mux", uart_parent_names, ARRAY_SIZE(uart_parent_names), CLK_SET_RATE_PARENT, PXA1928_CLK_UART1 * 4, 4, 3, 0, &uart1_lock}, {0, "uart2_mux", uart_parent_names, ARRAY_SIZE(uart_parent_names), CLK_SET_RATE_PARENT, PXA1928_CLK_UART2 * 4, 4, 3, 0, &uart2_lock}, {0, "uart3_mux", uart_parent_names, ARRAY_SIZE(uart_parent_names), CLK_SET_RATE_PARENT, PXA1928_CLK_UART3 * 4, 4, 3, 0, &uart3_lock}, {0, "ssp0_mux", ssp_parent_names, ARRAY_SIZE(ssp_parent_names), CLK_SET_RATE_PARENT, PXA1928_CLK_SSP0 * 4, 4, 3, 0, &ssp0_lock}, {0, "ssp1_mux", ssp_parent_names, ARRAY_SIZE(ssp_parent_names), CLK_SET_RATE_PARENT, PXA1928_CLK_SSP1 * 4, 4, 3, 0, &ssp1_lock}, }; static struct mmp_param_gate_clk apbc_gate_clks[] = { {PXA1928_CLK_TWSI0, "twsi0_clk", "vctcxo", CLK_SET_RATE_PARENT, PXA1928_CLK_TWSI0 * 4, 0x3, 0x3, 0x0, 0, &reset_lock}, {PXA1928_CLK_TWSI1, "twsi1_clk", "vctcxo", CLK_SET_RATE_PARENT, PXA1928_CLK_TWSI1 * 4, 0x3, 0x3, 0x0, 0, &reset_lock}, {PXA1928_CLK_TWSI2, "twsi2_clk", "vctcxo", CLK_SET_RATE_PARENT, PXA1928_CLK_TWSI2 * 4, 0x3, 0x3, 0x0, 0, &reset_lock}, {PXA1928_CLK_TWSI3, "twsi3_clk", "vctcxo", CLK_SET_RATE_PARENT, PXA1928_CLK_TWSI3 * 4, 0x3, 0x3, 0x0, 0, &reset_lock}, {PXA1928_CLK_TWSI4, "twsi4_clk", "vctcxo", CLK_SET_RATE_PARENT, PXA1928_CLK_TWSI4 * 4, 0x3, 0x3, 0x0, 0, &reset_lock}, {PXA1928_CLK_TWSI5, "twsi5_clk", "vctcxo", CLK_SET_RATE_PARENT, PXA1928_CLK_TWSI5 * 4, 0x3, 0x3, 0x0, 0, &reset_lock}, {PXA1928_CLK_GPIO, "gpio_clk", "vctcxo", CLK_SET_RATE_PARENT, PXA1928_CLK_GPIO * 4, 0x3, 0x3, 0x0, 0, &reset_lock}, {PXA1928_CLK_KPC, "kpc_clk", "clk32", CLK_SET_RATE_PARENT, PXA1928_CLK_KPC * 4, 0x3, 0x3, 0x0, MMP_CLK_GATE_NEED_DELAY, NULL}, {PXA1928_CLK_RTC, "rtc_clk", "clk32", CLK_SET_RATE_PARENT, PXA1928_CLK_RTC * 4, 0x83, 0x83, 0x0, MMP_CLK_GATE_NEED_DELAY, NULL}, {PXA1928_CLK_PWM0, "pwm0_clk", "vctcxo", CLK_SET_RATE_PARENT, PXA1928_CLK_PWM0 * 4, 0x3, 0x3, 0x0, 0, &reset_lock}, {PXA1928_CLK_PWM1, "pwm1_clk", "vctcxo", CLK_SET_RATE_PARENT, PXA1928_CLK_PWM1 * 4, 0x3, 0x3, 0x0, 0, &reset_lock}, {PXA1928_CLK_PWM2, "pwm2_clk", "vctcxo", CLK_SET_RATE_PARENT, PXA1928_CLK_PWM2 * 4, 0x3, 0x3, 0x0, 0, &reset_lock}, {PXA1928_CLK_PWM3, "pwm3_clk", "vctcxo", CLK_SET_RATE_PARENT, PXA1928_CLK_PWM3 * 4, 0x3, 0x3, 0x0, 0, &reset_lock}, /* The gate clocks has mux parent. */ {PXA1928_CLK_UART0, "uart0_clk", "uart0_mux", CLK_SET_RATE_PARENT, PXA1928_CLK_UART0 * 4, 0x3, 0x3, 0x0, 0, &uart0_lock}, {PXA1928_CLK_UART1, "uart1_clk", "uart1_mux", CLK_SET_RATE_PARENT, PXA1928_CLK_UART1 * 4, 0x3, 0x3, 0x0, 0, &uart1_lock}, {PXA1928_CLK_UART2, "uart2_clk", "uart2_mux", CLK_SET_RATE_PARENT, PXA1928_CLK_UART2 * 4, 0x3, 0x3, 0x0, 0, &uart2_lock}, {PXA1928_CLK_UART3, "uart3_clk", "uart3_mux", CLK_SET_RATE_PARENT, PXA1928_CLK_UART3 * 4, 0x3, 0x3, 0x0, 0, &uart3_lock}, {PXA1928_CLK_SSP0, "ssp0_clk", "ssp0_mux", CLK_SET_RATE_PARENT, PXA1928_CLK_SSP0 * 4, 0x3, 0x3, 0x0, 0, &ssp0_lock}, {PXA1928_CLK_SSP1, "ssp1_clk", "ssp1_mux", CLK_SET_RATE_PARENT, PXA1928_CLK_SSP1 * 4, 0x3, 0x3, 0x0, 0, &ssp1_lock}, }; static void pxa1928_apb_periph_clk_init(struct pxa1928_clk_unit *pxa_unit) { struct mmp_clk_unit *unit = &pxa_unit->unit; mmp_register_mux_clks(unit, apbc_mux_clks, pxa_unit->apbc_base, ARRAY_SIZE(apbc_mux_clks)); mmp_register_gate_clks(unit, apbc_gate_clks, pxa_unit->apbc_base, ARRAY_SIZE(apbc_gate_clks)); } static DEFINE_SPINLOCK(sdh0_lock); static DEFINE_SPINLOCK(sdh1_lock); static DEFINE_SPINLOCK(sdh2_lock); static DEFINE_SPINLOCK(sdh3_lock); static DEFINE_SPINLOCK(sdh4_lock); static const char *sdh_parent_names[] = {"pll1_624", "pll5p", "pll5", "pll1_416"}; static DEFINE_SPINLOCK(usb_lock); static struct mmp_param_mux_clk apmu_mux_clks[] = { {0, "sdh_mux", sdh_parent_names, ARRAY_SIZE(sdh_parent_names), CLK_SET_RATE_PARENT, PXA1928_CLK_SDH0 * 4, 8, 2, 0, &sdh0_lock}, }; static struct mmp_param_div_clk apmu_div_clks[] = { {0, "sdh_div", "sdh_mux", 0, PXA1928_CLK_SDH0 * 4, 10, 4, CLK_DIVIDER_ONE_BASED, &sdh0_lock}, }; static struct mmp_param_gate_clk apmu_gate_clks[] = { {PXA1928_CLK_USB, "usb_clk", "usb_pll", 0, PXA1928_CLK_USB * 4, 0x9, 0x9, 0x0, 0, &usb_lock}, {PXA1928_CLK_HSIC, "hsic_clk", "usb_pll", 0, PXA1928_CLK_HSIC * 4, 0x9, 0x9, 0x0, 0, &usb_lock}, /* The gate clocks has mux parent. */ {PXA1928_CLK_SDH0, "sdh0_clk", "sdh_div", CLK_SET_RATE_PARENT, PXA1928_CLK_SDH0 * 4, 0x1b, 0x1b, 0x0, 0, &sdh0_lock}, {PXA1928_CLK_SDH1, "sdh1_clk", "sdh_div", CLK_SET_RATE_PARENT, PXA1928_CLK_SDH1 * 4, 0x1b, 0x1b, 0x0, 0, &sdh1_lock}, {PXA1928_CLK_SDH2, "sdh2_clk", "sdh_div", CLK_SET_RATE_PARENT, PXA1928_CLK_SDH2 * 4, 0x1b, 0x1b, 0x0, 0, &sdh2_lock}, {PXA1928_CLK_SDH3, "sdh3_clk", "sdh_div", CLK_SET_RATE_PARENT, PXA1928_CLK_SDH3 * 4, 0x1b, 0x1b, 0x0, 0, &sdh3_lock}, {PXA1928_CLK_SDH4, "sdh4_clk", "sdh_div", CLK_SET_RATE_PARENT, PXA1928_CLK_SDH4 * 4, 0x1b, 0x1b, 0x0, 0, &sdh4_lock}, }; static void pxa1928_axi_periph_clk_init(struct pxa1928_clk_unit *pxa_unit) { struct mmp_clk_unit *unit = &pxa_unit->unit; mmp_register_mux_clks(unit, apmu_mux_clks, pxa_unit->apmu_base, ARRAY_SIZE(apmu_mux_clks)); mmp_register_div_clks(unit, apmu_div_clks, pxa_unit->apmu_base, ARRAY_SIZE(apmu_div_clks)); mmp_register_gate_clks(unit, apmu_gate_clks, pxa_unit->apmu_base, ARRAY_SIZE(apmu_gate_clks)); } static void pxa1928_clk_reset_init(struct device_node *np, struct pxa1928_clk_unit *pxa_unit) { struct mmp_clk_reset_cell *cells; int i, base, nr_resets; nr_resets = ARRAY_SIZE(apbc_gate_clks); cells = kcalloc(nr_resets, sizeof(*cells), GFP_KERNEL); if (!cells) return; base = 0; for (i = 0; i < nr_resets; i++) { cells[base + i].clk_id = apbc_gate_clks[i].id; cells[base + i].reg = pxa_unit->apbc_base + apbc_gate_clks[i].offset; cells[base + i].flags = 0; cells[base + i].lock = apbc_gate_clks[i].lock; cells[base + i].bits = 0x4; } mmp_clk_reset_register(np, cells, nr_resets); } static void __init pxa1928_mpmu_clk_init(struct device_node *np) { struct pxa1928_clk_unit *pxa_unit; pxa_unit = kzalloc(sizeof(*pxa_unit), GFP_KERNEL); if (!pxa_unit) return; pxa_unit->mpmu_base = of_iomap(np, 0); if (!pxa_unit->mpmu_base) { pr_err("failed to map mpmu registers\n"); kfree(pxa_unit); return; } pxa1928_pll_init(pxa_unit); } CLK_OF_DECLARE(pxa1928_mpmu_clk, "marvell,pxa1928-mpmu", pxa1928_mpmu_clk_init); static void __init pxa1928_apmu_clk_init(struct device_node *np) { struct pxa1928_clk_unit *pxa_unit; pxa_unit = kzalloc(sizeof(*pxa_unit), GFP_KERNEL); if (!pxa_unit) return; pxa_unit->apmu_base = of_iomap(np, 0); if (!pxa_unit->apmu_base) { pr_err("failed to map apmu registers\n"); kfree(pxa_unit); return; } mmp_clk_init(np, &pxa_unit->unit, APMU_NR_CLKS); pxa1928_axi_periph_clk_init(pxa_unit); } CLK_OF_DECLARE(pxa1928_apmu_clk, "marvell,pxa1928-apmu", pxa1928_apmu_clk_init); static void __init pxa1928_apbc_clk_init(struct device_node *np) { struct pxa1928_clk_unit *pxa_unit; pxa_unit = kzalloc(sizeof(*pxa_unit), GFP_KERNEL); if (!pxa_unit) return; pxa_unit->apbc_base = of_iomap(np, 0); if (!pxa_unit->apbc_base) { pr_err("failed to map apbc registers\n"); kfree(pxa_unit); return; } mmp_clk_init(np, &pxa_unit->unit, APBC_NR_CLKS); pxa1928_apb_periph_clk_init(pxa_unit); pxa1928_clk_reset_init(np, pxa_unit); } CLK_OF_DECLARE(pxa1928_apbc_clk, "marvell,pxa1928-apbc", pxa1928_apbc_clk_init);
linux-master
drivers/clk/mmp/clk-of-pxa1928.c
// SPDX-License-Identifier: GPL-2.0-only /* * mmp AXI peripharal clock operation source file * * Copyright (C) 2012 Marvell * Chao Xie <[email protected]> */ #include <linux/kernel.h> #include <linux/io.h> #include <linux/err.h> #include <linux/delay.h> #include <linux/slab.h> #include "clk.h" #define to_clk_apmu(clk) (container_of(clk, struct clk_apmu, clk)) struct clk_apmu { struct clk_hw hw; void __iomem *base; u32 rst_mask; u32 enable_mask; spinlock_t *lock; }; static int clk_apmu_enable(struct clk_hw *hw) { struct clk_apmu *apmu = to_clk_apmu(hw); unsigned long data; unsigned long flags = 0; if (apmu->lock) spin_lock_irqsave(apmu->lock, flags); data = readl_relaxed(apmu->base) | apmu->enable_mask; writel_relaxed(data, apmu->base); if (apmu->lock) spin_unlock_irqrestore(apmu->lock, flags); return 0; } static void clk_apmu_disable(struct clk_hw *hw) { struct clk_apmu *apmu = to_clk_apmu(hw); unsigned long data; unsigned long flags = 0; if (apmu->lock) spin_lock_irqsave(apmu->lock, flags); data = readl_relaxed(apmu->base) & ~apmu->enable_mask; writel_relaxed(data, apmu->base); if (apmu->lock) spin_unlock_irqrestore(apmu->lock, flags); } static const struct clk_ops clk_apmu_ops = { .enable = clk_apmu_enable, .disable = clk_apmu_disable, }; struct clk *mmp_clk_register_apmu(const char *name, const char *parent_name, void __iomem *base, u32 enable_mask, spinlock_t *lock) { struct clk_apmu *apmu; struct clk *clk; struct clk_init_data init; apmu = kzalloc(sizeof(*apmu), GFP_KERNEL); if (!apmu) return NULL; init.name = name; init.ops = &clk_apmu_ops; init.flags = CLK_SET_RATE_PARENT; init.parent_names = (parent_name ? &parent_name : NULL); init.num_parents = (parent_name ? 1 : 0); apmu->base = base; apmu->enable_mask = enable_mask; apmu->lock = lock; apmu->hw.init = &init; clk = clk_register(NULL, &apmu->hw); if (IS_ERR(clk)) kfree(apmu); return clk; }
linux-master
drivers/clk/mmp/clk-apmu.c
// SPDX-License-Identifier: GPL-2.0-only /* * mmp mix(div and mux) clock operation source file * * Copyright (C) 2014 Marvell * Chao Xie <[email protected]> */ #include <linux/clk-provider.h> #include <linux/slab.h> #include <linux/io.h> #include <linux/err.h> #include "clk.h" /* * The mix clock is a clock combined mux and div type clock. * Because the div field and mux field need to be set at same * time, we can not divide it into 2 types of clock */ #define to_clk_mix(hw) container_of(hw, struct mmp_clk_mix, hw) static unsigned int _get_maxdiv(struct mmp_clk_mix *mix) { unsigned int div_mask = (1 << mix->reg_info.width_div) - 1; unsigned int maxdiv = 0; struct clk_div_table *clkt; if (mix->div_flags & CLK_DIVIDER_ONE_BASED) return div_mask; if (mix->div_flags & CLK_DIVIDER_POWER_OF_TWO) return 1 << div_mask; if (mix->div_table) { for (clkt = mix->div_table; clkt->div; clkt++) if (clkt->div > maxdiv) maxdiv = clkt->div; return maxdiv; } return div_mask + 1; } static unsigned int _get_div(struct mmp_clk_mix *mix, unsigned int val) { struct clk_div_table *clkt; if (mix->div_flags & CLK_DIVIDER_ONE_BASED) return val; if (mix->div_flags & CLK_DIVIDER_POWER_OF_TWO) return 1 << val; if (mix->div_table) { for (clkt = mix->div_table; clkt->div; clkt++) if (clkt->val == val) return clkt->div; if (clkt->div == 0) return 0; } return val + 1; } static unsigned int _get_mux(struct mmp_clk_mix *mix, unsigned int val) { int num_parents = clk_hw_get_num_parents(&mix->hw); int i; if (mix->mux_flags & CLK_MUX_INDEX_BIT) return ffs(val) - 1; if (mix->mux_flags & CLK_MUX_INDEX_ONE) return val - 1; if (mix->mux_table) { for (i = 0; i < num_parents; i++) if (mix->mux_table[i] == val) return i; if (i == num_parents) return 0; } return val; } static unsigned int _get_div_val(struct mmp_clk_mix *mix, unsigned int div) { struct clk_div_table *clkt; if (mix->div_flags & CLK_DIVIDER_ONE_BASED) return div; if (mix->div_flags & CLK_DIVIDER_POWER_OF_TWO) return __ffs(div); if (mix->div_table) { for (clkt = mix->div_table; clkt->div; clkt++) if (clkt->div == div) return clkt->val; if (clkt->div == 0) return 0; } return div - 1; } static unsigned int _get_mux_val(struct mmp_clk_mix *mix, unsigned int mux) { if (mix->mux_table) return mix->mux_table[mux]; return mux; } static void _filter_clk_table(struct mmp_clk_mix *mix, struct mmp_clk_mix_clk_table *table, unsigned int table_size) { int i; struct mmp_clk_mix_clk_table *item; struct clk_hw *parent, *hw; unsigned long parent_rate; hw = &mix->hw; for (i = 0; i < table_size; i++) { item = &table[i]; parent = clk_hw_get_parent_by_index(hw, item->parent_index); parent_rate = clk_hw_get_rate(parent); if (parent_rate % item->rate) { item->valid = 0; } else { item->divisor = parent_rate / item->rate; item->valid = 1; } } } static int _set_rate(struct mmp_clk_mix *mix, u32 mux_val, u32 div_val, unsigned int change_mux, unsigned int change_div) { struct mmp_clk_mix_reg_info *ri = &mix->reg_info; u8 width, shift; u32 mux_div, fc_req; int ret, timeout = 50; unsigned long flags = 0; if (!change_mux && !change_div) return -EINVAL; if (mix->lock) spin_lock_irqsave(mix->lock, flags); if (mix->type == MMP_CLK_MIX_TYPE_V1 || mix->type == MMP_CLK_MIX_TYPE_V2) mux_div = readl(ri->reg_clk_ctrl); else mux_div = readl(ri->reg_clk_sel); if (change_div) { width = ri->width_div; shift = ri->shift_div; mux_div &= ~MMP_CLK_BITS_MASK(width, shift); mux_div |= MMP_CLK_BITS_SET_VAL(div_val, width, shift); } if (change_mux) { width = ri->width_mux; shift = ri->shift_mux; mux_div &= ~MMP_CLK_BITS_MASK(width, shift); mux_div |= MMP_CLK_BITS_SET_VAL(mux_val, width, shift); } if (mix->type == MMP_CLK_MIX_TYPE_V1) { writel(mux_div, ri->reg_clk_ctrl); } else if (mix->type == MMP_CLK_MIX_TYPE_V2) { mux_div |= (1 << ri->bit_fc); writel(mux_div, ri->reg_clk_ctrl); do { fc_req = readl(ri->reg_clk_ctrl); timeout--; if (!(fc_req & (1 << ri->bit_fc))) break; } while (timeout); if (timeout == 0) { pr_err("%s:%s cannot do frequency change\n", __func__, clk_hw_get_name(&mix->hw)); ret = -EBUSY; goto error; } } else { fc_req = readl(ri->reg_clk_ctrl); fc_req |= 1 << ri->bit_fc; writel(fc_req, ri->reg_clk_ctrl); writel(mux_div, ri->reg_clk_sel); fc_req &= ~(1 << ri->bit_fc); } ret = 0; error: if (mix->lock) spin_unlock_irqrestore(mix->lock, flags); return ret; } static int mmp_clk_mix_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { struct mmp_clk_mix *mix = to_clk_mix(hw); struct mmp_clk_mix_clk_table *item; struct clk_hw *parent, *parent_best; unsigned long parent_rate, mix_rate, mix_rate_best, parent_rate_best; unsigned long gap, gap_best; u32 div_val_max; unsigned int div; int i, j; mix_rate_best = 0; parent_rate_best = 0; gap_best = ULONG_MAX; parent_best = NULL; if (mix->table) { for (i = 0; i < mix->table_size; i++) { item = &mix->table[i]; if (item->valid == 0) continue; parent = clk_hw_get_parent_by_index(hw, item->parent_index); parent_rate = clk_hw_get_rate(parent); mix_rate = parent_rate / item->divisor; gap = abs(mix_rate - req->rate); if (!parent_best || gap < gap_best) { parent_best = parent; parent_rate_best = parent_rate; mix_rate_best = mix_rate; gap_best = gap; if (gap_best == 0) goto found; } } } else { for (i = 0; i < clk_hw_get_num_parents(hw); i++) { parent = clk_hw_get_parent_by_index(hw, i); parent_rate = clk_hw_get_rate(parent); div_val_max = _get_maxdiv(mix); for (j = 0; j < div_val_max; j++) { div = _get_div(mix, j); mix_rate = parent_rate / div; gap = abs(mix_rate - req->rate); if (!parent_best || gap < gap_best) { parent_best = parent; parent_rate_best = parent_rate; mix_rate_best = mix_rate; gap_best = gap; if (gap_best == 0) goto found; } } } } found: if (!parent_best) return -EINVAL; req->best_parent_rate = parent_rate_best; req->best_parent_hw = parent_best; req->rate = mix_rate_best; return 0; } static int mmp_clk_mix_set_rate_and_parent(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate, u8 index) { struct mmp_clk_mix *mix = to_clk_mix(hw); unsigned int div; u32 div_val, mux_val; div = parent_rate / rate; div_val = _get_div_val(mix, div); mux_val = _get_mux_val(mix, index); return _set_rate(mix, mux_val, div_val, 1, 1); } static u8 mmp_clk_mix_get_parent(struct clk_hw *hw) { struct mmp_clk_mix *mix = to_clk_mix(hw); struct mmp_clk_mix_reg_info *ri = &mix->reg_info; unsigned long flags = 0; u32 mux_div = 0; u8 width, shift; u32 mux_val; if (mix->lock) spin_lock_irqsave(mix->lock, flags); if (mix->type == MMP_CLK_MIX_TYPE_V1 || mix->type == MMP_CLK_MIX_TYPE_V2) mux_div = readl(ri->reg_clk_ctrl); else mux_div = readl(ri->reg_clk_sel); if (mix->lock) spin_unlock_irqrestore(mix->lock, flags); width = mix->reg_info.width_mux; shift = mix->reg_info.shift_mux; mux_val = MMP_CLK_BITS_GET_VAL(mux_div, width, shift); return _get_mux(mix, mux_val); } static unsigned long mmp_clk_mix_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct mmp_clk_mix *mix = to_clk_mix(hw); struct mmp_clk_mix_reg_info *ri = &mix->reg_info; unsigned long flags = 0; u32 mux_div = 0; u8 width, shift; unsigned int div; if (mix->lock) spin_lock_irqsave(mix->lock, flags); if (mix->type == MMP_CLK_MIX_TYPE_V1 || mix->type == MMP_CLK_MIX_TYPE_V2) mux_div = readl(ri->reg_clk_ctrl); else mux_div = readl(ri->reg_clk_sel); if (mix->lock) spin_unlock_irqrestore(mix->lock, flags); width = mix->reg_info.width_div; shift = mix->reg_info.shift_div; div = _get_div(mix, MMP_CLK_BITS_GET_VAL(mux_div, width, shift)); return parent_rate / div; } static int mmp_clk_set_parent(struct clk_hw *hw, u8 index) { struct mmp_clk_mix *mix = to_clk_mix(hw); struct mmp_clk_mix_clk_table *item; int i; u32 div_val, mux_val; if (mix->table) { for (i = 0; i < mix->table_size; i++) { item = &mix->table[i]; if (item->valid == 0) continue; if (item->parent_index == index) break; } if (i < mix->table_size) { div_val = _get_div_val(mix, item->divisor); mux_val = _get_mux_val(mix, item->parent_index); } else return -EINVAL; } else { mux_val = _get_mux_val(mix, index); div_val = 0; } return _set_rate(mix, mux_val, div_val, 1, div_val ? 1 : 0); } static int mmp_clk_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long best_parent_rate) { struct mmp_clk_mix *mix = to_clk_mix(hw); struct mmp_clk_mix_clk_table *item; unsigned long parent_rate; unsigned int best_divisor; struct clk_hw *parent; int i; best_divisor = best_parent_rate / rate; if (mix->table) { for (i = 0; i < mix->table_size; i++) { item = &mix->table[i]; if (item->valid == 0) continue; parent = clk_hw_get_parent_by_index(hw, item->parent_index); parent_rate = clk_hw_get_rate(parent); if (parent_rate == best_parent_rate && item->divisor == best_divisor) break; } if (i < mix->table_size) return _set_rate(mix, _get_mux_val(mix, item->parent_index), _get_div_val(mix, item->divisor), 1, 1); else return -EINVAL; } else { for (i = 0; i < clk_hw_get_num_parents(hw); i++) { parent = clk_hw_get_parent_by_index(hw, i); parent_rate = clk_hw_get_rate(parent); if (parent_rate == best_parent_rate) break; } if (i < clk_hw_get_num_parents(hw)) return _set_rate(mix, _get_mux_val(mix, i), _get_div_val(mix, best_divisor), 1, 1); else return -EINVAL; } } static int mmp_clk_mix_init(struct clk_hw *hw) { struct mmp_clk_mix *mix = to_clk_mix(hw); if (mix->table) _filter_clk_table(mix, mix->table, mix->table_size); return 0; } const struct clk_ops mmp_clk_mix_ops = { .determine_rate = mmp_clk_mix_determine_rate, .set_rate_and_parent = mmp_clk_mix_set_rate_and_parent, .set_rate = mmp_clk_set_rate, .set_parent = mmp_clk_set_parent, .get_parent = mmp_clk_mix_get_parent, .recalc_rate = mmp_clk_mix_recalc_rate, .init = mmp_clk_mix_init, }; struct clk *mmp_clk_register_mix(struct device *dev, const char *name, const char * const *parent_names, u8 num_parents, unsigned long flags, struct mmp_clk_mix_config *config, spinlock_t *lock) { struct mmp_clk_mix *mix; struct clk *clk; struct clk_init_data init; size_t table_bytes; mix = kzalloc(sizeof(*mix), GFP_KERNEL); if (!mix) return ERR_PTR(-ENOMEM); init.name = name; init.flags = flags | CLK_GET_RATE_NOCACHE; init.parent_names = parent_names; init.num_parents = num_parents; init.ops = &mmp_clk_mix_ops; memcpy(&mix->reg_info, &config->reg_info, sizeof(config->reg_info)); if (config->table) { table_bytes = sizeof(*config->table) * config->table_size; mix->table = kmemdup(config->table, table_bytes, GFP_KERNEL); if (!mix->table) goto free_mix; mix->table_size = config->table_size; } if (config->mux_table) { table_bytes = sizeof(u32) * num_parents; mix->mux_table = kmemdup(config->mux_table, table_bytes, GFP_KERNEL); if (!mix->mux_table) { kfree(mix->table); goto free_mix; } } mix->div_flags = config->div_flags; mix->mux_flags = config->mux_flags; mix->lock = lock; mix->hw.init = &init; if (config->reg_info.bit_fc >= 32) mix->type = MMP_CLK_MIX_TYPE_V1; else if (config->reg_info.reg_clk_sel) mix->type = MMP_CLK_MIX_TYPE_V3; else mix->type = MMP_CLK_MIX_TYPE_V2; clk = clk_register(dev, &mix->hw); if (IS_ERR(clk)) { kfree(mix->mux_table); kfree(mix->table); kfree(mix); } return clk; free_mix: kfree(mix); return ERR_PTR(-ENOMEM); }
linux-master
drivers/clk/mmp/clk-mix.c
// SPDX-License-Identifier: GPL-2.0-only /* * mmp2 clock framework source file * * Copyright (C) 2012 Marvell * Chao Xie <[email protected]> * Copyright (C) 2020 Lubomir Rintel <[email protected]> */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/spinlock.h> #include <linux/io.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/of_address.h> #include <linux/clk.h> #include <dt-bindings/clock/marvell,mmp2.h> #include <dt-bindings/power/marvell,mmp2.h> #include "clk.h" #include "reset.h" #define APBC_RTC 0x0 #define APBC_TWSI0 0x4 #define APBC_TWSI1 0x8 #define APBC_TWSI2 0xc #define APBC_TWSI3 0x10 #define APBC_TWSI4 0x7c #define APBC_TWSI5 0x80 #define APBC_KPC 0x18 #define APBC_TIMER 0x24 #define APBC_UART0 0x2c #define APBC_UART1 0x30 #define APBC_UART2 0x34 #define APBC_UART3 0x88 #define APBC_GPIO 0x38 #define APBC_PWM0 0x3c #define APBC_PWM1 0x40 #define APBC_PWM2 0x44 #define APBC_PWM3 0x48 #define APBC_SSP0 0x50 #define APBC_SSP1 0x54 #define APBC_SSP2 0x58 #define APBC_SSP3 0x5c #define APBC_THERMAL0 0x90 #define APBC_THERMAL1 0x98 #define APBC_THERMAL2 0x9c #define APBC_THERMAL3 0xa0 #define APMU_SDH0 0x54 #define APMU_SDH1 0x58 #define APMU_SDH2 0xe8 #define APMU_SDH3 0xec #define APMU_SDH4 0x15c #define APMU_USB 0x5c #define APMU_DISP0 0x4c #define APMU_DISP1 0x110 #define APMU_CCIC0 0x50 #define APMU_CCIC1 0xf4 #define APMU_USBHSIC0 0xf8 #define APMU_USBHSIC1 0xfc #define APMU_GPU 0xcc #define APMU_AUDIO 0x10c #define APMU_CAMERA 0x1fc #define MPMU_FCCR 0x8 #define MPMU_POSR 0x10 #define MPMU_UART_PLL 0x14 #define MPMU_PLL2_CR 0x34 #define MPMU_I2S0_PLL 0x40 #define MPMU_I2S1_PLL 0x44 #define MPMU_ACGR 0x1024 /* MMP3 specific below */ #define MPMU_PLL3_CR 0x50 #define MPMU_PLL3_CTRL1 0x58 #define MPMU_PLL1_CTRL 0x5c #define MPMU_PLL_DIFF_CTRL 0x68 #define MPMU_PLL2_CTRL1 0x414 #define NR_CLKS 200 enum mmp2_clk_model { CLK_MODEL_MMP2, CLK_MODEL_MMP3, }; struct mmp2_clk_unit { struct mmp_clk_unit unit; enum mmp2_clk_model model; struct genpd_onecell_data pd_data; struct generic_pm_domain *pm_domains[MMP2_NR_POWER_DOMAINS]; void __iomem *mpmu_base; void __iomem *apmu_base; void __iomem *apbc_base; }; static struct mmp_param_fixed_rate_clk fixed_rate_clks[] = { {MMP2_CLK_CLK32, "clk32", NULL, 0, 32768}, {MMP2_CLK_VCTCXO, "vctcxo", NULL, 0, 26000000}, {MMP2_CLK_USB_PLL, "usb_pll", NULL, 0, 480000000}, {0, "i2s_pll", NULL, 0, 99666667}, }; static struct mmp_param_pll_clk pll_clks[] = { {MMP2_CLK_PLL1, "pll1", 797330000, MPMU_FCCR, 0x4000, MPMU_POSR, 0}, {MMP2_CLK_PLL2, "pll2", 0, MPMU_PLL2_CR, 0x0300, MPMU_PLL2_CR, 10}, }; static struct mmp_param_pll_clk mmp3_pll_clks[] = { {MMP2_CLK_PLL2, "pll1", 797330000, MPMU_FCCR, 0x4000, MPMU_POSR, 0, 26000000, MPMU_PLL1_CTRL, 25}, {MMP2_CLK_PLL2, "pll2", 0, MPMU_PLL2_CR, 0x0300, MPMU_PLL2_CR, 10, 26000000, MPMU_PLL2_CTRL1, 25}, {MMP3_CLK_PLL1_P, "pll1_p", 0, MPMU_PLL_DIFF_CTRL, 0x0010, 0, 0, 797330000, MPMU_PLL_DIFF_CTRL, 0}, {MMP3_CLK_PLL2_P, "pll2_p", 0, MPMU_PLL_DIFF_CTRL, 0x0100, MPMU_PLL2_CR, 10, 26000000, MPMU_PLL_DIFF_CTRL, 5}, {MMP3_CLK_PLL3, "pll3", 0, MPMU_PLL3_CR, 0x0300, MPMU_PLL3_CR, 10, 26000000, MPMU_PLL3_CTRL1, 25}, }; static struct mmp_param_fixed_factor_clk fixed_factor_clks[] = { {MMP2_CLK_PLL1_2, "pll1_2", "pll1", 1, 2, 0}, {MMP2_CLK_PLL1_4, "pll1_4", "pll1_2", 1, 2, 0}, {MMP2_CLK_PLL1_8, "pll1_8", "pll1_4", 1, 2, 0}, {MMP2_CLK_PLL1_16, "pll1_16", "pll1_8", 1, 2, 0}, {MMP2_CLK_PLL1_20, "pll1_20", "pll1_4", 1, 5, 0}, {MMP2_CLK_PLL1_3, "pll1_3", "pll1", 1, 3, 0}, {MMP2_CLK_PLL1_6, "pll1_6", "pll1_3", 1, 2, 0}, {MMP2_CLK_PLL1_12, "pll1_12", "pll1_6", 1, 2, 0}, {MMP2_CLK_PLL2_2, "pll2_2", "pll2", 1, 2, 0}, {MMP2_CLK_PLL2_4, "pll2_4", "pll2_2", 1, 2, 0}, {MMP2_CLK_PLL2_8, "pll2_8", "pll2_4", 1, 2, 0}, {MMP2_CLK_PLL2_16, "pll2_16", "pll2_8", 1, 2, 0}, {MMP2_CLK_PLL2_3, "pll2_3", "pll2", 1, 3, 0}, {MMP2_CLK_PLL2_6, "pll2_6", "pll2_3", 1, 2, 0}, {MMP2_CLK_PLL2_12, "pll2_12", "pll2_6", 1, 2, 0}, {MMP2_CLK_VCTCXO_2, "vctcxo_2", "vctcxo", 1, 2, 0}, {MMP2_CLK_VCTCXO_4, "vctcxo_4", "vctcxo_2", 1, 2, 0}, }; static struct mmp_clk_factor_masks uart_factor_masks = { .factor = 2, .num_mask = 0x1fff, .den_mask = 0x1fff, .num_shift = 16, .den_shift = 0, }; static struct mmp_clk_factor_tbl uart_factor_tbl[] = { {.num = 8125, .den = 1536}, /*14.745MHZ */ {.num = 3521, .den = 689}, /*19.23MHZ */ }; static struct mmp_clk_factor_masks i2s_factor_masks = { .factor = 2, .num_mask = 0x7fff, .den_mask = 0x1fff, .num_shift = 0, .den_shift = 15, .enable_mask = 0xd0000000, }; static struct mmp_clk_factor_tbl i2s_factor_tbl[] = { {.num = 24868, .den = 511}, /* 2.0480 MHz */ {.num = 28003, .den = 793}, /* 2.8224 MHz */ {.num = 24941, .den = 1025}, /* 4.0960 MHz */ {.num = 28003, .den = 1586}, /* 5.6448 MHz */ {.num = 31158, .den = 2561}, /* 8.1920 MHz */ {.num = 16288, .den = 1845}, /* 11.2896 MHz */ {.num = 20772, .den = 2561}, /* 12.2880 MHz */ {.num = 8144, .den = 1845}, /* 22.5792 MHz */ {.num = 10386, .den = 2561}, /* 24.5760 MHz */ }; static DEFINE_SPINLOCK(acgr_lock); static struct mmp_param_gate_clk mpmu_gate_clks[] = { {MMP2_CLK_I2S0, "i2s0_clk", "i2s0_pll", CLK_SET_RATE_PARENT, MPMU_ACGR, 0x200000, 0x200000, 0x0, 0, &acgr_lock}, {MMP2_CLK_I2S1, "i2s1_clk", "i2s1_pll", CLK_SET_RATE_PARENT, MPMU_ACGR, 0x100000, 0x100000, 0x0, 0, &acgr_lock}, }; static void mmp2_main_clk_init(struct mmp2_clk_unit *pxa_unit) { struct clk *clk; struct mmp_clk_unit *unit = &pxa_unit->unit; mmp_register_fixed_rate_clks(unit, fixed_rate_clks, ARRAY_SIZE(fixed_rate_clks)); if (pxa_unit->model == CLK_MODEL_MMP3) { mmp_register_pll_clks(unit, mmp3_pll_clks, pxa_unit->mpmu_base, ARRAY_SIZE(mmp3_pll_clks)); } else { mmp_register_pll_clks(unit, pll_clks, pxa_unit->mpmu_base, ARRAY_SIZE(pll_clks)); } mmp_register_fixed_factor_clks(unit, fixed_factor_clks, ARRAY_SIZE(fixed_factor_clks)); clk = mmp_clk_register_factor("uart_pll", "pll1_4", CLK_SET_RATE_PARENT, pxa_unit->mpmu_base + MPMU_UART_PLL, &uart_factor_masks, uart_factor_tbl, ARRAY_SIZE(uart_factor_tbl), NULL); mmp_clk_add(unit, MMP2_CLK_UART_PLL, clk); mmp_clk_register_factor("i2s0_pll", "pll1_4", CLK_SET_RATE_PARENT, pxa_unit->mpmu_base + MPMU_I2S0_PLL, &i2s_factor_masks, i2s_factor_tbl, ARRAY_SIZE(i2s_factor_tbl), NULL); mmp_clk_register_factor("i2s1_pll", "pll1_4", CLK_SET_RATE_PARENT, pxa_unit->mpmu_base + MPMU_I2S1_PLL, &i2s_factor_masks, i2s_factor_tbl, ARRAY_SIZE(i2s_factor_tbl), NULL); mmp_register_gate_clks(unit, mpmu_gate_clks, pxa_unit->mpmu_base, ARRAY_SIZE(mpmu_gate_clks)); } static DEFINE_SPINLOCK(uart0_lock); static DEFINE_SPINLOCK(uart1_lock); static DEFINE_SPINLOCK(uart2_lock); static const char * const uart_parent_names[] = {"uart_pll", "vctcxo"}; static DEFINE_SPINLOCK(ssp0_lock); static DEFINE_SPINLOCK(ssp1_lock); static DEFINE_SPINLOCK(ssp2_lock); static DEFINE_SPINLOCK(ssp3_lock); static const char * const ssp_parent_names[] = {"vctcxo_4", "vctcxo_2", "vctcxo", "pll1_16"}; static DEFINE_SPINLOCK(timer_lock); static const char * const timer_parent_names[] = {"clk32", "vctcxo_4", "vctcxo_2", "vctcxo"}; static DEFINE_SPINLOCK(reset_lock); static struct mmp_param_mux_clk apbc_mux_clks[] = { {0, "uart0_mux", uart_parent_names, ARRAY_SIZE(uart_parent_names), CLK_SET_RATE_PARENT, APBC_UART0, 4, 3, 0, &uart0_lock}, {0, "uart1_mux", uart_parent_names, ARRAY_SIZE(uart_parent_names), CLK_SET_RATE_PARENT, APBC_UART1, 4, 3, 0, &uart1_lock}, {0, "uart2_mux", uart_parent_names, ARRAY_SIZE(uart_parent_names), CLK_SET_RATE_PARENT, APBC_UART2, 4, 3, 0, &uart2_lock}, {0, "uart3_mux", uart_parent_names, ARRAY_SIZE(uart_parent_names), CLK_SET_RATE_PARENT, APBC_UART3, 4, 3, 0, &uart2_lock}, {0, "ssp0_mux", ssp_parent_names, ARRAY_SIZE(ssp_parent_names), CLK_SET_RATE_PARENT, APBC_SSP0, 4, 3, 0, &ssp0_lock}, {0, "ssp1_mux", ssp_parent_names, ARRAY_SIZE(ssp_parent_names), CLK_SET_RATE_PARENT, APBC_SSP1, 4, 3, 0, &ssp1_lock}, {0, "ssp2_mux", ssp_parent_names, ARRAY_SIZE(ssp_parent_names), CLK_SET_RATE_PARENT, APBC_SSP2, 4, 3, 0, &ssp2_lock}, {0, "ssp3_mux", ssp_parent_names, ARRAY_SIZE(ssp_parent_names), CLK_SET_RATE_PARENT, APBC_SSP3, 4, 3, 0, &ssp3_lock}, {0, "timer_mux", timer_parent_names, ARRAY_SIZE(timer_parent_names), CLK_SET_RATE_PARENT, APBC_TIMER, 4, 3, 0, &timer_lock}, }; static struct mmp_param_gate_clk apbc_gate_clks[] = { {MMP2_CLK_TWSI0, "twsi0_clk", "vctcxo", CLK_SET_RATE_PARENT, APBC_TWSI0, 0x7, 0x3, 0x0, 0, &reset_lock}, {MMP2_CLK_TWSI1, "twsi1_clk", "vctcxo", CLK_SET_RATE_PARENT, APBC_TWSI1, 0x7, 0x3, 0x0, 0, &reset_lock}, {MMP2_CLK_TWSI2, "twsi2_clk", "vctcxo", CLK_SET_RATE_PARENT, APBC_TWSI2, 0x7, 0x3, 0x0, 0, &reset_lock}, {MMP2_CLK_TWSI3, "twsi3_clk", "vctcxo", CLK_SET_RATE_PARENT, APBC_TWSI3, 0x7, 0x3, 0x0, 0, &reset_lock}, {MMP2_CLK_TWSI4, "twsi4_clk", "vctcxo", CLK_SET_RATE_PARENT, APBC_TWSI4, 0x7, 0x3, 0x0, 0, &reset_lock}, {MMP2_CLK_TWSI5, "twsi5_clk", "vctcxo", CLK_SET_RATE_PARENT, APBC_TWSI5, 0x7, 0x3, 0x0, 0, &reset_lock}, {MMP2_CLK_GPIO, "gpio_clk", "vctcxo", CLK_SET_RATE_PARENT, APBC_GPIO, 0x7, 0x3, 0x0, 0, &reset_lock}, {MMP2_CLK_KPC, "kpc_clk", "clk32", CLK_SET_RATE_PARENT, APBC_KPC, 0x7, 0x3, 0x0, MMP_CLK_GATE_NEED_DELAY, &reset_lock}, {MMP2_CLK_RTC, "rtc_clk", "clk32", CLK_SET_RATE_PARENT, APBC_RTC, 0x87, 0x83, 0x0, MMP_CLK_GATE_NEED_DELAY, &reset_lock}, {MMP2_CLK_PWM0, "pwm0_clk", "pll1_48", CLK_SET_RATE_PARENT, APBC_PWM0, 0x7, 0x3, 0x0, 0, &reset_lock}, {MMP2_CLK_PWM1, "pwm1_clk", "pll1_48", CLK_SET_RATE_PARENT, APBC_PWM1, 0x7, 0x3, 0x0, 0, &reset_lock}, {MMP2_CLK_PWM2, "pwm2_clk", "pll1_48", CLK_SET_RATE_PARENT, APBC_PWM2, 0x7, 0x3, 0x0, 0, &reset_lock}, {MMP2_CLK_PWM3, "pwm3_clk", "pll1_48", CLK_SET_RATE_PARENT, APBC_PWM3, 0x7, 0x3, 0x0, 0, &reset_lock}, /* The gate clocks has mux parent. */ {MMP2_CLK_UART0, "uart0_clk", "uart0_mux", CLK_SET_RATE_PARENT, APBC_UART0, 0x7, 0x3, 0x0, 0, &uart0_lock}, {MMP2_CLK_UART1, "uart1_clk", "uart1_mux", CLK_SET_RATE_PARENT, APBC_UART1, 0x7, 0x3, 0x0, 0, &uart1_lock}, {MMP2_CLK_UART2, "uart2_clk", "uart2_mux", CLK_SET_RATE_PARENT, APBC_UART2, 0x7, 0x3, 0x0, 0, &uart2_lock}, {MMP2_CLK_UART3, "uart3_clk", "uart3_mux", CLK_SET_RATE_PARENT, APBC_UART3, 0x7, 0x3, 0x0, 0, &uart2_lock}, {MMP2_CLK_SSP0, "ssp0_clk", "ssp0_mux", CLK_SET_RATE_PARENT, APBC_SSP0, 0x7, 0x3, 0x0, 0, &ssp0_lock}, {MMP2_CLK_SSP1, "ssp1_clk", "ssp1_mux", CLK_SET_RATE_PARENT, APBC_SSP1, 0x7, 0x3, 0x0, 0, &ssp1_lock}, {MMP2_CLK_SSP2, "ssp2_clk", "ssp2_mux", CLK_SET_RATE_PARENT, APBC_SSP2, 0x7, 0x3, 0x0, 0, &ssp2_lock}, {MMP2_CLK_SSP3, "ssp3_clk", "ssp3_mux", CLK_SET_RATE_PARENT, APBC_SSP3, 0x7, 0x3, 0x0, 0, &ssp3_lock}, {MMP2_CLK_TIMER, "timer_clk", "timer_mux", CLK_SET_RATE_PARENT, APBC_TIMER, 0x7, 0x3, 0x0, 0, &timer_lock}, {MMP2_CLK_THERMAL0, "thermal0_clk", "vctcxo", CLK_SET_RATE_PARENT, APBC_THERMAL0, 0x7, 0x3, 0x0, MMP_CLK_GATE_NEED_DELAY, &reset_lock}, }; static struct mmp_param_gate_clk mmp3_apbc_gate_clks[] = { {MMP3_CLK_THERMAL1, "thermal1_clk", "vctcxo", CLK_SET_RATE_PARENT, APBC_THERMAL1, 0x7, 0x3, 0x0, MMP_CLK_GATE_NEED_DELAY, &reset_lock}, {MMP3_CLK_THERMAL2, "thermal2_clk", "vctcxo", CLK_SET_RATE_PARENT, APBC_THERMAL2, 0x7, 0x3, 0x0, MMP_CLK_GATE_NEED_DELAY, &reset_lock}, {MMP3_CLK_THERMAL3, "thermal3_clk", "vctcxo", CLK_SET_RATE_PARENT, APBC_THERMAL3, 0x7, 0x3, 0x0, MMP_CLK_GATE_NEED_DELAY, &reset_lock}, }; static void mmp2_apb_periph_clk_init(struct mmp2_clk_unit *pxa_unit) { struct mmp_clk_unit *unit = &pxa_unit->unit; mmp_register_mux_clks(unit, apbc_mux_clks, pxa_unit->apbc_base, ARRAY_SIZE(apbc_mux_clks)); mmp_register_gate_clks(unit, apbc_gate_clks, pxa_unit->apbc_base, ARRAY_SIZE(apbc_gate_clks)); if (pxa_unit->model == CLK_MODEL_MMP3) { mmp_register_gate_clks(unit, mmp3_apbc_gate_clks, pxa_unit->apbc_base, ARRAY_SIZE(mmp3_apbc_gate_clks)); } } static DEFINE_SPINLOCK(sdh_lock); static const char * const sdh_parent_names[] = {"pll1_4", "pll2", "usb_pll", "pll1"}; static struct mmp_clk_mix_config sdh_mix_config = { .reg_info = DEFINE_MIX_REG_INFO(4, 10, 2, 8, 32), }; static DEFINE_SPINLOCK(usb_lock); static DEFINE_SPINLOCK(usbhsic0_lock); static DEFINE_SPINLOCK(usbhsic1_lock); static DEFINE_SPINLOCK(disp0_lock); static DEFINE_SPINLOCK(disp1_lock); static const char * const disp_parent_names[] = {"pll1", "pll1_16", "pll2", "vctcxo"}; static DEFINE_SPINLOCK(ccic0_lock); static DEFINE_SPINLOCK(ccic1_lock); static const char * const ccic_parent_names[] = {"pll1_2", "pll1_16", "vctcxo"}; static DEFINE_SPINLOCK(gpu_lock); static const char * const mmp2_gpu_gc_parent_names[] = {"pll1_2", "pll1_3", "pll2_2", "pll2_3", "pll2", "usb_pll"}; static const u32 mmp2_gpu_gc_parent_table[] = { 0x0000, 0x0040, 0x0080, 0x00c0, 0x1000, 0x1040 }; static const char * const mmp2_gpu_bus_parent_names[] = {"pll1_4", "pll2", "pll2_2", "usb_pll"}; static const u32 mmp2_gpu_bus_parent_table[] = { 0x0000, 0x0020, 0x0030, 0x4020 }; static const char * const mmp3_gpu_bus_parent_names[] = {"pll1_4", "pll1_6", "pll1_2", "pll2_2"}; static const char * const mmp3_gpu_gc_parent_names[] = {"pll1", "pll2", "pll1_p", "pll2_p"}; static DEFINE_SPINLOCK(audio_lock); static struct mmp_clk_mix_config ccic0_mix_config = { .reg_info = DEFINE_MIX_REG_INFO(4, 17, 2, 6, 32), }; static struct mmp_clk_mix_config ccic1_mix_config = { .reg_info = DEFINE_MIX_REG_INFO(4, 16, 2, 6, 32), }; static struct mmp_param_mux_clk apmu_mux_clks[] = { {MMP2_CLK_DISP0_MUX, "disp0_mux", disp_parent_names, ARRAY_SIZE(disp_parent_names), CLK_SET_RATE_PARENT, APMU_DISP0, 6, 2, 0, &disp0_lock}, {MMP2_CLK_DISP1_MUX, "disp1_mux", disp_parent_names, ARRAY_SIZE(disp_parent_names), CLK_SET_RATE_PARENT, APMU_DISP1, 6, 2, 0, &disp1_lock}, }; static struct mmp_param_mux_clk mmp3_apmu_mux_clks[] = { {0, "gpu_bus_mux", mmp3_gpu_bus_parent_names, ARRAY_SIZE(mmp3_gpu_bus_parent_names), CLK_SET_RATE_PARENT, APMU_GPU, 4, 2, 0, &gpu_lock}, {0, "gpu_3d_mux", mmp3_gpu_gc_parent_names, ARRAY_SIZE(mmp3_gpu_gc_parent_names), CLK_SET_RATE_PARENT, APMU_GPU, 6, 2, 0, &gpu_lock}, {0, "gpu_2d_mux", mmp3_gpu_gc_parent_names, ARRAY_SIZE(mmp3_gpu_gc_parent_names), CLK_SET_RATE_PARENT, APMU_GPU, 12, 2, 0, &gpu_lock}, }; static struct mmp_param_div_clk apmu_div_clks[] = { {0, "disp0_div", "disp0_mux", CLK_SET_RATE_PARENT, APMU_DISP0, 8, 4, CLK_DIVIDER_ONE_BASED, &disp0_lock}, {0, "disp0_sphy_div", "disp0_mux", CLK_SET_RATE_PARENT, APMU_DISP0, 15, 5, 0, &disp0_lock}, {0, "disp1_div", "disp1_mux", CLK_SET_RATE_PARENT, APMU_DISP1, 8, 4, CLK_DIVIDER_ONE_BASED, &disp1_lock}, {0, "ccic0_sphy_div", "ccic0_mix_clk", CLK_SET_RATE_PARENT, APMU_CCIC0, 10, 5, 0, &ccic0_lock}, {0, "ccic1_sphy_div", "ccic1_mix_clk", CLK_SET_RATE_PARENT, APMU_CCIC1, 10, 5, 0, &ccic1_lock}, }; static struct mmp_param_div_clk mmp3_apmu_div_clks[] = { {0, "gpu_3d_div", "gpu_3d_mux", CLK_SET_RATE_PARENT, APMU_GPU, 24, 4, 0, &gpu_lock}, {0, "gpu_2d_div", "gpu_2d_mux", CLK_SET_RATE_PARENT, APMU_GPU, 28, 4, 0, &gpu_lock}, }; static struct mmp_param_gate_clk apmu_gate_clks[] = { {MMP2_CLK_USB, "usb_clk", "usb_pll", 0, APMU_USB, 0x9, 0x9, 0x0, 0, &usb_lock}, {MMP2_CLK_USBHSIC0, "usbhsic0_clk", "usb_pll", 0, APMU_USBHSIC0, 0x1b, 0x1b, 0x0, 0, &usbhsic0_lock}, {MMP2_CLK_USBHSIC1, "usbhsic1_clk", "usb_pll", 0, APMU_USBHSIC1, 0x1b, 0x1b, 0x0, 0, &usbhsic1_lock}, /* The gate clocks has mux parent. */ {MMP2_CLK_SDH0, "sdh0_clk", "sdh_mix_clk", CLK_SET_RATE_PARENT, APMU_SDH0, 0x1b, 0x1b, 0x0, 0, &sdh_lock}, {MMP2_CLK_SDH1, "sdh1_clk", "sdh_mix_clk", CLK_SET_RATE_PARENT, APMU_SDH1, 0x1b, 0x1b, 0x0, 0, &sdh_lock}, {MMP2_CLK_SDH2, "sdh2_clk", "sdh_mix_clk", CLK_SET_RATE_PARENT, APMU_SDH2, 0x1b, 0x1b, 0x0, 0, &sdh_lock}, {MMP2_CLK_SDH3, "sdh3_clk", "sdh_mix_clk", CLK_SET_RATE_PARENT, APMU_SDH3, 0x1b, 0x1b, 0x0, 0, &sdh_lock}, {MMP2_CLK_DISP0, "disp0_clk", "disp0_div", CLK_SET_RATE_PARENT, APMU_DISP0, 0x12, 0x12, 0x0, 0, &disp0_lock}, {MMP2_CLK_DISP0_LCDC, "disp0_lcdc_clk", "disp0_mux", CLK_SET_RATE_PARENT, APMU_DISP0, 0x09, 0x09, 0x0, 0, &disp0_lock}, {MMP2_CLK_DISP0_SPHY, "disp0_sphy_clk", "disp0_sphy_div", CLK_SET_RATE_PARENT, APMU_DISP0, 0x1024, 0x1024, 0x0, 0, &disp0_lock}, {MMP2_CLK_DISP1, "disp1_clk", "disp1_div", CLK_SET_RATE_PARENT, APMU_DISP1, 0x09, 0x09, 0x0, 0, &disp1_lock}, {MMP2_CLK_CCIC_ARBITER, "ccic_arbiter", "vctcxo", CLK_SET_RATE_PARENT, APMU_CCIC0, 0x1800, 0x1800, 0x0, 0, &ccic0_lock}, {MMP2_CLK_CCIC0, "ccic0_clk", "ccic0_mix_clk", CLK_SET_RATE_PARENT, APMU_CCIC0, 0x1b, 0x1b, 0x0, 0, &ccic0_lock}, {MMP2_CLK_CCIC0_PHY, "ccic0_phy_clk", "ccic0_mix_clk", CLK_SET_RATE_PARENT, APMU_CCIC0, 0x24, 0x24, 0x0, 0, &ccic0_lock}, {MMP2_CLK_CCIC0_SPHY, "ccic0_sphy_clk", "ccic0_sphy_div", CLK_SET_RATE_PARENT, APMU_CCIC0, 0x300, 0x300, 0x0, 0, &ccic0_lock}, {MMP2_CLK_CCIC1, "ccic1_clk", "ccic1_mix_clk", CLK_SET_RATE_PARENT, APMU_CCIC1, 0x1b, 0x1b, 0x0, 0, &ccic1_lock}, {MMP2_CLK_CCIC1_PHY, "ccic1_phy_clk", "ccic1_mix_clk", CLK_SET_RATE_PARENT, APMU_CCIC1, 0x24, 0x24, 0x0, 0, &ccic1_lock}, {MMP2_CLK_CCIC1_SPHY, "ccic1_sphy_clk", "ccic1_sphy_div", CLK_SET_RATE_PARENT, APMU_CCIC1, 0x300, 0x300, 0x0, 0, &ccic1_lock}, {MMP2_CLK_GPU_BUS, "gpu_bus_clk", "gpu_bus_mux", CLK_SET_RATE_PARENT, APMU_GPU, 0xa, 0xa, 0x0, MMP_CLK_GATE_NEED_DELAY, &gpu_lock}, {MMP2_CLK_AUDIO, "audio_clk", "audio_mix_clk", CLK_SET_RATE_PARENT, APMU_AUDIO, 0x12, 0x12, 0x0, 0, &audio_lock}, }; static struct mmp_param_gate_clk mmp2_apmu_gate_clks[] = { {MMP2_CLK_GPU_3D, "gpu_3d_clk", "gpu_3d_mux", CLK_SET_RATE_PARENT, APMU_GPU, 0x5, 0x5, 0x0, MMP_CLK_GATE_NEED_DELAY, &gpu_lock}, }; static struct mmp_param_gate_clk mmp3_apmu_gate_clks[] = { {MMP3_CLK_SDH4, "sdh4_clk", "sdh_mix_clk", CLK_SET_RATE_PARENT, APMU_SDH4, 0x1b, 0x1b, 0x0, 0, &sdh_lock}, {MMP3_CLK_GPU_3D, "gpu_3d_clk", "gpu_3d_div", CLK_SET_RATE_PARENT, APMU_GPU, 0x5, 0x5, 0x0, MMP_CLK_GATE_NEED_DELAY, &gpu_lock}, {MMP3_CLK_GPU_2D, "gpu_2d_clk", "gpu_2d_div", CLK_SET_RATE_PARENT, APMU_GPU, 0x1c0000, 0x1c0000, 0x0, MMP_CLK_GATE_NEED_DELAY, &gpu_lock}, }; static void mmp2_axi_periph_clk_init(struct mmp2_clk_unit *pxa_unit) { struct clk *clk; struct mmp_clk_unit *unit = &pxa_unit->unit; sdh_mix_config.reg_info.reg_clk_ctrl = pxa_unit->apmu_base + APMU_SDH0; clk = mmp_clk_register_mix(NULL, "sdh_mix_clk", sdh_parent_names, ARRAY_SIZE(sdh_parent_names), CLK_SET_RATE_PARENT, &sdh_mix_config, &sdh_lock); ccic0_mix_config.reg_info.reg_clk_ctrl = pxa_unit->apmu_base + APMU_CCIC0; clk = mmp_clk_register_mix(NULL, "ccic0_mix_clk", ccic_parent_names, ARRAY_SIZE(ccic_parent_names), CLK_SET_RATE_PARENT, &ccic0_mix_config, &ccic0_lock); mmp_clk_add(unit, MMP2_CLK_CCIC0_MIX, clk); ccic1_mix_config.reg_info.reg_clk_ctrl = pxa_unit->apmu_base + APMU_CCIC1; clk = mmp_clk_register_mix(NULL, "ccic1_mix_clk", ccic_parent_names, ARRAY_SIZE(ccic_parent_names), CLK_SET_RATE_PARENT, &ccic1_mix_config, &ccic1_lock); mmp_clk_add(unit, MMP2_CLK_CCIC1_MIX, clk); mmp_register_mux_clks(unit, apmu_mux_clks, pxa_unit->apmu_base, ARRAY_SIZE(apmu_mux_clks)); mmp_register_div_clks(unit, apmu_div_clks, pxa_unit->apmu_base, ARRAY_SIZE(apmu_div_clks)); mmp_register_gate_clks(unit, apmu_gate_clks, pxa_unit->apmu_base, ARRAY_SIZE(apmu_gate_clks)); if (pxa_unit->model == CLK_MODEL_MMP3) { mmp_register_mux_clks(unit, mmp3_apmu_mux_clks, pxa_unit->apmu_base, ARRAY_SIZE(mmp3_apmu_mux_clks)); mmp_register_div_clks(unit, mmp3_apmu_div_clks, pxa_unit->apmu_base, ARRAY_SIZE(mmp3_apmu_div_clks)); mmp_register_gate_clks(unit, mmp3_apmu_gate_clks, pxa_unit->apmu_base, ARRAY_SIZE(mmp3_apmu_gate_clks)); } else { clk_register_mux_table(NULL, "gpu_3d_mux", mmp2_gpu_gc_parent_names, ARRAY_SIZE(mmp2_gpu_gc_parent_names), CLK_SET_RATE_PARENT, pxa_unit->apmu_base + APMU_GPU, 0, 0x10c0, 0, mmp2_gpu_gc_parent_table, &gpu_lock); clk_register_mux_table(NULL, "gpu_bus_mux", mmp2_gpu_bus_parent_names, ARRAY_SIZE(mmp2_gpu_bus_parent_names), CLK_SET_RATE_PARENT, pxa_unit->apmu_base + APMU_GPU, 0, 0x4030, 0, mmp2_gpu_bus_parent_table, &gpu_lock); mmp_register_gate_clks(unit, mmp2_apmu_gate_clks, pxa_unit->apmu_base, ARRAY_SIZE(mmp2_apmu_gate_clks)); } } static void mmp2_clk_reset_init(struct device_node *np, struct mmp2_clk_unit *pxa_unit) { struct mmp_clk_reset_cell *cells; int i, nr_resets; nr_resets = ARRAY_SIZE(apbc_gate_clks); cells = kcalloc(nr_resets, sizeof(*cells), GFP_KERNEL); if (!cells) return; for (i = 0; i < nr_resets; i++) { cells[i].clk_id = apbc_gate_clks[i].id; cells[i].reg = pxa_unit->apbc_base + apbc_gate_clks[i].offset; cells[i].flags = 0; cells[i].lock = apbc_gate_clks[i].lock; cells[i].bits = 0x4; } mmp_clk_reset_register(np, cells, nr_resets); } static void mmp2_pm_domain_init(struct device_node *np, struct mmp2_clk_unit *pxa_unit) { if (pxa_unit->model == CLK_MODEL_MMP3) { pxa_unit->pm_domains[MMP2_POWER_DOMAIN_GPU] = mmp_pm_domain_register("gpu", pxa_unit->apmu_base + APMU_GPU, 0x0600, 0x40003, 0x18000c, 0, &gpu_lock); } else { pxa_unit->pm_domains[MMP2_POWER_DOMAIN_GPU] = mmp_pm_domain_register("gpu", pxa_unit->apmu_base + APMU_GPU, 0x8600, 0x00003, 0x00000c, MMP_PM_DOMAIN_NO_DISABLE, &gpu_lock); } pxa_unit->pd_data.num_domains++; pxa_unit->pm_domains[MMP2_POWER_DOMAIN_AUDIO] = mmp_pm_domain_register("audio", pxa_unit->apmu_base + APMU_AUDIO, 0x600, 0x2, 0, 0, &audio_lock); pxa_unit->pd_data.num_domains++; if (pxa_unit->model == CLK_MODEL_MMP3) { pxa_unit->pm_domains[MMP3_POWER_DOMAIN_CAMERA] = mmp_pm_domain_register("camera", pxa_unit->apmu_base + APMU_CAMERA, 0x600, 0, 0, 0, NULL); pxa_unit->pd_data.num_domains++; } pxa_unit->pd_data.domains = pxa_unit->pm_domains; of_genpd_add_provider_onecell(np, &pxa_unit->pd_data); } static void __init mmp2_clk_init(struct device_node *np) { struct mmp2_clk_unit *pxa_unit; pxa_unit = kzalloc(sizeof(*pxa_unit), GFP_KERNEL); if (!pxa_unit) return; if (of_device_is_compatible(np, "marvell,mmp3-clock")) pxa_unit->model = CLK_MODEL_MMP3; else pxa_unit->model = CLK_MODEL_MMP2; pxa_unit->mpmu_base = of_iomap(np, 0); if (!pxa_unit->mpmu_base) { pr_err("failed to map mpmu registers\n"); goto free_memory; } pxa_unit->apmu_base = of_iomap(np, 1); if (!pxa_unit->apmu_base) { pr_err("failed to map apmu registers\n"); goto unmap_mpmu_region; } pxa_unit->apbc_base = of_iomap(np, 2); if (!pxa_unit->apbc_base) { pr_err("failed to map apbc registers\n"); goto unmap_apmu_region; } mmp2_pm_domain_init(np, pxa_unit); mmp_clk_init(np, &pxa_unit->unit, NR_CLKS); mmp2_main_clk_init(pxa_unit); mmp2_apb_periph_clk_init(pxa_unit); mmp2_axi_periph_clk_init(pxa_unit); mmp2_clk_reset_init(np, pxa_unit); return; unmap_apmu_region: iounmap(pxa_unit->apmu_base); unmap_mpmu_region: iounmap(pxa_unit->mpmu_base); free_memory: kfree(pxa_unit); } CLK_OF_DECLARE(mmp2_clk, "marvell,mmp2-clock", mmp2_clk_init); CLK_OF_DECLARE(mmp3_clk, "marvell,mmp3-clock", mmp2_clk_init);
linux-master
drivers/clk/mmp/clk-of-mmp2.c
// SPDX-License-Identifier: GPL-2.0-only /* * pxa910 clock framework source file * * Copyright (C) 2012 Marvell * Chao Xie <[email protected]> */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/spinlock.h> #include <linux/io.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/of_address.h> #include <dt-bindings/clock/marvell,pxa910.h> #include "clk.h" #include "reset.h" #define APBC_RTC 0x28 #define APBC_TWSI0 0x2c #define APBC_KPC 0x18 #define APBC_UART0 0x0 #define APBC_UART1 0x4 #define APBC_GPIO 0x8 #define APBC_PWM0 0xc #define APBC_PWM1 0x10 #define APBC_PWM2 0x14 #define APBC_PWM3 0x18 #define APBC_SSP0 0x1c #define APBC_SSP1 0x20 #define APBC_SSP2 0x4c #define APBC_TIMER0 0x30 #define APBC_TIMER1 0x44 #define APBCP_TWSI1 0x28 #define APBCP_UART2 0x1c #define APMU_SDH0 0x54 #define APMU_SDH1 0x58 #define APMU_USB 0x5c #define APMU_DISP0 0x4c #define APMU_CCIC0 0x50 #define APMU_DFC 0x60 #define MPMU_UART_PLL 0x14 #define NR_CLKS 200 struct pxa910_clk_unit { struct mmp_clk_unit unit; void __iomem *mpmu_base; void __iomem *apmu_base; void __iomem *apbc_base; void __iomem *apbcp_base; }; static struct mmp_param_fixed_rate_clk fixed_rate_clks[] = { {PXA910_CLK_CLK32, "clk32", NULL, 0, 32768}, {PXA910_CLK_VCTCXO, "vctcxo", NULL, 0, 26000000}, {PXA910_CLK_PLL1, "pll1", NULL, 0, 624000000}, {PXA910_CLK_USB_PLL, "usb_pll", NULL, 0, 480000000}, }; static struct mmp_param_fixed_factor_clk fixed_factor_clks[] = { {PXA910_CLK_PLL1_2, "pll1_2", "pll1", 1, 2, 0}, {PXA910_CLK_PLL1_4, "pll1_4", "pll1_2", 1, 2, 0}, {PXA910_CLK_PLL1_8, "pll1_8", "pll1_4", 1, 2, 0}, {PXA910_CLK_PLL1_16, "pll1_16", "pll1_8", 1, 2, 0}, {PXA910_CLK_PLL1_6, "pll1_6", "pll1_2", 1, 3, 0}, {PXA910_CLK_PLL1_12, "pll1_12", "pll1_6", 1, 2, 0}, {PXA910_CLK_PLL1_24, "pll1_24", "pll1_12", 1, 2, 0}, {PXA910_CLK_PLL1_48, "pll1_48", "pll1_24", 1, 2, 0}, {PXA910_CLK_PLL1_96, "pll1_96", "pll1_48", 1, 2, 0}, {PXA910_CLK_PLL1_192, "pll1_192", "pll1_96", 1, 2, 0}, {PXA910_CLK_PLL1_13, "pll1_13", "pll1", 1, 13, 0}, {PXA910_CLK_PLL1_13_1_5, "pll1_13_1_5", "pll1_13", 2, 3, 0}, {PXA910_CLK_PLL1_2_1_5, "pll1_2_1_5", "pll1_2", 2, 3, 0}, {PXA910_CLK_PLL1_3_16, "pll1_3_16", "pll1", 3, 16, 0}, }; static struct mmp_clk_factor_masks uart_factor_masks = { .factor = 2, .num_mask = 0x1fff, .den_mask = 0x1fff, .num_shift = 16, .den_shift = 0, }; static struct mmp_clk_factor_tbl uart_factor_tbl[] = { {.num = 8125, .den = 1536}, /*14.745MHZ */ }; static void pxa910_pll_init(struct pxa910_clk_unit *pxa_unit) { struct clk *clk; struct mmp_clk_unit *unit = &pxa_unit->unit; mmp_register_fixed_rate_clks(unit, fixed_rate_clks, ARRAY_SIZE(fixed_rate_clks)); mmp_register_fixed_factor_clks(unit, fixed_factor_clks, ARRAY_SIZE(fixed_factor_clks)); clk = mmp_clk_register_factor("uart_pll", "pll1_4", CLK_SET_RATE_PARENT, pxa_unit->mpmu_base + MPMU_UART_PLL, &uart_factor_masks, uart_factor_tbl, ARRAY_SIZE(uart_factor_tbl), NULL); mmp_clk_add(unit, PXA910_CLK_UART_PLL, clk); } static DEFINE_SPINLOCK(uart0_lock); static DEFINE_SPINLOCK(uart1_lock); static DEFINE_SPINLOCK(uart2_lock); static const char *uart_parent_names[] = {"pll1_3_16", "uart_pll"}; static DEFINE_SPINLOCK(ssp0_lock); static DEFINE_SPINLOCK(ssp1_lock); static const char *ssp_parent_names[] = {"pll1_96", "pll1_48", "pll1_24", "pll1_12"}; static DEFINE_SPINLOCK(timer0_lock); static DEFINE_SPINLOCK(timer1_lock); static const char *timer_parent_names[] = {"pll1_48", "clk32", "pll1_96"}; static DEFINE_SPINLOCK(reset_lock); static struct mmp_param_mux_clk apbc_mux_clks[] = { {0, "uart0_mux", uart_parent_names, ARRAY_SIZE(uart_parent_names), CLK_SET_RATE_PARENT, APBC_UART0, 4, 3, 0, &uart0_lock}, {0, "uart1_mux", uart_parent_names, ARRAY_SIZE(uart_parent_names), CLK_SET_RATE_PARENT, APBC_UART1, 4, 3, 0, &uart1_lock}, {0, "ssp0_mux", ssp_parent_names, ARRAY_SIZE(ssp_parent_names), CLK_SET_RATE_PARENT, APBC_SSP0, 4, 3, 0, &ssp0_lock}, {0, "ssp1_mux", ssp_parent_names, ARRAY_SIZE(ssp_parent_names), CLK_SET_RATE_PARENT, APBC_SSP1, 4, 3, 0, &ssp1_lock}, {0, "timer0_mux", timer_parent_names, ARRAY_SIZE(timer_parent_names), CLK_SET_RATE_PARENT, APBC_TIMER0, 4, 3, 0, &timer0_lock}, {0, "timer1_mux", timer_parent_names, ARRAY_SIZE(timer_parent_names), CLK_SET_RATE_PARENT, APBC_TIMER1, 4, 3, 0, &timer1_lock}, }; static struct mmp_param_mux_clk apbcp_mux_clks[] = { {0, "uart2_mux", uart_parent_names, ARRAY_SIZE(uart_parent_names), CLK_SET_RATE_PARENT, APBCP_UART2, 4, 3, 0, &uart2_lock}, }; static struct mmp_param_gate_clk apbc_gate_clks[] = { {PXA910_CLK_TWSI0, "twsi0_clk", "pll1_13_1_5", CLK_SET_RATE_PARENT, APBC_TWSI0, 0x3, 0x3, 0x0, 0, &reset_lock}, {PXA910_CLK_GPIO, "gpio_clk", "vctcxo", CLK_SET_RATE_PARENT, APBC_GPIO, 0x3, 0x3, 0x0, 0, &reset_lock}, {PXA910_CLK_KPC, "kpc_clk", "clk32", CLK_SET_RATE_PARENT, APBC_KPC, 0x3, 0x3, 0x0, MMP_CLK_GATE_NEED_DELAY, NULL}, {PXA910_CLK_RTC, "rtc_clk", "clk32", CLK_SET_RATE_PARENT, APBC_RTC, 0x83, 0x83, 0x0, MMP_CLK_GATE_NEED_DELAY, NULL}, {PXA910_CLK_PWM0, "pwm0_clk", "pll1_48", CLK_SET_RATE_PARENT, APBC_PWM0, 0x3, 0x3, 0x0, 0, &reset_lock}, {PXA910_CLK_PWM1, "pwm1_clk", "pll1_48", CLK_SET_RATE_PARENT, APBC_PWM1, 0x3, 0x3, 0x0, 0, &reset_lock}, {PXA910_CLK_PWM2, "pwm2_clk", "pll1_48", CLK_SET_RATE_PARENT, APBC_PWM2, 0x3, 0x3, 0x0, 0, &reset_lock}, {PXA910_CLK_PWM3, "pwm3_clk", "pll1_48", CLK_SET_RATE_PARENT, APBC_PWM3, 0x3, 0x3, 0x0, 0, &reset_lock}, /* The gate clocks has mux parent. */ {PXA910_CLK_UART0, "uart0_clk", "uart0_mux", CLK_SET_RATE_PARENT, APBC_UART0, 0x3, 0x3, 0x0, 0, &uart0_lock}, {PXA910_CLK_UART1, "uart1_clk", "uart1_mux", CLK_SET_RATE_PARENT, APBC_UART1, 0x3, 0x3, 0x0, 0, &uart1_lock}, {PXA910_CLK_SSP0, "ssp0_clk", "ssp0_mux", CLK_SET_RATE_PARENT, APBC_SSP0, 0x3, 0x3, 0x0, 0, &ssp0_lock}, {PXA910_CLK_SSP1, "ssp1_clk", "ssp1_mux", CLK_SET_RATE_PARENT, APBC_SSP1, 0x3, 0x3, 0x0, 0, &ssp1_lock}, {PXA910_CLK_TIMER0, "timer0_clk", "timer0_mux", CLK_SET_RATE_PARENT, APBC_TIMER0, 0x3, 0x3, 0x0, 0, &timer0_lock}, {PXA910_CLK_TIMER1, "timer1_clk", "timer1_mux", CLK_SET_RATE_PARENT, APBC_TIMER1, 0x3, 0x3, 0x0, 0, &timer1_lock}, }; static struct mmp_param_gate_clk apbcp_gate_clks[] = { {PXA910_CLK_TWSI1, "twsi1_clk", "pll1_13_1_5", CLK_SET_RATE_PARENT, APBCP_TWSI1, 0x3, 0x3, 0x0, 0, &reset_lock}, /* The gate clocks has mux parent. */ {PXA910_CLK_UART2, "uart2_clk", "uart2_mux", CLK_SET_RATE_PARENT, APBCP_UART2, 0x3, 0x3, 0x0, 0, &uart2_lock}, }; static void pxa910_apb_periph_clk_init(struct pxa910_clk_unit *pxa_unit) { struct mmp_clk_unit *unit = &pxa_unit->unit; mmp_register_mux_clks(unit, apbc_mux_clks, pxa_unit->apbc_base, ARRAY_SIZE(apbc_mux_clks)); mmp_register_mux_clks(unit, apbcp_mux_clks, pxa_unit->apbcp_base, ARRAY_SIZE(apbcp_mux_clks)); mmp_register_gate_clks(unit, apbc_gate_clks, pxa_unit->apbc_base, ARRAY_SIZE(apbc_gate_clks)); mmp_register_gate_clks(unit, apbcp_gate_clks, pxa_unit->apbcp_base, ARRAY_SIZE(apbcp_gate_clks)); } static DEFINE_SPINLOCK(sdh0_lock); static DEFINE_SPINLOCK(sdh1_lock); static const char *sdh_parent_names[] = {"pll1_12", "pll1_13"}; static DEFINE_SPINLOCK(usb_lock); static DEFINE_SPINLOCK(disp0_lock); static const char *disp_parent_names[] = {"pll1_2", "pll1_12"}; static DEFINE_SPINLOCK(ccic0_lock); static const char *ccic_parent_names[] = {"pll1_2", "pll1_12"}; static const char *ccic_phy_parent_names[] = {"pll1_6", "pll1_12"}; static struct mmp_param_mux_clk apmu_mux_clks[] = { {0, "sdh0_mux", sdh_parent_names, ARRAY_SIZE(sdh_parent_names), CLK_SET_RATE_PARENT, APMU_SDH0, 6, 1, 0, &sdh0_lock}, {0, "sdh1_mux", sdh_parent_names, ARRAY_SIZE(sdh_parent_names), CLK_SET_RATE_PARENT, APMU_SDH1, 6, 1, 0, &sdh1_lock}, {0, "disp0_mux", disp_parent_names, ARRAY_SIZE(disp_parent_names), CLK_SET_RATE_PARENT, APMU_DISP0, 6, 1, 0, &disp0_lock}, {0, "ccic0_mux", ccic_parent_names, ARRAY_SIZE(ccic_parent_names), CLK_SET_RATE_PARENT, APMU_CCIC0, 6, 1, 0, &ccic0_lock}, {0, "ccic0_phy_mux", ccic_phy_parent_names, ARRAY_SIZE(ccic_phy_parent_names), CLK_SET_RATE_PARENT, APMU_CCIC0, 7, 1, 0, &ccic0_lock}, }; static struct mmp_param_div_clk apmu_div_clks[] = { {0, "ccic0_sphy_div", "ccic0_mux", CLK_SET_RATE_PARENT, APMU_CCIC0, 10, 5, 0, &ccic0_lock}, }; static struct mmp_param_gate_clk apmu_gate_clks[] = { {PXA910_CLK_DFC, "dfc_clk", "pll1_4", CLK_SET_RATE_PARENT, APMU_DFC, 0x19b, 0x19b, 0x0, 0, NULL}, {PXA910_CLK_USB, "usb_clk", "usb_pll", 0, APMU_USB, 0x9, 0x9, 0x0, 0, &usb_lock}, {PXA910_CLK_SPH, "sph_clk", "usb_pll", 0, APMU_USB, 0x12, 0x12, 0x0, 0, &usb_lock}, /* The gate clocks has mux parent. */ {PXA910_CLK_SDH0, "sdh0_clk", "sdh0_mux", CLK_SET_RATE_PARENT, APMU_SDH0, 0x1b, 0x1b, 0x0, 0, &sdh0_lock}, {PXA910_CLK_SDH1, "sdh1_clk", "sdh1_mux", CLK_SET_RATE_PARENT, APMU_SDH1, 0x1b, 0x1b, 0x0, 0, &sdh1_lock}, {PXA910_CLK_DISP0, "disp0_clk", "disp0_mux", CLK_SET_RATE_PARENT, APMU_DISP0, 0x1b, 0x1b, 0x0, 0, &disp0_lock}, {PXA910_CLK_CCIC0, "ccic0_clk", "ccic0_mux", CLK_SET_RATE_PARENT, APMU_CCIC0, 0x1b, 0x1b, 0x0, 0, &ccic0_lock}, {PXA910_CLK_CCIC0_PHY, "ccic0_phy_clk", "ccic0_phy_mux", CLK_SET_RATE_PARENT, APMU_CCIC0, 0x24, 0x24, 0x0, 0, &ccic0_lock}, {PXA910_CLK_CCIC0_SPHY, "ccic0_sphy_clk", "ccic0_sphy_div", CLK_SET_RATE_PARENT, APMU_CCIC0, 0x300, 0x300, 0x0, 0, &ccic0_lock}, }; static void pxa910_axi_periph_clk_init(struct pxa910_clk_unit *pxa_unit) { struct mmp_clk_unit *unit = &pxa_unit->unit; mmp_register_mux_clks(unit, apmu_mux_clks, pxa_unit->apmu_base, ARRAY_SIZE(apmu_mux_clks)); mmp_register_div_clks(unit, apmu_div_clks, pxa_unit->apmu_base, ARRAY_SIZE(apmu_div_clks)); mmp_register_gate_clks(unit, apmu_gate_clks, pxa_unit->apmu_base, ARRAY_SIZE(apmu_gate_clks)); } static void pxa910_clk_reset_init(struct device_node *np, struct pxa910_clk_unit *pxa_unit) { struct mmp_clk_reset_cell *cells; int i, base, nr_resets_apbc, nr_resets_apbcp, nr_resets; nr_resets_apbc = ARRAY_SIZE(apbc_gate_clks); nr_resets_apbcp = ARRAY_SIZE(apbcp_gate_clks); nr_resets = nr_resets_apbc + nr_resets_apbcp; cells = kcalloc(nr_resets, sizeof(*cells), GFP_KERNEL); if (!cells) return; base = 0; for (i = 0; i < nr_resets_apbc; i++) { cells[base + i].clk_id = apbc_gate_clks[i].id; cells[base + i].reg = pxa_unit->apbc_base + apbc_gate_clks[i].offset; cells[base + i].flags = 0; cells[base + i].lock = apbc_gate_clks[i].lock; cells[base + i].bits = 0x4; } base = nr_resets_apbc; for (i = 0; i < nr_resets_apbcp; i++) { cells[base + i].clk_id = apbcp_gate_clks[i].id; cells[base + i].reg = pxa_unit->apbc_base + apbc_gate_clks[i].offset; cells[base + i].flags = 0; cells[base + i].lock = apbc_gate_clks[i].lock; cells[base + i].bits = 0x4; } mmp_clk_reset_register(np, cells, nr_resets); } static void __init pxa910_clk_init(struct device_node *np) { struct pxa910_clk_unit *pxa_unit; pxa_unit = kzalloc(sizeof(*pxa_unit), GFP_KERNEL); if (!pxa_unit) return; pxa_unit->mpmu_base = of_iomap(np, 0); if (!pxa_unit->mpmu_base) { pr_err("failed to map mpmu registers\n"); goto free_memory; } pxa_unit->apmu_base = of_iomap(np, 1); if (!pxa_unit->apmu_base) { pr_err("failed to map apmu registers\n"); goto unmap_mpmu_region; } pxa_unit->apbc_base = of_iomap(np, 2); if (!pxa_unit->apbc_base) { pr_err("failed to map apbc registers\n"); goto unmap_apmu_region; } pxa_unit->apbcp_base = of_iomap(np, 3); if (!pxa_unit->apbcp_base) { pr_err("failed to map apbcp registers\n"); goto unmap_apbc_region; } mmp_clk_init(np, &pxa_unit->unit, NR_CLKS); pxa910_pll_init(pxa_unit); pxa910_apb_periph_clk_init(pxa_unit); pxa910_axi_periph_clk_init(pxa_unit); pxa910_clk_reset_init(np, pxa_unit); return; unmap_apbc_region: iounmap(pxa_unit->apbc_base); unmap_apmu_region: iounmap(pxa_unit->apmu_base); unmap_mpmu_region: iounmap(pxa_unit->mpmu_base); free_memory: kfree(pxa_unit); } CLK_OF_DECLARE(pxa910_clk, "marvell,pxa910-clock", pxa910_clk_init);
linux-master
drivers/clk/mmp/clk-of-pxa910.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * MMP Audio Clock Controller driver * * Copyright (C) 2020 Lubomir Rintel <[email protected]> */ #include <linux/clk-provider.h> #include <linux/io.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/pm_clock.h> #include <linux/pm_runtime.h> #include <linux/slab.h> #include <dt-bindings/clock/marvell,mmp2-audio.h> /* Audio Controller Registers */ #define SSPA_AUD_CTRL 0x04 #define SSPA_AUD_PLL_CTRL0 0x08 #define SSPA_AUD_PLL_CTRL1 0x0c /* SSPA Audio Control Register */ #define SSPA_AUD_CTRL_SYSCLK_SHIFT 0 #define SSPA_AUD_CTRL_SYSCLK_DIV_SHIFT 1 #define SSPA_AUD_CTRL_SSPA0_MUX_SHIFT 7 #define SSPA_AUD_CTRL_SSPA0_SHIFT 8 #define SSPA_AUD_CTRL_SSPA0_DIV_SHIFT 9 #define SSPA_AUD_CTRL_SSPA1_SHIFT 16 #define SSPA_AUD_CTRL_SSPA1_DIV_SHIFT 17 #define SSPA_AUD_CTRL_SSPA1_MUX_SHIFT 23 #define SSPA_AUD_CTRL_DIV_MASK 0x7e /* SSPA Audio PLL Control 0 Register */ #define SSPA_AUD_PLL_CTRL0_DIV_OCLK_MODULO_MASK (0x7 << 28) #define SSPA_AUD_PLL_CTRL0_DIV_OCLK_MODULO(x) ((x) << 28) #define SSPA_AUD_PLL_CTRL0_FRACT_MASK (0xfffff << 8) #define SSPA_AUD_PLL_CTRL0_FRACT(x) ((x) << 8) #define SSPA_AUD_PLL_CTRL0_ENA_DITHER (1 << 7) #define SSPA_AUD_PLL_CTRL0_ICP_2UA (0 << 5) #define SSPA_AUD_PLL_CTRL0_ICP_5UA (1 << 5) #define SSPA_AUD_PLL_CTRL0_ICP_7UA (2 << 5) #define SSPA_AUD_PLL_CTRL0_ICP_10UA (3 << 5) #define SSPA_AUD_PLL_CTRL0_DIV_FBCCLK_MASK (0x3 << 3) #define SSPA_AUD_PLL_CTRL0_DIV_FBCCLK(x) ((x) << 3) #define SSPA_AUD_PLL_CTRL0_DIV_MCLK_MASK (0x1 << 2) #define SSPA_AUD_PLL_CTRL0_DIV_MCLK(x) ((x) << 2) #define SSPA_AUD_PLL_CTRL0_PD_OVPROT_DIS (1 << 1) #define SSPA_AUD_PLL_CTRL0_PU (1 << 0) /* SSPA Audio PLL Control 1 Register */ #define SSPA_AUD_PLL_CTRL1_SEL_FAST_CLK (1 << 24) #define SSPA_AUD_PLL_CTRL1_CLK_SEL_MASK (1 << 11) #define SSPA_AUD_PLL_CTRL1_CLK_SEL_AUDIO_PLL (1 << 11) #define SSPA_AUD_PLL_CTRL1_CLK_SEL_VCXO (0 << 11) #define SSPA_AUD_PLL_CTRL1_DIV_OCLK_PATTERN_MASK (0x7ff << 0) #define SSPA_AUD_PLL_CTRL1_DIV_OCLK_PATTERN(x) ((x) << 0) #define CLK_AUDIO_NR_CLKS 3 struct mmp2_audio_clk { void __iomem *mmio_base; struct clk_hw audio_pll_hw; struct clk_mux sspa_mux; struct clk_mux sspa1_mux; struct clk_divider sysclk_div; struct clk_divider sspa0_div; struct clk_divider sspa1_div; struct clk_gate sysclk_gate; struct clk_gate sspa0_gate; struct clk_gate sspa1_gate; u32 aud_ctrl; u32 aud_pll_ctrl0; u32 aud_pll_ctrl1; spinlock_t lock; /* Must be last */ struct clk_hw_onecell_data clk_data; }; static const struct { unsigned long parent_rate; unsigned long freq_vco; unsigned char mclk; unsigned char fbcclk; unsigned short fract; } predivs[] = { { 26000000, 135475200, 0, 0, 0x8a18 }, { 26000000, 147456000, 0, 1, 0x0da1 }, { 38400000, 135475200, 1, 2, 0x8208 }, { 38400000, 147456000, 1, 3, 0xaaaa }, }; static const struct { unsigned char divisor; unsigned char modulo; unsigned char pattern; } postdivs[] = { { 1, 3, 0, }, { 2, 5, 0, }, { 4, 0, 0, }, { 6, 1, 1, }, { 8, 1, 0, }, { 9, 1, 2, }, { 12, 2, 1, }, { 16, 2, 0, }, { 18, 2, 2, }, { 24, 4, 1, }, { 36, 4, 2, }, { 48, 6, 1, }, { 72, 6, 2, }, }; static unsigned long audio_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct mmp2_audio_clk *priv = container_of(hw, struct mmp2_audio_clk, audio_pll_hw); unsigned int prediv; unsigned int postdiv; u32 aud_pll_ctrl0; u32 aud_pll_ctrl1; aud_pll_ctrl0 = readl(priv->mmio_base + SSPA_AUD_PLL_CTRL0); aud_pll_ctrl0 &= SSPA_AUD_PLL_CTRL0_DIV_OCLK_MODULO_MASK | SSPA_AUD_PLL_CTRL0_FRACT_MASK | SSPA_AUD_PLL_CTRL0_ENA_DITHER | SSPA_AUD_PLL_CTRL0_DIV_FBCCLK_MASK | SSPA_AUD_PLL_CTRL0_DIV_MCLK_MASK | SSPA_AUD_PLL_CTRL0_PU; aud_pll_ctrl1 = readl(priv->mmio_base + SSPA_AUD_PLL_CTRL1); aud_pll_ctrl1 &= SSPA_AUD_PLL_CTRL1_CLK_SEL_MASK | SSPA_AUD_PLL_CTRL1_DIV_OCLK_PATTERN_MASK; for (prediv = 0; prediv < ARRAY_SIZE(predivs); prediv++) { if (predivs[prediv].parent_rate != parent_rate) continue; for (postdiv = 0; postdiv < ARRAY_SIZE(postdivs); postdiv++) { unsigned long freq; u32 val; val = SSPA_AUD_PLL_CTRL0_ENA_DITHER; val |= SSPA_AUD_PLL_CTRL0_PU; val |= SSPA_AUD_PLL_CTRL0_DIV_OCLK_MODULO(postdivs[postdiv].modulo); val |= SSPA_AUD_PLL_CTRL0_FRACT(predivs[prediv].fract); val |= SSPA_AUD_PLL_CTRL0_DIV_FBCCLK(predivs[prediv].fbcclk); val |= SSPA_AUD_PLL_CTRL0_DIV_MCLK(predivs[prediv].mclk); if (val != aud_pll_ctrl0) continue; val = SSPA_AUD_PLL_CTRL1_CLK_SEL_AUDIO_PLL; val |= SSPA_AUD_PLL_CTRL1_DIV_OCLK_PATTERN(postdivs[postdiv].pattern); if (val != aud_pll_ctrl1) continue; freq = predivs[prediv].freq_vco; freq /= postdivs[postdiv].divisor; return freq; } } return 0; } static long audio_pll_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { unsigned int prediv; unsigned int postdiv; long rounded = 0; for (prediv = 0; prediv < ARRAY_SIZE(predivs); prediv++) { if (predivs[prediv].parent_rate != *parent_rate) continue; for (postdiv = 0; postdiv < ARRAY_SIZE(postdivs); postdiv++) { long freq = predivs[prediv].freq_vco; freq /= postdivs[postdiv].divisor; if (freq == rate) return rate; if (freq < rate) continue; if (rounded && freq > rounded) continue; rounded = freq; } } return rounded; } static int audio_pll_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct mmp2_audio_clk *priv = container_of(hw, struct mmp2_audio_clk, audio_pll_hw); unsigned int prediv; unsigned int postdiv; unsigned long val; for (prediv = 0; prediv < ARRAY_SIZE(predivs); prediv++) { if (predivs[prediv].parent_rate != parent_rate) continue; for (postdiv = 0; postdiv < ARRAY_SIZE(postdivs); postdiv++) { if (rate * postdivs[postdiv].divisor != predivs[prediv].freq_vco) continue; val = SSPA_AUD_PLL_CTRL0_ENA_DITHER; val |= SSPA_AUD_PLL_CTRL0_PU; val |= SSPA_AUD_PLL_CTRL0_DIV_OCLK_MODULO(postdivs[postdiv].modulo); val |= SSPA_AUD_PLL_CTRL0_FRACT(predivs[prediv].fract); val |= SSPA_AUD_PLL_CTRL0_DIV_FBCCLK(predivs[prediv].fbcclk); val |= SSPA_AUD_PLL_CTRL0_DIV_MCLK(predivs[prediv].mclk); writel(val, priv->mmio_base + SSPA_AUD_PLL_CTRL0); val = SSPA_AUD_PLL_CTRL1_CLK_SEL_AUDIO_PLL; val |= SSPA_AUD_PLL_CTRL1_DIV_OCLK_PATTERN(postdivs[postdiv].pattern); writel(val, priv->mmio_base + SSPA_AUD_PLL_CTRL1); return 0; } } return -ERANGE; } static const struct clk_ops audio_pll_ops = { .recalc_rate = audio_pll_recalc_rate, .round_rate = audio_pll_round_rate, .set_rate = audio_pll_set_rate, }; static int register_clocks(struct mmp2_audio_clk *priv, struct device *dev) { const struct clk_parent_data sspa_mux_parents[] = { { .hw = &priv->audio_pll_hw }, { .fw_name = "i2s0" }, }; const struct clk_parent_data sspa1_mux_parents[] = { { .hw = &priv->audio_pll_hw }, { .fw_name = "i2s1" }, }; int ret; priv->audio_pll_hw.init = CLK_HW_INIT_FW_NAME("audio_pll", "vctcxo", &audio_pll_ops, CLK_SET_RATE_PARENT); ret = devm_clk_hw_register(dev, &priv->audio_pll_hw); if (ret) return ret; priv->sspa_mux.hw.init = CLK_HW_INIT_PARENTS_DATA("sspa_mux", sspa_mux_parents, &clk_mux_ops, CLK_SET_RATE_PARENT); priv->sspa_mux.reg = priv->mmio_base + SSPA_AUD_CTRL; priv->sspa_mux.mask = 1; priv->sspa_mux.shift = SSPA_AUD_CTRL_SSPA0_MUX_SHIFT; ret = devm_clk_hw_register(dev, &priv->sspa_mux.hw); if (ret) return ret; priv->sysclk_div.hw.init = CLK_HW_INIT_HW("sys_div", &priv->sspa_mux.hw, &clk_divider_ops, CLK_SET_RATE_PARENT); priv->sysclk_div.reg = priv->mmio_base + SSPA_AUD_CTRL; priv->sysclk_div.shift = SSPA_AUD_CTRL_SYSCLK_DIV_SHIFT; priv->sysclk_div.width = 6; priv->sysclk_div.flags = CLK_DIVIDER_ONE_BASED; priv->sysclk_div.flags |= CLK_DIVIDER_ROUND_CLOSEST; priv->sysclk_div.flags |= CLK_DIVIDER_ALLOW_ZERO; ret = devm_clk_hw_register(dev, &priv->sysclk_div.hw); if (ret) return ret; priv->sysclk_gate.hw.init = CLK_HW_INIT_HW("sys_clk", &priv->sysclk_div.hw, &clk_gate_ops, CLK_SET_RATE_PARENT); priv->sysclk_gate.reg = priv->mmio_base + SSPA_AUD_CTRL; priv->sysclk_gate.bit_idx = SSPA_AUD_CTRL_SYSCLK_SHIFT; ret = devm_clk_hw_register(dev, &priv->sysclk_gate.hw); if (ret) return ret; priv->sspa0_div.hw.init = CLK_HW_INIT_HW("sspa0_div", &priv->sspa_mux.hw, &clk_divider_ops, 0); priv->sspa0_div.reg = priv->mmio_base + SSPA_AUD_CTRL; priv->sspa0_div.shift = SSPA_AUD_CTRL_SSPA0_DIV_SHIFT; priv->sspa0_div.width = 6; priv->sspa0_div.flags = CLK_DIVIDER_ONE_BASED; priv->sspa0_div.flags |= CLK_DIVIDER_ROUND_CLOSEST; priv->sspa0_div.flags |= CLK_DIVIDER_ALLOW_ZERO; ret = devm_clk_hw_register(dev, &priv->sspa0_div.hw); if (ret) return ret; priv->sspa0_gate.hw.init = CLK_HW_INIT_HW("sspa0_clk", &priv->sspa0_div.hw, &clk_gate_ops, CLK_SET_RATE_PARENT); priv->sspa0_gate.reg = priv->mmio_base + SSPA_AUD_CTRL; priv->sspa0_gate.bit_idx = SSPA_AUD_CTRL_SSPA0_SHIFT; ret = devm_clk_hw_register(dev, &priv->sspa0_gate.hw); if (ret) return ret; priv->sspa1_mux.hw.init = CLK_HW_INIT_PARENTS_DATA("sspa1_mux", sspa1_mux_parents, &clk_mux_ops, CLK_SET_RATE_PARENT); priv->sspa1_mux.reg = priv->mmio_base + SSPA_AUD_CTRL; priv->sspa1_mux.mask = 1; priv->sspa1_mux.shift = SSPA_AUD_CTRL_SSPA1_MUX_SHIFT; ret = devm_clk_hw_register(dev, &priv->sspa1_mux.hw); if (ret) return ret; priv->sspa1_div.hw.init = CLK_HW_INIT_HW("sspa1_div", &priv->sspa1_mux.hw, &clk_divider_ops, 0); priv->sspa1_div.reg = priv->mmio_base + SSPA_AUD_CTRL; priv->sspa1_div.shift = SSPA_AUD_CTRL_SSPA1_DIV_SHIFT; priv->sspa1_div.width = 6; priv->sspa1_div.flags = CLK_DIVIDER_ONE_BASED; priv->sspa1_div.flags |= CLK_DIVIDER_ROUND_CLOSEST; priv->sspa1_div.flags |= CLK_DIVIDER_ALLOW_ZERO; ret = devm_clk_hw_register(dev, &priv->sspa1_div.hw); if (ret) return ret; priv->sspa1_gate.hw.init = CLK_HW_INIT_HW("sspa1_clk", &priv->sspa1_div.hw, &clk_gate_ops, CLK_SET_RATE_PARENT); priv->sspa1_gate.reg = priv->mmio_base + SSPA_AUD_CTRL; priv->sspa1_gate.bit_idx = SSPA_AUD_CTRL_SSPA1_SHIFT; ret = devm_clk_hw_register(dev, &priv->sspa1_gate.hw); if (ret) return ret; priv->clk_data.hws[MMP2_CLK_AUDIO_SYSCLK] = &priv->sysclk_gate.hw; priv->clk_data.hws[MMP2_CLK_AUDIO_SSPA0] = &priv->sspa0_gate.hw; priv->clk_data.hws[MMP2_CLK_AUDIO_SSPA1] = &priv->sspa1_gate.hw; priv->clk_data.num = CLK_AUDIO_NR_CLKS; return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get, &priv->clk_data); } static int mmp2_audio_clk_probe(struct platform_device *pdev) { struct mmp2_audio_clk *priv; int ret; priv = devm_kzalloc(&pdev->dev, struct_size(priv, clk_data.hws, CLK_AUDIO_NR_CLKS), GFP_KERNEL); if (!priv) return -ENOMEM; spin_lock_init(&priv->lock); platform_set_drvdata(pdev, priv); priv->mmio_base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(priv->mmio_base)) return PTR_ERR(priv->mmio_base); pm_runtime_enable(&pdev->dev); ret = pm_clk_create(&pdev->dev); if (ret) goto disable_pm_runtime; ret = pm_clk_add(&pdev->dev, "audio"); if (ret) goto destroy_pm_clk; ret = register_clocks(priv, &pdev->dev); if (ret) goto destroy_pm_clk; return 0; destroy_pm_clk: pm_clk_destroy(&pdev->dev); disable_pm_runtime: pm_runtime_disable(&pdev->dev); return ret; } static void mmp2_audio_clk_remove(struct platform_device *pdev) { pm_clk_destroy(&pdev->dev); pm_runtime_disable(&pdev->dev); } #ifdef CONFIG_PM static int mmp2_audio_clk_suspend(struct device *dev) { struct mmp2_audio_clk *priv = dev_get_drvdata(dev); priv->aud_ctrl = readl(priv->mmio_base + SSPA_AUD_CTRL); priv->aud_pll_ctrl0 = readl(priv->mmio_base + SSPA_AUD_PLL_CTRL0); priv->aud_pll_ctrl1 = readl(priv->mmio_base + SSPA_AUD_PLL_CTRL1); pm_clk_suspend(dev); return 0; } static int mmp2_audio_clk_resume(struct device *dev) { struct mmp2_audio_clk *priv = dev_get_drvdata(dev); pm_clk_resume(dev); writel(priv->aud_ctrl, priv->mmio_base + SSPA_AUD_CTRL); writel(priv->aud_pll_ctrl0, priv->mmio_base + SSPA_AUD_PLL_CTRL0); writel(priv->aud_pll_ctrl1, priv->mmio_base + SSPA_AUD_PLL_CTRL1); return 0; } #endif static const struct dev_pm_ops mmp2_audio_clk_pm_ops = { SET_RUNTIME_PM_OPS(mmp2_audio_clk_suspend, mmp2_audio_clk_resume, NULL) }; static const struct of_device_id mmp2_audio_clk_of_match[] = { { .compatible = "marvell,mmp2-audio-clock" }, {} }; MODULE_DEVICE_TABLE(of, mmp2_audio_clk_of_match); static struct platform_driver mmp2_audio_clk_driver = { .driver = { .name = "mmp2-audio-clock", .of_match_table = of_match_ptr(mmp2_audio_clk_of_match), .pm = &mmp2_audio_clk_pm_ops, }, .probe = mmp2_audio_clk_probe, .remove_new = mmp2_audio_clk_remove, }; module_platform_driver(mmp2_audio_clk_driver); MODULE_AUTHOR("Lubomir Rintel <[email protected]>"); MODULE_DESCRIPTION("Clock driver for MMP2 Audio subsystem"); MODULE_LICENSE("GPL");
linux-master
drivers/clk/mmp/clk-audio.c
// SPDX-License-Identifier: GPL-2.0-only /* * mmp APB clock operation source file * * Copyright (C) 2012 Marvell * Chao Xie <[email protected]> */ #include <linux/kernel.h> #include <linux/io.h> #include <linux/err.h> #include <linux/delay.h> #include <linux/slab.h> #include "clk.h" /* Common APB clock register bit definitions */ #define APBC_APBCLK (1 << 0) /* APB Bus Clock Enable */ #define APBC_FNCLK (1 << 1) /* Functional Clock Enable */ #define APBC_RST (1 << 2) /* Reset Generation */ #define APBC_POWER (1 << 7) /* Reset Generation */ #define to_clk_apbc(hw) container_of(hw, struct clk_apbc, hw) struct clk_apbc { struct clk_hw hw; void __iomem *base; unsigned int delay; unsigned int flags; spinlock_t *lock; }; static int clk_apbc_prepare(struct clk_hw *hw) { struct clk_apbc *apbc = to_clk_apbc(hw); unsigned int data; unsigned long flags = 0; /* * It may share same register as MUX clock, * and it will impact FNCLK enable. Spinlock is needed */ if (apbc->lock) spin_lock_irqsave(apbc->lock, flags); data = readl_relaxed(apbc->base); if (apbc->flags & APBC_POWER_CTRL) data |= APBC_POWER; data |= APBC_FNCLK; writel_relaxed(data, apbc->base); if (apbc->lock) spin_unlock_irqrestore(apbc->lock, flags); udelay(apbc->delay); if (apbc->lock) spin_lock_irqsave(apbc->lock, flags); data = readl_relaxed(apbc->base); data |= APBC_APBCLK; writel_relaxed(data, apbc->base); if (apbc->lock) spin_unlock_irqrestore(apbc->lock, flags); udelay(apbc->delay); if (!(apbc->flags & APBC_NO_BUS_CTRL)) { if (apbc->lock) spin_lock_irqsave(apbc->lock, flags); data = readl_relaxed(apbc->base); data &= ~APBC_RST; writel_relaxed(data, apbc->base); if (apbc->lock) spin_unlock_irqrestore(apbc->lock, flags); } return 0; } static void clk_apbc_unprepare(struct clk_hw *hw) { struct clk_apbc *apbc = to_clk_apbc(hw); unsigned long data; unsigned long flags = 0; if (apbc->lock) spin_lock_irqsave(apbc->lock, flags); data = readl_relaxed(apbc->base); if (apbc->flags & APBC_POWER_CTRL) data &= ~APBC_POWER; data &= ~APBC_FNCLK; writel_relaxed(data, apbc->base); if (apbc->lock) spin_unlock_irqrestore(apbc->lock, flags); udelay(10); if (apbc->lock) spin_lock_irqsave(apbc->lock, flags); data = readl_relaxed(apbc->base); data &= ~APBC_APBCLK; writel_relaxed(data, apbc->base); if (apbc->lock) spin_unlock_irqrestore(apbc->lock, flags); } static const struct clk_ops clk_apbc_ops = { .prepare = clk_apbc_prepare, .unprepare = clk_apbc_unprepare, }; struct clk *mmp_clk_register_apbc(const char *name, const char *parent_name, void __iomem *base, unsigned int delay, unsigned int apbc_flags, spinlock_t *lock) { struct clk_apbc *apbc; struct clk *clk; struct clk_init_data init; apbc = kzalloc(sizeof(*apbc), GFP_KERNEL); if (!apbc) return NULL; init.name = name; init.ops = &clk_apbc_ops; init.flags = CLK_SET_RATE_PARENT; init.parent_names = (parent_name ? &parent_name : NULL); init.num_parents = (parent_name ? 1 : 0); apbc->base = base; apbc->delay = delay; apbc->flags = apbc_flags; apbc->lock = lock; apbc->hw.init = &init; clk = clk_register(NULL, &apbc->hw); if (IS_ERR(clk)) kfree(apbc); return clk; }
linux-master
drivers/clk/mmp/clk-apbc.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * MMP PLL clock rate calculation * * Copyright (C) 2020 Lubomir Rintel <[email protected]> */ #include <linux/clk-provider.h> #include <linux/slab.h> #include <linux/io.h> #include "clk.h" #define to_clk_mmp_pll(hw) container_of(hw, struct mmp_clk_pll, hw) struct mmp_clk_pll { struct clk_hw hw; unsigned long default_rate; void __iomem *enable_reg; u32 enable; void __iomem *reg; u8 shift; unsigned long input_rate; void __iomem *postdiv_reg; u8 postdiv_shift; }; static int mmp_clk_pll_is_enabled(struct clk_hw *hw) { struct mmp_clk_pll *pll = to_clk_mmp_pll(hw); u32 val; val = readl_relaxed(pll->enable_reg); if ((val & pll->enable) == pll->enable) return 1; /* Some PLLs, if not software controlled, output default clock. */ if (pll->default_rate > 0) return 1; return 0; } static unsigned long mmp_clk_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct mmp_clk_pll *pll = to_clk_mmp_pll(hw); u32 fbdiv, refdiv, postdiv; u64 rate; u32 val; val = readl_relaxed(pll->enable_reg); if ((val & pll->enable) != pll->enable) return pll->default_rate; if (pll->reg) { val = readl_relaxed(pll->reg); fbdiv = (val >> pll->shift) & 0x1ff; refdiv = (val >> (pll->shift + 9)) & 0x1f; } else { fbdiv = 2; refdiv = 1; } if (pll->postdiv_reg) { /* MMP3 clock rate calculation */ static const u8 postdivs[] = {2, 3, 4, 5, 6, 8, 10, 12, 16}; val = readl_relaxed(pll->postdiv_reg); postdiv = (val >> pll->postdiv_shift) & 0x7; rate = pll->input_rate; rate *= 2 * fbdiv; do_div(rate, refdiv); do_div(rate, postdivs[postdiv]); } else { /* MMP2 clock rate calculation */ if (refdiv == 3) { rate = 19200000; } else if (refdiv == 4) { rate = 26000000; } else { pr_err("bad refdiv: %d (0x%08x)\n", refdiv, val); return 0; } rate *= fbdiv + 2; do_div(rate, refdiv + 2); } return (unsigned long)rate; } static const struct clk_ops mmp_clk_pll_ops = { .is_enabled = mmp_clk_pll_is_enabled, .recalc_rate = mmp_clk_pll_recalc_rate, }; static struct clk *mmp_clk_register_pll(char *name, unsigned long default_rate, void __iomem *enable_reg, u32 enable, void __iomem *reg, u8 shift, unsigned long input_rate, void __iomem *postdiv_reg, u8 postdiv_shift) { struct mmp_clk_pll *pll; struct clk *clk; struct clk_init_data init; pll = kzalloc(sizeof(*pll), GFP_KERNEL); if (!pll) return ERR_PTR(-ENOMEM); init.name = name; init.ops = &mmp_clk_pll_ops; init.flags = 0; init.parent_names = NULL; init.num_parents = 0; pll->default_rate = default_rate; pll->enable_reg = enable_reg; pll->enable = enable; pll->reg = reg; pll->shift = shift; pll->input_rate = input_rate; pll->postdiv_reg = postdiv_reg; pll->postdiv_shift = postdiv_shift; pll->hw.init = &init; clk = clk_register(NULL, &pll->hw); if (IS_ERR(clk)) kfree(pll); return clk; } void mmp_register_pll_clks(struct mmp_clk_unit *unit, struct mmp_param_pll_clk *clks, void __iomem *base, int size) { struct clk *clk; int i; for (i = 0; i < size; i++) { void __iomem *reg = NULL; if (clks[i].offset) reg = base + clks[i].offset; clk = mmp_clk_register_pll(clks[i].name, clks[i].default_rate, base + clks[i].enable_offset, clks[i].enable, reg, clks[i].shift, clks[i].input_rate, base + clks[i].postdiv_offset, clks[i].postdiv_shift); if (IS_ERR(clk)) { pr_err("%s: failed to register clock %s\n", __func__, clks[i].name); continue; } if (clks[i].id) unit->clk_table[clks[i].id] = clk; } }
linux-master
drivers/clk/mmp/clk-pll.c
// SPDX-License-Identifier: GPL-2.0 #include <linux/slab.h> #include <linux/io.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/reset-controller.h> #include "reset.h" #define rcdev_to_unit(rcdev) container_of(rcdev, struct mmp_clk_reset_unit, rcdev) static int mmp_of_reset_xlate(struct reset_controller_dev *rcdev, const struct of_phandle_args *reset_spec) { struct mmp_clk_reset_unit *unit = rcdev_to_unit(rcdev); struct mmp_clk_reset_cell *cell; int i; if (WARN_ON(reset_spec->args_count != rcdev->of_reset_n_cells)) return -EINVAL; for (i = 0; i < rcdev->nr_resets; i++) { cell = &unit->cells[i]; if (cell->clk_id == reset_spec->args[0]) break; } if (i == rcdev->nr_resets) return -EINVAL; return i; } static int mmp_clk_reset_assert(struct reset_controller_dev *rcdev, unsigned long id) { struct mmp_clk_reset_unit *unit = rcdev_to_unit(rcdev); struct mmp_clk_reset_cell *cell; unsigned long flags = 0; u32 val; cell = &unit->cells[id]; if (cell->lock) spin_lock_irqsave(cell->lock, flags); val = readl(cell->reg); val |= cell->bits; writel(val, cell->reg); if (cell->lock) spin_unlock_irqrestore(cell->lock, flags); return 0; } static int mmp_clk_reset_deassert(struct reset_controller_dev *rcdev, unsigned long id) { struct mmp_clk_reset_unit *unit = rcdev_to_unit(rcdev); struct mmp_clk_reset_cell *cell; unsigned long flags = 0; u32 val; cell = &unit->cells[id]; if (cell->lock) spin_lock_irqsave(cell->lock, flags); val = readl(cell->reg); val &= ~cell->bits; writel(val, cell->reg); if (cell->lock) spin_unlock_irqrestore(cell->lock, flags); return 0; } static const struct reset_control_ops mmp_clk_reset_ops = { .assert = mmp_clk_reset_assert, .deassert = mmp_clk_reset_deassert, }; void mmp_clk_reset_register(struct device_node *np, struct mmp_clk_reset_cell *cells, int nr_resets) { struct mmp_clk_reset_unit *unit; unit = kzalloc(sizeof(*unit), GFP_KERNEL); if (!unit) return; unit->cells = cells; unit->rcdev.of_reset_n_cells = 1; unit->rcdev.nr_resets = nr_resets; unit->rcdev.ops = &mmp_clk_reset_ops; unit->rcdev.of_node = np; unit->rcdev.of_xlate = mmp_of_reset_xlate; reset_controller_register(&unit->rcdev); }
linux-master
drivers/clk/mmp/reset.c
// SPDX-License-Identifier: GPL-2.0 #include <linux/io.h> #include <linux/clk-provider.h> #include <linux/slab.h> #include <linux/of.h> #include <linux/of_address.h> #include "clk.h" void mmp_clk_init(struct device_node *np, struct mmp_clk_unit *unit, int nr_clks) { struct clk **clk_table; clk_table = kcalloc(nr_clks, sizeof(struct clk *), GFP_KERNEL); if (!clk_table) return; unit->clk_table = clk_table; unit->nr_clks = nr_clks; unit->clk_data.clks = clk_table; unit->clk_data.clk_num = nr_clks; of_clk_add_provider(np, of_clk_src_onecell_get, &unit->clk_data); } void mmp_register_fixed_rate_clks(struct mmp_clk_unit *unit, struct mmp_param_fixed_rate_clk *clks, int size) { int i; struct clk *clk; for (i = 0; i < size; i++) { clk = clk_register_fixed_rate(NULL, clks[i].name, clks[i].parent_name, clks[i].flags, clks[i].fixed_rate); if (IS_ERR(clk)) { pr_err("%s: failed to register clock %s\n", __func__, clks[i].name); continue; } if (clks[i].id) unit->clk_table[clks[i].id] = clk; } } void mmp_register_fixed_factor_clks(struct mmp_clk_unit *unit, struct mmp_param_fixed_factor_clk *clks, int size) { struct clk *clk; int i; for (i = 0; i < size; i++) { clk = clk_register_fixed_factor(NULL, clks[i].name, clks[i].parent_name, clks[i].flags, clks[i].mult, clks[i].div); if (IS_ERR(clk)) { pr_err("%s: failed to register clock %s\n", __func__, clks[i].name); continue; } if (clks[i].id) unit->clk_table[clks[i].id] = clk; } } void mmp_register_general_gate_clks(struct mmp_clk_unit *unit, struct mmp_param_general_gate_clk *clks, void __iomem *base, int size) { struct clk *clk; int i; for (i = 0; i < size; i++) { clk = clk_register_gate(NULL, clks[i].name, clks[i].parent_name, clks[i].flags, base + clks[i].offset, clks[i].bit_idx, clks[i].gate_flags, clks[i].lock); if (IS_ERR(clk)) { pr_err("%s: failed to register clock %s\n", __func__, clks[i].name); continue; } if (clks[i].id) unit->clk_table[clks[i].id] = clk; } } void mmp_register_gate_clks(struct mmp_clk_unit *unit, struct mmp_param_gate_clk *clks, void __iomem *base, int size) { struct clk *clk; int i; for (i = 0; i < size; i++) { clk = mmp_clk_register_gate(NULL, clks[i].name, clks[i].parent_name, clks[i].flags, base + clks[i].offset, clks[i].mask, clks[i].val_enable, clks[i].val_disable, clks[i].gate_flags, clks[i].lock); if (IS_ERR(clk)) { pr_err("%s: failed to register clock %s\n", __func__, clks[i].name); continue; } if (clks[i].id) unit->clk_table[clks[i].id] = clk; } } void mmp_register_mux_clks(struct mmp_clk_unit *unit, struct mmp_param_mux_clk *clks, void __iomem *base, int size) { struct clk *clk; int i; for (i = 0; i < size; i++) { clk = clk_register_mux(NULL, clks[i].name, clks[i].parent_name, clks[i].num_parents, clks[i].flags, base + clks[i].offset, clks[i].shift, clks[i].width, clks[i].mux_flags, clks[i].lock); if (IS_ERR(clk)) { pr_err("%s: failed to register clock %s\n", __func__, clks[i].name); continue; } if (clks[i].id) unit->clk_table[clks[i].id] = clk; } } void mmp_register_div_clks(struct mmp_clk_unit *unit, struct mmp_param_div_clk *clks, void __iomem *base, int size) { struct clk *clk; int i; for (i = 0; i < size; i++) { clk = clk_register_divider(NULL, clks[i].name, clks[i].parent_name, clks[i].flags, base + clks[i].offset, clks[i].shift, clks[i].width, clks[i].div_flags, clks[i].lock); if (IS_ERR(clk)) { pr_err("%s: failed to register clock %s\n", __func__, clks[i].name); continue; } if (clks[i].id) unit->clk_table[clks[i].id] = clk; } } void mmp_clk_add(struct mmp_clk_unit *unit, unsigned int id, struct clk *clk) { if (IS_ERR_OR_NULL(clk)) { pr_err("CLK %d has invalid pointer %p\n", id, clk); return; } if (id >= unit->nr_clks) { pr_err("CLK %d is invalid\n", id); return; } unit->clk_table[id] = clk; }
linux-master
drivers/clk/mmp/clk.c
// SPDX-License-Identifier: GPL-2.0-only /* * mmp gate clock operation source file * * Copyright (C) 2014 Marvell * Chao Xie <[email protected]> */ #include <linux/clk-provider.h> #include <linux/slab.h> #include <linux/io.h> #include <linux/err.h> #include <linux/delay.h> #include "clk.h" /* * Some clocks will have mutiple bits to enable the clocks, and * the bits to disable the clock is not same as enabling bits. */ #define to_clk_mmp_gate(hw) container_of(hw, struct mmp_clk_gate, hw) static int mmp_clk_gate_enable(struct clk_hw *hw) { struct mmp_clk_gate *gate = to_clk_mmp_gate(hw); unsigned long flags = 0; unsigned long rate; u32 tmp; if (gate->lock) spin_lock_irqsave(gate->lock, flags); tmp = readl(gate->reg); tmp &= ~gate->mask; tmp |= gate->val_enable; writel(tmp, gate->reg); if (gate->lock) spin_unlock_irqrestore(gate->lock, flags); if (gate->flags & MMP_CLK_GATE_NEED_DELAY) { rate = clk_hw_get_rate(hw); /* Need delay 2 cycles. */ udelay(2000000/rate); } return 0; } static void mmp_clk_gate_disable(struct clk_hw *hw) { struct mmp_clk_gate *gate = to_clk_mmp_gate(hw); unsigned long flags = 0; u32 tmp; if (gate->lock) spin_lock_irqsave(gate->lock, flags); tmp = readl(gate->reg); tmp &= ~gate->mask; tmp |= gate->val_disable; writel(tmp, gate->reg); if (gate->lock) spin_unlock_irqrestore(gate->lock, flags); } static int mmp_clk_gate_is_enabled(struct clk_hw *hw) { struct mmp_clk_gate *gate = to_clk_mmp_gate(hw); unsigned long flags = 0; u32 tmp; if (gate->lock) spin_lock_irqsave(gate->lock, flags); tmp = readl(gate->reg); if (gate->lock) spin_unlock_irqrestore(gate->lock, flags); return (tmp & gate->mask) == gate->val_enable; } const struct clk_ops mmp_clk_gate_ops = { .enable = mmp_clk_gate_enable, .disable = mmp_clk_gate_disable, .is_enabled = mmp_clk_gate_is_enabled, }; struct clk *mmp_clk_register_gate(struct device *dev, const char *name, const char *parent_name, unsigned long flags, void __iomem *reg, u32 mask, u32 val_enable, u32 val_disable, unsigned int gate_flags, spinlock_t *lock) { struct mmp_clk_gate *gate; struct clk *clk; struct clk_init_data init; /* allocate the gate */ gate = kzalloc(sizeof(*gate), GFP_KERNEL); if (!gate) return ERR_PTR(-ENOMEM); init.name = name; init.ops = &mmp_clk_gate_ops; init.flags = flags; init.parent_names = (parent_name ? &parent_name : NULL); init.num_parents = (parent_name ? 1 : 0); /* struct clk_gate assignments */ gate->reg = reg; gate->mask = mask; gate->val_enable = val_enable; gate->val_disable = val_disable; gate->flags = gate_flags; gate->lock = lock; gate->hw.init = &init; clk = clk_register(dev, &gate->hw); if (IS_ERR(clk)) kfree(gate); return clk; }
linux-master
drivers/clk/mmp/clk-gate.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * MMP PMU power island support * * Copyright (C) 2020 Lubomir Rintel <[email protected]> */ #include <linux/pm_domain.h> #include <linux/slab.h> #include <linux/io.h> #include "clk.h" #define to_mmp_pm_domain(genpd) container_of(genpd, struct mmp_pm_domain, genpd) struct mmp_pm_domain { struct generic_pm_domain genpd; void __iomem *reg; spinlock_t *lock; u32 power_on; u32 reset; u32 clock_enable; unsigned int flags; }; static int mmp_pm_domain_power_on(struct generic_pm_domain *genpd) { struct mmp_pm_domain *pm_domain = to_mmp_pm_domain(genpd); unsigned long flags = 0; u32 val; if (pm_domain->lock) spin_lock_irqsave(pm_domain->lock, flags); val = readl(pm_domain->reg); /* Turn on the power island */ val |= pm_domain->power_on; writel(val, pm_domain->reg); /* Disable isolation */ val |= 0x100; writel(val, pm_domain->reg); /* Some blocks need to be reset after a power up */ if (pm_domain->reset || pm_domain->clock_enable) { u32 after_power_on = val; val &= ~pm_domain->reset; writel(val, pm_domain->reg); val |= pm_domain->clock_enable; writel(val, pm_domain->reg); val |= pm_domain->reset; writel(val, pm_domain->reg); writel(after_power_on, pm_domain->reg); } if (pm_domain->lock) spin_unlock_irqrestore(pm_domain->lock, flags); return 0; } static int mmp_pm_domain_power_off(struct generic_pm_domain *genpd) { struct mmp_pm_domain *pm_domain = to_mmp_pm_domain(genpd); unsigned long flags = 0; u32 val; if (pm_domain->flags & MMP_PM_DOMAIN_NO_DISABLE) return 0; if (pm_domain->lock) spin_lock_irqsave(pm_domain->lock, flags); /* Turn off and isolate the power island. */ val = readl(pm_domain->reg); val &= ~pm_domain->power_on; val &= ~0x100; writel(val, pm_domain->reg); if (pm_domain->lock) spin_unlock_irqrestore(pm_domain->lock, flags); return 0; } struct generic_pm_domain *mmp_pm_domain_register(const char *name, void __iomem *reg, u32 power_on, u32 reset, u32 clock_enable, unsigned int flags, spinlock_t *lock) { struct mmp_pm_domain *pm_domain; pm_domain = kzalloc(sizeof(*pm_domain), GFP_KERNEL); if (!pm_domain) return ERR_PTR(-ENOMEM); pm_domain->reg = reg; pm_domain->power_on = power_on; pm_domain->reset = reset; pm_domain->clock_enable = clock_enable; pm_domain->flags = flags; pm_domain->lock = lock; pm_genpd_init(&pm_domain->genpd, NULL, true); pm_domain->genpd.name = name; pm_domain->genpd.power_on = mmp_pm_domain_power_on; pm_domain->genpd.power_off = mmp_pm_domain_power_off; return &pm_domain->genpd; }
linux-master
drivers/clk/mmp/pwr-island.c
// SPDX-License-Identifier: GPL-2.0-only /* * mmp factor clock operation source file * * Copyright (C) 2012 Marvell * Chao Xie <[email protected]> */ #include <linux/clk-provider.h> #include <linux/slab.h> #include <linux/io.h> #include <linux/err.h> #include "clk.h" /* * It is M/N clock * * Fout from synthesizer can be given from two equations: * numerator/denominator = Fin / (Fout * factor) */ #define to_clk_factor(hw) container_of(hw, struct mmp_clk_factor, hw) static long clk_factor_round_rate(struct clk_hw *hw, unsigned long drate, unsigned long *prate) { struct mmp_clk_factor *factor = to_clk_factor(hw); u64 rate = 0, prev_rate; int i; for (i = 0; i < factor->ftbl_cnt; i++) { prev_rate = rate; rate = *prate; rate *= factor->ftbl[i].den; do_div(rate, factor->ftbl[i].num * factor->masks->factor); if (rate > drate) break; } if ((i == 0) || (i == factor->ftbl_cnt)) { return rate; } else { if ((drate - prev_rate) > (rate - drate)) return rate; else return prev_rate; } } static unsigned long clk_factor_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct mmp_clk_factor *factor = to_clk_factor(hw); struct mmp_clk_factor_masks *masks = factor->masks; unsigned int val, num, den; u64 rate; val = readl_relaxed(factor->base); /* calculate numerator */ num = (val >> masks->num_shift) & masks->num_mask; /* calculate denominator */ den = (val >> masks->den_shift) & masks->den_mask; if (!den) return 0; rate = parent_rate; rate *= den; do_div(rate, num * factor->masks->factor); return rate; } /* Configures new clock rate*/ static int clk_factor_set_rate(struct clk_hw *hw, unsigned long drate, unsigned long prate) { struct mmp_clk_factor *factor = to_clk_factor(hw); struct mmp_clk_factor_masks *masks = factor->masks; int i; unsigned long val; unsigned long flags = 0; u64 rate = 0; for (i = 0; i < factor->ftbl_cnt; i++) { rate = prate; rate *= factor->ftbl[i].den; do_div(rate, factor->ftbl[i].num * factor->masks->factor); if (rate > drate) break; } if (i > 0) i--; if (factor->lock) spin_lock_irqsave(factor->lock, flags); val = readl_relaxed(factor->base); val &= ~(masks->num_mask << masks->num_shift); val |= (factor->ftbl[i].num & masks->num_mask) << masks->num_shift; val &= ~(masks->den_mask << masks->den_shift); val |= (factor->ftbl[i].den & masks->den_mask) << masks->den_shift; writel_relaxed(val, factor->base); if (factor->lock) spin_unlock_irqrestore(factor->lock, flags); return 0; } static int clk_factor_init(struct clk_hw *hw) { struct mmp_clk_factor *factor = to_clk_factor(hw); struct mmp_clk_factor_masks *masks = factor->masks; u32 val, num, den; int i; unsigned long flags = 0; if (factor->lock) spin_lock_irqsave(factor->lock, flags); val = readl(factor->base); /* calculate numerator */ num = (val >> masks->num_shift) & masks->num_mask; /* calculate denominator */ den = (val >> masks->den_shift) & masks->den_mask; for (i = 0; i < factor->ftbl_cnt; i++) if (den == factor->ftbl[i].den && num == factor->ftbl[i].num) break; if (i >= factor->ftbl_cnt) { val &= ~(masks->num_mask << masks->num_shift); val |= (factor->ftbl[0].num & masks->num_mask) << masks->num_shift; val &= ~(masks->den_mask << masks->den_shift); val |= (factor->ftbl[0].den & masks->den_mask) << masks->den_shift; } if (!(val & masks->enable_mask) || i >= factor->ftbl_cnt) { val |= masks->enable_mask; writel(val, factor->base); } if (factor->lock) spin_unlock_irqrestore(factor->lock, flags); return 0; } static const struct clk_ops clk_factor_ops = { .recalc_rate = clk_factor_recalc_rate, .round_rate = clk_factor_round_rate, .set_rate = clk_factor_set_rate, .init = clk_factor_init, }; struct clk *mmp_clk_register_factor(const char *name, const char *parent_name, unsigned long flags, void __iomem *base, struct mmp_clk_factor_masks *masks, struct mmp_clk_factor_tbl *ftbl, unsigned int ftbl_cnt, spinlock_t *lock) { struct mmp_clk_factor *factor; struct clk_init_data init; struct clk *clk; if (!masks) { pr_err("%s: must pass a clk_factor_mask\n", __func__); return ERR_PTR(-EINVAL); } factor = kzalloc(sizeof(*factor), GFP_KERNEL); if (!factor) return ERR_PTR(-ENOMEM); /* struct clk_aux assignments */ factor->base = base; factor->masks = masks; factor->ftbl = ftbl; factor->ftbl_cnt = ftbl_cnt; factor->hw.init = &init; factor->lock = lock; init.name = name; init.ops = &clk_factor_ops; init.flags = flags; init.parent_names = &parent_name; init.num_parents = 1; clk = clk_register(NULL, &factor->hw); if (IS_ERR_OR_NULL(clk)) kfree(factor); return clk; }
linux-master
drivers/clk/mmp/clk-frac.c
// SPDX-License-Identifier: GPL-2.0-only /* * pxa168 clock framework source file * * Copyright (C) 2012 Marvell * Chao Xie <[email protected]> */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/spinlock.h> #include <linux/io.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/of_address.h> #include <dt-bindings/clock/marvell,pxa168.h> #include "clk.h" #include "reset.h" #define APBC_UART0 0x0 #define APBC_UART1 0x4 #define APBC_GPIO 0x8 #define APBC_PWM0 0xc #define APBC_PWM1 0x10 #define APBC_PWM2 0x14 #define APBC_PWM3 0x18 #define APBC_RTC 0x28 #define APBC_TWSI0 0x2c #define APBC_KPC 0x30 #define APBC_TIMER 0x34 #define APBC_AIB 0x3c #define APBC_SW_JTAG 0x40 #define APBC_ONEWIRE 0x48 #define APBC_TWSI1 0x6c #define APBC_UART2 0x70 #define APBC_AC97 0x84 #define APBC_SSP0 0x81c #define APBC_SSP1 0x820 #define APBC_SSP2 0x84c #define APBC_SSP3 0x858 #define APBC_SSP4 0x85c #define APMU_DISP0 0x4c #define APMU_CCIC0 0x50 #define APMU_SDH0 0x54 #define APMU_SDH1 0x58 #define APMU_USB 0x5c #define APMU_DFC 0x60 #define APMU_DMA 0x64 #define APMU_BUS 0x6c #define APMU_GC 0xcc #define APMU_SMC 0xd4 #define APMU_XD 0xdc #define APMU_SDH2 0xe0 #define APMU_SDH3 0xe4 #define APMU_CF 0xf0 #define APMU_MSP 0xf4 #define APMU_CMU 0xf8 #define APMU_FE 0xfc #define APMU_PCIE 0x100 #define APMU_EPD 0x104 #define MPMU_UART_PLL 0x14 #define NR_CLKS 200 struct pxa168_clk_unit { struct mmp_clk_unit unit; void __iomem *mpmu_base; void __iomem *apmu_base; void __iomem *apbc_base; }; static struct mmp_param_fixed_rate_clk fixed_rate_clks[] = { {PXA168_CLK_CLK32, "clk32", NULL, 0, 32768}, {PXA168_CLK_VCTCXO, "vctcxo", NULL, 0, 26000000}, {PXA168_CLK_PLL1, "pll1", NULL, 0, 624000000}, {PXA168_CLK_USB_PLL, "usb_pll", NULL, 0, 480000000}, }; static struct mmp_param_fixed_factor_clk fixed_factor_clks[] = { {PXA168_CLK_PLL1_2, "pll1_2", "pll1", 1, 2, 0}, {PXA168_CLK_PLL1_4, "pll1_4", "pll1_2", 1, 2, 0}, {PXA168_CLK_PLL1_8, "pll1_8", "pll1_4", 1, 2, 0}, {PXA168_CLK_PLL1_16, "pll1_16", "pll1_8", 1, 2, 0}, {PXA168_CLK_PLL1_6, "pll1_6", "pll1_2", 1, 3, 0}, {PXA168_CLK_PLL1_12, "pll1_12", "pll1_6", 1, 2, 0}, {PXA168_CLK_PLL1_24, "pll1_24", "pll1_12", 1, 2, 0}, {PXA168_CLK_PLL1_48, "pll1_48", "pll1_24", 1, 2, 0}, {PXA168_CLK_PLL1_96, "pll1_96", "pll1_48", 1, 2, 0}, {PXA168_CLK_PLL1_192, "pll1_192", "pll1_96", 1, 2, 0}, {PXA168_CLK_PLL1_13, "pll1_13", "pll1", 1, 13, 0}, {PXA168_CLK_PLL1_13_1_5, "pll1_13_1_5", "pll1_13", 1, 5, 0}, {PXA168_CLK_PLL1_2_1_5, "pll1_2_1_5", "pll1_2", 1, 5, 0}, {PXA168_CLK_PLL1_3_16, "pll1_3_16", "pll1", 3, 16, 0}, {PXA168_CLK_PLL1_2_1_10, "pll1_2_1_10", "pll1_2", 1, 10, 0}, {PXA168_CLK_PLL1_2_3_16, "pll1_2_3_16", "pll1_2", 3, 16, 0}, {PXA168_CLK_CLK32_2, "clk32_2", "clk32", 1, 2, 0}, }; static struct mmp_clk_factor_masks uart_factor_masks = { .factor = 2, .num_mask = 0x1fff, .den_mask = 0x1fff, .num_shift = 16, .den_shift = 0, }; static struct mmp_clk_factor_tbl uart_factor_tbl[] = { {.num = 8125, .den = 1536}, /*14.745MHZ */ }; static void pxa168_pll_init(struct pxa168_clk_unit *pxa_unit) { struct clk *clk; struct mmp_clk_unit *unit = &pxa_unit->unit; mmp_register_fixed_rate_clks(unit, fixed_rate_clks, ARRAY_SIZE(fixed_rate_clks)); mmp_register_fixed_factor_clks(unit, fixed_factor_clks, ARRAY_SIZE(fixed_factor_clks)); clk = mmp_clk_register_factor("uart_pll", "pll1_4", CLK_SET_RATE_PARENT, pxa_unit->mpmu_base + MPMU_UART_PLL, &uart_factor_masks, uart_factor_tbl, ARRAY_SIZE(uart_factor_tbl), NULL); mmp_clk_add(unit, PXA168_CLK_UART_PLL, clk); } static DEFINE_SPINLOCK(twsi0_lock); static DEFINE_SPINLOCK(twsi1_lock); static const char * const twsi_parent_names[] = {"pll1_2_1_10", "pll1_2_1_5"}; static DEFINE_SPINLOCK(kpc_lock); static const char * const kpc_parent_names[] = {"clk32", "clk32_2", "pll1_24"}; static DEFINE_SPINLOCK(pwm0_lock); static DEFINE_SPINLOCK(pwm1_lock); static DEFINE_SPINLOCK(pwm2_lock); static DEFINE_SPINLOCK(pwm3_lock); static const char * const pwm_parent_names[] = {"pll1_48", "clk32"}; static DEFINE_SPINLOCK(uart0_lock); static DEFINE_SPINLOCK(uart1_lock); static DEFINE_SPINLOCK(uart2_lock); static const char * const uart_parent_names[] = {"pll1_2_3_16", "uart_pll"}; static DEFINE_SPINLOCK(ssp0_lock); static DEFINE_SPINLOCK(ssp1_lock); static DEFINE_SPINLOCK(ssp2_lock); static DEFINE_SPINLOCK(ssp3_lock); static DEFINE_SPINLOCK(ssp4_lock); static const char * const ssp_parent_names[] = {"pll1_96", "pll1_48", "pll1_24", "pll1_12"}; static DEFINE_SPINLOCK(timer_lock); static const char * const timer_parent_names[] = {"pll1_48", "clk32", "pll1_96", "pll1_192"}; static DEFINE_SPINLOCK(reset_lock); static struct mmp_param_mux_clk apbc_mux_clks[] = { {0, "twsi0_mux", twsi_parent_names, ARRAY_SIZE(twsi_parent_names), CLK_SET_RATE_PARENT, APBC_TWSI0, 4, 3, 0, &twsi0_lock}, {0, "twsi1_mux", twsi_parent_names, ARRAY_SIZE(twsi_parent_names), CLK_SET_RATE_PARENT, APBC_TWSI1, 4, 3, 0, &twsi1_lock}, {0, "kpc_mux", kpc_parent_names, ARRAY_SIZE(kpc_parent_names), CLK_SET_RATE_PARENT, APBC_KPC, 4, 3, 0, &kpc_lock}, {0, "pwm0_mux", pwm_parent_names, ARRAY_SIZE(pwm_parent_names), CLK_SET_RATE_PARENT, APBC_PWM0, 4, 3, 0, &pwm0_lock}, {0, "pwm1_mux", pwm_parent_names, ARRAY_SIZE(pwm_parent_names), CLK_SET_RATE_PARENT, APBC_PWM1, 4, 3, 0, &pwm1_lock}, {0, "pwm2_mux", pwm_parent_names, ARRAY_SIZE(pwm_parent_names), CLK_SET_RATE_PARENT, APBC_PWM2, 4, 3, 0, &pwm2_lock}, {0, "pwm3_mux", pwm_parent_names, ARRAY_SIZE(pwm_parent_names), CLK_SET_RATE_PARENT, APBC_PWM3, 4, 3, 0, &pwm3_lock}, {0, "uart0_mux", uart_parent_names, ARRAY_SIZE(uart_parent_names), CLK_SET_RATE_PARENT, APBC_UART0, 4, 3, 0, &uart0_lock}, {0, "uart1_mux", uart_parent_names, ARRAY_SIZE(uart_parent_names), CLK_SET_RATE_PARENT, APBC_UART1, 4, 3, 0, &uart1_lock}, {0, "uart2_mux", uart_parent_names, ARRAY_SIZE(uart_parent_names), CLK_SET_RATE_PARENT, APBC_UART2, 4, 3, 0, &uart2_lock}, {0, "ssp0_mux", ssp_parent_names, ARRAY_SIZE(ssp_parent_names), CLK_SET_RATE_PARENT, APBC_SSP0, 4, 3, 0, &ssp0_lock}, {0, "ssp1_mux", ssp_parent_names, ARRAY_SIZE(ssp_parent_names), CLK_SET_RATE_PARENT, APBC_SSP1, 4, 3, 0, &ssp1_lock}, {0, "ssp2_mux", ssp_parent_names, ARRAY_SIZE(ssp_parent_names), CLK_SET_RATE_PARENT, APBC_SSP2, 4, 3, 0, &ssp2_lock}, {0, "ssp3_mux", ssp_parent_names, ARRAY_SIZE(ssp_parent_names), CLK_SET_RATE_PARENT, APBC_SSP3, 4, 3, 0, &ssp3_lock}, {0, "ssp4_mux", ssp_parent_names, ARRAY_SIZE(ssp_parent_names), CLK_SET_RATE_PARENT, APBC_SSP4, 4, 3, 0, &ssp4_lock}, {0, "timer_mux", timer_parent_names, ARRAY_SIZE(timer_parent_names), CLK_SET_RATE_PARENT, APBC_TIMER, 4, 3, 0, &timer_lock}, }; static struct mmp_param_gate_clk apbc_gate_clks[] = { {PXA168_CLK_TWSI0, "twsi0_clk", "twsi0_mux", CLK_SET_RATE_PARENT, APBC_TWSI0, 0x3, 0x3, 0x0, 0, &twsi0_lock}, {PXA168_CLK_TWSI1, "twsi1_clk", "twsi1_mux", CLK_SET_RATE_PARENT, APBC_TWSI1, 0x3, 0x3, 0x0, 0, &twsi1_lock}, {PXA168_CLK_GPIO, "gpio_clk", "vctcxo", CLK_SET_RATE_PARENT, APBC_GPIO, 0x1, 0x1, 0x0, 0, &reset_lock}, {PXA168_CLK_KPC, "kpc_clk", "kpc_mux", CLK_SET_RATE_PARENT, APBC_KPC, 0x3, 0x3, 0x0, MMP_CLK_GATE_NEED_DELAY, &kpc_lock}, {PXA168_CLK_RTC, "rtc_clk", "clk32", CLK_SET_RATE_PARENT, APBC_RTC, 0x83, 0x83, 0x0, MMP_CLK_GATE_NEED_DELAY, NULL}, {PXA168_CLK_PWM0, "pwm0_clk", "pwm0_mux", CLK_SET_RATE_PARENT, APBC_PWM0, 0x3, 0x3, 0x0, 0, &pwm0_lock}, {PXA168_CLK_PWM1, "pwm1_clk", "pwm1_mux", CLK_SET_RATE_PARENT, APBC_PWM1, 0x3, 0x3, 0x0, 0, &pwm1_lock}, {PXA168_CLK_PWM2, "pwm2_clk", "pwm2_mux", CLK_SET_RATE_PARENT, APBC_PWM2, 0x3, 0x3, 0x0, 0, &pwm2_lock}, {PXA168_CLK_PWM3, "pwm3_clk", "pwm3_mux", CLK_SET_RATE_PARENT, APBC_PWM3, 0x3, 0x3, 0x0, 0, &pwm3_lock}, {PXA168_CLK_UART0, "uart0_clk", "uart0_mux", CLK_SET_RATE_PARENT, APBC_UART0, 0x3, 0x3, 0x0, 0, &uart0_lock}, {PXA168_CLK_UART1, "uart1_clk", "uart1_mux", CLK_SET_RATE_PARENT, APBC_UART1, 0x3, 0x3, 0x0, 0, &uart1_lock}, {PXA168_CLK_UART2, "uart2_clk", "uart2_mux", CLK_SET_RATE_PARENT, APBC_UART2, 0x3, 0x3, 0x0, 0, &uart2_lock}, {PXA168_CLK_SSP0, "ssp0_clk", "ssp0_mux", CLK_SET_RATE_PARENT, APBC_SSP0, 0x3, 0x3, 0x0, 0, &ssp0_lock}, {PXA168_CLK_SSP1, "ssp1_clk", "ssp1_mux", CLK_SET_RATE_PARENT, APBC_SSP1, 0x3, 0x3, 0x0, 0, &ssp1_lock}, {PXA168_CLK_SSP2, "ssp2_clk", "ssp2_mux", CLK_SET_RATE_PARENT, APBC_SSP2, 0x3, 0x3, 0x0, 0, &ssp2_lock}, {PXA168_CLK_SSP3, "ssp3_clk", "ssp3_mux", CLK_SET_RATE_PARENT, APBC_SSP3, 0x3, 0x3, 0x0, 0, &ssp3_lock}, {PXA168_CLK_SSP4, "ssp4_clk", "ssp4_mux", CLK_SET_RATE_PARENT, APBC_SSP4, 0x3, 0x3, 0x0, 0, &ssp4_lock}, {PXA168_CLK_TIMER, "timer_clk", "timer_mux", CLK_SET_RATE_PARENT, APBC_TIMER, 0x3, 0x3, 0x0, 0, &timer_lock}, }; static void pxa168_apb_periph_clk_init(struct pxa168_clk_unit *pxa_unit) { struct mmp_clk_unit *unit = &pxa_unit->unit; mmp_register_mux_clks(unit, apbc_mux_clks, pxa_unit->apbc_base, ARRAY_SIZE(apbc_mux_clks)); mmp_register_gate_clks(unit, apbc_gate_clks, pxa_unit->apbc_base, ARRAY_SIZE(apbc_gate_clks)); } static DEFINE_SPINLOCK(dfc_lock); static const char * const dfc_parent_names[] = {"pll1_4", "pll1_8"}; static DEFINE_SPINLOCK(sdh0_lock); static DEFINE_SPINLOCK(sdh1_lock); static DEFINE_SPINLOCK(sdh2_lock); static DEFINE_SPINLOCK(sdh3_lock); static const char * const sdh_parent_names[] = {"pll1_13", "pll1_12", "pll1_8"}; static DEFINE_SPINLOCK(usb_lock); static DEFINE_SPINLOCK(disp0_lock); static const char * const disp_parent_names[] = {"pll1", "pll1_2"}; static DEFINE_SPINLOCK(ccic0_lock); static const char * const ccic_parent_names[] = {"pll1_4", "pll1_8"}; static const char * const ccic_phy_parent_names[] = {"pll1_6", "pll1_12"}; static struct mmp_param_mux_clk apmu_mux_clks[] = { {0, "dfc_mux", dfc_parent_names, ARRAY_SIZE(dfc_parent_names), CLK_SET_RATE_PARENT, APMU_DFC, 6, 1, 0, &dfc_lock}, {0, "sdh0_mux", sdh_parent_names, ARRAY_SIZE(sdh_parent_names), CLK_SET_RATE_PARENT, APMU_SDH0, 6, 2, 0, &sdh0_lock}, {0, "sdh1_mux", sdh_parent_names, ARRAY_SIZE(sdh_parent_names), CLK_SET_RATE_PARENT, APMU_SDH1, 6, 2, 0, &sdh1_lock}, {0, "sdh2_mux", sdh_parent_names, ARRAY_SIZE(sdh_parent_names), CLK_SET_RATE_PARENT, APMU_SDH2, 6, 2, 0, &sdh2_lock}, {0, "sdh3_mux", sdh_parent_names, ARRAY_SIZE(sdh_parent_names), CLK_SET_RATE_PARENT, APMU_SDH3, 6, 2, 0, &sdh3_lock}, {0, "disp0_mux", disp_parent_names, ARRAY_SIZE(disp_parent_names), CLK_SET_RATE_PARENT, APMU_DISP0, 6, 1, 0, &disp0_lock}, {0, "ccic0_mux", ccic_parent_names, ARRAY_SIZE(ccic_parent_names), CLK_SET_RATE_PARENT, APMU_CCIC0, 6, 1, 0, &ccic0_lock}, {0, "ccic0_phy_mux", ccic_phy_parent_names, ARRAY_SIZE(ccic_phy_parent_names), CLK_SET_RATE_PARENT, APMU_CCIC0, 7, 1, 0, &ccic0_lock}, }; static struct mmp_param_div_clk apmu_div_clks[] = { {0, "ccic0_sphy_div", "ccic0_mux", CLK_SET_RATE_PARENT, APMU_CCIC0, 10, 5, 0, &ccic0_lock}, }; static struct mmp_param_gate_clk apmu_gate_clks[] = { {PXA168_CLK_DFC, "dfc_clk", "dfc_mux", CLK_SET_RATE_PARENT, APMU_DFC, 0x19b, 0x19b, 0x0, 0, &dfc_lock}, {PXA168_CLK_USB, "usb_clk", "usb_pll", 0, APMU_USB, 0x9, 0x9, 0x0, 0, &usb_lock}, {PXA168_CLK_SPH, "sph_clk", "usb_pll", 0, APMU_USB, 0x12, 0x12, 0x0, 0, &usb_lock}, {PXA168_CLK_SDH0, "sdh0_clk", "sdh0_mux", CLK_SET_RATE_PARENT, APMU_SDH0, 0x12, 0x12, 0x0, 0, &sdh0_lock}, {PXA168_CLK_SDH1, "sdh1_clk", "sdh1_mux", CLK_SET_RATE_PARENT, APMU_SDH1, 0x12, 0x12, 0x0, 0, &sdh1_lock}, {PXA168_CLK_SDH2, "sdh2_clk", "sdh2_mux", CLK_SET_RATE_PARENT, APMU_SDH2, 0x12, 0x12, 0x0, 0, &sdh2_lock}, {PXA168_CLK_SDH3, "sdh3_clk", "sdh3_mux", CLK_SET_RATE_PARENT, APMU_SDH3, 0x12, 0x12, 0x0, 0, &sdh3_lock}, /* SDH0/1 and 2/3 AXI clocks are also gated by common bits in SDH0 and SDH2 registers */ {PXA168_CLK_SDH01_AXI, "sdh01_axi_clk", NULL, CLK_SET_RATE_PARENT, APMU_SDH0, 0x9, 0x9, 0x0, 0, &sdh0_lock}, {PXA168_CLK_SDH23_AXI, "sdh23_axi_clk", NULL, CLK_SET_RATE_PARENT, APMU_SDH2, 0x9, 0x9, 0x0, 0, &sdh2_lock}, {PXA168_CLK_DISP0, "disp0_clk", "disp0_mux", CLK_SET_RATE_PARENT, APMU_DISP0, 0x1b, 0x1b, 0x0, 0, &disp0_lock}, {PXA168_CLK_CCIC0, "ccic0_clk", "ccic0_mux", CLK_SET_RATE_PARENT, APMU_CCIC0, 0x1b, 0x1b, 0x0, 0, &ccic0_lock}, {PXA168_CLK_CCIC0_PHY, "ccic0_phy_clk", "ccic0_phy_mux", CLK_SET_RATE_PARENT, APMU_CCIC0, 0x24, 0x24, 0x0, 0, &ccic0_lock}, {PXA168_CLK_CCIC0_SPHY, "ccic0_sphy_clk", "ccic0_sphy_div", CLK_SET_RATE_PARENT, APMU_CCIC0, 0x300, 0x300, 0x0, 0, &ccic0_lock}, }; static void pxa168_axi_periph_clk_init(struct pxa168_clk_unit *pxa_unit) { struct mmp_clk_unit *unit = &pxa_unit->unit; mmp_register_mux_clks(unit, apmu_mux_clks, pxa_unit->apmu_base, ARRAY_SIZE(apmu_mux_clks)); mmp_register_div_clks(unit, apmu_div_clks, pxa_unit->apmu_base, ARRAY_SIZE(apmu_div_clks)); mmp_register_gate_clks(unit, apmu_gate_clks, pxa_unit->apmu_base, ARRAY_SIZE(apmu_gate_clks)); } static void pxa168_clk_reset_init(struct device_node *np, struct pxa168_clk_unit *pxa_unit) { struct mmp_clk_reset_cell *cells; int i, nr_resets; nr_resets = ARRAY_SIZE(apbc_gate_clks); cells = kcalloc(nr_resets, sizeof(*cells), GFP_KERNEL); if (!cells) return; for (i = 0; i < nr_resets; i++) { cells[i].clk_id = apbc_gate_clks[i].id; cells[i].reg = pxa_unit->apbc_base + apbc_gate_clks[i].offset; cells[i].flags = 0; cells[i].lock = apbc_gate_clks[i].lock; cells[i].bits = 0x4; } mmp_clk_reset_register(np, cells, nr_resets); } static void __init pxa168_clk_init(struct device_node *np) { struct pxa168_clk_unit *pxa_unit; pxa_unit = kzalloc(sizeof(*pxa_unit), GFP_KERNEL); if (!pxa_unit) return; pxa_unit->mpmu_base = of_iomap(np, 0); if (!pxa_unit->mpmu_base) { pr_err("failed to map mpmu registers\n"); return; } pxa_unit->apmu_base = of_iomap(np, 1); if (!pxa_unit->apmu_base) { pr_err("failed to map apmu registers\n"); return; } pxa_unit->apbc_base = of_iomap(np, 2); if (!pxa_unit->apbc_base) { pr_err("failed to map apbc registers\n"); return; } mmp_clk_init(np, &pxa_unit->unit, NR_CLKS); pxa168_pll_init(pxa_unit); pxa168_apb_periph_clk_init(pxa_unit); pxa168_axi_periph_clk_init(pxa_unit); pxa168_clk_reset_init(np, pxa_unit); } CLK_OF_DECLARE(pxa168_clk, "marvell,pxa168-clock", pxa168_clk_init);
linux-master
drivers/clk/mmp/clk-of-pxa168.c
// SPDX-License-Identifier: GPL-2.0-only /* * Pistachio SoC clock controllers * * Copyright (C) 2014 Google, Inc. */ #include <linux/clk-provider.h> #include <linux/init.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/of.h> #include <dt-bindings/clock/pistachio-clk.h> #include "clk.h" static struct pistachio_gate pistachio_gates[] __initdata = { GATE(CLK_MIPS, "mips", "mips_div", 0x104, 0), GATE(CLK_AUDIO_IN, "audio_in", "audio_clk_in_gate", 0x104, 1), GATE(CLK_AUDIO, "audio", "audio_div", 0x104, 2), GATE(CLK_I2S, "i2s", "i2s_div", 0x104, 3), GATE(CLK_SPDIF, "spdif", "spdif_div", 0x104, 4), GATE(CLK_AUDIO_DAC, "audio_dac", "audio_dac_div", 0x104, 5), GATE(CLK_RPU_V, "rpu_v", "rpu_v_div", 0x104, 6), GATE(CLK_RPU_L, "rpu_l", "rpu_l_div", 0x104, 7), GATE(CLK_RPU_SLEEP, "rpu_sleep", "rpu_sleep_div", 0x104, 8), GATE(CLK_WIFI_PLL_GATE, "wifi_pll_gate", "wifi_pll_mux", 0x104, 9), GATE(CLK_RPU_CORE, "rpu_core", "rpu_core_div", 0x104, 10), GATE(CLK_WIFI_ADC, "wifi_adc", "wifi_div8_mux", 0x104, 11), GATE(CLK_WIFI_DAC, "wifi_dac", "wifi_div4_mux", 0x104, 12), GATE(CLK_USB_PHY, "usb_phy", "usb_phy_div", 0x104, 13), GATE(CLK_ENET_IN, "enet_in", "enet_clk_in_gate", 0x104, 14), GATE(CLK_ENET, "enet", "enet_div", 0x104, 15), GATE(CLK_UART0, "uart0", "uart0_div", 0x104, 16), GATE(CLK_UART1, "uart1", "uart1_div", 0x104, 17), GATE(CLK_PERIPH_SYS, "periph_sys", "sys_internal_div", 0x104, 18), GATE(CLK_SPI0, "spi0", "spi0_div", 0x104, 19), GATE(CLK_SPI1, "spi1", "spi1_div", 0x104, 20), GATE(CLK_EVENT_TIMER, "event_timer", "event_timer_div", 0x104, 21), GATE(CLK_AUX_ADC_INTERNAL, "aux_adc_internal", "sys_internal_div", 0x104, 22), GATE(CLK_AUX_ADC, "aux_adc", "aux_adc_div", 0x104, 23), GATE(CLK_SD_HOST, "sd_host", "sd_host_div", 0x104, 24), GATE(CLK_BT, "bt", "bt_div", 0x104, 25), GATE(CLK_BT_DIV4, "bt_div4", "bt_div4_div", 0x104, 26), GATE(CLK_BT_DIV8, "bt_div8", "bt_div8_div", 0x104, 27), GATE(CLK_BT_1MHZ, "bt_1mhz", "bt_1mhz_div", 0x104, 28), }; static struct pistachio_fixed_factor pistachio_ffs[] __initdata = { FIXED_FACTOR(CLK_WIFI_DIV4, "wifi_div4", "wifi_pll", 4), FIXED_FACTOR(CLK_WIFI_DIV8, "wifi_div8", "wifi_pll", 8), }; static struct pistachio_div pistachio_divs[] __initdata = { DIV(CLK_MIPS_INTERNAL_DIV, "mips_internal_div", "mips_pll_mux", 0x204, 2), DIV(CLK_MIPS_DIV, "mips_div", "mips_internal_div", 0x208, 8), DIV_F(CLK_AUDIO_DIV, "audio_div", "audio_mux", 0x20c, 8, CLK_DIVIDER_ROUND_CLOSEST), DIV_F(CLK_I2S_DIV, "i2s_div", "audio_pll_mux", 0x210, 8, CLK_DIVIDER_ROUND_CLOSEST), DIV_F(CLK_SPDIF_DIV, "spdif_div", "audio_pll_mux", 0x214, 8, CLK_DIVIDER_ROUND_CLOSEST), DIV_F(CLK_AUDIO_DAC_DIV, "audio_dac_div", "audio_pll_mux", 0x218, 8, CLK_DIVIDER_ROUND_CLOSEST), DIV(CLK_RPU_V_DIV, "rpu_v_div", "rpu_v_pll_mux", 0x21c, 2), DIV(CLK_RPU_L_DIV, "rpu_l_div", "rpu_l_mux", 0x220, 2), DIV(CLK_RPU_SLEEP_DIV, "rpu_sleep_div", "xtal", 0x224, 10), DIV(CLK_RPU_CORE_DIV, "rpu_core_div", "rpu_core_mux", 0x228, 3), DIV(CLK_USB_PHY_DIV, "usb_phy_div", "sys_internal_div", 0x22c, 6), DIV(CLK_ENET_DIV, "enet_div", "enet_mux", 0x230, 6), DIV_F(CLK_UART0_INTERNAL_DIV, "uart0_internal_div", "sys_pll_mux", 0x234, 3, CLK_DIVIDER_ROUND_CLOSEST), DIV_F(CLK_UART0_DIV, "uart0_div", "uart0_internal_div", 0x238, 10, CLK_DIVIDER_ROUND_CLOSEST), DIV_F(CLK_UART1_INTERNAL_DIV, "uart1_internal_div", "sys_pll_mux", 0x23c, 3, CLK_DIVIDER_ROUND_CLOSEST), DIV_F(CLK_UART1_DIV, "uart1_div", "uart1_internal_div", 0x240, 10, CLK_DIVIDER_ROUND_CLOSEST), DIV(CLK_SYS_INTERNAL_DIV, "sys_internal_div", "sys_pll_mux", 0x244, 3), DIV(CLK_SPI0_INTERNAL_DIV, "spi0_internal_div", "sys_pll_mux", 0x248, 3), DIV(CLK_SPI0_DIV, "spi0_div", "spi0_internal_div", 0x24c, 7), DIV(CLK_SPI1_INTERNAL_DIV, "spi1_internal_div", "sys_pll_mux", 0x250, 3), DIV(CLK_SPI1_DIV, "spi1_div", "spi1_internal_div", 0x254, 7), DIV(CLK_EVENT_TIMER_INTERNAL_DIV, "event_timer_internal_div", "event_timer_mux", 0x258, 3), DIV(CLK_EVENT_TIMER_DIV, "event_timer_div", "event_timer_internal_div", 0x25c, 12), DIV(CLK_AUX_ADC_INTERNAL_DIV, "aux_adc_internal_div", "aux_adc_internal", 0x260, 3), DIV(CLK_AUX_ADC_DIV, "aux_adc_div", "aux_adc_internal_div", 0x264, 10), DIV(CLK_SD_HOST_DIV, "sd_host_div", "sd_host_mux", 0x268, 6), DIV(CLK_BT_DIV, "bt_div", "bt_pll_mux", 0x26c, 6), DIV(CLK_BT_DIV4_DIV, "bt_div4_div", "bt_pll_mux", 0x270, 6), DIV(CLK_BT_DIV8_DIV, "bt_div8_div", "bt_pll_mux", 0x274, 6), DIV(CLK_BT_1MHZ_INTERNAL_DIV, "bt_1mhz_internal_div", "bt_pll_mux", 0x278, 3), DIV(CLK_BT_1MHZ_DIV, "bt_1mhz_div", "bt_1mhz_internal_div", 0x27c, 10), }; PNAME(mux_xtal_audio_refclk) = { "xtal", "audio_clk_in_gate" }; PNAME(mux_xtal_mips) = { "xtal", "mips_pll" }; PNAME(mux_xtal_audio) = { "xtal", "audio_pll", "audio_in" }; PNAME(mux_audio_debug) = { "audio_pll_mux", "debug_mux" }; PNAME(mux_xtal_rpu_v) = { "xtal", "rpu_v_pll" }; PNAME(mux_xtal_rpu_l) = { "xtal", "rpu_l_pll" }; PNAME(mux_rpu_l_mips) = { "rpu_l_pll_mux", "mips_pll_mux" }; PNAME(mux_xtal_wifi) = { "xtal", "wifi_pll" }; PNAME(mux_xtal_wifi_div4) = { "xtal", "wifi_div4" }; PNAME(mux_xtal_wifi_div8) = { "xtal", "wifi_div8" }; PNAME(mux_wifi_div4_rpu_l) = { "wifi_pll_gate", "wifi_div4_mux", "rpu_l_pll_mux" }; PNAME(mux_xtal_sys) = { "xtal", "sys_pll" }; PNAME(mux_sys_enet) = { "sys_internal_div", "enet_in" }; PNAME(mux_audio_sys) = { "audio_pll_mux", "sys_internal_div" }; PNAME(mux_sys_bt) = { "sys_internal_div", "bt_pll_mux" }; PNAME(mux_xtal_bt) = { "xtal", "bt_pll" }; static struct pistachio_mux pistachio_muxes[] __initdata = { MUX(CLK_AUDIO_REF_MUX, "audio_refclk_mux", mux_xtal_audio_refclk, 0x200, 0), MUX(CLK_MIPS_PLL_MUX, "mips_pll_mux", mux_xtal_mips, 0x200, 1), MUX(CLK_AUDIO_PLL_MUX, "audio_pll_mux", mux_xtal_audio, 0x200, 2), MUX(CLK_AUDIO_MUX, "audio_mux", mux_audio_debug, 0x200, 4), MUX(CLK_RPU_V_PLL_MUX, "rpu_v_pll_mux", mux_xtal_rpu_v, 0x200, 5), MUX(CLK_RPU_L_PLL_MUX, "rpu_l_pll_mux", mux_xtal_rpu_l, 0x200, 6), MUX(CLK_RPU_L_MUX, "rpu_l_mux", mux_rpu_l_mips, 0x200, 7), MUX(CLK_WIFI_PLL_MUX, "wifi_pll_mux", mux_xtal_wifi, 0x200, 8), MUX(CLK_WIFI_DIV4_MUX, "wifi_div4_mux", mux_xtal_wifi_div4, 0x200, 9), MUX(CLK_WIFI_DIV8_MUX, "wifi_div8_mux", mux_xtal_wifi_div8, 0x200, 10), MUX(CLK_RPU_CORE_MUX, "rpu_core_mux", mux_wifi_div4_rpu_l, 0x200, 11), MUX(CLK_SYS_PLL_MUX, "sys_pll_mux", mux_xtal_sys, 0x200, 13), MUX(CLK_ENET_MUX, "enet_mux", mux_sys_enet, 0x200, 14), MUX(CLK_EVENT_TIMER_MUX, "event_timer_mux", mux_audio_sys, 0x200, 15), MUX(CLK_SD_HOST_MUX, "sd_host_mux", mux_sys_bt, 0x200, 16), MUX(CLK_BT_PLL_MUX, "bt_pll_mux", mux_xtal_bt, 0x200, 17), }; static struct pistachio_pll pistachio_plls[] __initdata = { PLL_FIXED(CLK_MIPS_PLL, "mips_pll", "xtal", PLL_GF40LP_LAINT, 0x0), PLL_FIXED(CLK_AUDIO_PLL, "audio_pll", "audio_refclk_mux", PLL_GF40LP_FRAC, 0xc), PLL_FIXED(CLK_RPU_V_PLL, "rpu_v_pll", "xtal", PLL_GF40LP_LAINT, 0x20), PLL_FIXED(CLK_RPU_L_PLL, "rpu_l_pll", "xtal", PLL_GF40LP_LAINT, 0x2c), PLL_FIXED(CLK_SYS_PLL, "sys_pll", "xtal", PLL_GF40LP_FRAC, 0x38), PLL_FIXED(CLK_WIFI_PLL, "wifi_pll", "xtal", PLL_GF40LP_FRAC, 0x4c), PLL_FIXED(CLK_BT_PLL, "bt_pll", "xtal", PLL_GF40LP_LAINT, 0x60), }; PNAME(mux_debug) = { "mips_pll_mux", "rpu_v_pll_mux", "rpu_l_pll_mux", "sys_pll_mux", "wifi_pll_mux", "bt_pll_mux" }; static const u32 mux_debug_idx[] = { 0x0, 0x1, 0x2, 0x4, 0x8, 0x10 }; static unsigned int pistachio_critical_clks_core[] __initdata = { CLK_MIPS }; static unsigned int pistachio_critical_clks_sys[] __initdata = { PERIPH_CLK_SYS, PERIPH_CLK_SYS_BUS, PERIPH_CLK_DDR, PERIPH_CLK_ROM, }; static void __init pistachio_clk_init(struct device_node *np) { struct pistachio_clk_provider *p; struct clk *debug_clk; p = pistachio_clk_alloc_provider(np, CLK_NR_CLKS); if (!p) return; pistachio_clk_register_pll(p, pistachio_plls, ARRAY_SIZE(pistachio_plls)); pistachio_clk_register_mux(p, pistachio_muxes, ARRAY_SIZE(pistachio_muxes)); pistachio_clk_register_div(p, pistachio_divs, ARRAY_SIZE(pistachio_divs)); pistachio_clk_register_fixed_factor(p, pistachio_ffs, ARRAY_SIZE(pistachio_ffs)); pistachio_clk_register_gate(p, pistachio_gates, ARRAY_SIZE(pistachio_gates)); debug_clk = clk_register_mux_table(NULL, "debug_mux", mux_debug, ARRAY_SIZE(mux_debug), CLK_SET_RATE_NO_REPARENT, p->base + 0x200, 18, 0x1f, 0, mux_debug_idx, NULL); p->clk_data.clks[CLK_DEBUG_MUX] = debug_clk; pistachio_clk_register_provider(p); pistachio_clk_force_enable(p, pistachio_critical_clks_core, ARRAY_SIZE(pistachio_critical_clks_core)); } CLK_OF_DECLARE(pistachio_clk, "img,pistachio-clk", pistachio_clk_init); static struct pistachio_gate pistachio_periph_gates[] __initdata = { GATE(PERIPH_CLK_SYS, "sys", "periph_sys", 0x100, 0), GATE(PERIPH_CLK_SYS_BUS, "bus_sys", "periph_sys", 0x100, 1), GATE(PERIPH_CLK_DDR, "ddr", "periph_sys", 0x100, 2), GATE(PERIPH_CLK_ROM, "rom", "rom_div", 0x100, 3), GATE(PERIPH_CLK_COUNTER_FAST, "counter_fast", "counter_fast_div", 0x100, 4), GATE(PERIPH_CLK_COUNTER_SLOW, "counter_slow", "counter_slow_div", 0x100, 5), GATE(PERIPH_CLK_IR, "ir", "ir_div", 0x100, 6), GATE(PERIPH_CLK_WD, "wd", "wd_div", 0x100, 7), GATE(PERIPH_CLK_PDM, "pdm", "pdm_div", 0x100, 8), GATE(PERIPH_CLK_PWM, "pwm", "pwm_div", 0x100, 9), GATE(PERIPH_CLK_I2C0, "i2c0", "i2c0_div", 0x100, 10), GATE(PERIPH_CLK_I2C1, "i2c1", "i2c1_div", 0x100, 11), GATE(PERIPH_CLK_I2C2, "i2c2", "i2c2_div", 0x100, 12), GATE(PERIPH_CLK_I2C3, "i2c3", "i2c3_div", 0x100, 13), }; static struct pistachio_div pistachio_periph_divs[] __initdata = { DIV(PERIPH_CLK_ROM_DIV, "rom_div", "periph_sys", 0x10c, 7), DIV(PERIPH_CLK_COUNTER_FAST_DIV, "counter_fast_div", "periph_sys", 0x110, 7), DIV(PERIPH_CLK_COUNTER_SLOW_PRE_DIV, "counter_slow_pre_div", "periph_sys", 0x114, 7), DIV(PERIPH_CLK_COUNTER_SLOW_DIV, "counter_slow_div", "counter_slow_pre_div", 0x118, 7), DIV_F(PERIPH_CLK_IR_PRE_DIV, "ir_pre_div", "periph_sys", 0x11c, 7, CLK_DIVIDER_ROUND_CLOSEST), DIV_F(PERIPH_CLK_IR_DIV, "ir_div", "ir_pre_div", 0x120, 7, CLK_DIVIDER_ROUND_CLOSEST), DIV_F(PERIPH_CLK_WD_PRE_DIV, "wd_pre_div", "periph_sys", 0x124, 7, CLK_DIVIDER_ROUND_CLOSEST), DIV_F(PERIPH_CLK_WD_DIV, "wd_div", "wd_pre_div", 0x128, 7, CLK_DIVIDER_ROUND_CLOSEST), DIV(PERIPH_CLK_PDM_PRE_DIV, "pdm_pre_div", "periph_sys", 0x12c, 7), DIV(PERIPH_CLK_PDM_DIV, "pdm_div", "pdm_pre_div", 0x130, 7), DIV(PERIPH_CLK_PWM_PRE_DIV, "pwm_pre_div", "periph_sys", 0x134, 7), DIV(PERIPH_CLK_PWM_DIV, "pwm_div", "pwm_pre_div", 0x138, 7), DIV(PERIPH_CLK_I2C0_PRE_DIV, "i2c0_pre_div", "periph_sys", 0x13c, 7), DIV(PERIPH_CLK_I2C0_DIV, "i2c0_div", "i2c0_pre_div", 0x140, 7), DIV(PERIPH_CLK_I2C1_PRE_DIV, "i2c1_pre_div", "periph_sys", 0x144, 7), DIV(PERIPH_CLK_I2C1_DIV, "i2c1_div", "i2c1_pre_div", 0x148, 7), DIV(PERIPH_CLK_I2C2_PRE_DIV, "i2c2_pre_div", "periph_sys", 0x14c, 7), DIV(PERIPH_CLK_I2C2_DIV, "i2c2_div", "i2c2_pre_div", 0x150, 7), DIV(PERIPH_CLK_I2C3_PRE_DIV, "i2c3_pre_div", "periph_sys", 0x154, 7), DIV(PERIPH_CLK_I2C3_DIV, "i2c3_div", "i2c3_pre_div", 0x158, 7), }; static void __init pistachio_clk_periph_init(struct device_node *np) { struct pistachio_clk_provider *p; p = pistachio_clk_alloc_provider(np, PERIPH_CLK_NR_CLKS); if (!p) return; pistachio_clk_register_div(p, pistachio_periph_divs, ARRAY_SIZE(pistachio_periph_divs)); pistachio_clk_register_gate(p, pistachio_periph_gates, ARRAY_SIZE(pistachio_periph_gates)); pistachio_clk_register_provider(p); pistachio_clk_force_enable(p, pistachio_critical_clks_sys, ARRAY_SIZE(pistachio_critical_clks_sys)); } CLK_OF_DECLARE(pistachio_clk_periph, "img,pistachio-clk-periph", pistachio_clk_periph_init); static struct pistachio_gate pistachio_sys_gates[] __initdata = { GATE(SYS_CLK_I2C0, "i2c0_sys", "sys", 0x8, 0), GATE(SYS_CLK_I2C1, "i2c1_sys", "sys", 0x8, 1), GATE(SYS_CLK_I2C2, "i2c2_sys", "sys", 0x8, 2), GATE(SYS_CLK_I2C3, "i2c3_sys", "sys", 0x8, 3), GATE(SYS_CLK_I2S_IN, "i2s_in_sys", "sys", 0x8, 4), GATE(SYS_CLK_PAUD_OUT, "paud_out_sys", "sys", 0x8, 5), GATE(SYS_CLK_SPDIF_OUT, "spdif_out_sys", "sys", 0x8, 6), GATE(SYS_CLK_SPI0_MASTER, "spi0_master_sys", "sys", 0x8, 7), GATE(SYS_CLK_SPI0_SLAVE, "spi0_slave_sys", "sys", 0x8, 8), GATE(SYS_CLK_PWM, "pwm_sys", "sys", 0x8, 9), GATE(SYS_CLK_UART0, "uart0_sys", "sys", 0x8, 10), GATE(SYS_CLK_UART1, "uart1_sys", "sys", 0x8, 11), GATE(SYS_CLK_SPI1, "spi1_sys", "sys", 0x8, 12), GATE(SYS_CLK_MDC, "mdc_sys", "sys", 0x8, 13), GATE(SYS_CLK_SD_HOST, "sd_host_sys", "sys", 0x8, 14), GATE(SYS_CLK_ENET, "enet_sys", "sys", 0x8, 15), GATE(SYS_CLK_IR, "ir_sys", "sys", 0x8, 16), GATE(SYS_CLK_WD, "wd_sys", "sys", 0x8, 17), GATE(SYS_CLK_TIMER, "timer_sys", "sys", 0x8, 18), GATE(SYS_CLK_I2S_OUT, "i2s_out_sys", "sys", 0x8, 24), GATE(SYS_CLK_SPDIF_IN, "spdif_in_sys", "sys", 0x8, 25), GATE(SYS_CLK_EVENT_TIMER, "event_timer_sys", "sys", 0x8, 26), GATE(SYS_CLK_HASH, "hash_sys", "sys", 0x8, 27), }; static void __init pistachio_cr_periph_init(struct device_node *np) { struct pistachio_clk_provider *p; p = pistachio_clk_alloc_provider(np, SYS_CLK_NR_CLKS); if (!p) return; pistachio_clk_register_gate(p, pistachio_sys_gates, ARRAY_SIZE(pistachio_sys_gates)); pistachio_clk_register_provider(p); } CLK_OF_DECLARE(pistachio_cr_periph, "img,pistachio-cr-periph", pistachio_cr_periph_init); static struct pistachio_gate pistachio_ext_gates[] __initdata = { GATE(EXT_CLK_ENET_IN, "enet_clk_in_gate", "enet_clk_in", 0x58, 5), GATE(EXT_CLK_AUDIO_IN, "audio_clk_in_gate", "audio_clk_in", 0x58, 8) }; static void __init pistachio_cr_top_init(struct device_node *np) { struct pistachio_clk_provider *p; p = pistachio_clk_alloc_provider(np, EXT_CLK_NR_CLKS); if (!p) return; pistachio_clk_register_gate(p, pistachio_ext_gates, ARRAY_SIZE(pistachio_ext_gates)); pistachio_clk_register_provider(p); } CLK_OF_DECLARE(pistachio_cr_top, "img,pistachio-cr-top", pistachio_cr_top_init);
linux-master
drivers/clk/pistachio/clk-pistachio.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2014 Google, Inc. */ #define pr_fmt(fmt) "%s: " fmt, __func__ #include <linux/clk-provider.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/printk.h> #include <linux/slab.h> #include "clk.h" #define PLL_STATUS 0x0 #define PLL_STATUS_LOCK BIT(0) #define PLL_CTRL1 0x4 #define PLL_CTRL1_REFDIV_SHIFT 0 #define PLL_CTRL1_REFDIV_MASK 0x3f #define PLL_CTRL1_FBDIV_SHIFT 6 #define PLL_CTRL1_FBDIV_MASK 0xfff #define PLL_INT_CTRL1_POSTDIV1_SHIFT 18 #define PLL_INT_CTRL1_POSTDIV1_MASK 0x7 #define PLL_INT_CTRL1_POSTDIV2_SHIFT 21 #define PLL_INT_CTRL1_POSTDIV2_MASK 0x7 #define PLL_INT_CTRL1_PD BIT(24) #define PLL_INT_CTRL1_DSMPD BIT(25) #define PLL_INT_CTRL1_FOUTPOSTDIVPD BIT(26) #define PLL_INT_CTRL1_FOUTVCOPD BIT(27) #define PLL_CTRL2 0x8 #define PLL_FRAC_CTRL2_FRAC_SHIFT 0 #define PLL_FRAC_CTRL2_FRAC_MASK 0xffffff #define PLL_FRAC_CTRL2_POSTDIV1_SHIFT 24 #define PLL_FRAC_CTRL2_POSTDIV1_MASK 0x7 #define PLL_FRAC_CTRL2_POSTDIV2_SHIFT 27 #define PLL_FRAC_CTRL2_POSTDIV2_MASK 0x7 #define PLL_INT_CTRL2_BYPASS BIT(28) #define PLL_CTRL3 0xc #define PLL_FRAC_CTRL3_PD BIT(0) #define PLL_FRAC_CTRL3_DACPD BIT(1) #define PLL_FRAC_CTRL3_DSMPD BIT(2) #define PLL_FRAC_CTRL3_FOUTPOSTDIVPD BIT(3) #define PLL_FRAC_CTRL3_FOUT4PHASEPD BIT(4) #define PLL_FRAC_CTRL3_FOUTVCOPD BIT(5) #define PLL_CTRL4 0x10 #define PLL_FRAC_CTRL4_BYPASS BIT(28) #define MIN_PFD 9600000UL #define MIN_VCO_LA 400000000UL #define MAX_VCO_LA 1600000000UL #define MIN_VCO_FRAC_INT 600000000UL #define MAX_VCO_FRAC_INT 1600000000UL #define MIN_VCO_FRAC_FRAC 600000000UL #define MAX_VCO_FRAC_FRAC 2400000000UL #define MIN_OUTPUT_LA 8000000UL #define MAX_OUTPUT_LA 1600000000UL #define MIN_OUTPUT_FRAC 12000000UL #define MAX_OUTPUT_FRAC 1600000000UL /* Fractional PLL operating modes */ enum pll_mode { PLL_MODE_FRAC, PLL_MODE_INT, }; struct pistachio_clk_pll { struct clk_hw hw; void __iomem *base; struct pistachio_pll_rate_table *rates; unsigned int nr_rates; }; static inline u32 pll_readl(struct pistachio_clk_pll *pll, u32 reg) { return readl(pll->base + reg); } static inline void pll_writel(struct pistachio_clk_pll *pll, u32 val, u32 reg) { writel(val, pll->base + reg); } static inline void pll_lock(struct pistachio_clk_pll *pll) { while (!(pll_readl(pll, PLL_STATUS) & PLL_STATUS_LOCK)) cpu_relax(); } static inline u64 do_div_round_closest(u64 dividend, u64 divisor) { dividend += divisor / 2; return div64_u64(dividend, divisor); } static inline struct pistachio_clk_pll *to_pistachio_pll(struct clk_hw *hw) { return container_of(hw, struct pistachio_clk_pll, hw); } static inline enum pll_mode pll_frac_get_mode(struct clk_hw *hw) { struct pistachio_clk_pll *pll = to_pistachio_pll(hw); u32 val; val = pll_readl(pll, PLL_CTRL3) & PLL_FRAC_CTRL3_DSMPD; return val ? PLL_MODE_INT : PLL_MODE_FRAC; } static inline void pll_frac_set_mode(struct clk_hw *hw, enum pll_mode mode) { struct pistachio_clk_pll *pll = to_pistachio_pll(hw); u32 val; val = pll_readl(pll, PLL_CTRL3); if (mode == PLL_MODE_INT) val |= PLL_FRAC_CTRL3_DSMPD | PLL_FRAC_CTRL3_DACPD; else val &= ~(PLL_FRAC_CTRL3_DSMPD | PLL_FRAC_CTRL3_DACPD); pll_writel(pll, val, PLL_CTRL3); } static struct pistachio_pll_rate_table * pll_get_params(struct pistachio_clk_pll *pll, unsigned long fref, unsigned long fout) { unsigned int i; for (i = 0; i < pll->nr_rates; i++) { if (pll->rates[i].fref == fref && pll->rates[i].fout == fout) return &pll->rates[i]; } return NULL; } static long pll_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { struct pistachio_clk_pll *pll = to_pistachio_pll(hw); unsigned int i; for (i = 0; i < pll->nr_rates; i++) { if (i > 0 && pll->rates[i].fref == *parent_rate && pll->rates[i].fout <= rate) return pll->rates[i - 1].fout; } return pll->rates[0].fout; } static int pll_gf40lp_frac_enable(struct clk_hw *hw) { struct pistachio_clk_pll *pll = to_pistachio_pll(hw); u32 val; val = pll_readl(pll, PLL_CTRL3); val &= ~(PLL_FRAC_CTRL3_PD | PLL_FRAC_CTRL3_FOUTPOSTDIVPD | PLL_FRAC_CTRL3_FOUT4PHASEPD | PLL_FRAC_CTRL3_FOUTVCOPD); pll_writel(pll, val, PLL_CTRL3); val = pll_readl(pll, PLL_CTRL4); val &= ~PLL_FRAC_CTRL4_BYPASS; pll_writel(pll, val, PLL_CTRL4); pll_lock(pll); return 0; } static void pll_gf40lp_frac_disable(struct clk_hw *hw) { struct pistachio_clk_pll *pll = to_pistachio_pll(hw); u32 val; val = pll_readl(pll, PLL_CTRL3); val |= PLL_FRAC_CTRL3_PD; pll_writel(pll, val, PLL_CTRL3); } static int pll_gf40lp_frac_is_enabled(struct clk_hw *hw) { struct pistachio_clk_pll *pll = to_pistachio_pll(hw); return !(pll_readl(pll, PLL_CTRL3) & PLL_FRAC_CTRL3_PD); } static int pll_gf40lp_frac_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct pistachio_clk_pll *pll = to_pistachio_pll(hw); struct pistachio_pll_rate_table *params; int enabled = pll_gf40lp_frac_is_enabled(hw); u64 val, vco, old_postdiv1, old_postdiv2; const char *name = clk_hw_get_name(hw); if (rate < MIN_OUTPUT_FRAC || rate > MAX_OUTPUT_FRAC) return -EINVAL; params = pll_get_params(pll, parent_rate, rate); if (!params || !params->refdiv) return -EINVAL; /* calculate vco */ vco = params->fref; vco *= (params->fbdiv << 24) + params->frac; vco = div64_u64(vco, params->refdiv << 24); if (vco < MIN_VCO_FRAC_FRAC || vco > MAX_VCO_FRAC_FRAC) pr_warn("%s: VCO %llu is out of range %lu..%lu\n", name, vco, MIN_VCO_FRAC_FRAC, MAX_VCO_FRAC_FRAC); val = div64_u64(params->fref, params->refdiv); if (val < MIN_PFD) pr_warn("%s: PFD %llu is too low (min %lu)\n", name, val, MIN_PFD); if (val > vco / 16) pr_warn("%s: PFD %llu is too high (max %llu)\n", name, val, vco / 16); val = pll_readl(pll, PLL_CTRL1); val &= ~((PLL_CTRL1_REFDIV_MASK << PLL_CTRL1_REFDIV_SHIFT) | (PLL_CTRL1_FBDIV_MASK << PLL_CTRL1_FBDIV_SHIFT)); val |= (params->refdiv << PLL_CTRL1_REFDIV_SHIFT) | (params->fbdiv << PLL_CTRL1_FBDIV_SHIFT); pll_writel(pll, val, PLL_CTRL1); val = pll_readl(pll, PLL_CTRL2); old_postdiv1 = (val >> PLL_FRAC_CTRL2_POSTDIV1_SHIFT) & PLL_FRAC_CTRL2_POSTDIV1_MASK; old_postdiv2 = (val >> PLL_FRAC_CTRL2_POSTDIV2_SHIFT) & PLL_FRAC_CTRL2_POSTDIV2_MASK; if (enabled && (params->postdiv1 != old_postdiv1 || params->postdiv2 != old_postdiv2)) pr_warn("%s: changing postdiv while PLL is enabled\n", name); if (params->postdiv2 > params->postdiv1) pr_warn("%s: postdiv2 should not exceed postdiv1\n", name); val &= ~((PLL_FRAC_CTRL2_FRAC_MASK << PLL_FRAC_CTRL2_FRAC_SHIFT) | (PLL_FRAC_CTRL2_POSTDIV1_MASK << PLL_FRAC_CTRL2_POSTDIV1_SHIFT) | (PLL_FRAC_CTRL2_POSTDIV2_MASK << PLL_FRAC_CTRL2_POSTDIV2_SHIFT)); val |= (params->frac << PLL_FRAC_CTRL2_FRAC_SHIFT) | (params->postdiv1 << PLL_FRAC_CTRL2_POSTDIV1_SHIFT) | (params->postdiv2 << PLL_FRAC_CTRL2_POSTDIV2_SHIFT); pll_writel(pll, val, PLL_CTRL2); /* set operating mode */ if (params->frac) pll_frac_set_mode(hw, PLL_MODE_FRAC); else pll_frac_set_mode(hw, PLL_MODE_INT); if (enabled) pll_lock(pll); return 0; } static unsigned long pll_gf40lp_frac_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct pistachio_clk_pll *pll = to_pistachio_pll(hw); u64 val, prediv, fbdiv, frac, postdiv1, postdiv2, rate; val = pll_readl(pll, PLL_CTRL1); prediv = (val >> PLL_CTRL1_REFDIV_SHIFT) & PLL_CTRL1_REFDIV_MASK; fbdiv = (val >> PLL_CTRL1_FBDIV_SHIFT) & PLL_CTRL1_FBDIV_MASK; val = pll_readl(pll, PLL_CTRL2); postdiv1 = (val >> PLL_FRAC_CTRL2_POSTDIV1_SHIFT) & PLL_FRAC_CTRL2_POSTDIV1_MASK; postdiv2 = (val >> PLL_FRAC_CTRL2_POSTDIV2_SHIFT) & PLL_FRAC_CTRL2_POSTDIV2_MASK; frac = (val >> PLL_FRAC_CTRL2_FRAC_SHIFT) & PLL_FRAC_CTRL2_FRAC_MASK; /* get operating mode (int/frac) and calculate rate accordingly */ rate = parent_rate; if (pll_frac_get_mode(hw) == PLL_MODE_FRAC) rate *= (fbdiv << 24) + frac; else rate *= (fbdiv << 24); rate = do_div_round_closest(rate, (prediv * postdiv1 * postdiv2) << 24); return rate; } static const struct clk_ops pll_gf40lp_frac_ops = { .enable = pll_gf40lp_frac_enable, .disable = pll_gf40lp_frac_disable, .is_enabled = pll_gf40lp_frac_is_enabled, .recalc_rate = pll_gf40lp_frac_recalc_rate, .round_rate = pll_round_rate, .set_rate = pll_gf40lp_frac_set_rate, }; static const struct clk_ops pll_gf40lp_frac_fixed_ops = { .enable = pll_gf40lp_frac_enable, .disable = pll_gf40lp_frac_disable, .is_enabled = pll_gf40lp_frac_is_enabled, .recalc_rate = pll_gf40lp_frac_recalc_rate, }; static int pll_gf40lp_laint_enable(struct clk_hw *hw) { struct pistachio_clk_pll *pll = to_pistachio_pll(hw); u32 val; val = pll_readl(pll, PLL_CTRL1); val &= ~(PLL_INT_CTRL1_PD | PLL_INT_CTRL1_FOUTPOSTDIVPD | PLL_INT_CTRL1_FOUTVCOPD); pll_writel(pll, val, PLL_CTRL1); val = pll_readl(pll, PLL_CTRL2); val &= ~PLL_INT_CTRL2_BYPASS; pll_writel(pll, val, PLL_CTRL2); pll_lock(pll); return 0; } static void pll_gf40lp_laint_disable(struct clk_hw *hw) { struct pistachio_clk_pll *pll = to_pistachio_pll(hw); u32 val; val = pll_readl(pll, PLL_CTRL1); val |= PLL_INT_CTRL1_PD; pll_writel(pll, val, PLL_CTRL1); } static int pll_gf40lp_laint_is_enabled(struct clk_hw *hw) { struct pistachio_clk_pll *pll = to_pistachio_pll(hw); return !(pll_readl(pll, PLL_CTRL1) & PLL_INT_CTRL1_PD); } static int pll_gf40lp_laint_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct pistachio_clk_pll *pll = to_pistachio_pll(hw); struct pistachio_pll_rate_table *params; int enabled = pll_gf40lp_laint_is_enabled(hw); u32 val, vco, old_postdiv1, old_postdiv2; const char *name = clk_hw_get_name(hw); if (rate < MIN_OUTPUT_LA || rate > MAX_OUTPUT_LA) return -EINVAL; params = pll_get_params(pll, parent_rate, rate); if (!params || !params->refdiv) return -EINVAL; vco = div_u64(params->fref * params->fbdiv, params->refdiv); if (vco < MIN_VCO_LA || vco > MAX_VCO_LA) pr_warn("%s: VCO %u is out of range %lu..%lu\n", name, vco, MIN_VCO_LA, MAX_VCO_LA); val = div_u64(params->fref, params->refdiv); if (val < MIN_PFD) pr_warn("%s: PFD %u is too low (min %lu)\n", name, val, MIN_PFD); if (val > vco / 16) pr_warn("%s: PFD %u is too high (max %u)\n", name, val, vco / 16); val = pll_readl(pll, PLL_CTRL1); old_postdiv1 = (val >> PLL_INT_CTRL1_POSTDIV1_SHIFT) & PLL_INT_CTRL1_POSTDIV1_MASK; old_postdiv2 = (val >> PLL_INT_CTRL1_POSTDIV2_SHIFT) & PLL_INT_CTRL1_POSTDIV2_MASK; if (enabled && (params->postdiv1 != old_postdiv1 || params->postdiv2 != old_postdiv2)) pr_warn("%s: changing postdiv while PLL is enabled\n", name); if (params->postdiv2 > params->postdiv1) pr_warn("%s: postdiv2 should not exceed postdiv1\n", name); val &= ~((PLL_CTRL1_REFDIV_MASK << PLL_CTRL1_REFDIV_SHIFT) | (PLL_CTRL1_FBDIV_MASK << PLL_CTRL1_FBDIV_SHIFT) | (PLL_INT_CTRL1_POSTDIV1_MASK << PLL_INT_CTRL1_POSTDIV1_SHIFT) | (PLL_INT_CTRL1_POSTDIV2_MASK << PLL_INT_CTRL1_POSTDIV2_SHIFT)); val |= (params->refdiv << PLL_CTRL1_REFDIV_SHIFT) | (params->fbdiv << PLL_CTRL1_FBDIV_SHIFT) | (params->postdiv1 << PLL_INT_CTRL1_POSTDIV1_SHIFT) | (params->postdiv2 << PLL_INT_CTRL1_POSTDIV2_SHIFT); pll_writel(pll, val, PLL_CTRL1); if (enabled) pll_lock(pll); return 0; } static unsigned long pll_gf40lp_laint_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct pistachio_clk_pll *pll = to_pistachio_pll(hw); u32 val, prediv, fbdiv, postdiv1, postdiv2; u64 rate = parent_rate; val = pll_readl(pll, PLL_CTRL1); prediv = (val >> PLL_CTRL1_REFDIV_SHIFT) & PLL_CTRL1_REFDIV_MASK; fbdiv = (val >> PLL_CTRL1_FBDIV_SHIFT) & PLL_CTRL1_FBDIV_MASK; postdiv1 = (val >> PLL_INT_CTRL1_POSTDIV1_SHIFT) & PLL_INT_CTRL1_POSTDIV1_MASK; postdiv2 = (val >> PLL_INT_CTRL1_POSTDIV2_SHIFT) & PLL_INT_CTRL1_POSTDIV2_MASK; rate *= fbdiv; rate = do_div_round_closest(rate, prediv * postdiv1 * postdiv2); return rate; } static const struct clk_ops pll_gf40lp_laint_ops = { .enable = pll_gf40lp_laint_enable, .disable = pll_gf40lp_laint_disable, .is_enabled = pll_gf40lp_laint_is_enabled, .recalc_rate = pll_gf40lp_laint_recalc_rate, .round_rate = pll_round_rate, .set_rate = pll_gf40lp_laint_set_rate, }; static const struct clk_ops pll_gf40lp_laint_fixed_ops = { .enable = pll_gf40lp_laint_enable, .disable = pll_gf40lp_laint_disable, .is_enabled = pll_gf40lp_laint_is_enabled, .recalc_rate = pll_gf40lp_laint_recalc_rate, }; static struct clk *pll_register(const char *name, const char *parent_name, unsigned long flags, void __iomem *base, enum pistachio_pll_type type, struct pistachio_pll_rate_table *rates, unsigned int nr_rates) { struct pistachio_clk_pll *pll; struct clk_init_data init; struct clk *clk; pll = kzalloc(sizeof(*pll), GFP_KERNEL); if (!pll) return ERR_PTR(-ENOMEM); init.name = name; init.flags = flags | CLK_GET_RATE_NOCACHE; init.parent_names = &parent_name; init.num_parents = 1; switch (type) { case PLL_GF40LP_FRAC: if (rates) init.ops = &pll_gf40lp_frac_ops; else init.ops = &pll_gf40lp_frac_fixed_ops; break; case PLL_GF40LP_LAINT: if (rates) init.ops = &pll_gf40lp_laint_ops; else init.ops = &pll_gf40lp_laint_fixed_ops; break; default: pr_err("Unrecognized PLL type %u\n", type); kfree(pll); return ERR_PTR(-EINVAL); } pll->hw.init = &init; pll->base = base; pll->rates = rates; pll->nr_rates = nr_rates; clk = clk_register(NULL, &pll->hw); if (IS_ERR(clk)) kfree(pll); return clk; } void pistachio_clk_register_pll(struct pistachio_clk_provider *p, struct pistachio_pll *pll, unsigned int num) { struct clk *clk; unsigned int i; for (i = 0; i < num; i++) { clk = pll_register(pll[i].name, pll[i].parent, 0, p->base + pll[i].reg_base, pll[i].type, pll[i].rates, pll[i].nr_rates); p->clk_data.clks[pll[i].id] = clk; } }
linux-master
drivers/clk/pistachio/clk-pll.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2014 Google, Inc. */ #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/kernel.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/slab.h> #include "clk.h" struct pistachio_clk_provider * pistachio_clk_alloc_provider(struct device_node *node, unsigned int num_clks) { struct pistachio_clk_provider *p; p = kzalloc(sizeof(*p), GFP_KERNEL); if (!p) return p; p->clk_data.clks = kcalloc(num_clks, sizeof(struct clk *), GFP_KERNEL); if (!p->clk_data.clks) goto free_provider; p->clk_data.clk_num = num_clks; p->node = node; p->base = of_iomap(node, 0); if (!p->base) { pr_err("Failed to map clock provider registers\n"); goto free_clks; } return p; free_clks: kfree(p->clk_data.clks); free_provider: kfree(p); return NULL; } void pistachio_clk_register_provider(struct pistachio_clk_provider *p) { unsigned int i; for (i = 0; i < p->clk_data.clk_num; i++) { if (IS_ERR(p->clk_data.clks[i])) pr_warn("Failed to register clock %d: %ld\n", i, PTR_ERR(p->clk_data.clks[i])); } of_clk_add_provider(p->node, of_clk_src_onecell_get, &p->clk_data); } void pistachio_clk_register_gate(struct pistachio_clk_provider *p, struct pistachio_gate *gate, unsigned int num) { struct clk *clk; unsigned int i; for (i = 0; i < num; i++) { clk = clk_register_gate(NULL, gate[i].name, gate[i].parent, CLK_SET_RATE_PARENT, p->base + gate[i].reg, gate[i].shift, 0, NULL); p->clk_data.clks[gate[i].id] = clk; } } void pistachio_clk_register_mux(struct pistachio_clk_provider *p, struct pistachio_mux *mux, unsigned int num) { struct clk *clk; unsigned int i; for (i = 0; i < num; i++) { clk = clk_register_mux(NULL, mux[i].name, mux[i].parents, mux[i].num_parents, CLK_SET_RATE_NO_REPARENT, p->base + mux[i].reg, mux[i].shift, get_count_order(mux[i].num_parents), 0, NULL); p->clk_data.clks[mux[i].id] = clk; } } void pistachio_clk_register_div(struct pistachio_clk_provider *p, struct pistachio_div *div, unsigned int num) { struct clk *clk; unsigned int i; for (i = 0; i < num; i++) { clk = clk_register_divider(NULL, div[i].name, div[i].parent, 0, p->base + div[i].reg, 0, div[i].width, div[i].div_flags, NULL); p->clk_data.clks[div[i].id] = clk; } } void pistachio_clk_register_fixed_factor(struct pistachio_clk_provider *p, struct pistachio_fixed_factor *ff, unsigned int num) { struct clk *clk; unsigned int i; for (i = 0; i < num; i++) { clk = clk_register_fixed_factor(NULL, ff[i].name, ff[i].parent, 0, 1, ff[i].div); p->clk_data.clks[ff[i].id] = clk; } } void pistachio_clk_force_enable(struct pistachio_clk_provider *p, unsigned int *clk_ids, unsigned int num) { unsigned int i; int err; for (i = 0; i < num; i++) { struct clk *clk = p->clk_data.clks[clk_ids[i]]; if (IS_ERR(clk)) continue; err = clk_prepare_enable(clk); if (err) pr_err("Failed to enable clock %s: %d\n", __clk_get_name(clk), err); } }
linux-master
drivers/clk/pistachio/clk.c
// SPDX-License-Identifier: GPL-2.0-only /* * Sysctrl clock implementation for ux500 platform. * * Copyright (C) 2013 ST-Ericsson SA * Author: Ulf Hansson <[email protected]> */ #include <linux/clk-provider.h> #include <linux/mfd/abx500/ab8500-sysctrl.h> #include <linux/device.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/err.h> #include "clk.h" #define SYSCTRL_MAX_NUM_PARENTS 4 #define to_clk_sysctrl(_hw) container_of(_hw, struct clk_sysctrl, hw) struct clk_sysctrl { struct clk_hw hw; struct device *dev; u8 parent_index; u16 reg_sel[SYSCTRL_MAX_NUM_PARENTS]; u8 reg_mask[SYSCTRL_MAX_NUM_PARENTS]; u8 reg_bits[SYSCTRL_MAX_NUM_PARENTS]; unsigned long rate; unsigned long enable_delay_us; }; /* Sysctrl clock operations. */ static int clk_sysctrl_prepare(struct clk_hw *hw) { int ret; struct clk_sysctrl *clk = to_clk_sysctrl(hw); ret = ab8500_sysctrl_write(clk->reg_sel[0], clk->reg_mask[0], clk->reg_bits[0]); if (!ret && clk->enable_delay_us) usleep_range(clk->enable_delay_us, clk->enable_delay_us + (clk->enable_delay_us >> 2)); return ret; } static void clk_sysctrl_unprepare(struct clk_hw *hw) { struct clk_sysctrl *clk = to_clk_sysctrl(hw); if (ab8500_sysctrl_clear(clk->reg_sel[0], clk->reg_mask[0])) dev_err(clk->dev, "clk_sysctrl: %s fail to clear %s.\n", __func__, clk_hw_get_name(hw)); } static unsigned long clk_sysctrl_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_sysctrl *clk = to_clk_sysctrl(hw); return clk->rate; } static int clk_sysctrl_set_parent(struct clk_hw *hw, u8 index) { struct clk_sysctrl *clk = to_clk_sysctrl(hw); u8 old_index = clk->parent_index; int ret = 0; if (clk->reg_sel[old_index]) { ret = ab8500_sysctrl_clear(clk->reg_sel[old_index], clk->reg_mask[old_index]); if (ret) return ret; } if (clk->reg_sel[index]) { ret = ab8500_sysctrl_write(clk->reg_sel[index], clk->reg_mask[index], clk->reg_bits[index]); if (ret) { if (clk->reg_sel[old_index]) ab8500_sysctrl_write(clk->reg_sel[old_index], clk->reg_mask[old_index], clk->reg_bits[old_index]); return ret; } } clk->parent_index = index; return ret; } static u8 clk_sysctrl_get_parent(struct clk_hw *hw) { struct clk_sysctrl *clk = to_clk_sysctrl(hw); return clk->parent_index; } static const struct clk_ops clk_sysctrl_gate_ops = { .prepare = clk_sysctrl_prepare, .unprepare = clk_sysctrl_unprepare, }; static const struct clk_ops clk_sysctrl_gate_fixed_rate_ops = { .prepare = clk_sysctrl_prepare, .unprepare = clk_sysctrl_unprepare, .recalc_rate = clk_sysctrl_recalc_rate, }; static const struct clk_ops clk_sysctrl_set_parent_ops = { .determine_rate = clk_hw_determine_rate_no_reparent, .set_parent = clk_sysctrl_set_parent, .get_parent = clk_sysctrl_get_parent, }; static struct clk *clk_reg_sysctrl(struct device *dev, const char *name, const char **parent_names, u8 num_parents, u16 *reg_sel, u8 *reg_mask, u8 *reg_bits, unsigned long rate, unsigned long enable_delay_us, unsigned long flags, const struct clk_ops *clk_sysctrl_ops) { struct clk_sysctrl *clk; struct clk_init_data clk_sysctrl_init; struct clk *clk_reg; int i; if (!dev) return ERR_PTR(-EINVAL); if (!name || (num_parents > SYSCTRL_MAX_NUM_PARENTS)) { dev_err(dev, "clk_sysctrl: invalid arguments passed\n"); return ERR_PTR(-EINVAL); } clk = devm_kzalloc(dev, sizeof(*clk), GFP_KERNEL); if (!clk) return ERR_PTR(-ENOMEM); /* set main clock registers */ clk->reg_sel[0] = reg_sel[0]; clk->reg_bits[0] = reg_bits[0]; clk->reg_mask[0] = reg_mask[0]; /* handle clocks with more than one parent */ for (i = 1; i < num_parents; i++) { clk->reg_sel[i] = reg_sel[i]; clk->reg_bits[i] = reg_bits[i]; clk->reg_mask[i] = reg_mask[i]; } clk->parent_index = 0; clk->rate = rate; clk->enable_delay_us = enable_delay_us; clk->dev = dev; clk_sysctrl_init.name = name; clk_sysctrl_init.ops = clk_sysctrl_ops; clk_sysctrl_init.flags = flags; clk_sysctrl_init.parent_names = parent_names; clk_sysctrl_init.num_parents = num_parents; clk->hw.init = &clk_sysctrl_init; clk_reg = devm_clk_register(clk->dev, &clk->hw); if (IS_ERR(clk_reg)) dev_err(dev, "clk_sysctrl: clk_register failed\n"); return clk_reg; } struct clk *clk_reg_sysctrl_gate(struct device *dev, const char *name, const char *parent_name, u16 reg_sel, u8 reg_mask, u8 reg_bits, unsigned long enable_delay_us, unsigned long flags) { const char **parent_names = (parent_name ? &parent_name : NULL); u8 num_parents = (parent_name ? 1 : 0); return clk_reg_sysctrl(dev, name, parent_names, num_parents, &reg_sel, &reg_mask, &reg_bits, 0, enable_delay_us, flags, &clk_sysctrl_gate_ops); } struct clk *clk_reg_sysctrl_gate_fixed_rate(struct device *dev, const char *name, const char *parent_name, u16 reg_sel, u8 reg_mask, u8 reg_bits, unsigned long rate, unsigned long enable_delay_us, unsigned long flags) { const char **parent_names = (parent_name ? &parent_name : NULL); u8 num_parents = (parent_name ? 1 : 0); return clk_reg_sysctrl(dev, name, parent_names, num_parents, &reg_sel, &reg_mask, &reg_bits, rate, enable_delay_us, flags, &clk_sysctrl_gate_fixed_rate_ops); } struct clk *clk_reg_sysctrl_set_parent(struct device *dev, const char *name, const char **parent_names, u8 num_parents, u16 *reg_sel, u8 *reg_mask, u8 *reg_bits, unsigned long flags) { return clk_reg_sysctrl(dev, name, parent_names, num_parents, reg_sel, reg_mask, reg_bits, 0, 0, flags, &clk_sysctrl_set_parent_ops); }
linux-master
drivers/clk/ux500/clk-sysctrl.c
// SPDX-License-Identifier: GPL-2.0-only /* * abx500 clock implementation for ux500 platform. * * Copyright (C) 2012 ST-Ericsson SA * Author: Ulf Hansson <[email protected]> */ #include <linux/err.h> #include <linux/module.h> #include <linux/device.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/mfd/abx500/ab8500.h> #include <linux/mfd/abx500/ab8500-sysctrl.h> #include <linux/clkdev.h> #include <linux/clk-provider.h> #include <dt-bindings/clock/ste-ab8500.h> #include "clk.h" #define AB8500_NUM_CLKS 6 static struct clk *ab8500_clks[AB8500_NUM_CLKS]; static struct clk_onecell_data ab8500_clk_data; /* Clock definitions for ab8500 */ static int ab8500_reg_clks(struct device *dev) { int ret; struct clk *clk; struct device_node *np = dev->of_node; const char *intclk_parents[] = {"ab8500_sysclk", "ulpclk"}; u16 intclk_reg_sel[] = {0 , AB8500_SYSULPCLKCTRL1}; u8 intclk_reg_mask[] = {0 , AB8500_SYSULPCLKCTRL1_SYSULPCLKINTSEL_MASK}; u8 intclk_reg_bits[] = { 0 , (1 << AB8500_SYSULPCLKCTRL1_SYSULPCLKINTSEL_SHIFT) }; /* Enable SWAT */ ret = ab8500_sysctrl_set(AB8500_SWATCTRL, AB8500_SWATCTRL_SWATENABLE); if (ret) return ret; /* ab8500_sysclk2 */ clk = clk_reg_sysctrl_gate(dev , "ab8500_sysclk2", "ab8500_sysclk", AB8500_SYSULPCLKCTRL1, AB8500_SYSULPCLKCTRL1_SYSCLKBUF2REQ, AB8500_SYSULPCLKCTRL1_SYSCLKBUF2REQ, 0, 0); ab8500_clks[AB8500_SYSCLK_BUF2] = clk; /* ab8500_sysclk3 */ clk = clk_reg_sysctrl_gate(dev , "ab8500_sysclk3", "ab8500_sysclk", AB8500_SYSULPCLKCTRL1, AB8500_SYSULPCLKCTRL1_SYSCLKBUF3REQ, AB8500_SYSULPCLKCTRL1_SYSCLKBUF3REQ, 0, 0); ab8500_clks[AB8500_SYSCLK_BUF3] = clk; /* ab8500_sysclk4 */ clk = clk_reg_sysctrl_gate(dev , "ab8500_sysclk4", "ab8500_sysclk", AB8500_SYSULPCLKCTRL1, AB8500_SYSULPCLKCTRL1_SYSCLKBUF4REQ, AB8500_SYSULPCLKCTRL1_SYSCLKBUF4REQ, 0, 0); ab8500_clks[AB8500_SYSCLK_BUF4] = clk; /* ab_ulpclk */ clk = clk_reg_sysctrl_gate_fixed_rate(dev, "ulpclk", NULL, AB8500_SYSULPCLKCTRL1, AB8500_SYSULPCLKCTRL1_ULPCLKREQ, AB8500_SYSULPCLKCTRL1_ULPCLKREQ, 38400000, 9000, 0); ab8500_clks[AB8500_SYSCLK_ULP] = clk; /* ab8500_intclk */ clk = clk_reg_sysctrl_set_parent(dev , "intclk", intclk_parents, 2, intclk_reg_sel, intclk_reg_mask, intclk_reg_bits, 0); ab8500_clks[AB8500_SYSCLK_INT] = clk; /* ab8500_audioclk */ clk = clk_reg_sysctrl_gate(dev , "audioclk", "intclk", AB8500_SYSULPCLKCTRL1, AB8500_SYSULPCLKCTRL1_AUDIOCLKENA, AB8500_SYSULPCLKCTRL1_AUDIOCLKENA, 0, 0); ab8500_clks[AB8500_SYSCLK_AUDIO] = clk; ab8500_clk_data.clks = ab8500_clks; ab8500_clk_data.clk_num = ARRAY_SIZE(ab8500_clks); of_clk_add_provider(np, of_clk_src_onecell_get, &ab8500_clk_data); dev_info(dev, "registered clocks for ab850x\n"); return 0; } static int abx500_clk_probe(struct platform_device *pdev) { struct ab8500 *parent = dev_get_drvdata(pdev->dev.parent); int ret; if (is_ab8500(parent) || is_ab8505(parent)) { ret = ab8500_reg_clks(&pdev->dev); } else { dev_err(&pdev->dev, "non supported plf id\n"); return -ENODEV; } return ret; } static const struct of_device_id abx500_clk_match[] = { { .compatible = "stericsson,ab8500-clk", }, {} }; static struct platform_driver abx500_clk_driver = { .driver = { .name = "abx500-clk", .of_match_table = abx500_clk_match, }, .probe = abx500_clk_probe, }; static int __init abx500_clk_init(void) { return platform_driver_register(&abx500_clk_driver); } arch_initcall(abx500_clk_init); MODULE_AUTHOR("Ulf Hansson <[email protected]"); MODULE_DESCRIPTION("ABX500 clk driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/clk/ux500/abx500-clk.c
// SPDX-License-Identifier: GPL-2.0-only /* * Clock definitions for u8500 platform. * * Copyright (C) 2012 ST-Ericsson SA * Author: Ulf Hansson <[email protected]> */ #include <linux/of.h> #include <linux/of_address.h> #include <linux/clk-provider.h> #include <linux/mfd/dbx500-prcmu.h> #include "clk.h" #include "prcc.h" #include "reset-prcc.h" static struct clk *prcc_pclk[(PRCC_NUM_PERIPH_CLUSTERS + 1) * PRCC_PERIPHS_PER_CLUSTER]; static struct clk *prcc_kclk[(PRCC_NUM_PERIPH_CLUSTERS + 1) * PRCC_PERIPHS_PER_CLUSTER]; static struct clk_hw *clkout_clk[2]; #define PRCC_SHOW(clk, base, bit) \ clk[(base * PRCC_PERIPHS_PER_CLUSTER) + bit] #define PRCC_PCLK_STORE(clk, base, bit) \ prcc_pclk[(base * PRCC_PERIPHS_PER_CLUSTER) + bit] = clk #define PRCC_KCLK_STORE(clk, base, bit) \ prcc_kclk[(base * PRCC_PERIPHS_PER_CLUSTER) + bit] = clk static struct clk *ux500_twocell_get(struct of_phandle_args *clkspec, void *data) { struct clk **clk_data = data; unsigned int base, bit; if (clkspec->args_count != 2) return ERR_PTR(-EINVAL); base = clkspec->args[0]; bit = clkspec->args[1]; if (base != 1 && base != 2 && base != 3 && base != 5 && base != 6) { pr_err("%s: invalid PRCC base %d\n", __func__, base); return ERR_PTR(-EINVAL); } return PRCC_SHOW(clk_data, base, bit); } static struct clk_hw_onecell_data u8500_prcmu_hw_clks = { .hws = { /* * This assignment makes sure the dynamic array * gets the right size. */ [PRCMU_NUM_CLKS] = NULL, }, .num = PRCMU_NUM_CLKS, }; /* Essentially names for the first PRCMU_CLKSRC_* defines */ static const char * const u8500_clkout_parents[] = { "clk38m_to_clkgen", "aclk", /* Just called "sysclk" in documentation */ "ab8500_sysclk", "lcdclk", "sdmmcclk", "tvclk", "timclk", /* CLK009 is not implemented, add it if you need it */ "clk009", }; static struct clk_hw *ux500_clkout_get(struct of_phandle_args *clkspec, void *data) { u32 id, source, divider; struct clk_hw *clkout; if (clkspec->args_count != 3) return ERR_PTR(-EINVAL); id = clkspec->args[0]; source = clkspec->args[1]; divider = clkspec->args[2]; if (id > 1) { pr_err("%s: invalid clkout ID %d\n", __func__, id); return ERR_PTR(-EINVAL); } if (clkout_clk[id]) { pr_info("%s: clkout%d already registered, not reconfiguring\n", __func__, id + 1); return clkout_clk[id]; } if (source > 7) { pr_err("%s: invalid source ID %d\n", __func__, source); return ERR_PTR(-EINVAL); } if (divider == 0 || divider > 63) { pr_err("%s: invalid divider %d\n", __func__, divider); return ERR_PTR(-EINVAL); } pr_debug("registering clkout%d with source %d and divider %d\n", id + 1, source, divider); clkout = clk_reg_prcmu_clkout(id ? "clkout2" : "clkout1", u8500_clkout_parents, ARRAY_SIZE(u8500_clkout_parents), source, divider); if (IS_ERR(clkout)) { pr_err("failed to register clkout%d\n", id + 1); return ERR_CAST(clkout); } clkout_clk[id] = clkout; return clkout; } static void u8500_clk_init(struct device_node *np) { struct prcmu_fw_version *fw_version; struct device_node *child = NULL; const char *sgaclk_parent = NULL; struct clk *clk, *rtc_clk, *twd_clk; u32 bases[CLKRST_MAX]; struct u8500_prcc_reset *rstc; int i; /* * We allocate the reset controller here so that we can fill in the * base addresses properly and pass to the reset controller init * function later on. */ rstc = kzalloc(sizeof(*rstc), GFP_KERNEL); if (!rstc) return; for (i = 0; i < ARRAY_SIZE(bases); i++) { struct resource r; if (of_address_to_resource(np, i, &r)) /* Not much choice but to continue */ pr_err("failed to get CLKRST %d base address\n", i + 1); bases[i] = r.start; rstc->phy_base[i] = r.start; } /* Clock sources */ u8500_prcmu_hw_clks.hws[PRCMU_PLLSOC0] = clk_reg_prcmu_gate("soc0_pll", NULL, PRCMU_PLLSOC0, CLK_IGNORE_UNUSED); u8500_prcmu_hw_clks.hws[PRCMU_PLLSOC1] = clk_reg_prcmu_gate("soc1_pll", NULL, PRCMU_PLLSOC1, CLK_IGNORE_UNUSED); u8500_prcmu_hw_clks.hws[PRCMU_PLLDDR] = clk_reg_prcmu_gate("ddr_pll", NULL, PRCMU_PLLDDR, CLK_IGNORE_UNUSED); /* * Read-only clocks that only return their current rate, only used * as parents to other clocks and not visible in the device tree. * clk38m_to_clkgen is the same as the SYSCLK, i.e. the root clock. */ clk_reg_prcmu_rate("clk38m_to_clkgen", NULL, PRCMU_SYSCLK, CLK_IGNORE_UNUSED); clk_reg_prcmu_rate("aclk", NULL, PRCMU_ACLK, CLK_IGNORE_UNUSED); /* TODO: add CLK009 if needed */ rtc_clk = clk_register_fixed_rate(NULL, "rtc32k", "NULL", CLK_IGNORE_UNUSED, 32768); /* PRCMU clocks */ fw_version = prcmu_get_fw_version(); if (fw_version != NULL) { switch (fw_version->project) { case PRCMU_FW_PROJECT_U8500_C2: case PRCMU_FW_PROJECT_U8500_SSG1: case PRCMU_FW_PROJECT_U8520: case PRCMU_FW_PROJECT_U8420: case PRCMU_FW_PROJECT_U8420_SYSCLK: case PRCMU_FW_PROJECT_U8500_SSG2: sgaclk_parent = "soc0_pll"; break; default: break; } } if (sgaclk_parent) u8500_prcmu_hw_clks.hws[PRCMU_SGACLK] = clk_reg_prcmu_gate("sgclk", sgaclk_parent, PRCMU_SGACLK, 0); else u8500_prcmu_hw_clks.hws[PRCMU_SGACLK] = clk_reg_prcmu_gate("sgclk", NULL, PRCMU_SGACLK, 0); u8500_prcmu_hw_clks.hws[PRCMU_UARTCLK] = clk_reg_prcmu_gate("uartclk", NULL, PRCMU_UARTCLK, 0); u8500_prcmu_hw_clks.hws[PRCMU_MSP02CLK] = clk_reg_prcmu_gate("msp02clk", NULL, PRCMU_MSP02CLK, 0); u8500_prcmu_hw_clks.hws[PRCMU_MSP1CLK] = clk_reg_prcmu_gate("msp1clk", NULL, PRCMU_MSP1CLK, 0); u8500_prcmu_hw_clks.hws[PRCMU_I2CCLK] = clk_reg_prcmu_gate("i2cclk", NULL, PRCMU_I2CCLK, 0); u8500_prcmu_hw_clks.hws[PRCMU_SLIMCLK] = clk_reg_prcmu_gate("slimclk", NULL, PRCMU_SLIMCLK, 0); u8500_prcmu_hw_clks.hws[PRCMU_PER1CLK] = clk_reg_prcmu_gate("per1clk", NULL, PRCMU_PER1CLK, 0); u8500_prcmu_hw_clks.hws[PRCMU_PER2CLK] = clk_reg_prcmu_gate("per2clk", NULL, PRCMU_PER2CLK, 0); u8500_prcmu_hw_clks.hws[PRCMU_PER3CLK] = clk_reg_prcmu_gate("per3clk", NULL, PRCMU_PER3CLK, 0); u8500_prcmu_hw_clks.hws[PRCMU_PER5CLK] = clk_reg_prcmu_gate("per5clk", NULL, PRCMU_PER5CLK, 0); u8500_prcmu_hw_clks.hws[PRCMU_PER6CLK] = clk_reg_prcmu_gate("per6clk", NULL, PRCMU_PER6CLK, 0); u8500_prcmu_hw_clks.hws[PRCMU_PER7CLK] = clk_reg_prcmu_gate("per7clk", NULL, PRCMU_PER7CLK, 0); u8500_prcmu_hw_clks.hws[PRCMU_LCDCLK] = clk_reg_prcmu_scalable("lcdclk", NULL, PRCMU_LCDCLK, 0, CLK_SET_RATE_GATE); u8500_prcmu_hw_clks.hws[PRCMU_BMLCLK] = clk_reg_prcmu_opp_gate("bmlclk", NULL, PRCMU_BMLCLK, 0); u8500_prcmu_hw_clks.hws[PRCMU_HSITXCLK] = clk_reg_prcmu_scalable("hsitxclk", NULL, PRCMU_HSITXCLK, 0, CLK_SET_RATE_GATE); u8500_prcmu_hw_clks.hws[PRCMU_HSIRXCLK] = clk_reg_prcmu_scalable("hsirxclk", NULL, PRCMU_HSIRXCLK, 0, CLK_SET_RATE_GATE); u8500_prcmu_hw_clks.hws[PRCMU_HDMICLK] = clk_reg_prcmu_scalable("hdmiclk", NULL, PRCMU_HDMICLK, 0, CLK_SET_RATE_GATE); u8500_prcmu_hw_clks.hws[PRCMU_APEATCLK] = clk_reg_prcmu_gate("apeatclk", NULL, PRCMU_APEATCLK, 0); u8500_prcmu_hw_clks.hws[PRCMU_APETRACECLK] = clk_reg_prcmu_scalable("apetraceclk", NULL, PRCMU_APETRACECLK, 0, CLK_SET_RATE_GATE); u8500_prcmu_hw_clks.hws[PRCMU_MCDECLK] = clk_reg_prcmu_gate("mcdeclk", NULL, PRCMU_MCDECLK, 0); u8500_prcmu_hw_clks.hws[PRCMU_IPI2CCLK] = clk_reg_prcmu_opp_gate("ipi2cclk", NULL, PRCMU_IPI2CCLK, 0); u8500_prcmu_hw_clks.hws[PRCMU_DSIALTCLK] = clk_reg_prcmu_gate("dsialtclk", NULL, PRCMU_DSIALTCLK, 0); u8500_prcmu_hw_clks.hws[PRCMU_DMACLK] = clk_reg_prcmu_gate("dmaclk", NULL, PRCMU_DMACLK, 0); u8500_prcmu_hw_clks.hws[PRCMU_B2R2CLK] = clk_reg_prcmu_gate("b2r2clk", NULL, PRCMU_B2R2CLK, 0); u8500_prcmu_hw_clks.hws[PRCMU_TVCLK] = clk_reg_prcmu_scalable("tvclk", NULL, PRCMU_TVCLK, 0, CLK_SET_RATE_GATE); u8500_prcmu_hw_clks.hws[PRCMU_SSPCLK] = clk_reg_prcmu_gate("sspclk", NULL, PRCMU_SSPCLK, 0); u8500_prcmu_hw_clks.hws[PRCMU_RNGCLK] = clk_reg_prcmu_gate("rngclk", NULL, PRCMU_RNGCLK, 0); u8500_prcmu_hw_clks.hws[PRCMU_UICCCLK] = clk_reg_prcmu_gate("uiccclk", NULL, PRCMU_UICCCLK, 0); u8500_prcmu_hw_clks.hws[PRCMU_TIMCLK] = clk_reg_prcmu_gate("timclk", NULL, PRCMU_TIMCLK, 0); u8500_prcmu_hw_clks.hws[PRCMU_SYSCLK] = clk_reg_prcmu_gate("ab8500_sysclk", NULL, PRCMU_SYSCLK, 0); u8500_prcmu_hw_clks.hws[PRCMU_SDMMCCLK] = clk_reg_prcmu_opp_volt_scalable("sdmmcclk", NULL, PRCMU_SDMMCCLK, 100000000, CLK_SET_RATE_GATE); u8500_prcmu_hw_clks.hws[PRCMU_PLLDSI] = clk_reg_prcmu_scalable("dsi_pll", "hdmiclk", PRCMU_PLLDSI, 0, CLK_SET_RATE_GATE); u8500_prcmu_hw_clks.hws[PRCMU_DSI0CLK] = clk_reg_prcmu_scalable("dsi0clk", "dsi_pll", PRCMU_DSI0CLK, 0, CLK_SET_RATE_GATE); u8500_prcmu_hw_clks.hws[PRCMU_DSI1CLK] = clk_reg_prcmu_scalable("dsi1clk", "dsi_pll", PRCMU_DSI1CLK, 0, CLK_SET_RATE_GATE); u8500_prcmu_hw_clks.hws[PRCMU_DSI0ESCCLK] = clk_reg_prcmu_scalable("dsi0escclk", "tvclk", PRCMU_DSI0ESCCLK, 0, CLK_SET_RATE_GATE); u8500_prcmu_hw_clks.hws[PRCMU_DSI1ESCCLK] = clk_reg_prcmu_scalable("dsi1escclk", "tvclk", PRCMU_DSI1ESCCLK, 0, CLK_SET_RATE_GATE); u8500_prcmu_hw_clks.hws[PRCMU_DSI2ESCCLK] = clk_reg_prcmu_scalable("dsi2escclk", "tvclk", PRCMU_DSI2ESCCLK, 0, CLK_SET_RATE_GATE); u8500_prcmu_hw_clks.hws[PRCMU_ARMSS] = clk_reg_prcmu_scalable_rate("armss", NULL, PRCMU_ARMSS, 0, CLK_IGNORE_UNUSED); twd_clk = clk_register_fixed_factor(NULL, "smp_twd", "armss", CLK_IGNORE_UNUSED, 1, 2); /* PRCC P-clocks */ clk = clk_reg_prcc_pclk("p1_pclk0", "per1clk", bases[CLKRST1_INDEX], BIT(0), 0); PRCC_PCLK_STORE(clk, 1, 0); clk = clk_reg_prcc_pclk("p1_pclk1", "per1clk", bases[CLKRST1_INDEX], BIT(1), 0); PRCC_PCLK_STORE(clk, 1, 1); clk = clk_reg_prcc_pclk("p1_pclk2", "per1clk", bases[CLKRST1_INDEX], BIT(2), 0); PRCC_PCLK_STORE(clk, 1, 2); clk = clk_reg_prcc_pclk("p1_pclk3", "per1clk", bases[CLKRST1_INDEX], BIT(3), 0); PRCC_PCLK_STORE(clk, 1, 3); clk = clk_reg_prcc_pclk("p1_pclk4", "per1clk", bases[CLKRST1_INDEX], BIT(4), 0); PRCC_PCLK_STORE(clk, 1, 4); clk = clk_reg_prcc_pclk("p1_pclk5", "per1clk", bases[CLKRST1_INDEX], BIT(5), 0); PRCC_PCLK_STORE(clk, 1, 5); clk = clk_reg_prcc_pclk("p1_pclk6", "per1clk", bases[CLKRST1_INDEX], BIT(6), 0); PRCC_PCLK_STORE(clk, 1, 6); clk = clk_reg_prcc_pclk("p1_pclk7", "per1clk", bases[CLKRST1_INDEX], BIT(7), 0); PRCC_PCLK_STORE(clk, 1, 7); clk = clk_reg_prcc_pclk("p1_pclk8", "per1clk", bases[CLKRST1_INDEX], BIT(8), 0); PRCC_PCLK_STORE(clk, 1, 8); clk = clk_reg_prcc_pclk("p1_pclk9", "per1clk", bases[CLKRST1_INDEX], BIT(9), 0); PRCC_PCLK_STORE(clk, 1, 9); clk = clk_reg_prcc_pclk("p1_pclk10", "per1clk", bases[CLKRST1_INDEX], BIT(10), 0); PRCC_PCLK_STORE(clk, 1, 10); clk = clk_reg_prcc_pclk("p1_pclk11", "per1clk", bases[CLKRST1_INDEX], BIT(11), 0); PRCC_PCLK_STORE(clk, 1, 11); clk = clk_reg_prcc_pclk("p2_pclk0", "per2clk", bases[CLKRST2_INDEX], BIT(0), 0); PRCC_PCLK_STORE(clk, 2, 0); clk = clk_reg_prcc_pclk("p2_pclk1", "per2clk", bases[CLKRST2_INDEX], BIT(1), 0); PRCC_PCLK_STORE(clk, 2, 1); clk = clk_reg_prcc_pclk("p2_pclk2", "per2clk", bases[CLKRST2_INDEX], BIT(2), 0); PRCC_PCLK_STORE(clk, 2, 2); clk = clk_reg_prcc_pclk("p2_pclk3", "per2clk", bases[CLKRST2_INDEX], BIT(3), 0); PRCC_PCLK_STORE(clk, 2, 3); clk = clk_reg_prcc_pclk("p2_pclk4", "per2clk", bases[CLKRST2_INDEX], BIT(4), 0); PRCC_PCLK_STORE(clk, 2, 4); clk = clk_reg_prcc_pclk("p2_pclk5", "per2clk", bases[CLKRST2_INDEX], BIT(5), 0); PRCC_PCLK_STORE(clk, 2, 5); clk = clk_reg_prcc_pclk("p2_pclk6", "per2clk", bases[CLKRST2_INDEX], BIT(6), 0); PRCC_PCLK_STORE(clk, 2, 6); clk = clk_reg_prcc_pclk("p2_pclk7", "per2clk", bases[CLKRST2_INDEX], BIT(7), 0); PRCC_PCLK_STORE(clk, 2, 7); clk = clk_reg_prcc_pclk("p2_pclk8", "per2clk", bases[CLKRST2_INDEX], BIT(8), 0); PRCC_PCLK_STORE(clk, 2, 8); clk = clk_reg_prcc_pclk("p2_pclk9", "per2clk", bases[CLKRST2_INDEX], BIT(9), 0); PRCC_PCLK_STORE(clk, 2, 9); clk = clk_reg_prcc_pclk("p2_pclk10", "per2clk", bases[CLKRST2_INDEX], BIT(10), 0); PRCC_PCLK_STORE(clk, 2, 10); clk = clk_reg_prcc_pclk("p2_pclk11", "per2clk", bases[CLKRST2_INDEX], BIT(11), 0); PRCC_PCLK_STORE(clk, 2, 11); clk = clk_reg_prcc_pclk("p2_pclk12", "per2clk", bases[CLKRST2_INDEX], BIT(12), 0); PRCC_PCLK_STORE(clk, 2, 12); clk = clk_reg_prcc_pclk("p3_pclk0", "per3clk", bases[CLKRST3_INDEX], BIT(0), 0); PRCC_PCLK_STORE(clk, 3, 0); clk = clk_reg_prcc_pclk("p3_pclk1", "per3clk", bases[CLKRST3_INDEX], BIT(1), 0); PRCC_PCLK_STORE(clk, 3, 1); clk = clk_reg_prcc_pclk("p3_pclk2", "per3clk", bases[CLKRST3_INDEX], BIT(2), 0); PRCC_PCLK_STORE(clk, 3, 2); clk = clk_reg_prcc_pclk("p3_pclk3", "per3clk", bases[CLKRST3_INDEX], BIT(3), 0); PRCC_PCLK_STORE(clk, 3, 3); clk = clk_reg_prcc_pclk("p3_pclk4", "per3clk", bases[CLKRST3_INDEX], BIT(4), 0); PRCC_PCLK_STORE(clk, 3, 4); clk = clk_reg_prcc_pclk("p3_pclk5", "per3clk", bases[CLKRST3_INDEX], BIT(5), 0); PRCC_PCLK_STORE(clk, 3, 5); clk = clk_reg_prcc_pclk("p3_pclk6", "per3clk", bases[CLKRST3_INDEX], BIT(6), 0); PRCC_PCLK_STORE(clk, 3, 6); clk = clk_reg_prcc_pclk("p3_pclk7", "per3clk", bases[CLKRST3_INDEX], BIT(7), 0); PRCC_PCLK_STORE(clk, 3, 7); clk = clk_reg_prcc_pclk("p3_pclk8", "per3clk", bases[CLKRST3_INDEX], BIT(8), 0); PRCC_PCLK_STORE(clk, 3, 8); clk = clk_reg_prcc_pclk("p5_pclk0", "per5clk", bases[CLKRST5_INDEX], BIT(0), 0); PRCC_PCLK_STORE(clk, 5, 0); clk = clk_reg_prcc_pclk("p5_pclk1", "per5clk", bases[CLKRST5_INDEX], BIT(1), 0); PRCC_PCLK_STORE(clk, 5, 1); clk = clk_reg_prcc_pclk("p6_pclk0", "per6clk", bases[CLKRST6_INDEX], BIT(0), 0); PRCC_PCLK_STORE(clk, 6, 0); clk = clk_reg_prcc_pclk("p6_pclk1", "per6clk", bases[CLKRST6_INDEX], BIT(1), 0); PRCC_PCLK_STORE(clk, 6, 1); clk = clk_reg_prcc_pclk("p6_pclk2", "per6clk", bases[CLKRST6_INDEX], BIT(2), 0); PRCC_PCLK_STORE(clk, 6, 2); clk = clk_reg_prcc_pclk("p6_pclk3", "per6clk", bases[CLKRST6_INDEX], BIT(3), 0); PRCC_PCLK_STORE(clk, 6, 3); clk = clk_reg_prcc_pclk("p6_pclk4", "per6clk", bases[CLKRST6_INDEX], BIT(4), 0); PRCC_PCLK_STORE(clk, 6, 4); clk = clk_reg_prcc_pclk("p6_pclk5", "per6clk", bases[CLKRST6_INDEX], BIT(5), 0); PRCC_PCLK_STORE(clk, 6, 5); clk = clk_reg_prcc_pclk("p6_pclk6", "per6clk", bases[CLKRST6_INDEX], BIT(6), 0); PRCC_PCLK_STORE(clk, 6, 6); clk = clk_reg_prcc_pclk("p6_pclk7", "per6clk", bases[CLKRST6_INDEX], BIT(7), 0); PRCC_PCLK_STORE(clk, 6, 7); /* PRCC K-clocks * * FIXME: Some drivers requires PERPIH[n| to be automatically enabled * by enabling just the K-clock, even if it is not a valid parent to * the K-clock. Until drivers get fixed we might need some kind of * "parent muxed join". */ /* Periph1 */ clk = clk_reg_prcc_kclk("p1_uart0_kclk", "uartclk", bases[CLKRST1_INDEX], BIT(0), CLK_SET_RATE_GATE); PRCC_KCLK_STORE(clk, 1, 0); clk = clk_reg_prcc_kclk("p1_uart1_kclk", "uartclk", bases[CLKRST1_INDEX], BIT(1), CLK_SET_RATE_GATE); PRCC_KCLK_STORE(clk, 1, 1); clk = clk_reg_prcc_kclk("p1_i2c1_kclk", "i2cclk", bases[CLKRST1_INDEX], BIT(2), CLK_SET_RATE_GATE); PRCC_KCLK_STORE(clk, 1, 2); clk = clk_reg_prcc_kclk("p1_msp0_kclk", "msp02clk", bases[CLKRST1_INDEX], BIT(3), CLK_SET_RATE_GATE); PRCC_KCLK_STORE(clk, 1, 3); clk = clk_reg_prcc_kclk("p1_msp1_kclk", "msp1clk", bases[CLKRST1_INDEX], BIT(4), CLK_SET_RATE_GATE); PRCC_KCLK_STORE(clk, 1, 4); clk = clk_reg_prcc_kclk("p1_sdi0_kclk", "sdmmcclk", bases[CLKRST1_INDEX], BIT(5), CLK_SET_RATE_GATE); PRCC_KCLK_STORE(clk, 1, 5); clk = clk_reg_prcc_kclk("p1_i2c2_kclk", "i2cclk", bases[CLKRST1_INDEX], BIT(6), CLK_SET_RATE_GATE); PRCC_KCLK_STORE(clk, 1, 6); clk = clk_reg_prcc_kclk("p1_slimbus0_kclk", "slimclk", bases[CLKRST1_INDEX], BIT(8), CLK_SET_RATE_GATE); PRCC_KCLK_STORE(clk, 1, 8); clk = clk_reg_prcc_kclk("p1_i2c4_kclk", "i2cclk", bases[CLKRST1_INDEX], BIT(9), CLK_SET_RATE_GATE); PRCC_KCLK_STORE(clk, 1, 9); clk = clk_reg_prcc_kclk("p1_msp3_kclk", "msp1clk", bases[CLKRST1_INDEX], BIT(10), CLK_SET_RATE_GATE); PRCC_KCLK_STORE(clk, 1, 10); /* Periph2 */ clk = clk_reg_prcc_kclk("p2_i2c3_kclk", "i2cclk", bases[CLKRST2_INDEX], BIT(0), CLK_SET_RATE_GATE); PRCC_KCLK_STORE(clk, 2, 0); clk = clk_reg_prcc_kclk("p2_sdi4_kclk", "sdmmcclk", bases[CLKRST2_INDEX], BIT(2), CLK_SET_RATE_GATE); PRCC_KCLK_STORE(clk, 2, 2); clk = clk_reg_prcc_kclk("p2_msp2_kclk", "msp02clk", bases[CLKRST2_INDEX], BIT(3), CLK_SET_RATE_GATE); PRCC_KCLK_STORE(clk, 2, 3); clk = clk_reg_prcc_kclk("p2_sdi1_kclk", "sdmmcclk", bases[CLKRST2_INDEX], BIT(4), CLK_SET_RATE_GATE); PRCC_KCLK_STORE(clk, 2, 4); clk = clk_reg_prcc_kclk("p2_sdi3_kclk", "sdmmcclk", bases[CLKRST2_INDEX], BIT(5), CLK_SET_RATE_GATE); PRCC_KCLK_STORE(clk, 2, 5); /* Note that rate is received from parent. */ clk = clk_reg_prcc_kclk("p2_ssirx_kclk", "hsirxclk", bases[CLKRST2_INDEX], BIT(6), CLK_SET_RATE_GATE|CLK_SET_RATE_PARENT); PRCC_KCLK_STORE(clk, 2, 6); clk = clk_reg_prcc_kclk("p2_ssitx_kclk", "hsitxclk", bases[CLKRST2_INDEX], BIT(7), CLK_SET_RATE_GATE|CLK_SET_RATE_PARENT); PRCC_KCLK_STORE(clk, 2, 7); /* Periph3 */ clk = clk_reg_prcc_kclk("p3_ssp0_kclk", "sspclk", bases[CLKRST3_INDEX], BIT(1), CLK_SET_RATE_GATE); PRCC_KCLK_STORE(clk, 3, 1); clk = clk_reg_prcc_kclk("p3_ssp1_kclk", "sspclk", bases[CLKRST3_INDEX], BIT(2), CLK_SET_RATE_GATE); PRCC_KCLK_STORE(clk, 3, 2); clk = clk_reg_prcc_kclk("p3_i2c0_kclk", "i2cclk", bases[CLKRST3_INDEX], BIT(3), CLK_SET_RATE_GATE); PRCC_KCLK_STORE(clk, 3, 3); clk = clk_reg_prcc_kclk("p3_sdi2_kclk", "sdmmcclk", bases[CLKRST3_INDEX], BIT(4), CLK_SET_RATE_GATE); PRCC_KCLK_STORE(clk, 3, 4); clk = clk_reg_prcc_kclk("p3_ske_kclk", "rtc32k", bases[CLKRST3_INDEX], BIT(5), CLK_SET_RATE_GATE); PRCC_KCLK_STORE(clk, 3, 5); clk = clk_reg_prcc_kclk("p3_uart2_kclk", "uartclk", bases[CLKRST3_INDEX], BIT(6), CLK_SET_RATE_GATE); PRCC_KCLK_STORE(clk, 3, 6); clk = clk_reg_prcc_kclk("p3_sdi5_kclk", "sdmmcclk", bases[CLKRST3_INDEX], BIT(7), CLK_SET_RATE_GATE); PRCC_KCLK_STORE(clk, 3, 7); /* Periph6 */ clk = clk_reg_prcc_kclk("p3_rng_kclk", "rngclk", bases[CLKRST6_INDEX], BIT(0), CLK_SET_RATE_GATE); PRCC_KCLK_STORE(clk, 6, 0); for_each_child_of_node(np, child) { if (of_node_name_eq(child, "prcmu-clock")) of_clk_add_hw_provider(child, of_clk_hw_onecell_get, &u8500_prcmu_hw_clks); if (of_node_name_eq(child, "clkout-clock")) of_clk_add_hw_provider(child, ux500_clkout_get, NULL); if (of_node_name_eq(child, "prcc-periph-clock")) of_clk_add_provider(child, ux500_twocell_get, prcc_pclk); if (of_node_name_eq(child, "prcc-kernel-clock")) of_clk_add_provider(child, ux500_twocell_get, prcc_kclk); if (of_node_name_eq(child, "rtc32k-clock")) of_clk_add_provider(child, of_clk_src_simple_get, rtc_clk); if (of_node_name_eq(child, "smp-twd-clock")) of_clk_add_provider(child, of_clk_src_simple_get, twd_clk); if (of_node_name_eq(child, "prcc-reset-controller")) u8500_prcc_reset_init(child, rstc); } } CLK_OF_DECLARE(u8500_clks, "stericsson,u8500-clks", u8500_clk_init);
linux-master
drivers/clk/ux500/u8500_of_clk.c
// SPDX-License-Identifier: GPL-2.0-only /* * PRCMU clock implementation for ux500 platform. * * Copyright (C) 2012 ST-Ericsson SA * Author: Ulf Hansson <[email protected]> */ #include <linux/clk-provider.h> #include <linux/mfd/dbx500-prcmu.h> #include <linux/slab.h> #include <linux/io.h> #include <linux/err.h> #include "clk.h" #define to_clk_prcmu(_hw) container_of(_hw, struct clk_prcmu, hw) #define to_clk_prcmu_clkout(_hw) container_of(_hw, struct clk_prcmu_clkout, hw) struct clk_prcmu { struct clk_hw hw; u8 cg_sel; int opp_requested; }; struct clk_prcmu_clkout { struct clk_hw hw; u8 clkout_id; u8 source; u8 divider; }; /* PRCMU clock operations. */ static int clk_prcmu_prepare(struct clk_hw *hw) { struct clk_prcmu *clk = to_clk_prcmu(hw); return prcmu_request_clock(clk->cg_sel, true); } static void clk_prcmu_unprepare(struct clk_hw *hw) { struct clk_prcmu *clk = to_clk_prcmu(hw); if (prcmu_request_clock(clk->cg_sel, false)) pr_err("clk_prcmu: %s failed to disable %s.\n", __func__, clk_hw_get_name(hw)); } static unsigned long clk_prcmu_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_prcmu *clk = to_clk_prcmu(hw); return prcmu_clock_rate(clk->cg_sel); } static long clk_prcmu_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { struct clk_prcmu *clk = to_clk_prcmu(hw); return prcmu_round_clock_rate(clk->cg_sel, rate); } static int clk_prcmu_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_prcmu *clk = to_clk_prcmu(hw); return prcmu_set_clock_rate(clk->cg_sel, rate); } static int clk_prcmu_opp_prepare(struct clk_hw *hw) { int err; struct clk_prcmu *clk = to_clk_prcmu(hw); if (!clk->opp_requested) { err = prcmu_qos_add_requirement(PRCMU_QOS_APE_OPP, (char *)clk_hw_get_name(hw), 100); if (err) { pr_err("clk_prcmu: %s fail req APE OPP for %s.\n", __func__, clk_hw_get_name(hw)); return err; } clk->opp_requested = 1; } err = prcmu_request_clock(clk->cg_sel, true); if (err) { prcmu_qos_remove_requirement(PRCMU_QOS_APE_OPP, (char *)clk_hw_get_name(hw)); clk->opp_requested = 0; return err; } return 0; } static void clk_prcmu_opp_unprepare(struct clk_hw *hw) { struct clk_prcmu *clk = to_clk_prcmu(hw); if (prcmu_request_clock(clk->cg_sel, false)) { pr_err("clk_prcmu: %s failed to disable %s.\n", __func__, clk_hw_get_name(hw)); return; } if (clk->opp_requested) { prcmu_qos_remove_requirement(PRCMU_QOS_APE_OPP, (char *)clk_hw_get_name(hw)); clk->opp_requested = 0; } } static int clk_prcmu_opp_volt_prepare(struct clk_hw *hw) { int err; struct clk_prcmu *clk = to_clk_prcmu(hw); if (!clk->opp_requested) { err = prcmu_request_ape_opp_100_voltage(true); if (err) { pr_err("clk_prcmu: %s fail req APE OPP VOLT for %s.\n", __func__, clk_hw_get_name(hw)); return err; } clk->opp_requested = 1; } err = prcmu_request_clock(clk->cg_sel, true); if (err) { prcmu_request_ape_opp_100_voltage(false); clk->opp_requested = 0; return err; } return 0; } static void clk_prcmu_opp_volt_unprepare(struct clk_hw *hw) { struct clk_prcmu *clk = to_clk_prcmu(hw); if (prcmu_request_clock(clk->cg_sel, false)) { pr_err("clk_prcmu: %s failed to disable %s.\n", __func__, clk_hw_get_name(hw)); return; } if (clk->opp_requested) { prcmu_request_ape_opp_100_voltage(false); clk->opp_requested = 0; } } static const struct clk_ops clk_prcmu_scalable_ops = { .prepare = clk_prcmu_prepare, .unprepare = clk_prcmu_unprepare, .recalc_rate = clk_prcmu_recalc_rate, .round_rate = clk_prcmu_round_rate, .set_rate = clk_prcmu_set_rate, }; static const struct clk_ops clk_prcmu_gate_ops = { .prepare = clk_prcmu_prepare, .unprepare = clk_prcmu_unprepare, .recalc_rate = clk_prcmu_recalc_rate, }; static const struct clk_ops clk_prcmu_scalable_rate_ops = { .recalc_rate = clk_prcmu_recalc_rate, .round_rate = clk_prcmu_round_rate, .set_rate = clk_prcmu_set_rate, }; static const struct clk_ops clk_prcmu_rate_ops = { .recalc_rate = clk_prcmu_recalc_rate, }; static const struct clk_ops clk_prcmu_opp_gate_ops = { .prepare = clk_prcmu_opp_prepare, .unprepare = clk_prcmu_opp_unprepare, .recalc_rate = clk_prcmu_recalc_rate, }; static const struct clk_ops clk_prcmu_opp_volt_scalable_ops = { .prepare = clk_prcmu_opp_volt_prepare, .unprepare = clk_prcmu_opp_volt_unprepare, .recalc_rate = clk_prcmu_recalc_rate, .round_rate = clk_prcmu_round_rate, .set_rate = clk_prcmu_set_rate, }; static struct clk_hw *clk_reg_prcmu(const char *name, const char *parent_name, u8 cg_sel, unsigned long rate, unsigned long flags, const struct clk_ops *clk_prcmu_ops) { struct clk_prcmu *clk; struct clk_init_data clk_prcmu_init; int ret; if (!name) { pr_err("clk_prcmu: %s invalid arguments passed\n", __func__); return ERR_PTR(-EINVAL); } clk = kzalloc(sizeof(*clk), GFP_KERNEL); if (!clk) return ERR_PTR(-ENOMEM); clk->cg_sel = cg_sel; clk->opp_requested = 0; /* "rate" can be used for changing the initial frequency */ if (rate) prcmu_set_clock_rate(cg_sel, rate); clk_prcmu_init.name = name; clk_prcmu_init.ops = clk_prcmu_ops; clk_prcmu_init.flags = flags; clk_prcmu_init.parent_names = (parent_name ? &parent_name : NULL); clk_prcmu_init.num_parents = (parent_name ? 1 : 0); clk->hw.init = &clk_prcmu_init; ret = clk_hw_register(NULL, &clk->hw); if (ret) goto free_clk; return &clk->hw; free_clk: kfree(clk); pr_err("clk_prcmu: %s failed to register clk\n", __func__); return ERR_PTR(-ENOMEM); } struct clk_hw *clk_reg_prcmu_scalable(const char *name, const char *parent_name, u8 cg_sel, unsigned long rate, unsigned long flags) { return clk_reg_prcmu(name, parent_name, cg_sel, rate, flags, &clk_prcmu_scalable_ops); } struct clk_hw *clk_reg_prcmu_gate(const char *name, const char *parent_name, u8 cg_sel, unsigned long flags) { return clk_reg_prcmu(name, parent_name, cg_sel, 0, flags, &clk_prcmu_gate_ops); } struct clk_hw *clk_reg_prcmu_scalable_rate(const char *name, const char *parent_name, u8 cg_sel, unsigned long rate, unsigned long flags) { return clk_reg_prcmu(name, parent_name, cg_sel, rate, flags, &clk_prcmu_scalable_rate_ops); } struct clk_hw *clk_reg_prcmu_rate(const char *name, const char *parent_name, u8 cg_sel, unsigned long flags) { return clk_reg_prcmu(name, parent_name, cg_sel, 0, flags, &clk_prcmu_rate_ops); } struct clk_hw *clk_reg_prcmu_opp_gate(const char *name, const char *parent_name, u8 cg_sel, unsigned long flags) { return clk_reg_prcmu(name, parent_name, cg_sel, 0, flags, &clk_prcmu_opp_gate_ops); } struct clk_hw *clk_reg_prcmu_opp_volt_scalable(const char *name, const char *parent_name, u8 cg_sel, unsigned long rate, unsigned long flags) { return clk_reg_prcmu(name, parent_name, cg_sel, rate, flags, &clk_prcmu_opp_volt_scalable_ops); } /* The clkout (external) clock is special and need special ops */ static int clk_prcmu_clkout_prepare(struct clk_hw *hw) { struct clk_prcmu_clkout *clk = to_clk_prcmu_clkout(hw); return prcmu_config_clkout(clk->clkout_id, clk->source, clk->divider); } static void clk_prcmu_clkout_unprepare(struct clk_hw *hw) { struct clk_prcmu_clkout *clk = to_clk_prcmu_clkout(hw); int ret; /* The clkout clock is disabled by dividing by 0 */ ret = prcmu_config_clkout(clk->clkout_id, clk->source, 0); if (ret) pr_err("clk_prcmu: %s failed to disable %s\n", __func__, clk_hw_get_name(hw)); } static unsigned long clk_prcmu_clkout_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_prcmu_clkout *clk = to_clk_prcmu_clkout(hw); return (parent_rate / clk->divider); } static u8 clk_prcmu_clkout_get_parent(struct clk_hw *hw) { struct clk_prcmu_clkout *clk = to_clk_prcmu_clkout(hw); return clk->source; } static int clk_prcmu_clkout_set_parent(struct clk_hw *hw, u8 index) { struct clk_prcmu_clkout *clk = to_clk_prcmu_clkout(hw); clk->source = index; /* Make sure the change reaches the hardware immediately */ if (clk_hw_is_prepared(hw)) return clk_prcmu_clkout_prepare(hw); return 0; } static const struct clk_ops clk_prcmu_clkout_ops = { .prepare = clk_prcmu_clkout_prepare, .unprepare = clk_prcmu_clkout_unprepare, .recalc_rate = clk_prcmu_clkout_recalc_rate, .determine_rate = clk_hw_determine_rate_no_reparent, .get_parent = clk_prcmu_clkout_get_parent, .set_parent = clk_prcmu_clkout_set_parent, }; struct clk_hw *clk_reg_prcmu_clkout(const char *name, const char * const *parent_names, int num_parents, u8 source, u8 divider) { struct clk_prcmu_clkout *clk; struct clk_init_data clk_prcmu_clkout_init; u8 clkout_id; int ret; if (!name) { pr_err("clk_prcmu_clkout: %s invalid arguments passed\n", __func__); return ERR_PTR(-EINVAL); } if (!strcmp(name, "clkout1")) clkout_id = 0; else if (!strcmp(name, "clkout2")) clkout_id = 1; else { pr_err("clk_prcmu_clkout: %s bad clock name\n", __func__); return ERR_PTR(-EINVAL); } clk = kzalloc(sizeof(*clk), GFP_KERNEL); if (!clk) return ERR_PTR(-ENOMEM); clk->clkout_id = clkout_id; clk->source = source; clk->divider = divider; clk_prcmu_clkout_init.name = name; clk_prcmu_clkout_init.ops = &clk_prcmu_clkout_ops; clk_prcmu_clkout_init.flags = CLK_GET_RATE_NOCACHE; clk_prcmu_clkout_init.parent_names = parent_names; clk_prcmu_clkout_init.num_parents = num_parents; clk->hw.init = &clk_prcmu_clkout_init; ret = clk_hw_register(NULL, &clk->hw); if (ret) goto free_clkout; return &clk->hw; free_clkout: kfree(clk); pr_err("clk_prcmu_clkout: %s failed to register clk\n", __func__); return ERR_PTR(-ENOMEM); }
linux-master
drivers/clk/ux500/clk-prcmu.c
// SPDX-License-Identifier: GPL-2.0-only /* * Reset controller portions for the U8500 PRCC * Copyright (C) 2021 Linus Walleij <[email protected]> */ #include <linux/of.h> #include <linux/of_address.h> #include <linux/slab.h> #include <linux/io.h> #include <linux/err.h> #include <linux/types.h> #include <linux/reset-controller.h> #include <linux/bits.h> #include <linux/delay.h> #include "prcc.h" #include "reset-prcc.h" #define to_u8500_prcc_reset(p) container_of((p), struct u8500_prcc_reset, rcdev) /* This macro flattens the 2-dimensional PRCC numberspace */ #define PRCC_RESET_LINE(prcc_num, bit) \ (((prcc_num) * PRCC_PERIPHS_PER_CLUSTER) + (bit)) /* * Reset registers in each PRCC - the reset lines are active low * so what you need to do is write a bit for the peripheral you * want to put into reset into the CLEAR register, this will assert * the reset by pulling the line low. SET take the device out of * reset. The status reflects the actual state of the line. */ #define PRCC_K_SOFTRST_SET 0x018 #define PRCC_K_SOFTRST_CLEAR 0x01c #define PRCC_K_RST_STATUS 0x020 static int prcc_num_to_index(unsigned int num) { switch (num) { case 1: return CLKRST1_INDEX; case 2: return CLKRST2_INDEX; case 3: return CLKRST3_INDEX; case 5: return CLKRST5_INDEX; case 6: return CLKRST6_INDEX; } return -EINVAL; } static void __iomem *u8500_prcc_reset_base(struct u8500_prcc_reset *ur, unsigned long id) { unsigned int prcc_num, index; prcc_num = id / PRCC_PERIPHS_PER_CLUSTER; index = prcc_num_to_index(prcc_num); if (index >= ARRAY_SIZE(ur->base)) return NULL; return ur->base[index]; } static int u8500_prcc_reset(struct reset_controller_dev *rcdev, unsigned long id) { struct u8500_prcc_reset *ur = to_u8500_prcc_reset(rcdev); void __iomem *base = u8500_prcc_reset_base(ur, id); unsigned int bit = id % PRCC_PERIPHS_PER_CLUSTER; pr_debug("PRCC cycle reset id %lu, bit %u\n", id, bit); /* * Assert reset and then release it. The one microsecond * delay is found in the vendor reference code. */ writel(BIT(bit), base + PRCC_K_SOFTRST_CLEAR); udelay(1); writel(BIT(bit), base + PRCC_K_SOFTRST_SET); udelay(1); return 0; } static int u8500_prcc_reset_assert(struct reset_controller_dev *rcdev, unsigned long id) { struct u8500_prcc_reset *ur = to_u8500_prcc_reset(rcdev); void __iomem *base = u8500_prcc_reset_base(ur, id); unsigned int bit = id % PRCC_PERIPHS_PER_CLUSTER; pr_debug("PRCC assert reset id %lu, bit %u\n", id, bit); writel(BIT(bit), base + PRCC_K_SOFTRST_CLEAR); return 0; } static int u8500_prcc_reset_deassert(struct reset_controller_dev *rcdev, unsigned long id) { struct u8500_prcc_reset *ur = to_u8500_prcc_reset(rcdev); void __iomem *base = u8500_prcc_reset_base(ur, id); unsigned int bit = id % PRCC_PERIPHS_PER_CLUSTER; pr_debug("PRCC deassert reset id %lu, bit %u\n", id, bit); writel(BIT(bit), base + PRCC_K_SOFTRST_SET); return 0; } static int u8500_prcc_reset_status(struct reset_controller_dev *rcdev, unsigned long id) { struct u8500_prcc_reset *ur = to_u8500_prcc_reset(rcdev); void __iomem *base = u8500_prcc_reset_base(ur, id); unsigned int bit = id % PRCC_PERIPHS_PER_CLUSTER; u32 val; pr_debug("PRCC check status on reset line id %lu, bit %u\n", id, bit); val = readl(base + PRCC_K_RST_STATUS); /* Active low so return the inverse value of the bit */ return !(val & BIT(bit)); } static const struct reset_control_ops u8500_prcc_reset_ops = { .reset = u8500_prcc_reset, .assert = u8500_prcc_reset_assert, .deassert = u8500_prcc_reset_deassert, .status = u8500_prcc_reset_status, }; static int u8500_prcc_reset_xlate(struct reset_controller_dev *rcdev, const struct of_phandle_args *reset_spec) { unsigned int prcc_num, bit; if (reset_spec->args_count != 2) return -EINVAL; prcc_num = reset_spec->args[0]; bit = reset_spec->args[1]; if (prcc_num != 1 && prcc_num != 2 && prcc_num != 3 && prcc_num != 5 && prcc_num != 6) { pr_err("%s: invalid PRCC %d\n", __func__, prcc_num); return -EINVAL; } pr_debug("located reset line %d at PRCC %d bit %d\n", PRCC_RESET_LINE(prcc_num, bit), prcc_num, bit); return PRCC_RESET_LINE(prcc_num, bit); } void u8500_prcc_reset_init(struct device_node *np, struct u8500_prcc_reset *ur) { struct reset_controller_dev *rcdev = &ur->rcdev; int ret; int i; for (i = 0; i < CLKRST_MAX; i++) { ur->base[i] = ioremap(ur->phy_base[i], SZ_4K); if (!ur->base[i]) pr_err("PRCC failed to remap for reset base %d (%08x)\n", i, ur->phy_base[i]); } rcdev->owner = THIS_MODULE; rcdev->ops = &u8500_prcc_reset_ops; rcdev->of_node = np; rcdev->of_reset_n_cells = 2; rcdev->of_xlate = u8500_prcc_reset_xlate; ret = reset_controller_register(rcdev); if (ret) pr_err("PRCC failed to register reset controller\n"); }
linux-master
drivers/clk/ux500/reset-prcc.c
// SPDX-License-Identifier: GPL-2.0-only /* * PRCC clock implementation for ux500 platform. * * Copyright (C) 2012 ST-Ericsson SA * Author: Ulf Hansson <[email protected]> */ #include <linux/clk-provider.h> #include <linux/slab.h> #include <linux/io.h> #include <linux/err.h> #include <linux/types.h> #include "clk.h" #define PRCC_PCKEN 0x000 #define PRCC_PCKDIS 0x004 #define PRCC_KCKEN 0x008 #define PRCC_KCKDIS 0x00C #define PRCC_PCKSR 0x010 #define PRCC_KCKSR 0x014 #define to_clk_prcc(_hw) container_of(_hw, struct clk_prcc, hw) struct clk_prcc { struct clk_hw hw; void __iomem *base; u32 cg_sel; int is_enabled; }; /* PRCC clock operations. */ static int clk_prcc_pclk_enable(struct clk_hw *hw) { struct clk_prcc *clk = to_clk_prcc(hw); writel(clk->cg_sel, (clk->base + PRCC_PCKEN)); while (!(readl(clk->base + PRCC_PCKSR) & clk->cg_sel)) cpu_relax(); clk->is_enabled = 1; return 0; } static void clk_prcc_pclk_disable(struct clk_hw *hw) { struct clk_prcc *clk = to_clk_prcc(hw); writel(clk->cg_sel, (clk->base + PRCC_PCKDIS)); clk->is_enabled = 0; } static int clk_prcc_kclk_enable(struct clk_hw *hw) { struct clk_prcc *clk = to_clk_prcc(hw); writel(clk->cg_sel, (clk->base + PRCC_KCKEN)); while (!(readl(clk->base + PRCC_KCKSR) & clk->cg_sel)) cpu_relax(); clk->is_enabled = 1; return 0; } static void clk_prcc_kclk_disable(struct clk_hw *hw) { struct clk_prcc *clk = to_clk_prcc(hw); writel(clk->cg_sel, (clk->base + PRCC_KCKDIS)); clk->is_enabled = 0; } static int clk_prcc_is_enabled(struct clk_hw *hw) { struct clk_prcc *clk = to_clk_prcc(hw); return clk->is_enabled; } static const struct clk_ops clk_prcc_pclk_ops = { .enable = clk_prcc_pclk_enable, .disable = clk_prcc_pclk_disable, .is_enabled = clk_prcc_is_enabled, }; static const struct clk_ops clk_prcc_kclk_ops = { .enable = clk_prcc_kclk_enable, .disable = clk_prcc_kclk_disable, .is_enabled = clk_prcc_is_enabled, }; static struct clk *clk_reg_prcc(const char *name, const char *parent_name, resource_size_t phy_base, u32 cg_sel, unsigned long flags, const struct clk_ops *clk_prcc_ops) { struct clk_prcc *clk; struct clk_init_data clk_prcc_init; struct clk *clk_reg; if (!name) { pr_err("clk_prcc: %s invalid arguments passed\n", __func__); return ERR_PTR(-EINVAL); } clk = kzalloc(sizeof(*clk), GFP_KERNEL); if (!clk) return ERR_PTR(-ENOMEM); clk->base = ioremap(phy_base, SZ_4K); if (!clk->base) goto free_clk; clk->cg_sel = cg_sel; clk->is_enabled = 1; clk_prcc_init.name = name; clk_prcc_init.ops = clk_prcc_ops; clk_prcc_init.flags = flags; clk_prcc_init.parent_names = (parent_name ? &parent_name : NULL); clk_prcc_init.num_parents = (parent_name ? 1 : 0); clk->hw.init = &clk_prcc_init; clk_reg = clk_register(NULL, &clk->hw); if (IS_ERR_OR_NULL(clk_reg)) goto unmap_clk; return clk_reg; unmap_clk: iounmap(clk->base); free_clk: kfree(clk); pr_err("clk_prcc: %s failed to register clk\n", __func__); return ERR_PTR(-ENOMEM); } struct clk *clk_reg_prcc_pclk(const char *name, const char *parent_name, resource_size_t phy_base, u32 cg_sel, unsigned long flags) { return clk_reg_prcc(name, parent_name, phy_base, cg_sel, flags, &clk_prcc_pclk_ops); } struct clk *clk_reg_prcc_kclk(const char *name, const char *parent_name, resource_size_t phy_base, u32 cg_sel, unsigned long flags) { return clk_reg_prcc(name, parent_name, phy_base, cg_sel, flags, &clk_prcc_kclk_ops); }
linux-master
drivers/clk/ux500/clk-prcc.c
// SPDX-License-Identifier: GPL-2.0-only /* * Clk driver for NXP LPC18xx/LPC43xx Clock Generation Unit (CGU) * * Copyright (C) 2015 Joachim Eastwood <[email protected]> */ #include <linux/clk-provider.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/of.h> #include <linux/of_address.h> #include <dt-bindings/clock/lpc18xx-cgu.h> /* Clock Generation Unit (CGU) registers */ #define LPC18XX_CGU_XTAL_OSC_CTRL 0x018 #define LPC18XX_CGU_PLL0USB_STAT 0x01c #define LPC18XX_CGU_PLL0USB_CTRL 0x020 #define LPC18XX_CGU_PLL0USB_MDIV 0x024 #define LPC18XX_CGU_PLL0USB_NP_DIV 0x028 #define LPC18XX_CGU_PLL0AUDIO_STAT 0x02c #define LPC18XX_CGU_PLL0AUDIO_CTRL 0x030 #define LPC18XX_CGU_PLL0AUDIO_MDIV 0x034 #define LPC18XX_CGU_PLL0AUDIO_NP_DIV 0x038 #define LPC18XX_CGU_PLL0AUDIO_FRAC 0x03c #define LPC18XX_CGU_PLL1_STAT 0x040 #define LPC18XX_CGU_PLL1_CTRL 0x044 #define LPC18XX_PLL1_CTRL_FBSEL BIT(6) #define LPC18XX_PLL1_CTRL_DIRECT BIT(7) #define LPC18XX_CGU_IDIV_CTRL(n) (0x048 + (n) * sizeof(u32)) #define LPC18XX_CGU_BASE_CLK(id) (0x05c + (id) * sizeof(u32)) #define LPC18XX_CGU_PLL_CTRL_OFFSET 0x4 /* PLL0 bits common to both audio and USB PLL */ #define LPC18XX_PLL0_STAT_LOCK BIT(0) #define LPC18XX_PLL0_CTRL_PD BIT(0) #define LPC18XX_PLL0_CTRL_BYPASS BIT(1) #define LPC18XX_PLL0_CTRL_DIRECTI BIT(2) #define LPC18XX_PLL0_CTRL_DIRECTO BIT(3) #define LPC18XX_PLL0_CTRL_CLKEN BIT(4) #define LPC18XX_PLL0_MDIV_MDEC_MASK 0x1ffff #define LPC18XX_PLL0_MDIV_SELP_SHIFT 17 #define LPC18XX_PLL0_MDIV_SELI_SHIFT 22 #define LPC18XX_PLL0_MSEL_MAX BIT(15) /* Register value that gives PLL0 post/pre dividers equal to 1 */ #define LPC18XX_PLL0_NP_DIVS_1 0x00302062 enum { CLK_SRC_OSC32, CLK_SRC_IRC, CLK_SRC_ENET_RX_CLK, CLK_SRC_ENET_TX_CLK, CLK_SRC_GP_CLKIN, CLK_SRC_RESERVED1, CLK_SRC_OSC, CLK_SRC_PLL0USB, CLK_SRC_PLL0AUDIO, CLK_SRC_PLL1, CLK_SRC_RESERVED2, CLK_SRC_RESERVED3, CLK_SRC_IDIVA, CLK_SRC_IDIVB, CLK_SRC_IDIVC, CLK_SRC_IDIVD, CLK_SRC_IDIVE, CLK_SRC_MAX }; static const char *clk_src_names[CLK_SRC_MAX] = { [CLK_SRC_OSC32] = "osc32", [CLK_SRC_IRC] = "irc", [CLK_SRC_ENET_RX_CLK] = "enet_rx_clk", [CLK_SRC_ENET_TX_CLK] = "enet_tx_clk", [CLK_SRC_GP_CLKIN] = "gp_clkin", [CLK_SRC_OSC] = "osc", [CLK_SRC_PLL0USB] = "pll0usb", [CLK_SRC_PLL0AUDIO] = "pll0audio", [CLK_SRC_PLL1] = "pll1", [CLK_SRC_IDIVA] = "idiva", [CLK_SRC_IDIVB] = "idivb", [CLK_SRC_IDIVC] = "idivc", [CLK_SRC_IDIVD] = "idivd", [CLK_SRC_IDIVE] = "idive", }; static const char *clk_base_names[BASE_CLK_MAX] = { [BASE_SAFE_CLK] = "base_safe_clk", [BASE_USB0_CLK] = "base_usb0_clk", [BASE_PERIPH_CLK] = "base_periph_clk", [BASE_USB1_CLK] = "base_usb1_clk", [BASE_CPU_CLK] = "base_cpu_clk", [BASE_SPIFI_CLK] = "base_spifi_clk", [BASE_SPI_CLK] = "base_spi_clk", [BASE_PHY_RX_CLK] = "base_phy_rx_clk", [BASE_PHY_TX_CLK] = "base_phy_tx_clk", [BASE_APB1_CLK] = "base_apb1_clk", [BASE_APB3_CLK] = "base_apb3_clk", [BASE_LCD_CLK] = "base_lcd_clk", [BASE_ADCHS_CLK] = "base_adchs_clk", [BASE_SDIO_CLK] = "base_sdio_clk", [BASE_SSP0_CLK] = "base_ssp0_clk", [BASE_SSP1_CLK] = "base_ssp1_clk", [BASE_UART0_CLK] = "base_uart0_clk", [BASE_UART1_CLK] = "base_uart1_clk", [BASE_UART2_CLK] = "base_uart2_clk", [BASE_UART3_CLK] = "base_uart3_clk", [BASE_OUT_CLK] = "base_out_clk", [BASE_AUDIO_CLK] = "base_audio_clk", [BASE_CGU_OUT0_CLK] = "base_cgu_out0_clk", [BASE_CGU_OUT1_CLK] = "base_cgu_out1_clk", }; static u32 lpc18xx_cgu_pll0_src_ids[] = { CLK_SRC_OSC32, CLK_SRC_IRC, CLK_SRC_ENET_RX_CLK, CLK_SRC_ENET_TX_CLK, CLK_SRC_GP_CLKIN, CLK_SRC_OSC, CLK_SRC_PLL1, CLK_SRC_IDIVA, CLK_SRC_IDIVB, CLK_SRC_IDIVC, CLK_SRC_IDIVD, CLK_SRC_IDIVE, }; static u32 lpc18xx_cgu_pll1_src_ids[] = { CLK_SRC_OSC32, CLK_SRC_IRC, CLK_SRC_ENET_RX_CLK, CLK_SRC_ENET_TX_CLK, CLK_SRC_GP_CLKIN, CLK_SRC_OSC, CLK_SRC_PLL0USB, CLK_SRC_PLL0AUDIO, CLK_SRC_IDIVA, CLK_SRC_IDIVB, CLK_SRC_IDIVC, CLK_SRC_IDIVD, CLK_SRC_IDIVE, }; static u32 lpc18xx_cgu_idiva_src_ids[] = { CLK_SRC_OSC32, CLK_SRC_IRC, CLK_SRC_ENET_RX_CLK, CLK_SRC_ENET_TX_CLK, CLK_SRC_GP_CLKIN, CLK_SRC_OSC, CLK_SRC_PLL0USB, CLK_SRC_PLL0AUDIO, CLK_SRC_PLL1 }; static u32 lpc18xx_cgu_idivbcde_src_ids[] = { CLK_SRC_OSC32, CLK_SRC_IRC, CLK_SRC_ENET_RX_CLK, CLK_SRC_ENET_TX_CLK, CLK_SRC_GP_CLKIN, CLK_SRC_OSC, CLK_SRC_PLL0AUDIO, CLK_SRC_PLL1, CLK_SRC_IDIVA, }; static u32 lpc18xx_cgu_base_irc_src_ids[] = {CLK_SRC_IRC}; static u32 lpc18xx_cgu_base_usb0_src_ids[] = {CLK_SRC_PLL0USB}; static u32 lpc18xx_cgu_base_common_src_ids[] = { CLK_SRC_OSC32, CLK_SRC_IRC, CLK_SRC_ENET_RX_CLK, CLK_SRC_ENET_TX_CLK, CLK_SRC_GP_CLKIN, CLK_SRC_OSC, CLK_SRC_PLL0AUDIO, CLK_SRC_PLL1, CLK_SRC_IDIVA, CLK_SRC_IDIVB, CLK_SRC_IDIVC, CLK_SRC_IDIVD, CLK_SRC_IDIVE, }; static u32 lpc18xx_cgu_base_all_src_ids[] = { CLK_SRC_OSC32, CLK_SRC_IRC, CLK_SRC_ENET_RX_CLK, CLK_SRC_ENET_TX_CLK, CLK_SRC_GP_CLKIN, CLK_SRC_OSC, CLK_SRC_PLL0USB, CLK_SRC_PLL0AUDIO, CLK_SRC_PLL1, CLK_SRC_IDIVA, CLK_SRC_IDIVB, CLK_SRC_IDIVC, CLK_SRC_IDIVD, CLK_SRC_IDIVE, }; struct lpc18xx_cgu_src_clk_div { u8 clk_id; u8 n_parents; struct clk_divider div; struct clk_mux mux; struct clk_gate gate; }; #define LPC1XX_CGU_SRC_CLK_DIV(_id, _width, _table) \ { \ .clk_id = CLK_SRC_ ##_id, \ .n_parents = ARRAY_SIZE(lpc18xx_cgu_ ##_table), \ .div = { \ .shift = 2, \ .width = _width, \ }, \ .mux = { \ .mask = 0x1f, \ .shift = 24, \ .table = lpc18xx_cgu_ ##_table, \ }, \ .gate = { \ .bit_idx = 0, \ .flags = CLK_GATE_SET_TO_DISABLE, \ }, \ } static struct lpc18xx_cgu_src_clk_div lpc18xx_cgu_src_clk_divs[] = { LPC1XX_CGU_SRC_CLK_DIV(IDIVA, 2, idiva_src_ids), LPC1XX_CGU_SRC_CLK_DIV(IDIVB, 4, idivbcde_src_ids), LPC1XX_CGU_SRC_CLK_DIV(IDIVC, 4, idivbcde_src_ids), LPC1XX_CGU_SRC_CLK_DIV(IDIVD, 4, idivbcde_src_ids), LPC1XX_CGU_SRC_CLK_DIV(IDIVE, 8, idivbcde_src_ids), }; struct lpc18xx_cgu_base_clk { u8 clk_id; u8 n_parents; struct clk_mux mux; struct clk_gate gate; }; #define LPC1XX_CGU_BASE_CLK(_id, _table, _flags) \ { \ .clk_id = BASE_ ##_id ##_CLK, \ .n_parents = ARRAY_SIZE(lpc18xx_cgu_ ##_table), \ .mux = { \ .mask = 0x1f, \ .shift = 24, \ .table = lpc18xx_cgu_ ##_table, \ .flags = _flags, \ }, \ .gate = { \ .bit_idx = 0, \ .flags = CLK_GATE_SET_TO_DISABLE, \ }, \ } static struct lpc18xx_cgu_base_clk lpc18xx_cgu_base_clks[] = { LPC1XX_CGU_BASE_CLK(SAFE, base_irc_src_ids, CLK_MUX_READ_ONLY), LPC1XX_CGU_BASE_CLK(USB0, base_usb0_src_ids, 0), LPC1XX_CGU_BASE_CLK(PERIPH, base_common_src_ids, 0), LPC1XX_CGU_BASE_CLK(USB1, base_all_src_ids, 0), LPC1XX_CGU_BASE_CLK(CPU, base_common_src_ids, 0), LPC1XX_CGU_BASE_CLK(SPIFI, base_common_src_ids, 0), LPC1XX_CGU_BASE_CLK(SPI, base_common_src_ids, 0), LPC1XX_CGU_BASE_CLK(PHY_RX, base_common_src_ids, 0), LPC1XX_CGU_BASE_CLK(PHY_TX, base_common_src_ids, 0), LPC1XX_CGU_BASE_CLK(APB1, base_common_src_ids, 0), LPC1XX_CGU_BASE_CLK(APB3, base_common_src_ids, 0), LPC1XX_CGU_BASE_CLK(LCD, base_common_src_ids, 0), LPC1XX_CGU_BASE_CLK(ADCHS, base_common_src_ids, 0), LPC1XX_CGU_BASE_CLK(SDIO, base_common_src_ids, 0), LPC1XX_CGU_BASE_CLK(SSP0, base_common_src_ids, 0), LPC1XX_CGU_BASE_CLK(SSP1, base_common_src_ids, 0), LPC1XX_CGU_BASE_CLK(UART0, base_common_src_ids, 0), LPC1XX_CGU_BASE_CLK(UART1, base_common_src_ids, 0), LPC1XX_CGU_BASE_CLK(UART2, base_common_src_ids, 0), LPC1XX_CGU_BASE_CLK(UART3, base_common_src_ids, 0), LPC1XX_CGU_BASE_CLK(OUT, base_all_src_ids, 0), { /* 21 reserved */ }, { /* 22 reserved */ }, { /* 23 reserved */ }, { /* 24 reserved */ }, LPC1XX_CGU_BASE_CLK(AUDIO, base_common_src_ids, 0), LPC1XX_CGU_BASE_CLK(CGU_OUT0, base_all_src_ids, 0), LPC1XX_CGU_BASE_CLK(CGU_OUT1, base_all_src_ids, 0), }; struct lpc18xx_pll { struct clk_hw hw; void __iomem *reg; spinlock_t *lock; u8 flags; }; #define to_lpc_pll(hw) container_of(hw, struct lpc18xx_pll, hw) struct lpc18xx_cgu_pll_clk { u8 clk_id; u8 n_parents; u8 reg_offset; struct clk_mux mux; struct clk_gate gate; struct lpc18xx_pll pll; const struct clk_ops *pll_ops; }; #define LPC1XX_CGU_CLK_PLL(_id, _table, _pll_ops) \ { \ .clk_id = CLK_SRC_ ##_id, \ .n_parents = ARRAY_SIZE(lpc18xx_cgu_ ##_table), \ .reg_offset = LPC18XX_CGU_ ##_id ##_STAT, \ .mux = { \ .mask = 0x1f, \ .shift = 24, \ .table = lpc18xx_cgu_ ##_table, \ }, \ .gate = { \ .bit_idx = 0, \ .flags = CLK_GATE_SET_TO_DISABLE, \ }, \ .pll_ops = &lpc18xx_ ##_pll_ops, \ } /* * PLL0 uses a special register value encoding. The compute functions below * are taken or derived from the LPC1850 user manual (section 12.6.3.3). */ /* Compute PLL0 multiplier from decoded version */ static u32 lpc18xx_pll0_mdec2msel(u32 x) { int i; switch (x) { case 0x18003: return 1; case 0x10003: return 2; default: for (i = LPC18XX_PLL0_MSEL_MAX + 1; x != 0x4000 && i > 0; i--) x = ((x ^ x >> 14) & 1) | (x << 1 & 0x7fff); return i; } } /* Compute PLL0 decoded multiplier from binary version */ static u32 lpc18xx_pll0_msel2mdec(u32 msel) { u32 i, x = 0x4000; switch (msel) { case 0: return 0; case 1: return 0x18003; case 2: return 0x10003; default: for (i = msel; i <= LPC18XX_PLL0_MSEL_MAX; i++) x = ((x ^ x >> 1) & 1) << 14 | (x >> 1 & 0xffff); return x; } } /* Compute PLL0 bandwidth SELI reg from multiplier */ static u32 lpc18xx_pll0_msel2seli(u32 msel) { u32 tmp; if (msel > 16384) return 1; if (msel > 8192) return 2; if (msel > 2048) return 4; if (msel >= 501) return 8; if (msel >= 60) { tmp = 1024 / (msel + 9); return ((1024 == (tmp * (msel + 9))) == 0) ? tmp * 4 : (tmp + 1) * 4; } return (msel & 0x3c) + 4; } /* Compute PLL0 bandwidth SELP reg from multiplier */ static u32 lpc18xx_pll0_msel2selp(u32 msel) { if (msel < 60) return (msel >> 1) + 1; return 31; } static unsigned long lpc18xx_pll0_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct lpc18xx_pll *pll = to_lpc_pll(hw); u32 ctrl, mdiv, msel, npdiv; ctrl = readl(pll->reg + LPC18XX_CGU_PLL0USB_CTRL); mdiv = readl(pll->reg + LPC18XX_CGU_PLL0USB_MDIV); npdiv = readl(pll->reg + LPC18XX_CGU_PLL0USB_NP_DIV); if (ctrl & LPC18XX_PLL0_CTRL_BYPASS) return parent_rate; if (npdiv != LPC18XX_PLL0_NP_DIVS_1) { pr_warn("%s: pre/post dividers not supported\n", __func__); return 0; } msel = lpc18xx_pll0_mdec2msel(mdiv & LPC18XX_PLL0_MDIV_MDEC_MASK); if (msel) return 2 * msel * parent_rate; pr_warn("%s: unable to calculate rate\n", __func__); return 0; } static long lpc18xx_pll0_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { unsigned long m; if (*prate < rate) { pr_warn("%s: pll dividers not supported\n", __func__); return -EINVAL; } m = DIV_ROUND_UP_ULL(*prate, rate * 2); if (m <= 0 && m > LPC18XX_PLL0_MSEL_MAX) { pr_warn("%s: unable to support rate %lu\n", __func__, rate); return -EINVAL; } return 2 * *prate * m; } static int lpc18xx_pll0_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct lpc18xx_pll *pll = to_lpc_pll(hw); u32 ctrl, stat, m; int retry = 3; if (parent_rate < rate) { pr_warn("%s: pll dividers not supported\n", __func__); return -EINVAL; } m = DIV_ROUND_UP_ULL(parent_rate, rate * 2); if (m <= 0 && m > LPC18XX_PLL0_MSEL_MAX) { pr_warn("%s: unable to support rate %lu\n", __func__, rate); return -EINVAL; } m = lpc18xx_pll0_msel2mdec(m); m |= lpc18xx_pll0_msel2selp(m) << LPC18XX_PLL0_MDIV_SELP_SHIFT; m |= lpc18xx_pll0_msel2seli(m) << LPC18XX_PLL0_MDIV_SELI_SHIFT; /* Power down PLL, disable clk output and dividers */ ctrl = readl(pll->reg + LPC18XX_CGU_PLL0USB_CTRL); ctrl |= LPC18XX_PLL0_CTRL_PD; ctrl &= ~(LPC18XX_PLL0_CTRL_BYPASS | LPC18XX_PLL0_CTRL_DIRECTI | LPC18XX_PLL0_CTRL_DIRECTO | LPC18XX_PLL0_CTRL_CLKEN); writel(ctrl, pll->reg + LPC18XX_CGU_PLL0USB_CTRL); /* Configure new PLL settings */ writel(m, pll->reg + LPC18XX_CGU_PLL0USB_MDIV); writel(LPC18XX_PLL0_NP_DIVS_1, pll->reg + LPC18XX_CGU_PLL0USB_NP_DIV); /* Power up PLL and wait for lock */ ctrl &= ~LPC18XX_PLL0_CTRL_PD; writel(ctrl, pll->reg + LPC18XX_CGU_PLL0USB_CTRL); do { udelay(10); stat = readl(pll->reg + LPC18XX_CGU_PLL0USB_STAT); if (stat & LPC18XX_PLL0_STAT_LOCK) { ctrl |= LPC18XX_PLL0_CTRL_CLKEN; writel(ctrl, pll->reg + LPC18XX_CGU_PLL0USB_CTRL); return 0; } } while (retry--); pr_warn("%s: unable to lock pll\n", __func__); return -EINVAL; } static const struct clk_ops lpc18xx_pll0_ops = { .recalc_rate = lpc18xx_pll0_recalc_rate, .round_rate = lpc18xx_pll0_round_rate, .set_rate = lpc18xx_pll0_set_rate, }; static unsigned long lpc18xx_pll1_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct lpc18xx_pll *pll = to_lpc_pll(hw); u16 msel, nsel, psel; bool direct, fbsel; u32 ctrl; ctrl = readl(pll->reg + LPC18XX_CGU_PLL1_CTRL); direct = (ctrl & LPC18XX_PLL1_CTRL_DIRECT) ? true : false; fbsel = (ctrl & LPC18XX_PLL1_CTRL_FBSEL) ? true : false; msel = ((ctrl >> 16) & 0xff) + 1; nsel = ((ctrl >> 12) & 0x3) + 1; if (direct || fbsel) return msel * (parent_rate / nsel); psel = (ctrl >> 8) & 0x3; psel = 1 << psel; return (msel / (2 * psel)) * (parent_rate / nsel); } static const struct clk_ops lpc18xx_pll1_ops = { .recalc_rate = lpc18xx_pll1_recalc_rate, }; static int lpc18xx_cgu_gate_enable(struct clk_hw *hw) { return clk_gate_ops.enable(hw); } static void lpc18xx_cgu_gate_disable(struct clk_hw *hw) { clk_gate_ops.disable(hw); } static int lpc18xx_cgu_gate_is_enabled(struct clk_hw *hw) { const struct clk_hw *parent; /* * The consumer of base clocks needs know if the * base clock is really enabled before it can be * accessed. It is therefore necessary to verify * this all the way up. */ parent = clk_hw_get_parent(hw); if (!parent) return 0; if (!clk_hw_is_enabled(parent)) return 0; return clk_gate_ops.is_enabled(hw); } static const struct clk_ops lpc18xx_gate_ops = { .enable = lpc18xx_cgu_gate_enable, .disable = lpc18xx_cgu_gate_disable, .is_enabled = lpc18xx_cgu_gate_is_enabled, }; static struct lpc18xx_cgu_pll_clk lpc18xx_cgu_src_clk_plls[] = { LPC1XX_CGU_CLK_PLL(PLL0USB, pll0_src_ids, pll0_ops), LPC1XX_CGU_CLK_PLL(PLL0AUDIO, pll0_src_ids, pll0_ops), LPC1XX_CGU_CLK_PLL(PLL1, pll1_src_ids, pll1_ops), }; static void lpc18xx_fill_parent_names(const char **parent, const u32 *id, int size) { int i; for (i = 0; i < size; i++) parent[i] = clk_src_names[id[i]]; } static struct clk *lpc18xx_cgu_register_div(struct lpc18xx_cgu_src_clk_div *clk, void __iomem *base, int n) { void __iomem *reg = base + LPC18XX_CGU_IDIV_CTRL(n); const char *name = clk_src_names[clk->clk_id]; const char *parents[CLK_SRC_MAX]; clk->div.reg = reg; clk->mux.reg = reg; clk->gate.reg = reg; lpc18xx_fill_parent_names(parents, clk->mux.table, clk->n_parents); return clk_register_composite(NULL, name, parents, clk->n_parents, &clk->mux.hw, &clk_mux_ops, &clk->div.hw, &clk_divider_ops, &clk->gate.hw, &lpc18xx_gate_ops, 0); } static struct clk *lpc18xx_register_base_clk(struct lpc18xx_cgu_base_clk *clk, void __iomem *reg_base, int n) { void __iomem *reg = reg_base + LPC18XX_CGU_BASE_CLK(n); const char *name = clk_base_names[clk->clk_id]; const char *parents[CLK_SRC_MAX]; if (clk->n_parents == 0) return ERR_PTR(-ENOENT); clk->mux.reg = reg; clk->gate.reg = reg; lpc18xx_fill_parent_names(parents, clk->mux.table, clk->n_parents); /* SAFE_CLK can not be turned off */ if (n == BASE_SAFE_CLK) return clk_register_composite(NULL, name, parents, clk->n_parents, &clk->mux.hw, &clk_mux_ops, NULL, NULL, NULL, NULL, 0); return clk_register_composite(NULL, name, parents, clk->n_parents, &clk->mux.hw, &clk_mux_ops, NULL, NULL, &clk->gate.hw, &lpc18xx_gate_ops, 0); } static struct clk *lpc18xx_cgu_register_pll(struct lpc18xx_cgu_pll_clk *clk, void __iomem *base) { const char *name = clk_src_names[clk->clk_id]; const char *parents[CLK_SRC_MAX]; clk->pll.reg = base; clk->mux.reg = base + clk->reg_offset + LPC18XX_CGU_PLL_CTRL_OFFSET; clk->gate.reg = base + clk->reg_offset + LPC18XX_CGU_PLL_CTRL_OFFSET; lpc18xx_fill_parent_names(parents, clk->mux.table, clk->n_parents); return clk_register_composite(NULL, name, parents, clk->n_parents, &clk->mux.hw, &clk_mux_ops, &clk->pll.hw, clk->pll_ops, &clk->gate.hw, &lpc18xx_gate_ops, 0); } static void __init lpc18xx_cgu_register_source_clks(struct device_node *np, void __iomem *base) { const char *parents[CLK_SRC_MAX]; struct clk *clk; int i; /* Register the internal 12 MHz RC oscillator (IRC) */ clk = clk_register_fixed_rate(NULL, clk_src_names[CLK_SRC_IRC], NULL, 0, 12000000); if (IS_ERR(clk)) pr_warn("%s: failed to register irc clk\n", __func__); /* Register crystal oscillator controller */ parents[0] = of_clk_get_parent_name(np, 0); clk = clk_register_gate(NULL, clk_src_names[CLK_SRC_OSC], parents[0], 0, base + LPC18XX_CGU_XTAL_OSC_CTRL, 0, CLK_GATE_SET_TO_DISABLE, NULL); if (IS_ERR(clk)) pr_warn("%s: failed to register osc clk\n", __func__); /* Register all PLLs */ for (i = 0; i < ARRAY_SIZE(lpc18xx_cgu_src_clk_plls); i++) { clk = lpc18xx_cgu_register_pll(&lpc18xx_cgu_src_clk_plls[i], base); if (IS_ERR(clk)) pr_warn("%s: failed to register pll (%d)\n", __func__, i); } /* Register all clock dividers A-E */ for (i = 0; i < ARRAY_SIZE(lpc18xx_cgu_src_clk_divs); i++) { clk = lpc18xx_cgu_register_div(&lpc18xx_cgu_src_clk_divs[i], base, i); if (IS_ERR(clk)) pr_warn("%s: failed to register div %d\n", __func__, i); } } static struct clk *clk_base[BASE_CLK_MAX]; static struct clk_onecell_data clk_base_data = { .clks = clk_base, .clk_num = BASE_CLK_MAX, }; static void __init lpc18xx_cgu_register_base_clks(void __iomem *reg_base) { int i; for (i = BASE_SAFE_CLK; i < BASE_CLK_MAX; i++) { clk_base[i] = lpc18xx_register_base_clk(&lpc18xx_cgu_base_clks[i], reg_base, i); if (IS_ERR(clk_base[i]) && PTR_ERR(clk_base[i]) != -ENOENT) pr_warn("%s: register base clk %d failed\n", __func__, i); } } static void __init lpc18xx_cgu_init(struct device_node *np) { void __iomem *reg_base; reg_base = of_iomap(np, 0); if (!reg_base) { pr_warn("%s: failed to map address range\n", __func__); return; } lpc18xx_cgu_register_source_clks(np, reg_base); lpc18xx_cgu_register_base_clks(reg_base); of_clk_add_provider(np, of_clk_src_onecell_get, &clk_base_data); } CLK_OF_DECLARE(lpc18xx_cgu, "nxp,lpc1850-cgu", lpc18xx_cgu_init);
linux-master
drivers/clk/nxp/clk-lpc18xx-cgu.c
// SPDX-License-Identifier: GPL-2.0-only /* * Clk driver for NXP LPC18xx/LPC43xx Clock Control Unit (CCU) * * Copyright (C) 2015 Joachim Eastwood <[email protected]> */ #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/slab.h> #include <linux/string.h> #include <dt-bindings/clock/lpc18xx-ccu.h> /* Bit defines for CCU branch configuration register */ #define LPC18XX_CCU_RUN BIT(0) #define LPC18XX_CCU_AUTO BIT(1) #define LPC18XX_CCU_DIV BIT(5) #define LPC18XX_CCU_DIVSTAT BIT(27) /* CCU branch feature bits */ #define CCU_BRANCH_IS_BUS BIT(0) #define CCU_BRANCH_HAVE_DIV2 BIT(1) struct lpc18xx_branch_clk_data { const char **name; int num; }; struct lpc18xx_clk_branch { const char *base_name; const char *name; u16 offset; u16 flags; struct clk *clk; struct clk_gate gate; }; static struct lpc18xx_clk_branch clk_branches[] = { {"base_apb3_clk", "apb3_bus", CLK_APB3_BUS, CCU_BRANCH_IS_BUS}, {"base_apb3_clk", "apb3_i2c1", CLK_APB3_I2C1, 0}, {"base_apb3_clk", "apb3_dac", CLK_APB3_DAC, 0}, {"base_apb3_clk", "apb3_adc0", CLK_APB3_ADC0, 0}, {"base_apb3_clk", "apb3_adc1", CLK_APB3_ADC1, 0}, {"base_apb3_clk", "apb3_can0", CLK_APB3_CAN0, 0}, {"base_apb1_clk", "apb1_bus", CLK_APB1_BUS, CCU_BRANCH_IS_BUS}, {"base_apb1_clk", "apb1_mc_pwm", CLK_APB1_MOTOCON_PWM, 0}, {"base_apb1_clk", "apb1_i2c0", CLK_APB1_I2C0, 0}, {"base_apb1_clk", "apb1_i2s", CLK_APB1_I2S, 0}, {"base_apb1_clk", "apb1_can1", CLK_APB1_CAN1, 0}, {"base_spifi_clk", "spifi", CLK_SPIFI, 0}, {"base_cpu_clk", "cpu_bus", CLK_CPU_BUS, CCU_BRANCH_IS_BUS}, {"base_cpu_clk", "cpu_spifi", CLK_CPU_SPIFI, 0}, {"base_cpu_clk", "cpu_gpio", CLK_CPU_GPIO, 0}, {"base_cpu_clk", "cpu_lcd", CLK_CPU_LCD, 0}, {"base_cpu_clk", "cpu_ethernet", CLK_CPU_ETHERNET, 0}, {"base_cpu_clk", "cpu_usb0", CLK_CPU_USB0, 0}, {"base_cpu_clk", "cpu_emc", CLK_CPU_EMC, 0}, {"base_cpu_clk", "cpu_sdio", CLK_CPU_SDIO, 0}, {"base_cpu_clk", "cpu_dma", CLK_CPU_DMA, 0}, {"base_cpu_clk", "cpu_core", CLK_CPU_CORE, 0}, {"base_cpu_clk", "cpu_sct", CLK_CPU_SCT, 0}, {"base_cpu_clk", "cpu_usb1", CLK_CPU_USB1, 0}, {"base_cpu_clk", "cpu_emcdiv", CLK_CPU_EMCDIV, CCU_BRANCH_HAVE_DIV2}, {"base_cpu_clk", "cpu_flasha", CLK_CPU_FLASHA, CCU_BRANCH_HAVE_DIV2}, {"base_cpu_clk", "cpu_flashb", CLK_CPU_FLASHB, CCU_BRANCH_HAVE_DIV2}, {"base_cpu_clk", "cpu_m0app", CLK_CPU_M0APP, CCU_BRANCH_HAVE_DIV2}, {"base_cpu_clk", "cpu_adchs", CLK_CPU_ADCHS, CCU_BRANCH_HAVE_DIV2}, {"base_cpu_clk", "cpu_eeprom", CLK_CPU_EEPROM, CCU_BRANCH_HAVE_DIV2}, {"base_cpu_clk", "cpu_wwdt", CLK_CPU_WWDT, 0}, {"base_cpu_clk", "cpu_uart0", CLK_CPU_UART0, 0}, {"base_cpu_clk", "cpu_uart1", CLK_CPU_UART1, 0}, {"base_cpu_clk", "cpu_ssp0", CLK_CPU_SSP0, 0}, {"base_cpu_clk", "cpu_timer0", CLK_CPU_TIMER0, 0}, {"base_cpu_clk", "cpu_timer1", CLK_CPU_TIMER1, 0}, {"base_cpu_clk", "cpu_scu", CLK_CPU_SCU, 0}, {"base_cpu_clk", "cpu_creg", CLK_CPU_CREG, 0}, {"base_cpu_clk", "cpu_ritimer", CLK_CPU_RITIMER, 0}, {"base_cpu_clk", "cpu_uart2", CLK_CPU_UART2, 0}, {"base_cpu_clk", "cpu_uart3", CLK_CPU_UART3, 0}, {"base_cpu_clk", "cpu_timer2", CLK_CPU_TIMER2, 0}, {"base_cpu_clk", "cpu_timer3", CLK_CPU_TIMER3, 0}, {"base_cpu_clk", "cpu_ssp1", CLK_CPU_SSP1, 0}, {"base_cpu_clk", "cpu_qei", CLK_CPU_QEI, 0}, {"base_periph_clk", "periph_bus", CLK_PERIPH_BUS, CCU_BRANCH_IS_BUS}, {"base_periph_clk", "periph_core", CLK_PERIPH_CORE, 0}, {"base_periph_clk", "periph_sgpio", CLK_PERIPH_SGPIO, 0}, {"base_usb0_clk", "usb0", CLK_USB0, 0}, {"base_usb1_clk", "usb1", CLK_USB1, 0}, {"base_spi_clk", "spi", CLK_SPI, 0}, {"base_adchs_clk", "adchs", CLK_ADCHS, 0}, {"base_audio_clk", "audio", CLK_AUDIO, 0}, {"base_uart3_clk", "apb2_uart3", CLK_APB2_UART3, 0}, {"base_uart2_clk", "apb2_uart2", CLK_APB2_UART2, 0}, {"base_uart1_clk", "apb0_uart1", CLK_APB0_UART1, 0}, {"base_uart0_clk", "apb0_uart0", CLK_APB0_UART0, 0}, {"base_ssp1_clk", "apb2_ssp1", CLK_APB2_SSP1, 0}, {"base_ssp0_clk", "apb0_ssp0", CLK_APB0_SSP0, 0}, {"base_sdio_clk", "sdio", CLK_SDIO, 0}, }; static struct clk *lpc18xx_ccu_branch_clk_get(struct of_phandle_args *clkspec, void *data) { struct lpc18xx_branch_clk_data *clk_data = data; unsigned int offset = clkspec->args[0]; int i, j; for (i = 0; i < ARRAY_SIZE(clk_branches); i++) { if (clk_branches[i].offset != offset) continue; for (j = 0; j < clk_data->num; j++) { if (!strcmp(clk_branches[i].base_name, clk_data->name[j])) return clk_branches[i].clk; } } pr_err("%s: invalid clock offset %d\n", __func__, offset); return ERR_PTR(-EINVAL); } static int lpc18xx_ccu_gate_endisable(struct clk_hw *hw, bool enable) { struct clk_gate *gate = to_clk_gate(hw); u32 val; /* * Divider field is write only, so divider stat field must * be read so divider field can be set accordingly. */ val = readl(gate->reg); if (val & LPC18XX_CCU_DIVSTAT) val |= LPC18XX_CCU_DIV; if (enable) { val |= LPC18XX_CCU_RUN; } else { /* * To safely disable a branch clock a squence of two separate * writes must be used. First write should set the AUTO bit * and the next write should clear the RUN bit. */ val |= LPC18XX_CCU_AUTO; writel(val, gate->reg); val &= ~LPC18XX_CCU_RUN; } writel(val, gate->reg); return 0; } static int lpc18xx_ccu_gate_enable(struct clk_hw *hw) { return lpc18xx_ccu_gate_endisable(hw, true); } static void lpc18xx_ccu_gate_disable(struct clk_hw *hw) { lpc18xx_ccu_gate_endisable(hw, false); } static int lpc18xx_ccu_gate_is_enabled(struct clk_hw *hw) { const struct clk_hw *parent; /* * The branch clock registers are only accessible * if the base (parent) clock is enabled. Register * access with a disabled base clock will hang the * system. */ parent = clk_hw_get_parent(hw); if (!parent) return 0; if (!clk_hw_is_enabled(parent)) return 0; return clk_gate_ops.is_enabled(hw); } static const struct clk_ops lpc18xx_ccu_gate_ops = { .enable = lpc18xx_ccu_gate_enable, .disable = lpc18xx_ccu_gate_disable, .is_enabled = lpc18xx_ccu_gate_is_enabled, }; static void lpc18xx_ccu_register_branch_gate_div(struct lpc18xx_clk_branch *branch, void __iomem *reg_base, const char *parent) { const struct clk_ops *div_ops = NULL; struct clk_divider *div = NULL; struct clk_hw *div_hw = NULL; if (branch->flags & CCU_BRANCH_HAVE_DIV2) { div = kzalloc(sizeof(*div), GFP_KERNEL); if (!div) return; div->reg = branch->offset + reg_base; div->flags = CLK_DIVIDER_READ_ONLY; div->shift = 27; div->width = 1; div_hw = &div->hw; div_ops = &clk_divider_ro_ops; } branch->gate.reg = branch->offset + reg_base; branch->gate.bit_idx = 0; branch->clk = clk_register_composite(NULL, branch->name, &parent, 1, NULL, NULL, div_hw, div_ops, &branch->gate.hw, &lpc18xx_ccu_gate_ops, 0); if (IS_ERR(branch->clk)) { kfree(div); pr_warn("%s: failed to register %s\n", __func__, branch->name); return; } /* Grab essential branch clocks for CPU and SDRAM */ switch (branch->offset) { case CLK_CPU_EMC: case CLK_CPU_CORE: case CLK_CPU_CREG: case CLK_CPU_EMCDIV: clk_prepare_enable(branch->clk); } } static void lpc18xx_ccu_register_branch_clks(void __iomem *reg_base, const char *base_name) { const char *parent = base_name; int i; for (i = 0; i < ARRAY_SIZE(clk_branches); i++) { if (strcmp(clk_branches[i].base_name, base_name)) continue; lpc18xx_ccu_register_branch_gate_div(&clk_branches[i], reg_base, parent); if (clk_branches[i].flags & CCU_BRANCH_IS_BUS) parent = clk_branches[i].name; } } static void __init lpc18xx_ccu_init(struct device_node *np) { struct lpc18xx_branch_clk_data *clk_data; void __iomem *reg_base; int i, ret; reg_base = of_iomap(np, 0); if (!reg_base) { pr_warn("%s: failed to map address range\n", __func__); return; } clk_data = kzalloc(sizeof(*clk_data), GFP_KERNEL); if (!clk_data) { iounmap(reg_base); return; } clk_data->num = of_property_count_strings(np, "clock-names"); clk_data->name = kcalloc(clk_data->num, sizeof(char *), GFP_KERNEL); if (!clk_data->name) { iounmap(reg_base); kfree(clk_data); return; } for (i = 0; i < clk_data->num; i++) { ret = of_property_read_string_index(np, "clock-names", i, &clk_data->name[i]); if (ret) { pr_warn("%s: failed to get clock name at idx %d\n", __func__, i); continue; } lpc18xx_ccu_register_branch_clks(reg_base, clk_data->name[i]); } of_clk_add_provider(np, lpc18xx_ccu_branch_clk_get, clk_data); } CLK_OF_DECLARE(lpc18xx_ccu, "nxp,lpc1850-ccu", lpc18xx_ccu_init);
linux-master
drivers/clk/nxp/clk-lpc18xx-ccu.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright 2015 Vladimir Zapolskiy <[email protected]> */ #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/io.h> #include <linux/of_address.h> #include <linux/regmap.h> #include <dt-bindings/clock/lpc32xx-clock.h> #undef pr_fmt #define pr_fmt(fmt) "%s: " fmt, __func__ /* Common bitfield definitions for x397 PLL (lock), USB PLL and HCLK PLL */ #define PLL_CTRL_ENABLE BIT(16) #define PLL_CTRL_BYPASS BIT(15) #define PLL_CTRL_DIRECT BIT(14) #define PLL_CTRL_FEEDBACK BIT(13) #define PLL_CTRL_POSTDIV (BIT(12)|BIT(11)) #define PLL_CTRL_PREDIV (BIT(10)|BIT(9)) #define PLL_CTRL_FEEDDIV (0xFF << 1) #define PLL_CTRL_LOCK BIT(0) /* Clock registers on System Control Block */ #define LPC32XX_CLKPWR_DEBUG_CTRL 0x00 #define LPC32XX_CLKPWR_USB_DIV 0x1C #define LPC32XX_CLKPWR_HCLKDIV_CTRL 0x40 #define LPC32XX_CLKPWR_PWR_CTRL 0x44 #define LPC32XX_CLKPWR_PLL397_CTRL 0x48 #define LPC32XX_CLKPWR_OSC_CTRL 0x4C #define LPC32XX_CLKPWR_SYSCLK_CTRL 0x50 #define LPC32XX_CLKPWR_LCDCLK_CTRL 0x54 #define LPC32XX_CLKPWR_HCLKPLL_CTRL 0x58 #define LPC32XX_CLKPWR_ADCCLK_CTRL1 0x60 #define LPC32XX_CLKPWR_USB_CTRL 0x64 #define LPC32XX_CLKPWR_SSP_CTRL 0x78 #define LPC32XX_CLKPWR_I2S_CTRL 0x7C #define LPC32XX_CLKPWR_MS_CTRL 0x80 #define LPC32XX_CLKPWR_MACCLK_CTRL 0x90 #define LPC32XX_CLKPWR_TEST_CLK_CTRL 0xA4 #define LPC32XX_CLKPWR_I2CCLK_CTRL 0xAC #define LPC32XX_CLKPWR_KEYCLK_CTRL 0xB0 #define LPC32XX_CLKPWR_ADCCLK_CTRL 0xB4 #define LPC32XX_CLKPWR_PWMCLK_CTRL 0xB8 #define LPC32XX_CLKPWR_TIMCLK_CTRL 0xBC #define LPC32XX_CLKPWR_TIMCLK_CTRL1 0xC0 #define LPC32XX_CLKPWR_SPI_CTRL 0xC4 #define LPC32XX_CLKPWR_FLASHCLK_CTRL 0xC8 #define LPC32XX_CLKPWR_UART3_CLK_CTRL 0xD0 #define LPC32XX_CLKPWR_UART4_CLK_CTRL 0xD4 #define LPC32XX_CLKPWR_UART5_CLK_CTRL 0xD8 #define LPC32XX_CLKPWR_UART6_CLK_CTRL 0xDC #define LPC32XX_CLKPWR_IRDA_CLK_CTRL 0xE0 #define LPC32XX_CLKPWR_UART_CLK_CTRL 0xE4 #define LPC32XX_CLKPWR_DMA_CLK_CTRL 0xE8 /* Clock registers on USB controller */ #define LPC32XX_USB_CLK_CTRL 0xF4 #define LPC32XX_USB_CLK_STS 0xF8 static struct regmap_config lpc32xx_scb_regmap_config = { .name = "scb", .reg_bits = 32, .val_bits = 32, .reg_stride = 4, .val_format_endian = REGMAP_ENDIAN_LITTLE, .max_register = 0x114, .fast_io = true, }; static struct regmap *clk_regmap; static void __iomem *usb_clk_vbase; enum { LPC32XX_USB_CLK_OTG = LPC32XX_USB_CLK_HOST + 1, LPC32XX_USB_CLK_AHB, LPC32XX_USB_CLK_MAX = LPC32XX_USB_CLK_AHB + 1, }; enum { /* Start from the last defined clock in dt bindings */ LPC32XX_CLK_ADC_DIV = LPC32XX_CLK_PERIPH + 1, LPC32XX_CLK_ADC_RTC, LPC32XX_CLK_TEST1, LPC32XX_CLK_TEST2, /* System clocks, PLL 397x and HCLK PLL clocks */ LPC32XX_CLK_OSC, LPC32XX_CLK_SYS, LPC32XX_CLK_PLL397X, LPC32XX_CLK_HCLK_DIV_PERIPH, LPC32XX_CLK_HCLK_DIV, LPC32XX_CLK_HCLK, LPC32XX_CLK_ARM, LPC32XX_CLK_ARM_VFP, /* USB clocks */ LPC32XX_CLK_USB_PLL, LPC32XX_CLK_USB_DIV, LPC32XX_CLK_USB, /* Only one control PWR_CTRL[10] for both muxes */ LPC32XX_CLK_PERIPH_HCLK_MUX, LPC32XX_CLK_PERIPH_ARM_MUX, /* Only one control PWR_CTRL[2] for all three muxes */ LPC32XX_CLK_SYSCLK_PERIPH_MUX, LPC32XX_CLK_SYSCLK_HCLK_MUX, LPC32XX_CLK_SYSCLK_ARM_MUX, /* Two clock sources external to the driver */ LPC32XX_CLK_XTAL_32K, LPC32XX_CLK_XTAL, /* Renumbered USB clocks, may have a parent from SCB table */ LPC32XX_CLK_USB_OFFSET, LPC32XX_CLK_USB_I2C = LPC32XX_USB_CLK_I2C + LPC32XX_CLK_USB_OFFSET, LPC32XX_CLK_USB_DEV = LPC32XX_USB_CLK_DEVICE + LPC32XX_CLK_USB_OFFSET, LPC32XX_CLK_USB_HOST = LPC32XX_USB_CLK_HOST + LPC32XX_CLK_USB_OFFSET, LPC32XX_CLK_USB_OTG = LPC32XX_USB_CLK_OTG + LPC32XX_CLK_USB_OFFSET, LPC32XX_CLK_USB_AHB = LPC32XX_USB_CLK_AHB + LPC32XX_CLK_USB_OFFSET, /* Stub for composite clocks */ LPC32XX_CLK__NULL, /* Subclocks of composite clocks, clocks above are for CCF */ LPC32XX_CLK_PWM1_MUX, LPC32XX_CLK_PWM1_DIV, LPC32XX_CLK_PWM1_GATE, LPC32XX_CLK_PWM2_MUX, LPC32XX_CLK_PWM2_DIV, LPC32XX_CLK_PWM2_GATE, LPC32XX_CLK_UART3_MUX, LPC32XX_CLK_UART3_DIV, LPC32XX_CLK_UART3_GATE, LPC32XX_CLK_UART4_MUX, LPC32XX_CLK_UART4_DIV, LPC32XX_CLK_UART4_GATE, LPC32XX_CLK_UART5_MUX, LPC32XX_CLK_UART5_DIV, LPC32XX_CLK_UART5_GATE, LPC32XX_CLK_UART6_MUX, LPC32XX_CLK_UART6_DIV, LPC32XX_CLK_UART6_GATE, LPC32XX_CLK_TEST1_MUX, LPC32XX_CLK_TEST1_GATE, LPC32XX_CLK_TEST2_MUX, LPC32XX_CLK_TEST2_GATE, LPC32XX_CLK_USB_DIV_DIV, LPC32XX_CLK_USB_DIV_GATE, LPC32XX_CLK_SD_DIV, LPC32XX_CLK_SD_GATE, LPC32XX_CLK_LCD_DIV, LPC32XX_CLK_LCD_GATE, LPC32XX_CLK_HW_MAX, LPC32XX_CLK_MAX = LPC32XX_CLK_SYSCLK_ARM_MUX + 1, LPC32XX_CLK_CCF_MAX = LPC32XX_CLK_USB_AHB + 1, }; static struct clk *clk[LPC32XX_CLK_MAX]; static struct clk_onecell_data clk_data = { .clks = clk, .clk_num = LPC32XX_CLK_MAX, }; static struct clk *usb_clk[LPC32XX_USB_CLK_MAX]; static struct clk_onecell_data usb_clk_data = { .clks = usb_clk, .clk_num = LPC32XX_USB_CLK_MAX, }; #define LPC32XX_CLK_PARENTS_MAX 5 struct clk_proto_t { const char *name; const u8 parents[LPC32XX_CLK_PARENTS_MAX]; u8 num_parents; unsigned long flags; }; #define CLK_PREFIX(LITERAL) LPC32XX_CLK_ ## LITERAL #define NUMARGS(...) (sizeof((int[]){__VA_ARGS__})/sizeof(int)) #define LPC32XX_CLK_DEFINE(_idx, _name, _flags, ...) \ [CLK_PREFIX(_idx)] = { \ .name = _name, \ .flags = _flags, \ .parents = { __VA_ARGS__ }, \ .num_parents = NUMARGS(__VA_ARGS__), \ } static const struct clk_proto_t clk_proto[LPC32XX_CLK_CCF_MAX] __initconst = { LPC32XX_CLK_DEFINE(XTAL, "xtal", 0x0), LPC32XX_CLK_DEFINE(XTAL_32K, "xtal_32k", 0x0), LPC32XX_CLK_DEFINE(RTC, "rtc", 0x0, LPC32XX_CLK_XTAL_32K), LPC32XX_CLK_DEFINE(OSC, "osc", CLK_IGNORE_UNUSED, LPC32XX_CLK_XTAL), LPC32XX_CLK_DEFINE(SYS, "sys", CLK_IGNORE_UNUSED, LPC32XX_CLK_OSC, LPC32XX_CLK_PLL397X), LPC32XX_CLK_DEFINE(PLL397X, "pll_397x", CLK_IGNORE_UNUSED, LPC32XX_CLK_RTC), LPC32XX_CLK_DEFINE(HCLK_PLL, "hclk_pll", CLK_IGNORE_UNUSED, LPC32XX_CLK_SYS), LPC32XX_CLK_DEFINE(HCLK_DIV_PERIPH, "hclk_div_periph", CLK_IGNORE_UNUSED, LPC32XX_CLK_HCLK_PLL), LPC32XX_CLK_DEFINE(HCLK_DIV, "hclk_div", CLK_IGNORE_UNUSED, LPC32XX_CLK_HCLK_PLL), LPC32XX_CLK_DEFINE(HCLK, "hclk", CLK_IGNORE_UNUSED, LPC32XX_CLK_PERIPH_HCLK_MUX), LPC32XX_CLK_DEFINE(PERIPH, "pclk", CLK_IGNORE_UNUSED, LPC32XX_CLK_SYSCLK_PERIPH_MUX), LPC32XX_CLK_DEFINE(ARM, "arm", CLK_IGNORE_UNUSED, LPC32XX_CLK_PERIPH_ARM_MUX), LPC32XX_CLK_DEFINE(PERIPH_HCLK_MUX, "periph_hclk_mux", CLK_IGNORE_UNUSED, LPC32XX_CLK_SYSCLK_HCLK_MUX, LPC32XX_CLK_SYSCLK_PERIPH_MUX), LPC32XX_CLK_DEFINE(PERIPH_ARM_MUX, "periph_arm_mux", CLK_IGNORE_UNUSED, LPC32XX_CLK_SYSCLK_ARM_MUX, LPC32XX_CLK_SYSCLK_PERIPH_MUX), LPC32XX_CLK_DEFINE(SYSCLK_PERIPH_MUX, "sysclk_periph_mux", CLK_IGNORE_UNUSED, LPC32XX_CLK_SYS, LPC32XX_CLK_HCLK_DIV_PERIPH), LPC32XX_CLK_DEFINE(SYSCLK_HCLK_MUX, "sysclk_hclk_mux", CLK_IGNORE_UNUSED, LPC32XX_CLK_SYS, LPC32XX_CLK_HCLK_DIV), LPC32XX_CLK_DEFINE(SYSCLK_ARM_MUX, "sysclk_arm_mux", CLK_IGNORE_UNUSED, LPC32XX_CLK_SYS, LPC32XX_CLK_HCLK_PLL), LPC32XX_CLK_DEFINE(ARM_VFP, "vfp9", CLK_IGNORE_UNUSED, LPC32XX_CLK_ARM), LPC32XX_CLK_DEFINE(USB_PLL, "usb_pll", CLK_SET_RATE_GATE | CLK_SET_RATE_PARENT, LPC32XX_CLK_USB_DIV), LPC32XX_CLK_DEFINE(USB_DIV, "usb_div", 0x0, LPC32XX_CLK_OSC), LPC32XX_CLK_DEFINE(USB, "usb", 0x0, LPC32XX_CLK_USB_PLL), LPC32XX_CLK_DEFINE(DMA, "dma", 0x0, LPC32XX_CLK_HCLK), LPC32XX_CLK_DEFINE(MLC, "mlc", 0x0, LPC32XX_CLK_HCLK), LPC32XX_CLK_DEFINE(SLC, "slc", 0x0, LPC32XX_CLK_HCLK), LPC32XX_CLK_DEFINE(LCD, "lcd", 0x0, LPC32XX_CLK_HCLK), LPC32XX_CLK_DEFINE(MAC, "mac", 0x0, LPC32XX_CLK_HCLK), LPC32XX_CLK_DEFINE(SD, "sd", 0x0, LPC32XX_CLK_ARM), LPC32XX_CLK_DEFINE(DDRAM, "ddram", CLK_GET_RATE_NOCACHE, LPC32XX_CLK_SYSCLK_ARM_MUX), LPC32XX_CLK_DEFINE(SSP0, "ssp0", 0x0, LPC32XX_CLK_HCLK), LPC32XX_CLK_DEFINE(SSP1, "ssp1", 0x0, LPC32XX_CLK_HCLK), /* * CLK_GET_RATE_NOCACHE is needed, if UART clock is disabled, its * divider register does not contain information about selected rate. */ LPC32XX_CLK_DEFINE(UART3, "uart3", CLK_GET_RATE_NOCACHE, LPC32XX_CLK_PERIPH, LPC32XX_CLK_HCLK), LPC32XX_CLK_DEFINE(UART4, "uart4", CLK_GET_RATE_NOCACHE, LPC32XX_CLK_PERIPH, LPC32XX_CLK_HCLK), LPC32XX_CLK_DEFINE(UART5, "uart5", CLK_GET_RATE_NOCACHE, LPC32XX_CLK_PERIPH, LPC32XX_CLK_HCLK), LPC32XX_CLK_DEFINE(UART6, "uart6", CLK_GET_RATE_NOCACHE, LPC32XX_CLK_PERIPH, LPC32XX_CLK_HCLK), LPC32XX_CLK_DEFINE(IRDA, "irda", 0x0, LPC32XX_CLK_PERIPH), LPC32XX_CLK_DEFINE(I2C1, "i2c1", 0x0, LPC32XX_CLK_HCLK), LPC32XX_CLK_DEFINE(I2C2, "i2c2", 0x0, LPC32XX_CLK_HCLK), LPC32XX_CLK_DEFINE(TIMER0, "timer0", 0x0, LPC32XX_CLK_PERIPH), LPC32XX_CLK_DEFINE(TIMER1, "timer1", 0x0, LPC32XX_CLK_PERIPH), LPC32XX_CLK_DEFINE(TIMER2, "timer2", 0x0, LPC32XX_CLK_PERIPH), LPC32XX_CLK_DEFINE(TIMER3, "timer3", 0x0, LPC32XX_CLK_PERIPH), LPC32XX_CLK_DEFINE(TIMER4, "timer4", 0x0, LPC32XX_CLK_PERIPH), LPC32XX_CLK_DEFINE(TIMER5, "timer5", 0x0, LPC32XX_CLK_PERIPH), LPC32XX_CLK_DEFINE(WDOG, "watchdog", 0x0, LPC32XX_CLK_PERIPH), LPC32XX_CLK_DEFINE(I2S0, "i2s0", 0x0, LPC32XX_CLK_HCLK), LPC32XX_CLK_DEFINE(I2S1, "i2s1", 0x0, LPC32XX_CLK_HCLK), LPC32XX_CLK_DEFINE(SPI1, "spi1", 0x0, LPC32XX_CLK_HCLK), LPC32XX_CLK_DEFINE(SPI2, "spi2", 0x0, LPC32XX_CLK_HCLK), LPC32XX_CLK_DEFINE(MCPWM, "mcpwm", 0x0, LPC32XX_CLK_HCLK), LPC32XX_CLK_DEFINE(HSTIMER, "hstimer", 0x0, LPC32XX_CLK_PERIPH), LPC32XX_CLK_DEFINE(KEY, "key", 0x0, LPC32XX_CLK_RTC), LPC32XX_CLK_DEFINE(PWM1, "pwm1", 0x0, LPC32XX_CLK_RTC, LPC32XX_CLK_PERIPH), LPC32XX_CLK_DEFINE(PWM2, "pwm2", 0x0, LPC32XX_CLK_RTC, LPC32XX_CLK_PERIPH), LPC32XX_CLK_DEFINE(ADC, "adc", 0x0, LPC32XX_CLK_ADC_RTC, LPC32XX_CLK_ADC_DIV), LPC32XX_CLK_DEFINE(ADC_DIV, "adc_div", 0x0, LPC32XX_CLK_PERIPH), LPC32XX_CLK_DEFINE(ADC_RTC, "adc_rtc", 0x0, LPC32XX_CLK_RTC), LPC32XX_CLK_DEFINE(TEST1, "test1", 0x0, LPC32XX_CLK_PERIPH, LPC32XX_CLK_RTC, LPC32XX_CLK_OSC), LPC32XX_CLK_DEFINE(TEST2, "test2", 0x0, LPC32XX_CLK_HCLK, LPC32XX_CLK_PERIPH, LPC32XX_CLK_USB, LPC32XX_CLK_OSC, LPC32XX_CLK_PLL397X), /* USB controller clocks */ LPC32XX_CLK_DEFINE(USB_AHB, "usb_ahb", 0x0, LPC32XX_CLK_USB), LPC32XX_CLK_DEFINE(USB_OTG, "usb_otg", 0x0, LPC32XX_CLK_USB_AHB), LPC32XX_CLK_DEFINE(USB_I2C, "usb_i2c", 0x0, LPC32XX_CLK_USB_AHB), LPC32XX_CLK_DEFINE(USB_DEV, "usb_dev", 0x0, LPC32XX_CLK_USB_OTG), LPC32XX_CLK_DEFINE(USB_HOST, "usb_host", 0x0, LPC32XX_CLK_USB_OTG), }; struct lpc32xx_clk { struct clk_hw hw; u32 reg; u32 enable; u32 enable_mask; u32 disable; u32 disable_mask; u32 busy; u32 busy_mask; }; enum clk_pll_mode { PLL_UNKNOWN, PLL_DIRECT, PLL_BYPASS, PLL_DIRECT_BYPASS, PLL_INTEGER, PLL_NON_INTEGER, }; struct lpc32xx_pll_clk { struct clk_hw hw; u32 reg; u32 enable; unsigned long m_div; unsigned long n_div; unsigned long p_div; enum clk_pll_mode mode; }; struct lpc32xx_usb_clk { struct clk_hw hw; u32 ctrl_enable; u32 ctrl_disable; u32 ctrl_mask; u32 enable; u32 busy; }; struct lpc32xx_clk_mux { struct clk_hw hw; u32 reg; u32 mask; u8 shift; u32 *table; u8 flags; }; struct lpc32xx_clk_div { struct clk_hw hw; u32 reg; u8 shift; u8 width; const struct clk_div_table *table; u8 flags; }; struct lpc32xx_clk_gate { struct clk_hw hw; u32 reg; u8 bit_idx; u8 flags; }; #define to_lpc32xx_clk(_hw) container_of(_hw, struct lpc32xx_clk, hw) #define to_lpc32xx_pll_clk(_hw) container_of(_hw, struct lpc32xx_pll_clk, hw) #define to_lpc32xx_usb_clk(_hw) container_of(_hw, struct lpc32xx_usb_clk, hw) #define to_lpc32xx_mux(_hw) container_of(_hw, struct lpc32xx_clk_mux, hw) #define to_lpc32xx_div(_hw) container_of(_hw, struct lpc32xx_clk_div, hw) #define to_lpc32xx_gate(_hw) container_of(_hw, struct lpc32xx_clk_gate, hw) static inline bool pll_is_valid(u64 val0, u64 val1, u64 min, u64 max) { return (val0 >= (val1 * min) && val0 <= (val1 * max)); } static inline u32 lpc32xx_usb_clk_read(struct lpc32xx_usb_clk *clk) { return readl(usb_clk_vbase + LPC32XX_USB_CLK_STS); } static inline void lpc32xx_usb_clk_write(struct lpc32xx_usb_clk *clk, u32 val) { writel(val, usb_clk_vbase + LPC32XX_USB_CLK_CTRL); } static int clk_mask_enable(struct clk_hw *hw) { struct lpc32xx_clk *clk = to_lpc32xx_clk(hw); u32 val; regmap_read(clk_regmap, clk->reg, &val); if (clk->busy_mask && (val & clk->busy_mask) == clk->busy) return -EBUSY; return regmap_update_bits(clk_regmap, clk->reg, clk->enable_mask, clk->enable); } static void clk_mask_disable(struct clk_hw *hw) { struct lpc32xx_clk *clk = to_lpc32xx_clk(hw); regmap_update_bits(clk_regmap, clk->reg, clk->disable_mask, clk->disable); } static int clk_mask_is_enabled(struct clk_hw *hw) { struct lpc32xx_clk *clk = to_lpc32xx_clk(hw); u32 val; regmap_read(clk_regmap, clk->reg, &val); return ((val & clk->enable_mask) == clk->enable); } static const struct clk_ops clk_mask_ops = { .enable = clk_mask_enable, .disable = clk_mask_disable, .is_enabled = clk_mask_is_enabled, }; static int clk_pll_enable(struct clk_hw *hw) { struct lpc32xx_pll_clk *clk = to_lpc32xx_pll_clk(hw); u32 val, count; regmap_update_bits(clk_regmap, clk->reg, clk->enable, clk->enable); for (count = 0; count < 1000; count++) { regmap_read(clk_regmap, clk->reg, &val); if (val & PLL_CTRL_LOCK) break; } if (val & PLL_CTRL_LOCK) return 0; return -ETIMEDOUT; } static void clk_pll_disable(struct clk_hw *hw) { struct lpc32xx_pll_clk *clk = to_lpc32xx_pll_clk(hw); regmap_update_bits(clk_regmap, clk->reg, clk->enable, 0x0); } static int clk_pll_is_enabled(struct clk_hw *hw) { struct lpc32xx_pll_clk *clk = to_lpc32xx_pll_clk(hw); u32 val; regmap_read(clk_regmap, clk->reg, &val); val &= clk->enable | PLL_CTRL_LOCK; if (val == (clk->enable | PLL_CTRL_LOCK)) return 1; return 0; } static unsigned long clk_pll_397x_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { return parent_rate * 397; } static unsigned long clk_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct lpc32xx_pll_clk *clk = to_lpc32xx_pll_clk(hw); bool is_direct, is_bypass, is_feedback; unsigned long rate, cco_rate, ref_rate; u32 val; regmap_read(clk_regmap, clk->reg, &val); is_direct = val & PLL_CTRL_DIRECT; is_bypass = val & PLL_CTRL_BYPASS; is_feedback = val & PLL_CTRL_FEEDBACK; clk->m_div = ((val & PLL_CTRL_FEEDDIV) >> 1) + 1; clk->n_div = ((val & PLL_CTRL_PREDIV) >> 9) + 1; clk->p_div = ((val & PLL_CTRL_POSTDIV) >> 11) + 1; if (is_direct && is_bypass) { clk->p_div = 0; clk->mode = PLL_DIRECT_BYPASS; return parent_rate; } if (is_bypass) { clk->mode = PLL_BYPASS; return parent_rate / (1 << clk->p_div); } if (is_direct) { clk->p_div = 0; clk->mode = PLL_DIRECT; } ref_rate = parent_rate / clk->n_div; rate = cco_rate = ref_rate * clk->m_div; if (!is_direct) { if (is_feedback) { cco_rate *= (1 << clk->p_div); clk->mode = PLL_INTEGER; } else { rate /= (1 << clk->p_div); clk->mode = PLL_NON_INTEGER; } } pr_debug("%s: %lu: 0x%x: %d/%d/%d, %lu/%lu/%d => %lu\n", clk_hw_get_name(hw), parent_rate, val, is_direct, is_bypass, is_feedback, clk->n_div, clk->m_div, (1 << clk->p_div), rate); if (clk_pll_is_enabled(hw) && !(pll_is_valid(parent_rate, 1, 1000000, 20000000) && pll_is_valid(cco_rate, 1, 156000000, 320000000) && pll_is_valid(ref_rate, 1, 1000000, 27000000))) pr_err("%s: PLL clocks are not in valid ranges: %lu/%lu/%lu\n", clk_hw_get_name(hw), parent_rate, cco_rate, ref_rate); return rate; } static int clk_pll_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct lpc32xx_pll_clk *clk = to_lpc32xx_pll_clk(hw); u32 val; unsigned long new_rate; /* Validate PLL clock parameters computed on round rate stage */ switch (clk->mode) { case PLL_DIRECT: val = PLL_CTRL_DIRECT; val |= (clk->m_div - 1) << 1; val |= (clk->n_div - 1) << 9; new_rate = (parent_rate * clk->m_div) / clk->n_div; break; case PLL_BYPASS: val = PLL_CTRL_BYPASS; val |= (clk->p_div - 1) << 11; new_rate = parent_rate / (1 << (clk->p_div)); break; case PLL_DIRECT_BYPASS: val = PLL_CTRL_DIRECT | PLL_CTRL_BYPASS; new_rate = parent_rate; break; case PLL_INTEGER: val = PLL_CTRL_FEEDBACK; val |= (clk->m_div - 1) << 1; val |= (clk->n_div - 1) << 9; val |= (clk->p_div - 1) << 11; new_rate = (parent_rate * clk->m_div) / clk->n_div; break; case PLL_NON_INTEGER: val = 0x0; val |= (clk->m_div - 1) << 1; val |= (clk->n_div - 1) << 9; val |= (clk->p_div - 1) << 11; new_rate = (parent_rate * clk->m_div) / (clk->n_div * (1 << clk->p_div)); break; default: return -EINVAL; } /* Sanity check that round rate is equal to the requested one */ if (new_rate != rate) return -EINVAL; return regmap_update_bits(clk_regmap, clk->reg, 0x1FFFF, val); } static long clk_hclk_pll_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { struct lpc32xx_pll_clk *clk = to_lpc32xx_pll_clk(hw); u64 m_i, o = rate, i = *parent_rate, d = (u64)rate << 6; u64 m = 0, n = 0, p = 0; int p_i, n_i; pr_debug("%s: %lu/%lu\n", clk_hw_get_name(hw), *parent_rate, rate); if (rate > 266500000) return -EINVAL; /* Have to check all 20 possibilities to find the minimal M */ for (p_i = 4; p_i >= 0; p_i--) { for (n_i = 4; n_i > 0; n_i--) { m_i = div64_u64(o * n_i * (1 << p_i), i); /* Check for valid PLL parameter constraints */ if (!(m_i && m_i <= 256 && pll_is_valid(i, n_i, 1000000, 27000000) && pll_is_valid(i * m_i * (1 << p_i), n_i, 156000000, 320000000))) continue; /* Store some intermediate valid parameters */ if (o * n_i * (1 << p_i) - i * m_i <= d) { m = m_i; n = n_i; p = p_i; d = o * n_i * (1 << p_i) - i * m_i; } } } if (d == (u64)rate << 6) { pr_err("%s: %lu: no valid PLL parameters are found\n", clk_hw_get_name(hw), rate); return -EINVAL; } clk->m_div = m; clk->n_div = n; clk->p_div = p; /* Set only direct or non-integer mode of PLL */ if (!p) clk->mode = PLL_DIRECT; else clk->mode = PLL_NON_INTEGER; o = div64_u64(i * m, n * (1 << p)); if (!d) pr_debug("%s: %lu: found exact match: %llu/%llu/%llu\n", clk_hw_get_name(hw), rate, m, n, p); else pr_debug("%s: %lu: found closest: %llu/%llu/%llu - %llu\n", clk_hw_get_name(hw), rate, m, n, p, o); return o; } static long clk_usb_pll_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { struct lpc32xx_pll_clk *clk = to_lpc32xx_pll_clk(hw); struct clk_hw *usb_div_hw, *osc_hw; u64 d_i, n_i, m, o; pr_debug("%s: %lu/%lu\n", clk_hw_get_name(hw), *parent_rate, rate); /* * The only supported USB clock is 48MHz, with PLL internal constraints * on Fclkin, Fcco and Fref this implies that Fcco must be 192MHz * and post-divider must be 4, this slightly simplifies calculation of * USB divider, USB PLL N and M parameters. */ if (rate != 48000000) return -EINVAL; /* USB divider clock */ usb_div_hw = clk_hw_get_parent_by_index(hw, 0); if (!usb_div_hw) return -EINVAL; /* Main oscillator clock */ osc_hw = clk_hw_get_parent_by_index(usb_div_hw, 0); if (!osc_hw) return -EINVAL; o = clk_hw_get_rate(osc_hw); /* must be in range 1..20 MHz */ /* Check if valid USB divider and USB PLL parameters exists */ for (d_i = 16; d_i >= 1; d_i--) { for (n_i = 1; n_i <= 4; n_i++) { m = div64_u64(192000000 * d_i * n_i, o); if (!(m && m <= 256 && m * o == 192000000 * d_i * n_i && pll_is_valid(o, d_i, 1000000, 20000000) && pll_is_valid(o, d_i * n_i, 1000000, 27000000))) continue; clk->n_div = n_i; clk->m_div = m; clk->p_div = 2; clk->mode = PLL_NON_INTEGER; *parent_rate = div64_u64(o, d_i); return rate; } } return -EINVAL; } #define LPC32XX_DEFINE_PLL_OPS(_name, _rc, _sr, _rr) \ static const struct clk_ops clk_ ##_name ## _ops = { \ .enable = clk_pll_enable, \ .disable = clk_pll_disable, \ .is_enabled = clk_pll_is_enabled, \ .recalc_rate = _rc, \ .set_rate = _sr, \ .round_rate = _rr, \ } LPC32XX_DEFINE_PLL_OPS(pll_397x, clk_pll_397x_recalc_rate, NULL, NULL); LPC32XX_DEFINE_PLL_OPS(hclk_pll, clk_pll_recalc_rate, clk_pll_set_rate, clk_hclk_pll_round_rate); LPC32XX_DEFINE_PLL_OPS(usb_pll, clk_pll_recalc_rate, clk_pll_set_rate, clk_usb_pll_round_rate); static int clk_ddram_is_enabled(struct clk_hw *hw) { struct lpc32xx_clk *clk = to_lpc32xx_clk(hw); u32 val; regmap_read(clk_regmap, clk->reg, &val); val &= clk->enable_mask | clk->busy_mask; return (val == (BIT(7) | BIT(0)) || val == (BIT(8) | BIT(1))); } static int clk_ddram_enable(struct clk_hw *hw) { struct lpc32xx_clk *clk = to_lpc32xx_clk(hw); u32 val, hclk_div; regmap_read(clk_regmap, clk->reg, &val); hclk_div = val & clk->busy_mask; /* * DDRAM clock must be 2 times higher than HCLK, * this implies DDRAM clock can not be enabled, * if HCLK clock rate is equal to ARM clock rate */ if (hclk_div == 0x0 || hclk_div == (BIT(1) | BIT(0))) return -EINVAL; return regmap_update_bits(clk_regmap, clk->reg, clk->enable_mask, hclk_div << 7); } static unsigned long clk_ddram_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct lpc32xx_clk *clk = to_lpc32xx_clk(hw); u32 val; if (!clk_ddram_is_enabled(hw)) return 0; regmap_read(clk_regmap, clk->reg, &val); val &= clk->enable_mask; return parent_rate / (val >> 7); } static const struct clk_ops clk_ddram_ops = { .enable = clk_ddram_enable, .disable = clk_mask_disable, .is_enabled = clk_ddram_is_enabled, .recalc_rate = clk_ddram_recalc_rate, }; static unsigned long lpc32xx_clk_uart_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct lpc32xx_clk *clk = to_lpc32xx_clk(hw); u32 val, x, y; regmap_read(clk_regmap, clk->reg, &val); x = (val & 0xFF00) >> 8; y = val & 0xFF; if (x && y) return (parent_rate * x) / y; else return 0; } static const struct clk_ops lpc32xx_uart_div_ops = { .recalc_rate = lpc32xx_clk_uart_recalc_rate, }; static const struct clk_div_table clk_hclk_div_table[] = { { .val = 0, .div = 1 }, { .val = 1, .div = 2 }, { .val = 2, .div = 4 }, { }, }; static u32 test1_mux_table[] = { 0, 1, 2, }; static u32 test2_mux_table[] = { 0, 1, 2, 5, 7, }; static int clk_usb_enable(struct clk_hw *hw) { struct lpc32xx_usb_clk *clk = to_lpc32xx_usb_clk(hw); u32 val, ctrl_val, count; pr_debug("%s: 0x%x\n", clk_hw_get_name(hw), clk->enable); if (clk->ctrl_mask) { regmap_read(clk_regmap, LPC32XX_CLKPWR_USB_CTRL, &ctrl_val); regmap_update_bits(clk_regmap, LPC32XX_CLKPWR_USB_CTRL, clk->ctrl_mask, clk->ctrl_enable); } val = lpc32xx_usb_clk_read(clk); if (clk->busy && (val & clk->busy) == clk->busy) { if (clk->ctrl_mask) regmap_write(clk_regmap, LPC32XX_CLKPWR_USB_CTRL, ctrl_val); return -EBUSY; } val |= clk->enable; lpc32xx_usb_clk_write(clk, val); for (count = 0; count < 1000; count++) { val = lpc32xx_usb_clk_read(clk); if ((val & clk->enable) == clk->enable) break; } if ((val & clk->enable) == clk->enable) return 0; if (clk->ctrl_mask) regmap_write(clk_regmap, LPC32XX_CLKPWR_USB_CTRL, ctrl_val); return -ETIMEDOUT; } static void clk_usb_disable(struct clk_hw *hw) { struct lpc32xx_usb_clk *clk = to_lpc32xx_usb_clk(hw); u32 val = lpc32xx_usb_clk_read(clk); val &= ~clk->enable; lpc32xx_usb_clk_write(clk, val); if (clk->ctrl_mask) regmap_update_bits(clk_regmap, LPC32XX_CLKPWR_USB_CTRL, clk->ctrl_mask, clk->ctrl_disable); } static int clk_usb_is_enabled(struct clk_hw *hw) { struct lpc32xx_usb_clk *clk = to_lpc32xx_usb_clk(hw); u32 ctrl_val, val; if (clk->ctrl_mask) { regmap_read(clk_regmap, LPC32XX_CLKPWR_USB_CTRL, &ctrl_val); if ((ctrl_val & clk->ctrl_mask) != clk->ctrl_enable) return 0; } val = lpc32xx_usb_clk_read(clk); return ((val & clk->enable) == clk->enable); } static unsigned long clk_usb_i2c_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { return clk_get_rate(clk[LPC32XX_CLK_PERIPH]); } static const struct clk_ops clk_usb_ops = { .enable = clk_usb_enable, .disable = clk_usb_disable, .is_enabled = clk_usb_is_enabled, }; static const struct clk_ops clk_usb_i2c_ops = { .enable = clk_usb_enable, .disable = clk_usb_disable, .is_enabled = clk_usb_is_enabled, .recalc_rate = clk_usb_i2c_recalc_rate, }; static int lpc32xx_clk_gate_enable(struct clk_hw *hw) { struct lpc32xx_clk_gate *clk = to_lpc32xx_gate(hw); u32 mask = BIT(clk->bit_idx); u32 val = (clk->flags & CLK_GATE_SET_TO_DISABLE ? 0x0 : mask); return regmap_update_bits(clk_regmap, clk->reg, mask, val); } static void lpc32xx_clk_gate_disable(struct clk_hw *hw) { struct lpc32xx_clk_gate *clk = to_lpc32xx_gate(hw); u32 mask = BIT(clk->bit_idx); u32 val = (clk->flags & CLK_GATE_SET_TO_DISABLE ? mask : 0x0); regmap_update_bits(clk_regmap, clk->reg, mask, val); } static int lpc32xx_clk_gate_is_enabled(struct clk_hw *hw) { struct lpc32xx_clk_gate *clk = to_lpc32xx_gate(hw); u32 val; bool is_set; regmap_read(clk_regmap, clk->reg, &val); is_set = val & BIT(clk->bit_idx); return (clk->flags & CLK_GATE_SET_TO_DISABLE ? !is_set : is_set); } static const struct clk_ops lpc32xx_clk_gate_ops = { .enable = lpc32xx_clk_gate_enable, .disable = lpc32xx_clk_gate_disable, .is_enabled = lpc32xx_clk_gate_is_enabled, }; #define div_mask(width) ((1 << (width)) - 1) static unsigned int _get_table_div(const struct clk_div_table *table, unsigned int val) { const struct clk_div_table *clkt; for (clkt = table; clkt->div; clkt++) if (clkt->val == val) return clkt->div; return 0; } static unsigned int _get_div(const struct clk_div_table *table, unsigned int val, unsigned long flags, u8 width) { if (flags & CLK_DIVIDER_ONE_BASED) return val; if (table) return _get_table_div(table, val); return val + 1; } static unsigned long clk_divider_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct lpc32xx_clk_div *divider = to_lpc32xx_div(hw); unsigned int val; regmap_read(clk_regmap, divider->reg, &val); val >>= divider->shift; val &= div_mask(divider->width); return divider_recalc_rate(hw, parent_rate, val, divider->table, divider->flags, divider->width); } static long clk_divider_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { struct lpc32xx_clk_div *divider = to_lpc32xx_div(hw); unsigned int bestdiv; /* if read only, just return current value */ if (divider->flags & CLK_DIVIDER_READ_ONLY) { regmap_read(clk_regmap, divider->reg, &bestdiv); bestdiv >>= divider->shift; bestdiv &= div_mask(divider->width); bestdiv = _get_div(divider->table, bestdiv, divider->flags, divider->width); return DIV_ROUND_UP(*prate, bestdiv); } return divider_round_rate(hw, rate, prate, divider->table, divider->width, divider->flags); } static int clk_divider_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct lpc32xx_clk_div *divider = to_lpc32xx_div(hw); unsigned int value; value = divider_get_val(rate, parent_rate, divider->table, divider->width, divider->flags); return regmap_update_bits(clk_regmap, divider->reg, div_mask(divider->width) << divider->shift, value << divider->shift); } static const struct clk_ops lpc32xx_clk_divider_ops = { .recalc_rate = clk_divider_recalc_rate, .round_rate = clk_divider_round_rate, .set_rate = clk_divider_set_rate, }; static u8 clk_mux_get_parent(struct clk_hw *hw) { struct lpc32xx_clk_mux *mux = to_lpc32xx_mux(hw); u32 num_parents = clk_hw_get_num_parents(hw); u32 val; regmap_read(clk_regmap, mux->reg, &val); val >>= mux->shift; val &= mux->mask; if (mux->table) { u32 i; for (i = 0; i < num_parents; i++) if (mux->table[i] == val) return i; return -EINVAL; } if (val >= num_parents) return -EINVAL; return val; } static int clk_mux_set_parent(struct clk_hw *hw, u8 index) { struct lpc32xx_clk_mux *mux = to_lpc32xx_mux(hw); if (mux->table) index = mux->table[index]; return regmap_update_bits(clk_regmap, mux->reg, mux->mask << mux->shift, index << mux->shift); } static const struct clk_ops lpc32xx_clk_mux_ro_ops = { .get_parent = clk_mux_get_parent, }; static const struct clk_ops lpc32xx_clk_mux_ops = { .get_parent = clk_mux_get_parent, .set_parent = clk_mux_set_parent, .determine_rate = __clk_mux_determine_rate, }; enum lpc32xx_clk_type { CLK_FIXED, CLK_MUX, CLK_DIV, CLK_GATE, CLK_COMPOSITE, CLK_LPC32XX, CLK_LPC32XX_PLL, CLK_LPC32XX_USB, }; struct clk_hw_proto0 { const struct clk_ops *ops; union { struct lpc32xx_pll_clk pll; struct lpc32xx_clk clk; struct lpc32xx_usb_clk usb_clk; struct lpc32xx_clk_mux mux; struct lpc32xx_clk_div div; struct lpc32xx_clk_gate gate; }; }; struct clk_hw_proto1 { struct clk_hw_proto0 *mux; struct clk_hw_proto0 *div; struct clk_hw_proto0 *gate; }; struct clk_hw_proto { enum lpc32xx_clk_type type; union { struct clk_fixed_rate f; struct clk_hw_proto0 hw0; struct clk_hw_proto1 hw1; }; }; #define LPC32XX_DEFINE_FIXED(_idx, _rate) \ [CLK_PREFIX(_idx)] = { \ .type = CLK_FIXED, \ { \ .f = { \ .fixed_rate = (_rate), \ }, \ }, \ } #define LPC32XX_DEFINE_PLL(_idx, _name, _reg, _enable) \ [CLK_PREFIX(_idx)] = { \ .type = CLK_LPC32XX_PLL, \ { \ .hw0 = { \ .ops = &clk_ ##_name ## _ops, \ { \ .pll = { \ .reg = LPC32XX_CLKPWR_ ## _reg, \ .enable = (_enable), \ }, \ }, \ }, \ }, \ } #define LPC32XX_DEFINE_MUX(_idx, _reg, _shift, _mask, _table, _flags) \ [CLK_PREFIX(_idx)] = { \ .type = CLK_MUX, \ { \ .hw0 = { \ .ops = (_flags & CLK_MUX_READ_ONLY ? \ &lpc32xx_clk_mux_ro_ops : \ &lpc32xx_clk_mux_ops), \ { \ .mux = { \ .reg = LPC32XX_CLKPWR_ ## _reg, \ .mask = (_mask), \ .shift = (_shift), \ .table = (_table), \ .flags = (_flags), \ }, \ }, \ }, \ }, \ } #define LPC32XX_DEFINE_DIV(_idx, _reg, _shift, _width, _table, _flags) \ [CLK_PREFIX(_idx)] = { \ .type = CLK_DIV, \ { \ .hw0 = { \ .ops = &lpc32xx_clk_divider_ops, \ { \ .div = { \ .reg = LPC32XX_CLKPWR_ ## _reg, \ .shift = (_shift), \ .width = (_width), \ .table = (_table), \ .flags = (_flags), \ }, \ }, \ }, \ }, \ } #define LPC32XX_DEFINE_GATE(_idx, _reg, _bit, _flags) \ [CLK_PREFIX(_idx)] = { \ .type = CLK_GATE, \ { \ .hw0 = { \ .ops = &lpc32xx_clk_gate_ops, \ { \ .gate = { \ .reg = LPC32XX_CLKPWR_ ## _reg, \ .bit_idx = (_bit), \ .flags = (_flags), \ }, \ }, \ }, \ }, \ } #define LPC32XX_DEFINE_CLK(_idx, _reg, _e, _em, _d, _dm, _b, _bm, _ops) \ [CLK_PREFIX(_idx)] = { \ .type = CLK_LPC32XX, \ { \ .hw0 = { \ .ops = &(_ops), \ { \ .clk = { \ .reg = LPC32XX_CLKPWR_ ## _reg, \ .enable = (_e), \ .enable_mask = (_em), \ .disable = (_d), \ .disable_mask = (_dm), \ .busy = (_b), \ .busy_mask = (_bm), \ }, \ }, \ }, \ }, \ } #define LPC32XX_DEFINE_USB(_idx, _ce, _cd, _cm, _e, _b, _ops) \ [CLK_PREFIX(_idx)] = { \ .type = CLK_LPC32XX_USB, \ { \ .hw0 = { \ .ops = &(_ops), \ { \ .usb_clk = { \ .ctrl_enable = (_ce), \ .ctrl_disable = (_cd), \ .ctrl_mask = (_cm), \ .enable = (_e), \ .busy = (_b), \ } \ }, \ } \ }, \ } #define LPC32XX_DEFINE_COMPOSITE(_idx, _mux, _div, _gate) \ [CLK_PREFIX(_idx)] = { \ .type = CLK_COMPOSITE, \ { \ .hw1 = { \ .mux = (CLK_PREFIX(_mux) == LPC32XX_CLK__NULL ? NULL : \ &clk_hw_proto[CLK_PREFIX(_mux)].hw0), \ .div = (CLK_PREFIX(_div) == LPC32XX_CLK__NULL ? NULL : \ &clk_hw_proto[CLK_PREFIX(_div)].hw0), \ .gate = (CLK_PREFIX(_gate) == LPC32XX_CLK__NULL ? NULL :\ &clk_hw_proto[CLK_PREFIX(_gate)].hw0), \ }, \ }, \ } static struct clk_hw_proto clk_hw_proto[LPC32XX_CLK_HW_MAX] = { LPC32XX_DEFINE_FIXED(RTC, 32768), LPC32XX_DEFINE_PLL(PLL397X, pll_397x, HCLKPLL_CTRL, BIT(1)), LPC32XX_DEFINE_PLL(HCLK_PLL, hclk_pll, HCLKPLL_CTRL, PLL_CTRL_ENABLE), LPC32XX_DEFINE_PLL(USB_PLL, usb_pll, USB_CTRL, PLL_CTRL_ENABLE), LPC32XX_DEFINE_GATE(OSC, OSC_CTRL, 0, CLK_GATE_SET_TO_DISABLE), LPC32XX_DEFINE_GATE(USB, USB_CTRL, 18, 0), LPC32XX_DEFINE_DIV(HCLK_DIV_PERIPH, HCLKDIV_CTRL, 2, 5, NULL, CLK_DIVIDER_READ_ONLY), LPC32XX_DEFINE_DIV(HCLK_DIV, HCLKDIV_CTRL, 0, 2, clk_hclk_div_table, CLK_DIVIDER_READ_ONLY), /* Register 3 read-only muxes with a single control PWR_CTRL[2] */ LPC32XX_DEFINE_MUX(SYSCLK_PERIPH_MUX, PWR_CTRL, 2, 0x1, NULL, CLK_MUX_READ_ONLY), LPC32XX_DEFINE_MUX(SYSCLK_HCLK_MUX, PWR_CTRL, 2, 0x1, NULL, CLK_MUX_READ_ONLY), LPC32XX_DEFINE_MUX(SYSCLK_ARM_MUX, PWR_CTRL, 2, 0x1, NULL, CLK_MUX_READ_ONLY), /* Register 2 read-only muxes with a single control PWR_CTRL[10] */ LPC32XX_DEFINE_MUX(PERIPH_HCLK_MUX, PWR_CTRL, 10, 0x1, NULL, CLK_MUX_READ_ONLY), LPC32XX_DEFINE_MUX(PERIPH_ARM_MUX, PWR_CTRL, 10, 0x1, NULL, CLK_MUX_READ_ONLY), /* 3 always on gates with a single control PWR_CTRL[0] same as OSC */ LPC32XX_DEFINE_GATE(PERIPH, PWR_CTRL, 0, CLK_GATE_SET_TO_DISABLE), LPC32XX_DEFINE_GATE(HCLK, PWR_CTRL, 0, CLK_GATE_SET_TO_DISABLE), LPC32XX_DEFINE_GATE(ARM, PWR_CTRL, 0, CLK_GATE_SET_TO_DISABLE), LPC32XX_DEFINE_GATE(ARM_VFP, DEBUG_CTRL, 4, 0), LPC32XX_DEFINE_GATE(DMA, DMA_CLK_CTRL, 0, 0), LPC32XX_DEFINE_CLK(DDRAM, HCLKDIV_CTRL, 0x0, BIT(8) | BIT(7), 0x0, BIT(8) | BIT(7), 0x0, BIT(1) | BIT(0), clk_ddram_ops), LPC32XX_DEFINE_GATE(TIMER0, TIMCLK_CTRL1, 2, 0), LPC32XX_DEFINE_GATE(TIMER1, TIMCLK_CTRL1, 3, 0), LPC32XX_DEFINE_GATE(TIMER2, TIMCLK_CTRL1, 4, 0), LPC32XX_DEFINE_GATE(TIMER3, TIMCLK_CTRL1, 5, 0), LPC32XX_DEFINE_GATE(TIMER4, TIMCLK_CTRL1, 0, 0), LPC32XX_DEFINE_GATE(TIMER5, TIMCLK_CTRL1, 1, 0), LPC32XX_DEFINE_GATE(SSP0, SSP_CTRL, 0, 0), LPC32XX_DEFINE_GATE(SSP1, SSP_CTRL, 1, 0), LPC32XX_DEFINE_GATE(SPI1, SPI_CTRL, 0, 0), LPC32XX_DEFINE_GATE(SPI2, SPI_CTRL, 4, 0), LPC32XX_DEFINE_GATE(I2S0, I2S_CTRL, 0, 0), LPC32XX_DEFINE_GATE(I2S1, I2S_CTRL, 1, 0), LPC32XX_DEFINE_GATE(I2C1, I2CCLK_CTRL, 0, 0), LPC32XX_DEFINE_GATE(I2C2, I2CCLK_CTRL, 1, 0), LPC32XX_DEFINE_GATE(WDOG, TIMCLK_CTRL, 0, 0), LPC32XX_DEFINE_GATE(HSTIMER, TIMCLK_CTRL, 1, 0), LPC32XX_DEFINE_GATE(KEY, KEYCLK_CTRL, 0, 0), LPC32XX_DEFINE_GATE(MCPWM, TIMCLK_CTRL1, 6, 0), LPC32XX_DEFINE_MUX(PWM1_MUX, PWMCLK_CTRL, 1, 0x1, NULL, 0), LPC32XX_DEFINE_DIV(PWM1_DIV, PWMCLK_CTRL, 4, 4, NULL, CLK_DIVIDER_ONE_BASED), LPC32XX_DEFINE_GATE(PWM1_GATE, PWMCLK_CTRL, 0, 0), LPC32XX_DEFINE_COMPOSITE(PWM1, PWM1_MUX, PWM1_DIV, PWM1_GATE), LPC32XX_DEFINE_MUX(PWM2_MUX, PWMCLK_CTRL, 3, 0x1, NULL, 0), LPC32XX_DEFINE_DIV(PWM2_DIV, PWMCLK_CTRL, 8, 4, NULL, CLK_DIVIDER_ONE_BASED), LPC32XX_DEFINE_GATE(PWM2_GATE, PWMCLK_CTRL, 2, 0), LPC32XX_DEFINE_COMPOSITE(PWM2, PWM2_MUX, PWM2_DIV, PWM2_GATE), LPC32XX_DEFINE_MUX(UART3_MUX, UART3_CLK_CTRL, 16, 0x1, NULL, 0), LPC32XX_DEFINE_CLK(UART3_DIV, UART3_CLK_CTRL, 0, 0, 0, 0, 0, 0, lpc32xx_uart_div_ops), LPC32XX_DEFINE_GATE(UART3_GATE, UART_CLK_CTRL, 0, 0), LPC32XX_DEFINE_COMPOSITE(UART3, UART3_MUX, UART3_DIV, UART3_GATE), LPC32XX_DEFINE_MUX(UART4_MUX, UART4_CLK_CTRL, 16, 0x1, NULL, 0), LPC32XX_DEFINE_CLK(UART4_DIV, UART4_CLK_CTRL, 0, 0, 0, 0, 0, 0, lpc32xx_uart_div_ops), LPC32XX_DEFINE_GATE(UART4_GATE, UART_CLK_CTRL, 1, 0), LPC32XX_DEFINE_COMPOSITE(UART4, UART4_MUX, UART4_DIV, UART4_GATE), LPC32XX_DEFINE_MUX(UART5_MUX, UART5_CLK_CTRL, 16, 0x1, NULL, 0), LPC32XX_DEFINE_CLK(UART5_DIV, UART5_CLK_CTRL, 0, 0, 0, 0, 0, 0, lpc32xx_uart_div_ops), LPC32XX_DEFINE_GATE(UART5_GATE, UART_CLK_CTRL, 2, 0), LPC32XX_DEFINE_COMPOSITE(UART5, UART5_MUX, UART5_DIV, UART5_GATE), LPC32XX_DEFINE_MUX(UART6_MUX, UART6_CLK_CTRL, 16, 0x1, NULL, 0), LPC32XX_DEFINE_CLK(UART6_DIV, UART6_CLK_CTRL, 0, 0, 0, 0, 0, 0, lpc32xx_uart_div_ops), LPC32XX_DEFINE_GATE(UART6_GATE, UART_CLK_CTRL, 3, 0), LPC32XX_DEFINE_COMPOSITE(UART6, UART6_MUX, UART6_DIV, UART6_GATE), LPC32XX_DEFINE_CLK(IRDA, IRDA_CLK_CTRL, 0, 0, 0, 0, 0, 0, lpc32xx_uart_div_ops), LPC32XX_DEFINE_MUX(TEST1_MUX, TEST_CLK_CTRL, 5, 0x3, test1_mux_table, 0), LPC32XX_DEFINE_GATE(TEST1_GATE, TEST_CLK_CTRL, 4, 0), LPC32XX_DEFINE_COMPOSITE(TEST1, TEST1_MUX, _NULL, TEST1_GATE), LPC32XX_DEFINE_MUX(TEST2_MUX, TEST_CLK_CTRL, 1, 0x7, test2_mux_table, 0), LPC32XX_DEFINE_GATE(TEST2_GATE, TEST_CLK_CTRL, 0, 0), LPC32XX_DEFINE_COMPOSITE(TEST2, TEST2_MUX, _NULL, TEST2_GATE), LPC32XX_DEFINE_MUX(SYS, SYSCLK_CTRL, 0, 0x1, NULL, CLK_MUX_READ_ONLY), LPC32XX_DEFINE_DIV(USB_DIV_DIV, USB_DIV, 0, 4, NULL, 0), LPC32XX_DEFINE_GATE(USB_DIV_GATE, USB_CTRL, 17, 0), LPC32XX_DEFINE_COMPOSITE(USB_DIV, _NULL, USB_DIV_DIV, USB_DIV_GATE), LPC32XX_DEFINE_DIV(SD_DIV, MS_CTRL, 0, 4, NULL, CLK_DIVIDER_ONE_BASED), LPC32XX_DEFINE_CLK(SD_GATE, MS_CTRL, BIT(5) | BIT(9), BIT(5) | BIT(9), 0x0, BIT(5) | BIT(9), 0x0, 0x0, clk_mask_ops), LPC32XX_DEFINE_COMPOSITE(SD, _NULL, SD_DIV, SD_GATE), LPC32XX_DEFINE_DIV(LCD_DIV, LCDCLK_CTRL, 0, 5, NULL, 0), LPC32XX_DEFINE_GATE(LCD_GATE, LCDCLK_CTRL, 5, 0), LPC32XX_DEFINE_COMPOSITE(LCD, _NULL, LCD_DIV, LCD_GATE), LPC32XX_DEFINE_CLK(MAC, MACCLK_CTRL, BIT(2) | BIT(1) | BIT(0), BIT(2) | BIT(1) | BIT(0), BIT(2) | BIT(1) | BIT(0), BIT(2) | BIT(1) | BIT(0), 0x0, 0x0, clk_mask_ops), LPC32XX_DEFINE_CLK(SLC, FLASHCLK_CTRL, BIT(2) | BIT(0), BIT(2) | BIT(0), 0x0, BIT(0), BIT(1), BIT(2) | BIT(1), clk_mask_ops), LPC32XX_DEFINE_CLK(MLC, FLASHCLK_CTRL, BIT(1), BIT(2) | BIT(1), 0x0, BIT(1), BIT(2) | BIT(0), BIT(2) | BIT(0), clk_mask_ops), /* * ADC/TS clock unfortunately cannot be registered as a composite one * due to a different connection of gate, div and mux, e.g. gating it * won't mean that the clock is off, if peripheral clock is its parent: * * rtc-->[gate]-->| | * | mux |--> adc/ts * pclk-->[div]-->| | * * Constraints: * ADC --- resulting clock must be <= 4.5 MHz * TS --- resulting clock must be <= 400 KHz */ LPC32XX_DEFINE_DIV(ADC_DIV, ADCCLK_CTRL1, 0, 8, NULL, 0), LPC32XX_DEFINE_GATE(ADC_RTC, ADCCLK_CTRL, 0, 0), LPC32XX_DEFINE_MUX(ADC, ADCCLK_CTRL1, 8, 0x1, NULL, 0), /* USB controller clocks */ LPC32XX_DEFINE_USB(USB_AHB, BIT(24), 0x0, BIT(24), BIT(4), 0, clk_usb_ops), LPC32XX_DEFINE_USB(USB_OTG, 0x0, 0x0, 0x0, BIT(3), 0, clk_usb_ops), LPC32XX_DEFINE_USB(USB_I2C, 0x0, BIT(23), BIT(23), BIT(2), 0, clk_usb_i2c_ops), LPC32XX_DEFINE_USB(USB_DEV, BIT(22), 0x0, BIT(22), BIT(1), BIT(0), clk_usb_ops), LPC32XX_DEFINE_USB(USB_HOST, BIT(21), 0x0, BIT(21), BIT(0), BIT(1), clk_usb_ops), }; static struct clk * __init lpc32xx_clk_register(u32 id) { const struct clk_proto_t *lpc32xx_clk = &clk_proto[id]; struct clk_hw_proto *clk_hw = &clk_hw_proto[id]; const char *parents[LPC32XX_CLK_PARENTS_MAX]; struct clk *clk; unsigned int i; for (i = 0; i < lpc32xx_clk->num_parents; i++) parents[i] = clk_proto[lpc32xx_clk->parents[i]].name; pr_debug("%s: derived from '%s', clock type %d\n", lpc32xx_clk->name, parents[0], clk_hw->type); switch (clk_hw->type) { case CLK_LPC32XX: case CLK_LPC32XX_PLL: case CLK_LPC32XX_USB: case CLK_MUX: case CLK_DIV: case CLK_GATE: { struct clk_init_data clk_init = { .name = lpc32xx_clk->name, .parent_names = parents, .num_parents = lpc32xx_clk->num_parents, .flags = lpc32xx_clk->flags, .ops = clk_hw->hw0.ops, }; struct clk_hw *hw; if (clk_hw->type == CLK_LPC32XX) hw = &clk_hw->hw0.clk.hw; else if (clk_hw->type == CLK_LPC32XX_PLL) hw = &clk_hw->hw0.pll.hw; else if (clk_hw->type == CLK_LPC32XX_USB) hw = &clk_hw->hw0.usb_clk.hw; else if (clk_hw->type == CLK_MUX) hw = &clk_hw->hw0.mux.hw; else if (clk_hw->type == CLK_DIV) hw = &clk_hw->hw0.div.hw; else if (clk_hw->type == CLK_GATE) hw = &clk_hw->hw0.gate.hw; else return ERR_PTR(-EINVAL); hw->init = &clk_init; clk = clk_register(NULL, hw); break; } case CLK_COMPOSITE: { struct clk_hw *mux_hw = NULL, *div_hw = NULL, *gate_hw = NULL; const struct clk_ops *mops = NULL, *dops = NULL, *gops = NULL; struct clk_hw_proto0 *mux0, *div0, *gate0; mux0 = clk_hw->hw1.mux; div0 = clk_hw->hw1.div; gate0 = clk_hw->hw1.gate; if (mux0) { mops = mux0->ops; mux_hw = &mux0->clk.hw; } if (div0) { dops = div0->ops; div_hw = &div0->clk.hw; } if (gate0) { gops = gate0->ops; gate_hw = &gate0->clk.hw; } clk = clk_register_composite(NULL, lpc32xx_clk->name, parents, lpc32xx_clk->num_parents, mux_hw, mops, div_hw, dops, gate_hw, gops, lpc32xx_clk->flags); break; } case CLK_FIXED: { struct clk_fixed_rate *fixed = &clk_hw->f; clk = clk_register_fixed_rate(NULL, lpc32xx_clk->name, parents[0], 0, fixed->fixed_rate); break; } default: clk = ERR_PTR(-EINVAL); } return clk; } static void __init lpc32xx_clk_div_quirk(u32 reg, u32 div_mask, u32 gate) { u32 val; regmap_read(clk_regmap, reg, &val); if (!(val & div_mask)) { val &= ~gate; val |= BIT(__ffs(div_mask)); } regmap_update_bits(clk_regmap, reg, gate | div_mask, val); } static void __init lpc32xx_clk_init(struct device_node *np) { unsigned int i; struct clk *clk_osc, *clk_32k; void __iomem *base = NULL; /* Ensure that parent clocks are available and valid */ clk_32k = of_clk_get_by_name(np, clk_proto[LPC32XX_CLK_XTAL_32K].name); if (IS_ERR(clk_32k)) { pr_err("failed to find external 32KHz clock: %ld\n", PTR_ERR(clk_32k)); return; } if (clk_get_rate(clk_32k) != 32768) { pr_err("invalid clock rate of external 32KHz oscillator\n"); return; } clk_osc = of_clk_get_by_name(np, clk_proto[LPC32XX_CLK_XTAL].name); if (IS_ERR(clk_osc)) { pr_err("failed to find external main oscillator clock: %ld\n", PTR_ERR(clk_osc)); return; } base = of_iomap(np, 0); if (!base) { pr_err("failed to map system control block registers\n"); return; } clk_regmap = regmap_init_mmio(NULL, base, &lpc32xx_scb_regmap_config); if (IS_ERR(clk_regmap)) { pr_err("failed to regmap system control block: %ld\n", PTR_ERR(clk_regmap)); iounmap(base); return; } /* * Divider part of PWM and MS clocks requires a quirk to avoid * a misinterpretation of formally valid zero value in register * bitfield, which indicates another clock gate. Instead of * adding complexity to a gate clock ensure that zero value in * divider clock is never met in runtime. */ lpc32xx_clk_div_quirk(LPC32XX_CLKPWR_PWMCLK_CTRL, 0xf0, BIT(0)); lpc32xx_clk_div_quirk(LPC32XX_CLKPWR_PWMCLK_CTRL, 0xf00, BIT(2)); lpc32xx_clk_div_quirk(LPC32XX_CLKPWR_MS_CTRL, 0xf, BIT(5) | BIT(9)); for (i = 1; i < LPC32XX_CLK_MAX; i++) { clk[i] = lpc32xx_clk_register(i); if (IS_ERR(clk[i])) { pr_err("failed to register %s clock: %ld\n", clk_proto[i].name, PTR_ERR(clk[i])); clk[i] = NULL; } } of_clk_add_provider(np, of_clk_src_onecell_get, &clk_data); /* Set 48MHz rate of USB PLL clock */ clk_set_rate(clk[LPC32XX_CLK_USB_PLL], 48000000); /* These two clocks must be always on independently on consumers */ clk_prepare_enable(clk[LPC32XX_CLK_ARM]); clk_prepare_enable(clk[LPC32XX_CLK_HCLK]); /* Enable ARM VFP by default */ clk_prepare_enable(clk[LPC32XX_CLK_ARM_VFP]); /* Disable enabled by default clocks for NAND MLC and SLC */ clk_mask_disable(&clk_hw_proto[LPC32XX_CLK_SLC].hw0.clk.hw); clk_mask_disable(&clk_hw_proto[LPC32XX_CLK_MLC].hw0.clk.hw); } CLK_OF_DECLARE(lpc32xx_clk, "nxp,lpc3220-clk", lpc32xx_clk_init); static void __init lpc32xx_usb_clk_init(struct device_node *np) { unsigned int i; usb_clk_vbase = of_iomap(np, 0); if (!usb_clk_vbase) { pr_err("failed to map address range\n"); return; } for (i = 1; i < LPC32XX_USB_CLK_MAX; i++) { usb_clk[i] = lpc32xx_clk_register(i + LPC32XX_CLK_USB_OFFSET); if (IS_ERR(usb_clk[i])) { pr_err("failed to register %s clock: %ld\n", clk_proto[i].name, PTR_ERR(usb_clk[i])); usb_clk[i] = NULL; } } of_clk_add_provider(np, of_clk_src_onecell_get, &usb_clk_data); } CLK_OF_DECLARE(lpc32xx_usb_clk, "nxp,lpc3220-usb-clk", lpc32xx_usb_clk_init);
linux-master
drivers/clk/nxp/clk-lpc32xx.c
// SPDX-License-Identifier: GPL-2.0-only /* * Clk driver for NXP LPC18xx/43xx Configuration Registers (CREG) * * Copyright (C) 2015 Joachim Eastwood <[email protected]> */ #include <linux/clk-provider.h> #include <linux/delay.h> #include <linux/kernel.h> #include <linux/mfd/syscon.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/regmap.h> #define LPC18XX_CREG_CREG0 0x004 #define LPC18XX_CREG_CREG0_EN1KHZ BIT(0) #define LPC18XX_CREG_CREG0_EN32KHZ BIT(1) #define LPC18XX_CREG_CREG0_RESET32KHZ BIT(2) #define LPC18XX_CREG_CREG0_PD32KHZ BIT(3) #define to_clk_creg(_hw) container_of(_hw, struct clk_creg_data, hw) enum { CREG_CLK_1KHZ, CREG_CLK_32KHZ, CREG_CLK_MAX, }; struct clk_creg_data { struct clk_hw hw; const char *name; struct regmap *reg; unsigned int en_mask; const struct clk_ops *ops; }; #define CREG_CLK(_name, _emask, _ops) \ { \ .name = _name, \ .en_mask = LPC18XX_CREG_CREG0_##_emask, \ .ops = &_ops, \ } static int clk_creg_32k_prepare(struct clk_hw *hw) { struct clk_creg_data *creg = to_clk_creg(hw); int ret; ret = regmap_update_bits(creg->reg, LPC18XX_CREG_CREG0, LPC18XX_CREG_CREG0_PD32KHZ | LPC18XX_CREG_CREG0_RESET32KHZ, 0); /* * Powering up the 32k oscillator takes a long while * and sadly there aren't any status bit to poll. */ msleep(2500); return ret; } static void clk_creg_32k_unprepare(struct clk_hw *hw) { struct clk_creg_data *creg = to_clk_creg(hw); regmap_update_bits(creg->reg, LPC18XX_CREG_CREG0, LPC18XX_CREG_CREG0_PD32KHZ, LPC18XX_CREG_CREG0_PD32KHZ); } static int clk_creg_32k_is_prepared(struct clk_hw *hw) { struct clk_creg_data *creg = to_clk_creg(hw); u32 reg; regmap_read(creg->reg, LPC18XX_CREG_CREG0, &reg); return !(reg & LPC18XX_CREG_CREG0_PD32KHZ) && !(reg & LPC18XX_CREG_CREG0_RESET32KHZ); } static unsigned long clk_creg_1k_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { return parent_rate / 32; } static int clk_creg_enable(struct clk_hw *hw) { struct clk_creg_data *creg = to_clk_creg(hw); return regmap_update_bits(creg->reg, LPC18XX_CREG_CREG0, creg->en_mask, creg->en_mask); } static void clk_creg_disable(struct clk_hw *hw) { struct clk_creg_data *creg = to_clk_creg(hw); regmap_update_bits(creg->reg, LPC18XX_CREG_CREG0, creg->en_mask, 0); } static int clk_creg_is_enabled(struct clk_hw *hw) { struct clk_creg_data *creg = to_clk_creg(hw); u32 reg; regmap_read(creg->reg, LPC18XX_CREG_CREG0, &reg); return !!(reg & creg->en_mask); } static const struct clk_ops clk_creg_32k = { .enable = clk_creg_enable, .disable = clk_creg_disable, .is_enabled = clk_creg_is_enabled, .prepare = clk_creg_32k_prepare, .unprepare = clk_creg_32k_unprepare, .is_prepared = clk_creg_32k_is_prepared, }; static const struct clk_ops clk_creg_1k = { .enable = clk_creg_enable, .disable = clk_creg_disable, .is_enabled = clk_creg_is_enabled, .recalc_rate = clk_creg_1k_recalc_rate, }; static struct clk_creg_data clk_creg_clocks[] = { [CREG_CLK_1KHZ] = CREG_CLK("1khz_clk", EN1KHZ, clk_creg_1k), [CREG_CLK_32KHZ] = CREG_CLK("32khz_clk", EN32KHZ, clk_creg_32k), }; static struct clk *clk_register_creg_clk(struct device *dev, struct clk_creg_data *creg_clk, const char **parent_name, struct regmap *syscon) { struct clk_init_data init; init.ops = creg_clk->ops; init.name = creg_clk->name; init.parent_names = parent_name; init.num_parents = 1; init.flags = 0; creg_clk->reg = syscon; creg_clk->hw.init = &init; if (dev) return devm_clk_register(dev, &creg_clk->hw); return clk_register(NULL, &creg_clk->hw); } static struct clk *clk_creg_early[CREG_CLK_MAX]; static struct clk_onecell_data clk_creg_early_data = { .clks = clk_creg_early, .clk_num = CREG_CLK_MAX, }; static void __init lpc18xx_creg_clk_init(struct device_node *np) { const char *clk_32khz_parent; struct regmap *syscon; syscon = syscon_node_to_regmap(np->parent); if (IS_ERR(syscon)) { pr_err("%s: syscon lookup failed\n", __func__); return; } clk_32khz_parent = of_clk_get_parent_name(np, 0); clk_creg_early[CREG_CLK_32KHZ] = clk_register_creg_clk(NULL, &clk_creg_clocks[CREG_CLK_32KHZ], &clk_32khz_parent, syscon); clk_creg_early[CREG_CLK_1KHZ] = ERR_PTR(-EPROBE_DEFER); of_clk_add_provider(np, of_clk_src_onecell_get, &clk_creg_early_data); } CLK_OF_DECLARE_DRIVER(lpc18xx_creg_clk, "nxp,lpc1850-creg-clk", lpc18xx_creg_clk_init); static struct clk *clk_creg[CREG_CLK_MAX]; static struct clk_onecell_data clk_creg_data = { .clks = clk_creg, .clk_num = CREG_CLK_MAX, }; static int lpc18xx_creg_clk_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct regmap *syscon; syscon = syscon_node_to_regmap(np->parent); if (IS_ERR(syscon)) { dev_err(&pdev->dev, "syscon lookup failed\n"); return PTR_ERR(syscon); } clk_creg[CREG_CLK_32KHZ] = clk_creg_early[CREG_CLK_32KHZ]; clk_creg[CREG_CLK_1KHZ] = clk_register_creg_clk(NULL, &clk_creg_clocks[CREG_CLK_1KHZ], &clk_creg_clocks[CREG_CLK_32KHZ].name, syscon); return of_clk_add_provider(np, of_clk_src_onecell_get, &clk_creg_data); } static const struct of_device_id lpc18xx_creg_clk_of_match[] = { { .compatible = "nxp,lpc1850-creg-clk" }, {}, }; static struct platform_driver lpc18xx_creg_clk_driver = { .probe = lpc18xx_creg_clk_probe, .driver = { .name = "lpc18xx-creg-clk", .of_match_table = lpc18xx_creg_clk_of_match, }, }; builtin_platform_driver(lpc18xx_creg_clk_driver);
linux-master
drivers/clk/nxp/clk-lpc18xx-creg.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2018-2019 SiFive, Inc. * Wesley Terpstra * Paul Walmsley * * This library supports configuration parsing and reprogramming of * the CLN28HPC variant of the Analog Bits Wide Range PLL. The * intention is for this library to be reusable for any device that * integrates this PLL; thus the register structure and programming * details are expected to be provided by a separate IP block driver. * * The bulk of this code is primarily useful for clock configurations * that must operate at arbitrary rates, as opposed to clock configurations * that are restricted by software or manufacturer guidance to a small, * pre-determined set of performance points. * * References: * - Analog Bits "Wide Range PLL Datasheet", version 2015.10.01 * - SiFive FU540-C000 Manual v1p0, Chapter 7 "Clocking and Reset" * https://static.dev.sifive.com/FU540-C000-v1.0.pdf */ #include <linux/bug.h> #include <linux/err.h> #include <linux/limits.h> #include <linux/log2.h> #include <linux/math64.h> #include <linux/math.h> #include <linux/minmax.h> #include <linux/clk/analogbits-wrpll-cln28hpc.h> /* MIN_INPUT_FREQ: minimum input clock frequency, in Hz (Fref_min) */ #define MIN_INPUT_FREQ 7000000 /* MAX_INPUT_FREQ: maximum input clock frequency, in Hz (Fref_max) */ #define MAX_INPUT_FREQ 600000000 /* MIN_POST_DIVIDE_REF_FREQ: minimum post-divider reference frequency, in Hz */ #define MIN_POST_DIVR_FREQ 7000000 /* MAX_POST_DIVIDE_REF_FREQ: maximum post-divider reference frequency, in Hz */ #define MAX_POST_DIVR_FREQ 200000000 /* MIN_VCO_FREQ: minimum VCO frequency, in Hz (Fvco_min) */ #define MIN_VCO_FREQ 2400000000UL /* MAX_VCO_FREQ: maximum VCO frequency, in Hz (Fvco_max) */ #define MAX_VCO_FREQ 4800000000ULL /* MAX_DIVQ_DIVISOR: maximum output divisor. Selected by DIVQ = 6 */ #define MAX_DIVQ_DIVISOR 64 /* MAX_DIVR_DIVISOR: maximum reference divisor. Selected by DIVR = 63 */ #define MAX_DIVR_DIVISOR 64 /* MAX_LOCK_US: maximum PLL lock time, in microseconds (tLOCK_max) */ #define MAX_LOCK_US 70 /* * ROUND_SHIFT: number of bits to shift to avoid precision loss in the rounding * algorithm */ #define ROUND_SHIFT 20 /* * Private functions */ /** * __wrpll_calc_filter_range() - determine PLL loop filter bandwidth * @post_divr_freq: input clock rate after the R divider * * Select the value to be presented to the PLL RANGE input signals, based * on the input clock frequency after the post-R-divider @post_divr_freq. * This code follows the recommendations in the PLL datasheet for filter * range selection. * * Return: The RANGE value to be presented to the PLL configuration inputs, * or a negative return code upon error. */ static int __wrpll_calc_filter_range(unsigned long post_divr_freq) { if (post_divr_freq < MIN_POST_DIVR_FREQ || post_divr_freq > MAX_POST_DIVR_FREQ) { WARN(1, "%s: post-divider reference freq out of range: %lu", __func__, post_divr_freq); return -ERANGE; } switch (post_divr_freq) { case 0 ... 10999999: return 1; case 11000000 ... 17999999: return 2; case 18000000 ... 29999999: return 3; case 30000000 ... 49999999: return 4; case 50000000 ... 79999999: return 5; case 80000000 ... 129999999: return 6; } return 7; } /** * __wrpll_calc_fbdiv() - return feedback fixed divide value * @c: ptr to a struct wrpll_cfg record to read from * * The internal feedback path includes a fixed by-two divider; the * external feedback path does not. Return the appropriate divider * value (2 or 1) depending on whether internal or external feedback * is enabled. This code doesn't test for invalid configurations * (e.g. both or neither of WRPLL_FLAGS_*_FEEDBACK are set); it relies * on the caller to do so. * * Context: Any context. Caller must protect the memory pointed to by * @c from simultaneous modification. * * Return: 2 if internal feedback is enabled or 1 if external feedback * is enabled. */ static u8 __wrpll_calc_fbdiv(const struct wrpll_cfg *c) { return (c->flags & WRPLL_FLAGS_INT_FEEDBACK_MASK) ? 2 : 1; } /** * __wrpll_calc_divq() - determine DIVQ based on target PLL output clock rate * @target_rate: target PLL output clock rate * @vco_rate: pointer to a u64 to store the computed VCO rate into * * Determine a reasonable value for the PLL Q post-divider, based on the * target output rate @target_rate for the PLL. Along with returning the * computed Q divider value as the return value, this function stores the * desired target VCO rate into the variable pointed to by @vco_rate. * * Context: Any context. Caller must protect the memory pointed to by * @vco_rate from simultaneous access or modification. * * Return: a positive integer DIVQ value to be programmed into the hardware * upon success, or 0 upon error (since 0 is an invalid DIVQ value) */ static u8 __wrpll_calc_divq(u32 target_rate, u64 *vco_rate) { u64 s; u8 divq = 0; if (!vco_rate) { WARN_ON(1); goto wcd_out; } s = div_u64(MAX_VCO_FREQ, target_rate); if (s <= 1) { divq = 1; *vco_rate = MAX_VCO_FREQ; } else if (s > MAX_DIVQ_DIVISOR) { divq = ilog2(MAX_DIVQ_DIVISOR); *vco_rate = MIN_VCO_FREQ; } else { divq = ilog2(s); *vco_rate = (u64)target_rate << divq; } wcd_out: return divq; } /** * __wrpll_update_parent_rate() - update PLL data when parent rate changes * @c: ptr to a struct wrpll_cfg record to write PLL data to * @parent_rate: PLL input refclk rate (pre-R-divider) * * Pre-compute some data used by the PLL configuration algorithm when * the PLL's reference clock rate changes. The intention is to avoid * computation when the parent rate remains constant - expected to be * the common case. * * Returns: 0 upon success or -ERANGE if the reference clock rate is * out of range. */ static int __wrpll_update_parent_rate(struct wrpll_cfg *c, unsigned long parent_rate) { u8 max_r_for_parent; if (parent_rate > MAX_INPUT_FREQ || parent_rate < MIN_POST_DIVR_FREQ) return -ERANGE; c->parent_rate = parent_rate; max_r_for_parent = div_u64(parent_rate, MIN_POST_DIVR_FREQ); c->max_r = min_t(u8, MAX_DIVR_DIVISOR, max_r_for_parent); c->init_r = DIV_ROUND_UP_ULL(parent_rate, MAX_POST_DIVR_FREQ); return 0; } /** * wrpll_configure_for_rate() - compute PLL configuration for a target rate * @c: ptr to a struct wrpll_cfg record to write into * @target_rate: target PLL output clock rate (post-Q-divider) * @parent_rate: PLL input refclk rate (pre-R-divider) * * Compute the appropriate PLL signal configuration values and store * in PLL context @c. PLL reprogramming is not glitchless, so the * caller should switch any downstream logic to a different clock * source or clock-gate it before presenting these values to the PLL * configuration signals. * * The caller must pass this function a pre-initialized struct * wrpll_cfg record: either initialized to zero (with the * exception of the .name and .flags fields) or read from the PLL. * * Context: Any context. Caller must protect the memory pointed to by @c * from simultaneous access or modification. * * Return: 0 upon success; anything else upon failure. */ int wrpll_configure_for_rate(struct wrpll_cfg *c, u32 target_rate, unsigned long parent_rate) { unsigned long ratio; u64 target_vco_rate, delta, best_delta, f_pre_div, vco, vco_pre; u32 best_f, f, post_divr_freq; u8 fbdiv, divq, best_r, r; int range; if (c->flags == 0) { WARN(1, "%s called with uninitialized PLL config", __func__); return -EINVAL; } /* Initialize rounding data if it hasn't been initialized already */ if (parent_rate != c->parent_rate) { if (__wrpll_update_parent_rate(c, parent_rate)) { pr_err("%s: PLL input rate is out of range\n", __func__); return -ERANGE; } } c->flags &= ~WRPLL_FLAGS_RESET_MASK; /* Put the PLL into bypass if the user requests the parent clock rate */ if (target_rate == parent_rate) { c->flags |= WRPLL_FLAGS_BYPASS_MASK; return 0; } c->flags &= ~WRPLL_FLAGS_BYPASS_MASK; /* Calculate the Q shift and target VCO rate */ divq = __wrpll_calc_divq(target_rate, &target_vco_rate); if (!divq) return -1; c->divq = divq; /* Precalculate the pre-Q divider target ratio */ ratio = div64_u64((target_vco_rate << ROUND_SHIFT), parent_rate); fbdiv = __wrpll_calc_fbdiv(c); best_r = 0; best_f = 0; best_delta = MAX_VCO_FREQ; /* * Consider all values for R which land within * [MIN_POST_DIVR_FREQ, MAX_POST_DIVR_FREQ]; prefer smaller R */ for (r = c->init_r; r <= c->max_r; ++r) { f_pre_div = ratio * r; f = (f_pre_div + (1 << ROUND_SHIFT)) >> ROUND_SHIFT; f >>= (fbdiv - 1); post_divr_freq = div_u64(parent_rate, r); vco_pre = fbdiv * post_divr_freq; vco = vco_pre * f; /* Ensure rounding didn't take us out of range */ if (vco > target_vco_rate) { --f; vco = vco_pre * f; } else if (vco < MIN_VCO_FREQ) { ++f; vco = vco_pre * f; } delta = abs(target_rate - vco); if (delta < best_delta) { best_delta = delta; best_r = r; best_f = f; } } c->divr = best_r - 1; c->divf = best_f - 1; post_divr_freq = div_u64(parent_rate, best_r); /* Pick the best PLL jitter filter */ range = __wrpll_calc_filter_range(post_divr_freq); if (range < 0) return range; c->range = range; return 0; } /** * wrpll_calc_output_rate() - calculate the PLL's target output rate * @c: ptr to a struct wrpll_cfg record to read from * @parent_rate: PLL refclk rate * * Given a pointer to the PLL's current input configuration @c and the * PLL's input reference clock rate @parent_rate (before the R * pre-divider), calculate the PLL's output clock rate (after the Q * post-divider). * * Context: Any context. Caller must protect the memory pointed to by @c * from simultaneous modification. * * Return: the PLL's output clock rate, in Hz. The return value from * this function is intended to be convenient to pass directly * to the Linux clock framework; thus there is no explicit * error return value. */ unsigned long wrpll_calc_output_rate(const struct wrpll_cfg *c, unsigned long parent_rate) { u8 fbdiv; u64 n; if (c->flags & WRPLL_FLAGS_EXT_FEEDBACK_MASK) { WARN(1, "external feedback mode not yet supported"); return ULONG_MAX; } fbdiv = __wrpll_calc_fbdiv(c); n = parent_rate * fbdiv * (c->divf + 1); n = div_u64(n, c->divr + 1); n >>= c->divq; return n; } /** * wrpll_calc_max_lock_us() - return the time for the PLL to lock * @c: ptr to a struct wrpll_cfg record to read from * * Return the minimum amount of time (in microseconds) that the caller * must wait after reprogramming the PLL to ensure that it is locked * to the input frequency and stable. This is likely to depend on the DIVR * value; this is under discussion with the manufacturer. * * Return: the minimum amount of time the caller must wait for the PLL * to lock (in microseconds) */ unsigned int wrpll_calc_max_lock_us(const struct wrpll_cfg *c) { return MAX_LOCK_US; }
linux-master
drivers/clk/analogbits/wrpll-cln28hpc.c
// SPDX-License-Identifier: GPL-2.0-only /* * Marvell PXA3xxx family clocks * * Copyright (C) 2014 Robert Jarzmik * * Heavily inspired from former arch/arm/mach-pxa/pxa3xx.c * * For non-devicetree platforms. Once pxa is fully converted to devicetree, this * should go away. */ #include <linux/io.h> #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/clkdev.h> #include <linux/of.h> #include <linux/soc/pxa/cpu.h> #include <linux/soc/pxa/smemc.h> #include <linux/clk/pxa.h> #include <dt-bindings/clock/pxa-clock.h> #include "clk-pxa.h" #define KHz 1000 #define MHz (1000 * 1000) #define ACCR (0x0000) /* Application Subsystem Clock Configuration Register */ #define ACSR (0x0004) /* Application Subsystem Clock Status Register */ #define AICSR (0x0008) /* Application Subsystem Interrupt Control/Status Register */ #define CKENA (0x000C) /* A Clock Enable Register */ #define CKENB (0x0010) /* B Clock Enable Register */ #define CKENC (0x0024) /* C Clock Enable Register */ #define AC97_DIV (0x0014) /* AC97 clock divisor value register */ #define ACCR_XPDIS (1 << 31) /* Core PLL Output Disable */ #define ACCR_SPDIS (1 << 30) /* System PLL Output Disable */ #define ACCR_D0CS (1 << 26) /* D0 Mode Clock Select */ #define ACCR_PCCE (1 << 11) /* Power Mode Change Clock Enable */ #define ACCR_DDR_D0CS (1 << 7) /* DDR SDRAM clock frequency in D0CS (PXA31x only) */ #define ACCR_SMCFS_MASK (0x7 << 23) /* Static Memory Controller Frequency Select */ #define ACCR_SFLFS_MASK (0x3 << 18) /* Frequency Select for Internal Memory Controller */ #define ACCR_XSPCLK_MASK (0x3 << 16) /* Core Frequency during Frequency Change */ #define ACCR_HSS_MASK (0x3 << 14) /* System Bus-Clock Frequency Select */ #define ACCR_DMCFS_MASK (0x3 << 12) /* Dynamic Memory Controller Clock Frequency Select */ #define ACCR_XN_MASK (0x7 << 8) /* Core PLL Turbo-Mode-to-Run-Mode Ratio */ #define ACCR_XL_MASK (0x1f) /* Core PLL Run-Mode-to-Oscillator Ratio */ #define ACCR_SMCFS(x) (((x) & 0x7) << 23) #define ACCR_SFLFS(x) (((x) & 0x3) << 18) #define ACCR_XSPCLK(x) (((x) & 0x3) << 16) #define ACCR_HSS(x) (((x) & 0x3) << 14) #define ACCR_DMCFS(x) (((x) & 0x3) << 12) #define ACCR_XN(x) (((x) & 0x7) << 8) #define ACCR_XL(x) ((x) & 0x1f) /* * Clock Enable Bit */ #define CKEN_LCD 1 /* < LCD Clock Enable */ #define CKEN_USBH 2 /* < USB host clock enable */ #define CKEN_CAMERA 3 /* < Camera interface clock enable */ #define CKEN_NAND 4 /* < NAND Flash Controller Clock Enable */ #define CKEN_USB2 6 /* < USB 2.0 client clock enable. */ #define CKEN_DMC 8 /* < Dynamic Memory Controller clock enable */ #define CKEN_SMC 9 /* < Static Memory Controller clock enable */ #define CKEN_ISC 10 /* < Internal SRAM Controller clock enable */ #define CKEN_BOOT 11 /* < Boot rom clock enable */ #define CKEN_MMC1 12 /* < MMC1 Clock enable */ #define CKEN_MMC2 13 /* < MMC2 clock enable */ #define CKEN_KEYPAD 14 /* < Keypand Controller Clock Enable */ #define CKEN_CIR 15 /* < Consumer IR Clock Enable */ #define CKEN_USIM0 17 /* < USIM[0] Clock Enable */ #define CKEN_USIM1 18 /* < USIM[1] Clock Enable */ #define CKEN_TPM 19 /* < TPM clock enable */ #define CKEN_UDC 20 /* < UDC clock enable */ #define CKEN_BTUART 21 /* < BTUART clock enable */ #define CKEN_FFUART 22 /* < FFUART clock enable */ #define CKEN_STUART 23 /* < STUART clock enable */ #define CKEN_AC97 24 /* < AC97 clock enable */ #define CKEN_TOUCH 25 /* < Touch screen Interface Clock Enable */ #define CKEN_SSP1 26 /* < SSP1 clock enable */ #define CKEN_SSP2 27 /* < SSP2 clock enable */ #define CKEN_SSP3 28 /* < SSP3 clock enable */ #define CKEN_SSP4 29 /* < SSP4 clock enable */ #define CKEN_MSL0 30 /* < MSL0 clock enable */ #define CKEN_PWM0 32 /* < PWM[0] clock enable */ #define CKEN_PWM1 33 /* < PWM[1] clock enable */ #define CKEN_I2C 36 /* < I2C clock enable */ #define CKEN_INTC 38 /* < Interrupt controller clock enable */ #define CKEN_GPIO 39 /* < GPIO clock enable */ #define CKEN_1WIRE 40 /* < 1-wire clock enable */ #define CKEN_HSIO2 41 /* < HSIO2 clock enable */ #define CKEN_MINI_IM 48 /* < Mini-IM */ #define CKEN_MINI_LCD 49 /* < Mini LCD */ #define CKEN_MMC3 5 /* < MMC3 Clock Enable */ #define CKEN_MVED 43 /* < MVED clock enable */ /* Note: GCU clock enable bit differs on PXA300/PXA310 and PXA320 */ #define CKEN_PXA300_GCU 42 /* Graphics controller clock enable */ #define CKEN_PXA320_GCU 7 /* Graphics controller clock enable */ enum { PXA_CORE_60Mhz = 0, PXA_CORE_RUN, PXA_CORE_TURBO, }; enum { PXA_BUS_60Mhz = 0, PXA_BUS_HSS, }; /* crystal frequency to HSIO bus frequency multiplier (HSS) */ static unsigned char hss_mult[4] = { 8, 12, 16, 24 }; /* crystal frequency to static memory controller multiplier (SMCFS) */ static unsigned int smcfs_mult[8] = { 6, 0, 8, 0, 0, 16, }; static const char * const get_freq_khz[] = { "core", "ring_osc_60mhz", "run", "cpll", "system_bus" }; static void __iomem *clk_regs; /* * Get the clock frequency as reflected by ACSR and the turbo flag. * We assume these values have been applied via a fcs. * If info is not 0 we also display the current settings. */ unsigned int pxa3xx_get_clk_frequency_khz(int info) { struct clk *clk; unsigned long clks[5]; int i; for (i = 0; i < 5; i++) { clk = clk_get(NULL, get_freq_khz[i]); if (IS_ERR(clk)) { clks[i] = 0; } else { clks[i] = clk_get_rate(clk); clk_put(clk); } } if (info) { pr_info("RO Mode clock: %ld.%02ldMHz\n", clks[1] / 1000000, (clks[0] % 1000000) / 10000); pr_info("Run Mode clock: %ld.%02ldMHz\n", clks[2] / 1000000, (clks[1] % 1000000) / 10000); pr_info("Turbo Mode clock: %ld.%02ldMHz\n", clks[3] / 1000000, (clks[2] % 1000000) / 10000); pr_info("System bus clock: %ld.%02ldMHz\n", clks[4] / 1000000, (clks[4] % 1000000) / 10000); } return (unsigned int)clks[0] / KHz; } void pxa3xx_clk_update_accr(u32 disable, u32 enable, u32 xclkcfg, u32 mask) { u32 accr = readl(clk_regs + ACCR); accr &= ~disable; accr |= enable; writel(accr, clk_regs + ACCR); if (xclkcfg) __asm__("mcr p14, 0, %0, c6, c0, 0\n" : : "r"(xclkcfg)); while ((readl(clk_regs + ACSR) & mask) != (accr & mask)) cpu_relax(); } static unsigned long clk_pxa3xx_ac97_get_rate(struct clk_hw *hw, unsigned long parent_rate) { unsigned long ac97_div, rate; ac97_div = readl(clk_regs + AC97_DIV); /* This may loose precision for some rates but won't for the * standard 24.576MHz. */ rate = parent_rate / 2; rate /= ((ac97_div >> 12) & 0x7fff); rate *= (ac97_div & 0xfff); return rate; } PARENTS(clk_pxa3xx_ac97) = { "spll_624mhz" }; RATE_RO_OPS(clk_pxa3xx_ac97, "ac97"); static unsigned long clk_pxa3xx_smemc_get_rate(struct clk_hw *hw, unsigned long parent_rate) { unsigned long acsr = readl(clk_regs + ACSR); return (parent_rate / 48) * smcfs_mult[(acsr >> 23) & 0x7] / pxa3xx_smemc_get_memclkdiv(); } PARENTS(clk_pxa3xx_smemc) = { "spll_624mhz" }; RATE_RO_OPS(clk_pxa3xx_smemc, "smemc"); static bool pxa3xx_is_ring_osc_forced(void) { unsigned long acsr = readl(clk_regs + ACSR); return acsr & ACCR_D0CS; } PARENTS(pxa3xx_pbus) = { "ring_osc_60mhz", "spll_624mhz" }; PARENTS(pxa3xx_32Khz_bus) = { "osc_32_768khz", "osc_32_768khz" }; PARENTS(pxa3xx_13MHz_bus) = { "osc_13mhz", "osc_13mhz" }; PARENTS(pxa3xx_ac97_bus) = { "ring_osc_60mhz", "ac97" }; PARENTS(pxa3xx_sbus) = { "ring_osc_60mhz", "system_bus" }; PARENTS(pxa3xx_smemcbus) = { "ring_osc_60mhz", "smemc" }; #define CKEN_AB(bit) ((CKEN_ ## bit > 31) ? CKENB : CKENA) #define PXA3XX_CKEN(dev_id, con_id, parents, mult_lp, div_lp, mult_hp, \ div_hp, bit, is_lp, flags) \ PXA_CKEN(dev_id, con_id, bit, parents, mult_lp, div_lp, \ mult_hp, div_hp, is_lp, CKEN_AB(bit), \ (CKEN_ ## bit % 32), flags) #define PXA3XX_PBUS_CKEN(dev_id, con_id, bit, mult_lp, div_lp, \ mult_hp, div_hp, delay) \ PXA3XX_CKEN(dev_id, con_id, pxa3xx_pbus_parents, mult_lp, \ div_lp, mult_hp, div_hp, bit, pxa3xx_is_ring_osc_forced, 0) #define PXA3XX_CKEN_1RATE(dev_id, con_id, bit, parents) \ PXA_CKEN_1RATE(dev_id, con_id, bit, parents, \ CKEN_AB(bit), (CKEN_ ## bit % 32), 0) static struct desc_clk_cken pxa3xx_clocks[] __initdata = { PXA3XX_PBUS_CKEN("pxa2xx-uart.0", NULL, FFUART, 1, 4, 1, 42, 1), PXA3XX_PBUS_CKEN("pxa2xx-uart.1", NULL, BTUART, 1, 4, 1, 42, 1), PXA3XX_PBUS_CKEN("pxa2xx-uart.2", NULL, STUART, 1, 4, 1, 42, 1), PXA3XX_PBUS_CKEN("pxa2xx-i2c.0", NULL, I2C, 2, 5, 1, 19, 0), PXA3XX_PBUS_CKEN("pxa27x-udc", NULL, UDC, 1, 4, 1, 13, 5), PXA3XX_PBUS_CKEN("pxa27x-ohci", NULL, USBH, 1, 4, 1, 13, 0), PXA3XX_PBUS_CKEN("pxa3xx-u2d", NULL, USB2, 1, 4, 1, 13, 0), PXA3XX_PBUS_CKEN("pxa27x-pwm.0", NULL, PWM0, 1, 6, 1, 48, 0), PXA3XX_PBUS_CKEN("pxa27x-pwm.1", NULL, PWM1, 1, 6, 1, 48, 0), PXA3XX_PBUS_CKEN("pxa2xx-mci.0", NULL, MMC1, 1, 4, 1, 24, 0), PXA3XX_PBUS_CKEN("pxa2xx-mci.1", NULL, MMC2, 1, 4, 1, 24, 0), PXA3XX_PBUS_CKEN("pxa2xx-mci.2", NULL, MMC3, 1, 4, 1, 24, 0), PXA3XX_CKEN_1RATE("pxa27x-keypad", NULL, KEYPAD, pxa3xx_32Khz_bus_parents), PXA3XX_CKEN_1RATE("pxa3xx-ssp.0", NULL, SSP1, pxa3xx_13MHz_bus_parents), PXA3XX_CKEN_1RATE("pxa3xx-ssp.1", NULL, SSP2, pxa3xx_13MHz_bus_parents), PXA3XX_CKEN_1RATE("pxa3xx-ssp.2", NULL, SSP3, pxa3xx_13MHz_bus_parents), PXA3XX_CKEN_1RATE("pxa3xx-ssp.3", NULL, SSP4, pxa3xx_13MHz_bus_parents), PXA3XX_CKEN(NULL, "AC97CLK", pxa3xx_ac97_bus_parents, 1, 4, 1, 1, AC97, pxa3xx_is_ring_osc_forced, 0), PXA3XX_CKEN(NULL, "CAMCLK", pxa3xx_sbus_parents, 1, 2, 1, 1, CAMERA, pxa3xx_is_ring_osc_forced, 0), PXA3XX_CKEN("pxa2xx-fb", NULL, pxa3xx_sbus_parents, 1, 1, 1, 1, LCD, pxa3xx_is_ring_osc_forced, 0), PXA3XX_CKEN("pxa2xx-pcmcia", NULL, pxa3xx_smemcbus_parents, 1, 4, 1, 1, SMC, pxa3xx_is_ring_osc_forced, CLK_IGNORE_UNUSED), }; static struct desc_clk_cken pxa300_310_clocks[] __initdata = { PXA3XX_PBUS_CKEN("pxa3xx-gcu", NULL, PXA300_GCU, 1, 1, 1, 1, 0), PXA3XX_PBUS_CKEN("pxa3xx-nand", NULL, NAND, 1, 2, 1, 4, 0), PXA3XX_CKEN_1RATE("pxa3xx-gpio", NULL, GPIO, pxa3xx_13MHz_bus_parents), }; static struct desc_clk_cken pxa320_clocks[] __initdata = { PXA3XX_PBUS_CKEN("pxa3xx-nand", NULL, NAND, 1, 2, 1, 6, 0), PXA3XX_PBUS_CKEN("pxa3xx-gcu", NULL, PXA320_GCU, 1, 1, 1, 1, 0), PXA3XX_CKEN_1RATE("pxa3xx-gpio", NULL, GPIO, pxa3xx_13MHz_bus_parents), }; static struct desc_clk_cken pxa93x_clocks[] __initdata = { PXA3XX_PBUS_CKEN("pxa3xx-gcu", NULL, PXA300_GCU, 1, 1, 1, 1, 0), PXA3XX_PBUS_CKEN("pxa3xx-nand", NULL, NAND, 1, 2, 1, 4, 0), PXA3XX_CKEN_1RATE("pxa93x-gpio", NULL, GPIO, pxa3xx_13MHz_bus_parents), }; static unsigned long clk_pxa3xx_system_bus_get_rate(struct clk_hw *hw, unsigned long parent_rate) { unsigned long acsr = readl(clk_regs + ACSR); unsigned int hss = (acsr >> 14) & 0x3; if (pxa3xx_is_ring_osc_forced()) return parent_rate; return parent_rate / 48 * hss_mult[hss]; } static u8 clk_pxa3xx_system_bus_get_parent(struct clk_hw *hw) { if (pxa3xx_is_ring_osc_forced()) return PXA_BUS_60Mhz; else return PXA_BUS_HSS; } PARENTS(clk_pxa3xx_system_bus) = { "ring_osc_60mhz", "spll_624mhz" }; MUX_RO_RATE_RO_OPS(clk_pxa3xx_system_bus, "system_bus"); static unsigned long clk_pxa3xx_core_get_rate(struct clk_hw *hw, unsigned long parent_rate) { return parent_rate; } static u8 clk_pxa3xx_core_get_parent(struct clk_hw *hw) { unsigned long xclkcfg; unsigned int t; if (pxa3xx_is_ring_osc_forced()) return PXA_CORE_60Mhz; /* Read XCLKCFG register turbo bit */ __asm__ __volatile__("mrc\tp14, 0, %0, c6, c0, 0" : "=r"(xclkcfg)); t = xclkcfg & 0x1; if (t) return PXA_CORE_TURBO; return PXA_CORE_RUN; } PARENTS(clk_pxa3xx_core) = { "ring_osc_60mhz", "run", "cpll" }; MUX_RO_RATE_RO_OPS(clk_pxa3xx_core, "core"); static unsigned long clk_pxa3xx_run_get_rate(struct clk_hw *hw, unsigned long parent_rate) { unsigned long acsr = readl(clk_regs + ACSR); unsigned int xn = (acsr & ACCR_XN_MASK) >> 8; unsigned int t, xclkcfg; /* Read XCLKCFG register turbo bit */ __asm__ __volatile__("mrc\tp14, 0, %0, c6, c0, 0" : "=r"(xclkcfg)); t = xclkcfg & 0x1; return t ? (parent_rate / xn) * 2 : parent_rate; } PARENTS(clk_pxa3xx_run) = { "cpll" }; RATE_RO_OPS(clk_pxa3xx_run, "run"); static unsigned long clk_pxa3xx_cpll_get_rate(struct clk_hw *hw, unsigned long parent_rate) { unsigned long acsr = readl(clk_regs + ACSR); unsigned int xn = (acsr & ACCR_XN_MASK) >> 8; unsigned int xl = acsr & ACCR_XL_MASK; unsigned int t, xclkcfg; /* Read XCLKCFG register turbo bit */ __asm__ __volatile__("mrc\tp14, 0, %0, c6, c0, 0" : "=r"(xclkcfg)); t = xclkcfg & 0x1; pr_info("RJK: parent_rate=%lu, xl=%u, xn=%u\n", parent_rate, xl, xn); return t ? parent_rate * xl * xn : parent_rate * xl; } PARENTS(clk_pxa3xx_cpll) = { "osc_13mhz" }; RATE_RO_OPS(clk_pxa3xx_cpll, "cpll"); static void __init pxa3xx_register_core(void) { clk_register_clk_pxa3xx_cpll(); clk_register_clk_pxa3xx_run(); clkdev_pxa_register(CLK_CORE, "core", NULL, clk_register_clk_pxa3xx_core()); } static void __init pxa3xx_register_plls(void) { clk_register_fixed_rate(NULL, "osc_13mhz", NULL, CLK_GET_RATE_NOCACHE, 13 * MHz); clkdev_pxa_register(CLK_OSC32k768, "osc_32_768khz", NULL, clk_register_fixed_rate(NULL, "osc_32_768khz", NULL, CLK_GET_RATE_NOCACHE, 32768)); clk_register_fixed_rate(NULL, "ring_osc_120mhz", NULL, CLK_GET_RATE_NOCACHE, 120 * MHz); clk_register_fixed_rate(NULL, "clk_dummy", NULL, 0, 0); clk_register_fixed_factor(NULL, "spll_624mhz", "osc_13mhz", 0, 48, 1); clk_register_fixed_factor(NULL, "ring_osc_60mhz", "ring_osc_120mhz", 0, 1, 2); } #define DUMMY_CLK(_con_id, _dev_id, _parent) \ { .con_id = _con_id, .dev_id = _dev_id, .parent = _parent } struct dummy_clk { const char *con_id; const char *dev_id; const char *parent; }; static struct dummy_clk dummy_clks[] __initdata = { DUMMY_CLK(NULL, "pxa93x-gpio", "osc_13mhz"), DUMMY_CLK(NULL, "sa1100-rtc", "osc_32_768khz"), DUMMY_CLK("UARTCLK", "pxa2xx-ir", "STUART"), DUMMY_CLK(NULL, "pxa3xx-pwri2c.1", "osc_13mhz"), }; static void __init pxa3xx_dummy_clocks_init(void) { struct clk *clk; struct dummy_clk *d; const char *name; int i; for (i = 0; i < ARRAY_SIZE(dummy_clks); i++) { d = &dummy_clks[i]; name = d->dev_id ? d->dev_id : d->con_id; clk = clk_register_fixed_factor(NULL, name, d->parent, 0, 1, 1); clk_register_clkdev(clk, d->con_id, d->dev_id); } } static void __init pxa3xx_base_clocks_init(void __iomem *oscc_reg) { struct clk *clk; pxa3xx_register_plls(); pxa3xx_register_core(); clk_register_clk_pxa3xx_system_bus(); clk_register_clk_pxa3xx_ac97(); clk_register_clk_pxa3xx_smemc(); clk = clk_register_gate(NULL, "CLK_POUT", "osc_13mhz", 0, oscc_reg, 11, 0, NULL); clk_register_clkdev(clk, "CLK_POUT", NULL); clkdev_pxa_register(CLK_OSTIMER, "OSTIMER0", NULL, clk_register_fixed_factor(NULL, "os-timer0", "osc_13mhz", 0, 1, 4)); } int __init pxa3xx_clocks_init(void __iomem *regs, void __iomem *oscc_reg) { int ret; clk_regs = regs; pxa3xx_base_clocks_init(oscc_reg); pxa3xx_dummy_clocks_init(); ret = clk_pxa_cken_init(pxa3xx_clocks, ARRAY_SIZE(pxa3xx_clocks), regs); if (ret) return ret; if (cpu_is_pxa320()) return clk_pxa_cken_init(pxa320_clocks, ARRAY_SIZE(pxa320_clocks), regs); if (cpu_is_pxa300() || cpu_is_pxa310()) return clk_pxa_cken_init(pxa300_310_clocks, ARRAY_SIZE(pxa300_310_clocks), regs); return clk_pxa_cken_init(pxa93x_clocks, ARRAY_SIZE(pxa93x_clocks), regs); } static void __init pxa3xx_dt_clocks_init(struct device_node *np) { pxa3xx_clocks_init(ioremap(0x41340000, 0x10), ioremap(0x41350000, 4)); clk_pxa_dt_common_init(np); } CLK_OF_DECLARE(pxa_clks, "marvell,pxa300-clocks", pxa3xx_dt_clocks_init);
linux-master
drivers/clk/pxa/clk-pxa3xx.c
// SPDX-License-Identifier: GPL-2.0-only /* * Marvell PXA27x family clocks * * Copyright (C) 2014 Robert Jarzmik * * Heavily inspired from former arch/arm/mach-pxa/clock.c. */ #include <linux/clk-provider.h> #include <linux/io.h> #include <linux/clk.h> #include <linux/clkdev.h> #include <linux/of.h> #include <linux/soc/pxa/smemc.h> #include <linux/clk/pxa.h> #include <dt-bindings/clock/pxa-clock.h> #include "clk-pxa.h" #include "clk-pxa2xx.h" #define KHz 1000 #define MHz (1000 * 1000) enum { PXA_CORE_13Mhz = 0, PXA_CORE_RUN, PXA_CORE_TURBO, }; enum { PXA_BUS_13Mhz = 0, PXA_BUS_RUN, }; enum { PXA_LCD_13Mhz = 0, PXA_LCD_RUN, }; enum { PXA_MEM_13Mhz = 0, PXA_MEM_SYSTEM_BUS, PXA_MEM_RUN, }; #define PXA27x_CLKCFG(B, HT, T) \ (CLKCFG_FCS | \ ((B) ? CLKCFG_FASTBUS : 0) | \ ((HT) ? CLKCFG_HALFTURBO : 0) | \ ((T) ? CLKCFG_TURBO : 0)) #define PXA27x_CCCR(A, L, N2) (A << 25 | N2 << 7 | L) /* Define the refresh period in mSec for the SDRAM and the number of rows */ #define SDRAM_TREF 64 /* standard 64ms SDRAM */ static void __iomem *clk_regs; static const char * const get_freq_khz[] = { "core", "run", "cpll", "memory", "system_bus" }; static u32 mdrefr_dri(unsigned int freq_khz) { u32 interval = freq_khz * SDRAM_TREF / pxa2xx_smemc_get_sdram_rows(); return (interval - 31) / 32; } /* * Get the clock frequency as reflected by CCSR and the turbo flag. * We assume these values have been applied via a fcs. * If info is not 0 we also display the current settings. */ unsigned int pxa27x_get_clk_frequency_khz(int info) { struct clk *clk; unsigned long clks[5]; int i; for (i = 0; i < 5; i++) { clk = clk_get(NULL, get_freq_khz[i]); if (IS_ERR(clk)) { clks[i] = 0; } else { clks[i] = clk_get_rate(clk); clk_put(clk); } } if (info) { pr_info("Run Mode clock: %ld.%02ldMHz\n", clks[1] / 1000000, (clks[1] % 1000000) / 10000); pr_info("Turbo Mode clock: %ld.%02ldMHz\n", clks[2] / 1000000, (clks[2] % 1000000) / 10000); pr_info("Memory clock: %ld.%02ldMHz\n", clks[3] / 1000000, (clks[3] % 1000000) / 10000); pr_info("System bus clock: %ld.%02ldMHz\n", clks[4] / 1000000, (clks[4] % 1000000) / 10000); } return (unsigned int)clks[0] / KHz; } static bool pxa27x_is_ppll_disabled(void) { unsigned long ccsr = readl(clk_regs + CCSR); return ccsr & (1 << CCCR_PPDIS_BIT); } #define PXA27X_CKEN(dev_id, con_id, parents, mult_hp, div_hp, \ bit, is_lp, flags) \ PXA_CKEN(dev_id, con_id, bit, parents, 1, 1, mult_hp, div_hp, \ is_lp, CKEN, CKEN_ ## bit, flags) #define PXA27X_PBUS_CKEN(dev_id, con_id, bit, mult_hp, div_hp, delay) \ PXA27X_CKEN(dev_id, con_id, pxa27x_pbus_parents, mult_hp, \ div_hp, bit, pxa27x_is_ppll_disabled, 0) PARENTS(pxa27x_pbus) = { "osc_13mhz", "ppll_312mhz" }; PARENTS(pxa27x_sbus) = { "system_bus", "system_bus" }; PARENTS(pxa27x_32Mhz_bus) = { "osc_32_768khz", "osc_32_768khz" }; PARENTS(pxa27x_lcd_bus) = { "lcd_base", "lcd_base" }; PARENTS(pxa27x_membus) = { "lcd_base", "lcd_base" }; #define PXA27X_CKEN_1RATE(dev_id, con_id, bit, parents, delay) \ PXA_CKEN_1RATE(dev_id, con_id, bit, parents, \ CKEN, CKEN_ ## bit, 0) #define PXA27X_CKEN_1RATE_AO(dev_id, con_id, bit, parents, delay) \ PXA_CKEN_1RATE(dev_id, con_id, bit, parents, \ CKEN, CKEN_ ## bit, CLK_IGNORE_UNUSED) static struct desc_clk_cken pxa27x_clocks[] __initdata = { PXA27X_PBUS_CKEN("pxa2xx-uart.0", NULL, FFUART, 2, 42, 1), PXA27X_PBUS_CKEN("pxa2xx-uart.1", NULL, BTUART, 2, 42, 1), PXA27X_PBUS_CKEN("pxa2xx-uart.2", NULL, STUART, 2, 42, 1), PXA27X_PBUS_CKEN("pxa2xx-i2s", NULL, I2S, 2, 51, 0), PXA27X_PBUS_CKEN("pxa2xx-i2c.0", NULL, I2C, 2, 19, 0), PXA27X_PBUS_CKEN("pxa27x-udc", NULL, USB, 2, 13, 5), PXA27X_PBUS_CKEN("pxa2xx-mci.0", NULL, MMC, 2, 32, 0), PXA27X_PBUS_CKEN("pxa2xx-ir", "FICPCLK", FICP, 2, 13, 0), PXA27X_PBUS_CKEN("pxa27x-ohci", NULL, USBHOST, 2, 13, 0), PXA27X_PBUS_CKEN("pxa2xx-i2c.1", NULL, PWRI2C, 1, 24, 0), PXA27X_PBUS_CKEN("pxa27x-ssp.0", NULL, SSP1, 1, 24, 0), PXA27X_PBUS_CKEN("pxa27x-ssp.1", NULL, SSP2, 1, 24, 0), PXA27X_PBUS_CKEN("pxa27x-ssp.2", NULL, SSP3, 1, 24, 0), PXA27X_PBUS_CKEN("pxa27x-pwm.0", NULL, PWM0, 1, 24, 0), PXA27X_PBUS_CKEN("pxa27x-pwm.1", NULL, PWM1, 1, 24, 0), PXA27X_PBUS_CKEN(NULL, "MSLCLK", MSL, 2, 13, 0), PXA27X_PBUS_CKEN(NULL, "USIMCLK", USIM, 2, 13, 0), PXA27X_PBUS_CKEN(NULL, "MSTKCLK", MEMSTK, 2, 32, 0), PXA27X_PBUS_CKEN(NULL, "AC97CLK", AC97, 1, 1, 0), PXA27X_PBUS_CKEN(NULL, "AC97CONFCLK", AC97CONF, 1, 1, 0), PXA27X_PBUS_CKEN(NULL, "OSTIMER0", OSTIMER, 1, 96, 0), PXA27X_CKEN_1RATE("pxa27x-keypad", NULL, KEYPAD, pxa27x_32Mhz_bus_parents, 0), PXA27X_CKEN_1RATE(NULL, "IMCLK", IM, pxa27x_sbus_parents, 0), PXA27X_CKEN_1RATE("pxa2xx-fb", NULL, LCD, pxa27x_lcd_bus_parents, 0), PXA27X_CKEN_1RATE("pxa27x-camera.0", NULL, CAMERA, pxa27x_lcd_bus_parents, 0), PXA27X_CKEN_1RATE_AO("pxa2xx-pcmcia", NULL, MEMC, pxa27x_membus_parents, 0), }; /* * PXA270 definitions * * For the PXA27x: * Control variables are A, L, 2N for CCCR; B, HT, T for CLKCFG. * * A = 0 => memory controller clock from table 3-7, * A = 1 => memory controller clock = system bus clock * Run mode frequency = 13 MHz * L * Turbo mode frequency = 13 MHz * L * N * System bus frequency = 13 MHz * L / (B + 1) * * In CCCR: * A = 1 * L = 16 oscillator to run mode ratio * 2N = 6 2 * (turbo mode to run mode ratio) * * In CCLKCFG: * B = 1 Fast bus mode * HT = 0 Half-Turbo mode * T = 1 Turbo mode * * For now, just support some of the combinations in table 3-7 of * PXA27x Processor Family Developer's Manual to simplify frequency * change sequences. */ static struct pxa2xx_freq pxa27x_freqs[] = { {104000000, 104000, PXA27x_CCCR(1, 8, 2), 0, PXA27x_CLKCFG(1, 0, 1) }, {156000000, 104000, PXA27x_CCCR(1, 8, 3), 0, PXA27x_CLKCFG(1, 0, 1) }, {208000000, 208000, PXA27x_CCCR(0, 16, 2), 1, PXA27x_CLKCFG(0, 0, 1) }, {312000000, 208000, PXA27x_CCCR(1, 16, 3), 1, PXA27x_CLKCFG(1, 0, 1) }, {416000000, 208000, PXA27x_CCCR(1, 16, 4), 1, PXA27x_CLKCFG(1, 0, 1) }, {520000000, 208000, PXA27x_CCCR(1, 16, 5), 1, PXA27x_CLKCFG(1, 0, 1) }, {624000000, 208000, PXA27x_CCCR(1, 16, 6), 1, PXA27x_CLKCFG(1, 0, 1) }, }; static unsigned long clk_pxa27x_cpll_get_rate(struct clk_hw *hw, unsigned long parent_rate) { unsigned long clkcfg; unsigned int t, ht; unsigned int l, L, n2, N; unsigned long ccsr = readl(clk_regs + CCSR); asm("mrc\tp14, 0, %0, c6, c0, 0" : "=r" (clkcfg)); t = clkcfg & (1 << 0); ht = clkcfg & (1 << 2); l = ccsr & CCSR_L_MASK; n2 = (ccsr & CCSR_N2_MASK) >> CCSR_N2_SHIFT; L = l * parent_rate; N = (L * n2) / 2; return N; } static int clk_pxa27x_cpll_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { return pxa2xx_determine_rate(req, pxa27x_freqs, ARRAY_SIZE(pxa27x_freqs)); } static int clk_pxa27x_cpll_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { int i; pr_debug("%s(rate=%lu parent_rate=%lu)\n", __func__, rate, parent_rate); for (i = 0; i < ARRAY_SIZE(pxa27x_freqs); i++) if (pxa27x_freqs[i].cpll == rate) break; if (i >= ARRAY_SIZE(pxa27x_freqs)) return -EINVAL; pxa2xx_cpll_change(&pxa27x_freqs[i], mdrefr_dri, clk_regs + CCCR); return 0; } PARENTS(clk_pxa27x_cpll) = { "osc_13mhz" }; RATE_OPS(clk_pxa27x_cpll, "cpll"); static unsigned long clk_pxa27x_lcd_base_get_rate(struct clk_hw *hw, unsigned long parent_rate) { unsigned int l, osc_forced; unsigned long ccsr = readl(clk_regs + CCSR); unsigned long cccr = readl(clk_regs + CCCR); l = ccsr & CCSR_L_MASK; osc_forced = ccsr & (1 << CCCR_CPDIS_BIT); if (osc_forced) { if (cccr & (1 << CCCR_LCD_26_BIT)) return parent_rate * 2; else return parent_rate; } if (l <= 7) return parent_rate; if (l <= 16) return parent_rate / 2; return parent_rate / 4; } static u8 clk_pxa27x_lcd_base_get_parent(struct clk_hw *hw) { unsigned int osc_forced; unsigned long ccsr = readl(clk_regs + CCSR); osc_forced = ccsr & (1 << CCCR_CPDIS_BIT); if (osc_forced) return PXA_LCD_13Mhz; else return PXA_LCD_RUN; } PARENTS(clk_pxa27x_lcd_base) = { "osc_13mhz", "run" }; MUX_RO_RATE_RO_OPS(clk_pxa27x_lcd_base, "lcd_base"); static void __init pxa27x_register_plls(void) { clk_register_fixed_rate(NULL, "osc_13mhz", NULL, CLK_GET_RATE_NOCACHE, 13 * MHz); clkdev_pxa_register(CLK_OSC32k768, "osc_32_768khz", NULL, clk_register_fixed_rate(NULL, "osc_32_768khz", NULL, CLK_GET_RATE_NOCACHE, 32768 * KHz)); clk_register_fixed_rate(NULL, "clk_dummy", NULL, 0, 0); clk_register_fixed_factor(NULL, "ppll_312mhz", "osc_13mhz", 0, 24, 1); } static u8 clk_pxa27x_core_get_parent(struct clk_hw *hw) { unsigned long clkcfg; unsigned int t, ht, osc_forced; unsigned long ccsr = readl(clk_regs + CCSR); osc_forced = ccsr & (1 << CCCR_CPDIS_BIT); if (osc_forced) return PXA_CORE_13Mhz; asm("mrc\tp14, 0, %0, c6, c0, 0" : "=r" (clkcfg)); t = clkcfg & (1 << 0); ht = clkcfg & (1 << 2); if (ht || t) return PXA_CORE_TURBO; return PXA_CORE_RUN; } static int clk_pxa27x_core_set_parent(struct clk_hw *hw, u8 index) { if (index > PXA_CORE_TURBO) return -EINVAL; pxa2xx_core_turbo_switch(index == PXA_CORE_TURBO); return 0; } static int clk_pxa27x_core_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { return __clk_mux_determine_rate(hw, req); } PARENTS(clk_pxa27x_core) = { "osc_13mhz", "run", "cpll" }; MUX_OPS(clk_pxa27x_core, "core", CLK_SET_RATE_PARENT); static unsigned long clk_pxa27x_run_get_rate(struct clk_hw *hw, unsigned long parent_rate) { unsigned long ccsr = readl(clk_regs + CCSR); unsigned int n2 = (ccsr & CCSR_N2_MASK) >> CCSR_N2_SHIFT; return (parent_rate / n2) * 2; } PARENTS(clk_pxa27x_run) = { "cpll" }; RATE_RO_OPS(clk_pxa27x_run, "run"); static void __init pxa27x_register_core(void) { clkdev_pxa_register(CLK_NONE, "cpll", NULL, clk_register_clk_pxa27x_cpll()); clkdev_pxa_register(CLK_NONE, "run", NULL, clk_register_clk_pxa27x_run()); clkdev_pxa_register(CLK_CORE, "core", NULL, clk_register_clk_pxa27x_core()); } static unsigned long clk_pxa27x_system_bus_get_rate(struct clk_hw *hw, unsigned long parent_rate) { unsigned long clkcfg; unsigned int b, osc_forced; unsigned long ccsr = readl(clk_regs + CCSR); osc_forced = ccsr & (1 << CCCR_CPDIS_BIT); asm("mrc\tp14, 0, %0, c6, c0, 0" : "=r" (clkcfg)); b = clkcfg & (1 << 3); if (osc_forced) return parent_rate; if (b) return parent_rate; else return parent_rate / 2; } static u8 clk_pxa27x_system_bus_get_parent(struct clk_hw *hw) { unsigned int osc_forced; unsigned long ccsr = readl(clk_regs + CCSR); osc_forced = ccsr & (1 << CCCR_CPDIS_BIT); if (osc_forced) return PXA_BUS_13Mhz; else return PXA_BUS_RUN; } PARENTS(clk_pxa27x_system_bus) = { "osc_13mhz", "run" }; MUX_RO_RATE_RO_OPS(clk_pxa27x_system_bus, "system_bus"); static unsigned long clk_pxa27x_memory_get_rate(struct clk_hw *hw, unsigned long parent_rate) { unsigned int a, l, osc_forced; unsigned long cccr = readl(clk_regs + CCCR); unsigned long ccsr = readl(clk_regs + CCSR); osc_forced = ccsr & (1 << CCCR_CPDIS_BIT); a = cccr & (1 << CCCR_A_BIT); l = ccsr & CCSR_L_MASK; if (osc_forced || a) return parent_rate; if (l <= 10) return parent_rate; if (l <= 20) return parent_rate / 2; return parent_rate / 4; } static u8 clk_pxa27x_memory_get_parent(struct clk_hw *hw) { unsigned int osc_forced, a; unsigned long cccr = readl(clk_regs + CCCR); unsigned long ccsr = readl(clk_regs + CCSR); osc_forced = ccsr & (1 << CCCR_CPDIS_BIT); a = cccr & (1 << CCCR_A_BIT); if (osc_forced) return PXA_MEM_13Mhz; if (a) return PXA_MEM_SYSTEM_BUS; else return PXA_MEM_RUN; } PARENTS(clk_pxa27x_memory) = { "osc_13mhz", "system_bus", "run" }; MUX_RO_RATE_RO_OPS(clk_pxa27x_memory, "memory"); #define DUMMY_CLK(_con_id, _dev_id, _parent) \ { .con_id = _con_id, .dev_id = _dev_id, .parent = _parent } struct dummy_clk { const char *con_id; const char *dev_id; const char *parent; }; static struct dummy_clk dummy_clks[] __initdata = { DUMMY_CLK(NULL, "pxa27x-gpio", "osc_32_768khz"), DUMMY_CLK(NULL, "pxa-rtc", "osc_32_768khz"), DUMMY_CLK(NULL, "sa1100-rtc", "osc_32_768khz"), DUMMY_CLK("UARTCLK", "pxa2xx-ir", "STUART"), }; static void __init pxa27x_dummy_clocks_init(void) { struct clk *clk; struct dummy_clk *d; const char *name; int i; for (i = 0; i < ARRAY_SIZE(dummy_clks); i++) { d = &dummy_clks[i]; name = d->dev_id ? d->dev_id : d->con_id; clk = clk_register_fixed_factor(NULL, name, d->parent, 0, 1, 1); clk_register_clkdev(clk, d->con_id, d->dev_id); } } static void __init pxa27x_base_clocks_init(void) { pxa27x_register_plls(); pxa27x_register_core(); clkdev_pxa_register(CLK_NONE, "system_bus", NULL, clk_register_clk_pxa27x_system_bus()); clkdev_pxa_register(CLK_NONE, "memory", NULL, clk_register_clk_pxa27x_memory()); clk_register_clk_pxa27x_lcd_base(); } int __init pxa27x_clocks_init(void __iomem *regs) { clk_regs = regs; pxa27x_base_clocks_init(); pxa27x_dummy_clocks_init(); return clk_pxa_cken_init(pxa27x_clocks, ARRAY_SIZE(pxa27x_clocks), regs); } static void __init pxa27x_dt_clocks_init(struct device_node *np) { pxa27x_clocks_init(ioremap(0x41300000ul, 0x10)); clk_pxa_dt_common_init(np); } CLK_OF_DECLARE(pxa_clks, "marvell,pxa270-clocks", pxa27x_dt_clocks_init);
linux-master
drivers/clk/pxa/clk-pxa27x.c
// SPDX-License-Identifier: GPL-2.0-only /* * Marvell PXA family clocks * * Copyright (C) 2014 Robert Jarzmik * * Common clock code for PXA clocks ("CKEN" type clocks + DT) */ #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/clkdev.h> #include <linux/io.h> #include <linux/of.h> #include <linux/soc/pxa/smemc.h> #include <dt-bindings/clock/pxa-clock.h> #include "clk-pxa.h" #define KHz 1000 #define MHz (1000 * 1000) #define MDREFR_K0DB4 (1 << 29) /* SDCLK0 Divide by 4 Control/Status */ #define MDREFR_K2FREE (1 << 25) /* SDRAM Free-Running Control */ #define MDREFR_K1FREE (1 << 24) /* SDRAM Free-Running Control */ #define MDREFR_K0FREE (1 << 23) /* SDRAM Free-Running Control */ #define MDREFR_SLFRSH (1 << 22) /* SDRAM Self-Refresh Control/Status */ #define MDREFR_APD (1 << 20) /* SDRAM/SSRAM Auto-Power-Down Enable */ #define MDREFR_K2DB2 (1 << 19) /* SDCLK2 Divide by 2 Control/Status */ #define MDREFR_K2RUN (1 << 18) /* SDCLK2 Run Control/Status */ #define MDREFR_K1DB2 (1 << 17) /* SDCLK1 Divide by 2 Control/Status */ #define MDREFR_K1RUN (1 << 16) /* SDCLK1 Run Control/Status */ #define MDREFR_E1PIN (1 << 15) /* SDCKE1 Level Control/Status */ #define MDREFR_K0DB2 (1 << 14) /* SDCLK0 Divide by 2 Control/Status */ #define MDREFR_K0RUN (1 << 13) /* SDCLK0 Run Control/Status */ #define MDREFR_E0PIN (1 << 12) /* SDCKE0 Level Control/Status */ #define MDREFR_DB2_MASK (MDREFR_K2DB2 | MDREFR_K1DB2) #define MDREFR_DRI_MASK 0xFFF static DEFINE_SPINLOCK(pxa_clk_lock); static struct clk *pxa_clocks[CLK_MAX]; static struct clk_onecell_data onecell_data = { .clks = pxa_clocks, .clk_num = CLK_MAX, }; struct pxa_clk { struct clk_hw hw; struct clk_fixed_factor lp; struct clk_fixed_factor hp; struct clk_gate gate; bool (*is_in_low_power)(void); }; #define to_pxa_clk(_hw) container_of(_hw, struct pxa_clk, hw) static unsigned long cken_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct pxa_clk *pclk = to_pxa_clk(hw); struct clk_fixed_factor *fix; if (!pclk->is_in_low_power || pclk->is_in_low_power()) fix = &pclk->lp; else fix = &pclk->hp; __clk_hw_set_clk(&fix->hw, hw); return clk_fixed_factor_ops.recalc_rate(&fix->hw, parent_rate); } static const struct clk_ops cken_rate_ops = { .recalc_rate = cken_recalc_rate, }; static u8 cken_get_parent(struct clk_hw *hw) { struct pxa_clk *pclk = to_pxa_clk(hw); if (!pclk->is_in_low_power) return 0; return pclk->is_in_low_power() ? 0 : 1; } static const struct clk_ops cken_mux_ops = { .determine_rate = clk_hw_determine_rate_no_reparent, .get_parent = cken_get_parent, .set_parent = dummy_clk_set_parent, }; void __init clkdev_pxa_register(int ckid, const char *con_id, const char *dev_id, struct clk *clk) { if (!IS_ERR(clk) && (ckid != CLK_NONE)) pxa_clocks[ckid] = clk; if (!IS_ERR(clk)) clk_register_clkdev(clk, con_id, dev_id); } int __init clk_pxa_cken_init(const struct desc_clk_cken *clks, int nb_clks, void __iomem *clk_regs) { int i; struct pxa_clk *pxa_clk; struct clk *clk; for (i = 0; i < nb_clks; i++) { pxa_clk = kzalloc(sizeof(*pxa_clk), GFP_KERNEL); if (!pxa_clk) return -ENOMEM; pxa_clk->is_in_low_power = clks[i].is_in_low_power; pxa_clk->lp = clks[i].lp; pxa_clk->hp = clks[i].hp; pxa_clk->gate = clks[i].gate; pxa_clk->gate.reg = clk_regs + clks[i].cken_reg; pxa_clk->gate.lock = &pxa_clk_lock; clk = clk_register_composite(NULL, clks[i].name, clks[i].parent_names, 2, &pxa_clk->hw, &cken_mux_ops, &pxa_clk->hw, &cken_rate_ops, &pxa_clk->gate.hw, &clk_gate_ops, clks[i].flags); clkdev_pxa_register(clks[i].ckid, clks[i].con_id, clks[i].dev_id, clk); } return 0; } void __init clk_pxa_dt_common_init(struct device_node *np) { of_clk_add_provider(np, of_clk_src_onecell_get, &onecell_data); } void pxa2xx_core_turbo_switch(bool on) { unsigned long flags; unsigned int unused, clkcfg; local_irq_save(flags); asm("mrc p14, 0, %0, c6, c0, 0" : "=r" (clkcfg)); clkcfg &= ~CLKCFG_TURBO & ~CLKCFG_HALFTURBO; if (on) clkcfg |= CLKCFG_TURBO; clkcfg |= CLKCFG_FCS; asm volatile( " b 2f\n" " .align 5\n" "1: mcr p14, 0, %1, c6, c0, 0\n" " b 3f\n" "2: b 1b\n" "3: nop\n" : "=&r" (unused) : "r" (clkcfg)); local_irq_restore(flags); } void pxa2xx_cpll_change(struct pxa2xx_freq *freq, u32 (*mdrefr_dri)(unsigned int), void __iomem *cccr) { unsigned int clkcfg = freq->clkcfg; unsigned int unused, preset_mdrefr, postset_mdrefr; unsigned long flags; void __iomem *mdrefr = pxa_smemc_get_mdrefr(); local_irq_save(flags); /* Calculate the next MDREFR. If we're slowing down the SDRAM clock * we need to preset the smaller DRI before the change. If we're * speeding up we need to set the larger DRI value after the change. */ preset_mdrefr = postset_mdrefr = readl(mdrefr); if ((preset_mdrefr & MDREFR_DRI_MASK) > mdrefr_dri(freq->membus_khz)) { preset_mdrefr = (preset_mdrefr & ~MDREFR_DRI_MASK); preset_mdrefr |= mdrefr_dri(freq->membus_khz); } postset_mdrefr = (postset_mdrefr & ~MDREFR_DRI_MASK) | mdrefr_dri(freq->membus_khz); /* If we're dividing the memory clock by two for the SDRAM clock, this * must be set prior to the change. Clearing the divide must be done * after the change. */ if (freq->div2) { preset_mdrefr |= MDREFR_DB2_MASK; postset_mdrefr |= MDREFR_DB2_MASK; } else { postset_mdrefr &= ~MDREFR_DB2_MASK; } /* Set new the CCCR and prepare CLKCFG */ writel(freq->cccr, cccr); asm volatile( " ldr r4, [%1]\n" " b 2f\n" " .align 5\n" "1: str %3, [%1] /* preset the MDREFR */\n" " mcr p14, 0, %2, c6, c0, 0 /* set CLKCFG[FCS] */\n" " str %4, [%1] /* postset the MDREFR */\n" " b 3f\n" "2: b 1b\n" "3: nop\n" : "=&r" (unused) : "r" (mdrefr), "r" (clkcfg), "r" (preset_mdrefr), "r" (postset_mdrefr) : "r4", "r5"); local_irq_restore(flags); } int pxa2xx_determine_rate(struct clk_rate_request *req, struct pxa2xx_freq *freqs, int nb_freqs) { int i, closest_below = -1, closest_above = -1; unsigned long rate; for (i = 0; i < nb_freqs; i++) { rate = freqs[i].cpll; if (rate == req->rate) break; if (rate < req->min_rate) continue; if (rate > req->max_rate) continue; if (rate <= req->rate) closest_below = i; if ((rate >= req->rate) && (closest_above == -1)) closest_above = i; } req->best_parent_hw = NULL; if (i < nb_freqs) { rate = req->rate; } else if (closest_below >= 0) { rate = freqs[closest_below].cpll; } else if (closest_above >= 0) { rate = freqs[closest_above].cpll; } else { pr_debug("%s(rate=%lu) no match\n", __func__, req->rate); return -EINVAL; } pr_debug("%s(rate=%lu) rate=%lu\n", __func__, req->rate, rate); req->rate = rate; return 0; }
linux-master
drivers/clk/pxa/clk-pxa.c
// SPDX-License-Identifier: GPL-2.0-only /* * Marvell PXA25x family clocks * * Copyright (C) 2014 Robert Jarzmik * * Heavily inspired from former arch/arm/mach-pxa/pxa25x.c. * * For non-devicetree platforms. Once pxa is fully converted to devicetree, this * should go away. */ #include <linux/clk-provider.h> #include <linux/clk.h> #include <linux/clk/pxa.h> #include <linux/clkdev.h> #include <linux/io.h> #include <linux/of.h> #include <linux/soc/pxa/smemc.h> #include <linux/soc/pxa/cpu.h> #include <dt-bindings/clock/pxa-clock.h> #include "clk-pxa.h" #include "clk-pxa2xx.h" #define KHz 1000 #define MHz (1000 * 1000) enum { PXA_CORE_RUN = 0, PXA_CORE_TURBO, }; #define PXA25x_CLKCFG(T) \ (CLKCFG_FCS | \ ((T) ? CLKCFG_TURBO : 0)) #define PXA25x_CCCR(N2, M, L) (N2 << 7 | M << 5 | L) /* Define the refresh period in mSec for the SDRAM and the number of rows */ #define SDRAM_TREF 64 /* standard 64ms SDRAM */ /* * Various clock factors driven by the CCCR register. */ static void __iomem *clk_regs; /* Crystal Frequency to Memory Frequency Multiplier (L) */ static unsigned char L_clk_mult[32] = { 0, 27, 32, 36, 40, 45, 0, }; /* Memory Frequency to Run Mode Frequency Multiplier (M) */ static unsigned char M_clk_mult[4] = { 0, 1, 2, 4 }; /* Run Mode Frequency to Turbo Mode Frequency Multiplier (N) */ /* Note: we store the value N * 2 here. */ static unsigned char N2_clk_mult[8] = { 0, 0, 2, 3, 4, 0, 6, 0 }; static const char * const get_freq_khz[] = { "core", "run", "cpll", "memory" }; static u32 mdrefr_dri(unsigned int freq_khz) { u32 interval = freq_khz * SDRAM_TREF / pxa2xx_smemc_get_sdram_rows(); return interval / 32; } /* * Get the clock frequency as reflected by CCCR and the turbo flag. * We assume these values have been applied via a fcs. * If info is not 0 we also display the current settings. */ unsigned int pxa25x_get_clk_frequency_khz(int info) { struct clk *clk; unsigned long clks[5]; int i; for (i = 0; i < ARRAY_SIZE(get_freq_khz); i++) { clk = clk_get(NULL, get_freq_khz[i]); if (IS_ERR(clk)) { clks[i] = 0; } else { clks[i] = clk_get_rate(clk); clk_put(clk); } } if (info) { pr_info("Run Mode clock: %ld.%02ldMHz\n", clks[1] / 1000000, (clks[1] % 1000000) / 10000); pr_info("Turbo Mode clock: %ld.%02ldMHz\n", clks[2] / 1000000, (clks[2] % 1000000) / 10000); pr_info("Memory clock: %ld.%02ldMHz\n", clks[3] / 1000000, (clks[3] % 1000000) / 10000); } return (unsigned int)clks[0] / KHz; } static unsigned long clk_pxa25x_memory_get_rate(struct clk_hw *hw, unsigned long parent_rate) { unsigned long cccr = readl(clk_regs + CCCR); unsigned int m = M_clk_mult[(cccr >> 5) & 0x03]; return parent_rate / m; } PARENTS(clk_pxa25x_memory) = { "run" }; RATE_RO_OPS(clk_pxa25x_memory, "memory"); PARENTS(pxa25x_pbus95) = { "ppll_95_85mhz", "ppll_95_85mhz" }; PARENTS(pxa25x_pbus147) = { "ppll_147_46mhz", "ppll_147_46mhz" }; PARENTS(pxa25x_osc3) = { "osc_3_6864mhz", "osc_3_6864mhz" }; #define PXA25X_CKEN(dev_id, con_id, parents, mult, div, \ bit, is_lp, flags) \ PXA_CKEN(dev_id, con_id, bit, parents, mult, div, mult, div, \ is_lp, CKEN, CKEN_ ## bit, flags) #define PXA25X_PBUS95_CKEN(dev_id, con_id, bit, mult_hp, div_hp, delay) \ PXA25X_CKEN(dev_id, con_id, pxa25x_pbus95_parents, mult_hp, \ div_hp, bit, NULL, 0) #define PXA25X_PBUS147_CKEN(dev_id, con_id, bit, mult_hp, div_hp, delay)\ PXA25X_CKEN(dev_id, con_id, pxa25x_pbus147_parents, mult_hp, \ div_hp, bit, NULL, 0) #define PXA25X_OSC3_CKEN(dev_id, con_id, bit, mult_hp, div_hp, delay) \ PXA25X_CKEN(dev_id, con_id, pxa25x_osc3_parents, mult_hp, \ div_hp, bit, NULL, 0) #define PXA25X_CKEN_1RATE(dev_id, con_id, bit, parents, delay) \ PXA_CKEN_1RATE(dev_id, con_id, bit, parents, \ CKEN, CKEN_ ## bit, 0) #define PXA25X_CKEN_1RATE_AO(dev_id, con_id, bit, parents, delay) \ PXA_CKEN_1RATE(dev_id, con_id, bit, parents, \ CKEN, CKEN_ ## bit, CLK_IGNORE_UNUSED) static struct desc_clk_cken pxa25x_clocks[] __initdata = { PXA25X_PBUS95_CKEN("pxa2xx-mci.0", NULL, MMC, 1, 5, 0), PXA25X_PBUS95_CKEN("pxa2xx-i2c.0", NULL, I2C, 1, 3, 0), PXA25X_PBUS95_CKEN("pxa2xx-ir", "FICPCLK", FICP, 1, 2, 0), PXA25X_PBUS95_CKEN("pxa25x-udc", NULL, USB, 1, 2, 5), PXA25X_PBUS147_CKEN("pxa2xx-uart.0", NULL, FFUART, 1, 10, 1), PXA25X_PBUS147_CKEN("pxa2xx-uart.1", NULL, BTUART, 1, 10, 1), PXA25X_PBUS147_CKEN("pxa2xx-uart.2", NULL, STUART, 1, 10, 1), PXA25X_PBUS147_CKEN("pxa2xx-uart.3", NULL, HWUART, 1, 10, 1), PXA25X_PBUS147_CKEN("pxa2xx-i2s", NULL, I2S, 1, 10, 0), PXA25X_PBUS147_CKEN(NULL, "AC97CLK", AC97, 1, 12, 0), PXA25X_OSC3_CKEN("pxa25x-ssp.0", NULL, SSP, 1, 1, 0), PXA25X_OSC3_CKEN("pxa25x-nssp.1", NULL, NSSP, 1, 1, 0), PXA25X_OSC3_CKEN("pxa25x-nssp.2", NULL, ASSP, 1, 1, 0), PXA25X_OSC3_CKEN("pxa25x-pwm.0", NULL, PWM0, 1, 1, 0), PXA25X_OSC3_CKEN("pxa25x-pwm.1", NULL, PWM1, 1, 1, 0), PXA25X_CKEN_1RATE("pxa2xx-fb", NULL, LCD, clk_pxa25x_memory_parents, 0), PXA25X_CKEN_1RATE_AO("pxa2xx-pcmcia", NULL, MEMC, clk_pxa25x_memory_parents, 0), }; /* * In this table, PXA25x_CCCR(N2, M, L) has the following meaning, where : * - freq_cpll = n * m * L * 3.6864 MHz * - n = N2 / 2 * - m = 2^(M - 1), where 1 <= M <= 3 * - l = L_clk_mult[L], ie. { 0, 27, 32, 36, 40, 45, 0, }[L] */ static struct pxa2xx_freq pxa25x_freqs[] = { /* CPU MEMBUS CCCR DIV2 CCLKCFG */ { 99532800, 99500, PXA25x_CCCR(2, 1, 1), 1, PXA25x_CLKCFG(1)}, {199065600, 99500, PXA25x_CCCR(4, 1, 1), 0, PXA25x_CLKCFG(1)}, {298598400, 99500, PXA25x_CCCR(3, 2, 1), 0, PXA25x_CLKCFG(1)}, {398131200, 99500, PXA25x_CCCR(4, 2, 1), 0, PXA25x_CLKCFG(1)}, }; static u8 clk_pxa25x_core_get_parent(struct clk_hw *hw) { unsigned long clkcfg; unsigned int t; asm("mrc\tp14, 0, %0, c6, c0, 0" : "=r" (clkcfg)); t = clkcfg & (1 << 0); if (t) return PXA_CORE_TURBO; return PXA_CORE_RUN; } static int clk_pxa25x_core_set_parent(struct clk_hw *hw, u8 index) { if (index > PXA_CORE_TURBO) return -EINVAL; pxa2xx_core_turbo_switch(index == PXA_CORE_TURBO); return 0; } static int clk_pxa25x_core_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { return __clk_mux_determine_rate(hw, req); } PARENTS(clk_pxa25x_core) = { "run", "cpll" }; MUX_OPS(clk_pxa25x_core, "core", CLK_SET_RATE_PARENT); static unsigned long clk_pxa25x_run_get_rate(struct clk_hw *hw, unsigned long parent_rate) { unsigned long cccr = readl(clk_regs + CCCR); unsigned int n2 = N2_clk_mult[(cccr >> 7) & 0x07]; return (parent_rate / n2) * 2; } PARENTS(clk_pxa25x_run) = { "cpll" }; RATE_RO_OPS(clk_pxa25x_run, "run"); static unsigned long clk_pxa25x_cpll_get_rate(struct clk_hw *hw, unsigned long parent_rate) { unsigned long clkcfg, cccr = readl(clk_regs + CCCR); unsigned int l, m, n2, t; asm("mrc\tp14, 0, %0, c6, c0, 0" : "=r" (clkcfg)); t = clkcfg & (1 << 0); l = L_clk_mult[(cccr >> 0) & 0x1f]; m = M_clk_mult[(cccr >> 5) & 0x03]; n2 = N2_clk_mult[(cccr >> 7) & 0x07]; return m * l * n2 * parent_rate / 2; } static int clk_pxa25x_cpll_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { return pxa2xx_determine_rate(req, pxa25x_freqs, ARRAY_SIZE(pxa25x_freqs)); } static int clk_pxa25x_cpll_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { int i; pr_debug("%s(rate=%lu parent_rate=%lu)\n", __func__, rate, parent_rate); for (i = 0; i < ARRAY_SIZE(pxa25x_freqs); i++) if (pxa25x_freqs[i].cpll == rate) break; if (i >= ARRAY_SIZE(pxa25x_freqs)) return -EINVAL; pxa2xx_cpll_change(&pxa25x_freqs[i], mdrefr_dri, clk_regs + CCCR); return 0; } PARENTS(clk_pxa25x_cpll) = { "osc_3_6864mhz" }; RATE_OPS(clk_pxa25x_cpll, "cpll"); static void __init pxa25x_register_core(void) { clkdev_pxa_register(CLK_NONE, "cpll", NULL, clk_register_clk_pxa25x_cpll()); clkdev_pxa_register(CLK_NONE, "run", NULL, clk_register_clk_pxa25x_run()); clkdev_pxa_register(CLK_CORE, "core", NULL, clk_register_clk_pxa25x_core()); } static void __init pxa25x_register_plls(void) { clk_register_fixed_rate(NULL, "osc_3_6864mhz", NULL, CLK_GET_RATE_NOCACHE, 3686400); clkdev_pxa_register(CLK_OSC32k768, "osc_32_768khz", NULL, clk_register_fixed_rate(NULL, "osc_32_768khz", NULL, CLK_GET_RATE_NOCACHE, 32768)); clk_register_fixed_rate(NULL, "clk_dummy", NULL, 0, 0); clk_register_fixed_factor(NULL, "ppll_95_85mhz", "osc_3_6864mhz", 0, 26, 1); clk_register_fixed_factor(NULL, "ppll_147_46mhz", "osc_3_6864mhz", 0, 40, 1); } static void __init pxa25x_base_clocks_init(void) { pxa25x_register_plls(); pxa25x_register_core(); clkdev_pxa_register(CLK_NONE, "system_bus", NULL, clk_register_clk_pxa25x_memory()); } #define DUMMY_CLK(_con_id, _dev_id, _parent) \ { .con_id = _con_id, .dev_id = _dev_id, .parent = _parent } struct dummy_clk { const char *con_id; const char *dev_id; const char *parent; }; static struct dummy_clk dummy_clks[] __initdata = { DUMMY_CLK(NULL, "pxa25x-gpio", "osc_32_768khz"), DUMMY_CLK(NULL, "pxa26x-gpio", "osc_32_768khz"), DUMMY_CLK("GPIO11_CLK", NULL, "osc_3_6864mhz"), DUMMY_CLK("GPIO12_CLK", NULL, "osc_32_768khz"), DUMMY_CLK(NULL, "sa1100-rtc", "osc_32_768khz"), DUMMY_CLK("OSTIMER0", NULL, "osc_3_6864mhz"), DUMMY_CLK("UARTCLK", "pxa2xx-ir", "STUART"), }; static void __init pxa25x_dummy_clocks_init(void) { struct clk *clk; struct dummy_clk *d; const char *name; int i; /* * All pinctrl logic has been wiped out of the clock driver, especially * for gpio11 and gpio12 outputs. Machine code should ensure proper pin * control (ie. pxa2xx_mfp_config() invocation). */ for (i = 0; i < ARRAY_SIZE(dummy_clks); i++) { d = &dummy_clks[i]; name = d->dev_id ? d->dev_id : d->con_id; clk = clk_register_fixed_factor(NULL, name, d->parent, 0, 1, 1); clk_register_clkdev(clk, d->con_id, d->dev_id); } } int __init pxa25x_clocks_init(void __iomem *regs) { clk_regs = regs; pxa25x_base_clocks_init(); pxa25x_dummy_clocks_init(); return clk_pxa_cken_init(pxa25x_clocks, ARRAY_SIZE(pxa25x_clocks), clk_regs); } static void __init pxa25x_dt_clocks_init(struct device_node *np) { pxa25x_clocks_init(ioremap(0x41300000ul, 0x10)); clk_pxa_dt_common_init(np); } CLK_OF_DECLARE(pxa25x_clks, "marvell,pxa250-core-clocks", pxa25x_dt_clocks_init);
linux-master
drivers/clk/pxa/clk-pxa25x.c
// SPDX-License-Identifier: GPL-2.0 /* * Xilinx VCU Init * * Copyright (C) 2016 - 2017 Xilinx, Inc. * * Contacts Dhaval Shah <[email protected]> */ #include <linux/bitfield.h> #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/device.h> #include <linux/errno.h> #include <linux/io.h> #include <linux/mfd/syscon.h> #include <linux/mfd/syscon/xlnx-vcu.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <dt-bindings/clock/xlnx-vcu.h> #define VCU_PLL_CTRL 0x24 #define VCU_PLL_CTRL_RESET BIT(0) #define VCU_PLL_CTRL_POR_IN BIT(1) #define VCU_PLL_CTRL_PWR_POR BIT(2) #define VCU_PLL_CTRL_BYPASS BIT(3) #define VCU_PLL_CTRL_FBDIV GENMASK(14, 8) #define VCU_PLL_CTRL_CLKOUTDIV GENMASK(18, 16) #define VCU_PLL_CFG 0x28 #define VCU_PLL_CFG_RES GENMASK(3, 0) #define VCU_PLL_CFG_CP GENMASK(8, 5) #define VCU_PLL_CFG_LFHF GENMASK(12, 10) #define VCU_PLL_CFG_LOCK_CNT GENMASK(22, 13) #define VCU_PLL_CFG_LOCK_DLY GENMASK(31, 25) #define VCU_ENC_CORE_CTRL 0x30 #define VCU_ENC_MCU_CTRL 0x34 #define VCU_DEC_CORE_CTRL 0x38 #define VCU_DEC_MCU_CTRL 0x3c #define VCU_PLL_STATUS 0x60 #define VCU_PLL_STATUS_LOCK_STATUS BIT(0) #define MHZ 1000000 #define FVCO_MIN (1500U * MHZ) #define FVCO_MAX (3000U * MHZ) /** * struct xvcu_device - Xilinx VCU init device structure * @dev: Platform device * @pll_ref: pll ref clock source * @aclk: axi clock source * @logicore_reg_ba: logicore reg base address * @vcu_slcr_ba: vcu_slcr Register base address * @pll: handle for the VCU PLL * @pll_post: handle for the VCU PLL post divider * @clk_data: clocks provided by the vcu clock provider */ struct xvcu_device { struct device *dev; struct clk *pll_ref; struct clk *aclk; struct regmap *logicore_reg_ba; void __iomem *vcu_slcr_ba; struct clk_hw *pll; struct clk_hw *pll_post; struct clk_hw_onecell_data *clk_data; }; static struct regmap_config vcu_settings_regmap_config = { .name = "regmap", .reg_bits = 32, .val_bits = 32, .reg_stride = 4, .max_register = 0xfff, .cache_type = REGCACHE_NONE, }; /** * struct xvcu_pll_cfg - Helper data * @fbdiv: The integer portion of the feedback divider to the PLL * @cp: PLL charge pump control * @res: PLL loop filter resistor control * @lfhf: PLL loop filter high frequency capacitor control * @lock_dly: Lock circuit configuration settings for lock windowsize * @lock_cnt: Lock circuit counter setting */ struct xvcu_pll_cfg { u32 fbdiv; u32 cp; u32 res; u32 lfhf; u32 lock_dly; u32 lock_cnt; }; static const struct xvcu_pll_cfg xvcu_pll_cfg[] = { { 25, 3, 10, 3, 63, 1000 }, { 26, 3, 10, 3, 63, 1000 }, { 27, 4, 6, 3, 63, 1000 }, { 28, 4, 6, 3, 63, 1000 }, { 29, 4, 6, 3, 63, 1000 }, { 30, 4, 6, 3, 63, 1000 }, { 31, 6, 1, 3, 63, 1000 }, { 32, 6, 1, 3, 63, 1000 }, { 33, 4, 10, 3, 63, 1000 }, { 34, 5, 6, 3, 63, 1000 }, { 35, 5, 6, 3, 63, 1000 }, { 36, 5, 6, 3, 63, 1000 }, { 37, 5, 6, 3, 63, 1000 }, { 38, 5, 6, 3, 63, 975 }, { 39, 3, 12, 3, 63, 950 }, { 40, 3, 12, 3, 63, 925 }, { 41, 3, 12, 3, 63, 900 }, { 42, 3, 12, 3, 63, 875 }, { 43, 3, 12, 3, 63, 850 }, { 44, 3, 12, 3, 63, 850 }, { 45, 3, 12, 3, 63, 825 }, { 46, 3, 12, 3, 63, 800 }, { 47, 3, 12, 3, 63, 775 }, { 48, 3, 12, 3, 63, 775 }, { 49, 3, 12, 3, 63, 750 }, { 50, 3, 12, 3, 63, 750 }, { 51, 3, 2, 3, 63, 725 }, { 52, 3, 2, 3, 63, 700 }, { 53, 3, 2, 3, 63, 700 }, { 54, 3, 2, 3, 63, 675 }, { 55, 3, 2, 3, 63, 675 }, { 56, 3, 2, 3, 63, 650 }, { 57, 3, 2, 3, 63, 650 }, { 58, 3, 2, 3, 63, 625 }, { 59, 3, 2, 3, 63, 625 }, { 60, 3, 2, 3, 63, 625 }, { 61, 3, 2, 3, 63, 600 }, { 62, 3, 2, 3, 63, 600 }, { 63, 3, 2, 3, 63, 600 }, { 64, 3, 2, 3, 63, 600 }, { 65, 3, 2, 3, 63, 600 }, { 66, 3, 2, 3, 63, 600 }, { 67, 3, 2, 3, 63, 600 }, { 68, 3, 2, 3, 63, 600 }, { 69, 3, 2, 3, 63, 600 }, { 70, 3, 2, 3, 63, 600 }, { 71, 3, 2, 3, 63, 600 }, { 72, 3, 2, 3, 63, 600 }, { 73, 3, 2, 3, 63, 600 }, { 74, 3, 2, 3, 63, 600 }, { 75, 3, 2, 3, 63, 600 }, { 76, 3, 2, 3, 63, 600 }, { 77, 3, 2, 3, 63, 600 }, { 78, 3, 2, 3, 63, 600 }, { 79, 3, 2, 3, 63, 600 }, { 80, 3, 2, 3, 63, 600 }, { 81, 3, 2, 3, 63, 600 }, { 82, 3, 2, 3, 63, 600 }, { 83, 4, 2, 3, 63, 600 }, { 84, 4, 2, 3, 63, 600 }, { 85, 4, 2, 3, 63, 600 }, { 86, 4, 2, 3, 63, 600 }, { 87, 4, 2, 3, 63, 600 }, { 88, 4, 2, 3, 63, 600 }, { 89, 4, 2, 3, 63, 600 }, { 90, 4, 2, 3, 63, 600 }, { 91, 4, 2, 3, 63, 600 }, { 92, 4, 2, 3, 63, 600 }, { 93, 4, 2, 3, 63, 600 }, { 94, 4, 2, 3, 63, 600 }, { 95, 4, 2, 3, 63, 600 }, { 96, 4, 2, 3, 63, 600 }, { 97, 4, 2, 3, 63, 600 }, { 98, 4, 2, 3, 63, 600 }, { 99, 4, 2, 3, 63, 600 }, { 100, 4, 2, 3, 63, 600 }, { 101, 4, 2, 3, 63, 600 }, { 102, 4, 2, 3, 63, 600 }, { 103, 5, 2, 3, 63, 600 }, { 104, 5, 2, 3, 63, 600 }, { 105, 5, 2, 3, 63, 600 }, { 106, 5, 2, 3, 63, 600 }, { 107, 3, 4, 3, 63, 600 }, { 108, 3, 4, 3, 63, 600 }, { 109, 3, 4, 3, 63, 600 }, { 110, 3, 4, 3, 63, 600 }, { 111, 3, 4, 3, 63, 600 }, { 112, 3, 4, 3, 63, 600 }, { 113, 3, 4, 3, 63, 600 }, { 114, 3, 4, 3, 63, 600 }, { 115, 3, 4, 3, 63, 600 }, { 116, 3, 4, 3, 63, 600 }, { 117, 3, 4, 3, 63, 600 }, { 118, 3, 4, 3, 63, 600 }, { 119, 3, 4, 3, 63, 600 }, { 120, 3, 4, 3, 63, 600 }, { 121, 3, 4, 3, 63, 600 }, { 122, 3, 4, 3, 63, 600 }, { 123, 3, 4, 3, 63, 600 }, { 124, 3, 4, 3, 63, 600 }, { 125, 3, 4, 3, 63, 600 }, }; /** * xvcu_read - Read from the VCU register space * @iomem: vcu reg space base address * @offset: vcu reg offset from base * * Return: Returns 32bit value from VCU register specified * */ static inline u32 xvcu_read(void __iomem *iomem, u32 offset) { return ioread32(iomem + offset); } /** * xvcu_write - Write to the VCU register space * @iomem: vcu reg space base address * @offset: vcu reg offset from base * @value: Value to write */ static inline void xvcu_write(void __iomem *iomem, u32 offset, u32 value) { iowrite32(value, iomem + offset); } #define to_vcu_pll(_hw) container_of(_hw, struct vcu_pll, hw) struct vcu_pll { struct clk_hw hw; void __iomem *reg_base; unsigned long fvco_min; unsigned long fvco_max; }; static int xvcu_pll_wait_for_lock(struct vcu_pll *pll) { void __iomem *base = pll->reg_base; unsigned long timeout; u32 lock_status; timeout = jiffies + msecs_to_jiffies(2000); do { lock_status = xvcu_read(base, VCU_PLL_STATUS); if (lock_status & VCU_PLL_STATUS_LOCK_STATUS) return 0; } while (!time_after(jiffies, timeout)); return -ETIMEDOUT; } static struct clk_hw *xvcu_register_pll_post(struct device *dev, const char *name, const struct clk_hw *parent_hw, void __iomem *reg_base) { u32 div; u32 vcu_pll_ctrl; /* * The output divider of the PLL must be set to 1/2 to meet the * timing in the design. */ vcu_pll_ctrl = xvcu_read(reg_base, VCU_PLL_CTRL); div = FIELD_GET(VCU_PLL_CTRL_CLKOUTDIV, vcu_pll_ctrl); if (div != 1) return ERR_PTR(-EINVAL); return clk_hw_register_fixed_factor(dev, "vcu_pll_post", clk_hw_get_name(parent_hw), CLK_SET_RATE_PARENT, 1, 2); } static const struct xvcu_pll_cfg *xvcu_find_cfg(int div) { const struct xvcu_pll_cfg *cfg = NULL; unsigned int i; for (i = 0; i < ARRAY_SIZE(xvcu_pll_cfg) - 1; i++) if (xvcu_pll_cfg[i].fbdiv == div) cfg = &xvcu_pll_cfg[i]; return cfg; } static int xvcu_pll_set_div(struct vcu_pll *pll, int div) { void __iomem *base = pll->reg_base; const struct xvcu_pll_cfg *cfg = NULL; u32 vcu_pll_ctrl; u32 cfg_val; cfg = xvcu_find_cfg(div); if (!cfg) return -EINVAL; vcu_pll_ctrl = xvcu_read(base, VCU_PLL_CTRL); vcu_pll_ctrl &= ~VCU_PLL_CTRL_FBDIV; vcu_pll_ctrl |= FIELD_PREP(VCU_PLL_CTRL_FBDIV, cfg->fbdiv); xvcu_write(base, VCU_PLL_CTRL, vcu_pll_ctrl); cfg_val = FIELD_PREP(VCU_PLL_CFG_RES, cfg->res) | FIELD_PREP(VCU_PLL_CFG_CP, cfg->cp) | FIELD_PREP(VCU_PLL_CFG_LFHF, cfg->lfhf) | FIELD_PREP(VCU_PLL_CFG_LOCK_CNT, cfg->lock_cnt) | FIELD_PREP(VCU_PLL_CFG_LOCK_DLY, cfg->lock_dly); xvcu_write(base, VCU_PLL_CFG, cfg_val); return 0; } static long xvcu_pll_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { struct vcu_pll *pll = to_vcu_pll(hw); unsigned int feedback_div; rate = clamp_t(unsigned long, rate, pll->fvco_min, pll->fvco_max); feedback_div = DIV_ROUND_CLOSEST_ULL(rate, *parent_rate); feedback_div = clamp_t(unsigned int, feedback_div, 25, 125); return *parent_rate * feedback_div; } static unsigned long xvcu_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct vcu_pll *pll = to_vcu_pll(hw); void __iomem *base = pll->reg_base; unsigned int div; u32 vcu_pll_ctrl; vcu_pll_ctrl = xvcu_read(base, VCU_PLL_CTRL); div = FIELD_GET(VCU_PLL_CTRL_FBDIV, vcu_pll_ctrl); return div * parent_rate; } static int xvcu_pll_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct vcu_pll *pll = to_vcu_pll(hw); return xvcu_pll_set_div(pll, rate / parent_rate); } static int xvcu_pll_enable(struct clk_hw *hw) { struct vcu_pll *pll = to_vcu_pll(hw); void __iomem *base = pll->reg_base; u32 vcu_pll_ctrl; int ret; vcu_pll_ctrl = xvcu_read(base, VCU_PLL_CTRL); vcu_pll_ctrl |= VCU_PLL_CTRL_BYPASS; xvcu_write(base, VCU_PLL_CTRL, vcu_pll_ctrl); vcu_pll_ctrl = xvcu_read(base, VCU_PLL_CTRL); vcu_pll_ctrl &= ~VCU_PLL_CTRL_POR_IN; vcu_pll_ctrl &= ~VCU_PLL_CTRL_PWR_POR; vcu_pll_ctrl &= ~VCU_PLL_CTRL_RESET; xvcu_write(base, VCU_PLL_CTRL, vcu_pll_ctrl); ret = xvcu_pll_wait_for_lock(pll); if (ret) { pr_err("VCU PLL is not locked\n"); goto err; } vcu_pll_ctrl = xvcu_read(base, VCU_PLL_CTRL); vcu_pll_ctrl &= ~VCU_PLL_CTRL_BYPASS; xvcu_write(base, VCU_PLL_CTRL, vcu_pll_ctrl); err: return ret; } static void xvcu_pll_disable(struct clk_hw *hw) { struct vcu_pll *pll = to_vcu_pll(hw); void __iomem *base = pll->reg_base; u32 vcu_pll_ctrl; vcu_pll_ctrl = xvcu_read(base, VCU_PLL_CTRL); vcu_pll_ctrl |= VCU_PLL_CTRL_POR_IN; vcu_pll_ctrl |= VCU_PLL_CTRL_PWR_POR; vcu_pll_ctrl |= VCU_PLL_CTRL_RESET; xvcu_write(base, VCU_PLL_CTRL, vcu_pll_ctrl); } static const struct clk_ops vcu_pll_ops = { .enable = xvcu_pll_enable, .disable = xvcu_pll_disable, .round_rate = xvcu_pll_round_rate, .recalc_rate = xvcu_pll_recalc_rate, .set_rate = xvcu_pll_set_rate, }; static struct clk_hw *xvcu_register_pll(struct device *dev, void __iomem *reg_base, const char *name, const char *parent, unsigned long flags) { struct vcu_pll *pll; struct clk_hw *hw; struct clk_init_data init; int ret; init.name = name; init.parent_names = &parent; init.ops = &vcu_pll_ops; init.num_parents = 1; init.flags = flags; pll = devm_kmalloc(dev, sizeof(*pll), GFP_KERNEL); if (!pll) return ERR_PTR(-ENOMEM); pll->hw.init = &init; pll->reg_base = reg_base; pll->fvco_min = FVCO_MIN; pll->fvco_max = FVCO_MAX; hw = &pll->hw; ret = devm_clk_hw_register(dev, hw); if (ret) return ERR_PTR(ret); clk_hw_set_rate_range(hw, pll->fvco_min, pll->fvco_max); return hw; } static struct clk_hw *xvcu_clk_hw_register_leaf(struct device *dev, const char *name, const struct clk_parent_data *parent_data, u8 num_parents, void __iomem *reg) { u8 mux_flags = CLK_MUX_ROUND_CLOSEST; u8 divider_flags = CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO | CLK_DIVIDER_ROUND_CLOSEST; struct clk_hw *mux = NULL; struct clk_hw *divider = NULL; struct clk_hw *gate = NULL; char *name_mux; char *name_div; int err; /* Protect register shared by clocks */ spinlock_t *lock; lock = devm_kzalloc(dev, sizeof(*lock), GFP_KERNEL); if (!lock) return ERR_PTR(-ENOMEM); spin_lock_init(lock); name_mux = devm_kasprintf(dev, GFP_KERNEL, "%s%s", name, "_mux"); if (!name_mux) return ERR_PTR(-ENOMEM); mux = clk_hw_register_mux_parent_data(dev, name_mux, parent_data, num_parents, CLK_SET_RATE_PARENT, reg, 0, 1, mux_flags, lock); if (IS_ERR(mux)) return mux; name_div = devm_kasprintf(dev, GFP_KERNEL, "%s%s", name, "_div"); if (!name_div) { err = -ENOMEM; goto unregister_mux; } divider = clk_hw_register_divider_parent_hw(dev, name_div, mux, CLK_SET_RATE_PARENT, reg, 4, 6, divider_flags, lock); if (IS_ERR(divider)) { err = PTR_ERR(divider); goto unregister_mux; } gate = clk_hw_register_gate_parent_hw(dev, name, divider, CLK_SET_RATE_PARENT, reg, 12, 0, lock); if (IS_ERR(gate)) { err = PTR_ERR(gate); goto unregister_divider; } return gate; unregister_divider: clk_hw_unregister_divider(divider); unregister_mux: clk_hw_unregister_mux(mux); return ERR_PTR(err); } static void xvcu_clk_hw_unregister_leaf(struct clk_hw *hw) { struct clk_hw *gate = hw; struct clk_hw *divider; struct clk_hw *mux; if (!gate) return; divider = clk_hw_get_parent(gate); clk_hw_unregister_gate(gate); if (!divider) return; mux = clk_hw_get_parent(divider); clk_hw_unregister_mux(mux); if (!divider) return; clk_hw_unregister_divider(divider); } static int xvcu_register_clock_provider(struct xvcu_device *xvcu) { struct device *dev = xvcu->dev; struct clk_parent_data parent_data[2] = { 0 }; struct clk_hw_onecell_data *data; struct clk_hw **hws; struct clk_hw *hw; void __iomem *reg_base = xvcu->vcu_slcr_ba; data = devm_kzalloc(dev, struct_size(data, hws, CLK_XVCU_NUM_CLOCKS), GFP_KERNEL); if (!data) return -ENOMEM; data->num = CLK_XVCU_NUM_CLOCKS; hws = data->hws; xvcu->clk_data = data; hw = xvcu_register_pll(dev, reg_base, "vcu_pll", __clk_get_name(xvcu->pll_ref), CLK_SET_RATE_NO_REPARENT | CLK_OPS_PARENT_ENABLE); if (IS_ERR(hw)) return PTR_ERR(hw); xvcu->pll = hw; hw = xvcu_register_pll_post(dev, "vcu_pll_post", xvcu->pll, reg_base); if (IS_ERR(hw)) return PTR_ERR(hw); xvcu->pll_post = hw; parent_data[0].fw_name = "pll_ref"; parent_data[1].hw = xvcu->pll_post; hws[CLK_XVCU_ENC_CORE] = xvcu_clk_hw_register_leaf(dev, "venc_core_clk", parent_data, ARRAY_SIZE(parent_data), reg_base + VCU_ENC_CORE_CTRL); hws[CLK_XVCU_ENC_MCU] = xvcu_clk_hw_register_leaf(dev, "venc_mcu_clk", parent_data, ARRAY_SIZE(parent_data), reg_base + VCU_ENC_MCU_CTRL); hws[CLK_XVCU_DEC_CORE] = xvcu_clk_hw_register_leaf(dev, "vdec_core_clk", parent_data, ARRAY_SIZE(parent_data), reg_base + VCU_DEC_CORE_CTRL); hws[CLK_XVCU_DEC_MCU] = xvcu_clk_hw_register_leaf(dev, "vdec_mcu_clk", parent_data, ARRAY_SIZE(parent_data), reg_base + VCU_DEC_MCU_CTRL); return devm_of_clk_add_hw_provider(dev, of_clk_hw_onecell_get, data); } static void xvcu_unregister_clock_provider(struct xvcu_device *xvcu) { struct clk_hw_onecell_data *data = xvcu->clk_data; struct clk_hw **hws = data->hws; if (!IS_ERR_OR_NULL(hws[CLK_XVCU_DEC_MCU])) xvcu_clk_hw_unregister_leaf(hws[CLK_XVCU_DEC_MCU]); if (!IS_ERR_OR_NULL(hws[CLK_XVCU_DEC_CORE])) xvcu_clk_hw_unregister_leaf(hws[CLK_XVCU_DEC_CORE]); if (!IS_ERR_OR_NULL(hws[CLK_XVCU_ENC_MCU])) xvcu_clk_hw_unregister_leaf(hws[CLK_XVCU_ENC_MCU]); if (!IS_ERR_OR_NULL(hws[CLK_XVCU_ENC_CORE])) xvcu_clk_hw_unregister_leaf(hws[CLK_XVCU_ENC_CORE]); clk_hw_unregister_fixed_factor(xvcu->pll_post); } /** * xvcu_probe - Probe existence of the logicoreIP * and initialize PLL * * @pdev: Pointer to the platform_device structure * * Return: Returns 0 on success * Negative error code otherwise */ static int xvcu_probe(struct platform_device *pdev) { struct resource *res; struct xvcu_device *xvcu; void __iomem *regs; int ret; xvcu = devm_kzalloc(&pdev->dev, sizeof(*xvcu), GFP_KERNEL); if (!xvcu) return -ENOMEM; xvcu->dev = &pdev->dev; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "vcu_slcr"); if (!res) { dev_err(&pdev->dev, "get vcu_slcr memory resource failed.\n"); return -ENODEV; } xvcu->vcu_slcr_ba = devm_ioremap(&pdev->dev, res->start, resource_size(res)); if (!xvcu->vcu_slcr_ba) { dev_err(&pdev->dev, "vcu_slcr register mapping failed.\n"); return -ENOMEM; } xvcu->logicore_reg_ba = syscon_regmap_lookup_by_compatible("xlnx,vcu-settings"); if (IS_ERR(xvcu->logicore_reg_ba)) { dev_info(&pdev->dev, "could not find xlnx,vcu-settings: trying direct register access\n"); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "logicore"); if (!res) { dev_err(&pdev->dev, "get logicore memory resource failed.\n"); return -ENODEV; } regs = devm_ioremap(&pdev->dev, res->start, resource_size(res)); if (!regs) { dev_err(&pdev->dev, "logicore register mapping failed.\n"); return -ENOMEM; } xvcu->logicore_reg_ba = devm_regmap_init_mmio(&pdev->dev, regs, &vcu_settings_regmap_config); if (IS_ERR(xvcu->logicore_reg_ba)) { dev_err(&pdev->dev, "failed to init regmap\n"); return PTR_ERR(xvcu->logicore_reg_ba); } } xvcu->aclk = devm_clk_get(&pdev->dev, "aclk"); if (IS_ERR(xvcu->aclk)) { dev_err(&pdev->dev, "Could not get aclk clock\n"); return PTR_ERR(xvcu->aclk); } xvcu->pll_ref = devm_clk_get(&pdev->dev, "pll_ref"); if (IS_ERR(xvcu->pll_ref)) { dev_err(&pdev->dev, "Could not get pll_ref clock\n"); return PTR_ERR(xvcu->pll_ref); } ret = clk_prepare_enable(xvcu->aclk); if (ret) { dev_err(&pdev->dev, "aclk clock enable failed\n"); return ret; } /* * Do the Gasket isolation and put the VCU out of reset * Bit 0 : Gasket isolation * Bit 1 : put VCU out of reset */ regmap_write(xvcu->logicore_reg_ba, VCU_GASKET_INIT, VCU_GASKET_VALUE); ret = xvcu_register_clock_provider(xvcu); if (ret) { dev_err(&pdev->dev, "failed to register clock provider\n"); goto error_clk_provider; } dev_set_drvdata(&pdev->dev, xvcu); return 0; error_clk_provider: xvcu_unregister_clock_provider(xvcu); clk_disable_unprepare(xvcu->aclk); return ret; } /** * xvcu_remove - Insert gasket isolation * and disable the clock * @pdev: Pointer to the platform_device structure * * Return: Returns 0 on success * Negative error code otherwise */ static void xvcu_remove(struct platform_device *pdev) { struct xvcu_device *xvcu; xvcu = platform_get_drvdata(pdev); xvcu_unregister_clock_provider(xvcu); /* Add the Gasket isolation and put the VCU in reset. */ regmap_write(xvcu->logicore_reg_ba, VCU_GASKET_INIT, 0); clk_disable_unprepare(xvcu->aclk); } static const struct of_device_id xvcu_of_id_table[] = { { .compatible = "xlnx,vcu" }, { .compatible = "xlnx,vcu-logicoreip-1.0" }, { } }; MODULE_DEVICE_TABLE(of, xvcu_of_id_table); static struct platform_driver xvcu_driver = { .driver = { .name = "xilinx-vcu", .of_match_table = xvcu_of_id_table, }, .probe = xvcu_probe, .remove_new = xvcu_remove, }; module_platform_driver(xvcu_driver); MODULE_AUTHOR("Dhaval Shah <[email protected]>"); MODULE_DESCRIPTION("Xilinx VCU init Driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/clk/xilinx/xlnx_vcu.c
// SPDX-License-Identifier: GPL-2.0 /* * Xilinx 'Clocking Wizard' driver * * Copyright (C) 2013 - 2021 Xilinx * * Sören Brinkmann <[email protected]> * */ #include <linux/bitfield.h> #include <linux/platform_device.h> #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/slab.h> #include <linux/io.h> #include <linux/of.h> #include <linux/math64.h> #include <linux/module.h> #include <linux/err.h> #include <linux/iopoll.h> #define WZRD_NUM_OUTPUTS 7 #define WZRD_ACLK_MAX_FREQ 250000000UL #define WZRD_CLK_CFG_REG(n) (0x200 + 4 * (n)) #define WZRD_CLKOUT0_FRAC_EN BIT(18) #define WZRD_CLKFBOUT_FRAC_EN BIT(26) #define WZRD_CLKFBOUT_MULT_SHIFT 8 #define WZRD_CLKFBOUT_MULT_MASK (0xff << WZRD_CLKFBOUT_MULT_SHIFT) #define WZRD_CLKFBOUT_FRAC_SHIFT 16 #define WZRD_CLKFBOUT_FRAC_MASK (0x3ff << WZRD_CLKFBOUT_FRAC_SHIFT) #define WZRD_DIVCLK_DIVIDE_SHIFT 0 #define WZRD_DIVCLK_DIVIDE_MASK (0xff << WZRD_DIVCLK_DIVIDE_SHIFT) #define WZRD_CLKOUT_DIVIDE_SHIFT 0 #define WZRD_CLKOUT_DIVIDE_WIDTH 8 #define WZRD_CLKOUT_DIVIDE_MASK (0xff << WZRD_DIVCLK_DIVIDE_SHIFT) #define WZRD_CLKOUT_FRAC_SHIFT 8 #define WZRD_CLKOUT_FRAC_MASK 0x3ff #define WZRD_CLKOUT0_FRAC_MASK GENMASK(17, 8) #define WZRD_DR_MAX_INT_DIV_VALUE 255 #define WZRD_DR_STATUS_REG_OFFSET 0x04 #define WZRD_DR_LOCK_BIT_MASK 0x00000001 #define WZRD_DR_INIT_REG_OFFSET 0x25C #define WZRD_DR_DIV_TO_PHASE_OFFSET 4 #define WZRD_DR_BEGIN_DYNA_RECONF 0x03 #define WZRD_DR_BEGIN_DYNA_RECONF_5_2 0x07 #define WZRD_DR_BEGIN_DYNA_RECONF1_5_2 0x02 #define WZRD_USEC_POLL 10 #define WZRD_TIMEOUT_POLL 1000 /* Divider limits, from UG572 Table 3-4 for Ultrascale+ */ #define DIV_O 0x01 #define DIV_ALL 0x03 #define WZRD_M_MIN 2 #define WZRD_M_MAX 128 #define WZRD_D_MIN 1 #define WZRD_D_MAX 106 #define WZRD_VCO_MIN 800000000 #define WZRD_VCO_MAX 1600000000 #define WZRD_O_MIN 1 #define WZRD_O_MAX 128 #define WZRD_MIN_ERR 20000 #define WZRD_FRAC_POINTS 1000 /* Get the mask from width */ #define div_mask(width) ((1 << (width)) - 1) /* Extract divider instance from clock hardware instance */ #define to_clk_wzrd_divider(_hw) container_of(_hw, struct clk_wzrd_divider, hw) enum clk_wzrd_int_clks { wzrd_clk_mul, wzrd_clk_mul_div, wzrd_clk_mul_frac, wzrd_clk_int_max }; /** * struct clk_wzrd - Clock wizard private data structure * * @clk_data: Clock data * @nb: Notifier block * @base: Memory base * @clk_in1: Handle to input clock 'clk_in1' * @axi_clk: Handle to input clock 's_axi_aclk' * @clks_internal: Internal clocks * @clkout: Output clocks * @speed_grade: Speed grade of the device * @suspended: Flag indicating power state of the device */ struct clk_wzrd { struct clk_onecell_data clk_data; struct notifier_block nb; void __iomem *base; struct clk *clk_in1; struct clk *axi_clk; struct clk *clks_internal[wzrd_clk_int_max]; struct clk *clkout[WZRD_NUM_OUTPUTS]; unsigned int speed_grade; bool suspended; }; /** * struct clk_wzrd_divider - clock divider specific to clk_wzrd * * @hw: handle between common and hardware-specific interfaces * @base: base address of register containing the divider * @offset: offset address of register containing the divider * @shift: shift to the divider bit field * @width: width of the divider bit field * @flags: clk_wzrd divider flags * @table: array of value/divider pairs, last entry should have div = 0 * @m: value of the multiplier * @d: value of the common divider * @o: value of the leaf divider * @lock: register lock */ struct clk_wzrd_divider { struct clk_hw hw; void __iomem *base; u16 offset; u8 shift; u8 width; u8 flags; const struct clk_div_table *table; u32 m; u32 d; u32 o; spinlock_t *lock; /* divider lock */ }; #define to_clk_wzrd(_nb) container_of(_nb, struct clk_wzrd, nb) /* maximum frequencies for input/output clocks per speed grade */ static const unsigned long clk_wzrd_max_freq[] = { 800000000UL, 933000000UL, 1066000000UL }; /* spin lock variable for clk_wzrd */ static DEFINE_SPINLOCK(clkwzrd_lock); static unsigned long clk_wzrd_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw); void __iomem *div_addr = divider->base + divider->offset; unsigned int val; val = readl(div_addr) >> divider->shift; val &= div_mask(divider->width); return divider_recalc_rate(hw, parent_rate, val, divider->table, divider->flags, divider->width); } static int clk_wzrd_dynamic_reconfig(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { int err; u32 value; unsigned long flags = 0; struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw); void __iomem *div_addr = divider->base + divider->offset; if (divider->lock) spin_lock_irqsave(divider->lock, flags); else __acquire(divider->lock); value = DIV_ROUND_CLOSEST(parent_rate, rate); /* Cap the value to max */ min_t(u32, value, WZRD_DR_MAX_INT_DIV_VALUE); /* Set divisor and clear phase offset */ writel(value, div_addr); writel(0x00, div_addr + WZRD_DR_DIV_TO_PHASE_OFFSET); /* Check status register */ err = readl_poll_timeout(divider->base + WZRD_DR_STATUS_REG_OFFSET, value, value & WZRD_DR_LOCK_BIT_MASK, WZRD_USEC_POLL, WZRD_TIMEOUT_POLL); if (err) goto err_reconfig; /* Initiate reconfiguration */ writel(WZRD_DR_BEGIN_DYNA_RECONF_5_2, divider->base + WZRD_DR_INIT_REG_OFFSET); writel(WZRD_DR_BEGIN_DYNA_RECONF1_5_2, divider->base + WZRD_DR_INIT_REG_OFFSET); /* Check status register */ err = readl_poll_timeout(divider->base + WZRD_DR_STATUS_REG_OFFSET, value, value & WZRD_DR_LOCK_BIT_MASK, WZRD_USEC_POLL, WZRD_TIMEOUT_POLL); err_reconfig: if (divider->lock) spin_unlock_irqrestore(divider->lock, flags); else __release(divider->lock); return err; } static long clk_wzrd_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { u8 div; /* * since we don't change parent rate we just round rate to closest * achievable */ div = DIV_ROUND_CLOSEST(*prate, rate); return *prate / div; } static int clk_wzrd_get_divisors(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw); unsigned long vco_freq, freq, diff; u32 m, d, o; for (m = WZRD_M_MIN; m <= WZRD_M_MAX; m++) { for (d = WZRD_D_MIN; d <= WZRD_D_MAX; d++) { vco_freq = DIV_ROUND_CLOSEST((parent_rate * m), d); if (vco_freq >= WZRD_VCO_MIN && vco_freq <= WZRD_VCO_MAX) { for (o = WZRD_O_MIN; o <= WZRD_O_MAX; o++) { freq = DIV_ROUND_CLOSEST_ULL(vco_freq, o); diff = abs(freq - rate); if (diff < WZRD_MIN_ERR) { divider->m = m; divider->d = d; divider->o = o; return 0; } } } } } return -EBUSY; } static int clk_wzrd_dynamic_all_nolock(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw); unsigned long vco_freq, rate_div, clockout0_div; u32 reg, pre, value, f; int err; err = clk_wzrd_get_divisors(hw, rate, parent_rate); if (err) return err; vco_freq = DIV_ROUND_CLOSEST(parent_rate * divider->m, divider->d); rate_div = DIV_ROUND_CLOSEST_ULL((vco_freq * WZRD_FRAC_POINTS), rate); clockout0_div = div_u64(rate_div, WZRD_FRAC_POINTS); pre = DIV_ROUND_CLOSEST_ULL(vco_freq * WZRD_FRAC_POINTS, rate); f = (pre - (clockout0_div * WZRD_FRAC_POINTS)); f &= WZRD_CLKOUT_FRAC_MASK; reg = FIELD_PREP(WZRD_CLKOUT_DIVIDE_MASK, clockout0_div) | FIELD_PREP(WZRD_CLKOUT0_FRAC_MASK, f); writel(reg, divider->base + WZRD_CLK_CFG_REG(2)); /* Set divisor and clear phase offset */ reg = FIELD_PREP(WZRD_CLKFBOUT_MULT_MASK, divider->m) | FIELD_PREP(WZRD_DIVCLK_DIVIDE_MASK, divider->d); writel(reg, divider->base + WZRD_CLK_CFG_REG(0)); writel(divider->o, divider->base + WZRD_CLK_CFG_REG(2)); writel(0, divider->base + WZRD_CLK_CFG_REG(3)); /* Check status register */ err = readl_poll_timeout(divider->base + WZRD_DR_STATUS_REG_OFFSET, value, value & WZRD_DR_LOCK_BIT_MASK, WZRD_USEC_POLL, WZRD_TIMEOUT_POLL); if (err) return -ETIMEDOUT; /* Initiate reconfiguration */ writel(WZRD_DR_BEGIN_DYNA_RECONF, divider->base + WZRD_DR_INIT_REG_OFFSET); /* Check status register */ return readl_poll_timeout(divider->base + WZRD_DR_STATUS_REG_OFFSET, value, value & WZRD_DR_LOCK_BIT_MASK, WZRD_USEC_POLL, WZRD_TIMEOUT_POLL); } static int clk_wzrd_dynamic_all(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw); unsigned long flags = 0; int ret; spin_lock_irqsave(divider->lock, flags); ret = clk_wzrd_dynamic_all_nolock(hw, rate, parent_rate); spin_unlock_irqrestore(divider->lock, flags); return ret; } static unsigned long clk_wzrd_recalc_rate_all(struct clk_hw *hw, unsigned long parent_rate) { struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw); u32 m, d, o, div, reg, f; reg = readl(divider->base + WZRD_CLK_CFG_REG(0)); d = FIELD_GET(WZRD_DIVCLK_DIVIDE_MASK, reg); m = FIELD_GET(WZRD_CLKFBOUT_MULT_MASK, reg); reg = readl(divider->base + WZRD_CLK_CFG_REG(2)); o = FIELD_GET(WZRD_DIVCLK_DIVIDE_MASK, reg); f = FIELD_GET(WZRD_CLKOUT0_FRAC_MASK, reg); div = DIV_ROUND_CLOSEST(d * (WZRD_FRAC_POINTS * o + f), WZRD_FRAC_POINTS); return divider_recalc_rate(hw, parent_rate * m, div, divider->table, divider->flags, divider->width); } static long clk_wzrd_round_rate_all(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw); unsigned long int_freq; u32 m, d, o, div, f; int err; err = clk_wzrd_get_divisors(hw, rate, *prate); if (err) return err; m = divider->m; d = divider->d; o = divider->o; div = d * o; int_freq = divider_recalc_rate(hw, *prate * m, div, divider->table, divider->flags, divider->width); if (rate > int_freq) { f = DIV_ROUND_CLOSEST_ULL(rate * WZRD_FRAC_POINTS, int_freq); rate = DIV_ROUND_CLOSEST(int_freq * f, WZRD_FRAC_POINTS); } return rate; } static const struct clk_ops clk_wzrd_clk_divider_ops = { .round_rate = clk_wzrd_round_rate, .set_rate = clk_wzrd_dynamic_reconfig, .recalc_rate = clk_wzrd_recalc_rate, }; static const struct clk_ops clk_wzrd_clk_div_all_ops = { .round_rate = clk_wzrd_round_rate_all, .set_rate = clk_wzrd_dynamic_all, .recalc_rate = clk_wzrd_recalc_rate_all, }; static unsigned long clk_wzrd_recalc_ratef(struct clk_hw *hw, unsigned long parent_rate) { unsigned int val; u32 div, frac; struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw); void __iomem *div_addr = divider->base + divider->offset; val = readl(div_addr); div = val & div_mask(divider->width); frac = (val >> WZRD_CLKOUT_FRAC_SHIFT) & WZRD_CLKOUT_FRAC_MASK; return mult_frac(parent_rate, 1000, (div * 1000) + frac); } static int clk_wzrd_dynamic_reconfig_f(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { int err; u32 value, pre; unsigned long rate_div, f, clockout0_div; struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw); void __iomem *div_addr = divider->base + divider->offset; rate_div = DIV_ROUND_DOWN_ULL(parent_rate * 1000, rate); clockout0_div = rate_div / 1000; pre = DIV_ROUND_CLOSEST((parent_rate * 1000), rate); f = (u32)(pre - (clockout0_div * 1000)); f = f & WZRD_CLKOUT_FRAC_MASK; f = f << WZRD_CLKOUT_DIVIDE_WIDTH; value = (f | (clockout0_div & WZRD_CLKOUT_DIVIDE_MASK)); /* Set divisor and clear phase offset */ writel(value, div_addr); writel(0x0, div_addr + WZRD_DR_DIV_TO_PHASE_OFFSET); /* Check status register */ err = readl_poll_timeout(divider->base + WZRD_DR_STATUS_REG_OFFSET, value, value & WZRD_DR_LOCK_BIT_MASK, WZRD_USEC_POLL, WZRD_TIMEOUT_POLL); if (err) return err; /* Initiate reconfiguration */ writel(WZRD_DR_BEGIN_DYNA_RECONF_5_2, divider->base + WZRD_DR_INIT_REG_OFFSET); writel(WZRD_DR_BEGIN_DYNA_RECONF1_5_2, divider->base + WZRD_DR_INIT_REG_OFFSET); /* Check status register */ return readl_poll_timeout(divider->base + WZRD_DR_STATUS_REG_OFFSET, value, value & WZRD_DR_LOCK_BIT_MASK, WZRD_USEC_POLL, WZRD_TIMEOUT_POLL); } static long clk_wzrd_round_rate_f(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { return rate; } static const struct clk_ops clk_wzrd_clk_divider_ops_f = { .round_rate = clk_wzrd_round_rate_f, .set_rate = clk_wzrd_dynamic_reconfig_f, .recalc_rate = clk_wzrd_recalc_ratef, }; static struct clk *clk_wzrd_register_divf(struct device *dev, const char *name, const char *parent_name, unsigned long flags, void __iomem *base, u16 offset, u8 shift, u8 width, u8 clk_divider_flags, u32 div_type, spinlock_t *lock) { struct clk_wzrd_divider *div; struct clk_hw *hw; struct clk_init_data init; int ret; div = devm_kzalloc(dev, sizeof(*div), GFP_KERNEL); if (!div) return ERR_PTR(-ENOMEM); init.name = name; init.ops = &clk_wzrd_clk_divider_ops_f; init.flags = flags; init.parent_names = &parent_name; init.num_parents = 1; div->base = base; div->offset = offset; div->shift = shift; div->width = width; div->flags = clk_divider_flags; div->lock = lock; div->hw.init = &init; hw = &div->hw; ret = devm_clk_hw_register(dev, hw); if (ret) return ERR_PTR(ret); return hw->clk; } static struct clk *clk_wzrd_register_divider(struct device *dev, const char *name, const char *parent_name, unsigned long flags, void __iomem *base, u16 offset, u8 shift, u8 width, u8 clk_divider_flags, u32 div_type, spinlock_t *lock) { struct clk_wzrd_divider *div; struct clk_hw *hw; struct clk_init_data init; int ret; div = devm_kzalloc(dev, sizeof(*div), GFP_KERNEL); if (!div) return ERR_PTR(-ENOMEM); init.name = name; if (clk_divider_flags & CLK_DIVIDER_READ_ONLY) init.ops = &clk_divider_ro_ops; else if (div_type == DIV_O) init.ops = &clk_wzrd_clk_divider_ops; else init.ops = &clk_wzrd_clk_div_all_ops; init.flags = flags; init.parent_names = &parent_name; init.num_parents = 1; div->base = base; div->offset = offset; div->shift = shift; div->width = width; div->flags = clk_divider_flags; div->lock = lock; div->hw.init = &init; hw = &div->hw; ret = devm_clk_hw_register(dev, hw); if (ret) return ERR_PTR(ret); return hw->clk; } static int clk_wzrd_clk_notifier(struct notifier_block *nb, unsigned long event, void *data) { unsigned long max; struct clk_notifier_data *ndata = data; struct clk_wzrd *clk_wzrd = to_clk_wzrd(nb); if (clk_wzrd->suspended) return NOTIFY_OK; if (ndata->clk == clk_wzrd->clk_in1) max = clk_wzrd_max_freq[clk_wzrd->speed_grade - 1]; else if (ndata->clk == clk_wzrd->axi_clk) max = WZRD_ACLK_MAX_FREQ; else return NOTIFY_DONE; /* should never happen */ switch (event) { case PRE_RATE_CHANGE: if (ndata->new_rate > max) return NOTIFY_BAD; return NOTIFY_OK; case POST_RATE_CHANGE: case ABORT_RATE_CHANGE: default: return NOTIFY_DONE; } } static int __maybe_unused clk_wzrd_suspend(struct device *dev) { struct clk_wzrd *clk_wzrd = dev_get_drvdata(dev); clk_disable_unprepare(clk_wzrd->axi_clk); clk_wzrd->suspended = true; return 0; } static int __maybe_unused clk_wzrd_resume(struct device *dev) { int ret; struct clk_wzrd *clk_wzrd = dev_get_drvdata(dev); ret = clk_prepare_enable(clk_wzrd->axi_clk); if (ret) { dev_err(dev, "unable to enable s_axi_aclk\n"); return ret; } clk_wzrd->suspended = false; return 0; } static SIMPLE_DEV_PM_OPS(clk_wzrd_dev_pm_ops, clk_wzrd_suspend, clk_wzrd_resume); static int clk_wzrd_probe(struct platform_device *pdev) { int i, ret; u32 reg, reg_f, mult; unsigned long rate; const char *clk_name; void __iomem *ctrl_reg; struct clk_wzrd *clk_wzrd; const char *clkout_name; struct device_node *np = pdev->dev.of_node; int nr_outputs; unsigned long flags = 0; clk_wzrd = devm_kzalloc(&pdev->dev, sizeof(*clk_wzrd), GFP_KERNEL); if (!clk_wzrd) return -ENOMEM; platform_set_drvdata(pdev, clk_wzrd); clk_wzrd->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(clk_wzrd->base)) return PTR_ERR(clk_wzrd->base); ret = of_property_read_u32(np, "xlnx,speed-grade", &clk_wzrd->speed_grade); if (!ret) { if (clk_wzrd->speed_grade < 1 || clk_wzrd->speed_grade > 3) { dev_warn(&pdev->dev, "invalid speed grade '%d'\n", clk_wzrd->speed_grade); clk_wzrd->speed_grade = 0; } } clk_wzrd->clk_in1 = devm_clk_get(&pdev->dev, "clk_in1"); if (IS_ERR(clk_wzrd->clk_in1)) return dev_err_probe(&pdev->dev, PTR_ERR(clk_wzrd->clk_in1), "clk_in1 not found\n"); clk_wzrd->axi_clk = devm_clk_get(&pdev->dev, "s_axi_aclk"); if (IS_ERR(clk_wzrd->axi_clk)) return dev_err_probe(&pdev->dev, PTR_ERR(clk_wzrd->axi_clk), "s_axi_aclk not found\n"); ret = clk_prepare_enable(clk_wzrd->axi_clk); if (ret) { dev_err(&pdev->dev, "enabling s_axi_aclk failed\n"); return ret; } rate = clk_get_rate(clk_wzrd->axi_clk); if (rate > WZRD_ACLK_MAX_FREQ) { dev_err(&pdev->dev, "s_axi_aclk frequency (%lu) too high\n", rate); ret = -EINVAL; goto err_disable_clk; } ret = of_property_read_u32(np, "xlnx,nr-outputs", &nr_outputs); if (ret || nr_outputs > WZRD_NUM_OUTPUTS) { ret = -EINVAL; goto err_disable_clk; } clkout_name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "%s_out0", dev_name(&pdev->dev)); if (!clkout_name) { ret = -ENOMEM; goto err_disable_clk; } if (nr_outputs == 1) { clk_wzrd->clkout[0] = clk_wzrd_register_divider (&pdev->dev, clkout_name, __clk_get_name(clk_wzrd->clk_in1), 0, clk_wzrd->base, WZRD_CLK_CFG_REG(3), WZRD_CLKOUT_DIVIDE_SHIFT, WZRD_CLKOUT_DIVIDE_WIDTH, CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO, DIV_ALL, &clkwzrd_lock); goto out; } reg = readl(clk_wzrd->base + WZRD_CLK_CFG_REG(0)); reg_f = reg & WZRD_CLKFBOUT_FRAC_MASK; reg_f = reg_f >> WZRD_CLKFBOUT_FRAC_SHIFT; reg = reg & WZRD_CLKFBOUT_MULT_MASK; reg = reg >> WZRD_CLKFBOUT_MULT_SHIFT; mult = (reg * 1000) + reg_f; clk_name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "%s_mul", dev_name(&pdev->dev)); if (!clk_name) { ret = -ENOMEM; goto err_disable_clk; } clk_wzrd->clks_internal[wzrd_clk_mul] = clk_register_fixed_factor (&pdev->dev, clk_name, __clk_get_name(clk_wzrd->clk_in1), 0, mult, 1000); if (IS_ERR(clk_wzrd->clks_internal[wzrd_clk_mul])) { dev_err(&pdev->dev, "unable to register fixed-factor clock\n"); ret = PTR_ERR(clk_wzrd->clks_internal[wzrd_clk_mul]); goto err_disable_clk; } clk_name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "%s_mul_div", dev_name(&pdev->dev)); if (!clk_name) { ret = -ENOMEM; goto err_rm_int_clk; } ctrl_reg = clk_wzrd->base + WZRD_CLK_CFG_REG(0); /* register div */ clk_wzrd->clks_internal[wzrd_clk_mul_div] = clk_register_divider (&pdev->dev, clk_name, __clk_get_name(clk_wzrd->clks_internal[wzrd_clk_mul]), flags, ctrl_reg, 0, 8, CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO, &clkwzrd_lock); if (IS_ERR(clk_wzrd->clks_internal[wzrd_clk_mul_div])) { dev_err(&pdev->dev, "unable to register divider clock\n"); ret = PTR_ERR(clk_wzrd->clks_internal[wzrd_clk_mul_div]); goto err_rm_int_clk; } /* register div per output */ for (i = nr_outputs - 1; i >= 0 ; i--) { clkout_name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "%s_out%d", dev_name(&pdev->dev), i); if (!clkout_name) { ret = -ENOMEM; goto err_rm_int_clk; } if (!i) clk_wzrd->clkout[i] = clk_wzrd_register_divf (&pdev->dev, clkout_name, clk_name, flags, clk_wzrd->base, (WZRD_CLK_CFG_REG(2) + i * 12), WZRD_CLKOUT_DIVIDE_SHIFT, WZRD_CLKOUT_DIVIDE_WIDTH, CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO, DIV_O, &clkwzrd_lock); else clk_wzrd->clkout[i] = clk_wzrd_register_divider (&pdev->dev, clkout_name, clk_name, 0, clk_wzrd->base, (WZRD_CLK_CFG_REG(2) + i * 12), WZRD_CLKOUT_DIVIDE_SHIFT, WZRD_CLKOUT_DIVIDE_WIDTH, CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO, DIV_O, &clkwzrd_lock); if (IS_ERR(clk_wzrd->clkout[i])) { int j; for (j = i + 1; j < nr_outputs; j++) clk_unregister(clk_wzrd->clkout[j]); dev_err(&pdev->dev, "unable to register divider clock\n"); ret = PTR_ERR(clk_wzrd->clkout[i]); goto err_rm_int_clks; } } out: clk_wzrd->clk_data.clks = clk_wzrd->clkout; clk_wzrd->clk_data.clk_num = ARRAY_SIZE(clk_wzrd->clkout); of_clk_add_provider(np, of_clk_src_onecell_get, &clk_wzrd->clk_data); if (clk_wzrd->speed_grade) { clk_wzrd->nb.notifier_call = clk_wzrd_clk_notifier; ret = clk_notifier_register(clk_wzrd->clk_in1, &clk_wzrd->nb); if (ret) dev_warn(&pdev->dev, "unable to register clock notifier\n"); ret = clk_notifier_register(clk_wzrd->axi_clk, &clk_wzrd->nb); if (ret) dev_warn(&pdev->dev, "unable to register clock notifier\n"); } return 0; err_rm_int_clks: clk_unregister(clk_wzrd->clks_internal[1]); err_rm_int_clk: clk_unregister(clk_wzrd->clks_internal[0]); err_disable_clk: clk_disable_unprepare(clk_wzrd->axi_clk); return ret; } static void clk_wzrd_remove(struct platform_device *pdev) { int i; struct clk_wzrd *clk_wzrd = platform_get_drvdata(pdev); of_clk_del_provider(pdev->dev.of_node); for (i = 0; i < WZRD_NUM_OUTPUTS; i++) clk_unregister(clk_wzrd->clkout[i]); for (i = 0; i < wzrd_clk_int_max; i++) clk_unregister(clk_wzrd->clks_internal[i]); if (clk_wzrd->speed_grade) { clk_notifier_unregister(clk_wzrd->axi_clk, &clk_wzrd->nb); clk_notifier_unregister(clk_wzrd->clk_in1, &clk_wzrd->nb); } clk_disable_unprepare(clk_wzrd->axi_clk); } static const struct of_device_id clk_wzrd_ids[] = { { .compatible = "xlnx,clocking-wizard" }, { .compatible = "xlnx,clocking-wizard-v5.2" }, { .compatible = "xlnx,clocking-wizard-v6.0" }, { }, }; MODULE_DEVICE_TABLE(of, clk_wzrd_ids); static struct platform_driver clk_wzrd_driver = { .driver = { .name = "clk-wizard", .of_match_table = clk_wzrd_ids, .pm = &clk_wzrd_dev_pm_ops, }, .probe = clk_wzrd_probe, .remove_new = clk_wzrd_remove, }; module_platform_driver(clk_wzrd_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Soeren Brinkmann <[email protected]"); MODULE_DESCRIPTION("Driver for the Xilinx Clocking Wizard IP core");
linux-master
drivers/clk/xilinx/clk-xlnx-clock-wizard.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2020 SiFive, Inc. * Copyright (C) 2020 Zong Li */ #include <linux/clkdev.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/of.h> #include "sifive-prci.h" #include "fu540-prci.h" #include "fu740-prci.h" /* * Private functions */ /** * __prci_readl() - read from a PRCI register * @pd: PRCI context * @offs: register offset to read from (in bytes, from PRCI base address) * * Read the register located at offset @offs from the base virtual * address of the PRCI register target described by @pd, and return * the value to the caller. * * Context: Any context. * * Return: the contents of the register described by @pd and @offs. */ static u32 __prci_readl(struct __prci_data *pd, u32 offs) { return readl_relaxed(pd->va + offs); } static void __prci_writel(u32 v, u32 offs, struct __prci_data *pd) { writel_relaxed(v, pd->va + offs); } /* WRPLL-related private functions */ /** * __prci_wrpll_unpack() - unpack WRPLL configuration registers into parameters * @c: ptr to a struct wrpll_cfg record to write config into * @r: value read from the PRCI PLL configuration register * * Given a value @r read from an FU740 PRCI PLL configuration register, * split it into fields and populate it into the WRPLL configuration record * pointed to by @c. * * The COREPLLCFG0 macros are used below, but the other *PLLCFG0 macros * have the same register layout. * * Context: Any context. */ static void __prci_wrpll_unpack(struct wrpll_cfg *c, u32 r) { u32 v; v = r & PRCI_COREPLLCFG0_DIVR_MASK; v >>= PRCI_COREPLLCFG0_DIVR_SHIFT; c->divr = v; v = r & PRCI_COREPLLCFG0_DIVF_MASK; v >>= PRCI_COREPLLCFG0_DIVF_SHIFT; c->divf = v; v = r & PRCI_COREPLLCFG0_DIVQ_MASK; v >>= PRCI_COREPLLCFG0_DIVQ_SHIFT; c->divq = v; v = r & PRCI_COREPLLCFG0_RANGE_MASK; v >>= PRCI_COREPLLCFG0_RANGE_SHIFT; c->range = v; c->flags &= (WRPLL_FLAGS_INT_FEEDBACK_MASK | WRPLL_FLAGS_EXT_FEEDBACK_MASK); /* external feedback mode not supported */ c->flags |= WRPLL_FLAGS_INT_FEEDBACK_MASK; } /** * __prci_wrpll_pack() - pack PLL configuration parameters into a register value * @c: pointer to a struct wrpll_cfg record containing the PLL's cfg * * Using a set of WRPLL configuration values pointed to by @c, * assemble a PRCI PLL configuration register value, and return it to * the caller. * * Context: Any context. Caller must ensure that the contents of the * record pointed to by @c do not change during the execution * of this function. * * Returns: a value suitable for writing into a PRCI PLL configuration * register */ static u32 __prci_wrpll_pack(const struct wrpll_cfg *c) { u32 r = 0; r |= c->divr << PRCI_COREPLLCFG0_DIVR_SHIFT; r |= c->divf << PRCI_COREPLLCFG0_DIVF_SHIFT; r |= c->divq << PRCI_COREPLLCFG0_DIVQ_SHIFT; r |= c->range << PRCI_COREPLLCFG0_RANGE_SHIFT; /* external feedback mode not supported */ r |= PRCI_COREPLLCFG0_FSE_MASK; return r; } /** * __prci_wrpll_read_cfg0() - read the WRPLL configuration from the PRCI * @pd: PRCI context * @pwd: PRCI WRPLL metadata * * Read the current configuration of the PLL identified by @pwd from * the PRCI identified by @pd, and store it into the local configuration * cache in @pwd. * * Context: Any context. Caller must prevent the records pointed to by * @pd and @pwd from changing during execution. */ static void __prci_wrpll_read_cfg0(struct __prci_data *pd, struct __prci_wrpll_data *pwd) { __prci_wrpll_unpack(&pwd->c, __prci_readl(pd, pwd->cfg0_offs)); } /** * __prci_wrpll_write_cfg0() - write WRPLL configuration into the PRCI * @pd: PRCI context * @pwd: PRCI WRPLL metadata * @c: WRPLL configuration record to write * * Write the WRPLL configuration described by @c into the WRPLL * configuration register identified by @pwd in the PRCI instance * described by @c. Make a cached copy of the WRPLL's current * configuration so it can be used by other code. * * Context: Any context. Caller must prevent the records pointed to by * @pd and @pwd from changing during execution. */ static void __prci_wrpll_write_cfg0(struct __prci_data *pd, struct __prci_wrpll_data *pwd, struct wrpll_cfg *c) { __prci_writel(__prci_wrpll_pack(c), pwd->cfg0_offs, pd); memcpy(&pwd->c, c, sizeof(*c)); } /** * __prci_wrpll_write_cfg1() - write Clock enable/disable configuration * into the PRCI * @pd: PRCI context * @pwd: PRCI WRPLL metadata * @enable: Clock enable or disable value */ static void __prci_wrpll_write_cfg1(struct __prci_data *pd, struct __prci_wrpll_data *pwd, u32 enable) { __prci_writel(enable, pwd->cfg1_offs, pd); } /* * Linux clock framework integration * * See the Linux clock framework documentation for more information on * these functions. */ unsigned long sifive_prci_wrpll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct __prci_clock *pc = clk_hw_to_prci_clock(hw); struct __prci_wrpll_data *pwd = pc->pwd; return wrpll_calc_output_rate(&pwd->c, parent_rate); } long sifive_prci_wrpll_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { struct __prci_clock *pc = clk_hw_to_prci_clock(hw); struct __prci_wrpll_data *pwd = pc->pwd; struct wrpll_cfg c; memcpy(&c, &pwd->c, sizeof(c)); wrpll_configure_for_rate(&c, rate, *parent_rate); return wrpll_calc_output_rate(&c, *parent_rate); } int sifive_prci_wrpll_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct __prci_clock *pc = clk_hw_to_prci_clock(hw); struct __prci_wrpll_data *pwd = pc->pwd; struct __prci_data *pd = pc->pd; int r; r = wrpll_configure_for_rate(&pwd->c, rate, parent_rate); if (r) return r; if (pwd->enable_bypass) pwd->enable_bypass(pd); __prci_wrpll_write_cfg0(pd, pwd, &pwd->c); udelay(wrpll_calc_max_lock_us(&pwd->c)); return 0; } int sifive_clk_is_enabled(struct clk_hw *hw) { struct __prci_clock *pc = clk_hw_to_prci_clock(hw); struct __prci_wrpll_data *pwd = pc->pwd; struct __prci_data *pd = pc->pd; u32 r; r = __prci_readl(pd, pwd->cfg1_offs); if (r & PRCI_COREPLLCFG1_CKE_MASK) return 1; else return 0; } int sifive_prci_clock_enable(struct clk_hw *hw) { struct __prci_clock *pc = clk_hw_to_prci_clock(hw); struct __prci_wrpll_data *pwd = pc->pwd; struct __prci_data *pd = pc->pd; if (sifive_clk_is_enabled(hw)) return 0; __prci_wrpll_write_cfg1(pd, pwd, PRCI_COREPLLCFG1_CKE_MASK); if (pwd->disable_bypass) pwd->disable_bypass(pd); return 0; } void sifive_prci_clock_disable(struct clk_hw *hw) { struct __prci_clock *pc = clk_hw_to_prci_clock(hw); struct __prci_wrpll_data *pwd = pc->pwd; struct __prci_data *pd = pc->pd; u32 r; if (pwd->enable_bypass) pwd->enable_bypass(pd); r = __prci_readl(pd, pwd->cfg1_offs); r &= ~PRCI_COREPLLCFG1_CKE_MASK; __prci_wrpll_write_cfg1(pd, pwd, r); } /* TLCLKSEL clock integration */ unsigned long sifive_prci_tlclksel_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct __prci_clock *pc = clk_hw_to_prci_clock(hw); struct __prci_data *pd = pc->pd; u32 v; u8 div; v = __prci_readl(pd, PRCI_CLKMUXSTATUSREG_OFFSET); v &= PRCI_CLKMUXSTATUSREG_TLCLKSEL_STATUS_MASK; div = v ? 1 : 2; return div_u64(parent_rate, div); } /* HFPCLK clock integration */ unsigned long sifive_prci_hfpclkplldiv_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct __prci_clock *pc = clk_hw_to_prci_clock(hw); struct __prci_data *pd = pc->pd; u32 div = __prci_readl(pd, PRCI_HFPCLKPLLDIV_OFFSET); return div_u64(parent_rate, div + 2); } /* * Core clock mux control */ /** * sifive_prci_coreclksel_use_hfclk() - switch the CORECLK mux to output HFCLK * @pd: struct __prci_data * for the PRCI containing the CORECLK mux reg * * Switch the CORECLK mux to the HFCLK input source; return once complete. * * Context: Any context. Caller must prevent concurrent changes to the * PRCI_CORECLKSEL_OFFSET register. */ void sifive_prci_coreclksel_use_hfclk(struct __prci_data *pd) { u32 r; r = __prci_readl(pd, PRCI_CORECLKSEL_OFFSET); r |= PRCI_CORECLKSEL_CORECLKSEL_MASK; __prci_writel(r, PRCI_CORECLKSEL_OFFSET, pd); r = __prci_readl(pd, PRCI_CORECLKSEL_OFFSET); /* barrier */ } /** * sifive_prci_coreclksel_use_corepll() - switch the CORECLK mux to output * COREPLL * @pd: struct __prci_data * for the PRCI containing the CORECLK mux reg * * Switch the CORECLK mux to the COREPLL output clock; return once complete. * * Context: Any context. Caller must prevent concurrent changes to the * PRCI_CORECLKSEL_OFFSET register. */ void sifive_prci_coreclksel_use_corepll(struct __prci_data *pd) { u32 r; r = __prci_readl(pd, PRCI_CORECLKSEL_OFFSET); r &= ~PRCI_CORECLKSEL_CORECLKSEL_MASK; __prci_writel(r, PRCI_CORECLKSEL_OFFSET, pd); r = __prci_readl(pd, PRCI_CORECLKSEL_OFFSET); /* barrier */ } /** * sifive_prci_coreclksel_use_final_corepll() - switch the CORECLK mux to output * FINAL_COREPLL * @pd: struct __prci_data * for the PRCI containing the CORECLK mux reg * * Switch the CORECLK mux to the final COREPLL output clock; return once * complete. * * Context: Any context. Caller must prevent concurrent changes to the * PRCI_CORECLKSEL_OFFSET register. */ void sifive_prci_coreclksel_use_final_corepll(struct __prci_data *pd) { u32 r; r = __prci_readl(pd, PRCI_CORECLKSEL_OFFSET); r &= ~PRCI_CORECLKSEL_CORECLKSEL_MASK; __prci_writel(r, PRCI_CORECLKSEL_OFFSET, pd); r = __prci_readl(pd, PRCI_CORECLKSEL_OFFSET); /* barrier */ } /** * sifive_prci_corepllsel_use_dvfscorepll() - switch the COREPLL mux to * output DVFS_COREPLL * @pd: struct __prci_data * for the PRCI containing the COREPLL mux reg * * Switch the COREPLL mux to the DVFSCOREPLL output clock; return once complete. * * Context: Any context. Caller must prevent concurrent changes to the * PRCI_COREPLLSEL_OFFSET register. */ void sifive_prci_corepllsel_use_dvfscorepll(struct __prci_data *pd) { u32 r; r = __prci_readl(pd, PRCI_COREPLLSEL_OFFSET); r |= PRCI_COREPLLSEL_COREPLLSEL_MASK; __prci_writel(r, PRCI_COREPLLSEL_OFFSET, pd); r = __prci_readl(pd, PRCI_COREPLLSEL_OFFSET); /* barrier */ } /** * sifive_prci_corepllsel_use_corepll() - switch the COREPLL mux to * output COREPLL * @pd: struct __prci_data * for the PRCI containing the COREPLL mux reg * * Switch the COREPLL mux to the COREPLL output clock; return once complete. * * Context: Any context. Caller must prevent concurrent changes to the * PRCI_COREPLLSEL_OFFSET register. */ void sifive_prci_corepllsel_use_corepll(struct __prci_data *pd) { u32 r; r = __prci_readl(pd, PRCI_COREPLLSEL_OFFSET); r &= ~PRCI_COREPLLSEL_COREPLLSEL_MASK; __prci_writel(r, PRCI_COREPLLSEL_OFFSET, pd); r = __prci_readl(pd, PRCI_COREPLLSEL_OFFSET); /* barrier */ } /** * sifive_prci_hfpclkpllsel_use_hfclk() - switch the HFPCLKPLL mux to * output HFCLK * @pd: struct __prci_data * for the PRCI containing the HFPCLKPLL mux reg * * Switch the HFPCLKPLL mux to the HFCLK input source; return once complete. * * Context: Any context. Caller must prevent concurrent changes to the * PRCI_HFPCLKPLLSEL_OFFSET register. */ void sifive_prci_hfpclkpllsel_use_hfclk(struct __prci_data *pd) { u32 r; r = __prci_readl(pd, PRCI_HFPCLKPLLSEL_OFFSET); r |= PRCI_HFPCLKPLLSEL_HFPCLKPLLSEL_MASK; __prci_writel(r, PRCI_HFPCLKPLLSEL_OFFSET, pd); r = __prci_readl(pd, PRCI_HFPCLKPLLSEL_OFFSET); /* barrier */ } /** * sifive_prci_hfpclkpllsel_use_hfpclkpll() - switch the HFPCLKPLL mux to * output HFPCLKPLL * @pd: struct __prci_data * for the PRCI containing the HFPCLKPLL mux reg * * Switch the HFPCLKPLL mux to the HFPCLKPLL output clock; return once complete. * * Context: Any context. Caller must prevent concurrent changes to the * PRCI_HFPCLKPLLSEL_OFFSET register. */ void sifive_prci_hfpclkpllsel_use_hfpclkpll(struct __prci_data *pd) { u32 r; r = __prci_readl(pd, PRCI_HFPCLKPLLSEL_OFFSET); r &= ~PRCI_HFPCLKPLLSEL_HFPCLKPLLSEL_MASK; __prci_writel(r, PRCI_HFPCLKPLLSEL_OFFSET, pd); r = __prci_readl(pd, PRCI_HFPCLKPLLSEL_OFFSET); /* barrier */ } /* PCIE AUX clock APIs for enable, disable. */ int sifive_prci_pcie_aux_clock_is_enabled(struct clk_hw *hw) { struct __prci_clock *pc = clk_hw_to_prci_clock(hw); struct __prci_data *pd = pc->pd; u32 r; r = __prci_readl(pd, PRCI_PCIE_AUX_OFFSET); if (r & PRCI_PCIE_AUX_EN_MASK) return 1; else return 0; } int sifive_prci_pcie_aux_clock_enable(struct clk_hw *hw) { struct __prci_clock *pc = clk_hw_to_prci_clock(hw); struct __prci_data *pd = pc->pd; u32 r __maybe_unused; if (sifive_prci_pcie_aux_clock_is_enabled(hw)) return 0; __prci_writel(1, PRCI_PCIE_AUX_OFFSET, pd); r = __prci_readl(pd, PRCI_PCIE_AUX_OFFSET); /* barrier */ return 0; } void sifive_prci_pcie_aux_clock_disable(struct clk_hw *hw) { struct __prci_clock *pc = clk_hw_to_prci_clock(hw); struct __prci_data *pd = pc->pd; u32 r __maybe_unused; __prci_writel(0, PRCI_PCIE_AUX_OFFSET, pd); r = __prci_readl(pd, PRCI_PCIE_AUX_OFFSET); /* barrier */ } /** * __prci_register_clocks() - register clock controls in the PRCI * @dev: Linux struct device * @pd: The pointer for PRCI per-device instance data * @desc: The pointer for the information of clocks of each SoCs * * Register the list of clock controls described in __prci_init_clocks[] with * the Linux clock framework. * * Return: 0 upon success or a negative error code upon failure. */ static int __prci_register_clocks(struct device *dev, struct __prci_data *pd, const struct prci_clk_desc *desc) { struct clk_init_data init = { }; struct __prci_clock *pic; int parent_count, i, r; parent_count = of_clk_get_parent_count(dev->of_node); if (parent_count != EXPECTED_CLK_PARENT_COUNT) { dev_err(dev, "expected only two parent clocks, found %d\n", parent_count); return -EINVAL; } /* Register PLLs */ for (i = 0; i < desc->num_clks; ++i) { pic = &(desc->clks[i]); init.name = pic->name; init.parent_names = &pic->parent_name; init.num_parents = 1; init.ops = pic->ops; pic->hw.init = &init; pic->pd = pd; if (pic->pwd) __prci_wrpll_read_cfg0(pd, pic->pwd); r = devm_clk_hw_register(dev, &pic->hw); if (r) { dev_warn(dev, "Failed to register clock %s: %d\n", init.name, r); return r; } r = clk_hw_register_clkdev(&pic->hw, pic->name, dev_name(dev)); if (r) { dev_warn(dev, "Failed to register clkdev for %s: %d\n", init.name, r); return r; } pd->hw_clks.hws[i] = &pic->hw; } pd->hw_clks.num = i; r = devm_of_clk_add_hw_provider(dev, of_clk_hw_onecell_get, &pd->hw_clks); if (r) { dev_err(dev, "could not add hw_provider: %d\n", r); return r; } return 0; } /** * sifive_prci_probe() - initialize prci data and check parent count * @pdev: platform device pointer for the prci * * Return: 0 upon success or a negative error code upon failure. */ static int sifive_prci_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct __prci_data *pd; const struct prci_clk_desc *desc; int r; desc = of_device_get_match_data(&pdev->dev); pd = devm_kzalloc(dev, struct_size(pd, hw_clks.hws, desc->num_clks), GFP_KERNEL); if (!pd) return -ENOMEM; pd->va = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(pd->va)) return PTR_ERR(pd->va); pd->reset.rcdev.owner = THIS_MODULE; pd->reset.rcdev.nr_resets = PRCI_RST_NR; pd->reset.rcdev.ops = &reset_simple_ops; pd->reset.rcdev.of_node = pdev->dev.of_node; pd->reset.active_low = true; pd->reset.membase = pd->va + PRCI_DEVICESRESETREG_OFFSET; spin_lock_init(&pd->reset.lock); r = devm_reset_controller_register(&pdev->dev, &pd->reset.rcdev); if (r) { dev_err(dev, "could not register reset controller: %d\n", r); return r; } r = __prci_register_clocks(dev, pd, desc); if (r) { dev_err(dev, "could not register clocks: %d\n", r); return r; } dev_dbg(dev, "SiFive PRCI probed\n"); return 0; } static const struct of_device_id sifive_prci_of_match[] = { {.compatible = "sifive,fu540-c000-prci", .data = &prci_clk_fu540}, {.compatible = "sifive,fu740-c000-prci", .data = &prci_clk_fu740}, {} }; static struct platform_driver sifive_prci_driver = { .driver = { .name = "sifive-clk-prci", .of_match_table = sifive_prci_of_match, }, .probe = sifive_prci_probe, }; static int __init sifive_prci_init(void) { return platform_driver_register(&sifive_prci_driver); } core_initcall(sifive_prci_init);
linux-master
drivers/clk/sifive/sifive-prci.c
// SPDX-License-Identifier: GPL-2.0 /* * Zynq UltraScale+ MPSoC mux * * Copyright (C) 2016-2018 Xilinx */ #include <linux/clk-provider.h> #include <linux/slab.h> #include "clk-zynqmp.h" /* * DOC: basic adjustable multiplexer clock that cannot gate * * Traits of this clock: * prepare - clk_prepare only ensures that parents are prepared * enable - clk_enable only ensures that parents are enabled * rate - rate is only affected by parent switching. No clk_set_rate support * parent - parent is adjustable through clk_set_parent */ /** * struct zynqmp_clk_mux - multiplexer clock * * @hw: handle between common and hardware-specific interfaces * @flags: hardware-specific flags * @clk_id: Id of clock */ struct zynqmp_clk_mux { struct clk_hw hw; u8 flags; u32 clk_id; }; #define to_zynqmp_clk_mux(_hw) container_of(_hw, struct zynqmp_clk_mux, hw) /** * zynqmp_clk_mux_get_parent() - Get parent of clock * @hw: handle between common and hardware-specific interfaces * * Return: Parent index on success or number of parents in case of error */ static u8 zynqmp_clk_mux_get_parent(struct clk_hw *hw) { struct zynqmp_clk_mux *mux = to_zynqmp_clk_mux(hw); const char *clk_name = clk_hw_get_name(hw); u32 clk_id = mux->clk_id; u32 val; int ret; ret = zynqmp_pm_clock_getparent(clk_id, &val); if (ret) { pr_debug("%s() getparent failed for clock: %s, ret = %d\n", __func__, clk_name, ret); /* * clk_core_get_parent_by_index() takes num_parents as incorrect * index which is exactly what I want to return here */ return clk_hw_get_num_parents(hw); } return val; } /** * zynqmp_clk_mux_set_parent() - Set parent of clock * @hw: handle between common and hardware-specific interfaces * @index: Parent index * * Return: 0 on success else error+reason */ static int zynqmp_clk_mux_set_parent(struct clk_hw *hw, u8 index) { struct zynqmp_clk_mux *mux = to_zynqmp_clk_mux(hw); const char *clk_name = clk_hw_get_name(hw); u32 clk_id = mux->clk_id; int ret; ret = zynqmp_pm_clock_setparent(clk_id, index); if (ret) pr_debug("%s() set parent failed for clock: %s, ret = %d\n", __func__, clk_name, ret); return ret; } static const struct clk_ops zynqmp_clk_mux_ops = { .get_parent = zynqmp_clk_mux_get_parent, .set_parent = zynqmp_clk_mux_set_parent, .determine_rate = __clk_mux_determine_rate, }; static const struct clk_ops zynqmp_clk_mux_ro_ops = { .get_parent = zynqmp_clk_mux_get_parent, }; static inline unsigned long zynqmp_clk_map_mux_ccf_flags( const u32 zynqmp_type_flag) { unsigned long ccf_flag = 0; if (zynqmp_type_flag & ZYNQMP_CLK_MUX_INDEX_ONE) ccf_flag |= CLK_MUX_INDEX_ONE; if (zynqmp_type_flag & ZYNQMP_CLK_MUX_INDEX_BIT) ccf_flag |= CLK_MUX_INDEX_BIT; if (zynqmp_type_flag & ZYNQMP_CLK_MUX_HIWORD_MASK) ccf_flag |= CLK_MUX_HIWORD_MASK; if (zynqmp_type_flag & ZYNQMP_CLK_MUX_READ_ONLY) ccf_flag |= CLK_MUX_READ_ONLY; if (zynqmp_type_flag & ZYNQMP_CLK_MUX_ROUND_CLOSEST) ccf_flag |= CLK_MUX_ROUND_CLOSEST; if (zynqmp_type_flag & ZYNQMP_CLK_MUX_BIG_ENDIAN) ccf_flag |= CLK_MUX_BIG_ENDIAN; return ccf_flag; } /** * zynqmp_clk_register_mux() - Register a mux table with the clock * framework * @name: Name of this clock * @clk_id: Id of this clock * @parents: Name of this clock's parents * @num_parents: Number of parents * @nodes: Clock topology node * * Return: clock hardware of the registered clock mux */ struct clk_hw *zynqmp_clk_register_mux(const char *name, u32 clk_id, const char * const *parents, u8 num_parents, const struct clock_topology *nodes) { struct zynqmp_clk_mux *mux; struct clk_hw *hw; struct clk_init_data init; int ret; mux = kzalloc(sizeof(*mux), GFP_KERNEL); if (!mux) return ERR_PTR(-ENOMEM); init.name = name; if (nodes->type_flag & CLK_MUX_READ_ONLY) init.ops = &zynqmp_clk_mux_ro_ops; else init.ops = &zynqmp_clk_mux_ops; init.flags = zynqmp_clk_map_common_ccf_flags(nodes->flag); init.parent_names = parents; init.num_parents = num_parents; mux->flags = zynqmp_clk_map_mux_ccf_flags(nodes->type_flag); mux->hw.init = &init; mux->clk_id = clk_id; hw = &mux->hw; ret = clk_hw_register(NULL, hw); if (ret) { kfree(mux); hw = ERR_PTR(ret); } return hw; }
linux-master
drivers/clk/zynqmp/clk-mux-zynqmp.c
// SPDX-License-Identifier: GPL-2.0 /* * Zynq UltraScale+ MPSoC clock controller * * Copyright (C) 2016-2019 Xilinx * * Based on drivers/clk/zynq/clkc.c */ #include <linux/bitfield.h> #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/string.h> #include "clk-zynqmp.h" #define MAX_PARENT 100 #define MAX_NODES 6 #define MAX_NAME_LEN 50 /* Flags for parents */ #define PARENT_CLK_SELF 0 #define PARENT_CLK_NODE1 1 #define PARENT_CLK_NODE2 2 #define PARENT_CLK_NODE3 3 #define PARENT_CLK_NODE4 4 #define PARENT_CLK_EXTERNAL 5 #define END_OF_CLK_NAME "END_OF_CLK" #define END_OF_TOPOLOGY_NODE 1 #define END_OF_PARENTS 1 #define RESERVED_CLK_NAME "" #define CLK_GET_NAME_RESP_LEN 16 #define CLK_GET_TOPOLOGY_RESP_WORDS 3 #define CLK_GET_PARENTS_RESP_WORDS 3 #define CLK_GET_ATTR_RESP_WORDS 1 enum clk_type { CLK_TYPE_OUTPUT, CLK_TYPE_EXTERNAL, }; /** * struct clock_parent - Clock parent * @name: Parent name * @id: Parent clock ID * @flag: Parent flags */ struct clock_parent { char name[MAX_NAME_LEN]; int id; u32 flag; }; /** * struct zynqmp_clock - Clock * @clk_name: Clock name * @valid: Validity flag of clock * @type: Clock type (Output/External) * @node: Clock topology nodes * @num_nodes: Number of nodes present in topology * @parent: Parent of clock * @num_parents: Number of parents of clock * @clk_id: Clock id */ struct zynqmp_clock { char clk_name[MAX_NAME_LEN]; u32 valid; enum clk_type type; struct clock_topology node[MAX_NODES]; u32 num_nodes; struct clock_parent parent[MAX_PARENT]; u32 num_parents; u32 clk_id; }; struct name_resp { char name[CLK_GET_NAME_RESP_LEN]; }; struct topology_resp { #define CLK_TOPOLOGY_TYPE GENMASK(3, 0) #define CLK_TOPOLOGY_CUSTOM_TYPE_FLAGS GENMASK(7, 4) #define CLK_TOPOLOGY_FLAGS GENMASK(23, 8) #define CLK_TOPOLOGY_TYPE_FLAGS GENMASK(31, 24) u32 topology[CLK_GET_TOPOLOGY_RESP_WORDS]; }; struct parents_resp { #define NA_PARENT 0xFFFFFFFF #define DUMMY_PARENT 0xFFFFFFFE #define CLK_PARENTS_ID GENMASK(15, 0) #define CLK_PARENTS_FLAGS GENMASK(31, 16) u32 parents[CLK_GET_PARENTS_RESP_WORDS]; }; struct attr_resp { #define CLK_ATTR_VALID BIT(0) #define CLK_ATTR_TYPE BIT(2) #define CLK_ATTR_NODE_INDEX GENMASK(13, 0) #define CLK_ATTR_NODE_TYPE GENMASK(19, 14) #define CLK_ATTR_NODE_SUBCLASS GENMASK(25, 20) #define CLK_ATTR_NODE_CLASS GENMASK(31, 26) u32 attr[CLK_GET_ATTR_RESP_WORDS]; }; static const char clk_type_postfix[][10] = { [TYPE_INVALID] = "", [TYPE_MUX] = "_mux", [TYPE_GATE] = "", [TYPE_DIV1] = "_div1", [TYPE_DIV2] = "_div2", [TYPE_FIXEDFACTOR] = "_ff", [TYPE_PLL] = "" }; static struct clk_hw *(* const clk_topology[]) (const char *name, u32 clk_id, const char * const *parents, u8 num_parents, const struct clock_topology *nodes) = { [TYPE_INVALID] = NULL, [TYPE_MUX] = zynqmp_clk_register_mux, [TYPE_PLL] = zynqmp_clk_register_pll, [TYPE_FIXEDFACTOR] = zynqmp_clk_register_fixed_factor, [TYPE_DIV1] = zynqmp_clk_register_divider, [TYPE_DIV2] = zynqmp_clk_register_divider, [TYPE_GATE] = zynqmp_clk_register_gate }; static struct zynqmp_clock *clock; static struct clk_hw_onecell_data *zynqmp_data; static unsigned int clock_max_idx; /** * zynqmp_is_valid_clock() - Check whether clock is valid or not * @clk_id: Clock index * * Return: 1 if clock is valid, 0 if clock is invalid else error code */ static inline int zynqmp_is_valid_clock(u32 clk_id) { if (clk_id >= clock_max_idx) return -ENODEV; return clock[clk_id].valid; } /** * zynqmp_get_clock_name() - Get name of clock from Clock index * @clk_id: Clock index * @clk_name: Name of clock * * Return: 0 on success else error code */ static int zynqmp_get_clock_name(u32 clk_id, char *clk_name) { int ret; ret = zynqmp_is_valid_clock(clk_id); if (ret == 1) { strscpy(clk_name, clock[clk_id].clk_name, MAX_NAME_LEN); return 0; } return ret == 0 ? -EINVAL : ret; } /** * zynqmp_get_clock_type() - Get type of clock * @clk_id: Clock index * @type: Clock type: CLK_TYPE_OUTPUT or CLK_TYPE_EXTERNAL * * Return: 0 on success else error code */ static int zynqmp_get_clock_type(u32 clk_id, u32 *type) { int ret; ret = zynqmp_is_valid_clock(clk_id); if (ret == 1) { *type = clock[clk_id].type; return 0; } return ret == 0 ? -EINVAL : ret; } /** * zynqmp_pm_clock_get_num_clocks() - Get number of clocks in system * @nclocks: Number of clocks in system/board. * * Call firmware API to get number of clocks. * * Return: 0 on success else error code. */ static int zynqmp_pm_clock_get_num_clocks(u32 *nclocks) { struct zynqmp_pm_query_data qdata = {0}; u32 ret_payload[PAYLOAD_ARG_CNT]; int ret; qdata.qid = PM_QID_CLOCK_GET_NUM_CLOCKS; ret = zynqmp_pm_query_data(qdata, ret_payload); *nclocks = ret_payload[1]; return ret; } /** * zynqmp_pm_clock_get_name() - Get the name of clock for given id * @clock_id: ID of the clock to be queried * @response: Name of the clock with the given id * * This function is used to get name of clock specified by given * clock ID. * * Return: 0 on success else error+reason */ static int zynqmp_pm_clock_get_name(u32 clock_id, struct name_resp *response) { struct zynqmp_pm_query_data qdata = {0}; u32 ret_payload[PAYLOAD_ARG_CNT]; int ret; qdata.qid = PM_QID_CLOCK_GET_NAME; qdata.arg1 = clock_id; ret = zynqmp_pm_query_data(qdata, ret_payload); if (ret) return ret; memcpy(response, ret_payload, sizeof(*response)); return 0; } /** * zynqmp_pm_clock_get_topology() - Get the topology of clock for given id * @clock_id: ID of the clock to be queried * @index: Node index of clock topology * @response: Buffer used for the topology response * * This function is used to get topology information for the clock * specified by given clock ID. * * This API will return 3 node of topology with a single response. To get * other nodes, master should call same API in loop with new * index till error is returned. E.g First call should have * index 0 which will return nodes 0,1 and 2. Next call, index * should be 3 which will return nodes 3,4 and 5 and so on. * * Return: 0 on success else error+reason */ static int zynqmp_pm_clock_get_topology(u32 clock_id, u32 index, struct topology_resp *response) { struct zynqmp_pm_query_data qdata = {0}; u32 ret_payload[PAYLOAD_ARG_CNT]; int ret; qdata.qid = PM_QID_CLOCK_GET_TOPOLOGY; qdata.arg1 = clock_id; qdata.arg2 = index; ret = zynqmp_pm_query_data(qdata, ret_payload); memcpy(response, &ret_payload[1], sizeof(*response)); return ret; } unsigned long zynqmp_clk_map_common_ccf_flags(const u32 zynqmp_flag) { unsigned long ccf_flag = 0; if (zynqmp_flag & ZYNQMP_CLK_SET_RATE_GATE) ccf_flag |= CLK_SET_RATE_GATE; if (zynqmp_flag & ZYNQMP_CLK_SET_PARENT_GATE) ccf_flag |= CLK_SET_PARENT_GATE; if (zynqmp_flag & ZYNQMP_CLK_SET_RATE_PARENT) ccf_flag |= CLK_SET_RATE_PARENT; if (zynqmp_flag & ZYNQMP_CLK_IGNORE_UNUSED) ccf_flag |= CLK_IGNORE_UNUSED; if (zynqmp_flag & ZYNQMP_CLK_SET_RATE_NO_REPARENT) ccf_flag |= CLK_SET_RATE_NO_REPARENT; if (zynqmp_flag & ZYNQMP_CLK_IS_CRITICAL) ccf_flag |= CLK_IS_CRITICAL; return ccf_flag; } /** * zynqmp_clk_register_fixed_factor() - Register fixed factor with the * clock framework * @name: Name of this clock * @clk_id: Clock ID * @parents: Name of this clock's parents * @num_parents: Number of parents * @nodes: Clock topology node * * Return: clock hardware to the registered clock */ struct clk_hw *zynqmp_clk_register_fixed_factor(const char *name, u32 clk_id, const char * const *parents, u8 num_parents, const struct clock_topology *nodes) { u32 mult, div; struct clk_hw *hw; struct zynqmp_pm_query_data qdata = {0}; u32 ret_payload[PAYLOAD_ARG_CNT]; int ret; unsigned long flag; qdata.qid = PM_QID_CLOCK_GET_FIXEDFACTOR_PARAMS; qdata.arg1 = clk_id; ret = zynqmp_pm_query_data(qdata, ret_payload); if (ret) return ERR_PTR(ret); mult = ret_payload[1]; div = ret_payload[2]; flag = zynqmp_clk_map_common_ccf_flags(nodes->flag); hw = clk_hw_register_fixed_factor(NULL, name, parents[0], flag, mult, div); return hw; } /** * zynqmp_pm_clock_get_parents() - Get the first 3 parents of clock for given id * @clock_id: Clock ID * @index: Parent index * @response: Parents of the given clock * * This function is used to get 3 parents for the clock specified by * given clock ID. * * This API will return 3 parents with a single response. To get * other parents, master should call same API in loop with new * parent index till error is returned. E.g First call should have * index 0 which will return parents 0,1 and 2. Next call, index * should be 3 which will return parent 3,4 and 5 and so on. * * Return: 0 on success else error+reason */ static int zynqmp_pm_clock_get_parents(u32 clock_id, u32 index, struct parents_resp *response) { struct zynqmp_pm_query_data qdata = {0}; u32 ret_payload[PAYLOAD_ARG_CNT]; int ret; qdata.qid = PM_QID_CLOCK_GET_PARENTS; qdata.arg1 = clock_id; qdata.arg2 = index; ret = zynqmp_pm_query_data(qdata, ret_payload); memcpy(response, &ret_payload[1], sizeof(*response)); return ret; } /** * zynqmp_pm_clock_get_attributes() - Get the attributes of clock for given id * @clock_id: Clock ID * @response: Clock attributes response * * This function is used to get clock's attributes(e.g. valid, clock type, etc). * * Return: 0 on success else error+reason */ static int zynqmp_pm_clock_get_attributes(u32 clock_id, struct attr_resp *response) { struct zynqmp_pm_query_data qdata = {0}; u32 ret_payload[PAYLOAD_ARG_CNT]; int ret; qdata.qid = PM_QID_CLOCK_GET_ATTRIBUTES; qdata.arg1 = clock_id; ret = zynqmp_pm_query_data(qdata, ret_payload); memcpy(response, &ret_payload[1], sizeof(*response)); return ret; } /** * __zynqmp_clock_get_topology() - Get topology data of clock from firmware * response data * @topology: Clock topology * @response: Clock topology data received from firmware * @nnodes: Number of nodes * * Return: 0 on success else error+reason */ static int __zynqmp_clock_get_topology(struct clock_topology *topology, struct topology_resp *response, u32 *nnodes) { int i; u32 type; for (i = 0; i < ARRAY_SIZE(response->topology); i++) { type = FIELD_GET(CLK_TOPOLOGY_TYPE, response->topology[i]); if (type == TYPE_INVALID) return END_OF_TOPOLOGY_NODE; topology[*nnodes].type = type; topology[*nnodes].flag = FIELD_GET(CLK_TOPOLOGY_FLAGS, response->topology[i]); topology[*nnodes].type_flag = FIELD_GET(CLK_TOPOLOGY_TYPE_FLAGS, response->topology[i]); topology[*nnodes].custom_type_flag = FIELD_GET(CLK_TOPOLOGY_CUSTOM_TYPE_FLAGS, response->topology[i]); (*nnodes)++; } return 0; } /** * zynqmp_clock_get_topology() - Get topology of clock from firmware using * PM_API * @clk_id: Clock index * @topology: Clock topology * @num_nodes: Number of nodes * * Return: 0 on success else error+reason */ static int zynqmp_clock_get_topology(u32 clk_id, struct clock_topology *topology, u32 *num_nodes) { int j, ret; struct topology_resp response = { }; *num_nodes = 0; for (j = 0; j <= MAX_NODES; j += ARRAY_SIZE(response.topology)) { ret = zynqmp_pm_clock_get_topology(clock[clk_id].clk_id, j, &response); if (ret) return ret; ret = __zynqmp_clock_get_topology(topology, &response, num_nodes); if (ret == END_OF_TOPOLOGY_NODE) return 0; } return 0; } /** * __zynqmp_clock_get_parents() - Get parents info of clock from firmware * response data * @parents: Clock parents * @response: Clock parents data received from firmware * @nparent: Number of parent * * Return: 0 on success else error+reason */ static int __zynqmp_clock_get_parents(struct clock_parent *parents, struct parents_resp *response, u32 *nparent) { int i; struct clock_parent *parent; for (i = 0; i < ARRAY_SIZE(response->parents); i++) { if (response->parents[i] == NA_PARENT) return END_OF_PARENTS; parent = &parents[i]; parent->id = FIELD_GET(CLK_PARENTS_ID, response->parents[i]); if (response->parents[i] == DUMMY_PARENT) { strcpy(parent->name, "dummy_name"); parent->flag = 0; } else { parent->flag = FIELD_GET(CLK_PARENTS_FLAGS, response->parents[i]); if (zynqmp_get_clock_name(parent->id, parent->name)) continue; } *nparent += 1; } return 0; } /** * zynqmp_clock_get_parents() - Get parents info from firmware using PM_API * @clk_id: Clock index * @parents: Clock parents * @num_parents: Total number of parents * * Return: 0 on success else error+reason */ static int zynqmp_clock_get_parents(u32 clk_id, struct clock_parent *parents, u32 *num_parents) { int j = 0, ret; struct parents_resp response = { }; *num_parents = 0; do { /* Get parents from firmware */ ret = zynqmp_pm_clock_get_parents(clock[clk_id].clk_id, j, &response); if (ret) return ret; ret = __zynqmp_clock_get_parents(&parents[j], &response, num_parents); if (ret == END_OF_PARENTS) return 0; j += ARRAY_SIZE(response.parents); } while (*num_parents <= MAX_PARENT); return 0; } /** * zynqmp_get_parent_list() - Create list of parents name * @np: Device node * @clk_id: Clock index * @parent_list: List of parent's name * @num_parents: Total number of parents * * Return: 0 on success else error+reason */ static int zynqmp_get_parent_list(struct device_node *np, u32 clk_id, const char **parent_list, u32 *num_parents) { int i = 0, ret; u32 total_parents = clock[clk_id].num_parents; struct clock_topology *clk_nodes; struct clock_parent *parents; clk_nodes = clock[clk_id].node; parents = clock[clk_id].parent; for (i = 0; i < total_parents; i++) { if (!parents[i].flag) { parent_list[i] = parents[i].name; } else if (parents[i].flag == PARENT_CLK_EXTERNAL) { ret = of_property_match_string(np, "clock-names", parents[i].name); if (ret < 0) strcpy(parents[i].name, "dummy_name"); parent_list[i] = parents[i].name; } else { strcat(parents[i].name, clk_type_postfix[clk_nodes[parents[i].flag - 1]. type]); parent_list[i] = parents[i].name; } } *num_parents = total_parents; return 0; } /** * zynqmp_register_clk_topology() - Register clock topology * @clk_id: Clock index * @clk_name: Clock Name * @num_parents: Total number of parents * @parent_names: List of parents name * * Return: Returns either clock hardware or error+reason */ static struct clk_hw *zynqmp_register_clk_topology(int clk_id, char *clk_name, int num_parents, const char **parent_names) { int j; u32 num_nodes, clk_dev_id; char *clk_out[MAX_NODES]; struct clock_topology *nodes; struct clk_hw *hw = NULL; nodes = clock[clk_id].node; num_nodes = clock[clk_id].num_nodes; clk_dev_id = clock[clk_id].clk_id; for (j = 0; j < num_nodes; j++) { /* * Clock name received from firmware is output clock name. * Intermediate clock names are postfixed with type of clock. */ if (j != (num_nodes - 1)) { clk_out[j] = kasprintf(GFP_KERNEL, "%s%s", clk_name, clk_type_postfix[nodes[j].type]); } else { clk_out[j] = kasprintf(GFP_KERNEL, "%s", clk_name); } if (!clk_topology[nodes[j].type]) continue; hw = (*clk_topology[nodes[j].type])(clk_out[j], clk_dev_id, parent_names, num_parents, &nodes[j]); if (IS_ERR(hw)) pr_warn_once("%s() 0x%x: %s register fail with %ld\n", __func__, clk_dev_id, clk_name, PTR_ERR(hw)); parent_names[0] = clk_out[j]; } for (j = 0; j < num_nodes; j++) kfree(clk_out[j]); return hw; } /** * zynqmp_register_clocks() - Register clocks * @np: Device node * * Return: 0 on success else error code */ static int zynqmp_register_clocks(struct device_node *np) { int ret; u32 i, total_parents = 0, type = 0; const char *parent_names[MAX_PARENT]; for (i = 0; i < clock_max_idx; i++) { char clk_name[MAX_NAME_LEN]; /* get clock name, continue to next clock if name not found */ if (zynqmp_get_clock_name(i, clk_name)) continue; /* Check if clock is valid and output clock. * Do not register invalid or external clock. */ ret = zynqmp_get_clock_type(i, &type); if (ret || type != CLK_TYPE_OUTPUT) continue; /* Get parents of clock*/ if (zynqmp_get_parent_list(np, i, parent_names, &total_parents)) { WARN_ONCE(1, "No parents found for %s\n", clock[i].clk_name); continue; } zynqmp_data->hws[i] = zynqmp_register_clk_topology(i, clk_name, total_parents, parent_names); } for (i = 0; i < clock_max_idx; i++) { if (IS_ERR(zynqmp_data->hws[i])) { pr_err("Zynq Ultrascale+ MPSoC clk %s: register failed with %ld\n", clock[i].clk_name, PTR_ERR(zynqmp_data->hws[i])); WARN_ON(1); } } return 0; } /** * zynqmp_get_clock_info() - Get clock information from firmware using PM_API */ static void zynqmp_get_clock_info(void) { int i, ret; u32 type = 0; u32 nodetype, subclass, class; struct attr_resp attr; struct name_resp name; for (i = 0; i < clock_max_idx; i++) { ret = zynqmp_pm_clock_get_attributes(i, &attr); if (ret) continue; clock[i].valid = FIELD_GET(CLK_ATTR_VALID, attr.attr[0]); /* skip query for Invalid clock */ ret = zynqmp_is_valid_clock(i); if (ret != CLK_ATTR_VALID) continue; clock[i].type = FIELD_GET(CLK_ATTR_TYPE, attr.attr[0]) ? CLK_TYPE_EXTERNAL : CLK_TYPE_OUTPUT; nodetype = FIELD_GET(CLK_ATTR_NODE_TYPE, attr.attr[0]); subclass = FIELD_GET(CLK_ATTR_NODE_SUBCLASS, attr.attr[0]); class = FIELD_GET(CLK_ATTR_NODE_CLASS, attr.attr[0]); clock[i].clk_id = FIELD_PREP(CLK_ATTR_NODE_CLASS, class) | FIELD_PREP(CLK_ATTR_NODE_SUBCLASS, subclass) | FIELD_PREP(CLK_ATTR_NODE_TYPE, nodetype) | FIELD_PREP(CLK_ATTR_NODE_INDEX, i); zynqmp_pm_clock_get_name(clock[i].clk_id, &name); /* * Terminate with NULL character in case name provided by firmware * is longer and truncated due to size limit. */ name.name[sizeof(name.name) - 1] = '\0'; if (!strcmp(name.name, RESERVED_CLK_NAME)) continue; strscpy(clock[i].clk_name, name.name, MAX_NAME_LEN); } /* Get topology of all clock */ for (i = 0; i < clock_max_idx; i++) { ret = zynqmp_get_clock_type(i, &type); if (ret || type != CLK_TYPE_OUTPUT) continue; ret = zynqmp_clock_get_topology(i, clock[i].node, &clock[i].num_nodes); if (ret) continue; ret = zynqmp_clock_get_parents(i, clock[i].parent, &clock[i].num_parents); if (ret) continue; } } /** * zynqmp_clk_setup() - Setup the clock framework and register clocks * @np: Device node * * Return: 0 on success else error code */ static int zynqmp_clk_setup(struct device_node *np) { int ret; ret = zynqmp_pm_clock_get_num_clocks(&clock_max_idx); if (ret) return ret; zynqmp_data = kzalloc(struct_size(zynqmp_data, hws, clock_max_idx), GFP_KERNEL); if (!zynqmp_data) return -ENOMEM; clock = kcalloc(clock_max_idx, sizeof(*clock), GFP_KERNEL); if (!clock) { kfree(zynqmp_data); return -ENOMEM; } zynqmp_get_clock_info(); zynqmp_register_clocks(np); zynqmp_data->num = clock_max_idx; return of_clk_add_hw_provider(np, of_clk_hw_onecell_get, zynqmp_data); } static int zynqmp_clock_probe(struct platform_device *pdev) { int ret; struct device *dev = &pdev->dev; ret = zynqmp_clk_setup(dev->of_node); return ret; } static const struct of_device_id zynqmp_clock_of_match[] = { {.compatible = "xlnx,zynqmp-clk"}, {.compatible = "xlnx,versal-clk"}, {}, }; MODULE_DEVICE_TABLE(of, zynqmp_clock_of_match); static struct platform_driver zynqmp_clock_driver = { .driver = { .name = "zynqmp_clock", .of_match_table = zynqmp_clock_of_match, }, .probe = zynqmp_clock_probe, }; module_platform_driver(zynqmp_clock_driver);
linux-master
drivers/clk/zynqmp/clkc.c
// SPDX-License-Identifier: GPL-2.0 /* * Zynq UltraScale+ MPSoC Divider support * * Copyright (C) 2016-2019 Xilinx * * Adjustable divider clock implementation */ #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/slab.h> #include "clk-zynqmp.h" /* * DOC: basic adjustable divider clock that cannot gate * * Traits of this clock: * prepare - clk_prepare only ensures that parents are prepared * enable - clk_enable only ensures that parents are enabled * rate - rate is adjustable. clk->rate = ceiling(parent->rate / divisor) * parent - fixed parent. No clk_set_parent support */ #define to_zynqmp_clk_divider(_hw) \ container_of(_hw, struct zynqmp_clk_divider, hw) #define CLK_FRAC BIT(13) /* has a fractional parent */ #define CUSTOM_FLAG_CLK_FRAC BIT(0) /* has a fractional parent in custom type flag */ /** * struct zynqmp_clk_divider - adjustable divider clock * @hw: handle between common and hardware-specific interfaces * @flags: Hardware specific flags * @is_frac: The divider is a fractional divider * @clk_id: Id of clock * @div_type: divisor type (TYPE_DIV1 or TYPE_DIV2) * @max_div: maximum supported divisor (fetched from firmware) */ struct zynqmp_clk_divider { struct clk_hw hw; u8 flags; bool is_frac; u32 clk_id; u32 div_type; u16 max_div; }; static inline int zynqmp_divider_get_val(unsigned long parent_rate, unsigned long rate, u16 flags) { int up, down; unsigned long up_rate, down_rate; if (flags & CLK_DIVIDER_POWER_OF_TWO) { up = DIV_ROUND_UP_ULL((u64)parent_rate, rate); down = DIV_ROUND_DOWN_ULL((u64)parent_rate, rate); up = __roundup_pow_of_two(up); down = __rounddown_pow_of_two(down); up_rate = DIV_ROUND_UP_ULL((u64)parent_rate, up); down_rate = DIV_ROUND_UP_ULL((u64)parent_rate, down); return (rate - up_rate) <= (down_rate - rate) ? up : down; } else { return DIV_ROUND_CLOSEST(parent_rate, rate); } } /** * zynqmp_clk_divider_recalc_rate() - Recalc rate of divider clock * @hw: handle between common and hardware-specific interfaces * @parent_rate: rate of parent clock * * Return: 0 on success else error+reason */ static unsigned long zynqmp_clk_divider_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct zynqmp_clk_divider *divider = to_zynqmp_clk_divider(hw); const char *clk_name = clk_hw_get_name(hw); u32 clk_id = divider->clk_id; u32 div_type = divider->div_type; u32 div, value; int ret; ret = zynqmp_pm_clock_getdivider(clk_id, &div); if (ret) pr_debug("%s() get divider failed for %s, ret = %d\n", __func__, clk_name, ret); if (div_type == TYPE_DIV1) value = div & 0xFFFF; else value = div >> 16; if (divider->flags & CLK_DIVIDER_POWER_OF_TWO) value = 1 << value; if (!value) { WARN(!(divider->flags & CLK_DIVIDER_ALLOW_ZERO), "%s: Zero divisor and CLK_DIVIDER_ALLOW_ZERO not set\n", clk_name); return parent_rate; } return DIV_ROUND_UP_ULL(parent_rate, value); } static void zynqmp_get_divider2_val(struct clk_hw *hw, unsigned long rate, struct zynqmp_clk_divider *divider, u32 *bestdiv) { int div1; int div2; long error = LONG_MAX; unsigned long div1_prate; struct clk_hw *div1_parent_hw; struct zynqmp_clk_divider *pdivider; struct clk_hw *div2_parent_hw = clk_hw_get_parent(hw); if (!div2_parent_hw) return; pdivider = to_zynqmp_clk_divider(div2_parent_hw); if (!pdivider) return; div1_parent_hw = clk_hw_get_parent(div2_parent_hw); if (!div1_parent_hw) return; div1_prate = clk_hw_get_rate(div1_parent_hw); *bestdiv = 1; for (div1 = 1; div1 <= pdivider->max_div;) { for (div2 = 1; div2 <= divider->max_div;) { long new_error = ((div1_prate / div1) / div2) - rate; if (abs(new_error) < abs(error)) { *bestdiv = div2; error = new_error; } if (divider->flags & CLK_DIVIDER_POWER_OF_TWO) div2 = div2 << 1; else div2++; } if (pdivider->flags & CLK_DIVIDER_POWER_OF_TWO) div1 = div1 << 1; else div1++; } } /** * zynqmp_clk_divider_round_rate() - Round rate of divider clock * @hw: handle between common and hardware-specific interfaces * @rate: rate of clock to be set * @prate: rate of parent clock * * Return: 0 on success else error+reason */ static long zynqmp_clk_divider_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { struct zynqmp_clk_divider *divider = to_zynqmp_clk_divider(hw); const char *clk_name = clk_hw_get_name(hw); u32 clk_id = divider->clk_id; u32 div_type = divider->div_type; u32 bestdiv; int ret; /* if read only, just return current value */ if (divider->flags & CLK_DIVIDER_READ_ONLY) { ret = zynqmp_pm_clock_getdivider(clk_id, &bestdiv); if (ret) pr_debug("%s() get divider failed for %s, ret = %d\n", __func__, clk_name, ret); if (div_type == TYPE_DIV1) bestdiv = bestdiv & 0xFFFF; else bestdiv = bestdiv >> 16; if (divider->flags & CLK_DIVIDER_POWER_OF_TWO) bestdiv = 1 << bestdiv; return DIV_ROUND_UP_ULL((u64)*prate, bestdiv); } bestdiv = zynqmp_divider_get_val(*prate, rate, divider->flags); /* * In case of two divisors, compute best divider values and return * divider2 value based on compute value. div1 will be automatically * set to optimum based on required total divider value. */ if (div_type == TYPE_DIV2 && (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT)) { zynqmp_get_divider2_val(hw, rate, divider, &bestdiv); } if ((clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT) && divider->is_frac) bestdiv = rate % *prate ? 1 : bestdiv; bestdiv = min_t(u32, bestdiv, divider->max_div); *prate = rate * bestdiv; return rate; } /** * zynqmp_clk_divider_set_rate() - Set rate of divider clock * @hw: handle between common and hardware-specific interfaces * @rate: rate of clock to be set * @parent_rate: rate of parent clock * * Return: 0 on success else error+reason */ static int zynqmp_clk_divider_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct zynqmp_clk_divider *divider = to_zynqmp_clk_divider(hw); const char *clk_name = clk_hw_get_name(hw); u32 clk_id = divider->clk_id; u32 div_type = divider->div_type; u32 value, div; int ret; value = zynqmp_divider_get_val(parent_rate, rate, divider->flags); if (div_type == TYPE_DIV1) { div = value & 0xFFFF; div |= 0xffff << 16; } else { div = 0xffff; div |= value << 16; } if (divider->flags & CLK_DIVIDER_POWER_OF_TWO) div = __ffs(div); ret = zynqmp_pm_clock_setdivider(clk_id, div); if (ret) pr_debug("%s() set divider failed for %s, ret = %d\n", __func__, clk_name, ret); return ret; } static const struct clk_ops zynqmp_clk_divider_ops = { .recalc_rate = zynqmp_clk_divider_recalc_rate, .round_rate = zynqmp_clk_divider_round_rate, .set_rate = zynqmp_clk_divider_set_rate, }; static const struct clk_ops zynqmp_clk_divider_ro_ops = { .recalc_rate = zynqmp_clk_divider_recalc_rate, .round_rate = zynqmp_clk_divider_round_rate, }; /** * zynqmp_clk_get_max_divisor() - Get maximum supported divisor from firmware. * @clk_id: Id of clock * @type: Divider type * * Return: Maximum divisor of a clock if query data is successful * U16_MAX in case of query data is not success */ static u32 zynqmp_clk_get_max_divisor(u32 clk_id, u32 type) { struct zynqmp_pm_query_data qdata = {0}; u32 ret_payload[PAYLOAD_ARG_CNT]; int ret; qdata.qid = PM_QID_CLOCK_GET_MAX_DIVISOR; qdata.arg1 = clk_id; qdata.arg2 = type; ret = zynqmp_pm_query_data(qdata, ret_payload); /* * To maintain backward compatibility return maximum possible value * (0xFFFF) if query for max divisor is not successful. */ if (ret) return U16_MAX; return ret_payload[1]; } static inline unsigned long zynqmp_clk_map_divider_ccf_flags( const u32 zynqmp_type_flag) { unsigned long ccf_flag = 0; if (zynqmp_type_flag & ZYNQMP_CLK_DIVIDER_ONE_BASED) ccf_flag |= CLK_DIVIDER_ONE_BASED; if (zynqmp_type_flag & ZYNQMP_CLK_DIVIDER_POWER_OF_TWO) ccf_flag |= CLK_DIVIDER_POWER_OF_TWO; if (zynqmp_type_flag & ZYNQMP_CLK_DIVIDER_ALLOW_ZERO) ccf_flag |= CLK_DIVIDER_ALLOW_ZERO; if (zynqmp_type_flag & ZYNQMP_CLK_DIVIDER_POWER_OF_TWO) ccf_flag |= CLK_DIVIDER_HIWORD_MASK; if (zynqmp_type_flag & ZYNQMP_CLK_DIVIDER_ROUND_CLOSEST) ccf_flag |= CLK_DIVIDER_ROUND_CLOSEST; if (zynqmp_type_flag & ZYNQMP_CLK_DIVIDER_READ_ONLY) ccf_flag |= CLK_DIVIDER_READ_ONLY; if (zynqmp_type_flag & ZYNQMP_CLK_DIVIDER_MAX_AT_ZERO) ccf_flag |= CLK_DIVIDER_MAX_AT_ZERO; return ccf_flag; } /** * zynqmp_clk_register_divider() - Register a divider clock * @name: Name of this clock * @clk_id: Id of clock * @parents: Name of this clock's parents * @num_parents: Number of parents * @nodes: Clock topology node * * Return: clock hardware to registered clock divider */ struct clk_hw *zynqmp_clk_register_divider(const char *name, u32 clk_id, const char * const *parents, u8 num_parents, const struct clock_topology *nodes) { struct zynqmp_clk_divider *div; struct clk_hw *hw; struct clk_init_data init; int ret; /* allocate the divider */ div = kzalloc(sizeof(*div), GFP_KERNEL); if (!div) return ERR_PTR(-ENOMEM); init.name = name; if (nodes->type_flag & CLK_DIVIDER_READ_ONLY) init.ops = &zynqmp_clk_divider_ro_ops; else init.ops = &zynqmp_clk_divider_ops; init.flags = zynqmp_clk_map_common_ccf_flags(nodes->flag); init.parent_names = parents; init.num_parents = 1; /* struct clk_divider assignments */ div->is_frac = !!((nodes->flag & CLK_FRAC) | (nodes->custom_type_flag & CUSTOM_FLAG_CLK_FRAC)); div->flags = zynqmp_clk_map_divider_ccf_flags(nodes->type_flag); div->hw.init = &init; div->clk_id = clk_id; div->div_type = nodes->type; /* * To achieve best possible rate, maximum limit of divider is required * while computation. */ div->max_div = zynqmp_clk_get_max_divisor(clk_id, nodes->type); hw = &div->hw; ret = clk_hw_register(NULL, hw); if (ret) { kfree(div); hw = ERR_PTR(ret); } return hw; }
linux-master
drivers/clk/zynqmp/divider.c
// SPDX-License-Identifier: GPL-2.0 /* * Zynq UltraScale+ MPSoC clock controller * * Copyright (C) 2016-2018 Xilinx * * Gated clock implementation */ #include <linux/clk-provider.h> #include <linux/slab.h> #include "clk-zynqmp.h" /** * struct zynqmp_clk_gate - gating clock * @hw: handle between common and hardware-specific interfaces * @flags: hardware-specific flags * @clk_id: Id of clock */ struct zynqmp_clk_gate { struct clk_hw hw; u8 flags; u32 clk_id; }; #define to_zynqmp_clk_gate(_hw) container_of(_hw, struct zynqmp_clk_gate, hw) /** * zynqmp_clk_gate_enable() - Enable clock * @hw: handle between common and hardware-specific interfaces * * Return: 0 on success else error code */ static int zynqmp_clk_gate_enable(struct clk_hw *hw) { struct zynqmp_clk_gate *gate = to_zynqmp_clk_gate(hw); const char *clk_name = clk_hw_get_name(hw); u32 clk_id = gate->clk_id; int ret; ret = zynqmp_pm_clock_enable(clk_id); if (ret) pr_debug("%s() clock enable failed for %s (id %d), ret = %d\n", __func__, clk_name, clk_id, ret); return ret; } /* * zynqmp_clk_gate_disable() - Disable clock * @hw: handle between common and hardware-specific interfaces */ static void zynqmp_clk_gate_disable(struct clk_hw *hw) { struct zynqmp_clk_gate *gate = to_zynqmp_clk_gate(hw); const char *clk_name = clk_hw_get_name(hw); u32 clk_id = gate->clk_id; int ret; ret = zynqmp_pm_clock_disable(clk_id); if (ret) pr_debug("%s() clock disable failed for %s (id %d), ret = %d\n", __func__, clk_name, clk_id, ret); } /** * zynqmp_clk_gate_is_enabled() - Check clock state * @hw: handle between common and hardware-specific interfaces * * Return: 1 if enabled, 0 if disabled else error code */ static int zynqmp_clk_gate_is_enabled(struct clk_hw *hw) { struct zynqmp_clk_gate *gate = to_zynqmp_clk_gate(hw); const char *clk_name = clk_hw_get_name(hw); u32 clk_id = gate->clk_id; int state, ret; ret = zynqmp_pm_clock_getstate(clk_id, &state); if (ret) { pr_debug("%s() clock get state failed for %s, ret = %d\n", __func__, clk_name, ret); return -EIO; } return state ? 1 : 0; } static const struct clk_ops zynqmp_clk_gate_ops = { .enable = zynqmp_clk_gate_enable, .disable = zynqmp_clk_gate_disable, .is_enabled = zynqmp_clk_gate_is_enabled, }; /** * zynqmp_clk_register_gate() - Register a gate clock with the clock framework * @name: Name of this clock * @clk_id: Id of this clock * @parents: Name of this clock's parents * @num_parents: Number of parents * @nodes: Clock topology node * * Return: clock hardware of the registered clock gate */ struct clk_hw *zynqmp_clk_register_gate(const char *name, u32 clk_id, const char * const *parents, u8 num_parents, const struct clock_topology *nodes) { struct zynqmp_clk_gate *gate; struct clk_hw *hw; int ret; struct clk_init_data init; /* allocate the gate */ gate = kzalloc(sizeof(*gate), GFP_KERNEL); if (!gate) return ERR_PTR(-ENOMEM); init.name = name; init.ops = &zynqmp_clk_gate_ops; init.flags = zynqmp_clk_map_common_ccf_flags(nodes->flag); init.parent_names = parents; init.num_parents = 1; /* struct clk_gate assignments */ gate->flags = nodes->type_flag; gate->hw.init = &init; gate->clk_id = clk_id; hw = &gate->hw; ret = clk_hw_register(NULL, hw); if (ret) { kfree(gate); hw = ERR_PTR(ret); } return hw; }
linux-master
drivers/clk/zynqmp/clk-gate-zynqmp.c
// SPDX-License-Identifier: GPL-2.0 /* * Zynq UltraScale+ MPSoC PLL driver * * Copyright (C) 2016-2018 Xilinx */ #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/slab.h> #include "clk-zynqmp.h" /** * struct zynqmp_pll - PLL clock * @hw: Handle between common and hardware-specific interfaces * @clk_id: PLL clock ID * @set_pll_mode: Whether an IOCTL_SET_PLL_FRAC_MODE request be sent to ATF */ struct zynqmp_pll { struct clk_hw hw; u32 clk_id; bool set_pll_mode; }; #define to_zynqmp_pll(_hw) container_of(_hw, struct zynqmp_pll, hw) #define PLL_FBDIV_MIN 25 #define PLL_FBDIV_MAX 125 #define PS_PLL_VCO_MIN 1500000000 #define PS_PLL_VCO_MAX 3000000000UL enum pll_mode { PLL_MODE_INT = 0, PLL_MODE_FRAC = 1, PLL_MODE_ERROR = 2, }; #define FRAC_OFFSET 0x8 #define PLLFCFG_FRAC_EN BIT(31) #define FRAC_DIV BIT(16) /* 2^16 */ /** * zynqmp_pll_get_mode() - Get mode of PLL * @hw: Handle between common and hardware-specific interfaces * * Return: Mode of PLL */ static inline enum pll_mode zynqmp_pll_get_mode(struct clk_hw *hw) { struct zynqmp_pll *clk = to_zynqmp_pll(hw); u32 clk_id = clk->clk_id; const char *clk_name = clk_hw_get_name(hw); u32 ret_payload[PAYLOAD_ARG_CNT]; int ret; ret = zynqmp_pm_get_pll_frac_mode(clk_id, ret_payload); if (ret) { pr_debug("%s() PLL get frac mode failed for %s, ret = %d\n", __func__, clk_name, ret); return PLL_MODE_ERROR; } return ret_payload[1]; } /** * zynqmp_pll_set_mode() - Set the PLL mode * @hw: Handle between common and hardware-specific interfaces * @on: Flag to determine the mode */ static inline void zynqmp_pll_set_mode(struct clk_hw *hw, bool on) { struct zynqmp_pll *clk = to_zynqmp_pll(hw); u32 clk_id = clk->clk_id; const char *clk_name = clk_hw_get_name(hw); int ret; u32 mode; if (on) mode = PLL_MODE_FRAC; else mode = PLL_MODE_INT; ret = zynqmp_pm_set_pll_frac_mode(clk_id, mode); if (ret) pr_debug("%s() PLL set frac mode failed for %s, ret = %d\n", __func__, clk_name, ret); else clk->set_pll_mode = true; } /** * zynqmp_pll_round_rate() - Round a clock frequency * @hw: Handle between common and hardware-specific interfaces * @rate: Desired clock frequency * @prate: Clock frequency of parent clock * * Return: Frequency closest to @rate the hardware can generate */ static long zynqmp_pll_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { u32 fbdiv; u32 mult, div; /* Let rate fall inside the range PS_PLL_VCO_MIN ~ PS_PLL_VCO_MAX */ if (rate > PS_PLL_VCO_MAX) { div = DIV_ROUND_UP(rate, PS_PLL_VCO_MAX); rate = rate / div; } if (rate < PS_PLL_VCO_MIN) { mult = DIV_ROUND_UP(PS_PLL_VCO_MIN, rate); rate = rate * mult; } fbdiv = DIV_ROUND_CLOSEST(rate, *prate); if (fbdiv < PLL_FBDIV_MIN || fbdiv > PLL_FBDIV_MAX) { fbdiv = clamp_t(u32, fbdiv, PLL_FBDIV_MIN, PLL_FBDIV_MAX); rate = *prate * fbdiv; } return rate; } /** * zynqmp_pll_recalc_rate() - Recalculate clock frequency * @hw: Handle between common and hardware-specific interfaces * @parent_rate: Clock frequency of parent clock * * Return: Current clock frequency or 0 in case of error */ static unsigned long zynqmp_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct zynqmp_pll *clk = to_zynqmp_pll(hw); u32 clk_id = clk->clk_id; const char *clk_name = clk_hw_get_name(hw); u32 fbdiv, data; unsigned long rate, frac; u32 ret_payload[PAYLOAD_ARG_CNT]; int ret; enum pll_mode mode; ret = zynqmp_pm_clock_getdivider(clk_id, &fbdiv); if (ret) { pr_debug("%s() get divider failed for %s, ret = %d\n", __func__, clk_name, ret); return 0ul; } mode = zynqmp_pll_get_mode(hw); if (mode == PLL_MODE_ERROR) return 0ul; rate = parent_rate * fbdiv; if (mode == PLL_MODE_FRAC) { zynqmp_pm_get_pll_frac_data(clk_id, ret_payload); data = ret_payload[1]; frac = (parent_rate * data) / FRAC_DIV; rate = rate + frac; } return rate; } /** * zynqmp_pll_set_rate() - Set rate of PLL * @hw: Handle between common and hardware-specific interfaces * @rate: Frequency of clock to be set * @parent_rate: Clock frequency of parent clock * * Set PLL divider to set desired rate. * * Returns: rate which is set on success else error code */ static int zynqmp_pll_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct zynqmp_pll *clk = to_zynqmp_pll(hw); u32 clk_id = clk->clk_id; const char *clk_name = clk_hw_get_name(hw); u32 fbdiv; long rate_div, frac, m, f; int ret; rate_div = (rate * FRAC_DIV) / parent_rate; f = rate_div % FRAC_DIV; zynqmp_pll_set_mode(hw, !!f); if (f) { m = rate_div / FRAC_DIV; m = clamp_t(u32, m, (PLL_FBDIV_MIN), (PLL_FBDIV_MAX)); rate = parent_rate * m; frac = (parent_rate * f) / FRAC_DIV; ret = zynqmp_pm_clock_setdivider(clk_id, m); if (ret == -EUSERS) WARN(1, "More than allowed devices are using the %s, which is forbidden\n", clk_name); else if (ret) pr_debug("%s() set divider failed for %s, ret = %d\n", __func__, clk_name, ret); zynqmp_pm_set_pll_frac_data(clk_id, f); return rate + frac; } fbdiv = DIV_ROUND_CLOSEST(rate, parent_rate); fbdiv = clamp_t(u32, fbdiv, PLL_FBDIV_MIN, PLL_FBDIV_MAX); ret = zynqmp_pm_clock_setdivider(clk_id, fbdiv); if (ret) pr_debug("%s() set divider failed for %s, ret = %d\n", __func__, clk_name, ret); return parent_rate * fbdiv; } /** * zynqmp_pll_is_enabled() - Check if a clock is enabled * @hw: Handle between common and hardware-specific interfaces * * Return: 1 if the clock is enabled, 0 otherwise */ static int zynqmp_pll_is_enabled(struct clk_hw *hw) { struct zynqmp_pll *clk = to_zynqmp_pll(hw); const char *clk_name = clk_hw_get_name(hw); u32 clk_id = clk->clk_id; unsigned int state; int ret; ret = zynqmp_pm_clock_getstate(clk_id, &state); if (ret) { pr_debug("%s() clock get state failed for %s, ret = %d\n", __func__, clk_name, ret); return -EIO; } return state ? 1 : 0; } /** * zynqmp_pll_enable() - Enable clock * @hw: Handle between common and hardware-specific interfaces * * Return: 0 on success else error code */ static int zynqmp_pll_enable(struct clk_hw *hw) { struct zynqmp_pll *clk = to_zynqmp_pll(hw); const char *clk_name = clk_hw_get_name(hw); u32 clk_id = clk->clk_id; int ret; /* * Don't skip enabling clock if there is an IOCTL_SET_PLL_FRAC_MODE request * that has been sent to ATF. */ if (zynqmp_pll_is_enabled(hw) && (!clk->set_pll_mode)) return 0; clk->set_pll_mode = false; ret = zynqmp_pm_clock_enable(clk_id); if (ret) pr_debug("%s() clock enable failed for %s, ret = %d\n", __func__, clk_name, ret); return ret; } /** * zynqmp_pll_disable() - Disable clock * @hw: Handle between common and hardware-specific interfaces */ static void zynqmp_pll_disable(struct clk_hw *hw) { struct zynqmp_pll *clk = to_zynqmp_pll(hw); const char *clk_name = clk_hw_get_name(hw); u32 clk_id = clk->clk_id; int ret; if (!zynqmp_pll_is_enabled(hw)) return; ret = zynqmp_pm_clock_disable(clk_id); if (ret) pr_debug("%s() clock disable failed for %s, ret = %d\n", __func__, clk_name, ret); } static const struct clk_ops zynqmp_pll_ops = { .enable = zynqmp_pll_enable, .disable = zynqmp_pll_disable, .is_enabled = zynqmp_pll_is_enabled, .round_rate = zynqmp_pll_round_rate, .recalc_rate = zynqmp_pll_recalc_rate, .set_rate = zynqmp_pll_set_rate, }; /** * zynqmp_clk_register_pll() - Register PLL with the clock framework * @name: PLL name * @clk_id: Clock ID * @parents: Name of this clock's parents * @num_parents: Number of parents * @nodes: Clock topology node * * Return: clock hardware to the registered clock */ struct clk_hw *zynqmp_clk_register_pll(const char *name, u32 clk_id, const char * const *parents, u8 num_parents, const struct clock_topology *nodes) { struct zynqmp_pll *pll; struct clk_hw *hw; struct clk_init_data init; int ret; init.name = name; init.ops = &zynqmp_pll_ops; init.flags = zynqmp_clk_map_common_ccf_flags(nodes->flag); init.parent_names = parents; init.num_parents = 1; pll = kzalloc(sizeof(*pll), GFP_KERNEL); if (!pll) return ERR_PTR(-ENOMEM); pll->hw.init = &init; pll->clk_id = clk_id; hw = &pll->hw; ret = clk_hw_register(NULL, hw); if (ret) { kfree(pll); return ERR_PTR(ret); } return hw; }
linux-master
drivers/clk/zynqmp/pll.c
// SPDX-License-Identifier: GPL-2.0-only /* * Clock driver for the ARM Integrator/AP, Integrator/CP, Versatile AB and * Versatile PB boards. * Copyright (C) 2012 Linus Walleij */ #include <linux/clk-provider.h> #include <linux/err.h> #include <linux/of.h> #include <linux/of_address.h> #include "icst.h" #include "clk-icst.h" #define INTEGRATOR_HDR_LOCK_OFFSET 0x14 #define VERSATILE_SYS_OSCCLCD_OFFSET 0x1c #define VERSATILE_SYS_LOCK_OFFSET 0x20 /* Base offset for the core module */ static void __iomem *cm_base; static const struct icst_params cp_auxosc_params = { .vco_max = ICST525_VCO_MAX_5V, .vco_min = ICST525_VCO_MIN, .vd_min = 8, .vd_max = 263, .rd_min = 3, .rd_max = 65, .s2div = icst525_s2div, .idx2s = icst525_idx2s, }; static const struct clk_icst_desc cm_auxosc_desc __initconst = { .params = &cp_auxosc_params, .vco_offset = 0x1c, .lock_offset = INTEGRATOR_HDR_LOCK_OFFSET, }; static const struct icst_params versatile_auxosc_params = { .vco_max = ICST307_VCO_MAX, .vco_min = ICST307_VCO_MIN, .vd_min = 4 + 8, .vd_max = 511 + 8, .rd_min = 1 + 2, .rd_max = 127 + 2, .s2div = icst307_s2div, .idx2s = icst307_idx2s, }; static const struct clk_icst_desc versatile_auxosc_desc __initconst = { .params = &versatile_auxosc_params, .vco_offset = VERSATILE_SYS_OSCCLCD_OFFSET, .lock_offset = VERSATILE_SYS_LOCK_OFFSET, }; static void __init cm_osc_setup(struct device_node *np, const struct clk_icst_desc *desc) { struct clk *clk; const char *clk_name = np->name; const char *parent_name; if (!cm_base) { /* Remap the core module base if not done yet */ struct device_node *parent; parent = of_get_parent(np); if (!parent) { pr_err("no parent on core module clock\n"); return; } cm_base = of_iomap(parent, 0); of_node_put(parent); if (!cm_base) { pr_err("could not remap core module base\n"); return; } } parent_name = of_clk_get_parent_name(np, 0); clk = icst_clk_register(NULL, desc, clk_name, parent_name, cm_base); if (!IS_ERR(clk)) of_clk_add_provider(np, of_clk_src_simple_get, clk); } static void __init of_integrator_cm_osc_setup(struct device_node *np) { cm_osc_setup(np, &cm_auxosc_desc); } CLK_OF_DECLARE(integrator_cm_auxosc_clk, "arm,integrator-cm-auxosc", of_integrator_cm_osc_setup); static void __init of_versatile_cm_osc_setup(struct device_node *np) { cm_osc_setup(np, &versatile_auxosc_desc); } CLK_OF_DECLARE(versatile_cm_auxosc_clk, "arm,versatile-cm-auxosc", of_versatile_cm_osc_setup);
linux-master
drivers/clk/versatile/clk-versatile.c
// SPDX-License-Identifier: GPL-2.0-only /* * * Copyright (C) 2013 ARM Limited */ #include <linux/amba/sp810.h> #include <linux/slab.h> #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/err.h> #include <linux/io.h> #include <linux/of.h> #include <linux/of_address.h> #define to_clk_sp810_timerclken(_hw) \ container_of(_hw, struct clk_sp810_timerclken, hw) struct clk_sp810; struct clk_sp810_timerclken { struct clk_hw hw; struct clk *clk; struct clk_sp810 *sp810; int channel; }; struct clk_sp810 { struct device_node *node; void __iomem *base; spinlock_t lock; struct clk_sp810_timerclken timerclken[4]; }; static u8 clk_sp810_timerclken_get_parent(struct clk_hw *hw) { struct clk_sp810_timerclken *timerclken = to_clk_sp810_timerclken(hw); u32 val = readl(timerclken->sp810->base + SCCTRL); return !!(val & (1 << SCCTRL_TIMERENnSEL_SHIFT(timerclken->channel))); } static int clk_sp810_timerclken_set_parent(struct clk_hw *hw, u8 index) { struct clk_sp810_timerclken *timerclken = to_clk_sp810_timerclken(hw); struct clk_sp810 *sp810 = timerclken->sp810; u32 val, shift = SCCTRL_TIMERENnSEL_SHIFT(timerclken->channel); unsigned long flags = 0; if (WARN_ON(index > 1)) return -EINVAL; spin_lock_irqsave(&sp810->lock, flags); val = readl(sp810->base + SCCTRL); val &= ~(1 << shift); val |= index << shift; writel(val, sp810->base + SCCTRL); spin_unlock_irqrestore(&sp810->lock, flags); return 0; } static const struct clk_ops clk_sp810_timerclken_ops = { .determine_rate = clk_hw_determine_rate_no_reparent, .get_parent = clk_sp810_timerclken_get_parent, .set_parent = clk_sp810_timerclken_set_parent, }; static struct clk *clk_sp810_timerclken_of_get(struct of_phandle_args *clkspec, void *data) { struct clk_sp810 *sp810 = data; if (WARN_ON(clkspec->args_count != 1 || clkspec->args[0] >= ARRAY_SIZE(sp810->timerclken))) return NULL; return sp810->timerclken[clkspec->args[0]].clk; } static void __init clk_sp810_of_setup(struct device_node *node) { struct clk_sp810 *sp810 = kzalloc(sizeof(*sp810), GFP_KERNEL); const char *parent_names[2]; int num = ARRAY_SIZE(parent_names); char name[12]; struct clk_init_data init; static int instance; int i; bool deprecated; if (!sp810) return; if (of_clk_parent_fill(node, parent_names, num) != num) { pr_warn("Failed to obtain parent clocks for SP810!\n"); kfree(sp810); return; } sp810->node = node; sp810->base = of_iomap(node, 0); spin_lock_init(&sp810->lock); init.name = name; init.ops = &clk_sp810_timerclken_ops; init.flags = 0; init.parent_names = parent_names; init.num_parents = num; deprecated = !of_find_property(node, "assigned-clock-parents", NULL); for (i = 0; i < ARRAY_SIZE(sp810->timerclken); i++) { snprintf(name, sizeof(name), "sp810_%d_%d", instance, i); sp810->timerclken[i].sp810 = sp810; sp810->timerclken[i].channel = i; sp810->timerclken[i].hw.init = &init; /* * If DT isn't setting the parent, force it to be * the 1 MHz clock without going through the framework. * We do this before clk_register() so that it can determine * the parent and setup the tree properly. */ if (deprecated) init.ops->set_parent(&sp810->timerclken[i].hw, 1); sp810->timerclken[i].clk = clk_register(NULL, &sp810->timerclken[i].hw); WARN_ON(IS_ERR(sp810->timerclken[i].clk)); } of_clk_add_provider(node, clk_sp810_timerclken_of_get, sp810); instance++; } CLK_OF_DECLARE(sp810, "arm,sp810", clk_sp810_of_setup);
linux-master
drivers/clk/versatile/clk-sp810.c
// SPDX-License-Identifier: GPL-2.0-only /* * Clock driver for the ARM Integrator/IM-PD1 board * Copyright (C) 2012-2013 Linus Walleij */ #include <linux/clk-provider.h> #include <linux/clkdev.h> #include <linux/err.h> #include <linux/io.h> #include <linux/platform_device.h> #include <linux/module.h> #include <linux/mfd/syscon.h> #include <linux/regmap.h> #include "icst.h" #include "clk-icst.h" #define IMPD1_OSC1 0x00 #define IMPD1_OSC2 0x04 #define IMPD1_LOCK 0x08 /* * There are two VCO's on the IM-PD1 */ static const struct icst_params impd1_vco1_params = { .ref = 24000000, /* 24 MHz */ .vco_max = ICST525_VCO_MAX_3V, .vco_min = ICST525_VCO_MIN, .vd_min = 12, .vd_max = 519, .rd_min = 3, .rd_max = 120, .s2div = icst525_s2div, .idx2s = icst525_idx2s, }; static const struct clk_icst_desc impd1_icst1_desc = { .params = &impd1_vco1_params, .vco_offset = IMPD1_OSC1, .lock_offset = IMPD1_LOCK, }; static const struct icst_params impd1_vco2_params = { .ref = 24000000, /* 24 MHz */ .vco_max = ICST525_VCO_MAX_3V, .vco_min = ICST525_VCO_MIN, .vd_min = 12, .vd_max = 519, .rd_min = 3, .rd_max = 120, .s2div = icst525_s2div, .idx2s = icst525_idx2s, }; static const struct clk_icst_desc impd1_icst2_desc = { .params = &impd1_vco2_params, .vco_offset = IMPD1_OSC2, .lock_offset = IMPD1_LOCK, }; static int integrator_impd1_clk_spawn(struct device *dev, struct device_node *parent, struct device_node *np) { struct regmap *map; struct clk *clk = ERR_PTR(-EINVAL); const char *name = np->name; const char *parent_name; const struct clk_icst_desc *desc; int ret; map = syscon_node_to_regmap(parent); if (IS_ERR(map)) { pr_err("no regmap for syscon IM-PD1 ICST clock parent\n"); return PTR_ERR(map); } if (of_device_is_compatible(np, "arm,impd1-vco1")) { desc = &impd1_icst1_desc; } else if (of_device_is_compatible(np, "arm,impd1-vco2")) { desc = &impd1_icst2_desc; } else { dev_err(dev, "not a clock node %s\n", name); return -ENODEV; } of_property_read_string(np, "clock-output-names", &name); parent_name = of_clk_get_parent_name(np, 0); clk = icst_clk_setup(NULL, desc, name, parent_name, map, ICST_INTEGRATOR_IM_PD1); if (!IS_ERR(clk)) { of_clk_add_provider(np, of_clk_src_simple_get, clk); ret = 0; } else { dev_err(dev, "error setting up IM-PD1 ICST clock\n"); ret = PTR_ERR(clk); } return ret; } static int integrator_impd1_clk_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct device_node *child; int ret = 0; for_each_available_child_of_node(np, child) { ret = integrator_impd1_clk_spawn(dev, np, child); if (ret) { of_node_put(child); break; } } return ret; } static const struct of_device_id impd1_syscon_match[] = { { .compatible = "arm,im-pd1-syscon", }, {} }; MODULE_DEVICE_TABLE(of, impd1_syscon_match); static struct platform_driver impd1_clk_driver = { .driver = { .name = "impd1-clk", .of_match_table = impd1_syscon_match, }, .probe = integrator_impd1_clk_probe, }; builtin_platform_driver(impd1_clk_driver); MODULE_AUTHOR("Linus Walleij <[email protected]>"); MODULE_DESCRIPTION("Arm IM-PD1 module clock driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/clk/versatile/clk-impd1.c
// SPDX-License-Identifier: GPL-2.0-only /* * linux/arch/arm/common/icst307.c * * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved. * * Support functions for calculating clocks/divisors for the ICST307 * clock generators. See https://www.idt.com/ for more information * on these devices. * * This is an almost identical implementation to the ICST525 clock generator. * The s2div and idx2s files are different */ #include <linux/module.h> #include <linux/kernel.h> #include <asm/div64.h> #include "icst.h" /* * Divisors for each OD setting. */ const unsigned char icst307_s2div[8] = { 10, 2, 8, 4, 5, 7, 3, 6 }; const unsigned char icst525_s2div[8] = { 10, 2, 8, 4, 5, 7, 9, 6 }; EXPORT_SYMBOL(icst307_s2div); EXPORT_SYMBOL(icst525_s2div); unsigned long icst_hz(const struct icst_params *p, struct icst_vco vco) { u64 dividend = p->ref * 2 * (u64)(vco.v + 8); u32 divisor = (vco.r + 2) * p->s2div[vco.s]; do_div(dividend, divisor); return (unsigned long)dividend; } EXPORT_SYMBOL(icst_hz); /* * Ascending divisor S values. */ const unsigned char icst307_idx2s[8] = { 1, 6, 3, 4, 7, 5, 2, 0 }; const unsigned char icst525_idx2s[8] = { 1, 3, 4, 7, 5, 2, 6, 0 }; EXPORT_SYMBOL(icst307_idx2s); EXPORT_SYMBOL(icst525_idx2s); struct icst_vco icst_hz_to_vco(const struct icst_params *p, unsigned long freq) { struct icst_vco vco = { .s = 1, .v = p->vd_max, .r = p->rd_max }; unsigned long f; unsigned int i = 0, rd, best = (unsigned int)-1; /* * First, find the PLL output divisor such * that the PLL output is within spec. */ do { f = freq * p->s2div[p->idx2s[i]]; if (f > p->vco_min && f <= p->vco_max) break; i++; } while (i < 8); if (i >= 8) return vco; vco.s = p->idx2s[i]; /* * Now find the closest divisor combination * which gives a PLL output of 'f'. */ for (rd = p->rd_min; rd <= p->rd_max; rd++) { unsigned long fref_div, f_pll; unsigned int vd; int f_diff; fref_div = (2 * p->ref) / rd; vd = (f + fref_div / 2) / fref_div; if (vd < p->vd_min || vd > p->vd_max) continue; f_pll = fref_div * vd; f_diff = f_pll - f; if (f_diff < 0) f_diff = -f_diff; if ((unsigned)f_diff < best) { vco.v = vd - 8; vco.r = rd - 2; if (f_diff == 0) break; best = f_diff; } } return vco; } EXPORT_SYMBOL(icst_hz_to_vco);
linux-master
drivers/clk/versatile/icst.c
// SPDX-License-Identifier: GPL-2.0-only /* * Driver for the ICST307 VCO clock found in the ARM Reference designs. * We wrap the custom interface from <asm/hardware/icst.h> into the generic * clock framework. * * Copyright (C) 2012-2015 Linus Walleij * * TODO: when all ARM reference designs are migrated to generic clocks, the * ICST clock code from the ARM tree should probably be merged into this * file. */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/export.h> #include <linux/err.h> #include <linux/clk-provider.h> #include <linux/io.h> #include <linux/regmap.h> #include <linux/mfd/syscon.h> #include "icst.h" #include "clk-icst.h" /* Magic unlocking token used on all Versatile boards */ #define VERSATILE_LOCK_VAL 0xA05F #define VERSATILE_AUX_OSC_BITS 0x7FFFF #define INTEGRATOR_AP_CM_BITS 0xFF #define INTEGRATOR_AP_SYS_BITS 0xFF #define INTEGRATOR_CP_CM_CORE_BITS 0x7FF #define INTEGRATOR_CP_CM_MEM_BITS 0x7FF000 #define INTEGRATOR_AP_PCI_25_33_MHZ BIT(8) /** * struct clk_icst - ICST VCO clock wrapper * @hw: corresponding clock hardware entry * @map: register map * @vcoreg_off: VCO register address * @lockreg_off: VCO lock register address * @params: parameters for this ICST instance * @rate: current rate * @ctype: the type of control register for the ICST */ struct clk_icst { struct clk_hw hw; struct regmap *map; u32 vcoreg_off; u32 lockreg_off; struct icst_params *params; unsigned long rate; enum icst_control_type ctype; }; #define to_icst(_hw) container_of(_hw, struct clk_icst, hw) /** * vco_get() - get ICST VCO settings from a certain ICST * @icst: the ICST clock to get * @vco: the VCO struct to return the value in */ static int vco_get(struct clk_icst *icst, struct icst_vco *vco) { u32 val; int ret; ret = regmap_read(icst->map, icst->vcoreg_off, &val); if (ret) return ret; /* * The Integrator/AP core clock can only access the low eight * bits of the v PLL divider. Bit 8 is tied low and always zero, * r is hardwired to 22 and output divider s is hardwired to 1 * (divide by 2) according to the document * "Integrator CM926EJ-S, CM946E-S, CM966E-S, CM1026EJ-S and * CM1136JF-S User Guide" ARM DUI 0138E, page 3-13 thru 3-14. */ if (icst->ctype == ICST_INTEGRATOR_AP_CM) { vco->v = val & INTEGRATOR_AP_CM_BITS; vco->r = 22; vco->s = 1; return 0; } /* * The Integrator/AP system clock on the base board can only * access the low eight bits of the v PLL divider. Bit 8 is tied low * and always zero, r is hardwired to 46, and the output divider is * hardwired to 3 (divide by 4) according to the document * "Integrator AP ASIC Development Motherboard" ARM DUI 0098B, * page 3-16. */ if (icst->ctype == ICST_INTEGRATOR_AP_SYS) { vco->v = val & INTEGRATOR_AP_SYS_BITS; vco->r = 46; vco->s = 3; return 0; } /* * The Integrator/AP PCI clock is using an odd pattern to create * the child clock, basically a single bit called DIVX/Y is used * to select between two different hardwired values: setting the * bit to 0 yields v = 17, r = 22 and OD = 1, whereas setting the * bit to 1 yields v = 14, r = 14 and OD = 1 giving the frequencies * 33 or 25 MHz respectively. */ if (icst->ctype == ICST_INTEGRATOR_AP_PCI) { bool divxy = !!(val & INTEGRATOR_AP_PCI_25_33_MHZ); vco->v = divxy ? 17 : 14; vco->r = divxy ? 22 : 14; vco->s = 1; return 0; } /* * The Integrator/CP core clock can access the low eight bits * of the v PLL divider. Bit 8 is tied low and always zero, * r is hardwired to 22 and the output divider s is accessible * in bits 8 thru 10 according to the document * "Integrator/CM940T, CM920T, CM740T, and CM720T User Guide" * ARM DUI 0157A, page 3-20 thru 3-23 and 4-10. */ if (icst->ctype == ICST_INTEGRATOR_CP_CM_CORE) { vco->v = val & 0xFF; vco->r = 22; vco->s = (val >> 8) & 7; return 0; } if (icst->ctype == ICST_INTEGRATOR_CP_CM_MEM) { vco->v = (val >> 12) & 0xFF; vco->r = 22; vco->s = (val >> 20) & 7; return 0; } vco->v = val & 0x1ff; vco->r = (val >> 9) & 0x7f; vco->s = (val >> 16) & 03; return 0; } /** * vco_set() - commit changes to an ICST VCO * @icst: the ICST clock to set * @vco: the VCO struct to set the changes from */ static int vco_set(struct clk_icst *icst, struct icst_vco vco) { u32 mask; u32 val; int ret; /* Mask the bits used by the VCO */ switch (icst->ctype) { case ICST_INTEGRATOR_AP_CM: mask = INTEGRATOR_AP_CM_BITS; val = vco.v & 0xFF; if (vco.v & 0x100) pr_err("ICST error: tried to set bit 8 of VDW\n"); if (vco.s != 1) pr_err("ICST error: tried to use VOD != 1\n"); if (vco.r != 22) pr_err("ICST error: tried to use RDW != 22\n"); break; case ICST_INTEGRATOR_AP_SYS: mask = INTEGRATOR_AP_SYS_BITS; val = vco.v & 0xFF; if (vco.v & 0x100) pr_err("ICST error: tried to set bit 8 of VDW\n"); if (vco.s != 3) pr_err("ICST error: tried to use VOD != 1\n"); if (vco.r != 46) pr_err("ICST error: tried to use RDW != 22\n"); break; case ICST_INTEGRATOR_CP_CM_CORE: mask = INTEGRATOR_CP_CM_CORE_BITS; /* Uses 12 bits */ val = (vco.v & 0xFF) | vco.s << 8; if (vco.v & 0x100) pr_err("ICST error: tried to set bit 8 of VDW\n"); if (vco.r != 22) pr_err("ICST error: tried to use RDW != 22\n"); break; case ICST_INTEGRATOR_CP_CM_MEM: mask = INTEGRATOR_CP_CM_MEM_BITS; /* Uses 12 bits */ val = ((vco.v & 0xFF) << 12) | (vco.s << 20); if (vco.v & 0x100) pr_err("ICST error: tried to set bit 8 of VDW\n"); if (vco.r != 22) pr_err("ICST error: tried to use RDW != 22\n"); break; default: /* Regular auxilary oscillator */ mask = VERSATILE_AUX_OSC_BITS; val = vco.v | (vco.r << 9) | (vco.s << 16); break; } pr_debug("ICST: new val = 0x%08x\n", val); /* This magic unlocks the VCO so it can be controlled */ ret = regmap_write(icst->map, icst->lockreg_off, VERSATILE_LOCK_VAL); if (ret) return ret; ret = regmap_update_bits(icst->map, icst->vcoreg_off, mask, val); if (ret) return ret; /* This locks the VCO again */ ret = regmap_write(icst->map, icst->lockreg_off, 0); if (ret) return ret; return 0; } static unsigned long icst_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_icst *icst = to_icst(hw); struct icst_vco vco; int ret; if (parent_rate) icst->params->ref = parent_rate; ret = vco_get(icst, &vco); if (ret) { pr_err("ICST: could not get VCO setting\n"); return 0; } icst->rate = icst_hz(icst->params, vco); return icst->rate; } static long icst_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { struct clk_icst *icst = to_icst(hw); struct icst_vco vco; if (icst->ctype == ICST_INTEGRATOR_AP_CM || icst->ctype == ICST_INTEGRATOR_CP_CM_CORE) { if (rate <= 12000000) return 12000000; if (rate >= 160000000) return 160000000; /* Slam to closest megahertz */ return DIV_ROUND_CLOSEST(rate, 1000000) * 1000000; } if (icst->ctype == ICST_INTEGRATOR_CP_CM_MEM) { if (rate <= 6000000) return 6000000; if (rate >= 66000000) return 66000000; /* Slam to closest 0.5 megahertz */ return DIV_ROUND_CLOSEST(rate, 500000) * 500000; } if (icst->ctype == ICST_INTEGRATOR_AP_SYS) { /* Divides between 3 and 50 MHz in steps of 0.25 MHz */ if (rate <= 3000000) return 3000000; if (rate >= 50000000) return 5000000; /* Slam to closest 0.25 MHz */ return DIV_ROUND_CLOSEST(rate, 250000) * 250000; } if (icst->ctype == ICST_INTEGRATOR_AP_PCI) { /* * If we're below or less than halfway from 25 to 33 MHz * select 25 MHz */ if (rate <= 25000000 || rate < 29000000) return 25000000; /* Else just return the default frequency */ return 33000000; } vco = icst_hz_to_vco(icst->params, rate); return icst_hz(icst->params, vco); } static int icst_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_icst *icst = to_icst(hw); struct icst_vco vco; if (icst->ctype == ICST_INTEGRATOR_AP_PCI) { /* This clock is especially primitive */ unsigned int val; int ret; if (rate == 25000000) { val = 0; } else if (rate == 33000000) { val = INTEGRATOR_AP_PCI_25_33_MHZ; } else { pr_err("ICST: cannot set PCI frequency %lu\n", rate); return -EINVAL; } ret = regmap_write(icst->map, icst->lockreg_off, VERSATILE_LOCK_VAL); if (ret) return ret; ret = regmap_update_bits(icst->map, icst->vcoreg_off, INTEGRATOR_AP_PCI_25_33_MHZ, val); if (ret) return ret; /* This locks the VCO again */ ret = regmap_write(icst->map, icst->lockreg_off, 0); if (ret) return ret; return 0; } if (parent_rate) icst->params->ref = parent_rate; vco = icst_hz_to_vco(icst->params, rate); icst->rate = icst_hz(icst->params, vco); return vco_set(icst, vco); } static const struct clk_ops icst_ops = { .recalc_rate = icst_recalc_rate, .round_rate = icst_round_rate, .set_rate = icst_set_rate, }; struct clk *icst_clk_setup(struct device *dev, const struct clk_icst_desc *desc, const char *name, const char *parent_name, struct regmap *map, enum icst_control_type ctype) { struct clk *clk; struct clk_icst *icst; struct clk_init_data init; struct icst_params *pclone; icst = kzalloc(sizeof(*icst), GFP_KERNEL); if (!icst) return ERR_PTR(-ENOMEM); pclone = kmemdup(desc->params, sizeof(*pclone), GFP_KERNEL); if (!pclone) { kfree(icst); return ERR_PTR(-ENOMEM); } init.name = name; init.ops = &icst_ops; init.flags = 0; init.parent_names = (parent_name ? &parent_name : NULL); init.num_parents = (parent_name ? 1 : 0); icst->map = map; icst->hw.init = &init; icst->params = pclone; icst->vcoreg_off = desc->vco_offset; icst->lockreg_off = desc->lock_offset; icst->ctype = ctype; clk = clk_register(dev, &icst->hw); if (IS_ERR(clk)) { kfree(pclone); kfree(icst); } return clk; } EXPORT_SYMBOL_GPL(icst_clk_setup); struct clk *icst_clk_register(struct device *dev, const struct clk_icst_desc *desc, const char *name, const char *parent_name, void __iomem *base) { struct regmap_config icst_regmap_conf = { .reg_bits = 32, .val_bits = 32, .reg_stride = 4, }; struct regmap *map; map = regmap_init_mmio(dev, base, &icst_regmap_conf); if (IS_ERR(map)) { pr_err("could not initialize ICST regmap\n"); return ERR_CAST(map); } return icst_clk_setup(dev, desc, name, parent_name, map, ICST_VERSATILE); } EXPORT_SYMBOL_GPL(icst_clk_register); #ifdef CONFIG_OF /* * In a device tree, an memory-mapped ICST clock appear as a child * of a syscon node. Assume this and probe it only as a child of a * syscon. */ static const struct icst_params icst525_params = { .vco_max = ICST525_VCO_MAX_5V, .vco_min = ICST525_VCO_MIN, .vd_min = 8, .vd_max = 263, .rd_min = 3, .rd_max = 65, .s2div = icst525_s2div, .idx2s = icst525_idx2s, }; static const struct icst_params icst307_params = { .vco_max = ICST307_VCO_MAX, .vco_min = ICST307_VCO_MIN, .vd_min = 4 + 8, .vd_max = 511 + 8, .rd_min = 1 + 2, .rd_max = 127 + 2, .s2div = icst307_s2div, .idx2s = icst307_idx2s, }; /* * The core modules on the Integrator/AP and Integrator/CP have * especially crippled ICST525 control. */ static const struct icst_params icst525_apcp_cm_params = { .vco_max = ICST525_VCO_MAX_5V, .vco_min = ICST525_VCO_MIN, /* Minimum 12 MHz, VDW = 4 */ .vd_min = 12, /* * Maximum 160 MHz, VDW = 152 for all core modules, but * CM926EJ-S, CM1026EJ-S and CM1136JF-S can actually * go to 200 MHz (max VDW = 192). */ .vd_max = 192, /* r is hardcoded to 22 and this is the actual divisor, +2 */ .rd_min = 24, .rd_max = 24, .s2div = icst525_s2div, .idx2s = icst525_idx2s, }; static const struct icst_params icst525_ap_sys_params = { .vco_max = ICST525_VCO_MAX_5V, .vco_min = ICST525_VCO_MIN, /* Minimum 3 MHz, VDW = 4 */ .vd_min = 3, /* Maximum 50 MHz, VDW = 192 */ .vd_max = 50, /* r is hardcoded to 46 and this is the actual divisor, +2 */ .rd_min = 48, .rd_max = 48, .s2div = icst525_s2div, .idx2s = icst525_idx2s, }; static const struct icst_params icst525_ap_pci_params = { .vco_max = ICST525_VCO_MAX_5V, .vco_min = ICST525_VCO_MIN, /* Minimum 25 MHz */ .vd_min = 25, /* Maximum 33 MHz */ .vd_max = 33, /* r is hardcoded to 14 or 22 and this is the actual divisors +2 */ .rd_min = 16, .rd_max = 24, .s2div = icst525_s2div, .idx2s = icst525_idx2s, }; static void __init of_syscon_icst_setup(struct device_node *np) { struct device_node *parent; struct regmap *map; struct clk_icst_desc icst_desc; const char *name; const char *parent_name; struct clk *regclk; enum icst_control_type ctype; /* We do not release this reference, we are using it perpetually */ parent = of_get_parent(np); if (!parent) { pr_err("no parent node for syscon ICST clock\n"); return; } map = syscon_node_to_regmap(parent); if (IS_ERR(map)) { pr_err("no regmap for syscon ICST clock parent\n"); return; } if (of_property_read_u32(np, "reg", &icst_desc.vco_offset) && of_property_read_u32(np, "vco-offset", &icst_desc.vco_offset)) { pr_err("no VCO register offset for ICST clock\n"); return; } if (of_property_read_u32(np, "lock-offset", &icst_desc.lock_offset)) { pr_err("no lock register offset for ICST clock\n"); return; } if (of_device_is_compatible(np, "arm,syscon-icst525")) { icst_desc.params = &icst525_params; ctype = ICST_VERSATILE; } else if (of_device_is_compatible(np, "arm,syscon-icst307")) { icst_desc.params = &icst307_params; ctype = ICST_VERSATILE; } else if (of_device_is_compatible(np, "arm,syscon-icst525-integratorap-cm")) { icst_desc.params = &icst525_apcp_cm_params; ctype = ICST_INTEGRATOR_AP_CM; } else if (of_device_is_compatible(np, "arm,syscon-icst525-integratorap-sys")) { icst_desc.params = &icst525_ap_sys_params; ctype = ICST_INTEGRATOR_AP_SYS; } else if (of_device_is_compatible(np, "arm,syscon-icst525-integratorap-pci")) { icst_desc.params = &icst525_ap_pci_params; ctype = ICST_INTEGRATOR_AP_PCI; } else if (of_device_is_compatible(np, "arm,syscon-icst525-integratorcp-cm-core")) { icst_desc.params = &icst525_apcp_cm_params; ctype = ICST_INTEGRATOR_CP_CM_CORE; } else if (of_device_is_compatible(np, "arm,syscon-icst525-integratorcp-cm-mem")) { icst_desc.params = &icst525_apcp_cm_params; ctype = ICST_INTEGRATOR_CP_CM_MEM; } else { pr_err("unknown ICST clock %pOF\n", np); return; } /* Parent clock name is not the same as node parent */ parent_name = of_clk_get_parent_name(np, 0); name = kasprintf(GFP_KERNEL, "%pOFP", np); regclk = icst_clk_setup(NULL, &icst_desc, name, parent_name, map, ctype); if (IS_ERR(regclk)) { pr_err("error setting up syscon ICST clock %s\n", name); kfree(name); return; } of_clk_add_provider(np, of_clk_src_simple_get, regclk); pr_debug("registered syscon ICST clock %s\n", name); } CLK_OF_DECLARE(arm_syscon_icst525_clk, "arm,syscon-icst525", of_syscon_icst_setup); CLK_OF_DECLARE(arm_syscon_icst307_clk, "arm,syscon-icst307", of_syscon_icst_setup); CLK_OF_DECLARE(arm_syscon_integratorap_cm_clk, "arm,syscon-icst525-integratorap-cm", of_syscon_icst_setup); CLK_OF_DECLARE(arm_syscon_integratorap_sys_clk, "arm,syscon-icst525-integratorap-sys", of_syscon_icst_setup); CLK_OF_DECLARE(arm_syscon_integratorap_pci_clk, "arm,syscon-icst525-integratorap-pci", of_syscon_icst_setup); CLK_OF_DECLARE(arm_syscon_integratorcp_cm_core_clk, "arm,syscon-icst525-integratorcp-cm-core", of_syscon_icst_setup); CLK_OF_DECLARE(arm_syscon_integratorcp_cm_mem_clk, "arm,syscon-icst525-integratorcp-cm-mem", of_syscon_icst_setup); #endif
linux-master
drivers/clk/versatile/clk-icst.c
// SPDX-License-Identifier: GPL-2.0-only /* * * Copyright (C) 2012 ARM Limited */ #include <linux/clkdev.h> #include <linux/clk-provider.h> #include <linux/err.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/vexpress.h> struct vexpress_osc { struct regmap *reg; struct clk_hw hw; unsigned long rate_min; unsigned long rate_max; }; #define to_vexpress_osc(osc) container_of(osc, struct vexpress_osc, hw) static unsigned long vexpress_osc_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct vexpress_osc *osc = to_vexpress_osc(hw); u32 rate; regmap_read(osc->reg, 0, &rate); return rate; } static long vexpress_osc_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { struct vexpress_osc *osc = to_vexpress_osc(hw); if (osc->rate_min && rate < osc->rate_min) rate = osc->rate_min; if (osc->rate_max && rate > osc->rate_max) rate = osc->rate_max; return rate; } static int vexpress_osc_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct vexpress_osc *osc = to_vexpress_osc(hw); return regmap_write(osc->reg, 0, rate); } static const struct clk_ops vexpress_osc_ops = { .recalc_rate = vexpress_osc_recalc_rate, .round_rate = vexpress_osc_round_rate, .set_rate = vexpress_osc_set_rate, }; static int vexpress_osc_probe(struct platform_device *pdev) { struct clk_init_data init; struct vexpress_osc *osc; u32 range[2]; int ret; osc = devm_kzalloc(&pdev->dev, sizeof(*osc), GFP_KERNEL); if (!osc) return -ENOMEM; osc->reg = devm_regmap_init_vexpress_config(&pdev->dev); if (IS_ERR(osc->reg)) return PTR_ERR(osc->reg); if (of_property_read_u32_array(pdev->dev.of_node, "freq-range", range, ARRAY_SIZE(range)) == 0) { osc->rate_min = range[0]; osc->rate_max = range[1]; } if (of_property_read_string(pdev->dev.of_node, "clock-output-names", &init.name) != 0) init.name = dev_name(&pdev->dev); init.ops = &vexpress_osc_ops; init.flags = 0; init.num_parents = 0; osc->hw.init = &init; ret = devm_clk_hw_register(&pdev->dev, &osc->hw); if (ret < 0) return ret; devm_of_clk_add_hw_provider(&pdev->dev, of_clk_hw_simple_get, &osc->hw); clk_hw_set_rate_range(&osc->hw, osc->rate_min, osc->rate_max); dev_dbg(&pdev->dev, "Registered clock '%s'\n", init.name); return 0; } static const struct of_device_id vexpress_osc_of_match[] = { { .compatible = "arm,vexpress-osc", }, {} }; MODULE_DEVICE_TABLE(of, vexpress_osc_of_match); static struct platform_driver vexpress_osc_driver = { .driver = { .name = "vexpress-osc", .of_match_table = vexpress_osc_of_match, }, .probe = vexpress_osc_probe, }; module_platform_driver(vexpress_osc_driver); MODULE_LICENSE("GPL v2");
linux-master
drivers/clk/versatile/clk-vexpress-osc.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2015 Altera Corporation. All rights reserved */ #include <linux/slab.h> #include <linux/clk-provider.h> #include <linux/io.h> #include <linux/mfd/syscon.h> #include <linux/of.h> #include <linux/regmap.h> #include "clk.h" #define streq(a, b) (strcmp((a), (b)) == 0) #define to_socfpga_gate_clk(p) container_of(p, struct socfpga_gate_clk, hw.hw) /* SDMMC Group for System Manager defines */ #define SYSMGR_SDMMCGRP_CTRL_OFFSET 0x28 static unsigned long socfpga_gate_clk_recalc_rate(struct clk_hw *hwclk, unsigned long parent_rate) { struct socfpga_gate_clk *socfpgaclk = to_socfpga_gate_clk(hwclk); u32 div = 1, val; if (socfpgaclk->fixed_div) div = socfpgaclk->fixed_div; else if (socfpgaclk->div_reg) { val = readl(socfpgaclk->div_reg) >> socfpgaclk->shift; val &= GENMASK(socfpgaclk->width - 1, 0); div = (1 << val); } return parent_rate / div; } static struct clk_ops gateclk_ops = { .recalc_rate = socfpga_gate_clk_recalc_rate, }; static void __init __socfpga_gate_init(struct device_node *node, const struct clk_ops *ops) { u32 clk_gate[2]; u32 div_reg[3]; u32 fixed_div; struct clk_hw *hw_clk; struct socfpga_gate_clk *socfpga_clk; const char *clk_name = node->name; const char *parent_name[SOCFPGA_MAX_PARENTS]; struct clk_init_data init; int rc; socfpga_clk = kzalloc(sizeof(*socfpga_clk), GFP_KERNEL); if (WARN_ON(!socfpga_clk)) return; rc = of_property_read_u32_array(node, "clk-gate", clk_gate, 2); if (rc) clk_gate[0] = 0; if (clk_gate[0]) { socfpga_clk->hw.reg = clk_mgr_a10_base_addr + clk_gate[0]; socfpga_clk->hw.bit_idx = clk_gate[1]; gateclk_ops.enable = clk_gate_ops.enable; gateclk_ops.disable = clk_gate_ops.disable; } rc = of_property_read_u32(node, "fixed-divider", &fixed_div); if (rc) socfpga_clk->fixed_div = 0; else socfpga_clk->fixed_div = fixed_div; rc = of_property_read_u32_array(node, "div-reg", div_reg, 3); if (!rc) { socfpga_clk->div_reg = clk_mgr_a10_base_addr + div_reg[0]; socfpga_clk->shift = div_reg[1]; socfpga_clk->width = div_reg[2]; } else { socfpga_clk->div_reg = NULL; } of_property_read_string(node, "clock-output-names", &clk_name); init.name = clk_name; init.ops = ops; init.flags = 0; init.num_parents = of_clk_parent_fill(node, parent_name, SOCFPGA_MAX_PARENTS); init.parent_names = parent_name; socfpga_clk->hw.hw.init = &init; hw_clk = &socfpga_clk->hw.hw; rc = clk_hw_register(NULL, hw_clk); if (rc) { pr_err("Could not register clock:%s\n", clk_name); goto err_clk_hw_register; } rc = of_clk_add_hw_provider(node, of_clk_hw_simple_get, hw_clk); if (rc) { pr_err("Could not register clock provider for node:%s\n", clk_name); goto err_of_clk_add_hw_provider; } return; err_of_clk_add_hw_provider: clk_hw_unregister(hw_clk); err_clk_hw_register: kfree(socfpga_clk); } void __init socfpga_a10_gate_init(struct device_node *node) { __socfpga_gate_init(node, &gateclk_ops); }
linux-master
drivers/clk/socfpga/clk-gate-a10.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2017, Intel Corporation */ #include <linux/clk-provider.h> #include <linux/io.h> #include <linux/slab.h> #include "stratix10-clk.h" #include "clk.h" #define SOCFPGA_CS_PDBG_CLK "cs_pdbg_clk" #define to_socfpga_gate_clk(p) container_of(p, struct socfpga_gate_clk, hw.hw) #define SOCFPGA_EMAC0_CLK "emac0_clk" #define SOCFPGA_EMAC1_CLK "emac1_clk" #define SOCFPGA_EMAC2_CLK "emac2_clk" #define AGILEX_BYPASS_OFFSET 0xC #define STRATIX10_BYPASS_OFFSET 0x2C #define BOOTCLK_BYPASS 2 static unsigned long socfpga_gate_clk_recalc_rate(struct clk_hw *hwclk, unsigned long parent_rate) { struct socfpga_gate_clk *socfpgaclk = to_socfpga_gate_clk(hwclk); u32 div = 1, val; if (socfpgaclk->fixed_div) { div = socfpgaclk->fixed_div; } else if (socfpgaclk->div_reg) { val = readl(socfpgaclk->div_reg) >> socfpgaclk->shift; val &= GENMASK(socfpgaclk->width - 1, 0); div = (1 << val); } return parent_rate / div; } static unsigned long socfpga_dbg_clk_recalc_rate(struct clk_hw *hwclk, unsigned long parent_rate) { struct socfpga_gate_clk *socfpgaclk = to_socfpga_gate_clk(hwclk); u32 div, val; val = readl(socfpgaclk->div_reg) >> socfpgaclk->shift; val &= GENMASK(socfpgaclk->width - 1, 0); div = (1 << val); div = div ? 4 : 1; return parent_rate / div; } static u8 socfpga_gate_get_parent(struct clk_hw *hwclk) { struct socfpga_gate_clk *socfpgaclk = to_socfpga_gate_clk(hwclk); u32 mask, second_bypass; u8 parent = 0; const char *name = clk_hw_get_name(hwclk); if (socfpgaclk->bypass_reg) { mask = (0x1 << socfpgaclk->bypass_shift); parent = ((readl(socfpgaclk->bypass_reg) & mask) >> socfpgaclk->bypass_shift); } if (streq(name, SOCFPGA_EMAC0_CLK) || streq(name, SOCFPGA_EMAC1_CLK) || streq(name, SOCFPGA_EMAC2_CLK)) { second_bypass = readl(socfpgaclk->bypass_reg - STRATIX10_BYPASS_OFFSET); /* EMACA bypass to bootclk @0xB0 offset */ if (second_bypass & 0x1) if (parent == 0) /* only applicable if parent is maca */ parent = BOOTCLK_BYPASS; if (second_bypass & 0x2) if (parent == 1) /* only applicable if parent is macb */ parent = BOOTCLK_BYPASS; } return parent; } static u8 socfpga_agilex_gate_get_parent(struct clk_hw *hwclk) { struct socfpga_gate_clk *socfpgaclk = to_socfpga_gate_clk(hwclk); u32 mask, second_bypass; u8 parent = 0; const char *name = clk_hw_get_name(hwclk); if (socfpgaclk->bypass_reg) { mask = (0x1 << socfpgaclk->bypass_shift); parent = ((readl(socfpgaclk->bypass_reg) & mask) >> socfpgaclk->bypass_shift); } if (streq(name, SOCFPGA_EMAC0_CLK) || streq(name, SOCFPGA_EMAC1_CLK) || streq(name, SOCFPGA_EMAC2_CLK)) { second_bypass = readl(socfpgaclk->bypass_reg - AGILEX_BYPASS_OFFSET); /* EMACA bypass to bootclk @0x88 offset */ if (second_bypass & 0x1) if (parent == 0) /* only applicable if parent is maca */ parent = BOOTCLK_BYPASS; if (second_bypass & 0x2) if (parent == 1) /* only applicable if parent is macb */ parent = BOOTCLK_BYPASS; } return parent; } static struct clk_ops gateclk_ops = { .recalc_rate = socfpga_gate_clk_recalc_rate, .get_parent = socfpga_gate_get_parent, }; static const struct clk_ops agilex_gateclk_ops = { .recalc_rate = socfpga_gate_clk_recalc_rate, .get_parent = socfpga_agilex_gate_get_parent, }; static const struct clk_ops dbgclk_ops = { .recalc_rate = socfpga_dbg_clk_recalc_rate, .get_parent = socfpga_gate_get_parent, }; struct clk_hw *s10_register_gate(const struct stratix10_gate_clock *clks, void __iomem *regbase) { struct clk_hw *hw_clk; struct socfpga_gate_clk *socfpga_clk; struct clk_init_data init; const char *parent_name = clks->parent_name; int ret; socfpga_clk = kzalloc(sizeof(*socfpga_clk), GFP_KERNEL); if (!socfpga_clk) return NULL; socfpga_clk->hw.reg = regbase + clks->gate_reg; socfpga_clk->hw.bit_idx = clks->gate_idx; gateclk_ops.enable = clk_gate_ops.enable; gateclk_ops.disable = clk_gate_ops.disable; socfpga_clk->fixed_div = clks->fixed_div; if (clks->div_reg) socfpga_clk->div_reg = regbase + clks->div_reg; else socfpga_clk->div_reg = NULL; socfpga_clk->width = clks->div_width; socfpga_clk->shift = clks->div_offset; if (clks->bypass_reg) socfpga_clk->bypass_reg = regbase + clks->bypass_reg; else socfpga_clk->bypass_reg = NULL; socfpga_clk->bypass_shift = clks->bypass_shift; if (streq(clks->name, "cs_pdbg_clk")) init.ops = &dbgclk_ops; else init.ops = &gateclk_ops; init.name = clks->name; init.flags = clks->flags; init.num_parents = clks->num_parents; init.parent_names = parent_name ? &parent_name : NULL; if (init.parent_names == NULL) init.parent_data = clks->parent_data; socfpga_clk->hw.hw.init = &init; hw_clk = &socfpga_clk->hw.hw; ret = clk_hw_register(NULL, &socfpga_clk->hw.hw); if (ret) { kfree(socfpga_clk); return ERR_PTR(ret); } return hw_clk; } struct clk_hw *agilex_register_gate(const struct stratix10_gate_clock *clks, void __iomem *regbase) { struct clk_hw *hw_clk; struct socfpga_gate_clk *socfpga_clk; struct clk_init_data init; const char *parent_name = clks->parent_name; int ret; socfpga_clk = kzalloc(sizeof(*socfpga_clk), GFP_KERNEL); if (!socfpga_clk) return NULL; socfpga_clk->hw.reg = regbase + clks->gate_reg; socfpga_clk->hw.bit_idx = clks->gate_idx; gateclk_ops.enable = clk_gate_ops.enable; gateclk_ops.disable = clk_gate_ops.disable; socfpga_clk->fixed_div = clks->fixed_div; if (clks->div_reg) socfpga_clk->div_reg = regbase + clks->div_reg; else socfpga_clk->div_reg = NULL; socfpga_clk->width = clks->div_width; socfpga_clk->shift = clks->div_offset; if (clks->bypass_reg) socfpga_clk->bypass_reg = regbase + clks->bypass_reg; else socfpga_clk->bypass_reg = NULL; socfpga_clk->bypass_shift = clks->bypass_shift; if (streq(clks->name, "cs_pdbg_clk")) init.ops = &dbgclk_ops; else init.ops = &agilex_gateclk_ops; init.name = clks->name; init.flags = clks->flags; init.num_parents = clks->num_parents; init.parent_names = parent_name ? &parent_name : NULL; if (init.parent_names == NULL) init.parent_data = clks->parent_data; socfpga_clk->hw.hw.init = &init; hw_clk = &socfpga_clk->hw.hw; ret = clk_hw_register(NULL, &socfpga_clk->hw.hw); if (ret) { kfree(socfpga_clk); return ERR_PTR(ret); } return hw_clk; }
linux-master
drivers/clk/socfpga/clk-gate-s10.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2015 Altera Corporation. All rights reserved */ #include <linux/slab.h> #include <linux/clk-provider.h> #include <linux/io.h> #include <linux/of.h> #include "clk.h" #define CLK_MGR_FREE_SHIFT 16 #define CLK_MGR_FREE_MASK 0x7 #define SOCFPGA_MPU_FREE_CLK "mpu_free_clk" #define SOCFPGA_NOC_FREE_CLK "noc_free_clk" #define SOCFPGA_SDMMC_FREE_CLK "sdmmc_free_clk" #define to_socfpga_periph_clk(p) container_of(p, struct socfpga_periph_clk, hw.hw) static unsigned long clk_periclk_recalc_rate(struct clk_hw *hwclk, unsigned long parent_rate) { struct socfpga_periph_clk *socfpgaclk = to_socfpga_periph_clk(hwclk); u32 div; if (socfpgaclk->fixed_div) { div = socfpgaclk->fixed_div; } else if (socfpgaclk->div_reg) { div = readl(socfpgaclk->div_reg) >> socfpgaclk->shift; div &= GENMASK(socfpgaclk->width - 1, 0); div += 1; } else { div = ((readl(socfpgaclk->hw.reg) & 0x7ff) + 1); } return parent_rate / div; } static u8 clk_periclk_get_parent(struct clk_hw *hwclk) { struct socfpga_periph_clk *socfpgaclk = to_socfpga_periph_clk(hwclk); u32 clk_src; const char *name = clk_hw_get_name(hwclk); clk_src = readl(socfpgaclk->hw.reg); if (streq(name, SOCFPGA_MPU_FREE_CLK) || streq(name, SOCFPGA_NOC_FREE_CLK) || streq(name, SOCFPGA_SDMMC_FREE_CLK)) return (clk_src >> CLK_MGR_FREE_SHIFT) & CLK_MGR_FREE_MASK; else return 0; } static const struct clk_ops periclk_ops = { .recalc_rate = clk_periclk_recalc_rate, .get_parent = clk_periclk_get_parent, }; static void __init __socfpga_periph_init(struct device_node *node, const struct clk_ops *ops) { u32 reg; struct clk_hw *hw_clk; struct socfpga_periph_clk *periph_clk; const char *clk_name = node->name; const char *parent_name[SOCFPGA_MAX_PARENTS]; struct clk_init_data init; int rc; u32 fixed_div; u32 div_reg[3]; of_property_read_u32(node, "reg", &reg); periph_clk = kzalloc(sizeof(*periph_clk), GFP_KERNEL); if (WARN_ON(!periph_clk)) return; periph_clk->hw.reg = clk_mgr_a10_base_addr + reg; rc = of_property_read_u32_array(node, "div-reg", div_reg, 3); if (!rc) { periph_clk->div_reg = clk_mgr_a10_base_addr + div_reg[0]; periph_clk->shift = div_reg[1]; periph_clk->width = div_reg[2]; } else { periph_clk->div_reg = NULL; } rc = of_property_read_u32(node, "fixed-divider", &fixed_div); if (rc) periph_clk->fixed_div = 0; else periph_clk->fixed_div = fixed_div; of_property_read_string(node, "clock-output-names", &clk_name); init.name = clk_name; init.ops = ops; init.flags = 0; init.num_parents = of_clk_parent_fill(node, parent_name, SOCFPGA_MAX_PARENTS); init.parent_names = parent_name; periph_clk->hw.hw.init = &init; hw_clk = &periph_clk->hw.hw; rc = clk_hw_register(NULL, hw_clk); if (rc) { pr_err("Could not register clock:%s\n", clk_name); goto err_clk_hw_register; } rc = of_clk_add_hw_provider(node, of_clk_hw_simple_get, hw_clk); if (rc) { pr_err("Could not register clock provider for node:%s\n", clk_name); goto err_of_clk_add_hw_provider; } return; err_of_clk_add_hw_provider: clk_hw_unregister(hw_clk); err_clk_hw_register: kfree(periph_clk); } void __init socfpga_a10_periph_init(struct device_node *node) { __socfpga_periph_init(node, &periclk_ops); }
linux-master
drivers/clk/socfpga/clk-periph-a10.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2017, Intel Corporation */ #include <linux/slab.h> #include <linux/clk-provider.h> #include <linux/io.h> #include "stratix10-clk.h" #include "clk.h" #define CLK_MGR_FREE_SHIFT 16 #define CLK_MGR_FREE_MASK 0x7 #define SWCTRLBTCLKSEN_SHIFT 8 #define to_periph_clk(p) container_of(p, struct socfpga_periph_clk, hw.hw) static unsigned long n5x_clk_peri_c_clk_recalc_rate(struct clk_hw *hwclk, unsigned long parent_rate) { struct socfpga_periph_clk *socfpgaclk = to_periph_clk(hwclk); unsigned long div; unsigned long shift = socfpgaclk->shift; u32 val; val = readl(socfpgaclk->hw.reg); val &= (0x1f << shift); div = (val >> shift) + 1; return parent_rate / div; } static unsigned long clk_peri_c_clk_recalc_rate(struct clk_hw *hwclk, unsigned long parent_rate) { struct socfpga_periph_clk *socfpgaclk = to_periph_clk(hwclk); unsigned long div = 1; u32 val; val = readl(socfpgaclk->hw.reg); val &= GENMASK(SWCTRLBTCLKSEN_SHIFT - 1, 0); parent_rate /= val; return parent_rate / div; } static unsigned long clk_peri_cnt_clk_recalc_rate(struct clk_hw *hwclk, unsigned long parent_rate) { struct socfpga_periph_clk *socfpgaclk = to_periph_clk(hwclk); unsigned long div = 1; if (socfpgaclk->fixed_div) { div = socfpgaclk->fixed_div; } else { if (socfpgaclk->hw.reg) div = ((readl(socfpgaclk->hw.reg) & 0x7ff) + 1); } return parent_rate / div; } static u8 clk_periclk_get_parent(struct clk_hw *hwclk) { struct socfpga_periph_clk *socfpgaclk = to_periph_clk(hwclk); u32 clk_src, mask; u8 parent = 0; /* handle the bypass first */ if (socfpgaclk->bypass_reg) { mask = (0x1 << socfpgaclk->bypass_shift); parent = ((readl(socfpgaclk->bypass_reg) & mask) >> socfpgaclk->bypass_shift); if (parent) return parent; } if (socfpgaclk->hw.reg) { clk_src = readl(socfpgaclk->hw.reg); parent = (clk_src >> CLK_MGR_FREE_SHIFT) & CLK_MGR_FREE_MASK; } return parent; } static const struct clk_ops n5x_peri_c_clk_ops = { .recalc_rate = n5x_clk_peri_c_clk_recalc_rate, .get_parent = clk_periclk_get_parent, }; static const struct clk_ops peri_c_clk_ops = { .recalc_rate = clk_peri_c_clk_recalc_rate, .get_parent = clk_periclk_get_parent, }; static const struct clk_ops peri_cnt_clk_ops = { .recalc_rate = clk_peri_cnt_clk_recalc_rate, .get_parent = clk_periclk_get_parent, }; struct clk_hw *s10_register_periph(const struct stratix10_perip_c_clock *clks, void __iomem *reg) { struct clk_hw *hw_clk; struct socfpga_periph_clk *periph_clk; struct clk_init_data init; const char *name = clks->name; const char *parent_name = clks->parent_name; int ret; periph_clk = kzalloc(sizeof(*periph_clk), GFP_KERNEL); if (WARN_ON(!periph_clk)) return NULL; periph_clk->hw.reg = reg + clks->offset; init.name = name; init.ops = &peri_c_clk_ops; init.flags = clks->flags; init.num_parents = clks->num_parents; init.parent_names = parent_name ? &parent_name : NULL; if (init.parent_names == NULL) init.parent_data = clks->parent_data; periph_clk->hw.hw.init = &init; hw_clk = &periph_clk->hw.hw; ret = clk_hw_register(NULL, hw_clk); if (ret) { kfree(periph_clk); return ERR_PTR(ret); } return hw_clk; } struct clk_hw *n5x_register_periph(const struct n5x_perip_c_clock *clks, void __iomem *regbase) { struct clk_hw *hw_clk; struct socfpga_periph_clk *periph_clk; struct clk_init_data init; const char *name = clks->name; const char *parent_name = clks->parent_name; int ret; periph_clk = kzalloc(sizeof(*periph_clk), GFP_KERNEL); if (WARN_ON(!periph_clk)) return NULL; periph_clk->hw.reg = regbase + clks->offset; periph_clk->shift = clks->shift; init.name = name; init.ops = &n5x_peri_c_clk_ops; init.flags = clks->flags; init.num_parents = clks->num_parents; init.parent_names = parent_name ? &parent_name : NULL; periph_clk->hw.hw.init = &init; hw_clk = &periph_clk->hw.hw; ret = clk_hw_register(NULL, hw_clk); if (ret) { kfree(periph_clk); return ERR_PTR(ret); } return hw_clk; } struct clk_hw *s10_register_cnt_periph(const struct stratix10_perip_cnt_clock *clks, void __iomem *regbase) { struct clk_hw *hw_clk; struct socfpga_periph_clk *periph_clk; struct clk_init_data init; const char *name = clks->name; const char *parent_name = clks->parent_name; int ret; periph_clk = kzalloc(sizeof(*periph_clk), GFP_KERNEL); if (WARN_ON(!periph_clk)) return NULL; if (clks->offset) periph_clk->hw.reg = regbase + clks->offset; else periph_clk->hw.reg = NULL; if (clks->bypass_reg) periph_clk->bypass_reg = regbase + clks->bypass_reg; else periph_clk->bypass_reg = NULL; periph_clk->bypass_shift = clks->bypass_shift; periph_clk->fixed_div = clks->fixed_divider; init.name = name; init.ops = &peri_cnt_clk_ops; init.flags = clks->flags; init.num_parents = clks->num_parents; init.parent_names = parent_name ? &parent_name : NULL; if (init.parent_names == NULL) init.parent_data = clks->parent_data; periph_clk->hw.hw.init = &init; hw_clk = &periph_clk->hw.hw; ret = clk_hw_register(NULL, hw_clk); if (ret) { kfree(periph_clk); return ERR_PTR(ret); } return hw_clk; }
linux-master
drivers/clk/socfpga/clk-periph-s10.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright 2011-2012 Calxeda, Inc. * Copyright (C) 2012-2013 Altera Corporation <www.altera.com> * * Based from clk-highbank.c */ #include <linux/slab.h> #include <linux/clk-provider.h> #include <linux/io.h> #include <linux/of.h> #include <linux/of_address.h> #include "clk.h" /* Clock bypass bits */ #define MAINPLL_BYPASS (1<<0) #define SDRAMPLL_BYPASS (1<<1) #define SDRAMPLL_SRC_BYPASS (1<<2) #define PERPLL_BYPASS (1<<3) #define PERPLL_SRC_BYPASS (1<<4) #define SOCFPGA_PLL_BG_PWRDWN 0 #define SOCFPGA_PLL_EXT_ENA 1 #define SOCFPGA_PLL_PWR_DOWN 2 #define SOCFPGA_PLL_DIVF_MASK 0x0000FFF8 #define SOCFPGA_PLL_DIVF_SHIFT 3 #define SOCFPGA_PLL_DIVQ_MASK 0x003F0000 #define SOCFPGA_PLL_DIVQ_SHIFT 16 #define CLK_MGR_PLL_CLK_SRC_SHIFT 22 #define CLK_MGR_PLL_CLK_SRC_MASK 0x3 #define to_socfpga_clk(p) container_of(p, struct socfpga_pll, hw.hw) void __iomem *clk_mgr_base_addr; static unsigned long clk_pll_recalc_rate(struct clk_hw *hwclk, unsigned long parent_rate) { struct socfpga_pll *socfpgaclk = to_socfpga_clk(hwclk); unsigned long divf, divq, reg; unsigned long long vco_freq; unsigned long bypass; reg = readl(socfpgaclk->hw.reg); bypass = readl(clk_mgr_base_addr + CLKMGR_BYPASS); if (bypass & MAINPLL_BYPASS) return parent_rate; divf = (reg & SOCFPGA_PLL_DIVF_MASK) >> SOCFPGA_PLL_DIVF_SHIFT; divq = (reg & SOCFPGA_PLL_DIVQ_MASK) >> SOCFPGA_PLL_DIVQ_SHIFT; vco_freq = (unsigned long long)parent_rate * (divf + 1); do_div(vco_freq, (1 + divq)); return (unsigned long)vco_freq; } static u8 clk_pll_get_parent(struct clk_hw *hwclk) { u32 pll_src; struct socfpga_pll *socfpgaclk = to_socfpga_clk(hwclk); pll_src = readl(socfpgaclk->hw.reg); return (pll_src >> CLK_MGR_PLL_CLK_SRC_SHIFT) & CLK_MGR_PLL_CLK_SRC_MASK; } static const struct clk_ops clk_pll_ops = { .recalc_rate = clk_pll_recalc_rate, .get_parent = clk_pll_get_parent, }; static void __init __socfpga_pll_init(struct device_node *node, const struct clk_ops *ops) { u32 reg; struct clk_hw *hw_clk; struct socfpga_pll *pll_clk; const char *clk_name = node->name; const char *parent_name[SOCFPGA_MAX_PARENTS]; struct clk_init_data init; struct device_node *clkmgr_np; int rc; of_property_read_u32(node, "reg", &reg); pll_clk = kzalloc(sizeof(*pll_clk), GFP_KERNEL); if (WARN_ON(!pll_clk)) return; clkmgr_np = of_find_compatible_node(NULL, NULL, "altr,clk-mgr"); clk_mgr_base_addr = of_iomap(clkmgr_np, 0); of_node_put(clkmgr_np); BUG_ON(!clk_mgr_base_addr); pll_clk->hw.reg = clk_mgr_base_addr + reg; of_property_read_string(node, "clock-output-names", &clk_name); init.name = clk_name; init.ops = ops; init.flags = 0; init.num_parents = of_clk_parent_fill(node, parent_name, SOCFPGA_MAX_PARENTS); init.parent_names = parent_name; pll_clk->hw.hw.init = &init; pll_clk->hw.bit_idx = SOCFPGA_PLL_EXT_ENA; hw_clk = &pll_clk->hw.hw; rc = clk_hw_register(NULL, hw_clk); if (rc) { pr_err("Could not register clock:%s\n", clk_name); goto err_clk_hw_register; } rc = of_clk_add_hw_provider(node, of_clk_hw_simple_get, hw_clk); if (rc) { pr_err("Could not register clock provider for node:%s\n", clk_name); goto err_of_clk_add_hw_provider; } return; err_of_clk_add_hw_provider: clk_hw_unregister(hw_clk); err_clk_hw_register: kfree(pll_clk); } void __init socfpga_pll_init(struct device_node *node) { __socfpga_pll_init(node, &clk_pll_ops); }
linux-master
drivers/clk/socfpga/clk-pll.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2017, Intel Corporation */ #include <linux/slab.h> #include <linux/clk-provider.h> #include <linux/of.h> #include <linux/platform_device.h> #include <dt-bindings/clock/stratix10-clock.h> #include "stratix10-clk.h" static const struct clk_parent_data pll_mux[] = { { .fw_name = "osc1", .name = "osc1" }, { .fw_name = "cb-intosc-hs-div2-clk", .name = "cb-intosc-hs-div2-clk" }, { .fw_name = "f2s-free-clk", .name = "f2s-free-clk" }, }; static const struct clk_parent_data cntr_mux[] = { { .fw_name = "main_pll", .name = "main_pll", }, { .fw_name = "periph_pll", .name = "periph_pll", }, { .fw_name = "osc1", .name = "osc1", }, { .fw_name = "cb-intosc-hs-div2-clk", .name = "cb-intosc-hs-div2-clk", }, { .fw_name = "f2s-free-clk", .name = "f2s-free-clk", }, }; static const struct clk_parent_data boot_mux[] = { { .fw_name = "osc1", .name = "osc1" }, { .fw_name = "cb-intosc-hs-div2-clk", .name = "cb-intosc-hs-div2-clk" }, }; static const struct clk_parent_data noc_free_mux[] = { { .fw_name = "main_noc_base_clk", .name = "main_noc_base_clk", }, { .fw_name = "peri_noc_base_clk", .name = "peri_noc_base_clk", }, { .fw_name = "osc1", .name = "osc1", }, { .fw_name = "cb-intosc-hs-div2-clk", .name = "cb-intosc-hs-div2-clk", }, { .fw_name = "f2s-free-clk", .name = "f2s-free-clk", }, }; static const struct clk_parent_data emaca_free_mux[] = { { .fw_name = "peri_emaca_clk", .name = "peri_emaca_clk", }, { .fw_name = "boot_clk", .name = "boot_clk", }, }; static const struct clk_parent_data emacb_free_mux[] = { { .fw_name = "peri_emacb_clk", .name = "peri_emacb_clk", }, { .fw_name = "boot_clk", .name = "boot_clk", }, }; static const struct clk_parent_data emac_ptp_free_mux[] = { { .fw_name = "peri_emac_ptp_clk", .name = "peri_emac_ptp_clk", }, { .fw_name = "boot_clk", .name = "boot_clk", }, }; static const struct clk_parent_data gpio_db_free_mux[] = { { .fw_name = "peri_gpio_db_clk", .name = "peri_gpio_db_clk", }, { .fw_name = "boot_clk", .name = "boot_clk", }, }; static const struct clk_parent_data sdmmc_free_mux[] = { { .fw_name = "main_sdmmc_clk", .name = "main_sdmmc_clk", }, { .fw_name = "boot_clk", .name = "boot_clk", }, }; static const struct clk_parent_data s2f_usr1_free_mux[] = { { .fw_name = "peri_s2f_usr1_clk", .name = "peri_s2f_usr1_clk", }, { .fw_name = "boot_clk", .name = "boot_clk", }, }; static const struct clk_parent_data psi_ref_free_mux[] = { { .fw_name = "peri_psi_ref_clk", .name = "peri_psi_ref_clk", }, { .fw_name = "boot_clk", .name = "boot_clk", }, }; static const struct clk_parent_data mpu_mux[] = { { .fw_name = "mpu_free_clk", .name = "mpu_free_clk", }, { .fw_name = "boot_clk", .name = "boot_clk", }, }; static const struct clk_parent_data s2f_usr0_mux[] = { { .fw_name = "f2s-free-clk", .name = "f2s-free-clk", }, { .fw_name = "boot_clk", .name = "boot_clk", }, }; static const struct clk_parent_data emac_mux[] = { { .fw_name = "emaca_free_clk", .name = "emaca_free_clk", }, { .fw_name = "emacb_free_clk", .name = "emacb_free_clk", }, }; static const struct clk_parent_data noc_mux[] = { { .fw_name = "noc_free_clk", .name = "noc_free_clk", }, { .fw_name = "boot_clk", .name = "boot_clk", }, }; static const struct clk_parent_data mpu_free_mux[] = { { .fw_name = "main_mpu_base_clk", .name = "main_mpu_base_clk", }, { .fw_name = "peri_mpu_base_clk", .name = "peri_mpu_base_clk", }, { .fw_name = "osc1", .name = "osc1", }, { .fw_name = "cb-intosc-hs-div2-clk", .name = "cb-intosc-hs-div2-clk", }, { .fw_name = "f2s-free-clk", .name = "f2s-free-clk", }, }; static const struct clk_parent_data sdmmc_mux[] = { { .fw_name = "sdmmc_free_clk", .name = "sdmmc_free_clk", }, { .fw_name = "boot_clk", .name = "boot_clk", }, }; static const struct clk_parent_data s2f_user1_mux[] = { { .fw_name = "s2f_user1_free_clk", .name = "s2f_user1_free_clk", }, { .fw_name = "boot_clk", .name = "boot_clk", }, }; static const struct clk_parent_data psi_mux[] = { { .fw_name = "psi_ref_free_clk", .name = "psi_ref_free_clk", }, { .fw_name = "boot_clk", .name = "boot_clk", }, }; static const struct clk_parent_data gpio_db_mux[] = { { .fw_name = "gpio_db_free_clk", .name = "gpio_db_free_clk", }, { .fw_name = "boot_clk", .name = "boot_clk", }, }; static const struct clk_parent_data emac_ptp_mux[] = { { .fw_name = "emac_ptp_free_clk", .name = "emac_ptp_free_clk", }, { .fw_name = "boot_clk", .name = "boot_clk", }, }; /* clocks in AO (always on) controller */ static const struct stratix10_pll_clock s10_pll_clks[] = { { STRATIX10_BOOT_CLK, "boot_clk", boot_mux, ARRAY_SIZE(boot_mux), 0, 0x0}, { STRATIX10_MAIN_PLL_CLK, "main_pll", pll_mux, ARRAY_SIZE(pll_mux), 0, 0x74}, { STRATIX10_PERIPH_PLL_CLK, "periph_pll", pll_mux, ARRAY_SIZE(pll_mux), 0, 0xe4}, }; static const struct stratix10_perip_c_clock s10_main_perip_c_clks[] = { { STRATIX10_MAIN_MPU_BASE_CLK, "main_mpu_base_clk", "main_pll", NULL, 1, 0, 0x84}, { STRATIX10_MAIN_NOC_BASE_CLK, "main_noc_base_clk", "main_pll", NULL, 1, 0, 0x88}, { STRATIX10_PERI_MPU_BASE_CLK, "peri_mpu_base_clk", "periph_pll", NULL, 1, 0, 0xF4}, { STRATIX10_PERI_NOC_BASE_CLK, "peri_noc_base_clk", "periph_pll", NULL, 1, 0, 0xF8}, }; static const struct stratix10_perip_cnt_clock s10_main_perip_cnt_clks[] = { { STRATIX10_MPU_FREE_CLK, "mpu_free_clk", NULL, mpu_free_mux, ARRAY_SIZE(mpu_free_mux), 0, 0x48, 0, 0, 0}, { STRATIX10_NOC_FREE_CLK, "noc_free_clk", NULL, noc_free_mux, ARRAY_SIZE(noc_free_mux), 0, 0x4C, 0, 0x3C, 1}, { STRATIX10_MAIN_EMACA_CLK, "main_emaca_clk", "main_noc_base_clk", NULL, 1, 0, 0x50, 0, 0, 0}, { STRATIX10_MAIN_EMACB_CLK, "main_emacb_clk", "main_noc_base_clk", NULL, 1, 0, 0x54, 0, 0, 0}, { STRATIX10_MAIN_EMAC_PTP_CLK, "main_emac_ptp_clk", "main_noc_base_clk", NULL, 1, 0, 0x58, 0, 0, 0}, { STRATIX10_MAIN_GPIO_DB_CLK, "main_gpio_db_clk", "main_noc_base_clk", NULL, 1, 0, 0x5C, 0, 0, 0}, { STRATIX10_MAIN_SDMMC_CLK, "main_sdmmc_clk", "main_noc_base_clk", NULL, 1, 0, 0x60, 0, 0, 0}, { STRATIX10_MAIN_S2F_USR0_CLK, "main_s2f_usr0_clk", NULL, cntr_mux, ARRAY_SIZE(cntr_mux), 0, 0x64, 0, 0, 0}, { STRATIX10_MAIN_S2F_USR1_CLK, "main_s2f_usr1_clk", "main_noc_base_clk", NULL, 1, 0, 0x68, 0, 0, 0}, { STRATIX10_MAIN_PSI_REF_CLK, "main_psi_ref_clk", "main_noc_base_clk", NULL, 1, 0, 0x6C, 0, 0, 0}, { STRATIX10_PERI_EMACA_CLK, "peri_emaca_clk", NULL, cntr_mux, ARRAY_SIZE(cntr_mux), 0, 0xBC, 0, 0, 0}, { STRATIX10_PERI_EMACB_CLK, "peri_emacb_clk", NULL, cntr_mux, ARRAY_SIZE(cntr_mux), 0, 0xC0, 0, 0, 0}, { STRATIX10_PERI_EMAC_PTP_CLK, "peri_emac_ptp_clk", NULL, cntr_mux, ARRAY_SIZE(cntr_mux), 0, 0xC4, 0, 0, 0}, { STRATIX10_PERI_GPIO_DB_CLK, "peri_gpio_db_clk", NULL, cntr_mux, ARRAY_SIZE(cntr_mux), 0, 0xC8, 0, 0, 0}, { STRATIX10_PERI_SDMMC_CLK, "peri_sdmmc_clk", NULL, cntr_mux, ARRAY_SIZE(cntr_mux), 0, 0xCC, 0, 0, 0}, { STRATIX10_PERI_S2F_USR0_CLK, "peri_s2f_usr0_clk", "peri_noc_base_clk", NULL, 1, 0, 0xD0, 0, 0, 0}, { STRATIX10_PERI_S2F_USR1_CLK, "peri_s2f_usr1_clk", NULL, cntr_mux, ARRAY_SIZE(cntr_mux), 0, 0xD4, 0, 0, 0}, { STRATIX10_PERI_PSI_REF_CLK, "peri_psi_ref_clk", "peri_noc_base_clk", NULL, 1, 0, 0xD8, 0, 0, 0}, { STRATIX10_L4_SYS_FREE_CLK, "l4_sys_free_clk", NULL, noc_mux, ARRAY_SIZE(noc_mux), 0, 0, 4, 0x3C, 1}, { STRATIX10_EMAC_A_FREE_CLK, "emaca_free_clk", NULL, emaca_free_mux, ARRAY_SIZE(emaca_free_mux), 0, 0, 2, 0xB0, 0}, { STRATIX10_EMAC_B_FREE_CLK, "emacb_free_clk", NULL, emacb_free_mux, ARRAY_SIZE(emacb_free_mux), 0, 0, 2, 0xB0, 1}, { STRATIX10_EMAC_PTP_FREE_CLK, "emac_ptp_free_clk", NULL, emac_ptp_free_mux, ARRAY_SIZE(emac_ptp_free_mux), 0, 0, 2, 0xB0, 2}, { STRATIX10_GPIO_DB_FREE_CLK, "gpio_db_free_clk", NULL, gpio_db_free_mux, ARRAY_SIZE(gpio_db_free_mux), 0, 0, 0, 0xB0, 3}, { STRATIX10_SDMMC_FREE_CLK, "sdmmc_free_clk", NULL, sdmmc_free_mux, ARRAY_SIZE(sdmmc_free_mux), 0, 0, 0, 0xB0, 4}, { STRATIX10_S2F_USER1_FREE_CLK, "s2f_user1_free_clk", NULL, s2f_usr1_free_mux, ARRAY_SIZE(s2f_usr1_free_mux), 0, 0, 0, 0xB0, 5}, { STRATIX10_PSI_REF_FREE_CLK, "psi_ref_free_clk", NULL, psi_ref_free_mux, ARRAY_SIZE(psi_ref_free_mux), 0, 0, 0, 0xB0, 6}, }; static const struct stratix10_gate_clock s10_gate_clks[] = { { STRATIX10_MPU_CLK, "mpu_clk", NULL, mpu_mux, ARRAY_SIZE(mpu_mux), 0, 0x30, 0, 0, 0, 0, 0x3C, 0, 0}, { STRATIX10_MPU_PERIPH_CLK, "mpu_periph_clk", "mpu_clk", NULL, 1, 0, 0x30, 0, 0, 0, 0, 0, 0, 4}, { STRATIX10_MPU_L2RAM_CLK, "mpu_l2ram_clk", "mpu_clk", NULL, 1, 0, 0x30, 0, 0, 0, 0, 0, 0, 2}, { STRATIX10_L4_MAIN_CLK, "l4_main_clk", NULL, noc_mux, ARRAY_SIZE(noc_mux), 0, 0x30, 1, 0x70, 0, 2, 0x3C, 1, 0}, { STRATIX10_L4_MP_CLK, "l4_mp_clk", NULL, noc_mux, ARRAY_SIZE(noc_mux), 0, 0x30, 2, 0x70, 8, 2, 0x3C, 1, 0}, { STRATIX10_L4_SP_CLK, "l4_sp_clk", NULL, noc_mux, ARRAY_SIZE(noc_mux), CLK_IS_CRITICAL, 0x30, 3, 0x70, 16, 2, 0x3C, 1, 0}, { STRATIX10_CS_AT_CLK, "cs_at_clk", NULL, noc_mux, ARRAY_SIZE(noc_mux), 0, 0x30, 4, 0x70, 24, 2, 0x3C, 1, 0}, { STRATIX10_CS_TRACE_CLK, "cs_trace_clk", NULL, noc_mux, ARRAY_SIZE(noc_mux), 0, 0x30, 4, 0x70, 26, 2, 0x3C, 1, 0}, { STRATIX10_CS_PDBG_CLK, "cs_pdbg_clk", "cs_at_clk", NULL, 1, 0, 0x30, 4, 0x70, 28, 1, 0, 0, 0}, { STRATIX10_CS_TIMER_CLK, "cs_timer_clk", NULL, noc_mux, ARRAY_SIZE(noc_mux), 0, 0x30, 5, 0, 0, 0, 0x3C, 1, 0}, { STRATIX10_S2F_USER0_CLK, "s2f_user0_clk", NULL, s2f_usr0_mux, ARRAY_SIZE(s2f_usr0_mux), 0, 0x30, 6, 0, 0, 0, 0, 0, 0}, { STRATIX10_EMAC0_CLK, "emac0_clk", NULL, emac_mux, ARRAY_SIZE(emac_mux), 0, 0xA4, 0, 0, 0, 0, 0xDC, 26, 0}, { STRATIX10_EMAC1_CLK, "emac1_clk", NULL, emac_mux, ARRAY_SIZE(emac_mux), 0, 0xA4, 1, 0, 0, 0, 0xDC, 27, 0}, { STRATIX10_EMAC2_CLK, "emac2_clk", NULL, emac_mux, ARRAY_SIZE(emac_mux), 0, 0xA4, 2, 0, 0, 0, 0xDC, 28, 0}, { STRATIX10_EMAC_PTP_CLK, "emac_ptp_clk", NULL, emac_ptp_mux, ARRAY_SIZE(emac_ptp_mux), 0, 0xA4, 3, 0, 0, 0, 0xB0, 2, 0}, { STRATIX10_GPIO_DB_CLK, "gpio_db_clk", NULL, gpio_db_mux, ARRAY_SIZE(gpio_db_mux), 0, 0xA4, 4, 0xE0, 0, 16, 0xB0, 3, 0}, { STRATIX10_SDMMC_CLK, "sdmmc_clk", NULL, sdmmc_mux, ARRAY_SIZE(sdmmc_mux), 0, 0xA4, 5, 0, 0, 0, 0xB0, 4, 4}, { STRATIX10_S2F_USER1_CLK, "s2f_user1_clk", NULL, s2f_user1_mux, ARRAY_SIZE(s2f_user1_mux), 0, 0xA4, 6, 0, 0, 0, 0xB0, 5, 0}, { STRATIX10_PSI_REF_CLK, "psi_ref_clk", NULL, psi_mux, ARRAY_SIZE(psi_mux), 0, 0xA4, 7, 0, 0, 0, 0xB0, 6, 0}, { STRATIX10_USB_CLK, "usb_clk", "l4_mp_clk", NULL, 1, 0, 0xA4, 8, 0, 0, 0, 0, 0, 0}, { STRATIX10_SPI_M_CLK, "spi_m_clk", "l4_mp_clk", NULL, 1, 0, 0xA4, 9, 0, 0, 0, 0, 0, 0}, { STRATIX10_NAND_X_CLK, "nand_x_clk", "l4_mp_clk", NULL, 1, 0, 0xA4, 10, 0, 0, 0, 0, 0, 0}, { STRATIX10_NAND_CLK, "nand_clk", "nand_x_clk", NULL, 1, 0, 0xA4, 10, 0, 0, 0, 0, 0, 4}, { STRATIX10_NAND_ECC_CLK, "nand_ecc_clk", "nand_x_clk", NULL, 1, 0, 0xA4, 10, 0, 0, 0, 0, 0, 4}, }; static int s10_clk_register_c_perip(const struct stratix10_perip_c_clock *clks, int nums, struct stratix10_clock_data *data) { struct clk_hw *hw_clk; void __iomem *base = data->base; int i; for (i = 0; i < nums; i++) { hw_clk = s10_register_periph(&clks[i], base); if (IS_ERR(hw_clk)) { pr_err("%s: failed to register clock %s\n", __func__, clks[i].name); continue; } data->clk_data.hws[clks[i].id] = hw_clk; } return 0; } static int s10_clk_register_cnt_perip(const struct stratix10_perip_cnt_clock *clks, int nums, struct stratix10_clock_data *data) { struct clk_hw *hw_clk; void __iomem *base = data->base; int i; for (i = 0; i < nums; i++) { hw_clk = s10_register_cnt_periph(&clks[i], base); if (IS_ERR(hw_clk)) { pr_err("%s: failed to register clock %s\n", __func__, clks[i].name); continue; } data->clk_data.hws[clks[i].id] = hw_clk; } return 0; } static int s10_clk_register_gate(const struct stratix10_gate_clock *clks, int nums, struct stratix10_clock_data *data) { struct clk_hw *hw_clk; void __iomem *base = data->base; int i; for (i = 0; i < nums; i++) { hw_clk = s10_register_gate(&clks[i], base); if (IS_ERR(hw_clk)) { pr_err("%s: failed to register clock %s\n", __func__, clks[i].name); continue; } data->clk_data.hws[clks[i].id] = hw_clk; } return 0; } static int s10_clk_register_pll(const struct stratix10_pll_clock *clks, int nums, struct stratix10_clock_data *data) { struct clk_hw *hw_clk; void __iomem *base = data->base; int i; for (i = 0; i < nums; i++) { hw_clk = s10_register_pll(&clks[i], base); if (IS_ERR(hw_clk)) { pr_err("%s: failed to register clock %s\n", __func__, clks[i].name); continue; } data->clk_data.hws[clks[i].id] = hw_clk; } return 0; } static int s10_clkmgr_init(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct device *dev = &pdev->dev; struct stratix10_clock_data *clk_data; void __iomem *base; int i, num_clks; base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) { pr_err("%s: failed to map clock registers\n", __func__); return PTR_ERR(base); } num_clks = STRATIX10_NUM_CLKS; clk_data = devm_kzalloc(dev, struct_size(clk_data, clk_data.hws, num_clks), GFP_KERNEL); if (!clk_data) return -ENOMEM; for (i = 0; i < num_clks; i++) clk_data->clk_data.hws[i] = ERR_PTR(-ENOENT); clk_data->base = base; clk_data->clk_data.num = num_clks; s10_clk_register_pll(s10_pll_clks, ARRAY_SIZE(s10_pll_clks), clk_data); s10_clk_register_c_perip(s10_main_perip_c_clks, ARRAY_SIZE(s10_main_perip_c_clks), clk_data); s10_clk_register_cnt_perip(s10_main_perip_cnt_clks, ARRAY_SIZE(s10_main_perip_cnt_clks), clk_data); s10_clk_register_gate(s10_gate_clks, ARRAY_SIZE(s10_gate_clks), clk_data); of_clk_add_hw_provider(np, of_clk_hw_onecell_get, &clk_data->clk_data); return 0; } static int s10_clkmgr_probe(struct platform_device *pdev) { return s10_clkmgr_init(pdev); } static const struct of_device_id stratix10_clkmgr_match_table[] = { { .compatible = "intel,stratix10-clkmgr", .data = s10_clkmgr_init }, { } }; static struct platform_driver stratix10_clkmgr_driver = { .probe = s10_clkmgr_probe, .driver = { .name = "stratix10-clkmgr", .suppress_bind_attrs = true, .of_match_table = stratix10_clkmgr_match_table, }, }; static int __init s10_clk_init(void) { return platform_driver_register(&stratix10_clkmgr_driver); } core_initcall(s10_clk_init);
linux-master
drivers/clk/socfpga/clk-s10.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright 2011-2012 Calxeda, Inc. * Copyright (C) 2012-2013 Altera Corporation <www.altera.com> * * Based from clk-highbank.c */ #include <linux/of.h> #include "clk.h" CLK_OF_DECLARE(socfpga_pll_clk, "altr,socfpga-pll-clock", socfpga_pll_init); CLK_OF_DECLARE(socfpga_perip_clk, "altr,socfpga-perip-clk", socfpga_periph_init); CLK_OF_DECLARE(socfpga_gate_clk, "altr,socfpga-gate-clk", socfpga_gate_init); CLK_OF_DECLARE(socfpga_a10_pll_clk, "altr,socfpga-a10-pll-clock", socfpga_a10_pll_init); CLK_OF_DECLARE(socfpga_a10_perip_clk, "altr,socfpga-a10-perip-clk", socfpga_a10_periph_init); CLK_OF_DECLARE(socfpga_a10_gate_clk, "altr,socfpga-a10-gate-clk", socfpga_a10_gate_init);
linux-master
drivers/clk/socfpga/clk.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright 2011-2012 Calxeda, Inc. * Copyright (C) 2012-2013 Altera Corporation <www.altera.com> * * Based from clk-highbank.c */ #include <linux/slab.h> #include <linux/clk-provider.h> #include <linux/io.h> #include <linux/of.h> #include "clk.h" #define to_socfpga_periph_clk(p) container_of(p, struct socfpga_periph_clk, hw.hw) static unsigned long clk_periclk_recalc_rate(struct clk_hw *hwclk, unsigned long parent_rate) { struct socfpga_periph_clk *socfpgaclk = to_socfpga_periph_clk(hwclk); u32 div, val; if (socfpgaclk->fixed_div) { div = socfpgaclk->fixed_div; } else { if (socfpgaclk->div_reg) { val = readl(socfpgaclk->div_reg) >> socfpgaclk->shift; val &= GENMASK(socfpgaclk->width - 1, 0); parent_rate /= (val + 1); } div = ((readl(socfpgaclk->hw.reg) & 0x1ff) + 1); } return parent_rate / div; } static u8 clk_periclk_get_parent(struct clk_hw *hwclk) { u32 clk_src; clk_src = readl(clk_mgr_base_addr + CLKMGR_DBCTRL); return clk_src & 0x1; } static const struct clk_ops periclk_ops = { .recalc_rate = clk_periclk_recalc_rate, .get_parent = clk_periclk_get_parent, }; static void __init __socfpga_periph_init(struct device_node *node, const struct clk_ops *ops) { u32 reg; struct clk_hw *hw_clk; struct socfpga_periph_clk *periph_clk; const char *clk_name = node->name; const char *parent_name[SOCFPGA_MAX_PARENTS]; struct clk_init_data init; int rc; u32 fixed_div; u32 div_reg[3]; of_property_read_u32(node, "reg", &reg); periph_clk = kzalloc(sizeof(*periph_clk), GFP_KERNEL); if (WARN_ON(!periph_clk)) return; periph_clk->hw.reg = clk_mgr_base_addr + reg; rc = of_property_read_u32_array(node, "div-reg", div_reg, 3); if (!rc) { periph_clk->div_reg = clk_mgr_base_addr + div_reg[0]; periph_clk->shift = div_reg[1]; periph_clk->width = div_reg[2]; } else { periph_clk->div_reg = NULL; } rc = of_property_read_u32(node, "fixed-divider", &fixed_div); if (rc) periph_clk->fixed_div = 0; else periph_clk->fixed_div = fixed_div; of_property_read_string(node, "clock-output-names", &clk_name); init.name = clk_name; init.ops = ops; init.flags = 0; init.num_parents = of_clk_parent_fill(node, parent_name, SOCFPGA_MAX_PARENTS); init.parent_names = parent_name; periph_clk->hw.hw.init = &init; hw_clk = &periph_clk->hw.hw; rc = clk_hw_register(NULL, hw_clk); if (rc) { pr_err("Could not register clock:%s\n", clk_name); goto err_clk_hw_register; } rc = of_clk_add_hw_provider(node, of_clk_hw_simple_get, hw_clk); if (rc) { pr_err("Could not register clock provider for node:%s\n", clk_name); goto err_of_clk_add_hw_provider; } return; err_of_clk_add_hw_provider: clk_hw_unregister(hw_clk); err_clk_hw_register: kfree(periph_clk); } void __init socfpga_periph_init(struct device_node *node) { __socfpga_periph_init(node, &periclk_ops); }
linux-master
drivers/clk/socfpga/clk-periph.c