python_code
stringlengths
0
1.8M
repo_name
stringclasses
7 values
file_path
stringlengths
5
99
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2012 Alexandre Pereira da Silva <[email protected]> */ #include <linux/clk.h> #include <linux/err.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/platform_device.h> #include <linux/pwm.h> #include <linux/slab.h> struct lpc32xx_pwm_chip { struct pwm_chip chip; struct clk *clk; void __iomem *base; }; #define PWM_ENABLE BIT(31) #define PWM_PIN_LEVEL BIT(30) #define to_lpc32xx_pwm_chip(_chip) \ container_of(_chip, struct lpc32xx_pwm_chip, chip) static int lpc32xx_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm, int duty_ns, int period_ns) { struct lpc32xx_pwm_chip *lpc32xx = to_lpc32xx_pwm_chip(chip); unsigned long long c; int period_cycles, duty_cycles; u32 val; c = clk_get_rate(lpc32xx->clk); /* The highest acceptable divisor is 256, which is represented by 0 */ period_cycles = div64_u64(c * period_ns, (unsigned long long)NSEC_PER_SEC * 256); if (!period_cycles || period_cycles > 256) return -ERANGE; if (period_cycles == 256) period_cycles = 0; /* Compute 256 x #duty/period value and care for corner cases */ duty_cycles = div64_u64((unsigned long long)(period_ns - duty_ns) * 256, period_ns); if (!duty_cycles) duty_cycles = 1; if (duty_cycles > 255) duty_cycles = 255; val = readl(lpc32xx->base); val &= ~0xFFFF; val |= (period_cycles << 8) | duty_cycles; writel(val, lpc32xx->base); return 0; } static int lpc32xx_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm) { struct lpc32xx_pwm_chip *lpc32xx = to_lpc32xx_pwm_chip(chip); u32 val; int ret; ret = clk_prepare_enable(lpc32xx->clk); if (ret) return ret; val = readl(lpc32xx->base); val |= PWM_ENABLE; writel(val, lpc32xx->base); return 0; } static void lpc32xx_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm) { struct lpc32xx_pwm_chip *lpc32xx = to_lpc32xx_pwm_chip(chip); u32 val; val = readl(lpc32xx->base); val &= ~PWM_ENABLE; writel(val, lpc32xx->base); clk_disable_unprepare(lpc32xx->clk); } static int lpc32xx_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { int err; if (state->polarity != PWM_POLARITY_NORMAL) return -EINVAL; if (!state->enabled) { if (pwm->state.enabled) lpc32xx_pwm_disable(chip, pwm); return 0; } err = lpc32xx_pwm_config(pwm->chip, pwm, state->duty_cycle, state->period); if (err) return err; if (!pwm->state.enabled) err = lpc32xx_pwm_enable(chip, pwm); return err; } static const struct pwm_ops lpc32xx_pwm_ops = { .apply = lpc32xx_pwm_apply, .owner = THIS_MODULE, }; static int lpc32xx_pwm_probe(struct platform_device *pdev) { struct lpc32xx_pwm_chip *lpc32xx; int ret; u32 val; lpc32xx = devm_kzalloc(&pdev->dev, sizeof(*lpc32xx), GFP_KERNEL); if (!lpc32xx) return -ENOMEM; lpc32xx->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(lpc32xx->base)) return PTR_ERR(lpc32xx->base); lpc32xx->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(lpc32xx->clk)) return PTR_ERR(lpc32xx->clk); lpc32xx->chip.dev = &pdev->dev; lpc32xx->chip.ops = &lpc32xx_pwm_ops; lpc32xx->chip.npwm = 1; /* If PWM is disabled, configure the output to the default value */ val = readl(lpc32xx->base); val &= ~PWM_PIN_LEVEL; writel(val, lpc32xx->base); ret = devm_pwmchip_add(&pdev->dev, &lpc32xx->chip); if (ret < 0) { dev_err(&pdev->dev, "failed to add PWM chip, error %d\n", ret); return ret; } return 0; } static const struct of_device_id lpc32xx_pwm_dt_ids[] = { { .compatible = "nxp,lpc3220-pwm", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, lpc32xx_pwm_dt_ids); static struct platform_driver lpc32xx_pwm_driver = { .driver = { .name = "lpc32xx-pwm", .of_match_table = lpc32xx_pwm_dt_ids, }, .probe = lpc32xx_pwm_probe, }; module_platform_driver(lpc32xx_pwm_driver); MODULE_ALIAS("platform:lpc32xx-pwm"); MODULE_AUTHOR("Alexandre Pereira da Silva <[email protected]>"); MODULE_DESCRIPTION("LPC32XX PWM Driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/pwm/pwm-lpc32xx.c
// SPDX-License-Identifier: GPL-2.0-only /* * Driver for Allwinner sun4i Pulse Width Modulation Controller * * Copyright (C) 2014 Alexandre Belloni <[email protected]> * * Limitations: * - When outputing the source clock directly, the PWM logic will be bypassed * and the currently running period is not guaranteed to be completed */ #include <linux/bitops.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/io.h> #include <linux/jiffies.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pwm.h> #include <linux/reset.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/time.h> #define PWM_CTRL_REG 0x0 #define PWM_CH_PRD_BASE 0x4 #define PWM_CH_PRD_OFFSET 0x4 #define PWM_CH_PRD(ch) (PWM_CH_PRD_BASE + PWM_CH_PRD_OFFSET * (ch)) #define PWMCH_OFFSET 15 #define PWM_PRESCAL_MASK GENMASK(3, 0) #define PWM_PRESCAL_OFF 0 #define PWM_EN BIT(4) #define PWM_ACT_STATE BIT(5) #define PWM_CLK_GATING BIT(6) #define PWM_MODE BIT(7) #define PWM_PULSE BIT(8) #define PWM_BYPASS BIT(9) #define PWM_RDY_BASE 28 #define PWM_RDY_OFFSET 1 #define PWM_RDY(ch) BIT(PWM_RDY_BASE + PWM_RDY_OFFSET * (ch)) #define PWM_PRD(prd) (((prd) - 1) << 16) #define PWM_PRD_MASK GENMASK(15, 0) #define PWM_DTY_MASK GENMASK(15, 0) #define PWM_REG_PRD(reg) ((((reg) >> 16) & PWM_PRD_MASK) + 1) #define PWM_REG_DTY(reg) ((reg) & PWM_DTY_MASK) #define PWM_REG_PRESCAL(reg, chan) (((reg) >> ((chan) * PWMCH_OFFSET)) & PWM_PRESCAL_MASK) #define BIT_CH(bit, chan) ((bit) << ((chan) * PWMCH_OFFSET)) static const u32 prescaler_table[] = { 120, 180, 240, 360, 480, 0, 0, 0, 12000, 24000, 36000, 48000, 72000, 0, 0, 0, /* Actually 1 but tested separately */ }; struct sun4i_pwm_data { bool has_prescaler_bypass; bool has_direct_mod_clk_output; unsigned int npwm; }; struct sun4i_pwm_chip { struct pwm_chip chip; struct clk *bus_clk; struct clk *clk; struct reset_control *rst; void __iomem *base; spinlock_t ctrl_lock; const struct sun4i_pwm_data *data; }; static inline struct sun4i_pwm_chip *to_sun4i_pwm_chip(struct pwm_chip *chip) { return container_of(chip, struct sun4i_pwm_chip, chip); } static inline u32 sun4i_pwm_readl(struct sun4i_pwm_chip *chip, unsigned long offset) { return readl(chip->base + offset); } static inline void sun4i_pwm_writel(struct sun4i_pwm_chip *chip, u32 val, unsigned long offset) { writel(val, chip->base + offset); } static int sun4i_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm, struct pwm_state *state) { struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip); u64 clk_rate, tmp; u32 val; unsigned int prescaler; clk_rate = clk_get_rate(sun4i_pwm->clk); if (!clk_rate) return -EINVAL; val = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG); /* * PWM chapter in H6 manual has a diagram which explains that if bypass * bit is set, no other setting has any meaning. Even more, experiment * proved that also enable bit is ignored in this case. */ if ((val & BIT_CH(PWM_BYPASS, pwm->hwpwm)) && sun4i_pwm->data->has_direct_mod_clk_output) { state->period = DIV_ROUND_UP_ULL(NSEC_PER_SEC, clk_rate); state->duty_cycle = DIV_ROUND_UP_ULL(state->period, 2); state->polarity = PWM_POLARITY_NORMAL; state->enabled = true; return 0; } if ((PWM_REG_PRESCAL(val, pwm->hwpwm) == PWM_PRESCAL_MASK) && sun4i_pwm->data->has_prescaler_bypass) prescaler = 1; else prescaler = prescaler_table[PWM_REG_PRESCAL(val, pwm->hwpwm)]; if (prescaler == 0) return -EINVAL; if (val & BIT_CH(PWM_ACT_STATE, pwm->hwpwm)) state->polarity = PWM_POLARITY_NORMAL; else state->polarity = PWM_POLARITY_INVERSED; if ((val & BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm)) == BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm)) state->enabled = true; else state->enabled = false; val = sun4i_pwm_readl(sun4i_pwm, PWM_CH_PRD(pwm->hwpwm)); tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_DTY(val); state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate); tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_PRD(val); state->period = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate); return 0; } static int sun4i_pwm_calculate(struct sun4i_pwm_chip *sun4i_pwm, const struct pwm_state *state, u32 *dty, u32 *prd, unsigned int *prsclr, bool *bypass) { u64 clk_rate, div = 0; unsigned int prescaler = 0; clk_rate = clk_get_rate(sun4i_pwm->clk); *bypass = sun4i_pwm->data->has_direct_mod_clk_output && state->enabled && (state->period * clk_rate >= NSEC_PER_SEC) && (state->period * clk_rate < 2 * NSEC_PER_SEC) && (state->duty_cycle * clk_rate * 2 >= NSEC_PER_SEC); /* Skip calculation of other parameters if we bypass them */ if (*bypass) return 0; if (sun4i_pwm->data->has_prescaler_bypass) { /* First, test without any prescaler when available */ prescaler = PWM_PRESCAL_MASK; /* * When not using any prescaler, the clock period in nanoseconds * is not an integer so round it half up instead of * truncating to get less surprising values. */ div = clk_rate * state->period + NSEC_PER_SEC / 2; do_div(div, NSEC_PER_SEC); if (div - 1 > PWM_PRD_MASK) prescaler = 0; } if (prescaler == 0) { /* Go up from the first divider */ for (prescaler = 0; prescaler < PWM_PRESCAL_MASK; prescaler++) { unsigned int pval = prescaler_table[prescaler]; if (!pval) continue; div = clk_rate; do_div(div, pval); div = div * state->period; do_div(div, NSEC_PER_SEC); if (div - 1 <= PWM_PRD_MASK) break; } if (div - 1 > PWM_PRD_MASK) return -EINVAL; } *prd = div; div *= state->duty_cycle; do_div(div, state->period); *dty = div; *prsclr = prescaler; return 0; } static int sun4i_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip); struct pwm_state cstate; u32 ctrl, duty = 0, period = 0, val; int ret; unsigned int delay_us, prescaler = 0; bool bypass; pwm_get_state(pwm, &cstate); if (!cstate.enabled) { ret = clk_prepare_enable(sun4i_pwm->clk); if (ret) { dev_err(chip->dev, "failed to enable PWM clock\n"); return ret; } } ret = sun4i_pwm_calculate(sun4i_pwm, state, &duty, &period, &prescaler, &bypass); if (ret) { dev_err(chip->dev, "period exceeds the maximum value\n"); if (!cstate.enabled) clk_disable_unprepare(sun4i_pwm->clk); return ret; } spin_lock(&sun4i_pwm->ctrl_lock); ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG); if (sun4i_pwm->data->has_direct_mod_clk_output) { if (bypass) { ctrl |= BIT_CH(PWM_BYPASS, pwm->hwpwm); /* We can skip other parameter */ sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG); spin_unlock(&sun4i_pwm->ctrl_lock); return 0; } ctrl &= ~BIT_CH(PWM_BYPASS, pwm->hwpwm); } if (PWM_REG_PRESCAL(ctrl, pwm->hwpwm) != prescaler) { /* Prescaler changed, the clock has to be gated */ ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm); sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG); ctrl &= ~BIT_CH(PWM_PRESCAL_MASK, pwm->hwpwm); ctrl |= BIT_CH(prescaler, pwm->hwpwm); } val = (duty & PWM_DTY_MASK) | PWM_PRD(period); sun4i_pwm_writel(sun4i_pwm, val, PWM_CH_PRD(pwm->hwpwm)); if (state->polarity != PWM_POLARITY_NORMAL) ctrl &= ~BIT_CH(PWM_ACT_STATE, pwm->hwpwm); else ctrl |= BIT_CH(PWM_ACT_STATE, pwm->hwpwm); ctrl |= BIT_CH(PWM_CLK_GATING, pwm->hwpwm); if (state->enabled) ctrl |= BIT_CH(PWM_EN, pwm->hwpwm); sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG); spin_unlock(&sun4i_pwm->ctrl_lock); if (state->enabled) return 0; /* We need a full period to elapse before disabling the channel. */ delay_us = DIV_ROUND_UP_ULL(cstate.period, NSEC_PER_USEC); if ((delay_us / 500) > MAX_UDELAY_MS) msleep(delay_us / 1000 + 1); else usleep_range(delay_us, delay_us * 2); spin_lock(&sun4i_pwm->ctrl_lock); ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG); ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm); ctrl &= ~BIT_CH(PWM_EN, pwm->hwpwm); sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG); spin_unlock(&sun4i_pwm->ctrl_lock); clk_disable_unprepare(sun4i_pwm->clk); return 0; } static const struct pwm_ops sun4i_pwm_ops = { .apply = sun4i_pwm_apply, .get_state = sun4i_pwm_get_state, .owner = THIS_MODULE, }; static const struct sun4i_pwm_data sun4i_pwm_dual_nobypass = { .has_prescaler_bypass = false, .npwm = 2, }; static const struct sun4i_pwm_data sun4i_pwm_dual_bypass = { .has_prescaler_bypass = true, .npwm = 2, }; static const struct sun4i_pwm_data sun4i_pwm_single_bypass = { .has_prescaler_bypass = true, .npwm = 1, }; static const struct sun4i_pwm_data sun50i_a64_pwm_data = { .has_prescaler_bypass = true, .has_direct_mod_clk_output = true, .npwm = 1, }; static const struct sun4i_pwm_data sun50i_h6_pwm_data = { .has_prescaler_bypass = true, .has_direct_mod_clk_output = true, .npwm = 2, }; static const struct of_device_id sun4i_pwm_dt_ids[] = { { .compatible = "allwinner,sun4i-a10-pwm", .data = &sun4i_pwm_dual_nobypass, }, { .compatible = "allwinner,sun5i-a10s-pwm", .data = &sun4i_pwm_dual_bypass, }, { .compatible = "allwinner,sun5i-a13-pwm", .data = &sun4i_pwm_single_bypass, }, { .compatible = "allwinner,sun7i-a20-pwm", .data = &sun4i_pwm_dual_bypass, }, { .compatible = "allwinner,sun8i-h3-pwm", .data = &sun4i_pwm_single_bypass, }, { .compatible = "allwinner,sun50i-a64-pwm", .data = &sun50i_a64_pwm_data, }, { .compatible = "allwinner,sun50i-h6-pwm", .data = &sun50i_h6_pwm_data, }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, sun4i_pwm_dt_ids); static int sun4i_pwm_probe(struct platform_device *pdev) { struct sun4i_pwm_chip *sun4ichip; int ret; sun4ichip = devm_kzalloc(&pdev->dev, sizeof(*sun4ichip), GFP_KERNEL); if (!sun4ichip) return -ENOMEM; sun4ichip->data = of_device_get_match_data(&pdev->dev); if (!sun4ichip->data) return -ENODEV; sun4ichip->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(sun4ichip->base)) return PTR_ERR(sun4ichip->base); /* * All hardware variants need a source clock that is divided and * then feeds the counter that defines the output wave form. In the * device tree this clock is either unnamed or called "mod". * Some variants (e.g. H6) need another clock to access the * hardware registers; this is called "bus". * So we request "mod" first (and ignore the corner case that a * parent provides a "mod" clock while the right one would be the * unnamed one of the PWM device) and if this is not found we fall * back to the first clock of the PWM. */ sun4ichip->clk = devm_clk_get_optional(&pdev->dev, "mod"); if (IS_ERR(sun4ichip->clk)) return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->clk), "get mod clock failed\n"); if (!sun4ichip->clk) { sun4ichip->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(sun4ichip->clk)) return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->clk), "get unnamed clock failed\n"); } sun4ichip->bus_clk = devm_clk_get_optional(&pdev->dev, "bus"); if (IS_ERR(sun4ichip->bus_clk)) return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->bus_clk), "get bus clock failed\n"); sun4ichip->rst = devm_reset_control_get_optional_shared(&pdev->dev, NULL); if (IS_ERR(sun4ichip->rst)) return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->rst), "get reset failed\n"); /* Deassert reset */ ret = reset_control_deassert(sun4ichip->rst); if (ret) { dev_err(&pdev->dev, "cannot deassert reset control: %pe\n", ERR_PTR(ret)); return ret; } /* * We're keeping the bus clock on for the sake of simplicity. * Actually it only needs to be on for hardware register accesses. */ ret = clk_prepare_enable(sun4ichip->bus_clk); if (ret) { dev_err(&pdev->dev, "cannot prepare and enable bus_clk %pe\n", ERR_PTR(ret)); goto err_bus; } sun4ichip->chip.dev = &pdev->dev; sun4ichip->chip.ops = &sun4i_pwm_ops; sun4ichip->chip.npwm = sun4ichip->data->npwm; spin_lock_init(&sun4ichip->ctrl_lock); ret = pwmchip_add(&sun4ichip->chip); if (ret < 0) { dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret); goto err_pwm_add; } platform_set_drvdata(pdev, sun4ichip); return 0; err_pwm_add: clk_disable_unprepare(sun4ichip->bus_clk); err_bus: reset_control_assert(sun4ichip->rst); return ret; } static void sun4i_pwm_remove(struct platform_device *pdev) { struct sun4i_pwm_chip *sun4ichip = platform_get_drvdata(pdev); pwmchip_remove(&sun4ichip->chip); clk_disable_unprepare(sun4ichip->bus_clk); reset_control_assert(sun4ichip->rst); } static struct platform_driver sun4i_pwm_driver = { .driver = { .name = "sun4i-pwm", .of_match_table = sun4i_pwm_dt_ids, }, .probe = sun4i_pwm_probe, .remove_new = sun4i_pwm_remove, }; module_platform_driver(sun4i_pwm_driver); MODULE_ALIAS("platform:sun4i-pwm"); MODULE_AUTHOR("Alexandre Belloni <[email protected]>"); MODULE_DESCRIPTION("Allwinner sun4i PWM driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/pwm/pwm-sun4i.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * PWM Controller Driver for HiSilicon BVT SoCs * * Copyright (c) 2016 HiSilicon Technologies Co., Ltd. */ #include <linux/bitops.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pwm.h> #include <linux/reset.h> #define PWM_CFG0_ADDR(x) (((x) * 0x20) + 0x0) #define PWM_CFG1_ADDR(x) (((x) * 0x20) + 0x4) #define PWM_CFG2_ADDR(x) (((x) * 0x20) + 0x8) #define PWM_CTRL_ADDR(x) (((x) * 0x20) + 0xC) #define PWM_ENABLE_SHIFT 0 #define PWM_ENABLE_MASK BIT(0) #define PWM_POLARITY_SHIFT 1 #define PWM_POLARITY_MASK BIT(1) #define PWM_KEEP_SHIFT 2 #define PWM_KEEP_MASK BIT(2) #define PWM_PERIOD_MASK GENMASK(31, 0) #define PWM_DUTY_MASK GENMASK(31, 0) struct hibvt_pwm_chip { struct pwm_chip chip; struct clk *clk; void __iomem *base; struct reset_control *rstc; const struct hibvt_pwm_soc *soc; }; struct hibvt_pwm_soc { u32 num_pwms; bool quirk_force_enable; }; static const struct hibvt_pwm_soc hi3516cv300_soc_info = { .num_pwms = 4, }; static const struct hibvt_pwm_soc hi3519v100_soc_info = { .num_pwms = 8, }; static const struct hibvt_pwm_soc hi3559v100_shub_soc_info = { .num_pwms = 8, .quirk_force_enable = true, }; static const struct hibvt_pwm_soc hi3559v100_soc_info = { .num_pwms = 2, .quirk_force_enable = true, }; static inline struct hibvt_pwm_chip *to_hibvt_pwm_chip(struct pwm_chip *chip) { return container_of(chip, struct hibvt_pwm_chip, chip); } static void hibvt_pwm_set_bits(void __iomem *base, u32 offset, u32 mask, u32 data) { void __iomem *address = base + offset; u32 value; value = readl(address); value &= ~mask; value |= (data & mask); writel(value, address); } static void hibvt_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm) { struct hibvt_pwm_chip *hi_pwm_chip = to_hibvt_pwm_chip(chip); hibvt_pwm_set_bits(hi_pwm_chip->base, PWM_CTRL_ADDR(pwm->hwpwm), PWM_ENABLE_MASK, 0x1); } static void hibvt_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm) { struct hibvt_pwm_chip *hi_pwm_chip = to_hibvt_pwm_chip(chip); hibvt_pwm_set_bits(hi_pwm_chip->base, PWM_CTRL_ADDR(pwm->hwpwm), PWM_ENABLE_MASK, 0x0); } static void hibvt_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm, int duty_cycle_ns, int period_ns) { struct hibvt_pwm_chip *hi_pwm_chip = to_hibvt_pwm_chip(chip); u32 freq, period, duty; freq = div_u64(clk_get_rate(hi_pwm_chip->clk), 1000000); period = div_u64(freq * period_ns, 1000); duty = div_u64(period * duty_cycle_ns, period_ns); hibvt_pwm_set_bits(hi_pwm_chip->base, PWM_CFG0_ADDR(pwm->hwpwm), PWM_PERIOD_MASK, period); hibvt_pwm_set_bits(hi_pwm_chip->base, PWM_CFG1_ADDR(pwm->hwpwm), PWM_DUTY_MASK, duty); } static void hibvt_pwm_set_polarity(struct pwm_chip *chip, struct pwm_device *pwm, enum pwm_polarity polarity) { struct hibvt_pwm_chip *hi_pwm_chip = to_hibvt_pwm_chip(chip); if (polarity == PWM_POLARITY_INVERSED) hibvt_pwm_set_bits(hi_pwm_chip->base, PWM_CTRL_ADDR(pwm->hwpwm), PWM_POLARITY_MASK, (0x1 << PWM_POLARITY_SHIFT)); else hibvt_pwm_set_bits(hi_pwm_chip->base, PWM_CTRL_ADDR(pwm->hwpwm), PWM_POLARITY_MASK, (0x0 << PWM_POLARITY_SHIFT)); } static int hibvt_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm, struct pwm_state *state) { struct hibvt_pwm_chip *hi_pwm_chip = to_hibvt_pwm_chip(chip); void __iomem *base; u32 freq, value; freq = div_u64(clk_get_rate(hi_pwm_chip->clk), 1000000); base = hi_pwm_chip->base; value = readl(base + PWM_CFG0_ADDR(pwm->hwpwm)); state->period = div_u64(value * 1000, freq); value = readl(base + PWM_CFG1_ADDR(pwm->hwpwm)); state->duty_cycle = div_u64(value * 1000, freq); value = readl(base + PWM_CTRL_ADDR(pwm->hwpwm)); state->enabled = (PWM_ENABLE_MASK & value); state->polarity = (PWM_POLARITY_MASK & value) ? PWM_POLARITY_INVERSED : PWM_POLARITY_NORMAL; return 0; } static int hibvt_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { struct hibvt_pwm_chip *hi_pwm_chip = to_hibvt_pwm_chip(chip); if (state->polarity != pwm->state.polarity) hibvt_pwm_set_polarity(chip, pwm, state->polarity); if (state->period != pwm->state.period || state->duty_cycle != pwm->state.duty_cycle) { hibvt_pwm_config(chip, pwm, state->duty_cycle, state->period); /* * Some implementations require the PWM to be enabled twice * each time the duty cycle is refreshed. */ if (hi_pwm_chip->soc->quirk_force_enable && state->enabled) hibvt_pwm_enable(chip, pwm); } if (state->enabled != pwm->state.enabled) { if (state->enabled) hibvt_pwm_enable(chip, pwm); else hibvt_pwm_disable(chip, pwm); } return 0; } static const struct pwm_ops hibvt_pwm_ops = { .get_state = hibvt_pwm_get_state, .apply = hibvt_pwm_apply, .owner = THIS_MODULE, }; static int hibvt_pwm_probe(struct platform_device *pdev) { const struct hibvt_pwm_soc *soc = of_device_get_match_data(&pdev->dev); struct hibvt_pwm_chip *pwm_chip; int ret, i; pwm_chip = devm_kzalloc(&pdev->dev, sizeof(*pwm_chip), GFP_KERNEL); if (pwm_chip == NULL) return -ENOMEM; pwm_chip->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(pwm_chip->clk)) { dev_err(&pdev->dev, "getting clock failed with %ld\n", PTR_ERR(pwm_chip->clk)); return PTR_ERR(pwm_chip->clk); } pwm_chip->chip.ops = &hibvt_pwm_ops; pwm_chip->chip.dev = &pdev->dev; pwm_chip->chip.npwm = soc->num_pwms; pwm_chip->soc = soc; pwm_chip->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(pwm_chip->base)) return PTR_ERR(pwm_chip->base); ret = clk_prepare_enable(pwm_chip->clk); if (ret < 0) return ret; pwm_chip->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL); if (IS_ERR(pwm_chip->rstc)) { clk_disable_unprepare(pwm_chip->clk); return PTR_ERR(pwm_chip->rstc); } reset_control_assert(pwm_chip->rstc); msleep(30); reset_control_deassert(pwm_chip->rstc); ret = pwmchip_add(&pwm_chip->chip); if (ret < 0) { clk_disable_unprepare(pwm_chip->clk); return ret; } for (i = 0; i < pwm_chip->chip.npwm; i++) { hibvt_pwm_set_bits(pwm_chip->base, PWM_CTRL_ADDR(i), PWM_KEEP_MASK, (0x1 << PWM_KEEP_SHIFT)); } platform_set_drvdata(pdev, pwm_chip); return 0; } static void hibvt_pwm_remove(struct platform_device *pdev) { struct hibvt_pwm_chip *pwm_chip; pwm_chip = platform_get_drvdata(pdev); pwmchip_remove(&pwm_chip->chip); reset_control_assert(pwm_chip->rstc); msleep(30); reset_control_deassert(pwm_chip->rstc); clk_disable_unprepare(pwm_chip->clk); } static const struct of_device_id hibvt_pwm_of_match[] = { { .compatible = "hisilicon,hi3516cv300-pwm", .data = &hi3516cv300_soc_info }, { .compatible = "hisilicon,hi3519v100-pwm", .data = &hi3519v100_soc_info }, { .compatible = "hisilicon,hi3559v100-shub-pwm", .data = &hi3559v100_shub_soc_info }, { .compatible = "hisilicon,hi3559v100-pwm", .data = &hi3559v100_soc_info }, { } }; MODULE_DEVICE_TABLE(of, hibvt_pwm_of_match); static struct platform_driver hibvt_pwm_driver = { .driver = { .name = "hibvt-pwm", .of_match_table = hibvt_pwm_of_match, }, .probe = hibvt_pwm_probe, .remove_new = hibvt_pwm_remove, }; module_platform_driver(hibvt_pwm_driver); MODULE_AUTHOR("Jian Yuan"); MODULE_DESCRIPTION("HiSilicon BVT SoCs PWM driver"); MODULE_LICENSE("GPL");
linux-master
drivers/pwm/pwm-hibvt.c
// SPDX-License-Identifier: GPL-2.0 OR MIT /* * Driver for the Apple SoC PWM controller * * Copyright The Asahi Linux Contributors * * Limitations: * - The writes to cycle registers are shadowed until a write to * the control register. * - If both OFF_CYCLES and ON_CYCLES are set to 0, the output * is a constant off signal. * - When APPLE_PWM_CTRL is set to 0, the output is constant low */ #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/pwm.h> #include <linux/io.h> #include <linux/clk.h> #include <linux/math64.h> #define APPLE_PWM_CTRL 0x00 #define APPLE_PWM_ON_CYCLES 0x1c #define APPLE_PWM_OFF_CYCLES 0x18 #define APPLE_PWM_CTRL_ENABLE BIT(0) #define APPLE_PWM_CTRL_MODE BIT(2) #define APPLE_PWM_CTRL_UPDATE BIT(5) #define APPLE_PWM_CTRL_TRIGGER BIT(9) #define APPLE_PWM_CTRL_INVERT BIT(10) #define APPLE_PWM_CTRL_OUTPUT_ENABLE BIT(14) struct apple_pwm { struct pwm_chip chip; void __iomem *base; u64 clkrate; }; static inline struct apple_pwm *to_apple_pwm(struct pwm_chip *chip) { return container_of(chip, struct apple_pwm, chip); } static int apple_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { struct apple_pwm *fpwm; if (state->polarity == PWM_POLARITY_INVERSED) return -EINVAL; fpwm = to_apple_pwm(chip); if (state->enabled) { u64 on_cycles, off_cycles; on_cycles = mul_u64_u64_div_u64(fpwm->clkrate, state->duty_cycle, NSEC_PER_SEC); if (on_cycles > 0xFFFFFFFF) on_cycles = 0xFFFFFFFF; off_cycles = mul_u64_u64_div_u64(fpwm->clkrate, state->period, NSEC_PER_SEC) - on_cycles; if (off_cycles > 0xFFFFFFFF) off_cycles = 0xFFFFFFFF; writel(on_cycles, fpwm->base + APPLE_PWM_ON_CYCLES); writel(off_cycles, fpwm->base + APPLE_PWM_OFF_CYCLES); writel(APPLE_PWM_CTRL_ENABLE | APPLE_PWM_CTRL_OUTPUT_ENABLE | APPLE_PWM_CTRL_UPDATE, fpwm->base + APPLE_PWM_CTRL); } else { writel(0, fpwm->base + APPLE_PWM_CTRL); } return 0; } static int apple_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm, struct pwm_state *state) { struct apple_pwm *fpwm; u32 on_cycles, off_cycles, ctrl; fpwm = to_apple_pwm(chip); ctrl = readl(fpwm->base + APPLE_PWM_CTRL); on_cycles = readl(fpwm->base + APPLE_PWM_ON_CYCLES); off_cycles = readl(fpwm->base + APPLE_PWM_OFF_CYCLES); state->enabled = (ctrl & APPLE_PWM_CTRL_ENABLE) && (ctrl & APPLE_PWM_CTRL_OUTPUT_ENABLE); state->polarity = PWM_POLARITY_NORMAL; // on_cycles + off_cycles is 33 bits, NSEC_PER_SEC is 30, there is no overflow state->duty_cycle = DIV64_U64_ROUND_UP((u64)on_cycles * NSEC_PER_SEC, fpwm->clkrate); state->period = DIV64_U64_ROUND_UP(((u64)off_cycles + (u64)on_cycles) * NSEC_PER_SEC, fpwm->clkrate); return 0; } static const struct pwm_ops apple_pwm_ops = { .apply = apple_pwm_apply, .get_state = apple_pwm_get_state, .owner = THIS_MODULE, }; static int apple_pwm_probe(struct platform_device *pdev) { struct apple_pwm *fpwm; struct clk *clk; int ret; fpwm = devm_kzalloc(&pdev->dev, sizeof(*fpwm), GFP_KERNEL); if (!fpwm) return -ENOMEM; fpwm->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(fpwm->base)) return PTR_ERR(fpwm->base); clk = devm_clk_get_enabled(&pdev->dev, NULL); if (IS_ERR(clk)) return dev_err_probe(&pdev->dev, PTR_ERR(clk), "unable to get the clock"); /* * Uses the 24MHz system clock on all existing devices, can only * happen if the device tree is broken * * This check is done to prevent an overflow in .apply */ fpwm->clkrate = clk_get_rate(clk); if (fpwm->clkrate > NSEC_PER_SEC) return dev_err_probe(&pdev->dev, -EINVAL, "pwm clock out of range"); fpwm->chip.dev = &pdev->dev; fpwm->chip.npwm = 1; fpwm->chip.ops = &apple_pwm_ops; ret = devm_pwmchip_add(&pdev->dev, &fpwm->chip); if (ret < 0) return dev_err_probe(&pdev->dev, ret, "unable to add pwm chip"); return 0; } static const struct of_device_id apple_pwm_of_match[] = { { .compatible = "apple,s5l-fpwm" }, {} }; MODULE_DEVICE_TABLE(of, apple_pwm_of_match); static struct platform_driver apple_pwm_driver = { .probe = apple_pwm_probe, .driver = { .name = "apple-pwm", .of_match_table = apple_pwm_of_match, }, }; module_platform_driver(apple_pwm_driver); MODULE_DESCRIPTION("Apple SoC PWM driver"); MODULE_LICENSE("Dual MIT/GPL");
linux-master
drivers/pwm/pwm-apple.c
// SPDX-License-Identifier: GPL-2.0-only /* * sl28cpld PWM driver * * Copyright (c) 2020 Michael Walle <[email protected]> * * There is no public datasheet available for this PWM core. But it is easy * enough to be briefly explained. It consists of one 8-bit counter. The PWM * supports four distinct frequencies by selecting when to reset the counter. * With the prescaler setting you can select which bit of the counter is used * to reset it. This implies that the higher the frequency the less remaining * bits are available for the actual counter. * * Let cnt[7:0] be the counter, clocked at 32kHz: * +-----------+--------+--------------+-----------+---------------+ * | prescaler | reset | counter bits | frequency | period length | * +-----------+--------+--------------+-----------+---------------+ * | 0 | cnt[7] | cnt[6:0] | 250 Hz | 4000000 ns | * | 1 | cnt[6] | cnt[5:0] | 500 Hz | 2000000 ns | * | 2 | cnt[5] | cnt[4:0] | 1 kHz | 1000000 ns | * | 3 | cnt[4] | cnt[3:0] | 2 kHz | 500000 ns | * +-----------+--------+--------------+-----------+---------------+ * * Limitations: * - The hardware cannot generate a 100% duty cycle if the prescaler is 0. * - The hardware cannot atomically set the prescaler and the counter value, * which might lead to glitches and inconsistent states if a write fails. * - The counter is not reset if you switch the prescaler which leads * to glitches, too. * - The duty cycle will switch immediately and not after a complete cycle. * - Depending on the actual implementation, disabling the PWM might have * side effects. For example, if the output pin is shared with a GPIO pin * it will automatically switch back to GPIO mode. */ #include <linux/bitfield.h> #include <linux/kernel.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/property.h> #include <linux/pwm.h> #include <linux/regmap.h> /* * PWM timer block registers. */ #define SL28CPLD_PWM_CTRL 0x00 #define SL28CPLD_PWM_CTRL_ENABLE BIT(7) #define SL28CPLD_PWM_CTRL_PRESCALER_MASK GENMASK(1, 0) #define SL28CPLD_PWM_CYCLE 0x01 #define SL28CPLD_PWM_CYCLE_MAX GENMASK(6, 0) #define SL28CPLD_PWM_CLK 32000 /* 32 kHz */ #define SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler) (1 << (7 - (prescaler))) #define SL28CPLD_PWM_PERIOD(prescaler) \ (NSEC_PER_SEC / SL28CPLD_PWM_CLK * SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler)) /* * We calculate the duty cycle like this: * duty_cycle_ns = pwm_cycle_reg * max_period_ns / max_duty_cycle * * With * max_period_ns = 1 << (7 - prescaler) / SL28CPLD_PWM_CLK * NSEC_PER_SEC * max_duty_cycle = 1 << (7 - prescaler) * this then simplifies to: * duty_cycle_ns = pwm_cycle_reg / SL28CPLD_PWM_CLK * NSEC_PER_SEC * = NSEC_PER_SEC / SL28CPLD_PWM_CLK * pwm_cycle_reg * * NSEC_PER_SEC is a multiple of SL28CPLD_PWM_CLK, therefore we're not losing * precision by doing the divison first. */ #define SL28CPLD_PWM_TO_DUTY_CYCLE(reg) \ (NSEC_PER_SEC / SL28CPLD_PWM_CLK * (reg)) #define SL28CPLD_PWM_FROM_DUTY_CYCLE(duty_cycle) \ (DIV_ROUND_DOWN_ULL((duty_cycle), NSEC_PER_SEC / SL28CPLD_PWM_CLK)) #define sl28cpld_pwm_read(priv, reg, val) \ regmap_read((priv)->regmap, (priv)->offset + (reg), (val)) #define sl28cpld_pwm_write(priv, reg, val) \ regmap_write((priv)->regmap, (priv)->offset + (reg), (val)) struct sl28cpld_pwm { struct pwm_chip chip; struct regmap *regmap; u32 offset; }; static inline struct sl28cpld_pwm *sl28cpld_pwm_from_chip(struct pwm_chip *chip) { return container_of(chip, struct sl28cpld_pwm, chip); } static int sl28cpld_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm, struct pwm_state *state) { struct sl28cpld_pwm *priv = sl28cpld_pwm_from_chip(chip); unsigned int reg; int prescaler; sl28cpld_pwm_read(priv, SL28CPLD_PWM_CTRL, &reg); state->enabled = reg & SL28CPLD_PWM_CTRL_ENABLE; prescaler = FIELD_GET(SL28CPLD_PWM_CTRL_PRESCALER_MASK, reg); state->period = SL28CPLD_PWM_PERIOD(prescaler); sl28cpld_pwm_read(priv, SL28CPLD_PWM_CYCLE, &reg); state->duty_cycle = SL28CPLD_PWM_TO_DUTY_CYCLE(reg); state->polarity = PWM_POLARITY_NORMAL; /* * Sanitize values for the PWM core. Depending on the prescaler it * might happen that we calculate a duty_cycle greater than the actual * period. This might happen if someone (e.g. the bootloader) sets an * invalid combination of values. The behavior of the hardware is * undefined in this case. But we need to report sane values back to * the PWM core. */ state->duty_cycle = min(state->duty_cycle, state->period); return 0; } static int sl28cpld_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { struct sl28cpld_pwm *priv = sl28cpld_pwm_from_chip(chip); unsigned int cycle, prescaler; bool write_duty_cycle_first; int ret; u8 ctrl; /* Polarity inversion is not supported */ if (state->polarity != PWM_POLARITY_NORMAL) return -EINVAL; /* * Calculate the prescaler. Pick the biggest period that isn't * bigger than the requested period. */ prescaler = DIV_ROUND_UP_ULL(SL28CPLD_PWM_PERIOD(0), state->period); prescaler = order_base_2(prescaler); if (prescaler > field_max(SL28CPLD_PWM_CTRL_PRESCALER_MASK)) return -ERANGE; ctrl = FIELD_PREP(SL28CPLD_PWM_CTRL_PRESCALER_MASK, prescaler); if (state->enabled) ctrl |= SL28CPLD_PWM_CTRL_ENABLE; cycle = SL28CPLD_PWM_FROM_DUTY_CYCLE(state->duty_cycle); cycle = min_t(unsigned int, cycle, SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler)); /* * Work around the hardware limitation. See also above. Trap 100% duty * cycle if the prescaler is 0. Set prescaler to 1 instead. We don't * care about the frequency because its "all-one" in either case. * * We don't need to check the actual prescaler setting, because only * if the prescaler is 0 we can have this particular value. */ if (cycle == SL28CPLD_PWM_MAX_DUTY_CYCLE(0)) { ctrl &= ~SL28CPLD_PWM_CTRL_PRESCALER_MASK; ctrl |= FIELD_PREP(SL28CPLD_PWM_CTRL_PRESCALER_MASK, 1); cycle = SL28CPLD_PWM_MAX_DUTY_CYCLE(1); } /* * To avoid glitches when we switch the prescaler, we have to make sure * we have a valid duty cycle for the new mode. * * Take the current prescaler (or the current period length) into * account to decide whether we have to write the duty cycle or the new * prescaler first. If the period length is decreasing we have to * write the duty cycle first. */ write_duty_cycle_first = pwm->state.period > state->period; if (write_duty_cycle_first) { ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CYCLE, cycle); if (ret) return ret; } ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CTRL, ctrl); if (ret) return ret; if (!write_duty_cycle_first) { ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CYCLE, cycle); if (ret) return ret; } return 0; } static const struct pwm_ops sl28cpld_pwm_ops = { .apply = sl28cpld_pwm_apply, .get_state = sl28cpld_pwm_get_state, .owner = THIS_MODULE, }; static int sl28cpld_pwm_probe(struct platform_device *pdev) { struct sl28cpld_pwm *priv; struct pwm_chip *chip; int ret; if (!pdev->dev.parent) { dev_err(&pdev->dev, "no parent device\n"); return -ENODEV; } priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->regmap = dev_get_regmap(pdev->dev.parent, NULL); if (!priv->regmap) { dev_err(&pdev->dev, "could not get parent regmap\n"); return -ENODEV; } ret = device_property_read_u32(&pdev->dev, "reg", &priv->offset); if (ret) { dev_err(&pdev->dev, "no 'reg' property found (%pe)\n", ERR_PTR(ret)); return -EINVAL; } /* Initialize the pwm_chip structure */ chip = &priv->chip; chip->dev = &pdev->dev; chip->ops = &sl28cpld_pwm_ops; chip->npwm = 1; ret = devm_pwmchip_add(&pdev->dev, chip); if (ret) { dev_err(&pdev->dev, "failed to add PWM chip (%pe)", ERR_PTR(ret)); return ret; } return 0; } static const struct of_device_id sl28cpld_pwm_of_match[] = { { .compatible = "kontron,sl28cpld-pwm" }, {} }; MODULE_DEVICE_TABLE(of, sl28cpld_pwm_of_match); static struct platform_driver sl28cpld_pwm_driver = { .probe = sl28cpld_pwm_probe, .driver = { .name = "sl28cpld-pwm", .of_match_table = sl28cpld_pwm_of_match, }, }; module_platform_driver(sl28cpld_pwm_driver); MODULE_DESCRIPTION("sl28cpld PWM Driver"); MODULE_AUTHOR("Michael Walle <[email protected]>"); MODULE_LICENSE("GPL");
linux-master
drivers/pwm/pwm-sl28cpld.c
// SPDX-License-Identifier: GPL-2.0-only /* * Driver for TWL4030/6030 Pulse Width Modulator used as LED driver * * Copyright (C) 2012 Texas Instruments * Author: Peter Ujfalusi <[email protected]> * * This driver is a complete rewrite of the former pwm-twl6030.c authorded by: * Hemanth V <[email protected]> * * Reference manual for the twl6030 is available at: * https://www.ti.com/lit/ds/symlink/twl6030.pdf * * Limitations: * - The twl6030 hardware only supports two period lengths (128 clock ticks and * 64 clock ticks), the driver only uses 128 ticks * - The hardware doesn't support ON = 0, so the active part of a period doesn't * start at its beginning. * - The hardware could support inverted polarity (with a similar limitation as * for normal: the last clock tick is always inactive). * - The hardware emits a constant low output when disabled. * - A request for .duty_cycle = 0 results in an output wave with one active * clock tick per period. This should better use the disabled state. * - The driver only implements setting the relative duty cycle. * - The driver doesn't implement .get_state(). */ #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pwm.h> #include <linux/mfd/twl.h> #include <linux/slab.h> /* * This driver handles the PWM driven LED terminals of TWL4030 and TWL6030. * To generate the signal on TWL4030: * - LEDA uses PWMA * - LEDB uses PWMB * TWL6030 has one LED pin with dedicated LEDPWM */ #define TWL4030_LED_MAX 0x7f #define TWL6030_LED_MAX 0xff /* Registers, bits and macro for TWL4030 */ #define TWL4030_LEDEN_REG 0x00 #define TWL4030_PWMA_REG 0x01 #define TWL4030_LEDXON (1 << 0) #define TWL4030_LEDXPWM (1 << 4) #define TWL4030_LED_PINS (TWL4030_LEDXON | TWL4030_LEDXPWM) #define TWL4030_LED_TOGGLE(led, x) ((x) << (led)) /* Register, bits and macro for TWL6030 */ #define TWL6030_LED_PWM_CTRL1 0xf4 #define TWL6030_LED_PWM_CTRL2 0xf5 #define TWL6040_LED_MODE_HW 0x00 #define TWL6040_LED_MODE_ON 0x01 #define TWL6040_LED_MODE_OFF 0x02 #define TWL6040_LED_MODE_MASK 0x03 struct twl_pwmled_chip { struct pwm_chip chip; struct mutex mutex; }; static inline struct twl_pwmled_chip *to_twl(struct pwm_chip *chip) { return container_of(chip, struct twl_pwmled_chip, chip); } static int twl4030_pwmled_config(struct pwm_chip *chip, struct pwm_device *pwm, int duty_ns, int period_ns) { int duty_cycle = DIV_ROUND_UP(duty_ns * TWL4030_LED_MAX, period_ns) + 1; u8 pwm_config[2] = { 1, 0 }; int base, ret; /* * To configure the duty period: * On-cycle is set to 1 (the minimum allowed value) * The off time of 0 is not configurable, so the mapping is: * 0 -> off cycle = 2, * 1 -> off cycle = 2, * 2 -> off cycle = 3, * 126 - > off cycle 127, * 127 - > off cycle 1 * When on cycle == off cycle the PWM will be always on */ if (duty_cycle == 1) duty_cycle = 2; else if (duty_cycle > TWL4030_LED_MAX) duty_cycle = 1; base = pwm->hwpwm * 2 + TWL4030_PWMA_REG; pwm_config[1] = duty_cycle; ret = twl_i2c_write(TWL4030_MODULE_LED, pwm_config, base, 2); if (ret < 0) dev_err(chip->dev, "%s: Failed to configure PWM\n", pwm->label); return ret; } static int twl4030_pwmled_enable(struct pwm_chip *chip, struct pwm_device *pwm) { struct twl_pwmled_chip *twl = to_twl(chip); int ret; u8 val; mutex_lock(&twl->mutex); ret = twl_i2c_read_u8(TWL4030_MODULE_LED, &val, TWL4030_LEDEN_REG); if (ret < 0) { dev_err(chip->dev, "%s: Failed to read LEDEN\n", pwm->label); goto out; } val |= TWL4030_LED_TOGGLE(pwm->hwpwm, TWL4030_LED_PINS); ret = twl_i2c_write_u8(TWL4030_MODULE_LED, val, TWL4030_LEDEN_REG); if (ret < 0) dev_err(chip->dev, "%s: Failed to enable PWM\n", pwm->label); out: mutex_unlock(&twl->mutex); return ret; } static void twl4030_pwmled_disable(struct pwm_chip *chip, struct pwm_device *pwm) { struct twl_pwmled_chip *twl = to_twl(chip); int ret; u8 val; mutex_lock(&twl->mutex); ret = twl_i2c_read_u8(TWL4030_MODULE_LED, &val, TWL4030_LEDEN_REG); if (ret < 0) { dev_err(chip->dev, "%s: Failed to read LEDEN\n", pwm->label); goto out; } val &= ~TWL4030_LED_TOGGLE(pwm->hwpwm, TWL4030_LED_PINS); ret = twl_i2c_write_u8(TWL4030_MODULE_LED, val, TWL4030_LEDEN_REG); if (ret < 0) dev_err(chip->dev, "%s: Failed to disable PWM\n", pwm->label); out: mutex_unlock(&twl->mutex); } static int twl4030_pwmled_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { int ret; if (state->polarity != PWM_POLARITY_NORMAL) return -EINVAL; if (!state->enabled) { if (pwm->state.enabled) twl4030_pwmled_disable(chip, pwm); return 0; } /* * We cannot skip calling ->config even if state->period == * pwm->state.period && state->duty_cycle == pwm->state.duty_cycle * because we might have exited early in the last call to * pwm_apply_state because of !state->enabled and so the two values in * pwm->state might not be configured in hardware. */ ret = twl4030_pwmled_config(pwm->chip, pwm, state->duty_cycle, state->period); if (ret) return ret; if (!pwm->state.enabled) ret = twl4030_pwmled_enable(chip, pwm); return ret; } static const struct pwm_ops twl4030_pwmled_ops = { .apply = twl4030_pwmled_apply, .owner = THIS_MODULE, }; static int twl6030_pwmled_config(struct pwm_chip *chip, struct pwm_device *pwm, int duty_ns, int period_ns) { int duty_cycle = (duty_ns * TWL6030_LED_MAX) / period_ns; u8 on_time; int ret; on_time = duty_cycle & 0xff; ret = twl_i2c_write_u8(TWL6030_MODULE_ID1, on_time, TWL6030_LED_PWM_CTRL1); if (ret < 0) dev_err(chip->dev, "%s: Failed to configure PWM\n", pwm->label); return ret; } static int twl6030_pwmled_enable(struct pwm_chip *chip, struct pwm_device *pwm) { struct twl_pwmled_chip *twl = to_twl(chip); int ret; u8 val; mutex_lock(&twl->mutex); ret = twl_i2c_read_u8(TWL6030_MODULE_ID1, &val, TWL6030_LED_PWM_CTRL2); if (ret < 0) { dev_err(chip->dev, "%s: Failed to read PWM_CTRL2\n", pwm->label); goto out; } val &= ~TWL6040_LED_MODE_MASK; val |= TWL6040_LED_MODE_ON; ret = twl_i2c_write_u8(TWL6030_MODULE_ID1, val, TWL6030_LED_PWM_CTRL2); if (ret < 0) dev_err(chip->dev, "%s: Failed to enable PWM\n", pwm->label); out: mutex_unlock(&twl->mutex); return ret; } static void twl6030_pwmled_disable(struct pwm_chip *chip, struct pwm_device *pwm) { struct twl_pwmled_chip *twl = to_twl(chip); int ret; u8 val; mutex_lock(&twl->mutex); ret = twl_i2c_read_u8(TWL6030_MODULE_ID1, &val, TWL6030_LED_PWM_CTRL2); if (ret < 0) { dev_err(chip->dev, "%s: Failed to read PWM_CTRL2\n", pwm->label); goto out; } val &= ~TWL6040_LED_MODE_MASK; val |= TWL6040_LED_MODE_OFF; ret = twl_i2c_write_u8(TWL6030_MODULE_ID1, val, TWL6030_LED_PWM_CTRL2); if (ret < 0) dev_err(chip->dev, "%s: Failed to disable PWM\n", pwm->label); out: mutex_unlock(&twl->mutex); } static int twl6030_pwmled_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { int err; if (state->polarity != pwm->state.polarity) return -EINVAL; if (!state->enabled) { if (pwm->state.enabled) twl6030_pwmled_disable(chip, pwm); return 0; } err = twl6030_pwmled_config(pwm->chip, pwm, state->duty_cycle, state->period); if (err) return err; if (!pwm->state.enabled) err = twl6030_pwmled_enable(chip, pwm); return err; } static int twl6030_pwmled_request(struct pwm_chip *chip, struct pwm_device *pwm) { struct twl_pwmled_chip *twl = to_twl(chip); int ret; u8 val; mutex_lock(&twl->mutex); ret = twl_i2c_read_u8(TWL6030_MODULE_ID1, &val, TWL6030_LED_PWM_CTRL2); if (ret < 0) { dev_err(chip->dev, "%s: Failed to read PWM_CTRL2\n", pwm->label); goto out; } val &= ~TWL6040_LED_MODE_MASK; val |= TWL6040_LED_MODE_OFF; ret = twl_i2c_write_u8(TWL6030_MODULE_ID1, val, TWL6030_LED_PWM_CTRL2); if (ret < 0) dev_err(chip->dev, "%s: Failed to request PWM\n", pwm->label); out: mutex_unlock(&twl->mutex); return ret; } static void twl6030_pwmled_free(struct pwm_chip *chip, struct pwm_device *pwm) { struct twl_pwmled_chip *twl = to_twl(chip); int ret; u8 val; mutex_lock(&twl->mutex); ret = twl_i2c_read_u8(TWL6030_MODULE_ID1, &val, TWL6030_LED_PWM_CTRL2); if (ret < 0) { dev_err(chip->dev, "%s: Failed to read PWM_CTRL2\n", pwm->label); goto out; } val &= ~TWL6040_LED_MODE_MASK; val |= TWL6040_LED_MODE_HW; ret = twl_i2c_write_u8(TWL6030_MODULE_ID1, val, TWL6030_LED_PWM_CTRL2); if (ret < 0) dev_err(chip->dev, "%s: Failed to free PWM\n", pwm->label); out: mutex_unlock(&twl->mutex); } static const struct pwm_ops twl6030_pwmled_ops = { .apply = twl6030_pwmled_apply, .request = twl6030_pwmled_request, .free = twl6030_pwmled_free, .owner = THIS_MODULE, }; static int twl_pwmled_probe(struct platform_device *pdev) { struct twl_pwmled_chip *twl; twl = devm_kzalloc(&pdev->dev, sizeof(*twl), GFP_KERNEL); if (!twl) return -ENOMEM; if (twl_class_is_4030()) { twl->chip.ops = &twl4030_pwmled_ops; twl->chip.npwm = 2; } else { twl->chip.ops = &twl6030_pwmled_ops; twl->chip.npwm = 1; } twl->chip.dev = &pdev->dev; mutex_init(&twl->mutex); return devm_pwmchip_add(&pdev->dev, &twl->chip); } #ifdef CONFIG_OF static const struct of_device_id twl_pwmled_of_match[] = { { .compatible = "ti,twl4030-pwmled" }, { .compatible = "ti,twl6030-pwmled" }, { }, }; MODULE_DEVICE_TABLE(of, twl_pwmled_of_match); #endif static struct platform_driver twl_pwmled_driver = { .driver = { .name = "twl-pwmled", .of_match_table = of_match_ptr(twl_pwmled_of_match), }, .probe = twl_pwmled_probe, }; module_platform_driver(twl_pwmled_driver); MODULE_AUTHOR("Peter Ujfalusi <[email protected]>"); MODULE_DESCRIPTION("PWM driver for TWL4030 and TWL6030 LED outputs"); MODULE_ALIAS("platform:twl-pwmled"); MODULE_LICENSE("GPL");
linux-master
drivers/pwm/pwm-twl-led.c
// SPDX-License-Identifier: GPL-2.0 /* * corePWM driver for Microchip "soft" FPGA IP cores. * * Copyright (c) 2021-2023 Microchip Corporation. All rights reserved. * Author: Conor Dooley <[email protected]> * Documentation: * https://www.microsemi.com/document-portal/doc_download/1245275-corepwm-hb * * Limitations: * - If the IP block is configured without "shadow registers", all register * writes will take effect immediately, causing glitches on the output. * If shadow registers *are* enabled, setting the "SYNC_UPDATE" register * notifies the core that it needs to update the registers defining the * waveform from the contents of the "shadow registers". Otherwise, changes * will take effective immediately, even for those channels. * As setting the period/duty cycle takes 4 register writes, there is a window * in which this races against the start of a new period. * - The IP block has no concept of a duty cycle, only rising/falling edges of * the waveform. Unfortunately, if the rising & falling edges registers have * the same value written to them the IP block will do whichever of a rising * or a falling edge is possible. I.E. a 50% waveform at twice the requested * period. Therefore to get a 0% waveform, the output is set the max high/low * time depending on polarity. * If the duty cycle is 0%, and the requested period is less than the * available period resolution, this will manifest as a ~100% waveform (with * some output glitches) rather than 50%. * - The PWM period is set for the whole IP block not per channel. The driver * will only change the period if no other PWM output is enabled. */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/io.h> #include <linux/ktime.h> #include <linux/math.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pwm.h> #define MCHPCOREPWM_PRESCALE_MAX 0xff #define MCHPCOREPWM_PERIOD_STEPS_MAX 0xfe #define MCHPCOREPWM_PERIOD_MAX 0xff00 #define MCHPCOREPWM_PRESCALE 0x00 #define MCHPCOREPWM_PERIOD 0x04 #define MCHPCOREPWM_EN(i) (0x08 + 0x04 * (i)) /* 0x08, 0x0c */ #define MCHPCOREPWM_POSEDGE(i) (0x10 + 0x08 * (i)) /* 0x10, 0x18, ..., 0x88 */ #define MCHPCOREPWM_NEGEDGE(i) (0x14 + 0x08 * (i)) /* 0x14, 0x1c, ..., 0x8c */ #define MCHPCOREPWM_SYNC_UPD 0xe4 #define MCHPCOREPWM_TIMEOUT_MS 100u struct mchp_core_pwm_chip { struct pwm_chip chip; struct clk *clk; void __iomem *base; struct mutex lock; /* protects the shared period */ ktime_t update_timestamp; u32 sync_update_mask; u16 channel_enabled; }; static inline struct mchp_core_pwm_chip *to_mchp_core_pwm(struct pwm_chip *chip) { return container_of(chip, struct mchp_core_pwm_chip, chip); } static void mchp_core_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm, bool enable, u64 period) { struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip); u8 channel_enable, reg_offset, shift; /* * There are two adjacent 8 bit control regs, the lower reg controls * 0-7 and the upper reg 8-15. Check if the pwm is in the upper reg * and if so, offset by the bus width. */ reg_offset = MCHPCOREPWM_EN(pwm->hwpwm >> 3); shift = pwm->hwpwm & 7; channel_enable = readb_relaxed(mchp_core_pwm->base + reg_offset); channel_enable &= ~(1 << shift); channel_enable |= (enable << shift); writel_relaxed(channel_enable, mchp_core_pwm->base + reg_offset); mchp_core_pwm->channel_enabled &= ~BIT(pwm->hwpwm); mchp_core_pwm->channel_enabled |= enable << pwm->hwpwm; /* * The updated values will not appear on the bus until they have been * applied to the waveform at the beginning of the next period. * This is a NO-OP if the channel does not have shadow registers. */ if (mchp_core_pwm->sync_update_mask & (1 << pwm->hwpwm)) mchp_core_pwm->update_timestamp = ktime_add_ns(ktime_get(), period); } static void mchp_core_pwm_wait_for_sync_update(struct mchp_core_pwm_chip *mchp_core_pwm, unsigned int channel) { /* * If a shadow register is used for this PWM channel, and iff there is * a pending update to the waveform, we must wait for it to be applied * before attempting to read its state. Reading the registers yields * the currently implemented settings & the new ones are only readable * once the current period has ended. */ if (mchp_core_pwm->sync_update_mask & (1 << channel)) { ktime_t current_time = ktime_get(); s64 remaining_ns; u32 delay_us; remaining_ns = ktime_to_ns(ktime_sub(mchp_core_pwm->update_timestamp, current_time)); /* * If the update has gone through, don't bother waiting for * obvious reasons. Otherwise wait around for an appropriate * amount of time for the update to go through. */ if (remaining_ns <= 0) return; delay_us = DIV_ROUND_UP_ULL(remaining_ns, NSEC_PER_USEC); fsleep(delay_us); } } static u64 mchp_core_pwm_calc_duty(const struct pwm_state *state, u64 clk_rate, u8 prescale, u8 period_steps) { u64 duty_steps, tmp; /* * Calculate the duty cycle in multiples of the prescaled period: * duty_steps = duty_in_ns / step_in_ns * step_in_ns = (prescale * NSEC_PER_SEC) / clk_rate * The code below is rearranged slightly to only divide once. */ tmp = (((u64)prescale) + 1) * NSEC_PER_SEC; duty_steps = mul_u64_u64_div_u64(state->duty_cycle, clk_rate, tmp); return duty_steps; } static void mchp_core_pwm_apply_duty(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state, u64 duty_steps, u16 period_steps) { struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip); u8 posedge, negedge; u8 first_edge = 0, second_edge = duty_steps; /* * Setting posedge == negedge doesn't yield a constant output, * so that's an unsuitable setting to model duty_steps = 0. * In that case set the unwanted edge to a value that never * triggers. */ if (duty_steps == 0) first_edge = period_steps + 1; if (state->polarity == PWM_POLARITY_INVERSED) { negedge = first_edge; posedge = second_edge; } else { posedge = first_edge; negedge = second_edge; } /* * Set the sync bit which ensures that periods that already started are * completed unaltered. At each counter reset event the values are * updated from the shadow registers. */ writel_relaxed(posedge, mchp_core_pwm->base + MCHPCOREPWM_POSEDGE(pwm->hwpwm)); writel_relaxed(negedge, mchp_core_pwm->base + MCHPCOREPWM_NEGEDGE(pwm->hwpwm)); } static int mchp_core_pwm_calc_period(const struct pwm_state *state, unsigned long clk_rate, u16 *prescale, u16 *period_steps) { u64 tmp; /* * Calculate the period cycles and prescale values. * The registers are each 8 bits wide & multiplied to compute the period * using the formula: * (prescale + 1) * (period_steps + 1) * period = ------------------------------------- * clk_rate * so the maximum period that can be generated is 0x10000 times the * period of the input clock. * However, due to the design of the "hardware", it is not possible to * attain a 100% duty cycle if the full range of period_steps is used. * Therefore period_steps is restricted to 0xfe and the maximum multiple * of the clock period attainable is (0xff + 1) * (0xfe + 1) = 0xff00 * * The prescale and period_steps registers operate similarly to * CLK_DIVIDER_ONE_BASED, where the value used by the hardware is that * in the register plus one. * It's therefore not possible to set a period lower than 1/clk_rate, so * if tmp is 0, abort. Without aborting, we will set a period that is * greater than that requested and, more importantly, will trigger the * neg-/pos-edge issue described in the limitations. */ tmp = mul_u64_u64_div_u64(state->period, clk_rate, NSEC_PER_SEC); if (tmp >= MCHPCOREPWM_PERIOD_MAX) { *prescale = MCHPCOREPWM_PRESCALE_MAX; *period_steps = MCHPCOREPWM_PERIOD_STEPS_MAX; return 0; } /* * There are multiple strategies that could be used to choose the * prescale & period_steps values. * Here the idea is to pick values so that the selection of duty cycles * is as finegrain as possible, while also keeping the period less than * that requested. * * A simple way to satisfy the first condition is to always set * period_steps to its maximum value. This neatly also satisfies the * second condition too, since using the maximum value of period_steps * to calculate prescale actually calculates its upper bound. * Integer division will ensure a round down, so the period will thereby * always be less than that requested. * * The downside of this approach is a significant degree of inaccuracy, * especially as tmp approaches integer multiples of * MCHPCOREPWM_PERIOD_STEPS_MAX. * * As we must produce a period less than that requested, and for the * sake of creating a simple algorithm, disallow small values of tmp * that would need special handling. */ if (tmp < MCHPCOREPWM_PERIOD_STEPS_MAX + 1) return -EINVAL; /* * This "optimal" value for prescale is be calculated using the maximum * permitted value of period_steps, 0xfe. * * period * clk_rate * prescale = ------------------------- - 1 * NSEC_PER_SEC * (0xfe + 1) * * * period * clk_rate * ------------------- was precomputed as `tmp` * NSEC_PER_SEC */ *prescale = ((u16)tmp) / (MCHPCOREPWM_PERIOD_STEPS_MAX + 1) - 1; /* * period_steps can be computed from prescale: * period * clk_rate * period_steps = ----------------------------- - 1 * NSEC_PER_SEC * (prescale + 1) * * However, in this approximation, we simply use the maximum value that * was used to compute prescale. */ *period_steps = MCHPCOREPWM_PERIOD_STEPS_MAX; return 0; } static int mchp_core_pwm_apply_locked(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip); bool period_locked; unsigned long clk_rate; u64 duty_steps; u16 prescale, period_steps; int ret; if (!state->enabled) { mchp_core_pwm_enable(chip, pwm, false, pwm->state.period); return 0; } /* * If clk_rate is too big, the following multiplication might overflow. * However this is implausible, as the fabric of current FPGAs cannot * provide clocks at a rate high enough. */ clk_rate = clk_get_rate(mchp_core_pwm->clk); if (clk_rate >= NSEC_PER_SEC) return -EINVAL; ret = mchp_core_pwm_calc_period(state, clk_rate, &prescale, &period_steps); if (ret) return ret; /* * If the only thing that has changed is the duty cycle or the polarity, * we can shortcut the calculations and just compute/apply the new duty * cycle pos & neg edges * As all the channels share the same period, do not allow it to be * changed if any other channels are enabled. * If the period is locked, it may not be possible to use a period * less than that requested. In that case, we just abort. */ period_locked = mchp_core_pwm->channel_enabled & ~(1 << pwm->hwpwm); if (period_locked) { u16 hw_prescale; u16 hw_period_steps; hw_prescale = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PRESCALE); hw_period_steps = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PERIOD); if ((period_steps + 1) * (prescale + 1) < (hw_period_steps + 1) * (hw_prescale + 1)) return -EINVAL; /* * It is possible that something could have set the period_steps * register to 0xff, which would prevent us from setting a 100% * or 0% relative duty cycle, as explained above in * mchp_core_pwm_calc_period(). * The period is locked and we cannot change this, so we abort. */ if (hw_period_steps == MCHPCOREPWM_PERIOD_STEPS_MAX) return -EINVAL; prescale = hw_prescale; period_steps = hw_period_steps; } duty_steps = mchp_core_pwm_calc_duty(state, clk_rate, prescale, period_steps); /* * Because the period is not per channel, it is possible that the * requested duty cycle is longer than the period, in which case cap it * to the period, IOW a 100% duty cycle. */ if (duty_steps > period_steps) duty_steps = period_steps + 1; if (!period_locked) { writel_relaxed(prescale, mchp_core_pwm->base + MCHPCOREPWM_PRESCALE); writel_relaxed(period_steps, mchp_core_pwm->base + MCHPCOREPWM_PERIOD); } mchp_core_pwm_apply_duty(chip, pwm, state, duty_steps, period_steps); mchp_core_pwm_enable(chip, pwm, true, pwm->state.period); return 0; } static int mchp_core_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip); int ret; mutex_lock(&mchp_core_pwm->lock); mchp_core_pwm_wait_for_sync_update(mchp_core_pwm, pwm->hwpwm); ret = mchp_core_pwm_apply_locked(chip, pwm, state); mutex_unlock(&mchp_core_pwm->lock); return ret; } static int mchp_core_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm, struct pwm_state *state) { struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip); u64 rate; u16 prescale, period_steps; u8 duty_steps, posedge, negedge; mutex_lock(&mchp_core_pwm->lock); mchp_core_pwm_wait_for_sync_update(mchp_core_pwm, pwm->hwpwm); if (mchp_core_pwm->channel_enabled & (1 << pwm->hwpwm)) state->enabled = true; else state->enabled = false; rate = clk_get_rate(mchp_core_pwm->clk); /* * Calculating the period: * The registers are each 8 bits wide & multiplied to compute the period * using the formula: * (prescale + 1) * (period_steps + 1) * period = ------------------------------------- * clk_rate * * Note: * The prescale and period_steps registers operate similarly to * CLK_DIVIDER_ONE_BASED, where the value used by the hardware is that * in the register plus one. */ prescale = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PRESCALE); period_steps = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PERIOD); state->period = (period_steps + 1) * (prescale + 1); state->period *= NSEC_PER_SEC; state->period = DIV64_U64_ROUND_UP(state->period, rate); posedge = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_POSEDGE(pwm->hwpwm)); negedge = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_NEGEDGE(pwm->hwpwm)); mutex_unlock(&mchp_core_pwm->lock); if (negedge == posedge) { state->duty_cycle = state->period; state->period *= 2; } else { duty_steps = abs((s16)posedge - (s16)negedge); state->duty_cycle = duty_steps * (prescale + 1) * NSEC_PER_SEC; state->duty_cycle = DIV64_U64_ROUND_UP(state->duty_cycle, rate); } state->polarity = negedge < posedge ? PWM_POLARITY_INVERSED : PWM_POLARITY_NORMAL; return 0; } static const struct pwm_ops mchp_core_pwm_ops = { .apply = mchp_core_pwm_apply, .get_state = mchp_core_pwm_get_state, .owner = THIS_MODULE, }; static const struct of_device_id mchp_core_of_match[] = { { .compatible = "microchip,corepwm-rtl-v4", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, mchp_core_of_match); static int mchp_core_pwm_probe(struct platform_device *pdev) { struct mchp_core_pwm_chip *mchp_core_pwm; struct resource *regs; int ret; mchp_core_pwm = devm_kzalloc(&pdev->dev, sizeof(*mchp_core_pwm), GFP_KERNEL); if (!mchp_core_pwm) return -ENOMEM; mchp_core_pwm->base = devm_platform_get_and_ioremap_resource(pdev, 0, &regs); if (IS_ERR(mchp_core_pwm->base)) return PTR_ERR(mchp_core_pwm->base); mchp_core_pwm->clk = devm_clk_get_enabled(&pdev->dev, NULL); if (IS_ERR(mchp_core_pwm->clk)) return dev_err_probe(&pdev->dev, PTR_ERR(mchp_core_pwm->clk), "failed to get PWM clock\n"); if (of_property_read_u32(pdev->dev.of_node, "microchip,sync-update-mask", &mchp_core_pwm->sync_update_mask)) mchp_core_pwm->sync_update_mask = 0; mutex_init(&mchp_core_pwm->lock); mchp_core_pwm->chip.dev = &pdev->dev; mchp_core_pwm->chip.ops = &mchp_core_pwm_ops; mchp_core_pwm->chip.npwm = 16; mchp_core_pwm->channel_enabled = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_EN(0)); mchp_core_pwm->channel_enabled |= readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_EN(1)) << 8; /* * Enable synchronous update mode for all channels for which shadow * registers have been synthesised. */ writel_relaxed(1U, mchp_core_pwm->base + MCHPCOREPWM_SYNC_UPD); mchp_core_pwm->update_timestamp = ktime_get(); ret = devm_pwmchip_add(&pdev->dev, &mchp_core_pwm->chip); if (ret) return dev_err_probe(&pdev->dev, ret, "Failed to add pwmchip\n"); return 0; } static struct platform_driver mchp_core_pwm_driver = { .driver = { .name = "mchp-core-pwm", .of_match_table = mchp_core_of_match, }, .probe = mchp_core_pwm_probe, }; module_platform_driver(mchp_core_pwm_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Conor Dooley <[email protected]>"); MODULE_DESCRIPTION("corePWM driver for Microchip FPGAs");
linux-master
drivers/pwm/pwm-microchip-core.c
// SPDX-License-Identifier: GPL-2.0-only /* * MediaTek display pulse-width-modulation controller driver. * Copyright (c) 2015 MediaTek Inc. * Author: YH Huang <[email protected]> */ #include <linux/bitfield.h> #include <linux/clk.h> #include <linux/err.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pwm.h> #include <linux/slab.h> #define DISP_PWM_EN 0x00 #define PWM_CLKDIV_SHIFT 16 #define PWM_CLKDIV_MAX 0x3ff #define PWM_CLKDIV_MASK (PWM_CLKDIV_MAX << PWM_CLKDIV_SHIFT) #define PWM_PERIOD_BIT_WIDTH 12 #define PWM_PERIOD_MASK ((1 << PWM_PERIOD_BIT_WIDTH) - 1) #define PWM_HIGH_WIDTH_SHIFT 16 #define PWM_HIGH_WIDTH_MASK (0x1fff << PWM_HIGH_WIDTH_SHIFT) struct mtk_pwm_data { u32 enable_mask; unsigned int con0; u32 con0_sel; unsigned int con1; bool has_commit; unsigned int commit; unsigned int commit_mask; unsigned int bls_debug; u32 bls_debug_mask; }; struct mtk_disp_pwm { struct pwm_chip chip; const struct mtk_pwm_data *data; struct clk *clk_main; struct clk *clk_mm; void __iomem *base; bool enabled; }; static inline struct mtk_disp_pwm *to_mtk_disp_pwm(struct pwm_chip *chip) { return container_of(chip, struct mtk_disp_pwm, chip); } static void mtk_disp_pwm_update_bits(struct mtk_disp_pwm *mdp, u32 offset, u32 mask, u32 data) { void __iomem *address = mdp->base + offset; u32 value; value = readl(address); value &= ~mask; value |= data; writel(value, address); } static int mtk_disp_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { struct mtk_disp_pwm *mdp = to_mtk_disp_pwm(chip); u32 clk_div, period, high_width, value; u64 div, rate; int err; if (state->polarity != PWM_POLARITY_NORMAL) return -EINVAL; if (!state->enabled && mdp->enabled) { mtk_disp_pwm_update_bits(mdp, DISP_PWM_EN, mdp->data->enable_mask, 0x0); clk_disable_unprepare(mdp->clk_mm); clk_disable_unprepare(mdp->clk_main); mdp->enabled = false; return 0; } if (!mdp->enabled) { err = clk_prepare_enable(mdp->clk_main); if (err < 0) { dev_err(chip->dev, "Can't enable mdp->clk_main: %pe\n", ERR_PTR(err)); return err; } err = clk_prepare_enable(mdp->clk_mm); if (err < 0) { dev_err(chip->dev, "Can't enable mdp->clk_mm: %pe\n", ERR_PTR(err)); clk_disable_unprepare(mdp->clk_main); return err; } } /* * Find period, high_width and clk_div to suit duty_ns and period_ns. * Calculate proper div value to keep period value in the bound. * * period_ns = 10^9 * (clk_div + 1) * (period + 1) / PWM_CLK_RATE * duty_ns = 10^9 * (clk_div + 1) * high_width / PWM_CLK_RATE * * period = (PWM_CLK_RATE * period_ns) / (10^9 * (clk_div + 1)) - 1 * high_width = (PWM_CLK_RATE * duty_ns) / (10^9 * (clk_div + 1)) */ rate = clk_get_rate(mdp->clk_main); clk_div = mul_u64_u64_div_u64(state->period, rate, NSEC_PER_SEC) >> PWM_PERIOD_BIT_WIDTH; if (clk_div > PWM_CLKDIV_MAX) { if (!mdp->enabled) { clk_disable_unprepare(mdp->clk_mm); clk_disable_unprepare(mdp->clk_main); } return -EINVAL; } div = NSEC_PER_SEC * (clk_div + 1); period = mul_u64_u64_div_u64(state->period, rate, div); if (period > 0) period--; high_width = mul_u64_u64_div_u64(state->duty_cycle, rate, div); value = period | (high_width << PWM_HIGH_WIDTH_SHIFT); if (mdp->data->bls_debug && !mdp->data->has_commit) { /* * For MT2701, disable double buffer before writing register * and select manual mode and use PWM_PERIOD/PWM_HIGH_WIDTH. */ mtk_disp_pwm_update_bits(mdp, mdp->data->bls_debug, mdp->data->bls_debug_mask, mdp->data->bls_debug_mask); mtk_disp_pwm_update_bits(mdp, mdp->data->con0, mdp->data->con0_sel, mdp->data->con0_sel); } mtk_disp_pwm_update_bits(mdp, mdp->data->con0, PWM_CLKDIV_MASK, clk_div << PWM_CLKDIV_SHIFT); mtk_disp_pwm_update_bits(mdp, mdp->data->con1, PWM_PERIOD_MASK | PWM_HIGH_WIDTH_MASK, value); if (mdp->data->has_commit) { mtk_disp_pwm_update_bits(mdp, mdp->data->commit, mdp->data->commit_mask, mdp->data->commit_mask); mtk_disp_pwm_update_bits(mdp, mdp->data->commit, mdp->data->commit_mask, 0x0); } mtk_disp_pwm_update_bits(mdp, DISP_PWM_EN, mdp->data->enable_mask, mdp->data->enable_mask); mdp->enabled = true; return 0; } static int mtk_disp_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm, struct pwm_state *state) { struct mtk_disp_pwm *mdp = to_mtk_disp_pwm(chip); u64 rate, period, high_width; u32 clk_div, pwm_en, con0, con1; int err; err = clk_prepare_enable(mdp->clk_main); if (err < 0) { dev_err(chip->dev, "Can't enable mdp->clk_main: %pe\n", ERR_PTR(err)); return err; } err = clk_prepare_enable(mdp->clk_mm); if (err < 0) { dev_err(chip->dev, "Can't enable mdp->clk_mm: %pe\n", ERR_PTR(err)); clk_disable_unprepare(mdp->clk_main); return err; } /* * Apply DISP_PWM_DEBUG settings to choose whether to enable or disable * registers double buffer and manual commit to working register before * performing any read/write operation */ if (mdp->data->bls_debug) mtk_disp_pwm_update_bits(mdp, mdp->data->bls_debug, mdp->data->bls_debug_mask, mdp->data->bls_debug_mask); rate = clk_get_rate(mdp->clk_main); con0 = readl(mdp->base + mdp->data->con0); con1 = readl(mdp->base + mdp->data->con1); pwm_en = readl(mdp->base + DISP_PWM_EN); state->enabled = !!(pwm_en & mdp->data->enable_mask); clk_div = FIELD_GET(PWM_CLKDIV_MASK, con0); period = FIELD_GET(PWM_PERIOD_MASK, con1); /* * period has 12 bits, clk_div 11 and NSEC_PER_SEC has 30, * so period * (clk_div + 1) * NSEC_PER_SEC doesn't overflow. */ state->period = DIV64_U64_ROUND_UP(period * (clk_div + 1) * NSEC_PER_SEC, rate); high_width = FIELD_GET(PWM_HIGH_WIDTH_MASK, con1); state->duty_cycle = DIV64_U64_ROUND_UP(high_width * (clk_div + 1) * NSEC_PER_SEC, rate); state->polarity = PWM_POLARITY_NORMAL; clk_disable_unprepare(mdp->clk_mm); clk_disable_unprepare(mdp->clk_main); return 0; } static const struct pwm_ops mtk_disp_pwm_ops = { .apply = mtk_disp_pwm_apply, .get_state = mtk_disp_pwm_get_state, .owner = THIS_MODULE, }; static int mtk_disp_pwm_probe(struct platform_device *pdev) { struct mtk_disp_pwm *mdp; int ret; mdp = devm_kzalloc(&pdev->dev, sizeof(*mdp), GFP_KERNEL); if (!mdp) return -ENOMEM; mdp->data = of_device_get_match_data(&pdev->dev); mdp->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(mdp->base)) return PTR_ERR(mdp->base); mdp->clk_main = devm_clk_get(&pdev->dev, "main"); if (IS_ERR(mdp->clk_main)) return PTR_ERR(mdp->clk_main); mdp->clk_mm = devm_clk_get(&pdev->dev, "mm"); if (IS_ERR(mdp->clk_mm)) return PTR_ERR(mdp->clk_mm); mdp->chip.dev = &pdev->dev; mdp->chip.ops = &mtk_disp_pwm_ops; mdp->chip.npwm = 1; ret = pwmchip_add(&mdp->chip); if (ret < 0) { dev_err(&pdev->dev, "pwmchip_add() failed: %pe\n", ERR_PTR(ret)); return ret; } platform_set_drvdata(pdev, mdp); return 0; } static void mtk_disp_pwm_remove(struct platform_device *pdev) { struct mtk_disp_pwm *mdp = platform_get_drvdata(pdev); pwmchip_remove(&mdp->chip); } static const struct mtk_pwm_data mt2701_pwm_data = { .enable_mask = BIT(16), .con0 = 0xa8, .con0_sel = 0x2, .con1 = 0xac, .has_commit = false, .bls_debug = 0xb0, .bls_debug_mask = 0x3, }; static const struct mtk_pwm_data mt8173_pwm_data = { .enable_mask = BIT(0), .con0 = 0x10, .con0_sel = 0x0, .con1 = 0x14, .has_commit = true, .commit = 0x8, .commit_mask = 0x1, }; static const struct mtk_pwm_data mt8183_pwm_data = { .enable_mask = BIT(0), .con0 = 0x18, .con0_sel = 0x0, .con1 = 0x1c, .has_commit = false, .bls_debug = 0x80, .bls_debug_mask = 0x3, }; static const struct of_device_id mtk_disp_pwm_of_match[] = { { .compatible = "mediatek,mt2701-disp-pwm", .data = &mt2701_pwm_data}, { .compatible = "mediatek,mt6595-disp-pwm", .data = &mt8173_pwm_data}, { .compatible = "mediatek,mt8173-disp-pwm", .data = &mt8173_pwm_data}, { .compatible = "mediatek,mt8183-disp-pwm", .data = &mt8183_pwm_data}, { } }; MODULE_DEVICE_TABLE(of, mtk_disp_pwm_of_match); static struct platform_driver mtk_disp_pwm_driver = { .driver = { .name = "mediatek-disp-pwm", .of_match_table = mtk_disp_pwm_of_match, }, .probe = mtk_disp_pwm_probe, .remove_new = mtk_disp_pwm_remove, }; module_platform_driver(mtk_disp_pwm_driver); MODULE_AUTHOR("YH Huang <[email protected]>"); MODULE_DESCRIPTION("MediaTek SoC display PWM driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/pwm/pwm-mtk-disp.c
// SPDX-License-Identifier: GPL-2.0-only /* * NXP LPC18xx State Configurable Timer - Pulse Width Modulator driver * * Copyright (c) 2015 Ariel D'Alessandro <[email protected]> * * Notes * ===== * NXP LPC18xx provides a State Configurable Timer (SCT) which can be configured * as a Pulse Width Modulator. * * SCT supports 16 outputs, 16 events and 16 registers. Each event will be * triggered when its related register matches the SCT counter value, and it * will set or clear a selected output. * * One of the events is preselected to generate the period, thus the maximum * number of simultaneous channels is limited to 15. Notice that period is * global to all the channels, thus PWM driver will refuse setting different * values to it, unless there's only one channel requested. */ #include <linux/clk.h> #include <linux/err.h> #include <linux/io.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/pwm.h> /* LPC18xx SCT registers */ #define LPC18XX_PWM_CONFIG 0x000 #define LPC18XX_PWM_CONFIG_UNIFY BIT(0) #define LPC18XX_PWM_CONFIG_NORELOAD BIT(7) #define LPC18XX_PWM_CTRL 0x004 #define LPC18XX_PWM_CTRL_HALT BIT(2) #define LPC18XX_PWM_BIDIR BIT(4) #define LPC18XX_PWM_PRE_SHIFT 5 #define LPC18XX_PWM_PRE_MASK (0xff << LPC18XX_PWM_PRE_SHIFT) #define LPC18XX_PWM_PRE(x) (x << LPC18XX_PWM_PRE_SHIFT) #define LPC18XX_PWM_LIMIT 0x008 #define LPC18XX_PWM_RES_BASE 0x058 #define LPC18XX_PWM_RES_SHIFT(_ch) (_ch * 2) #define LPC18XX_PWM_RES(_ch, _action) (_action << LPC18XX_PWM_RES_SHIFT(_ch)) #define LPC18XX_PWM_RES_MASK(_ch) (0x3 << LPC18XX_PWM_RES_SHIFT(_ch)) #define LPC18XX_PWM_MATCH_BASE 0x100 #define LPC18XX_PWM_MATCH(_ch) (LPC18XX_PWM_MATCH_BASE + _ch * 4) #define LPC18XX_PWM_MATCHREL_BASE 0x200 #define LPC18XX_PWM_MATCHREL(_ch) (LPC18XX_PWM_MATCHREL_BASE + _ch * 4) #define LPC18XX_PWM_EVSTATEMSK_BASE 0x300 #define LPC18XX_PWM_EVSTATEMSK(_ch) (LPC18XX_PWM_EVSTATEMSK_BASE + _ch * 8) #define LPC18XX_PWM_EVSTATEMSK_ALL 0xffffffff #define LPC18XX_PWM_EVCTRL_BASE 0x304 #define LPC18XX_PWM_EVCTRL(_ev) (LPC18XX_PWM_EVCTRL_BASE + _ev * 8) #define LPC18XX_PWM_EVCTRL_MATCH(_ch) _ch #define LPC18XX_PWM_EVCTRL_COMB_SHIFT 12 #define LPC18XX_PWM_EVCTRL_COMB_MATCH (0x1 << LPC18XX_PWM_EVCTRL_COMB_SHIFT) #define LPC18XX_PWM_OUTPUTSET_BASE 0x500 #define LPC18XX_PWM_OUTPUTSET(_ch) (LPC18XX_PWM_OUTPUTSET_BASE + _ch * 8) #define LPC18XX_PWM_OUTPUTCL_BASE 0x504 #define LPC18XX_PWM_OUTPUTCL(_ch) (LPC18XX_PWM_OUTPUTCL_BASE + _ch * 8) /* LPC18xx SCT unified counter */ #define LPC18XX_PWM_TIMER_MAX 0xffffffff /* LPC18xx SCT events */ #define LPC18XX_PWM_EVENT_PERIOD 0 #define LPC18XX_PWM_EVENT_MAX 16 #define LPC18XX_NUM_PWMS 16 /* SCT conflict resolution */ enum lpc18xx_pwm_res_action { LPC18XX_PWM_RES_NONE, LPC18XX_PWM_RES_SET, LPC18XX_PWM_RES_CLEAR, LPC18XX_PWM_RES_TOGGLE, }; struct lpc18xx_pwm_data { unsigned int duty_event; }; struct lpc18xx_pwm_chip { struct device *dev; struct pwm_chip chip; void __iomem *base; struct clk *pwm_clk; unsigned long clk_rate; unsigned int period_ns; unsigned int min_period_ns; u64 max_period_ns; unsigned int period_event; unsigned long event_map; struct mutex res_lock; struct mutex period_lock; struct lpc18xx_pwm_data channeldata[LPC18XX_NUM_PWMS]; }; static inline struct lpc18xx_pwm_chip * to_lpc18xx_pwm_chip(struct pwm_chip *chip) { return container_of(chip, struct lpc18xx_pwm_chip, chip); } static inline void lpc18xx_pwm_writel(struct lpc18xx_pwm_chip *lpc18xx_pwm, u32 reg, u32 val) { writel(val, lpc18xx_pwm->base + reg); } static inline u32 lpc18xx_pwm_readl(struct lpc18xx_pwm_chip *lpc18xx_pwm, u32 reg) { return readl(lpc18xx_pwm->base + reg); } static void lpc18xx_pwm_set_conflict_res(struct lpc18xx_pwm_chip *lpc18xx_pwm, struct pwm_device *pwm, enum lpc18xx_pwm_res_action action) { u32 val; mutex_lock(&lpc18xx_pwm->res_lock); /* * Simultaneous set and clear may happen on an output, that is the case * when duty_ns == period_ns. LPC18xx SCT allows to set a conflict * resolution action to be taken in such a case. */ val = lpc18xx_pwm_readl(lpc18xx_pwm, LPC18XX_PWM_RES_BASE); val &= ~LPC18XX_PWM_RES_MASK(pwm->hwpwm); val |= LPC18XX_PWM_RES(pwm->hwpwm, action); lpc18xx_pwm_writel(lpc18xx_pwm, LPC18XX_PWM_RES_BASE, val); mutex_unlock(&lpc18xx_pwm->res_lock); } static void lpc18xx_pwm_config_period(struct pwm_chip *chip, u64 period_ns) { struct lpc18xx_pwm_chip *lpc18xx_pwm = to_lpc18xx_pwm_chip(chip); u32 val; /* * With clk_rate < NSEC_PER_SEC this cannot overflow. * With period_ns < max_period_ns this also fits into an u32. * As period_ns >= min_period_ns = DIV_ROUND_UP(NSEC_PER_SEC, lpc18xx_pwm->clk_rate); * we have val >= 1. */ val = mul_u64_u64_div_u64(period_ns, lpc18xx_pwm->clk_rate, NSEC_PER_SEC); lpc18xx_pwm_writel(lpc18xx_pwm, LPC18XX_PWM_MATCH(lpc18xx_pwm->period_event), val - 1); lpc18xx_pwm_writel(lpc18xx_pwm, LPC18XX_PWM_MATCHREL(lpc18xx_pwm->period_event), val - 1); } static void lpc18xx_pwm_config_duty(struct pwm_chip *chip, struct pwm_device *pwm, u64 duty_ns) { struct lpc18xx_pwm_chip *lpc18xx_pwm = to_lpc18xx_pwm_chip(chip); struct lpc18xx_pwm_data *lpc18xx_data = &lpc18xx_pwm->channeldata[pwm->hwpwm]; u32 val; /* * With clk_rate <= NSEC_PER_SEC this cannot overflow. * With duty_ns <= period_ns < max_period_ns this also fits into an u32. */ val = mul_u64_u64_div_u64(duty_ns, lpc18xx_pwm->clk_rate, NSEC_PER_SEC); lpc18xx_pwm_writel(lpc18xx_pwm, LPC18XX_PWM_MATCH(lpc18xx_data->duty_event), val); lpc18xx_pwm_writel(lpc18xx_pwm, LPC18XX_PWM_MATCHREL(lpc18xx_data->duty_event), val); } static int lpc18xx_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm, int duty_ns, int period_ns) { struct lpc18xx_pwm_chip *lpc18xx_pwm = to_lpc18xx_pwm_chip(chip); int requested_events, i; if (period_ns < lpc18xx_pwm->min_period_ns || period_ns > lpc18xx_pwm->max_period_ns) { dev_err(chip->dev, "period %d not in range\n", period_ns); return -ERANGE; } mutex_lock(&lpc18xx_pwm->period_lock); requested_events = bitmap_weight(&lpc18xx_pwm->event_map, LPC18XX_PWM_EVENT_MAX); /* * The PWM supports only a single period for all PWM channels. * Once the period is set, it can only be changed if no more than one * channel is requested at that moment. */ if (requested_events > 2 && lpc18xx_pwm->period_ns != period_ns && lpc18xx_pwm->period_ns) { dev_err(chip->dev, "conflicting period requested for PWM %u\n", pwm->hwpwm); mutex_unlock(&lpc18xx_pwm->period_lock); return -EBUSY; } if ((requested_events <= 2 && lpc18xx_pwm->period_ns != period_ns) || !lpc18xx_pwm->period_ns) { lpc18xx_pwm->period_ns = period_ns; for (i = 0; i < chip->npwm; i++) pwm_set_period(&chip->pwms[i], period_ns); lpc18xx_pwm_config_period(chip, period_ns); } mutex_unlock(&lpc18xx_pwm->period_lock); lpc18xx_pwm_config_duty(chip, pwm, duty_ns); return 0; } static int lpc18xx_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm, enum pwm_polarity polarity) { struct lpc18xx_pwm_chip *lpc18xx_pwm = to_lpc18xx_pwm_chip(chip); struct lpc18xx_pwm_data *lpc18xx_data = &lpc18xx_pwm->channeldata[pwm->hwpwm]; enum lpc18xx_pwm_res_action res_action; unsigned int set_event, clear_event; lpc18xx_pwm_writel(lpc18xx_pwm, LPC18XX_PWM_EVCTRL(lpc18xx_data->duty_event), LPC18XX_PWM_EVCTRL_MATCH(lpc18xx_data->duty_event) | LPC18XX_PWM_EVCTRL_COMB_MATCH); lpc18xx_pwm_writel(lpc18xx_pwm, LPC18XX_PWM_EVSTATEMSK(lpc18xx_data->duty_event), LPC18XX_PWM_EVSTATEMSK_ALL); if (polarity == PWM_POLARITY_NORMAL) { set_event = lpc18xx_pwm->period_event; clear_event = lpc18xx_data->duty_event; res_action = LPC18XX_PWM_RES_SET; } else { set_event = lpc18xx_data->duty_event; clear_event = lpc18xx_pwm->period_event; res_action = LPC18XX_PWM_RES_CLEAR; } lpc18xx_pwm_writel(lpc18xx_pwm, LPC18XX_PWM_OUTPUTSET(pwm->hwpwm), BIT(set_event)); lpc18xx_pwm_writel(lpc18xx_pwm, LPC18XX_PWM_OUTPUTCL(pwm->hwpwm), BIT(clear_event)); lpc18xx_pwm_set_conflict_res(lpc18xx_pwm, pwm, res_action); return 0; } static void lpc18xx_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm) { struct lpc18xx_pwm_chip *lpc18xx_pwm = to_lpc18xx_pwm_chip(chip); struct lpc18xx_pwm_data *lpc18xx_data = &lpc18xx_pwm->channeldata[pwm->hwpwm]; lpc18xx_pwm_writel(lpc18xx_pwm, LPC18XX_PWM_EVCTRL(lpc18xx_data->duty_event), 0); lpc18xx_pwm_writel(lpc18xx_pwm, LPC18XX_PWM_OUTPUTSET(pwm->hwpwm), 0); lpc18xx_pwm_writel(lpc18xx_pwm, LPC18XX_PWM_OUTPUTCL(pwm->hwpwm), 0); } static int lpc18xx_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm) { struct lpc18xx_pwm_chip *lpc18xx_pwm = to_lpc18xx_pwm_chip(chip); struct lpc18xx_pwm_data *lpc18xx_data = &lpc18xx_pwm->channeldata[pwm->hwpwm]; unsigned long event; event = find_first_zero_bit(&lpc18xx_pwm->event_map, LPC18XX_PWM_EVENT_MAX); if (event >= LPC18XX_PWM_EVENT_MAX) { dev_err(lpc18xx_pwm->dev, "maximum number of simultaneous channels reached\n"); return -EBUSY; } set_bit(event, &lpc18xx_pwm->event_map); lpc18xx_data->duty_event = event; return 0; } static void lpc18xx_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm) { struct lpc18xx_pwm_chip *lpc18xx_pwm = to_lpc18xx_pwm_chip(chip); struct lpc18xx_pwm_data *lpc18xx_data = &lpc18xx_pwm->channeldata[pwm->hwpwm]; clear_bit(lpc18xx_data->duty_event, &lpc18xx_pwm->event_map); } static int lpc18xx_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { int err; bool enabled = pwm->state.enabled; if (state->polarity != pwm->state.polarity && pwm->state.enabled) { lpc18xx_pwm_disable(chip, pwm); enabled = false; } if (!state->enabled) { if (enabled) lpc18xx_pwm_disable(chip, pwm); return 0; } err = lpc18xx_pwm_config(pwm->chip, pwm, state->duty_cycle, state->period); if (err) return err; if (!enabled) err = lpc18xx_pwm_enable(chip, pwm, state->polarity); return err; } static const struct pwm_ops lpc18xx_pwm_ops = { .apply = lpc18xx_pwm_apply, .request = lpc18xx_pwm_request, .free = lpc18xx_pwm_free, .owner = THIS_MODULE, }; static const struct of_device_id lpc18xx_pwm_of_match[] = { { .compatible = "nxp,lpc1850-sct-pwm" }, {} }; MODULE_DEVICE_TABLE(of, lpc18xx_pwm_of_match); static int lpc18xx_pwm_probe(struct platform_device *pdev) { struct lpc18xx_pwm_chip *lpc18xx_pwm; int ret; u64 val; lpc18xx_pwm = devm_kzalloc(&pdev->dev, sizeof(*lpc18xx_pwm), GFP_KERNEL); if (!lpc18xx_pwm) return -ENOMEM; lpc18xx_pwm->dev = &pdev->dev; lpc18xx_pwm->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(lpc18xx_pwm->base)) return PTR_ERR(lpc18xx_pwm->base); lpc18xx_pwm->pwm_clk = devm_clk_get_enabled(&pdev->dev, "pwm"); if (IS_ERR(lpc18xx_pwm->pwm_clk)) return dev_err_probe(&pdev->dev, PTR_ERR(lpc18xx_pwm->pwm_clk), "failed to get pwm clock\n"); lpc18xx_pwm->clk_rate = clk_get_rate(lpc18xx_pwm->pwm_clk); if (!lpc18xx_pwm->clk_rate) return dev_err_probe(&pdev->dev, -EINVAL, "pwm clock has no frequency\n"); /* * If clkrate is too fast, the calculations in .apply() might overflow. */ if (lpc18xx_pwm->clk_rate > NSEC_PER_SEC) return dev_err_probe(&pdev->dev, -EINVAL, "pwm clock to fast\n"); mutex_init(&lpc18xx_pwm->res_lock); mutex_init(&lpc18xx_pwm->period_lock); lpc18xx_pwm->max_period_ns = mul_u64_u64_div_u64(NSEC_PER_SEC, LPC18XX_PWM_TIMER_MAX, lpc18xx_pwm->clk_rate); lpc18xx_pwm->min_period_ns = DIV_ROUND_UP(NSEC_PER_SEC, lpc18xx_pwm->clk_rate); lpc18xx_pwm->chip.dev = &pdev->dev; lpc18xx_pwm->chip.ops = &lpc18xx_pwm_ops; lpc18xx_pwm->chip.npwm = LPC18XX_NUM_PWMS; /* SCT counter must be in unify (32 bit) mode */ lpc18xx_pwm_writel(lpc18xx_pwm, LPC18XX_PWM_CONFIG, LPC18XX_PWM_CONFIG_UNIFY); /* * Everytime the timer counter reaches the period value, the related * event will be triggered and the counter reset to 0. */ set_bit(LPC18XX_PWM_EVENT_PERIOD, &lpc18xx_pwm->event_map); lpc18xx_pwm->period_event = LPC18XX_PWM_EVENT_PERIOD; lpc18xx_pwm_writel(lpc18xx_pwm, LPC18XX_PWM_EVSTATEMSK(lpc18xx_pwm->period_event), LPC18XX_PWM_EVSTATEMSK_ALL); val = LPC18XX_PWM_EVCTRL_MATCH(lpc18xx_pwm->period_event) | LPC18XX_PWM_EVCTRL_COMB_MATCH; lpc18xx_pwm_writel(lpc18xx_pwm, LPC18XX_PWM_EVCTRL(lpc18xx_pwm->period_event), val); lpc18xx_pwm_writel(lpc18xx_pwm, LPC18XX_PWM_LIMIT, BIT(lpc18xx_pwm->period_event)); val = lpc18xx_pwm_readl(lpc18xx_pwm, LPC18XX_PWM_CTRL); val &= ~LPC18XX_PWM_BIDIR; val &= ~LPC18XX_PWM_CTRL_HALT; val &= ~LPC18XX_PWM_PRE_MASK; val |= LPC18XX_PWM_PRE(0); lpc18xx_pwm_writel(lpc18xx_pwm, LPC18XX_PWM_CTRL, val); ret = pwmchip_add(&lpc18xx_pwm->chip); if (ret < 0) return dev_err_probe(&pdev->dev, ret, "pwmchip_add failed\n"); platform_set_drvdata(pdev, lpc18xx_pwm); return 0; } static void lpc18xx_pwm_remove(struct platform_device *pdev) { struct lpc18xx_pwm_chip *lpc18xx_pwm = platform_get_drvdata(pdev); u32 val; pwmchip_remove(&lpc18xx_pwm->chip); val = lpc18xx_pwm_readl(lpc18xx_pwm, LPC18XX_PWM_CTRL); lpc18xx_pwm_writel(lpc18xx_pwm, LPC18XX_PWM_CTRL, val | LPC18XX_PWM_CTRL_HALT); } static struct platform_driver lpc18xx_pwm_driver = { .driver = { .name = "lpc18xx-sct-pwm", .of_match_table = lpc18xx_pwm_of_match, }, .probe = lpc18xx_pwm_probe, .remove_new = lpc18xx_pwm_remove, }; module_platform_driver(lpc18xx_pwm_driver); MODULE_AUTHOR("Ariel D'Alessandro <[email protected]>"); MODULE_DESCRIPTION("NXP LPC18xx PWM driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/pwm/pwm-lpc18xx-sct.c
// SPDX-License-Identifier: GPL-2.0-only /* * Driver for PCA9685 16-channel 12-bit PWM LED controller * * Copyright (C) 2013 Steffen Trumtrar <[email protected]> * Copyright (C) 2015 Clemens Gruber <[email protected]> * * based on the pwm-twl-led.c driver */ #include <linux/acpi.h> #include <linux/gpio/driver.h> #include <linux/i2c.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/platform_device.h> #include <linux/property.h> #include <linux/pwm.h> #include <linux/regmap.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/pm_runtime.h> #include <linux/bitmap.h> /* * Because the PCA9685 has only one prescaler per chip, only the first channel * that is enabled is allowed to change the prescale register. * PWM channels requested afterwards must use a period that results in the same * prescale setting as the one set by the first requested channel. * GPIOs do not count as enabled PWMs as they are not using the prescaler. */ #define PCA9685_MODE1 0x00 #define PCA9685_MODE2 0x01 #define PCA9685_SUBADDR1 0x02 #define PCA9685_SUBADDR2 0x03 #define PCA9685_SUBADDR3 0x04 #define PCA9685_ALLCALLADDR 0x05 #define PCA9685_LEDX_ON_L 0x06 #define PCA9685_LEDX_ON_H 0x07 #define PCA9685_LEDX_OFF_L 0x08 #define PCA9685_LEDX_OFF_H 0x09 #define PCA9685_ALL_LED_ON_L 0xFA #define PCA9685_ALL_LED_ON_H 0xFB #define PCA9685_ALL_LED_OFF_L 0xFC #define PCA9685_ALL_LED_OFF_H 0xFD #define PCA9685_PRESCALE 0xFE #define PCA9685_PRESCALE_MIN 0x03 /* => max. frequency of 1526 Hz */ #define PCA9685_PRESCALE_MAX 0xFF /* => min. frequency of 24 Hz */ #define PCA9685_COUNTER_RANGE 4096 #define PCA9685_OSC_CLOCK_MHZ 25 /* Internal oscillator with 25 MHz */ #define PCA9685_NUMREGS 0xFF #define PCA9685_MAXCHAN 0x10 #define LED_FULL BIT(4) #define MODE1_ALLCALL BIT(0) #define MODE1_SUB3 BIT(1) #define MODE1_SUB2 BIT(2) #define MODE1_SUB1 BIT(3) #define MODE1_SLEEP BIT(4) #define MODE2_INVRT BIT(4) #define MODE2_OUTDRV BIT(2) #define LED_N_ON_H(N) (PCA9685_LEDX_ON_H + (4 * (N))) #define LED_N_ON_L(N) (PCA9685_LEDX_ON_L + (4 * (N))) #define LED_N_OFF_H(N) (PCA9685_LEDX_OFF_H + (4 * (N))) #define LED_N_OFF_L(N) (PCA9685_LEDX_OFF_L + (4 * (N))) #define REG_ON_H(C) ((C) >= PCA9685_MAXCHAN ? PCA9685_ALL_LED_ON_H : LED_N_ON_H((C))) #define REG_ON_L(C) ((C) >= PCA9685_MAXCHAN ? PCA9685_ALL_LED_ON_L : LED_N_ON_L((C))) #define REG_OFF_H(C) ((C) >= PCA9685_MAXCHAN ? PCA9685_ALL_LED_OFF_H : LED_N_OFF_H((C))) #define REG_OFF_L(C) ((C) >= PCA9685_MAXCHAN ? PCA9685_ALL_LED_OFF_L : LED_N_OFF_L((C))) struct pca9685 { struct pwm_chip chip; struct regmap *regmap; struct mutex lock; DECLARE_BITMAP(pwms_enabled, PCA9685_MAXCHAN + 1); #if IS_ENABLED(CONFIG_GPIOLIB) struct gpio_chip gpio; DECLARE_BITMAP(pwms_inuse, PCA9685_MAXCHAN + 1); #endif }; static inline struct pca9685 *to_pca(struct pwm_chip *chip) { return container_of(chip, struct pca9685, chip); } /* This function is supposed to be called with the lock mutex held */ static bool pca9685_prescaler_can_change(struct pca9685 *pca, int channel) { /* No PWM enabled: Change allowed */ if (bitmap_empty(pca->pwms_enabled, PCA9685_MAXCHAN + 1)) return true; /* More than one PWM enabled: Change not allowed */ if (bitmap_weight(pca->pwms_enabled, PCA9685_MAXCHAN + 1) > 1) return false; /* * Only one PWM enabled: Change allowed if the PWM about to * be changed is the one that is already enabled */ return test_bit(channel, pca->pwms_enabled); } static int pca9685_read_reg(struct pca9685 *pca, unsigned int reg, unsigned int *val) { struct device *dev = pca->chip.dev; int err; err = regmap_read(pca->regmap, reg, val); if (err) dev_err(dev, "regmap_read of register 0x%x failed: %pe\n", reg, ERR_PTR(err)); return err; } static int pca9685_write_reg(struct pca9685 *pca, unsigned int reg, unsigned int val) { struct device *dev = pca->chip.dev; int err; err = regmap_write(pca->regmap, reg, val); if (err) dev_err(dev, "regmap_write to register 0x%x failed: %pe\n", reg, ERR_PTR(err)); return err; } /* Helper function to set the duty cycle ratio to duty/4096 (e.g. duty=2048 -> 50%) */ static void pca9685_pwm_set_duty(struct pca9685 *pca, int channel, unsigned int duty) { struct pwm_device *pwm = &pca->chip.pwms[channel]; unsigned int on, off; if (duty == 0) { /* Set the full OFF bit, which has the highest precedence */ pca9685_write_reg(pca, REG_OFF_H(channel), LED_FULL); return; } else if (duty >= PCA9685_COUNTER_RANGE) { /* Set the full ON bit and clear the full OFF bit */ pca9685_write_reg(pca, REG_ON_H(channel), LED_FULL); pca9685_write_reg(pca, REG_OFF_H(channel), 0); return; } if (pwm->state.usage_power && channel < PCA9685_MAXCHAN) { /* * If usage_power is set, the pca9685 driver will phase shift * the individual channels relative to their channel number. * This improves EMI because the enabled channels no longer * turn on at the same time, while still maintaining the * configured duty cycle / power output. */ on = channel * PCA9685_COUNTER_RANGE / PCA9685_MAXCHAN; } else on = 0; off = (on + duty) % PCA9685_COUNTER_RANGE; /* Set ON time (clears full ON bit) */ pca9685_write_reg(pca, REG_ON_L(channel), on & 0xff); pca9685_write_reg(pca, REG_ON_H(channel), (on >> 8) & 0xf); /* Set OFF time (clears full OFF bit) */ pca9685_write_reg(pca, REG_OFF_L(channel), off & 0xff); pca9685_write_reg(pca, REG_OFF_H(channel), (off >> 8) & 0xf); } static unsigned int pca9685_pwm_get_duty(struct pca9685 *pca, int channel) { struct pwm_device *pwm = &pca->chip.pwms[channel]; unsigned int off = 0, on = 0, val = 0; if (WARN_ON(channel >= PCA9685_MAXCHAN)) { /* HW does not support reading state of "all LEDs" channel */ return 0; } pca9685_read_reg(pca, LED_N_OFF_H(channel), &off); if (off & LED_FULL) { /* Full OFF bit is set */ return 0; } pca9685_read_reg(pca, LED_N_ON_H(channel), &on); if (on & LED_FULL) { /* Full ON bit is set */ return PCA9685_COUNTER_RANGE; } pca9685_read_reg(pca, LED_N_OFF_L(channel), &val); off = ((off & 0xf) << 8) | (val & 0xff); if (!pwm->state.usage_power) return off; /* Read ON register to calculate duty cycle of staggered output */ if (pca9685_read_reg(pca, LED_N_ON_L(channel), &val)) { /* Reset val to 0 in case reading LED_N_ON_L failed */ val = 0; } on = ((on & 0xf) << 8) | (val & 0xff); return (off - on) & (PCA9685_COUNTER_RANGE - 1); } #if IS_ENABLED(CONFIG_GPIOLIB) static bool pca9685_pwm_test_and_set_inuse(struct pca9685 *pca, int pwm_idx) { bool is_inuse; mutex_lock(&pca->lock); if (pwm_idx >= PCA9685_MAXCHAN) { /* * "All LEDs" channel: * pretend already in use if any of the PWMs are requested */ if (!bitmap_empty(pca->pwms_inuse, PCA9685_MAXCHAN)) { is_inuse = true; goto out; } } else { /* * Regular channel: * pretend already in use if the "all LEDs" channel is requested */ if (test_bit(PCA9685_MAXCHAN, pca->pwms_inuse)) { is_inuse = true; goto out; } } is_inuse = test_and_set_bit(pwm_idx, pca->pwms_inuse); out: mutex_unlock(&pca->lock); return is_inuse; } static void pca9685_pwm_clear_inuse(struct pca9685 *pca, int pwm_idx) { mutex_lock(&pca->lock); clear_bit(pwm_idx, pca->pwms_inuse); mutex_unlock(&pca->lock); } static int pca9685_pwm_gpio_request(struct gpio_chip *gpio, unsigned int offset) { struct pca9685 *pca = gpiochip_get_data(gpio); if (pca9685_pwm_test_and_set_inuse(pca, offset)) return -EBUSY; pm_runtime_get_sync(pca->chip.dev); return 0; } static int pca9685_pwm_gpio_get(struct gpio_chip *gpio, unsigned int offset) { struct pca9685 *pca = gpiochip_get_data(gpio); return pca9685_pwm_get_duty(pca, offset) != 0; } static void pca9685_pwm_gpio_set(struct gpio_chip *gpio, unsigned int offset, int value) { struct pca9685 *pca = gpiochip_get_data(gpio); pca9685_pwm_set_duty(pca, offset, value ? PCA9685_COUNTER_RANGE : 0); } static void pca9685_pwm_gpio_free(struct gpio_chip *gpio, unsigned int offset) { struct pca9685 *pca = gpiochip_get_data(gpio); pca9685_pwm_set_duty(pca, offset, 0); pm_runtime_put(pca->chip.dev); pca9685_pwm_clear_inuse(pca, offset); } static int pca9685_pwm_gpio_get_direction(struct gpio_chip *chip, unsigned int offset) { /* Always out */ return GPIO_LINE_DIRECTION_OUT; } static int pca9685_pwm_gpio_direction_input(struct gpio_chip *gpio, unsigned int offset) { return -EINVAL; } static int pca9685_pwm_gpio_direction_output(struct gpio_chip *gpio, unsigned int offset, int value) { pca9685_pwm_gpio_set(gpio, offset, value); return 0; } /* * The PCA9685 has a bit for turning the PWM output full off or on. Some * boards like Intel Galileo actually uses these as normal GPIOs so we * expose a GPIO chip here which can exclusively take over the underlying * PWM channel. */ static int pca9685_pwm_gpio_probe(struct pca9685 *pca) { struct device *dev = pca->chip.dev; pca->gpio.label = dev_name(dev); pca->gpio.parent = dev; pca->gpio.request = pca9685_pwm_gpio_request; pca->gpio.free = pca9685_pwm_gpio_free; pca->gpio.get_direction = pca9685_pwm_gpio_get_direction; pca->gpio.direction_input = pca9685_pwm_gpio_direction_input; pca->gpio.direction_output = pca9685_pwm_gpio_direction_output; pca->gpio.get = pca9685_pwm_gpio_get; pca->gpio.set = pca9685_pwm_gpio_set; pca->gpio.base = -1; pca->gpio.ngpio = PCA9685_MAXCHAN; pca->gpio.can_sleep = true; return devm_gpiochip_add_data(dev, &pca->gpio, pca); } #else static inline bool pca9685_pwm_test_and_set_inuse(struct pca9685 *pca, int pwm_idx) { return false; } static inline void pca9685_pwm_clear_inuse(struct pca9685 *pca, int pwm_idx) { } static inline int pca9685_pwm_gpio_probe(struct pca9685 *pca) { return 0; } #endif static void pca9685_set_sleep_mode(struct pca9685 *pca, bool enable) { struct device *dev = pca->chip.dev; int err = regmap_update_bits(pca->regmap, PCA9685_MODE1, MODE1_SLEEP, enable ? MODE1_SLEEP : 0); if (err) { dev_err(dev, "regmap_update_bits of register 0x%x failed: %pe\n", PCA9685_MODE1, ERR_PTR(err)); return; } if (!enable) { /* Wait 500us for the oscillator to be back up */ udelay(500); } } static int __pca9685_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { struct pca9685 *pca = to_pca(chip); unsigned long long duty, prescale; unsigned int val = 0; if (state->polarity != PWM_POLARITY_NORMAL) return -EINVAL; prescale = DIV_ROUND_CLOSEST_ULL(PCA9685_OSC_CLOCK_MHZ * state->period, PCA9685_COUNTER_RANGE * 1000) - 1; if (prescale < PCA9685_PRESCALE_MIN || prescale > PCA9685_PRESCALE_MAX) { dev_err(chip->dev, "pwm not changed: period out of bounds!\n"); return -EINVAL; } if (!state->enabled) { pca9685_pwm_set_duty(pca, pwm->hwpwm, 0); return 0; } pca9685_read_reg(pca, PCA9685_PRESCALE, &val); if (prescale != val) { if (!pca9685_prescaler_can_change(pca, pwm->hwpwm)) { dev_err(chip->dev, "pwm not changed: periods of enabled pwms must match!\n"); return -EBUSY; } /* * Putting the chip briefly into SLEEP mode * at this point won't interfere with the * pm_runtime framework, because the pm_runtime * state is guaranteed active here. */ /* Put chip into sleep mode */ pca9685_set_sleep_mode(pca, true); /* Change the chip-wide output frequency */ pca9685_write_reg(pca, PCA9685_PRESCALE, prescale); /* Wake the chip up */ pca9685_set_sleep_mode(pca, false); } duty = PCA9685_COUNTER_RANGE * state->duty_cycle; duty = DIV_ROUND_UP_ULL(duty, state->period); pca9685_pwm_set_duty(pca, pwm->hwpwm, duty); return 0; } static int pca9685_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { struct pca9685 *pca = to_pca(chip); int ret; mutex_lock(&pca->lock); ret = __pca9685_pwm_apply(chip, pwm, state); if (ret == 0) { if (state->enabled) set_bit(pwm->hwpwm, pca->pwms_enabled); else clear_bit(pwm->hwpwm, pca->pwms_enabled); } mutex_unlock(&pca->lock); return ret; } static int pca9685_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm, struct pwm_state *state) { struct pca9685 *pca = to_pca(chip); unsigned long long duty; unsigned int val = 0; /* Calculate (chip-wide) period from prescale value */ pca9685_read_reg(pca, PCA9685_PRESCALE, &val); /* * PCA9685_OSC_CLOCK_MHZ is 25, i.e. an integer divider of 1000. * The following calculation is therefore only a multiplication * and we are not losing precision. */ state->period = (PCA9685_COUNTER_RANGE * 1000 / PCA9685_OSC_CLOCK_MHZ) * (val + 1); /* The (per-channel) polarity is fixed */ state->polarity = PWM_POLARITY_NORMAL; if (pwm->hwpwm >= PCA9685_MAXCHAN) { /* * The "all LEDs" channel does not support HW readout * Return 0 and disabled for backwards compatibility */ state->duty_cycle = 0; state->enabled = false; return 0; } state->enabled = true; duty = pca9685_pwm_get_duty(pca, pwm->hwpwm); state->duty_cycle = DIV_ROUND_DOWN_ULL(duty * state->period, PCA9685_COUNTER_RANGE); return 0; } static int pca9685_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm) { struct pca9685 *pca = to_pca(chip); if (pca9685_pwm_test_and_set_inuse(pca, pwm->hwpwm)) return -EBUSY; if (pwm->hwpwm < PCA9685_MAXCHAN) { /* PWMs - except the "all LEDs" channel - default to enabled */ mutex_lock(&pca->lock); set_bit(pwm->hwpwm, pca->pwms_enabled); mutex_unlock(&pca->lock); } pm_runtime_get_sync(chip->dev); return 0; } static void pca9685_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm) { struct pca9685 *pca = to_pca(chip); mutex_lock(&pca->lock); pca9685_pwm_set_duty(pca, pwm->hwpwm, 0); clear_bit(pwm->hwpwm, pca->pwms_enabled); mutex_unlock(&pca->lock); pm_runtime_put(chip->dev); pca9685_pwm_clear_inuse(pca, pwm->hwpwm); } static const struct pwm_ops pca9685_pwm_ops = { .apply = pca9685_pwm_apply, .get_state = pca9685_pwm_get_state, .request = pca9685_pwm_request, .free = pca9685_pwm_free, .owner = THIS_MODULE, }; static const struct regmap_config pca9685_regmap_i2c_config = { .reg_bits = 8, .val_bits = 8, .max_register = PCA9685_NUMREGS, .cache_type = REGCACHE_NONE, }; static int pca9685_pwm_probe(struct i2c_client *client) { struct pca9685 *pca; unsigned int reg; int ret; pca = devm_kzalloc(&client->dev, sizeof(*pca), GFP_KERNEL); if (!pca) return -ENOMEM; pca->regmap = devm_regmap_init_i2c(client, &pca9685_regmap_i2c_config); if (IS_ERR(pca->regmap)) { ret = PTR_ERR(pca->regmap); dev_err(&client->dev, "Failed to initialize register map: %d\n", ret); return ret; } i2c_set_clientdata(client, pca); mutex_init(&pca->lock); ret = pca9685_read_reg(pca, PCA9685_MODE2, &reg); if (ret) return ret; if (device_property_read_bool(&client->dev, "invert")) reg |= MODE2_INVRT; else reg &= ~MODE2_INVRT; if (device_property_read_bool(&client->dev, "open-drain")) reg &= ~MODE2_OUTDRV; else reg |= MODE2_OUTDRV; ret = pca9685_write_reg(pca, PCA9685_MODE2, reg); if (ret) return ret; /* Disable all LED ALLCALL and SUBx addresses to avoid bus collisions */ pca9685_read_reg(pca, PCA9685_MODE1, &reg); reg &= ~(MODE1_ALLCALL | MODE1_SUB1 | MODE1_SUB2 | MODE1_SUB3); pca9685_write_reg(pca, PCA9685_MODE1, reg); /* Reset OFF/ON registers to POR default */ pca9685_write_reg(pca, PCA9685_ALL_LED_OFF_L, 0); pca9685_write_reg(pca, PCA9685_ALL_LED_OFF_H, LED_FULL); pca9685_write_reg(pca, PCA9685_ALL_LED_ON_L, 0); pca9685_write_reg(pca, PCA9685_ALL_LED_ON_H, LED_FULL); pca->chip.ops = &pca9685_pwm_ops; /* Add an extra channel for ALL_LED */ pca->chip.npwm = PCA9685_MAXCHAN + 1; pca->chip.dev = &client->dev; ret = pwmchip_add(&pca->chip); if (ret < 0) return ret; ret = pca9685_pwm_gpio_probe(pca); if (ret < 0) { pwmchip_remove(&pca->chip); return ret; } pm_runtime_enable(&client->dev); if (pm_runtime_enabled(&client->dev)) { /* * Although the chip comes out of power-up in the sleep state, * we force it to sleep in case it was woken up before */ pca9685_set_sleep_mode(pca, true); pm_runtime_set_suspended(&client->dev); } else { /* Wake the chip up if runtime PM is disabled */ pca9685_set_sleep_mode(pca, false); } return 0; } static void pca9685_pwm_remove(struct i2c_client *client) { struct pca9685 *pca = i2c_get_clientdata(client); pwmchip_remove(&pca->chip); if (!pm_runtime_enabled(&client->dev)) { /* Put chip in sleep state if runtime PM is disabled */ pca9685_set_sleep_mode(pca, true); } pm_runtime_disable(&client->dev); } static int __maybe_unused pca9685_pwm_runtime_suspend(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct pca9685 *pca = i2c_get_clientdata(client); pca9685_set_sleep_mode(pca, true); return 0; } static int __maybe_unused pca9685_pwm_runtime_resume(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct pca9685 *pca = i2c_get_clientdata(client); pca9685_set_sleep_mode(pca, false); return 0; } static const struct i2c_device_id pca9685_id[] = { { "pca9685", 0 }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(i2c, pca9685_id); #ifdef CONFIG_ACPI static const struct acpi_device_id pca9685_acpi_ids[] = { { "INT3492", 0 }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(acpi, pca9685_acpi_ids); #endif #ifdef CONFIG_OF static const struct of_device_id pca9685_dt_ids[] = { { .compatible = "nxp,pca9685-pwm", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, pca9685_dt_ids); #endif static const struct dev_pm_ops pca9685_pwm_pm = { SET_RUNTIME_PM_OPS(pca9685_pwm_runtime_suspend, pca9685_pwm_runtime_resume, NULL) }; static struct i2c_driver pca9685_i2c_driver = { .driver = { .name = "pca9685-pwm", .acpi_match_table = ACPI_PTR(pca9685_acpi_ids), .of_match_table = of_match_ptr(pca9685_dt_ids), .pm = &pca9685_pwm_pm, }, .probe = pca9685_pwm_probe, .remove = pca9685_pwm_remove, .id_table = pca9685_id, }; module_i2c_driver(pca9685_i2c_driver); MODULE_AUTHOR("Steffen Trumtrar <[email protected]>"); MODULE_DESCRIPTION("PWM driver for PCA9685"); MODULE_LICENSE("GPL");
linux-master
drivers/pwm/pwm-pca9685.c
// SPDX-License-Identifier: GPL-2.0-only /* * TI/National Semiconductor LP3943 PWM driver * * Copyright 2013 Texas Instruments * * Author: Milo Kim <[email protected]> */ #include <linux/err.h> #include <linux/mfd/lp3943.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pwm.h> #include <linux/slab.h> #define LP3943_MAX_DUTY 255 #define LP3943_MIN_PERIOD 6250 #define LP3943_MAX_PERIOD 1600000 struct lp3943_pwm { struct pwm_chip chip; struct lp3943 *lp3943; struct lp3943_platform_data *pdata; }; static inline struct lp3943_pwm *to_lp3943_pwm(struct pwm_chip *chip) { return container_of(chip, struct lp3943_pwm, chip); } static struct lp3943_pwm_map * lp3943_pwm_request_map(struct lp3943_pwm *lp3943_pwm, int hwpwm) { struct lp3943_platform_data *pdata = lp3943_pwm->pdata; struct lp3943 *lp3943 = lp3943_pwm->lp3943; struct lp3943_pwm_map *pwm_map; int i, offset; pwm_map = kzalloc(sizeof(*pwm_map), GFP_KERNEL); if (!pwm_map) return ERR_PTR(-ENOMEM); pwm_map->output = pdata->pwms[hwpwm]->output; pwm_map->num_outputs = pdata->pwms[hwpwm]->num_outputs; for (i = 0; i < pwm_map->num_outputs; i++) { offset = pwm_map->output[i]; /* Return an error if the pin is already assigned */ if (test_and_set_bit(offset, &lp3943->pin_used)) { kfree(pwm_map); return ERR_PTR(-EBUSY); } } return pwm_map; } static int lp3943_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm) { struct lp3943_pwm *lp3943_pwm = to_lp3943_pwm(chip); struct lp3943_pwm_map *pwm_map; pwm_map = lp3943_pwm_request_map(lp3943_pwm, pwm->hwpwm); if (IS_ERR(pwm_map)) return PTR_ERR(pwm_map); return pwm_set_chip_data(pwm, pwm_map); } static void lp3943_pwm_free_map(struct lp3943_pwm *lp3943_pwm, struct lp3943_pwm_map *pwm_map) { struct lp3943 *lp3943 = lp3943_pwm->lp3943; int i, offset; for (i = 0; i < pwm_map->num_outputs; i++) { offset = pwm_map->output[i]; clear_bit(offset, &lp3943->pin_used); } kfree(pwm_map); } static void lp3943_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm) { struct lp3943_pwm *lp3943_pwm = to_lp3943_pwm(chip); struct lp3943_pwm_map *pwm_map = pwm_get_chip_data(pwm); lp3943_pwm_free_map(lp3943_pwm, pwm_map); } static int lp3943_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm, u64 duty_ns, u64 period_ns) { struct lp3943_pwm *lp3943_pwm = to_lp3943_pwm(chip); struct lp3943 *lp3943 = lp3943_pwm->lp3943; u8 val, reg_duty, reg_prescale; int err; /* * How to configure the LP3943 PWMs * * 1) Period = 6250 ~ 1600000 * 2) Prescale = period / 6250 -1 * 3) Duty = input duty * * Prescale and duty are register values */ if (pwm->hwpwm == 0) { reg_prescale = LP3943_REG_PRESCALE0; reg_duty = LP3943_REG_PWM0; } else { reg_prescale = LP3943_REG_PRESCALE1; reg_duty = LP3943_REG_PWM1; } /* * Note that after this clamping, period_ns fits into an int. This is * helpful because we can resort to integer division below instead of * the (more expensive) 64 bit division. */ period_ns = clamp(period_ns, (u64)LP3943_MIN_PERIOD, (u64)LP3943_MAX_PERIOD); val = (u8)((int)period_ns / LP3943_MIN_PERIOD - 1); err = lp3943_write_byte(lp3943, reg_prescale, val); if (err) return err; duty_ns = min(duty_ns, period_ns); val = (u8)((int)duty_ns * LP3943_MAX_DUTY / (int)period_ns); return lp3943_write_byte(lp3943, reg_duty, val); } static int lp3943_pwm_set_mode(struct lp3943_pwm *lp3943_pwm, struct lp3943_pwm_map *pwm_map, u8 val) { struct lp3943 *lp3943 = lp3943_pwm->lp3943; const struct lp3943_reg_cfg *mux = lp3943->mux_cfg; int i, index, err; for (i = 0; i < pwm_map->num_outputs; i++) { index = pwm_map->output[i]; err = lp3943_update_bits(lp3943, mux[index].reg, mux[index].mask, val << mux[index].shift); if (err) return err; } return 0; } static int lp3943_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm) { struct lp3943_pwm *lp3943_pwm = to_lp3943_pwm(chip); struct lp3943_pwm_map *pwm_map = pwm_get_chip_data(pwm); u8 val; if (pwm->hwpwm == 0) val = LP3943_DIM_PWM0; else val = LP3943_DIM_PWM1; /* * Each PWM generator is set to control any of outputs of LP3943. * To enable/disable the PWM, these output pins should be configured. */ return lp3943_pwm_set_mode(lp3943_pwm, pwm_map, val); } static void lp3943_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm) { struct lp3943_pwm *lp3943_pwm = to_lp3943_pwm(chip); struct lp3943_pwm_map *pwm_map = pwm_get_chip_data(pwm); /* * LP3943 outputs are open-drain, so the pin should be configured * when the PWM is disabled. */ lp3943_pwm_set_mode(lp3943_pwm, pwm_map, LP3943_GPIO_OUT_HIGH); } static int lp3943_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { int err; if (state->polarity != PWM_POLARITY_NORMAL) return -EINVAL; if (!state->enabled) { if (pwm->state.enabled) lp3943_pwm_disable(chip, pwm); return 0; } err = lp3943_pwm_config(chip, pwm, state->duty_cycle, state->period); if (err) return err; if (!pwm->state.enabled) err = lp3943_pwm_enable(chip, pwm); return err; } static const struct pwm_ops lp3943_pwm_ops = { .request = lp3943_pwm_request, .free = lp3943_pwm_free, .apply = lp3943_pwm_apply, .owner = THIS_MODULE, }; static int lp3943_pwm_parse_dt(struct device *dev, struct lp3943_pwm *lp3943_pwm) { static const char * const name[] = { "ti,pwm0", "ti,pwm1", }; struct device_node *node = dev->of_node; struct lp3943_platform_data *pdata; struct lp3943_pwm_map *pwm_map; enum lp3943_pwm_output *output; int i, err, proplen, count = 0; u32 num_outputs; if (!node) return -EINVAL; pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); if (!pdata) return -ENOMEM; /* * Read the output map configuration from the device tree. * Each of the two PWM generators can drive zero or more outputs. */ for (i = 0; i < LP3943_NUM_PWMS; i++) { if (!of_get_property(node, name[i], &proplen)) continue; num_outputs = proplen / sizeof(u32); if (num_outputs == 0) continue; output = devm_kcalloc(dev, num_outputs, sizeof(*output), GFP_KERNEL); if (!output) return -ENOMEM; err = of_property_read_u32_array(node, name[i], output, num_outputs); if (err) return err; pwm_map = devm_kzalloc(dev, sizeof(*pwm_map), GFP_KERNEL); if (!pwm_map) return -ENOMEM; pwm_map->output = output; pwm_map->num_outputs = num_outputs; pdata->pwms[i] = pwm_map; count++; } if (count == 0) return -ENODATA; lp3943_pwm->pdata = pdata; return 0; } static int lp3943_pwm_probe(struct platform_device *pdev) { struct lp3943 *lp3943 = dev_get_drvdata(pdev->dev.parent); struct lp3943_pwm *lp3943_pwm; int ret; lp3943_pwm = devm_kzalloc(&pdev->dev, sizeof(*lp3943_pwm), GFP_KERNEL); if (!lp3943_pwm) return -ENOMEM; lp3943_pwm->pdata = lp3943->pdata; if (!lp3943_pwm->pdata) { if (IS_ENABLED(CONFIG_OF)) ret = lp3943_pwm_parse_dt(&pdev->dev, lp3943_pwm); else ret = -ENODEV; if (ret) return ret; } lp3943_pwm->lp3943 = lp3943; lp3943_pwm->chip.dev = &pdev->dev; lp3943_pwm->chip.ops = &lp3943_pwm_ops; lp3943_pwm->chip.npwm = LP3943_NUM_PWMS; return devm_pwmchip_add(&pdev->dev, &lp3943_pwm->chip); } #ifdef CONFIG_OF static const struct of_device_id lp3943_pwm_of_match[] = { { .compatible = "ti,lp3943-pwm", }, { } }; MODULE_DEVICE_TABLE(of, lp3943_pwm_of_match); #endif static struct platform_driver lp3943_pwm_driver = { .probe = lp3943_pwm_probe, .driver = { .name = "lp3943-pwm", .of_match_table = of_match_ptr(lp3943_pwm_of_match), }, }; module_platform_driver(lp3943_pwm_driver); MODULE_DESCRIPTION("LP3943 PWM driver"); MODULE_ALIAS("platform:lp3943-pwm"); MODULE_AUTHOR("Milo Kim"); MODULE_LICENSE("GPL");
linux-master
drivers/pwm/pwm-lp3943.c
// SPDX-License-Identifier: GPL-2.0-only /* * Intel Low Power Subsystem PWM controller driver * * Copyright (C) 2014, Intel Corporation * * Derived from the original pwm-lpss.c */ #include <linux/kernel.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/property.h> #include "pwm-lpss.h" static int pwm_lpss_probe_platform(struct platform_device *pdev) { const struct pwm_lpss_boardinfo *info; struct pwm_lpss_chip *lpwm; void __iomem *base; info = device_get_match_data(&pdev->dev); if (!info) return -ENODEV; base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) return PTR_ERR(base); lpwm = devm_pwm_lpss_probe(&pdev->dev, base, info); if (IS_ERR(lpwm)) return PTR_ERR(lpwm); platform_set_drvdata(pdev, lpwm); /* * On Cherry Trail devices the GFX0._PS0 AML checks if the controller * is on and if it is not on it turns it on and restores what it * believes is the correct state to the PWM controller. * Because of this we must disallow direct-complete, which keeps the * controller (runtime)suspended on resume, to avoid 2 issues: * 1. The controller getting turned on without the linux-pm code * knowing about this. On devices where the controller is unused * this causes it to stay on during the next suspend causing high * battery drain (because S0i3 is not reached) * 2. The state restoring code unexpectedly messing with the controller * * Leaving the controller runtime-suspended (skipping runtime-resume + * normal-suspend) during suspend is fine. */ if (info->other_devices_aml_touches_pwm_regs) dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE| DPM_FLAG_SMART_SUSPEND); pm_runtime_set_active(&pdev->dev); pm_runtime_enable(&pdev->dev); return 0; } static void pwm_lpss_remove_platform(struct platform_device *pdev) { pm_runtime_disable(&pdev->dev); } static const struct acpi_device_id pwm_lpss_acpi_match[] = { { "80860F09", (unsigned long)&pwm_lpss_byt_info }, { "80862288", (unsigned long)&pwm_lpss_bsw_info }, { "80862289", (unsigned long)&pwm_lpss_bsw_info }, { "80865AC8", (unsigned long)&pwm_lpss_bxt_info }, { }, }; MODULE_DEVICE_TABLE(acpi, pwm_lpss_acpi_match); static struct platform_driver pwm_lpss_driver_platform = { .driver = { .name = "pwm-lpss", .acpi_match_table = pwm_lpss_acpi_match, }, .probe = pwm_lpss_probe_platform, .remove_new = pwm_lpss_remove_platform, }; module_platform_driver(pwm_lpss_driver_platform); MODULE_DESCRIPTION("PWM platform driver for Intel LPSS"); MODULE_LICENSE("GPL v2"); MODULE_IMPORT_NS(PWM_LPSS); MODULE_ALIAS("platform:pwm-lpss");
linux-master
drivers/pwm/pwm-lpss-platform.c
// SPDX-License-Identifier: GPL-2.0-only // Copyright (C) 2014 Broadcom Corporation #include <linux/clk.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/io.h> #include <linux/ioport.h> #include <linux/math64.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pwm.h> #include <linux/slab.h> #include <linux/types.h> /* * The Kona PWM has some unusual characteristics. Here are the main points. * * 1) There is no disable bit and the hardware docs advise programming a zero * duty to achieve output equivalent to that of a normal disable operation. * * 2) Changes to prescale, duty, period, and polarity do not take effect until * a subsequent rising edge of the trigger bit. * * 3) If the smooth bit and trigger bit are both low, the output is a constant * high signal. Otherwise, the earlier waveform continues to be output. * * 4) If the smooth bit is set on the rising edge of the trigger bit, output * will transition to the new settings on a period boundary (which could be * seconds away). If the smooth bit is clear, new settings will be applied * as soon as possible (the hardware always has a 400ns delay). * * 5) When the external clock that feeds the PWM is disabled, output is pegged * high or low depending on its state at that exact instant. */ #define PWM_CONTROL_OFFSET 0x00000000 #define PWM_CONTROL_SMOOTH_SHIFT(chan) (24 + (chan)) #define PWM_CONTROL_TYPE_SHIFT(chan) (16 + (chan)) #define PWM_CONTROL_POLARITY_SHIFT(chan) (8 + (chan)) #define PWM_CONTROL_TRIGGER_SHIFT(chan) (chan) #define PRESCALE_OFFSET 0x00000004 #define PRESCALE_SHIFT(chan) ((chan) << 2) #define PRESCALE_MASK(chan) (0x7 << PRESCALE_SHIFT(chan)) #define PRESCALE_MIN 0x00000000 #define PRESCALE_MAX 0x00000007 #define PERIOD_COUNT_OFFSET(chan) (0x00000008 + ((chan) << 3)) #define PERIOD_COUNT_MIN 0x00000002 #define PERIOD_COUNT_MAX 0x00ffffff #define DUTY_CYCLE_HIGH_OFFSET(chan) (0x0000000c + ((chan) << 3)) #define DUTY_CYCLE_HIGH_MIN 0x00000000 #define DUTY_CYCLE_HIGH_MAX 0x00ffffff struct kona_pwmc { struct pwm_chip chip; void __iomem *base; struct clk *clk; }; static inline struct kona_pwmc *to_kona_pwmc(struct pwm_chip *chip) { return container_of(chip, struct kona_pwmc, chip); } /* * Clear trigger bit but set smooth bit to maintain old output. */ static void kona_pwmc_prepare_for_settings(struct kona_pwmc *kp, unsigned int chan) { unsigned int value = readl(kp->base + PWM_CONTROL_OFFSET); value |= 1 << PWM_CONTROL_SMOOTH_SHIFT(chan); value &= ~(1 << PWM_CONTROL_TRIGGER_SHIFT(chan)); writel(value, kp->base + PWM_CONTROL_OFFSET); /* * There must be a min 400ns delay between clearing trigger and setting * it. Failing to do this may result in no PWM signal. */ ndelay(400); } static void kona_pwmc_apply_settings(struct kona_pwmc *kp, unsigned int chan) { unsigned int value = readl(kp->base + PWM_CONTROL_OFFSET); /* Set trigger bit and clear smooth bit to apply new settings */ value &= ~(1 << PWM_CONTROL_SMOOTH_SHIFT(chan)); value |= 1 << PWM_CONTROL_TRIGGER_SHIFT(chan); writel(value, kp->base + PWM_CONTROL_OFFSET); /* Trigger bit must be held high for at least 400 ns. */ ndelay(400); } static int kona_pwmc_config(struct pwm_chip *chip, struct pwm_device *pwm, u64 duty_ns, u64 period_ns) { struct kona_pwmc *kp = to_kona_pwmc(chip); u64 div, rate; unsigned long prescale = PRESCALE_MIN, pc, dc; unsigned int value, chan = pwm->hwpwm; /* * Find period count, duty count and prescale to suit duty_ns and * period_ns. This is done according to formulas described below: * * period_ns = 10^9 * (PRESCALE + 1) * PC / PWM_CLK_RATE * duty_ns = 10^9 * (PRESCALE + 1) * DC / PWM_CLK_RATE * * PC = (PWM_CLK_RATE * period_ns) / (10^9 * (PRESCALE + 1)) * DC = (PWM_CLK_RATE * duty_ns) / (10^9 * (PRESCALE + 1)) */ rate = clk_get_rate(kp->clk); while (1) { div = 1000000000; div *= 1 + prescale; pc = mul_u64_u64_div_u64(rate, period_ns, div); dc = mul_u64_u64_div_u64(rate, duty_ns, div); /* If duty_ns or period_ns are not achievable then return */ if (pc < PERIOD_COUNT_MIN) return -EINVAL; /* If pc and dc are in bounds, the calculation is done */ if (pc <= PERIOD_COUNT_MAX && dc <= DUTY_CYCLE_HIGH_MAX) break; /* Otherwise, increase prescale and recalculate pc and dc */ if (++prescale > PRESCALE_MAX) return -EINVAL; } kona_pwmc_prepare_for_settings(kp, chan); value = readl(kp->base + PRESCALE_OFFSET); value &= ~PRESCALE_MASK(chan); value |= prescale << PRESCALE_SHIFT(chan); writel(value, kp->base + PRESCALE_OFFSET); writel(pc, kp->base + PERIOD_COUNT_OFFSET(chan)); writel(dc, kp->base + DUTY_CYCLE_HIGH_OFFSET(chan)); kona_pwmc_apply_settings(kp, chan); return 0; } static int kona_pwmc_set_polarity(struct pwm_chip *chip, struct pwm_device *pwm, enum pwm_polarity polarity) { struct kona_pwmc *kp = to_kona_pwmc(chip); unsigned int chan = pwm->hwpwm; unsigned int value; int ret; ret = clk_prepare_enable(kp->clk); if (ret < 0) { dev_err(chip->dev, "failed to enable clock: %d\n", ret); return ret; } kona_pwmc_prepare_for_settings(kp, chan); value = readl(kp->base + PWM_CONTROL_OFFSET); if (polarity == PWM_POLARITY_NORMAL) value |= 1 << PWM_CONTROL_POLARITY_SHIFT(chan); else value &= ~(1 << PWM_CONTROL_POLARITY_SHIFT(chan)); writel(value, kp->base + PWM_CONTROL_OFFSET); kona_pwmc_apply_settings(kp, chan); clk_disable_unprepare(kp->clk); return 0; } static int kona_pwmc_enable(struct pwm_chip *chip, struct pwm_device *pwm) { struct kona_pwmc *kp = to_kona_pwmc(chip); int ret; ret = clk_prepare_enable(kp->clk); if (ret < 0) { dev_err(chip->dev, "failed to enable clock: %d\n", ret); return ret; } return 0; } static void kona_pwmc_disable(struct pwm_chip *chip, struct pwm_device *pwm) { struct kona_pwmc *kp = to_kona_pwmc(chip); unsigned int chan = pwm->hwpwm; unsigned int value; kona_pwmc_prepare_for_settings(kp, chan); /* Simulate a disable by configuring for zero duty */ writel(0, kp->base + DUTY_CYCLE_HIGH_OFFSET(chan)); writel(0, kp->base + PERIOD_COUNT_OFFSET(chan)); /* Set prescale to 0 for this channel */ value = readl(kp->base + PRESCALE_OFFSET); value &= ~PRESCALE_MASK(chan); writel(value, kp->base + PRESCALE_OFFSET); kona_pwmc_apply_settings(kp, chan); clk_disable_unprepare(kp->clk); } static int kona_pwmc_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { int err; struct kona_pwmc *kp = to_kona_pwmc(chip); bool enabled = pwm->state.enabled; if (state->polarity != pwm->state.polarity) { if (enabled) { kona_pwmc_disable(chip, pwm); enabled = false; } err = kona_pwmc_set_polarity(chip, pwm, state->polarity); if (err) return err; pwm->state.polarity = state->polarity; } if (!state->enabled) { if (enabled) kona_pwmc_disable(chip, pwm); return 0; } else if (!enabled) { /* * This is a bit special here, usually the PWM should only be * enabled when duty and period are setup. But before this * driver was converted to .apply it was done the other way * around and so this behaviour was kept even though this might * result in a glitch. This might be improvable by someone with * hardware and/or documentation. */ err = kona_pwmc_enable(chip, pwm); if (err) return err; } err = kona_pwmc_config(pwm->chip, pwm, state->duty_cycle, state->period); if (err && !pwm->state.enabled) clk_disable_unprepare(kp->clk); return err; } static const struct pwm_ops kona_pwm_ops = { .apply = kona_pwmc_apply, .owner = THIS_MODULE, }; static int kona_pwmc_probe(struct platform_device *pdev) { struct kona_pwmc *kp; unsigned int chan; unsigned int value = 0; int ret = 0; kp = devm_kzalloc(&pdev->dev, sizeof(*kp), GFP_KERNEL); if (kp == NULL) return -ENOMEM; kp->chip.dev = &pdev->dev; kp->chip.ops = &kona_pwm_ops; kp->chip.npwm = 6; kp->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(kp->base)) return PTR_ERR(kp->base); kp->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(kp->clk)) { dev_err(&pdev->dev, "failed to get clock: %ld\n", PTR_ERR(kp->clk)); return PTR_ERR(kp->clk); } ret = clk_prepare_enable(kp->clk); if (ret < 0) { dev_err(&pdev->dev, "failed to enable clock: %d\n", ret); return ret; } /* Set push/pull for all channels */ for (chan = 0; chan < kp->chip.npwm; chan++) value |= (1 << PWM_CONTROL_TYPE_SHIFT(chan)); writel(value, kp->base + PWM_CONTROL_OFFSET); clk_disable_unprepare(kp->clk); ret = devm_pwmchip_add(&pdev->dev, &kp->chip); if (ret < 0) dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret); return ret; } static const struct of_device_id bcm_kona_pwmc_dt[] = { { .compatible = "brcm,kona-pwm" }, { }, }; MODULE_DEVICE_TABLE(of, bcm_kona_pwmc_dt); static struct platform_driver kona_pwmc_driver = { .driver = { .name = "bcm-kona-pwm", .of_match_table = bcm_kona_pwmc_dt, }, .probe = kona_pwmc_probe, }; module_platform_driver(kona_pwmc_driver); MODULE_AUTHOR("Broadcom Corporation <[email protected]>"); MODULE_AUTHOR("Tim Kryger <[email protected]>"); MODULE_DESCRIPTION("Broadcom Kona PWM driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/pwm/pwm-bcm-kona.c
/* * Marvell Berlin PWM driver * * Copyright (C) 2015 Marvell Technology Group Ltd. * * Author: Antoine Tenart <[email protected]> * * This file is licensed under the terms of the GNU General Public * License version 2. This program is licensed "as is" without any * warranty of any kind, whether express or implied. */ #include <linux/clk.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/pwm.h> #include <linux/slab.h> #define BERLIN_PWM_EN 0x0 #define BERLIN_PWM_ENABLE BIT(0) #define BERLIN_PWM_CONTROL 0x4 /* * The prescaler claims to support 8 different moduli, configured using the * low three bits of PWM_CONTROL. (Sequentially, they are 1, 4, 8, 16, 64, * 256, 1024, and 4096.) However, the moduli from 4 to 1024 appear to be * implemented by internally shifting TCNT left without adding additional * bits. So, the max TCNT that actually works for a modulus of 4 is 0x3fff; * for 8, 0x1fff; and so on. This means that those moduli are entirely * useless, as we could just do the shift ourselves. The 4096 modulus is * implemented with a real prescaler, so we do use that, but we treat it * as a flag instead of pretending the modulus is actually configurable. */ #define BERLIN_PWM_PRESCALE_4096 0x7 #define BERLIN_PWM_INVERT_POLARITY BIT(3) #define BERLIN_PWM_DUTY 0x8 #define BERLIN_PWM_TCNT 0xc #define BERLIN_PWM_MAX_TCNT 65535 struct berlin_pwm_channel { u32 enable; u32 ctrl; u32 duty; u32 tcnt; }; struct berlin_pwm_chip { struct pwm_chip chip; struct clk *clk; void __iomem *base; }; static inline struct berlin_pwm_chip *to_berlin_pwm_chip(struct pwm_chip *chip) { return container_of(chip, struct berlin_pwm_chip, chip); } static inline u32 berlin_pwm_readl(struct berlin_pwm_chip *bpc, unsigned int channel, unsigned long offset) { return readl_relaxed(bpc->base + channel * 0x10 + offset); } static inline void berlin_pwm_writel(struct berlin_pwm_chip *bpc, unsigned int channel, u32 value, unsigned long offset) { writel_relaxed(value, bpc->base + channel * 0x10 + offset); } static int berlin_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm) { struct berlin_pwm_channel *channel; channel = kzalloc(sizeof(*channel), GFP_KERNEL); if (!channel) return -ENOMEM; return pwm_set_chip_data(pwm, channel); } static void berlin_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm) { struct berlin_pwm_channel *channel = pwm_get_chip_data(pwm); kfree(channel); } static int berlin_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm, u64 duty_ns, u64 period_ns) { struct berlin_pwm_chip *bpc = to_berlin_pwm_chip(chip); bool prescale_4096 = false; u32 value, duty, period; u64 cycles; cycles = clk_get_rate(bpc->clk); cycles *= period_ns; do_div(cycles, NSEC_PER_SEC); if (cycles > BERLIN_PWM_MAX_TCNT) { prescale_4096 = true; cycles >>= 12; // Prescaled by 4096 if (cycles > BERLIN_PWM_MAX_TCNT) return -ERANGE; } period = cycles; cycles *= duty_ns; do_div(cycles, period_ns); duty = cycles; value = berlin_pwm_readl(bpc, pwm->hwpwm, BERLIN_PWM_CONTROL); if (prescale_4096) value |= BERLIN_PWM_PRESCALE_4096; else value &= ~BERLIN_PWM_PRESCALE_4096; berlin_pwm_writel(bpc, pwm->hwpwm, value, BERLIN_PWM_CONTROL); berlin_pwm_writel(bpc, pwm->hwpwm, duty, BERLIN_PWM_DUTY); berlin_pwm_writel(bpc, pwm->hwpwm, period, BERLIN_PWM_TCNT); return 0; } static int berlin_pwm_set_polarity(struct pwm_chip *chip, struct pwm_device *pwm, enum pwm_polarity polarity) { struct berlin_pwm_chip *bpc = to_berlin_pwm_chip(chip); u32 value; value = berlin_pwm_readl(bpc, pwm->hwpwm, BERLIN_PWM_CONTROL); if (polarity == PWM_POLARITY_NORMAL) value &= ~BERLIN_PWM_INVERT_POLARITY; else value |= BERLIN_PWM_INVERT_POLARITY; berlin_pwm_writel(bpc, pwm->hwpwm, value, BERLIN_PWM_CONTROL); return 0; } static int berlin_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm) { struct berlin_pwm_chip *bpc = to_berlin_pwm_chip(chip); u32 value; value = berlin_pwm_readl(bpc, pwm->hwpwm, BERLIN_PWM_EN); value |= BERLIN_PWM_ENABLE; berlin_pwm_writel(bpc, pwm->hwpwm, value, BERLIN_PWM_EN); return 0; } static void berlin_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm) { struct berlin_pwm_chip *bpc = to_berlin_pwm_chip(chip); u32 value; value = berlin_pwm_readl(bpc, pwm->hwpwm, BERLIN_PWM_EN); value &= ~BERLIN_PWM_ENABLE; berlin_pwm_writel(bpc, pwm->hwpwm, value, BERLIN_PWM_EN); } static int berlin_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { int err; bool enabled = pwm->state.enabled; if (state->polarity != pwm->state.polarity) { if (enabled) { berlin_pwm_disable(chip, pwm); enabled = false; } err = berlin_pwm_set_polarity(chip, pwm, state->polarity); if (err) return err; } if (!state->enabled) { if (enabled) berlin_pwm_disable(chip, pwm); return 0; } err = berlin_pwm_config(chip, pwm, state->duty_cycle, state->period); if (err) return err; if (!enabled) return berlin_pwm_enable(chip, pwm); return 0; } static const struct pwm_ops berlin_pwm_ops = { .request = berlin_pwm_request, .free = berlin_pwm_free, .apply = berlin_pwm_apply, .owner = THIS_MODULE, }; static const struct of_device_id berlin_pwm_match[] = { { .compatible = "marvell,berlin-pwm" }, { }, }; MODULE_DEVICE_TABLE(of, berlin_pwm_match); static int berlin_pwm_probe(struct platform_device *pdev) { struct berlin_pwm_chip *bpc; int ret; bpc = devm_kzalloc(&pdev->dev, sizeof(*bpc), GFP_KERNEL); if (!bpc) return -ENOMEM; bpc->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(bpc->base)) return PTR_ERR(bpc->base); bpc->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(bpc->clk)) return PTR_ERR(bpc->clk); ret = clk_prepare_enable(bpc->clk); if (ret) return ret; bpc->chip.dev = &pdev->dev; bpc->chip.ops = &berlin_pwm_ops; bpc->chip.npwm = 4; ret = pwmchip_add(&bpc->chip); if (ret < 0) { dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret); clk_disable_unprepare(bpc->clk); return ret; } platform_set_drvdata(pdev, bpc); return 0; } static void berlin_pwm_remove(struct platform_device *pdev) { struct berlin_pwm_chip *bpc = platform_get_drvdata(pdev); pwmchip_remove(&bpc->chip); clk_disable_unprepare(bpc->clk); } #ifdef CONFIG_PM_SLEEP static int berlin_pwm_suspend(struct device *dev) { struct berlin_pwm_chip *bpc = dev_get_drvdata(dev); unsigned int i; for (i = 0; i < bpc->chip.npwm; i++) { struct berlin_pwm_channel *channel; channel = pwm_get_chip_data(&bpc->chip.pwms[i]); if (!channel) continue; channel->enable = berlin_pwm_readl(bpc, i, BERLIN_PWM_ENABLE); channel->ctrl = berlin_pwm_readl(bpc, i, BERLIN_PWM_CONTROL); channel->duty = berlin_pwm_readl(bpc, i, BERLIN_PWM_DUTY); channel->tcnt = berlin_pwm_readl(bpc, i, BERLIN_PWM_TCNT); } clk_disable_unprepare(bpc->clk); return 0; } static int berlin_pwm_resume(struct device *dev) { struct berlin_pwm_chip *bpc = dev_get_drvdata(dev); unsigned int i; int ret; ret = clk_prepare_enable(bpc->clk); if (ret) return ret; for (i = 0; i < bpc->chip.npwm; i++) { struct berlin_pwm_channel *channel; channel = pwm_get_chip_data(&bpc->chip.pwms[i]); if (!channel) continue; berlin_pwm_writel(bpc, i, channel->ctrl, BERLIN_PWM_CONTROL); berlin_pwm_writel(bpc, i, channel->duty, BERLIN_PWM_DUTY); berlin_pwm_writel(bpc, i, channel->tcnt, BERLIN_PWM_TCNT); berlin_pwm_writel(bpc, i, channel->enable, BERLIN_PWM_ENABLE); } return 0; } #endif static SIMPLE_DEV_PM_OPS(berlin_pwm_pm_ops, berlin_pwm_suspend, berlin_pwm_resume); static struct platform_driver berlin_pwm_driver = { .probe = berlin_pwm_probe, .remove_new = berlin_pwm_remove, .driver = { .name = "berlin-pwm", .of_match_table = berlin_pwm_match, .pm = &berlin_pwm_pm_ops, }, }; module_platform_driver(berlin_pwm_driver); MODULE_AUTHOR("Antoine Tenart <[email protected]>"); MODULE_DESCRIPTION("Marvell Berlin PWM driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/pwm/pwm-berlin.c
// SPDX-License-Identifier: GPL-2.0-only /* * PWM driver for Rockchip SoCs * * Copyright (C) 2014 Beniamino Galvani <[email protected]> * Copyright (C) 2014 ROCKCHIP, Inc. */ #include <linux/clk.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/pwm.h> #include <linux/time.h> #define PWM_CTRL_TIMER_EN (1 << 0) #define PWM_CTRL_OUTPUT_EN (1 << 3) #define PWM_ENABLE (1 << 0) #define PWM_CONTINUOUS (1 << 1) #define PWM_DUTY_POSITIVE (1 << 3) #define PWM_DUTY_NEGATIVE (0 << 3) #define PWM_INACTIVE_NEGATIVE (0 << 4) #define PWM_INACTIVE_POSITIVE (1 << 4) #define PWM_POLARITY_MASK (PWM_DUTY_POSITIVE | PWM_INACTIVE_POSITIVE) #define PWM_OUTPUT_LEFT (0 << 5) #define PWM_LOCK_EN (1 << 6) #define PWM_LP_DISABLE (0 << 8) struct rockchip_pwm_chip { struct pwm_chip chip; struct clk *clk; struct clk *pclk; const struct rockchip_pwm_data *data; void __iomem *base; }; struct rockchip_pwm_regs { unsigned long duty; unsigned long period; unsigned long cntr; unsigned long ctrl; }; struct rockchip_pwm_data { struct rockchip_pwm_regs regs; unsigned int prescaler; bool supports_polarity; bool supports_lock; u32 enable_conf; }; static inline struct rockchip_pwm_chip *to_rockchip_pwm_chip(struct pwm_chip *chip) { return container_of(chip, struct rockchip_pwm_chip, chip); } static int rockchip_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm, struct pwm_state *state) { struct rockchip_pwm_chip *pc = to_rockchip_pwm_chip(chip); u32 enable_conf = pc->data->enable_conf; unsigned long clk_rate; u64 tmp; u32 val; int ret; ret = clk_enable(pc->pclk); if (ret) return ret; ret = clk_enable(pc->clk); if (ret) return ret; clk_rate = clk_get_rate(pc->clk); tmp = readl_relaxed(pc->base + pc->data->regs.period); tmp *= pc->data->prescaler * NSEC_PER_SEC; state->period = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate); tmp = readl_relaxed(pc->base + pc->data->regs.duty); tmp *= pc->data->prescaler * NSEC_PER_SEC; state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate); val = readl_relaxed(pc->base + pc->data->regs.ctrl); state->enabled = (val & enable_conf) == enable_conf; if (pc->data->supports_polarity && !(val & PWM_DUTY_POSITIVE)) state->polarity = PWM_POLARITY_INVERSED; else state->polarity = PWM_POLARITY_NORMAL; clk_disable(pc->clk); clk_disable(pc->pclk); return 0; } static void rockchip_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { struct rockchip_pwm_chip *pc = to_rockchip_pwm_chip(chip); unsigned long period, duty; u64 clk_rate, div; u32 ctrl; clk_rate = clk_get_rate(pc->clk); /* * Since period and duty cycle registers have a width of 32 * bits, every possible input period can be obtained using the * default prescaler value for all practical clock rate values. */ div = clk_rate * state->period; period = DIV_ROUND_CLOSEST_ULL(div, pc->data->prescaler * NSEC_PER_SEC); div = clk_rate * state->duty_cycle; duty = DIV_ROUND_CLOSEST_ULL(div, pc->data->prescaler * NSEC_PER_SEC); /* * Lock the period and duty of previous configuration, then * change the duty and period, that would not be effective. */ ctrl = readl_relaxed(pc->base + pc->data->regs.ctrl); if (pc->data->supports_lock) { ctrl |= PWM_LOCK_EN; writel_relaxed(ctrl, pc->base + pc->data->regs.ctrl); } writel(period, pc->base + pc->data->regs.period); writel(duty, pc->base + pc->data->regs.duty); if (pc->data->supports_polarity) { ctrl &= ~PWM_POLARITY_MASK; if (state->polarity == PWM_POLARITY_INVERSED) ctrl |= PWM_DUTY_NEGATIVE | PWM_INACTIVE_POSITIVE; else ctrl |= PWM_DUTY_POSITIVE | PWM_INACTIVE_NEGATIVE; } /* * Unlock and set polarity at the same time, * the configuration of duty, period and polarity * would be effective together at next period. */ if (pc->data->supports_lock) ctrl &= ~PWM_LOCK_EN; writel(ctrl, pc->base + pc->data->regs.ctrl); } static int rockchip_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm, bool enable) { struct rockchip_pwm_chip *pc = to_rockchip_pwm_chip(chip); u32 enable_conf = pc->data->enable_conf; int ret; u32 val; if (enable) { ret = clk_enable(pc->clk); if (ret) return ret; } val = readl_relaxed(pc->base + pc->data->regs.ctrl); if (enable) val |= enable_conf; else val &= ~enable_conf; writel_relaxed(val, pc->base + pc->data->regs.ctrl); if (!enable) clk_disable(pc->clk); return 0; } static int rockchip_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { struct rockchip_pwm_chip *pc = to_rockchip_pwm_chip(chip); struct pwm_state curstate; bool enabled; int ret = 0; ret = clk_enable(pc->pclk); if (ret) return ret; ret = clk_enable(pc->clk); if (ret) return ret; pwm_get_state(pwm, &curstate); enabled = curstate.enabled; if (state->polarity != curstate.polarity && enabled && !pc->data->supports_lock) { ret = rockchip_pwm_enable(chip, pwm, false); if (ret) goto out; enabled = false; } rockchip_pwm_config(chip, pwm, state); if (state->enabled != enabled) { ret = rockchip_pwm_enable(chip, pwm, state->enabled); if (ret) goto out; } out: clk_disable(pc->clk); clk_disable(pc->pclk); return ret; } static const struct pwm_ops rockchip_pwm_ops = { .get_state = rockchip_pwm_get_state, .apply = rockchip_pwm_apply, .owner = THIS_MODULE, }; static const struct rockchip_pwm_data pwm_data_v1 = { .regs = { .duty = 0x04, .period = 0x08, .cntr = 0x00, .ctrl = 0x0c, }, .prescaler = 2, .supports_polarity = false, .supports_lock = false, .enable_conf = PWM_CTRL_OUTPUT_EN | PWM_CTRL_TIMER_EN, }; static const struct rockchip_pwm_data pwm_data_v2 = { .regs = { .duty = 0x08, .period = 0x04, .cntr = 0x00, .ctrl = 0x0c, }, .prescaler = 1, .supports_polarity = true, .supports_lock = false, .enable_conf = PWM_OUTPUT_LEFT | PWM_LP_DISABLE | PWM_ENABLE | PWM_CONTINUOUS, }; static const struct rockchip_pwm_data pwm_data_vop = { .regs = { .duty = 0x08, .period = 0x04, .cntr = 0x0c, .ctrl = 0x00, }, .prescaler = 1, .supports_polarity = true, .supports_lock = false, .enable_conf = PWM_OUTPUT_LEFT | PWM_LP_DISABLE | PWM_ENABLE | PWM_CONTINUOUS, }; static const struct rockchip_pwm_data pwm_data_v3 = { .regs = { .duty = 0x08, .period = 0x04, .cntr = 0x00, .ctrl = 0x0c, }, .prescaler = 1, .supports_polarity = true, .supports_lock = true, .enable_conf = PWM_OUTPUT_LEFT | PWM_LP_DISABLE | PWM_ENABLE | PWM_CONTINUOUS, }; static const struct of_device_id rockchip_pwm_dt_ids[] = { { .compatible = "rockchip,rk2928-pwm", .data = &pwm_data_v1}, { .compatible = "rockchip,rk3288-pwm", .data = &pwm_data_v2}, { .compatible = "rockchip,vop-pwm", .data = &pwm_data_vop}, { .compatible = "rockchip,rk3328-pwm", .data = &pwm_data_v3}, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, rockchip_pwm_dt_ids); static int rockchip_pwm_probe(struct platform_device *pdev) { const struct of_device_id *id; struct rockchip_pwm_chip *pc; u32 enable_conf, ctrl; bool enabled; int ret, count; id = of_match_device(rockchip_pwm_dt_ids, &pdev->dev); if (!id) return -EINVAL; pc = devm_kzalloc(&pdev->dev, sizeof(*pc), GFP_KERNEL); if (!pc) return -ENOMEM; pc->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(pc->base)) return PTR_ERR(pc->base); pc->clk = devm_clk_get(&pdev->dev, "pwm"); if (IS_ERR(pc->clk)) { pc->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(pc->clk)) return dev_err_probe(&pdev->dev, PTR_ERR(pc->clk), "Can't get PWM clk\n"); } count = of_count_phandle_with_args(pdev->dev.of_node, "clocks", "#clock-cells"); if (count == 2) pc->pclk = devm_clk_get(&pdev->dev, "pclk"); else pc->pclk = pc->clk; if (IS_ERR(pc->pclk)) return dev_err_probe(&pdev->dev, PTR_ERR(pc->pclk), "Can't get APB clk\n"); ret = clk_prepare_enable(pc->clk); if (ret) return dev_err_probe(&pdev->dev, ret, "Can't prepare enable PWM clk\n"); ret = clk_prepare_enable(pc->pclk); if (ret) { dev_err_probe(&pdev->dev, ret, "Can't prepare enable APB clk\n"); goto err_clk; } platform_set_drvdata(pdev, pc); pc->data = id->data; pc->chip.dev = &pdev->dev; pc->chip.ops = &rockchip_pwm_ops; pc->chip.npwm = 1; enable_conf = pc->data->enable_conf; ctrl = readl_relaxed(pc->base + pc->data->regs.ctrl); enabled = (ctrl & enable_conf) == enable_conf; ret = pwmchip_add(&pc->chip); if (ret < 0) { dev_err_probe(&pdev->dev, ret, "pwmchip_add() failed\n"); goto err_pclk; } /* Keep the PWM clk enabled if the PWM appears to be up and running. */ if (!enabled) clk_disable(pc->clk); clk_disable(pc->pclk); return 0; err_pclk: clk_disable_unprepare(pc->pclk); err_clk: clk_disable_unprepare(pc->clk); return ret; } static void rockchip_pwm_remove(struct platform_device *pdev) { struct rockchip_pwm_chip *pc = platform_get_drvdata(pdev); pwmchip_remove(&pc->chip); clk_unprepare(pc->pclk); clk_unprepare(pc->clk); } static struct platform_driver rockchip_pwm_driver = { .driver = { .name = "rockchip-pwm", .of_match_table = rockchip_pwm_dt_ids, }, .probe = rockchip_pwm_probe, .remove_new = rockchip_pwm_remove, }; module_platform_driver(rockchip_pwm_driver); MODULE_AUTHOR("Beniamino Galvani <[email protected]>"); MODULE_DESCRIPTION("Rockchip SoC PWM driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/pwm/pwm-rockchip.c
// SPDX-License-Identifier: GPL-2.0 /* * simple driver for PWM (Pulse Width Modulator) controller * * Derived from pxa PWM driver by eric miao <[email protected]> */ #include <linux/bitfield.h> #include <linux/bitops.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pwm.h> #include <linux/slab.h> #define MX1_PWMC 0x00 /* PWM Control Register */ #define MX1_PWMS 0x04 /* PWM Sample Register */ #define MX1_PWMP 0x08 /* PWM Period Register */ #define MX1_PWMC_EN BIT(4) struct pwm_imx1_chip { struct clk *clk_ipg; struct clk *clk_per; void __iomem *mmio_base; struct pwm_chip chip; }; #define to_pwm_imx1_chip(chip) container_of(chip, struct pwm_imx1_chip, chip) static int pwm_imx1_clk_prepare_enable(struct pwm_chip *chip) { struct pwm_imx1_chip *imx = to_pwm_imx1_chip(chip); int ret; ret = clk_prepare_enable(imx->clk_ipg); if (ret) return ret; ret = clk_prepare_enable(imx->clk_per); if (ret) { clk_disable_unprepare(imx->clk_ipg); return ret; } return 0; } static void pwm_imx1_clk_disable_unprepare(struct pwm_chip *chip) { struct pwm_imx1_chip *imx = to_pwm_imx1_chip(chip); clk_disable_unprepare(imx->clk_per); clk_disable_unprepare(imx->clk_ipg); } static int pwm_imx1_config(struct pwm_chip *chip, struct pwm_device *pwm, u64 duty_ns, u64 period_ns) { struct pwm_imx1_chip *imx = to_pwm_imx1_chip(chip); u32 max, p; /* * The PWM subsystem allows for exact frequencies. However, * I cannot connect a scope on my device to the PWM line and * thus cannot provide the program the PWM controller * exactly. Instead, I'm relying on the fact that the * Bootloader (u-boot or WinCE+haret) has programmed the PWM * function group already. So I'll just modify the PWM sample * register to follow the ratio of duty_ns vs. period_ns * accordingly. * * This is good enough for programming the brightness of * the LCD backlight. * * The real implementation would divide PERCLK[0] first by * both the prescaler (/1 .. /128) and then by CLKSEL * (/2 .. /16). */ max = readl(imx->mmio_base + MX1_PWMP); p = mul_u64_u64_div_u64(max, duty_ns, period_ns); writel(max - p, imx->mmio_base + MX1_PWMS); return 0; } static int pwm_imx1_enable(struct pwm_chip *chip, struct pwm_device *pwm) { struct pwm_imx1_chip *imx = to_pwm_imx1_chip(chip); u32 value; int ret; ret = pwm_imx1_clk_prepare_enable(chip); if (ret < 0) return ret; value = readl(imx->mmio_base + MX1_PWMC); value |= MX1_PWMC_EN; writel(value, imx->mmio_base + MX1_PWMC); return 0; } static void pwm_imx1_disable(struct pwm_chip *chip, struct pwm_device *pwm) { struct pwm_imx1_chip *imx = to_pwm_imx1_chip(chip); u32 value; value = readl(imx->mmio_base + MX1_PWMC); value &= ~MX1_PWMC_EN; writel(value, imx->mmio_base + MX1_PWMC); pwm_imx1_clk_disable_unprepare(chip); } static int pwm_imx1_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { int err; if (state->polarity != PWM_POLARITY_NORMAL) return -EINVAL; if (!state->enabled) { if (pwm->state.enabled) pwm_imx1_disable(chip, pwm); return 0; } err = pwm_imx1_config(chip, pwm, state->duty_cycle, state->period); if (err) return err; if (!pwm->state.enabled) return pwm_imx1_enable(chip, pwm); return 0; } static const struct pwm_ops pwm_imx1_ops = { .apply = pwm_imx1_apply, .owner = THIS_MODULE, }; static const struct of_device_id pwm_imx1_dt_ids[] = { { .compatible = "fsl,imx1-pwm", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, pwm_imx1_dt_ids); static int pwm_imx1_probe(struct platform_device *pdev) { struct pwm_imx1_chip *imx; imx = devm_kzalloc(&pdev->dev, sizeof(*imx), GFP_KERNEL); if (!imx) return -ENOMEM; imx->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); if (IS_ERR(imx->clk_ipg)) return dev_err_probe(&pdev->dev, PTR_ERR(imx->clk_ipg), "getting ipg clock failed\n"); imx->clk_per = devm_clk_get(&pdev->dev, "per"); if (IS_ERR(imx->clk_per)) return dev_err_probe(&pdev->dev, PTR_ERR(imx->clk_per), "failed to get peripheral clock\n"); imx->chip.ops = &pwm_imx1_ops; imx->chip.dev = &pdev->dev; imx->chip.npwm = 1; imx->mmio_base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(imx->mmio_base)) return PTR_ERR(imx->mmio_base); return devm_pwmchip_add(&pdev->dev, &imx->chip); } static struct platform_driver pwm_imx1_driver = { .driver = { .name = "pwm-imx1", .of_match_table = pwm_imx1_dt_ids, }, .probe = pwm_imx1_probe, }; module_platform_driver(pwm_imx1_driver); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Sascha Hauer <[email protected]>");
linux-master
drivers/pwm/pwm-imx1.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2015 Neil Armstrong <[email protected]> * Copyright (c) 2014 Joachim Eastwood <[email protected]> * Copyright (c) 2012 NeilBrown <[email protected]> * Heavily based on earlier code which is: * Copyright (c) 2010 Grant Erickson <[email protected]> * * Also based on pwm-samsung.c * * Description: * This file is the core OMAP support for the generic, Linux * PWM driver / controller, using the OMAP's dual-mode timers * with a timer counter that goes up. When it overflows it gets * reloaded with the load value and the pwm output goes up. * When counter matches with match register, the output goes down. * Reference Manual: https://www.ti.com/lit/ug/spruh73q/spruh73q.pdf * * Limitations: * - When PWM is stopped, timer counter gets stopped immediately. This * doesn't allow the current PWM period to complete and stops abruptly. * - When PWM is running and changing both duty cycle and period, * we cannot prevent in software that the output might produce * a period with mixed settings. Especially when period/duty_cyle * is updated while the pwm pin is high, current pwm period/duty_cycle * can get updated as below based on the current timer counter: * - period for current cycle = current_period + new period * - duty_cycle for current period = current period + new duty_cycle. * - PWM OMAP DM timer cannot change the polarity when pwm is active. When * user requests a change in polarity when in active state: * - PWM is stopped abruptly(without completing the current cycle) * - Polarity is changed * - A fresh cycle is started. */ #include <linux/clk.h> #include <linux/err.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/of.h> #include <linux/of_platform.h> #include <clocksource/timer-ti-dm.h> #include <linux/platform_data/dmtimer-omap.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/pwm.h> #include <linux/slab.h> #include <linux/time.h> #define DM_TIMER_LOAD_MIN 0xfffffffe #define DM_TIMER_MAX 0xffffffff /** * struct pwm_omap_dmtimer_chip - Structure representing a pwm chip * corresponding to omap dmtimer. * @chip: PWM chip structure representing PWM controller * @mutex: Mutex to protect pwm apply state * @dm_timer: Pointer to omap dm timer. * @pdata: Pointer to omap dm timer ops. * @dm_timer_pdev: Pointer to omap dm timer platform device */ struct pwm_omap_dmtimer_chip { struct pwm_chip chip; /* Mutex to protect pwm apply state */ struct mutex mutex; struct omap_dm_timer *dm_timer; const struct omap_dm_timer_ops *pdata; struct platform_device *dm_timer_pdev; }; static inline struct pwm_omap_dmtimer_chip * to_pwm_omap_dmtimer_chip(struct pwm_chip *chip) { return container_of(chip, struct pwm_omap_dmtimer_chip, chip); } /** * pwm_omap_dmtimer_get_clock_cycles() - Get clock cycles in a time frame * @clk_rate: pwm timer clock rate * @ns: time frame in nano seconds. * * Return number of clock cycles in a given period(ins ns). */ static u32 pwm_omap_dmtimer_get_clock_cycles(unsigned long clk_rate, int ns) { return DIV_ROUND_CLOSEST_ULL((u64)clk_rate * ns, NSEC_PER_SEC); } /** * pwm_omap_dmtimer_start() - Start the pwm omap dm timer in pwm mode * @omap: Pointer to pwm omap dm timer chip */ static void pwm_omap_dmtimer_start(struct pwm_omap_dmtimer_chip *omap) { /* * According to OMAP 4 TRM section 22.2.4.10 the counter should be * started at 0xFFFFFFFE when overflow and match is used to ensure * that the PWM line is toggled on the first event. * * Note that omap_dm_timer_enable/disable is for register access and * not the timer counter itself. */ omap->pdata->enable(omap->dm_timer); omap->pdata->write_counter(omap->dm_timer, DM_TIMER_LOAD_MIN); omap->pdata->disable(omap->dm_timer); omap->pdata->start(omap->dm_timer); } /** * pwm_omap_dmtimer_is_enabled() - Detect if the pwm is enabled. * @omap: Pointer to pwm omap dm timer chip * * Return true if pwm is enabled else false. */ static bool pwm_omap_dmtimer_is_enabled(struct pwm_omap_dmtimer_chip *omap) { u32 status; status = omap->pdata->get_pwm_status(omap->dm_timer); return !!(status & OMAP_TIMER_CTRL_ST); } /** * pwm_omap_dmtimer_polarity() - Detect the polarity of pwm. * @omap: Pointer to pwm omap dm timer chip * * Return the polarity of pwm. */ static int pwm_omap_dmtimer_polarity(struct pwm_omap_dmtimer_chip *omap) { u32 status; status = omap->pdata->get_pwm_status(omap->dm_timer); return !!(status & OMAP_TIMER_CTRL_SCPWM); } /** * pwm_omap_dmtimer_config() - Update the configuration of pwm omap dm timer * @chip: Pointer to PWM controller * @pwm: Pointer to PWM channel * @duty_ns: New duty cycle in nano seconds * @period_ns: New period in nano seconds * * Return 0 if successfully changed the period/duty_cycle else appropriate * error. */ static int pwm_omap_dmtimer_config(struct pwm_chip *chip, struct pwm_device *pwm, int duty_ns, int period_ns) { struct pwm_omap_dmtimer_chip *omap = to_pwm_omap_dmtimer_chip(chip); u32 period_cycles, duty_cycles; u32 load_value, match_value; unsigned long clk_rate; struct clk *fclk; dev_dbg(chip->dev, "requested duty cycle: %d ns, period: %d ns\n", duty_ns, period_ns); if (duty_ns == pwm_get_duty_cycle(pwm) && period_ns == pwm_get_period(pwm)) return 0; fclk = omap->pdata->get_fclk(omap->dm_timer); if (!fclk) { dev_err(chip->dev, "invalid pmtimer fclk\n"); return -EINVAL; } clk_rate = clk_get_rate(fclk); if (!clk_rate) { dev_err(chip->dev, "invalid pmtimer fclk rate\n"); return -EINVAL; } dev_dbg(chip->dev, "clk rate: %luHz\n", clk_rate); /* * Calculate the appropriate load and match values based on the * specified period and duty cycle. The load value determines the * period time and the match value determines the duty time. * * The period lasts for (DM_TIMER_MAX-load_value+1) clock cycles. * Similarly, the active time lasts (match_value-load_value+1) cycles. * The non-active time is the remainder: (DM_TIMER_MAX-match_value) * clock cycles. * * NOTE: It is required that: load_value <= match_value < DM_TIMER_MAX * * References: * OMAP4430/60/70 TRM sections 22.2.4.10 and 22.2.4.11 * AM335x Sitara TRM sections 20.1.3.5 and 20.1.3.6 */ period_cycles = pwm_omap_dmtimer_get_clock_cycles(clk_rate, period_ns); duty_cycles = pwm_omap_dmtimer_get_clock_cycles(clk_rate, duty_ns); if (period_cycles < 2) { dev_info(chip->dev, "period %d ns too short for clock rate %lu Hz\n", period_ns, clk_rate); return -EINVAL; } if (duty_cycles < 1) { dev_dbg(chip->dev, "duty cycle %d ns is too short for clock rate %lu Hz\n", duty_ns, clk_rate); dev_dbg(chip->dev, "using minimum of 1 clock cycle\n"); duty_cycles = 1; } else if (duty_cycles >= period_cycles) { dev_dbg(chip->dev, "duty cycle %d ns is too long for period %d ns at clock rate %lu Hz\n", duty_ns, period_ns, clk_rate); dev_dbg(chip->dev, "using maximum of 1 clock cycle less than period\n"); duty_cycles = period_cycles - 1; } dev_dbg(chip->dev, "effective duty cycle: %lld ns, period: %lld ns\n", DIV_ROUND_CLOSEST_ULL((u64)NSEC_PER_SEC * duty_cycles, clk_rate), DIV_ROUND_CLOSEST_ULL((u64)NSEC_PER_SEC * period_cycles, clk_rate)); load_value = (DM_TIMER_MAX - period_cycles) + 1; match_value = load_value + duty_cycles - 1; omap->pdata->set_load(omap->dm_timer, load_value); omap->pdata->set_match(omap->dm_timer, true, match_value); dev_dbg(chip->dev, "load value: %#08x (%d), match value: %#08x (%d)\n", load_value, load_value, match_value, match_value); return 0; } /** * pwm_omap_dmtimer_set_polarity() - Changes the polarity of the pwm dm timer. * @chip: Pointer to PWM controller * @pwm: Pointer to PWM channel * @polarity: New pwm polarity to be set */ static void pwm_omap_dmtimer_set_polarity(struct pwm_chip *chip, struct pwm_device *pwm, enum pwm_polarity polarity) { struct pwm_omap_dmtimer_chip *omap = to_pwm_omap_dmtimer_chip(chip); bool enabled; /* Disable the PWM before changing the polarity. */ enabled = pwm_omap_dmtimer_is_enabled(omap); if (enabled) omap->pdata->stop(omap->dm_timer); omap->pdata->set_pwm(omap->dm_timer, polarity == PWM_POLARITY_INVERSED, true, OMAP_TIMER_TRIGGER_OVERFLOW_AND_COMPARE, true); if (enabled) pwm_omap_dmtimer_start(omap); } /** * pwm_omap_dmtimer_apply() - Changes the state of the pwm omap dm timer. * @chip: Pointer to PWM controller * @pwm: Pointer to PWM channel * @state: New state to apply * * Return 0 if successfully changed the state else appropriate error. */ static int pwm_omap_dmtimer_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { struct pwm_omap_dmtimer_chip *omap = to_pwm_omap_dmtimer_chip(chip); int ret = 0; mutex_lock(&omap->mutex); if (pwm_omap_dmtimer_is_enabled(omap) && !state->enabled) { omap->pdata->stop(omap->dm_timer); goto unlock_mutex; } if (pwm_omap_dmtimer_polarity(omap) != state->polarity) pwm_omap_dmtimer_set_polarity(chip, pwm, state->polarity); ret = pwm_omap_dmtimer_config(chip, pwm, state->duty_cycle, state->period); if (ret) goto unlock_mutex; if (!pwm_omap_dmtimer_is_enabled(omap) && state->enabled) { omap->pdata->set_pwm(omap->dm_timer, state->polarity == PWM_POLARITY_INVERSED, true, OMAP_TIMER_TRIGGER_OVERFLOW_AND_COMPARE, true); pwm_omap_dmtimer_start(omap); } unlock_mutex: mutex_unlock(&omap->mutex); return ret; } static const struct pwm_ops pwm_omap_dmtimer_ops = { .apply = pwm_omap_dmtimer_apply, .owner = THIS_MODULE, }; static int pwm_omap_dmtimer_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct dmtimer_platform_data *timer_pdata; const struct omap_dm_timer_ops *pdata; struct platform_device *timer_pdev; struct pwm_omap_dmtimer_chip *omap; struct omap_dm_timer *dm_timer; struct device_node *timer; int ret = 0; u32 v; timer = of_parse_phandle(np, "ti,timers", 0); if (!timer) return -ENODEV; timer_pdev = of_find_device_by_node(timer); if (!timer_pdev) { dev_err(&pdev->dev, "Unable to find Timer pdev\n"); ret = -ENODEV; goto err_find_timer_pdev; } timer_pdata = dev_get_platdata(&timer_pdev->dev); if (!timer_pdata) { dev_dbg(&pdev->dev, "dmtimer pdata structure NULL, deferring probe\n"); ret = -EPROBE_DEFER; goto err_platdata; } pdata = timer_pdata->timer_ops; if (!pdata || !pdata->request_by_node || !pdata->free || !pdata->enable || !pdata->disable || !pdata->get_fclk || !pdata->start || !pdata->stop || !pdata->set_load || !pdata->set_match || !pdata->set_pwm || !pdata->get_pwm_status || !pdata->set_prescaler || !pdata->write_counter) { dev_err(&pdev->dev, "Incomplete dmtimer pdata structure\n"); ret = -EINVAL; goto err_platdata; } if (!of_get_property(timer, "ti,timer-pwm", NULL)) { dev_err(&pdev->dev, "Missing ti,timer-pwm capability\n"); ret = -ENODEV; goto err_timer_property; } dm_timer = pdata->request_by_node(timer); if (!dm_timer) { ret = -EPROBE_DEFER; goto err_request_timer; } omap = devm_kzalloc(&pdev->dev, sizeof(*omap), GFP_KERNEL); if (!omap) { ret = -ENOMEM; goto err_alloc_omap; } omap->pdata = pdata; omap->dm_timer = dm_timer; omap->dm_timer_pdev = timer_pdev; /* * Ensure that the timer is stopped before we allow PWM core to call * pwm_enable. */ if (pm_runtime_active(&omap->dm_timer_pdev->dev)) omap->pdata->stop(omap->dm_timer); if (!of_property_read_u32(pdev->dev.of_node, "ti,prescaler", &v)) omap->pdata->set_prescaler(omap->dm_timer, v); /* setup dmtimer clock source */ if (!of_property_read_u32(pdev->dev.of_node, "ti,clock-source", &v)) omap->pdata->set_source(omap->dm_timer, v); omap->chip.dev = &pdev->dev; omap->chip.ops = &pwm_omap_dmtimer_ops; omap->chip.npwm = 1; mutex_init(&omap->mutex); ret = pwmchip_add(&omap->chip); if (ret < 0) { dev_err(&pdev->dev, "failed to register PWM\n"); goto err_pwmchip_add; } of_node_put(timer); platform_set_drvdata(pdev, omap); return 0; err_pwmchip_add: /* * *omap is allocated using devm_kzalloc, * so no free necessary here */ err_alloc_omap: pdata->free(dm_timer); err_request_timer: err_timer_property: err_platdata: put_device(&timer_pdev->dev); err_find_timer_pdev: of_node_put(timer); return ret; } static void pwm_omap_dmtimer_remove(struct platform_device *pdev) { struct pwm_omap_dmtimer_chip *omap = platform_get_drvdata(pdev); pwmchip_remove(&omap->chip); if (pm_runtime_active(&omap->dm_timer_pdev->dev)) omap->pdata->stop(omap->dm_timer); omap->pdata->free(omap->dm_timer); put_device(&omap->dm_timer_pdev->dev); mutex_destroy(&omap->mutex); } static const struct of_device_id pwm_omap_dmtimer_of_match[] = { {.compatible = "ti,omap-dmtimer-pwm"}, {} }; MODULE_DEVICE_TABLE(of, pwm_omap_dmtimer_of_match); static struct platform_driver pwm_omap_dmtimer_driver = { .driver = { .name = "omap-dmtimer-pwm", .of_match_table = of_match_ptr(pwm_omap_dmtimer_of_match), }, .probe = pwm_omap_dmtimer_probe, .remove_new = pwm_omap_dmtimer_remove, }; module_platform_driver(pwm_omap_dmtimer_driver); MODULE_AUTHOR("Grant Erickson <[email protected]>"); MODULE_AUTHOR("NeilBrown <[email protected]>"); MODULE_AUTHOR("Neil Armstrong <[email protected]>"); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("OMAP PWM Driver using Dual-mode Timers");
linux-master
drivers/pwm/pwm-omap-dmtimer.c
// SPDX-License-Identifier: GPL-2.0-only // Copyright (C) 2016 Broadcom #include <linux/clk.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/io.h> #include <linux/math64.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pwm.h> #define IPROC_PWM_CTRL_OFFSET 0x00 #define IPROC_PWM_CTRL_TYPE_SHIFT(ch) (15 + (ch)) #define IPROC_PWM_CTRL_POLARITY_SHIFT(ch) (8 + (ch)) #define IPROC_PWM_CTRL_EN_SHIFT(ch) (ch) #define IPROC_PWM_PERIOD_OFFSET(ch) (0x04 + ((ch) << 3)) #define IPROC_PWM_PERIOD_MIN 0x02 #define IPROC_PWM_PERIOD_MAX 0xffff #define IPROC_PWM_DUTY_CYCLE_OFFSET(ch) (0x08 + ((ch) << 3)) #define IPROC_PWM_DUTY_CYCLE_MIN 0x00 #define IPROC_PWM_DUTY_CYCLE_MAX 0xffff #define IPROC_PWM_PRESCALE_OFFSET 0x24 #define IPROC_PWM_PRESCALE_BITS 0x06 #define IPROC_PWM_PRESCALE_SHIFT(ch) ((3 - (ch)) * \ IPROC_PWM_PRESCALE_BITS) #define IPROC_PWM_PRESCALE_MASK(ch) (IPROC_PWM_PRESCALE_MAX << \ IPROC_PWM_PRESCALE_SHIFT(ch)) #define IPROC_PWM_PRESCALE_MIN 0x00 #define IPROC_PWM_PRESCALE_MAX 0x3f struct iproc_pwmc { struct pwm_chip chip; void __iomem *base; struct clk *clk; }; static inline struct iproc_pwmc *to_iproc_pwmc(struct pwm_chip *chip) { return container_of(chip, struct iproc_pwmc, chip); } static void iproc_pwmc_enable(struct iproc_pwmc *ip, unsigned int channel) { u32 value; value = readl(ip->base + IPROC_PWM_CTRL_OFFSET); value |= 1 << IPROC_PWM_CTRL_EN_SHIFT(channel); writel(value, ip->base + IPROC_PWM_CTRL_OFFSET); /* must be a 400 ns delay between clearing and setting enable bit */ ndelay(400); } static void iproc_pwmc_disable(struct iproc_pwmc *ip, unsigned int channel) { u32 value; value = readl(ip->base + IPROC_PWM_CTRL_OFFSET); value &= ~(1 << IPROC_PWM_CTRL_EN_SHIFT(channel)); writel(value, ip->base + IPROC_PWM_CTRL_OFFSET); /* must be a 400 ns delay between clearing and setting enable bit */ ndelay(400); } static int iproc_pwmc_get_state(struct pwm_chip *chip, struct pwm_device *pwm, struct pwm_state *state) { struct iproc_pwmc *ip = to_iproc_pwmc(chip); u64 tmp, multi, rate; u32 value, prescale; value = readl(ip->base + IPROC_PWM_CTRL_OFFSET); if (value & BIT(IPROC_PWM_CTRL_EN_SHIFT(pwm->hwpwm))) state->enabled = true; else state->enabled = false; if (value & BIT(IPROC_PWM_CTRL_POLARITY_SHIFT(pwm->hwpwm))) state->polarity = PWM_POLARITY_NORMAL; else state->polarity = PWM_POLARITY_INVERSED; rate = clk_get_rate(ip->clk); if (rate == 0) { state->period = 0; state->duty_cycle = 0; return 0; } value = readl(ip->base + IPROC_PWM_PRESCALE_OFFSET); prescale = value >> IPROC_PWM_PRESCALE_SHIFT(pwm->hwpwm); prescale &= IPROC_PWM_PRESCALE_MAX; multi = NSEC_PER_SEC * (prescale + 1); value = readl(ip->base + IPROC_PWM_PERIOD_OFFSET(pwm->hwpwm)); tmp = (value & IPROC_PWM_PERIOD_MAX) * multi; state->period = div64_u64(tmp, rate); value = readl(ip->base + IPROC_PWM_DUTY_CYCLE_OFFSET(pwm->hwpwm)); tmp = (value & IPROC_PWM_PERIOD_MAX) * multi; state->duty_cycle = div64_u64(tmp, rate); return 0; } static int iproc_pwmc_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { unsigned long prescale = IPROC_PWM_PRESCALE_MIN; struct iproc_pwmc *ip = to_iproc_pwmc(chip); u32 value, period, duty; u64 rate; rate = clk_get_rate(ip->clk); /* * Find period count, duty count and prescale to suit duty_cycle and * period. This is done according to formulas described below: * * period_ns = 10^9 * (PRESCALE + 1) * PC / PWM_CLK_RATE * duty_ns = 10^9 * (PRESCALE + 1) * DC / PWM_CLK_RATE * * PC = (PWM_CLK_RATE * period_ns) / (10^9 * (PRESCALE + 1)) * DC = (PWM_CLK_RATE * duty_ns) / (10^9 * (PRESCALE + 1)) */ while (1) { u64 value, div; div = NSEC_PER_SEC * (prescale + 1); value = rate * state->period; period = div64_u64(value, div); value = rate * state->duty_cycle; duty = div64_u64(value, div); if (period < IPROC_PWM_PERIOD_MIN) return -EINVAL; if (period <= IPROC_PWM_PERIOD_MAX && duty <= IPROC_PWM_DUTY_CYCLE_MAX) break; /* Otherwise, increase prescale and recalculate counts */ if (++prescale > IPROC_PWM_PRESCALE_MAX) return -EINVAL; } iproc_pwmc_disable(ip, pwm->hwpwm); /* Set prescale */ value = readl(ip->base + IPROC_PWM_PRESCALE_OFFSET); value &= ~IPROC_PWM_PRESCALE_MASK(pwm->hwpwm); value |= prescale << IPROC_PWM_PRESCALE_SHIFT(pwm->hwpwm); writel(value, ip->base + IPROC_PWM_PRESCALE_OFFSET); /* set period and duty cycle */ writel(period, ip->base + IPROC_PWM_PERIOD_OFFSET(pwm->hwpwm)); writel(duty, ip->base + IPROC_PWM_DUTY_CYCLE_OFFSET(pwm->hwpwm)); /* set polarity */ value = readl(ip->base + IPROC_PWM_CTRL_OFFSET); if (state->polarity == PWM_POLARITY_NORMAL) value |= 1 << IPROC_PWM_CTRL_POLARITY_SHIFT(pwm->hwpwm); else value &= ~(1 << IPROC_PWM_CTRL_POLARITY_SHIFT(pwm->hwpwm)); writel(value, ip->base + IPROC_PWM_CTRL_OFFSET); if (state->enabled) iproc_pwmc_enable(ip, pwm->hwpwm); return 0; } static const struct pwm_ops iproc_pwm_ops = { .apply = iproc_pwmc_apply, .get_state = iproc_pwmc_get_state, .owner = THIS_MODULE, }; static int iproc_pwmc_probe(struct platform_device *pdev) { struct iproc_pwmc *ip; unsigned int i; u32 value; int ret; ip = devm_kzalloc(&pdev->dev, sizeof(*ip), GFP_KERNEL); if (!ip) return -ENOMEM; platform_set_drvdata(pdev, ip); ip->chip.dev = &pdev->dev; ip->chip.ops = &iproc_pwm_ops; ip->chip.npwm = 4; ip->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(ip->base)) return PTR_ERR(ip->base); ip->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(ip->clk)) { dev_err(&pdev->dev, "failed to get clock: %ld\n", PTR_ERR(ip->clk)); return PTR_ERR(ip->clk); } ret = clk_prepare_enable(ip->clk); if (ret < 0) { dev_err(&pdev->dev, "failed to enable clock: %d\n", ret); return ret; } /* Set full drive and normal polarity for all channels */ value = readl(ip->base + IPROC_PWM_CTRL_OFFSET); for (i = 0; i < ip->chip.npwm; i++) { value &= ~(1 << IPROC_PWM_CTRL_TYPE_SHIFT(i)); value |= 1 << IPROC_PWM_CTRL_POLARITY_SHIFT(i); } writel(value, ip->base + IPROC_PWM_CTRL_OFFSET); ret = pwmchip_add(&ip->chip); if (ret < 0) { dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret); clk_disable_unprepare(ip->clk); } return ret; } static void iproc_pwmc_remove(struct platform_device *pdev) { struct iproc_pwmc *ip = platform_get_drvdata(pdev); pwmchip_remove(&ip->chip); clk_disable_unprepare(ip->clk); } static const struct of_device_id bcm_iproc_pwmc_dt[] = { { .compatible = "brcm,iproc-pwm" }, { }, }; MODULE_DEVICE_TABLE(of, bcm_iproc_pwmc_dt); static struct platform_driver iproc_pwmc_driver = { .driver = { .name = "bcm-iproc-pwm", .of_match_table = bcm_iproc_pwmc_dt, }, .probe = iproc_pwmc_probe, .remove_new = iproc_pwmc_remove, }; module_platform_driver(iproc_pwmc_driver); MODULE_AUTHOR("Yendapally Reddy Dhananjaya Reddy <[email protected]>"); MODULE_DESCRIPTION("Broadcom iProc PWM driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/pwm/pwm-bcm-iproc.c
// SPDX-License-Identifier: GPL-2.0 /* * R-Mobile TPU PWM driver * * Copyright (C) 2012 Renesas Solutions Corp. */ #include <linux/clk.h> #include <linux/err.h> #include <linux/io.h> #include <linux/init.h> #include <linux/ioport.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/pwm.h> #include <linux/slab.h> #include <linux/spinlock.h> #define TPU_CHANNEL_MAX 4 #define TPU_TSTR 0x00 /* Timer start register (shared) */ #define TPU_TCRn 0x00 /* Timer control register */ #define TPU_TCR_CCLR_NONE (0 << 5) #define TPU_TCR_CCLR_TGRA (1 << 5) #define TPU_TCR_CCLR_TGRB (2 << 5) #define TPU_TCR_CCLR_TGRC (5 << 5) #define TPU_TCR_CCLR_TGRD (6 << 5) #define TPU_TCR_CKEG_RISING (0 << 3) #define TPU_TCR_CKEG_FALLING (1 << 3) #define TPU_TCR_CKEG_BOTH (2 << 3) #define TPU_TMDRn 0x04 /* Timer mode register */ #define TPU_TMDR_BFWT (1 << 6) #define TPU_TMDR_BFB (1 << 5) #define TPU_TMDR_BFA (1 << 4) #define TPU_TMDR_MD_NORMAL (0 << 0) #define TPU_TMDR_MD_PWM (2 << 0) #define TPU_TIORn 0x08 /* Timer I/O control register */ #define TPU_TIOR_IOA_0 (0 << 0) #define TPU_TIOR_IOA_0_CLR (1 << 0) #define TPU_TIOR_IOA_0_SET (2 << 0) #define TPU_TIOR_IOA_0_TOGGLE (3 << 0) #define TPU_TIOR_IOA_1 (4 << 0) #define TPU_TIOR_IOA_1_CLR (5 << 0) #define TPU_TIOR_IOA_1_SET (6 << 0) #define TPU_TIOR_IOA_1_TOGGLE (7 << 0) #define TPU_TIERn 0x0c /* Timer interrupt enable register */ #define TPU_TSRn 0x10 /* Timer status register */ #define TPU_TCNTn 0x14 /* Timer counter */ #define TPU_TGRAn 0x18 /* Timer general register A */ #define TPU_TGRBn 0x1c /* Timer general register B */ #define TPU_TGRCn 0x20 /* Timer general register C */ #define TPU_TGRDn 0x24 /* Timer general register D */ #define TPU_CHANNEL_OFFSET 0x10 #define TPU_CHANNEL_SIZE 0x40 enum tpu_pin_state { TPU_PIN_INACTIVE, /* Pin is driven inactive */ TPU_PIN_PWM, /* Pin is driven by PWM */ TPU_PIN_ACTIVE, /* Pin is driven active */ }; struct tpu_device; struct tpu_pwm_device { bool timer_on; /* Whether the timer is running */ struct tpu_device *tpu; unsigned int channel; /* Channel number in the TPU */ enum pwm_polarity polarity; unsigned int prescaler; u16 period; u16 duty; }; struct tpu_device { struct platform_device *pdev; struct pwm_chip chip; spinlock_t lock; void __iomem *base; struct clk *clk; }; #define to_tpu_device(c) container_of(c, struct tpu_device, chip) static void tpu_pwm_write(struct tpu_pwm_device *tpd, int reg_nr, u16 value) { void __iomem *base = tpd->tpu->base + TPU_CHANNEL_OFFSET + tpd->channel * TPU_CHANNEL_SIZE; iowrite16(value, base + reg_nr); } static void tpu_pwm_set_pin(struct tpu_pwm_device *tpd, enum tpu_pin_state state) { static const char * const states[] = { "inactive", "PWM", "active" }; dev_dbg(&tpd->tpu->pdev->dev, "%u: configuring pin as %s\n", tpd->channel, states[state]); switch (state) { case TPU_PIN_INACTIVE: tpu_pwm_write(tpd, TPU_TIORn, tpd->polarity == PWM_POLARITY_INVERSED ? TPU_TIOR_IOA_1 : TPU_TIOR_IOA_0); break; case TPU_PIN_PWM: tpu_pwm_write(tpd, TPU_TIORn, tpd->polarity == PWM_POLARITY_INVERSED ? TPU_TIOR_IOA_0_SET : TPU_TIOR_IOA_1_CLR); break; case TPU_PIN_ACTIVE: tpu_pwm_write(tpd, TPU_TIORn, tpd->polarity == PWM_POLARITY_INVERSED ? TPU_TIOR_IOA_0 : TPU_TIOR_IOA_1); break; } } static void tpu_pwm_start_stop(struct tpu_pwm_device *tpd, int start) { unsigned long flags; u16 value; spin_lock_irqsave(&tpd->tpu->lock, flags); value = ioread16(tpd->tpu->base + TPU_TSTR); if (start) value |= 1 << tpd->channel; else value &= ~(1 << tpd->channel); iowrite16(value, tpd->tpu->base + TPU_TSTR); spin_unlock_irqrestore(&tpd->tpu->lock, flags); } static int tpu_pwm_timer_start(struct tpu_pwm_device *tpd) { int ret; if (!tpd->timer_on) { /* Wake up device and enable clock. */ pm_runtime_get_sync(&tpd->tpu->pdev->dev); ret = clk_prepare_enable(tpd->tpu->clk); if (ret) { dev_err(&tpd->tpu->pdev->dev, "cannot enable clock\n"); return ret; } tpd->timer_on = true; } /* * Make sure the channel is stopped, as we need to reconfigure it * completely. First drive the pin to the inactive state to avoid * glitches. */ tpu_pwm_set_pin(tpd, TPU_PIN_INACTIVE); tpu_pwm_start_stop(tpd, false); /* * - Clear TCNT on TGRB match * - Count on rising edge * - Set prescaler * - Output 0 until TGRA, output 1 until TGRB (active low polarity) * - Output 1 until TGRA, output 0 until TGRB (active high polarity * - PWM mode */ tpu_pwm_write(tpd, TPU_TCRn, TPU_TCR_CCLR_TGRB | TPU_TCR_CKEG_RISING | tpd->prescaler); tpu_pwm_write(tpd, TPU_TMDRn, TPU_TMDR_MD_PWM); tpu_pwm_set_pin(tpd, TPU_PIN_PWM); tpu_pwm_write(tpd, TPU_TGRAn, tpd->duty); tpu_pwm_write(tpd, TPU_TGRBn, tpd->period); dev_dbg(&tpd->tpu->pdev->dev, "%u: TGRA 0x%04x TGRB 0x%04x\n", tpd->channel, tpd->duty, tpd->period); /* Start the channel. */ tpu_pwm_start_stop(tpd, true); return 0; } static void tpu_pwm_timer_stop(struct tpu_pwm_device *tpd) { if (!tpd->timer_on) return; /* Disable channel. */ tpu_pwm_start_stop(tpd, false); /* Stop clock and mark device as idle. */ clk_disable_unprepare(tpd->tpu->clk); pm_runtime_put(&tpd->tpu->pdev->dev); tpd->timer_on = false; } /* ----------------------------------------------------------------------------- * PWM API */ static int tpu_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm) { struct tpu_device *tpu = to_tpu_device(chip); struct tpu_pwm_device *tpd; if (pwm->hwpwm >= TPU_CHANNEL_MAX) return -EINVAL; tpd = kzalloc(sizeof(*tpd), GFP_KERNEL); if (tpd == NULL) return -ENOMEM; tpd->tpu = tpu; tpd->channel = pwm->hwpwm; tpd->polarity = PWM_POLARITY_NORMAL; tpd->prescaler = 0; tpd->period = 0; tpd->duty = 0; tpd->timer_on = false; pwm_set_chip_data(pwm, tpd); return 0; } static void tpu_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm) { struct tpu_pwm_device *tpd = pwm_get_chip_data(pwm); tpu_pwm_timer_stop(tpd); kfree(tpd); } static int tpu_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm, u64 duty_ns, u64 period_ns, bool enabled) { struct tpu_pwm_device *tpd = pwm_get_chip_data(pwm); struct tpu_device *tpu = to_tpu_device(chip); unsigned int prescaler; bool duty_only = false; u32 clk_rate; u64 period; u32 duty; int ret; clk_rate = clk_get_rate(tpu->clk); if (unlikely(clk_rate > NSEC_PER_SEC)) { /* * This won't happen in the nearer future, so this is only a * safeguard to prevent the following calculation from * overflowing. With this clk_rate * period_ns / NSEC_PER_SEC is * not greater than period_ns and so fits into an u64. */ return -EINVAL; } period = mul_u64_u64_div_u64(clk_rate, period_ns, NSEC_PER_SEC); /* * Find the minimal prescaler in [0..3] such that * * period >> (2 * prescaler) < 0x10000 * * This could be calculated using something like: * * prescaler = max(ilog2(period) / 2, 7) - 7; * * but given there are only four allowed results and that ilog2 isn't * cheap on all platforms using a switch statement is more effective. */ switch (period) { case 1 ... 0xffff: prescaler = 0; break; case 0x10000 ... 0x3ffff: prescaler = 1; break; case 0x40000 ... 0xfffff: prescaler = 2; break; case 0x100000 ... 0x3fffff: prescaler = 3; break; default: return -EINVAL; } period >>= 2 * prescaler; if (duty_ns) duty = mul_u64_u64_div_u64(clk_rate, duty_ns, (u64)NSEC_PER_SEC << (2 * prescaler)); else duty = 0; dev_dbg(&tpu->pdev->dev, "rate %u, prescaler %u, period %u, duty %u\n", clk_rate, 1 << (2 * prescaler), (u32)period, duty); if (tpd->prescaler == prescaler && tpd->period == period) duty_only = true; tpd->prescaler = prescaler; tpd->period = period; tpd->duty = duty; /* If the channel is disabled we're done. */ if (!enabled) return 0; if (duty_only && tpd->timer_on) { /* * If only the duty cycle changed and the timer is already * running, there's no need to reconfigure it completely, Just * modify the duty cycle. */ tpu_pwm_write(tpd, TPU_TGRAn, tpd->duty); dev_dbg(&tpu->pdev->dev, "%u: TGRA 0x%04x\n", tpd->channel, tpd->duty); } else { /* Otherwise perform a full reconfiguration. */ ret = tpu_pwm_timer_start(tpd); if (ret < 0) return ret; } if (duty == 0 || duty == period) { /* * To avoid running the timer when not strictly required, handle * 0% and 100% duty cycles as fixed levels and stop the timer. */ tpu_pwm_set_pin(tpd, duty ? TPU_PIN_ACTIVE : TPU_PIN_INACTIVE); tpu_pwm_timer_stop(tpd); } return 0; } static int tpu_pwm_set_polarity(struct pwm_chip *chip, struct pwm_device *pwm, enum pwm_polarity polarity) { struct tpu_pwm_device *tpd = pwm_get_chip_data(pwm); tpd->polarity = polarity; return 0; } static int tpu_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm) { struct tpu_pwm_device *tpd = pwm_get_chip_data(pwm); int ret; ret = tpu_pwm_timer_start(tpd); if (ret < 0) return ret; /* * To avoid running the timer when not strictly required, handle 0% and * 100% duty cycles as fixed levels and stop the timer. */ if (tpd->duty == 0 || tpd->duty == tpd->period) { tpu_pwm_set_pin(tpd, tpd->duty ? TPU_PIN_ACTIVE : TPU_PIN_INACTIVE); tpu_pwm_timer_stop(tpd); } return 0; } static void tpu_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm) { struct tpu_pwm_device *tpd = pwm_get_chip_data(pwm); /* The timer must be running to modify the pin output configuration. */ tpu_pwm_timer_start(tpd); tpu_pwm_set_pin(tpd, TPU_PIN_INACTIVE); tpu_pwm_timer_stop(tpd); } static int tpu_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { int err; bool enabled = pwm->state.enabled; if (state->polarity != pwm->state.polarity) { if (enabled) { tpu_pwm_disable(chip, pwm); enabled = false; } err = tpu_pwm_set_polarity(chip, pwm, state->polarity); if (err) return err; } if (!state->enabled) { if (enabled) tpu_pwm_disable(chip, pwm); return 0; } err = tpu_pwm_config(pwm->chip, pwm, state->duty_cycle, state->period, enabled); if (err) return err; if (!enabled) err = tpu_pwm_enable(chip, pwm); return err; } static const struct pwm_ops tpu_pwm_ops = { .request = tpu_pwm_request, .free = tpu_pwm_free, .apply = tpu_pwm_apply, .owner = THIS_MODULE, }; /* ----------------------------------------------------------------------------- * Probe and remove */ static int tpu_probe(struct platform_device *pdev) { struct tpu_device *tpu; int ret; tpu = devm_kzalloc(&pdev->dev, sizeof(*tpu), GFP_KERNEL); if (tpu == NULL) return -ENOMEM; spin_lock_init(&tpu->lock); tpu->pdev = pdev; /* Map memory, get clock and pin control. */ tpu->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(tpu->base)) return PTR_ERR(tpu->base); tpu->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(tpu->clk)) return dev_err_probe(&pdev->dev, PTR_ERR(tpu->clk), "Failed to get clock\n"); /* Initialize and register the device. */ platform_set_drvdata(pdev, tpu); tpu->chip.dev = &pdev->dev; tpu->chip.ops = &tpu_pwm_ops; tpu->chip.npwm = TPU_CHANNEL_MAX; ret = devm_pm_runtime_enable(&pdev->dev); if (ret < 0) return dev_err_probe(&pdev->dev, ret, "Failed to enable runtime PM\n"); ret = devm_pwmchip_add(&pdev->dev, &tpu->chip); if (ret < 0) return dev_err_probe(&pdev->dev, ret, "Failed to register PWM chip\n"); return 0; } #ifdef CONFIG_OF static const struct of_device_id tpu_of_table[] = { { .compatible = "renesas,tpu-r8a73a4", }, { .compatible = "renesas,tpu-r8a7740", }, { .compatible = "renesas,tpu-r8a7790", }, { .compatible = "renesas,tpu", }, { }, }; MODULE_DEVICE_TABLE(of, tpu_of_table); #endif static struct platform_driver tpu_driver = { .probe = tpu_probe, .driver = { .name = "renesas-tpu-pwm", .of_match_table = of_match_ptr(tpu_of_table), } }; module_platform_driver(tpu_driver); MODULE_AUTHOR("Laurent Pinchart <[email protected]>"); MODULE_DESCRIPTION("Renesas TPU PWM Driver"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:renesas-tpu-pwm");
linux-master
drivers/pwm/pwm-renesas-tpu.c
// SPDX-License-Identifier: GPL-2.0-only /* * Intel Low Power Subsystem PWM controller driver * * Copyright (C) 2014, Intel Corporation * Author: Mika Westerberg <[email protected]> * Author: Chew Kean Ho <[email protected]> * Author: Chang Rebecca Swee Fun <[email protected]> * Author: Chew Chiau Ee <[email protected]> * Author: Alan Cox <[email protected]> */ #include <linux/bits.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/pm_runtime.h> #include <linux/time.h> #define DEFAULT_SYMBOL_NAMESPACE PWM_LPSS #include "pwm-lpss.h" #define PWM 0x00000000 #define PWM_ENABLE BIT(31) #define PWM_SW_UPDATE BIT(30) #define PWM_BASE_UNIT_SHIFT 8 #define PWM_ON_TIME_DIV_MASK GENMASK(7, 0) /* Size of each PWM register space if multiple */ #define PWM_SIZE 0x400 /* BayTrail */ const struct pwm_lpss_boardinfo pwm_lpss_byt_info = { .clk_rate = 25000000, .npwm = 1, .base_unit_bits = 16, }; EXPORT_SYMBOL_GPL(pwm_lpss_byt_info); /* Braswell */ const struct pwm_lpss_boardinfo pwm_lpss_bsw_info = { .clk_rate = 19200000, .npwm = 1, .base_unit_bits = 16, .other_devices_aml_touches_pwm_regs = true, }; EXPORT_SYMBOL_GPL(pwm_lpss_bsw_info); /* Broxton */ const struct pwm_lpss_boardinfo pwm_lpss_bxt_info = { .clk_rate = 19200000, .npwm = 4, .base_unit_bits = 22, .bypass = true, }; EXPORT_SYMBOL_GPL(pwm_lpss_bxt_info); /* Tangier */ const struct pwm_lpss_boardinfo pwm_lpss_tng_info = { .clk_rate = 19200000, .npwm = 4, .base_unit_bits = 22, }; EXPORT_SYMBOL_GPL(pwm_lpss_tng_info); static inline struct pwm_lpss_chip *to_lpwm(struct pwm_chip *chip) { return container_of(chip, struct pwm_lpss_chip, chip); } static inline u32 pwm_lpss_read(const struct pwm_device *pwm) { struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip); return readl(lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM); } static inline void pwm_lpss_write(const struct pwm_device *pwm, u32 value) { struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip); writel(value, lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM); } static int pwm_lpss_wait_for_update(struct pwm_device *pwm) { struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip); const void __iomem *addr = lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM; const unsigned int ms = 500 * USEC_PER_MSEC; u32 val; int err; /* * PWM Configuration register has SW_UPDATE bit that is set when a new * configuration is written to the register. The bit is automatically * cleared at the start of the next output cycle by the IP block. * * If one writes a new configuration to the register while it still has * the bit enabled, PWM may freeze. That is, while one can still write * to the register, it won't have an effect. Thus, we try to sleep long * enough that the bit gets cleared and make sure the bit is not * enabled while we update the configuration. */ err = readl_poll_timeout(addr, val, !(val & PWM_SW_UPDATE), 40, ms); if (err) dev_err(pwm->chip->dev, "PWM_SW_UPDATE was not cleared\n"); return err; } static inline int pwm_lpss_is_updating(struct pwm_device *pwm) { if (pwm_lpss_read(pwm) & PWM_SW_UPDATE) { dev_err(pwm->chip->dev, "PWM_SW_UPDATE is still set, skipping update\n"); return -EBUSY; } return 0; } static void pwm_lpss_prepare(struct pwm_lpss_chip *lpwm, struct pwm_device *pwm, int duty_ns, int period_ns) { unsigned long long on_time_div; unsigned long c = lpwm->info->clk_rate, base_unit_range; unsigned long long base_unit, freq = NSEC_PER_SEC; u32 ctrl; do_div(freq, period_ns); /* * The equation is: * base_unit = round(base_unit_range * freq / c) */ base_unit_range = BIT(lpwm->info->base_unit_bits); freq *= base_unit_range; base_unit = DIV_ROUND_CLOSEST_ULL(freq, c); /* base_unit must not be 0 and we also want to avoid overflowing it */ base_unit = clamp_val(base_unit, 1, base_unit_range - 1); on_time_div = 255ULL * duty_ns; do_div(on_time_div, period_ns); on_time_div = 255ULL - on_time_div; ctrl = pwm_lpss_read(pwm); ctrl &= ~PWM_ON_TIME_DIV_MASK; ctrl &= ~((base_unit_range - 1) << PWM_BASE_UNIT_SHIFT); ctrl |= (u32) base_unit << PWM_BASE_UNIT_SHIFT; ctrl |= on_time_div; pwm_lpss_write(pwm, ctrl); pwm_lpss_write(pwm, ctrl | PWM_SW_UPDATE); } static inline void pwm_lpss_cond_enable(struct pwm_device *pwm, bool cond) { if (cond) pwm_lpss_write(pwm, pwm_lpss_read(pwm) | PWM_ENABLE); } static int pwm_lpss_prepare_enable(struct pwm_lpss_chip *lpwm, struct pwm_device *pwm, const struct pwm_state *state) { int ret; ret = pwm_lpss_is_updating(pwm); if (ret) return ret; pwm_lpss_prepare(lpwm, pwm, state->duty_cycle, state->period); pwm_lpss_cond_enable(pwm, lpwm->info->bypass == false); ret = pwm_lpss_wait_for_update(pwm); if (ret) return ret; pwm_lpss_cond_enable(pwm, lpwm->info->bypass == true); return 0; } static int pwm_lpss_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { struct pwm_lpss_chip *lpwm = to_lpwm(chip); int ret = 0; if (state->enabled) { if (!pwm_is_enabled(pwm)) { pm_runtime_get_sync(chip->dev); ret = pwm_lpss_prepare_enable(lpwm, pwm, state); if (ret) pm_runtime_put(chip->dev); } else { ret = pwm_lpss_prepare_enable(lpwm, pwm, state); } } else if (pwm_is_enabled(pwm)) { pwm_lpss_write(pwm, pwm_lpss_read(pwm) & ~PWM_ENABLE); pm_runtime_put(chip->dev); } return ret; } static int pwm_lpss_get_state(struct pwm_chip *chip, struct pwm_device *pwm, struct pwm_state *state) { struct pwm_lpss_chip *lpwm = to_lpwm(chip); unsigned long base_unit_range; unsigned long long base_unit, freq, on_time_div; u32 ctrl; pm_runtime_get_sync(chip->dev); base_unit_range = BIT(lpwm->info->base_unit_bits); ctrl = pwm_lpss_read(pwm); on_time_div = 255 - (ctrl & PWM_ON_TIME_DIV_MASK); base_unit = (ctrl >> PWM_BASE_UNIT_SHIFT) & (base_unit_range - 1); freq = base_unit * lpwm->info->clk_rate; do_div(freq, base_unit_range); if (freq == 0) state->period = NSEC_PER_SEC; else state->period = NSEC_PER_SEC / (unsigned long)freq; on_time_div *= state->period; do_div(on_time_div, 255); state->duty_cycle = on_time_div; state->polarity = PWM_POLARITY_NORMAL; state->enabled = !!(ctrl & PWM_ENABLE); pm_runtime_put(chip->dev); return 0; } static const struct pwm_ops pwm_lpss_ops = { .apply = pwm_lpss_apply, .get_state = pwm_lpss_get_state, .owner = THIS_MODULE, }; struct pwm_lpss_chip *devm_pwm_lpss_probe(struct device *dev, void __iomem *base, const struct pwm_lpss_boardinfo *info) { struct pwm_lpss_chip *lpwm; unsigned long c; int i, ret; u32 ctrl; if (WARN_ON(info->npwm > LPSS_MAX_PWMS)) return ERR_PTR(-ENODEV); lpwm = devm_kzalloc(dev, sizeof(*lpwm), GFP_KERNEL); if (!lpwm) return ERR_PTR(-ENOMEM); lpwm->regs = base; lpwm->info = info; c = lpwm->info->clk_rate; if (!c) return ERR_PTR(-EINVAL); lpwm->chip.dev = dev; lpwm->chip.ops = &pwm_lpss_ops; lpwm->chip.npwm = info->npwm; ret = devm_pwmchip_add(dev, &lpwm->chip); if (ret) { dev_err(dev, "failed to add PWM chip: %d\n", ret); return ERR_PTR(ret); } for (i = 0; i < lpwm->info->npwm; i++) { ctrl = pwm_lpss_read(&lpwm->chip.pwms[i]); if (ctrl & PWM_ENABLE) pm_runtime_get(dev); } return lpwm; } EXPORT_SYMBOL_GPL(devm_pwm_lpss_probe); MODULE_DESCRIPTION("PWM driver for Intel LPSS"); MODULE_AUTHOR("Mika Westerberg <[email protected]>"); MODULE_LICENSE("GPL v2");
linux-master
drivers/pwm/pwm-lpss.c
// SPDX-License-Identifier: GPL-2.0-only /* * Intel Low Power Subsystem PWM controller PCI driver * * Copyright (C) 2014, Intel Corporation * * Derived from the original pwm-lpss.c */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/pm_runtime.h> #include "pwm-lpss.h" static int pwm_lpss_probe_pci(struct pci_dev *pdev, const struct pci_device_id *id) { const struct pwm_lpss_boardinfo *info; struct pwm_lpss_chip *lpwm; int err; err = pcim_enable_device(pdev); if (err < 0) return err; err = pcim_iomap_regions(pdev, BIT(0), pci_name(pdev)); if (err) return err; info = (struct pwm_lpss_boardinfo *)id->driver_data; lpwm = devm_pwm_lpss_probe(&pdev->dev, pcim_iomap_table(pdev)[0], info); if (IS_ERR(lpwm)) return PTR_ERR(lpwm); pci_set_drvdata(pdev, lpwm); pm_runtime_put(&pdev->dev); pm_runtime_allow(&pdev->dev); return 0; } static void pwm_lpss_remove_pci(struct pci_dev *pdev) { pm_runtime_forbid(&pdev->dev); pm_runtime_get_sync(&pdev->dev); } static int pwm_lpss_runtime_suspend_pci(struct device *dev) { /* * The PCI core will handle transition to D3 automatically. We only * need to provide runtime PM hooks for that to happen. */ return 0; } static int pwm_lpss_runtime_resume_pci(struct device *dev) { return 0; } static DEFINE_RUNTIME_DEV_PM_OPS(pwm_lpss_pci_pm, pwm_lpss_runtime_suspend_pci, pwm_lpss_runtime_resume_pci, NULL); static const struct pci_device_id pwm_lpss_pci_ids[] = { { PCI_VDEVICE(INTEL, 0x0ac8), (unsigned long)&pwm_lpss_bxt_info}, { PCI_VDEVICE(INTEL, 0x0f08), (unsigned long)&pwm_lpss_byt_info}, { PCI_VDEVICE(INTEL, 0x0f09), (unsigned long)&pwm_lpss_byt_info}, { PCI_VDEVICE(INTEL, 0x11a5), (unsigned long)&pwm_lpss_tng_info}, { PCI_VDEVICE(INTEL, 0x1ac8), (unsigned long)&pwm_lpss_bxt_info}, { PCI_VDEVICE(INTEL, 0x2288), (unsigned long)&pwm_lpss_bsw_info}, { PCI_VDEVICE(INTEL, 0x2289), (unsigned long)&pwm_lpss_bsw_info}, { PCI_VDEVICE(INTEL, 0x31c8), (unsigned long)&pwm_lpss_bxt_info}, { PCI_VDEVICE(INTEL, 0x5ac8), (unsigned long)&pwm_lpss_bxt_info}, { }, }; MODULE_DEVICE_TABLE(pci, pwm_lpss_pci_ids); static struct pci_driver pwm_lpss_driver_pci = { .name = "pwm-lpss", .id_table = pwm_lpss_pci_ids, .probe = pwm_lpss_probe_pci, .remove = pwm_lpss_remove_pci, .driver = { .pm = pm_ptr(&pwm_lpss_pci_pm), }, }; module_pci_driver(pwm_lpss_driver_pci); MODULE_DESCRIPTION("PWM PCI driver for Intel LPSS"); MODULE_LICENSE("GPL v2"); MODULE_IMPORT_NS(PWM_LPSS);
linux-master
drivers/pwm/pwm-lpss-pci.c
// SPDX-License-Identifier: GPL-2.0-only /* * Toshiba Visconti pulse-width-modulation controller driver * * Copyright (c) 2020 - 2021 TOSHIBA CORPORATION * Copyright (c) 2020 - 2021 Toshiba Electronic Devices & Storage Corporation * * Authors: Nobuhiro Iwamatsu <[email protected]> * * Limitations: * - The fixed input clock is running at 1 MHz and is divided by either 1, * 2, 4 or 8. * - When the settings of the PWM are modified, the new values are shadowed * in hardware until the PIPGM_PCSR register is written and the currently * running period is completed. This way the hardware switches atomically * from the old setting to the new. * - Disabling the hardware completes the currently running period and keeps * the output at low level at all times. */ #include <linux/err.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pwm.h> #define PIPGM_PCSR(ch) (0x400 + 4 * (ch)) #define PIPGM_PDUT(ch) (0x420 + 4 * (ch)) #define PIPGM_PWMC(ch) (0x440 + 4 * (ch)) #define PIPGM_PWMC_PWMACT BIT(5) #define PIPGM_PWMC_CLK_MASK GENMASK(1, 0) #define PIPGM_PWMC_POLARITY_MASK GENMASK(5, 5) struct visconti_pwm_chip { struct pwm_chip chip; void __iomem *base; }; static inline struct visconti_pwm_chip *visconti_pwm_from_chip(struct pwm_chip *chip) { return container_of(chip, struct visconti_pwm_chip, chip); } static int visconti_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { struct visconti_pwm_chip *priv = visconti_pwm_from_chip(chip); u32 period, duty_cycle, pwmc0; if (!state->enabled) { writel(0, priv->base + PIPGM_PCSR(pwm->hwpwm)); return 0; } /* * The biggest period the hardware can provide is * (0xffff << 3) * 1000 ns * This value fits easily in an u32, so simplify the maths by * capping the values to 32 bit integers. */ if (state->period > (0xffff << 3) * 1000) period = (0xffff << 3) * 1000; else period = state->period; if (state->duty_cycle > period) duty_cycle = period; else duty_cycle = state->duty_cycle; /* * The input clock runs fixed at 1 MHz, so we have only * microsecond resolution and so can divide by * NSEC_PER_SEC / CLKFREQ = 1000 without losing precision. */ period /= 1000; duty_cycle /= 1000; if (!period) return -ERANGE; /* * PWMC controls a divider that divides the input clk by a power of two * between 1 and 8. As a smaller divider yields higher precision, pick * the smallest possible one. As period is at most 0xffff << 3, pwmc0 is * in the intended range [0..3]. */ pwmc0 = fls(period >> 16); if (WARN_ON(pwmc0 > 3)) return -EINVAL; period >>= pwmc0; duty_cycle >>= pwmc0; if (state->polarity == PWM_POLARITY_INVERSED) pwmc0 |= PIPGM_PWMC_PWMACT; writel(pwmc0, priv->base + PIPGM_PWMC(pwm->hwpwm)); writel(duty_cycle, priv->base + PIPGM_PDUT(pwm->hwpwm)); writel(period, priv->base + PIPGM_PCSR(pwm->hwpwm)); return 0; } static int visconti_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm, struct pwm_state *state) { struct visconti_pwm_chip *priv = visconti_pwm_from_chip(chip); u32 period, duty, pwmc0, pwmc0_clk; period = readl(priv->base + PIPGM_PCSR(pwm->hwpwm)); duty = readl(priv->base + PIPGM_PDUT(pwm->hwpwm)); pwmc0 = readl(priv->base + PIPGM_PWMC(pwm->hwpwm)); pwmc0_clk = pwmc0 & PIPGM_PWMC_CLK_MASK; state->period = (period << pwmc0_clk) * NSEC_PER_USEC; state->duty_cycle = (duty << pwmc0_clk) * NSEC_PER_USEC; if (pwmc0 & PIPGM_PWMC_POLARITY_MASK) state->polarity = PWM_POLARITY_INVERSED; else state->polarity = PWM_POLARITY_NORMAL; state->enabled = true; return 0; } static const struct pwm_ops visconti_pwm_ops = { .apply = visconti_pwm_apply, .get_state = visconti_pwm_get_state, .owner = THIS_MODULE, }; static int visconti_pwm_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct visconti_pwm_chip *priv; int ret; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(priv->base)) return PTR_ERR(priv->base); priv->chip.dev = dev; priv->chip.ops = &visconti_pwm_ops; priv->chip.npwm = 4; ret = devm_pwmchip_add(&pdev->dev, &priv->chip); if (ret < 0) return dev_err_probe(&pdev->dev, ret, "Cannot register visconti PWM\n"); return 0; } static const struct of_device_id visconti_pwm_of_match[] = { { .compatible = "toshiba,visconti-pwm", }, { } }; MODULE_DEVICE_TABLE(of, visconti_pwm_of_match); static struct platform_driver visconti_pwm_driver = { .driver = { .name = "pwm-visconti", .of_match_table = visconti_pwm_of_match, }, .probe = visconti_pwm_probe, }; module_platform_driver(visconti_pwm_driver); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Nobuhiro Iwamatsu <[email protected]>"); MODULE_ALIAS("platform:pwm-visconti");
linux-master
drivers/pwm/pwm-visconti.c
// SPDX-License-Identifier: GPL-2.0+ /* * Azoteq IQS620A PWM Generator * * Copyright (C) 2019 Jeff LaBundy <[email protected]> * * Limitations: * - The period is fixed to 1 ms and is generated continuously despite changes * to the duty cycle or enable/disable state. * - Changes to the duty cycle or enable/disable state take effect immediately * and may result in a glitch during the period in which the change is made. * - The device cannot generate a 0% duty cycle. For duty cycles below 1 / 256 * ms, the output is disabled and relies upon an external pull-down resistor * to hold the GPIO3/LTX pin low. */ #include <linux/device.h> #include <linux/kernel.h> #include <linux/mfd/iqs62x.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/notifier.h> #include <linux/platform_device.h> #include <linux/pwm.h> #include <linux/regmap.h> #include <linux/slab.h> #define IQS620_PWR_SETTINGS 0xd2 #define IQS620_PWR_SETTINGS_PWM_OUT BIT(7) #define IQS620_PWM_DUTY_CYCLE 0xd8 #define IQS620_PWM_PERIOD_NS 1000000 struct iqs620_pwm_private { struct iqs62x_core *iqs62x; struct pwm_chip chip; struct notifier_block notifier; struct mutex lock; unsigned int duty_scale; }; static int iqs620_pwm_init(struct iqs620_pwm_private *iqs620_pwm, unsigned int duty_scale) { struct iqs62x_core *iqs62x = iqs620_pwm->iqs62x; int ret; if (!duty_scale) return regmap_clear_bits(iqs62x->regmap, IQS620_PWR_SETTINGS, IQS620_PWR_SETTINGS_PWM_OUT); ret = regmap_write(iqs62x->regmap, IQS620_PWM_DUTY_CYCLE, duty_scale - 1); if (ret) return ret; return regmap_set_bits(iqs62x->regmap, IQS620_PWR_SETTINGS, IQS620_PWR_SETTINGS_PWM_OUT); } static int iqs620_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { struct iqs620_pwm_private *iqs620_pwm; unsigned int duty_cycle; unsigned int duty_scale; int ret; if (state->polarity != PWM_POLARITY_NORMAL) return -EINVAL; if (state->period < IQS620_PWM_PERIOD_NS) return -EINVAL; iqs620_pwm = container_of(chip, struct iqs620_pwm_private, chip); /* * The duty cycle generated by the device is calculated as follows: * * duty_cycle = (IQS620_PWM_DUTY_CYCLE + 1) / 256 * 1 ms * * ...where IQS620_PWM_DUTY_CYCLE is a register value between 0 and 255 * (inclusive). Therefore the lowest duty cycle the device can generate * while the output is enabled is 1 / 256 ms. * * For lower duty cycles (e.g. 0), the PWM output is simply disabled to * allow an external pull-down resistor to hold the GPIO3/LTX pin low. */ duty_cycle = min_t(u64, state->duty_cycle, IQS620_PWM_PERIOD_NS); duty_scale = duty_cycle * 256 / IQS620_PWM_PERIOD_NS; if (!state->enabled) duty_scale = 0; mutex_lock(&iqs620_pwm->lock); ret = iqs620_pwm_init(iqs620_pwm, duty_scale); if (!ret) iqs620_pwm->duty_scale = duty_scale; mutex_unlock(&iqs620_pwm->lock); return ret; } static int iqs620_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm, struct pwm_state *state) { struct iqs620_pwm_private *iqs620_pwm; iqs620_pwm = container_of(chip, struct iqs620_pwm_private, chip); mutex_lock(&iqs620_pwm->lock); /* * Since the device cannot generate a 0% duty cycle, requests to do so * cause subsequent calls to iqs620_pwm_get_state to report the output * as disabled. This is not ideal, but is the best compromise based on * the capabilities of the device. */ state->enabled = iqs620_pwm->duty_scale > 0; state->duty_cycle = DIV_ROUND_UP(iqs620_pwm->duty_scale * IQS620_PWM_PERIOD_NS, 256); mutex_unlock(&iqs620_pwm->lock); state->period = IQS620_PWM_PERIOD_NS; state->polarity = PWM_POLARITY_NORMAL; return 0; } static int iqs620_pwm_notifier(struct notifier_block *notifier, unsigned long event_flags, void *context) { struct iqs620_pwm_private *iqs620_pwm; int ret; if (!(event_flags & BIT(IQS62X_EVENT_SYS_RESET))) return NOTIFY_DONE; iqs620_pwm = container_of(notifier, struct iqs620_pwm_private, notifier); mutex_lock(&iqs620_pwm->lock); /* * The parent MFD driver already prints an error message in the event * of a device reset, so nothing else is printed here unless there is * an additional failure. */ ret = iqs620_pwm_init(iqs620_pwm, iqs620_pwm->duty_scale); mutex_unlock(&iqs620_pwm->lock); if (ret) { dev_err(iqs620_pwm->chip.dev, "Failed to re-initialize device: %d\n", ret); return NOTIFY_BAD; } return NOTIFY_OK; } static const struct pwm_ops iqs620_pwm_ops = { .apply = iqs620_pwm_apply, .get_state = iqs620_pwm_get_state, .owner = THIS_MODULE, }; static void iqs620_pwm_notifier_unregister(void *context) { struct iqs620_pwm_private *iqs620_pwm = context; int ret; ret = blocking_notifier_chain_unregister(&iqs620_pwm->iqs62x->nh, &iqs620_pwm->notifier); if (ret) dev_err(iqs620_pwm->chip.dev, "Failed to unregister notifier: %d\n", ret); } static int iqs620_pwm_probe(struct platform_device *pdev) { struct iqs62x_core *iqs62x = dev_get_drvdata(pdev->dev.parent); struct iqs620_pwm_private *iqs620_pwm; unsigned int val; int ret; iqs620_pwm = devm_kzalloc(&pdev->dev, sizeof(*iqs620_pwm), GFP_KERNEL); if (!iqs620_pwm) return -ENOMEM; iqs620_pwm->iqs62x = iqs62x; ret = regmap_read(iqs62x->regmap, IQS620_PWR_SETTINGS, &val); if (ret) return ret; if (val & IQS620_PWR_SETTINGS_PWM_OUT) { ret = regmap_read(iqs62x->regmap, IQS620_PWM_DUTY_CYCLE, &val); if (ret) return ret; iqs620_pwm->duty_scale = val + 1; } iqs620_pwm->chip.dev = &pdev->dev; iqs620_pwm->chip.ops = &iqs620_pwm_ops; iqs620_pwm->chip.npwm = 1; mutex_init(&iqs620_pwm->lock); iqs620_pwm->notifier.notifier_call = iqs620_pwm_notifier; ret = blocking_notifier_chain_register(&iqs620_pwm->iqs62x->nh, &iqs620_pwm->notifier); if (ret) { dev_err(&pdev->dev, "Failed to register notifier: %d\n", ret); return ret; } ret = devm_add_action_or_reset(&pdev->dev, iqs620_pwm_notifier_unregister, iqs620_pwm); if (ret) return ret; ret = devm_pwmchip_add(&pdev->dev, &iqs620_pwm->chip); if (ret) dev_err(&pdev->dev, "Failed to add device: %d\n", ret); return ret; } static struct platform_driver iqs620_pwm_platform_driver = { .driver = { .name = "iqs620a-pwm", }, .probe = iqs620_pwm_probe, }; module_platform_driver(iqs620_pwm_platform_driver); MODULE_AUTHOR("Jeff LaBundy <[email protected]>"); MODULE_DESCRIPTION("Azoteq IQS620A PWM Generator"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:iqs620a-pwm");
linux-master
drivers/pwm/pwm-iqs620a.c
// SPDX-License-Identifier: GPL-2.0 /* * Intel Keem Bay PWM driver * * Copyright (C) 2020 Intel Corporation * Authors: Lai Poey Seng <[email protected]> * Vineetha G. Jaya Kumaran <[email protected]> * * Limitations: * - Upon disabling a channel, the currently running * period will not be completed. However, upon * reconfiguration of the duty cycle/period, the * currently running period will be completed first. */ #include <linux/bitfield.h> #include <linux/clk.h> #include <linux/io.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/pwm.h> #include <linux/regmap.h> #define KMB_TOTAL_PWM_CHANNELS 6 #define KMB_PWM_COUNT_MAX U16_MAX #define KMB_PWM_EN_BIT BIT(31) /* Mask */ #define KMB_PWM_HIGH_MASK GENMASK(31, 16) #define KMB_PWM_LOW_MASK GENMASK(15, 0) #define KMB_PWM_LEADIN_MASK GENMASK(30, 0) /* PWM Register offset */ #define KMB_PWM_LEADIN_OFFSET(ch) (0x00 + 4 * (ch)) #define KMB_PWM_HIGHLOW_OFFSET(ch) (0x20 + 4 * (ch)) struct keembay_pwm { struct pwm_chip chip; struct device *dev; struct clk *clk; void __iomem *base; }; static inline struct keembay_pwm *to_keembay_pwm_dev(struct pwm_chip *chip) { return container_of(chip, struct keembay_pwm, chip); } static void keembay_clk_unprepare(void *data) { clk_disable_unprepare(data); } static int keembay_clk_enable(struct device *dev, struct clk *clk) { int ret; ret = clk_prepare_enable(clk); if (ret) return ret; return devm_add_action_or_reset(dev, keembay_clk_unprepare, clk); } /* * With gcc 10, CONFIG_CC_OPTIMIZE_FOR_SIZE and only "inline" instead of * "__always_inline" this fails to compile because the compiler doesn't notice * for all valid masks (e.g. KMB_PWM_LEADIN_MASK) that they are ok. */ static __always_inline void keembay_pwm_update_bits(struct keembay_pwm *priv, u32 mask, u32 val, u32 offset) { u32 buff = readl(priv->base + offset); buff = u32_replace_bits(buff, val, mask); writel(buff, priv->base + offset); } static void keembay_pwm_enable(struct keembay_pwm *priv, int ch) { keembay_pwm_update_bits(priv, KMB_PWM_EN_BIT, 1, KMB_PWM_LEADIN_OFFSET(ch)); } static void keembay_pwm_disable(struct keembay_pwm *priv, int ch) { keembay_pwm_update_bits(priv, KMB_PWM_EN_BIT, 0, KMB_PWM_LEADIN_OFFSET(ch)); } static int keembay_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm, struct pwm_state *state) { struct keembay_pwm *priv = to_keembay_pwm_dev(chip); unsigned long long high, low; unsigned long clk_rate; u32 highlow; clk_rate = clk_get_rate(priv->clk); /* Read channel enabled status */ highlow = readl(priv->base + KMB_PWM_LEADIN_OFFSET(pwm->hwpwm)); if (highlow & KMB_PWM_EN_BIT) state->enabled = true; else state->enabled = false; /* Read period and duty cycle */ highlow = readl(priv->base + KMB_PWM_HIGHLOW_OFFSET(pwm->hwpwm)); low = FIELD_GET(KMB_PWM_LOW_MASK, highlow) * NSEC_PER_SEC; high = FIELD_GET(KMB_PWM_HIGH_MASK, highlow) * NSEC_PER_SEC; state->duty_cycle = DIV_ROUND_UP_ULL(high, clk_rate); state->period = DIV_ROUND_UP_ULL(high + low, clk_rate); state->polarity = PWM_POLARITY_NORMAL; return 0; } static int keembay_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { struct keembay_pwm *priv = to_keembay_pwm_dev(chip); struct pwm_state current_state; unsigned long long div; unsigned long clk_rate; u32 pwm_count = 0; u16 high, low; if (state->polarity != PWM_POLARITY_NORMAL) return -EINVAL; /* * Configure the pwm repeat count as infinite at (15:0) and leadin * low time as 0 at (30:16), which is in terms of clock cycles. */ keembay_pwm_update_bits(priv, KMB_PWM_LEADIN_MASK, 0, KMB_PWM_LEADIN_OFFSET(pwm->hwpwm)); keembay_pwm_get_state(chip, pwm, &current_state); if (!state->enabled) { if (current_state.enabled) keembay_pwm_disable(priv, pwm->hwpwm); return 0; } /* * The upper 16 bits and lower 16 bits of the KMB_PWM_HIGHLOW_OFFSET * register contain the high time and low time of waveform accordingly. * All the values are in terms of clock cycles. */ clk_rate = clk_get_rate(priv->clk); div = clk_rate * state->duty_cycle; div = DIV_ROUND_DOWN_ULL(div, NSEC_PER_SEC); if (div > KMB_PWM_COUNT_MAX) return -ERANGE; high = div; div = clk_rate * state->period; div = DIV_ROUND_DOWN_ULL(div, NSEC_PER_SEC); div = div - high; if (div > KMB_PWM_COUNT_MAX) return -ERANGE; low = div; pwm_count = FIELD_PREP(KMB_PWM_HIGH_MASK, high) | FIELD_PREP(KMB_PWM_LOW_MASK, low); writel(pwm_count, priv->base + KMB_PWM_HIGHLOW_OFFSET(pwm->hwpwm)); if (state->enabled && !current_state.enabled) keembay_pwm_enable(priv, pwm->hwpwm); return 0; } static const struct pwm_ops keembay_pwm_ops = { .owner = THIS_MODULE, .apply = keembay_pwm_apply, .get_state = keembay_pwm_get_state, }; static int keembay_pwm_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct keembay_pwm *priv; int ret; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->clk = devm_clk_get(dev, NULL); if (IS_ERR(priv->clk)) return dev_err_probe(dev, PTR_ERR(priv->clk), "Failed to get clock\n"); priv->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(priv->base)) return PTR_ERR(priv->base); ret = keembay_clk_enable(dev, priv->clk); if (ret) return ret; priv->chip.dev = dev; priv->chip.ops = &keembay_pwm_ops; priv->chip.npwm = KMB_TOTAL_PWM_CHANNELS; ret = devm_pwmchip_add(dev, &priv->chip); if (ret) return dev_err_probe(dev, ret, "Failed to add PWM chip\n"); return 0; } static const struct of_device_id keembay_pwm_of_match[] = { { .compatible = "intel,keembay-pwm" }, { } }; MODULE_DEVICE_TABLE(of, keembay_pwm_of_match); static struct platform_driver keembay_pwm_driver = { .probe = keembay_pwm_probe, .driver = { .name = "pwm-keembay", .of_match_table = keembay_pwm_of_match, }, }; module_platform_driver(keembay_pwm_driver); MODULE_ALIAS("platform:pwm-keembay"); MODULE_DESCRIPTION("Intel Keem Bay PWM driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/pwm/pwm-keembay.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2017-2018 SiFive * For SiFive's PWM IP block documentation please refer Chapter 14 of * Reference Manual : https://static.dev.sifive.com/FU540-C000-v1.0.pdf * * Limitations: * - When changing both duty cycle and period, we cannot prevent in * software that the output might produce a period with mixed * settings (new period length and old duty cycle). * - The hardware cannot generate a 100% duty cycle. * - The hardware generates only inverted output. */ #include <linux/clk.h> #include <linux/io.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/pwm.h> #include <linux/slab.h> #include <linux/bitfield.h> /* Register offsets */ #define PWM_SIFIVE_PWMCFG 0x0 #define PWM_SIFIVE_PWMCOUNT 0x8 #define PWM_SIFIVE_PWMS 0x10 #define PWM_SIFIVE_PWMCMP(i) (0x20 + 4 * (i)) /* PWMCFG fields */ #define PWM_SIFIVE_PWMCFG_SCALE GENMASK(3, 0) #define PWM_SIFIVE_PWMCFG_STICKY BIT(8) #define PWM_SIFIVE_PWMCFG_ZERO_CMP BIT(9) #define PWM_SIFIVE_PWMCFG_DEGLITCH BIT(10) #define PWM_SIFIVE_PWMCFG_EN_ALWAYS BIT(12) #define PWM_SIFIVE_PWMCFG_EN_ONCE BIT(13) #define PWM_SIFIVE_PWMCFG_CENTER BIT(16) #define PWM_SIFIVE_PWMCFG_GANG BIT(24) #define PWM_SIFIVE_PWMCFG_IP BIT(28) #define PWM_SIFIVE_CMPWIDTH 16 #define PWM_SIFIVE_DEFAULT_PERIOD 10000000 struct pwm_sifive_ddata { struct pwm_chip chip; struct mutex lock; /* lock to protect user_count and approx_period */ struct notifier_block notifier; struct clk *clk; void __iomem *regs; unsigned int real_period; unsigned int approx_period; int user_count; }; static inline struct pwm_sifive_ddata *pwm_sifive_chip_to_ddata(struct pwm_chip *chip) { return container_of(chip, struct pwm_sifive_ddata, chip); } static int pwm_sifive_request(struct pwm_chip *chip, struct pwm_device *pwm) { struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip); mutex_lock(&ddata->lock); ddata->user_count++; mutex_unlock(&ddata->lock); return 0; } static void pwm_sifive_free(struct pwm_chip *chip, struct pwm_device *pwm) { struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip); mutex_lock(&ddata->lock); ddata->user_count--; mutex_unlock(&ddata->lock); } /* Called holding ddata->lock */ static void pwm_sifive_update_clock(struct pwm_sifive_ddata *ddata, unsigned long rate) { unsigned long long num; unsigned long scale_pow; int scale; u32 val; /* * The PWM unit is used with pwmzerocmp=0, so the only way to modify the * period length is using pwmscale which provides the number of bits the * counter is shifted before being feed to the comparators. A period * lasts (1 << (PWM_SIFIVE_CMPWIDTH + pwmscale)) clock ticks. * (1 << (PWM_SIFIVE_CMPWIDTH + scale)) * 10^9/rate = period */ scale_pow = div64_ul(ddata->approx_period * (u64)rate, NSEC_PER_SEC); scale = clamp(ilog2(scale_pow) - PWM_SIFIVE_CMPWIDTH, 0, 0xf); val = PWM_SIFIVE_PWMCFG_EN_ALWAYS | FIELD_PREP(PWM_SIFIVE_PWMCFG_SCALE, scale); writel(val, ddata->regs + PWM_SIFIVE_PWMCFG); /* As scale <= 15 the shift operation cannot overflow. */ num = (unsigned long long)NSEC_PER_SEC << (PWM_SIFIVE_CMPWIDTH + scale); ddata->real_period = div64_ul(num, rate); dev_dbg(ddata->chip.dev, "New real_period = %u ns\n", ddata->real_period); } static int pwm_sifive_get_state(struct pwm_chip *chip, struct pwm_device *pwm, struct pwm_state *state) { struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip); u32 duty, val; duty = readl(ddata->regs + PWM_SIFIVE_PWMCMP(pwm->hwpwm)); state->enabled = duty > 0; val = readl(ddata->regs + PWM_SIFIVE_PWMCFG); if (!(val & PWM_SIFIVE_PWMCFG_EN_ALWAYS)) state->enabled = false; state->period = ddata->real_period; state->duty_cycle = (u64)duty * ddata->real_period >> PWM_SIFIVE_CMPWIDTH; state->polarity = PWM_POLARITY_INVERSED; return 0; } static int pwm_sifive_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip); struct pwm_state cur_state; unsigned int duty_cycle; unsigned long long num; bool enabled; int ret = 0; u32 frac; if (state->polarity != PWM_POLARITY_INVERSED) return -EINVAL; cur_state = pwm->state; enabled = cur_state.enabled; duty_cycle = state->duty_cycle; if (!state->enabled) duty_cycle = 0; /* * The problem of output producing mixed setting as mentioned at top, * occurs here. To minimize the window for this problem, we are * calculating the register values first and then writing them * consecutively */ num = (u64)duty_cycle * (1U << PWM_SIFIVE_CMPWIDTH); frac = DIV64_U64_ROUND_CLOSEST(num, state->period); /* The hardware cannot generate a 100% duty cycle */ frac = min(frac, (1U << PWM_SIFIVE_CMPWIDTH) - 1); mutex_lock(&ddata->lock); if (state->period != ddata->approx_period) { /* * Don't let a 2nd user change the period underneath the 1st user. * However if ddate->approx_period == 0 this is the first time we set * any period, so let whoever gets here first set the period so other * users who agree on the period won't fail. */ if (ddata->user_count != 1 && ddata->approx_period) { mutex_unlock(&ddata->lock); return -EBUSY; } ddata->approx_period = state->period; pwm_sifive_update_clock(ddata, clk_get_rate(ddata->clk)); } mutex_unlock(&ddata->lock); /* * If the PWM is enabled the clk is already on. So only enable it * conditionally to have it on exactly once afterwards independent of * the PWM state. */ if (!enabled) { ret = clk_enable(ddata->clk); if (ret) { dev_err(ddata->chip.dev, "Enable clk failed\n"); return ret; } } writel(frac, ddata->regs + PWM_SIFIVE_PWMCMP(pwm->hwpwm)); if (!state->enabled) clk_disable(ddata->clk); return 0; } static const struct pwm_ops pwm_sifive_ops = { .request = pwm_sifive_request, .free = pwm_sifive_free, .get_state = pwm_sifive_get_state, .apply = pwm_sifive_apply, .owner = THIS_MODULE, }; static int pwm_sifive_clock_notifier(struct notifier_block *nb, unsigned long event, void *data) { struct clk_notifier_data *ndata = data; struct pwm_sifive_ddata *ddata = container_of(nb, struct pwm_sifive_ddata, notifier); if (event == POST_RATE_CHANGE) { mutex_lock(&ddata->lock); pwm_sifive_update_clock(ddata, ndata->new_rate); mutex_unlock(&ddata->lock); } return NOTIFY_OK; } static int pwm_sifive_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct pwm_sifive_ddata *ddata; struct pwm_chip *chip; int ret; u32 val; unsigned int enabled_pwms = 0, enabled_clks = 1; ddata = devm_kzalloc(dev, sizeof(*ddata), GFP_KERNEL); if (!ddata) return -ENOMEM; mutex_init(&ddata->lock); chip = &ddata->chip; chip->dev = dev; chip->ops = &pwm_sifive_ops; chip->npwm = 4; ddata->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(ddata->regs)) return PTR_ERR(ddata->regs); ddata->clk = devm_clk_get_prepared(dev, NULL); if (IS_ERR(ddata->clk)) return dev_err_probe(dev, PTR_ERR(ddata->clk), "Unable to find controller clock\n"); ret = clk_enable(ddata->clk); if (ret) { dev_err(dev, "failed to enable clock for pwm: %d\n", ret); return ret; } val = readl(ddata->regs + PWM_SIFIVE_PWMCFG); if (val & PWM_SIFIVE_PWMCFG_EN_ALWAYS) { unsigned int i; for (i = 0; i < chip->npwm; ++i) { val = readl(ddata->regs + PWM_SIFIVE_PWMCMP(i)); if (val > 0) ++enabled_pwms; } } /* The clk should be on once for each running PWM. */ if (enabled_pwms) { while (enabled_clks < enabled_pwms) { /* This is not expected to fail as the clk is already on */ ret = clk_enable(ddata->clk); if (unlikely(ret)) { dev_err_probe(dev, ret, "Failed to enable clk\n"); goto disable_clk; } ++enabled_clks; } } else { clk_disable(ddata->clk); enabled_clks = 0; } /* Watch for changes to underlying clock frequency */ ddata->notifier.notifier_call = pwm_sifive_clock_notifier; ret = clk_notifier_register(ddata->clk, &ddata->notifier); if (ret) { dev_err(dev, "failed to register clock notifier: %d\n", ret); goto disable_clk; } ret = pwmchip_add(chip); if (ret < 0) { dev_err(dev, "cannot register PWM: %d\n", ret); goto unregister_clk; } platform_set_drvdata(pdev, ddata); dev_dbg(dev, "SiFive PWM chip registered %d PWMs\n", chip->npwm); return 0; unregister_clk: clk_notifier_unregister(ddata->clk, &ddata->notifier); disable_clk: while (enabled_clks) { clk_disable(ddata->clk); --enabled_clks; } return ret; } static void pwm_sifive_remove(struct platform_device *dev) { struct pwm_sifive_ddata *ddata = platform_get_drvdata(dev); struct pwm_device *pwm; int ch; pwmchip_remove(&ddata->chip); clk_notifier_unregister(ddata->clk, &ddata->notifier); for (ch = 0; ch < ddata->chip.npwm; ch++) { pwm = &ddata->chip.pwms[ch]; if (pwm->state.enabled) clk_disable(ddata->clk); } } static const struct of_device_id pwm_sifive_of_match[] = { { .compatible = "sifive,pwm0" }, {}, }; MODULE_DEVICE_TABLE(of, pwm_sifive_of_match); static struct platform_driver pwm_sifive_driver = { .probe = pwm_sifive_probe, .remove_new = pwm_sifive_remove, .driver = { .name = "pwm-sifive", .of_match_table = pwm_sifive_of_match, }, }; module_platform_driver(pwm_sifive_driver); MODULE_DESCRIPTION("SiFive PWM driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/pwm/pwm-sifive.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) Overkiz SAS 2012 * * Author: Boris BREZILLON <[email protected]> */ #include <linux/module.h> #include <linux/init.h> #include <linux/clocksource.h> #include <linux/clockchips.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/clk.h> #include <linux/err.h> #include <linux/ioport.h> #include <linux/io.h> #include <linux/mfd/syscon.h> #include <linux/platform_device.h> #include <linux/pwm.h> #include <linux/of.h> #include <linux/regmap.h> #include <linux/slab.h> #include <soc/at91/atmel_tcb.h> #define NPWM 2 #define ATMEL_TC_ACMR_MASK (ATMEL_TC_ACPA | ATMEL_TC_ACPC | \ ATMEL_TC_AEEVT | ATMEL_TC_ASWTRG) #define ATMEL_TC_BCMR_MASK (ATMEL_TC_BCPB | ATMEL_TC_BCPC | \ ATMEL_TC_BEEVT | ATMEL_TC_BSWTRG) struct atmel_tcb_pwm_device { unsigned div; /* PWM clock divider */ unsigned duty; /* PWM duty expressed in clk cycles */ unsigned period; /* PWM period expressed in clk cycles */ }; struct atmel_tcb_channel { u32 enabled; u32 cmr; u32 ra; u32 rb; u32 rc; }; struct atmel_tcb_pwm_chip { struct pwm_chip chip; spinlock_t lock; u8 channel; u8 width; struct regmap *regmap; struct clk *clk; struct clk *gclk; struct clk *slow_clk; struct atmel_tcb_pwm_device pwms[NPWM]; struct atmel_tcb_channel bkup; }; static const u8 atmel_tcb_divisors[] = { 2, 8, 32, 128, 0, }; static inline struct atmel_tcb_pwm_chip *to_tcb_chip(struct pwm_chip *chip) { return container_of(chip, struct atmel_tcb_pwm_chip, chip); } static int atmel_tcb_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm) { struct atmel_tcb_pwm_chip *tcbpwmc = to_tcb_chip(chip); struct atmel_tcb_pwm_device *tcbpwm = &tcbpwmc->pwms[pwm->hwpwm]; unsigned cmr; int ret; ret = clk_prepare_enable(tcbpwmc->clk); if (ret) return ret; tcbpwm->duty = 0; tcbpwm->period = 0; tcbpwm->div = 0; spin_lock(&tcbpwmc->lock); regmap_read(tcbpwmc->regmap, ATMEL_TC_REG(tcbpwmc->channel, CMR), &cmr); /* * Get init config from Timer Counter registers if * Timer Counter is already configured as a PWM generator. */ if (cmr & ATMEL_TC_WAVE) { if (pwm->hwpwm == 0) regmap_read(tcbpwmc->regmap, ATMEL_TC_REG(tcbpwmc->channel, RA), &tcbpwm->duty); else regmap_read(tcbpwmc->regmap, ATMEL_TC_REG(tcbpwmc->channel, RB), &tcbpwm->duty); tcbpwm->div = cmr & ATMEL_TC_TCCLKS; regmap_read(tcbpwmc->regmap, ATMEL_TC_REG(tcbpwmc->channel, RC), &tcbpwm->period); cmr &= (ATMEL_TC_TCCLKS | ATMEL_TC_ACMR_MASK | ATMEL_TC_BCMR_MASK); } else cmr = 0; cmr |= ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO | ATMEL_TC_EEVT_XC0; regmap_write(tcbpwmc->regmap, ATMEL_TC_REG(tcbpwmc->channel, CMR), cmr); spin_unlock(&tcbpwmc->lock); return 0; } static void atmel_tcb_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm) { struct atmel_tcb_pwm_chip *tcbpwmc = to_tcb_chip(chip); clk_disable_unprepare(tcbpwmc->clk); } static void atmel_tcb_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm, enum pwm_polarity polarity) { struct atmel_tcb_pwm_chip *tcbpwmc = to_tcb_chip(chip); struct atmel_tcb_pwm_device *tcbpwm = &tcbpwmc->pwms[pwm->hwpwm]; unsigned cmr; /* * If duty is 0 the timer will be stopped and we have to * configure the output correctly on software trigger: * - set output to high if PWM_POLARITY_INVERSED * - set output to low if PWM_POLARITY_NORMAL * * This is why we're reverting polarity in this case. */ if (tcbpwm->duty == 0) polarity = !polarity; spin_lock(&tcbpwmc->lock); regmap_read(tcbpwmc->regmap, ATMEL_TC_REG(tcbpwmc->channel, CMR), &cmr); /* flush old setting and set the new one */ if (pwm->hwpwm == 0) { cmr &= ~ATMEL_TC_ACMR_MASK; if (polarity == PWM_POLARITY_INVERSED) cmr |= ATMEL_TC_ASWTRG_CLEAR; else cmr |= ATMEL_TC_ASWTRG_SET; } else { cmr &= ~ATMEL_TC_BCMR_MASK; if (polarity == PWM_POLARITY_INVERSED) cmr |= ATMEL_TC_BSWTRG_CLEAR; else cmr |= ATMEL_TC_BSWTRG_SET; } regmap_write(tcbpwmc->regmap, ATMEL_TC_REG(tcbpwmc->channel, CMR), cmr); /* * Use software trigger to apply the new setting. * If both PWM devices in this group are disabled we stop the clock. */ if (!(cmr & (ATMEL_TC_ACPC | ATMEL_TC_BCPC))) { regmap_write(tcbpwmc->regmap, ATMEL_TC_REG(tcbpwmc->channel, CCR), ATMEL_TC_SWTRG | ATMEL_TC_CLKDIS); tcbpwmc->bkup.enabled = 1; } else { regmap_write(tcbpwmc->regmap, ATMEL_TC_REG(tcbpwmc->channel, CCR), ATMEL_TC_SWTRG); tcbpwmc->bkup.enabled = 0; } spin_unlock(&tcbpwmc->lock); } static int atmel_tcb_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm, enum pwm_polarity polarity) { struct atmel_tcb_pwm_chip *tcbpwmc = to_tcb_chip(chip); struct atmel_tcb_pwm_device *tcbpwm = &tcbpwmc->pwms[pwm->hwpwm]; u32 cmr; /* * If duty is 0 the timer will be stopped and we have to * configure the output correctly on software trigger: * - set output to high if PWM_POLARITY_INVERSED * - set output to low if PWM_POLARITY_NORMAL * * This is why we're reverting polarity in this case. */ if (tcbpwm->duty == 0) polarity = !polarity; spin_lock(&tcbpwmc->lock); regmap_read(tcbpwmc->regmap, ATMEL_TC_REG(tcbpwmc->channel, CMR), &cmr); /* flush old setting and set the new one */ cmr &= ~ATMEL_TC_TCCLKS; if (pwm->hwpwm == 0) { cmr &= ~ATMEL_TC_ACMR_MASK; /* Set CMR flags according to given polarity */ if (polarity == PWM_POLARITY_INVERSED) cmr |= ATMEL_TC_ASWTRG_CLEAR; else cmr |= ATMEL_TC_ASWTRG_SET; } else { cmr &= ~ATMEL_TC_BCMR_MASK; if (polarity == PWM_POLARITY_INVERSED) cmr |= ATMEL_TC_BSWTRG_CLEAR; else cmr |= ATMEL_TC_BSWTRG_SET; } /* * If duty is 0 or equal to period there's no need to register * a specific action on RA/RB and RC compare. * The output will be configured on software trigger and keep * this config till next config call. */ if (tcbpwm->duty != tcbpwm->period && tcbpwm->duty > 0) { if (pwm->hwpwm == 0) { if (polarity == PWM_POLARITY_INVERSED) cmr |= ATMEL_TC_ACPA_SET | ATMEL_TC_ACPC_CLEAR; else cmr |= ATMEL_TC_ACPA_CLEAR | ATMEL_TC_ACPC_SET; } else { if (polarity == PWM_POLARITY_INVERSED) cmr |= ATMEL_TC_BCPB_SET | ATMEL_TC_BCPC_CLEAR; else cmr |= ATMEL_TC_BCPB_CLEAR | ATMEL_TC_BCPC_SET; } } cmr |= (tcbpwm->div & ATMEL_TC_TCCLKS); regmap_write(tcbpwmc->regmap, ATMEL_TC_REG(tcbpwmc->channel, CMR), cmr); if (pwm->hwpwm == 0) regmap_write(tcbpwmc->regmap, ATMEL_TC_REG(tcbpwmc->channel, RA), tcbpwm->duty); else regmap_write(tcbpwmc->regmap, ATMEL_TC_REG(tcbpwmc->channel, RB), tcbpwm->duty); regmap_write(tcbpwmc->regmap, ATMEL_TC_REG(tcbpwmc->channel, RC), tcbpwm->period); /* Use software trigger to apply the new setting */ regmap_write(tcbpwmc->regmap, ATMEL_TC_REG(tcbpwmc->channel, CCR), ATMEL_TC_SWTRG | ATMEL_TC_CLKEN); tcbpwmc->bkup.enabled = 1; spin_unlock(&tcbpwmc->lock); return 0; } static int atmel_tcb_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm, int duty_ns, int period_ns) { struct atmel_tcb_pwm_chip *tcbpwmc = to_tcb_chip(chip); struct atmel_tcb_pwm_device *tcbpwm = &tcbpwmc->pwms[pwm->hwpwm]; struct atmel_tcb_pwm_device *atcbpwm = NULL; int i = 0; int slowclk = 0; unsigned period; unsigned duty; unsigned rate = clk_get_rate(tcbpwmc->clk); unsigned long long min; unsigned long long max; /* * Find best clk divisor: * the smallest divisor which can fulfill the period_ns requirements. * If there is a gclk, the first divisor is actually the gclk selector */ if (tcbpwmc->gclk) i = 1; for (; i < ARRAY_SIZE(atmel_tcb_divisors); ++i) { if (atmel_tcb_divisors[i] == 0) { slowclk = i; continue; } min = div_u64((u64)NSEC_PER_SEC * atmel_tcb_divisors[i], rate); max = min << tcbpwmc->width; if (max >= period_ns) break; } /* * If none of the divisor are small enough to represent period_ns * take slow clock (32KHz). */ if (i == ARRAY_SIZE(atmel_tcb_divisors)) { i = slowclk; rate = clk_get_rate(tcbpwmc->slow_clk); min = div_u64(NSEC_PER_SEC, rate); max = min << tcbpwmc->width; /* If period is too big return ERANGE error */ if (max < period_ns) return -ERANGE; } duty = div_u64(duty_ns, min); period = div_u64(period_ns, min); if (pwm->hwpwm == 0) atcbpwm = &tcbpwmc->pwms[1]; else atcbpwm = &tcbpwmc->pwms[0]; /* * PWM devices provided by the TCB driver are grouped by 2. * PWM devices in a given group must be configured with the * same period_ns. * * We're checking the period value of the second PWM device * in this group before applying the new config. */ if ((atcbpwm && atcbpwm->duty > 0 && atcbpwm->duty != atcbpwm->period) && (atcbpwm->div != i || atcbpwm->period != period)) { dev_err(chip->dev, "failed to configure period_ns: PWM group already configured with a different value\n"); return -EINVAL; } tcbpwm->period = period; tcbpwm->div = i; tcbpwm->duty = duty; return 0; } static int atmel_tcb_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { int duty_cycle, period; int ret; if (!state->enabled) { atmel_tcb_pwm_disable(chip, pwm, state->polarity); return 0; } period = state->period < INT_MAX ? state->period : INT_MAX; duty_cycle = state->duty_cycle < INT_MAX ? state->duty_cycle : INT_MAX; ret = atmel_tcb_pwm_config(chip, pwm, duty_cycle, period); if (ret) return ret; return atmel_tcb_pwm_enable(chip, pwm, state->polarity); } static const struct pwm_ops atmel_tcb_pwm_ops = { .request = atmel_tcb_pwm_request, .free = atmel_tcb_pwm_free, .apply = atmel_tcb_pwm_apply, .owner = THIS_MODULE, }; static struct atmel_tcb_config tcb_rm9200_config = { .counter_width = 16, }; static struct atmel_tcb_config tcb_sam9x5_config = { .counter_width = 32, }; static struct atmel_tcb_config tcb_sama5d2_config = { .counter_width = 32, .has_gclk = 1, }; static const struct of_device_id atmel_tcb_of_match[] = { { .compatible = "atmel,at91rm9200-tcb", .data = &tcb_rm9200_config, }, { .compatible = "atmel,at91sam9x5-tcb", .data = &tcb_sam9x5_config, }, { .compatible = "atmel,sama5d2-tcb", .data = &tcb_sama5d2_config, }, { /* sentinel */ } }; static int atmel_tcb_pwm_probe(struct platform_device *pdev) { const struct of_device_id *match; struct atmel_tcb_pwm_chip *tcbpwm; const struct atmel_tcb_config *config; struct device_node *np = pdev->dev.of_node; char clk_name[] = "t0_clk"; int err; int channel; tcbpwm = devm_kzalloc(&pdev->dev, sizeof(*tcbpwm), GFP_KERNEL); if (tcbpwm == NULL) return -ENOMEM; err = of_property_read_u32(np, "reg", &channel); if (err < 0) { dev_err(&pdev->dev, "failed to get Timer Counter Block channel from device tree (error: %d)\n", err); return err; } tcbpwm->regmap = syscon_node_to_regmap(np->parent); if (IS_ERR(tcbpwm->regmap)) return PTR_ERR(tcbpwm->regmap); tcbpwm->slow_clk = of_clk_get_by_name(np->parent, "slow_clk"); if (IS_ERR(tcbpwm->slow_clk)) return PTR_ERR(tcbpwm->slow_clk); clk_name[1] += channel; tcbpwm->clk = of_clk_get_by_name(np->parent, clk_name); if (IS_ERR(tcbpwm->clk)) tcbpwm->clk = of_clk_get_by_name(np->parent, "t0_clk"); if (IS_ERR(tcbpwm->clk)) { err = PTR_ERR(tcbpwm->clk); goto err_slow_clk; } match = of_match_node(atmel_tcb_of_match, np->parent); config = match->data; if (config->has_gclk) { tcbpwm->gclk = of_clk_get_by_name(np->parent, "gclk"); if (IS_ERR(tcbpwm->gclk)) { err = PTR_ERR(tcbpwm->gclk); goto err_clk; } } tcbpwm->chip.dev = &pdev->dev; tcbpwm->chip.ops = &atmel_tcb_pwm_ops; tcbpwm->chip.npwm = NPWM; tcbpwm->channel = channel; tcbpwm->width = config->counter_width; err = clk_prepare_enable(tcbpwm->slow_clk); if (err) goto err_gclk; spin_lock_init(&tcbpwm->lock); err = pwmchip_add(&tcbpwm->chip); if (err < 0) goto err_disable_clk; platform_set_drvdata(pdev, tcbpwm); return 0; err_disable_clk: clk_disable_unprepare(tcbpwm->slow_clk); err_gclk: clk_put(tcbpwm->gclk); err_clk: clk_put(tcbpwm->clk); err_slow_clk: clk_put(tcbpwm->slow_clk); return err; } static void atmel_tcb_pwm_remove(struct platform_device *pdev) { struct atmel_tcb_pwm_chip *tcbpwm = platform_get_drvdata(pdev); pwmchip_remove(&tcbpwm->chip); clk_disable_unprepare(tcbpwm->slow_clk); clk_put(tcbpwm->gclk); clk_put(tcbpwm->clk); clk_put(tcbpwm->slow_clk); } static const struct of_device_id atmel_tcb_pwm_dt_ids[] = { { .compatible = "atmel,tcb-pwm", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, atmel_tcb_pwm_dt_ids); #ifdef CONFIG_PM_SLEEP static int atmel_tcb_pwm_suspend(struct device *dev) { struct atmel_tcb_pwm_chip *tcbpwm = dev_get_drvdata(dev); struct atmel_tcb_channel *chan = &tcbpwm->bkup; unsigned int channel = tcbpwm->channel; regmap_read(tcbpwm->regmap, ATMEL_TC_REG(channel, CMR), &chan->cmr); regmap_read(tcbpwm->regmap, ATMEL_TC_REG(channel, RA), &chan->ra); regmap_read(tcbpwm->regmap, ATMEL_TC_REG(channel, RB), &chan->rb); regmap_read(tcbpwm->regmap, ATMEL_TC_REG(channel, RC), &chan->rc); return 0; } static int atmel_tcb_pwm_resume(struct device *dev) { struct atmel_tcb_pwm_chip *tcbpwm = dev_get_drvdata(dev); struct atmel_tcb_channel *chan = &tcbpwm->bkup; unsigned int channel = tcbpwm->channel; regmap_write(tcbpwm->regmap, ATMEL_TC_REG(channel, CMR), chan->cmr); regmap_write(tcbpwm->regmap, ATMEL_TC_REG(channel, RA), chan->ra); regmap_write(tcbpwm->regmap, ATMEL_TC_REG(channel, RB), chan->rb); regmap_write(tcbpwm->regmap, ATMEL_TC_REG(channel, RC), chan->rc); if (chan->enabled) regmap_write(tcbpwm->regmap, ATMEL_TC_CLKEN | ATMEL_TC_SWTRG, ATMEL_TC_REG(channel, CCR)); return 0; } #endif static SIMPLE_DEV_PM_OPS(atmel_tcb_pwm_pm_ops, atmel_tcb_pwm_suspend, atmel_tcb_pwm_resume); static struct platform_driver atmel_tcb_pwm_driver = { .driver = { .name = "atmel-tcb-pwm", .of_match_table = atmel_tcb_pwm_dt_ids, .pm = &atmel_tcb_pwm_pm_ops, }, .probe = atmel_tcb_pwm_probe, .remove_new = atmel_tcb_pwm_remove, }; module_platform_driver(atmel_tcb_pwm_driver); MODULE_AUTHOR("Boris BREZILLON <[email protected]>"); MODULE_DESCRIPTION("Atmel Timer Counter Pulse Width Modulation Driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/pwm/pwm-atmel-tcb.c
// SPDX-License-Identifier: GPL-2.0-only /* * Authors: * Branden Bonaby <[email protected]> */ #include <linux/hyperv.h> #include <linux/debugfs.h> #include <linux/delay.h> #include <linux/err.h> #include "hyperv_vmbus.h" static struct dentry *hv_debug_root; static int hv_debugfs_delay_get(void *data, u64 *val) { *val = *(u32 *)data; return 0; } static int hv_debugfs_delay_set(void *data, u64 val) { if (val > 1000) return -EINVAL; *(u32 *)data = val; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(hv_debugfs_delay_fops, hv_debugfs_delay_get, hv_debugfs_delay_set, "%llu\n"); static int hv_debugfs_state_get(void *data, u64 *val) { *val = *(bool *)data; return 0; } static int hv_debugfs_state_set(void *data, u64 val) { if (val == 1) *(bool *)data = true; else if (val == 0) *(bool *)data = false; else return -EINVAL; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(hv_debugfs_state_fops, hv_debugfs_state_get, hv_debugfs_state_set, "%llu\n"); /* Setup delay files to store test values */ static int hv_debug_delay_files(struct hv_device *dev, struct dentry *root) { struct vmbus_channel *channel = dev->channel; char *buffer = "fuzz_test_buffer_interrupt_delay"; char *message = "fuzz_test_message_delay"; int *buffer_val = &channel->fuzz_testing_interrupt_delay; int *message_val = &channel->fuzz_testing_message_delay; struct dentry *buffer_file, *message_file; buffer_file = debugfs_create_file(buffer, 0644, root, buffer_val, &hv_debugfs_delay_fops); if (IS_ERR(buffer_file)) { pr_debug("debugfs_hyperv: file %s not created\n", buffer); return PTR_ERR(buffer_file); } message_file = debugfs_create_file(message, 0644, root, message_val, &hv_debugfs_delay_fops); if (IS_ERR(message_file)) { pr_debug("debugfs_hyperv: file %s not created\n", message); return PTR_ERR(message_file); } return 0; } /* Setup test state value for vmbus device */ static int hv_debug_set_test_state(struct hv_device *dev, struct dentry *root) { struct vmbus_channel *channel = dev->channel; bool *state = &channel->fuzz_testing_state; char *status = "fuzz_test_state"; struct dentry *test_state; test_state = debugfs_create_file(status, 0644, root, state, &hv_debugfs_state_fops); if (IS_ERR(test_state)) { pr_debug("debugfs_hyperv: file %s not created\n", status); return PTR_ERR(test_state); } return 0; } /* Bind hv device to a dentry for debugfs */ static void hv_debug_set_dir_dentry(struct hv_device *dev, struct dentry *root) { if (hv_debug_root) dev->debug_dir = root; } /* Create all test dentry's and names for fuzz testing */ int hv_debug_add_dev_dir(struct hv_device *dev) { const char *device = dev_name(&dev->device); char *delay_name = "delay"; struct dentry *delay, *dev_root; int ret; if (!IS_ERR(hv_debug_root)) { dev_root = debugfs_create_dir(device, hv_debug_root); if (IS_ERR(dev_root)) { pr_debug("debugfs_hyperv: hyperv/%s/ not created\n", device); return PTR_ERR(dev_root); } hv_debug_set_test_state(dev, dev_root); hv_debug_set_dir_dentry(dev, dev_root); delay = debugfs_create_dir(delay_name, dev_root); if (IS_ERR(delay)) { pr_debug("debugfs_hyperv: hyperv/%s/%s/ not created\n", device, delay_name); return PTR_ERR(delay); } ret = hv_debug_delay_files(dev, delay); return ret; } pr_debug("debugfs_hyperv: hyperv/ not in root debugfs path\n"); return PTR_ERR(hv_debug_root); } /* Remove dentry associated with released hv device */ void hv_debug_rm_dev_dir(struct hv_device *dev) { if (!IS_ERR(hv_debug_root)) debugfs_remove_recursive(dev->debug_dir); } /* Remove all dentrys associated with vmbus testing */ void hv_debug_rm_all_dir(void) { debugfs_remove_recursive(hv_debug_root); } /* Delay buffer/message reads on a vmbus channel */ void hv_debug_delay_test(struct vmbus_channel *channel, enum delay delay_type) { struct vmbus_channel *test_channel = channel->primary_channel ? channel->primary_channel : channel; bool state = test_channel->fuzz_testing_state; if (state) { if (delay_type == 0) udelay(test_channel->fuzz_testing_interrupt_delay); else udelay(test_channel->fuzz_testing_message_delay); } } /* Initialize top dentry for vmbus testing */ int hv_debug_init(void) { hv_debug_root = debugfs_create_dir("hyperv", NULL); if (IS_ERR(hv_debug_root)) { pr_debug("debugfs_hyperv: hyperv/ not created\n"); return PTR_ERR(hv_debug_root); } return 0; }
linux-master
drivers/hv/hv_debugfs.c
// SPDX-License-Identifier: GPL-2.0 /* * Architecture neutral utility routines for interacting with * Hyper-V. This file is specifically for code that must be * built-in to the kernel image when CONFIG_HYPERV is set * (vs. being in a module) because it is called from architecture * specific code under arch/. * * Copyright (C) 2021, Microsoft, Inc. * * Author : Michael Kelley <[email protected]> */ #include <linux/types.h> #include <linux/acpi.h> #include <linux/export.h> #include <linux/bitfield.h> #include <linux/cpumask.h> #include <linux/sched/task_stack.h> #include <linux/panic_notifier.h> #include <linux/ptrace.h> #include <linux/kdebug.h> #include <linux/kmsg_dump.h> #include <linux/slab.h> #include <linux/dma-map-ops.h> #include <linux/set_memory.h> #include <asm/hyperv-tlfs.h> #include <asm/mshyperv.h> /* * hv_root_partition, ms_hyperv and hv_nested are defined here with other * Hyper-V specific globals so they are shared across all architectures and are * built only when CONFIG_HYPERV is defined. But on x86, * ms_hyperv_init_platform() is built even when CONFIG_HYPERV is not * defined, and it uses these three variables. So mark them as __weak * here, allowing for an overriding definition in the module containing * ms_hyperv_init_platform(). */ bool __weak hv_root_partition; EXPORT_SYMBOL_GPL(hv_root_partition); bool __weak hv_nested; EXPORT_SYMBOL_GPL(hv_nested); struct ms_hyperv_info __weak ms_hyperv; EXPORT_SYMBOL_GPL(ms_hyperv); u32 *hv_vp_index; EXPORT_SYMBOL_GPL(hv_vp_index); u32 hv_max_vp_index; EXPORT_SYMBOL_GPL(hv_max_vp_index); void * __percpu *hyperv_pcpu_input_arg; EXPORT_SYMBOL_GPL(hyperv_pcpu_input_arg); void * __percpu *hyperv_pcpu_output_arg; EXPORT_SYMBOL_GPL(hyperv_pcpu_output_arg); static void hv_kmsg_dump_unregister(void); static struct ctl_table_header *hv_ctl_table_hdr; /* * Hyper-V specific initialization and shutdown code that is * common across all architectures. Called from architecture * specific initialization functions. */ void __init hv_common_free(void) { unregister_sysctl_table(hv_ctl_table_hdr); hv_ctl_table_hdr = NULL; if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) hv_kmsg_dump_unregister(); kfree(hv_vp_index); hv_vp_index = NULL; free_percpu(hyperv_pcpu_output_arg); hyperv_pcpu_output_arg = NULL; free_percpu(hyperv_pcpu_input_arg); hyperv_pcpu_input_arg = NULL; } /* * Functions for allocating and freeing memory with size and * alignment HV_HYP_PAGE_SIZE. These functions are needed because * the guest page size may not be the same as the Hyper-V page * size. We depend upon kmalloc() aligning power-of-two size * allocations to the allocation size boundary, so that the * allocated memory appears to Hyper-V as a page of the size * it expects. */ void *hv_alloc_hyperv_page(void) { BUILD_BUG_ON(PAGE_SIZE < HV_HYP_PAGE_SIZE); if (PAGE_SIZE == HV_HYP_PAGE_SIZE) return (void *)__get_free_page(GFP_KERNEL); else return kmalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL); } EXPORT_SYMBOL_GPL(hv_alloc_hyperv_page); void *hv_alloc_hyperv_zeroed_page(void) { if (PAGE_SIZE == HV_HYP_PAGE_SIZE) return (void *)__get_free_page(GFP_KERNEL | __GFP_ZERO); else return kzalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL); } EXPORT_SYMBOL_GPL(hv_alloc_hyperv_zeroed_page); void hv_free_hyperv_page(void *addr) { if (PAGE_SIZE == HV_HYP_PAGE_SIZE) free_page((unsigned long)addr); else kfree(addr); } EXPORT_SYMBOL_GPL(hv_free_hyperv_page); static void *hv_panic_page; /* * Boolean to control whether to report panic messages over Hyper-V. * * It can be set via /proc/sys/kernel/hyperv_record_panic_msg */ static int sysctl_record_panic_msg = 1; /* * sysctl option to allow the user to control whether kmsg data should be * reported to Hyper-V on panic. */ static struct ctl_table hv_ctl_table[] = { { .procname = "hyperv_record_panic_msg", .data = &sysctl_record_panic_msg, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_ONE }, {} }; static int hv_die_panic_notify_crash(struct notifier_block *self, unsigned long val, void *args); static struct notifier_block hyperv_die_report_block = { .notifier_call = hv_die_panic_notify_crash, }; static struct notifier_block hyperv_panic_report_block = { .notifier_call = hv_die_panic_notify_crash, }; /* * The following callback works both as die and panic notifier; its * goal is to provide panic information to the hypervisor unless the * kmsg dumper is used [see hv_kmsg_dump()], which provides more * information but isn't always available. * * Notice that both the panic/die report notifiers are registered only * if we have the capability HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE set. */ static int hv_die_panic_notify_crash(struct notifier_block *self, unsigned long val, void *args) { struct pt_regs *regs; bool is_die; /* Don't notify Hyper-V unless we have a die oops event or panic. */ if (self == &hyperv_panic_report_block) { is_die = false; regs = current_pt_regs(); } else { /* die event */ if (val != DIE_OOPS) return NOTIFY_DONE; is_die = true; regs = ((struct die_args *)args)->regs; } /* * Hyper-V should be notified only once about a panic/die. If we will * be calling hv_kmsg_dump() later with kmsg data, don't do the * notification here. */ if (!sysctl_record_panic_msg || !hv_panic_page) hyperv_report_panic(regs, val, is_die); return NOTIFY_DONE; } /* * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg * buffer and call into Hyper-V to transfer the data. */ static void hv_kmsg_dump(struct kmsg_dumper *dumper, enum kmsg_dump_reason reason) { struct kmsg_dump_iter iter; size_t bytes_written; /* We are only interested in panics. */ if (reason != KMSG_DUMP_PANIC || !sysctl_record_panic_msg) return; /* * Write dump contents to the page. No need to synchronize; panic should * be single-threaded. */ kmsg_dump_rewind(&iter); kmsg_dump_get_buffer(&iter, false, hv_panic_page, HV_HYP_PAGE_SIZE, &bytes_written); if (!bytes_written) return; /* * P3 to contain the physical address of the panic page & P4 to * contain the size of the panic data in that page. Rest of the * registers are no-op when the NOTIFY_MSG flag is set. */ hv_set_register(HV_REGISTER_CRASH_P0, 0); hv_set_register(HV_REGISTER_CRASH_P1, 0); hv_set_register(HV_REGISTER_CRASH_P2, 0); hv_set_register(HV_REGISTER_CRASH_P3, virt_to_phys(hv_panic_page)); hv_set_register(HV_REGISTER_CRASH_P4, bytes_written); /* * Let Hyper-V know there is crash data available along with * the panic message. */ hv_set_register(HV_REGISTER_CRASH_CTL, (HV_CRASH_CTL_CRASH_NOTIFY | HV_CRASH_CTL_CRASH_NOTIFY_MSG)); } static struct kmsg_dumper hv_kmsg_dumper = { .dump = hv_kmsg_dump, }; static void hv_kmsg_dump_unregister(void) { kmsg_dump_unregister(&hv_kmsg_dumper); unregister_die_notifier(&hyperv_die_report_block); atomic_notifier_chain_unregister(&panic_notifier_list, &hyperv_panic_report_block); hv_free_hyperv_page(hv_panic_page); hv_panic_page = NULL; } static void hv_kmsg_dump_register(void) { int ret; hv_panic_page = hv_alloc_hyperv_zeroed_page(); if (!hv_panic_page) { pr_err("Hyper-V: panic message page memory allocation failed\n"); return; } ret = kmsg_dump_register(&hv_kmsg_dumper); if (ret) { pr_err("Hyper-V: kmsg dump register error 0x%x\n", ret); hv_free_hyperv_page(hv_panic_page); hv_panic_page = NULL; } } int __init hv_common_init(void) { int i; if (hv_is_isolation_supported()) sysctl_record_panic_msg = 0; /* * Hyper-V expects to get crash register data or kmsg when * crash enlightment is available and system crashes. Set * crash_kexec_post_notifiers to be true to make sure that * calling crash enlightment interface before running kdump * kernel. */ if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { u64 hyperv_crash_ctl; crash_kexec_post_notifiers = true; pr_info("Hyper-V: enabling crash_kexec_post_notifiers\n"); /* * Panic message recording (sysctl_record_panic_msg) * is enabled by default in non-isolated guests and * disabled by default in isolated guests; the panic * message recording won't be available in isolated * guests should the following registration fail. */ hv_ctl_table_hdr = register_sysctl("kernel", hv_ctl_table); if (!hv_ctl_table_hdr) pr_err("Hyper-V: sysctl table register error"); /* * Register for panic kmsg callback only if the right * capability is supported by the hypervisor. */ hyperv_crash_ctl = hv_get_register(HV_REGISTER_CRASH_CTL); if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) hv_kmsg_dump_register(); register_die_notifier(&hyperv_die_report_block); atomic_notifier_chain_register(&panic_notifier_list, &hyperv_panic_report_block); } /* * Allocate the per-CPU state for the hypercall input arg. * If this allocation fails, we will not be able to setup * (per-CPU) hypercall input page and thus this failure is * fatal on Hyper-V. */ hyperv_pcpu_input_arg = alloc_percpu(void *); BUG_ON(!hyperv_pcpu_input_arg); /* Allocate the per-CPU state for output arg for root */ if (hv_root_partition) { hyperv_pcpu_output_arg = alloc_percpu(void *); BUG_ON(!hyperv_pcpu_output_arg); } hv_vp_index = kmalloc_array(num_possible_cpus(), sizeof(*hv_vp_index), GFP_KERNEL); if (!hv_vp_index) { hv_common_free(); return -ENOMEM; } for (i = 0; i < num_possible_cpus(); i++) hv_vp_index[i] = VP_INVAL; return 0; } /* * Hyper-V specific initialization and die code for * individual CPUs that is common across all architectures. * Called by the CPU hotplug mechanism. */ int hv_common_cpu_init(unsigned int cpu) { void **inputarg, **outputarg; u64 msr_vp_index; gfp_t flags; int pgcount = hv_root_partition ? 2 : 1; void *mem; int ret; /* hv_cpu_init() can be called with IRQs disabled from hv_resume() */ flags = irqs_disabled() ? GFP_ATOMIC : GFP_KERNEL; inputarg = (void **)this_cpu_ptr(hyperv_pcpu_input_arg); /* * hyperv_pcpu_input_arg and hyperv_pcpu_output_arg memory is already * allocated if this CPU was previously online and then taken offline */ if (!*inputarg) { mem = kmalloc(pgcount * HV_HYP_PAGE_SIZE, flags); if (!mem) return -ENOMEM; if (hv_root_partition) { outputarg = (void **)this_cpu_ptr(hyperv_pcpu_output_arg); *outputarg = (char *)mem + HV_HYP_PAGE_SIZE; } if (!ms_hyperv.paravisor_present && (hv_isolation_type_snp() || hv_isolation_type_tdx())) { ret = set_memory_decrypted((unsigned long)mem, pgcount); if (ret) { /* It may be unsafe to free 'mem' */ return ret; } memset(mem, 0x00, pgcount * HV_HYP_PAGE_SIZE); } /* * In a fully enlightened TDX/SNP VM with more than 64 VPs, if * hyperv_pcpu_input_arg is not NULL, set_memory_decrypted() -> * ... -> cpa_flush()-> ... -> __send_ipi_mask_ex() tries to * use hyperv_pcpu_input_arg as the hypercall input page, which * must be a decrypted page in such a VM, but the page is still * encrypted before set_memory_decrypted() returns. Fix this by * setting *inputarg after the above set_memory_decrypted(): if * hyperv_pcpu_input_arg is NULL, __send_ipi_mask_ex() returns * HV_STATUS_INVALID_PARAMETER immediately, and the function * hv_send_ipi_mask() falls back to orig_apic.send_IPI_mask(), * which may be slightly slower than the hypercall, but still * works correctly in such a VM. */ *inputarg = mem; } msr_vp_index = hv_get_register(HV_REGISTER_VP_INDEX); hv_vp_index[cpu] = msr_vp_index; if (msr_vp_index > hv_max_vp_index) hv_max_vp_index = msr_vp_index; return 0; } int hv_common_cpu_die(unsigned int cpu) { /* * The hyperv_pcpu_input_arg and hyperv_pcpu_output_arg memory * is not freed when the CPU goes offline as the hyperv_pcpu_input_arg * may be used by the Hyper-V vPCI driver in reassigning interrupts * as part of the offlining process. The interrupt reassignment * happens *after* the CPUHP_AP_HYPERV_ONLINE state has run and * called this function. * * If a previously offlined CPU is brought back online again, the * originally allocated memory is reused in hv_common_cpu_init(). */ return 0; } /* Bit mask of the extended capability to query: see HV_EXT_CAPABILITY_xxx */ bool hv_query_ext_cap(u64 cap_query) { /* * The address of the 'hv_extended_cap' variable will be used as an * output parameter to the hypercall below and so it should be * compatible with 'virt_to_phys'. Which means, it's address should be * directly mapped. Use 'static' to keep it compatible; stack variables * can be virtually mapped, making them incompatible with * 'virt_to_phys'. * Hypercall input/output addresses should also be 8-byte aligned. */ static u64 hv_extended_cap __aligned(8); static bool hv_extended_cap_queried; u64 status; /* * Querying extended capabilities is an extended hypercall. Check if the * partition supports extended hypercall, first. */ if (!(ms_hyperv.priv_high & HV_ENABLE_EXTENDED_HYPERCALLS)) return false; /* Extended capabilities do not change at runtime. */ if (hv_extended_cap_queried) return hv_extended_cap & cap_query; status = hv_do_hypercall(HV_EXT_CALL_QUERY_CAPABILITIES, NULL, &hv_extended_cap); /* * The query extended capabilities hypercall should not fail under * any normal circumstances. Avoid repeatedly making the hypercall, on * error. */ hv_extended_cap_queried = true; if (!hv_result_success(status)) { pr_err("Hyper-V: Extended query capabilities hypercall failed 0x%llx\n", status); return false; } return hv_extended_cap & cap_query; } EXPORT_SYMBOL_GPL(hv_query_ext_cap); void hv_setup_dma_ops(struct device *dev, bool coherent) { /* * Hyper-V does not offer a vIOMMU in the guest * VM, so pass 0/NULL for the IOMMU settings */ arch_setup_dma_ops(dev, 0, 0, NULL, coherent); } EXPORT_SYMBOL_GPL(hv_setup_dma_ops); bool hv_is_hibernation_supported(void) { return !hv_root_partition && acpi_sleep_state_supported(ACPI_STATE_S4); } EXPORT_SYMBOL_GPL(hv_is_hibernation_supported); /* * Default function to read the Hyper-V reference counter, independent * of whether Hyper-V enlightened clocks/timers are being used. But on * architectures where it is used, Hyper-V enlightenment code in * hyperv_timer.c may override this function. */ static u64 __hv_read_ref_counter(void) { return hv_get_register(HV_REGISTER_TIME_REF_COUNT); } u64 (*hv_read_reference_counter)(void) = __hv_read_ref_counter; EXPORT_SYMBOL_GPL(hv_read_reference_counter); /* These __weak functions provide default "no-op" behavior and * may be overridden by architecture specific versions. Architectures * for which the default "no-op" behavior is sufficient can leave * them unimplemented and not be cluttered with a bunch of stub * functions in arch-specific code. */ bool __weak hv_is_isolation_supported(void) { return false; } EXPORT_SYMBOL_GPL(hv_is_isolation_supported); bool __weak hv_isolation_type_snp(void) { return false; } EXPORT_SYMBOL_GPL(hv_isolation_type_snp); bool __weak hv_isolation_type_tdx(void) { return false; } EXPORT_SYMBOL_GPL(hv_isolation_type_tdx); void __weak hv_setup_vmbus_handler(void (*handler)(void)) { } EXPORT_SYMBOL_GPL(hv_setup_vmbus_handler); void __weak hv_remove_vmbus_handler(void) { } EXPORT_SYMBOL_GPL(hv_remove_vmbus_handler); void __weak hv_setup_kexec_handler(void (*handler)(void)) { } EXPORT_SYMBOL_GPL(hv_setup_kexec_handler); void __weak hv_remove_kexec_handler(void) { } EXPORT_SYMBOL_GPL(hv_remove_kexec_handler); void __weak hv_setup_crash_handler(void (*handler)(struct pt_regs *regs)) { } EXPORT_SYMBOL_GPL(hv_setup_crash_handler); void __weak hv_remove_crash_handler(void) { } EXPORT_SYMBOL_GPL(hv_remove_crash_handler); void __weak hyperv_cleanup(void) { } EXPORT_SYMBOL_GPL(hyperv_cleanup); u64 __weak hv_ghcb_hypercall(u64 control, void *input, void *output, u32 input_size) { return HV_STATUS_INVALID_PARAMETER; } EXPORT_SYMBOL_GPL(hv_ghcb_hypercall); u64 __weak hv_tdx_hypercall(u64 control, u64 param1, u64 param2) { return HV_STATUS_INVALID_PARAMETER; } EXPORT_SYMBOL_GPL(hv_tdx_hypercall);
linux-master
drivers/hv/hv_common.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2009, Microsoft Corporation. * * Authors: * Haiyang Zhang <[email protected]> * Hank Janssen <[email protected]> * K. Y. Srinivasan <[email protected]> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/init.h> #include <linux/module.h> #include <linux/device.h> #include <linux/platform_device.h> #include <linux/interrupt.h> #include <linux/sysctl.h> #include <linux/slab.h> #include <linux/acpi.h> #include <linux/completion.h> #include <linux/hyperv.h> #include <linux/kernel_stat.h> #include <linux/of_address.h> #include <linux/clockchips.h> #include <linux/cpu.h> #include <linux/sched/isolation.h> #include <linux/sched/task_stack.h> #include <linux/delay.h> #include <linux/panic_notifier.h> #include <linux/ptrace.h> #include <linux/screen_info.h> #include <linux/efi.h> #include <linux/random.h> #include <linux/kernel.h> #include <linux/syscore_ops.h> #include <linux/dma-map-ops.h> #include <linux/pci.h> #include <clocksource/hyperv_timer.h> #include <asm/mshyperv.h> #include "hyperv_vmbus.h" struct vmbus_dynid { struct list_head node; struct hv_vmbus_device_id id; }; static struct device *hv_dev; static int hyperv_cpuhp_online; static long __percpu *vmbus_evt; /* Values parsed from ACPI DSDT */ int vmbus_irq; int vmbus_interrupt; /* * The panic notifier below is responsible solely for unloading the * vmbus connection, which is necessary in a panic event. * * Notice an intrincate relation of this notifier with Hyper-V * framebuffer panic notifier exists - we need vmbus connection alive * there in order to succeed, so we need to order both with each other * [see hvfb_on_panic()] - this is done using notifiers' priorities. */ static int hv_panic_vmbus_unload(struct notifier_block *nb, unsigned long val, void *args) { vmbus_initiate_unload(true); return NOTIFY_DONE; } static struct notifier_block hyperv_panic_vmbus_unload_block = { .notifier_call = hv_panic_vmbus_unload, .priority = INT_MIN + 1, /* almost the latest one to execute */ }; static const char *fb_mmio_name = "fb_range"; static struct resource *fb_mmio; static struct resource *hyperv_mmio; static DEFINE_MUTEX(hyperv_mmio_lock); static int vmbus_exists(void) { if (hv_dev == NULL) return -ENODEV; return 0; } static u8 channel_monitor_group(const struct vmbus_channel *channel) { return (u8)channel->offermsg.monitorid / 32; } static u8 channel_monitor_offset(const struct vmbus_channel *channel) { return (u8)channel->offermsg.monitorid % 32; } static u32 channel_pending(const struct vmbus_channel *channel, const struct hv_monitor_page *monitor_page) { u8 monitor_group = channel_monitor_group(channel); return monitor_page->trigger_group[monitor_group].pending; } static u32 channel_latency(const struct vmbus_channel *channel, const struct hv_monitor_page *monitor_page) { u8 monitor_group = channel_monitor_group(channel); u8 monitor_offset = channel_monitor_offset(channel); return monitor_page->latency[monitor_group][monitor_offset]; } static u32 channel_conn_id(struct vmbus_channel *channel, struct hv_monitor_page *monitor_page) { u8 monitor_group = channel_monitor_group(channel); u8 monitor_offset = channel_monitor_offset(channel); return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id; } static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); if (!hv_dev->channel) return -ENODEV; return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid); } static DEVICE_ATTR_RO(id); static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); if (!hv_dev->channel) return -ENODEV; return sprintf(buf, "%d\n", hv_dev->channel->state); } static DEVICE_ATTR_RO(state); static ssize_t monitor_id_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); if (!hv_dev->channel) return -ENODEV; return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid); } static DEVICE_ATTR_RO(monitor_id); static ssize_t class_id_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); if (!hv_dev->channel) return -ENODEV; return sprintf(buf, "{%pUl}\n", &hv_dev->channel->offermsg.offer.if_type); } static DEVICE_ATTR_RO(class_id); static ssize_t device_id_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); if (!hv_dev->channel) return -ENODEV; return sprintf(buf, "{%pUl}\n", &hv_dev->channel->offermsg.offer.if_instance); } static DEVICE_ATTR_RO(device_id); static ssize_t modalias_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); return sprintf(buf, "vmbus:%*phN\n", UUID_SIZE, &hv_dev->dev_type); } static DEVICE_ATTR_RO(modalias); #ifdef CONFIG_NUMA static ssize_t numa_node_show(struct device *dev, struct device_attribute *attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); if (!hv_dev->channel) return -ENODEV; return sprintf(buf, "%d\n", cpu_to_node(hv_dev->channel->target_cpu)); } static DEVICE_ATTR_RO(numa_node); #endif static ssize_t server_monitor_pending_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); if (!hv_dev->channel) return -ENODEV; return sprintf(buf, "%d\n", channel_pending(hv_dev->channel, vmbus_connection.monitor_pages[0])); } static DEVICE_ATTR_RO(server_monitor_pending); static ssize_t client_monitor_pending_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); if (!hv_dev->channel) return -ENODEV; return sprintf(buf, "%d\n", channel_pending(hv_dev->channel, vmbus_connection.monitor_pages[1])); } static DEVICE_ATTR_RO(client_monitor_pending); static ssize_t server_monitor_latency_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); if (!hv_dev->channel) return -ENODEV; return sprintf(buf, "%d\n", channel_latency(hv_dev->channel, vmbus_connection.monitor_pages[0])); } static DEVICE_ATTR_RO(server_monitor_latency); static ssize_t client_monitor_latency_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); if (!hv_dev->channel) return -ENODEV; return sprintf(buf, "%d\n", channel_latency(hv_dev->channel, vmbus_connection.monitor_pages[1])); } static DEVICE_ATTR_RO(client_monitor_latency); static ssize_t server_monitor_conn_id_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); if (!hv_dev->channel) return -ENODEV; return sprintf(buf, "%d\n", channel_conn_id(hv_dev->channel, vmbus_connection.monitor_pages[0])); } static DEVICE_ATTR_RO(server_monitor_conn_id); static ssize_t client_monitor_conn_id_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); if (!hv_dev->channel) return -ENODEV; return sprintf(buf, "%d\n", channel_conn_id(hv_dev->channel, vmbus_connection.monitor_pages[1])); } static DEVICE_ATTR_RO(client_monitor_conn_id); static ssize_t out_intr_mask_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); struct hv_ring_buffer_debug_info outbound; int ret; if (!hv_dev->channel) return -ENODEV; ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); if (ret < 0) return ret; return sprintf(buf, "%d\n", outbound.current_interrupt_mask); } static DEVICE_ATTR_RO(out_intr_mask); static ssize_t out_read_index_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); struct hv_ring_buffer_debug_info outbound; int ret; if (!hv_dev->channel) return -ENODEV; ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); if (ret < 0) return ret; return sprintf(buf, "%d\n", outbound.current_read_index); } static DEVICE_ATTR_RO(out_read_index); static ssize_t out_write_index_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); struct hv_ring_buffer_debug_info outbound; int ret; if (!hv_dev->channel) return -ENODEV; ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); if (ret < 0) return ret; return sprintf(buf, "%d\n", outbound.current_write_index); } static DEVICE_ATTR_RO(out_write_index); static ssize_t out_read_bytes_avail_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); struct hv_ring_buffer_debug_info outbound; int ret; if (!hv_dev->channel) return -ENODEV; ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); if (ret < 0) return ret; return sprintf(buf, "%d\n", outbound.bytes_avail_toread); } static DEVICE_ATTR_RO(out_read_bytes_avail); static ssize_t out_write_bytes_avail_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); struct hv_ring_buffer_debug_info outbound; int ret; if (!hv_dev->channel) return -ENODEV; ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); if (ret < 0) return ret; return sprintf(buf, "%d\n", outbound.bytes_avail_towrite); } static DEVICE_ATTR_RO(out_write_bytes_avail); static ssize_t in_intr_mask_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); struct hv_ring_buffer_debug_info inbound; int ret; if (!hv_dev->channel) return -ENODEV; ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); if (ret < 0) return ret; return sprintf(buf, "%d\n", inbound.current_interrupt_mask); } static DEVICE_ATTR_RO(in_intr_mask); static ssize_t in_read_index_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); struct hv_ring_buffer_debug_info inbound; int ret; if (!hv_dev->channel) return -ENODEV; ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); if (ret < 0) return ret; return sprintf(buf, "%d\n", inbound.current_read_index); } static DEVICE_ATTR_RO(in_read_index); static ssize_t in_write_index_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); struct hv_ring_buffer_debug_info inbound; int ret; if (!hv_dev->channel) return -ENODEV; ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); if (ret < 0) return ret; return sprintf(buf, "%d\n", inbound.current_write_index); } static DEVICE_ATTR_RO(in_write_index); static ssize_t in_read_bytes_avail_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); struct hv_ring_buffer_debug_info inbound; int ret; if (!hv_dev->channel) return -ENODEV; ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); if (ret < 0) return ret; return sprintf(buf, "%d\n", inbound.bytes_avail_toread); } static DEVICE_ATTR_RO(in_read_bytes_avail); static ssize_t in_write_bytes_avail_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); struct hv_ring_buffer_debug_info inbound; int ret; if (!hv_dev->channel) return -ENODEV; ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); if (ret < 0) return ret; return sprintf(buf, "%d\n", inbound.bytes_avail_towrite); } static DEVICE_ATTR_RO(in_write_bytes_avail); static ssize_t channel_vp_mapping_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); struct vmbus_channel *channel = hv_dev->channel, *cur_sc; int buf_size = PAGE_SIZE, n_written, tot_written; struct list_head *cur; if (!channel) return -ENODEV; mutex_lock(&vmbus_connection.channel_mutex); tot_written = snprintf(buf, buf_size, "%u:%u\n", channel->offermsg.child_relid, channel->target_cpu); list_for_each(cur, &channel->sc_list) { if (tot_written >= buf_size - 1) break; cur_sc = list_entry(cur, struct vmbus_channel, sc_list); n_written = scnprintf(buf + tot_written, buf_size - tot_written, "%u:%u\n", cur_sc->offermsg.child_relid, cur_sc->target_cpu); tot_written += n_written; } mutex_unlock(&vmbus_connection.channel_mutex); return tot_written; } static DEVICE_ATTR_RO(channel_vp_mapping); static ssize_t vendor_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); return sprintf(buf, "0x%x\n", hv_dev->vendor_id); } static DEVICE_ATTR_RO(vendor); static ssize_t device_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); return sprintf(buf, "0x%x\n", hv_dev->device_id); } static DEVICE_ATTR_RO(device); static ssize_t driver_override_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct hv_device *hv_dev = device_to_hv_device(dev); int ret; ret = driver_set_override(dev, &hv_dev->driver_override, buf, count); if (ret) return ret; return count; } static ssize_t driver_override_show(struct device *dev, struct device_attribute *attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); ssize_t len; device_lock(dev); len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override); device_unlock(dev); return len; } static DEVICE_ATTR_RW(driver_override); /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */ static struct attribute *vmbus_dev_attrs[] = { &dev_attr_id.attr, &dev_attr_state.attr, &dev_attr_monitor_id.attr, &dev_attr_class_id.attr, &dev_attr_device_id.attr, &dev_attr_modalias.attr, #ifdef CONFIG_NUMA &dev_attr_numa_node.attr, #endif &dev_attr_server_monitor_pending.attr, &dev_attr_client_monitor_pending.attr, &dev_attr_server_monitor_latency.attr, &dev_attr_client_monitor_latency.attr, &dev_attr_server_monitor_conn_id.attr, &dev_attr_client_monitor_conn_id.attr, &dev_attr_out_intr_mask.attr, &dev_attr_out_read_index.attr, &dev_attr_out_write_index.attr, &dev_attr_out_read_bytes_avail.attr, &dev_attr_out_write_bytes_avail.attr, &dev_attr_in_intr_mask.attr, &dev_attr_in_read_index.attr, &dev_attr_in_write_index.attr, &dev_attr_in_read_bytes_avail.attr, &dev_attr_in_write_bytes_avail.attr, &dev_attr_channel_vp_mapping.attr, &dev_attr_vendor.attr, &dev_attr_device.attr, &dev_attr_driver_override.attr, NULL, }; /* * Device-level attribute_group callback function. Returns the permission for * each attribute, and returns 0 if an attribute is not visible. */ static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj, struct attribute *attr, int idx) { struct device *dev = kobj_to_dev(kobj); const struct hv_device *hv_dev = device_to_hv_device(dev); /* Hide the monitor attributes if the monitor mechanism is not used. */ if (!hv_dev->channel->offermsg.monitor_allocated && (attr == &dev_attr_monitor_id.attr || attr == &dev_attr_server_monitor_pending.attr || attr == &dev_attr_client_monitor_pending.attr || attr == &dev_attr_server_monitor_latency.attr || attr == &dev_attr_client_monitor_latency.attr || attr == &dev_attr_server_monitor_conn_id.attr || attr == &dev_attr_client_monitor_conn_id.attr)) return 0; return attr->mode; } static const struct attribute_group vmbus_dev_group = { .attrs = vmbus_dev_attrs, .is_visible = vmbus_dev_attr_is_visible }; __ATTRIBUTE_GROUPS(vmbus_dev); /* Set up the attribute for /sys/bus/vmbus/hibernation */ static ssize_t hibernation_show(const struct bus_type *bus, char *buf) { return sprintf(buf, "%d\n", !!hv_is_hibernation_supported()); } static BUS_ATTR_RO(hibernation); static struct attribute *vmbus_bus_attrs[] = { &bus_attr_hibernation.attr, NULL, }; static const struct attribute_group vmbus_bus_group = { .attrs = vmbus_bus_attrs, }; __ATTRIBUTE_GROUPS(vmbus_bus); /* * vmbus_uevent - add uevent for our device * * This routine is invoked when a device is added or removed on the vmbus to * generate a uevent to udev in the userspace. The udev will then look at its * rule and the uevent generated here to load the appropriate driver * * The alias string will be of the form vmbus:guid where guid is the string * representation of the device guid (each byte of the guid will be * represented with two hex characters. */ static int vmbus_uevent(const struct device *device, struct kobj_uevent_env *env) { const struct hv_device *dev = device_to_hv_device(device); const char *format = "MODALIAS=vmbus:%*phN"; return add_uevent_var(env, format, UUID_SIZE, &dev->dev_type); } static const struct hv_vmbus_device_id * hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid) { if (id == NULL) return NULL; /* empty device table */ for (; !guid_is_null(&id->guid); id++) if (guid_equal(&id->guid, guid)) return id; return NULL; } static const struct hv_vmbus_device_id * hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid) { const struct hv_vmbus_device_id *id = NULL; struct vmbus_dynid *dynid; spin_lock(&drv->dynids.lock); list_for_each_entry(dynid, &drv->dynids.list, node) { if (guid_equal(&dynid->id.guid, guid)) { id = &dynid->id; break; } } spin_unlock(&drv->dynids.lock); return id; } static const struct hv_vmbus_device_id vmbus_device_null; /* * Return a matching hv_vmbus_device_id pointer. * If there is no match, return NULL. */ static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv, struct hv_device *dev) { const guid_t *guid = &dev->dev_type; const struct hv_vmbus_device_id *id; /* When driver_override is set, only bind to the matching driver */ if (dev->driver_override && strcmp(dev->driver_override, drv->name)) return NULL; /* Look at the dynamic ids first, before the static ones */ id = hv_vmbus_dynid_match(drv, guid); if (!id) id = hv_vmbus_dev_match(drv->id_table, guid); /* driver_override will always match, send a dummy id */ if (!id && dev->driver_override) id = &vmbus_device_null; return id; } /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */ static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid) { struct vmbus_dynid *dynid; dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); if (!dynid) return -ENOMEM; dynid->id.guid = *guid; spin_lock(&drv->dynids.lock); list_add_tail(&dynid->node, &drv->dynids.list); spin_unlock(&drv->dynids.lock); return driver_attach(&drv->driver); } static void vmbus_free_dynids(struct hv_driver *drv) { struct vmbus_dynid *dynid, *n; spin_lock(&drv->dynids.lock); list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { list_del(&dynid->node); kfree(dynid); } spin_unlock(&drv->dynids.lock); } /* * store_new_id - sysfs frontend to vmbus_add_dynid() * * Allow GUIDs to be added to an existing driver via sysfs. */ static ssize_t new_id_store(struct device_driver *driver, const char *buf, size_t count) { struct hv_driver *drv = drv_to_hv_drv(driver); guid_t guid; ssize_t retval; retval = guid_parse(buf, &guid); if (retval) return retval; if (hv_vmbus_dynid_match(drv, &guid)) return -EEXIST; retval = vmbus_add_dynid(drv, &guid); if (retval) return retval; return count; } static DRIVER_ATTR_WO(new_id); /* * store_remove_id - remove a PCI device ID from this driver * * Removes a dynamic pci device ID to this driver. */ static ssize_t remove_id_store(struct device_driver *driver, const char *buf, size_t count) { struct hv_driver *drv = drv_to_hv_drv(driver); struct vmbus_dynid *dynid, *n; guid_t guid; ssize_t retval; retval = guid_parse(buf, &guid); if (retval) return retval; retval = -ENODEV; spin_lock(&drv->dynids.lock); list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { struct hv_vmbus_device_id *id = &dynid->id; if (guid_equal(&id->guid, &guid)) { list_del(&dynid->node); kfree(dynid); retval = count; break; } } spin_unlock(&drv->dynids.lock); return retval; } static DRIVER_ATTR_WO(remove_id); static struct attribute *vmbus_drv_attrs[] = { &driver_attr_new_id.attr, &driver_attr_remove_id.attr, NULL, }; ATTRIBUTE_GROUPS(vmbus_drv); /* * vmbus_match - Attempt to match the specified device to the specified driver */ static int vmbus_match(struct device *device, struct device_driver *driver) { struct hv_driver *drv = drv_to_hv_drv(driver); struct hv_device *hv_dev = device_to_hv_device(device); /* The hv_sock driver handles all hv_sock offers. */ if (is_hvsock_channel(hv_dev->channel)) return drv->hvsock; if (hv_vmbus_get_id(drv, hv_dev)) return 1; return 0; } /* * vmbus_probe - Add the new vmbus's child device */ static int vmbus_probe(struct device *child_device) { int ret = 0; struct hv_driver *drv = drv_to_hv_drv(child_device->driver); struct hv_device *dev = device_to_hv_device(child_device); const struct hv_vmbus_device_id *dev_id; dev_id = hv_vmbus_get_id(drv, dev); if (drv->probe) { ret = drv->probe(dev, dev_id); if (ret != 0) pr_err("probe failed for device %s (%d)\n", dev_name(child_device), ret); } else { pr_err("probe not set for driver %s\n", dev_name(child_device)); ret = -ENODEV; } return ret; } /* * vmbus_dma_configure -- Configure DMA coherence for VMbus device */ static int vmbus_dma_configure(struct device *child_device) { /* * On ARM64, propagate the DMA coherence setting from the top level * VMbus ACPI device to the child VMbus device being added here. * On x86/x64 coherence is assumed and these calls have no effect. */ hv_setup_dma_ops(child_device, device_get_dma_attr(hv_dev) == DEV_DMA_COHERENT); return 0; } /* * vmbus_remove - Remove a vmbus device */ static void vmbus_remove(struct device *child_device) { struct hv_driver *drv; struct hv_device *dev = device_to_hv_device(child_device); if (child_device->driver) { drv = drv_to_hv_drv(child_device->driver); if (drv->remove) drv->remove(dev); } } /* * vmbus_shutdown - Shutdown a vmbus device */ static void vmbus_shutdown(struct device *child_device) { struct hv_driver *drv; struct hv_device *dev = device_to_hv_device(child_device); /* The device may not be attached yet */ if (!child_device->driver) return; drv = drv_to_hv_drv(child_device->driver); if (drv->shutdown) drv->shutdown(dev); } #ifdef CONFIG_PM_SLEEP /* * vmbus_suspend - Suspend a vmbus device */ static int vmbus_suspend(struct device *child_device) { struct hv_driver *drv; struct hv_device *dev = device_to_hv_device(child_device); /* The device may not be attached yet */ if (!child_device->driver) return 0; drv = drv_to_hv_drv(child_device->driver); if (!drv->suspend) return -EOPNOTSUPP; return drv->suspend(dev); } /* * vmbus_resume - Resume a vmbus device */ static int vmbus_resume(struct device *child_device) { struct hv_driver *drv; struct hv_device *dev = device_to_hv_device(child_device); /* The device may not be attached yet */ if (!child_device->driver) return 0; drv = drv_to_hv_drv(child_device->driver); if (!drv->resume) return -EOPNOTSUPP; return drv->resume(dev); } #else #define vmbus_suspend NULL #define vmbus_resume NULL #endif /* CONFIG_PM_SLEEP */ /* * vmbus_device_release - Final callback release of the vmbus child device */ static void vmbus_device_release(struct device *device) { struct hv_device *hv_dev = device_to_hv_device(device); struct vmbus_channel *channel = hv_dev->channel; hv_debug_rm_dev_dir(hv_dev); mutex_lock(&vmbus_connection.channel_mutex); hv_process_channel_removal(channel); mutex_unlock(&vmbus_connection.channel_mutex); kfree(hv_dev); } /* * Note: we must use the "noirq" ops: see the comment before vmbus_bus_pm. * * suspend_noirq/resume_noirq are set to NULL to support Suspend-to-Idle: we * shouldn't suspend the vmbus devices upon Suspend-to-Idle, otherwise there * is no way to wake up a Generation-2 VM. * * The other 4 ops are for hibernation. */ static const struct dev_pm_ops vmbus_pm = { .suspend_noirq = NULL, .resume_noirq = NULL, .freeze_noirq = vmbus_suspend, .thaw_noirq = vmbus_resume, .poweroff_noirq = vmbus_suspend, .restore_noirq = vmbus_resume, }; /* The one and only one */ static struct bus_type hv_bus = { .name = "vmbus", .match = vmbus_match, .shutdown = vmbus_shutdown, .remove = vmbus_remove, .probe = vmbus_probe, .uevent = vmbus_uevent, .dma_configure = vmbus_dma_configure, .dev_groups = vmbus_dev_groups, .drv_groups = vmbus_drv_groups, .bus_groups = vmbus_bus_groups, .pm = &vmbus_pm, }; struct onmessage_work_context { struct work_struct work; struct { struct hv_message_header header; u8 payload[]; } msg; }; static void vmbus_onmessage_work(struct work_struct *work) { struct onmessage_work_context *ctx; /* Do not process messages if we're in DISCONNECTED state */ if (vmbus_connection.conn_state == DISCONNECTED) return; ctx = container_of(work, struct onmessage_work_context, work); vmbus_onmessage((struct vmbus_channel_message_header *) &ctx->msg.payload); kfree(ctx); } void vmbus_on_msg_dpc(unsigned long data) { struct hv_per_cpu_context *hv_cpu = (void *)data; void *page_addr = hv_cpu->synic_message_page; struct hv_message msg_copy, *msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT; struct vmbus_channel_message_header *hdr; enum vmbus_channel_message_type msgtype; const struct vmbus_channel_message_table_entry *entry; struct onmessage_work_context *ctx; __u8 payload_size; u32 message_type; /* * 'enum vmbus_channel_message_type' is supposed to always be 'u32' as * it is being used in 'struct vmbus_channel_message_header' definition * which is supposed to match hypervisor ABI. */ BUILD_BUG_ON(sizeof(enum vmbus_channel_message_type) != sizeof(u32)); /* * Since the message is in memory shared with the host, an erroneous or * malicious Hyper-V could modify the message while vmbus_on_msg_dpc() * or individual message handlers are executing; to prevent this, copy * the message into private memory. */ memcpy(&msg_copy, msg, sizeof(struct hv_message)); message_type = msg_copy.header.message_type; if (message_type == HVMSG_NONE) /* no msg */ return; hdr = (struct vmbus_channel_message_header *)msg_copy.u.payload; msgtype = hdr->msgtype; trace_vmbus_on_msg_dpc(hdr); if (msgtype >= CHANNELMSG_COUNT) { WARN_ONCE(1, "unknown msgtype=%d\n", msgtype); goto msg_handled; } payload_size = msg_copy.header.payload_size; if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT) { WARN_ONCE(1, "payload size is too large (%d)\n", payload_size); goto msg_handled; } entry = &channel_message_table[msgtype]; if (!entry->message_handler) goto msg_handled; if (payload_size < entry->min_payload_len) { WARN_ONCE(1, "message too short: msgtype=%d len=%d\n", msgtype, payload_size); goto msg_handled; } if (entry->handler_type == VMHT_BLOCKING) { ctx = kmalloc(struct_size(ctx, msg.payload, payload_size), GFP_ATOMIC); if (ctx == NULL) return; INIT_WORK(&ctx->work, vmbus_onmessage_work); ctx->msg.header = msg_copy.header; memcpy(&ctx->msg.payload, msg_copy.u.payload, payload_size); /* * The host can generate a rescind message while we * may still be handling the original offer. We deal with * this condition by relying on the synchronization provided * by offer_in_progress and by channel_mutex. See also the * inline comments in vmbus_onoffer_rescind(). */ switch (msgtype) { case CHANNELMSG_RESCIND_CHANNELOFFER: /* * If we are handling the rescind message; * schedule the work on the global work queue. * * The OFFER message and the RESCIND message should * not be handled by the same serialized work queue, * because the OFFER handler may call vmbus_open(), * which tries to open the channel by sending an * OPEN_CHANNEL message to the host and waits for * the host's response; however, if the host has * rescinded the channel before it receives the * OPEN_CHANNEL message, the host just silently * ignores the OPEN_CHANNEL message; as a result, * the guest's OFFER handler hangs for ever, if we * handle the RESCIND message in the same serialized * work queue: the RESCIND handler can not start to * run before the OFFER handler finishes. */ if (vmbus_connection.ignore_any_offer_msg) break; queue_work(vmbus_connection.rescind_work_queue, &ctx->work); break; case CHANNELMSG_OFFERCHANNEL: /* * The host sends the offer message of a given channel * before sending the rescind message of the same * channel. These messages are sent to the guest's * connect CPU; the guest then starts processing them * in the tasklet handler on this CPU: * * VMBUS_CONNECT_CPU * * [vmbus_on_msg_dpc()] * atomic_inc() // CHANNELMSG_OFFERCHANNEL * queue_work() * ... * [vmbus_on_msg_dpc()] * schedule_work() // CHANNELMSG_RESCIND_CHANNELOFFER * * We rely on the memory-ordering properties of the * queue_work() and schedule_work() primitives, which * guarantee that the atomic increment will be visible * to the CPUs which will execute the offer & rescind * works by the time these works will start execution. */ if (vmbus_connection.ignore_any_offer_msg) break; atomic_inc(&vmbus_connection.offer_in_progress); fallthrough; default: queue_work(vmbus_connection.work_queue, &ctx->work); } } else entry->message_handler(hdr); msg_handled: vmbus_signal_eom(msg, message_type); } #ifdef CONFIG_PM_SLEEP /* * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for * hibernation, because hv_sock connections can not persist across hibernation. */ static void vmbus_force_channel_rescinded(struct vmbus_channel *channel) { struct onmessage_work_context *ctx; struct vmbus_channel_rescind_offer *rescind; WARN_ON(!is_hvsock_channel(channel)); /* * Allocation size is small and the allocation should really not fail, * otherwise the state of the hv_sock connections ends up in limbo. */ ctx = kzalloc(sizeof(*ctx) + sizeof(*rescind), GFP_KERNEL | __GFP_NOFAIL); /* * So far, these are not really used by Linux. Just set them to the * reasonable values conforming to the definitions of the fields. */ ctx->msg.header.message_type = 1; ctx->msg.header.payload_size = sizeof(*rescind); /* These values are actually used by Linux. */ rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.payload; rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER; rescind->child_relid = channel->offermsg.child_relid; INIT_WORK(&ctx->work, vmbus_onmessage_work); queue_work(vmbus_connection.work_queue, &ctx->work); } #endif /* CONFIG_PM_SLEEP */ /* * Schedule all channels with events pending */ static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu) { unsigned long *recv_int_page; u32 maxbits, relid; /* * The event page can be directly checked to get the id of * the channel that has the interrupt pending. */ void *page_addr = hv_cpu->synic_event_page; union hv_synic_event_flags *event = (union hv_synic_event_flags *)page_addr + VMBUS_MESSAGE_SINT; maxbits = HV_EVENT_FLAGS_COUNT; recv_int_page = event->flags; if (unlikely(!recv_int_page)) return; for_each_set_bit(relid, recv_int_page, maxbits) { void (*callback_fn)(void *context); struct vmbus_channel *channel; if (!sync_test_and_clear_bit(relid, recv_int_page)) continue; /* Special case - vmbus channel protocol msg */ if (relid == 0) continue; /* * Pairs with the kfree_rcu() in vmbus_chan_release(). * Guarantees that the channel data structure doesn't * get freed while the channel pointer below is being * dereferenced. */ rcu_read_lock(); /* Find channel based on relid */ channel = relid2channel(relid); if (channel == NULL) goto sched_unlock_rcu; if (channel->rescind) goto sched_unlock_rcu; /* * Make sure that the ring buffer data structure doesn't get * freed while we dereference the ring buffer pointer. Test * for the channel's onchannel_callback being NULL within a * sched_lock critical section. See also the inline comments * in vmbus_reset_channel_cb(). */ spin_lock(&channel->sched_lock); callback_fn = channel->onchannel_callback; if (unlikely(callback_fn == NULL)) goto sched_unlock; trace_vmbus_chan_sched(channel); ++channel->interrupts; switch (channel->callback_mode) { case HV_CALL_ISR: (*callback_fn)(channel->channel_callback_context); break; case HV_CALL_BATCHED: hv_begin_read(&channel->inbound); fallthrough; case HV_CALL_DIRECT: tasklet_schedule(&channel->callback_event); } sched_unlock: spin_unlock(&channel->sched_lock); sched_unlock_rcu: rcu_read_unlock(); } } static void vmbus_isr(void) { struct hv_per_cpu_context *hv_cpu = this_cpu_ptr(hv_context.cpu_context); void *page_addr; struct hv_message *msg; vmbus_chan_sched(hv_cpu); page_addr = hv_cpu->synic_message_page; msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT; /* Check if there are actual msgs to be processed */ if (msg->header.message_type != HVMSG_NONE) { if (msg->header.message_type == HVMSG_TIMER_EXPIRED) { hv_stimer0_isr(); vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED); } else tasklet_schedule(&hv_cpu->msg_dpc); } add_interrupt_randomness(vmbus_interrupt); } static irqreturn_t vmbus_percpu_isr(int irq, void *dev_id) { vmbus_isr(); return IRQ_HANDLED; } /* * vmbus_bus_init -Main vmbus driver initialization routine. * * Here, we * - initialize the vmbus driver context * - invoke the vmbus hv main init routine * - retrieve the channel offers */ static int vmbus_bus_init(void) { int ret; ret = hv_init(); if (ret != 0) { pr_err("Unable to initialize the hypervisor - 0x%x\n", ret); return ret; } ret = bus_register(&hv_bus); if (ret) return ret; /* * VMbus interrupts are best modeled as per-cpu interrupts. If * on an architecture with support for per-cpu IRQs (e.g. ARM64), * allocate a per-cpu IRQ using standard Linux kernel functionality. * If not on such an architecture (e.g., x86/x64), then rely on * code in the arch-specific portion of the code tree to connect * the VMbus interrupt handler. */ if (vmbus_irq == -1) { hv_setup_vmbus_handler(vmbus_isr); } else { vmbus_evt = alloc_percpu(long); ret = request_percpu_irq(vmbus_irq, vmbus_percpu_isr, "Hyper-V VMbus", vmbus_evt); if (ret) { pr_err("Can't request Hyper-V VMbus IRQ %d, Err %d", vmbus_irq, ret); free_percpu(vmbus_evt); goto err_setup; } } ret = hv_synic_alloc(); if (ret) goto err_alloc; /* * Initialize the per-cpu interrupt state and stimer state. * Then connect to the host. */ ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online", hv_synic_init, hv_synic_cleanup); if (ret < 0) goto err_alloc; hyperv_cpuhp_online = ret; ret = vmbus_connect(); if (ret) goto err_connect; /* * Always register the vmbus unload panic notifier because we * need to shut the VMbus channel connection on panic. */ atomic_notifier_chain_register(&panic_notifier_list, &hyperv_panic_vmbus_unload_block); vmbus_request_offers(); return 0; err_connect: cpuhp_remove_state(hyperv_cpuhp_online); err_alloc: hv_synic_free(); if (vmbus_irq == -1) { hv_remove_vmbus_handler(); } else { free_percpu_irq(vmbus_irq, vmbus_evt); free_percpu(vmbus_evt); } err_setup: bus_unregister(&hv_bus); return ret; } /** * __vmbus_driver_register() - Register a vmbus's driver * @hv_driver: Pointer to driver structure you want to register * @owner: owner module of the drv * @mod_name: module name string * * Registers the given driver with Linux through the 'driver_register()' call * and sets up the hyper-v vmbus handling for this driver. * It will return the state of the 'driver_register()' call. * */ int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name) { int ret; pr_info("registering driver %s\n", hv_driver->name); ret = vmbus_exists(); if (ret < 0) return ret; hv_driver->driver.name = hv_driver->name; hv_driver->driver.owner = owner; hv_driver->driver.mod_name = mod_name; hv_driver->driver.bus = &hv_bus; spin_lock_init(&hv_driver->dynids.lock); INIT_LIST_HEAD(&hv_driver->dynids.list); ret = driver_register(&hv_driver->driver); return ret; } EXPORT_SYMBOL_GPL(__vmbus_driver_register); /** * vmbus_driver_unregister() - Unregister a vmbus's driver * @hv_driver: Pointer to driver structure you want to * un-register * * Un-register the given driver that was previous registered with a call to * vmbus_driver_register() */ void vmbus_driver_unregister(struct hv_driver *hv_driver) { pr_info("unregistering driver %s\n", hv_driver->name); if (!vmbus_exists()) { driver_unregister(&hv_driver->driver); vmbus_free_dynids(hv_driver); } } EXPORT_SYMBOL_GPL(vmbus_driver_unregister); /* * Called when last reference to channel is gone. */ static void vmbus_chan_release(struct kobject *kobj) { struct vmbus_channel *channel = container_of(kobj, struct vmbus_channel, kobj); kfree_rcu(channel, rcu); } struct vmbus_chan_attribute { struct attribute attr; ssize_t (*show)(struct vmbus_channel *chan, char *buf); ssize_t (*store)(struct vmbus_channel *chan, const char *buf, size_t count); }; #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \ struct vmbus_chan_attribute chan_attr_##_name \ = __ATTR(_name, _mode, _show, _store) #define VMBUS_CHAN_ATTR_RW(_name) \ struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name) #define VMBUS_CHAN_ATTR_RO(_name) \ struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name) #define VMBUS_CHAN_ATTR_WO(_name) \ struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name) static ssize_t vmbus_chan_attr_show(struct kobject *kobj, struct attribute *attr, char *buf) { const struct vmbus_chan_attribute *attribute = container_of(attr, struct vmbus_chan_attribute, attr); struct vmbus_channel *chan = container_of(kobj, struct vmbus_channel, kobj); if (!attribute->show) return -EIO; return attribute->show(chan, buf); } static ssize_t vmbus_chan_attr_store(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { const struct vmbus_chan_attribute *attribute = container_of(attr, struct vmbus_chan_attribute, attr); struct vmbus_channel *chan = container_of(kobj, struct vmbus_channel, kobj); if (!attribute->store) return -EIO; return attribute->store(chan, buf, count); } static const struct sysfs_ops vmbus_chan_sysfs_ops = { .show = vmbus_chan_attr_show, .store = vmbus_chan_attr_store, }; static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf) { struct hv_ring_buffer_info *rbi = &channel->outbound; ssize_t ret; mutex_lock(&rbi->ring_buffer_mutex); if (!rbi->ring_buffer) { mutex_unlock(&rbi->ring_buffer_mutex); return -EINVAL; } ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask); mutex_unlock(&rbi->ring_buffer_mutex); return ret; } static VMBUS_CHAN_ATTR_RO(out_mask); static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf) { struct hv_ring_buffer_info *rbi = &channel->inbound; ssize_t ret; mutex_lock(&rbi->ring_buffer_mutex); if (!rbi->ring_buffer) { mutex_unlock(&rbi->ring_buffer_mutex); return -EINVAL; } ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask); mutex_unlock(&rbi->ring_buffer_mutex); return ret; } static VMBUS_CHAN_ATTR_RO(in_mask); static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf) { struct hv_ring_buffer_info *rbi = &channel->inbound; ssize_t ret; mutex_lock(&rbi->ring_buffer_mutex); if (!rbi->ring_buffer) { mutex_unlock(&rbi->ring_buffer_mutex); return -EINVAL; } ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi)); mutex_unlock(&rbi->ring_buffer_mutex); return ret; } static VMBUS_CHAN_ATTR_RO(read_avail); static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf) { struct hv_ring_buffer_info *rbi = &channel->outbound; ssize_t ret; mutex_lock(&rbi->ring_buffer_mutex); if (!rbi->ring_buffer) { mutex_unlock(&rbi->ring_buffer_mutex); return -EINVAL; } ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi)); mutex_unlock(&rbi->ring_buffer_mutex); return ret; } static VMBUS_CHAN_ATTR_RO(write_avail); static ssize_t target_cpu_show(struct vmbus_channel *channel, char *buf) { return sprintf(buf, "%u\n", channel->target_cpu); } static ssize_t target_cpu_store(struct vmbus_channel *channel, const char *buf, size_t count) { u32 target_cpu, origin_cpu; ssize_t ret = count; if (vmbus_proto_version < VERSION_WIN10_V4_1) return -EIO; if (sscanf(buf, "%uu", &target_cpu) != 1) return -EIO; /* Validate target_cpu for the cpumask_test_cpu() operation below. */ if (target_cpu >= nr_cpumask_bits) return -EINVAL; if (!cpumask_test_cpu(target_cpu, housekeeping_cpumask(HK_TYPE_MANAGED_IRQ))) return -EINVAL; /* No CPUs should come up or down during this. */ cpus_read_lock(); if (!cpu_online(target_cpu)) { cpus_read_unlock(); return -EINVAL; } /* * Synchronizes target_cpu_store() and channel closure: * * { Initially: state = CHANNEL_OPENED } * * CPU1 CPU2 * * [target_cpu_store()] [vmbus_disconnect_ring()] * * LOCK channel_mutex LOCK channel_mutex * LOAD r1 = state LOAD r2 = state * IF (r1 == CHANNEL_OPENED) IF (r2 == CHANNEL_OPENED) * SEND MODIFYCHANNEL STORE state = CHANNEL_OPEN * [...] SEND CLOSECHANNEL * UNLOCK channel_mutex UNLOCK channel_mutex * * Forbids: r1 == r2 == CHANNEL_OPENED (i.e., CPU1's LOCK precedes * CPU2's LOCK) && CPU2's SEND precedes CPU1's SEND * * Note. The host processes the channel messages "sequentially", in * the order in which they are received on a per-partition basis. */ mutex_lock(&vmbus_connection.channel_mutex); /* * Hyper-V will ignore MODIFYCHANNEL messages for "non-open" channels; * avoid sending the message and fail here for such channels. */ if (channel->state != CHANNEL_OPENED_STATE) { ret = -EIO; goto cpu_store_unlock; } origin_cpu = channel->target_cpu; if (target_cpu == origin_cpu) goto cpu_store_unlock; if (vmbus_send_modifychannel(channel, hv_cpu_number_to_vp_number(target_cpu))) { ret = -EIO; goto cpu_store_unlock; } /* * For version before VERSION_WIN10_V5_3, the following warning holds: * * Warning. At this point, there is *no* guarantee that the host will * have successfully processed the vmbus_send_modifychannel() request. * See the header comment of vmbus_send_modifychannel() for more info. * * Lags in the processing of the above vmbus_send_modifychannel() can * result in missed interrupts if the "old" target CPU is taken offline * before Hyper-V starts sending interrupts to the "new" target CPU. * But apart from this offlining scenario, the code tolerates such * lags. It will function correctly even if a channel interrupt comes * in on a CPU that is different from the channel target_cpu value. */ channel->target_cpu = target_cpu; /* See init_vp_index(). */ if (hv_is_perf_channel(channel)) hv_update_allocated_cpus(origin_cpu, target_cpu); /* Currently set only for storvsc channels. */ if (channel->change_target_cpu_callback) { (*channel->change_target_cpu_callback)(channel, origin_cpu, target_cpu); } cpu_store_unlock: mutex_unlock(&vmbus_connection.channel_mutex); cpus_read_unlock(); return ret; } static VMBUS_CHAN_ATTR(cpu, 0644, target_cpu_show, target_cpu_store); static ssize_t channel_pending_show(struct vmbus_channel *channel, char *buf) { return sprintf(buf, "%d\n", channel_pending(channel, vmbus_connection.monitor_pages[1])); } static VMBUS_CHAN_ATTR(pending, 0444, channel_pending_show, NULL); static ssize_t channel_latency_show(struct vmbus_channel *channel, char *buf) { return sprintf(buf, "%d\n", channel_latency(channel, vmbus_connection.monitor_pages[1])); } static VMBUS_CHAN_ATTR(latency, 0444, channel_latency_show, NULL); static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf) { return sprintf(buf, "%llu\n", channel->interrupts); } static VMBUS_CHAN_ATTR(interrupts, 0444, channel_interrupts_show, NULL); static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf) { return sprintf(buf, "%llu\n", channel->sig_events); } static VMBUS_CHAN_ATTR(events, 0444, channel_events_show, NULL); static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel, char *buf) { return sprintf(buf, "%llu\n", (unsigned long long)channel->intr_in_full); } static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL); static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel, char *buf) { return sprintf(buf, "%llu\n", (unsigned long long)channel->intr_out_empty); } static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL); static ssize_t channel_out_full_first_show(struct vmbus_channel *channel, char *buf) { return sprintf(buf, "%llu\n", (unsigned long long)channel->out_full_first); } static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL); static ssize_t channel_out_full_total_show(struct vmbus_channel *channel, char *buf) { return sprintf(buf, "%llu\n", (unsigned long long)channel->out_full_total); } static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL); static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel, char *buf) { return sprintf(buf, "%u\n", channel->offermsg.monitorid); } static VMBUS_CHAN_ATTR(monitor_id, 0444, subchannel_monitor_id_show, NULL); static ssize_t subchannel_id_show(struct vmbus_channel *channel, char *buf) { return sprintf(buf, "%u\n", channel->offermsg.offer.sub_channel_index); } static VMBUS_CHAN_ATTR_RO(subchannel_id); static struct attribute *vmbus_chan_attrs[] = { &chan_attr_out_mask.attr, &chan_attr_in_mask.attr, &chan_attr_read_avail.attr, &chan_attr_write_avail.attr, &chan_attr_cpu.attr, &chan_attr_pending.attr, &chan_attr_latency.attr, &chan_attr_interrupts.attr, &chan_attr_events.attr, &chan_attr_intr_in_full.attr, &chan_attr_intr_out_empty.attr, &chan_attr_out_full_first.attr, &chan_attr_out_full_total.attr, &chan_attr_monitor_id.attr, &chan_attr_subchannel_id.attr, NULL }; /* * Channel-level attribute_group callback function. Returns the permission for * each attribute, and returns 0 if an attribute is not visible. */ static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj, struct attribute *attr, int idx) { const struct vmbus_channel *channel = container_of(kobj, struct vmbus_channel, kobj); /* Hide the monitor attributes if the monitor mechanism is not used. */ if (!channel->offermsg.monitor_allocated && (attr == &chan_attr_pending.attr || attr == &chan_attr_latency.attr || attr == &chan_attr_monitor_id.attr)) return 0; return attr->mode; } static struct attribute_group vmbus_chan_group = { .attrs = vmbus_chan_attrs, .is_visible = vmbus_chan_attr_is_visible }; static struct kobj_type vmbus_chan_ktype = { .sysfs_ops = &vmbus_chan_sysfs_ops, .release = vmbus_chan_release, }; /* * vmbus_add_channel_kobj - setup a sub-directory under device/channels */ int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel) { const struct device *device = &dev->device; struct kobject *kobj = &channel->kobj; u32 relid = channel->offermsg.child_relid; int ret; kobj->kset = dev->channels_kset; ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL, "%u", relid); if (ret) { kobject_put(kobj); return ret; } ret = sysfs_create_group(kobj, &vmbus_chan_group); if (ret) { /* * The calling functions' error handling paths will cleanup the * empty channel directory. */ kobject_put(kobj); dev_err(device, "Unable to set up channel sysfs files\n"); return ret; } kobject_uevent(kobj, KOBJ_ADD); return 0; } /* * vmbus_remove_channel_attr_group - remove the channel's attribute group */ void vmbus_remove_channel_attr_group(struct vmbus_channel *channel) { sysfs_remove_group(&channel->kobj, &vmbus_chan_group); } /* * vmbus_device_create - Creates and registers a new child device * on the vmbus. */ struct hv_device *vmbus_device_create(const guid_t *type, const guid_t *instance, struct vmbus_channel *channel) { struct hv_device *child_device_obj; child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL); if (!child_device_obj) { pr_err("Unable to allocate device object for child device\n"); return NULL; } child_device_obj->channel = channel; guid_copy(&child_device_obj->dev_type, type); guid_copy(&child_device_obj->dev_instance, instance); child_device_obj->vendor_id = PCI_VENDOR_ID_MICROSOFT; return child_device_obj; } /* * vmbus_device_register - Register the child device */ int vmbus_device_register(struct hv_device *child_device_obj) { struct kobject *kobj = &child_device_obj->device.kobj; int ret; dev_set_name(&child_device_obj->device, "%pUl", &child_device_obj->channel->offermsg.offer.if_instance); child_device_obj->device.bus = &hv_bus; child_device_obj->device.parent = hv_dev; child_device_obj->device.release = vmbus_device_release; child_device_obj->device.dma_parms = &child_device_obj->dma_parms; child_device_obj->device.dma_mask = &child_device_obj->dma_mask; dma_set_mask(&child_device_obj->device, DMA_BIT_MASK(64)); /* * Register with the LDM. This will kick off the driver/device * binding...which will eventually call vmbus_match() and vmbus_probe() */ ret = device_register(&child_device_obj->device); if (ret) { pr_err("Unable to register child device\n"); put_device(&child_device_obj->device); return ret; } child_device_obj->channels_kset = kset_create_and_add("channels", NULL, kobj); if (!child_device_obj->channels_kset) { ret = -ENOMEM; goto err_dev_unregister; } ret = vmbus_add_channel_kobj(child_device_obj, child_device_obj->channel); if (ret) { pr_err("Unable to register primary channeln"); goto err_kset_unregister; } hv_debug_add_dev_dir(child_device_obj); return 0; err_kset_unregister: kset_unregister(child_device_obj->channels_kset); err_dev_unregister: device_unregister(&child_device_obj->device); return ret; } /* * vmbus_device_unregister - Remove the specified child device * from the vmbus. */ void vmbus_device_unregister(struct hv_device *device_obj) { pr_debug("child device %s unregistered\n", dev_name(&device_obj->device)); kset_unregister(device_obj->channels_kset); /* * Kick off the process of unregistering the device. * This will call vmbus_remove() and eventually vmbus_device_release() */ device_unregister(&device_obj->device); } #ifdef CONFIG_ACPI /* * VMBUS is an acpi enumerated device. Get the information we * need from DSDT. */ static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx) { resource_size_t start = 0; resource_size_t end = 0; struct resource *new_res; struct resource **old_res = &hyperv_mmio; struct resource **prev_res = NULL; struct resource r; switch (res->type) { /* * "Address" descriptors are for bus windows. Ignore * "memory" descriptors, which are for registers on * devices. */ case ACPI_RESOURCE_TYPE_ADDRESS32: start = res->data.address32.address.minimum; end = res->data.address32.address.maximum; break; case ACPI_RESOURCE_TYPE_ADDRESS64: start = res->data.address64.address.minimum; end = res->data.address64.address.maximum; break; /* * The IRQ information is needed only on ARM64, which Hyper-V * sets up in the extended format. IRQ information is present * on x86/x64 in the non-extended format but it is not used by * Linux. So don't bother checking for the non-extended format. */ case ACPI_RESOURCE_TYPE_EXTENDED_IRQ: if (!acpi_dev_resource_interrupt(res, 0, &r)) { pr_err("Unable to parse Hyper-V ACPI interrupt\n"); return AE_ERROR; } /* ARM64 INTID for VMbus */ vmbus_interrupt = res->data.extended_irq.interrupts[0]; /* Linux IRQ number */ vmbus_irq = r.start; return AE_OK; default: /* Unused resource type */ return AE_OK; } /* * Ignore ranges that are below 1MB, as they're not * necessary or useful here. */ if (end < 0x100000) return AE_OK; new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC); if (!new_res) return AE_NO_MEMORY; /* If this range overlaps the virtual TPM, truncate it. */ if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS) end = VTPM_BASE_ADDRESS; new_res->name = "hyperv mmio"; new_res->flags = IORESOURCE_MEM; new_res->start = start; new_res->end = end; /* * If two ranges are adjacent, merge them. */ do { if (!*old_res) { *old_res = new_res; break; } if (((*old_res)->end + 1) == new_res->start) { (*old_res)->end = new_res->end; kfree(new_res); break; } if ((*old_res)->start == new_res->end + 1) { (*old_res)->start = new_res->start; kfree(new_res); break; } if ((*old_res)->start > new_res->end) { new_res->sibling = *old_res; if (prev_res) (*prev_res)->sibling = new_res; *old_res = new_res; break; } prev_res = old_res; old_res = &(*old_res)->sibling; } while (1); return AE_OK; } #endif static void vmbus_mmio_remove(void) { struct resource *cur_res; struct resource *next_res; if (hyperv_mmio) { if (fb_mmio) { __release_region(hyperv_mmio, fb_mmio->start, resource_size(fb_mmio)); fb_mmio = NULL; } for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) { next_res = cur_res->sibling; kfree(cur_res); } } } static void __maybe_unused vmbus_reserve_fb(void) { resource_size_t start = 0, size; struct pci_dev *pdev; if (efi_enabled(EFI_BOOT)) { /* Gen2 VM: get FB base from EFI framebuffer */ start = screen_info.lfb_base; size = max_t(__u32, screen_info.lfb_size, 0x800000); } else { /* Gen1 VM: get FB base from PCI */ pdev = pci_get_device(PCI_VENDOR_ID_MICROSOFT, PCI_DEVICE_ID_HYPERV_VIDEO, NULL); if (!pdev) return; if (pdev->resource[0].flags & IORESOURCE_MEM) { start = pci_resource_start(pdev, 0); size = pci_resource_len(pdev, 0); } /* * Release the PCI device so hyperv_drm or hyperv_fb driver can * grab it later. */ pci_dev_put(pdev); } if (!start) return; /* * Make a claim for the frame buffer in the resource tree under the * first node, which will be the one below 4GB. The length seems to * be underreported, particularly in a Generation 1 VM. So start out * reserving a larger area and make it smaller until it succeeds. */ for (; !fb_mmio && (size >= 0x100000); size >>= 1) fb_mmio = __request_region(hyperv_mmio, start, size, fb_mmio_name, 0); } /** * vmbus_allocate_mmio() - Pick a memory-mapped I/O range. * @new: If successful, supplied a pointer to the * allocated MMIO space. * @device_obj: Identifies the caller * @min: Minimum guest physical address of the * allocation * @max: Maximum guest physical address * @size: Size of the range to be allocated * @align: Alignment of the range to be allocated * @fb_overlap_ok: Whether this allocation can be allowed * to overlap the video frame buffer. * * This function walks the resources granted to VMBus by the * _CRS object in the ACPI namespace underneath the parent * "bridge" whether that's a root PCI bus in the Generation 1 * case or a Module Device in the Generation 2 case. It then * attempts to allocate from the global MMIO pool in a way that * matches the constraints supplied in these parameters and by * that _CRS. * * Return: 0 on success, -errno on failure */ int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj, resource_size_t min, resource_size_t max, resource_size_t size, resource_size_t align, bool fb_overlap_ok) { struct resource *iter, *shadow; resource_size_t range_min, range_max, start, end; const char *dev_n = dev_name(&device_obj->device); int retval; retval = -ENXIO; mutex_lock(&hyperv_mmio_lock); /* * If overlaps with frame buffers are allowed, then first attempt to * make the allocation from within the reserved region. Because it * is already reserved, no shadow allocation is necessary. */ if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) && !(max < fb_mmio->start)) { range_min = fb_mmio->start; range_max = fb_mmio->end; start = (range_min + align - 1) & ~(align - 1); for (; start + size - 1 <= range_max; start += align) { *new = request_mem_region_exclusive(start, size, dev_n); if (*new) { retval = 0; goto exit; } } } for (iter = hyperv_mmio; iter; iter = iter->sibling) { if ((iter->start >= max) || (iter->end <= min)) continue; range_min = iter->start; range_max = iter->end; start = (range_min + align - 1) & ~(align - 1); for (; start + size - 1 <= range_max; start += align) { end = start + size - 1; /* Skip the whole fb_mmio region if not fb_overlap_ok */ if (!fb_overlap_ok && fb_mmio && (((start >= fb_mmio->start) && (start <= fb_mmio->end)) || ((end >= fb_mmio->start) && (end <= fb_mmio->end)))) continue; shadow = __request_region(iter, start, size, NULL, IORESOURCE_BUSY); if (!shadow) continue; *new = request_mem_region_exclusive(start, size, dev_n); if (*new) { shadow->name = (char *)*new; retval = 0; goto exit; } __release_region(iter, start, size); } } exit: mutex_unlock(&hyperv_mmio_lock); return retval; } EXPORT_SYMBOL_GPL(vmbus_allocate_mmio); /** * vmbus_free_mmio() - Free a memory-mapped I/O range. * @start: Base address of region to release. * @size: Size of the range to be allocated * * This function releases anything requested by * vmbus_mmio_allocate(). */ void vmbus_free_mmio(resource_size_t start, resource_size_t size) { struct resource *iter; mutex_lock(&hyperv_mmio_lock); for (iter = hyperv_mmio; iter; iter = iter->sibling) { if ((iter->start >= start + size) || (iter->end <= start)) continue; __release_region(iter, start, size); } release_mem_region(start, size); mutex_unlock(&hyperv_mmio_lock); } EXPORT_SYMBOL_GPL(vmbus_free_mmio); #ifdef CONFIG_ACPI static int vmbus_acpi_add(struct platform_device *pdev) { acpi_status result; int ret_val = -ENODEV; struct acpi_device *ancestor; struct acpi_device *device = ACPI_COMPANION(&pdev->dev); hv_dev = &device->dev; /* * Older versions of Hyper-V for ARM64 fail to include the _CCA * method on the top level VMbus device in the DSDT. But devices * are hardware coherent in all current Hyper-V use cases, so fix * up the ACPI device to behave as if _CCA is present and indicates * hardware coherence. */ ACPI_COMPANION_SET(&device->dev, device); if (IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED) && device_get_dma_attr(&device->dev) == DEV_DMA_NOT_SUPPORTED) { pr_info("No ACPI _CCA found; assuming coherent device I/O\n"); device->flags.cca_seen = true; device->flags.coherent_dma = true; } result = acpi_walk_resources(device->handle, METHOD_NAME__CRS, vmbus_walk_resources, NULL); if (ACPI_FAILURE(result)) goto acpi_walk_err; /* * Some ancestor of the vmbus acpi device (Gen1 or Gen2 * firmware) is the VMOD that has the mmio ranges. Get that. */ for (ancestor = acpi_dev_parent(device); ancestor && ancestor->handle != ACPI_ROOT_OBJECT; ancestor = acpi_dev_parent(ancestor)) { result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS, vmbus_walk_resources, NULL); if (ACPI_FAILURE(result)) continue; if (hyperv_mmio) { vmbus_reserve_fb(); break; } } ret_val = 0; acpi_walk_err: if (ret_val) vmbus_mmio_remove(); return ret_val; } #else static int vmbus_acpi_add(struct platform_device *pdev) { return 0; } #endif static int vmbus_device_add(struct platform_device *pdev) { struct resource **cur_res = &hyperv_mmio; struct of_range range; struct of_range_parser parser; struct device_node *np = pdev->dev.of_node; int ret; hv_dev = &pdev->dev; ret = of_range_parser_init(&parser, np); if (ret) return ret; for_each_of_range(&parser, &range) { struct resource *res; res = kzalloc(sizeof(*res), GFP_KERNEL); if (!res) { vmbus_mmio_remove(); return -ENOMEM; } res->name = "hyperv mmio"; res->flags = range.flags; res->start = range.cpu_addr; res->end = range.cpu_addr + range.size; *cur_res = res; cur_res = &res->sibling; } return ret; } static int vmbus_platform_driver_probe(struct platform_device *pdev) { if (acpi_disabled) return vmbus_device_add(pdev); else return vmbus_acpi_add(pdev); } static int vmbus_platform_driver_remove(struct platform_device *pdev) { vmbus_mmio_remove(); return 0; } #ifdef CONFIG_PM_SLEEP static int vmbus_bus_suspend(struct device *dev) { struct hv_per_cpu_context *hv_cpu = per_cpu_ptr( hv_context.cpu_context, VMBUS_CONNECT_CPU); struct vmbus_channel *channel, *sc; tasklet_disable(&hv_cpu->msg_dpc); vmbus_connection.ignore_any_offer_msg = true; /* The tasklet_enable() takes care of providing a memory barrier */ tasklet_enable(&hv_cpu->msg_dpc); /* Drain all the workqueues as we are in suspend */ drain_workqueue(vmbus_connection.rescind_work_queue); drain_workqueue(vmbus_connection.work_queue); drain_workqueue(vmbus_connection.handle_primary_chan_wq); drain_workqueue(vmbus_connection.handle_sub_chan_wq); mutex_lock(&vmbus_connection.channel_mutex); list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) { if (!is_hvsock_channel(channel)) continue; vmbus_force_channel_rescinded(channel); } mutex_unlock(&vmbus_connection.channel_mutex); /* * Wait until all the sub-channels and hv_sock channels have been * cleaned up. Sub-channels should be destroyed upon suspend, otherwise * they would conflict with the new sub-channels that will be created * in the resume path. hv_sock channels should also be destroyed, but * a hv_sock channel of an established hv_sock connection can not be * really destroyed since it may still be referenced by the userspace * application, so we just force the hv_sock channel to be rescinded * by vmbus_force_channel_rescinded(), and the userspace application * will thoroughly destroy the channel after hibernation. * * Note: the counter nr_chan_close_on_suspend may never go above 0 if * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM. */ if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0) wait_for_completion(&vmbus_connection.ready_for_suspend_event); if (atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0) { pr_err("Can not suspend due to a previous failed resuming\n"); return -EBUSY; } mutex_lock(&vmbus_connection.channel_mutex); list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) { /* * Remove the channel from the array of channels and invalidate * the channel's relid. Upon resume, vmbus_onoffer() will fix * up the relid (and other fields, if necessary) and add the * channel back to the array. */ vmbus_channel_unmap_relid(channel); channel->offermsg.child_relid = INVALID_RELID; if (is_hvsock_channel(channel)) { if (!channel->rescind) { pr_err("hv_sock channel not rescinded!\n"); WARN_ON_ONCE(1); } continue; } list_for_each_entry(sc, &channel->sc_list, sc_list) { pr_err("Sub-channel not deleted!\n"); WARN_ON_ONCE(1); } atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume); } mutex_unlock(&vmbus_connection.channel_mutex); vmbus_initiate_unload(false); /* Reset the event for the next resume. */ reinit_completion(&vmbus_connection.ready_for_resume_event); return 0; } static int vmbus_bus_resume(struct device *dev) { struct vmbus_channel_msginfo *msginfo; size_t msgsize; int ret; vmbus_connection.ignore_any_offer_msg = false; /* * We only use the 'vmbus_proto_version', which was in use before * hibernation, to re-negotiate with the host. */ if (!vmbus_proto_version) { pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version); return -EINVAL; } msgsize = sizeof(*msginfo) + sizeof(struct vmbus_channel_initiate_contact); msginfo = kzalloc(msgsize, GFP_KERNEL); if (msginfo == NULL) return -ENOMEM; ret = vmbus_negotiate_version(msginfo, vmbus_proto_version); kfree(msginfo); if (ret != 0) return ret; WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0); vmbus_request_offers(); if (wait_for_completion_timeout( &vmbus_connection.ready_for_resume_event, 10 * HZ) == 0) pr_err("Some vmbus device is missing after suspending?\n"); /* Reset the event for the next suspend. */ reinit_completion(&vmbus_connection.ready_for_suspend_event); return 0; } #else #define vmbus_bus_suspend NULL #define vmbus_bus_resume NULL #endif /* CONFIG_PM_SLEEP */ static const __maybe_unused struct of_device_id vmbus_of_match[] = { { .compatible = "microsoft,vmbus", }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, vmbus_of_match); static const __maybe_unused struct acpi_device_id vmbus_acpi_device_ids[] = { {"VMBUS", 0}, {"VMBus", 0}, {"", 0}, }; MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids); /* * Note: we must use the "no_irq" ops, otherwise hibernation can not work with * PCI device assignment, because "pci_dev_pm_ops" uses the "noirq" ops: in * the resume path, the pci "noirq" restore op runs before "non-noirq" op (see * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() -> * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's * resume callback must also run via the "noirq" ops. * * Set suspend_noirq/resume_noirq to NULL for Suspend-to-Idle: see the comment * earlier in this file before vmbus_pm. */ static const struct dev_pm_ops vmbus_bus_pm = { .suspend_noirq = NULL, .resume_noirq = NULL, .freeze_noirq = vmbus_bus_suspend, .thaw_noirq = vmbus_bus_resume, .poweroff_noirq = vmbus_bus_suspend, .restore_noirq = vmbus_bus_resume }; static struct platform_driver vmbus_platform_driver = { .probe = vmbus_platform_driver_probe, .remove = vmbus_platform_driver_remove, .driver = { .name = "vmbus", .acpi_match_table = ACPI_PTR(vmbus_acpi_device_ids), .of_match_table = of_match_ptr(vmbus_of_match), .pm = &vmbus_bus_pm, .probe_type = PROBE_FORCE_SYNCHRONOUS, } }; static void hv_kexec_handler(void) { hv_stimer_global_cleanup(); vmbus_initiate_unload(false); /* Make sure conn_state is set as hv_synic_cleanup checks for it */ mb(); cpuhp_remove_state(hyperv_cpuhp_online); }; static void hv_crash_handler(struct pt_regs *regs) { int cpu; vmbus_initiate_unload(true); /* * In crash handler we can't schedule synic cleanup for all CPUs, * doing the cleanup for current CPU only. This should be sufficient * for kdump. */ cpu = smp_processor_id(); hv_stimer_cleanup(cpu); hv_synic_disable_regs(cpu); }; static int hv_synic_suspend(void) { /* * When we reach here, all the non-boot CPUs have been offlined. * If we're in a legacy configuration where stimer Direct Mode is * not enabled, the stimers on the non-boot CPUs have been unbound * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() -> * hv_stimer_cleanup() -> clockevents_unbind_device(). * * hv_synic_suspend() only runs on CPU0 with interrupts disabled. * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because: * 1) it's unnecessary as interrupts remain disabled between * syscore_suspend() and syscore_resume(): see create_image() and * resume_target_kernel() * 2) the stimer on CPU0 is automatically disabled later by * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ... * -> clockevents_shutdown() -> ... -> hv_ce_shutdown() * 3) a warning would be triggered if we call * clockevents_unbind_device(), which may sleep, in an * interrupts-disabled context. */ hv_synic_disable_regs(0); return 0; } static void hv_synic_resume(void) { hv_synic_enable_regs(0); /* * Note: we don't need to call hv_stimer_init(0), because the timer * on CPU0 is not unbound in hv_synic_suspend(), and the timer is * automatically re-enabled in timekeeping_resume(). */ } /* The callbacks run only on CPU0, with irqs_disabled. */ static struct syscore_ops hv_synic_syscore_ops = { .suspend = hv_synic_suspend, .resume = hv_synic_resume, }; static int __init hv_acpi_init(void) { int ret; if (!hv_is_hyperv_initialized()) return -ENODEV; if (hv_root_partition && !hv_nested) return 0; /* * Get ACPI resources first. */ ret = platform_driver_register(&vmbus_platform_driver); if (ret) return ret; if (!hv_dev) { ret = -ENODEV; goto cleanup; } /* * If we're on an architecture with a hardcoded hypervisor * vector (i.e. x86/x64), override the VMbus interrupt found * in the ACPI tables. Ensure vmbus_irq is not set since the * normal Linux IRQ mechanism is not used in this case. */ #ifdef HYPERVISOR_CALLBACK_VECTOR vmbus_interrupt = HYPERVISOR_CALLBACK_VECTOR; vmbus_irq = -1; #endif hv_debug_init(); ret = vmbus_bus_init(); if (ret) goto cleanup; hv_setup_kexec_handler(hv_kexec_handler); hv_setup_crash_handler(hv_crash_handler); register_syscore_ops(&hv_synic_syscore_ops); return 0; cleanup: platform_driver_unregister(&vmbus_platform_driver); hv_dev = NULL; return ret; } static void __exit vmbus_exit(void) { int cpu; unregister_syscore_ops(&hv_synic_syscore_ops); hv_remove_kexec_handler(); hv_remove_crash_handler(); vmbus_connection.conn_state = DISCONNECTED; hv_stimer_global_cleanup(); vmbus_disconnect(); if (vmbus_irq == -1) { hv_remove_vmbus_handler(); } else { free_percpu_irq(vmbus_irq, vmbus_evt); free_percpu(vmbus_evt); } for_each_online_cpu(cpu) { struct hv_per_cpu_context *hv_cpu = per_cpu_ptr(hv_context.cpu_context, cpu); tasklet_kill(&hv_cpu->msg_dpc); } hv_debug_rm_all_dir(); vmbus_free_channels(); kfree(vmbus_connection.channels); /* * The vmbus panic notifier is always registered, hence we should * also unconditionally unregister it here as well. */ atomic_notifier_chain_unregister(&panic_notifier_list, &hyperv_panic_vmbus_unload_block); bus_unregister(&hv_bus); cpuhp_remove_state(hyperv_cpuhp_online); hv_synic_free(); platform_driver_unregister(&vmbus_platform_driver); } MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver"); subsys_initcall(hv_acpi_init); module_exit(vmbus_exit);
linux-master
drivers/hv/vmbus_drv.c
// SPDX-License-Identifier: GPL-2.0 #include "hyperv_vmbus.h" #define CREATE_TRACE_POINTS #include "hv_trace.h"
linux-master
drivers/hv/hv_trace.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2010, Microsoft Corporation. * * Authors: * Haiyang Zhang <[email protected]> * Hank Janssen <[email protected]> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kernel.h> #include <linux/init.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/sysctl.h> #include <linux/reboot.h> #include <linux/hyperv.h> #include <linux/clockchips.h> #include <linux/ptp_clock_kernel.h> #include <asm/mshyperv.h> #include "hyperv_vmbus.h" #define SD_MAJOR 3 #define SD_MINOR 0 #define SD_MINOR_1 1 #define SD_MINOR_2 2 #define SD_VERSION_3_1 (SD_MAJOR << 16 | SD_MINOR_1) #define SD_VERSION_3_2 (SD_MAJOR << 16 | SD_MINOR_2) #define SD_VERSION (SD_MAJOR << 16 | SD_MINOR) #define SD_MAJOR_1 1 #define SD_VERSION_1 (SD_MAJOR_1 << 16 | SD_MINOR) #define TS_MAJOR 4 #define TS_MINOR 0 #define TS_VERSION (TS_MAJOR << 16 | TS_MINOR) #define TS_MAJOR_1 1 #define TS_VERSION_1 (TS_MAJOR_1 << 16 | TS_MINOR) #define TS_MAJOR_3 3 #define TS_VERSION_3 (TS_MAJOR_3 << 16 | TS_MINOR) #define HB_MAJOR 3 #define HB_MINOR 0 #define HB_VERSION (HB_MAJOR << 16 | HB_MINOR) #define HB_MAJOR_1 1 #define HB_VERSION_1 (HB_MAJOR_1 << 16 | HB_MINOR) static int sd_srv_version; static int ts_srv_version; static int hb_srv_version; #define SD_VER_COUNT 4 static const int sd_versions[] = { SD_VERSION_3_2, SD_VERSION_3_1, SD_VERSION, SD_VERSION_1 }; #define TS_VER_COUNT 3 static const int ts_versions[] = { TS_VERSION, TS_VERSION_3, TS_VERSION_1 }; #define HB_VER_COUNT 2 static const int hb_versions[] = { HB_VERSION, HB_VERSION_1 }; #define FW_VER_COUNT 2 static const int fw_versions[] = { UTIL_FW_VERSION, UTIL_WS2K8_FW_VERSION }; /* * Send the "hibernate" udev event in a thread context. */ struct hibernate_work_context { struct work_struct work; struct hv_device *dev; }; static struct hibernate_work_context hibernate_context; static bool hibernation_supported; static void send_hibernate_uevent(struct work_struct *work) { char *uevent_env[2] = { "EVENT=hibernate", NULL }; struct hibernate_work_context *ctx; ctx = container_of(work, struct hibernate_work_context, work); kobject_uevent_env(&ctx->dev->device.kobj, KOBJ_CHANGE, uevent_env); pr_info("Sent hibernation uevent\n"); } static int hv_shutdown_init(struct hv_util_service *srv) { struct vmbus_channel *channel = srv->channel; INIT_WORK(&hibernate_context.work, send_hibernate_uevent); hibernate_context.dev = channel->device_obj; hibernation_supported = hv_is_hibernation_supported(); return 0; } static void shutdown_onchannelcallback(void *context); static struct hv_util_service util_shutdown = { .util_cb = shutdown_onchannelcallback, .util_init = hv_shutdown_init, }; static int hv_timesync_init(struct hv_util_service *srv); static int hv_timesync_pre_suspend(void); static void hv_timesync_deinit(void); static void timesync_onchannelcallback(void *context); static struct hv_util_service util_timesynch = { .util_cb = timesync_onchannelcallback, .util_init = hv_timesync_init, .util_pre_suspend = hv_timesync_pre_suspend, .util_deinit = hv_timesync_deinit, }; static void heartbeat_onchannelcallback(void *context); static struct hv_util_service util_heartbeat = { .util_cb = heartbeat_onchannelcallback, }; static struct hv_util_service util_kvp = { .util_cb = hv_kvp_onchannelcallback, .util_init = hv_kvp_init, .util_pre_suspend = hv_kvp_pre_suspend, .util_pre_resume = hv_kvp_pre_resume, .util_deinit = hv_kvp_deinit, }; static struct hv_util_service util_vss = { .util_cb = hv_vss_onchannelcallback, .util_init = hv_vss_init, .util_pre_suspend = hv_vss_pre_suspend, .util_pre_resume = hv_vss_pre_resume, .util_deinit = hv_vss_deinit, }; static struct hv_util_service util_fcopy = { .util_cb = hv_fcopy_onchannelcallback, .util_init = hv_fcopy_init, .util_pre_suspend = hv_fcopy_pre_suspend, .util_pre_resume = hv_fcopy_pre_resume, .util_deinit = hv_fcopy_deinit, }; static void perform_shutdown(struct work_struct *dummy) { orderly_poweroff(true); } static void perform_restart(struct work_struct *dummy) { orderly_reboot(); } /* * Perform the shutdown operation in a thread context. */ static DECLARE_WORK(shutdown_work, perform_shutdown); /* * Perform the restart operation in a thread context. */ static DECLARE_WORK(restart_work, perform_restart); static void shutdown_onchannelcallback(void *context) { struct vmbus_channel *channel = context; struct work_struct *work = NULL; u32 recvlen; u64 requestid; u8 *shut_txf_buf = util_shutdown.recv_buffer; struct shutdown_msg_data *shutdown_msg; struct icmsg_hdr *icmsghdrp; if (vmbus_recvpacket(channel, shut_txf_buf, HV_HYP_PAGE_SIZE, &recvlen, &requestid)) { pr_err_ratelimited("Shutdown request received. Could not read into shut txf buf\n"); return; } if (!recvlen) return; /* Ensure recvlen is big enough to read header data */ if (recvlen < ICMSG_HDR) { pr_err_ratelimited("Shutdown request received. Packet length too small: %d\n", recvlen); return; } icmsghdrp = (struct icmsg_hdr *)&shut_txf_buf[sizeof(struct vmbuspipe_hdr)]; if (icmsghdrp->icmsgtype == ICMSGTYPE_NEGOTIATE) { if (vmbus_prep_negotiate_resp(icmsghdrp, shut_txf_buf, recvlen, fw_versions, FW_VER_COUNT, sd_versions, SD_VER_COUNT, NULL, &sd_srv_version)) { pr_info("Shutdown IC version %d.%d\n", sd_srv_version >> 16, sd_srv_version & 0xFFFF); } } else if (icmsghdrp->icmsgtype == ICMSGTYPE_SHUTDOWN) { /* Ensure recvlen is big enough to contain shutdown_msg_data struct */ if (recvlen < ICMSG_HDR + sizeof(struct shutdown_msg_data)) { pr_err_ratelimited("Invalid shutdown msg data. Packet length too small: %u\n", recvlen); return; } shutdown_msg = (struct shutdown_msg_data *)&shut_txf_buf[ICMSG_HDR]; /* * shutdown_msg->flags can be 0(shut down), 2(reboot), * or 4(hibernate). It may bitwise-OR 1, which means * performing the request by force. Linux always tries * to perform the request by force. */ switch (shutdown_msg->flags) { case 0: case 1: icmsghdrp->status = HV_S_OK; work = &shutdown_work; pr_info("Shutdown request received - graceful shutdown initiated\n"); break; case 2: case 3: icmsghdrp->status = HV_S_OK; work = &restart_work; pr_info("Restart request received - graceful restart initiated\n"); break; case 4: case 5: pr_info("Hibernation request received\n"); icmsghdrp->status = hibernation_supported ? HV_S_OK : HV_E_FAIL; if (hibernation_supported) work = &hibernate_context.work; break; default: icmsghdrp->status = HV_E_FAIL; pr_info("Shutdown request received - Invalid request\n"); break; } } else { icmsghdrp->status = HV_E_FAIL; pr_err_ratelimited("Shutdown request received. Invalid msg type: %d\n", icmsghdrp->icmsgtype); } icmsghdrp->icflags = ICMSGHDRFLAG_TRANSACTION | ICMSGHDRFLAG_RESPONSE; vmbus_sendpacket(channel, shut_txf_buf, recvlen, requestid, VM_PKT_DATA_INBAND, 0); if (work) schedule_work(work); } /* * Set the host time in a process context. */ static struct work_struct adj_time_work; /* * The last time sample, received from the host. PTP device responds to * requests by using this data and the current partition-wide time reference * count. */ static struct { u64 host_time; u64 ref_time; spinlock_t lock; } host_ts; static inline u64 reftime_to_ns(u64 reftime) { return (reftime - WLTIMEDELTA) * 100; } /* * Hard coded threshold for host timesync delay: 600 seconds */ static const u64 HOST_TIMESYNC_DELAY_THRESH = 600 * (u64)NSEC_PER_SEC; static int hv_get_adj_host_time(struct timespec64 *ts) { u64 newtime, reftime, timediff_adj; unsigned long flags; int ret = 0; spin_lock_irqsave(&host_ts.lock, flags); reftime = hv_read_reference_counter(); /* * We need to let the caller know that last update from host * is older than the max allowable threshold. clock_gettime() * and PTP ioctl do not have a documented error that we could * return for this specific case. Use ESTALE to report this. */ timediff_adj = reftime - host_ts.ref_time; if (timediff_adj * 100 > HOST_TIMESYNC_DELAY_THRESH) { pr_warn_once("TIMESYNC IC: Stale time stamp, %llu nsecs old\n", (timediff_adj * 100)); ret = -ESTALE; } newtime = host_ts.host_time + timediff_adj; *ts = ns_to_timespec64(reftime_to_ns(newtime)); spin_unlock_irqrestore(&host_ts.lock, flags); return ret; } static void hv_set_host_time(struct work_struct *work) { struct timespec64 ts; if (!hv_get_adj_host_time(&ts)) do_settimeofday64(&ts); } /* * Synchronize time with host after reboot, restore, etc. * * ICTIMESYNCFLAG_SYNC flag bit indicates reboot, restore events of the VM. * After reboot the flag ICTIMESYNCFLAG_SYNC is included in the first time * message after the timesync channel is opened. Since the hv_utils module is * loaded after hv_vmbus, the first message is usually missed. This bit is * considered a hard request to discipline the clock. * * ICTIMESYNCFLAG_SAMPLE bit indicates a time sample from host. This is * typically used as a hint to the guest. The guest is under no obligation * to discipline the clock. */ static inline void adj_guesttime(u64 hosttime, u64 reftime, u8 adj_flags) { unsigned long flags; u64 cur_reftime; /* * Save the adjusted time sample from the host and the snapshot * of the current system time. */ spin_lock_irqsave(&host_ts.lock, flags); cur_reftime = hv_read_reference_counter(); host_ts.host_time = hosttime; host_ts.ref_time = cur_reftime; /* * TimeSync v4 messages contain reference time (guest's Hyper-V * clocksource read when the time sample was generated), we can * improve the precision by adding the delta between now and the * time of generation. For older protocols we set * reftime == cur_reftime on call. */ host_ts.host_time += (cur_reftime - reftime); spin_unlock_irqrestore(&host_ts.lock, flags); /* Schedule work to do do_settimeofday64() */ if (adj_flags & ICTIMESYNCFLAG_SYNC) schedule_work(&adj_time_work); } /* * Time Sync Channel message handler. */ static void timesync_onchannelcallback(void *context) { struct vmbus_channel *channel = context; u32 recvlen; u64 requestid; struct icmsg_hdr *icmsghdrp; struct ictimesync_data *timedatap; struct ictimesync_ref_data *refdata; u8 *time_txf_buf = util_timesynch.recv_buffer; /* * Drain the ring buffer and use the last packet to update * host_ts */ while (1) { int ret = vmbus_recvpacket(channel, time_txf_buf, HV_HYP_PAGE_SIZE, &recvlen, &requestid); if (ret) { pr_err_ratelimited("TimeSync IC pkt recv failed (Err: %d)\n", ret); break; } if (!recvlen) break; /* Ensure recvlen is big enough to read header data */ if (recvlen < ICMSG_HDR) { pr_err_ratelimited("Timesync request received. Packet length too small: %d\n", recvlen); break; } icmsghdrp = (struct icmsg_hdr *)&time_txf_buf[ sizeof(struct vmbuspipe_hdr)]; if (icmsghdrp->icmsgtype == ICMSGTYPE_NEGOTIATE) { if (vmbus_prep_negotiate_resp(icmsghdrp, time_txf_buf, recvlen, fw_versions, FW_VER_COUNT, ts_versions, TS_VER_COUNT, NULL, &ts_srv_version)) { pr_info("TimeSync IC version %d.%d\n", ts_srv_version >> 16, ts_srv_version & 0xFFFF); } } else if (icmsghdrp->icmsgtype == ICMSGTYPE_TIMESYNC) { if (ts_srv_version > TS_VERSION_3) { /* Ensure recvlen is big enough to read ictimesync_ref_data */ if (recvlen < ICMSG_HDR + sizeof(struct ictimesync_ref_data)) { pr_err_ratelimited("Invalid ictimesync ref data. Length too small: %u\n", recvlen); break; } refdata = (struct ictimesync_ref_data *)&time_txf_buf[ICMSG_HDR]; adj_guesttime(refdata->parenttime, refdata->vmreferencetime, refdata->flags); } else { /* Ensure recvlen is big enough to read ictimesync_data */ if (recvlen < ICMSG_HDR + sizeof(struct ictimesync_data)) { pr_err_ratelimited("Invalid ictimesync data. Length too small: %u\n", recvlen); break; } timedatap = (struct ictimesync_data *)&time_txf_buf[ICMSG_HDR]; adj_guesttime(timedatap->parenttime, hv_read_reference_counter(), timedatap->flags); } } else { icmsghdrp->status = HV_E_FAIL; pr_err_ratelimited("Timesync request received. Invalid msg type: %d\n", icmsghdrp->icmsgtype); } icmsghdrp->icflags = ICMSGHDRFLAG_TRANSACTION | ICMSGHDRFLAG_RESPONSE; vmbus_sendpacket(channel, time_txf_buf, recvlen, requestid, VM_PKT_DATA_INBAND, 0); } } /* * Heartbeat functionality. * Every two seconds, Hyper-V send us a heartbeat request message. * we respond to this message, and Hyper-V knows we are alive. */ static void heartbeat_onchannelcallback(void *context) { struct vmbus_channel *channel = context; u32 recvlen; u64 requestid; struct icmsg_hdr *icmsghdrp; struct heartbeat_msg_data *heartbeat_msg; u8 *hbeat_txf_buf = util_heartbeat.recv_buffer; while (1) { if (vmbus_recvpacket(channel, hbeat_txf_buf, HV_HYP_PAGE_SIZE, &recvlen, &requestid)) { pr_err_ratelimited("Heartbeat request received. Could not read into hbeat txf buf\n"); return; } if (!recvlen) break; /* Ensure recvlen is big enough to read header data */ if (recvlen < ICMSG_HDR) { pr_err_ratelimited("Heartbeat request received. Packet length too small: %d\n", recvlen); break; } icmsghdrp = (struct icmsg_hdr *)&hbeat_txf_buf[ sizeof(struct vmbuspipe_hdr)]; if (icmsghdrp->icmsgtype == ICMSGTYPE_NEGOTIATE) { if (vmbus_prep_negotiate_resp(icmsghdrp, hbeat_txf_buf, recvlen, fw_versions, FW_VER_COUNT, hb_versions, HB_VER_COUNT, NULL, &hb_srv_version)) { pr_info("Heartbeat IC version %d.%d\n", hb_srv_version >> 16, hb_srv_version & 0xFFFF); } } else if (icmsghdrp->icmsgtype == ICMSGTYPE_HEARTBEAT) { /* * Ensure recvlen is big enough to read seq_num. Reserved area is not * included in the check as the host may not fill it up entirely */ if (recvlen < ICMSG_HDR + sizeof(u64)) { pr_err_ratelimited("Invalid heartbeat msg data. Length too small: %u\n", recvlen); break; } heartbeat_msg = (struct heartbeat_msg_data *)&hbeat_txf_buf[ICMSG_HDR]; heartbeat_msg->seq_num += 1; } else { icmsghdrp->status = HV_E_FAIL; pr_err_ratelimited("Heartbeat request received. Invalid msg type: %d\n", icmsghdrp->icmsgtype); } icmsghdrp->icflags = ICMSGHDRFLAG_TRANSACTION | ICMSGHDRFLAG_RESPONSE; vmbus_sendpacket(channel, hbeat_txf_buf, recvlen, requestid, VM_PKT_DATA_INBAND, 0); } } #define HV_UTIL_RING_SEND_SIZE VMBUS_RING_SIZE(3 * HV_HYP_PAGE_SIZE) #define HV_UTIL_RING_RECV_SIZE VMBUS_RING_SIZE(3 * HV_HYP_PAGE_SIZE) static int util_probe(struct hv_device *dev, const struct hv_vmbus_device_id *dev_id) { struct hv_util_service *srv = (struct hv_util_service *)dev_id->driver_data; int ret; srv->recv_buffer = kmalloc(HV_HYP_PAGE_SIZE * 4, GFP_KERNEL); if (!srv->recv_buffer) return -ENOMEM; srv->channel = dev->channel; if (srv->util_init) { ret = srv->util_init(srv); if (ret) { ret = -ENODEV; goto error1; } } /* * The set of services managed by the util driver are not performance * critical and do not need batched reading. Furthermore, some services * such as KVP can only handle one message from the host at a time. * Turn off batched reading for all util drivers before we open the * channel. */ set_channel_read_mode(dev->channel, HV_CALL_DIRECT); hv_set_drvdata(dev, srv); ret = vmbus_open(dev->channel, HV_UTIL_RING_SEND_SIZE, HV_UTIL_RING_RECV_SIZE, NULL, 0, srv->util_cb, dev->channel); if (ret) goto error; return 0; error: if (srv->util_deinit) srv->util_deinit(); error1: kfree(srv->recv_buffer); return ret; } static void util_remove(struct hv_device *dev) { struct hv_util_service *srv = hv_get_drvdata(dev); if (srv->util_deinit) srv->util_deinit(); vmbus_close(dev->channel); kfree(srv->recv_buffer); } /* * When we're in util_suspend(), all the userspace processes have been frozen * (refer to hibernate() -> freeze_processes()). The userspace is thawed only * after the whole resume procedure, including util_resume(), finishes. */ static int util_suspend(struct hv_device *dev) { struct hv_util_service *srv = hv_get_drvdata(dev); int ret = 0; if (srv->util_pre_suspend) { ret = srv->util_pre_suspend(); if (ret) return ret; } vmbus_close(dev->channel); return 0; } static int util_resume(struct hv_device *dev) { struct hv_util_service *srv = hv_get_drvdata(dev); int ret = 0; if (srv->util_pre_resume) { ret = srv->util_pre_resume(); if (ret) return ret; } ret = vmbus_open(dev->channel, HV_UTIL_RING_SEND_SIZE, HV_UTIL_RING_RECV_SIZE, NULL, 0, srv->util_cb, dev->channel); return ret; } static const struct hv_vmbus_device_id id_table[] = { /* Shutdown guid */ { HV_SHUTDOWN_GUID, .driver_data = (unsigned long)&util_shutdown }, /* Time synch guid */ { HV_TS_GUID, .driver_data = (unsigned long)&util_timesynch }, /* Heartbeat guid */ { HV_HEART_BEAT_GUID, .driver_data = (unsigned long)&util_heartbeat }, /* KVP guid */ { HV_KVP_GUID, .driver_data = (unsigned long)&util_kvp }, /* VSS GUID */ { HV_VSS_GUID, .driver_data = (unsigned long)&util_vss }, /* File copy GUID */ { HV_FCOPY_GUID, .driver_data = (unsigned long)&util_fcopy }, { }, }; MODULE_DEVICE_TABLE(vmbus, id_table); /* The one and only one */ static struct hv_driver util_drv = { .name = "hv_utils", .id_table = id_table, .probe = util_probe, .remove = util_remove, .suspend = util_suspend, .resume = util_resume, .driver = { .probe_type = PROBE_PREFER_ASYNCHRONOUS, }, }; static int hv_ptp_enable(struct ptp_clock_info *info, struct ptp_clock_request *request, int on) { return -EOPNOTSUPP; } static int hv_ptp_settime(struct ptp_clock_info *p, const struct timespec64 *ts) { return -EOPNOTSUPP; } static int hv_ptp_adjfine(struct ptp_clock_info *ptp, long delta) { return -EOPNOTSUPP; } static int hv_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) { return -EOPNOTSUPP; } static int hv_ptp_gettime(struct ptp_clock_info *info, struct timespec64 *ts) { return hv_get_adj_host_time(ts); } static struct ptp_clock_info ptp_hyperv_info = { .name = "hyperv", .enable = hv_ptp_enable, .adjtime = hv_ptp_adjtime, .adjfine = hv_ptp_adjfine, .gettime64 = hv_ptp_gettime, .settime64 = hv_ptp_settime, .owner = THIS_MODULE, }; static struct ptp_clock *hv_ptp_clock; static int hv_timesync_init(struct hv_util_service *srv) { spin_lock_init(&host_ts.lock); INIT_WORK(&adj_time_work, hv_set_host_time); /* * ptp_clock_register() returns NULL when CONFIG_PTP_1588_CLOCK is * disabled but the driver is still useful without the PTP device * as it still handles the ICTIMESYNCFLAG_SYNC case. */ hv_ptp_clock = ptp_clock_register(&ptp_hyperv_info, NULL); if (IS_ERR_OR_NULL(hv_ptp_clock)) { pr_err("cannot register PTP clock: %d\n", PTR_ERR_OR_ZERO(hv_ptp_clock)); hv_ptp_clock = NULL; } return 0; } static void hv_timesync_cancel_work(void) { cancel_work_sync(&adj_time_work); } static int hv_timesync_pre_suspend(void) { hv_timesync_cancel_work(); return 0; } static void hv_timesync_deinit(void) { if (hv_ptp_clock) ptp_clock_unregister(hv_ptp_clock); hv_timesync_cancel_work(); } static int __init init_hyperv_utils(void) { pr_info("Registering HyperV Utility Driver\n"); return vmbus_driver_register(&util_drv); } static void exit_hyperv_utils(void) { pr_info("De-Registered HyperV Utility Driver\n"); vmbus_driver_unregister(&util_drv); } module_init(init_hyperv_utils); module_exit(exit_hyperv_utils); MODULE_DESCRIPTION("Hyper-V Utilities"); MODULE_LICENSE("GPL");
linux-master
drivers/hv/hv_util.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2009, Microsoft Corporation. * * Authors: * Haiyang Zhang <[email protected]> * Hank Janssen <[email protected]> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kernel.h> #include <linux/sched.h> #include <linux/wait.h> #include <linux/mm.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/hyperv.h> #include <linux/uio.h> #include <linux/interrupt.h> #include <linux/set_memory.h> #include <asm/page.h> #include <asm/mshyperv.h> #include "hyperv_vmbus.h" /* * hv_gpadl_size - Return the real size of a gpadl, the size that Hyper-V uses * * For BUFFER gpadl, Hyper-V uses the exact same size as the guest does. * * For RING gpadl, in each ring, the guest uses one PAGE_SIZE as the header * (because of the alignment requirement), however, the hypervisor only * uses the first HV_HYP_PAGE_SIZE as the header, therefore leaving a * (PAGE_SIZE - HV_HYP_PAGE_SIZE) gap. And since there are two rings in a * ringbuffer, the total size for a RING gpadl that Hyper-V uses is the * total size that the guest uses minus twice of the gap size. */ static inline u32 hv_gpadl_size(enum hv_gpadl_type type, u32 size) { switch (type) { case HV_GPADL_BUFFER: return size; case HV_GPADL_RING: /* The size of a ringbuffer must be page-aligned */ BUG_ON(size % PAGE_SIZE); /* * Two things to notice here: * 1) We're processing two ring buffers as a unit * 2) We're skipping any space larger than HV_HYP_PAGE_SIZE in * the first guest-size page of each of the two ring buffers. * So we effectively subtract out two guest-size pages, and add * back two Hyper-V size pages. */ return size - 2 * (PAGE_SIZE - HV_HYP_PAGE_SIZE); } BUG(); return 0; } /* * hv_ring_gpadl_send_hvpgoffset - Calculate the send offset (in unit of * HV_HYP_PAGE) in a ring gpadl based on the * offset in the guest * * @offset: the offset (in bytes) where the send ringbuffer starts in the * virtual address space of the guest */ static inline u32 hv_ring_gpadl_send_hvpgoffset(u32 offset) { /* * For RING gpadl, in each ring, the guest uses one PAGE_SIZE as the * header (because of the alignment requirement), however, the * hypervisor only uses the first HV_HYP_PAGE_SIZE as the header, * therefore leaving a (PAGE_SIZE - HV_HYP_PAGE_SIZE) gap. * * And to calculate the effective send offset in gpadl, we need to * substract this gap. */ return (offset - (PAGE_SIZE - HV_HYP_PAGE_SIZE)) >> HV_HYP_PAGE_SHIFT; } /* * hv_gpadl_hvpfn - Return the Hyper-V page PFN of the @i th Hyper-V page in * the gpadl * * @type: the type of the gpadl * @kbuffer: the pointer to the gpadl in the guest * @size: the total size (in bytes) of the gpadl * @send_offset: the offset (in bytes) where the send ringbuffer starts in the * virtual address space of the guest * @i: the index */ static inline u64 hv_gpadl_hvpfn(enum hv_gpadl_type type, void *kbuffer, u32 size, u32 send_offset, int i) { int send_idx = hv_ring_gpadl_send_hvpgoffset(send_offset); unsigned long delta = 0UL; switch (type) { case HV_GPADL_BUFFER: break; case HV_GPADL_RING: if (i == 0) delta = 0; else if (i <= send_idx) delta = PAGE_SIZE - HV_HYP_PAGE_SIZE; else delta = 2 * (PAGE_SIZE - HV_HYP_PAGE_SIZE); break; default: BUG(); break; } return virt_to_hvpfn(kbuffer + delta + (HV_HYP_PAGE_SIZE * i)); } /* * vmbus_setevent- Trigger an event notification on the specified * channel. */ void vmbus_setevent(struct vmbus_channel *channel) { struct hv_monitor_page *monitorpage; trace_vmbus_setevent(channel); /* * For channels marked as in "low latency" mode * bypass the monitor page mechanism. */ if (channel->offermsg.monitor_allocated && !channel->low_latency) { vmbus_send_interrupt(channel->offermsg.child_relid); /* Get the child to parent monitor page */ monitorpage = vmbus_connection.monitor_pages[1]; sync_set_bit(channel->monitor_bit, (unsigned long *)&monitorpage->trigger_group [channel->monitor_grp].pending); } else { vmbus_set_event(channel); } } EXPORT_SYMBOL_GPL(vmbus_setevent); /* vmbus_free_ring - drop mapping of ring buffer */ void vmbus_free_ring(struct vmbus_channel *channel) { hv_ringbuffer_cleanup(&channel->outbound); hv_ringbuffer_cleanup(&channel->inbound); if (channel->ringbuffer_page) { __free_pages(channel->ringbuffer_page, get_order(channel->ringbuffer_pagecount << PAGE_SHIFT)); channel->ringbuffer_page = NULL; } } EXPORT_SYMBOL_GPL(vmbus_free_ring); /* vmbus_alloc_ring - allocate and map pages for ring buffer */ int vmbus_alloc_ring(struct vmbus_channel *newchannel, u32 send_size, u32 recv_size) { struct page *page; int order; if (send_size % PAGE_SIZE || recv_size % PAGE_SIZE) return -EINVAL; /* Allocate the ring buffer */ order = get_order(send_size + recv_size); page = alloc_pages_node(cpu_to_node(newchannel->target_cpu), GFP_KERNEL|__GFP_ZERO, order); if (!page) page = alloc_pages(GFP_KERNEL|__GFP_ZERO, order); if (!page) return -ENOMEM; newchannel->ringbuffer_page = page; newchannel->ringbuffer_pagecount = (send_size + recv_size) >> PAGE_SHIFT; newchannel->ringbuffer_send_offset = send_size >> PAGE_SHIFT; return 0; } EXPORT_SYMBOL_GPL(vmbus_alloc_ring); /* Used for Hyper-V Socket: a guest client's connect() to the host */ int vmbus_send_tl_connect_request(const guid_t *shv_guest_servie_id, const guid_t *shv_host_servie_id) { struct vmbus_channel_tl_connect_request conn_msg; int ret; memset(&conn_msg, 0, sizeof(conn_msg)); conn_msg.header.msgtype = CHANNELMSG_TL_CONNECT_REQUEST; conn_msg.guest_endpoint_id = *shv_guest_servie_id; conn_msg.host_service_id = *shv_host_servie_id; ret = vmbus_post_msg(&conn_msg, sizeof(conn_msg), true); trace_vmbus_send_tl_connect_request(&conn_msg, ret); return ret; } EXPORT_SYMBOL_GPL(vmbus_send_tl_connect_request); static int send_modifychannel_without_ack(struct vmbus_channel *channel, u32 target_vp) { struct vmbus_channel_modifychannel msg; int ret; memset(&msg, 0, sizeof(msg)); msg.header.msgtype = CHANNELMSG_MODIFYCHANNEL; msg.child_relid = channel->offermsg.child_relid; msg.target_vp = target_vp; ret = vmbus_post_msg(&msg, sizeof(msg), true); trace_vmbus_send_modifychannel(&msg, ret); return ret; } static int send_modifychannel_with_ack(struct vmbus_channel *channel, u32 target_vp) { struct vmbus_channel_modifychannel *msg; struct vmbus_channel_msginfo *info; unsigned long flags; int ret; info = kzalloc(sizeof(struct vmbus_channel_msginfo) + sizeof(struct vmbus_channel_modifychannel), GFP_KERNEL); if (!info) return -ENOMEM; init_completion(&info->waitevent); info->waiting_channel = channel; msg = (struct vmbus_channel_modifychannel *)info->msg; msg->header.msgtype = CHANNELMSG_MODIFYCHANNEL; msg->child_relid = channel->offermsg.child_relid; msg->target_vp = target_vp; spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags); list_add_tail(&info->msglistentry, &vmbus_connection.chn_msg_list); spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags); ret = vmbus_post_msg(msg, sizeof(*msg), true); trace_vmbus_send_modifychannel(msg, ret); if (ret != 0) { spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags); list_del(&info->msglistentry); spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags); goto free_info; } /* * Release channel_mutex; otherwise, vmbus_onoffer_rescind() could block on * the mutex and be unable to signal the completion. * * See the caller target_cpu_store() for information about the usage of the * mutex. */ mutex_unlock(&vmbus_connection.channel_mutex); wait_for_completion(&info->waitevent); mutex_lock(&vmbus_connection.channel_mutex); spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags); list_del(&info->msglistentry); spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags); if (info->response.modify_response.status) ret = -EAGAIN; free_info: kfree(info); return ret; } /* * Set/change the vCPU (@target_vp) the channel (@child_relid) will interrupt. * * CHANNELMSG_MODIFYCHANNEL messages are aynchronous. When VMbus version 5.3 * or later is negotiated, Hyper-V always sends an ACK in response to such a * message. For VMbus version 5.2 and earlier, it never sends an ACK. With- * out an ACK, we can not know when the host will stop interrupting the "old" * vCPU and start interrupting the "new" vCPU for the given channel. * * The CHANNELMSG_MODIFYCHANNEL message type is supported since VMBus version * VERSION_WIN10_V4_1. */ int vmbus_send_modifychannel(struct vmbus_channel *channel, u32 target_vp) { if (vmbus_proto_version >= VERSION_WIN10_V5_3) return send_modifychannel_with_ack(channel, target_vp); return send_modifychannel_without_ack(channel, target_vp); } EXPORT_SYMBOL_GPL(vmbus_send_modifychannel); /* * create_gpadl_header - Creates a gpadl for the specified buffer */ static int create_gpadl_header(enum hv_gpadl_type type, void *kbuffer, u32 size, u32 send_offset, struct vmbus_channel_msginfo **msginfo) { int i; int pagecount; struct vmbus_channel_gpadl_header *gpadl_header; struct vmbus_channel_gpadl_body *gpadl_body; struct vmbus_channel_msginfo *msgheader; struct vmbus_channel_msginfo *msgbody = NULL; u32 msgsize; int pfnsum, pfncount, pfnleft, pfncurr, pfnsize; pagecount = hv_gpadl_size(type, size) >> HV_HYP_PAGE_SHIFT; /* do we need a gpadl body msg */ pfnsize = MAX_SIZE_CHANNEL_MESSAGE - sizeof(struct vmbus_channel_gpadl_header) - sizeof(struct gpa_range); pfncount = pfnsize / sizeof(u64); if (pagecount > pfncount) { /* we need a gpadl body */ /* fill in the header */ msgsize = sizeof(struct vmbus_channel_msginfo) + sizeof(struct vmbus_channel_gpadl_header) + sizeof(struct gpa_range) + pfncount * sizeof(u64); msgheader = kzalloc(msgsize, GFP_KERNEL); if (!msgheader) goto nomem; INIT_LIST_HEAD(&msgheader->submsglist); msgheader->msgsize = msgsize; gpadl_header = (struct vmbus_channel_gpadl_header *) msgheader->msg; gpadl_header->rangecount = 1; gpadl_header->range_buflen = sizeof(struct gpa_range) + pagecount * sizeof(u64); gpadl_header->range[0].byte_offset = 0; gpadl_header->range[0].byte_count = hv_gpadl_size(type, size); for (i = 0; i < pfncount; i++) gpadl_header->range[0].pfn_array[i] = hv_gpadl_hvpfn( type, kbuffer, size, send_offset, i); *msginfo = msgheader; pfnsum = pfncount; pfnleft = pagecount - pfncount; /* how many pfns can we fit */ pfnsize = MAX_SIZE_CHANNEL_MESSAGE - sizeof(struct vmbus_channel_gpadl_body); pfncount = pfnsize / sizeof(u64); /* fill in the body */ while (pfnleft) { if (pfnleft > pfncount) pfncurr = pfncount; else pfncurr = pfnleft; msgsize = sizeof(struct vmbus_channel_msginfo) + sizeof(struct vmbus_channel_gpadl_body) + pfncurr * sizeof(u64); msgbody = kzalloc(msgsize, GFP_KERNEL); if (!msgbody) { struct vmbus_channel_msginfo *pos = NULL; struct vmbus_channel_msginfo *tmp = NULL; /* * Free up all the allocated messages. */ list_for_each_entry_safe(pos, tmp, &msgheader->submsglist, msglistentry) { list_del(&pos->msglistentry); kfree(pos); } goto nomem; } msgbody->msgsize = msgsize; gpadl_body = (struct vmbus_channel_gpadl_body *)msgbody->msg; /* * Gpadl is u32 and we are using a pointer which could * be 64-bit * This is governed by the guest/host protocol and * so the hypervisor guarantees that this is ok. */ for (i = 0; i < pfncurr; i++) gpadl_body->pfn[i] = hv_gpadl_hvpfn(type, kbuffer, size, send_offset, pfnsum + i); /* add to msg header */ list_add_tail(&msgbody->msglistentry, &msgheader->submsglist); pfnsum += pfncurr; pfnleft -= pfncurr; } } else { /* everything fits in a header */ msgsize = sizeof(struct vmbus_channel_msginfo) + sizeof(struct vmbus_channel_gpadl_header) + sizeof(struct gpa_range) + pagecount * sizeof(u64); msgheader = kzalloc(msgsize, GFP_KERNEL); if (msgheader == NULL) goto nomem; INIT_LIST_HEAD(&msgheader->submsglist); msgheader->msgsize = msgsize; gpadl_header = (struct vmbus_channel_gpadl_header *) msgheader->msg; gpadl_header->rangecount = 1; gpadl_header->range_buflen = sizeof(struct gpa_range) + pagecount * sizeof(u64); gpadl_header->range[0].byte_offset = 0; gpadl_header->range[0].byte_count = hv_gpadl_size(type, size); for (i = 0; i < pagecount; i++) gpadl_header->range[0].pfn_array[i] = hv_gpadl_hvpfn( type, kbuffer, size, send_offset, i); *msginfo = msgheader; } return 0; nomem: kfree(msgheader); kfree(msgbody); return -ENOMEM; } /* * __vmbus_establish_gpadl - Establish a GPADL for a buffer or ringbuffer * * @channel: a channel * @type: the type of the corresponding GPADL, only meaningful for the guest. * @kbuffer: from kmalloc or vmalloc * @size: page-size multiple * @send_offset: the offset (in bytes) where the send ring buffer starts, * should be 0 for BUFFER type gpadl * @gpadl_handle: some funky thing */ static int __vmbus_establish_gpadl(struct vmbus_channel *channel, enum hv_gpadl_type type, void *kbuffer, u32 size, u32 send_offset, struct vmbus_gpadl *gpadl) { struct vmbus_channel_gpadl_header *gpadlmsg; struct vmbus_channel_gpadl_body *gpadl_body; struct vmbus_channel_msginfo *msginfo = NULL; struct vmbus_channel_msginfo *submsginfo, *tmp; struct list_head *curr; u32 next_gpadl_handle; unsigned long flags; int ret = 0; next_gpadl_handle = (atomic_inc_return(&vmbus_connection.next_gpadl_handle) - 1); ret = create_gpadl_header(type, kbuffer, size, send_offset, &msginfo); if (ret) return ret; ret = set_memory_decrypted((unsigned long)kbuffer, PFN_UP(size)); if (ret) { dev_warn(&channel->device_obj->device, "Failed to set host visibility for new GPADL %d.\n", ret); return ret; } init_completion(&msginfo->waitevent); msginfo->waiting_channel = channel; gpadlmsg = (struct vmbus_channel_gpadl_header *)msginfo->msg; gpadlmsg->header.msgtype = CHANNELMSG_GPADL_HEADER; gpadlmsg->child_relid = channel->offermsg.child_relid; gpadlmsg->gpadl = next_gpadl_handle; spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags); list_add_tail(&msginfo->msglistentry, &vmbus_connection.chn_msg_list); spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags); if (channel->rescind) { ret = -ENODEV; goto cleanup; } ret = vmbus_post_msg(gpadlmsg, msginfo->msgsize - sizeof(*msginfo), true); trace_vmbus_establish_gpadl_header(gpadlmsg, ret); if (ret != 0) goto cleanup; list_for_each(curr, &msginfo->submsglist) { submsginfo = (struct vmbus_channel_msginfo *)curr; gpadl_body = (struct vmbus_channel_gpadl_body *)submsginfo->msg; gpadl_body->header.msgtype = CHANNELMSG_GPADL_BODY; gpadl_body->gpadl = next_gpadl_handle; ret = vmbus_post_msg(gpadl_body, submsginfo->msgsize - sizeof(*submsginfo), true); trace_vmbus_establish_gpadl_body(gpadl_body, ret); if (ret != 0) goto cleanup; } wait_for_completion(&msginfo->waitevent); if (msginfo->response.gpadl_created.creation_status != 0) { pr_err("Failed to establish GPADL: err = 0x%x\n", msginfo->response.gpadl_created.creation_status); ret = -EDQUOT; goto cleanup; } if (channel->rescind) { ret = -ENODEV; goto cleanup; } /* At this point, we received the gpadl created msg */ gpadl->gpadl_handle = gpadlmsg->gpadl; gpadl->buffer = kbuffer; gpadl->size = size; cleanup: spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags); list_del(&msginfo->msglistentry); spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags); list_for_each_entry_safe(submsginfo, tmp, &msginfo->submsglist, msglistentry) { kfree(submsginfo); } kfree(msginfo); if (ret) set_memory_encrypted((unsigned long)kbuffer, PFN_UP(size)); return ret; } /* * vmbus_establish_gpadl - Establish a GPADL for the specified buffer * * @channel: a channel * @kbuffer: from kmalloc or vmalloc * @size: page-size multiple * @gpadl_handle: some funky thing */ int vmbus_establish_gpadl(struct vmbus_channel *channel, void *kbuffer, u32 size, struct vmbus_gpadl *gpadl) { return __vmbus_establish_gpadl(channel, HV_GPADL_BUFFER, kbuffer, size, 0U, gpadl); } EXPORT_SYMBOL_GPL(vmbus_establish_gpadl); /** * request_arr_init - Allocates memory for the requestor array. Each slot * keeps track of the next available slot in the array. Initially, each * slot points to the next one (as in a Linked List). The last slot * does not point to anything, so its value is U64_MAX by default. * @size The size of the array */ static u64 *request_arr_init(u32 size) { int i; u64 *req_arr; req_arr = kcalloc(size, sizeof(u64), GFP_KERNEL); if (!req_arr) return NULL; for (i = 0; i < size - 1; i++) req_arr[i] = i + 1; /* Last slot (no more available slots) */ req_arr[i] = U64_MAX; return req_arr; } /* * vmbus_alloc_requestor - Initializes @rqstor's fields. * Index 0 is the first free slot * @size: Size of the requestor array */ static int vmbus_alloc_requestor(struct vmbus_requestor *rqstor, u32 size) { u64 *rqst_arr; unsigned long *bitmap; rqst_arr = request_arr_init(size); if (!rqst_arr) return -ENOMEM; bitmap = bitmap_zalloc(size, GFP_KERNEL); if (!bitmap) { kfree(rqst_arr); return -ENOMEM; } rqstor->req_arr = rqst_arr; rqstor->req_bitmap = bitmap; rqstor->size = size; rqstor->next_request_id = 0; spin_lock_init(&rqstor->req_lock); return 0; } /* * vmbus_free_requestor - Frees memory allocated for @rqstor * @rqstor: Pointer to the requestor struct */ static void vmbus_free_requestor(struct vmbus_requestor *rqstor) { kfree(rqstor->req_arr); bitmap_free(rqstor->req_bitmap); } static int __vmbus_open(struct vmbus_channel *newchannel, void *userdata, u32 userdatalen, void (*onchannelcallback)(void *context), void *context) { struct vmbus_channel_open_channel *open_msg; struct vmbus_channel_msginfo *open_info = NULL; struct page *page = newchannel->ringbuffer_page; u32 send_pages, recv_pages; unsigned long flags; int err; if (userdatalen > MAX_USER_DEFINED_BYTES) return -EINVAL; send_pages = newchannel->ringbuffer_send_offset; recv_pages = newchannel->ringbuffer_pagecount - send_pages; if (newchannel->state != CHANNEL_OPEN_STATE) return -EINVAL; /* Create and init requestor */ if (newchannel->rqstor_size) { if (vmbus_alloc_requestor(&newchannel->requestor, newchannel->rqstor_size)) return -ENOMEM; } newchannel->state = CHANNEL_OPENING_STATE; newchannel->onchannel_callback = onchannelcallback; newchannel->channel_callback_context = context; if (!newchannel->max_pkt_size) newchannel->max_pkt_size = VMBUS_DEFAULT_MAX_PKT_SIZE; /* Establish the gpadl for the ring buffer */ newchannel->ringbuffer_gpadlhandle.gpadl_handle = 0; err = __vmbus_establish_gpadl(newchannel, HV_GPADL_RING, page_address(newchannel->ringbuffer_page), (send_pages + recv_pages) << PAGE_SHIFT, newchannel->ringbuffer_send_offset << PAGE_SHIFT, &newchannel->ringbuffer_gpadlhandle); if (err) goto error_clean_ring; err = hv_ringbuffer_init(&newchannel->outbound, page, send_pages, 0); if (err) goto error_free_gpadl; err = hv_ringbuffer_init(&newchannel->inbound, &page[send_pages], recv_pages, newchannel->max_pkt_size); if (err) goto error_free_gpadl; /* Create and init the channel open message */ open_info = kzalloc(sizeof(*open_info) + sizeof(struct vmbus_channel_open_channel), GFP_KERNEL); if (!open_info) { err = -ENOMEM; goto error_free_gpadl; } init_completion(&open_info->waitevent); open_info->waiting_channel = newchannel; open_msg = (struct vmbus_channel_open_channel *)open_info->msg; open_msg->header.msgtype = CHANNELMSG_OPENCHANNEL; open_msg->openid = newchannel->offermsg.child_relid; open_msg->child_relid = newchannel->offermsg.child_relid; open_msg->ringbuffer_gpadlhandle = newchannel->ringbuffer_gpadlhandle.gpadl_handle; /* * The unit of ->downstream_ringbuffer_pageoffset is HV_HYP_PAGE and * the unit of ->ringbuffer_send_offset (i.e. send_pages) is PAGE, so * here we calculate it into HV_HYP_PAGE. */ open_msg->downstream_ringbuffer_pageoffset = hv_ring_gpadl_send_hvpgoffset(send_pages << PAGE_SHIFT); open_msg->target_vp = hv_cpu_number_to_vp_number(newchannel->target_cpu); if (userdatalen) memcpy(open_msg->userdata, userdata, userdatalen); spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags); list_add_tail(&open_info->msglistentry, &vmbus_connection.chn_msg_list); spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags); if (newchannel->rescind) { err = -ENODEV; goto error_clean_msglist; } err = vmbus_post_msg(open_msg, sizeof(struct vmbus_channel_open_channel), true); trace_vmbus_open(open_msg, err); if (err != 0) goto error_clean_msglist; wait_for_completion(&open_info->waitevent); spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags); list_del(&open_info->msglistentry); spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags); if (newchannel->rescind) { err = -ENODEV; goto error_free_info; } if (open_info->response.open_result.status) { err = -EAGAIN; goto error_free_info; } newchannel->state = CHANNEL_OPENED_STATE; kfree(open_info); return 0; error_clean_msglist: spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags); list_del(&open_info->msglistentry); spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags); error_free_info: kfree(open_info); error_free_gpadl: vmbus_teardown_gpadl(newchannel, &newchannel->ringbuffer_gpadlhandle); error_clean_ring: hv_ringbuffer_cleanup(&newchannel->outbound); hv_ringbuffer_cleanup(&newchannel->inbound); vmbus_free_requestor(&newchannel->requestor); newchannel->state = CHANNEL_OPEN_STATE; return err; } /* * vmbus_connect_ring - Open the channel but reuse ring buffer */ int vmbus_connect_ring(struct vmbus_channel *newchannel, void (*onchannelcallback)(void *context), void *context) { return __vmbus_open(newchannel, NULL, 0, onchannelcallback, context); } EXPORT_SYMBOL_GPL(vmbus_connect_ring); /* * vmbus_open - Open the specified channel. */ int vmbus_open(struct vmbus_channel *newchannel, u32 send_ringbuffer_size, u32 recv_ringbuffer_size, void *userdata, u32 userdatalen, void (*onchannelcallback)(void *context), void *context) { int err; err = vmbus_alloc_ring(newchannel, send_ringbuffer_size, recv_ringbuffer_size); if (err) return err; err = __vmbus_open(newchannel, userdata, userdatalen, onchannelcallback, context); if (err) vmbus_free_ring(newchannel); return err; } EXPORT_SYMBOL_GPL(vmbus_open); /* * vmbus_teardown_gpadl -Teardown the specified GPADL handle */ int vmbus_teardown_gpadl(struct vmbus_channel *channel, struct vmbus_gpadl *gpadl) { struct vmbus_channel_gpadl_teardown *msg; struct vmbus_channel_msginfo *info; unsigned long flags; int ret; info = kzalloc(sizeof(*info) + sizeof(struct vmbus_channel_gpadl_teardown), GFP_KERNEL); if (!info) return -ENOMEM; init_completion(&info->waitevent); info->waiting_channel = channel; msg = (struct vmbus_channel_gpadl_teardown *)info->msg; msg->header.msgtype = CHANNELMSG_GPADL_TEARDOWN; msg->child_relid = channel->offermsg.child_relid; msg->gpadl = gpadl->gpadl_handle; spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags); list_add_tail(&info->msglistentry, &vmbus_connection.chn_msg_list); spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags); if (channel->rescind) goto post_msg_err; ret = vmbus_post_msg(msg, sizeof(struct vmbus_channel_gpadl_teardown), true); trace_vmbus_teardown_gpadl(msg, ret); if (ret) goto post_msg_err; wait_for_completion(&info->waitevent); gpadl->gpadl_handle = 0; post_msg_err: /* * If the channel has been rescinded; * we will be awakened by the rescind * handler; set the error code to zero so we don't leak memory. */ if (channel->rescind) ret = 0; spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags); list_del(&info->msglistentry); spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags); kfree(info); ret = set_memory_encrypted((unsigned long)gpadl->buffer, PFN_UP(gpadl->size)); if (ret) pr_warn("Fail to set mem host visibility in GPADL teardown %d.\n", ret); return ret; } EXPORT_SYMBOL_GPL(vmbus_teardown_gpadl); void vmbus_reset_channel_cb(struct vmbus_channel *channel) { unsigned long flags; /* * vmbus_on_event(), running in the per-channel tasklet, can race * with vmbus_close_internal() in the case of SMP guest, e.g., when * the former is accessing channel->inbound.ring_buffer, the latter * could be freeing the ring_buffer pages, so here we must stop it * first. * * vmbus_chan_sched() might call the netvsc driver callback function * that ends up scheduling NAPI work that accesses the ring buffer. * At this point, we have to ensure that any such work is completed * and that the channel ring buffer is no longer being accessed, cf. * the calls to napi_disable() in netvsc_device_remove(). */ tasklet_disable(&channel->callback_event); /* See the inline comments in vmbus_chan_sched(). */ spin_lock_irqsave(&channel->sched_lock, flags); channel->onchannel_callback = NULL; spin_unlock_irqrestore(&channel->sched_lock, flags); channel->sc_creation_callback = NULL; /* Re-enable tasklet for use on re-open */ tasklet_enable(&channel->callback_event); } static int vmbus_close_internal(struct vmbus_channel *channel) { struct vmbus_channel_close_channel *msg; int ret; vmbus_reset_channel_cb(channel); /* * In case a device driver's probe() fails (e.g., * util_probe() -> vmbus_open() returns -ENOMEM) and the device is * rescinded later (e.g., we dynamically disable an Integrated Service * in Hyper-V Manager), the driver's remove() invokes vmbus_close(): * here we should skip most of the below cleanup work. */ if (channel->state != CHANNEL_OPENED_STATE) return -EINVAL; channel->state = CHANNEL_OPEN_STATE; /* Send a closing message */ msg = &channel->close_msg.msg; msg->header.msgtype = CHANNELMSG_CLOSECHANNEL; msg->child_relid = channel->offermsg.child_relid; ret = vmbus_post_msg(msg, sizeof(struct vmbus_channel_close_channel), true); trace_vmbus_close_internal(msg, ret); if (ret) { pr_err("Close failed: close post msg return is %d\n", ret); /* * If we failed to post the close msg, * it is perhaps better to leak memory. */ } /* Tear down the gpadl for the channel's ring buffer */ else if (channel->ringbuffer_gpadlhandle.gpadl_handle) { ret = vmbus_teardown_gpadl(channel, &channel->ringbuffer_gpadlhandle); if (ret) { pr_err("Close failed: teardown gpadl return %d\n", ret); /* * If we failed to teardown gpadl, * it is perhaps better to leak memory. */ } } if (!ret) vmbus_free_requestor(&channel->requestor); return ret; } /* disconnect ring - close all channels */ int vmbus_disconnect_ring(struct vmbus_channel *channel) { struct vmbus_channel *cur_channel, *tmp; int ret; if (channel->primary_channel != NULL) return -EINVAL; list_for_each_entry_safe(cur_channel, tmp, &channel->sc_list, sc_list) { if (cur_channel->rescind) wait_for_completion(&cur_channel->rescind_event); mutex_lock(&vmbus_connection.channel_mutex); if (vmbus_close_internal(cur_channel) == 0) { vmbus_free_ring(cur_channel); if (cur_channel->rescind) hv_process_channel_removal(cur_channel); } mutex_unlock(&vmbus_connection.channel_mutex); } /* * Now close the primary. */ mutex_lock(&vmbus_connection.channel_mutex); ret = vmbus_close_internal(channel); mutex_unlock(&vmbus_connection.channel_mutex); return ret; } EXPORT_SYMBOL_GPL(vmbus_disconnect_ring); /* * vmbus_close - Close the specified channel */ void vmbus_close(struct vmbus_channel *channel) { if (vmbus_disconnect_ring(channel) == 0) vmbus_free_ring(channel); } EXPORT_SYMBOL_GPL(vmbus_close); /** * vmbus_sendpacket_getid() - Send the specified buffer on the given channel * @channel: Pointer to vmbus_channel structure * @buffer: Pointer to the buffer you want to send the data from. * @bufferlen: Maximum size of what the buffer holds. * @requestid: Identifier of the request * @trans_id: Identifier of the transaction associated to this request, if * the send is successful; undefined, otherwise. * @type: Type of packet that is being sent e.g. negotiate, time * packet etc. * @flags: 0 or VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED * * Sends data in @buffer directly to Hyper-V via the vmbus. * This will send the data unparsed to Hyper-V. * * Mainly used by Hyper-V drivers. */ int vmbus_sendpacket_getid(struct vmbus_channel *channel, void *buffer, u32 bufferlen, u64 requestid, u64 *trans_id, enum vmbus_packet_type type, u32 flags) { struct vmpacket_descriptor desc; u32 packetlen = sizeof(struct vmpacket_descriptor) + bufferlen; u32 packetlen_aligned = ALIGN(packetlen, sizeof(u64)); struct kvec bufferlist[3]; u64 aligned_data = 0; int num_vecs = ((bufferlen != 0) ? 3 : 1); /* Setup the descriptor */ desc.type = type; /* VmbusPacketTypeDataInBand; */ desc.flags = flags; /* VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED; */ /* in 8-bytes granularity */ desc.offset8 = sizeof(struct vmpacket_descriptor) >> 3; desc.len8 = (u16)(packetlen_aligned >> 3); desc.trans_id = VMBUS_RQST_ERROR; /* will be updated in hv_ringbuffer_write() */ bufferlist[0].iov_base = &desc; bufferlist[0].iov_len = sizeof(struct vmpacket_descriptor); bufferlist[1].iov_base = buffer; bufferlist[1].iov_len = bufferlen; bufferlist[2].iov_base = &aligned_data; bufferlist[2].iov_len = (packetlen_aligned - packetlen); return hv_ringbuffer_write(channel, bufferlist, num_vecs, requestid, trans_id); } EXPORT_SYMBOL(vmbus_sendpacket_getid); /** * vmbus_sendpacket() - Send the specified buffer on the given channel * @channel: Pointer to vmbus_channel structure * @buffer: Pointer to the buffer you want to send the data from. * @bufferlen: Maximum size of what the buffer holds. * @requestid: Identifier of the request * @type: Type of packet that is being sent e.g. negotiate, time * packet etc. * @flags: 0 or VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED * * Sends data in @buffer directly to Hyper-V via the vmbus. * This will send the data unparsed to Hyper-V. * * Mainly used by Hyper-V drivers. */ int vmbus_sendpacket(struct vmbus_channel *channel, void *buffer, u32 bufferlen, u64 requestid, enum vmbus_packet_type type, u32 flags) { return vmbus_sendpacket_getid(channel, buffer, bufferlen, requestid, NULL, type, flags); } EXPORT_SYMBOL(vmbus_sendpacket); /* * vmbus_sendpacket_pagebuffer - Send a range of single-page buffer * packets using a GPADL Direct packet type. This interface allows you * to control notifying the host. This will be useful for sending * batched data. Also the sender can control the send flags * explicitly. */ int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel, struct hv_page_buffer pagebuffers[], u32 pagecount, void *buffer, u32 bufferlen, u64 requestid) { int i; struct vmbus_channel_packet_page_buffer desc; u32 descsize; u32 packetlen; u32 packetlen_aligned; struct kvec bufferlist[3]; u64 aligned_data = 0; if (pagecount > MAX_PAGE_BUFFER_COUNT) return -EINVAL; /* * Adjust the size down since vmbus_channel_packet_page_buffer is the * largest size we support */ descsize = sizeof(struct vmbus_channel_packet_page_buffer) - ((MAX_PAGE_BUFFER_COUNT - pagecount) * sizeof(struct hv_page_buffer)); packetlen = descsize + bufferlen; packetlen_aligned = ALIGN(packetlen, sizeof(u64)); /* Setup the descriptor */ desc.type = VM_PKT_DATA_USING_GPA_DIRECT; desc.flags = VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED; desc.dataoffset8 = descsize >> 3; /* in 8-bytes granularity */ desc.length8 = (u16)(packetlen_aligned >> 3); desc.transactionid = VMBUS_RQST_ERROR; /* will be updated in hv_ringbuffer_write() */ desc.reserved = 0; desc.rangecount = pagecount; for (i = 0; i < pagecount; i++) { desc.range[i].len = pagebuffers[i].len; desc.range[i].offset = pagebuffers[i].offset; desc.range[i].pfn = pagebuffers[i].pfn; } bufferlist[0].iov_base = &desc; bufferlist[0].iov_len = descsize; bufferlist[1].iov_base = buffer; bufferlist[1].iov_len = bufferlen; bufferlist[2].iov_base = &aligned_data; bufferlist[2].iov_len = (packetlen_aligned - packetlen); return hv_ringbuffer_write(channel, bufferlist, 3, requestid, NULL); } EXPORT_SYMBOL_GPL(vmbus_sendpacket_pagebuffer); /* * vmbus_sendpacket_multipagebuffer - Send a multi-page buffer packet * using a GPADL Direct packet type. * The buffer includes the vmbus descriptor. */ int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel, struct vmbus_packet_mpb_array *desc, u32 desc_size, void *buffer, u32 bufferlen, u64 requestid) { u32 packetlen; u32 packetlen_aligned; struct kvec bufferlist[3]; u64 aligned_data = 0; packetlen = desc_size + bufferlen; packetlen_aligned = ALIGN(packetlen, sizeof(u64)); /* Setup the descriptor */ desc->type = VM_PKT_DATA_USING_GPA_DIRECT; desc->flags = VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED; desc->dataoffset8 = desc_size >> 3; /* in 8-bytes granularity */ desc->length8 = (u16)(packetlen_aligned >> 3); desc->transactionid = VMBUS_RQST_ERROR; /* will be updated in hv_ringbuffer_write() */ desc->reserved = 0; desc->rangecount = 1; bufferlist[0].iov_base = desc; bufferlist[0].iov_len = desc_size; bufferlist[1].iov_base = buffer; bufferlist[1].iov_len = bufferlen; bufferlist[2].iov_base = &aligned_data; bufferlist[2].iov_len = (packetlen_aligned - packetlen); return hv_ringbuffer_write(channel, bufferlist, 3, requestid, NULL); } EXPORT_SYMBOL_GPL(vmbus_sendpacket_mpb_desc); /** * __vmbus_recvpacket() - Retrieve the user packet on the specified channel * @channel: Pointer to vmbus_channel structure * @buffer: Pointer to the buffer you want to receive the data into. * @bufferlen: Maximum size of what the buffer can hold. * @buffer_actual_len: The actual size of the data after it was received. * @requestid: Identifier of the request * @raw: true means keep the vmpacket_descriptor header in the received data. * * Receives directly from the hyper-v vmbus and puts the data it received * into Buffer. This will receive the data unparsed from hyper-v. * * Mainly used by Hyper-V drivers. */ static inline int __vmbus_recvpacket(struct vmbus_channel *channel, void *buffer, u32 bufferlen, u32 *buffer_actual_len, u64 *requestid, bool raw) { return hv_ringbuffer_read(channel, buffer, bufferlen, buffer_actual_len, requestid, raw); } int vmbus_recvpacket(struct vmbus_channel *channel, void *buffer, u32 bufferlen, u32 *buffer_actual_len, u64 *requestid) { return __vmbus_recvpacket(channel, buffer, bufferlen, buffer_actual_len, requestid, false); } EXPORT_SYMBOL(vmbus_recvpacket); /* * vmbus_recvpacket_raw - Retrieve the raw packet on the specified channel */ int vmbus_recvpacket_raw(struct vmbus_channel *channel, void *buffer, u32 bufferlen, u32 *buffer_actual_len, u64 *requestid) { return __vmbus_recvpacket(channel, buffer, bufferlen, buffer_actual_len, requestid, true); } EXPORT_SYMBOL_GPL(vmbus_recvpacket_raw); /* * vmbus_next_request_id - Returns a new request id. It is also * the index at which the guest memory address is stored. * Uses a spin lock to avoid race conditions. * @channel: Pointer to the VMbus channel struct * @rqst_add: Guest memory address to be stored in the array */ u64 vmbus_next_request_id(struct vmbus_channel *channel, u64 rqst_addr) { struct vmbus_requestor *rqstor = &channel->requestor; unsigned long flags; u64 current_id; /* Check rqstor has been initialized */ if (!channel->rqstor_size) return VMBUS_NO_RQSTOR; lock_requestor(channel, flags); current_id = rqstor->next_request_id; /* Requestor array is full */ if (current_id >= rqstor->size) { unlock_requestor(channel, flags); return VMBUS_RQST_ERROR; } rqstor->next_request_id = rqstor->req_arr[current_id]; rqstor->req_arr[current_id] = rqst_addr; /* The already held spin lock provides atomicity */ bitmap_set(rqstor->req_bitmap, current_id, 1); unlock_requestor(channel, flags); /* * Cannot return an ID of 0, which is reserved for an unsolicited * message from Hyper-V; Hyper-V does not acknowledge (respond to) * VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED requests with ID of * 0 sent by the guest. */ return current_id + 1; } EXPORT_SYMBOL_GPL(vmbus_next_request_id); /* As in vmbus_request_addr_match() but without the requestor lock */ u64 __vmbus_request_addr_match(struct vmbus_channel *channel, u64 trans_id, u64 rqst_addr) { struct vmbus_requestor *rqstor = &channel->requestor; u64 req_addr; /* Check rqstor has been initialized */ if (!channel->rqstor_size) return VMBUS_NO_RQSTOR; /* Hyper-V can send an unsolicited message with ID of 0 */ if (!trans_id) return VMBUS_RQST_ERROR; /* Data corresponding to trans_id is stored at trans_id - 1 */ trans_id--; /* Invalid trans_id */ if (trans_id >= rqstor->size || !test_bit(trans_id, rqstor->req_bitmap)) return VMBUS_RQST_ERROR; req_addr = rqstor->req_arr[trans_id]; if (rqst_addr == VMBUS_RQST_ADDR_ANY || req_addr == rqst_addr) { rqstor->req_arr[trans_id] = rqstor->next_request_id; rqstor->next_request_id = trans_id; /* The already held spin lock provides atomicity */ bitmap_clear(rqstor->req_bitmap, trans_id, 1); } return req_addr; } EXPORT_SYMBOL_GPL(__vmbus_request_addr_match); /* * vmbus_request_addr_match - Clears/removes @trans_id from the @channel's * requestor, provided the memory address stored at @trans_id equals @rqst_addr * (or provided @rqst_addr matches the sentinel value VMBUS_RQST_ADDR_ANY). * * Returns the memory address stored at @trans_id, or VMBUS_RQST_ERROR if * @trans_id is not contained in the requestor. * * Acquires and releases the requestor spin lock. */ u64 vmbus_request_addr_match(struct vmbus_channel *channel, u64 trans_id, u64 rqst_addr) { unsigned long flags; u64 req_addr; lock_requestor(channel, flags); req_addr = __vmbus_request_addr_match(channel, trans_id, rqst_addr); unlock_requestor(channel, flags); return req_addr; } EXPORT_SYMBOL_GPL(vmbus_request_addr_match); /* * vmbus_request_addr - Returns the memory address stored at @trans_id * in @rqstor. Uses a spin lock to avoid race conditions. * @channel: Pointer to the VMbus channel struct * @trans_id: Request id sent back from Hyper-V. Becomes the requestor's * next request id. */ u64 vmbus_request_addr(struct vmbus_channel *channel, u64 trans_id) { return vmbus_request_addr_match(channel, trans_id, VMBUS_RQST_ADDR_ANY); } EXPORT_SYMBOL_GPL(vmbus_request_addr);
linux-master
drivers/hv/channel.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2012, Microsoft Corporation. * * Author: * K. Y. Srinivasan <[email protected]> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/cleanup.h> #include <linux/kernel.h> #include <linux/jiffies.h> #include <linux/mman.h> #include <linux/debugfs.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/kthread.h> #include <linux/completion.h> #include <linux/count_zeros.h> #include <linux/memory_hotplug.h> #include <linux/memory.h> #include <linux/notifier.h> #include <linux/percpu_counter.h> #include <linux/page_reporting.h> #include <linux/hyperv.h> #include <asm/hyperv-tlfs.h> #include <asm/mshyperv.h> #define CREATE_TRACE_POINTS #include "hv_trace_balloon.h" /* * We begin with definitions supporting the Dynamic Memory protocol * with the host. * * Begin protocol definitions. */ /* * Protocol versions. The low word is the minor version, the high word the major * version. * * History: * Initial version 1.0 * Changed to 0.1 on 2009/03/25 * Changes to 0.2 on 2009/05/14 * Changes to 0.3 on 2009/12/03 * Changed to 1.0 on 2011/04/05 */ #define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor))) #define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16) #define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff) enum { DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3), DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0), DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0), DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1, DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2, DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3, DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10 }; /* * Message Types */ enum dm_message_type { /* * Version 0.3 */ DM_ERROR = 0, DM_VERSION_REQUEST = 1, DM_VERSION_RESPONSE = 2, DM_CAPABILITIES_REPORT = 3, DM_CAPABILITIES_RESPONSE = 4, DM_STATUS_REPORT = 5, DM_BALLOON_REQUEST = 6, DM_BALLOON_RESPONSE = 7, DM_UNBALLOON_REQUEST = 8, DM_UNBALLOON_RESPONSE = 9, DM_MEM_HOT_ADD_REQUEST = 10, DM_MEM_HOT_ADD_RESPONSE = 11, DM_VERSION_03_MAX = 11, /* * Version 1.0. */ DM_INFO_MESSAGE = 12, DM_VERSION_1_MAX = 12 }; /* * Structures defining the dynamic memory management * protocol. */ union dm_version { struct { __u16 minor_version; __u16 major_version; }; __u32 version; } __packed; union dm_caps { struct { __u64 balloon:1; __u64 hot_add:1; /* * To support guests that may have alignment * limitations on hot-add, the guest can specify * its alignment requirements; a value of n * represents an alignment of 2^n in mega bytes. */ __u64 hot_add_alignment:4; __u64 reservedz:58; } cap_bits; __u64 caps; } __packed; union dm_mem_page_range { struct { /* * The PFN number of the first page in the range. * 40 bits is the architectural limit of a PFN * number for AMD64. */ __u64 start_page:40; /* * The number of pages in the range. */ __u64 page_cnt:24; } finfo; __u64 page_range; } __packed; /* * The header for all dynamic memory messages: * * type: Type of the message. * size: Size of the message in bytes; including the header. * trans_id: The guest is responsible for manufacturing this ID. */ struct dm_header { __u16 type; __u16 size; __u32 trans_id; } __packed; /* * A generic message format for dynamic memory. * Specific message formats are defined later in the file. */ struct dm_message { struct dm_header hdr; __u8 data[]; /* enclosed message */ } __packed; /* * Specific message types supporting the dynamic memory protocol. */ /* * Version negotiation message. Sent from the guest to the host. * The guest is free to try different versions until the host * accepts the version. * * dm_version: The protocol version requested. * is_last_attempt: If TRUE, this is the last version guest will request. * reservedz: Reserved field, set to zero. */ struct dm_version_request { struct dm_header hdr; union dm_version version; __u32 is_last_attempt:1; __u32 reservedz:31; } __packed; /* * Version response message; Host to Guest and indicates * if the host has accepted the version sent by the guest. * * is_accepted: If TRUE, host has accepted the version and the guest * should proceed to the next stage of the protocol. FALSE indicates that * guest should re-try with a different version. * * reservedz: Reserved field, set to zero. */ struct dm_version_response { struct dm_header hdr; __u64 is_accepted:1; __u64 reservedz:63; } __packed; /* * Message reporting capabilities. This is sent from the guest to the * host. */ struct dm_capabilities { struct dm_header hdr; union dm_caps caps; __u64 min_page_cnt; __u64 max_page_number; } __packed; /* * Response to the capabilities message. This is sent from the host to the * guest. This message notifies if the host has accepted the guest's * capabilities. If the host has not accepted, the guest must shutdown * the service. * * is_accepted: Indicates if the host has accepted guest's capabilities. * reservedz: Must be 0. */ struct dm_capabilities_resp_msg { struct dm_header hdr; __u64 is_accepted:1; __u64 reservedz:63; } __packed; /* * This message is used to report memory pressure from the guest. * This message is not part of any transaction and there is no * response to this message. * * num_avail: Available memory in pages. * num_committed: Committed memory in pages. * page_file_size: The accumulated size of all page files * in the system in pages. * zero_free: The number of zero and free pages. * page_file_writes: The writes to the page file in pages. * io_diff: An indicator of file cache efficiency or page file activity, * calculated as File Cache Page Fault Count - Page Read Count. * This value is in pages. * * Some of these metrics are Windows specific and fortunately * the algorithm on the host side that computes the guest memory * pressure only uses num_committed value. */ struct dm_status { struct dm_header hdr; __u64 num_avail; __u64 num_committed; __u64 page_file_size; __u64 zero_free; __u32 page_file_writes; __u32 io_diff; } __packed; /* * Message to ask the guest to allocate memory - balloon up message. * This message is sent from the host to the guest. The guest may not be * able to allocate as much memory as requested. * * num_pages: number of pages to allocate. */ struct dm_balloon { struct dm_header hdr; __u32 num_pages; __u32 reservedz; } __packed; /* * Balloon response message; this message is sent from the guest * to the host in response to the balloon message. * * reservedz: Reserved; must be set to zero. * more_pages: If FALSE, this is the last message of the transaction. * if TRUE there will atleast one more message from the guest. * * range_count: The number of ranges in the range array. * * range_array: An array of page ranges returned to the host. * */ struct dm_balloon_response { struct dm_header hdr; __u32 reservedz; __u32 more_pages:1; __u32 range_count:31; union dm_mem_page_range range_array[]; } __packed; /* * Un-balloon message; this message is sent from the host * to the guest to give guest more memory. * * more_pages: If FALSE, this is the last message of the transaction. * if TRUE there will atleast one more message from the guest. * * reservedz: Reserved; must be set to zero. * * range_count: The number of ranges in the range array. * * range_array: An array of page ranges returned to the host. * */ struct dm_unballoon_request { struct dm_header hdr; __u32 more_pages:1; __u32 reservedz:31; __u32 range_count; union dm_mem_page_range range_array[]; } __packed; /* * Un-balloon response message; this message is sent from the guest * to the host in response to an unballoon request. * */ struct dm_unballoon_response { struct dm_header hdr; } __packed; /* * Hot add request message. Message sent from the host to the guest. * * mem_range: Memory range to hot add. * */ struct dm_hot_add { struct dm_header hdr; union dm_mem_page_range range; } __packed; /* * Hot add response message. * This message is sent by the guest to report the status of a hot add request. * If page_count is less than the requested page count, then the host should * assume all further hot add requests will fail, since this indicates that * the guest has hit an upper physical memory barrier. * * Hot adds may also fail due to low resources; in this case, the guest must * not complete this message until the hot add can succeed, and the host must * not send a new hot add request until the response is sent. * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS * times it fails the request. * * * page_count: number of pages that were successfully hot added. * * result: result of the operation 1: success, 0: failure. * */ struct dm_hot_add_response { struct dm_header hdr; __u32 page_count; __u32 result; } __packed; /* * Types of information sent from host to the guest. */ enum dm_info_type { INFO_TYPE_MAX_PAGE_CNT = 0, MAX_INFO_TYPE }; /* * Header for the information message. */ struct dm_info_header { enum dm_info_type type; __u32 data_size; } __packed; /* * This message is sent from the host to the guest to pass * some relevant information (win8 addition). * * reserved: no used. * info_size: size of the information blob. * info: information blob. */ struct dm_info_msg { struct dm_header hdr; __u32 reserved; __u32 info_size; __u8 info[]; }; /* * End protocol definitions. */ /* * State to manage hot adding memory into the guest. * The range start_pfn : end_pfn specifies the range * that the host has asked us to hot add. The range * start_pfn : ha_end_pfn specifies the range that we have * currently hot added. We hot add in multiples of 128M * chunks; it is possible that we may not be able to bring * online all the pages in the region. The range * covered_start_pfn:covered_end_pfn defines the pages that can * be brough online. */ struct hv_hotadd_state { struct list_head list; unsigned long start_pfn; unsigned long covered_start_pfn; unsigned long covered_end_pfn; unsigned long ha_end_pfn; unsigned long end_pfn; /* * A list of gaps. */ struct list_head gap_list; }; struct hv_hotadd_gap { struct list_head list; unsigned long start_pfn; unsigned long end_pfn; }; struct balloon_state { __u32 num_pages; struct work_struct wrk; }; struct hot_add_wrk { union dm_mem_page_range ha_page_range; union dm_mem_page_range ha_region_range; struct work_struct wrk; }; static bool allow_hibernation; static bool hot_add = true; static bool do_hot_add; /* * Delay reporting memory pressure by * the specified number of seconds. */ static uint pressure_report_delay = 45; extern unsigned int page_reporting_order; #define HV_MAX_FAILURES 2 /* * The last time we posted a pressure report to host. */ static unsigned long last_post_time; static int hv_hypercall_multi_failure; module_param(hot_add, bool, (S_IRUGO | S_IWUSR)); MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add"); module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR)); MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure"); static atomic_t trans_id = ATOMIC_INIT(0); static int dm_ring_size = VMBUS_RING_SIZE(16 * 1024); /* * Driver specific state. */ enum hv_dm_state { DM_INITIALIZING = 0, DM_INITIALIZED, DM_BALLOON_UP, DM_BALLOON_DOWN, DM_HOT_ADD, DM_INIT_ERROR }; static __u8 recv_buffer[HV_HYP_PAGE_SIZE]; static __u8 balloon_up_send_buffer[HV_HYP_PAGE_SIZE]; #define PAGES_IN_2M (2 * 1024 * 1024 / PAGE_SIZE) #define HA_CHUNK (128 * 1024 * 1024 / PAGE_SIZE) struct hv_dynmem_device { struct hv_device *dev; enum hv_dm_state state; struct completion host_event; struct completion config_event; /* * Number of pages we have currently ballooned out. */ unsigned int num_pages_ballooned; unsigned int num_pages_onlined; unsigned int num_pages_added; /* * State to manage the ballooning (up) operation. */ struct balloon_state balloon_wrk; /* * State to execute the "hot-add" operation. */ struct hot_add_wrk ha_wrk; /* * This state tracks if the host has specified a hot-add * region. */ bool host_specified_ha_region; /* * State to synchronize hot-add. */ struct completion ol_waitevent; /* * This thread handles hot-add * requests from the host as well as notifying * the host with regards to memory pressure in * the guest. */ struct task_struct *thread; /* * Protects ha_region_list, num_pages_onlined counter and individual * regions from ha_region_list. */ spinlock_t ha_lock; /* * A list of hot-add regions. */ struct list_head ha_region_list; /* * We start with the highest version we can support * and downgrade based on the host; we save here the * next version to try. */ __u32 next_version; /* * The negotiated version agreed by host. */ __u32 version; struct page_reporting_dev_info pr_dev_info; /* * Maximum number of pages that can be hot_add-ed */ __u64 max_dynamic_page_count; }; static struct hv_dynmem_device dm_device; static void post_status(struct hv_dynmem_device *dm); static void enable_page_reporting(void); static void disable_page_reporting(void); #ifdef CONFIG_MEMORY_HOTPLUG static inline bool has_pfn_is_backed(struct hv_hotadd_state *has, unsigned long pfn) { struct hv_hotadd_gap *gap; /* The page is not backed. */ if ((pfn < has->covered_start_pfn) || (pfn >= has->covered_end_pfn)) return false; /* Check for gaps. */ list_for_each_entry(gap, &has->gap_list, list) { if ((pfn >= gap->start_pfn) && (pfn < gap->end_pfn)) return false; } return true; } static unsigned long hv_page_offline_check(unsigned long start_pfn, unsigned long nr_pages) { unsigned long pfn = start_pfn, count = 0; struct hv_hotadd_state *has; bool found; while (pfn < start_pfn + nr_pages) { /* * Search for HAS which covers the pfn and when we find one * count how many consequitive PFNs are covered. */ found = false; list_for_each_entry(has, &dm_device.ha_region_list, list) { while ((pfn >= has->start_pfn) && (pfn < has->end_pfn) && (pfn < start_pfn + nr_pages)) { found = true; if (has_pfn_is_backed(has, pfn)) count++; pfn++; } } /* * This PFN is not in any HAS (e.g. we're offlining a region * which was present at boot), no need to account for it. Go * to the next one. */ if (!found) pfn++; } return count; } static int hv_memory_notifier(struct notifier_block *nb, unsigned long val, void *v) { struct memory_notify *mem = (struct memory_notify *)v; unsigned long pfn_count; switch (val) { case MEM_ONLINE: case MEM_CANCEL_ONLINE: complete(&dm_device.ol_waitevent); break; case MEM_OFFLINE: scoped_guard(spinlock_irqsave, &dm_device.ha_lock) { pfn_count = hv_page_offline_check(mem->start_pfn, mem->nr_pages); if (pfn_count <= dm_device.num_pages_onlined) { dm_device.num_pages_onlined -= pfn_count; } else { /* * We're offlining more pages than we * managed to online. This is * unexpected. In any case don't let * num_pages_onlined wrap around zero. */ WARN_ON_ONCE(1); dm_device.num_pages_onlined = 0; } } break; case MEM_GOING_ONLINE: case MEM_GOING_OFFLINE: case MEM_CANCEL_OFFLINE: break; } return NOTIFY_OK; } static struct notifier_block hv_memory_nb = { .notifier_call = hv_memory_notifier, .priority = 0 }; /* Check if the particular page is backed and can be onlined and online it. */ static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg) { if (!has_pfn_is_backed(has, page_to_pfn(pg))) { if (!PageOffline(pg)) __SetPageOffline(pg); return; } if (PageOffline(pg)) __ClearPageOffline(pg); /* This frame is currently backed; online the page. */ generic_online_page(pg, 0); lockdep_assert_held(&dm_device.ha_lock); dm_device.num_pages_onlined++; } static void hv_bring_pgs_online(struct hv_hotadd_state *has, unsigned long start_pfn, unsigned long size) { int i; pr_debug("Online %lu pages starting at pfn 0x%lx\n", size, start_pfn); for (i = 0; i < size; i++) hv_page_online_one(has, pfn_to_page(start_pfn + i)); } static void hv_mem_hot_add(unsigned long start, unsigned long size, unsigned long pfn_count, struct hv_hotadd_state *has) { int ret = 0; int i, nid; unsigned long start_pfn; unsigned long processed_pfn; unsigned long total_pfn = pfn_count; for (i = 0; i < (size/HA_CHUNK); i++) { start_pfn = start + (i * HA_CHUNK); scoped_guard(spinlock_irqsave, &dm_device.ha_lock) { has->ha_end_pfn += HA_CHUNK; if (total_pfn > HA_CHUNK) { processed_pfn = HA_CHUNK; total_pfn -= HA_CHUNK; } else { processed_pfn = total_pfn; total_pfn = 0; } has->covered_end_pfn += processed_pfn; } reinit_completion(&dm_device.ol_waitevent); nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn)); ret = add_memory(nid, PFN_PHYS((start_pfn)), (HA_CHUNK << PAGE_SHIFT), MHP_MERGE_RESOURCE); if (ret) { pr_err("hot_add memory failed error is %d\n", ret); if (ret == -EEXIST) { /* * This error indicates that the error * is not a transient failure. This is the * case where the guest's physical address map * precludes hot adding memory. Stop all further * memory hot-add. */ do_hot_add = false; } scoped_guard(spinlock_irqsave, &dm_device.ha_lock) { has->ha_end_pfn -= HA_CHUNK; has->covered_end_pfn -= processed_pfn; } break; } /* * Wait for memory to get onlined. If the kernel onlined the * memory when adding it, this will return directly. Otherwise, * it will wait for user space to online the memory. This helps * to avoid adding memory faster than it is getting onlined. As * adding succeeded, it is ok to proceed even if the memory was * not onlined in time. */ wait_for_completion_timeout(&dm_device.ol_waitevent, 5 * HZ); post_status(&dm_device); } } static void hv_online_page(struct page *pg, unsigned int order) { struct hv_hotadd_state *has; unsigned long pfn = page_to_pfn(pg); guard(spinlock_irqsave)(&dm_device.ha_lock); list_for_each_entry(has, &dm_device.ha_region_list, list) { /* The page belongs to a different HAS. */ if ((pfn < has->start_pfn) || (pfn + (1UL << order) > has->end_pfn)) continue; hv_bring_pgs_online(has, pfn, 1UL << order); break; } } static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt) { struct hv_hotadd_state *has; struct hv_hotadd_gap *gap; unsigned long residual, new_inc; int ret = 0; guard(spinlock_irqsave)(&dm_device.ha_lock); list_for_each_entry(has, &dm_device.ha_region_list, list) { /* * If the pfn range we are dealing with is not in the current * "hot add block", move on. */ if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn) continue; /* * If the current start pfn is not where the covered_end * is, create a gap and update covered_end_pfn. */ if (has->covered_end_pfn != start_pfn) { gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC); if (!gap) { ret = -ENOMEM; break; } INIT_LIST_HEAD(&gap->list); gap->start_pfn = has->covered_end_pfn; gap->end_pfn = start_pfn; list_add_tail(&gap->list, &has->gap_list); has->covered_end_pfn = start_pfn; } /* * If the current hot add-request extends beyond * our current limit; extend it. */ if ((start_pfn + pfn_cnt) > has->end_pfn) { residual = (start_pfn + pfn_cnt - has->end_pfn); /* * Extend the region by multiples of HA_CHUNK. */ new_inc = (residual / HA_CHUNK) * HA_CHUNK; if (residual % HA_CHUNK) new_inc += HA_CHUNK; has->end_pfn += new_inc; } ret = 1; break; } return ret; } static unsigned long handle_pg_range(unsigned long pg_start, unsigned long pg_count) { unsigned long start_pfn = pg_start; unsigned long pfn_cnt = pg_count; unsigned long size; struct hv_hotadd_state *has; unsigned long pgs_ol = 0; unsigned long old_covered_state; unsigned long res = 0, flags; pr_debug("Hot adding %lu pages starting at pfn 0x%lx.\n", pg_count, pg_start); spin_lock_irqsave(&dm_device.ha_lock, flags); list_for_each_entry(has, &dm_device.ha_region_list, list) { /* * If the pfn range we are dealing with is not in the current * "hot add block", move on. */ if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn) continue; old_covered_state = has->covered_end_pfn; if (start_pfn < has->ha_end_pfn) { /* * This is the case where we are backing pages * in an already hot added region. Bring * these pages online first. */ pgs_ol = has->ha_end_pfn - start_pfn; if (pgs_ol > pfn_cnt) pgs_ol = pfn_cnt; has->covered_end_pfn += pgs_ol; pfn_cnt -= pgs_ol; /* * Check if the corresponding memory block is already * online. It is possible to observe struct pages still * being uninitialized here so check section instead. * In case the section is online we need to bring the * rest of pfns (which were not backed previously) * online too. */ if (start_pfn > has->start_pfn && online_section_nr(pfn_to_section_nr(start_pfn))) hv_bring_pgs_online(has, start_pfn, pgs_ol); } if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) { /* * We have some residual hot add range * that needs to be hot added; hot add * it now. Hot add a multiple of * HA_CHUNK that fully covers the pages * we have. */ size = (has->end_pfn - has->ha_end_pfn); if (pfn_cnt <= size) { size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK); if (pfn_cnt % HA_CHUNK) size += HA_CHUNK; } else { pfn_cnt = size; } spin_unlock_irqrestore(&dm_device.ha_lock, flags); hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has); spin_lock_irqsave(&dm_device.ha_lock, flags); } /* * If we managed to online any pages that were given to us, * we declare success. */ res = has->covered_end_pfn - old_covered_state; break; } spin_unlock_irqrestore(&dm_device.ha_lock, flags); return res; } static unsigned long process_hot_add(unsigned long pg_start, unsigned long pfn_cnt, unsigned long rg_start, unsigned long rg_size) { struct hv_hotadd_state *ha_region = NULL; int covered; if (pfn_cnt == 0) return 0; if (!dm_device.host_specified_ha_region) { covered = pfn_covered(pg_start, pfn_cnt); if (covered < 0) return 0; if (covered) goto do_pg_range; } /* * If the host has specified a hot-add range; deal with it first. */ if (rg_size != 0) { ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL); if (!ha_region) return 0; INIT_LIST_HEAD(&ha_region->list); INIT_LIST_HEAD(&ha_region->gap_list); ha_region->start_pfn = rg_start; ha_region->ha_end_pfn = rg_start; ha_region->covered_start_pfn = pg_start; ha_region->covered_end_pfn = pg_start; ha_region->end_pfn = rg_start + rg_size; scoped_guard(spinlock_irqsave, &dm_device.ha_lock) { list_add_tail(&ha_region->list, &dm_device.ha_region_list); } } do_pg_range: /* * Process the page range specified; bringing them * online if possible. */ return handle_pg_range(pg_start, pfn_cnt); } #endif static void hot_add_req(struct work_struct *dummy) { struct dm_hot_add_response resp; #ifdef CONFIG_MEMORY_HOTPLUG unsigned long pg_start, pfn_cnt; unsigned long rg_start, rg_sz; #endif struct hv_dynmem_device *dm = &dm_device; memset(&resp, 0, sizeof(struct dm_hot_add_response)); resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE; resp.hdr.size = sizeof(struct dm_hot_add_response); #ifdef CONFIG_MEMORY_HOTPLUG pg_start = dm->ha_wrk.ha_page_range.finfo.start_page; pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt; rg_start = dm->ha_wrk.ha_region_range.finfo.start_page; rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt; if ((rg_start == 0) && (!dm->host_specified_ha_region)) { unsigned long region_size; unsigned long region_start; /* * The host has not specified the hot-add region. * Based on the hot-add page range being specified, * compute a hot-add region that can cover the pages * that need to be hot-added while ensuring the alignment * and size requirements of Linux as it relates to hot-add. */ region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK; if (pfn_cnt % HA_CHUNK) region_size += HA_CHUNK; region_start = (pg_start / HA_CHUNK) * HA_CHUNK; rg_start = region_start; rg_sz = region_size; } if (do_hot_add) resp.page_count = process_hot_add(pg_start, pfn_cnt, rg_start, rg_sz); dm->num_pages_added += resp.page_count; #endif /* * The result field of the response structure has the * following semantics: * * 1. If all or some pages hot-added: Guest should return success. * * 2. If no pages could be hot-added: * * If the guest returns success, then the host * will not attempt any further hot-add operations. This * signifies a permanent failure. * * If the guest returns failure, then this failure will be * treated as a transient failure and the host may retry the * hot-add operation after some delay. */ if (resp.page_count > 0) resp.result = 1; else if (!do_hot_add) resp.result = 1; else resp.result = 0; if (!do_hot_add || resp.page_count == 0) { if (!allow_hibernation) pr_err("Memory hot add failed\n"); else pr_info("Ignore hot-add request!\n"); } dm->state = DM_INITIALIZED; resp.hdr.trans_id = atomic_inc_return(&trans_id); vmbus_sendpacket(dm->dev->channel, &resp, sizeof(struct dm_hot_add_response), (unsigned long)NULL, VM_PKT_DATA_INBAND, 0); } static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg) { struct dm_info_header *info_hdr; info_hdr = (struct dm_info_header *)msg->info; switch (info_hdr->type) { case INFO_TYPE_MAX_PAGE_CNT: if (info_hdr->data_size == sizeof(__u64)) { __u64 *max_page_count = (__u64 *)&info_hdr[1]; pr_info("Max. dynamic memory size: %llu MB\n", (*max_page_count) >> (20 - HV_HYP_PAGE_SHIFT)); dm->max_dynamic_page_count = *max_page_count; } break; default: pr_warn("Received Unknown type: %d\n", info_hdr->type); } } static unsigned long compute_balloon_floor(void) { unsigned long min_pages; unsigned long nr_pages = totalram_pages(); #define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT)) /* Simple continuous piecewiese linear function: * max MiB -> min MiB gradient * 0 0 * 16 16 * 32 24 * 128 72 (1/2) * 512 168 (1/4) * 2048 360 (1/8) * 8192 744 (1/16) * 32768 1512 (1/32) */ if (nr_pages < MB2PAGES(128)) min_pages = MB2PAGES(8) + (nr_pages >> 1); else if (nr_pages < MB2PAGES(512)) min_pages = MB2PAGES(40) + (nr_pages >> 2); else if (nr_pages < MB2PAGES(2048)) min_pages = MB2PAGES(104) + (nr_pages >> 3); else if (nr_pages < MB2PAGES(8192)) min_pages = MB2PAGES(232) + (nr_pages >> 4); else min_pages = MB2PAGES(488) + (nr_pages >> 5); #undef MB2PAGES return min_pages; } /* * Compute total committed memory pages */ static unsigned long get_pages_committed(struct hv_dynmem_device *dm) { return vm_memory_committed() + dm->num_pages_ballooned + (dm->num_pages_added > dm->num_pages_onlined ? dm->num_pages_added - dm->num_pages_onlined : 0) + compute_balloon_floor(); } /* * Post our status as it relates memory pressure to the * host. Host expects the guests to post this status * periodically at 1 second intervals. * * The metrics specified in this protocol are very Windows * specific and so we cook up numbers here to convey our memory * pressure. */ static void post_status(struct hv_dynmem_device *dm) { struct dm_status status; unsigned long now = jiffies; unsigned long last_post = last_post_time; unsigned long num_pages_avail, num_pages_committed; if (pressure_report_delay > 0) { --pressure_report_delay; return; } if (!time_after(now, (last_post_time + HZ))) return; memset(&status, 0, sizeof(struct dm_status)); status.hdr.type = DM_STATUS_REPORT; status.hdr.size = sizeof(struct dm_status); status.hdr.trans_id = atomic_inc_return(&trans_id); /* * The host expects the guest to report free and committed memory. * Furthermore, the host expects the pressure information to include * the ballooned out pages. For a given amount of memory that we are * managing we need to compute a floor below which we should not * balloon. Compute this and add it to the pressure report. * We also need to report all offline pages (num_pages_added - * num_pages_onlined) as committed to the host, otherwise it can try * asking us to balloon them out. */ num_pages_avail = si_mem_available(); num_pages_committed = get_pages_committed(dm); trace_balloon_status(num_pages_avail, num_pages_committed, vm_memory_committed(), dm->num_pages_ballooned, dm->num_pages_added, dm->num_pages_onlined); /* Convert numbers of pages into numbers of HV_HYP_PAGEs. */ status.num_avail = num_pages_avail * NR_HV_HYP_PAGES_IN_PAGE; status.num_committed = num_pages_committed * NR_HV_HYP_PAGES_IN_PAGE; /* * If our transaction ID is no longer current, just don't * send the status. This can happen if we were interrupted * after we picked our transaction ID. */ if (status.hdr.trans_id != atomic_read(&trans_id)) return; /* * If the last post time that we sampled has changed, * we have raced, don't post the status. */ if (last_post != last_post_time) return; last_post_time = jiffies; vmbus_sendpacket(dm->dev->channel, &status, sizeof(struct dm_status), (unsigned long)NULL, VM_PKT_DATA_INBAND, 0); } static void free_balloon_pages(struct hv_dynmem_device *dm, union dm_mem_page_range *range_array) { int num_pages = range_array->finfo.page_cnt; __u64 start_frame = range_array->finfo.start_page; struct page *pg; int i; for (i = 0; i < num_pages; i++) { pg = pfn_to_page(i + start_frame); __ClearPageOffline(pg); __free_page(pg); dm->num_pages_ballooned--; adjust_managed_page_count(pg, 1); } } static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm, unsigned int num_pages, struct dm_balloon_response *bl_resp, int alloc_unit) { unsigned int i, j; struct page *pg; for (i = 0; i < num_pages / alloc_unit; i++) { if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) > HV_HYP_PAGE_SIZE) return i * alloc_unit; /* * We execute this code in a thread context. Furthermore, * we don't want the kernel to try too hard. */ pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN, get_order(alloc_unit << PAGE_SHIFT)); if (!pg) return i * alloc_unit; dm->num_pages_ballooned += alloc_unit; /* * If we allocatted 2M pages; split them so we * can free them in any order we get. */ if (alloc_unit != 1) split_page(pg, get_order(alloc_unit << PAGE_SHIFT)); /* mark all pages offline */ for (j = 0; j < alloc_unit; j++) { __SetPageOffline(pg + j); adjust_managed_page_count(pg + j, -1); } bl_resp->range_count++; bl_resp->range_array[i].finfo.start_page = page_to_pfn(pg); bl_resp->range_array[i].finfo.page_cnt = alloc_unit; bl_resp->hdr.size += sizeof(union dm_mem_page_range); } return i * alloc_unit; } static void balloon_up(struct work_struct *dummy) { unsigned int num_pages = dm_device.balloon_wrk.num_pages; unsigned int num_ballooned = 0; struct dm_balloon_response *bl_resp; int alloc_unit; int ret; bool done = false; int i; long avail_pages; unsigned long floor; /* * We will attempt 2M allocations. However, if we fail to * allocate 2M chunks, we will go back to PAGE_SIZE allocations. */ alloc_unit = PAGES_IN_2M; avail_pages = si_mem_available(); floor = compute_balloon_floor(); /* Refuse to balloon below the floor. */ if (avail_pages < num_pages || avail_pages - num_pages < floor) { pr_info("Balloon request will be partially fulfilled. %s\n", avail_pages < num_pages ? "Not enough memory." : "Balloon floor reached."); num_pages = avail_pages > floor ? (avail_pages - floor) : 0; } while (!done) { memset(balloon_up_send_buffer, 0, HV_HYP_PAGE_SIZE); bl_resp = (struct dm_balloon_response *)balloon_up_send_buffer; bl_resp->hdr.type = DM_BALLOON_RESPONSE; bl_resp->hdr.size = sizeof(struct dm_balloon_response); bl_resp->more_pages = 1; num_pages -= num_ballooned; num_ballooned = alloc_balloon_pages(&dm_device, num_pages, bl_resp, alloc_unit); if (alloc_unit != 1 && num_ballooned == 0) { alloc_unit = 1; continue; } if (num_ballooned == 0 || num_ballooned == num_pages) { pr_debug("Ballooned %u out of %u requested pages.\n", num_pages, dm_device.balloon_wrk.num_pages); bl_resp->more_pages = 0; done = true; dm_device.state = DM_INITIALIZED; } /* * We are pushing a lot of data through the channel; * deal with transient failures caused because of the * lack of space in the ring buffer. */ do { bl_resp->hdr.trans_id = atomic_inc_return(&trans_id); ret = vmbus_sendpacket(dm_device.dev->channel, bl_resp, bl_resp->hdr.size, (unsigned long)NULL, VM_PKT_DATA_INBAND, 0); if (ret == -EAGAIN) msleep(20); post_status(&dm_device); } while (ret == -EAGAIN); if (ret) { /* * Free up the memory we allocatted. */ pr_err("Balloon response failed\n"); for (i = 0; i < bl_resp->range_count; i++) free_balloon_pages(&dm_device, &bl_resp->range_array[i]); done = true; } } } static void balloon_down(struct hv_dynmem_device *dm, struct dm_unballoon_request *req) { union dm_mem_page_range *range_array = req->range_array; int range_count = req->range_count; struct dm_unballoon_response resp; int i; unsigned int prev_pages_ballooned = dm->num_pages_ballooned; for (i = 0; i < range_count; i++) { free_balloon_pages(dm, &range_array[i]); complete(&dm_device.config_event); } pr_debug("Freed %u ballooned pages.\n", prev_pages_ballooned - dm->num_pages_ballooned); if (req->more_pages == 1) return; memset(&resp, 0, sizeof(struct dm_unballoon_response)); resp.hdr.type = DM_UNBALLOON_RESPONSE; resp.hdr.trans_id = atomic_inc_return(&trans_id); resp.hdr.size = sizeof(struct dm_unballoon_response); vmbus_sendpacket(dm_device.dev->channel, &resp, sizeof(struct dm_unballoon_response), (unsigned long)NULL, VM_PKT_DATA_INBAND, 0); dm->state = DM_INITIALIZED; } static void balloon_onchannelcallback(void *context); static int dm_thread_func(void *dm_dev) { struct hv_dynmem_device *dm = dm_dev; while (!kthread_should_stop()) { wait_for_completion_interruptible_timeout( &dm_device.config_event, 1*HZ); /* * The host expects us to post information on the memory * pressure every second. */ reinit_completion(&dm_device.config_event); post_status(dm); /* * disable free page reporting if multiple hypercall * failure flag set. It is not done in the page_reporting * callback context as that causes a deadlock between * page_reporting_process() and page_reporting_unregister() */ if (hv_hypercall_multi_failure >= HV_MAX_FAILURES) { pr_err("Multiple failures in cold memory discard hypercall, disabling page reporting\n"); disable_page_reporting(); /* Reset the flag after disabling reporting */ hv_hypercall_multi_failure = 0; } } return 0; } static void version_resp(struct hv_dynmem_device *dm, struct dm_version_response *vresp) { struct dm_version_request version_req; int ret; if (vresp->is_accepted) { /* * We are done; wakeup the * context waiting for version * negotiation. */ complete(&dm->host_event); return; } /* * If there are more versions to try, continue * with negotiations; if not * shutdown the service since we are not able * to negotiate a suitable version number * with the host. */ if (dm->next_version == 0) goto version_error; memset(&version_req, 0, sizeof(struct dm_version_request)); version_req.hdr.type = DM_VERSION_REQUEST; version_req.hdr.size = sizeof(struct dm_version_request); version_req.hdr.trans_id = atomic_inc_return(&trans_id); version_req.version.version = dm->next_version; dm->version = version_req.version.version; /* * Set the next version to try in case current version fails. * Win7 protocol ought to be the last one to try. */ switch (version_req.version.version) { case DYNMEM_PROTOCOL_VERSION_WIN8: dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7; version_req.is_last_attempt = 0; break; default: dm->next_version = 0; version_req.is_last_attempt = 1; } ret = vmbus_sendpacket(dm->dev->channel, &version_req, sizeof(struct dm_version_request), (unsigned long)NULL, VM_PKT_DATA_INBAND, 0); if (ret) goto version_error; return; version_error: dm->state = DM_INIT_ERROR; complete(&dm->host_event); } static void cap_resp(struct hv_dynmem_device *dm, struct dm_capabilities_resp_msg *cap_resp) { if (!cap_resp->is_accepted) { pr_err("Capabilities not accepted by host\n"); dm->state = DM_INIT_ERROR; } complete(&dm->host_event); } static void balloon_onchannelcallback(void *context) { struct hv_device *dev = context; u32 recvlen; u64 requestid; struct dm_message *dm_msg; struct dm_header *dm_hdr; struct hv_dynmem_device *dm = hv_get_drvdata(dev); struct dm_balloon *bal_msg; struct dm_hot_add *ha_msg; union dm_mem_page_range *ha_pg_range; union dm_mem_page_range *ha_region; memset(recv_buffer, 0, sizeof(recv_buffer)); vmbus_recvpacket(dev->channel, recv_buffer, HV_HYP_PAGE_SIZE, &recvlen, &requestid); if (recvlen > 0) { dm_msg = (struct dm_message *)recv_buffer; dm_hdr = &dm_msg->hdr; switch (dm_hdr->type) { case DM_VERSION_RESPONSE: version_resp(dm, (struct dm_version_response *)dm_msg); break; case DM_CAPABILITIES_RESPONSE: cap_resp(dm, (struct dm_capabilities_resp_msg *)dm_msg); break; case DM_BALLOON_REQUEST: if (allow_hibernation) { pr_info("Ignore balloon-up request!\n"); break; } if (dm->state == DM_BALLOON_UP) pr_warn("Currently ballooning\n"); bal_msg = (struct dm_balloon *)recv_buffer; dm->state = DM_BALLOON_UP; dm_device.balloon_wrk.num_pages = bal_msg->num_pages; schedule_work(&dm_device.balloon_wrk.wrk); break; case DM_UNBALLOON_REQUEST: if (allow_hibernation) { pr_info("Ignore balloon-down request!\n"); break; } dm->state = DM_BALLOON_DOWN; balloon_down(dm, (struct dm_unballoon_request *)recv_buffer); break; case DM_MEM_HOT_ADD_REQUEST: if (dm->state == DM_HOT_ADD) pr_warn("Currently hot-adding\n"); dm->state = DM_HOT_ADD; ha_msg = (struct dm_hot_add *)recv_buffer; if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) { /* * This is a normal hot-add request specifying * hot-add memory. */ dm->host_specified_ha_region = false; ha_pg_range = &ha_msg->range; dm->ha_wrk.ha_page_range = *ha_pg_range; dm->ha_wrk.ha_region_range.page_range = 0; } else { /* * Host is specifying that we first hot-add * a region and then partially populate this * region. */ dm->host_specified_ha_region = true; ha_pg_range = &ha_msg->range; ha_region = &ha_pg_range[1]; dm->ha_wrk.ha_page_range = *ha_pg_range; dm->ha_wrk.ha_region_range = *ha_region; } schedule_work(&dm_device.ha_wrk.wrk); break; case DM_INFO_MESSAGE: process_info(dm, (struct dm_info_msg *)dm_msg); break; default: pr_warn_ratelimited("Unhandled message: type: %d\n", dm_hdr->type); } } } #define HV_LARGE_REPORTING_ORDER 9 #define HV_LARGE_REPORTING_LEN (HV_HYP_PAGE_SIZE << \ HV_LARGE_REPORTING_ORDER) static int hv_free_page_report(struct page_reporting_dev_info *pr_dev_info, struct scatterlist *sgl, unsigned int nents) { unsigned long flags; struct hv_memory_hint *hint; int i, order; u64 status; struct scatterlist *sg; WARN_ON_ONCE(nents > HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES); WARN_ON_ONCE(sgl->length < (HV_HYP_PAGE_SIZE << page_reporting_order)); local_irq_save(flags); hint = *this_cpu_ptr(hyperv_pcpu_input_arg); if (!hint) { local_irq_restore(flags); return -ENOSPC; } hint->type = HV_EXT_MEMORY_HEAT_HINT_TYPE_COLD_DISCARD; hint->reserved = 0; for_each_sg(sgl, sg, nents, i) { union hv_gpa_page_range *range; range = &hint->ranges[i]; range->address_space = 0; order = get_order(sg->length); /* * Hyper-V expects the additional_pages field in the units * of one of these 3 sizes, 4Kbytes, 2Mbytes or 1Gbytes. * This is dictated by the values of the fields page.largesize * and page_size. * This code however, only uses 4Kbytes and 2Mbytes units * and not 1Gbytes unit. */ /* page reporting for pages 2MB or higher */ if (order >= HV_LARGE_REPORTING_ORDER ) { range->page.largepage = 1; range->page_size = HV_GPA_PAGE_RANGE_PAGE_SIZE_2MB; range->base_large_pfn = page_to_hvpfn( sg_page(sg)) >> HV_LARGE_REPORTING_ORDER; range->page.additional_pages = (sg->length / HV_LARGE_REPORTING_LEN) - 1; } else { /* Page reporting for pages below 2MB */ range->page.basepfn = page_to_hvpfn(sg_page(sg)); range->page.largepage = false; range->page.additional_pages = (sg->length / HV_HYP_PAGE_SIZE) - 1; } } status = hv_do_rep_hypercall(HV_EXT_CALL_MEMORY_HEAT_HINT, nents, 0, hint, NULL); local_irq_restore(flags); if (!hv_result_success(status)) { pr_err("Cold memory discard hypercall failed with status %llx\n", status); if (hv_hypercall_multi_failure > 0) hv_hypercall_multi_failure++; if (hv_result(status) == HV_STATUS_INVALID_PARAMETER) { pr_err("Underlying Hyper-V does not support order less than 9. Hypercall failed\n"); pr_err("Defaulting to page_reporting_order %d\n", pageblock_order); page_reporting_order = pageblock_order; hv_hypercall_multi_failure++; return -EINVAL; } return -EINVAL; } return 0; } static void enable_page_reporting(void) { int ret; if (!hv_query_ext_cap(HV_EXT_CAPABILITY_MEMORY_COLD_DISCARD_HINT)) { pr_debug("Cold memory discard hint not supported by Hyper-V\n"); return; } BUILD_BUG_ON(PAGE_REPORTING_CAPACITY > HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES); dm_device.pr_dev_info.report = hv_free_page_report; /* * We let the page_reporting_order parameter decide the order * in the page_reporting code */ dm_device.pr_dev_info.order = 0; ret = page_reporting_register(&dm_device.pr_dev_info); if (ret < 0) { dm_device.pr_dev_info.report = NULL; pr_err("Failed to enable cold memory discard: %d\n", ret); } else { pr_info("Cold memory discard hint enabled with order %d\n", page_reporting_order); } } static void disable_page_reporting(void) { if (dm_device.pr_dev_info.report) { page_reporting_unregister(&dm_device.pr_dev_info); dm_device.pr_dev_info.report = NULL; } } static int ballooning_enabled(void) { /* * Disable ballooning if the page size is not 4k (HV_HYP_PAGE_SIZE), * since currently it's unclear to us whether an unballoon request can * make sure all page ranges are guest page size aligned. */ if (PAGE_SIZE != HV_HYP_PAGE_SIZE) { pr_info("Ballooning disabled because page size is not 4096 bytes\n"); return 0; } return 1; } static int hot_add_enabled(void) { /* * Disable hot add on ARM64, because we currently rely on * memory_add_physaddr_to_nid() to get a node id of a hot add range, * however ARM64's memory_add_physaddr_to_nid() always return 0 and * DM_MEM_HOT_ADD_REQUEST doesn't have the NUMA node information for * add_memory(). */ if (IS_ENABLED(CONFIG_ARM64)) { pr_info("Memory hot add disabled on ARM64\n"); return 0; } return 1; } static int balloon_connect_vsp(struct hv_device *dev) { struct dm_version_request version_req; struct dm_capabilities cap_msg; unsigned long t; int ret; /* * max_pkt_size should be large enough for one vmbus packet header plus * our receive buffer size. Hyper-V sends messages up to * HV_HYP_PAGE_SIZE bytes long on balloon channel. */ dev->channel->max_pkt_size = HV_HYP_PAGE_SIZE * 2; ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0, balloon_onchannelcallback, dev); if (ret) return ret; /* * Initiate the hand shake with the host and negotiate * a version that the host can support. We start with the * highest version number and go down if the host cannot * support it. */ memset(&version_req, 0, sizeof(struct dm_version_request)); version_req.hdr.type = DM_VERSION_REQUEST; version_req.hdr.size = sizeof(struct dm_version_request); version_req.hdr.trans_id = atomic_inc_return(&trans_id); version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10; version_req.is_last_attempt = 0; dm_device.version = version_req.version.version; ret = vmbus_sendpacket(dev->channel, &version_req, sizeof(struct dm_version_request), (unsigned long)NULL, VM_PKT_DATA_INBAND, 0); if (ret) goto out; t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ); if (t == 0) { ret = -ETIMEDOUT; goto out; } /* * If we could not negotiate a compatible version with the host * fail the probe function. */ if (dm_device.state == DM_INIT_ERROR) { ret = -EPROTO; goto out; } pr_info("Using Dynamic Memory protocol version %u.%u\n", DYNMEM_MAJOR_VERSION(dm_device.version), DYNMEM_MINOR_VERSION(dm_device.version)); /* * Now submit our capabilities to the host. */ memset(&cap_msg, 0, sizeof(struct dm_capabilities)); cap_msg.hdr.type = DM_CAPABILITIES_REPORT; cap_msg.hdr.size = sizeof(struct dm_capabilities); cap_msg.hdr.trans_id = atomic_inc_return(&trans_id); /* * When hibernation (i.e. virtual ACPI S4 state) is enabled, the host * currently still requires the bits to be set, so we have to add code * to fail the host's hot-add and balloon up/down requests, if any. */ cap_msg.caps.cap_bits.balloon = ballooning_enabled(); cap_msg.caps.cap_bits.hot_add = hot_add_enabled(); /* * Specify our alignment requirements as it relates * memory hot-add. Specify 128MB alignment. */ cap_msg.caps.cap_bits.hot_add_alignment = 7; /* * Currently the host does not use these * values and we set them to what is done in the * Windows driver. */ cap_msg.min_page_cnt = 0; cap_msg.max_page_number = -1; ret = vmbus_sendpacket(dev->channel, &cap_msg, sizeof(struct dm_capabilities), (unsigned long)NULL, VM_PKT_DATA_INBAND, 0); if (ret) goto out; t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ); if (t == 0) { ret = -ETIMEDOUT; goto out; } /* * If the host does not like our capabilities, * fail the probe function. */ if (dm_device.state == DM_INIT_ERROR) { ret = -EPROTO; goto out; } return 0; out: vmbus_close(dev->channel); return ret; } /* * DEBUGFS Interface */ #ifdef CONFIG_DEBUG_FS /** * hv_balloon_debug_show - shows statistics of balloon operations. * @f: pointer to the &struct seq_file. * @offset: ignored. * * Provides the statistics that can be accessed in hv-balloon in the debugfs. * * Return: zero on success or an error code. */ static int hv_balloon_debug_show(struct seq_file *f, void *offset) { struct hv_dynmem_device *dm = f->private; char *sname; seq_printf(f, "%-22s: %u.%u\n", "host_version", DYNMEM_MAJOR_VERSION(dm->version), DYNMEM_MINOR_VERSION(dm->version)); seq_printf(f, "%-22s:", "capabilities"); if (ballooning_enabled()) seq_puts(f, " enabled"); if (hot_add_enabled()) seq_puts(f, " hot_add"); seq_puts(f, "\n"); seq_printf(f, "%-22s: %u", "state", dm->state); switch (dm->state) { case DM_INITIALIZING: sname = "Initializing"; break; case DM_INITIALIZED: sname = "Initialized"; break; case DM_BALLOON_UP: sname = "Balloon Up"; break; case DM_BALLOON_DOWN: sname = "Balloon Down"; break; case DM_HOT_ADD: sname = "Hot Add"; break; case DM_INIT_ERROR: sname = "Error"; break; default: sname = "Unknown"; } seq_printf(f, " (%s)\n", sname); /* HV Page Size */ seq_printf(f, "%-22s: %ld\n", "page_size", HV_HYP_PAGE_SIZE); /* Pages added with hot_add */ seq_printf(f, "%-22s: %u\n", "pages_added", dm->num_pages_added); /* pages that are "onlined"/used from pages_added */ seq_printf(f, "%-22s: %u\n", "pages_onlined", dm->num_pages_onlined); /* pages we have given back to host */ seq_printf(f, "%-22s: %u\n", "pages_ballooned", dm->num_pages_ballooned); seq_printf(f, "%-22s: %lu\n", "total_pages_committed", get_pages_committed(dm)); seq_printf(f, "%-22s: %llu\n", "max_dynamic_page_count", dm->max_dynamic_page_count); return 0; } DEFINE_SHOW_ATTRIBUTE(hv_balloon_debug); static void hv_balloon_debugfs_init(struct hv_dynmem_device *b) { debugfs_create_file("hv-balloon", 0444, NULL, b, &hv_balloon_debug_fops); } static void hv_balloon_debugfs_exit(struct hv_dynmem_device *b) { debugfs_lookup_and_remove("hv-balloon", NULL); } #else static inline void hv_balloon_debugfs_init(struct hv_dynmem_device *b) { } static inline void hv_balloon_debugfs_exit(struct hv_dynmem_device *b) { } #endif /* CONFIG_DEBUG_FS */ static int balloon_probe(struct hv_device *dev, const struct hv_vmbus_device_id *dev_id) { int ret; allow_hibernation = hv_is_hibernation_supported(); if (allow_hibernation) hot_add = false; #ifdef CONFIG_MEMORY_HOTPLUG do_hot_add = hot_add; #else do_hot_add = false; #endif dm_device.dev = dev; dm_device.state = DM_INITIALIZING; dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8; init_completion(&dm_device.host_event); init_completion(&dm_device.config_event); INIT_LIST_HEAD(&dm_device.ha_region_list); spin_lock_init(&dm_device.ha_lock); INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up); INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req); dm_device.host_specified_ha_region = false; #ifdef CONFIG_MEMORY_HOTPLUG set_online_page_callback(&hv_online_page); init_completion(&dm_device.ol_waitevent); register_memory_notifier(&hv_memory_nb); #endif hv_set_drvdata(dev, &dm_device); ret = balloon_connect_vsp(dev); if (ret != 0) goto connect_error; enable_page_reporting(); dm_device.state = DM_INITIALIZED; dm_device.thread = kthread_run(dm_thread_func, &dm_device, "hv_balloon"); if (IS_ERR(dm_device.thread)) { ret = PTR_ERR(dm_device.thread); goto probe_error; } hv_balloon_debugfs_init(&dm_device); return 0; probe_error: dm_device.state = DM_INIT_ERROR; dm_device.thread = NULL; disable_page_reporting(); vmbus_close(dev->channel); connect_error: #ifdef CONFIG_MEMORY_HOTPLUG unregister_memory_notifier(&hv_memory_nb); restore_online_page_callback(&hv_online_page); #endif return ret; } static void balloon_remove(struct hv_device *dev) { struct hv_dynmem_device *dm = hv_get_drvdata(dev); struct hv_hotadd_state *has, *tmp; struct hv_hotadd_gap *gap, *tmp_gap; if (dm->num_pages_ballooned != 0) pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned); hv_balloon_debugfs_exit(dm); cancel_work_sync(&dm->balloon_wrk.wrk); cancel_work_sync(&dm->ha_wrk.wrk); kthread_stop(dm->thread); /* * This is to handle the case when balloon_resume() * call has failed and some cleanup has been done as * a part of the error handling. */ if (dm_device.state != DM_INIT_ERROR) { disable_page_reporting(); vmbus_close(dev->channel); #ifdef CONFIG_MEMORY_HOTPLUG unregister_memory_notifier(&hv_memory_nb); restore_online_page_callback(&hv_online_page); #endif } guard(spinlock_irqsave)(&dm_device.ha_lock); list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) { list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) { list_del(&gap->list); kfree(gap); } list_del(&has->list); kfree(has); } } static int balloon_suspend(struct hv_device *hv_dev) { struct hv_dynmem_device *dm = hv_get_drvdata(hv_dev); tasklet_disable(&hv_dev->channel->callback_event); cancel_work_sync(&dm->balloon_wrk.wrk); cancel_work_sync(&dm->ha_wrk.wrk); if (dm->thread) { kthread_stop(dm->thread); dm->thread = NULL; vmbus_close(hv_dev->channel); } tasklet_enable(&hv_dev->channel->callback_event); return 0; } static int balloon_resume(struct hv_device *dev) { int ret; dm_device.state = DM_INITIALIZING; ret = balloon_connect_vsp(dev); if (ret != 0) goto out; dm_device.thread = kthread_run(dm_thread_func, &dm_device, "hv_balloon"); if (IS_ERR(dm_device.thread)) { ret = PTR_ERR(dm_device.thread); dm_device.thread = NULL; goto close_channel; } dm_device.state = DM_INITIALIZED; return 0; close_channel: vmbus_close(dev->channel); out: dm_device.state = DM_INIT_ERROR; disable_page_reporting(); #ifdef CONFIG_MEMORY_HOTPLUG unregister_memory_notifier(&hv_memory_nb); restore_online_page_callback(&hv_online_page); #endif return ret; } static const struct hv_vmbus_device_id id_table[] = { /* Dynamic Memory Class ID */ /* 525074DC-8985-46e2-8057-A307DC18A502 */ { HV_DM_GUID, }, { }, }; MODULE_DEVICE_TABLE(vmbus, id_table); static struct hv_driver balloon_drv = { .name = "hv_balloon", .id_table = id_table, .probe = balloon_probe, .remove = balloon_remove, .suspend = balloon_suspend, .resume = balloon_resume, .driver = { .probe_type = PROBE_PREFER_ASYNCHRONOUS, }, }; static int __init init_balloon_drv(void) { return vmbus_driver_register(&balloon_drv); } module_init(init_balloon_drv); MODULE_DESCRIPTION("Hyper-V Balloon"); MODULE_LICENSE("GPL");
linux-master
drivers/hv/hv_balloon.c
// SPDX-License-Identifier: GPL-2.0-only /* * * Copyright (c) 2009, Microsoft Corporation. * * Authors: * Haiyang Zhang <[email protected]> * Hank Janssen <[email protected]> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kernel.h> #include <linux/sched.h> #include <linux/wait.h> #include <linux/delay.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/vmalloc.h> #include <linux/hyperv.h> #include <linux/export.h> #include <linux/io.h> #include <linux/set_memory.h> #include <asm/mshyperv.h> #include "hyperv_vmbus.h" struct vmbus_connection vmbus_connection = { .conn_state = DISCONNECTED, .unload_event = COMPLETION_INITIALIZER( vmbus_connection.unload_event), .next_gpadl_handle = ATOMIC_INIT(0xE1E10), .ready_for_suspend_event = COMPLETION_INITIALIZER( vmbus_connection.ready_for_suspend_event), .ready_for_resume_event = COMPLETION_INITIALIZER( vmbus_connection.ready_for_resume_event), }; EXPORT_SYMBOL_GPL(vmbus_connection); /* * Negotiated protocol version with the host. */ __u32 vmbus_proto_version; EXPORT_SYMBOL_GPL(vmbus_proto_version); /* * Table of VMBus versions listed from newest to oldest. * VERSION_WIN7 and VERSION_WS2008 are no longer supported in * Linux guests and are not listed. */ static __u32 vmbus_versions[] = { VERSION_WIN10_V5_3, VERSION_WIN10_V5_2, VERSION_WIN10_V5_1, VERSION_WIN10_V5, VERSION_WIN10_V4_1, VERSION_WIN10, VERSION_WIN8_1, VERSION_WIN8 }; /* * Maximal VMBus protocol version guests can negotiate. Useful to cap the * VMBus version for testing and debugging purpose. */ static uint max_version = VERSION_WIN10_V5_3; module_param(max_version, uint, S_IRUGO); MODULE_PARM_DESC(max_version, "Maximal VMBus protocol version which can be negotiated"); int vmbus_negotiate_version(struct vmbus_channel_msginfo *msginfo, u32 version) { int ret = 0; struct vmbus_channel_initiate_contact *msg; unsigned long flags; init_completion(&msginfo->waitevent); msg = (struct vmbus_channel_initiate_contact *)msginfo->msg; memset(msg, 0, sizeof(*msg)); msg->header.msgtype = CHANNELMSG_INITIATE_CONTACT; msg->vmbus_version_requested = version; /* * VMBus protocol 5.0 (VERSION_WIN10_V5) and higher require that we must * use VMBUS_MESSAGE_CONNECTION_ID_4 for the Initiate Contact Message, * and for subsequent messages, we must use the Message Connection ID * field in the host-returned Version Response Message. And, with * VERSION_WIN10_V5 and higher, we don't use msg->interrupt_page, but we * tell the host explicitly that we still use VMBUS_MESSAGE_SINT(2) for * compatibility. * * On old hosts, we should always use VMBUS_MESSAGE_CONNECTION_ID (1). */ if (version >= VERSION_WIN10_V5) { msg->msg_sint = VMBUS_MESSAGE_SINT; msg->msg_vtl = ms_hyperv.vtl; vmbus_connection.msg_conn_id = VMBUS_MESSAGE_CONNECTION_ID_4; } else { msg->interrupt_page = virt_to_phys(vmbus_connection.int_page); vmbus_connection.msg_conn_id = VMBUS_MESSAGE_CONNECTION_ID; } /* * shared_gpa_boundary is zero in non-SNP VMs, so it's safe to always * bitwise OR it */ msg->monitor_page1 = virt_to_phys(vmbus_connection.monitor_pages[0]) | ms_hyperv.shared_gpa_boundary; msg->monitor_page2 = virt_to_phys(vmbus_connection.monitor_pages[1]) | ms_hyperv.shared_gpa_boundary; msg->target_vcpu = hv_cpu_number_to_vp_number(VMBUS_CONNECT_CPU); /* * Add to list before we send the request since we may * receive the response before returning from this routine */ spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags); list_add_tail(&msginfo->msglistentry, &vmbus_connection.chn_msg_list); spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags); ret = vmbus_post_msg(msg, sizeof(struct vmbus_channel_initiate_contact), true); trace_vmbus_negotiate_version(msg, ret); if (ret != 0) { spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags); list_del(&msginfo->msglistentry); spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags); return ret; } /* Wait for the connection response */ wait_for_completion(&msginfo->waitevent); spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags); list_del(&msginfo->msglistentry); spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags); /* Check if successful */ if (msginfo->response.version_response.version_supported) { vmbus_connection.conn_state = CONNECTED; if (version >= VERSION_WIN10_V5) vmbus_connection.msg_conn_id = msginfo->response.version_response.msg_conn_id; } else { return -ECONNREFUSED; } return ret; } /* * vmbus_connect - Sends a connect request on the partition service connection */ int vmbus_connect(void) { struct vmbus_channel_msginfo *msginfo = NULL; int i, ret = 0; __u32 version; /* Initialize the vmbus connection */ vmbus_connection.conn_state = CONNECTING; vmbus_connection.work_queue = create_workqueue("hv_vmbus_con"); if (!vmbus_connection.work_queue) { ret = -ENOMEM; goto cleanup; } vmbus_connection.rescind_work_queue = create_workqueue("hv_vmbus_rescind"); if (!vmbus_connection.rescind_work_queue) { ret = -ENOMEM; goto cleanup; } vmbus_connection.ignore_any_offer_msg = false; vmbus_connection.handle_primary_chan_wq = create_workqueue("hv_pri_chan"); if (!vmbus_connection.handle_primary_chan_wq) { ret = -ENOMEM; goto cleanup; } vmbus_connection.handle_sub_chan_wq = create_workqueue("hv_sub_chan"); if (!vmbus_connection.handle_sub_chan_wq) { ret = -ENOMEM; goto cleanup; } INIT_LIST_HEAD(&vmbus_connection.chn_msg_list); spin_lock_init(&vmbus_connection.channelmsg_lock); INIT_LIST_HEAD(&vmbus_connection.chn_list); mutex_init(&vmbus_connection.channel_mutex); /* * Setup the vmbus event connection for channel interrupt * abstraction stuff */ vmbus_connection.int_page = hv_alloc_hyperv_zeroed_page(); if (vmbus_connection.int_page == NULL) { ret = -ENOMEM; goto cleanup; } vmbus_connection.recv_int_page = vmbus_connection.int_page; vmbus_connection.send_int_page = (void *)((unsigned long)vmbus_connection.int_page + (HV_HYP_PAGE_SIZE >> 1)); /* * Setup the monitor notification facility. The 1st page for * parent->child and the 2nd page for child->parent */ vmbus_connection.monitor_pages[0] = hv_alloc_hyperv_page(); vmbus_connection.monitor_pages[1] = hv_alloc_hyperv_page(); if ((vmbus_connection.monitor_pages[0] == NULL) || (vmbus_connection.monitor_pages[1] == NULL)) { ret = -ENOMEM; goto cleanup; } ret = set_memory_decrypted((unsigned long) vmbus_connection.monitor_pages[0], 1); ret |= set_memory_decrypted((unsigned long) vmbus_connection.monitor_pages[1], 1); if (ret) goto cleanup; /* * Set_memory_decrypted() will change the memory contents if * decryption occurs, so zero monitor pages here. */ memset(vmbus_connection.monitor_pages[0], 0x00, HV_HYP_PAGE_SIZE); memset(vmbus_connection.monitor_pages[1], 0x00, HV_HYP_PAGE_SIZE); msginfo = kzalloc(sizeof(*msginfo) + sizeof(struct vmbus_channel_initiate_contact), GFP_KERNEL); if (msginfo == NULL) { ret = -ENOMEM; goto cleanup; } /* * Negotiate a compatible VMBUS version number with the * host. We start with the highest number we can support * and work our way down until we negotiate a compatible * version. */ for (i = 0; ; i++) { if (i == ARRAY_SIZE(vmbus_versions)) { ret = -EDOM; goto cleanup; } version = vmbus_versions[i]; if (version > max_version) continue; ret = vmbus_negotiate_version(msginfo, version); if (ret == -ETIMEDOUT) goto cleanup; if (vmbus_connection.conn_state == CONNECTED) break; } if (hv_is_isolation_supported() && version < VERSION_WIN10_V5_2) { pr_err("Invalid VMBus version %d.%d (expected >= %d.%d) from the host supporting isolation\n", version >> 16, version & 0xFFFF, VERSION_WIN10_V5_2 >> 16, VERSION_WIN10_V5_2 & 0xFFFF); ret = -EINVAL; goto cleanup; } vmbus_proto_version = version; pr_info("Vmbus version:%d.%d\n", version >> 16, version & 0xFFFF); vmbus_connection.channels = kcalloc(MAX_CHANNEL_RELIDS, sizeof(struct vmbus_channel *), GFP_KERNEL); if (vmbus_connection.channels == NULL) { ret = -ENOMEM; goto cleanup; } kfree(msginfo); return 0; cleanup: pr_err("Unable to connect to host\n"); vmbus_connection.conn_state = DISCONNECTED; vmbus_disconnect(); kfree(msginfo); return ret; } void vmbus_disconnect(void) { /* * First send the unload request to the host. */ vmbus_initiate_unload(false); if (vmbus_connection.handle_sub_chan_wq) destroy_workqueue(vmbus_connection.handle_sub_chan_wq); if (vmbus_connection.handle_primary_chan_wq) destroy_workqueue(vmbus_connection.handle_primary_chan_wq); if (vmbus_connection.rescind_work_queue) destroy_workqueue(vmbus_connection.rescind_work_queue); if (vmbus_connection.work_queue) destroy_workqueue(vmbus_connection.work_queue); if (vmbus_connection.int_page) { hv_free_hyperv_page(vmbus_connection.int_page); vmbus_connection.int_page = NULL; } set_memory_encrypted((unsigned long)vmbus_connection.monitor_pages[0], 1); set_memory_encrypted((unsigned long)vmbus_connection.monitor_pages[1], 1); hv_free_hyperv_page(vmbus_connection.monitor_pages[0]); hv_free_hyperv_page(vmbus_connection.monitor_pages[1]); vmbus_connection.monitor_pages[0] = NULL; vmbus_connection.monitor_pages[1] = NULL; } /* * relid2channel - Get the channel object given its * child relative id (ie channel id) */ struct vmbus_channel *relid2channel(u32 relid) { if (vmbus_connection.channels == NULL) { pr_warn_once("relid2channel: relid=%d: No channels mapped!\n", relid); return NULL; } if (WARN_ON(relid >= MAX_CHANNEL_RELIDS)) return NULL; return READ_ONCE(vmbus_connection.channels[relid]); } /* * vmbus_on_event - Process a channel event notification * * For batched channels (default) optimize host to guest signaling * by ensuring: * 1. While reading the channel, we disable interrupts from host. * 2. Ensure that we process all posted messages from the host * before returning from this callback. * 3. Once we return, enable signaling from the host. Once this * state is set we check to see if additional packets are * available to read. In this case we repeat the process. * If this tasklet has been running for a long time * then reschedule ourselves. */ void vmbus_on_event(unsigned long data) { struct vmbus_channel *channel = (void *) data; void (*callback_fn)(void *context); trace_vmbus_on_event(channel); hv_debug_delay_test(channel, INTERRUPT_DELAY); /* A channel once created is persistent even when * there is no driver handling the device. An * unloading driver sets the onchannel_callback to NULL. */ callback_fn = READ_ONCE(channel->onchannel_callback); if (unlikely(!callback_fn)) return; (*callback_fn)(channel->channel_callback_context); if (channel->callback_mode != HV_CALL_BATCHED) return; if (likely(hv_end_read(&channel->inbound) == 0)) return; hv_begin_read(&channel->inbound); tasklet_schedule(&channel->callback_event); } /* * vmbus_post_msg - Send a msg on the vmbus's message connection */ int vmbus_post_msg(void *buffer, size_t buflen, bool can_sleep) { struct vmbus_channel_message_header *hdr; union hv_connection_id conn_id; int ret = 0; int retries = 0; u32 usec = 1; conn_id.asu32 = 0; conn_id.u.id = vmbus_connection.msg_conn_id; /* * hv_post_message() can have transient failures because of * insufficient resources. Retry the operation a couple of * times before giving up. */ while (retries < 100) { ret = hv_post_message(conn_id, 1, buffer, buflen); switch (ret) { case HV_STATUS_INVALID_CONNECTION_ID: /* * See vmbus_negotiate_version(): VMBus protocol 5.0 * and higher require that we must use * VMBUS_MESSAGE_CONNECTION_ID_4 for the Initiate * Contact message, but on old hosts that only * support VMBus protocol 4.0 or lower, here we get * HV_STATUS_INVALID_CONNECTION_ID and we should * return an error immediately without retrying. */ hdr = buffer; if (hdr->msgtype == CHANNELMSG_INITIATE_CONTACT) return -EINVAL; /* * We could get this if we send messages too * frequently. */ ret = -EAGAIN; break; case HV_STATUS_INSUFFICIENT_MEMORY: case HV_STATUS_INSUFFICIENT_BUFFERS: ret = -ENOBUFS; break; case HV_STATUS_SUCCESS: return ret; default: pr_err("hv_post_msg() failed; error code:%d\n", ret); return -EINVAL; } retries++; if (can_sleep && usec > 1000) msleep(usec / 1000); else if (usec < MAX_UDELAY_MS * 1000) udelay(usec); else mdelay(usec / 1000); if (retries < 22) usec *= 2; } return ret; } /* * vmbus_set_event - Send an event notification to the parent */ void vmbus_set_event(struct vmbus_channel *channel) { u32 child_relid = channel->offermsg.child_relid; if (!channel->is_dedicated_interrupt) vmbus_send_interrupt(child_relid); ++channel->sig_events; if (ms_hyperv.paravisor_present) { if (hv_isolation_type_snp()) hv_ghcb_hypercall(HVCALL_SIGNAL_EVENT, &channel->sig_event, NULL, sizeof(channel->sig_event)); else if (hv_isolation_type_tdx()) hv_tdx_hypercall(HVCALL_SIGNAL_EVENT | HV_HYPERCALL_FAST_BIT, channel->sig_event, 0); else WARN_ON_ONCE(1); } else { hv_do_fast_hypercall8(HVCALL_SIGNAL_EVENT, channel->sig_event); } } EXPORT_SYMBOL_GPL(vmbus_set_event);
linux-master
drivers/hv/connection.c
// SPDX-License-Identifier: GPL-2.0-only /* * Kernel/userspace transport abstraction for Hyper-V util driver. * * Copyright (C) 2015, Vitaly Kuznetsov <[email protected]> */ #include <linux/slab.h> #include <linux/fs.h> #include <linux/poll.h> #include "hyperv_vmbus.h" #include "hv_utils_transport.h" static DEFINE_SPINLOCK(hvt_list_lock); static LIST_HEAD(hvt_list); static void hvt_reset(struct hvutil_transport *hvt) { kfree(hvt->outmsg); hvt->outmsg = NULL; hvt->outmsg_len = 0; if (hvt->on_reset) hvt->on_reset(); } static ssize_t hvt_op_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { struct hvutil_transport *hvt; int ret; hvt = container_of(file->f_op, struct hvutil_transport, fops); if (wait_event_interruptible(hvt->outmsg_q, hvt->outmsg_len > 0 || hvt->mode != HVUTIL_TRANSPORT_CHARDEV)) return -EINTR; mutex_lock(&hvt->lock); if (hvt->mode == HVUTIL_TRANSPORT_DESTROY) { ret = -EBADF; goto out_unlock; } if (!hvt->outmsg) { ret = -EAGAIN; goto out_unlock; } if (count < hvt->outmsg_len) { ret = -EINVAL; goto out_unlock; } if (!copy_to_user(buf, hvt->outmsg, hvt->outmsg_len)) ret = hvt->outmsg_len; else ret = -EFAULT; kfree(hvt->outmsg); hvt->outmsg = NULL; hvt->outmsg_len = 0; if (hvt->on_read) hvt->on_read(); hvt->on_read = NULL; out_unlock: mutex_unlock(&hvt->lock); return ret; } static ssize_t hvt_op_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { struct hvutil_transport *hvt; u8 *inmsg; int ret; hvt = container_of(file->f_op, struct hvutil_transport, fops); inmsg = memdup_user(buf, count); if (IS_ERR(inmsg)) return PTR_ERR(inmsg); if (hvt->mode == HVUTIL_TRANSPORT_DESTROY) ret = -EBADF; else ret = hvt->on_msg(inmsg, count); kfree(inmsg); return ret ? ret : count; } static __poll_t hvt_op_poll(struct file *file, poll_table *wait) { struct hvutil_transport *hvt; hvt = container_of(file->f_op, struct hvutil_transport, fops); poll_wait(file, &hvt->outmsg_q, wait); if (hvt->mode == HVUTIL_TRANSPORT_DESTROY) return EPOLLERR | EPOLLHUP; if (hvt->outmsg_len > 0) return EPOLLIN | EPOLLRDNORM; return 0; } static int hvt_op_open(struct inode *inode, struct file *file) { struct hvutil_transport *hvt; int ret = 0; bool issue_reset = false; hvt = container_of(file->f_op, struct hvutil_transport, fops); mutex_lock(&hvt->lock); if (hvt->mode == HVUTIL_TRANSPORT_DESTROY) { ret = -EBADF; } else if (hvt->mode == HVUTIL_TRANSPORT_INIT) { /* * Switching to CHARDEV mode. We switch bach to INIT when * device gets released. */ hvt->mode = HVUTIL_TRANSPORT_CHARDEV; } else if (hvt->mode == HVUTIL_TRANSPORT_NETLINK) { /* * We're switching from netlink communication to using char * device. Issue the reset first. */ issue_reset = true; hvt->mode = HVUTIL_TRANSPORT_CHARDEV; } else { ret = -EBUSY; } if (issue_reset) hvt_reset(hvt); mutex_unlock(&hvt->lock); return ret; } static void hvt_transport_free(struct hvutil_transport *hvt) { misc_deregister(&hvt->mdev); kfree(hvt->outmsg); kfree(hvt); } static int hvt_op_release(struct inode *inode, struct file *file) { struct hvutil_transport *hvt; int mode_old; hvt = container_of(file->f_op, struct hvutil_transport, fops); mutex_lock(&hvt->lock); mode_old = hvt->mode; if (hvt->mode != HVUTIL_TRANSPORT_DESTROY) hvt->mode = HVUTIL_TRANSPORT_INIT; /* * Cleanup message buffers to avoid spurious messages when the daemon * connects back. */ hvt_reset(hvt); if (mode_old == HVUTIL_TRANSPORT_DESTROY) complete(&hvt->release); mutex_unlock(&hvt->lock); return 0; } static void hvt_cn_callback(struct cn_msg *msg, struct netlink_skb_parms *nsp) { struct hvutil_transport *hvt, *hvt_found = NULL; spin_lock(&hvt_list_lock); list_for_each_entry(hvt, &hvt_list, list) { if (hvt->cn_id.idx == msg->id.idx && hvt->cn_id.val == msg->id.val) { hvt_found = hvt; break; } } spin_unlock(&hvt_list_lock); if (!hvt_found) { pr_warn("hvt_cn_callback: spurious message received!\n"); return; } /* * Switching to NETLINK mode. Switching to CHARDEV happens when someone * opens the device. */ mutex_lock(&hvt->lock); if (hvt->mode == HVUTIL_TRANSPORT_INIT) hvt->mode = HVUTIL_TRANSPORT_NETLINK; if (hvt->mode == HVUTIL_TRANSPORT_NETLINK) hvt_found->on_msg(msg->data, msg->len); else pr_warn("hvt_cn_callback: unexpected netlink message!\n"); mutex_unlock(&hvt->lock); } int hvutil_transport_send(struct hvutil_transport *hvt, void *msg, int len, void (*on_read_cb)(void)) { struct cn_msg *cn_msg; int ret = 0; if (hvt->mode == HVUTIL_TRANSPORT_INIT || hvt->mode == HVUTIL_TRANSPORT_DESTROY) { return -EINVAL; } else if (hvt->mode == HVUTIL_TRANSPORT_NETLINK) { cn_msg = kzalloc(sizeof(*cn_msg) + len, GFP_ATOMIC); if (!cn_msg) return -ENOMEM; cn_msg->id.idx = hvt->cn_id.idx; cn_msg->id.val = hvt->cn_id.val; cn_msg->len = len; memcpy(cn_msg->data, msg, len); ret = cn_netlink_send(cn_msg, 0, 0, GFP_ATOMIC); kfree(cn_msg); /* * We don't know when netlink messages are delivered but unlike * in CHARDEV mode we're not blocked and we can send next * messages right away. */ if (on_read_cb) on_read_cb(); return ret; } /* HVUTIL_TRANSPORT_CHARDEV */ mutex_lock(&hvt->lock); if (hvt->mode != HVUTIL_TRANSPORT_CHARDEV) { ret = -EINVAL; goto out_unlock; } if (hvt->outmsg) { /* Previous message wasn't received */ ret = -EFAULT; goto out_unlock; } hvt->outmsg = kzalloc(len, GFP_KERNEL); if (hvt->outmsg) { memcpy(hvt->outmsg, msg, len); hvt->outmsg_len = len; hvt->on_read = on_read_cb; wake_up_interruptible(&hvt->outmsg_q); } else ret = -ENOMEM; out_unlock: mutex_unlock(&hvt->lock); return ret; } struct hvutil_transport *hvutil_transport_init(const char *name, u32 cn_idx, u32 cn_val, int (*on_msg)(void *, int), void (*on_reset)(void)) { struct hvutil_transport *hvt; hvt = kzalloc(sizeof(*hvt), GFP_KERNEL); if (!hvt) return NULL; hvt->cn_id.idx = cn_idx; hvt->cn_id.val = cn_val; hvt->mdev.minor = MISC_DYNAMIC_MINOR; hvt->mdev.name = name; hvt->fops.owner = THIS_MODULE; hvt->fops.read = hvt_op_read; hvt->fops.write = hvt_op_write; hvt->fops.poll = hvt_op_poll; hvt->fops.open = hvt_op_open; hvt->fops.release = hvt_op_release; hvt->mdev.fops = &hvt->fops; init_waitqueue_head(&hvt->outmsg_q); mutex_init(&hvt->lock); init_completion(&hvt->release); spin_lock(&hvt_list_lock); list_add(&hvt->list, &hvt_list); spin_unlock(&hvt_list_lock); hvt->on_msg = on_msg; hvt->on_reset = on_reset; if (misc_register(&hvt->mdev)) goto err_free_hvt; /* Use cn_id.idx/cn_id.val to determine if we need to setup netlink */ if (hvt->cn_id.idx > 0 && hvt->cn_id.val > 0 && cn_add_callback(&hvt->cn_id, name, hvt_cn_callback)) goto err_free_hvt; return hvt; err_free_hvt: spin_lock(&hvt_list_lock); list_del(&hvt->list); spin_unlock(&hvt_list_lock); kfree(hvt); return NULL; } void hvutil_transport_destroy(struct hvutil_transport *hvt) { int mode_old; mutex_lock(&hvt->lock); mode_old = hvt->mode; hvt->mode = HVUTIL_TRANSPORT_DESTROY; wake_up_interruptible(&hvt->outmsg_q); mutex_unlock(&hvt->lock); /* * In case we were in 'chardev' mode we still have an open fd so we * have to defer freeing the device. Netlink interface can be freed * now. */ spin_lock(&hvt_list_lock); list_del(&hvt->list); spin_unlock(&hvt_list_lock); if (hvt->cn_id.idx > 0 && hvt->cn_id.val > 0) cn_del_callback(&hvt->cn_id); if (mode_old == HVUTIL_TRANSPORT_CHARDEV) wait_for_completion(&hvt->release); hvt_transport_free(hvt); }
linux-master
drivers/hv/hv_utils_transport.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2009, Microsoft Corporation. * * Authors: * Haiyang Zhang <[email protected]> * Hank Janssen <[email protected]> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kernel.h> #include <linux/interrupt.h> #include <linux/sched.h> #include <linux/wait.h> #include <linux/mm.h> #include <linux/slab.h> #include <linux/list.h> #include <linux/module.h> #include <linux/completion.h> #include <linux/delay.h> #include <linux/cpu.h> #include <linux/hyperv.h> #include <asm/mshyperv.h> #include <linux/sched/isolation.h> #include "hyperv_vmbus.h" static void init_vp_index(struct vmbus_channel *channel); const struct vmbus_device vmbus_devs[] = { /* IDE */ { .dev_type = HV_IDE, HV_IDE_GUID, .perf_device = true, .allowed_in_isolated = false, }, /* SCSI */ { .dev_type = HV_SCSI, HV_SCSI_GUID, .perf_device = true, .allowed_in_isolated = true, }, /* Fibre Channel */ { .dev_type = HV_FC, HV_SYNTHFC_GUID, .perf_device = true, .allowed_in_isolated = false, }, /* Synthetic NIC */ { .dev_type = HV_NIC, HV_NIC_GUID, .perf_device = true, .allowed_in_isolated = true, }, /* Network Direct */ { .dev_type = HV_ND, HV_ND_GUID, .perf_device = true, .allowed_in_isolated = false, }, /* PCIE */ { .dev_type = HV_PCIE, HV_PCIE_GUID, .perf_device = false, .allowed_in_isolated = true, }, /* Synthetic Frame Buffer */ { .dev_type = HV_FB, HV_SYNTHVID_GUID, .perf_device = false, .allowed_in_isolated = false, }, /* Synthetic Keyboard */ { .dev_type = HV_KBD, HV_KBD_GUID, .perf_device = false, .allowed_in_isolated = false, }, /* Synthetic MOUSE */ { .dev_type = HV_MOUSE, HV_MOUSE_GUID, .perf_device = false, .allowed_in_isolated = false, }, /* KVP */ { .dev_type = HV_KVP, HV_KVP_GUID, .perf_device = false, .allowed_in_isolated = false, }, /* Time Synch */ { .dev_type = HV_TS, HV_TS_GUID, .perf_device = false, .allowed_in_isolated = true, }, /* Heartbeat */ { .dev_type = HV_HB, HV_HEART_BEAT_GUID, .perf_device = false, .allowed_in_isolated = true, }, /* Shutdown */ { .dev_type = HV_SHUTDOWN, HV_SHUTDOWN_GUID, .perf_device = false, .allowed_in_isolated = true, }, /* File copy */ { .dev_type = HV_FCOPY, HV_FCOPY_GUID, .perf_device = false, .allowed_in_isolated = false, }, /* Backup */ { .dev_type = HV_BACKUP, HV_VSS_GUID, .perf_device = false, .allowed_in_isolated = false, }, /* Dynamic Memory */ { .dev_type = HV_DM, HV_DM_GUID, .perf_device = false, .allowed_in_isolated = false, }, /* Unknown GUID */ { .dev_type = HV_UNKNOWN, .perf_device = false, .allowed_in_isolated = false, }, }; static const struct { guid_t guid; } vmbus_unsupported_devs[] = { { HV_AVMA1_GUID }, { HV_AVMA2_GUID }, { HV_RDV_GUID }, { HV_IMC_GUID }, }; /* * The rescinded channel may be blocked waiting for a response from the host; * take care of that. */ static void vmbus_rescind_cleanup(struct vmbus_channel *channel) { struct vmbus_channel_msginfo *msginfo; unsigned long flags; spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags); channel->rescind = true; list_for_each_entry(msginfo, &vmbus_connection.chn_msg_list, msglistentry) { if (msginfo->waiting_channel == channel) { complete(&msginfo->waitevent); break; } } spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags); } static bool is_unsupported_vmbus_devs(const guid_t *guid) { int i; for (i = 0; i < ARRAY_SIZE(vmbus_unsupported_devs); i++) if (guid_equal(guid, &vmbus_unsupported_devs[i].guid)) return true; return false; } static u16 hv_get_dev_type(const struct vmbus_channel *channel) { const guid_t *guid = &channel->offermsg.offer.if_type; u16 i; if (is_hvsock_channel(channel) || is_unsupported_vmbus_devs(guid)) return HV_UNKNOWN; for (i = HV_IDE; i < HV_UNKNOWN; i++) { if (guid_equal(guid, &vmbus_devs[i].guid)) return i; } pr_info("Unknown GUID: %pUl\n", guid); return i; } /** * vmbus_prep_negotiate_resp() - Create default response for Negotiate message * @icmsghdrp: Pointer to msg header structure * @buf: Raw buffer channel data * @buflen: Length of the raw buffer channel data. * @fw_version: The framework versions we can support. * @fw_vercnt: The size of @fw_version. * @srv_version: The service versions we can support. * @srv_vercnt: The size of @srv_version. * @nego_fw_version: The selected framework version. * @nego_srv_version: The selected service version. * * Note: Versions are given in decreasing order. * * Set up and fill in default negotiate response message. * Mainly used by Hyper-V drivers. */ bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf, u32 buflen, const int *fw_version, int fw_vercnt, const int *srv_version, int srv_vercnt, int *nego_fw_version, int *nego_srv_version) { int icframe_major, icframe_minor; int icmsg_major, icmsg_minor; int fw_major, fw_minor; int srv_major, srv_minor; int i, j; bool found_match = false; struct icmsg_negotiate *negop; /* Check that there's enough space for icframe_vercnt, icmsg_vercnt */ if (buflen < ICMSG_HDR + offsetof(struct icmsg_negotiate, reserved)) { pr_err_ratelimited("Invalid icmsg negotiate\n"); return false; } icmsghdrp->icmsgsize = 0x10; negop = (struct icmsg_negotiate *)&buf[ICMSG_HDR]; icframe_major = negop->icframe_vercnt; icframe_minor = 0; icmsg_major = negop->icmsg_vercnt; icmsg_minor = 0; /* Validate negop packet */ if (icframe_major > IC_VERSION_NEGOTIATION_MAX_VER_COUNT || icmsg_major > IC_VERSION_NEGOTIATION_MAX_VER_COUNT || ICMSG_NEGOTIATE_PKT_SIZE(icframe_major, icmsg_major) > buflen) { pr_err_ratelimited("Invalid icmsg negotiate - icframe_major: %u, icmsg_major: %u\n", icframe_major, icmsg_major); goto fw_error; } /* * Select the framework version number we will * support. */ for (i = 0; i < fw_vercnt; i++) { fw_major = (fw_version[i] >> 16); fw_minor = (fw_version[i] & 0xFFFF); for (j = 0; j < negop->icframe_vercnt; j++) { if ((negop->icversion_data[j].major == fw_major) && (negop->icversion_data[j].minor == fw_minor)) { icframe_major = negop->icversion_data[j].major; icframe_minor = negop->icversion_data[j].minor; found_match = true; break; } } if (found_match) break; } if (!found_match) goto fw_error; found_match = false; for (i = 0; i < srv_vercnt; i++) { srv_major = (srv_version[i] >> 16); srv_minor = (srv_version[i] & 0xFFFF); for (j = negop->icframe_vercnt; (j < negop->icframe_vercnt + negop->icmsg_vercnt); j++) { if ((negop->icversion_data[j].major == srv_major) && (negop->icversion_data[j].minor == srv_minor)) { icmsg_major = negop->icversion_data[j].major; icmsg_minor = negop->icversion_data[j].minor; found_match = true; break; } } if (found_match) break; } /* * Respond with the framework and service * version numbers we can support. */ fw_error: if (!found_match) { negop->icframe_vercnt = 0; negop->icmsg_vercnt = 0; } else { negop->icframe_vercnt = 1; negop->icmsg_vercnt = 1; } if (nego_fw_version) *nego_fw_version = (icframe_major << 16) | icframe_minor; if (nego_srv_version) *nego_srv_version = (icmsg_major << 16) | icmsg_minor; negop->icversion_data[0].major = icframe_major; negop->icversion_data[0].minor = icframe_minor; negop->icversion_data[1].major = icmsg_major; negop->icversion_data[1].minor = icmsg_minor; return found_match; } EXPORT_SYMBOL_GPL(vmbus_prep_negotiate_resp); /* * alloc_channel - Allocate and initialize a vmbus channel object */ static struct vmbus_channel *alloc_channel(void) { struct vmbus_channel *channel; channel = kzalloc(sizeof(*channel), GFP_ATOMIC); if (!channel) return NULL; spin_lock_init(&channel->sched_lock); init_completion(&channel->rescind_event); INIT_LIST_HEAD(&channel->sc_list); tasklet_init(&channel->callback_event, vmbus_on_event, (unsigned long)channel); hv_ringbuffer_pre_init(channel); return channel; } /* * free_channel - Release the resources used by the vmbus channel object */ static void free_channel(struct vmbus_channel *channel) { tasklet_kill(&channel->callback_event); vmbus_remove_channel_attr_group(channel); kobject_put(&channel->kobj); } void vmbus_channel_map_relid(struct vmbus_channel *channel) { if (WARN_ON(channel->offermsg.child_relid >= MAX_CHANNEL_RELIDS)) return; /* * The mapping of the channel's relid is visible from the CPUs that * execute vmbus_chan_sched() by the time that vmbus_chan_sched() will * execute: * * (a) In the "normal (i.e., not resuming from hibernation)" path, * the full barrier in virt_store_mb() guarantees that the store * is propagated to all CPUs before the add_channel_work work * is queued. In turn, add_channel_work is queued before the * channel's ring buffer is allocated/initialized and the * OPENCHANNEL message for the channel is sent in vmbus_open(). * Hyper-V won't start sending the interrupts for the channel * before the OPENCHANNEL message is acked. The memory barrier * in vmbus_chan_sched() -> sync_test_and_clear_bit() ensures * that vmbus_chan_sched() must find the channel's relid in * recv_int_page before retrieving the channel pointer from the * array of channels. * * (b) In the "resuming from hibernation" path, the virt_store_mb() * guarantees that the store is propagated to all CPUs before * the VMBus connection is marked as ready for the resume event * (cf. check_ready_for_resume_event()). The interrupt handler * of the VMBus driver and vmbus_chan_sched() can not run before * vmbus_bus_resume() has completed execution (cf. resume_noirq). */ virt_store_mb( vmbus_connection.channels[channel->offermsg.child_relid], channel); } void vmbus_channel_unmap_relid(struct vmbus_channel *channel) { if (WARN_ON(channel->offermsg.child_relid >= MAX_CHANNEL_RELIDS)) return; WRITE_ONCE( vmbus_connection.channels[channel->offermsg.child_relid], NULL); } static void vmbus_release_relid(u32 relid) { struct vmbus_channel_relid_released msg; int ret; memset(&msg, 0, sizeof(struct vmbus_channel_relid_released)); msg.child_relid = relid; msg.header.msgtype = CHANNELMSG_RELID_RELEASED; ret = vmbus_post_msg(&msg, sizeof(struct vmbus_channel_relid_released), true); trace_vmbus_release_relid(&msg, ret); } void hv_process_channel_removal(struct vmbus_channel *channel) { lockdep_assert_held(&vmbus_connection.channel_mutex); BUG_ON(!channel->rescind); /* * hv_process_channel_removal() could find INVALID_RELID only for * hv_sock channels. See the inline comments in vmbus_onoffer(). */ WARN_ON(channel->offermsg.child_relid == INVALID_RELID && !is_hvsock_channel(channel)); /* * Upon suspend, an in-use hv_sock channel is removed from the array of * channels and the relid is invalidated. After hibernation, when the * user-space application destroys the channel, it's unnecessary and * unsafe to remove the channel from the array of channels. See also * the inline comments before the call of vmbus_release_relid() below. */ if (channel->offermsg.child_relid != INVALID_RELID) vmbus_channel_unmap_relid(channel); if (channel->primary_channel == NULL) list_del(&channel->listentry); else list_del(&channel->sc_list); /* * If this is a "perf" channel, updates the hv_numa_map[] masks so that * init_vp_index() can (re-)use the CPU. */ if (hv_is_perf_channel(channel)) hv_clear_allocated_cpu(channel->target_cpu); /* * Upon suspend, an in-use hv_sock channel is marked as "rescinded" and * the relid is invalidated; after hibernation, when the user-space app * destroys the channel, the relid is INVALID_RELID, and in this case * it's unnecessary and unsafe to release the old relid, since the same * relid can refer to a completely different channel now. */ if (channel->offermsg.child_relid != INVALID_RELID) vmbus_release_relid(channel->offermsg.child_relid); free_channel(channel); } void vmbus_free_channels(void) { struct vmbus_channel *channel, *tmp; list_for_each_entry_safe(channel, tmp, &vmbus_connection.chn_list, listentry) { /* hv_process_channel_removal() needs this */ channel->rescind = true; vmbus_device_unregister(channel->device_obj); } } /* Note: the function can run concurrently for primary/sub channels. */ static void vmbus_add_channel_work(struct work_struct *work) { struct vmbus_channel *newchannel = container_of(work, struct vmbus_channel, add_channel_work); struct vmbus_channel *primary_channel = newchannel->primary_channel; int ret; /* * This state is used to indicate a successful open * so that when we do close the channel normally, we * can cleanup properly. */ newchannel->state = CHANNEL_OPEN_STATE; if (primary_channel != NULL) { /* newchannel is a sub-channel. */ struct hv_device *dev = primary_channel->device_obj; if (vmbus_add_channel_kobj(dev, newchannel)) goto err_deq_chan; if (primary_channel->sc_creation_callback != NULL) primary_channel->sc_creation_callback(newchannel); newchannel->probe_done = true; return; } /* * Start the process of binding the primary channel to the driver */ newchannel->device_obj = vmbus_device_create( &newchannel->offermsg.offer.if_type, &newchannel->offermsg.offer.if_instance, newchannel); if (!newchannel->device_obj) goto err_deq_chan; newchannel->device_obj->device_id = newchannel->device_id; /* * Add the new device to the bus. This will kick off device-driver * binding which eventually invokes the device driver's AddDevice() * method. * * If vmbus_device_register() fails, the 'device_obj' is freed in * vmbus_device_release() as called by device_unregister() in the * error path of vmbus_device_register(). In the outside error * path, there's no need to free it. */ ret = vmbus_device_register(newchannel->device_obj); if (ret != 0) { pr_err("unable to add child device object (relid %d)\n", newchannel->offermsg.child_relid); goto err_deq_chan; } newchannel->probe_done = true; return; err_deq_chan: mutex_lock(&vmbus_connection.channel_mutex); /* * We need to set the flag, otherwise * vmbus_onoffer_rescind() can be blocked. */ newchannel->probe_done = true; if (primary_channel == NULL) list_del(&newchannel->listentry); else list_del(&newchannel->sc_list); /* vmbus_process_offer() has mapped the channel. */ vmbus_channel_unmap_relid(newchannel); mutex_unlock(&vmbus_connection.channel_mutex); vmbus_release_relid(newchannel->offermsg.child_relid); free_channel(newchannel); } /* * vmbus_process_offer - Process the offer by creating a channel/device * associated with this offer */ static void vmbus_process_offer(struct vmbus_channel *newchannel) { struct vmbus_channel *channel; struct workqueue_struct *wq; bool fnew = true; /* * Synchronize vmbus_process_offer() and CPU hotplugging: * * CPU1 CPU2 * * [vmbus_process_offer()] [Hot removal of the CPU] * * CPU_READ_LOCK CPUS_WRITE_LOCK * LOAD cpu_online_mask SEARCH chn_list * STORE target_cpu LOAD target_cpu * INSERT chn_list STORE cpu_online_mask * CPUS_READ_UNLOCK CPUS_WRITE_UNLOCK * * Forbids: CPU1's LOAD from *not* seing CPU2's STORE && * CPU2's SEARCH from *not* seeing CPU1's INSERT * * Forbids: CPU2's SEARCH from seeing CPU1's INSERT && * CPU2's LOAD from *not* seing CPU1's STORE */ cpus_read_lock(); /* * Serializes the modifications of the chn_list list as well as * the accesses to next_numa_node_id in init_vp_index(). */ mutex_lock(&vmbus_connection.channel_mutex); list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) { if (guid_equal(&channel->offermsg.offer.if_type, &newchannel->offermsg.offer.if_type) && guid_equal(&channel->offermsg.offer.if_instance, &newchannel->offermsg.offer.if_instance)) { fnew = false; newchannel->primary_channel = channel; break; } } init_vp_index(newchannel); /* Remember the channels that should be cleaned up upon suspend. */ if (is_hvsock_channel(newchannel) || is_sub_channel(newchannel)) atomic_inc(&vmbus_connection.nr_chan_close_on_suspend); /* * Now that we have acquired the channel_mutex, * we can release the potentially racing rescind thread. */ atomic_dec(&vmbus_connection.offer_in_progress); if (fnew) { list_add_tail(&newchannel->listentry, &vmbus_connection.chn_list); } else { /* * Check to see if this is a valid sub-channel. */ if (newchannel->offermsg.offer.sub_channel_index == 0) { mutex_unlock(&vmbus_connection.channel_mutex); cpus_read_unlock(); /* * Don't call free_channel(), because newchannel->kobj * is not initialized yet. */ kfree(newchannel); WARN_ON_ONCE(1); return; } /* * Process the sub-channel. */ list_add_tail(&newchannel->sc_list, &channel->sc_list); } vmbus_channel_map_relid(newchannel); mutex_unlock(&vmbus_connection.channel_mutex); cpus_read_unlock(); /* * vmbus_process_offer() mustn't call channel->sc_creation_callback() * directly for sub-channels, because sc_creation_callback() -> * vmbus_open() may never get the host's response to the * OPEN_CHANNEL message (the host may rescind a channel at any time, * e.g. in the case of hot removing a NIC), and vmbus_onoffer_rescind() * may not wake up the vmbus_open() as it's blocked due to a non-zero * vmbus_connection.offer_in_progress, and finally we have a deadlock. * * The above is also true for primary channels, if the related device * drivers use sync probing mode by default. * * And, usually the handling of primary channels and sub-channels can * depend on each other, so we should offload them to different * workqueues to avoid possible deadlock, e.g. in sync-probing mode, * NIC1's netvsc_subchan_work() can race with NIC2's netvsc_probe() -> * rtnl_lock(), and causes deadlock: the former gets the rtnl_lock * and waits for all the sub-channels to appear, but the latter * can't get the rtnl_lock and this blocks the handling of * sub-channels. */ INIT_WORK(&newchannel->add_channel_work, vmbus_add_channel_work); wq = fnew ? vmbus_connection.handle_primary_chan_wq : vmbus_connection.handle_sub_chan_wq; queue_work(wq, &newchannel->add_channel_work); } /* * Check if CPUs used by other channels of the same device. * It should only be called by init_vp_index(). */ static bool hv_cpuself_used(u32 cpu, struct vmbus_channel *chn) { struct vmbus_channel *primary = chn->primary_channel; struct vmbus_channel *sc; lockdep_assert_held(&vmbus_connection.channel_mutex); if (!primary) return false; if (primary->target_cpu == cpu) return true; list_for_each_entry(sc, &primary->sc_list, sc_list) if (sc != chn && sc->target_cpu == cpu) return true; return false; } /* * We use this state to statically distribute the channel interrupt load. */ static int next_numa_node_id; /* * We can statically distribute the incoming channel interrupt load * by binding a channel to VCPU. * * For non-performance critical channels we assign the VMBUS_CONNECT_CPU. * Performance critical channels will be distributed evenly among all * the available NUMA nodes. Once the node is assigned, we will assign * the CPU based on a simple round robin scheme. */ static void init_vp_index(struct vmbus_channel *channel) { bool perf_chn = hv_is_perf_channel(channel); u32 i, ncpu = num_online_cpus(); cpumask_var_t available_mask; struct cpumask *allocated_mask; const struct cpumask *hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ); u32 target_cpu; int numa_node; if (!perf_chn || !alloc_cpumask_var(&available_mask, GFP_KERNEL) || cpumask_empty(hk_mask)) { /* * If the channel is not a performance critical * channel, bind it to VMBUS_CONNECT_CPU. * In case alloc_cpumask_var() fails, bind it to * VMBUS_CONNECT_CPU. * If all the cpus are isolated, bind it to * VMBUS_CONNECT_CPU. */ channel->target_cpu = VMBUS_CONNECT_CPU; if (perf_chn) hv_set_allocated_cpu(VMBUS_CONNECT_CPU); return; } for (i = 1; i <= ncpu + 1; i++) { while (true) { numa_node = next_numa_node_id++; if (numa_node == nr_node_ids) { next_numa_node_id = 0; continue; } if (cpumask_empty(cpumask_of_node(numa_node))) continue; break; } allocated_mask = &hv_context.hv_numa_map[numa_node]; retry: cpumask_xor(available_mask, allocated_mask, cpumask_of_node(numa_node)); cpumask_and(available_mask, available_mask, hk_mask); if (cpumask_empty(available_mask)) { /* * We have cycled through all the CPUs in the node; * reset the allocated map. */ cpumask_clear(allocated_mask); goto retry; } target_cpu = cpumask_first(available_mask); cpumask_set_cpu(target_cpu, allocated_mask); if (channel->offermsg.offer.sub_channel_index >= ncpu || i > ncpu || !hv_cpuself_used(target_cpu, channel)) break; } channel->target_cpu = target_cpu; free_cpumask_var(available_mask); } #define UNLOAD_DELAY_UNIT_MS 10 /* 10 milliseconds */ #define UNLOAD_WAIT_MS (100*1000) /* 100 seconds */ #define UNLOAD_WAIT_LOOPS (UNLOAD_WAIT_MS/UNLOAD_DELAY_UNIT_MS) #define UNLOAD_MSG_MS (5*1000) /* Every 5 seconds */ #define UNLOAD_MSG_LOOPS (UNLOAD_MSG_MS/UNLOAD_DELAY_UNIT_MS) static void vmbus_wait_for_unload(void) { int cpu; void *page_addr; struct hv_message *msg; struct vmbus_channel_message_header *hdr; u32 message_type, i; /* * CHANNELMSG_UNLOAD_RESPONSE is always delivered to the CPU which was * used for initial contact or to CPU0 depending on host version. When * we're crashing on a different CPU let's hope that IRQ handler on * the cpu which receives CHANNELMSG_UNLOAD_RESPONSE is still * functional and vmbus_unload_response() will complete * vmbus_connection.unload_event. If not, the last thing we can do is * read message pages for all CPUs directly. * * Wait up to 100 seconds since an Azure host must writeback any dirty * data in its disk cache before the VMbus UNLOAD request will * complete. This flushing has been empirically observed to take up * to 50 seconds in cases with a lot of dirty data, so allow additional * leeway and for inaccuracies in mdelay(). But eventually time out so * that the panic path can't get hung forever in case the response * message isn't seen. */ for (i = 1; i <= UNLOAD_WAIT_LOOPS; i++) { if (completion_done(&vmbus_connection.unload_event)) goto completed; for_each_present_cpu(cpu) { struct hv_per_cpu_context *hv_cpu = per_cpu_ptr(hv_context.cpu_context, cpu); /* * In a CoCo VM the synic_message_page is not allocated * in hv_synic_alloc(). Instead it is set/cleared in * hv_synic_enable_regs() and hv_synic_disable_regs() * such that it is set only when the CPU is online. If * not all present CPUs are online, the message page * might be NULL, so skip such CPUs. */ page_addr = hv_cpu->synic_message_page; if (!page_addr) continue; msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT; message_type = READ_ONCE(msg->header.message_type); if (message_type == HVMSG_NONE) continue; hdr = (struct vmbus_channel_message_header *) msg->u.payload; if (hdr->msgtype == CHANNELMSG_UNLOAD_RESPONSE) complete(&vmbus_connection.unload_event); vmbus_signal_eom(msg, message_type); } /* * Give a notice periodically so someone watching the * serial output won't think it is completely hung. */ if (!(i % UNLOAD_MSG_LOOPS)) pr_notice("Waiting for VMBus UNLOAD to complete\n"); mdelay(UNLOAD_DELAY_UNIT_MS); } pr_err("Continuing even though VMBus UNLOAD did not complete\n"); completed: /* * We're crashing and already got the UNLOAD_RESPONSE, cleanup all * maybe-pending messages on all CPUs to be able to receive new * messages after we reconnect. */ for_each_present_cpu(cpu) { struct hv_per_cpu_context *hv_cpu = per_cpu_ptr(hv_context.cpu_context, cpu); page_addr = hv_cpu->synic_message_page; if (!page_addr) continue; msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT; msg->header.message_type = HVMSG_NONE; } } /* * vmbus_unload_response - Handler for the unload response. */ static void vmbus_unload_response(struct vmbus_channel_message_header *hdr) { /* * This is a global event; just wakeup the waiting thread. * Once we successfully unload, we can cleanup the monitor state. * * NB. A malicious or compromised Hyper-V could send a spurious * message of type CHANNELMSG_UNLOAD_RESPONSE, and trigger a call * of the complete() below. Make sure that unload_event has been * initialized by the time this complete() is executed. */ complete(&vmbus_connection.unload_event); } void vmbus_initiate_unload(bool crash) { struct vmbus_channel_message_header hdr; if (xchg(&vmbus_connection.conn_state, DISCONNECTED) == DISCONNECTED) return; /* Pre-Win2012R2 hosts don't support reconnect */ if (vmbus_proto_version < VERSION_WIN8_1) return; reinit_completion(&vmbus_connection.unload_event); memset(&hdr, 0, sizeof(struct vmbus_channel_message_header)); hdr.msgtype = CHANNELMSG_UNLOAD; vmbus_post_msg(&hdr, sizeof(struct vmbus_channel_message_header), !crash); /* * vmbus_initiate_unload() is also called on crash and the crash can be * happening in an interrupt context, where scheduling is impossible. */ if (!crash) wait_for_completion(&vmbus_connection.unload_event); else vmbus_wait_for_unload(); } static void check_ready_for_resume_event(void) { /* * If all the old primary channels have been fixed up, then it's safe * to resume. */ if (atomic_dec_and_test(&vmbus_connection.nr_chan_fixup_on_resume)) complete(&vmbus_connection.ready_for_resume_event); } static void vmbus_setup_channel_state(struct vmbus_channel *channel, struct vmbus_channel_offer_channel *offer) { /* * Setup state for signalling the host. */ channel->sig_event = VMBUS_EVENT_CONNECTION_ID; channel->is_dedicated_interrupt = (offer->is_dedicated_interrupt != 0); channel->sig_event = offer->connection_id; memcpy(&channel->offermsg, offer, sizeof(struct vmbus_channel_offer_channel)); channel->monitor_grp = (u8)offer->monitorid / 32; channel->monitor_bit = (u8)offer->monitorid % 32; channel->device_id = hv_get_dev_type(channel); } /* * find_primary_channel_by_offer - Get the channel object given the new offer. * This is only used in the resume path of hibernation. */ static struct vmbus_channel * find_primary_channel_by_offer(const struct vmbus_channel_offer_channel *offer) { struct vmbus_channel *channel = NULL, *iter; const guid_t *inst1, *inst2; /* Ignore sub-channel offers. */ if (offer->offer.sub_channel_index != 0) return NULL; mutex_lock(&vmbus_connection.channel_mutex); list_for_each_entry(iter, &vmbus_connection.chn_list, listentry) { inst1 = &iter->offermsg.offer.if_instance; inst2 = &offer->offer.if_instance; if (guid_equal(inst1, inst2)) { channel = iter; break; } } mutex_unlock(&vmbus_connection.channel_mutex); return channel; } static bool vmbus_is_valid_offer(const struct vmbus_channel_offer_channel *offer) { const guid_t *guid = &offer->offer.if_type; u16 i; if (!hv_is_isolation_supported()) return true; if (is_hvsock_offer(offer)) return true; for (i = 0; i < ARRAY_SIZE(vmbus_devs); i++) { if (guid_equal(guid, &vmbus_devs[i].guid)) return vmbus_devs[i].allowed_in_isolated; } return false; } /* * vmbus_onoffer - Handler for channel offers from vmbus in parent partition. * */ static void vmbus_onoffer(struct vmbus_channel_message_header *hdr) { struct vmbus_channel_offer_channel *offer; struct vmbus_channel *oldchannel, *newchannel; size_t offer_sz; offer = (struct vmbus_channel_offer_channel *)hdr; trace_vmbus_onoffer(offer); if (!vmbus_is_valid_offer(offer)) { pr_err_ratelimited("Invalid offer %d from the host supporting isolation\n", offer->child_relid); atomic_dec(&vmbus_connection.offer_in_progress); return; } oldchannel = find_primary_channel_by_offer(offer); if (oldchannel != NULL) { /* * We're resuming from hibernation: all the sub-channel and * hv_sock channels we had before the hibernation should have * been cleaned up, and now we must be seeing a re-offered * primary channel that we had before the hibernation. */ /* * { Initially: channel relid = INVALID_RELID, * channels[valid_relid] = NULL } * * CPU1 CPU2 * * [vmbus_onoffer()] [vmbus_device_release()] * * LOCK channel_mutex LOCK channel_mutex * STORE channel relid = valid_relid LOAD r1 = channel relid * MAP_RELID channel if (r1 != INVALID_RELID) * UNLOCK channel_mutex UNMAP_RELID channel * UNLOCK channel_mutex * * Forbids: r1 == valid_relid && * channels[valid_relid] == channel * * Note. r1 can be INVALID_RELID only for an hv_sock channel. * None of the hv_sock channels which were present before the * suspend are re-offered upon the resume. See the WARN_ON() * in hv_process_channel_removal(). */ mutex_lock(&vmbus_connection.channel_mutex); atomic_dec(&vmbus_connection.offer_in_progress); WARN_ON(oldchannel->offermsg.child_relid != INVALID_RELID); /* Fix up the relid. */ oldchannel->offermsg.child_relid = offer->child_relid; offer_sz = sizeof(*offer); if (memcmp(offer, &oldchannel->offermsg, offer_sz) != 0) { /* * This is not an error, since the host can also change * the other field(s) of the offer, e.g. on WS RS5 * (Build 17763), the offer->connection_id of the * Mellanox VF vmbus device can change when the host * reoffers the device upon resume. */ pr_debug("vmbus offer changed: relid=%d\n", offer->child_relid); print_hex_dump_debug("Old vmbus offer: ", DUMP_PREFIX_OFFSET, 16, 4, &oldchannel->offermsg, offer_sz, false); print_hex_dump_debug("New vmbus offer: ", DUMP_PREFIX_OFFSET, 16, 4, offer, offer_sz, false); /* Fix up the old channel. */ vmbus_setup_channel_state(oldchannel, offer); } /* Add the channel back to the array of channels. */ vmbus_channel_map_relid(oldchannel); check_ready_for_resume_event(); mutex_unlock(&vmbus_connection.channel_mutex); return; } /* Allocate the channel object and save this offer. */ newchannel = alloc_channel(); if (!newchannel) { vmbus_release_relid(offer->child_relid); atomic_dec(&vmbus_connection.offer_in_progress); pr_err("Unable to allocate channel object\n"); return; } vmbus_setup_channel_state(newchannel, offer); vmbus_process_offer(newchannel); } static void check_ready_for_suspend_event(void) { /* * If all the sub-channels or hv_sock channels have been cleaned up, * then it's safe to suspend. */ if (atomic_dec_and_test(&vmbus_connection.nr_chan_close_on_suspend)) complete(&vmbus_connection.ready_for_suspend_event); } /* * vmbus_onoffer_rescind - Rescind offer handler. * * We queue a work item to process this offer synchronously */ static void vmbus_onoffer_rescind(struct vmbus_channel_message_header *hdr) { struct vmbus_channel_rescind_offer *rescind; struct vmbus_channel *channel; struct device *dev; bool clean_up_chan_for_suspend; rescind = (struct vmbus_channel_rescind_offer *)hdr; trace_vmbus_onoffer_rescind(rescind); /* * The offer msg and the corresponding rescind msg * from the host are guranteed to be ordered - * offer comes in first and then the rescind. * Since we process these events in work elements, * and with preemption, we may end up processing * the events out of order. We rely on the synchronization * provided by offer_in_progress and by channel_mutex for * ordering these events: * * { Initially: offer_in_progress = 1 } * * CPU1 CPU2 * * [vmbus_onoffer()] [vmbus_onoffer_rescind()] * * LOCK channel_mutex WAIT_ON offer_in_progress == 0 * DECREMENT offer_in_progress LOCK channel_mutex * STORE channels[] LOAD channels[] * UNLOCK channel_mutex UNLOCK channel_mutex * * Forbids: CPU2's LOAD from *not* seeing CPU1's STORE */ while (atomic_read(&vmbus_connection.offer_in_progress) != 0) { /* * We wait here until any channel offer is currently * being processed. */ msleep(1); } mutex_lock(&vmbus_connection.channel_mutex); channel = relid2channel(rescind->child_relid); if (channel != NULL) { /* * Guarantee that no other instance of vmbus_onoffer_rescind() * has got a reference to the channel object. Synchronize on * &vmbus_connection.channel_mutex. */ if (channel->rescind_ref) { mutex_unlock(&vmbus_connection.channel_mutex); return; } channel->rescind_ref = true; } mutex_unlock(&vmbus_connection.channel_mutex); if (channel == NULL) { /* * We failed in processing the offer message; * we would have cleaned up the relid in that * failure path. */ return; } clean_up_chan_for_suspend = is_hvsock_channel(channel) || is_sub_channel(channel); /* * Before setting channel->rescind in vmbus_rescind_cleanup(), we * should make sure the channel callback is not running any more. */ vmbus_reset_channel_cb(channel); /* * Now wait for offer handling to complete. */ vmbus_rescind_cleanup(channel); while (READ_ONCE(channel->probe_done) == false) { /* * We wait here until any channel offer is currently * being processed. */ msleep(1); } /* * At this point, the rescind handling can proceed safely. */ if (channel->device_obj) { if (channel->chn_rescind_callback) { channel->chn_rescind_callback(channel); if (clean_up_chan_for_suspend) check_ready_for_suspend_event(); return; } /* * We will have to unregister this device from the * driver core. */ dev = get_device(&channel->device_obj->device); if (dev) { vmbus_device_unregister(channel->device_obj); put_device(dev); } } else if (channel->primary_channel != NULL) { /* * Sub-channel is being rescinded. Following is the channel * close sequence when initiated from the driveri (refer to * vmbus_close() for details): * 1. Close all sub-channels first * 2. Then close the primary channel. */ mutex_lock(&vmbus_connection.channel_mutex); if (channel->state == CHANNEL_OPEN_STATE) { /* * The channel is currently not open; * it is safe for us to cleanup the channel. */ hv_process_channel_removal(channel); } else { complete(&channel->rescind_event); } mutex_unlock(&vmbus_connection.channel_mutex); } /* The "channel" may have been freed. Do not access it any longer. */ if (clean_up_chan_for_suspend) check_ready_for_suspend_event(); } void vmbus_hvsock_device_unregister(struct vmbus_channel *channel) { BUG_ON(!is_hvsock_channel(channel)); /* We always get a rescind msg when a connection is closed. */ while (!READ_ONCE(channel->probe_done) || !READ_ONCE(channel->rescind)) msleep(1); vmbus_device_unregister(channel->device_obj); } EXPORT_SYMBOL_GPL(vmbus_hvsock_device_unregister); /* * vmbus_onoffers_delivered - * This is invoked when all offers have been delivered. * * Nothing to do here. */ static void vmbus_onoffers_delivered( struct vmbus_channel_message_header *hdr) { } /* * vmbus_onopen_result - Open result handler. * * This is invoked when we received a response to our channel open request. * Find the matching request, copy the response and signal the requesting * thread. */ static void vmbus_onopen_result(struct vmbus_channel_message_header *hdr) { struct vmbus_channel_open_result *result; struct vmbus_channel_msginfo *msginfo; struct vmbus_channel_message_header *requestheader; struct vmbus_channel_open_channel *openmsg; unsigned long flags; result = (struct vmbus_channel_open_result *)hdr; trace_vmbus_onopen_result(result); /* * Find the open msg, copy the result and signal/unblock the wait event */ spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags); list_for_each_entry(msginfo, &vmbus_connection.chn_msg_list, msglistentry) { requestheader = (struct vmbus_channel_message_header *)msginfo->msg; if (requestheader->msgtype == CHANNELMSG_OPENCHANNEL) { openmsg = (struct vmbus_channel_open_channel *)msginfo->msg; if (openmsg->child_relid == result->child_relid && openmsg->openid == result->openid) { memcpy(&msginfo->response.open_result, result, sizeof( struct vmbus_channel_open_result)); complete(&msginfo->waitevent); break; } } } spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags); } /* * vmbus_ongpadl_created - GPADL created handler. * * This is invoked when we received a response to our gpadl create request. * Find the matching request, copy the response and signal the requesting * thread. */ static void vmbus_ongpadl_created(struct vmbus_channel_message_header *hdr) { struct vmbus_channel_gpadl_created *gpadlcreated; struct vmbus_channel_msginfo *msginfo; struct vmbus_channel_message_header *requestheader; struct vmbus_channel_gpadl_header *gpadlheader; unsigned long flags; gpadlcreated = (struct vmbus_channel_gpadl_created *)hdr; trace_vmbus_ongpadl_created(gpadlcreated); /* * Find the establish msg, copy the result and signal/unblock the wait * event */ spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags); list_for_each_entry(msginfo, &vmbus_connection.chn_msg_list, msglistentry) { requestheader = (struct vmbus_channel_message_header *)msginfo->msg; if (requestheader->msgtype == CHANNELMSG_GPADL_HEADER) { gpadlheader = (struct vmbus_channel_gpadl_header *)requestheader; if ((gpadlcreated->child_relid == gpadlheader->child_relid) && (gpadlcreated->gpadl == gpadlheader->gpadl)) { memcpy(&msginfo->response.gpadl_created, gpadlcreated, sizeof( struct vmbus_channel_gpadl_created)); complete(&msginfo->waitevent); break; } } } spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags); } /* * vmbus_onmodifychannel_response - Modify Channel response handler. * * This is invoked when we received a response to our channel modify request. * Find the matching request, copy the response and signal the requesting thread. */ static void vmbus_onmodifychannel_response(struct vmbus_channel_message_header *hdr) { struct vmbus_channel_modifychannel_response *response; struct vmbus_channel_msginfo *msginfo; unsigned long flags; response = (struct vmbus_channel_modifychannel_response *)hdr; trace_vmbus_onmodifychannel_response(response); /* * Find the modify msg, copy the response and signal/unblock the wait event. */ spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags); list_for_each_entry(msginfo, &vmbus_connection.chn_msg_list, msglistentry) { struct vmbus_channel_message_header *responseheader = (struct vmbus_channel_message_header *)msginfo->msg; if (responseheader->msgtype == CHANNELMSG_MODIFYCHANNEL) { struct vmbus_channel_modifychannel *modifymsg; modifymsg = (struct vmbus_channel_modifychannel *)msginfo->msg; if (modifymsg->child_relid == response->child_relid) { memcpy(&msginfo->response.modify_response, response, sizeof(*response)); complete(&msginfo->waitevent); break; } } } spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags); } /* * vmbus_ongpadl_torndown - GPADL torndown handler. * * This is invoked when we received a response to our gpadl teardown request. * Find the matching request, copy the response and signal the requesting * thread. */ static void vmbus_ongpadl_torndown( struct vmbus_channel_message_header *hdr) { struct vmbus_channel_gpadl_torndown *gpadl_torndown; struct vmbus_channel_msginfo *msginfo; struct vmbus_channel_message_header *requestheader; struct vmbus_channel_gpadl_teardown *gpadl_teardown; unsigned long flags; gpadl_torndown = (struct vmbus_channel_gpadl_torndown *)hdr; trace_vmbus_ongpadl_torndown(gpadl_torndown); /* * Find the open msg, copy the result and signal/unblock the wait event */ spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags); list_for_each_entry(msginfo, &vmbus_connection.chn_msg_list, msglistentry) { requestheader = (struct vmbus_channel_message_header *)msginfo->msg; if (requestheader->msgtype == CHANNELMSG_GPADL_TEARDOWN) { gpadl_teardown = (struct vmbus_channel_gpadl_teardown *)requestheader; if (gpadl_torndown->gpadl == gpadl_teardown->gpadl) { memcpy(&msginfo->response.gpadl_torndown, gpadl_torndown, sizeof( struct vmbus_channel_gpadl_torndown)); complete(&msginfo->waitevent); break; } } } spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags); } /* * vmbus_onversion_response - Version response handler * * This is invoked when we received a response to our initiate contact request. * Find the matching request, copy the response and signal the requesting * thread. */ static void vmbus_onversion_response( struct vmbus_channel_message_header *hdr) { struct vmbus_channel_msginfo *msginfo; struct vmbus_channel_message_header *requestheader; struct vmbus_channel_version_response *version_response; unsigned long flags; version_response = (struct vmbus_channel_version_response *)hdr; trace_vmbus_onversion_response(version_response); spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags); list_for_each_entry(msginfo, &vmbus_connection.chn_msg_list, msglistentry) { requestheader = (struct vmbus_channel_message_header *)msginfo->msg; if (requestheader->msgtype == CHANNELMSG_INITIATE_CONTACT) { memcpy(&msginfo->response.version_response, version_response, sizeof(struct vmbus_channel_version_response)); complete(&msginfo->waitevent); } } spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags); } /* Channel message dispatch table */ const struct vmbus_channel_message_table_entry channel_message_table[CHANNELMSG_COUNT] = { { CHANNELMSG_INVALID, 0, NULL, 0}, { CHANNELMSG_OFFERCHANNEL, 0, vmbus_onoffer, sizeof(struct vmbus_channel_offer_channel)}, { CHANNELMSG_RESCIND_CHANNELOFFER, 0, vmbus_onoffer_rescind, sizeof(struct vmbus_channel_rescind_offer) }, { CHANNELMSG_REQUESTOFFERS, 0, NULL, 0}, { CHANNELMSG_ALLOFFERS_DELIVERED, 1, vmbus_onoffers_delivered, 0}, { CHANNELMSG_OPENCHANNEL, 0, NULL, 0}, { CHANNELMSG_OPENCHANNEL_RESULT, 1, vmbus_onopen_result, sizeof(struct vmbus_channel_open_result)}, { CHANNELMSG_CLOSECHANNEL, 0, NULL, 0}, { CHANNELMSG_GPADL_HEADER, 0, NULL, 0}, { CHANNELMSG_GPADL_BODY, 0, NULL, 0}, { CHANNELMSG_GPADL_CREATED, 1, vmbus_ongpadl_created, sizeof(struct vmbus_channel_gpadl_created)}, { CHANNELMSG_GPADL_TEARDOWN, 0, NULL, 0}, { CHANNELMSG_GPADL_TORNDOWN, 1, vmbus_ongpadl_torndown, sizeof(struct vmbus_channel_gpadl_torndown) }, { CHANNELMSG_RELID_RELEASED, 0, NULL, 0}, { CHANNELMSG_INITIATE_CONTACT, 0, NULL, 0}, { CHANNELMSG_VERSION_RESPONSE, 1, vmbus_onversion_response, sizeof(struct vmbus_channel_version_response)}, { CHANNELMSG_UNLOAD, 0, NULL, 0}, { CHANNELMSG_UNLOAD_RESPONSE, 1, vmbus_unload_response, 0}, { CHANNELMSG_18, 0, NULL, 0}, { CHANNELMSG_19, 0, NULL, 0}, { CHANNELMSG_20, 0, NULL, 0}, { CHANNELMSG_TL_CONNECT_REQUEST, 0, NULL, 0}, { CHANNELMSG_MODIFYCHANNEL, 0, NULL, 0}, { CHANNELMSG_TL_CONNECT_RESULT, 0, NULL, 0}, { CHANNELMSG_MODIFYCHANNEL_RESPONSE, 1, vmbus_onmodifychannel_response, sizeof(struct vmbus_channel_modifychannel_response)}, }; /* * vmbus_onmessage - Handler for channel protocol messages. * * This is invoked in the vmbus worker thread context. */ void vmbus_onmessage(struct vmbus_channel_message_header *hdr) { trace_vmbus_on_message(hdr); /* * vmbus_on_msg_dpc() makes sure the hdr->msgtype here can not go * out of bound and the message_handler pointer can not be NULL. */ channel_message_table[hdr->msgtype].message_handler(hdr); } /* * vmbus_request_offers - Send a request to get all our pending offers. */ int vmbus_request_offers(void) { struct vmbus_channel_message_header *msg; struct vmbus_channel_msginfo *msginfo; int ret; msginfo = kzalloc(sizeof(*msginfo) + sizeof(struct vmbus_channel_message_header), GFP_KERNEL); if (!msginfo) return -ENOMEM; msg = (struct vmbus_channel_message_header *)msginfo->msg; msg->msgtype = CHANNELMSG_REQUESTOFFERS; ret = vmbus_post_msg(msg, sizeof(struct vmbus_channel_message_header), true); trace_vmbus_request_offers(ret); if (ret != 0) { pr_err("Unable to request offers - %d\n", ret); goto cleanup; } cleanup: kfree(msginfo); return ret; } void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel, void (*sc_cr_cb)(struct vmbus_channel *new_sc)) { primary_channel->sc_creation_callback = sc_cr_cb; } EXPORT_SYMBOL_GPL(vmbus_set_sc_create_callback); void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel, void (*chn_rescind_cb)(struct vmbus_channel *)) { channel->chn_rescind_callback = chn_rescind_cb; } EXPORT_SYMBOL_GPL(vmbus_set_chn_rescind_callback);
linux-master
drivers/hv/channel_mgmt.c
// SPDX-License-Identifier: GPL-2.0-only /* * * Copyright (c) 2009, Microsoft Corporation. * * Authors: * Haiyang Zhang <[email protected]> * Hank Janssen <[email protected]> * K. Y. Srinivasan <[email protected]> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kernel.h> #include <linux/mm.h> #include <linux/hyperv.h> #include <linux/uio.h> #include <linux/vmalloc.h> #include <linux/slab.h> #include <linux/prefetch.h> #include <linux/io.h> #include <asm/mshyperv.h> #include "hyperv_vmbus.h" #define VMBUS_PKT_TRAILER 8 /* * When we write to the ring buffer, check if the host needs to * be signaled. Here is the details of this protocol: * * 1. The host guarantees that while it is draining the * ring buffer, it will set the interrupt_mask to * indicate it does not need to be interrupted when * new data is placed. * * 2. The host guarantees that it will completely drain * the ring buffer before exiting the read loop. Further, * once the ring buffer is empty, it will clear the * interrupt_mask and re-check to see if new data has * arrived. * * KYS: Oct. 30, 2016: * It looks like Windows hosts have logic to deal with DOS attacks that * can be triggered if it receives interrupts when it is not expecting * the interrupt. The host expects interrupts only when the ring * transitions from empty to non-empty (or full to non full on the guest * to host ring). * So, base the signaling decision solely on the ring state until the * host logic is fixed. */ static void hv_signal_on_write(u32 old_write, struct vmbus_channel *channel) { struct hv_ring_buffer_info *rbi = &channel->outbound; virt_mb(); if (READ_ONCE(rbi->ring_buffer->interrupt_mask)) return; /* check interrupt_mask before read_index */ virt_rmb(); /* * This is the only case we need to signal when the * ring transitions from being empty to non-empty. */ if (old_write == READ_ONCE(rbi->ring_buffer->read_index)) { ++channel->intr_out_empty; vmbus_setevent(channel); } } /* Get the next write location for the specified ring buffer. */ static inline u32 hv_get_next_write_location(struct hv_ring_buffer_info *ring_info) { u32 next = ring_info->ring_buffer->write_index; return next; } /* Set the next write location for the specified ring buffer. */ static inline void hv_set_next_write_location(struct hv_ring_buffer_info *ring_info, u32 next_write_location) { ring_info->ring_buffer->write_index = next_write_location; } /* Get the size of the ring buffer. */ static inline u32 hv_get_ring_buffersize(const struct hv_ring_buffer_info *ring_info) { return ring_info->ring_datasize; } /* Get the read and write indices as u64 of the specified ring buffer. */ static inline u64 hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info) { return (u64)ring_info->ring_buffer->write_index << 32; } /* * Helper routine to copy from source to ring buffer. * Assume there is enough room. Handles wrap-around in dest case only!! */ static u32 hv_copyto_ringbuffer( struct hv_ring_buffer_info *ring_info, u32 start_write_offset, const void *src, u32 srclen) { void *ring_buffer = hv_get_ring_buffer(ring_info); u32 ring_buffer_size = hv_get_ring_buffersize(ring_info); memcpy(ring_buffer + start_write_offset, src, srclen); start_write_offset += srclen; if (start_write_offset >= ring_buffer_size) start_write_offset -= ring_buffer_size; return start_write_offset; } /* * * hv_get_ringbuffer_availbytes() * * Get number of bytes available to read and to write to * for the specified ring buffer */ static void hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi, u32 *read, u32 *write) { u32 read_loc, write_loc, dsize; /* Capture the read/write indices before they changed */ read_loc = READ_ONCE(rbi->ring_buffer->read_index); write_loc = READ_ONCE(rbi->ring_buffer->write_index); dsize = rbi->ring_datasize; *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : read_loc - write_loc; *read = dsize - *write; } /* Get various debug metrics for the specified ring buffer. */ int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info, struct hv_ring_buffer_debug_info *debug_info) { u32 bytes_avail_towrite; u32 bytes_avail_toread; mutex_lock(&ring_info->ring_buffer_mutex); if (!ring_info->ring_buffer) { mutex_unlock(&ring_info->ring_buffer_mutex); return -EINVAL; } hv_get_ringbuffer_availbytes(ring_info, &bytes_avail_toread, &bytes_avail_towrite); debug_info->bytes_avail_toread = bytes_avail_toread; debug_info->bytes_avail_towrite = bytes_avail_towrite; debug_info->current_read_index = ring_info->ring_buffer->read_index; debug_info->current_write_index = ring_info->ring_buffer->write_index; debug_info->current_interrupt_mask = ring_info->ring_buffer->interrupt_mask; mutex_unlock(&ring_info->ring_buffer_mutex); return 0; } EXPORT_SYMBOL_GPL(hv_ringbuffer_get_debuginfo); /* Initialize a channel's ring buffer info mutex locks */ void hv_ringbuffer_pre_init(struct vmbus_channel *channel) { mutex_init(&channel->inbound.ring_buffer_mutex); mutex_init(&channel->outbound.ring_buffer_mutex); } /* Initialize the ring buffer. */ int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info, struct page *pages, u32 page_cnt, u32 max_pkt_size) { struct page **pages_wraparound; int i; BUILD_BUG_ON((sizeof(struct hv_ring_buffer) != PAGE_SIZE)); /* * First page holds struct hv_ring_buffer, do wraparound mapping for * the rest. */ pages_wraparound = kcalloc(page_cnt * 2 - 1, sizeof(struct page *), GFP_KERNEL); if (!pages_wraparound) return -ENOMEM; pages_wraparound[0] = pages; for (i = 0; i < 2 * (page_cnt - 1); i++) pages_wraparound[i + 1] = &pages[i % (page_cnt - 1) + 1]; ring_info->ring_buffer = (struct hv_ring_buffer *) vmap(pages_wraparound, page_cnt * 2 - 1, VM_MAP, pgprot_decrypted(PAGE_KERNEL)); kfree(pages_wraparound); if (!ring_info->ring_buffer) return -ENOMEM; /* * Ensure the header page is zero'ed since * encryption status may have changed. */ memset(ring_info->ring_buffer, 0, HV_HYP_PAGE_SIZE); ring_info->ring_buffer->read_index = ring_info->ring_buffer->write_index = 0; /* Set the feature bit for enabling flow control. */ ring_info->ring_buffer->feature_bits.value = 1; ring_info->ring_size = page_cnt << PAGE_SHIFT; ring_info->ring_size_div10_reciprocal = reciprocal_value(ring_info->ring_size / 10); ring_info->ring_datasize = ring_info->ring_size - sizeof(struct hv_ring_buffer); ring_info->priv_read_index = 0; /* Initialize buffer that holds copies of incoming packets */ if (max_pkt_size) { ring_info->pkt_buffer = kzalloc(max_pkt_size, GFP_KERNEL); if (!ring_info->pkt_buffer) return -ENOMEM; ring_info->pkt_buffer_size = max_pkt_size; } spin_lock_init(&ring_info->ring_lock); return 0; } /* Cleanup the ring buffer. */ void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info) { mutex_lock(&ring_info->ring_buffer_mutex); vunmap(ring_info->ring_buffer); ring_info->ring_buffer = NULL; mutex_unlock(&ring_info->ring_buffer_mutex); kfree(ring_info->pkt_buffer); ring_info->pkt_buffer = NULL; ring_info->pkt_buffer_size = 0; } /* * Check if the ring buffer spinlock is available to take or not; used on * atomic contexts, like panic path (see the Hyper-V framebuffer driver). */ bool hv_ringbuffer_spinlock_busy(struct vmbus_channel *channel) { struct hv_ring_buffer_info *rinfo = &channel->outbound; return spin_is_locked(&rinfo->ring_lock); } EXPORT_SYMBOL_GPL(hv_ringbuffer_spinlock_busy); /* Write to the ring buffer. */ int hv_ringbuffer_write(struct vmbus_channel *channel, const struct kvec *kv_list, u32 kv_count, u64 requestid, u64 *trans_id) { int i; u32 bytes_avail_towrite; u32 totalbytes_towrite = sizeof(u64); u32 next_write_location; u32 old_write; u64 prev_indices; unsigned long flags; struct hv_ring_buffer_info *outring_info = &channel->outbound; struct vmpacket_descriptor *desc = kv_list[0].iov_base; u64 __trans_id, rqst_id = VMBUS_NO_RQSTOR; if (channel->rescind) return -ENODEV; for (i = 0; i < kv_count; i++) totalbytes_towrite += kv_list[i].iov_len; spin_lock_irqsave(&outring_info->ring_lock, flags); bytes_avail_towrite = hv_get_bytes_to_write(outring_info); /* * If there is only room for the packet, assume it is full. * Otherwise, the next time around, we think the ring buffer * is empty since the read index == write index. */ if (bytes_avail_towrite <= totalbytes_towrite) { ++channel->out_full_total; if (!channel->out_full_flag) { ++channel->out_full_first; channel->out_full_flag = true; } spin_unlock_irqrestore(&outring_info->ring_lock, flags); return -EAGAIN; } channel->out_full_flag = false; /* Write to the ring buffer */ next_write_location = hv_get_next_write_location(outring_info); old_write = next_write_location; for (i = 0; i < kv_count; i++) { next_write_location = hv_copyto_ringbuffer(outring_info, next_write_location, kv_list[i].iov_base, kv_list[i].iov_len); } /* * Allocate the request ID after the data has been copied into the * ring buffer. Once this request ID is allocated, the completion * path could find the data and free it. */ if (desc->flags == VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED) { if (channel->next_request_id_callback != NULL) { rqst_id = channel->next_request_id_callback(channel, requestid); if (rqst_id == VMBUS_RQST_ERROR) { spin_unlock_irqrestore(&outring_info->ring_lock, flags); return -EAGAIN; } } } desc = hv_get_ring_buffer(outring_info) + old_write; __trans_id = (rqst_id == VMBUS_NO_RQSTOR) ? requestid : rqst_id; /* * Ensure the compiler doesn't generate code that reads the value of * the transaction ID from the ring buffer, which is shared with the * Hyper-V host and subject to being changed at any time. */ WRITE_ONCE(desc->trans_id, __trans_id); if (trans_id) *trans_id = __trans_id; /* Set previous packet start */ prev_indices = hv_get_ring_bufferindices(outring_info); next_write_location = hv_copyto_ringbuffer(outring_info, next_write_location, &prev_indices, sizeof(u64)); /* Issue a full memory barrier before updating the write index */ virt_mb(); /* Now, update the write location */ hv_set_next_write_location(outring_info, next_write_location); spin_unlock_irqrestore(&outring_info->ring_lock, flags); hv_signal_on_write(old_write, channel); if (channel->rescind) { if (rqst_id != VMBUS_NO_RQSTOR) { /* Reclaim request ID to avoid leak of IDs */ if (channel->request_addr_callback != NULL) channel->request_addr_callback(channel, rqst_id); } return -ENODEV; } return 0; } int hv_ringbuffer_read(struct vmbus_channel *channel, void *buffer, u32 buflen, u32 *buffer_actual_len, u64 *requestid, bool raw) { struct vmpacket_descriptor *desc; u32 packetlen, offset; if (unlikely(buflen == 0)) return -EINVAL; *buffer_actual_len = 0; *requestid = 0; /* Make sure there is something to read */ desc = hv_pkt_iter_first(channel); if (desc == NULL) { /* * No error is set when there is even no header, drivers are * supposed to analyze buffer_actual_len. */ return 0; } offset = raw ? 0 : (desc->offset8 << 3); packetlen = (desc->len8 << 3) - offset; *buffer_actual_len = packetlen; *requestid = desc->trans_id; if (unlikely(packetlen > buflen)) return -ENOBUFS; /* since ring is double mapped, only one copy is necessary */ memcpy(buffer, (const char *)desc + offset, packetlen); /* Advance ring index to next packet descriptor */ __hv_pkt_iter_next(channel, desc); /* Notify host of update */ hv_pkt_iter_close(channel); return 0; } /* * Determine number of bytes available in ring buffer after * the current iterator (priv_read_index) location. * * This is similar to hv_get_bytes_to_read but with private * read index instead. */ static u32 hv_pkt_iter_avail(const struct hv_ring_buffer_info *rbi) { u32 priv_read_loc = rbi->priv_read_index; u32 write_loc; /* * The Hyper-V host writes the packet data, then uses * store_release() to update the write_index. Use load_acquire() * here to prevent loads of the packet data from being re-ordered * before the read of the write_index and potentially getting * stale data. */ write_loc = virt_load_acquire(&rbi->ring_buffer->write_index); if (write_loc >= priv_read_loc) return write_loc - priv_read_loc; else return (rbi->ring_datasize - priv_read_loc) + write_loc; } /* * Get first vmbus packet from ring buffer after read_index * * If ring buffer is empty, returns NULL and no other action needed. */ struct vmpacket_descriptor *hv_pkt_iter_first(struct vmbus_channel *channel) { struct hv_ring_buffer_info *rbi = &channel->inbound; struct vmpacket_descriptor *desc, *desc_copy; u32 bytes_avail, pkt_len, pkt_offset; hv_debug_delay_test(channel, MESSAGE_DELAY); bytes_avail = hv_pkt_iter_avail(rbi); if (bytes_avail < sizeof(struct vmpacket_descriptor)) return NULL; bytes_avail = min(rbi->pkt_buffer_size, bytes_avail); desc = (struct vmpacket_descriptor *)(hv_get_ring_buffer(rbi) + rbi->priv_read_index); /* * Ensure the compiler does not use references to incoming Hyper-V values (which * could change at any moment) when reading local variables later in the code */ pkt_len = READ_ONCE(desc->len8) << 3; pkt_offset = READ_ONCE(desc->offset8) << 3; /* * If pkt_len is invalid, set it to the smaller of hv_pkt_iter_avail() and * rbi->pkt_buffer_size */ if (pkt_len < sizeof(struct vmpacket_descriptor) || pkt_len > bytes_avail) pkt_len = bytes_avail; /* * If pkt_offset is invalid, arbitrarily set it to * the size of vmpacket_descriptor */ if (pkt_offset < sizeof(struct vmpacket_descriptor) || pkt_offset > pkt_len) pkt_offset = sizeof(struct vmpacket_descriptor); /* Copy the Hyper-V packet out of the ring buffer */ desc_copy = (struct vmpacket_descriptor *)rbi->pkt_buffer; memcpy(desc_copy, desc, pkt_len); /* * Hyper-V could still change len8 and offset8 after the earlier read. * Ensure that desc_copy has legal values for len8 and offset8 that * are consistent with the copy we just made */ desc_copy->len8 = pkt_len >> 3; desc_copy->offset8 = pkt_offset >> 3; return desc_copy; } EXPORT_SYMBOL_GPL(hv_pkt_iter_first); /* * Get next vmbus packet from ring buffer. * * Advances the current location (priv_read_index) and checks for more * data. If the end of the ring buffer is reached, then return NULL. */ struct vmpacket_descriptor * __hv_pkt_iter_next(struct vmbus_channel *channel, const struct vmpacket_descriptor *desc) { struct hv_ring_buffer_info *rbi = &channel->inbound; u32 packetlen = desc->len8 << 3; u32 dsize = rbi->ring_datasize; hv_debug_delay_test(channel, MESSAGE_DELAY); /* bump offset to next potential packet */ rbi->priv_read_index += packetlen + VMBUS_PKT_TRAILER; if (rbi->priv_read_index >= dsize) rbi->priv_read_index -= dsize; /* more data? */ return hv_pkt_iter_first(channel); } EXPORT_SYMBOL_GPL(__hv_pkt_iter_next); /* How many bytes were read in this iterator cycle */ static u32 hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info *rbi, u32 start_read_index) { if (rbi->priv_read_index >= start_read_index) return rbi->priv_read_index - start_read_index; else return rbi->ring_datasize - start_read_index + rbi->priv_read_index; } /* * Update host ring buffer after iterating over packets. If the host has * stopped queuing new entries because it found the ring buffer full, and * sufficient space is being freed up, signal the host. But be careful to * only signal the host when necessary, both for performance reasons and * because Hyper-V protects itself by throttling guests that signal * inappropriately. * * Determining when to signal is tricky. There are three key data inputs * that must be handled in this order to avoid race conditions: * * 1. Update the read_index * 2. Read the pending_send_sz * 3. Read the current write_index * * The interrupt_mask is not used to determine when to signal. The * interrupt_mask is used only on the guest->host ring buffer when * sending requests to the host. The host does not use it on the host-> * guest ring buffer to indicate whether it should be signaled. */ void hv_pkt_iter_close(struct vmbus_channel *channel) { struct hv_ring_buffer_info *rbi = &channel->inbound; u32 curr_write_sz, pending_sz, bytes_read, start_read_index; /* * Make sure all reads are done before we update the read index since * the writer may start writing to the read area once the read index * is updated. */ virt_rmb(); start_read_index = rbi->ring_buffer->read_index; rbi->ring_buffer->read_index = rbi->priv_read_index; /* * Older versions of Hyper-V (before WS2102 and Win8) do not * implement pending_send_sz and simply poll if the host->guest * ring buffer is full. No signaling is needed or expected. */ if (!rbi->ring_buffer->feature_bits.feat_pending_send_sz) return; /* * Issue a full memory barrier before making the signaling decision. * If reading pending_send_sz were to be reordered and happen * before we commit the new read_index, a race could occur. If the * host were to set the pending_send_sz after we have sampled * pending_send_sz, and the ring buffer blocks before we commit the * read index, we could miss sending the interrupt. Issue a full * memory barrier to address this. */ virt_mb(); /* * If the pending_send_sz is zero, then the ring buffer is not * blocked and there is no need to signal. This is far by the * most common case, so exit quickly for best performance. */ pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz); if (!pending_sz) return; /* * Ensure the read of write_index in hv_get_bytes_to_write() * happens after the read of pending_send_sz. */ virt_rmb(); curr_write_sz = hv_get_bytes_to_write(rbi); bytes_read = hv_pkt_iter_bytes_read(rbi, start_read_index); /* * We want to signal the host only if we're transitioning * from a "not enough free space" state to a "enough free * space" state. For example, it's possible that this function * could run and free up enough space to signal the host, and then * run again and free up additional space before the host has a * chance to clear the pending_send_sz. The 2nd invocation would * be a null transition from "enough free space" to "enough free * space", which doesn't warrant a signal. * * Exactly filling the ring buffer is treated as "not enough * space". The ring buffer always must have at least one byte * empty so the empty and full conditions are distinguishable. * hv_get_bytes_to_write() doesn't fully tell the truth in * this regard. * * So first check if we were in the "enough free space" state * before we began the iteration. If so, the host was not * blocked, and there's no need to signal. */ if (curr_write_sz - bytes_read > pending_sz) return; /* * Similarly, if the new state is "not enough space", then * there's no need to signal. */ if (curr_write_sz <= pending_sz) return; ++channel->intr_in_full; vmbus_setevent(channel); } EXPORT_SYMBOL_GPL(hv_pkt_iter_close);
linux-master
drivers/hv/ring_buffer.c
// SPDX-License-Identifier: GPL-2.0-only /* * An implementation of host initiated guest snapshot. * * Copyright (C) 2013, Microsoft, Inc. * Author : K. Y. Srinivasan <[email protected]> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/net.h> #include <linux/nls.h> #include <linux/connector.h> #include <linux/workqueue.h> #include <linux/hyperv.h> #include <asm/hyperv-tlfs.h> #include "hyperv_vmbus.h" #include "hv_utils_transport.h" #define VSS_MAJOR 5 #define VSS_MINOR 0 #define VSS_VERSION (VSS_MAJOR << 16 | VSS_MINOR) #define VSS_VER_COUNT 1 static const int vss_versions[] = { VSS_VERSION }; #define FW_VER_COUNT 1 static const int fw_versions[] = { UTIL_FW_VERSION }; /* See comment with struct hv_vss_msg regarding the max VMbus packet size */ #define VSS_MAX_PKT_SIZE (HV_HYP_PAGE_SIZE * 2) /* * Timeout values are based on expecations from host */ #define VSS_FREEZE_TIMEOUT (15 * 60) /* * Global state maintained for transaction that is being processed. For a class * of integration services, including the "VSS service", the specified protocol * is a "request/response" protocol which means that there can only be single * outstanding transaction from the host at any given point in time. We use * this to simplify memory management in this driver - we cache and process * only one message at a time. * * While the request/response protocol is guaranteed by the host, we further * ensure this by serializing packet processing in this driver - we do not * read additional packets from the VMBUs until the current packet is fully * handled. */ static struct { int state; /* hvutil_device_state */ int recv_len; /* number of bytes received. */ struct vmbus_channel *recv_channel; /* chn we got the request */ u64 recv_req_id; /* request ID. */ struct hv_vss_msg *msg; /* current message */ } vss_transaction; static void vss_respond_to_host(int error); /* * This state maintains the version number registered by the daemon. */ static int dm_reg_value; static const char vss_devname[] = "vmbus/hv_vss"; static __u8 *recv_buffer; static struct hvutil_transport *hvt; static void vss_timeout_func(struct work_struct *dummy); static void vss_handle_request(struct work_struct *dummy); static DECLARE_DELAYED_WORK(vss_timeout_work, vss_timeout_func); static DECLARE_WORK(vss_handle_request_work, vss_handle_request); static void vss_poll_wrapper(void *channel) { /* Transaction is finished, reset the state here to avoid races. */ vss_transaction.state = HVUTIL_READY; tasklet_schedule(&((struct vmbus_channel *)channel)->callback_event); } /* * Callback when data is received from user mode. */ static void vss_timeout_func(struct work_struct *dummy) { /* * Timeout waiting for userspace component to reply happened. */ pr_warn("VSS: timeout waiting for daemon to reply\n"); vss_respond_to_host(HV_E_FAIL); hv_poll_channel(vss_transaction.recv_channel, vss_poll_wrapper); } static void vss_register_done(void) { hv_poll_channel(vss_transaction.recv_channel, vss_poll_wrapper); pr_debug("VSS: userspace daemon registered\n"); } static int vss_handle_handshake(struct hv_vss_msg *vss_msg) { u32 our_ver = VSS_OP_REGISTER1; switch (vss_msg->vss_hdr.operation) { case VSS_OP_REGISTER: /* Daemon doesn't expect us to reply */ dm_reg_value = VSS_OP_REGISTER; break; case VSS_OP_REGISTER1: /* Daemon expects us to reply with our own version */ if (hvutil_transport_send(hvt, &our_ver, sizeof(our_ver), vss_register_done)) return -EFAULT; dm_reg_value = VSS_OP_REGISTER1; break; default: return -EINVAL; } pr_info("VSS: userspace daemon ver. %d connected\n", dm_reg_value); return 0; } static int vss_on_msg(void *msg, int len) { struct hv_vss_msg *vss_msg = (struct hv_vss_msg *)msg; if (len != sizeof(*vss_msg)) { pr_debug("VSS: Message size does not match length\n"); return -EINVAL; } if (vss_msg->vss_hdr.operation == VSS_OP_REGISTER || vss_msg->vss_hdr.operation == VSS_OP_REGISTER1) { /* * Don't process registration messages if we're in the middle * of a transaction processing. */ if (vss_transaction.state > HVUTIL_READY) { pr_debug("VSS: Got unexpected registration request\n"); return -EINVAL; } return vss_handle_handshake(vss_msg); } else if (vss_transaction.state == HVUTIL_USERSPACE_REQ) { vss_transaction.state = HVUTIL_USERSPACE_RECV; if (vss_msg->vss_hdr.operation == VSS_OP_HOT_BACKUP) vss_transaction.msg->vss_cf.flags = VSS_HBU_NO_AUTO_RECOVERY; if (cancel_delayed_work_sync(&vss_timeout_work)) { vss_respond_to_host(vss_msg->error); /* Transaction is finished, reset the state. */ hv_poll_channel(vss_transaction.recv_channel, vss_poll_wrapper); } } else { /* This is a spurious call! */ pr_debug("VSS: Transaction not active\n"); return -EINVAL; } return 0; } static void vss_send_op(void) { int op = vss_transaction.msg->vss_hdr.operation; int rc; struct hv_vss_msg *vss_msg; /* The transaction state is wrong. */ if (vss_transaction.state != HVUTIL_HOSTMSG_RECEIVED) { pr_debug("VSS: Unexpected attempt to send to daemon\n"); return; } vss_msg = kzalloc(sizeof(*vss_msg), GFP_KERNEL); if (!vss_msg) return; vss_msg->vss_hdr.operation = op; vss_transaction.state = HVUTIL_USERSPACE_REQ; schedule_delayed_work(&vss_timeout_work, op == VSS_OP_FREEZE ? VSS_FREEZE_TIMEOUT * HZ : HV_UTIL_TIMEOUT * HZ); rc = hvutil_transport_send(hvt, vss_msg, sizeof(*vss_msg), NULL); if (rc) { pr_warn("VSS: failed to communicate to the daemon: %d\n", rc); if (cancel_delayed_work_sync(&vss_timeout_work)) { vss_respond_to_host(HV_E_FAIL); vss_transaction.state = HVUTIL_READY; } } kfree(vss_msg); } static void vss_handle_request(struct work_struct *dummy) { switch (vss_transaction.msg->vss_hdr.operation) { /* * Initiate a "freeze/thaw" operation in the guest. * We respond to the host once the operation is complete. * * We send the message to the user space daemon and the operation is * performed in the daemon. */ case VSS_OP_THAW: case VSS_OP_FREEZE: case VSS_OP_HOT_BACKUP: if (vss_transaction.state < HVUTIL_READY) { /* Userspace is not registered yet */ pr_debug("VSS: Not ready for request.\n"); vss_respond_to_host(HV_E_FAIL); return; } pr_debug("VSS: Received request for op code: %d\n", vss_transaction.msg->vss_hdr.operation); vss_transaction.state = HVUTIL_HOSTMSG_RECEIVED; vss_send_op(); return; case VSS_OP_GET_DM_INFO: vss_transaction.msg->dm_info.flags = 0; break; default: break; } vss_respond_to_host(0); hv_poll_channel(vss_transaction.recv_channel, vss_poll_wrapper); } /* * Send a response back to the host. */ static void vss_respond_to_host(int error) { struct icmsg_hdr *icmsghdrp; u32 buf_len; struct vmbus_channel *channel; u64 req_id; /* * Copy the global state for completing the transaction. Note that * only one transaction can be active at a time. */ buf_len = vss_transaction.recv_len; channel = vss_transaction.recv_channel; req_id = vss_transaction.recv_req_id; icmsghdrp = (struct icmsg_hdr *) &recv_buffer[sizeof(struct vmbuspipe_hdr)]; if (channel->onchannel_callback == NULL) /* * We have raced with util driver being unloaded; * silently return. */ return; icmsghdrp->status = error; icmsghdrp->icflags = ICMSGHDRFLAG_TRANSACTION | ICMSGHDRFLAG_RESPONSE; vmbus_sendpacket(channel, recv_buffer, buf_len, req_id, VM_PKT_DATA_INBAND, 0); } /* * This callback is invoked when we get a VSS message from the host. * The host ensures that only one VSS transaction can be active at a time. */ void hv_vss_onchannelcallback(void *context) { struct vmbus_channel *channel = context; u32 recvlen; u64 requestid; struct hv_vss_msg *vss_msg; int vss_srv_version; struct icmsg_hdr *icmsghdrp; if (vss_transaction.state > HVUTIL_READY) return; if (vmbus_recvpacket(channel, recv_buffer, VSS_MAX_PKT_SIZE, &recvlen, &requestid)) { pr_err_ratelimited("VSS request received. Could not read into recv buf\n"); return; } if (!recvlen) return; /* Ensure recvlen is big enough to read header data */ if (recvlen < ICMSG_HDR) { pr_err_ratelimited("VSS request received. Packet length too small: %d\n", recvlen); return; } icmsghdrp = (struct icmsg_hdr *)&recv_buffer[sizeof(struct vmbuspipe_hdr)]; if (icmsghdrp->icmsgtype == ICMSGTYPE_NEGOTIATE) { if (vmbus_prep_negotiate_resp(icmsghdrp, recv_buffer, recvlen, fw_versions, FW_VER_COUNT, vss_versions, VSS_VER_COUNT, NULL, &vss_srv_version)) { pr_info("VSS IC version %d.%d\n", vss_srv_version >> 16, vss_srv_version & 0xFFFF); } } else if (icmsghdrp->icmsgtype == ICMSGTYPE_VSS) { /* Ensure recvlen is big enough to contain hv_vss_msg */ if (recvlen < ICMSG_HDR + sizeof(struct hv_vss_msg)) { pr_err_ratelimited("Invalid VSS msg. Packet length too small: %u\n", recvlen); return; } vss_msg = (struct hv_vss_msg *)&recv_buffer[ICMSG_HDR]; /* * Stash away this global state for completing the * transaction; note transactions are serialized. */ vss_transaction.recv_len = recvlen; vss_transaction.recv_req_id = requestid; vss_transaction.msg = (struct hv_vss_msg *)vss_msg; schedule_work(&vss_handle_request_work); return; } else { pr_err_ratelimited("VSS request received. Invalid msg type: %d\n", icmsghdrp->icmsgtype); return; } icmsghdrp->icflags = ICMSGHDRFLAG_TRANSACTION | ICMSGHDRFLAG_RESPONSE; vmbus_sendpacket(channel, recv_buffer, recvlen, requestid, VM_PKT_DATA_INBAND, 0); } static void vss_on_reset(void) { if (cancel_delayed_work_sync(&vss_timeout_work)) vss_respond_to_host(HV_E_FAIL); vss_transaction.state = HVUTIL_DEVICE_INIT; } int hv_vss_init(struct hv_util_service *srv) { if (vmbus_proto_version < VERSION_WIN8_1) { pr_warn("Integration service 'Backup (volume snapshot)'" " not supported on this host version.\n"); return -ENOTSUPP; } recv_buffer = srv->recv_buffer; vss_transaction.recv_channel = srv->channel; vss_transaction.recv_channel->max_pkt_size = VSS_MAX_PKT_SIZE; /* * When this driver loads, the user level daemon that * processes the host requests may not yet be running. * Defer processing channel callbacks until the daemon * has registered. */ vss_transaction.state = HVUTIL_DEVICE_INIT; hvt = hvutil_transport_init(vss_devname, CN_VSS_IDX, CN_VSS_VAL, vss_on_msg, vss_on_reset); if (!hvt) { pr_warn("VSS: Failed to initialize transport\n"); return -EFAULT; } return 0; } static void hv_vss_cancel_work(void) { cancel_delayed_work_sync(&vss_timeout_work); cancel_work_sync(&vss_handle_request_work); } int hv_vss_pre_suspend(void) { struct vmbus_channel *channel = vss_transaction.recv_channel; struct hv_vss_msg *vss_msg; /* * Fake a THAW message for the user space daemon in case the daemon * has frozen the file systems. It doesn't matter if there is already * a message pending to be delivered to the user space since we force * vss_transaction.state to be HVUTIL_READY, so the user space daemon's * write() will fail with EINVAL (see vss_on_msg()), and the daemon * will reset the device by closing and re-opening it. */ vss_msg = kzalloc(sizeof(*vss_msg), GFP_KERNEL); if (!vss_msg) return -ENOMEM; tasklet_disable(&channel->callback_event); vss_msg->vss_hdr.operation = VSS_OP_THAW; /* Cancel any possible pending work. */ hv_vss_cancel_work(); /* We don't care about the return value. */ hvutil_transport_send(hvt, vss_msg, sizeof(*vss_msg), NULL); kfree(vss_msg); vss_transaction.state = HVUTIL_READY; /* tasklet_enable() will be called in hv_vss_pre_resume(). */ return 0; } int hv_vss_pre_resume(void) { struct vmbus_channel *channel = vss_transaction.recv_channel; tasklet_enable(&channel->callback_event); return 0; } void hv_vss_deinit(void) { vss_transaction.state = HVUTIL_DEVICE_DYING; hv_vss_cancel_work(); hvutil_transport_destroy(hvt); }
linux-master
drivers/hv/hv_snapshot.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2009, Microsoft Corporation. * * Authors: * Haiyang Zhang <[email protected]> * Hank Janssen <[email protected]> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/io.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/slab.h> #include <linux/vmalloc.h> #include <linux/hyperv.h> #include <linux/random.h> #include <linux/clockchips.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <clocksource/hyperv_timer.h> #include <asm/mshyperv.h> #include <linux/set_memory.h> #include "hyperv_vmbus.h" /* The one and only */ struct hv_context hv_context; /* * hv_init - Main initialization routine. * * This routine must be called before any other routines in here are called */ int hv_init(void) { hv_context.cpu_context = alloc_percpu(struct hv_per_cpu_context); if (!hv_context.cpu_context) return -ENOMEM; return 0; } /* * hv_post_message - Post a message using the hypervisor message IPC. * * This involves a hypercall. */ int hv_post_message(union hv_connection_id connection_id, enum hv_message_type message_type, void *payload, size_t payload_size) { struct hv_input_post_message *aligned_msg; unsigned long flags; u64 status; if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT) return -EMSGSIZE; local_irq_save(flags); /* * A TDX VM with the paravisor must use the decrypted post_msg_page: see * the comment in struct hv_per_cpu_context. A SNP VM with the paravisor * can use the encrypted hyperv_pcpu_input_arg because it copies the * input into the GHCB page, which has been decrypted by the paravisor. */ if (hv_isolation_type_tdx() && ms_hyperv.paravisor_present) aligned_msg = this_cpu_ptr(hv_context.cpu_context)->post_msg_page; else aligned_msg = *this_cpu_ptr(hyperv_pcpu_input_arg); aligned_msg->connectionid = connection_id; aligned_msg->reserved = 0; aligned_msg->message_type = message_type; aligned_msg->payload_size = payload_size; memcpy((void *)aligned_msg->payload, payload, payload_size); if (ms_hyperv.paravisor_present) { if (hv_isolation_type_tdx()) status = hv_tdx_hypercall(HVCALL_POST_MESSAGE, virt_to_phys(aligned_msg), 0); else if (hv_isolation_type_snp()) status = hv_ghcb_hypercall(HVCALL_POST_MESSAGE, aligned_msg, NULL, sizeof(*aligned_msg)); else status = HV_STATUS_INVALID_PARAMETER; } else { status = hv_do_hypercall(HVCALL_POST_MESSAGE, aligned_msg, NULL); } local_irq_restore(flags); return hv_result(status); } int hv_synic_alloc(void) { int cpu, ret = -ENOMEM; struct hv_per_cpu_context *hv_cpu; /* * First, zero all per-cpu memory areas so hv_synic_free() can * detect what memory has been allocated and cleanup properly * after any failures. */ for_each_present_cpu(cpu) { hv_cpu = per_cpu_ptr(hv_context.cpu_context, cpu); memset(hv_cpu, 0, sizeof(*hv_cpu)); } hv_context.hv_numa_map = kcalloc(nr_node_ids, sizeof(struct cpumask), GFP_KERNEL); if (hv_context.hv_numa_map == NULL) { pr_err("Unable to allocate NUMA map\n"); goto err; } for_each_present_cpu(cpu) { hv_cpu = per_cpu_ptr(hv_context.cpu_context, cpu); tasklet_init(&hv_cpu->msg_dpc, vmbus_on_msg_dpc, (unsigned long) hv_cpu); if (ms_hyperv.paravisor_present && hv_isolation_type_tdx()) { hv_cpu->post_msg_page = (void *)get_zeroed_page(GFP_ATOMIC); if (hv_cpu->post_msg_page == NULL) { pr_err("Unable to allocate post msg page\n"); goto err; } ret = set_memory_decrypted((unsigned long)hv_cpu->post_msg_page, 1); if (ret) { pr_err("Failed to decrypt post msg page: %d\n", ret); /* Just leak the page, as it's unsafe to free the page. */ hv_cpu->post_msg_page = NULL; goto err; } memset(hv_cpu->post_msg_page, 0, PAGE_SIZE); } /* * Synic message and event pages are allocated by paravisor. * Skip these pages allocation here. */ if (!ms_hyperv.paravisor_present && !hv_root_partition) { hv_cpu->synic_message_page = (void *)get_zeroed_page(GFP_ATOMIC); if (hv_cpu->synic_message_page == NULL) { pr_err("Unable to allocate SYNIC message page\n"); goto err; } hv_cpu->synic_event_page = (void *)get_zeroed_page(GFP_ATOMIC); if (hv_cpu->synic_event_page == NULL) { pr_err("Unable to allocate SYNIC event page\n"); free_page((unsigned long)hv_cpu->synic_message_page); hv_cpu->synic_message_page = NULL; goto err; } } if (!ms_hyperv.paravisor_present && (hv_isolation_type_snp() || hv_isolation_type_tdx())) { ret = set_memory_decrypted((unsigned long) hv_cpu->synic_message_page, 1); if (ret) { pr_err("Failed to decrypt SYNIC msg page: %d\n", ret); hv_cpu->synic_message_page = NULL; /* * Free the event page here so that hv_synic_free() * won't later try to re-encrypt it. */ free_page((unsigned long)hv_cpu->synic_event_page); hv_cpu->synic_event_page = NULL; goto err; } ret = set_memory_decrypted((unsigned long) hv_cpu->synic_event_page, 1); if (ret) { pr_err("Failed to decrypt SYNIC event page: %d\n", ret); hv_cpu->synic_event_page = NULL; goto err; } memset(hv_cpu->synic_message_page, 0, PAGE_SIZE); memset(hv_cpu->synic_event_page, 0, PAGE_SIZE); } } return 0; err: /* * Any memory allocations that succeeded will be freed when * the caller cleans up by calling hv_synic_free() */ return ret; } void hv_synic_free(void) { int cpu, ret; for_each_present_cpu(cpu) { struct hv_per_cpu_context *hv_cpu = per_cpu_ptr(hv_context.cpu_context, cpu); /* It's better to leak the page if the encryption fails. */ if (ms_hyperv.paravisor_present && hv_isolation_type_tdx()) { if (hv_cpu->post_msg_page) { ret = set_memory_encrypted((unsigned long) hv_cpu->post_msg_page, 1); if (ret) { pr_err("Failed to encrypt post msg page: %d\n", ret); hv_cpu->post_msg_page = NULL; } } } if (!ms_hyperv.paravisor_present && (hv_isolation_type_snp() || hv_isolation_type_tdx())) { if (hv_cpu->synic_message_page) { ret = set_memory_encrypted((unsigned long) hv_cpu->synic_message_page, 1); if (ret) { pr_err("Failed to encrypt SYNIC msg page: %d\n", ret); hv_cpu->synic_message_page = NULL; } } if (hv_cpu->synic_event_page) { ret = set_memory_encrypted((unsigned long) hv_cpu->synic_event_page, 1); if (ret) { pr_err("Failed to encrypt SYNIC event page: %d\n", ret); hv_cpu->synic_event_page = NULL; } } } free_page((unsigned long)hv_cpu->post_msg_page); free_page((unsigned long)hv_cpu->synic_event_page); free_page((unsigned long)hv_cpu->synic_message_page); } kfree(hv_context.hv_numa_map); } /* * hv_synic_init - Initialize the Synthetic Interrupt Controller. * * If it is already initialized by another entity (ie x2v shim), we need to * retrieve the initialized message and event pages. Otherwise, we create and * initialize the message and event pages. */ void hv_synic_enable_regs(unsigned int cpu) { struct hv_per_cpu_context *hv_cpu = per_cpu_ptr(hv_context.cpu_context, cpu); union hv_synic_simp simp; union hv_synic_siefp siefp; union hv_synic_sint shared_sint; union hv_synic_scontrol sctrl; /* Setup the Synic's message page */ simp.as_uint64 = hv_get_register(HV_REGISTER_SIMP); simp.simp_enabled = 1; if (ms_hyperv.paravisor_present || hv_root_partition) { /* Mask out vTOM bit. ioremap_cache() maps decrypted */ u64 base = (simp.base_simp_gpa << HV_HYP_PAGE_SHIFT) & ~ms_hyperv.shared_gpa_boundary; hv_cpu->synic_message_page = (void *)ioremap_cache(base, HV_HYP_PAGE_SIZE); if (!hv_cpu->synic_message_page) pr_err("Fail to map synic message page.\n"); } else { simp.base_simp_gpa = virt_to_phys(hv_cpu->synic_message_page) >> HV_HYP_PAGE_SHIFT; } hv_set_register(HV_REGISTER_SIMP, simp.as_uint64); /* Setup the Synic's event page */ siefp.as_uint64 = hv_get_register(HV_REGISTER_SIEFP); siefp.siefp_enabled = 1; if (ms_hyperv.paravisor_present || hv_root_partition) { /* Mask out vTOM bit. ioremap_cache() maps decrypted */ u64 base = (siefp.base_siefp_gpa << HV_HYP_PAGE_SHIFT) & ~ms_hyperv.shared_gpa_boundary; hv_cpu->synic_event_page = (void *)ioremap_cache(base, HV_HYP_PAGE_SIZE); if (!hv_cpu->synic_event_page) pr_err("Fail to map synic event page.\n"); } else { siefp.base_siefp_gpa = virt_to_phys(hv_cpu->synic_event_page) >> HV_HYP_PAGE_SHIFT; } hv_set_register(HV_REGISTER_SIEFP, siefp.as_uint64); /* Setup the shared SINT. */ if (vmbus_irq != -1) enable_percpu_irq(vmbus_irq, 0); shared_sint.as_uint64 = hv_get_register(HV_REGISTER_SINT0 + VMBUS_MESSAGE_SINT); shared_sint.vector = vmbus_interrupt; shared_sint.masked = false; /* * On architectures where Hyper-V doesn't support AEOI (e.g., ARM64), * it doesn't provide a recommendation flag and AEOI must be disabled. */ #ifdef HV_DEPRECATING_AEOI_RECOMMENDED shared_sint.auto_eoi = !(ms_hyperv.hints & HV_DEPRECATING_AEOI_RECOMMENDED); #else shared_sint.auto_eoi = 0; #endif hv_set_register(HV_REGISTER_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64); /* Enable the global synic bit */ sctrl.as_uint64 = hv_get_register(HV_REGISTER_SCONTROL); sctrl.enable = 1; hv_set_register(HV_REGISTER_SCONTROL, sctrl.as_uint64); } int hv_synic_init(unsigned int cpu) { hv_synic_enable_regs(cpu); hv_stimer_legacy_init(cpu, VMBUS_MESSAGE_SINT); return 0; } /* * hv_synic_cleanup - Cleanup routine for hv_synic_init(). */ void hv_synic_disable_regs(unsigned int cpu) { struct hv_per_cpu_context *hv_cpu = per_cpu_ptr(hv_context.cpu_context, cpu); union hv_synic_sint shared_sint; union hv_synic_simp simp; union hv_synic_siefp siefp; union hv_synic_scontrol sctrl; shared_sint.as_uint64 = hv_get_register(HV_REGISTER_SINT0 + VMBUS_MESSAGE_SINT); shared_sint.masked = 1; /* Need to correctly cleanup in the case of SMP!!! */ /* Disable the interrupt */ hv_set_register(HV_REGISTER_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64); simp.as_uint64 = hv_get_register(HV_REGISTER_SIMP); /* * In Isolation VM, sim and sief pages are allocated by * paravisor. These pages also will be used by kdump * kernel. So just reset enable bit here and keep page * addresses. */ simp.simp_enabled = 0; if (ms_hyperv.paravisor_present || hv_root_partition) { iounmap(hv_cpu->synic_message_page); hv_cpu->synic_message_page = NULL; } else { simp.base_simp_gpa = 0; } hv_set_register(HV_REGISTER_SIMP, simp.as_uint64); siefp.as_uint64 = hv_get_register(HV_REGISTER_SIEFP); siefp.siefp_enabled = 0; if (ms_hyperv.paravisor_present || hv_root_partition) { iounmap(hv_cpu->synic_event_page); hv_cpu->synic_event_page = NULL; } else { siefp.base_siefp_gpa = 0; } hv_set_register(HV_REGISTER_SIEFP, siefp.as_uint64); /* Disable the global synic bit */ sctrl.as_uint64 = hv_get_register(HV_REGISTER_SCONTROL); sctrl.enable = 0; hv_set_register(HV_REGISTER_SCONTROL, sctrl.as_uint64); if (vmbus_irq != -1) disable_percpu_irq(vmbus_irq); } #define HV_MAX_TRIES 3 /* * Scan the event flags page of 'this' CPU looking for any bit that is set. If we find one * bit set, then wait for a few milliseconds. Repeat these steps for a maximum of 3 times. * Return 'true', if there is still any set bit after this operation; 'false', otherwise. * * If a bit is set, that means there is a pending channel interrupt. The expectation is * that the normal interrupt handling mechanism will find and process the channel interrupt * "very soon", and in the process clear the bit. */ static bool hv_synic_event_pending(void) { struct hv_per_cpu_context *hv_cpu = this_cpu_ptr(hv_context.cpu_context); union hv_synic_event_flags *event = (union hv_synic_event_flags *)hv_cpu->synic_event_page + VMBUS_MESSAGE_SINT; unsigned long *recv_int_page = event->flags; /* assumes VMBus version >= VERSION_WIN8 */ bool pending; u32 relid; int tries = 0; retry: pending = false; for_each_set_bit(relid, recv_int_page, HV_EVENT_FLAGS_COUNT) { /* Special case - VMBus channel protocol messages */ if (relid == 0) continue; pending = true; break; } if (pending && tries++ < HV_MAX_TRIES) { usleep_range(10000, 20000); goto retry; } return pending; } int hv_synic_cleanup(unsigned int cpu) { struct vmbus_channel *channel, *sc; bool channel_found = false; if (vmbus_connection.conn_state != CONNECTED) goto always_cleanup; /* * Hyper-V does not provide a way to change the connect CPU once * it is set; we must prevent the connect CPU from going offline * while the VM is running normally. But in the panic or kexec() * path where the vmbus is already disconnected, the CPU must be * allowed to shut down. */ if (cpu == VMBUS_CONNECT_CPU) return -EBUSY; /* * Search for channels which are bound to the CPU we're about to * cleanup. In case we find one and vmbus is still connected, we * fail; this will effectively prevent CPU offlining. * * TODO: Re-bind the channels to different CPUs. */ mutex_lock(&vmbus_connection.channel_mutex); list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) { if (channel->target_cpu == cpu) { channel_found = true; break; } list_for_each_entry(sc, &channel->sc_list, sc_list) { if (sc->target_cpu == cpu) { channel_found = true; break; } } if (channel_found) break; } mutex_unlock(&vmbus_connection.channel_mutex); if (channel_found) return -EBUSY; /* * channel_found == false means that any channels that were previously * assigned to the CPU have been reassigned elsewhere with a call of * vmbus_send_modifychannel(). Scan the event flags page looking for * bits that are set and waiting with a timeout for vmbus_chan_sched() * to process such bits. If bits are still set after this operation * and VMBus is connected, fail the CPU offlining operation. */ if (vmbus_proto_version >= VERSION_WIN10_V4_1 && hv_synic_event_pending()) return -EBUSY; always_cleanup: hv_stimer_legacy_cleanup(cpu); hv_synic_disable_regs(cpu); return 0; }
linux-master
drivers/hv/hv.c
// SPDX-License-Identifier: GPL-2.0-only /* * An implementation of file copy service. * * Copyright (C) 2014, Microsoft, Inc. * * Author : K. Y. Srinivasan <[email protected]> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/nls.h> #include <linux/workqueue.h> #include <linux/hyperv.h> #include <linux/sched.h> #include <asm/hyperv-tlfs.h> #include "hyperv_vmbus.h" #include "hv_utils_transport.h" #define WIN8_SRV_MAJOR 1 #define WIN8_SRV_MINOR 1 #define WIN8_SRV_VERSION (WIN8_SRV_MAJOR << 16 | WIN8_SRV_MINOR) #define FCOPY_VER_COUNT 1 static const int fcopy_versions[] = { WIN8_SRV_VERSION }; #define FW_VER_COUNT 1 static const int fw_versions[] = { UTIL_FW_VERSION }; /* * Global state maintained for transaction that is being processed. * For a class of integration services, including the "file copy service", * the specified protocol is a "request/response" protocol which means that * there can only be single outstanding transaction from the host at any * given point in time. We use this to simplify memory management in this * driver - we cache and process only one message at a time. * * While the request/response protocol is guaranteed by the host, we further * ensure this by serializing packet processing in this driver - we do not * read additional packets from the VMBUs until the current packet is fully * handled. */ static struct { int state; /* hvutil_device_state */ int recv_len; /* number of bytes received. */ struct hv_fcopy_hdr *fcopy_msg; /* current message */ struct vmbus_channel *recv_channel; /* chn we got the request */ u64 recv_req_id; /* request ID. */ } fcopy_transaction; static void fcopy_respond_to_host(int error); static void fcopy_send_data(struct work_struct *dummy); static void fcopy_timeout_func(struct work_struct *dummy); static DECLARE_DELAYED_WORK(fcopy_timeout_work, fcopy_timeout_func); static DECLARE_WORK(fcopy_send_work, fcopy_send_data); static const char fcopy_devname[] = "vmbus/hv_fcopy"; static u8 *recv_buffer; static struct hvutil_transport *hvt; /* * This state maintains the version number registered by the daemon. */ static int dm_reg_value; static void fcopy_poll_wrapper(void *channel) { /* Transaction is finished, reset the state here to avoid races. */ fcopy_transaction.state = HVUTIL_READY; tasklet_schedule(&((struct vmbus_channel *)channel)->callback_event); } static void fcopy_timeout_func(struct work_struct *dummy) { /* * If the timer fires, the user-mode component has not responded; * process the pending transaction. */ fcopy_respond_to_host(HV_E_FAIL); hv_poll_channel(fcopy_transaction.recv_channel, fcopy_poll_wrapper); } static void fcopy_register_done(void) { pr_debug("FCP: userspace daemon registered\n"); hv_poll_channel(fcopy_transaction.recv_channel, fcopy_poll_wrapper); } static int fcopy_handle_handshake(u32 version) { u32 our_ver = FCOPY_CURRENT_VERSION; switch (version) { case FCOPY_VERSION_0: /* Daemon doesn't expect us to reply */ dm_reg_value = version; break; case FCOPY_VERSION_1: /* Daemon expects us to reply with our own version */ if (hvutil_transport_send(hvt, &our_ver, sizeof(our_ver), fcopy_register_done)) return -EFAULT; dm_reg_value = version; break; default: /* * For now we will fail the registration. * If and when we have multiple versions to * deal with, we will be backward compatible. * We will add this code when needed. */ return -EINVAL; } pr_debug("FCP: userspace daemon ver. %d connected\n", version); return 0; } static void fcopy_send_data(struct work_struct *dummy) { struct hv_start_fcopy *smsg_out = NULL; int operation = fcopy_transaction.fcopy_msg->operation; struct hv_start_fcopy *smsg_in; void *out_src; int rc, out_len; /* * The strings sent from the host are encoded in * utf16; convert it to utf8 strings. * The host assures us that the utf16 strings will not exceed * the max lengths specified. We will however, reserve room * for the string terminating character - in the utf16s_utf8s() * function we limit the size of the buffer where the converted * string is placed to W_MAX_PATH -1 to guarantee * that the strings can be properly terminated! */ switch (operation) { case START_FILE_COPY: out_len = sizeof(struct hv_start_fcopy); smsg_out = kzalloc(sizeof(*smsg_out), GFP_KERNEL); if (!smsg_out) return; smsg_out->hdr.operation = operation; smsg_in = (struct hv_start_fcopy *)fcopy_transaction.fcopy_msg; utf16s_to_utf8s((wchar_t *)smsg_in->file_name, W_MAX_PATH, UTF16_LITTLE_ENDIAN, (__u8 *)&smsg_out->file_name, W_MAX_PATH - 1); utf16s_to_utf8s((wchar_t *)smsg_in->path_name, W_MAX_PATH, UTF16_LITTLE_ENDIAN, (__u8 *)&smsg_out->path_name, W_MAX_PATH - 1); smsg_out->copy_flags = smsg_in->copy_flags; smsg_out->file_size = smsg_in->file_size; out_src = smsg_out; break; case WRITE_TO_FILE: out_src = fcopy_transaction.fcopy_msg; out_len = sizeof(struct hv_do_fcopy); break; default: out_src = fcopy_transaction.fcopy_msg; out_len = fcopy_transaction.recv_len; break; } fcopy_transaction.state = HVUTIL_USERSPACE_REQ; rc = hvutil_transport_send(hvt, out_src, out_len, NULL); if (rc) { pr_debug("FCP: failed to communicate to the daemon: %d\n", rc); if (cancel_delayed_work_sync(&fcopy_timeout_work)) { fcopy_respond_to_host(HV_E_FAIL); fcopy_transaction.state = HVUTIL_READY; } } kfree(smsg_out); } /* * Send a response back to the host. */ static void fcopy_respond_to_host(int error) { struct icmsg_hdr *icmsghdr; u32 buf_len; struct vmbus_channel *channel; u64 req_id; /* * Copy the global state for completing the transaction. Note that * only one transaction can be active at a time. This is guaranteed * by the file copy protocol implemented by the host. Furthermore, * the "transaction active" state we maintain ensures that there can * only be one active transaction at a time. */ buf_len = fcopy_transaction.recv_len; channel = fcopy_transaction.recv_channel; req_id = fcopy_transaction.recv_req_id; icmsghdr = (struct icmsg_hdr *) &recv_buffer[sizeof(struct vmbuspipe_hdr)]; if (channel->onchannel_callback == NULL) /* * We have raced with util driver being unloaded; * silently return. */ return; icmsghdr->status = error; icmsghdr->icflags = ICMSGHDRFLAG_TRANSACTION | ICMSGHDRFLAG_RESPONSE; vmbus_sendpacket(channel, recv_buffer, buf_len, req_id, VM_PKT_DATA_INBAND, 0); } void hv_fcopy_onchannelcallback(void *context) { struct vmbus_channel *channel = context; u32 recvlen; u64 requestid; struct hv_fcopy_hdr *fcopy_msg; struct icmsg_hdr *icmsghdr; int fcopy_srv_version; if (fcopy_transaction.state > HVUTIL_READY) return; if (vmbus_recvpacket(channel, recv_buffer, HV_HYP_PAGE_SIZE * 2, &recvlen, &requestid)) { pr_err_ratelimited("Fcopy request received. Could not read into recv buf\n"); return; } if (!recvlen) return; /* Ensure recvlen is big enough to read header data */ if (recvlen < ICMSG_HDR) { pr_err_ratelimited("Fcopy request received. Packet length too small: %d\n", recvlen); return; } icmsghdr = (struct icmsg_hdr *)&recv_buffer[ sizeof(struct vmbuspipe_hdr)]; if (icmsghdr->icmsgtype == ICMSGTYPE_NEGOTIATE) { if (vmbus_prep_negotiate_resp(icmsghdr, recv_buffer, recvlen, fw_versions, FW_VER_COUNT, fcopy_versions, FCOPY_VER_COUNT, NULL, &fcopy_srv_version)) { pr_info("FCopy IC version %d.%d\n", fcopy_srv_version >> 16, fcopy_srv_version & 0xFFFF); } } else if (icmsghdr->icmsgtype == ICMSGTYPE_FCOPY) { /* Ensure recvlen is big enough to contain hv_fcopy_hdr */ if (recvlen < ICMSG_HDR + sizeof(struct hv_fcopy_hdr)) { pr_err_ratelimited("Invalid Fcopy hdr. Packet length too small: %u\n", recvlen); return; } fcopy_msg = (struct hv_fcopy_hdr *)&recv_buffer[ICMSG_HDR]; /* * Stash away this global state for completing the * transaction; note transactions are serialized. */ fcopy_transaction.recv_len = recvlen; fcopy_transaction.recv_req_id = requestid; fcopy_transaction.fcopy_msg = fcopy_msg; if (fcopy_transaction.state < HVUTIL_READY) { /* Userspace is not registered yet */ fcopy_respond_to_host(HV_E_FAIL); return; } fcopy_transaction.state = HVUTIL_HOSTMSG_RECEIVED; /* * Send the information to the user-level daemon. */ schedule_work(&fcopy_send_work); schedule_delayed_work(&fcopy_timeout_work, HV_UTIL_TIMEOUT * HZ); return; } else { pr_err_ratelimited("Fcopy request received. Invalid msg type: %d\n", icmsghdr->icmsgtype); return; } icmsghdr->icflags = ICMSGHDRFLAG_TRANSACTION | ICMSGHDRFLAG_RESPONSE; vmbus_sendpacket(channel, recv_buffer, recvlen, requestid, VM_PKT_DATA_INBAND, 0); } /* Callback when data is received from userspace */ static int fcopy_on_msg(void *msg, int len) { int *val = (int *)msg; if (len != sizeof(int)) return -EINVAL; if (fcopy_transaction.state == HVUTIL_DEVICE_INIT) return fcopy_handle_handshake(*val); if (fcopy_transaction.state != HVUTIL_USERSPACE_REQ) return -EINVAL; /* * Complete the transaction by forwarding the result * to the host. But first, cancel the timeout. */ if (cancel_delayed_work_sync(&fcopy_timeout_work)) { fcopy_transaction.state = HVUTIL_USERSPACE_RECV; fcopy_respond_to_host(*val); hv_poll_channel(fcopy_transaction.recv_channel, fcopy_poll_wrapper); } return 0; } static void fcopy_on_reset(void) { /* * The daemon has exited; reset the state. */ fcopy_transaction.state = HVUTIL_DEVICE_INIT; if (cancel_delayed_work_sync(&fcopy_timeout_work)) fcopy_respond_to_host(HV_E_FAIL); } int hv_fcopy_init(struct hv_util_service *srv) { recv_buffer = srv->recv_buffer; fcopy_transaction.recv_channel = srv->channel; fcopy_transaction.recv_channel->max_pkt_size = HV_HYP_PAGE_SIZE * 2; /* * When this driver loads, the user level daemon that * processes the host requests may not yet be running. * Defer processing channel callbacks until the daemon * has registered. */ fcopy_transaction.state = HVUTIL_DEVICE_INIT; hvt = hvutil_transport_init(fcopy_devname, 0, 0, fcopy_on_msg, fcopy_on_reset); if (!hvt) return -EFAULT; return 0; } static void hv_fcopy_cancel_work(void) { cancel_delayed_work_sync(&fcopy_timeout_work); cancel_work_sync(&fcopy_send_work); } int hv_fcopy_pre_suspend(void) { struct vmbus_channel *channel = fcopy_transaction.recv_channel; struct hv_fcopy_hdr *fcopy_msg; /* * Fake a CANCEL_FCOPY message for the user space daemon in case the * daemon is in the middle of copying some file. It doesn't matter if * there is already a message pending to be delivered to the user * space since we force fcopy_transaction.state to be HVUTIL_READY, so * the user space daemon's write() will fail with EINVAL (see * fcopy_on_msg()), and the daemon will reset the device by closing * and re-opening it. */ fcopy_msg = kzalloc(sizeof(*fcopy_msg), GFP_KERNEL); if (!fcopy_msg) return -ENOMEM; tasklet_disable(&channel->callback_event); fcopy_msg->operation = CANCEL_FCOPY; hv_fcopy_cancel_work(); /* We don't care about the return value. */ hvutil_transport_send(hvt, fcopy_msg, sizeof(*fcopy_msg), NULL); kfree(fcopy_msg); fcopy_transaction.state = HVUTIL_READY; /* tasklet_enable() will be called in hv_fcopy_pre_resume(). */ return 0; } int hv_fcopy_pre_resume(void) { struct vmbus_channel *channel = fcopy_transaction.recv_channel; tasklet_enable(&channel->callback_event); return 0; } void hv_fcopy_deinit(void) { fcopy_transaction.state = HVUTIL_DEVICE_DYING; hv_fcopy_cancel_work(); hvutil_transport_destroy(hvt); }
linux-master
drivers/hv/hv_fcopy.c
/* * An implementation of key value pair (KVP) functionality for Linux. * * * Copyright (C) 2010, Novell, Inc. * Author : K. Y. Srinivasan <[email protected]> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/net.h> #include <linux/nls.h> #include <linux/connector.h> #include <linux/workqueue.h> #include <linux/hyperv.h> #include <asm/hyperv-tlfs.h> #include "hyperv_vmbus.h" #include "hv_utils_transport.h" /* * Pre win8 version numbers used in ws2008 and ws 2008 r2 (win7) */ #define WS2008_SRV_MAJOR 1 #define WS2008_SRV_MINOR 0 #define WS2008_SRV_VERSION (WS2008_SRV_MAJOR << 16 | WS2008_SRV_MINOR) #define WIN7_SRV_MAJOR 3 #define WIN7_SRV_MINOR 0 #define WIN7_SRV_VERSION (WIN7_SRV_MAJOR << 16 | WIN7_SRV_MINOR) #define WIN8_SRV_MAJOR 4 #define WIN8_SRV_MINOR 0 #define WIN8_SRV_VERSION (WIN8_SRV_MAJOR << 16 | WIN8_SRV_MINOR) #define KVP_VER_COUNT 3 static const int kvp_versions[] = { WIN8_SRV_VERSION, WIN7_SRV_VERSION, WS2008_SRV_VERSION }; #define FW_VER_COUNT 2 static const int fw_versions[] = { UTIL_FW_VERSION, UTIL_WS2K8_FW_VERSION }; /* * Global state maintained for transaction that is being processed. For a class * of integration services, including the "KVP service", the specified protocol * is a "request/response" protocol which means that there can only be single * outstanding transaction from the host at any given point in time. We use * this to simplify memory management in this driver - we cache and process * only one message at a time. * * While the request/response protocol is guaranteed by the host, we further * ensure this by serializing packet processing in this driver - we do not * read additional packets from the VMBUS until the current packet is fully * handled. */ static struct { int state; /* hvutil_device_state */ int recv_len; /* number of bytes received. */ struct hv_kvp_msg *kvp_msg; /* current message */ struct vmbus_channel *recv_channel; /* chn we got the request */ u64 recv_req_id; /* request ID. */ } kvp_transaction; /* * This state maintains the version number registered by the daemon. */ static int dm_reg_value; static void kvp_send_key(struct work_struct *dummy); static void kvp_respond_to_host(struct hv_kvp_msg *msg, int error); static void kvp_timeout_func(struct work_struct *dummy); static void kvp_host_handshake_func(struct work_struct *dummy); static void kvp_register(int); static DECLARE_DELAYED_WORK(kvp_timeout_work, kvp_timeout_func); static DECLARE_DELAYED_WORK(kvp_host_handshake_work, kvp_host_handshake_func); static DECLARE_WORK(kvp_sendkey_work, kvp_send_key); static const char kvp_devname[] = "vmbus/hv_kvp"; static u8 *recv_buffer; static struct hvutil_transport *hvt; /* * Register the kernel component with the user-level daemon. * As part of this registration, pass the LIC version number. * This number has no meaning, it satisfies the registration protocol. */ #define HV_DRV_VERSION "3.1" static void kvp_poll_wrapper(void *channel) { /* Transaction is finished, reset the state here to avoid races. */ kvp_transaction.state = HVUTIL_READY; tasklet_schedule(&((struct vmbus_channel *)channel)->callback_event); } static void kvp_register_done(void) { /* * If we're still negotiating with the host cancel the timeout * work to not poll the channel twice. */ pr_debug("KVP: userspace daemon registered\n"); cancel_delayed_work_sync(&kvp_host_handshake_work); hv_poll_channel(kvp_transaction.recv_channel, kvp_poll_wrapper); } static void kvp_register(int reg_value) { struct hv_kvp_msg *kvp_msg; char *version; kvp_msg = kzalloc(sizeof(*kvp_msg), GFP_KERNEL); if (kvp_msg) { version = kvp_msg->body.kvp_register.version; kvp_msg->kvp_hdr.operation = reg_value; strcpy(version, HV_DRV_VERSION); hvutil_transport_send(hvt, kvp_msg, sizeof(*kvp_msg), kvp_register_done); kfree(kvp_msg); } } static void kvp_timeout_func(struct work_struct *dummy) { /* * If the timer fires, the user-mode component has not responded; * process the pending transaction. */ kvp_respond_to_host(NULL, HV_E_FAIL); hv_poll_channel(kvp_transaction.recv_channel, kvp_poll_wrapper); } static void kvp_host_handshake_func(struct work_struct *dummy) { tasklet_schedule(&kvp_transaction.recv_channel->callback_event); } static int kvp_handle_handshake(struct hv_kvp_msg *msg) { switch (msg->kvp_hdr.operation) { case KVP_OP_REGISTER: dm_reg_value = KVP_OP_REGISTER; pr_info("KVP: IP injection functionality not available\n"); pr_info("KVP: Upgrade the KVP daemon\n"); break; case KVP_OP_REGISTER1: dm_reg_value = KVP_OP_REGISTER1; break; default: pr_info("KVP: incompatible daemon\n"); pr_info("KVP: KVP version: %d, Daemon version: %d\n", KVP_OP_REGISTER1, msg->kvp_hdr.operation); return -EINVAL; } /* * We have a compatible daemon; complete the handshake. */ pr_debug("KVP: userspace daemon ver. %d connected\n", msg->kvp_hdr.operation); kvp_register(dm_reg_value); return 0; } /* * Callback when data is received from user mode. */ static int kvp_on_msg(void *msg, int len) { struct hv_kvp_msg *message = (struct hv_kvp_msg *)msg; struct hv_kvp_msg_enumerate *data; int error = 0; if (len < sizeof(*message)) return -EINVAL; /* * If we are negotiating the version information * with the daemon; handle that first. */ if (kvp_transaction.state < HVUTIL_READY) { return kvp_handle_handshake(message); } /* We didn't send anything to userspace so the reply is spurious */ if (kvp_transaction.state < HVUTIL_USERSPACE_REQ) return -EINVAL; kvp_transaction.state = HVUTIL_USERSPACE_RECV; /* * Based on the version of the daemon, we propagate errors from the * daemon differently. */ data = &message->body.kvp_enum_data; switch (dm_reg_value) { case KVP_OP_REGISTER: /* * Null string is used to pass back error condition. */ if (data->data.key[0] == 0) error = HV_S_CONT; break; case KVP_OP_REGISTER1: /* * We use the message header information from * the user level daemon to transmit errors. */ error = message->error; break; } /* * Complete the transaction by forwarding the key value * to the host. But first, cancel the timeout. */ if (cancel_delayed_work_sync(&kvp_timeout_work)) { kvp_respond_to_host(message, error); hv_poll_channel(kvp_transaction.recv_channel, kvp_poll_wrapper); } return 0; } static int process_ob_ipinfo(void *in_msg, void *out_msg, int op) { struct hv_kvp_msg *in = in_msg; struct hv_kvp_ip_msg *out = out_msg; int len; switch (op) { case KVP_OP_GET_IP_INFO: /* * Transform all parameters into utf16 encoding. */ len = utf8s_to_utf16s((char *)in->body.kvp_ip_val.ip_addr, strlen((char *)in->body.kvp_ip_val.ip_addr), UTF16_HOST_ENDIAN, (wchar_t *)out->kvp_ip_val.ip_addr, MAX_IP_ADDR_SIZE); if (len < 0) return len; len = utf8s_to_utf16s((char *)in->body.kvp_ip_val.sub_net, strlen((char *)in->body.kvp_ip_val.sub_net), UTF16_HOST_ENDIAN, (wchar_t *)out->kvp_ip_val.sub_net, MAX_IP_ADDR_SIZE); if (len < 0) return len; len = utf8s_to_utf16s((char *)in->body.kvp_ip_val.gate_way, strlen((char *)in->body.kvp_ip_val.gate_way), UTF16_HOST_ENDIAN, (wchar_t *)out->kvp_ip_val.gate_way, MAX_GATEWAY_SIZE); if (len < 0) return len; len = utf8s_to_utf16s((char *)in->body.kvp_ip_val.dns_addr, strlen((char *)in->body.kvp_ip_val.dns_addr), UTF16_HOST_ENDIAN, (wchar_t *)out->kvp_ip_val.dns_addr, MAX_IP_ADDR_SIZE); if (len < 0) return len; len = utf8s_to_utf16s((char *)in->body.kvp_ip_val.adapter_id, strlen((char *)in->body.kvp_ip_val.adapter_id), UTF16_HOST_ENDIAN, (wchar_t *)out->kvp_ip_val.adapter_id, MAX_ADAPTER_ID_SIZE); if (len < 0) return len; out->kvp_ip_val.dhcp_enabled = in->body.kvp_ip_val.dhcp_enabled; out->kvp_ip_val.addr_family = in->body.kvp_ip_val.addr_family; } return 0; } static void process_ib_ipinfo(void *in_msg, void *out_msg, int op) { struct hv_kvp_ip_msg *in = in_msg; struct hv_kvp_msg *out = out_msg; switch (op) { case KVP_OP_SET_IP_INFO: /* * Transform all parameters into utf8 encoding. */ utf16s_to_utf8s((wchar_t *)in->kvp_ip_val.ip_addr, MAX_IP_ADDR_SIZE, UTF16_LITTLE_ENDIAN, (__u8 *)out->body.kvp_ip_val.ip_addr, MAX_IP_ADDR_SIZE); utf16s_to_utf8s((wchar_t *)in->kvp_ip_val.sub_net, MAX_IP_ADDR_SIZE, UTF16_LITTLE_ENDIAN, (__u8 *)out->body.kvp_ip_val.sub_net, MAX_IP_ADDR_SIZE); utf16s_to_utf8s((wchar_t *)in->kvp_ip_val.gate_way, MAX_GATEWAY_SIZE, UTF16_LITTLE_ENDIAN, (__u8 *)out->body.kvp_ip_val.gate_way, MAX_GATEWAY_SIZE); utf16s_to_utf8s((wchar_t *)in->kvp_ip_val.dns_addr, MAX_IP_ADDR_SIZE, UTF16_LITTLE_ENDIAN, (__u8 *)out->body.kvp_ip_val.dns_addr, MAX_IP_ADDR_SIZE); out->body.kvp_ip_val.dhcp_enabled = in->kvp_ip_val.dhcp_enabled; fallthrough; case KVP_OP_GET_IP_INFO: utf16s_to_utf8s((wchar_t *)in->kvp_ip_val.adapter_id, MAX_ADAPTER_ID_SIZE, UTF16_LITTLE_ENDIAN, (__u8 *)out->body.kvp_ip_val.adapter_id, MAX_ADAPTER_ID_SIZE); out->body.kvp_ip_val.addr_family = in->kvp_ip_val.addr_family; } } static void kvp_send_key(struct work_struct *dummy) { struct hv_kvp_msg *message; struct hv_kvp_msg *in_msg; __u8 operation = kvp_transaction.kvp_msg->kvp_hdr.operation; __u8 pool = kvp_transaction.kvp_msg->kvp_hdr.pool; __u32 val32; __u64 val64; int rc; /* The transaction state is wrong. */ if (kvp_transaction.state != HVUTIL_HOSTMSG_RECEIVED) return; message = kzalloc(sizeof(*message), GFP_KERNEL); if (!message) return; message->kvp_hdr.operation = operation; message->kvp_hdr.pool = pool; in_msg = kvp_transaction.kvp_msg; /* * The key/value strings sent from the host are encoded * in utf16; convert it to utf8 strings. * The host assures us that the utf16 strings will not exceed * the max lengths specified. We will however, reserve room * for the string terminating character - in the utf16s_utf8s() * function we limit the size of the buffer where the converted * string is placed to HV_KVP_EXCHANGE_MAX_*_SIZE -1 to guarantee * that the strings can be properly terminated! */ switch (message->kvp_hdr.operation) { case KVP_OP_SET_IP_INFO: process_ib_ipinfo(in_msg, message, KVP_OP_SET_IP_INFO); break; case KVP_OP_GET_IP_INFO: /* * We only need to pass on the info of operation, adapter_id * and addr_family to the userland kvp daemon. */ process_ib_ipinfo(in_msg, message, KVP_OP_GET_IP_INFO); break; case KVP_OP_SET: switch (in_msg->body.kvp_set.data.value_type) { case REG_SZ: /* * The value is a string - utf16 encoding. */ message->body.kvp_set.data.value_size = utf16s_to_utf8s( (wchar_t *)in_msg->body.kvp_set.data.value, in_msg->body.kvp_set.data.value_size, UTF16_LITTLE_ENDIAN, message->body.kvp_set.data.value, HV_KVP_EXCHANGE_MAX_VALUE_SIZE - 1) + 1; break; case REG_U32: /* * The value is a 32 bit scalar. * We save this as a utf8 string. */ val32 = in_msg->body.kvp_set.data.value_u32; message->body.kvp_set.data.value_size = sprintf(message->body.kvp_set.data.value, "%u", val32) + 1; break; case REG_U64: /* * The value is a 64 bit scalar. * We save this as a utf8 string. */ val64 = in_msg->body.kvp_set.data.value_u64; message->body.kvp_set.data.value_size = sprintf(message->body.kvp_set.data.value, "%llu", val64) + 1; break; } /* * The key is always a string - utf16 encoding. */ message->body.kvp_set.data.key_size = utf16s_to_utf8s( (wchar_t *)in_msg->body.kvp_set.data.key, in_msg->body.kvp_set.data.key_size, UTF16_LITTLE_ENDIAN, message->body.kvp_set.data.key, HV_KVP_EXCHANGE_MAX_KEY_SIZE - 1) + 1; break; case KVP_OP_GET: message->body.kvp_get.data.key_size = utf16s_to_utf8s( (wchar_t *)in_msg->body.kvp_get.data.key, in_msg->body.kvp_get.data.key_size, UTF16_LITTLE_ENDIAN, message->body.kvp_get.data.key, HV_KVP_EXCHANGE_MAX_KEY_SIZE - 1) + 1; break; case KVP_OP_DELETE: message->body.kvp_delete.key_size = utf16s_to_utf8s( (wchar_t *)in_msg->body.kvp_delete.key, in_msg->body.kvp_delete.key_size, UTF16_LITTLE_ENDIAN, message->body.kvp_delete.key, HV_KVP_EXCHANGE_MAX_KEY_SIZE - 1) + 1; break; case KVP_OP_ENUMERATE: message->body.kvp_enum_data.index = in_msg->body.kvp_enum_data.index; break; } kvp_transaction.state = HVUTIL_USERSPACE_REQ; rc = hvutil_transport_send(hvt, message, sizeof(*message), NULL); if (rc) { pr_debug("KVP: failed to communicate to the daemon: %d\n", rc); if (cancel_delayed_work_sync(&kvp_timeout_work)) { kvp_respond_to_host(message, HV_E_FAIL); kvp_transaction.state = HVUTIL_READY; } } kfree(message); } /* * Send a response back to the host. */ static void kvp_respond_to_host(struct hv_kvp_msg *msg_to_host, int error) { struct hv_kvp_msg *kvp_msg; struct hv_kvp_exchg_msg_value *kvp_data; char *key_name; char *value; struct icmsg_hdr *icmsghdrp; int keylen = 0; int valuelen = 0; u32 buf_len; struct vmbus_channel *channel; u64 req_id; int ret; /* * Copy the global state for completing the transaction. Note that * only one transaction can be active at a time. */ buf_len = kvp_transaction.recv_len; channel = kvp_transaction.recv_channel; req_id = kvp_transaction.recv_req_id; icmsghdrp = (struct icmsg_hdr *) &recv_buffer[sizeof(struct vmbuspipe_hdr)]; if (channel->onchannel_callback == NULL) /* * We have raced with util driver being unloaded; * silently return. */ return; icmsghdrp->status = error; /* * If the error parameter is set, terminate the host's enumeration * on this pool. */ if (error) { /* * Something failed or we have timed out; * terminate the current host-side iteration. */ goto response_done; } kvp_msg = (struct hv_kvp_msg *) &recv_buffer[sizeof(struct vmbuspipe_hdr) + sizeof(struct icmsg_hdr)]; switch (kvp_transaction.kvp_msg->kvp_hdr.operation) { case KVP_OP_GET_IP_INFO: ret = process_ob_ipinfo(msg_to_host, (struct hv_kvp_ip_msg *)kvp_msg, KVP_OP_GET_IP_INFO); if (ret < 0) icmsghdrp->status = HV_E_FAIL; goto response_done; case KVP_OP_SET_IP_INFO: goto response_done; case KVP_OP_GET: kvp_data = &kvp_msg->body.kvp_get.data; goto copy_value; case KVP_OP_SET: case KVP_OP_DELETE: goto response_done; default: break; } kvp_data = &kvp_msg->body.kvp_enum_data.data; key_name = msg_to_host->body.kvp_enum_data.data.key; /* * The windows host expects the key/value pair to be encoded * in utf16. Ensure that the key/value size reported to the host * will be less than or equal to the MAX size (including the * terminating character). */ keylen = utf8s_to_utf16s(key_name, strlen(key_name), UTF16_HOST_ENDIAN, (wchar_t *) kvp_data->key, (HV_KVP_EXCHANGE_MAX_KEY_SIZE / 2) - 2); kvp_data->key_size = 2*(keylen + 1); /* utf16 encoding */ copy_value: value = msg_to_host->body.kvp_enum_data.data.value; valuelen = utf8s_to_utf16s(value, strlen(value), UTF16_HOST_ENDIAN, (wchar_t *) kvp_data->value, (HV_KVP_EXCHANGE_MAX_VALUE_SIZE / 2) - 2); kvp_data->value_size = 2*(valuelen + 1); /* utf16 encoding */ /* * If the utf8s to utf16s conversion failed; notify host * of the error. */ if ((keylen < 0) || (valuelen < 0)) icmsghdrp->status = HV_E_FAIL; kvp_data->value_type = REG_SZ; /* all our values are strings */ response_done: icmsghdrp->icflags = ICMSGHDRFLAG_TRANSACTION | ICMSGHDRFLAG_RESPONSE; vmbus_sendpacket(channel, recv_buffer, buf_len, req_id, VM_PKT_DATA_INBAND, 0); } /* * This callback is invoked when we get a KVP message from the host. * The host ensures that only one KVP transaction can be active at a time. * KVP implementation in Linux needs to forward the key to a user-mde * component to retrieve the corresponding value. Consequently, we cannot * respond to the host in the context of this callback. Since the host * guarantees that at most only one transaction can be active at a time, * we stash away the transaction state in a set of global variables. */ void hv_kvp_onchannelcallback(void *context) { struct vmbus_channel *channel = context; u32 recvlen; u64 requestid; struct hv_kvp_msg *kvp_msg; struct icmsg_hdr *icmsghdrp; int kvp_srv_version; static enum {NEGO_NOT_STARTED, NEGO_IN_PROGRESS, NEGO_FINISHED} host_negotiatied = NEGO_NOT_STARTED; if (kvp_transaction.state < HVUTIL_READY) { /* * If userspace daemon is not connected and host is asking * us to negotiate we need to delay to not lose messages. * This is important for Failover IP setting. */ if (host_negotiatied == NEGO_NOT_STARTED) { host_negotiatied = NEGO_IN_PROGRESS; schedule_delayed_work(&kvp_host_handshake_work, HV_UTIL_NEGO_TIMEOUT * HZ); } return; } if (kvp_transaction.state > HVUTIL_READY) return; if (vmbus_recvpacket(channel, recv_buffer, HV_HYP_PAGE_SIZE * 4, &recvlen, &requestid)) { pr_err_ratelimited("KVP request received. Could not read into recv buf\n"); return; } if (!recvlen) return; /* Ensure recvlen is big enough to read header data */ if (recvlen < ICMSG_HDR) { pr_err_ratelimited("KVP request received. Packet length too small: %d\n", recvlen); return; } icmsghdrp = (struct icmsg_hdr *)&recv_buffer[sizeof(struct vmbuspipe_hdr)]; if (icmsghdrp->icmsgtype == ICMSGTYPE_NEGOTIATE) { if (vmbus_prep_negotiate_resp(icmsghdrp, recv_buffer, recvlen, fw_versions, FW_VER_COUNT, kvp_versions, KVP_VER_COUNT, NULL, &kvp_srv_version)) { pr_info("KVP IC version %d.%d\n", kvp_srv_version >> 16, kvp_srv_version & 0xFFFF); } } else if (icmsghdrp->icmsgtype == ICMSGTYPE_KVPEXCHANGE) { /* * recvlen is not checked against sizeof(struct kvp_msg) because kvp_msg contains * a union of structs and the msg type received is not known. Code using this * struct should provide validation when accessing its fields. */ kvp_msg = (struct hv_kvp_msg *)&recv_buffer[ICMSG_HDR]; /* * Stash away this global state for completing the * transaction; note transactions are serialized. */ kvp_transaction.recv_len = recvlen; kvp_transaction.recv_req_id = requestid; kvp_transaction.kvp_msg = kvp_msg; if (kvp_transaction.state < HVUTIL_READY) { /* Userspace is not registered yet */ kvp_respond_to_host(NULL, HV_E_FAIL); return; } kvp_transaction.state = HVUTIL_HOSTMSG_RECEIVED; /* * Get the information from the * user-mode component. * component. This transaction will be * completed when we get the value from * the user-mode component. * Set a timeout to deal with * user-mode not responding. */ schedule_work(&kvp_sendkey_work); schedule_delayed_work(&kvp_timeout_work, HV_UTIL_TIMEOUT * HZ); return; } else { pr_err_ratelimited("KVP request received. Invalid msg type: %d\n", icmsghdrp->icmsgtype); return; } icmsghdrp->icflags = ICMSGHDRFLAG_TRANSACTION | ICMSGHDRFLAG_RESPONSE; vmbus_sendpacket(channel, recv_buffer, recvlen, requestid, VM_PKT_DATA_INBAND, 0); host_negotiatied = NEGO_FINISHED; hv_poll_channel(kvp_transaction.recv_channel, kvp_poll_wrapper); } static void kvp_on_reset(void) { if (cancel_delayed_work_sync(&kvp_timeout_work)) kvp_respond_to_host(NULL, HV_E_FAIL); kvp_transaction.state = HVUTIL_DEVICE_INIT; } int hv_kvp_init(struct hv_util_service *srv) { recv_buffer = srv->recv_buffer; kvp_transaction.recv_channel = srv->channel; kvp_transaction.recv_channel->max_pkt_size = HV_HYP_PAGE_SIZE * 4; /* * When this driver loads, the user level daemon that * processes the host requests may not yet be running. * Defer processing channel callbacks until the daemon * has registered. */ kvp_transaction.state = HVUTIL_DEVICE_INIT; hvt = hvutil_transport_init(kvp_devname, CN_KVP_IDX, CN_KVP_VAL, kvp_on_msg, kvp_on_reset); if (!hvt) return -EFAULT; return 0; } static void hv_kvp_cancel_work(void) { cancel_delayed_work_sync(&kvp_host_handshake_work); cancel_delayed_work_sync(&kvp_timeout_work); cancel_work_sync(&kvp_sendkey_work); } int hv_kvp_pre_suspend(void) { struct vmbus_channel *channel = kvp_transaction.recv_channel; tasklet_disable(&channel->callback_event); /* * If there is a pending transtion, it's unnecessary to tell the host * that the transaction will fail, because that is implied when * util_suspend() calls vmbus_close() later. */ hv_kvp_cancel_work(); /* * Forece the state to READY to handle the ICMSGTYPE_NEGOTIATE message * later. The user space daemon may go out of order and its write() * may fail with EINVAL: this doesn't matter since the daemon will * reset the device by closing and re-opening it. */ kvp_transaction.state = HVUTIL_READY; return 0; } int hv_kvp_pre_resume(void) { struct vmbus_channel *channel = kvp_transaction.recv_channel; tasklet_enable(&channel->callback_event); return 0; } void hv_kvp_deinit(void) { kvp_transaction.state = HVUTIL_DEVICE_DYING; hv_kvp_cancel_work(); hvutil_transport_destroy(hvt); }
linux-master
drivers/hv/hv_kvp.c
// SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2020 Facebook */ #include <linux/bits.h> #include <linux/err.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/debugfs.h> #include <linux/init.h> #include <linux/pci.h> #include <linux/serial_8250.h> #include <linux/clkdev.h> #include <linux/clk-provider.h> #include <linux/platform_device.h> #include <linux/platform_data/i2c-xiic.h> #include <linux/platform_data/i2c-ocores.h> #include <linux/ptp_clock_kernel.h> #include <linux/spi/spi.h> #include <linux/spi/xilinx_spi.h> #include <linux/spi/altera.h> #include <net/devlink.h> #include <linux/i2c.h> #include <linux/mtd/mtd.h> #include <linux/nvmem-consumer.h> #include <linux/crc16.h> #define PCI_VENDOR_ID_FACEBOOK 0x1d9b #define PCI_DEVICE_ID_FACEBOOK_TIMECARD 0x0400 #define PCI_VENDOR_ID_CELESTICA 0x18d4 #define PCI_DEVICE_ID_CELESTICA_TIMECARD 0x1008 #define PCI_VENDOR_ID_OROLIA 0x1ad7 #define PCI_DEVICE_ID_OROLIA_ARTCARD 0xa000 static struct class timecard_class = { .name = "timecard", }; struct ocp_reg { u32 ctrl; u32 status; u32 select; u32 version; u32 time_ns; u32 time_sec; u32 __pad0[2]; u32 adjust_ns; u32 adjust_sec; u32 __pad1[2]; u32 offset_ns; u32 offset_window_ns; u32 __pad2[2]; u32 drift_ns; u32 drift_window_ns; u32 __pad3[6]; u32 servo_offset_p; u32 servo_offset_i; u32 servo_drift_p; u32 servo_drift_i; u32 status_offset; u32 status_drift; }; #define OCP_CTRL_ENABLE BIT(0) #define OCP_CTRL_ADJUST_TIME BIT(1) #define OCP_CTRL_ADJUST_OFFSET BIT(2) #define OCP_CTRL_ADJUST_DRIFT BIT(3) #define OCP_CTRL_ADJUST_SERVO BIT(8) #define OCP_CTRL_READ_TIME_REQ BIT(30) #define OCP_CTRL_READ_TIME_DONE BIT(31) #define OCP_STATUS_IN_SYNC BIT(0) #define OCP_STATUS_IN_HOLDOVER BIT(1) #define OCP_SELECT_CLK_NONE 0 #define OCP_SELECT_CLK_REG 0xfe struct tod_reg { u32 ctrl; u32 status; u32 uart_polarity; u32 version; u32 adj_sec; u32 __pad0[3]; u32 uart_baud; u32 __pad1[3]; u32 utc_status; u32 leap; }; #define TOD_CTRL_PROTOCOL BIT(28) #define TOD_CTRL_DISABLE_FMT_A BIT(17) #define TOD_CTRL_DISABLE_FMT_B BIT(16) #define TOD_CTRL_ENABLE BIT(0) #define TOD_CTRL_GNSS_MASK GENMASK(3, 0) #define TOD_CTRL_GNSS_SHIFT 24 #define TOD_STATUS_UTC_MASK GENMASK(7, 0) #define TOD_STATUS_UTC_VALID BIT(8) #define TOD_STATUS_LEAP_ANNOUNCE BIT(12) #define TOD_STATUS_LEAP_VALID BIT(16) struct ts_reg { u32 enable; u32 error; u32 polarity; u32 version; u32 __pad0[4]; u32 cable_delay; u32 __pad1[3]; u32 intr; u32 intr_mask; u32 event_count; u32 __pad2[1]; u32 ts_count; u32 time_ns; u32 time_sec; u32 data_width; u32 data; }; struct pps_reg { u32 ctrl; u32 status; u32 __pad0[6]; u32 cable_delay; }; #define PPS_STATUS_FILTER_ERR BIT(0) #define PPS_STATUS_SUPERV_ERR BIT(1) struct img_reg { u32 version; }; struct gpio_reg { u32 gpio1; u32 __pad0; u32 gpio2; u32 __pad1; }; struct irig_master_reg { u32 ctrl; u32 status; u32 __pad0; u32 version; u32 adj_sec; u32 mode_ctrl; }; #define IRIG_M_CTRL_ENABLE BIT(0) struct irig_slave_reg { u32 ctrl; u32 status; u32 __pad0; u32 version; u32 adj_sec; u32 mode_ctrl; }; #define IRIG_S_CTRL_ENABLE BIT(0) struct dcf_master_reg { u32 ctrl; u32 status; u32 __pad0; u32 version; u32 adj_sec; }; #define DCF_M_CTRL_ENABLE BIT(0) struct dcf_slave_reg { u32 ctrl; u32 status; u32 __pad0; u32 version; u32 adj_sec; }; #define DCF_S_CTRL_ENABLE BIT(0) struct signal_reg { u32 enable; u32 status; u32 polarity; u32 version; u32 __pad0[4]; u32 cable_delay; u32 __pad1[3]; u32 intr; u32 intr_mask; u32 __pad2[2]; u32 start_ns; u32 start_sec; u32 pulse_ns; u32 pulse_sec; u32 period_ns; u32 period_sec; u32 repeat_count; }; struct frequency_reg { u32 ctrl; u32 status; }; struct board_config_reg { u32 mro50_serial_activate; }; #define FREQ_STATUS_VALID BIT(31) #define FREQ_STATUS_ERROR BIT(30) #define FREQ_STATUS_OVERRUN BIT(29) #define FREQ_STATUS_MASK GENMASK(23, 0) struct ptp_ocp_flash_info { const char *name; int pci_offset; int data_size; void *data; }; struct ptp_ocp_firmware_header { char magic[4]; __be16 pci_vendor_id; __be16 pci_device_id; __be32 image_size; __be16 hw_revision; __be16 crc; }; #define OCP_FIRMWARE_MAGIC_HEADER "OCPC" struct ptp_ocp_i2c_info { const char *name; unsigned long fixed_rate; size_t data_size; void *data; }; struct ptp_ocp_ext_info { int index; irqreturn_t (*irq_fcn)(int irq, void *priv); int (*enable)(void *priv, u32 req, bool enable); }; struct ptp_ocp_ext_src { void __iomem *mem; struct ptp_ocp *bp; struct ptp_ocp_ext_info *info; int irq_vec; }; enum ptp_ocp_sma_mode { SMA_MODE_IN, SMA_MODE_OUT, }; struct ptp_ocp_sma_connector { enum ptp_ocp_sma_mode mode; bool fixed_fcn; bool fixed_dir; bool disabled; u8 default_fcn; }; struct ocp_attr_group { u64 cap; const struct attribute_group *group; }; #define OCP_CAP_BASIC BIT(0) #define OCP_CAP_SIGNAL BIT(1) #define OCP_CAP_FREQ BIT(2) struct ptp_ocp_signal { ktime_t period; ktime_t pulse; ktime_t phase; ktime_t start; int duty; bool polarity; bool running; }; struct ptp_ocp_serial_port { int line; int baud; }; #define OCP_BOARD_ID_LEN 13 #define OCP_SERIAL_LEN 6 struct ptp_ocp { struct pci_dev *pdev; struct device dev; spinlock_t lock; struct ocp_reg __iomem *reg; struct tod_reg __iomem *tod; struct pps_reg __iomem *pps_to_ext; struct pps_reg __iomem *pps_to_clk; struct board_config_reg __iomem *board_config; struct gpio_reg __iomem *pps_select; struct gpio_reg __iomem *sma_map1; struct gpio_reg __iomem *sma_map2; struct irig_master_reg __iomem *irig_out; struct irig_slave_reg __iomem *irig_in; struct dcf_master_reg __iomem *dcf_out; struct dcf_slave_reg __iomem *dcf_in; struct tod_reg __iomem *nmea_out; struct frequency_reg __iomem *freq_in[4]; struct ptp_ocp_ext_src *signal_out[4]; struct ptp_ocp_ext_src *pps; struct ptp_ocp_ext_src *ts0; struct ptp_ocp_ext_src *ts1; struct ptp_ocp_ext_src *ts2; struct ptp_ocp_ext_src *ts3; struct ptp_ocp_ext_src *ts4; struct ocp_art_gpio_reg __iomem *art_sma; struct img_reg __iomem *image; struct ptp_clock *ptp; struct ptp_clock_info ptp_info; struct platform_device *i2c_ctrl; struct platform_device *spi_flash; struct clk_hw *i2c_clk; struct timer_list watchdog; const struct attribute_group **attr_group; const struct ptp_ocp_eeprom_map *eeprom_map; struct dentry *debug_root; time64_t gnss_lost; int id; int n_irqs; struct ptp_ocp_serial_port gnss_port; struct ptp_ocp_serial_port gnss2_port; struct ptp_ocp_serial_port mac_port; /* miniature atomic clock */ struct ptp_ocp_serial_port nmea_port; bool fw_loader; u8 fw_tag; u16 fw_version; u8 board_id[OCP_BOARD_ID_LEN]; u8 serial[OCP_SERIAL_LEN]; bool has_eeprom_data; u32 pps_req_map; int flash_start; u32 utc_tai_offset; u32 ts_window_adjust; u64 fw_cap; struct ptp_ocp_signal signal[4]; struct ptp_ocp_sma_connector sma[4]; const struct ocp_sma_op *sma_op; }; #define OCP_REQ_TIMESTAMP BIT(0) #define OCP_REQ_PPS BIT(1) struct ocp_resource { unsigned long offset; int size; int irq_vec; int (*setup)(struct ptp_ocp *bp, struct ocp_resource *r); void *extra; unsigned long bp_offset; const char * const name; }; static int ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r); static int ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r); static int ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r); static int ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r); static int ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r); static int ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r); static irqreturn_t ptp_ocp_ts_irq(int irq, void *priv); static irqreturn_t ptp_ocp_signal_irq(int irq, void *priv); static int ptp_ocp_ts_enable(void *priv, u32 req, bool enable); static int ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen, struct ptp_perout_request *req); static int ptp_ocp_signal_enable(void *priv, u32 req, bool enable); static int ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr); static int ptp_ocp_art_board_init(struct ptp_ocp *bp, struct ocp_resource *r); static const struct ocp_attr_group fb_timecard_groups[]; static const struct ocp_attr_group art_timecard_groups[]; struct ptp_ocp_eeprom_map { u16 off; u16 len; u32 bp_offset; const void * const tag; }; #define EEPROM_ENTRY(addr, member) \ .off = addr, \ .len = sizeof_field(struct ptp_ocp, member), \ .bp_offset = offsetof(struct ptp_ocp, member) #define BP_MAP_ENTRY_ADDR(bp, map) ({ \ (void *)((uintptr_t)(bp) + (map)->bp_offset); \ }) static struct ptp_ocp_eeprom_map fb_eeprom_map[] = { { EEPROM_ENTRY(0x43, board_id) }, { EEPROM_ENTRY(0x00, serial), .tag = "mac" }, { } }; static struct ptp_ocp_eeprom_map art_eeprom_map[] = { { EEPROM_ENTRY(0x200 + 0x43, board_id) }, { EEPROM_ENTRY(0x200 + 0x63, serial) }, { } }; #define bp_assign_entry(bp, res, val) ({ \ uintptr_t addr = (uintptr_t)(bp) + (res)->bp_offset; \ *(typeof(val) *)addr = val; \ }) #define OCP_RES_LOCATION(member) \ .name = #member, .bp_offset = offsetof(struct ptp_ocp, member) #define OCP_MEM_RESOURCE(member) \ OCP_RES_LOCATION(member), .setup = ptp_ocp_register_mem #define OCP_SERIAL_RESOURCE(member) \ OCP_RES_LOCATION(member), .setup = ptp_ocp_register_serial #define OCP_I2C_RESOURCE(member) \ OCP_RES_LOCATION(member), .setup = ptp_ocp_register_i2c #define OCP_SPI_RESOURCE(member) \ OCP_RES_LOCATION(member), .setup = ptp_ocp_register_spi #define OCP_EXT_RESOURCE(member) \ OCP_RES_LOCATION(member), .setup = ptp_ocp_register_ext /* This is the MSI vector mapping used. * 0: PPS (TS5) * 1: TS0 * 2: TS1 * 3: GNSS1 * 4: GNSS2 * 5: MAC * 6: TS2 * 7: I2C controller * 8: HWICAP (notused) * 9: SPI Flash * 10: NMEA * 11: Signal Generator 1 * 12: Signal Generator 2 * 13: Signal Generator 3 * 14: Signal Generator 4 * 15: TS3 * 16: TS4 -- * 8: Orolia TS1 * 10: Orolia TS2 * 11: Orolia TS0 (GNSS) * 12: Orolia PPS * 14: Orolia TS3 * 15: Orolia TS4 */ static struct ocp_resource ocp_fb_resource[] = { { OCP_MEM_RESOURCE(reg), .offset = 0x01000000, .size = 0x10000, }, { OCP_EXT_RESOURCE(ts0), .offset = 0x01010000, .size = 0x10000, .irq_vec = 1, .extra = &(struct ptp_ocp_ext_info) { .index = 0, .irq_fcn = ptp_ocp_ts_irq, .enable = ptp_ocp_ts_enable, }, }, { OCP_EXT_RESOURCE(ts1), .offset = 0x01020000, .size = 0x10000, .irq_vec = 2, .extra = &(struct ptp_ocp_ext_info) { .index = 1, .irq_fcn = ptp_ocp_ts_irq, .enable = ptp_ocp_ts_enable, }, }, { OCP_EXT_RESOURCE(ts2), .offset = 0x01060000, .size = 0x10000, .irq_vec = 6, .extra = &(struct ptp_ocp_ext_info) { .index = 2, .irq_fcn = ptp_ocp_ts_irq, .enable = ptp_ocp_ts_enable, }, }, { OCP_EXT_RESOURCE(ts3), .offset = 0x01110000, .size = 0x10000, .irq_vec = 15, .extra = &(struct ptp_ocp_ext_info) { .index = 3, .irq_fcn = ptp_ocp_ts_irq, .enable = ptp_ocp_ts_enable, }, }, { OCP_EXT_RESOURCE(ts4), .offset = 0x01120000, .size = 0x10000, .irq_vec = 16, .extra = &(struct ptp_ocp_ext_info) { .index = 4, .irq_fcn = ptp_ocp_ts_irq, .enable = ptp_ocp_ts_enable, }, }, /* Timestamp for PHC and/or PPS generator */ { OCP_EXT_RESOURCE(pps), .offset = 0x010C0000, .size = 0x10000, .irq_vec = 0, .extra = &(struct ptp_ocp_ext_info) { .index = 5, .irq_fcn = ptp_ocp_ts_irq, .enable = ptp_ocp_ts_enable, }, }, { OCP_EXT_RESOURCE(signal_out[0]), .offset = 0x010D0000, .size = 0x10000, .irq_vec = 11, .extra = &(struct ptp_ocp_ext_info) { .index = 1, .irq_fcn = ptp_ocp_signal_irq, .enable = ptp_ocp_signal_enable, }, }, { OCP_EXT_RESOURCE(signal_out[1]), .offset = 0x010E0000, .size = 0x10000, .irq_vec = 12, .extra = &(struct ptp_ocp_ext_info) { .index = 2, .irq_fcn = ptp_ocp_signal_irq, .enable = ptp_ocp_signal_enable, }, }, { OCP_EXT_RESOURCE(signal_out[2]), .offset = 0x010F0000, .size = 0x10000, .irq_vec = 13, .extra = &(struct ptp_ocp_ext_info) { .index = 3, .irq_fcn = ptp_ocp_signal_irq, .enable = ptp_ocp_signal_enable, }, }, { OCP_EXT_RESOURCE(signal_out[3]), .offset = 0x01100000, .size = 0x10000, .irq_vec = 14, .extra = &(struct ptp_ocp_ext_info) { .index = 4, .irq_fcn = ptp_ocp_signal_irq, .enable = ptp_ocp_signal_enable, }, }, { OCP_MEM_RESOURCE(pps_to_ext), .offset = 0x01030000, .size = 0x10000, }, { OCP_MEM_RESOURCE(pps_to_clk), .offset = 0x01040000, .size = 0x10000, }, { OCP_MEM_RESOURCE(tod), .offset = 0x01050000, .size = 0x10000, }, { OCP_MEM_RESOURCE(irig_in), .offset = 0x01070000, .size = 0x10000, }, { OCP_MEM_RESOURCE(irig_out), .offset = 0x01080000, .size = 0x10000, }, { OCP_MEM_RESOURCE(dcf_in), .offset = 0x01090000, .size = 0x10000, }, { OCP_MEM_RESOURCE(dcf_out), .offset = 0x010A0000, .size = 0x10000, }, { OCP_MEM_RESOURCE(nmea_out), .offset = 0x010B0000, .size = 0x10000, }, { OCP_MEM_RESOURCE(image), .offset = 0x00020000, .size = 0x1000, }, { OCP_MEM_RESOURCE(pps_select), .offset = 0x00130000, .size = 0x1000, }, { OCP_MEM_RESOURCE(sma_map1), .offset = 0x00140000, .size = 0x1000, }, { OCP_MEM_RESOURCE(sma_map2), .offset = 0x00220000, .size = 0x1000, }, { OCP_I2C_RESOURCE(i2c_ctrl), .offset = 0x00150000, .size = 0x10000, .irq_vec = 7, .extra = &(struct ptp_ocp_i2c_info) { .name = "xiic-i2c", .fixed_rate = 50000000, .data_size = sizeof(struct xiic_i2c_platform_data), .data = &(struct xiic_i2c_platform_data) { .num_devices = 2, .devices = (struct i2c_board_info[]) { { I2C_BOARD_INFO("24c02", 0x50) }, { I2C_BOARD_INFO("24mac402", 0x58), .platform_data = "mac" }, }, }, }, }, { OCP_SERIAL_RESOURCE(gnss_port), .offset = 0x00160000 + 0x1000, .irq_vec = 3, .extra = &(struct ptp_ocp_serial_port) { .baud = 115200, }, }, { OCP_SERIAL_RESOURCE(gnss2_port), .offset = 0x00170000 + 0x1000, .irq_vec = 4, .extra = &(struct ptp_ocp_serial_port) { .baud = 115200, }, }, { OCP_SERIAL_RESOURCE(mac_port), .offset = 0x00180000 + 0x1000, .irq_vec = 5, .extra = &(struct ptp_ocp_serial_port) { .baud = 57600, }, }, { OCP_SERIAL_RESOURCE(nmea_port), .offset = 0x00190000 + 0x1000, .irq_vec = 10, }, { OCP_SPI_RESOURCE(spi_flash), .offset = 0x00310000, .size = 0x10000, .irq_vec = 9, .extra = &(struct ptp_ocp_flash_info) { .name = "xilinx_spi", .pci_offset = 0, .data_size = sizeof(struct xspi_platform_data), .data = &(struct xspi_platform_data) { .num_chipselect = 1, .bits_per_word = 8, .num_devices = 1, .force_irq = true, .devices = &(struct spi_board_info) { .modalias = "spi-nor", }, }, }, }, { OCP_MEM_RESOURCE(freq_in[0]), .offset = 0x01200000, .size = 0x10000, }, { OCP_MEM_RESOURCE(freq_in[1]), .offset = 0x01210000, .size = 0x10000, }, { OCP_MEM_RESOURCE(freq_in[2]), .offset = 0x01220000, .size = 0x10000, }, { OCP_MEM_RESOURCE(freq_in[3]), .offset = 0x01230000, .size = 0x10000, }, { .setup = ptp_ocp_fb_board_init, }, { } }; #define OCP_ART_CONFIG_SIZE 144 #define OCP_ART_TEMP_TABLE_SIZE 368 struct ocp_art_gpio_reg { struct { u32 gpio; u32 __pad[3]; } map[4]; }; static struct ocp_resource ocp_art_resource[] = { { OCP_MEM_RESOURCE(reg), .offset = 0x01000000, .size = 0x10000, }, { OCP_SERIAL_RESOURCE(gnss_port), .offset = 0x00160000 + 0x1000, .irq_vec = 3, .extra = &(struct ptp_ocp_serial_port) { .baud = 115200, }, }, { OCP_MEM_RESOURCE(art_sma), .offset = 0x003C0000, .size = 0x1000, }, /* Timestamp associated with GNSS1 receiver PPS */ { OCP_EXT_RESOURCE(ts0), .offset = 0x360000, .size = 0x20, .irq_vec = 12, .extra = &(struct ptp_ocp_ext_info) { .index = 0, .irq_fcn = ptp_ocp_ts_irq, .enable = ptp_ocp_ts_enable, }, }, { OCP_EXT_RESOURCE(ts1), .offset = 0x380000, .size = 0x20, .irq_vec = 8, .extra = &(struct ptp_ocp_ext_info) { .index = 1, .irq_fcn = ptp_ocp_ts_irq, .enable = ptp_ocp_ts_enable, }, }, { OCP_EXT_RESOURCE(ts2), .offset = 0x390000, .size = 0x20, .irq_vec = 10, .extra = &(struct ptp_ocp_ext_info) { .index = 2, .irq_fcn = ptp_ocp_ts_irq, .enable = ptp_ocp_ts_enable, }, }, { OCP_EXT_RESOURCE(ts3), .offset = 0x3A0000, .size = 0x20, .irq_vec = 14, .extra = &(struct ptp_ocp_ext_info) { .index = 3, .irq_fcn = ptp_ocp_ts_irq, .enable = ptp_ocp_ts_enable, }, }, { OCP_EXT_RESOURCE(ts4), .offset = 0x3B0000, .size = 0x20, .irq_vec = 15, .extra = &(struct ptp_ocp_ext_info) { .index = 4, .irq_fcn = ptp_ocp_ts_irq, .enable = ptp_ocp_ts_enable, }, }, /* Timestamp associated with Internal PPS of the card */ { OCP_EXT_RESOURCE(pps), .offset = 0x00330000, .size = 0x20, .irq_vec = 11, .extra = &(struct ptp_ocp_ext_info) { .index = 5, .irq_fcn = ptp_ocp_ts_irq, .enable = ptp_ocp_ts_enable, }, }, { OCP_SPI_RESOURCE(spi_flash), .offset = 0x00310000, .size = 0x10000, .irq_vec = 9, .extra = &(struct ptp_ocp_flash_info) { .name = "spi_altera", .pci_offset = 0, .data_size = sizeof(struct altera_spi_platform_data), .data = &(struct altera_spi_platform_data) { .num_chipselect = 1, .num_devices = 1, .devices = &(struct spi_board_info) { .modalias = "spi-nor", }, }, }, }, { OCP_I2C_RESOURCE(i2c_ctrl), .offset = 0x350000, .size = 0x100, .irq_vec = 4, .extra = &(struct ptp_ocp_i2c_info) { .name = "ocores-i2c", .fixed_rate = 400000, .data_size = sizeof(struct ocores_i2c_platform_data), .data = &(struct ocores_i2c_platform_data) { .clock_khz = 125000, .bus_khz = 400, .num_devices = 1, .devices = &(struct i2c_board_info) { I2C_BOARD_INFO("24c08", 0x50), }, }, }, }, { OCP_SERIAL_RESOURCE(mac_port), .offset = 0x00190000, .irq_vec = 7, .extra = &(struct ptp_ocp_serial_port) { .baud = 9600, }, }, { OCP_MEM_RESOURCE(board_config), .offset = 0x210000, .size = 0x1000, }, { .setup = ptp_ocp_art_board_init, }, { } }; static const struct pci_device_id ptp_ocp_pcidev_id[] = { { PCI_DEVICE_DATA(FACEBOOK, TIMECARD, &ocp_fb_resource) }, { PCI_DEVICE_DATA(CELESTICA, TIMECARD, &ocp_fb_resource) }, { PCI_DEVICE_DATA(OROLIA, ARTCARD, &ocp_art_resource) }, { } }; MODULE_DEVICE_TABLE(pci, ptp_ocp_pcidev_id); static DEFINE_MUTEX(ptp_ocp_lock); static DEFINE_IDR(ptp_ocp_idr); struct ocp_selector { const char *name; int value; }; static const struct ocp_selector ptp_ocp_clock[] = { { .name = "NONE", .value = 0 }, { .name = "TOD", .value = 1 }, { .name = "IRIG", .value = 2 }, { .name = "PPS", .value = 3 }, { .name = "PTP", .value = 4 }, { .name = "RTC", .value = 5 }, { .name = "DCF", .value = 6 }, { .name = "REGS", .value = 0xfe }, { .name = "EXT", .value = 0xff }, { } }; #define SMA_DISABLE BIT(16) #define SMA_ENABLE BIT(15) #define SMA_SELECT_MASK GENMASK(14, 0) static const struct ocp_selector ptp_ocp_sma_in[] = { { .name = "10Mhz", .value = 0x0000 }, { .name = "PPS1", .value = 0x0001 }, { .name = "PPS2", .value = 0x0002 }, { .name = "TS1", .value = 0x0004 }, { .name = "TS2", .value = 0x0008 }, { .name = "IRIG", .value = 0x0010 }, { .name = "DCF", .value = 0x0020 }, { .name = "TS3", .value = 0x0040 }, { .name = "TS4", .value = 0x0080 }, { .name = "FREQ1", .value = 0x0100 }, { .name = "FREQ2", .value = 0x0200 }, { .name = "FREQ3", .value = 0x0400 }, { .name = "FREQ4", .value = 0x0800 }, { .name = "None", .value = SMA_DISABLE }, { } }; static const struct ocp_selector ptp_ocp_sma_out[] = { { .name = "10Mhz", .value = 0x0000 }, { .name = "PHC", .value = 0x0001 }, { .name = "MAC", .value = 0x0002 }, { .name = "GNSS1", .value = 0x0004 }, { .name = "GNSS2", .value = 0x0008 }, { .name = "IRIG", .value = 0x0010 }, { .name = "DCF", .value = 0x0020 }, { .name = "GEN1", .value = 0x0040 }, { .name = "GEN2", .value = 0x0080 }, { .name = "GEN3", .value = 0x0100 }, { .name = "GEN4", .value = 0x0200 }, { .name = "GND", .value = 0x2000 }, { .name = "VCC", .value = 0x4000 }, { } }; static const struct ocp_selector ptp_ocp_art_sma_in[] = { { .name = "PPS1", .value = 0x0001 }, { .name = "10Mhz", .value = 0x0008 }, { } }; static const struct ocp_selector ptp_ocp_art_sma_out[] = { { .name = "PHC", .value = 0x0002 }, { .name = "GNSS", .value = 0x0004 }, { .name = "10Mhz", .value = 0x0010 }, { } }; struct ocp_sma_op { const struct ocp_selector *tbl[2]; void (*init)(struct ptp_ocp *bp); u32 (*get)(struct ptp_ocp *bp, int sma_nr); int (*set_inputs)(struct ptp_ocp *bp, int sma_nr, u32 val); int (*set_output)(struct ptp_ocp *bp, int sma_nr, u32 val); }; static void ptp_ocp_sma_init(struct ptp_ocp *bp) { return bp->sma_op->init(bp); } static u32 ptp_ocp_sma_get(struct ptp_ocp *bp, int sma_nr) { return bp->sma_op->get(bp, sma_nr); } static int ptp_ocp_sma_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val) { return bp->sma_op->set_inputs(bp, sma_nr, val); } static int ptp_ocp_sma_set_output(struct ptp_ocp *bp, int sma_nr, u32 val) { return bp->sma_op->set_output(bp, sma_nr, val); } static const char * ptp_ocp_select_name_from_val(const struct ocp_selector *tbl, int val) { int i; for (i = 0; tbl[i].name; i++) if (tbl[i].value == val) return tbl[i].name; return NULL; } static int ptp_ocp_select_val_from_name(const struct ocp_selector *tbl, const char *name) { const char *select; int i; for (i = 0; tbl[i].name; i++) { select = tbl[i].name; if (!strncasecmp(name, select, strlen(select))) return tbl[i].value; } return -EINVAL; } static ssize_t ptp_ocp_select_table_show(const struct ocp_selector *tbl, char *buf) { ssize_t count; int i; count = 0; for (i = 0; tbl[i].name; i++) count += sysfs_emit_at(buf, count, "%s ", tbl[i].name); if (count) count--; count += sysfs_emit_at(buf, count, "\n"); return count; } static int __ptp_ocp_gettime_locked(struct ptp_ocp *bp, struct timespec64 *ts, struct ptp_system_timestamp *sts) { u32 ctrl, time_sec, time_ns; int i; ptp_read_system_prets(sts); ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE; iowrite32(ctrl, &bp->reg->ctrl); for (i = 0; i < 100; i++) { ctrl = ioread32(&bp->reg->ctrl); if (ctrl & OCP_CTRL_READ_TIME_DONE) break; } ptp_read_system_postts(sts); if (sts && bp->ts_window_adjust) { s64 ns = timespec64_to_ns(&sts->post_ts); sts->post_ts = ns_to_timespec64(ns - bp->ts_window_adjust); } time_ns = ioread32(&bp->reg->time_ns); time_sec = ioread32(&bp->reg->time_sec); ts->tv_sec = time_sec; ts->tv_nsec = time_ns; return ctrl & OCP_CTRL_READ_TIME_DONE ? 0 : -ETIMEDOUT; } static int ptp_ocp_gettimex(struct ptp_clock_info *ptp_info, struct timespec64 *ts, struct ptp_system_timestamp *sts) { struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info); unsigned long flags; int err; spin_lock_irqsave(&bp->lock, flags); err = __ptp_ocp_gettime_locked(bp, ts, sts); spin_unlock_irqrestore(&bp->lock, flags); return err; } static void __ptp_ocp_settime_locked(struct ptp_ocp *bp, const struct timespec64 *ts) { u32 ctrl, time_sec, time_ns; u32 select; time_ns = ts->tv_nsec; time_sec = ts->tv_sec; select = ioread32(&bp->reg->select); iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select); iowrite32(time_ns, &bp->reg->adjust_ns); iowrite32(time_sec, &bp->reg->adjust_sec); ctrl = OCP_CTRL_ADJUST_TIME | OCP_CTRL_ENABLE; iowrite32(ctrl, &bp->reg->ctrl); /* restore clock selection */ iowrite32(select >> 16, &bp->reg->select); } static int ptp_ocp_settime(struct ptp_clock_info *ptp_info, const struct timespec64 *ts) { struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info); unsigned long flags; spin_lock_irqsave(&bp->lock, flags); __ptp_ocp_settime_locked(bp, ts); spin_unlock_irqrestore(&bp->lock, flags); return 0; } static void __ptp_ocp_adjtime_locked(struct ptp_ocp *bp, u32 adj_val) { u32 select, ctrl; select = ioread32(&bp->reg->select); iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select); iowrite32(adj_val, &bp->reg->offset_ns); iowrite32(NSEC_PER_SEC, &bp->reg->offset_window_ns); ctrl = OCP_CTRL_ADJUST_OFFSET | OCP_CTRL_ENABLE; iowrite32(ctrl, &bp->reg->ctrl); /* restore clock selection */ iowrite32(select >> 16, &bp->reg->select); } static void ptp_ocp_adjtime_coarse(struct ptp_ocp *bp, s64 delta_ns) { struct timespec64 ts; unsigned long flags; int err; spin_lock_irqsave(&bp->lock, flags); err = __ptp_ocp_gettime_locked(bp, &ts, NULL); if (likely(!err)) { set_normalized_timespec64(&ts, ts.tv_sec, ts.tv_nsec + delta_ns); __ptp_ocp_settime_locked(bp, &ts); } spin_unlock_irqrestore(&bp->lock, flags); } static int ptp_ocp_adjtime(struct ptp_clock_info *ptp_info, s64 delta_ns) { struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info); unsigned long flags; u32 adj_ns, sign; if (delta_ns > NSEC_PER_SEC || -delta_ns > NSEC_PER_SEC) { ptp_ocp_adjtime_coarse(bp, delta_ns); return 0; } sign = delta_ns < 0 ? BIT(31) : 0; adj_ns = sign ? -delta_ns : delta_ns; spin_lock_irqsave(&bp->lock, flags); __ptp_ocp_adjtime_locked(bp, sign | adj_ns); spin_unlock_irqrestore(&bp->lock, flags); return 0; } static int ptp_ocp_null_adjfine(struct ptp_clock_info *ptp_info, long scaled_ppm) { if (scaled_ppm == 0) return 0; return -EOPNOTSUPP; } static s32 ptp_ocp_null_getmaxphase(struct ptp_clock_info *ptp_info) { return 0; } static int ptp_ocp_null_adjphase(struct ptp_clock_info *ptp_info, s32 phase_ns) { return -EOPNOTSUPP; } static int ptp_ocp_enable(struct ptp_clock_info *ptp_info, struct ptp_clock_request *rq, int on) { struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info); struct ptp_ocp_ext_src *ext = NULL; u32 req; int err; switch (rq->type) { case PTP_CLK_REQ_EXTTS: req = OCP_REQ_TIMESTAMP; switch (rq->extts.index) { case 0: ext = bp->ts0; break; case 1: ext = bp->ts1; break; case 2: ext = bp->ts2; break; case 3: ext = bp->ts3; break; case 4: ext = bp->ts4; break; case 5: ext = bp->pps; break; } break; case PTP_CLK_REQ_PPS: req = OCP_REQ_PPS; ext = bp->pps; break; case PTP_CLK_REQ_PEROUT: switch (rq->perout.index) { case 0: /* This is a request for 1PPS on an output SMA. * Allow, but assume manual configuration. */ if (on && (rq->perout.period.sec != 1 || rq->perout.period.nsec != 0)) return -EINVAL; return 0; case 1: case 2: case 3: case 4: req = rq->perout.index - 1; ext = bp->signal_out[req]; err = ptp_ocp_signal_from_perout(bp, req, &rq->perout); if (err) return err; break; } break; default: return -EOPNOTSUPP; } err = -ENXIO; if (ext) err = ext->info->enable(ext, req, on); return err; } static int ptp_ocp_verify(struct ptp_clock_info *ptp_info, unsigned pin, enum ptp_pin_function func, unsigned chan) { struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info); char buf[16]; switch (func) { case PTP_PF_NONE: snprintf(buf, sizeof(buf), "IN: None"); break; case PTP_PF_EXTTS: /* Allow timestamps, but require sysfs configuration. */ return 0; case PTP_PF_PEROUT: /* channel 0 is 1PPS from PHC. * channels 1..4 are the frequency generators. */ if (chan) snprintf(buf, sizeof(buf), "OUT: GEN%d", chan); else snprintf(buf, sizeof(buf), "OUT: PHC"); break; default: return -EOPNOTSUPP; } return ptp_ocp_sma_store(bp, buf, pin + 1); } static const struct ptp_clock_info ptp_ocp_clock_info = { .owner = THIS_MODULE, .name = KBUILD_MODNAME, .max_adj = 100000000, .gettimex64 = ptp_ocp_gettimex, .settime64 = ptp_ocp_settime, .adjtime = ptp_ocp_adjtime, .adjfine = ptp_ocp_null_adjfine, .adjphase = ptp_ocp_null_adjphase, .getmaxphase = ptp_ocp_null_getmaxphase, .enable = ptp_ocp_enable, .verify = ptp_ocp_verify, .pps = true, .n_ext_ts = 6, .n_per_out = 5, }; static void __ptp_ocp_clear_drift_locked(struct ptp_ocp *bp) { u32 ctrl, select; select = ioread32(&bp->reg->select); iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select); iowrite32(0, &bp->reg->drift_ns); ctrl = OCP_CTRL_ADJUST_DRIFT | OCP_CTRL_ENABLE; iowrite32(ctrl, &bp->reg->ctrl); /* restore clock selection */ iowrite32(select >> 16, &bp->reg->select); } static void ptp_ocp_utc_distribute(struct ptp_ocp *bp, u32 val) { unsigned long flags; spin_lock_irqsave(&bp->lock, flags); bp->utc_tai_offset = val; if (bp->irig_out) iowrite32(val, &bp->irig_out->adj_sec); if (bp->dcf_out) iowrite32(val, &bp->dcf_out->adj_sec); if (bp->nmea_out) iowrite32(val, &bp->nmea_out->adj_sec); spin_unlock_irqrestore(&bp->lock, flags); } static void ptp_ocp_watchdog(struct timer_list *t) { struct ptp_ocp *bp = from_timer(bp, t, watchdog); unsigned long flags; u32 status, utc_offset; status = ioread32(&bp->pps_to_clk->status); if (status & PPS_STATUS_SUPERV_ERR) { iowrite32(status, &bp->pps_to_clk->status); if (!bp->gnss_lost) { spin_lock_irqsave(&bp->lock, flags); __ptp_ocp_clear_drift_locked(bp); spin_unlock_irqrestore(&bp->lock, flags); bp->gnss_lost = ktime_get_real_seconds(); } } else if (bp->gnss_lost) { bp->gnss_lost = 0; } /* if GNSS provides correct data we can rely on * it to get leap second information */ if (bp->tod) { status = ioread32(&bp->tod->utc_status); utc_offset = status & TOD_STATUS_UTC_MASK; if (status & TOD_STATUS_UTC_VALID && utc_offset != bp->utc_tai_offset) ptp_ocp_utc_distribute(bp, utc_offset); } mod_timer(&bp->watchdog, jiffies + HZ); } static void ptp_ocp_estimate_pci_timing(struct ptp_ocp *bp) { ktime_t start, end; ktime_t delay; u32 ctrl; ctrl = ioread32(&bp->reg->ctrl); ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE; iowrite32(ctrl, &bp->reg->ctrl); start = ktime_get_ns(); ctrl = ioread32(&bp->reg->ctrl); end = ktime_get_ns(); delay = end - start; bp->ts_window_adjust = (delay >> 5) * 3; } static int ptp_ocp_init_clock(struct ptp_ocp *bp) { struct timespec64 ts; bool sync; u32 ctrl; ctrl = OCP_CTRL_ENABLE; iowrite32(ctrl, &bp->reg->ctrl); /* NO DRIFT Correction */ /* offset_p:i 1/8, offset_i: 1/16, drift_p: 0, drift_i: 0 */ iowrite32(0x2000, &bp->reg->servo_offset_p); iowrite32(0x1000, &bp->reg->servo_offset_i); iowrite32(0, &bp->reg->servo_drift_p); iowrite32(0, &bp->reg->servo_drift_i); /* latch servo values */ ctrl |= OCP_CTRL_ADJUST_SERVO; iowrite32(ctrl, &bp->reg->ctrl); if ((ioread32(&bp->reg->ctrl) & OCP_CTRL_ENABLE) == 0) { dev_err(&bp->pdev->dev, "clock not enabled\n"); return -ENODEV; } ptp_ocp_estimate_pci_timing(bp); sync = ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC; if (!sync) { ktime_get_clocktai_ts64(&ts); ptp_ocp_settime(&bp->ptp_info, &ts); } /* If there is a clock supervisor, then enable the watchdog */ if (bp->pps_to_clk) { timer_setup(&bp->watchdog, ptp_ocp_watchdog, 0); mod_timer(&bp->watchdog, jiffies + HZ); } return 0; } static void ptp_ocp_tod_init(struct ptp_ocp *bp) { u32 ctrl, reg; ctrl = ioread32(&bp->tod->ctrl); ctrl |= TOD_CTRL_PROTOCOL | TOD_CTRL_ENABLE; ctrl &= ~(TOD_CTRL_DISABLE_FMT_A | TOD_CTRL_DISABLE_FMT_B); iowrite32(ctrl, &bp->tod->ctrl); reg = ioread32(&bp->tod->utc_status); if (reg & TOD_STATUS_UTC_VALID) ptp_ocp_utc_distribute(bp, reg & TOD_STATUS_UTC_MASK); } static const char * ptp_ocp_tod_proto_name(const int idx) { static const char * const proto_name[] = { "NMEA", "NMEA_ZDA", "NMEA_RMC", "NMEA_none", "UBX", "UBX_UTC", "UBX_LS", "UBX_none" }; return proto_name[idx]; } static const char * ptp_ocp_tod_gnss_name(int idx) { static const char * const gnss_name[] = { "ALL", "COMBINED", "GPS", "GLONASS", "GALILEO", "BEIDOU", "Unknown" }; if (idx >= ARRAY_SIZE(gnss_name)) idx = ARRAY_SIZE(gnss_name) - 1; return gnss_name[idx]; } struct ptp_ocp_nvmem_match_info { struct ptp_ocp *bp; const void * const tag; }; static int ptp_ocp_nvmem_match(struct device *dev, const void *data) { const struct ptp_ocp_nvmem_match_info *info = data; dev = dev->parent; if (!i2c_verify_client(dev) || info->tag != dev->platform_data) return 0; while ((dev = dev->parent)) if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME)) return info->bp == dev_get_drvdata(dev); return 0; } static inline struct nvmem_device * ptp_ocp_nvmem_device_get(struct ptp_ocp *bp, const void * const tag) { struct ptp_ocp_nvmem_match_info info = { .bp = bp, .tag = tag }; return nvmem_device_find(&info, ptp_ocp_nvmem_match); } static inline void ptp_ocp_nvmem_device_put(struct nvmem_device **nvmemp) { if (!IS_ERR_OR_NULL(*nvmemp)) nvmem_device_put(*nvmemp); *nvmemp = NULL; } static void ptp_ocp_read_eeprom(struct ptp_ocp *bp) { const struct ptp_ocp_eeprom_map *map; struct nvmem_device *nvmem; const void *tag; int ret; if (!bp->i2c_ctrl) return; tag = NULL; nvmem = NULL; for (map = bp->eeprom_map; map->len; map++) { if (map->tag != tag) { tag = map->tag; ptp_ocp_nvmem_device_put(&nvmem); } if (!nvmem) { nvmem = ptp_ocp_nvmem_device_get(bp, tag); if (IS_ERR(nvmem)) { ret = PTR_ERR(nvmem); goto fail; } } ret = nvmem_device_read(nvmem, map->off, map->len, BP_MAP_ENTRY_ADDR(bp, map)); if (ret != map->len) goto fail; } bp->has_eeprom_data = true; out: ptp_ocp_nvmem_device_put(&nvmem); return; fail: dev_err(&bp->pdev->dev, "could not read eeprom: %d\n", ret); goto out; } static struct device * ptp_ocp_find_flash(struct ptp_ocp *bp) { struct device *dev, *last; last = NULL; dev = &bp->spi_flash->dev; while ((dev = device_find_any_child(dev))) { if (!strcmp("mtd", dev_bus_name(dev))) break; put_device(last); last = dev; } put_device(last); return dev; } static int ptp_ocp_devlink_fw_image(struct devlink *devlink, const struct firmware *fw, const u8 **data, size_t *size) { struct ptp_ocp *bp = devlink_priv(devlink); const struct ptp_ocp_firmware_header *hdr; size_t offset, length; u16 crc; hdr = (const struct ptp_ocp_firmware_header *)fw->data; if (memcmp(hdr->magic, OCP_FIRMWARE_MAGIC_HEADER, 4)) { devlink_flash_update_status_notify(devlink, "No firmware header found, cancel firmware upgrade", NULL, 0, 0); return -EINVAL; } if (be16_to_cpu(hdr->pci_vendor_id) != bp->pdev->vendor || be16_to_cpu(hdr->pci_device_id) != bp->pdev->device) { devlink_flash_update_status_notify(devlink, "Firmware image compatibility check failed", NULL, 0, 0); return -EINVAL; } offset = sizeof(*hdr); length = be32_to_cpu(hdr->image_size); if (length != (fw->size - offset)) { devlink_flash_update_status_notify(devlink, "Firmware image size check failed", NULL, 0, 0); return -EINVAL; } crc = crc16(0xffff, &fw->data[offset], length); if (be16_to_cpu(hdr->crc) != crc) { devlink_flash_update_status_notify(devlink, "Firmware image CRC check failed", NULL, 0, 0); return -EINVAL; } *data = &fw->data[offset]; *size = length; return 0; } static int ptp_ocp_devlink_flash(struct devlink *devlink, struct device *dev, const struct firmware *fw) { struct mtd_info *mtd = dev_get_drvdata(dev); struct ptp_ocp *bp = devlink_priv(devlink); size_t off, len, size, resid, wrote; struct erase_info erase; size_t base, blksz; const u8 *data; int err; err = ptp_ocp_devlink_fw_image(devlink, fw, &data, &size); if (err) goto out; off = 0; base = bp->flash_start; blksz = 4096; resid = size; while (resid) { devlink_flash_update_status_notify(devlink, "Flashing", NULL, off, size); len = min_t(size_t, resid, blksz); erase.addr = base + off; erase.len = blksz; err = mtd_erase(mtd, &erase); if (err) goto out; err = mtd_write(mtd, base + off, len, &wrote, data + off); if (err) goto out; off += blksz; resid -= len; } out: return err; } static int ptp_ocp_devlink_flash_update(struct devlink *devlink, struct devlink_flash_update_params *params, struct netlink_ext_ack *extack) { struct ptp_ocp *bp = devlink_priv(devlink); struct device *dev; const char *msg; int err; dev = ptp_ocp_find_flash(bp); if (!dev) { dev_err(&bp->pdev->dev, "Can't find Flash SPI adapter\n"); return -ENODEV; } devlink_flash_update_status_notify(devlink, "Preparing to flash", NULL, 0, 0); err = ptp_ocp_devlink_flash(devlink, dev, params->fw); msg = err ? "Flash error" : "Flash complete"; devlink_flash_update_status_notify(devlink, msg, NULL, 0, 0); put_device(dev); return err; } static int ptp_ocp_devlink_info_get(struct devlink *devlink, struct devlink_info_req *req, struct netlink_ext_ack *extack) { struct ptp_ocp *bp = devlink_priv(devlink); const char *fw_image; char buf[32]; int err; fw_image = bp->fw_loader ? "loader" : "fw"; sprintf(buf, "%d.%d", bp->fw_tag, bp->fw_version); err = devlink_info_version_running_put(req, fw_image, buf); if (err) return err; if (!bp->has_eeprom_data) { ptp_ocp_read_eeprom(bp); if (!bp->has_eeprom_data) return 0; } sprintf(buf, "%pM", bp->serial); err = devlink_info_serial_number_put(req, buf); if (err) return err; err = devlink_info_version_fixed_put(req, DEVLINK_INFO_VERSION_GENERIC_BOARD_ID, bp->board_id); if (err) return err; return 0; } static const struct devlink_ops ptp_ocp_devlink_ops = { .flash_update = ptp_ocp_devlink_flash_update, .info_get = ptp_ocp_devlink_info_get, }; static void __iomem * __ptp_ocp_get_mem(struct ptp_ocp *bp, resource_size_t start, int size) { struct resource res = DEFINE_RES_MEM_NAMED(start, size, "ptp_ocp"); return devm_ioremap_resource(&bp->pdev->dev, &res); } static void __iomem * ptp_ocp_get_mem(struct ptp_ocp *bp, struct ocp_resource *r) { resource_size_t start; start = pci_resource_start(bp->pdev, 0) + r->offset; return __ptp_ocp_get_mem(bp, start, r->size); } static void ptp_ocp_set_irq_resource(struct resource *res, int irq) { struct resource r = DEFINE_RES_IRQ(irq); *res = r; } static void ptp_ocp_set_mem_resource(struct resource *res, resource_size_t start, int size) { struct resource r = DEFINE_RES_MEM(start, size); *res = r; } static int ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r) { struct ptp_ocp_flash_info *info; struct pci_dev *pdev = bp->pdev; struct platform_device *p; struct resource res[2]; resource_size_t start; int id; start = pci_resource_start(pdev, 0) + r->offset; ptp_ocp_set_mem_resource(&res[0], start, r->size); ptp_ocp_set_irq_resource(&res[1], pci_irq_vector(pdev, r->irq_vec)); info = r->extra; id = pci_dev_id(pdev) << 1; id += info->pci_offset; p = platform_device_register_resndata(&pdev->dev, info->name, id, res, 2, info->data, info->data_size); if (IS_ERR(p)) return PTR_ERR(p); bp_assign_entry(bp, r, p); return 0; } static struct platform_device * ptp_ocp_i2c_bus(struct pci_dev *pdev, struct ocp_resource *r, int id) { struct ptp_ocp_i2c_info *info; struct resource res[2]; resource_size_t start; info = r->extra; start = pci_resource_start(pdev, 0) + r->offset; ptp_ocp_set_mem_resource(&res[0], start, r->size); ptp_ocp_set_irq_resource(&res[1], pci_irq_vector(pdev, r->irq_vec)); return platform_device_register_resndata(&pdev->dev, info->name, id, res, 2, info->data, info->data_size); } static int ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r) { struct pci_dev *pdev = bp->pdev; struct ptp_ocp_i2c_info *info; struct platform_device *p; struct clk_hw *clk; char buf[32]; int id; info = r->extra; id = pci_dev_id(bp->pdev); sprintf(buf, "AXI.%d", id); clk = clk_hw_register_fixed_rate(&pdev->dev, buf, NULL, 0, info->fixed_rate); if (IS_ERR(clk)) return PTR_ERR(clk); bp->i2c_clk = clk; sprintf(buf, "%s.%d", info->name, id); devm_clk_hw_register_clkdev(&pdev->dev, clk, NULL, buf); p = ptp_ocp_i2c_bus(bp->pdev, r, id); if (IS_ERR(p)) return PTR_ERR(p); bp_assign_entry(bp, r, p); return 0; } /* The expectation is that this is triggered only on error. */ static irqreturn_t ptp_ocp_signal_irq(int irq, void *priv) { struct ptp_ocp_ext_src *ext = priv; struct signal_reg __iomem *reg = ext->mem; struct ptp_ocp *bp = ext->bp; u32 enable, status; int gen; gen = ext->info->index - 1; enable = ioread32(&reg->enable); status = ioread32(&reg->status); /* disable generator on error */ if (status || !enable) { iowrite32(0, &reg->intr_mask); iowrite32(0, &reg->enable); bp->signal[gen].running = false; } iowrite32(0, &reg->intr); /* ack interrupt */ return IRQ_HANDLED; } static int ptp_ocp_signal_set(struct ptp_ocp *bp, int gen, struct ptp_ocp_signal *s) { struct ptp_system_timestamp sts; struct timespec64 ts; ktime_t start_ns; int err; if (!s->period) return 0; if (!s->pulse) s->pulse = ktime_divns(s->period * s->duty, 100); err = ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts); if (err) return err; start_ns = ktime_set(ts.tv_sec, ts.tv_nsec) + NSEC_PER_MSEC; if (!s->start) { /* roundup() does not work on 32-bit systems */ s->start = DIV64_U64_ROUND_UP(start_ns, s->period); s->start = ktime_add(s->start, s->phase); } if (s->duty < 1 || s->duty > 99) return -EINVAL; if (s->pulse < 1 || s->pulse > s->period) return -EINVAL; if (s->start < start_ns) return -EINVAL; bp->signal[gen] = *s; return 0; } static int ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen, struct ptp_perout_request *req) { struct ptp_ocp_signal s = { }; s.polarity = bp->signal[gen].polarity; s.period = ktime_set(req->period.sec, req->period.nsec); if (!s.period) return 0; if (req->flags & PTP_PEROUT_DUTY_CYCLE) { s.pulse = ktime_set(req->on.sec, req->on.nsec); s.duty = ktime_divns(s.pulse * 100, s.period); } if (req->flags & PTP_PEROUT_PHASE) s.phase = ktime_set(req->phase.sec, req->phase.nsec); else s.start = ktime_set(req->start.sec, req->start.nsec); return ptp_ocp_signal_set(bp, gen, &s); } static int ptp_ocp_signal_enable(void *priv, u32 req, bool enable) { struct ptp_ocp_ext_src *ext = priv; struct signal_reg __iomem *reg = ext->mem; struct ptp_ocp *bp = ext->bp; struct timespec64 ts; int gen; gen = ext->info->index - 1; iowrite32(0, &reg->intr_mask); iowrite32(0, &reg->enable); bp->signal[gen].running = false; if (!enable) return 0; ts = ktime_to_timespec64(bp->signal[gen].start); iowrite32(ts.tv_sec, &reg->start_sec); iowrite32(ts.tv_nsec, &reg->start_ns); ts = ktime_to_timespec64(bp->signal[gen].period); iowrite32(ts.tv_sec, &reg->period_sec); iowrite32(ts.tv_nsec, &reg->period_ns); ts = ktime_to_timespec64(bp->signal[gen].pulse); iowrite32(ts.tv_sec, &reg->pulse_sec); iowrite32(ts.tv_nsec, &reg->pulse_ns); iowrite32(bp->signal[gen].polarity, &reg->polarity); iowrite32(0, &reg->repeat_count); iowrite32(0, &reg->intr); /* clear interrupt state */ iowrite32(1, &reg->intr_mask); /* enable interrupt */ iowrite32(3, &reg->enable); /* valid & enable */ bp->signal[gen].running = true; return 0; } static irqreturn_t ptp_ocp_ts_irq(int irq, void *priv) { struct ptp_ocp_ext_src *ext = priv; struct ts_reg __iomem *reg = ext->mem; struct ptp_clock_event ev; u32 sec, nsec; if (ext == ext->bp->pps) { if (ext->bp->pps_req_map & OCP_REQ_PPS) { ev.type = PTP_CLOCK_PPS; ptp_clock_event(ext->bp->ptp, &ev); } if ((ext->bp->pps_req_map & ~OCP_REQ_PPS) == 0) goto out; } /* XXX should fix API - this converts s/ns -> ts -> s/ns */ sec = ioread32(&reg->time_sec); nsec = ioread32(&reg->time_ns); ev.type = PTP_CLOCK_EXTTS; ev.index = ext->info->index; ev.timestamp = sec * NSEC_PER_SEC + nsec; ptp_clock_event(ext->bp->ptp, &ev); out: iowrite32(1, &reg->intr); /* write 1 to ack */ return IRQ_HANDLED; } static int ptp_ocp_ts_enable(void *priv, u32 req, bool enable) { struct ptp_ocp_ext_src *ext = priv; struct ts_reg __iomem *reg = ext->mem; struct ptp_ocp *bp = ext->bp; if (ext == bp->pps) { u32 old_map = bp->pps_req_map; if (enable) bp->pps_req_map |= req; else bp->pps_req_map &= ~req; /* if no state change, just return */ if ((!!old_map ^ !!bp->pps_req_map) == 0) return 0; } if (enable) { iowrite32(1, &reg->enable); iowrite32(1, &reg->intr_mask); iowrite32(1, &reg->intr); } else { iowrite32(0, &reg->intr_mask); iowrite32(0, &reg->enable); } return 0; } static void ptp_ocp_unregister_ext(struct ptp_ocp_ext_src *ext) { ext->info->enable(ext, ~0, false); pci_free_irq(ext->bp->pdev, ext->irq_vec, ext); kfree(ext); } static int ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r) { struct pci_dev *pdev = bp->pdev; struct ptp_ocp_ext_src *ext; int err; ext = kzalloc(sizeof(*ext), GFP_KERNEL); if (!ext) return -ENOMEM; ext->mem = ptp_ocp_get_mem(bp, r); if (IS_ERR(ext->mem)) { err = PTR_ERR(ext->mem); goto out; } ext->bp = bp; ext->info = r->extra; ext->irq_vec = r->irq_vec; err = pci_request_irq(pdev, r->irq_vec, ext->info->irq_fcn, NULL, ext, "ocp%d.%s", bp->id, r->name); if (err) { dev_err(&pdev->dev, "Could not get irq %d\n", r->irq_vec); goto out; } bp_assign_entry(bp, r, ext); return 0; out: kfree(ext); return err; } static int ptp_ocp_serial_line(struct ptp_ocp *bp, struct ocp_resource *r) { struct pci_dev *pdev = bp->pdev; struct uart_8250_port uart; /* Setting UPF_IOREMAP and leaving port.membase unspecified lets * the serial port device claim and release the pci resource. */ memset(&uart, 0, sizeof(uart)); uart.port.dev = &pdev->dev; uart.port.iotype = UPIO_MEM; uart.port.regshift = 2; uart.port.mapbase = pci_resource_start(pdev, 0) + r->offset; uart.port.irq = pci_irq_vector(pdev, r->irq_vec); uart.port.uartclk = 50000000; uart.port.flags = UPF_FIXED_TYPE | UPF_IOREMAP | UPF_NO_THRE_TEST; uart.port.type = PORT_16550A; return serial8250_register_8250_port(&uart); } static int ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r) { struct ptp_ocp_serial_port *p = (struct ptp_ocp_serial_port *)r->extra; struct ptp_ocp_serial_port port = {}; port.line = ptp_ocp_serial_line(bp, r); if (port.line < 0) return port.line; if (p) port.baud = p->baud; bp_assign_entry(bp, r, port); return 0; } static int ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r) { void __iomem *mem; mem = ptp_ocp_get_mem(bp, r); if (IS_ERR(mem)) return PTR_ERR(mem); bp_assign_entry(bp, r, mem); return 0; } static void ptp_ocp_nmea_out_init(struct ptp_ocp *bp) { if (!bp->nmea_out) return; iowrite32(0, &bp->nmea_out->ctrl); /* disable */ iowrite32(7, &bp->nmea_out->uart_baud); /* 115200 */ iowrite32(1, &bp->nmea_out->ctrl); /* enable */ } static void _ptp_ocp_signal_init(struct ptp_ocp_signal *s, struct signal_reg __iomem *reg) { u32 val; iowrite32(0, &reg->enable); /* disable */ val = ioread32(&reg->polarity); s->polarity = val ? true : false; s->duty = 50; } static void ptp_ocp_signal_init(struct ptp_ocp *bp) { int i; for (i = 0; i < 4; i++) if (bp->signal_out[i]) _ptp_ocp_signal_init(&bp->signal[i], bp->signal_out[i]->mem); } static void ptp_ocp_attr_group_del(struct ptp_ocp *bp) { sysfs_remove_groups(&bp->dev.kobj, bp->attr_group); kfree(bp->attr_group); } static int ptp_ocp_attr_group_add(struct ptp_ocp *bp, const struct ocp_attr_group *attr_tbl) { int count, i; int err; count = 0; for (i = 0; attr_tbl[i].cap; i++) if (attr_tbl[i].cap & bp->fw_cap) count++; bp->attr_group = kcalloc(count + 1, sizeof(struct attribute_group *), GFP_KERNEL); if (!bp->attr_group) return -ENOMEM; count = 0; for (i = 0; attr_tbl[i].cap; i++) if (attr_tbl[i].cap & bp->fw_cap) bp->attr_group[count++] = attr_tbl[i].group; err = sysfs_create_groups(&bp->dev.kobj, bp->attr_group); if (err) bp->attr_group[0] = NULL; return err; } static void ptp_ocp_enable_fpga(u32 __iomem *reg, u32 bit, bool enable) { u32 ctrl; bool on; ctrl = ioread32(reg); on = ctrl & bit; if (on ^ enable) { ctrl &= ~bit; ctrl |= enable ? bit : 0; iowrite32(ctrl, reg); } } static void ptp_ocp_irig_out(struct ptp_ocp *bp, bool enable) { return ptp_ocp_enable_fpga(&bp->irig_out->ctrl, IRIG_M_CTRL_ENABLE, enable); } static void ptp_ocp_irig_in(struct ptp_ocp *bp, bool enable) { return ptp_ocp_enable_fpga(&bp->irig_in->ctrl, IRIG_S_CTRL_ENABLE, enable); } static void ptp_ocp_dcf_out(struct ptp_ocp *bp, bool enable) { return ptp_ocp_enable_fpga(&bp->dcf_out->ctrl, DCF_M_CTRL_ENABLE, enable); } static void ptp_ocp_dcf_in(struct ptp_ocp *bp, bool enable) { return ptp_ocp_enable_fpga(&bp->dcf_in->ctrl, DCF_S_CTRL_ENABLE, enable); } static void __handle_signal_outputs(struct ptp_ocp *bp, u32 val) { ptp_ocp_irig_out(bp, val & 0x00100010); ptp_ocp_dcf_out(bp, val & 0x00200020); } static void __handle_signal_inputs(struct ptp_ocp *bp, u32 val) { ptp_ocp_irig_in(bp, val & 0x00100010); ptp_ocp_dcf_in(bp, val & 0x00200020); } static u32 ptp_ocp_sma_fb_get(struct ptp_ocp *bp, int sma_nr) { u32 __iomem *gpio; u32 shift; if (bp->sma[sma_nr - 1].fixed_fcn) return (sma_nr - 1) & 1; if (bp->sma[sma_nr - 1].mode == SMA_MODE_IN) gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1; else gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2; shift = sma_nr & 1 ? 0 : 16; return (ioread32(gpio) >> shift) & 0xffff; } static int ptp_ocp_sma_fb_set_output(struct ptp_ocp *bp, int sma_nr, u32 val) { u32 reg, mask, shift; unsigned long flags; u32 __iomem *gpio; gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2; shift = sma_nr & 1 ? 0 : 16; mask = 0xffff << (16 - shift); spin_lock_irqsave(&bp->lock, flags); reg = ioread32(gpio); reg = (reg & mask) | (val << shift); __handle_signal_outputs(bp, reg); iowrite32(reg, gpio); spin_unlock_irqrestore(&bp->lock, flags); return 0; } static int ptp_ocp_sma_fb_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val) { u32 reg, mask, shift; unsigned long flags; u32 __iomem *gpio; gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1; shift = sma_nr & 1 ? 0 : 16; mask = 0xffff << (16 - shift); spin_lock_irqsave(&bp->lock, flags); reg = ioread32(gpio); reg = (reg & mask) | (val << shift); __handle_signal_inputs(bp, reg); iowrite32(reg, gpio); spin_unlock_irqrestore(&bp->lock, flags); return 0; } static void ptp_ocp_sma_fb_init(struct ptp_ocp *bp) { u32 reg; int i; /* defaults */ bp->sma[0].mode = SMA_MODE_IN; bp->sma[1].mode = SMA_MODE_IN; bp->sma[2].mode = SMA_MODE_OUT; bp->sma[3].mode = SMA_MODE_OUT; for (i = 0; i < 4; i++) bp->sma[i].default_fcn = i & 1; /* If no SMA1 map, the pin functions and directions are fixed. */ if (!bp->sma_map1) { for (i = 0; i < 4; i++) { bp->sma[i].fixed_fcn = true; bp->sma[i].fixed_dir = true; } return; } /* If SMA2 GPIO output map is all 1, it is not present. * This indicates the firmware has fixed direction SMA pins. */ reg = ioread32(&bp->sma_map2->gpio2); if (reg == 0xffffffff) { for (i = 0; i < 4; i++) bp->sma[i].fixed_dir = true; } else { reg = ioread32(&bp->sma_map1->gpio1); bp->sma[0].mode = reg & BIT(15) ? SMA_MODE_IN : SMA_MODE_OUT; bp->sma[1].mode = reg & BIT(31) ? SMA_MODE_IN : SMA_MODE_OUT; reg = ioread32(&bp->sma_map1->gpio2); bp->sma[2].mode = reg & BIT(15) ? SMA_MODE_OUT : SMA_MODE_IN; bp->sma[3].mode = reg & BIT(31) ? SMA_MODE_OUT : SMA_MODE_IN; } } static const struct ocp_sma_op ocp_fb_sma_op = { .tbl = { ptp_ocp_sma_in, ptp_ocp_sma_out }, .init = ptp_ocp_sma_fb_init, .get = ptp_ocp_sma_fb_get, .set_inputs = ptp_ocp_sma_fb_set_inputs, .set_output = ptp_ocp_sma_fb_set_output, }; static int ptp_ocp_fb_set_pins(struct ptp_ocp *bp) { struct ptp_pin_desc *config; int i; config = kcalloc(4, sizeof(*config), GFP_KERNEL); if (!config) return -ENOMEM; for (i = 0; i < 4; i++) { sprintf(config[i].name, "sma%d", i + 1); config[i].index = i; } bp->ptp_info.n_pins = 4; bp->ptp_info.pin_config = config; return 0; } static void ptp_ocp_fb_set_version(struct ptp_ocp *bp) { u64 cap = OCP_CAP_BASIC; u32 version; version = ioread32(&bp->image->version); /* if lower 16 bits are empty, this is the fw loader. */ if ((version & 0xffff) == 0) { version = version >> 16; bp->fw_loader = true; } bp->fw_tag = version >> 15; bp->fw_version = version & 0x7fff; if (bp->fw_tag) { /* FPGA firmware */ if (version >= 5) cap |= OCP_CAP_SIGNAL | OCP_CAP_FREQ; } else { /* SOM firmware */ if (version >= 19) cap |= OCP_CAP_SIGNAL; if (version >= 20) cap |= OCP_CAP_FREQ; } bp->fw_cap = cap; } /* FB specific board initializers; last "resource" registered. */ static int ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r) { int err; bp->flash_start = 1024 * 4096; bp->eeprom_map = fb_eeprom_map; bp->fw_version = ioread32(&bp->image->version); bp->sma_op = &ocp_fb_sma_op; ptp_ocp_fb_set_version(bp); ptp_ocp_tod_init(bp); ptp_ocp_nmea_out_init(bp); ptp_ocp_sma_init(bp); ptp_ocp_signal_init(bp); err = ptp_ocp_attr_group_add(bp, fb_timecard_groups); if (err) return err; err = ptp_ocp_fb_set_pins(bp); if (err) return err; return ptp_ocp_init_clock(bp); } static bool ptp_ocp_allow_irq(struct ptp_ocp *bp, struct ocp_resource *r) { bool allow = !r->irq_vec || r->irq_vec < bp->n_irqs; if (!allow) dev_err(&bp->pdev->dev, "irq %d out of range, skipping %s\n", r->irq_vec, r->name); return allow; } static int ptp_ocp_register_resources(struct ptp_ocp *bp, kernel_ulong_t driver_data) { struct ocp_resource *r, *table; int err = 0; table = (struct ocp_resource *)driver_data; for (r = table; r->setup; r++) { if (!ptp_ocp_allow_irq(bp, r)) continue; err = r->setup(bp, r); if (err) { dev_err(&bp->pdev->dev, "Could not register %s: err %d\n", r->name, err); break; } } return err; } static void ptp_ocp_art_sma_init(struct ptp_ocp *bp) { u32 reg; int i; /* defaults */ bp->sma[0].mode = SMA_MODE_IN; bp->sma[1].mode = SMA_MODE_IN; bp->sma[2].mode = SMA_MODE_OUT; bp->sma[3].mode = SMA_MODE_OUT; bp->sma[0].default_fcn = 0x08; /* IN: 10Mhz */ bp->sma[1].default_fcn = 0x01; /* IN: PPS1 */ bp->sma[2].default_fcn = 0x10; /* OUT: 10Mhz */ bp->sma[3].default_fcn = 0x02; /* OUT: PHC */ /* If no SMA map, the pin functions and directions are fixed. */ if (!bp->art_sma) { for (i = 0; i < 4; i++) { bp->sma[i].fixed_fcn = true; bp->sma[i].fixed_dir = true; } return; } for (i = 0; i < 4; i++) { reg = ioread32(&bp->art_sma->map[i].gpio); switch (reg & 0xff) { case 0: bp->sma[i].fixed_fcn = true; bp->sma[i].fixed_dir = true; break; case 1: case 8: bp->sma[i].mode = SMA_MODE_IN; break; default: bp->sma[i].mode = SMA_MODE_OUT; break; } } } static u32 ptp_ocp_art_sma_get(struct ptp_ocp *bp, int sma_nr) { if (bp->sma[sma_nr - 1].fixed_fcn) return bp->sma[sma_nr - 1].default_fcn; return ioread32(&bp->art_sma->map[sma_nr - 1].gpio) & 0xff; } /* note: store 0 is considered invalid. */ static int ptp_ocp_art_sma_set(struct ptp_ocp *bp, int sma_nr, u32 val) { unsigned long flags; u32 __iomem *gpio; int err = 0; u32 reg; val &= SMA_SELECT_MASK; if (hweight32(val) > 1) return -EINVAL; gpio = &bp->art_sma->map[sma_nr - 1].gpio; spin_lock_irqsave(&bp->lock, flags); reg = ioread32(gpio); if (((reg >> 16) & val) == 0) { err = -EOPNOTSUPP; } else { reg = (reg & 0xff00) | (val & 0xff); iowrite32(reg, gpio); } spin_unlock_irqrestore(&bp->lock, flags); return err; } static const struct ocp_sma_op ocp_art_sma_op = { .tbl = { ptp_ocp_art_sma_in, ptp_ocp_art_sma_out }, .init = ptp_ocp_art_sma_init, .get = ptp_ocp_art_sma_get, .set_inputs = ptp_ocp_art_sma_set, .set_output = ptp_ocp_art_sma_set, }; /* ART specific board initializers; last "resource" registered. */ static int ptp_ocp_art_board_init(struct ptp_ocp *bp, struct ocp_resource *r) { int err; bp->flash_start = 0x1000000; bp->eeprom_map = art_eeprom_map; bp->fw_cap = OCP_CAP_BASIC; bp->fw_version = ioread32(&bp->reg->version); bp->fw_tag = 2; bp->sma_op = &ocp_art_sma_op; /* Enable MAC serial port during initialisation */ iowrite32(1, &bp->board_config->mro50_serial_activate); ptp_ocp_sma_init(bp); err = ptp_ocp_attr_group_add(bp, art_timecard_groups); if (err) return err; return ptp_ocp_init_clock(bp); } static ssize_t ptp_ocp_show_output(const struct ocp_selector *tbl, u32 val, char *buf, int def_val) { const char *name; ssize_t count; count = sysfs_emit(buf, "OUT: "); name = ptp_ocp_select_name_from_val(tbl, val); if (!name) name = ptp_ocp_select_name_from_val(tbl, def_val); count += sysfs_emit_at(buf, count, "%s\n", name); return count; } static ssize_t ptp_ocp_show_inputs(const struct ocp_selector *tbl, u32 val, char *buf, int def_val) { const char *name; ssize_t count; int i; count = sysfs_emit(buf, "IN: "); for (i = 0; tbl[i].name; i++) { if (val & tbl[i].value) { name = tbl[i].name; count += sysfs_emit_at(buf, count, "%s ", name); } } if (!val && def_val >= 0) { name = ptp_ocp_select_name_from_val(tbl, def_val); count += sysfs_emit_at(buf, count, "%s ", name); } if (count) count--; count += sysfs_emit_at(buf, count, "\n"); return count; } static int sma_parse_inputs(const struct ocp_selector * const tbl[], const char *buf, enum ptp_ocp_sma_mode *mode) { int idx, count, dir; char **argv; int ret; argv = argv_split(GFP_KERNEL, buf, &count); if (!argv) return -ENOMEM; ret = -EINVAL; if (!count) goto out; idx = 0; dir = *mode == SMA_MODE_IN ? 0 : 1; if (!strcasecmp("IN:", argv[0])) { dir = 0; idx++; } if (!strcasecmp("OUT:", argv[0])) { dir = 1; idx++; } *mode = dir == 0 ? SMA_MODE_IN : SMA_MODE_OUT; ret = 0; for (; idx < count; idx++) ret |= ptp_ocp_select_val_from_name(tbl[dir], argv[idx]); if (ret < 0) ret = -EINVAL; out: argv_free(argv); return ret; } static ssize_t ptp_ocp_sma_show(struct ptp_ocp *bp, int sma_nr, char *buf, int default_in_val, int default_out_val) { struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1]; const struct ocp_selector * const *tbl; u32 val; tbl = bp->sma_op->tbl; val = ptp_ocp_sma_get(bp, sma_nr) & SMA_SELECT_MASK; if (sma->mode == SMA_MODE_IN) { if (sma->disabled) val = SMA_DISABLE; return ptp_ocp_show_inputs(tbl[0], val, buf, default_in_val); } return ptp_ocp_show_output(tbl[1], val, buf, default_out_val); } static ssize_t sma1_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ptp_ocp *bp = dev_get_drvdata(dev); return ptp_ocp_sma_show(bp, 1, buf, 0, 1); } static ssize_t sma2_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ptp_ocp *bp = dev_get_drvdata(dev); return ptp_ocp_sma_show(bp, 2, buf, -1, 1); } static ssize_t sma3_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ptp_ocp *bp = dev_get_drvdata(dev); return ptp_ocp_sma_show(bp, 3, buf, -1, 0); } static ssize_t sma4_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ptp_ocp *bp = dev_get_drvdata(dev); return ptp_ocp_sma_show(bp, 4, buf, -1, 1); } static int ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr) { struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1]; enum ptp_ocp_sma_mode mode; int val; mode = sma->mode; val = sma_parse_inputs(bp->sma_op->tbl, buf, &mode); if (val < 0) return val; if (sma->fixed_dir && (mode != sma->mode || val & SMA_DISABLE)) return -EOPNOTSUPP; if (sma->fixed_fcn) { if (val != sma->default_fcn) return -EOPNOTSUPP; return 0; } sma->disabled = !!(val & SMA_DISABLE); if (mode != sma->mode) { if (mode == SMA_MODE_IN) ptp_ocp_sma_set_output(bp, sma_nr, 0); else ptp_ocp_sma_set_inputs(bp, sma_nr, 0); sma->mode = mode; } if (!sma->fixed_dir) val |= SMA_ENABLE; /* add enable bit */ if (sma->disabled) val = 0; if (mode == SMA_MODE_IN) val = ptp_ocp_sma_set_inputs(bp, sma_nr, val); else val = ptp_ocp_sma_set_output(bp, sma_nr, val); return val; } static ssize_t sma1_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ptp_ocp *bp = dev_get_drvdata(dev); int err; err = ptp_ocp_sma_store(bp, buf, 1); return err ? err : count; } static ssize_t sma2_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ptp_ocp *bp = dev_get_drvdata(dev); int err; err = ptp_ocp_sma_store(bp, buf, 2); return err ? err : count; } static ssize_t sma3_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ptp_ocp *bp = dev_get_drvdata(dev); int err; err = ptp_ocp_sma_store(bp, buf, 3); return err ? err : count; } static ssize_t sma4_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ptp_ocp *bp = dev_get_drvdata(dev); int err; err = ptp_ocp_sma_store(bp, buf, 4); return err ? err : count; } static DEVICE_ATTR_RW(sma1); static DEVICE_ATTR_RW(sma2); static DEVICE_ATTR_RW(sma3); static DEVICE_ATTR_RW(sma4); static ssize_t available_sma_inputs_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ptp_ocp *bp = dev_get_drvdata(dev); return ptp_ocp_select_table_show(bp->sma_op->tbl[0], buf); } static DEVICE_ATTR_RO(available_sma_inputs); static ssize_t available_sma_outputs_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ptp_ocp *bp = dev_get_drvdata(dev); return ptp_ocp_select_table_show(bp->sma_op->tbl[1], buf); } static DEVICE_ATTR_RO(available_sma_outputs); #define EXT_ATTR_RO(_group, _name, _val) \ struct dev_ext_attribute dev_attr_##_group##_val##_##_name = \ { __ATTR_RO(_name), (void *)_val } #define EXT_ATTR_RW(_group, _name, _val) \ struct dev_ext_attribute dev_attr_##_group##_val##_##_name = \ { __ATTR_RW(_name), (void *)_val } #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) /* period [duty [phase [polarity]]] */ static ssize_t signal_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct dev_ext_attribute *ea = to_ext_attr(attr); struct ptp_ocp *bp = dev_get_drvdata(dev); struct ptp_ocp_signal s = { }; int gen = (uintptr_t)ea->var; int argc, err; char **argv; argv = argv_split(GFP_KERNEL, buf, &argc); if (!argv) return -ENOMEM; err = -EINVAL; s.duty = bp->signal[gen].duty; s.phase = bp->signal[gen].phase; s.period = bp->signal[gen].period; s.polarity = bp->signal[gen].polarity; switch (argc) { case 4: argc--; err = kstrtobool(argv[argc], &s.polarity); if (err) goto out; fallthrough; case 3: argc--; err = kstrtou64(argv[argc], 0, &s.phase); if (err) goto out; fallthrough; case 2: argc--; err = kstrtoint(argv[argc], 0, &s.duty); if (err) goto out; fallthrough; case 1: argc--; err = kstrtou64(argv[argc], 0, &s.period); if (err) goto out; break; default: goto out; } err = ptp_ocp_signal_set(bp, gen, &s); if (err) goto out; err = ptp_ocp_signal_enable(bp->signal_out[gen], gen, s.period != 0); out: argv_free(argv); return err ? err : count; } static ssize_t signal_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dev_ext_attribute *ea = to_ext_attr(attr); struct ptp_ocp *bp = dev_get_drvdata(dev); struct ptp_ocp_signal *signal; struct timespec64 ts; ssize_t count; int i; i = (uintptr_t)ea->var; signal = &bp->signal[i]; count = sysfs_emit(buf, "%llu %d %llu %d", signal->period, signal->duty, signal->phase, signal->polarity); ts = ktime_to_timespec64(signal->start); count += sysfs_emit_at(buf, count, " %ptT TAI\n", &ts); return count; } static EXT_ATTR_RW(signal, signal, 0); static EXT_ATTR_RW(signal, signal, 1); static EXT_ATTR_RW(signal, signal, 2); static EXT_ATTR_RW(signal, signal, 3); static ssize_t duty_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dev_ext_attribute *ea = to_ext_attr(attr); struct ptp_ocp *bp = dev_get_drvdata(dev); int i = (uintptr_t)ea->var; return sysfs_emit(buf, "%d\n", bp->signal[i].duty); } static EXT_ATTR_RO(signal, duty, 0); static EXT_ATTR_RO(signal, duty, 1); static EXT_ATTR_RO(signal, duty, 2); static EXT_ATTR_RO(signal, duty, 3); static ssize_t period_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dev_ext_attribute *ea = to_ext_attr(attr); struct ptp_ocp *bp = dev_get_drvdata(dev); int i = (uintptr_t)ea->var; return sysfs_emit(buf, "%llu\n", bp->signal[i].period); } static EXT_ATTR_RO(signal, period, 0); static EXT_ATTR_RO(signal, period, 1); static EXT_ATTR_RO(signal, period, 2); static EXT_ATTR_RO(signal, period, 3); static ssize_t phase_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dev_ext_attribute *ea = to_ext_attr(attr); struct ptp_ocp *bp = dev_get_drvdata(dev); int i = (uintptr_t)ea->var; return sysfs_emit(buf, "%llu\n", bp->signal[i].phase); } static EXT_ATTR_RO(signal, phase, 0); static EXT_ATTR_RO(signal, phase, 1); static EXT_ATTR_RO(signal, phase, 2); static EXT_ATTR_RO(signal, phase, 3); static ssize_t polarity_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dev_ext_attribute *ea = to_ext_attr(attr); struct ptp_ocp *bp = dev_get_drvdata(dev); int i = (uintptr_t)ea->var; return sysfs_emit(buf, "%d\n", bp->signal[i].polarity); } static EXT_ATTR_RO(signal, polarity, 0); static EXT_ATTR_RO(signal, polarity, 1); static EXT_ATTR_RO(signal, polarity, 2); static EXT_ATTR_RO(signal, polarity, 3); static ssize_t running_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dev_ext_attribute *ea = to_ext_attr(attr); struct ptp_ocp *bp = dev_get_drvdata(dev); int i = (uintptr_t)ea->var; return sysfs_emit(buf, "%d\n", bp->signal[i].running); } static EXT_ATTR_RO(signal, running, 0); static EXT_ATTR_RO(signal, running, 1); static EXT_ATTR_RO(signal, running, 2); static EXT_ATTR_RO(signal, running, 3); static ssize_t start_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dev_ext_attribute *ea = to_ext_attr(attr); struct ptp_ocp *bp = dev_get_drvdata(dev); int i = (uintptr_t)ea->var; struct timespec64 ts; ts = ktime_to_timespec64(bp->signal[i].start); return sysfs_emit(buf, "%llu.%lu\n", ts.tv_sec, ts.tv_nsec); } static EXT_ATTR_RO(signal, start, 0); static EXT_ATTR_RO(signal, start, 1); static EXT_ATTR_RO(signal, start, 2); static EXT_ATTR_RO(signal, start, 3); static ssize_t seconds_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct dev_ext_attribute *ea = to_ext_attr(attr); struct ptp_ocp *bp = dev_get_drvdata(dev); int idx = (uintptr_t)ea->var; u32 val; int err; err = kstrtou32(buf, 0, &val); if (err) return err; if (val > 0xff) return -EINVAL; if (val) val = (val << 8) | 0x1; iowrite32(val, &bp->freq_in[idx]->ctrl); return count; } static ssize_t seconds_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dev_ext_attribute *ea = to_ext_attr(attr); struct ptp_ocp *bp = dev_get_drvdata(dev); int idx = (uintptr_t)ea->var; u32 val; val = ioread32(&bp->freq_in[idx]->ctrl); if (val & 1) val = (val >> 8) & 0xff; else val = 0; return sysfs_emit(buf, "%u\n", val); } static EXT_ATTR_RW(freq, seconds, 0); static EXT_ATTR_RW(freq, seconds, 1); static EXT_ATTR_RW(freq, seconds, 2); static EXT_ATTR_RW(freq, seconds, 3); static ssize_t frequency_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dev_ext_attribute *ea = to_ext_attr(attr); struct ptp_ocp *bp = dev_get_drvdata(dev); int idx = (uintptr_t)ea->var; u32 val; val = ioread32(&bp->freq_in[idx]->status); if (val & FREQ_STATUS_ERROR) return sysfs_emit(buf, "error\n"); if (val & FREQ_STATUS_OVERRUN) return sysfs_emit(buf, "overrun\n"); if (val & FREQ_STATUS_VALID) return sysfs_emit(buf, "%lu\n", val & FREQ_STATUS_MASK); return 0; } static EXT_ATTR_RO(freq, frequency, 0); static EXT_ATTR_RO(freq, frequency, 1); static EXT_ATTR_RO(freq, frequency, 2); static EXT_ATTR_RO(freq, frequency, 3); static ssize_t serialnum_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ptp_ocp *bp = dev_get_drvdata(dev); if (!bp->has_eeprom_data) ptp_ocp_read_eeprom(bp); return sysfs_emit(buf, "%pM\n", bp->serial); } static DEVICE_ATTR_RO(serialnum); static ssize_t gnss_sync_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ptp_ocp *bp = dev_get_drvdata(dev); ssize_t ret; if (bp->gnss_lost) ret = sysfs_emit(buf, "LOST @ %ptT\n", &bp->gnss_lost); else ret = sysfs_emit(buf, "SYNC\n"); return ret; } static DEVICE_ATTR_RO(gnss_sync); static ssize_t utc_tai_offset_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ptp_ocp *bp = dev_get_drvdata(dev); return sysfs_emit(buf, "%d\n", bp->utc_tai_offset); } static ssize_t utc_tai_offset_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ptp_ocp *bp = dev_get_drvdata(dev); int err; u32 val; err = kstrtou32(buf, 0, &val); if (err) return err; ptp_ocp_utc_distribute(bp, val); return count; } static DEVICE_ATTR_RW(utc_tai_offset); static ssize_t ts_window_adjust_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ptp_ocp *bp = dev_get_drvdata(dev); return sysfs_emit(buf, "%d\n", bp->ts_window_adjust); } static ssize_t ts_window_adjust_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ptp_ocp *bp = dev_get_drvdata(dev); int err; u32 val; err = kstrtou32(buf, 0, &val); if (err) return err; bp->ts_window_adjust = val; return count; } static DEVICE_ATTR_RW(ts_window_adjust); static ssize_t irig_b_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ptp_ocp *bp = dev_get_drvdata(dev); u32 val; val = ioread32(&bp->irig_out->ctrl); val = (val >> 16) & 0x07; return sysfs_emit(buf, "%d\n", val); } static ssize_t irig_b_mode_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ptp_ocp *bp = dev_get_drvdata(dev); unsigned long flags; int err; u32 reg; u8 val; err = kstrtou8(buf, 0, &val); if (err) return err; if (val > 7) return -EINVAL; reg = ((val & 0x7) << 16); spin_lock_irqsave(&bp->lock, flags); iowrite32(0, &bp->irig_out->ctrl); /* disable */ iowrite32(reg, &bp->irig_out->ctrl); /* change mode */ iowrite32(reg | IRIG_M_CTRL_ENABLE, &bp->irig_out->ctrl); spin_unlock_irqrestore(&bp->lock, flags); return count; } static DEVICE_ATTR_RW(irig_b_mode); static ssize_t clock_source_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ptp_ocp *bp = dev_get_drvdata(dev); const char *p; u32 select; select = ioread32(&bp->reg->select); p = ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16); return sysfs_emit(buf, "%s\n", p); } static ssize_t clock_source_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ptp_ocp *bp = dev_get_drvdata(dev); unsigned long flags; int val; val = ptp_ocp_select_val_from_name(ptp_ocp_clock, buf); if (val < 0) return val; spin_lock_irqsave(&bp->lock, flags); iowrite32(val, &bp->reg->select); spin_unlock_irqrestore(&bp->lock, flags); return count; } static DEVICE_ATTR_RW(clock_source); static ssize_t available_clock_sources_show(struct device *dev, struct device_attribute *attr, char *buf) { return ptp_ocp_select_table_show(ptp_ocp_clock, buf); } static DEVICE_ATTR_RO(available_clock_sources); static ssize_t clock_status_drift_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ptp_ocp *bp = dev_get_drvdata(dev); u32 val; int res; val = ioread32(&bp->reg->status_drift); res = (val & ~INT_MAX) ? -1 : 1; res *= (val & INT_MAX); return sysfs_emit(buf, "%d\n", res); } static DEVICE_ATTR_RO(clock_status_drift); static ssize_t clock_status_offset_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ptp_ocp *bp = dev_get_drvdata(dev); u32 val; int res; val = ioread32(&bp->reg->status_offset); res = (val & ~INT_MAX) ? -1 : 1; res *= (val & INT_MAX); return sysfs_emit(buf, "%d\n", res); } static DEVICE_ATTR_RO(clock_status_offset); static ssize_t tod_correction_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ptp_ocp *bp = dev_get_drvdata(dev); u32 val; int res; val = ioread32(&bp->tod->adj_sec); res = (val & ~INT_MAX) ? -1 : 1; res *= (val & INT_MAX); return sysfs_emit(buf, "%d\n", res); } static ssize_t tod_correction_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ptp_ocp *bp = dev_get_drvdata(dev); unsigned long flags; int err, res; u32 val = 0; err = kstrtos32(buf, 0, &res); if (err) return err; if (res < 0) { res *= -1; val |= BIT(31); } val |= res; spin_lock_irqsave(&bp->lock, flags); iowrite32(val, &bp->tod->adj_sec); spin_unlock_irqrestore(&bp->lock, flags); return count; } static DEVICE_ATTR_RW(tod_correction); #define _DEVICE_SIGNAL_GROUP_ATTRS(_nr) \ static struct attribute *fb_timecard_signal##_nr##_attrs[] = { \ &dev_attr_signal##_nr##_signal.attr.attr, \ &dev_attr_signal##_nr##_duty.attr.attr, \ &dev_attr_signal##_nr##_phase.attr.attr, \ &dev_attr_signal##_nr##_period.attr.attr, \ &dev_attr_signal##_nr##_polarity.attr.attr, \ &dev_attr_signal##_nr##_running.attr.attr, \ &dev_attr_signal##_nr##_start.attr.attr, \ NULL, \ } #define DEVICE_SIGNAL_GROUP(_name, _nr) \ _DEVICE_SIGNAL_GROUP_ATTRS(_nr); \ static const struct attribute_group \ fb_timecard_signal##_nr##_group = { \ .name = #_name, \ .attrs = fb_timecard_signal##_nr##_attrs, \ } DEVICE_SIGNAL_GROUP(gen1, 0); DEVICE_SIGNAL_GROUP(gen2, 1); DEVICE_SIGNAL_GROUP(gen3, 2); DEVICE_SIGNAL_GROUP(gen4, 3); #define _DEVICE_FREQ_GROUP_ATTRS(_nr) \ static struct attribute *fb_timecard_freq##_nr##_attrs[] = { \ &dev_attr_freq##_nr##_seconds.attr.attr, \ &dev_attr_freq##_nr##_frequency.attr.attr, \ NULL, \ } #define DEVICE_FREQ_GROUP(_name, _nr) \ _DEVICE_FREQ_GROUP_ATTRS(_nr); \ static const struct attribute_group \ fb_timecard_freq##_nr##_group = { \ .name = #_name, \ .attrs = fb_timecard_freq##_nr##_attrs, \ } DEVICE_FREQ_GROUP(freq1, 0); DEVICE_FREQ_GROUP(freq2, 1); DEVICE_FREQ_GROUP(freq3, 2); DEVICE_FREQ_GROUP(freq4, 3); static ssize_t disciplining_config_read(struct file *filp, struct kobject *kobj, struct bin_attribute *bin_attr, char *buf, loff_t off, size_t count) { struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj)); size_t size = OCP_ART_CONFIG_SIZE; struct nvmem_device *nvmem; ssize_t err; nvmem = ptp_ocp_nvmem_device_get(bp, NULL); if (IS_ERR(nvmem)) return PTR_ERR(nvmem); if (off > size) { err = 0; goto out; } if (off + count > size) count = size - off; // the configuration is in the very beginning of the EEPROM err = nvmem_device_read(nvmem, off, count, buf); if (err != count) { err = -EFAULT; goto out; } out: ptp_ocp_nvmem_device_put(&nvmem); return err; } static ssize_t disciplining_config_write(struct file *filp, struct kobject *kobj, struct bin_attribute *bin_attr, char *buf, loff_t off, size_t count) { struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj)); struct nvmem_device *nvmem; ssize_t err; /* Allow write of the whole area only */ if (off || count != OCP_ART_CONFIG_SIZE) return -EFAULT; nvmem = ptp_ocp_nvmem_device_get(bp, NULL); if (IS_ERR(nvmem)) return PTR_ERR(nvmem); err = nvmem_device_write(nvmem, 0x00, count, buf); if (err != count) err = -EFAULT; ptp_ocp_nvmem_device_put(&nvmem); return err; } static BIN_ATTR_RW(disciplining_config, OCP_ART_CONFIG_SIZE); static ssize_t temperature_table_read(struct file *filp, struct kobject *kobj, struct bin_attribute *bin_attr, char *buf, loff_t off, size_t count) { struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj)); size_t size = OCP_ART_TEMP_TABLE_SIZE; struct nvmem_device *nvmem; ssize_t err; nvmem = ptp_ocp_nvmem_device_get(bp, NULL); if (IS_ERR(nvmem)) return PTR_ERR(nvmem); if (off > size) { err = 0; goto out; } if (off + count > size) count = size - off; // the configuration is in the very beginning of the EEPROM err = nvmem_device_read(nvmem, 0x90 + off, count, buf); if (err != count) { err = -EFAULT; goto out; } out: ptp_ocp_nvmem_device_put(&nvmem); return err; } static ssize_t temperature_table_write(struct file *filp, struct kobject *kobj, struct bin_attribute *bin_attr, char *buf, loff_t off, size_t count) { struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj)); struct nvmem_device *nvmem; ssize_t err; /* Allow write of the whole area only */ if (off || count != OCP_ART_TEMP_TABLE_SIZE) return -EFAULT; nvmem = ptp_ocp_nvmem_device_get(bp, NULL); if (IS_ERR(nvmem)) return PTR_ERR(nvmem); err = nvmem_device_write(nvmem, 0x90, count, buf); if (err != count) err = -EFAULT; ptp_ocp_nvmem_device_put(&nvmem); return err; } static BIN_ATTR_RW(temperature_table, OCP_ART_TEMP_TABLE_SIZE); static struct attribute *fb_timecard_attrs[] = { &dev_attr_serialnum.attr, &dev_attr_gnss_sync.attr, &dev_attr_clock_source.attr, &dev_attr_available_clock_sources.attr, &dev_attr_sma1.attr, &dev_attr_sma2.attr, &dev_attr_sma3.attr, &dev_attr_sma4.attr, &dev_attr_available_sma_inputs.attr, &dev_attr_available_sma_outputs.attr, &dev_attr_clock_status_drift.attr, &dev_attr_clock_status_offset.attr, &dev_attr_irig_b_mode.attr, &dev_attr_utc_tai_offset.attr, &dev_attr_ts_window_adjust.attr, &dev_attr_tod_correction.attr, NULL, }; static const struct attribute_group fb_timecard_group = { .attrs = fb_timecard_attrs, }; static const struct ocp_attr_group fb_timecard_groups[] = { { .cap = OCP_CAP_BASIC, .group = &fb_timecard_group }, { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal0_group }, { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal1_group }, { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal2_group }, { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal3_group }, { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq0_group }, { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq1_group }, { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq2_group }, { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq3_group }, { }, }; static struct attribute *art_timecard_attrs[] = { &dev_attr_serialnum.attr, &dev_attr_clock_source.attr, &dev_attr_available_clock_sources.attr, &dev_attr_utc_tai_offset.attr, &dev_attr_ts_window_adjust.attr, &dev_attr_sma1.attr, &dev_attr_sma2.attr, &dev_attr_sma3.attr, &dev_attr_sma4.attr, &dev_attr_available_sma_inputs.attr, &dev_attr_available_sma_outputs.attr, NULL, }; static struct bin_attribute *bin_art_timecard_attrs[] = { &bin_attr_disciplining_config, &bin_attr_temperature_table, NULL, }; static const struct attribute_group art_timecard_group = { .attrs = art_timecard_attrs, .bin_attrs = bin_art_timecard_attrs, }; static const struct ocp_attr_group art_timecard_groups[] = { { .cap = OCP_CAP_BASIC, .group = &art_timecard_group }, { }, }; static void gpio_input_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit, const char *def) { int i; for (i = 0; i < 4; i++) { if (bp->sma[i].mode != SMA_MODE_IN) continue; if (map[i][0] & (1 << bit)) { sprintf(buf, "sma%d", i + 1); return; } } if (!def) def = "----"; strcpy(buf, def); } static void gpio_output_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit) { char *ans = buf; int i; strcpy(ans, "----"); for (i = 0; i < 4; i++) { if (bp->sma[i].mode != SMA_MODE_OUT) continue; if (map[i][1] & (1 << bit)) ans += sprintf(ans, "sma%d ", i + 1); } } static void _signal_summary_show(struct seq_file *s, struct ptp_ocp *bp, int nr) { struct signal_reg __iomem *reg = bp->signal_out[nr]->mem; struct ptp_ocp_signal *signal = &bp->signal[nr]; char label[8]; bool on; u32 val; if (!signal) return; on = signal->running; sprintf(label, "GEN%d", nr + 1); seq_printf(s, "%7s: %s, period:%llu duty:%d%% phase:%llu pol:%d", label, on ? " ON" : "OFF", signal->period, signal->duty, signal->phase, signal->polarity); val = ioread32(&reg->enable); seq_printf(s, " [%x", val); val = ioread32(&reg->status); seq_printf(s, " %x]", val); seq_printf(s, " start:%llu\n", signal->start); } static void _frequency_summary_show(struct seq_file *s, int nr, struct frequency_reg __iomem *reg) { char label[8]; bool on; u32 val; if (!reg) return; sprintf(label, "FREQ%d", nr + 1); val = ioread32(&reg->ctrl); on = val & 1; val = (val >> 8) & 0xff; seq_printf(s, "%7s: %s, sec:%u", label, on ? " ON" : "OFF", val); val = ioread32(&reg->status); if (val & FREQ_STATUS_ERROR) seq_printf(s, ", error"); if (val & FREQ_STATUS_OVERRUN) seq_printf(s, ", overrun"); if (val & FREQ_STATUS_VALID) seq_printf(s, ", freq %lu Hz", val & FREQ_STATUS_MASK); seq_printf(s, " reg:%x\n", val); } static int ptp_ocp_summary_show(struct seq_file *s, void *data) { struct device *dev = s->private; struct ptp_system_timestamp sts; struct ts_reg __iomem *ts_reg; char *buf, *src, *mac_src; struct timespec64 ts; struct ptp_ocp *bp; u16 sma_val[4][2]; u32 ctrl, val; bool on, map; int i; buf = (char *)__get_free_page(GFP_KERNEL); if (!buf) return -ENOMEM; bp = dev_get_drvdata(dev); seq_printf(s, "%7s: /dev/ptp%d\n", "PTP", ptp_clock_index(bp->ptp)); if (bp->gnss_port.line != -1) seq_printf(s, "%7s: /dev/ttyS%d\n", "GNSS1", bp->gnss_port.line); if (bp->gnss2_port.line != -1) seq_printf(s, "%7s: /dev/ttyS%d\n", "GNSS2", bp->gnss2_port.line); if (bp->mac_port.line != -1) seq_printf(s, "%7s: /dev/ttyS%d\n", "MAC", bp->mac_port.line); if (bp->nmea_port.line != -1) seq_printf(s, "%7s: /dev/ttyS%d\n", "NMEA", bp->nmea_port.line); memset(sma_val, 0xff, sizeof(sma_val)); if (bp->sma_map1) { u32 reg; reg = ioread32(&bp->sma_map1->gpio1); sma_val[0][0] = reg & 0xffff; sma_val[1][0] = reg >> 16; reg = ioread32(&bp->sma_map1->gpio2); sma_val[2][1] = reg & 0xffff; sma_val[3][1] = reg >> 16; reg = ioread32(&bp->sma_map2->gpio1); sma_val[2][0] = reg & 0xffff; sma_val[3][0] = reg >> 16; reg = ioread32(&bp->sma_map2->gpio2); sma_val[0][1] = reg & 0xffff; sma_val[1][1] = reg >> 16; } sma1_show(dev, NULL, buf); seq_printf(s, " sma1: %04x,%04x %s", sma_val[0][0], sma_val[0][1], buf); sma2_show(dev, NULL, buf); seq_printf(s, " sma2: %04x,%04x %s", sma_val[1][0], sma_val[1][1], buf); sma3_show(dev, NULL, buf); seq_printf(s, " sma3: %04x,%04x %s", sma_val[2][0], sma_val[2][1], buf); sma4_show(dev, NULL, buf); seq_printf(s, " sma4: %04x,%04x %s", sma_val[3][0], sma_val[3][1], buf); if (bp->ts0) { ts_reg = bp->ts0->mem; on = ioread32(&ts_reg->enable); src = "GNSS1"; seq_printf(s, "%7s: %s, src: %s\n", "TS0", on ? " ON" : "OFF", src); } if (bp->ts1) { ts_reg = bp->ts1->mem; on = ioread32(&ts_reg->enable); gpio_input_map(buf, bp, sma_val, 2, NULL); seq_printf(s, "%7s: %s, src: %s\n", "TS1", on ? " ON" : "OFF", buf); } if (bp->ts2) { ts_reg = bp->ts2->mem; on = ioread32(&ts_reg->enable); gpio_input_map(buf, bp, sma_val, 3, NULL); seq_printf(s, "%7s: %s, src: %s\n", "TS2", on ? " ON" : "OFF", buf); } if (bp->ts3) { ts_reg = bp->ts3->mem; on = ioread32(&ts_reg->enable); gpio_input_map(buf, bp, sma_val, 6, NULL); seq_printf(s, "%7s: %s, src: %s\n", "TS3", on ? " ON" : "OFF", buf); } if (bp->ts4) { ts_reg = bp->ts4->mem; on = ioread32(&ts_reg->enable); gpio_input_map(buf, bp, sma_val, 7, NULL); seq_printf(s, "%7s: %s, src: %s\n", "TS4", on ? " ON" : "OFF", buf); } if (bp->pps) { ts_reg = bp->pps->mem; src = "PHC"; on = ioread32(&ts_reg->enable); map = !!(bp->pps_req_map & OCP_REQ_TIMESTAMP); seq_printf(s, "%7s: %s, src: %s\n", "TS5", on && map ? " ON" : "OFF", src); map = !!(bp->pps_req_map & OCP_REQ_PPS); seq_printf(s, "%7s: %s, src: %s\n", "PPS", on && map ? " ON" : "OFF", src); } if (bp->fw_cap & OCP_CAP_SIGNAL) for (i = 0; i < 4; i++) _signal_summary_show(s, bp, i); if (bp->fw_cap & OCP_CAP_FREQ) for (i = 0; i < 4; i++) _frequency_summary_show(s, i, bp->freq_in[i]); if (bp->irig_out) { ctrl = ioread32(&bp->irig_out->ctrl); on = ctrl & IRIG_M_CTRL_ENABLE; val = ioread32(&bp->irig_out->status); gpio_output_map(buf, bp, sma_val, 4); seq_printf(s, "%7s: %s, error: %d, mode %d, out: %s\n", "IRIG", on ? " ON" : "OFF", val, (ctrl >> 16), buf); } if (bp->irig_in) { on = ioread32(&bp->irig_in->ctrl) & IRIG_S_CTRL_ENABLE; val = ioread32(&bp->irig_in->status); gpio_input_map(buf, bp, sma_val, 4, NULL); seq_printf(s, "%7s: %s, error: %d, src: %s\n", "IRIG in", on ? " ON" : "OFF", val, buf); } if (bp->dcf_out) { on = ioread32(&bp->dcf_out->ctrl) & DCF_M_CTRL_ENABLE; val = ioread32(&bp->dcf_out->status); gpio_output_map(buf, bp, sma_val, 5); seq_printf(s, "%7s: %s, error: %d, out: %s\n", "DCF", on ? " ON" : "OFF", val, buf); } if (bp->dcf_in) { on = ioread32(&bp->dcf_in->ctrl) & DCF_S_CTRL_ENABLE; val = ioread32(&bp->dcf_in->status); gpio_input_map(buf, bp, sma_val, 5, NULL); seq_printf(s, "%7s: %s, error: %d, src: %s\n", "DCF in", on ? " ON" : "OFF", val, buf); } if (bp->nmea_out) { on = ioread32(&bp->nmea_out->ctrl) & 1; val = ioread32(&bp->nmea_out->status); seq_printf(s, "%7s: %s, error: %d\n", "NMEA", on ? " ON" : "OFF", val); } /* compute src for PPS1, used below. */ if (bp->pps_select) { val = ioread32(&bp->pps_select->gpio1); src = &buf[80]; mac_src = "GNSS1"; if (val & 0x01) { gpio_input_map(src, bp, sma_val, 0, NULL); mac_src = src; } else if (val & 0x02) { src = "MAC"; } else if (val & 0x04) { src = "GNSS1"; } else { src = "----"; mac_src = src; } } else { src = "?"; mac_src = src; } seq_printf(s, "MAC PPS1 src: %s\n", mac_src); gpio_input_map(buf, bp, sma_val, 1, "GNSS2"); seq_printf(s, "MAC PPS2 src: %s\n", buf); /* assumes automatic switchover/selection */ val = ioread32(&bp->reg->select); switch (val >> 16) { case 0: sprintf(buf, "----"); break; case 2: sprintf(buf, "IRIG"); break; case 3: sprintf(buf, "%s via PPS1", src); break; case 6: sprintf(buf, "DCF"); break; default: strcpy(buf, "unknown"); break; } val = ioread32(&bp->reg->status); seq_printf(s, "%7s: %s, state: %s\n", "PHC src", buf, val & OCP_STATUS_IN_SYNC ? "sync" : "unsynced"); if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts)) { struct timespec64 sys_ts; s64 pre_ns, post_ns, ns; pre_ns = timespec64_to_ns(&sts.pre_ts); post_ns = timespec64_to_ns(&sts.post_ts); ns = (pre_ns + post_ns) / 2; ns += (s64)bp->utc_tai_offset * NSEC_PER_SEC; sys_ts = ns_to_timespec64(ns); seq_printf(s, "%7s: %lld.%ld == %ptT TAI\n", "PHC", ts.tv_sec, ts.tv_nsec, &ts); seq_printf(s, "%7s: %lld.%ld == %ptT UTC offset %d\n", "SYS", sys_ts.tv_sec, sys_ts.tv_nsec, &sys_ts, bp->utc_tai_offset); seq_printf(s, "%7s: PHC:SYS offset: %lld window: %lld\n", "", timespec64_to_ns(&ts) - ns, post_ns - pre_ns); } free_page((unsigned long)buf); return 0; } DEFINE_SHOW_ATTRIBUTE(ptp_ocp_summary); static int ptp_ocp_tod_status_show(struct seq_file *s, void *data) { struct device *dev = s->private; struct ptp_ocp *bp; u32 val; int idx; bp = dev_get_drvdata(dev); val = ioread32(&bp->tod->ctrl); if (!(val & TOD_CTRL_ENABLE)) { seq_printf(s, "TOD Slave disabled\n"); return 0; } seq_printf(s, "TOD Slave enabled, Control Register 0x%08X\n", val); idx = val & TOD_CTRL_PROTOCOL ? 4 : 0; idx += (val >> 16) & 3; seq_printf(s, "Protocol %s\n", ptp_ocp_tod_proto_name(idx)); idx = (val >> TOD_CTRL_GNSS_SHIFT) & TOD_CTRL_GNSS_MASK; seq_printf(s, "GNSS %s\n", ptp_ocp_tod_gnss_name(idx)); val = ioread32(&bp->tod->version); seq_printf(s, "TOD Version %d.%d.%d\n", val >> 24, (val >> 16) & 0xff, val & 0xffff); val = ioread32(&bp->tod->status); seq_printf(s, "Status register: 0x%08X\n", val); val = ioread32(&bp->tod->adj_sec); idx = (val & ~INT_MAX) ? -1 : 1; idx *= (val & INT_MAX); seq_printf(s, "Correction seconds: %d\n", idx); val = ioread32(&bp->tod->utc_status); seq_printf(s, "UTC status register: 0x%08X\n", val); seq_printf(s, "UTC offset: %ld valid:%d\n", val & TOD_STATUS_UTC_MASK, val & TOD_STATUS_UTC_VALID ? 1 : 0); seq_printf(s, "Leap second info valid:%d, Leap second announce %d\n", val & TOD_STATUS_LEAP_VALID ? 1 : 0, val & TOD_STATUS_LEAP_ANNOUNCE ? 1 : 0); val = ioread32(&bp->tod->leap); seq_printf(s, "Time to next leap second (in sec): %d\n", (s32) val); return 0; } DEFINE_SHOW_ATTRIBUTE(ptp_ocp_tod_status); static struct dentry *ptp_ocp_debugfs_root; static void ptp_ocp_debugfs_add_device(struct ptp_ocp *bp) { struct dentry *d; d = debugfs_create_dir(dev_name(&bp->dev), ptp_ocp_debugfs_root); bp->debug_root = d; debugfs_create_file("summary", 0444, bp->debug_root, &bp->dev, &ptp_ocp_summary_fops); if (bp->tod) debugfs_create_file("tod_status", 0444, bp->debug_root, &bp->dev, &ptp_ocp_tod_status_fops); } static void ptp_ocp_debugfs_remove_device(struct ptp_ocp *bp) { debugfs_remove_recursive(bp->debug_root); } static void ptp_ocp_debugfs_init(void) { ptp_ocp_debugfs_root = debugfs_create_dir("timecard", NULL); } static void ptp_ocp_debugfs_fini(void) { debugfs_remove_recursive(ptp_ocp_debugfs_root); } static void ptp_ocp_dev_release(struct device *dev) { struct ptp_ocp *bp = dev_get_drvdata(dev); mutex_lock(&ptp_ocp_lock); idr_remove(&ptp_ocp_idr, bp->id); mutex_unlock(&ptp_ocp_lock); } static int ptp_ocp_device_init(struct ptp_ocp *bp, struct pci_dev *pdev) { int err; mutex_lock(&ptp_ocp_lock); err = idr_alloc(&ptp_ocp_idr, bp, 0, 0, GFP_KERNEL); mutex_unlock(&ptp_ocp_lock); if (err < 0) { dev_err(&pdev->dev, "idr_alloc failed: %d\n", err); return err; } bp->id = err; bp->ptp_info = ptp_ocp_clock_info; spin_lock_init(&bp->lock); bp->gnss_port.line = -1; bp->gnss2_port.line = -1; bp->mac_port.line = -1; bp->nmea_port.line = -1; bp->pdev = pdev; device_initialize(&bp->dev); dev_set_name(&bp->dev, "ocp%d", bp->id); bp->dev.class = &timecard_class; bp->dev.parent = &pdev->dev; bp->dev.release = ptp_ocp_dev_release; dev_set_drvdata(&bp->dev, bp); err = device_add(&bp->dev); if (err) { dev_err(&bp->dev, "device add failed: %d\n", err); goto out; } pci_set_drvdata(pdev, bp); return 0; out: ptp_ocp_dev_release(&bp->dev); put_device(&bp->dev); return err; } static void ptp_ocp_symlink(struct ptp_ocp *bp, struct device *child, const char *link) { struct device *dev = &bp->dev; if (sysfs_create_link(&dev->kobj, &child->kobj, link)) dev_err(dev, "%s symlink failed\n", link); } static void ptp_ocp_link_child(struct ptp_ocp *bp, const char *name, const char *link) { struct device *dev, *child; dev = &bp->pdev->dev; child = device_find_child_by_name(dev, name); if (!child) { dev_err(dev, "Could not find device %s\n", name); return; } ptp_ocp_symlink(bp, child, link); put_device(child); } static int ptp_ocp_complete(struct ptp_ocp *bp) { struct pps_device *pps; char buf[32]; if (bp->gnss_port.line != -1) { sprintf(buf, "ttyS%d", bp->gnss_port.line); ptp_ocp_link_child(bp, buf, "ttyGNSS"); } if (bp->gnss2_port.line != -1) { sprintf(buf, "ttyS%d", bp->gnss2_port.line); ptp_ocp_link_child(bp, buf, "ttyGNSS2"); } if (bp->mac_port.line != -1) { sprintf(buf, "ttyS%d", bp->mac_port.line); ptp_ocp_link_child(bp, buf, "ttyMAC"); } if (bp->nmea_port.line != -1) { sprintf(buf, "ttyS%d", bp->nmea_port.line); ptp_ocp_link_child(bp, buf, "ttyNMEA"); } sprintf(buf, "ptp%d", ptp_clock_index(bp->ptp)); ptp_ocp_link_child(bp, buf, "ptp"); pps = pps_lookup_dev(bp->ptp); if (pps) ptp_ocp_symlink(bp, pps->dev, "pps"); ptp_ocp_debugfs_add_device(bp); return 0; } static void ptp_ocp_phc_info(struct ptp_ocp *bp) { struct timespec64 ts; u32 version, select; bool sync; version = ioread32(&bp->reg->version); select = ioread32(&bp->reg->select); dev_info(&bp->pdev->dev, "Version %d.%d.%d, clock %s, device ptp%d\n", version >> 24, (version >> 16) & 0xff, version & 0xffff, ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16), ptp_clock_index(bp->ptp)); sync = ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC; if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, NULL)) dev_info(&bp->pdev->dev, "Time: %lld.%ld, %s\n", ts.tv_sec, ts.tv_nsec, sync ? "in-sync" : "UNSYNCED"); } static void ptp_ocp_serial_info(struct device *dev, const char *name, int port, int baud) { if (port != -1) dev_info(dev, "%5s: /dev/ttyS%-2d @ %6d\n", name, port, baud); } static void ptp_ocp_info(struct ptp_ocp *bp) { static int nmea_baud[] = { 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600, 1000000, 2000000 }; struct device *dev = &bp->pdev->dev; u32 reg; ptp_ocp_phc_info(bp); ptp_ocp_serial_info(dev, "GNSS", bp->gnss_port.line, bp->gnss_port.baud); ptp_ocp_serial_info(dev, "GNSS2", bp->gnss2_port.line, bp->gnss2_port.baud); ptp_ocp_serial_info(dev, "MAC", bp->mac_port.line, bp->mac_port.baud); if (bp->nmea_out && bp->nmea_port.line != -1) { bp->nmea_port.baud = -1; reg = ioread32(&bp->nmea_out->uart_baud); if (reg < ARRAY_SIZE(nmea_baud)) bp->nmea_port.baud = nmea_baud[reg]; ptp_ocp_serial_info(dev, "NMEA", bp->nmea_port.line, bp->nmea_port.baud); } } static void ptp_ocp_detach_sysfs(struct ptp_ocp *bp) { struct device *dev = &bp->dev; sysfs_remove_link(&dev->kobj, "ttyGNSS"); sysfs_remove_link(&dev->kobj, "ttyGNSS2"); sysfs_remove_link(&dev->kobj, "ttyMAC"); sysfs_remove_link(&dev->kobj, "ptp"); sysfs_remove_link(&dev->kobj, "pps"); } static void ptp_ocp_detach(struct ptp_ocp *bp) { int i; ptp_ocp_debugfs_remove_device(bp); ptp_ocp_detach_sysfs(bp); ptp_ocp_attr_group_del(bp); if (timer_pending(&bp->watchdog)) del_timer_sync(&bp->watchdog); if (bp->ts0) ptp_ocp_unregister_ext(bp->ts0); if (bp->ts1) ptp_ocp_unregister_ext(bp->ts1); if (bp->ts2) ptp_ocp_unregister_ext(bp->ts2); if (bp->ts3) ptp_ocp_unregister_ext(bp->ts3); if (bp->ts4) ptp_ocp_unregister_ext(bp->ts4); if (bp->pps) ptp_ocp_unregister_ext(bp->pps); for (i = 0; i < 4; i++) if (bp->signal_out[i]) ptp_ocp_unregister_ext(bp->signal_out[i]); if (bp->gnss_port.line != -1) serial8250_unregister_port(bp->gnss_port.line); if (bp->gnss2_port.line != -1) serial8250_unregister_port(bp->gnss2_port.line); if (bp->mac_port.line != -1) serial8250_unregister_port(bp->mac_port.line); if (bp->nmea_port.line != -1) serial8250_unregister_port(bp->nmea_port.line); platform_device_unregister(bp->spi_flash); platform_device_unregister(bp->i2c_ctrl); if (bp->i2c_clk) clk_hw_unregister_fixed_rate(bp->i2c_clk); if (bp->n_irqs) pci_free_irq_vectors(bp->pdev); if (bp->ptp) ptp_clock_unregister(bp->ptp); kfree(bp->ptp_info.pin_config); device_unregister(&bp->dev); } static int ptp_ocp_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct devlink *devlink; struct ptp_ocp *bp; int err; devlink = devlink_alloc(&ptp_ocp_devlink_ops, sizeof(*bp), &pdev->dev); if (!devlink) { dev_err(&pdev->dev, "devlink_alloc failed\n"); return -ENOMEM; } err = pci_enable_device(pdev); if (err) { dev_err(&pdev->dev, "pci_enable_device\n"); goto out_free; } bp = devlink_priv(devlink); err = ptp_ocp_device_init(bp, pdev); if (err) goto out_disable; /* compat mode. * Older FPGA firmware only returns 2 irq's. * allow this - if not all of the IRQ's are returned, skip the * extra devices and just register the clock. */ err = pci_alloc_irq_vectors(pdev, 1, 17, PCI_IRQ_MSI | PCI_IRQ_MSIX); if (err < 0) { dev_err(&pdev->dev, "alloc_irq_vectors err: %d\n", err); goto out; } bp->n_irqs = err; pci_set_master(pdev); err = ptp_ocp_register_resources(bp, id->driver_data); if (err) goto out; bp->ptp = ptp_clock_register(&bp->ptp_info, &pdev->dev); if (IS_ERR(bp->ptp)) { err = PTR_ERR(bp->ptp); dev_err(&pdev->dev, "ptp_clock_register: %d\n", err); bp->ptp = NULL; goto out; } err = ptp_ocp_complete(bp); if (err) goto out; ptp_ocp_info(bp); devlink_register(devlink); return 0; out: ptp_ocp_detach(bp); out_disable: pci_disable_device(pdev); out_free: devlink_free(devlink); return err; } static void ptp_ocp_remove(struct pci_dev *pdev) { struct ptp_ocp *bp = pci_get_drvdata(pdev); struct devlink *devlink = priv_to_devlink(bp); devlink_unregister(devlink); ptp_ocp_detach(bp); pci_disable_device(pdev); devlink_free(devlink); } static struct pci_driver ptp_ocp_driver = { .name = KBUILD_MODNAME, .id_table = ptp_ocp_pcidev_id, .probe = ptp_ocp_probe, .remove = ptp_ocp_remove, }; static int ptp_ocp_i2c_notifier_call(struct notifier_block *nb, unsigned long action, void *data) { struct device *dev, *child = data; struct ptp_ocp *bp; bool add; switch (action) { case BUS_NOTIFY_ADD_DEVICE: case BUS_NOTIFY_DEL_DEVICE: add = action == BUS_NOTIFY_ADD_DEVICE; break; default: return 0; } if (!i2c_verify_adapter(child)) return 0; dev = child; while ((dev = dev->parent)) if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME)) goto found; return 0; found: bp = dev_get_drvdata(dev); if (add) ptp_ocp_symlink(bp, child, "i2c"); else sysfs_remove_link(&bp->dev.kobj, "i2c"); return 0; } static struct notifier_block ptp_ocp_i2c_notifier = { .notifier_call = ptp_ocp_i2c_notifier_call, }; static int __init ptp_ocp_init(void) { const char *what; int err; ptp_ocp_debugfs_init(); what = "timecard class"; err = class_register(&timecard_class); if (err) goto out; what = "i2c notifier"; err = bus_register_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier); if (err) goto out_notifier; what = "ptp_ocp driver"; err = pci_register_driver(&ptp_ocp_driver); if (err) goto out_register; return 0; out_register: bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier); out_notifier: class_unregister(&timecard_class); out: ptp_ocp_debugfs_fini(); pr_err(KBUILD_MODNAME ": failed to register %s: %d\n", what, err); return err; } static void __exit ptp_ocp_fini(void) { bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier); pci_unregister_driver(&ptp_ocp_driver); class_unregister(&timecard_class); ptp_ocp_debugfs_fini(); } module_init(ptp_ocp_init); module_exit(ptp_ocp_fini); MODULE_DESCRIPTION("OpenCompute TimeCard driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/ptp/ptp_ocp.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * PTP 1588 clock for Freescale QorIQ 1588 timer * * Copyright (C) 2010 OMICRON electronics GmbH */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/device.h> #include <linux/hrtimer.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/timex.h> #include <linux/slab.h> #include <linux/clk.h> #include <linux/fsl/ptp_qoriq.h> /* * Register access functions */ /* Caller must hold ptp_qoriq->lock. */ static u64 tmr_cnt_read(struct ptp_qoriq *ptp_qoriq) { struct ptp_qoriq_registers *regs = &ptp_qoriq->regs; u64 ns; u32 lo, hi; lo = ptp_qoriq->read(&regs->ctrl_regs->tmr_cnt_l); hi = ptp_qoriq->read(&regs->ctrl_regs->tmr_cnt_h); ns = ((u64) hi) << 32; ns |= lo; return ns; } /* Caller must hold ptp_qoriq->lock. */ static void tmr_cnt_write(struct ptp_qoriq *ptp_qoriq, u64 ns) { struct ptp_qoriq_registers *regs = &ptp_qoriq->regs; u32 hi = ns >> 32; u32 lo = ns & 0xffffffff; ptp_qoriq->write(&regs->ctrl_regs->tmr_cnt_l, lo); ptp_qoriq->write(&regs->ctrl_regs->tmr_cnt_h, hi); } static u64 tmr_offset_read(struct ptp_qoriq *ptp_qoriq) { struct ptp_qoriq_registers *regs = &ptp_qoriq->regs; u32 lo, hi; u64 ns; lo = ptp_qoriq->read(&regs->ctrl_regs->tmroff_l); hi = ptp_qoriq->read(&regs->ctrl_regs->tmroff_h); ns = ((u64) hi) << 32; ns |= lo; return ns; } static void tmr_offset_write(struct ptp_qoriq *ptp_qoriq, u64 delta_ns) { struct ptp_qoriq_registers *regs = &ptp_qoriq->regs; u32 lo = delta_ns & 0xffffffff; u32 hi = delta_ns >> 32; ptp_qoriq->write(&regs->ctrl_regs->tmroff_l, lo); ptp_qoriq->write(&regs->ctrl_regs->tmroff_h, hi); } /* Caller must hold ptp_qoriq->lock. */ static void set_alarm(struct ptp_qoriq *ptp_qoriq) { struct ptp_qoriq_registers *regs = &ptp_qoriq->regs; u64 ns; u32 lo, hi; ns = tmr_cnt_read(ptp_qoriq) + tmr_offset_read(ptp_qoriq) + 1500000000ULL; ns = div_u64(ns, 1000000000UL) * 1000000000ULL; ns -= ptp_qoriq->tclk_period; hi = ns >> 32; lo = ns & 0xffffffff; ptp_qoriq->write(&regs->alarm_regs->tmr_alarm1_l, lo); ptp_qoriq->write(&regs->alarm_regs->tmr_alarm1_h, hi); } /* Caller must hold ptp_qoriq->lock. */ static void set_fipers(struct ptp_qoriq *ptp_qoriq) { struct ptp_qoriq_registers *regs = &ptp_qoriq->regs; set_alarm(ptp_qoriq); ptp_qoriq->write(&regs->fiper_regs->tmr_fiper1, ptp_qoriq->tmr_fiper1); ptp_qoriq->write(&regs->fiper_regs->tmr_fiper2, ptp_qoriq->tmr_fiper2); if (ptp_qoriq->fiper3_support) ptp_qoriq->write(&regs->fiper_regs->tmr_fiper3, ptp_qoriq->tmr_fiper3); } int extts_clean_up(struct ptp_qoriq *ptp_qoriq, int index, bool update_event) { struct ptp_qoriq_registers *regs = &ptp_qoriq->regs; struct ptp_clock_event event; void __iomem *reg_etts_l; void __iomem *reg_etts_h; u32 valid, lo, hi; switch (index) { case 0: valid = ETS1_VLD; reg_etts_l = &regs->etts_regs->tmr_etts1_l; reg_etts_h = &regs->etts_regs->tmr_etts1_h; break; case 1: valid = ETS2_VLD; reg_etts_l = &regs->etts_regs->tmr_etts2_l; reg_etts_h = &regs->etts_regs->tmr_etts2_h; break; default: return -EINVAL; } event.type = PTP_CLOCK_EXTTS; event.index = index; if (ptp_qoriq->extts_fifo_support) if (!(ptp_qoriq->read(&regs->ctrl_regs->tmr_stat) & valid)) return 0; do { lo = ptp_qoriq->read(reg_etts_l); hi = ptp_qoriq->read(reg_etts_h); if (update_event) { event.timestamp = ((u64) hi) << 32; event.timestamp |= lo; ptp_clock_event(ptp_qoriq->clock, &event); } if (!ptp_qoriq->extts_fifo_support) break; } while (ptp_qoriq->read(&regs->ctrl_regs->tmr_stat) & valid); return 0; } EXPORT_SYMBOL_GPL(extts_clean_up); /* * Interrupt service routine */ irqreturn_t ptp_qoriq_isr(int irq, void *priv) { struct ptp_qoriq *ptp_qoriq = priv; struct ptp_qoriq_registers *regs = &ptp_qoriq->regs; struct ptp_clock_event event; u32 ack = 0, mask, val, irqs; spin_lock(&ptp_qoriq->lock); val = ptp_qoriq->read(&regs->ctrl_regs->tmr_tevent); mask = ptp_qoriq->read(&regs->ctrl_regs->tmr_temask); spin_unlock(&ptp_qoriq->lock); irqs = val & mask; if (irqs & ETS1) { ack |= ETS1; extts_clean_up(ptp_qoriq, 0, true); } if (irqs & ETS2) { ack |= ETS2; extts_clean_up(ptp_qoriq, 1, true); } if (irqs & PP1) { ack |= PP1; event.type = PTP_CLOCK_PPS; ptp_clock_event(ptp_qoriq->clock, &event); } if (ack) { ptp_qoriq->write(&regs->ctrl_regs->tmr_tevent, ack); return IRQ_HANDLED; } else return IRQ_NONE; } EXPORT_SYMBOL_GPL(ptp_qoriq_isr); /* * PTP clock operations */ int ptp_qoriq_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) { u64 adj, diff; u32 tmr_add; int neg_adj = 0; struct ptp_qoriq *ptp_qoriq = container_of(ptp, struct ptp_qoriq, caps); struct ptp_qoriq_registers *regs = &ptp_qoriq->regs; if (scaled_ppm < 0) { neg_adj = 1; scaled_ppm = -scaled_ppm; } tmr_add = ptp_qoriq->tmr_add; adj = tmr_add; /* * Calculate diff and round() to the nearest integer * * diff = adj * (ppb / 1000000000) * = adj * scaled_ppm / 65536000000 */ diff = mul_u64_u64_div_u64(adj, scaled_ppm, 32768000000); diff = DIV64_U64_ROUND_UP(diff, 2); tmr_add = neg_adj ? tmr_add - diff : tmr_add + diff; ptp_qoriq->write(&regs->ctrl_regs->tmr_add, tmr_add); return 0; } EXPORT_SYMBOL_GPL(ptp_qoriq_adjfine); int ptp_qoriq_adjtime(struct ptp_clock_info *ptp, s64 delta) { struct ptp_qoriq *ptp_qoriq = container_of(ptp, struct ptp_qoriq, caps); s64 now, curr_delta; unsigned long flags; spin_lock_irqsave(&ptp_qoriq->lock, flags); /* On LS1021A, eTSEC2 and eTSEC3 do not take into account the TMR_OFF * adjustment */ if (ptp_qoriq->etsec) { now = tmr_cnt_read(ptp_qoriq); now += delta; tmr_cnt_write(ptp_qoriq, now); } else { curr_delta = tmr_offset_read(ptp_qoriq); curr_delta += delta; tmr_offset_write(ptp_qoriq, curr_delta); } set_fipers(ptp_qoriq); spin_unlock_irqrestore(&ptp_qoriq->lock, flags); return 0; } EXPORT_SYMBOL_GPL(ptp_qoriq_adjtime); int ptp_qoriq_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) { u64 ns; unsigned long flags; struct ptp_qoriq *ptp_qoriq = container_of(ptp, struct ptp_qoriq, caps); spin_lock_irqsave(&ptp_qoriq->lock, flags); ns = tmr_cnt_read(ptp_qoriq) + tmr_offset_read(ptp_qoriq); spin_unlock_irqrestore(&ptp_qoriq->lock, flags); *ts = ns_to_timespec64(ns); return 0; } EXPORT_SYMBOL_GPL(ptp_qoriq_gettime); int ptp_qoriq_settime(struct ptp_clock_info *ptp, const struct timespec64 *ts) { u64 ns; unsigned long flags; struct ptp_qoriq *ptp_qoriq = container_of(ptp, struct ptp_qoriq, caps); ns = timespec64_to_ns(ts); spin_lock_irqsave(&ptp_qoriq->lock, flags); tmr_offset_write(ptp_qoriq, 0); tmr_cnt_write(ptp_qoriq, ns); set_fipers(ptp_qoriq); spin_unlock_irqrestore(&ptp_qoriq->lock, flags); return 0; } EXPORT_SYMBOL_GPL(ptp_qoriq_settime); int ptp_qoriq_enable(struct ptp_clock_info *ptp, struct ptp_clock_request *rq, int on) { struct ptp_qoriq *ptp_qoriq = container_of(ptp, struct ptp_qoriq, caps); struct ptp_qoriq_registers *regs = &ptp_qoriq->regs; unsigned long flags; u32 bit, mask = 0; switch (rq->type) { case PTP_CLK_REQ_EXTTS: switch (rq->extts.index) { case 0: bit = ETS1EN; break; case 1: bit = ETS2EN; break; default: return -EINVAL; } if (on) extts_clean_up(ptp_qoriq, rq->extts.index, false); break; case PTP_CLK_REQ_PPS: bit = PP1EN; break; default: return -EOPNOTSUPP; } spin_lock_irqsave(&ptp_qoriq->lock, flags); mask = ptp_qoriq->read(&regs->ctrl_regs->tmr_temask); if (on) { mask |= bit; ptp_qoriq->write(&regs->ctrl_regs->tmr_tevent, bit); } else { mask &= ~bit; } ptp_qoriq->write(&regs->ctrl_regs->tmr_temask, mask); spin_unlock_irqrestore(&ptp_qoriq->lock, flags); return 0; } EXPORT_SYMBOL_GPL(ptp_qoriq_enable); static const struct ptp_clock_info ptp_qoriq_caps = { .owner = THIS_MODULE, .name = "qoriq ptp clock", .max_adj = 512000, .n_alarm = 0, .n_ext_ts = N_EXT_TS, .n_per_out = 0, .n_pins = 0, .pps = 1, .adjfine = ptp_qoriq_adjfine, .adjtime = ptp_qoriq_adjtime, .gettime64 = ptp_qoriq_gettime, .settime64 = ptp_qoriq_settime, .enable = ptp_qoriq_enable, }; /** * ptp_qoriq_nominal_freq - calculate nominal frequency according to * reference clock frequency * * @clk_src: reference clock frequency * * The nominal frequency is the desired clock frequency. * It should be less than the reference clock frequency. * It should be a factor of 1000MHz. * * Return the nominal frequency */ static u32 ptp_qoriq_nominal_freq(u32 clk_src) { u32 remainder = 0; clk_src /= 1000000; remainder = clk_src % 100; if (remainder) { clk_src -= remainder; clk_src += 100; } do { clk_src -= 100; } while (1000 % clk_src); return clk_src * 1000000; } /** * ptp_qoriq_auto_config - calculate a set of default configurations * * @ptp_qoriq: pointer to ptp_qoriq * @node: pointer to device_node * * If below dts properties are not provided, this function will be * called to calculate a set of default configurations for them. * "fsl,tclk-period" * "fsl,tmr-prsc" * "fsl,tmr-add" * "fsl,tmr-fiper1" * "fsl,tmr-fiper2" * "fsl,tmr-fiper3" (required only for DPAA2 and ENETC hardware) * "fsl,max-adj" * * Return 0 if success */ static int ptp_qoriq_auto_config(struct ptp_qoriq *ptp_qoriq, struct device_node *node) { struct clk *clk; u64 freq_comp; u64 max_adj; u32 nominal_freq; u32 remainder = 0; u32 clk_src = 0; ptp_qoriq->cksel = DEFAULT_CKSEL; clk = of_clk_get(node, 0); if (!IS_ERR(clk)) { clk_src = clk_get_rate(clk); clk_put(clk); } if (clk_src <= 100000000UL) { pr_err("error reference clock value, or lower than 100MHz\n"); return -EINVAL; } nominal_freq = ptp_qoriq_nominal_freq(clk_src); if (!nominal_freq) return -EINVAL; ptp_qoriq->tclk_period = 1000000000UL / nominal_freq; ptp_qoriq->tmr_prsc = DEFAULT_TMR_PRSC; /* Calculate initial frequency compensation value for TMR_ADD register. * freq_comp = ceil(2^32 / freq_ratio) * freq_ratio = reference_clock_freq / nominal_freq */ freq_comp = ((u64)1 << 32) * nominal_freq; freq_comp = div_u64_rem(freq_comp, clk_src, &remainder); if (remainder) freq_comp++; ptp_qoriq->tmr_add = freq_comp; ptp_qoriq->tmr_fiper1 = DEFAULT_FIPER1_PERIOD - ptp_qoriq->tclk_period; ptp_qoriq->tmr_fiper2 = DEFAULT_FIPER2_PERIOD - ptp_qoriq->tclk_period; ptp_qoriq->tmr_fiper3 = DEFAULT_FIPER3_PERIOD - ptp_qoriq->tclk_period; /* max_adj = 1000000000 * (freq_ratio - 1.0) - 1 * freq_ratio = reference_clock_freq / nominal_freq */ max_adj = 1000000000ULL * (clk_src - nominal_freq); max_adj = div_u64(max_adj, nominal_freq) - 1; ptp_qoriq->caps.max_adj = max_adj; return 0; } int ptp_qoriq_init(struct ptp_qoriq *ptp_qoriq, void __iomem *base, const struct ptp_clock_info *caps) { struct device_node *node = ptp_qoriq->dev->of_node; struct ptp_qoriq_registers *regs; struct timespec64 now; unsigned long flags; u32 tmr_ctrl; if (!node) return -ENODEV; ptp_qoriq->base = base; ptp_qoriq->caps = *caps; if (of_property_read_u32(node, "fsl,cksel", &ptp_qoriq->cksel)) ptp_qoriq->cksel = DEFAULT_CKSEL; if (of_property_read_bool(node, "fsl,extts-fifo")) ptp_qoriq->extts_fifo_support = true; else ptp_qoriq->extts_fifo_support = false; if (of_device_is_compatible(node, "fsl,dpaa2-ptp") || of_device_is_compatible(node, "fsl,enetc-ptp")) ptp_qoriq->fiper3_support = true; if (of_property_read_u32(node, "fsl,tclk-period", &ptp_qoriq->tclk_period) || of_property_read_u32(node, "fsl,tmr-prsc", &ptp_qoriq->tmr_prsc) || of_property_read_u32(node, "fsl,tmr-add", &ptp_qoriq->tmr_add) || of_property_read_u32(node, "fsl,tmr-fiper1", &ptp_qoriq->tmr_fiper1) || of_property_read_u32(node, "fsl,tmr-fiper2", &ptp_qoriq->tmr_fiper2) || of_property_read_u32(node, "fsl,max-adj", &ptp_qoriq->caps.max_adj) || (ptp_qoriq->fiper3_support && of_property_read_u32(node, "fsl,tmr-fiper3", &ptp_qoriq->tmr_fiper3))) { pr_warn("device tree node missing required elements, try automatic configuration\n"); if (ptp_qoriq_auto_config(ptp_qoriq, node)) return -ENODEV; } if (of_property_read_bool(node, "little-endian")) { ptp_qoriq->read = qoriq_read_le; ptp_qoriq->write = qoriq_write_le; } else { ptp_qoriq->read = qoriq_read_be; ptp_qoriq->write = qoriq_write_be; } /* The eTSEC uses differnt memory map with DPAA/ENETC */ if (of_device_is_compatible(node, "fsl,etsec-ptp")) { ptp_qoriq->etsec = true; ptp_qoriq->regs.ctrl_regs = base + ETSEC_CTRL_REGS_OFFSET; ptp_qoriq->regs.alarm_regs = base + ETSEC_ALARM_REGS_OFFSET; ptp_qoriq->regs.fiper_regs = base + ETSEC_FIPER_REGS_OFFSET; ptp_qoriq->regs.etts_regs = base + ETSEC_ETTS_REGS_OFFSET; } else { ptp_qoriq->regs.ctrl_regs = base + CTRL_REGS_OFFSET; ptp_qoriq->regs.alarm_regs = base + ALARM_REGS_OFFSET; ptp_qoriq->regs.fiper_regs = base + FIPER_REGS_OFFSET; ptp_qoriq->regs.etts_regs = base + ETTS_REGS_OFFSET; } spin_lock_init(&ptp_qoriq->lock); ktime_get_real_ts64(&now); ptp_qoriq_settime(&ptp_qoriq->caps, &now); tmr_ctrl = (ptp_qoriq->tclk_period & TCLK_PERIOD_MASK) << TCLK_PERIOD_SHIFT | (ptp_qoriq->cksel & CKSEL_MASK) << CKSEL_SHIFT; spin_lock_irqsave(&ptp_qoriq->lock, flags); regs = &ptp_qoriq->regs; ptp_qoriq->write(&regs->ctrl_regs->tmr_ctrl, tmr_ctrl); ptp_qoriq->write(&regs->ctrl_regs->tmr_add, ptp_qoriq->tmr_add); ptp_qoriq->write(&regs->ctrl_regs->tmr_prsc, ptp_qoriq->tmr_prsc); ptp_qoriq->write(&regs->fiper_regs->tmr_fiper1, ptp_qoriq->tmr_fiper1); ptp_qoriq->write(&regs->fiper_regs->tmr_fiper2, ptp_qoriq->tmr_fiper2); if (ptp_qoriq->fiper3_support) ptp_qoriq->write(&regs->fiper_regs->tmr_fiper3, ptp_qoriq->tmr_fiper3); set_alarm(ptp_qoriq); ptp_qoriq->write(&regs->ctrl_regs->tmr_ctrl, tmr_ctrl|FIPERST|RTPE|TE|FRD); spin_unlock_irqrestore(&ptp_qoriq->lock, flags); ptp_qoriq->clock = ptp_clock_register(&ptp_qoriq->caps, ptp_qoriq->dev); if (IS_ERR(ptp_qoriq->clock)) return PTR_ERR(ptp_qoriq->clock); ptp_qoriq->phc_index = ptp_clock_index(ptp_qoriq->clock); ptp_qoriq_create_debugfs(ptp_qoriq); return 0; } EXPORT_SYMBOL_GPL(ptp_qoriq_init); void ptp_qoriq_free(struct ptp_qoriq *ptp_qoriq) { struct ptp_qoriq_registers *regs = &ptp_qoriq->regs; ptp_qoriq->write(&regs->ctrl_regs->tmr_temask, 0); ptp_qoriq->write(&regs->ctrl_regs->tmr_ctrl, 0); ptp_qoriq_remove_debugfs(ptp_qoriq); ptp_clock_unregister(ptp_qoriq->clock); iounmap(ptp_qoriq->base); free_irq(ptp_qoriq->irq, ptp_qoriq); } EXPORT_SYMBOL_GPL(ptp_qoriq_free); static int ptp_qoriq_probe(struct platform_device *dev) { struct ptp_qoriq *ptp_qoriq; int err = -ENOMEM; void __iomem *base; ptp_qoriq = kzalloc(sizeof(*ptp_qoriq), GFP_KERNEL); if (!ptp_qoriq) goto no_memory; ptp_qoriq->dev = &dev->dev; err = -ENODEV; ptp_qoriq->irq = platform_get_irq(dev, 0); if (ptp_qoriq->irq < 0) { pr_err("irq not in device tree\n"); goto no_node; } if (request_irq(ptp_qoriq->irq, ptp_qoriq_isr, IRQF_SHARED, DRIVER, ptp_qoriq)) { pr_err("request_irq failed\n"); goto no_node; } ptp_qoriq->rsrc = platform_get_resource(dev, IORESOURCE_MEM, 0); if (!ptp_qoriq->rsrc) { pr_err("no resource\n"); goto no_resource; } if (request_resource(&iomem_resource, ptp_qoriq->rsrc)) { pr_err("resource busy\n"); goto no_resource; } base = ioremap(ptp_qoriq->rsrc->start, resource_size(ptp_qoriq->rsrc)); if (!base) { pr_err("ioremap ptp registers failed\n"); goto no_ioremap; } err = ptp_qoriq_init(ptp_qoriq, base, &ptp_qoriq_caps); if (err) goto no_clock; platform_set_drvdata(dev, ptp_qoriq); return 0; no_clock: iounmap(base); no_ioremap: release_resource(ptp_qoriq->rsrc); no_resource: free_irq(ptp_qoriq->irq, ptp_qoriq); no_node: kfree(ptp_qoriq); no_memory: return err; } static int ptp_qoriq_remove(struct platform_device *dev) { struct ptp_qoriq *ptp_qoriq = platform_get_drvdata(dev); ptp_qoriq_free(ptp_qoriq); release_resource(ptp_qoriq->rsrc); kfree(ptp_qoriq); return 0; } static const struct of_device_id match_table[] = { { .compatible = "fsl,etsec-ptp" }, { .compatible = "fsl,fman-ptp-timer" }, {}, }; MODULE_DEVICE_TABLE(of, match_table); static struct platform_driver ptp_qoriq_driver = { .driver = { .name = "ptp_qoriq", .of_match_table = match_table, }, .probe = ptp_qoriq_probe, .remove = ptp_qoriq_remove, }; module_platform_driver(ptp_qoriq_driver); MODULE_AUTHOR("Richard Cochran <[email protected]>"); MODULE_DESCRIPTION("PTP clock for Freescale QorIQ 1588 timer"); MODULE_LICENSE("GPL");
linux-master
drivers/ptp/ptp_qoriq.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * PTP 1588 clock support - sysfs interface. * * Copyright (C) 2010 OMICRON electronics GmbH * Copyright 2021 NXP */ #include <linux/capability.h> #include <linux/slab.h> #include "ptp_private.h" static ssize_t clock_name_show(struct device *dev, struct device_attribute *attr, char *page) { struct ptp_clock *ptp = dev_get_drvdata(dev); return sysfs_emit(page, "%s\n", ptp->info->name); } static DEVICE_ATTR_RO(clock_name); static ssize_t max_phase_adjustment_show(struct device *dev, struct device_attribute *attr, char *page) { struct ptp_clock *ptp = dev_get_drvdata(dev); return snprintf(page, PAGE_SIZE - 1, "%d\n", ptp->info->getmaxphase(ptp->info)); } static DEVICE_ATTR_RO(max_phase_adjustment); #define PTP_SHOW_INT(name, var) \ static ssize_t var##_show(struct device *dev, \ struct device_attribute *attr, char *page) \ { \ struct ptp_clock *ptp = dev_get_drvdata(dev); \ return snprintf(page, PAGE_SIZE-1, "%d\n", ptp->info->var); \ } \ static DEVICE_ATTR(name, 0444, var##_show, NULL); PTP_SHOW_INT(max_adjustment, max_adj); PTP_SHOW_INT(n_alarms, n_alarm); PTP_SHOW_INT(n_external_timestamps, n_ext_ts); PTP_SHOW_INT(n_periodic_outputs, n_per_out); PTP_SHOW_INT(n_programmable_pins, n_pins); PTP_SHOW_INT(pps_available, pps); static ssize_t extts_enable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ptp_clock *ptp = dev_get_drvdata(dev); struct ptp_clock_info *ops = ptp->info; struct ptp_clock_request req = { .type = PTP_CLK_REQ_EXTTS }; int cnt, enable; int err = -EINVAL; cnt = sscanf(buf, "%u %d", &req.extts.index, &enable); if (cnt != 2) goto out; if (req.extts.index >= ops->n_ext_ts) goto out; err = ops->enable(ops, &req, enable ? 1 : 0); if (err) goto out; return count; out: return err; } static DEVICE_ATTR(extts_enable, 0220, NULL, extts_enable_store); static ssize_t extts_fifo_show(struct device *dev, struct device_attribute *attr, char *page) { struct ptp_clock *ptp = dev_get_drvdata(dev); struct timestamp_event_queue *queue = &ptp->tsevq; struct ptp_extts_event event; unsigned long flags; size_t qcnt; int cnt = 0; memset(&event, 0, sizeof(event)); if (mutex_lock_interruptible(&ptp->tsevq_mux)) return -ERESTARTSYS; spin_lock_irqsave(&queue->lock, flags); qcnt = queue_cnt(queue); if (qcnt) { event = queue->buf[queue->head]; queue->head = (queue->head + 1) % PTP_MAX_TIMESTAMPS; } spin_unlock_irqrestore(&queue->lock, flags); if (!qcnt) goto out; cnt = snprintf(page, PAGE_SIZE, "%u %lld %u\n", event.index, event.t.sec, event.t.nsec); out: mutex_unlock(&ptp->tsevq_mux); return cnt; } static DEVICE_ATTR(fifo, 0444, extts_fifo_show, NULL); static ssize_t period_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ptp_clock *ptp = dev_get_drvdata(dev); struct ptp_clock_info *ops = ptp->info; struct ptp_clock_request req = { .type = PTP_CLK_REQ_PEROUT }; int cnt, enable, err = -EINVAL; cnt = sscanf(buf, "%u %lld %u %lld %u", &req.perout.index, &req.perout.start.sec, &req.perout.start.nsec, &req.perout.period.sec, &req.perout.period.nsec); if (cnt != 5) goto out; if (req.perout.index >= ops->n_per_out) goto out; enable = req.perout.period.sec || req.perout.period.nsec; err = ops->enable(ops, &req, enable); if (err) goto out; return count; out: return err; } static DEVICE_ATTR(period, 0220, NULL, period_store); static ssize_t pps_enable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ptp_clock *ptp = dev_get_drvdata(dev); struct ptp_clock_info *ops = ptp->info; struct ptp_clock_request req = { .type = PTP_CLK_REQ_PPS }; int cnt, enable; int err = -EINVAL; if (!capable(CAP_SYS_TIME)) return -EPERM; cnt = sscanf(buf, "%d", &enable); if (cnt != 1) goto out; err = ops->enable(ops, &req, enable ? 1 : 0); if (err) goto out; return count; out: return err; } static DEVICE_ATTR(pps_enable, 0220, NULL, pps_enable_store); static int unregister_vclock(struct device *dev, void *data) { struct ptp_clock *ptp = dev_get_drvdata(dev); struct ptp_clock_info *info = ptp->info; struct ptp_vclock *vclock; u32 *num = data; vclock = info_to_vclock(info); dev_info(dev->parent, "delete virtual clock ptp%d\n", vclock->clock->index); ptp_vclock_unregister(vclock); (*num)--; /* For break. Not error. */ if (*num == 0) return -EINVAL; return 0; } static ssize_t n_vclocks_show(struct device *dev, struct device_attribute *attr, char *page) { struct ptp_clock *ptp = dev_get_drvdata(dev); ssize_t size; if (mutex_lock_interruptible(&ptp->n_vclocks_mux)) return -ERESTARTSYS; size = snprintf(page, PAGE_SIZE - 1, "%u\n", ptp->n_vclocks); mutex_unlock(&ptp->n_vclocks_mux); return size; } static ssize_t n_vclocks_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ptp_clock *ptp = dev_get_drvdata(dev); struct ptp_vclock *vclock; int err = -EINVAL; u32 num, i; if (kstrtou32(buf, 0, &num)) return err; if (mutex_lock_interruptible(&ptp->n_vclocks_mux)) return -ERESTARTSYS; if (num > ptp->max_vclocks) { dev_err(dev, "max value is %d\n", ptp->max_vclocks); goto out; } /* Need to create more vclocks */ if (num > ptp->n_vclocks) { for (i = 0; i < num - ptp->n_vclocks; i++) { vclock = ptp_vclock_register(ptp); if (!vclock) goto out; *(ptp->vclock_index + ptp->n_vclocks + i) = vclock->clock->index; dev_info(dev, "new virtual clock ptp%d\n", vclock->clock->index); } } /* Need to delete vclocks */ if (num < ptp->n_vclocks) { i = ptp->n_vclocks - num; device_for_each_child_reverse(dev, &i, unregister_vclock); for (i = 1; i <= ptp->n_vclocks - num; i++) *(ptp->vclock_index + ptp->n_vclocks - i) = -1; } /* Need to inform about changed physical clock behavior */ if (!ptp->has_cycles) { if (num == 0) dev_info(dev, "only physical clock in use now\n"); else dev_info(dev, "guarantee physical clock free running\n"); } ptp->n_vclocks = num; mutex_unlock(&ptp->n_vclocks_mux); return count; out: mutex_unlock(&ptp->n_vclocks_mux); return err; } static DEVICE_ATTR_RW(n_vclocks); static ssize_t max_vclocks_show(struct device *dev, struct device_attribute *attr, char *page) { struct ptp_clock *ptp = dev_get_drvdata(dev); ssize_t size; size = snprintf(page, PAGE_SIZE - 1, "%u\n", ptp->max_vclocks); return size; } static ssize_t max_vclocks_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ptp_clock *ptp = dev_get_drvdata(dev); unsigned int *vclock_index; int err = -EINVAL; size_t size; u32 max; if (kstrtou32(buf, 0, &max) || max == 0) return -EINVAL; if (max == ptp->max_vclocks) return count; if (mutex_lock_interruptible(&ptp->n_vclocks_mux)) return -ERESTARTSYS; if (max < ptp->n_vclocks) goto out; size = sizeof(int) * max; vclock_index = kzalloc(size, GFP_KERNEL); if (!vclock_index) { err = -ENOMEM; goto out; } size = sizeof(int) * ptp->n_vclocks; memcpy(vclock_index, ptp->vclock_index, size); kfree(ptp->vclock_index); ptp->vclock_index = vclock_index; ptp->max_vclocks = max; mutex_unlock(&ptp->n_vclocks_mux); return count; out: mutex_unlock(&ptp->n_vclocks_mux); return err; } static DEVICE_ATTR_RW(max_vclocks); static struct attribute *ptp_attrs[] = { &dev_attr_clock_name.attr, &dev_attr_max_adjustment.attr, &dev_attr_max_phase_adjustment.attr, &dev_attr_n_alarms.attr, &dev_attr_n_external_timestamps.attr, &dev_attr_n_periodic_outputs.attr, &dev_attr_n_programmable_pins.attr, &dev_attr_pps_available.attr, &dev_attr_extts_enable.attr, &dev_attr_fifo.attr, &dev_attr_period.attr, &dev_attr_pps_enable.attr, &dev_attr_n_vclocks.attr, &dev_attr_max_vclocks.attr, NULL }; static umode_t ptp_is_attribute_visible(struct kobject *kobj, struct attribute *attr, int n) { struct device *dev = kobj_to_dev(kobj); struct ptp_clock *ptp = dev_get_drvdata(dev); struct ptp_clock_info *info = ptp->info; umode_t mode = attr->mode; if (attr == &dev_attr_extts_enable.attr || attr == &dev_attr_fifo.attr) { if (!info->n_ext_ts) mode = 0; } else if (attr == &dev_attr_period.attr) { if (!info->n_per_out) mode = 0; } else if (attr == &dev_attr_pps_enable.attr) { if (!info->pps) mode = 0; } else if (attr == &dev_attr_n_vclocks.attr || attr == &dev_attr_max_vclocks.attr) { if (ptp->is_virtual_clock) mode = 0; } else if (attr == &dev_attr_max_phase_adjustment.attr) { if (!info->adjphase || !info->getmaxphase) mode = 0; } return mode; } static const struct attribute_group ptp_group = { .is_visible = ptp_is_attribute_visible, .attrs = ptp_attrs, }; const struct attribute_group *ptp_groups[] = { &ptp_group, NULL }; static int ptp_pin_name2index(struct ptp_clock *ptp, const char *name) { int i; for (i = 0; i < ptp->info->n_pins; i++) { if (!strcmp(ptp->info->pin_config[i].name, name)) return i; } return -1; } static ssize_t ptp_pin_show(struct device *dev, struct device_attribute *attr, char *page) { struct ptp_clock *ptp = dev_get_drvdata(dev); unsigned int func, chan; int index; index = ptp_pin_name2index(ptp, attr->attr.name); if (index < 0) return -EINVAL; if (mutex_lock_interruptible(&ptp->pincfg_mux)) return -ERESTARTSYS; func = ptp->info->pin_config[index].func; chan = ptp->info->pin_config[index].chan; mutex_unlock(&ptp->pincfg_mux); return sysfs_emit(page, "%u %u\n", func, chan); } static ssize_t ptp_pin_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ptp_clock *ptp = dev_get_drvdata(dev); unsigned int func, chan; int cnt, err, index; cnt = sscanf(buf, "%u %u", &func, &chan); if (cnt != 2) return -EINVAL; index = ptp_pin_name2index(ptp, attr->attr.name); if (index < 0) return -EINVAL; if (mutex_lock_interruptible(&ptp->pincfg_mux)) return -ERESTARTSYS; err = ptp_set_pinfunc(ptp, index, func, chan); mutex_unlock(&ptp->pincfg_mux); if (err) return err; return count; } int ptp_populate_pin_groups(struct ptp_clock *ptp) { struct ptp_clock_info *info = ptp->info; int err = -ENOMEM, i, n_pins = info->n_pins; if (!n_pins) return 0; ptp->pin_dev_attr = kcalloc(n_pins, sizeof(*ptp->pin_dev_attr), GFP_KERNEL); if (!ptp->pin_dev_attr) goto no_dev_attr; ptp->pin_attr = kcalloc(1 + n_pins, sizeof(*ptp->pin_attr), GFP_KERNEL); if (!ptp->pin_attr) goto no_pin_attr; for (i = 0; i < n_pins; i++) { struct device_attribute *da = &ptp->pin_dev_attr[i]; sysfs_attr_init(&da->attr); da->attr.name = info->pin_config[i].name; da->attr.mode = 0644; da->show = ptp_pin_show; da->store = ptp_pin_store; ptp->pin_attr[i] = &da->attr; } ptp->pin_attr_group.name = "pins"; ptp->pin_attr_group.attrs = ptp->pin_attr; ptp->pin_attr_groups[0] = &ptp->pin_attr_group; return 0; no_pin_attr: kfree(ptp->pin_dev_attr); no_dev_attr: return err; } void ptp_cleanup_pin_groups(struct ptp_clock *ptp) { kfree(ptp->pin_attr); kfree(ptp->pin_dev_attr); }
linux-master
drivers/ptp/ptp_sysfs.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * PTP 1588 clock support * * Copyright (C) 2010 OMICRON electronics GmbH */ #include <linux/idr.h> #include <linux/device.h> #include <linux/err.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/posix-clock.h> #include <linux/pps_kernel.h> #include <linux/slab.h> #include <linux/syscalls.h> #include <linux/uaccess.h> #include <uapi/linux/sched/types.h> #include "ptp_private.h" #define PTP_MAX_ALARMS 4 #define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT) #define PTP_PPS_EVENT PPS_CAPTUREASSERT #define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC) struct class *ptp_class; /* private globals */ static dev_t ptp_devt; static DEFINE_IDA(ptp_clocks_map); /* time stamp event queue operations */ static inline int queue_free(struct timestamp_event_queue *q) { return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1; } static void enqueue_external_timestamp(struct timestamp_event_queue *queue, struct ptp_clock_event *src) { struct ptp_extts_event *dst; unsigned long flags; s64 seconds; u32 remainder; seconds = div_u64_rem(src->timestamp, 1000000000, &remainder); spin_lock_irqsave(&queue->lock, flags); dst = &queue->buf[queue->tail]; dst->index = src->index; dst->t.sec = seconds; dst->t.nsec = remainder; if (!queue_free(queue)) queue->head = (queue->head + 1) % PTP_MAX_TIMESTAMPS; queue->tail = (queue->tail + 1) % PTP_MAX_TIMESTAMPS; spin_unlock_irqrestore(&queue->lock, flags); } /* posix clock implementation */ static int ptp_clock_getres(struct posix_clock *pc, struct timespec64 *tp) { tp->tv_sec = 0; tp->tv_nsec = 1; return 0; } static int ptp_clock_settime(struct posix_clock *pc, const struct timespec64 *tp) { struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock); if (ptp_clock_freerun(ptp)) { pr_err("ptp: physical clock is free running\n"); return -EBUSY; } return ptp->info->settime64(ptp->info, tp); } static int ptp_clock_gettime(struct posix_clock *pc, struct timespec64 *tp) { struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock); int err; if (ptp->info->gettimex64) err = ptp->info->gettimex64(ptp->info, tp, NULL); else err = ptp->info->gettime64(ptp->info, tp); return err; } static int ptp_clock_adjtime(struct posix_clock *pc, struct __kernel_timex *tx) { struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock); struct ptp_clock_info *ops; int err = -EOPNOTSUPP; if (ptp_clock_freerun(ptp)) { pr_err("ptp: physical clock is free running\n"); return -EBUSY; } ops = ptp->info; if (tx->modes & ADJ_SETOFFSET) { struct timespec64 ts; ktime_t kt; s64 delta; ts.tv_sec = tx->time.tv_sec; ts.tv_nsec = tx->time.tv_usec; if (!(tx->modes & ADJ_NANO)) ts.tv_nsec *= 1000; if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC) return -EINVAL; kt = timespec64_to_ktime(ts); delta = ktime_to_ns(kt); err = ops->adjtime(ops, delta); } else if (tx->modes & ADJ_FREQUENCY) { long ppb = scaled_ppm_to_ppb(tx->freq); if (ppb > ops->max_adj || ppb < -ops->max_adj) return -ERANGE; err = ops->adjfine(ops, tx->freq); ptp->dialed_frequency = tx->freq; } else if (tx->modes & ADJ_OFFSET) { if (ops->adjphase) { s32 max_phase_adj = ops->getmaxphase(ops); s32 offset = tx->offset; if (!(tx->modes & ADJ_NANO)) offset *= NSEC_PER_USEC; if (offset > max_phase_adj || offset < -max_phase_adj) return -ERANGE; err = ops->adjphase(ops, offset); } } else if (tx->modes == 0) { tx->freq = ptp->dialed_frequency; err = 0; } return err; } static struct posix_clock_operations ptp_clock_ops = { .owner = THIS_MODULE, .clock_adjtime = ptp_clock_adjtime, .clock_gettime = ptp_clock_gettime, .clock_getres = ptp_clock_getres, .clock_settime = ptp_clock_settime, .ioctl = ptp_ioctl, .open = ptp_open, .poll = ptp_poll, .read = ptp_read, }; static void ptp_clock_release(struct device *dev) { struct ptp_clock *ptp = container_of(dev, struct ptp_clock, dev); ptp_cleanup_pin_groups(ptp); kfree(ptp->vclock_index); mutex_destroy(&ptp->tsevq_mux); mutex_destroy(&ptp->pincfg_mux); mutex_destroy(&ptp->n_vclocks_mux); ida_free(&ptp_clocks_map, ptp->index); kfree(ptp); } static int ptp_getcycles64(struct ptp_clock_info *info, struct timespec64 *ts) { if (info->getcyclesx64) return info->getcyclesx64(info, ts, NULL); else return info->gettime64(info, ts); } static void ptp_aux_kworker(struct kthread_work *work) { struct ptp_clock *ptp = container_of(work, struct ptp_clock, aux_work.work); struct ptp_clock_info *info = ptp->info; long delay; delay = info->do_aux_work(info); if (delay >= 0) kthread_queue_delayed_work(ptp->kworker, &ptp->aux_work, delay); } /* public interface */ struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info, struct device *parent) { struct ptp_clock *ptp; int err = 0, index, major = MAJOR(ptp_devt); size_t size; if (info->n_alarm > PTP_MAX_ALARMS) return ERR_PTR(-EINVAL); /* Initialize a clock structure. */ err = -ENOMEM; ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL); if (ptp == NULL) goto no_memory; index = ida_alloc_max(&ptp_clocks_map, MINORMASK, GFP_KERNEL); if (index < 0) { err = index; goto no_slot; } ptp->clock.ops = ptp_clock_ops; ptp->info = info; ptp->devid = MKDEV(major, index); ptp->index = index; spin_lock_init(&ptp->tsevq.lock); mutex_init(&ptp->tsevq_mux); mutex_init(&ptp->pincfg_mux); mutex_init(&ptp->n_vclocks_mux); init_waitqueue_head(&ptp->tsev_wq); if (ptp->info->getcycles64 || ptp->info->getcyclesx64) { ptp->has_cycles = true; if (!ptp->info->getcycles64 && ptp->info->getcyclesx64) ptp->info->getcycles64 = ptp_getcycles64; } else { /* Free running cycle counter not supported, use time. */ ptp->info->getcycles64 = ptp_getcycles64; if (ptp->info->gettimex64) ptp->info->getcyclesx64 = ptp->info->gettimex64; if (ptp->info->getcrosststamp) ptp->info->getcrosscycles = ptp->info->getcrosststamp; } if (ptp->info->do_aux_work) { kthread_init_delayed_work(&ptp->aux_work, ptp_aux_kworker); ptp->kworker = kthread_create_worker(0, "ptp%d", ptp->index); if (IS_ERR(ptp->kworker)) { err = PTR_ERR(ptp->kworker); pr_err("failed to create ptp aux_worker %d\n", err); goto kworker_err; } } /* PTP virtual clock is being registered under physical clock */ if (parent && parent->class && parent->class->name && strcmp(parent->class->name, "ptp") == 0) ptp->is_virtual_clock = true; if (!ptp->is_virtual_clock) { ptp->max_vclocks = PTP_DEFAULT_MAX_VCLOCKS; size = sizeof(int) * ptp->max_vclocks; ptp->vclock_index = kzalloc(size, GFP_KERNEL); if (!ptp->vclock_index) { err = -ENOMEM; goto no_mem_for_vclocks; } } err = ptp_populate_pin_groups(ptp); if (err) goto no_pin_groups; /* Register a new PPS source. */ if (info->pps) { struct pps_source_info pps; memset(&pps, 0, sizeof(pps)); snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index); pps.mode = PTP_PPS_MODE; pps.owner = info->owner; ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS); if (IS_ERR(ptp->pps_source)) { err = PTR_ERR(ptp->pps_source); pr_err("failed to register pps source\n"); goto no_pps; } ptp->pps_source->lookup_cookie = ptp; } /* Initialize a new device of our class in our clock structure. */ device_initialize(&ptp->dev); ptp->dev.devt = ptp->devid; ptp->dev.class = ptp_class; ptp->dev.parent = parent; ptp->dev.groups = ptp->pin_attr_groups; ptp->dev.release = ptp_clock_release; dev_set_drvdata(&ptp->dev, ptp); dev_set_name(&ptp->dev, "ptp%d", ptp->index); /* Create a posix clock and link it to the device. */ err = posix_clock_register(&ptp->clock, &ptp->dev); if (err) { if (ptp->pps_source) pps_unregister_source(ptp->pps_source); if (ptp->kworker) kthread_destroy_worker(ptp->kworker); put_device(&ptp->dev); pr_err("failed to create posix clock\n"); return ERR_PTR(err); } return ptp; no_pps: ptp_cleanup_pin_groups(ptp); no_pin_groups: kfree(ptp->vclock_index); no_mem_for_vclocks: if (ptp->kworker) kthread_destroy_worker(ptp->kworker); kworker_err: mutex_destroy(&ptp->tsevq_mux); mutex_destroy(&ptp->pincfg_mux); mutex_destroy(&ptp->n_vclocks_mux); ida_free(&ptp_clocks_map, index); no_slot: kfree(ptp); no_memory: return ERR_PTR(err); } EXPORT_SYMBOL(ptp_clock_register); static int unregister_vclock(struct device *dev, void *data) { struct ptp_clock *ptp = dev_get_drvdata(dev); ptp_vclock_unregister(info_to_vclock(ptp->info)); return 0; } int ptp_clock_unregister(struct ptp_clock *ptp) { if (ptp_vclock_in_use(ptp)) { device_for_each_child(&ptp->dev, NULL, unregister_vclock); } ptp->defunct = 1; wake_up_interruptible(&ptp->tsev_wq); if (ptp->kworker) { kthread_cancel_delayed_work_sync(&ptp->aux_work); kthread_destroy_worker(ptp->kworker); } /* Release the clock's resources. */ if (ptp->pps_source) pps_unregister_source(ptp->pps_source); posix_clock_unregister(&ptp->clock); return 0; } EXPORT_SYMBOL(ptp_clock_unregister); void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event) { struct pps_event_time evt; switch (event->type) { case PTP_CLOCK_ALARM: break; case PTP_CLOCK_EXTTS: enqueue_external_timestamp(&ptp->tsevq, event); wake_up_interruptible(&ptp->tsev_wq); break; case PTP_CLOCK_PPS: pps_get_ts(&evt); pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL); break; case PTP_CLOCK_PPSUSR: pps_event(ptp->pps_source, &event->pps_times, PTP_PPS_EVENT, NULL); break; } } EXPORT_SYMBOL(ptp_clock_event); int ptp_clock_index(struct ptp_clock *ptp) { return ptp->index; } EXPORT_SYMBOL(ptp_clock_index); int ptp_find_pin(struct ptp_clock *ptp, enum ptp_pin_function func, unsigned int chan) { struct ptp_pin_desc *pin = NULL; int i; for (i = 0; i < ptp->info->n_pins; i++) { if (ptp->info->pin_config[i].func == func && ptp->info->pin_config[i].chan == chan) { pin = &ptp->info->pin_config[i]; break; } } return pin ? i : -1; } EXPORT_SYMBOL(ptp_find_pin); int ptp_find_pin_unlocked(struct ptp_clock *ptp, enum ptp_pin_function func, unsigned int chan) { int result; mutex_lock(&ptp->pincfg_mux); result = ptp_find_pin(ptp, func, chan); mutex_unlock(&ptp->pincfg_mux); return result; } EXPORT_SYMBOL(ptp_find_pin_unlocked); int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay) { return kthread_mod_delayed_work(ptp->kworker, &ptp->aux_work, delay); } EXPORT_SYMBOL(ptp_schedule_worker); void ptp_cancel_worker_sync(struct ptp_clock *ptp) { kthread_cancel_delayed_work_sync(&ptp->aux_work); } EXPORT_SYMBOL(ptp_cancel_worker_sync); /* module operations */ static void __exit ptp_exit(void) { class_destroy(ptp_class); unregister_chrdev_region(ptp_devt, MINORMASK + 1); ida_destroy(&ptp_clocks_map); } static int __init ptp_init(void) { int err; ptp_class = class_create("ptp"); if (IS_ERR(ptp_class)) { pr_err("ptp: failed to allocate class\n"); return PTR_ERR(ptp_class); } err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp"); if (err < 0) { pr_err("ptp: failed to allocate device region\n"); goto no_region; } ptp_class->dev_groups = ptp_groups; pr_info("PTP clock support registered\n"); return 0; no_region: class_destroy(ptp_class); return err; } subsys_initcall(ptp_init); module_exit(ptp_exit); MODULE_AUTHOR("Richard Cochran <[email protected]>"); MODULE_DESCRIPTION("PTP clocks support"); MODULE_LICENSE("GPL");
linux-master
drivers/ptp/ptp_clock.c
// SPDX-License-Identifier: GPL-2.0 // // Copyright (C) 2018 Integrated Device Technology, Inc // #define pr_fmt(fmt) "IDT_82p33xxx: " fmt #include <linux/firmware.h> #include <linux/platform_device.h> #include <linux/module.h> #include <linux/ptp_clock_kernel.h> #include <linux/delay.h> #include <linux/jiffies.h> #include <linux/kernel.h> #include <linux/timekeeping.h> #include <linux/bitops.h> #include <linux/of.h> #include <linux/mfd/rsmu.h> #include <linux/mfd/idt82p33_reg.h> #include "ptp_private.h" #include "ptp_idt82p33.h" MODULE_DESCRIPTION("Driver for IDT 82p33xxx clock devices"); MODULE_AUTHOR("IDT support-1588 <[email protected]>"); MODULE_VERSION("1.0"); MODULE_LICENSE("GPL"); MODULE_FIRMWARE(FW_FILENAME); #define EXTTS_PERIOD_MS (95) /* Module Parameters */ static u32 phase_snap_threshold = SNAP_THRESHOLD_NS; module_param(phase_snap_threshold, uint, 0); MODULE_PARM_DESC(phase_snap_threshold, "threshold (10000ns by default) below which adjtime would use double dco"); static char *firmware; module_param(firmware, charp, 0); static struct ptp_pin_desc pin_config[MAX_PHC_PLL][MAX_TRIG_CLK]; static inline int idt82p33_read(struct idt82p33 *idt82p33, u16 regaddr, u8 *buf, u16 count) { return regmap_bulk_read(idt82p33->regmap, regaddr, buf, count); } static inline int idt82p33_write(struct idt82p33 *idt82p33, u16 regaddr, u8 *buf, u16 count) { return regmap_bulk_write(idt82p33->regmap, regaddr, buf, count); } static void idt82p33_byte_array_to_timespec(struct timespec64 *ts, u8 buf[TOD_BYTE_COUNT]) { time64_t sec; s32 nsec; u8 i; nsec = buf[3]; for (i = 0; i < 3; i++) { nsec <<= 8; nsec |= buf[2 - i]; } sec = buf[9]; for (i = 0; i < 5; i++) { sec <<= 8; sec |= buf[8 - i]; } ts->tv_sec = sec; ts->tv_nsec = nsec; } static void idt82p33_timespec_to_byte_array(struct timespec64 const *ts, u8 buf[TOD_BYTE_COUNT]) { time64_t sec; s32 nsec; u8 i; nsec = ts->tv_nsec; sec = ts->tv_sec; for (i = 0; i < 4; i++) { buf[i] = nsec & 0xff; nsec >>= 8; } for (i = 4; i < TOD_BYTE_COUNT; i++) { buf[i] = sec & 0xff; sec >>= 8; } } static int idt82p33_dpll_set_mode(struct idt82p33_channel *channel, enum pll_mode mode) { struct idt82p33 *idt82p33 = channel->idt82p33; u8 dpll_mode; int err; if (channel->pll_mode == mode) return 0; err = idt82p33_read(idt82p33, channel->dpll_mode_cnfg, &dpll_mode, sizeof(dpll_mode)); if (err) return err; dpll_mode &= ~(PLL_MODE_MASK << PLL_MODE_SHIFT); dpll_mode |= (mode << PLL_MODE_SHIFT); err = idt82p33_write(idt82p33, channel->dpll_mode_cnfg, &dpll_mode, sizeof(dpll_mode)); if (err) return err; channel->pll_mode = mode; return 0; } static int idt82p33_set_tod_trigger(struct idt82p33_channel *channel, u8 trigger, bool write) { struct idt82p33 *idt82p33 = channel->idt82p33; int err; u8 cfg; if (trigger > WR_TRIG_SEL_MAX) return -EINVAL; err = idt82p33_read(idt82p33, channel->dpll_tod_trigger, &cfg, sizeof(cfg)); if (err) return err; if (write == true) trigger = (trigger << WRITE_TRIGGER_SHIFT) | (cfg & READ_TRIGGER_MASK); else trigger = (trigger << READ_TRIGGER_SHIFT) | (cfg & WRITE_TRIGGER_MASK); return idt82p33_write(idt82p33, channel->dpll_tod_trigger, &trigger, sizeof(trigger)); } static int idt82p33_get_extts(struct idt82p33_channel *channel, struct timespec64 *ts) { struct idt82p33 *idt82p33 = channel->idt82p33; u8 buf[TOD_BYTE_COUNT]; int err; err = idt82p33_read(idt82p33, channel->dpll_tod_sts, buf, sizeof(buf)); if (err) return err; /* Since trigger is not self clearing itself, we have to poll tod_sts */ if (memcmp(buf, channel->extts_tod_sts, TOD_BYTE_COUNT) == 0) return -EAGAIN; memcpy(channel->extts_tod_sts, buf, TOD_BYTE_COUNT); idt82p33_byte_array_to_timespec(ts, buf); if (channel->discard_next_extts) { channel->discard_next_extts = false; return -EAGAIN; } return 0; } static int map_ref_to_tod_trig_sel(int ref, u8 *trigger) { int err = 0; switch (ref) { case 0: *trigger = HW_TOD_TRIG_SEL_IN12; break; case 1: *trigger = HW_TOD_TRIG_SEL_IN13; break; case 2: *trigger = HW_TOD_TRIG_SEL_IN14; break; default: err = -EINVAL; } return err; } static bool is_one_shot(u8 mask) { /* Treat single bit PLL masks as continuous trigger */ if ((mask == 1) || (mask == 2)) return false; else return true; } static int arm_tod_read_with_trigger(struct idt82p33_channel *channel, u8 trigger) { struct idt82p33 *idt82p33 = channel->idt82p33; u8 buf[TOD_BYTE_COUNT]; int err; /* Remember the current tod_sts before setting the trigger */ err = idt82p33_read(idt82p33, channel->dpll_tod_sts, buf, sizeof(buf)); if (err) return err; memcpy(channel->extts_tod_sts, buf, TOD_BYTE_COUNT); err = idt82p33_set_tod_trigger(channel, trigger, false); if (err) dev_err(idt82p33->dev, "%s: err = %d", __func__, err); return err; } static int idt82p33_extts_enable(struct idt82p33_channel *channel, struct ptp_clock_request *rq, int on) { u8 index = rq->extts.index; struct idt82p33 *idt82p33; u8 mask = 1 << index; int err = 0; u8 old_mask; u8 trigger; int ref; idt82p33 = channel->idt82p33; old_mask = idt82p33->extts_mask; /* Reject requests with unsupported flags */ if (rq->extts.flags & ~(PTP_ENABLE_FEATURE | PTP_RISING_EDGE | PTP_FALLING_EDGE | PTP_STRICT_FLAGS)) return -EOPNOTSUPP; /* Reject requests to enable time stamping on falling edge */ if ((rq->extts.flags & PTP_ENABLE_FEATURE) && (rq->extts.flags & PTP_FALLING_EDGE)) return -EOPNOTSUPP; if (index >= MAX_PHC_PLL) return -EINVAL; if (on) { /* Return if it was already enabled */ if (idt82p33->extts_mask & mask) return 0; /* Use the pin configured for the channel */ ref = ptp_find_pin(channel->ptp_clock, PTP_PF_EXTTS, channel->plln); if (ref < 0) { dev_err(idt82p33->dev, "%s: No valid pin found for Pll%d!\n", __func__, channel->plln); return -EBUSY; } err = map_ref_to_tod_trig_sel(ref, &trigger); if (err) { dev_err(idt82p33->dev, "%s: Unsupported ref %d!\n", __func__, ref); return err; } err = arm_tod_read_with_trigger(&idt82p33->channel[index], trigger); if (err == 0) { idt82p33->extts_mask |= mask; idt82p33->channel[index].tod_trigger = trigger; idt82p33->event_channel[index] = channel; idt82p33->extts_single_shot = is_one_shot(idt82p33->extts_mask); if (old_mask) return 0; schedule_delayed_work(&idt82p33->extts_work, msecs_to_jiffies(EXTTS_PERIOD_MS)); } } else { idt82p33->extts_mask &= ~mask; idt82p33->extts_single_shot = is_one_shot(idt82p33->extts_mask); if (idt82p33->extts_mask == 0) cancel_delayed_work(&idt82p33->extts_work); } return err; } static int idt82p33_extts_check_channel(struct idt82p33 *idt82p33, u8 todn) { struct idt82p33_channel *event_channel; struct ptp_clock_event event; struct timespec64 ts; int err; err = idt82p33_get_extts(&idt82p33->channel[todn], &ts); if (err == 0) { event_channel = idt82p33->event_channel[todn]; event.type = PTP_CLOCK_EXTTS; event.index = todn; event.timestamp = timespec64_to_ns(&ts); ptp_clock_event(event_channel->ptp_clock, &event); } return err; } static u8 idt82p33_extts_enable_mask(struct idt82p33_channel *channel, u8 extts_mask, bool enable) { struct idt82p33 *idt82p33 = channel->idt82p33; u8 trigger = channel->tod_trigger; u8 mask; int err; int i; if (extts_mask == 0) return 0; if (enable == false) cancel_delayed_work_sync(&idt82p33->extts_work); for (i = 0; i < MAX_PHC_PLL; i++) { mask = 1 << i; if ((extts_mask & mask) == 0) continue; if (enable) { err = arm_tod_read_with_trigger(&idt82p33->channel[i], trigger); if (err) dev_err(idt82p33->dev, "%s: Arm ToD read trigger failed, err = %d", __func__, err); } else { err = idt82p33_extts_check_channel(idt82p33, i); if (err == 0 && idt82p33->extts_single_shot) /* trigger happened so we won't re-enable it */ extts_mask &= ~mask; } } if (enable) schedule_delayed_work(&idt82p33->extts_work, msecs_to_jiffies(EXTTS_PERIOD_MS)); return extts_mask; } static int _idt82p33_gettime(struct idt82p33_channel *channel, struct timespec64 *ts) { struct idt82p33 *idt82p33 = channel->idt82p33; u8 old_mask = idt82p33->extts_mask; u8 buf[TOD_BYTE_COUNT]; u8 new_mask = 0; int err; /* Disable extts */ if (old_mask) new_mask = idt82p33_extts_enable_mask(channel, old_mask, false); err = idt82p33_set_tod_trigger(channel, HW_TOD_RD_TRIG_SEL_LSB_TOD_STS, false); if (err) return err; channel->discard_next_extts = true; if (idt82p33->calculate_overhead_flag) idt82p33->start_time = ktime_get_raw(); err = idt82p33_read(idt82p33, channel->dpll_tod_sts, buf, sizeof(buf)); if (err) return err; /* Re-enable extts */ if (new_mask) idt82p33_extts_enable_mask(channel, new_mask, true); idt82p33_byte_array_to_timespec(ts, buf); return 0; } /* * TOD Trigger: * Bits[7:4] Write 0x9, MSB write * Bits[3:0] Read 0x9, LSB read */ static int _idt82p33_settime(struct idt82p33_channel *channel, struct timespec64 const *ts) { struct idt82p33 *idt82p33 = channel->idt82p33; struct timespec64 local_ts = *ts; char buf[TOD_BYTE_COUNT]; s64 dynamic_overhead_ns; int err; u8 i; err = idt82p33_set_tod_trigger(channel, HW_TOD_WR_TRIG_SEL_MSB_TOD_CNFG, true); if (err) return err; channel->discard_next_extts = true; if (idt82p33->calculate_overhead_flag) { dynamic_overhead_ns = ktime_to_ns(ktime_get_raw()) - ktime_to_ns(idt82p33->start_time); timespec64_add_ns(&local_ts, dynamic_overhead_ns); idt82p33->calculate_overhead_flag = 0; } idt82p33_timespec_to_byte_array(&local_ts, buf); /* * Store the new time value. */ for (i = 0; i < TOD_BYTE_COUNT; i++) { err = idt82p33_write(idt82p33, channel->dpll_tod_cnfg + i, &buf[i], sizeof(buf[i])); if (err) return err; } return err; } static int _idt82p33_adjtime_immediate(struct idt82p33_channel *channel, s64 delta_ns) { struct idt82p33 *idt82p33 = channel->idt82p33; struct timespec64 ts; s64 now_ns; int err; idt82p33->calculate_overhead_flag = 1; err = _idt82p33_gettime(channel, &ts); if (err) return err; now_ns = timespec64_to_ns(&ts); now_ns += delta_ns + idt82p33->tod_write_overhead_ns; ts = ns_to_timespec64(now_ns); err = _idt82p33_settime(channel, &ts); return err; } static int _idt82p33_adjtime_internal_triggered(struct idt82p33_channel *channel, s64 delta_ns) { struct idt82p33 *idt82p33 = channel->idt82p33; char buf[TOD_BYTE_COUNT]; struct timespec64 ts; const u8 delay_ns = 32; s32 remainder; s64 ns; int err; err = _idt82p33_gettime(channel, &ts); if (err) return err; if (ts.tv_nsec > (NSEC_PER_SEC - 5 * NSEC_PER_MSEC)) { /* Too close to miss next trigger, so skip it */ mdelay(6); ns = (ts.tv_sec + 2) * NSEC_PER_SEC + delta_ns + delay_ns; } else ns = (ts.tv_sec + 1) * NSEC_PER_SEC + delta_ns + delay_ns; ts = ns_to_timespec64(ns); idt82p33_timespec_to_byte_array(&ts, buf); /* * Store the new time value. */ err = idt82p33_write(idt82p33, channel->dpll_tod_cnfg, buf, sizeof(buf)); if (err) return err; /* Schedule to implement the workaround in one second */ (void)div_s64_rem(delta_ns, NSEC_PER_SEC, &remainder); if (remainder != 0) schedule_delayed_work(&channel->adjtime_work, HZ); return idt82p33_set_tod_trigger(channel, HW_TOD_TRIG_SEL_TOD_PPS, true); } static void idt82p33_adjtime_workaround(struct work_struct *work) { struct idt82p33_channel *channel = container_of(work, struct idt82p33_channel, adjtime_work.work); struct idt82p33 *idt82p33 = channel->idt82p33; mutex_lock(idt82p33->lock); /* Workaround for TOD-to-output alignment issue */ _idt82p33_adjtime_internal_triggered(channel, 0); mutex_unlock(idt82p33->lock); } static int _idt82p33_adjfine(struct idt82p33_channel *channel, long scaled_ppm) { struct idt82p33 *idt82p33 = channel->idt82p33; unsigned char buf[5] = {0}; int err, i; s64 fcw; /* * Frequency Control Word unit is: 1.6861512 * 10^-10 ppm * * adjfreq: * ppb * 10^14 * FCW = ----------- * 16861512 * * adjfine: * scaled_ppm * 5^12 * 10^5 * FCW = ------------------------ * 16861512 * 2^4 */ fcw = scaled_ppm * 762939453125ULL; fcw = div_s64(fcw, 8430756LL); for (i = 0; i < 5; i++) { buf[i] = fcw & 0xff; fcw >>= 8; } err = idt82p33_dpll_set_mode(channel, PLL_MODE_DCO); if (err) return err; err = idt82p33_write(idt82p33, channel->dpll_freq_cnfg, buf, sizeof(buf)); return err; } /* ppb = scaled_ppm * 125 / 2^13 */ static s32 idt82p33_ddco_scaled_ppm(long current_ppm, s32 ddco_ppb) { s64 scaled_ppm = div_s64(((s64)ddco_ppb << 13), 125); s64 max_scaled_ppm = div_s64(((s64)DCO_MAX_PPB << 13), 125); current_ppm += scaled_ppm; if (current_ppm > max_scaled_ppm) current_ppm = max_scaled_ppm; else if (current_ppm < -max_scaled_ppm) current_ppm = -max_scaled_ppm; return (s32)current_ppm; } static int idt82p33_stop_ddco(struct idt82p33_channel *channel) { int err; err = _idt82p33_adjfine(channel, channel->current_freq); if (err) return err; channel->ddco = false; return 0; } static int idt82p33_start_ddco(struct idt82p33_channel *channel, s32 delta_ns) { s32 current_ppm = channel->current_freq; u32 duration_ms = MSEC_PER_SEC; s32 ppb; int err; /* If the ToD correction is less than 5 nanoseconds, then skip it. * The error introduced by the ToD adjustment procedure would be bigger * than the required ToD correction */ if (abs(delta_ns) < DDCO_THRESHOLD_NS) return 0; /* For most cases, keep ddco duration 1 second */ ppb = delta_ns; while (abs(ppb) > DCO_MAX_PPB) { duration_ms *= 2; ppb /= 2; } err = _idt82p33_adjfine(channel, idt82p33_ddco_scaled_ppm(current_ppm, ppb)); if (err) return err; /* schedule the worker to cancel ddco */ ptp_schedule_worker(channel->ptp_clock, msecs_to_jiffies(duration_ms) - 1); channel->ddco = true; return 0; } static int idt82p33_measure_one_byte_write_overhead( struct idt82p33_channel *channel, s64 *overhead_ns) { struct idt82p33 *idt82p33 = channel->idt82p33; ktime_t start, stop; u8 trigger = 0; s64 total_ns; int err; u8 i; total_ns = 0; *overhead_ns = 0; for (i = 0; i < MAX_MEASURMENT_COUNT; i++) { start = ktime_get_raw(); err = idt82p33_write(idt82p33, channel->dpll_tod_trigger, &trigger, sizeof(trigger)); stop = ktime_get_raw(); if (err) return err; total_ns += ktime_to_ns(stop) - ktime_to_ns(start); } *overhead_ns = div_s64(total_ns, MAX_MEASURMENT_COUNT); return err; } static int idt82p33_measure_one_byte_read_overhead( struct idt82p33_channel *channel, s64 *overhead_ns) { struct idt82p33 *idt82p33 = channel->idt82p33; ktime_t start, stop; u8 trigger = 0; s64 total_ns; int err; u8 i; total_ns = 0; *overhead_ns = 0; for (i = 0; i < MAX_MEASURMENT_COUNT; i++) { start = ktime_get_raw(); err = idt82p33_read(idt82p33, channel->dpll_tod_trigger, &trigger, sizeof(trigger)); stop = ktime_get_raw(); if (err) return err; total_ns += ktime_to_ns(stop) - ktime_to_ns(start); } *overhead_ns = div_s64(total_ns, MAX_MEASURMENT_COUNT); return err; } static int idt82p33_measure_tod_write_9_byte_overhead( struct idt82p33_channel *channel) { struct idt82p33 *idt82p33 = channel->idt82p33; u8 buf[TOD_BYTE_COUNT]; ktime_t start, stop; s64 total_ns; int err = 0; u8 i, j; total_ns = 0; idt82p33->tod_write_overhead_ns = 0; for (i = 0; i < MAX_MEASURMENT_COUNT; i++) { start = ktime_get_raw(); /* Need one less byte for applicable overhead */ for (j = 0; j < (TOD_BYTE_COUNT - 1); j++) { err = idt82p33_write(idt82p33, channel->dpll_tod_cnfg + i, &buf[i], sizeof(buf[i])); if (err) return err; } stop = ktime_get_raw(); total_ns += ktime_to_ns(stop) - ktime_to_ns(start); } idt82p33->tod_write_overhead_ns = div_s64(total_ns, MAX_MEASURMENT_COUNT); return err; } static int idt82p33_measure_settime_gettime_gap_overhead( struct idt82p33_channel *channel, s64 *overhead_ns) { struct timespec64 ts1 = {0, 0}; struct timespec64 ts2; int err; *overhead_ns = 0; err = _idt82p33_settime(channel, &ts1); if (err) return err; err = _idt82p33_gettime(channel, &ts2); if (!err) *overhead_ns = timespec64_to_ns(&ts2) - timespec64_to_ns(&ts1); return err; } static int idt82p33_measure_tod_write_overhead(struct idt82p33_channel *channel) { s64 trailing_overhead_ns, one_byte_write_ns, gap_ns, one_byte_read_ns; struct idt82p33 *idt82p33 = channel->idt82p33; int err; idt82p33->tod_write_overhead_ns = 0; err = idt82p33_measure_settime_gettime_gap_overhead(channel, &gap_ns); if (err) { dev_err(idt82p33->dev, "Failed in %s with err %d!\n", __func__, err); return err; } err = idt82p33_measure_one_byte_write_overhead(channel, &one_byte_write_ns); if (err) return err; err = idt82p33_measure_one_byte_read_overhead(channel, &one_byte_read_ns); if (err) return err; err = idt82p33_measure_tod_write_9_byte_overhead(channel); if (err) return err; trailing_overhead_ns = gap_ns - 2 * one_byte_write_ns - one_byte_read_ns; idt82p33->tod_write_overhead_ns -= trailing_overhead_ns; return err; } static int idt82p33_check_and_set_masks(struct idt82p33 *idt82p33, u8 page, u8 offset, u8 val) { int err = 0; if (page == PLLMASK_ADDR_HI && offset == PLLMASK_ADDR_LO) { if ((val & 0xfc) || !(val & 0x3)) { dev_err(idt82p33->dev, "Invalid PLL mask 0x%x\n", val); err = -EINVAL; } else { idt82p33->pll_mask = val; } } else if (page == PLL0_OUTMASK_ADDR_HI && offset == PLL0_OUTMASK_ADDR_LO) { idt82p33->channel[0].output_mask = val; } else if (page == PLL1_OUTMASK_ADDR_HI && offset == PLL1_OUTMASK_ADDR_LO) { idt82p33->channel[1].output_mask = val; } return err; } static void idt82p33_display_masks(struct idt82p33 *idt82p33) { u8 mask, i; dev_info(idt82p33->dev, "pllmask = 0x%02x\n", idt82p33->pll_mask); for (i = 0; i < MAX_PHC_PLL; i++) { mask = 1 << i; if (mask & idt82p33->pll_mask) dev_info(idt82p33->dev, "PLL%d output_mask = 0x%04x\n", i, idt82p33->channel[i].output_mask); } } static int idt82p33_sync_tod(struct idt82p33_channel *channel, bool enable) { struct idt82p33 *idt82p33 = channel->idt82p33; u8 sync_cnfg; int err; err = idt82p33_read(idt82p33, channel->dpll_sync_cnfg, &sync_cnfg, sizeof(sync_cnfg)); if (err) return err; sync_cnfg &= ~SYNC_TOD; if (enable) sync_cnfg |= SYNC_TOD; return idt82p33_write(idt82p33, channel->dpll_sync_cnfg, &sync_cnfg, sizeof(sync_cnfg)); } static long idt82p33_work_handler(struct ptp_clock_info *ptp) { struct idt82p33_channel *channel = container_of(ptp, struct idt82p33_channel, caps); struct idt82p33 *idt82p33 = channel->idt82p33; mutex_lock(idt82p33->lock); (void)idt82p33_stop_ddco(channel); mutex_unlock(idt82p33->lock); /* Return a negative value here to not reschedule */ return -1; } static int idt82p33_output_enable(struct idt82p33_channel *channel, bool enable, unsigned int outn) { struct idt82p33 *idt82p33 = channel->idt82p33; int err; u8 val; err = idt82p33_read(idt82p33, OUT_MUX_CNFG(outn), &val, sizeof(val)); if (err) return err; if (enable) val &= ~SQUELCH_ENABLE; else val |= SQUELCH_ENABLE; return idt82p33_write(idt82p33, OUT_MUX_CNFG(outn), &val, sizeof(val)); } static int idt82p33_perout_enable(struct idt82p33_channel *channel, bool enable, struct ptp_perout_request *perout) { /* Enable/disable individual output instead */ return idt82p33_output_enable(channel, enable, perout->index); } static int idt82p33_enable_tod(struct idt82p33_channel *channel) { struct idt82p33 *idt82p33 = channel->idt82p33; struct timespec64 ts = {0, 0}; int err; err = idt82p33_measure_tod_write_overhead(channel); if (err) { dev_err(idt82p33->dev, "Failed in %s with err %d!\n", __func__, err); return err; } err = _idt82p33_settime(channel, &ts); if (err) return err; return idt82p33_sync_tod(channel, true); } static void idt82p33_ptp_clock_unregister_all(struct idt82p33 *idt82p33) { struct idt82p33_channel *channel; u8 i; for (i = 0; i < MAX_PHC_PLL; i++) { channel = &idt82p33->channel[i]; cancel_delayed_work_sync(&channel->adjtime_work); if (channel->ptp_clock) ptp_clock_unregister(channel->ptp_clock); } } static int idt82p33_enable(struct ptp_clock_info *ptp, struct ptp_clock_request *rq, int on) { struct idt82p33_channel *channel = container_of(ptp, struct idt82p33_channel, caps); struct idt82p33 *idt82p33 = channel->idt82p33; int err = -EOPNOTSUPP; mutex_lock(idt82p33->lock); switch (rq->type) { case PTP_CLK_REQ_PEROUT: if (!on) err = idt82p33_perout_enable(channel, false, &rq->perout); /* Only accept a 1-PPS aligned to the second. */ else if (rq->perout.start.nsec || rq->perout.period.sec != 1 || rq->perout.period.nsec) err = -ERANGE; else err = idt82p33_perout_enable(channel, true, &rq->perout); break; case PTP_CLK_REQ_EXTTS: err = idt82p33_extts_enable(channel, rq, on); break; default: break; } mutex_unlock(idt82p33->lock); if (err) dev_err(idt82p33->dev, "Failed in %s with err %d!\n", __func__, err); return err; } static s32 idt82p33_getmaxphase(__always_unused struct ptp_clock_info *ptp) { return WRITE_PHASE_OFFSET_LIMIT; } static int idt82p33_adjwritephase(struct ptp_clock_info *ptp, s32 offset_ns) { struct idt82p33_channel *channel = container_of(ptp, struct idt82p33_channel, caps); struct idt82p33 *idt82p33 = channel->idt82p33; s64 offset_regval; u8 val[4] = {0}; int err; /* Convert from phaseoffset_fs to register value */ offset_regval = div_s64((s64)(-offset_ns) * 1000000000ll, IDT_T0DPLL_PHASE_RESOL); val[0] = offset_regval & 0xFF; val[1] = (offset_regval >> 8) & 0xFF; val[2] = (offset_regval >> 16) & 0xFF; val[3] = (offset_regval >> 24) & 0x1F; val[3] |= PH_OFFSET_EN; mutex_lock(idt82p33->lock); err = idt82p33_dpll_set_mode(channel, PLL_MODE_WPH); if (err) { dev_err(idt82p33->dev, "Failed in %s with err %d!\n", __func__, err); goto out; } err = idt82p33_write(idt82p33, channel->dpll_phase_cnfg, val, sizeof(val)); out: mutex_unlock(idt82p33->lock); return err; } static int idt82p33_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) { struct idt82p33_channel *channel = container_of(ptp, struct idt82p33_channel, caps); struct idt82p33 *idt82p33 = channel->idt82p33; int err; if (channel->ddco == true) return 0; if (scaled_ppm == channel->current_freq) return 0; mutex_lock(idt82p33->lock); err = _idt82p33_adjfine(channel, scaled_ppm); if (err == 0) channel->current_freq = scaled_ppm; mutex_unlock(idt82p33->lock); if (err) dev_err(idt82p33->dev, "Failed in %s with err %d!\n", __func__, err); return err; } static int idt82p33_adjtime(struct ptp_clock_info *ptp, s64 delta_ns) { struct idt82p33_channel *channel = container_of(ptp, struct idt82p33_channel, caps); struct idt82p33 *idt82p33 = channel->idt82p33; int err; if (channel->ddco == true) return -EBUSY; mutex_lock(idt82p33->lock); if (abs(delta_ns) < phase_snap_threshold) { err = idt82p33_start_ddco(channel, delta_ns); mutex_unlock(idt82p33->lock); return err; } /* Use more accurate internal 1pps triggered write first */ err = _idt82p33_adjtime_internal_triggered(channel, delta_ns); if (err && delta_ns > IMMEDIATE_SNAP_THRESHOLD_NS) err = _idt82p33_adjtime_immediate(channel, delta_ns); mutex_unlock(idt82p33->lock); if (err) dev_err(idt82p33->dev, "Failed in %s with err %d!\n", __func__, err); return err; } static int idt82p33_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) { struct idt82p33_channel *channel = container_of(ptp, struct idt82p33_channel, caps); struct idt82p33 *idt82p33 = channel->idt82p33; int err; mutex_lock(idt82p33->lock); err = _idt82p33_gettime(channel, ts); mutex_unlock(idt82p33->lock); if (err) dev_err(idt82p33->dev, "Failed in %s with err %d!\n", __func__, err); return err; } static int idt82p33_settime(struct ptp_clock_info *ptp, const struct timespec64 *ts) { struct idt82p33_channel *channel = container_of(ptp, struct idt82p33_channel, caps); struct idt82p33 *idt82p33 = channel->idt82p33; int err; mutex_lock(idt82p33->lock); err = _idt82p33_settime(channel, ts); mutex_unlock(idt82p33->lock); if (err) dev_err(idt82p33->dev, "Failed in %s with err %d!\n", __func__, err); return err; } static int idt82p33_channel_init(struct idt82p33 *idt82p33, u32 index) { struct idt82p33_channel *channel = &idt82p33->channel[index]; switch (index) { case 0: channel->dpll_tod_cnfg = DPLL1_TOD_CNFG; channel->dpll_tod_trigger = DPLL1_TOD_TRIGGER; channel->dpll_tod_sts = DPLL1_TOD_STS; channel->dpll_mode_cnfg = DPLL1_OPERATING_MODE_CNFG; channel->dpll_freq_cnfg = DPLL1_HOLDOVER_FREQ_CNFG; channel->dpll_phase_cnfg = DPLL1_PHASE_OFFSET_CNFG; channel->dpll_sync_cnfg = DPLL1_SYNC_EDGE_CNFG; channel->dpll_input_mode_cnfg = DPLL1_INPUT_MODE_CNFG; break; case 1: channel->dpll_tod_cnfg = DPLL2_TOD_CNFG; channel->dpll_tod_trigger = DPLL2_TOD_TRIGGER; channel->dpll_tod_sts = DPLL2_TOD_STS; channel->dpll_mode_cnfg = DPLL2_OPERATING_MODE_CNFG; channel->dpll_freq_cnfg = DPLL2_HOLDOVER_FREQ_CNFG; channel->dpll_phase_cnfg = DPLL2_PHASE_OFFSET_CNFG; channel->dpll_sync_cnfg = DPLL2_SYNC_EDGE_CNFG; channel->dpll_input_mode_cnfg = DPLL2_INPUT_MODE_CNFG; break; default: return -EINVAL; } channel->plln = index; channel->current_freq = 0; channel->idt82p33 = idt82p33; INIT_DELAYED_WORK(&channel->adjtime_work, idt82p33_adjtime_workaround); return 0; } static int idt82p33_verify_pin(struct ptp_clock_info *ptp, unsigned int pin, enum ptp_pin_function func, unsigned int chan) { switch (func) { case PTP_PF_NONE: case PTP_PF_EXTTS: break; case PTP_PF_PEROUT: case PTP_PF_PHYSYNC: return -1; } return 0; } static void idt82p33_caps_init(u32 index, struct ptp_clock_info *caps, struct ptp_pin_desc *pin_cfg, u8 max_pins) { struct ptp_pin_desc *ppd; int i; caps->owner = THIS_MODULE; caps->max_adj = DCO_MAX_PPB; caps->n_per_out = MAX_PER_OUT; caps->n_ext_ts = MAX_PHC_PLL, caps->n_pins = max_pins, caps->adjphase = idt82p33_adjwritephase, caps->getmaxphase = idt82p33_getmaxphase, caps->adjfine = idt82p33_adjfine; caps->adjtime = idt82p33_adjtime; caps->gettime64 = idt82p33_gettime; caps->settime64 = idt82p33_settime; caps->enable = idt82p33_enable; caps->verify = idt82p33_verify_pin; caps->do_aux_work = idt82p33_work_handler; snprintf(caps->name, sizeof(caps->name), "IDT 82P33 PLL%u", index); caps->pin_config = pin_cfg; for (i = 0; i < max_pins; ++i) { ppd = &pin_cfg[i]; ppd->index = i; ppd->func = PTP_PF_NONE; ppd->chan = index; snprintf(ppd->name, sizeof(ppd->name), "in%d", 12 + i); } } static int idt82p33_enable_channel(struct idt82p33 *idt82p33, u32 index) { struct idt82p33_channel *channel; int err; if (!(index < MAX_PHC_PLL)) return -EINVAL; channel = &idt82p33->channel[index]; err = idt82p33_channel_init(idt82p33, index); if (err) { dev_err(idt82p33->dev, "Channel_init failed in %s with err %d!\n", __func__, err); return err; } idt82p33_caps_init(index, &channel->caps, pin_config[index], MAX_TRIG_CLK); channel->ptp_clock = ptp_clock_register(&channel->caps, NULL); if (IS_ERR(channel->ptp_clock)) { err = PTR_ERR(channel->ptp_clock); channel->ptp_clock = NULL; return err; } if (!channel->ptp_clock) return -ENOTSUPP; err = idt82p33_dpll_set_mode(channel, PLL_MODE_DCO); if (err) { dev_err(idt82p33->dev, "Dpll_set_mode failed in %s with err %d!\n", __func__, err); return err; } err = idt82p33_enable_tod(channel); if (err) { dev_err(idt82p33->dev, "Enable_tod failed in %s with err %d!\n", __func__, err); return err; } dev_info(idt82p33->dev, "PLL%d registered as ptp%d\n", index, channel->ptp_clock->index); return 0; } static int idt82p33_reset(struct idt82p33 *idt82p33, bool cold) { int err; u8 cfg = SOFT_RESET_EN; if (cold == true) goto cold_reset; err = idt82p33_read(idt82p33, REG_SOFT_RESET, &cfg, sizeof(cfg)); if (err) { dev_err(idt82p33->dev, "Soft reset failed with err %d!\n", err); return err; } cfg |= SOFT_RESET_EN; cold_reset: err = idt82p33_write(idt82p33, REG_SOFT_RESET, &cfg, sizeof(cfg)); if (err) dev_err(idt82p33->dev, "Cold reset failed with err %d!\n", err); return err; } static int idt82p33_load_firmware(struct idt82p33 *idt82p33) { char fname[128] = FW_FILENAME; const struct firmware *fw; struct idt82p33_fwrc *rec; u8 loaddr, page, val; int err; s32 len; if (firmware) /* module parameter */ snprintf(fname, sizeof(fname), "%s", firmware); dev_info(idt82p33->dev, "requesting firmware '%s'\n", fname); err = request_firmware(&fw, fname, idt82p33->dev); if (err) { dev_err(idt82p33->dev, "Failed in %s with err %d!\n", __func__, err); return err; } dev_dbg(idt82p33->dev, "firmware size %zu bytes\n", fw->size); rec = (struct idt82p33_fwrc *) fw->data; for (len = fw->size; len > 0; len -= sizeof(*rec)) { if (rec->reserved) { dev_err(idt82p33->dev, "bad firmware, reserved field non-zero\n"); err = -EINVAL; } else { val = rec->value; loaddr = rec->loaddr; page = rec->hiaddr; rec++; err = idt82p33_check_and_set_masks(idt82p33, page, loaddr, val); } if (err == 0) { /* Page size 128, last 4 bytes of page skipped */ if (loaddr > 0x7b) continue; err = idt82p33_write(idt82p33, REG_ADDR(page, loaddr), &val, sizeof(val)); } if (err) goto out; } idt82p33_display_masks(idt82p33); out: release_firmware(fw); return err; } static void idt82p33_extts_check(struct work_struct *work) { struct idt82p33 *idt82p33 = container_of(work, struct idt82p33, extts_work.work); struct idt82p33_channel *channel; int err; u8 mask; int i; if (idt82p33->extts_mask == 0) return; mutex_lock(idt82p33->lock); for (i = 0; i < MAX_PHC_PLL; i++) { mask = 1 << i; if ((idt82p33->extts_mask & mask) == 0) continue; err = idt82p33_extts_check_channel(idt82p33, i); if (err == 0) { /* trigger clears itself, so clear the mask */ if (idt82p33->extts_single_shot) { idt82p33->extts_mask &= ~mask; } else { /* Re-arm */ channel = &idt82p33->channel[i]; arm_tod_read_with_trigger(channel, channel->tod_trigger); } } } if (idt82p33->extts_mask) schedule_delayed_work(&idt82p33->extts_work, msecs_to_jiffies(EXTTS_PERIOD_MS)); mutex_unlock(idt82p33->lock); } static int idt82p33_probe(struct platform_device *pdev) { struct rsmu_ddata *ddata = dev_get_drvdata(pdev->dev.parent); struct idt82p33 *idt82p33; int err; u8 i; idt82p33 = devm_kzalloc(&pdev->dev, sizeof(struct idt82p33), GFP_KERNEL); if (!idt82p33) return -ENOMEM; idt82p33->dev = &pdev->dev; idt82p33->mfd = pdev->dev.parent; idt82p33->lock = &ddata->lock; idt82p33->regmap = ddata->regmap; idt82p33->tod_write_overhead_ns = 0; idt82p33->calculate_overhead_flag = 0; idt82p33->pll_mask = DEFAULT_PLL_MASK; idt82p33->channel[0].output_mask = DEFAULT_OUTPUT_MASK_PLL0; idt82p33->channel[1].output_mask = DEFAULT_OUTPUT_MASK_PLL1; idt82p33->extts_mask = 0; INIT_DELAYED_WORK(&idt82p33->extts_work, idt82p33_extts_check); mutex_lock(idt82p33->lock); /* cold reset before loading firmware */ idt82p33_reset(idt82p33, true); err = idt82p33_load_firmware(idt82p33); if (err) dev_warn(idt82p33->dev, "loading firmware failed with %d\n", err); /* soft reset after loading firmware */ idt82p33_reset(idt82p33, false); if (idt82p33->pll_mask) { for (i = 0; i < MAX_PHC_PLL; i++) { if (idt82p33->pll_mask & (1 << i)) err = idt82p33_enable_channel(idt82p33, i); else err = idt82p33_channel_init(idt82p33, i); if (err) { dev_err(idt82p33->dev, "Failed in %s with err %d!\n", __func__, err); break; } } } else { dev_err(idt82p33->dev, "no PLLs flagged as PHCs, nothing to do\n"); err = -ENODEV; } mutex_unlock(idt82p33->lock); if (err) { idt82p33_ptp_clock_unregister_all(idt82p33); return err; } platform_set_drvdata(pdev, idt82p33); return 0; } static int idt82p33_remove(struct platform_device *pdev) { struct idt82p33 *idt82p33 = platform_get_drvdata(pdev); cancel_delayed_work_sync(&idt82p33->extts_work); idt82p33_ptp_clock_unregister_all(idt82p33); return 0; } static struct platform_driver idt82p33_driver = { .driver = { .name = "82p33x1x-phc", }, .probe = idt82p33_probe, .remove = idt82p33_remove, }; module_platform_driver(idt82p33_driver);
linux-master
drivers/ptp/ptp_idt82p33.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Virtual PTP 1588 clock for use with KVM guests * * Copyright (C) 2017 Red Hat Inc. */ #include <linux/device.h> #include <linux/err.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/ptp_kvm.h> #include <uapi/linux/kvm_para.h> #include <asm/kvm_para.h> #include <uapi/asm/kvm_para.h> #include <linux/ptp_clock_kernel.h> struct kvm_ptp_clock { struct ptp_clock *ptp_clock; struct ptp_clock_info caps; }; static DEFINE_SPINLOCK(kvm_ptp_lock); static int ptp_kvm_get_time_fn(ktime_t *device_time, struct system_counterval_t *system_counter, void *ctx) { long ret; u64 cycle; struct timespec64 tspec; struct clocksource *cs; spin_lock(&kvm_ptp_lock); preempt_disable_notrace(); ret = kvm_arch_ptp_get_crosststamp(&cycle, &tspec, &cs); if (ret) { spin_unlock(&kvm_ptp_lock); preempt_enable_notrace(); return ret; } preempt_enable_notrace(); system_counter->cycles = cycle; system_counter->cs = cs; *device_time = timespec64_to_ktime(tspec); spin_unlock(&kvm_ptp_lock); return 0; } static int ptp_kvm_getcrosststamp(struct ptp_clock_info *ptp, struct system_device_crosststamp *xtstamp) { return get_device_system_crosststamp(ptp_kvm_get_time_fn, NULL, NULL, xtstamp); } /* * PTP clock operations */ static int ptp_kvm_adjfine(struct ptp_clock_info *ptp, long delta) { return -EOPNOTSUPP; } static int ptp_kvm_adjtime(struct ptp_clock_info *ptp, s64 delta) { return -EOPNOTSUPP; } static int ptp_kvm_settime(struct ptp_clock_info *ptp, const struct timespec64 *ts) { return -EOPNOTSUPP; } static int ptp_kvm_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) { long ret; struct timespec64 tspec; spin_lock(&kvm_ptp_lock); ret = kvm_arch_ptp_get_clock(&tspec); if (ret) { spin_unlock(&kvm_ptp_lock); return ret; } spin_unlock(&kvm_ptp_lock); memcpy(ts, &tspec, sizeof(struct timespec64)); return 0; } static int ptp_kvm_enable(struct ptp_clock_info *ptp, struct ptp_clock_request *rq, int on) { return -EOPNOTSUPP; } static const struct ptp_clock_info ptp_kvm_caps = { .owner = THIS_MODULE, .name = "KVM virtual PTP", .max_adj = 0, .n_ext_ts = 0, .n_pins = 0, .pps = 0, .adjfine = ptp_kvm_adjfine, .adjtime = ptp_kvm_adjtime, .gettime64 = ptp_kvm_gettime, .settime64 = ptp_kvm_settime, .enable = ptp_kvm_enable, .getcrosststamp = ptp_kvm_getcrosststamp, }; /* module operations */ static struct kvm_ptp_clock kvm_ptp_clock; static void __exit ptp_kvm_exit(void) { ptp_clock_unregister(kvm_ptp_clock.ptp_clock); kvm_arch_ptp_exit(); } static int __init ptp_kvm_init(void) { long ret; ret = kvm_arch_ptp_init(); if (ret) { if (ret != -EOPNOTSUPP) pr_err("fail to initialize ptp_kvm"); return ret; } kvm_ptp_clock.caps = ptp_kvm_caps; kvm_ptp_clock.ptp_clock = ptp_clock_register(&kvm_ptp_clock.caps, NULL); return PTR_ERR_OR_ZERO(kvm_ptp_clock.ptp_clock); } module_init(ptp_kvm_init); module_exit(ptp_kvm_exit); MODULE_AUTHOR("Marcelo Tosatti <[email protected]>"); MODULE_DESCRIPTION("PTP clock using KVMCLOCK"); MODULE_LICENSE("GPL");
linux-master
drivers/ptp/ptp_kvm_common.c
// SPDX-License-Identifier: GPL-2.0-only /* * DFL device driver for Time-of-Day (ToD) private feature * * Copyright (C) 2023 Intel Corporation */ #include <linux/bitfield.h> #include <linux/delay.h> #include <linux/dfl.h> #include <linux/gcd.h> #include <linux/iopoll.h> #include <linux/module.h> #include <linux/ptp_clock_kernel.h> #include <linux/spinlock.h> #include <linux/units.h> #define FME_FEATURE_ID_TOD 0x22 /* ToD clock register space. */ #define TOD_CLK_FREQ 0x038 /* * The read sequence of ToD timestamp registers: TOD_NANOSEC, TOD_SECONDSL and * TOD_SECONDSH, because there is a hardware snapshot whenever the TOD_NANOSEC * register is read. * * The ToD IP requires writing registers in the reverse order to the read sequence. * The timestamp is corrected when the TOD_NANOSEC register is written, so the * sequence of write TOD registers: TOD_SECONDSH, TOD_SECONDSL and TOD_NANOSEC. */ #define TOD_SECONDSH 0x100 #define TOD_SECONDSL 0x104 #define TOD_NANOSEC 0x108 #define TOD_PERIOD 0x110 #define TOD_ADJUST_PERIOD 0x114 #define TOD_ADJUST_COUNT 0x118 #define TOD_DRIFT_ADJUST 0x11c #define TOD_DRIFT_ADJUST_RATE 0x120 #define PERIOD_FRAC_OFFSET 16 #define SECONDS_MSB GENMASK_ULL(47, 32) #define SECONDS_LSB GENMASK_ULL(31, 0) #define TOD_SECONDSH_SEC_MSB GENMASK_ULL(15, 0) #define CAL_SECONDS(m, l) ((FIELD_GET(TOD_SECONDSH_SEC_MSB, (m)) << 32) | (l)) #define TOD_PERIOD_MASK GENMASK_ULL(19, 0) #define TOD_PERIOD_MAX FIELD_MAX(TOD_PERIOD_MASK) #define TOD_PERIOD_MIN 0 #define TOD_DRIFT_ADJUST_MASK GENMASK_ULL(15, 0) #define TOD_DRIFT_ADJUST_FNS_MAX FIELD_MAX(TOD_DRIFT_ADJUST_MASK) #define TOD_DRIFT_ADJUST_RATE_MAX TOD_DRIFT_ADJUST_FNS_MAX #define TOD_ADJUST_COUNT_MASK GENMASK_ULL(19, 0) #define TOD_ADJUST_COUNT_MAX FIELD_MAX(TOD_ADJUST_COUNT_MASK) #define TOD_ADJUST_INTERVAL_US 10 #define TOD_ADJUST_MS \ (((TOD_PERIOD_MAX >> 16) + 1) * (TOD_ADJUST_COUNT_MAX + 1)) #define TOD_ADJUST_MS_MAX (TOD_ADJUST_MS / MICRO) #define TOD_ADJUST_MAX_US (TOD_ADJUST_MS_MAX * USEC_PER_MSEC) #define TOD_MAX_ADJ (500 * MEGA) struct dfl_tod { struct ptp_clock_info ptp_clock_ops; struct device *dev; struct ptp_clock *ptp_clock; /* ToD Clock address space */ void __iomem *tod_ctrl; /* ToD clock registers protection */ spinlock_t tod_lock; }; /* * A fine ToD HW clock offset adjustment. To perform the fine offset adjustment, the * adjust_period and adjust_count argument are used to update the TOD_ADJUST_PERIOD * and TOD_ADJUST_COUNT register for in hardware. The dt->tod_lock spinlock must be * held when calling this function. */ static int fine_adjust_tod_clock(struct dfl_tod *dt, u32 adjust_period, u32 adjust_count) { void __iomem *base = dt->tod_ctrl; u32 val; writel(adjust_period, base + TOD_ADJUST_PERIOD); writel(adjust_count, base + TOD_ADJUST_COUNT); /* Wait for present offset adjustment update to complete */ return readl_poll_timeout_atomic(base + TOD_ADJUST_COUNT, val, !val, TOD_ADJUST_INTERVAL_US, TOD_ADJUST_MAX_US); } /* * A coarse ToD HW clock offset adjustment. The coarse time adjustment performs by * adding or subtracting the delta value from the current ToD HW clock time. */ static int coarse_adjust_tod_clock(struct dfl_tod *dt, s64 delta) { u32 seconds_msb, seconds_lsb, nanosec; void __iomem *base = dt->tod_ctrl; u64 seconds, now; if (delta == 0) return 0; nanosec = readl(base + TOD_NANOSEC); seconds_lsb = readl(base + TOD_SECONDSL); seconds_msb = readl(base + TOD_SECONDSH); /* Calculate new time */ seconds = CAL_SECONDS(seconds_msb, seconds_lsb); now = seconds * NSEC_PER_SEC + nanosec + delta; seconds = div_u64_rem(now, NSEC_PER_SEC, &nanosec); seconds_msb = FIELD_GET(SECONDS_MSB, seconds); seconds_lsb = FIELD_GET(SECONDS_LSB, seconds); writel(seconds_msb, base + TOD_SECONDSH); writel(seconds_lsb, base + TOD_SECONDSL); writel(nanosec, base + TOD_NANOSEC); return 0; } static int dfl_tod_adjust_fine(struct ptp_clock_info *ptp, long scaled_ppm) { struct dfl_tod *dt = container_of(ptp, struct dfl_tod, ptp_clock_ops); u32 tod_period, tod_rem, tod_drift_adjust_fns, tod_drift_adjust_rate; void __iomem *base = dt->tod_ctrl; unsigned long flags, rate; u64 ppb; /* Get the clock rate from clock frequency register offset */ rate = readl(base + TOD_CLK_FREQ); /* add GIGA as nominal ppb */ ppb = scaled_ppm_to_ppb(scaled_ppm) + GIGA; tod_period = div_u64_rem(ppb << PERIOD_FRAC_OFFSET, rate, &tod_rem); if (tod_period > TOD_PERIOD_MAX) return -ERANGE; /* * The drift of ToD adjusted periodically by adding a drift_adjust_fns * correction value every drift_adjust_rate count of clock cycles. */ tod_drift_adjust_fns = tod_rem / gcd(tod_rem, rate); tod_drift_adjust_rate = rate / gcd(tod_rem, rate); while ((tod_drift_adjust_fns > TOD_DRIFT_ADJUST_FNS_MAX) || (tod_drift_adjust_rate > TOD_DRIFT_ADJUST_RATE_MAX)) { tod_drift_adjust_fns >>= 1; tod_drift_adjust_rate >>= 1; } if (tod_drift_adjust_fns == 0) tod_drift_adjust_rate = 0; spin_lock_irqsave(&dt->tod_lock, flags); writel(tod_period, base + TOD_PERIOD); writel(0, base + TOD_ADJUST_PERIOD); writel(0, base + TOD_ADJUST_COUNT); writel(tod_drift_adjust_fns, base + TOD_DRIFT_ADJUST); writel(tod_drift_adjust_rate, base + TOD_DRIFT_ADJUST_RATE); spin_unlock_irqrestore(&dt->tod_lock, flags); return 0; } static int dfl_tod_adjust_time(struct ptp_clock_info *ptp, s64 delta) { struct dfl_tod *dt = container_of(ptp, struct dfl_tod, ptp_clock_ops); u32 period, diff, rem, rem_period, adj_period; void __iomem *base = dt->tod_ctrl; unsigned long flags; bool neg_adj; u64 count; int ret; neg_adj = delta < 0; if (neg_adj) delta = -delta; spin_lock_irqsave(&dt->tod_lock, flags); /* * Get the maximum possible value of the Period register offset * adjustment in nanoseconds scale. This depends on the current * Period register setting and the maximum and minimum possible * values of the Period register. */ period = readl(base + TOD_PERIOD); if (neg_adj) { diff = (period - TOD_PERIOD_MIN) >> PERIOD_FRAC_OFFSET; adj_period = period - (diff << PERIOD_FRAC_OFFSET); count = div_u64_rem(delta, diff, &rem); rem_period = period - (rem << PERIOD_FRAC_OFFSET); } else { diff = (TOD_PERIOD_MAX - period) >> PERIOD_FRAC_OFFSET; adj_period = period + (diff << PERIOD_FRAC_OFFSET); count = div_u64_rem(delta, diff, &rem); rem_period = period + (rem << PERIOD_FRAC_OFFSET); } ret = 0; if (count > TOD_ADJUST_COUNT_MAX) { ret = coarse_adjust_tod_clock(dt, delta); } else { /* Adjust the period by count cycles to adjust the time */ if (count) ret = fine_adjust_tod_clock(dt, adj_period, count); /* If there is a remainder, adjust the period for an additional cycle */ if (rem) ret = fine_adjust_tod_clock(dt, rem_period, 1); } spin_unlock_irqrestore(&dt->tod_lock, flags); return ret; } static int dfl_tod_get_timex(struct ptp_clock_info *ptp, struct timespec64 *ts, struct ptp_system_timestamp *sts) { struct dfl_tod *dt = container_of(ptp, struct dfl_tod, ptp_clock_ops); u32 seconds_msb, seconds_lsb, nanosec; void __iomem *base = dt->tod_ctrl; unsigned long flags; u64 seconds; spin_lock_irqsave(&dt->tod_lock, flags); ptp_read_system_prets(sts); nanosec = readl(base + TOD_NANOSEC); seconds_lsb = readl(base + TOD_SECONDSL); seconds_msb = readl(base + TOD_SECONDSH); ptp_read_system_postts(sts); spin_unlock_irqrestore(&dt->tod_lock, flags); seconds = CAL_SECONDS(seconds_msb, seconds_lsb); ts->tv_nsec = nanosec; ts->tv_sec = seconds; return 0; } static int dfl_tod_set_time(struct ptp_clock_info *ptp, const struct timespec64 *ts) { struct dfl_tod *dt = container_of(ptp, struct dfl_tod, ptp_clock_ops); u32 seconds_msb = FIELD_GET(SECONDS_MSB, ts->tv_sec); u32 seconds_lsb = FIELD_GET(SECONDS_LSB, ts->tv_sec); u32 nanosec = FIELD_GET(SECONDS_LSB, ts->tv_nsec); void __iomem *base = dt->tod_ctrl; unsigned long flags; spin_lock_irqsave(&dt->tod_lock, flags); writel(seconds_msb, base + TOD_SECONDSH); writel(seconds_lsb, base + TOD_SECONDSL); writel(nanosec, base + TOD_NANOSEC); spin_unlock_irqrestore(&dt->tod_lock, flags); return 0; } static struct ptp_clock_info dfl_tod_clock_ops = { .owner = THIS_MODULE, .name = "dfl_tod", .max_adj = TOD_MAX_ADJ, .adjfine = dfl_tod_adjust_fine, .adjtime = dfl_tod_adjust_time, .gettimex64 = dfl_tod_get_timex, .settime64 = dfl_tod_set_time, }; static int dfl_tod_probe(struct dfl_device *ddev) { struct device *dev = &ddev->dev; struct dfl_tod *dt; dt = devm_kzalloc(dev, sizeof(*dt), GFP_KERNEL); if (!dt) return -ENOMEM; dt->tod_ctrl = devm_ioremap_resource(dev, &ddev->mmio_res); if (IS_ERR(dt->tod_ctrl)) return PTR_ERR(dt->tod_ctrl); dt->dev = dev; spin_lock_init(&dt->tod_lock); dev_set_drvdata(dev, dt); dt->ptp_clock_ops = dfl_tod_clock_ops; dt->ptp_clock = ptp_clock_register(&dt->ptp_clock_ops, dev); if (IS_ERR(dt->ptp_clock)) return dev_err_probe(dt->dev, PTR_ERR(dt->ptp_clock), "Unable to register PTP clock\n"); return 0; } static void dfl_tod_remove(struct dfl_device *ddev) { struct dfl_tod *dt = dev_get_drvdata(&ddev->dev); ptp_clock_unregister(dt->ptp_clock); } static const struct dfl_device_id dfl_tod_ids[] = { { FME_ID, FME_FEATURE_ID_TOD }, { } }; MODULE_DEVICE_TABLE(dfl, dfl_tod_ids); static struct dfl_driver dfl_tod_driver = { .drv = { .name = "dfl-tod", }, .id_table = dfl_tod_ids, .probe = dfl_tod_probe, .remove = dfl_tod_remove, }; module_dfl_driver(dfl_tod_driver); MODULE_DESCRIPTION("FPGA DFL ToD driver"); MODULE_AUTHOR("Intel Corporation"); MODULE_LICENSE("GPL");
linux-master
drivers/ptp/ptp_dfl_tod.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright 2023 NXP * * Mock-up PTP Hardware Clock driver for virtual network devices * * Create a PTP clock which offers PTP time manipulation operations * using a timecounter/cyclecounter on top of CLOCK_MONOTONIC_RAW. */ #include <linux/ptp_clock_kernel.h> #include <linux/ptp_mock.h> #include <linux/timecounter.h> /* Clamp scaled_ppm between -2,097,152,000 and 2,097,152,000, * and thus "adj" between -68,719,476 and 68,719,476 */ #define MOCK_PHC_MAX_ADJ_PPB 32000000 /* Timestamps from ktime_get_raw() have 1 ns resolution, so the scale factor * (MULT >> SHIFT) needs to be 1. Pick SHIFT as 31 bits, which translates * MULT(freq 0) into 0x80000000. */ #define MOCK_PHC_CC_SHIFT 31 #define MOCK_PHC_CC_MULT (1 << MOCK_PHC_CC_SHIFT) #define MOCK_PHC_FADJ_SHIFT 9 #define MOCK_PHC_FADJ_DENOMINATOR 15625ULL /* The largest cycle_delta that timecounter_read_delta() can handle without a * 64-bit overflow during the multiplication with cc->mult, given the max "adj" * we permit, is ~8.3 seconds. Make sure readouts are more frequent than that. */ #define MOCK_PHC_REFRESH_INTERVAL (HZ * 5) #define info_to_phc(d) container_of((d), struct mock_phc, info) struct mock_phc { struct ptp_clock_info info; struct ptp_clock *clock; struct timecounter tc; struct cyclecounter cc; spinlock_t lock; }; static u64 mock_phc_cc_read(const struct cyclecounter *cc) { return ktime_get_raw_ns(); } static int mock_phc_adjfine(struct ptp_clock_info *info, long scaled_ppm) { struct mock_phc *phc = info_to_phc(info); s64 adj; adj = (s64)scaled_ppm << MOCK_PHC_FADJ_SHIFT; adj = div_s64(adj, MOCK_PHC_FADJ_DENOMINATOR); spin_lock(&phc->lock); timecounter_read(&phc->tc); phc->cc.mult = MOCK_PHC_CC_MULT + adj; spin_unlock(&phc->lock); return 0; } static int mock_phc_adjtime(struct ptp_clock_info *info, s64 delta) { struct mock_phc *phc = info_to_phc(info); spin_lock(&phc->lock); timecounter_adjtime(&phc->tc, delta); spin_unlock(&phc->lock); return 0; } static int mock_phc_settime64(struct ptp_clock_info *info, const struct timespec64 *ts) { struct mock_phc *phc = info_to_phc(info); u64 ns = timespec64_to_ns(ts); spin_lock(&phc->lock); timecounter_init(&phc->tc, &phc->cc, ns); spin_unlock(&phc->lock); return 0; } static int mock_phc_gettime64(struct ptp_clock_info *info, struct timespec64 *ts) { struct mock_phc *phc = info_to_phc(info); u64 ns; spin_lock(&phc->lock); ns = timecounter_read(&phc->tc); spin_unlock(&phc->lock); *ts = ns_to_timespec64(ns); return 0; } static long mock_phc_refresh(struct ptp_clock_info *info) { struct timespec64 ts; mock_phc_gettime64(info, &ts); return MOCK_PHC_REFRESH_INTERVAL; } int mock_phc_index(struct mock_phc *phc) { return ptp_clock_index(phc->clock); } EXPORT_SYMBOL_GPL(mock_phc_index); struct mock_phc *mock_phc_create(struct device *dev) { struct mock_phc *phc; int err; phc = kzalloc(sizeof(*phc), GFP_KERNEL); if (!phc) { err = -ENOMEM; goto out; } phc->info = (struct ptp_clock_info) { .owner = THIS_MODULE, .name = "Mock-up PTP clock", .max_adj = MOCK_PHC_MAX_ADJ_PPB, .adjfine = mock_phc_adjfine, .adjtime = mock_phc_adjtime, .gettime64 = mock_phc_gettime64, .settime64 = mock_phc_settime64, .do_aux_work = mock_phc_refresh, }; phc->cc = (struct cyclecounter) { .read = mock_phc_cc_read, .mask = CYCLECOUNTER_MASK(64), .mult = MOCK_PHC_CC_MULT, .shift = MOCK_PHC_CC_SHIFT, }; spin_lock_init(&phc->lock); timecounter_init(&phc->tc, &phc->cc, 0); phc->clock = ptp_clock_register(&phc->info, dev); if (IS_ERR(phc->clock)) { err = PTR_ERR(phc->clock); goto out_free_phc; } ptp_schedule_worker(phc->clock, MOCK_PHC_REFRESH_INTERVAL); return phc; out_free_phc: kfree(phc); out: return ERR_PTR(err); } EXPORT_SYMBOL_GPL(mock_phc_create); void mock_phc_destroy(struct mock_phc *phc) { ptp_clock_unregister(phc->clock); kfree(phc); } EXPORT_SYMBOL_GPL(mock_phc_destroy); MODULE_DESCRIPTION("Mock-up PTP Hardware Clock driver"); MODULE_LICENSE("GPL");
linux-master
drivers/ptp/ptp_mock.c
// SPDX-License-Identifier: GPL-2.0-only /* * Virtual PTP 1588 clock for use with KVM guests * Copyright (C) 2019 ARM Ltd. * All Rights Reserved */ #include <linux/arm-smccc.h> #include <linux/ptp_kvm.h> #include <asm/arch_timer.h> #include <asm/hypervisor.h> int kvm_arch_ptp_init(void) { int ret; ret = kvm_arm_hyp_service_available(ARM_SMCCC_KVM_FUNC_PTP); if (ret <= 0) return -EOPNOTSUPP; return 0; } void kvm_arch_ptp_exit(void) { } int kvm_arch_ptp_get_clock(struct timespec64 *ts) { return kvm_arch_ptp_get_crosststamp(NULL, ts, NULL); }
linux-master
drivers/ptp/ptp_kvm_arm.c
// SPDX-License-Identifier: GPL-2.0+ /* * PTP hardware clock driver for the IDT ClockMatrix(TM) family of timing and * synchronization devices. * * Copyright (C) 2019 Integrated Device Technology, Inc., a Renesas Company. */ #include <linux/firmware.h> #include <linux/platform_device.h> #include <linux/module.h> #include <linux/ptp_clock_kernel.h> #include <linux/delay.h> #include <linux/jiffies.h> #include <linux/kernel.h> #include <linux/timekeeping.h> #include <linux/string.h> #include <linux/of.h> #include <linux/mfd/rsmu.h> #include <linux/mfd/idt8a340_reg.h> #include <asm/unaligned.h> #include "ptp_private.h" #include "ptp_clockmatrix.h" MODULE_DESCRIPTION("Driver for IDT ClockMatrix(TM) family"); MODULE_AUTHOR("Richard Cochran <[email protected]>"); MODULE_AUTHOR("IDT support-1588 <[email protected]>"); MODULE_VERSION("1.0"); MODULE_LICENSE("GPL"); /* * The name of the firmware file to be loaded * over-rides any automatic selection */ static char *firmware; module_param(firmware, charp, 0); #define SETTIME_CORRECTION (0) #define EXTTS_PERIOD_MS (95) static int _idtcm_adjfine(struct idtcm_channel *channel, long scaled_ppm); static inline int idtcm_read(struct idtcm *idtcm, u16 module, u16 regaddr, u8 *buf, u16 count) { return regmap_bulk_read(idtcm->regmap, module + regaddr, buf, count); } static inline int idtcm_write(struct idtcm *idtcm, u16 module, u16 regaddr, u8 *buf, u16 count) { return regmap_bulk_write(idtcm->regmap, module + regaddr, buf, count); } static int contains_full_configuration(struct idtcm *idtcm, const struct firmware *fw) { struct idtcm_fwrc *rec = (struct idtcm_fwrc *)fw->data; u16 scratch = IDTCM_FW_REG(idtcm->fw_ver, V520, SCRATCH); s32 full_count; s32 count = 0; u16 regaddr; u8 loaddr; s32 len; /* 4 bytes skipped every 0x80 */ full_count = (scratch - GPIO_USER_CONTROL) - ((scratch >> 7) - (GPIO_USER_CONTROL >> 7)) * 4; /* If the firmware contains 'full configuration' SM_RESET can be used * to ensure proper configuration. * * Full configuration is defined as the number of programmable * bytes within the configuration range minus page offset addr range. */ for (len = fw->size; len > 0; len -= sizeof(*rec)) { regaddr = rec->hiaddr << 8; regaddr |= rec->loaddr; loaddr = rec->loaddr; rec++; /* Top (status registers) and bottom are read-only */ if (regaddr < GPIO_USER_CONTROL || regaddr >= scratch) continue; /* Page size 128, last 4 bytes of page skipped */ if ((loaddr > 0x7b && loaddr <= 0x7f) || loaddr > 0xfb) continue; count++; } return (count >= full_count); } static int char_array_to_timespec(u8 *buf, u8 count, struct timespec64 *ts) { u8 i; u64 nsec; time64_t sec; if (count < TOD_BYTE_COUNT) return 1; /* Sub-nanoseconds are in buf[0]. */ nsec = buf[4]; for (i = 0; i < 3; i++) { nsec <<= 8; nsec |= buf[3 - i]; } sec = buf[10]; for (i = 0; i < 5; i++) { sec <<= 8; sec |= buf[9 - i]; } ts->tv_sec = sec; ts->tv_nsec = nsec; return 0; } static int timespec_to_char_array(struct timespec64 const *ts, u8 *buf, u8 count) { u8 i; s32 nsec; time64_t sec; if (count < TOD_BYTE_COUNT) return 1; nsec = ts->tv_nsec; sec = ts->tv_sec; /* Sub-nanoseconds are in buf[0]. */ buf[0] = 0; for (i = 1; i < 5; i++) { buf[i] = nsec & 0xff; nsec >>= 8; } for (i = 5; i < TOD_BYTE_COUNT; i++) { buf[i] = sec & 0xff; sec >>= 8; } return 0; } static int idtcm_strverscmp(const char *version1, const char *version2) { u8 ver1[3], ver2[3]; int i; if (sscanf(version1, "%hhu.%hhu.%hhu", &ver1[0], &ver1[1], &ver1[2]) != 3) return -1; if (sscanf(version2, "%hhu.%hhu.%hhu", &ver2[0], &ver2[1], &ver2[2]) != 3) return -1; for (i = 0; i < 3; i++) { if (ver1[i] > ver2[i]) return 1; if (ver1[i] < ver2[i]) return -1; } return 0; } static enum fw_version idtcm_fw_version(const char *version) { enum fw_version ver = V_DEFAULT; if (idtcm_strverscmp(version, "4.8.7") >= 0) ver = V487; if (idtcm_strverscmp(version, "5.2.0") >= 0) ver = V520; return ver; } static int clear_boot_status(struct idtcm *idtcm) { u8 buf[4] = {0}; return idtcm_write(idtcm, GENERAL_STATUS, BOOT_STATUS, buf, sizeof(buf)); } static int read_boot_status(struct idtcm *idtcm, u32 *status) { int err; u8 buf[4] = {0}; err = idtcm_read(idtcm, GENERAL_STATUS, BOOT_STATUS, buf, sizeof(buf)); *status = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0]; return err; } static int wait_for_boot_status_ready(struct idtcm *idtcm) { u32 status = 0; u8 i = 30; /* 30 * 100ms = 3s */ int err; do { err = read_boot_status(idtcm, &status); if (err) return err; if (status == 0xA0) return 0; msleep(100); i--; } while (i); dev_warn(idtcm->dev, "%s timed out", __func__); return -EBUSY; } static int arm_tod_read_trig_sel_refclk(struct idtcm_channel *channel, u8 ref) { struct idtcm *idtcm = channel->idtcm; u16 tod_read_cmd = IDTCM_FW_REG(idtcm->fw_ver, V520, TOD_READ_SECONDARY_CMD); u8 val = 0; int err; val &= ~(WR_REF_INDEX_MASK << WR_REF_INDEX_SHIFT); val |= (ref << WR_REF_INDEX_SHIFT); err = idtcm_write(idtcm, channel->tod_read_secondary, TOD_READ_SECONDARY_SEL_CFG_0, &val, sizeof(val)); if (err) return err; val = 0 | (SCSR_TOD_READ_TRIG_SEL_REFCLK << TOD_READ_TRIGGER_SHIFT); err = idtcm_write(idtcm, channel->tod_read_secondary, tod_read_cmd, &val, sizeof(val)); if (err) dev_err(idtcm->dev, "%s: err = %d", __func__, err); return err; } static bool is_single_shot(u8 mask) { /* Treat single bit ToD masks as continuous trigger */ return !(mask <= 8 && is_power_of_2(mask)); } static int idtcm_extts_enable(struct idtcm_channel *channel, struct ptp_clock_request *rq, int on) { u8 index = rq->extts.index; struct idtcm *idtcm; u8 mask = 1 << index; int err = 0; u8 old_mask; int ref; idtcm = channel->idtcm; old_mask = idtcm->extts_mask; /* Reject requests with unsupported flags */ if (rq->extts.flags & ~(PTP_ENABLE_FEATURE | PTP_RISING_EDGE | PTP_FALLING_EDGE | PTP_STRICT_FLAGS)) return -EOPNOTSUPP; /* Reject requests to enable time stamping on falling edge */ if ((rq->extts.flags & PTP_ENABLE_FEATURE) && (rq->extts.flags & PTP_FALLING_EDGE)) return -EOPNOTSUPP; if (index >= MAX_TOD) return -EINVAL; if (on) { /* Support triggering more than one TOD_0/1/2/3 by same pin */ /* Use the pin configured for the channel */ ref = ptp_find_pin(channel->ptp_clock, PTP_PF_EXTTS, channel->tod); if (ref < 0) { dev_err(idtcm->dev, "%s: No valid pin found for TOD%d!\n", __func__, channel->tod); return -EBUSY; } err = arm_tod_read_trig_sel_refclk(&idtcm->channel[index], ref); if (err == 0) { idtcm->extts_mask |= mask; idtcm->event_channel[index] = channel; idtcm->channel[index].refn = ref; idtcm->extts_single_shot = is_single_shot(idtcm->extts_mask); if (old_mask) return 0; schedule_delayed_work(&idtcm->extts_work, msecs_to_jiffies(EXTTS_PERIOD_MS)); } } else { idtcm->extts_mask &= ~mask; idtcm->extts_single_shot = is_single_shot(idtcm->extts_mask); if (idtcm->extts_mask == 0) cancel_delayed_work(&idtcm->extts_work); } return err; } static int read_sys_apll_status(struct idtcm *idtcm, u8 *status) { return idtcm_read(idtcm, STATUS, DPLL_SYS_APLL_STATUS, status, sizeof(u8)); } static int read_sys_dpll_status(struct idtcm *idtcm, u8 *status) { return idtcm_read(idtcm, STATUS, DPLL_SYS_STATUS, status, sizeof(u8)); } static int wait_for_sys_apll_dpll_lock(struct idtcm *idtcm) { unsigned long timeout = jiffies + msecs_to_jiffies(LOCK_TIMEOUT_MS); u8 apll = 0; u8 dpll = 0; int err; do { err = read_sys_apll_status(idtcm, &apll); if (err) return err; err = read_sys_dpll_status(idtcm, &dpll); if (err) return err; apll &= SYS_APLL_LOSS_LOCK_LIVE_MASK; dpll &= DPLL_SYS_STATE_MASK; if (apll == SYS_APLL_LOSS_LOCK_LIVE_LOCKED && dpll == DPLL_STATE_LOCKED) { return 0; } else if (dpll == DPLL_STATE_FREERUN || dpll == DPLL_STATE_HOLDOVER || dpll == DPLL_STATE_OPEN_LOOP) { dev_warn(idtcm->dev, "No wait state: DPLL_SYS_STATE %d", dpll); return -EPERM; } msleep(LOCK_POLL_INTERVAL_MS); } while (time_is_after_jiffies(timeout)); dev_warn(idtcm->dev, "%d ms lock timeout: SYS APLL Loss Lock %d SYS DPLL state %d", LOCK_TIMEOUT_MS, apll, dpll); return -ETIME; } static void wait_for_chip_ready(struct idtcm *idtcm) { if (wait_for_boot_status_ready(idtcm)) dev_warn(idtcm->dev, "BOOT_STATUS != 0xA0"); if (wait_for_sys_apll_dpll_lock(idtcm)) dev_warn(idtcm->dev, "Continuing while SYS APLL/DPLL is not locked"); } static int _idtcm_gettime_triggered(struct idtcm_channel *channel, struct timespec64 *ts) { struct idtcm *idtcm = channel->idtcm; u16 tod_read_cmd = IDTCM_FW_REG(idtcm->fw_ver, V520, TOD_READ_SECONDARY_CMD); u8 buf[TOD_BYTE_COUNT]; u8 trigger; int err; err = idtcm_read(idtcm, channel->tod_read_secondary, tod_read_cmd, &trigger, sizeof(trigger)); if (err) return err; if (trigger & TOD_READ_TRIGGER_MASK) return -EBUSY; err = idtcm_read(idtcm, channel->tod_read_secondary, TOD_READ_SECONDARY_BASE, buf, sizeof(buf)); if (err) return err; return char_array_to_timespec(buf, sizeof(buf), ts); } static int _idtcm_gettime(struct idtcm_channel *channel, struct timespec64 *ts, u8 timeout) { struct idtcm *idtcm = channel->idtcm; u16 tod_read_cmd = IDTCM_FW_REG(idtcm->fw_ver, V520, TOD_READ_PRIMARY_CMD); u8 buf[TOD_BYTE_COUNT]; u8 trigger; int err; /* wait trigger to be 0 */ do { if (timeout-- == 0) return -EIO; if (idtcm->calculate_overhead_flag) idtcm->start_time = ktime_get_raw(); err = idtcm_read(idtcm, channel->tod_read_primary, tod_read_cmd, &trigger, sizeof(trigger)); if (err) return err; } while (trigger & TOD_READ_TRIGGER_MASK); err = idtcm_read(idtcm, channel->tod_read_primary, TOD_READ_PRIMARY_BASE, buf, sizeof(buf)); if (err) return err; err = char_array_to_timespec(buf, sizeof(buf), ts); return err; } static int idtcm_extts_check_channel(struct idtcm *idtcm, u8 todn) { struct idtcm_channel *ptp_channel, *extts_channel; struct ptp_clock_event event; struct timespec64 ts; u32 dco_delay = 0; int err; extts_channel = &idtcm->channel[todn]; ptp_channel = idtcm->event_channel[todn]; if (extts_channel == ptp_channel) dco_delay = ptp_channel->dco_delay; err = _idtcm_gettime_triggered(extts_channel, &ts); if (err) return err; /* Triggered - save timestamp */ event.type = PTP_CLOCK_EXTTS; event.index = todn; event.timestamp = timespec64_to_ns(&ts) - dco_delay; ptp_clock_event(ptp_channel->ptp_clock, &event); return err; } static int _idtcm_gettime_immediate(struct idtcm_channel *channel, struct timespec64 *ts) { struct idtcm *idtcm = channel->idtcm; u16 tod_read_cmd = IDTCM_FW_REG(idtcm->fw_ver, V520, TOD_READ_PRIMARY_CMD); u8 val = (SCSR_TOD_READ_TRIG_SEL_IMMEDIATE << TOD_READ_TRIGGER_SHIFT); int err; err = idtcm_write(idtcm, channel->tod_read_primary, tod_read_cmd, &val, sizeof(val)); if (err) return err; return _idtcm_gettime(channel, ts, 10); } static int _sync_pll_output(struct idtcm *idtcm, u8 pll, u8 sync_src, u8 qn, u8 qn_plus_1) { int err; u8 val; u16 sync_ctrl0; u16 sync_ctrl1; u8 temp; if (qn == 0 && qn_plus_1 == 0) return 0; switch (pll) { case 0: sync_ctrl0 = HW_Q0_Q1_CH_SYNC_CTRL_0; sync_ctrl1 = HW_Q0_Q1_CH_SYNC_CTRL_1; break; case 1: sync_ctrl0 = HW_Q2_Q3_CH_SYNC_CTRL_0; sync_ctrl1 = HW_Q2_Q3_CH_SYNC_CTRL_1; break; case 2: sync_ctrl0 = HW_Q4_Q5_CH_SYNC_CTRL_0; sync_ctrl1 = HW_Q4_Q5_CH_SYNC_CTRL_1; break; case 3: sync_ctrl0 = HW_Q6_Q7_CH_SYNC_CTRL_0; sync_ctrl1 = HW_Q6_Q7_CH_SYNC_CTRL_1; break; case 4: sync_ctrl0 = HW_Q8_CH_SYNC_CTRL_0; sync_ctrl1 = HW_Q8_CH_SYNC_CTRL_1; break; case 5: sync_ctrl0 = HW_Q9_CH_SYNC_CTRL_0; sync_ctrl1 = HW_Q9_CH_SYNC_CTRL_1; break; case 6: sync_ctrl0 = HW_Q10_CH_SYNC_CTRL_0; sync_ctrl1 = HW_Q10_CH_SYNC_CTRL_1; break; case 7: sync_ctrl0 = HW_Q11_CH_SYNC_CTRL_0; sync_ctrl1 = HW_Q11_CH_SYNC_CTRL_1; break; default: return -EINVAL; } val = SYNCTRL1_MASTER_SYNC_RST; /* Place master sync in reset */ err = idtcm_write(idtcm, 0, sync_ctrl1, &val, sizeof(val)); if (err) return err; err = idtcm_write(idtcm, 0, sync_ctrl0, &sync_src, sizeof(sync_src)); if (err) return err; /* Set sync trigger mask */ val |= SYNCTRL1_FBDIV_FRAME_SYNC_TRIG | SYNCTRL1_FBDIV_SYNC_TRIG; if (qn) val |= SYNCTRL1_Q0_DIV_SYNC_TRIG; if (qn_plus_1) val |= SYNCTRL1_Q1_DIV_SYNC_TRIG; err = idtcm_write(idtcm, 0, sync_ctrl1, &val, sizeof(val)); if (err) return err; /* PLL5 can have OUT8 as second additional output. */ if (pll == 5 && qn_plus_1 != 0) { err = idtcm_read(idtcm, 0, HW_Q8_CTRL_SPARE, &temp, sizeof(temp)); if (err) return err; temp &= ~(Q9_TO_Q8_SYNC_TRIG); err = idtcm_write(idtcm, 0, HW_Q8_CTRL_SPARE, &temp, sizeof(temp)); if (err) return err; temp |= Q9_TO_Q8_SYNC_TRIG; err = idtcm_write(idtcm, 0, HW_Q8_CTRL_SPARE, &temp, sizeof(temp)); if (err) return err; } /* PLL6 can have OUT11 as second additional output. */ if (pll == 6 && qn_plus_1 != 0) { err = idtcm_read(idtcm, 0, HW_Q11_CTRL_SPARE, &temp, sizeof(temp)); if (err) return err; temp &= ~(Q10_TO_Q11_SYNC_TRIG); err = idtcm_write(idtcm, 0, HW_Q11_CTRL_SPARE, &temp, sizeof(temp)); if (err) return err; temp |= Q10_TO_Q11_SYNC_TRIG; err = idtcm_write(idtcm, 0, HW_Q11_CTRL_SPARE, &temp, sizeof(temp)); if (err) return err; } /* Place master sync out of reset */ val &= ~(SYNCTRL1_MASTER_SYNC_RST); err = idtcm_write(idtcm, 0, sync_ctrl1, &val, sizeof(val)); return err; } static int idtcm_sync_pps_output(struct idtcm_channel *channel) { struct idtcm *idtcm = channel->idtcm; u8 pll; u8 qn; u8 qn_plus_1; int err = 0; u8 out8_mux = 0; u8 out11_mux = 0; u8 temp; u16 output_mask = channel->output_mask; err = idtcm_read(idtcm, 0, HW_Q8_CTRL_SPARE, &temp, sizeof(temp)); if (err) return err; if ((temp & Q9_TO_Q8_FANOUT_AND_CLOCK_SYNC_ENABLE_MASK) == Q9_TO_Q8_FANOUT_AND_CLOCK_SYNC_ENABLE_MASK) out8_mux = 1; err = idtcm_read(idtcm, 0, HW_Q11_CTRL_SPARE, &temp, sizeof(temp)); if (err) return err; if ((temp & Q10_TO_Q11_FANOUT_AND_CLOCK_SYNC_ENABLE_MASK) == Q10_TO_Q11_FANOUT_AND_CLOCK_SYNC_ENABLE_MASK) out11_mux = 1; for (pll = 0; pll < 8; pll++) { qn = 0; qn_plus_1 = 0; if (pll < 4) { /* First 4 pll has 2 outputs */ qn = output_mask & 0x1; output_mask = output_mask >> 1; qn_plus_1 = output_mask & 0x1; output_mask = output_mask >> 1; } else if (pll == 4) { if (out8_mux == 0) { qn = output_mask & 0x1; output_mask = output_mask >> 1; } } else if (pll == 5) { if (out8_mux) { qn_plus_1 = output_mask & 0x1; output_mask = output_mask >> 1; } qn = output_mask & 0x1; output_mask = output_mask >> 1; } else if (pll == 6) { qn = output_mask & 0x1; output_mask = output_mask >> 1; if (out11_mux) { qn_plus_1 = output_mask & 0x1; output_mask = output_mask >> 1; } } else if (pll == 7) { if (out11_mux == 0) { qn = output_mask & 0x1; output_mask = output_mask >> 1; } } if (qn != 0 || qn_plus_1 != 0) err = _sync_pll_output(idtcm, pll, channel->sync_src, qn, qn_plus_1); if (err) return err; } return err; } static int _idtcm_set_dpll_hw_tod(struct idtcm_channel *channel, struct timespec64 const *ts, enum hw_tod_write_trig_sel wr_trig) { struct idtcm *idtcm = channel->idtcm; u8 buf[TOD_BYTE_COUNT]; u8 cmd; int err; struct timespec64 local_ts = *ts; s64 total_overhead_ns; /* Configure HW TOD write trigger. */ err = idtcm_read(idtcm, channel->hw_dpll_n, HW_DPLL_TOD_CTRL_1, &cmd, sizeof(cmd)); if (err) return err; cmd &= ~(0x0f); cmd |= wr_trig | 0x08; err = idtcm_write(idtcm, channel->hw_dpll_n, HW_DPLL_TOD_CTRL_1, &cmd, sizeof(cmd)); if (err) return err; if (wr_trig != HW_TOD_WR_TRIG_SEL_MSB) { err = timespec_to_char_array(&local_ts, buf, sizeof(buf)); if (err) return err; err = idtcm_write(idtcm, channel->hw_dpll_n, HW_DPLL_TOD_OVR__0, buf, sizeof(buf)); if (err) return err; } /* ARM HW TOD write trigger. */ cmd &= ~(0x08); err = idtcm_write(idtcm, channel->hw_dpll_n, HW_DPLL_TOD_CTRL_1, &cmd, sizeof(cmd)); if (wr_trig == HW_TOD_WR_TRIG_SEL_MSB) { if (idtcm->calculate_overhead_flag) { /* Assumption: I2C @ 400KHz */ ktime_t diff = ktime_sub(ktime_get_raw(), idtcm->start_time); total_overhead_ns = ktime_to_ns(diff) + idtcm->tod_write_overhead_ns + SETTIME_CORRECTION; timespec64_add_ns(&local_ts, total_overhead_ns); idtcm->calculate_overhead_flag = 0; } err = timespec_to_char_array(&local_ts, buf, sizeof(buf)); if (err) return err; err = idtcm_write(idtcm, channel->hw_dpll_n, HW_DPLL_TOD_OVR__0, buf, sizeof(buf)); } return err; } static int _idtcm_set_dpll_scsr_tod(struct idtcm_channel *channel, struct timespec64 const *ts, enum scsr_tod_write_trig_sel wr_trig, enum scsr_tod_write_type_sel wr_type) { struct idtcm *idtcm = channel->idtcm; unsigned char buf[TOD_BYTE_COUNT], cmd; struct timespec64 local_ts = *ts; int err, count = 0; timespec64_add_ns(&local_ts, SETTIME_CORRECTION); err = timespec_to_char_array(&local_ts, buf, sizeof(buf)); if (err) return err; err = idtcm_write(idtcm, channel->tod_write, TOD_WRITE, buf, sizeof(buf)); if (err) return err; /* Trigger the write operation. */ err = idtcm_read(idtcm, channel->tod_write, TOD_WRITE_CMD, &cmd, sizeof(cmd)); if (err) return err; cmd &= ~(TOD_WRITE_SELECTION_MASK << TOD_WRITE_SELECTION_SHIFT); cmd &= ~(TOD_WRITE_TYPE_MASK << TOD_WRITE_TYPE_SHIFT); cmd |= (wr_trig << TOD_WRITE_SELECTION_SHIFT); cmd |= (wr_type << TOD_WRITE_TYPE_SHIFT); err = idtcm_write(idtcm, channel->tod_write, TOD_WRITE_CMD, &cmd, sizeof(cmd)); if (err) return err; /* Wait for the operation to complete. */ while (1) { /* pps trigger takes up to 1 sec to complete */ if (wr_trig == SCSR_TOD_WR_TRIG_SEL_TODPPS) msleep(50); err = idtcm_read(idtcm, channel->tod_write, TOD_WRITE_CMD, &cmd, sizeof(cmd)); if (err) return err; if ((cmd & TOD_WRITE_SELECTION_MASK) == 0) break; if (++count > 20) { dev_err(idtcm->dev, "Timed out waiting for the write counter"); return -EIO; } } return 0; } static int get_output_base_addr(enum fw_version ver, u8 outn) { int base; switch (outn) { case 0: base = IDTCM_FW_REG(ver, V520, OUTPUT_0); break; case 1: base = IDTCM_FW_REG(ver, V520, OUTPUT_1); break; case 2: base = IDTCM_FW_REG(ver, V520, OUTPUT_2); break; case 3: base = IDTCM_FW_REG(ver, V520, OUTPUT_3); break; case 4: base = IDTCM_FW_REG(ver, V520, OUTPUT_4); break; case 5: base = IDTCM_FW_REG(ver, V520, OUTPUT_5); break; case 6: base = IDTCM_FW_REG(ver, V520, OUTPUT_6); break; case 7: base = IDTCM_FW_REG(ver, V520, OUTPUT_7); break; case 8: base = IDTCM_FW_REG(ver, V520, OUTPUT_8); break; case 9: base = IDTCM_FW_REG(ver, V520, OUTPUT_9); break; case 10: base = IDTCM_FW_REG(ver, V520, OUTPUT_10); break; case 11: base = IDTCM_FW_REG(ver, V520, OUTPUT_11); break; default: base = -EINVAL; } return base; } static int _idtcm_settime_deprecated(struct idtcm_channel *channel, struct timespec64 const *ts) { struct idtcm *idtcm = channel->idtcm; int err; err = _idtcm_set_dpll_hw_tod(channel, ts, HW_TOD_WR_TRIG_SEL_MSB); if (err) { dev_err(idtcm->dev, "%s: Set HW ToD failed", __func__); return err; } return idtcm_sync_pps_output(channel); } static int _idtcm_settime(struct idtcm_channel *channel, struct timespec64 const *ts, enum scsr_tod_write_type_sel wr_type) { return _idtcm_set_dpll_scsr_tod(channel, ts, SCSR_TOD_WR_TRIG_SEL_IMMEDIATE, wr_type); } static int idtcm_set_phase_pull_in_offset(struct idtcm_channel *channel, s32 offset_ns) { int err; int i; struct idtcm *idtcm = channel->idtcm; u8 buf[4]; for (i = 0; i < 4; i++) { buf[i] = 0xff & (offset_ns); offset_ns >>= 8; } err = idtcm_write(idtcm, channel->dpll_phase_pull_in, PULL_IN_OFFSET, buf, sizeof(buf)); return err; } static int idtcm_set_phase_pull_in_slope_limit(struct idtcm_channel *channel, u32 max_ffo_ppb) { int err; u8 i; struct idtcm *idtcm = channel->idtcm; u8 buf[3]; if (max_ffo_ppb & 0xff000000) max_ffo_ppb = 0; for (i = 0; i < 3; i++) { buf[i] = 0xff & (max_ffo_ppb); max_ffo_ppb >>= 8; } err = idtcm_write(idtcm, channel->dpll_phase_pull_in, PULL_IN_SLOPE_LIMIT, buf, sizeof(buf)); return err; } static int idtcm_start_phase_pull_in(struct idtcm_channel *channel) { int err; struct idtcm *idtcm = channel->idtcm; u8 buf; err = idtcm_read(idtcm, channel->dpll_phase_pull_in, PULL_IN_CTRL, &buf, sizeof(buf)); if (err) return err; if (buf == 0) { buf = 0x01; err = idtcm_write(idtcm, channel->dpll_phase_pull_in, PULL_IN_CTRL, &buf, sizeof(buf)); } else { err = -EBUSY; } return err; } static int do_phase_pull_in_fw(struct idtcm_channel *channel, s32 offset_ns, u32 max_ffo_ppb) { int err; err = idtcm_set_phase_pull_in_offset(channel, -offset_ns); if (err) return err; err = idtcm_set_phase_pull_in_slope_limit(channel, max_ffo_ppb); if (err) return err; err = idtcm_start_phase_pull_in(channel); return err; } static int set_tod_write_overhead(struct idtcm_channel *channel) { struct idtcm *idtcm = channel->idtcm; s64 current_ns = 0; s64 lowest_ns = 0; int err; u8 i; ktime_t start; ktime_t stop; ktime_t diff; char buf[TOD_BYTE_COUNT] = {0}; /* Set page offset */ idtcm_write(idtcm, channel->hw_dpll_n, HW_DPLL_TOD_OVR__0, buf, sizeof(buf)); for (i = 0; i < TOD_WRITE_OVERHEAD_COUNT_MAX; i++) { start = ktime_get_raw(); err = idtcm_write(idtcm, channel->hw_dpll_n, HW_DPLL_TOD_OVR__0, buf, sizeof(buf)); if (err) return err; stop = ktime_get_raw(); diff = ktime_sub(stop, start); current_ns = ktime_to_ns(diff); if (i == 0) { lowest_ns = current_ns; } else { if (current_ns < lowest_ns) lowest_ns = current_ns; } } idtcm->tod_write_overhead_ns = lowest_ns; return err; } static int _idtcm_adjtime_deprecated(struct idtcm_channel *channel, s64 delta) { int err; struct idtcm *idtcm = channel->idtcm; struct timespec64 ts; s64 now; if (abs(delta) < PHASE_PULL_IN_THRESHOLD_NS_DEPRECATED) { err = channel->do_phase_pull_in(channel, delta, 0); } else { idtcm->calculate_overhead_flag = 1; err = set_tod_write_overhead(channel); if (err) return err; err = _idtcm_gettime_immediate(channel, &ts); if (err) return err; now = timespec64_to_ns(&ts); now += delta; ts = ns_to_timespec64(now); err = _idtcm_settime_deprecated(channel, &ts); } return err; } static int idtcm_state_machine_reset(struct idtcm *idtcm) { u8 byte = SM_RESET_CMD; u32 status = 0; int err; u8 i; clear_boot_status(idtcm); err = idtcm_write(idtcm, RESET_CTRL, IDTCM_FW_REG(idtcm->fw_ver, V520, SM_RESET), &byte, sizeof(byte)); if (!err) { for (i = 0; i < 30; i++) { msleep_interruptible(100); read_boot_status(idtcm, &status); if (status == 0xA0) { dev_dbg(idtcm->dev, "SM_RESET completed in %d ms", i * 100); break; } } if (!status) dev_err(idtcm->dev, "Timed out waiting for CM_RESET to complete"); } return err; } static int idtcm_read_hw_rev_id(struct idtcm *idtcm, u8 *hw_rev_id) { return idtcm_read(idtcm, HW_REVISION, REV_ID, hw_rev_id, sizeof(u8)); } static int idtcm_read_product_id(struct idtcm *idtcm, u16 *product_id) { int err; u8 buf[2] = {0}; err = idtcm_read(idtcm, GENERAL_STATUS, PRODUCT_ID, buf, sizeof(buf)); *product_id = (buf[1] << 8) | buf[0]; return err; } static int idtcm_read_major_release(struct idtcm *idtcm, u8 *major) { int err; u8 buf = 0; err = idtcm_read(idtcm, GENERAL_STATUS, MAJ_REL, &buf, sizeof(buf)); *major = buf >> 1; return err; } static int idtcm_read_minor_release(struct idtcm *idtcm, u8 *minor) { return idtcm_read(idtcm, GENERAL_STATUS, MIN_REL, minor, sizeof(u8)); } static int idtcm_read_hotfix_release(struct idtcm *idtcm, u8 *hotfix) { return idtcm_read(idtcm, GENERAL_STATUS, HOTFIX_REL, hotfix, sizeof(u8)); } static int idtcm_read_otp_scsr_config_select(struct idtcm *idtcm, u8 *config_select) { return idtcm_read(idtcm, GENERAL_STATUS, OTP_SCSR_CONFIG_SELECT, config_select, sizeof(u8)); } static int set_pll_output_mask(struct idtcm *idtcm, u16 addr, u8 val) { int err = 0; switch (addr) { case TOD0_OUT_ALIGN_MASK_ADDR: SET_U16_LSB(idtcm->channel[0].output_mask, val); break; case TOD0_OUT_ALIGN_MASK_ADDR + 1: SET_U16_MSB(idtcm->channel[0].output_mask, val); break; case TOD1_OUT_ALIGN_MASK_ADDR: SET_U16_LSB(idtcm->channel[1].output_mask, val); break; case TOD1_OUT_ALIGN_MASK_ADDR + 1: SET_U16_MSB(idtcm->channel[1].output_mask, val); break; case TOD2_OUT_ALIGN_MASK_ADDR: SET_U16_LSB(idtcm->channel[2].output_mask, val); break; case TOD2_OUT_ALIGN_MASK_ADDR + 1: SET_U16_MSB(idtcm->channel[2].output_mask, val); break; case TOD3_OUT_ALIGN_MASK_ADDR: SET_U16_LSB(idtcm->channel[3].output_mask, val); break; case TOD3_OUT_ALIGN_MASK_ADDR + 1: SET_U16_MSB(idtcm->channel[3].output_mask, val); break; default: err = -EFAULT; /* Bad address */; break; } return err; } static int set_tod_ptp_pll(struct idtcm *idtcm, u8 index, u8 pll) { if (index >= MAX_TOD) { dev_err(idtcm->dev, "ToD%d not supported", index); return -EINVAL; } if (pll >= MAX_PLL) { dev_err(idtcm->dev, "Pll%d not supported", pll); return -EINVAL; } idtcm->channel[index].pll = pll; return 0; } static int check_and_set_masks(struct idtcm *idtcm, u16 regaddr, u8 val) { int err = 0; switch (regaddr) { case TOD_MASK_ADDR: if ((val & 0xf0) || !(val & 0x0f)) { dev_err(idtcm->dev, "Invalid TOD mask 0x%02x", val); err = -EINVAL; } else { idtcm->tod_mask = val; } break; case TOD0_PTP_PLL_ADDR: err = set_tod_ptp_pll(idtcm, 0, val); break; case TOD1_PTP_PLL_ADDR: err = set_tod_ptp_pll(idtcm, 1, val); break; case TOD2_PTP_PLL_ADDR: err = set_tod_ptp_pll(idtcm, 2, val); break; case TOD3_PTP_PLL_ADDR: err = set_tod_ptp_pll(idtcm, 3, val); break; default: err = set_pll_output_mask(idtcm, regaddr, val); break; } return err; } static void display_pll_and_masks(struct idtcm *idtcm) { u8 i; u8 mask; dev_dbg(idtcm->dev, "tod_mask = 0x%02x", idtcm->tod_mask); for (i = 0; i < MAX_TOD; i++) { mask = 1 << i; if (mask & idtcm->tod_mask) dev_dbg(idtcm->dev, "TOD%d pll = %d output_mask = 0x%04x", i, idtcm->channel[i].pll, idtcm->channel[i].output_mask); } } static int idtcm_load_firmware(struct idtcm *idtcm, struct device *dev) { u16 scratch = IDTCM_FW_REG(idtcm->fw_ver, V520, SCRATCH); char fname[128] = FW_FILENAME; const struct firmware *fw; struct idtcm_fwrc *rec; u32 regaddr; int err; s32 len; u8 val; u8 loaddr; if (firmware) /* module parameter */ snprintf(fname, sizeof(fname), "%s", firmware); dev_info(idtcm->dev, "requesting firmware '%s'", fname); err = request_firmware(&fw, fname, dev); if (err) { dev_err(idtcm->dev, "Failed at line %d in %s!", __LINE__, __func__); return err; } dev_dbg(idtcm->dev, "firmware size %zu bytes", fw->size); rec = (struct idtcm_fwrc *) fw->data; if (contains_full_configuration(idtcm, fw)) idtcm_state_machine_reset(idtcm); for (len = fw->size; len > 0; len -= sizeof(*rec)) { if (rec->reserved) { dev_err(idtcm->dev, "bad firmware, reserved field non-zero"); err = -EINVAL; } else { regaddr = rec->hiaddr << 8; regaddr |= rec->loaddr; val = rec->value; loaddr = rec->loaddr; rec++; err = check_and_set_masks(idtcm, regaddr, val); } if (err != -EINVAL) { err = 0; /* Top (status registers) and bottom are read-only */ if (regaddr < GPIO_USER_CONTROL || regaddr >= scratch) continue; /* Page size 128, last 4 bytes of page skipped */ if ((loaddr > 0x7b && loaddr <= 0x7f) || loaddr > 0xfb) continue; err = idtcm_write(idtcm, regaddr, 0, &val, sizeof(val)); } if (err) goto out; } display_pll_and_masks(idtcm); out: release_firmware(fw); return err; } static int idtcm_output_enable(struct idtcm_channel *channel, bool enable, unsigned int outn) { struct idtcm *idtcm = channel->idtcm; int base; int err; u8 val; base = get_output_base_addr(idtcm->fw_ver, outn); if (!(base > 0)) { dev_err(idtcm->dev, "%s - Unsupported out%d", __func__, outn); return base; } err = idtcm_read(idtcm, (u16)base, OUT_CTRL_1, &val, sizeof(val)); if (err) return err; if (enable) val |= SQUELCH_DISABLE; else val &= ~SQUELCH_DISABLE; return idtcm_write(idtcm, (u16)base, OUT_CTRL_1, &val, sizeof(val)); } static int idtcm_perout_enable(struct idtcm_channel *channel, struct ptp_perout_request *perout, bool enable) { struct idtcm *idtcm = channel->idtcm; struct timespec64 ts = {0, 0}; int err; err = idtcm_output_enable(channel, enable, perout->index); if (err) { dev_err(idtcm->dev, "Unable to set output enable"); return err; } /* Align output to internal 1 PPS */ return _idtcm_settime(channel, &ts, SCSR_TOD_WR_TYPE_SEL_DELTA_PLUS); } static int idtcm_get_pll_mode(struct idtcm_channel *channel, enum pll_mode *mode) { struct idtcm *idtcm = channel->idtcm; int err; u8 dpll_mode; err = idtcm_read(idtcm, channel->dpll_n, IDTCM_FW_REG(idtcm->fw_ver, V520, DPLL_MODE), &dpll_mode, sizeof(dpll_mode)); if (err) return err; *mode = (dpll_mode >> PLL_MODE_SHIFT) & PLL_MODE_MASK; return 0; } static int idtcm_set_pll_mode(struct idtcm_channel *channel, enum pll_mode mode) { struct idtcm *idtcm = channel->idtcm; int err; u8 dpll_mode; err = idtcm_read(idtcm, channel->dpll_n, IDTCM_FW_REG(idtcm->fw_ver, V520, DPLL_MODE), &dpll_mode, sizeof(dpll_mode)); if (err) return err; dpll_mode &= ~(PLL_MODE_MASK << PLL_MODE_SHIFT); dpll_mode |= (mode << PLL_MODE_SHIFT); err = idtcm_write(idtcm, channel->dpll_n, IDTCM_FW_REG(idtcm->fw_ver, V520, DPLL_MODE), &dpll_mode, sizeof(dpll_mode)); return err; } static int idtcm_get_manual_reference(struct idtcm_channel *channel, enum manual_reference *ref) { struct idtcm *idtcm = channel->idtcm; u8 dpll_manu_ref_cfg; int err; err = idtcm_read(idtcm, channel->dpll_ctrl_n, DPLL_CTRL_DPLL_MANU_REF_CFG, &dpll_manu_ref_cfg, sizeof(dpll_manu_ref_cfg)); if (err) return err; dpll_manu_ref_cfg &= (MANUAL_REFERENCE_MASK << MANUAL_REFERENCE_SHIFT); *ref = dpll_manu_ref_cfg >> MANUAL_REFERENCE_SHIFT; return 0; } static int idtcm_set_manual_reference(struct idtcm_channel *channel, enum manual_reference ref) { struct idtcm *idtcm = channel->idtcm; u8 dpll_manu_ref_cfg; int err; err = idtcm_read(idtcm, channel->dpll_ctrl_n, DPLL_CTRL_DPLL_MANU_REF_CFG, &dpll_manu_ref_cfg, sizeof(dpll_manu_ref_cfg)); if (err) return err; dpll_manu_ref_cfg &= ~(MANUAL_REFERENCE_MASK << MANUAL_REFERENCE_SHIFT); dpll_manu_ref_cfg |= (ref << MANUAL_REFERENCE_SHIFT); err = idtcm_write(idtcm, channel->dpll_ctrl_n, DPLL_CTRL_DPLL_MANU_REF_CFG, &dpll_manu_ref_cfg, sizeof(dpll_manu_ref_cfg)); return err; } static int configure_dpll_mode_write_frequency(struct idtcm_channel *channel) { struct idtcm *idtcm = channel->idtcm; int err; err = idtcm_set_pll_mode(channel, PLL_MODE_WRITE_FREQUENCY); if (err) dev_err(idtcm->dev, "Failed to set pll mode to write frequency"); else channel->mode = PTP_PLL_MODE_WRITE_FREQUENCY; return err; } static int configure_dpll_mode_write_phase(struct idtcm_channel *channel) { struct idtcm *idtcm = channel->idtcm; int err; err = idtcm_set_pll_mode(channel, PLL_MODE_WRITE_PHASE); if (err) dev_err(idtcm->dev, "Failed to set pll mode to write phase"); else channel->mode = PTP_PLL_MODE_WRITE_PHASE; return err; } static int configure_manual_reference_write_frequency(struct idtcm_channel *channel) { struct idtcm *idtcm = channel->idtcm; int err; err = idtcm_set_manual_reference(channel, MANU_REF_WRITE_FREQUENCY); if (err) dev_err(idtcm->dev, "Failed to set manual reference to write frequency"); else channel->mode = PTP_PLL_MODE_WRITE_FREQUENCY; return err; } static int configure_manual_reference_write_phase(struct idtcm_channel *channel) { struct idtcm *idtcm = channel->idtcm; int err; err = idtcm_set_manual_reference(channel, MANU_REF_WRITE_PHASE); if (err) dev_err(idtcm->dev, "Failed to set manual reference to write phase"); else channel->mode = PTP_PLL_MODE_WRITE_PHASE; return err; } static int idtcm_stop_phase_pull_in(struct idtcm_channel *channel) { int err; err = _idtcm_adjfine(channel, channel->current_freq_scaled_ppm); if (err) return err; channel->phase_pull_in = false; return 0; } static long idtcm_work_handler(struct ptp_clock_info *ptp) { struct idtcm_channel *channel = container_of(ptp, struct idtcm_channel, caps); struct idtcm *idtcm = channel->idtcm; mutex_lock(idtcm->lock); (void)idtcm_stop_phase_pull_in(channel); mutex_unlock(idtcm->lock); /* Return a negative value here to not reschedule */ return -1; } static s32 phase_pull_in_scaled_ppm(s32 current_ppm, s32 phase_pull_in_ppb) { /* ppb = scaled_ppm * 125 / 2^13 */ /* scaled_ppm = ppb * 2^13 / 125 */ s64 max_scaled_ppm = div_s64((s64)PHASE_PULL_IN_MAX_PPB << 13, 125); s64 scaled_ppm = div_s64((s64)phase_pull_in_ppb << 13, 125); current_ppm += scaled_ppm; if (current_ppm > max_scaled_ppm) current_ppm = max_scaled_ppm; else if (current_ppm < -max_scaled_ppm) current_ppm = -max_scaled_ppm; return current_ppm; } static int do_phase_pull_in_sw(struct idtcm_channel *channel, s32 delta_ns, u32 max_ffo_ppb) { s32 current_ppm = channel->current_freq_scaled_ppm; u32 duration_ms = MSEC_PER_SEC; s32 delta_ppm; s32 ppb; int err; /* If the ToD correction is less than PHASE_PULL_IN_MIN_THRESHOLD_NS, * skip. The error introduced by the ToD adjustment procedure would * be bigger than the required ToD correction */ if (abs(delta_ns) < PHASE_PULL_IN_MIN_THRESHOLD_NS) return 0; if (max_ffo_ppb == 0) max_ffo_ppb = PHASE_PULL_IN_MAX_PPB; /* For most cases, keep phase pull-in duration 1 second */ ppb = delta_ns; while (abs(ppb) > max_ffo_ppb) { duration_ms *= 2; ppb /= 2; } delta_ppm = phase_pull_in_scaled_ppm(current_ppm, ppb); err = _idtcm_adjfine(channel, delta_ppm); if (err) return err; /* schedule the worker to cancel phase pull-in */ ptp_schedule_worker(channel->ptp_clock, msecs_to_jiffies(duration_ms) - 1); channel->phase_pull_in = true; return 0; } static int initialize_operating_mode_with_manual_reference(struct idtcm_channel *channel, enum manual_reference ref) { struct idtcm *idtcm = channel->idtcm; channel->mode = PTP_PLL_MODE_UNSUPPORTED; channel->configure_write_frequency = configure_manual_reference_write_frequency; channel->configure_write_phase = configure_manual_reference_write_phase; channel->do_phase_pull_in = do_phase_pull_in_sw; switch (ref) { case MANU_REF_WRITE_PHASE: channel->mode = PTP_PLL_MODE_WRITE_PHASE; break; case MANU_REF_WRITE_FREQUENCY: channel->mode = PTP_PLL_MODE_WRITE_FREQUENCY; break; default: dev_warn(idtcm->dev, "Unsupported MANUAL_REFERENCE: 0x%02x", ref); } return 0; } static int initialize_operating_mode_with_pll_mode(struct idtcm_channel *channel, enum pll_mode mode) { struct idtcm *idtcm = channel->idtcm; int err = 0; channel->mode = PTP_PLL_MODE_UNSUPPORTED; channel->configure_write_frequency = configure_dpll_mode_write_frequency; channel->configure_write_phase = configure_dpll_mode_write_phase; channel->do_phase_pull_in = do_phase_pull_in_fw; switch (mode) { case PLL_MODE_WRITE_PHASE: channel->mode = PTP_PLL_MODE_WRITE_PHASE; break; case PLL_MODE_WRITE_FREQUENCY: channel->mode = PTP_PLL_MODE_WRITE_FREQUENCY; break; default: dev_err(idtcm->dev, "Unsupported PLL_MODE: 0x%02x", mode); err = -EINVAL; } return err; } static int initialize_dco_operating_mode(struct idtcm_channel *channel) { enum manual_reference ref = MANU_REF_XO_DPLL; enum pll_mode mode = PLL_MODE_DISABLED; struct idtcm *idtcm = channel->idtcm; int err; channel->mode = PTP_PLL_MODE_UNSUPPORTED; err = idtcm_get_pll_mode(channel, &mode); if (err) { dev_err(idtcm->dev, "Unable to read pll mode!"); return err; } if (mode == PLL_MODE_PLL) { err = idtcm_get_manual_reference(channel, &ref); if (err) { dev_err(idtcm->dev, "Unable to read manual reference!"); return err; } err = initialize_operating_mode_with_manual_reference(channel, ref); } else { err = initialize_operating_mode_with_pll_mode(channel, mode); } if (channel->mode == PTP_PLL_MODE_WRITE_PHASE) channel->configure_write_frequency(channel); return err; } /* PTP Hardware Clock interface */ /* * Maximum absolute value for write phase offset in nanoseconds * * Destination signed register is 32-bit register in resolution of 50ps * * 0x7fffffff * 50 = 2147483647 * 50 = 107374182350 ps * Represent 107374182350 ps as 107374182 ns */ static s32 idtcm_getmaxphase(struct ptp_clock_info *ptp __always_unused) { return MAX_ABS_WRITE_PHASE_NANOSECONDS; } /* * Internal function for implementing support for write phase offset * * @channel: channel * @delta_ns: delta in nanoseconds */ static int _idtcm_adjphase(struct idtcm_channel *channel, s32 delta_ns) { struct idtcm *idtcm = channel->idtcm; int err; u8 i; u8 buf[4] = {0}; s32 phase_50ps; if (channel->mode != PTP_PLL_MODE_WRITE_PHASE) { err = channel->configure_write_phase(channel); if (err) return err; } phase_50ps = div_s64((s64)delta_ns * 1000, 50); for (i = 0; i < 4; i++) { buf[i] = phase_50ps & 0xff; phase_50ps >>= 8; } err = idtcm_write(idtcm, channel->dpll_phase, DPLL_WR_PHASE, buf, sizeof(buf)); return err; } static int _idtcm_adjfine(struct idtcm_channel *channel, long scaled_ppm) { struct idtcm *idtcm = channel->idtcm; u8 i; int err; u8 buf[6] = {0}; s64 fcw; if (channel->mode != PTP_PLL_MODE_WRITE_FREQUENCY) { err = channel->configure_write_frequency(channel); if (err) return err; } /* * Frequency Control Word unit is: 1.11 * 10^-10 ppm * * adjfreq: * ppb * 10^9 * FCW = ---------- * 111 * * adjfine: * ppm_16 * 5^12 * FCW = ------------- * 111 * 2^4 */ /* 2 ^ -53 = 1.1102230246251565404236316680908e-16 */ fcw = scaled_ppm * 244140625ULL; fcw = div_s64(fcw, 1776); for (i = 0; i < 6; i++) { buf[i] = fcw & 0xff; fcw >>= 8; } err = idtcm_write(idtcm, channel->dpll_freq, DPLL_WR_FREQ, buf, sizeof(buf)); return err; } static int idtcm_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) { struct idtcm_channel *channel = container_of(ptp, struct idtcm_channel, caps); struct idtcm *idtcm = channel->idtcm; int err; mutex_lock(idtcm->lock); err = _idtcm_gettime_immediate(channel, ts); mutex_unlock(idtcm->lock); if (err) dev_err(idtcm->dev, "Failed at line %d in %s!", __LINE__, __func__); return err; } static int idtcm_settime_deprecated(struct ptp_clock_info *ptp, const struct timespec64 *ts) { struct idtcm_channel *channel = container_of(ptp, struct idtcm_channel, caps); struct idtcm *idtcm = channel->idtcm; int err; mutex_lock(idtcm->lock); err = _idtcm_settime_deprecated(channel, ts); mutex_unlock(idtcm->lock); if (err) dev_err(idtcm->dev, "Failed at line %d in %s!", __LINE__, __func__); return err; } static int idtcm_settime(struct ptp_clock_info *ptp, const struct timespec64 *ts) { struct idtcm_channel *channel = container_of(ptp, struct idtcm_channel, caps); struct idtcm *idtcm = channel->idtcm; int err; mutex_lock(idtcm->lock); err = _idtcm_settime(channel, ts, SCSR_TOD_WR_TYPE_SEL_ABSOLUTE); mutex_unlock(idtcm->lock); if (err) dev_err(idtcm->dev, "Failed at line %d in %s!", __LINE__, __func__); return err; } static int idtcm_adjtime_deprecated(struct ptp_clock_info *ptp, s64 delta) { struct idtcm_channel *channel = container_of(ptp, struct idtcm_channel, caps); struct idtcm *idtcm = channel->idtcm; int err; mutex_lock(idtcm->lock); err = _idtcm_adjtime_deprecated(channel, delta); mutex_unlock(idtcm->lock); if (err) dev_err(idtcm->dev, "Failed at line %d in %s!", __LINE__, __func__); return err; } static int idtcm_adjtime(struct ptp_clock_info *ptp, s64 delta) { struct idtcm_channel *channel = container_of(ptp, struct idtcm_channel, caps); struct idtcm *idtcm = channel->idtcm; struct timespec64 ts; enum scsr_tod_write_type_sel type; int err; if (channel->phase_pull_in == true) return -EBUSY; mutex_lock(idtcm->lock); if (abs(delta) < PHASE_PULL_IN_THRESHOLD_NS) { err = channel->do_phase_pull_in(channel, delta, 0); } else { if (delta >= 0) { ts = ns_to_timespec64(delta); type = SCSR_TOD_WR_TYPE_SEL_DELTA_PLUS; } else { ts = ns_to_timespec64(-delta); type = SCSR_TOD_WR_TYPE_SEL_DELTA_MINUS; } err = _idtcm_settime(channel, &ts, type); } mutex_unlock(idtcm->lock); if (err) dev_err(idtcm->dev, "Failed at line %d in %s!", __LINE__, __func__); return err; } static int idtcm_adjphase(struct ptp_clock_info *ptp, s32 delta) { struct idtcm_channel *channel = container_of(ptp, struct idtcm_channel, caps); struct idtcm *idtcm = channel->idtcm; int err; mutex_lock(idtcm->lock); err = _idtcm_adjphase(channel, delta); mutex_unlock(idtcm->lock); if (err) dev_err(idtcm->dev, "Failed at line %d in %s!", __LINE__, __func__); return err; } static int idtcm_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) { struct idtcm_channel *channel = container_of(ptp, struct idtcm_channel, caps); struct idtcm *idtcm = channel->idtcm; int err; if (channel->phase_pull_in == true) return 0; if (scaled_ppm == channel->current_freq_scaled_ppm) return 0; mutex_lock(idtcm->lock); err = _idtcm_adjfine(channel, scaled_ppm); mutex_unlock(idtcm->lock); if (err) dev_err(idtcm->dev, "Failed at line %d in %s!", __LINE__, __func__); else channel->current_freq_scaled_ppm = scaled_ppm; return err; } static int idtcm_enable(struct ptp_clock_info *ptp, struct ptp_clock_request *rq, int on) { struct idtcm_channel *channel = container_of(ptp, struct idtcm_channel, caps); struct idtcm *idtcm = channel->idtcm; int err = -EOPNOTSUPP; mutex_lock(idtcm->lock); switch (rq->type) { case PTP_CLK_REQ_PEROUT: if (!on) err = idtcm_perout_enable(channel, &rq->perout, false); /* Only accept a 1-PPS aligned to the second. */ else if (rq->perout.start.nsec || rq->perout.period.sec != 1 || rq->perout.period.nsec) err = -ERANGE; else err = idtcm_perout_enable(channel, &rq->perout, true); break; case PTP_CLK_REQ_EXTTS: err = idtcm_extts_enable(channel, rq, on); break; default: break; } mutex_unlock(idtcm->lock); if (err) dev_err(channel->idtcm->dev, "Failed in %s with err %d!", __func__, err); return err; } static int idtcm_enable_tod(struct idtcm_channel *channel) { struct idtcm *idtcm = channel->idtcm; struct timespec64 ts = {0, 0}; u16 tod_cfg = IDTCM_FW_REG(idtcm->fw_ver, V520, TOD_CFG); u8 cfg; int err; /* * Start the TOD clock ticking. */ err = idtcm_read(idtcm, channel->tod_n, tod_cfg, &cfg, sizeof(cfg)); if (err) return err; cfg |= TOD_ENABLE; err = idtcm_write(idtcm, channel->tod_n, tod_cfg, &cfg, sizeof(cfg)); if (err) return err; if (idtcm->fw_ver < V487) return _idtcm_settime_deprecated(channel, &ts); else return _idtcm_settime(channel, &ts, SCSR_TOD_WR_TYPE_SEL_ABSOLUTE); } static void idtcm_set_version_info(struct idtcm *idtcm) { u8 major; u8 minor; u8 hotfix; u16 product_id; u8 hw_rev_id; u8 config_select; idtcm_read_major_release(idtcm, &major); idtcm_read_minor_release(idtcm, &minor); idtcm_read_hotfix_release(idtcm, &hotfix); idtcm_read_product_id(idtcm, &product_id); idtcm_read_hw_rev_id(idtcm, &hw_rev_id); idtcm_read_otp_scsr_config_select(idtcm, &config_select); snprintf(idtcm->version, sizeof(idtcm->version), "%u.%u.%u", major, minor, hotfix); idtcm->fw_ver = idtcm_fw_version(idtcm->version); dev_info(idtcm->dev, "%d.%d.%d, Id: 0x%04x HW Rev: %d OTP Config Select: %d", major, minor, hotfix, product_id, hw_rev_id, config_select); } static int idtcm_verify_pin(struct ptp_clock_info *ptp, unsigned int pin, enum ptp_pin_function func, unsigned int chan) { switch (func) { case PTP_PF_NONE: case PTP_PF_EXTTS: break; case PTP_PF_PEROUT: case PTP_PF_PHYSYNC: return -1; } return 0; } static struct ptp_pin_desc pin_config[MAX_TOD][MAX_REF_CLK]; static const struct ptp_clock_info idtcm_caps = { .owner = THIS_MODULE, .max_adj = 244000, .n_per_out = 12, .n_ext_ts = MAX_TOD, .n_pins = MAX_REF_CLK, .adjphase = &idtcm_adjphase, .getmaxphase = &idtcm_getmaxphase, .adjfine = &idtcm_adjfine, .adjtime = &idtcm_adjtime, .gettime64 = &idtcm_gettime, .settime64 = &idtcm_settime, .enable = &idtcm_enable, .verify = &idtcm_verify_pin, .do_aux_work = &idtcm_work_handler, }; static const struct ptp_clock_info idtcm_caps_deprecated = { .owner = THIS_MODULE, .max_adj = 244000, .n_per_out = 12, .n_ext_ts = MAX_TOD, .n_pins = MAX_REF_CLK, .adjphase = &idtcm_adjphase, .getmaxphase = &idtcm_getmaxphase, .adjfine = &idtcm_adjfine, .adjtime = &idtcm_adjtime_deprecated, .gettime64 = &idtcm_gettime, .settime64 = &idtcm_settime_deprecated, .enable = &idtcm_enable, .verify = &idtcm_verify_pin, .do_aux_work = &idtcm_work_handler, }; static int configure_channel_pll(struct idtcm_channel *channel) { struct idtcm *idtcm = channel->idtcm; int err = 0; switch (channel->pll) { case 0: channel->dpll_freq = DPLL_FREQ_0; channel->dpll_n = DPLL_0; channel->hw_dpll_n = HW_DPLL_0; channel->dpll_phase = DPLL_PHASE_0; channel->dpll_ctrl_n = DPLL_CTRL_0; channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_0; break; case 1: channel->dpll_freq = DPLL_FREQ_1; channel->dpll_n = DPLL_1; channel->hw_dpll_n = HW_DPLL_1; channel->dpll_phase = DPLL_PHASE_1; channel->dpll_ctrl_n = DPLL_CTRL_1; channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_1; break; case 2: channel->dpll_freq = DPLL_FREQ_2; channel->dpll_n = IDTCM_FW_REG(idtcm->fw_ver, V520, DPLL_2); channel->hw_dpll_n = HW_DPLL_2; channel->dpll_phase = DPLL_PHASE_2; channel->dpll_ctrl_n = DPLL_CTRL_2; channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_2; break; case 3: channel->dpll_freq = DPLL_FREQ_3; channel->dpll_n = DPLL_3; channel->hw_dpll_n = HW_DPLL_3; channel->dpll_phase = DPLL_PHASE_3; channel->dpll_ctrl_n = DPLL_CTRL_3; channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_3; break; case 4: channel->dpll_freq = DPLL_FREQ_4; channel->dpll_n = IDTCM_FW_REG(idtcm->fw_ver, V520, DPLL_4); channel->hw_dpll_n = HW_DPLL_4; channel->dpll_phase = DPLL_PHASE_4; channel->dpll_ctrl_n = DPLL_CTRL_4; channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_4; break; case 5: channel->dpll_freq = DPLL_FREQ_5; channel->dpll_n = DPLL_5; channel->hw_dpll_n = HW_DPLL_5; channel->dpll_phase = DPLL_PHASE_5; channel->dpll_ctrl_n = DPLL_CTRL_5; channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_5; break; case 6: channel->dpll_freq = DPLL_FREQ_6; channel->dpll_n = IDTCM_FW_REG(idtcm->fw_ver, V520, DPLL_6); channel->hw_dpll_n = HW_DPLL_6; channel->dpll_phase = DPLL_PHASE_6; channel->dpll_ctrl_n = DPLL_CTRL_6; channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_6; break; case 7: channel->dpll_freq = DPLL_FREQ_7; channel->dpll_n = DPLL_7; channel->hw_dpll_n = HW_DPLL_7; channel->dpll_phase = DPLL_PHASE_7; channel->dpll_ctrl_n = DPLL_CTRL_7; channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_7; break; default: err = -EINVAL; } return err; } /* * Compensate for the PTP DCO input-to-output delay. * This delay is 18 FOD cycles. */ static u32 idtcm_get_dco_delay(struct idtcm_channel *channel) { struct idtcm *idtcm = channel->idtcm; u8 mbuf[8] = {0}; u8 nbuf[2] = {0}; u32 fodFreq; int err; u64 m; u16 n; err = idtcm_read(idtcm, channel->dpll_ctrl_n, DPLL_CTRL_DPLL_FOD_FREQ, mbuf, 6); if (err) return 0; err = idtcm_read(idtcm, channel->dpll_ctrl_n, DPLL_CTRL_DPLL_FOD_FREQ + 6, nbuf, 2); if (err) return 0; m = get_unaligned_le64(mbuf); n = get_unaligned_le16(nbuf); if (n == 0) n = 1; fodFreq = (u32)div_u64(m, n); if (fodFreq >= 500000000) return (u32)div_u64(18 * (u64)NSEC_PER_SEC, fodFreq); return 0; } static int configure_channel_tod(struct idtcm_channel *channel, u32 index) { enum fw_version fw_ver = channel->idtcm->fw_ver; /* Set tod addresses */ switch (index) { case 0: channel->tod_read_primary = IDTCM_FW_REG(fw_ver, V520, TOD_READ_PRIMARY_0); channel->tod_read_secondary = IDTCM_FW_REG(fw_ver, V520, TOD_READ_SECONDARY_0); channel->tod_write = IDTCM_FW_REG(fw_ver, V520, TOD_WRITE_0); channel->tod_n = IDTCM_FW_REG(fw_ver, V520, TOD_0); channel->sync_src = SYNC_SOURCE_DPLL0_TOD_PPS; break; case 1: channel->tod_read_primary = IDTCM_FW_REG(fw_ver, V520, TOD_READ_PRIMARY_1); channel->tod_read_secondary = IDTCM_FW_REG(fw_ver, V520, TOD_READ_SECONDARY_1); channel->tod_write = IDTCM_FW_REG(fw_ver, V520, TOD_WRITE_1); channel->tod_n = IDTCM_FW_REG(fw_ver, V520, TOD_1); channel->sync_src = SYNC_SOURCE_DPLL1_TOD_PPS; break; case 2: channel->tod_read_primary = IDTCM_FW_REG(fw_ver, V520, TOD_READ_PRIMARY_2); channel->tod_read_secondary = IDTCM_FW_REG(fw_ver, V520, TOD_READ_SECONDARY_2); channel->tod_write = IDTCM_FW_REG(fw_ver, V520, TOD_WRITE_2); channel->tod_n = IDTCM_FW_REG(fw_ver, V520, TOD_2); channel->sync_src = SYNC_SOURCE_DPLL2_TOD_PPS; break; case 3: channel->tod_read_primary = IDTCM_FW_REG(fw_ver, V520, TOD_READ_PRIMARY_3); channel->tod_read_secondary = IDTCM_FW_REG(fw_ver, V520, TOD_READ_SECONDARY_3); channel->tod_write = IDTCM_FW_REG(fw_ver, V520, TOD_WRITE_3); channel->tod_n = IDTCM_FW_REG(fw_ver, V520, TOD_3); channel->sync_src = SYNC_SOURCE_DPLL3_TOD_PPS; break; default: return -EINVAL; } return 0; } static int idtcm_enable_channel(struct idtcm *idtcm, u32 index) { struct idtcm_channel *channel; int err; int i; if (!(index < MAX_TOD)) return -EINVAL; channel = &idtcm->channel[index]; channel->idtcm = idtcm; channel->current_freq_scaled_ppm = 0; /* Set pll addresses */ err = configure_channel_pll(channel); if (err) return err; /* Set tod addresses */ err = configure_channel_tod(channel, index); if (err) return err; if (idtcm->fw_ver < V487) channel->caps = idtcm_caps_deprecated; else channel->caps = idtcm_caps; snprintf(channel->caps.name, sizeof(channel->caps.name), "IDT CM TOD%u", index); channel->caps.pin_config = pin_config[index]; for (i = 0; i < channel->caps.n_pins; ++i) { struct ptp_pin_desc *ppd = &channel->caps.pin_config[i]; snprintf(ppd->name, sizeof(ppd->name), "input_ref%d", i); ppd->index = i; ppd->func = PTP_PF_NONE; ppd->chan = index; } err = initialize_dco_operating_mode(channel); if (err) return err; err = idtcm_enable_tod(channel); if (err) { dev_err(idtcm->dev, "Failed at line %d in %s!", __LINE__, __func__); return err; } channel->dco_delay = idtcm_get_dco_delay(channel); channel->ptp_clock = ptp_clock_register(&channel->caps, NULL); if (IS_ERR(channel->ptp_clock)) { err = PTR_ERR(channel->ptp_clock); channel->ptp_clock = NULL; return err; } if (!channel->ptp_clock) return -ENOTSUPP; dev_info(idtcm->dev, "PLL%d registered as ptp%d", index, channel->ptp_clock->index); return 0; } static int idtcm_enable_extts_channel(struct idtcm *idtcm, u32 index) { struct idtcm_channel *channel; int err; if (!(index < MAX_TOD)) return -EINVAL; channel = &idtcm->channel[index]; channel->idtcm = idtcm; /* Set tod addresses */ err = configure_channel_tod(channel, index); if (err) return err; channel->idtcm = idtcm; return 0; } static void idtcm_extts_check(struct work_struct *work) { struct idtcm *idtcm = container_of(work, struct idtcm, extts_work.work); struct idtcm_channel *channel; u8 mask; int err; int i; if (idtcm->extts_mask == 0) return; mutex_lock(idtcm->lock); for (i = 0; i < MAX_TOD; i++) { mask = 1 << i; if ((idtcm->extts_mask & mask) == 0) continue; err = idtcm_extts_check_channel(idtcm, i); if (err == 0) { /* trigger clears itself, so clear the mask */ if (idtcm->extts_single_shot) { idtcm->extts_mask &= ~mask; } else { /* Re-arm */ channel = &idtcm->channel[i]; arm_tod_read_trig_sel_refclk(channel, channel->refn); } } } if (idtcm->extts_mask) schedule_delayed_work(&idtcm->extts_work, msecs_to_jiffies(EXTTS_PERIOD_MS)); mutex_unlock(idtcm->lock); } static void ptp_clock_unregister_all(struct idtcm *idtcm) { u8 i; struct idtcm_channel *channel; for (i = 0; i < MAX_TOD; i++) { channel = &idtcm->channel[i]; if (channel->ptp_clock) ptp_clock_unregister(channel->ptp_clock); } } static void set_default_masks(struct idtcm *idtcm) { idtcm->tod_mask = DEFAULT_TOD_MASK; idtcm->extts_mask = 0; idtcm->channel[0].tod = 0; idtcm->channel[1].tod = 1; idtcm->channel[2].tod = 2; idtcm->channel[3].tod = 3; idtcm->channel[0].pll = DEFAULT_TOD0_PTP_PLL; idtcm->channel[1].pll = DEFAULT_TOD1_PTP_PLL; idtcm->channel[2].pll = DEFAULT_TOD2_PTP_PLL; idtcm->channel[3].pll = DEFAULT_TOD3_PTP_PLL; idtcm->channel[0].output_mask = DEFAULT_OUTPUT_MASK_PLL0; idtcm->channel[1].output_mask = DEFAULT_OUTPUT_MASK_PLL1; idtcm->channel[2].output_mask = DEFAULT_OUTPUT_MASK_PLL2; idtcm->channel[3].output_mask = DEFAULT_OUTPUT_MASK_PLL3; } static int idtcm_probe(struct platform_device *pdev) { struct rsmu_ddata *ddata = dev_get_drvdata(pdev->dev.parent); struct idtcm *idtcm; int err; u8 i; idtcm = devm_kzalloc(&pdev->dev, sizeof(struct idtcm), GFP_KERNEL); if (!idtcm) return -ENOMEM; idtcm->dev = &pdev->dev; idtcm->mfd = pdev->dev.parent; idtcm->lock = &ddata->lock; idtcm->regmap = ddata->regmap; idtcm->calculate_overhead_flag = 0; INIT_DELAYED_WORK(&idtcm->extts_work, idtcm_extts_check); set_default_masks(idtcm); mutex_lock(idtcm->lock); idtcm_set_version_info(idtcm); err = idtcm_load_firmware(idtcm, &pdev->dev); if (err) dev_warn(idtcm->dev, "loading firmware failed with %d", err); wait_for_chip_ready(idtcm); if (idtcm->tod_mask) { for (i = 0; i < MAX_TOD; i++) { if (idtcm->tod_mask & (1 << i)) err = idtcm_enable_channel(idtcm, i); else err = idtcm_enable_extts_channel(idtcm, i); if (err) { dev_err(idtcm->dev, "idtcm_enable_channel %d failed!", i); break; } } } else { dev_err(idtcm->dev, "no PLLs flagged as PHCs, nothing to do"); err = -ENODEV; } mutex_unlock(idtcm->lock); if (err) { ptp_clock_unregister_all(idtcm); return err; } platform_set_drvdata(pdev, idtcm); return 0; } static int idtcm_remove(struct platform_device *pdev) { struct idtcm *idtcm = platform_get_drvdata(pdev); idtcm->extts_mask = 0; ptp_clock_unregister_all(idtcm); cancel_delayed_work_sync(&idtcm->extts_work); return 0; } static struct platform_driver idtcm_driver = { .driver = { .name = "8a3400x-phc", }, .probe = idtcm_probe, .remove = idtcm_remove, }; module_platform_driver(idtcm_driver);
linux-master
drivers/ptp/ptp_clockmatrix.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Virtual PTP 1588 clock for use with KVM guests * * Copyright (C) 2017 Red Hat Inc. */ #include <linux/device.h> #include <linux/kernel.h> #include <asm/pvclock.h> #include <asm/kvmclock.h> #include <linux/module.h> #include <uapi/asm/kvm_para.h> #include <uapi/linux/kvm_para.h> #include <linux/ptp_clock_kernel.h> #include <linux/ptp_kvm.h> #include <linux/set_memory.h> static phys_addr_t clock_pair_gpa; static struct kvm_clock_pairing clock_pair_glbl; static struct kvm_clock_pairing *clock_pair; int kvm_arch_ptp_init(void) { struct page *p; long ret; if (!kvm_para_available()) return -ENODEV; if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) { p = alloc_page(GFP_KERNEL | __GFP_ZERO); if (!p) return -ENOMEM; clock_pair = page_address(p); ret = set_memory_decrypted((unsigned long)clock_pair, 1); if (ret) { __free_page(p); clock_pair = NULL; goto nofree; } } else { clock_pair = &clock_pair_glbl; } clock_pair_gpa = slow_virt_to_phys(clock_pair); if (!pvclock_get_pvti_cpu0_va()) { ret = -ENODEV; goto err; } ret = kvm_hypercall2(KVM_HC_CLOCK_PAIRING, clock_pair_gpa, KVM_CLOCK_PAIRING_WALLCLOCK); if (ret == -KVM_ENOSYS) { ret = -ENODEV; goto err; } return ret; err: kvm_arch_ptp_exit(); nofree: return ret; } void kvm_arch_ptp_exit(void) { if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) { WARN_ON(set_memory_encrypted((unsigned long)clock_pair, 1)); free_page((unsigned long)clock_pair); clock_pair = NULL; } } int kvm_arch_ptp_get_clock(struct timespec64 *ts) { long ret; ret = kvm_hypercall2(KVM_HC_CLOCK_PAIRING, clock_pair_gpa, KVM_CLOCK_PAIRING_WALLCLOCK); if (ret != 0) { pr_err_ratelimited("clock offset hypercall ret %lu\n", ret); return -EOPNOTSUPP; } ts->tv_sec = clock_pair->sec; ts->tv_nsec = clock_pair->nsec; return 0; } int kvm_arch_ptp_get_crosststamp(u64 *cycle, struct timespec64 *tspec, struct clocksource **cs) { struct pvclock_vcpu_time_info *src; unsigned int version; long ret; src = this_cpu_pvti(); do { /* * We are using a TSC value read in the hosts * kvm_hc_clock_pairing handling. * So any changes to tsc_to_system_mul * and tsc_shift or any other pvclock * data invalidate that measurement. */ version = pvclock_read_begin(src); ret = kvm_hypercall2(KVM_HC_CLOCK_PAIRING, clock_pair_gpa, KVM_CLOCK_PAIRING_WALLCLOCK); if (ret != 0) { pr_err_ratelimited("clock pairing hypercall ret %lu\n", ret); return -EOPNOTSUPP; } tspec->tv_sec = clock_pair->sec; tspec->tv_nsec = clock_pair->nsec; *cycle = __pvclock_read_cycles(src, clock_pair->tsc); } while (pvclock_read_retry(src, version)); *cs = &kvm_clock; return 0; }
linux-master
drivers/ptp/ptp_kvm_x86.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * PTP virtual clock driver * * Copyright 2021 NXP */ #include <linux/slab.h> #include <linux/hashtable.h> #include "ptp_private.h" #define PTP_VCLOCK_CC_SHIFT 31 #define PTP_VCLOCK_CC_MULT (1 << PTP_VCLOCK_CC_SHIFT) #define PTP_VCLOCK_FADJ_SHIFT 9 #define PTP_VCLOCK_FADJ_DENOMINATOR 15625ULL #define PTP_VCLOCK_REFRESH_INTERVAL (HZ * 2) /* protects vclock_hash addition/deletion */ static DEFINE_SPINLOCK(vclock_hash_lock); static DEFINE_READ_MOSTLY_HASHTABLE(vclock_hash, 8); static void ptp_vclock_hash_add(struct ptp_vclock *vclock) { spin_lock(&vclock_hash_lock); hlist_add_head_rcu(&vclock->vclock_hash_node, &vclock_hash[vclock->clock->index % HASH_SIZE(vclock_hash)]); spin_unlock(&vclock_hash_lock); } static void ptp_vclock_hash_del(struct ptp_vclock *vclock) { spin_lock(&vclock_hash_lock); hlist_del_init_rcu(&vclock->vclock_hash_node); spin_unlock(&vclock_hash_lock); synchronize_rcu(); } static int ptp_vclock_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) { struct ptp_vclock *vclock = info_to_vclock(ptp); s64 adj; adj = (s64)scaled_ppm << PTP_VCLOCK_FADJ_SHIFT; adj = div_s64(adj, PTP_VCLOCK_FADJ_DENOMINATOR); if (mutex_lock_interruptible(&vclock->lock)) return -EINTR; timecounter_read(&vclock->tc); vclock->cc.mult = PTP_VCLOCK_CC_MULT + adj; mutex_unlock(&vclock->lock); return 0; } static int ptp_vclock_adjtime(struct ptp_clock_info *ptp, s64 delta) { struct ptp_vclock *vclock = info_to_vclock(ptp); if (mutex_lock_interruptible(&vclock->lock)) return -EINTR; timecounter_adjtime(&vclock->tc, delta); mutex_unlock(&vclock->lock); return 0; } static int ptp_vclock_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) { struct ptp_vclock *vclock = info_to_vclock(ptp); u64 ns; if (mutex_lock_interruptible(&vclock->lock)) return -EINTR; ns = timecounter_read(&vclock->tc); mutex_unlock(&vclock->lock); *ts = ns_to_timespec64(ns); return 0; } static int ptp_vclock_gettimex(struct ptp_clock_info *ptp, struct timespec64 *ts, struct ptp_system_timestamp *sts) { struct ptp_vclock *vclock = info_to_vclock(ptp); struct ptp_clock *pptp = vclock->pclock; struct timespec64 pts; int err; u64 ns; err = pptp->info->getcyclesx64(pptp->info, &pts, sts); if (err) return err; if (mutex_lock_interruptible(&vclock->lock)) return -EINTR; ns = timecounter_cyc2time(&vclock->tc, timespec64_to_ns(&pts)); mutex_unlock(&vclock->lock); *ts = ns_to_timespec64(ns); return 0; } static int ptp_vclock_settime(struct ptp_clock_info *ptp, const struct timespec64 *ts) { struct ptp_vclock *vclock = info_to_vclock(ptp); u64 ns = timespec64_to_ns(ts); if (mutex_lock_interruptible(&vclock->lock)) return -EINTR; timecounter_init(&vclock->tc, &vclock->cc, ns); mutex_unlock(&vclock->lock); return 0; } static int ptp_vclock_getcrosststamp(struct ptp_clock_info *ptp, struct system_device_crosststamp *xtstamp) { struct ptp_vclock *vclock = info_to_vclock(ptp); struct ptp_clock *pptp = vclock->pclock; int err; u64 ns; err = pptp->info->getcrosscycles(pptp->info, xtstamp); if (err) return err; if (mutex_lock_interruptible(&vclock->lock)) return -EINTR; ns = timecounter_cyc2time(&vclock->tc, ktime_to_ns(xtstamp->device)); mutex_unlock(&vclock->lock); xtstamp->device = ns_to_ktime(ns); return 0; } static long ptp_vclock_refresh(struct ptp_clock_info *ptp) { struct ptp_vclock *vclock = info_to_vclock(ptp); struct timespec64 ts; ptp_vclock_gettime(&vclock->info, &ts); return PTP_VCLOCK_REFRESH_INTERVAL; } static const struct ptp_clock_info ptp_vclock_info = { .owner = THIS_MODULE, .name = "ptp virtual clock", .max_adj = 500000000, .adjfine = ptp_vclock_adjfine, .adjtime = ptp_vclock_adjtime, .settime64 = ptp_vclock_settime, .do_aux_work = ptp_vclock_refresh, }; static u64 ptp_vclock_read(const struct cyclecounter *cc) { struct ptp_vclock *vclock = cc_to_vclock(cc); struct ptp_clock *ptp = vclock->pclock; struct timespec64 ts = {}; ptp->info->getcycles64(ptp->info, &ts); return timespec64_to_ns(&ts); } static const struct cyclecounter ptp_vclock_cc = { .read = ptp_vclock_read, .mask = CYCLECOUNTER_MASK(32), .mult = PTP_VCLOCK_CC_MULT, .shift = PTP_VCLOCK_CC_SHIFT, }; struct ptp_vclock *ptp_vclock_register(struct ptp_clock *pclock) { struct ptp_vclock *vclock; vclock = kzalloc(sizeof(*vclock), GFP_KERNEL); if (!vclock) return NULL; vclock->pclock = pclock; vclock->info = ptp_vclock_info; if (pclock->info->getcyclesx64) vclock->info.gettimex64 = ptp_vclock_gettimex; else vclock->info.gettime64 = ptp_vclock_gettime; if (pclock->info->getcrosscycles) vclock->info.getcrosststamp = ptp_vclock_getcrosststamp; vclock->cc = ptp_vclock_cc; snprintf(vclock->info.name, PTP_CLOCK_NAME_LEN, "ptp%d_virt", pclock->index); INIT_HLIST_NODE(&vclock->vclock_hash_node); mutex_init(&vclock->lock); vclock->clock = ptp_clock_register(&vclock->info, &pclock->dev); if (IS_ERR_OR_NULL(vclock->clock)) { kfree(vclock); return NULL; } timecounter_init(&vclock->tc, &vclock->cc, 0); ptp_schedule_worker(vclock->clock, PTP_VCLOCK_REFRESH_INTERVAL); ptp_vclock_hash_add(vclock); return vclock; } void ptp_vclock_unregister(struct ptp_vclock *vclock) { ptp_vclock_hash_del(vclock); ptp_clock_unregister(vclock->clock); kfree(vclock); } #if IS_BUILTIN(CONFIG_PTP_1588_CLOCK) int ptp_get_vclocks_index(int pclock_index, int **vclock_index) { char name[PTP_CLOCK_NAME_LEN] = ""; struct ptp_clock *ptp; struct device *dev; int num = 0; if (pclock_index < 0) return num; snprintf(name, PTP_CLOCK_NAME_LEN, "ptp%d", pclock_index); dev = class_find_device_by_name(ptp_class, name); if (!dev) return num; ptp = dev_get_drvdata(dev); if (mutex_lock_interruptible(&ptp->n_vclocks_mux)) { put_device(dev); return num; } *vclock_index = kzalloc(sizeof(int) * ptp->n_vclocks, GFP_KERNEL); if (!(*vclock_index)) goto out; memcpy(*vclock_index, ptp->vclock_index, sizeof(int) * ptp->n_vclocks); num = ptp->n_vclocks; out: mutex_unlock(&ptp->n_vclocks_mux); put_device(dev); return num; } EXPORT_SYMBOL(ptp_get_vclocks_index); ktime_t ptp_convert_timestamp(const ktime_t *hwtstamp, int vclock_index) { unsigned int hash = vclock_index % HASH_SIZE(vclock_hash); struct ptp_vclock *vclock; u64 ns; u64 vclock_ns = 0; ns = ktime_to_ns(*hwtstamp); rcu_read_lock(); hlist_for_each_entry_rcu(vclock, &vclock_hash[hash], vclock_hash_node) { if (vclock->clock->index != vclock_index) continue; if (mutex_lock_interruptible(&vclock->lock)) break; vclock_ns = timecounter_cyc2time(&vclock->tc, ns); mutex_unlock(&vclock->lock); break; } rcu_read_unlock(); return ns_to_ktime(vclock_ns); } EXPORT_SYMBOL(ptp_convert_timestamp); #endif
linux-master
drivers/ptp/ptp_vclock.c
// SPDX-License-Identifier: GPL-2.0-only // Copyright 2017 Broadcom #include <linux/err.h> #include <linux/io.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/platform_device.h> #include <linux/ptp_clock_kernel.h> #include <linux/types.h> #define DTE_NCO_LOW_TIME_REG 0x00 #define DTE_NCO_TIME_REG 0x04 #define DTE_NCO_OVERFLOW_REG 0x08 #define DTE_NCO_INC_REG 0x0c #define DTE_NCO_SUM2_MASK 0xffffffff #define DTE_NCO_SUM2_SHIFT 4ULL #define DTE_NCO_SUM3_MASK 0xff #define DTE_NCO_SUM3_SHIFT 36ULL #define DTE_NCO_SUM3_WR_SHIFT 8 #define DTE_NCO_TS_WRAP_MASK 0xfff #define DTE_NCO_TS_WRAP_LSHIFT 32 #define DTE_NCO_INC_DEFAULT 0x80000000 #define DTE_NUM_REGS_TO_RESTORE 4 /* Full wrap around is 44bits in ns (~4.887 hrs) */ #define DTE_WRAP_AROUND_NSEC_SHIFT 44 /* 44 bits NCO */ #define DTE_NCO_MAX_NS 0xFFFFFFFFFFFLL /* 125MHz with 3.29 reg cfg */ #define DTE_PPB_ADJ(ppb) (u32)(div64_u64((((u64)abs(ppb) * BIT(28)) +\ 62500000ULL), 125000000ULL)) /* ptp dte priv structure */ struct ptp_dte { void __iomem *regs; struct ptp_clock *ptp_clk; struct ptp_clock_info caps; struct device *dev; u32 ts_ovf_last; u32 ts_wrap_cnt; spinlock_t lock; u32 reg_val[DTE_NUM_REGS_TO_RESTORE]; }; static void dte_write_nco(void __iomem *regs, s64 ns) { u32 sum2, sum3; sum2 = (u32)((ns >> DTE_NCO_SUM2_SHIFT) & DTE_NCO_SUM2_MASK); /* compensate for ignoring sum1 */ if (sum2 != DTE_NCO_SUM2_MASK) sum2++; /* to write sum3, bits [15:8] needs to be written */ sum3 = (u32)(((ns >> DTE_NCO_SUM3_SHIFT) & DTE_NCO_SUM3_MASK) << DTE_NCO_SUM3_WR_SHIFT); writel(0, (regs + DTE_NCO_LOW_TIME_REG)); writel(sum2, (regs + DTE_NCO_TIME_REG)); writel(sum3, (regs + DTE_NCO_OVERFLOW_REG)); } static s64 dte_read_nco(void __iomem *regs) { u32 sum2, sum3; s64 ns; /* * ignoring sum1 (4 bits) gives a 16ns resolution, which * works due to the async register read. */ sum3 = readl(regs + DTE_NCO_OVERFLOW_REG) & DTE_NCO_SUM3_MASK; sum2 = readl(regs + DTE_NCO_TIME_REG); ns = ((s64)sum3 << DTE_NCO_SUM3_SHIFT) | ((s64)sum2 << DTE_NCO_SUM2_SHIFT); return ns; } static void dte_write_nco_delta(struct ptp_dte *ptp_dte, s64 delta) { s64 ns; ns = dte_read_nco(ptp_dte->regs); /* handle wraparound conditions */ if ((delta < 0) && (abs(delta) > ns)) { if (ptp_dte->ts_wrap_cnt) { ns += DTE_NCO_MAX_NS + delta; ptp_dte->ts_wrap_cnt--; } else { ns = 0; } } else { ns += delta; if (ns > DTE_NCO_MAX_NS) { ptp_dte->ts_wrap_cnt++; ns -= DTE_NCO_MAX_NS; } } dte_write_nco(ptp_dte->regs, ns); ptp_dte->ts_ovf_last = (ns >> DTE_NCO_TS_WRAP_LSHIFT) & DTE_NCO_TS_WRAP_MASK; } static s64 dte_read_nco_with_ovf(struct ptp_dte *ptp_dte) { u32 ts_ovf; s64 ns = 0; ns = dte_read_nco(ptp_dte->regs); /*Timestamp overflow: 8 LSB bits of sum3, 4 MSB bits of sum2 */ ts_ovf = (ns >> DTE_NCO_TS_WRAP_LSHIFT) & DTE_NCO_TS_WRAP_MASK; /* Check for wrap around */ if (ts_ovf < ptp_dte->ts_ovf_last) ptp_dte->ts_wrap_cnt++; ptp_dte->ts_ovf_last = ts_ovf; /* adjust for wraparounds */ ns += (s64)(BIT_ULL(DTE_WRAP_AROUND_NSEC_SHIFT) * ptp_dte->ts_wrap_cnt); return ns; } static int ptp_dte_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) { s32 ppb = scaled_ppm_to_ppb(scaled_ppm); u32 nco_incr; unsigned long flags; struct ptp_dte *ptp_dte = container_of(ptp, struct ptp_dte, caps); if (abs(ppb) > ptp_dte->caps.max_adj) { dev_err(ptp_dte->dev, "ppb adj too big\n"); return -EINVAL; } if (ppb < 0) nco_incr = DTE_NCO_INC_DEFAULT - DTE_PPB_ADJ(ppb); else nco_incr = DTE_NCO_INC_DEFAULT + DTE_PPB_ADJ(ppb); spin_lock_irqsave(&ptp_dte->lock, flags); writel(nco_incr, ptp_dte->regs + DTE_NCO_INC_REG); spin_unlock_irqrestore(&ptp_dte->lock, flags); return 0; } static int ptp_dte_adjtime(struct ptp_clock_info *ptp, s64 delta) { unsigned long flags; struct ptp_dte *ptp_dte = container_of(ptp, struct ptp_dte, caps); spin_lock_irqsave(&ptp_dte->lock, flags); dte_write_nco_delta(ptp_dte, delta); spin_unlock_irqrestore(&ptp_dte->lock, flags); return 0; } static int ptp_dte_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) { unsigned long flags; struct ptp_dte *ptp_dte = container_of(ptp, struct ptp_dte, caps); spin_lock_irqsave(&ptp_dte->lock, flags); *ts = ns_to_timespec64(dte_read_nco_with_ovf(ptp_dte)); spin_unlock_irqrestore(&ptp_dte->lock, flags); return 0; } static int ptp_dte_settime(struct ptp_clock_info *ptp, const struct timespec64 *ts) { unsigned long flags; struct ptp_dte *ptp_dte = container_of(ptp, struct ptp_dte, caps); spin_lock_irqsave(&ptp_dte->lock, flags); /* Disable nco increment */ writel(0, ptp_dte->regs + DTE_NCO_INC_REG); dte_write_nco(ptp_dte->regs, timespec64_to_ns(ts)); /* reset overflow and wrap counter */ ptp_dte->ts_ovf_last = 0; ptp_dte->ts_wrap_cnt = 0; /* Enable nco increment */ writel(DTE_NCO_INC_DEFAULT, ptp_dte->regs + DTE_NCO_INC_REG); spin_unlock_irqrestore(&ptp_dte->lock, flags); return 0; } static int ptp_dte_enable(struct ptp_clock_info *ptp, struct ptp_clock_request *rq, int on) { return -EOPNOTSUPP; } static const struct ptp_clock_info ptp_dte_caps = { .owner = THIS_MODULE, .name = "DTE PTP timer", .max_adj = 50000000, .n_ext_ts = 0, .n_pins = 0, .pps = 0, .adjfine = ptp_dte_adjfine, .adjtime = ptp_dte_adjtime, .gettime64 = ptp_dte_gettime, .settime64 = ptp_dte_settime, .enable = ptp_dte_enable, }; static int ptp_dte_probe(struct platform_device *pdev) { struct ptp_dte *ptp_dte; struct device *dev = &pdev->dev; ptp_dte = devm_kzalloc(dev, sizeof(struct ptp_dte), GFP_KERNEL); if (!ptp_dte) return -ENOMEM; ptp_dte->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(ptp_dte->regs)) return PTR_ERR(ptp_dte->regs); spin_lock_init(&ptp_dte->lock); ptp_dte->dev = dev; ptp_dte->caps = ptp_dte_caps; ptp_dte->ptp_clk = ptp_clock_register(&ptp_dte->caps, &pdev->dev); if (IS_ERR(ptp_dte->ptp_clk)) { dev_err(dev, "%s: Failed to register ptp clock\n", __func__); return PTR_ERR(ptp_dte->ptp_clk); } platform_set_drvdata(pdev, ptp_dte); dev_info(dev, "ptp clk probe done\n"); return 0; } static int ptp_dte_remove(struct platform_device *pdev) { struct ptp_dte *ptp_dte = platform_get_drvdata(pdev); u8 i; ptp_clock_unregister(ptp_dte->ptp_clk); for (i = 0; i < DTE_NUM_REGS_TO_RESTORE; i++) writel(0, ptp_dte->regs + (i * sizeof(u32))); return 0; } #ifdef CONFIG_PM_SLEEP static int ptp_dte_suspend(struct device *dev) { struct ptp_dte *ptp_dte = dev_get_drvdata(dev); u8 i; for (i = 0; i < DTE_NUM_REGS_TO_RESTORE; i++) { ptp_dte->reg_val[i] = readl(ptp_dte->regs + (i * sizeof(u32))); } /* disable the nco */ writel(0, ptp_dte->regs + DTE_NCO_INC_REG); return 0; } static int ptp_dte_resume(struct device *dev) { struct ptp_dte *ptp_dte = dev_get_drvdata(dev); u8 i; for (i = 0; i < DTE_NUM_REGS_TO_RESTORE; i++) { if ((i * sizeof(u32)) != DTE_NCO_OVERFLOW_REG) writel(ptp_dte->reg_val[i], (ptp_dte->regs + (i * sizeof(u32)))); else writel(((ptp_dte->reg_val[i] & DTE_NCO_SUM3_MASK) << DTE_NCO_SUM3_WR_SHIFT), (ptp_dte->regs + (i * sizeof(u32)))); } return 0; } static const struct dev_pm_ops ptp_dte_pm_ops = { .suspend = ptp_dte_suspend, .resume = ptp_dte_resume }; #define PTP_DTE_PM_OPS (&ptp_dte_pm_ops) #else #define PTP_DTE_PM_OPS NULL #endif static const struct of_device_id ptp_dte_of_match[] = { { .compatible = "brcm,ptp-dte", }, {}, }; MODULE_DEVICE_TABLE(of, ptp_dte_of_match); static struct platform_driver ptp_dte_driver = { .driver = { .name = "ptp-dte", .pm = PTP_DTE_PM_OPS, .of_match_table = ptp_dte_of_match, }, .probe = ptp_dte_probe, .remove = ptp_dte_remove, }; module_platform_driver(ptp_dte_driver); MODULE_AUTHOR("Broadcom"); MODULE_DESCRIPTION("Broadcom DTE PTP Clock driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/ptp/ptp_dte.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * PTP 1588 clock support - character device implementation. * * Copyright (C) 2010 OMICRON electronics GmbH */ #include <linux/module.h> #include <linux/posix-clock.h> #include <linux/poll.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/timekeeping.h> #include <linux/nospec.h> #include "ptp_private.h" static int ptp_disable_pinfunc(struct ptp_clock_info *ops, enum ptp_pin_function func, unsigned int chan) { struct ptp_clock_request rq; int err = 0; memset(&rq, 0, sizeof(rq)); switch (func) { case PTP_PF_NONE: break; case PTP_PF_EXTTS: rq.type = PTP_CLK_REQ_EXTTS; rq.extts.index = chan; err = ops->enable(ops, &rq, 0); break; case PTP_PF_PEROUT: rq.type = PTP_CLK_REQ_PEROUT; rq.perout.index = chan; err = ops->enable(ops, &rq, 0); break; case PTP_PF_PHYSYNC: break; default: return -EINVAL; } return err; } int ptp_set_pinfunc(struct ptp_clock *ptp, unsigned int pin, enum ptp_pin_function func, unsigned int chan) { struct ptp_clock_info *info = ptp->info; struct ptp_pin_desc *pin1 = NULL, *pin2 = &info->pin_config[pin]; unsigned int i; /* Check to see if any other pin previously had this function. */ for (i = 0; i < info->n_pins; i++) { if (info->pin_config[i].func == func && info->pin_config[i].chan == chan) { pin1 = &info->pin_config[i]; break; } } if (pin1 && i == pin) return 0; /* Check the desired function and channel. */ switch (func) { case PTP_PF_NONE: break; case PTP_PF_EXTTS: if (chan >= info->n_ext_ts) return -EINVAL; break; case PTP_PF_PEROUT: if (chan >= info->n_per_out) return -EINVAL; break; case PTP_PF_PHYSYNC: if (chan != 0) return -EINVAL; break; default: return -EINVAL; } if (info->verify(info, pin, func, chan)) { pr_err("driver cannot use function %u on pin %u\n", func, chan); return -EOPNOTSUPP; } /* Disable whatever function was previously assigned. */ if (pin1) { ptp_disable_pinfunc(info, func, chan); pin1->func = PTP_PF_NONE; pin1->chan = 0; } ptp_disable_pinfunc(info, pin2->func, pin2->chan); pin2->func = func; pin2->chan = chan; return 0; } int ptp_open(struct posix_clock *pc, fmode_t fmode) { return 0; } long ptp_ioctl(struct posix_clock *pc, unsigned int cmd, unsigned long arg) { struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock); struct ptp_sys_offset_extended *extoff = NULL; struct ptp_sys_offset_precise precise_offset; struct system_device_crosststamp xtstamp; struct ptp_clock_info *ops = ptp->info; struct ptp_sys_offset *sysoff = NULL; struct ptp_system_timestamp sts; struct ptp_clock_request req; struct ptp_clock_caps caps; struct ptp_clock_time *pct; unsigned int i, pin_index; struct ptp_pin_desc pd; struct timespec64 ts; int enable, err = 0; switch (cmd) { case PTP_CLOCK_GETCAPS: case PTP_CLOCK_GETCAPS2: memset(&caps, 0, sizeof(caps)); caps.max_adj = ptp->info->max_adj; caps.n_alarm = ptp->info->n_alarm; caps.n_ext_ts = ptp->info->n_ext_ts; caps.n_per_out = ptp->info->n_per_out; caps.pps = ptp->info->pps; caps.n_pins = ptp->info->n_pins; caps.cross_timestamping = ptp->info->getcrosststamp != NULL; caps.adjust_phase = ptp->info->adjphase != NULL && ptp->info->getmaxphase != NULL; if (caps.adjust_phase) caps.max_phase_adj = ptp->info->getmaxphase(ptp->info); if (copy_to_user((void __user *)arg, &caps, sizeof(caps))) err = -EFAULT; break; case PTP_EXTTS_REQUEST: case PTP_EXTTS_REQUEST2: memset(&req, 0, sizeof(req)); if (copy_from_user(&req.extts, (void __user *)arg, sizeof(req.extts))) { err = -EFAULT; break; } if (cmd == PTP_EXTTS_REQUEST2) { /* Tell the drivers to check the flags carefully. */ req.extts.flags |= PTP_STRICT_FLAGS; /* Make sure no reserved bit is set. */ if ((req.extts.flags & ~PTP_EXTTS_VALID_FLAGS) || req.extts.rsv[0] || req.extts.rsv[1]) { err = -EINVAL; break; } /* Ensure one of the rising/falling edge bits is set. */ if ((req.extts.flags & PTP_ENABLE_FEATURE) && (req.extts.flags & PTP_EXTTS_EDGES) == 0) { err = -EINVAL; break; } } else if (cmd == PTP_EXTTS_REQUEST) { req.extts.flags &= PTP_EXTTS_V1_VALID_FLAGS; req.extts.rsv[0] = 0; req.extts.rsv[1] = 0; } if (req.extts.index >= ops->n_ext_ts) { err = -EINVAL; break; } req.type = PTP_CLK_REQ_EXTTS; enable = req.extts.flags & PTP_ENABLE_FEATURE ? 1 : 0; if (mutex_lock_interruptible(&ptp->pincfg_mux)) return -ERESTARTSYS; err = ops->enable(ops, &req, enable); mutex_unlock(&ptp->pincfg_mux); break; case PTP_PEROUT_REQUEST: case PTP_PEROUT_REQUEST2: memset(&req, 0, sizeof(req)); if (copy_from_user(&req.perout, (void __user *)arg, sizeof(req.perout))) { err = -EFAULT; break; } if (cmd == PTP_PEROUT_REQUEST2) { struct ptp_perout_request *perout = &req.perout; if (perout->flags & ~PTP_PEROUT_VALID_FLAGS) { err = -EINVAL; break; } /* * The "on" field has undefined meaning if * PTP_PEROUT_DUTY_CYCLE isn't set, we must still treat * it as reserved, which must be set to zero. */ if (!(perout->flags & PTP_PEROUT_DUTY_CYCLE) && (perout->rsv[0] || perout->rsv[1] || perout->rsv[2] || perout->rsv[3])) { err = -EINVAL; break; } if (perout->flags & PTP_PEROUT_DUTY_CYCLE) { /* The duty cycle must be subunitary. */ if (perout->on.sec > perout->period.sec || (perout->on.sec == perout->period.sec && perout->on.nsec > perout->period.nsec)) { err = -ERANGE; break; } } if (perout->flags & PTP_PEROUT_PHASE) { /* * The phase should be specified modulo the * period, therefore anything equal or larger * than 1 period is invalid. */ if (perout->phase.sec > perout->period.sec || (perout->phase.sec == perout->period.sec && perout->phase.nsec >= perout->period.nsec)) { err = -ERANGE; break; } } } else if (cmd == PTP_PEROUT_REQUEST) { req.perout.flags &= PTP_PEROUT_V1_VALID_FLAGS; req.perout.rsv[0] = 0; req.perout.rsv[1] = 0; req.perout.rsv[2] = 0; req.perout.rsv[3] = 0; } if (req.perout.index >= ops->n_per_out) { err = -EINVAL; break; } req.type = PTP_CLK_REQ_PEROUT; enable = req.perout.period.sec || req.perout.period.nsec; if (mutex_lock_interruptible(&ptp->pincfg_mux)) return -ERESTARTSYS; err = ops->enable(ops, &req, enable); mutex_unlock(&ptp->pincfg_mux); break; case PTP_ENABLE_PPS: case PTP_ENABLE_PPS2: memset(&req, 0, sizeof(req)); if (!capable(CAP_SYS_TIME)) return -EPERM; req.type = PTP_CLK_REQ_PPS; enable = arg ? 1 : 0; if (mutex_lock_interruptible(&ptp->pincfg_mux)) return -ERESTARTSYS; err = ops->enable(ops, &req, enable); mutex_unlock(&ptp->pincfg_mux); break; case PTP_SYS_OFFSET_PRECISE: case PTP_SYS_OFFSET_PRECISE2: if (!ptp->info->getcrosststamp) { err = -EOPNOTSUPP; break; } err = ptp->info->getcrosststamp(ptp->info, &xtstamp); if (err) break; memset(&precise_offset, 0, sizeof(precise_offset)); ts = ktime_to_timespec64(xtstamp.device); precise_offset.device.sec = ts.tv_sec; precise_offset.device.nsec = ts.tv_nsec; ts = ktime_to_timespec64(xtstamp.sys_realtime); precise_offset.sys_realtime.sec = ts.tv_sec; precise_offset.sys_realtime.nsec = ts.tv_nsec; ts = ktime_to_timespec64(xtstamp.sys_monoraw); precise_offset.sys_monoraw.sec = ts.tv_sec; precise_offset.sys_monoraw.nsec = ts.tv_nsec; if (copy_to_user((void __user *)arg, &precise_offset, sizeof(precise_offset))) err = -EFAULT; break; case PTP_SYS_OFFSET_EXTENDED: case PTP_SYS_OFFSET_EXTENDED2: if (!ptp->info->gettimex64) { err = -EOPNOTSUPP; break; } extoff = memdup_user((void __user *)arg, sizeof(*extoff)); if (IS_ERR(extoff)) { err = PTR_ERR(extoff); extoff = NULL; break; } if (extoff->n_samples > PTP_MAX_SAMPLES || extoff->rsv[0] || extoff->rsv[1] || extoff->rsv[2]) { err = -EINVAL; break; } for (i = 0; i < extoff->n_samples; i++) { err = ptp->info->gettimex64(ptp->info, &ts, &sts); if (err) goto out; extoff->ts[i][0].sec = sts.pre_ts.tv_sec; extoff->ts[i][0].nsec = sts.pre_ts.tv_nsec; extoff->ts[i][1].sec = ts.tv_sec; extoff->ts[i][1].nsec = ts.tv_nsec; extoff->ts[i][2].sec = sts.post_ts.tv_sec; extoff->ts[i][2].nsec = sts.post_ts.tv_nsec; } if (copy_to_user((void __user *)arg, extoff, sizeof(*extoff))) err = -EFAULT; break; case PTP_SYS_OFFSET: case PTP_SYS_OFFSET2: sysoff = memdup_user((void __user *)arg, sizeof(*sysoff)); if (IS_ERR(sysoff)) { err = PTR_ERR(sysoff); sysoff = NULL; break; } if (sysoff->n_samples > PTP_MAX_SAMPLES) { err = -EINVAL; break; } pct = &sysoff->ts[0]; for (i = 0; i < sysoff->n_samples; i++) { ktime_get_real_ts64(&ts); pct->sec = ts.tv_sec; pct->nsec = ts.tv_nsec; pct++; if (ops->gettimex64) err = ops->gettimex64(ops, &ts, NULL); else err = ops->gettime64(ops, &ts); if (err) goto out; pct->sec = ts.tv_sec; pct->nsec = ts.tv_nsec; pct++; } ktime_get_real_ts64(&ts); pct->sec = ts.tv_sec; pct->nsec = ts.tv_nsec; if (copy_to_user((void __user *)arg, sysoff, sizeof(*sysoff))) err = -EFAULT; break; case PTP_PIN_GETFUNC: case PTP_PIN_GETFUNC2: if (copy_from_user(&pd, (void __user *)arg, sizeof(pd))) { err = -EFAULT; break; } if ((pd.rsv[0] || pd.rsv[1] || pd.rsv[2] || pd.rsv[3] || pd.rsv[4]) && cmd == PTP_PIN_GETFUNC2) { err = -EINVAL; break; } else if (cmd == PTP_PIN_GETFUNC) { pd.rsv[0] = 0; pd.rsv[1] = 0; pd.rsv[2] = 0; pd.rsv[3] = 0; pd.rsv[4] = 0; } pin_index = pd.index; if (pin_index >= ops->n_pins) { err = -EINVAL; break; } pin_index = array_index_nospec(pin_index, ops->n_pins); if (mutex_lock_interruptible(&ptp->pincfg_mux)) return -ERESTARTSYS; pd = ops->pin_config[pin_index]; mutex_unlock(&ptp->pincfg_mux); if (!err && copy_to_user((void __user *)arg, &pd, sizeof(pd))) err = -EFAULT; break; case PTP_PIN_SETFUNC: case PTP_PIN_SETFUNC2: if (copy_from_user(&pd, (void __user *)arg, sizeof(pd))) { err = -EFAULT; break; } if ((pd.rsv[0] || pd.rsv[1] || pd.rsv[2] || pd.rsv[3] || pd.rsv[4]) && cmd == PTP_PIN_SETFUNC2) { err = -EINVAL; break; } else if (cmd == PTP_PIN_SETFUNC) { pd.rsv[0] = 0; pd.rsv[1] = 0; pd.rsv[2] = 0; pd.rsv[3] = 0; pd.rsv[4] = 0; } pin_index = pd.index; if (pin_index >= ops->n_pins) { err = -EINVAL; break; } pin_index = array_index_nospec(pin_index, ops->n_pins); if (mutex_lock_interruptible(&ptp->pincfg_mux)) return -ERESTARTSYS; err = ptp_set_pinfunc(ptp, pin_index, pd.func, pd.chan); mutex_unlock(&ptp->pincfg_mux); break; default: err = -ENOTTY; break; } out: kfree(extoff); kfree(sysoff); return err; } __poll_t ptp_poll(struct posix_clock *pc, struct file *fp, poll_table *wait) { struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock); poll_wait(fp, &ptp->tsev_wq, wait); return queue_cnt(&ptp->tsevq) ? EPOLLIN : 0; } #define EXTTS_BUFSIZE (PTP_BUF_TIMESTAMPS * sizeof(struct ptp_extts_event)) ssize_t ptp_read(struct posix_clock *pc, uint rdflags, char __user *buf, size_t cnt) { struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock); struct timestamp_event_queue *queue = &ptp->tsevq; struct ptp_extts_event *event; unsigned long flags; size_t qcnt, i; int result; if (cnt % sizeof(struct ptp_extts_event) != 0) return -EINVAL; if (cnt > EXTTS_BUFSIZE) cnt = EXTTS_BUFSIZE; cnt = cnt / sizeof(struct ptp_extts_event); if (mutex_lock_interruptible(&ptp->tsevq_mux)) return -ERESTARTSYS; if (wait_event_interruptible(ptp->tsev_wq, ptp->defunct || queue_cnt(queue))) { mutex_unlock(&ptp->tsevq_mux); return -ERESTARTSYS; } if (ptp->defunct) { mutex_unlock(&ptp->tsevq_mux); return -ENODEV; } event = kmalloc(EXTTS_BUFSIZE, GFP_KERNEL); if (!event) { mutex_unlock(&ptp->tsevq_mux); return -ENOMEM; } spin_lock_irqsave(&queue->lock, flags); qcnt = queue_cnt(queue); if (cnt > qcnt) cnt = qcnt; for (i = 0; i < cnt; i++) { event[i] = queue->buf[queue->head]; queue->head = (queue->head + 1) % PTP_MAX_TIMESTAMPS; } spin_unlock_irqrestore(&queue->lock, flags); cnt = cnt * sizeof(struct ptp_extts_event); mutex_unlock(&ptp->tsevq_mux); result = cnt; if (copy_to_user(buf, event, cnt)) result = -EFAULT; kfree(event); return result; }
linux-master
drivers/ptp/ptp_chardev.c
// SPDX-License-Identifier: GPL-2.0-only /* * PTP 1588 clock using the EG20T PCH * * Copyright (C) 2010 OMICRON electronics GmbH * Copyright (C) 2011-2012 LAPIS SEMICONDUCTOR Co., LTD. * * This code was derived from the IXP46X driver. */ #include <linux/device.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/io-64-nonatomic-lo-hi.h> #include <linux/io-64-nonatomic-hi-lo.h> #include <linux/irq.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/ptp_clock_kernel.h> #include <linux/ptp_pch.h> #include <linux/slab.h> #define STATION_ADDR_LEN 20 #define PCI_DEVICE_ID_PCH_1588 0x8819 #define IO_MEM_BAR 1 #define DEFAULT_ADDEND 0xA0000000 #define TICKS_NS_SHIFT 5 #define N_EXT_TS 2 enum pch_status { PCH_SUCCESS, PCH_INVALIDPARAM, PCH_NOTIMESTAMP, PCH_INTERRUPTMODEINUSE, PCH_FAILED, PCH_UNSUPPORTED, }; /* * struct pch_ts_regs - IEEE 1588 registers */ struct pch_ts_regs { u32 control; u32 event; u32 addend; u32 accum; u32 test; u32 ts_compare; u32 rsystime_lo; u32 rsystime_hi; u32 systime_lo; u32 systime_hi; u32 trgt_lo; u32 trgt_hi; u32 asms_lo; u32 asms_hi; u32 amms_lo; u32 amms_hi; u32 ch_control; u32 ch_event; u32 tx_snap_lo; u32 tx_snap_hi; u32 rx_snap_lo; u32 rx_snap_hi; u32 src_uuid_lo; u32 src_uuid_hi; u32 can_status; u32 can_snap_lo; u32 can_snap_hi; u32 ts_sel; u32 ts_st[6]; u32 reserve1[14]; u32 stl_max_set_en; u32 stl_max_set; u32 reserve2[13]; u32 srst; }; #define PCH_TSC_RESET (1 << 0) #define PCH_TSC_TTM_MASK (1 << 1) #define PCH_TSC_ASMS_MASK (1 << 2) #define PCH_TSC_AMMS_MASK (1 << 3) #define PCH_TSC_PPSM_MASK (1 << 4) #define PCH_TSE_TTIPEND (1 << 1) #define PCH_TSE_SNS (1 << 2) #define PCH_TSE_SNM (1 << 3) #define PCH_TSE_PPS (1 << 4) #define PCH_CC_MM (1 << 0) #define PCH_CC_TA (1 << 1) #define PCH_CC_MODE_SHIFT 16 #define PCH_CC_MODE_MASK 0x001F0000 #define PCH_CC_VERSION (1 << 31) #define PCH_CE_TXS (1 << 0) #define PCH_CE_RXS (1 << 1) #define PCH_CE_OVR (1 << 0) #define PCH_CE_VAL (1 << 1) #define PCH_ECS_ETH (1 << 0) #define PCH_ECS_CAN (1 << 1) #define PCH_IEEE1588_ETH (1 << 0) #define PCH_IEEE1588_CAN (1 << 1) /* * struct pch_dev - Driver private data */ struct pch_dev { struct pch_ts_regs __iomem *regs; struct ptp_clock *ptp_clock; struct ptp_clock_info caps; int exts0_enabled; int exts1_enabled; u32 irq; struct pci_dev *pdev; spinlock_t register_lock; }; /* * struct pch_params - 1588 module parameter */ struct pch_params { u8 station[STATION_ADDR_LEN]; }; /* structure to hold the module parameters */ static struct pch_params pch_param = { "00:00:00:00:00:00" }; /* * Register access functions */ static inline void pch_eth_enable_set(struct pch_dev *chip) { u32 val; /* SET the eth_enable bit */ val = ioread32(&chip->regs->ts_sel) | (PCH_ECS_ETH); iowrite32(val, (&chip->regs->ts_sel)); } static u64 pch_systime_read(struct pch_ts_regs __iomem *regs) { u64 ns; ns = ioread64_lo_hi(&regs->systime_lo); return ns << TICKS_NS_SHIFT; } static void pch_systime_write(struct pch_ts_regs __iomem *regs, u64 ns) { iowrite64_lo_hi(ns >> TICKS_NS_SHIFT, &regs->systime_lo); } static inline void pch_block_reset(struct pch_dev *chip) { u32 val; /* Reset Hardware Assist block */ val = ioread32(&chip->regs->control) | PCH_TSC_RESET; iowrite32(val, (&chip->regs->control)); val = val & ~PCH_TSC_RESET; iowrite32(val, (&chip->regs->control)); } void pch_ch_control_write(struct pci_dev *pdev, u32 val) { struct pch_dev *chip = pci_get_drvdata(pdev); iowrite32(val, (&chip->regs->ch_control)); } EXPORT_SYMBOL(pch_ch_control_write); u32 pch_ch_event_read(struct pci_dev *pdev) { struct pch_dev *chip = pci_get_drvdata(pdev); u32 val; val = ioread32(&chip->regs->ch_event); return val; } EXPORT_SYMBOL(pch_ch_event_read); void pch_ch_event_write(struct pci_dev *pdev, u32 val) { struct pch_dev *chip = pci_get_drvdata(pdev); iowrite32(val, (&chip->regs->ch_event)); } EXPORT_SYMBOL(pch_ch_event_write); u32 pch_src_uuid_lo_read(struct pci_dev *pdev) { struct pch_dev *chip = pci_get_drvdata(pdev); u32 val; val = ioread32(&chip->regs->src_uuid_lo); return val; } EXPORT_SYMBOL(pch_src_uuid_lo_read); u32 pch_src_uuid_hi_read(struct pci_dev *pdev) { struct pch_dev *chip = pci_get_drvdata(pdev); u32 val; val = ioread32(&chip->regs->src_uuid_hi); return val; } EXPORT_SYMBOL(pch_src_uuid_hi_read); u64 pch_rx_snap_read(struct pci_dev *pdev) { struct pch_dev *chip = pci_get_drvdata(pdev); u64 ns; ns = ioread64_lo_hi(&chip->regs->rx_snap_lo); return ns << TICKS_NS_SHIFT; } EXPORT_SYMBOL(pch_rx_snap_read); u64 pch_tx_snap_read(struct pci_dev *pdev) { struct pch_dev *chip = pci_get_drvdata(pdev); u64 ns; ns = ioread64_lo_hi(&chip->regs->tx_snap_lo); return ns << TICKS_NS_SHIFT; } EXPORT_SYMBOL(pch_tx_snap_read); /* This function enables all 64 bits in system time registers [high & low]. This is a work-around for non continuous value in the SystemTime Register*/ static void pch_set_system_time_count(struct pch_dev *chip) { iowrite32(0x01, &chip->regs->stl_max_set_en); iowrite32(0xFFFFFFFF, &chip->regs->stl_max_set); iowrite32(0x00, &chip->regs->stl_max_set_en); } static void pch_reset(struct pch_dev *chip) { /* Reset Hardware Assist */ pch_block_reset(chip); /* enable all 32 bits in system time registers */ pch_set_system_time_count(chip); } /** * pch_set_station_address() - This API sets the station address used by * IEEE 1588 hardware when looking at PTP * traffic on the ethernet interface * @addr: dress which contain the column separated address to be used. * @pdev: PCI device. */ int pch_set_station_address(u8 *addr, struct pci_dev *pdev) { struct pch_dev *chip = pci_get_drvdata(pdev); bool valid; u64 mac; /* Verify the parameter */ if ((chip->regs == NULL) || addr == (u8 *)NULL) { dev_err(&pdev->dev, "invalid params returning PCH_INVALIDPARAM\n"); return PCH_INVALIDPARAM; } valid = mac_pton(addr, (u8 *)&mac); if (!valid) { dev_err(&pdev->dev, "invalid params returning PCH_INVALIDPARAM\n"); return PCH_INVALIDPARAM; } dev_dbg(&pdev->dev, "invoking pch_station_set\n"); iowrite64_lo_hi(mac, &chip->regs->ts_st); return 0; } EXPORT_SYMBOL(pch_set_station_address); /* * Interrupt service routine */ static irqreturn_t isr(int irq, void *priv) { struct pch_dev *pch_dev = priv; struct pch_ts_regs __iomem *regs = pch_dev->regs; struct ptp_clock_event event; u32 ack = 0, val; val = ioread32(&regs->event); if (val & PCH_TSE_SNS) { ack |= PCH_TSE_SNS; if (pch_dev->exts0_enabled) { event.type = PTP_CLOCK_EXTTS; event.index = 0; event.timestamp = ioread64_hi_lo(&regs->asms_hi); event.timestamp <<= TICKS_NS_SHIFT; ptp_clock_event(pch_dev->ptp_clock, &event); } } if (val & PCH_TSE_SNM) { ack |= PCH_TSE_SNM; if (pch_dev->exts1_enabled) { event.type = PTP_CLOCK_EXTTS; event.index = 1; event.timestamp = ioread64_hi_lo(&regs->asms_hi); event.timestamp <<= TICKS_NS_SHIFT; ptp_clock_event(pch_dev->ptp_clock, &event); } } if (val & PCH_TSE_TTIPEND) ack |= PCH_TSE_TTIPEND; /* this bit seems to be always set */ if (ack) { iowrite32(ack, &regs->event); return IRQ_HANDLED; } else return IRQ_NONE; } /* * PTP clock operations */ static int ptp_pch_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) { u32 addend; struct pch_dev *pch_dev = container_of(ptp, struct pch_dev, caps); struct pch_ts_regs __iomem *regs = pch_dev->regs; addend = adjust_by_scaled_ppm(DEFAULT_ADDEND, scaled_ppm); iowrite32(addend, &regs->addend); return 0; } static int ptp_pch_adjtime(struct ptp_clock_info *ptp, s64 delta) { s64 now; unsigned long flags; struct pch_dev *pch_dev = container_of(ptp, struct pch_dev, caps); struct pch_ts_regs __iomem *regs = pch_dev->regs; spin_lock_irqsave(&pch_dev->register_lock, flags); now = pch_systime_read(regs); now += delta; pch_systime_write(regs, now); spin_unlock_irqrestore(&pch_dev->register_lock, flags); return 0; } static int ptp_pch_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) { u64 ns; unsigned long flags; struct pch_dev *pch_dev = container_of(ptp, struct pch_dev, caps); struct pch_ts_regs __iomem *regs = pch_dev->regs; spin_lock_irqsave(&pch_dev->register_lock, flags); ns = pch_systime_read(regs); spin_unlock_irqrestore(&pch_dev->register_lock, flags); *ts = ns_to_timespec64(ns); return 0; } static int ptp_pch_settime(struct ptp_clock_info *ptp, const struct timespec64 *ts) { u64 ns; unsigned long flags; struct pch_dev *pch_dev = container_of(ptp, struct pch_dev, caps); struct pch_ts_regs __iomem *regs = pch_dev->regs; ns = timespec64_to_ns(ts); spin_lock_irqsave(&pch_dev->register_lock, flags); pch_systime_write(regs, ns); spin_unlock_irqrestore(&pch_dev->register_lock, flags); return 0; } static int ptp_pch_enable(struct ptp_clock_info *ptp, struct ptp_clock_request *rq, int on) { struct pch_dev *pch_dev = container_of(ptp, struct pch_dev, caps); switch (rq->type) { case PTP_CLK_REQ_EXTTS: switch (rq->extts.index) { case 0: pch_dev->exts0_enabled = on ? 1 : 0; break; case 1: pch_dev->exts1_enabled = on ? 1 : 0; break; default: return -EINVAL; } return 0; default: break; } return -EOPNOTSUPP; } static const struct ptp_clock_info ptp_pch_caps = { .owner = THIS_MODULE, .name = "PCH timer", .max_adj = 50000000, .n_ext_ts = N_EXT_TS, .n_pins = 0, .pps = 0, .adjfine = ptp_pch_adjfine, .adjtime = ptp_pch_adjtime, .gettime64 = ptp_pch_gettime, .settime64 = ptp_pch_settime, .enable = ptp_pch_enable, }; static void pch_remove(struct pci_dev *pdev) { struct pch_dev *chip = pci_get_drvdata(pdev); free_irq(pdev->irq, chip); ptp_clock_unregister(chip->ptp_clock); } static s32 pch_probe(struct pci_dev *pdev, const struct pci_device_id *id) { s32 ret; unsigned long flags; struct pch_dev *chip; chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL); if (chip == NULL) return -ENOMEM; /* enable the 1588 pci device */ ret = pcim_enable_device(pdev); if (ret != 0) { dev_err(&pdev->dev, "could not enable the pci device\n"); return ret; } ret = pcim_iomap_regions(pdev, BIT(IO_MEM_BAR), "1588_regs"); if (ret) { dev_err(&pdev->dev, "could not locate IO memory address\n"); return ret; } /* get the virtual address to the 1588 registers */ chip->regs = pcim_iomap_table(pdev)[IO_MEM_BAR]; chip->caps = ptp_pch_caps; chip->ptp_clock = ptp_clock_register(&chip->caps, &pdev->dev); if (IS_ERR(chip->ptp_clock)) return PTR_ERR(chip->ptp_clock); spin_lock_init(&chip->register_lock); ret = request_irq(pdev->irq, &isr, IRQF_SHARED, KBUILD_MODNAME, chip); if (ret != 0) { dev_err(&pdev->dev, "failed to get irq %d\n", pdev->irq); goto err_req_irq; } /* indicate success */ chip->irq = pdev->irq; chip->pdev = pdev; pci_set_drvdata(pdev, chip); spin_lock_irqsave(&chip->register_lock, flags); /* reset the ieee1588 h/w */ pch_reset(chip); iowrite32(DEFAULT_ADDEND, &chip->regs->addend); iowrite64_lo_hi(1, &chip->regs->trgt_lo); iowrite32(PCH_TSE_TTIPEND, &chip->regs->event); pch_eth_enable_set(chip); if (strcmp(pch_param.station, "00:00:00:00:00:00") != 0) { if (pch_set_station_address(pch_param.station, pdev) != 0) { dev_err(&pdev->dev, "Invalid station address parameter\n" "Module loaded but station address not set correctly\n" ); } } spin_unlock_irqrestore(&chip->register_lock, flags); return 0; err_req_irq: ptp_clock_unregister(chip->ptp_clock); dev_err(&pdev->dev, "probe failed(ret=0x%x)\n", ret); return ret; } static const struct pci_device_id pch_ieee1588_pcidev_id[] = { { .vendor = PCI_VENDOR_ID_INTEL, .device = PCI_DEVICE_ID_PCH_1588 }, {0} }; MODULE_DEVICE_TABLE(pci, pch_ieee1588_pcidev_id); static struct pci_driver pch_driver = { .name = KBUILD_MODNAME, .id_table = pch_ieee1588_pcidev_id, .probe = pch_probe, .remove = pch_remove, }; module_pci_driver(pch_driver); module_param_string(station, pch_param.station, sizeof(pch_param.station), 0444); MODULE_PARM_DESC(station, "IEEE 1588 station address to use - colon separated hex values"); MODULE_AUTHOR("LAPIS SEMICONDUCTOR, <[email protected]>"); MODULE_DESCRIPTION("PTP clock using the EG20T timer"); MODULE_LICENSE("GPL");
linux-master
drivers/ptp/ptp_pch.c
// SPDX-License-Identifier: GPL-2.0 OR BSD-2-Clause /* * Copyright (C) 2020 VMware, Inc., Palo Alto, CA., USA * * PTP clock driver for VMware precision clock virtual device. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/acpi.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/ptp_clock_kernel.h> #include <asm/hypervisor.h> #include <asm/vmware.h> #define VMWARE_MAGIC 0x564D5868 #define VMWARE_CMD_PCLK(nr) ((nr << 16) | 97) #define VMWARE_CMD_PCLK_GETTIME VMWARE_CMD_PCLK(0) static struct acpi_device *ptp_vmw_acpi_device; static struct ptp_clock *ptp_vmw_clock; static int ptp_vmw_pclk_read(u64 *ns) { u32 ret, nsec_hi, nsec_lo, unused1, unused2, unused3; asm volatile (VMWARE_HYPERCALL : "=a"(ret), "=b"(nsec_hi), "=c"(nsec_lo), "=d"(unused1), "=S"(unused2), "=D"(unused3) : "a"(VMWARE_MAGIC), "b"(0), "c"(VMWARE_CMD_PCLK_GETTIME), "d"(0) : "memory"); if (ret == 0) *ns = ((u64)nsec_hi << 32) | nsec_lo; return ret; } /* * PTP clock ops. */ static int ptp_vmw_adjtime(struct ptp_clock_info *info, s64 delta) { return -EOPNOTSUPP; } static int ptp_vmw_adjfine(struct ptp_clock_info *info, long delta) { return -EOPNOTSUPP; } static int ptp_vmw_gettime(struct ptp_clock_info *info, struct timespec64 *ts) { u64 ns; if (ptp_vmw_pclk_read(&ns) != 0) return -EIO; *ts = ns_to_timespec64(ns); return 0; } static int ptp_vmw_settime(struct ptp_clock_info *info, const struct timespec64 *ts) { return -EOPNOTSUPP; } static int ptp_vmw_enable(struct ptp_clock_info *info, struct ptp_clock_request *request, int on) { return -EOPNOTSUPP; } static struct ptp_clock_info ptp_vmw_clock_info = { .owner = THIS_MODULE, .name = "ptp_vmw", .max_adj = 0, .adjtime = ptp_vmw_adjtime, .adjfine = ptp_vmw_adjfine, .gettime64 = ptp_vmw_gettime, .settime64 = ptp_vmw_settime, .enable = ptp_vmw_enable, }; /* * ACPI driver ops for VMware "precision clock" virtual device. */ static int ptp_vmw_acpi_add(struct acpi_device *device) { ptp_vmw_clock = ptp_clock_register(&ptp_vmw_clock_info, NULL); if (IS_ERR(ptp_vmw_clock)) { pr_err("failed to register ptp clock\n"); return PTR_ERR(ptp_vmw_clock); } ptp_vmw_acpi_device = device; return 0; } static void ptp_vmw_acpi_remove(struct acpi_device *device) { ptp_clock_unregister(ptp_vmw_clock); } static const struct acpi_device_id ptp_vmw_acpi_device_ids[] = { { "VMW0005", 0 }, { "", 0 }, }; MODULE_DEVICE_TABLE(acpi, ptp_vmw_acpi_device_ids); static struct acpi_driver ptp_vmw_acpi_driver = { .name = "ptp_vmw", .ids = ptp_vmw_acpi_device_ids, .ops = { .add = ptp_vmw_acpi_add, .remove = ptp_vmw_acpi_remove }, .owner = THIS_MODULE }; static int __init ptp_vmw_init(void) { if (x86_hyper_type != X86_HYPER_VMWARE) return -1; return acpi_bus_register_driver(&ptp_vmw_acpi_driver); } static void __exit ptp_vmw_exit(void) { acpi_bus_unregister_driver(&ptp_vmw_acpi_driver); } module_init(ptp_vmw_init); module_exit(ptp_vmw_exit); MODULE_DESCRIPTION("VMware virtual PTP clock driver"); MODULE_AUTHOR("VMware, Inc."); MODULE_LICENSE("Dual BSD/GPL");
linux-master
drivers/ptp/ptp_vmw.c
// SPDX-License-Identifier: GPL-2.0+ /* Copyright 2019 NXP */ #include <linux/device.h> #include <linux/debugfs.h> #include <linux/fsl/ptp_qoriq.h> static int ptp_qoriq_fiper1_lpbk_get(void *data, u64 *val) { struct ptp_qoriq *ptp_qoriq = data; struct ptp_qoriq_registers *regs = &ptp_qoriq->regs; u32 ctrl; ctrl = ptp_qoriq->read(&regs->ctrl_regs->tmr_ctrl); *val = ctrl & PP1L ? 1 : 0; return 0; } static int ptp_qoriq_fiper1_lpbk_set(void *data, u64 val) { struct ptp_qoriq *ptp_qoriq = data; struct ptp_qoriq_registers *regs = &ptp_qoriq->regs; u32 ctrl; ctrl = ptp_qoriq->read(&regs->ctrl_regs->tmr_ctrl); if (val == 0) ctrl &= ~PP1L; else ctrl |= PP1L; ptp_qoriq->write(&regs->ctrl_regs->tmr_ctrl, ctrl); return 0; } DEFINE_DEBUGFS_ATTRIBUTE(ptp_qoriq_fiper1_fops, ptp_qoriq_fiper1_lpbk_get, ptp_qoriq_fiper1_lpbk_set, "%llu\n"); static int ptp_qoriq_fiper2_lpbk_get(void *data, u64 *val) { struct ptp_qoriq *ptp_qoriq = data; struct ptp_qoriq_registers *regs = &ptp_qoriq->regs; u32 ctrl; ctrl = ptp_qoriq->read(&regs->ctrl_regs->tmr_ctrl); *val = ctrl & PP2L ? 1 : 0; return 0; } static int ptp_qoriq_fiper2_lpbk_set(void *data, u64 val) { struct ptp_qoriq *ptp_qoriq = data; struct ptp_qoriq_registers *regs = &ptp_qoriq->regs; u32 ctrl; ctrl = ptp_qoriq->read(&regs->ctrl_regs->tmr_ctrl); if (val == 0) ctrl &= ~PP2L; else ctrl |= PP2L; ptp_qoriq->write(&regs->ctrl_regs->tmr_ctrl, ctrl); return 0; } DEFINE_DEBUGFS_ATTRIBUTE(ptp_qoriq_fiper2_fops, ptp_qoriq_fiper2_lpbk_get, ptp_qoriq_fiper2_lpbk_set, "%llu\n"); void ptp_qoriq_create_debugfs(struct ptp_qoriq *ptp_qoriq) { struct dentry *root; root = debugfs_create_dir(dev_name(ptp_qoriq->dev), NULL); if (IS_ERR(root)) return; if (!root) goto err_root; ptp_qoriq->debugfs_root = root; if (!debugfs_create_file_unsafe("fiper1-loopback", 0600, root, ptp_qoriq, &ptp_qoriq_fiper1_fops)) goto err_node; if (!debugfs_create_file_unsafe("fiper2-loopback", 0600, root, ptp_qoriq, &ptp_qoriq_fiper2_fops)) goto err_node; return; err_node: debugfs_remove_recursive(root); ptp_qoriq->debugfs_root = NULL; err_root: dev_err(ptp_qoriq->dev, "failed to initialize debugfs\n"); } void ptp_qoriq_remove_debugfs(struct ptp_qoriq *ptp_qoriq) { debugfs_remove_recursive(ptp_qoriq->debugfs_root); ptp_qoriq->debugfs_root = NULL; }
linux-master
drivers/ptp/ptp_qoriq_debugfs.c
// SPDX-License-Identifier: GPL-2.0 // // Copyright (C) 2018 MOSER-BAER AG // #define pr_fmt(fmt) "InES_PTP: " fmt #include <linux/ethtool.h> #include <linux/export.h> #include <linux/if_vlan.h> #include <linux/mii_timestamper.h> #include <linux/module.h> #include <linux/net_tstamp.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/phy.h> #include <linux/platform_device.h> #include <linux/ptp_classify.h> #include <linux/ptp_clock_kernel.h> #include <linux/stddef.h> MODULE_DESCRIPTION("Driver for the ZHAW InES PTP time stamping IP core"); MODULE_AUTHOR("Richard Cochran <[email protected]>"); MODULE_VERSION("1.0"); MODULE_LICENSE("GPL"); /* GLOBAL register */ #define MCAST_MAC_SELECT_SHIFT 2 #define MCAST_MAC_SELECT_MASK 0x3 #define IO_RESET BIT(1) #define PTP_RESET BIT(0) /* VERSION register */ #define IF_MAJOR_VER_SHIFT 12 #define IF_MAJOR_VER_MASK 0xf #define IF_MINOR_VER_SHIFT 8 #define IF_MINOR_VER_MASK 0xf #define FPGA_MAJOR_VER_SHIFT 4 #define FPGA_MAJOR_VER_MASK 0xf #define FPGA_MINOR_VER_SHIFT 0 #define FPGA_MINOR_VER_MASK 0xf /* INT_STAT register */ #define RX_INTR_STATUS_3 BIT(5) #define RX_INTR_STATUS_2 BIT(4) #define RX_INTR_STATUS_1 BIT(3) #define TX_INTR_STATUS_3 BIT(2) #define TX_INTR_STATUS_2 BIT(1) #define TX_INTR_STATUS_1 BIT(0) /* INT_MSK register */ #define RX_INTR_MASK_3 BIT(5) #define RX_INTR_MASK_2 BIT(4) #define RX_INTR_MASK_1 BIT(3) #define TX_INTR_MASK_3 BIT(2) #define TX_INTR_MASK_2 BIT(1) #define TX_INTR_MASK_1 BIT(0) /* BUF_STAT register */ #define RX_FIFO_NE_3 BIT(5) #define RX_FIFO_NE_2 BIT(4) #define RX_FIFO_NE_1 BIT(3) #define TX_FIFO_NE_3 BIT(2) #define TX_FIFO_NE_2 BIT(1) #define TX_FIFO_NE_1 BIT(0) /* PORT_CONF register */ #define CM_ONE_STEP BIT(6) #define PHY_SPEED_SHIFT 4 #define PHY_SPEED_MASK 0x3 #define P2P_DELAY_WR_POS_SHIFT 2 #define P2P_DELAY_WR_POS_MASK 0x3 #define PTP_MODE_SHIFT 0 #define PTP_MODE_MASK 0x3 /* TS_STAT_TX register */ #define TS_ENABLE BIT(15) #define DATA_READ_POS_SHIFT 8 #define DATA_READ_POS_MASK 0x1f #define DISCARDED_EVENTS_SHIFT 4 #define DISCARDED_EVENTS_MASK 0xf #define INES_N_PORTS 3 #define INES_REGISTER_SIZE 0x80 #define INES_PORT_OFFSET 0x20 #define INES_PORT_SIZE 0x20 #define INES_FIFO_DEPTH 90 #define INES_MAX_EVENTS 100 #define BC_PTP_V1 0 #define BC_PTP_V2 1 #define TC_E2E_PTP_V2 2 #define TC_P2P_PTP_V2 3 #define PHY_SPEED_10 0 #define PHY_SPEED_100 1 #define PHY_SPEED_1000 2 #define PORT_CONF \ ((PHY_SPEED_1000 << PHY_SPEED_SHIFT) | (BC_PTP_V2 << PTP_MODE_SHIFT)) #define ines_read32(s, r) __raw_readl((void __iomem *)&s->regs->r) #define ines_write32(s, v, r) __raw_writel(v, (void __iomem *)&s->regs->r) #define MESSAGE_TYPE_SYNC 1 #define MESSAGE_TYPE_P_DELAY_REQ 2 #define MESSAGE_TYPE_P_DELAY_RESP 3 #define MESSAGE_TYPE_DELAY_REQ 4 static LIST_HEAD(ines_clocks); static DEFINE_MUTEX(ines_clocks_lock); struct ines_global_regs { u32 id; u32 test; u32 global; u32 version; u32 test2; u32 int_stat; u32 int_msk; u32 buf_stat; }; struct ines_port_registers { u32 port_conf; u32 p_delay; u32 ts_stat_tx; u32 ts_stat_rx; u32 ts_tx; u32 ts_rx; }; struct ines_timestamp { struct list_head list; unsigned long tmo; u16 tag; u64 sec; u64 nsec; u64 clkid; u16 portnum; u16 seqid; }; struct ines_port { struct ines_port_registers *regs; struct mii_timestamper mii_ts; struct ines_clock *clock; bool rxts_enabled; bool txts_enabled; unsigned int index; struct delayed_work ts_work; /* lock protects event list and tx_skb */ spinlock_t lock; struct sk_buff *tx_skb; struct list_head events; struct list_head pool; struct ines_timestamp pool_data[INES_MAX_EVENTS]; }; struct ines_clock { struct ines_port port[INES_N_PORTS]; struct ines_global_regs __iomem *regs; void __iomem *base; struct device_node *node; struct device *dev; struct list_head list; }; static bool ines_match(struct sk_buff *skb, unsigned int ptp_class, struct ines_timestamp *ts, struct device *dev); static int ines_rxfifo_read(struct ines_port *port); static u64 ines_rxts64(struct ines_port *port, unsigned int words); static bool ines_timestamp_expired(struct ines_timestamp *ts); static u64 ines_txts64(struct ines_port *port, unsigned int words); static void ines_txtstamp_work(struct work_struct *work); static bool is_sync_pdelay_resp(struct sk_buff *skb, int type); static u8 tag_to_msgtype(u8 tag); static void ines_clock_cleanup(struct ines_clock *clock) { struct ines_port *port; int i; for (i = 0; i < INES_N_PORTS; i++) { port = &clock->port[i]; cancel_delayed_work_sync(&port->ts_work); } } static int ines_clock_init(struct ines_clock *clock, struct device *device, void __iomem *addr) { struct device_node *node = device->of_node; unsigned long port_addr; struct ines_port *port; int i, j; INIT_LIST_HEAD(&clock->list); clock->node = node; clock->dev = device; clock->base = addr; clock->regs = clock->base; for (i = 0; i < INES_N_PORTS; i++) { port = &clock->port[i]; port_addr = (unsigned long) clock->base + INES_PORT_OFFSET + i * INES_PORT_SIZE; port->regs = (struct ines_port_registers *) port_addr; port->clock = clock; port->index = i; INIT_DELAYED_WORK(&port->ts_work, ines_txtstamp_work); spin_lock_init(&port->lock); INIT_LIST_HEAD(&port->events); INIT_LIST_HEAD(&port->pool); for (j = 0; j < INES_MAX_EVENTS; j++) list_add(&port->pool_data[j].list, &port->pool); } ines_write32(clock, 0xBEEF, test); ines_write32(clock, 0xBEEF, test2); dev_dbg(device, "ID 0x%x\n", ines_read32(clock, id)); dev_dbg(device, "TEST 0x%x\n", ines_read32(clock, test)); dev_dbg(device, "VERSION 0x%x\n", ines_read32(clock, version)); dev_dbg(device, "TEST2 0x%x\n", ines_read32(clock, test2)); for (i = 0; i < INES_N_PORTS; i++) { port = &clock->port[i]; ines_write32(port, PORT_CONF, port_conf); } return 0; } static struct ines_port *ines_find_port(struct device_node *node, u32 index) { struct ines_port *port = NULL; struct ines_clock *clock; struct list_head *this; mutex_lock(&ines_clocks_lock); list_for_each(this, &ines_clocks) { clock = list_entry(this, struct ines_clock, list); if (clock->node == node) { port = &clock->port[index]; break; } } mutex_unlock(&ines_clocks_lock); return port; } static u64 ines_find_rxts(struct ines_port *port, struct sk_buff *skb, int type) { struct list_head *this, *next; struct ines_timestamp *ts; unsigned long flags; u64 ns = 0; if (type == PTP_CLASS_NONE) return 0; spin_lock_irqsave(&port->lock, flags); ines_rxfifo_read(port); list_for_each_safe(this, next, &port->events) { ts = list_entry(this, struct ines_timestamp, list); if (ines_timestamp_expired(ts)) { list_del_init(&ts->list); list_add(&ts->list, &port->pool); continue; } if (ines_match(skb, type, ts, port->clock->dev)) { ns = ts->sec * 1000000000ULL + ts->nsec; list_del_init(&ts->list); list_add(&ts->list, &port->pool); break; } } spin_unlock_irqrestore(&port->lock, flags); return ns; } static u64 ines_find_txts(struct ines_port *port, struct sk_buff *skb) { unsigned int class = ptp_classify_raw(skb), i; u32 data_rd_pos, buf_stat, mask, ts_stat_tx; struct ines_timestamp ts; unsigned long flags; u64 ns = 0; mask = TX_FIFO_NE_1 << port->index; spin_lock_irqsave(&port->lock, flags); for (i = 0; i < INES_FIFO_DEPTH; i++) { buf_stat = ines_read32(port->clock, buf_stat); if (!(buf_stat & mask)) { dev_dbg(port->clock->dev, "Tx timestamp FIFO unexpectedly empty\n"); break; } ts_stat_tx = ines_read32(port, ts_stat_tx); data_rd_pos = (ts_stat_tx >> DATA_READ_POS_SHIFT) & DATA_READ_POS_MASK; if (data_rd_pos) { dev_err(port->clock->dev, "unexpected Tx read pos %u\n", data_rd_pos); break; } ts.tag = ines_read32(port, ts_tx); ts.sec = ines_txts64(port, 3); ts.nsec = ines_txts64(port, 2); ts.clkid = ines_txts64(port, 4); ts.portnum = ines_read32(port, ts_tx); ts.seqid = ines_read32(port, ts_tx); if (ines_match(skb, class, &ts, port->clock->dev)) { ns = ts.sec * 1000000000ULL + ts.nsec; break; } } spin_unlock_irqrestore(&port->lock, flags); return ns; } static int ines_hwtstamp(struct mii_timestamper *mii_ts, struct ifreq *ifr) { struct ines_port *port = container_of(mii_ts, struct ines_port, mii_ts); u32 cm_one_step = 0, port_conf, ts_stat_rx, ts_stat_tx; struct hwtstamp_config cfg; unsigned long flags; if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) return -EFAULT; switch (cfg.tx_type) { case HWTSTAMP_TX_OFF: ts_stat_tx = 0; break; case HWTSTAMP_TX_ON: ts_stat_tx = TS_ENABLE; break; case HWTSTAMP_TX_ONESTEP_P2P: ts_stat_tx = TS_ENABLE; cm_one_step = CM_ONE_STEP; break; default: return -ERANGE; } switch (cfg.rx_filter) { case HWTSTAMP_FILTER_NONE: ts_stat_rx = 0; break; case HWTSTAMP_FILTER_ALL: case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: return -ERANGE; case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_EVENT: case HWTSTAMP_FILTER_PTP_V2_SYNC: case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: ts_stat_rx = TS_ENABLE; cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; break; default: return -ERANGE; } spin_lock_irqsave(&port->lock, flags); port_conf = ines_read32(port, port_conf); port_conf &= ~CM_ONE_STEP; port_conf |= cm_one_step; ines_write32(port, port_conf, port_conf); ines_write32(port, ts_stat_rx, ts_stat_rx); ines_write32(port, ts_stat_tx, ts_stat_tx); port->rxts_enabled = ts_stat_rx == TS_ENABLE; port->txts_enabled = ts_stat_tx == TS_ENABLE; spin_unlock_irqrestore(&port->lock, flags); return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; } static void ines_link_state(struct mii_timestamper *mii_ts, struct phy_device *phydev) { struct ines_port *port = container_of(mii_ts, struct ines_port, mii_ts); u32 port_conf, speed_conf; unsigned long flags; switch (phydev->speed) { case SPEED_10: speed_conf = PHY_SPEED_10 << PHY_SPEED_SHIFT; break; case SPEED_100: speed_conf = PHY_SPEED_100 << PHY_SPEED_SHIFT; break; case SPEED_1000: speed_conf = PHY_SPEED_1000 << PHY_SPEED_SHIFT; break; default: dev_err(port->clock->dev, "bad speed: %d\n", phydev->speed); return; } spin_lock_irqsave(&port->lock, flags); port_conf = ines_read32(port, port_conf); port_conf &= ~(0x3 << PHY_SPEED_SHIFT); port_conf |= speed_conf; ines_write32(port, port_conf, port_conf); spin_unlock_irqrestore(&port->lock, flags); } static bool ines_match(struct sk_buff *skb, unsigned int ptp_class, struct ines_timestamp *ts, struct device *dev) { struct ptp_header *hdr; u16 portn, seqid; u8 msgtype; u64 clkid; if (unlikely(ptp_class & PTP_CLASS_V1)) return false; hdr = ptp_parse_header(skb, ptp_class); if (!hdr) return false; msgtype = ptp_get_msgtype(hdr, ptp_class); clkid = be64_to_cpup((__be64 *)&hdr->source_port_identity.clock_identity.id[0]); portn = be16_to_cpu(hdr->source_port_identity.port_number); seqid = be16_to_cpu(hdr->sequence_id); if (tag_to_msgtype(ts->tag & 0x7) != msgtype) { dev_dbg(dev, "msgtype mismatch ts %hhu != skb %hhu\n", tag_to_msgtype(ts->tag & 0x7), msgtype); return false; } if (ts->clkid != clkid) { dev_dbg(dev, "clkid mismatch ts %llx != skb %llx\n", ts->clkid, clkid); return false; } if (ts->portnum != portn) { dev_dbg(dev, "portn mismatch ts %hu != skb %hu\n", ts->portnum, portn); return false; } if (ts->seqid != seqid) { dev_dbg(dev, "seqid mismatch ts %hu != skb %hu\n", ts->seqid, seqid); return false; } return true; } static bool ines_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type) { struct ines_port *port = container_of(mii_ts, struct ines_port, mii_ts); struct skb_shared_hwtstamps *ssh; u64 ns; if (!port->rxts_enabled) return false; ns = ines_find_rxts(port, skb, type); if (!ns) return false; ssh = skb_hwtstamps(skb); ssh->hwtstamp = ns_to_ktime(ns); netif_rx(skb); return true; } static int ines_rxfifo_read(struct ines_port *port) { u32 data_rd_pos, buf_stat, mask, ts_stat_rx; struct ines_timestamp *ts; unsigned int i; mask = RX_FIFO_NE_1 << port->index; for (i = 0; i < INES_FIFO_DEPTH; i++) { if (list_empty(&port->pool)) { dev_err(port->clock->dev, "event pool is empty\n"); return -1; } buf_stat = ines_read32(port->clock, buf_stat); if (!(buf_stat & mask)) break; ts_stat_rx = ines_read32(port, ts_stat_rx); data_rd_pos = (ts_stat_rx >> DATA_READ_POS_SHIFT) & DATA_READ_POS_MASK; if (data_rd_pos) { dev_err(port->clock->dev, "unexpected Rx read pos %u\n", data_rd_pos); break; } ts = list_first_entry(&port->pool, struct ines_timestamp, list); ts->tmo = jiffies + HZ; ts->tag = ines_read32(port, ts_rx); ts->sec = ines_rxts64(port, 3); ts->nsec = ines_rxts64(port, 2); ts->clkid = ines_rxts64(port, 4); ts->portnum = ines_read32(port, ts_rx); ts->seqid = ines_read32(port, ts_rx); list_del_init(&ts->list); list_add_tail(&ts->list, &port->events); } return 0; } static u64 ines_rxts64(struct ines_port *port, unsigned int words) { unsigned int i; u64 result; u16 word; word = ines_read32(port, ts_rx); result = word; words--; for (i = 0; i < words; i++) { word = ines_read32(port, ts_rx); result <<= 16; result |= word; } return result; } static bool ines_timestamp_expired(struct ines_timestamp *ts) { return time_after(jiffies, ts->tmo); } static int ines_ts_info(struct mii_timestamper *mii_ts, struct ethtool_ts_info *info) { info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | SOF_TIMESTAMPING_TX_SOFTWARE | SOF_TIMESTAMPING_RX_HARDWARE | SOF_TIMESTAMPING_RX_SOFTWARE | SOF_TIMESTAMPING_SOFTWARE | SOF_TIMESTAMPING_RAW_HARDWARE; info->phc_index = -1; info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON) | (1 << HWTSTAMP_TX_ONESTEP_P2P); info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); return 0; } static u64 ines_txts64(struct ines_port *port, unsigned int words) { unsigned int i; u64 result; u16 word; word = ines_read32(port, ts_tx); result = word; words--; for (i = 0; i < words; i++) { word = ines_read32(port, ts_tx); result <<= 16; result |= word; } return result; } static bool ines_txts_onestep(struct ines_port *port, struct sk_buff *skb, int type) { unsigned long flags; u32 port_conf; spin_lock_irqsave(&port->lock, flags); port_conf = ines_read32(port, port_conf); spin_unlock_irqrestore(&port->lock, flags); if (port_conf & CM_ONE_STEP) return is_sync_pdelay_resp(skb, type); return false; } static void ines_txtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type) { struct ines_port *port = container_of(mii_ts, struct ines_port, mii_ts); struct sk_buff *old_skb = NULL; unsigned long flags; if (!port->txts_enabled || ines_txts_onestep(port, skb, type)) { kfree_skb(skb); return; } spin_lock_irqsave(&port->lock, flags); if (port->tx_skb) old_skb = port->tx_skb; port->tx_skb = skb; spin_unlock_irqrestore(&port->lock, flags); kfree_skb(old_skb); schedule_delayed_work(&port->ts_work, 1); } static void ines_txtstamp_work(struct work_struct *work) { struct ines_port *port = container_of(work, struct ines_port, ts_work.work); struct skb_shared_hwtstamps ssh; struct sk_buff *skb; unsigned long flags; u64 ns; spin_lock_irqsave(&port->lock, flags); skb = port->tx_skb; port->tx_skb = NULL; spin_unlock_irqrestore(&port->lock, flags); ns = ines_find_txts(port, skb); if (!ns) { kfree_skb(skb); return; } ssh.hwtstamp = ns_to_ktime(ns); skb_complete_tx_timestamp(skb, &ssh); } static bool is_sync_pdelay_resp(struct sk_buff *skb, int type) { struct ptp_header *hdr; u8 msgtype; hdr = ptp_parse_header(skb, type); if (!hdr) return false; msgtype = ptp_get_msgtype(hdr, type); switch (msgtype) { case PTP_MSGTYPE_SYNC: case PTP_MSGTYPE_PDELAY_RESP: return true; default: return false; } } static u8 tag_to_msgtype(u8 tag) { switch (tag) { case MESSAGE_TYPE_SYNC: return PTP_MSGTYPE_SYNC; case MESSAGE_TYPE_P_DELAY_REQ: return PTP_MSGTYPE_PDELAY_REQ; case MESSAGE_TYPE_P_DELAY_RESP: return PTP_MSGTYPE_PDELAY_RESP; case MESSAGE_TYPE_DELAY_REQ: return PTP_MSGTYPE_DELAY_REQ; } return 0xf; } static struct mii_timestamper *ines_ptp_probe_channel(struct device *device, unsigned int index) { struct device_node *node = device->of_node; struct ines_port *port; if (index > INES_N_PORTS - 1) { dev_err(device, "bad port index %u\n", index); return ERR_PTR(-EINVAL); } port = ines_find_port(node, index); if (!port) { dev_err(device, "missing port index %u\n", index); return ERR_PTR(-ENODEV); } port->mii_ts.rxtstamp = ines_rxtstamp; port->mii_ts.txtstamp = ines_txtstamp; port->mii_ts.hwtstamp = ines_hwtstamp; port->mii_ts.link_state = ines_link_state; port->mii_ts.ts_info = ines_ts_info; return &port->mii_ts; } static void ines_ptp_release_channel(struct device *device, struct mii_timestamper *mii_ts) { } static struct mii_timestamping_ctrl ines_ctrl = { .probe_channel = ines_ptp_probe_channel, .release_channel = ines_ptp_release_channel, }; static int ines_ptp_ctrl_probe(struct platform_device *pld) { struct ines_clock *clock; void __iomem *addr; int err = 0; addr = devm_platform_ioremap_resource(pld, 0); if (IS_ERR(addr)) { err = PTR_ERR(addr); goto out; } clock = kzalloc(sizeof(*clock), GFP_KERNEL); if (!clock) { err = -ENOMEM; goto out; } if (ines_clock_init(clock, &pld->dev, addr)) { kfree(clock); err = -ENOMEM; goto out; } err = register_mii_tstamp_controller(&pld->dev, &ines_ctrl); if (err) { kfree(clock); goto out; } mutex_lock(&ines_clocks_lock); list_add_tail(&ines_clocks, &clock->list); mutex_unlock(&ines_clocks_lock); dev_set_drvdata(&pld->dev, clock); out: return err; } static int ines_ptp_ctrl_remove(struct platform_device *pld) { struct ines_clock *clock = dev_get_drvdata(&pld->dev); unregister_mii_tstamp_controller(&pld->dev); mutex_lock(&ines_clocks_lock); list_del(&clock->list); mutex_unlock(&ines_clocks_lock); ines_clock_cleanup(clock); kfree(clock); return 0; } static const struct of_device_id ines_ptp_ctrl_of_match[] = { { .compatible = "ines,ptp-ctrl" }, { } }; MODULE_DEVICE_TABLE(of, ines_ptp_ctrl_of_match); static struct platform_driver ines_ptp_ctrl_driver = { .probe = ines_ptp_ctrl_probe, .remove = ines_ptp_ctrl_remove, .driver = { .name = "ines_ptp_ctrl", .of_match_table = ines_ptp_ctrl_of_match, }, }; module_platform_driver(ines_ptp_ctrl_driver);
linux-master
drivers/ptp/ptp_ines.c
// SPDX-License-Identifier: GPL-2.0-only /* * TI K3 DSP Remote Processor(s) driver * * Copyright (C) 2018-2022 Texas Instruments Incorporated - https://www.ti.com/ * Suman Anna <[email protected]> */ #include <linux/io.h> #include <linux/mailbox_client.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_reserved_mem.h> #include <linux/omap-mailbox.h> #include <linux/platform_device.h> #include <linux/remoteproc.h> #include <linux/reset.h> #include <linux/slab.h> #include "omap_remoteproc.h" #include "remoteproc_internal.h" #include "ti_sci_proc.h" #define KEYSTONE_RPROC_LOCAL_ADDRESS_MASK (SZ_16M - 1) /** * struct k3_dsp_mem - internal memory structure * @cpu_addr: MPU virtual address of the memory region * @bus_addr: Bus address used to access the memory region * @dev_addr: Device address of the memory region from DSP view * @size: Size of the memory region */ struct k3_dsp_mem { void __iomem *cpu_addr; phys_addr_t bus_addr; u32 dev_addr; size_t size; }; /** * struct k3_dsp_mem_data - memory definitions for a DSP * @name: name for this memory entry * @dev_addr: device address for the memory entry */ struct k3_dsp_mem_data { const char *name; const u32 dev_addr; }; /** * struct k3_dsp_dev_data - device data structure for a DSP * @mems: pointer to memory definitions for a DSP * @num_mems: number of memory regions in @mems * @boot_align_addr: boot vector address alignment granularity * @uses_lreset: flag to denote the need for local reset management */ struct k3_dsp_dev_data { const struct k3_dsp_mem_data *mems; u32 num_mems; u32 boot_align_addr; bool uses_lreset; }; /** * struct k3_dsp_rproc - k3 DSP remote processor driver structure * @dev: cached device pointer * @rproc: remoteproc device handle * @mem: internal memory regions data * @num_mems: number of internal memory regions * @rmem: reserved memory regions data * @num_rmems: number of reserved memory regions * @reset: reset control handle * @data: pointer to DSP-specific device data * @tsp: TI-SCI processor control handle * @ti_sci: TI-SCI handle * @ti_sci_id: TI-SCI device identifier * @mbox: mailbox channel handle * @client: mailbox client to request the mailbox channel */ struct k3_dsp_rproc { struct device *dev; struct rproc *rproc; struct k3_dsp_mem *mem; int num_mems; struct k3_dsp_mem *rmem; int num_rmems; struct reset_control *reset; const struct k3_dsp_dev_data *data; struct ti_sci_proc *tsp; const struct ti_sci_handle *ti_sci; u32 ti_sci_id; struct mbox_chan *mbox; struct mbox_client client; }; /** * k3_dsp_rproc_mbox_callback() - inbound mailbox message handler * @client: mailbox client pointer used for requesting the mailbox channel * @data: mailbox payload * * This handler is invoked by the OMAP mailbox driver whenever a mailbox * message is received. Usually, the mailbox payload simply contains * the index of the virtqueue that is kicked by the remote processor, * and we let remoteproc core handle it. * * In addition to virtqueue indices, we also have some out-of-band values * that indicate different events. Those values are deliberately very * large so they don't coincide with virtqueue indices. */ static void k3_dsp_rproc_mbox_callback(struct mbox_client *client, void *data) { struct k3_dsp_rproc *kproc = container_of(client, struct k3_dsp_rproc, client); struct device *dev = kproc->rproc->dev.parent; const char *name = kproc->rproc->name; u32 msg = omap_mbox_message(data); dev_dbg(dev, "mbox msg: 0x%x\n", msg); switch (msg) { case RP_MBOX_CRASH: /* * remoteproc detected an exception, but error recovery is not * supported. So, just log this for now */ dev_err(dev, "K3 DSP rproc %s crashed\n", name); break; case RP_MBOX_ECHO_REPLY: dev_info(dev, "received echo reply from %s\n", name); break; default: /* silently handle all other valid messages */ if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG) return; if (msg > kproc->rproc->max_notifyid) { dev_dbg(dev, "dropping unknown message 0x%x", msg); return; } /* msg contains the index of the triggered vring */ if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE) dev_dbg(dev, "no message was found in vqid %d\n", msg); } } /* * Kick the remote processor to notify about pending unprocessed messages. * The vqid usage is not used and is inconsequential, as the kick is performed * through a simulated GPIO (a bit in an IPC interrupt-triggering register), * the remote processor is expected to process both its Tx and Rx virtqueues. */ static void k3_dsp_rproc_kick(struct rproc *rproc, int vqid) { struct k3_dsp_rproc *kproc = rproc->priv; struct device *dev = rproc->dev.parent; mbox_msg_t msg = (mbox_msg_t)vqid; int ret; /* send the index of the triggered virtqueue in the mailbox payload */ ret = mbox_send_message(kproc->mbox, (void *)msg); if (ret < 0) dev_err(dev, "failed to send mailbox message, status = %d\n", ret); } /* Put the DSP processor into reset */ static int k3_dsp_rproc_reset(struct k3_dsp_rproc *kproc) { struct device *dev = kproc->dev; int ret; ret = reset_control_assert(kproc->reset); if (ret) { dev_err(dev, "local-reset assert failed, ret = %d\n", ret); return ret; } if (kproc->data->uses_lreset) return ret; ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, kproc->ti_sci_id); if (ret) { dev_err(dev, "module-reset assert failed, ret = %d\n", ret); if (reset_control_deassert(kproc->reset)) dev_warn(dev, "local-reset deassert back failed\n"); } return ret; } /* Release the DSP processor from reset */ static int k3_dsp_rproc_release(struct k3_dsp_rproc *kproc) { struct device *dev = kproc->dev; int ret; if (kproc->data->uses_lreset) goto lreset; ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci, kproc->ti_sci_id); if (ret) { dev_err(dev, "module-reset deassert failed, ret = %d\n", ret); return ret; } lreset: ret = reset_control_deassert(kproc->reset); if (ret) { dev_err(dev, "local-reset deassert failed, ret = %d\n", ret); if (kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, kproc->ti_sci_id)) dev_warn(dev, "module-reset assert back failed\n"); } return ret; } static int k3_dsp_rproc_request_mbox(struct rproc *rproc) { struct k3_dsp_rproc *kproc = rproc->priv; struct mbox_client *client = &kproc->client; struct device *dev = kproc->dev; int ret; client->dev = dev; client->tx_done = NULL; client->rx_callback = k3_dsp_rproc_mbox_callback; client->tx_block = false; client->knows_txdone = false; kproc->mbox = mbox_request_channel(client, 0); if (IS_ERR(kproc->mbox)) { ret = -EBUSY; dev_err(dev, "mbox_request_channel failed: %ld\n", PTR_ERR(kproc->mbox)); return ret; } /* * Ping the remote processor, this is only for sanity-sake for now; * there is no functional effect whatsoever. * * Note that the reply will _not_ arrive immediately: this message * will wait in the mailbox fifo until the remote processor is booted. */ ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST); if (ret < 0) { dev_err(dev, "mbox_send_message failed: %d\n", ret); mbox_free_channel(kproc->mbox); return ret; } return 0; } /* * The C66x DSP cores have a local reset that affects only the CPU, and a * generic module reset that powers on the device and allows the DSP internal * memories to be accessed while the local reset is asserted. This function is * used to release the global reset on C66x DSPs to allow loading into the DSP * internal RAMs. The .prepare() ops is invoked by remoteproc core before any * firmware loading, and is followed by the .start() ops after loading to * actually let the C66x DSP cores run. This callback is invoked only in * remoteproc mode. */ static int k3_dsp_rproc_prepare(struct rproc *rproc) { struct k3_dsp_rproc *kproc = rproc->priv; struct device *dev = kproc->dev; int ret; ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci, kproc->ti_sci_id); if (ret) dev_err(dev, "module-reset deassert failed, cannot enable internal RAM loading, ret = %d\n", ret); return ret; } /* * This function implements the .unprepare() ops and performs the complimentary * operations to that of the .prepare() ops. The function is used to assert the * global reset on applicable C66x cores. This completes the second portion of * powering down the C66x DSP cores. The cores themselves are only halted in the * .stop() callback through the local reset, and the .unprepare() ops is invoked * by the remoteproc core after the remoteproc is stopped to balance the global * reset. This callback is invoked only in remoteproc mode. */ static int k3_dsp_rproc_unprepare(struct rproc *rproc) { struct k3_dsp_rproc *kproc = rproc->priv; struct device *dev = kproc->dev; int ret; ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, kproc->ti_sci_id); if (ret) dev_err(dev, "module-reset assert failed, ret = %d\n", ret); return ret; } /* * Power up the DSP remote processor. * * This function will be invoked only after the firmware for this rproc * was loaded, parsed successfully, and all of its resource requirements * were met. This callback is invoked only in remoteproc mode. */ static int k3_dsp_rproc_start(struct rproc *rproc) { struct k3_dsp_rproc *kproc = rproc->priv; struct device *dev = kproc->dev; u32 boot_addr; int ret; ret = k3_dsp_rproc_request_mbox(rproc); if (ret) return ret; boot_addr = rproc->bootaddr; if (boot_addr & (kproc->data->boot_align_addr - 1)) { dev_err(dev, "invalid boot address 0x%x, must be aligned on a 0x%x boundary\n", boot_addr, kproc->data->boot_align_addr); ret = -EINVAL; goto put_mbox; } dev_err(dev, "booting DSP core using boot addr = 0x%x\n", boot_addr); ret = ti_sci_proc_set_config(kproc->tsp, boot_addr, 0, 0); if (ret) goto put_mbox; ret = k3_dsp_rproc_release(kproc); if (ret) goto put_mbox; return 0; put_mbox: mbox_free_channel(kproc->mbox); return ret; } /* * Stop the DSP remote processor. * * This function puts the DSP processor into reset, and finishes processing * of any pending messages. This callback is invoked only in remoteproc mode. */ static int k3_dsp_rproc_stop(struct rproc *rproc) { struct k3_dsp_rproc *kproc = rproc->priv; mbox_free_channel(kproc->mbox); k3_dsp_rproc_reset(kproc); return 0; } /* * Attach to a running DSP remote processor (IPC-only mode) * * This rproc attach callback only needs to request the mailbox, the remote * processor is already booted, so there is no need to issue any TI-SCI * commands to boot the DSP core. This callback is invoked only in IPC-only * mode. */ static int k3_dsp_rproc_attach(struct rproc *rproc) { struct k3_dsp_rproc *kproc = rproc->priv; struct device *dev = kproc->dev; int ret; ret = k3_dsp_rproc_request_mbox(rproc); if (ret) return ret; dev_info(dev, "DSP initialized in IPC-only mode\n"); return 0; } /* * Detach from a running DSP remote processor (IPC-only mode) * * This rproc detach callback performs the opposite operation to attach callback * and only needs to release the mailbox, the DSP core is not stopped and will * be left to continue to run its booted firmware. This callback is invoked only * in IPC-only mode. */ static int k3_dsp_rproc_detach(struct rproc *rproc) { struct k3_dsp_rproc *kproc = rproc->priv; struct device *dev = kproc->dev; mbox_free_channel(kproc->mbox); dev_info(dev, "DSP deinitialized in IPC-only mode\n"); return 0; } /* * This function implements the .get_loaded_rsc_table() callback and is used * to provide the resource table for a booted DSP in IPC-only mode. The K3 DSP * firmwares follow a design-by-contract approach and are expected to have the * resource table at the base of the DDR region reserved for firmware usage. * This provides flexibility for the remote processor to be booted by different * bootloaders that may or may not have the ability to publish the resource table * address and size through a DT property. This callback is invoked only in * IPC-only mode. */ static struct resource_table *k3_dsp_get_loaded_rsc_table(struct rproc *rproc, size_t *rsc_table_sz) { struct k3_dsp_rproc *kproc = rproc->priv; struct device *dev = kproc->dev; if (!kproc->rmem[0].cpu_addr) { dev_err(dev, "memory-region #1 does not exist, loaded rsc table can't be found"); return ERR_PTR(-ENOMEM); } /* * NOTE: The resource table size is currently hard-coded to a maximum * of 256 bytes. The most common resource table usage for K3 firmwares * is to only have the vdev resource entry and an optional trace entry. * The exact size could be computed based on resource table address, but * the hard-coded value suffices to support the IPC-only mode. */ *rsc_table_sz = 256; return (struct resource_table *)kproc->rmem[0].cpu_addr; } /* * Custom function to translate a DSP device address (internal RAMs only) to a * kernel virtual address. The DSPs can access their RAMs at either an internal * address visible only from a DSP, or at the SoC-level bus address. Both these * addresses need to be looked through for translation. The translated addresses * can be used either by the remoteproc core for loading (when using kernel * remoteproc loader), or by any rpmsg bus drivers. */ static void *k3_dsp_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) { struct k3_dsp_rproc *kproc = rproc->priv; void __iomem *va = NULL; phys_addr_t bus_addr; u32 dev_addr, offset; size_t size; int i; if (len == 0) return NULL; for (i = 0; i < kproc->num_mems; i++) { bus_addr = kproc->mem[i].bus_addr; dev_addr = kproc->mem[i].dev_addr; size = kproc->mem[i].size; if (da < KEYSTONE_RPROC_LOCAL_ADDRESS_MASK) { /* handle DSP-view addresses */ if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { offset = da - dev_addr; va = kproc->mem[i].cpu_addr + offset; return (__force void *)va; } } else { /* handle SoC-view addresses */ if (da >= bus_addr && (da + len) <= (bus_addr + size)) { offset = da - bus_addr; va = kproc->mem[i].cpu_addr + offset; return (__force void *)va; } } } /* handle static DDR reserved memory regions */ for (i = 0; i < kproc->num_rmems; i++) { dev_addr = kproc->rmem[i].dev_addr; size = kproc->rmem[i].size; if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { offset = da - dev_addr; va = kproc->rmem[i].cpu_addr + offset; return (__force void *)va; } } return NULL; } static const struct rproc_ops k3_dsp_rproc_ops = { .start = k3_dsp_rproc_start, .stop = k3_dsp_rproc_stop, .kick = k3_dsp_rproc_kick, .da_to_va = k3_dsp_rproc_da_to_va, }; static int k3_dsp_rproc_of_get_memories(struct platform_device *pdev, struct k3_dsp_rproc *kproc) { const struct k3_dsp_dev_data *data = kproc->data; struct device *dev = &pdev->dev; struct resource *res; int num_mems = 0; int i; num_mems = kproc->data->num_mems; kproc->mem = devm_kcalloc(kproc->dev, num_mems, sizeof(*kproc->mem), GFP_KERNEL); if (!kproc->mem) return -ENOMEM; for (i = 0; i < num_mems; i++) { res = platform_get_resource_byname(pdev, IORESOURCE_MEM, data->mems[i].name); if (!res) { dev_err(dev, "found no memory resource for %s\n", data->mems[i].name); return -EINVAL; } if (!devm_request_mem_region(dev, res->start, resource_size(res), dev_name(dev))) { dev_err(dev, "could not request %s region for resource\n", data->mems[i].name); return -EBUSY; } kproc->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start, resource_size(res)); if (!kproc->mem[i].cpu_addr) { dev_err(dev, "failed to map %s memory\n", data->mems[i].name); return -ENOMEM; } kproc->mem[i].bus_addr = res->start; kproc->mem[i].dev_addr = data->mems[i].dev_addr; kproc->mem[i].size = resource_size(res); dev_dbg(dev, "memory %8s: bus addr %pa size 0x%zx va %pK da 0x%x\n", data->mems[i].name, &kproc->mem[i].bus_addr, kproc->mem[i].size, kproc->mem[i].cpu_addr, kproc->mem[i].dev_addr); } kproc->num_mems = num_mems; return 0; } static int k3_dsp_reserved_mem_init(struct k3_dsp_rproc *kproc) { struct device *dev = kproc->dev; struct device_node *np = dev->of_node; struct device_node *rmem_np; struct reserved_mem *rmem; int num_rmems; int ret, i; num_rmems = of_property_count_elems_of_size(np, "memory-region", sizeof(phandle)); if (num_rmems <= 0) { dev_err(dev, "device does not reserved memory regions, ret = %d\n", num_rmems); return -EINVAL; } if (num_rmems < 2) { dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n", num_rmems); return -EINVAL; } /* use reserved memory region 0 for vring DMA allocations */ ret = of_reserved_mem_device_init_by_idx(dev, np, 0); if (ret) { dev_err(dev, "device cannot initialize DMA pool, ret = %d\n", ret); return ret; } num_rmems--; kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL); if (!kproc->rmem) { ret = -ENOMEM; goto release_rmem; } /* use remaining reserved memory regions for static carveouts */ for (i = 0; i < num_rmems; i++) { rmem_np = of_parse_phandle(np, "memory-region", i + 1); if (!rmem_np) { ret = -EINVAL; goto unmap_rmem; } rmem = of_reserved_mem_lookup(rmem_np); if (!rmem) { of_node_put(rmem_np); ret = -EINVAL; goto unmap_rmem; } of_node_put(rmem_np); kproc->rmem[i].bus_addr = rmem->base; /* 64-bit address regions currently not supported */ kproc->rmem[i].dev_addr = (u32)rmem->base; kproc->rmem[i].size = rmem->size; kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size); if (!kproc->rmem[i].cpu_addr) { dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n", i + 1, &rmem->base, &rmem->size); ret = -ENOMEM; goto unmap_rmem; } dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n", i + 1, &kproc->rmem[i].bus_addr, kproc->rmem[i].size, kproc->rmem[i].cpu_addr, kproc->rmem[i].dev_addr); } kproc->num_rmems = num_rmems; return 0; unmap_rmem: for (i--; i >= 0; i--) iounmap(kproc->rmem[i].cpu_addr); kfree(kproc->rmem); release_rmem: of_reserved_mem_device_release(kproc->dev); return ret; } static void k3_dsp_reserved_mem_exit(struct k3_dsp_rproc *kproc) { int i; for (i = 0; i < kproc->num_rmems; i++) iounmap(kproc->rmem[i].cpu_addr); kfree(kproc->rmem); of_reserved_mem_device_release(kproc->dev); } static struct ti_sci_proc *k3_dsp_rproc_of_get_tsp(struct device *dev, const struct ti_sci_handle *sci) { struct ti_sci_proc *tsp; u32 temp[2]; int ret; ret = of_property_read_u32_array(dev->of_node, "ti,sci-proc-ids", temp, 2); if (ret < 0) return ERR_PTR(ret); tsp = kzalloc(sizeof(*tsp), GFP_KERNEL); if (!tsp) return ERR_PTR(-ENOMEM); tsp->dev = dev; tsp->sci = sci; tsp->ops = &sci->ops.proc_ops; tsp->proc_id = temp[0]; tsp->host_id = temp[1]; return tsp; } static int k3_dsp_rproc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; const struct k3_dsp_dev_data *data; struct k3_dsp_rproc *kproc; struct rproc *rproc; const char *fw_name; bool p_state = false; int ret = 0; int ret1; data = of_device_get_match_data(dev); if (!data) return -ENODEV; ret = rproc_of_parse_firmware(dev, 0, &fw_name); if (ret) { dev_err(dev, "failed to parse firmware-name property, ret = %d\n", ret); return ret; } rproc = rproc_alloc(dev, dev_name(dev), &k3_dsp_rproc_ops, fw_name, sizeof(*kproc)); if (!rproc) return -ENOMEM; rproc->has_iommu = false; rproc->recovery_disabled = true; if (data->uses_lreset) { rproc->ops->prepare = k3_dsp_rproc_prepare; rproc->ops->unprepare = k3_dsp_rproc_unprepare; } kproc = rproc->priv; kproc->rproc = rproc; kproc->dev = dev; kproc->data = data; kproc->ti_sci = ti_sci_get_by_phandle(np, "ti,sci"); if (IS_ERR(kproc->ti_sci)) { ret = PTR_ERR(kproc->ti_sci); if (ret != -EPROBE_DEFER) { dev_err(dev, "failed to get ti-sci handle, ret = %d\n", ret); } kproc->ti_sci = NULL; goto free_rproc; } ret = of_property_read_u32(np, "ti,sci-dev-id", &kproc->ti_sci_id); if (ret) { dev_err(dev, "missing 'ti,sci-dev-id' property\n"); goto put_sci; } kproc->reset = devm_reset_control_get_exclusive(dev, NULL); if (IS_ERR(kproc->reset)) { ret = PTR_ERR(kproc->reset); dev_err(dev, "failed to get reset, status = %d\n", ret); goto put_sci; } kproc->tsp = k3_dsp_rproc_of_get_tsp(dev, kproc->ti_sci); if (IS_ERR(kproc->tsp)) { dev_err(dev, "failed to construct ti-sci proc control, ret = %d\n", ret); ret = PTR_ERR(kproc->tsp); goto put_sci; } ret = ti_sci_proc_request(kproc->tsp); if (ret < 0) { dev_err(dev, "ti_sci_proc_request failed, ret = %d\n", ret); goto free_tsp; } ret = k3_dsp_rproc_of_get_memories(pdev, kproc); if (ret) goto release_tsp; ret = k3_dsp_reserved_mem_init(kproc); if (ret) { dev_err(dev, "reserved memory init failed, ret = %d\n", ret); goto release_tsp; } ret = kproc->ti_sci->ops.dev_ops.is_on(kproc->ti_sci, kproc->ti_sci_id, NULL, &p_state); if (ret) { dev_err(dev, "failed to get initial state, mode cannot be determined, ret = %d\n", ret); goto release_mem; } /* configure J721E devices for either remoteproc or IPC-only mode */ if (p_state) { dev_info(dev, "configured DSP for IPC-only mode\n"); rproc->state = RPROC_DETACHED; /* override rproc ops with only required IPC-only mode ops */ rproc->ops->prepare = NULL; rproc->ops->unprepare = NULL; rproc->ops->start = NULL; rproc->ops->stop = NULL; rproc->ops->attach = k3_dsp_rproc_attach; rproc->ops->detach = k3_dsp_rproc_detach; rproc->ops->get_loaded_rsc_table = k3_dsp_get_loaded_rsc_table; } else { dev_info(dev, "configured DSP for remoteproc mode\n"); /* * ensure the DSP local reset is asserted to ensure the DSP * doesn't execute bogus code in .prepare() when the module * reset is released. */ if (data->uses_lreset) { ret = reset_control_status(kproc->reset); if (ret < 0) { dev_err(dev, "failed to get reset status, status = %d\n", ret); goto release_mem; } else if (ret == 0) { dev_warn(dev, "local reset is deasserted for device\n"); k3_dsp_rproc_reset(kproc); } } } ret = rproc_add(rproc); if (ret) { dev_err(dev, "failed to add register device with remoteproc core, status = %d\n", ret); goto release_mem; } platform_set_drvdata(pdev, kproc); return 0; release_mem: k3_dsp_reserved_mem_exit(kproc); release_tsp: ret1 = ti_sci_proc_release(kproc->tsp); if (ret1) dev_err(dev, "failed to release proc, ret = %d\n", ret1); free_tsp: kfree(kproc->tsp); put_sci: ret1 = ti_sci_put_handle(kproc->ti_sci); if (ret1) dev_err(dev, "failed to put ti_sci handle, ret = %d\n", ret1); free_rproc: rproc_free(rproc); return ret; } static int k3_dsp_rproc_remove(struct platform_device *pdev) { struct k3_dsp_rproc *kproc = platform_get_drvdata(pdev); struct rproc *rproc = kproc->rproc; struct device *dev = &pdev->dev; int ret; if (rproc->state == RPROC_ATTACHED) { ret = rproc_detach(rproc); if (ret) { dev_err(dev, "failed to detach proc, ret = %d\n", ret); return ret; } } rproc_del(kproc->rproc); ret = ti_sci_proc_release(kproc->tsp); if (ret) dev_err(dev, "failed to release proc, ret = %d\n", ret); kfree(kproc->tsp); ret = ti_sci_put_handle(kproc->ti_sci); if (ret) dev_err(dev, "failed to put ti_sci handle, ret = %d\n", ret); k3_dsp_reserved_mem_exit(kproc); rproc_free(kproc->rproc); return 0; } static const struct k3_dsp_mem_data c66_mems[] = { { .name = "l2sram", .dev_addr = 0x800000 }, { .name = "l1pram", .dev_addr = 0xe00000 }, { .name = "l1dram", .dev_addr = 0xf00000 }, }; /* C71x cores only have a L1P Cache, there are no L1P SRAMs */ static const struct k3_dsp_mem_data c71_mems[] = { { .name = "l2sram", .dev_addr = 0x800000 }, { .name = "l1dram", .dev_addr = 0xe00000 }, }; static const struct k3_dsp_mem_data c7xv_mems[] = { { .name = "l2sram", .dev_addr = 0x800000 }, }; static const struct k3_dsp_dev_data c66_data = { .mems = c66_mems, .num_mems = ARRAY_SIZE(c66_mems), .boot_align_addr = SZ_1K, .uses_lreset = true, }; static const struct k3_dsp_dev_data c71_data = { .mems = c71_mems, .num_mems = ARRAY_SIZE(c71_mems), .boot_align_addr = SZ_2M, .uses_lreset = false, }; static const struct k3_dsp_dev_data c7xv_data = { .mems = c7xv_mems, .num_mems = ARRAY_SIZE(c7xv_mems), .boot_align_addr = SZ_2M, .uses_lreset = false, }; static const struct of_device_id k3_dsp_of_match[] = { { .compatible = "ti,j721e-c66-dsp", .data = &c66_data, }, { .compatible = "ti,j721e-c71-dsp", .data = &c71_data, }, { .compatible = "ti,j721s2-c71-dsp", .data = &c71_data, }, { .compatible = "ti,am62a-c7xv-dsp", .data = &c7xv_data, }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, k3_dsp_of_match); static struct platform_driver k3_dsp_rproc_driver = { .probe = k3_dsp_rproc_probe, .remove = k3_dsp_rproc_remove, .driver = { .name = "k3-dsp-rproc", .of_match_table = k3_dsp_of_match, }, }; module_platform_driver(k3_dsp_rproc_driver); MODULE_AUTHOR("Suman Anna <[email protected]>"); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("TI K3 DSP Remoteproc driver");
linux-master
drivers/remoteproc/ti_k3_dsp_remoteproc.c
// SPDX-License-Identifier: GPL-2.0-only /* * Character device interface driver for Remoteproc framework. * * Copyright (c) 2020, The Linux Foundation. All rights reserved. */ #include <linux/cdev.h> #include <linux/compat.h> #include <linux/fs.h> #include <linux/module.h> #include <linux/remoteproc.h> #include <linux/uaccess.h> #include <uapi/linux/remoteproc_cdev.h> #include "remoteproc_internal.h" #define NUM_RPROC_DEVICES 64 static dev_t rproc_major; static ssize_t rproc_cdev_write(struct file *filp, const char __user *buf, size_t len, loff_t *pos) { struct rproc *rproc = container_of(filp->f_inode->i_cdev, struct rproc, cdev); int ret = 0; char cmd[10]; if (!len || len > sizeof(cmd)) return -EINVAL; ret = copy_from_user(cmd, buf, len); if (ret) return -EFAULT; if (!strncmp(cmd, "start", len)) { ret = rproc_boot(rproc); } else if (!strncmp(cmd, "stop", len)) { ret = rproc_shutdown(rproc); } else if (!strncmp(cmd, "detach", len)) { ret = rproc_detach(rproc); } else { dev_err(&rproc->dev, "Unrecognized option\n"); ret = -EINVAL; } return ret ? ret : len; } static long rproc_device_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { struct rproc *rproc = container_of(filp->f_inode->i_cdev, struct rproc, cdev); void __user *argp = (void __user *)arg; s32 param; switch (ioctl) { case RPROC_SET_SHUTDOWN_ON_RELEASE: if (copy_from_user(&param, argp, sizeof(s32))) return -EFAULT; rproc->cdev_put_on_release = !!param; break; case RPROC_GET_SHUTDOWN_ON_RELEASE: param = (s32)rproc->cdev_put_on_release; if (copy_to_user(argp, &param, sizeof(s32))) return -EFAULT; break; default: dev_err(&rproc->dev, "Unsupported ioctl\n"); return -EINVAL; } return 0; } static int rproc_cdev_release(struct inode *inode, struct file *filp) { struct rproc *rproc = container_of(inode->i_cdev, struct rproc, cdev); int ret = 0; if (!rproc->cdev_put_on_release) return 0; if (rproc->state == RPROC_RUNNING) rproc_shutdown(rproc); else if (rproc->state == RPROC_ATTACHED) ret = rproc_detach(rproc); return ret; } static const struct file_operations rproc_fops = { .write = rproc_cdev_write, .unlocked_ioctl = rproc_device_ioctl, .compat_ioctl = compat_ptr_ioctl, .release = rproc_cdev_release, }; int rproc_char_device_add(struct rproc *rproc) { int ret; cdev_init(&rproc->cdev, &rproc_fops); rproc->cdev.owner = THIS_MODULE; rproc->dev.devt = MKDEV(MAJOR(rproc_major), rproc->index); cdev_set_parent(&rproc->cdev, &rproc->dev.kobj); ret = cdev_add(&rproc->cdev, rproc->dev.devt, 1); if (ret < 0) dev_err(&rproc->dev, "Failed to add char dev for %s\n", rproc->name); return ret; } void rproc_char_device_remove(struct rproc *rproc) { cdev_del(&rproc->cdev); } void __init rproc_init_cdev(void) { int ret; ret = alloc_chrdev_region(&rproc_major, 0, NUM_RPROC_DEVICES, "remoteproc"); if (ret < 0) pr_err("Failed to alloc rproc_cdev region, err %d\n", ret); }
linux-master
drivers/remoteproc/remoteproc_cdev.c
// SPDX-License-Identifier: GPL-2.0-only /* * TI AMx3 Wakeup M3 Remote Processor driver * * Copyright (C) 2014-2015 Texas Instruments, Inc. * * Dave Gerlach <[email protected]> * Suman Anna <[email protected]> */ #include <linux/err.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/remoteproc.h> #include <linux/reset.h> #include <linux/platform_data/wkup_m3.h> #include "remoteproc_internal.h" #define WKUPM3_MEM_MAX 2 /** * struct wkup_m3_mem - WkupM3 internal memory structure * @cpu_addr: MPU virtual address of the memory region * @bus_addr: Bus address used to access the memory region * @dev_addr: Device address from Wakeup M3 view * @size: Size of the memory region */ struct wkup_m3_mem { void __iomem *cpu_addr; phys_addr_t bus_addr; u32 dev_addr; size_t size; }; /** * struct wkup_m3_rproc - WkupM3 remote processor state * @rproc: rproc handle * @pdev: pointer to platform device * @mem: WkupM3 memory information * @rsts: reset control */ struct wkup_m3_rproc { struct rproc *rproc; struct platform_device *pdev; struct wkup_m3_mem mem[WKUPM3_MEM_MAX]; struct reset_control *rsts; }; static int wkup_m3_rproc_start(struct rproc *rproc) { struct wkup_m3_rproc *wkupm3 = rproc->priv; struct platform_device *pdev = wkupm3->pdev; struct device *dev = &pdev->dev; struct wkup_m3_platform_data *pdata = dev_get_platdata(dev); int error = 0; error = reset_control_deassert(wkupm3->rsts); if (!wkupm3->rsts && pdata->deassert_reset(pdev, pdata->reset_name)) { dev_err(dev, "Unable to reset wkup_m3!\n"); error = -ENODEV; } return error; } static int wkup_m3_rproc_stop(struct rproc *rproc) { struct wkup_m3_rproc *wkupm3 = rproc->priv; struct platform_device *pdev = wkupm3->pdev; struct device *dev = &pdev->dev; struct wkup_m3_platform_data *pdata = dev_get_platdata(dev); int error = 0; error = reset_control_assert(wkupm3->rsts); if (!wkupm3->rsts && pdata->assert_reset(pdev, pdata->reset_name)) { dev_err(dev, "Unable to assert reset of wkup_m3!\n"); error = -ENODEV; } return error; } static void *wkup_m3_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) { struct wkup_m3_rproc *wkupm3 = rproc->priv; void *va = NULL; int i; u32 offset; if (len == 0) return NULL; for (i = 0; i < WKUPM3_MEM_MAX; i++) { if (da >= wkupm3->mem[i].dev_addr && da + len <= wkupm3->mem[i].dev_addr + wkupm3->mem[i].size) { offset = da - wkupm3->mem[i].dev_addr; /* __force to make sparse happy with type conversion */ va = (__force void *)(wkupm3->mem[i].cpu_addr + offset); break; } } return va; } static const struct rproc_ops wkup_m3_rproc_ops = { .start = wkup_m3_rproc_start, .stop = wkup_m3_rproc_stop, .da_to_va = wkup_m3_rproc_da_to_va, }; static const struct of_device_id wkup_m3_rproc_of_match[] = { { .compatible = "ti,am3352-wkup-m3", }, { .compatible = "ti,am4372-wkup-m3", }, {}, }; MODULE_DEVICE_TABLE(of, wkup_m3_rproc_of_match); static int wkup_m3_rproc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct wkup_m3_platform_data *pdata = dev->platform_data; /* umem always needs to be processed first */ const char *mem_names[WKUPM3_MEM_MAX] = { "umem", "dmem" }; struct wkup_m3_rproc *wkupm3; const char *fw_name; struct rproc *rproc; struct resource *res; const __be32 *addrp; u32 l4_offset = 0; u64 size; int ret; int i; ret = of_property_read_string(dev->of_node, "ti,pm-firmware", &fw_name); if (ret) { dev_err(dev, "No firmware filename given\n"); return -ENODEV; } pm_runtime_enable(&pdev->dev); ret = pm_runtime_get_sync(&pdev->dev); if (ret < 0) { dev_err(&pdev->dev, "pm_runtime_get_sync() failed\n"); goto err; } rproc = rproc_alloc(dev, "wkup_m3", &wkup_m3_rproc_ops, fw_name, sizeof(*wkupm3)); if (!rproc) { ret = -ENOMEM; goto err; } rproc->auto_boot = false; rproc->sysfs_read_only = true; wkupm3 = rproc->priv; wkupm3->rproc = rproc; wkupm3->pdev = pdev; wkupm3->rsts = devm_reset_control_get_optional_shared(dev, "rstctrl"); if (IS_ERR(wkupm3->rsts)) return PTR_ERR(wkupm3->rsts); if (!wkupm3->rsts) { if (!(pdata && pdata->deassert_reset && pdata->assert_reset && pdata->reset_name)) { dev_err(dev, "Platform data missing!\n"); ret = -ENODEV; goto err_put_rproc; } } for (i = 0; i < ARRAY_SIZE(mem_names); i++) { res = platform_get_resource_byname(pdev, IORESOURCE_MEM, mem_names[i]); wkupm3->mem[i].cpu_addr = devm_ioremap_resource(dev, res); if (IS_ERR(wkupm3->mem[i].cpu_addr)) { dev_err(&pdev->dev, "devm_ioremap_resource failed for resource %d\n", i); ret = PTR_ERR(wkupm3->mem[i].cpu_addr); goto err_put_rproc; } wkupm3->mem[i].bus_addr = res->start; wkupm3->mem[i].size = resource_size(res); addrp = of_get_address(dev->of_node, i, &size, NULL); /* * The wkupm3 has umem at address 0 in its view, so the device * addresses for each memory region is computed as a relative * offset of the bus address for umem, and therefore needs to be * processed first. */ if (!strcmp(mem_names[i], "umem")) l4_offset = be32_to_cpu(*addrp); wkupm3->mem[i].dev_addr = be32_to_cpu(*addrp) - l4_offset; } dev_set_drvdata(dev, rproc); ret = rproc_add(rproc); if (ret) { dev_err(dev, "rproc_add failed\n"); goto err_put_rproc; } return 0; err_put_rproc: rproc_free(rproc); err: pm_runtime_put_noidle(dev); pm_runtime_disable(dev); return ret; } static void wkup_m3_rproc_remove(struct platform_device *pdev) { struct rproc *rproc = platform_get_drvdata(pdev); rproc_del(rproc); rproc_free(rproc); pm_runtime_put_sync(&pdev->dev); pm_runtime_disable(&pdev->dev); } #ifdef CONFIG_PM static int wkup_m3_rpm_suspend(struct device *dev) { return -EBUSY; } static int wkup_m3_rpm_resume(struct device *dev) { return 0; } #endif static const struct dev_pm_ops wkup_m3_rproc_pm_ops = { SET_RUNTIME_PM_OPS(wkup_m3_rpm_suspend, wkup_m3_rpm_resume, NULL) }; static struct platform_driver wkup_m3_rproc_driver = { .probe = wkup_m3_rproc_probe, .remove_new = wkup_m3_rproc_remove, .driver = { .name = "wkup_m3_rproc", .of_match_table = wkup_m3_rproc_of_match, .pm = &wkup_m3_rproc_pm_ops, }, }; module_platform_driver(wkup_m3_rproc_driver); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("TI Wakeup M3 remote processor control driver"); MODULE_AUTHOR("Dave Gerlach <[email protected]>");
linux-master
drivers/remoteproc/wkup_m3_rproc.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2017, Linaro Ltd. */ #include <linux/firmware.h> #include <linux/module.h> #include <linux/notifier.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/of_irq.h> #include <linux/platform_device.h> #include <linux/remoteproc/qcom_rproc.h> #include <linux/rpmsg.h> #include "qcom_common.h" static BLOCKING_NOTIFIER_HEAD(sysmon_notifiers); struct qcom_sysmon { struct rproc_subdev subdev; struct rproc *rproc; int state; struct mutex state_lock; struct list_head node; const char *name; int shutdown_irq; int ssctl_version; int ssctl_instance; struct notifier_block nb; struct device *dev; struct rpmsg_endpoint *ept; struct completion comp; struct completion ind_comp; struct completion shutdown_comp; struct completion ssctl_comp; struct mutex lock; bool ssr_ack; bool shutdown_acked; struct qmi_handle qmi; struct sockaddr_qrtr ssctl; }; enum { SSCTL_SSR_EVENT_BEFORE_POWERUP, SSCTL_SSR_EVENT_AFTER_POWERUP, SSCTL_SSR_EVENT_BEFORE_SHUTDOWN, SSCTL_SSR_EVENT_AFTER_SHUTDOWN, }; static const char * const sysmon_state_string[] = { [SSCTL_SSR_EVENT_BEFORE_POWERUP] = "before_powerup", [SSCTL_SSR_EVENT_AFTER_POWERUP] = "after_powerup", [SSCTL_SSR_EVENT_BEFORE_SHUTDOWN] = "before_shutdown", [SSCTL_SSR_EVENT_AFTER_SHUTDOWN] = "after_shutdown", }; struct sysmon_event { const char *subsys_name; u32 ssr_event; }; static DEFINE_MUTEX(sysmon_lock); static LIST_HEAD(sysmon_list); /** * sysmon_send_event() - send notification of other remote's SSR event * @sysmon: sysmon context * @event: sysmon event context */ static void sysmon_send_event(struct qcom_sysmon *sysmon, const struct sysmon_event *event) { char req[50]; int len; int ret; len = snprintf(req, sizeof(req), "ssr:%s:%s", event->subsys_name, sysmon_state_string[event->ssr_event]); if (len >= sizeof(req)) return; mutex_lock(&sysmon->lock); reinit_completion(&sysmon->comp); sysmon->ssr_ack = false; ret = rpmsg_send(sysmon->ept, req, len); if (ret < 0) { dev_err(sysmon->dev, "failed to send sysmon event\n"); goto out_unlock; } ret = wait_for_completion_timeout(&sysmon->comp, msecs_to_jiffies(5000)); if (!ret) { dev_err(sysmon->dev, "timeout waiting for sysmon ack\n"); goto out_unlock; } if (!sysmon->ssr_ack) dev_err(sysmon->dev, "unexpected response to sysmon event\n"); out_unlock: mutex_unlock(&sysmon->lock); } /** * sysmon_request_shutdown() - request graceful shutdown of remote * @sysmon: sysmon context * * Return: boolean indicator of the remote processor acking the request */ static bool sysmon_request_shutdown(struct qcom_sysmon *sysmon) { char *req = "ssr:shutdown"; bool acked = false; int ret; mutex_lock(&sysmon->lock); reinit_completion(&sysmon->comp); sysmon->ssr_ack = false; ret = rpmsg_send(sysmon->ept, req, strlen(req) + 1); if (ret < 0) { dev_err(sysmon->dev, "send sysmon shutdown request failed\n"); goto out_unlock; } ret = wait_for_completion_timeout(&sysmon->comp, msecs_to_jiffies(5000)); if (!ret) { dev_err(sysmon->dev, "timeout waiting for sysmon ack\n"); goto out_unlock; } if (!sysmon->ssr_ack) dev_err(sysmon->dev, "unexpected response to sysmon shutdown request\n"); else acked = true; out_unlock: mutex_unlock(&sysmon->lock); return acked; } static int sysmon_callback(struct rpmsg_device *rpdev, void *data, int count, void *priv, u32 addr) { struct qcom_sysmon *sysmon = priv; const char *ssr_ack = "ssr:ack"; const int ssr_ack_len = strlen(ssr_ack) + 1; if (!sysmon) return -EINVAL; if (count >= ssr_ack_len && !memcmp(data, ssr_ack, ssr_ack_len)) sysmon->ssr_ack = true; complete(&sysmon->comp); return 0; } #define SSCTL_SHUTDOWN_REQ 0x21 #define SSCTL_SHUTDOWN_READY_IND 0x21 #define SSCTL_SUBSYS_EVENT_REQ 0x23 #define SSCTL_MAX_MSG_LEN 7 #define SSCTL_SUBSYS_NAME_LENGTH 15 enum { SSCTL_SSR_EVENT_FORCED, SSCTL_SSR_EVENT_GRACEFUL, }; struct ssctl_shutdown_resp { struct qmi_response_type_v01 resp; }; static const struct qmi_elem_info ssctl_shutdown_resp_ei[] = { { .data_type = QMI_STRUCT, .elem_len = 1, .elem_size = sizeof(struct qmi_response_type_v01), .array_type = NO_ARRAY, .tlv_type = 0x02, .offset = offsetof(struct ssctl_shutdown_resp, resp), .ei_array = qmi_response_type_v01_ei, }, {} }; struct ssctl_subsys_event_req { u8 subsys_name_len; char subsys_name[SSCTL_SUBSYS_NAME_LENGTH]; u32 event; u8 evt_driven_valid; u32 evt_driven; }; static const struct qmi_elem_info ssctl_subsys_event_req_ei[] = { { .data_type = QMI_DATA_LEN, .elem_len = 1, .elem_size = sizeof(uint8_t), .array_type = NO_ARRAY, .tlv_type = 0x01, .offset = offsetof(struct ssctl_subsys_event_req, subsys_name_len), .ei_array = NULL, }, { .data_type = QMI_UNSIGNED_1_BYTE, .elem_len = SSCTL_SUBSYS_NAME_LENGTH, .elem_size = sizeof(char), .array_type = VAR_LEN_ARRAY, .tlv_type = 0x01, .offset = offsetof(struct ssctl_subsys_event_req, subsys_name), .ei_array = NULL, }, { .data_type = QMI_SIGNED_4_BYTE_ENUM, .elem_len = 1, .elem_size = sizeof(uint32_t), .array_type = NO_ARRAY, .tlv_type = 0x02, .offset = offsetof(struct ssctl_subsys_event_req, event), .ei_array = NULL, }, { .data_type = QMI_OPT_FLAG, .elem_len = 1, .elem_size = sizeof(uint8_t), .array_type = NO_ARRAY, .tlv_type = 0x10, .offset = offsetof(struct ssctl_subsys_event_req, evt_driven_valid), .ei_array = NULL, }, { .data_type = QMI_SIGNED_4_BYTE_ENUM, .elem_len = 1, .elem_size = sizeof(uint32_t), .array_type = NO_ARRAY, .tlv_type = 0x10, .offset = offsetof(struct ssctl_subsys_event_req, evt_driven), .ei_array = NULL, }, {} }; struct ssctl_subsys_event_resp { struct qmi_response_type_v01 resp; }; static const struct qmi_elem_info ssctl_subsys_event_resp_ei[] = { { .data_type = QMI_STRUCT, .elem_len = 1, .elem_size = sizeof(struct qmi_response_type_v01), .array_type = NO_ARRAY, .tlv_type = 0x02, .offset = offsetof(struct ssctl_subsys_event_resp, resp), .ei_array = qmi_response_type_v01_ei, }, {} }; static const struct qmi_elem_info ssctl_shutdown_ind_ei[] = { {} }; static void sysmon_ind_cb(struct qmi_handle *qmi, struct sockaddr_qrtr *sq, struct qmi_txn *txn, const void *data) { struct qcom_sysmon *sysmon = container_of(qmi, struct qcom_sysmon, qmi); complete(&sysmon->ind_comp); } static const struct qmi_msg_handler qmi_indication_handler[] = { { .type = QMI_INDICATION, .msg_id = SSCTL_SHUTDOWN_READY_IND, .ei = ssctl_shutdown_ind_ei, .decoded_size = 0, .fn = sysmon_ind_cb }, {} }; static bool ssctl_request_shutdown_wait(struct qcom_sysmon *sysmon) { int ret; ret = wait_for_completion_timeout(&sysmon->shutdown_comp, 10 * HZ); if (ret) return true; ret = try_wait_for_completion(&sysmon->ind_comp); if (ret) return true; dev_err(sysmon->dev, "timeout waiting for shutdown ack\n"); return false; } /** * ssctl_request_shutdown() - request shutdown via SSCTL QMI service * @sysmon: sysmon context * * Return: boolean indicator of the remote processor acking the request */ static bool ssctl_request_shutdown(struct qcom_sysmon *sysmon) { struct ssctl_shutdown_resp resp; struct qmi_txn txn; bool acked = false; int ret; reinit_completion(&sysmon->ind_comp); reinit_completion(&sysmon->shutdown_comp); ret = qmi_txn_init(&sysmon->qmi, &txn, ssctl_shutdown_resp_ei, &resp); if (ret < 0) { dev_err(sysmon->dev, "failed to allocate QMI txn\n"); return false; } ret = qmi_send_request(&sysmon->qmi, &sysmon->ssctl, &txn, SSCTL_SHUTDOWN_REQ, 0, NULL, NULL); if (ret < 0) { dev_err(sysmon->dev, "failed to send shutdown request\n"); qmi_txn_cancel(&txn); return false; } ret = qmi_txn_wait(&txn, 5 * HZ); if (ret < 0) { dev_err(sysmon->dev, "timeout waiting for shutdown response\n"); } else if (resp.resp.result) { dev_err(sysmon->dev, "shutdown request rejected\n"); } else { dev_dbg(sysmon->dev, "shutdown request completed\n"); acked = true; } if (sysmon->shutdown_irq > 0) return ssctl_request_shutdown_wait(sysmon); return acked; } /** * ssctl_send_event() - send notification of other remote's SSR event * @sysmon: sysmon context * @event: sysmon event context */ static void ssctl_send_event(struct qcom_sysmon *sysmon, const struct sysmon_event *event) { struct ssctl_subsys_event_resp resp; struct ssctl_subsys_event_req req; struct qmi_txn txn; int ret; memset(&resp, 0, sizeof(resp)); ret = qmi_txn_init(&sysmon->qmi, &txn, ssctl_subsys_event_resp_ei, &resp); if (ret < 0) { dev_err(sysmon->dev, "failed to allocate QMI txn\n"); return; } memset(&req, 0, sizeof(req)); strscpy(req.subsys_name, event->subsys_name, sizeof(req.subsys_name)); req.subsys_name_len = strlen(req.subsys_name); req.event = event->ssr_event; req.evt_driven_valid = true; req.evt_driven = SSCTL_SSR_EVENT_FORCED; ret = qmi_send_request(&sysmon->qmi, &sysmon->ssctl, &txn, SSCTL_SUBSYS_EVENT_REQ, 40, ssctl_subsys_event_req_ei, &req); if (ret < 0) { dev_err(sysmon->dev, "failed to send subsystem event\n"); qmi_txn_cancel(&txn); return; } ret = qmi_txn_wait(&txn, 5 * HZ); if (ret < 0) dev_err(sysmon->dev, "timeout waiting for subsystem event response\n"); else if (resp.resp.result) dev_err(sysmon->dev, "subsystem event rejected\n"); else dev_dbg(sysmon->dev, "subsystem event accepted\n"); } /** * ssctl_new_server() - QMI callback indicating a new service * @qmi: QMI handle * @svc: service information * * Return: 0 if we're interested in this service, -EINVAL otherwise. */ static int ssctl_new_server(struct qmi_handle *qmi, struct qmi_service *svc) { struct qcom_sysmon *sysmon = container_of(qmi, struct qcom_sysmon, qmi); switch (svc->version) { case 1: if (svc->instance != 0) return -EINVAL; if (strcmp(sysmon->name, "modem")) return -EINVAL; break; case 2: if (svc->instance != sysmon->ssctl_instance) return -EINVAL; break; default: return -EINVAL; } sysmon->ssctl_version = svc->version; sysmon->ssctl.sq_family = AF_QIPCRTR; sysmon->ssctl.sq_node = svc->node; sysmon->ssctl.sq_port = svc->port; svc->priv = sysmon; complete(&sysmon->ssctl_comp); return 0; } /** * ssctl_del_server() - QMI callback indicating that @svc is removed * @qmi: QMI handle * @svc: service information */ static void ssctl_del_server(struct qmi_handle *qmi, struct qmi_service *svc) { struct qcom_sysmon *sysmon = svc->priv; sysmon->ssctl_version = 0; } static const struct qmi_ops ssctl_ops = { .new_server = ssctl_new_server, .del_server = ssctl_del_server, }; static int sysmon_prepare(struct rproc_subdev *subdev) { struct qcom_sysmon *sysmon = container_of(subdev, struct qcom_sysmon, subdev); struct sysmon_event event = { .subsys_name = sysmon->name, .ssr_event = SSCTL_SSR_EVENT_BEFORE_POWERUP }; mutex_lock(&sysmon->state_lock); sysmon->state = SSCTL_SSR_EVENT_BEFORE_POWERUP; blocking_notifier_call_chain(&sysmon_notifiers, 0, (void *)&event); mutex_unlock(&sysmon->state_lock); return 0; } /** * sysmon_start() - start callback for the sysmon remoteproc subdevice * @subdev: instance of the sysmon subdevice * * Inform all the listners of sysmon notifications that the rproc associated * to @subdev has booted up. The rproc that booted up also needs to know * which rprocs are already up and running, so send start notifications * on behalf of all the online rprocs. */ static int sysmon_start(struct rproc_subdev *subdev) { struct qcom_sysmon *sysmon = container_of(subdev, struct qcom_sysmon, subdev); struct qcom_sysmon *target; struct sysmon_event event = { .subsys_name = sysmon->name, .ssr_event = SSCTL_SSR_EVENT_AFTER_POWERUP }; reinit_completion(&sysmon->ssctl_comp); mutex_lock(&sysmon->state_lock); sysmon->state = SSCTL_SSR_EVENT_AFTER_POWERUP; blocking_notifier_call_chain(&sysmon_notifiers, 0, (void *)&event); mutex_unlock(&sysmon->state_lock); mutex_lock(&sysmon_lock); list_for_each_entry(target, &sysmon_list, node) { mutex_lock(&target->state_lock); if (target == sysmon || target->state != SSCTL_SSR_EVENT_AFTER_POWERUP) { mutex_unlock(&target->state_lock); continue; } event.subsys_name = target->name; event.ssr_event = target->state; if (sysmon->ssctl_version == 2) ssctl_send_event(sysmon, &event); else if (sysmon->ept) sysmon_send_event(sysmon, &event); mutex_unlock(&target->state_lock); } mutex_unlock(&sysmon_lock); return 0; } static void sysmon_stop(struct rproc_subdev *subdev, bool crashed) { struct qcom_sysmon *sysmon = container_of(subdev, struct qcom_sysmon, subdev); struct sysmon_event event = { .subsys_name = sysmon->name, .ssr_event = SSCTL_SSR_EVENT_BEFORE_SHUTDOWN }; sysmon->shutdown_acked = false; mutex_lock(&sysmon->state_lock); sysmon->state = SSCTL_SSR_EVENT_BEFORE_SHUTDOWN; blocking_notifier_call_chain(&sysmon_notifiers, 0, (void *)&event); mutex_unlock(&sysmon->state_lock); /* Don't request graceful shutdown if we've crashed */ if (crashed) return; if (sysmon->ssctl_instance) { if (!wait_for_completion_timeout(&sysmon->ssctl_comp, HZ / 2)) dev_err(sysmon->dev, "timeout waiting for ssctl service\n"); } if (sysmon->ssctl_version) sysmon->shutdown_acked = ssctl_request_shutdown(sysmon); else if (sysmon->ept) sysmon->shutdown_acked = sysmon_request_shutdown(sysmon); } static void sysmon_unprepare(struct rproc_subdev *subdev) { struct qcom_sysmon *sysmon = container_of(subdev, struct qcom_sysmon, subdev); struct sysmon_event event = { .subsys_name = sysmon->name, .ssr_event = SSCTL_SSR_EVENT_AFTER_SHUTDOWN }; mutex_lock(&sysmon->state_lock); sysmon->state = SSCTL_SSR_EVENT_AFTER_SHUTDOWN; blocking_notifier_call_chain(&sysmon_notifiers, 0, (void *)&event); mutex_unlock(&sysmon->state_lock); } /** * sysmon_notify() - notify sysmon target of another's SSR * @nb: notifier_block associated with sysmon instance * @event: unused * @data: SSR identifier of the remote that is going down */ static int sysmon_notify(struct notifier_block *nb, unsigned long event, void *data) { struct qcom_sysmon *sysmon = container_of(nb, struct qcom_sysmon, nb); struct sysmon_event *sysmon_event = data; /* Skip non-running rprocs and the originating instance */ if (sysmon->state != SSCTL_SSR_EVENT_AFTER_POWERUP || !strcmp(sysmon_event->subsys_name, sysmon->name)) { dev_dbg(sysmon->dev, "not notifying %s\n", sysmon->name); return NOTIFY_DONE; } /* Only SSCTL version 2 supports SSR events */ if (sysmon->ssctl_version == 2) ssctl_send_event(sysmon, sysmon_event); else if (sysmon->ept) sysmon_send_event(sysmon, sysmon_event); return NOTIFY_DONE; } static irqreturn_t sysmon_shutdown_interrupt(int irq, void *data) { struct qcom_sysmon *sysmon = data; complete(&sysmon->shutdown_comp); return IRQ_HANDLED; } /** * qcom_add_sysmon_subdev() - create a sysmon subdev for the given remoteproc * @rproc: rproc context to associate the subdev with * @name: name of this subdev, to use in SSR * @ssctl_instance: instance id of the ssctl QMI service * * Return: A new qcom_sysmon object, or NULL on failure */ struct qcom_sysmon *qcom_add_sysmon_subdev(struct rproc *rproc, const char *name, int ssctl_instance) { struct qcom_sysmon *sysmon; int ret; sysmon = kzalloc(sizeof(*sysmon), GFP_KERNEL); if (!sysmon) return ERR_PTR(-ENOMEM); sysmon->dev = rproc->dev.parent; sysmon->rproc = rproc; sysmon->name = name; sysmon->ssctl_instance = ssctl_instance; init_completion(&sysmon->comp); init_completion(&sysmon->ind_comp); init_completion(&sysmon->shutdown_comp); init_completion(&sysmon->ssctl_comp); mutex_init(&sysmon->lock); mutex_init(&sysmon->state_lock); sysmon->shutdown_irq = of_irq_get_byname(sysmon->dev->of_node, "shutdown-ack"); if (sysmon->shutdown_irq < 0) { if (sysmon->shutdown_irq != -ENODATA) { dev_err(sysmon->dev, "failed to retrieve shutdown-ack IRQ\n"); ret = sysmon->shutdown_irq; kfree(sysmon); return ERR_PTR(ret); } } else { ret = devm_request_threaded_irq(sysmon->dev, sysmon->shutdown_irq, NULL, sysmon_shutdown_interrupt, IRQF_TRIGGER_RISING | IRQF_ONESHOT, "q6v5 shutdown-ack", sysmon); if (ret) { dev_err(sysmon->dev, "failed to acquire shutdown-ack IRQ\n"); kfree(sysmon); return ERR_PTR(ret); } } ret = qmi_handle_init(&sysmon->qmi, SSCTL_MAX_MSG_LEN, &ssctl_ops, qmi_indication_handler); if (ret < 0) { dev_err(sysmon->dev, "failed to initialize qmi handle\n"); kfree(sysmon); return ERR_PTR(ret); } qmi_add_lookup(&sysmon->qmi, 43, 0, 0); sysmon->subdev.prepare = sysmon_prepare; sysmon->subdev.start = sysmon_start; sysmon->subdev.stop = sysmon_stop; sysmon->subdev.unprepare = sysmon_unprepare; rproc_add_subdev(rproc, &sysmon->subdev); sysmon->nb.notifier_call = sysmon_notify; blocking_notifier_chain_register(&sysmon_notifiers, &sysmon->nb); mutex_lock(&sysmon_lock); list_add(&sysmon->node, &sysmon_list); mutex_unlock(&sysmon_lock); return sysmon; } EXPORT_SYMBOL_GPL(qcom_add_sysmon_subdev); /** * qcom_remove_sysmon_subdev() - release a qcom_sysmon * @sysmon: sysmon context, as retrieved by qcom_add_sysmon_subdev() */ void qcom_remove_sysmon_subdev(struct qcom_sysmon *sysmon) { if (!sysmon) return; mutex_lock(&sysmon_lock); list_del(&sysmon->node); mutex_unlock(&sysmon_lock); blocking_notifier_chain_unregister(&sysmon_notifiers, &sysmon->nb); rproc_remove_subdev(sysmon->rproc, &sysmon->subdev); qmi_handle_release(&sysmon->qmi); kfree(sysmon); } EXPORT_SYMBOL_GPL(qcom_remove_sysmon_subdev); /** * qcom_sysmon_shutdown_acked() - query the success of the last shutdown * @sysmon: sysmon context * * When sysmon is used to request a graceful shutdown of the remote processor * this can be used by the remoteproc driver to query the success, in order to * know if it should fall back to other means of requesting a shutdown. * * Return: boolean indicator of the success of the last shutdown request */ bool qcom_sysmon_shutdown_acked(struct qcom_sysmon *sysmon) { return sysmon && sysmon->shutdown_acked; } EXPORT_SYMBOL_GPL(qcom_sysmon_shutdown_acked); /** * sysmon_probe() - probe sys_mon channel * @rpdev: rpmsg device handle * * Find the sysmon context associated with the ancestor remoteproc and assign * this rpmsg device with said sysmon context. * * Return: 0 on success, negative errno on failure. */ static int sysmon_probe(struct rpmsg_device *rpdev) { struct qcom_sysmon *sysmon; struct rproc *rproc; rproc = rproc_get_by_child(&rpdev->dev); if (!rproc) { dev_err(&rpdev->dev, "sysmon device not child of rproc\n"); return -EINVAL; } mutex_lock(&sysmon_lock); list_for_each_entry(sysmon, &sysmon_list, node) { if (sysmon->rproc == rproc) goto found; } mutex_unlock(&sysmon_lock); dev_err(&rpdev->dev, "no sysmon associated with parent rproc\n"); return -EINVAL; found: mutex_unlock(&sysmon_lock); rpdev->ept->priv = sysmon; sysmon->ept = rpdev->ept; return 0; } /** * sysmon_remove() - sys_mon channel remove handler * @rpdev: rpmsg device handle * * Disassociate the rpmsg device with the sysmon instance. */ static void sysmon_remove(struct rpmsg_device *rpdev) { struct qcom_sysmon *sysmon = rpdev->ept->priv; sysmon->ept = NULL; } static const struct rpmsg_device_id sysmon_match[] = { { "sys_mon" }, {} }; static struct rpmsg_driver sysmon_driver = { .probe = sysmon_probe, .remove = sysmon_remove, .callback = sysmon_callback, .id_table = sysmon_match, .drv = { .name = "qcom_sysmon", }, }; module_rpmsg_driver(sysmon_driver); MODULE_DESCRIPTION("Qualcomm sysmon driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/remoteproc/qcom_sysmon.c
// SPDX-License-Identifier: GPL-2.0-only /* * Remote Processor Framework */ #include <linux/remoteproc.h> #include <linux/slab.h> #include "remoteproc_internal.h" #define to_rproc(d) container_of(d, struct rproc, dev) static ssize_t recovery_show(struct device *dev, struct device_attribute *attr, char *buf) { struct rproc *rproc = to_rproc(dev); return sysfs_emit(buf, "%s", rproc->recovery_disabled ? "disabled\n" : "enabled\n"); } /* * By writing to the 'recovery' sysfs entry, we control the behavior of the * recovery mechanism dynamically. The default value of this entry is "enabled". * * The 'recovery' sysfs entry supports these commands: * * enabled: When enabled, the remote processor will be automatically * recovered whenever it crashes. Moreover, if the remote * processor crashes while recovery is disabled, it will * be automatically recovered too as soon as recovery is enabled. * * disabled: When disabled, a remote processor will remain in a crashed * state if it crashes. This is useful for debugging purposes; * without it, debugging a crash is substantially harder. * * recover: This function will trigger an immediate recovery if the * remote processor is in a crashed state, without changing * or checking the recovery state (enabled/disabled). * This is useful during debugging sessions, when one expects * additional crashes to happen after enabling recovery. In this * case, enabling recovery will make it hard to debug subsequent * crashes, so it's recommended to keep recovery disabled, and * instead use the "recover" command as needed. */ static ssize_t recovery_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct rproc *rproc = to_rproc(dev); if (sysfs_streq(buf, "enabled")) { /* change the flag and begin the recovery process if needed */ rproc->recovery_disabled = false; rproc_trigger_recovery(rproc); } else if (sysfs_streq(buf, "disabled")) { rproc->recovery_disabled = true; } else if (sysfs_streq(buf, "recover")) { /* begin the recovery process without changing the flag */ rproc_trigger_recovery(rproc); } else { return -EINVAL; } return count; } static DEVICE_ATTR_RW(recovery); /* * A coredump-configuration-to-string lookup table, for exposing a * human readable configuration via sysfs. Always keep in sync with * enum rproc_coredump_mechanism */ static const char * const rproc_coredump_str[] = { [RPROC_COREDUMP_DISABLED] = "disabled", [RPROC_COREDUMP_ENABLED] = "enabled", [RPROC_COREDUMP_INLINE] = "inline", }; /* Expose the current coredump configuration via debugfs */ static ssize_t coredump_show(struct device *dev, struct device_attribute *attr, char *buf) { struct rproc *rproc = to_rproc(dev); return sysfs_emit(buf, "%s\n", rproc_coredump_str[rproc->dump_conf]); } /* * By writing to the 'coredump' sysfs entry, we control the behavior of the * coredump mechanism dynamically. The default value of this entry is "default". * * The 'coredump' sysfs entry supports these commands: * * disabled: This is the default coredump mechanism. Recovery will proceed * without collecting any dump. * * default: When the remoteproc crashes the entire coredump will be * copied to a separate buffer and exposed to userspace. * * inline: The coredump will not be copied to a separate buffer and the * recovery process will have to wait until data is read by * userspace. But this avoid usage of extra memory. */ static ssize_t coredump_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct rproc *rproc = to_rproc(dev); if (rproc->state == RPROC_CRASHED) { dev_err(&rproc->dev, "can't change coredump configuration\n"); return -EBUSY; } if (sysfs_streq(buf, "disabled")) { rproc->dump_conf = RPROC_COREDUMP_DISABLED; } else if (sysfs_streq(buf, "enabled")) { rproc->dump_conf = RPROC_COREDUMP_ENABLED; } else if (sysfs_streq(buf, "inline")) { rproc->dump_conf = RPROC_COREDUMP_INLINE; } else { dev_err(&rproc->dev, "Invalid coredump configuration\n"); return -EINVAL; } return count; } static DEVICE_ATTR_RW(coredump); /* Expose the loaded / running firmware name via sysfs */ static ssize_t firmware_show(struct device *dev, struct device_attribute *attr, char *buf) { struct rproc *rproc = to_rproc(dev); const char *firmware = rproc->firmware; /* * If the remote processor has been started by an external * entity we have no idea of what image it is running. As such * simply display a generic string rather then rproc->firmware. */ if (rproc->state == RPROC_ATTACHED) firmware = "unknown"; return sprintf(buf, "%s\n", firmware); } /* Change firmware name via sysfs */ static ssize_t firmware_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct rproc *rproc = to_rproc(dev); int err; err = rproc_set_firmware(rproc, buf); return err ? err : count; } static DEVICE_ATTR_RW(firmware); /* * A state-to-string lookup table, for exposing a human readable state * via sysfs. Always keep in sync with enum rproc_state */ static const char * const rproc_state_string[] = { [RPROC_OFFLINE] = "offline", [RPROC_SUSPENDED] = "suspended", [RPROC_RUNNING] = "running", [RPROC_CRASHED] = "crashed", [RPROC_DELETED] = "deleted", [RPROC_ATTACHED] = "attached", [RPROC_DETACHED] = "detached", [RPROC_LAST] = "invalid", }; /* Expose the state of the remote processor via sysfs */ static ssize_t state_show(struct device *dev, struct device_attribute *attr, char *buf) { struct rproc *rproc = to_rproc(dev); unsigned int state; state = rproc->state > RPROC_LAST ? RPROC_LAST : rproc->state; return sprintf(buf, "%s\n", rproc_state_string[state]); } /* Change remote processor state via sysfs */ static ssize_t state_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct rproc *rproc = to_rproc(dev); int ret = 0; if (sysfs_streq(buf, "start")) { ret = rproc_boot(rproc); if (ret) dev_err(&rproc->dev, "Boot failed: %d\n", ret); } else if (sysfs_streq(buf, "stop")) { ret = rproc_shutdown(rproc); } else if (sysfs_streq(buf, "detach")) { ret = rproc_detach(rproc); } else { dev_err(&rproc->dev, "Unrecognised option: %s\n", buf); ret = -EINVAL; } return ret ? ret : count; } static DEVICE_ATTR_RW(state); /* Expose the name of the remote processor via sysfs */ static ssize_t name_show(struct device *dev, struct device_attribute *attr, char *buf) { struct rproc *rproc = to_rproc(dev); return sprintf(buf, "%s\n", rproc->name); } static DEVICE_ATTR_RO(name); static umode_t rproc_is_visible(struct kobject *kobj, struct attribute *attr, int n) { struct device *dev = kobj_to_dev(kobj); struct rproc *rproc = to_rproc(dev); umode_t mode = attr->mode; if (rproc->sysfs_read_only && (attr == &dev_attr_recovery.attr || attr == &dev_attr_firmware.attr || attr == &dev_attr_state.attr || attr == &dev_attr_coredump.attr)) mode = 0444; return mode; } static struct attribute *rproc_attrs[] = { &dev_attr_coredump.attr, &dev_attr_recovery.attr, &dev_attr_firmware.attr, &dev_attr_state.attr, &dev_attr_name.attr, NULL }; static const struct attribute_group rproc_devgroup = { .attrs = rproc_attrs, .is_visible = rproc_is_visible, }; static const struct attribute_group *rproc_devgroups[] = { &rproc_devgroup, NULL }; struct class rproc_class = { .name = "remoteproc", .dev_groups = rproc_devgroups, }; int __init rproc_init_sysfs(void) { /* create remoteproc device class for sysfs */ int err = class_register(&rproc_class); if (err) pr_err("remoteproc: unable to register class\n"); return err; } void __exit rproc_exit_sysfs(void) { class_unregister(&rproc_class); }
linux-master
drivers/remoteproc/remoteproc_sysfs.c
// SPDX-License-Identifier: GPL-2.0-only /* * Remote Processor Framework ELF loader * * Copyright (C) 2011 Texas Instruments, Inc. * Copyright (C) 2011 Google, Inc. * * Ohad Ben-Cohen <[email protected]> * Brian Swetland <[email protected]> * Mark Grosen <[email protected]> * Fernando Guzman Lugo <[email protected]> * Suman Anna <[email protected]> * Robert Tivy <[email protected]> * Armando Uribe De Leon <[email protected]> * Sjur Brændeland <[email protected]> */ #define pr_fmt(fmt) "%s: " fmt, __func__ #include <linux/module.h> #include <linux/firmware.h> #include <linux/remoteproc.h> #include <linux/elf.h> #include "remoteproc_internal.h" #include "remoteproc_elf_helpers.h" /** * rproc_elf_sanity_check() - Sanity Check for ELF32/ELF64 firmware image * @rproc: the remote processor handle * @fw: the ELF firmware image * * Make sure this fw image is sane (ie a correct ELF32/ELF64 file). * * Return: 0 on success and -EINVAL upon any failure */ int rproc_elf_sanity_check(struct rproc *rproc, const struct firmware *fw) { const char *name = rproc->firmware; struct device *dev = &rproc->dev; /* * ELF files are beginning with the same structure. Thus, to simplify * header parsing, we can use the elf32_hdr one for both elf64 and * elf32. */ struct elf32_hdr *ehdr; u32 elf_shdr_get_size; u64 phoff, shoff; char class; u16 phnum; if (!fw) { dev_err(dev, "failed to load %s\n", name); return -EINVAL; } if (fw->size < sizeof(struct elf32_hdr)) { dev_err(dev, "Image is too small\n"); return -EINVAL; } ehdr = (struct elf32_hdr *)fw->data; if (memcmp(ehdr->e_ident, ELFMAG, SELFMAG)) { dev_err(dev, "Image is corrupted (bad magic)\n"); return -EINVAL; } class = ehdr->e_ident[EI_CLASS]; if (class != ELFCLASS32 && class != ELFCLASS64) { dev_err(dev, "Unsupported class: %d\n", class); return -EINVAL; } if (class == ELFCLASS64 && fw->size < sizeof(struct elf64_hdr)) { dev_err(dev, "elf64 header is too small\n"); return -EINVAL; } /* We assume the firmware has the same endianness as the host */ # ifdef __LITTLE_ENDIAN if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB) { # else /* BIG ENDIAN */ if (ehdr->e_ident[EI_DATA] != ELFDATA2MSB) { # endif dev_err(dev, "Unsupported firmware endianness\n"); return -EINVAL; } phoff = elf_hdr_get_e_phoff(class, fw->data); shoff = elf_hdr_get_e_shoff(class, fw->data); phnum = elf_hdr_get_e_phnum(class, fw->data); elf_shdr_get_size = elf_size_of_shdr(class); if (fw->size < shoff + elf_shdr_get_size) { dev_err(dev, "Image is too small\n"); return -EINVAL; } if (phnum == 0) { dev_err(dev, "No loadable segments\n"); return -EINVAL; } if (phoff > fw->size) { dev_err(dev, "Firmware size is too small\n"); return -EINVAL; } dev_dbg(dev, "Firmware is an elf%d file\n", class == ELFCLASS32 ? 32 : 64); return 0; } EXPORT_SYMBOL(rproc_elf_sanity_check); /** * rproc_elf_get_boot_addr() - Get rproc's boot address. * @rproc: the remote processor handle * @fw: the ELF firmware image * * Note that the boot address is not a configurable property of all remote * processors. Some will always boot at a specific hard-coded address. * * Return: entry point address of the ELF image * */ u64 rproc_elf_get_boot_addr(struct rproc *rproc, const struct firmware *fw) { return elf_hdr_get_e_entry(fw_elf_get_class(fw), fw->data); } EXPORT_SYMBOL(rproc_elf_get_boot_addr); /** * rproc_elf_load_segments() - load firmware segments to memory * @rproc: remote processor which will be booted using these fw segments * @fw: the ELF firmware image * * This function loads the firmware segments to memory, where the remote * processor expects them. * * Some remote processors will expect their code and data to be placed * in specific device addresses, and can't have them dynamically assigned. * * We currently support only those kind of remote processors, and expect * the program header's paddr member to contain those addresses. We then go * through the physically contiguous "carveout" memory regions which we * allocated (and mapped) earlier on behalf of the remote processor, * and "translate" device address to kernel addresses, so we can copy the * segments where they are expected. * * Currently we only support remote processors that required carveout * allocations and got them mapped onto their iommus. Some processors * might be different: they might not have iommus, and would prefer to * directly allocate memory for every segment/resource. This is not yet * supported, though. * * Return: 0 on success and an appropriate error code otherwise */ int rproc_elf_load_segments(struct rproc *rproc, const struct firmware *fw) { struct device *dev = &rproc->dev; const void *ehdr, *phdr; int i, ret = 0; u16 phnum; const u8 *elf_data = fw->data; u8 class = fw_elf_get_class(fw); u32 elf_phdr_get_size = elf_size_of_phdr(class); ehdr = elf_data; phnum = elf_hdr_get_e_phnum(class, ehdr); phdr = elf_data + elf_hdr_get_e_phoff(class, ehdr); /* go through the available ELF segments */ for (i = 0; i < phnum; i++, phdr += elf_phdr_get_size) { u64 da = elf_phdr_get_p_paddr(class, phdr); u64 memsz = elf_phdr_get_p_memsz(class, phdr); u64 filesz = elf_phdr_get_p_filesz(class, phdr); u64 offset = elf_phdr_get_p_offset(class, phdr); u32 type = elf_phdr_get_p_type(class, phdr); bool is_iomem = false; void *ptr; if (type != PT_LOAD || !memsz) continue; dev_dbg(dev, "phdr: type %d da 0x%llx memsz 0x%llx filesz 0x%llx\n", type, da, memsz, filesz); if (filesz > memsz) { dev_err(dev, "bad phdr filesz 0x%llx memsz 0x%llx\n", filesz, memsz); ret = -EINVAL; break; } if (offset + filesz > fw->size) { dev_err(dev, "truncated fw: need 0x%llx avail 0x%zx\n", offset + filesz, fw->size); ret = -EINVAL; break; } if (!rproc_u64_fit_in_size_t(memsz)) { dev_err(dev, "size (%llx) does not fit in size_t type\n", memsz); ret = -EOVERFLOW; break; } /* grab the kernel address for this device address */ ptr = rproc_da_to_va(rproc, da, memsz, &is_iomem); if (!ptr) { dev_err(dev, "bad phdr da 0x%llx mem 0x%llx\n", da, memsz); ret = -EINVAL; break; } /* put the segment where the remote processor expects it */ if (filesz) { if (is_iomem) memcpy_toio((void __iomem *)ptr, elf_data + offset, filesz); else memcpy(ptr, elf_data + offset, filesz); } /* * Zero out remaining memory for this segment. * * This isn't strictly required since dma_alloc_coherent already * did this for us. albeit harmless, we may consider removing * this. */ if (memsz > filesz) { if (is_iomem) memset_io((void __iomem *)(ptr + filesz), 0, memsz - filesz); else memset(ptr + filesz, 0, memsz - filesz); } } return ret; } EXPORT_SYMBOL(rproc_elf_load_segments); static const void * find_table(struct device *dev, const struct firmware *fw) { const void *shdr, *name_table_shdr; int i; const char *name_table; struct resource_table *table = NULL; const u8 *elf_data = (void *)fw->data; u8 class = fw_elf_get_class(fw); size_t fw_size = fw->size; const void *ehdr = elf_data; u16 shnum = elf_hdr_get_e_shnum(class, ehdr); u32 elf_shdr_get_size = elf_size_of_shdr(class); u16 shstrndx = elf_hdr_get_e_shstrndx(class, ehdr); /* look for the resource table and handle it */ /* First, get the section header according to the elf class */ shdr = elf_data + elf_hdr_get_e_shoff(class, ehdr); /* Compute name table section header entry in shdr array */ name_table_shdr = shdr + (shstrndx * elf_shdr_get_size); /* Finally, compute the name table section address in elf */ name_table = elf_data + elf_shdr_get_sh_offset(class, name_table_shdr); for (i = 0; i < shnum; i++, shdr += elf_shdr_get_size) { u64 size = elf_shdr_get_sh_size(class, shdr); u64 offset = elf_shdr_get_sh_offset(class, shdr); u32 name = elf_shdr_get_sh_name(class, shdr); if (strcmp(name_table + name, ".resource_table")) continue; table = (struct resource_table *)(elf_data + offset); /* make sure we have the entire table */ if (offset + size > fw_size || offset + size < size) { dev_err(dev, "resource table truncated\n"); return NULL; } /* make sure table has at least the header */ if (sizeof(struct resource_table) > size) { dev_err(dev, "header-less resource table\n"); return NULL; } /* we don't support any version beyond the first */ if (table->ver != 1) { dev_err(dev, "unsupported fw ver: %d\n", table->ver); return NULL; } /* make sure reserved bytes are zeroes */ if (table->reserved[0] || table->reserved[1]) { dev_err(dev, "non zero reserved bytes\n"); return NULL; } /* make sure the offsets array isn't truncated */ if (struct_size(table, offset, table->num) > size) { dev_err(dev, "resource table incomplete\n"); return NULL; } return shdr; } return NULL; } /** * rproc_elf_load_rsc_table() - load the resource table * @rproc: the rproc handle * @fw: the ELF firmware image * * This function finds the resource table inside the remote processor's * firmware, load it into the @cached_table and update @table_ptr. * * Return: 0 on success, negative errno on failure. */ int rproc_elf_load_rsc_table(struct rproc *rproc, const struct firmware *fw) { const void *shdr; struct device *dev = &rproc->dev; struct resource_table *table = NULL; const u8 *elf_data = fw->data; size_t tablesz; u8 class = fw_elf_get_class(fw); u64 sh_offset; shdr = find_table(dev, fw); if (!shdr) return -EINVAL; sh_offset = elf_shdr_get_sh_offset(class, shdr); table = (struct resource_table *)(elf_data + sh_offset); tablesz = elf_shdr_get_sh_size(class, shdr); /* * Create a copy of the resource table. When a virtio device starts * and calls vring_new_virtqueue() the address of the allocated vring * will be stored in the cached_table. Before the device is started, * cached_table will be copied into device memory. */ rproc->cached_table = kmemdup(table, tablesz, GFP_KERNEL); if (!rproc->cached_table) return -ENOMEM; rproc->table_ptr = rproc->cached_table; rproc->table_sz = tablesz; return 0; } EXPORT_SYMBOL(rproc_elf_load_rsc_table); /** * rproc_elf_find_loaded_rsc_table() - find the loaded resource table * @rproc: the rproc handle * @fw: the ELF firmware image * * This function finds the location of the loaded resource table. Don't * call this function if the table wasn't loaded yet - it's a bug if you do. * * Return: pointer to the resource table if it is found or NULL otherwise. * If the table wasn't loaded yet the result is unspecified. */ struct resource_table *rproc_elf_find_loaded_rsc_table(struct rproc *rproc, const struct firmware *fw) { const void *shdr; u64 sh_addr, sh_size; u8 class = fw_elf_get_class(fw); struct device *dev = &rproc->dev; shdr = find_table(&rproc->dev, fw); if (!shdr) return NULL; sh_addr = elf_shdr_get_sh_addr(class, shdr); sh_size = elf_shdr_get_sh_size(class, shdr); if (!rproc_u64_fit_in_size_t(sh_size)) { dev_err(dev, "size (%llx) does not fit in size_t type\n", sh_size); return NULL; } return rproc_da_to_va(rproc, sh_addr, sh_size, NULL); } EXPORT_SYMBOL(rproc_elf_find_loaded_rsc_table);
linux-master
drivers/remoteproc/remoteproc_elf_loader.c
// SPDX-License-Identifier: GPL-2.0-only /* * ST's Remote Processor Control Driver * * Copyright (C) 2015 STMicroelectronics - All Rights Reserved * * Author: Ludovic Barre <[email protected]> */ #include <linux/clk.h> #include <linux/dma-mapping.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/mailbox_client.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_device.h> #include <linux/of_reserved_mem.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/remoteproc.h> #include <linux/reset.h> #include "remoteproc_internal.h" #define ST_RPROC_VQ0 0 #define ST_RPROC_VQ1 1 #define ST_RPROC_MAX_VRING 2 #define MBOX_RX 0 #define MBOX_TX 1 #define MBOX_MAX 2 struct st_rproc_config { bool sw_reset; bool pwr_reset; unsigned long bootaddr_mask; }; struct st_rproc { struct st_rproc_config *config; struct reset_control *sw_reset; struct reset_control *pwr_reset; struct clk *clk; u32 clk_rate; struct regmap *boot_base; u32 boot_offset; struct mbox_chan *mbox_chan[ST_RPROC_MAX_VRING * MBOX_MAX]; struct mbox_client mbox_client_vq0; struct mbox_client mbox_client_vq1; }; static void st_rproc_mbox_callback(struct device *dev, u32 msg) { struct rproc *rproc = dev_get_drvdata(dev); if (rproc_vq_interrupt(rproc, msg) == IRQ_NONE) dev_dbg(dev, "no message was found in vqid %d\n", msg); } static void st_rproc_mbox_callback_vq0(struct mbox_client *mbox_client, void *data) { st_rproc_mbox_callback(mbox_client->dev, 0); } static void st_rproc_mbox_callback_vq1(struct mbox_client *mbox_client, void *data) { st_rproc_mbox_callback(mbox_client->dev, 1); } static void st_rproc_kick(struct rproc *rproc, int vqid) { struct st_rproc *ddata = rproc->priv; struct device *dev = rproc->dev.parent; int ret; /* send the index of the triggered virtqueue in the mailbox payload */ if (WARN_ON(vqid >= ST_RPROC_MAX_VRING)) return; ret = mbox_send_message(ddata->mbox_chan[vqid * MBOX_MAX + MBOX_TX], (void *)&vqid); if (ret < 0) dev_err(dev, "failed to send message via mbox: %d\n", ret); } static int st_rproc_mem_alloc(struct rproc *rproc, struct rproc_mem_entry *mem) { struct device *dev = rproc->dev.parent; void *va; va = ioremap_wc(mem->dma, mem->len); if (!va) { dev_err(dev, "Unable to map memory region: %pa+%zx\n", &mem->dma, mem->len); return -ENOMEM; } /* Update memory entry va */ mem->va = va; return 0; } static int st_rproc_mem_release(struct rproc *rproc, struct rproc_mem_entry *mem) { iounmap(mem->va); return 0; } static int st_rproc_parse_fw(struct rproc *rproc, const struct firmware *fw) { struct device *dev = rproc->dev.parent; struct device_node *np = dev->of_node; struct rproc_mem_entry *mem; struct reserved_mem *rmem; struct of_phandle_iterator it; int index = 0; of_phandle_iterator_init(&it, np, "memory-region", NULL, 0); while (of_phandle_iterator_next(&it) == 0) { rmem = of_reserved_mem_lookup(it.node); if (!rmem) { of_node_put(it.node); dev_err(dev, "unable to acquire memory-region\n"); return -EINVAL; } /* No need to map vdev buffer */ if (strcmp(it.node->name, "vdev0buffer")) { /* Register memory region */ mem = rproc_mem_entry_init(dev, NULL, (dma_addr_t)rmem->base, rmem->size, rmem->base, st_rproc_mem_alloc, st_rproc_mem_release, it.node->name); } else { /* Register reserved memory for vdev buffer allocation */ mem = rproc_of_resm_mem_entry_init(dev, index, rmem->size, rmem->base, it.node->name); } if (!mem) { of_node_put(it.node); return -ENOMEM; } rproc_add_carveout(rproc, mem); index++; } return rproc_elf_load_rsc_table(rproc, fw); } static int st_rproc_start(struct rproc *rproc) { struct st_rproc *ddata = rproc->priv; int err; regmap_update_bits(ddata->boot_base, ddata->boot_offset, ddata->config->bootaddr_mask, rproc->bootaddr); err = clk_enable(ddata->clk); if (err) { dev_err(&rproc->dev, "Failed to enable clock\n"); return err; } if (ddata->config->sw_reset) { err = reset_control_deassert(ddata->sw_reset); if (err) { dev_err(&rproc->dev, "Failed to deassert S/W Reset\n"); goto sw_reset_fail; } } if (ddata->config->pwr_reset) { err = reset_control_deassert(ddata->pwr_reset); if (err) { dev_err(&rproc->dev, "Failed to deassert Power Reset\n"); goto pwr_reset_fail; } } dev_info(&rproc->dev, "Started from 0x%llx\n", rproc->bootaddr); return 0; pwr_reset_fail: if (ddata->config->pwr_reset) reset_control_assert(ddata->sw_reset); sw_reset_fail: clk_disable(ddata->clk); return err; } static int st_rproc_stop(struct rproc *rproc) { struct st_rproc *ddata = rproc->priv; int sw_err = 0, pwr_err = 0; if (ddata->config->sw_reset) { sw_err = reset_control_assert(ddata->sw_reset); if (sw_err) dev_err(&rproc->dev, "Failed to assert S/W Reset\n"); } if (ddata->config->pwr_reset) { pwr_err = reset_control_assert(ddata->pwr_reset); if (pwr_err) dev_err(&rproc->dev, "Failed to assert Power Reset\n"); } clk_disable(ddata->clk); return sw_err ?: pwr_err; } static const struct rproc_ops st_rproc_ops = { .kick = st_rproc_kick, .start = st_rproc_start, .stop = st_rproc_stop, .parse_fw = st_rproc_parse_fw, .load = rproc_elf_load_segments, .find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table, .sanity_check = rproc_elf_sanity_check, .get_boot_addr = rproc_elf_get_boot_addr, }; /* * Fetch state of the processor: 0 is off, 1 is on. */ static int st_rproc_state(struct platform_device *pdev) { struct rproc *rproc = platform_get_drvdata(pdev); struct st_rproc *ddata = rproc->priv; int reset_sw = 0, reset_pwr = 0; if (ddata->config->sw_reset) reset_sw = reset_control_status(ddata->sw_reset); if (ddata->config->pwr_reset) reset_pwr = reset_control_status(ddata->pwr_reset); if (reset_sw < 0 || reset_pwr < 0) return -EINVAL; return !reset_sw && !reset_pwr; } static const struct st_rproc_config st40_rproc_cfg = { .sw_reset = true, .pwr_reset = true, .bootaddr_mask = GENMASK(28, 1), }; static const struct st_rproc_config st231_rproc_cfg = { .sw_reset = true, .pwr_reset = false, .bootaddr_mask = GENMASK(31, 6), }; static const struct of_device_id st_rproc_match[] = { { .compatible = "st,st40-rproc", .data = &st40_rproc_cfg }, { .compatible = "st,st231-rproc", .data = &st231_rproc_cfg }, {}, }; MODULE_DEVICE_TABLE(of, st_rproc_match); static int st_rproc_parse_dt(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct rproc *rproc = platform_get_drvdata(pdev); struct st_rproc *ddata = rproc->priv; struct device_node *np = dev->of_node; int err; if (ddata->config->sw_reset) { ddata->sw_reset = devm_reset_control_get_exclusive(dev, "sw_reset"); if (IS_ERR(ddata->sw_reset)) { dev_err(dev, "Failed to get S/W Reset\n"); return PTR_ERR(ddata->sw_reset); } } if (ddata->config->pwr_reset) { ddata->pwr_reset = devm_reset_control_get_exclusive(dev, "pwr_reset"); if (IS_ERR(ddata->pwr_reset)) { dev_err(dev, "Failed to get Power Reset\n"); return PTR_ERR(ddata->pwr_reset); } } ddata->clk = devm_clk_get(dev, NULL); if (IS_ERR(ddata->clk)) { dev_err(dev, "Failed to get clock\n"); return PTR_ERR(ddata->clk); } err = of_property_read_u32(np, "clock-frequency", &ddata->clk_rate); if (err) { dev_err(dev, "failed to get clock frequency\n"); return err; } ddata->boot_base = syscon_regmap_lookup_by_phandle(np, "st,syscfg"); if (IS_ERR(ddata->boot_base)) { dev_err(dev, "Boot base not found\n"); return PTR_ERR(ddata->boot_base); } err = of_property_read_u32_index(np, "st,syscfg", 1, &ddata->boot_offset); if (err) { dev_err(dev, "Boot offset not found\n"); return -EINVAL; } err = clk_prepare(ddata->clk); if (err) dev_err(dev, "failed to get clock\n"); return err; } static int st_rproc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; const struct of_device_id *match; struct st_rproc *ddata; struct device_node *np = dev->of_node; struct rproc *rproc; struct mbox_chan *chan; int enabled; int ret, i; match = of_match_device(st_rproc_match, dev); if (!match || !match->data) { dev_err(dev, "No device match found\n"); return -ENODEV; } rproc = rproc_alloc(dev, np->name, &st_rproc_ops, NULL, sizeof(*ddata)); if (!rproc) return -ENOMEM; rproc->has_iommu = false; ddata = rproc->priv; ddata->config = (struct st_rproc_config *)match->data; platform_set_drvdata(pdev, rproc); ret = st_rproc_parse_dt(pdev); if (ret) goto free_rproc; enabled = st_rproc_state(pdev); if (enabled < 0) { ret = enabled; goto free_clk; } if (enabled) { atomic_inc(&rproc->power); rproc->state = RPROC_RUNNING; } else { clk_set_rate(ddata->clk, ddata->clk_rate); } if (of_property_present(np, "mbox-names")) { ddata->mbox_client_vq0.dev = dev; ddata->mbox_client_vq0.tx_done = NULL; ddata->mbox_client_vq0.tx_block = false; ddata->mbox_client_vq0.knows_txdone = false; ddata->mbox_client_vq0.rx_callback = st_rproc_mbox_callback_vq0; ddata->mbox_client_vq1.dev = dev; ddata->mbox_client_vq1.tx_done = NULL; ddata->mbox_client_vq1.tx_block = false; ddata->mbox_client_vq1.knows_txdone = false; ddata->mbox_client_vq1.rx_callback = st_rproc_mbox_callback_vq1; /* * To control a co-processor without IPC mechanism. * This driver can be used without mbox and rpmsg. */ chan = mbox_request_channel_byname(&ddata->mbox_client_vq0, "vq0_rx"); if (IS_ERR(chan)) { dev_err(&rproc->dev, "failed to request mbox chan 0\n"); ret = PTR_ERR(chan); goto free_clk; } ddata->mbox_chan[ST_RPROC_VQ0 * MBOX_MAX + MBOX_RX] = chan; chan = mbox_request_channel_byname(&ddata->mbox_client_vq0, "vq0_tx"); if (IS_ERR(chan)) { dev_err(&rproc->dev, "failed to request mbox chan 0\n"); ret = PTR_ERR(chan); goto free_mbox; } ddata->mbox_chan[ST_RPROC_VQ0 * MBOX_MAX + MBOX_TX] = chan; chan = mbox_request_channel_byname(&ddata->mbox_client_vq1, "vq1_rx"); if (IS_ERR(chan)) { dev_err(&rproc->dev, "failed to request mbox chan 1\n"); ret = PTR_ERR(chan); goto free_mbox; } ddata->mbox_chan[ST_RPROC_VQ1 * MBOX_MAX + MBOX_RX] = chan; chan = mbox_request_channel_byname(&ddata->mbox_client_vq1, "vq1_tx"); if (IS_ERR(chan)) { dev_err(&rproc->dev, "failed to request mbox chan 1\n"); ret = PTR_ERR(chan); goto free_mbox; } ddata->mbox_chan[ST_RPROC_VQ1 * MBOX_MAX + MBOX_TX] = chan; } ret = rproc_add(rproc); if (ret) goto free_mbox; return 0; free_mbox: for (i = 0; i < ST_RPROC_MAX_VRING * MBOX_MAX; i++) mbox_free_channel(ddata->mbox_chan[i]); free_clk: clk_unprepare(ddata->clk); free_rproc: rproc_free(rproc); return ret; } static void st_rproc_remove(struct platform_device *pdev) { struct rproc *rproc = platform_get_drvdata(pdev); struct st_rproc *ddata = rproc->priv; int i; rproc_del(rproc); clk_disable_unprepare(ddata->clk); for (i = 0; i < ST_RPROC_MAX_VRING * MBOX_MAX; i++) mbox_free_channel(ddata->mbox_chan[i]); rproc_free(rproc); } static struct platform_driver st_rproc_driver = { .probe = st_rproc_probe, .remove_new = st_rproc_remove, .driver = { .name = "st-rproc", .of_match_table = of_match_ptr(st_rproc_match), }, }; module_platform_driver(st_rproc_driver); MODULE_DESCRIPTION("ST Remote Processor Control Driver"); MODULE_AUTHOR("Ludovic Barre <[email protected]>"); MODULE_LICENSE("GPL v2");
linux-master
drivers/remoteproc/st_remoteproc.c
// SPDX-License-Identifier: GPL-2.0 /* * Qualcomm Technology Inc. ADSP Peripheral Image Loader for SDM845. * Copyright (c) 2018, The Linux Foundation. All rights reserved. */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/firmware.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/iommu.h> #include <linux/iopoll.h> #include <linux/kernel.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_reserved_mem.h> #include <linux/platform_device.h> #include <linux/pm_domain.h> #include <linux/pm_runtime.h> #include <linux/regmap.h> #include <linux/remoteproc.h> #include <linux/reset.h> #include <linux/soc/qcom/mdt_loader.h> #include <linux/soc/qcom/smem.h> #include <linux/soc/qcom/smem_state.h> #include "qcom_common.h" #include "qcom_pil_info.h" #include "qcom_q6v5.h" #include "remoteproc_internal.h" /* time out value */ #define ACK_TIMEOUT 1000 #define ACK_TIMEOUT_US 1000000 #define BOOT_FSM_TIMEOUT 10000 /* mask values */ #define EVB_MASK GENMASK(27, 4) /*QDSP6SS register offsets*/ #define RST_EVB_REG 0x10 #define CORE_START_REG 0x400 #define BOOT_CMD_REG 0x404 #define BOOT_STATUS_REG 0x408 #define RET_CFG_REG 0x1C /*TCSR register offsets*/ #define LPASS_MASTER_IDLE_REG 0x8 #define LPASS_HALTACK_REG 0x4 #define LPASS_PWR_ON_REG 0x10 #define LPASS_HALTREQ_REG 0x0 #define SID_MASK_DEFAULT 0xF #define QDSP6SS_XO_CBCR 0x38 #define QDSP6SS_CORE_CBCR 0x20 #define QDSP6SS_SLEEP_CBCR 0x3c #define QCOM_Q6V5_RPROC_PROXY_PD_MAX 3 #define LPASS_BOOT_CORE_START BIT(0) #define LPASS_BOOT_CMD_START BIT(0) #define LPASS_EFUSE_Q6SS_EVB_SEL 0x0 struct adsp_pil_data { int crash_reason_smem; const char *firmware_name; const char *ssr_name; const char *sysmon_name; int ssctl_id; bool is_wpss; bool has_iommu; bool auto_boot; const char **clk_ids; int num_clks; const char **proxy_pd_names; const char *load_state; }; struct qcom_adsp { struct device *dev; struct rproc *rproc; struct qcom_q6v5 q6v5; struct clk *xo; int num_clks; struct clk_bulk_data *clks; void __iomem *qdsp6ss_base; void __iomem *lpass_efuse; struct reset_control *pdc_sync_reset; struct reset_control *restart; struct regmap *halt_map; unsigned int halt_lpass; int crash_reason_smem; const char *info_name; struct completion start_done; struct completion stop_done; phys_addr_t mem_phys; phys_addr_t mem_reloc; void *mem_region; size_t mem_size; bool has_iommu; struct device *proxy_pds[QCOM_Q6V5_RPROC_PROXY_PD_MAX]; size_t proxy_pd_count; struct qcom_rproc_glink glink_subdev; struct qcom_rproc_ssr ssr_subdev; struct qcom_sysmon *sysmon; int (*shutdown)(struct qcom_adsp *adsp); }; static int qcom_rproc_pds_attach(struct device *dev, struct qcom_adsp *adsp, const char **pd_names) { struct device **devs = adsp->proxy_pds; size_t num_pds = 0; int ret; int i; if (!pd_names) return 0; /* Handle single power domain */ if (dev->pm_domain) { devs[0] = dev; pm_runtime_enable(dev); return 1; } while (pd_names[num_pds]) num_pds++; if (num_pds > ARRAY_SIZE(adsp->proxy_pds)) return -E2BIG; for (i = 0; i < num_pds; i++) { devs[i] = dev_pm_domain_attach_by_name(dev, pd_names[i]); if (IS_ERR_OR_NULL(devs[i])) { ret = PTR_ERR(devs[i]) ? : -ENODATA; goto unroll_attach; } } return num_pds; unroll_attach: for (i--; i >= 0; i--) dev_pm_domain_detach(devs[i], false); return ret; } static void qcom_rproc_pds_detach(struct qcom_adsp *adsp, struct device **pds, size_t pd_count) { struct device *dev = adsp->dev; int i; /* Handle single power domain */ if (dev->pm_domain && pd_count) { pm_runtime_disable(dev); return; } for (i = 0; i < pd_count; i++) dev_pm_domain_detach(pds[i], false); } static int qcom_rproc_pds_enable(struct qcom_adsp *adsp, struct device **pds, size_t pd_count) { int ret; int i; for (i = 0; i < pd_count; i++) { dev_pm_genpd_set_performance_state(pds[i], INT_MAX); ret = pm_runtime_resume_and_get(pds[i]); if (ret < 0) { dev_pm_genpd_set_performance_state(pds[i], 0); goto unroll_pd_votes; } } return 0; unroll_pd_votes: for (i--; i >= 0; i--) { dev_pm_genpd_set_performance_state(pds[i], 0); pm_runtime_put(pds[i]); } return ret; } static void qcom_rproc_pds_disable(struct qcom_adsp *adsp, struct device **pds, size_t pd_count) { int i; for (i = 0; i < pd_count; i++) { dev_pm_genpd_set_performance_state(pds[i], 0); pm_runtime_put(pds[i]); } } static int qcom_wpss_shutdown(struct qcom_adsp *adsp) { unsigned int val; regmap_write(adsp->halt_map, adsp->halt_lpass + LPASS_HALTREQ_REG, 1); /* Wait for halt ACK from QDSP6 */ regmap_read_poll_timeout(adsp->halt_map, adsp->halt_lpass + LPASS_HALTACK_REG, val, val, 1000, ACK_TIMEOUT_US); /* Assert the WPSS PDC Reset */ reset_control_assert(adsp->pdc_sync_reset); /* Place the WPSS processor into reset */ reset_control_assert(adsp->restart); /* wait after asserting subsystem restart from AOSS */ usleep_range(200, 205); /* Remove the WPSS reset */ reset_control_deassert(adsp->restart); /* De-assert the WPSS PDC Reset */ reset_control_deassert(adsp->pdc_sync_reset); usleep_range(100, 105); clk_bulk_disable_unprepare(adsp->num_clks, adsp->clks); regmap_write(adsp->halt_map, adsp->halt_lpass + LPASS_HALTREQ_REG, 0); /* Wait for halt ACK from QDSP6 */ regmap_read_poll_timeout(adsp->halt_map, adsp->halt_lpass + LPASS_HALTACK_REG, val, !val, 1000, ACK_TIMEOUT_US); return 0; } static int qcom_adsp_shutdown(struct qcom_adsp *adsp) { unsigned long timeout; unsigned int val; int ret; /* Reset the retention logic */ val = readl(adsp->qdsp6ss_base + RET_CFG_REG); val |= 0x1; writel(val, adsp->qdsp6ss_base + RET_CFG_REG); clk_bulk_disable_unprepare(adsp->num_clks, adsp->clks); /* QDSP6 master port needs to be explicitly halted */ ret = regmap_read(adsp->halt_map, adsp->halt_lpass + LPASS_PWR_ON_REG, &val); if (ret || !val) goto reset; ret = regmap_read(adsp->halt_map, adsp->halt_lpass + LPASS_MASTER_IDLE_REG, &val); if (ret || val) goto reset; regmap_write(adsp->halt_map, adsp->halt_lpass + LPASS_HALTREQ_REG, 1); /* Wait for halt ACK from QDSP6 */ timeout = jiffies + msecs_to_jiffies(ACK_TIMEOUT); for (;;) { ret = regmap_read(adsp->halt_map, adsp->halt_lpass + LPASS_HALTACK_REG, &val); if (ret || val || time_after(jiffies, timeout)) break; usleep_range(1000, 1100); } ret = regmap_read(adsp->halt_map, adsp->halt_lpass + LPASS_MASTER_IDLE_REG, &val); if (ret || !val) dev_err(adsp->dev, "port failed halt\n"); reset: /* Assert the LPASS PDC Reset */ reset_control_assert(adsp->pdc_sync_reset); /* Place the LPASS processor into reset */ reset_control_assert(adsp->restart); /* wait after asserting subsystem restart from AOSS */ usleep_range(200, 300); /* Clear the halt request for the AXIM and AHBM for Q6 */ regmap_write(adsp->halt_map, adsp->halt_lpass + LPASS_HALTREQ_REG, 0); /* De-assert the LPASS PDC Reset */ reset_control_deassert(adsp->pdc_sync_reset); /* Remove the LPASS reset */ reset_control_deassert(adsp->restart); /* wait after de-asserting subsystem restart from AOSS */ usleep_range(200, 300); return 0; } static int adsp_load(struct rproc *rproc, const struct firmware *fw) { struct qcom_adsp *adsp = rproc->priv; int ret; ret = qcom_mdt_load_no_init(adsp->dev, fw, rproc->firmware, 0, adsp->mem_region, adsp->mem_phys, adsp->mem_size, &adsp->mem_reloc); if (ret) return ret; qcom_pil_info_store(adsp->info_name, adsp->mem_phys, adsp->mem_size); return 0; } static void adsp_unmap_carveout(struct rproc *rproc) { struct qcom_adsp *adsp = rproc->priv; if (adsp->has_iommu) iommu_unmap(rproc->domain, adsp->mem_phys, adsp->mem_size); } static int adsp_map_carveout(struct rproc *rproc) { struct qcom_adsp *adsp = rproc->priv; struct of_phandle_args args; long long sid; unsigned long iova; int ret; if (!adsp->has_iommu) return 0; if (!rproc->domain) return -EINVAL; ret = of_parse_phandle_with_args(adsp->dev->of_node, "iommus", "#iommu-cells", 0, &args); if (ret < 0) return ret; sid = args.args[0] & SID_MASK_DEFAULT; /* Add SID configuration for ADSP Firmware to SMMU */ iova = adsp->mem_phys | (sid << 32); ret = iommu_map(rproc->domain, iova, adsp->mem_phys, adsp->mem_size, IOMMU_READ | IOMMU_WRITE, GFP_KERNEL); if (ret) { dev_err(adsp->dev, "Unable to map ADSP Physical Memory\n"); return ret; } return 0; } static int adsp_start(struct rproc *rproc) { struct qcom_adsp *adsp = rproc->priv; int ret; unsigned int val; ret = qcom_q6v5_prepare(&adsp->q6v5); if (ret) return ret; ret = adsp_map_carveout(rproc); if (ret) { dev_err(adsp->dev, "ADSP smmu mapping failed\n"); goto disable_irqs; } ret = clk_prepare_enable(adsp->xo); if (ret) goto adsp_smmu_unmap; ret = qcom_rproc_pds_enable(adsp, adsp->proxy_pds, adsp->proxy_pd_count); if (ret < 0) goto disable_xo_clk; ret = clk_bulk_prepare_enable(adsp->num_clks, adsp->clks); if (ret) { dev_err(adsp->dev, "adsp clk_enable failed\n"); goto disable_power_domain; } /* Enable the XO clock */ writel(1, adsp->qdsp6ss_base + QDSP6SS_XO_CBCR); /* Enable the QDSP6SS sleep clock */ writel(1, adsp->qdsp6ss_base + QDSP6SS_SLEEP_CBCR); /* Enable the QDSP6 core clock */ writel(1, adsp->qdsp6ss_base + QDSP6SS_CORE_CBCR); /* Program boot address */ writel(adsp->mem_phys >> 4, adsp->qdsp6ss_base + RST_EVB_REG); if (adsp->lpass_efuse) writel(LPASS_EFUSE_Q6SS_EVB_SEL, adsp->lpass_efuse); /* De-assert QDSP6 stop core. QDSP6 will execute after out of reset */ writel(LPASS_BOOT_CORE_START, adsp->qdsp6ss_base + CORE_START_REG); /* Trigger boot FSM to start QDSP6 */ writel(LPASS_BOOT_CMD_START, adsp->qdsp6ss_base + BOOT_CMD_REG); /* Wait for core to come out of reset */ ret = readl_poll_timeout(adsp->qdsp6ss_base + BOOT_STATUS_REG, val, (val & BIT(0)) != 0, 10, BOOT_FSM_TIMEOUT); if (ret) { dev_err(adsp->dev, "failed to bootup adsp\n"); goto disable_adsp_clks; } ret = qcom_q6v5_wait_for_start(&adsp->q6v5, msecs_to_jiffies(5 * HZ)); if (ret == -ETIMEDOUT) { dev_err(adsp->dev, "start timed out\n"); goto disable_adsp_clks; } return 0; disable_adsp_clks: clk_bulk_disable_unprepare(adsp->num_clks, adsp->clks); disable_power_domain: qcom_rproc_pds_disable(adsp, adsp->proxy_pds, adsp->proxy_pd_count); disable_xo_clk: clk_disable_unprepare(adsp->xo); adsp_smmu_unmap: adsp_unmap_carveout(rproc); disable_irqs: qcom_q6v5_unprepare(&adsp->q6v5); return ret; } static void qcom_adsp_pil_handover(struct qcom_q6v5 *q6v5) { struct qcom_adsp *adsp = container_of(q6v5, struct qcom_adsp, q6v5); clk_disable_unprepare(adsp->xo); qcom_rproc_pds_disable(adsp, adsp->proxy_pds, adsp->proxy_pd_count); } static int adsp_stop(struct rproc *rproc) { struct qcom_adsp *adsp = rproc->priv; int handover; int ret; ret = qcom_q6v5_request_stop(&adsp->q6v5, adsp->sysmon); if (ret == -ETIMEDOUT) dev_err(adsp->dev, "timed out on wait\n"); ret = adsp->shutdown(adsp); if (ret) dev_err(adsp->dev, "failed to shutdown: %d\n", ret); adsp_unmap_carveout(rproc); handover = qcom_q6v5_unprepare(&adsp->q6v5); if (handover) qcom_adsp_pil_handover(&adsp->q6v5); return ret; } static void *adsp_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) { struct qcom_adsp *adsp = rproc->priv; int offset; offset = da - adsp->mem_reloc; if (offset < 0 || offset + len > adsp->mem_size) return NULL; return adsp->mem_region + offset; } static int adsp_parse_firmware(struct rproc *rproc, const struct firmware *fw) { struct qcom_adsp *adsp = rproc->priv; int ret; ret = qcom_register_dump_segments(rproc, fw); if (ret) { dev_err(&rproc->dev, "Error in registering dump segments\n"); return ret; } if (adsp->has_iommu) { ret = rproc_elf_load_rsc_table(rproc, fw); if (ret) { dev_err(&rproc->dev, "Error in loading resource table\n"); return ret; } } return 0; } static unsigned long adsp_panic(struct rproc *rproc) { struct qcom_adsp *adsp = rproc->priv; return qcom_q6v5_panic(&adsp->q6v5); } static const struct rproc_ops adsp_ops = { .start = adsp_start, .stop = adsp_stop, .da_to_va = adsp_da_to_va, .parse_fw = adsp_parse_firmware, .load = adsp_load, .panic = adsp_panic, }; static int adsp_init_clock(struct qcom_adsp *adsp, const char **clk_ids) { int num_clks = 0; int i, ret; adsp->xo = devm_clk_get(adsp->dev, "xo"); if (IS_ERR(adsp->xo)) { ret = PTR_ERR(adsp->xo); if (ret != -EPROBE_DEFER) dev_err(adsp->dev, "failed to get xo clock"); return ret; } for (i = 0; clk_ids[i]; i++) num_clks++; adsp->num_clks = num_clks; adsp->clks = devm_kcalloc(adsp->dev, adsp->num_clks, sizeof(*adsp->clks), GFP_KERNEL); if (!adsp->clks) return -ENOMEM; for (i = 0; i < adsp->num_clks; i++) adsp->clks[i].id = clk_ids[i]; return devm_clk_bulk_get(adsp->dev, adsp->num_clks, adsp->clks); } static int adsp_init_reset(struct qcom_adsp *adsp) { adsp->pdc_sync_reset = devm_reset_control_get_optional_exclusive(adsp->dev, "pdc_sync"); if (IS_ERR(adsp->pdc_sync_reset)) { dev_err(adsp->dev, "failed to acquire pdc_sync reset\n"); return PTR_ERR(adsp->pdc_sync_reset); } adsp->restart = devm_reset_control_get_optional_exclusive(adsp->dev, "restart"); /* Fall back to the old "cc_lpass" if "restart" is absent */ if (!adsp->restart) adsp->restart = devm_reset_control_get_exclusive(adsp->dev, "cc_lpass"); if (IS_ERR(adsp->restart)) { dev_err(adsp->dev, "failed to acquire restart\n"); return PTR_ERR(adsp->restart); } return 0; } static int adsp_init_mmio(struct qcom_adsp *adsp, struct platform_device *pdev) { struct resource *efuse_region; struct device_node *syscon; int ret; adsp->qdsp6ss_base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(adsp->qdsp6ss_base)) { dev_err(adsp->dev, "failed to map QDSP6SS registers\n"); return PTR_ERR(adsp->qdsp6ss_base); } efuse_region = platform_get_resource(pdev, IORESOURCE_MEM, 1); if (!efuse_region) { adsp->lpass_efuse = NULL; dev_dbg(adsp->dev, "failed to get efuse memory region\n"); } else { adsp->lpass_efuse = devm_ioremap_resource(&pdev->dev, efuse_region); if (IS_ERR(adsp->lpass_efuse)) { dev_err(adsp->dev, "failed to map efuse registers\n"); return PTR_ERR(adsp->lpass_efuse); } } syscon = of_parse_phandle(pdev->dev.of_node, "qcom,halt-regs", 0); if (!syscon) { dev_err(&pdev->dev, "failed to parse qcom,halt-regs\n"); return -EINVAL; } adsp->halt_map = syscon_node_to_regmap(syscon); of_node_put(syscon); if (IS_ERR(adsp->halt_map)) return PTR_ERR(adsp->halt_map); ret = of_property_read_u32_index(pdev->dev.of_node, "qcom,halt-regs", 1, &adsp->halt_lpass); if (ret < 0) { dev_err(&pdev->dev, "no offset in syscon\n"); return ret; } return 0; } static int adsp_alloc_memory_region(struct qcom_adsp *adsp) { struct reserved_mem *rmem = NULL; struct device_node *node; node = of_parse_phandle(adsp->dev->of_node, "memory-region", 0); if (node) rmem = of_reserved_mem_lookup(node); of_node_put(node); if (!rmem) { dev_err(adsp->dev, "unable to resolve memory-region\n"); return -EINVAL; } adsp->mem_phys = adsp->mem_reloc = rmem->base; adsp->mem_size = rmem->size; adsp->mem_region = devm_ioremap_wc(adsp->dev, adsp->mem_phys, adsp->mem_size); if (!adsp->mem_region) { dev_err(adsp->dev, "unable to map memory region: %pa+%zx\n", &rmem->base, adsp->mem_size); return -EBUSY; } return 0; } static int adsp_probe(struct platform_device *pdev) { const struct adsp_pil_data *desc; const char *firmware_name; struct qcom_adsp *adsp; struct rproc *rproc; int ret; desc = of_device_get_match_data(&pdev->dev); if (!desc) return -EINVAL; firmware_name = desc->firmware_name; ret = of_property_read_string(pdev->dev.of_node, "firmware-name", &firmware_name); if (ret < 0 && ret != -EINVAL) { dev_err(&pdev->dev, "unable to read firmware-name\n"); return ret; } rproc = rproc_alloc(&pdev->dev, pdev->name, &adsp_ops, firmware_name, sizeof(*adsp)); if (!rproc) { dev_err(&pdev->dev, "unable to allocate remoteproc\n"); return -ENOMEM; } rproc->auto_boot = desc->auto_boot; rproc->has_iommu = desc->has_iommu; rproc_coredump_set_elf_info(rproc, ELFCLASS32, EM_NONE); adsp = rproc->priv; adsp->dev = &pdev->dev; adsp->rproc = rproc; adsp->info_name = desc->sysmon_name; adsp->has_iommu = desc->has_iommu; platform_set_drvdata(pdev, adsp); if (desc->is_wpss) adsp->shutdown = qcom_wpss_shutdown; else adsp->shutdown = qcom_adsp_shutdown; ret = adsp_alloc_memory_region(adsp); if (ret) goto free_rproc; ret = adsp_init_clock(adsp, desc->clk_ids); if (ret) goto free_rproc; ret = qcom_rproc_pds_attach(adsp->dev, adsp, desc->proxy_pd_names); if (ret < 0) { dev_err(&pdev->dev, "Failed to attach proxy power domains\n"); goto free_rproc; } adsp->proxy_pd_count = ret; ret = adsp_init_reset(adsp); if (ret) goto disable_pm; ret = adsp_init_mmio(adsp, pdev); if (ret) goto disable_pm; ret = qcom_q6v5_init(&adsp->q6v5, pdev, rproc, desc->crash_reason_smem, desc->load_state, qcom_adsp_pil_handover); if (ret) goto disable_pm; qcom_add_glink_subdev(rproc, &adsp->glink_subdev, desc->ssr_name); qcom_add_ssr_subdev(rproc, &adsp->ssr_subdev, desc->ssr_name); adsp->sysmon = qcom_add_sysmon_subdev(rproc, desc->sysmon_name, desc->ssctl_id); if (IS_ERR(adsp->sysmon)) { ret = PTR_ERR(adsp->sysmon); goto disable_pm; } ret = rproc_add(rproc); if (ret) goto disable_pm; return 0; disable_pm: qcom_rproc_pds_detach(adsp, adsp->proxy_pds, adsp->proxy_pd_count); free_rproc: rproc_free(rproc); return ret; } static void adsp_remove(struct platform_device *pdev) { struct qcom_adsp *adsp = platform_get_drvdata(pdev); rproc_del(adsp->rproc); qcom_q6v5_deinit(&adsp->q6v5); qcom_remove_glink_subdev(adsp->rproc, &adsp->glink_subdev); qcom_remove_sysmon_subdev(adsp->sysmon); qcom_remove_ssr_subdev(adsp->rproc, &adsp->ssr_subdev); qcom_rproc_pds_detach(adsp, adsp->proxy_pds, adsp->proxy_pd_count); rproc_free(adsp->rproc); } static const struct adsp_pil_data adsp_resource_init = { .crash_reason_smem = 423, .firmware_name = "adsp.mdt", .ssr_name = "lpass", .sysmon_name = "adsp", .ssctl_id = 0x14, .is_wpss = false, .auto_boot = true, .clk_ids = (const char*[]) { "sway_cbcr", "lpass_ahbs_aon_cbcr", "lpass_ahbm_aon_cbcr", "qdsp6ss_xo", "qdsp6ss_sleep", "qdsp6ss_core", NULL }, .num_clks = 7, .proxy_pd_names = (const char*[]) { "cx", NULL }, }; static const struct adsp_pil_data adsp_sc7280_resource_init = { .crash_reason_smem = 423, .firmware_name = "adsp.pbn", .load_state = "adsp", .ssr_name = "lpass", .sysmon_name = "adsp", .ssctl_id = 0x14, .has_iommu = true, .auto_boot = true, .clk_ids = (const char*[]) { "gcc_cfg_noc_lpass", NULL }, .num_clks = 1, }; static const struct adsp_pil_data cdsp_resource_init = { .crash_reason_smem = 601, .firmware_name = "cdsp.mdt", .ssr_name = "cdsp", .sysmon_name = "cdsp", .ssctl_id = 0x17, .is_wpss = false, .auto_boot = true, .clk_ids = (const char*[]) { "sway", "tbu", "bimc", "ahb_aon", "q6ss_slave", "q6ss_master", "q6_axim", NULL }, .num_clks = 7, .proxy_pd_names = (const char*[]) { "cx", NULL }, }; static const struct adsp_pil_data wpss_resource_init = { .crash_reason_smem = 626, .firmware_name = "wpss.mdt", .ssr_name = "wpss", .sysmon_name = "wpss", .ssctl_id = 0x19, .is_wpss = true, .auto_boot = false, .load_state = "wpss", .clk_ids = (const char*[]) { "ahb_bdg", "ahb", "rscp", NULL }, .num_clks = 3, .proxy_pd_names = (const char*[]) { "cx", "mx", NULL }, }; static const struct of_device_id adsp_of_match[] = { { .compatible = "qcom,qcs404-cdsp-pil", .data = &cdsp_resource_init }, { .compatible = "qcom,sc7280-adsp-pil", .data = &adsp_sc7280_resource_init }, { .compatible = "qcom,sc7280-wpss-pil", .data = &wpss_resource_init }, { .compatible = "qcom,sdm845-adsp-pil", .data = &adsp_resource_init }, { }, }; MODULE_DEVICE_TABLE(of, adsp_of_match); static struct platform_driver adsp_pil_driver = { .probe = adsp_probe, .remove_new = adsp_remove, .driver = { .name = "qcom_q6v5_adsp", .of_match_table = adsp_of_match, }, }; module_platform_driver(adsp_pil_driver); MODULE_DESCRIPTION("QTI SDM845 ADSP Peripheral Image Loader"); MODULE_LICENSE("GPL v2");
linux-master
drivers/remoteproc/qcom_q6v5_adsp.c
// SPDX-License-Identifier: GPL-2.0 /* * Qualcomm Peripheral Image Loader for Q6V5 * * Copyright (C) 2016-2018 Linaro Ltd. * Copyright (C) 2014 Sony Mobile Communications AB * Copyright (c) 2012-2013, The Linux Foundation. All rights reserved. */ #include <linux/kernel.h> #include <linux/platform_device.h> #include <linux/interconnect.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/soc/qcom/qcom_aoss.h> #include <linux/soc/qcom/smem.h> #include <linux/soc/qcom/smem_state.h> #include <linux/remoteproc.h> #include "qcom_common.h" #include "qcom_q6v5.h" #define Q6V5_LOAD_STATE_MSG_LEN 64 #define Q6V5_PANIC_DELAY_MS 200 static int q6v5_load_state_toggle(struct qcom_q6v5 *q6v5, bool enable) { int ret; if (!q6v5->qmp) return 0; ret = qmp_send(q6v5->qmp, "{class: image, res: load_state, name: %s, val: %s}", q6v5->load_state, enable ? "on" : "off"); if (ret) dev_err(q6v5->dev, "failed to toggle load state\n"); return ret; } /** * qcom_q6v5_prepare() - reinitialize the qcom_q6v5 context before start * @q6v5: reference to qcom_q6v5 context to be reinitialized * * Return: 0 on success, negative errno on failure */ int qcom_q6v5_prepare(struct qcom_q6v5 *q6v5) { int ret; ret = icc_set_bw(q6v5->path, 0, UINT_MAX); if (ret < 0) { dev_err(q6v5->dev, "failed to set bandwidth request\n"); return ret; } ret = q6v5_load_state_toggle(q6v5, true); if (ret) { icc_set_bw(q6v5->path, 0, 0); return ret; } reinit_completion(&q6v5->start_done); reinit_completion(&q6v5->stop_done); q6v5->running = true; q6v5->handover_issued = false; enable_irq(q6v5->handover_irq); return 0; } EXPORT_SYMBOL_GPL(qcom_q6v5_prepare); /** * qcom_q6v5_unprepare() - unprepare the qcom_q6v5 context after stop * @q6v5: reference to qcom_q6v5 context to be unprepared * * Return: 0 on success, 1 if handover hasn't yet been called */ int qcom_q6v5_unprepare(struct qcom_q6v5 *q6v5) { disable_irq(q6v5->handover_irq); q6v5_load_state_toggle(q6v5, false); /* Disable interconnect vote, in case handover never happened */ icc_set_bw(q6v5->path, 0, 0); return !q6v5->handover_issued; } EXPORT_SYMBOL_GPL(qcom_q6v5_unprepare); static irqreturn_t q6v5_wdog_interrupt(int irq, void *data) { struct qcom_q6v5 *q6v5 = data; size_t len; char *msg; /* Sometimes the stop triggers a watchdog rather than a stop-ack */ if (!q6v5->running) { complete(&q6v5->stop_done); return IRQ_HANDLED; } msg = qcom_smem_get(QCOM_SMEM_HOST_ANY, q6v5->crash_reason, &len); if (!IS_ERR(msg) && len > 0 && msg[0]) dev_err(q6v5->dev, "watchdog received: %s\n", msg); else dev_err(q6v5->dev, "watchdog without message\n"); q6v5->running = false; rproc_report_crash(q6v5->rproc, RPROC_WATCHDOG); return IRQ_HANDLED; } static irqreturn_t q6v5_fatal_interrupt(int irq, void *data) { struct qcom_q6v5 *q6v5 = data; size_t len; char *msg; if (!q6v5->running) return IRQ_HANDLED; msg = qcom_smem_get(QCOM_SMEM_HOST_ANY, q6v5->crash_reason, &len); if (!IS_ERR(msg) && len > 0 && msg[0]) dev_err(q6v5->dev, "fatal error received: %s\n", msg); else dev_err(q6v5->dev, "fatal error without message\n"); q6v5->running = false; rproc_report_crash(q6v5->rproc, RPROC_FATAL_ERROR); return IRQ_HANDLED; } static irqreturn_t q6v5_ready_interrupt(int irq, void *data) { struct qcom_q6v5 *q6v5 = data; complete(&q6v5->start_done); return IRQ_HANDLED; } /** * qcom_q6v5_wait_for_start() - wait for remote processor start signal * @q6v5: reference to qcom_q6v5 context * @timeout: timeout to wait for the event, in jiffies * * qcom_q6v5_unprepare() should not be called when this function fails. * * Return: 0 on success, -ETIMEDOUT on timeout */ int qcom_q6v5_wait_for_start(struct qcom_q6v5 *q6v5, int timeout) { int ret; ret = wait_for_completion_timeout(&q6v5->start_done, timeout); if (!ret) disable_irq(q6v5->handover_irq); return !ret ? -ETIMEDOUT : 0; } EXPORT_SYMBOL_GPL(qcom_q6v5_wait_for_start); static irqreturn_t q6v5_handover_interrupt(int irq, void *data) { struct qcom_q6v5 *q6v5 = data; if (q6v5->handover) q6v5->handover(q6v5); icc_set_bw(q6v5->path, 0, 0); q6v5->handover_issued = true; return IRQ_HANDLED; } static irqreturn_t q6v5_stop_interrupt(int irq, void *data) { struct qcom_q6v5 *q6v5 = data; complete(&q6v5->stop_done); return IRQ_HANDLED; } /** * qcom_q6v5_request_stop() - request the remote processor to stop * @q6v5: reference to qcom_q6v5 context * @sysmon: reference to the remote's sysmon instance, or NULL * * Return: 0 on success, negative errno on failure */ int qcom_q6v5_request_stop(struct qcom_q6v5 *q6v5, struct qcom_sysmon *sysmon) { int ret; q6v5->running = false; /* Don't perform SMP2P dance if remote isn't running */ if (q6v5->rproc->state != RPROC_RUNNING || qcom_sysmon_shutdown_acked(sysmon)) return 0; qcom_smem_state_update_bits(q6v5->state, BIT(q6v5->stop_bit), BIT(q6v5->stop_bit)); ret = wait_for_completion_timeout(&q6v5->stop_done, 5 * HZ); qcom_smem_state_update_bits(q6v5->state, BIT(q6v5->stop_bit), 0); return ret == 0 ? -ETIMEDOUT : 0; } EXPORT_SYMBOL_GPL(qcom_q6v5_request_stop); /** * qcom_q6v5_panic() - panic handler to invoke a stop on the remote * @q6v5: reference to qcom_q6v5 context * * Set the stop bit and sleep in order to allow the remote processor to flush * its caches etc for post mortem debugging. * * Return: 200ms */ unsigned long qcom_q6v5_panic(struct qcom_q6v5 *q6v5) { qcom_smem_state_update_bits(q6v5->state, BIT(q6v5->stop_bit), BIT(q6v5->stop_bit)); return Q6V5_PANIC_DELAY_MS; } EXPORT_SYMBOL_GPL(qcom_q6v5_panic); /** * qcom_q6v5_init() - initializer of the q6v5 common struct * @q6v5: handle to be initialized * @pdev: platform_device reference for acquiring resources * @rproc: associated remoteproc instance * @crash_reason: SMEM id for crash reason string, or 0 if none * @load_state: load state resource string * @handover: function to be called when proxy resources should be released * * Return: 0 on success, negative errno on failure */ int qcom_q6v5_init(struct qcom_q6v5 *q6v5, struct platform_device *pdev, struct rproc *rproc, int crash_reason, const char *load_state, void (*handover)(struct qcom_q6v5 *q6v5)) { int ret; q6v5->rproc = rproc; q6v5->dev = &pdev->dev; q6v5->crash_reason = crash_reason; q6v5->handover = handover; init_completion(&q6v5->start_done); init_completion(&q6v5->stop_done); q6v5->wdog_irq = platform_get_irq_byname(pdev, "wdog"); if (q6v5->wdog_irq < 0) return q6v5->wdog_irq; ret = devm_request_threaded_irq(&pdev->dev, q6v5->wdog_irq, NULL, q6v5_wdog_interrupt, IRQF_TRIGGER_RISING | IRQF_ONESHOT, "q6v5 wdog", q6v5); if (ret) { dev_err(&pdev->dev, "failed to acquire wdog IRQ\n"); return ret; } q6v5->fatal_irq = platform_get_irq_byname(pdev, "fatal"); if (q6v5->fatal_irq < 0) return q6v5->fatal_irq; ret = devm_request_threaded_irq(&pdev->dev, q6v5->fatal_irq, NULL, q6v5_fatal_interrupt, IRQF_TRIGGER_RISING | IRQF_ONESHOT, "q6v5 fatal", q6v5); if (ret) { dev_err(&pdev->dev, "failed to acquire fatal IRQ\n"); return ret; } q6v5->ready_irq = platform_get_irq_byname(pdev, "ready"); if (q6v5->ready_irq < 0) return q6v5->ready_irq; ret = devm_request_threaded_irq(&pdev->dev, q6v5->ready_irq, NULL, q6v5_ready_interrupt, IRQF_TRIGGER_RISING | IRQF_ONESHOT, "q6v5 ready", q6v5); if (ret) { dev_err(&pdev->dev, "failed to acquire ready IRQ\n"); return ret; } q6v5->handover_irq = platform_get_irq_byname(pdev, "handover"); if (q6v5->handover_irq < 0) return q6v5->handover_irq; ret = devm_request_threaded_irq(&pdev->dev, q6v5->handover_irq, NULL, q6v5_handover_interrupt, IRQF_TRIGGER_RISING | IRQF_ONESHOT, "q6v5 handover", q6v5); if (ret) { dev_err(&pdev->dev, "failed to acquire handover IRQ\n"); return ret; } disable_irq(q6v5->handover_irq); q6v5->stop_irq = platform_get_irq_byname(pdev, "stop-ack"); if (q6v5->stop_irq < 0) return q6v5->stop_irq; ret = devm_request_threaded_irq(&pdev->dev, q6v5->stop_irq, NULL, q6v5_stop_interrupt, IRQF_TRIGGER_RISING | IRQF_ONESHOT, "q6v5 stop", q6v5); if (ret) { dev_err(&pdev->dev, "failed to acquire stop-ack IRQ\n"); return ret; } q6v5->state = devm_qcom_smem_state_get(&pdev->dev, "stop", &q6v5->stop_bit); if (IS_ERR(q6v5->state)) { dev_err(&pdev->dev, "failed to acquire stop state\n"); return PTR_ERR(q6v5->state); } q6v5->load_state = devm_kstrdup_const(&pdev->dev, load_state, GFP_KERNEL); q6v5->qmp = qmp_get(&pdev->dev); if (IS_ERR(q6v5->qmp)) { if (PTR_ERR(q6v5->qmp) != -ENODEV) return dev_err_probe(&pdev->dev, PTR_ERR(q6v5->qmp), "failed to acquire load state\n"); q6v5->qmp = NULL; } else if (!q6v5->load_state) { if (!load_state) dev_err(&pdev->dev, "load state resource string empty\n"); qmp_put(q6v5->qmp); return load_state ? -ENOMEM : -EINVAL; } q6v5->path = devm_of_icc_get(&pdev->dev, NULL); if (IS_ERR(q6v5->path)) return dev_err_probe(&pdev->dev, PTR_ERR(q6v5->path), "failed to acquire interconnect path\n"); return 0; } EXPORT_SYMBOL_GPL(qcom_q6v5_init); /** * qcom_q6v5_deinit() - deinitialize the q6v5 common struct * @q6v5: reference to qcom_q6v5 context to be deinitialized */ void qcom_q6v5_deinit(struct qcom_q6v5 *q6v5) { qmp_put(q6v5->qmp); } EXPORT_SYMBOL_GPL(qcom_q6v5_deinit); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Qualcomm Peripheral Image Loader for Q6V5");
linux-master
drivers/remoteproc/qcom_q6v5.c
// SPDX-License-Identifier: GPL-2.0-only /* * PRU-ICSS remoteproc driver for various TI SoCs * * Copyright (C) 2014-2022 Texas Instruments Incorporated - https://www.ti.com/ * * Author(s): * Suman Anna <[email protected]> * Andrew F. Davis <[email protected]> * Grzegorz Jaszczyk <[email protected]> for Texas Instruments * Puranjay Mohan <[email protected]> * Md Danish Anwar <[email protected]> */ #include <linux/bitops.h> #include <linux/debugfs.h> #include <linux/irqdomain.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_irq.h> #include <linux/platform_device.h> #include <linux/remoteproc/pruss.h> #include <linux/pruss_driver.h> #include <linux/remoteproc.h> #include "remoteproc_internal.h" #include "remoteproc_elf_helpers.h" #include "pru_rproc.h" /* PRU_ICSS_PRU_CTRL registers */ #define PRU_CTRL_CTRL 0x0000 #define PRU_CTRL_STS 0x0004 #define PRU_CTRL_WAKEUP_EN 0x0008 #define PRU_CTRL_CYCLE 0x000C #define PRU_CTRL_STALL 0x0010 #define PRU_CTRL_CTBIR0 0x0020 #define PRU_CTRL_CTBIR1 0x0024 #define PRU_CTRL_CTPPR0 0x0028 #define PRU_CTRL_CTPPR1 0x002C /* CTRL register bit-fields */ #define CTRL_CTRL_SOFT_RST_N BIT(0) #define CTRL_CTRL_EN BIT(1) #define CTRL_CTRL_SLEEPING BIT(2) #define CTRL_CTRL_CTR_EN BIT(3) #define CTRL_CTRL_SINGLE_STEP BIT(8) #define CTRL_CTRL_RUNSTATE BIT(15) /* PRU_ICSS_PRU_DEBUG registers */ #define PRU_DEBUG_GPREG(x) (0x0000 + (x) * 4) #define PRU_DEBUG_CT_REG(x) (0x0080 + (x) * 4) /* PRU/RTU/Tx_PRU Core IRAM address masks */ #define PRU_IRAM_ADDR_MASK 0x3ffff #define PRU0_IRAM_ADDR_MASK 0x34000 #define PRU1_IRAM_ADDR_MASK 0x38000 #define RTU0_IRAM_ADDR_MASK 0x4000 #define RTU1_IRAM_ADDR_MASK 0x6000 #define TX_PRU0_IRAM_ADDR_MASK 0xa000 #define TX_PRU1_IRAM_ADDR_MASK 0xc000 /* PRU device addresses for various type of PRU RAMs */ #define PRU_IRAM_DA 0 /* Instruction RAM */ #define PRU_PDRAM_DA 0 /* Primary Data RAM */ #define PRU_SDRAM_DA 0x2000 /* Secondary Data RAM */ #define PRU_SHRDRAM_DA 0x10000 /* Shared Data RAM */ #define MAX_PRU_SYS_EVENTS 160 /** * enum pru_iomem - PRU core memory/register range identifiers * * @PRU_IOMEM_IRAM: PRU Instruction RAM range * @PRU_IOMEM_CTRL: PRU Control register range * @PRU_IOMEM_DEBUG: PRU Debug register range * @PRU_IOMEM_MAX: just keep this one at the end */ enum pru_iomem { PRU_IOMEM_IRAM = 0, PRU_IOMEM_CTRL, PRU_IOMEM_DEBUG, PRU_IOMEM_MAX, }; /** * struct pru_private_data - device data for a PRU core * @type: type of the PRU core (PRU, RTU, Tx_PRU) * @is_k3: flag used to identify the need for special load handling */ struct pru_private_data { enum pru_type type; unsigned int is_k3 : 1; }; /** * struct pru_rproc - PRU remoteproc structure * @id: id of the PRU core within the PRUSS * @dev: PRU core device pointer * @pruss: back-reference to parent PRUSS structure * @rproc: remoteproc pointer for this PRU core * @data: PRU core specific data * @mem_regions: data for each of the PRU memory regions * @client_np: client device node * @lock: mutex to protect client usage * @fw_name: name of firmware image used during loading * @mapped_irq: virtual interrupt numbers of created fw specific mapping * @pru_interrupt_map: pointer to interrupt mapping description (firmware) * @pru_interrupt_map_sz: pru_interrupt_map size * @rmw_lock: lock for read, modify, write operations on registers * @dbg_single_step: debug state variable to set PRU into single step mode * @dbg_continuous: debug state variable to restore PRU execution mode * @evt_count: number of mapped events * @gpmux_save: saved value for gpmux config */ struct pru_rproc { int id; struct device *dev; struct pruss *pruss; struct rproc *rproc; const struct pru_private_data *data; struct pruss_mem_region mem_regions[PRU_IOMEM_MAX]; struct device_node *client_np; struct mutex lock; const char *fw_name; unsigned int *mapped_irq; struct pru_irq_rsc *pru_interrupt_map; size_t pru_interrupt_map_sz; spinlock_t rmw_lock; u32 dbg_single_step; u32 dbg_continuous; u8 evt_count; u8 gpmux_save; }; static inline u32 pru_control_read_reg(struct pru_rproc *pru, unsigned int reg) { return readl_relaxed(pru->mem_regions[PRU_IOMEM_CTRL].va + reg); } static inline void pru_control_write_reg(struct pru_rproc *pru, unsigned int reg, u32 val) { writel_relaxed(val, pru->mem_regions[PRU_IOMEM_CTRL].va + reg); } static inline void pru_control_set_reg(struct pru_rproc *pru, unsigned int reg, u32 mask, u32 set) { u32 val; unsigned long flags; spin_lock_irqsave(&pru->rmw_lock, flags); val = pru_control_read_reg(pru, reg); val &= ~mask; val |= (set & mask); pru_control_write_reg(pru, reg, val); spin_unlock_irqrestore(&pru->rmw_lock, flags); } /** * pru_rproc_set_firmware() - set firmware for a PRU core * @rproc: the rproc instance of the PRU * @fw_name: the new firmware name, or NULL if default is desired * * Return: 0 on success, or errno in error case. */ static int pru_rproc_set_firmware(struct rproc *rproc, const char *fw_name) { struct pru_rproc *pru = rproc->priv; if (!fw_name) fw_name = pru->fw_name; return rproc_set_firmware(rproc, fw_name); } static struct rproc *__pru_rproc_get(struct device_node *np, int index) { struct rproc *rproc; phandle rproc_phandle; int ret; ret = of_property_read_u32_index(np, "ti,prus", index, &rproc_phandle); if (ret) return ERR_PTR(ret); rproc = rproc_get_by_phandle(rproc_phandle); if (!rproc) { ret = -EPROBE_DEFER; return ERR_PTR(ret); } /* make sure it is PRU rproc */ if (!is_pru_rproc(rproc->dev.parent)) { rproc_put(rproc); return ERR_PTR(-ENODEV); } return rproc; } /** * pru_rproc_get() - get the PRU rproc instance from a device node * @np: the user/client device node * @index: index to use for the ti,prus property * @pru_id: optional pointer to return the PRU remoteproc processor id * * This function looks through a client device node's "ti,prus" property at * index @index and returns the rproc handle for a valid PRU remote processor if * found. The function allows only one user to own the PRU rproc resource at a * time. Caller must call pru_rproc_put() when done with using the rproc, not * required if the function returns a failure. * * When optional @pru_id pointer is passed the PRU remoteproc processor id is * returned. * * Return: rproc handle on success, and an ERR_PTR on failure using one * of the following error values * -ENODEV if device is not found * -EBUSY if PRU is already acquired by anyone * -EPROBE_DEFER is PRU device is not probed yet */ struct rproc *pru_rproc_get(struct device_node *np, int index, enum pruss_pru_id *pru_id) { struct rproc *rproc; struct pru_rproc *pru; struct device *dev; const char *fw_name; int ret; u32 mux; rproc = __pru_rproc_get(np, index); if (IS_ERR(rproc)) return rproc; pru = rproc->priv; dev = &rproc->dev; mutex_lock(&pru->lock); if (pru->client_np) { mutex_unlock(&pru->lock); ret = -EBUSY; goto err_no_rproc_handle; } pru->client_np = np; rproc->sysfs_read_only = true; mutex_unlock(&pru->lock); if (pru_id) *pru_id = pru->id; ret = pruss_cfg_get_gpmux(pru->pruss, pru->id, &pru->gpmux_save); if (ret) { dev_err(dev, "failed to get cfg gpmux: %d\n", ret); goto err; } /* An error here is acceptable for backward compatibility */ ret = of_property_read_u32_index(np, "ti,pruss-gp-mux-sel", index, &mux); if (!ret) { ret = pruss_cfg_set_gpmux(pru->pruss, pru->id, mux); if (ret) { dev_err(dev, "failed to set cfg gpmux: %d\n", ret); goto err; } } ret = of_property_read_string_index(np, "firmware-name", index, &fw_name); if (!ret) { ret = pru_rproc_set_firmware(rproc, fw_name); if (ret) { dev_err(dev, "failed to set firmware: %d\n", ret); goto err; } } return rproc; err_no_rproc_handle: rproc_put(rproc); return ERR_PTR(ret); err: pru_rproc_put(rproc); return ERR_PTR(ret); } EXPORT_SYMBOL_GPL(pru_rproc_get); /** * pru_rproc_put() - release the PRU rproc resource * @rproc: the rproc resource to release * * Releases the PRU rproc resource and makes it available to other * users. */ void pru_rproc_put(struct rproc *rproc) { struct pru_rproc *pru; if (IS_ERR_OR_NULL(rproc) || !is_pru_rproc(rproc->dev.parent)) return; pru = rproc->priv; pruss_cfg_set_gpmux(pru->pruss, pru->id, pru->gpmux_save); pru_rproc_set_firmware(rproc, NULL); mutex_lock(&pru->lock); if (!pru->client_np) { mutex_unlock(&pru->lock); return; } pru->client_np = NULL; rproc->sysfs_read_only = false; mutex_unlock(&pru->lock); rproc_put(rproc); } EXPORT_SYMBOL_GPL(pru_rproc_put); /** * pru_rproc_set_ctable() - set the constant table index for the PRU * @rproc: the rproc instance of the PRU * @c: constant table index to set * @addr: physical address to set it to * * Return: 0 on success, or errno in error case. */ int pru_rproc_set_ctable(struct rproc *rproc, enum pru_ctable_idx c, u32 addr) { struct pru_rproc *pru = rproc->priv; unsigned int reg; u32 mask, set; u16 idx; u16 idx_mask; if (IS_ERR_OR_NULL(rproc)) return -EINVAL; if (!rproc->dev.parent || !is_pru_rproc(rproc->dev.parent)) return -ENODEV; /* pointer is 16 bit and index is 8-bit so mask out the rest */ idx_mask = (c >= PRU_C28) ? 0xFFFF : 0xFF; /* ctable uses bit 8 and upwards only */ idx = (addr >> 8) & idx_mask; /* configurable ctable (i.e. C24) starts at PRU_CTRL_CTBIR0 */ reg = PRU_CTRL_CTBIR0 + 4 * (c >> 1); mask = idx_mask << (16 * (c & 1)); set = idx << (16 * (c & 1)); pru_control_set_reg(pru, reg, mask, set); return 0; } EXPORT_SYMBOL_GPL(pru_rproc_set_ctable); static inline u32 pru_debug_read_reg(struct pru_rproc *pru, unsigned int reg) { return readl_relaxed(pru->mem_regions[PRU_IOMEM_DEBUG].va + reg); } static int regs_show(struct seq_file *s, void *data) { struct rproc *rproc = s->private; struct pru_rproc *pru = rproc->priv; int i, nregs = 32; u32 pru_sts; int pru_is_running; seq_puts(s, "============== Control Registers ==============\n"); seq_printf(s, "CTRL := 0x%08x\n", pru_control_read_reg(pru, PRU_CTRL_CTRL)); pru_sts = pru_control_read_reg(pru, PRU_CTRL_STS); seq_printf(s, "STS (PC) := 0x%08x (0x%08x)\n", pru_sts, pru_sts << 2); seq_printf(s, "WAKEUP_EN := 0x%08x\n", pru_control_read_reg(pru, PRU_CTRL_WAKEUP_EN)); seq_printf(s, "CYCLE := 0x%08x\n", pru_control_read_reg(pru, PRU_CTRL_CYCLE)); seq_printf(s, "STALL := 0x%08x\n", pru_control_read_reg(pru, PRU_CTRL_STALL)); seq_printf(s, "CTBIR0 := 0x%08x\n", pru_control_read_reg(pru, PRU_CTRL_CTBIR0)); seq_printf(s, "CTBIR1 := 0x%08x\n", pru_control_read_reg(pru, PRU_CTRL_CTBIR1)); seq_printf(s, "CTPPR0 := 0x%08x\n", pru_control_read_reg(pru, PRU_CTRL_CTPPR0)); seq_printf(s, "CTPPR1 := 0x%08x\n", pru_control_read_reg(pru, PRU_CTRL_CTPPR1)); seq_puts(s, "=============== Debug Registers ===============\n"); pru_is_running = pru_control_read_reg(pru, PRU_CTRL_CTRL) & CTRL_CTRL_RUNSTATE; if (pru_is_running) { seq_puts(s, "PRU is executing, cannot print/access debug registers.\n"); return 0; } for (i = 0; i < nregs; i++) { seq_printf(s, "GPREG%-2d := 0x%08x\tCT_REG%-2d := 0x%08x\n", i, pru_debug_read_reg(pru, PRU_DEBUG_GPREG(i)), i, pru_debug_read_reg(pru, PRU_DEBUG_CT_REG(i))); } return 0; } DEFINE_SHOW_ATTRIBUTE(regs); /* * Control PRU single-step mode * * This is a debug helper function used for controlling the single-step * mode of the PRU. The PRU Debug registers are not accessible when the * PRU is in RUNNING state. * * Writing a non-zero value sets the PRU into single-step mode irrespective * of its previous state. The PRU mode is saved only on the first set into * a single-step mode. Writing a zero value will restore the PRU into its * original mode. */ static int pru_rproc_debug_ss_set(void *data, u64 val) { struct rproc *rproc = data; struct pru_rproc *pru = rproc->priv; u32 reg_val; val = val ? 1 : 0; if (!val && !pru->dbg_single_step) return 0; reg_val = pru_control_read_reg(pru, PRU_CTRL_CTRL); if (val && !pru->dbg_single_step) pru->dbg_continuous = reg_val; if (val) reg_val |= CTRL_CTRL_SINGLE_STEP | CTRL_CTRL_EN; else reg_val = pru->dbg_continuous; pru->dbg_single_step = val; pru_control_write_reg(pru, PRU_CTRL_CTRL, reg_val); return 0; } static int pru_rproc_debug_ss_get(void *data, u64 *val) { struct rproc *rproc = data; struct pru_rproc *pru = rproc->priv; *val = pru->dbg_single_step; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(pru_rproc_debug_ss_fops, pru_rproc_debug_ss_get, pru_rproc_debug_ss_set, "%llu\n"); /* * Create PRU-specific debugfs entries * * The entries are created only if the parent remoteproc debugfs directory * exists, and will be cleaned up by the remoteproc core. */ static void pru_rproc_create_debug_entries(struct rproc *rproc) { if (!rproc->dbg_dir) return; debugfs_create_file("regs", 0400, rproc->dbg_dir, rproc, &regs_fops); debugfs_create_file("single_step", 0600, rproc->dbg_dir, rproc, &pru_rproc_debug_ss_fops); } static void pru_dispose_irq_mapping(struct pru_rproc *pru) { if (!pru->mapped_irq) return; while (pru->evt_count) { pru->evt_count--; if (pru->mapped_irq[pru->evt_count] > 0) irq_dispose_mapping(pru->mapped_irq[pru->evt_count]); } kfree(pru->mapped_irq); pru->mapped_irq = NULL; } /* * Parse the custom PRU interrupt map resource and configure the INTC * appropriately. */ static int pru_handle_intrmap(struct rproc *rproc) { struct device *dev = rproc->dev.parent; struct pru_rproc *pru = rproc->priv; struct pru_irq_rsc *rsc = pru->pru_interrupt_map; struct irq_fwspec fwspec; struct device_node *parent, *irq_parent; int i, ret = 0; /* not having pru_interrupt_map is not an error */ if (!rsc) return 0; /* currently supporting only type 0 */ if (rsc->type != 0) { dev_err(dev, "unsupported rsc type: %d\n", rsc->type); return -EINVAL; } if (rsc->num_evts > MAX_PRU_SYS_EVENTS) return -EINVAL; if (sizeof(*rsc) + rsc->num_evts * sizeof(struct pruss_int_map) != pru->pru_interrupt_map_sz) return -EINVAL; pru->evt_count = rsc->num_evts; pru->mapped_irq = kcalloc(pru->evt_count, sizeof(unsigned int), GFP_KERNEL); if (!pru->mapped_irq) { pru->evt_count = 0; return -ENOMEM; } /* * parse and fill in system event to interrupt channel and * channel-to-host mapping. The interrupt controller to be used * for these mappings for a given PRU remoteproc is always its * corresponding sibling PRUSS INTC node. */ parent = of_get_parent(dev_of_node(pru->dev)); if (!parent) { kfree(pru->mapped_irq); pru->mapped_irq = NULL; pru->evt_count = 0; return -ENODEV; } irq_parent = of_get_child_by_name(parent, "interrupt-controller"); of_node_put(parent); if (!irq_parent) { kfree(pru->mapped_irq); pru->mapped_irq = NULL; pru->evt_count = 0; return -ENODEV; } fwspec.fwnode = of_node_to_fwnode(irq_parent); fwspec.param_count = 3; for (i = 0; i < pru->evt_count; i++) { fwspec.param[0] = rsc->pru_intc_map[i].event; fwspec.param[1] = rsc->pru_intc_map[i].chnl; fwspec.param[2] = rsc->pru_intc_map[i].host; dev_dbg(dev, "mapping%d: event %d, chnl %d, host %d\n", i, fwspec.param[0], fwspec.param[1], fwspec.param[2]); pru->mapped_irq[i] = irq_create_fwspec_mapping(&fwspec); if (!pru->mapped_irq[i]) { dev_err(dev, "failed to get virq for fw mapping %d: event %d chnl %d host %d\n", i, fwspec.param[0], fwspec.param[1], fwspec.param[2]); ret = -EINVAL; goto map_fail; } } of_node_put(irq_parent); return ret; map_fail: pru_dispose_irq_mapping(pru); of_node_put(irq_parent); return ret; } static int pru_rproc_start(struct rproc *rproc) { struct device *dev = &rproc->dev; struct pru_rproc *pru = rproc->priv; const char *names[PRU_TYPE_MAX] = { "PRU", "RTU", "Tx_PRU" }; u32 val; int ret; dev_dbg(dev, "starting %s%d: entry-point = 0x%llx\n", names[pru->data->type], pru->id, (rproc->bootaddr >> 2)); ret = pru_handle_intrmap(rproc); /* * reset references to pru interrupt map - they will stop being valid * after rproc_start returns */ pru->pru_interrupt_map = NULL; pru->pru_interrupt_map_sz = 0; if (ret) return ret; val = CTRL_CTRL_EN | ((rproc->bootaddr >> 2) << 16); pru_control_write_reg(pru, PRU_CTRL_CTRL, val); return 0; } static int pru_rproc_stop(struct rproc *rproc) { struct device *dev = &rproc->dev; struct pru_rproc *pru = rproc->priv; const char *names[PRU_TYPE_MAX] = { "PRU", "RTU", "Tx_PRU" }; u32 val; dev_dbg(dev, "stopping %s%d\n", names[pru->data->type], pru->id); val = pru_control_read_reg(pru, PRU_CTRL_CTRL); val &= ~CTRL_CTRL_EN; pru_control_write_reg(pru, PRU_CTRL_CTRL, val); /* dispose irq mapping - new firmware can provide new mapping */ pru_dispose_irq_mapping(pru); return 0; } /* * Convert PRU device address (data spaces only) to kernel virtual address. * * Each PRU has access to all data memories within the PRUSS, accessible at * different ranges. So, look through both its primary and secondary Data * RAMs as well as any shared Data RAM to convert a PRU device address to * kernel virtual address. Data RAM0 is primary Data RAM for PRU0 and Data * RAM1 is primary Data RAM for PRU1. */ static void *pru_d_da_to_va(struct pru_rproc *pru, u32 da, size_t len) { struct pruss_mem_region dram0, dram1, shrd_ram; struct pruss *pruss = pru->pruss; u32 offset; void *va = NULL; if (len == 0) return NULL; dram0 = pruss->mem_regions[PRUSS_MEM_DRAM0]; dram1 = pruss->mem_regions[PRUSS_MEM_DRAM1]; /* PRU1 has its local RAM addresses reversed */ if (pru->id == PRUSS_PRU1) swap(dram0, dram1); shrd_ram = pruss->mem_regions[PRUSS_MEM_SHRD_RAM2]; if (da + len <= PRU_PDRAM_DA + dram0.size) { offset = da - PRU_PDRAM_DA; va = (__force void *)(dram0.va + offset); } else if (da >= PRU_SDRAM_DA && da + len <= PRU_SDRAM_DA + dram1.size) { offset = da - PRU_SDRAM_DA; va = (__force void *)(dram1.va + offset); } else if (da >= PRU_SHRDRAM_DA && da + len <= PRU_SHRDRAM_DA + shrd_ram.size) { offset = da - PRU_SHRDRAM_DA; va = (__force void *)(shrd_ram.va + offset); } return va; } /* * Convert PRU device address (instruction space) to kernel virtual address. * * A PRU does not have an unified address space. Each PRU has its very own * private Instruction RAM, and its device address is identical to that of * its primary Data RAM device address. */ static void *pru_i_da_to_va(struct pru_rproc *pru, u32 da, size_t len) { u32 offset; void *va = NULL; if (len == 0) return NULL; /* * GNU binutils do not support multiple address spaces. The GNU * linker's default linker script places IRAM at an arbitrary high * offset, in order to differentiate it from DRAM. Hence we need to * strip the artificial offset in the IRAM addresses coming from the * ELF file. * * The TI proprietary linker would never set those higher IRAM address * bits anyway. PRU architecture limits the program counter to 16-bit * word-address range. This in turn corresponds to 18-bit IRAM * byte-address range for ELF. * * Two more bits are added just in case to make the final 20-bit mask. * Idea is to have a safeguard in case TI decides to add banking * in future SoCs. */ da &= 0xfffff; if (da + len <= PRU_IRAM_DA + pru->mem_regions[PRU_IOMEM_IRAM].size) { offset = da - PRU_IRAM_DA; va = (__force void *)(pru->mem_regions[PRU_IOMEM_IRAM].va + offset); } return va; } /* * Provide address translations for only PRU Data RAMs through the remoteproc * core for any PRU client drivers. The PRU Instruction RAM access is restricted * only to the PRU loader code. */ static void *pru_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) { struct pru_rproc *pru = rproc->priv; return pru_d_da_to_va(pru, da, len); } /* PRU-specific address translator used by PRU loader. */ static void *pru_da_to_va(struct rproc *rproc, u64 da, size_t len, bool is_iram) { struct pru_rproc *pru = rproc->priv; void *va; if (is_iram) va = pru_i_da_to_va(pru, da, len); else va = pru_d_da_to_va(pru, da, len); return va; } static struct rproc_ops pru_rproc_ops = { .start = pru_rproc_start, .stop = pru_rproc_stop, .da_to_va = pru_rproc_da_to_va, }; /* * Custom memory copy implementation for ICSSG PRU/RTU/Tx_PRU Cores * * The ICSSG PRU/RTU/Tx_PRU cores have a memory copying issue with IRAM * memories, that is not seen on previous generation SoCs. The data is reflected * properly in the IRAM memories only for integer (4-byte) copies. Any unaligned * copies result in all the other pre-existing bytes zeroed out within that * 4-byte boundary, thereby resulting in wrong text/code in the IRAMs. Also, the * IRAM memory port interface does not allow any 8-byte copies (as commonly used * by ARM64 memcpy implementation) and throws an exception. The DRAM memory * ports do not show this behavior. */ static int pru_rproc_memcpy(void *dest, const void *src, size_t count) { const u32 *s = src; u32 *d = dest; size_t size = count / 4; u32 *tmp_src = NULL; /* * TODO: relax limitation of 4-byte aligned dest addresses and copy * sizes */ if ((long)dest % 4 || count % 4) return -EINVAL; /* src offsets in ELF firmware image can be non-aligned */ if ((long)src % 4) { tmp_src = kmemdup(src, count, GFP_KERNEL); if (!tmp_src) return -ENOMEM; s = tmp_src; } while (size--) *d++ = *s++; kfree(tmp_src); return 0; } static int pru_rproc_load_elf_segments(struct rproc *rproc, const struct firmware *fw) { struct pru_rproc *pru = rproc->priv; struct device *dev = &rproc->dev; struct elf32_hdr *ehdr; struct elf32_phdr *phdr; int i, ret = 0; const u8 *elf_data = fw->data; ehdr = (struct elf32_hdr *)elf_data; phdr = (struct elf32_phdr *)(elf_data + ehdr->e_phoff); /* go through the available ELF segments */ for (i = 0; i < ehdr->e_phnum; i++, phdr++) { u32 da = phdr->p_paddr; u32 memsz = phdr->p_memsz; u32 filesz = phdr->p_filesz; u32 offset = phdr->p_offset; bool is_iram; void *ptr; if (phdr->p_type != PT_LOAD || !filesz) continue; dev_dbg(dev, "phdr: type %d da 0x%x memsz 0x%x filesz 0x%x\n", phdr->p_type, da, memsz, filesz); if (filesz > memsz) { dev_err(dev, "bad phdr filesz 0x%x memsz 0x%x\n", filesz, memsz); ret = -EINVAL; break; } if (offset + filesz > fw->size) { dev_err(dev, "truncated fw: need 0x%x avail 0x%zx\n", offset + filesz, fw->size); ret = -EINVAL; break; } /* grab the kernel address for this device address */ is_iram = phdr->p_flags & PF_X; ptr = pru_da_to_va(rproc, da, memsz, is_iram); if (!ptr) { dev_err(dev, "bad phdr da 0x%x mem 0x%x\n", da, memsz); ret = -EINVAL; break; } if (pru->data->is_k3) { ret = pru_rproc_memcpy(ptr, elf_data + phdr->p_offset, filesz); if (ret) { dev_err(dev, "PRU memory copy failed for da 0x%x memsz 0x%x\n", da, memsz); break; } } else { memcpy(ptr, elf_data + phdr->p_offset, filesz); } /* skip the memzero logic performed by remoteproc ELF loader */ } return ret; } static const void * pru_rproc_find_interrupt_map(struct device *dev, const struct firmware *fw) { struct elf32_shdr *shdr, *name_table_shdr; const char *name_table; const u8 *elf_data = fw->data; struct elf32_hdr *ehdr = (struct elf32_hdr *)elf_data; u16 shnum = ehdr->e_shnum; u16 shstrndx = ehdr->e_shstrndx; int i; /* first, get the section header */ shdr = (struct elf32_shdr *)(elf_data + ehdr->e_shoff); /* compute name table section header entry in shdr array */ name_table_shdr = shdr + shstrndx; /* finally, compute the name table section address in elf */ name_table = elf_data + name_table_shdr->sh_offset; for (i = 0; i < shnum; i++, shdr++) { u32 size = shdr->sh_size; u32 offset = shdr->sh_offset; u32 name = shdr->sh_name; if (strcmp(name_table + name, ".pru_irq_map")) continue; /* make sure we have the entire irq map */ if (offset + size > fw->size || offset + size < size) { dev_err(dev, ".pru_irq_map section truncated\n"); return ERR_PTR(-EINVAL); } /* make sure irq map has at least the header */ if (sizeof(struct pru_irq_rsc) > size) { dev_err(dev, "header-less .pru_irq_map section\n"); return ERR_PTR(-EINVAL); } return shdr; } dev_dbg(dev, "no .pru_irq_map section found for this fw\n"); return NULL; } /* * Use a custom parse_fw callback function for dealing with PRU firmware * specific sections. * * The firmware blob can contain optional ELF sections: .resource_table section * and .pru_irq_map one. The second one contains the PRUSS interrupt mapping * description, which needs to be setup before powering on the PRU core. To * avoid RAM wastage this ELF section is not mapped to any ELF segment (by the * firmware linker) and therefore is not loaded to PRU memory. */ static int pru_rproc_parse_fw(struct rproc *rproc, const struct firmware *fw) { struct device *dev = &rproc->dev; struct pru_rproc *pru = rproc->priv; const u8 *elf_data = fw->data; const void *shdr; u8 class = fw_elf_get_class(fw); u64 sh_offset; int ret; /* load optional rsc table */ ret = rproc_elf_load_rsc_table(rproc, fw); if (ret == -EINVAL) dev_dbg(&rproc->dev, "no resource table found for this fw\n"); else if (ret) return ret; /* find .pru_interrupt_map section, not having it is not an error */ shdr = pru_rproc_find_interrupt_map(dev, fw); if (IS_ERR(shdr)) return PTR_ERR(shdr); if (!shdr) return 0; /* preserve pointer to PRU interrupt map together with it size */ sh_offset = elf_shdr_get_sh_offset(class, shdr); pru->pru_interrupt_map = (struct pru_irq_rsc *)(elf_data + sh_offset); pru->pru_interrupt_map_sz = elf_shdr_get_sh_size(class, shdr); return 0; } /* * Compute PRU id based on the IRAM addresses. The PRU IRAMs are * always at a particular offset within the PRUSS address space. */ static int pru_rproc_set_id(struct pru_rproc *pru) { int ret = 0; switch (pru->mem_regions[PRU_IOMEM_IRAM].pa & PRU_IRAM_ADDR_MASK) { case TX_PRU0_IRAM_ADDR_MASK: fallthrough; case RTU0_IRAM_ADDR_MASK: fallthrough; case PRU0_IRAM_ADDR_MASK: pru->id = PRUSS_PRU0; break; case TX_PRU1_IRAM_ADDR_MASK: fallthrough; case RTU1_IRAM_ADDR_MASK: fallthrough; case PRU1_IRAM_ADDR_MASK: pru->id = PRUSS_PRU1; break; default: ret = -EINVAL; } return ret; } static int pru_rproc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct platform_device *ppdev = to_platform_device(dev->parent); struct pru_rproc *pru; const char *fw_name; struct rproc *rproc = NULL; struct resource *res; int i, ret; const struct pru_private_data *data; const char *mem_names[PRU_IOMEM_MAX] = { "iram", "control", "debug" }; data = of_device_get_match_data(&pdev->dev); if (!data) return -ENODEV; ret = of_property_read_string(np, "firmware-name", &fw_name); if (ret) { dev_err(dev, "unable to retrieve firmware-name %d\n", ret); return ret; } rproc = devm_rproc_alloc(dev, pdev->name, &pru_rproc_ops, fw_name, sizeof(*pru)); if (!rproc) { dev_err(dev, "rproc_alloc failed\n"); return -ENOMEM; } /* use a custom load function to deal with PRU-specific quirks */ rproc->ops->load = pru_rproc_load_elf_segments; /* use a custom parse function to deal with PRU-specific resources */ rproc->ops->parse_fw = pru_rproc_parse_fw; /* error recovery is not supported for PRUs */ rproc->recovery_disabled = true; /* * rproc_add will auto-boot the processor normally, but this is not * desired with PRU client driven boot-flow methodology. A PRU * application/client driver will boot the corresponding PRU * remote-processor as part of its state machine either through the * remoteproc sysfs interface or through the equivalent kernel API. */ rproc->auto_boot = false; pru = rproc->priv; pru->dev = dev; pru->data = data; pru->pruss = platform_get_drvdata(ppdev); pru->rproc = rproc; pru->fw_name = fw_name; pru->client_np = NULL; spin_lock_init(&pru->rmw_lock); mutex_init(&pru->lock); for (i = 0; i < ARRAY_SIZE(mem_names); i++) { res = platform_get_resource_byname(pdev, IORESOURCE_MEM, mem_names[i]); pru->mem_regions[i].va = devm_ioremap_resource(dev, res); if (IS_ERR(pru->mem_regions[i].va)) { dev_err(dev, "failed to parse and map memory resource %d %s\n", i, mem_names[i]); ret = PTR_ERR(pru->mem_regions[i].va); return ret; } pru->mem_regions[i].pa = res->start; pru->mem_regions[i].size = resource_size(res); dev_dbg(dev, "memory %8s: pa %pa size 0x%zx va %pK\n", mem_names[i], &pru->mem_regions[i].pa, pru->mem_regions[i].size, pru->mem_regions[i].va); } ret = pru_rproc_set_id(pru); if (ret < 0) return ret; platform_set_drvdata(pdev, rproc); ret = devm_rproc_add(dev, pru->rproc); if (ret) { dev_err(dev, "rproc_add failed: %d\n", ret); return ret; } pru_rproc_create_debug_entries(rproc); dev_dbg(dev, "PRU rproc node %pOF probed successfully\n", np); return 0; } static void pru_rproc_remove(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct rproc *rproc = platform_get_drvdata(pdev); dev_dbg(dev, "%s: removing rproc %s\n", __func__, rproc->name); } static const struct pru_private_data pru_data = { .type = PRU_TYPE_PRU, }; static const struct pru_private_data k3_pru_data = { .type = PRU_TYPE_PRU, .is_k3 = 1, }; static const struct pru_private_data k3_rtu_data = { .type = PRU_TYPE_RTU, .is_k3 = 1, }; static const struct pru_private_data k3_tx_pru_data = { .type = PRU_TYPE_TX_PRU, .is_k3 = 1, }; static const struct of_device_id pru_rproc_match[] = { { .compatible = "ti,am3356-pru", .data = &pru_data }, { .compatible = "ti,am4376-pru", .data = &pru_data }, { .compatible = "ti,am5728-pru", .data = &pru_data }, { .compatible = "ti,am642-pru", .data = &k3_pru_data }, { .compatible = "ti,am642-rtu", .data = &k3_rtu_data }, { .compatible = "ti,am642-tx-pru", .data = &k3_tx_pru_data }, { .compatible = "ti,k2g-pru", .data = &pru_data }, { .compatible = "ti,am654-pru", .data = &k3_pru_data }, { .compatible = "ti,am654-rtu", .data = &k3_rtu_data }, { .compatible = "ti,am654-tx-pru", .data = &k3_tx_pru_data }, { .compatible = "ti,j721e-pru", .data = &k3_pru_data }, { .compatible = "ti,j721e-rtu", .data = &k3_rtu_data }, { .compatible = "ti,j721e-tx-pru", .data = &k3_tx_pru_data }, { .compatible = "ti,am625-pru", .data = &k3_pru_data }, {}, }; MODULE_DEVICE_TABLE(of, pru_rproc_match); static struct platform_driver pru_rproc_driver = { .driver = { .name = PRU_RPROC_DRVNAME, .of_match_table = pru_rproc_match, .suppress_bind_attrs = true, }, .probe = pru_rproc_probe, .remove_new = pru_rproc_remove, }; module_platform_driver(pru_rproc_driver); MODULE_AUTHOR("Suman Anna <[email protected]>"); MODULE_AUTHOR("Andrew F. Davis <[email protected]>"); MODULE_AUTHOR("Grzegorz Jaszczyk <[email protected]>"); MODULE_AUTHOR("Puranjay Mohan <[email protected]>"); MODULE_AUTHOR("Md Danish Anwar <[email protected]>"); MODULE_DESCRIPTION("PRU-ICSS Remote Processor Driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/remoteproc/pru_rproc.c
// SPDX-License-Identifier: GPL-2.0-only /* * Remote Processor Framework * * Copyright (C) 2011 Texas Instruments, Inc. * Copyright (C) 2011 Google, Inc. * * Ohad Ben-Cohen <[email protected]> * Brian Swetland <[email protected]> * Mark Grosen <[email protected]> * Fernando Guzman Lugo <[email protected]> * Suman Anna <[email protected]> * Robert Tivy <[email protected]> * Armando Uribe De Leon <[email protected]> */ #define pr_fmt(fmt) "%s: " fmt, __func__ #include <linux/delay.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/device.h> #include <linux/panic_notifier.h> #include <linux/slab.h> #include <linux/mutex.h> #include <linux/dma-mapping.h> #include <linux/firmware.h> #include <linux/string.h> #include <linux/debugfs.h> #include <linux/rculist.h> #include <linux/remoteproc.h> #include <linux/iommu.h> #include <linux/idr.h> #include <linux/elf.h> #include <linux/crc32.h> #include <linux/of_reserved_mem.h> #include <linux/virtio_ids.h> #include <linux/virtio_ring.h> #include <asm/byteorder.h> #include <linux/platform_device.h> #include "remoteproc_internal.h" #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL static DEFINE_MUTEX(rproc_list_mutex); static LIST_HEAD(rproc_list); static struct notifier_block rproc_panic_nb; typedef int (*rproc_handle_resource_t)(struct rproc *rproc, void *, int offset, int avail); static int rproc_alloc_carveout(struct rproc *rproc, struct rproc_mem_entry *mem); static int rproc_release_carveout(struct rproc *rproc, struct rproc_mem_entry *mem); /* Unique indices for remoteproc devices */ static DEFINE_IDA(rproc_dev_index); static struct workqueue_struct *rproc_recovery_wq; static const char * const rproc_crash_names[] = { [RPROC_MMUFAULT] = "mmufault", [RPROC_WATCHDOG] = "watchdog", [RPROC_FATAL_ERROR] = "fatal error", }; /* translate rproc_crash_type to string */ static const char *rproc_crash_to_string(enum rproc_crash_type type) { if (type < ARRAY_SIZE(rproc_crash_names)) return rproc_crash_names[type]; return "unknown"; } /* * This is the IOMMU fault handler we register with the IOMMU API * (when relevant; not all remote processors access memory through * an IOMMU). * * IOMMU core will invoke this handler whenever the remote processor * will try to access an unmapped device address. */ static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev, unsigned long iova, int flags, void *token) { struct rproc *rproc = token; dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags); rproc_report_crash(rproc, RPROC_MMUFAULT); /* * Let the iommu core know we're not really handling this fault; * we just used it as a recovery trigger. */ return -ENOSYS; } static int rproc_enable_iommu(struct rproc *rproc) { struct iommu_domain *domain; struct device *dev = rproc->dev.parent; int ret; if (!rproc->has_iommu) { dev_dbg(dev, "iommu not present\n"); return 0; } domain = iommu_domain_alloc(dev->bus); if (!domain) { dev_err(dev, "can't alloc iommu domain\n"); return -ENOMEM; } iommu_set_fault_handler(domain, rproc_iommu_fault, rproc); ret = iommu_attach_device(domain, dev); if (ret) { dev_err(dev, "can't attach iommu device: %d\n", ret); goto free_domain; } rproc->domain = domain; return 0; free_domain: iommu_domain_free(domain); return ret; } static void rproc_disable_iommu(struct rproc *rproc) { struct iommu_domain *domain = rproc->domain; struct device *dev = rproc->dev.parent; if (!domain) return; iommu_detach_device(domain, dev); iommu_domain_free(domain); } phys_addr_t rproc_va_to_pa(void *cpu_addr) { /* * Return physical address according to virtual address location * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent * - in kernel: if region allocated in generic dma memory pool */ if (is_vmalloc_addr(cpu_addr)) { return page_to_phys(vmalloc_to_page(cpu_addr)) + offset_in_page(cpu_addr); } WARN_ON(!virt_addr_valid(cpu_addr)); return virt_to_phys(cpu_addr); } EXPORT_SYMBOL(rproc_va_to_pa); /** * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address * @rproc: handle of a remote processor * @da: remoteproc device address to translate * @len: length of the memory region @da is pointing to * @is_iomem: optional pointer filled in to indicate if @da is iomapped memory * * Some remote processors will ask us to allocate them physically contiguous * memory regions (which we call "carveouts"), and map them to specific * device addresses (which are hardcoded in the firmware). They may also have * dedicated memory regions internal to the processors, and use them either * exclusively or alongside carveouts. * * They may then ask us to copy objects into specific device addresses (e.g. * code/data sections) or expose us certain symbols in other device address * (e.g. their trace buffer). * * This function is a helper function with which we can go over the allocated * carveouts and translate specific device addresses to kernel virtual addresses * so we can access the referenced memory. This function also allows to perform * translations on the internal remoteproc memory regions through a platform * implementation specific da_to_va ops, if present. * * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too, * but only on kernel direct mapped RAM memory. Instead, we're just using * here the output of the DMA API for the carveouts, which should be more * correct. * * Return: a valid kernel address on success or NULL on failure */ void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) { struct rproc_mem_entry *carveout; void *ptr = NULL; if (rproc->ops->da_to_va) { ptr = rproc->ops->da_to_va(rproc, da, len, is_iomem); if (ptr) goto out; } list_for_each_entry(carveout, &rproc->carveouts, node) { int offset = da - carveout->da; /* Verify that carveout is allocated */ if (!carveout->va) continue; /* try next carveout if da is too small */ if (offset < 0) continue; /* try next carveout if da is too large */ if (offset + len > carveout->len) continue; ptr = carveout->va + offset; if (is_iomem) *is_iomem = carveout->is_iomem; break; } out: return ptr; } EXPORT_SYMBOL(rproc_da_to_va); /** * rproc_find_carveout_by_name() - lookup the carveout region by a name * @rproc: handle of a remote processor * @name: carveout name to find (format string) * @...: optional parameters matching @name string * * Platform driver has the capability to register some pre-allacoted carveout * (physically contiguous memory regions) before rproc firmware loading and * associated resource table analysis. These regions may be dedicated memory * regions internal to the coprocessor or specified DDR region with specific * attributes * * This function is a helper function with which we can go over the * allocated carveouts and return associated region characteristics like * coprocessor address, length or processor virtual address. * * Return: a valid pointer on carveout entry on success or NULL on failure. */ __printf(2, 3) struct rproc_mem_entry * rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...) { va_list args; char _name[32]; struct rproc_mem_entry *carveout, *mem = NULL; if (!name) return NULL; va_start(args, name); vsnprintf(_name, sizeof(_name), name, args); va_end(args); list_for_each_entry(carveout, &rproc->carveouts, node) { /* Compare carveout and requested names */ if (!strcmp(carveout->name, _name)) { mem = carveout; break; } } return mem; } /** * rproc_check_carveout_da() - Check specified carveout da configuration * @rproc: handle of a remote processor * @mem: pointer on carveout to check * @da: area device address * @len: associated area size * * This function is a helper function to verify requested device area (couple * da, len) is part of specified carveout. * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is * checked. * * Return: 0 if carveout matches request else error */ static int rproc_check_carveout_da(struct rproc *rproc, struct rproc_mem_entry *mem, u32 da, u32 len) { struct device *dev = &rproc->dev; int delta; /* Check requested resource length */ if (len > mem->len) { dev_err(dev, "Registered carveout doesn't fit len request\n"); return -EINVAL; } if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) { /* Address doesn't match registered carveout configuration */ return -EINVAL; } else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) { delta = da - mem->da; /* Check requested resource belongs to registered carveout */ if (delta < 0) { dev_err(dev, "Registered carveout doesn't fit da request\n"); return -EINVAL; } if (delta + len > mem->len) { dev_err(dev, "Registered carveout doesn't fit len request\n"); return -EINVAL; } } return 0; } int rproc_alloc_vring(struct rproc_vdev *rvdev, int i) { struct rproc *rproc = rvdev->rproc; struct device *dev = &rproc->dev; struct rproc_vring *rvring = &rvdev->vring[i]; struct fw_rsc_vdev *rsc; int ret, notifyid; struct rproc_mem_entry *mem; size_t size; /* actual size of vring (in bytes) */ size = PAGE_ALIGN(vring_size(rvring->num, rvring->align)); rsc = (void *)rproc->table_ptr + rvdev->rsc_offset; /* Search for pre-registered carveout */ mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index, i); if (mem) { if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size)) return -ENOMEM; } else { /* Register carveout in list */ mem = rproc_mem_entry_init(dev, NULL, 0, size, rsc->vring[i].da, rproc_alloc_carveout, rproc_release_carveout, "vdev%dvring%d", rvdev->index, i); if (!mem) { dev_err(dev, "Can't allocate memory entry structure\n"); return -ENOMEM; } rproc_add_carveout(rproc, mem); } /* * Assign an rproc-wide unique index for this vring * TODO: assign a notifyid for rvdev updates as well * TODO: support predefined notifyids (via resource table) */ ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL); if (ret < 0) { dev_err(dev, "idr_alloc failed: %d\n", ret); return ret; } notifyid = ret; /* Potentially bump max_notifyid */ if (notifyid > rproc->max_notifyid) rproc->max_notifyid = notifyid; rvring->notifyid = notifyid; /* Let the rproc know the notifyid of this vring.*/ rsc->vring[i].notifyid = notifyid; return 0; } int rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i) { struct rproc *rproc = rvdev->rproc; struct device *dev = &rproc->dev; struct fw_rsc_vdev_vring *vring = &rsc->vring[i]; struct rproc_vring *rvring = &rvdev->vring[i]; dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n", i, vring->da, vring->num, vring->align); /* verify queue size and vring alignment are sane */ if (!vring->num || !vring->align) { dev_err(dev, "invalid qsz (%d) or alignment (%d)\n", vring->num, vring->align); return -EINVAL; } rvring->num = vring->num; rvring->align = vring->align; rvring->rvdev = rvdev; return 0; } void rproc_free_vring(struct rproc_vring *rvring) { struct rproc *rproc = rvring->rvdev->rproc; int idx = rvring - rvring->rvdev->vring; struct fw_rsc_vdev *rsc; idr_remove(&rproc->notifyids, rvring->notifyid); /* * At this point rproc_stop() has been called and the installed resource * table in the remote processor memory may no longer be accessible. As * such and as per rproc_stop(), rproc->table_ptr points to the cached * resource table (rproc->cached_table). The cached resource table is * only available when a remote processor has been booted by the * remoteproc core, otherwise it is NULL. * * Based on the above, reset the virtio device section in the cached * resource table only if there is one to work with. */ if (rproc->table_ptr) { rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset; rsc->vring[idx].da = 0; rsc->vring[idx].notifyid = -1; } } void rproc_add_rvdev(struct rproc *rproc, struct rproc_vdev *rvdev) { if (rvdev && rproc) list_add_tail(&rvdev->node, &rproc->rvdevs); } void rproc_remove_rvdev(struct rproc_vdev *rvdev) { if (rvdev) list_del(&rvdev->node); } /** * rproc_handle_vdev() - handle a vdev fw resource * @rproc: the remote processor * @ptr: the vring resource descriptor * @offset: offset of the resource entry * @avail: size of available data (for sanity checking the image) * * This resource entry requests the host to statically register a virtio * device (vdev), and setup everything needed to support it. It contains * everything needed to make it possible: the virtio device id, virtio * device features, vrings information, virtio config space, etc... * * Before registering the vdev, the vrings are allocated from non-cacheable * physically contiguous memory. Currently we only support two vrings per * remote processor (temporary limitation). We might also want to consider * doing the vring allocation only later when ->find_vqs() is invoked, and * then release them upon ->del_vqs(). * * Note: @da is currently not really handled correctly: we dynamically * allocate it using the DMA API, ignoring requested hard coded addresses, * and we don't take care of any required IOMMU programming. This is all * going to be taken care of when the generic iommu-based DMA API will be * merged. Meanwhile, statically-addressed iommu-based firmware images should * use RSC_DEVMEM resource entries to map their required @da to the physical * address of their base CMA region (ouch, hacky!). * * Return: 0 on success, or an appropriate error code otherwise */ static int rproc_handle_vdev(struct rproc *rproc, void *ptr, int offset, int avail) { struct fw_rsc_vdev *rsc = ptr; struct device *dev = &rproc->dev; struct rproc_vdev *rvdev; size_t rsc_size; struct rproc_vdev_data rvdev_data; struct platform_device *pdev; /* make sure resource isn't truncated */ rsc_size = struct_size(rsc, vring, rsc->num_of_vrings); if (size_add(rsc_size, rsc->config_len) > avail) { dev_err(dev, "vdev rsc is truncated\n"); return -EINVAL; } /* make sure reserved bytes are zeroes */ if (rsc->reserved[0] || rsc->reserved[1]) { dev_err(dev, "vdev rsc has non zero reserved bytes\n"); return -EINVAL; } dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n", rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings); /* we currently support only two vrings per rvdev */ if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) { dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings); return -EINVAL; } rvdev_data.id = rsc->id; rvdev_data.index = rproc->nb_vdev++; rvdev_data.rsc_offset = offset; rvdev_data.rsc = rsc; /* * When there is more than one remote processor, rproc->nb_vdev number is * same for each separate instances of "rproc". If rvdev_data.index is used * as device id, then we get duplication in sysfs, so need to use * PLATFORM_DEVID_AUTO to auto select device id. */ pdev = platform_device_register_data(dev, "rproc-virtio", PLATFORM_DEVID_AUTO, &rvdev_data, sizeof(rvdev_data)); if (IS_ERR(pdev)) { dev_err(dev, "failed to create rproc-virtio device\n"); return PTR_ERR(pdev); } return 0; } /** * rproc_handle_trace() - handle a shared trace buffer resource * @rproc: the remote processor * @ptr: the trace resource descriptor * @offset: offset of the resource entry * @avail: size of available data (for sanity checking the image) * * In case the remote processor dumps trace logs into memory, * export it via debugfs. * * Currently, the 'da' member of @rsc should contain the device address * where the remote processor is dumping the traces. Later we could also * support dynamically allocating this address using the generic * DMA API (but currently there isn't a use case for that). * * Return: 0 on success, or an appropriate error code otherwise */ static int rproc_handle_trace(struct rproc *rproc, void *ptr, int offset, int avail) { struct fw_rsc_trace *rsc = ptr; struct rproc_debug_trace *trace; struct device *dev = &rproc->dev; char name[15]; if (sizeof(*rsc) > avail) { dev_err(dev, "trace rsc is truncated\n"); return -EINVAL; } /* make sure reserved bytes are zeroes */ if (rsc->reserved) { dev_err(dev, "trace rsc has non zero reserved bytes\n"); return -EINVAL; } trace = kzalloc(sizeof(*trace), GFP_KERNEL); if (!trace) return -ENOMEM; /* set the trace buffer dma properties */ trace->trace_mem.len = rsc->len; trace->trace_mem.da = rsc->da; /* set pointer on rproc device */ trace->rproc = rproc; /* make sure snprintf always null terminates, even if truncating */ snprintf(name, sizeof(name), "trace%d", rproc->num_traces); /* create the debugfs entry */ trace->tfile = rproc_create_trace_file(name, rproc, trace); list_add_tail(&trace->node, &rproc->traces); rproc->num_traces++; dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n", name, rsc->da, rsc->len); return 0; } /** * rproc_handle_devmem() - handle devmem resource entry * @rproc: remote processor handle * @ptr: the devmem resource entry * @offset: offset of the resource entry * @avail: size of available data (for sanity checking the image) * * Remote processors commonly need to access certain on-chip peripherals. * * Some of these remote processors access memory via an iommu device, * and might require us to configure their iommu before they can access * the on-chip peripherals they need. * * This resource entry is a request to map such a peripheral device. * * These devmem entries will contain the physical address of the device in * the 'pa' member. If a specific device address is expected, then 'da' will * contain it (currently this is the only use case supported). 'len' will * contain the size of the physical region we need to map. * * Currently we just "trust" those devmem entries to contain valid physical * addresses, but this is going to change: we want the implementations to * tell us ranges of physical addresses the firmware is allowed to request, * and not allow firmwares to request access to physical addresses that * are outside those ranges. * * Return: 0 on success, or an appropriate error code otherwise */ static int rproc_handle_devmem(struct rproc *rproc, void *ptr, int offset, int avail) { struct fw_rsc_devmem *rsc = ptr; struct rproc_mem_entry *mapping; struct device *dev = &rproc->dev; int ret; /* no point in handling this resource without a valid iommu domain */ if (!rproc->domain) return -EINVAL; if (sizeof(*rsc) > avail) { dev_err(dev, "devmem rsc is truncated\n"); return -EINVAL; } /* make sure reserved bytes are zeroes */ if (rsc->reserved) { dev_err(dev, "devmem rsc has non zero reserved bytes\n"); return -EINVAL; } mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); if (!mapping) return -ENOMEM; ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags, GFP_KERNEL); if (ret) { dev_err(dev, "failed to map devmem: %d\n", ret); goto out; } /* * We'll need this info later when we'll want to unmap everything * (e.g. on shutdown). * * We can't trust the remote processor not to change the resource * table, so we must maintain this info independently. */ mapping->da = rsc->da; mapping->len = rsc->len; list_add_tail(&mapping->node, &rproc->mappings); dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n", rsc->pa, rsc->da, rsc->len); return 0; out: kfree(mapping); return ret; } /** * rproc_alloc_carveout() - allocated specified carveout * @rproc: rproc handle * @mem: the memory entry to allocate * * This function allocate specified memory entry @mem using * dma_alloc_coherent() as default allocator * * Return: 0 on success, or an appropriate error code otherwise */ static int rproc_alloc_carveout(struct rproc *rproc, struct rproc_mem_entry *mem) { struct rproc_mem_entry *mapping = NULL; struct device *dev = &rproc->dev; dma_addr_t dma; void *va; int ret; va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL); if (!va) { dev_err(dev->parent, "failed to allocate dma memory: len 0x%zx\n", mem->len); return -ENOMEM; } dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n", va, &dma, mem->len); if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) { /* * Check requested da is equal to dma address * and print a warn message in case of missalignment. * Don't stop rproc_start sequence as coprocessor may * build pa to da translation on its side. */ if (mem->da != (u32)dma) dev_warn(dev->parent, "Allocated carveout doesn't fit device address request\n"); } /* * Ok, this is non-standard. * * Sometimes we can't rely on the generic iommu-based DMA API * to dynamically allocate the device address and then set the IOMMU * tables accordingly, because some remote processors might * _require_ us to use hard coded device addresses that their * firmware was compiled with. * * In this case, we must use the IOMMU API directly and map * the memory to the device address as expected by the remote * processor. * * Obviously such remote processor devices should not be configured * to use the iommu-based DMA API: we expect 'dma' to contain the * physical address in this case. */ if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) { mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); if (!mapping) { ret = -ENOMEM; goto dma_free; } ret = iommu_map(rproc->domain, mem->da, dma, mem->len, mem->flags, GFP_KERNEL); if (ret) { dev_err(dev, "iommu_map failed: %d\n", ret); goto free_mapping; } /* * We'll need this info later when we'll want to unmap * everything (e.g. on shutdown). * * We can't trust the remote processor not to change the * resource table, so we must maintain this info independently. */ mapping->da = mem->da; mapping->len = mem->len; list_add_tail(&mapping->node, &rproc->mappings); dev_dbg(dev, "carveout mapped 0x%x to %pad\n", mem->da, &dma); } if (mem->da == FW_RSC_ADDR_ANY) { /* Update device address as undefined by requester */ if ((u64)dma & HIGH_BITS_MASK) dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n"); mem->da = (u32)dma; } mem->dma = dma; mem->va = va; return 0; free_mapping: kfree(mapping); dma_free: dma_free_coherent(dev->parent, mem->len, va, dma); return ret; } /** * rproc_release_carveout() - release acquired carveout * @rproc: rproc handle * @mem: the memory entry to release * * This function releases specified memory entry @mem allocated via * rproc_alloc_carveout() function by @rproc. * * Return: 0 on success, or an appropriate error code otherwise */ static int rproc_release_carveout(struct rproc *rproc, struct rproc_mem_entry *mem) { struct device *dev = &rproc->dev; /* clean up carveout allocations */ dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma); return 0; } /** * rproc_handle_carveout() - handle phys contig memory allocation requests * @rproc: rproc handle * @ptr: the resource entry * @offset: offset of the resource entry * @avail: size of available data (for image validation) * * This function will handle firmware requests for allocation of physically * contiguous memory regions. * * These request entries should come first in the firmware's resource table, * as other firmware entries might request placing other data objects inside * these memory regions (e.g. data/code segments, trace resource entries, ...). * * Allocating memory this way helps utilizing the reserved physical memory * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB * pressure is important; it may have a substantial impact on performance. * * Return: 0 on success, or an appropriate error code otherwise */ static int rproc_handle_carveout(struct rproc *rproc, void *ptr, int offset, int avail) { struct fw_rsc_carveout *rsc = ptr; struct rproc_mem_entry *carveout; struct device *dev = &rproc->dev; if (sizeof(*rsc) > avail) { dev_err(dev, "carveout rsc is truncated\n"); return -EINVAL; } /* make sure reserved bytes are zeroes */ if (rsc->reserved) { dev_err(dev, "carveout rsc has non zero reserved bytes\n"); return -EINVAL; } dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n", rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags); /* * Check carveout rsc already part of a registered carveout, * Search by name, then check the da and length */ carveout = rproc_find_carveout_by_name(rproc, rsc->name); if (carveout) { if (carveout->rsc_offset != FW_RSC_ADDR_ANY) { dev_err(dev, "Carveout already associated to resource table\n"); return -ENOMEM; } if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len)) return -ENOMEM; /* Update memory carveout with resource table info */ carveout->rsc_offset = offset; carveout->flags = rsc->flags; return 0; } /* Register carveout in list */ carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da, rproc_alloc_carveout, rproc_release_carveout, rsc->name); if (!carveout) { dev_err(dev, "Can't allocate memory entry structure\n"); return -ENOMEM; } carveout->flags = rsc->flags; carveout->rsc_offset = offset; rproc_add_carveout(rproc, carveout); return 0; } /** * rproc_add_carveout() - register an allocated carveout region * @rproc: rproc handle * @mem: memory entry to register * * This function registers specified memory entry in @rproc carveouts list. * Specified carveout should have been allocated before registering. */ void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem) { list_add_tail(&mem->node, &rproc->carveouts); } EXPORT_SYMBOL(rproc_add_carveout); /** * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct * @dev: pointer on device struct * @va: virtual address * @dma: dma address * @len: memory carveout length * @da: device address * @alloc: memory carveout allocation function * @release: memory carveout release function * @name: carveout name * * This function allocates a rproc_mem_entry struct and fill it with parameters * provided by client. * * Return: a valid pointer on success, or NULL on failure */ __printf(8, 9) struct rproc_mem_entry * rproc_mem_entry_init(struct device *dev, void *va, dma_addr_t dma, size_t len, u32 da, int (*alloc)(struct rproc *, struct rproc_mem_entry *), int (*release)(struct rproc *, struct rproc_mem_entry *), const char *name, ...) { struct rproc_mem_entry *mem; va_list args; mem = kzalloc(sizeof(*mem), GFP_KERNEL); if (!mem) return mem; mem->va = va; mem->dma = dma; mem->da = da; mem->len = len; mem->alloc = alloc; mem->release = release; mem->rsc_offset = FW_RSC_ADDR_ANY; mem->of_resm_idx = -1; va_start(args, name); vsnprintf(mem->name, sizeof(mem->name), name, args); va_end(args); return mem; } EXPORT_SYMBOL(rproc_mem_entry_init); /** * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct * from a reserved memory phandle * @dev: pointer on device struct * @of_resm_idx: reserved memory phandle index in "memory-region" * @len: memory carveout length * @da: device address * @name: carveout name * * This function allocates a rproc_mem_entry struct and fill it with parameters * provided by client. * * Return: a valid pointer on success, or NULL on failure */ __printf(5, 6) struct rproc_mem_entry * rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len, u32 da, const char *name, ...) { struct rproc_mem_entry *mem; va_list args; mem = kzalloc(sizeof(*mem), GFP_KERNEL); if (!mem) return mem; mem->da = da; mem->len = len; mem->rsc_offset = FW_RSC_ADDR_ANY; mem->of_resm_idx = of_resm_idx; va_start(args, name); vsnprintf(mem->name, sizeof(mem->name), name, args); va_end(args); return mem; } EXPORT_SYMBOL(rproc_of_resm_mem_entry_init); /** * rproc_of_parse_firmware() - parse and return the firmware-name * @dev: pointer on device struct representing a rproc * @index: index to use for the firmware-name retrieval * @fw_name: pointer to a character string, in which the firmware * name is returned on success and unmodified otherwise. * * This is an OF helper function that parses a device's DT node for * the "firmware-name" property and returns the firmware name pointer * in @fw_name on success. * * Return: 0 on success, or an appropriate failure. */ int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name) { int ret; ret = of_property_read_string_index(dev->of_node, "firmware-name", index, fw_name); return ret ? ret : 0; } EXPORT_SYMBOL(rproc_of_parse_firmware); /* * A lookup table for resource handlers. The indices are defined in * enum fw_resource_type. */ static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = { [RSC_CARVEOUT] = rproc_handle_carveout, [RSC_DEVMEM] = rproc_handle_devmem, [RSC_TRACE] = rproc_handle_trace, [RSC_VDEV] = rproc_handle_vdev, }; /* handle firmware resource entries before booting the remote processor */ static int rproc_handle_resources(struct rproc *rproc, rproc_handle_resource_t handlers[RSC_LAST]) { struct device *dev = &rproc->dev; rproc_handle_resource_t handler; int ret = 0, i; if (!rproc->table_ptr) return 0; for (i = 0; i < rproc->table_ptr->num; i++) { int offset = rproc->table_ptr->offset[i]; struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset; int avail = rproc->table_sz - offset - sizeof(*hdr); void *rsc = (void *)hdr + sizeof(*hdr); /* make sure table isn't truncated */ if (avail < 0) { dev_err(dev, "rsc table is truncated\n"); return -EINVAL; } dev_dbg(dev, "rsc: type %d\n", hdr->type); if (hdr->type >= RSC_VENDOR_START && hdr->type <= RSC_VENDOR_END) { ret = rproc_handle_rsc(rproc, hdr->type, rsc, offset + sizeof(*hdr), avail); if (ret == RSC_HANDLED) continue; else if (ret < 0) break; dev_warn(dev, "unsupported vendor resource %d\n", hdr->type); continue; } if (hdr->type >= RSC_LAST) { dev_warn(dev, "unsupported resource %d\n", hdr->type); continue; } handler = handlers[hdr->type]; if (!handler) continue; ret = handler(rproc, rsc, offset + sizeof(*hdr), avail); if (ret) break; } return ret; } static int rproc_prepare_subdevices(struct rproc *rproc) { struct rproc_subdev *subdev; int ret; list_for_each_entry(subdev, &rproc->subdevs, node) { if (subdev->prepare) { ret = subdev->prepare(subdev); if (ret) goto unroll_preparation; } } return 0; unroll_preparation: list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) { if (subdev->unprepare) subdev->unprepare(subdev); } return ret; } static int rproc_start_subdevices(struct rproc *rproc) { struct rproc_subdev *subdev; int ret; list_for_each_entry(subdev, &rproc->subdevs, node) { if (subdev->start) { ret = subdev->start(subdev); if (ret) goto unroll_registration; } } return 0; unroll_registration: list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) { if (subdev->stop) subdev->stop(subdev, true); } return ret; } static void rproc_stop_subdevices(struct rproc *rproc, bool crashed) { struct rproc_subdev *subdev; list_for_each_entry_reverse(subdev, &rproc->subdevs, node) { if (subdev->stop) subdev->stop(subdev, crashed); } } static void rproc_unprepare_subdevices(struct rproc *rproc) { struct rproc_subdev *subdev; list_for_each_entry_reverse(subdev, &rproc->subdevs, node) { if (subdev->unprepare) subdev->unprepare(subdev); } } /** * rproc_alloc_registered_carveouts() - allocate all carveouts registered * in the list * @rproc: the remote processor handle * * This function parses registered carveout list, performs allocation * if alloc() ops registered and updates resource table information * if rsc_offset set. * * Return: 0 on success */ static int rproc_alloc_registered_carveouts(struct rproc *rproc) { struct rproc_mem_entry *entry, *tmp; struct fw_rsc_carveout *rsc; struct device *dev = &rproc->dev; u64 pa; int ret; list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) { if (entry->alloc) { ret = entry->alloc(rproc, entry); if (ret) { dev_err(dev, "Unable to allocate carveout %s: %d\n", entry->name, ret); return -ENOMEM; } } if (entry->rsc_offset != FW_RSC_ADDR_ANY) { /* update resource table */ rsc = (void *)rproc->table_ptr + entry->rsc_offset; /* * Some remote processors might need to know the pa * even though they are behind an IOMMU. E.g., OMAP4's * remote M3 processor needs this so it can control * on-chip hardware accelerators that are not behind * the IOMMU, and therefor must know the pa. * * Generally we don't want to expose physical addresses * if we don't have to (remote processors are generally * _not_ trusted), so we might want to do this only for * remote processor that _must_ have this (e.g. OMAP4's * dual M3 subsystem). * * Non-IOMMU processors might also want to have this info. * In this case, the device address and the physical address * are the same. */ /* Use va if defined else dma to generate pa */ if (entry->va) pa = (u64)rproc_va_to_pa(entry->va); else pa = (u64)entry->dma; if (((u64)pa) & HIGH_BITS_MASK) dev_warn(dev, "Physical address cast in 32bit to fit resource table format\n"); rsc->pa = (u32)pa; rsc->da = entry->da; rsc->len = entry->len; } } return 0; } /** * rproc_resource_cleanup() - clean up and free all acquired resources * @rproc: rproc handle * * This function will free all resources acquired for @rproc, and it * is called whenever @rproc either shuts down or fails to boot. */ void rproc_resource_cleanup(struct rproc *rproc) { struct rproc_mem_entry *entry, *tmp; struct rproc_debug_trace *trace, *ttmp; struct rproc_vdev *rvdev, *rvtmp; struct device *dev = &rproc->dev; /* clean up debugfs trace entries */ list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) { rproc_remove_trace_file(trace->tfile); rproc->num_traces--; list_del(&trace->node); kfree(trace); } /* clean up iommu mapping entries */ list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) { size_t unmapped; unmapped = iommu_unmap(rproc->domain, entry->da, entry->len); if (unmapped != entry->len) { /* nothing much to do besides complaining */ dev_err(dev, "failed to unmap %zx/%zu\n", entry->len, unmapped); } list_del(&entry->node); kfree(entry); } /* clean up carveout allocations */ list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) { if (entry->release) entry->release(rproc, entry); list_del(&entry->node); kfree(entry); } /* clean up remote vdev entries */ list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node) platform_device_unregister(rvdev->pdev); rproc_coredump_cleanup(rproc); } EXPORT_SYMBOL(rproc_resource_cleanup); static int rproc_start(struct rproc *rproc, const struct firmware *fw) { struct resource_table *loaded_table; struct device *dev = &rproc->dev; int ret; /* load the ELF segments to memory */ ret = rproc_load_segments(rproc, fw); if (ret) { dev_err(dev, "Failed to load program segments: %d\n", ret); return ret; } /* * The starting device has been given the rproc->cached_table as the * resource table. The address of the vring along with the other * allocated resources (carveouts etc) is stored in cached_table. * In order to pass this information to the remote device we must copy * this information to device memory. We also update the table_ptr so * that any subsequent changes will be applied to the loaded version. */ loaded_table = rproc_find_loaded_rsc_table(rproc, fw); if (loaded_table) { memcpy(loaded_table, rproc->cached_table, rproc->table_sz); rproc->table_ptr = loaded_table; } ret = rproc_prepare_subdevices(rproc); if (ret) { dev_err(dev, "failed to prepare subdevices for %s: %d\n", rproc->name, ret); goto reset_table_ptr; } /* power up the remote processor */ ret = rproc->ops->start(rproc); if (ret) { dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret); goto unprepare_subdevices; } /* Start any subdevices for the remote processor */ ret = rproc_start_subdevices(rproc); if (ret) { dev_err(dev, "failed to probe subdevices for %s: %d\n", rproc->name, ret); goto stop_rproc; } rproc->state = RPROC_RUNNING; dev_info(dev, "remote processor %s is now up\n", rproc->name); return 0; stop_rproc: rproc->ops->stop(rproc); unprepare_subdevices: rproc_unprepare_subdevices(rproc); reset_table_ptr: rproc->table_ptr = rproc->cached_table; return ret; } static int __rproc_attach(struct rproc *rproc) { struct device *dev = &rproc->dev; int ret; ret = rproc_prepare_subdevices(rproc); if (ret) { dev_err(dev, "failed to prepare subdevices for %s: %d\n", rproc->name, ret); goto out; } /* Attach to the remote processor */ ret = rproc_attach_device(rproc); if (ret) { dev_err(dev, "can't attach to rproc %s: %d\n", rproc->name, ret); goto unprepare_subdevices; } /* Start any subdevices for the remote processor */ ret = rproc_start_subdevices(rproc); if (ret) { dev_err(dev, "failed to probe subdevices for %s: %d\n", rproc->name, ret); goto stop_rproc; } rproc->state = RPROC_ATTACHED; dev_info(dev, "remote processor %s is now attached\n", rproc->name); return 0; stop_rproc: rproc->ops->stop(rproc); unprepare_subdevices: rproc_unprepare_subdevices(rproc); out: return ret; } /* * take a firmware and boot a remote processor with it. */ static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw) { struct device *dev = &rproc->dev; const char *name = rproc->firmware; int ret; ret = rproc_fw_sanity_check(rproc, fw); if (ret) return ret; dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size); /* * if enabling an IOMMU isn't relevant for this rproc, this is * just a nop */ ret = rproc_enable_iommu(rproc); if (ret) { dev_err(dev, "can't enable iommu: %d\n", ret); return ret; } /* Prepare rproc for firmware loading if needed */ ret = rproc_prepare_device(rproc); if (ret) { dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret); goto disable_iommu; } rproc->bootaddr = rproc_get_boot_addr(rproc, fw); /* Load resource table, core dump segment list etc from the firmware */ ret = rproc_parse_fw(rproc, fw); if (ret) goto unprepare_rproc; /* reset max_notifyid */ rproc->max_notifyid = -1; /* reset handled vdev */ rproc->nb_vdev = 0; /* handle fw resources which are required to boot rproc */ ret = rproc_handle_resources(rproc, rproc_loading_handlers); if (ret) { dev_err(dev, "Failed to process resources: %d\n", ret); goto clean_up_resources; } /* Allocate carveout resources associated to rproc */ ret = rproc_alloc_registered_carveouts(rproc); if (ret) { dev_err(dev, "Failed to allocate associated carveouts: %d\n", ret); goto clean_up_resources; } ret = rproc_start(rproc, fw); if (ret) goto clean_up_resources; return 0; clean_up_resources: rproc_resource_cleanup(rproc); kfree(rproc->cached_table); rproc->cached_table = NULL; rproc->table_ptr = NULL; unprepare_rproc: /* release HW resources if needed */ rproc_unprepare_device(rproc); disable_iommu: rproc_disable_iommu(rproc); return ret; } static int rproc_set_rsc_table(struct rproc *rproc) { struct resource_table *table_ptr; struct device *dev = &rproc->dev; size_t table_sz; int ret; table_ptr = rproc_get_loaded_rsc_table(rproc, &table_sz); if (!table_ptr) { /* Not having a resource table is acceptable */ return 0; } if (IS_ERR(table_ptr)) { ret = PTR_ERR(table_ptr); dev_err(dev, "can't load resource table: %d\n", ret); return ret; } /* * If it is possible to detach the remote processor, keep an untouched * copy of the resource table. That way we can start fresh again when * the remote processor is re-attached, that is: * * DETACHED -> ATTACHED -> DETACHED -> ATTACHED * * Free'd in rproc_reset_rsc_table_on_detach() and * rproc_reset_rsc_table_on_stop(). */ if (rproc->ops->detach) { rproc->clean_table = kmemdup(table_ptr, table_sz, GFP_KERNEL); if (!rproc->clean_table) return -ENOMEM; } else { rproc->clean_table = NULL; } rproc->cached_table = NULL; rproc->table_ptr = table_ptr; rproc->table_sz = table_sz; return 0; } static int rproc_reset_rsc_table_on_detach(struct rproc *rproc) { struct resource_table *table_ptr; /* A resource table was never retrieved, nothing to do here */ if (!rproc->table_ptr) return 0; /* * If we made it to this point a clean_table _must_ have been * allocated in rproc_set_rsc_table(). If one isn't present * something went really wrong and we must complain. */ if (WARN_ON(!rproc->clean_table)) return -EINVAL; /* Remember where the external entity installed the resource table */ table_ptr = rproc->table_ptr; /* * If we made it here the remote processor was started by another * entity and a cache table doesn't exist. As such make a copy of * the resource table currently used by the remote processor and * use that for the rest of the shutdown process. The memory * allocated here is free'd in rproc_detach(). */ rproc->cached_table = kmemdup(rproc->table_ptr, rproc->table_sz, GFP_KERNEL); if (!rproc->cached_table) return -ENOMEM; /* * Use a copy of the resource table for the remainder of the * shutdown process. */ rproc->table_ptr = rproc->cached_table; /* * Reset the memory area where the firmware loaded the resource table * to its original value. That way when we re-attach the remote * processor the resource table is clean and ready to be used again. */ memcpy(table_ptr, rproc->clean_table, rproc->table_sz); /* * The clean resource table is no longer needed. Allocated in * rproc_set_rsc_table(). */ kfree(rproc->clean_table); return 0; } static int rproc_reset_rsc_table_on_stop(struct rproc *rproc) { /* A resource table was never retrieved, nothing to do here */ if (!rproc->table_ptr) return 0; /* * If a cache table exists the remote processor was started by * the remoteproc core. That cache table should be used for * the rest of the shutdown process. */ if (rproc->cached_table) goto out; /* * If we made it here the remote processor was started by another * entity and a cache table doesn't exist. As such make a copy of * the resource table currently used by the remote processor and * use that for the rest of the shutdown process. The memory * allocated here is free'd in rproc_shutdown(). */ rproc->cached_table = kmemdup(rproc->table_ptr, rproc->table_sz, GFP_KERNEL); if (!rproc->cached_table) return -ENOMEM; /* * Since the remote processor is being switched off the clean table * won't be needed. Allocated in rproc_set_rsc_table(). */ kfree(rproc->clean_table); out: /* * Use a copy of the resource table for the remainder of the * shutdown process. */ rproc->table_ptr = rproc->cached_table; return 0; } /* * Attach to remote processor - similar to rproc_fw_boot() but without * the steps that deal with the firmware image. */ static int rproc_attach(struct rproc *rproc) { struct device *dev = &rproc->dev; int ret; /* * if enabling an IOMMU isn't relevant for this rproc, this is * just a nop */ ret = rproc_enable_iommu(rproc); if (ret) { dev_err(dev, "can't enable iommu: %d\n", ret); return ret; } /* Do anything that is needed to boot the remote processor */ ret = rproc_prepare_device(rproc); if (ret) { dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret); goto disable_iommu; } ret = rproc_set_rsc_table(rproc); if (ret) { dev_err(dev, "can't load resource table: %d\n", ret); goto unprepare_device; } /* reset max_notifyid */ rproc->max_notifyid = -1; /* reset handled vdev */ rproc->nb_vdev = 0; /* * Handle firmware resources required to attach to a remote processor. * Because we are attaching rather than booting the remote processor, * we expect the platform driver to properly set rproc->table_ptr. */ ret = rproc_handle_resources(rproc, rproc_loading_handlers); if (ret) { dev_err(dev, "Failed to process resources: %d\n", ret); goto unprepare_device; } /* Allocate carveout resources associated to rproc */ ret = rproc_alloc_registered_carveouts(rproc); if (ret) { dev_err(dev, "Failed to allocate associated carveouts: %d\n", ret); goto clean_up_resources; } ret = __rproc_attach(rproc); if (ret) goto clean_up_resources; return 0; clean_up_resources: rproc_resource_cleanup(rproc); unprepare_device: /* release HW resources if needed */ rproc_unprepare_device(rproc); disable_iommu: rproc_disable_iommu(rproc); return ret; } /* * take a firmware and boot it up. * * Note: this function is called asynchronously upon registration of the * remote processor (so we must wait until it completes before we try * to unregister the device. one other option is just to use kref here, * that might be cleaner). */ static void rproc_auto_boot_callback(const struct firmware *fw, void *context) { struct rproc *rproc = context; rproc_boot(rproc); release_firmware(fw); } static int rproc_trigger_auto_boot(struct rproc *rproc) { int ret; /* * Since the remote processor is in a detached state, it has already * been booted by another entity. As such there is no point in waiting * for a firmware image to be loaded, we can simply initiate the process * of attaching to it immediately. */ if (rproc->state == RPROC_DETACHED) return rproc_boot(rproc); /* * We're initiating an asynchronous firmware loading, so we can * be built-in kernel code, without hanging the boot process. */ ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT, rproc->firmware, &rproc->dev, GFP_KERNEL, rproc, rproc_auto_boot_callback); if (ret < 0) dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret); return ret; } static int rproc_stop(struct rproc *rproc, bool crashed) { struct device *dev = &rproc->dev; int ret; /* No need to continue if a stop() operation has not been provided */ if (!rproc->ops->stop) return -EINVAL; /* Stop any subdevices for the remote processor */ rproc_stop_subdevices(rproc, crashed); /* the installed resource table is no longer accessible */ ret = rproc_reset_rsc_table_on_stop(rproc); if (ret) { dev_err(dev, "can't reset resource table: %d\n", ret); return ret; } /* power off the remote processor */ ret = rproc->ops->stop(rproc); if (ret) { dev_err(dev, "can't stop rproc: %d\n", ret); return ret; } rproc_unprepare_subdevices(rproc); rproc->state = RPROC_OFFLINE; dev_info(dev, "stopped remote processor %s\n", rproc->name); return 0; } /* * __rproc_detach(): Does the opposite of __rproc_attach() */ static int __rproc_detach(struct rproc *rproc) { struct device *dev = &rproc->dev; int ret; /* No need to continue if a detach() operation has not been provided */ if (!rproc->ops->detach) return -EINVAL; /* Stop any subdevices for the remote processor */ rproc_stop_subdevices(rproc, false); /* the installed resource table is no longer accessible */ ret = rproc_reset_rsc_table_on_detach(rproc); if (ret) { dev_err(dev, "can't reset resource table: %d\n", ret); return ret; } /* Tell the remote processor the core isn't available anymore */ ret = rproc->ops->detach(rproc); if (ret) { dev_err(dev, "can't detach from rproc: %d\n", ret); return ret; } rproc_unprepare_subdevices(rproc); rproc->state = RPROC_DETACHED; dev_info(dev, "detached remote processor %s\n", rproc->name); return 0; } static int rproc_attach_recovery(struct rproc *rproc) { int ret; ret = __rproc_detach(rproc); if (ret) return ret; return __rproc_attach(rproc); } static int rproc_boot_recovery(struct rproc *rproc) { const struct firmware *firmware_p; struct device *dev = &rproc->dev; int ret; ret = rproc_stop(rproc, true); if (ret) return ret; /* generate coredump */ rproc->ops->coredump(rproc); /* load firmware */ ret = request_firmware(&firmware_p, rproc->firmware, dev); if (ret < 0) { dev_err(dev, "request_firmware failed: %d\n", ret); return ret; } /* boot the remote processor up again */ ret = rproc_start(rproc, firmware_p); release_firmware(firmware_p); return ret; } /** * rproc_trigger_recovery() - recover a remoteproc * @rproc: the remote processor * * The recovery is done by resetting all the virtio devices, that way all the * rpmsg drivers will be reseted along with the remote processor making the * remoteproc functional again. * * This function can sleep, so it cannot be called from atomic context. * * Return: 0 on success or a negative value upon failure */ int rproc_trigger_recovery(struct rproc *rproc) { struct device *dev = &rproc->dev; int ret; ret = mutex_lock_interruptible(&rproc->lock); if (ret) return ret; /* State could have changed before we got the mutex */ if (rproc->state != RPROC_CRASHED) goto unlock_mutex; dev_err(dev, "recovering %s\n", rproc->name); if (rproc_has_feature(rproc, RPROC_FEAT_ATTACH_ON_RECOVERY)) ret = rproc_attach_recovery(rproc); else ret = rproc_boot_recovery(rproc); unlock_mutex: mutex_unlock(&rproc->lock); return ret; } /** * rproc_crash_handler_work() - handle a crash * @work: work treating the crash * * This function needs to handle everything related to a crash, like cpu * registers and stack dump, information to help to debug the fatal error, etc. */ static void rproc_crash_handler_work(struct work_struct *work) { struct rproc *rproc = container_of(work, struct rproc, crash_handler); struct device *dev = &rproc->dev; dev_dbg(dev, "enter %s\n", __func__); mutex_lock(&rproc->lock); if (rproc->state == RPROC_CRASHED) { /* handle only the first crash detected */ mutex_unlock(&rproc->lock); return; } if (rproc->state == RPROC_OFFLINE) { /* Don't recover if the remote processor was stopped */ mutex_unlock(&rproc->lock); goto out; } rproc->state = RPROC_CRASHED; dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt, rproc->name); mutex_unlock(&rproc->lock); if (!rproc->recovery_disabled) rproc_trigger_recovery(rproc); out: pm_relax(rproc->dev.parent); } /** * rproc_boot() - boot a remote processor * @rproc: handle of a remote processor * * Boot a remote processor (i.e. load its firmware, power it on, ...). * * If the remote processor is already powered on, this function immediately * returns (successfully). * * Return: 0 on success, and an appropriate error value otherwise */ int rproc_boot(struct rproc *rproc) { const struct firmware *firmware_p; struct device *dev; int ret; if (!rproc) { pr_err("invalid rproc handle\n"); return -EINVAL; } dev = &rproc->dev; ret = mutex_lock_interruptible(&rproc->lock); if (ret) { dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); return ret; } if (rproc->state == RPROC_DELETED) { ret = -ENODEV; dev_err(dev, "can't boot deleted rproc %s\n", rproc->name); goto unlock_mutex; } /* skip the boot or attach process if rproc is already powered up */ if (atomic_inc_return(&rproc->power) > 1) { ret = 0; goto unlock_mutex; } if (rproc->state == RPROC_DETACHED) { dev_info(dev, "attaching to %s\n", rproc->name); ret = rproc_attach(rproc); } else { dev_info(dev, "powering up %s\n", rproc->name); /* load firmware */ ret = request_firmware(&firmware_p, rproc->firmware, dev); if (ret < 0) { dev_err(dev, "request_firmware failed: %d\n", ret); goto downref_rproc; } ret = rproc_fw_boot(rproc, firmware_p); release_firmware(firmware_p); } downref_rproc: if (ret) atomic_dec(&rproc->power); unlock_mutex: mutex_unlock(&rproc->lock); return ret; } EXPORT_SYMBOL(rproc_boot); /** * rproc_shutdown() - power off the remote processor * @rproc: the remote processor * * Power off a remote processor (previously booted with rproc_boot()). * * In case @rproc is still being used by an additional user(s), then * this function will just decrement the power refcount and exit, * without really powering off the device. * * Every call to rproc_boot() must (eventually) be accompanied by a call * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug. * * Notes: * - we're not decrementing the rproc's refcount, only the power refcount. * which means that the @rproc handle stays valid even after rproc_shutdown() * returns, and users can still use it with a subsequent rproc_boot(), if * needed. * * Return: 0 on success, and an appropriate error value otherwise */ int rproc_shutdown(struct rproc *rproc) { struct device *dev = &rproc->dev; int ret = 0; ret = mutex_lock_interruptible(&rproc->lock); if (ret) { dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); return ret; } if (rproc->state != RPROC_RUNNING && rproc->state != RPROC_ATTACHED) { ret = -EINVAL; goto out; } /* if the remote proc is still needed, bail out */ if (!atomic_dec_and_test(&rproc->power)) goto out; ret = rproc_stop(rproc, false); if (ret) { atomic_inc(&rproc->power); goto out; } /* clean up all acquired resources */ rproc_resource_cleanup(rproc); /* release HW resources if needed */ rproc_unprepare_device(rproc); rproc_disable_iommu(rproc); /* Free the copy of the resource table */ kfree(rproc->cached_table); rproc->cached_table = NULL; rproc->table_ptr = NULL; out: mutex_unlock(&rproc->lock); return ret; } EXPORT_SYMBOL(rproc_shutdown); /** * rproc_detach() - Detach the remote processor from the * remoteproc core * * @rproc: the remote processor * * Detach a remote processor (previously attached to with rproc_attach()). * * In case @rproc is still being used by an additional user(s), then * this function will just decrement the power refcount and exit, * without disconnecting the device. * * Function rproc_detach() calls __rproc_detach() in order to let a remote * processor know that services provided by the application processor are * no longer available. From there it should be possible to remove the * platform driver and even power cycle the application processor (if the HW * supports it) without needing to switch off the remote processor. * * Return: 0 on success, and an appropriate error value otherwise */ int rproc_detach(struct rproc *rproc) { struct device *dev = &rproc->dev; int ret; ret = mutex_lock_interruptible(&rproc->lock); if (ret) { dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); return ret; } if (rproc->state != RPROC_ATTACHED) { ret = -EINVAL; goto out; } /* if the remote proc is still needed, bail out */ if (!atomic_dec_and_test(&rproc->power)) { ret = 0; goto out; } ret = __rproc_detach(rproc); if (ret) { atomic_inc(&rproc->power); goto out; } /* clean up all acquired resources */ rproc_resource_cleanup(rproc); /* release HW resources if needed */ rproc_unprepare_device(rproc); rproc_disable_iommu(rproc); /* Free the copy of the resource table */ kfree(rproc->cached_table); rproc->cached_table = NULL; rproc->table_ptr = NULL; out: mutex_unlock(&rproc->lock); return ret; } EXPORT_SYMBOL(rproc_detach); /** * rproc_get_by_phandle() - find a remote processor by phandle * @phandle: phandle to the rproc * * Finds an rproc handle using the remote processor's phandle, and then * return a handle to the rproc. * * This function increments the remote processor's refcount, so always * use rproc_put() to decrement it back once rproc isn't needed anymore. * * Return: rproc handle on success, and NULL on failure */ #ifdef CONFIG_OF struct rproc *rproc_get_by_phandle(phandle phandle) { struct rproc *rproc = NULL, *r; struct device_node *np; np = of_find_node_by_phandle(phandle); if (!np) return NULL; rcu_read_lock(); list_for_each_entry_rcu(r, &rproc_list, node) { if (r->dev.parent && device_match_of_node(r->dev.parent, np)) { /* prevent underlying implementation from being removed */ if (!try_module_get(r->dev.parent->driver->owner)) { dev_err(&r->dev, "can't get owner\n"); break; } rproc = r; get_device(&rproc->dev); break; } } rcu_read_unlock(); of_node_put(np); return rproc; } #else struct rproc *rproc_get_by_phandle(phandle phandle) { return NULL; } #endif EXPORT_SYMBOL(rproc_get_by_phandle); /** * rproc_set_firmware() - assign a new firmware * @rproc: rproc handle to which the new firmware is being assigned * @fw_name: new firmware name to be assigned * * This function allows remoteproc drivers or clients to configure a custom * firmware name that is different from the default name used during remoteproc * registration. The function does not trigger a remote processor boot, * only sets the firmware name used for a subsequent boot. This function * should also be called only when the remote processor is offline. * * This allows either the userspace to configure a different name through * sysfs or a kernel-level remoteproc or a remoteproc client driver to set * a specific firmware when it is controlling the boot and shutdown of the * remote processor. * * Return: 0 on success or a negative value upon failure */ int rproc_set_firmware(struct rproc *rproc, const char *fw_name) { struct device *dev; int ret, len; char *p; if (!rproc || !fw_name) return -EINVAL; dev = rproc->dev.parent; ret = mutex_lock_interruptible(&rproc->lock); if (ret) { dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); return -EINVAL; } if (rproc->state != RPROC_OFFLINE) { dev_err(dev, "can't change firmware while running\n"); ret = -EBUSY; goto out; } len = strcspn(fw_name, "\n"); if (!len) { dev_err(dev, "can't provide empty string for firmware name\n"); ret = -EINVAL; goto out; } p = kstrndup(fw_name, len, GFP_KERNEL); if (!p) { ret = -ENOMEM; goto out; } kfree_const(rproc->firmware); rproc->firmware = p; out: mutex_unlock(&rproc->lock); return ret; } EXPORT_SYMBOL(rproc_set_firmware); static int rproc_validate(struct rproc *rproc) { switch (rproc->state) { case RPROC_OFFLINE: /* * An offline processor without a start() * function makes no sense. */ if (!rproc->ops->start) return -EINVAL; break; case RPROC_DETACHED: /* * A remote processor in a detached state without an * attach() function makes not sense. */ if (!rproc->ops->attach) return -EINVAL; /* * When attaching to a remote processor the device memory * is already available and as such there is no need to have a * cached table. */ if (rproc->cached_table) return -EINVAL; break; default: /* * When adding a remote processor, the state of the device * can be offline or detached, nothing else. */ return -EINVAL; } return 0; } /** * rproc_add() - register a remote processor * @rproc: the remote processor handle to register * * Registers @rproc with the remoteproc framework, after it has been * allocated with rproc_alloc(). * * This is called by the platform-specific rproc implementation, whenever * a new remote processor device is probed. * * Note: this function initiates an asynchronous firmware loading * context, which will look for virtio devices supported by the rproc's * firmware. * * If found, those virtio devices will be created and added, so as a result * of registering this remote processor, additional virtio drivers might be * probed. * * Return: 0 on success and an appropriate error code otherwise */ int rproc_add(struct rproc *rproc) { struct device *dev = &rproc->dev; int ret; ret = rproc_validate(rproc); if (ret < 0) return ret; /* add char device for this remoteproc */ ret = rproc_char_device_add(rproc); if (ret < 0) return ret; ret = device_add(dev); if (ret < 0) { put_device(dev); goto rproc_remove_cdev; } dev_info(dev, "%s is available\n", rproc->name); /* create debugfs entries */ rproc_create_debug_dir(rproc); /* if rproc is marked always-on, request it to boot */ if (rproc->auto_boot) { ret = rproc_trigger_auto_boot(rproc); if (ret < 0) goto rproc_remove_dev; } /* expose to rproc_get_by_phandle users */ mutex_lock(&rproc_list_mutex); list_add_rcu(&rproc->node, &rproc_list); mutex_unlock(&rproc_list_mutex); return 0; rproc_remove_dev: rproc_delete_debug_dir(rproc); device_del(dev); rproc_remove_cdev: rproc_char_device_remove(rproc); return ret; } EXPORT_SYMBOL(rproc_add); static void devm_rproc_remove(void *rproc) { rproc_del(rproc); } /** * devm_rproc_add() - resource managed rproc_add() * @dev: the underlying device * @rproc: the remote processor handle to register * * This function performs like rproc_add() but the registered rproc device will * automatically be removed on driver detach. * * Return: 0 on success, negative errno on failure */ int devm_rproc_add(struct device *dev, struct rproc *rproc) { int err; err = rproc_add(rproc); if (err) return err; return devm_add_action_or_reset(dev, devm_rproc_remove, rproc); } EXPORT_SYMBOL(devm_rproc_add); /** * rproc_type_release() - release a remote processor instance * @dev: the rproc's device * * This function should _never_ be called directly. * * It will be called by the driver core when no one holds a valid pointer * to @dev anymore. */ static void rproc_type_release(struct device *dev) { struct rproc *rproc = container_of(dev, struct rproc, dev); dev_info(&rproc->dev, "releasing %s\n", rproc->name); idr_destroy(&rproc->notifyids); if (rproc->index >= 0) ida_free(&rproc_dev_index, rproc->index); kfree_const(rproc->firmware); kfree_const(rproc->name); kfree(rproc->ops); kfree(rproc); } static const struct device_type rproc_type = { .name = "remoteproc", .release = rproc_type_release, }; static int rproc_alloc_firmware(struct rproc *rproc, const char *name, const char *firmware) { const char *p; /* * Allocate a firmware name if the caller gave us one to work * with. Otherwise construct a new one using a default pattern. */ if (firmware) p = kstrdup_const(firmware, GFP_KERNEL); else p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name); if (!p) return -ENOMEM; rproc->firmware = p; return 0; } static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops) { rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL); if (!rproc->ops) return -ENOMEM; /* Default to rproc_coredump if no coredump function is specified */ if (!rproc->ops->coredump) rproc->ops->coredump = rproc_coredump; if (rproc->ops->load) return 0; /* Default to ELF loader if no load function is specified */ rproc->ops->load = rproc_elf_load_segments; rproc->ops->parse_fw = rproc_elf_load_rsc_table; rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table; rproc->ops->sanity_check = rproc_elf_sanity_check; rproc->ops->get_boot_addr = rproc_elf_get_boot_addr; return 0; } /** * rproc_alloc() - allocate a remote processor handle * @dev: the underlying device * @name: name of this remote processor * @ops: platform-specific handlers (mainly start/stop) * @firmware: name of firmware file to load, can be NULL * @len: length of private data needed by the rproc driver (in bytes) * * Allocates a new remote processor handle, but does not register * it yet. if @firmware is NULL, a default name is used. * * This function should be used by rproc implementations during initialization * of the remote processor. * * After creating an rproc handle using this function, and when ready, * implementations should then call rproc_add() to complete * the registration of the remote processor. * * Note: _never_ directly deallocate @rproc, even if it was not registered * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free(). * * Return: new rproc pointer on success, and NULL on failure */ struct rproc *rproc_alloc(struct device *dev, const char *name, const struct rproc_ops *ops, const char *firmware, int len) { struct rproc *rproc; if (!dev || !name || !ops) return NULL; rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL); if (!rproc) return NULL; rproc->priv = &rproc[1]; rproc->auto_boot = true; rproc->elf_class = ELFCLASSNONE; rproc->elf_machine = EM_NONE; device_initialize(&rproc->dev); rproc->dev.parent = dev; rproc->dev.type = &rproc_type; rproc->dev.class = &rproc_class; rproc->dev.driver_data = rproc; idr_init(&rproc->notifyids); rproc->name = kstrdup_const(name, GFP_KERNEL); if (!rproc->name) goto put_device; if (rproc_alloc_firmware(rproc, name, firmware)) goto put_device; if (rproc_alloc_ops(rproc, ops)) goto put_device; /* Assign a unique device index and name */ rproc->index = ida_alloc(&rproc_dev_index, GFP_KERNEL); if (rproc->index < 0) { dev_err(dev, "ida_alloc failed: %d\n", rproc->index); goto put_device; } dev_set_name(&rproc->dev, "remoteproc%d", rproc->index); atomic_set(&rproc->power, 0); mutex_init(&rproc->lock); INIT_LIST_HEAD(&rproc->carveouts); INIT_LIST_HEAD(&rproc->mappings); INIT_LIST_HEAD(&rproc->traces); INIT_LIST_HEAD(&rproc->rvdevs); INIT_LIST_HEAD(&rproc->subdevs); INIT_LIST_HEAD(&rproc->dump_segments); INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work); rproc->state = RPROC_OFFLINE; return rproc; put_device: put_device(&rproc->dev); return NULL; } EXPORT_SYMBOL(rproc_alloc); /** * rproc_free() - unroll rproc_alloc() * @rproc: the remote processor handle * * This function decrements the rproc dev refcount. * * If no one holds any reference to rproc anymore, then its refcount would * now drop to zero, and it would be freed. */ void rproc_free(struct rproc *rproc) { put_device(&rproc->dev); } EXPORT_SYMBOL(rproc_free); /** * rproc_put() - release rproc reference * @rproc: the remote processor handle * * This function decrements the rproc dev refcount. * * If no one holds any reference to rproc anymore, then its refcount would * now drop to zero, and it would be freed. */ void rproc_put(struct rproc *rproc) { module_put(rproc->dev.parent->driver->owner); put_device(&rproc->dev); } EXPORT_SYMBOL(rproc_put); /** * rproc_del() - unregister a remote processor * @rproc: rproc handle to unregister * * This function should be called when the platform specific rproc * implementation decides to remove the rproc device. it should * _only_ be called if a previous invocation of rproc_add() * has completed successfully. * * After rproc_del() returns, @rproc isn't freed yet, because * of the outstanding reference created by rproc_alloc. To decrement that * one last refcount, one still needs to call rproc_free(). * * Return: 0 on success and -EINVAL if @rproc isn't valid */ int rproc_del(struct rproc *rproc) { if (!rproc) return -EINVAL; /* TODO: make sure this works with rproc->power > 1 */ rproc_shutdown(rproc); mutex_lock(&rproc->lock); rproc->state = RPROC_DELETED; mutex_unlock(&rproc->lock); rproc_delete_debug_dir(rproc); /* the rproc is downref'ed as soon as it's removed from the klist */ mutex_lock(&rproc_list_mutex); list_del_rcu(&rproc->node); mutex_unlock(&rproc_list_mutex); /* Ensure that no readers of rproc_list are still active */ synchronize_rcu(); device_del(&rproc->dev); rproc_char_device_remove(rproc); return 0; } EXPORT_SYMBOL(rproc_del); static void devm_rproc_free(struct device *dev, void *res) { rproc_free(*(struct rproc **)res); } /** * devm_rproc_alloc() - resource managed rproc_alloc() * @dev: the underlying device * @name: name of this remote processor * @ops: platform-specific handlers (mainly start/stop) * @firmware: name of firmware file to load, can be NULL * @len: length of private data needed by the rproc driver (in bytes) * * This function performs like rproc_alloc() but the acquired rproc device will * automatically be released on driver detach. * * Return: new rproc instance, or NULL on failure */ struct rproc *devm_rproc_alloc(struct device *dev, const char *name, const struct rproc_ops *ops, const char *firmware, int len) { struct rproc **ptr, *rproc; ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL); if (!ptr) return NULL; rproc = rproc_alloc(dev, name, ops, firmware, len); if (rproc) { *ptr = rproc; devres_add(dev, ptr); } else { devres_free(ptr); } return rproc; } EXPORT_SYMBOL(devm_rproc_alloc); /** * rproc_add_subdev() - add a subdevice to a remoteproc * @rproc: rproc handle to add the subdevice to * @subdev: subdev handle to register * * Caller is responsible for populating optional subdevice function pointers. */ void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev) { list_add_tail(&subdev->node, &rproc->subdevs); } EXPORT_SYMBOL(rproc_add_subdev); /** * rproc_remove_subdev() - remove a subdevice from a remoteproc * @rproc: rproc handle to remove the subdevice from * @subdev: subdev handle, previously registered with rproc_add_subdev() */ void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev) { list_del(&subdev->node); } EXPORT_SYMBOL(rproc_remove_subdev); /** * rproc_get_by_child() - acquire rproc handle of @dev's ancestor * @dev: child device to find ancestor of * * Return: the ancestor rproc instance, or NULL if not found */ struct rproc *rproc_get_by_child(struct device *dev) { for (dev = dev->parent; dev; dev = dev->parent) { if (dev->type == &rproc_type) return dev->driver_data; } return NULL; } EXPORT_SYMBOL(rproc_get_by_child); /** * rproc_report_crash() - rproc crash reporter function * @rproc: remote processor * @type: crash type * * This function must be called every time a crash is detected by the low-level * drivers implementing a specific remoteproc. This should not be called from a * non-remoteproc driver. * * This function can be called from atomic/interrupt context. */ void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type) { if (!rproc) { pr_err("NULL rproc pointer\n"); return; } /* Prevent suspend while the remoteproc is being recovered */ pm_stay_awake(rproc->dev.parent); dev_err(&rproc->dev, "crash detected in %s: type %s\n", rproc->name, rproc_crash_to_string(type)); queue_work(rproc_recovery_wq, &rproc->crash_handler); } EXPORT_SYMBOL(rproc_report_crash); static int rproc_panic_handler(struct notifier_block *nb, unsigned long event, void *ptr) { unsigned int longest = 0; struct rproc *rproc; unsigned int d; rcu_read_lock(); list_for_each_entry_rcu(rproc, &rproc_list, node) { if (!rproc->ops->panic) continue; if (rproc->state != RPROC_RUNNING && rproc->state != RPROC_ATTACHED) continue; d = rproc->ops->panic(rproc); longest = max(longest, d); } rcu_read_unlock(); /* * Delay for the longest requested duration before returning. This can * be used by the remoteproc drivers to give the remote processor time * to perform any requested operations (such as flush caches), when * it's not possible to signal the Linux side due to the panic. */ mdelay(longest); return NOTIFY_DONE; } static void __init rproc_init_panic(void) { rproc_panic_nb.notifier_call = rproc_panic_handler; atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb); } static void __exit rproc_exit_panic(void) { atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb); } static int __init remoteproc_init(void) { rproc_recovery_wq = alloc_workqueue("rproc_recovery_wq", WQ_UNBOUND | WQ_FREEZABLE, 0); if (!rproc_recovery_wq) { pr_err("remoteproc: creation of rproc_recovery_wq failed\n"); return -ENOMEM; } rproc_init_sysfs(); rproc_init_debugfs(); rproc_init_cdev(); rproc_init_panic(); return 0; } subsys_initcall(remoteproc_init); static void __exit remoteproc_exit(void) { ida_destroy(&rproc_dev_index); if (!rproc_recovery_wq) return; rproc_exit_panic(); rproc_exit_debugfs(); rproc_exit_sysfs(); destroy_workqueue(rproc_recovery_wq); } module_exit(remoteproc_exit); MODULE_DESCRIPTION("Generic Remote Processor Framework");
linux-master
drivers/remoteproc/remoteproc_core.c
// SPDX-License-Identifier: GPL-2.0-only /* * Qualcomm self-authenticating modem subsystem remoteproc driver * * Copyright (C) 2016 Linaro Ltd. * Copyright (C) 2014 Sony Mobile Communications AB * Copyright (c) 2012-2013, The Linux Foundation. All rights reserved. */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/devcoredump.h> #include <linux/dma-mapping.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_reserved_mem.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <linux/pm_domain.h> #include <linux/pm_runtime.h> #include <linux/regmap.h> #include <linux/regulator/consumer.h> #include <linux/remoteproc.h> #include <linux/reset.h> #include <linux/soc/qcom/mdt_loader.h> #include <linux/iopoll.h> #include <linux/slab.h> #include "remoteproc_internal.h" #include "qcom_common.h" #include "qcom_pil_info.h" #include "qcom_q6v5.h" #include <linux/firmware/qcom/qcom_scm.h> #define MPSS_CRASH_REASON_SMEM 421 #define MBA_LOG_SIZE SZ_4K #define MPSS_PAS_ID 5 /* RMB Status Register Values */ #define RMB_PBL_SUCCESS 0x1 #define RMB_MBA_XPU_UNLOCKED 0x1 #define RMB_MBA_XPU_UNLOCKED_SCRIBBLED 0x2 #define RMB_MBA_META_DATA_AUTH_SUCCESS 0x3 #define RMB_MBA_AUTH_COMPLETE 0x4 /* PBL/MBA interface registers */ #define RMB_MBA_IMAGE_REG 0x00 #define RMB_PBL_STATUS_REG 0x04 #define RMB_MBA_COMMAND_REG 0x08 #define RMB_MBA_STATUS_REG 0x0C #define RMB_PMI_META_DATA_REG 0x10 #define RMB_PMI_CODE_START_REG 0x14 #define RMB_PMI_CODE_LENGTH_REG 0x18 #define RMB_MBA_MSS_STATUS 0x40 #define RMB_MBA_ALT_RESET 0x44 #define RMB_CMD_META_DATA_READY 0x1 #define RMB_CMD_LOAD_READY 0x2 /* QDSP6SS Register Offsets */ #define QDSP6SS_RESET_REG 0x014 #define QDSP6SS_GFMUX_CTL_REG 0x020 #define QDSP6SS_PWR_CTL_REG 0x030 #define QDSP6SS_MEM_PWR_CTL 0x0B0 #define QDSP6V6SS_MEM_PWR_CTL 0x034 #define QDSP6SS_STRAP_ACC 0x110 #define QDSP6V62SS_BHS_STATUS 0x0C4 /* AXI Halt Register Offsets */ #define AXI_HALTREQ_REG 0x0 #define AXI_HALTACK_REG 0x4 #define AXI_IDLE_REG 0x8 #define AXI_GATING_VALID_OVERRIDE BIT(0) #define HALT_ACK_TIMEOUT_US 100000 /* QACCEPT Register Offsets */ #define QACCEPT_ACCEPT_REG 0x0 #define QACCEPT_ACTIVE_REG 0x4 #define QACCEPT_DENY_REG 0x8 #define QACCEPT_REQ_REG 0xC #define QACCEPT_TIMEOUT_US 50 /* QDSP6SS_RESET */ #define Q6SS_STOP_CORE BIT(0) #define Q6SS_CORE_ARES BIT(1) #define Q6SS_BUS_ARES_ENABLE BIT(2) /* QDSP6SS CBCR */ #define Q6SS_CBCR_CLKEN BIT(0) #define Q6SS_CBCR_CLKOFF BIT(31) #define Q6SS_CBCR_TIMEOUT_US 200 /* QDSP6SS_GFMUX_CTL */ #define Q6SS_CLK_ENABLE BIT(1) /* QDSP6SS_PWR_CTL */ #define Q6SS_L2DATA_SLP_NRET_N_0 BIT(0) #define Q6SS_L2DATA_SLP_NRET_N_1 BIT(1) #define Q6SS_L2DATA_SLP_NRET_N_2 BIT(2) #define Q6SS_L2TAG_SLP_NRET_N BIT(16) #define Q6SS_ETB_SLP_NRET_N BIT(17) #define Q6SS_L2DATA_STBY_N BIT(18) #define Q6SS_SLP_RET_N BIT(19) #define Q6SS_CLAMP_IO BIT(20) #define QDSS_BHS_ON BIT(21) #define QDSS_LDO_BYP BIT(22) /* QDSP6v55 parameters */ #define QDSP6V55_MEM_BITS GENMASK(16, 8) /* QDSP6v56 parameters */ #define QDSP6v56_LDO_BYP BIT(25) #define QDSP6v56_BHS_ON BIT(24) #define QDSP6v56_CLAMP_WL BIT(21) #define QDSP6v56_CLAMP_QMC_MEM BIT(22) #define QDSP6SS_XO_CBCR 0x0038 #define QDSP6SS_ACC_OVERRIDE_VAL 0x20 #define QDSP6v55_BHS_EN_REST_ACK BIT(0) /* QDSP6v65 parameters */ #define QDSP6SS_CORE_CBCR 0x20 #define QDSP6SS_SLEEP 0x3C #define QDSP6SS_BOOT_CORE_START 0x400 #define QDSP6SS_BOOT_CMD 0x404 #define BOOT_FSM_TIMEOUT 10000 #define BHS_CHECK_MAX_LOOPS 200 struct reg_info { struct regulator *reg; int uV; int uA; }; struct qcom_mss_reg_res { const char *supply; int uV; int uA; }; struct rproc_hexagon_res { const char *hexagon_mba_image; struct qcom_mss_reg_res *proxy_supply; struct qcom_mss_reg_res *fallback_proxy_supply; struct qcom_mss_reg_res *active_supply; char **proxy_clk_names; char **reset_clk_names; char **active_clk_names; char **proxy_pd_names; int version; bool need_mem_protection; bool has_alt_reset; bool has_mba_logs; bool has_spare_reg; bool has_qaccept_regs; bool has_ext_cntl_regs; bool has_vq6; }; struct q6v5 { struct device *dev; struct rproc *rproc; void __iomem *reg_base; void __iomem *rmb_base; struct regmap *halt_map; struct regmap *conn_map; u32 halt_q6; u32 halt_modem; u32 halt_nc; u32 halt_vq6; u32 conn_box; u32 qaccept_mdm; u32 qaccept_cx; u32 qaccept_axi; u32 axim1_clk_off; u32 crypto_clk_off; u32 force_clk_on; u32 rscc_disable; struct reset_control *mss_restart; struct reset_control *pdc_reset; struct qcom_q6v5 q6v5; struct clk *active_clks[8]; struct clk *reset_clks[4]; struct clk *proxy_clks[4]; struct device *proxy_pds[3]; int active_clk_count; int reset_clk_count; int proxy_clk_count; int proxy_pd_count; struct reg_info active_regs[1]; struct reg_info proxy_regs[1]; struct reg_info fallback_proxy_regs[2]; int active_reg_count; int proxy_reg_count; int fallback_proxy_reg_count; bool dump_mba_loaded; size_t current_dump_size; size_t total_dump_size; phys_addr_t mba_phys; size_t mba_size; size_t dp_size; phys_addr_t mdata_phys; size_t mdata_size; phys_addr_t mpss_phys; phys_addr_t mpss_reloc; size_t mpss_size; struct qcom_rproc_glink glink_subdev; struct qcom_rproc_subdev smd_subdev; struct qcom_rproc_ssr ssr_subdev; struct qcom_sysmon *sysmon; struct platform_device *bam_dmux; bool need_mem_protection; bool has_alt_reset; bool has_mba_logs; bool has_spare_reg; bool has_qaccept_regs; bool has_ext_cntl_regs; bool has_vq6; u64 mpss_perm; u64 mba_perm; const char *hexagon_mdt_image; int version; }; enum { MSS_MSM8909, MSS_MSM8916, MSS_MSM8953, MSS_MSM8974, MSS_MSM8996, MSS_MSM8998, MSS_SC7180, MSS_SC7280, MSS_SDM660, MSS_SDM845, }; static int q6v5_regulator_init(struct device *dev, struct reg_info *regs, const struct qcom_mss_reg_res *reg_res) { int rc; int i; if (!reg_res) return 0; for (i = 0; reg_res[i].supply; i++) { regs[i].reg = devm_regulator_get(dev, reg_res[i].supply); if (IS_ERR(regs[i].reg)) { rc = PTR_ERR(regs[i].reg); if (rc != -EPROBE_DEFER) dev_err(dev, "Failed to get %s\n regulator", reg_res[i].supply); return rc; } regs[i].uV = reg_res[i].uV; regs[i].uA = reg_res[i].uA; } return i; } static int q6v5_regulator_enable(struct q6v5 *qproc, struct reg_info *regs, int count) { int ret; int i; for (i = 0; i < count; i++) { if (regs[i].uV > 0) { ret = regulator_set_voltage(regs[i].reg, regs[i].uV, INT_MAX); if (ret) { dev_err(qproc->dev, "Failed to request voltage for %d.\n", i); goto err; } } if (regs[i].uA > 0) { ret = regulator_set_load(regs[i].reg, regs[i].uA); if (ret < 0) { dev_err(qproc->dev, "Failed to set regulator mode\n"); goto err; } } ret = regulator_enable(regs[i].reg); if (ret) { dev_err(qproc->dev, "Regulator enable failed\n"); goto err; } } return 0; err: for (; i >= 0; i--) { if (regs[i].uV > 0) regulator_set_voltage(regs[i].reg, 0, INT_MAX); if (regs[i].uA > 0) regulator_set_load(regs[i].reg, 0); regulator_disable(regs[i].reg); } return ret; } static void q6v5_regulator_disable(struct q6v5 *qproc, struct reg_info *regs, int count) { int i; for (i = 0; i < count; i++) { if (regs[i].uV > 0) regulator_set_voltage(regs[i].reg, 0, INT_MAX); if (regs[i].uA > 0) regulator_set_load(regs[i].reg, 0); regulator_disable(regs[i].reg); } } static int q6v5_clk_enable(struct device *dev, struct clk **clks, int count) { int rc; int i; for (i = 0; i < count; i++) { rc = clk_prepare_enable(clks[i]); if (rc) { dev_err(dev, "Clock enable failed\n"); goto err; } } return 0; err: for (i--; i >= 0; i--) clk_disable_unprepare(clks[i]); return rc; } static void q6v5_clk_disable(struct device *dev, struct clk **clks, int count) { int i; for (i = 0; i < count; i++) clk_disable_unprepare(clks[i]); } static int q6v5_pds_enable(struct q6v5 *qproc, struct device **pds, size_t pd_count) { int ret; int i; for (i = 0; i < pd_count; i++) { dev_pm_genpd_set_performance_state(pds[i], INT_MAX); ret = pm_runtime_get_sync(pds[i]); if (ret < 0) { pm_runtime_put_noidle(pds[i]); dev_pm_genpd_set_performance_state(pds[i], 0); goto unroll_pd_votes; } } return 0; unroll_pd_votes: for (i--; i >= 0; i--) { dev_pm_genpd_set_performance_state(pds[i], 0); pm_runtime_put(pds[i]); } return ret; } static void q6v5_pds_disable(struct q6v5 *qproc, struct device **pds, size_t pd_count) { int i; for (i = 0; i < pd_count; i++) { dev_pm_genpd_set_performance_state(pds[i], 0); pm_runtime_put(pds[i]); } } static int q6v5_xfer_mem_ownership(struct q6v5 *qproc, u64 *current_perm, bool local, bool remote, phys_addr_t addr, size_t size) { struct qcom_scm_vmperm next[2]; int perms = 0; if (!qproc->need_mem_protection) return 0; if (local == !!(*current_perm & BIT(QCOM_SCM_VMID_HLOS)) && remote == !!(*current_perm & BIT(QCOM_SCM_VMID_MSS_MSA))) return 0; if (local) { next[perms].vmid = QCOM_SCM_VMID_HLOS; next[perms].perm = QCOM_SCM_PERM_RWX; perms++; } if (remote) { next[perms].vmid = QCOM_SCM_VMID_MSS_MSA; next[perms].perm = QCOM_SCM_PERM_RW; perms++; } return qcom_scm_assign_mem(addr, ALIGN(size, SZ_4K), current_perm, next, perms); } static void q6v5_debug_policy_load(struct q6v5 *qproc, void *mba_region) { const struct firmware *dp_fw; if (request_firmware_direct(&dp_fw, "msadp", qproc->dev)) return; if (SZ_1M + dp_fw->size <= qproc->mba_size) { memcpy(mba_region + SZ_1M, dp_fw->data, dp_fw->size); qproc->dp_size = dp_fw->size; } release_firmware(dp_fw); } static int q6v5_load(struct rproc *rproc, const struct firmware *fw) { struct q6v5 *qproc = rproc->priv; void *mba_region; /* MBA is restricted to a maximum size of 1M */ if (fw->size > qproc->mba_size || fw->size > SZ_1M) { dev_err(qproc->dev, "MBA firmware load failed\n"); return -EINVAL; } mba_region = memremap(qproc->mba_phys, qproc->mba_size, MEMREMAP_WC); if (!mba_region) { dev_err(qproc->dev, "unable to map memory region: %pa+%zx\n", &qproc->mba_phys, qproc->mba_size); return -EBUSY; } memcpy(mba_region, fw->data, fw->size); q6v5_debug_policy_load(qproc, mba_region); memunmap(mba_region); return 0; } static int q6v5_reset_assert(struct q6v5 *qproc) { int ret; if (qproc->has_alt_reset) { reset_control_assert(qproc->pdc_reset); ret = reset_control_reset(qproc->mss_restart); reset_control_deassert(qproc->pdc_reset); } else if (qproc->has_spare_reg) { /* * When the AXI pipeline is being reset with the Q6 modem partly * operational there is possibility of AXI valid signal to * glitch, leading to spurious transactions and Q6 hangs. A work * around is employed by asserting the AXI_GATING_VALID_OVERRIDE * BIT before triggering Q6 MSS reset. AXI_GATING_VALID_OVERRIDE * is withdrawn post MSS assert followed by a MSS deassert, * while holding the PDC reset. */ reset_control_assert(qproc->pdc_reset); regmap_update_bits(qproc->conn_map, qproc->conn_box, AXI_GATING_VALID_OVERRIDE, 1); reset_control_assert(qproc->mss_restart); reset_control_deassert(qproc->pdc_reset); regmap_update_bits(qproc->conn_map, qproc->conn_box, AXI_GATING_VALID_OVERRIDE, 0); ret = reset_control_deassert(qproc->mss_restart); } else if (qproc->has_ext_cntl_regs) { regmap_write(qproc->conn_map, qproc->rscc_disable, 0); reset_control_assert(qproc->pdc_reset); reset_control_assert(qproc->mss_restart); reset_control_deassert(qproc->pdc_reset); ret = reset_control_deassert(qproc->mss_restart); } else { ret = reset_control_assert(qproc->mss_restart); } return ret; } static int q6v5_reset_deassert(struct q6v5 *qproc) { int ret; if (qproc->has_alt_reset) { reset_control_assert(qproc->pdc_reset); writel(1, qproc->rmb_base + RMB_MBA_ALT_RESET); ret = reset_control_reset(qproc->mss_restart); writel(0, qproc->rmb_base + RMB_MBA_ALT_RESET); reset_control_deassert(qproc->pdc_reset); } else if (qproc->has_spare_reg || qproc->has_ext_cntl_regs) { ret = reset_control_reset(qproc->mss_restart); } else { ret = reset_control_deassert(qproc->mss_restart); } return ret; } static int q6v5_rmb_pbl_wait(struct q6v5 *qproc, int ms) { unsigned long timeout; s32 val; timeout = jiffies + msecs_to_jiffies(ms); for (;;) { val = readl(qproc->rmb_base + RMB_PBL_STATUS_REG); if (val) break; if (time_after(jiffies, timeout)) return -ETIMEDOUT; msleep(1); } return val; } static int q6v5_rmb_mba_wait(struct q6v5 *qproc, u32 status, int ms) { unsigned long timeout; s32 val; timeout = jiffies + msecs_to_jiffies(ms); for (;;) { val = readl(qproc->rmb_base + RMB_MBA_STATUS_REG); if (val < 0) break; if (!status && val) break; else if (status && val == status) break; if (time_after(jiffies, timeout)) return -ETIMEDOUT; msleep(1); } return val; } static void q6v5_dump_mba_logs(struct q6v5 *qproc) { struct rproc *rproc = qproc->rproc; void *data; void *mba_region; if (!qproc->has_mba_logs) return; if (q6v5_xfer_mem_ownership(qproc, &qproc->mba_perm, true, false, qproc->mba_phys, qproc->mba_size)) return; mba_region = memremap(qproc->mba_phys, qproc->mba_size, MEMREMAP_WC); if (!mba_region) return; data = vmalloc(MBA_LOG_SIZE); if (data) { memcpy(data, mba_region, MBA_LOG_SIZE); dev_coredumpv(&rproc->dev, data, MBA_LOG_SIZE, GFP_KERNEL); } memunmap(mba_region); } static int q6v5proc_reset(struct q6v5 *qproc) { u32 val; int ret; int i; if (qproc->version == MSS_SDM845) { val = readl(qproc->reg_base + QDSP6SS_SLEEP); val |= Q6SS_CBCR_CLKEN; writel(val, qproc->reg_base + QDSP6SS_SLEEP); ret = readl_poll_timeout(qproc->reg_base + QDSP6SS_SLEEP, val, !(val & Q6SS_CBCR_CLKOFF), 1, Q6SS_CBCR_TIMEOUT_US); if (ret) { dev_err(qproc->dev, "QDSP6SS Sleep clock timed out\n"); return -ETIMEDOUT; } /* De-assert QDSP6 stop core */ writel(1, qproc->reg_base + QDSP6SS_BOOT_CORE_START); /* Trigger boot FSM */ writel(1, qproc->reg_base + QDSP6SS_BOOT_CMD); ret = readl_poll_timeout(qproc->rmb_base + RMB_MBA_MSS_STATUS, val, (val & BIT(0)) != 0, 10, BOOT_FSM_TIMEOUT); if (ret) { dev_err(qproc->dev, "Boot FSM failed to complete.\n"); /* Reset the modem so that boot FSM is in reset state */ q6v5_reset_deassert(qproc); return ret; } goto pbl_wait; } else if (qproc->version == MSS_SC7180 || qproc->version == MSS_SC7280) { val = readl(qproc->reg_base + QDSP6SS_SLEEP); val |= Q6SS_CBCR_CLKEN; writel(val, qproc->reg_base + QDSP6SS_SLEEP); ret = readl_poll_timeout(qproc->reg_base + QDSP6SS_SLEEP, val, !(val & Q6SS_CBCR_CLKOFF), 1, Q6SS_CBCR_TIMEOUT_US); if (ret) { dev_err(qproc->dev, "QDSP6SS Sleep clock timed out\n"); return -ETIMEDOUT; } /* Turn on the XO clock needed for PLL setup */ val = readl(qproc->reg_base + QDSP6SS_XO_CBCR); val |= Q6SS_CBCR_CLKEN; writel(val, qproc->reg_base + QDSP6SS_XO_CBCR); ret = readl_poll_timeout(qproc->reg_base + QDSP6SS_XO_CBCR, val, !(val & Q6SS_CBCR_CLKOFF), 1, Q6SS_CBCR_TIMEOUT_US); if (ret) { dev_err(qproc->dev, "QDSP6SS XO clock timed out\n"); return -ETIMEDOUT; } /* Configure Q6 core CBCR to auto-enable after reset sequence */ val = readl(qproc->reg_base + QDSP6SS_CORE_CBCR); val |= Q6SS_CBCR_CLKEN; writel(val, qproc->reg_base + QDSP6SS_CORE_CBCR); /* De-assert the Q6 stop core signal */ writel(1, qproc->reg_base + QDSP6SS_BOOT_CORE_START); /* Wait for 10 us for any staggering logic to settle */ usleep_range(10, 20); /* Trigger the boot FSM to start the Q6 out-of-reset sequence */ writel(1, qproc->reg_base + QDSP6SS_BOOT_CMD); /* Poll the MSS_STATUS for FSM completion */ ret = readl_poll_timeout(qproc->rmb_base + RMB_MBA_MSS_STATUS, val, (val & BIT(0)) != 0, 10, BOOT_FSM_TIMEOUT); if (ret) { dev_err(qproc->dev, "Boot FSM failed to complete.\n"); /* Reset the modem so that boot FSM is in reset state */ q6v5_reset_deassert(qproc); return ret; } goto pbl_wait; } else if (qproc->version == MSS_MSM8909 || qproc->version == MSS_MSM8953 || qproc->version == MSS_MSM8996 || qproc->version == MSS_MSM8998 || qproc->version == MSS_SDM660) { if (qproc->version != MSS_MSM8909 && qproc->version != MSS_MSM8953) /* Override the ACC value if required */ writel(QDSP6SS_ACC_OVERRIDE_VAL, qproc->reg_base + QDSP6SS_STRAP_ACC); /* Assert resets, stop core */ val = readl(qproc->reg_base + QDSP6SS_RESET_REG); val |= Q6SS_CORE_ARES | Q6SS_BUS_ARES_ENABLE | Q6SS_STOP_CORE; writel(val, qproc->reg_base + QDSP6SS_RESET_REG); /* BHS require xo cbcr to be enabled */ val = readl(qproc->reg_base + QDSP6SS_XO_CBCR); val |= Q6SS_CBCR_CLKEN; writel(val, qproc->reg_base + QDSP6SS_XO_CBCR); /* Read CLKOFF bit to go low indicating CLK is enabled */ ret = readl_poll_timeout(qproc->reg_base + QDSP6SS_XO_CBCR, val, !(val & Q6SS_CBCR_CLKOFF), 1, Q6SS_CBCR_TIMEOUT_US); if (ret) { dev_err(qproc->dev, "xo cbcr enabling timed out (rc:%d)\n", ret); return ret; } /* Enable power block headswitch and wait for it to stabilize */ val = readl(qproc->reg_base + QDSP6SS_PWR_CTL_REG); val |= QDSP6v56_BHS_ON; writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG); val |= readl(qproc->reg_base + QDSP6SS_PWR_CTL_REG); udelay(1); if (qproc->version == MSS_SDM660) { ret = readl_relaxed_poll_timeout(qproc->reg_base + QDSP6V62SS_BHS_STATUS, i, (i & QDSP6v55_BHS_EN_REST_ACK), 1, BHS_CHECK_MAX_LOOPS); if (ret == -ETIMEDOUT) { dev_err(qproc->dev, "BHS_EN_REST_ACK not set!\n"); return -ETIMEDOUT; } } /* Put LDO in bypass mode */ val |= QDSP6v56_LDO_BYP; writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG); if (qproc->version != MSS_MSM8909) { int mem_pwr_ctl; /* Deassert QDSP6 compiler memory clamp */ val = readl(qproc->reg_base + QDSP6SS_PWR_CTL_REG); val &= ~QDSP6v56_CLAMP_QMC_MEM; writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG); /* Deassert memory peripheral sleep and L2 memory standby */ val |= Q6SS_L2DATA_STBY_N | Q6SS_SLP_RET_N; writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG); /* Turn on L1, L2, ETB and JU memories 1 at a time */ if (qproc->version == MSS_MSM8953 || qproc->version == MSS_MSM8996) { mem_pwr_ctl = QDSP6SS_MEM_PWR_CTL; i = 19; } else { /* MSS_MSM8998, MSS_SDM660 */ mem_pwr_ctl = QDSP6V6SS_MEM_PWR_CTL; i = 28; } val = readl(qproc->reg_base + mem_pwr_ctl); for (; i >= 0; i--) { val |= BIT(i); writel(val, qproc->reg_base + mem_pwr_ctl); /* * Read back value to ensure the write is done then * wait for 1us for both memory peripheral and data * array to turn on. */ val |= readl(qproc->reg_base + mem_pwr_ctl); udelay(1); } } else { /* Turn on memories */ val = readl(qproc->reg_base + QDSP6SS_PWR_CTL_REG); val |= Q6SS_SLP_RET_N | Q6SS_L2DATA_STBY_N | Q6SS_ETB_SLP_NRET_N | QDSP6V55_MEM_BITS; writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG); /* Turn on L2 banks 1 at a time */ for (i = 0; i <= 7; i++) { val |= BIT(i); writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG); } } /* Remove word line clamp */ val = readl(qproc->reg_base + QDSP6SS_PWR_CTL_REG); val &= ~QDSP6v56_CLAMP_WL; writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG); } else { /* Assert resets, stop core */ val = readl(qproc->reg_base + QDSP6SS_RESET_REG); val |= Q6SS_CORE_ARES | Q6SS_BUS_ARES_ENABLE | Q6SS_STOP_CORE; writel(val, qproc->reg_base + QDSP6SS_RESET_REG); /* Enable power block headswitch and wait for it to stabilize */ val = readl(qproc->reg_base + QDSP6SS_PWR_CTL_REG); val |= QDSS_BHS_ON | QDSS_LDO_BYP; writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG); val |= readl(qproc->reg_base + QDSP6SS_PWR_CTL_REG); udelay(1); /* * Turn on memories. L2 banks should be done individually * to minimize inrush current. */ val = readl(qproc->reg_base + QDSP6SS_PWR_CTL_REG); val |= Q6SS_SLP_RET_N | Q6SS_L2TAG_SLP_NRET_N | Q6SS_ETB_SLP_NRET_N | Q6SS_L2DATA_STBY_N; writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG); val |= Q6SS_L2DATA_SLP_NRET_N_2; writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG); val |= Q6SS_L2DATA_SLP_NRET_N_1; writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG); val |= Q6SS_L2DATA_SLP_NRET_N_0; writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG); } /* Remove IO clamp */ val &= ~Q6SS_CLAMP_IO; writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG); /* Bring core out of reset */ val = readl(qproc->reg_base + QDSP6SS_RESET_REG); val &= ~Q6SS_CORE_ARES; writel(val, qproc->reg_base + QDSP6SS_RESET_REG); /* Turn on core clock */ val = readl(qproc->reg_base + QDSP6SS_GFMUX_CTL_REG); val |= Q6SS_CLK_ENABLE; writel(val, qproc->reg_base + QDSP6SS_GFMUX_CTL_REG); /* Start core execution */ val = readl(qproc->reg_base + QDSP6SS_RESET_REG); val &= ~Q6SS_STOP_CORE; writel(val, qproc->reg_base + QDSP6SS_RESET_REG); pbl_wait: /* Wait for PBL status */ ret = q6v5_rmb_pbl_wait(qproc, 1000); if (ret == -ETIMEDOUT) { dev_err(qproc->dev, "PBL boot timed out\n"); } else if (ret != RMB_PBL_SUCCESS) { dev_err(qproc->dev, "PBL returned unexpected status %d\n", ret); ret = -EINVAL; } else { ret = 0; } return ret; } static int q6v5proc_enable_qchannel(struct q6v5 *qproc, struct regmap *map, u32 offset) { unsigned int val; int ret; if (!qproc->has_qaccept_regs) return 0; if (qproc->has_ext_cntl_regs) { regmap_write(qproc->conn_map, qproc->rscc_disable, 0); regmap_write(qproc->conn_map, qproc->force_clk_on, 1); ret = regmap_read_poll_timeout(qproc->halt_map, qproc->axim1_clk_off, val, !val, 1, Q6SS_CBCR_TIMEOUT_US); if (ret) { dev_err(qproc->dev, "failed to enable axim1 clock\n"); return -ETIMEDOUT; } } regmap_write(map, offset + QACCEPT_REQ_REG, 1); /* Wait for accept */ ret = regmap_read_poll_timeout(map, offset + QACCEPT_ACCEPT_REG, val, val, 5, QACCEPT_TIMEOUT_US); if (ret) { dev_err(qproc->dev, "qchannel enable failed\n"); return -ETIMEDOUT; } return 0; } static void q6v5proc_disable_qchannel(struct q6v5 *qproc, struct regmap *map, u32 offset) { int ret; unsigned int val, retry; unsigned int nretry = 10; bool takedown_complete = false; if (!qproc->has_qaccept_regs) return; while (!takedown_complete && nretry) { nretry--; /* Wait for active transactions to complete */ regmap_read_poll_timeout(map, offset + QACCEPT_ACTIVE_REG, val, !val, 5, QACCEPT_TIMEOUT_US); /* Request Q-channel transaction takedown */ regmap_write(map, offset + QACCEPT_REQ_REG, 0); /* * If the request is denied, reset the Q-channel takedown request, * wait for active transactions to complete and retry takedown. */ retry = 10; while (retry) { usleep_range(5, 10); retry--; ret = regmap_read(map, offset + QACCEPT_DENY_REG, &val); if (!ret && val) { regmap_write(map, offset + QACCEPT_REQ_REG, 1); break; } ret = regmap_read(map, offset + QACCEPT_ACCEPT_REG, &val); if (!ret && !val) { takedown_complete = true; break; } } if (!retry) break; } /* Rely on mss_restart to clear out pending transactions on takedown failure */ if (!takedown_complete) dev_err(qproc->dev, "qchannel takedown failed\n"); } static void q6v5proc_halt_axi_port(struct q6v5 *qproc, struct regmap *halt_map, u32 offset) { unsigned int val; int ret; /* Check if we're already idle */ ret = regmap_read(halt_map, offset + AXI_IDLE_REG, &val); if (!ret && val) return; /* Assert halt request */ regmap_write(halt_map, offset + AXI_HALTREQ_REG, 1); /* Wait for halt */ regmap_read_poll_timeout(halt_map, offset + AXI_HALTACK_REG, val, val, 1000, HALT_ACK_TIMEOUT_US); ret = regmap_read(halt_map, offset + AXI_IDLE_REG, &val); if (ret || !val) dev_err(qproc->dev, "port failed halt\n"); /* Clear halt request (port will remain halted until reset) */ regmap_write(halt_map, offset + AXI_HALTREQ_REG, 0); } static int q6v5_mpss_init_image(struct q6v5 *qproc, const struct firmware *fw, const char *fw_name) { unsigned long dma_attrs = DMA_ATTR_FORCE_CONTIGUOUS; dma_addr_t phys; void *metadata; u64 mdata_perm; int xferop_ret; size_t size; void *ptr; int ret; metadata = qcom_mdt_read_metadata(fw, &size, fw_name, qproc->dev); if (IS_ERR(metadata)) return PTR_ERR(metadata); if (qproc->mdata_phys) { if (size > qproc->mdata_size) { ret = -EINVAL; dev_err(qproc->dev, "metadata size outside memory range\n"); goto free_metadata; } phys = qproc->mdata_phys; ptr = memremap(qproc->mdata_phys, size, MEMREMAP_WC); if (!ptr) { ret = -EBUSY; dev_err(qproc->dev, "unable to map memory region: %pa+%zx\n", &qproc->mdata_phys, size); goto free_metadata; } } else { ptr = dma_alloc_attrs(qproc->dev, size, &phys, GFP_KERNEL, dma_attrs); if (!ptr) { ret = -ENOMEM; dev_err(qproc->dev, "failed to allocate mdt buffer\n"); goto free_metadata; } } memcpy(ptr, metadata, size); if (qproc->mdata_phys) memunmap(ptr); /* Hypervisor mapping to access metadata by modem */ mdata_perm = BIT(QCOM_SCM_VMID_HLOS); ret = q6v5_xfer_mem_ownership(qproc, &mdata_perm, false, true, phys, size); if (ret) { dev_err(qproc->dev, "assigning Q6 access to metadata failed: %d\n", ret); ret = -EAGAIN; goto free_dma_attrs; } writel(phys, qproc->rmb_base + RMB_PMI_META_DATA_REG); writel(RMB_CMD_META_DATA_READY, qproc->rmb_base + RMB_MBA_COMMAND_REG); ret = q6v5_rmb_mba_wait(qproc, RMB_MBA_META_DATA_AUTH_SUCCESS, 1000); if (ret == -ETIMEDOUT) dev_err(qproc->dev, "MPSS header authentication timed out\n"); else if (ret < 0) dev_err(qproc->dev, "MPSS header authentication failed: %d\n", ret); /* Metadata authentication done, remove modem access */ xferop_ret = q6v5_xfer_mem_ownership(qproc, &mdata_perm, true, false, phys, size); if (xferop_ret) dev_warn(qproc->dev, "mdt buffer not reclaimed system may become unstable\n"); free_dma_attrs: if (!qproc->mdata_phys) dma_free_attrs(qproc->dev, size, ptr, phys, dma_attrs); free_metadata: kfree(metadata); return ret < 0 ? ret : 0; } static bool q6v5_phdr_valid(const struct elf32_phdr *phdr) { if (phdr->p_type != PT_LOAD) return false; if ((phdr->p_flags & QCOM_MDT_TYPE_MASK) == QCOM_MDT_TYPE_HASH) return false; if (!phdr->p_memsz) return false; return true; } static int q6v5_mba_load(struct q6v5 *qproc) { int ret; int xfermemop_ret; bool mba_load_err = false; ret = qcom_q6v5_prepare(&qproc->q6v5); if (ret) return ret; ret = q6v5_pds_enable(qproc, qproc->proxy_pds, qproc->proxy_pd_count); if (ret < 0) { dev_err(qproc->dev, "failed to enable proxy power domains\n"); goto disable_irqs; } ret = q6v5_regulator_enable(qproc, qproc->fallback_proxy_regs, qproc->fallback_proxy_reg_count); if (ret) { dev_err(qproc->dev, "failed to enable fallback proxy supplies\n"); goto disable_proxy_pds; } ret = q6v5_regulator_enable(qproc, qproc->proxy_regs, qproc->proxy_reg_count); if (ret) { dev_err(qproc->dev, "failed to enable proxy supplies\n"); goto disable_fallback_proxy_reg; } ret = q6v5_clk_enable(qproc->dev, qproc->proxy_clks, qproc->proxy_clk_count); if (ret) { dev_err(qproc->dev, "failed to enable proxy clocks\n"); goto disable_proxy_reg; } ret = q6v5_regulator_enable(qproc, qproc->active_regs, qproc->active_reg_count); if (ret) { dev_err(qproc->dev, "failed to enable supplies\n"); goto disable_proxy_clk; } ret = q6v5_clk_enable(qproc->dev, qproc->reset_clks, qproc->reset_clk_count); if (ret) { dev_err(qproc->dev, "failed to enable reset clocks\n"); goto disable_vdd; } ret = q6v5_reset_deassert(qproc); if (ret) { dev_err(qproc->dev, "failed to deassert mss restart\n"); goto disable_reset_clks; } ret = q6v5_clk_enable(qproc->dev, qproc->active_clks, qproc->active_clk_count); if (ret) { dev_err(qproc->dev, "failed to enable clocks\n"); goto assert_reset; } ret = q6v5proc_enable_qchannel(qproc, qproc->halt_map, qproc->qaccept_axi); if (ret) { dev_err(qproc->dev, "failed to enable axi bridge\n"); goto disable_active_clks; } /* * Some versions of the MBA firmware will upon boot wipe the MPSS region as well, so provide * the Q6 access to this region. */ ret = q6v5_xfer_mem_ownership(qproc, &qproc->mpss_perm, false, true, qproc->mpss_phys, qproc->mpss_size); if (ret) { dev_err(qproc->dev, "assigning Q6 access to mpss memory failed: %d\n", ret); goto disable_active_clks; } /* Assign MBA image access in DDR to q6 */ ret = q6v5_xfer_mem_ownership(qproc, &qproc->mba_perm, false, true, qproc->mba_phys, qproc->mba_size); if (ret) { dev_err(qproc->dev, "assigning Q6 access to mba memory failed: %d\n", ret); goto disable_active_clks; } writel(qproc->mba_phys, qproc->rmb_base + RMB_MBA_IMAGE_REG); if (qproc->dp_size) { writel(qproc->mba_phys + SZ_1M, qproc->rmb_base + RMB_PMI_CODE_START_REG); writel(qproc->dp_size, qproc->rmb_base + RMB_PMI_CODE_LENGTH_REG); } ret = q6v5proc_reset(qproc); if (ret) goto reclaim_mba; if (qproc->has_mba_logs) qcom_pil_info_store("mba", qproc->mba_phys, MBA_LOG_SIZE); ret = q6v5_rmb_mba_wait(qproc, 0, 5000); if (ret == -ETIMEDOUT) { dev_err(qproc->dev, "MBA boot timed out\n"); goto halt_axi_ports; } else if (ret != RMB_MBA_XPU_UNLOCKED && ret != RMB_MBA_XPU_UNLOCKED_SCRIBBLED) { dev_err(qproc->dev, "MBA returned unexpected status %d\n", ret); ret = -EINVAL; goto halt_axi_ports; } qproc->dump_mba_loaded = true; return 0; halt_axi_ports: q6v5proc_halt_axi_port(qproc, qproc->halt_map, qproc->halt_q6); if (qproc->has_vq6) q6v5proc_halt_axi_port(qproc, qproc->halt_map, qproc->halt_vq6); q6v5proc_halt_axi_port(qproc, qproc->halt_map, qproc->halt_modem); q6v5proc_halt_axi_port(qproc, qproc->halt_map, qproc->halt_nc); q6v5proc_disable_qchannel(qproc, qproc->halt_map, qproc->qaccept_mdm); q6v5proc_disable_qchannel(qproc, qproc->halt_map, qproc->qaccept_cx); q6v5proc_disable_qchannel(qproc, qproc->halt_map, qproc->qaccept_axi); mba_load_err = true; reclaim_mba: xfermemop_ret = q6v5_xfer_mem_ownership(qproc, &qproc->mba_perm, true, false, qproc->mba_phys, qproc->mba_size); if (xfermemop_ret) { dev_err(qproc->dev, "Failed to reclaim mba buffer, system may become unstable\n"); } else if (mba_load_err) { q6v5_dump_mba_logs(qproc); } disable_active_clks: q6v5_clk_disable(qproc->dev, qproc->active_clks, qproc->active_clk_count); assert_reset: q6v5_reset_assert(qproc); disable_reset_clks: q6v5_clk_disable(qproc->dev, qproc->reset_clks, qproc->reset_clk_count); disable_vdd: q6v5_regulator_disable(qproc, qproc->active_regs, qproc->active_reg_count); disable_proxy_clk: q6v5_clk_disable(qproc->dev, qproc->proxy_clks, qproc->proxy_clk_count); disable_proxy_reg: q6v5_regulator_disable(qproc, qproc->proxy_regs, qproc->proxy_reg_count); disable_fallback_proxy_reg: q6v5_regulator_disable(qproc, qproc->fallback_proxy_regs, qproc->fallback_proxy_reg_count); disable_proxy_pds: q6v5_pds_disable(qproc, qproc->proxy_pds, qproc->proxy_pd_count); disable_irqs: qcom_q6v5_unprepare(&qproc->q6v5); return ret; } static void q6v5_mba_reclaim(struct q6v5 *qproc) { int ret; u32 val; qproc->dump_mba_loaded = false; qproc->dp_size = 0; q6v5proc_halt_axi_port(qproc, qproc->halt_map, qproc->halt_q6); if (qproc->has_vq6) q6v5proc_halt_axi_port(qproc, qproc->halt_map, qproc->halt_vq6); q6v5proc_halt_axi_port(qproc, qproc->halt_map, qproc->halt_modem); q6v5proc_halt_axi_port(qproc, qproc->halt_map, qproc->halt_nc); if (qproc->version == MSS_MSM8996) { /* * To avoid high MX current during LPASS/MSS restart. */ val = readl(qproc->reg_base + QDSP6SS_PWR_CTL_REG); val |= Q6SS_CLAMP_IO | QDSP6v56_CLAMP_WL | QDSP6v56_CLAMP_QMC_MEM; writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG); } if (qproc->has_ext_cntl_regs) { regmap_write(qproc->conn_map, qproc->rscc_disable, 1); ret = regmap_read_poll_timeout(qproc->halt_map, qproc->axim1_clk_off, val, !val, 1, Q6SS_CBCR_TIMEOUT_US); if (ret) dev_err(qproc->dev, "failed to enable axim1 clock\n"); ret = regmap_read_poll_timeout(qproc->halt_map, qproc->crypto_clk_off, val, !val, 1, Q6SS_CBCR_TIMEOUT_US); if (ret) dev_err(qproc->dev, "failed to enable crypto clock\n"); } q6v5proc_disable_qchannel(qproc, qproc->halt_map, qproc->qaccept_mdm); q6v5proc_disable_qchannel(qproc, qproc->halt_map, qproc->qaccept_cx); q6v5proc_disable_qchannel(qproc, qproc->halt_map, qproc->qaccept_axi); q6v5_reset_assert(qproc); q6v5_clk_disable(qproc->dev, qproc->reset_clks, qproc->reset_clk_count); q6v5_clk_disable(qproc->dev, qproc->active_clks, qproc->active_clk_count); q6v5_regulator_disable(qproc, qproc->active_regs, qproc->active_reg_count); /* In case of failure or coredump scenario where reclaiming MBA memory * could not happen reclaim it here. */ ret = q6v5_xfer_mem_ownership(qproc, &qproc->mba_perm, true, false, qproc->mba_phys, qproc->mba_size); WARN_ON(ret); ret = qcom_q6v5_unprepare(&qproc->q6v5); if (ret) { q6v5_pds_disable(qproc, qproc->proxy_pds, qproc->proxy_pd_count); q6v5_clk_disable(qproc->dev, qproc->proxy_clks, qproc->proxy_clk_count); q6v5_regulator_disable(qproc, qproc->fallback_proxy_regs, qproc->fallback_proxy_reg_count); q6v5_regulator_disable(qproc, qproc->proxy_regs, qproc->proxy_reg_count); } } static int q6v5_reload_mba(struct rproc *rproc) { struct q6v5 *qproc = rproc->priv; const struct firmware *fw; int ret; ret = request_firmware(&fw, rproc->firmware, qproc->dev); if (ret < 0) return ret; q6v5_load(rproc, fw); ret = q6v5_mba_load(qproc); release_firmware(fw); return ret; } static int q6v5_mpss_load(struct q6v5 *qproc) { const struct elf32_phdr *phdrs; const struct elf32_phdr *phdr; const struct firmware *seg_fw; const struct firmware *fw; struct elf32_hdr *ehdr; phys_addr_t mpss_reloc; phys_addr_t boot_addr; phys_addr_t min_addr = PHYS_ADDR_MAX; phys_addr_t max_addr = 0; u32 code_length; bool relocate = false; char *fw_name; size_t fw_name_len; ssize_t offset; size_t size = 0; void *ptr; int ret; int i; fw_name_len = strlen(qproc->hexagon_mdt_image); if (fw_name_len <= 4) return -EINVAL; fw_name = kstrdup(qproc->hexagon_mdt_image, GFP_KERNEL); if (!fw_name) return -ENOMEM; ret = request_firmware(&fw, fw_name, qproc->dev); if (ret < 0) { dev_err(qproc->dev, "unable to load %s\n", fw_name); goto out; } /* Initialize the RMB validator */ writel(0, qproc->rmb_base + RMB_PMI_CODE_LENGTH_REG); ret = q6v5_mpss_init_image(qproc, fw, qproc->hexagon_mdt_image); if (ret) goto release_firmware; ehdr = (struct elf32_hdr *)fw->data; phdrs = (struct elf32_phdr *)(ehdr + 1); for (i = 0; i < ehdr->e_phnum; i++) { phdr = &phdrs[i]; if (!q6v5_phdr_valid(phdr)) continue; if (phdr->p_flags & QCOM_MDT_RELOCATABLE) relocate = true; if (phdr->p_paddr < min_addr) min_addr = phdr->p_paddr; if (phdr->p_paddr + phdr->p_memsz > max_addr) max_addr = ALIGN(phdr->p_paddr + phdr->p_memsz, SZ_4K); } if (qproc->version == MSS_MSM8953) { ret = qcom_scm_pas_mem_setup(MPSS_PAS_ID, qproc->mpss_phys, qproc->mpss_size); if (ret) { dev_err(qproc->dev, "setting up mpss memory failed: %d\n", ret); goto release_firmware; } } /* * In case of a modem subsystem restart on secure devices, the modem * memory can be reclaimed only after MBA is loaded. */ q6v5_xfer_mem_ownership(qproc, &qproc->mpss_perm, true, false, qproc->mpss_phys, qproc->mpss_size); /* Share ownership between Linux and MSS, during segment loading */ ret = q6v5_xfer_mem_ownership(qproc, &qproc->mpss_perm, true, true, qproc->mpss_phys, qproc->mpss_size); if (ret) { dev_err(qproc->dev, "assigning Q6 access to mpss memory failed: %d\n", ret); ret = -EAGAIN; goto release_firmware; } mpss_reloc = relocate ? min_addr : qproc->mpss_phys; qproc->mpss_reloc = mpss_reloc; /* Load firmware segments */ for (i = 0; i < ehdr->e_phnum; i++) { phdr = &phdrs[i]; if (!q6v5_phdr_valid(phdr)) continue; offset = phdr->p_paddr - mpss_reloc; if (offset < 0 || offset + phdr->p_memsz > qproc->mpss_size) { dev_err(qproc->dev, "segment outside memory range\n"); ret = -EINVAL; goto release_firmware; } if (phdr->p_filesz > phdr->p_memsz) { dev_err(qproc->dev, "refusing to load segment %d with p_filesz > p_memsz\n", i); ret = -EINVAL; goto release_firmware; } ptr = memremap(qproc->mpss_phys + offset, phdr->p_memsz, MEMREMAP_WC); if (!ptr) { dev_err(qproc->dev, "unable to map memory region: %pa+%zx-%x\n", &qproc->mpss_phys, offset, phdr->p_memsz); goto release_firmware; } if (phdr->p_filesz && phdr->p_offset < fw->size) { /* Firmware is large enough to be non-split */ if (phdr->p_offset + phdr->p_filesz > fw->size) { dev_err(qproc->dev, "failed to load segment %d from truncated file %s\n", i, fw_name); ret = -EINVAL; memunmap(ptr); goto release_firmware; } memcpy(ptr, fw->data + phdr->p_offset, phdr->p_filesz); } else if (phdr->p_filesz) { /* Replace "xxx.xxx" with "xxx.bxx" */ sprintf(fw_name + fw_name_len - 3, "b%02d", i); ret = request_firmware_into_buf(&seg_fw, fw_name, qproc->dev, ptr, phdr->p_filesz); if (ret) { dev_err(qproc->dev, "failed to load %s\n", fw_name); memunmap(ptr); goto release_firmware; } if (seg_fw->size != phdr->p_filesz) { dev_err(qproc->dev, "failed to load segment %d from truncated file %s\n", i, fw_name); ret = -EINVAL; release_firmware(seg_fw); memunmap(ptr); goto release_firmware; } release_firmware(seg_fw); } if (phdr->p_memsz > phdr->p_filesz) { memset(ptr + phdr->p_filesz, 0, phdr->p_memsz - phdr->p_filesz); } memunmap(ptr); size += phdr->p_memsz; code_length = readl(qproc->rmb_base + RMB_PMI_CODE_LENGTH_REG); if (!code_length) { boot_addr = relocate ? qproc->mpss_phys : min_addr; writel(boot_addr, qproc->rmb_base + RMB_PMI_CODE_START_REG); writel(RMB_CMD_LOAD_READY, qproc->rmb_base + RMB_MBA_COMMAND_REG); } writel(size, qproc->rmb_base + RMB_PMI_CODE_LENGTH_REG); ret = readl(qproc->rmb_base + RMB_MBA_STATUS_REG); if (ret < 0) { dev_err(qproc->dev, "MPSS authentication failed: %d\n", ret); goto release_firmware; } } /* Transfer ownership of modem ddr region to q6 */ ret = q6v5_xfer_mem_ownership(qproc, &qproc->mpss_perm, false, true, qproc->mpss_phys, qproc->mpss_size); if (ret) { dev_err(qproc->dev, "assigning Q6 access to mpss memory failed: %d\n", ret); ret = -EAGAIN; goto release_firmware; } ret = q6v5_rmb_mba_wait(qproc, RMB_MBA_AUTH_COMPLETE, 10000); if (ret == -ETIMEDOUT) dev_err(qproc->dev, "MPSS authentication timed out\n"); else if (ret < 0) dev_err(qproc->dev, "MPSS authentication failed: %d\n", ret); qcom_pil_info_store("modem", qproc->mpss_phys, qproc->mpss_size); release_firmware: release_firmware(fw); out: kfree(fw_name); return ret < 0 ? ret : 0; } static void qcom_q6v5_dump_segment(struct rproc *rproc, struct rproc_dump_segment *segment, void *dest, size_t cp_offset, size_t size) { int ret = 0; struct q6v5 *qproc = rproc->priv; int offset = segment->da - qproc->mpss_reloc; void *ptr = NULL; /* Unlock mba before copying segments */ if (!qproc->dump_mba_loaded) { ret = q6v5_reload_mba(rproc); if (!ret) { /* Reset ownership back to Linux to copy segments */ ret = q6v5_xfer_mem_ownership(qproc, &qproc->mpss_perm, true, false, qproc->mpss_phys, qproc->mpss_size); } } if (!ret) ptr = memremap(qproc->mpss_phys + offset + cp_offset, size, MEMREMAP_WC); if (ptr) { memcpy(dest, ptr, size); memunmap(ptr); } else { memset(dest, 0xff, size); } qproc->current_dump_size += size; /* Reclaim mba after copying segments */ if (qproc->current_dump_size == qproc->total_dump_size) { if (qproc->dump_mba_loaded) { /* Try to reset ownership back to Q6 */ q6v5_xfer_mem_ownership(qproc, &qproc->mpss_perm, false, true, qproc->mpss_phys, qproc->mpss_size); q6v5_mba_reclaim(qproc); } } } static int q6v5_start(struct rproc *rproc) { struct q6v5 *qproc = rproc->priv; int xfermemop_ret; int ret; ret = q6v5_mba_load(qproc); if (ret) return ret; dev_info(qproc->dev, "MBA booted with%s debug policy, loading mpss\n", qproc->dp_size ? "" : "out"); ret = q6v5_mpss_load(qproc); if (ret) goto reclaim_mpss; ret = qcom_q6v5_wait_for_start(&qproc->q6v5, msecs_to_jiffies(5000)); if (ret == -ETIMEDOUT) { dev_err(qproc->dev, "start timed out\n"); goto reclaim_mpss; } xfermemop_ret = q6v5_xfer_mem_ownership(qproc, &qproc->mba_perm, true, false, qproc->mba_phys, qproc->mba_size); if (xfermemop_ret) dev_err(qproc->dev, "Failed to reclaim mba buffer system may become unstable\n"); /* Reset Dump Segment Mask */ qproc->current_dump_size = 0; return 0; reclaim_mpss: q6v5_mba_reclaim(qproc); q6v5_dump_mba_logs(qproc); return ret; } static int q6v5_stop(struct rproc *rproc) { struct q6v5 *qproc = rproc->priv; int ret; ret = qcom_q6v5_request_stop(&qproc->q6v5, qproc->sysmon); if (ret == -ETIMEDOUT) dev_err(qproc->dev, "timed out on wait\n"); q6v5_mba_reclaim(qproc); return 0; } static int qcom_q6v5_register_dump_segments(struct rproc *rproc, const struct firmware *mba_fw) { const struct firmware *fw; const struct elf32_phdr *phdrs; const struct elf32_phdr *phdr; const struct elf32_hdr *ehdr; struct q6v5 *qproc = rproc->priv; unsigned long i; int ret; ret = request_firmware(&fw, qproc->hexagon_mdt_image, qproc->dev); if (ret < 0) { dev_err(qproc->dev, "unable to load %s\n", qproc->hexagon_mdt_image); return ret; } rproc_coredump_set_elf_info(rproc, ELFCLASS32, EM_NONE); ehdr = (struct elf32_hdr *)fw->data; phdrs = (struct elf32_phdr *)(ehdr + 1); qproc->total_dump_size = 0; for (i = 0; i < ehdr->e_phnum; i++) { phdr = &phdrs[i]; if (!q6v5_phdr_valid(phdr)) continue; ret = rproc_coredump_add_custom_segment(rproc, phdr->p_paddr, phdr->p_memsz, qcom_q6v5_dump_segment, NULL); if (ret) break; qproc->total_dump_size += phdr->p_memsz; } release_firmware(fw); return ret; } static unsigned long q6v5_panic(struct rproc *rproc) { struct q6v5 *qproc = rproc->priv; return qcom_q6v5_panic(&qproc->q6v5); } static const struct rproc_ops q6v5_ops = { .start = q6v5_start, .stop = q6v5_stop, .parse_fw = qcom_q6v5_register_dump_segments, .load = q6v5_load, .panic = q6v5_panic, }; static void qcom_msa_handover(struct qcom_q6v5 *q6v5) { struct q6v5 *qproc = container_of(q6v5, struct q6v5, q6v5); q6v5_clk_disable(qproc->dev, qproc->proxy_clks, qproc->proxy_clk_count); q6v5_regulator_disable(qproc, qproc->proxy_regs, qproc->proxy_reg_count); q6v5_regulator_disable(qproc, qproc->fallback_proxy_regs, qproc->fallback_proxy_reg_count); q6v5_pds_disable(qproc, qproc->proxy_pds, qproc->proxy_pd_count); } static int q6v5_init_mem(struct q6v5 *qproc, struct platform_device *pdev) { struct of_phandle_args args; int halt_cell_cnt = 3; int ret; qproc->reg_base = devm_platform_ioremap_resource_byname(pdev, "qdsp6"); if (IS_ERR(qproc->reg_base)) return PTR_ERR(qproc->reg_base); qproc->rmb_base = devm_platform_ioremap_resource_byname(pdev, "rmb"); if (IS_ERR(qproc->rmb_base)) return PTR_ERR(qproc->rmb_base); if (qproc->has_vq6) halt_cell_cnt++; ret = of_parse_phandle_with_fixed_args(pdev->dev.of_node, "qcom,halt-regs", halt_cell_cnt, 0, &args); if (ret < 0) { dev_err(&pdev->dev, "failed to parse qcom,halt-regs\n"); return -EINVAL; } qproc->halt_map = syscon_node_to_regmap(args.np); of_node_put(args.np); if (IS_ERR(qproc->halt_map)) return PTR_ERR(qproc->halt_map); qproc->halt_q6 = args.args[0]; qproc->halt_modem = args.args[1]; qproc->halt_nc = args.args[2]; if (qproc->has_vq6) qproc->halt_vq6 = args.args[3]; if (qproc->has_qaccept_regs) { ret = of_parse_phandle_with_fixed_args(pdev->dev.of_node, "qcom,qaccept-regs", 3, 0, &args); if (ret < 0) { dev_err(&pdev->dev, "failed to parse qaccept-regs\n"); return -EINVAL; } qproc->qaccept_mdm = args.args[0]; qproc->qaccept_cx = args.args[1]; qproc->qaccept_axi = args.args[2]; } if (qproc->has_ext_cntl_regs) { ret = of_parse_phandle_with_fixed_args(pdev->dev.of_node, "qcom,ext-regs", 2, 0, &args); if (ret < 0) { dev_err(&pdev->dev, "failed to parse ext-regs index 0\n"); return -EINVAL; } qproc->conn_map = syscon_node_to_regmap(args.np); of_node_put(args.np); if (IS_ERR(qproc->conn_map)) return PTR_ERR(qproc->conn_map); qproc->force_clk_on = args.args[0]; qproc->rscc_disable = args.args[1]; ret = of_parse_phandle_with_fixed_args(pdev->dev.of_node, "qcom,ext-regs", 2, 1, &args); if (ret < 0) { dev_err(&pdev->dev, "failed to parse ext-regs index 1\n"); return -EINVAL; } qproc->axim1_clk_off = args.args[0]; qproc->crypto_clk_off = args.args[1]; } if (qproc->has_spare_reg) { ret = of_parse_phandle_with_fixed_args(pdev->dev.of_node, "qcom,spare-regs", 1, 0, &args); if (ret < 0) { dev_err(&pdev->dev, "failed to parse spare-regs\n"); return -EINVAL; } qproc->conn_map = syscon_node_to_regmap(args.np); of_node_put(args.np); if (IS_ERR(qproc->conn_map)) return PTR_ERR(qproc->conn_map); qproc->conn_box = args.args[0]; } return 0; } static int q6v5_init_clocks(struct device *dev, struct clk **clks, char **clk_names) { int i; if (!clk_names) return 0; for (i = 0; clk_names[i]; i++) { clks[i] = devm_clk_get(dev, clk_names[i]); if (IS_ERR(clks[i])) { int rc = PTR_ERR(clks[i]); if (rc != -EPROBE_DEFER) dev_err(dev, "Failed to get %s clock\n", clk_names[i]); return rc; } } return i; } static int q6v5_pds_attach(struct device *dev, struct device **devs, char **pd_names) { size_t num_pds = 0; int ret; int i; if (!pd_names) return 0; while (pd_names[num_pds]) num_pds++; for (i = 0; i < num_pds; i++) { devs[i] = dev_pm_domain_attach_by_name(dev, pd_names[i]); if (IS_ERR_OR_NULL(devs[i])) { ret = PTR_ERR(devs[i]) ? : -ENODATA; goto unroll_attach; } } return num_pds; unroll_attach: for (i--; i >= 0; i--) dev_pm_domain_detach(devs[i], false); return ret; } static void q6v5_pds_detach(struct q6v5 *qproc, struct device **pds, size_t pd_count) { int i; for (i = 0; i < pd_count; i++) dev_pm_domain_detach(pds[i], false); } static int q6v5_init_reset(struct q6v5 *qproc) { qproc->mss_restart = devm_reset_control_get_exclusive(qproc->dev, "mss_restart"); if (IS_ERR(qproc->mss_restart)) { dev_err(qproc->dev, "failed to acquire mss restart\n"); return PTR_ERR(qproc->mss_restart); } if (qproc->has_alt_reset || qproc->has_spare_reg || qproc->has_ext_cntl_regs) { qproc->pdc_reset = devm_reset_control_get_exclusive(qproc->dev, "pdc_reset"); if (IS_ERR(qproc->pdc_reset)) { dev_err(qproc->dev, "failed to acquire pdc reset\n"); return PTR_ERR(qproc->pdc_reset); } } return 0; } static int q6v5_alloc_memory_region(struct q6v5 *qproc) { struct device_node *child; struct reserved_mem *rmem; struct device_node *node; /* * In the absence of mba/mpss sub-child, extract the mba and mpss * reserved memory regions from device's memory-region property. */ child = of_get_child_by_name(qproc->dev->of_node, "mba"); if (!child) { node = of_parse_phandle(qproc->dev->of_node, "memory-region", 0); } else { node = of_parse_phandle(child, "memory-region", 0); of_node_put(child); } if (!node) { dev_err(qproc->dev, "no mba memory-region specified\n"); return -EINVAL; } rmem = of_reserved_mem_lookup(node); of_node_put(node); if (!rmem) { dev_err(qproc->dev, "unable to resolve mba region\n"); return -EINVAL; } qproc->mba_phys = rmem->base; qproc->mba_size = rmem->size; if (!child) { node = of_parse_phandle(qproc->dev->of_node, "memory-region", 1); } else { child = of_get_child_by_name(qproc->dev->of_node, "mpss"); node = of_parse_phandle(child, "memory-region", 0); of_node_put(child); } if (!node) { dev_err(qproc->dev, "no mpss memory-region specified\n"); return -EINVAL; } rmem = of_reserved_mem_lookup(node); of_node_put(node); if (!rmem) { dev_err(qproc->dev, "unable to resolve mpss region\n"); return -EINVAL; } qproc->mpss_phys = qproc->mpss_reloc = rmem->base; qproc->mpss_size = rmem->size; if (!child) { node = of_parse_phandle(qproc->dev->of_node, "memory-region", 2); } else { child = of_get_child_by_name(qproc->dev->of_node, "metadata"); node = of_parse_phandle(child, "memory-region", 0); of_node_put(child); } if (!node) return 0; rmem = of_reserved_mem_lookup(node); if (!rmem) { dev_err(qproc->dev, "unable to resolve metadata region\n"); return -EINVAL; } qproc->mdata_phys = rmem->base; qproc->mdata_size = rmem->size; return 0; } static int q6v5_probe(struct platform_device *pdev) { const struct rproc_hexagon_res *desc; struct device_node *node; struct q6v5 *qproc; struct rproc *rproc; const char *mba_image; int ret; desc = of_device_get_match_data(&pdev->dev); if (!desc) return -EINVAL; if (desc->need_mem_protection && !qcom_scm_is_available()) return -EPROBE_DEFER; mba_image = desc->hexagon_mba_image; ret = of_property_read_string_index(pdev->dev.of_node, "firmware-name", 0, &mba_image); if (ret < 0 && ret != -EINVAL) { dev_err(&pdev->dev, "unable to read mba firmware-name\n"); return ret; } rproc = rproc_alloc(&pdev->dev, pdev->name, &q6v5_ops, mba_image, sizeof(*qproc)); if (!rproc) { dev_err(&pdev->dev, "failed to allocate rproc\n"); return -ENOMEM; } rproc->auto_boot = false; rproc_coredump_set_elf_info(rproc, ELFCLASS32, EM_NONE); qproc = rproc->priv; qproc->dev = &pdev->dev; qproc->rproc = rproc; qproc->hexagon_mdt_image = "modem.mdt"; ret = of_property_read_string_index(pdev->dev.of_node, "firmware-name", 1, &qproc->hexagon_mdt_image); if (ret < 0 && ret != -EINVAL) { dev_err(&pdev->dev, "unable to read mpss firmware-name\n"); goto free_rproc; } platform_set_drvdata(pdev, qproc); qproc->has_qaccept_regs = desc->has_qaccept_regs; qproc->has_ext_cntl_regs = desc->has_ext_cntl_regs; qproc->has_vq6 = desc->has_vq6; qproc->has_spare_reg = desc->has_spare_reg; ret = q6v5_init_mem(qproc, pdev); if (ret) goto free_rproc; ret = q6v5_alloc_memory_region(qproc); if (ret) goto free_rproc; ret = q6v5_init_clocks(&pdev->dev, qproc->proxy_clks, desc->proxy_clk_names); if (ret < 0) { dev_err(&pdev->dev, "Failed to get proxy clocks.\n"); goto free_rproc; } qproc->proxy_clk_count = ret; ret = q6v5_init_clocks(&pdev->dev, qproc->reset_clks, desc->reset_clk_names); if (ret < 0) { dev_err(&pdev->dev, "Failed to get reset clocks.\n"); goto free_rproc; } qproc->reset_clk_count = ret; ret = q6v5_init_clocks(&pdev->dev, qproc->active_clks, desc->active_clk_names); if (ret < 0) { dev_err(&pdev->dev, "Failed to get active clocks.\n"); goto free_rproc; } qproc->active_clk_count = ret; ret = q6v5_regulator_init(&pdev->dev, qproc->proxy_regs, desc->proxy_supply); if (ret < 0) { dev_err(&pdev->dev, "Failed to get proxy regulators.\n"); goto free_rproc; } qproc->proxy_reg_count = ret; ret = q6v5_regulator_init(&pdev->dev, qproc->active_regs, desc->active_supply); if (ret < 0) { dev_err(&pdev->dev, "Failed to get active regulators.\n"); goto free_rproc; } qproc->active_reg_count = ret; ret = q6v5_pds_attach(&pdev->dev, qproc->proxy_pds, desc->proxy_pd_names); /* Fallback to regulators for old device trees */ if (ret == -ENODATA && desc->fallback_proxy_supply) { ret = q6v5_regulator_init(&pdev->dev, qproc->fallback_proxy_regs, desc->fallback_proxy_supply); if (ret < 0) { dev_err(&pdev->dev, "Failed to get fallback proxy regulators.\n"); goto free_rproc; } qproc->fallback_proxy_reg_count = ret; } else if (ret < 0) { dev_err(&pdev->dev, "Failed to init power domains\n"); goto free_rproc; } else { qproc->proxy_pd_count = ret; } qproc->has_alt_reset = desc->has_alt_reset; ret = q6v5_init_reset(qproc); if (ret) goto detach_proxy_pds; qproc->version = desc->version; qproc->need_mem_protection = desc->need_mem_protection; qproc->has_mba_logs = desc->has_mba_logs; ret = qcom_q6v5_init(&qproc->q6v5, pdev, rproc, MPSS_CRASH_REASON_SMEM, "modem", qcom_msa_handover); if (ret) goto detach_proxy_pds; qproc->mpss_perm = BIT(QCOM_SCM_VMID_HLOS); qproc->mba_perm = BIT(QCOM_SCM_VMID_HLOS); qcom_add_glink_subdev(rproc, &qproc->glink_subdev, "mpss"); qcom_add_smd_subdev(rproc, &qproc->smd_subdev); qcom_add_ssr_subdev(rproc, &qproc->ssr_subdev, "mpss"); qproc->sysmon = qcom_add_sysmon_subdev(rproc, "modem", 0x12); if (IS_ERR(qproc->sysmon)) { ret = PTR_ERR(qproc->sysmon); goto remove_subdevs; } ret = rproc_add(rproc); if (ret) goto remove_sysmon_subdev; node = of_get_compatible_child(pdev->dev.of_node, "qcom,bam-dmux"); qproc->bam_dmux = of_platform_device_create(node, NULL, &pdev->dev); of_node_put(node); return 0; remove_sysmon_subdev: qcom_remove_sysmon_subdev(qproc->sysmon); remove_subdevs: qcom_remove_ssr_subdev(rproc, &qproc->ssr_subdev); qcom_remove_smd_subdev(rproc, &qproc->smd_subdev); qcom_remove_glink_subdev(rproc, &qproc->glink_subdev); detach_proxy_pds: q6v5_pds_detach(qproc, qproc->proxy_pds, qproc->proxy_pd_count); free_rproc: rproc_free(rproc); return ret; } static void q6v5_remove(struct platform_device *pdev) { struct q6v5 *qproc = platform_get_drvdata(pdev); struct rproc *rproc = qproc->rproc; if (qproc->bam_dmux) of_platform_device_destroy(&qproc->bam_dmux->dev, NULL); rproc_del(rproc); qcom_q6v5_deinit(&qproc->q6v5); qcom_remove_sysmon_subdev(qproc->sysmon); qcom_remove_ssr_subdev(rproc, &qproc->ssr_subdev); qcom_remove_smd_subdev(rproc, &qproc->smd_subdev); qcom_remove_glink_subdev(rproc, &qproc->glink_subdev); q6v5_pds_detach(qproc, qproc->proxy_pds, qproc->proxy_pd_count); rproc_free(rproc); } static const struct rproc_hexagon_res sc7180_mss = { .hexagon_mba_image = "mba.mbn", .proxy_clk_names = (char*[]){ "xo", NULL }, .reset_clk_names = (char*[]){ "iface", "bus", "snoc_axi", NULL }, .active_clk_names = (char*[]){ "mnoc_axi", "nav", NULL }, .proxy_pd_names = (char*[]){ "cx", "mx", "mss", NULL }, .need_mem_protection = true, .has_alt_reset = false, .has_mba_logs = true, .has_spare_reg = true, .has_qaccept_regs = false, .has_ext_cntl_regs = false, .has_vq6 = false, .version = MSS_SC7180, }; static const struct rproc_hexagon_res sc7280_mss = { .hexagon_mba_image = "mba.mbn", .proxy_clk_names = (char*[]){ "xo", "pka", NULL }, .active_clk_names = (char*[]){ "iface", "offline", "snoc_axi", NULL }, .proxy_pd_names = (char*[]){ "cx", "mss", NULL }, .need_mem_protection = true, .has_alt_reset = false, .has_mba_logs = true, .has_spare_reg = false, .has_qaccept_regs = true, .has_ext_cntl_regs = true, .has_vq6 = true, .version = MSS_SC7280, }; static const struct rproc_hexagon_res sdm660_mss = { .hexagon_mba_image = "mba.mbn", .proxy_clk_names = (char*[]){ "xo", "qdss", "mem", NULL }, .active_clk_names = (char*[]){ "iface", "bus", "gpll0_mss", "mnoc_axi", "snoc_axi", NULL }, .proxy_pd_names = (char*[]){ "cx", "mx", NULL }, .need_mem_protection = true, .has_alt_reset = false, .has_mba_logs = false, .has_spare_reg = false, .has_qaccept_regs = false, .has_ext_cntl_regs = false, .has_vq6 = false, .version = MSS_SDM660, }; static const struct rproc_hexagon_res sdm845_mss = { .hexagon_mba_image = "mba.mbn", .proxy_clk_names = (char*[]){ "xo", "prng", NULL }, .reset_clk_names = (char*[]){ "iface", "snoc_axi", NULL }, .active_clk_names = (char*[]){ "bus", "mem", "gpll0_mss", "mnoc_axi", NULL }, .proxy_pd_names = (char*[]){ "cx", "mx", "mss", NULL }, .need_mem_protection = true, .has_alt_reset = true, .has_mba_logs = false, .has_spare_reg = false, .has_qaccept_regs = false, .has_ext_cntl_regs = false, .has_vq6 = false, .version = MSS_SDM845, }; static const struct rproc_hexagon_res msm8998_mss = { .hexagon_mba_image = "mba.mbn", .proxy_clk_names = (char*[]){ "xo", "qdss", "mem", NULL }, .active_clk_names = (char*[]){ "iface", "bus", "gpll0_mss", "mnoc_axi", "snoc_axi", NULL }, .proxy_pd_names = (char*[]){ "cx", "mx", NULL }, .need_mem_protection = true, .has_alt_reset = false, .has_mba_logs = false, .has_spare_reg = false, .has_qaccept_regs = false, .has_ext_cntl_regs = false, .has_vq6 = false, .version = MSS_MSM8998, }; static const struct rproc_hexagon_res msm8996_mss = { .hexagon_mba_image = "mba.mbn", .proxy_supply = (struct qcom_mss_reg_res[]) { { .supply = "pll", .uA = 100000, }, {} }, .proxy_clk_names = (char*[]){ "xo", "pnoc", "qdss", NULL }, .active_clk_names = (char*[]){ "iface", "bus", "mem", "gpll0_mss", "snoc_axi", "mnoc_axi", NULL }, .proxy_pd_names = (char*[]){ "mx", "cx", NULL }, .need_mem_protection = true, .has_alt_reset = false, .has_mba_logs = false, .has_spare_reg = false, .has_qaccept_regs = false, .has_ext_cntl_regs = false, .has_vq6 = false, .version = MSS_MSM8996, }; static const struct rproc_hexagon_res msm8909_mss = { .hexagon_mba_image = "mba.mbn", .proxy_supply = (struct qcom_mss_reg_res[]) { { .supply = "pll", .uA = 100000, }, {} }, .proxy_clk_names = (char*[]){ "xo", NULL }, .active_clk_names = (char*[]){ "iface", "bus", "mem", NULL }, .proxy_pd_names = (char*[]){ "mx", "cx", NULL }, .need_mem_protection = false, .has_alt_reset = false, .has_mba_logs = false, .has_spare_reg = false, .has_qaccept_regs = false, .has_ext_cntl_regs = false, .has_vq6 = false, .version = MSS_MSM8909, }; static const struct rproc_hexagon_res msm8916_mss = { .hexagon_mba_image = "mba.mbn", .proxy_supply = (struct qcom_mss_reg_res[]) { { .supply = "pll", .uA = 100000, }, {} }, .fallback_proxy_supply = (struct qcom_mss_reg_res[]) { { .supply = "mx", .uV = 1050000, }, { .supply = "cx", .uA = 100000, }, {} }, .proxy_clk_names = (char*[]){ "xo", NULL }, .active_clk_names = (char*[]){ "iface", "bus", "mem", NULL }, .proxy_pd_names = (char*[]){ "mx", "cx", NULL }, .need_mem_protection = false, .has_alt_reset = false, .has_mba_logs = false, .has_spare_reg = false, .has_qaccept_regs = false, .has_ext_cntl_regs = false, .has_vq6 = false, .version = MSS_MSM8916, }; static const struct rproc_hexagon_res msm8953_mss = { .hexagon_mba_image = "mba.mbn", .proxy_supply = (struct qcom_mss_reg_res[]) { { .supply = "pll", .uA = 100000, }, {} }, .proxy_clk_names = (char*[]){ "xo", NULL }, .active_clk_names = (char*[]){ "iface", "bus", "mem", NULL }, .proxy_pd_names = (char*[]) { "cx", "mx", "mss", NULL }, .need_mem_protection = false, .has_alt_reset = false, .has_mba_logs = false, .has_spare_reg = false, .has_qaccept_regs = false, .has_ext_cntl_regs = false, .has_vq6 = false, .version = MSS_MSM8953, }; static const struct rproc_hexagon_res msm8974_mss = { .hexagon_mba_image = "mba.b00", .proxy_supply = (struct qcom_mss_reg_res[]) { { .supply = "pll", .uA = 100000, }, {} }, .fallback_proxy_supply = (struct qcom_mss_reg_res[]) { { .supply = "mx", .uV = 1050000, }, { .supply = "cx", .uA = 100000, }, {} }, .active_supply = (struct qcom_mss_reg_res[]) { { .supply = "mss", .uV = 1050000, .uA = 100000, }, {} }, .proxy_clk_names = (char*[]){ "xo", NULL }, .active_clk_names = (char*[]){ "iface", "bus", "mem", NULL }, .proxy_pd_names = (char*[]){ "mx", "cx", NULL }, .need_mem_protection = false, .has_alt_reset = false, .has_mba_logs = false, .has_spare_reg = false, .has_qaccept_regs = false, .has_ext_cntl_regs = false, .has_vq6 = false, .version = MSS_MSM8974, }; static const struct of_device_id q6v5_of_match[] = { { .compatible = "qcom,q6v5-pil", .data = &msm8916_mss}, { .compatible = "qcom,msm8909-mss-pil", .data = &msm8909_mss}, { .compatible = "qcom,msm8916-mss-pil", .data = &msm8916_mss}, { .compatible = "qcom,msm8953-mss-pil", .data = &msm8953_mss}, { .compatible = "qcom,msm8974-mss-pil", .data = &msm8974_mss}, { .compatible = "qcom,msm8996-mss-pil", .data = &msm8996_mss}, { .compatible = "qcom,msm8998-mss-pil", .data = &msm8998_mss}, { .compatible = "qcom,sc7180-mss-pil", .data = &sc7180_mss}, { .compatible = "qcom,sc7280-mss-pil", .data = &sc7280_mss}, { .compatible = "qcom,sdm660-mss-pil", .data = &sdm660_mss}, { .compatible = "qcom,sdm845-mss-pil", .data = &sdm845_mss}, { }, }; MODULE_DEVICE_TABLE(of, q6v5_of_match); static struct platform_driver q6v5_driver = { .probe = q6v5_probe, .remove_new = q6v5_remove, .driver = { .name = "qcom-q6v5-mss", .of_match_table = q6v5_of_match, }, }; module_platform_driver(q6v5_driver); MODULE_DESCRIPTION("Qualcomm Self-authenticating modem remoteproc driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/remoteproc/qcom_q6v5_mss.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2019-2020 Linaro Ltd. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/of_address.h> #include "qcom_pil_info.h" /* * The PIL relocation information region is used to communicate memory regions * occupied by co-processor firmware for post mortem crash analysis. * * It consists of an array of entries with an 8 byte textual identifier of the * region followed by a 64 bit base address and 32 bit size, both little * endian. */ #define PIL_RELOC_NAME_LEN 8 #define PIL_RELOC_ENTRY_SIZE (PIL_RELOC_NAME_LEN + sizeof(__le64) + sizeof(__le32)) struct pil_reloc { void __iomem *base; size_t num_entries; }; static struct pil_reloc _reloc __read_mostly; static DEFINE_MUTEX(pil_reloc_lock); static int qcom_pil_info_init(void) { struct device_node *np; struct resource imem; void __iomem *base; int ret; /* Already initialized? */ if (_reloc.base) return 0; np = of_find_compatible_node(NULL, NULL, "qcom,pil-reloc-info"); if (!np) return -ENOENT; ret = of_address_to_resource(np, 0, &imem); of_node_put(np); if (ret < 0) return ret; base = ioremap(imem.start, resource_size(&imem)); if (!base) { pr_err("failed to map PIL relocation info region\n"); return -ENOMEM; } memset_io(base, 0, resource_size(&imem)); _reloc.base = base; _reloc.num_entries = (u32)resource_size(&imem) / PIL_RELOC_ENTRY_SIZE; return 0; } /** * qcom_pil_info_store() - store PIL information of image in IMEM * @image: name of the image * @base: base address of the loaded image * @size: size of the loaded image * * Return: 0 on success, negative errno on failure */ int qcom_pil_info_store(const char *image, phys_addr_t base, size_t size) { char buf[PIL_RELOC_NAME_LEN]; void __iomem *entry; int ret; int i; mutex_lock(&pil_reloc_lock); ret = qcom_pil_info_init(); if (ret < 0) { mutex_unlock(&pil_reloc_lock); return ret; } for (i = 0; i < _reloc.num_entries; i++) { entry = _reloc.base + i * PIL_RELOC_ENTRY_SIZE; memcpy_fromio(buf, entry, PIL_RELOC_NAME_LEN); /* * An empty record means we didn't find it, given that the * records are packed. */ if (!buf[0]) goto found_unused; if (!strncmp(buf, image, PIL_RELOC_NAME_LEN)) goto found_existing; } pr_warn("insufficient PIL info slots\n"); mutex_unlock(&pil_reloc_lock); return -ENOMEM; found_unused: memcpy_toio(entry, image, strnlen(image, PIL_RELOC_NAME_LEN)); found_existing: /* Use two writel() as base is only aligned to 4 bytes on odd entries */ writel(base, entry + PIL_RELOC_NAME_LEN); writel((u64)base >> 32, entry + PIL_RELOC_NAME_LEN + 4); writel(size, entry + PIL_RELOC_NAME_LEN + sizeof(__le64)); mutex_unlock(&pil_reloc_lock); return 0; } EXPORT_SYMBOL_GPL(qcom_pil_info_store); static void __exit pil_reloc_exit(void) { mutex_lock(&pil_reloc_lock); iounmap(_reloc.base); _reloc.base = NULL; mutex_unlock(&pil_reloc_lock); } module_exit(pil_reloc_exit); MODULE_DESCRIPTION("Qualcomm PIL relocation info"); MODULE_LICENSE("GPL v2");
linux-master
drivers/remoteproc/qcom_pil_info.c
// SPDX-License-Identifier: GPL-2.0-only /* * Qualcomm Peripheral Image Loader helpers * * Copyright (C) 2016 Linaro Ltd * Copyright (C) 2015 Sony Mobile Communications Inc * Copyright (c) 2012-2013, The Linux Foundation. All rights reserved. */ #include <linux/firmware.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/notifier.h> #include <linux/remoteproc.h> #include <linux/remoteproc/qcom_rproc.h> #include <linux/rpmsg/qcom_glink.h> #include <linux/rpmsg/qcom_smd.h> #include <linux/slab.h> #include <linux/soc/qcom/mdt_loader.h> #include <linux/soc/qcom/smem.h> #include "remoteproc_internal.h" #include "qcom_common.h" #define to_glink_subdev(d) container_of(d, struct qcom_rproc_glink, subdev) #define to_smd_subdev(d) container_of(d, struct qcom_rproc_subdev, subdev) #define to_ssr_subdev(d) container_of(d, struct qcom_rproc_ssr, subdev) #define MAX_NUM_OF_SS 10 #define MAX_REGION_NAME_LENGTH 16 #define SBL_MINIDUMP_SMEM_ID 602 #define MINIDUMP_REGION_VALID ('V' << 24 | 'A' << 16 | 'L' << 8 | 'I' << 0) #define MINIDUMP_SS_ENCR_DONE ('D' << 24 | 'O' << 16 | 'N' << 8 | 'E' << 0) #define MINIDUMP_SS_ENABLED ('E' << 24 | 'N' << 16 | 'B' << 8 | 'L' << 0) /** * struct minidump_region - Minidump region * @name : Name of the region to be dumped * @seq_num: : Use to differentiate regions with same name. * @valid : This entry to be dumped (if set to 1) * @address : Physical address of region to be dumped * @size : Size of the region */ struct minidump_region { char name[MAX_REGION_NAME_LENGTH]; __le32 seq_num; __le32 valid; __le64 address; __le64 size; }; /** * struct minidump_subsystem - Subsystem's SMEM Table of content * @status : Subsystem toc init status * @enabled : if set to 1, this region would be copied during coredump * @encryption_status: Encryption status for this subsystem * @encryption_required : Decides to encrypt the subsystem regions or not * @region_count : Number of regions added in this subsystem toc * @regions_baseptr : regions base pointer of the subsystem */ struct minidump_subsystem { __le32 status; __le32 enabled; __le32 encryption_status; __le32 encryption_required; __le32 region_count; __le64 regions_baseptr; }; /** * struct minidump_global_toc - Global Table of Content * @status : Global Minidump init status * @md_revision : Minidump revision * @enabled : Minidump enable status * @subsystems : Array of subsystems toc */ struct minidump_global_toc { __le32 status; __le32 md_revision; __le32 enabled; struct minidump_subsystem subsystems[MAX_NUM_OF_SS]; }; struct qcom_ssr_subsystem { const char *name; struct srcu_notifier_head notifier_list; struct list_head list; }; static LIST_HEAD(qcom_ssr_subsystem_list); static DEFINE_MUTEX(qcom_ssr_subsys_lock); static void qcom_minidump_cleanup(struct rproc *rproc) { struct rproc_dump_segment *entry, *tmp; list_for_each_entry_safe(entry, tmp, &rproc->dump_segments, node) { list_del(&entry->node); kfree(entry->priv); kfree(entry); } } static int qcom_add_minidump_segments(struct rproc *rproc, struct minidump_subsystem *subsystem, void (*rproc_dumpfn_t)(struct rproc *rproc, struct rproc_dump_segment *segment, void *dest, size_t offset, size_t size)) { struct minidump_region __iomem *ptr; struct minidump_region region; int seg_cnt, i; dma_addr_t da; size_t size; char *name; if (WARN_ON(!list_empty(&rproc->dump_segments))) { dev_err(&rproc->dev, "dump segment list already populated\n"); return -EUCLEAN; } seg_cnt = le32_to_cpu(subsystem->region_count); ptr = ioremap((unsigned long)le64_to_cpu(subsystem->regions_baseptr), seg_cnt * sizeof(struct minidump_region)); if (!ptr) return -EFAULT; for (i = 0; i < seg_cnt; i++) { memcpy_fromio(&region, ptr + i, sizeof(region)); if (le32_to_cpu(region.valid) == MINIDUMP_REGION_VALID) { name = kstrndup(region.name, MAX_REGION_NAME_LENGTH - 1, GFP_KERNEL); if (!name) { iounmap(ptr); return -ENOMEM; } da = le64_to_cpu(region.address); size = le64_to_cpu(region.size); rproc_coredump_add_custom_segment(rproc, da, size, rproc_dumpfn_t, name); } } iounmap(ptr); return 0; } void qcom_minidump(struct rproc *rproc, unsigned int minidump_id, void (*rproc_dumpfn_t)(struct rproc *rproc, struct rproc_dump_segment *segment, void *dest, size_t offset, size_t size)) { int ret; struct minidump_subsystem *subsystem; struct minidump_global_toc *toc; /* Get Global minidump ToC*/ toc = qcom_smem_get(QCOM_SMEM_HOST_ANY, SBL_MINIDUMP_SMEM_ID, NULL); /* check if global table pointer exists and init is set */ if (IS_ERR(toc) || !toc->status) { dev_err(&rproc->dev, "Minidump TOC not found in SMEM\n"); return; } /* Get subsystem table of contents using the minidump id */ subsystem = &toc->subsystems[minidump_id]; /** * Collect minidump if SS ToC is valid and segment table * is initialized in memory and encryption status is set. */ if (subsystem->regions_baseptr == 0 || le32_to_cpu(subsystem->status) != 1 || le32_to_cpu(subsystem->enabled) != MINIDUMP_SS_ENABLED) { return rproc_coredump(rproc); } if (le32_to_cpu(subsystem->encryption_status) != MINIDUMP_SS_ENCR_DONE) { dev_err(&rproc->dev, "Minidump not ready, skipping\n"); return; } /** * Clear out the dump segments populated by parse_fw before * re-populating them with minidump segments. */ rproc_coredump_cleanup(rproc); ret = qcom_add_minidump_segments(rproc, subsystem, rproc_dumpfn_t); if (ret) { dev_err(&rproc->dev, "Failed with error: %d while adding minidump entries\n", ret); goto clean_minidump; } rproc_coredump_using_sections(rproc); clean_minidump: qcom_minidump_cleanup(rproc); } EXPORT_SYMBOL_GPL(qcom_minidump); static int glink_subdev_start(struct rproc_subdev *subdev) { struct qcom_rproc_glink *glink = to_glink_subdev(subdev); glink->edge = qcom_glink_smem_register(glink->dev, glink->node); return PTR_ERR_OR_ZERO(glink->edge); } static void glink_subdev_stop(struct rproc_subdev *subdev, bool crashed) { struct qcom_rproc_glink *glink = to_glink_subdev(subdev); qcom_glink_smem_unregister(glink->edge); glink->edge = NULL; } static void glink_subdev_unprepare(struct rproc_subdev *subdev) { struct qcom_rproc_glink *glink = to_glink_subdev(subdev); qcom_glink_ssr_notify(glink->ssr_name); } /** * qcom_add_glink_subdev() - try to add a GLINK subdevice to rproc * @rproc: rproc handle to parent the subdevice * @glink: reference to a GLINK subdev context * @ssr_name: identifier of the associated remoteproc for ssr notifications */ void qcom_add_glink_subdev(struct rproc *rproc, struct qcom_rproc_glink *glink, const char *ssr_name) { struct device *dev = &rproc->dev; glink->node = of_get_child_by_name(dev->parent->of_node, "glink-edge"); if (!glink->node) return; glink->ssr_name = kstrdup_const(ssr_name, GFP_KERNEL); if (!glink->ssr_name) return; glink->dev = dev; glink->subdev.start = glink_subdev_start; glink->subdev.stop = glink_subdev_stop; glink->subdev.unprepare = glink_subdev_unprepare; rproc_add_subdev(rproc, &glink->subdev); } EXPORT_SYMBOL_GPL(qcom_add_glink_subdev); /** * qcom_remove_glink_subdev() - remove a GLINK subdevice from rproc * @rproc: rproc handle * @glink: reference to a GLINK subdev context */ void qcom_remove_glink_subdev(struct rproc *rproc, struct qcom_rproc_glink *glink) { if (!glink->node) return; rproc_remove_subdev(rproc, &glink->subdev); kfree_const(glink->ssr_name); of_node_put(glink->node); } EXPORT_SYMBOL_GPL(qcom_remove_glink_subdev); /** * qcom_register_dump_segments() - register segments for coredump * @rproc: remoteproc handle * @fw: firmware header * * Register all segments of the ELF in the remoteproc coredump segment list * * Return: 0 on success, negative errno on failure. */ int qcom_register_dump_segments(struct rproc *rproc, const struct firmware *fw) { const struct elf32_phdr *phdrs; const struct elf32_phdr *phdr; const struct elf32_hdr *ehdr; int ret; int i; ehdr = (struct elf32_hdr *)fw->data; phdrs = (struct elf32_phdr *)(ehdr + 1); for (i = 0; i < ehdr->e_phnum; i++) { phdr = &phdrs[i]; if (phdr->p_type != PT_LOAD) continue; if ((phdr->p_flags & QCOM_MDT_TYPE_MASK) == QCOM_MDT_TYPE_HASH) continue; if (!phdr->p_memsz) continue; ret = rproc_coredump_add_segment(rproc, phdr->p_paddr, phdr->p_memsz); if (ret) return ret; } return 0; } EXPORT_SYMBOL_GPL(qcom_register_dump_segments); static int smd_subdev_start(struct rproc_subdev *subdev) { struct qcom_rproc_subdev *smd = to_smd_subdev(subdev); smd->edge = qcom_smd_register_edge(smd->dev, smd->node); return PTR_ERR_OR_ZERO(smd->edge); } static void smd_subdev_stop(struct rproc_subdev *subdev, bool crashed) { struct qcom_rproc_subdev *smd = to_smd_subdev(subdev); qcom_smd_unregister_edge(smd->edge); smd->edge = NULL; } /** * qcom_add_smd_subdev() - try to add a SMD subdevice to rproc * @rproc: rproc handle to parent the subdevice * @smd: reference to a Qualcomm subdev context */ void qcom_add_smd_subdev(struct rproc *rproc, struct qcom_rproc_subdev *smd) { struct device *dev = &rproc->dev; smd->node = of_get_child_by_name(dev->parent->of_node, "smd-edge"); if (!smd->node) return; smd->dev = dev; smd->subdev.start = smd_subdev_start; smd->subdev.stop = smd_subdev_stop; rproc_add_subdev(rproc, &smd->subdev); } EXPORT_SYMBOL_GPL(qcom_add_smd_subdev); /** * qcom_remove_smd_subdev() - remove the smd subdevice from rproc * @rproc: rproc handle * @smd: the SMD subdevice to remove */ void qcom_remove_smd_subdev(struct rproc *rproc, struct qcom_rproc_subdev *smd) { if (!smd->node) return; rproc_remove_subdev(rproc, &smd->subdev); of_node_put(smd->node); } EXPORT_SYMBOL_GPL(qcom_remove_smd_subdev); static struct qcom_ssr_subsystem *qcom_ssr_get_subsys(const char *name) { struct qcom_ssr_subsystem *info; mutex_lock(&qcom_ssr_subsys_lock); /* Match in the global qcom_ssr_subsystem_list with name */ list_for_each_entry(info, &qcom_ssr_subsystem_list, list) if (!strcmp(info->name, name)) goto out; info = kzalloc(sizeof(*info), GFP_KERNEL); if (!info) { info = ERR_PTR(-ENOMEM); goto out; } info->name = kstrdup_const(name, GFP_KERNEL); srcu_init_notifier_head(&info->notifier_list); /* Add to global notification list */ list_add_tail(&info->list, &qcom_ssr_subsystem_list); out: mutex_unlock(&qcom_ssr_subsys_lock); return info; } /** * qcom_register_ssr_notifier() - register SSR notification handler * @name: Subsystem's SSR name * @nb: notifier_block to be invoked upon subsystem's state change * * This registers the @nb notifier block as part the notifier chain for a * remoteproc associated with @name. The notifier block's callback * will be invoked when the remote processor's SSR events occur * (pre/post startup and pre/post shutdown). * * Return: a subsystem cookie on success, ERR_PTR on failure. */ void *qcom_register_ssr_notifier(const char *name, struct notifier_block *nb) { struct qcom_ssr_subsystem *info; info = qcom_ssr_get_subsys(name); if (IS_ERR(info)) return info; srcu_notifier_chain_register(&info->notifier_list, nb); return &info->notifier_list; } EXPORT_SYMBOL_GPL(qcom_register_ssr_notifier); /** * qcom_unregister_ssr_notifier() - unregister SSR notification handler * @notify: subsystem cookie returned from qcom_register_ssr_notifier * @nb: notifier_block to unregister * * This function will unregister the notifier from the particular notifier * chain. * * Return: 0 on success, %ENOENT otherwise. */ int qcom_unregister_ssr_notifier(void *notify, struct notifier_block *nb) { return srcu_notifier_chain_unregister(notify, nb); } EXPORT_SYMBOL_GPL(qcom_unregister_ssr_notifier); static int ssr_notify_prepare(struct rproc_subdev *subdev) { struct qcom_rproc_ssr *ssr = to_ssr_subdev(subdev); struct qcom_ssr_notify_data data = { .name = ssr->info->name, .crashed = false, }; srcu_notifier_call_chain(&ssr->info->notifier_list, QCOM_SSR_BEFORE_POWERUP, &data); return 0; } static int ssr_notify_start(struct rproc_subdev *subdev) { struct qcom_rproc_ssr *ssr = to_ssr_subdev(subdev); struct qcom_ssr_notify_data data = { .name = ssr->info->name, .crashed = false, }; srcu_notifier_call_chain(&ssr->info->notifier_list, QCOM_SSR_AFTER_POWERUP, &data); return 0; } static void ssr_notify_stop(struct rproc_subdev *subdev, bool crashed) { struct qcom_rproc_ssr *ssr = to_ssr_subdev(subdev); struct qcom_ssr_notify_data data = { .name = ssr->info->name, .crashed = crashed, }; srcu_notifier_call_chain(&ssr->info->notifier_list, QCOM_SSR_BEFORE_SHUTDOWN, &data); } static void ssr_notify_unprepare(struct rproc_subdev *subdev) { struct qcom_rproc_ssr *ssr = to_ssr_subdev(subdev); struct qcom_ssr_notify_data data = { .name = ssr->info->name, .crashed = false, }; srcu_notifier_call_chain(&ssr->info->notifier_list, QCOM_SSR_AFTER_SHUTDOWN, &data); } /** * qcom_add_ssr_subdev() - register subdevice as restart notification source * @rproc: rproc handle * @ssr: SSR subdevice handle * @ssr_name: identifier to use for notifications originating from @rproc * * As the @ssr is registered with the @rproc SSR events will be sent to all * registered listeners for the remoteproc when it's SSR events occur * (pre/post startup and pre/post shutdown). */ void qcom_add_ssr_subdev(struct rproc *rproc, struct qcom_rproc_ssr *ssr, const char *ssr_name) { struct qcom_ssr_subsystem *info; info = qcom_ssr_get_subsys(ssr_name); if (IS_ERR(info)) { dev_err(&rproc->dev, "Failed to add ssr subdevice\n"); return; } ssr->info = info; ssr->subdev.prepare = ssr_notify_prepare; ssr->subdev.start = ssr_notify_start; ssr->subdev.stop = ssr_notify_stop; ssr->subdev.unprepare = ssr_notify_unprepare; rproc_add_subdev(rproc, &ssr->subdev); } EXPORT_SYMBOL_GPL(qcom_add_ssr_subdev); /** * qcom_remove_ssr_subdev() - remove subdevice as restart notification source * @rproc: rproc handle * @ssr: SSR subdevice handle */ void qcom_remove_ssr_subdev(struct rproc *rproc, struct qcom_rproc_ssr *ssr) { rproc_remove_subdev(rproc, &ssr->subdev); ssr->info = NULL; } EXPORT_SYMBOL_GPL(qcom_remove_ssr_subdev); MODULE_DESCRIPTION("Qualcomm Remoteproc helper driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/remoteproc/qcom_common.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2020 Martin Blumenstingl <[email protected]> */ #include <linux/bitfield.h> #include <linux/bitops.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/genalloc.h> #include <linux/io.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/property.h> #include <linux/regmap.h> #include <linux/remoteproc.h> #include <linux/reset.h> #include <linux/sizes.h> #include "remoteproc_internal.h" #define AO_REMAP_REG0 0x0 #define AO_REMAP_REG0_REMAP_AHB_SRAM_BITS_17_14_FOR_ARM_CPU GENMASK(3, 0) #define AO_REMAP_REG1 0x4 #define AO_REMAP_REG1_MOVE_AHB_SRAM_TO_0X0_INSTEAD_OF_DDR BIT(4) #define AO_REMAP_REG1_REMAP_AHB_SRAM_BITS_17_14_FOR_MEDIA_CPU GENMASK(3, 0) #define AO_CPU_CNTL 0x0 #define AO_CPU_CNTL_AHB_SRAM_BITS_31_20 GENMASK(28, 16) #define AO_CPU_CNTL_HALT BIT(9) #define AO_CPU_CNTL_UNKNONWN BIT(8) #define AO_CPU_CNTL_RUN BIT(0) #define AO_CPU_STAT 0x4 #define AO_SECURE_REG0 0x0 #define AO_SECURE_REG0_AHB_SRAM_BITS_19_12 GENMASK(15, 8) /* Only bits [31:20] and [17:14] are usable, all other bits must be zero */ #define MESON_AO_RPROC_SRAM_USABLE_BITS 0xfff3c000ULL #define MESON_AO_RPROC_MEMORY_OFFSET 0x10000000 struct meson_mx_ao_arc_rproc_priv { void __iomem *remap_base; void __iomem *cpu_base; unsigned long sram_va; phys_addr_t sram_pa; size_t sram_size; struct gen_pool *sram_pool; struct reset_control *arc_reset; struct clk *arc_pclk; struct regmap *secbus2_regmap; }; static int meson_mx_ao_arc_rproc_start(struct rproc *rproc) { struct meson_mx_ao_arc_rproc_priv *priv = rproc->priv; phys_addr_t translated_sram_addr; u32 tmp; int ret; ret = clk_prepare_enable(priv->arc_pclk); if (ret) return ret; tmp = FIELD_PREP(AO_REMAP_REG0_REMAP_AHB_SRAM_BITS_17_14_FOR_ARM_CPU, priv->sram_pa >> 14); writel(tmp, priv->remap_base + AO_REMAP_REG0); /* * The SRAM content as seen by the ARC core always starts at 0x0 * regardless of the value given here (this was discovered by trial and * error). For SoCs older than Meson6 we probably have to set * AO_REMAP_REG1_MOVE_AHB_SRAM_TO_0X0_INSTEAD_OF_DDR to achieve the * same. (At least) For Meson8 and newer that bit must not be set. */ writel(0x0, priv->remap_base + AO_REMAP_REG1); regmap_update_bits(priv->secbus2_regmap, AO_SECURE_REG0, AO_SECURE_REG0_AHB_SRAM_BITS_19_12, FIELD_PREP(AO_SECURE_REG0_AHB_SRAM_BITS_19_12, priv->sram_pa >> 12)); ret = reset_control_reset(priv->arc_reset); if (ret) { clk_disable_unprepare(priv->arc_pclk); return ret; } usleep_range(10, 100); /* * Convert from 0xd9000000 to 0xc9000000 as the vendor driver does. * This only seems to be relevant for the AO_CPU_CNTL register. It is * unknown why this is needed. */ translated_sram_addr = priv->sram_pa - MESON_AO_RPROC_MEMORY_OFFSET; tmp = FIELD_PREP(AO_CPU_CNTL_AHB_SRAM_BITS_31_20, translated_sram_addr >> 20); tmp |= AO_CPU_CNTL_UNKNONWN | AO_CPU_CNTL_RUN; writel(tmp, priv->cpu_base + AO_CPU_CNTL); usleep_range(20, 200); return 0; } static int meson_mx_ao_arc_rproc_stop(struct rproc *rproc) { struct meson_mx_ao_arc_rproc_priv *priv = rproc->priv; writel(AO_CPU_CNTL_HALT, priv->cpu_base + AO_CPU_CNTL); clk_disable_unprepare(priv->arc_pclk); return 0; } static void *meson_mx_ao_arc_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) { struct meson_mx_ao_arc_rproc_priv *priv = rproc->priv; /* The memory from the ARC core's perspective always starts at 0x0. */ if ((da + len) > priv->sram_size) return NULL; return (void *)priv->sram_va + da; } static struct rproc_ops meson_mx_ao_arc_rproc_ops = { .start = meson_mx_ao_arc_rproc_start, .stop = meson_mx_ao_arc_rproc_stop, .da_to_va = meson_mx_ao_arc_rproc_da_to_va, .get_boot_addr = rproc_elf_get_boot_addr, .load = rproc_elf_load_segments, .sanity_check = rproc_elf_sanity_check, }; static int meson_mx_ao_arc_rproc_probe(struct platform_device *pdev) { struct meson_mx_ao_arc_rproc_priv *priv; struct device *dev = &pdev->dev; const char *fw_name = NULL; struct rproc *rproc; int ret; device_property_read_string(dev, "firmware-name", &fw_name); rproc = devm_rproc_alloc(dev, "meson-mx-ao-arc", &meson_mx_ao_arc_rproc_ops, fw_name, sizeof(*priv)); if (!rproc) return -ENOMEM; rproc->has_iommu = false; priv = rproc->priv; priv->sram_pool = of_gen_pool_get(dev->of_node, "sram", 0); if (!priv->sram_pool) { dev_err(dev, "Could not get SRAM pool\n"); return -ENODEV; } priv->sram_size = gen_pool_avail(priv->sram_pool); priv->sram_va = gen_pool_alloc(priv->sram_pool, priv->sram_size); if (!priv->sram_va) { dev_err(dev, "Could not alloc memory in SRAM pool\n"); return -ENOMEM; } priv->sram_pa = gen_pool_virt_to_phys(priv->sram_pool, priv->sram_va); if (priv->sram_pa & ~MESON_AO_RPROC_SRAM_USABLE_BITS) { dev_err(dev, "SRAM address contains unusable bits\n"); ret = -EINVAL; goto err_free_genpool; } priv->secbus2_regmap = syscon_regmap_lookup_by_phandle(dev->of_node, "amlogic,secbus2"); if (IS_ERR(priv->secbus2_regmap)) { dev_err(dev, "Failed to find SECBUS2 regmap\n"); ret = PTR_ERR(priv->secbus2_regmap); goto err_free_genpool; } priv->remap_base = devm_platform_ioremap_resource_byname(pdev, "remap"); if (IS_ERR(priv->remap_base)) { ret = PTR_ERR(priv->remap_base); goto err_free_genpool; } priv->cpu_base = devm_platform_ioremap_resource_byname(pdev, "cpu"); if (IS_ERR(priv->cpu_base)) { ret = PTR_ERR(priv->cpu_base); goto err_free_genpool; } priv->arc_reset = devm_reset_control_get_exclusive(dev, NULL); if (IS_ERR(priv->arc_reset)) { dev_err(dev, "Failed to get ARC reset\n"); ret = PTR_ERR(priv->arc_reset); goto err_free_genpool; } priv->arc_pclk = devm_clk_get(dev, NULL); if (IS_ERR(priv->arc_pclk)) { dev_err(dev, "Failed to get the ARC PCLK\n"); ret = PTR_ERR(priv->arc_pclk); goto err_free_genpool; } platform_set_drvdata(pdev, rproc); ret = rproc_add(rproc); if (ret) goto err_free_genpool; return 0; err_free_genpool: gen_pool_free(priv->sram_pool, priv->sram_va, priv->sram_size); return ret; } static void meson_mx_ao_arc_rproc_remove(struct platform_device *pdev) { struct rproc *rproc = platform_get_drvdata(pdev); struct meson_mx_ao_arc_rproc_priv *priv = rproc->priv; rproc_del(rproc); gen_pool_free(priv->sram_pool, priv->sram_va, priv->sram_size); } static const struct of_device_id meson_mx_ao_arc_rproc_match[] = { { .compatible = "amlogic,meson8-ao-arc" }, { .compatible = "amlogic,meson8b-ao-arc" }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, meson_mx_ao_arc_rproc_match); static struct platform_driver meson_mx_ao_arc_rproc_driver = { .probe = meson_mx_ao_arc_rproc_probe, .remove_new = meson_mx_ao_arc_rproc_remove, .driver = { .name = "meson-mx-ao-arc-rproc", .of_match_table = meson_mx_ao_arc_rproc_match, }, }; module_platform_driver(meson_mx_ao_arc_rproc_driver); MODULE_DESCRIPTION("Amlogic Meson6/8/8b/8m2 AO ARC remote processor driver"); MODULE_AUTHOR("Martin Blumenstingl <[email protected]>"); MODULE_LICENSE("GPL v2");
linux-master
drivers/remoteproc/meson_mx_ao_arc.c
// SPDX-License-Identifier: GPL-2.0-only /* Copyright 2021 NXP */ #include <dt-bindings/firmware/imx/rsrc.h> #include <linux/arm-smccc.h> #include <linux/clk.h> #include <linux/err.h> #include <linux/firmware.h> #include <linux/firmware/imx/sci.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/mailbox_client.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_reserved_mem.h> #include <linux/platform_device.h> #include <linux/pm_domain.h> #include <linux/pm_runtime.h> #include <linux/regmap.h> #include <linux/remoteproc.h> #include <linux/slab.h> #include "imx_rproc.h" #include "remoteproc_elf_helpers.h" #include "remoteproc_internal.h" #define DSP_RPROC_CLK_MAX 5 /* * Module parameters */ static unsigned int no_mailboxes; module_param_named(no_mailboxes, no_mailboxes, int, 0644); MODULE_PARM_DESC(no_mailboxes, "There is no mailbox between cores, so ignore remote proc reply after start, default is 0 (off)."); #define REMOTE_IS_READY BIT(0) #define REMOTE_READY_WAIT_MAX_RETRIES 500 /* att flags */ /* DSP own area */ #define ATT_OWN BIT(31) /* DSP instruction area */ #define ATT_IRAM BIT(30) /* Definitions for i.MX8MP */ /* DAP registers */ #define IMX8M_DAP_DEBUG 0x28800000 #define IMX8M_DAP_DEBUG_SIZE (64 * 1024) #define IMX8M_DAP_PWRCTL (0x4000 + 0x3020) #define IMX8M_PWRCTL_CORERESET BIT(16) /* DSP audio mix registers */ #define IMX8M_AudioDSP_REG0 0x100 #define IMX8M_AudioDSP_REG1 0x104 #define IMX8M_AudioDSP_REG2 0x108 #define IMX8M_AudioDSP_REG3 0x10c #define IMX8M_AudioDSP_REG2_RUNSTALL BIT(5) #define IMX8M_AudioDSP_REG2_PWAITMODE BIT(1) /* Definitions for i.MX8ULP */ #define IMX8ULP_SIM_LPAV_REG_SYSCTRL0 0x8 #define IMX8ULP_SYSCTRL0_DSP_DBG_RST BIT(25) #define IMX8ULP_SYSCTRL0_DSP_PLAT_CLK_EN BIT(19) #define IMX8ULP_SYSCTRL0_DSP_PBCLK_EN BIT(18) #define IMX8ULP_SYSCTRL0_DSP_CLK_EN BIT(17) #define IMX8ULP_SYSCTRL0_DSP_RST BIT(16) #define IMX8ULP_SYSCTRL0_DSP_OCD_HALT BIT(14) #define IMX8ULP_SYSCTRL0_DSP_STALL BIT(13) #define IMX8ULP_SIP_HIFI_XRDC 0xc200000e /* * enum - Predefined Mailbox Messages * * @RP_MBOX_SUSPEND_SYSTEM: system suspend request for the remote processor * * @RP_MBOX_SUSPEND_ACK: successful response from remote processor for a * suspend request * * @RP_MBOX_RESUME_SYSTEM: system resume request for the remote processor * * @RP_MBOX_RESUME_ACK: successful response from remote processor for a * resume request */ enum imx_dsp_rp_mbox_messages { RP_MBOX_SUSPEND_SYSTEM = 0xFF11, RP_MBOX_SUSPEND_ACK = 0xFF12, RP_MBOX_RESUME_SYSTEM = 0xFF13, RP_MBOX_RESUME_ACK = 0xFF14, }; /** * struct imx_dsp_rproc - DSP remote processor state * @regmap: regmap handler * @rproc: rproc handler * @dsp_dcfg: device configuration pointer * @clks: clocks needed by this device * @cl: mailbox client to request the mailbox channel * @cl_rxdb: mailbox client to request the mailbox channel for doorbell * @tx_ch: mailbox tx channel handle * @rx_ch: mailbox rx channel handle * @rxdb_ch: mailbox rx doorbell channel handle * @pd_dev: power domain device * @pd_dev_link: power domain device link * @ipc_handle: System Control Unit ipc handle * @rproc_work: work for processing virtio interrupts * @pm_comp: completion primitive to sync for suspend response * @num_domains: power domain number * @flags: control flags */ struct imx_dsp_rproc { struct regmap *regmap; struct rproc *rproc; const struct imx_dsp_rproc_dcfg *dsp_dcfg; struct clk_bulk_data clks[DSP_RPROC_CLK_MAX]; struct mbox_client cl; struct mbox_client cl_rxdb; struct mbox_chan *tx_ch; struct mbox_chan *rx_ch; struct mbox_chan *rxdb_ch; struct device **pd_dev; struct device_link **pd_dev_link; struct imx_sc_ipc *ipc_handle; struct work_struct rproc_work; struct completion pm_comp; int num_domains; u32 flags; }; /** * struct imx_dsp_rproc_dcfg - DSP remote processor configuration * @dcfg: imx_rproc_dcfg handler * @reset: reset callback function */ struct imx_dsp_rproc_dcfg { const struct imx_rproc_dcfg *dcfg; int (*reset)(struct imx_dsp_rproc *priv); }; static const struct imx_rproc_att imx_dsp_rproc_att_imx8qm[] = { /* dev addr , sys addr , size , flags */ { 0x596e8000, 0x556e8000, 0x00008000, ATT_OWN }, { 0x596f0000, 0x556f0000, 0x00008000, ATT_OWN }, { 0x596f8000, 0x556f8000, 0x00000800, ATT_OWN | ATT_IRAM}, { 0x55700000, 0x55700000, 0x00070000, ATT_OWN }, /* DDR (Data) */ { 0x80000000, 0x80000000, 0x60000000, 0}, }; static const struct imx_rproc_att imx_dsp_rproc_att_imx8qxp[] = { /* dev addr , sys addr , size , flags */ { 0x596e8000, 0x596e8000, 0x00008000, ATT_OWN }, { 0x596f0000, 0x596f0000, 0x00008000, ATT_OWN }, { 0x596f8000, 0x596f8000, 0x00000800, ATT_OWN | ATT_IRAM}, { 0x59700000, 0x59700000, 0x00070000, ATT_OWN }, /* DDR (Data) */ { 0x80000000, 0x80000000, 0x60000000, 0}, }; static const struct imx_rproc_att imx_dsp_rproc_att_imx8mp[] = { /* dev addr , sys addr , size , flags */ { 0x3b6e8000, 0x3b6e8000, 0x00008000, ATT_OWN }, { 0x3b6f0000, 0x3b6f0000, 0x00008000, ATT_OWN }, { 0x3b6f8000, 0x3b6f8000, 0x00000800, ATT_OWN | ATT_IRAM}, { 0x3b700000, 0x3b700000, 0x00040000, ATT_OWN }, /* DDR (Data) */ { 0x40000000, 0x40000000, 0x80000000, 0}, }; static const struct imx_rproc_att imx_dsp_rproc_att_imx8ulp[] = { /* dev addr , sys addr , size , flags */ { 0x21170000, 0x21170000, 0x00010000, ATT_OWN | ATT_IRAM}, { 0x21180000, 0x21180000, 0x00010000, ATT_OWN }, /* DDR (Data) */ { 0x0c000000, 0x80000000, 0x10000000, 0}, { 0x30000000, 0x90000000, 0x10000000, 0}, }; /* Initialize the mailboxes between cores, if exists */ static int (*imx_dsp_rproc_mbox_init)(struct imx_dsp_rproc *priv); /* Reset function for DSP on i.MX8MP */ static int imx8mp_dsp_reset(struct imx_dsp_rproc *priv) { void __iomem *dap = ioremap_wc(IMX8M_DAP_DEBUG, IMX8M_DAP_DEBUG_SIZE); int pwrctl; /* Put DSP into reset and stall */ pwrctl = readl(dap + IMX8M_DAP_PWRCTL); pwrctl |= IMX8M_PWRCTL_CORERESET; writel(pwrctl, dap + IMX8M_DAP_PWRCTL); /* Keep reset asserted for 10 cycles */ usleep_range(1, 2); regmap_update_bits(priv->regmap, IMX8M_AudioDSP_REG2, IMX8M_AudioDSP_REG2_RUNSTALL, IMX8M_AudioDSP_REG2_RUNSTALL); /* Take the DSP out of reset and keep stalled for FW loading */ pwrctl = readl(dap + IMX8M_DAP_PWRCTL); pwrctl &= ~IMX8M_PWRCTL_CORERESET; writel(pwrctl, dap + IMX8M_DAP_PWRCTL); iounmap(dap); return 0; } /* Reset function for DSP on i.MX8ULP */ static int imx8ulp_dsp_reset(struct imx_dsp_rproc *priv) { struct arm_smccc_res res; /* Put DSP into reset and stall */ regmap_update_bits(priv->regmap, IMX8ULP_SIM_LPAV_REG_SYSCTRL0, IMX8ULP_SYSCTRL0_DSP_RST, IMX8ULP_SYSCTRL0_DSP_RST); regmap_update_bits(priv->regmap, IMX8ULP_SIM_LPAV_REG_SYSCTRL0, IMX8ULP_SYSCTRL0_DSP_STALL, IMX8ULP_SYSCTRL0_DSP_STALL); /* Configure resources of DSP through TFA */ arm_smccc_smc(IMX8ULP_SIP_HIFI_XRDC, 0, 0, 0, 0, 0, 0, 0, &res); /* Take the DSP out of reset and keep stalled for FW loading */ regmap_update_bits(priv->regmap, IMX8ULP_SIM_LPAV_REG_SYSCTRL0, IMX8ULP_SYSCTRL0_DSP_RST, 0); regmap_update_bits(priv->regmap, IMX8ULP_SIM_LPAV_REG_SYSCTRL0, IMX8ULP_SYSCTRL0_DSP_DBG_RST, 0); return 0; } /* Specific configuration for i.MX8MP */ static const struct imx_rproc_dcfg dsp_rproc_cfg_imx8mp = { .src_reg = IMX8M_AudioDSP_REG2, .src_mask = IMX8M_AudioDSP_REG2_RUNSTALL, .src_start = 0, .src_stop = IMX8M_AudioDSP_REG2_RUNSTALL, .att = imx_dsp_rproc_att_imx8mp, .att_size = ARRAY_SIZE(imx_dsp_rproc_att_imx8mp), .method = IMX_RPROC_MMIO, }; static const struct imx_dsp_rproc_dcfg imx_dsp_rproc_cfg_imx8mp = { .dcfg = &dsp_rproc_cfg_imx8mp, .reset = imx8mp_dsp_reset, }; /* Specific configuration for i.MX8ULP */ static const struct imx_rproc_dcfg dsp_rproc_cfg_imx8ulp = { .src_reg = IMX8ULP_SIM_LPAV_REG_SYSCTRL0, .src_mask = IMX8ULP_SYSCTRL0_DSP_STALL, .src_start = 0, .src_stop = IMX8ULP_SYSCTRL0_DSP_STALL, .att = imx_dsp_rproc_att_imx8ulp, .att_size = ARRAY_SIZE(imx_dsp_rproc_att_imx8ulp), .method = IMX_RPROC_MMIO, }; static const struct imx_dsp_rproc_dcfg imx_dsp_rproc_cfg_imx8ulp = { .dcfg = &dsp_rproc_cfg_imx8ulp, .reset = imx8ulp_dsp_reset, }; /* Specific configuration for i.MX8QXP */ static const struct imx_rproc_dcfg dsp_rproc_cfg_imx8qxp = { .att = imx_dsp_rproc_att_imx8qxp, .att_size = ARRAY_SIZE(imx_dsp_rproc_att_imx8qxp), .method = IMX_RPROC_SCU_API, }; static const struct imx_dsp_rproc_dcfg imx_dsp_rproc_cfg_imx8qxp = { .dcfg = &dsp_rproc_cfg_imx8qxp, }; /* Specific configuration for i.MX8QM */ static const struct imx_rproc_dcfg dsp_rproc_cfg_imx8qm = { .att = imx_dsp_rproc_att_imx8qm, .att_size = ARRAY_SIZE(imx_dsp_rproc_att_imx8qm), .method = IMX_RPROC_SCU_API, }; static const struct imx_dsp_rproc_dcfg imx_dsp_rproc_cfg_imx8qm = { .dcfg = &dsp_rproc_cfg_imx8qm, }; static int imx_dsp_rproc_ready(struct rproc *rproc) { struct imx_dsp_rproc *priv = rproc->priv; int i; if (!priv->rxdb_ch) return 0; for (i = 0; i < REMOTE_READY_WAIT_MAX_RETRIES; i++) { if (priv->flags & REMOTE_IS_READY) return 0; usleep_range(100, 200); } return -ETIMEDOUT; } /* * Start function for rproc_ops * * There is a handshake for start procedure: when DSP starts, it * will send a doorbell message to this driver, then the * REMOTE_IS_READY flags is set, then driver will kick * a message to DSP. */ static int imx_dsp_rproc_start(struct rproc *rproc) { struct imx_dsp_rproc *priv = rproc->priv; const struct imx_dsp_rproc_dcfg *dsp_dcfg = priv->dsp_dcfg; const struct imx_rproc_dcfg *dcfg = dsp_dcfg->dcfg; struct device *dev = rproc->dev.parent; int ret; switch (dcfg->method) { case IMX_RPROC_MMIO: ret = regmap_update_bits(priv->regmap, dcfg->src_reg, dcfg->src_mask, dcfg->src_start); break; case IMX_RPROC_SCU_API: ret = imx_sc_pm_cpu_start(priv->ipc_handle, IMX_SC_R_DSP, true, rproc->bootaddr); break; default: return -EOPNOTSUPP; } if (ret) dev_err(dev, "Failed to enable remote core!\n"); else ret = imx_dsp_rproc_ready(rproc); return ret; } /* * Stop function for rproc_ops * It clears the REMOTE_IS_READY flags */ static int imx_dsp_rproc_stop(struct rproc *rproc) { struct imx_dsp_rproc *priv = rproc->priv; const struct imx_dsp_rproc_dcfg *dsp_dcfg = priv->dsp_dcfg; const struct imx_rproc_dcfg *dcfg = dsp_dcfg->dcfg; struct device *dev = rproc->dev.parent; int ret = 0; if (rproc->state == RPROC_CRASHED) { priv->flags &= ~REMOTE_IS_READY; return 0; } switch (dcfg->method) { case IMX_RPROC_MMIO: ret = regmap_update_bits(priv->regmap, dcfg->src_reg, dcfg->src_mask, dcfg->src_stop); break; case IMX_RPROC_SCU_API: ret = imx_sc_pm_cpu_start(priv->ipc_handle, IMX_SC_R_DSP, false, rproc->bootaddr); break; default: return -EOPNOTSUPP; } if (ret) dev_err(dev, "Failed to stop remote core\n"); else priv->flags &= ~REMOTE_IS_READY; return ret; } /** * imx_dsp_rproc_sys_to_da() - internal memory translation helper * @priv: private data pointer * @sys: system address (DDR address) * @len: length of the memory buffer * @da: device address to translate * * Convert system address (DDR address) to device address (DSP) * for there may be memory remap for device. */ static int imx_dsp_rproc_sys_to_da(struct imx_dsp_rproc *priv, u64 sys, size_t len, u64 *da) { const struct imx_dsp_rproc_dcfg *dsp_dcfg = priv->dsp_dcfg; const struct imx_rproc_dcfg *dcfg = dsp_dcfg->dcfg; int i; /* Parse address translation table */ for (i = 0; i < dcfg->att_size; i++) { const struct imx_rproc_att *att = &dcfg->att[i]; if (sys >= att->sa && sys + len <= att->sa + att->size) { unsigned int offset = sys - att->sa; *da = att->da + offset; return 0; } } return -ENOENT; } /* Main virtqueue message work function * * This function is executed upon scheduling of the i.MX DSP remoteproc * driver's workqueue. The workqueue is scheduled by the mailbox rx * handler. * * This work function processes both the Tx and Rx virtqueue indices on * every invocation. The rproc_vq_interrupt function can detect if there * are new unprocessed messages or not (returns IRQ_NONE vs IRQ_HANDLED), * but there is no need to check for these return values. The index 0 * triggering will process all pending Rx buffers, and the index 1 triggering * will process all newly available Tx buffers and will wakeup any potentially * blocked senders. * * NOTE: * The current logic is based on an inherent design assumption of supporting * only 2 vrings, but this can be changed if needed. */ static void imx_dsp_rproc_vq_work(struct work_struct *work) { struct imx_dsp_rproc *priv = container_of(work, struct imx_dsp_rproc, rproc_work); struct rproc *rproc = priv->rproc; mutex_lock(&rproc->lock); if (rproc->state != RPROC_RUNNING) goto unlock_mutex; rproc_vq_interrupt(priv->rproc, 0); rproc_vq_interrupt(priv->rproc, 1); unlock_mutex: mutex_unlock(&rproc->lock); } /** * imx_dsp_rproc_rx_tx_callback() - inbound mailbox message handler * @cl: mailbox client pointer used for requesting the mailbox channel * @data: mailbox payload * * This handler is invoked by mailbox driver whenever a mailbox * message is received. Usually, the SUSPEND and RESUME related messages * are handled in this function, other messages are handled by remoteproc core */ static void imx_dsp_rproc_rx_tx_callback(struct mbox_client *cl, void *data) { struct rproc *rproc = dev_get_drvdata(cl->dev); struct imx_dsp_rproc *priv = rproc->priv; struct device *dev = rproc->dev.parent; u32 message = (u32)(*(u32 *)data); dev_dbg(dev, "mbox msg: 0x%x\n", message); switch (message) { case RP_MBOX_SUSPEND_ACK: complete(&priv->pm_comp); break; case RP_MBOX_RESUME_ACK: complete(&priv->pm_comp); break; default: schedule_work(&priv->rproc_work); break; } } /** * imx_dsp_rproc_rxdb_callback() - inbound mailbox message handler * @cl: mailbox client pointer used for requesting the mailbox channel * @data: mailbox payload * * For doorbell, there is no message specified, just set REMOTE_IS_READY * flag. */ static void imx_dsp_rproc_rxdb_callback(struct mbox_client *cl, void *data) { struct rproc *rproc = dev_get_drvdata(cl->dev); struct imx_dsp_rproc *priv = rproc->priv; /* Remote is ready after firmware is loaded and running */ priv->flags |= REMOTE_IS_READY; } /** * imx_dsp_rproc_mbox_alloc() - request mailbox channels * @priv: private data pointer * * Request three mailbox channels (tx, rx, rxdb). */ static int imx_dsp_rproc_mbox_alloc(struct imx_dsp_rproc *priv) { struct device *dev = priv->rproc->dev.parent; struct mbox_client *cl; int ret; if (!of_get_property(dev->of_node, "mbox-names", NULL)) return 0; cl = &priv->cl; cl->dev = dev; cl->tx_block = true; cl->tx_tout = 100; cl->knows_txdone = false; cl->rx_callback = imx_dsp_rproc_rx_tx_callback; /* Channel for sending message */ priv->tx_ch = mbox_request_channel_byname(cl, "tx"); if (IS_ERR(priv->tx_ch)) { ret = PTR_ERR(priv->tx_ch); dev_dbg(cl->dev, "failed to request tx mailbox channel: %d\n", ret); return ret; } /* Channel for receiving message */ priv->rx_ch = mbox_request_channel_byname(cl, "rx"); if (IS_ERR(priv->rx_ch)) { ret = PTR_ERR(priv->rx_ch); dev_dbg(cl->dev, "failed to request rx mailbox channel: %d\n", ret); goto free_channel_tx; } cl = &priv->cl_rxdb; cl->dev = dev; cl->rx_callback = imx_dsp_rproc_rxdb_callback; /* * RX door bell is used to receive the ready signal from remote * after firmware loaded. */ priv->rxdb_ch = mbox_request_channel_byname(cl, "rxdb"); if (IS_ERR(priv->rxdb_ch)) { ret = PTR_ERR(priv->rxdb_ch); dev_dbg(cl->dev, "failed to request mbox chan rxdb, ret %d\n", ret); goto free_channel_rx; } return 0; free_channel_rx: mbox_free_channel(priv->rx_ch); free_channel_tx: mbox_free_channel(priv->tx_ch); return ret; } /* * imx_dsp_rproc_mbox_no_alloc() * * Empty function for no mailbox between cores * * Always return 0 */ static int imx_dsp_rproc_mbox_no_alloc(struct imx_dsp_rproc *priv) { return 0; } static void imx_dsp_rproc_free_mbox(struct imx_dsp_rproc *priv) { mbox_free_channel(priv->tx_ch); mbox_free_channel(priv->rx_ch); mbox_free_channel(priv->rxdb_ch); } /** * imx_dsp_rproc_add_carveout() - request mailbox channels * @priv: private data pointer * * This function registers specified memory entry in @rproc carveouts list * The carveouts can help to mapping the memory address for DSP. */ static int imx_dsp_rproc_add_carveout(struct imx_dsp_rproc *priv) { const struct imx_dsp_rproc_dcfg *dsp_dcfg = priv->dsp_dcfg; const struct imx_rproc_dcfg *dcfg = dsp_dcfg->dcfg; struct rproc *rproc = priv->rproc; struct device *dev = rproc->dev.parent; struct device_node *np = dev->of_node; struct of_phandle_iterator it; struct rproc_mem_entry *mem; struct reserved_mem *rmem; void __iomem *cpu_addr; int a; u64 da; /* Remap required addresses */ for (a = 0; a < dcfg->att_size; a++) { const struct imx_rproc_att *att = &dcfg->att[a]; if (!(att->flags & ATT_OWN)) continue; if (imx_dsp_rproc_sys_to_da(priv, att->sa, att->size, &da)) return -EINVAL; cpu_addr = devm_ioremap_wc(dev, att->sa, att->size); if (!cpu_addr) { dev_err(dev, "failed to map memory %p\n", &att->sa); return -ENOMEM; } /* Register memory region */ mem = rproc_mem_entry_init(dev, (void __force *)cpu_addr, (dma_addr_t)att->sa, att->size, da, NULL, NULL, "dsp_mem"); if (mem) rproc_coredump_add_segment(rproc, da, att->size); else return -ENOMEM; rproc_add_carveout(rproc, mem); } of_phandle_iterator_init(&it, np, "memory-region", NULL, 0); while (of_phandle_iterator_next(&it) == 0) { /* * Ignore the first memory region which will be used vdev buffer. * No need to do extra handlings, rproc_add_virtio_dev will handle it. */ if (!strcmp(it.node->name, "vdev0buffer")) continue; rmem = of_reserved_mem_lookup(it.node); if (!rmem) { of_node_put(it.node); dev_err(dev, "unable to acquire memory-region\n"); return -EINVAL; } if (imx_dsp_rproc_sys_to_da(priv, rmem->base, rmem->size, &da)) { of_node_put(it.node); return -EINVAL; } cpu_addr = devm_ioremap_wc(dev, rmem->base, rmem->size); if (!cpu_addr) { of_node_put(it.node); dev_err(dev, "failed to map memory %p\n", &rmem->base); return -ENOMEM; } /* Register memory region */ mem = rproc_mem_entry_init(dev, (void __force *)cpu_addr, (dma_addr_t)rmem->base, rmem->size, da, NULL, NULL, it.node->name); if (mem) { rproc_coredump_add_segment(rproc, da, rmem->size); } else { of_node_put(it.node); return -ENOMEM; } rproc_add_carveout(rproc, mem); } return 0; } /* Prepare function for rproc_ops */ static int imx_dsp_rproc_prepare(struct rproc *rproc) { struct imx_dsp_rproc *priv = rproc->priv; struct device *dev = rproc->dev.parent; struct rproc_mem_entry *carveout; int ret; ret = imx_dsp_rproc_add_carveout(priv); if (ret) { dev_err(dev, "failed on imx_dsp_rproc_add_carveout\n"); return ret; } pm_runtime_get_sync(dev); /* * Clear buffers after pm rumtime for internal ocram is not * accessible if power and clock are not enabled. */ list_for_each_entry(carveout, &rproc->carveouts, node) { if (carveout->va) memset(carveout->va, 0, carveout->len); } return 0; } /* Unprepare function for rproc_ops */ static int imx_dsp_rproc_unprepare(struct rproc *rproc) { pm_runtime_put_sync(rproc->dev.parent); return 0; } /* Kick function for rproc_ops */ static void imx_dsp_rproc_kick(struct rproc *rproc, int vqid) { struct imx_dsp_rproc *priv = rproc->priv; struct device *dev = rproc->dev.parent; int err; __u32 mmsg; if (!priv->tx_ch) { dev_err(dev, "No initialized mbox tx channel\n"); return; } /* * Send the index of the triggered virtqueue as the mu payload. * Let remote processor know which virtqueue is used. */ mmsg = vqid; err = mbox_send_message(priv->tx_ch, (void *)&mmsg); if (err < 0) dev_err(dev, "%s: failed (%d, err:%d)\n", __func__, vqid, err); } /* * Custom memory copy implementation for i.MX DSP Cores * * The IRAM is part of the HiFi DSP. * According to hw specs only 32-bits writes are allowed. */ static int imx_dsp_rproc_memcpy(void *dst, const void *src, size_t size) { void __iomem *dest = (void __iomem *)dst; const u8 *src_byte = src; const u32 *source = src; u32 affected_mask; int i, q, r; u32 tmp; /* destination must be 32bit aligned */ if (!IS_ALIGNED((uintptr_t)dest, 4)) return -EINVAL; q = size / 4; r = size % 4; /* copy data in units of 32 bits at a time */ for (i = 0; i < q; i++) writel(source[i], dest + i * 4); if (r) { affected_mask = GENMASK(8 * r, 0); /* * first read the 32bit data of dest, then change affected * bytes, and write back to dest. * For unaffected bytes, it should not be changed */ tmp = readl(dest + q * 4); tmp &= ~affected_mask; /* avoid reading after end of source */ for (i = 0; i < r; i++) tmp |= (src_byte[q * 4 + i] << (8 * i)); writel(tmp, dest + q * 4); } return 0; } /* * Custom memset implementation for i.MX DSP Cores * * The IRAM is part of the HiFi DSP. * According to hw specs only 32-bits writes are allowed. */ static int imx_dsp_rproc_memset(void *addr, u8 value, size_t size) { void __iomem *tmp_dst = (void __iomem *)addr; u32 tmp_val = value; u32 affected_mask; int q, r; u32 tmp; /* destination must be 32bit aligned */ if (!IS_ALIGNED((uintptr_t)addr, 4)) return -EINVAL; tmp_val |= tmp_val << 8; tmp_val |= tmp_val << 16; q = size / 4; r = size % 4; while (q--) writel(tmp_val, tmp_dst++); if (r) { affected_mask = GENMASK(8 * r, 0); /* * first read the 32bit data of addr, then change affected * bytes, and write back to addr. * For unaffected bytes, it should not be changed */ tmp = readl(tmp_dst); tmp &= ~affected_mask; tmp |= (tmp_val & affected_mask); writel(tmp, tmp_dst); } return 0; } /* * imx_dsp_rproc_elf_load_segments() - load firmware segments to memory * @rproc: remote processor which will be booted using these fw segments * @fw: the ELF firmware image * * This function loads the firmware segments to memory, where the remote * processor expects them. * * Return: 0 on success and an appropriate error code otherwise */ static int imx_dsp_rproc_elf_load_segments(struct rproc *rproc, const struct firmware *fw) { struct device *dev = &rproc->dev; const void *ehdr, *phdr; int i, ret = 0; u16 phnum; const u8 *elf_data = fw->data; u8 class = fw_elf_get_class(fw); u32 elf_phdr_get_size = elf_size_of_phdr(class); ehdr = elf_data; phnum = elf_hdr_get_e_phnum(class, ehdr); phdr = elf_data + elf_hdr_get_e_phoff(class, ehdr); /* go through the available ELF segments */ for (i = 0; i < phnum; i++, phdr += elf_phdr_get_size) { u64 da = elf_phdr_get_p_paddr(class, phdr); u64 memsz = elf_phdr_get_p_memsz(class, phdr); u64 filesz = elf_phdr_get_p_filesz(class, phdr); u64 offset = elf_phdr_get_p_offset(class, phdr); u32 type = elf_phdr_get_p_type(class, phdr); void *ptr; if (type != PT_LOAD || !memsz) continue; dev_dbg(dev, "phdr: type %d da 0x%llx memsz 0x%llx filesz 0x%llx\n", type, da, memsz, filesz); if (filesz > memsz) { dev_err(dev, "bad phdr filesz 0x%llx memsz 0x%llx\n", filesz, memsz); ret = -EINVAL; break; } if (offset + filesz > fw->size) { dev_err(dev, "truncated fw: need 0x%llx avail 0x%zx\n", offset + filesz, fw->size); ret = -EINVAL; break; } if (!rproc_u64_fit_in_size_t(memsz)) { dev_err(dev, "size (%llx) does not fit in size_t type\n", memsz); ret = -EOVERFLOW; break; } /* grab the kernel address for this device address */ ptr = rproc_da_to_va(rproc, da, memsz, NULL); if (!ptr) { dev_err(dev, "bad phdr da 0x%llx mem 0x%llx\n", da, memsz); ret = -EINVAL; break; } /* put the segment where the remote processor expects it */ if (filesz) { ret = imx_dsp_rproc_memcpy(ptr, elf_data + offset, filesz); if (ret) { dev_err(dev, "memory copy failed for da 0x%llx memsz 0x%llx\n", da, memsz); break; } } /* zero out remaining memory for this segment */ if (memsz > filesz) { ret = imx_dsp_rproc_memset(ptr + filesz, 0, memsz - filesz); if (ret) { dev_err(dev, "memset failed for da 0x%llx memsz 0x%llx\n", da, memsz); break; } } } return ret; } static int imx_dsp_rproc_parse_fw(struct rproc *rproc, const struct firmware *fw) { if (rproc_elf_load_rsc_table(rproc, fw)) dev_warn(&rproc->dev, "no resource table found for this firmware\n"); return 0; } static const struct rproc_ops imx_dsp_rproc_ops = { .prepare = imx_dsp_rproc_prepare, .unprepare = imx_dsp_rproc_unprepare, .start = imx_dsp_rproc_start, .stop = imx_dsp_rproc_stop, .kick = imx_dsp_rproc_kick, .load = imx_dsp_rproc_elf_load_segments, .parse_fw = imx_dsp_rproc_parse_fw, .sanity_check = rproc_elf_sanity_check, .get_boot_addr = rproc_elf_get_boot_addr, }; /** * imx_dsp_attach_pm_domains() - attach the power domains * @priv: private data pointer * * On i.MX8QM and i.MX8QXP there is multiple power domains * required, so need to link them. */ static int imx_dsp_attach_pm_domains(struct imx_dsp_rproc *priv) { struct device *dev = priv->rproc->dev.parent; int ret, i; priv->num_domains = of_count_phandle_with_args(dev->of_node, "power-domains", "#power-domain-cells"); /* If only one domain, then no need to link the device */ if (priv->num_domains <= 1) return 0; priv->pd_dev = devm_kmalloc_array(dev, priv->num_domains, sizeof(*priv->pd_dev), GFP_KERNEL); if (!priv->pd_dev) return -ENOMEM; priv->pd_dev_link = devm_kmalloc_array(dev, priv->num_domains, sizeof(*priv->pd_dev_link), GFP_KERNEL); if (!priv->pd_dev_link) return -ENOMEM; for (i = 0; i < priv->num_domains; i++) { priv->pd_dev[i] = dev_pm_domain_attach_by_id(dev, i); if (IS_ERR(priv->pd_dev[i])) { ret = PTR_ERR(priv->pd_dev[i]); goto detach_pm; } /* * device_link_add will check priv->pd_dev[i], if it is * NULL, then will break. */ priv->pd_dev_link[i] = device_link_add(dev, priv->pd_dev[i], DL_FLAG_STATELESS | DL_FLAG_PM_RUNTIME); if (!priv->pd_dev_link[i]) { dev_pm_domain_detach(priv->pd_dev[i], false); ret = -EINVAL; goto detach_pm; } } return 0; detach_pm: while (--i >= 0) { device_link_del(priv->pd_dev_link[i]); dev_pm_domain_detach(priv->pd_dev[i], false); } return ret; } static int imx_dsp_detach_pm_domains(struct imx_dsp_rproc *priv) { int i; if (priv->num_domains <= 1) return 0; for (i = 0; i < priv->num_domains; i++) { device_link_del(priv->pd_dev_link[i]); dev_pm_domain_detach(priv->pd_dev[i], false); } return 0; } /** * imx_dsp_rproc_detect_mode() - detect DSP control mode * @priv: private data pointer * * Different platform has different control method for DSP, which depends * on how the DSP is integrated in platform. * * For i.MX8QXP and i.MX8QM, DSP should be started and stopped by System * Control Unit. * For i.MX8MP and i.MX8ULP, DSP should be started and stopped by system * integration module. */ static int imx_dsp_rproc_detect_mode(struct imx_dsp_rproc *priv) { const struct imx_dsp_rproc_dcfg *dsp_dcfg = priv->dsp_dcfg; struct device *dev = priv->rproc->dev.parent; struct regmap *regmap; int ret = 0; switch (dsp_dcfg->dcfg->method) { case IMX_RPROC_SCU_API: ret = imx_scu_get_handle(&priv->ipc_handle); if (ret) return ret; break; case IMX_RPROC_MMIO: regmap = syscon_regmap_lookup_by_phandle(dev->of_node, "fsl,dsp-ctrl"); if (IS_ERR(regmap)) { dev_err(dev, "failed to find syscon\n"); return PTR_ERR(regmap); } priv->regmap = regmap; break; default: ret = -EOPNOTSUPP; break; } return ret; } static const char *imx_dsp_clks_names[DSP_RPROC_CLK_MAX] = { /* DSP clocks */ "core", "ocram", "debug", "ipg", "mu", }; static int imx_dsp_rproc_clk_get(struct imx_dsp_rproc *priv) { struct device *dev = priv->rproc->dev.parent; struct clk_bulk_data *clks = priv->clks; int i; for (i = 0; i < DSP_RPROC_CLK_MAX; i++) clks[i].id = imx_dsp_clks_names[i]; return devm_clk_bulk_get_optional(dev, DSP_RPROC_CLK_MAX, clks); } static int imx_dsp_rproc_probe(struct platform_device *pdev) { const struct imx_dsp_rproc_dcfg *dsp_dcfg; struct device *dev = &pdev->dev; struct imx_dsp_rproc *priv; struct rproc *rproc; const char *fw_name; int ret; dsp_dcfg = of_device_get_match_data(dev); if (!dsp_dcfg) return -ENODEV; ret = rproc_of_parse_firmware(dev, 0, &fw_name); if (ret) { dev_err(dev, "failed to parse firmware-name property, ret = %d\n", ret); return ret; } rproc = rproc_alloc(dev, "imx-dsp-rproc", &imx_dsp_rproc_ops, fw_name, sizeof(*priv)); if (!rproc) return -ENOMEM; priv = rproc->priv; priv->rproc = rproc; priv->dsp_dcfg = dsp_dcfg; if (no_mailboxes) imx_dsp_rproc_mbox_init = imx_dsp_rproc_mbox_no_alloc; else imx_dsp_rproc_mbox_init = imx_dsp_rproc_mbox_alloc; dev_set_drvdata(dev, rproc); INIT_WORK(&priv->rproc_work, imx_dsp_rproc_vq_work); ret = imx_dsp_rproc_detect_mode(priv); if (ret) { dev_err(dev, "failed on imx_dsp_rproc_detect_mode\n"); goto err_put_rproc; } /* There are multiple power domains required by DSP on some platform */ ret = imx_dsp_attach_pm_domains(priv); if (ret) { dev_err(dev, "failed on imx_dsp_attach_pm_domains\n"); goto err_put_rproc; } /* Get clocks */ ret = imx_dsp_rproc_clk_get(priv); if (ret) { dev_err(dev, "failed on imx_dsp_rproc_clk_get\n"); goto err_detach_domains; } init_completion(&priv->pm_comp); rproc->auto_boot = false; ret = rproc_add(rproc); if (ret) { dev_err(dev, "rproc_add failed\n"); goto err_detach_domains; } pm_runtime_enable(dev); return 0; err_detach_domains: imx_dsp_detach_pm_domains(priv); err_put_rproc: rproc_free(rproc); return ret; } static void imx_dsp_rproc_remove(struct platform_device *pdev) { struct rproc *rproc = platform_get_drvdata(pdev); struct imx_dsp_rproc *priv = rproc->priv; pm_runtime_disable(&pdev->dev); rproc_del(rproc); imx_dsp_detach_pm_domains(priv); rproc_free(rproc); } /* pm runtime functions */ static int imx_dsp_runtime_resume(struct device *dev) { struct rproc *rproc = dev_get_drvdata(dev); struct imx_dsp_rproc *priv = rproc->priv; const struct imx_dsp_rproc_dcfg *dsp_dcfg = priv->dsp_dcfg; int ret; /* * There is power domain attached with mailbox, if setup mailbox * in probe(), then the power of mailbox is always enabled, * the power can't be saved. * So move setup of mailbox to runtime resume. */ ret = imx_dsp_rproc_mbox_init(priv); if (ret) { dev_err(dev, "failed on imx_dsp_rproc_mbox_init\n"); return ret; } ret = clk_bulk_prepare_enable(DSP_RPROC_CLK_MAX, priv->clks); if (ret) { dev_err(dev, "failed on clk_bulk_prepare_enable\n"); return ret; } /* Reset DSP if needed */ if (dsp_dcfg->reset) dsp_dcfg->reset(priv); return 0; } static int imx_dsp_runtime_suspend(struct device *dev) { struct rproc *rproc = dev_get_drvdata(dev); struct imx_dsp_rproc *priv = rproc->priv; clk_bulk_disable_unprepare(DSP_RPROC_CLK_MAX, priv->clks); imx_dsp_rproc_free_mbox(priv); return 0; } static void imx_dsp_load_firmware(const struct firmware *fw, void *context) { struct rproc *rproc = context; int ret; /* * Same flow as start procedure. * Load the ELF segments to memory firstly. */ ret = rproc_load_segments(rproc, fw); if (ret) goto out; /* Start the remote processor */ ret = rproc->ops->start(rproc); if (ret) goto out; rproc->ops->kick(rproc, 0); out: release_firmware(fw); } static int imx_dsp_suspend(struct device *dev) { struct rproc *rproc = dev_get_drvdata(dev); struct imx_dsp_rproc *priv = rproc->priv; __u32 mmsg = RP_MBOX_SUSPEND_SYSTEM; int ret; if (rproc->state != RPROC_RUNNING) goto out; reinit_completion(&priv->pm_comp); /* Tell DSP that suspend is happening */ ret = mbox_send_message(priv->tx_ch, (void *)&mmsg); if (ret < 0) { dev_err(dev, "PM mbox_send_message failed: %d\n", ret); return ret; } /* * DSP need to save the context at suspend. * Here waiting the response for DSP, then power can be disabled. */ if (!wait_for_completion_timeout(&priv->pm_comp, msecs_to_jiffies(100))) return -EBUSY; out: /* * The power of DSP is disabled in suspend, so force pm runtime * to be suspend, then we can reenable the power and clocks at * resume stage. */ return pm_runtime_force_suspend(dev); } static int imx_dsp_resume(struct device *dev) { struct rproc *rproc = dev_get_drvdata(dev); int ret = 0; ret = pm_runtime_force_resume(dev); if (ret) return ret; if (rproc->state != RPROC_RUNNING) return 0; /* * The power of DSP is disabled at suspend, the memory of dsp * is reset, the image segments are lost. So need to reload * firmware and restart the DSP if it is in running state. */ ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT, rproc->firmware, dev, GFP_KERNEL, rproc, imx_dsp_load_firmware); if (ret < 0) { dev_err(dev, "load firmware failed: %d\n", ret); goto err; } return 0; err: pm_runtime_force_suspend(dev); return ret; } static const struct dev_pm_ops imx_dsp_rproc_pm_ops = { SYSTEM_SLEEP_PM_OPS(imx_dsp_suspend, imx_dsp_resume) RUNTIME_PM_OPS(imx_dsp_runtime_suspend, imx_dsp_runtime_resume, NULL) }; static const struct of_device_id imx_dsp_rproc_of_match[] = { { .compatible = "fsl,imx8qxp-hifi4", .data = &imx_dsp_rproc_cfg_imx8qxp }, { .compatible = "fsl,imx8qm-hifi4", .data = &imx_dsp_rproc_cfg_imx8qm }, { .compatible = "fsl,imx8mp-hifi4", .data = &imx_dsp_rproc_cfg_imx8mp }, { .compatible = "fsl,imx8ulp-hifi4", .data = &imx_dsp_rproc_cfg_imx8ulp }, {}, }; MODULE_DEVICE_TABLE(of, imx_dsp_rproc_of_match); static struct platform_driver imx_dsp_rproc_driver = { .probe = imx_dsp_rproc_probe, .remove_new = imx_dsp_rproc_remove, .driver = { .name = "imx-dsp-rproc", .of_match_table = imx_dsp_rproc_of_match, .pm = pm_ptr(&imx_dsp_rproc_pm_ops), }, }; module_platform_driver(imx_dsp_rproc_driver); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("i.MX HiFi Core Remote Processor Control Driver"); MODULE_AUTHOR("Shengjiu Wang <[email protected]>");
linux-master
drivers/remoteproc/imx_dsp_rproc.c
// SPDX-License-Identifier: GPL-2.0-only /* * Remote Processor Framework * * Copyright (C) 2011 Texas Instruments, Inc. * Copyright (C) 2011 Google, Inc. * * Ohad Ben-Cohen <[email protected]> * Mark Grosen <[email protected]> * Brian Swetland <[email protected]> * Fernando Guzman Lugo <[email protected]> * Suman Anna <[email protected]> * Robert Tivy <[email protected]> * Armando Uribe De Leon <[email protected]> */ #define pr_fmt(fmt) "%s: " fmt, __func__ #include <linux/kernel.h> #include <linux/debugfs.h> #include <linux/remoteproc.h> #include <linux/device.h> #include <linux/uaccess.h> #include "remoteproc_internal.h" /* remoteproc debugfs parent dir */ static struct dentry *rproc_dbg; /* * A coredump-configuration-to-string lookup table, for exposing a * human readable configuration via debugfs. Always keep in sync with * enum rproc_coredump_mechanism */ static const char * const rproc_coredump_str[] = { [RPROC_COREDUMP_DISABLED] = "disabled", [RPROC_COREDUMP_ENABLED] = "enabled", [RPROC_COREDUMP_INLINE] = "inline", }; /* Expose the current coredump configuration via debugfs */ static ssize_t rproc_coredump_read(struct file *filp, char __user *userbuf, size_t count, loff_t *ppos) { struct rproc *rproc = filp->private_data; char buf[20]; int len; len = scnprintf(buf, sizeof(buf), "%s\n", rproc_coredump_str[rproc->dump_conf]); return simple_read_from_buffer(userbuf, count, ppos, buf, len); } /* * By writing to the 'coredump' debugfs entry, we control the behavior of the * coredump mechanism dynamically. The default value of this entry is "disabled". * * The 'coredump' debugfs entry supports these commands: * * disabled: By default coredump collection is disabled. Recovery will * proceed without collecting any dump. * * enabled: When the remoteproc crashes the entire coredump will be copied * to a separate buffer and exposed to userspace. * * inline: The coredump will not be copied to a separate buffer and the * recovery process will have to wait until data is read by * userspace. But this avoid usage of extra memory. */ static ssize_t rproc_coredump_write(struct file *filp, const char __user *user_buf, size_t count, loff_t *ppos) { struct rproc *rproc = filp->private_data; int ret, err = 0; char buf[20]; if (count < 1 || count > sizeof(buf)) return -EINVAL; ret = copy_from_user(buf, user_buf, count); if (ret) return -EFAULT; /* remove end of line */ if (buf[count - 1] == '\n') buf[count - 1] = '\0'; if (rproc->state == RPROC_CRASHED) { dev_err(&rproc->dev, "can't change coredump configuration\n"); err = -EBUSY; goto out; } if (!strncmp(buf, "disabled", count)) { rproc->dump_conf = RPROC_COREDUMP_DISABLED; } else if (!strncmp(buf, "enabled", count)) { rproc->dump_conf = RPROC_COREDUMP_ENABLED; } else if (!strncmp(buf, "inline", count)) { rproc->dump_conf = RPROC_COREDUMP_INLINE; } else { dev_err(&rproc->dev, "Invalid coredump configuration\n"); err = -EINVAL; } out: return err ? err : count; } static const struct file_operations rproc_coredump_fops = { .read = rproc_coredump_read, .write = rproc_coredump_write, .open = simple_open, .llseek = generic_file_llseek, }; /* * Some remote processors may support dumping trace logs into a shared * memory buffer. We expose this trace buffer using debugfs, so users * can easily tell what's going on remotely. * * We will most probably improve the rproc tracing facilities later on, * but this kind of lightweight and simple mechanism is always good to have, * as it provides very early tracing with little to no dependencies at all. */ static ssize_t rproc_trace_read(struct file *filp, char __user *userbuf, size_t count, loff_t *ppos) { struct rproc_debug_trace *data = filp->private_data; struct rproc_mem_entry *trace = &data->trace_mem; void *va; char buf[100]; int len; va = rproc_da_to_va(data->rproc, trace->da, trace->len, NULL); if (!va) { len = scnprintf(buf, sizeof(buf), "Trace %s not available\n", trace->name); va = buf; } else { len = strnlen(va, trace->len); } return simple_read_from_buffer(userbuf, count, ppos, va, len); } static const struct file_operations trace_rproc_ops = { .read = rproc_trace_read, .open = simple_open, .llseek = generic_file_llseek, }; /* expose the name of the remote processor via debugfs */ static ssize_t rproc_name_read(struct file *filp, char __user *userbuf, size_t count, loff_t *ppos) { struct rproc *rproc = filp->private_data; /* need room for the name, a newline and a terminating null */ char buf[100]; int i; i = scnprintf(buf, sizeof(buf), "%.98s\n", rproc->name); return simple_read_from_buffer(userbuf, count, ppos, buf, i); } static const struct file_operations rproc_name_ops = { .read = rproc_name_read, .open = simple_open, .llseek = generic_file_llseek, }; /* expose recovery flag via debugfs */ static ssize_t rproc_recovery_read(struct file *filp, char __user *userbuf, size_t count, loff_t *ppos) { struct rproc *rproc = filp->private_data; char *buf = rproc->recovery_disabled ? "disabled\n" : "enabled\n"; return simple_read_from_buffer(userbuf, count, ppos, buf, strlen(buf)); } /* * By writing to the 'recovery' debugfs entry, we control the behavior of the * recovery mechanism dynamically. The default value of this entry is "enabled". * * The 'recovery' debugfs entry supports these commands: * * enabled: When enabled, the remote processor will be automatically * recovered whenever it crashes. Moreover, if the remote * processor crashes while recovery is disabled, it will * be automatically recovered too as soon as recovery is enabled. * * disabled: When disabled, a remote processor will remain in a crashed * state if it crashes. This is useful for debugging purposes; * without it, debugging a crash is substantially harder. * * recover: This function will trigger an immediate recovery if the * remote processor is in a crashed state, without changing * or checking the recovery state (enabled/disabled). * This is useful during debugging sessions, when one expects * additional crashes to happen after enabling recovery. In this * case, enabling recovery will make it hard to debug subsequent * crashes, so it's recommended to keep recovery disabled, and * instead use the "recover" command as needed. */ static ssize_t rproc_recovery_write(struct file *filp, const char __user *user_buf, size_t count, loff_t *ppos) { struct rproc *rproc = filp->private_data; char buf[10]; int ret; if (count < 1 || count > sizeof(buf)) return -EINVAL; ret = copy_from_user(buf, user_buf, count); if (ret) return -EFAULT; /* remove end of line */ if (buf[count - 1] == '\n') buf[count - 1] = '\0'; if (!strncmp(buf, "enabled", count)) { /* change the flag and begin the recovery process if needed */ rproc->recovery_disabled = false; rproc_trigger_recovery(rproc); } else if (!strncmp(buf, "disabled", count)) { rproc->recovery_disabled = true; } else if (!strncmp(buf, "recover", count)) { /* begin the recovery process without changing the flag */ rproc_trigger_recovery(rproc); } else { return -EINVAL; } return count; } static const struct file_operations rproc_recovery_ops = { .read = rproc_recovery_read, .write = rproc_recovery_write, .open = simple_open, .llseek = generic_file_llseek, }; /* expose the crash trigger via debugfs */ static ssize_t rproc_crash_write(struct file *filp, const char __user *user_buf, size_t count, loff_t *ppos) { struct rproc *rproc = filp->private_data; unsigned int type; int ret; ret = kstrtouint_from_user(user_buf, count, 0, &type); if (ret < 0) return ret; rproc_report_crash(rproc, type); return count; } static const struct file_operations rproc_crash_ops = { .write = rproc_crash_write, .open = simple_open, .llseek = generic_file_llseek, }; /* Expose resource table content via debugfs */ static int rproc_rsc_table_show(struct seq_file *seq, void *p) { static const char * const types[] = {"carveout", "devmem", "trace", "vdev"}; struct rproc *rproc = seq->private; struct resource_table *table = rproc->table_ptr; struct fw_rsc_carveout *c; struct fw_rsc_devmem *d; struct fw_rsc_trace *t; struct fw_rsc_vdev *v; int i, j; if (!table) { seq_puts(seq, "No resource table found\n"); return 0; } for (i = 0; i < table->num; i++) { int offset = table->offset[i]; struct fw_rsc_hdr *hdr = (void *)table + offset; void *rsc = (void *)hdr + sizeof(*hdr); switch (hdr->type) { case RSC_CARVEOUT: c = rsc; seq_printf(seq, "Entry %d is of type %s\n", i, types[hdr->type]); seq_printf(seq, " Device Address 0x%x\n", c->da); seq_printf(seq, " Physical Address 0x%x\n", c->pa); seq_printf(seq, " Length 0x%x Bytes\n", c->len); seq_printf(seq, " Flags 0x%x\n", c->flags); seq_printf(seq, " Reserved (should be zero) [%d]\n", c->reserved); seq_printf(seq, " Name %s\n\n", c->name); break; case RSC_DEVMEM: d = rsc; seq_printf(seq, "Entry %d is of type %s\n", i, types[hdr->type]); seq_printf(seq, " Device Address 0x%x\n", d->da); seq_printf(seq, " Physical Address 0x%x\n", d->pa); seq_printf(seq, " Length 0x%x Bytes\n", d->len); seq_printf(seq, " Flags 0x%x\n", d->flags); seq_printf(seq, " Reserved (should be zero) [%d]\n", d->reserved); seq_printf(seq, " Name %s\n\n", d->name); break; case RSC_TRACE: t = rsc; seq_printf(seq, "Entry %d is of type %s\n", i, types[hdr->type]); seq_printf(seq, " Device Address 0x%x\n", t->da); seq_printf(seq, " Length 0x%x Bytes\n", t->len); seq_printf(seq, " Reserved (should be zero) [%d]\n", t->reserved); seq_printf(seq, " Name %s\n\n", t->name); break; case RSC_VDEV: v = rsc; seq_printf(seq, "Entry %d is of type %s\n", i, types[hdr->type]); seq_printf(seq, " ID %d\n", v->id); seq_printf(seq, " Notify ID %d\n", v->notifyid); seq_printf(seq, " Device features 0x%x\n", v->dfeatures); seq_printf(seq, " Guest features 0x%x\n", v->gfeatures); seq_printf(seq, " Config length 0x%x\n", v->config_len); seq_printf(seq, " Status 0x%x\n", v->status); seq_printf(seq, " Number of vrings %d\n", v->num_of_vrings); seq_printf(seq, " Reserved (should be zero) [%d][%d]\n\n", v->reserved[0], v->reserved[1]); for (j = 0; j < v->num_of_vrings; j++) { seq_printf(seq, " Vring %d\n", j); seq_printf(seq, " Device Address 0x%x\n", v->vring[j].da); seq_printf(seq, " Alignment %d\n", v->vring[j].align); seq_printf(seq, " Number of buffers %d\n", v->vring[j].num); seq_printf(seq, " Notify ID %d\n", v->vring[j].notifyid); seq_printf(seq, " Physical Address 0x%x\n\n", v->vring[j].pa); } break; default: seq_printf(seq, "Unknown resource type found: %d [hdr: %pK]\n", hdr->type, hdr); break; } } return 0; } DEFINE_SHOW_ATTRIBUTE(rproc_rsc_table); /* Expose carveout content via debugfs */ static int rproc_carveouts_show(struct seq_file *seq, void *p) { struct rproc *rproc = seq->private; struct rproc_mem_entry *carveout; list_for_each_entry(carveout, &rproc->carveouts, node) { seq_puts(seq, "Carveout memory entry:\n"); seq_printf(seq, "\tName: %s\n", carveout->name); seq_printf(seq, "\tVirtual address: %pK\n", carveout->va); seq_printf(seq, "\tDMA address: %pad\n", &carveout->dma); seq_printf(seq, "\tDevice address: 0x%x\n", carveout->da); seq_printf(seq, "\tLength: 0x%zx Bytes\n\n", carveout->len); } return 0; } DEFINE_SHOW_ATTRIBUTE(rproc_carveouts); void rproc_remove_trace_file(struct dentry *tfile) { debugfs_remove(tfile); } struct dentry *rproc_create_trace_file(const char *name, struct rproc *rproc, struct rproc_debug_trace *trace) { return debugfs_create_file(name, 0400, rproc->dbg_dir, trace, &trace_rproc_ops); } void rproc_delete_debug_dir(struct rproc *rproc) { debugfs_remove_recursive(rproc->dbg_dir); } void rproc_create_debug_dir(struct rproc *rproc) { struct device *dev = &rproc->dev; if (!rproc_dbg) return; rproc->dbg_dir = debugfs_create_dir(dev_name(dev), rproc_dbg); debugfs_create_file("name", 0400, rproc->dbg_dir, rproc, &rproc_name_ops); debugfs_create_file("recovery", 0600, rproc->dbg_dir, rproc, &rproc_recovery_ops); debugfs_create_file("crash", 0200, rproc->dbg_dir, rproc, &rproc_crash_ops); debugfs_create_file("resource_table", 0400, rproc->dbg_dir, rproc, &rproc_rsc_table_fops); debugfs_create_file("carveout_memories", 0400, rproc->dbg_dir, rproc, &rproc_carveouts_fops); debugfs_create_file("coredump", 0600, rproc->dbg_dir, rproc, &rproc_coredump_fops); } void __init rproc_init_debugfs(void) { if (debugfs_initialized()) rproc_dbg = debugfs_create_dir(KBUILD_MODNAME, NULL); } void __exit rproc_exit_debugfs(void) { debugfs_remove(rproc_dbg); }
linux-master
drivers/remoteproc/remoteproc_debugfs.c
// SPDX-License-Identifier: GPL-2.0 /* * ZynqMP R5 Remote Processor driver * */ #include <dt-bindings/power/xlnx-zynqmp-power.h> #include <linux/dma-mapping.h> #include <linux/firmware/xlnx-zynqmp.h> #include <linux/kernel.h> #include <linux/mailbox_client.h> #include <linux/mailbox/zynqmp-ipi-message.h> #include <linux/module.h> #include <linux/of_address.h> #include <linux/of_platform.h> #include <linux/of_reserved_mem.h> #include <linux/platform_device.h> #include <linux/remoteproc.h> #include "remoteproc_internal.h" /* IPI buffer MAX length */ #define IPI_BUF_LEN_MAX 32U /* RX mailbox client buffer max length */ #define MBOX_CLIENT_BUF_MAX (IPI_BUF_LEN_MAX + \ sizeof(struct zynqmp_ipi_message)) /* * settings for RPU cluster mode which * reflects possible values of xlnx,cluster-mode dt-property */ enum zynqmp_r5_cluster_mode { SPLIT_MODE = 0, /* When cores run as separate processor */ LOCKSTEP_MODE = 1, /* cores execute same code in lockstep,clk-for-clk */ SINGLE_CPU_MODE = 2, /* core0 is held in reset and only core1 runs */ }; /** * struct mem_bank_data - Memory Bank description * * @addr: Start address of memory bank * @size: Size of Memory bank * @pm_domain_id: Power-domains id of memory bank for firmware to turn on/off * @bank_name: name of the bank for remoteproc framework */ struct mem_bank_data { phys_addr_t addr; size_t size; u32 pm_domain_id; char *bank_name; }; /** * struct mbox_info * * @rx_mc_buf: to copy data from mailbox rx channel * @tx_mc_buf: to copy data to mailbox tx channel * @r5_core: this mailbox's corresponding r5_core pointer * @mbox_work: schedule work after receiving data from mailbox * @mbox_cl: mailbox client * @tx_chan: mailbox tx channel * @rx_chan: mailbox rx channel */ struct mbox_info { unsigned char rx_mc_buf[MBOX_CLIENT_BUF_MAX]; unsigned char tx_mc_buf[MBOX_CLIENT_BUF_MAX]; struct zynqmp_r5_core *r5_core; struct work_struct mbox_work; struct mbox_client mbox_cl; struct mbox_chan *tx_chan; struct mbox_chan *rx_chan; }; /* * Hardcoded TCM bank values. This will be removed once TCM bindings are * accepted for system-dt specifications and upstreamed in linux kernel */ static const struct mem_bank_data zynqmp_tcm_banks[] = { {0xffe00000UL, 0x10000UL, PD_R5_0_ATCM, "atcm0"}, /* TCM 64KB each */ {0xffe20000UL, 0x10000UL, PD_R5_0_BTCM, "btcm0"}, {0xffe90000UL, 0x10000UL, PD_R5_1_ATCM, "atcm1"}, {0xffeb0000UL, 0x10000UL, PD_R5_1_BTCM, "btcm1"}, }; /** * struct zynqmp_r5_core * * @dev: device of RPU instance * @np: device node of RPU instance * @tcm_bank_count: number TCM banks accessible to this RPU * @tcm_banks: array of each TCM bank data * @rproc: rproc handle * @pm_domain_id: RPU CPU power domain id * @ipi: pointer to mailbox information */ struct zynqmp_r5_core { struct device *dev; struct device_node *np; int tcm_bank_count; struct mem_bank_data **tcm_banks; struct rproc *rproc; u32 pm_domain_id; struct mbox_info *ipi; }; /** * struct zynqmp_r5_cluster * * @dev: r5f subsystem cluster device node * @mode: cluster mode of type zynqmp_r5_cluster_mode * @core_count: number of r5 cores used for this cluster mode * @r5_cores: Array of pointers pointing to r5 core */ struct zynqmp_r5_cluster { struct device *dev; enum zynqmp_r5_cluster_mode mode; int core_count; struct zynqmp_r5_core **r5_cores; }; /** * event_notified_idr_cb() - callback for vq_interrupt per notifyid * @id: rproc->notify id * @ptr: pointer to idr private data * @data: data passed to idr_for_each callback * * Pass notification to remoteproc virtio * * Return: 0. having return is to satisfy the idr_for_each() function * pointer input argument requirement. **/ static int event_notified_idr_cb(int id, void *ptr, void *data) { struct rproc *rproc = data; if (rproc_vq_interrupt(rproc, id) == IRQ_NONE) dev_dbg(&rproc->dev, "data not found for vqid=%d\n", id); return 0; } /** * handle_event_notified() - remoteproc notification work function * @work: pointer to the work structure * * It checks each registered remoteproc notify IDs. */ static void handle_event_notified(struct work_struct *work) { struct mbox_info *ipi; struct rproc *rproc; ipi = container_of(work, struct mbox_info, mbox_work); rproc = ipi->r5_core->rproc; /* * We only use IPI for interrupt. The RPU firmware side may or may * not write the notifyid when it trigger IPI. * And thus, we scan through all the registered notifyids and * find which one is valid to get the message. * Even if message from firmware is NULL, we attempt to get vqid */ idr_for_each(&rproc->notifyids, event_notified_idr_cb, rproc); } /** * zynqmp_r5_mb_rx_cb() - receive channel mailbox callback * @cl: mailbox client * @msg: message pointer * * Receive data from ipi buffer, ack interrupt and then * it will schedule the R5 notification work. */ static void zynqmp_r5_mb_rx_cb(struct mbox_client *cl, void *msg) { struct zynqmp_ipi_message *ipi_msg, *buf_msg; struct mbox_info *ipi; size_t len; ipi = container_of(cl, struct mbox_info, mbox_cl); /* copy data from ipi buffer to r5_core */ ipi_msg = (struct zynqmp_ipi_message *)msg; buf_msg = (struct zynqmp_ipi_message *)ipi->rx_mc_buf; len = ipi_msg->len; if (len > IPI_BUF_LEN_MAX) { dev_warn(cl->dev, "msg size exceeded than %d\n", IPI_BUF_LEN_MAX); len = IPI_BUF_LEN_MAX; } buf_msg->len = len; memcpy(buf_msg->data, ipi_msg->data, len); /* received and processed interrupt ack */ if (mbox_send_message(ipi->rx_chan, NULL) < 0) dev_err(cl->dev, "ack failed to mbox rx_chan\n"); schedule_work(&ipi->mbox_work); } /** * zynqmp_r5_setup_mbox() - Setup mailboxes related properties * this is used for each individual R5 core * * @cdev: child node device * * Function to setup mailboxes related properties * return : NULL if failed else pointer to mbox_info */ static struct mbox_info *zynqmp_r5_setup_mbox(struct device *cdev) { struct mbox_client *mbox_cl; struct mbox_info *ipi; ipi = kzalloc(sizeof(*ipi), GFP_KERNEL); if (!ipi) return NULL; mbox_cl = &ipi->mbox_cl; mbox_cl->rx_callback = zynqmp_r5_mb_rx_cb; mbox_cl->tx_block = false; mbox_cl->knows_txdone = false; mbox_cl->tx_done = NULL; mbox_cl->dev = cdev; /* Request TX and RX channels */ ipi->tx_chan = mbox_request_channel_byname(mbox_cl, "tx"); if (IS_ERR(ipi->tx_chan)) { ipi->tx_chan = NULL; kfree(ipi); dev_warn(cdev, "mbox tx channel request failed\n"); return NULL; } ipi->rx_chan = mbox_request_channel_byname(mbox_cl, "rx"); if (IS_ERR(ipi->rx_chan)) { mbox_free_channel(ipi->tx_chan); ipi->rx_chan = NULL; ipi->tx_chan = NULL; kfree(ipi); dev_warn(cdev, "mbox rx channel request failed\n"); return NULL; } INIT_WORK(&ipi->mbox_work, handle_event_notified); return ipi; } static void zynqmp_r5_free_mbox(struct mbox_info *ipi) { if (!ipi) return; if (ipi->tx_chan) { mbox_free_channel(ipi->tx_chan); ipi->tx_chan = NULL; } if (ipi->rx_chan) { mbox_free_channel(ipi->rx_chan); ipi->rx_chan = NULL; } kfree(ipi); } /* * zynqmp_r5_core_kick() - kick a firmware if mbox is provided * @rproc: r5 core's corresponding rproc structure * @vqid: virtqueue ID */ static void zynqmp_r5_rproc_kick(struct rproc *rproc, int vqid) { struct zynqmp_r5_core *r5_core = rproc->priv; struct device *dev = r5_core->dev; struct zynqmp_ipi_message *mb_msg; struct mbox_info *ipi; int ret; ipi = r5_core->ipi; if (!ipi) return; mb_msg = (struct zynqmp_ipi_message *)ipi->tx_mc_buf; memcpy(mb_msg->data, &vqid, sizeof(vqid)); mb_msg->len = sizeof(vqid); ret = mbox_send_message(ipi->tx_chan, mb_msg); if (ret < 0) dev_warn(dev, "failed to send message\n"); } /* * zynqmp_r5_set_mode() * * set RPU cluster and TCM operation mode * * @r5_core: pointer to zynqmp_r5_core type object * @fw_reg_val: value expected by firmware to configure RPU cluster mode * @tcm_mode: value expected by fw to configure TCM mode (lockstep or split) * * Return: 0 for success and < 0 for failure */ static int zynqmp_r5_set_mode(struct zynqmp_r5_core *r5_core, enum rpu_oper_mode fw_reg_val, enum rpu_tcm_comb tcm_mode) { int ret; ret = zynqmp_pm_set_rpu_mode(r5_core->pm_domain_id, fw_reg_val); if (ret < 0) { dev_err(r5_core->dev, "failed to set RPU mode\n"); return ret; } ret = zynqmp_pm_set_tcm_config(r5_core->pm_domain_id, tcm_mode); if (ret < 0) dev_err(r5_core->dev, "failed to configure TCM\n"); return ret; } /* * zynqmp_r5_rproc_start() * @rproc: single R5 core's corresponding rproc instance * * Start R5 Core from designated boot address. * * return 0 on success, otherwise non-zero value on failure */ static int zynqmp_r5_rproc_start(struct rproc *rproc) { struct zynqmp_r5_core *r5_core = rproc->priv; enum rpu_boot_mem bootmem; int ret; /* * The exception vector pointers (EVP) refer to the base-address of * exception vectors (for reset, IRQ, FIQ, etc). The reset-vector * starts at the base-address and subsequent vectors are on 4-byte * boundaries. * * Exception vectors can start either from 0x0000_0000 (LOVEC) or * from 0xFFFF_0000 (HIVEC) which is mapped in the OCM (On-Chip Memory) * * Usually firmware will put Exception vectors at LOVEC. * * It is not recommend that you change the exception vector. * Changing the EVP to HIVEC will result in increased interrupt latency * and jitter. Also, if the OCM is secured and the Cortex-R5F processor * is non-secured, then the Cortex-R5F processor cannot access the * HIVEC exception vectors in the OCM. */ bootmem = (rproc->bootaddr >= 0xFFFC0000) ? PM_RPU_BOOTMEM_HIVEC : PM_RPU_BOOTMEM_LOVEC; dev_dbg(r5_core->dev, "RPU boot addr 0x%llx from %s.", rproc->bootaddr, bootmem == PM_RPU_BOOTMEM_HIVEC ? "OCM" : "TCM"); ret = zynqmp_pm_request_wake(r5_core->pm_domain_id, 1, bootmem, ZYNQMP_PM_REQUEST_ACK_NO); if (ret) dev_err(r5_core->dev, "failed to start RPU = 0x%x\n", r5_core->pm_domain_id); return ret; } /* * zynqmp_r5_rproc_stop() * @rproc: single R5 core's corresponding rproc instance * * Power down R5 Core. * * return 0 on success, otherwise non-zero value on failure */ static int zynqmp_r5_rproc_stop(struct rproc *rproc) { struct zynqmp_r5_core *r5_core = rproc->priv; int ret; ret = zynqmp_pm_force_pwrdwn(r5_core->pm_domain_id, ZYNQMP_PM_REQUEST_ACK_BLOCKING); if (ret) dev_err(r5_core->dev, "failed to stop remoteproc RPU %d\n", ret); return ret; } /* * zynqmp_r5_mem_region_map() * @rproc: single R5 core's corresponding rproc instance * @mem: mem descriptor to map reserved memory-regions * * Callback to map va for memory-region's carveout. * * return 0 on success, otherwise non-zero value on failure */ static int zynqmp_r5_mem_region_map(struct rproc *rproc, struct rproc_mem_entry *mem) { void __iomem *va; va = ioremap_wc(mem->dma, mem->len); if (IS_ERR_OR_NULL(va)) return -ENOMEM; mem->va = (void *)va; return 0; } /* * zynqmp_r5_rproc_mem_unmap * @rproc: single R5 core's corresponding rproc instance * @mem: mem entry to unmap * * Unmap memory-region carveout * * return: always returns 0 */ static int zynqmp_r5_mem_region_unmap(struct rproc *rproc, struct rproc_mem_entry *mem) { iounmap((void __iomem *)mem->va); return 0; } /* * add_mem_regions_carveout() * @rproc: single R5 core's corresponding rproc instance * * Construct rproc mem carveouts from memory-region property nodes * * return 0 on success, otherwise non-zero value on failure */ static int add_mem_regions_carveout(struct rproc *rproc) { struct rproc_mem_entry *rproc_mem; struct zynqmp_r5_core *r5_core; struct of_phandle_iterator it; struct reserved_mem *rmem; int i = 0; r5_core = rproc->priv; /* Register associated reserved memory regions */ of_phandle_iterator_init(&it, r5_core->np, "memory-region", NULL, 0); while (of_phandle_iterator_next(&it) == 0) { rmem = of_reserved_mem_lookup(it.node); if (!rmem) { of_node_put(it.node); dev_err(&rproc->dev, "unable to acquire memory-region\n"); return -EINVAL; } if (!strcmp(it.node->name, "vdev0buffer")) { /* Init reserved memory for vdev buffer */ rproc_mem = rproc_of_resm_mem_entry_init(&rproc->dev, i, rmem->size, rmem->base, it.node->name); } else { /* Register associated reserved memory regions */ rproc_mem = rproc_mem_entry_init(&rproc->dev, NULL, (dma_addr_t)rmem->base, rmem->size, rmem->base, zynqmp_r5_mem_region_map, zynqmp_r5_mem_region_unmap, it.node->name); } if (!rproc_mem) { of_node_put(it.node); return -ENOMEM; } rproc_add_carveout(rproc, rproc_mem); dev_dbg(&rproc->dev, "reserved mem carveout %s addr=%llx, size=0x%llx", it.node->name, rmem->base, rmem->size); i++; } return 0; } /* * tcm_mem_unmap() * @rproc: single R5 core's corresponding rproc instance * @mem: tcm mem entry to unmap * * Unmap TCM banks when powering down R5 core. * * return always 0 */ static int tcm_mem_unmap(struct rproc *rproc, struct rproc_mem_entry *mem) { iounmap((void __iomem *)mem->va); return 0; } /* * tcm_mem_map() * @rproc: single R5 core's corresponding rproc instance * @mem: tcm memory entry descriptor * * Given TCM bank entry, this func setup virtual address for TCM bank * remoteproc carveout. It also takes care of va to da address translation * * return 0 on success, otherwise non-zero value on failure */ static int tcm_mem_map(struct rproc *rproc, struct rproc_mem_entry *mem) { void __iomem *va; va = ioremap_wc(mem->dma, mem->len); if (IS_ERR_OR_NULL(va)) return -ENOMEM; /* Update memory entry va */ mem->va = (void *)va; /* clear TCMs */ memset_io(va, 0, mem->len); /* * The R5s expect their TCM banks to be at address 0x0 and 0x2000, * while on the Linux side they are at 0xffexxxxx. * * Zero out the high 12 bits of the address. This will give * expected values for TCM Banks 0A and 0B (0x0 and 0x20000). */ mem->da &= 0x000fffff; /* * TCM Banks 1A and 1B still have to be translated. * * Below handle these two banks' absolute addresses (0xffe90000 and * 0xffeb0000) and convert to the expected relative addresses * (0x0 and 0x20000). */ if (mem->da == 0x90000 || mem->da == 0xB0000) mem->da -= 0x90000; /* if translated TCM bank address is not valid report error */ if (mem->da != 0x0 && mem->da != 0x20000) { dev_err(&rproc->dev, "invalid TCM address: %x\n", mem->da); return -EINVAL; } return 0; } /* * add_tcm_carveout_split_mode() * @rproc: single R5 core's corresponding rproc instance * * allocate and add remoteproc carveout for TCM memory in split mode * * return 0 on success, otherwise non-zero value on failure */ static int add_tcm_carveout_split_mode(struct rproc *rproc) { struct rproc_mem_entry *rproc_mem; struct zynqmp_r5_core *r5_core; int i, num_banks, ret; phys_addr_t bank_addr; struct device *dev; u32 pm_domain_id; size_t bank_size; char *bank_name; r5_core = rproc->priv; dev = r5_core->dev; num_banks = r5_core->tcm_bank_count; /* * Power-on Each 64KB TCM, * register its address space, map and unmap functions * and add carveouts accordingly */ for (i = 0; i < num_banks; i++) { bank_addr = r5_core->tcm_banks[i]->addr; bank_name = r5_core->tcm_banks[i]->bank_name; bank_size = r5_core->tcm_banks[i]->size; pm_domain_id = r5_core->tcm_banks[i]->pm_domain_id; ret = zynqmp_pm_request_node(pm_domain_id, ZYNQMP_PM_CAPABILITY_ACCESS, 0, ZYNQMP_PM_REQUEST_ACK_BLOCKING); if (ret < 0) { dev_err(dev, "failed to turn on TCM 0x%x", pm_domain_id); goto release_tcm_split; } dev_dbg(dev, "TCM carveout split mode %s addr=%llx, size=0x%lx", bank_name, bank_addr, bank_size); rproc_mem = rproc_mem_entry_init(dev, NULL, bank_addr, bank_size, bank_addr, tcm_mem_map, tcm_mem_unmap, bank_name); if (!rproc_mem) { ret = -ENOMEM; zynqmp_pm_release_node(pm_domain_id); goto release_tcm_split; } rproc_add_carveout(rproc, rproc_mem); } return 0; release_tcm_split: /* If failed, Turn off all TCM banks turned on before */ for (i--; i >= 0; i--) { pm_domain_id = r5_core->tcm_banks[i]->pm_domain_id; zynqmp_pm_release_node(pm_domain_id); } return ret; } /* * add_tcm_carveout_lockstep_mode() * @rproc: single R5 core's corresponding rproc instance * * allocate and add remoteproc carveout for TCM memory in lockstep mode * * return 0 on success, otherwise non-zero value on failure */ static int add_tcm_carveout_lockstep_mode(struct rproc *rproc) { struct rproc_mem_entry *rproc_mem; struct zynqmp_r5_core *r5_core; int i, num_banks, ret; phys_addr_t bank_addr; size_t bank_size = 0; struct device *dev; u32 pm_domain_id; char *bank_name; r5_core = rproc->priv; dev = r5_core->dev; /* Go through zynqmp banks for r5 node */ num_banks = r5_core->tcm_bank_count; /* * In lockstep mode, TCM is contiguous memory block * However, each TCM block still needs to be enabled individually. * So, Enable each TCM block individually, but add their size * to create contiguous memory region. */ bank_addr = r5_core->tcm_banks[0]->addr; bank_name = r5_core->tcm_banks[0]->bank_name; for (i = 0; i < num_banks; i++) { bank_size += r5_core->tcm_banks[i]->size; pm_domain_id = r5_core->tcm_banks[i]->pm_domain_id; /* Turn on each TCM bank individually */ ret = zynqmp_pm_request_node(pm_domain_id, ZYNQMP_PM_CAPABILITY_ACCESS, 0, ZYNQMP_PM_REQUEST_ACK_BLOCKING); if (ret < 0) { dev_err(dev, "failed to turn on TCM 0x%x", pm_domain_id); goto release_tcm_lockstep; } } dev_dbg(dev, "TCM add carveout lockstep mode %s addr=0x%llx, size=0x%lx", bank_name, bank_addr, bank_size); /* Register TCM address range, TCM map and unmap functions */ rproc_mem = rproc_mem_entry_init(dev, NULL, bank_addr, bank_size, bank_addr, tcm_mem_map, tcm_mem_unmap, bank_name); if (!rproc_mem) { ret = -ENOMEM; goto release_tcm_lockstep; } /* If registration is success, add carveouts */ rproc_add_carveout(rproc, rproc_mem); return 0; release_tcm_lockstep: /* If failed, Turn off all TCM banks turned on before */ for (i--; i >= 0; i--) { pm_domain_id = r5_core->tcm_banks[i]->pm_domain_id; zynqmp_pm_release_node(pm_domain_id); } return ret; } /* * add_tcm_banks() * @rproc: single R5 core's corresponding rproc instance * * allocate and add remoteproc carveouts for TCM memory based on cluster mode * * return 0 on success, otherwise non-zero value on failure */ static int add_tcm_banks(struct rproc *rproc) { struct zynqmp_r5_cluster *cluster; struct zynqmp_r5_core *r5_core; struct device *dev; r5_core = rproc->priv; if (!r5_core) return -EINVAL; dev = r5_core->dev; cluster = dev_get_drvdata(dev->parent); if (!cluster) { dev_err(dev->parent, "Invalid driver data\n"); return -EINVAL; } /* * In lockstep mode TCM banks are one contiguous memory region of 256Kb * In split mode, each TCM bank is 64Kb and not contiguous. * We add memory carveouts accordingly. */ if (cluster->mode == SPLIT_MODE) return add_tcm_carveout_split_mode(rproc); else if (cluster->mode == LOCKSTEP_MODE) return add_tcm_carveout_lockstep_mode(rproc); return -EINVAL; } /* * zynqmp_r5_parse_fw() * @rproc: single R5 core's corresponding rproc instance * @fw: ptr to firmware to be loaded onto r5 core * * get resource table if available * * return 0 on success, otherwise non-zero value on failure */ static int zynqmp_r5_parse_fw(struct rproc *rproc, const struct firmware *fw) { int ret; ret = rproc_elf_load_rsc_table(rproc, fw); if (ret == -EINVAL) { /* * resource table only required for IPC. * if not present, this is not necessarily an error; * for example, loading r5 hello world application * so simply inform user and keep going. */ dev_info(&rproc->dev, "no resource table found.\n"); ret = 0; } return ret; } /** * zynqmp_r5_rproc_prepare() * adds carveouts for TCM bank and reserved memory regions * * @rproc: Device node of each rproc * * Return: 0 for success else < 0 error code */ static int zynqmp_r5_rproc_prepare(struct rproc *rproc) { int ret; ret = add_tcm_banks(rproc); if (ret) { dev_err(&rproc->dev, "failed to get TCM banks, err %d\n", ret); return ret; } ret = add_mem_regions_carveout(rproc); if (ret) { dev_err(&rproc->dev, "failed to get reserve mem regions %d\n", ret); return ret; } return 0; } /** * zynqmp_r5_rproc_unprepare() * Turns off TCM banks using power-domain id * * @rproc: Device node of each rproc * * Return: always 0 */ static int zynqmp_r5_rproc_unprepare(struct rproc *rproc) { struct zynqmp_r5_core *r5_core; u32 pm_domain_id; int i; r5_core = rproc->priv; for (i = 0; i < r5_core->tcm_bank_count; i++) { pm_domain_id = r5_core->tcm_banks[i]->pm_domain_id; if (zynqmp_pm_release_node(pm_domain_id)) dev_warn(r5_core->dev, "can't turn off TCM bank 0x%x", pm_domain_id); } return 0; } static const struct rproc_ops zynqmp_r5_rproc_ops = { .prepare = zynqmp_r5_rproc_prepare, .unprepare = zynqmp_r5_rproc_unprepare, .start = zynqmp_r5_rproc_start, .stop = zynqmp_r5_rproc_stop, .load = rproc_elf_load_segments, .parse_fw = zynqmp_r5_parse_fw, .find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table, .sanity_check = rproc_elf_sanity_check, .get_boot_addr = rproc_elf_get_boot_addr, .kick = zynqmp_r5_rproc_kick, }; /** * zynqmp_r5_add_rproc_core() * Allocate and add struct rproc object for each r5f core * This is called for each individual r5f core * * @cdev: Device node of each r5 core * * Return: zynqmp_r5_core object for success else error code pointer */ static struct zynqmp_r5_core *zynqmp_r5_add_rproc_core(struct device *cdev) { struct zynqmp_r5_core *r5_core; struct rproc *r5_rproc; int ret; /* Set up DMA mask */ ret = dma_set_coherent_mask(cdev, DMA_BIT_MASK(32)); if (ret) return ERR_PTR(ret); /* Allocate remoteproc instance */ r5_rproc = rproc_alloc(cdev, dev_name(cdev), &zynqmp_r5_rproc_ops, NULL, sizeof(struct zynqmp_r5_core)); if (!r5_rproc) { dev_err(cdev, "failed to allocate memory for rproc instance\n"); return ERR_PTR(-ENOMEM); } r5_rproc->auto_boot = false; r5_core = r5_rproc->priv; r5_core->dev = cdev; r5_core->np = dev_of_node(cdev); if (!r5_core->np) { dev_err(cdev, "can't get device node for r5 core\n"); ret = -EINVAL; goto free_rproc; } /* Add R5 remoteproc core */ ret = rproc_add(r5_rproc); if (ret) { dev_err(cdev, "failed to add r5 remoteproc\n"); goto free_rproc; } r5_core->rproc = r5_rproc; return r5_core; free_rproc: rproc_free(r5_rproc); return ERR_PTR(ret); } /** * zynqmp_r5_get_tcm_node() * Ideally this function should parse tcm node and store information * in r5_core instance. For now, Hardcoded TCM information is used. * This approach is used as TCM bindings for system-dt is being developed * * @cluster: pointer to zynqmp_r5_cluster type object * * Return: 0 for success and < 0 error code for failure. */ static int zynqmp_r5_get_tcm_node(struct zynqmp_r5_cluster *cluster) { struct device *dev = cluster->dev; struct zynqmp_r5_core *r5_core; int tcm_bank_count, tcm_node; int i, j; tcm_bank_count = ARRAY_SIZE(zynqmp_tcm_banks); /* count per core tcm banks */ tcm_bank_count = tcm_bank_count / cluster->core_count; /* * r5 core 0 will use all of TCM banks in lockstep mode. * In split mode, r5 core0 will use 128k and r5 core1 will use another * 128k. Assign TCM banks to each core accordingly */ tcm_node = 0; for (i = 0; i < cluster->core_count; i++) { r5_core = cluster->r5_cores[i]; r5_core->tcm_banks = devm_kcalloc(dev, tcm_bank_count, sizeof(struct mem_bank_data *), GFP_KERNEL); if (!r5_core->tcm_banks) return -ENOMEM; for (j = 0; j < tcm_bank_count; j++) { /* * Use pre-defined TCM reg values. * Eventually this should be replaced by values * parsed from dts. */ r5_core->tcm_banks[j] = (struct mem_bank_data *)&zynqmp_tcm_banks[tcm_node]; tcm_node++; } r5_core->tcm_bank_count = tcm_bank_count; } return 0; } /* * zynqmp_r5_core_init() * Create and initialize zynqmp_r5_core type object * * @cluster: pointer to zynqmp_r5_cluster type object * @fw_reg_val: value expected by firmware to configure RPU cluster mode * @tcm_mode: value expected by fw to configure TCM mode (lockstep or split) * * Return: 0 for success and error code for failure. */ static int zynqmp_r5_core_init(struct zynqmp_r5_cluster *cluster, enum rpu_oper_mode fw_reg_val, enum rpu_tcm_comb tcm_mode) { struct device *dev = cluster->dev; struct zynqmp_r5_core *r5_core; int ret, i; ret = zynqmp_r5_get_tcm_node(cluster); if (ret < 0) { dev_err(dev, "can't get tcm node, err %d\n", ret); return ret; } for (i = 0; i < cluster->core_count; i++) { r5_core = cluster->r5_cores[i]; /* Initialize r5 cores with power-domains parsed from dts */ ret = of_property_read_u32_index(r5_core->np, "power-domains", 1, &r5_core->pm_domain_id); if (ret) { dev_err(dev, "failed to get power-domains property\n"); return ret; } ret = zynqmp_r5_set_mode(r5_core, fw_reg_val, tcm_mode); if (ret) { dev_err(dev, "failed to set r5 cluster mode %d, err %d\n", cluster->mode, ret); return ret; } } return 0; } /* * zynqmp_r5_cluster_init() * Create and initialize zynqmp_r5_cluster type object * * @cluster: pointer to zynqmp_r5_cluster type object * * Return: 0 for success and error code for failure. */ static int zynqmp_r5_cluster_init(struct zynqmp_r5_cluster *cluster) { enum zynqmp_r5_cluster_mode cluster_mode = LOCKSTEP_MODE; struct device *dev = cluster->dev; struct device_node *dev_node = dev_of_node(dev); struct platform_device *child_pdev; struct zynqmp_r5_core **r5_cores; enum rpu_oper_mode fw_reg_val; struct device **child_devs; struct device_node *child; enum rpu_tcm_comb tcm_mode; int core_count, ret, i; struct mbox_info *ipi; ret = of_property_read_u32(dev_node, "xlnx,cluster-mode", &cluster_mode); /* * on success returns 0, if not defined then returns -EINVAL, * In that case, default is LOCKSTEP mode. Other than that * returns relative error code < 0. */ if (ret != -EINVAL && ret != 0) { dev_err(dev, "Invalid xlnx,cluster-mode property\n"); return ret; } /* * For now driver only supports split mode and lockstep mode. * fail driver probe if either of that is not set in dts. */ if (cluster_mode == LOCKSTEP_MODE) { tcm_mode = PM_RPU_TCM_COMB; fw_reg_val = PM_RPU_MODE_LOCKSTEP; } else if (cluster_mode == SPLIT_MODE) { tcm_mode = PM_RPU_TCM_SPLIT; fw_reg_val = PM_RPU_MODE_SPLIT; } else { dev_err(dev, "driver does not support cluster mode %d\n", cluster_mode); return -EINVAL; } /* * Number of cores is decided by number of child nodes of * r5f subsystem node in dts. If Split mode is used in dts * 2 child nodes are expected. * In lockstep mode if two child nodes are available, * only use first child node and consider it as core0 * and ignore core1 dt node. */ core_count = of_get_available_child_count(dev_node); if (core_count == 0) { dev_err(dev, "Invalid number of r5 cores %d", core_count); return -EINVAL; } else if (cluster_mode == SPLIT_MODE && core_count != 2) { dev_err(dev, "Invalid number of r5 cores for split mode\n"); return -EINVAL; } else if (cluster_mode == LOCKSTEP_MODE && core_count == 2) { dev_warn(dev, "Only r5 core0 will be used\n"); core_count = 1; } child_devs = kcalloc(core_count, sizeof(struct device *), GFP_KERNEL); if (!child_devs) return -ENOMEM; r5_cores = kcalloc(core_count, sizeof(struct zynqmp_r5_core *), GFP_KERNEL); if (!r5_cores) { kfree(child_devs); return -ENOMEM; } i = 0; for_each_available_child_of_node(dev_node, child) { child_pdev = of_find_device_by_node(child); if (!child_pdev) { of_node_put(child); ret = -ENODEV; goto release_r5_cores; } child_devs[i] = &child_pdev->dev; /* create and add remoteproc instance of type struct rproc */ r5_cores[i] = zynqmp_r5_add_rproc_core(&child_pdev->dev); if (IS_ERR(r5_cores[i])) { of_node_put(child); ret = PTR_ERR(r5_cores[i]); r5_cores[i] = NULL; goto release_r5_cores; } /* * If mailbox nodes are disabled using "status" property then * setting up mailbox channels will fail. */ ipi = zynqmp_r5_setup_mbox(&child_pdev->dev); if (ipi) { r5_cores[i]->ipi = ipi; ipi->r5_core = r5_cores[i]; } /* * If two child nodes are available in dts in lockstep mode, * then ignore second child node. */ if (cluster_mode == LOCKSTEP_MODE) { of_node_put(child); break; } i++; } cluster->mode = cluster_mode; cluster->core_count = core_count; cluster->r5_cores = r5_cores; ret = zynqmp_r5_core_init(cluster, fw_reg_val, tcm_mode); if (ret < 0) { dev_err(dev, "failed to init r5 core err %d\n", ret); cluster->core_count = 0; cluster->r5_cores = NULL; /* * at this point rproc resources for each core are allocated. * adjust index to free resources in reverse order */ i = core_count - 1; goto release_r5_cores; } kfree(child_devs); return 0; release_r5_cores: while (i >= 0) { put_device(child_devs[i]); if (r5_cores[i]) { zynqmp_r5_free_mbox(r5_cores[i]->ipi); of_reserved_mem_device_release(r5_cores[i]->dev); rproc_del(r5_cores[i]->rproc); rproc_free(r5_cores[i]->rproc); } i--; } kfree(r5_cores); kfree(child_devs); return ret; } static void zynqmp_r5_cluster_exit(void *data) { struct platform_device *pdev = data; struct zynqmp_r5_cluster *cluster; struct zynqmp_r5_core *r5_core; int i; cluster = platform_get_drvdata(pdev); if (!cluster) return; for (i = 0; i < cluster->core_count; i++) { r5_core = cluster->r5_cores[i]; zynqmp_r5_free_mbox(r5_core->ipi); of_reserved_mem_device_release(r5_core->dev); put_device(r5_core->dev); rproc_del(r5_core->rproc); rproc_free(r5_core->rproc); } kfree(cluster->r5_cores); kfree(cluster); platform_set_drvdata(pdev, NULL); } /* * zynqmp_r5_remoteproc_probe() * parse device-tree, initialize hardware and allocate required resources * and remoteproc ops * * @pdev: domain platform device for R5 cluster * * Return: 0 for success and < 0 for failure. */ static int zynqmp_r5_remoteproc_probe(struct platform_device *pdev) { struct zynqmp_r5_cluster *cluster; struct device *dev = &pdev->dev; int ret; cluster = kzalloc(sizeof(*cluster), GFP_KERNEL); if (!cluster) return -ENOMEM; cluster->dev = dev; ret = devm_of_platform_populate(dev); if (ret) { dev_err_probe(dev, ret, "failed to populate platform dev\n"); kfree(cluster); return ret; } /* wire in so each core can be cleaned up at driver remove */ platform_set_drvdata(pdev, cluster); ret = zynqmp_r5_cluster_init(cluster); if (ret) { kfree(cluster); platform_set_drvdata(pdev, NULL); dev_err_probe(dev, ret, "Invalid r5f subsystem device tree\n"); return ret; } ret = devm_add_action_or_reset(dev, zynqmp_r5_cluster_exit, pdev); if (ret) return ret; return 0; } /* Match table for OF platform binding */ static const struct of_device_id zynqmp_r5_remoteproc_match[] = { { .compatible = "xlnx,zynqmp-r5fss", }, { /* end of list */ }, }; MODULE_DEVICE_TABLE(of, zynqmp_r5_remoteproc_match); static struct platform_driver zynqmp_r5_remoteproc_driver = { .probe = zynqmp_r5_remoteproc_probe, .driver = { .name = "zynqmp_r5_remoteproc", .of_match_table = zynqmp_r5_remoteproc_match, }, }; module_platform_driver(zynqmp_r5_remoteproc_driver); MODULE_DESCRIPTION("Xilinx R5F remote processor driver"); MODULE_AUTHOR("Xilinx Inc."); MODULE_LICENSE("GPL");
linux-master
drivers/remoteproc/xlnx_r5_remoteproc.c
// SPDX-License-Identifier: GPL-2.0-only /* * Qualcomm Wireless Connectivity Subsystem Iris driver * * Copyright (C) 2016 Linaro Ltd * Copyright (C) 2014 Sony Mobile Communications AB * Copyright (c) 2012-2013, The Linux Foundation. All rights reserved. */ #include <linux/clk.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/regulator/consumer.h> #include "qcom_wcnss.h" struct qcom_iris { struct device dev; struct clk *xo_clk; struct regulator_bulk_data *vregs; size_t num_vregs; }; struct iris_data { const struct wcnss_vreg_info *vregs; size_t num_vregs; bool use_48mhz_xo; }; static const struct iris_data wcn3620_data = { .vregs = (struct wcnss_vreg_info[]) { { "vddxo", 1800000, 1800000, 10000 }, { "vddrfa", 1300000, 1300000, 100000 }, { "vddpa", 3300000, 3300000, 515000 }, { "vdddig", 1800000, 1800000, 10000 }, }, .num_vregs = 4, .use_48mhz_xo = false, }; static const struct iris_data wcn3660_data = { .vregs = (struct wcnss_vreg_info[]) { { "vddxo", 1800000, 1800000, 10000 }, { "vddrfa", 1300000, 1300000, 100000 }, { "vddpa", 2900000, 3000000, 515000 }, { "vdddig", 1200000, 1225000, 10000 }, }, .num_vregs = 4, .use_48mhz_xo = true, }; static const struct iris_data wcn3680_data = { .vregs = (struct wcnss_vreg_info[]) { { "vddxo", 1800000, 1800000, 10000 }, { "vddrfa", 1300000, 1300000, 100000 }, { "vddpa", 3300000, 3300000, 515000 }, { "vdddig", 1800000, 1800000, 10000 }, }, .num_vregs = 4, .use_48mhz_xo = true, }; int qcom_iris_enable(struct qcom_iris *iris) { int ret; ret = regulator_bulk_enable(iris->num_vregs, iris->vregs); if (ret) return ret; ret = clk_prepare_enable(iris->xo_clk); if (ret) { dev_err(&iris->dev, "failed to enable xo clk\n"); goto disable_regulators; } return 0; disable_regulators: regulator_bulk_disable(iris->num_vregs, iris->vregs); return ret; } void qcom_iris_disable(struct qcom_iris *iris) { clk_disable_unprepare(iris->xo_clk); regulator_bulk_disable(iris->num_vregs, iris->vregs); } static const struct of_device_id iris_of_match[] = { { .compatible = "qcom,wcn3620", .data = &wcn3620_data }, { .compatible = "qcom,wcn3660", .data = &wcn3660_data }, { .compatible = "qcom,wcn3660b", .data = &wcn3680_data }, { .compatible = "qcom,wcn3680", .data = &wcn3680_data }, {} }; static void qcom_iris_release(struct device *dev) { struct qcom_iris *iris = container_of(dev, struct qcom_iris, dev); of_node_put(iris->dev.of_node); kfree(iris); } struct qcom_iris *qcom_iris_probe(struct device *parent, bool *use_48mhz_xo) { const struct of_device_id *match; const struct iris_data *data; struct device_node *of_node; struct qcom_iris *iris; int ret; int i; of_node = of_get_child_by_name(parent->of_node, "iris"); if (!of_node) { dev_err(parent, "No child node \"iris\" found\n"); return ERR_PTR(-EINVAL); } iris = kzalloc(sizeof(*iris), GFP_KERNEL); if (!iris) { of_node_put(of_node); return ERR_PTR(-ENOMEM); } device_initialize(&iris->dev); iris->dev.parent = parent; iris->dev.release = qcom_iris_release; iris->dev.of_node = of_node; dev_set_name(&iris->dev, "%s.iris", dev_name(parent)); ret = device_add(&iris->dev); if (ret) { put_device(&iris->dev); return ERR_PTR(ret); } match = of_match_device(iris_of_match, &iris->dev); if (!match) { dev_err(&iris->dev, "no matching compatible for iris\n"); ret = -EINVAL; goto err_device_del; } data = match->data; iris->xo_clk = devm_clk_get(&iris->dev, "xo"); if (IS_ERR(iris->xo_clk)) { ret = PTR_ERR(iris->xo_clk); if (ret != -EPROBE_DEFER) dev_err(&iris->dev, "failed to acquire xo clk\n"); goto err_device_del; } iris->num_vregs = data->num_vregs; iris->vregs = devm_kcalloc(&iris->dev, iris->num_vregs, sizeof(struct regulator_bulk_data), GFP_KERNEL); if (!iris->vregs) { ret = -ENOMEM; goto err_device_del; } for (i = 0; i < iris->num_vregs; i++) iris->vregs[i].supply = data->vregs[i].name; ret = devm_regulator_bulk_get(&iris->dev, iris->num_vregs, iris->vregs); if (ret) { dev_err(&iris->dev, "failed to get regulators\n"); goto err_device_del; } for (i = 0; i < iris->num_vregs; i++) { if (data->vregs[i].max_voltage) regulator_set_voltage(iris->vregs[i].consumer, data->vregs[i].min_voltage, data->vregs[i].max_voltage); if (data->vregs[i].load_uA) regulator_set_load(iris->vregs[i].consumer, data->vregs[i].load_uA); } *use_48mhz_xo = data->use_48mhz_xo; return iris; err_device_del: device_del(&iris->dev); return ERR_PTR(ret); } void qcom_iris_remove(struct qcom_iris *iris) { device_del(&iris->dev); }
linux-master
drivers/remoteproc/qcom_wcnss_iris.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) STMicroelectronics 2018 - All Rights Reserved * Authors: Ludovic Barre <[email protected]> for STMicroelectronics. * Fabien Dessenne <[email protected]> for STMicroelectronics. */ #include <linux/arm-smccc.h> #include <linux/dma-mapping.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/mailbox_client.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_reserved_mem.h> #include <linux/platform_device.h> #include <linux/pm_wakeirq.h> #include <linux/regmap.h> #include <linux/remoteproc.h> #include <linux/reset.h> #include <linux/slab.h> #include <linux/workqueue.h> #include "remoteproc_internal.h" #define HOLD_BOOT 0 #define RELEASE_BOOT 1 #define MBOX_NB_VQ 2 #define MBOX_NB_MBX 4 #define STM32_SMC_RCC 0x82001000 #define STM32_SMC_REG_WRITE 0x1 #define STM32_MBX_VQ0 "vq0" #define STM32_MBX_VQ0_ID 0 #define STM32_MBX_VQ1 "vq1" #define STM32_MBX_VQ1_ID 1 #define STM32_MBX_SHUTDOWN "shutdown" #define STM32_MBX_DETACH "detach" #define RSC_TBL_SIZE 1024 #define M4_STATE_OFF 0 #define M4_STATE_INI 1 #define M4_STATE_CRUN 2 #define M4_STATE_CSTOP 3 #define M4_STATE_STANDBY 4 #define M4_STATE_CRASH 5 struct stm32_syscon { struct regmap *map; u32 reg; u32 mask; }; struct stm32_rproc_mem { char name[20]; void __iomem *cpu_addr; phys_addr_t bus_addr; u32 dev_addr; size_t size; }; struct stm32_rproc_mem_ranges { u32 dev_addr; u32 bus_addr; u32 size; }; struct stm32_mbox { const unsigned char name[10]; struct mbox_chan *chan; struct mbox_client client; struct work_struct vq_work; int vq_id; }; struct stm32_rproc { struct reset_control *rst; struct reset_control *hold_boot_rst; struct stm32_syscon hold_boot; struct stm32_syscon pdds; struct stm32_syscon m4_state; struct stm32_syscon rsctbl; int wdg_irq; u32 nb_rmems; struct stm32_rproc_mem *rmems; struct stm32_mbox mb[MBOX_NB_MBX]; struct workqueue_struct *workqueue; bool hold_boot_smc; void __iomem *rsc_va; }; static int stm32_rproc_pa_to_da(struct rproc *rproc, phys_addr_t pa, u64 *da) { unsigned int i; struct stm32_rproc *ddata = rproc->priv; struct stm32_rproc_mem *p_mem; for (i = 0; i < ddata->nb_rmems; i++) { p_mem = &ddata->rmems[i]; if (pa < p_mem->bus_addr || pa >= p_mem->bus_addr + p_mem->size) continue; *da = pa - p_mem->bus_addr + p_mem->dev_addr; dev_dbg(rproc->dev.parent, "pa %pa to da %llx\n", &pa, *da); return 0; } return -EINVAL; } static int stm32_rproc_mem_alloc(struct rproc *rproc, struct rproc_mem_entry *mem) { struct device *dev = rproc->dev.parent; void *va; dev_dbg(dev, "map memory: %pad+%zx\n", &mem->dma, mem->len); va = ioremap_wc(mem->dma, mem->len); if (IS_ERR_OR_NULL(va)) { dev_err(dev, "Unable to map memory region: %pad+0x%zx\n", &mem->dma, mem->len); return -ENOMEM; } /* Update memory entry va */ mem->va = va; return 0; } static int stm32_rproc_mem_release(struct rproc *rproc, struct rproc_mem_entry *mem) { dev_dbg(rproc->dev.parent, "unmap memory: %pa\n", &mem->dma); iounmap(mem->va); return 0; } static int stm32_rproc_of_memory_translations(struct platform_device *pdev, struct stm32_rproc *ddata) { struct device *parent, *dev = &pdev->dev; struct device_node *np; struct stm32_rproc_mem *p_mems; struct stm32_rproc_mem_ranges *mem_range; int cnt, array_size, i, ret = 0; parent = dev->parent; np = parent->of_node; cnt = of_property_count_elems_of_size(np, "dma-ranges", sizeof(*mem_range)); if (cnt <= 0) { dev_err(dev, "%s: dma-ranges property not defined\n", __func__); return -EINVAL; } p_mems = devm_kcalloc(dev, cnt, sizeof(*p_mems), GFP_KERNEL); if (!p_mems) return -ENOMEM; mem_range = kcalloc(cnt, sizeof(*mem_range), GFP_KERNEL); if (!mem_range) return -ENOMEM; array_size = cnt * sizeof(struct stm32_rproc_mem_ranges) / sizeof(u32); ret = of_property_read_u32_array(np, "dma-ranges", (u32 *)mem_range, array_size); if (ret) { dev_err(dev, "error while get dma-ranges property: %x\n", ret); goto free_mem; } for (i = 0; i < cnt; i++) { p_mems[i].bus_addr = mem_range[i].bus_addr; p_mems[i].dev_addr = mem_range[i].dev_addr; p_mems[i].size = mem_range[i].size; dev_dbg(dev, "memory range[%i]: da %#x, pa %pa, size %#zx:\n", i, p_mems[i].dev_addr, &p_mems[i].bus_addr, p_mems[i].size); } ddata->rmems = p_mems; ddata->nb_rmems = cnt; free_mem: kfree(mem_range); return ret; } static int stm32_rproc_mbox_idx(struct rproc *rproc, const unsigned char *name) { struct stm32_rproc *ddata = rproc->priv; int i; for (i = 0; i < ARRAY_SIZE(ddata->mb); i++) { if (!strncmp(ddata->mb[i].name, name, strlen(name))) return i; } dev_err(&rproc->dev, "mailbox %s not found\n", name); return -EINVAL; } static int stm32_rproc_prepare(struct rproc *rproc) { struct device *dev = rproc->dev.parent; struct device_node *np = dev->of_node; struct of_phandle_iterator it; struct rproc_mem_entry *mem; struct reserved_mem *rmem; u64 da; int index = 0; /* Register associated reserved memory regions */ of_phandle_iterator_init(&it, np, "memory-region", NULL, 0); while (of_phandle_iterator_next(&it) == 0) { rmem = of_reserved_mem_lookup(it.node); if (!rmem) { of_node_put(it.node); dev_err(dev, "unable to acquire memory-region\n"); return -EINVAL; } if (stm32_rproc_pa_to_da(rproc, rmem->base, &da) < 0) { of_node_put(it.node); dev_err(dev, "memory region not valid %pa\n", &rmem->base); return -EINVAL; } /* No need to map vdev buffer */ if (strcmp(it.node->name, "vdev0buffer")) { /* Register memory region */ mem = rproc_mem_entry_init(dev, NULL, (dma_addr_t)rmem->base, rmem->size, da, stm32_rproc_mem_alloc, stm32_rproc_mem_release, it.node->name); if (mem) rproc_coredump_add_segment(rproc, da, rmem->size); } else { /* Register reserved memory for vdev buffer alloc */ mem = rproc_of_resm_mem_entry_init(dev, index, rmem->size, rmem->base, it.node->name); } if (!mem) { of_node_put(it.node); return -ENOMEM; } rproc_add_carveout(rproc, mem); index++; } return 0; } static int stm32_rproc_parse_fw(struct rproc *rproc, const struct firmware *fw) { if (rproc_elf_load_rsc_table(rproc, fw)) dev_warn(&rproc->dev, "no resource table found for this firmware\n"); return 0; } static irqreturn_t stm32_rproc_wdg(int irq, void *data) { struct platform_device *pdev = data; struct rproc *rproc = platform_get_drvdata(pdev); rproc_report_crash(rproc, RPROC_WATCHDOG); return IRQ_HANDLED; } static void stm32_rproc_mb_vq_work(struct work_struct *work) { struct stm32_mbox *mb = container_of(work, struct stm32_mbox, vq_work); struct rproc *rproc = dev_get_drvdata(mb->client.dev); mutex_lock(&rproc->lock); if (rproc->state != RPROC_RUNNING) goto unlock_mutex; if (rproc_vq_interrupt(rproc, mb->vq_id) == IRQ_NONE) dev_dbg(&rproc->dev, "no message found in vq%d\n", mb->vq_id); unlock_mutex: mutex_unlock(&rproc->lock); } static void stm32_rproc_mb_callback(struct mbox_client *cl, void *data) { struct rproc *rproc = dev_get_drvdata(cl->dev); struct stm32_mbox *mb = container_of(cl, struct stm32_mbox, client); struct stm32_rproc *ddata = rproc->priv; queue_work(ddata->workqueue, &mb->vq_work); } static void stm32_rproc_free_mbox(struct rproc *rproc) { struct stm32_rproc *ddata = rproc->priv; unsigned int i; for (i = 0; i < ARRAY_SIZE(ddata->mb); i++) { if (ddata->mb[i].chan) mbox_free_channel(ddata->mb[i].chan); ddata->mb[i].chan = NULL; } } static const struct stm32_mbox stm32_rproc_mbox[MBOX_NB_MBX] = { { .name = STM32_MBX_VQ0, .vq_id = STM32_MBX_VQ0_ID, .client = { .rx_callback = stm32_rproc_mb_callback, .tx_block = false, }, }, { .name = STM32_MBX_VQ1, .vq_id = STM32_MBX_VQ1_ID, .client = { .rx_callback = stm32_rproc_mb_callback, .tx_block = false, }, }, { .name = STM32_MBX_SHUTDOWN, .vq_id = -1, .client = { .tx_block = true, .tx_done = NULL, .tx_tout = 500, /* 500 ms time out */ }, }, { .name = STM32_MBX_DETACH, .vq_id = -1, .client = { .tx_block = true, .tx_done = NULL, .tx_tout = 200, /* 200 ms time out to detach should be fair enough */ }, } }; static int stm32_rproc_request_mbox(struct rproc *rproc) { struct stm32_rproc *ddata = rproc->priv; struct device *dev = &rproc->dev; unsigned int i; int j; const unsigned char *name; struct mbox_client *cl; /* Initialise mailbox structure table */ memcpy(ddata->mb, stm32_rproc_mbox, sizeof(stm32_rproc_mbox)); for (i = 0; i < MBOX_NB_MBX; i++) { name = ddata->mb[i].name; cl = &ddata->mb[i].client; cl->dev = dev->parent; ddata->mb[i].chan = mbox_request_channel_byname(cl, name); if (IS_ERR(ddata->mb[i].chan)) { if (PTR_ERR(ddata->mb[i].chan) == -EPROBE_DEFER) { dev_err_probe(dev->parent, PTR_ERR(ddata->mb[i].chan), "failed to request mailbox %s\n", name); goto err_probe; } dev_warn(dev, "cannot get %s mbox\n", name); ddata->mb[i].chan = NULL; } if (ddata->mb[i].vq_id >= 0) { INIT_WORK(&ddata->mb[i].vq_work, stm32_rproc_mb_vq_work); } } return 0; err_probe: for (j = i - 1; j >= 0; j--) if (ddata->mb[j].chan) mbox_free_channel(ddata->mb[j].chan); return -EPROBE_DEFER; } static int stm32_rproc_set_hold_boot(struct rproc *rproc, bool hold) { struct stm32_rproc *ddata = rproc->priv; struct stm32_syscon hold_boot = ddata->hold_boot; struct arm_smccc_res smc_res; int val, err; /* * Three ways to manage the hold boot * - using SCMI: the hold boot is managed as a reset, * - using Linux(no SCMI): the hold boot is managed as a syscon register * - using SMC call (deprecated): use SMC reset interface */ val = hold ? HOLD_BOOT : RELEASE_BOOT; if (ddata->hold_boot_rst) { /* Use the SCMI reset controller */ if (!hold) err = reset_control_deassert(ddata->hold_boot_rst); else err = reset_control_assert(ddata->hold_boot_rst); } else if (IS_ENABLED(CONFIG_HAVE_ARM_SMCCC) && ddata->hold_boot_smc) { /* Use the SMC call */ arm_smccc_smc(STM32_SMC_RCC, STM32_SMC_REG_WRITE, hold_boot.reg, val, 0, 0, 0, 0, &smc_res); err = smc_res.a0; } else { /* Use syscon */ err = regmap_update_bits(hold_boot.map, hold_boot.reg, hold_boot.mask, val); } if (err) dev_err(&rproc->dev, "failed to set hold boot\n"); return err; } static void stm32_rproc_add_coredump_trace(struct rproc *rproc) { struct rproc_debug_trace *trace; struct rproc_dump_segment *segment; bool already_added; list_for_each_entry(trace, &rproc->traces, node) { already_added = false; list_for_each_entry(segment, &rproc->dump_segments, node) { if (segment->da == trace->trace_mem.da) { already_added = true; break; } } if (!already_added) rproc_coredump_add_segment(rproc, trace->trace_mem.da, trace->trace_mem.len); } } static int stm32_rproc_start(struct rproc *rproc) { struct stm32_rproc *ddata = rproc->priv; int err; stm32_rproc_add_coredump_trace(rproc); /* clear remote proc Deep Sleep */ if (ddata->pdds.map) { err = regmap_update_bits(ddata->pdds.map, ddata->pdds.reg, ddata->pdds.mask, 0); if (err) { dev_err(&rproc->dev, "failed to clear pdds\n"); return err; } } err = stm32_rproc_set_hold_boot(rproc, false); if (err) return err; return stm32_rproc_set_hold_boot(rproc, true); } static int stm32_rproc_attach(struct rproc *rproc) { stm32_rproc_add_coredump_trace(rproc); return stm32_rproc_set_hold_boot(rproc, true); } static int stm32_rproc_detach(struct rproc *rproc) { struct stm32_rproc *ddata = rproc->priv; int err, idx; /* Inform the remote processor of the detach */ idx = stm32_rproc_mbox_idx(rproc, STM32_MBX_DETACH); if (idx >= 0 && ddata->mb[idx].chan) { err = mbox_send_message(ddata->mb[idx].chan, "stop"); if (err < 0) dev_warn(&rproc->dev, "warning: remote FW detach without ack\n"); } /* Allow remote processor to auto-reboot */ return stm32_rproc_set_hold_boot(rproc, false); } static int stm32_rproc_stop(struct rproc *rproc) { struct stm32_rproc *ddata = rproc->priv; int err, idx; /* request shutdown of the remote processor */ if (rproc->state != RPROC_OFFLINE && rproc->state != RPROC_CRASHED) { idx = stm32_rproc_mbox_idx(rproc, STM32_MBX_SHUTDOWN); if (idx >= 0 && ddata->mb[idx].chan) { err = mbox_send_message(ddata->mb[idx].chan, "detach"); if (err < 0) dev_warn(&rproc->dev, "warning: remote FW shutdown without ack\n"); } } err = stm32_rproc_set_hold_boot(rproc, true); if (err) return err; err = reset_control_assert(ddata->rst); if (err) { dev_err(&rproc->dev, "failed to assert the reset\n"); return err; } /* to allow platform Standby power mode, set remote proc Deep Sleep */ if (ddata->pdds.map) { err = regmap_update_bits(ddata->pdds.map, ddata->pdds.reg, ddata->pdds.mask, 1); if (err) { dev_err(&rproc->dev, "failed to set pdds\n"); return err; } } /* update coprocessor state to OFF if available */ if (ddata->m4_state.map) { err = regmap_update_bits(ddata->m4_state.map, ddata->m4_state.reg, ddata->m4_state.mask, M4_STATE_OFF); if (err) { dev_err(&rproc->dev, "failed to set copro state\n"); return err; } } return 0; } static void stm32_rproc_kick(struct rproc *rproc, int vqid) { struct stm32_rproc *ddata = rproc->priv; unsigned int i; int err; if (WARN_ON(vqid >= MBOX_NB_VQ)) return; for (i = 0; i < MBOX_NB_MBX; i++) { if (vqid != ddata->mb[i].vq_id) continue; if (!ddata->mb[i].chan) return; err = mbox_send_message(ddata->mb[i].chan, "kick"); if (err < 0) dev_err(&rproc->dev, "%s: failed (%s, err:%d)\n", __func__, ddata->mb[i].name, err); return; } } static int stm32_rproc_da_to_pa(struct rproc *rproc, u64 da, phys_addr_t *pa) { struct stm32_rproc *ddata = rproc->priv; struct device *dev = rproc->dev.parent; struct stm32_rproc_mem *p_mem; unsigned int i; for (i = 0; i < ddata->nb_rmems; i++) { p_mem = &ddata->rmems[i]; if (da < p_mem->dev_addr || da >= p_mem->dev_addr + p_mem->size) continue; *pa = da - p_mem->dev_addr + p_mem->bus_addr; dev_dbg(dev, "da %llx to pa %pap\n", da, pa); return 0; } dev_err(dev, "can't translate da %llx\n", da); return -EINVAL; } static struct resource_table * stm32_rproc_get_loaded_rsc_table(struct rproc *rproc, size_t *table_sz) { struct stm32_rproc *ddata = rproc->priv; struct device *dev = rproc->dev.parent; phys_addr_t rsc_pa; u32 rsc_da; int err; /* The resource table has already been mapped, nothing to do */ if (ddata->rsc_va) goto done; err = regmap_read(ddata->rsctbl.map, ddata->rsctbl.reg, &rsc_da); if (err) { dev_err(dev, "failed to read rsc tbl addr\n"); return ERR_PTR(-EINVAL); } if (!rsc_da) /* no rsc table */ return ERR_PTR(-ENOENT); err = stm32_rproc_da_to_pa(rproc, rsc_da, &rsc_pa); if (err) return ERR_PTR(err); ddata->rsc_va = devm_ioremap_wc(dev, rsc_pa, RSC_TBL_SIZE); if (IS_ERR_OR_NULL(ddata->rsc_va)) { dev_err(dev, "Unable to map memory region: %pa+%x\n", &rsc_pa, RSC_TBL_SIZE); ddata->rsc_va = NULL; return ERR_PTR(-ENOMEM); } done: /* * Assuming the resource table fits in 1kB is fair. * Notice for the detach, that this 1 kB memory area has to be reserved in the coprocessor * firmware for the resource table. On detach, the remoteproc core re-initializes this * entire area by overwriting it with the initial values stored in rproc->clean_table. */ *table_sz = RSC_TBL_SIZE; return (struct resource_table *)ddata->rsc_va; } static const struct rproc_ops st_rproc_ops = { .prepare = stm32_rproc_prepare, .start = stm32_rproc_start, .stop = stm32_rproc_stop, .attach = stm32_rproc_attach, .detach = stm32_rproc_detach, .kick = stm32_rproc_kick, .load = rproc_elf_load_segments, .parse_fw = stm32_rproc_parse_fw, .find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table, .get_loaded_rsc_table = stm32_rproc_get_loaded_rsc_table, .sanity_check = rproc_elf_sanity_check, .get_boot_addr = rproc_elf_get_boot_addr, }; static const struct of_device_id stm32_rproc_match[] = { { .compatible = "st,stm32mp1-m4" }, {}, }; MODULE_DEVICE_TABLE(of, stm32_rproc_match); static int stm32_rproc_get_syscon(struct device_node *np, const char *prop, struct stm32_syscon *syscon) { int err = 0; syscon->map = syscon_regmap_lookup_by_phandle(np, prop); if (IS_ERR(syscon->map)) { err = PTR_ERR(syscon->map); syscon->map = NULL; goto out; } err = of_property_read_u32_index(np, prop, 1, &syscon->reg); if (err) goto out; err = of_property_read_u32_index(np, prop, 2, &syscon->mask); out: return err; } static int stm32_rproc_parse_dt(struct platform_device *pdev, struct stm32_rproc *ddata, bool *auto_boot) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct stm32_syscon tz; unsigned int tzen; int err, irq; irq = platform_get_irq(pdev, 0); if (irq == -EPROBE_DEFER) return dev_err_probe(dev, irq, "failed to get interrupt\n"); if (irq > 0) { err = devm_request_irq(dev, irq, stm32_rproc_wdg, 0, dev_name(dev), pdev); if (err) return dev_err_probe(dev, err, "failed to request wdg irq\n"); ddata->wdg_irq = irq; if (of_property_read_bool(np, "wakeup-source")) { device_init_wakeup(dev, true); dev_pm_set_wake_irq(dev, irq); } dev_info(dev, "wdg irq registered\n"); } ddata->rst = devm_reset_control_get_optional(dev, "mcu_rst"); if (!ddata->rst) { /* Try legacy fallback method: get it by index */ ddata->rst = devm_reset_control_get_by_index(dev, 0); } if (IS_ERR(ddata->rst)) return dev_err_probe(dev, PTR_ERR(ddata->rst), "failed to get mcu_reset\n"); /* * Three ways to manage the hold boot * - using SCMI: the hold boot is managed as a reset * The DT "reset-mames" property should be defined with 2 items: * reset-names = "mcu_rst", "hold_boot"; * - using SMC call (deprecated): use SMC reset interface * The DT "reset-mames" property is optional, "st,syscfg-tz" is required * - default(no SCMI, no SMC): the hold boot is managed as a syscon register * The DT "reset-mames" property is optional, "st,syscfg-holdboot" is required */ ddata->hold_boot_rst = devm_reset_control_get_optional(dev, "hold_boot"); if (IS_ERR(ddata->hold_boot_rst)) return dev_err_probe(dev, PTR_ERR(ddata->hold_boot_rst), "failed to get hold_boot reset\n"); if (!ddata->hold_boot_rst && IS_ENABLED(CONFIG_HAVE_ARM_SMCCC)) { /* Manage the MCU_BOOT using SMC call */ err = stm32_rproc_get_syscon(np, "st,syscfg-tz", &tz); if (!err) { err = regmap_read(tz.map, tz.reg, &tzen); if (err) { dev_err(dev, "failed to read tzen\n"); return err; } ddata->hold_boot_smc = tzen & tz.mask; } } if (!ddata->hold_boot_rst && !ddata->hold_boot_smc) { /* Default: hold boot manage it through the syscon controller */ err = stm32_rproc_get_syscon(np, "st,syscfg-holdboot", &ddata->hold_boot); if (err) { dev_err(dev, "failed to get hold boot\n"); return err; } } err = stm32_rproc_get_syscon(np, "st,syscfg-pdds", &ddata->pdds); if (err) dev_info(dev, "failed to get pdds\n"); *auto_boot = of_property_read_bool(np, "st,auto-boot"); /* * See if we can check the M4 status, i.e if it was started * from the boot loader or not. */ err = stm32_rproc_get_syscon(np, "st,syscfg-m4-state", &ddata->m4_state); if (err) { /* remember this */ ddata->m4_state.map = NULL; /* no coprocessor state syscon (optional) */ dev_warn(dev, "m4 state not supported\n"); /* no need to go further */ return 0; } /* See if we can get the resource table */ err = stm32_rproc_get_syscon(np, "st,syscfg-rsc-tbl", &ddata->rsctbl); if (err) { /* no rsc table syscon (optional) */ dev_warn(dev, "rsc tbl syscon not supported\n"); } return 0; } static int stm32_rproc_get_m4_status(struct stm32_rproc *ddata, unsigned int *state) { /* See stm32_rproc_parse_dt() */ if (!ddata->m4_state.map) { /* * We couldn't get the coprocessor's state, assume * it is not running. */ *state = M4_STATE_OFF; return 0; } return regmap_read(ddata->m4_state.map, ddata->m4_state.reg, state); } static int stm32_rproc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct stm32_rproc *ddata; struct device_node *np = dev->of_node; struct rproc *rproc; unsigned int state; int ret; ret = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(32)); if (ret) return ret; rproc = rproc_alloc(dev, np->name, &st_rproc_ops, NULL, sizeof(*ddata)); if (!rproc) return -ENOMEM; ddata = rproc->priv; rproc_coredump_set_elf_info(rproc, ELFCLASS32, EM_NONE); ret = stm32_rproc_parse_dt(pdev, ddata, &rproc->auto_boot); if (ret) goto free_rproc; ret = stm32_rproc_of_memory_translations(pdev, ddata); if (ret) goto free_rproc; ret = stm32_rproc_get_m4_status(ddata, &state); if (ret) goto free_rproc; if (state == M4_STATE_CRUN) rproc->state = RPROC_DETACHED; rproc->has_iommu = false; ddata->workqueue = create_workqueue(dev_name(dev)); if (!ddata->workqueue) { dev_err(dev, "cannot create workqueue\n"); ret = -ENOMEM; goto free_resources; } platform_set_drvdata(pdev, rproc); ret = stm32_rproc_request_mbox(rproc); if (ret) goto free_wkq; ret = rproc_add(rproc); if (ret) goto free_mb; return 0; free_mb: stm32_rproc_free_mbox(rproc); free_wkq: destroy_workqueue(ddata->workqueue); free_resources: rproc_resource_cleanup(rproc); free_rproc: if (device_may_wakeup(dev)) { dev_pm_clear_wake_irq(dev); device_init_wakeup(dev, false); } rproc_free(rproc); return ret; } static void stm32_rproc_remove(struct platform_device *pdev) { struct rproc *rproc = platform_get_drvdata(pdev); struct stm32_rproc *ddata = rproc->priv; struct device *dev = &pdev->dev; if (atomic_read(&rproc->power) > 0) rproc_shutdown(rproc); rproc_del(rproc); stm32_rproc_free_mbox(rproc); destroy_workqueue(ddata->workqueue); if (device_may_wakeup(dev)) { dev_pm_clear_wake_irq(dev); device_init_wakeup(dev, false); } rproc_free(rproc); } static int stm32_rproc_suspend(struct device *dev) { struct rproc *rproc = dev_get_drvdata(dev); struct stm32_rproc *ddata = rproc->priv; if (device_may_wakeup(dev)) return enable_irq_wake(ddata->wdg_irq); return 0; } static int stm32_rproc_resume(struct device *dev) { struct rproc *rproc = dev_get_drvdata(dev); struct stm32_rproc *ddata = rproc->priv; if (device_may_wakeup(dev)) return disable_irq_wake(ddata->wdg_irq); return 0; } static DEFINE_SIMPLE_DEV_PM_OPS(stm32_rproc_pm_ops, stm32_rproc_suspend, stm32_rproc_resume); static struct platform_driver stm32_rproc_driver = { .probe = stm32_rproc_probe, .remove_new = stm32_rproc_remove, .driver = { .name = "stm32-rproc", .pm = pm_ptr(&stm32_rproc_pm_ops), .of_match_table = stm32_rproc_match, }, }; module_platform_driver(stm32_rproc_driver); MODULE_DESCRIPTION("STM32 Remote Processor Control Driver"); MODULE_AUTHOR("Ludovic Barre <[email protected]>"); MODULE_AUTHOR("Fabien Dessenne <[email protected]>"); MODULE_LICENSE("GPL v2");
linux-master
drivers/remoteproc/stm32_rproc.c
// SPDX-License-Identifier: GPL-2.0+ /* * Ingenic JZ47xx remoteproc driver * Copyright 2019, Paul Cercueil <[email protected]> */ #include <linux/bitops.h> #include <linux/clk.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/remoteproc.h> #include "remoteproc_internal.h" #define REG_AUX_CTRL 0x0 #define REG_AUX_MSG_ACK 0x10 #define REG_AUX_MSG 0x14 #define REG_CORE_MSG_ACK 0x18 #define REG_CORE_MSG 0x1C #define AUX_CTRL_SLEEP BIT(31) #define AUX_CTRL_MSG_IRQ_EN BIT(3) #define AUX_CTRL_NMI_RESETS BIT(2) #define AUX_CTRL_NMI BIT(1) #define AUX_CTRL_SW_RESET BIT(0) static bool auto_boot; module_param(auto_boot, bool, 0400); MODULE_PARM_DESC(auto_boot, "Auto-boot the remote processor [default=false]"); struct vpu_mem_map { const char *name; unsigned int da; }; struct vpu_mem_info { const struct vpu_mem_map *map; unsigned long len; void __iomem *base; }; static const struct vpu_mem_map vpu_mem_map[] = { { "tcsm0", 0x132b0000 }, { "tcsm1", 0xf4000000 }, { "sram", 0x132f0000 }, }; /** * struct vpu - Ingenic VPU remoteproc private structure * @irq: interrupt number * @clks: pointers to the VPU and AUX clocks * @aux_base: raw pointer to the AUX interface registers * @mem_info: array of struct vpu_mem_info, which contain the mapping info of * each of the external memories * @dev: private pointer to the device */ struct vpu { int irq; struct clk_bulk_data clks[2]; void __iomem *aux_base; struct vpu_mem_info mem_info[ARRAY_SIZE(vpu_mem_map)]; struct device *dev; }; static int ingenic_rproc_prepare(struct rproc *rproc) { struct vpu *vpu = rproc->priv; int ret; /* The clocks must be enabled for the firmware to be loaded in TCSM */ ret = clk_bulk_prepare_enable(ARRAY_SIZE(vpu->clks), vpu->clks); if (ret) dev_err(vpu->dev, "Unable to start clocks: %d\n", ret); return ret; } static int ingenic_rproc_unprepare(struct rproc *rproc) { struct vpu *vpu = rproc->priv; clk_bulk_disable_unprepare(ARRAY_SIZE(vpu->clks), vpu->clks); return 0; } static int ingenic_rproc_start(struct rproc *rproc) { struct vpu *vpu = rproc->priv; u32 ctrl; enable_irq(vpu->irq); /* Reset the AUX and enable message IRQ */ ctrl = AUX_CTRL_NMI_RESETS | AUX_CTRL_NMI | AUX_CTRL_MSG_IRQ_EN; writel(ctrl, vpu->aux_base + REG_AUX_CTRL); return 0; } static int ingenic_rproc_stop(struct rproc *rproc) { struct vpu *vpu = rproc->priv; disable_irq(vpu->irq); /* Keep AUX in reset mode */ writel(AUX_CTRL_SW_RESET, vpu->aux_base + REG_AUX_CTRL); return 0; } static void ingenic_rproc_kick(struct rproc *rproc, int vqid) { struct vpu *vpu = rproc->priv; writel(vqid, vpu->aux_base + REG_CORE_MSG); } static void *ingenic_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) { struct vpu *vpu = rproc->priv; void __iomem *va = NULL; unsigned int i; for (i = 0; i < ARRAY_SIZE(vpu_mem_map); i++) { const struct vpu_mem_info *info = &vpu->mem_info[i]; const struct vpu_mem_map *map = info->map; if (da >= map->da && (da + len) < (map->da + info->len)) { va = info->base + (da - map->da); break; } } return (__force void *)va; } static const struct rproc_ops ingenic_rproc_ops = { .prepare = ingenic_rproc_prepare, .unprepare = ingenic_rproc_unprepare, .start = ingenic_rproc_start, .stop = ingenic_rproc_stop, .kick = ingenic_rproc_kick, .da_to_va = ingenic_rproc_da_to_va, }; static irqreturn_t vpu_interrupt(int irq, void *data) { struct rproc *rproc = data; struct vpu *vpu = rproc->priv; u32 vring; vring = readl(vpu->aux_base + REG_AUX_MSG); /* Ack the interrupt */ writel(0, vpu->aux_base + REG_AUX_MSG_ACK); return rproc_vq_interrupt(rproc, vring); } static int ingenic_rproc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct resource *mem; struct rproc *rproc; struct vpu *vpu; unsigned int i; int ret; rproc = devm_rproc_alloc(dev, "ingenic-vpu", &ingenic_rproc_ops, NULL, sizeof(*vpu)); if (!rproc) return -ENOMEM; rproc->auto_boot = auto_boot; vpu = rproc->priv; vpu->dev = &pdev->dev; platform_set_drvdata(pdev, vpu); mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "aux"); vpu->aux_base = devm_ioremap_resource(dev, mem); if (IS_ERR(vpu->aux_base)) { dev_err(dev, "Failed to ioremap\n"); return PTR_ERR(vpu->aux_base); } for (i = 0; i < ARRAY_SIZE(vpu_mem_map); i++) { mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, vpu_mem_map[i].name); vpu->mem_info[i].base = devm_ioremap_resource(dev, mem); if (IS_ERR(vpu->mem_info[i].base)) { ret = PTR_ERR(vpu->mem_info[i].base); dev_err(dev, "Failed to ioremap\n"); return ret; } vpu->mem_info[i].len = resource_size(mem); vpu->mem_info[i].map = &vpu_mem_map[i]; } vpu->clks[0].id = "vpu"; vpu->clks[1].id = "aux"; ret = devm_clk_bulk_get(dev, ARRAY_SIZE(vpu->clks), vpu->clks); if (ret) { dev_err(dev, "Failed to get clocks\n"); return ret; } vpu->irq = platform_get_irq(pdev, 0); if (vpu->irq < 0) return vpu->irq; ret = devm_request_irq(dev, vpu->irq, vpu_interrupt, IRQF_NO_AUTOEN, "VPU", rproc); if (ret < 0) { dev_err(dev, "Failed to request IRQ\n"); return ret; } ret = devm_rproc_add(dev, rproc); if (ret) { dev_err(dev, "Failed to register remote processor\n"); return ret; } return 0; } static const struct of_device_id ingenic_rproc_of_matches[] = { { .compatible = "ingenic,jz4770-vpu-rproc", }, {} }; MODULE_DEVICE_TABLE(of, ingenic_rproc_of_matches); static struct platform_driver ingenic_rproc_driver = { .probe = ingenic_rproc_probe, .driver = { .name = "ingenic-vpu", .of_match_table = ingenic_rproc_of_matches, }, }; module_platform_driver(ingenic_rproc_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Paul Cercueil <[email protected]>"); MODULE_DESCRIPTION("Ingenic JZ47xx Remote Processor control driver");
linux-master
drivers/remoteproc/ingenic_rproc.c
// SPDX-License-Identifier: GPL-2.0-only /* * Remote processor machine-specific module for DA8XX * * Copyright (C) 2013 Texas Instruments, Inc. */ #include <linux/bitops.h> #include <linux/clk.h> #include <linux/reset.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/irq.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of_reserved_mem.h> #include <linux/platform_device.h> #include <linux/remoteproc.h> #include "remoteproc_internal.h" static char *da8xx_fw_name; module_param(da8xx_fw_name, charp, 0444); MODULE_PARM_DESC(da8xx_fw_name, "Name of DSP firmware file in /lib/firmware (if not specified defaults to 'rproc-dsp-fw')"); /* * OMAP-L138 Technical References: * http://www.ti.com/product/omap-l138 */ #define SYSCFG_CHIPSIG0 BIT(0) #define SYSCFG_CHIPSIG1 BIT(1) #define SYSCFG_CHIPSIG2 BIT(2) #define SYSCFG_CHIPSIG3 BIT(3) #define SYSCFG_CHIPSIG4 BIT(4) #define DA8XX_RPROC_LOCAL_ADDRESS_MASK (SZ_16M - 1) /** * struct da8xx_rproc_mem - internal memory structure * @cpu_addr: MPU virtual address of the memory region * @bus_addr: Bus address used to access the memory region * @dev_addr: Device address of the memory region from DSP view * @size: Size of the memory region */ struct da8xx_rproc_mem { void __iomem *cpu_addr; phys_addr_t bus_addr; u32 dev_addr; size_t size; }; /** * struct da8xx_rproc - da8xx remote processor instance state * @rproc: rproc handle * @mem: internal memory regions data * @num_mems: number of internal memory regions * @dsp_clk: placeholder for platform's DSP clk * @ack_fxn: chip-specific ack function for ack'ing irq * @irq_data: ack_fxn function parameter * @chipsig: virt ptr to DSP interrupt registers (CHIPSIG & CHIPSIG_CLR) * @bootreg: virt ptr to DSP boot address register (HOST1CFG) * @irq: irq # used by this instance */ struct da8xx_rproc { struct rproc *rproc; struct da8xx_rproc_mem *mem; int num_mems; struct clk *dsp_clk; struct reset_control *dsp_reset; void (*ack_fxn)(struct irq_data *data); struct irq_data *irq_data; void __iomem *chipsig; void __iomem *bootreg; int irq; }; /** * handle_event() - inbound virtqueue message workqueue function * * This function is registered as a kernel thread and is scheduled by the * kernel handler. */ static irqreturn_t handle_event(int irq, void *p) { struct rproc *rproc = p; /* Process incoming buffers on all our vrings */ rproc_vq_interrupt(rproc, 0); rproc_vq_interrupt(rproc, 1); return IRQ_HANDLED; } /** * da8xx_rproc_callback() - inbound virtqueue message handler * * This handler is invoked directly by the kernel whenever the remote * core (DSP) has modified the state of a virtqueue. There is no * "payload" message indicating the virtqueue index as is the case with * mailbox-based implementations on OMAP4. As such, this handler "polls" * each known virtqueue index for every invocation. */ static irqreturn_t da8xx_rproc_callback(int irq, void *p) { struct rproc *rproc = p; struct da8xx_rproc *drproc = rproc->priv; u32 chipsig; chipsig = readl(drproc->chipsig); if (chipsig & SYSCFG_CHIPSIG0) { /* Clear interrupt level source */ writel(SYSCFG_CHIPSIG0, drproc->chipsig + 4); /* * ACK intr to AINTC. * * It has already been ack'ed by the kernel before calling * this function, but since the ARM<->DSP interrupts in the * CHIPSIG register are "level" instead of "pulse" variety, * we need to ack it after taking down the level else we'll * be called again immediately after returning. */ drproc->ack_fxn(drproc->irq_data); return IRQ_WAKE_THREAD; } return IRQ_HANDLED; } static int da8xx_rproc_start(struct rproc *rproc) { struct device *dev = rproc->dev.parent; struct da8xx_rproc *drproc = rproc->priv; struct clk *dsp_clk = drproc->dsp_clk; struct reset_control *dsp_reset = drproc->dsp_reset; int ret; /* hw requires the start (boot) address be on 1KB boundary */ if (rproc->bootaddr & 0x3ff) { dev_err(dev, "invalid boot address: must be aligned to 1KB\n"); return -EINVAL; } writel(rproc->bootaddr, drproc->bootreg); ret = clk_prepare_enable(dsp_clk); if (ret) { dev_err(dev, "clk_prepare_enable() failed: %d\n", ret); return ret; } ret = reset_control_deassert(dsp_reset); if (ret) { dev_err(dev, "reset_control_deassert() failed: %d\n", ret); clk_disable_unprepare(dsp_clk); return ret; } return 0; } static int da8xx_rproc_stop(struct rproc *rproc) { struct da8xx_rproc *drproc = rproc->priv; struct device *dev = rproc->dev.parent; int ret; ret = reset_control_assert(drproc->dsp_reset); if (ret) { dev_err(dev, "reset_control_assert() failed: %d\n", ret); return ret; } clk_disable_unprepare(drproc->dsp_clk); return 0; } /* kick a virtqueue */ static void da8xx_rproc_kick(struct rproc *rproc, int vqid) { struct da8xx_rproc *drproc = rproc->priv; /* Interrupt remote proc */ writel(SYSCFG_CHIPSIG2, drproc->chipsig); } static const struct rproc_ops da8xx_rproc_ops = { .start = da8xx_rproc_start, .stop = da8xx_rproc_stop, .kick = da8xx_rproc_kick, }; static int da8xx_rproc_get_internal_memories(struct platform_device *pdev, struct da8xx_rproc *drproc) { static const char * const mem_names[] = {"l2sram", "l1pram", "l1dram"}; int num_mems = ARRAY_SIZE(mem_names); struct device *dev = &pdev->dev; struct resource *res; int i; drproc->mem = devm_kcalloc(dev, num_mems, sizeof(*drproc->mem), GFP_KERNEL); if (!drproc->mem) return -ENOMEM; for (i = 0; i < num_mems; i++) { res = platform_get_resource_byname(pdev, IORESOURCE_MEM, mem_names[i]); drproc->mem[i].cpu_addr = devm_ioremap_resource(dev, res); if (IS_ERR(drproc->mem[i].cpu_addr)) { dev_err(dev, "failed to parse and map %s memory\n", mem_names[i]); return PTR_ERR(drproc->mem[i].cpu_addr); } drproc->mem[i].bus_addr = res->start; drproc->mem[i].dev_addr = res->start & DA8XX_RPROC_LOCAL_ADDRESS_MASK; drproc->mem[i].size = resource_size(res); dev_dbg(dev, "memory %8s: bus addr %pa size 0x%zx va %p da 0x%x\n", mem_names[i], &drproc->mem[i].bus_addr, drproc->mem[i].size, drproc->mem[i].cpu_addr, drproc->mem[i].dev_addr); } drproc->num_mems = num_mems; return 0; } static int da8xx_rproc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct da8xx_rproc *drproc; struct rproc *rproc; struct irq_data *irq_data; struct resource *bootreg_res; struct resource *chipsig_res; struct clk *dsp_clk; struct reset_control *dsp_reset; void __iomem *chipsig; void __iomem *bootreg; int irq; int ret; irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; irq_data = irq_get_irq_data(irq); if (!irq_data) { dev_err(dev, "irq_get_irq_data(%d): NULL\n", irq); return -EINVAL; } bootreg_res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "host1cfg"); bootreg = devm_ioremap_resource(dev, bootreg_res); if (IS_ERR(bootreg)) return PTR_ERR(bootreg); chipsig_res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "chipsig"); chipsig = devm_ioremap_resource(dev, chipsig_res); if (IS_ERR(chipsig)) return PTR_ERR(chipsig); dsp_clk = devm_clk_get(dev, NULL); if (IS_ERR(dsp_clk)) { dev_err(dev, "clk_get error: %ld\n", PTR_ERR(dsp_clk)); return PTR_ERR(dsp_clk); } dsp_reset = devm_reset_control_get_exclusive(dev, NULL); if (IS_ERR(dsp_reset)) { if (PTR_ERR(dsp_reset) != -EPROBE_DEFER) dev_err(dev, "unable to get reset control: %ld\n", PTR_ERR(dsp_reset)); return PTR_ERR(dsp_reset); } if (dev->of_node) { ret = of_reserved_mem_device_init(dev); if (ret) { dev_err(dev, "device does not have specific CMA pool: %d\n", ret); return ret; } } rproc = rproc_alloc(dev, "dsp", &da8xx_rproc_ops, da8xx_fw_name, sizeof(*drproc)); if (!rproc) { ret = -ENOMEM; goto free_mem; } /* error recovery is not supported at present */ rproc->recovery_disabled = true; drproc = rproc->priv; drproc->rproc = rproc; drproc->dsp_clk = dsp_clk; drproc->dsp_reset = dsp_reset; rproc->has_iommu = false; ret = da8xx_rproc_get_internal_memories(pdev, drproc); if (ret) goto free_rproc; platform_set_drvdata(pdev, rproc); /* everything the ISR needs is now setup, so hook it up */ ret = devm_request_threaded_irq(dev, irq, da8xx_rproc_callback, handle_event, 0, "da8xx-remoteproc", rproc); if (ret) { dev_err(dev, "devm_request_threaded_irq error: %d\n", ret); goto free_rproc; } /* * rproc_add() can end up enabling the DSP's clk with the DSP * *not* in reset, but da8xx_rproc_start() needs the DSP to be * held in reset at the time it is called. */ ret = reset_control_assert(dsp_reset); if (ret) goto free_rproc; drproc->chipsig = chipsig; drproc->bootreg = bootreg; drproc->ack_fxn = irq_data->chip->irq_ack; drproc->irq_data = irq_data; drproc->irq = irq; ret = rproc_add(rproc); if (ret) { dev_err(dev, "rproc_add failed: %d\n", ret); goto free_rproc; } return 0; free_rproc: rproc_free(rproc); free_mem: if (dev->of_node) of_reserved_mem_device_release(dev); return ret; } static void da8xx_rproc_remove(struct platform_device *pdev) { struct rproc *rproc = platform_get_drvdata(pdev); struct da8xx_rproc *drproc = rproc->priv; struct device *dev = &pdev->dev; /* * The devm subsystem might end up releasing things before * freeing the irq, thus allowing an interrupt to sneak in while * the device is being removed. This should prevent that. */ disable_irq(drproc->irq); rproc_del(rproc); rproc_free(rproc); if (dev->of_node) of_reserved_mem_device_release(dev); } static const struct of_device_id davinci_rproc_of_match[] __maybe_unused = { { .compatible = "ti,da850-dsp", }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, davinci_rproc_of_match); static struct platform_driver da8xx_rproc_driver = { .probe = da8xx_rproc_probe, .remove_new = da8xx_rproc_remove, .driver = { .name = "davinci-rproc", .of_match_table = of_match_ptr(davinci_rproc_of_match), }, }; module_platform_driver(da8xx_rproc_driver); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("DA8XX Remote Processor control driver");
linux-master
drivers/remoteproc/da8xx_remoteproc.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * SLIM core rproc driver * * Copyright (C) 2016 STMicroelectronics * * Author: Peter Griffin <[email protected]> */ #include <linux/clk.h> #include <linux/err.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/remoteproc.h> #include <linux/remoteproc/st_slim_rproc.h> #include "remoteproc_internal.h" /* SLIM core registers */ #define SLIM_ID_OFST 0x0 #define SLIM_VER_OFST 0x4 #define SLIM_EN_OFST 0x8 #define SLIM_EN_RUN BIT(0) #define SLIM_CLK_GATE_OFST 0xC #define SLIM_CLK_GATE_DIS BIT(0) #define SLIM_CLK_GATE_RESET BIT(2) #define SLIM_SLIM_PC_OFST 0x20 /* DMEM registers */ #define SLIM_REV_ID_OFST 0x0 #define SLIM_REV_ID_MIN_MASK GENMASK(15, 8) #define SLIM_REV_ID_MIN(id) ((id & SLIM_REV_ID_MIN_MASK) >> 8) #define SLIM_REV_ID_MAJ_MASK GENMASK(23, 16) #define SLIM_REV_ID_MAJ(id) ((id & SLIM_REV_ID_MAJ_MASK) >> 16) /* peripherals registers */ #define SLIM_STBUS_SYNC_OFST 0xF88 #define SLIM_STBUS_SYNC_DIS BIT(0) #define SLIM_INT_SET_OFST 0xFD4 #define SLIM_INT_CLR_OFST 0xFD8 #define SLIM_INT_MASK_OFST 0xFDC #define SLIM_CMD_CLR_OFST 0xFC8 #define SLIM_CMD_MASK_OFST 0xFCC static const char *mem_names[ST_SLIM_MEM_MAX] = { [ST_SLIM_DMEM] = "dmem", [ST_SLIM_IMEM] = "imem", }; static int slim_clk_get(struct st_slim_rproc *slim_rproc, struct device *dev) { int clk, err; for (clk = 0; clk < ST_SLIM_MAX_CLK; clk++) { slim_rproc->clks[clk] = of_clk_get(dev->of_node, clk); if (IS_ERR(slim_rproc->clks[clk])) { err = PTR_ERR(slim_rproc->clks[clk]); if (err == -EPROBE_DEFER) goto err_put_clks; slim_rproc->clks[clk] = NULL; break; } } return 0; err_put_clks: while (--clk >= 0) clk_put(slim_rproc->clks[clk]); return err; } static void slim_clk_disable(struct st_slim_rproc *slim_rproc) { int clk; for (clk = 0; clk < ST_SLIM_MAX_CLK && slim_rproc->clks[clk]; clk++) clk_disable_unprepare(slim_rproc->clks[clk]); } static int slim_clk_enable(struct st_slim_rproc *slim_rproc) { int clk, ret; for (clk = 0; clk < ST_SLIM_MAX_CLK && slim_rproc->clks[clk]; clk++) { ret = clk_prepare_enable(slim_rproc->clks[clk]); if (ret) goto err_disable_clks; } return 0; err_disable_clks: while (--clk >= 0) clk_disable_unprepare(slim_rproc->clks[clk]); return ret; } /* * Remoteproc slim specific device handlers */ static int slim_rproc_start(struct rproc *rproc) { struct device *dev = &rproc->dev; struct st_slim_rproc *slim_rproc = rproc->priv; unsigned long hw_id, hw_ver, fw_rev; u32 val; /* disable CPU pipeline clock & reset CPU pipeline */ val = SLIM_CLK_GATE_DIS | SLIM_CLK_GATE_RESET; writel(val, slim_rproc->slimcore + SLIM_CLK_GATE_OFST); /* disable SLIM core STBus sync */ writel(SLIM_STBUS_SYNC_DIS, slim_rproc->peri + SLIM_STBUS_SYNC_OFST); /* enable cpu pipeline clock */ writel(!SLIM_CLK_GATE_DIS, slim_rproc->slimcore + SLIM_CLK_GATE_OFST); /* clear int & cmd mailbox */ writel(~0U, slim_rproc->peri + SLIM_INT_CLR_OFST); writel(~0U, slim_rproc->peri + SLIM_CMD_CLR_OFST); /* enable all channels cmd & int */ writel(~0U, slim_rproc->peri + SLIM_INT_MASK_OFST); writel(~0U, slim_rproc->peri + SLIM_CMD_MASK_OFST); /* enable cpu */ writel(SLIM_EN_RUN, slim_rproc->slimcore + SLIM_EN_OFST); hw_id = readl_relaxed(slim_rproc->slimcore + SLIM_ID_OFST); hw_ver = readl_relaxed(slim_rproc->slimcore + SLIM_VER_OFST); fw_rev = readl(slim_rproc->mem[ST_SLIM_DMEM].cpu_addr + SLIM_REV_ID_OFST); dev_info(dev, "fw rev:%ld.%ld on SLIM %ld.%ld\n", SLIM_REV_ID_MAJ(fw_rev), SLIM_REV_ID_MIN(fw_rev), hw_id, hw_ver); return 0; } static int slim_rproc_stop(struct rproc *rproc) { struct st_slim_rproc *slim_rproc = rproc->priv; u32 val; /* mask all (cmd & int) channels */ writel(0UL, slim_rproc->peri + SLIM_INT_MASK_OFST); writel(0UL, slim_rproc->peri + SLIM_CMD_MASK_OFST); /* disable cpu pipeline clock */ writel(SLIM_CLK_GATE_DIS, slim_rproc->slimcore + SLIM_CLK_GATE_OFST); writel(!SLIM_EN_RUN, slim_rproc->slimcore + SLIM_EN_OFST); val = readl(slim_rproc->slimcore + SLIM_EN_OFST); if (val & SLIM_EN_RUN) dev_warn(&rproc->dev, "Failed to disable SLIM"); dev_dbg(&rproc->dev, "slim stopped\n"); return 0; } static void *slim_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) { struct st_slim_rproc *slim_rproc = rproc->priv; void *va = NULL; int i; for (i = 0; i < ST_SLIM_MEM_MAX; i++) { if (da != slim_rproc->mem[i].bus_addr) continue; if (len <= slim_rproc->mem[i].size) { /* __force to make sparse happy with type conversion */ va = (__force void *)slim_rproc->mem[i].cpu_addr; break; } } dev_dbg(&rproc->dev, "da = 0x%llx len = 0x%zx va = 0x%pK\n", da, len, va); return va; } static const struct rproc_ops slim_rproc_ops = { .start = slim_rproc_start, .stop = slim_rproc_stop, .da_to_va = slim_rproc_da_to_va, .get_boot_addr = rproc_elf_get_boot_addr, .load = rproc_elf_load_segments, .sanity_check = rproc_elf_sanity_check, }; /** * st_slim_rproc_alloc() - allocate and initialise slim rproc * @pdev: Pointer to the platform_device struct * @fw_name: Name of firmware for rproc to use * * Function for allocating and initialising a slim rproc for use by * device drivers whose IP is based around the SLIM core. It * obtains and enables any clocks required by the SLIM core and also * ioremaps the various IO. * * Return: st_slim_rproc pointer or PTR_ERR() on error. */ struct st_slim_rproc *st_slim_rproc_alloc(struct platform_device *pdev, char *fw_name) { struct device *dev = &pdev->dev; struct st_slim_rproc *slim_rproc; struct device_node *np = dev->of_node; struct rproc *rproc; struct resource *res; int err, i; if (!fw_name) return ERR_PTR(-EINVAL); if (!of_device_is_compatible(np, "st,slim-rproc")) return ERR_PTR(-EINVAL); rproc = rproc_alloc(dev, np->name, &slim_rproc_ops, fw_name, sizeof(*slim_rproc)); if (!rproc) return ERR_PTR(-ENOMEM); rproc->has_iommu = false; slim_rproc = rproc->priv; slim_rproc->rproc = rproc; /* get imem and dmem */ for (i = 0; i < ARRAY_SIZE(mem_names); i++) { res = platform_get_resource_byname(pdev, IORESOURCE_MEM, mem_names[i]); slim_rproc->mem[i].cpu_addr = devm_ioremap_resource(dev, res); if (IS_ERR(slim_rproc->mem[i].cpu_addr)) { dev_err(&pdev->dev, "devm_ioremap_resource failed\n"); err = PTR_ERR(slim_rproc->mem[i].cpu_addr); goto err; } slim_rproc->mem[i].bus_addr = res->start; slim_rproc->mem[i].size = resource_size(res); } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "slimcore"); slim_rproc->slimcore = devm_ioremap_resource(dev, res); if (IS_ERR(slim_rproc->slimcore)) { dev_err(&pdev->dev, "failed to ioremap slimcore IO\n"); err = PTR_ERR(slim_rproc->slimcore); goto err; } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "peripherals"); slim_rproc->peri = devm_ioremap_resource(dev, res); if (IS_ERR(slim_rproc->peri)) { dev_err(&pdev->dev, "failed to ioremap peripherals IO\n"); err = PTR_ERR(slim_rproc->peri); goto err; } err = slim_clk_get(slim_rproc, dev); if (err) goto err; err = slim_clk_enable(slim_rproc); if (err) { dev_err(dev, "Failed to enable clocks\n"); goto err_clk_put; } /* Register as a remoteproc device */ err = rproc_add(rproc); if (err) { dev_err(dev, "registration of slim remoteproc failed\n"); goto err_clk_dis; } return slim_rproc; err_clk_dis: slim_clk_disable(slim_rproc); err_clk_put: for (i = 0; i < ST_SLIM_MAX_CLK && slim_rproc->clks[i]; i++) clk_put(slim_rproc->clks[i]); err: rproc_free(rproc); return ERR_PTR(err); } EXPORT_SYMBOL(st_slim_rproc_alloc); /** * st_slim_rproc_put() - put slim rproc resources * @slim_rproc: Pointer to the st_slim_rproc struct * * Function for calling respective _put() functions on slim_rproc resources. * */ void st_slim_rproc_put(struct st_slim_rproc *slim_rproc) { int clk; if (!slim_rproc) return; slim_clk_disable(slim_rproc); for (clk = 0; clk < ST_SLIM_MAX_CLK && slim_rproc->clks[clk]; clk++) clk_put(slim_rproc->clks[clk]); rproc_del(slim_rproc->rproc); rproc_free(slim_rproc->rproc); } EXPORT_SYMBOL(st_slim_rproc_put); MODULE_AUTHOR("Peter Griffin <[email protected]>"); MODULE_DESCRIPTION("STMicroelectronics SLIM core rproc driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/remoteproc/st_slim_rproc.c
// SPDX-License-Identifier: GPL-2.0-only /* * Remote processor messaging transport (OMAP platform-specific bits) * * Copyright (C) 2011 Texas Instruments, Inc. * Copyright (C) 2011 Google, Inc. * * Ohad Ben-Cohen <[email protected]> * Brian Swetland <[email protected]> */ #include <linux/dma-direct.h> #include <linux/dma-map-ops.h> #include <linux/dma-mapping.h> #include <linux/export.h> #include <linux/of_reserved_mem.h> #include <linux/platform_device.h> #include <linux/remoteproc.h> #include <linux/virtio.h> #include <linux/virtio_config.h> #include <linux/virtio_ids.h> #include <linux/virtio_ring.h> #include <linux/err.h> #include <linux/kref.h> #include <linux/slab.h> #include "remoteproc_internal.h" static int copy_dma_range_map(struct device *to, struct device *from) { const struct bus_dma_region *map = from->dma_range_map, *new_map, *r; int num_ranges = 0; if (!map) return 0; for (r = map; r->size; r++) num_ranges++; new_map = kmemdup(map, array_size(num_ranges + 1, sizeof(*map)), GFP_KERNEL); if (!new_map) return -ENOMEM; to->dma_range_map = new_map; return 0; } static struct rproc_vdev *vdev_to_rvdev(struct virtio_device *vdev) { struct platform_device *pdev; pdev = container_of(vdev->dev.parent, struct platform_device, dev); return platform_get_drvdata(pdev); } static struct rproc *vdev_to_rproc(struct virtio_device *vdev) { struct rproc_vdev *rvdev = vdev_to_rvdev(vdev); return rvdev->rproc; } /* kick the remote processor, and let it know which virtqueue to poke at */ static bool rproc_virtio_notify(struct virtqueue *vq) { struct rproc_vring *rvring = vq->priv; struct rproc *rproc = rvring->rvdev->rproc; int notifyid = rvring->notifyid; dev_dbg(&rproc->dev, "kicking vq index: %d\n", notifyid); rproc->ops->kick(rproc, notifyid); return true; } /** * rproc_vq_interrupt() - tell remoteproc that a virtqueue is interrupted * @rproc: handle to the remote processor * @notifyid: index of the signalled virtqueue (unique per this @rproc) * * This function should be called by the platform-specific rproc driver, * when the remote processor signals that a specific virtqueue has pending * messages available. * * Return: IRQ_NONE if no message was found in the @notifyid virtqueue, * and otherwise returns IRQ_HANDLED. */ irqreturn_t rproc_vq_interrupt(struct rproc *rproc, int notifyid) { struct rproc_vring *rvring; dev_dbg(&rproc->dev, "vq index %d is interrupted\n", notifyid); rvring = idr_find(&rproc->notifyids, notifyid); if (!rvring || !rvring->vq) return IRQ_NONE; return vring_interrupt(0, rvring->vq); } EXPORT_SYMBOL(rproc_vq_interrupt); static struct virtqueue *rp_find_vq(struct virtio_device *vdev, unsigned int id, void (*callback)(struct virtqueue *vq), const char *name, bool ctx) { struct rproc_vdev *rvdev = vdev_to_rvdev(vdev); struct rproc *rproc = vdev_to_rproc(vdev); struct device *dev = &rproc->dev; struct rproc_mem_entry *mem; struct rproc_vring *rvring; struct fw_rsc_vdev *rsc; struct virtqueue *vq; void *addr; int num, size; /* we're temporarily limited to two virtqueues per rvdev */ if (id >= ARRAY_SIZE(rvdev->vring)) return ERR_PTR(-EINVAL); if (!name) return NULL; /* Search allocated memory region by name */ mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index, id); if (!mem || !mem->va) return ERR_PTR(-ENOMEM); rvring = &rvdev->vring[id]; addr = mem->va; num = rvring->num; /* zero vring */ size = vring_size(num, rvring->align); memset(addr, 0, size); dev_dbg(dev, "vring%d: va %pK qsz %d notifyid %d\n", id, addr, num, rvring->notifyid); /* * Create the new vq, and tell virtio we're not interested in * the 'weak' smp barriers, since we're talking with a real device. */ vq = vring_new_virtqueue(id, num, rvring->align, vdev, false, ctx, addr, rproc_virtio_notify, callback, name); if (!vq) { dev_err(dev, "vring_new_virtqueue %s failed\n", name); rproc_free_vring(rvring); return ERR_PTR(-ENOMEM); } vq->num_max = num; rvring->vq = vq; vq->priv = rvring; /* Update vring in resource table */ rsc = (void *)rproc->table_ptr + rvdev->rsc_offset; rsc->vring[id].da = mem->da; return vq; } static void __rproc_virtio_del_vqs(struct virtio_device *vdev) { struct virtqueue *vq, *n; struct rproc_vring *rvring; list_for_each_entry_safe(vq, n, &vdev->vqs, list) { rvring = vq->priv; rvring->vq = NULL; vring_del_virtqueue(vq); } } static void rproc_virtio_del_vqs(struct virtio_device *vdev) { __rproc_virtio_del_vqs(vdev); } static int rproc_virtio_find_vqs(struct virtio_device *vdev, unsigned int nvqs, struct virtqueue *vqs[], vq_callback_t *callbacks[], const char * const names[], const bool * ctx, struct irq_affinity *desc) { int i, ret, queue_idx = 0; for (i = 0; i < nvqs; ++i) { if (!names[i]) { vqs[i] = NULL; continue; } vqs[i] = rp_find_vq(vdev, queue_idx++, callbacks[i], names[i], ctx ? ctx[i] : false); if (IS_ERR(vqs[i])) { ret = PTR_ERR(vqs[i]); goto error; } } return 0; error: __rproc_virtio_del_vqs(vdev); return ret; } static u8 rproc_virtio_get_status(struct virtio_device *vdev) { struct rproc_vdev *rvdev = vdev_to_rvdev(vdev); struct fw_rsc_vdev *rsc; rsc = (void *)rvdev->rproc->table_ptr + rvdev->rsc_offset; return rsc->status; } static void rproc_virtio_set_status(struct virtio_device *vdev, u8 status) { struct rproc_vdev *rvdev = vdev_to_rvdev(vdev); struct fw_rsc_vdev *rsc; rsc = (void *)rvdev->rproc->table_ptr + rvdev->rsc_offset; rsc->status = status; dev_dbg(&vdev->dev, "status: %d\n", status); } static void rproc_virtio_reset(struct virtio_device *vdev) { struct rproc_vdev *rvdev = vdev_to_rvdev(vdev); struct fw_rsc_vdev *rsc; rsc = (void *)rvdev->rproc->table_ptr + rvdev->rsc_offset; rsc->status = 0; dev_dbg(&vdev->dev, "reset !\n"); } /* provide the vdev features as retrieved from the firmware */ static u64 rproc_virtio_get_features(struct virtio_device *vdev) { struct rproc_vdev *rvdev = vdev_to_rvdev(vdev); struct fw_rsc_vdev *rsc; rsc = (void *)rvdev->rproc->table_ptr + rvdev->rsc_offset; return rsc->dfeatures; } static void rproc_transport_features(struct virtio_device *vdev) { /* * Packed ring isn't enabled on remoteproc for now, * because remoteproc uses vring_new_virtqueue() which * creates virtio rings on preallocated memory. */ __virtio_clear_bit(vdev, VIRTIO_F_RING_PACKED); } static int rproc_virtio_finalize_features(struct virtio_device *vdev) { struct rproc_vdev *rvdev = vdev_to_rvdev(vdev); struct fw_rsc_vdev *rsc; rsc = (void *)rvdev->rproc->table_ptr + rvdev->rsc_offset; /* Give virtio_ring a chance to accept features */ vring_transport_features(vdev); /* Give virtio_rproc a chance to accept features. */ rproc_transport_features(vdev); /* Make sure we don't have any features > 32 bits! */ BUG_ON((u32)vdev->features != vdev->features); /* * Remember the finalized features of our vdev, and provide it * to the remote processor once it is powered on. */ rsc->gfeatures = vdev->features; return 0; } static void rproc_virtio_get(struct virtio_device *vdev, unsigned int offset, void *buf, unsigned int len) { struct rproc_vdev *rvdev = vdev_to_rvdev(vdev); struct fw_rsc_vdev *rsc; void *cfg; rsc = (void *)rvdev->rproc->table_ptr + rvdev->rsc_offset; cfg = &rsc->vring[rsc->num_of_vrings]; if (offset + len > rsc->config_len || offset + len < len) { dev_err(&vdev->dev, "rproc_virtio_get: access out of bounds\n"); return; } memcpy(buf, cfg + offset, len); } static void rproc_virtio_set(struct virtio_device *vdev, unsigned int offset, const void *buf, unsigned int len) { struct rproc_vdev *rvdev = vdev_to_rvdev(vdev); struct fw_rsc_vdev *rsc; void *cfg; rsc = (void *)rvdev->rproc->table_ptr + rvdev->rsc_offset; cfg = &rsc->vring[rsc->num_of_vrings]; if (offset + len > rsc->config_len || offset + len < len) { dev_err(&vdev->dev, "rproc_virtio_set: access out of bounds\n"); return; } memcpy(cfg + offset, buf, len); } static const struct virtio_config_ops rproc_virtio_config_ops = { .get_features = rproc_virtio_get_features, .finalize_features = rproc_virtio_finalize_features, .find_vqs = rproc_virtio_find_vqs, .del_vqs = rproc_virtio_del_vqs, .reset = rproc_virtio_reset, .set_status = rproc_virtio_set_status, .get_status = rproc_virtio_get_status, .get = rproc_virtio_get, .set = rproc_virtio_set, }; /* * This function is called whenever vdev is released, and is responsible * to decrement the remote processor's refcount which was taken when vdev was * added. * * Never call this function directly; it will be called by the driver * core when needed. */ static void rproc_virtio_dev_release(struct device *dev) { struct virtio_device *vdev = dev_to_virtio(dev); struct rproc_vdev *rvdev = vdev_to_rvdev(vdev); kfree(vdev); put_device(&rvdev->pdev->dev); } /** * rproc_add_virtio_dev() - register an rproc-induced virtio device * @rvdev: the remote vdev * @id: the device type identification (used to match it with a driver). * * This function registers a virtio device. This vdev's partent is * the rproc device. * * Return: 0 on success or an appropriate error value otherwise */ static int rproc_add_virtio_dev(struct rproc_vdev *rvdev, int id) { struct rproc *rproc = rvdev->rproc; struct device *dev = &rvdev->pdev->dev; struct virtio_device *vdev; struct rproc_mem_entry *mem; int ret; if (rproc->ops->kick == NULL) { ret = -EINVAL; dev_err(dev, ".kick method not defined for %s\n", rproc->name); goto out; } /* Try to find dedicated vdev buffer carveout */ mem = rproc_find_carveout_by_name(rproc, "vdev%dbuffer", rvdev->index); if (mem) { phys_addr_t pa; if (mem->of_resm_idx != -1) { struct device_node *np = rproc->dev.parent->of_node; /* Associate reserved memory to vdev device */ ret = of_reserved_mem_device_init_by_idx(dev, np, mem->of_resm_idx); if (ret) { dev_err(dev, "Can't associate reserved memory\n"); goto out; } } else { if (mem->va) { dev_warn(dev, "vdev %d buffer already mapped\n", rvdev->index); pa = rproc_va_to_pa(mem->va); } else { /* Use dma address as carveout no memmapped yet */ pa = (phys_addr_t)mem->dma; } /* Associate vdev buffer memory pool to vdev subdev */ ret = dma_declare_coherent_memory(dev, pa, mem->da, mem->len); if (ret < 0) { dev_err(dev, "Failed to associate buffer\n"); goto out; } } } else { struct device_node *np = rproc->dev.parent->of_node; /* * If we don't have dedicated buffer, just attempt to re-assign * the reserved memory from our parent. A default memory-region * at index 0 from the parent's memory-regions is assigned for * the rvdev dev to allocate from. Failure is non-critical and * the allocations will fall back to global pools, so don't * check return value either. */ of_reserved_mem_device_init_by_idx(dev, np, 0); } /* Allocate virtio device */ vdev = kzalloc(sizeof(*vdev), GFP_KERNEL); if (!vdev) { ret = -ENOMEM; goto out; } vdev->id.device = id, vdev->config = &rproc_virtio_config_ops, vdev->dev.parent = dev; vdev->dev.release = rproc_virtio_dev_release; /* Reference the vdev and vring allocations */ get_device(dev); ret = register_virtio_device(vdev); if (ret) { put_device(&vdev->dev); dev_err(dev, "failed to register vdev: %d\n", ret); goto out; } dev_info(dev, "registered %s (type %d)\n", dev_name(&vdev->dev), id); out: return ret; } /** * rproc_remove_virtio_dev() - remove an rproc-induced virtio device * @dev: the virtio device * @data: must be null * * This function unregisters an existing virtio device. * * Return: 0 */ static int rproc_remove_virtio_dev(struct device *dev, void *data) { struct virtio_device *vdev = dev_to_virtio(dev); unregister_virtio_device(vdev); return 0; } static int rproc_vdev_do_start(struct rproc_subdev *subdev) { struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev); return rproc_add_virtio_dev(rvdev, rvdev->id); } static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed) { struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev); struct device *dev = &rvdev->pdev->dev; int ret; ret = device_for_each_child(dev, NULL, rproc_remove_virtio_dev); if (ret) dev_warn(dev, "can't remove vdev child device: %d\n", ret); } static int rproc_virtio_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct rproc_vdev_data *rvdev_data = dev->platform_data; struct rproc_vdev *rvdev; struct rproc *rproc = container_of(dev->parent, struct rproc, dev); struct fw_rsc_vdev *rsc; int i, ret; if (!rvdev_data) return -EINVAL; rvdev = devm_kzalloc(dev, sizeof(*rvdev), GFP_KERNEL); if (!rvdev) return -ENOMEM; rvdev->id = rvdev_data->id; rvdev->rproc = rproc; rvdev->index = rvdev_data->index; ret = copy_dma_range_map(dev, rproc->dev.parent); if (ret) return ret; /* Make device dma capable by inheriting from parent's capabilities */ set_dma_ops(dev, get_dma_ops(rproc->dev.parent)); ret = dma_coerce_mask_and_coherent(dev, dma_get_mask(rproc->dev.parent)); if (ret) { dev_warn(dev, "Failed to set DMA mask %llx. Trying to continue... (%pe)\n", dma_get_mask(rproc->dev.parent), ERR_PTR(ret)); } platform_set_drvdata(pdev, rvdev); rvdev->pdev = pdev; rsc = rvdev_data->rsc; /* parse the vrings */ for (i = 0; i < rsc->num_of_vrings; i++) { ret = rproc_parse_vring(rvdev, rsc, i); if (ret) return ret; } /* remember the resource offset*/ rvdev->rsc_offset = rvdev_data->rsc_offset; /* allocate the vring resources */ for (i = 0; i < rsc->num_of_vrings; i++) { ret = rproc_alloc_vring(rvdev, i); if (ret) goto unwind_vring_allocations; } rproc_add_rvdev(rproc, rvdev); rvdev->subdev.start = rproc_vdev_do_start; rvdev->subdev.stop = rproc_vdev_do_stop; rproc_add_subdev(rproc, &rvdev->subdev); /* * We're indirectly making a non-temporary copy of the rproc pointer * here, because the platform device or the vdev device will indirectly * access the wrapping rproc. * * Therefore we must increment the rproc refcount here, and decrement * it _only_ on platform remove. */ get_device(&rproc->dev); return 0; unwind_vring_allocations: for (i--; i >= 0; i--) rproc_free_vring(&rvdev->vring[i]); return ret; } static void rproc_virtio_remove(struct platform_device *pdev) { struct rproc_vdev *rvdev = dev_get_drvdata(&pdev->dev); struct rproc *rproc = rvdev->rproc; struct rproc_vring *rvring; int id; for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) { rvring = &rvdev->vring[id]; rproc_free_vring(rvring); } rproc_remove_subdev(rproc, &rvdev->subdev); rproc_remove_rvdev(rvdev); of_reserved_mem_device_release(&pdev->dev); dma_release_coherent_memory(&pdev->dev); put_device(&rproc->dev); } /* Platform driver */ static struct platform_driver rproc_virtio_driver = { .probe = rproc_virtio_probe, .remove_new = rproc_virtio_remove, .driver = { .name = "rproc-virtio", }, }; builtin_platform_driver(rproc_virtio_driver);
linux-master
drivers/remoteproc/remoteproc_virtio.c
// SPDX-License-Identifier: GPL-2.0-only /* * Coredump functionality for Remoteproc framework. * * Copyright (c) 2020, The Linux Foundation. All rights reserved. */ #include <linux/completion.h> #include <linux/devcoredump.h> #include <linux/device.h> #include <linux/kernel.h> #include <linux/remoteproc.h> #include "remoteproc_internal.h" #include "remoteproc_elf_helpers.h" struct rproc_coredump_state { struct rproc *rproc; void *header; struct completion dump_done; }; /** * rproc_coredump_cleanup() - clean up dump_segments list * @rproc: the remote processor handle */ void rproc_coredump_cleanup(struct rproc *rproc) { struct rproc_dump_segment *entry, *tmp; list_for_each_entry_safe(entry, tmp, &rproc->dump_segments, node) { list_del(&entry->node); kfree(entry); } } EXPORT_SYMBOL_GPL(rproc_coredump_cleanup); /** * rproc_coredump_add_segment() - add segment of device memory to coredump * @rproc: handle of a remote processor * @da: device address * @size: size of segment * * Add device memory to the list of segments to be included in a coredump for * the remoteproc. * * Return: 0 on success, negative errno on error. */ int rproc_coredump_add_segment(struct rproc *rproc, dma_addr_t da, size_t size) { struct rproc_dump_segment *segment; segment = kzalloc(sizeof(*segment), GFP_KERNEL); if (!segment) return -ENOMEM; segment->da = da; segment->size = size; list_add_tail(&segment->node, &rproc->dump_segments); return 0; } EXPORT_SYMBOL(rproc_coredump_add_segment); /** * rproc_coredump_add_custom_segment() - add custom coredump segment * @rproc: handle of a remote processor * @da: device address * @size: size of segment * @dumpfn: custom dump function called for each segment during coredump * @priv: private data * * Add device memory to the list of segments to be included in the coredump * and associate the segment with the given custom dump function and private * data. * * Return: 0 on success, negative errno on error. */ int rproc_coredump_add_custom_segment(struct rproc *rproc, dma_addr_t da, size_t size, void (*dumpfn)(struct rproc *rproc, struct rproc_dump_segment *segment, void *dest, size_t offset, size_t size), void *priv) { struct rproc_dump_segment *segment; segment = kzalloc(sizeof(*segment), GFP_KERNEL); if (!segment) return -ENOMEM; segment->da = da; segment->size = size; segment->priv = priv; segment->dump = dumpfn; list_add_tail(&segment->node, &rproc->dump_segments); return 0; } EXPORT_SYMBOL(rproc_coredump_add_custom_segment); /** * rproc_coredump_set_elf_info() - set coredump elf information * @rproc: handle of a remote processor * @class: elf class for coredump elf file * @machine: elf machine for coredump elf file * * Set elf information which will be used for coredump elf file. * * Return: 0 on success, negative errno on error. */ int rproc_coredump_set_elf_info(struct rproc *rproc, u8 class, u16 machine) { if (class != ELFCLASS64 && class != ELFCLASS32) return -EINVAL; rproc->elf_class = class; rproc->elf_machine = machine; return 0; } EXPORT_SYMBOL(rproc_coredump_set_elf_info); static void rproc_coredump_free(void *data) { struct rproc_coredump_state *dump_state = data; vfree(dump_state->header); complete(&dump_state->dump_done); } static void *rproc_coredump_find_segment(loff_t user_offset, struct list_head *segments, size_t *data_left) { struct rproc_dump_segment *segment; list_for_each_entry(segment, segments, node) { if (user_offset < segment->size) { *data_left = segment->size - user_offset; return segment; } user_offset -= segment->size; } *data_left = 0; return NULL; } static void rproc_copy_segment(struct rproc *rproc, void *dest, struct rproc_dump_segment *segment, size_t offset, size_t size) { bool is_iomem = false; void *ptr; if (segment->dump) { segment->dump(rproc, segment, dest, offset, size); } else { ptr = rproc_da_to_va(rproc, segment->da + offset, size, &is_iomem); if (!ptr) { dev_err(&rproc->dev, "invalid copy request for segment %pad with offset %zu and size %zu)\n", &segment->da, offset, size); memset(dest, 0xff, size); } else { if (is_iomem) memcpy_fromio(dest, (void const __iomem *)ptr, size); else memcpy(dest, ptr, size); } } } static ssize_t rproc_coredump_read(char *buffer, loff_t offset, size_t count, void *data, size_t header_sz) { size_t seg_data, bytes_left = count; ssize_t copy_sz; struct rproc_dump_segment *seg; struct rproc_coredump_state *dump_state = data; struct rproc *rproc = dump_state->rproc; void *elfcore = dump_state->header; /* Copy the vmalloc'ed header first. */ if (offset < header_sz) { copy_sz = memory_read_from_buffer(buffer, count, &offset, elfcore, header_sz); return copy_sz; } /* * Find out the segment memory chunk to be copied based on offset. * Keep copying data until count bytes are read. */ while (bytes_left) { seg = rproc_coredump_find_segment(offset - header_sz, &rproc->dump_segments, &seg_data); /* EOF check */ if (!seg) { dev_info(&rproc->dev, "Ramdump done, %lld bytes read", offset); break; } copy_sz = min_t(size_t, bytes_left, seg_data); rproc_copy_segment(rproc, buffer, seg, seg->size - seg_data, copy_sz); offset += copy_sz; buffer += copy_sz; bytes_left -= copy_sz; } return count - bytes_left; } /** * rproc_coredump() - perform coredump * @rproc: rproc handle * * This function will generate an ELF header for the registered segments * and create a devcoredump device associated with rproc. Based on the * coredump configuration this function will directly copy the segments * from device memory to userspace or copy segments from device memory to * a separate buffer, which can then be read by userspace. * The first approach avoids using extra vmalloc memory. But it will stall * recovery flow until dump is read by userspace. */ void rproc_coredump(struct rproc *rproc) { struct rproc_dump_segment *segment; void *phdr; void *ehdr; size_t data_size; size_t offset; void *data; u8 class = rproc->elf_class; int phnum = 0; struct rproc_coredump_state dump_state; enum rproc_dump_mechanism dump_conf = rproc->dump_conf; if (list_empty(&rproc->dump_segments) || dump_conf == RPROC_COREDUMP_DISABLED) return; if (class == ELFCLASSNONE) { dev_err(&rproc->dev, "ELF class is not set\n"); return; } data_size = elf_size_of_hdr(class); list_for_each_entry(segment, &rproc->dump_segments, node) { /* * For default configuration buffer includes headers & segments. * For inline dump buffer just includes headers as segments are * directly read from device memory. */ data_size += elf_size_of_phdr(class); if (dump_conf == RPROC_COREDUMP_ENABLED) data_size += segment->size; phnum++; } data = vmalloc(data_size); if (!data) return; ehdr = data; memset(ehdr, 0, elf_size_of_hdr(class)); /* e_ident field is common for both elf32 and elf64 */ elf_hdr_init_ident(ehdr, class); elf_hdr_set_e_type(class, ehdr, ET_CORE); elf_hdr_set_e_machine(class, ehdr, rproc->elf_machine); elf_hdr_set_e_version(class, ehdr, EV_CURRENT); elf_hdr_set_e_entry(class, ehdr, rproc->bootaddr); elf_hdr_set_e_phoff(class, ehdr, elf_size_of_hdr(class)); elf_hdr_set_e_ehsize(class, ehdr, elf_size_of_hdr(class)); elf_hdr_set_e_phentsize(class, ehdr, elf_size_of_phdr(class)); elf_hdr_set_e_phnum(class, ehdr, phnum); phdr = data + elf_hdr_get_e_phoff(class, ehdr); offset = elf_hdr_get_e_phoff(class, ehdr); offset += elf_size_of_phdr(class) * elf_hdr_get_e_phnum(class, ehdr); list_for_each_entry(segment, &rproc->dump_segments, node) { memset(phdr, 0, elf_size_of_phdr(class)); elf_phdr_set_p_type(class, phdr, PT_LOAD); elf_phdr_set_p_offset(class, phdr, offset); elf_phdr_set_p_vaddr(class, phdr, segment->da); elf_phdr_set_p_paddr(class, phdr, segment->da); elf_phdr_set_p_filesz(class, phdr, segment->size); elf_phdr_set_p_memsz(class, phdr, segment->size); elf_phdr_set_p_flags(class, phdr, PF_R | PF_W | PF_X); elf_phdr_set_p_align(class, phdr, 0); if (dump_conf == RPROC_COREDUMP_ENABLED) rproc_copy_segment(rproc, data + offset, segment, 0, segment->size); offset += elf_phdr_get_p_filesz(class, phdr); phdr += elf_size_of_phdr(class); } if (dump_conf == RPROC_COREDUMP_ENABLED) { dev_coredumpv(&rproc->dev, data, data_size, GFP_KERNEL); return; } /* Initialize the dump state struct to be used by rproc_coredump_read */ dump_state.rproc = rproc; dump_state.header = data; init_completion(&dump_state.dump_done); dev_coredumpm(&rproc->dev, NULL, &dump_state, data_size, GFP_KERNEL, rproc_coredump_read, rproc_coredump_free); /* * Wait until the dump is read and free is called. Data is freed * by devcoredump framework automatically after 5 minutes. */ wait_for_completion(&dump_state.dump_done); } EXPORT_SYMBOL_GPL(rproc_coredump); /** * rproc_coredump_using_sections() - perform coredump using section headers * @rproc: rproc handle * * This function will generate an ELF header for the registered sections of * segments and create a devcoredump device associated with rproc. Based on * the coredump configuration this function will directly copy the segments * from device memory to userspace or copy segments from device memory to * a separate buffer, which can then be read by userspace. * The first approach avoids using extra vmalloc memory. But it will stall * recovery flow until dump is read by userspace. */ void rproc_coredump_using_sections(struct rproc *rproc) { struct rproc_dump_segment *segment; void *shdr; void *ehdr; size_t data_size; size_t strtbl_size = 0; size_t strtbl_index = 1; size_t offset; void *data; u8 class = rproc->elf_class; int shnum; struct rproc_coredump_state dump_state; unsigned int dump_conf = rproc->dump_conf; char *str_tbl = "STR_TBL"; if (list_empty(&rproc->dump_segments) || dump_conf == RPROC_COREDUMP_DISABLED) return; if (class == ELFCLASSNONE) { dev_err(&rproc->dev, "ELF class is not set\n"); return; } /* * We allocate two extra section headers. The first one is null. * Second section header is for the string table. Also space is * allocated for string table. */ data_size = elf_size_of_hdr(class) + 2 * elf_size_of_shdr(class); shnum = 2; /* the extra byte is for the null character at index 0 */ strtbl_size += strlen(str_tbl) + 2; list_for_each_entry(segment, &rproc->dump_segments, node) { data_size += elf_size_of_shdr(class); strtbl_size += strlen(segment->priv) + 1; if (dump_conf == RPROC_COREDUMP_ENABLED) data_size += segment->size; shnum++; } data_size += strtbl_size; data = vmalloc(data_size); if (!data) return; ehdr = data; memset(ehdr, 0, elf_size_of_hdr(class)); /* e_ident field is common for both elf32 and elf64 */ elf_hdr_init_ident(ehdr, class); elf_hdr_set_e_type(class, ehdr, ET_CORE); elf_hdr_set_e_machine(class, ehdr, rproc->elf_machine); elf_hdr_set_e_version(class, ehdr, EV_CURRENT); elf_hdr_set_e_entry(class, ehdr, rproc->bootaddr); elf_hdr_set_e_shoff(class, ehdr, elf_size_of_hdr(class)); elf_hdr_set_e_ehsize(class, ehdr, elf_size_of_hdr(class)); elf_hdr_set_e_shentsize(class, ehdr, elf_size_of_shdr(class)); elf_hdr_set_e_shnum(class, ehdr, shnum); elf_hdr_set_e_shstrndx(class, ehdr, 1); /* * The zeroth index of the section header is reserved and is rarely used. * Set the section header as null (SHN_UNDEF) and move to the next one. */ shdr = data + elf_hdr_get_e_shoff(class, ehdr); memset(shdr, 0, elf_size_of_shdr(class)); shdr += elf_size_of_shdr(class); /* Initialize the string table. */ offset = elf_hdr_get_e_shoff(class, ehdr) + elf_size_of_shdr(class) * elf_hdr_get_e_shnum(class, ehdr); memset(data + offset, 0, strtbl_size); /* Fill in the string table section header. */ memset(shdr, 0, elf_size_of_shdr(class)); elf_shdr_set_sh_type(class, shdr, SHT_STRTAB); elf_shdr_set_sh_offset(class, shdr, offset); elf_shdr_set_sh_size(class, shdr, strtbl_size); elf_shdr_set_sh_entsize(class, shdr, 0); elf_shdr_set_sh_flags(class, shdr, 0); elf_shdr_set_sh_name(class, shdr, elf_strtbl_add(str_tbl, ehdr, class, &strtbl_index)); offset += elf_shdr_get_sh_size(class, shdr); shdr += elf_size_of_shdr(class); list_for_each_entry(segment, &rproc->dump_segments, node) { memset(shdr, 0, elf_size_of_shdr(class)); elf_shdr_set_sh_type(class, shdr, SHT_PROGBITS); elf_shdr_set_sh_offset(class, shdr, offset); elf_shdr_set_sh_addr(class, shdr, segment->da); elf_shdr_set_sh_size(class, shdr, segment->size); elf_shdr_set_sh_entsize(class, shdr, 0); elf_shdr_set_sh_flags(class, shdr, SHF_WRITE); elf_shdr_set_sh_name(class, shdr, elf_strtbl_add(segment->priv, ehdr, class, &strtbl_index)); /* No need to copy segments for inline dumps */ if (dump_conf == RPROC_COREDUMP_ENABLED) rproc_copy_segment(rproc, data + offset, segment, 0, segment->size); offset += elf_shdr_get_sh_size(class, shdr); shdr += elf_size_of_shdr(class); } if (dump_conf == RPROC_COREDUMP_ENABLED) { dev_coredumpv(&rproc->dev, data, data_size, GFP_KERNEL); return; } /* Initialize the dump state struct to be used by rproc_coredump_read */ dump_state.rproc = rproc; dump_state.header = data; init_completion(&dump_state.dump_done); dev_coredumpm(&rproc->dev, NULL, &dump_state, data_size, GFP_KERNEL, rproc_coredump_read, rproc_coredump_free); /* Wait until the dump is read and free is called. Data is freed * by devcoredump framework automatically after 5 minutes. */ wait_for_completion(&dump_state.dump_done); } EXPORT_SYMBOL(rproc_coredump_using_sections);
linux-master
drivers/remoteproc/remoteproc_coredump.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2016-2018 Linaro Ltd. * Copyright (C) 2014 Sony Mobile Communications AB * Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/kernel.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/of_address.h> #include <linux/of_reserved_mem.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/regulator/consumer.h> #include <linux/reset.h> #include <linux/soc/qcom/mdt_loader.h> #include "qcom_common.h" #include "qcom_pil_info.h" #include "qcom_q6v5.h" #define WCSS_CRASH_REASON 421 /* Q6SS Register Offsets */ #define Q6SS_RESET_REG 0x014 #define Q6SS_GFMUX_CTL_REG 0x020 #define Q6SS_PWR_CTL_REG 0x030 #define Q6SS_MEM_PWR_CTL 0x0B0 #define Q6SS_STRAP_ACC 0x110 #define Q6SS_CGC_OVERRIDE 0x034 #define Q6SS_BCR_REG 0x6000 /* AXI Halt Register Offsets */ #define AXI_HALTREQ_REG 0x0 #define AXI_HALTACK_REG 0x4 #define AXI_IDLE_REG 0x8 #define HALT_ACK_TIMEOUT_MS 100 /* Q6SS_RESET */ #define Q6SS_STOP_CORE BIT(0) #define Q6SS_CORE_ARES BIT(1) #define Q6SS_BUS_ARES_ENABLE BIT(2) /* Q6SS_BRC_RESET */ #define Q6SS_BRC_BLK_ARES BIT(0) /* Q6SS_GFMUX_CTL */ #define Q6SS_CLK_ENABLE BIT(1) #define Q6SS_SWITCH_CLK_SRC BIT(8) /* Q6SS_PWR_CTL */ #define Q6SS_L2DATA_STBY_N BIT(18) #define Q6SS_SLP_RET_N BIT(19) #define Q6SS_CLAMP_IO BIT(20) #define QDSS_BHS_ON BIT(21) #define QDSS_Q6_MEMORIES GENMASK(15, 0) /* Q6SS parameters */ #define Q6SS_LDO_BYP BIT(25) #define Q6SS_BHS_ON BIT(24) #define Q6SS_CLAMP_WL BIT(21) #define Q6SS_CLAMP_QMC_MEM BIT(22) #define HALT_CHECK_MAX_LOOPS 200 #define Q6SS_XO_CBCR GENMASK(5, 3) #define Q6SS_SLEEP_CBCR GENMASK(5, 2) /* Q6SS config/status registers */ #define TCSR_GLOBAL_CFG0 0x0 #define TCSR_GLOBAL_CFG1 0x4 #define SSCAON_CONFIG 0x8 #define SSCAON_STATUS 0xc #define Q6SS_BHS_STATUS 0x78 #define Q6SS_RST_EVB 0x10 #define BHS_EN_REST_ACK BIT(0) #define SSCAON_ENABLE BIT(13) #define SSCAON_BUS_EN BIT(15) #define SSCAON_BUS_MUX_MASK GENMASK(18, 16) #define MEM_BANKS 19 #define TCSR_WCSS_CLK_MASK 0x1F #define TCSR_WCSS_CLK_ENABLE 0x14 #define MAX_HALT_REG 3 enum { WCSS_IPQ8074, WCSS_QCS404, }; struct wcss_data { const char *firmware_name; unsigned int crash_reason_smem; u32 version; bool aon_reset_required; bool wcss_q6_reset_required; const char *ssr_name; const char *sysmon_name; int ssctl_id; const struct rproc_ops *ops; bool requires_force_stop; }; struct q6v5_wcss { struct device *dev; void __iomem *reg_base; void __iomem *rmb_base; struct regmap *halt_map; u32 halt_q6; u32 halt_wcss; u32 halt_nc; struct clk *xo; struct clk *ahbfabric_cbcr_clk; struct clk *gcc_abhs_cbcr; struct clk *gcc_axim_cbcr; struct clk *lcc_csr_cbcr; struct clk *ahbs_cbcr; struct clk *tcm_slave_cbcr; struct clk *qdsp6ss_abhm_cbcr; struct clk *qdsp6ss_sleep_cbcr; struct clk *qdsp6ss_axim_cbcr; struct clk *qdsp6ss_xo_cbcr; struct clk *qdsp6ss_core_gfmux; struct clk *lcc_bcr_sleep; struct regulator *cx_supply; struct qcom_sysmon *sysmon; struct reset_control *wcss_aon_reset; struct reset_control *wcss_reset; struct reset_control *wcss_q6_reset; struct reset_control *wcss_q6_bcr_reset; struct qcom_q6v5 q6v5; phys_addr_t mem_phys; phys_addr_t mem_reloc; void *mem_region; size_t mem_size; unsigned int crash_reason_smem; u32 version; bool requires_force_stop; struct qcom_rproc_glink glink_subdev; struct qcom_rproc_ssr ssr_subdev; }; static int q6v5_wcss_reset(struct q6v5_wcss *wcss) { int ret; u32 val; int i; /* Assert resets, stop core */ val = readl(wcss->reg_base + Q6SS_RESET_REG); val |= Q6SS_CORE_ARES | Q6SS_BUS_ARES_ENABLE | Q6SS_STOP_CORE; writel(val, wcss->reg_base + Q6SS_RESET_REG); /* BHS require xo cbcr to be enabled */ val = readl(wcss->reg_base + Q6SS_XO_CBCR); val |= 0x1; writel(val, wcss->reg_base + Q6SS_XO_CBCR); /* Read CLKOFF bit to go low indicating CLK is enabled */ ret = readl_poll_timeout(wcss->reg_base + Q6SS_XO_CBCR, val, !(val & BIT(31)), 1, HALT_CHECK_MAX_LOOPS); if (ret) { dev_err(wcss->dev, "xo cbcr enabling timed out (rc:%d)\n", ret); return ret; } /* Enable power block headswitch and wait for it to stabilize */ val = readl(wcss->reg_base + Q6SS_PWR_CTL_REG); val |= Q6SS_BHS_ON; writel(val, wcss->reg_base + Q6SS_PWR_CTL_REG); udelay(1); /* Put LDO in bypass mode */ val |= Q6SS_LDO_BYP; writel(val, wcss->reg_base + Q6SS_PWR_CTL_REG); /* Deassert Q6 compiler memory clamp */ val = readl(wcss->reg_base + Q6SS_PWR_CTL_REG); val &= ~Q6SS_CLAMP_QMC_MEM; writel(val, wcss->reg_base + Q6SS_PWR_CTL_REG); /* Deassert memory peripheral sleep and L2 memory standby */ val |= Q6SS_L2DATA_STBY_N | Q6SS_SLP_RET_N; writel(val, wcss->reg_base + Q6SS_PWR_CTL_REG); /* Turn on L1, L2, ETB and JU memories 1 at a time */ val = readl(wcss->reg_base + Q6SS_MEM_PWR_CTL); for (i = MEM_BANKS; i >= 0; i--) { val |= BIT(i); writel(val, wcss->reg_base + Q6SS_MEM_PWR_CTL); /* * Read back value to ensure the write is done then * wait for 1us for both memory peripheral and data * array to turn on. */ val |= readl(wcss->reg_base + Q6SS_MEM_PWR_CTL); udelay(1); } /* Remove word line clamp */ val = readl(wcss->reg_base + Q6SS_PWR_CTL_REG); val &= ~Q6SS_CLAMP_WL; writel(val, wcss->reg_base + Q6SS_PWR_CTL_REG); /* Remove IO clamp */ val &= ~Q6SS_CLAMP_IO; writel(val, wcss->reg_base + Q6SS_PWR_CTL_REG); /* Bring core out of reset */ val = readl(wcss->reg_base + Q6SS_RESET_REG); val &= ~Q6SS_CORE_ARES; writel(val, wcss->reg_base + Q6SS_RESET_REG); /* Turn on core clock */ val = readl(wcss->reg_base + Q6SS_GFMUX_CTL_REG); val |= Q6SS_CLK_ENABLE; writel(val, wcss->reg_base + Q6SS_GFMUX_CTL_REG); /* Start core execution */ val = readl(wcss->reg_base + Q6SS_RESET_REG); val &= ~Q6SS_STOP_CORE; writel(val, wcss->reg_base + Q6SS_RESET_REG); return 0; } static int q6v5_wcss_start(struct rproc *rproc) { struct q6v5_wcss *wcss = rproc->priv; int ret; qcom_q6v5_prepare(&wcss->q6v5); /* Release Q6 and WCSS reset */ ret = reset_control_deassert(wcss->wcss_reset); if (ret) { dev_err(wcss->dev, "wcss_reset failed\n"); return ret; } ret = reset_control_deassert(wcss->wcss_q6_reset); if (ret) { dev_err(wcss->dev, "wcss_q6_reset failed\n"); goto wcss_reset; } /* Lithium configuration - clock gating and bus arbitration */ ret = regmap_update_bits(wcss->halt_map, wcss->halt_nc + TCSR_GLOBAL_CFG0, TCSR_WCSS_CLK_MASK, TCSR_WCSS_CLK_ENABLE); if (ret) goto wcss_q6_reset; ret = regmap_update_bits(wcss->halt_map, wcss->halt_nc + TCSR_GLOBAL_CFG1, 1, 0); if (ret) goto wcss_q6_reset; /* Write bootaddr to EVB so that Q6WCSS will jump there after reset */ writel(rproc->bootaddr >> 4, wcss->reg_base + Q6SS_RST_EVB); ret = q6v5_wcss_reset(wcss); if (ret) goto wcss_q6_reset; ret = qcom_q6v5_wait_for_start(&wcss->q6v5, 5 * HZ); if (ret == -ETIMEDOUT) dev_err(wcss->dev, "start timed out\n"); return ret; wcss_q6_reset: reset_control_assert(wcss->wcss_q6_reset); wcss_reset: reset_control_assert(wcss->wcss_reset); return ret; } static int q6v5_wcss_qcs404_power_on(struct q6v5_wcss *wcss) { unsigned long val; int ret, idx; /* Toggle the restart */ reset_control_assert(wcss->wcss_reset); usleep_range(200, 300); reset_control_deassert(wcss->wcss_reset); usleep_range(200, 300); /* Enable GCC_WDSP_Q6SS_AHBS_CBCR clock */ ret = clk_prepare_enable(wcss->gcc_abhs_cbcr); if (ret) return ret; /* Remove reset to the WCNSS QDSP6SS */ reset_control_deassert(wcss->wcss_q6_bcr_reset); /* Enable Q6SSTOP_AHBFABRIC_CBCR clock */ ret = clk_prepare_enable(wcss->ahbfabric_cbcr_clk); if (ret) goto disable_gcc_abhs_cbcr_clk; /* Enable the LCCCSR CBC clock, Q6SSTOP_Q6SSTOP_LCC_CSR_CBCR clock */ ret = clk_prepare_enable(wcss->lcc_csr_cbcr); if (ret) goto disable_ahbfabric_cbcr_clk; /* Enable the Q6AHBS CBC, Q6SSTOP_Q6SS_AHBS_CBCR clock */ ret = clk_prepare_enable(wcss->ahbs_cbcr); if (ret) goto disable_csr_cbcr_clk; /* Enable the TCM slave CBC, Q6SSTOP_Q6SS_TCM_SLAVE_CBCR clock */ ret = clk_prepare_enable(wcss->tcm_slave_cbcr); if (ret) goto disable_ahbs_cbcr_clk; /* Enable the Q6SS AHB master CBC, Q6SSTOP_Q6SS_AHBM_CBCR clock */ ret = clk_prepare_enable(wcss->qdsp6ss_abhm_cbcr); if (ret) goto disable_tcm_slave_cbcr_clk; /* Enable the Q6SS AXI master CBC, Q6SSTOP_Q6SS_AXIM_CBCR clock */ ret = clk_prepare_enable(wcss->qdsp6ss_axim_cbcr); if (ret) goto disable_abhm_cbcr_clk; /* Enable the Q6SS XO CBC */ val = readl(wcss->reg_base + Q6SS_XO_CBCR); val |= BIT(0); writel(val, wcss->reg_base + Q6SS_XO_CBCR); /* Read CLKOFF bit to go low indicating CLK is enabled */ ret = readl_poll_timeout(wcss->reg_base + Q6SS_XO_CBCR, val, !(val & BIT(31)), 1, HALT_CHECK_MAX_LOOPS); if (ret) { dev_err(wcss->dev, "xo cbcr enabling timed out (rc:%d)\n", ret); goto disable_xo_cbcr_clk; } writel(0, wcss->reg_base + Q6SS_CGC_OVERRIDE); /* Enable QDSP6 sleep clock clock */ val = readl(wcss->reg_base + Q6SS_SLEEP_CBCR); val |= BIT(0); writel(val, wcss->reg_base + Q6SS_SLEEP_CBCR); /* Enable the Enable the Q6 AXI clock, GCC_WDSP_Q6SS_AXIM_CBCR*/ ret = clk_prepare_enable(wcss->gcc_axim_cbcr); if (ret) goto disable_sleep_cbcr_clk; /* Assert resets, stop core */ val = readl(wcss->reg_base + Q6SS_RESET_REG); val |= Q6SS_CORE_ARES | Q6SS_BUS_ARES_ENABLE | Q6SS_STOP_CORE; writel(val, wcss->reg_base + Q6SS_RESET_REG); /* Program the QDSP6SS PWR_CTL register */ writel(0x01700000, wcss->reg_base + Q6SS_PWR_CTL_REG); writel(0x03700000, wcss->reg_base + Q6SS_PWR_CTL_REG); writel(0x03300000, wcss->reg_base + Q6SS_PWR_CTL_REG); writel(0x033C0000, wcss->reg_base + Q6SS_PWR_CTL_REG); /* * Enable memories by turning on the QDSP6 memory foot/head switch, one * bank at a time to avoid in-rush current */ for (idx = 28; idx >= 0; idx--) { writel((readl(wcss->reg_base + Q6SS_MEM_PWR_CTL) | (1 << idx)), wcss->reg_base + Q6SS_MEM_PWR_CTL); } writel(0x031C0000, wcss->reg_base + Q6SS_PWR_CTL_REG); writel(0x030C0000, wcss->reg_base + Q6SS_PWR_CTL_REG); val = readl(wcss->reg_base + Q6SS_RESET_REG); val &= ~Q6SS_CORE_ARES; writel(val, wcss->reg_base + Q6SS_RESET_REG); /* Enable the Q6 core clock at the GFM, Q6SSTOP_QDSP6SS_GFMUX_CTL */ val = readl(wcss->reg_base + Q6SS_GFMUX_CTL_REG); val |= Q6SS_CLK_ENABLE | Q6SS_SWITCH_CLK_SRC; writel(val, wcss->reg_base + Q6SS_GFMUX_CTL_REG); /* Enable sleep clock branch needed for BCR circuit */ ret = clk_prepare_enable(wcss->lcc_bcr_sleep); if (ret) goto disable_core_gfmux_clk; return 0; disable_core_gfmux_clk: val = readl(wcss->reg_base + Q6SS_GFMUX_CTL_REG); val &= ~(Q6SS_CLK_ENABLE | Q6SS_SWITCH_CLK_SRC); writel(val, wcss->reg_base + Q6SS_GFMUX_CTL_REG); clk_disable_unprepare(wcss->gcc_axim_cbcr); disable_sleep_cbcr_clk: val = readl(wcss->reg_base + Q6SS_SLEEP_CBCR); val &= ~Q6SS_CLK_ENABLE; writel(val, wcss->reg_base + Q6SS_SLEEP_CBCR); disable_xo_cbcr_clk: val = readl(wcss->reg_base + Q6SS_XO_CBCR); val &= ~Q6SS_CLK_ENABLE; writel(val, wcss->reg_base + Q6SS_XO_CBCR); clk_disable_unprepare(wcss->qdsp6ss_axim_cbcr); disable_abhm_cbcr_clk: clk_disable_unprepare(wcss->qdsp6ss_abhm_cbcr); disable_tcm_slave_cbcr_clk: clk_disable_unprepare(wcss->tcm_slave_cbcr); disable_ahbs_cbcr_clk: clk_disable_unprepare(wcss->ahbs_cbcr); disable_csr_cbcr_clk: clk_disable_unprepare(wcss->lcc_csr_cbcr); disable_ahbfabric_cbcr_clk: clk_disable_unprepare(wcss->ahbfabric_cbcr_clk); disable_gcc_abhs_cbcr_clk: clk_disable_unprepare(wcss->gcc_abhs_cbcr); return ret; } static inline int q6v5_wcss_qcs404_reset(struct q6v5_wcss *wcss) { unsigned long val; writel(0x80800000, wcss->reg_base + Q6SS_STRAP_ACC); /* Start core execution */ val = readl(wcss->reg_base + Q6SS_RESET_REG); val &= ~Q6SS_STOP_CORE; writel(val, wcss->reg_base + Q6SS_RESET_REG); return 0; } static int q6v5_qcs404_wcss_start(struct rproc *rproc) { struct q6v5_wcss *wcss = rproc->priv; int ret; ret = clk_prepare_enable(wcss->xo); if (ret) return ret; ret = regulator_enable(wcss->cx_supply); if (ret) goto disable_xo_clk; qcom_q6v5_prepare(&wcss->q6v5); ret = q6v5_wcss_qcs404_power_on(wcss); if (ret) { dev_err(wcss->dev, "wcss clk_enable failed\n"); goto disable_cx_supply; } writel(rproc->bootaddr >> 4, wcss->reg_base + Q6SS_RST_EVB); q6v5_wcss_qcs404_reset(wcss); ret = qcom_q6v5_wait_for_start(&wcss->q6v5, 5 * HZ); if (ret == -ETIMEDOUT) { dev_err(wcss->dev, "start timed out\n"); goto disable_cx_supply; } return 0; disable_cx_supply: regulator_disable(wcss->cx_supply); disable_xo_clk: clk_disable_unprepare(wcss->xo); return ret; } static void q6v5_wcss_halt_axi_port(struct q6v5_wcss *wcss, struct regmap *halt_map, u32 offset) { unsigned long timeout; unsigned int val; int ret; /* Check if we're already idle */ ret = regmap_read(halt_map, offset + AXI_IDLE_REG, &val); if (!ret && val) return; /* Assert halt request */ regmap_write(halt_map, offset + AXI_HALTREQ_REG, 1); /* Wait for halt */ timeout = jiffies + msecs_to_jiffies(HALT_ACK_TIMEOUT_MS); for (;;) { ret = regmap_read(halt_map, offset + AXI_HALTACK_REG, &val); if (ret || val || time_after(jiffies, timeout)) break; msleep(1); } ret = regmap_read(halt_map, offset + AXI_IDLE_REG, &val); if (ret || !val) dev_err(wcss->dev, "port failed halt\n"); /* Clear halt request (port will remain halted until reset) */ regmap_write(halt_map, offset + AXI_HALTREQ_REG, 0); } static int q6v5_qcs404_wcss_shutdown(struct q6v5_wcss *wcss) { unsigned long val; int ret; q6v5_wcss_halt_axi_port(wcss, wcss->halt_map, wcss->halt_wcss); /* assert clamps to avoid MX current inrush */ val = readl(wcss->reg_base + Q6SS_PWR_CTL_REG); val |= (Q6SS_CLAMP_IO | Q6SS_CLAMP_WL | Q6SS_CLAMP_QMC_MEM); writel(val, wcss->reg_base + Q6SS_PWR_CTL_REG); /* Disable memories by turning off memory foot/headswitch */ writel((readl(wcss->reg_base + Q6SS_MEM_PWR_CTL) & ~QDSS_Q6_MEMORIES), wcss->reg_base + Q6SS_MEM_PWR_CTL); /* Clear the BHS_ON bit */ val = readl(wcss->reg_base + Q6SS_PWR_CTL_REG); val &= ~Q6SS_BHS_ON; writel(val, wcss->reg_base + Q6SS_PWR_CTL_REG); clk_disable_unprepare(wcss->ahbfabric_cbcr_clk); clk_disable_unprepare(wcss->lcc_csr_cbcr); clk_disable_unprepare(wcss->tcm_slave_cbcr); clk_disable_unprepare(wcss->qdsp6ss_abhm_cbcr); clk_disable_unprepare(wcss->qdsp6ss_axim_cbcr); val = readl(wcss->reg_base + Q6SS_SLEEP_CBCR); val &= ~BIT(0); writel(val, wcss->reg_base + Q6SS_SLEEP_CBCR); val = readl(wcss->reg_base + Q6SS_XO_CBCR); val &= ~BIT(0); writel(val, wcss->reg_base + Q6SS_XO_CBCR); clk_disable_unprepare(wcss->ahbs_cbcr); clk_disable_unprepare(wcss->lcc_bcr_sleep); val = readl(wcss->reg_base + Q6SS_GFMUX_CTL_REG); val &= ~(Q6SS_CLK_ENABLE | Q6SS_SWITCH_CLK_SRC); writel(val, wcss->reg_base + Q6SS_GFMUX_CTL_REG); clk_disable_unprepare(wcss->gcc_abhs_cbcr); ret = reset_control_assert(wcss->wcss_reset); if (ret) { dev_err(wcss->dev, "wcss_reset failed\n"); return ret; } usleep_range(200, 300); ret = reset_control_deassert(wcss->wcss_reset); if (ret) { dev_err(wcss->dev, "wcss_reset failed\n"); return ret; } usleep_range(200, 300); clk_disable_unprepare(wcss->gcc_axim_cbcr); return 0; } static int q6v5_wcss_powerdown(struct q6v5_wcss *wcss) { int ret; u32 val; /* 1 - Assert WCSS/Q6 HALTREQ */ q6v5_wcss_halt_axi_port(wcss, wcss->halt_map, wcss->halt_wcss); /* 2 - Enable WCSSAON_CONFIG */ val = readl(wcss->rmb_base + SSCAON_CONFIG); val |= SSCAON_ENABLE; writel(val, wcss->rmb_base + SSCAON_CONFIG); /* 3 - Set SSCAON_CONFIG */ val |= SSCAON_BUS_EN; val &= ~SSCAON_BUS_MUX_MASK; writel(val, wcss->rmb_base + SSCAON_CONFIG); /* 4 - SSCAON_CONFIG 1 */ val |= BIT(1); writel(val, wcss->rmb_base + SSCAON_CONFIG); /* 5 - wait for SSCAON_STATUS */ ret = readl_poll_timeout(wcss->rmb_base + SSCAON_STATUS, val, (val & 0xffff) == 0x400, 1000, HALT_CHECK_MAX_LOOPS); if (ret) { dev_err(wcss->dev, "can't get SSCAON_STATUS rc:%d)\n", ret); return ret; } /* 6 - De-assert WCSS_AON reset */ reset_control_assert(wcss->wcss_aon_reset); /* 7 - Disable WCSSAON_CONFIG 13 */ val = readl(wcss->rmb_base + SSCAON_CONFIG); val &= ~SSCAON_ENABLE; writel(val, wcss->rmb_base + SSCAON_CONFIG); /* 8 - De-assert WCSS/Q6 HALTREQ */ reset_control_assert(wcss->wcss_reset); return 0; } static int q6v5_q6_powerdown(struct q6v5_wcss *wcss) { int ret; u32 val; int i; /* 1 - Halt Q6 bus interface */ q6v5_wcss_halt_axi_port(wcss, wcss->halt_map, wcss->halt_q6); /* 2 - Disable Q6 Core clock */ val = readl(wcss->reg_base + Q6SS_GFMUX_CTL_REG); val &= ~Q6SS_CLK_ENABLE; writel(val, wcss->reg_base + Q6SS_GFMUX_CTL_REG); /* 3 - Clamp I/O */ val = readl(wcss->reg_base + Q6SS_PWR_CTL_REG); val |= Q6SS_CLAMP_IO; writel(val, wcss->reg_base + Q6SS_PWR_CTL_REG); /* 4 - Clamp WL */ val |= QDSS_BHS_ON; writel(val, wcss->reg_base + Q6SS_PWR_CTL_REG); /* 5 - Clear Erase standby */ val &= ~Q6SS_L2DATA_STBY_N; writel(val, wcss->reg_base + Q6SS_PWR_CTL_REG); /* 6 - Clear Sleep RTN */ val &= ~Q6SS_SLP_RET_N; writel(val, wcss->reg_base + Q6SS_PWR_CTL_REG); /* 7 - turn off Q6 memory foot/head switch one bank at a time */ for (i = 0; i < 20; i++) { val = readl(wcss->reg_base + Q6SS_MEM_PWR_CTL); val &= ~BIT(i); writel(val, wcss->reg_base + Q6SS_MEM_PWR_CTL); mdelay(1); } /* 8 - Assert QMC memory RTN */ val = readl(wcss->reg_base + Q6SS_PWR_CTL_REG); val |= Q6SS_CLAMP_QMC_MEM; writel(val, wcss->reg_base + Q6SS_PWR_CTL_REG); /* 9 - Turn off BHS */ val &= ~Q6SS_BHS_ON; writel(val, wcss->reg_base + Q6SS_PWR_CTL_REG); udelay(1); /* 10 - Wait till BHS Reset is done */ ret = readl_poll_timeout(wcss->reg_base + Q6SS_BHS_STATUS, val, !(val & BHS_EN_REST_ACK), 1000, HALT_CHECK_MAX_LOOPS); if (ret) { dev_err(wcss->dev, "BHS_STATUS not OFF (rc:%d)\n", ret); return ret; } /* 11 - Assert WCSS reset */ reset_control_assert(wcss->wcss_reset); /* 12 - Assert Q6 reset */ reset_control_assert(wcss->wcss_q6_reset); return 0; } static int q6v5_wcss_stop(struct rproc *rproc) { struct q6v5_wcss *wcss = rproc->priv; int ret; /* WCSS powerdown */ if (wcss->requires_force_stop) { ret = qcom_q6v5_request_stop(&wcss->q6v5, NULL); if (ret == -ETIMEDOUT) { dev_err(wcss->dev, "timed out on wait\n"); return ret; } } if (wcss->version == WCSS_QCS404) { ret = q6v5_qcs404_wcss_shutdown(wcss); if (ret) return ret; } else { ret = q6v5_wcss_powerdown(wcss); if (ret) return ret; /* Q6 Power down */ ret = q6v5_q6_powerdown(wcss); if (ret) return ret; } qcom_q6v5_unprepare(&wcss->q6v5); return 0; } static void *q6v5_wcss_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) { struct q6v5_wcss *wcss = rproc->priv; int offset; offset = da - wcss->mem_reloc; if (offset < 0 || offset + len > wcss->mem_size) return NULL; return wcss->mem_region + offset; } static int q6v5_wcss_load(struct rproc *rproc, const struct firmware *fw) { struct q6v5_wcss *wcss = rproc->priv; int ret; ret = qcom_mdt_load_no_init(wcss->dev, fw, rproc->firmware, 0, wcss->mem_region, wcss->mem_phys, wcss->mem_size, &wcss->mem_reloc); if (ret) return ret; qcom_pil_info_store("wcnss", wcss->mem_phys, wcss->mem_size); return ret; } static const struct rproc_ops q6v5_wcss_ipq8074_ops = { .start = q6v5_wcss_start, .stop = q6v5_wcss_stop, .da_to_va = q6v5_wcss_da_to_va, .load = q6v5_wcss_load, .get_boot_addr = rproc_elf_get_boot_addr, }; static const struct rproc_ops q6v5_wcss_qcs404_ops = { .start = q6v5_qcs404_wcss_start, .stop = q6v5_wcss_stop, .da_to_va = q6v5_wcss_da_to_va, .load = q6v5_wcss_load, .get_boot_addr = rproc_elf_get_boot_addr, .parse_fw = qcom_register_dump_segments, }; static int q6v5_wcss_init_reset(struct q6v5_wcss *wcss, const struct wcss_data *desc) { struct device *dev = wcss->dev; if (desc->aon_reset_required) { wcss->wcss_aon_reset = devm_reset_control_get_exclusive(dev, "wcss_aon_reset"); if (IS_ERR(wcss->wcss_aon_reset)) { dev_err(wcss->dev, "fail to acquire wcss_aon_reset\n"); return PTR_ERR(wcss->wcss_aon_reset); } } wcss->wcss_reset = devm_reset_control_get_exclusive(dev, "wcss_reset"); if (IS_ERR(wcss->wcss_reset)) { dev_err(wcss->dev, "unable to acquire wcss_reset\n"); return PTR_ERR(wcss->wcss_reset); } if (desc->wcss_q6_reset_required) { wcss->wcss_q6_reset = devm_reset_control_get_exclusive(dev, "wcss_q6_reset"); if (IS_ERR(wcss->wcss_q6_reset)) { dev_err(wcss->dev, "unable to acquire wcss_q6_reset\n"); return PTR_ERR(wcss->wcss_q6_reset); } } wcss->wcss_q6_bcr_reset = devm_reset_control_get_exclusive(dev, "wcss_q6_bcr_reset"); if (IS_ERR(wcss->wcss_q6_bcr_reset)) { dev_err(wcss->dev, "unable to acquire wcss_q6_bcr_reset\n"); return PTR_ERR(wcss->wcss_q6_bcr_reset); } return 0; } static int q6v5_wcss_init_mmio(struct q6v5_wcss *wcss, struct platform_device *pdev) { unsigned int halt_reg[MAX_HALT_REG] = {0}; struct device_node *syscon; struct resource *res; int ret; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qdsp6"); if (!res) return -EINVAL; wcss->reg_base = devm_ioremap(&pdev->dev, res->start, resource_size(res)); if (!wcss->reg_base) return -ENOMEM; if (wcss->version == WCSS_IPQ8074) { wcss->rmb_base = devm_platform_ioremap_resource_byname(pdev, "rmb"); if (IS_ERR(wcss->rmb_base)) return PTR_ERR(wcss->rmb_base); } syscon = of_parse_phandle(pdev->dev.of_node, "qcom,halt-regs", 0); if (!syscon) { dev_err(&pdev->dev, "failed to parse qcom,halt-regs\n"); return -EINVAL; } wcss->halt_map = syscon_node_to_regmap(syscon); of_node_put(syscon); if (IS_ERR(wcss->halt_map)) return PTR_ERR(wcss->halt_map); ret = of_property_read_variable_u32_array(pdev->dev.of_node, "qcom,halt-regs", halt_reg, 0, MAX_HALT_REG); if (ret < 0) { dev_err(&pdev->dev, "failed to parse qcom,halt-regs\n"); return -EINVAL; } wcss->halt_q6 = halt_reg[0]; wcss->halt_wcss = halt_reg[1]; wcss->halt_nc = halt_reg[2]; return 0; } static int q6v5_alloc_memory_region(struct q6v5_wcss *wcss) { struct reserved_mem *rmem = NULL; struct device_node *node; struct device *dev = wcss->dev; node = of_parse_phandle(dev->of_node, "memory-region", 0); if (node) rmem = of_reserved_mem_lookup(node); of_node_put(node); if (!rmem) { dev_err(dev, "unable to acquire memory-region\n"); return -EINVAL; } wcss->mem_phys = rmem->base; wcss->mem_reloc = rmem->base; wcss->mem_size = rmem->size; wcss->mem_region = devm_ioremap_wc(dev, wcss->mem_phys, wcss->mem_size); if (!wcss->mem_region) { dev_err(dev, "unable to map memory region: %pa+%pa\n", &rmem->base, &rmem->size); return -EBUSY; } return 0; } static int q6v5_wcss_init_clock(struct q6v5_wcss *wcss) { int ret; wcss->xo = devm_clk_get(wcss->dev, "xo"); if (IS_ERR(wcss->xo)) { ret = PTR_ERR(wcss->xo); if (ret != -EPROBE_DEFER) dev_err(wcss->dev, "failed to get xo clock"); return ret; } wcss->gcc_abhs_cbcr = devm_clk_get(wcss->dev, "gcc_abhs_cbcr"); if (IS_ERR(wcss->gcc_abhs_cbcr)) { ret = PTR_ERR(wcss->gcc_abhs_cbcr); if (ret != -EPROBE_DEFER) dev_err(wcss->dev, "failed to get gcc abhs clock"); return ret; } wcss->gcc_axim_cbcr = devm_clk_get(wcss->dev, "gcc_axim_cbcr"); if (IS_ERR(wcss->gcc_axim_cbcr)) { ret = PTR_ERR(wcss->gcc_axim_cbcr); if (ret != -EPROBE_DEFER) dev_err(wcss->dev, "failed to get gcc axim clock\n"); return ret; } wcss->ahbfabric_cbcr_clk = devm_clk_get(wcss->dev, "lcc_ahbfabric_cbc"); if (IS_ERR(wcss->ahbfabric_cbcr_clk)) { ret = PTR_ERR(wcss->ahbfabric_cbcr_clk); if (ret != -EPROBE_DEFER) dev_err(wcss->dev, "failed to get ahbfabric clock\n"); return ret; } wcss->lcc_csr_cbcr = devm_clk_get(wcss->dev, "tcsr_lcc_cbc"); if (IS_ERR(wcss->lcc_csr_cbcr)) { ret = PTR_ERR(wcss->lcc_csr_cbcr); if (ret != -EPROBE_DEFER) dev_err(wcss->dev, "failed to get csr cbcr clk\n"); return ret; } wcss->ahbs_cbcr = devm_clk_get(wcss->dev, "lcc_abhs_cbc"); if (IS_ERR(wcss->ahbs_cbcr)) { ret = PTR_ERR(wcss->ahbs_cbcr); if (ret != -EPROBE_DEFER) dev_err(wcss->dev, "failed to get ahbs_cbcr clk\n"); return ret; } wcss->tcm_slave_cbcr = devm_clk_get(wcss->dev, "lcc_tcm_slave_cbc"); if (IS_ERR(wcss->tcm_slave_cbcr)) { ret = PTR_ERR(wcss->tcm_slave_cbcr); if (ret != -EPROBE_DEFER) dev_err(wcss->dev, "failed to get tcm cbcr clk\n"); return ret; } wcss->qdsp6ss_abhm_cbcr = devm_clk_get(wcss->dev, "lcc_abhm_cbc"); if (IS_ERR(wcss->qdsp6ss_abhm_cbcr)) { ret = PTR_ERR(wcss->qdsp6ss_abhm_cbcr); if (ret != -EPROBE_DEFER) dev_err(wcss->dev, "failed to get abhm cbcr clk\n"); return ret; } wcss->qdsp6ss_axim_cbcr = devm_clk_get(wcss->dev, "lcc_axim_cbc"); if (IS_ERR(wcss->qdsp6ss_axim_cbcr)) { ret = PTR_ERR(wcss->qdsp6ss_axim_cbcr); if (ret != -EPROBE_DEFER) dev_err(wcss->dev, "failed to get axim cbcr clk\n"); return ret; } wcss->lcc_bcr_sleep = devm_clk_get(wcss->dev, "lcc_bcr_sleep"); if (IS_ERR(wcss->lcc_bcr_sleep)) { ret = PTR_ERR(wcss->lcc_bcr_sleep); if (ret != -EPROBE_DEFER) dev_err(wcss->dev, "failed to get bcr cbcr clk\n"); return ret; } return 0; } static int q6v5_wcss_init_regulator(struct q6v5_wcss *wcss) { wcss->cx_supply = devm_regulator_get(wcss->dev, "cx"); if (IS_ERR(wcss->cx_supply)) return PTR_ERR(wcss->cx_supply); regulator_set_load(wcss->cx_supply, 100000); return 0; } static int q6v5_wcss_probe(struct platform_device *pdev) { const struct wcss_data *desc; struct q6v5_wcss *wcss; struct rproc *rproc; int ret; desc = device_get_match_data(&pdev->dev); if (!desc) return -EINVAL; rproc = rproc_alloc(&pdev->dev, pdev->name, desc->ops, desc->firmware_name, sizeof(*wcss)); if (!rproc) { dev_err(&pdev->dev, "failed to allocate rproc\n"); return -ENOMEM; } wcss = rproc->priv; wcss->dev = &pdev->dev; wcss->version = desc->version; wcss->version = desc->version; wcss->requires_force_stop = desc->requires_force_stop; ret = q6v5_wcss_init_mmio(wcss, pdev); if (ret) goto free_rproc; ret = q6v5_alloc_memory_region(wcss); if (ret) goto free_rproc; if (wcss->version == WCSS_QCS404) { ret = q6v5_wcss_init_clock(wcss); if (ret) goto free_rproc; ret = q6v5_wcss_init_regulator(wcss); if (ret) goto free_rproc; } ret = q6v5_wcss_init_reset(wcss, desc); if (ret) goto free_rproc; ret = qcom_q6v5_init(&wcss->q6v5, pdev, rproc, desc->crash_reason_smem, NULL, NULL); if (ret) goto free_rproc; qcom_add_glink_subdev(rproc, &wcss->glink_subdev, "q6wcss"); qcom_add_ssr_subdev(rproc, &wcss->ssr_subdev, "q6wcss"); if (desc->ssctl_id) wcss->sysmon = qcom_add_sysmon_subdev(rproc, desc->sysmon_name, desc->ssctl_id); ret = rproc_add(rproc); if (ret) goto free_rproc; platform_set_drvdata(pdev, rproc); return 0; free_rproc: rproc_free(rproc); return ret; } static void q6v5_wcss_remove(struct platform_device *pdev) { struct rproc *rproc = platform_get_drvdata(pdev); struct q6v5_wcss *wcss = rproc->priv; qcom_q6v5_deinit(&wcss->q6v5); rproc_del(rproc); rproc_free(rproc); } static const struct wcss_data wcss_ipq8074_res_init = { .firmware_name = "IPQ8074/q6_fw.mdt", .crash_reason_smem = WCSS_CRASH_REASON, .aon_reset_required = true, .wcss_q6_reset_required = true, .ops = &q6v5_wcss_ipq8074_ops, .requires_force_stop = true, }; static const struct wcss_data wcss_qcs404_res_init = { .crash_reason_smem = WCSS_CRASH_REASON, .firmware_name = "wcnss.mdt", .version = WCSS_QCS404, .aon_reset_required = false, .wcss_q6_reset_required = false, .ssr_name = "mpss", .sysmon_name = "wcnss", .ssctl_id = 0x12, .ops = &q6v5_wcss_qcs404_ops, .requires_force_stop = false, }; static const struct of_device_id q6v5_wcss_of_match[] = { { .compatible = "qcom,ipq8074-wcss-pil", .data = &wcss_ipq8074_res_init }, { .compatible = "qcom,qcs404-wcss-pil", .data = &wcss_qcs404_res_init }, { }, }; MODULE_DEVICE_TABLE(of, q6v5_wcss_of_match); static struct platform_driver q6v5_wcss_driver = { .probe = q6v5_wcss_probe, .remove_new = q6v5_wcss_remove, .driver = { .name = "qcom-q6v5-wcss-pil", .of_match_table = q6v5_wcss_of_match, }, }; module_platform_driver(q6v5_wcss_driver); MODULE_DESCRIPTION("Hexagon WCSS Peripheral Image Loader"); MODULE_LICENSE("GPL v2");
linux-master
drivers/remoteproc/qcom_q6v5_wcss.c
// SPDX-License-Identifier: GPL-2.0-only /* * Qualcomm Wireless Connectivity Subsystem Peripheral Image Loader * * Copyright (C) 2016 Linaro Ltd * Copyright (C) 2014 Sony Mobile Communications AB * Copyright (c) 2012-2013, The Linux Foundation. All rights reserved. */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/firmware.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/io.h> #include <linux/of.h> #include <linux/of_reserved_mem.h> #include <linux/platform_device.h> #include <linux/pm_domain.h> #include <linux/pm_runtime.h> #include <linux/firmware/qcom/qcom_scm.h> #include <linux/regulator/consumer.h> #include <linux/remoteproc.h> #include <linux/soc/qcom/mdt_loader.h> #include <linux/soc/qcom/smem.h> #include <linux/soc/qcom/smem_state.h> #include "qcom_common.h" #include "remoteproc_internal.h" #include "qcom_pil_info.h" #include "qcom_wcnss.h" #define WCNSS_CRASH_REASON_SMEM 422 #define WCNSS_FIRMWARE_NAME "wcnss.mdt" #define WCNSS_PAS_ID 6 #define WCNSS_SSCTL_ID 0x13 #define WCNSS_SPARE_NVBIN_DLND BIT(25) #define WCNSS_PMU_IRIS_XO_CFG BIT(3) #define WCNSS_PMU_IRIS_XO_EN BIT(4) #define WCNSS_PMU_GC_BUS_MUX_SEL_TOP BIT(5) #define WCNSS_PMU_IRIS_XO_CFG_STS BIT(6) /* 1: in progress, 0: done */ #define WCNSS_PMU_IRIS_RESET BIT(7) #define WCNSS_PMU_IRIS_RESET_STS BIT(8) /* 1: in progress, 0: done */ #define WCNSS_PMU_IRIS_XO_READ BIT(9) #define WCNSS_PMU_IRIS_XO_READ_STS BIT(10) #define WCNSS_PMU_XO_MODE_MASK GENMASK(2, 1) #define WCNSS_PMU_XO_MODE_19p2 0 #define WCNSS_PMU_XO_MODE_48 3 #define WCNSS_MAX_PDS 2 struct wcnss_data { size_t pmu_offset; size_t spare_offset; const char *pd_names[WCNSS_MAX_PDS]; const struct wcnss_vreg_info *vregs; size_t num_vregs, num_pd_vregs; }; struct qcom_wcnss { struct device *dev; struct rproc *rproc; void __iomem *pmu_cfg; void __iomem *spare_out; bool use_48mhz_xo; int wdog_irq; int fatal_irq; int ready_irq; int handover_irq; int stop_ack_irq; struct qcom_smem_state *state; unsigned stop_bit; struct mutex iris_lock; struct qcom_iris *iris; struct device *pds[WCNSS_MAX_PDS]; size_t num_pds; struct regulator_bulk_data *vregs; size_t num_vregs; struct completion start_done; struct completion stop_done; phys_addr_t mem_phys; phys_addr_t mem_reloc; void *mem_region; size_t mem_size; struct qcom_rproc_subdev smd_subdev; struct qcom_sysmon *sysmon; }; static const struct wcnss_data riva_data = { .pmu_offset = 0x28, .spare_offset = 0xb4, .vregs = (struct wcnss_vreg_info[]) { { "vddmx", 1050000, 1150000, 0 }, { "vddcx", 1050000, 1150000, 0 }, { "vddpx", 1800000, 1800000, 0 }, }, .num_vregs = 3, }; static const struct wcnss_data pronto_v1_data = { .pmu_offset = 0x1004, .spare_offset = 0x1088, .pd_names = { "mx", "cx" }, .vregs = (struct wcnss_vreg_info[]) { { "vddmx", 950000, 1150000, 0 }, { "vddcx", .super_turbo = true}, { "vddpx", 1800000, 1800000, 0 }, }, .num_pd_vregs = 2, .num_vregs = 1, }; static const struct wcnss_data pronto_v2_data = { .pmu_offset = 0x1004, .spare_offset = 0x1088, .pd_names = { "mx", "cx" }, .vregs = (struct wcnss_vreg_info[]) { { "vddmx", 1287500, 1287500, 0 }, { "vddcx", .super_turbo = true }, { "vddpx", 1800000, 1800000, 0 }, }, .num_pd_vregs = 2, .num_vregs = 1, }; static const struct wcnss_data pronto_v3_data = { .pmu_offset = 0x1004, .spare_offset = 0x1088, .pd_names = { "mx", "cx" }, .vregs = (struct wcnss_vreg_info[]) { { "vddpx", 1800000, 1800000, 0 }, }, .num_vregs = 1, }; static int wcnss_load(struct rproc *rproc, const struct firmware *fw) { struct qcom_wcnss *wcnss = rproc->priv; int ret; ret = qcom_mdt_load(wcnss->dev, fw, rproc->firmware, WCNSS_PAS_ID, wcnss->mem_region, wcnss->mem_phys, wcnss->mem_size, &wcnss->mem_reloc); if (ret) return ret; qcom_pil_info_store("wcnss", wcnss->mem_phys, wcnss->mem_size); return 0; } static void wcnss_indicate_nv_download(struct qcom_wcnss *wcnss) { u32 val; /* Indicate NV download capability */ val = readl(wcnss->spare_out); val |= WCNSS_SPARE_NVBIN_DLND; writel(val, wcnss->spare_out); } static void wcnss_configure_iris(struct qcom_wcnss *wcnss) { u32 val; /* Clear PMU cfg register */ writel(0, wcnss->pmu_cfg); val = WCNSS_PMU_GC_BUS_MUX_SEL_TOP | WCNSS_PMU_IRIS_XO_EN; writel(val, wcnss->pmu_cfg); /* Clear XO_MODE */ val &= ~WCNSS_PMU_XO_MODE_MASK; if (wcnss->use_48mhz_xo) val |= WCNSS_PMU_XO_MODE_48 << 1; else val |= WCNSS_PMU_XO_MODE_19p2 << 1; writel(val, wcnss->pmu_cfg); /* Reset IRIS */ val |= WCNSS_PMU_IRIS_RESET; writel(val, wcnss->pmu_cfg); /* Wait for PMU.iris_reg_reset_sts */ while (readl(wcnss->pmu_cfg) & WCNSS_PMU_IRIS_RESET_STS) cpu_relax(); /* Clear IRIS reset */ val &= ~WCNSS_PMU_IRIS_RESET; writel(val, wcnss->pmu_cfg); /* Start IRIS XO configuration */ val |= WCNSS_PMU_IRIS_XO_CFG; writel(val, wcnss->pmu_cfg); /* Wait for XO configuration to finish */ while (readl(wcnss->pmu_cfg) & WCNSS_PMU_IRIS_XO_CFG_STS) cpu_relax(); /* Stop IRIS XO configuration */ val &= ~WCNSS_PMU_GC_BUS_MUX_SEL_TOP; val &= ~WCNSS_PMU_IRIS_XO_CFG; writel(val, wcnss->pmu_cfg); /* Add some delay for XO to settle */ msleep(20); } static int wcnss_start(struct rproc *rproc) { struct qcom_wcnss *wcnss = rproc->priv; int ret, i; mutex_lock(&wcnss->iris_lock); if (!wcnss->iris) { dev_err(wcnss->dev, "no iris registered\n"); ret = -EINVAL; goto release_iris_lock; } for (i = 0; i < wcnss->num_pds; i++) { dev_pm_genpd_set_performance_state(wcnss->pds[i], INT_MAX); ret = pm_runtime_get_sync(wcnss->pds[i]); if (ret < 0) { pm_runtime_put_noidle(wcnss->pds[i]); goto disable_pds; } } ret = regulator_bulk_enable(wcnss->num_vregs, wcnss->vregs); if (ret) goto disable_pds; ret = qcom_iris_enable(wcnss->iris); if (ret) goto disable_regulators; wcnss_indicate_nv_download(wcnss); wcnss_configure_iris(wcnss); ret = qcom_scm_pas_auth_and_reset(WCNSS_PAS_ID); if (ret) { dev_err(wcnss->dev, "failed to authenticate image and release reset\n"); goto disable_iris; } ret = wait_for_completion_timeout(&wcnss->start_done, msecs_to_jiffies(5000)); if (wcnss->ready_irq > 0 && ret == 0) { /* We have a ready_irq, but it didn't fire in time. */ dev_err(wcnss->dev, "start timed out\n"); qcom_scm_pas_shutdown(WCNSS_PAS_ID); ret = -ETIMEDOUT; goto disable_iris; } ret = 0; disable_iris: qcom_iris_disable(wcnss->iris); disable_regulators: regulator_bulk_disable(wcnss->num_vregs, wcnss->vregs); disable_pds: for (i--; i >= 0; i--) { pm_runtime_put(wcnss->pds[i]); dev_pm_genpd_set_performance_state(wcnss->pds[i], 0); } release_iris_lock: mutex_unlock(&wcnss->iris_lock); return ret; } static int wcnss_stop(struct rproc *rproc) { struct qcom_wcnss *wcnss = rproc->priv; int ret; if (wcnss->state) { qcom_smem_state_update_bits(wcnss->state, BIT(wcnss->stop_bit), BIT(wcnss->stop_bit)); ret = wait_for_completion_timeout(&wcnss->stop_done, msecs_to_jiffies(5000)); if (ret == 0) dev_err(wcnss->dev, "timed out on wait\n"); qcom_smem_state_update_bits(wcnss->state, BIT(wcnss->stop_bit), 0); } ret = qcom_scm_pas_shutdown(WCNSS_PAS_ID); if (ret) dev_err(wcnss->dev, "failed to shutdown: %d\n", ret); return ret; } static void *wcnss_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) { struct qcom_wcnss *wcnss = rproc->priv; int offset; offset = da - wcnss->mem_reloc; if (offset < 0 || offset + len > wcnss->mem_size) return NULL; return wcnss->mem_region + offset; } static const struct rproc_ops wcnss_ops = { .start = wcnss_start, .stop = wcnss_stop, .da_to_va = wcnss_da_to_va, .parse_fw = qcom_register_dump_segments, .load = wcnss_load, }; static irqreturn_t wcnss_wdog_interrupt(int irq, void *dev) { struct qcom_wcnss *wcnss = dev; rproc_report_crash(wcnss->rproc, RPROC_WATCHDOG); return IRQ_HANDLED; } static irqreturn_t wcnss_fatal_interrupt(int irq, void *dev) { struct qcom_wcnss *wcnss = dev; size_t len; char *msg; msg = qcom_smem_get(QCOM_SMEM_HOST_ANY, WCNSS_CRASH_REASON_SMEM, &len); if (!IS_ERR(msg) && len > 0 && msg[0]) dev_err(wcnss->dev, "fatal error received: %s\n", msg); rproc_report_crash(wcnss->rproc, RPROC_FATAL_ERROR); return IRQ_HANDLED; } static irqreturn_t wcnss_ready_interrupt(int irq, void *dev) { struct qcom_wcnss *wcnss = dev; complete(&wcnss->start_done); return IRQ_HANDLED; } static irqreturn_t wcnss_handover_interrupt(int irq, void *dev) { /* * XXX: At this point we're supposed to release the resources that we * have been holding on behalf of the WCNSS. Unfortunately this * interrupt comes way before the other side seems to be done. * * So we're currently relying on the ready interrupt firing later then * this and we just disable the resources at the end of wcnss_start(). */ return IRQ_HANDLED; } static irqreturn_t wcnss_stop_ack_interrupt(int irq, void *dev) { struct qcom_wcnss *wcnss = dev; complete(&wcnss->stop_done); return IRQ_HANDLED; } static int wcnss_init_pds(struct qcom_wcnss *wcnss, const char * const pd_names[WCNSS_MAX_PDS]) { int i, ret; for (i = 0; i < WCNSS_MAX_PDS; i++) { if (!pd_names[i]) break; wcnss->pds[i] = dev_pm_domain_attach_by_name(wcnss->dev, pd_names[i]); if (IS_ERR_OR_NULL(wcnss->pds[i])) { ret = PTR_ERR(wcnss->pds[i]) ? : -ENODATA; for (i--; i >= 0; i--) dev_pm_domain_detach(wcnss->pds[i], false); return ret; } } wcnss->num_pds = i; return 0; } static void wcnss_release_pds(struct qcom_wcnss *wcnss) { int i; for (i = 0; i < wcnss->num_pds; i++) dev_pm_domain_detach(wcnss->pds[i], false); } static int wcnss_init_regulators(struct qcom_wcnss *wcnss, const struct wcnss_vreg_info *info, int num_vregs, int num_pd_vregs) { struct regulator_bulk_data *bulk; int ret; int i; /* * If attaching the power domains suceeded we can skip requesting * the regulators for the power domains. For old device trees we need to * reserve extra space to manage them through the regulator interface. */ if (wcnss->num_pds) info += num_pd_vregs; else num_vregs += num_pd_vregs; bulk = devm_kcalloc(wcnss->dev, num_vregs, sizeof(struct regulator_bulk_data), GFP_KERNEL); if (!bulk) return -ENOMEM; for (i = 0; i < num_vregs; i++) bulk[i].supply = info[i].name; ret = devm_regulator_bulk_get(wcnss->dev, num_vregs, bulk); if (ret) return ret; for (i = 0; i < num_vregs; i++) { if (info[i].max_voltage) regulator_set_voltage(bulk[i].consumer, info[i].min_voltage, info[i].max_voltage); if (info[i].load_uA) regulator_set_load(bulk[i].consumer, info[i].load_uA); } wcnss->vregs = bulk; wcnss->num_vregs = num_vregs; return 0; } static int wcnss_request_irq(struct qcom_wcnss *wcnss, struct platform_device *pdev, const char *name, bool optional, irq_handler_t thread_fn) { int ret; int irq_number; ret = platform_get_irq_byname(pdev, name); if (ret < 0 && optional) { dev_dbg(&pdev->dev, "no %s IRQ defined, ignoring\n", name); return 0; } else if (ret < 0) { dev_err(&pdev->dev, "no %s IRQ defined\n", name); return ret; } irq_number = ret; ret = devm_request_threaded_irq(&pdev->dev, ret, NULL, thread_fn, IRQF_TRIGGER_RISING | IRQF_ONESHOT, "wcnss", wcnss); if (ret) { dev_err(&pdev->dev, "request %s IRQ failed\n", name); return ret; } /* Return the IRQ number if the IRQ was successfully acquired */ return irq_number; } static int wcnss_alloc_memory_region(struct qcom_wcnss *wcnss) { struct reserved_mem *rmem = NULL; struct device_node *node; node = of_parse_phandle(wcnss->dev->of_node, "memory-region", 0); if (node) rmem = of_reserved_mem_lookup(node); of_node_put(node); if (!rmem) { dev_err(wcnss->dev, "unable to resolve memory-region\n"); return -EINVAL; } wcnss->mem_phys = wcnss->mem_reloc = rmem->base; wcnss->mem_size = rmem->size; wcnss->mem_region = devm_ioremap_wc(wcnss->dev, wcnss->mem_phys, wcnss->mem_size); if (!wcnss->mem_region) { dev_err(wcnss->dev, "unable to map memory region: %pa+%zx\n", &rmem->base, wcnss->mem_size); return -EBUSY; } return 0; } static int wcnss_probe(struct platform_device *pdev) { const char *fw_name = WCNSS_FIRMWARE_NAME; const struct wcnss_data *data; struct qcom_wcnss *wcnss; struct rproc *rproc; void __iomem *mmio; int ret; data = of_device_get_match_data(&pdev->dev); if (!qcom_scm_is_available()) return -EPROBE_DEFER; if (!qcom_scm_pas_supported(WCNSS_PAS_ID)) { dev_err(&pdev->dev, "PAS is not available for WCNSS\n"); return -ENXIO; } ret = of_property_read_string(pdev->dev.of_node, "firmware-name", &fw_name); if (ret < 0 && ret != -EINVAL) return ret; rproc = rproc_alloc(&pdev->dev, pdev->name, &wcnss_ops, fw_name, sizeof(*wcnss)); if (!rproc) { dev_err(&pdev->dev, "unable to allocate remoteproc\n"); return -ENOMEM; } rproc_coredump_set_elf_info(rproc, ELFCLASS32, EM_NONE); wcnss = rproc->priv; wcnss->dev = &pdev->dev; wcnss->rproc = rproc; platform_set_drvdata(pdev, wcnss); init_completion(&wcnss->start_done); init_completion(&wcnss->stop_done); mutex_init(&wcnss->iris_lock); mmio = devm_platform_ioremap_resource_byname(pdev, "pmu"); if (IS_ERR(mmio)) { ret = PTR_ERR(mmio); goto free_rproc; } ret = wcnss_alloc_memory_region(wcnss); if (ret) goto free_rproc; wcnss->pmu_cfg = mmio + data->pmu_offset; wcnss->spare_out = mmio + data->spare_offset; /* * We might need to fallback to regulators instead of power domains * for old device trees. Don't report an error in that case. */ ret = wcnss_init_pds(wcnss, data->pd_names); if (ret && (ret != -ENODATA || !data->num_pd_vregs)) goto free_rproc; ret = wcnss_init_regulators(wcnss, data->vregs, data->num_vregs, data->num_pd_vregs); if (ret) goto detach_pds; ret = wcnss_request_irq(wcnss, pdev, "wdog", false, wcnss_wdog_interrupt); if (ret < 0) goto detach_pds; wcnss->wdog_irq = ret; ret = wcnss_request_irq(wcnss, pdev, "fatal", false, wcnss_fatal_interrupt); if (ret < 0) goto detach_pds; wcnss->fatal_irq = ret; ret = wcnss_request_irq(wcnss, pdev, "ready", true, wcnss_ready_interrupt); if (ret < 0) goto detach_pds; wcnss->ready_irq = ret; ret = wcnss_request_irq(wcnss, pdev, "handover", true, wcnss_handover_interrupt); if (ret < 0) goto detach_pds; wcnss->handover_irq = ret; ret = wcnss_request_irq(wcnss, pdev, "stop-ack", true, wcnss_stop_ack_interrupt); if (ret < 0) goto detach_pds; wcnss->stop_ack_irq = ret; if (wcnss->stop_ack_irq) { wcnss->state = devm_qcom_smem_state_get(&pdev->dev, "stop", &wcnss->stop_bit); if (IS_ERR(wcnss->state)) { ret = PTR_ERR(wcnss->state); goto detach_pds; } } qcom_add_smd_subdev(rproc, &wcnss->smd_subdev); wcnss->sysmon = qcom_add_sysmon_subdev(rproc, "wcnss", WCNSS_SSCTL_ID); if (IS_ERR(wcnss->sysmon)) { ret = PTR_ERR(wcnss->sysmon); goto detach_pds; } wcnss->iris = qcom_iris_probe(&pdev->dev, &wcnss->use_48mhz_xo); if (IS_ERR(wcnss->iris)) { ret = PTR_ERR(wcnss->iris); goto detach_pds; } ret = rproc_add(rproc); if (ret) goto remove_iris; return 0; remove_iris: qcom_iris_remove(wcnss->iris); detach_pds: wcnss_release_pds(wcnss); free_rproc: rproc_free(rproc); return ret; } static void wcnss_remove(struct platform_device *pdev) { struct qcom_wcnss *wcnss = platform_get_drvdata(pdev); qcom_iris_remove(wcnss->iris); rproc_del(wcnss->rproc); qcom_remove_sysmon_subdev(wcnss->sysmon); qcom_remove_smd_subdev(wcnss->rproc, &wcnss->smd_subdev); wcnss_release_pds(wcnss); rproc_free(wcnss->rproc); } static const struct of_device_id wcnss_of_match[] = { { .compatible = "qcom,riva-pil", &riva_data }, { .compatible = "qcom,pronto-v1-pil", &pronto_v1_data }, { .compatible = "qcom,pronto-v2-pil", &pronto_v2_data }, { .compatible = "qcom,pronto-v3-pil", &pronto_v3_data }, { }, }; MODULE_DEVICE_TABLE(of, wcnss_of_match); static struct platform_driver wcnss_driver = { .probe = wcnss_probe, .remove_new = wcnss_remove, .driver = { .name = "qcom-wcnss-pil", .of_match_table = wcnss_of_match, }, }; module_platform_driver(wcnss_driver); MODULE_DESCRIPTION("Qualcomm Peripheral Image Loader for Wireless Subsystem"); MODULE_LICENSE("GPL v2");
linux-master
drivers/remoteproc/qcom_wcnss.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2017 Pengutronix, Oleksij Rempel <[email protected]> */ #include <dt-bindings/firmware/imx/rsrc.h> #include <linux/arm-smccc.h> #include <linux/clk.h> #include <linux/err.h> #include <linux/firmware/imx/sci.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/mailbox_client.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_reserved_mem.h> #include <linux/platform_device.h> #include <linux/pm_domain.h> #include <linux/regmap.h> #include <linux/remoteproc.h> #include <linux/workqueue.h> #include "imx_rproc.h" #include "remoteproc_internal.h" #define IMX7D_SRC_SCR 0x0C #define IMX7D_ENABLE_M4 BIT(3) #define IMX7D_SW_M4P_RST BIT(2) #define IMX7D_SW_M4C_RST BIT(1) #define IMX7D_SW_M4C_NON_SCLR_RST BIT(0) #define IMX7D_M4_RST_MASK (IMX7D_ENABLE_M4 | IMX7D_SW_M4P_RST \ | IMX7D_SW_M4C_RST \ | IMX7D_SW_M4C_NON_SCLR_RST) #define IMX7D_M4_START (IMX7D_ENABLE_M4 | IMX7D_SW_M4P_RST \ | IMX7D_SW_M4C_RST) #define IMX7D_M4_STOP (IMX7D_ENABLE_M4 | IMX7D_SW_M4C_RST | \ IMX7D_SW_M4C_NON_SCLR_RST) #define IMX8M_M7_STOP (IMX7D_ENABLE_M4 | IMX7D_SW_M4C_RST) #define IMX8M_M7_POLL IMX7D_ENABLE_M4 #define IMX8M_GPR22 0x58 #define IMX8M_GPR22_CM7_CPUWAIT BIT(0) /* Address: 0x020D8000 */ #define IMX6SX_SRC_SCR 0x00 #define IMX6SX_ENABLE_M4 BIT(22) #define IMX6SX_SW_M4P_RST BIT(12) #define IMX6SX_SW_M4C_NON_SCLR_RST BIT(4) #define IMX6SX_SW_M4C_RST BIT(3) #define IMX6SX_M4_START (IMX6SX_ENABLE_M4 | IMX6SX_SW_M4P_RST \ | IMX6SX_SW_M4C_RST) #define IMX6SX_M4_STOP (IMX6SX_ENABLE_M4 | IMX6SX_SW_M4C_RST | \ IMX6SX_SW_M4C_NON_SCLR_RST) #define IMX6SX_M4_RST_MASK (IMX6SX_ENABLE_M4 | IMX6SX_SW_M4P_RST \ | IMX6SX_SW_M4C_NON_SCLR_RST \ | IMX6SX_SW_M4C_RST) #define IMX_RPROC_MEM_MAX 32 #define IMX_SIP_RPROC 0xC2000005 #define IMX_SIP_RPROC_START 0x00 #define IMX_SIP_RPROC_STARTED 0x01 #define IMX_SIP_RPROC_STOP 0x02 #define IMX_SC_IRQ_GROUP_REBOOTED 5 /** * struct imx_rproc_mem - slim internal memory structure * @cpu_addr: MPU virtual address of the memory region * @sys_addr: Bus address used to access the memory region * @size: Size of the memory region */ struct imx_rproc_mem { void __iomem *cpu_addr; phys_addr_t sys_addr; size_t size; }; /* att flags: lower 16 bits specifying core, higher 16 bits for flags */ /* M4 own area. Can be mapped at probe */ #define ATT_OWN BIT(31) #define ATT_IOMEM BIT(30) #define ATT_CORE_MASK 0xffff #define ATT_CORE(I) BIT((I)) static int imx_rproc_xtr_mbox_init(struct rproc *rproc); static void imx_rproc_free_mbox(struct rproc *rproc); static int imx_rproc_detach_pd(struct rproc *rproc); struct imx_rproc { struct device *dev; struct regmap *regmap; struct regmap *gpr; struct rproc *rproc; const struct imx_rproc_dcfg *dcfg; struct imx_rproc_mem mem[IMX_RPROC_MEM_MAX]; struct clk *clk; struct mbox_client cl; struct mbox_chan *tx_ch; struct mbox_chan *rx_ch; struct work_struct rproc_work; struct workqueue_struct *workqueue; void __iomem *rsc_table; struct imx_sc_ipc *ipc_handle; struct notifier_block rproc_nb; u32 rproc_pt; /* partition id */ u32 rsrc_id; /* resource id */ u32 entry; /* cpu start address */ int num_pd; u32 core_index; struct device **pd_dev; struct device_link **pd_dev_link; }; static const struct imx_rproc_att imx_rproc_att_imx93[] = { /* dev addr , sys addr , size , flags */ /* TCM CODE NON-SECURE */ { 0x0FFC0000, 0x201C0000, 0x00020000, ATT_OWN | ATT_IOMEM }, { 0x0FFE0000, 0x201E0000, 0x00020000, ATT_OWN | ATT_IOMEM }, /* TCM CODE SECURE */ { 0x1FFC0000, 0x201C0000, 0x00020000, ATT_OWN | ATT_IOMEM }, { 0x1FFE0000, 0x201E0000, 0x00020000, ATT_OWN | ATT_IOMEM }, /* TCM SYS NON-SECURE*/ { 0x20000000, 0x20200000, 0x00020000, ATT_OWN | ATT_IOMEM }, { 0x20020000, 0x20220000, 0x00020000, ATT_OWN | ATT_IOMEM }, /* TCM SYS SECURE*/ { 0x30000000, 0x20200000, 0x00020000, ATT_OWN | ATT_IOMEM }, { 0x30020000, 0x20220000, 0x00020000, ATT_OWN | ATT_IOMEM }, /* DDR */ { 0x80000000, 0x80000000, 0x10000000, 0 }, { 0x90000000, 0x80000000, 0x10000000, 0 }, { 0xC0000000, 0xC0000000, 0x10000000, 0 }, { 0xD0000000, 0xC0000000, 0x10000000, 0 }, }; static const struct imx_rproc_att imx_rproc_att_imx8qm[] = { /* dev addr , sys addr , size , flags */ { 0x08000000, 0x08000000, 0x10000000, 0}, /* TCML */ { 0x1FFE0000, 0x34FE0000, 0x00020000, ATT_OWN | ATT_IOMEM | ATT_CORE(0)}, { 0x1FFE0000, 0x38FE0000, 0x00020000, ATT_OWN | ATT_IOMEM | ATT_CORE(1)}, /* TCMU */ { 0x20000000, 0x35000000, 0x00020000, ATT_OWN | ATT_IOMEM | ATT_CORE(0)}, { 0x20000000, 0x39000000, 0x00020000, ATT_OWN | ATT_IOMEM | ATT_CORE(1)}, /* DDR (Data) */ { 0x80000000, 0x80000000, 0x60000000, 0 }, }; static const struct imx_rproc_att imx_rproc_att_imx8qxp[] = { { 0x08000000, 0x08000000, 0x10000000, 0 }, /* TCML/U */ { 0x1FFE0000, 0x34FE0000, 0x00040000, ATT_OWN | ATT_IOMEM }, /* OCRAM(Low 96KB) */ { 0x21000000, 0x00100000, 0x00018000, 0 }, /* OCRAM */ { 0x21100000, 0x00100000, 0x00040000, 0 }, /* DDR (Data) */ { 0x80000000, 0x80000000, 0x60000000, 0 }, }; static const struct imx_rproc_att imx_rproc_att_imx8mn[] = { /* dev addr , sys addr , size , flags */ /* ITCM */ { 0x00000000, 0x007E0000, 0x00020000, ATT_OWN | ATT_IOMEM }, /* OCRAM_S */ { 0x00180000, 0x00180000, 0x00009000, 0 }, /* OCRAM */ { 0x00900000, 0x00900000, 0x00020000, 0 }, /* OCRAM */ { 0x00920000, 0x00920000, 0x00020000, 0 }, /* OCRAM */ { 0x00940000, 0x00940000, 0x00050000, 0 }, /* QSPI Code - alias */ { 0x08000000, 0x08000000, 0x08000000, 0 }, /* DDR (Code) - alias */ { 0x10000000, 0x40000000, 0x0FFE0000, 0 }, /* DTCM */ { 0x20000000, 0x00800000, 0x00020000, ATT_OWN | ATT_IOMEM }, /* OCRAM_S - alias */ { 0x20180000, 0x00180000, 0x00008000, ATT_OWN }, /* OCRAM */ { 0x20200000, 0x00900000, 0x00020000, ATT_OWN }, /* OCRAM */ { 0x20220000, 0x00920000, 0x00020000, ATT_OWN }, /* OCRAM */ { 0x20240000, 0x00940000, 0x00040000, ATT_OWN }, /* DDR (Data) */ { 0x40000000, 0x40000000, 0x80000000, 0 }, }; static const struct imx_rproc_att imx_rproc_att_imx8mq[] = { /* dev addr , sys addr , size , flags */ /* TCML - alias */ { 0x00000000, 0x007e0000, 0x00020000, ATT_IOMEM}, /* OCRAM_S */ { 0x00180000, 0x00180000, 0x00008000, 0 }, /* OCRAM */ { 0x00900000, 0x00900000, 0x00020000, 0 }, /* OCRAM */ { 0x00920000, 0x00920000, 0x00020000, 0 }, /* QSPI Code - alias */ { 0x08000000, 0x08000000, 0x08000000, 0 }, /* DDR (Code) - alias */ { 0x10000000, 0x80000000, 0x0FFE0000, 0 }, /* TCML */ { 0x1FFE0000, 0x007E0000, 0x00020000, ATT_OWN | ATT_IOMEM}, /* TCMU */ { 0x20000000, 0x00800000, 0x00020000, ATT_OWN | ATT_IOMEM}, /* OCRAM_S */ { 0x20180000, 0x00180000, 0x00008000, ATT_OWN }, /* OCRAM */ { 0x20200000, 0x00900000, 0x00020000, ATT_OWN }, /* OCRAM */ { 0x20220000, 0x00920000, 0x00020000, ATT_OWN }, /* DDR (Data) */ { 0x40000000, 0x40000000, 0x80000000, 0 }, }; static const struct imx_rproc_att imx_rproc_att_imx8ulp[] = { {0x1FFC0000, 0x1FFC0000, 0xC0000, ATT_OWN}, {0x21000000, 0x21000000, 0x10000, ATT_OWN}, {0x80000000, 0x80000000, 0x60000000, 0} }; static const struct imx_rproc_att imx_rproc_att_imx7ulp[] = { {0x1FFD0000, 0x1FFD0000, 0x30000, ATT_OWN}, {0x20000000, 0x20000000, 0x10000, ATT_OWN}, {0x2F000000, 0x2F000000, 0x20000, ATT_OWN}, {0x2F020000, 0x2F020000, 0x20000, ATT_OWN}, {0x60000000, 0x60000000, 0x40000000, 0} }; static const struct imx_rproc_att imx_rproc_att_imx7d[] = { /* dev addr , sys addr , size , flags */ /* OCRAM_S (M4 Boot code) - alias */ { 0x00000000, 0x00180000, 0x00008000, 0 }, /* OCRAM_S (Code) */ { 0x00180000, 0x00180000, 0x00008000, ATT_OWN }, /* OCRAM (Code) - alias */ { 0x00900000, 0x00900000, 0x00020000, 0 }, /* OCRAM_EPDC (Code) - alias */ { 0x00920000, 0x00920000, 0x00020000, 0 }, /* OCRAM_PXP (Code) - alias */ { 0x00940000, 0x00940000, 0x00008000, 0 }, /* TCML (Code) */ { 0x1FFF8000, 0x007F8000, 0x00008000, ATT_OWN | ATT_IOMEM }, /* DDR (Code) - alias, first part of DDR (Data) */ { 0x10000000, 0x80000000, 0x0FFF0000, 0 }, /* TCMU (Data) */ { 0x20000000, 0x00800000, 0x00008000, ATT_OWN | ATT_IOMEM }, /* OCRAM (Data) */ { 0x20200000, 0x00900000, 0x00020000, 0 }, /* OCRAM_EPDC (Data) */ { 0x20220000, 0x00920000, 0x00020000, 0 }, /* OCRAM_PXP (Data) */ { 0x20240000, 0x00940000, 0x00008000, 0 }, /* DDR (Data) */ { 0x80000000, 0x80000000, 0x60000000, 0 }, }; static const struct imx_rproc_att imx_rproc_att_imx6sx[] = { /* dev addr , sys addr , size , flags */ /* TCML (M4 Boot Code) - alias */ { 0x00000000, 0x007F8000, 0x00008000, ATT_IOMEM }, /* OCRAM_S (Code) */ { 0x00180000, 0x008F8000, 0x00004000, 0 }, /* OCRAM_S (Code) - alias */ { 0x00180000, 0x008FC000, 0x00004000, 0 }, /* TCML (Code) */ { 0x1FFF8000, 0x007F8000, 0x00008000, ATT_OWN | ATT_IOMEM }, /* DDR (Code) - alias, first part of DDR (Data) */ { 0x10000000, 0x80000000, 0x0FFF8000, 0 }, /* TCMU (Data) */ { 0x20000000, 0x00800000, 0x00008000, ATT_OWN | ATT_IOMEM }, /* OCRAM_S (Data) - alias? */ { 0x208F8000, 0x008F8000, 0x00004000, 0 }, /* DDR (Data) */ { 0x80000000, 0x80000000, 0x60000000, 0 }, }; static const struct imx_rproc_dcfg imx_rproc_cfg_imx8mn_mmio = { .src_reg = IMX7D_SRC_SCR, .src_mask = IMX7D_M4_RST_MASK, .src_start = IMX7D_M4_START, .src_stop = IMX8M_M7_STOP, .gpr_reg = IMX8M_GPR22, .gpr_wait = IMX8M_GPR22_CM7_CPUWAIT, .att = imx_rproc_att_imx8mn, .att_size = ARRAY_SIZE(imx_rproc_att_imx8mn), .method = IMX_RPROC_MMIO, }; static const struct imx_rproc_dcfg imx_rproc_cfg_imx8mn = { .att = imx_rproc_att_imx8mn, .att_size = ARRAY_SIZE(imx_rproc_att_imx8mn), .method = IMX_RPROC_SMC, }; static const struct imx_rproc_dcfg imx_rproc_cfg_imx8mq = { .src_reg = IMX7D_SRC_SCR, .src_mask = IMX7D_M4_RST_MASK, .src_start = IMX7D_M4_START, .src_stop = IMX7D_M4_STOP, .att = imx_rproc_att_imx8mq, .att_size = ARRAY_SIZE(imx_rproc_att_imx8mq), .method = IMX_RPROC_MMIO, }; static const struct imx_rproc_dcfg imx_rproc_cfg_imx8qm = { .att = imx_rproc_att_imx8qm, .att_size = ARRAY_SIZE(imx_rproc_att_imx8qm), .method = IMX_RPROC_SCU_API, }; static const struct imx_rproc_dcfg imx_rproc_cfg_imx8qxp = { .att = imx_rproc_att_imx8qxp, .att_size = ARRAY_SIZE(imx_rproc_att_imx8qxp), .method = IMX_RPROC_SCU_API, }; static const struct imx_rproc_dcfg imx_rproc_cfg_imx8ulp = { .att = imx_rproc_att_imx8ulp, .att_size = ARRAY_SIZE(imx_rproc_att_imx8ulp), .method = IMX_RPROC_NONE, }; static const struct imx_rproc_dcfg imx_rproc_cfg_imx7ulp = { .att = imx_rproc_att_imx7ulp, .att_size = ARRAY_SIZE(imx_rproc_att_imx7ulp), .method = IMX_RPROC_NONE, }; static const struct imx_rproc_dcfg imx_rproc_cfg_imx7d = { .src_reg = IMX7D_SRC_SCR, .src_mask = IMX7D_M4_RST_MASK, .src_start = IMX7D_M4_START, .src_stop = IMX7D_M4_STOP, .att = imx_rproc_att_imx7d, .att_size = ARRAY_SIZE(imx_rproc_att_imx7d), .method = IMX_RPROC_MMIO, }; static const struct imx_rproc_dcfg imx_rproc_cfg_imx6sx = { .src_reg = IMX6SX_SRC_SCR, .src_mask = IMX6SX_M4_RST_MASK, .src_start = IMX6SX_M4_START, .src_stop = IMX6SX_M4_STOP, .att = imx_rproc_att_imx6sx, .att_size = ARRAY_SIZE(imx_rproc_att_imx6sx), .method = IMX_RPROC_MMIO, }; static const struct imx_rproc_dcfg imx_rproc_cfg_imx93 = { .att = imx_rproc_att_imx93, .att_size = ARRAY_SIZE(imx_rproc_att_imx93), .method = IMX_RPROC_SMC, }; static int imx_rproc_start(struct rproc *rproc) { struct imx_rproc *priv = rproc->priv; const struct imx_rproc_dcfg *dcfg = priv->dcfg; struct device *dev = priv->dev; struct arm_smccc_res res; int ret; ret = imx_rproc_xtr_mbox_init(rproc); if (ret) return ret; switch (dcfg->method) { case IMX_RPROC_MMIO: if (priv->gpr) { ret = regmap_clear_bits(priv->gpr, dcfg->gpr_reg, dcfg->gpr_wait); } else { ret = regmap_update_bits(priv->regmap, dcfg->src_reg, dcfg->src_mask, dcfg->src_start); } break; case IMX_RPROC_SMC: arm_smccc_smc(IMX_SIP_RPROC, IMX_SIP_RPROC_START, 0, 0, 0, 0, 0, 0, &res); ret = res.a0; break; case IMX_RPROC_SCU_API: ret = imx_sc_pm_cpu_start(priv->ipc_handle, priv->rsrc_id, true, priv->entry); break; default: return -EOPNOTSUPP; } if (ret) dev_err(dev, "Failed to enable remote core!\n"); return ret; } static int imx_rproc_stop(struct rproc *rproc) { struct imx_rproc *priv = rproc->priv; const struct imx_rproc_dcfg *dcfg = priv->dcfg; struct device *dev = priv->dev; struct arm_smccc_res res; int ret; switch (dcfg->method) { case IMX_RPROC_MMIO: if (priv->gpr) { ret = regmap_set_bits(priv->gpr, dcfg->gpr_reg, dcfg->gpr_wait); if (ret) { dev_err(priv->dev, "Failed to quiescence M4 platform!\n"); return ret; } } ret = regmap_update_bits(priv->regmap, dcfg->src_reg, dcfg->src_mask, dcfg->src_stop); break; case IMX_RPROC_SMC: arm_smccc_smc(IMX_SIP_RPROC, IMX_SIP_RPROC_STOP, 0, 0, 0, 0, 0, 0, &res); ret = res.a0; if (res.a1) dev_info(dev, "Not in wfi, force stopped\n"); break; case IMX_RPROC_SCU_API: ret = imx_sc_pm_cpu_start(priv->ipc_handle, priv->rsrc_id, false, priv->entry); break; default: return -EOPNOTSUPP; } if (ret) dev_err(dev, "Failed to stop remote core\n"); else imx_rproc_free_mbox(rproc); return ret; } static int imx_rproc_da_to_sys(struct imx_rproc *priv, u64 da, size_t len, u64 *sys, bool *is_iomem) { const struct imx_rproc_dcfg *dcfg = priv->dcfg; int i; /* parse address translation table */ for (i = 0; i < dcfg->att_size; i++) { const struct imx_rproc_att *att = &dcfg->att[i]; /* * Ignore entries not belong to current core: * i.MX8QM has dual general M4_[0,1] cores, M4_0's own entries * has "ATT_CORE(0) & BIT(0)" true, M4_1's own entries has * "ATT_CORE(1) & BIT(1)" true. */ if (att->flags & ATT_CORE_MASK) { if (!((BIT(priv->core_index)) & (att->flags & ATT_CORE_MASK))) continue; } if (da >= att->da && da + len < att->da + att->size) { unsigned int offset = da - att->da; *sys = att->sa + offset; if (is_iomem) *is_iomem = att->flags & ATT_IOMEM; return 0; } } dev_warn(priv->dev, "Translation failed: da = 0x%llx len = 0x%zx\n", da, len); return -ENOENT; } static void *imx_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) { struct imx_rproc *priv = rproc->priv; void *va = NULL; u64 sys; int i; if (len == 0) return NULL; /* * On device side we have many aliases, so we need to convert device * address (M4) to system bus address first. */ if (imx_rproc_da_to_sys(priv, da, len, &sys, is_iomem)) return NULL; for (i = 0; i < IMX_RPROC_MEM_MAX; i++) { if (sys >= priv->mem[i].sys_addr && sys + len < priv->mem[i].sys_addr + priv->mem[i].size) { unsigned int offset = sys - priv->mem[i].sys_addr; /* __force to make sparse happy with type conversion */ va = (__force void *)(priv->mem[i].cpu_addr + offset); break; } } dev_dbg(&rproc->dev, "da = 0x%llx len = 0x%zx va = 0x%p\n", da, len, va); return va; } static int imx_rproc_mem_alloc(struct rproc *rproc, struct rproc_mem_entry *mem) { struct device *dev = rproc->dev.parent; void *va; dev_dbg(dev, "map memory: %p+%zx\n", &mem->dma, mem->len); va = ioremap_wc(mem->dma, mem->len); if (IS_ERR_OR_NULL(va)) { dev_err(dev, "Unable to map memory region: %p+%zx\n", &mem->dma, mem->len); return -ENOMEM; } /* Update memory entry va */ mem->va = va; return 0; } static int imx_rproc_mem_release(struct rproc *rproc, struct rproc_mem_entry *mem) { dev_dbg(rproc->dev.parent, "unmap memory: %pa\n", &mem->dma); iounmap(mem->va); return 0; } static int imx_rproc_prepare(struct rproc *rproc) { struct imx_rproc *priv = rproc->priv; struct device_node *np = priv->dev->of_node; struct of_phandle_iterator it; struct rproc_mem_entry *mem; struct reserved_mem *rmem; u32 da; /* Register associated reserved memory regions */ of_phandle_iterator_init(&it, np, "memory-region", NULL, 0); while (of_phandle_iterator_next(&it) == 0) { /* * Ignore the first memory region which will be used vdev buffer. * No need to do extra handlings, rproc_add_virtio_dev will handle it. */ if (!strcmp(it.node->name, "vdev0buffer")) continue; if (!strcmp(it.node->name, "rsc-table")) continue; rmem = of_reserved_mem_lookup(it.node); if (!rmem) { of_node_put(it.node); dev_err(priv->dev, "unable to acquire memory-region\n"); return -EINVAL; } /* No need to translate pa to da, i.MX use same map */ da = rmem->base; /* Register memory region */ mem = rproc_mem_entry_init(priv->dev, NULL, (dma_addr_t)rmem->base, rmem->size, da, imx_rproc_mem_alloc, imx_rproc_mem_release, it.node->name); if (mem) { rproc_coredump_add_segment(rproc, da, rmem->size); } else { of_node_put(it.node); return -ENOMEM; } rproc_add_carveout(rproc, mem); } return 0; } static int imx_rproc_parse_fw(struct rproc *rproc, const struct firmware *fw) { int ret; ret = rproc_elf_load_rsc_table(rproc, fw); if (ret) dev_info(&rproc->dev, "No resource table in elf\n"); return 0; } static void imx_rproc_kick(struct rproc *rproc, int vqid) { struct imx_rproc *priv = rproc->priv; int err; __u32 mmsg; if (!priv->tx_ch) { dev_err(priv->dev, "No initialized mbox tx channel\n"); return; } /* * Send the index of the triggered virtqueue as the mu payload. * Let remote processor know which virtqueue is used. */ mmsg = vqid << 16; err = mbox_send_message(priv->tx_ch, (void *)&mmsg); if (err < 0) dev_err(priv->dev, "%s: failed (%d, err:%d)\n", __func__, vqid, err); } static int imx_rproc_attach(struct rproc *rproc) { return imx_rproc_xtr_mbox_init(rproc); } static int imx_rproc_detach(struct rproc *rproc) { struct imx_rproc *priv = rproc->priv; const struct imx_rproc_dcfg *dcfg = priv->dcfg; if (dcfg->method != IMX_RPROC_SCU_API) return -EOPNOTSUPP; if (imx_sc_rm_is_resource_owned(priv->ipc_handle, priv->rsrc_id)) return -EOPNOTSUPP; imx_rproc_free_mbox(rproc); return 0; } static struct resource_table *imx_rproc_get_loaded_rsc_table(struct rproc *rproc, size_t *table_sz) { struct imx_rproc *priv = rproc->priv; /* The resource table has already been mapped in imx_rproc_addr_init */ if (!priv->rsc_table) return NULL; *table_sz = SZ_1K; return (struct resource_table *)priv->rsc_table; } static const struct rproc_ops imx_rproc_ops = { .prepare = imx_rproc_prepare, .attach = imx_rproc_attach, .detach = imx_rproc_detach, .start = imx_rproc_start, .stop = imx_rproc_stop, .kick = imx_rproc_kick, .da_to_va = imx_rproc_da_to_va, .load = rproc_elf_load_segments, .parse_fw = imx_rproc_parse_fw, .find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table, .get_loaded_rsc_table = imx_rproc_get_loaded_rsc_table, .sanity_check = rproc_elf_sanity_check, .get_boot_addr = rproc_elf_get_boot_addr, }; static int imx_rproc_addr_init(struct imx_rproc *priv, struct platform_device *pdev) { const struct imx_rproc_dcfg *dcfg = priv->dcfg; struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; int a, b = 0, err, nph; /* remap required addresses */ for (a = 0; a < dcfg->att_size; a++) { const struct imx_rproc_att *att = &dcfg->att[a]; if (!(att->flags & ATT_OWN)) continue; if (b >= IMX_RPROC_MEM_MAX) break; if (att->flags & ATT_IOMEM) priv->mem[b].cpu_addr = devm_ioremap(&pdev->dev, att->sa, att->size); else priv->mem[b].cpu_addr = devm_ioremap_wc(&pdev->dev, att->sa, att->size); if (!priv->mem[b].cpu_addr) { dev_err(dev, "failed to remap %#x bytes from %#x\n", att->size, att->sa); return -ENOMEM; } priv->mem[b].sys_addr = att->sa; priv->mem[b].size = att->size; b++; } /* memory-region is optional property */ nph = of_count_phandle_with_args(np, "memory-region", NULL); if (nph <= 0) return 0; /* remap optional addresses */ for (a = 0; a < nph; a++) { struct device_node *node; struct resource res; node = of_parse_phandle(np, "memory-region", a); /* Not map vdevbuffer, vdevring region */ if (!strncmp(node->name, "vdev", strlen("vdev"))) { of_node_put(node); continue; } err = of_address_to_resource(node, 0, &res); of_node_put(node); if (err) { dev_err(dev, "unable to resolve memory region\n"); return err; } if (b >= IMX_RPROC_MEM_MAX) break; /* Not use resource version, because we might share region */ priv->mem[b].cpu_addr = devm_ioremap_wc(&pdev->dev, res.start, resource_size(&res)); if (!priv->mem[b].cpu_addr) { dev_err(dev, "failed to remap %pr\n", &res); return -ENOMEM; } priv->mem[b].sys_addr = res.start; priv->mem[b].size = resource_size(&res); if (!strcmp(node->name, "rsc-table")) priv->rsc_table = priv->mem[b].cpu_addr; b++; } return 0; } static int imx_rproc_notified_idr_cb(int id, void *ptr, void *data) { struct rproc *rproc = data; rproc_vq_interrupt(rproc, id); return 0; } static void imx_rproc_vq_work(struct work_struct *work) { struct imx_rproc *priv = container_of(work, struct imx_rproc, rproc_work); struct rproc *rproc = priv->rproc; idr_for_each(&rproc->notifyids, imx_rproc_notified_idr_cb, rproc); } static void imx_rproc_rx_callback(struct mbox_client *cl, void *msg) { struct rproc *rproc = dev_get_drvdata(cl->dev); struct imx_rproc *priv = rproc->priv; queue_work(priv->workqueue, &priv->rproc_work); } static int imx_rproc_xtr_mbox_init(struct rproc *rproc) { struct imx_rproc *priv = rproc->priv; struct device *dev = priv->dev; struct mbox_client *cl; /* * stop() and detach() will free the mbox channels, so need * to request mbox channels in start() and attach(). * * Because start() and attach() not able to handle mbox defer * probe, imx_rproc_xtr_mbox_init is also called in probe(). * The check is to avoid request mbox again when start() or * attach() after probe() returns success. */ if (priv->tx_ch && priv->rx_ch) return 0; if (!of_get_property(dev->of_node, "mbox-names", NULL)) return 0; cl = &priv->cl; cl->dev = dev; cl->tx_block = true; cl->tx_tout = 100; cl->knows_txdone = false; cl->rx_callback = imx_rproc_rx_callback; priv->tx_ch = mbox_request_channel_byname(cl, "tx"); if (IS_ERR(priv->tx_ch)) return dev_err_probe(cl->dev, PTR_ERR(priv->tx_ch), "failed to request tx mailbox channel\n"); priv->rx_ch = mbox_request_channel_byname(cl, "rx"); if (IS_ERR(priv->rx_ch)) { mbox_free_channel(priv->tx_ch); return dev_err_probe(cl->dev, PTR_ERR(priv->rx_ch), "failed to request rx mailbox channel\n"); } return 0; } static void imx_rproc_free_mbox(struct rproc *rproc) { struct imx_rproc *priv = rproc->priv; if (priv->tx_ch) { mbox_free_channel(priv->tx_ch); priv->tx_ch = NULL; } if (priv->rx_ch) { mbox_free_channel(priv->rx_ch); priv->rx_ch = NULL; } } static void imx_rproc_put_scu(struct rproc *rproc) { struct imx_rproc *priv = rproc->priv; const struct imx_rproc_dcfg *dcfg = priv->dcfg; if (dcfg->method != IMX_RPROC_SCU_API) return; if (imx_sc_rm_is_resource_owned(priv->ipc_handle, priv->rsrc_id)) { imx_rproc_detach_pd(rproc); return; } imx_scu_irq_group_enable(IMX_SC_IRQ_GROUP_REBOOTED, BIT(priv->rproc_pt), false); imx_scu_irq_unregister_notifier(&priv->rproc_nb); } static int imx_rproc_partition_notify(struct notifier_block *nb, unsigned long event, void *group) { struct imx_rproc *priv = container_of(nb, struct imx_rproc, rproc_nb); /* Ignore other irqs */ if (!((event & BIT(priv->rproc_pt)) && (*(u8 *)group == IMX_SC_IRQ_GROUP_REBOOTED))) return 0; rproc_report_crash(priv->rproc, RPROC_WATCHDOG); pr_info("Partition%d reset!\n", priv->rproc_pt); return 0; } static int imx_rproc_attach_pd(struct imx_rproc *priv) { struct device *dev = priv->dev; int ret, i; /* * If there is only one power-domain entry, the platform driver framework * will handle it, no need handle it in this driver. */ priv->num_pd = of_count_phandle_with_args(dev->of_node, "power-domains", "#power-domain-cells"); if (priv->num_pd <= 1) return 0; priv->pd_dev = devm_kmalloc_array(dev, priv->num_pd, sizeof(*priv->pd_dev), GFP_KERNEL); if (!priv->pd_dev) return -ENOMEM; priv->pd_dev_link = devm_kmalloc_array(dev, priv->num_pd, sizeof(*priv->pd_dev_link), GFP_KERNEL); if (!priv->pd_dev_link) return -ENOMEM; for (i = 0; i < priv->num_pd; i++) { priv->pd_dev[i] = dev_pm_domain_attach_by_id(dev, i); if (IS_ERR(priv->pd_dev[i])) { ret = PTR_ERR(priv->pd_dev[i]); goto detach_pd; } priv->pd_dev_link[i] = device_link_add(dev, priv->pd_dev[i], DL_FLAG_STATELESS | DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE); if (!priv->pd_dev_link[i]) { dev_pm_domain_detach(priv->pd_dev[i], false); ret = -EINVAL; goto detach_pd; } } return 0; detach_pd: while (--i >= 0) { device_link_del(priv->pd_dev_link[i]); dev_pm_domain_detach(priv->pd_dev[i], false); } return ret; } static int imx_rproc_detach_pd(struct rproc *rproc) { struct imx_rproc *priv = rproc->priv; int i; /* * If there is only one power-domain entry, the platform driver framework * will handle it, no need handle it in this driver. */ if (priv->num_pd <= 1) return 0; for (i = 0; i < priv->num_pd; i++) { device_link_del(priv->pd_dev_link[i]); dev_pm_domain_detach(priv->pd_dev[i], false); } return 0; } static int imx_rproc_detect_mode(struct imx_rproc *priv) { struct regmap_config config = { .name = "imx-rproc" }; const struct imx_rproc_dcfg *dcfg = priv->dcfg; struct device *dev = priv->dev; struct regmap *regmap; struct arm_smccc_res res; int ret; u32 val; u8 pt; switch (dcfg->method) { case IMX_RPROC_NONE: priv->rproc->state = RPROC_DETACHED; return 0; case IMX_RPROC_SMC: arm_smccc_smc(IMX_SIP_RPROC, IMX_SIP_RPROC_STARTED, 0, 0, 0, 0, 0, 0, &res); if (res.a0) priv->rproc->state = RPROC_DETACHED; return 0; case IMX_RPROC_SCU_API: ret = imx_scu_get_handle(&priv->ipc_handle); if (ret) return ret; ret = of_property_read_u32(dev->of_node, "fsl,resource-id", &priv->rsrc_id); if (ret) { dev_err(dev, "No fsl,resource-id property\n"); return ret; } if (priv->rsrc_id == IMX_SC_R_M4_1_PID0) priv->core_index = 1; else priv->core_index = 0; /* * If Mcore resource is not owned by Acore partition, It is kicked by ROM, * and Linux could only do IPC with Mcore and nothing else. */ if (imx_sc_rm_is_resource_owned(priv->ipc_handle, priv->rsrc_id)) { if (of_property_read_u32(dev->of_node, "fsl,entry-address", &priv->entry)) return -EINVAL; return imx_rproc_attach_pd(priv); } priv->rproc->state = RPROC_DETACHED; priv->rproc->recovery_disabled = false; rproc_set_feature(priv->rproc, RPROC_FEAT_ATTACH_ON_RECOVERY); /* Get partition id and enable irq in SCFW */ ret = imx_sc_rm_get_resource_owner(priv->ipc_handle, priv->rsrc_id, &pt); if (ret) { dev_err(dev, "not able to get resource owner\n"); return ret; } priv->rproc_pt = pt; priv->rproc_nb.notifier_call = imx_rproc_partition_notify; ret = imx_scu_irq_register_notifier(&priv->rproc_nb); if (ret) { dev_err(dev, "register scu notifier failed, %d\n", ret); return ret; } ret = imx_scu_irq_group_enable(IMX_SC_IRQ_GROUP_REBOOTED, BIT(priv->rproc_pt), true); if (ret) { imx_scu_irq_unregister_notifier(&priv->rproc_nb); dev_err(dev, "Enable irq failed, %d\n", ret); return ret; } return 0; default: break; } priv->gpr = syscon_regmap_lookup_by_phandle(dev->of_node, "fsl,iomuxc-gpr"); if (IS_ERR(priv->gpr)) priv->gpr = NULL; regmap = syscon_regmap_lookup_by_phandle(dev->of_node, "syscon"); if (IS_ERR(regmap)) { dev_err(dev, "failed to find syscon\n"); return PTR_ERR(regmap); } priv->regmap = regmap; regmap_attach_dev(dev, regmap, &config); if (priv->gpr) { ret = regmap_read(priv->gpr, dcfg->gpr_reg, &val); if (val & dcfg->gpr_wait) { /* * After cold boot, the CM indicates its in wait * state, but not fully powered off. Power it off * fully so firmware can be loaded into it. */ imx_rproc_stop(priv->rproc); return 0; } } ret = regmap_read(regmap, dcfg->src_reg, &val); if (ret) { dev_err(dev, "Failed to read src\n"); return ret; } if ((val & dcfg->src_mask) != dcfg->src_stop) priv->rproc->state = RPROC_DETACHED; return 0; } static int imx_rproc_clk_enable(struct imx_rproc *priv) { const struct imx_rproc_dcfg *dcfg = priv->dcfg; struct device *dev = priv->dev; int ret; /* Remote core is not under control of Linux */ if (dcfg->method == IMX_RPROC_NONE) return 0; priv->clk = devm_clk_get(dev, NULL); if (IS_ERR(priv->clk)) { dev_err(dev, "Failed to get clock\n"); return PTR_ERR(priv->clk); } /* * clk for M4 block including memory. Should be * enabled before .start for FW transfer. */ ret = clk_prepare_enable(priv->clk); if (ret) { dev_err(dev, "Failed to enable clock\n"); return ret; } return 0; } static int imx_rproc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct imx_rproc *priv; struct rproc *rproc; const struct imx_rproc_dcfg *dcfg; int ret; /* set some other name then imx */ rproc = rproc_alloc(dev, "imx-rproc", &imx_rproc_ops, NULL, sizeof(*priv)); if (!rproc) return -ENOMEM; dcfg = of_device_get_match_data(dev); if (!dcfg) { ret = -EINVAL; goto err_put_rproc; } priv = rproc->priv; priv->rproc = rproc; priv->dcfg = dcfg; priv->dev = dev; dev_set_drvdata(dev, rproc); priv->workqueue = create_workqueue(dev_name(dev)); if (!priv->workqueue) { dev_err(dev, "cannot create workqueue\n"); ret = -ENOMEM; goto err_put_rproc; } ret = imx_rproc_xtr_mbox_init(rproc); if (ret) goto err_put_wkq; ret = imx_rproc_addr_init(priv, pdev); if (ret) { dev_err(dev, "failed on imx_rproc_addr_init\n"); goto err_put_mbox; } ret = imx_rproc_detect_mode(priv); if (ret) goto err_put_mbox; ret = imx_rproc_clk_enable(priv); if (ret) goto err_put_scu; INIT_WORK(&priv->rproc_work, imx_rproc_vq_work); if (rproc->state != RPROC_DETACHED) rproc->auto_boot = of_property_read_bool(np, "fsl,auto-boot"); ret = rproc_add(rproc); if (ret) { dev_err(dev, "rproc_add failed\n"); goto err_put_clk; } return 0; err_put_clk: clk_disable_unprepare(priv->clk); err_put_scu: imx_rproc_put_scu(rproc); err_put_mbox: imx_rproc_free_mbox(rproc); err_put_wkq: destroy_workqueue(priv->workqueue); err_put_rproc: rproc_free(rproc); return ret; } static void imx_rproc_remove(struct platform_device *pdev) { struct rproc *rproc = platform_get_drvdata(pdev); struct imx_rproc *priv = rproc->priv; clk_disable_unprepare(priv->clk); rproc_del(rproc); imx_rproc_put_scu(rproc); imx_rproc_free_mbox(rproc); destroy_workqueue(priv->workqueue); rproc_free(rproc); } static const struct of_device_id imx_rproc_of_match[] = { { .compatible = "fsl,imx7ulp-cm4", .data = &imx_rproc_cfg_imx7ulp }, { .compatible = "fsl,imx7d-cm4", .data = &imx_rproc_cfg_imx7d }, { .compatible = "fsl,imx6sx-cm4", .data = &imx_rproc_cfg_imx6sx }, { .compatible = "fsl,imx8mq-cm4", .data = &imx_rproc_cfg_imx8mq }, { .compatible = "fsl,imx8mm-cm4", .data = &imx_rproc_cfg_imx8mq }, { .compatible = "fsl,imx8mn-cm7", .data = &imx_rproc_cfg_imx8mn }, { .compatible = "fsl,imx8mp-cm7", .data = &imx_rproc_cfg_imx8mn }, { .compatible = "fsl,imx8mn-cm7-mmio", .data = &imx_rproc_cfg_imx8mn_mmio }, { .compatible = "fsl,imx8mp-cm7-mmio", .data = &imx_rproc_cfg_imx8mn_mmio }, { .compatible = "fsl,imx8qxp-cm4", .data = &imx_rproc_cfg_imx8qxp }, { .compatible = "fsl,imx8qm-cm4", .data = &imx_rproc_cfg_imx8qm }, { .compatible = "fsl,imx8ulp-cm33", .data = &imx_rproc_cfg_imx8ulp }, { .compatible = "fsl,imx93-cm33", .data = &imx_rproc_cfg_imx93 }, {}, }; MODULE_DEVICE_TABLE(of, imx_rproc_of_match); static struct platform_driver imx_rproc_driver = { .probe = imx_rproc_probe, .remove_new = imx_rproc_remove, .driver = { .name = "imx-rproc", .of_match_table = imx_rproc_of_match, }, }; module_platform_driver(imx_rproc_driver); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("i.MX remote processor control driver"); MODULE_AUTHOR("Oleksij Rempel <[email protected]>");
linux-master
drivers/remoteproc/imx_rproc.c
// SPDX-License-Identifier: GPL-2.0-only /* * TI K3 R5F (MCU) Remote Processor driver * * Copyright (C) 2017-2022 Texas Instruments Incorporated - https://www.ti.com/ * Suman Anna <[email protected]> */ #include <linux/dma-mapping.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/mailbox_client.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_reserved_mem.h> #include <linux/of_platform.h> #include <linux/omap-mailbox.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/remoteproc.h> #include <linux/reset.h> #include <linux/slab.h> #include "omap_remoteproc.h" #include "remoteproc_internal.h" #include "ti_sci_proc.h" /* This address can either be for ATCM or BTCM with the other at address 0x0 */ #define K3_R5_TCM_DEV_ADDR 0x41010000 /* R5 TI-SCI Processor Configuration Flags */ #define PROC_BOOT_CFG_FLAG_R5_DBG_EN 0x00000001 #define PROC_BOOT_CFG_FLAG_R5_DBG_NIDEN 0x00000002 #define PROC_BOOT_CFG_FLAG_R5_LOCKSTEP 0x00000100 #define PROC_BOOT_CFG_FLAG_R5_TEINIT 0x00000200 #define PROC_BOOT_CFG_FLAG_R5_NMFI_EN 0x00000400 #define PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE 0x00000800 #define PROC_BOOT_CFG_FLAG_R5_BTCM_EN 0x00001000 #define PROC_BOOT_CFG_FLAG_R5_ATCM_EN 0x00002000 /* Available from J7200 SoCs onwards */ #define PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS 0x00004000 /* Applicable to only AM64x SoCs */ #define PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE 0x00008000 /* R5 TI-SCI Processor Control Flags */ #define PROC_BOOT_CTRL_FLAG_R5_CORE_HALT 0x00000001 /* R5 TI-SCI Processor Status Flags */ #define PROC_BOOT_STATUS_FLAG_R5_WFE 0x00000001 #define PROC_BOOT_STATUS_FLAG_R5_WFI 0x00000002 #define PROC_BOOT_STATUS_FLAG_R5_CLK_GATED 0x00000004 #define PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED 0x00000100 /* Applicable to only AM64x SoCs */ #define PROC_BOOT_STATUS_FLAG_R5_SINGLECORE_ONLY 0x00000200 /** * struct k3_r5_mem - internal memory structure * @cpu_addr: MPU virtual address of the memory region * @bus_addr: Bus address used to access the memory region * @dev_addr: Device address from remoteproc view * @size: Size of the memory region */ struct k3_r5_mem { void __iomem *cpu_addr; phys_addr_t bus_addr; u32 dev_addr; size_t size; }; /* * All cluster mode values are not applicable on all SoCs. The following * are the modes supported on various SoCs: * Split mode : AM65x, J721E, J7200 and AM64x SoCs * LockStep mode : AM65x, J721E and J7200 SoCs * Single-CPU mode : AM64x SoCs only * Single-Core mode : AM62x, AM62A SoCs */ enum cluster_mode { CLUSTER_MODE_SPLIT = 0, CLUSTER_MODE_LOCKSTEP, CLUSTER_MODE_SINGLECPU, CLUSTER_MODE_SINGLECORE }; /** * struct k3_r5_soc_data - match data to handle SoC variations * @tcm_is_double: flag to denote the larger unified TCMs in certain modes * @tcm_ecc_autoinit: flag to denote the auto-initialization of TCMs for ECC * @single_cpu_mode: flag to denote if SoC/IP supports Single-CPU mode * @is_single_core: flag to denote if SoC/IP has only single core R5 */ struct k3_r5_soc_data { bool tcm_is_double; bool tcm_ecc_autoinit; bool single_cpu_mode; bool is_single_core; }; /** * struct k3_r5_cluster - K3 R5F Cluster structure * @dev: cached device pointer * @mode: Mode to configure the Cluster - Split or LockStep * @cores: list of R5 cores within the cluster * @soc_data: SoC-specific feature data for a R5FSS */ struct k3_r5_cluster { struct device *dev; enum cluster_mode mode; struct list_head cores; const struct k3_r5_soc_data *soc_data; }; /** * struct k3_r5_core - K3 R5 core structure * @elem: linked list item * @dev: cached device pointer * @rproc: rproc handle representing this core * @mem: internal memory regions data * @sram: on-chip SRAM memory regions data * @num_mems: number of internal memory regions * @num_sram: number of on-chip SRAM memory regions * @reset: reset control handle * @tsp: TI-SCI processor control handle * @ti_sci: TI-SCI handle * @ti_sci_id: TI-SCI device identifier * @atcm_enable: flag to control ATCM enablement * @btcm_enable: flag to control BTCM enablement * @loczrama: flag to dictate which TCM is at device address 0x0 */ struct k3_r5_core { struct list_head elem; struct device *dev; struct rproc *rproc; struct k3_r5_mem *mem; struct k3_r5_mem *sram; int num_mems; int num_sram; struct reset_control *reset; struct ti_sci_proc *tsp; const struct ti_sci_handle *ti_sci; u32 ti_sci_id; u32 atcm_enable; u32 btcm_enable; u32 loczrama; }; /** * struct k3_r5_rproc - K3 remote processor state * @dev: cached device pointer * @cluster: cached pointer to parent cluster structure * @mbox: mailbox channel handle * @client: mailbox client to request the mailbox channel * @rproc: rproc handle * @core: cached pointer to r5 core structure being used * @rmem: reserved memory regions data * @num_rmems: number of reserved memory regions */ struct k3_r5_rproc { struct device *dev; struct k3_r5_cluster *cluster; struct mbox_chan *mbox; struct mbox_client client; struct rproc *rproc; struct k3_r5_core *core; struct k3_r5_mem *rmem; int num_rmems; }; /** * k3_r5_rproc_mbox_callback() - inbound mailbox message handler * @client: mailbox client pointer used for requesting the mailbox channel * @data: mailbox payload * * This handler is invoked by the OMAP mailbox driver whenever a mailbox * message is received. Usually, the mailbox payload simply contains * the index of the virtqueue that is kicked by the remote processor, * and we let remoteproc core handle it. * * In addition to virtqueue indices, we also have some out-of-band values * that indicate different events. Those values are deliberately very * large so they don't coincide with virtqueue indices. */ static void k3_r5_rproc_mbox_callback(struct mbox_client *client, void *data) { struct k3_r5_rproc *kproc = container_of(client, struct k3_r5_rproc, client); struct device *dev = kproc->rproc->dev.parent; const char *name = kproc->rproc->name; u32 msg = omap_mbox_message(data); dev_dbg(dev, "mbox msg: 0x%x\n", msg); switch (msg) { case RP_MBOX_CRASH: /* * remoteproc detected an exception, but error recovery is not * supported. So, just log this for now */ dev_err(dev, "K3 R5F rproc %s crashed\n", name); break; case RP_MBOX_ECHO_REPLY: dev_info(dev, "received echo reply from %s\n", name); break; default: /* silently handle all other valid messages */ if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG) return; if (msg > kproc->rproc->max_notifyid) { dev_dbg(dev, "dropping unknown message 0x%x", msg); return; } /* msg contains the index of the triggered vring */ if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE) dev_dbg(dev, "no message was found in vqid %d\n", msg); } } /* kick a virtqueue */ static void k3_r5_rproc_kick(struct rproc *rproc, int vqid) { struct k3_r5_rproc *kproc = rproc->priv; struct device *dev = rproc->dev.parent; mbox_msg_t msg = (mbox_msg_t)vqid; int ret; /* send the index of the triggered virtqueue in the mailbox payload */ ret = mbox_send_message(kproc->mbox, (void *)msg); if (ret < 0) dev_err(dev, "failed to send mailbox message, status = %d\n", ret); } static int k3_r5_split_reset(struct k3_r5_core *core) { int ret; ret = reset_control_assert(core->reset); if (ret) { dev_err(core->dev, "local-reset assert failed, ret = %d\n", ret); return ret; } ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci, core->ti_sci_id); if (ret) { dev_err(core->dev, "module-reset assert failed, ret = %d\n", ret); if (reset_control_deassert(core->reset)) dev_warn(core->dev, "local-reset deassert back failed\n"); } return ret; } static int k3_r5_split_release(struct k3_r5_core *core) { int ret; ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci, core->ti_sci_id); if (ret) { dev_err(core->dev, "module-reset deassert failed, ret = %d\n", ret); return ret; } ret = reset_control_deassert(core->reset); if (ret) { dev_err(core->dev, "local-reset deassert failed, ret = %d\n", ret); if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci, core->ti_sci_id)) dev_warn(core->dev, "module-reset assert back failed\n"); } return ret; } static int k3_r5_lockstep_reset(struct k3_r5_cluster *cluster) { struct k3_r5_core *core; int ret; /* assert local reset on all applicable cores */ list_for_each_entry(core, &cluster->cores, elem) { ret = reset_control_assert(core->reset); if (ret) { dev_err(core->dev, "local-reset assert failed, ret = %d\n", ret); core = list_prev_entry(core, elem); goto unroll_local_reset; } } /* disable PSC modules on all applicable cores */ list_for_each_entry(core, &cluster->cores, elem) { ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci, core->ti_sci_id); if (ret) { dev_err(core->dev, "module-reset assert failed, ret = %d\n", ret); goto unroll_module_reset; } } return 0; unroll_module_reset: list_for_each_entry_continue_reverse(core, &cluster->cores, elem) { if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci, core->ti_sci_id)) dev_warn(core->dev, "module-reset assert back failed\n"); } core = list_last_entry(&cluster->cores, struct k3_r5_core, elem); unroll_local_reset: list_for_each_entry_from_reverse(core, &cluster->cores, elem) { if (reset_control_deassert(core->reset)) dev_warn(core->dev, "local-reset deassert back failed\n"); } return ret; } static int k3_r5_lockstep_release(struct k3_r5_cluster *cluster) { struct k3_r5_core *core; int ret; /* enable PSC modules on all applicable cores */ list_for_each_entry_reverse(core, &cluster->cores, elem) { ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci, core->ti_sci_id); if (ret) { dev_err(core->dev, "module-reset deassert failed, ret = %d\n", ret); core = list_next_entry(core, elem); goto unroll_module_reset; } } /* deassert local reset on all applicable cores */ list_for_each_entry_reverse(core, &cluster->cores, elem) { ret = reset_control_deassert(core->reset); if (ret) { dev_err(core->dev, "module-reset deassert failed, ret = %d\n", ret); goto unroll_local_reset; } } return 0; unroll_local_reset: list_for_each_entry_continue(core, &cluster->cores, elem) { if (reset_control_assert(core->reset)) dev_warn(core->dev, "local-reset assert back failed\n"); } core = list_first_entry(&cluster->cores, struct k3_r5_core, elem); unroll_module_reset: list_for_each_entry_from(core, &cluster->cores, elem) { if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci, core->ti_sci_id)) dev_warn(core->dev, "module-reset assert back failed\n"); } return ret; } static inline int k3_r5_core_halt(struct k3_r5_core *core) { return ti_sci_proc_set_control(core->tsp, PROC_BOOT_CTRL_FLAG_R5_CORE_HALT, 0); } static inline int k3_r5_core_run(struct k3_r5_core *core) { return ti_sci_proc_set_control(core->tsp, 0, PROC_BOOT_CTRL_FLAG_R5_CORE_HALT); } static int k3_r5_rproc_request_mbox(struct rproc *rproc) { struct k3_r5_rproc *kproc = rproc->priv; struct mbox_client *client = &kproc->client; struct device *dev = kproc->dev; int ret; client->dev = dev; client->tx_done = NULL; client->rx_callback = k3_r5_rproc_mbox_callback; client->tx_block = false; client->knows_txdone = false; kproc->mbox = mbox_request_channel(client, 0); if (IS_ERR(kproc->mbox)) { ret = -EBUSY; dev_err(dev, "mbox_request_channel failed: %ld\n", PTR_ERR(kproc->mbox)); return ret; } /* * Ping the remote processor, this is only for sanity-sake for now; * there is no functional effect whatsoever. * * Note that the reply will _not_ arrive immediately: this message * will wait in the mailbox fifo until the remote processor is booted. */ ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST); if (ret < 0) { dev_err(dev, "mbox_send_message failed: %d\n", ret); mbox_free_channel(kproc->mbox); return ret; } return 0; } /* * The R5F cores have controls for both a reset and a halt/run. The code * execution from DDR requires the initial boot-strapping code to be run * from the internal TCMs. This function is used to release the resets on * applicable cores to allow loading into the TCMs. The .prepare() ops is * invoked by remoteproc core before any firmware loading, and is followed * by the .start() ops after loading to actually let the R5 cores run. * * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to * execute code, but combines the TCMs from both cores. The resets for both * cores need to be released to make this possible, as the TCMs are in general * private to each core. Only Core0 needs to be unhalted for running the * cluster in this mode. The function uses the same reset logic as LockStep * mode for this (though the behavior is agnostic of the reset release order). * This callback is invoked only in remoteproc mode. */ static int k3_r5_rproc_prepare(struct rproc *rproc) { struct k3_r5_rproc *kproc = rproc->priv; struct k3_r5_cluster *cluster = kproc->cluster; struct k3_r5_core *core = kproc->core; struct device *dev = kproc->dev; u32 ctrl = 0, cfg = 0, stat = 0; u64 boot_vec = 0; bool mem_init_dis; int ret; ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl, &stat); if (ret < 0) return ret; mem_init_dis = !!(cfg & PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS); /* Re-use LockStep-mode reset logic for Single-CPU mode */ ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP || cluster->mode == CLUSTER_MODE_SINGLECPU) ? k3_r5_lockstep_release(cluster) : k3_r5_split_release(core); if (ret) { dev_err(dev, "unable to enable cores for TCM loading, ret = %d\n", ret); return ret; } /* * Newer IP revisions like on J7200 SoCs support h/w auto-initialization * of TCMs, so there is no need to perform the s/w memzero. This bit is * configurable through System Firmware, the default value does perform * auto-init, but account for it in case it is disabled */ if (cluster->soc_data->tcm_ecc_autoinit && !mem_init_dis) { dev_dbg(dev, "leveraging h/w init for TCM memories\n"); return 0; } /* * Zero out both TCMs unconditionally (access from v8 Arm core is not * affected by ATCM & BTCM enable configuration values) so that ECC * can be effective on all TCM addresses. */ dev_dbg(dev, "zeroing out ATCM memory\n"); memset(core->mem[0].cpu_addr, 0x00, core->mem[0].size); dev_dbg(dev, "zeroing out BTCM memory\n"); memset(core->mem[1].cpu_addr, 0x00, core->mem[1].size); return 0; } /* * This function implements the .unprepare() ops and performs the complimentary * operations to that of the .prepare() ops. The function is used to assert the * resets on all applicable cores for the rproc device (depending on LockStep * or Split mode). This completes the second portion of powering down the R5F * cores. The cores themselves are only halted in the .stop() ops, and the * .unprepare() ops is invoked by the remoteproc core after the remoteproc is * stopped. * * The Single-CPU mode on applicable SoCs (eg: AM64x) combines the TCMs from * both cores. The access is made possible only with releasing the resets for * both cores, but with only Core0 unhalted. This function re-uses the same * reset assert logic as LockStep mode for this mode (though the behavior is * agnostic of the reset assert order). This callback is invoked only in * remoteproc mode. */ static int k3_r5_rproc_unprepare(struct rproc *rproc) { struct k3_r5_rproc *kproc = rproc->priv; struct k3_r5_cluster *cluster = kproc->cluster; struct k3_r5_core *core = kproc->core; struct device *dev = kproc->dev; int ret; /* Re-use LockStep-mode reset logic for Single-CPU mode */ ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP || cluster->mode == CLUSTER_MODE_SINGLECPU) ? k3_r5_lockstep_reset(cluster) : k3_r5_split_reset(core); if (ret) dev_err(dev, "unable to disable cores, ret = %d\n", ret); return ret; } /* * The R5F start sequence includes two different operations * 1. Configure the boot vector for R5F core(s) * 2. Unhalt/Run the R5F core(s) * * The sequence is different between LockStep and Split modes. The LockStep * mode requires the boot vector to be configured only for Core0, and then * unhalt both the cores to start the execution - Core1 needs to be unhalted * first followed by Core0. The Split-mode requires that Core0 to be maintained * always in a higher power state that Core1 (implying Core1 needs to be started * always only after Core0 is started). * * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to execute * code, so only Core0 needs to be unhalted. The function uses the same logic * flow as Split-mode for this. This callback is invoked only in remoteproc * mode. */ static int k3_r5_rproc_start(struct rproc *rproc) { struct k3_r5_rproc *kproc = rproc->priv; struct k3_r5_cluster *cluster = kproc->cluster; struct device *dev = kproc->dev; struct k3_r5_core *core; u32 boot_addr; int ret; ret = k3_r5_rproc_request_mbox(rproc); if (ret) return ret; boot_addr = rproc->bootaddr; /* TODO: add boot_addr sanity checking */ dev_dbg(dev, "booting R5F core using boot addr = 0x%x\n", boot_addr); /* boot vector need not be programmed for Core1 in LockStep mode */ core = kproc->core; ret = ti_sci_proc_set_config(core->tsp, boot_addr, 0, 0); if (ret) goto put_mbox; /* unhalt/run all applicable cores */ if (cluster->mode == CLUSTER_MODE_LOCKSTEP) { list_for_each_entry_reverse(core, &cluster->cores, elem) { ret = k3_r5_core_run(core); if (ret) goto unroll_core_run; } } else { ret = k3_r5_core_run(core); if (ret) goto put_mbox; } return 0; unroll_core_run: list_for_each_entry_continue(core, &cluster->cores, elem) { if (k3_r5_core_halt(core)) dev_warn(core->dev, "core halt back failed\n"); } put_mbox: mbox_free_channel(kproc->mbox); return ret; } /* * The R5F stop function includes the following operations * 1. Halt R5F core(s) * * The sequence is different between LockStep and Split modes, and the order * of cores the operations are performed are also in general reverse to that * of the start function. The LockStep mode requires each operation to be * performed first on Core0 followed by Core1. The Split-mode requires that * Core0 to be maintained always in a higher power state that Core1 (implying * Core1 needs to be stopped first before Core0). * * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to execute * code, so only Core0 needs to be halted. The function uses the same logic * flow as Split-mode for this. * * Note that the R5F halt operation in general is not effective when the R5F * core is running, but is needed to make sure the core won't run after * deasserting the reset the subsequent time. The asserting of reset can * be done here, but is preferred to be done in the .unprepare() ops - this * maintains the symmetric behavior between the .start(), .stop(), .prepare() * and .unprepare() ops, and also balances them well between sysfs 'state' * flow and device bind/unbind or module removal. This callback is invoked * only in remoteproc mode. */ static int k3_r5_rproc_stop(struct rproc *rproc) { struct k3_r5_rproc *kproc = rproc->priv; struct k3_r5_cluster *cluster = kproc->cluster; struct k3_r5_core *core = kproc->core; int ret; /* halt all applicable cores */ if (cluster->mode == CLUSTER_MODE_LOCKSTEP) { list_for_each_entry(core, &cluster->cores, elem) { ret = k3_r5_core_halt(core); if (ret) { core = list_prev_entry(core, elem); goto unroll_core_halt; } } } else { ret = k3_r5_core_halt(core); if (ret) goto out; } mbox_free_channel(kproc->mbox); return 0; unroll_core_halt: list_for_each_entry_from_reverse(core, &cluster->cores, elem) { if (k3_r5_core_run(core)) dev_warn(core->dev, "core run back failed\n"); } out: return ret; } /* * Attach to a running R5F remote processor (IPC-only mode) * * The R5F attach callback only needs to request the mailbox, the remote * processor is already booted, so there is no need to issue any TI-SCI * commands to boot the R5F cores in IPC-only mode. This callback is invoked * only in IPC-only mode. */ static int k3_r5_rproc_attach(struct rproc *rproc) { struct k3_r5_rproc *kproc = rproc->priv; struct device *dev = kproc->dev; int ret; ret = k3_r5_rproc_request_mbox(rproc); if (ret) return ret; dev_info(dev, "R5F core initialized in IPC-only mode\n"); return 0; } /* * Detach from a running R5F remote processor (IPC-only mode) * * The R5F detach callback performs the opposite operation to attach callback * and only needs to release the mailbox, the R5F cores are not stopped and * will be left in booted state in IPC-only mode. This callback is invoked * only in IPC-only mode. */ static int k3_r5_rproc_detach(struct rproc *rproc) { struct k3_r5_rproc *kproc = rproc->priv; struct device *dev = kproc->dev; mbox_free_channel(kproc->mbox); dev_info(dev, "R5F core deinitialized in IPC-only mode\n"); return 0; } /* * This function implements the .get_loaded_rsc_table() callback and is used * to provide the resource table for the booted R5F in IPC-only mode. The K3 R5F * firmwares follow a design-by-contract approach and are expected to have the * resource table at the base of the DDR region reserved for firmware usage. * This provides flexibility for the remote processor to be booted by different * bootloaders that may or may not have the ability to publish the resource table * address and size through a DT property. This callback is invoked only in * IPC-only mode. */ static struct resource_table *k3_r5_get_loaded_rsc_table(struct rproc *rproc, size_t *rsc_table_sz) { struct k3_r5_rproc *kproc = rproc->priv; struct device *dev = kproc->dev; if (!kproc->rmem[0].cpu_addr) { dev_err(dev, "memory-region #1 does not exist, loaded rsc table can't be found"); return ERR_PTR(-ENOMEM); } /* * NOTE: The resource table size is currently hard-coded to a maximum * of 256 bytes. The most common resource table usage for K3 firmwares * is to only have the vdev resource entry and an optional trace entry. * The exact size could be computed based on resource table address, but * the hard-coded value suffices to support the IPC-only mode. */ *rsc_table_sz = 256; return (struct resource_table *)kproc->rmem[0].cpu_addr; } /* * Internal Memory translation helper * * Custom function implementing the rproc .da_to_va ops to provide address * translation (device address to kernel virtual address) for internal RAMs * present in a DSP or IPU device). The translated addresses can be used * either by the remoteproc core for loading, or by any rpmsg bus drivers. */ static void *k3_r5_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) { struct k3_r5_rproc *kproc = rproc->priv; struct k3_r5_core *core = kproc->core; void __iomem *va = NULL; phys_addr_t bus_addr; u32 dev_addr, offset; size_t size; int i; if (len == 0) return NULL; /* handle both R5 and SoC views of ATCM and BTCM */ for (i = 0; i < core->num_mems; i++) { bus_addr = core->mem[i].bus_addr; dev_addr = core->mem[i].dev_addr; size = core->mem[i].size; /* handle R5-view addresses of TCMs */ if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { offset = da - dev_addr; va = core->mem[i].cpu_addr + offset; return (__force void *)va; } /* handle SoC-view addresses of TCMs */ if (da >= bus_addr && ((da + len) <= (bus_addr + size))) { offset = da - bus_addr; va = core->mem[i].cpu_addr + offset; return (__force void *)va; } } /* handle any SRAM regions using SoC-view addresses */ for (i = 0; i < core->num_sram; i++) { dev_addr = core->sram[i].dev_addr; size = core->sram[i].size; if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { offset = da - dev_addr; va = core->sram[i].cpu_addr + offset; return (__force void *)va; } } /* handle static DDR reserved memory regions */ for (i = 0; i < kproc->num_rmems; i++) { dev_addr = kproc->rmem[i].dev_addr; size = kproc->rmem[i].size; if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { offset = da - dev_addr; va = kproc->rmem[i].cpu_addr + offset; return (__force void *)va; } } return NULL; } static const struct rproc_ops k3_r5_rproc_ops = { .prepare = k3_r5_rproc_prepare, .unprepare = k3_r5_rproc_unprepare, .start = k3_r5_rproc_start, .stop = k3_r5_rproc_stop, .kick = k3_r5_rproc_kick, .da_to_va = k3_r5_rproc_da_to_va, }; /* * Internal R5F Core configuration * * Each R5FSS has a cluster-level setting for configuring the processor * subsystem either in a safety/fault-tolerant LockStep mode or a performance * oriented Split mode on most SoCs. A fewer SoCs support a non-safety mode * as an alternate for LockStep mode that exercises only a single R5F core * called Single-CPU mode. Each R5F core has a number of settings to either * enable/disable each of the TCMs, control which TCM appears at the R5F core's * address 0x0. These settings need to be configured before the resets for the * corresponding core are released. These settings are all protected and managed * by the System Processor. * * This function is used to pre-configure these settings for each R5F core, and * the configuration is all done through various ti_sci_proc functions that * communicate with the System Processor. The function also ensures that both * the cores are halted before the .prepare() step. * * The function is called from k3_r5_cluster_rproc_init() and is invoked either * once (in LockStep mode or Single-CPU modes) or twice (in Split mode). Support * for LockStep-mode is dictated by an eFUSE register bit, and the config * settings retrieved from DT are adjusted accordingly as per the permitted * cluster mode. Another eFUSE register bit dictates if the R5F cluster only * supports a Single-CPU mode. All cluster level settings like Cluster mode and * TEINIT (exception handling state dictating ARM or Thumb mode) can only be set * and retrieved using Core0. * * The function behavior is different based on the cluster mode. The R5F cores * are configured independently as per their individual settings in Split mode. * They are identically configured in LockStep mode using the primary Core0 * settings. However, some individual settings cannot be set in LockStep mode. * This is overcome by switching to Split-mode initially and then programming * both the cores with the same settings, before reconfiguing again for * LockStep mode. */ static int k3_r5_rproc_configure(struct k3_r5_rproc *kproc) { struct k3_r5_cluster *cluster = kproc->cluster; struct device *dev = kproc->dev; struct k3_r5_core *core0, *core, *temp; u32 ctrl = 0, cfg = 0, stat = 0; u32 set_cfg = 0, clr_cfg = 0; u64 boot_vec = 0; bool lockstep_en; bool single_cpu; int ret; core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem); if (cluster->mode == CLUSTER_MODE_LOCKSTEP || cluster->mode == CLUSTER_MODE_SINGLECPU || cluster->mode == CLUSTER_MODE_SINGLECORE) { core = core0; } else { core = kproc->core; } ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl, &stat); if (ret < 0) return ret; dev_dbg(dev, "boot_vector = 0x%llx, cfg = 0x%x ctrl = 0x%x stat = 0x%x\n", boot_vec, cfg, ctrl, stat); single_cpu = !!(stat & PROC_BOOT_STATUS_FLAG_R5_SINGLECORE_ONLY); lockstep_en = !!(stat & PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED); /* Override to single CPU mode if set in status flag */ if (single_cpu && cluster->mode == CLUSTER_MODE_SPLIT) { dev_err(cluster->dev, "split-mode not permitted, force configuring for single-cpu mode\n"); cluster->mode = CLUSTER_MODE_SINGLECPU; } /* Override to split mode if lockstep enable bit is not set in status flag */ if (!lockstep_en && cluster->mode == CLUSTER_MODE_LOCKSTEP) { dev_err(cluster->dev, "lockstep mode not permitted, force configuring for split-mode\n"); cluster->mode = CLUSTER_MODE_SPLIT; } /* always enable ARM mode and set boot vector to 0 */ boot_vec = 0x0; if (core == core0) { clr_cfg = PROC_BOOT_CFG_FLAG_R5_TEINIT; /* * Single-CPU configuration bit can only be configured * on Core0 and system firmware will NACK any requests * with the bit configured, so program it only on * permitted cores */ if (cluster->mode == CLUSTER_MODE_SINGLECPU || cluster->mode == CLUSTER_MODE_SINGLECORE) { set_cfg = PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE; } else { /* * LockStep configuration bit is Read-only on Split-mode * _only_ devices and system firmware will NACK any * requests with the bit configured, so program it only * on permitted devices */ if (lockstep_en) clr_cfg |= PROC_BOOT_CFG_FLAG_R5_LOCKSTEP; } } if (core->atcm_enable) set_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN; else clr_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN; if (core->btcm_enable) set_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN; else clr_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN; if (core->loczrama) set_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE; else clr_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE; if (cluster->mode == CLUSTER_MODE_LOCKSTEP) { /* * work around system firmware limitations to make sure both * cores are programmed symmetrically in LockStep. LockStep * and TEINIT config is only allowed with Core0. */ list_for_each_entry(temp, &cluster->cores, elem) { ret = k3_r5_core_halt(temp); if (ret) goto out; if (temp != core) { clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_LOCKSTEP; clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_TEINIT; } ret = ti_sci_proc_set_config(temp->tsp, boot_vec, set_cfg, clr_cfg); if (ret) goto out; } set_cfg = PROC_BOOT_CFG_FLAG_R5_LOCKSTEP; clr_cfg = 0; ret = ti_sci_proc_set_config(core->tsp, boot_vec, set_cfg, clr_cfg); } else { ret = k3_r5_core_halt(core); if (ret) goto out; ret = ti_sci_proc_set_config(core->tsp, boot_vec, set_cfg, clr_cfg); } out: return ret; } static int k3_r5_reserved_mem_init(struct k3_r5_rproc *kproc) { struct device *dev = kproc->dev; struct device_node *np = dev_of_node(dev); struct device_node *rmem_np; struct reserved_mem *rmem; int num_rmems; int ret, i; num_rmems = of_property_count_elems_of_size(np, "memory-region", sizeof(phandle)); if (num_rmems <= 0) { dev_err(dev, "device does not have reserved memory regions, ret = %d\n", num_rmems); return -EINVAL; } if (num_rmems < 2) { dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n", num_rmems); return -EINVAL; } /* use reserved memory region 0 for vring DMA allocations */ ret = of_reserved_mem_device_init_by_idx(dev, np, 0); if (ret) { dev_err(dev, "device cannot initialize DMA pool, ret = %d\n", ret); return ret; } num_rmems--; kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL); if (!kproc->rmem) { ret = -ENOMEM; goto release_rmem; } /* use remaining reserved memory regions for static carveouts */ for (i = 0; i < num_rmems; i++) { rmem_np = of_parse_phandle(np, "memory-region", i + 1); if (!rmem_np) { ret = -EINVAL; goto unmap_rmem; } rmem = of_reserved_mem_lookup(rmem_np); if (!rmem) { of_node_put(rmem_np); ret = -EINVAL; goto unmap_rmem; } of_node_put(rmem_np); kproc->rmem[i].bus_addr = rmem->base; /* * R5Fs do not have an MMU, but have a Region Address Translator * (RAT) module that provides a fixed entry translation between * the 32-bit processor addresses to 64-bit bus addresses. The * RAT is programmable only by the R5F cores. Support for RAT * is currently not supported, so 64-bit address regions are not * supported. The absence of MMUs implies that the R5F device * addresses/supported memory regions are restricted to 32-bit * bus addresses, and are identical */ kproc->rmem[i].dev_addr = (u32)rmem->base; kproc->rmem[i].size = rmem->size; kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size); if (!kproc->rmem[i].cpu_addr) { dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n", i + 1, &rmem->base, &rmem->size); ret = -ENOMEM; goto unmap_rmem; } dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n", i + 1, &kproc->rmem[i].bus_addr, kproc->rmem[i].size, kproc->rmem[i].cpu_addr, kproc->rmem[i].dev_addr); } kproc->num_rmems = num_rmems; return 0; unmap_rmem: for (i--; i >= 0; i--) iounmap(kproc->rmem[i].cpu_addr); kfree(kproc->rmem); release_rmem: of_reserved_mem_device_release(dev); return ret; } static void k3_r5_reserved_mem_exit(struct k3_r5_rproc *kproc) { int i; for (i = 0; i < kproc->num_rmems; i++) iounmap(kproc->rmem[i].cpu_addr); kfree(kproc->rmem); of_reserved_mem_device_release(kproc->dev); } /* * Each R5F core within a typical R5FSS instance has a total of 64 KB of TCMs, * split equally into two 32 KB banks between ATCM and BTCM. The TCMs from both * cores are usable in Split-mode, but only the Core0 TCMs can be used in * LockStep-mode. The newer revisions of the R5FSS IP maximizes these TCMs by * leveraging the Core1 TCMs as well in certain modes where they would have * otherwise been unusable (Eg: LockStep-mode on J7200 SoCs, Single-CPU mode on * AM64x SoCs). This is done by making a Core1 TCM visible immediately after the * corresponding Core0 TCM. The SoC memory map uses the larger 64 KB sizes for * the Core0 TCMs, and the dts representation reflects this increased size on * supported SoCs. The Core0 TCM sizes therefore have to be adjusted to only * half the original size in Split mode. */ static void k3_r5_adjust_tcm_sizes(struct k3_r5_rproc *kproc) { struct k3_r5_cluster *cluster = kproc->cluster; struct k3_r5_core *core = kproc->core; struct device *cdev = core->dev; struct k3_r5_core *core0; if (cluster->mode == CLUSTER_MODE_LOCKSTEP || cluster->mode == CLUSTER_MODE_SINGLECPU || cluster->mode == CLUSTER_MODE_SINGLECORE || !cluster->soc_data->tcm_is_double) return; core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem); if (core == core0) { WARN_ON(core->mem[0].size != SZ_64K); WARN_ON(core->mem[1].size != SZ_64K); core->mem[0].size /= 2; core->mem[1].size /= 2; dev_dbg(cdev, "adjusted TCM sizes, ATCM = 0x%zx BTCM = 0x%zx\n", core->mem[0].size, core->mem[1].size); } } /* * This function checks and configures a R5F core for IPC-only or remoteproc * mode. The driver is configured to be in IPC-only mode for a R5F core when * the core has been loaded and started by a bootloader. The IPC-only mode is * detected by querying the System Firmware for reset, power on and halt status * and ensuring that the core is running. Any incomplete steps at bootloader * are validated and errored out. * * In IPC-only mode, the driver state flags for ATCM, BTCM and LOCZRAMA settings * and cluster mode parsed originally from kernel DT are updated to reflect the * actual values configured by bootloader. The driver internal device memory * addresses for TCMs are also updated. */ static int k3_r5_rproc_configure_mode(struct k3_r5_rproc *kproc) { struct k3_r5_cluster *cluster = kproc->cluster; struct k3_r5_core *core = kproc->core; struct device *cdev = core->dev; bool r_state = false, c_state = false, lockstep_en = false, single_cpu = false; u32 ctrl = 0, cfg = 0, stat = 0, halted = 0; u64 boot_vec = 0; u32 atcm_enable, btcm_enable, loczrama; struct k3_r5_core *core0; enum cluster_mode mode = cluster->mode; int ret; core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem); ret = core->ti_sci->ops.dev_ops.is_on(core->ti_sci, core->ti_sci_id, &r_state, &c_state); if (ret) { dev_err(cdev, "failed to get initial state, mode cannot be determined, ret = %d\n", ret); return ret; } if (r_state != c_state) { dev_warn(cdev, "R5F core may have been powered on by a different host, programmed state (%d) != actual state (%d)\n", r_state, c_state); } ret = reset_control_status(core->reset); if (ret < 0) { dev_err(cdev, "failed to get initial local reset status, ret = %d\n", ret); return ret; } ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl, &stat); if (ret < 0) { dev_err(cdev, "failed to get initial processor status, ret = %d\n", ret); return ret; } atcm_enable = cfg & PROC_BOOT_CFG_FLAG_R5_ATCM_EN ? 1 : 0; btcm_enable = cfg & PROC_BOOT_CFG_FLAG_R5_BTCM_EN ? 1 : 0; loczrama = cfg & PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE ? 1 : 0; single_cpu = cfg & PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE ? 1 : 0; lockstep_en = cfg & PROC_BOOT_CFG_FLAG_R5_LOCKSTEP ? 1 : 0; if (single_cpu && mode != CLUSTER_MODE_SINGLECORE) mode = CLUSTER_MODE_SINGLECPU; if (lockstep_en) mode = CLUSTER_MODE_LOCKSTEP; halted = ctrl & PROC_BOOT_CTRL_FLAG_R5_CORE_HALT; /* * IPC-only mode detection requires both local and module resets to * be deasserted and R5F core to be unhalted. Local reset status is * irrelevant if module reset is asserted (POR value has local reset * deasserted), and is deemed as remoteproc mode */ if (c_state && !ret && !halted) { dev_info(cdev, "configured R5F for IPC-only mode\n"); kproc->rproc->state = RPROC_DETACHED; ret = 1; /* override rproc ops with only required IPC-only mode ops */ kproc->rproc->ops->prepare = NULL; kproc->rproc->ops->unprepare = NULL; kproc->rproc->ops->start = NULL; kproc->rproc->ops->stop = NULL; kproc->rproc->ops->attach = k3_r5_rproc_attach; kproc->rproc->ops->detach = k3_r5_rproc_detach; kproc->rproc->ops->get_loaded_rsc_table = k3_r5_get_loaded_rsc_table; } else if (!c_state) { dev_info(cdev, "configured R5F for remoteproc mode\n"); ret = 0; } else { dev_err(cdev, "mismatched mode: local_reset = %s, module_reset = %s, core_state = %s\n", !ret ? "deasserted" : "asserted", c_state ? "deasserted" : "asserted", halted ? "halted" : "unhalted"); ret = -EINVAL; } /* fixup TCMs, cluster & core flags to actual values in IPC-only mode */ if (ret > 0) { if (core == core0) cluster->mode = mode; core->atcm_enable = atcm_enable; core->btcm_enable = btcm_enable; core->loczrama = loczrama; core->mem[0].dev_addr = loczrama ? 0 : K3_R5_TCM_DEV_ADDR; core->mem[1].dev_addr = loczrama ? K3_R5_TCM_DEV_ADDR : 0; } return ret; } static int k3_r5_cluster_rproc_init(struct platform_device *pdev) { struct k3_r5_cluster *cluster = platform_get_drvdata(pdev); struct device *dev = &pdev->dev; struct k3_r5_rproc *kproc; struct k3_r5_core *core, *core1; struct device *cdev; const char *fw_name; struct rproc *rproc; int ret, ret1; core1 = list_last_entry(&cluster->cores, struct k3_r5_core, elem); list_for_each_entry(core, &cluster->cores, elem) { cdev = core->dev; ret = rproc_of_parse_firmware(cdev, 0, &fw_name); if (ret) { dev_err(dev, "failed to parse firmware-name property, ret = %d\n", ret); goto out; } rproc = rproc_alloc(cdev, dev_name(cdev), &k3_r5_rproc_ops, fw_name, sizeof(*kproc)); if (!rproc) { ret = -ENOMEM; goto out; } /* K3 R5s have a Region Address Translator (RAT) but no MMU */ rproc->has_iommu = false; /* error recovery is not supported at present */ rproc->recovery_disabled = true; kproc = rproc->priv; kproc->cluster = cluster; kproc->core = core; kproc->dev = cdev; kproc->rproc = rproc; core->rproc = rproc; ret = k3_r5_rproc_configure_mode(kproc); if (ret < 0) goto err_config; if (ret) goto init_rmem; ret = k3_r5_rproc_configure(kproc); if (ret) { dev_err(dev, "initial configure failed, ret = %d\n", ret); goto err_config; } init_rmem: k3_r5_adjust_tcm_sizes(kproc); ret = k3_r5_reserved_mem_init(kproc); if (ret) { dev_err(dev, "reserved memory init failed, ret = %d\n", ret); goto err_config; } ret = rproc_add(rproc); if (ret) { dev_err(dev, "rproc_add failed, ret = %d\n", ret); goto err_add; } /* create only one rproc in lockstep, single-cpu or * single core mode */ if (cluster->mode == CLUSTER_MODE_LOCKSTEP || cluster->mode == CLUSTER_MODE_SINGLECPU || cluster->mode == CLUSTER_MODE_SINGLECORE) break; } return 0; err_split: if (rproc->state == RPROC_ATTACHED) { ret1 = rproc_detach(rproc); if (ret1) { dev_err(kproc->dev, "failed to detach rproc, ret = %d\n", ret1); return ret1; } } rproc_del(rproc); err_add: k3_r5_reserved_mem_exit(kproc); err_config: rproc_free(rproc); core->rproc = NULL; out: /* undo core0 upon any failures on core1 in split-mode */ if (cluster->mode == CLUSTER_MODE_SPLIT && core == core1) { core = list_prev_entry(core, elem); rproc = core->rproc; kproc = rproc->priv; goto err_split; } return ret; } static void k3_r5_cluster_rproc_exit(void *data) { struct k3_r5_cluster *cluster = platform_get_drvdata(data); struct k3_r5_rproc *kproc; struct k3_r5_core *core; struct rproc *rproc; int ret; /* * lockstep mode and single-cpu modes have only one rproc associated * with first core, whereas split-mode has two rprocs associated with * each core, and requires that core1 be powered down first */ core = (cluster->mode == CLUSTER_MODE_LOCKSTEP || cluster->mode == CLUSTER_MODE_SINGLECPU) ? list_first_entry(&cluster->cores, struct k3_r5_core, elem) : list_last_entry(&cluster->cores, struct k3_r5_core, elem); list_for_each_entry_from_reverse(core, &cluster->cores, elem) { rproc = core->rproc; kproc = rproc->priv; if (rproc->state == RPROC_ATTACHED) { ret = rproc_detach(rproc); if (ret) { dev_err(kproc->dev, "failed to detach rproc, ret = %d\n", ret); return; } } rproc_del(rproc); k3_r5_reserved_mem_exit(kproc); rproc_free(rproc); core->rproc = NULL; } } static int k3_r5_core_of_get_internal_memories(struct platform_device *pdev, struct k3_r5_core *core) { static const char * const mem_names[] = {"atcm", "btcm"}; struct device *dev = &pdev->dev; struct resource *res; int num_mems; int i; num_mems = ARRAY_SIZE(mem_names); core->mem = devm_kcalloc(dev, num_mems, sizeof(*core->mem), GFP_KERNEL); if (!core->mem) return -ENOMEM; for (i = 0; i < num_mems; i++) { res = platform_get_resource_byname(pdev, IORESOURCE_MEM, mem_names[i]); if (!res) { dev_err(dev, "found no memory resource for %s\n", mem_names[i]); return -EINVAL; } if (!devm_request_mem_region(dev, res->start, resource_size(res), dev_name(dev))) { dev_err(dev, "could not request %s region for resource\n", mem_names[i]); return -EBUSY; } /* * TCMs are designed in general to support RAM-like backing * memories. So, map these as Normal Non-Cached memories. This * also avoids/fixes any potential alignment faults due to * unaligned data accesses when using memcpy() or memset() * functions (normally seen with device type memory). */ core->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start, resource_size(res)); if (!core->mem[i].cpu_addr) { dev_err(dev, "failed to map %s memory\n", mem_names[i]); return -ENOMEM; } core->mem[i].bus_addr = res->start; /* * TODO: * The R5F cores can place ATCM & BTCM anywhere in its address * based on the corresponding Region Registers in the System * Control coprocessor. For now, place ATCM and BTCM at * addresses 0 and 0x41010000 (same as the bus address on AM65x * SoCs) based on loczrama setting */ if (!strcmp(mem_names[i], "atcm")) { core->mem[i].dev_addr = core->loczrama ? 0 : K3_R5_TCM_DEV_ADDR; } else { core->mem[i].dev_addr = core->loczrama ? K3_R5_TCM_DEV_ADDR : 0; } core->mem[i].size = resource_size(res); dev_dbg(dev, "memory %5s: bus addr %pa size 0x%zx va %pK da 0x%x\n", mem_names[i], &core->mem[i].bus_addr, core->mem[i].size, core->mem[i].cpu_addr, core->mem[i].dev_addr); } core->num_mems = num_mems; return 0; } static int k3_r5_core_of_get_sram_memories(struct platform_device *pdev, struct k3_r5_core *core) { struct device_node *np = pdev->dev.of_node; struct device *dev = &pdev->dev; struct device_node *sram_np; struct resource res; int num_sram; int i, ret; num_sram = of_property_count_elems_of_size(np, "sram", sizeof(phandle)); if (num_sram <= 0) { dev_dbg(dev, "device does not use reserved on-chip memories, num_sram = %d\n", num_sram); return 0; } core->sram = devm_kcalloc(dev, num_sram, sizeof(*core->sram), GFP_KERNEL); if (!core->sram) return -ENOMEM; for (i = 0; i < num_sram; i++) { sram_np = of_parse_phandle(np, "sram", i); if (!sram_np) return -EINVAL; if (!of_device_is_available(sram_np)) { of_node_put(sram_np); return -EINVAL; } ret = of_address_to_resource(sram_np, 0, &res); of_node_put(sram_np); if (ret) return -EINVAL; core->sram[i].bus_addr = res.start; core->sram[i].dev_addr = res.start; core->sram[i].size = resource_size(&res); core->sram[i].cpu_addr = devm_ioremap_wc(dev, res.start, resource_size(&res)); if (!core->sram[i].cpu_addr) { dev_err(dev, "failed to parse and map sram%d memory at %pad\n", i, &res.start); return -ENOMEM; } dev_dbg(dev, "memory sram%d: bus addr %pa size 0x%zx va %pK da 0x%x\n", i, &core->sram[i].bus_addr, core->sram[i].size, core->sram[i].cpu_addr, core->sram[i].dev_addr); } core->num_sram = num_sram; return 0; } static struct ti_sci_proc *k3_r5_core_of_get_tsp(struct device *dev, const struct ti_sci_handle *sci) { struct ti_sci_proc *tsp; u32 temp[2]; int ret; ret = of_property_read_u32_array(dev_of_node(dev), "ti,sci-proc-ids", temp, 2); if (ret < 0) return ERR_PTR(ret); tsp = devm_kzalloc(dev, sizeof(*tsp), GFP_KERNEL); if (!tsp) return ERR_PTR(-ENOMEM); tsp->dev = dev; tsp->sci = sci; tsp->ops = &sci->ops.proc_ops; tsp->proc_id = temp[0]; tsp->host_id = temp[1]; return tsp; } static int k3_r5_core_of_init(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev_of_node(dev); struct k3_r5_core *core; int ret; if (!devres_open_group(dev, k3_r5_core_of_init, GFP_KERNEL)) return -ENOMEM; core = devm_kzalloc(dev, sizeof(*core), GFP_KERNEL); if (!core) { ret = -ENOMEM; goto err; } core->dev = dev; /* * Use SoC Power-on-Reset values as default if no DT properties are * used to dictate the TCM configurations */ core->atcm_enable = 0; core->btcm_enable = 1; core->loczrama = 1; ret = of_property_read_u32(np, "ti,atcm-enable", &core->atcm_enable); if (ret < 0 && ret != -EINVAL) { dev_err(dev, "invalid format for ti,atcm-enable, ret = %d\n", ret); goto err; } ret = of_property_read_u32(np, "ti,btcm-enable", &core->btcm_enable); if (ret < 0 && ret != -EINVAL) { dev_err(dev, "invalid format for ti,btcm-enable, ret = %d\n", ret); goto err; } ret = of_property_read_u32(np, "ti,loczrama", &core->loczrama); if (ret < 0 && ret != -EINVAL) { dev_err(dev, "invalid format for ti,loczrama, ret = %d\n", ret); goto err; } core->ti_sci = devm_ti_sci_get_by_phandle(dev, "ti,sci"); if (IS_ERR(core->ti_sci)) { ret = PTR_ERR(core->ti_sci); if (ret != -EPROBE_DEFER) { dev_err(dev, "failed to get ti-sci handle, ret = %d\n", ret); } core->ti_sci = NULL; goto err; } ret = of_property_read_u32(np, "ti,sci-dev-id", &core->ti_sci_id); if (ret) { dev_err(dev, "missing 'ti,sci-dev-id' property\n"); goto err; } core->reset = devm_reset_control_get_exclusive(dev, NULL); if (IS_ERR_OR_NULL(core->reset)) { ret = PTR_ERR_OR_ZERO(core->reset); if (!ret) ret = -ENODEV; if (ret != -EPROBE_DEFER) { dev_err(dev, "failed to get reset handle, ret = %d\n", ret); } goto err; } core->tsp = k3_r5_core_of_get_tsp(dev, core->ti_sci); if (IS_ERR(core->tsp)) { ret = PTR_ERR(core->tsp); dev_err(dev, "failed to construct ti-sci proc control, ret = %d\n", ret); goto err; } ret = k3_r5_core_of_get_internal_memories(pdev, core); if (ret) { dev_err(dev, "failed to get internal memories, ret = %d\n", ret); goto err; } ret = k3_r5_core_of_get_sram_memories(pdev, core); if (ret) { dev_err(dev, "failed to get sram memories, ret = %d\n", ret); goto err; } ret = ti_sci_proc_request(core->tsp); if (ret < 0) { dev_err(dev, "ti_sci_proc_request failed, ret = %d\n", ret); goto err; } platform_set_drvdata(pdev, core); devres_close_group(dev, k3_r5_core_of_init); return 0; err: devres_release_group(dev, k3_r5_core_of_init); return ret; } /* * free the resources explicitly since driver model is not being used * for the child R5F devices */ static void k3_r5_core_of_exit(struct platform_device *pdev) { struct k3_r5_core *core = platform_get_drvdata(pdev); struct device *dev = &pdev->dev; int ret; ret = ti_sci_proc_release(core->tsp); if (ret) dev_err(dev, "failed to release proc, ret = %d\n", ret); platform_set_drvdata(pdev, NULL); devres_release_group(dev, k3_r5_core_of_init); } static void k3_r5_cluster_of_exit(void *data) { struct k3_r5_cluster *cluster = platform_get_drvdata(data); struct platform_device *cpdev; struct k3_r5_core *core, *temp; list_for_each_entry_safe_reverse(core, temp, &cluster->cores, elem) { list_del(&core->elem); cpdev = to_platform_device(core->dev); k3_r5_core_of_exit(cpdev); } } static int k3_r5_cluster_of_init(struct platform_device *pdev) { struct k3_r5_cluster *cluster = platform_get_drvdata(pdev); struct device *dev = &pdev->dev; struct device_node *np = dev_of_node(dev); struct platform_device *cpdev; struct device_node *child; struct k3_r5_core *core; int ret; for_each_available_child_of_node(np, child) { cpdev = of_find_device_by_node(child); if (!cpdev) { ret = -ENODEV; dev_err(dev, "could not get R5 core platform device\n"); of_node_put(child); goto fail; } ret = k3_r5_core_of_init(cpdev); if (ret) { dev_err(dev, "k3_r5_core_of_init failed, ret = %d\n", ret); put_device(&cpdev->dev); of_node_put(child); goto fail; } core = platform_get_drvdata(cpdev); put_device(&cpdev->dev); list_add_tail(&core->elem, &cluster->cores); } return 0; fail: k3_r5_cluster_of_exit(pdev); return ret; } static int k3_r5_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev_of_node(dev); struct k3_r5_cluster *cluster; const struct k3_r5_soc_data *data; int ret; int num_cores; data = of_device_get_match_data(&pdev->dev); if (!data) { dev_err(dev, "SoC-specific data is not defined\n"); return -ENODEV; } cluster = devm_kzalloc(dev, sizeof(*cluster), GFP_KERNEL); if (!cluster) return -ENOMEM; cluster->dev = dev; cluster->soc_data = data; INIT_LIST_HEAD(&cluster->cores); ret = of_property_read_u32(np, "ti,cluster-mode", &cluster->mode); if (ret < 0 && ret != -EINVAL) { dev_err(dev, "invalid format for ti,cluster-mode, ret = %d\n", ret); return ret; } if (ret == -EINVAL) { /* * default to most common efuse configurations - Split-mode on AM64x * and LockStep-mode on all others * default to most common efuse configurations - * Split-mode on AM64x * Single core on AM62x * LockStep-mode on all others */ if (!data->is_single_core) cluster->mode = data->single_cpu_mode ? CLUSTER_MODE_SPLIT : CLUSTER_MODE_LOCKSTEP; else cluster->mode = CLUSTER_MODE_SINGLECORE; } if ((cluster->mode == CLUSTER_MODE_SINGLECPU && !data->single_cpu_mode) || (cluster->mode == CLUSTER_MODE_SINGLECORE && !data->is_single_core)) { dev_err(dev, "Cluster mode = %d is not supported on this SoC\n", cluster->mode); return -EINVAL; } num_cores = of_get_available_child_count(np); if (num_cores != 2 && !data->is_single_core) { dev_err(dev, "MCU cluster requires both R5F cores to be enabled but num_cores is set to = %d\n", num_cores); return -ENODEV; } if (num_cores != 1 && data->is_single_core) { dev_err(dev, "SoC supports only single core R5 but num_cores is set to %d\n", num_cores); return -ENODEV; } platform_set_drvdata(pdev, cluster); ret = devm_of_platform_populate(dev); if (ret) { dev_err(dev, "devm_of_platform_populate failed, ret = %d\n", ret); return ret; } ret = k3_r5_cluster_of_init(pdev); if (ret) { dev_err(dev, "k3_r5_cluster_of_init failed, ret = %d\n", ret); return ret; } ret = devm_add_action_or_reset(dev, k3_r5_cluster_of_exit, pdev); if (ret) return ret; ret = k3_r5_cluster_rproc_init(pdev); if (ret) { dev_err(dev, "k3_r5_cluster_rproc_init failed, ret = %d\n", ret); return ret; } ret = devm_add_action_or_reset(dev, k3_r5_cluster_rproc_exit, pdev); if (ret) return ret; return 0; } static const struct k3_r5_soc_data am65_j721e_soc_data = { .tcm_is_double = false, .tcm_ecc_autoinit = false, .single_cpu_mode = false, .is_single_core = false, }; static const struct k3_r5_soc_data j7200_j721s2_soc_data = { .tcm_is_double = true, .tcm_ecc_autoinit = true, .single_cpu_mode = false, .is_single_core = false, }; static const struct k3_r5_soc_data am64_soc_data = { .tcm_is_double = true, .tcm_ecc_autoinit = true, .single_cpu_mode = true, .is_single_core = false, }; static const struct k3_r5_soc_data am62_soc_data = { .tcm_is_double = false, .tcm_ecc_autoinit = true, .single_cpu_mode = false, .is_single_core = true, }; static const struct of_device_id k3_r5_of_match[] = { { .compatible = "ti,am654-r5fss", .data = &am65_j721e_soc_data, }, { .compatible = "ti,j721e-r5fss", .data = &am65_j721e_soc_data, }, { .compatible = "ti,j7200-r5fss", .data = &j7200_j721s2_soc_data, }, { .compatible = "ti,am64-r5fss", .data = &am64_soc_data, }, { .compatible = "ti,am62-r5fss", .data = &am62_soc_data, }, { .compatible = "ti,j721s2-r5fss", .data = &j7200_j721s2_soc_data, }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, k3_r5_of_match); static struct platform_driver k3_r5_rproc_driver = { .probe = k3_r5_probe, .driver = { .name = "k3_r5_rproc", .of_match_table = k3_r5_of_match, }, }; module_platform_driver(k3_r5_rproc_driver); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("TI K3 R5F remote processor driver"); MODULE_AUTHOR("Suman Anna <[email protected]>");
linux-master
drivers/remoteproc/ti_k3_r5_remoteproc.c
// SPDX-License-Identifier: GPL-2.0 // // Copyright (c) 2019 MediaTek Inc. #include <asm/barrier.h> #include <linux/clk.h> #include <linux/err.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/time64.h> #include <linux/remoteproc/mtk_scp.h> #include "mtk_common.h" #define SCP_TIMEOUT_US (2000 * USEC_PER_MSEC) /** * scp_ipi_register() - register an ipi function * * @scp: mtk_scp structure * @id: IPI ID * @handler: IPI handler * @priv: private data for IPI handler * * Register an ipi function to receive ipi interrupt from SCP. * * Return: 0 if ipi registers successfully, -error on error. */ int scp_ipi_register(struct mtk_scp *scp, u32 id, scp_ipi_handler_t handler, void *priv) { if (!scp) return -EPROBE_DEFER; if (WARN_ON(id >= SCP_IPI_MAX) || WARN_ON(handler == NULL)) return -EINVAL; scp_ipi_lock(scp, id); scp->ipi_desc[id].handler = handler; scp->ipi_desc[id].priv = priv; scp_ipi_unlock(scp, id); return 0; } EXPORT_SYMBOL_GPL(scp_ipi_register); /** * scp_ipi_unregister() - unregister an ipi function * * @scp: mtk_scp structure * @id: IPI ID * * Unregister an ipi function to receive ipi interrupt from SCP. */ void scp_ipi_unregister(struct mtk_scp *scp, u32 id) { if (!scp) return; if (WARN_ON(id >= SCP_IPI_MAX)) return; scp_ipi_lock(scp, id); scp->ipi_desc[id].handler = NULL; scp->ipi_desc[id].priv = NULL; scp_ipi_unlock(scp, id); } EXPORT_SYMBOL_GPL(scp_ipi_unregister); /* * scp_memcpy_aligned() - Copy src to dst, where dst is in SCP SRAM region. * * @dst: Pointer to the destination buffer, should be in SCP SRAM region. * @src: Pointer to the source buffer. * @len: Length of the source buffer to be copied. * * Since AP access of SCP SRAM don't support byte write, this always write a * full word at a time, and may cause some extra bytes to be written at the * beginning & ending of dst. */ void scp_memcpy_aligned(void __iomem *dst, const void *src, unsigned int len) { void __iomem *ptr; u32 val; unsigned int i = 0, remain; if (!IS_ALIGNED((unsigned long)dst, 4)) { ptr = (void __iomem *)ALIGN_DOWN((unsigned long)dst, 4); i = 4 - (dst - ptr); val = readl_relaxed(ptr); memcpy((u8 *)&val + (4 - i), src, i); writel_relaxed(val, ptr); } __iowrite32_copy(dst + i, src + i, (len - i) / 4); remain = (len - i) % 4; if (remain > 0) { val = readl_relaxed(dst + len - remain); memcpy(&val, src + len - remain, remain); writel_relaxed(val, dst + len - remain); } } EXPORT_SYMBOL_GPL(scp_memcpy_aligned); /** * scp_ipi_lock() - Lock before operations of an IPI ID * * @scp: mtk_scp structure * @id: IPI ID * * Note: This should not be used by drivers other than mtk_scp. */ void scp_ipi_lock(struct mtk_scp *scp, u32 id) { if (WARN_ON(id >= SCP_IPI_MAX)) return; mutex_lock(&scp->ipi_desc[id].lock); } EXPORT_SYMBOL_GPL(scp_ipi_lock); /** * scp_ipi_unlock() - Unlock after operations of an IPI ID * * @scp: mtk_scp structure * @id: IPI ID * * Note: This should not be used by drivers other than mtk_scp. */ void scp_ipi_unlock(struct mtk_scp *scp, u32 id) { if (WARN_ON(id >= SCP_IPI_MAX)) return; mutex_unlock(&scp->ipi_desc[id].lock); } EXPORT_SYMBOL_GPL(scp_ipi_unlock); /** * scp_ipi_send() - send data from AP to scp. * * @scp: mtk_scp structure * @id: IPI ID * @buf: the data buffer * @len: the data buffer length * @wait: number of msecs to wait for ack. 0 to skip waiting. * * This function is thread-safe. When this function returns, * SCP has received the data and starts the processing. * When the processing completes, IPI handler registered * by scp_ipi_register will be called in interrupt context. * * Return: 0 if sending data successfully, -error on error. **/ int scp_ipi_send(struct mtk_scp *scp, u32 id, void *buf, unsigned int len, unsigned int wait) { struct mtk_share_obj __iomem *send_obj = scp->send_buf; u32 val; int ret; if (WARN_ON(id <= SCP_IPI_INIT) || WARN_ON(id >= SCP_IPI_MAX) || WARN_ON(id == SCP_IPI_NS_SERVICE) || WARN_ON(len > sizeof(send_obj->share_buf)) || WARN_ON(!buf)) return -EINVAL; ret = clk_prepare_enable(scp->clk); if (ret) { dev_err(scp->dev, "failed to enable clock\n"); return ret; } mutex_lock(&scp->send_lock); /* Wait until SCP receives the last command */ ret = readl_poll_timeout_atomic(scp->reg_base + scp->data->host_to_scp_reg, val, !val, 0, SCP_TIMEOUT_US); if (ret) { dev_err(scp->dev, "%s: IPI timeout!\n", __func__); goto unlock_mutex; } scp_memcpy_aligned(send_obj->share_buf, buf, len); writel(len, &send_obj->len); writel(id, &send_obj->id); scp->ipi_id_ack[id] = false; /* send the command to SCP */ writel(scp->data->host_to_scp_int_bit, scp->reg_base + scp->data->host_to_scp_reg); if (wait) { /* wait for SCP's ACK */ ret = wait_event_timeout(scp->ack_wq, scp->ipi_id_ack[id], msecs_to_jiffies(wait)); scp->ipi_id_ack[id] = false; if (WARN(!ret, "scp ipi %d ack time out !", id)) ret = -EIO; else ret = 0; } unlock_mutex: mutex_unlock(&scp->send_lock); clk_disable_unprepare(scp->clk); return ret; } EXPORT_SYMBOL_GPL(scp_ipi_send); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("MediaTek scp IPI interface");
linux-master
drivers/remoteproc/mtk_scp_ipi.c
// SPDX-License-Identifier: GPL-2.0-only /* * Qualcomm ADSP/SLPI Peripheral Image Loader for MSM8974 and MSM8996 * * Copyright (C) 2016 Linaro Ltd * Copyright (C) 2014 Sony Mobile Communications AB * Copyright (c) 2012-2013, The Linux Foundation. All rights reserved. */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/firmware.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_reserved_mem.h> #include <linux/platform_device.h> #include <linux/pm_domain.h> #include <linux/pm_runtime.h> #include <linux/firmware/qcom/qcom_scm.h> #include <linux/regulator/consumer.h> #include <linux/remoteproc.h> #include <linux/soc/qcom/mdt_loader.h> #include <linux/soc/qcom/smem.h> #include <linux/soc/qcom/smem_state.h> #include "qcom_common.h" #include "qcom_pil_info.h" #include "qcom_q6v5.h" #include "remoteproc_internal.h" #define ADSP_DECRYPT_SHUTDOWN_DELAY_MS 100 struct adsp_data { int crash_reason_smem; const char *firmware_name; const char *dtb_firmware_name; int pas_id; int dtb_pas_id; unsigned int minidump_id; bool auto_boot; bool decrypt_shutdown; char **proxy_pd_names; const char *load_state; const char *ssr_name; const char *sysmon_name; int ssctl_id; int region_assign_idx; }; struct qcom_adsp { struct device *dev; struct rproc *rproc; struct qcom_q6v5 q6v5; struct clk *xo; struct clk *aggre2_clk; struct regulator *cx_supply; struct regulator *px_supply; struct device *proxy_pds[3]; int proxy_pd_count; const char *dtb_firmware_name; int pas_id; int dtb_pas_id; unsigned int minidump_id; int crash_reason_smem; bool decrypt_shutdown; const char *info_name; const struct firmware *firmware; const struct firmware *dtb_firmware; struct completion start_done; struct completion stop_done; phys_addr_t mem_phys; phys_addr_t dtb_mem_phys; phys_addr_t mem_reloc; phys_addr_t dtb_mem_reloc; phys_addr_t region_assign_phys; void *mem_region; void *dtb_mem_region; size_t mem_size; size_t dtb_mem_size; size_t region_assign_size; int region_assign_idx; u64 region_assign_perms; struct qcom_rproc_glink glink_subdev; struct qcom_rproc_subdev smd_subdev; struct qcom_rproc_ssr ssr_subdev; struct qcom_sysmon *sysmon; struct qcom_scm_pas_metadata pas_metadata; struct qcom_scm_pas_metadata dtb_pas_metadata; }; static void adsp_segment_dump(struct rproc *rproc, struct rproc_dump_segment *segment, void *dest, size_t offset, size_t size) { struct qcom_adsp *adsp = rproc->priv; int total_offset; total_offset = segment->da + segment->offset + offset - adsp->mem_phys; if (total_offset < 0 || total_offset + size > adsp->mem_size) { dev_err(adsp->dev, "invalid copy request for segment %pad with offset %zu and size %zu)\n", &segment->da, offset, size); memset(dest, 0xff, size); return; } memcpy_fromio(dest, adsp->mem_region + total_offset, size); } static void adsp_minidump(struct rproc *rproc) { struct qcom_adsp *adsp = rproc->priv; if (rproc->dump_conf == RPROC_COREDUMP_DISABLED) return; qcom_minidump(rproc, adsp->minidump_id, adsp_segment_dump); } static int adsp_pds_enable(struct qcom_adsp *adsp, struct device **pds, size_t pd_count) { int ret; int i; for (i = 0; i < pd_count; i++) { dev_pm_genpd_set_performance_state(pds[i], INT_MAX); ret = pm_runtime_get_sync(pds[i]); if (ret < 0) { pm_runtime_put_noidle(pds[i]); dev_pm_genpd_set_performance_state(pds[i], 0); goto unroll_pd_votes; } } return 0; unroll_pd_votes: for (i--; i >= 0; i--) { dev_pm_genpd_set_performance_state(pds[i], 0); pm_runtime_put(pds[i]); } return ret; }; static void adsp_pds_disable(struct qcom_adsp *adsp, struct device **pds, size_t pd_count) { int i; for (i = 0; i < pd_count; i++) { dev_pm_genpd_set_performance_state(pds[i], 0); pm_runtime_put(pds[i]); } } static int adsp_shutdown_poll_decrypt(struct qcom_adsp *adsp) { unsigned int retry_num = 50; int ret; do { msleep(ADSP_DECRYPT_SHUTDOWN_DELAY_MS); ret = qcom_scm_pas_shutdown(adsp->pas_id); } while (ret == -EINVAL && --retry_num); return ret; } static int adsp_unprepare(struct rproc *rproc) { struct qcom_adsp *adsp = rproc->priv; /* * adsp_load() did pass pas_metadata to the SCM driver for storing * metadata context. It might have been released already if * auth_and_reset() was successful, but in other cases clean it up * here. */ qcom_scm_pas_metadata_release(&adsp->pas_metadata); if (adsp->dtb_pas_id) qcom_scm_pas_metadata_release(&adsp->dtb_pas_metadata); return 0; } static int adsp_load(struct rproc *rproc, const struct firmware *fw) { struct qcom_adsp *adsp = rproc->priv; int ret; /* Store firmware handle to be used in adsp_start() */ adsp->firmware = fw; if (adsp->dtb_pas_id) { ret = request_firmware(&adsp->dtb_firmware, adsp->dtb_firmware_name, adsp->dev); if (ret) { dev_err(adsp->dev, "request_firmware failed for %s: %d\n", adsp->dtb_firmware_name, ret); return ret; } ret = qcom_mdt_pas_init(adsp->dev, adsp->dtb_firmware, adsp->dtb_firmware_name, adsp->dtb_pas_id, adsp->dtb_mem_phys, &adsp->dtb_pas_metadata); if (ret) goto release_dtb_firmware; ret = qcom_mdt_load_no_init(adsp->dev, adsp->dtb_firmware, adsp->dtb_firmware_name, adsp->dtb_pas_id, adsp->dtb_mem_region, adsp->dtb_mem_phys, adsp->dtb_mem_size, &adsp->dtb_mem_reloc); if (ret) goto release_dtb_metadata; } return 0; release_dtb_metadata: qcom_scm_pas_metadata_release(&adsp->dtb_pas_metadata); release_dtb_firmware: release_firmware(adsp->dtb_firmware); return ret; } static int adsp_start(struct rproc *rproc) { struct qcom_adsp *adsp = rproc->priv; int ret; ret = qcom_q6v5_prepare(&adsp->q6v5); if (ret) return ret; ret = adsp_pds_enable(adsp, adsp->proxy_pds, adsp->proxy_pd_count); if (ret < 0) goto disable_irqs; ret = clk_prepare_enable(adsp->xo); if (ret) goto disable_proxy_pds; ret = clk_prepare_enable(adsp->aggre2_clk); if (ret) goto disable_xo_clk; if (adsp->cx_supply) { ret = regulator_enable(adsp->cx_supply); if (ret) goto disable_aggre2_clk; } if (adsp->px_supply) { ret = regulator_enable(adsp->px_supply); if (ret) goto disable_cx_supply; } if (adsp->dtb_pas_id) { ret = qcom_scm_pas_auth_and_reset(adsp->dtb_pas_id); if (ret) { dev_err(adsp->dev, "failed to authenticate dtb image and release reset\n"); goto disable_px_supply; } } ret = qcom_mdt_pas_init(adsp->dev, adsp->firmware, rproc->firmware, adsp->pas_id, adsp->mem_phys, &adsp->pas_metadata); if (ret) goto disable_px_supply; ret = qcom_mdt_load_no_init(adsp->dev, adsp->firmware, rproc->firmware, adsp->pas_id, adsp->mem_region, adsp->mem_phys, adsp->mem_size, &adsp->mem_reloc); if (ret) goto release_pas_metadata; qcom_pil_info_store(adsp->info_name, adsp->mem_phys, adsp->mem_size); ret = qcom_scm_pas_auth_and_reset(adsp->pas_id); if (ret) { dev_err(adsp->dev, "failed to authenticate image and release reset\n"); goto release_pas_metadata; } ret = qcom_q6v5_wait_for_start(&adsp->q6v5, msecs_to_jiffies(5000)); if (ret == -ETIMEDOUT) { dev_err(adsp->dev, "start timed out\n"); qcom_scm_pas_shutdown(adsp->pas_id); goto release_pas_metadata; } qcom_scm_pas_metadata_release(&adsp->pas_metadata); if (adsp->dtb_pas_id) qcom_scm_pas_metadata_release(&adsp->dtb_pas_metadata); /* Remove pointer to the loaded firmware, only valid in adsp_load() & adsp_start() */ adsp->firmware = NULL; return 0; release_pas_metadata: qcom_scm_pas_metadata_release(&adsp->pas_metadata); if (adsp->dtb_pas_id) qcom_scm_pas_metadata_release(&adsp->dtb_pas_metadata); disable_px_supply: if (adsp->px_supply) regulator_disable(adsp->px_supply); disable_cx_supply: if (adsp->cx_supply) regulator_disable(adsp->cx_supply); disable_aggre2_clk: clk_disable_unprepare(adsp->aggre2_clk); disable_xo_clk: clk_disable_unprepare(adsp->xo); disable_proxy_pds: adsp_pds_disable(adsp, adsp->proxy_pds, adsp->proxy_pd_count); disable_irqs: qcom_q6v5_unprepare(&adsp->q6v5); /* Remove pointer to the loaded firmware, only valid in adsp_load() & adsp_start() */ adsp->firmware = NULL; return ret; } static void qcom_pas_handover(struct qcom_q6v5 *q6v5) { struct qcom_adsp *adsp = container_of(q6v5, struct qcom_adsp, q6v5); if (adsp->px_supply) regulator_disable(adsp->px_supply); if (adsp->cx_supply) regulator_disable(adsp->cx_supply); clk_disable_unprepare(adsp->aggre2_clk); clk_disable_unprepare(adsp->xo); adsp_pds_disable(adsp, adsp->proxy_pds, adsp->proxy_pd_count); } static int adsp_stop(struct rproc *rproc) { struct qcom_adsp *adsp = rproc->priv; int handover; int ret; ret = qcom_q6v5_request_stop(&adsp->q6v5, adsp->sysmon); if (ret == -ETIMEDOUT) dev_err(adsp->dev, "timed out on wait\n"); ret = qcom_scm_pas_shutdown(adsp->pas_id); if (ret && adsp->decrypt_shutdown) ret = adsp_shutdown_poll_decrypt(adsp); if (ret) dev_err(adsp->dev, "failed to shutdown: %d\n", ret); if (adsp->dtb_pas_id) { ret = qcom_scm_pas_shutdown(adsp->dtb_pas_id); if (ret) dev_err(adsp->dev, "failed to shutdown dtb: %d\n", ret); } handover = qcom_q6v5_unprepare(&adsp->q6v5); if (handover) qcom_pas_handover(&adsp->q6v5); return ret; } static void *adsp_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) { struct qcom_adsp *adsp = rproc->priv; int offset; offset = da - adsp->mem_reloc; if (offset < 0 || offset + len > adsp->mem_size) return NULL; if (is_iomem) *is_iomem = true; return adsp->mem_region + offset; } static unsigned long adsp_panic(struct rproc *rproc) { struct qcom_adsp *adsp = rproc->priv; return qcom_q6v5_panic(&adsp->q6v5); } static const struct rproc_ops adsp_ops = { .unprepare = adsp_unprepare, .start = adsp_start, .stop = adsp_stop, .da_to_va = adsp_da_to_va, .parse_fw = qcom_register_dump_segments, .load = adsp_load, .panic = adsp_panic, }; static const struct rproc_ops adsp_minidump_ops = { .unprepare = adsp_unprepare, .start = adsp_start, .stop = adsp_stop, .da_to_va = adsp_da_to_va, .parse_fw = qcom_register_dump_segments, .load = adsp_load, .panic = adsp_panic, .coredump = adsp_minidump, }; static int adsp_init_clock(struct qcom_adsp *adsp) { int ret; adsp->xo = devm_clk_get(adsp->dev, "xo"); if (IS_ERR(adsp->xo)) { ret = PTR_ERR(adsp->xo); if (ret != -EPROBE_DEFER) dev_err(adsp->dev, "failed to get xo clock"); return ret; } adsp->aggre2_clk = devm_clk_get_optional(adsp->dev, "aggre2"); if (IS_ERR(adsp->aggre2_clk)) { ret = PTR_ERR(adsp->aggre2_clk); if (ret != -EPROBE_DEFER) dev_err(adsp->dev, "failed to get aggre2 clock"); return ret; } return 0; } static int adsp_init_regulator(struct qcom_adsp *adsp) { adsp->cx_supply = devm_regulator_get_optional(adsp->dev, "cx"); if (IS_ERR(adsp->cx_supply)) { if (PTR_ERR(adsp->cx_supply) == -ENODEV) adsp->cx_supply = NULL; else return PTR_ERR(adsp->cx_supply); } if (adsp->cx_supply) regulator_set_load(adsp->cx_supply, 100000); adsp->px_supply = devm_regulator_get_optional(adsp->dev, "px"); if (IS_ERR(adsp->px_supply)) { if (PTR_ERR(adsp->px_supply) == -ENODEV) adsp->px_supply = NULL; else return PTR_ERR(adsp->px_supply); } return 0; } static int adsp_pds_attach(struct device *dev, struct device **devs, char **pd_names) { size_t num_pds = 0; int ret; int i; if (!pd_names) return 0; /* Handle single power domain */ if (dev->pm_domain) { devs[0] = dev; pm_runtime_enable(dev); return 1; } while (pd_names[num_pds]) num_pds++; for (i = 0; i < num_pds; i++) { devs[i] = dev_pm_domain_attach_by_name(dev, pd_names[i]); if (IS_ERR_OR_NULL(devs[i])) { ret = PTR_ERR(devs[i]) ? : -ENODATA; goto unroll_attach; } } return num_pds; unroll_attach: for (i--; i >= 0; i--) dev_pm_domain_detach(devs[i], false); return ret; }; static void adsp_pds_detach(struct qcom_adsp *adsp, struct device **pds, size_t pd_count) { struct device *dev = adsp->dev; int i; /* Handle single power domain */ if (dev->pm_domain && pd_count) { pm_runtime_disable(dev); return; } for (i = 0; i < pd_count; i++) dev_pm_domain_detach(pds[i], false); } static int adsp_alloc_memory_region(struct qcom_adsp *adsp) { struct reserved_mem *rmem; struct device_node *node; node = of_parse_phandle(adsp->dev->of_node, "memory-region", 0); if (!node) { dev_err(adsp->dev, "no memory-region specified\n"); return -EINVAL; } rmem = of_reserved_mem_lookup(node); of_node_put(node); if (!rmem) { dev_err(adsp->dev, "unable to resolve memory-region\n"); return -EINVAL; } adsp->mem_phys = adsp->mem_reloc = rmem->base; adsp->mem_size = rmem->size; adsp->mem_region = devm_ioremap_wc(adsp->dev, adsp->mem_phys, adsp->mem_size); if (!adsp->mem_region) { dev_err(adsp->dev, "unable to map memory region: %pa+%zx\n", &rmem->base, adsp->mem_size); return -EBUSY; } if (!adsp->dtb_pas_id) return 0; node = of_parse_phandle(adsp->dev->of_node, "memory-region", 1); if (!node) { dev_err(adsp->dev, "no dtb memory-region specified\n"); return -EINVAL; } rmem = of_reserved_mem_lookup(node); of_node_put(node); if (!rmem) { dev_err(adsp->dev, "unable to resolve dtb memory-region\n"); return -EINVAL; } adsp->dtb_mem_phys = adsp->dtb_mem_reloc = rmem->base; adsp->dtb_mem_size = rmem->size; adsp->dtb_mem_region = devm_ioremap_wc(adsp->dev, adsp->dtb_mem_phys, adsp->dtb_mem_size); if (!adsp->dtb_mem_region) { dev_err(adsp->dev, "unable to map dtb memory region: %pa+%zx\n", &rmem->base, adsp->dtb_mem_size); return -EBUSY; } return 0; } static int adsp_assign_memory_region(struct qcom_adsp *adsp) { struct reserved_mem *rmem = NULL; struct qcom_scm_vmperm perm; struct device_node *node; int ret; if (!adsp->region_assign_idx) return 0; node = of_parse_phandle(adsp->dev->of_node, "memory-region", adsp->region_assign_idx); if (node) rmem = of_reserved_mem_lookup(node); of_node_put(node); if (!rmem) { dev_err(adsp->dev, "unable to resolve shareable memory-region\n"); return -EINVAL; } perm.vmid = QCOM_SCM_VMID_MSS_MSA; perm.perm = QCOM_SCM_PERM_RW; adsp->region_assign_phys = rmem->base; adsp->region_assign_size = rmem->size; adsp->region_assign_perms = BIT(QCOM_SCM_VMID_HLOS); ret = qcom_scm_assign_mem(adsp->region_assign_phys, adsp->region_assign_size, &adsp->region_assign_perms, &perm, 1); if (ret < 0) { dev_err(adsp->dev, "assign memory failed\n"); return ret; } return 0; } static void adsp_unassign_memory_region(struct qcom_adsp *adsp) { struct qcom_scm_vmperm perm; int ret; if (!adsp->region_assign_idx) return; perm.vmid = QCOM_SCM_VMID_HLOS; perm.perm = QCOM_SCM_PERM_RW; ret = qcom_scm_assign_mem(adsp->region_assign_phys, adsp->region_assign_size, &adsp->region_assign_perms, &perm, 1); if (ret < 0) dev_err(adsp->dev, "unassign memory failed\n"); } static int adsp_probe(struct platform_device *pdev) { const struct adsp_data *desc; struct qcom_adsp *adsp; struct rproc *rproc; const char *fw_name, *dtb_fw_name = NULL; const struct rproc_ops *ops = &adsp_ops; int ret; desc = of_device_get_match_data(&pdev->dev); if (!desc) return -EINVAL; if (!qcom_scm_is_available()) return -EPROBE_DEFER; fw_name = desc->firmware_name; ret = of_property_read_string(pdev->dev.of_node, "firmware-name", &fw_name); if (ret < 0 && ret != -EINVAL) return ret; if (desc->dtb_firmware_name) { dtb_fw_name = desc->dtb_firmware_name; ret = of_property_read_string_index(pdev->dev.of_node, "firmware-name", 1, &dtb_fw_name); if (ret < 0 && ret != -EINVAL) return ret; } if (desc->minidump_id) ops = &adsp_minidump_ops; rproc = rproc_alloc(&pdev->dev, pdev->name, ops, fw_name, sizeof(*adsp)); if (!rproc) { dev_err(&pdev->dev, "unable to allocate remoteproc\n"); return -ENOMEM; } rproc->auto_boot = desc->auto_boot; rproc_coredump_set_elf_info(rproc, ELFCLASS32, EM_NONE); adsp = rproc->priv; adsp->dev = &pdev->dev; adsp->rproc = rproc; adsp->minidump_id = desc->minidump_id; adsp->pas_id = desc->pas_id; adsp->info_name = desc->sysmon_name; adsp->decrypt_shutdown = desc->decrypt_shutdown; adsp->region_assign_idx = desc->region_assign_idx; if (dtb_fw_name) { adsp->dtb_firmware_name = dtb_fw_name; adsp->dtb_pas_id = desc->dtb_pas_id; } platform_set_drvdata(pdev, adsp); ret = device_init_wakeup(adsp->dev, true); if (ret) goto free_rproc; ret = adsp_alloc_memory_region(adsp); if (ret) goto free_rproc; ret = adsp_assign_memory_region(adsp); if (ret) goto free_rproc; ret = adsp_init_clock(adsp); if (ret) goto free_rproc; ret = adsp_init_regulator(adsp); if (ret) goto free_rproc; ret = adsp_pds_attach(&pdev->dev, adsp->proxy_pds, desc->proxy_pd_names); if (ret < 0) goto free_rproc; adsp->proxy_pd_count = ret; ret = qcom_q6v5_init(&adsp->q6v5, pdev, rproc, desc->crash_reason_smem, desc->load_state, qcom_pas_handover); if (ret) goto detach_proxy_pds; qcom_add_glink_subdev(rproc, &adsp->glink_subdev, desc->ssr_name); qcom_add_smd_subdev(rproc, &adsp->smd_subdev); adsp->sysmon = qcom_add_sysmon_subdev(rproc, desc->sysmon_name, desc->ssctl_id); if (IS_ERR(adsp->sysmon)) { ret = PTR_ERR(adsp->sysmon); goto detach_proxy_pds; } qcom_add_ssr_subdev(rproc, &adsp->ssr_subdev, desc->ssr_name); ret = rproc_add(rproc); if (ret) goto detach_proxy_pds; return 0; detach_proxy_pds: adsp_pds_detach(adsp, adsp->proxy_pds, adsp->proxy_pd_count); free_rproc: device_init_wakeup(adsp->dev, false); rproc_free(rproc); return ret; } static void adsp_remove(struct platform_device *pdev) { struct qcom_adsp *adsp = platform_get_drvdata(pdev); rproc_del(adsp->rproc); qcom_q6v5_deinit(&adsp->q6v5); adsp_unassign_memory_region(adsp); qcom_remove_glink_subdev(adsp->rproc, &adsp->glink_subdev); qcom_remove_sysmon_subdev(adsp->sysmon); qcom_remove_smd_subdev(adsp->rproc, &adsp->smd_subdev); qcom_remove_ssr_subdev(adsp->rproc, &adsp->ssr_subdev); adsp_pds_detach(adsp, adsp->proxy_pds, adsp->proxy_pd_count); device_init_wakeup(adsp->dev, false); rproc_free(adsp->rproc); } static const struct adsp_data adsp_resource_init = { .crash_reason_smem = 423, .firmware_name = "adsp.mdt", .pas_id = 1, .auto_boot = true, .ssr_name = "lpass", .sysmon_name = "adsp", .ssctl_id = 0x14, }; static const struct adsp_data sdm845_adsp_resource_init = { .crash_reason_smem = 423, .firmware_name = "adsp.mdt", .pas_id = 1, .auto_boot = true, .load_state = "adsp", .ssr_name = "lpass", .sysmon_name = "adsp", .ssctl_id = 0x14, }; static const struct adsp_data sm6350_adsp_resource = { .crash_reason_smem = 423, .firmware_name = "adsp.mdt", .pas_id = 1, .auto_boot = true, .proxy_pd_names = (char*[]){ "lcx", "lmx", NULL }, .load_state = "adsp", .ssr_name = "lpass", .sysmon_name = "adsp", .ssctl_id = 0x14, }; static const struct adsp_data sm8150_adsp_resource = { .crash_reason_smem = 423, .firmware_name = "adsp.mdt", .pas_id = 1, .auto_boot = true, .proxy_pd_names = (char*[]){ "cx", NULL }, .load_state = "adsp", .ssr_name = "lpass", .sysmon_name = "adsp", .ssctl_id = 0x14, }; static const struct adsp_data sm8250_adsp_resource = { .crash_reason_smem = 423, .firmware_name = "adsp.mdt", .pas_id = 1, .auto_boot = true, .proxy_pd_names = (char*[]){ "lcx", "lmx", NULL }, .load_state = "adsp", .ssr_name = "lpass", .sysmon_name = "adsp", .ssctl_id = 0x14, }; static const struct adsp_data sm8350_adsp_resource = { .crash_reason_smem = 423, .firmware_name = "adsp.mdt", .pas_id = 1, .auto_boot = true, .proxy_pd_names = (char*[]){ "lcx", "lmx", NULL }, .load_state = "adsp", .ssr_name = "lpass", .sysmon_name = "adsp", .ssctl_id = 0x14, }; static const struct adsp_data msm8996_adsp_resource = { .crash_reason_smem = 423, .firmware_name = "adsp.mdt", .pas_id = 1, .auto_boot = true, .proxy_pd_names = (char*[]){ "cx", NULL }, .ssr_name = "lpass", .sysmon_name = "adsp", .ssctl_id = 0x14, }; static const struct adsp_data cdsp_resource_init = { .crash_reason_smem = 601, .firmware_name = "cdsp.mdt", .pas_id = 18, .auto_boot = true, .ssr_name = "cdsp", .sysmon_name = "cdsp", .ssctl_id = 0x17, }; static const struct adsp_data sdm845_cdsp_resource_init = { .crash_reason_smem = 601, .firmware_name = "cdsp.mdt", .pas_id = 18, .auto_boot = true, .load_state = "cdsp", .ssr_name = "cdsp", .sysmon_name = "cdsp", .ssctl_id = 0x17, }; static const struct adsp_data sm6350_cdsp_resource = { .crash_reason_smem = 601, .firmware_name = "cdsp.mdt", .pas_id = 18, .auto_boot = true, .proxy_pd_names = (char*[]){ "cx", "mx", NULL }, .load_state = "cdsp", .ssr_name = "cdsp", .sysmon_name = "cdsp", .ssctl_id = 0x17, }; static const struct adsp_data sm8150_cdsp_resource = { .crash_reason_smem = 601, .firmware_name = "cdsp.mdt", .pas_id = 18, .auto_boot = true, .proxy_pd_names = (char*[]){ "cx", NULL }, .load_state = "cdsp", .ssr_name = "cdsp", .sysmon_name = "cdsp", .ssctl_id = 0x17, }; static const struct adsp_data sm8250_cdsp_resource = { .crash_reason_smem = 601, .firmware_name = "cdsp.mdt", .pas_id = 18, .auto_boot = true, .proxy_pd_names = (char*[]){ "cx", NULL }, .load_state = "cdsp", .ssr_name = "cdsp", .sysmon_name = "cdsp", .ssctl_id = 0x17, }; static const struct adsp_data sc8280xp_nsp0_resource = { .crash_reason_smem = 601, .firmware_name = "cdsp.mdt", .pas_id = 18, .auto_boot = true, .proxy_pd_names = (char*[]){ "nsp", NULL }, .ssr_name = "cdsp0", .sysmon_name = "cdsp", .ssctl_id = 0x17, }; static const struct adsp_data sc8280xp_nsp1_resource = { .crash_reason_smem = 633, .firmware_name = "cdsp.mdt", .pas_id = 30, .auto_boot = true, .proxy_pd_names = (char*[]){ "nsp", NULL }, .ssr_name = "cdsp1", .sysmon_name = "cdsp1", .ssctl_id = 0x20, }; static const struct adsp_data sm8350_cdsp_resource = { .crash_reason_smem = 601, .firmware_name = "cdsp.mdt", .pas_id = 18, .auto_boot = true, .proxy_pd_names = (char*[]){ "cx", "mxc", NULL }, .load_state = "cdsp", .ssr_name = "cdsp", .sysmon_name = "cdsp", .ssctl_id = 0x17, }; static const struct adsp_data mpss_resource_init = { .crash_reason_smem = 421, .firmware_name = "modem.mdt", .pas_id = 4, .minidump_id = 3, .auto_boot = false, .proxy_pd_names = (char*[]){ "cx", "mss", NULL }, .load_state = "modem", .ssr_name = "mpss", .sysmon_name = "modem", .ssctl_id = 0x12, }; static const struct adsp_data sc8180x_mpss_resource = { .crash_reason_smem = 421, .firmware_name = "modem.mdt", .pas_id = 4, .auto_boot = false, .proxy_pd_names = (char*[]){ "cx", NULL }, .load_state = "modem", .ssr_name = "mpss", .sysmon_name = "modem", .ssctl_id = 0x12, }; static const struct adsp_data msm8996_slpi_resource_init = { .crash_reason_smem = 424, .firmware_name = "slpi.mdt", .pas_id = 12, .auto_boot = true, .proxy_pd_names = (char*[]){ "ssc_cx", NULL }, .ssr_name = "dsps", .sysmon_name = "slpi", .ssctl_id = 0x16, }; static const struct adsp_data sdm845_slpi_resource_init = { .crash_reason_smem = 424, .firmware_name = "slpi.mdt", .pas_id = 12, .auto_boot = true, .proxy_pd_names = (char*[]){ "lcx", "lmx", NULL }, .load_state = "slpi", .ssr_name = "dsps", .sysmon_name = "slpi", .ssctl_id = 0x16, }; static const struct adsp_data wcss_resource_init = { .crash_reason_smem = 421, .firmware_name = "wcnss.mdt", .pas_id = 6, .auto_boot = true, .ssr_name = "mpss", .sysmon_name = "wcnss", .ssctl_id = 0x12, }; static const struct adsp_data sdx55_mpss_resource = { .crash_reason_smem = 421, .firmware_name = "modem.mdt", .pas_id = 4, .auto_boot = true, .proxy_pd_names = (char*[]){ "cx", "mss", NULL }, .ssr_name = "mpss", .sysmon_name = "modem", .ssctl_id = 0x22, }; static const struct adsp_data sm8450_mpss_resource = { .crash_reason_smem = 421, .firmware_name = "modem.mdt", .pas_id = 4, .minidump_id = 3, .auto_boot = false, .decrypt_shutdown = true, .proxy_pd_names = (char*[]){ "cx", "mss", NULL }, .load_state = "modem", .ssr_name = "mpss", .sysmon_name = "modem", .ssctl_id = 0x12, }; static const struct adsp_data sm8550_adsp_resource = { .crash_reason_smem = 423, .firmware_name = "adsp.mdt", .dtb_firmware_name = "adsp_dtb.mdt", .pas_id = 1, .dtb_pas_id = 0x24, .minidump_id = 5, .auto_boot = true, .proxy_pd_names = (char*[]){ "lcx", "lmx", NULL }, .load_state = "adsp", .ssr_name = "lpass", .sysmon_name = "adsp", .ssctl_id = 0x14, }; static const struct adsp_data sm8550_cdsp_resource = { .crash_reason_smem = 601, .firmware_name = "cdsp.mdt", .dtb_firmware_name = "cdsp_dtb.mdt", .pas_id = 18, .dtb_pas_id = 0x25, .minidump_id = 7, .auto_boot = true, .proxy_pd_names = (char*[]){ "cx", "mxc", "nsp", NULL }, .load_state = "cdsp", .ssr_name = "cdsp", .sysmon_name = "cdsp", .ssctl_id = 0x17, }; static const struct adsp_data sm8550_mpss_resource = { .crash_reason_smem = 421, .firmware_name = "modem.mdt", .dtb_firmware_name = "modem_dtb.mdt", .pas_id = 4, .dtb_pas_id = 0x26, .minidump_id = 3, .auto_boot = false, .decrypt_shutdown = true, .proxy_pd_names = (char*[]){ "cx", "mss", NULL }, .load_state = "modem", .ssr_name = "mpss", .sysmon_name = "modem", .ssctl_id = 0x12, .region_assign_idx = 2, }; static const struct of_device_id adsp_of_match[] = { { .compatible = "qcom,msm8226-adsp-pil", .data = &adsp_resource_init}, { .compatible = "qcom,msm8953-adsp-pil", .data = &msm8996_adsp_resource}, { .compatible = "qcom,msm8974-adsp-pil", .data = &adsp_resource_init}, { .compatible = "qcom,msm8996-adsp-pil", .data = &msm8996_adsp_resource}, { .compatible = "qcom,msm8996-slpi-pil", .data = &msm8996_slpi_resource_init}, { .compatible = "qcom,msm8998-adsp-pas", .data = &msm8996_adsp_resource}, { .compatible = "qcom,msm8998-slpi-pas", .data = &msm8996_slpi_resource_init}, { .compatible = "qcom,qcs404-adsp-pas", .data = &adsp_resource_init }, { .compatible = "qcom,qcs404-cdsp-pas", .data = &cdsp_resource_init }, { .compatible = "qcom,qcs404-wcss-pas", .data = &wcss_resource_init }, { .compatible = "qcom,sc7180-mpss-pas", .data = &mpss_resource_init}, { .compatible = "qcom,sc7280-mpss-pas", .data = &mpss_resource_init}, { .compatible = "qcom,sc8180x-adsp-pas", .data = &sm8150_adsp_resource}, { .compatible = "qcom,sc8180x-cdsp-pas", .data = &sm8150_cdsp_resource}, { .compatible = "qcom,sc8180x-mpss-pas", .data = &sc8180x_mpss_resource}, { .compatible = "qcom,sc8280xp-adsp-pas", .data = &sm8250_adsp_resource}, { .compatible = "qcom,sc8280xp-nsp0-pas", .data = &sc8280xp_nsp0_resource}, { .compatible = "qcom,sc8280xp-nsp1-pas", .data = &sc8280xp_nsp1_resource}, { .compatible = "qcom,sdm660-adsp-pas", .data = &adsp_resource_init}, { .compatible = "qcom,sdm845-adsp-pas", .data = &sdm845_adsp_resource_init}, { .compatible = "qcom,sdm845-cdsp-pas", .data = &sdm845_cdsp_resource_init}, { .compatible = "qcom,sdm845-slpi-pas", .data = &sdm845_slpi_resource_init}, { .compatible = "qcom,sdx55-mpss-pas", .data = &sdx55_mpss_resource}, { .compatible = "qcom,sm6115-adsp-pas", .data = &adsp_resource_init}, { .compatible = "qcom,sm6115-cdsp-pas", .data = &cdsp_resource_init}, { .compatible = "qcom,sm6115-mpss-pas", .data = &sc8180x_mpss_resource}, { .compatible = "qcom,sm6350-adsp-pas", .data = &sm6350_adsp_resource}, { .compatible = "qcom,sm6350-cdsp-pas", .data = &sm6350_cdsp_resource}, { .compatible = "qcom,sm6350-mpss-pas", .data = &mpss_resource_init}, { .compatible = "qcom,sm8150-adsp-pas", .data = &sm8150_adsp_resource}, { .compatible = "qcom,sm8150-cdsp-pas", .data = &sm8150_cdsp_resource}, { .compatible = "qcom,sm8150-mpss-pas", .data = &mpss_resource_init}, { .compatible = "qcom,sm8150-slpi-pas", .data = &sdm845_slpi_resource_init}, { .compatible = "qcom,sm8250-adsp-pas", .data = &sm8250_adsp_resource}, { .compatible = "qcom,sm8250-cdsp-pas", .data = &sm8250_cdsp_resource}, { .compatible = "qcom,sm8250-slpi-pas", .data = &sdm845_slpi_resource_init}, { .compatible = "qcom,sm8350-adsp-pas", .data = &sm8350_adsp_resource}, { .compatible = "qcom,sm8350-cdsp-pas", .data = &sm8350_cdsp_resource}, { .compatible = "qcom,sm8350-slpi-pas", .data = &sdm845_slpi_resource_init}, { .compatible = "qcom,sm8350-mpss-pas", .data = &mpss_resource_init}, { .compatible = "qcom,sm8450-adsp-pas", .data = &sm8350_adsp_resource}, { .compatible = "qcom,sm8450-cdsp-pas", .data = &sm8350_cdsp_resource}, { .compatible = "qcom,sm8450-slpi-pas", .data = &sdm845_slpi_resource_init}, { .compatible = "qcom,sm8450-mpss-pas", .data = &sm8450_mpss_resource}, { .compatible = "qcom,sm8550-adsp-pas", .data = &sm8550_adsp_resource}, { .compatible = "qcom,sm8550-cdsp-pas", .data = &sm8550_cdsp_resource}, { .compatible = "qcom,sm8550-mpss-pas", .data = &sm8550_mpss_resource}, { }, }; MODULE_DEVICE_TABLE(of, adsp_of_match); static struct platform_driver adsp_driver = { .probe = adsp_probe, .remove_new = adsp_remove, .driver = { .name = "qcom_q6v5_pas", .of_match_table = adsp_of_match, }, }; module_platform_driver(adsp_driver); MODULE_DESCRIPTION("Qualcomm Hexagon v5 Peripheral Authentication Service driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/remoteproc/qcom_q6v5_pas.c
// SPDX-License-Identifier: GPL-2.0-only /* * TI Keystone DSP remoteproc driver * * Copyright (C) 2015-2017 Texas Instruments Incorporated - http://www.ti.com/ */ #include <linux/module.h> #include <linux/slab.h> #include <linux/io.h> #include <linux/interrupt.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/workqueue.h> #include <linux/of_address.h> #include <linux/of_reserved_mem.h> #include <linux/gpio/consumer.h> #include <linux/regmap.h> #include <linux/mfd/syscon.h> #include <linux/remoteproc.h> #include <linux/reset.h> #include "remoteproc_internal.h" #define KEYSTONE_RPROC_LOCAL_ADDRESS_MASK (SZ_16M - 1) /** * struct keystone_rproc_mem - internal memory structure * @cpu_addr: MPU virtual address of the memory region * @bus_addr: Bus address used to access the memory region * @dev_addr: Device address of the memory region from DSP view * @size: Size of the memory region */ struct keystone_rproc_mem { void __iomem *cpu_addr; phys_addr_t bus_addr; u32 dev_addr; size_t size; }; /** * struct keystone_rproc - keystone remote processor driver structure * @dev: cached device pointer * @rproc: remoteproc device handle * @mem: internal memory regions data * @num_mems: number of internal memory regions * @dev_ctrl: device control regmap handle * @reset: reset control handle * @boot_offset: boot register offset in @dev_ctrl regmap * @irq_ring: irq entry for vring * @irq_fault: irq entry for exception * @kick_gpio: gpio used for virtio kicks * @workqueue: workqueue for processing virtio interrupts */ struct keystone_rproc { struct device *dev; struct rproc *rproc; struct keystone_rproc_mem *mem; int num_mems; struct regmap *dev_ctrl; struct reset_control *reset; struct gpio_desc *kick_gpio; u32 boot_offset; int irq_ring; int irq_fault; struct work_struct workqueue; }; /* Put the DSP processor into reset */ static void keystone_rproc_dsp_reset(struct keystone_rproc *ksproc) { reset_control_assert(ksproc->reset); } /* Configure the boot address and boot the DSP processor */ static int keystone_rproc_dsp_boot(struct keystone_rproc *ksproc, u32 boot_addr) { int ret; if (boot_addr & (SZ_1K - 1)) { dev_err(ksproc->dev, "invalid boot address 0x%x, must be aligned on a 1KB boundary\n", boot_addr); return -EINVAL; } ret = regmap_write(ksproc->dev_ctrl, ksproc->boot_offset, boot_addr); if (ret) { dev_err(ksproc->dev, "regmap_write of boot address failed, status = %d\n", ret); return ret; } reset_control_deassert(ksproc->reset); return 0; } /* * Process the remoteproc exceptions * * The exception reporting on Keystone DSP remote processors is very simple * compared to the equivalent processors on the OMAP family, it is notified * through a software-designed specific interrupt source in the IPC interrupt * generation register. * * This function just invokes the rproc_report_crash to report the exception * to the remoteproc driver core, to trigger a recovery. */ static irqreturn_t keystone_rproc_exception_interrupt(int irq, void *dev_id) { struct keystone_rproc *ksproc = dev_id; rproc_report_crash(ksproc->rproc, RPROC_FATAL_ERROR); return IRQ_HANDLED; } /* * Main virtqueue message workqueue function * * This function is executed upon scheduling of the keystone remoteproc * driver's workqueue. The workqueue is scheduled by the vring ISR handler. * * There is no payload message indicating the virtqueue index as is the * case with mailbox-based implementations on OMAP family. As such, this * handler processes both the Tx and Rx virtqueue indices on every invocation. * The rproc_vq_interrupt function can detect if there are new unprocessed * messages or not (returns IRQ_NONE vs IRQ_HANDLED), but there is no need * to check for these return values. The index 0 triggering will process all * pending Rx buffers, and the index 1 triggering will process all newly * available Tx buffers and will wakeup any potentially blocked senders. * * NOTE: * 1. A payload could be added by using some of the source bits in the * IPC interrupt generation registers, but this would need additional * changes to the overall IPC stack, and currently there are no benefits * of adapting that approach. * 2. The current logic is based on an inherent design assumption of supporting * only 2 vrings, but this can be changed if needed. */ static void handle_event(struct work_struct *work) { struct keystone_rproc *ksproc = container_of(work, struct keystone_rproc, workqueue); rproc_vq_interrupt(ksproc->rproc, 0); rproc_vq_interrupt(ksproc->rproc, 1); } /* * Interrupt handler for processing vring kicks from remote processor */ static irqreturn_t keystone_rproc_vring_interrupt(int irq, void *dev_id) { struct keystone_rproc *ksproc = dev_id; schedule_work(&ksproc->workqueue); return IRQ_HANDLED; } /* * Power up the DSP remote processor. * * This function will be invoked only after the firmware for this rproc * was loaded, parsed successfully, and all of its resource requirements * were met. */ static int keystone_rproc_start(struct rproc *rproc) { struct keystone_rproc *ksproc = rproc->priv; int ret; INIT_WORK(&ksproc->workqueue, handle_event); ret = request_irq(ksproc->irq_ring, keystone_rproc_vring_interrupt, 0, dev_name(ksproc->dev), ksproc); if (ret) { dev_err(ksproc->dev, "failed to enable vring interrupt, ret = %d\n", ret); goto out; } ret = request_irq(ksproc->irq_fault, keystone_rproc_exception_interrupt, 0, dev_name(ksproc->dev), ksproc); if (ret) { dev_err(ksproc->dev, "failed to enable exception interrupt, ret = %d\n", ret); goto free_vring_irq; } ret = keystone_rproc_dsp_boot(ksproc, rproc->bootaddr); if (ret) goto free_exc_irq; return 0; free_exc_irq: free_irq(ksproc->irq_fault, ksproc); free_vring_irq: free_irq(ksproc->irq_ring, ksproc); flush_work(&ksproc->workqueue); out: return ret; } /* * Stop the DSP remote processor. * * This function puts the DSP processor into reset, and finishes processing * of any pending messages. */ static int keystone_rproc_stop(struct rproc *rproc) { struct keystone_rproc *ksproc = rproc->priv; keystone_rproc_dsp_reset(ksproc); free_irq(ksproc->irq_fault, ksproc); free_irq(ksproc->irq_ring, ksproc); flush_work(&ksproc->workqueue); return 0; } /* * Kick the remote processor to notify about pending unprocessed messages. * The vqid usage is not used and is inconsequential, as the kick is performed * through a simulated GPIO (a bit in an IPC interrupt-triggering register), * the remote processor is expected to process both its Tx and Rx virtqueues. */ static void keystone_rproc_kick(struct rproc *rproc, int vqid) { struct keystone_rproc *ksproc = rproc->priv; if (!ksproc->kick_gpio) return; gpiod_set_value(ksproc->kick_gpio, 1); } /* * Custom function to translate a DSP device address (internal RAMs only) to a * kernel virtual address. The DSPs can access their RAMs at either an internal * address visible only from a DSP, or at the SoC-level bus address. Both these * addresses need to be looked through for translation. The translated addresses * can be used either by the remoteproc core for loading (when using kernel * remoteproc loader), or by any rpmsg bus drivers. */ static void *keystone_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) { struct keystone_rproc *ksproc = rproc->priv; void __iomem *va = NULL; phys_addr_t bus_addr; u32 dev_addr, offset; size_t size; int i; if (len == 0) return NULL; for (i = 0; i < ksproc->num_mems; i++) { bus_addr = ksproc->mem[i].bus_addr; dev_addr = ksproc->mem[i].dev_addr; size = ksproc->mem[i].size; if (da < KEYSTONE_RPROC_LOCAL_ADDRESS_MASK) { /* handle DSP-view addresses */ if ((da >= dev_addr) && ((da + len) <= (dev_addr + size))) { offset = da - dev_addr; va = ksproc->mem[i].cpu_addr + offset; break; } } else { /* handle SoC-view addresses */ if ((da >= bus_addr) && (da + len) <= (bus_addr + size)) { offset = da - bus_addr; va = ksproc->mem[i].cpu_addr + offset; break; } } } return (__force void *)va; } static const struct rproc_ops keystone_rproc_ops = { .start = keystone_rproc_start, .stop = keystone_rproc_stop, .kick = keystone_rproc_kick, .da_to_va = keystone_rproc_da_to_va, }; static int keystone_rproc_of_get_memories(struct platform_device *pdev, struct keystone_rproc *ksproc) { static const char * const mem_names[] = {"l2sram", "l1pram", "l1dram"}; struct device *dev = &pdev->dev; struct resource *res; int num_mems = 0; int i; num_mems = ARRAY_SIZE(mem_names); ksproc->mem = devm_kcalloc(ksproc->dev, num_mems, sizeof(*ksproc->mem), GFP_KERNEL); if (!ksproc->mem) return -ENOMEM; for (i = 0; i < num_mems; i++) { res = platform_get_resource_byname(pdev, IORESOURCE_MEM, mem_names[i]); ksproc->mem[i].cpu_addr = devm_ioremap_resource(dev, res); if (IS_ERR(ksproc->mem[i].cpu_addr)) { dev_err(dev, "failed to parse and map %s memory\n", mem_names[i]); return PTR_ERR(ksproc->mem[i].cpu_addr); } ksproc->mem[i].bus_addr = res->start; ksproc->mem[i].dev_addr = res->start & KEYSTONE_RPROC_LOCAL_ADDRESS_MASK; ksproc->mem[i].size = resource_size(res); /* zero out memories to start in a pristine state */ memset((__force void *)ksproc->mem[i].cpu_addr, 0, ksproc->mem[i].size); } ksproc->num_mems = num_mems; return 0; } static int keystone_rproc_of_get_dev_syscon(struct platform_device *pdev, struct keystone_rproc *ksproc) { struct device_node *np = pdev->dev.of_node; struct device *dev = &pdev->dev; int ret; if (!of_property_read_bool(np, "ti,syscon-dev")) { dev_err(dev, "ti,syscon-dev property is absent\n"); return -EINVAL; } ksproc->dev_ctrl = syscon_regmap_lookup_by_phandle(np, "ti,syscon-dev"); if (IS_ERR(ksproc->dev_ctrl)) { ret = PTR_ERR(ksproc->dev_ctrl); return ret; } if (of_property_read_u32_index(np, "ti,syscon-dev", 1, &ksproc->boot_offset)) { dev_err(dev, "couldn't read the boot register offset\n"); return -EINVAL; } return 0; } static int keystone_rproc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct keystone_rproc *ksproc; struct rproc *rproc; int dsp_id; char *fw_name = NULL; char *template = "keystone-dsp%d-fw"; int name_len = 0; int ret = 0; if (!np) { dev_err(dev, "only DT-based devices are supported\n"); return -ENODEV; } dsp_id = of_alias_get_id(np, "rproc"); if (dsp_id < 0) { dev_warn(dev, "device does not have an alias id\n"); return dsp_id; } /* construct a custom default fw name - subject to change in future */ name_len = strlen(template); /* assuming a single digit alias */ fw_name = devm_kzalloc(dev, name_len, GFP_KERNEL); if (!fw_name) return -ENOMEM; snprintf(fw_name, name_len, template, dsp_id); rproc = rproc_alloc(dev, dev_name(dev), &keystone_rproc_ops, fw_name, sizeof(*ksproc)); if (!rproc) return -ENOMEM; rproc->has_iommu = false; ksproc = rproc->priv; ksproc->rproc = rproc; ksproc->dev = dev; ret = keystone_rproc_of_get_dev_syscon(pdev, ksproc); if (ret) goto free_rproc; ksproc->reset = devm_reset_control_get_exclusive(dev, NULL); if (IS_ERR(ksproc->reset)) { ret = PTR_ERR(ksproc->reset); goto free_rproc; } /* enable clock for accessing DSP internal memories */ pm_runtime_enable(dev); ret = pm_runtime_resume_and_get(dev); if (ret < 0) { dev_err(dev, "failed to enable clock, status = %d\n", ret); goto disable_rpm; } ret = keystone_rproc_of_get_memories(pdev, ksproc); if (ret) goto disable_clk; ksproc->irq_ring = platform_get_irq_byname(pdev, "vring"); if (ksproc->irq_ring < 0) { ret = ksproc->irq_ring; goto disable_clk; } ksproc->irq_fault = platform_get_irq_byname(pdev, "exception"); if (ksproc->irq_fault < 0) { ret = ksproc->irq_fault; goto disable_clk; } ksproc->kick_gpio = gpiod_get(dev, "kick", GPIOD_ASIS); ret = PTR_ERR_OR_ZERO(ksproc->kick_gpio); if (ret) { dev_err(dev, "failed to get gpio for virtio kicks, status = %d\n", ret); goto disable_clk; } if (of_reserved_mem_device_init(dev)) dev_warn(dev, "device does not have specific CMA pool\n"); /* ensure the DSP is in reset before loading firmware */ ret = reset_control_status(ksproc->reset); if (ret < 0) { dev_err(dev, "failed to get reset status, status = %d\n", ret); goto release_mem; } else if (ret == 0) { WARN(1, "device is not in reset\n"); keystone_rproc_dsp_reset(ksproc); } ret = rproc_add(rproc); if (ret) { dev_err(dev, "failed to add register device with remoteproc core, status = %d\n", ret); goto release_mem; } platform_set_drvdata(pdev, ksproc); return 0; release_mem: of_reserved_mem_device_release(dev); gpiod_put(ksproc->kick_gpio); disable_clk: pm_runtime_put_sync(dev); disable_rpm: pm_runtime_disable(dev); free_rproc: rproc_free(rproc); return ret; } static void keystone_rproc_remove(struct platform_device *pdev) { struct keystone_rproc *ksproc = platform_get_drvdata(pdev); rproc_del(ksproc->rproc); gpiod_put(ksproc->kick_gpio); pm_runtime_put_sync(&pdev->dev); pm_runtime_disable(&pdev->dev); rproc_free(ksproc->rproc); of_reserved_mem_device_release(&pdev->dev); } static const struct of_device_id keystone_rproc_of_match[] = { { .compatible = "ti,k2hk-dsp", }, { .compatible = "ti,k2l-dsp", }, { .compatible = "ti,k2e-dsp", }, { .compatible = "ti,k2g-dsp", }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, keystone_rproc_of_match); static struct platform_driver keystone_rproc_driver = { .probe = keystone_rproc_probe, .remove_new = keystone_rproc_remove, .driver = { .name = "keystone-rproc", .of_match_table = keystone_rproc_of_match, }, }; module_platform_driver(keystone_rproc_driver); MODULE_AUTHOR("Suman Anna <[email protected]>"); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("TI Keystone DSP Remoteproc driver");
linux-master
drivers/remoteproc/keystone_remoteproc.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) IoT.bzh 2021 */ #include <linux/limits.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_reserved_mem.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/remoteproc.h> #include <linux/reset.h> #include <linux/soc/renesas/rcar-rst.h> #include "remoteproc_internal.h" struct rcar_rproc { struct reset_control *rst; }; static int rcar_rproc_mem_alloc(struct rproc *rproc, struct rproc_mem_entry *mem) { struct device *dev = &rproc->dev; void *va; dev_dbg(dev, "map memory: %pa+%zx\n", &mem->dma, mem->len); va = ioremap_wc(mem->dma, mem->len); if (!va) { dev_err(dev, "Unable to map memory region: %pa+%zx\n", &mem->dma, mem->len); return -ENOMEM; } /* Update memory entry va */ mem->va = va; return 0; } static int rcar_rproc_mem_release(struct rproc *rproc, struct rproc_mem_entry *mem) { dev_dbg(&rproc->dev, "unmap memory: %pa\n", &mem->dma); iounmap(mem->va); return 0; } static int rcar_rproc_prepare(struct rproc *rproc) { struct device *dev = rproc->dev.parent; struct device_node *np = dev->of_node; struct of_phandle_iterator it; struct rproc_mem_entry *mem; struct reserved_mem *rmem; u32 da; /* Register associated reserved memory regions */ of_phandle_iterator_init(&it, np, "memory-region", NULL, 0); while (of_phandle_iterator_next(&it) == 0) { rmem = of_reserved_mem_lookup(it.node); if (!rmem) { of_node_put(it.node); dev_err(&rproc->dev, "unable to acquire memory-region\n"); return -EINVAL; } if (rmem->base > U32_MAX) { of_node_put(it.node); return -EINVAL; } /* No need to translate pa to da, R-Car use same map */ da = rmem->base; mem = rproc_mem_entry_init(dev, NULL, rmem->base, rmem->size, da, rcar_rproc_mem_alloc, rcar_rproc_mem_release, it.node->name); if (!mem) { of_node_put(it.node); return -ENOMEM; } rproc_add_carveout(rproc, mem); } return 0; } static int rcar_rproc_parse_fw(struct rproc *rproc, const struct firmware *fw) { int ret; ret = rproc_elf_load_rsc_table(rproc, fw); if (ret) dev_info(&rproc->dev, "No resource table in elf\n"); return 0; } static int rcar_rproc_start(struct rproc *rproc) { struct rcar_rproc *priv = rproc->priv; int err; if (!rproc->bootaddr) return -EINVAL; err = rcar_rst_set_rproc_boot_addr(rproc->bootaddr); if (err) { dev_err(&rproc->dev, "failed to set rproc boot addr\n"); return err; } err = reset_control_deassert(priv->rst); if (err) dev_err(&rproc->dev, "failed to deassert reset\n"); return err; } static int rcar_rproc_stop(struct rproc *rproc) { struct rcar_rproc *priv = rproc->priv; int err; err = reset_control_assert(priv->rst); if (err) dev_err(&rproc->dev, "failed to assert reset\n"); return err; } static struct rproc_ops rcar_rproc_ops = { .prepare = rcar_rproc_prepare, .start = rcar_rproc_start, .stop = rcar_rproc_stop, .load = rproc_elf_load_segments, .parse_fw = rcar_rproc_parse_fw, .find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table, .sanity_check = rproc_elf_sanity_check, .get_boot_addr = rproc_elf_get_boot_addr, }; static int rcar_rproc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct rcar_rproc *priv; struct rproc *rproc; int ret; rproc = devm_rproc_alloc(dev, np->name, &rcar_rproc_ops, NULL, sizeof(*priv)); if (!rproc) return -ENOMEM; priv = rproc->priv; priv->rst = devm_reset_control_get_exclusive(dev, NULL); if (IS_ERR(priv->rst)) { ret = PTR_ERR(priv->rst); dev_err_probe(dev, ret, "fail to acquire rproc reset\n"); return ret; } pm_runtime_enable(dev); ret = pm_runtime_resume_and_get(dev); if (ret) { dev_err(dev, "failed to power up\n"); return ret; } dev_set_drvdata(dev, rproc); /* Manually start the rproc */ rproc->auto_boot = false; ret = devm_rproc_add(dev, rproc); if (ret) { dev_err(dev, "rproc_add failed\n"); goto pm_disable; } return 0; pm_disable: pm_runtime_disable(dev); return ret; } static void rcar_rproc_remove(struct platform_device *pdev) { struct device *dev = &pdev->dev; pm_runtime_disable(dev); } static const struct of_device_id rcar_rproc_of_match[] = { { .compatible = "renesas,rcar-cr7" }, {}, }; MODULE_DEVICE_TABLE(of, rcar_rproc_of_match); static struct platform_driver rcar_rproc_driver = { .probe = rcar_rproc_probe, .remove_new = rcar_rproc_remove, .driver = { .name = "rcar-rproc", .of_match_table = rcar_rproc_of_match, }, }; module_platform_driver(rcar_rproc_driver); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Renesas R-Car Gen3 remote processor control driver"); MODULE_AUTHOR("Julien Massot <[email protected]>");
linux-master
drivers/remoteproc/rcar_rproc.c
// SPDX-License-Identifier: GPL-2.0 // // Copyright (c) 2019 MediaTek Inc. #include <asm/barrier.h> #include <linux/clk.h> #include <linux/dma-mapping.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of_address.h> #include <linux/of_platform.h> #include <linux/of_reserved_mem.h> #include <linux/platform_device.h> #include <linux/remoteproc.h> #include <linux/remoteproc/mtk_scp.h> #include <linux/rpmsg/mtk_rpmsg.h> #include "mtk_common.h" #include "remoteproc_internal.h" #define MAX_CODE_SIZE 0x500000 #define SECTION_NAME_IPI_BUFFER ".ipi_buffer" /** * scp_get() - get a reference to SCP. * * @pdev: the platform device of the module requesting SCP platform * device for using SCP API. * * Return: Return NULL if failed. otherwise reference to SCP. **/ struct mtk_scp *scp_get(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *scp_node; struct platform_device *scp_pdev; scp_node = of_parse_phandle(dev->of_node, "mediatek,scp", 0); if (!scp_node) { dev_err(dev, "can't get SCP node\n"); return NULL; } scp_pdev = of_find_device_by_node(scp_node); of_node_put(scp_node); if (WARN_ON(!scp_pdev)) { dev_err(dev, "SCP pdev failed\n"); return NULL; } return platform_get_drvdata(scp_pdev); } EXPORT_SYMBOL_GPL(scp_get); /** * scp_put() - "free" the SCP * * @scp: mtk_scp structure from scp_get(). **/ void scp_put(struct mtk_scp *scp) { put_device(scp->dev); } EXPORT_SYMBOL_GPL(scp_put); static void scp_wdt_handler(struct mtk_scp *scp, u32 scp_to_host) { dev_err(scp->dev, "SCP watchdog timeout! 0x%x", scp_to_host); rproc_report_crash(scp->rproc, RPROC_WATCHDOG); } static void scp_init_ipi_handler(void *data, unsigned int len, void *priv) { struct mtk_scp *scp = priv; struct scp_run *run = data; scp->run.signaled = run->signaled; strscpy(scp->run.fw_ver, run->fw_ver, SCP_FW_VER_LEN); scp->run.dec_capability = run->dec_capability; scp->run.enc_capability = run->enc_capability; wake_up_interruptible(&scp->run.wq); } static void scp_ipi_handler(struct mtk_scp *scp) { struct mtk_share_obj __iomem *rcv_obj = scp->recv_buf; struct scp_ipi_desc *ipi_desc = scp->ipi_desc; u8 tmp_data[SCP_SHARE_BUFFER_SIZE]; scp_ipi_handler_t handler; u32 id = readl(&rcv_obj->id); u32 len = readl(&rcv_obj->len); if (len > SCP_SHARE_BUFFER_SIZE) { dev_err(scp->dev, "ipi message too long (len %d, max %d)", len, SCP_SHARE_BUFFER_SIZE); return; } if (id >= SCP_IPI_MAX) { dev_err(scp->dev, "No such ipi id = %d\n", id); return; } scp_ipi_lock(scp, id); handler = ipi_desc[id].handler; if (!handler) { dev_err(scp->dev, "No such ipi id = %d\n", id); scp_ipi_unlock(scp, id); return; } memcpy_fromio(tmp_data, &rcv_obj->share_buf, len); handler(tmp_data, len, ipi_desc[id].priv); scp_ipi_unlock(scp, id); scp->ipi_id_ack[id] = true; wake_up(&scp->ack_wq); } static int scp_elf_read_ipi_buf_addr(struct mtk_scp *scp, const struct firmware *fw, size_t *offset); static int scp_ipi_init(struct mtk_scp *scp, const struct firmware *fw) { int ret; size_t offset; /* read the ipi buf addr from FW itself first */ ret = scp_elf_read_ipi_buf_addr(scp, fw, &offset); if (ret) { /* use default ipi buf addr if the FW doesn't have it */ offset = scp->data->ipi_buf_offset; if (!offset) return ret; } dev_info(scp->dev, "IPI buf addr %#010zx\n", offset); scp->recv_buf = (struct mtk_share_obj __iomem *) (scp->sram_base + offset); scp->send_buf = (struct mtk_share_obj __iomem *) (scp->sram_base + offset + sizeof(*scp->recv_buf)); memset_io(scp->recv_buf, 0, sizeof(*scp->recv_buf)); memset_io(scp->send_buf, 0, sizeof(*scp->send_buf)); return 0; } static void mt8183_scp_reset_assert(struct mtk_scp *scp) { u32 val; val = readl(scp->reg_base + MT8183_SW_RSTN); val &= ~MT8183_SW_RSTN_BIT; writel(val, scp->reg_base + MT8183_SW_RSTN); } static void mt8183_scp_reset_deassert(struct mtk_scp *scp) { u32 val; val = readl(scp->reg_base + MT8183_SW_RSTN); val |= MT8183_SW_RSTN_BIT; writel(val, scp->reg_base + MT8183_SW_RSTN); } static void mt8192_scp_reset_assert(struct mtk_scp *scp) { writel(1, scp->reg_base + MT8192_CORE0_SW_RSTN_SET); } static void mt8192_scp_reset_deassert(struct mtk_scp *scp) { writel(1, scp->reg_base + MT8192_CORE0_SW_RSTN_CLR); } static void mt8183_scp_irq_handler(struct mtk_scp *scp) { u32 scp_to_host; scp_to_host = readl(scp->reg_base + MT8183_SCP_TO_HOST); if (scp_to_host & MT8183_SCP_IPC_INT_BIT) scp_ipi_handler(scp); else scp_wdt_handler(scp, scp_to_host); /* SCP won't send another interrupt until we set SCP_TO_HOST to 0. */ writel(MT8183_SCP_IPC_INT_BIT | MT8183_SCP_WDT_INT_BIT, scp->reg_base + MT8183_SCP_TO_HOST); } static void mt8192_scp_irq_handler(struct mtk_scp *scp) { u32 scp_to_host; scp_to_host = readl(scp->reg_base + MT8192_SCP2APMCU_IPC_SET); if (scp_to_host & MT8192_SCP_IPC_INT_BIT) { scp_ipi_handler(scp); /* * SCP won't send another interrupt until we clear * MT8192_SCP2APMCU_IPC. */ writel(MT8192_SCP_IPC_INT_BIT, scp->reg_base + MT8192_SCP2APMCU_IPC_CLR); } else { scp_wdt_handler(scp, scp_to_host); writel(1, scp->reg_base + MT8192_CORE0_WDT_IRQ); } } static irqreturn_t scp_irq_handler(int irq, void *priv) { struct mtk_scp *scp = priv; int ret; ret = clk_prepare_enable(scp->clk); if (ret) { dev_err(scp->dev, "failed to enable clocks\n"); return IRQ_NONE; } scp->data->scp_irq_handler(scp); clk_disable_unprepare(scp->clk); return IRQ_HANDLED; } static int scp_elf_load_segments(struct rproc *rproc, const struct firmware *fw) { struct device *dev = &rproc->dev; struct elf32_hdr *ehdr; struct elf32_phdr *phdr; int i, ret = 0; const u8 *elf_data = fw->data; ehdr = (struct elf32_hdr *)elf_data; phdr = (struct elf32_phdr *)(elf_data + ehdr->e_phoff); /* go through the available ELF segments */ for (i = 0; i < ehdr->e_phnum; i++, phdr++) { u32 da = phdr->p_paddr; u32 memsz = phdr->p_memsz; u32 filesz = phdr->p_filesz; u32 offset = phdr->p_offset; void __iomem *ptr; dev_dbg(dev, "phdr: type %d da 0x%x memsz 0x%x filesz 0x%x\n", phdr->p_type, da, memsz, filesz); if (phdr->p_type != PT_LOAD) continue; if (!filesz) continue; if (filesz > memsz) { dev_err(dev, "bad phdr filesz 0x%x memsz 0x%x\n", filesz, memsz); ret = -EINVAL; break; } if (offset + filesz > fw->size) { dev_err(dev, "truncated fw: need 0x%x avail 0x%zx\n", offset + filesz, fw->size); ret = -EINVAL; break; } /* grab the kernel address for this device address */ ptr = (void __iomem *)rproc_da_to_va(rproc, da, memsz, NULL); if (!ptr) { dev_err(dev, "bad phdr da 0x%x mem 0x%x\n", da, memsz); ret = -EINVAL; break; } /* put the segment where the remote processor expects it */ scp_memcpy_aligned(ptr, elf_data + phdr->p_offset, filesz); } return ret; } static int scp_elf_read_ipi_buf_addr(struct mtk_scp *scp, const struct firmware *fw, size_t *offset) { struct elf32_hdr *ehdr; struct elf32_shdr *shdr, *shdr_strtab; int i; const u8 *elf_data = fw->data; const char *strtab; ehdr = (struct elf32_hdr *)elf_data; shdr = (struct elf32_shdr *)(elf_data + ehdr->e_shoff); shdr_strtab = shdr + ehdr->e_shstrndx; strtab = (const char *)(elf_data + shdr_strtab->sh_offset); for (i = 0; i < ehdr->e_shnum; i++, shdr++) { if (strcmp(strtab + shdr->sh_name, SECTION_NAME_IPI_BUFFER) == 0) { *offset = shdr->sh_addr; return 0; } } return -ENOENT; } static int mt8183_scp_clk_get(struct mtk_scp *scp) { struct device *dev = scp->dev; int ret = 0; scp->clk = devm_clk_get(dev, "main"); if (IS_ERR(scp->clk)) { dev_err(dev, "Failed to get clock\n"); ret = PTR_ERR(scp->clk); } return ret; } static int mt8192_scp_clk_get(struct mtk_scp *scp) { return mt8183_scp_clk_get(scp); } static int mt8195_scp_clk_get(struct mtk_scp *scp) { scp->clk = NULL; return 0; } static int mt8183_scp_before_load(struct mtk_scp *scp) { /* Clear SCP to host interrupt */ writel(MT8183_SCP_IPC_INT_BIT, scp->reg_base + MT8183_SCP_TO_HOST); /* Reset clocks before loading FW */ writel(0x0, scp->reg_base + MT8183_SCP_CLK_SW_SEL); writel(0x0, scp->reg_base + MT8183_SCP_CLK_DIV_SEL); /* Initialize TCM before loading FW. */ writel(0x0, scp->reg_base + MT8183_SCP_L1_SRAM_PD); writel(0x0, scp->reg_base + MT8183_SCP_TCM_TAIL_SRAM_PD); /* Turn on the power of SCP's SRAM before using it. */ writel(0x0, scp->reg_base + MT8183_SCP_SRAM_PDN); /* * Set I-cache and D-cache size before loading SCP FW. * SCP SRAM logical address may change when cache size setting differs. */ writel(MT8183_SCP_CACHE_CON_WAYEN | MT8183_SCP_CACHESIZE_8KB, scp->reg_base + MT8183_SCP_CACHE_CON); writel(MT8183_SCP_CACHESIZE_8KB, scp->reg_base + MT8183_SCP_DCACHE_CON); return 0; } static void scp_sram_power_on(void __iomem *addr, u32 reserved_mask) { int i; for (i = 31; i >= 0; i--) writel(GENMASK(i, 0) & ~reserved_mask, addr); writel(0, addr); } static void scp_sram_power_off(void __iomem *addr, u32 reserved_mask) { int i; writel(0, addr); for (i = 0; i < 32; i++) writel(GENMASK(i, 0) & ~reserved_mask, addr); } static int mt8186_scp_before_load(struct mtk_scp *scp) { /* Clear SCP to host interrupt */ writel(MT8183_SCP_IPC_INT_BIT, scp->reg_base + MT8183_SCP_TO_HOST); /* Reset clocks before loading FW */ writel(0x0, scp->reg_base + MT8183_SCP_CLK_SW_SEL); writel(0x0, scp->reg_base + MT8183_SCP_CLK_DIV_SEL); /* Turn on the power of SCP's SRAM before using it. Enable 1 block per time*/ scp_sram_power_on(scp->reg_base + MT8183_SCP_SRAM_PDN, 0); /* Initialize TCM before loading FW. */ writel(0x0, scp->reg_base + MT8183_SCP_L1_SRAM_PD); writel(0x0, scp->reg_base + MT8183_SCP_TCM_TAIL_SRAM_PD); writel(0x0, scp->reg_base + MT8186_SCP_L1_SRAM_PD_P1); writel(0x0, scp->reg_base + MT8186_SCP_L1_SRAM_PD_p2); /* * Set I-cache and D-cache size before loading SCP FW. * SCP SRAM logical address may change when cache size setting differs. */ writel(MT8183_SCP_CACHE_CON_WAYEN | MT8183_SCP_CACHESIZE_8KB, scp->reg_base + MT8183_SCP_CACHE_CON); writel(MT8183_SCP_CACHESIZE_8KB, scp->reg_base + MT8183_SCP_DCACHE_CON); return 0; } static int mt8192_scp_before_load(struct mtk_scp *scp) { /* clear SPM interrupt, SCP2SPM_IPC_CLR */ writel(0xff, scp->reg_base + MT8192_SCP2SPM_IPC_CLR); writel(1, scp->reg_base + MT8192_CORE0_SW_RSTN_SET); /* enable SRAM clock */ scp_sram_power_on(scp->reg_base + MT8192_L2TCM_SRAM_PD_0, 0); scp_sram_power_on(scp->reg_base + MT8192_L2TCM_SRAM_PD_1, 0); scp_sram_power_on(scp->reg_base + MT8192_L2TCM_SRAM_PD_2, 0); scp_sram_power_on(scp->reg_base + MT8192_L1TCM_SRAM_PDN, 0); scp_sram_power_on(scp->reg_base + MT8192_CPU0_SRAM_PD, 0); /* enable MPU for all memory regions */ writel(0xff, scp->reg_base + MT8192_CORE0_MEM_ATT_PREDEF); return 0; } static int mt8195_scp_before_load(struct mtk_scp *scp) { /* clear SPM interrupt, SCP2SPM_IPC_CLR */ writel(0xff, scp->reg_base + MT8192_SCP2SPM_IPC_CLR); writel(1, scp->reg_base + MT8192_CORE0_SW_RSTN_SET); /* enable SRAM clock */ scp_sram_power_on(scp->reg_base + MT8192_L2TCM_SRAM_PD_0, 0); scp_sram_power_on(scp->reg_base + MT8192_L2TCM_SRAM_PD_1, 0); scp_sram_power_on(scp->reg_base + MT8192_L2TCM_SRAM_PD_2, 0); scp_sram_power_on(scp->reg_base + MT8192_L1TCM_SRAM_PDN, MT8195_L1TCM_SRAM_PDN_RESERVED_RSI_BITS); scp_sram_power_on(scp->reg_base + MT8192_CPU0_SRAM_PD, 0); /* enable MPU for all memory regions */ writel(0xff, scp->reg_base + MT8192_CORE0_MEM_ATT_PREDEF); return 0; } static int scp_load(struct rproc *rproc, const struct firmware *fw) { struct mtk_scp *scp = rproc->priv; struct device *dev = scp->dev; int ret; ret = clk_prepare_enable(scp->clk); if (ret) { dev_err(dev, "failed to enable clocks\n"); return ret; } /* Hold SCP in reset while loading FW. */ scp->data->scp_reset_assert(scp); ret = scp->data->scp_before_load(scp); if (ret < 0) goto leave; ret = scp_elf_load_segments(rproc, fw); leave: clk_disable_unprepare(scp->clk); return ret; } static int scp_parse_fw(struct rproc *rproc, const struct firmware *fw) { struct mtk_scp *scp = rproc->priv; struct device *dev = scp->dev; int ret; ret = clk_prepare_enable(scp->clk); if (ret) { dev_err(dev, "failed to enable clocks\n"); return ret; } ret = scp_ipi_init(scp, fw); clk_disable_unprepare(scp->clk); return ret; } static int scp_start(struct rproc *rproc) { struct mtk_scp *scp = rproc->priv; struct device *dev = scp->dev; struct scp_run *run = &scp->run; int ret; ret = clk_prepare_enable(scp->clk); if (ret) { dev_err(dev, "failed to enable clocks\n"); return ret; } run->signaled = false; scp->data->scp_reset_deassert(scp); ret = wait_event_interruptible_timeout( run->wq, run->signaled, msecs_to_jiffies(2000)); if (ret == 0) { dev_err(dev, "wait SCP initialization timeout!\n"); ret = -ETIME; goto stop; } if (ret == -ERESTARTSYS) { dev_err(dev, "wait SCP interrupted by a signal!\n"); goto stop; } clk_disable_unprepare(scp->clk); dev_info(dev, "SCP is ready. FW version %s\n", run->fw_ver); return 0; stop: scp->data->scp_reset_assert(scp); clk_disable_unprepare(scp->clk); return ret; } static void *mt8183_scp_da_to_va(struct mtk_scp *scp, u64 da, size_t len) { int offset; if (da < scp->sram_size) { offset = da; if (offset >= 0 && (offset + len) <= scp->sram_size) return (void __force *)scp->sram_base + offset; } else if (scp->dram_size) { offset = da - scp->dma_addr; if (offset >= 0 && (offset + len) <= scp->dram_size) return scp->cpu_addr + offset; } return NULL; } static void *mt8192_scp_da_to_va(struct mtk_scp *scp, u64 da, size_t len) { int offset; if (da >= scp->sram_phys && (da + len) <= scp->sram_phys + scp->sram_size) { offset = da - scp->sram_phys; return (void __force *)scp->sram_base + offset; } /* optional memory region */ if (scp->l1tcm_size && da >= scp->l1tcm_phys && (da + len) <= scp->l1tcm_phys + scp->l1tcm_size) { offset = da - scp->l1tcm_phys; return (void __force *)scp->l1tcm_base + offset; } /* optional memory region */ if (scp->dram_size && da >= scp->dma_addr && (da + len) <= scp->dma_addr + scp->dram_size) { offset = da - scp->dma_addr; return scp->cpu_addr + offset; } return NULL; } static void *scp_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) { struct mtk_scp *scp = rproc->priv; return scp->data->scp_da_to_va(scp, da, len); } static void mt8183_scp_stop(struct mtk_scp *scp) { /* Disable SCP watchdog */ writel(0, scp->reg_base + MT8183_WDT_CFG); } static void mt8192_scp_stop(struct mtk_scp *scp) { /* Disable SRAM clock */ scp_sram_power_off(scp->reg_base + MT8192_L2TCM_SRAM_PD_0, 0); scp_sram_power_off(scp->reg_base + MT8192_L2TCM_SRAM_PD_1, 0); scp_sram_power_off(scp->reg_base + MT8192_L2TCM_SRAM_PD_2, 0); scp_sram_power_off(scp->reg_base + MT8192_L1TCM_SRAM_PDN, 0); scp_sram_power_off(scp->reg_base + MT8192_CPU0_SRAM_PD, 0); /* Disable SCP watchdog */ writel(0, scp->reg_base + MT8192_CORE0_WDT_CFG); } static void mt8195_scp_stop(struct mtk_scp *scp) { /* Disable SRAM clock */ scp_sram_power_off(scp->reg_base + MT8192_L2TCM_SRAM_PD_0, 0); scp_sram_power_off(scp->reg_base + MT8192_L2TCM_SRAM_PD_1, 0); scp_sram_power_off(scp->reg_base + MT8192_L2TCM_SRAM_PD_2, 0); scp_sram_power_off(scp->reg_base + MT8192_L1TCM_SRAM_PDN, MT8195_L1TCM_SRAM_PDN_RESERVED_RSI_BITS); scp_sram_power_off(scp->reg_base + MT8192_CPU0_SRAM_PD, 0); /* Disable SCP watchdog */ writel(0, scp->reg_base + MT8192_CORE0_WDT_CFG); } static int scp_stop(struct rproc *rproc) { struct mtk_scp *scp = rproc->priv; int ret; ret = clk_prepare_enable(scp->clk); if (ret) { dev_err(scp->dev, "failed to enable clocks\n"); return ret; } scp->data->scp_reset_assert(scp); scp->data->scp_stop(scp); clk_disable_unprepare(scp->clk); return 0; } static const struct rproc_ops scp_ops = { .start = scp_start, .stop = scp_stop, .load = scp_load, .da_to_va = scp_da_to_va, .parse_fw = scp_parse_fw, .sanity_check = rproc_elf_sanity_check, }; /** * scp_get_device() - get device struct of SCP * * @scp: mtk_scp structure **/ struct device *scp_get_device(struct mtk_scp *scp) { return scp->dev; } EXPORT_SYMBOL_GPL(scp_get_device); /** * scp_get_rproc() - get rproc struct of SCP * * @scp: mtk_scp structure **/ struct rproc *scp_get_rproc(struct mtk_scp *scp) { return scp->rproc; } EXPORT_SYMBOL_GPL(scp_get_rproc); /** * scp_get_vdec_hw_capa() - get video decoder hardware capability * * @scp: mtk_scp structure * * Return: video decoder hardware capability **/ unsigned int scp_get_vdec_hw_capa(struct mtk_scp *scp) { return scp->run.dec_capability; } EXPORT_SYMBOL_GPL(scp_get_vdec_hw_capa); /** * scp_get_venc_hw_capa() - get video encoder hardware capability * * @scp: mtk_scp structure * * Return: video encoder hardware capability **/ unsigned int scp_get_venc_hw_capa(struct mtk_scp *scp) { return scp->run.enc_capability; } EXPORT_SYMBOL_GPL(scp_get_venc_hw_capa); /** * scp_mapping_dm_addr() - Mapping SRAM/DRAM to kernel virtual address * * @scp: mtk_scp structure * @mem_addr: SCP views memory address * * Mapping the SCP's SRAM address / * DMEM (Data Extended Memory) memory address / * Working buffer memory address to * kernel virtual address. * * Return: Return ERR_PTR(-EINVAL) if mapping failed, * otherwise the mapped kernel virtual address **/ void *scp_mapping_dm_addr(struct mtk_scp *scp, u32 mem_addr) { void *ptr; ptr = scp_da_to_va(scp->rproc, mem_addr, 0, NULL); if (!ptr) return ERR_PTR(-EINVAL); return ptr; } EXPORT_SYMBOL_GPL(scp_mapping_dm_addr); static int scp_map_memory_region(struct mtk_scp *scp) { int ret; ret = of_reserved_mem_device_init(scp->dev); /* reserved memory is optional. */ if (ret == -ENODEV) { dev_info(scp->dev, "skipping reserved memory initialization."); return 0; } if (ret) { dev_err(scp->dev, "failed to assign memory-region: %d\n", ret); return -ENOMEM; } /* Reserved SCP code size */ scp->dram_size = MAX_CODE_SIZE; scp->cpu_addr = dma_alloc_coherent(scp->dev, scp->dram_size, &scp->dma_addr, GFP_KERNEL); if (!scp->cpu_addr) return -ENOMEM; return 0; } static void scp_unmap_memory_region(struct mtk_scp *scp) { if (scp->dram_size == 0) return; dma_free_coherent(scp->dev, scp->dram_size, scp->cpu_addr, scp->dma_addr); of_reserved_mem_device_release(scp->dev); } static int scp_register_ipi(struct platform_device *pdev, u32 id, ipi_handler_t handler, void *priv) { struct mtk_scp *scp = platform_get_drvdata(pdev); return scp_ipi_register(scp, id, handler, priv); } static void scp_unregister_ipi(struct platform_device *pdev, u32 id) { struct mtk_scp *scp = platform_get_drvdata(pdev); scp_ipi_unregister(scp, id); } static int scp_send_ipi(struct platform_device *pdev, u32 id, void *buf, unsigned int len, unsigned int wait) { struct mtk_scp *scp = platform_get_drvdata(pdev); return scp_ipi_send(scp, id, buf, len, wait); } static struct mtk_rpmsg_info mtk_scp_rpmsg_info = { .send_ipi = scp_send_ipi, .register_ipi = scp_register_ipi, .unregister_ipi = scp_unregister_ipi, .ns_ipi_id = SCP_IPI_NS_SERVICE, }; static void scp_add_rpmsg_subdev(struct mtk_scp *scp) { scp->rpmsg_subdev = mtk_rpmsg_create_rproc_subdev(to_platform_device(scp->dev), &mtk_scp_rpmsg_info); if (scp->rpmsg_subdev) rproc_add_subdev(scp->rproc, scp->rpmsg_subdev); } static void scp_remove_rpmsg_subdev(struct mtk_scp *scp) { if (scp->rpmsg_subdev) { rproc_remove_subdev(scp->rproc, scp->rpmsg_subdev); mtk_rpmsg_destroy_rproc_subdev(scp->rpmsg_subdev); scp->rpmsg_subdev = NULL; } } static int scp_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct mtk_scp *scp; struct rproc *rproc; struct resource *res; const char *fw_name = "scp.img"; int ret, i; ret = rproc_of_parse_firmware(dev, 0, &fw_name); if (ret < 0 && ret != -EINVAL) return ret; rproc = devm_rproc_alloc(dev, np->name, &scp_ops, fw_name, sizeof(*scp)); if (!rproc) return dev_err_probe(dev, -ENOMEM, "unable to allocate remoteproc\n"); scp = rproc->priv; scp->rproc = rproc; scp->dev = dev; scp->data = of_device_get_match_data(dev); platform_set_drvdata(pdev, scp); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sram"); scp->sram_base = devm_ioremap_resource(dev, res); if (IS_ERR(scp->sram_base)) return dev_err_probe(dev, PTR_ERR(scp->sram_base), "Failed to parse and map sram memory\n"); scp->sram_size = resource_size(res); scp->sram_phys = res->start; /* l1tcm is an optional memory region */ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "l1tcm"); scp->l1tcm_base = devm_ioremap_resource(dev, res); if (IS_ERR(scp->l1tcm_base)) { ret = PTR_ERR(scp->l1tcm_base); if (ret != -EINVAL) { return dev_err_probe(dev, ret, "Failed to map l1tcm memory\n"); } } else { scp->l1tcm_size = resource_size(res); scp->l1tcm_phys = res->start; } scp->reg_base = devm_platform_ioremap_resource_byname(pdev, "cfg"); if (IS_ERR(scp->reg_base)) return dev_err_probe(dev, PTR_ERR(scp->reg_base), "Failed to parse and map cfg memory\n"); ret = scp->data->scp_clk_get(scp); if (ret) return ret; ret = scp_map_memory_region(scp); if (ret) return ret; mutex_init(&scp->send_lock); for (i = 0; i < SCP_IPI_MAX; i++) mutex_init(&scp->ipi_desc[i].lock); /* register SCP initialization IPI */ ret = scp_ipi_register(scp, SCP_IPI_INIT, scp_init_ipi_handler, scp); if (ret) { dev_err(dev, "Failed to register IPI_SCP_INIT\n"); goto release_dev_mem; } init_waitqueue_head(&scp->run.wq); init_waitqueue_head(&scp->ack_wq); scp_add_rpmsg_subdev(scp); ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0), NULL, scp_irq_handler, IRQF_ONESHOT, pdev->name, scp); if (ret) { dev_err(dev, "failed to request irq\n"); goto remove_subdev; } ret = rproc_add(rproc); if (ret) goto remove_subdev; return 0; remove_subdev: scp_remove_rpmsg_subdev(scp); scp_ipi_unregister(scp, SCP_IPI_INIT); release_dev_mem: scp_unmap_memory_region(scp); for (i = 0; i < SCP_IPI_MAX; i++) mutex_destroy(&scp->ipi_desc[i].lock); mutex_destroy(&scp->send_lock); return ret; } static void scp_remove(struct platform_device *pdev) { struct mtk_scp *scp = platform_get_drvdata(pdev); int i; rproc_del(scp->rproc); scp_remove_rpmsg_subdev(scp); scp_ipi_unregister(scp, SCP_IPI_INIT); scp_unmap_memory_region(scp); for (i = 0; i < SCP_IPI_MAX; i++) mutex_destroy(&scp->ipi_desc[i].lock); mutex_destroy(&scp->send_lock); } static const struct mtk_scp_of_data mt8183_of_data = { .scp_clk_get = mt8183_scp_clk_get, .scp_before_load = mt8183_scp_before_load, .scp_irq_handler = mt8183_scp_irq_handler, .scp_reset_assert = mt8183_scp_reset_assert, .scp_reset_deassert = mt8183_scp_reset_deassert, .scp_stop = mt8183_scp_stop, .scp_da_to_va = mt8183_scp_da_to_va, .host_to_scp_reg = MT8183_HOST_TO_SCP, .host_to_scp_int_bit = MT8183_HOST_IPC_INT_BIT, .ipi_buf_offset = 0x7bdb0, }; static const struct mtk_scp_of_data mt8186_of_data = { .scp_clk_get = mt8195_scp_clk_get, .scp_before_load = mt8186_scp_before_load, .scp_irq_handler = mt8183_scp_irq_handler, .scp_reset_assert = mt8183_scp_reset_assert, .scp_reset_deassert = mt8183_scp_reset_deassert, .scp_stop = mt8183_scp_stop, .scp_da_to_va = mt8183_scp_da_to_va, .host_to_scp_reg = MT8183_HOST_TO_SCP, .host_to_scp_int_bit = MT8183_HOST_IPC_INT_BIT, .ipi_buf_offset = 0x3bdb0, }; static const struct mtk_scp_of_data mt8188_of_data = { .scp_clk_get = mt8195_scp_clk_get, .scp_before_load = mt8192_scp_before_load, .scp_irq_handler = mt8192_scp_irq_handler, .scp_reset_assert = mt8192_scp_reset_assert, .scp_reset_deassert = mt8192_scp_reset_deassert, .scp_stop = mt8192_scp_stop, .scp_da_to_va = mt8192_scp_da_to_va, .host_to_scp_reg = MT8192_GIPC_IN_SET, .host_to_scp_int_bit = MT8192_HOST_IPC_INT_BIT, }; static const struct mtk_scp_of_data mt8192_of_data = { .scp_clk_get = mt8192_scp_clk_get, .scp_before_load = mt8192_scp_before_load, .scp_irq_handler = mt8192_scp_irq_handler, .scp_reset_assert = mt8192_scp_reset_assert, .scp_reset_deassert = mt8192_scp_reset_deassert, .scp_stop = mt8192_scp_stop, .scp_da_to_va = mt8192_scp_da_to_va, .host_to_scp_reg = MT8192_GIPC_IN_SET, .host_to_scp_int_bit = MT8192_HOST_IPC_INT_BIT, }; static const struct mtk_scp_of_data mt8195_of_data = { .scp_clk_get = mt8195_scp_clk_get, .scp_before_load = mt8195_scp_before_load, .scp_irq_handler = mt8192_scp_irq_handler, .scp_reset_assert = mt8192_scp_reset_assert, .scp_reset_deassert = mt8192_scp_reset_deassert, .scp_stop = mt8195_scp_stop, .scp_da_to_va = mt8192_scp_da_to_va, .host_to_scp_reg = MT8192_GIPC_IN_SET, .host_to_scp_int_bit = MT8192_HOST_IPC_INT_BIT, }; static const struct of_device_id mtk_scp_of_match[] = { { .compatible = "mediatek,mt8183-scp", .data = &mt8183_of_data }, { .compatible = "mediatek,mt8186-scp", .data = &mt8186_of_data }, { .compatible = "mediatek,mt8188-scp", .data = &mt8188_of_data }, { .compatible = "mediatek,mt8192-scp", .data = &mt8192_of_data }, { .compatible = "mediatek,mt8195-scp", .data = &mt8195_of_data }, {}, }; MODULE_DEVICE_TABLE(of, mtk_scp_of_match); static struct platform_driver mtk_scp_driver = { .probe = scp_probe, .remove_new = scp_remove, .driver = { .name = "mtk-scp", .of_match_table = mtk_scp_of_match, }, }; module_platform_driver(mtk_scp_driver); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("MediaTek SCP control driver");
linux-master
drivers/remoteproc/mtk_scp.c
// SPDX-License-Identifier: GPL-2.0-only /* * OMAP Remote Processor driver * * Copyright (C) 2011-2020 Texas Instruments Incorporated - http://www.ti.com/ * Copyright (C) 2011 Google, Inc. * * Ohad Ben-Cohen <[email protected]> * Brian Swetland <[email protected]> * Fernando Guzman Lugo <[email protected]> * Mark Grosen <[email protected]> * Suman Anna <[email protected]> * Hari Kanigeri <[email protected]> */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/clk.h> #include <linux/clk/ti.h> #include <linux/err.h> #include <linux/io.h> #include <linux/of.h> #include <linux/of_platform.h> #include <linux/of_reserved_mem.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/dma-mapping.h> #include <linux/interrupt.h> #include <linux/remoteproc.h> #include <linux/mailbox_client.h> #include <linux/omap-iommu.h> #include <linux/omap-mailbox.h> #include <linux/regmap.h> #include <linux/mfd/syscon.h> #include <linux/reset.h> #include <clocksource/timer-ti-dm.h> #include <linux/platform_data/dmtimer-omap.h> #include "omap_remoteproc.h" #include "remoteproc_internal.h" /* default auto-suspend delay (ms) */ #define DEFAULT_AUTOSUSPEND_DELAY 10000 /** * struct omap_rproc_boot_data - boot data structure for the DSP omap rprocs * @syscon: regmap handle for the system control configuration module * @boot_reg: boot register offset within the @syscon regmap * @boot_reg_shift: bit-field shift required for the boot address value in * @boot_reg */ struct omap_rproc_boot_data { struct regmap *syscon; unsigned int boot_reg; unsigned int boot_reg_shift; }; /** * struct omap_rproc_mem - internal memory structure * @cpu_addr: MPU virtual address of the memory region * @bus_addr: bus address used to access the memory region * @dev_addr: device address of the memory region from DSP view * @size: size of the memory region */ struct omap_rproc_mem { void __iomem *cpu_addr; phys_addr_t bus_addr; u32 dev_addr; size_t size; }; /** * struct omap_rproc_timer - data structure for a timer used by a omap rproc * @odt: timer pointer * @timer_ops: OMAP dmtimer ops for @odt timer * @irq: timer irq */ struct omap_rproc_timer { struct omap_dm_timer *odt; const struct omap_dm_timer_ops *timer_ops; int irq; }; /** * struct omap_rproc - omap remote processor state * @mbox: mailbox channel handle * @client: mailbox client to request the mailbox channel * @boot_data: boot data structure for setting processor boot address * @mem: internal memory regions data * @num_mems: number of internal memory regions * @num_timers: number of rproc timer(s) * @num_wd_timers: number of rproc watchdog timers * @timers: timer(s) info used by rproc * @autosuspend_delay: auto-suspend delay value to be used for runtime pm * @need_resume: if true a resume is needed in the system resume callback * @rproc: rproc handle * @reset: reset handle * @pm_comp: completion primitive to sync for suspend response * @fck: functional clock for the remoteproc * @suspend_acked: state machine flag to store the suspend request ack */ struct omap_rproc { struct mbox_chan *mbox; struct mbox_client client; struct omap_rproc_boot_data *boot_data; struct omap_rproc_mem *mem; int num_mems; int num_timers; int num_wd_timers; struct omap_rproc_timer *timers; int autosuspend_delay; bool need_resume; struct rproc *rproc; struct reset_control *reset; struct completion pm_comp; struct clk *fck; bool suspend_acked; }; /** * struct omap_rproc_mem_data - memory definitions for an omap remote processor * @name: name for this memory entry * @dev_addr: device address for the memory entry */ struct omap_rproc_mem_data { const char *name; const u32 dev_addr; }; /** * struct omap_rproc_dev_data - device data for the omap remote processor * @device_name: device name of the remote processor * @mems: memory definitions for this remote processor */ struct omap_rproc_dev_data { const char *device_name; const struct omap_rproc_mem_data *mems; }; /** * omap_rproc_request_timer() - request a timer for a remoteproc * @dev: device requesting the timer * @np: device node pointer to the desired timer * @timer: handle to a struct omap_rproc_timer to return the timer handle * * This helper function is used primarily to request a timer associated with * a remoteproc. The returned handle is stored in the .odt field of the * @timer structure passed in, and is used to invoke other timer specific * ops (like starting a timer either during device initialization or during * a resume operation, or for stopping/freeing a timer). * * Return: 0 on success, otherwise an appropriate failure */ static int omap_rproc_request_timer(struct device *dev, struct device_node *np, struct omap_rproc_timer *timer) { int ret; timer->odt = timer->timer_ops->request_by_node(np); if (!timer->odt) { dev_err(dev, "request for timer node %p failed\n", np); return -EBUSY; } ret = timer->timer_ops->set_source(timer->odt, OMAP_TIMER_SRC_SYS_CLK); if (ret) { dev_err(dev, "error setting OMAP_TIMER_SRC_SYS_CLK as source for timer node %p\n", np); timer->timer_ops->free(timer->odt); return ret; } /* clean counter, remoteproc code will set the value */ timer->timer_ops->set_load(timer->odt, 0); return 0; } /** * omap_rproc_start_timer() - start a timer for a remoteproc * @timer: handle to a OMAP rproc timer * * This helper function is used to start a timer associated with a remoteproc, * obtained using the request_timer ops. The helper function needs to be * invoked by the driver to start the timer (during device initialization) * or to just resume the timer. * * Return: 0 on success, otherwise a failure as returned by DMTimer ops */ static inline int omap_rproc_start_timer(struct omap_rproc_timer *timer) { return timer->timer_ops->start(timer->odt); } /** * omap_rproc_stop_timer() - stop a timer for a remoteproc * @timer: handle to a OMAP rproc timer * * This helper function is used to disable a timer associated with a * remoteproc, and needs to be called either during a device shutdown * or suspend operation. The separate helper function allows the driver * to just stop a timer without having to release the timer during a * suspend operation. * * Return: 0 on success, otherwise a failure as returned by DMTimer ops */ static inline int omap_rproc_stop_timer(struct omap_rproc_timer *timer) { return timer->timer_ops->stop(timer->odt); } /** * omap_rproc_release_timer() - release a timer for a remoteproc * @timer: handle to a OMAP rproc timer * * This helper function is used primarily to release a timer associated * with a remoteproc. The dmtimer will be available for other clients to * use once released. * * Return: 0 on success, otherwise a failure as returned by DMTimer ops */ static inline int omap_rproc_release_timer(struct omap_rproc_timer *timer) { return timer->timer_ops->free(timer->odt); } /** * omap_rproc_get_timer_irq() - get the irq for a timer * @timer: handle to a OMAP rproc timer * * This function is used to get the irq associated with a watchdog timer. The * function is called by the OMAP remoteproc driver to register a interrupt * handler to handle watchdog events on the remote processor. * * Return: irq id on success, otherwise a failure as returned by DMTimer ops */ static inline int omap_rproc_get_timer_irq(struct omap_rproc_timer *timer) { return timer->timer_ops->get_irq(timer->odt); } /** * omap_rproc_ack_timer_irq() - acknowledge a timer irq * @timer: handle to a OMAP rproc timer * * This function is used to clear the irq associated with a watchdog timer. * The function is called by the OMAP remoteproc upon a watchdog event on the * remote processor to clear the interrupt status of the watchdog timer. */ static inline void omap_rproc_ack_timer_irq(struct omap_rproc_timer *timer) { timer->timer_ops->write_status(timer->odt, OMAP_TIMER_INT_OVERFLOW); } /** * omap_rproc_watchdog_isr() - Watchdog ISR handler for remoteproc device * @irq: IRQ number associated with a watchdog timer * @data: IRQ handler data * * This ISR routine executes the required necessary low-level code to * acknowledge a watchdog timer interrupt. There can be multiple watchdog * timers associated with a rproc (like IPUs which have 2 watchdog timers, * one per Cortex M3/M4 core), so a lookup has to be performed to identify * the timer to acknowledge its interrupt. * * The function also invokes rproc_report_crash to report the watchdog event * to the remoteproc driver core, to trigger a recovery. * * Return: IRQ_HANDLED on success, otherwise IRQ_NONE */ static irqreturn_t omap_rproc_watchdog_isr(int irq, void *data) { struct rproc *rproc = data; struct omap_rproc *oproc = rproc->priv; struct device *dev = rproc->dev.parent; struct omap_rproc_timer *timers = oproc->timers; struct omap_rproc_timer *wd_timer = NULL; int num_timers = oproc->num_timers + oproc->num_wd_timers; int i; for (i = oproc->num_timers; i < num_timers; i++) { if (timers[i].irq > 0 && irq == timers[i].irq) { wd_timer = &timers[i]; break; } } if (!wd_timer) { dev_err(dev, "invalid timer\n"); return IRQ_NONE; } omap_rproc_ack_timer_irq(wd_timer); rproc_report_crash(rproc, RPROC_WATCHDOG); return IRQ_HANDLED; } /** * omap_rproc_enable_timers() - enable the timers for a remoteproc * @rproc: handle of a remote processor * @configure: boolean flag used to acquire and configure the timer handle * * This function is used primarily to enable the timers associated with * a remoteproc. The configure flag is provided to allow the driver * to either acquire and start a timer (during device initialization) or * to just start a timer (during a resume operation). * * Return: 0 on success, otherwise an appropriate failure */ static int omap_rproc_enable_timers(struct rproc *rproc, bool configure) { int i; int ret = 0; struct platform_device *tpdev; struct dmtimer_platform_data *tpdata; const struct omap_dm_timer_ops *timer_ops; struct omap_rproc *oproc = rproc->priv; struct omap_rproc_timer *timers = oproc->timers; struct device *dev = rproc->dev.parent; struct device_node *np = NULL; int num_timers = oproc->num_timers + oproc->num_wd_timers; if (!num_timers) return 0; if (!configure) goto start_timers; for (i = 0; i < num_timers; i++) { if (i < oproc->num_timers) np = of_parse_phandle(dev->of_node, "ti,timers", i); else np = of_parse_phandle(dev->of_node, "ti,watchdog-timers", (i - oproc->num_timers)); if (!np) { ret = -ENXIO; dev_err(dev, "device node lookup for timer at index %d failed: %d\n", i < oproc->num_timers ? i : i - oproc->num_timers, ret); goto free_timers; } tpdev = of_find_device_by_node(np); if (!tpdev) { ret = -ENODEV; dev_err(dev, "could not get timer platform device\n"); goto put_node; } tpdata = dev_get_platdata(&tpdev->dev); put_device(&tpdev->dev); if (!tpdata) { ret = -EINVAL; dev_err(dev, "dmtimer pdata structure NULL\n"); goto put_node; } timer_ops = tpdata->timer_ops; if (!timer_ops || !timer_ops->request_by_node || !timer_ops->set_source || !timer_ops->set_load || !timer_ops->free || !timer_ops->start || !timer_ops->stop || !timer_ops->get_irq || !timer_ops->write_status) { ret = -EINVAL; dev_err(dev, "device does not have required timer ops\n"); goto put_node; } timers[i].irq = -1; timers[i].timer_ops = timer_ops; ret = omap_rproc_request_timer(dev, np, &timers[i]); if (ret) { dev_err(dev, "request for timer %p failed: %d\n", np, ret); goto put_node; } of_node_put(np); if (i >= oproc->num_timers) { timers[i].irq = omap_rproc_get_timer_irq(&timers[i]); if (timers[i].irq < 0) { dev_err(dev, "get_irq for timer %p failed: %d\n", np, timers[i].irq); ret = -EBUSY; goto free_timers; } ret = request_irq(timers[i].irq, omap_rproc_watchdog_isr, IRQF_SHARED, "rproc-wdt", rproc); if (ret) { dev_err(dev, "error requesting irq for timer %p\n", np); omap_rproc_release_timer(&timers[i]); timers[i].odt = NULL; timers[i].timer_ops = NULL; timers[i].irq = -1; goto free_timers; } } } start_timers: for (i = 0; i < num_timers; i++) { ret = omap_rproc_start_timer(&timers[i]); if (ret) { dev_err(dev, "start timer %p failed failed: %d\n", np, ret); break; } } if (ret) { while (i >= 0) { omap_rproc_stop_timer(&timers[i]); i--; } goto put_node; } return 0; put_node: if (configure) of_node_put(np); free_timers: while (i--) { if (i >= oproc->num_timers) free_irq(timers[i].irq, rproc); omap_rproc_release_timer(&timers[i]); timers[i].odt = NULL; timers[i].timer_ops = NULL; timers[i].irq = -1; } return ret; } /** * omap_rproc_disable_timers() - disable the timers for a remoteproc * @rproc: handle of a remote processor * @configure: boolean flag used to release the timer handle * * This function is used primarily to disable the timers associated with * a remoteproc. The configure flag is provided to allow the driver * to either stop and release a timer (during device shutdown) or to just * stop a timer (during a suspend operation). * * Return: 0 on success or no timers */ static int omap_rproc_disable_timers(struct rproc *rproc, bool configure) { int i; struct omap_rproc *oproc = rproc->priv; struct omap_rproc_timer *timers = oproc->timers; int num_timers = oproc->num_timers + oproc->num_wd_timers; if (!num_timers) return 0; for (i = 0; i < num_timers; i++) { omap_rproc_stop_timer(&timers[i]); if (configure) { if (i >= oproc->num_timers) free_irq(timers[i].irq, rproc); omap_rproc_release_timer(&timers[i]); timers[i].odt = NULL; timers[i].timer_ops = NULL; timers[i].irq = -1; } } return 0; } /** * omap_rproc_mbox_callback() - inbound mailbox message handler * @client: mailbox client pointer used for requesting the mailbox channel * @data: mailbox payload * * This handler is invoked by omap's mailbox driver whenever a mailbox * message is received. Usually, the mailbox payload simply contains * the index of the virtqueue that is kicked by the remote processor, * and we let remoteproc core handle it. * * In addition to virtqueue indices, we also have some out-of-band values * that indicates different events. Those values are deliberately very * big so they don't coincide with virtqueue indices. */ static void omap_rproc_mbox_callback(struct mbox_client *client, void *data) { struct omap_rproc *oproc = container_of(client, struct omap_rproc, client); struct device *dev = oproc->rproc->dev.parent; const char *name = oproc->rproc->name; u32 msg = (u32)data; dev_dbg(dev, "mbox msg: 0x%x\n", msg); switch (msg) { case RP_MBOX_CRASH: /* * remoteproc detected an exception, notify the rproc core. * The remoteproc core will handle the recovery. */ dev_err(dev, "omap rproc %s crashed\n", name); rproc_report_crash(oproc->rproc, RPROC_FATAL_ERROR); break; case RP_MBOX_ECHO_REPLY: dev_info(dev, "received echo reply from %s\n", name); break; case RP_MBOX_SUSPEND_ACK: case RP_MBOX_SUSPEND_CANCEL: oproc->suspend_acked = msg == RP_MBOX_SUSPEND_ACK; complete(&oproc->pm_comp); break; default: if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG) return; if (msg > oproc->rproc->max_notifyid) { dev_dbg(dev, "dropping unknown message 0x%x", msg); return; } /* msg contains the index of the triggered vring */ if (rproc_vq_interrupt(oproc->rproc, msg) == IRQ_NONE) dev_dbg(dev, "no message was found in vqid %d\n", msg); } } /* kick a virtqueue */ static void omap_rproc_kick(struct rproc *rproc, int vqid) { struct omap_rproc *oproc = rproc->priv; struct device *dev = rproc->dev.parent; int ret; /* wake up the rproc before kicking it */ ret = pm_runtime_get_sync(dev); if (WARN_ON(ret < 0)) { dev_err(dev, "pm_runtime_get_sync() failed during kick, ret = %d\n", ret); pm_runtime_put_noidle(dev); return; } /* send the index of the triggered virtqueue in the mailbox payload */ ret = mbox_send_message(oproc->mbox, (void *)vqid); if (ret < 0) dev_err(dev, "failed to send mailbox message, status = %d\n", ret); pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); } /** * omap_rproc_write_dsp_boot_addr() - set boot address for DSP remote processor * @rproc: handle of a remote processor * * Set boot address for a supported DSP remote processor. * * Return: 0 on success, or -EINVAL if boot address is not aligned properly */ static int omap_rproc_write_dsp_boot_addr(struct rproc *rproc) { struct device *dev = rproc->dev.parent; struct omap_rproc *oproc = rproc->priv; struct omap_rproc_boot_data *bdata = oproc->boot_data; u32 offset = bdata->boot_reg; u32 value; u32 mask; if (rproc->bootaddr & (SZ_1K - 1)) { dev_err(dev, "invalid boot address 0x%llx, must be aligned on a 1KB boundary\n", rproc->bootaddr); return -EINVAL; } value = rproc->bootaddr >> bdata->boot_reg_shift; mask = ~(SZ_1K - 1) >> bdata->boot_reg_shift; return regmap_update_bits(bdata->syscon, offset, mask, value); } /* * Power up the remote processor. * * This function will be invoked only after the firmware for this rproc * was loaded, parsed successfully, and all of its resource requirements * were met. */ static int omap_rproc_start(struct rproc *rproc) { struct omap_rproc *oproc = rproc->priv; struct device *dev = rproc->dev.parent; int ret; struct mbox_client *client = &oproc->client; if (oproc->boot_data) { ret = omap_rproc_write_dsp_boot_addr(rproc); if (ret) return ret; } client->dev = dev; client->tx_done = NULL; client->rx_callback = omap_rproc_mbox_callback; client->tx_block = false; client->knows_txdone = false; oproc->mbox = mbox_request_channel(client, 0); if (IS_ERR(oproc->mbox)) { ret = -EBUSY; dev_err(dev, "mbox_request_channel failed: %ld\n", PTR_ERR(oproc->mbox)); return ret; } /* * Ping the remote processor. this is only for sanity-sake; * there is no functional effect whatsoever. * * Note that the reply will _not_ arrive immediately: this message * will wait in the mailbox fifo until the remote processor is booted. */ ret = mbox_send_message(oproc->mbox, (void *)RP_MBOX_ECHO_REQUEST); if (ret < 0) { dev_err(dev, "mbox_send_message failed: %d\n", ret); goto put_mbox; } ret = omap_rproc_enable_timers(rproc, true); if (ret) { dev_err(dev, "omap_rproc_enable_timers failed: %d\n", ret); goto put_mbox; } ret = reset_control_deassert(oproc->reset); if (ret) { dev_err(dev, "reset control deassert failed: %d\n", ret); goto disable_timers; } /* * remote processor is up, so update the runtime pm status and * enable the auto-suspend. The device usage count is incremented * manually for balancing it for auto-suspend */ pm_runtime_set_active(dev); pm_runtime_use_autosuspend(dev); pm_runtime_get_noresume(dev); pm_runtime_enable(dev); pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); return 0; disable_timers: omap_rproc_disable_timers(rproc, true); put_mbox: mbox_free_channel(oproc->mbox); return ret; } /* power off the remote processor */ static int omap_rproc_stop(struct rproc *rproc) { struct device *dev = rproc->dev.parent; struct omap_rproc *oproc = rproc->priv; int ret; /* * cancel any possible scheduled runtime suspend by incrementing * the device usage count, and resuming the device. The remoteproc * also needs to be woken up if suspended, to avoid the remoteproc * OS to continue to remember any context that it has saved, and * avoid potential issues in misindentifying a subsequent device * reboot as a power restore boot */ ret = pm_runtime_get_sync(dev); if (ret < 0) { pm_runtime_put_noidle(dev); return ret; } ret = reset_control_assert(oproc->reset); if (ret) goto out; ret = omap_rproc_disable_timers(rproc, true); if (ret) goto enable_device; mbox_free_channel(oproc->mbox); /* * update the runtime pm states and status now that the remoteproc * has stopped */ pm_runtime_disable(dev); pm_runtime_dont_use_autosuspend(dev); pm_runtime_put_noidle(dev); pm_runtime_set_suspended(dev); return 0; enable_device: reset_control_deassert(oproc->reset); out: /* schedule the next auto-suspend */ pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); return ret; } /** * omap_rproc_da_to_va() - internal memory translation helper * @rproc: remote processor to apply the address translation for * @da: device address to translate * @len: length of the memory buffer * * Custom function implementing the rproc .da_to_va ops to provide address * translation (device address to kernel virtual address) for internal RAMs * present in a DSP or IPU device). The translated addresses can be used * either by the remoteproc core for loading, or by any rpmsg bus drivers. * * Return: translated virtual address in kernel memory space on success, * or NULL on failure. */ static void *omap_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) { struct omap_rproc *oproc = rproc->priv; int i; u32 offset; if (len <= 0) return NULL; if (!oproc->num_mems) return NULL; for (i = 0; i < oproc->num_mems; i++) { if (da >= oproc->mem[i].dev_addr && da + len <= oproc->mem[i].dev_addr + oproc->mem[i].size) { offset = da - oproc->mem[i].dev_addr; /* __force to make sparse happy with type conversion */ return (__force void *)(oproc->mem[i].cpu_addr + offset); } } return NULL; } static const struct rproc_ops omap_rproc_ops = { .start = omap_rproc_start, .stop = omap_rproc_stop, .kick = omap_rproc_kick, .da_to_va = omap_rproc_da_to_va, }; #ifdef CONFIG_PM static bool _is_rproc_in_standby(struct omap_rproc *oproc) { return ti_clk_is_in_standby(oproc->fck); } /* 1 sec is long enough time to let the remoteproc side suspend the device */ #define DEF_SUSPEND_TIMEOUT 1000 static int _omap_rproc_suspend(struct rproc *rproc, bool auto_suspend) { struct device *dev = rproc->dev.parent; struct omap_rproc *oproc = rproc->priv; unsigned long to = msecs_to_jiffies(DEF_SUSPEND_TIMEOUT); unsigned long ta = jiffies + to; u32 suspend_msg = auto_suspend ? RP_MBOX_SUSPEND_AUTO : RP_MBOX_SUSPEND_SYSTEM; int ret; reinit_completion(&oproc->pm_comp); oproc->suspend_acked = false; ret = mbox_send_message(oproc->mbox, (void *)suspend_msg); if (ret < 0) { dev_err(dev, "PM mbox_send_message failed: %d\n", ret); return ret; } ret = wait_for_completion_timeout(&oproc->pm_comp, to); if (!oproc->suspend_acked) return -EBUSY; /* * The remoteproc side is returning the ACK message before saving the * context, because the context saving is performed within a SYS/BIOS * function, and it cannot have any inter-dependencies against the IPC * layer. Also, as the SYS/BIOS needs to preserve properly the processor * register set, sending this ACK or signalling the completion of the * context save through a shared memory variable can never be the * absolute last thing to be executed on the remoteproc side, and the * MPU cannot use the ACK message as a sync point to put the remoteproc * into reset. The only way to ensure that the remote processor has * completed saving the context is to check that the module has reached * STANDBY state (after saving the context, the SYS/BIOS executes the * appropriate target-specific WFI instruction causing the module to * enter STANDBY). */ while (!_is_rproc_in_standby(oproc)) { if (time_after(jiffies, ta)) return -ETIME; schedule(); } ret = reset_control_assert(oproc->reset); if (ret) { dev_err(dev, "reset assert during suspend failed %d\n", ret); return ret; } ret = omap_rproc_disable_timers(rproc, false); if (ret) { dev_err(dev, "disabling timers during suspend failed %d\n", ret); goto enable_device; } /* * IOMMUs would have to be disabled specifically for runtime suspend. * They are handled automatically through System PM callbacks for * regular system suspend */ if (auto_suspend) { ret = omap_iommu_domain_deactivate(rproc->domain); if (ret) { dev_err(dev, "iommu domain deactivate failed %d\n", ret); goto enable_timers; } } return 0; enable_timers: /* ignore errors on re-enabling code */ omap_rproc_enable_timers(rproc, false); enable_device: reset_control_deassert(oproc->reset); return ret; } static int _omap_rproc_resume(struct rproc *rproc, bool auto_suspend) { struct device *dev = rproc->dev.parent; struct omap_rproc *oproc = rproc->priv; int ret; /* * IOMMUs would have to be enabled specifically for runtime resume. * They would have been already enabled automatically through System * PM callbacks for regular system resume */ if (auto_suspend) { ret = omap_iommu_domain_activate(rproc->domain); if (ret) { dev_err(dev, "omap_iommu activate failed %d\n", ret); goto out; } } /* boot address could be lost after suspend, so restore it */ if (oproc->boot_data) { ret = omap_rproc_write_dsp_boot_addr(rproc); if (ret) { dev_err(dev, "boot address restore failed %d\n", ret); goto suspend_iommu; } } ret = omap_rproc_enable_timers(rproc, false); if (ret) { dev_err(dev, "enabling timers during resume failed %d\n", ret); goto suspend_iommu; } ret = reset_control_deassert(oproc->reset); if (ret) { dev_err(dev, "reset deassert during resume failed %d\n", ret); goto disable_timers; } return 0; disable_timers: omap_rproc_disable_timers(rproc, false); suspend_iommu: if (auto_suspend) omap_iommu_domain_deactivate(rproc->domain); out: return ret; } static int __maybe_unused omap_rproc_suspend(struct device *dev) { struct rproc *rproc = dev_get_drvdata(dev); struct omap_rproc *oproc = rproc->priv; int ret = 0; mutex_lock(&rproc->lock); if (rproc->state == RPROC_OFFLINE) goto out; if (rproc->state == RPROC_SUSPENDED) goto out; if (rproc->state != RPROC_RUNNING) { ret = -EBUSY; goto out; } ret = _omap_rproc_suspend(rproc, false); if (ret) { dev_err(dev, "suspend failed %d\n", ret); goto out; } /* * remoteproc is running at the time of system suspend, so remember * it so as to wake it up during system resume */ oproc->need_resume = true; rproc->state = RPROC_SUSPENDED; out: mutex_unlock(&rproc->lock); return ret; } static int __maybe_unused omap_rproc_resume(struct device *dev) { struct rproc *rproc = dev_get_drvdata(dev); struct omap_rproc *oproc = rproc->priv; int ret = 0; mutex_lock(&rproc->lock); if (rproc->state == RPROC_OFFLINE) goto out; if (rproc->state != RPROC_SUSPENDED) { ret = -EBUSY; goto out; } /* * remoteproc was auto-suspended at the time of system suspend, * so no need to wake-up the processor (leave it in suspended * state, will be woken up during a subsequent runtime_resume) */ if (!oproc->need_resume) goto out; ret = _omap_rproc_resume(rproc, false); if (ret) { dev_err(dev, "resume failed %d\n", ret); goto out; } oproc->need_resume = false; rproc->state = RPROC_RUNNING; pm_runtime_mark_last_busy(dev); out: mutex_unlock(&rproc->lock); return ret; } static int omap_rproc_runtime_suspend(struct device *dev) { struct rproc *rproc = dev_get_drvdata(dev); struct omap_rproc *oproc = rproc->priv; int ret; mutex_lock(&rproc->lock); if (rproc->state == RPROC_CRASHED) { dev_dbg(dev, "rproc cannot be runtime suspended when crashed!\n"); ret = -EBUSY; goto out; } if (WARN_ON(rproc->state != RPROC_RUNNING)) { dev_err(dev, "rproc cannot be runtime suspended when not running!\n"); ret = -EBUSY; goto out; } /* * do not even attempt suspend if the remote processor is not * idled for runtime auto-suspend */ if (!_is_rproc_in_standby(oproc)) { ret = -EBUSY; goto abort; } ret = _omap_rproc_suspend(rproc, true); if (ret) goto abort; rproc->state = RPROC_SUSPENDED; mutex_unlock(&rproc->lock); return 0; abort: pm_runtime_mark_last_busy(dev); out: mutex_unlock(&rproc->lock); return ret; } static int omap_rproc_runtime_resume(struct device *dev) { struct rproc *rproc = dev_get_drvdata(dev); int ret; mutex_lock(&rproc->lock); if (WARN_ON(rproc->state != RPROC_SUSPENDED)) { dev_err(dev, "rproc cannot be runtime resumed if not suspended! state=%d\n", rproc->state); ret = -EBUSY; goto out; } ret = _omap_rproc_resume(rproc, true); if (ret) { dev_err(dev, "runtime resume failed %d\n", ret); goto out; } rproc->state = RPROC_RUNNING; out: mutex_unlock(&rproc->lock); return ret; } #endif /* CONFIG_PM */ static const struct omap_rproc_mem_data ipu_mems[] = { { .name = "l2ram", .dev_addr = 0x20000000 }, { }, }; static const struct omap_rproc_mem_data dra7_dsp_mems[] = { { .name = "l2ram", .dev_addr = 0x800000 }, { .name = "l1pram", .dev_addr = 0xe00000 }, { .name = "l1dram", .dev_addr = 0xf00000 }, { }, }; static const struct omap_rproc_dev_data omap4_dsp_dev_data = { .device_name = "dsp", }; static const struct omap_rproc_dev_data omap4_ipu_dev_data = { .device_name = "ipu", .mems = ipu_mems, }; static const struct omap_rproc_dev_data omap5_dsp_dev_data = { .device_name = "dsp", }; static const struct omap_rproc_dev_data omap5_ipu_dev_data = { .device_name = "ipu", .mems = ipu_mems, }; static const struct omap_rproc_dev_data dra7_dsp_dev_data = { .device_name = "dsp", .mems = dra7_dsp_mems, }; static const struct omap_rproc_dev_data dra7_ipu_dev_data = { .device_name = "ipu", .mems = ipu_mems, }; static const struct of_device_id omap_rproc_of_match[] = { { .compatible = "ti,omap4-dsp", .data = &omap4_dsp_dev_data, }, { .compatible = "ti,omap4-ipu", .data = &omap4_ipu_dev_data, }, { .compatible = "ti,omap5-dsp", .data = &omap5_dsp_dev_data, }, { .compatible = "ti,omap5-ipu", .data = &omap5_ipu_dev_data, }, { .compatible = "ti,dra7-dsp", .data = &dra7_dsp_dev_data, }, { .compatible = "ti,dra7-ipu", .data = &dra7_ipu_dev_data, }, { /* end */ }, }; MODULE_DEVICE_TABLE(of, omap_rproc_of_match); static const char *omap_rproc_get_firmware(struct platform_device *pdev) { const char *fw_name; int ret; ret = of_property_read_string(pdev->dev.of_node, "firmware-name", &fw_name); if (ret) return ERR_PTR(ret); return fw_name; } static int omap_rproc_get_boot_data(struct platform_device *pdev, struct rproc *rproc) { struct device_node *np = pdev->dev.of_node; struct omap_rproc *oproc = rproc->priv; const struct omap_rproc_dev_data *data; int ret; data = of_device_get_match_data(&pdev->dev); if (!data) return -ENODEV; if (!of_property_read_bool(np, "ti,bootreg")) return 0; oproc->boot_data = devm_kzalloc(&pdev->dev, sizeof(*oproc->boot_data), GFP_KERNEL); if (!oproc->boot_data) return -ENOMEM; oproc->boot_data->syscon = syscon_regmap_lookup_by_phandle(np, "ti,bootreg"); if (IS_ERR(oproc->boot_data->syscon)) { ret = PTR_ERR(oproc->boot_data->syscon); return ret; } if (of_property_read_u32_index(np, "ti,bootreg", 1, &oproc->boot_data->boot_reg)) { dev_err(&pdev->dev, "couldn't get the boot register\n"); return -EINVAL; } of_property_read_u32_index(np, "ti,bootreg", 2, &oproc->boot_data->boot_reg_shift); return 0; } static int omap_rproc_of_get_internal_memories(struct platform_device *pdev, struct rproc *rproc) { struct omap_rproc *oproc = rproc->priv; struct device *dev = &pdev->dev; const struct omap_rproc_dev_data *data; struct resource *res; int num_mems; int i; data = of_device_get_match_data(dev); if (!data) return -ENODEV; if (!data->mems) return 0; num_mems = of_property_count_elems_of_size(dev->of_node, "reg", sizeof(u32)) / 2; oproc->mem = devm_kcalloc(dev, num_mems, sizeof(*oproc->mem), GFP_KERNEL); if (!oproc->mem) return -ENOMEM; for (i = 0; data->mems[i].name; i++) { res = platform_get_resource_byname(pdev, IORESOURCE_MEM, data->mems[i].name); if (!res) { dev_err(dev, "no memory defined for %s\n", data->mems[i].name); return -ENOMEM; } oproc->mem[i].cpu_addr = devm_ioremap_resource(dev, res); if (IS_ERR(oproc->mem[i].cpu_addr)) { dev_err(dev, "failed to parse and map %s memory\n", data->mems[i].name); return PTR_ERR(oproc->mem[i].cpu_addr); } oproc->mem[i].bus_addr = res->start; oproc->mem[i].dev_addr = data->mems[i].dev_addr; oproc->mem[i].size = resource_size(res); dev_dbg(dev, "memory %8s: bus addr %pa size 0x%x va %pK da 0x%x\n", data->mems[i].name, &oproc->mem[i].bus_addr, oproc->mem[i].size, oproc->mem[i].cpu_addr, oproc->mem[i].dev_addr); } oproc->num_mems = num_mems; return 0; } #ifdef CONFIG_OMAP_REMOTEPROC_WATCHDOG static int omap_rproc_count_wdog_timers(struct device *dev) { struct device_node *np = dev->of_node; int ret; ret = of_count_phandle_with_args(np, "ti,watchdog-timers", NULL); if (ret <= 0) { dev_dbg(dev, "device does not have watchdog timers, status = %d\n", ret); ret = 0; } return ret; } #else static int omap_rproc_count_wdog_timers(struct device *dev) { return 0; } #endif static int omap_rproc_of_get_timers(struct platform_device *pdev, struct rproc *rproc) { struct device_node *np = pdev->dev.of_node; struct omap_rproc *oproc = rproc->priv; struct device *dev = &pdev->dev; int num_timers; /* * Timer nodes are directly used in client nodes as phandles, so * retrieve the count using appropriate size */ oproc->num_timers = of_count_phandle_with_args(np, "ti,timers", NULL); if (oproc->num_timers <= 0) { dev_dbg(dev, "device does not have timers, status = %d\n", oproc->num_timers); oproc->num_timers = 0; } oproc->num_wd_timers = omap_rproc_count_wdog_timers(dev); num_timers = oproc->num_timers + oproc->num_wd_timers; if (num_timers) { oproc->timers = devm_kcalloc(dev, num_timers, sizeof(*oproc->timers), GFP_KERNEL); if (!oproc->timers) return -ENOMEM; dev_dbg(dev, "device has %d tick timers and %d watchdog timers\n", oproc->num_timers, oproc->num_wd_timers); } return 0; } static int omap_rproc_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct omap_rproc *oproc; struct rproc *rproc; const char *firmware; int ret; struct reset_control *reset; if (!np) { dev_err(&pdev->dev, "only DT-based devices are supported\n"); return -ENODEV; } reset = devm_reset_control_array_get_exclusive(&pdev->dev); if (IS_ERR(reset)) return PTR_ERR(reset); firmware = omap_rproc_get_firmware(pdev); if (IS_ERR(firmware)) return PTR_ERR(firmware); ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)); if (ret) { dev_err(&pdev->dev, "dma_set_coherent_mask: %d\n", ret); return ret; } rproc = rproc_alloc(&pdev->dev, dev_name(&pdev->dev), &omap_rproc_ops, firmware, sizeof(*oproc)); if (!rproc) return -ENOMEM; oproc = rproc->priv; oproc->rproc = rproc; oproc->reset = reset; /* All existing OMAP IPU and DSP processors have an MMU */ rproc->has_iommu = true; ret = omap_rproc_of_get_internal_memories(pdev, rproc); if (ret) goto free_rproc; ret = omap_rproc_get_boot_data(pdev, rproc); if (ret) goto free_rproc; ret = omap_rproc_of_get_timers(pdev, rproc); if (ret) goto free_rproc; init_completion(&oproc->pm_comp); oproc->autosuspend_delay = DEFAULT_AUTOSUSPEND_DELAY; of_property_read_u32(pdev->dev.of_node, "ti,autosuspend-delay-ms", &oproc->autosuspend_delay); pm_runtime_set_autosuspend_delay(&pdev->dev, oproc->autosuspend_delay); oproc->fck = devm_clk_get(&pdev->dev, 0); if (IS_ERR(oproc->fck)) { ret = PTR_ERR(oproc->fck); goto free_rproc; } ret = of_reserved_mem_device_init(&pdev->dev); if (ret) { dev_warn(&pdev->dev, "device does not have specific CMA pool.\n"); dev_warn(&pdev->dev, "Typically this should be provided,\n"); dev_warn(&pdev->dev, "only omit if you know what you are doing.\n"); } platform_set_drvdata(pdev, rproc); ret = rproc_add(rproc); if (ret) goto release_mem; return 0; release_mem: of_reserved_mem_device_release(&pdev->dev); free_rproc: rproc_free(rproc); return ret; } static void omap_rproc_remove(struct platform_device *pdev) { struct rproc *rproc = platform_get_drvdata(pdev); rproc_del(rproc); rproc_free(rproc); of_reserved_mem_device_release(&pdev->dev); } static const struct dev_pm_ops omap_rproc_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(omap_rproc_suspend, omap_rproc_resume) SET_RUNTIME_PM_OPS(omap_rproc_runtime_suspend, omap_rproc_runtime_resume, NULL) }; static struct platform_driver omap_rproc_driver = { .probe = omap_rproc_probe, .remove_new = omap_rproc_remove, .driver = { .name = "omap-rproc", .pm = &omap_rproc_pm_ops, .of_match_table = omap_rproc_of_match, }, }; module_platform_driver(omap_rproc_driver); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("OMAP Remote Processor control driver");
linux-master
drivers/remoteproc/omap_remoteproc.c
// SPDX-License-Identifier: GPL-2.0-only /* * vDPA bus. * * Copyright (c) 2020, Red Hat. All rights reserved. * Author: Jason Wang <[email protected]> * */ #include <linux/module.h> #include <linux/idr.h> #include <linux/slab.h> #include <linux/vdpa.h> #include <uapi/linux/vdpa.h> #include <net/genetlink.h> #include <linux/mod_devicetable.h> #include <linux/virtio_ids.h> static LIST_HEAD(mdev_head); /* A global mutex that protects vdpa management device and device level operations. */ static DECLARE_RWSEM(vdpa_dev_lock); static DEFINE_IDA(vdpa_index_ida); void vdpa_set_status(struct vdpa_device *vdev, u8 status) { down_write(&vdev->cf_lock); vdev->config->set_status(vdev, status); up_write(&vdev->cf_lock); } EXPORT_SYMBOL(vdpa_set_status); static struct genl_family vdpa_nl_family; static int vdpa_dev_probe(struct device *d) { struct vdpa_device *vdev = dev_to_vdpa(d); struct vdpa_driver *drv = drv_to_vdpa(vdev->dev.driver); const struct vdpa_config_ops *ops = vdev->config; u32 max_num, min_num = 1; int ret = 0; d->dma_mask = &d->coherent_dma_mask; ret = dma_set_mask_and_coherent(d, DMA_BIT_MASK(64)); if (ret) return ret; max_num = ops->get_vq_num_max(vdev); if (ops->get_vq_num_min) min_num = ops->get_vq_num_min(vdev); if (max_num < min_num) return -EINVAL; if (drv && drv->probe) ret = drv->probe(vdev); return ret; } static void vdpa_dev_remove(struct device *d) { struct vdpa_device *vdev = dev_to_vdpa(d); struct vdpa_driver *drv = drv_to_vdpa(vdev->dev.driver); if (drv && drv->remove) drv->remove(vdev); } static int vdpa_dev_match(struct device *dev, struct device_driver *drv) { struct vdpa_device *vdev = dev_to_vdpa(dev); /* Check override first, and if set, only use the named driver */ if (vdev->driver_override) return strcmp(vdev->driver_override, drv->name) == 0; /* Currently devices must be supported by all vDPA bus drivers */ return 1; } static ssize_t driver_override_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct vdpa_device *vdev = dev_to_vdpa(dev); int ret; ret = driver_set_override(dev, &vdev->driver_override, buf, count); if (ret) return ret; return count; } static ssize_t driver_override_show(struct device *dev, struct device_attribute *attr, char *buf) { struct vdpa_device *vdev = dev_to_vdpa(dev); ssize_t len; device_lock(dev); len = snprintf(buf, PAGE_SIZE, "%s\n", vdev->driver_override); device_unlock(dev); return len; } static DEVICE_ATTR_RW(driver_override); static struct attribute *vdpa_dev_attrs[] = { &dev_attr_driver_override.attr, NULL, }; static const struct attribute_group vdpa_dev_group = { .attrs = vdpa_dev_attrs, }; __ATTRIBUTE_GROUPS(vdpa_dev); static struct bus_type vdpa_bus = { .name = "vdpa", .dev_groups = vdpa_dev_groups, .match = vdpa_dev_match, .probe = vdpa_dev_probe, .remove = vdpa_dev_remove, }; static void vdpa_release_dev(struct device *d) { struct vdpa_device *vdev = dev_to_vdpa(d); const struct vdpa_config_ops *ops = vdev->config; if (ops->free) ops->free(vdev); ida_simple_remove(&vdpa_index_ida, vdev->index); kfree(vdev->driver_override); kfree(vdev); } /** * __vdpa_alloc_device - allocate and initilaize a vDPA device * This allows driver to some prepartion after device is * initialized but before registered. * @parent: the parent device * @config: the bus operations that is supported by this device * @ngroups: number of groups supported by this device * @nas: number of address spaces supported by this device * @size: size of the parent structure that contains private data * @name: name of the vdpa device; optional. * @use_va: indicate whether virtual address must be used by this device * * Driver should use vdpa_alloc_device() wrapper macro instead of * using this directly. * * Return: Returns an error when parent/config/dma_dev is not set or fail to get * ida. */ struct vdpa_device *__vdpa_alloc_device(struct device *parent, const struct vdpa_config_ops *config, unsigned int ngroups, unsigned int nas, size_t size, const char *name, bool use_va) { struct vdpa_device *vdev; int err = -EINVAL; if (!config) goto err; if (!!config->dma_map != !!config->dma_unmap) goto err; /* It should only work for the device that use on-chip IOMMU */ if (use_va && !(config->dma_map || config->set_map)) goto err; err = -ENOMEM; vdev = kzalloc(size, GFP_KERNEL); if (!vdev) goto err; err = ida_alloc(&vdpa_index_ida, GFP_KERNEL); if (err < 0) goto err_ida; vdev->dev.bus = &vdpa_bus; vdev->dev.parent = parent; vdev->dev.release = vdpa_release_dev; vdev->index = err; vdev->config = config; vdev->features_valid = false; vdev->use_va = use_va; vdev->ngroups = ngroups; vdev->nas = nas; if (name) err = dev_set_name(&vdev->dev, "%s", name); else err = dev_set_name(&vdev->dev, "vdpa%u", vdev->index); if (err) goto err_name; init_rwsem(&vdev->cf_lock); device_initialize(&vdev->dev); return vdev; err_name: ida_simple_remove(&vdpa_index_ida, vdev->index); err_ida: kfree(vdev); err: return ERR_PTR(err); } EXPORT_SYMBOL_GPL(__vdpa_alloc_device); static int vdpa_name_match(struct device *dev, const void *data) { struct vdpa_device *vdev = container_of(dev, struct vdpa_device, dev); return (strcmp(dev_name(&vdev->dev), data) == 0); } static int __vdpa_register_device(struct vdpa_device *vdev, u32 nvqs) { struct device *dev; vdev->nvqs = nvqs; lockdep_assert_held(&vdpa_dev_lock); dev = bus_find_device(&vdpa_bus, NULL, dev_name(&vdev->dev), vdpa_name_match); if (dev) { put_device(dev); return -EEXIST; } return device_add(&vdev->dev); } /** * _vdpa_register_device - register a vDPA device with vdpa lock held * Caller must have a succeed call of vdpa_alloc_device() before. * Caller must invoke this routine in the management device dev_add() * callback after setting up valid mgmtdev for this vdpa device. * @vdev: the vdpa device to be registered to vDPA bus * @nvqs: number of virtqueues supported by this device * * Return: Returns an error when fail to add device to vDPA bus */ int _vdpa_register_device(struct vdpa_device *vdev, u32 nvqs) { if (!vdev->mdev) return -EINVAL; return __vdpa_register_device(vdev, nvqs); } EXPORT_SYMBOL_GPL(_vdpa_register_device); /** * vdpa_register_device - register a vDPA device * Callers must have a succeed call of vdpa_alloc_device() before. * @vdev: the vdpa device to be registered to vDPA bus * @nvqs: number of virtqueues supported by this device * * Return: Returns an error when fail to add to vDPA bus */ int vdpa_register_device(struct vdpa_device *vdev, u32 nvqs) { int err; down_write(&vdpa_dev_lock); err = __vdpa_register_device(vdev, nvqs); up_write(&vdpa_dev_lock); return err; } EXPORT_SYMBOL_GPL(vdpa_register_device); /** * _vdpa_unregister_device - unregister a vDPA device * Caller must invoke this routine as part of management device dev_del() * callback. * @vdev: the vdpa device to be unregisted from vDPA bus */ void _vdpa_unregister_device(struct vdpa_device *vdev) { lockdep_assert_held(&vdpa_dev_lock); WARN_ON(!vdev->mdev); device_unregister(&vdev->dev); } EXPORT_SYMBOL_GPL(_vdpa_unregister_device); /** * vdpa_unregister_device - unregister a vDPA device * @vdev: the vdpa device to be unregisted from vDPA bus */ void vdpa_unregister_device(struct vdpa_device *vdev) { down_write(&vdpa_dev_lock); device_unregister(&vdev->dev); up_write(&vdpa_dev_lock); } EXPORT_SYMBOL_GPL(vdpa_unregister_device); /** * __vdpa_register_driver - register a vDPA device driver * @drv: the vdpa device driver to be registered * @owner: module owner of the driver * * Return: Returns an err when fail to do the registration */ int __vdpa_register_driver(struct vdpa_driver *drv, struct module *owner) { drv->driver.bus = &vdpa_bus; drv->driver.owner = owner; return driver_register(&drv->driver); } EXPORT_SYMBOL_GPL(__vdpa_register_driver); /** * vdpa_unregister_driver - unregister a vDPA device driver * @drv: the vdpa device driver to be unregistered */ void vdpa_unregister_driver(struct vdpa_driver *drv) { driver_unregister(&drv->driver); } EXPORT_SYMBOL_GPL(vdpa_unregister_driver); /** * vdpa_mgmtdev_register - register a vdpa management device * * @mdev: Pointer to vdpa management device * vdpa_mgmtdev_register() register a vdpa management device which supports * vdpa device management. * Return: Returns 0 on success or failure when required callback ops are not * initialized. */ int vdpa_mgmtdev_register(struct vdpa_mgmt_dev *mdev) { if (!mdev->device || !mdev->ops || !mdev->ops->dev_add || !mdev->ops->dev_del) return -EINVAL; INIT_LIST_HEAD(&mdev->list); down_write(&vdpa_dev_lock); list_add_tail(&mdev->list, &mdev_head); up_write(&vdpa_dev_lock); return 0; } EXPORT_SYMBOL_GPL(vdpa_mgmtdev_register); static int vdpa_match_remove(struct device *dev, void *data) { struct vdpa_device *vdev = container_of(dev, struct vdpa_device, dev); struct vdpa_mgmt_dev *mdev = vdev->mdev; if (mdev == data) mdev->ops->dev_del(mdev, vdev); return 0; } void vdpa_mgmtdev_unregister(struct vdpa_mgmt_dev *mdev) { down_write(&vdpa_dev_lock); list_del(&mdev->list); /* Filter out all the entries belong to this management device and delete it. */ bus_for_each_dev(&vdpa_bus, NULL, mdev, vdpa_match_remove); up_write(&vdpa_dev_lock); } EXPORT_SYMBOL_GPL(vdpa_mgmtdev_unregister); static void vdpa_get_config_unlocked(struct vdpa_device *vdev, unsigned int offset, void *buf, unsigned int len) { const struct vdpa_config_ops *ops = vdev->config; /* * Config accesses aren't supposed to trigger before features are set. * If it does happen we assume a legacy guest. */ if (!vdev->features_valid) vdpa_set_features_unlocked(vdev, 0); ops->get_config(vdev, offset, buf, len); } /** * vdpa_get_config - Get one or more device configuration fields. * @vdev: vdpa device to operate on * @offset: starting byte offset of the field * @buf: buffer pointer to read to * @len: length of the configuration fields in bytes */ void vdpa_get_config(struct vdpa_device *vdev, unsigned int offset, void *buf, unsigned int len) { down_read(&vdev->cf_lock); vdpa_get_config_unlocked(vdev, offset, buf, len); up_read(&vdev->cf_lock); } EXPORT_SYMBOL_GPL(vdpa_get_config); /** * vdpa_set_config - Set one or more device configuration fields. * @vdev: vdpa device to operate on * @offset: starting byte offset of the field * @buf: buffer pointer to read from * @length: length of the configuration fields in bytes */ void vdpa_set_config(struct vdpa_device *vdev, unsigned int offset, const void *buf, unsigned int length) { down_write(&vdev->cf_lock); vdev->config->set_config(vdev, offset, buf, length); up_write(&vdev->cf_lock); } EXPORT_SYMBOL_GPL(vdpa_set_config); static bool mgmtdev_handle_match(const struct vdpa_mgmt_dev *mdev, const char *busname, const char *devname) { /* Bus name is optional for simulated management device, so ignore the * device with bus if bus attribute is provided. */ if ((busname && !mdev->device->bus) || (!busname && mdev->device->bus)) return false; if (!busname && strcmp(dev_name(mdev->device), devname) == 0) return true; if (busname && (strcmp(mdev->device->bus->name, busname) == 0) && (strcmp(dev_name(mdev->device), devname) == 0)) return true; return false; } static struct vdpa_mgmt_dev *vdpa_mgmtdev_get_from_attr(struct nlattr **attrs) { struct vdpa_mgmt_dev *mdev; const char *busname = NULL; const char *devname; if (!attrs[VDPA_ATTR_MGMTDEV_DEV_NAME]) return ERR_PTR(-EINVAL); devname = nla_data(attrs[VDPA_ATTR_MGMTDEV_DEV_NAME]); if (attrs[VDPA_ATTR_MGMTDEV_BUS_NAME]) busname = nla_data(attrs[VDPA_ATTR_MGMTDEV_BUS_NAME]); list_for_each_entry(mdev, &mdev_head, list) { if (mgmtdev_handle_match(mdev, busname, devname)) return mdev; } return ERR_PTR(-ENODEV); } static int vdpa_nl_mgmtdev_handle_fill(struct sk_buff *msg, const struct vdpa_mgmt_dev *mdev) { if (mdev->device->bus && nla_put_string(msg, VDPA_ATTR_MGMTDEV_BUS_NAME, mdev->device->bus->name)) return -EMSGSIZE; if (nla_put_string(msg, VDPA_ATTR_MGMTDEV_DEV_NAME, dev_name(mdev->device))) return -EMSGSIZE; return 0; } static u64 vdpa_mgmtdev_get_classes(const struct vdpa_mgmt_dev *mdev, unsigned int *nclasses) { u64 supported_classes = 0; unsigned int n = 0; for (int i = 0; mdev->id_table[i].device; i++) { if (mdev->id_table[i].device > 63) continue; supported_classes |= BIT_ULL(mdev->id_table[i].device); n++; } if (nclasses) *nclasses = n; return supported_classes; } static int vdpa_mgmtdev_fill(const struct vdpa_mgmt_dev *mdev, struct sk_buff *msg, u32 portid, u32 seq, int flags) { void *hdr; int err; hdr = genlmsg_put(msg, portid, seq, &vdpa_nl_family, flags, VDPA_CMD_MGMTDEV_NEW); if (!hdr) return -EMSGSIZE; err = vdpa_nl_mgmtdev_handle_fill(msg, mdev); if (err) goto msg_err; if (nla_put_u64_64bit(msg, VDPA_ATTR_MGMTDEV_SUPPORTED_CLASSES, vdpa_mgmtdev_get_classes(mdev, NULL), VDPA_ATTR_UNSPEC)) { err = -EMSGSIZE; goto msg_err; } if (nla_put_u32(msg, VDPA_ATTR_DEV_MGMTDEV_MAX_VQS, mdev->max_supported_vqs)) { err = -EMSGSIZE; goto msg_err; } if (nla_put_u64_64bit(msg, VDPA_ATTR_DEV_SUPPORTED_FEATURES, mdev->supported_features, VDPA_ATTR_PAD)) { err = -EMSGSIZE; goto msg_err; } genlmsg_end(msg, hdr); return 0; msg_err: genlmsg_cancel(msg, hdr); return err; } static int vdpa_nl_cmd_mgmtdev_get_doit(struct sk_buff *skb, struct genl_info *info) { struct vdpa_mgmt_dev *mdev; struct sk_buff *msg; int err; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; down_read(&vdpa_dev_lock); mdev = vdpa_mgmtdev_get_from_attr(info->attrs); if (IS_ERR(mdev)) { up_read(&vdpa_dev_lock); NL_SET_ERR_MSG_MOD(info->extack, "Fail to find the specified mgmt device"); err = PTR_ERR(mdev); goto out; } err = vdpa_mgmtdev_fill(mdev, msg, info->snd_portid, info->snd_seq, 0); up_read(&vdpa_dev_lock); if (err) goto out; err = genlmsg_reply(msg, info); return err; out: nlmsg_free(msg); return err; } static int vdpa_nl_cmd_mgmtdev_get_dumpit(struct sk_buff *msg, struct netlink_callback *cb) { struct vdpa_mgmt_dev *mdev; int start = cb->args[0]; int idx = 0; int err; down_read(&vdpa_dev_lock); list_for_each_entry(mdev, &mdev_head, list) { if (idx < start) { idx++; continue; } err = vdpa_mgmtdev_fill(mdev, msg, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, NLM_F_MULTI); if (err) goto out; idx++; } out: up_read(&vdpa_dev_lock); cb->args[0] = idx; return msg->len; } #define VDPA_DEV_NET_ATTRS_MASK (BIT_ULL(VDPA_ATTR_DEV_NET_CFG_MACADDR) | \ BIT_ULL(VDPA_ATTR_DEV_NET_CFG_MTU) | \ BIT_ULL(VDPA_ATTR_DEV_NET_CFG_MAX_VQP)) /* * Bitmask for all per-device features: feature bits VIRTIO_TRANSPORT_F_START * through VIRTIO_TRANSPORT_F_END are unset, i.e. 0xfffffc000fffffff for * all 64bit features. If the features are extended beyond 64 bits, or new * "holes" are reserved for other type of features than per-device, this * macro would have to be updated. */ #define VIRTIO_DEVICE_F_MASK (~0ULL << (VIRTIO_TRANSPORT_F_END + 1) | \ ((1ULL << VIRTIO_TRANSPORT_F_START) - 1)) static int vdpa_nl_cmd_dev_add_set_doit(struct sk_buff *skb, struct genl_info *info) { struct vdpa_dev_set_config config = {}; struct nlattr **nl_attrs = info->attrs; struct vdpa_mgmt_dev *mdev; unsigned int ncls = 0; const u8 *macaddr; const char *name; u64 classes; int err = 0; if (!info->attrs[VDPA_ATTR_DEV_NAME]) return -EINVAL; name = nla_data(info->attrs[VDPA_ATTR_DEV_NAME]); if (nl_attrs[VDPA_ATTR_DEV_NET_CFG_MACADDR]) { macaddr = nla_data(nl_attrs[VDPA_ATTR_DEV_NET_CFG_MACADDR]); memcpy(config.net.mac, macaddr, sizeof(config.net.mac)); config.mask |= BIT_ULL(VDPA_ATTR_DEV_NET_CFG_MACADDR); } if (nl_attrs[VDPA_ATTR_DEV_NET_CFG_MTU]) { config.net.mtu = nla_get_u16(nl_attrs[VDPA_ATTR_DEV_NET_CFG_MTU]); config.mask |= BIT_ULL(VDPA_ATTR_DEV_NET_CFG_MTU); } if (nl_attrs[VDPA_ATTR_DEV_NET_CFG_MAX_VQP]) { config.net.max_vq_pairs = nla_get_u16(nl_attrs[VDPA_ATTR_DEV_NET_CFG_MAX_VQP]); if (!config.net.max_vq_pairs) { NL_SET_ERR_MSG_MOD(info->extack, "At least one pair of VQs is required"); return -EINVAL; } config.mask |= BIT_ULL(VDPA_ATTR_DEV_NET_CFG_MAX_VQP); } if (nl_attrs[VDPA_ATTR_DEV_FEATURES]) { u64 missing = 0x0ULL; config.device_features = nla_get_u64(nl_attrs[VDPA_ATTR_DEV_FEATURES]); if (nl_attrs[VDPA_ATTR_DEV_NET_CFG_MACADDR] && !(config.device_features & BIT_ULL(VIRTIO_NET_F_MAC))) missing |= BIT_ULL(VIRTIO_NET_F_MAC); if (nl_attrs[VDPA_ATTR_DEV_NET_CFG_MTU] && !(config.device_features & BIT_ULL(VIRTIO_NET_F_MTU))) missing |= BIT_ULL(VIRTIO_NET_F_MTU); if (nl_attrs[VDPA_ATTR_DEV_NET_CFG_MAX_VQP] && config.net.max_vq_pairs > 1 && !(config.device_features & BIT_ULL(VIRTIO_NET_F_MQ))) missing |= BIT_ULL(VIRTIO_NET_F_MQ); if (missing) { NL_SET_ERR_MSG_FMT_MOD(info->extack, "Missing features 0x%llx for provided attributes", missing); return -EINVAL; } config.mask |= BIT_ULL(VDPA_ATTR_DEV_FEATURES); } /* Skip checking capability if user didn't prefer to configure any * device networking attributes. It is likely that user might have used * a device specific method to configure such attributes or using device * default attributes. */ if ((config.mask & VDPA_DEV_NET_ATTRS_MASK) && !netlink_capable(skb, CAP_NET_ADMIN)) return -EPERM; down_write(&vdpa_dev_lock); mdev = vdpa_mgmtdev_get_from_attr(info->attrs); if (IS_ERR(mdev)) { NL_SET_ERR_MSG_MOD(info->extack, "Fail to find the specified management device"); err = PTR_ERR(mdev); goto err; } if ((config.mask & mdev->config_attr_mask) != config.mask) { NL_SET_ERR_MSG_FMT_MOD(info->extack, "Some provided attributes are not supported: 0x%llx", config.mask & ~mdev->config_attr_mask); err = -EOPNOTSUPP; goto err; } classes = vdpa_mgmtdev_get_classes(mdev, &ncls); if (config.mask & VDPA_DEV_NET_ATTRS_MASK && !(classes & BIT_ULL(VIRTIO_ID_NET))) { NL_SET_ERR_MSG_MOD(info->extack, "Network class attributes provided on unsupported management device"); err = -EINVAL; goto err; } if (!(config.mask & VDPA_DEV_NET_ATTRS_MASK) && config.mask & BIT_ULL(VDPA_ATTR_DEV_FEATURES) && classes & BIT_ULL(VIRTIO_ID_NET) && ncls > 1 && config.device_features & VIRTIO_DEVICE_F_MASK) { NL_SET_ERR_MSG_MOD(info->extack, "Management device supports multi-class while device features specified are ambiguous"); err = -EINVAL; goto err; } err = mdev->ops->dev_add(mdev, name, &config); err: up_write(&vdpa_dev_lock); return err; } static int vdpa_nl_cmd_dev_del_set_doit(struct sk_buff *skb, struct genl_info *info) { struct vdpa_mgmt_dev *mdev; struct vdpa_device *vdev; struct device *dev; const char *name; int err = 0; if (!info->attrs[VDPA_ATTR_DEV_NAME]) return -EINVAL; name = nla_data(info->attrs[VDPA_ATTR_DEV_NAME]); down_write(&vdpa_dev_lock); dev = bus_find_device(&vdpa_bus, NULL, name, vdpa_name_match); if (!dev) { NL_SET_ERR_MSG_MOD(info->extack, "device not found"); err = -ENODEV; goto dev_err; } vdev = container_of(dev, struct vdpa_device, dev); if (!vdev->mdev) { NL_SET_ERR_MSG_MOD(info->extack, "Only user created device can be deleted by user"); err = -EINVAL; goto mdev_err; } mdev = vdev->mdev; mdev->ops->dev_del(mdev, vdev); mdev_err: put_device(dev); dev_err: up_write(&vdpa_dev_lock); return err; } static int vdpa_dev_fill(struct vdpa_device *vdev, struct sk_buff *msg, u32 portid, u32 seq, int flags, struct netlink_ext_ack *extack) { u16 max_vq_size; u16 min_vq_size = 1; u32 device_id; u32 vendor_id; void *hdr; int err; hdr = genlmsg_put(msg, portid, seq, &vdpa_nl_family, flags, VDPA_CMD_DEV_NEW); if (!hdr) return -EMSGSIZE; err = vdpa_nl_mgmtdev_handle_fill(msg, vdev->mdev); if (err) goto msg_err; device_id = vdev->config->get_device_id(vdev); vendor_id = vdev->config->get_vendor_id(vdev); max_vq_size = vdev->config->get_vq_num_max(vdev); if (vdev->config->get_vq_num_min) min_vq_size = vdev->config->get_vq_num_min(vdev); err = -EMSGSIZE; if (nla_put_string(msg, VDPA_ATTR_DEV_NAME, dev_name(&vdev->dev))) goto msg_err; if (nla_put_u32(msg, VDPA_ATTR_DEV_ID, device_id)) goto msg_err; if (nla_put_u32(msg, VDPA_ATTR_DEV_VENDOR_ID, vendor_id)) goto msg_err; if (nla_put_u32(msg, VDPA_ATTR_DEV_MAX_VQS, vdev->nvqs)) goto msg_err; if (nla_put_u16(msg, VDPA_ATTR_DEV_MAX_VQ_SIZE, max_vq_size)) goto msg_err; if (nla_put_u16(msg, VDPA_ATTR_DEV_MIN_VQ_SIZE, min_vq_size)) goto msg_err; genlmsg_end(msg, hdr); return 0; msg_err: genlmsg_cancel(msg, hdr); return err; } static int vdpa_nl_cmd_dev_get_doit(struct sk_buff *skb, struct genl_info *info) { struct vdpa_device *vdev; struct sk_buff *msg; const char *devname; struct device *dev; int err; if (!info->attrs[VDPA_ATTR_DEV_NAME]) return -EINVAL; devname = nla_data(info->attrs[VDPA_ATTR_DEV_NAME]); msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; down_read(&vdpa_dev_lock); dev = bus_find_device(&vdpa_bus, NULL, devname, vdpa_name_match); if (!dev) { NL_SET_ERR_MSG_MOD(info->extack, "device not found"); err = -ENODEV; goto err; } vdev = container_of(dev, struct vdpa_device, dev); if (!vdev->mdev) { err = -EINVAL; goto mdev_err; } err = vdpa_dev_fill(vdev, msg, info->snd_portid, info->snd_seq, 0, info->extack); if (err) goto mdev_err; err = genlmsg_reply(msg, info); put_device(dev); up_read(&vdpa_dev_lock); return err; mdev_err: put_device(dev); err: up_read(&vdpa_dev_lock); nlmsg_free(msg); return err; } struct vdpa_dev_dump_info { struct sk_buff *msg; struct netlink_callback *cb; int start_idx; int idx; }; static int vdpa_dev_dump(struct device *dev, void *data) { struct vdpa_device *vdev = container_of(dev, struct vdpa_device, dev); struct vdpa_dev_dump_info *info = data; int err; if (!vdev->mdev) return 0; if (info->idx < info->start_idx) { info->idx++; return 0; } err = vdpa_dev_fill(vdev, info->msg, NETLINK_CB(info->cb->skb).portid, info->cb->nlh->nlmsg_seq, NLM_F_MULTI, info->cb->extack); if (err) return err; info->idx++; return 0; } static int vdpa_nl_cmd_dev_get_dumpit(struct sk_buff *msg, struct netlink_callback *cb) { struct vdpa_dev_dump_info info; info.msg = msg; info.cb = cb; info.start_idx = cb->args[0]; info.idx = 0; down_read(&vdpa_dev_lock); bus_for_each_dev(&vdpa_bus, NULL, &info, vdpa_dev_dump); up_read(&vdpa_dev_lock); cb->args[0] = info.idx; return msg->len; } static int vdpa_dev_net_mq_config_fill(struct sk_buff *msg, u64 features, const struct virtio_net_config *config) { u16 val_u16; if ((features & BIT_ULL(VIRTIO_NET_F_MQ)) == 0 && (features & BIT_ULL(VIRTIO_NET_F_RSS)) == 0) return 0; val_u16 = __virtio16_to_cpu(true, config->max_virtqueue_pairs); return nla_put_u16(msg, VDPA_ATTR_DEV_NET_CFG_MAX_VQP, val_u16); } static int vdpa_dev_net_mtu_config_fill(struct sk_buff *msg, u64 features, const struct virtio_net_config *config) { u16 val_u16; if ((features & BIT_ULL(VIRTIO_NET_F_MTU)) == 0) return 0; val_u16 = __virtio16_to_cpu(true, config->mtu); return nla_put_u16(msg, VDPA_ATTR_DEV_NET_CFG_MTU, val_u16); } static int vdpa_dev_net_mac_config_fill(struct sk_buff *msg, u64 features, const struct virtio_net_config *config) { if ((features & BIT_ULL(VIRTIO_NET_F_MAC)) == 0) return 0; return nla_put(msg, VDPA_ATTR_DEV_NET_CFG_MACADDR, sizeof(config->mac), config->mac); } static int vdpa_dev_net_status_config_fill(struct sk_buff *msg, u64 features, const struct virtio_net_config *config) { u16 val_u16; if ((features & BIT_ULL(VIRTIO_NET_F_STATUS)) == 0) return 0; val_u16 = __virtio16_to_cpu(true, config->status); return nla_put_u16(msg, VDPA_ATTR_DEV_NET_STATUS, val_u16); } static int vdpa_dev_net_config_fill(struct vdpa_device *vdev, struct sk_buff *msg) { struct virtio_net_config config = {}; u64 features_device; vdev->config->get_config(vdev, 0, &config, sizeof(config)); features_device = vdev->config->get_device_features(vdev); if (nla_put_u64_64bit(msg, VDPA_ATTR_DEV_FEATURES, features_device, VDPA_ATTR_PAD)) return -EMSGSIZE; if (vdpa_dev_net_mtu_config_fill(msg, features_device, &config)) return -EMSGSIZE; if (vdpa_dev_net_mac_config_fill(msg, features_device, &config)) return -EMSGSIZE; if (vdpa_dev_net_status_config_fill(msg, features_device, &config)) return -EMSGSIZE; return vdpa_dev_net_mq_config_fill(msg, features_device, &config); } static int vdpa_dev_config_fill(struct vdpa_device *vdev, struct sk_buff *msg, u32 portid, u32 seq, int flags, struct netlink_ext_ack *extack) { u64 features_driver; u8 status = 0; u32 device_id; void *hdr; int err; down_read(&vdev->cf_lock); hdr = genlmsg_put(msg, portid, seq, &vdpa_nl_family, flags, VDPA_CMD_DEV_CONFIG_GET); if (!hdr) { err = -EMSGSIZE; goto out; } if (nla_put_string(msg, VDPA_ATTR_DEV_NAME, dev_name(&vdev->dev))) { err = -EMSGSIZE; goto msg_err; } device_id = vdev->config->get_device_id(vdev); if (nla_put_u32(msg, VDPA_ATTR_DEV_ID, device_id)) { err = -EMSGSIZE; goto msg_err; } /* only read driver features after the feature negotiation is done */ status = vdev->config->get_status(vdev); if (status & VIRTIO_CONFIG_S_FEATURES_OK) { features_driver = vdev->config->get_driver_features(vdev); if (nla_put_u64_64bit(msg, VDPA_ATTR_DEV_NEGOTIATED_FEATURES, features_driver, VDPA_ATTR_PAD)) { err = -EMSGSIZE; goto msg_err; } } switch (device_id) { case VIRTIO_ID_NET: err = vdpa_dev_net_config_fill(vdev, msg); break; default: err = -EOPNOTSUPP; break; } if (err) goto msg_err; up_read(&vdev->cf_lock); genlmsg_end(msg, hdr); return 0; msg_err: genlmsg_cancel(msg, hdr); out: up_read(&vdev->cf_lock); return err; } static int vdpa_fill_stats_rec(struct vdpa_device *vdev, struct sk_buff *msg, struct genl_info *info, u32 index) { struct virtio_net_config config = {}; u64 features; u8 status; int err; status = vdev->config->get_status(vdev); if (!(status & VIRTIO_CONFIG_S_FEATURES_OK)) { NL_SET_ERR_MSG_MOD(info->extack, "feature negotiation not complete"); return -EAGAIN; } vdpa_get_config_unlocked(vdev, 0, &config, sizeof(config)); features = vdev->config->get_driver_features(vdev); if (nla_put_u64_64bit(msg, VDPA_ATTR_DEV_NEGOTIATED_FEATURES, features, VDPA_ATTR_PAD)) return -EMSGSIZE; err = vdpa_dev_net_mq_config_fill(msg, features, &config); if (err) return err; if (nla_put_u32(msg, VDPA_ATTR_DEV_QUEUE_INDEX, index)) return -EMSGSIZE; err = vdev->config->get_vendor_vq_stats(vdev, index, msg, info->extack); if (err) return err; return 0; } static int vendor_stats_fill(struct vdpa_device *vdev, struct sk_buff *msg, struct genl_info *info, u32 index) { int err; down_read(&vdev->cf_lock); if (!vdev->config->get_vendor_vq_stats) { err = -EOPNOTSUPP; goto out; } err = vdpa_fill_stats_rec(vdev, msg, info, index); out: up_read(&vdev->cf_lock); return err; } static int vdpa_dev_vendor_stats_fill(struct vdpa_device *vdev, struct sk_buff *msg, struct genl_info *info, u32 index) { u32 device_id; void *hdr; int err; u32 portid = info->snd_portid; u32 seq = info->snd_seq; u32 flags = 0; hdr = genlmsg_put(msg, portid, seq, &vdpa_nl_family, flags, VDPA_CMD_DEV_VSTATS_GET); if (!hdr) return -EMSGSIZE; if (nla_put_string(msg, VDPA_ATTR_DEV_NAME, dev_name(&vdev->dev))) { err = -EMSGSIZE; goto undo_msg; } device_id = vdev->config->get_device_id(vdev); if (nla_put_u32(msg, VDPA_ATTR_DEV_ID, device_id)) { err = -EMSGSIZE; goto undo_msg; } switch (device_id) { case VIRTIO_ID_NET: if (index > VIRTIO_NET_CTRL_MQ_VQ_PAIRS_MAX) { NL_SET_ERR_MSG_MOD(info->extack, "queue index exceeds max value"); err = -ERANGE; break; } err = vendor_stats_fill(vdev, msg, info, index); break; default: err = -EOPNOTSUPP; break; } genlmsg_end(msg, hdr); return err; undo_msg: genlmsg_cancel(msg, hdr); return err; } static int vdpa_nl_cmd_dev_config_get_doit(struct sk_buff *skb, struct genl_info *info) { struct vdpa_device *vdev; struct sk_buff *msg; const char *devname; struct device *dev; int err; if (!info->attrs[VDPA_ATTR_DEV_NAME]) return -EINVAL; devname = nla_data(info->attrs[VDPA_ATTR_DEV_NAME]); msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; down_read(&vdpa_dev_lock); dev = bus_find_device(&vdpa_bus, NULL, devname, vdpa_name_match); if (!dev) { NL_SET_ERR_MSG_MOD(info->extack, "device not found"); err = -ENODEV; goto dev_err; } vdev = container_of(dev, struct vdpa_device, dev); if (!vdev->mdev) { NL_SET_ERR_MSG_MOD(info->extack, "unmanaged vdpa device"); err = -EINVAL; goto mdev_err; } err = vdpa_dev_config_fill(vdev, msg, info->snd_portid, info->snd_seq, 0, info->extack); if (!err) err = genlmsg_reply(msg, info); mdev_err: put_device(dev); dev_err: up_read(&vdpa_dev_lock); if (err) nlmsg_free(msg); return err; } static int vdpa_dev_config_dump(struct device *dev, void *data) { struct vdpa_device *vdev = container_of(dev, struct vdpa_device, dev); struct vdpa_dev_dump_info *info = data; int err; if (!vdev->mdev) return 0; if (info->idx < info->start_idx) { info->idx++; return 0; } err = vdpa_dev_config_fill(vdev, info->msg, NETLINK_CB(info->cb->skb).portid, info->cb->nlh->nlmsg_seq, NLM_F_MULTI, info->cb->extack); if (err) return err; info->idx++; return 0; } static int vdpa_nl_cmd_dev_config_get_dumpit(struct sk_buff *msg, struct netlink_callback *cb) { struct vdpa_dev_dump_info info; info.msg = msg; info.cb = cb; info.start_idx = cb->args[0]; info.idx = 0; down_read(&vdpa_dev_lock); bus_for_each_dev(&vdpa_bus, NULL, &info, vdpa_dev_config_dump); up_read(&vdpa_dev_lock); cb->args[0] = info.idx; return msg->len; } static int vdpa_nl_cmd_dev_stats_get_doit(struct sk_buff *skb, struct genl_info *info) { struct vdpa_device *vdev; struct sk_buff *msg; const char *devname; struct device *dev; u32 index; int err; if (!info->attrs[VDPA_ATTR_DEV_NAME]) return -EINVAL; if (!info->attrs[VDPA_ATTR_DEV_QUEUE_INDEX]) return -EINVAL; devname = nla_data(info->attrs[VDPA_ATTR_DEV_NAME]); msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; index = nla_get_u32(info->attrs[VDPA_ATTR_DEV_QUEUE_INDEX]); down_read(&vdpa_dev_lock); dev = bus_find_device(&vdpa_bus, NULL, devname, vdpa_name_match); if (!dev) { NL_SET_ERR_MSG_MOD(info->extack, "device not found"); err = -ENODEV; goto dev_err; } vdev = container_of(dev, struct vdpa_device, dev); if (!vdev->mdev) { NL_SET_ERR_MSG_MOD(info->extack, "unmanaged vdpa device"); err = -EINVAL; goto mdev_err; } err = vdpa_dev_vendor_stats_fill(vdev, msg, info, index); if (err) goto mdev_err; err = genlmsg_reply(msg, info); put_device(dev); up_read(&vdpa_dev_lock); return err; mdev_err: put_device(dev); dev_err: nlmsg_free(msg); up_read(&vdpa_dev_lock); return err; } static const struct nla_policy vdpa_nl_policy[VDPA_ATTR_MAX + 1] = { [VDPA_ATTR_MGMTDEV_BUS_NAME] = { .type = NLA_NUL_STRING }, [VDPA_ATTR_MGMTDEV_DEV_NAME] = { .type = NLA_STRING }, [VDPA_ATTR_DEV_NAME] = { .type = NLA_STRING }, [VDPA_ATTR_DEV_NET_CFG_MACADDR] = NLA_POLICY_ETH_ADDR, [VDPA_ATTR_DEV_NET_CFG_MAX_VQP] = { .type = NLA_U16 }, /* virtio spec 1.1 section 5.1.4.1 for valid MTU range */ [VDPA_ATTR_DEV_NET_CFG_MTU] = NLA_POLICY_MIN(NLA_U16, 68), [VDPA_ATTR_DEV_QUEUE_INDEX] = { .type = NLA_U32 }, [VDPA_ATTR_DEV_FEATURES] = { .type = NLA_U64 }, }; static const struct genl_ops vdpa_nl_ops[] = { { .cmd = VDPA_CMD_MGMTDEV_GET, .doit = vdpa_nl_cmd_mgmtdev_get_doit, .dumpit = vdpa_nl_cmd_mgmtdev_get_dumpit, }, { .cmd = VDPA_CMD_DEV_NEW, .doit = vdpa_nl_cmd_dev_add_set_doit, .flags = GENL_ADMIN_PERM, }, { .cmd = VDPA_CMD_DEV_DEL, .doit = vdpa_nl_cmd_dev_del_set_doit, .flags = GENL_ADMIN_PERM, }, { .cmd = VDPA_CMD_DEV_GET, .doit = vdpa_nl_cmd_dev_get_doit, .dumpit = vdpa_nl_cmd_dev_get_dumpit, }, { .cmd = VDPA_CMD_DEV_CONFIG_GET, .doit = vdpa_nl_cmd_dev_config_get_doit, .dumpit = vdpa_nl_cmd_dev_config_get_dumpit, }, { .cmd = VDPA_CMD_DEV_VSTATS_GET, .doit = vdpa_nl_cmd_dev_stats_get_doit, .flags = GENL_ADMIN_PERM, }, }; static struct genl_family vdpa_nl_family __ro_after_init = { .name = VDPA_GENL_NAME, .version = VDPA_GENL_VERSION, .maxattr = VDPA_ATTR_MAX, .policy = vdpa_nl_policy, .netnsok = false, .module = THIS_MODULE, .ops = vdpa_nl_ops, .n_ops = ARRAY_SIZE(vdpa_nl_ops), .resv_start_op = VDPA_CMD_DEV_VSTATS_GET + 1, }; static int vdpa_init(void) { int err; err = bus_register(&vdpa_bus); if (err) return err; err = genl_register_family(&vdpa_nl_family); if (err) goto err; return 0; err: bus_unregister(&vdpa_bus); return err; } static void __exit vdpa_exit(void) { genl_unregister_family(&vdpa_nl_family); bus_unregister(&vdpa_bus); ida_destroy(&vdpa_index_ida); } core_initcall(vdpa_init); module_exit(vdpa_exit); MODULE_AUTHOR("Jason Wang <[email protected]>"); MODULE_LICENSE("GPL v2");
linux-master
drivers/vdpa/vdpa.c
// SPDX-License-Identifier: GPL-2.0-only /* * Intel IFC VF NIC driver for virtio dataplane offloading * * Copyright (C) 2020 Intel Corporation. * * Author: Zhu Lingshan <[email protected]> * */ #include <linux/interrupt.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/sysfs.h> #include "ifcvf_base.h" #define DRIVER_AUTHOR "Intel Corporation" #define IFCVF_DRIVER_NAME "ifcvf" static irqreturn_t ifcvf_config_changed(int irq, void *arg) { struct ifcvf_hw *vf = arg; if (vf->config_cb.callback) return vf->config_cb.callback(vf->config_cb.private); return IRQ_HANDLED; } static irqreturn_t ifcvf_vq_intr_handler(int irq, void *arg) { struct vring_info *vring = arg; if (vring->cb.callback) return vring->cb.callback(vring->cb.private); return IRQ_HANDLED; } static irqreturn_t ifcvf_vqs_reused_intr_handler(int irq, void *arg) { struct ifcvf_hw *vf = arg; struct vring_info *vring; int i; for (i = 0; i < vf->nr_vring; i++) { vring = &vf->vring[i]; if (vring->cb.callback) vring->cb.callback(vring->cb.private); } return IRQ_HANDLED; } static irqreturn_t ifcvf_dev_intr_handler(int irq, void *arg) { struct ifcvf_hw *vf = arg; u8 isr; isr = vp_ioread8(vf->isr); if (isr & VIRTIO_PCI_ISR_CONFIG) ifcvf_config_changed(irq, arg); return ifcvf_vqs_reused_intr_handler(irq, arg); } static void ifcvf_free_irq_vectors(void *data) { pci_free_irq_vectors(data); } static void ifcvf_free_per_vq_irq(struct ifcvf_hw *vf) { struct pci_dev *pdev = vf->pdev; int i; for (i = 0; i < vf->nr_vring; i++) { if (vf->vring[i].irq != -EINVAL) { devm_free_irq(&pdev->dev, vf->vring[i].irq, &vf->vring[i]); vf->vring[i].irq = -EINVAL; } } } static void ifcvf_free_vqs_reused_irq(struct ifcvf_hw *vf) { struct pci_dev *pdev = vf->pdev; if (vf->vqs_reused_irq != -EINVAL) { devm_free_irq(&pdev->dev, vf->vqs_reused_irq, vf); vf->vqs_reused_irq = -EINVAL; } } static void ifcvf_free_vq_irq(struct ifcvf_hw *vf) { if (vf->msix_vector_status == MSIX_VECTOR_PER_VQ_AND_CONFIG) ifcvf_free_per_vq_irq(vf); else ifcvf_free_vqs_reused_irq(vf); } static void ifcvf_free_config_irq(struct ifcvf_hw *vf) { struct pci_dev *pdev = vf->pdev; if (vf->config_irq == -EINVAL) return; /* If the irq is shared by all vqs and the config interrupt, * it is already freed in ifcvf_free_vq_irq, so here only * need to free config irq when msix_vector_status != MSIX_VECTOR_DEV_SHARED */ if (vf->msix_vector_status != MSIX_VECTOR_DEV_SHARED) { devm_free_irq(&pdev->dev, vf->config_irq, vf); vf->config_irq = -EINVAL; } } static void ifcvf_free_irq(struct ifcvf_hw *vf) { struct pci_dev *pdev = vf->pdev; ifcvf_free_vq_irq(vf); ifcvf_free_config_irq(vf); ifcvf_free_irq_vectors(pdev); vf->num_msix_vectors = 0; } /* ifcvf MSIX vectors allocator, this helper tries to allocate * vectors for all virtqueues and the config interrupt. * It returns the number of allocated vectors, negative * return value when fails. */ static int ifcvf_alloc_vectors(struct ifcvf_hw *vf) { struct pci_dev *pdev = vf->pdev; int max_intr, ret; /* all queues and config interrupt */ max_intr = vf->nr_vring + 1; ret = pci_alloc_irq_vectors(pdev, 1, max_intr, PCI_IRQ_MSIX | PCI_IRQ_AFFINITY); if (ret < 0) { IFCVF_ERR(pdev, "Failed to alloc IRQ vectors\n"); return ret; } if (ret < max_intr) IFCVF_INFO(pdev, "Requested %u vectors, however only %u allocated, lower performance\n", max_intr, ret); return ret; } static int ifcvf_request_per_vq_irq(struct ifcvf_hw *vf) { struct pci_dev *pdev = vf->pdev; int i, vector, ret, irq; vf->vqs_reused_irq = -EINVAL; for (i = 0; i < vf->nr_vring; i++) { snprintf(vf->vring[i].msix_name, 256, "ifcvf[%s]-%d\n", pci_name(pdev), i); vector = i; irq = pci_irq_vector(pdev, vector); ret = devm_request_irq(&pdev->dev, irq, ifcvf_vq_intr_handler, 0, vf->vring[i].msix_name, &vf->vring[i]); if (ret) { IFCVF_ERR(pdev, "Failed to request irq for vq %d\n", i); goto err; } vf->vring[i].irq = irq; ret = ifcvf_set_vq_vector(vf, i, vector); if (ret == VIRTIO_MSI_NO_VECTOR) { IFCVF_ERR(pdev, "No msix vector for vq %u\n", i); goto err; } } return 0; err: ifcvf_free_irq(vf); return -EFAULT; } static int ifcvf_request_vqs_reused_irq(struct ifcvf_hw *vf) { struct pci_dev *pdev = vf->pdev; int i, vector, ret, irq; vector = 0; snprintf(vf->vring[0].msix_name, 256, "ifcvf[%s]-vqs-reused-irq\n", pci_name(pdev)); irq = pci_irq_vector(pdev, vector); ret = devm_request_irq(&pdev->dev, irq, ifcvf_vqs_reused_intr_handler, 0, vf->vring[0].msix_name, vf); if (ret) { IFCVF_ERR(pdev, "Failed to request reused irq for the device\n"); goto err; } vf->vqs_reused_irq = irq; for (i = 0; i < vf->nr_vring; i++) { vf->vring[i].irq = -EINVAL; ret = ifcvf_set_vq_vector(vf, i, vector); if (ret == VIRTIO_MSI_NO_VECTOR) { IFCVF_ERR(pdev, "No msix vector for vq %u\n", i); goto err; } } return 0; err: ifcvf_free_irq(vf); return -EFAULT; } static int ifcvf_request_dev_irq(struct ifcvf_hw *vf) { struct pci_dev *pdev = vf->pdev; int i, vector, ret, irq; vector = 0; snprintf(vf->vring[0].msix_name, 256, "ifcvf[%s]-dev-irq\n", pci_name(pdev)); irq = pci_irq_vector(pdev, vector); ret = devm_request_irq(&pdev->dev, irq, ifcvf_dev_intr_handler, 0, vf->vring[0].msix_name, vf); if (ret) { IFCVF_ERR(pdev, "Failed to request irq for the device\n"); goto err; } vf->vqs_reused_irq = irq; for (i = 0; i < vf->nr_vring; i++) { vf->vring[i].irq = -EINVAL; ret = ifcvf_set_vq_vector(vf, i, vector); if (ret == VIRTIO_MSI_NO_VECTOR) { IFCVF_ERR(pdev, "No msix vector for vq %u\n", i); goto err; } } vf->config_irq = irq; ret = ifcvf_set_config_vector(vf, vector); if (ret == VIRTIO_MSI_NO_VECTOR) { IFCVF_ERR(pdev, "No msix vector for device config\n"); goto err; } return 0; err: ifcvf_free_irq(vf); return -EFAULT; } static int ifcvf_request_vq_irq(struct ifcvf_hw *vf) { int ret; if (vf->msix_vector_status == MSIX_VECTOR_PER_VQ_AND_CONFIG) ret = ifcvf_request_per_vq_irq(vf); else ret = ifcvf_request_vqs_reused_irq(vf); return ret; } static int ifcvf_request_config_irq(struct ifcvf_hw *vf) { struct pci_dev *pdev = vf->pdev; int config_vector, ret; if (vf->msix_vector_status == MSIX_VECTOR_PER_VQ_AND_CONFIG) config_vector = vf->nr_vring; else if (vf->msix_vector_status == MSIX_VECTOR_SHARED_VQ_AND_CONFIG) /* vector 0 for vqs and 1 for config interrupt */ config_vector = 1; else if (vf->msix_vector_status == MSIX_VECTOR_DEV_SHARED) /* re-use the vqs vector */ return 0; else return -EINVAL; snprintf(vf->config_msix_name, 256, "ifcvf[%s]-config\n", pci_name(pdev)); vf->config_irq = pci_irq_vector(pdev, config_vector); ret = devm_request_irq(&pdev->dev, vf->config_irq, ifcvf_config_changed, 0, vf->config_msix_name, vf); if (ret) { IFCVF_ERR(pdev, "Failed to request config irq\n"); goto err; } ret = ifcvf_set_config_vector(vf, config_vector); if (ret == VIRTIO_MSI_NO_VECTOR) { IFCVF_ERR(pdev, "No msix vector for device config\n"); goto err; } return 0; err: ifcvf_free_irq(vf); return -EFAULT; } static int ifcvf_request_irq(struct ifcvf_hw *vf) { int nvectors, ret, max_intr; nvectors = ifcvf_alloc_vectors(vf); if (nvectors <= 0) return -EFAULT; vf->msix_vector_status = MSIX_VECTOR_PER_VQ_AND_CONFIG; max_intr = vf->nr_vring + 1; if (nvectors < max_intr) vf->msix_vector_status = MSIX_VECTOR_SHARED_VQ_AND_CONFIG; if (nvectors == 1) { vf->msix_vector_status = MSIX_VECTOR_DEV_SHARED; ret = ifcvf_request_dev_irq(vf); return ret; } ret = ifcvf_request_vq_irq(vf); if (ret) return ret; ret = ifcvf_request_config_irq(vf); if (ret) return ret; vf->num_msix_vectors = nvectors; return 0; } static struct ifcvf_adapter *vdpa_to_adapter(struct vdpa_device *vdpa_dev) { return container_of(vdpa_dev, struct ifcvf_adapter, vdpa); } static struct ifcvf_hw *vdpa_to_vf(struct vdpa_device *vdpa_dev) { struct ifcvf_adapter *adapter = vdpa_to_adapter(vdpa_dev); return adapter->vf; } static u64 ifcvf_vdpa_get_device_features(struct vdpa_device *vdpa_dev) { struct ifcvf_adapter *adapter = vdpa_to_adapter(vdpa_dev); struct ifcvf_hw *vf = vdpa_to_vf(vdpa_dev); struct pci_dev *pdev = adapter->pdev; u32 type = vf->dev_type; u64 features; if (type == VIRTIO_ID_NET || type == VIRTIO_ID_BLOCK) features = ifcvf_get_dev_features(vf); else { features = 0; IFCVF_ERR(pdev, "VIRTIO ID %u not supported\n", vf->dev_type); } return features; } static int ifcvf_vdpa_set_driver_features(struct vdpa_device *vdpa_dev, u64 features) { struct ifcvf_hw *vf = vdpa_to_vf(vdpa_dev); int ret; ret = ifcvf_verify_min_features(vf, features); if (ret) return ret; ifcvf_set_driver_features(vf, features); return 0; } static u64 ifcvf_vdpa_get_driver_features(struct vdpa_device *vdpa_dev) { struct ifcvf_hw *vf = vdpa_to_vf(vdpa_dev); u64 features; features = ifcvf_get_driver_features(vf); return features; } static u8 ifcvf_vdpa_get_status(struct vdpa_device *vdpa_dev) { struct ifcvf_hw *vf = vdpa_to_vf(vdpa_dev); return ifcvf_get_status(vf); } static void ifcvf_vdpa_set_status(struct vdpa_device *vdpa_dev, u8 status) { struct ifcvf_hw *vf; u8 status_old; int ret; vf = vdpa_to_vf(vdpa_dev); status_old = ifcvf_get_status(vf); if (status_old == status) return; if ((status & VIRTIO_CONFIG_S_DRIVER_OK) && !(status_old & VIRTIO_CONFIG_S_DRIVER_OK)) { ret = ifcvf_request_irq(vf); if (ret) { IFCVF_ERR(vf->pdev, "failed to request irq with error %d\n", ret); return; } } ifcvf_set_status(vf, status); } static int ifcvf_vdpa_reset(struct vdpa_device *vdpa_dev) { struct ifcvf_hw *vf = vdpa_to_vf(vdpa_dev); u8 status = ifcvf_get_status(vf); ifcvf_stop(vf); if (status & VIRTIO_CONFIG_S_DRIVER_OK) ifcvf_free_irq(vf); ifcvf_reset(vf); return 0; } static u16 ifcvf_vdpa_get_vq_num_max(struct vdpa_device *vdpa_dev) { struct ifcvf_hw *vf = vdpa_to_vf(vdpa_dev); return ifcvf_get_max_vq_size(vf); } static int ifcvf_vdpa_get_vq_state(struct vdpa_device *vdpa_dev, u16 qid, struct vdpa_vq_state *state) { struct ifcvf_hw *vf = vdpa_to_vf(vdpa_dev); state->split.avail_index = ifcvf_get_vq_state(vf, qid); return 0; } static int ifcvf_vdpa_set_vq_state(struct vdpa_device *vdpa_dev, u16 qid, const struct vdpa_vq_state *state) { struct ifcvf_hw *vf = vdpa_to_vf(vdpa_dev); return ifcvf_set_vq_state(vf, qid, state->split.avail_index); } static void ifcvf_vdpa_set_vq_cb(struct vdpa_device *vdpa_dev, u16 qid, struct vdpa_callback *cb) { struct ifcvf_hw *vf = vdpa_to_vf(vdpa_dev); vf->vring[qid].cb = *cb; } static void ifcvf_vdpa_set_vq_ready(struct vdpa_device *vdpa_dev, u16 qid, bool ready) { struct ifcvf_hw *vf = vdpa_to_vf(vdpa_dev); ifcvf_set_vq_ready(vf, qid, ready); } static bool ifcvf_vdpa_get_vq_ready(struct vdpa_device *vdpa_dev, u16 qid) { struct ifcvf_hw *vf = vdpa_to_vf(vdpa_dev); return ifcvf_get_vq_ready(vf, qid); } static void ifcvf_vdpa_set_vq_num(struct vdpa_device *vdpa_dev, u16 qid, u32 num) { struct ifcvf_hw *vf = vdpa_to_vf(vdpa_dev); ifcvf_set_vq_num(vf, qid, num); } static int ifcvf_vdpa_set_vq_address(struct vdpa_device *vdpa_dev, u16 qid, u64 desc_area, u64 driver_area, u64 device_area) { struct ifcvf_hw *vf = vdpa_to_vf(vdpa_dev); return ifcvf_set_vq_address(vf, qid, desc_area, driver_area, device_area); } static void ifcvf_vdpa_kick_vq(struct vdpa_device *vdpa_dev, u16 qid) { struct ifcvf_hw *vf = vdpa_to_vf(vdpa_dev); ifcvf_notify_queue(vf, qid); } static u32 ifcvf_vdpa_get_generation(struct vdpa_device *vdpa_dev) { struct ifcvf_hw *vf = vdpa_to_vf(vdpa_dev); return vp_ioread8(&vf->common_cfg->config_generation); } static u32 ifcvf_vdpa_get_device_id(struct vdpa_device *vdpa_dev) { struct ifcvf_hw *vf = vdpa_to_vf(vdpa_dev); return vf->dev_type; } static u32 ifcvf_vdpa_get_vendor_id(struct vdpa_device *vdpa_dev) { struct ifcvf_adapter *adapter = vdpa_to_adapter(vdpa_dev); struct pci_dev *pdev = adapter->pdev; return pdev->subsystem_vendor; } static u32 ifcvf_vdpa_get_vq_align(struct vdpa_device *vdpa_dev) { return IFCVF_QUEUE_ALIGNMENT; } static size_t ifcvf_vdpa_get_config_size(struct vdpa_device *vdpa_dev) { struct ifcvf_hw *vf = vdpa_to_vf(vdpa_dev); return vf->config_size; } static u32 ifcvf_vdpa_get_vq_group(struct vdpa_device *vdpa, u16 idx) { return 0; } static void ifcvf_vdpa_get_config(struct vdpa_device *vdpa_dev, unsigned int offset, void *buf, unsigned int len) { struct ifcvf_hw *vf = vdpa_to_vf(vdpa_dev); ifcvf_read_dev_config(vf, offset, buf, len); } static void ifcvf_vdpa_set_config(struct vdpa_device *vdpa_dev, unsigned int offset, const void *buf, unsigned int len) { struct ifcvf_hw *vf = vdpa_to_vf(vdpa_dev); ifcvf_write_dev_config(vf, offset, buf, len); } static void ifcvf_vdpa_set_config_cb(struct vdpa_device *vdpa_dev, struct vdpa_callback *cb) { struct ifcvf_hw *vf = vdpa_to_vf(vdpa_dev); vf->config_cb.callback = cb->callback; vf->config_cb.private = cb->private; } static int ifcvf_vdpa_get_vq_irq(struct vdpa_device *vdpa_dev, u16 qid) { struct ifcvf_hw *vf = vdpa_to_vf(vdpa_dev); if (vf->vqs_reused_irq < 0) return vf->vring[qid].irq; else return -EINVAL; } static struct vdpa_notification_area ifcvf_get_vq_notification(struct vdpa_device *vdpa_dev, u16 idx) { struct ifcvf_hw *vf = vdpa_to_vf(vdpa_dev); struct vdpa_notification_area area; area.addr = vf->vring[idx].notify_pa; if (!vf->notify_off_multiplier) area.size = PAGE_SIZE; else area.size = vf->notify_off_multiplier; return area; } /* * IFCVF currently doesn't have on-chip IOMMU, so not * implemented set_map()/dma_map()/dma_unmap() */ static const struct vdpa_config_ops ifc_vdpa_ops = { .get_device_features = ifcvf_vdpa_get_device_features, .set_driver_features = ifcvf_vdpa_set_driver_features, .get_driver_features = ifcvf_vdpa_get_driver_features, .get_status = ifcvf_vdpa_get_status, .set_status = ifcvf_vdpa_set_status, .reset = ifcvf_vdpa_reset, .get_vq_num_max = ifcvf_vdpa_get_vq_num_max, .get_vq_state = ifcvf_vdpa_get_vq_state, .set_vq_state = ifcvf_vdpa_set_vq_state, .set_vq_cb = ifcvf_vdpa_set_vq_cb, .set_vq_ready = ifcvf_vdpa_set_vq_ready, .get_vq_ready = ifcvf_vdpa_get_vq_ready, .set_vq_num = ifcvf_vdpa_set_vq_num, .set_vq_address = ifcvf_vdpa_set_vq_address, .get_vq_irq = ifcvf_vdpa_get_vq_irq, .kick_vq = ifcvf_vdpa_kick_vq, .get_generation = ifcvf_vdpa_get_generation, .get_device_id = ifcvf_vdpa_get_device_id, .get_vendor_id = ifcvf_vdpa_get_vendor_id, .get_vq_align = ifcvf_vdpa_get_vq_align, .get_vq_group = ifcvf_vdpa_get_vq_group, .get_config_size = ifcvf_vdpa_get_config_size, .get_config = ifcvf_vdpa_get_config, .set_config = ifcvf_vdpa_set_config, .set_config_cb = ifcvf_vdpa_set_config_cb, .get_vq_notification = ifcvf_get_vq_notification, }; static struct virtio_device_id id_table_net[] = { {VIRTIO_ID_NET, VIRTIO_DEV_ANY_ID}, {0}, }; static struct virtio_device_id id_table_blk[] = { {VIRTIO_ID_BLOCK, VIRTIO_DEV_ANY_ID}, {0}, }; static u32 get_dev_type(struct pci_dev *pdev) { u32 dev_type; /* This drirver drives both modern virtio devices and transitional * devices in modern mode. * vDPA requires feature bit VIRTIO_F_ACCESS_PLATFORM, * so legacy devices and transitional devices in legacy * mode will not work for vDPA, this driver will not * drive devices with legacy interface. */ if (pdev->device < 0x1040) dev_type = pdev->subsystem_device; else dev_type = pdev->device - 0x1040; return dev_type; } static int ifcvf_vdpa_dev_add(struct vdpa_mgmt_dev *mdev, const char *name, const struct vdpa_dev_set_config *config) { struct ifcvf_vdpa_mgmt_dev *ifcvf_mgmt_dev; struct ifcvf_adapter *adapter; struct vdpa_device *vdpa_dev; struct pci_dev *pdev; struct ifcvf_hw *vf; u64 device_features; int ret; ifcvf_mgmt_dev = container_of(mdev, struct ifcvf_vdpa_mgmt_dev, mdev); vf = &ifcvf_mgmt_dev->vf; pdev = vf->pdev; adapter = vdpa_alloc_device(struct ifcvf_adapter, vdpa, &pdev->dev, &ifc_vdpa_ops, 1, 1, NULL, false); if (IS_ERR(adapter)) { IFCVF_ERR(pdev, "Failed to allocate vDPA structure"); return PTR_ERR(adapter); } ifcvf_mgmt_dev->adapter = adapter; adapter->pdev = pdev; adapter->vdpa.dma_dev = &pdev->dev; adapter->vdpa.mdev = mdev; adapter->vf = vf; vdpa_dev = &adapter->vdpa; device_features = vf->hw_features; if (config->mask & BIT_ULL(VDPA_ATTR_DEV_FEATURES)) { if (config->device_features & ~device_features) { IFCVF_ERR(pdev, "The provisioned features 0x%llx are not supported by this device with features 0x%llx\n", config->device_features, device_features); return -EINVAL; } device_features &= config->device_features; } vf->dev_features = device_features; if (name) ret = dev_set_name(&vdpa_dev->dev, "%s", name); else ret = dev_set_name(&vdpa_dev->dev, "vdpa%u", vdpa_dev->index); ret = _vdpa_register_device(&adapter->vdpa, vf->nr_vring); if (ret) { put_device(&adapter->vdpa.dev); IFCVF_ERR(pdev, "Failed to register to vDPA bus"); return ret; } return 0; } static void ifcvf_vdpa_dev_del(struct vdpa_mgmt_dev *mdev, struct vdpa_device *dev) { struct ifcvf_vdpa_mgmt_dev *ifcvf_mgmt_dev; ifcvf_mgmt_dev = container_of(mdev, struct ifcvf_vdpa_mgmt_dev, mdev); _vdpa_unregister_device(dev); ifcvf_mgmt_dev->adapter = NULL; } static const struct vdpa_mgmtdev_ops ifcvf_vdpa_mgmt_dev_ops = { .dev_add = ifcvf_vdpa_dev_add, .dev_del = ifcvf_vdpa_dev_del }; static int ifcvf_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct ifcvf_vdpa_mgmt_dev *ifcvf_mgmt_dev; struct device *dev = &pdev->dev; struct ifcvf_hw *vf; u32 dev_type; int ret, i; ret = pcim_enable_device(pdev); if (ret) { IFCVF_ERR(pdev, "Failed to enable device\n"); return ret; } ret = pcim_iomap_regions(pdev, BIT(0) | BIT(2) | BIT(4), IFCVF_DRIVER_NAME); if (ret) { IFCVF_ERR(pdev, "Failed to request MMIO region\n"); return ret; } ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); if (ret) { IFCVF_ERR(pdev, "No usable DMA configuration\n"); return ret; } ret = devm_add_action_or_reset(dev, ifcvf_free_irq_vectors, pdev); if (ret) { IFCVF_ERR(pdev, "Failed for adding devres for freeing irq vectors\n"); return ret; } pci_set_master(pdev); ifcvf_mgmt_dev = kzalloc(sizeof(struct ifcvf_vdpa_mgmt_dev), GFP_KERNEL); if (!ifcvf_mgmt_dev) { IFCVF_ERR(pdev, "Failed to alloc memory for the vDPA management device\n"); return -ENOMEM; } vf = &ifcvf_mgmt_dev->vf; vf->dev_type = get_dev_type(pdev); vf->base = pcim_iomap_table(pdev); vf->pdev = pdev; ret = ifcvf_init_hw(vf, pdev); if (ret) { IFCVF_ERR(pdev, "Failed to init IFCVF hw\n"); goto err; } for (i = 0; i < vf->nr_vring; i++) vf->vring[i].irq = -EINVAL; vf->hw_features = ifcvf_get_hw_features(vf); vf->config_size = ifcvf_get_config_size(vf); dev_type = get_dev_type(pdev); switch (dev_type) { case VIRTIO_ID_NET: ifcvf_mgmt_dev->mdev.id_table = id_table_net; break; case VIRTIO_ID_BLOCK: ifcvf_mgmt_dev->mdev.id_table = id_table_blk; break; default: IFCVF_ERR(pdev, "VIRTIO ID %u not supported\n", dev_type); ret = -EOPNOTSUPP; goto err; } ifcvf_mgmt_dev->mdev.ops = &ifcvf_vdpa_mgmt_dev_ops; ifcvf_mgmt_dev->mdev.device = dev; ifcvf_mgmt_dev->mdev.max_supported_vqs = vf->nr_vring; ifcvf_mgmt_dev->mdev.supported_features = vf->hw_features; ifcvf_mgmt_dev->mdev.config_attr_mask = (1 << VDPA_ATTR_DEV_FEATURES); ret = vdpa_mgmtdev_register(&ifcvf_mgmt_dev->mdev); if (ret) { IFCVF_ERR(pdev, "Failed to initialize the management interfaces\n"); goto err; } pci_set_drvdata(pdev, ifcvf_mgmt_dev); return 0; err: kfree(ifcvf_mgmt_dev->vf.vring); kfree(ifcvf_mgmt_dev); return ret; } static void ifcvf_remove(struct pci_dev *pdev) { struct ifcvf_vdpa_mgmt_dev *ifcvf_mgmt_dev; ifcvf_mgmt_dev = pci_get_drvdata(pdev); vdpa_mgmtdev_unregister(&ifcvf_mgmt_dev->mdev); kfree(ifcvf_mgmt_dev->vf.vring); kfree(ifcvf_mgmt_dev); } static struct pci_device_id ifcvf_pci_ids[] = { /* N3000 network device */ { PCI_DEVICE_SUB(PCI_VENDOR_ID_REDHAT_QUMRANET, N3000_DEVICE_ID, PCI_VENDOR_ID_INTEL, N3000_SUBSYS_DEVICE_ID) }, /* C5000X-PL network device * F2000X-PL network device */ { PCI_DEVICE_SUB(PCI_VENDOR_ID_REDHAT_QUMRANET, VIRTIO_TRANS_ID_NET, PCI_VENDOR_ID_INTEL, VIRTIO_ID_NET) }, /* C5000X-PL block device */ { PCI_DEVICE_SUB(PCI_VENDOR_ID_REDHAT_QUMRANET, VIRTIO_TRANS_ID_BLOCK, PCI_VENDOR_ID_INTEL, VIRTIO_ID_BLOCK) }, { 0 }, }; MODULE_DEVICE_TABLE(pci, ifcvf_pci_ids); static struct pci_driver ifcvf_driver = { .name = IFCVF_DRIVER_NAME, .id_table = ifcvf_pci_ids, .probe = ifcvf_probe, .remove = ifcvf_remove, }; module_pci_driver(ifcvf_driver); MODULE_LICENSE("GPL v2");
linux-master
drivers/vdpa/ifcvf/ifcvf_main.c
// SPDX-License-Identifier: GPL-2.0-only /* * Intel IFC VF NIC driver for virtio dataplane offloading * * Copyright (C) 2020 Intel Corporation. * * Author: Zhu Lingshan <[email protected]> * */ #include "ifcvf_base.h" u16 ifcvf_set_vq_vector(struct ifcvf_hw *hw, u16 qid, int vector) { struct virtio_pci_common_cfg __iomem *cfg = hw->common_cfg; vp_iowrite16(qid, &cfg->queue_select); vp_iowrite16(vector, &cfg->queue_msix_vector); return vp_ioread16(&cfg->queue_msix_vector); } u16 ifcvf_set_config_vector(struct ifcvf_hw *hw, int vector) { struct virtio_pci_common_cfg __iomem *cfg = hw->common_cfg; vp_iowrite16(vector, &cfg->msix_config); return vp_ioread16(&cfg->msix_config); } static void __iomem *get_cap_addr(struct ifcvf_hw *hw, struct virtio_pci_cap *cap) { u32 length, offset; u8 bar; length = le32_to_cpu(cap->length); offset = le32_to_cpu(cap->offset); bar = cap->bar; if (bar >= IFCVF_PCI_MAX_RESOURCE) { IFCVF_DBG(hw->pdev, "Invalid bar number %u to get capabilities\n", bar); return NULL; } if (offset + length > pci_resource_len(hw->pdev, bar)) { IFCVF_DBG(hw->pdev, "offset(%u) + len(%u) overflows bar%u's capability\n", offset, length, bar); return NULL; } return hw->base[bar] + offset; } static int ifcvf_read_config_range(struct pci_dev *dev, uint32_t *val, int size, int where) { int ret, i; for (i = 0; i < size; i += 4) { ret = pci_read_config_dword(dev, where + i, val + i / 4); if (ret < 0) return ret; } return 0; } static u16 ifcvf_get_vq_size(struct ifcvf_hw *hw, u16 qid) { u16 queue_size; vp_iowrite16(qid, &hw->common_cfg->queue_select); queue_size = vp_ioread16(&hw->common_cfg->queue_size); return queue_size; } /* This function returns the max allowed safe size for * all virtqueues. It is the minimal size that can be * suppprted by all virtqueues. */ u16 ifcvf_get_max_vq_size(struct ifcvf_hw *hw) { u16 queue_size, max_size, qid; max_size = ifcvf_get_vq_size(hw, 0); for (qid = 1; qid < hw->nr_vring; qid++) { queue_size = ifcvf_get_vq_size(hw, qid); /* 0 means the queue is unavailable */ if (!queue_size) continue; max_size = min(queue_size, max_size); } return max_size; } int ifcvf_init_hw(struct ifcvf_hw *hw, struct pci_dev *pdev) { struct virtio_pci_cap cap; u16 notify_off; int ret; u8 pos; u32 i; ret = pci_read_config_byte(pdev, PCI_CAPABILITY_LIST, &pos); if (ret < 0) { IFCVF_ERR(pdev, "Failed to read PCI capability list\n"); return -EIO; } hw->pdev = pdev; while (pos) { ret = ifcvf_read_config_range(pdev, (u32 *)&cap, sizeof(cap), pos); if (ret < 0) { IFCVF_ERR(pdev, "Failed to get PCI capability at %x\n", pos); break; } if (cap.cap_vndr != PCI_CAP_ID_VNDR) goto next; switch (cap.cfg_type) { case VIRTIO_PCI_CAP_COMMON_CFG: hw->common_cfg = get_cap_addr(hw, &cap); IFCVF_DBG(pdev, "hw->common_cfg = %p\n", hw->common_cfg); break; case VIRTIO_PCI_CAP_NOTIFY_CFG: pci_read_config_dword(pdev, pos + sizeof(cap), &hw->notify_off_multiplier); hw->notify_bar = cap.bar; hw->notify_base = get_cap_addr(hw, &cap); hw->notify_base_pa = pci_resource_start(pdev, cap.bar) + le32_to_cpu(cap.offset); IFCVF_DBG(pdev, "hw->notify_base = %p\n", hw->notify_base); break; case VIRTIO_PCI_CAP_ISR_CFG: hw->isr = get_cap_addr(hw, &cap); IFCVF_DBG(pdev, "hw->isr = %p\n", hw->isr); break; case VIRTIO_PCI_CAP_DEVICE_CFG: hw->dev_cfg = get_cap_addr(hw, &cap); hw->cap_dev_config_size = le32_to_cpu(cap.length); IFCVF_DBG(pdev, "hw->dev_cfg = %p\n", hw->dev_cfg); break; } next: pos = cap.cap_next; } if (hw->common_cfg == NULL || hw->notify_base == NULL || hw->isr == NULL || hw->dev_cfg == NULL) { IFCVF_ERR(pdev, "Incomplete PCI capabilities\n"); return -EIO; } hw->nr_vring = vp_ioread16(&hw->common_cfg->num_queues); hw->vring = kzalloc(sizeof(struct vring_info) * hw->nr_vring, GFP_KERNEL); if (!hw->vring) return -ENOMEM; for (i = 0; i < hw->nr_vring; i++) { vp_iowrite16(i, &hw->common_cfg->queue_select); notify_off = vp_ioread16(&hw->common_cfg->queue_notify_off); hw->vring[i].notify_addr = hw->notify_base + notify_off * hw->notify_off_multiplier; hw->vring[i].notify_pa = hw->notify_base_pa + notify_off * hw->notify_off_multiplier; hw->vring[i].irq = -EINVAL; } hw->lm_cfg = hw->base[IFCVF_LM_BAR]; IFCVF_DBG(pdev, "PCI capability mapping: common cfg: %p, notify base: %p\n, isr cfg: %p, device cfg: %p, multiplier: %u\n", hw->common_cfg, hw->notify_base, hw->isr, hw->dev_cfg, hw->notify_off_multiplier); hw->vqs_reused_irq = -EINVAL; hw->config_irq = -EINVAL; return 0; } u8 ifcvf_get_status(struct ifcvf_hw *hw) { return vp_ioread8(&hw->common_cfg->device_status); } void ifcvf_set_status(struct ifcvf_hw *hw, u8 status) { vp_iowrite8(status, &hw->common_cfg->device_status); } void ifcvf_reset(struct ifcvf_hw *hw) { ifcvf_set_status(hw, 0); while (ifcvf_get_status(hw)) msleep(1); } u64 ifcvf_get_hw_features(struct ifcvf_hw *hw) { struct virtio_pci_common_cfg __iomem *cfg = hw->common_cfg; u32 features_lo, features_hi; u64 features; vp_iowrite32(0, &cfg->device_feature_select); features_lo = vp_ioread32(&cfg->device_feature); vp_iowrite32(1, &cfg->device_feature_select); features_hi = vp_ioread32(&cfg->device_feature); features = ((u64)features_hi << 32) | features_lo; return features; } /* return provisioned vDPA dev features */ u64 ifcvf_get_dev_features(struct ifcvf_hw *hw) { return hw->dev_features; } u64 ifcvf_get_driver_features(struct ifcvf_hw *hw) { struct virtio_pci_common_cfg __iomem *cfg = hw->common_cfg; u32 features_lo, features_hi; u64 features; vp_iowrite32(0, &cfg->device_feature_select); features_lo = vp_ioread32(&cfg->guest_feature); vp_iowrite32(1, &cfg->device_feature_select); features_hi = vp_ioread32(&cfg->guest_feature); features = ((u64)features_hi << 32) | features_lo; return features; } int ifcvf_verify_min_features(struct ifcvf_hw *hw, u64 features) { if (!(features & BIT_ULL(VIRTIO_F_ACCESS_PLATFORM)) && features) { IFCVF_ERR(hw->pdev, "VIRTIO_F_ACCESS_PLATFORM is not negotiated\n"); return -EINVAL; } return 0; } u32 ifcvf_get_config_size(struct ifcvf_hw *hw) { u32 net_config_size = sizeof(struct virtio_net_config); u32 blk_config_size = sizeof(struct virtio_blk_config); u32 cap_size = hw->cap_dev_config_size; u32 config_size; /* If the onboard device config space size is greater than * the size of struct virtio_net/blk_config, only the spec * implementing contents size is returned, this is very * unlikely, defensive programming. */ switch (hw->dev_type) { case VIRTIO_ID_NET: config_size = min(cap_size, net_config_size); break; case VIRTIO_ID_BLOCK: config_size = min(cap_size, blk_config_size); break; default: config_size = 0; IFCVF_ERR(hw->pdev, "VIRTIO ID %u not supported\n", hw->dev_type); } return config_size; } void ifcvf_read_dev_config(struct ifcvf_hw *hw, u64 offset, void *dst, int length) { u8 old_gen, new_gen, *p; int i; WARN_ON(offset + length > hw->config_size); do { old_gen = vp_ioread8(&hw->common_cfg->config_generation); p = dst; for (i = 0; i < length; i++) *p++ = vp_ioread8(hw->dev_cfg + offset + i); new_gen = vp_ioread8(&hw->common_cfg->config_generation); } while (old_gen != new_gen); } void ifcvf_write_dev_config(struct ifcvf_hw *hw, u64 offset, const void *src, int length) { const u8 *p; int i; p = src; WARN_ON(offset + length > hw->config_size); for (i = 0; i < length; i++) vp_iowrite8(*p++, hw->dev_cfg + offset + i); } void ifcvf_set_driver_features(struct ifcvf_hw *hw, u64 features) { struct virtio_pci_common_cfg __iomem *cfg = hw->common_cfg; vp_iowrite32(0, &cfg->guest_feature_select); vp_iowrite32((u32)features, &cfg->guest_feature); vp_iowrite32(1, &cfg->guest_feature_select); vp_iowrite32(features >> 32, &cfg->guest_feature); } u16 ifcvf_get_vq_state(struct ifcvf_hw *hw, u16 qid) { struct ifcvf_lm_cfg __iomem *lm_cfg = hw->lm_cfg; u16 last_avail_idx; last_avail_idx = vp_ioread16(&lm_cfg->vq_state_region + qid * 2); return last_avail_idx; } int ifcvf_set_vq_state(struct ifcvf_hw *hw, u16 qid, u16 num) { struct ifcvf_lm_cfg __iomem *lm_cfg = hw->lm_cfg; vp_iowrite16(num, &lm_cfg->vq_state_region + qid * 2); return 0; } void ifcvf_set_vq_num(struct ifcvf_hw *hw, u16 qid, u32 num) { struct virtio_pci_common_cfg __iomem *cfg = hw->common_cfg; vp_iowrite16(qid, &cfg->queue_select); vp_iowrite16(num, &cfg->queue_size); } int ifcvf_set_vq_address(struct ifcvf_hw *hw, u16 qid, u64 desc_area, u64 driver_area, u64 device_area) { struct virtio_pci_common_cfg __iomem *cfg = hw->common_cfg; vp_iowrite16(qid, &cfg->queue_select); vp_iowrite64_twopart(desc_area, &cfg->queue_desc_lo, &cfg->queue_desc_hi); vp_iowrite64_twopart(driver_area, &cfg->queue_avail_lo, &cfg->queue_avail_hi); vp_iowrite64_twopart(device_area, &cfg->queue_used_lo, &cfg->queue_used_hi); return 0; } bool ifcvf_get_vq_ready(struct ifcvf_hw *hw, u16 qid) { struct virtio_pci_common_cfg __iomem *cfg = hw->common_cfg; u16 queue_enable; vp_iowrite16(qid, &cfg->queue_select); queue_enable = vp_ioread16(&cfg->queue_enable); return (bool)queue_enable; } void ifcvf_set_vq_ready(struct ifcvf_hw *hw, u16 qid, bool ready) { struct virtio_pci_common_cfg __iomem *cfg = hw->common_cfg; vp_iowrite16(qid, &cfg->queue_select); vp_iowrite16(ready, &cfg->queue_enable); } static void ifcvf_reset_vring(struct ifcvf_hw *hw) { u16 qid; for (qid = 0; qid < hw->nr_vring; qid++) { hw->vring[qid].cb.callback = NULL; hw->vring[qid].cb.private = NULL; ifcvf_set_vq_vector(hw, qid, VIRTIO_MSI_NO_VECTOR); } } static void ifcvf_reset_config_handler(struct ifcvf_hw *hw) { hw->config_cb.callback = NULL; hw->config_cb.private = NULL; ifcvf_set_config_vector(hw, VIRTIO_MSI_NO_VECTOR); } static void ifcvf_synchronize_irq(struct ifcvf_hw *hw) { u32 nvectors = hw->num_msix_vectors; struct pci_dev *pdev = hw->pdev; int i, irq; for (i = 0; i < nvectors; i++) { irq = pci_irq_vector(pdev, i); if (irq >= 0) synchronize_irq(irq); } } void ifcvf_stop(struct ifcvf_hw *hw) { ifcvf_synchronize_irq(hw); ifcvf_reset_vring(hw); ifcvf_reset_config_handler(hw); } void ifcvf_notify_queue(struct ifcvf_hw *hw, u16 qid) { vp_iowrite16(qid, hw->vring[qid].notify_addr); }
linux-master
drivers/vdpa/ifcvf/ifcvf_base.c
// SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB /* Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. */ #include <linux/debugfs.h> #include <linux/mlx5/fs.h> #include "mlx5_vnet.h" static int tirn_show(struct seq_file *file, void *priv) { struct mlx5_vdpa_net *ndev = file->private; seq_printf(file, "0x%x\n", ndev->res.tirn); return 0; } DEFINE_SHOW_ATTRIBUTE(tirn); void mlx5_vdpa_remove_tirn(struct mlx5_vdpa_net *ndev) { if (ndev->debugfs) debugfs_remove(ndev->res.tirn_dent); } void mlx5_vdpa_add_tirn(struct mlx5_vdpa_net *ndev) { ndev->res.tirn_dent = debugfs_create_file("tirn", 0444, ndev->rx_dent, ndev, &tirn_fops); } static int rx_flow_table_show(struct seq_file *file, void *priv) { struct mlx5_vdpa_net *ndev = file->private; seq_printf(file, "0x%x\n", mlx5_flow_table_id(ndev->rxft)); return 0; } DEFINE_SHOW_ATTRIBUTE(rx_flow_table); void mlx5_vdpa_remove_rx_flow_table(struct mlx5_vdpa_net *ndev) { if (ndev->debugfs) debugfs_remove(ndev->rx_table_dent); } void mlx5_vdpa_add_rx_flow_table(struct mlx5_vdpa_net *ndev) { ndev->rx_table_dent = debugfs_create_file("table_id", 0444, ndev->rx_dent, ndev, &rx_flow_table_fops); } #if defined(CONFIG_MLX5_VDPA_STEERING_DEBUG) static int packets_show(struct seq_file *file, void *priv) { struct mlx5_vdpa_counter *counter = file->private; u64 packets; u64 bytes; int err; err = mlx5_fc_query(counter->mdev, counter->counter, &packets, &bytes); if (err) return err; seq_printf(file, "0x%llx\n", packets); return 0; } static int bytes_show(struct seq_file *file, void *priv) { struct mlx5_vdpa_counter *counter = file->private; u64 packets; u64 bytes; int err; err = mlx5_fc_query(counter->mdev, counter->counter, &packets, &bytes); if (err) return err; seq_printf(file, "0x%llx\n", bytes); return 0; } DEFINE_SHOW_ATTRIBUTE(packets); DEFINE_SHOW_ATTRIBUTE(bytes); static void add_counter_node(struct mlx5_vdpa_counter *counter, struct dentry *parent) { debugfs_create_file("packets", 0444, parent, counter, &packets_fops); debugfs_create_file("bytes", 0444, parent, counter, &bytes_fops); } void mlx5_vdpa_add_rx_counters(struct mlx5_vdpa_net *ndev, struct macvlan_node *node) { static const char *ut = "untagged"; char vidstr[9]; u16 vid; node->ucast_counter.mdev = ndev->mvdev.mdev; node->mcast_counter.mdev = ndev->mvdev.mdev; if (node->tagged) { vid = key2vid(node->macvlan); snprintf(vidstr, sizeof(vidstr), "0x%x", vid); } else { strcpy(vidstr, ut); } node->dent = debugfs_create_dir(vidstr, ndev->rx_dent); if (IS_ERR(node->dent)) { node->dent = NULL; return; } node->ucast_counter.dent = debugfs_create_dir("ucast", node->dent); if (IS_ERR(node->ucast_counter.dent)) return; add_counter_node(&node->ucast_counter, node->ucast_counter.dent); node->mcast_counter.dent = debugfs_create_dir("mcast", node->dent); if (IS_ERR(node->mcast_counter.dent)) return; add_counter_node(&node->mcast_counter, node->mcast_counter.dent); } void mlx5_vdpa_remove_rx_counters(struct mlx5_vdpa_net *ndev, struct macvlan_node *node) { if (node->dent && ndev->debugfs) debugfs_remove_recursive(node->dent); } #endif void mlx5_vdpa_add_debugfs(struct mlx5_vdpa_net *ndev) { struct mlx5_core_dev *mdev; mdev = ndev->mvdev.mdev; ndev->debugfs = debugfs_create_dir(dev_name(&ndev->mvdev.vdev.dev), mlx5_debugfs_get_dev_root(mdev)); if (!IS_ERR(ndev->debugfs)) ndev->rx_dent = debugfs_create_dir("rx", ndev->debugfs); } void mlx5_vdpa_remove_debugfs(struct dentry *dbg) { debugfs_remove_recursive(dbg); }
linux-master
drivers/vdpa/mlx5/net/debug.c
// SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB /* Copyright (c) 2020 Mellanox Technologies Ltd. */ #include <linux/module.h> #include <linux/vdpa.h> #include <linux/vringh.h> #include <uapi/linux/virtio_net.h> #include <uapi/linux/virtio_ids.h> #include <uapi/linux/vdpa.h> #include <linux/virtio_config.h> #include <linux/auxiliary_bus.h> #include <linux/mlx5/cq.h> #include <linux/mlx5/qp.h> #include <linux/mlx5/device.h> #include <linux/mlx5/driver.h> #include <linux/mlx5/vport.h> #include <linux/mlx5/fs.h> #include <linux/mlx5/mlx5_ifc_vdpa.h> #include <linux/mlx5/mpfs.h> #include "mlx5_vdpa.h" #include "mlx5_vnet.h" MODULE_AUTHOR("Eli Cohen <[email protected]>"); MODULE_DESCRIPTION("Mellanox VDPA driver"); MODULE_LICENSE("Dual BSD/GPL"); #define VALID_FEATURES_MASK \ (BIT_ULL(VIRTIO_NET_F_CSUM) | BIT_ULL(VIRTIO_NET_F_GUEST_CSUM) | \ BIT_ULL(VIRTIO_NET_F_CTRL_GUEST_OFFLOADS) | BIT_ULL(VIRTIO_NET_F_MTU) | BIT_ULL(VIRTIO_NET_F_MAC) | \ BIT_ULL(VIRTIO_NET_F_GUEST_TSO4) | BIT_ULL(VIRTIO_NET_F_GUEST_TSO6) | \ BIT_ULL(VIRTIO_NET_F_GUEST_ECN) | BIT_ULL(VIRTIO_NET_F_GUEST_UFO) | BIT_ULL(VIRTIO_NET_F_HOST_TSO4) | \ BIT_ULL(VIRTIO_NET_F_HOST_TSO6) | BIT_ULL(VIRTIO_NET_F_HOST_ECN) | BIT_ULL(VIRTIO_NET_F_HOST_UFO) | \ BIT_ULL(VIRTIO_NET_F_MRG_RXBUF) | BIT_ULL(VIRTIO_NET_F_STATUS) | BIT_ULL(VIRTIO_NET_F_CTRL_VQ) | \ BIT_ULL(VIRTIO_NET_F_CTRL_RX) | BIT_ULL(VIRTIO_NET_F_CTRL_VLAN) | \ BIT_ULL(VIRTIO_NET_F_CTRL_RX_EXTRA) | BIT_ULL(VIRTIO_NET_F_GUEST_ANNOUNCE) | \ BIT_ULL(VIRTIO_NET_F_MQ) | BIT_ULL(VIRTIO_NET_F_CTRL_MAC_ADDR) | BIT_ULL(VIRTIO_NET_F_HASH_REPORT) | \ BIT_ULL(VIRTIO_NET_F_RSS) | BIT_ULL(VIRTIO_NET_F_RSC_EXT) | BIT_ULL(VIRTIO_NET_F_STANDBY) | \ BIT_ULL(VIRTIO_NET_F_SPEED_DUPLEX) | BIT_ULL(VIRTIO_F_NOTIFY_ON_EMPTY) | \ BIT_ULL(VIRTIO_F_ANY_LAYOUT) | BIT_ULL(VIRTIO_F_VERSION_1) | BIT_ULL(VIRTIO_F_ACCESS_PLATFORM) | \ BIT_ULL(VIRTIO_F_RING_PACKED) | BIT_ULL(VIRTIO_F_ORDER_PLATFORM) | BIT_ULL(VIRTIO_F_SR_IOV)) #define VALID_STATUS_MASK \ (VIRTIO_CONFIG_S_ACKNOWLEDGE | VIRTIO_CONFIG_S_DRIVER | VIRTIO_CONFIG_S_DRIVER_OK | \ VIRTIO_CONFIG_S_FEATURES_OK | VIRTIO_CONFIG_S_NEEDS_RESET | VIRTIO_CONFIG_S_FAILED) #define MLX5_FEATURE(_mvdev, _feature) (!!((_mvdev)->actual_features & BIT_ULL(_feature))) #define MLX5V_UNTAGGED 0x1000 struct mlx5_vdpa_cq_buf { struct mlx5_frag_buf_ctrl fbc; struct mlx5_frag_buf frag_buf; int cqe_size; int nent; }; struct mlx5_vdpa_cq { struct mlx5_core_cq mcq; struct mlx5_vdpa_cq_buf buf; struct mlx5_db db; int cqe; }; struct mlx5_vdpa_umem { struct mlx5_frag_buf_ctrl fbc; struct mlx5_frag_buf frag_buf; int size; u32 id; }; struct mlx5_vdpa_qp { struct mlx5_core_qp mqp; struct mlx5_frag_buf frag_buf; struct mlx5_db db; u16 head; bool fw; }; struct mlx5_vq_restore_info { u32 num_ent; u64 desc_addr; u64 device_addr; u64 driver_addr; u16 avail_index; u16 used_index; struct msi_map map; bool ready; bool restore; }; struct mlx5_vdpa_virtqueue { bool ready; u64 desc_addr; u64 device_addr; u64 driver_addr; u32 num_ent; /* Resources for implementing the notification channel from the device * to the driver. fwqp is the firmware end of an RC connection; the * other end is vqqp used by the driver. cq is where completions are * reported. */ struct mlx5_vdpa_cq cq; struct mlx5_vdpa_qp fwqp; struct mlx5_vdpa_qp vqqp; /* umem resources are required for the virtqueue operation. They're use * is internal and they must be provided by the driver. */ struct mlx5_vdpa_umem umem1; struct mlx5_vdpa_umem umem2; struct mlx5_vdpa_umem umem3; u32 counter_set_id; bool initialized; int index; u32 virtq_id; struct mlx5_vdpa_net *ndev; u16 avail_idx; u16 used_idx; int fw_state; struct msi_map map; /* keep last in the struct */ struct mlx5_vq_restore_info ri; }; static bool is_index_valid(struct mlx5_vdpa_dev *mvdev, u16 idx) { if (!(mvdev->actual_features & BIT_ULL(VIRTIO_NET_F_MQ))) { if (!(mvdev->actual_features & BIT_ULL(VIRTIO_NET_F_CTRL_VQ))) return idx < 2; else return idx < 3; } return idx <= mvdev->max_idx; } static void free_resources(struct mlx5_vdpa_net *ndev); static void init_mvqs(struct mlx5_vdpa_net *ndev); static int setup_driver(struct mlx5_vdpa_dev *mvdev); static void teardown_driver(struct mlx5_vdpa_net *ndev); static bool mlx5_vdpa_debug; #define MLX5_CVQ_MAX_ENT 16 #define MLX5_LOG_VIO_FLAG(_feature) \ do { \ if (features & BIT_ULL(_feature)) \ mlx5_vdpa_info(mvdev, "%s\n", #_feature); \ } while (0) #define MLX5_LOG_VIO_STAT(_status) \ do { \ if (status & (_status)) \ mlx5_vdpa_info(mvdev, "%s\n", #_status); \ } while (0) /* TODO: cross-endian support */ static inline bool mlx5_vdpa_is_little_endian(struct mlx5_vdpa_dev *mvdev) { return virtio_legacy_is_little_endian() || (mvdev->actual_features & BIT_ULL(VIRTIO_F_VERSION_1)); } static u16 mlx5vdpa16_to_cpu(struct mlx5_vdpa_dev *mvdev, __virtio16 val) { return __virtio16_to_cpu(mlx5_vdpa_is_little_endian(mvdev), val); } static __virtio16 cpu_to_mlx5vdpa16(struct mlx5_vdpa_dev *mvdev, u16 val) { return __cpu_to_virtio16(mlx5_vdpa_is_little_endian(mvdev), val); } static u16 ctrl_vq_idx(struct mlx5_vdpa_dev *mvdev) { if (!(mvdev->actual_features & BIT_ULL(VIRTIO_NET_F_MQ))) return 2; return mvdev->max_vqs; } static bool is_ctrl_vq_idx(struct mlx5_vdpa_dev *mvdev, u16 idx) { return idx == ctrl_vq_idx(mvdev); } static void print_status(struct mlx5_vdpa_dev *mvdev, u8 status, bool set) { if (status & ~VALID_STATUS_MASK) mlx5_vdpa_warn(mvdev, "Warning: there are invalid status bits 0x%x\n", status & ~VALID_STATUS_MASK); if (!mlx5_vdpa_debug) return; mlx5_vdpa_info(mvdev, "driver status %s", set ? "set" : "get"); if (set && !status) { mlx5_vdpa_info(mvdev, "driver resets the device\n"); return; } MLX5_LOG_VIO_STAT(VIRTIO_CONFIG_S_ACKNOWLEDGE); MLX5_LOG_VIO_STAT(VIRTIO_CONFIG_S_DRIVER); MLX5_LOG_VIO_STAT(VIRTIO_CONFIG_S_DRIVER_OK); MLX5_LOG_VIO_STAT(VIRTIO_CONFIG_S_FEATURES_OK); MLX5_LOG_VIO_STAT(VIRTIO_CONFIG_S_NEEDS_RESET); MLX5_LOG_VIO_STAT(VIRTIO_CONFIG_S_FAILED); } static void print_features(struct mlx5_vdpa_dev *mvdev, u64 features, bool set) { if (features & ~VALID_FEATURES_MASK) mlx5_vdpa_warn(mvdev, "There are invalid feature bits 0x%llx\n", features & ~VALID_FEATURES_MASK); if (!mlx5_vdpa_debug) return; mlx5_vdpa_info(mvdev, "driver %s feature bits:\n", set ? "sets" : "reads"); if (!features) mlx5_vdpa_info(mvdev, "all feature bits are cleared\n"); MLX5_LOG_VIO_FLAG(VIRTIO_NET_F_CSUM); MLX5_LOG_VIO_FLAG(VIRTIO_NET_F_GUEST_CSUM); MLX5_LOG_VIO_FLAG(VIRTIO_NET_F_CTRL_GUEST_OFFLOADS); MLX5_LOG_VIO_FLAG(VIRTIO_NET_F_MTU); MLX5_LOG_VIO_FLAG(VIRTIO_NET_F_MAC); MLX5_LOG_VIO_FLAG(VIRTIO_NET_F_GUEST_TSO4); MLX5_LOG_VIO_FLAG(VIRTIO_NET_F_GUEST_TSO6); MLX5_LOG_VIO_FLAG(VIRTIO_NET_F_GUEST_ECN); MLX5_LOG_VIO_FLAG(VIRTIO_NET_F_GUEST_UFO); MLX5_LOG_VIO_FLAG(VIRTIO_NET_F_HOST_TSO4); MLX5_LOG_VIO_FLAG(VIRTIO_NET_F_HOST_TSO6); MLX5_LOG_VIO_FLAG(VIRTIO_NET_F_HOST_ECN); MLX5_LOG_VIO_FLAG(VIRTIO_NET_F_HOST_UFO); MLX5_LOG_VIO_FLAG(VIRTIO_NET_F_MRG_RXBUF); MLX5_LOG_VIO_FLAG(VIRTIO_NET_F_STATUS); MLX5_LOG_VIO_FLAG(VIRTIO_NET_F_CTRL_VQ); MLX5_LOG_VIO_FLAG(VIRTIO_NET_F_CTRL_RX); MLX5_LOG_VIO_FLAG(VIRTIO_NET_F_CTRL_VLAN); MLX5_LOG_VIO_FLAG(VIRTIO_NET_F_CTRL_RX_EXTRA); MLX5_LOG_VIO_FLAG(VIRTIO_NET_F_GUEST_ANNOUNCE); MLX5_LOG_VIO_FLAG(VIRTIO_NET_F_MQ); MLX5_LOG_VIO_FLAG(VIRTIO_NET_F_CTRL_MAC_ADDR); MLX5_LOG_VIO_FLAG(VIRTIO_NET_F_HASH_REPORT); MLX5_LOG_VIO_FLAG(VIRTIO_NET_F_RSS); MLX5_LOG_VIO_FLAG(VIRTIO_NET_F_RSC_EXT); MLX5_LOG_VIO_FLAG(VIRTIO_NET_F_STANDBY); MLX5_LOG_VIO_FLAG(VIRTIO_NET_F_SPEED_DUPLEX); MLX5_LOG_VIO_FLAG(VIRTIO_F_NOTIFY_ON_EMPTY); MLX5_LOG_VIO_FLAG(VIRTIO_F_ANY_LAYOUT); MLX5_LOG_VIO_FLAG(VIRTIO_F_VERSION_1); MLX5_LOG_VIO_FLAG(VIRTIO_F_ACCESS_PLATFORM); MLX5_LOG_VIO_FLAG(VIRTIO_F_RING_PACKED); MLX5_LOG_VIO_FLAG(VIRTIO_F_ORDER_PLATFORM); MLX5_LOG_VIO_FLAG(VIRTIO_F_SR_IOV); } static int create_tis(struct mlx5_vdpa_net *ndev) { struct mlx5_vdpa_dev *mvdev = &ndev->mvdev; u32 in[MLX5_ST_SZ_DW(create_tis_in)] = {}; void *tisc; int err; tisc = MLX5_ADDR_OF(create_tis_in, in, ctx); MLX5_SET(tisc, tisc, transport_domain, ndev->res.tdn); err = mlx5_vdpa_create_tis(mvdev, in, &ndev->res.tisn); if (err) mlx5_vdpa_warn(mvdev, "create TIS (%d)\n", err); return err; } static void destroy_tis(struct mlx5_vdpa_net *ndev) { mlx5_vdpa_destroy_tis(&ndev->mvdev, ndev->res.tisn); } #define MLX5_VDPA_CQE_SIZE 64 #define MLX5_VDPA_LOG_CQE_SIZE ilog2(MLX5_VDPA_CQE_SIZE) static int cq_frag_buf_alloc(struct mlx5_vdpa_net *ndev, struct mlx5_vdpa_cq_buf *buf, int nent) { struct mlx5_frag_buf *frag_buf = &buf->frag_buf; u8 log_wq_stride = MLX5_VDPA_LOG_CQE_SIZE; u8 log_wq_sz = MLX5_VDPA_LOG_CQE_SIZE; int err; err = mlx5_frag_buf_alloc_node(ndev->mvdev.mdev, nent * MLX5_VDPA_CQE_SIZE, frag_buf, ndev->mvdev.mdev->priv.numa_node); if (err) return err; mlx5_init_fbc(frag_buf->frags, log_wq_stride, log_wq_sz, &buf->fbc); buf->cqe_size = MLX5_VDPA_CQE_SIZE; buf->nent = nent; return 0; } static int umem_frag_buf_alloc(struct mlx5_vdpa_net *ndev, struct mlx5_vdpa_umem *umem, int size) { struct mlx5_frag_buf *frag_buf = &umem->frag_buf; return mlx5_frag_buf_alloc_node(ndev->mvdev.mdev, size, frag_buf, ndev->mvdev.mdev->priv.numa_node); } static void cq_frag_buf_free(struct mlx5_vdpa_net *ndev, struct mlx5_vdpa_cq_buf *buf) { mlx5_frag_buf_free(ndev->mvdev.mdev, &buf->frag_buf); } static void *get_cqe(struct mlx5_vdpa_cq *vcq, int n) { return mlx5_frag_buf_get_wqe(&vcq->buf.fbc, n); } static void cq_frag_buf_init(struct mlx5_vdpa_cq *vcq, struct mlx5_vdpa_cq_buf *buf) { struct mlx5_cqe64 *cqe64; void *cqe; int i; for (i = 0; i < buf->nent; i++) { cqe = get_cqe(vcq, i); cqe64 = cqe; cqe64->op_own = MLX5_CQE_INVALID << 4; } } static void *get_sw_cqe(struct mlx5_vdpa_cq *cq, int n) { struct mlx5_cqe64 *cqe64 = get_cqe(cq, n & (cq->cqe - 1)); if (likely(get_cqe_opcode(cqe64) != MLX5_CQE_INVALID) && !((cqe64->op_own & MLX5_CQE_OWNER_MASK) ^ !!(n & cq->cqe))) return cqe64; return NULL; } static void rx_post(struct mlx5_vdpa_qp *vqp, int n) { vqp->head += n; vqp->db.db[0] = cpu_to_be32(vqp->head); } static void qp_prepare(struct mlx5_vdpa_net *ndev, bool fw, void *in, struct mlx5_vdpa_virtqueue *mvq, u32 num_ent) { struct mlx5_vdpa_qp *vqp; __be64 *pas; void *qpc; vqp = fw ? &mvq->fwqp : &mvq->vqqp; MLX5_SET(create_qp_in, in, uid, ndev->mvdev.res.uid); qpc = MLX5_ADDR_OF(create_qp_in, in, qpc); if (vqp->fw) { /* Firmware QP is allocated by the driver for the firmware's * use so we can skip part of the params as they will be chosen by firmware */ qpc = MLX5_ADDR_OF(create_qp_in, in, qpc); MLX5_SET(qpc, qpc, rq_type, MLX5_ZERO_LEN_RQ); MLX5_SET(qpc, qpc, no_sq, 1); return; } MLX5_SET(qpc, qpc, st, MLX5_QP_ST_RC); MLX5_SET(qpc, qpc, pm_state, MLX5_QP_PM_MIGRATED); MLX5_SET(qpc, qpc, pd, ndev->mvdev.res.pdn); MLX5_SET(qpc, qpc, mtu, MLX5_QPC_MTU_256_BYTES); MLX5_SET(qpc, qpc, uar_page, ndev->mvdev.res.uar->index); MLX5_SET(qpc, qpc, log_page_size, vqp->frag_buf.page_shift - MLX5_ADAPTER_PAGE_SHIFT); MLX5_SET(qpc, qpc, no_sq, 1); MLX5_SET(qpc, qpc, cqn_rcv, mvq->cq.mcq.cqn); MLX5_SET(qpc, qpc, log_rq_size, ilog2(num_ent)); MLX5_SET(qpc, qpc, rq_type, MLX5_NON_ZERO_RQ); pas = (__be64 *)MLX5_ADDR_OF(create_qp_in, in, pas); mlx5_fill_page_frag_array(&vqp->frag_buf, pas); } static int rq_buf_alloc(struct mlx5_vdpa_net *ndev, struct mlx5_vdpa_qp *vqp, u32 num_ent) { return mlx5_frag_buf_alloc_node(ndev->mvdev.mdev, num_ent * sizeof(struct mlx5_wqe_data_seg), &vqp->frag_buf, ndev->mvdev.mdev->priv.numa_node); } static void rq_buf_free(struct mlx5_vdpa_net *ndev, struct mlx5_vdpa_qp *vqp) { mlx5_frag_buf_free(ndev->mvdev.mdev, &vqp->frag_buf); } static int qp_create(struct mlx5_vdpa_net *ndev, struct mlx5_vdpa_virtqueue *mvq, struct mlx5_vdpa_qp *vqp) { struct mlx5_core_dev *mdev = ndev->mvdev.mdev; int inlen = MLX5_ST_SZ_BYTES(create_qp_in); u32 out[MLX5_ST_SZ_DW(create_qp_out)] = {}; void *qpc; void *in; int err; if (!vqp->fw) { vqp = &mvq->vqqp; err = rq_buf_alloc(ndev, vqp, mvq->num_ent); if (err) return err; err = mlx5_db_alloc(ndev->mvdev.mdev, &vqp->db); if (err) goto err_db; inlen += vqp->frag_buf.npages * sizeof(__be64); } in = kzalloc(inlen, GFP_KERNEL); if (!in) { err = -ENOMEM; goto err_kzalloc; } qp_prepare(ndev, vqp->fw, in, mvq, mvq->num_ent); qpc = MLX5_ADDR_OF(create_qp_in, in, qpc); MLX5_SET(qpc, qpc, st, MLX5_QP_ST_RC); MLX5_SET(qpc, qpc, pm_state, MLX5_QP_PM_MIGRATED); MLX5_SET(qpc, qpc, pd, ndev->mvdev.res.pdn); MLX5_SET(qpc, qpc, mtu, MLX5_QPC_MTU_256_BYTES); if (!vqp->fw) MLX5_SET64(qpc, qpc, dbr_addr, vqp->db.dma); MLX5_SET(create_qp_in, in, opcode, MLX5_CMD_OP_CREATE_QP); err = mlx5_cmd_exec(mdev, in, inlen, out, sizeof(out)); kfree(in); if (err) goto err_kzalloc; vqp->mqp.uid = ndev->mvdev.res.uid; vqp->mqp.qpn = MLX5_GET(create_qp_out, out, qpn); if (!vqp->fw) rx_post(vqp, mvq->num_ent); return 0; err_kzalloc: if (!vqp->fw) mlx5_db_free(ndev->mvdev.mdev, &vqp->db); err_db: if (!vqp->fw) rq_buf_free(ndev, vqp); return err; } static void qp_destroy(struct mlx5_vdpa_net *ndev, struct mlx5_vdpa_qp *vqp) { u32 in[MLX5_ST_SZ_DW(destroy_qp_in)] = {}; MLX5_SET(destroy_qp_in, in, opcode, MLX5_CMD_OP_DESTROY_QP); MLX5_SET(destroy_qp_in, in, qpn, vqp->mqp.qpn); MLX5_SET(destroy_qp_in, in, uid, ndev->mvdev.res.uid); if (mlx5_cmd_exec_in(ndev->mvdev.mdev, destroy_qp, in)) mlx5_vdpa_warn(&ndev->mvdev, "destroy qp 0x%x\n", vqp->mqp.qpn); if (!vqp->fw) { mlx5_db_free(ndev->mvdev.mdev, &vqp->db); rq_buf_free(ndev, vqp); } } static void *next_cqe_sw(struct mlx5_vdpa_cq *cq) { return get_sw_cqe(cq, cq->mcq.cons_index); } static int mlx5_vdpa_poll_one(struct mlx5_vdpa_cq *vcq) { struct mlx5_cqe64 *cqe64; cqe64 = next_cqe_sw(vcq); if (!cqe64) return -EAGAIN; vcq->mcq.cons_index++; return 0; } static void mlx5_vdpa_handle_completions(struct mlx5_vdpa_virtqueue *mvq, int num) { struct mlx5_vdpa_net *ndev = mvq->ndev; struct vdpa_callback *event_cb; event_cb = &ndev->event_cbs[mvq->index]; mlx5_cq_set_ci(&mvq->cq.mcq); /* make sure CQ cosumer update is visible to the hardware before updating * RX doorbell record. */ dma_wmb(); rx_post(&mvq->vqqp, num); if (event_cb->callback) event_cb->callback(event_cb->private); } static void mlx5_vdpa_cq_comp(struct mlx5_core_cq *mcq, struct mlx5_eqe *eqe) { struct mlx5_vdpa_virtqueue *mvq = container_of(mcq, struct mlx5_vdpa_virtqueue, cq.mcq); struct mlx5_vdpa_net *ndev = mvq->ndev; void __iomem *uar_page = ndev->mvdev.res.uar->map; int num = 0; while (!mlx5_vdpa_poll_one(&mvq->cq)) { num++; if (num > mvq->num_ent / 2) { /* If completions keep coming while we poll, we want to * let the hardware know that we consumed them by * updating the doorbell record. We also let vdpa core * know about this so it passes it on the virtio driver * on the guest. */ mlx5_vdpa_handle_completions(mvq, num); num = 0; } } if (num) mlx5_vdpa_handle_completions(mvq, num); mlx5_cq_arm(&mvq->cq.mcq, MLX5_CQ_DB_REQ_NOT, uar_page, mvq->cq.mcq.cons_index); } static int cq_create(struct mlx5_vdpa_net *ndev, u16 idx, u32 num_ent) { struct mlx5_vdpa_virtqueue *mvq = &ndev->vqs[idx]; struct mlx5_core_dev *mdev = ndev->mvdev.mdev; void __iomem *uar_page = ndev->mvdev.res.uar->map; u32 out[MLX5_ST_SZ_DW(create_cq_out)]; struct mlx5_vdpa_cq *vcq = &mvq->cq; __be64 *pas; int inlen; void *cqc; void *in; int err; int eqn; err = mlx5_db_alloc(mdev, &vcq->db); if (err) return err; vcq->mcq.set_ci_db = vcq->db.db; vcq->mcq.arm_db = vcq->db.db + 1; vcq->mcq.cqe_sz = 64; err = cq_frag_buf_alloc(ndev, &vcq->buf, num_ent); if (err) goto err_db; cq_frag_buf_init(vcq, &vcq->buf); inlen = MLX5_ST_SZ_BYTES(create_cq_in) + MLX5_FLD_SZ_BYTES(create_cq_in, pas[0]) * vcq->buf.frag_buf.npages; in = kzalloc(inlen, GFP_KERNEL); if (!in) { err = -ENOMEM; goto err_vzalloc; } MLX5_SET(create_cq_in, in, uid, ndev->mvdev.res.uid); pas = (__be64 *)MLX5_ADDR_OF(create_cq_in, in, pas); mlx5_fill_page_frag_array(&vcq->buf.frag_buf, pas); cqc = MLX5_ADDR_OF(create_cq_in, in, cq_context); MLX5_SET(cqc, cqc, log_page_size, vcq->buf.frag_buf.page_shift - MLX5_ADAPTER_PAGE_SHIFT); /* Use vector 0 by default. Consider adding code to choose least used * vector. */ err = mlx5_comp_eqn_get(mdev, 0, &eqn); if (err) goto err_vec; cqc = MLX5_ADDR_OF(create_cq_in, in, cq_context); MLX5_SET(cqc, cqc, log_cq_size, ilog2(num_ent)); MLX5_SET(cqc, cqc, uar_page, ndev->mvdev.res.uar->index); MLX5_SET(cqc, cqc, c_eqn_or_apu_element, eqn); MLX5_SET64(cqc, cqc, dbr_addr, vcq->db.dma); err = mlx5_core_create_cq(mdev, &vcq->mcq, in, inlen, out, sizeof(out)); if (err) goto err_vec; vcq->mcq.comp = mlx5_vdpa_cq_comp; vcq->cqe = num_ent; vcq->mcq.set_ci_db = vcq->db.db; vcq->mcq.arm_db = vcq->db.db + 1; mlx5_cq_arm(&mvq->cq.mcq, MLX5_CQ_DB_REQ_NOT, uar_page, mvq->cq.mcq.cons_index); kfree(in); return 0; err_vec: kfree(in); err_vzalloc: cq_frag_buf_free(ndev, &vcq->buf); err_db: mlx5_db_free(ndev->mvdev.mdev, &vcq->db); return err; } static void cq_destroy(struct mlx5_vdpa_net *ndev, u16 idx) { struct mlx5_vdpa_virtqueue *mvq = &ndev->vqs[idx]; struct mlx5_core_dev *mdev = ndev->mvdev.mdev; struct mlx5_vdpa_cq *vcq = &mvq->cq; if (mlx5_core_destroy_cq(mdev, &vcq->mcq)) { mlx5_vdpa_warn(&ndev->mvdev, "destroy CQ 0x%x\n", vcq->mcq.cqn); return; } cq_frag_buf_free(ndev, &vcq->buf); mlx5_db_free(ndev->mvdev.mdev, &vcq->db); } static void set_umem_size(struct mlx5_vdpa_net *ndev, struct mlx5_vdpa_virtqueue *mvq, int num, struct mlx5_vdpa_umem **umemp) { struct mlx5_core_dev *mdev = ndev->mvdev.mdev; int p_a; int p_b; switch (num) { case 1: p_a = MLX5_CAP_DEV_VDPA_EMULATION(mdev, umem_1_buffer_param_a); p_b = MLX5_CAP_DEV_VDPA_EMULATION(mdev, umem_1_buffer_param_b); *umemp = &mvq->umem1; break; case 2: p_a = MLX5_CAP_DEV_VDPA_EMULATION(mdev, umem_2_buffer_param_a); p_b = MLX5_CAP_DEV_VDPA_EMULATION(mdev, umem_2_buffer_param_b); *umemp = &mvq->umem2; break; case 3: p_a = MLX5_CAP_DEV_VDPA_EMULATION(mdev, umem_3_buffer_param_a); p_b = MLX5_CAP_DEV_VDPA_EMULATION(mdev, umem_3_buffer_param_b); *umemp = &mvq->umem3; break; } (*umemp)->size = p_a * mvq->num_ent + p_b; } static void umem_frag_buf_free(struct mlx5_vdpa_net *ndev, struct mlx5_vdpa_umem *umem) { mlx5_frag_buf_free(ndev->mvdev.mdev, &umem->frag_buf); } static int create_umem(struct mlx5_vdpa_net *ndev, struct mlx5_vdpa_virtqueue *mvq, int num) { int inlen; u32 out[MLX5_ST_SZ_DW(create_umem_out)] = {}; void *um; void *in; int err; __be64 *pas; struct mlx5_vdpa_umem *umem; set_umem_size(ndev, mvq, num, &umem); err = umem_frag_buf_alloc(ndev, umem, umem->size); if (err) return err; inlen = MLX5_ST_SZ_BYTES(create_umem_in) + MLX5_ST_SZ_BYTES(mtt) * umem->frag_buf.npages; in = kzalloc(inlen, GFP_KERNEL); if (!in) { err = -ENOMEM; goto err_in; } MLX5_SET(create_umem_in, in, opcode, MLX5_CMD_OP_CREATE_UMEM); MLX5_SET(create_umem_in, in, uid, ndev->mvdev.res.uid); um = MLX5_ADDR_OF(create_umem_in, in, umem); MLX5_SET(umem, um, log_page_size, umem->frag_buf.page_shift - MLX5_ADAPTER_PAGE_SHIFT); MLX5_SET64(umem, um, num_of_mtt, umem->frag_buf.npages); pas = (__be64 *)MLX5_ADDR_OF(umem, um, mtt[0]); mlx5_fill_page_frag_array_perm(&umem->frag_buf, pas, MLX5_MTT_PERM_RW); err = mlx5_cmd_exec(ndev->mvdev.mdev, in, inlen, out, sizeof(out)); if (err) { mlx5_vdpa_warn(&ndev->mvdev, "create umem(%d)\n", err); goto err_cmd; } kfree(in); umem->id = MLX5_GET(create_umem_out, out, umem_id); return 0; err_cmd: kfree(in); err_in: umem_frag_buf_free(ndev, umem); return err; } static void umem_destroy(struct mlx5_vdpa_net *ndev, struct mlx5_vdpa_virtqueue *mvq, int num) { u32 in[MLX5_ST_SZ_DW(destroy_umem_in)] = {}; u32 out[MLX5_ST_SZ_DW(destroy_umem_out)] = {}; struct mlx5_vdpa_umem *umem; switch (num) { case 1: umem = &mvq->umem1; break; case 2: umem = &mvq->umem2; break; case 3: umem = &mvq->umem3; break; } MLX5_SET(destroy_umem_in, in, opcode, MLX5_CMD_OP_DESTROY_UMEM); MLX5_SET(destroy_umem_in, in, umem_id, umem->id); if (mlx5_cmd_exec(ndev->mvdev.mdev, in, sizeof(in), out, sizeof(out))) return; umem_frag_buf_free(ndev, umem); } static int umems_create(struct mlx5_vdpa_net *ndev, struct mlx5_vdpa_virtqueue *mvq) { int num; int err; for (num = 1; num <= 3; num++) { err = create_umem(ndev, mvq, num); if (err) goto err_umem; } return 0; err_umem: for (num--; num > 0; num--) umem_destroy(ndev, mvq, num); return err; } static void umems_destroy(struct mlx5_vdpa_net *ndev, struct mlx5_vdpa_virtqueue *mvq) { int num; for (num = 3; num > 0; num--) umem_destroy(ndev, mvq, num); } static int get_queue_type(struct mlx5_vdpa_net *ndev) { u32 type_mask; type_mask = MLX5_CAP_DEV_VDPA_EMULATION(ndev->mvdev.mdev, virtio_queue_type); /* prefer split queue */ if (type_mask & MLX5_VIRTIO_EMULATION_CAP_VIRTIO_QUEUE_TYPE_SPLIT) return MLX5_VIRTIO_EMULATION_VIRTIO_QUEUE_TYPE_SPLIT; WARN_ON(!(type_mask & MLX5_VIRTIO_EMULATION_CAP_VIRTIO_QUEUE_TYPE_PACKED)); return MLX5_VIRTIO_EMULATION_VIRTIO_QUEUE_TYPE_PACKED; } static bool vq_is_tx(u16 idx) { return idx % 2; } enum { MLX5_VIRTIO_NET_F_MRG_RXBUF = 2, MLX5_VIRTIO_NET_F_HOST_ECN = 4, MLX5_VIRTIO_NET_F_GUEST_ECN = 6, MLX5_VIRTIO_NET_F_GUEST_TSO6 = 7, MLX5_VIRTIO_NET_F_GUEST_TSO4 = 8, MLX5_VIRTIO_NET_F_GUEST_CSUM = 9, MLX5_VIRTIO_NET_F_CSUM = 10, MLX5_VIRTIO_NET_F_HOST_TSO6 = 11, MLX5_VIRTIO_NET_F_HOST_TSO4 = 12, }; static u16 get_features(u64 features) { return (!!(features & BIT_ULL(VIRTIO_NET_F_MRG_RXBUF)) << MLX5_VIRTIO_NET_F_MRG_RXBUF) | (!!(features & BIT_ULL(VIRTIO_NET_F_HOST_ECN)) << MLX5_VIRTIO_NET_F_HOST_ECN) | (!!(features & BIT_ULL(VIRTIO_NET_F_GUEST_ECN)) << MLX5_VIRTIO_NET_F_GUEST_ECN) | (!!(features & BIT_ULL(VIRTIO_NET_F_GUEST_TSO6)) << MLX5_VIRTIO_NET_F_GUEST_TSO6) | (!!(features & BIT_ULL(VIRTIO_NET_F_GUEST_TSO4)) << MLX5_VIRTIO_NET_F_GUEST_TSO4) | (!!(features & BIT_ULL(VIRTIO_NET_F_CSUM)) << MLX5_VIRTIO_NET_F_CSUM) | (!!(features & BIT_ULL(VIRTIO_NET_F_HOST_TSO6)) << MLX5_VIRTIO_NET_F_HOST_TSO6) | (!!(features & BIT_ULL(VIRTIO_NET_F_HOST_TSO4)) << MLX5_VIRTIO_NET_F_HOST_TSO4); } static bool counters_supported(const struct mlx5_vdpa_dev *mvdev) { return MLX5_CAP_GEN_64(mvdev->mdev, general_obj_types) & BIT_ULL(MLX5_OBJ_TYPE_VIRTIO_Q_COUNTERS); } static bool msix_mode_supported(struct mlx5_vdpa_dev *mvdev) { return MLX5_CAP_DEV_VDPA_EMULATION(mvdev->mdev, event_mode) & (1 << MLX5_VIRTIO_Q_EVENT_MODE_MSIX_MODE) && pci_msix_can_alloc_dyn(mvdev->mdev->pdev); } static int create_virtqueue(struct mlx5_vdpa_net *ndev, struct mlx5_vdpa_virtqueue *mvq) { int inlen = MLX5_ST_SZ_BYTES(create_virtio_net_q_in); u32 out[MLX5_ST_SZ_DW(create_virtio_net_q_out)] = {}; void *obj_context; u16 mlx_features; void *cmd_hdr; void *vq_ctx; void *in; int err; err = umems_create(ndev, mvq); if (err) return err; in = kzalloc(inlen, GFP_KERNEL); if (!in) { err = -ENOMEM; goto err_alloc; } mlx_features = get_features(ndev->mvdev.actual_features); cmd_hdr = MLX5_ADDR_OF(create_virtio_net_q_in, in, general_obj_in_cmd_hdr); MLX5_SET(general_obj_in_cmd_hdr, cmd_hdr, opcode, MLX5_CMD_OP_CREATE_GENERAL_OBJECT); MLX5_SET(general_obj_in_cmd_hdr, cmd_hdr, obj_type, MLX5_OBJ_TYPE_VIRTIO_NET_Q); MLX5_SET(general_obj_in_cmd_hdr, cmd_hdr, uid, ndev->mvdev.res.uid); obj_context = MLX5_ADDR_OF(create_virtio_net_q_in, in, obj_context); MLX5_SET(virtio_net_q_object, obj_context, hw_available_index, mvq->avail_idx); MLX5_SET(virtio_net_q_object, obj_context, hw_used_index, mvq->used_idx); MLX5_SET(virtio_net_q_object, obj_context, queue_feature_bit_mask_12_3, mlx_features >> 3); MLX5_SET(virtio_net_q_object, obj_context, queue_feature_bit_mask_2_0, mlx_features & 7); vq_ctx = MLX5_ADDR_OF(virtio_net_q_object, obj_context, virtio_q_context); MLX5_SET(virtio_q, vq_ctx, virtio_q_type, get_queue_type(ndev)); if (vq_is_tx(mvq->index)) MLX5_SET(virtio_net_q_object, obj_context, tisn_or_qpn, ndev->res.tisn); if (mvq->map.virq) { MLX5_SET(virtio_q, vq_ctx, event_mode, MLX5_VIRTIO_Q_EVENT_MODE_MSIX_MODE); MLX5_SET(virtio_q, vq_ctx, event_qpn_or_msix, mvq->map.index); } else { MLX5_SET(virtio_q, vq_ctx, event_mode, MLX5_VIRTIO_Q_EVENT_MODE_QP_MODE); MLX5_SET(virtio_q, vq_ctx, event_qpn_or_msix, mvq->fwqp.mqp.qpn); } MLX5_SET(virtio_q, vq_ctx, queue_index, mvq->index); MLX5_SET(virtio_q, vq_ctx, queue_size, mvq->num_ent); MLX5_SET(virtio_q, vq_ctx, virtio_version_1_0, !!(ndev->mvdev.actual_features & BIT_ULL(VIRTIO_F_VERSION_1))); MLX5_SET64(virtio_q, vq_ctx, desc_addr, mvq->desc_addr); MLX5_SET64(virtio_q, vq_ctx, used_addr, mvq->device_addr); MLX5_SET64(virtio_q, vq_ctx, available_addr, mvq->driver_addr); MLX5_SET(virtio_q, vq_ctx, virtio_q_mkey, ndev->mvdev.mr.mkey); MLX5_SET(virtio_q, vq_ctx, umem_1_id, mvq->umem1.id); MLX5_SET(virtio_q, vq_ctx, umem_1_size, mvq->umem1.size); MLX5_SET(virtio_q, vq_ctx, umem_2_id, mvq->umem2.id); MLX5_SET(virtio_q, vq_ctx, umem_2_size, mvq->umem2.size); MLX5_SET(virtio_q, vq_ctx, umem_3_id, mvq->umem3.id); MLX5_SET(virtio_q, vq_ctx, umem_3_size, mvq->umem3.size); MLX5_SET(virtio_q, vq_ctx, pd, ndev->mvdev.res.pdn); if (counters_supported(&ndev->mvdev)) MLX5_SET(virtio_q, vq_ctx, counter_set_id, mvq->counter_set_id); err = mlx5_cmd_exec(ndev->mvdev.mdev, in, inlen, out, sizeof(out)); if (err) goto err_cmd; mvq->fw_state = MLX5_VIRTIO_NET_Q_OBJECT_STATE_INIT; kfree(in); mvq->virtq_id = MLX5_GET(general_obj_out_cmd_hdr, out, obj_id); return 0; err_cmd: kfree(in); err_alloc: umems_destroy(ndev, mvq); return err; } static void destroy_virtqueue(struct mlx5_vdpa_net *ndev, struct mlx5_vdpa_virtqueue *mvq) { u32 in[MLX5_ST_SZ_DW(destroy_virtio_net_q_in)] = {}; u32 out[MLX5_ST_SZ_DW(destroy_virtio_net_q_out)] = {}; MLX5_SET(destroy_virtio_net_q_in, in, general_obj_out_cmd_hdr.opcode, MLX5_CMD_OP_DESTROY_GENERAL_OBJECT); MLX5_SET(destroy_virtio_net_q_in, in, general_obj_out_cmd_hdr.obj_id, mvq->virtq_id); MLX5_SET(destroy_virtio_net_q_in, in, general_obj_out_cmd_hdr.uid, ndev->mvdev.res.uid); MLX5_SET(destroy_virtio_net_q_in, in, general_obj_out_cmd_hdr.obj_type, MLX5_OBJ_TYPE_VIRTIO_NET_Q); if (mlx5_cmd_exec(ndev->mvdev.mdev, in, sizeof(in), out, sizeof(out))) { mlx5_vdpa_warn(&ndev->mvdev, "destroy virtqueue 0x%x\n", mvq->virtq_id); return; } mvq->fw_state = MLX5_VIRTIO_NET_Q_OBJECT_NONE; umems_destroy(ndev, mvq); } static u32 get_rqpn(struct mlx5_vdpa_virtqueue *mvq, bool fw) { return fw ? mvq->vqqp.mqp.qpn : mvq->fwqp.mqp.qpn; } static u32 get_qpn(struct mlx5_vdpa_virtqueue *mvq, bool fw) { return fw ? mvq->fwqp.mqp.qpn : mvq->vqqp.mqp.qpn; } static void alloc_inout(struct mlx5_vdpa_net *ndev, int cmd, void **in, int *inlen, void **out, int *outlen, u32 qpn, u32 rqpn) { void *qpc; void *pp; switch (cmd) { case MLX5_CMD_OP_2RST_QP: *inlen = MLX5_ST_SZ_BYTES(qp_2rst_in); *outlen = MLX5_ST_SZ_BYTES(qp_2rst_out); *in = kzalloc(*inlen, GFP_KERNEL); *out = kzalloc(*outlen, GFP_KERNEL); if (!*in || !*out) goto outerr; MLX5_SET(qp_2rst_in, *in, opcode, cmd); MLX5_SET(qp_2rst_in, *in, uid, ndev->mvdev.res.uid); MLX5_SET(qp_2rst_in, *in, qpn, qpn); break; case MLX5_CMD_OP_RST2INIT_QP: *inlen = MLX5_ST_SZ_BYTES(rst2init_qp_in); *outlen = MLX5_ST_SZ_BYTES(rst2init_qp_out); *in = kzalloc(*inlen, GFP_KERNEL); *out = kzalloc(MLX5_ST_SZ_BYTES(rst2init_qp_out), GFP_KERNEL); if (!*in || !*out) goto outerr; MLX5_SET(rst2init_qp_in, *in, opcode, cmd); MLX5_SET(rst2init_qp_in, *in, uid, ndev->mvdev.res.uid); MLX5_SET(rst2init_qp_in, *in, qpn, qpn); qpc = MLX5_ADDR_OF(rst2init_qp_in, *in, qpc); MLX5_SET(qpc, qpc, remote_qpn, rqpn); MLX5_SET(qpc, qpc, rwe, 1); pp = MLX5_ADDR_OF(qpc, qpc, primary_address_path); MLX5_SET(ads, pp, vhca_port_num, 1); break; case MLX5_CMD_OP_INIT2RTR_QP: *inlen = MLX5_ST_SZ_BYTES(init2rtr_qp_in); *outlen = MLX5_ST_SZ_BYTES(init2rtr_qp_out); *in = kzalloc(*inlen, GFP_KERNEL); *out = kzalloc(MLX5_ST_SZ_BYTES(init2rtr_qp_out), GFP_KERNEL); if (!*in || !*out) goto outerr; MLX5_SET(init2rtr_qp_in, *in, opcode, cmd); MLX5_SET(init2rtr_qp_in, *in, uid, ndev->mvdev.res.uid); MLX5_SET(init2rtr_qp_in, *in, qpn, qpn); qpc = MLX5_ADDR_OF(rst2init_qp_in, *in, qpc); MLX5_SET(qpc, qpc, mtu, MLX5_QPC_MTU_256_BYTES); MLX5_SET(qpc, qpc, log_msg_max, 30); MLX5_SET(qpc, qpc, remote_qpn, rqpn); pp = MLX5_ADDR_OF(qpc, qpc, primary_address_path); MLX5_SET(ads, pp, fl, 1); break; case MLX5_CMD_OP_RTR2RTS_QP: *inlen = MLX5_ST_SZ_BYTES(rtr2rts_qp_in); *outlen = MLX5_ST_SZ_BYTES(rtr2rts_qp_out); *in = kzalloc(*inlen, GFP_KERNEL); *out = kzalloc(MLX5_ST_SZ_BYTES(rtr2rts_qp_out), GFP_KERNEL); if (!*in || !*out) goto outerr; MLX5_SET(rtr2rts_qp_in, *in, opcode, cmd); MLX5_SET(rtr2rts_qp_in, *in, uid, ndev->mvdev.res.uid); MLX5_SET(rtr2rts_qp_in, *in, qpn, qpn); qpc = MLX5_ADDR_OF(rst2init_qp_in, *in, qpc); pp = MLX5_ADDR_OF(qpc, qpc, primary_address_path); MLX5_SET(ads, pp, ack_timeout, 14); MLX5_SET(qpc, qpc, retry_count, 7); MLX5_SET(qpc, qpc, rnr_retry, 7); break; default: goto outerr_nullify; } return; outerr: kfree(*in); kfree(*out); outerr_nullify: *in = NULL; *out = NULL; } static void free_inout(void *in, void *out) { kfree(in); kfree(out); } /* Two QPs are used by each virtqueue. One is used by the driver and one by * firmware. The fw argument indicates whether the subjected QP is the one used * by firmware. */ static int modify_qp(struct mlx5_vdpa_net *ndev, struct mlx5_vdpa_virtqueue *mvq, bool fw, int cmd) { int outlen; int inlen; void *out; void *in; int err; alloc_inout(ndev, cmd, &in, &inlen, &out, &outlen, get_qpn(mvq, fw), get_rqpn(mvq, fw)); if (!in || !out) return -ENOMEM; err = mlx5_cmd_exec(ndev->mvdev.mdev, in, inlen, out, outlen); free_inout(in, out); return err; } static int connect_qps(struct mlx5_vdpa_net *ndev, struct mlx5_vdpa_virtqueue *mvq) { int err; err = modify_qp(ndev, mvq, true, MLX5_CMD_OP_2RST_QP); if (err) return err; err = modify_qp(ndev, mvq, false, MLX5_CMD_OP_2RST_QP); if (err) return err; err = modify_qp(ndev, mvq, true, MLX5_CMD_OP_RST2INIT_QP); if (err) return err; err = modify_qp(ndev, mvq, false, MLX5_CMD_OP_RST2INIT_QP); if (err) return err; err = modify_qp(ndev, mvq, true, MLX5_CMD_OP_INIT2RTR_QP); if (err) return err; err = modify_qp(ndev, mvq, false, MLX5_CMD_OP_INIT2RTR_QP); if (err) return err; return modify_qp(ndev, mvq, true, MLX5_CMD_OP_RTR2RTS_QP); } struct mlx5_virtq_attr { u8 state; u16 available_index; u16 used_index; }; static int query_virtqueue(struct mlx5_vdpa_net *ndev, struct mlx5_vdpa_virtqueue *mvq, struct mlx5_virtq_attr *attr) { int outlen = MLX5_ST_SZ_BYTES(query_virtio_net_q_out); u32 in[MLX5_ST_SZ_DW(query_virtio_net_q_in)] = {}; void *out; void *obj_context; void *cmd_hdr; int err; out = kzalloc(outlen, GFP_KERNEL); if (!out) return -ENOMEM; cmd_hdr = MLX5_ADDR_OF(query_virtio_net_q_in, in, general_obj_in_cmd_hdr); MLX5_SET(general_obj_in_cmd_hdr, cmd_hdr, opcode, MLX5_CMD_OP_QUERY_GENERAL_OBJECT); MLX5_SET(general_obj_in_cmd_hdr, cmd_hdr, obj_type, MLX5_OBJ_TYPE_VIRTIO_NET_Q); MLX5_SET(general_obj_in_cmd_hdr, cmd_hdr, obj_id, mvq->virtq_id); MLX5_SET(general_obj_in_cmd_hdr, cmd_hdr, uid, ndev->mvdev.res.uid); err = mlx5_cmd_exec(ndev->mvdev.mdev, in, sizeof(in), out, outlen); if (err) goto err_cmd; obj_context = MLX5_ADDR_OF(query_virtio_net_q_out, out, obj_context); memset(attr, 0, sizeof(*attr)); attr->state = MLX5_GET(virtio_net_q_object, obj_context, state); attr->available_index = MLX5_GET(virtio_net_q_object, obj_context, hw_available_index); attr->used_index = MLX5_GET(virtio_net_q_object, obj_context, hw_used_index); kfree(out); return 0; err_cmd: kfree(out); return err; } static bool is_valid_state_change(int oldstate, int newstate) { switch (oldstate) { case MLX5_VIRTIO_NET_Q_OBJECT_STATE_INIT: return newstate == MLX5_VIRTIO_NET_Q_OBJECT_STATE_RDY; case MLX5_VIRTIO_NET_Q_OBJECT_STATE_RDY: return newstate == MLX5_VIRTIO_NET_Q_OBJECT_STATE_SUSPEND; case MLX5_VIRTIO_NET_Q_OBJECT_STATE_SUSPEND: case MLX5_VIRTIO_NET_Q_OBJECT_STATE_ERR: default: return false; } } static int modify_virtqueue(struct mlx5_vdpa_net *ndev, struct mlx5_vdpa_virtqueue *mvq, int state) { int inlen = MLX5_ST_SZ_BYTES(modify_virtio_net_q_in); u32 out[MLX5_ST_SZ_DW(modify_virtio_net_q_out)] = {}; void *obj_context; void *cmd_hdr; void *in; int err; if (mvq->fw_state == MLX5_VIRTIO_NET_Q_OBJECT_NONE) return 0; if (!is_valid_state_change(mvq->fw_state, state)) return -EINVAL; in = kzalloc(inlen, GFP_KERNEL); if (!in) return -ENOMEM; cmd_hdr = MLX5_ADDR_OF(modify_virtio_net_q_in, in, general_obj_in_cmd_hdr); MLX5_SET(general_obj_in_cmd_hdr, cmd_hdr, opcode, MLX5_CMD_OP_MODIFY_GENERAL_OBJECT); MLX5_SET(general_obj_in_cmd_hdr, cmd_hdr, obj_type, MLX5_OBJ_TYPE_VIRTIO_NET_Q); MLX5_SET(general_obj_in_cmd_hdr, cmd_hdr, obj_id, mvq->virtq_id); MLX5_SET(general_obj_in_cmd_hdr, cmd_hdr, uid, ndev->mvdev.res.uid); obj_context = MLX5_ADDR_OF(modify_virtio_net_q_in, in, obj_context); MLX5_SET64(virtio_net_q_object, obj_context, modify_field_select, MLX5_VIRTQ_MODIFY_MASK_STATE); MLX5_SET(virtio_net_q_object, obj_context, state, state); err = mlx5_cmd_exec(ndev->mvdev.mdev, in, inlen, out, sizeof(out)); kfree(in); if (!err) mvq->fw_state = state; return err; } static int counter_set_alloc(struct mlx5_vdpa_net *ndev, struct mlx5_vdpa_virtqueue *mvq) { u32 in[MLX5_ST_SZ_DW(create_virtio_q_counters_in)] = {}; u32 out[MLX5_ST_SZ_DW(create_virtio_q_counters_out)] = {}; void *cmd_hdr; int err; if (!counters_supported(&ndev->mvdev)) return 0; cmd_hdr = MLX5_ADDR_OF(create_virtio_q_counters_in, in, hdr); MLX5_SET(general_obj_in_cmd_hdr, cmd_hdr, opcode, MLX5_CMD_OP_CREATE_GENERAL_OBJECT); MLX5_SET(general_obj_in_cmd_hdr, cmd_hdr, obj_type, MLX5_OBJ_TYPE_VIRTIO_Q_COUNTERS); MLX5_SET(general_obj_in_cmd_hdr, cmd_hdr, uid, ndev->mvdev.res.uid); err = mlx5_cmd_exec(ndev->mvdev.mdev, in, sizeof(in), out, sizeof(out)); if (err) return err; mvq->counter_set_id = MLX5_GET(general_obj_out_cmd_hdr, out, obj_id); return 0; } static void counter_set_dealloc(struct mlx5_vdpa_net *ndev, struct mlx5_vdpa_virtqueue *mvq) { u32 in[MLX5_ST_SZ_DW(destroy_virtio_q_counters_in)] = {}; u32 out[MLX5_ST_SZ_DW(destroy_virtio_q_counters_out)] = {}; if (!counters_supported(&ndev->mvdev)) return; MLX5_SET(destroy_virtio_q_counters_in, in, hdr.opcode, MLX5_CMD_OP_DESTROY_GENERAL_OBJECT); MLX5_SET(destroy_virtio_q_counters_in, in, hdr.obj_id, mvq->counter_set_id); MLX5_SET(destroy_virtio_q_counters_in, in, hdr.uid, ndev->mvdev.res.uid); MLX5_SET(destroy_virtio_q_counters_in, in, hdr.obj_type, MLX5_OBJ_TYPE_VIRTIO_Q_COUNTERS); if (mlx5_cmd_exec(ndev->mvdev.mdev, in, sizeof(in), out, sizeof(out))) mlx5_vdpa_warn(&ndev->mvdev, "dealloc counter set 0x%x\n", mvq->counter_set_id); } static irqreturn_t mlx5_vdpa_int_handler(int irq, void *priv) { struct vdpa_callback *cb = priv; if (cb->callback) return cb->callback(cb->private); return IRQ_HANDLED; } static void alloc_vector(struct mlx5_vdpa_net *ndev, struct mlx5_vdpa_virtqueue *mvq) { struct mlx5_vdpa_irq_pool *irqp = &ndev->irqp; struct mlx5_vdpa_irq_pool_entry *ent; int err; int i; for (i = 0; i < irqp->num_ent; i++) { ent = &irqp->entries[i]; if (!ent->used) { snprintf(ent->name, MLX5_VDPA_IRQ_NAME_LEN, "%s-vq-%d", dev_name(&ndev->mvdev.vdev.dev), mvq->index); ent->dev_id = &ndev->event_cbs[mvq->index]; err = request_irq(ent->map.virq, mlx5_vdpa_int_handler, 0, ent->name, ent->dev_id); if (err) return; ent->used = true; mvq->map = ent->map; return; } } } static void dealloc_vector(struct mlx5_vdpa_net *ndev, struct mlx5_vdpa_virtqueue *mvq) { struct mlx5_vdpa_irq_pool *irqp = &ndev->irqp; int i; for (i = 0; i < irqp->num_ent; i++) if (mvq->map.virq == irqp->entries[i].map.virq) { free_irq(mvq->map.virq, irqp->entries[i].dev_id); irqp->entries[i].used = false; return; } } static int setup_vq(struct mlx5_vdpa_net *ndev, struct mlx5_vdpa_virtqueue *mvq) { u16 idx = mvq->index; int err; if (!mvq->num_ent) return 0; if (mvq->initialized) return 0; err = cq_create(ndev, idx, mvq->num_ent); if (err) return err; err = qp_create(ndev, mvq, &mvq->fwqp); if (err) goto err_fwqp; err = qp_create(ndev, mvq, &mvq->vqqp); if (err) goto err_vqqp; err = connect_qps(ndev, mvq); if (err) goto err_connect; err = counter_set_alloc(ndev, mvq); if (err) goto err_connect; alloc_vector(ndev, mvq); err = create_virtqueue(ndev, mvq); if (err) goto err_vq; if (mvq->ready) { err = modify_virtqueue(ndev, mvq, MLX5_VIRTIO_NET_Q_OBJECT_STATE_RDY); if (err) { mlx5_vdpa_warn(&ndev->mvdev, "failed to modify to ready vq idx %d(%d)\n", idx, err); goto err_modify; } } mvq->initialized = true; return 0; err_modify: destroy_virtqueue(ndev, mvq); err_vq: dealloc_vector(ndev, mvq); counter_set_dealloc(ndev, mvq); err_connect: qp_destroy(ndev, &mvq->vqqp); err_vqqp: qp_destroy(ndev, &mvq->fwqp); err_fwqp: cq_destroy(ndev, idx); return err; } static void suspend_vq(struct mlx5_vdpa_net *ndev, struct mlx5_vdpa_virtqueue *mvq) { struct mlx5_virtq_attr attr; if (!mvq->initialized) return; if (mvq->fw_state != MLX5_VIRTIO_NET_Q_OBJECT_STATE_RDY) return; if (modify_virtqueue(ndev, mvq, MLX5_VIRTIO_NET_Q_OBJECT_STATE_SUSPEND)) mlx5_vdpa_warn(&ndev->mvdev, "modify to suspend failed\n"); if (query_virtqueue(ndev, mvq, &attr)) { mlx5_vdpa_warn(&ndev->mvdev, "failed to query virtqueue\n"); return; } mvq->avail_idx = attr.available_index; mvq->used_idx = attr.used_index; } static void suspend_vqs(struct mlx5_vdpa_net *ndev) { int i; for (i = 0; i < ndev->mvdev.max_vqs; i++) suspend_vq(ndev, &ndev->vqs[i]); } static void teardown_vq(struct mlx5_vdpa_net *ndev, struct mlx5_vdpa_virtqueue *mvq) { if (!mvq->initialized) return; suspend_vq(ndev, mvq); destroy_virtqueue(ndev, mvq); dealloc_vector(ndev, mvq); counter_set_dealloc(ndev, mvq); qp_destroy(ndev, &mvq->vqqp); qp_destroy(ndev, &mvq->fwqp); cq_destroy(ndev, mvq->index); mvq->initialized = false; } static int create_rqt(struct mlx5_vdpa_net *ndev) { int rqt_table_size = roundup_pow_of_two(ndev->rqt_size); int act_sz = roundup_pow_of_two(ndev->cur_num_vqs / 2); __be32 *list; void *rqtc; int inlen; void *in; int i, j; int err; inlen = MLX5_ST_SZ_BYTES(create_rqt_in) + rqt_table_size * MLX5_ST_SZ_BYTES(rq_num); in = kzalloc(inlen, GFP_KERNEL); if (!in) return -ENOMEM; MLX5_SET(create_rqt_in, in, uid, ndev->mvdev.res.uid); rqtc = MLX5_ADDR_OF(create_rqt_in, in, rqt_context); MLX5_SET(rqtc, rqtc, list_q_type, MLX5_RQTC_LIST_Q_TYPE_VIRTIO_NET_Q); MLX5_SET(rqtc, rqtc, rqt_max_size, rqt_table_size); list = MLX5_ADDR_OF(rqtc, rqtc, rq_num[0]); for (i = 0, j = 0; i < act_sz; i++, j += 2) list[i] = cpu_to_be32(ndev->vqs[j % ndev->cur_num_vqs].virtq_id); MLX5_SET(rqtc, rqtc, rqt_actual_size, act_sz); err = mlx5_vdpa_create_rqt(&ndev->mvdev, in, inlen, &ndev->res.rqtn); kfree(in); if (err) return err; return 0; } #define MLX5_MODIFY_RQT_NUM_RQS ((u64)1) static int modify_rqt(struct mlx5_vdpa_net *ndev, int num) { int act_sz = roundup_pow_of_two(num / 2); __be32 *list; void *rqtc; int inlen; void *in; int i, j; int err; inlen = MLX5_ST_SZ_BYTES(modify_rqt_in) + act_sz * MLX5_ST_SZ_BYTES(rq_num); in = kzalloc(inlen, GFP_KERNEL); if (!in) return -ENOMEM; MLX5_SET(modify_rqt_in, in, uid, ndev->mvdev.res.uid); MLX5_SET64(modify_rqt_in, in, bitmask, MLX5_MODIFY_RQT_NUM_RQS); rqtc = MLX5_ADDR_OF(modify_rqt_in, in, ctx); MLX5_SET(rqtc, rqtc, list_q_type, MLX5_RQTC_LIST_Q_TYPE_VIRTIO_NET_Q); list = MLX5_ADDR_OF(rqtc, rqtc, rq_num[0]); for (i = 0, j = 0; i < act_sz; i++, j = j + 2) list[i] = cpu_to_be32(ndev->vqs[j % num].virtq_id); MLX5_SET(rqtc, rqtc, rqt_actual_size, act_sz); err = mlx5_vdpa_modify_rqt(&ndev->mvdev, in, inlen, ndev->res.rqtn); kfree(in); if (err) return err; return 0; } static void destroy_rqt(struct mlx5_vdpa_net *ndev) { mlx5_vdpa_destroy_rqt(&ndev->mvdev, ndev->res.rqtn); } static int create_tir(struct mlx5_vdpa_net *ndev) { #define HASH_IP_L4PORTS \ (MLX5_HASH_FIELD_SEL_SRC_IP | MLX5_HASH_FIELD_SEL_DST_IP | MLX5_HASH_FIELD_SEL_L4_SPORT | \ MLX5_HASH_FIELD_SEL_L4_DPORT) static const u8 rx_hash_toeplitz_key[] = { 0x2c, 0xc6, 0x81, 0xd1, 0x5b, 0xdb, 0xf4, 0xf7, 0xfc, 0xa2, 0x83, 0x19, 0xdb, 0x1a, 0x3e, 0x94, 0x6b, 0x9e, 0x38, 0xd9, 0x2c, 0x9c, 0x03, 0xd1, 0xad, 0x99, 0x44, 0xa7, 0xd9, 0x56, 0x3d, 0x59, 0x06, 0x3c, 0x25, 0xf3, 0xfc, 0x1f, 0xdc, 0x2a }; void *rss_key; void *outer; void *tirc; void *in; int err; in = kzalloc(MLX5_ST_SZ_BYTES(create_tir_in), GFP_KERNEL); if (!in) return -ENOMEM; MLX5_SET(create_tir_in, in, uid, ndev->mvdev.res.uid); tirc = MLX5_ADDR_OF(create_tir_in, in, ctx); MLX5_SET(tirc, tirc, disp_type, MLX5_TIRC_DISP_TYPE_INDIRECT); MLX5_SET(tirc, tirc, rx_hash_symmetric, 1); MLX5_SET(tirc, tirc, rx_hash_fn, MLX5_RX_HASH_FN_TOEPLITZ); rss_key = MLX5_ADDR_OF(tirc, tirc, rx_hash_toeplitz_key); memcpy(rss_key, rx_hash_toeplitz_key, sizeof(rx_hash_toeplitz_key)); outer = MLX5_ADDR_OF(tirc, tirc, rx_hash_field_selector_outer); MLX5_SET(rx_hash_field_select, outer, l3_prot_type, MLX5_L3_PROT_TYPE_IPV4); MLX5_SET(rx_hash_field_select, outer, l4_prot_type, MLX5_L4_PROT_TYPE_TCP); MLX5_SET(rx_hash_field_select, outer, selected_fields, HASH_IP_L4PORTS); MLX5_SET(tirc, tirc, indirect_table, ndev->res.rqtn); MLX5_SET(tirc, tirc, transport_domain, ndev->res.tdn); err = mlx5_vdpa_create_tir(&ndev->mvdev, in, &ndev->res.tirn); kfree(in); if (err) return err; mlx5_vdpa_add_tirn(ndev); return err; } static void destroy_tir(struct mlx5_vdpa_net *ndev) { mlx5_vdpa_remove_tirn(ndev); mlx5_vdpa_destroy_tir(&ndev->mvdev, ndev->res.tirn); } #define MAX_STEERING_ENT 0x8000 #define MAX_STEERING_GROUPS 2 #if defined(CONFIG_MLX5_VDPA_STEERING_DEBUG) #define NUM_DESTS 2 #else #define NUM_DESTS 1 #endif static int add_steering_counters(struct mlx5_vdpa_net *ndev, struct macvlan_node *node, struct mlx5_flow_act *flow_act, struct mlx5_flow_destination *dests) { #if defined(CONFIG_MLX5_VDPA_STEERING_DEBUG) int err; node->ucast_counter.counter = mlx5_fc_create(ndev->mvdev.mdev, false); if (IS_ERR(node->ucast_counter.counter)) return PTR_ERR(node->ucast_counter.counter); node->mcast_counter.counter = mlx5_fc_create(ndev->mvdev.mdev, false); if (IS_ERR(node->mcast_counter.counter)) { err = PTR_ERR(node->mcast_counter.counter); goto err_mcast_counter; } dests[1].type = MLX5_FLOW_DESTINATION_TYPE_COUNTER; flow_act->action |= MLX5_FLOW_CONTEXT_ACTION_COUNT; return 0; err_mcast_counter: mlx5_fc_destroy(ndev->mvdev.mdev, node->ucast_counter.counter); return err; #else return 0; #endif } static void remove_steering_counters(struct mlx5_vdpa_net *ndev, struct macvlan_node *node) { #if defined(CONFIG_MLX5_VDPA_STEERING_DEBUG) mlx5_fc_destroy(ndev->mvdev.mdev, node->mcast_counter.counter); mlx5_fc_destroy(ndev->mvdev.mdev, node->ucast_counter.counter); #endif } static int mlx5_vdpa_add_mac_vlan_rules(struct mlx5_vdpa_net *ndev, u8 *mac, struct macvlan_node *node) { struct mlx5_flow_destination dests[NUM_DESTS] = {}; struct mlx5_flow_act flow_act = {}; struct mlx5_flow_spec *spec; void *headers_c; void *headers_v; u8 *dmac_c; u8 *dmac_v; int err; u16 vid; spec = kvzalloc(sizeof(*spec), GFP_KERNEL); if (!spec) return -ENOMEM; vid = key2vid(node->macvlan); spec->match_criteria_enable = MLX5_MATCH_OUTER_HEADERS; headers_c = MLX5_ADDR_OF(fte_match_param, spec->match_criteria, outer_headers); headers_v = MLX5_ADDR_OF(fte_match_param, spec->match_value, outer_headers); dmac_c = MLX5_ADDR_OF(fte_match_param, headers_c, outer_headers.dmac_47_16); dmac_v = MLX5_ADDR_OF(fte_match_param, headers_v, outer_headers.dmac_47_16); eth_broadcast_addr(dmac_c); ether_addr_copy(dmac_v, mac); if (ndev->mvdev.actual_features & BIT_ULL(VIRTIO_NET_F_CTRL_VLAN)) { MLX5_SET(fte_match_set_lyr_2_4, headers_c, cvlan_tag, 1); MLX5_SET_TO_ONES(fte_match_set_lyr_2_4, headers_c, first_vid); } if (node->tagged) { MLX5_SET(fte_match_set_lyr_2_4, headers_v, cvlan_tag, 1); MLX5_SET(fte_match_set_lyr_2_4, headers_v, first_vid, vid); } flow_act.action = MLX5_FLOW_CONTEXT_ACTION_FWD_DEST; dests[0].type = MLX5_FLOW_DESTINATION_TYPE_TIR; dests[0].tir_num = ndev->res.tirn; err = add_steering_counters(ndev, node, &flow_act, dests); if (err) goto out_free; #if defined(CONFIG_MLX5_VDPA_STEERING_DEBUG) dests[1].counter_id = mlx5_fc_id(node->ucast_counter.counter); #endif node->ucast_rule = mlx5_add_flow_rules(ndev->rxft, spec, &flow_act, dests, NUM_DESTS); if (IS_ERR(node->ucast_rule)) { err = PTR_ERR(node->ucast_rule); goto err_ucast; } #if defined(CONFIG_MLX5_VDPA_STEERING_DEBUG) dests[1].counter_id = mlx5_fc_id(node->mcast_counter.counter); #endif memset(dmac_c, 0, ETH_ALEN); memset(dmac_v, 0, ETH_ALEN); dmac_c[0] = 1; dmac_v[0] = 1; node->mcast_rule = mlx5_add_flow_rules(ndev->rxft, spec, &flow_act, dests, NUM_DESTS); if (IS_ERR(node->mcast_rule)) { err = PTR_ERR(node->mcast_rule); goto err_mcast; } kvfree(spec); mlx5_vdpa_add_rx_counters(ndev, node); return 0; err_mcast: mlx5_del_flow_rules(node->ucast_rule); err_ucast: remove_steering_counters(ndev, node); out_free: kvfree(spec); return err; } static void mlx5_vdpa_del_mac_vlan_rules(struct mlx5_vdpa_net *ndev, struct macvlan_node *node) { mlx5_vdpa_remove_rx_counters(ndev, node); mlx5_del_flow_rules(node->ucast_rule); mlx5_del_flow_rules(node->mcast_rule); } static u64 search_val(u8 *mac, u16 vlan, bool tagged) { u64 val; if (!tagged) vlan = MLX5V_UNTAGGED; val = (u64)vlan << 48 | (u64)mac[0] << 40 | (u64)mac[1] << 32 | (u64)mac[2] << 24 | (u64)mac[3] << 16 | (u64)mac[4] << 8 | (u64)mac[5]; return val; } static struct macvlan_node *mac_vlan_lookup(struct mlx5_vdpa_net *ndev, u64 value) { struct macvlan_node *pos; u32 idx; idx = hash_64(value, 8); // tbd 8 hlist_for_each_entry(pos, &ndev->macvlan_hash[idx], hlist) { if (pos->macvlan == value) return pos; } return NULL; } static int mac_vlan_add(struct mlx5_vdpa_net *ndev, u8 *mac, u16 vid, bool tagged) { struct macvlan_node *ptr; u64 val; u32 idx; int err; val = search_val(mac, vid, tagged); if (mac_vlan_lookup(ndev, val)) return -EEXIST; ptr = kzalloc(sizeof(*ptr), GFP_KERNEL); if (!ptr) return -ENOMEM; ptr->tagged = tagged; ptr->macvlan = val; ptr->ndev = ndev; err = mlx5_vdpa_add_mac_vlan_rules(ndev, ndev->config.mac, ptr); if (err) goto err_add; idx = hash_64(val, 8); hlist_add_head(&ptr->hlist, &ndev->macvlan_hash[idx]); return 0; err_add: kfree(ptr); return err; } static void mac_vlan_del(struct mlx5_vdpa_net *ndev, u8 *mac, u16 vlan, bool tagged) { struct macvlan_node *ptr; ptr = mac_vlan_lookup(ndev, search_val(mac, vlan, tagged)); if (!ptr) return; hlist_del(&ptr->hlist); mlx5_vdpa_del_mac_vlan_rules(ndev, ptr); remove_steering_counters(ndev, ptr); kfree(ptr); } static void clear_mac_vlan_table(struct mlx5_vdpa_net *ndev) { struct macvlan_node *pos; struct hlist_node *n; int i; for (i = 0; i < MLX5V_MACVLAN_SIZE; i++) { hlist_for_each_entry_safe(pos, n, &ndev->macvlan_hash[i], hlist) { hlist_del(&pos->hlist); mlx5_vdpa_del_mac_vlan_rules(ndev, pos); remove_steering_counters(ndev, pos); kfree(pos); } } } static int setup_steering(struct mlx5_vdpa_net *ndev) { struct mlx5_flow_table_attr ft_attr = {}; struct mlx5_flow_namespace *ns; int err; ft_attr.max_fte = MAX_STEERING_ENT; ft_attr.autogroup.max_num_groups = MAX_STEERING_GROUPS; ns = mlx5_get_flow_namespace(ndev->mvdev.mdev, MLX5_FLOW_NAMESPACE_BYPASS); if (!ns) { mlx5_vdpa_warn(&ndev->mvdev, "failed to get flow namespace\n"); return -EOPNOTSUPP; } ndev->rxft = mlx5_create_auto_grouped_flow_table(ns, &ft_attr); if (IS_ERR(ndev->rxft)) { mlx5_vdpa_warn(&ndev->mvdev, "failed to create flow table\n"); return PTR_ERR(ndev->rxft); } mlx5_vdpa_add_rx_flow_table(ndev); err = mac_vlan_add(ndev, ndev->config.mac, 0, false); if (err) goto err_add; return 0; err_add: mlx5_vdpa_remove_rx_flow_table(ndev); mlx5_destroy_flow_table(ndev->rxft); return err; } static void teardown_steering(struct mlx5_vdpa_net *ndev) { clear_mac_vlan_table(ndev); mlx5_vdpa_remove_rx_flow_table(ndev); mlx5_destroy_flow_table(ndev->rxft); } static virtio_net_ctrl_ack handle_ctrl_mac(struct mlx5_vdpa_dev *mvdev, u8 cmd) { struct mlx5_vdpa_net *ndev = to_mlx5_vdpa_ndev(mvdev); struct mlx5_control_vq *cvq = &mvdev->cvq; virtio_net_ctrl_ack status = VIRTIO_NET_ERR; struct mlx5_core_dev *pfmdev; size_t read; u8 mac[ETH_ALEN], mac_back[ETH_ALEN]; pfmdev = pci_get_drvdata(pci_physfn(mvdev->mdev->pdev)); switch (cmd) { case VIRTIO_NET_CTRL_MAC_ADDR_SET: read = vringh_iov_pull_iotlb(&cvq->vring, &cvq->riov, (void *)mac, ETH_ALEN); if (read != ETH_ALEN) break; if (!memcmp(ndev->config.mac, mac, 6)) { status = VIRTIO_NET_OK; break; } if (is_zero_ether_addr(mac)) break; if (!is_zero_ether_addr(ndev->config.mac)) { if (mlx5_mpfs_del_mac(pfmdev, ndev->config.mac)) { mlx5_vdpa_warn(mvdev, "failed to delete old MAC %pM from MPFS table\n", ndev->config.mac); break; } } if (mlx5_mpfs_add_mac(pfmdev, mac)) { mlx5_vdpa_warn(mvdev, "failed to insert new MAC %pM into MPFS table\n", mac); break; } /* backup the original mac address so that if failed to add the forward rules * we could restore it */ memcpy(mac_back, ndev->config.mac, ETH_ALEN); memcpy(ndev->config.mac, mac, ETH_ALEN); /* Need recreate the flow table entry, so that the packet could forward back */ mac_vlan_del(ndev, mac_back, 0, false); if (mac_vlan_add(ndev, ndev->config.mac, 0, false)) { mlx5_vdpa_warn(mvdev, "failed to insert forward rules, try to restore\n"); /* Although it hardly run here, we still need double check */ if (is_zero_ether_addr(mac_back)) { mlx5_vdpa_warn(mvdev, "restore mac failed: Original MAC is zero\n"); break; } /* Try to restore original mac address to MFPS table, and try to restore * the forward rule entry. */ if (mlx5_mpfs_del_mac(pfmdev, ndev->config.mac)) { mlx5_vdpa_warn(mvdev, "restore mac failed: delete MAC %pM from MPFS table failed\n", ndev->config.mac); } if (mlx5_mpfs_add_mac(pfmdev, mac_back)) { mlx5_vdpa_warn(mvdev, "restore mac failed: insert old MAC %pM into MPFS table failed\n", mac_back); } memcpy(ndev->config.mac, mac_back, ETH_ALEN); if (mac_vlan_add(ndev, ndev->config.mac, 0, false)) mlx5_vdpa_warn(mvdev, "restore forward rules failed: insert forward rules failed\n"); break; } status = VIRTIO_NET_OK; break; default: break; } return status; } static int change_num_qps(struct mlx5_vdpa_dev *mvdev, int newqps) { struct mlx5_vdpa_net *ndev = to_mlx5_vdpa_ndev(mvdev); int cur_qps = ndev->cur_num_vqs / 2; int err; int i; if (cur_qps > newqps) { err = modify_rqt(ndev, 2 * newqps); if (err) return err; for (i = ndev->cur_num_vqs - 1; i >= 2 * newqps; i--) teardown_vq(ndev, &ndev->vqs[i]); ndev->cur_num_vqs = 2 * newqps; } else { ndev->cur_num_vqs = 2 * newqps; for (i = cur_qps * 2; i < 2 * newqps; i++) { err = setup_vq(ndev, &ndev->vqs[i]); if (err) goto clean_added; } err = modify_rqt(ndev, 2 * newqps); if (err) goto clean_added; } return 0; clean_added: for (--i; i >= 2 * cur_qps; --i) teardown_vq(ndev, &ndev->vqs[i]); ndev->cur_num_vqs = 2 * cur_qps; return err; } static virtio_net_ctrl_ack handle_ctrl_mq(struct mlx5_vdpa_dev *mvdev, u8 cmd) { struct mlx5_vdpa_net *ndev = to_mlx5_vdpa_ndev(mvdev); virtio_net_ctrl_ack status = VIRTIO_NET_ERR; struct mlx5_control_vq *cvq = &mvdev->cvq; struct virtio_net_ctrl_mq mq; size_t read; u16 newqps; switch (cmd) { case VIRTIO_NET_CTRL_MQ_VQ_PAIRS_SET: /* This mq feature check aligns with pre-existing userspace * implementation. * * Without it, an untrusted driver could fake a multiqueue config * request down to a non-mq device that may cause kernel to * panic due to uninitialized resources for extra vqs. Even with * a well behaving guest driver, it is not expected to allow * changing the number of vqs on a non-mq device. */ if (!MLX5_FEATURE(mvdev, VIRTIO_NET_F_MQ)) break; read = vringh_iov_pull_iotlb(&cvq->vring, &cvq->riov, (void *)&mq, sizeof(mq)); if (read != sizeof(mq)) break; newqps = mlx5vdpa16_to_cpu(mvdev, mq.virtqueue_pairs); if (newqps < VIRTIO_NET_CTRL_MQ_VQ_PAIRS_MIN || newqps > ndev->rqt_size) break; if (ndev->cur_num_vqs == 2 * newqps) { status = VIRTIO_NET_OK; break; } if (!change_num_qps(mvdev, newqps)) status = VIRTIO_NET_OK; break; default: break; } return status; } static virtio_net_ctrl_ack handle_ctrl_vlan(struct mlx5_vdpa_dev *mvdev, u8 cmd) { struct mlx5_vdpa_net *ndev = to_mlx5_vdpa_ndev(mvdev); virtio_net_ctrl_ack status = VIRTIO_NET_ERR; struct mlx5_control_vq *cvq = &mvdev->cvq; __virtio16 vlan; size_t read; u16 id; if (!(ndev->mvdev.actual_features & BIT_ULL(VIRTIO_NET_F_CTRL_VLAN))) return status; switch (cmd) { case VIRTIO_NET_CTRL_VLAN_ADD: read = vringh_iov_pull_iotlb(&cvq->vring, &cvq->riov, &vlan, sizeof(vlan)); if (read != sizeof(vlan)) break; id = mlx5vdpa16_to_cpu(mvdev, vlan); if (mac_vlan_add(ndev, ndev->config.mac, id, true)) break; status = VIRTIO_NET_OK; break; case VIRTIO_NET_CTRL_VLAN_DEL: read = vringh_iov_pull_iotlb(&cvq->vring, &cvq->riov, &vlan, sizeof(vlan)); if (read != sizeof(vlan)) break; id = mlx5vdpa16_to_cpu(mvdev, vlan); mac_vlan_del(ndev, ndev->config.mac, id, true); status = VIRTIO_NET_OK; break; default: break; } return status; } static void mlx5_cvq_kick_handler(struct work_struct *work) { virtio_net_ctrl_ack status = VIRTIO_NET_ERR; struct virtio_net_ctrl_hdr ctrl; struct mlx5_vdpa_wq_ent *wqent; struct mlx5_vdpa_dev *mvdev; struct mlx5_control_vq *cvq; struct mlx5_vdpa_net *ndev; size_t read, write; int err; wqent = container_of(work, struct mlx5_vdpa_wq_ent, work); mvdev = wqent->mvdev; ndev = to_mlx5_vdpa_ndev(mvdev); cvq = &mvdev->cvq; down_write(&ndev->reslock); if (!(mvdev->status & VIRTIO_CONFIG_S_DRIVER_OK)) goto out; if (!(ndev->mvdev.actual_features & BIT_ULL(VIRTIO_NET_F_CTRL_VQ))) goto out; if (!cvq->ready) goto out; while (true) { err = vringh_getdesc_iotlb(&cvq->vring, &cvq->riov, &cvq->wiov, &cvq->head, GFP_ATOMIC); if (err <= 0) break; read = vringh_iov_pull_iotlb(&cvq->vring, &cvq->riov, &ctrl, sizeof(ctrl)); if (read != sizeof(ctrl)) break; cvq->received_desc++; switch (ctrl.class) { case VIRTIO_NET_CTRL_MAC: status = handle_ctrl_mac(mvdev, ctrl.cmd); break; case VIRTIO_NET_CTRL_MQ: status = handle_ctrl_mq(mvdev, ctrl.cmd); break; case VIRTIO_NET_CTRL_VLAN: status = handle_ctrl_vlan(mvdev, ctrl.cmd); break; default: break; } /* Make sure data is written before advancing index */ smp_wmb(); write = vringh_iov_push_iotlb(&cvq->vring, &cvq->wiov, &status, sizeof(status)); vringh_complete_iotlb(&cvq->vring, cvq->head, write); vringh_kiov_cleanup(&cvq->riov); vringh_kiov_cleanup(&cvq->wiov); if (vringh_need_notify_iotlb(&cvq->vring)) vringh_notify(&cvq->vring); cvq->completed_desc++; queue_work(mvdev->wq, &wqent->work); break; } out: up_write(&ndev->reslock); } static void mlx5_vdpa_kick_vq(struct vdpa_device *vdev, u16 idx) { struct mlx5_vdpa_dev *mvdev = to_mvdev(vdev); struct mlx5_vdpa_net *ndev = to_mlx5_vdpa_ndev(mvdev); struct mlx5_vdpa_virtqueue *mvq; if (!is_index_valid(mvdev, idx)) return; if (unlikely(is_ctrl_vq_idx(mvdev, idx))) { if (!mvdev->wq || !mvdev->cvq.ready) return; queue_work(mvdev->wq, &ndev->cvq_ent.work); return; } mvq = &ndev->vqs[idx]; if (unlikely(!mvq->ready)) return; iowrite16(idx, ndev->mvdev.res.kick_addr); } static int mlx5_vdpa_set_vq_address(struct vdpa_device *vdev, u16 idx, u64 desc_area, u64 driver_area, u64 device_area) { struct mlx5_vdpa_dev *mvdev = to_mvdev(vdev); struct mlx5_vdpa_net *ndev = to_mlx5_vdpa_ndev(mvdev); struct mlx5_vdpa_virtqueue *mvq; if (!is_index_valid(mvdev, idx)) return -EINVAL; if (is_ctrl_vq_idx(mvdev, idx)) { mvdev->cvq.desc_addr = desc_area; mvdev->cvq.device_addr = device_area; mvdev->cvq.driver_addr = driver_area; return 0; } mvq = &ndev->vqs[idx]; mvq->desc_addr = desc_area; mvq->device_addr = device_area; mvq->driver_addr = driver_area; return 0; } static void mlx5_vdpa_set_vq_num(struct vdpa_device *vdev, u16 idx, u32 num) { struct mlx5_vdpa_dev *mvdev = to_mvdev(vdev); struct mlx5_vdpa_net *ndev = to_mlx5_vdpa_ndev(mvdev); struct mlx5_vdpa_virtqueue *mvq; if (!is_index_valid(mvdev, idx) || is_ctrl_vq_idx(mvdev, idx)) return; mvq = &ndev->vqs[idx]; mvq->num_ent = num; } static void mlx5_vdpa_set_vq_cb(struct vdpa_device *vdev, u16 idx, struct vdpa_callback *cb) { struct mlx5_vdpa_dev *mvdev = to_mvdev(vdev); struct mlx5_vdpa_net *ndev = to_mlx5_vdpa_ndev(mvdev); ndev->event_cbs[idx] = *cb; if (is_ctrl_vq_idx(mvdev, idx)) mvdev->cvq.event_cb = *cb; } static void mlx5_cvq_notify(struct vringh *vring) { struct mlx5_control_vq *cvq = container_of(vring, struct mlx5_control_vq, vring); if (!cvq->event_cb.callback) return; cvq->event_cb.callback(cvq->event_cb.private); } static void set_cvq_ready(struct mlx5_vdpa_dev *mvdev, bool ready) { struct mlx5_control_vq *cvq = &mvdev->cvq; cvq->ready = ready; if (!ready) return; cvq->vring.notify = mlx5_cvq_notify; } static void mlx5_vdpa_set_vq_ready(struct vdpa_device *vdev, u16 idx, bool ready) { struct mlx5_vdpa_dev *mvdev = to_mvdev(vdev); struct mlx5_vdpa_net *ndev = to_mlx5_vdpa_ndev(mvdev); struct mlx5_vdpa_virtqueue *mvq; int err; if (!mvdev->actual_features) return; if (!is_index_valid(mvdev, idx)) return; if (is_ctrl_vq_idx(mvdev, idx)) { set_cvq_ready(mvdev, ready); return; } mvq = &ndev->vqs[idx]; if (!ready) { suspend_vq(ndev, mvq); } else { err = modify_virtqueue(ndev, mvq, MLX5_VIRTIO_NET_Q_OBJECT_STATE_RDY); if (err) { mlx5_vdpa_warn(mvdev, "modify VQ %d to ready failed (%d)\n", idx, err); ready = false; } } mvq->ready = ready; } static bool mlx5_vdpa_get_vq_ready(struct vdpa_device *vdev, u16 idx) { struct mlx5_vdpa_dev *mvdev = to_mvdev(vdev); struct mlx5_vdpa_net *ndev = to_mlx5_vdpa_ndev(mvdev); if (!is_index_valid(mvdev, idx)) return false; if (is_ctrl_vq_idx(mvdev, idx)) return mvdev->cvq.ready; return ndev->vqs[idx].ready; } static int mlx5_vdpa_set_vq_state(struct vdpa_device *vdev, u16 idx, const struct vdpa_vq_state *state) { struct mlx5_vdpa_dev *mvdev = to_mvdev(vdev); struct mlx5_vdpa_net *ndev = to_mlx5_vdpa_ndev(mvdev); struct mlx5_vdpa_virtqueue *mvq; if (!is_index_valid(mvdev, idx)) return -EINVAL; if (is_ctrl_vq_idx(mvdev, idx)) { mvdev->cvq.vring.last_avail_idx = state->split.avail_index; return 0; } mvq = &ndev->vqs[idx]; if (mvq->fw_state == MLX5_VIRTIO_NET_Q_OBJECT_STATE_RDY) { mlx5_vdpa_warn(mvdev, "can't modify available index\n"); return -EINVAL; } mvq->used_idx = state->split.avail_index; mvq->avail_idx = state->split.avail_index; return 0; } static int mlx5_vdpa_get_vq_state(struct vdpa_device *vdev, u16 idx, struct vdpa_vq_state *state) { struct mlx5_vdpa_dev *mvdev = to_mvdev(vdev); struct mlx5_vdpa_net *ndev = to_mlx5_vdpa_ndev(mvdev); struct mlx5_vdpa_virtqueue *mvq; struct mlx5_virtq_attr attr; int err; if (!is_index_valid(mvdev, idx)) return -EINVAL; if (is_ctrl_vq_idx(mvdev, idx)) { state->split.avail_index = mvdev->cvq.vring.last_avail_idx; return 0; } mvq = &ndev->vqs[idx]; /* If the virtq object was destroyed, use the value saved at * the last minute of suspend_vq. This caters for userspace * that cares about emulating the index after vq is stopped. */ if (!mvq->initialized) { /* Firmware returns a wrong value for the available index. * Since both values should be identical, we take the value of * used_idx which is reported correctly. */ state->split.avail_index = mvq->used_idx; return 0; } err = query_virtqueue(ndev, mvq, &attr); if (err) { mlx5_vdpa_warn(mvdev, "failed to query virtqueue\n"); return err; } state->split.avail_index = attr.used_index; return 0; } static u32 mlx5_vdpa_get_vq_align(struct vdpa_device *vdev) { return PAGE_SIZE; } static u32 mlx5_vdpa_get_vq_group(struct vdpa_device *vdev, u16 idx) { struct mlx5_vdpa_dev *mvdev = to_mvdev(vdev); if (is_ctrl_vq_idx(mvdev, idx)) return MLX5_VDPA_CVQ_GROUP; return MLX5_VDPA_DATAVQ_GROUP; } static u64 mlx_to_vritio_features(u16 dev_features) { u64 result = 0; if (dev_features & BIT_ULL(MLX5_VIRTIO_NET_F_MRG_RXBUF)) result |= BIT_ULL(VIRTIO_NET_F_MRG_RXBUF); if (dev_features & BIT_ULL(MLX5_VIRTIO_NET_F_HOST_ECN)) result |= BIT_ULL(VIRTIO_NET_F_HOST_ECN); if (dev_features & BIT_ULL(MLX5_VIRTIO_NET_F_GUEST_ECN)) result |= BIT_ULL(VIRTIO_NET_F_GUEST_ECN); if (dev_features & BIT_ULL(MLX5_VIRTIO_NET_F_GUEST_TSO6)) result |= BIT_ULL(VIRTIO_NET_F_GUEST_TSO6); if (dev_features & BIT_ULL(MLX5_VIRTIO_NET_F_GUEST_TSO4)) result |= BIT_ULL(VIRTIO_NET_F_GUEST_TSO4); if (dev_features & BIT_ULL(MLX5_VIRTIO_NET_F_GUEST_CSUM)) result |= BIT_ULL(VIRTIO_NET_F_GUEST_CSUM); if (dev_features & BIT_ULL(MLX5_VIRTIO_NET_F_CSUM)) result |= BIT_ULL(VIRTIO_NET_F_CSUM); if (dev_features & BIT_ULL(MLX5_VIRTIO_NET_F_HOST_TSO6)) result |= BIT_ULL(VIRTIO_NET_F_HOST_TSO6); if (dev_features & BIT_ULL(MLX5_VIRTIO_NET_F_HOST_TSO4)) result |= BIT_ULL(VIRTIO_NET_F_HOST_TSO4); return result; } static u64 get_supported_features(struct mlx5_core_dev *mdev) { u64 mlx_vdpa_features = 0; u16 dev_features; dev_features = MLX5_CAP_DEV_VDPA_EMULATION(mdev, device_features_bits_mask); mlx_vdpa_features |= mlx_to_vritio_features(dev_features); if (MLX5_CAP_DEV_VDPA_EMULATION(mdev, virtio_version_1_0)) mlx_vdpa_features |= BIT_ULL(VIRTIO_F_VERSION_1); mlx_vdpa_features |= BIT_ULL(VIRTIO_F_ACCESS_PLATFORM); mlx_vdpa_features |= BIT_ULL(VIRTIO_NET_F_CTRL_VQ); mlx_vdpa_features |= BIT_ULL(VIRTIO_NET_F_CTRL_MAC_ADDR); mlx_vdpa_features |= BIT_ULL(VIRTIO_NET_F_MQ); mlx_vdpa_features |= BIT_ULL(VIRTIO_NET_F_STATUS); mlx_vdpa_features |= BIT_ULL(VIRTIO_NET_F_MTU); mlx_vdpa_features |= BIT_ULL(VIRTIO_NET_F_CTRL_VLAN); mlx_vdpa_features |= BIT_ULL(VIRTIO_NET_F_MAC); return mlx_vdpa_features; } static u64 mlx5_vdpa_get_device_features(struct vdpa_device *vdev) { struct mlx5_vdpa_dev *mvdev = to_mvdev(vdev); struct mlx5_vdpa_net *ndev = to_mlx5_vdpa_ndev(mvdev); print_features(mvdev, ndev->mvdev.mlx_features, false); return ndev->mvdev.mlx_features; } static int verify_driver_features(struct mlx5_vdpa_dev *mvdev, u64 features) { /* Minimum features to expect */ if (!(features & BIT_ULL(VIRTIO_F_ACCESS_PLATFORM))) return -EOPNOTSUPP; /* Double check features combination sent down by the driver. * Fail invalid features due to absence of the depended feature. * * Per VIRTIO v1.1 specification, section 5.1.3.1 Feature bit * requirements: "VIRTIO_NET_F_MQ Requires VIRTIO_NET_F_CTRL_VQ". * By failing the invalid features sent down by untrusted drivers, * we're assured the assumption made upon is_index_valid() and * is_ctrl_vq_idx() will not be compromised. */ if ((features & (BIT_ULL(VIRTIO_NET_F_MQ) | BIT_ULL(VIRTIO_NET_F_CTRL_VQ))) == BIT_ULL(VIRTIO_NET_F_MQ)) return -EINVAL; return 0; } static int setup_virtqueues(struct mlx5_vdpa_dev *mvdev) { struct mlx5_vdpa_net *ndev = to_mlx5_vdpa_ndev(mvdev); int err; int i; for (i = 0; i < mvdev->max_vqs; i++) { err = setup_vq(ndev, &ndev->vqs[i]); if (err) goto err_vq; } return 0; err_vq: for (--i; i >= 0; i--) teardown_vq(ndev, &ndev->vqs[i]); return err; } static void teardown_virtqueues(struct mlx5_vdpa_net *ndev) { struct mlx5_vdpa_virtqueue *mvq; int i; for (i = ndev->mvdev.max_vqs - 1; i >= 0; i--) { mvq = &ndev->vqs[i]; if (!mvq->initialized) continue; teardown_vq(ndev, mvq); } } static void update_cvq_info(struct mlx5_vdpa_dev *mvdev) { if (MLX5_FEATURE(mvdev, VIRTIO_NET_F_CTRL_VQ)) { if (MLX5_FEATURE(mvdev, VIRTIO_NET_F_MQ)) { /* MQ supported. CVQ index is right above the last data virtqueue's */ mvdev->max_idx = mvdev->max_vqs; } else { /* Only CVQ supportted. data virtqueues occupy indices 0 and 1. * CVQ gets index 2 */ mvdev->max_idx = 2; } } else { /* Two data virtqueues only: one for rx and one for tx */ mvdev->max_idx = 1; } } static u8 query_vport_state(struct mlx5_core_dev *mdev, u8 opmod, u16 vport) { u32 out[MLX5_ST_SZ_DW(query_vport_state_out)] = {}; u32 in[MLX5_ST_SZ_DW(query_vport_state_in)] = {}; int err; MLX5_SET(query_vport_state_in, in, opcode, MLX5_CMD_OP_QUERY_VPORT_STATE); MLX5_SET(query_vport_state_in, in, op_mod, opmod); MLX5_SET(query_vport_state_in, in, vport_number, vport); if (vport) MLX5_SET(query_vport_state_in, in, other_vport, 1); err = mlx5_cmd_exec_inout(mdev, query_vport_state, in, out); if (err) return 0; return MLX5_GET(query_vport_state_out, out, state); } static bool get_link_state(struct mlx5_vdpa_dev *mvdev) { if (query_vport_state(mvdev->mdev, MLX5_VPORT_STATE_OP_MOD_VNIC_VPORT, 0) == VPORT_STATE_UP) return true; return false; } static void update_carrier(struct work_struct *work) { struct mlx5_vdpa_wq_ent *wqent; struct mlx5_vdpa_dev *mvdev; struct mlx5_vdpa_net *ndev; wqent = container_of(work, struct mlx5_vdpa_wq_ent, work); mvdev = wqent->mvdev; ndev = to_mlx5_vdpa_ndev(mvdev); if (get_link_state(mvdev)) ndev->config.status |= cpu_to_mlx5vdpa16(mvdev, VIRTIO_NET_S_LINK_UP); else ndev->config.status &= cpu_to_mlx5vdpa16(mvdev, ~VIRTIO_NET_S_LINK_UP); if (ndev->config_cb.callback) ndev->config_cb.callback(ndev->config_cb.private); kfree(wqent); } static int queue_link_work(struct mlx5_vdpa_net *ndev) { struct mlx5_vdpa_wq_ent *wqent; wqent = kzalloc(sizeof(*wqent), GFP_ATOMIC); if (!wqent) return -ENOMEM; wqent->mvdev = &ndev->mvdev; INIT_WORK(&wqent->work, update_carrier); queue_work(ndev->mvdev.wq, &wqent->work); return 0; } static int event_handler(struct notifier_block *nb, unsigned long event, void *param) { struct mlx5_vdpa_net *ndev = container_of(nb, struct mlx5_vdpa_net, nb); struct mlx5_eqe *eqe = param; int ret = NOTIFY_DONE; if (event == MLX5_EVENT_TYPE_PORT_CHANGE) { switch (eqe->sub_type) { case MLX5_PORT_CHANGE_SUBTYPE_DOWN: case MLX5_PORT_CHANGE_SUBTYPE_ACTIVE: if (queue_link_work(ndev)) return NOTIFY_DONE; ret = NOTIFY_OK; break; default: return NOTIFY_DONE; } return ret; } return ret; } static void register_link_notifier(struct mlx5_vdpa_net *ndev) { if (!(ndev->mvdev.actual_features & BIT_ULL(VIRTIO_NET_F_STATUS))) return; ndev->nb.notifier_call = event_handler; mlx5_notifier_register(ndev->mvdev.mdev, &ndev->nb); ndev->nb_registered = true; queue_link_work(ndev); } static void unregister_link_notifier(struct mlx5_vdpa_net *ndev) { if (!ndev->nb_registered) return; ndev->nb_registered = false; mlx5_notifier_unregister(ndev->mvdev.mdev, &ndev->nb); if (ndev->mvdev.wq) flush_workqueue(ndev->mvdev.wq); } static int mlx5_vdpa_set_driver_features(struct vdpa_device *vdev, u64 features) { struct mlx5_vdpa_dev *mvdev = to_mvdev(vdev); struct mlx5_vdpa_net *ndev = to_mlx5_vdpa_ndev(mvdev); int err; print_features(mvdev, features, true); err = verify_driver_features(mvdev, features); if (err) return err; ndev->mvdev.actual_features = features & ndev->mvdev.mlx_features; if (ndev->mvdev.actual_features & BIT_ULL(VIRTIO_NET_F_MQ)) ndev->rqt_size = mlx5vdpa16_to_cpu(mvdev, ndev->config.max_virtqueue_pairs); else ndev->rqt_size = 1; /* Device must start with 1 queue pair, as per VIRTIO v1.2 spec, section * 5.1.6.5.5 "Device operation in multiqueue mode": * * Multiqueue is disabled by default. * The driver enables multiqueue by sending a command using class * VIRTIO_NET_CTRL_MQ. The command selects the mode of multiqueue * operation, as follows: ... */ ndev->cur_num_vqs = 2; update_cvq_info(mvdev); return err; } static void mlx5_vdpa_set_config_cb(struct vdpa_device *vdev, struct vdpa_callback *cb) { struct mlx5_vdpa_dev *mvdev = to_mvdev(vdev); struct mlx5_vdpa_net *ndev = to_mlx5_vdpa_ndev(mvdev); ndev->config_cb = *cb; } #define MLX5_VDPA_MAX_VQ_ENTRIES 256 static u16 mlx5_vdpa_get_vq_num_max(struct vdpa_device *vdev) { return MLX5_VDPA_MAX_VQ_ENTRIES; } static u32 mlx5_vdpa_get_device_id(struct vdpa_device *vdev) { return VIRTIO_ID_NET; } static u32 mlx5_vdpa_get_vendor_id(struct vdpa_device *vdev) { return PCI_VENDOR_ID_MELLANOX; } static u8 mlx5_vdpa_get_status(struct vdpa_device *vdev) { struct mlx5_vdpa_dev *mvdev = to_mvdev(vdev); struct mlx5_vdpa_net *ndev = to_mlx5_vdpa_ndev(mvdev); print_status(mvdev, ndev->mvdev.status, false); return ndev->mvdev.status; } static int save_channel_info(struct mlx5_vdpa_net *ndev, struct mlx5_vdpa_virtqueue *mvq) { struct mlx5_vq_restore_info *ri = &mvq->ri; struct mlx5_virtq_attr attr = {}; int err; if (mvq->initialized) { err = query_virtqueue(ndev, mvq, &attr); if (err) return err; } ri->avail_index = attr.available_index; ri->used_index = attr.used_index; ri->ready = mvq->ready; ri->num_ent = mvq->num_ent; ri->desc_addr = mvq->desc_addr; ri->device_addr = mvq->device_addr; ri->driver_addr = mvq->driver_addr; ri->map = mvq->map; ri->restore = true; return 0; } static int save_channels_info(struct mlx5_vdpa_net *ndev) { int i; for (i = 0; i < ndev->mvdev.max_vqs; i++) { memset(&ndev->vqs[i].ri, 0, sizeof(ndev->vqs[i].ri)); save_channel_info(ndev, &ndev->vqs[i]); } return 0; } static void mlx5_clear_vqs(struct mlx5_vdpa_net *ndev) { int i; for (i = 0; i < ndev->mvdev.max_vqs; i++) memset(&ndev->vqs[i], 0, offsetof(struct mlx5_vdpa_virtqueue, ri)); } static void restore_channels_info(struct mlx5_vdpa_net *ndev) { struct mlx5_vdpa_virtqueue *mvq; struct mlx5_vq_restore_info *ri; int i; mlx5_clear_vqs(ndev); init_mvqs(ndev); for (i = 0; i < ndev->mvdev.max_vqs; i++) { mvq = &ndev->vqs[i]; ri = &mvq->ri; if (!ri->restore) continue; mvq->avail_idx = ri->avail_index; mvq->used_idx = ri->used_index; mvq->ready = ri->ready; mvq->num_ent = ri->num_ent; mvq->desc_addr = ri->desc_addr; mvq->device_addr = ri->device_addr; mvq->driver_addr = ri->driver_addr; mvq->map = ri->map; } } static int mlx5_vdpa_change_map(struct mlx5_vdpa_dev *mvdev, struct vhost_iotlb *iotlb, unsigned int asid) { struct mlx5_vdpa_net *ndev = to_mlx5_vdpa_ndev(mvdev); int err; suspend_vqs(ndev); err = save_channels_info(ndev); if (err) goto err_mr; teardown_driver(ndev); mlx5_vdpa_destroy_mr_asid(mvdev, asid); err = mlx5_vdpa_create_mr(mvdev, iotlb, asid); if (err) goto err_mr; if (!(mvdev->status & VIRTIO_CONFIG_S_DRIVER_OK) || mvdev->suspended) goto err_mr; restore_channels_info(ndev); err = setup_driver(mvdev); if (err) goto err_setup; return 0; err_setup: mlx5_vdpa_destroy_mr_asid(mvdev, asid); err_mr: return err; } /* reslock must be held for this function */ static int setup_driver(struct mlx5_vdpa_dev *mvdev) { struct mlx5_vdpa_net *ndev = to_mlx5_vdpa_ndev(mvdev); int err; WARN_ON(!rwsem_is_locked(&ndev->reslock)); if (ndev->setup) { mlx5_vdpa_warn(mvdev, "setup driver called for already setup driver\n"); err = 0; goto out; } mlx5_vdpa_add_debugfs(ndev); err = setup_virtqueues(mvdev); if (err) { mlx5_vdpa_warn(mvdev, "setup_virtqueues\n"); goto err_setup; } err = create_rqt(ndev); if (err) { mlx5_vdpa_warn(mvdev, "create_rqt\n"); goto err_rqt; } err = create_tir(ndev); if (err) { mlx5_vdpa_warn(mvdev, "create_tir\n"); goto err_tir; } err = setup_steering(ndev); if (err) { mlx5_vdpa_warn(mvdev, "setup_steering\n"); goto err_fwd; } ndev->setup = true; return 0; err_fwd: destroy_tir(ndev); err_tir: destroy_rqt(ndev); err_rqt: teardown_virtqueues(ndev); err_setup: mlx5_vdpa_remove_debugfs(ndev->debugfs); out: return err; } /* reslock must be held for this function */ static void teardown_driver(struct mlx5_vdpa_net *ndev) { WARN_ON(!rwsem_is_locked(&ndev->reslock)); if (!ndev->setup) return; mlx5_vdpa_remove_debugfs(ndev->debugfs); ndev->debugfs = NULL; teardown_steering(ndev); destroy_tir(ndev); destroy_rqt(ndev); teardown_virtqueues(ndev); ndev->setup = false; } static void clear_vqs_ready(struct mlx5_vdpa_net *ndev) { int i; for (i = 0; i < ndev->mvdev.max_vqs; i++) ndev->vqs[i].ready = false; ndev->mvdev.cvq.ready = false; } static int setup_cvq_vring(struct mlx5_vdpa_dev *mvdev) { struct mlx5_control_vq *cvq = &mvdev->cvq; int err = 0; if (mvdev->actual_features & BIT_ULL(VIRTIO_NET_F_CTRL_VQ)) err = vringh_init_iotlb(&cvq->vring, mvdev->actual_features, MLX5_CVQ_MAX_ENT, false, (struct vring_desc *)(uintptr_t)cvq->desc_addr, (struct vring_avail *)(uintptr_t)cvq->driver_addr, (struct vring_used *)(uintptr_t)cvq->device_addr); return err; } static void mlx5_vdpa_set_status(struct vdpa_device *vdev, u8 status) { struct mlx5_vdpa_dev *mvdev = to_mvdev(vdev); struct mlx5_vdpa_net *ndev = to_mlx5_vdpa_ndev(mvdev); int err; print_status(mvdev, status, true); down_write(&ndev->reslock); if ((status ^ ndev->mvdev.status) & VIRTIO_CONFIG_S_DRIVER_OK) { if (status & VIRTIO_CONFIG_S_DRIVER_OK) { err = setup_cvq_vring(mvdev); if (err) { mlx5_vdpa_warn(mvdev, "failed to setup control VQ vring\n"); goto err_setup; } register_link_notifier(ndev); err = setup_driver(mvdev); if (err) { mlx5_vdpa_warn(mvdev, "failed to setup driver\n"); goto err_driver; } } else { mlx5_vdpa_warn(mvdev, "did not expect DRIVER_OK to be cleared\n"); goto err_clear; } } ndev->mvdev.status = status; up_write(&ndev->reslock); return; err_driver: unregister_link_notifier(ndev); err_setup: mlx5_vdpa_destroy_mr(&ndev->mvdev); ndev->mvdev.status |= VIRTIO_CONFIG_S_FAILED; err_clear: up_write(&ndev->reslock); } static void init_group_to_asid_map(struct mlx5_vdpa_dev *mvdev) { int i; /* default mapping all groups are mapped to asid 0 */ for (i = 0; i < MLX5_VDPA_NUMVQ_GROUPS; i++) mvdev->group2asid[i] = 0; } static int mlx5_vdpa_reset(struct vdpa_device *vdev) { struct mlx5_vdpa_dev *mvdev = to_mvdev(vdev); struct mlx5_vdpa_net *ndev = to_mlx5_vdpa_ndev(mvdev); print_status(mvdev, 0, true); mlx5_vdpa_info(mvdev, "performing device reset\n"); down_write(&ndev->reslock); unregister_link_notifier(ndev); teardown_driver(ndev); clear_vqs_ready(ndev); mlx5_vdpa_destroy_mr(&ndev->mvdev); ndev->mvdev.status = 0; ndev->mvdev.suspended = false; ndev->cur_num_vqs = 0; ndev->mvdev.cvq.received_desc = 0; ndev->mvdev.cvq.completed_desc = 0; memset(ndev->event_cbs, 0, sizeof(*ndev->event_cbs) * (mvdev->max_vqs + 1)); ndev->mvdev.actual_features = 0; init_group_to_asid_map(mvdev); ++mvdev->generation; if (MLX5_CAP_GEN(mvdev->mdev, umem_uid_0)) { if (mlx5_vdpa_create_mr(mvdev, NULL, 0)) mlx5_vdpa_warn(mvdev, "create MR failed\n"); } up_write(&ndev->reslock); return 0; } static size_t mlx5_vdpa_get_config_size(struct vdpa_device *vdev) { return sizeof(struct virtio_net_config); } static void mlx5_vdpa_get_config(struct vdpa_device *vdev, unsigned int offset, void *buf, unsigned int len) { struct mlx5_vdpa_dev *mvdev = to_mvdev(vdev); struct mlx5_vdpa_net *ndev = to_mlx5_vdpa_ndev(mvdev); if (offset + len <= sizeof(struct virtio_net_config)) memcpy(buf, (u8 *)&ndev->config + offset, len); } static void mlx5_vdpa_set_config(struct vdpa_device *vdev, unsigned int offset, const void *buf, unsigned int len) { /* not supported */ } static u32 mlx5_vdpa_get_generation(struct vdpa_device *vdev) { struct mlx5_vdpa_dev *mvdev = to_mvdev(vdev); return mvdev->generation; } static int set_map_data(struct mlx5_vdpa_dev *mvdev, struct vhost_iotlb *iotlb, unsigned int asid) { bool change_map; int err; err = mlx5_vdpa_handle_set_map(mvdev, iotlb, &change_map, asid); if (err) { mlx5_vdpa_warn(mvdev, "set map failed(%d)\n", err); return err; } if (change_map) err = mlx5_vdpa_change_map(mvdev, iotlb, asid); return err; } static int mlx5_vdpa_set_map(struct vdpa_device *vdev, unsigned int asid, struct vhost_iotlb *iotlb) { struct mlx5_vdpa_dev *mvdev = to_mvdev(vdev); struct mlx5_vdpa_net *ndev = to_mlx5_vdpa_ndev(mvdev); int err = -EINVAL; down_write(&ndev->reslock); err = set_map_data(mvdev, iotlb, asid); up_write(&ndev->reslock); return err; } static struct device *mlx5_get_vq_dma_dev(struct vdpa_device *vdev, u16 idx) { struct mlx5_vdpa_dev *mvdev = to_mvdev(vdev); if (is_ctrl_vq_idx(mvdev, idx)) return &vdev->dev; return mvdev->vdev.dma_dev; } static void free_irqs(struct mlx5_vdpa_net *ndev) { struct mlx5_vdpa_irq_pool_entry *ent; int i; if (!msix_mode_supported(&ndev->mvdev)) return; if (!ndev->irqp.entries) return; for (i = ndev->irqp.num_ent - 1; i >= 0; i--) { ent = ndev->irqp.entries + i; if (ent->map.virq) pci_msix_free_irq(ndev->mvdev.mdev->pdev, ent->map); } kfree(ndev->irqp.entries); } static void mlx5_vdpa_free(struct vdpa_device *vdev) { struct mlx5_vdpa_dev *mvdev = to_mvdev(vdev); struct mlx5_core_dev *pfmdev; struct mlx5_vdpa_net *ndev; ndev = to_mlx5_vdpa_ndev(mvdev); free_resources(ndev); mlx5_vdpa_destroy_mr(mvdev); if (!is_zero_ether_addr(ndev->config.mac)) { pfmdev = pci_get_drvdata(pci_physfn(mvdev->mdev->pdev)); mlx5_mpfs_del_mac(pfmdev, ndev->config.mac); } mlx5_vdpa_free_resources(&ndev->mvdev); free_irqs(ndev); kfree(ndev->event_cbs); kfree(ndev->vqs); } static struct vdpa_notification_area mlx5_get_vq_notification(struct vdpa_device *vdev, u16 idx) { struct mlx5_vdpa_dev *mvdev = to_mvdev(vdev); struct vdpa_notification_area ret = {}; struct mlx5_vdpa_net *ndev; phys_addr_t addr; if (!is_index_valid(mvdev, idx) || is_ctrl_vq_idx(mvdev, idx)) return ret; /* If SF BAR size is smaller than PAGE_SIZE, do not use direct * notification to avoid the risk of mapping pages that contain BAR of more * than one SF */ if (MLX5_CAP_GEN(mvdev->mdev, log_min_sf_size) + 12 < PAGE_SHIFT) return ret; ndev = to_mlx5_vdpa_ndev(mvdev); addr = (phys_addr_t)ndev->mvdev.res.phys_kick_addr; ret.addr = addr; ret.size = PAGE_SIZE; return ret; } static int mlx5_get_vq_irq(struct vdpa_device *vdev, u16 idx) { struct mlx5_vdpa_dev *mvdev = to_mvdev(vdev); struct mlx5_vdpa_net *ndev = to_mlx5_vdpa_ndev(mvdev); struct mlx5_vdpa_virtqueue *mvq; if (!is_index_valid(mvdev, idx)) return -EINVAL; if (is_ctrl_vq_idx(mvdev, idx)) return -EOPNOTSUPP; mvq = &ndev->vqs[idx]; if (!mvq->map.virq) return -EOPNOTSUPP; return mvq->map.virq; } static u64 mlx5_vdpa_get_driver_features(struct vdpa_device *vdev) { struct mlx5_vdpa_dev *mvdev = to_mvdev(vdev); return mvdev->actual_features; } static int counter_set_query(struct mlx5_vdpa_net *ndev, struct mlx5_vdpa_virtqueue *mvq, u64 *received_desc, u64 *completed_desc) { u32 in[MLX5_ST_SZ_DW(query_virtio_q_counters_in)] = {}; u32 out[MLX5_ST_SZ_DW(query_virtio_q_counters_out)] = {}; void *cmd_hdr; void *ctx; int err; if (!counters_supported(&ndev->mvdev)) return -EOPNOTSUPP; if (mvq->fw_state != MLX5_VIRTIO_NET_Q_OBJECT_STATE_RDY) return -EAGAIN; cmd_hdr = MLX5_ADDR_OF(query_virtio_q_counters_in, in, hdr); MLX5_SET(general_obj_in_cmd_hdr, cmd_hdr, opcode, MLX5_CMD_OP_QUERY_GENERAL_OBJECT); MLX5_SET(general_obj_in_cmd_hdr, cmd_hdr, obj_type, MLX5_OBJ_TYPE_VIRTIO_Q_COUNTERS); MLX5_SET(general_obj_in_cmd_hdr, cmd_hdr, uid, ndev->mvdev.res.uid); MLX5_SET(general_obj_in_cmd_hdr, cmd_hdr, obj_id, mvq->counter_set_id); err = mlx5_cmd_exec(ndev->mvdev.mdev, in, sizeof(in), out, sizeof(out)); if (err) return err; ctx = MLX5_ADDR_OF(query_virtio_q_counters_out, out, counters); *received_desc = MLX5_GET64(virtio_q_counters, ctx, received_desc); *completed_desc = MLX5_GET64(virtio_q_counters, ctx, completed_desc); return 0; } static int mlx5_vdpa_get_vendor_vq_stats(struct vdpa_device *vdev, u16 idx, struct sk_buff *msg, struct netlink_ext_ack *extack) { struct mlx5_vdpa_dev *mvdev = to_mvdev(vdev); struct mlx5_vdpa_net *ndev = to_mlx5_vdpa_ndev(mvdev); struct mlx5_vdpa_virtqueue *mvq; struct mlx5_control_vq *cvq; u64 received_desc; u64 completed_desc; int err = 0; down_read(&ndev->reslock); if (!is_index_valid(mvdev, idx)) { NL_SET_ERR_MSG_MOD(extack, "virtqueue index is not valid"); err = -EINVAL; goto out_err; } if (idx == ctrl_vq_idx(mvdev)) { cvq = &mvdev->cvq; received_desc = cvq->received_desc; completed_desc = cvq->completed_desc; goto out; } mvq = &ndev->vqs[idx]; err = counter_set_query(ndev, mvq, &received_desc, &completed_desc); if (err) { NL_SET_ERR_MSG_MOD(extack, "failed to query hardware"); goto out_err; } out: err = -EMSGSIZE; if (nla_put_string(msg, VDPA_ATTR_DEV_VENDOR_ATTR_NAME, "received_desc")) goto out_err; if (nla_put_u64_64bit(msg, VDPA_ATTR_DEV_VENDOR_ATTR_VALUE, received_desc, VDPA_ATTR_PAD)) goto out_err; if (nla_put_string(msg, VDPA_ATTR_DEV_VENDOR_ATTR_NAME, "completed_desc")) goto out_err; if (nla_put_u64_64bit(msg, VDPA_ATTR_DEV_VENDOR_ATTR_VALUE, completed_desc, VDPA_ATTR_PAD)) goto out_err; err = 0; out_err: up_read(&ndev->reslock); return err; } static void mlx5_vdpa_cvq_suspend(struct mlx5_vdpa_dev *mvdev) { struct mlx5_control_vq *cvq; if (!(mvdev->actual_features & BIT_ULL(VIRTIO_NET_F_CTRL_VQ))) return; cvq = &mvdev->cvq; cvq->ready = false; } static int mlx5_vdpa_suspend(struct vdpa_device *vdev) { struct mlx5_vdpa_dev *mvdev = to_mvdev(vdev); struct mlx5_vdpa_net *ndev = to_mlx5_vdpa_ndev(mvdev); struct mlx5_vdpa_virtqueue *mvq; int i; mlx5_vdpa_info(mvdev, "suspending device\n"); down_write(&ndev->reslock); unregister_link_notifier(ndev); for (i = 0; i < ndev->cur_num_vqs; i++) { mvq = &ndev->vqs[i]; suspend_vq(ndev, mvq); } mlx5_vdpa_cvq_suspend(mvdev); mvdev->suspended = true; up_write(&ndev->reslock); return 0; } static int mlx5_set_group_asid(struct vdpa_device *vdev, u32 group, unsigned int asid) { struct mlx5_vdpa_dev *mvdev = to_mvdev(vdev); if (group >= MLX5_VDPA_NUMVQ_GROUPS) return -EINVAL; mvdev->group2asid[group] = asid; return 0; } static const struct vdpa_config_ops mlx5_vdpa_ops = { .set_vq_address = mlx5_vdpa_set_vq_address, .set_vq_num = mlx5_vdpa_set_vq_num, .kick_vq = mlx5_vdpa_kick_vq, .set_vq_cb = mlx5_vdpa_set_vq_cb, .set_vq_ready = mlx5_vdpa_set_vq_ready, .get_vq_ready = mlx5_vdpa_get_vq_ready, .set_vq_state = mlx5_vdpa_set_vq_state, .get_vq_state = mlx5_vdpa_get_vq_state, .get_vendor_vq_stats = mlx5_vdpa_get_vendor_vq_stats, .get_vq_notification = mlx5_get_vq_notification, .get_vq_irq = mlx5_get_vq_irq, .get_vq_align = mlx5_vdpa_get_vq_align, .get_vq_group = mlx5_vdpa_get_vq_group, .get_device_features = mlx5_vdpa_get_device_features, .set_driver_features = mlx5_vdpa_set_driver_features, .get_driver_features = mlx5_vdpa_get_driver_features, .set_config_cb = mlx5_vdpa_set_config_cb, .get_vq_num_max = mlx5_vdpa_get_vq_num_max, .get_device_id = mlx5_vdpa_get_device_id, .get_vendor_id = mlx5_vdpa_get_vendor_id, .get_status = mlx5_vdpa_get_status, .set_status = mlx5_vdpa_set_status, .reset = mlx5_vdpa_reset, .get_config_size = mlx5_vdpa_get_config_size, .get_config = mlx5_vdpa_get_config, .set_config = mlx5_vdpa_set_config, .get_generation = mlx5_vdpa_get_generation, .set_map = mlx5_vdpa_set_map, .set_group_asid = mlx5_set_group_asid, .get_vq_dma_dev = mlx5_get_vq_dma_dev, .free = mlx5_vdpa_free, .suspend = mlx5_vdpa_suspend, }; static int query_mtu(struct mlx5_core_dev *mdev, u16 *mtu) { u16 hw_mtu; int err; err = mlx5_query_nic_vport_mtu(mdev, &hw_mtu); if (err) return err; *mtu = hw_mtu - MLX5V_ETH_HARD_MTU; return 0; } static int alloc_resources(struct mlx5_vdpa_net *ndev) { struct mlx5_vdpa_net_resources *res = &ndev->res; int err; if (res->valid) { mlx5_vdpa_warn(&ndev->mvdev, "resources already allocated\n"); return -EEXIST; } err = mlx5_vdpa_alloc_transport_domain(&ndev->mvdev, &res->tdn); if (err) return err; err = create_tis(ndev); if (err) goto err_tis; res->valid = true; return 0; err_tis: mlx5_vdpa_dealloc_transport_domain(&ndev->mvdev, res->tdn); return err; } static void free_resources(struct mlx5_vdpa_net *ndev) { struct mlx5_vdpa_net_resources *res = &ndev->res; if (!res->valid) return; destroy_tis(ndev); mlx5_vdpa_dealloc_transport_domain(&ndev->mvdev, res->tdn); res->valid = false; } static void init_mvqs(struct mlx5_vdpa_net *ndev) { struct mlx5_vdpa_virtqueue *mvq; int i; for (i = 0; i < ndev->mvdev.max_vqs; ++i) { mvq = &ndev->vqs[i]; memset(mvq, 0, offsetof(struct mlx5_vdpa_virtqueue, ri)); mvq->index = i; mvq->ndev = ndev; mvq->fwqp.fw = true; mvq->fw_state = MLX5_VIRTIO_NET_Q_OBJECT_NONE; } for (; i < ndev->mvdev.max_vqs; i++) { mvq = &ndev->vqs[i]; memset(mvq, 0, offsetof(struct mlx5_vdpa_virtqueue, ri)); mvq->index = i; mvq->ndev = ndev; } } struct mlx5_vdpa_mgmtdev { struct vdpa_mgmt_dev mgtdev; struct mlx5_adev *madev; struct mlx5_vdpa_net *ndev; }; static int config_func_mtu(struct mlx5_core_dev *mdev, u16 mtu) { int inlen = MLX5_ST_SZ_BYTES(modify_nic_vport_context_in); void *in; int err; in = kvzalloc(inlen, GFP_KERNEL); if (!in) return -ENOMEM; MLX5_SET(modify_nic_vport_context_in, in, field_select.mtu, 1); MLX5_SET(modify_nic_vport_context_in, in, nic_vport_context.mtu, mtu + MLX5V_ETH_HARD_MTU); MLX5_SET(modify_nic_vport_context_in, in, opcode, MLX5_CMD_OP_MODIFY_NIC_VPORT_CONTEXT); err = mlx5_cmd_exec_in(mdev, modify_nic_vport_context, in); kvfree(in); return err; } static void allocate_irqs(struct mlx5_vdpa_net *ndev) { struct mlx5_vdpa_irq_pool_entry *ent; int i; if (!msix_mode_supported(&ndev->mvdev)) return; if (!ndev->mvdev.mdev->pdev) return; ndev->irqp.entries = kcalloc(ndev->mvdev.max_vqs, sizeof(*ndev->irqp.entries), GFP_KERNEL); if (!ndev->irqp.entries) return; for (i = 0; i < ndev->mvdev.max_vqs; i++) { ent = ndev->irqp.entries + i; snprintf(ent->name, MLX5_VDPA_IRQ_NAME_LEN, "%s-vq-%d", dev_name(&ndev->mvdev.vdev.dev), i); ent->map = pci_msix_alloc_irq_at(ndev->mvdev.mdev->pdev, MSI_ANY_INDEX, NULL); if (!ent->map.virq) return; ndev->irqp.num_ent++; } } static int mlx5_vdpa_dev_add(struct vdpa_mgmt_dev *v_mdev, const char *name, const struct vdpa_dev_set_config *add_config) { struct mlx5_vdpa_mgmtdev *mgtdev = container_of(v_mdev, struct mlx5_vdpa_mgmtdev, mgtdev); struct virtio_net_config *config; struct mlx5_core_dev *pfmdev; struct mlx5_vdpa_dev *mvdev; struct mlx5_vdpa_net *ndev; struct mlx5_core_dev *mdev; u64 device_features; u32 max_vqs; u16 mtu; int err; if (mgtdev->ndev) return -ENOSPC; mdev = mgtdev->madev->mdev; device_features = mgtdev->mgtdev.supported_features; if (add_config->mask & BIT_ULL(VDPA_ATTR_DEV_FEATURES)) { if (add_config->device_features & ~device_features) { dev_warn(mdev->device, "The provisioned features 0x%llx are not supported by this device with features 0x%llx\n", add_config->device_features, device_features); return -EINVAL; } device_features &= add_config->device_features; } else { device_features &= ~BIT_ULL(VIRTIO_NET_F_MRG_RXBUF); } if (!(device_features & BIT_ULL(VIRTIO_F_VERSION_1) && device_features & BIT_ULL(VIRTIO_F_ACCESS_PLATFORM))) { dev_warn(mdev->device, "Must provision minimum features 0x%llx for this device", BIT_ULL(VIRTIO_F_VERSION_1) | BIT_ULL(VIRTIO_F_ACCESS_PLATFORM)); return -EOPNOTSUPP; } if (!(MLX5_CAP_DEV_VDPA_EMULATION(mdev, virtio_queue_type) & MLX5_VIRTIO_EMULATION_CAP_VIRTIO_QUEUE_TYPE_SPLIT)) { dev_warn(mdev->device, "missing support for split virtqueues\n"); return -EOPNOTSUPP; } max_vqs = min_t(int, MLX5_CAP_DEV_VDPA_EMULATION(mdev, max_num_virtio_queues), 1 << MLX5_CAP_GEN(mdev, log_max_rqt_size)); if (max_vqs < 2) { dev_warn(mdev->device, "%d virtqueues are supported. At least 2 are required\n", max_vqs); return -EAGAIN; } if (add_config->mask & BIT_ULL(VDPA_ATTR_DEV_NET_CFG_MAX_VQP)) { if (add_config->net.max_vq_pairs > max_vqs / 2) return -EINVAL; max_vqs = min_t(u32, max_vqs, 2 * add_config->net.max_vq_pairs); } else { max_vqs = 2; } ndev = vdpa_alloc_device(struct mlx5_vdpa_net, mvdev.vdev, mdev->device, &mlx5_vdpa_ops, MLX5_VDPA_NUMVQ_GROUPS, MLX5_VDPA_NUM_AS, name, false); if (IS_ERR(ndev)) return PTR_ERR(ndev); ndev->mvdev.max_vqs = max_vqs; mvdev = &ndev->mvdev; mvdev->mdev = mdev; ndev->vqs = kcalloc(max_vqs, sizeof(*ndev->vqs), GFP_KERNEL); ndev->event_cbs = kcalloc(max_vqs + 1, sizeof(*ndev->event_cbs), GFP_KERNEL); if (!ndev->vqs || !ndev->event_cbs) { err = -ENOMEM; goto err_alloc; } init_mvqs(ndev); allocate_irqs(ndev); init_rwsem(&ndev->reslock); config = &ndev->config; if (add_config->mask & BIT_ULL(VDPA_ATTR_DEV_NET_CFG_MTU)) { err = config_func_mtu(mdev, add_config->net.mtu); if (err) goto err_alloc; } if (device_features & BIT_ULL(VIRTIO_NET_F_MTU)) { err = query_mtu(mdev, &mtu); if (err) goto err_alloc; ndev->config.mtu = cpu_to_mlx5vdpa16(mvdev, mtu); } if (device_features & BIT_ULL(VIRTIO_NET_F_STATUS)) { if (get_link_state(mvdev)) ndev->config.status |= cpu_to_mlx5vdpa16(mvdev, VIRTIO_NET_S_LINK_UP); else ndev->config.status &= cpu_to_mlx5vdpa16(mvdev, ~VIRTIO_NET_S_LINK_UP); } if (add_config->mask & (1 << VDPA_ATTR_DEV_NET_CFG_MACADDR)) { memcpy(ndev->config.mac, add_config->net.mac, ETH_ALEN); /* No bother setting mac address in config if not going to provision _F_MAC */ } else if ((add_config->mask & BIT_ULL(VDPA_ATTR_DEV_FEATURES)) == 0 || device_features & BIT_ULL(VIRTIO_NET_F_MAC)) { err = mlx5_query_nic_vport_mac_address(mdev, 0, 0, config->mac); if (err) goto err_alloc; } if (!is_zero_ether_addr(config->mac)) { pfmdev = pci_get_drvdata(pci_physfn(mdev->pdev)); err = mlx5_mpfs_add_mac(pfmdev, config->mac); if (err) goto err_alloc; } else if ((add_config->mask & BIT_ULL(VDPA_ATTR_DEV_FEATURES)) == 0) { /* * We used to clear _F_MAC feature bit if seeing * zero mac address when device features are not * specifically provisioned. Keep the behaviour * so old scripts do not break. */ device_features &= ~BIT_ULL(VIRTIO_NET_F_MAC); } else if (device_features & BIT_ULL(VIRTIO_NET_F_MAC)) { /* Don't provision zero mac address for _F_MAC */ mlx5_vdpa_warn(&ndev->mvdev, "No mac address provisioned?\n"); err = -EINVAL; goto err_alloc; } if (device_features & BIT_ULL(VIRTIO_NET_F_MQ)) config->max_virtqueue_pairs = cpu_to_mlx5vdpa16(mvdev, max_vqs / 2); ndev->mvdev.mlx_features = device_features; mvdev->vdev.dma_dev = &mdev->pdev->dev; err = mlx5_vdpa_alloc_resources(&ndev->mvdev); if (err) goto err_mpfs; if (MLX5_CAP_GEN(mvdev->mdev, umem_uid_0)) { err = mlx5_vdpa_create_mr(mvdev, NULL, 0); if (err) goto err_res; } err = alloc_resources(ndev); if (err) goto err_mr; ndev->cvq_ent.mvdev = mvdev; INIT_WORK(&ndev->cvq_ent.work, mlx5_cvq_kick_handler); mvdev->wq = create_singlethread_workqueue("mlx5_vdpa_wq"); if (!mvdev->wq) { err = -ENOMEM; goto err_res2; } mvdev->vdev.mdev = &mgtdev->mgtdev; err = _vdpa_register_device(&mvdev->vdev, max_vqs + 1); if (err) goto err_reg; mgtdev->ndev = ndev; return 0; err_reg: destroy_workqueue(mvdev->wq); err_res2: free_resources(ndev); err_mr: mlx5_vdpa_destroy_mr(mvdev); err_res: mlx5_vdpa_free_resources(&ndev->mvdev); err_mpfs: if (!is_zero_ether_addr(config->mac)) mlx5_mpfs_del_mac(pfmdev, config->mac); err_alloc: put_device(&mvdev->vdev.dev); return err; } static void mlx5_vdpa_dev_del(struct vdpa_mgmt_dev *v_mdev, struct vdpa_device *dev) { struct mlx5_vdpa_mgmtdev *mgtdev = container_of(v_mdev, struct mlx5_vdpa_mgmtdev, mgtdev); struct mlx5_vdpa_dev *mvdev = to_mvdev(dev); struct mlx5_vdpa_net *ndev = to_mlx5_vdpa_ndev(mvdev); struct workqueue_struct *wq; mlx5_vdpa_remove_debugfs(ndev->debugfs); ndev->debugfs = NULL; unregister_link_notifier(ndev); _vdpa_unregister_device(dev); wq = mvdev->wq; mvdev->wq = NULL; destroy_workqueue(wq); mgtdev->ndev = NULL; } static const struct vdpa_mgmtdev_ops mdev_ops = { .dev_add = mlx5_vdpa_dev_add, .dev_del = mlx5_vdpa_dev_del, }; static struct virtio_device_id id_table[] = { { VIRTIO_ID_NET, VIRTIO_DEV_ANY_ID }, { 0 }, }; static int mlx5v_probe(struct auxiliary_device *adev, const struct auxiliary_device_id *id) { struct mlx5_adev *madev = container_of(adev, struct mlx5_adev, adev); struct mlx5_core_dev *mdev = madev->mdev; struct mlx5_vdpa_mgmtdev *mgtdev; int err; mgtdev = kzalloc(sizeof(*mgtdev), GFP_KERNEL); if (!mgtdev) return -ENOMEM; mgtdev->mgtdev.ops = &mdev_ops; mgtdev->mgtdev.device = mdev->device; mgtdev->mgtdev.id_table = id_table; mgtdev->mgtdev.config_attr_mask = BIT_ULL(VDPA_ATTR_DEV_NET_CFG_MACADDR) | BIT_ULL(VDPA_ATTR_DEV_NET_CFG_MAX_VQP) | BIT_ULL(VDPA_ATTR_DEV_NET_CFG_MTU) | BIT_ULL(VDPA_ATTR_DEV_FEATURES); mgtdev->mgtdev.max_supported_vqs = MLX5_CAP_DEV_VDPA_EMULATION(mdev, max_num_virtio_queues) + 1; mgtdev->mgtdev.supported_features = get_supported_features(mdev); mgtdev->madev = madev; err = vdpa_mgmtdev_register(&mgtdev->mgtdev); if (err) goto reg_err; auxiliary_set_drvdata(adev, mgtdev); return 0; reg_err: kfree(mgtdev); return err; } static void mlx5v_remove(struct auxiliary_device *adev) { struct mlx5_vdpa_mgmtdev *mgtdev; mgtdev = auxiliary_get_drvdata(adev); vdpa_mgmtdev_unregister(&mgtdev->mgtdev); kfree(mgtdev); } static const struct auxiliary_device_id mlx5v_id_table[] = { { .name = MLX5_ADEV_NAME ".vnet", }, {}, }; MODULE_DEVICE_TABLE(auxiliary, mlx5v_id_table); static struct auxiliary_driver mlx5v_driver = { .name = "vnet", .probe = mlx5v_probe, .remove = mlx5v_remove, .id_table = mlx5v_id_table, }; module_auxiliary_driver(mlx5v_driver);
linux-master
drivers/vdpa/mlx5/net/mlx5_vnet.c
// SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB /* Copyright (c) 2020 Mellanox Technologies Ltd. */ #include <linux/iova.h> #include <linux/mlx5/driver.h> #include "mlx5_vdpa.h" static int alloc_pd(struct mlx5_vdpa_dev *dev, u32 *pdn, u16 uid) { struct mlx5_core_dev *mdev = dev->mdev; u32 out[MLX5_ST_SZ_DW(alloc_pd_out)] = {}; u32 in[MLX5_ST_SZ_DW(alloc_pd_in)] = {}; int err; MLX5_SET(alloc_pd_in, in, opcode, MLX5_CMD_OP_ALLOC_PD); MLX5_SET(alloc_pd_in, in, uid, uid); err = mlx5_cmd_exec_inout(mdev, alloc_pd, in, out); if (!err) *pdn = MLX5_GET(alloc_pd_out, out, pd); return err; } static int dealloc_pd(struct mlx5_vdpa_dev *dev, u32 pdn, u16 uid) { u32 in[MLX5_ST_SZ_DW(dealloc_pd_in)] = {}; struct mlx5_core_dev *mdev = dev->mdev; MLX5_SET(dealloc_pd_in, in, opcode, MLX5_CMD_OP_DEALLOC_PD); MLX5_SET(dealloc_pd_in, in, pd, pdn); MLX5_SET(dealloc_pd_in, in, uid, uid); return mlx5_cmd_exec_in(mdev, dealloc_pd, in); } static int get_null_mkey(struct mlx5_vdpa_dev *dev, u32 *null_mkey) { u32 out[MLX5_ST_SZ_DW(query_special_contexts_out)] = {}; u32 in[MLX5_ST_SZ_DW(query_special_contexts_in)] = {}; struct mlx5_core_dev *mdev = dev->mdev; int err; MLX5_SET(query_special_contexts_in, in, opcode, MLX5_CMD_OP_QUERY_SPECIAL_CONTEXTS); err = mlx5_cmd_exec_inout(mdev, query_special_contexts, in, out); if (!err) *null_mkey = MLX5_GET(query_special_contexts_out, out, null_mkey); return err; } static int create_uctx(struct mlx5_vdpa_dev *mvdev, u16 *uid) { u32 out[MLX5_ST_SZ_DW(create_uctx_out)] = {}; int inlen; void *in; int err; if (MLX5_CAP_GEN(mvdev->mdev, umem_uid_0)) return 0; /* 0 means not supported */ if (!MLX5_CAP_GEN(mvdev->mdev, log_max_uctx)) return -EOPNOTSUPP; inlen = MLX5_ST_SZ_BYTES(create_uctx_in); in = kzalloc(inlen, GFP_KERNEL); if (!in) return -ENOMEM; MLX5_SET(create_uctx_in, in, opcode, MLX5_CMD_OP_CREATE_UCTX); MLX5_SET(create_uctx_in, in, uctx.cap, MLX5_UCTX_CAP_RAW_TX); err = mlx5_cmd_exec(mvdev->mdev, in, inlen, out, sizeof(out)); kfree(in); if (!err) *uid = MLX5_GET(create_uctx_out, out, uid); return err; } static void destroy_uctx(struct mlx5_vdpa_dev *mvdev, u32 uid) { u32 out[MLX5_ST_SZ_DW(destroy_uctx_out)] = {}; u32 in[MLX5_ST_SZ_DW(destroy_uctx_in)] = {}; if (!uid) return; MLX5_SET(destroy_uctx_in, in, opcode, MLX5_CMD_OP_DESTROY_UCTX); MLX5_SET(destroy_uctx_in, in, uid, uid); mlx5_cmd_exec(mvdev->mdev, in, sizeof(in), out, sizeof(out)); } int mlx5_vdpa_create_tis(struct mlx5_vdpa_dev *mvdev, void *in, u32 *tisn) { u32 out[MLX5_ST_SZ_DW(create_tis_out)] = {}; int err; MLX5_SET(create_tis_in, in, opcode, MLX5_CMD_OP_CREATE_TIS); MLX5_SET(create_tis_in, in, uid, mvdev->res.uid); err = mlx5_cmd_exec_inout(mvdev->mdev, create_tis, in, out); if (!err) *tisn = MLX5_GET(create_tis_out, out, tisn); return err; } void mlx5_vdpa_destroy_tis(struct mlx5_vdpa_dev *mvdev, u32 tisn) { u32 in[MLX5_ST_SZ_DW(destroy_tis_in)] = {}; MLX5_SET(destroy_tis_in, in, opcode, MLX5_CMD_OP_DESTROY_TIS); MLX5_SET(destroy_tis_in, in, uid, mvdev->res.uid); MLX5_SET(destroy_tis_in, in, tisn, tisn); mlx5_cmd_exec_in(mvdev->mdev, destroy_tis, in); } int mlx5_vdpa_create_rqt(struct mlx5_vdpa_dev *mvdev, void *in, int inlen, u32 *rqtn) { u32 out[MLX5_ST_SZ_DW(create_rqt_out)] = {}; int err; MLX5_SET(create_rqt_in, in, opcode, MLX5_CMD_OP_CREATE_RQT); err = mlx5_cmd_exec(mvdev->mdev, in, inlen, out, sizeof(out)); if (!err) *rqtn = MLX5_GET(create_rqt_out, out, rqtn); return err; } int mlx5_vdpa_modify_rqt(struct mlx5_vdpa_dev *mvdev, void *in, int inlen, u32 rqtn) { u32 out[MLX5_ST_SZ_DW(create_rqt_out)] = {}; MLX5_SET(modify_rqt_in, in, uid, mvdev->res.uid); MLX5_SET(modify_rqt_in, in, rqtn, rqtn); MLX5_SET(modify_rqt_in, in, opcode, MLX5_CMD_OP_MODIFY_RQT); return mlx5_cmd_exec(mvdev->mdev, in, inlen, out, sizeof(out)); } void mlx5_vdpa_destroy_rqt(struct mlx5_vdpa_dev *mvdev, u32 rqtn) { u32 in[MLX5_ST_SZ_DW(destroy_rqt_in)] = {}; MLX5_SET(destroy_rqt_in, in, opcode, MLX5_CMD_OP_DESTROY_RQT); MLX5_SET(destroy_rqt_in, in, uid, mvdev->res.uid); MLX5_SET(destroy_rqt_in, in, rqtn, rqtn); mlx5_cmd_exec_in(mvdev->mdev, destroy_rqt, in); } int mlx5_vdpa_create_tir(struct mlx5_vdpa_dev *mvdev, void *in, u32 *tirn) { u32 out[MLX5_ST_SZ_DW(create_tir_out)] = {}; int err; MLX5_SET(create_tir_in, in, opcode, MLX5_CMD_OP_CREATE_TIR); err = mlx5_cmd_exec_inout(mvdev->mdev, create_tir, in, out); if (!err) *tirn = MLX5_GET(create_tir_out, out, tirn); return err; } void mlx5_vdpa_destroy_tir(struct mlx5_vdpa_dev *mvdev, u32 tirn) { u32 in[MLX5_ST_SZ_DW(destroy_tir_in)] = {}; MLX5_SET(destroy_tir_in, in, opcode, MLX5_CMD_OP_DESTROY_TIR); MLX5_SET(destroy_tir_in, in, uid, mvdev->res.uid); MLX5_SET(destroy_tir_in, in, tirn, tirn); mlx5_cmd_exec_in(mvdev->mdev, destroy_tir, in); } int mlx5_vdpa_alloc_transport_domain(struct mlx5_vdpa_dev *mvdev, u32 *tdn) { u32 out[MLX5_ST_SZ_DW(alloc_transport_domain_out)] = {}; u32 in[MLX5_ST_SZ_DW(alloc_transport_domain_in)] = {}; int err; MLX5_SET(alloc_transport_domain_in, in, opcode, MLX5_CMD_OP_ALLOC_TRANSPORT_DOMAIN); MLX5_SET(alloc_transport_domain_in, in, uid, mvdev->res.uid); err = mlx5_cmd_exec_inout(mvdev->mdev, alloc_transport_domain, in, out); if (!err) *tdn = MLX5_GET(alloc_transport_domain_out, out, transport_domain); return err; } void mlx5_vdpa_dealloc_transport_domain(struct mlx5_vdpa_dev *mvdev, u32 tdn) { u32 in[MLX5_ST_SZ_DW(dealloc_transport_domain_in)] = {}; MLX5_SET(dealloc_transport_domain_in, in, opcode, MLX5_CMD_OP_DEALLOC_TRANSPORT_DOMAIN); MLX5_SET(dealloc_transport_domain_in, in, uid, mvdev->res.uid); MLX5_SET(dealloc_transport_domain_in, in, transport_domain, tdn); mlx5_cmd_exec_in(mvdev->mdev, dealloc_transport_domain, in); } int mlx5_vdpa_create_mkey(struct mlx5_vdpa_dev *mvdev, u32 *mkey, u32 *in, int inlen) { u32 lout[MLX5_ST_SZ_DW(create_mkey_out)] = {}; u32 mkey_index; int err; MLX5_SET(create_mkey_in, in, opcode, MLX5_CMD_OP_CREATE_MKEY); MLX5_SET(create_mkey_in, in, uid, mvdev->res.uid); err = mlx5_cmd_exec(mvdev->mdev, in, inlen, lout, sizeof(lout)); if (err) return err; mkey_index = MLX5_GET(create_mkey_out, lout, mkey_index); *mkey = mlx5_idx_to_mkey(mkey_index); return 0; } int mlx5_vdpa_destroy_mkey(struct mlx5_vdpa_dev *mvdev, u32 mkey) { u32 in[MLX5_ST_SZ_DW(destroy_mkey_in)] = {}; MLX5_SET(destroy_mkey_in, in, uid, mvdev->res.uid); MLX5_SET(destroy_mkey_in, in, opcode, MLX5_CMD_OP_DESTROY_MKEY); MLX5_SET(destroy_mkey_in, in, mkey_index, mlx5_mkey_to_idx(mkey)); return mlx5_cmd_exec_in(mvdev->mdev, destroy_mkey, in); } static int init_ctrl_vq(struct mlx5_vdpa_dev *mvdev) { mvdev->cvq.iotlb = vhost_iotlb_alloc(0, 0); if (!mvdev->cvq.iotlb) return -ENOMEM; spin_lock_init(&mvdev->cvq.iommu_lock); vringh_set_iotlb(&mvdev->cvq.vring, mvdev->cvq.iotlb, &mvdev->cvq.iommu_lock); return 0; } static void cleanup_ctrl_vq(struct mlx5_vdpa_dev *mvdev) { vhost_iotlb_free(mvdev->cvq.iotlb); } int mlx5_vdpa_alloc_resources(struct mlx5_vdpa_dev *mvdev) { u64 offset = MLX5_CAP64_DEV_VDPA_EMULATION(mvdev->mdev, doorbell_bar_offset); struct mlx5_vdpa_resources *res = &mvdev->res; struct mlx5_core_dev *mdev = mvdev->mdev; u64 kick_addr; int err; if (res->valid) { mlx5_vdpa_warn(mvdev, "resources already allocated\n"); return -EINVAL; } mutex_init(&mvdev->mr.mkey_mtx); res->uar = mlx5_get_uars_page(mdev); if (IS_ERR(res->uar)) { err = PTR_ERR(res->uar); goto err_uars; } err = create_uctx(mvdev, &res->uid); if (err) goto err_uctx; err = alloc_pd(mvdev, &res->pdn, res->uid); if (err) goto err_pd; err = get_null_mkey(mvdev, &res->null_mkey); if (err) goto err_key; kick_addr = mdev->bar_addr + offset; res->phys_kick_addr = kick_addr; res->kick_addr = ioremap(kick_addr, PAGE_SIZE); if (!res->kick_addr) { err = -ENOMEM; goto err_key; } err = init_ctrl_vq(mvdev); if (err) goto err_ctrl; res->valid = true; return 0; err_ctrl: iounmap(res->kick_addr); err_key: dealloc_pd(mvdev, res->pdn, res->uid); err_pd: destroy_uctx(mvdev, res->uid); err_uctx: mlx5_put_uars_page(mdev, res->uar); err_uars: mutex_destroy(&mvdev->mr.mkey_mtx); return err; } void mlx5_vdpa_free_resources(struct mlx5_vdpa_dev *mvdev) { struct mlx5_vdpa_resources *res = &mvdev->res; if (!res->valid) return; cleanup_ctrl_vq(mvdev); iounmap(res->kick_addr); res->kick_addr = NULL; dealloc_pd(mvdev, res->pdn, res->uid); destroy_uctx(mvdev, res->uid); mlx5_put_uars_page(mvdev->mdev, res->uar); mutex_destroy(&mvdev->mr.mkey_mtx); res->valid = false; }
linux-master
drivers/vdpa/mlx5/core/resources.c