python_code
stringlengths
0
1.8M
repo_name
stringclasses
7 values
file_path
stringlengths
5
99
// SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB /* Copyright (c) 2020 Mellanox Technologies Ltd. */ #include <linux/vhost_types.h> #include <linux/vdpa.h> #include <linux/gcd.h> #include <linux/string.h> #include <linux/mlx5/qp.h> #include "mlx5_vdpa.h" /* DIV_ROUND_UP where the divider is a power of 2 give by its log base 2 value */ #define MLX5_DIV_ROUND_UP_POW2(_n, _s) \ ({ \ u64 __s = _s; \ u64 _res; \ _res = (((_n) + (1 << (__s)) - 1) >> (__s)); \ _res; \ }) static int get_octo_len(u64 len, int page_shift) { u64 page_size = 1ULL << page_shift; int npages; npages = ALIGN(len, page_size) >> page_shift; return (npages + 1) / 2; } static void mlx5_set_access_mode(void *mkc, int mode) { MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3); MLX5_SET(mkc, mkc, access_mode_4_2, mode >> 2); } static void populate_mtts(struct mlx5_vdpa_direct_mr *mr, __be64 *mtt) { struct scatterlist *sg; int nsg = mr->nsg; u64 dma_addr; u64 dma_len; int j = 0; int i; for_each_sg(mr->sg_head.sgl, sg, mr->nent, i) { for (dma_addr = sg_dma_address(sg), dma_len = sg_dma_len(sg); nsg && dma_len; nsg--, dma_addr += BIT(mr->log_size), dma_len -= BIT(mr->log_size)) mtt[j++] = cpu_to_be64(dma_addr); } } static int create_direct_mr(struct mlx5_vdpa_dev *mvdev, struct mlx5_vdpa_direct_mr *mr) { int inlen; void *mkc; void *in; int err; inlen = MLX5_ST_SZ_BYTES(create_mkey_in) + roundup(MLX5_ST_SZ_BYTES(mtt) * mr->nsg, 16); in = kvzalloc(inlen, GFP_KERNEL); if (!in) return -ENOMEM; MLX5_SET(create_mkey_in, in, uid, mvdev->res.uid); mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); MLX5_SET(mkc, mkc, lw, !!(mr->perm & VHOST_MAP_WO)); MLX5_SET(mkc, mkc, lr, !!(mr->perm & VHOST_MAP_RO)); mlx5_set_access_mode(mkc, MLX5_MKC_ACCESS_MODE_MTT); MLX5_SET(mkc, mkc, qpn, 0xffffff); MLX5_SET(mkc, mkc, pd, mvdev->res.pdn); MLX5_SET64(mkc, mkc, start_addr, mr->offset); MLX5_SET64(mkc, mkc, len, mr->end - mr->start); MLX5_SET(mkc, mkc, log_page_size, mr->log_size); MLX5_SET(mkc, mkc, translations_octword_size, get_octo_len(mr->end - mr->start, mr->log_size)); MLX5_SET(create_mkey_in, in, translations_octword_actual_size, get_octo_len(mr->end - mr->start, mr->log_size)); populate_mtts(mr, MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt)); err = mlx5_vdpa_create_mkey(mvdev, &mr->mr, in, inlen); kvfree(in); if (err) { mlx5_vdpa_warn(mvdev, "Failed to create direct MR\n"); return err; } return 0; } static void destroy_direct_mr(struct mlx5_vdpa_dev *mvdev, struct mlx5_vdpa_direct_mr *mr) { mlx5_vdpa_destroy_mkey(mvdev, mr->mr); } static u64 map_start(struct vhost_iotlb_map *map, struct mlx5_vdpa_direct_mr *mr) { return max_t(u64, map->start, mr->start); } static u64 map_end(struct vhost_iotlb_map *map, struct mlx5_vdpa_direct_mr *mr) { return min_t(u64, map->last + 1, mr->end); } static u64 maplen(struct vhost_iotlb_map *map, struct mlx5_vdpa_direct_mr *mr) { return map_end(map, mr) - map_start(map, mr); } #define MLX5_VDPA_INVALID_START_ADDR ((u64)-1) #define MLX5_VDPA_INVALID_LEN ((u64)-1) static u64 indir_start_addr(struct mlx5_vdpa_mr *mkey) { struct mlx5_vdpa_direct_mr *s; s = list_first_entry_or_null(&mkey->head, struct mlx5_vdpa_direct_mr, list); if (!s) return MLX5_VDPA_INVALID_START_ADDR; return s->start; } static u64 indir_len(struct mlx5_vdpa_mr *mkey) { struct mlx5_vdpa_direct_mr *s; struct mlx5_vdpa_direct_mr *e; s = list_first_entry_or_null(&mkey->head, struct mlx5_vdpa_direct_mr, list); if (!s) return MLX5_VDPA_INVALID_LEN; e = list_last_entry(&mkey->head, struct mlx5_vdpa_direct_mr, list); return e->end - s->start; } #define LOG_MAX_KLM_SIZE 30 #define MAX_KLM_SIZE BIT(LOG_MAX_KLM_SIZE) static u32 klm_bcount(u64 size) { return (u32)size; } static void fill_indir(struct mlx5_vdpa_dev *mvdev, struct mlx5_vdpa_mr *mkey, void *in) { struct mlx5_vdpa_direct_mr *dmr; struct mlx5_klm *klmarr; struct mlx5_klm *klm; bool first = true; u64 preve; int i; klmarr = MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt); i = 0; list_for_each_entry(dmr, &mkey->head, list) { again: klm = &klmarr[i++]; if (first) { preve = dmr->start; first = false; } if (preve == dmr->start) { klm->key = cpu_to_be32(dmr->mr); klm->bcount = cpu_to_be32(klm_bcount(dmr->end - dmr->start)); preve = dmr->end; } else { klm->key = cpu_to_be32(mvdev->res.null_mkey); klm->bcount = cpu_to_be32(klm_bcount(dmr->start - preve)); preve = dmr->start; goto again; } } } static int klm_byte_size(int nklms) { return 16 * ALIGN(nklms, 4); } static int create_indirect_key(struct mlx5_vdpa_dev *mvdev, struct mlx5_vdpa_mr *mr) { int inlen; void *mkc; void *in; int err; u64 start; u64 len; start = indir_start_addr(mr); len = indir_len(mr); if (start == MLX5_VDPA_INVALID_START_ADDR || len == MLX5_VDPA_INVALID_LEN) return -EINVAL; inlen = MLX5_ST_SZ_BYTES(create_mkey_in) + klm_byte_size(mr->num_klms); in = kzalloc(inlen, GFP_KERNEL); if (!in) return -ENOMEM; MLX5_SET(create_mkey_in, in, uid, mvdev->res.uid); mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); MLX5_SET(mkc, mkc, lw, 1); MLX5_SET(mkc, mkc, lr, 1); mlx5_set_access_mode(mkc, MLX5_MKC_ACCESS_MODE_KLMS); MLX5_SET(mkc, mkc, qpn, 0xffffff); MLX5_SET(mkc, mkc, pd, mvdev->res.pdn); MLX5_SET64(mkc, mkc, start_addr, start); MLX5_SET64(mkc, mkc, len, len); MLX5_SET(mkc, mkc, translations_octword_size, klm_byte_size(mr->num_klms) / 16); MLX5_SET(create_mkey_in, in, translations_octword_actual_size, mr->num_klms); fill_indir(mvdev, mr, in); err = mlx5_vdpa_create_mkey(mvdev, &mr->mkey, in, inlen); kfree(in); return err; } static void destroy_indirect_key(struct mlx5_vdpa_dev *mvdev, struct mlx5_vdpa_mr *mkey) { mlx5_vdpa_destroy_mkey(mvdev, mkey->mkey); } static int map_direct_mr(struct mlx5_vdpa_dev *mvdev, struct mlx5_vdpa_direct_mr *mr, struct vhost_iotlb *iotlb) { struct vhost_iotlb_map *map; unsigned long lgcd = 0; int log_entity_size; unsigned long size; u64 start = 0; int err; struct page *pg; unsigned int nsg; int sglen; u64 pa; u64 paend; struct scatterlist *sg; struct device *dma = mvdev->vdev.dma_dev; for (map = vhost_iotlb_itree_first(iotlb, mr->start, mr->end - 1); map; map = vhost_iotlb_itree_next(map, start, mr->end - 1)) { size = maplen(map, mr); lgcd = gcd(lgcd, size); start += size; } log_entity_size = ilog2(lgcd); sglen = 1 << log_entity_size; nsg = MLX5_DIV_ROUND_UP_POW2(mr->end - mr->start, log_entity_size); err = sg_alloc_table(&mr->sg_head, nsg, GFP_KERNEL); if (err) return err; sg = mr->sg_head.sgl; for (map = vhost_iotlb_itree_first(iotlb, mr->start, mr->end - 1); map; map = vhost_iotlb_itree_next(map, mr->start, mr->end - 1)) { paend = map->addr + maplen(map, mr); for (pa = map->addr; pa < paend; pa += sglen) { pg = pfn_to_page(__phys_to_pfn(pa)); if (!sg) { mlx5_vdpa_warn(mvdev, "sg null. start 0x%llx, end 0x%llx\n", map->start, map->last + 1); err = -ENOMEM; goto err_map; } sg_set_page(sg, pg, sglen, 0); sg = sg_next(sg); if (!sg) goto done; } } done: mr->log_size = log_entity_size; mr->nsg = nsg; mr->nent = dma_map_sg_attrs(dma, mr->sg_head.sgl, mr->nsg, DMA_BIDIRECTIONAL, 0); if (!mr->nent) { err = -ENOMEM; goto err_map; } err = create_direct_mr(mvdev, mr); if (err) goto err_direct; return 0; err_direct: dma_unmap_sg_attrs(dma, mr->sg_head.sgl, mr->nsg, DMA_BIDIRECTIONAL, 0); err_map: sg_free_table(&mr->sg_head); return err; } static void unmap_direct_mr(struct mlx5_vdpa_dev *mvdev, struct mlx5_vdpa_direct_mr *mr) { struct device *dma = mvdev->vdev.dma_dev; destroy_direct_mr(mvdev, mr); dma_unmap_sg_attrs(dma, mr->sg_head.sgl, mr->nsg, DMA_BIDIRECTIONAL, 0); sg_free_table(&mr->sg_head); } static int add_direct_chain(struct mlx5_vdpa_dev *mvdev, u64 start, u64 size, u8 perm, struct vhost_iotlb *iotlb) { struct mlx5_vdpa_mr *mr = &mvdev->mr; struct mlx5_vdpa_direct_mr *dmr; struct mlx5_vdpa_direct_mr *n; LIST_HEAD(tmp); u64 st; u64 sz; int err; st = start; while (size) { sz = (u32)min_t(u64, MAX_KLM_SIZE, size); dmr = kzalloc(sizeof(*dmr), GFP_KERNEL); if (!dmr) { err = -ENOMEM; goto err_alloc; } dmr->start = st; dmr->end = st + sz; dmr->perm = perm; err = map_direct_mr(mvdev, dmr, iotlb); if (err) { kfree(dmr); goto err_alloc; } list_add_tail(&dmr->list, &tmp); size -= sz; mr->num_directs++; mr->num_klms++; st += sz; } list_splice_tail(&tmp, &mr->head); return 0; err_alloc: list_for_each_entry_safe(dmr, n, &mr->head, list) { list_del_init(&dmr->list); unmap_direct_mr(mvdev, dmr); kfree(dmr); } return err; } /* The iotlb pointer contains a list of maps. Go over the maps, possibly * merging mergeable maps, and create direct memory keys that provide the * device access to memory. The direct mkeys are then referred to by the * indirect memory key that provides access to the enitre address space given * by iotlb. */ static int create_user_mr(struct mlx5_vdpa_dev *mvdev, struct vhost_iotlb *iotlb) { struct mlx5_vdpa_mr *mr = &mvdev->mr; struct mlx5_vdpa_direct_mr *dmr; struct mlx5_vdpa_direct_mr *n; struct vhost_iotlb_map *map; u32 pperm = U16_MAX; u64 last = U64_MAX; u64 ps = U64_MAX; u64 pe = U64_MAX; u64 start = 0; int err = 0; int nnuls; INIT_LIST_HEAD(&mr->head); for (map = vhost_iotlb_itree_first(iotlb, start, last); map; map = vhost_iotlb_itree_next(map, start, last)) { start = map->start; if (pe == map->start && pperm == map->perm) { pe = map->last + 1; } else { if (ps != U64_MAX) { if (pe < map->start) { /* We have a hole in the map. Check how * many null keys are required to fill it. */ nnuls = MLX5_DIV_ROUND_UP_POW2(map->start - pe, LOG_MAX_KLM_SIZE); mr->num_klms += nnuls; } err = add_direct_chain(mvdev, ps, pe - ps, pperm, iotlb); if (err) goto err_chain; } ps = map->start; pe = map->last + 1; pperm = map->perm; } } err = add_direct_chain(mvdev, ps, pe - ps, pperm, iotlb); if (err) goto err_chain; /* Create the memory key that defines the guests's address space. This * memory key refers to the direct keys that contain the MTT * translations */ err = create_indirect_key(mvdev, mr); if (err) goto err_chain; mr->user_mr = true; return 0; err_chain: list_for_each_entry_safe_reverse(dmr, n, &mr->head, list) { list_del_init(&dmr->list); unmap_direct_mr(mvdev, dmr); kfree(dmr); } return err; } static int create_dma_mr(struct mlx5_vdpa_dev *mvdev, struct mlx5_vdpa_mr *mr) { int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); void *mkc; u32 *in; int err; in = kzalloc(inlen, GFP_KERNEL); if (!in) return -ENOMEM; mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA); MLX5_SET(mkc, mkc, length64, 1); MLX5_SET(mkc, mkc, lw, 1); MLX5_SET(mkc, mkc, lr, 1); MLX5_SET(mkc, mkc, pd, mvdev->res.pdn); MLX5_SET(mkc, mkc, qpn, 0xffffff); err = mlx5_vdpa_create_mkey(mvdev, &mr->mkey, in, inlen); if (!err) mr->user_mr = false; kfree(in); return err; } static void destroy_dma_mr(struct mlx5_vdpa_dev *mvdev, struct mlx5_vdpa_mr *mr) { mlx5_vdpa_destroy_mkey(mvdev, mr->mkey); } static int dup_iotlb(struct mlx5_vdpa_dev *mvdev, struct vhost_iotlb *src) { struct vhost_iotlb_map *map; u64 start = 0, last = ULLONG_MAX; int err; if (!src) { err = vhost_iotlb_add_range(mvdev->cvq.iotlb, start, last, start, VHOST_ACCESS_RW); return err; } for (map = vhost_iotlb_itree_first(src, start, last); map; map = vhost_iotlb_itree_next(map, start, last)) { err = vhost_iotlb_add_range(mvdev->cvq.iotlb, map->start, map->last, map->addr, map->perm); if (err) return err; } return 0; } static void prune_iotlb(struct mlx5_vdpa_dev *mvdev) { vhost_iotlb_del_range(mvdev->cvq.iotlb, 0, ULLONG_MAX); } static void destroy_user_mr(struct mlx5_vdpa_dev *mvdev, struct mlx5_vdpa_mr *mr) { struct mlx5_vdpa_direct_mr *dmr; struct mlx5_vdpa_direct_mr *n; destroy_indirect_key(mvdev, mr); list_for_each_entry_safe_reverse(dmr, n, &mr->head, list) { list_del_init(&dmr->list); unmap_direct_mr(mvdev, dmr); kfree(dmr); } } static void _mlx5_vdpa_destroy_cvq_mr(struct mlx5_vdpa_dev *mvdev, unsigned int asid) { if (mvdev->group2asid[MLX5_VDPA_CVQ_GROUP] != asid) return; prune_iotlb(mvdev); } static void _mlx5_vdpa_destroy_dvq_mr(struct mlx5_vdpa_dev *mvdev, unsigned int asid) { struct mlx5_vdpa_mr *mr = &mvdev->mr; if (mvdev->group2asid[MLX5_VDPA_DATAVQ_GROUP] != asid) return; if (!mr->initialized) return; if (mr->user_mr) destroy_user_mr(mvdev, mr); else destroy_dma_mr(mvdev, mr); mr->initialized = false; } void mlx5_vdpa_destroy_mr_asid(struct mlx5_vdpa_dev *mvdev, unsigned int asid) { struct mlx5_vdpa_mr *mr = &mvdev->mr; mutex_lock(&mr->mkey_mtx); _mlx5_vdpa_destroy_dvq_mr(mvdev, asid); _mlx5_vdpa_destroy_cvq_mr(mvdev, asid); mutex_unlock(&mr->mkey_mtx); } void mlx5_vdpa_destroy_mr(struct mlx5_vdpa_dev *mvdev) { mlx5_vdpa_destroy_mr_asid(mvdev, mvdev->group2asid[MLX5_VDPA_CVQ_GROUP]); mlx5_vdpa_destroy_mr_asid(mvdev, mvdev->group2asid[MLX5_VDPA_DATAVQ_GROUP]); } static int _mlx5_vdpa_create_cvq_mr(struct mlx5_vdpa_dev *mvdev, struct vhost_iotlb *iotlb, unsigned int asid) { if (mvdev->group2asid[MLX5_VDPA_CVQ_GROUP] != asid) return 0; return dup_iotlb(mvdev, iotlb); } static int _mlx5_vdpa_create_dvq_mr(struct mlx5_vdpa_dev *mvdev, struct vhost_iotlb *iotlb, unsigned int asid) { struct mlx5_vdpa_mr *mr = &mvdev->mr; int err; if (mvdev->group2asid[MLX5_VDPA_DATAVQ_GROUP] != asid) return 0; if (mr->initialized) return 0; if (iotlb) err = create_user_mr(mvdev, iotlb); else err = create_dma_mr(mvdev, mr); if (err) return err; mr->initialized = true; return 0; } static int _mlx5_vdpa_create_mr(struct mlx5_vdpa_dev *mvdev, struct vhost_iotlb *iotlb, unsigned int asid) { int err; err = _mlx5_vdpa_create_dvq_mr(mvdev, iotlb, asid); if (err) return err; err = _mlx5_vdpa_create_cvq_mr(mvdev, iotlb, asid); if (err) goto out_err; return 0; out_err: _mlx5_vdpa_destroy_dvq_mr(mvdev, asid); return err; } int mlx5_vdpa_create_mr(struct mlx5_vdpa_dev *mvdev, struct vhost_iotlb *iotlb, unsigned int asid) { int err; mutex_lock(&mvdev->mr.mkey_mtx); err = _mlx5_vdpa_create_mr(mvdev, iotlb, asid); mutex_unlock(&mvdev->mr.mkey_mtx); return err; } int mlx5_vdpa_handle_set_map(struct mlx5_vdpa_dev *mvdev, struct vhost_iotlb *iotlb, bool *change_map, unsigned int asid) { struct mlx5_vdpa_mr *mr = &mvdev->mr; int err = 0; *change_map = false; mutex_lock(&mr->mkey_mtx); if (mr->initialized) { mlx5_vdpa_info(mvdev, "memory map update\n"); *change_map = true; } if (!*change_map) err = _mlx5_vdpa_create_mr(mvdev, iotlb, asid); mutex_unlock(&mr->mkey_mtx); return err; }
linux-master
drivers/vdpa/mlx5/core/mr.c
// SPDX-License-Identifier: GPL-2.0-only /* * vDPA bridge driver for modern virtio-pci device * * Copyright (c) 2020, Red Hat Inc. All rights reserved. * Author: Jason Wang <[email protected]> * * Based on virtio_pci_modern.c. */ #include <linux/interrupt.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/vdpa.h> #include <linux/virtio.h> #include <linux/virtio_config.h> #include <linux/virtio_ring.h> #include <linux/virtio_pci.h> #include <linux/virtio_pci_modern.h> #include <uapi/linux/vdpa.h> #define VP_VDPA_QUEUE_MAX 256 #define VP_VDPA_DRIVER_NAME "vp_vdpa" #define VP_VDPA_NAME_SIZE 256 struct vp_vring { void __iomem *notify; char msix_name[VP_VDPA_NAME_SIZE]; struct vdpa_callback cb; resource_size_t notify_pa; int irq; }; struct vp_vdpa { struct vdpa_device vdpa; struct virtio_pci_modern_device *mdev; struct vp_vring *vring; struct vdpa_callback config_cb; u64 device_features; char msix_name[VP_VDPA_NAME_SIZE]; int config_irq; int queues; int vectors; }; struct vp_vdpa_mgmtdev { struct vdpa_mgmt_dev mgtdev; struct virtio_pci_modern_device *mdev; struct vp_vdpa *vp_vdpa; }; static struct vp_vdpa *vdpa_to_vp(struct vdpa_device *vdpa) { return container_of(vdpa, struct vp_vdpa, vdpa); } static struct virtio_pci_modern_device *vdpa_to_mdev(struct vdpa_device *vdpa) { struct vp_vdpa *vp_vdpa = vdpa_to_vp(vdpa); return vp_vdpa->mdev; } static struct virtio_pci_modern_device *vp_vdpa_to_mdev(struct vp_vdpa *vp_vdpa) { return vp_vdpa->mdev; } static u64 vp_vdpa_get_device_features(struct vdpa_device *vdpa) { struct vp_vdpa *vp_vdpa = vdpa_to_vp(vdpa); return vp_vdpa->device_features; } static int vp_vdpa_set_driver_features(struct vdpa_device *vdpa, u64 features) { struct virtio_pci_modern_device *mdev = vdpa_to_mdev(vdpa); vp_modern_set_features(mdev, features); return 0; } static u64 vp_vdpa_get_driver_features(struct vdpa_device *vdpa) { struct virtio_pci_modern_device *mdev = vdpa_to_mdev(vdpa); return vp_modern_get_driver_features(mdev); } static u8 vp_vdpa_get_status(struct vdpa_device *vdpa) { struct virtio_pci_modern_device *mdev = vdpa_to_mdev(vdpa); return vp_modern_get_status(mdev); } static int vp_vdpa_get_vq_irq(struct vdpa_device *vdpa, u16 idx) { struct vp_vdpa *vp_vdpa = vdpa_to_vp(vdpa); int irq = vp_vdpa->vring[idx].irq; if (irq == VIRTIO_MSI_NO_VECTOR) return -EINVAL; return irq; } static void vp_vdpa_free_irq(struct vp_vdpa *vp_vdpa) { struct virtio_pci_modern_device *mdev = vp_vdpa_to_mdev(vp_vdpa); struct pci_dev *pdev = mdev->pci_dev; int i; for (i = 0; i < vp_vdpa->queues; i++) { if (vp_vdpa->vring[i].irq != VIRTIO_MSI_NO_VECTOR) { vp_modern_queue_vector(mdev, i, VIRTIO_MSI_NO_VECTOR); devm_free_irq(&pdev->dev, vp_vdpa->vring[i].irq, &vp_vdpa->vring[i]); vp_vdpa->vring[i].irq = VIRTIO_MSI_NO_VECTOR; } } if (vp_vdpa->config_irq != VIRTIO_MSI_NO_VECTOR) { vp_modern_config_vector(mdev, VIRTIO_MSI_NO_VECTOR); devm_free_irq(&pdev->dev, vp_vdpa->config_irq, vp_vdpa); vp_vdpa->config_irq = VIRTIO_MSI_NO_VECTOR; } if (vp_vdpa->vectors) { pci_free_irq_vectors(pdev); vp_vdpa->vectors = 0; } } static irqreturn_t vp_vdpa_vq_handler(int irq, void *arg) { struct vp_vring *vring = arg; if (vring->cb.callback) return vring->cb.callback(vring->cb.private); return IRQ_HANDLED; } static irqreturn_t vp_vdpa_config_handler(int irq, void *arg) { struct vp_vdpa *vp_vdpa = arg; if (vp_vdpa->config_cb.callback) return vp_vdpa->config_cb.callback(vp_vdpa->config_cb.private); return IRQ_HANDLED; } static int vp_vdpa_request_irq(struct vp_vdpa *vp_vdpa) { struct virtio_pci_modern_device *mdev = vp_vdpa_to_mdev(vp_vdpa); struct pci_dev *pdev = mdev->pci_dev; int i, ret, irq; int queues = vp_vdpa->queues; int vectors = queues + 1; ret = pci_alloc_irq_vectors(pdev, vectors, vectors, PCI_IRQ_MSIX); if (ret != vectors) { dev_err(&pdev->dev, "vp_vdpa: fail to allocate irq vectors want %d but %d\n", vectors, ret); return ret; } vp_vdpa->vectors = vectors; for (i = 0; i < queues; i++) { snprintf(vp_vdpa->vring[i].msix_name, VP_VDPA_NAME_SIZE, "vp-vdpa[%s]-%d\n", pci_name(pdev), i); irq = pci_irq_vector(pdev, i); ret = devm_request_irq(&pdev->dev, irq, vp_vdpa_vq_handler, 0, vp_vdpa->vring[i].msix_name, &vp_vdpa->vring[i]); if (ret) { dev_err(&pdev->dev, "vp_vdpa: fail to request irq for vq %d\n", i); goto err; } vp_modern_queue_vector(mdev, i, i); vp_vdpa->vring[i].irq = irq; } snprintf(vp_vdpa->msix_name, VP_VDPA_NAME_SIZE, "vp-vdpa[%s]-config\n", pci_name(pdev)); irq = pci_irq_vector(pdev, queues); ret = devm_request_irq(&pdev->dev, irq, vp_vdpa_config_handler, 0, vp_vdpa->msix_name, vp_vdpa); if (ret) { dev_err(&pdev->dev, "vp_vdpa: fail to request irq for vq %d\n", i); goto err; } vp_modern_config_vector(mdev, queues); vp_vdpa->config_irq = irq; return 0; err: vp_vdpa_free_irq(vp_vdpa); return ret; } static void vp_vdpa_set_status(struct vdpa_device *vdpa, u8 status) { struct vp_vdpa *vp_vdpa = vdpa_to_vp(vdpa); struct virtio_pci_modern_device *mdev = vp_vdpa_to_mdev(vp_vdpa); u8 s = vp_vdpa_get_status(vdpa); if (status & VIRTIO_CONFIG_S_DRIVER_OK && !(s & VIRTIO_CONFIG_S_DRIVER_OK)) { vp_vdpa_request_irq(vp_vdpa); } vp_modern_set_status(mdev, status); } static int vp_vdpa_reset(struct vdpa_device *vdpa) { struct vp_vdpa *vp_vdpa = vdpa_to_vp(vdpa); struct virtio_pci_modern_device *mdev = vp_vdpa_to_mdev(vp_vdpa); u8 s = vp_vdpa_get_status(vdpa); vp_modern_set_status(mdev, 0); if (s & VIRTIO_CONFIG_S_DRIVER_OK) vp_vdpa_free_irq(vp_vdpa); return 0; } static u16 vp_vdpa_get_vq_num_max(struct vdpa_device *vdpa) { return VP_VDPA_QUEUE_MAX; } static int vp_vdpa_get_vq_state(struct vdpa_device *vdpa, u16 qid, struct vdpa_vq_state *state) { /* Note that this is not supported by virtio specification, so * we return -EOPNOTSUPP here. This means we can't support live * migration, vhost device start/stop. */ return -EOPNOTSUPP; } static int vp_vdpa_set_vq_state_split(struct vdpa_device *vdpa, const struct vdpa_vq_state *state) { const struct vdpa_vq_state_split *split = &state->split; if (split->avail_index == 0) return 0; return -EOPNOTSUPP; } static int vp_vdpa_set_vq_state_packed(struct vdpa_device *vdpa, const struct vdpa_vq_state *state) { const struct vdpa_vq_state_packed *packed = &state->packed; if (packed->last_avail_counter == 1 && packed->last_avail_idx == 0 && packed->last_used_counter == 1 && packed->last_used_idx == 0) return 0; return -EOPNOTSUPP; } static int vp_vdpa_set_vq_state(struct vdpa_device *vdpa, u16 qid, const struct vdpa_vq_state *state) { struct virtio_pci_modern_device *mdev = vdpa_to_mdev(vdpa); /* Note that this is not supported by virtio specification. * But if the state is by chance equal to the device initial * state, we can let it go. */ if ((vp_modern_get_status(mdev) & VIRTIO_CONFIG_S_FEATURES_OK) && !vp_modern_get_queue_enable(mdev, qid)) { if (vp_modern_get_driver_features(mdev) & BIT_ULL(VIRTIO_F_RING_PACKED)) return vp_vdpa_set_vq_state_packed(vdpa, state); else return vp_vdpa_set_vq_state_split(vdpa, state); } return -EOPNOTSUPP; } static void vp_vdpa_set_vq_cb(struct vdpa_device *vdpa, u16 qid, struct vdpa_callback *cb) { struct vp_vdpa *vp_vdpa = vdpa_to_vp(vdpa); vp_vdpa->vring[qid].cb = *cb; } static void vp_vdpa_set_vq_ready(struct vdpa_device *vdpa, u16 qid, bool ready) { struct virtio_pci_modern_device *mdev = vdpa_to_mdev(vdpa); vp_modern_set_queue_enable(mdev, qid, ready); } static bool vp_vdpa_get_vq_ready(struct vdpa_device *vdpa, u16 qid) { struct virtio_pci_modern_device *mdev = vdpa_to_mdev(vdpa); return vp_modern_get_queue_enable(mdev, qid); } static void vp_vdpa_set_vq_num(struct vdpa_device *vdpa, u16 qid, u32 num) { struct virtio_pci_modern_device *mdev = vdpa_to_mdev(vdpa); vp_modern_set_queue_size(mdev, qid, num); } static int vp_vdpa_set_vq_address(struct vdpa_device *vdpa, u16 qid, u64 desc_area, u64 driver_area, u64 device_area) { struct virtio_pci_modern_device *mdev = vdpa_to_mdev(vdpa); vp_modern_queue_address(mdev, qid, desc_area, driver_area, device_area); return 0; } static void vp_vdpa_kick_vq(struct vdpa_device *vdpa, u16 qid) { struct vp_vdpa *vp_vdpa = vdpa_to_vp(vdpa); vp_iowrite16(qid, vp_vdpa->vring[qid].notify); } static u32 vp_vdpa_get_generation(struct vdpa_device *vdpa) { struct virtio_pci_modern_device *mdev = vdpa_to_mdev(vdpa); return vp_modern_generation(mdev); } static u32 vp_vdpa_get_device_id(struct vdpa_device *vdpa) { struct virtio_pci_modern_device *mdev = vdpa_to_mdev(vdpa); return mdev->id.device; } static u32 vp_vdpa_get_vendor_id(struct vdpa_device *vdpa) { struct virtio_pci_modern_device *mdev = vdpa_to_mdev(vdpa); return mdev->id.vendor; } static u32 vp_vdpa_get_vq_align(struct vdpa_device *vdpa) { return PAGE_SIZE; } static size_t vp_vdpa_get_config_size(struct vdpa_device *vdpa) { struct virtio_pci_modern_device *mdev = vdpa_to_mdev(vdpa); return mdev->device_len; } static void vp_vdpa_get_config(struct vdpa_device *vdpa, unsigned int offset, void *buf, unsigned int len) { struct vp_vdpa *vp_vdpa = vdpa_to_vp(vdpa); struct virtio_pci_modern_device *mdev = vp_vdpa_to_mdev(vp_vdpa); u8 old, new; u8 *p; int i; do { old = vp_ioread8(&mdev->common->config_generation); p = buf; for (i = 0; i < len; i++) *p++ = vp_ioread8(mdev->device + offset + i); new = vp_ioread8(&mdev->common->config_generation); } while (old != new); } static void vp_vdpa_set_config(struct vdpa_device *vdpa, unsigned int offset, const void *buf, unsigned int len) { struct vp_vdpa *vp_vdpa = vdpa_to_vp(vdpa); struct virtio_pci_modern_device *mdev = vp_vdpa_to_mdev(vp_vdpa); const u8 *p = buf; int i; for (i = 0; i < len; i++) vp_iowrite8(*p++, mdev->device + offset + i); } static void vp_vdpa_set_config_cb(struct vdpa_device *vdpa, struct vdpa_callback *cb) { struct vp_vdpa *vp_vdpa = vdpa_to_vp(vdpa); vp_vdpa->config_cb = *cb; } static struct vdpa_notification_area vp_vdpa_get_vq_notification(struct vdpa_device *vdpa, u16 qid) { struct vp_vdpa *vp_vdpa = vdpa_to_vp(vdpa); struct virtio_pci_modern_device *mdev = vp_vdpa_to_mdev(vp_vdpa); struct vdpa_notification_area notify; notify.addr = vp_vdpa->vring[qid].notify_pa; notify.size = mdev->notify_offset_multiplier; return notify; } static const struct vdpa_config_ops vp_vdpa_ops = { .get_device_features = vp_vdpa_get_device_features, .set_driver_features = vp_vdpa_set_driver_features, .get_driver_features = vp_vdpa_get_driver_features, .get_status = vp_vdpa_get_status, .set_status = vp_vdpa_set_status, .reset = vp_vdpa_reset, .get_vq_num_max = vp_vdpa_get_vq_num_max, .get_vq_state = vp_vdpa_get_vq_state, .get_vq_notification = vp_vdpa_get_vq_notification, .set_vq_state = vp_vdpa_set_vq_state, .set_vq_cb = vp_vdpa_set_vq_cb, .set_vq_ready = vp_vdpa_set_vq_ready, .get_vq_ready = vp_vdpa_get_vq_ready, .set_vq_num = vp_vdpa_set_vq_num, .set_vq_address = vp_vdpa_set_vq_address, .kick_vq = vp_vdpa_kick_vq, .get_generation = vp_vdpa_get_generation, .get_device_id = vp_vdpa_get_device_id, .get_vendor_id = vp_vdpa_get_vendor_id, .get_vq_align = vp_vdpa_get_vq_align, .get_config_size = vp_vdpa_get_config_size, .get_config = vp_vdpa_get_config, .set_config = vp_vdpa_set_config, .set_config_cb = vp_vdpa_set_config_cb, .get_vq_irq = vp_vdpa_get_vq_irq, }; static void vp_vdpa_free_irq_vectors(void *data) { pci_free_irq_vectors(data); } static int vp_vdpa_dev_add(struct vdpa_mgmt_dev *v_mdev, const char *name, const struct vdpa_dev_set_config *add_config) { struct vp_vdpa_mgmtdev *vp_vdpa_mgtdev = container_of(v_mdev, struct vp_vdpa_mgmtdev, mgtdev); struct virtio_pci_modern_device *mdev = vp_vdpa_mgtdev->mdev; struct pci_dev *pdev = mdev->pci_dev; struct device *dev = &pdev->dev; struct vp_vdpa *vp_vdpa = NULL; u64 device_features; int ret, i; vp_vdpa = vdpa_alloc_device(struct vp_vdpa, vdpa, dev, &vp_vdpa_ops, 1, 1, name, false); if (IS_ERR(vp_vdpa)) { dev_err(dev, "vp_vdpa: Failed to allocate vDPA structure\n"); return PTR_ERR(vp_vdpa); } vp_vdpa_mgtdev->vp_vdpa = vp_vdpa; vp_vdpa->vdpa.dma_dev = &pdev->dev; vp_vdpa->queues = vp_modern_get_num_queues(mdev); vp_vdpa->mdev = mdev; device_features = vp_modern_get_features(mdev); if (add_config->mask & BIT_ULL(VDPA_ATTR_DEV_FEATURES)) { if (add_config->device_features & ~device_features) { ret = -EINVAL; dev_err(&pdev->dev, "Try to provision features " "that are not supported by the device: " "device_features 0x%llx provisioned 0x%llx\n", device_features, add_config->device_features); goto err; } device_features = add_config->device_features; } vp_vdpa->device_features = device_features; ret = devm_add_action_or_reset(dev, vp_vdpa_free_irq_vectors, pdev); if (ret) { dev_err(&pdev->dev, "Failed for adding devres for freeing irq vectors\n"); goto err; } vp_vdpa->vring = devm_kcalloc(&pdev->dev, vp_vdpa->queues, sizeof(*vp_vdpa->vring), GFP_KERNEL); if (!vp_vdpa->vring) { ret = -ENOMEM; dev_err(&pdev->dev, "Fail to allocate virtqueues\n"); goto err; } for (i = 0; i < vp_vdpa->queues; i++) { vp_vdpa->vring[i].irq = VIRTIO_MSI_NO_VECTOR; vp_vdpa->vring[i].notify = vp_modern_map_vq_notify(mdev, i, &vp_vdpa->vring[i].notify_pa); if (!vp_vdpa->vring[i].notify) { ret = -EINVAL; dev_warn(&pdev->dev, "Fail to map vq notify %d\n", i); goto err; } } vp_vdpa->config_irq = VIRTIO_MSI_NO_VECTOR; vp_vdpa->vdpa.mdev = &vp_vdpa_mgtdev->mgtdev; ret = _vdpa_register_device(&vp_vdpa->vdpa, vp_vdpa->queues); if (ret) { dev_err(&pdev->dev, "Failed to register to vdpa bus\n"); goto err; } return 0; err: put_device(&vp_vdpa->vdpa.dev); return ret; } static void vp_vdpa_dev_del(struct vdpa_mgmt_dev *v_mdev, struct vdpa_device *dev) { struct vp_vdpa_mgmtdev *vp_vdpa_mgtdev = container_of(v_mdev, struct vp_vdpa_mgmtdev, mgtdev); struct vp_vdpa *vp_vdpa = vp_vdpa_mgtdev->vp_vdpa; _vdpa_unregister_device(&vp_vdpa->vdpa); vp_vdpa_mgtdev->vp_vdpa = NULL; } static const struct vdpa_mgmtdev_ops vp_vdpa_mdev_ops = { .dev_add = vp_vdpa_dev_add, .dev_del = vp_vdpa_dev_del, }; static int vp_vdpa_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct vp_vdpa_mgmtdev *vp_vdpa_mgtdev = NULL; struct vdpa_mgmt_dev *mgtdev; struct device *dev = &pdev->dev; struct virtio_pci_modern_device *mdev = NULL; struct virtio_device_id *mdev_id = NULL; int err; vp_vdpa_mgtdev = kzalloc(sizeof(*vp_vdpa_mgtdev), GFP_KERNEL); if (!vp_vdpa_mgtdev) return -ENOMEM; mgtdev = &vp_vdpa_mgtdev->mgtdev; mgtdev->ops = &vp_vdpa_mdev_ops; mgtdev->device = dev; mdev = kzalloc(sizeof(struct virtio_pci_modern_device), GFP_KERNEL); if (!mdev) { err = -ENOMEM; goto mdev_err; } mdev_id = kzalloc(sizeof(struct virtio_device_id), GFP_KERNEL); if (!mdev_id) { err = -ENOMEM; goto mdev_id_err; } vp_vdpa_mgtdev->mdev = mdev; mdev->pci_dev = pdev; err = pcim_enable_device(pdev); if (err) { goto probe_err; } err = vp_modern_probe(mdev); if (err) { dev_err(&pdev->dev, "Failed to probe modern PCI device\n"); goto probe_err; } mdev_id->device = mdev->id.device; mdev_id->vendor = mdev->id.vendor; mgtdev->id_table = mdev_id; mgtdev->max_supported_vqs = vp_modern_get_num_queues(mdev); mgtdev->supported_features = vp_modern_get_features(mdev); mgtdev->config_attr_mask = (1 << VDPA_ATTR_DEV_FEATURES); pci_set_master(pdev); pci_set_drvdata(pdev, vp_vdpa_mgtdev); err = vdpa_mgmtdev_register(mgtdev); if (err) { dev_err(&pdev->dev, "Failed to register vdpa mgmtdev device\n"); goto register_err; } return 0; register_err: vp_modern_remove(vp_vdpa_mgtdev->mdev); probe_err: kfree(mdev_id); mdev_id_err: kfree(mdev); mdev_err: kfree(vp_vdpa_mgtdev); return err; } static void vp_vdpa_remove(struct pci_dev *pdev) { struct vp_vdpa_mgmtdev *vp_vdpa_mgtdev = pci_get_drvdata(pdev); struct virtio_pci_modern_device *mdev = NULL; mdev = vp_vdpa_mgtdev->mdev; vdpa_mgmtdev_unregister(&vp_vdpa_mgtdev->mgtdev); vp_modern_remove(mdev); kfree(vp_vdpa_mgtdev->mgtdev.id_table); kfree(mdev); kfree(vp_vdpa_mgtdev); } static struct pci_driver vp_vdpa_driver = { .name = "vp-vdpa", .id_table = NULL, /* only dynamic ids */ .probe = vp_vdpa_probe, .remove = vp_vdpa_remove, }; module_pci_driver(vp_vdpa_driver); MODULE_AUTHOR("Jason Wang <[email protected]>"); MODULE_DESCRIPTION("vp-vdpa"); MODULE_LICENSE("GPL"); MODULE_VERSION("1");
linux-master
drivers/vdpa/virtio_pci/vp_vdpa.c
// SPDX-License-Identifier: GPL-2.0-only /* * MMU-based software IOTLB. * * Copyright (C) 2020-2021 Bytedance Inc. and/or its affiliates. All rights reserved. * * Author: Xie Yongji <[email protected]> * */ #include <linux/slab.h> #include <linux/file.h> #include <linux/anon_inodes.h> #include <linux/highmem.h> #include <linux/vmalloc.h> #include <linux/vdpa.h> #include "iova_domain.h" static int vduse_iotlb_add_range(struct vduse_iova_domain *domain, u64 start, u64 last, u64 addr, unsigned int perm, struct file *file, u64 offset) { struct vdpa_map_file *map_file; int ret; map_file = kmalloc(sizeof(*map_file), GFP_ATOMIC); if (!map_file) return -ENOMEM; map_file->file = get_file(file); map_file->offset = offset; ret = vhost_iotlb_add_range_ctx(domain->iotlb, start, last, addr, perm, map_file); if (ret) { fput(map_file->file); kfree(map_file); return ret; } return 0; } static void vduse_iotlb_del_range(struct vduse_iova_domain *domain, u64 start, u64 last) { struct vdpa_map_file *map_file; struct vhost_iotlb_map *map; while ((map = vhost_iotlb_itree_first(domain->iotlb, start, last))) { map_file = (struct vdpa_map_file *)map->opaque; fput(map_file->file); kfree(map_file); vhost_iotlb_map_free(domain->iotlb, map); } } int vduse_domain_set_map(struct vduse_iova_domain *domain, struct vhost_iotlb *iotlb) { struct vdpa_map_file *map_file; struct vhost_iotlb_map *map; u64 start = 0ULL, last = ULLONG_MAX; int ret; spin_lock(&domain->iotlb_lock); vduse_iotlb_del_range(domain, start, last); for (map = vhost_iotlb_itree_first(iotlb, start, last); map; map = vhost_iotlb_itree_next(map, start, last)) { map_file = (struct vdpa_map_file *)map->opaque; ret = vduse_iotlb_add_range(domain, map->start, map->last, map->addr, map->perm, map_file->file, map_file->offset); if (ret) goto err; } spin_unlock(&domain->iotlb_lock); return 0; err: vduse_iotlb_del_range(domain, start, last); spin_unlock(&domain->iotlb_lock); return ret; } void vduse_domain_clear_map(struct vduse_iova_domain *domain, struct vhost_iotlb *iotlb) { struct vhost_iotlb_map *map; u64 start = 0ULL, last = ULLONG_MAX; spin_lock(&domain->iotlb_lock); for (map = vhost_iotlb_itree_first(iotlb, start, last); map; map = vhost_iotlb_itree_next(map, start, last)) { vduse_iotlb_del_range(domain, map->start, map->last); } spin_unlock(&domain->iotlb_lock); } static int vduse_domain_map_bounce_page(struct vduse_iova_domain *domain, u64 iova, u64 size, u64 paddr) { struct vduse_bounce_map *map; u64 last = iova + size - 1; while (iova <= last) { map = &domain->bounce_maps[iova >> PAGE_SHIFT]; if (!map->bounce_page) { map->bounce_page = alloc_page(GFP_ATOMIC); if (!map->bounce_page) return -ENOMEM; } map->orig_phys = paddr; paddr += PAGE_SIZE; iova += PAGE_SIZE; } return 0; } static void vduse_domain_unmap_bounce_page(struct vduse_iova_domain *domain, u64 iova, u64 size) { struct vduse_bounce_map *map; u64 last = iova + size - 1; while (iova <= last) { map = &domain->bounce_maps[iova >> PAGE_SHIFT]; map->orig_phys = INVALID_PHYS_ADDR; iova += PAGE_SIZE; } } static void do_bounce(phys_addr_t orig, void *addr, size_t size, enum dma_data_direction dir) { unsigned long pfn = PFN_DOWN(orig); unsigned int offset = offset_in_page(orig); struct page *page; unsigned int sz = 0; while (size) { sz = min_t(size_t, PAGE_SIZE - offset, size); page = pfn_to_page(pfn); if (dir == DMA_TO_DEVICE) memcpy_from_page(addr, page, offset, sz); else memcpy_to_page(page, offset, addr, sz); size -= sz; pfn++; addr += sz; offset = 0; } } static void vduse_domain_bounce(struct vduse_iova_domain *domain, dma_addr_t iova, size_t size, enum dma_data_direction dir) { struct vduse_bounce_map *map; unsigned int offset; void *addr; size_t sz; if (iova >= domain->bounce_size) return; while (size) { map = &domain->bounce_maps[iova >> PAGE_SHIFT]; offset = offset_in_page(iova); sz = min_t(size_t, PAGE_SIZE - offset, size); if (WARN_ON(!map->bounce_page || map->orig_phys == INVALID_PHYS_ADDR)) return; addr = kmap_local_page(map->bounce_page); do_bounce(map->orig_phys + offset, addr + offset, sz, dir); kunmap_local(addr); size -= sz; iova += sz; } } static struct page * vduse_domain_get_coherent_page(struct vduse_iova_domain *domain, u64 iova) { u64 start = iova & PAGE_MASK; u64 last = start + PAGE_SIZE - 1; struct vhost_iotlb_map *map; struct page *page = NULL; spin_lock(&domain->iotlb_lock); map = vhost_iotlb_itree_first(domain->iotlb, start, last); if (!map) goto out; page = pfn_to_page((map->addr + iova - map->start) >> PAGE_SHIFT); get_page(page); out: spin_unlock(&domain->iotlb_lock); return page; } static struct page * vduse_domain_get_bounce_page(struct vduse_iova_domain *domain, u64 iova) { struct vduse_bounce_map *map; struct page *page = NULL; read_lock(&domain->bounce_lock); map = &domain->bounce_maps[iova >> PAGE_SHIFT]; if (domain->user_bounce_pages || !map->bounce_page) goto out; page = map->bounce_page; get_page(page); out: read_unlock(&domain->bounce_lock); return page; } static void vduse_domain_free_kernel_bounce_pages(struct vduse_iova_domain *domain) { struct vduse_bounce_map *map; unsigned long pfn, bounce_pfns; bounce_pfns = domain->bounce_size >> PAGE_SHIFT; for (pfn = 0; pfn < bounce_pfns; pfn++) { map = &domain->bounce_maps[pfn]; if (WARN_ON(map->orig_phys != INVALID_PHYS_ADDR)) continue; if (!map->bounce_page) continue; __free_page(map->bounce_page); map->bounce_page = NULL; } } int vduse_domain_add_user_bounce_pages(struct vduse_iova_domain *domain, struct page **pages, int count) { struct vduse_bounce_map *map; int i, ret; /* Now we don't support partial mapping */ if (count != (domain->bounce_size >> PAGE_SHIFT)) return -EINVAL; write_lock(&domain->bounce_lock); ret = -EEXIST; if (domain->user_bounce_pages) goto out; for (i = 0; i < count; i++) { map = &domain->bounce_maps[i]; if (map->bounce_page) { /* Copy kernel page to user page if it's in use */ if (map->orig_phys != INVALID_PHYS_ADDR) memcpy_to_page(pages[i], 0, page_address(map->bounce_page), PAGE_SIZE); __free_page(map->bounce_page); } map->bounce_page = pages[i]; get_page(pages[i]); } domain->user_bounce_pages = true; ret = 0; out: write_unlock(&domain->bounce_lock); return ret; } void vduse_domain_remove_user_bounce_pages(struct vduse_iova_domain *domain) { struct vduse_bounce_map *map; unsigned long i, count; write_lock(&domain->bounce_lock); if (!domain->user_bounce_pages) goto out; count = domain->bounce_size >> PAGE_SHIFT; for (i = 0; i < count; i++) { struct page *page = NULL; map = &domain->bounce_maps[i]; if (WARN_ON(!map->bounce_page)) continue; /* Copy user page to kernel page if it's in use */ if (map->orig_phys != INVALID_PHYS_ADDR) { page = alloc_page(GFP_ATOMIC | __GFP_NOFAIL); memcpy_from_page(page_address(page), map->bounce_page, 0, PAGE_SIZE); } put_page(map->bounce_page); map->bounce_page = page; } domain->user_bounce_pages = false; out: write_unlock(&domain->bounce_lock); } void vduse_domain_reset_bounce_map(struct vduse_iova_domain *domain) { if (!domain->bounce_map) return; spin_lock(&domain->iotlb_lock); if (!domain->bounce_map) goto unlock; vduse_iotlb_del_range(domain, 0, domain->bounce_size - 1); domain->bounce_map = 0; unlock: spin_unlock(&domain->iotlb_lock); } static int vduse_domain_init_bounce_map(struct vduse_iova_domain *domain) { int ret = 0; if (domain->bounce_map) return 0; spin_lock(&domain->iotlb_lock); if (domain->bounce_map) goto unlock; ret = vduse_iotlb_add_range(domain, 0, domain->bounce_size - 1, 0, VHOST_MAP_RW, domain->file, 0); if (ret) goto unlock; domain->bounce_map = 1; unlock: spin_unlock(&domain->iotlb_lock); return ret; } static dma_addr_t vduse_domain_alloc_iova(struct iova_domain *iovad, unsigned long size, unsigned long limit) { unsigned long shift = iova_shift(iovad); unsigned long iova_len = iova_align(iovad, size) >> shift; unsigned long iova_pfn; iova_pfn = alloc_iova_fast(iovad, iova_len, limit >> shift, true); return (dma_addr_t)iova_pfn << shift; } static void vduse_domain_free_iova(struct iova_domain *iovad, dma_addr_t iova, size_t size) { unsigned long shift = iova_shift(iovad); unsigned long iova_len = iova_align(iovad, size) >> shift; free_iova_fast(iovad, iova >> shift, iova_len); } dma_addr_t vduse_domain_map_page(struct vduse_iova_domain *domain, struct page *page, unsigned long offset, size_t size, enum dma_data_direction dir, unsigned long attrs) { struct iova_domain *iovad = &domain->stream_iovad; unsigned long limit = domain->bounce_size - 1; phys_addr_t pa = page_to_phys(page) + offset; dma_addr_t iova = vduse_domain_alloc_iova(iovad, size, limit); if (!iova) return DMA_MAPPING_ERROR; if (vduse_domain_init_bounce_map(domain)) goto err; read_lock(&domain->bounce_lock); if (vduse_domain_map_bounce_page(domain, (u64)iova, (u64)size, pa)) goto err_unlock; if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL) vduse_domain_bounce(domain, iova, size, DMA_TO_DEVICE); read_unlock(&domain->bounce_lock); return iova; err_unlock: read_unlock(&domain->bounce_lock); err: vduse_domain_free_iova(iovad, iova, size); return DMA_MAPPING_ERROR; } void vduse_domain_unmap_page(struct vduse_iova_domain *domain, dma_addr_t dma_addr, size_t size, enum dma_data_direction dir, unsigned long attrs) { struct iova_domain *iovad = &domain->stream_iovad; read_lock(&domain->bounce_lock); if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) vduse_domain_bounce(domain, dma_addr, size, DMA_FROM_DEVICE); vduse_domain_unmap_bounce_page(domain, (u64)dma_addr, (u64)size); read_unlock(&domain->bounce_lock); vduse_domain_free_iova(iovad, dma_addr, size); } void *vduse_domain_alloc_coherent(struct vduse_iova_domain *domain, size_t size, dma_addr_t *dma_addr, gfp_t flag, unsigned long attrs) { struct iova_domain *iovad = &domain->consistent_iovad; unsigned long limit = domain->iova_limit; dma_addr_t iova = vduse_domain_alloc_iova(iovad, size, limit); void *orig = alloc_pages_exact(size, flag); if (!iova || !orig) goto err; spin_lock(&domain->iotlb_lock); if (vduse_iotlb_add_range(domain, (u64)iova, (u64)iova + size - 1, virt_to_phys(orig), VHOST_MAP_RW, domain->file, (u64)iova)) { spin_unlock(&domain->iotlb_lock); goto err; } spin_unlock(&domain->iotlb_lock); *dma_addr = iova; return orig; err: *dma_addr = DMA_MAPPING_ERROR; if (orig) free_pages_exact(orig, size); if (iova) vduse_domain_free_iova(iovad, iova, size); return NULL; } void vduse_domain_free_coherent(struct vduse_iova_domain *domain, size_t size, void *vaddr, dma_addr_t dma_addr, unsigned long attrs) { struct iova_domain *iovad = &domain->consistent_iovad; struct vhost_iotlb_map *map; struct vdpa_map_file *map_file; phys_addr_t pa; spin_lock(&domain->iotlb_lock); map = vhost_iotlb_itree_first(domain->iotlb, (u64)dma_addr, (u64)dma_addr + size - 1); if (WARN_ON(!map)) { spin_unlock(&domain->iotlb_lock); return; } map_file = (struct vdpa_map_file *)map->opaque; fput(map_file->file); kfree(map_file); pa = map->addr; vhost_iotlb_map_free(domain->iotlb, map); spin_unlock(&domain->iotlb_lock); vduse_domain_free_iova(iovad, dma_addr, size); free_pages_exact(phys_to_virt(pa), size); } static vm_fault_t vduse_domain_mmap_fault(struct vm_fault *vmf) { struct vduse_iova_domain *domain = vmf->vma->vm_private_data; unsigned long iova = vmf->pgoff << PAGE_SHIFT; struct page *page; if (!domain) return VM_FAULT_SIGBUS; if (iova < domain->bounce_size) page = vduse_domain_get_bounce_page(domain, iova); else page = vduse_domain_get_coherent_page(domain, iova); if (!page) return VM_FAULT_SIGBUS; vmf->page = page; return 0; } static const struct vm_operations_struct vduse_domain_mmap_ops = { .fault = vduse_domain_mmap_fault, }; static int vduse_domain_mmap(struct file *file, struct vm_area_struct *vma) { struct vduse_iova_domain *domain = file->private_data; vm_flags_set(vma, VM_DONTDUMP | VM_DONTEXPAND); vma->vm_private_data = domain; vma->vm_ops = &vduse_domain_mmap_ops; return 0; } static int vduse_domain_release(struct inode *inode, struct file *file) { struct vduse_iova_domain *domain = file->private_data; spin_lock(&domain->iotlb_lock); vduse_iotlb_del_range(domain, 0, ULLONG_MAX); vduse_domain_remove_user_bounce_pages(domain); vduse_domain_free_kernel_bounce_pages(domain); spin_unlock(&domain->iotlb_lock); put_iova_domain(&domain->stream_iovad); put_iova_domain(&domain->consistent_iovad); vhost_iotlb_free(domain->iotlb); vfree(domain->bounce_maps); kfree(domain); return 0; } static const struct file_operations vduse_domain_fops = { .owner = THIS_MODULE, .mmap = vduse_domain_mmap, .release = vduse_domain_release, }; void vduse_domain_destroy(struct vduse_iova_domain *domain) { fput(domain->file); } struct vduse_iova_domain * vduse_domain_create(unsigned long iova_limit, size_t bounce_size) { struct vduse_iova_domain *domain; struct file *file; struct vduse_bounce_map *map; unsigned long pfn, bounce_pfns; int ret; bounce_pfns = PAGE_ALIGN(bounce_size) >> PAGE_SHIFT; if (iova_limit <= bounce_size) return NULL; domain = kzalloc(sizeof(*domain), GFP_KERNEL); if (!domain) return NULL; domain->iotlb = vhost_iotlb_alloc(0, 0); if (!domain->iotlb) goto err_iotlb; domain->iova_limit = iova_limit; domain->bounce_size = PAGE_ALIGN(bounce_size); domain->bounce_maps = vzalloc(bounce_pfns * sizeof(struct vduse_bounce_map)); if (!domain->bounce_maps) goto err_map; for (pfn = 0; pfn < bounce_pfns; pfn++) { map = &domain->bounce_maps[pfn]; map->orig_phys = INVALID_PHYS_ADDR; } file = anon_inode_getfile("[vduse-domain]", &vduse_domain_fops, domain, O_RDWR); if (IS_ERR(file)) goto err_file; domain->file = file; rwlock_init(&domain->bounce_lock); spin_lock_init(&domain->iotlb_lock); init_iova_domain(&domain->stream_iovad, PAGE_SIZE, IOVA_START_PFN); ret = iova_domain_init_rcaches(&domain->stream_iovad); if (ret) goto err_iovad_stream; init_iova_domain(&domain->consistent_iovad, PAGE_SIZE, bounce_pfns); ret = iova_domain_init_rcaches(&domain->consistent_iovad); if (ret) goto err_iovad_consistent; return domain; err_iovad_consistent: put_iova_domain(&domain->stream_iovad); err_iovad_stream: fput(file); err_file: vfree(domain->bounce_maps); err_map: vhost_iotlb_free(domain->iotlb); err_iotlb: kfree(domain); return NULL; } int vduse_domain_init(void) { return iova_cache_get(); } void vduse_domain_exit(void) { iova_cache_put(); }
linux-master
drivers/vdpa/vdpa_user/iova_domain.c
// SPDX-License-Identifier: GPL-2.0-only /* * VDUSE: vDPA Device in Userspace * * Copyright (C) 2020-2021 Bytedance Inc. and/or its affiliates. All rights reserved. * * Author: Xie Yongji <[email protected]> * */ #include <linux/init.h> #include <linux/module.h> #include <linux/cdev.h> #include <linux/device.h> #include <linux/eventfd.h> #include <linux/slab.h> #include <linux/wait.h> #include <linux/dma-map-ops.h> #include <linux/poll.h> #include <linux/file.h> #include <linux/uio.h> #include <linux/vdpa.h> #include <linux/nospec.h> #include <linux/vmalloc.h> #include <linux/sched/mm.h> #include <uapi/linux/vduse.h> #include <uapi/linux/vdpa.h> #include <uapi/linux/virtio_config.h> #include <uapi/linux/virtio_ids.h> #include <uapi/linux/virtio_blk.h> #include <linux/mod_devicetable.h> #include "iova_domain.h" #define DRV_AUTHOR "Yongji Xie <[email protected]>" #define DRV_DESC "vDPA Device in Userspace" #define DRV_LICENSE "GPL v2" #define VDUSE_DEV_MAX (1U << MINORBITS) #define VDUSE_MAX_BOUNCE_SIZE (1024 * 1024 * 1024) #define VDUSE_MIN_BOUNCE_SIZE (1024 * 1024) #define VDUSE_BOUNCE_SIZE (64 * 1024 * 1024) /* 128 MB reserved for virtqueue creation */ #define VDUSE_IOVA_SIZE (VDUSE_MAX_BOUNCE_SIZE + 128 * 1024 * 1024) #define VDUSE_MSG_DEFAULT_TIMEOUT 30 #define IRQ_UNBOUND -1 struct vduse_virtqueue { u16 index; u16 num_max; u32 num; u64 desc_addr; u64 driver_addr; u64 device_addr; struct vdpa_vq_state state; bool ready; bool kicked; spinlock_t kick_lock; spinlock_t irq_lock; struct eventfd_ctx *kickfd; struct vdpa_callback cb; struct work_struct inject; struct work_struct kick; int irq_effective_cpu; struct cpumask irq_affinity; struct kobject kobj; }; struct vduse_dev; struct vduse_vdpa { struct vdpa_device vdpa; struct vduse_dev *dev; }; struct vduse_umem { unsigned long iova; unsigned long npages; struct page **pages; struct mm_struct *mm; }; struct vduse_dev { struct vduse_vdpa *vdev; struct device *dev; struct vduse_virtqueue **vqs; struct vduse_iova_domain *domain; char *name; struct mutex lock; spinlock_t msg_lock; u64 msg_unique; u32 msg_timeout; wait_queue_head_t waitq; struct list_head send_list; struct list_head recv_list; struct vdpa_callback config_cb; struct work_struct inject; spinlock_t irq_lock; struct rw_semaphore rwsem; int minor; bool broken; bool connected; u64 api_version; u64 device_features; u64 driver_features; u32 device_id; u32 vendor_id; u32 generation; u32 config_size; void *config; u8 status; u32 vq_num; u32 vq_align; struct vduse_umem *umem; struct mutex mem_lock; unsigned int bounce_size; struct mutex domain_lock; }; struct vduse_dev_msg { struct vduse_dev_request req; struct vduse_dev_response resp; struct list_head list; wait_queue_head_t waitq; bool completed; }; struct vduse_control { u64 api_version; }; static DEFINE_MUTEX(vduse_lock); static DEFINE_IDR(vduse_idr); static dev_t vduse_major; static struct class *vduse_class; static struct cdev vduse_ctrl_cdev; static struct cdev vduse_cdev; static struct workqueue_struct *vduse_irq_wq; static struct workqueue_struct *vduse_irq_bound_wq; static u32 allowed_device_id[] = { VIRTIO_ID_BLOCK, }; static inline struct vduse_dev *vdpa_to_vduse(struct vdpa_device *vdpa) { struct vduse_vdpa *vdev = container_of(vdpa, struct vduse_vdpa, vdpa); return vdev->dev; } static inline struct vduse_dev *dev_to_vduse(struct device *dev) { struct vdpa_device *vdpa = dev_to_vdpa(dev); return vdpa_to_vduse(vdpa); } static struct vduse_dev_msg *vduse_find_msg(struct list_head *head, uint32_t request_id) { struct vduse_dev_msg *msg; list_for_each_entry(msg, head, list) { if (msg->req.request_id == request_id) { list_del(&msg->list); return msg; } } return NULL; } static struct vduse_dev_msg *vduse_dequeue_msg(struct list_head *head) { struct vduse_dev_msg *msg = NULL; if (!list_empty(head)) { msg = list_first_entry(head, struct vduse_dev_msg, list); list_del(&msg->list); } return msg; } static void vduse_enqueue_msg(struct list_head *head, struct vduse_dev_msg *msg) { list_add_tail(&msg->list, head); } static void vduse_dev_broken(struct vduse_dev *dev) { struct vduse_dev_msg *msg, *tmp; if (unlikely(dev->broken)) return; list_splice_init(&dev->recv_list, &dev->send_list); list_for_each_entry_safe(msg, tmp, &dev->send_list, list) { list_del(&msg->list); msg->completed = 1; msg->resp.result = VDUSE_REQ_RESULT_FAILED; wake_up(&msg->waitq); } dev->broken = true; wake_up(&dev->waitq); } static int vduse_dev_msg_sync(struct vduse_dev *dev, struct vduse_dev_msg *msg) { int ret; if (unlikely(dev->broken)) return -EIO; init_waitqueue_head(&msg->waitq); spin_lock(&dev->msg_lock); if (unlikely(dev->broken)) { spin_unlock(&dev->msg_lock); return -EIO; } msg->req.request_id = dev->msg_unique++; vduse_enqueue_msg(&dev->send_list, msg); wake_up(&dev->waitq); spin_unlock(&dev->msg_lock); if (dev->msg_timeout) ret = wait_event_killable_timeout(msg->waitq, msg->completed, (long)dev->msg_timeout * HZ); else ret = wait_event_killable(msg->waitq, msg->completed); spin_lock(&dev->msg_lock); if (!msg->completed) { list_del(&msg->list); msg->resp.result = VDUSE_REQ_RESULT_FAILED; /* Mark the device as malfunction when there is a timeout */ if (!ret) vduse_dev_broken(dev); } ret = (msg->resp.result == VDUSE_REQ_RESULT_OK) ? 0 : -EIO; spin_unlock(&dev->msg_lock); return ret; } static int vduse_dev_get_vq_state_packed(struct vduse_dev *dev, struct vduse_virtqueue *vq, struct vdpa_vq_state_packed *packed) { struct vduse_dev_msg msg = { 0 }; int ret; msg.req.type = VDUSE_GET_VQ_STATE; msg.req.vq_state.index = vq->index; ret = vduse_dev_msg_sync(dev, &msg); if (ret) return ret; packed->last_avail_counter = msg.resp.vq_state.packed.last_avail_counter & 0x0001; packed->last_avail_idx = msg.resp.vq_state.packed.last_avail_idx & 0x7FFF; packed->last_used_counter = msg.resp.vq_state.packed.last_used_counter & 0x0001; packed->last_used_idx = msg.resp.vq_state.packed.last_used_idx & 0x7FFF; return 0; } static int vduse_dev_get_vq_state_split(struct vduse_dev *dev, struct vduse_virtqueue *vq, struct vdpa_vq_state_split *split) { struct vduse_dev_msg msg = { 0 }; int ret; msg.req.type = VDUSE_GET_VQ_STATE; msg.req.vq_state.index = vq->index; ret = vduse_dev_msg_sync(dev, &msg); if (ret) return ret; split->avail_index = msg.resp.vq_state.split.avail_index; return 0; } static int vduse_dev_set_status(struct vduse_dev *dev, u8 status) { struct vduse_dev_msg msg = { 0 }; msg.req.type = VDUSE_SET_STATUS; msg.req.s.status = status; return vduse_dev_msg_sync(dev, &msg); } static int vduse_dev_update_iotlb(struct vduse_dev *dev, u64 start, u64 last) { struct vduse_dev_msg msg = { 0 }; if (last < start) return -EINVAL; msg.req.type = VDUSE_UPDATE_IOTLB; msg.req.iova.start = start; msg.req.iova.last = last; return vduse_dev_msg_sync(dev, &msg); } static ssize_t vduse_dev_read_iter(struct kiocb *iocb, struct iov_iter *to) { struct file *file = iocb->ki_filp; struct vduse_dev *dev = file->private_data; struct vduse_dev_msg *msg; int size = sizeof(struct vduse_dev_request); ssize_t ret; if (iov_iter_count(to) < size) return -EINVAL; spin_lock(&dev->msg_lock); while (1) { msg = vduse_dequeue_msg(&dev->send_list); if (msg) break; ret = -EAGAIN; if (file->f_flags & O_NONBLOCK) goto unlock; spin_unlock(&dev->msg_lock); ret = wait_event_interruptible_exclusive(dev->waitq, !list_empty(&dev->send_list)); if (ret) return ret; spin_lock(&dev->msg_lock); } spin_unlock(&dev->msg_lock); ret = copy_to_iter(&msg->req, size, to); spin_lock(&dev->msg_lock); if (ret != size) { ret = -EFAULT; vduse_enqueue_msg(&dev->send_list, msg); goto unlock; } vduse_enqueue_msg(&dev->recv_list, msg); unlock: spin_unlock(&dev->msg_lock); return ret; } static bool is_mem_zero(const char *ptr, int size) { int i; for (i = 0; i < size; i++) { if (ptr[i]) return false; } return true; } static ssize_t vduse_dev_write_iter(struct kiocb *iocb, struct iov_iter *from) { struct file *file = iocb->ki_filp; struct vduse_dev *dev = file->private_data; struct vduse_dev_response resp; struct vduse_dev_msg *msg; size_t ret; ret = copy_from_iter(&resp, sizeof(resp), from); if (ret != sizeof(resp)) return -EINVAL; if (!is_mem_zero((const char *)resp.reserved, sizeof(resp.reserved))) return -EINVAL; spin_lock(&dev->msg_lock); msg = vduse_find_msg(&dev->recv_list, resp.request_id); if (!msg) { ret = -ENOENT; goto unlock; } memcpy(&msg->resp, &resp, sizeof(resp)); msg->completed = 1; wake_up(&msg->waitq); unlock: spin_unlock(&dev->msg_lock); return ret; } static __poll_t vduse_dev_poll(struct file *file, poll_table *wait) { struct vduse_dev *dev = file->private_data; __poll_t mask = 0; poll_wait(file, &dev->waitq, wait); spin_lock(&dev->msg_lock); if (unlikely(dev->broken)) mask |= EPOLLERR; if (!list_empty(&dev->send_list)) mask |= EPOLLIN | EPOLLRDNORM; if (!list_empty(&dev->recv_list)) mask |= EPOLLOUT | EPOLLWRNORM; spin_unlock(&dev->msg_lock); return mask; } static void vduse_dev_reset(struct vduse_dev *dev) { int i; struct vduse_iova_domain *domain = dev->domain; /* The coherent mappings are handled in vduse_dev_free_coherent() */ if (domain && domain->bounce_map) vduse_domain_reset_bounce_map(domain); down_write(&dev->rwsem); dev->status = 0; dev->driver_features = 0; dev->generation++; spin_lock(&dev->irq_lock); dev->config_cb.callback = NULL; dev->config_cb.private = NULL; spin_unlock(&dev->irq_lock); flush_work(&dev->inject); for (i = 0; i < dev->vq_num; i++) { struct vduse_virtqueue *vq = dev->vqs[i]; vq->ready = false; vq->desc_addr = 0; vq->driver_addr = 0; vq->device_addr = 0; vq->num = 0; memset(&vq->state, 0, sizeof(vq->state)); spin_lock(&vq->kick_lock); vq->kicked = false; if (vq->kickfd) eventfd_ctx_put(vq->kickfd); vq->kickfd = NULL; spin_unlock(&vq->kick_lock); spin_lock(&vq->irq_lock); vq->cb.callback = NULL; vq->cb.private = NULL; vq->cb.trigger = NULL; spin_unlock(&vq->irq_lock); flush_work(&vq->inject); flush_work(&vq->kick); } up_write(&dev->rwsem); } static int vduse_vdpa_set_vq_address(struct vdpa_device *vdpa, u16 idx, u64 desc_area, u64 driver_area, u64 device_area) { struct vduse_dev *dev = vdpa_to_vduse(vdpa); struct vduse_virtqueue *vq = dev->vqs[idx]; vq->desc_addr = desc_area; vq->driver_addr = driver_area; vq->device_addr = device_area; return 0; } static void vduse_vq_kick(struct vduse_virtqueue *vq) { spin_lock(&vq->kick_lock); if (!vq->ready) goto unlock; if (vq->kickfd) eventfd_signal(vq->kickfd, 1); else vq->kicked = true; unlock: spin_unlock(&vq->kick_lock); } static void vduse_vq_kick_work(struct work_struct *work) { struct vduse_virtqueue *vq = container_of(work, struct vduse_virtqueue, kick); vduse_vq_kick(vq); } static void vduse_vdpa_kick_vq(struct vdpa_device *vdpa, u16 idx) { struct vduse_dev *dev = vdpa_to_vduse(vdpa); struct vduse_virtqueue *vq = dev->vqs[idx]; if (!eventfd_signal_allowed()) { schedule_work(&vq->kick); return; } vduse_vq_kick(vq); } static void vduse_vdpa_set_vq_cb(struct vdpa_device *vdpa, u16 idx, struct vdpa_callback *cb) { struct vduse_dev *dev = vdpa_to_vduse(vdpa); struct vduse_virtqueue *vq = dev->vqs[idx]; spin_lock(&vq->irq_lock); vq->cb.callback = cb->callback; vq->cb.private = cb->private; vq->cb.trigger = cb->trigger; spin_unlock(&vq->irq_lock); } static void vduse_vdpa_set_vq_num(struct vdpa_device *vdpa, u16 idx, u32 num) { struct vduse_dev *dev = vdpa_to_vduse(vdpa); struct vduse_virtqueue *vq = dev->vqs[idx]; vq->num = num; } static void vduse_vdpa_set_vq_ready(struct vdpa_device *vdpa, u16 idx, bool ready) { struct vduse_dev *dev = vdpa_to_vduse(vdpa); struct vduse_virtqueue *vq = dev->vqs[idx]; vq->ready = ready; } static bool vduse_vdpa_get_vq_ready(struct vdpa_device *vdpa, u16 idx) { struct vduse_dev *dev = vdpa_to_vduse(vdpa); struct vduse_virtqueue *vq = dev->vqs[idx]; return vq->ready; } static int vduse_vdpa_set_vq_state(struct vdpa_device *vdpa, u16 idx, const struct vdpa_vq_state *state) { struct vduse_dev *dev = vdpa_to_vduse(vdpa); struct vduse_virtqueue *vq = dev->vqs[idx]; if (dev->driver_features & BIT_ULL(VIRTIO_F_RING_PACKED)) { vq->state.packed.last_avail_counter = state->packed.last_avail_counter; vq->state.packed.last_avail_idx = state->packed.last_avail_idx; vq->state.packed.last_used_counter = state->packed.last_used_counter; vq->state.packed.last_used_idx = state->packed.last_used_idx; } else vq->state.split.avail_index = state->split.avail_index; return 0; } static int vduse_vdpa_get_vq_state(struct vdpa_device *vdpa, u16 idx, struct vdpa_vq_state *state) { struct vduse_dev *dev = vdpa_to_vduse(vdpa); struct vduse_virtqueue *vq = dev->vqs[idx]; if (dev->driver_features & BIT_ULL(VIRTIO_F_RING_PACKED)) return vduse_dev_get_vq_state_packed(dev, vq, &state->packed); return vduse_dev_get_vq_state_split(dev, vq, &state->split); } static u32 vduse_vdpa_get_vq_align(struct vdpa_device *vdpa) { struct vduse_dev *dev = vdpa_to_vduse(vdpa); return dev->vq_align; } static u64 vduse_vdpa_get_device_features(struct vdpa_device *vdpa) { struct vduse_dev *dev = vdpa_to_vduse(vdpa); return dev->device_features; } static int vduse_vdpa_set_driver_features(struct vdpa_device *vdpa, u64 features) { struct vduse_dev *dev = vdpa_to_vduse(vdpa); dev->driver_features = features; return 0; } static u64 vduse_vdpa_get_driver_features(struct vdpa_device *vdpa) { struct vduse_dev *dev = vdpa_to_vduse(vdpa); return dev->driver_features; } static void vduse_vdpa_set_config_cb(struct vdpa_device *vdpa, struct vdpa_callback *cb) { struct vduse_dev *dev = vdpa_to_vduse(vdpa); spin_lock(&dev->irq_lock); dev->config_cb.callback = cb->callback; dev->config_cb.private = cb->private; spin_unlock(&dev->irq_lock); } static u16 vduse_vdpa_get_vq_num_max(struct vdpa_device *vdpa) { struct vduse_dev *dev = vdpa_to_vduse(vdpa); u16 num_max = 0; int i; for (i = 0; i < dev->vq_num; i++) if (num_max < dev->vqs[i]->num_max) num_max = dev->vqs[i]->num_max; return num_max; } static u32 vduse_vdpa_get_device_id(struct vdpa_device *vdpa) { struct vduse_dev *dev = vdpa_to_vduse(vdpa); return dev->device_id; } static u32 vduse_vdpa_get_vendor_id(struct vdpa_device *vdpa) { struct vduse_dev *dev = vdpa_to_vduse(vdpa); return dev->vendor_id; } static u8 vduse_vdpa_get_status(struct vdpa_device *vdpa) { struct vduse_dev *dev = vdpa_to_vduse(vdpa); return dev->status; } static void vduse_vdpa_set_status(struct vdpa_device *vdpa, u8 status) { struct vduse_dev *dev = vdpa_to_vduse(vdpa); if (vduse_dev_set_status(dev, status)) return; dev->status = status; } static size_t vduse_vdpa_get_config_size(struct vdpa_device *vdpa) { struct vduse_dev *dev = vdpa_to_vduse(vdpa); return dev->config_size; } static void vduse_vdpa_get_config(struct vdpa_device *vdpa, unsigned int offset, void *buf, unsigned int len) { struct vduse_dev *dev = vdpa_to_vduse(vdpa); /* Initialize the buffer in case of partial copy. */ memset(buf, 0, len); if (offset > dev->config_size) return; if (len > dev->config_size - offset) len = dev->config_size - offset; memcpy(buf, dev->config + offset, len); } static void vduse_vdpa_set_config(struct vdpa_device *vdpa, unsigned int offset, const void *buf, unsigned int len) { /* Now we only support read-only configuration space */ } static int vduse_vdpa_reset(struct vdpa_device *vdpa) { struct vduse_dev *dev = vdpa_to_vduse(vdpa); int ret = vduse_dev_set_status(dev, 0); vduse_dev_reset(dev); return ret; } static u32 vduse_vdpa_get_generation(struct vdpa_device *vdpa) { struct vduse_dev *dev = vdpa_to_vduse(vdpa); return dev->generation; } static int vduse_vdpa_set_vq_affinity(struct vdpa_device *vdpa, u16 idx, const struct cpumask *cpu_mask) { struct vduse_dev *dev = vdpa_to_vduse(vdpa); if (cpu_mask) cpumask_copy(&dev->vqs[idx]->irq_affinity, cpu_mask); else cpumask_setall(&dev->vqs[idx]->irq_affinity); return 0; } static const struct cpumask * vduse_vdpa_get_vq_affinity(struct vdpa_device *vdpa, u16 idx) { struct vduse_dev *dev = vdpa_to_vduse(vdpa); return &dev->vqs[idx]->irq_affinity; } static int vduse_vdpa_set_map(struct vdpa_device *vdpa, unsigned int asid, struct vhost_iotlb *iotlb) { struct vduse_dev *dev = vdpa_to_vduse(vdpa); int ret; ret = vduse_domain_set_map(dev->domain, iotlb); if (ret) return ret; ret = vduse_dev_update_iotlb(dev, 0ULL, ULLONG_MAX); if (ret) { vduse_domain_clear_map(dev->domain, iotlb); return ret; } return 0; } static void vduse_vdpa_free(struct vdpa_device *vdpa) { struct vduse_dev *dev = vdpa_to_vduse(vdpa); dev->vdev = NULL; } static const struct vdpa_config_ops vduse_vdpa_config_ops = { .set_vq_address = vduse_vdpa_set_vq_address, .kick_vq = vduse_vdpa_kick_vq, .set_vq_cb = vduse_vdpa_set_vq_cb, .set_vq_num = vduse_vdpa_set_vq_num, .set_vq_ready = vduse_vdpa_set_vq_ready, .get_vq_ready = vduse_vdpa_get_vq_ready, .set_vq_state = vduse_vdpa_set_vq_state, .get_vq_state = vduse_vdpa_get_vq_state, .get_vq_align = vduse_vdpa_get_vq_align, .get_device_features = vduse_vdpa_get_device_features, .set_driver_features = vduse_vdpa_set_driver_features, .get_driver_features = vduse_vdpa_get_driver_features, .set_config_cb = vduse_vdpa_set_config_cb, .get_vq_num_max = vduse_vdpa_get_vq_num_max, .get_device_id = vduse_vdpa_get_device_id, .get_vendor_id = vduse_vdpa_get_vendor_id, .get_status = vduse_vdpa_get_status, .set_status = vduse_vdpa_set_status, .get_config_size = vduse_vdpa_get_config_size, .get_config = vduse_vdpa_get_config, .set_config = vduse_vdpa_set_config, .get_generation = vduse_vdpa_get_generation, .set_vq_affinity = vduse_vdpa_set_vq_affinity, .get_vq_affinity = vduse_vdpa_get_vq_affinity, .reset = vduse_vdpa_reset, .set_map = vduse_vdpa_set_map, .free = vduse_vdpa_free, }; static dma_addr_t vduse_dev_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction dir, unsigned long attrs) { struct vduse_dev *vdev = dev_to_vduse(dev); struct vduse_iova_domain *domain = vdev->domain; return vduse_domain_map_page(domain, page, offset, size, dir, attrs); } static void vduse_dev_unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size, enum dma_data_direction dir, unsigned long attrs) { struct vduse_dev *vdev = dev_to_vduse(dev); struct vduse_iova_domain *domain = vdev->domain; return vduse_domain_unmap_page(domain, dma_addr, size, dir, attrs); } static void *vduse_dev_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_addr, gfp_t flag, unsigned long attrs) { struct vduse_dev *vdev = dev_to_vduse(dev); struct vduse_iova_domain *domain = vdev->domain; unsigned long iova; void *addr; *dma_addr = DMA_MAPPING_ERROR; addr = vduse_domain_alloc_coherent(domain, size, (dma_addr_t *)&iova, flag, attrs); if (!addr) return NULL; *dma_addr = (dma_addr_t)iova; return addr; } static void vduse_dev_free_coherent(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_addr, unsigned long attrs) { struct vduse_dev *vdev = dev_to_vduse(dev); struct vduse_iova_domain *domain = vdev->domain; vduse_domain_free_coherent(domain, size, vaddr, dma_addr, attrs); } static size_t vduse_dev_max_mapping_size(struct device *dev) { struct vduse_dev *vdev = dev_to_vduse(dev); struct vduse_iova_domain *domain = vdev->domain; return domain->bounce_size; } static const struct dma_map_ops vduse_dev_dma_ops = { .map_page = vduse_dev_map_page, .unmap_page = vduse_dev_unmap_page, .alloc = vduse_dev_alloc_coherent, .free = vduse_dev_free_coherent, .max_mapping_size = vduse_dev_max_mapping_size, }; static unsigned int perm_to_file_flags(u8 perm) { unsigned int flags = 0; switch (perm) { case VDUSE_ACCESS_WO: flags |= O_WRONLY; break; case VDUSE_ACCESS_RO: flags |= O_RDONLY; break; case VDUSE_ACCESS_RW: flags |= O_RDWR; break; default: WARN(1, "invalidate vhost IOTLB permission\n"); break; } return flags; } static int vduse_kickfd_setup(struct vduse_dev *dev, struct vduse_vq_eventfd *eventfd) { struct eventfd_ctx *ctx = NULL; struct vduse_virtqueue *vq; u32 index; if (eventfd->index >= dev->vq_num) return -EINVAL; index = array_index_nospec(eventfd->index, dev->vq_num); vq = dev->vqs[index]; if (eventfd->fd >= 0) { ctx = eventfd_ctx_fdget(eventfd->fd); if (IS_ERR(ctx)) return PTR_ERR(ctx); } else if (eventfd->fd != VDUSE_EVENTFD_DEASSIGN) return 0; spin_lock(&vq->kick_lock); if (vq->kickfd) eventfd_ctx_put(vq->kickfd); vq->kickfd = ctx; if (vq->ready && vq->kicked && vq->kickfd) { eventfd_signal(vq->kickfd, 1); vq->kicked = false; } spin_unlock(&vq->kick_lock); return 0; } static bool vduse_dev_is_ready(struct vduse_dev *dev) { int i; for (i = 0; i < dev->vq_num; i++) if (!dev->vqs[i]->num_max) return false; return true; } static void vduse_dev_irq_inject(struct work_struct *work) { struct vduse_dev *dev = container_of(work, struct vduse_dev, inject); spin_lock_bh(&dev->irq_lock); if (dev->config_cb.callback) dev->config_cb.callback(dev->config_cb.private); spin_unlock_bh(&dev->irq_lock); } static void vduse_vq_irq_inject(struct work_struct *work) { struct vduse_virtqueue *vq = container_of(work, struct vduse_virtqueue, inject); spin_lock_bh(&vq->irq_lock); if (vq->ready && vq->cb.callback) vq->cb.callback(vq->cb.private); spin_unlock_bh(&vq->irq_lock); } static bool vduse_vq_signal_irqfd(struct vduse_virtqueue *vq) { bool signal = false; if (!vq->cb.trigger) return false; spin_lock_irq(&vq->irq_lock); if (vq->ready && vq->cb.trigger) { eventfd_signal(vq->cb.trigger, 1); signal = true; } spin_unlock_irq(&vq->irq_lock); return signal; } static int vduse_dev_queue_irq_work(struct vduse_dev *dev, struct work_struct *irq_work, int irq_effective_cpu) { int ret = -EINVAL; down_read(&dev->rwsem); if (!(dev->status & VIRTIO_CONFIG_S_DRIVER_OK)) goto unlock; ret = 0; if (irq_effective_cpu == IRQ_UNBOUND) queue_work(vduse_irq_wq, irq_work); else queue_work_on(irq_effective_cpu, vduse_irq_bound_wq, irq_work); unlock: up_read(&dev->rwsem); return ret; } static int vduse_dev_dereg_umem(struct vduse_dev *dev, u64 iova, u64 size) { int ret; mutex_lock(&dev->mem_lock); ret = -ENOENT; if (!dev->umem) goto unlock; ret = -EINVAL; if (!dev->domain) goto unlock; if (dev->umem->iova != iova || size != dev->domain->bounce_size) goto unlock; vduse_domain_remove_user_bounce_pages(dev->domain); unpin_user_pages_dirty_lock(dev->umem->pages, dev->umem->npages, true); atomic64_sub(dev->umem->npages, &dev->umem->mm->pinned_vm); mmdrop(dev->umem->mm); vfree(dev->umem->pages); kfree(dev->umem); dev->umem = NULL; ret = 0; unlock: mutex_unlock(&dev->mem_lock); return ret; } static int vduse_dev_reg_umem(struct vduse_dev *dev, u64 iova, u64 uaddr, u64 size) { struct page **page_list = NULL; struct vduse_umem *umem = NULL; long pinned = 0; unsigned long npages, lock_limit; int ret; if (!dev->domain || !dev->domain->bounce_map || size != dev->domain->bounce_size || iova != 0 || uaddr & ~PAGE_MASK) return -EINVAL; mutex_lock(&dev->mem_lock); ret = -EEXIST; if (dev->umem) goto unlock; ret = -ENOMEM; npages = size >> PAGE_SHIFT; page_list = __vmalloc(array_size(npages, sizeof(struct page *)), GFP_KERNEL_ACCOUNT); umem = kzalloc(sizeof(*umem), GFP_KERNEL); if (!page_list || !umem) goto unlock; mmap_read_lock(current->mm); lock_limit = PFN_DOWN(rlimit(RLIMIT_MEMLOCK)); if (npages + atomic64_read(&current->mm->pinned_vm) > lock_limit) goto out; pinned = pin_user_pages(uaddr, npages, FOLL_LONGTERM | FOLL_WRITE, page_list); if (pinned != npages) { ret = pinned < 0 ? pinned : -ENOMEM; goto out; } ret = vduse_domain_add_user_bounce_pages(dev->domain, page_list, pinned); if (ret) goto out; atomic64_add(npages, &current->mm->pinned_vm); umem->pages = page_list; umem->npages = pinned; umem->iova = iova; umem->mm = current->mm; mmgrab(current->mm); dev->umem = umem; out: if (ret && pinned > 0) unpin_user_pages(page_list, pinned); mmap_read_unlock(current->mm); unlock: if (ret) { vfree(page_list); kfree(umem); } mutex_unlock(&dev->mem_lock); return ret; } static void vduse_vq_update_effective_cpu(struct vduse_virtqueue *vq) { int curr_cpu = vq->irq_effective_cpu; while (true) { curr_cpu = cpumask_next(curr_cpu, &vq->irq_affinity); if (cpu_online(curr_cpu)) break; if (curr_cpu >= nr_cpu_ids) curr_cpu = IRQ_UNBOUND; } vq->irq_effective_cpu = curr_cpu; } static long vduse_dev_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct vduse_dev *dev = file->private_data; void __user *argp = (void __user *)arg; int ret; if (unlikely(dev->broken)) return -EPERM; switch (cmd) { case VDUSE_IOTLB_GET_FD: { struct vduse_iotlb_entry entry; struct vhost_iotlb_map *map; struct vdpa_map_file *map_file; struct file *f = NULL; ret = -EFAULT; if (copy_from_user(&entry, argp, sizeof(entry))) break; ret = -EINVAL; if (entry.start > entry.last) break; mutex_lock(&dev->domain_lock); if (!dev->domain) { mutex_unlock(&dev->domain_lock); break; } spin_lock(&dev->domain->iotlb_lock); map = vhost_iotlb_itree_first(dev->domain->iotlb, entry.start, entry.last); if (map) { map_file = (struct vdpa_map_file *)map->opaque; f = get_file(map_file->file); entry.offset = map_file->offset; entry.start = map->start; entry.last = map->last; entry.perm = map->perm; } spin_unlock(&dev->domain->iotlb_lock); mutex_unlock(&dev->domain_lock); ret = -EINVAL; if (!f) break; ret = -EFAULT; if (copy_to_user(argp, &entry, sizeof(entry))) { fput(f); break; } ret = receive_fd(f, perm_to_file_flags(entry.perm)); fput(f); break; } case VDUSE_DEV_GET_FEATURES: /* * Just mirror what driver wrote here. * The driver is expected to check FEATURE_OK later. */ ret = put_user(dev->driver_features, (u64 __user *)argp); break; case VDUSE_DEV_SET_CONFIG: { struct vduse_config_data config; unsigned long size = offsetof(struct vduse_config_data, buffer); ret = -EFAULT; if (copy_from_user(&config, argp, size)) break; ret = -EINVAL; if (config.offset > dev->config_size || config.length == 0 || config.length > dev->config_size - config.offset) break; ret = -EFAULT; if (copy_from_user(dev->config + config.offset, argp + size, config.length)) break; ret = 0; break; } case VDUSE_DEV_INJECT_CONFIG_IRQ: ret = vduse_dev_queue_irq_work(dev, &dev->inject, IRQ_UNBOUND); break; case VDUSE_VQ_SETUP: { struct vduse_vq_config config; u32 index; ret = -EFAULT; if (copy_from_user(&config, argp, sizeof(config))) break; ret = -EINVAL; if (config.index >= dev->vq_num) break; if (!is_mem_zero((const char *)config.reserved, sizeof(config.reserved))) break; index = array_index_nospec(config.index, dev->vq_num); dev->vqs[index]->num_max = config.max_size; ret = 0; break; } case VDUSE_VQ_GET_INFO: { struct vduse_vq_info vq_info; struct vduse_virtqueue *vq; u32 index; ret = -EFAULT; if (copy_from_user(&vq_info, argp, sizeof(vq_info))) break; ret = -EINVAL; if (vq_info.index >= dev->vq_num) break; index = array_index_nospec(vq_info.index, dev->vq_num); vq = dev->vqs[index]; vq_info.desc_addr = vq->desc_addr; vq_info.driver_addr = vq->driver_addr; vq_info.device_addr = vq->device_addr; vq_info.num = vq->num; if (dev->driver_features & BIT_ULL(VIRTIO_F_RING_PACKED)) { vq_info.packed.last_avail_counter = vq->state.packed.last_avail_counter; vq_info.packed.last_avail_idx = vq->state.packed.last_avail_idx; vq_info.packed.last_used_counter = vq->state.packed.last_used_counter; vq_info.packed.last_used_idx = vq->state.packed.last_used_idx; } else vq_info.split.avail_index = vq->state.split.avail_index; vq_info.ready = vq->ready; ret = -EFAULT; if (copy_to_user(argp, &vq_info, sizeof(vq_info))) break; ret = 0; break; } case VDUSE_VQ_SETUP_KICKFD: { struct vduse_vq_eventfd eventfd; ret = -EFAULT; if (copy_from_user(&eventfd, argp, sizeof(eventfd))) break; ret = vduse_kickfd_setup(dev, &eventfd); break; } case VDUSE_VQ_INJECT_IRQ: { u32 index; ret = -EFAULT; if (get_user(index, (u32 __user *)argp)) break; ret = -EINVAL; if (index >= dev->vq_num) break; ret = 0; index = array_index_nospec(index, dev->vq_num); if (!vduse_vq_signal_irqfd(dev->vqs[index])) { vduse_vq_update_effective_cpu(dev->vqs[index]); ret = vduse_dev_queue_irq_work(dev, &dev->vqs[index]->inject, dev->vqs[index]->irq_effective_cpu); } break; } case VDUSE_IOTLB_REG_UMEM: { struct vduse_iova_umem umem; ret = -EFAULT; if (copy_from_user(&umem, argp, sizeof(umem))) break; ret = -EINVAL; if (!is_mem_zero((const char *)umem.reserved, sizeof(umem.reserved))) break; mutex_lock(&dev->domain_lock); ret = vduse_dev_reg_umem(dev, umem.iova, umem.uaddr, umem.size); mutex_unlock(&dev->domain_lock); break; } case VDUSE_IOTLB_DEREG_UMEM: { struct vduse_iova_umem umem; ret = -EFAULT; if (copy_from_user(&umem, argp, sizeof(umem))) break; ret = -EINVAL; if (!is_mem_zero((const char *)umem.reserved, sizeof(umem.reserved))) break; mutex_lock(&dev->domain_lock); ret = vduse_dev_dereg_umem(dev, umem.iova, umem.size); mutex_unlock(&dev->domain_lock); break; } case VDUSE_IOTLB_GET_INFO: { struct vduse_iova_info info; struct vhost_iotlb_map *map; ret = -EFAULT; if (copy_from_user(&info, argp, sizeof(info))) break; ret = -EINVAL; if (info.start > info.last) break; if (!is_mem_zero((const char *)info.reserved, sizeof(info.reserved))) break; mutex_lock(&dev->domain_lock); if (!dev->domain) { mutex_unlock(&dev->domain_lock); break; } spin_lock(&dev->domain->iotlb_lock); map = vhost_iotlb_itree_first(dev->domain->iotlb, info.start, info.last); if (map) { info.start = map->start; info.last = map->last; info.capability = 0; if (dev->domain->bounce_map && map->start == 0 && map->last == dev->domain->bounce_size - 1) info.capability |= VDUSE_IOVA_CAP_UMEM; } spin_unlock(&dev->domain->iotlb_lock); mutex_unlock(&dev->domain_lock); if (!map) break; ret = -EFAULT; if (copy_to_user(argp, &info, sizeof(info))) break; ret = 0; break; } default: ret = -ENOIOCTLCMD; break; } return ret; } static int vduse_dev_release(struct inode *inode, struct file *file) { struct vduse_dev *dev = file->private_data; mutex_lock(&dev->domain_lock); if (dev->domain) vduse_dev_dereg_umem(dev, 0, dev->domain->bounce_size); mutex_unlock(&dev->domain_lock); spin_lock(&dev->msg_lock); /* Make sure the inflight messages can processed after reconncection */ list_splice_init(&dev->recv_list, &dev->send_list); spin_unlock(&dev->msg_lock); dev->connected = false; return 0; } static struct vduse_dev *vduse_dev_get_from_minor(int minor) { struct vduse_dev *dev; mutex_lock(&vduse_lock); dev = idr_find(&vduse_idr, minor); mutex_unlock(&vduse_lock); return dev; } static int vduse_dev_open(struct inode *inode, struct file *file) { int ret; struct vduse_dev *dev = vduse_dev_get_from_minor(iminor(inode)); if (!dev) return -ENODEV; ret = -EBUSY; mutex_lock(&dev->lock); if (dev->connected) goto unlock; ret = 0; dev->connected = true; file->private_data = dev; unlock: mutex_unlock(&dev->lock); return ret; } static const struct file_operations vduse_dev_fops = { .owner = THIS_MODULE, .open = vduse_dev_open, .release = vduse_dev_release, .read_iter = vduse_dev_read_iter, .write_iter = vduse_dev_write_iter, .poll = vduse_dev_poll, .unlocked_ioctl = vduse_dev_ioctl, .compat_ioctl = compat_ptr_ioctl, .llseek = noop_llseek, }; static ssize_t irq_cb_affinity_show(struct vduse_virtqueue *vq, char *buf) { return sprintf(buf, "%*pb\n", cpumask_pr_args(&vq->irq_affinity)); } static ssize_t irq_cb_affinity_store(struct vduse_virtqueue *vq, const char *buf, size_t count) { cpumask_var_t new_value; int ret; if (!zalloc_cpumask_var(&new_value, GFP_KERNEL)) return -ENOMEM; ret = cpumask_parse(buf, new_value); if (ret) goto free_mask; ret = -EINVAL; if (!cpumask_intersects(new_value, cpu_online_mask)) goto free_mask; cpumask_copy(&vq->irq_affinity, new_value); ret = count; free_mask: free_cpumask_var(new_value); return ret; } struct vq_sysfs_entry { struct attribute attr; ssize_t (*show)(struct vduse_virtqueue *vq, char *buf); ssize_t (*store)(struct vduse_virtqueue *vq, const char *buf, size_t count); }; static struct vq_sysfs_entry irq_cb_affinity_attr = __ATTR_RW(irq_cb_affinity); static struct attribute *vq_attrs[] = { &irq_cb_affinity_attr.attr, NULL, }; ATTRIBUTE_GROUPS(vq); static ssize_t vq_attr_show(struct kobject *kobj, struct attribute *attr, char *buf) { struct vduse_virtqueue *vq = container_of(kobj, struct vduse_virtqueue, kobj); struct vq_sysfs_entry *entry = container_of(attr, struct vq_sysfs_entry, attr); if (!entry->show) return -EIO; return entry->show(vq, buf); } static ssize_t vq_attr_store(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { struct vduse_virtqueue *vq = container_of(kobj, struct vduse_virtqueue, kobj); struct vq_sysfs_entry *entry = container_of(attr, struct vq_sysfs_entry, attr); if (!entry->store) return -EIO; return entry->store(vq, buf, count); } static const struct sysfs_ops vq_sysfs_ops = { .show = vq_attr_show, .store = vq_attr_store, }; static void vq_release(struct kobject *kobj) { struct vduse_virtqueue *vq = container_of(kobj, struct vduse_virtqueue, kobj); kfree(vq); } static const struct kobj_type vq_type = { .release = vq_release, .sysfs_ops = &vq_sysfs_ops, .default_groups = vq_groups, }; static void vduse_dev_deinit_vqs(struct vduse_dev *dev) { int i; if (!dev->vqs) return; for (i = 0; i < dev->vq_num; i++) kobject_put(&dev->vqs[i]->kobj); kfree(dev->vqs); } static int vduse_dev_init_vqs(struct vduse_dev *dev, u32 vq_align, u32 vq_num) { int ret, i; dev->vq_align = vq_align; dev->vq_num = vq_num; dev->vqs = kcalloc(dev->vq_num, sizeof(*dev->vqs), GFP_KERNEL); if (!dev->vqs) return -ENOMEM; for (i = 0; i < vq_num; i++) { dev->vqs[i] = kzalloc(sizeof(*dev->vqs[i]), GFP_KERNEL); if (!dev->vqs[i]) { ret = -ENOMEM; goto err; } dev->vqs[i]->index = i; dev->vqs[i]->irq_effective_cpu = IRQ_UNBOUND; INIT_WORK(&dev->vqs[i]->inject, vduse_vq_irq_inject); INIT_WORK(&dev->vqs[i]->kick, vduse_vq_kick_work); spin_lock_init(&dev->vqs[i]->kick_lock); spin_lock_init(&dev->vqs[i]->irq_lock); cpumask_setall(&dev->vqs[i]->irq_affinity); kobject_init(&dev->vqs[i]->kobj, &vq_type); ret = kobject_add(&dev->vqs[i]->kobj, &dev->dev->kobj, "vq%d", i); if (ret) { kfree(dev->vqs[i]); goto err; } } return 0; err: while (i--) kobject_put(&dev->vqs[i]->kobj); kfree(dev->vqs); dev->vqs = NULL; return ret; } static struct vduse_dev *vduse_dev_create(void) { struct vduse_dev *dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) return NULL; mutex_init(&dev->lock); mutex_init(&dev->mem_lock); mutex_init(&dev->domain_lock); spin_lock_init(&dev->msg_lock); INIT_LIST_HEAD(&dev->send_list); INIT_LIST_HEAD(&dev->recv_list); spin_lock_init(&dev->irq_lock); init_rwsem(&dev->rwsem); INIT_WORK(&dev->inject, vduse_dev_irq_inject); init_waitqueue_head(&dev->waitq); return dev; } static void vduse_dev_destroy(struct vduse_dev *dev) { kfree(dev); } static struct vduse_dev *vduse_find_dev(const char *name) { struct vduse_dev *dev; int id; idr_for_each_entry(&vduse_idr, dev, id) if (!strcmp(dev->name, name)) return dev; return NULL; } static int vduse_destroy_dev(char *name) { struct vduse_dev *dev = vduse_find_dev(name); if (!dev) return -EINVAL; mutex_lock(&dev->lock); if (dev->vdev || dev->connected) { mutex_unlock(&dev->lock); return -EBUSY; } dev->connected = true; mutex_unlock(&dev->lock); vduse_dev_reset(dev); device_destroy(vduse_class, MKDEV(MAJOR(vduse_major), dev->minor)); idr_remove(&vduse_idr, dev->minor); kvfree(dev->config); vduse_dev_deinit_vqs(dev); if (dev->domain) vduse_domain_destroy(dev->domain); kfree(dev->name); vduse_dev_destroy(dev); module_put(THIS_MODULE); return 0; } static bool device_is_allowed(u32 device_id) { int i; for (i = 0; i < ARRAY_SIZE(allowed_device_id); i++) if (allowed_device_id[i] == device_id) return true; return false; } static bool features_is_valid(u64 features) { if (!(features & (1ULL << VIRTIO_F_ACCESS_PLATFORM))) return false; /* Now we only support read-only configuration space */ if (features & (1ULL << VIRTIO_BLK_F_CONFIG_WCE)) return false; return true; } static bool vduse_validate_config(struct vduse_dev_config *config) { if (!is_mem_zero((const char *)config->reserved, sizeof(config->reserved))) return false; if (config->vq_align > PAGE_SIZE) return false; if (config->config_size > PAGE_SIZE) return false; if (config->vq_num > 0xffff) return false; if (!config->name[0]) return false; if (!device_is_allowed(config->device_id)) return false; if (!features_is_valid(config->features)) return false; return true; } static ssize_t msg_timeout_show(struct device *device, struct device_attribute *attr, char *buf) { struct vduse_dev *dev = dev_get_drvdata(device); return sysfs_emit(buf, "%u\n", dev->msg_timeout); } static ssize_t msg_timeout_store(struct device *device, struct device_attribute *attr, const char *buf, size_t count) { struct vduse_dev *dev = dev_get_drvdata(device); int ret; ret = kstrtouint(buf, 10, &dev->msg_timeout); if (ret < 0) return ret; return count; } static DEVICE_ATTR_RW(msg_timeout); static ssize_t bounce_size_show(struct device *device, struct device_attribute *attr, char *buf) { struct vduse_dev *dev = dev_get_drvdata(device); return sysfs_emit(buf, "%u\n", dev->bounce_size); } static ssize_t bounce_size_store(struct device *device, struct device_attribute *attr, const char *buf, size_t count) { struct vduse_dev *dev = dev_get_drvdata(device); unsigned int bounce_size; int ret; ret = -EPERM; mutex_lock(&dev->domain_lock); if (dev->domain) goto unlock; ret = kstrtouint(buf, 10, &bounce_size); if (ret < 0) goto unlock; ret = -EINVAL; if (bounce_size > VDUSE_MAX_BOUNCE_SIZE || bounce_size < VDUSE_MIN_BOUNCE_SIZE) goto unlock; dev->bounce_size = bounce_size & PAGE_MASK; ret = count; unlock: mutex_unlock(&dev->domain_lock); return ret; } static DEVICE_ATTR_RW(bounce_size); static struct attribute *vduse_dev_attrs[] = { &dev_attr_msg_timeout.attr, &dev_attr_bounce_size.attr, NULL }; ATTRIBUTE_GROUPS(vduse_dev); static int vduse_create_dev(struct vduse_dev_config *config, void *config_buf, u64 api_version) { int ret; struct vduse_dev *dev; ret = -EEXIST; if (vduse_find_dev(config->name)) goto err; ret = -ENOMEM; dev = vduse_dev_create(); if (!dev) goto err; dev->api_version = api_version; dev->device_features = config->features; dev->device_id = config->device_id; dev->vendor_id = config->vendor_id; dev->name = kstrdup(config->name, GFP_KERNEL); if (!dev->name) goto err_str; dev->bounce_size = VDUSE_BOUNCE_SIZE; dev->config = config_buf; dev->config_size = config->config_size; ret = idr_alloc(&vduse_idr, dev, 1, VDUSE_DEV_MAX, GFP_KERNEL); if (ret < 0) goto err_idr; dev->minor = ret; dev->msg_timeout = VDUSE_MSG_DEFAULT_TIMEOUT; dev->dev = device_create_with_groups(vduse_class, NULL, MKDEV(MAJOR(vduse_major), dev->minor), dev, vduse_dev_groups, "%s", config->name); if (IS_ERR(dev->dev)) { ret = PTR_ERR(dev->dev); goto err_dev; } ret = vduse_dev_init_vqs(dev, config->vq_align, config->vq_num); if (ret) goto err_vqs; __module_get(THIS_MODULE); return 0; err_vqs: device_destroy(vduse_class, MKDEV(MAJOR(vduse_major), dev->minor)); err_dev: idr_remove(&vduse_idr, dev->minor); err_idr: kfree(dev->name); err_str: vduse_dev_destroy(dev); err: return ret; } static long vduse_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { int ret; void __user *argp = (void __user *)arg; struct vduse_control *control = file->private_data; mutex_lock(&vduse_lock); switch (cmd) { case VDUSE_GET_API_VERSION: ret = put_user(control->api_version, (u64 __user *)argp); break; case VDUSE_SET_API_VERSION: { u64 api_version; ret = -EFAULT; if (get_user(api_version, (u64 __user *)argp)) break; ret = -EINVAL; if (api_version > VDUSE_API_VERSION) break; ret = 0; control->api_version = api_version; break; } case VDUSE_CREATE_DEV: { struct vduse_dev_config config; unsigned long size = offsetof(struct vduse_dev_config, config); void *buf; ret = -EFAULT; if (copy_from_user(&config, argp, size)) break; ret = -EINVAL; if (vduse_validate_config(&config) == false) break; buf = vmemdup_user(argp + size, config.config_size); if (IS_ERR(buf)) { ret = PTR_ERR(buf); break; } config.name[VDUSE_NAME_MAX - 1] = '\0'; ret = vduse_create_dev(&config, buf, control->api_version); if (ret) kvfree(buf); break; } case VDUSE_DESTROY_DEV: { char name[VDUSE_NAME_MAX]; ret = -EFAULT; if (copy_from_user(name, argp, VDUSE_NAME_MAX)) break; name[VDUSE_NAME_MAX - 1] = '\0'; ret = vduse_destroy_dev(name); break; } default: ret = -EINVAL; break; } mutex_unlock(&vduse_lock); return ret; } static int vduse_release(struct inode *inode, struct file *file) { struct vduse_control *control = file->private_data; kfree(control); return 0; } static int vduse_open(struct inode *inode, struct file *file) { struct vduse_control *control; control = kmalloc(sizeof(struct vduse_control), GFP_KERNEL); if (!control) return -ENOMEM; control->api_version = VDUSE_API_VERSION; file->private_data = control; return 0; } static const struct file_operations vduse_ctrl_fops = { .owner = THIS_MODULE, .open = vduse_open, .release = vduse_release, .unlocked_ioctl = vduse_ioctl, .compat_ioctl = compat_ptr_ioctl, .llseek = noop_llseek, }; static char *vduse_devnode(const struct device *dev, umode_t *mode) { return kasprintf(GFP_KERNEL, "vduse/%s", dev_name(dev)); } struct vduse_mgmt_dev { struct vdpa_mgmt_dev mgmt_dev; struct device dev; }; static struct vduse_mgmt_dev *vduse_mgmt; static int vduse_dev_init_vdpa(struct vduse_dev *dev, const char *name) { struct vduse_vdpa *vdev; int ret; if (dev->vdev) return -EEXIST; vdev = vdpa_alloc_device(struct vduse_vdpa, vdpa, dev->dev, &vduse_vdpa_config_ops, 1, 1, name, true); if (IS_ERR(vdev)) return PTR_ERR(vdev); dev->vdev = vdev; vdev->dev = dev; vdev->vdpa.dev.dma_mask = &vdev->vdpa.dev.coherent_dma_mask; ret = dma_set_mask_and_coherent(&vdev->vdpa.dev, DMA_BIT_MASK(64)); if (ret) { put_device(&vdev->vdpa.dev); return ret; } set_dma_ops(&vdev->vdpa.dev, &vduse_dev_dma_ops); vdev->vdpa.dma_dev = &vdev->vdpa.dev; vdev->vdpa.mdev = &vduse_mgmt->mgmt_dev; return 0; } static int vdpa_dev_add(struct vdpa_mgmt_dev *mdev, const char *name, const struct vdpa_dev_set_config *config) { struct vduse_dev *dev; int ret; mutex_lock(&vduse_lock); dev = vduse_find_dev(name); if (!dev || !vduse_dev_is_ready(dev)) { mutex_unlock(&vduse_lock); return -EINVAL; } ret = vduse_dev_init_vdpa(dev, name); mutex_unlock(&vduse_lock); if (ret) return ret; mutex_lock(&dev->domain_lock); if (!dev->domain) dev->domain = vduse_domain_create(VDUSE_IOVA_SIZE - 1, dev->bounce_size); mutex_unlock(&dev->domain_lock); if (!dev->domain) { put_device(&dev->vdev->vdpa.dev); return -ENOMEM; } ret = _vdpa_register_device(&dev->vdev->vdpa, dev->vq_num); if (ret) { put_device(&dev->vdev->vdpa.dev); mutex_lock(&dev->domain_lock); vduse_domain_destroy(dev->domain); dev->domain = NULL; mutex_unlock(&dev->domain_lock); return ret; } return 0; } static void vdpa_dev_del(struct vdpa_mgmt_dev *mdev, struct vdpa_device *dev) { _vdpa_unregister_device(dev); } static const struct vdpa_mgmtdev_ops vdpa_dev_mgmtdev_ops = { .dev_add = vdpa_dev_add, .dev_del = vdpa_dev_del, }; static struct virtio_device_id id_table[] = { { VIRTIO_ID_BLOCK, VIRTIO_DEV_ANY_ID }, { 0 }, }; static void vduse_mgmtdev_release(struct device *dev) { struct vduse_mgmt_dev *mgmt_dev; mgmt_dev = container_of(dev, struct vduse_mgmt_dev, dev); kfree(mgmt_dev); } static int vduse_mgmtdev_init(void) { int ret; vduse_mgmt = kzalloc(sizeof(*vduse_mgmt), GFP_KERNEL); if (!vduse_mgmt) return -ENOMEM; ret = dev_set_name(&vduse_mgmt->dev, "vduse"); if (ret) { kfree(vduse_mgmt); return ret; } vduse_mgmt->dev.release = vduse_mgmtdev_release; ret = device_register(&vduse_mgmt->dev); if (ret) goto dev_reg_err; vduse_mgmt->mgmt_dev.id_table = id_table; vduse_mgmt->mgmt_dev.ops = &vdpa_dev_mgmtdev_ops; vduse_mgmt->mgmt_dev.device = &vduse_mgmt->dev; ret = vdpa_mgmtdev_register(&vduse_mgmt->mgmt_dev); if (ret) device_unregister(&vduse_mgmt->dev); return ret; dev_reg_err: put_device(&vduse_mgmt->dev); return ret; } static void vduse_mgmtdev_exit(void) { vdpa_mgmtdev_unregister(&vduse_mgmt->mgmt_dev); device_unregister(&vduse_mgmt->dev); } static int vduse_init(void) { int ret; struct device *dev; vduse_class = class_create("vduse"); if (IS_ERR(vduse_class)) return PTR_ERR(vduse_class); vduse_class->devnode = vduse_devnode; ret = alloc_chrdev_region(&vduse_major, 0, VDUSE_DEV_MAX, "vduse"); if (ret) goto err_chardev_region; /* /dev/vduse/control */ cdev_init(&vduse_ctrl_cdev, &vduse_ctrl_fops); vduse_ctrl_cdev.owner = THIS_MODULE; ret = cdev_add(&vduse_ctrl_cdev, vduse_major, 1); if (ret) goto err_ctrl_cdev; dev = device_create(vduse_class, NULL, vduse_major, NULL, "control"); if (IS_ERR(dev)) { ret = PTR_ERR(dev); goto err_device; } /* /dev/vduse/$DEVICE */ cdev_init(&vduse_cdev, &vduse_dev_fops); vduse_cdev.owner = THIS_MODULE; ret = cdev_add(&vduse_cdev, MKDEV(MAJOR(vduse_major), 1), VDUSE_DEV_MAX - 1); if (ret) goto err_cdev; ret = -ENOMEM; vduse_irq_wq = alloc_workqueue("vduse-irq", WQ_HIGHPRI | WQ_SYSFS | WQ_UNBOUND, 0); if (!vduse_irq_wq) goto err_wq; vduse_irq_bound_wq = alloc_workqueue("vduse-irq-bound", WQ_HIGHPRI, 0); if (!vduse_irq_bound_wq) goto err_bound_wq; ret = vduse_domain_init(); if (ret) goto err_domain; ret = vduse_mgmtdev_init(); if (ret) goto err_mgmtdev; return 0; err_mgmtdev: vduse_domain_exit(); err_domain: destroy_workqueue(vduse_irq_bound_wq); err_bound_wq: destroy_workqueue(vduse_irq_wq); err_wq: cdev_del(&vduse_cdev); err_cdev: device_destroy(vduse_class, vduse_major); err_device: cdev_del(&vduse_ctrl_cdev); err_ctrl_cdev: unregister_chrdev_region(vduse_major, VDUSE_DEV_MAX); err_chardev_region: class_destroy(vduse_class); return ret; } module_init(vduse_init); static void vduse_exit(void) { vduse_mgmtdev_exit(); vduse_domain_exit(); destroy_workqueue(vduse_irq_bound_wq); destroy_workqueue(vduse_irq_wq); cdev_del(&vduse_cdev); device_destroy(vduse_class, vduse_major); cdev_del(&vduse_ctrl_cdev); unregister_chrdev_region(vduse_major, VDUSE_DEV_MAX); class_destroy(vduse_class); } module_exit(vduse_exit); MODULE_LICENSE(DRV_LICENSE); MODULE_AUTHOR(DRV_AUTHOR); MODULE_DESCRIPTION(DRV_DESC);
linux-master
drivers/vdpa/vdpa_user/vduse_dev.c
// SPDX-License-Identifier: GPL-2.0-only /* * VDPA simulator for block device. * * Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. * Copyright (c) 2021, Red Hat Inc. All rights reserved. * */ #include <linux/init.h> #include <linux/module.h> #include <linux/device.h> #include <linux/kernel.h> #include <linux/blkdev.h> #include <linux/vringh.h> #include <linux/vdpa.h> #include <uapi/linux/virtio_blk.h> #include "vdpa_sim.h" #define DRV_VERSION "0.1" #define DRV_AUTHOR "Max Gurtovoy <[email protected]>" #define DRV_DESC "vDPA Device Simulator for block device" #define DRV_LICENSE "GPL v2" #define VDPASIM_BLK_FEATURES (VDPASIM_FEATURES | \ (1ULL << VIRTIO_BLK_F_FLUSH) | \ (1ULL << VIRTIO_BLK_F_SIZE_MAX) | \ (1ULL << VIRTIO_BLK_F_SEG_MAX) | \ (1ULL << VIRTIO_BLK_F_BLK_SIZE) | \ (1ULL << VIRTIO_BLK_F_TOPOLOGY) | \ (1ULL << VIRTIO_BLK_F_MQ) | \ (1ULL << VIRTIO_BLK_F_DISCARD) | \ (1ULL << VIRTIO_BLK_F_WRITE_ZEROES)) #define VDPASIM_BLK_CAPACITY 0x40000 #define VDPASIM_BLK_SIZE_MAX 0x1000 #define VDPASIM_BLK_SEG_MAX 32 #define VDPASIM_BLK_DWZ_MAX_SECTORS UINT_MAX /* 1 virtqueue, 1 address space, 1 virtqueue group */ #define VDPASIM_BLK_VQ_NUM 1 #define VDPASIM_BLK_AS_NUM 1 #define VDPASIM_BLK_GROUP_NUM 1 struct vdpasim_blk { struct vdpasim vdpasim; void *buffer; bool shared_backend; }; static struct vdpasim_blk *sim_to_blk(struct vdpasim *vdpasim) { return container_of(vdpasim, struct vdpasim_blk, vdpasim); } static char vdpasim_blk_id[VIRTIO_BLK_ID_BYTES] = "vdpa_blk_sim"; static bool shared_backend; module_param(shared_backend, bool, 0444); MODULE_PARM_DESC(shared_backend, "Enable the shared backend between virtio-blk devices"); static void *shared_buffer; /* mutex to synchronize shared_buffer access */ static DEFINE_MUTEX(shared_buffer_mutex); static void vdpasim_blk_buffer_lock(struct vdpasim_blk *blk) { if (blk->shared_backend) mutex_lock(&shared_buffer_mutex); } static void vdpasim_blk_buffer_unlock(struct vdpasim_blk *blk) { if (blk->shared_backend) mutex_unlock(&shared_buffer_mutex); } static bool vdpasim_blk_check_range(struct vdpasim *vdpasim, u64 start_sector, u64 num_sectors, u64 max_sectors) { if (start_sector > VDPASIM_BLK_CAPACITY) { dev_dbg(&vdpasim->vdpa.dev, "starting sector exceeds the capacity - start: 0x%llx capacity: 0x%x\n", start_sector, VDPASIM_BLK_CAPACITY); } if (num_sectors > max_sectors) { dev_dbg(&vdpasim->vdpa.dev, "number of sectors exceeds the max allowed in a request - num: 0x%llx max: 0x%llx\n", num_sectors, max_sectors); return false; } if (num_sectors > VDPASIM_BLK_CAPACITY - start_sector) { dev_dbg(&vdpasim->vdpa.dev, "request exceeds the capacity - start: 0x%llx num: 0x%llx capacity: 0x%x\n", start_sector, num_sectors, VDPASIM_BLK_CAPACITY); return false; } return true; } /* Returns 'true' if the request is handled (with or without an I/O error) * and the status is correctly written in the last byte of the 'in iov', * 'false' otherwise. */ static bool vdpasim_blk_handle_req(struct vdpasim *vdpasim, struct vdpasim_virtqueue *vq) { struct vdpasim_blk *blk = sim_to_blk(vdpasim); size_t pushed = 0, to_pull, to_push; struct virtio_blk_outhdr hdr; bool handled = false; ssize_t bytes; loff_t offset; u64 sector; u8 status; u32 type; int ret; ret = vringh_getdesc_iotlb(&vq->vring, &vq->out_iov, &vq->in_iov, &vq->head, GFP_ATOMIC); if (ret != 1) return false; if (vq->out_iov.used < 1 || vq->in_iov.used < 1) { dev_dbg(&vdpasim->vdpa.dev, "missing headers - out_iov: %u in_iov %u\n", vq->out_iov.used, vq->in_iov.used); goto err; } if (vq->in_iov.iov[vq->in_iov.used - 1].iov_len < 1) { dev_dbg(&vdpasim->vdpa.dev, "request in header too short\n"); goto err; } /* The last byte is the status and we checked if the last iov has * enough room for it. */ to_push = vringh_kiov_length(&vq->in_iov) - 1; to_pull = vringh_kiov_length(&vq->out_iov); bytes = vringh_iov_pull_iotlb(&vq->vring, &vq->out_iov, &hdr, sizeof(hdr)); if (bytes != sizeof(hdr)) { dev_dbg(&vdpasim->vdpa.dev, "request out header too short\n"); goto err; } to_pull -= bytes; type = vdpasim32_to_cpu(vdpasim, hdr.type); sector = vdpasim64_to_cpu(vdpasim, hdr.sector); offset = sector << SECTOR_SHIFT; status = VIRTIO_BLK_S_OK; if (type != VIRTIO_BLK_T_IN && type != VIRTIO_BLK_T_OUT && sector != 0) { dev_dbg(&vdpasim->vdpa.dev, "sector must be 0 for %u request - sector: 0x%llx\n", type, sector); status = VIRTIO_BLK_S_IOERR; goto err_status; } switch (type) { case VIRTIO_BLK_T_IN: if (!vdpasim_blk_check_range(vdpasim, sector, to_push >> SECTOR_SHIFT, VDPASIM_BLK_SIZE_MAX * VDPASIM_BLK_SEG_MAX)) { status = VIRTIO_BLK_S_IOERR; break; } vdpasim_blk_buffer_lock(blk); bytes = vringh_iov_push_iotlb(&vq->vring, &vq->in_iov, blk->buffer + offset, to_push); vdpasim_blk_buffer_unlock(blk); if (bytes < 0) { dev_dbg(&vdpasim->vdpa.dev, "vringh_iov_push_iotlb() error: %zd offset: 0x%llx len: 0x%zx\n", bytes, offset, to_push); status = VIRTIO_BLK_S_IOERR; break; } pushed += bytes; break; case VIRTIO_BLK_T_OUT: if (!vdpasim_blk_check_range(vdpasim, sector, to_pull >> SECTOR_SHIFT, VDPASIM_BLK_SIZE_MAX * VDPASIM_BLK_SEG_MAX)) { status = VIRTIO_BLK_S_IOERR; break; } vdpasim_blk_buffer_lock(blk); bytes = vringh_iov_pull_iotlb(&vq->vring, &vq->out_iov, blk->buffer + offset, to_pull); vdpasim_blk_buffer_unlock(blk); if (bytes < 0) { dev_dbg(&vdpasim->vdpa.dev, "vringh_iov_pull_iotlb() error: %zd offset: 0x%llx len: 0x%zx\n", bytes, offset, to_pull); status = VIRTIO_BLK_S_IOERR; break; } break; case VIRTIO_BLK_T_GET_ID: bytes = vringh_iov_push_iotlb(&vq->vring, &vq->in_iov, vdpasim_blk_id, VIRTIO_BLK_ID_BYTES); if (bytes < 0) { dev_dbg(&vdpasim->vdpa.dev, "vringh_iov_push_iotlb() error: %zd\n", bytes); status = VIRTIO_BLK_S_IOERR; break; } pushed += bytes; break; case VIRTIO_BLK_T_FLUSH: /* nothing to do */ break; case VIRTIO_BLK_T_DISCARD: case VIRTIO_BLK_T_WRITE_ZEROES: { struct virtio_blk_discard_write_zeroes range; u32 num_sectors, flags; if (to_pull != sizeof(range)) { dev_dbg(&vdpasim->vdpa.dev, "discard/write_zeroes header len: 0x%zx [expected: 0x%zx]\n", to_pull, sizeof(range)); status = VIRTIO_BLK_S_IOERR; break; } bytes = vringh_iov_pull_iotlb(&vq->vring, &vq->out_iov, &range, to_pull); if (bytes < 0) { dev_dbg(&vdpasim->vdpa.dev, "vringh_iov_pull_iotlb() error: %zd offset: 0x%llx len: 0x%zx\n", bytes, offset, to_pull); status = VIRTIO_BLK_S_IOERR; break; } sector = le64_to_cpu(range.sector); offset = sector << SECTOR_SHIFT; num_sectors = le32_to_cpu(range.num_sectors); flags = le32_to_cpu(range.flags); if (type == VIRTIO_BLK_T_DISCARD && flags != 0) { dev_dbg(&vdpasim->vdpa.dev, "discard unexpected flags set - flags: 0x%x\n", flags); status = VIRTIO_BLK_S_UNSUPP; break; } if (type == VIRTIO_BLK_T_WRITE_ZEROES && flags & ~VIRTIO_BLK_WRITE_ZEROES_FLAG_UNMAP) { dev_dbg(&vdpasim->vdpa.dev, "write_zeroes unexpected flags set - flags: 0x%x\n", flags); status = VIRTIO_BLK_S_UNSUPP; break; } if (!vdpasim_blk_check_range(vdpasim, sector, num_sectors, VDPASIM_BLK_DWZ_MAX_SECTORS)) { status = VIRTIO_BLK_S_IOERR; break; } if (type == VIRTIO_BLK_T_WRITE_ZEROES) { vdpasim_blk_buffer_lock(blk); memset(blk->buffer + offset, 0, num_sectors << SECTOR_SHIFT); vdpasim_blk_buffer_unlock(blk); } break; } default: dev_dbg(&vdpasim->vdpa.dev, "Unsupported request type %d\n", type); status = VIRTIO_BLK_S_IOERR; break; } err_status: /* If some operations fail, we need to skip the remaining bytes * to put the status in the last byte */ if (to_push - pushed > 0) vringh_kiov_advance(&vq->in_iov, to_push - pushed); /* Last byte is the status */ bytes = vringh_iov_push_iotlb(&vq->vring, &vq->in_iov, &status, 1); if (bytes != 1) goto err; pushed += bytes; /* Make sure data is wrote before advancing index */ smp_wmb(); handled = true; err: vringh_complete_iotlb(&vq->vring, vq->head, pushed); return handled; } static void vdpasim_blk_work(struct vdpasim *vdpasim) { bool reschedule = false; int i; mutex_lock(&vdpasim->mutex); if (!(vdpasim->status & VIRTIO_CONFIG_S_DRIVER_OK)) goto out; if (!vdpasim->running) goto out; for (i = 0; i < VDPASIM_BLK_VQ_NUM; i++) { struct vdpasim_virtqueue *vq = &vdpasim->vqs[i]; int reqs = 0; if (!vq->ready) continue; while (vdpasim_blk_handle_req(vdpasim, vq)) { /* Make sure used is visible before rasing the interrupt. */ smp_wmb(); local_bh_disable(); if (vringh_need_notify_iotlb(&vq->vring) > 0) vringh_notify(&vq->vring); local_bh_enable(); if (++reqs > 4) { reschedule = true; break; } } } out: mutex_unlock(&vdpasim->mutex); if (reschedule) vdpasim_schedule_work(vdpasim); } static void vdpasim_blk_get_config(struct vdpasim *vdpasim, void *config) { struct virtio_blk_config *blk_config = config; memset(config, 0, sizeof(struct virtio_blk_config)); blk_config->capacity = cpu_to_vdpasim64(vdpasim, VDPASIM_BLK_CAPACITY); blk_config->size_max = cpu_to_vdpasim32(vdpasim, VDPASIM_BLK_SIZE_MAX); blk_config->seg_max = cpu_to_vdpasim32(vdpasim, VDPASIM_BLK_SEG_MAX); blk_config->num_queues = cpu_to_vdpasim16(vdpasim, VDPASIM_BLK_VQ_NUM); blk_config->min_io_size = cpu_to_vdpasim16(vdpasim, 1); blk_config->opt_io_size = cpu_to_vdpasim32(vdpasim, 1); blk_config->blk_size = cpu_to_vdpasim32(vdpasim, SECTOR_SIZE); /* VIRTIO_BLK_F_DISCARD */ blk_config->discard_sector_alignment = cpu_to_vdpasim32(vdpasim, SECTOR_SIZE); blk_config->max_discard_sectors = cpu_to_vdpasim32(vdpasim, VDPASIM_BLK_DWZ_MAX_SECTORS); blk_config->max_discard_seg = cpu_to_vdpasim32(vdpasim, 1); /* VIRTIO_BLK_F_WRITE_ZEROES */ blk_config->max_write_zeroes_sectors = cpu_to_vdpasim32(vdpasim, VDPASIM_BLK_DWZ_MAX_SECTORS); blk_config->max_write_zeroes_seg = cpu_to_vdpasim32(vdpasim, 1); } static void vdpasim_blk_free(struct vdpasim *vdpasim) { struct vdpasim_blk *blk = sim_to_blk(vdpasim); if (!blk->shared_backend) kvfree(blk->buffer); } static void vdpasim_blk_mgmtdev_release(struct device *dev) { } static struct device vdpasim_blk_mgmtdev = { .init_name = "vdpasim_blk", .release = vdpasim_blk_mgmtdev_release, }; static int vdpasim_blk_dev_add(struct vdpa_mgmt_dev *mdev, const char *name, const struct vdpa_dev_set_config *config) { struct vdpasim_dev_attr dev_attr = {}; struct vdpasim_blk *blk; struct vdpasim *simdev; int ret; dev_attr.mgmt_dev = mdev; dev_attr.name = name; dev_attr.id = VIRTIO_ID_BLOCK; dev_attr.supported_features = VDPASIM_BLK_FEATURES; dev_attr.nvqs = VDPASIM_BLK_VQ_NUM; dev_attr.ngroups = VDPASIM_BLK_GROUP_NUM; dev_attr.nas = VDPASIM_BLK_AS_NUM; dev_attr.alloc_size = sizeof(struct vdpasim_blk); dev_attr.config_size = sizeof(struct virtio_blk_config); dev_attr.get_config = vdpasim_blk_get_config; dev_attr.work_fn = vdpasim_blk_work; dev_attr.free = vdpasim_blk_free; simdev = vdpasim_create(&dev_attr, config); if (IS_ERR(simdev)) return PTR_ERR(simdev); blk = sim_to_blk(simdev); blk->shared_backend = shared_backend; if (blk->shared_backend) { blk->buffer = shared_buffer; } else { blk->buffer = kvmalloc(VDPASIM_BLK_CAPACITY << SECTOR_SHIFT, GFP_KERNEL); if (!blk->buffer) { ret = -ENOMEM; goto put_dev; } } ret = _vdpa_register_device(&simdev->vdpa, VDPASIM_BLK_VQ_NUM); if (ret) goto put_dev; return 0; put_dev: put_device(&simdev->vdpa.dev); return ret; } static void vdpasim_blk_dev_del(struct vdpa_mgmt_dev *mdev, struct vdpa_device *dev) { struct vdpasim *simdev = container_of(dev, struct vdpasim, vdpa); _vdpa_unregister_device(&simdev->vdpa); } static const struct vdpa_mgmtdev_ops vdpasim_blk_mgmtdev_ops = { .dev_add = vdpasim_blk_dev_add, .dev_del = vdpasim_blk_dev_del }; static struct virtio_device_id id_table[] = { { VIRTIO_ID_BLOCK, VIRTIO_DEV_ANY_ID }, { 0 }, }; static struct vdpa_mgmt_dev mgmt_dev = { .device = &vdpasim_blk_mgmtdev, .id_table = id_table, .ops = &vdpasim_blk_mgmtdev_ops, }; static int __init vdpasim_blk_init(void) { int ret; ret = device_register(&vdpasim_blk_mgmtdev); if (ret) { put_device(&vdpasim_blk_mgmtdev); return ret; } ret = vdpa_mgmtdev_register(&mgmt_dev); if (ret) goto parent_err; if (shared_backend) { shared_buffer = kvmalloc(VDPASIM_BLK_CAPACITY << SECTOR_SHIFT, GFP_KERNEL); if (!shared_buffer) { ret = -ENOMEM; goto parent_err; } } return 0; parent_err: device_unregister(&vdpasim_blk_mgmtdev); return ret; } static void __exit vdpasim_blk_exit(void) { kvfree(shared_buffer); vdpa_mgmtdev_unregister(&mgmt_dev); device_unregister(&vdpasim_blk_mgmtdev); } module_init(vdpasim_blk_init) module_exit(vdpasim_blk_exit) MODULE_VERSION(DRV_VERSION); MODULE_LICENSE(DRV_LICENSE); MODULE_AUTHOR(DRV_AUTHOR); MODULE_DESCRIPTION(DRV_DESC);
linux-master
drivers/vdpa/vdpa_sim/vdpa_sim_blk.c
// SPDX-License-Identifier: GPL-2.0-only /* * VDPA simulator for networking device. * * Copyright (c) 2020, Red Hat Inc. All rights reserved. * Author: Jason Wang <[email protected]> * */ #include <linux/init.h> #include <linux/module.h> #include <linux/device.h> #include <linux/kernel.h> #include <linux/etherdevice.h> #include <linux/vringh.h> #include <linux/vdpa.h> #include <net/netlink.h> #include <uapi/linux/virtio_net.h> #include <uapi/linux/vdpa.h> #include "vdpa_sim.h" #define DRV_VERSION "0.1" #define DRV_AUTHOR "Jason Wang <[email protected]>" #define DRV_DESC "vDPA Device Simulator for networking device" #define DRV_LICENSE "GPL v2" #define VDPASIM_NET_FEATURES (VDPASIM_FEATURES | \ (1ULL << VIRTIO_NET_F_MAC) | \ (1ULL << VIRTIO_NET_F_STATUS) | \ (1ULL << VIRTIO_NET_F_MTU) | \ (1ULL << VIRTIO_NET_F_CTRL_VQ) | \ (1ULL << VIRTIO_NET_F_CTRL_MAC_ADDR)) /* 3 virtqueues, 2 address spaces, 2 virtqueue groups */ #define VDPASIM_NET_VQ_NUM 3 #define VDPASIM_NET_AS_NUM 2 #define VDPASIM_NET_GROUP_NUM 2 struct vdpasim_dataq_stats { struct u64_stats_sync syncp; u64 pkts; u64 bytes; u64 drops; u64 errors; u64 overruns; }; struct vdpasim_cq_stats { struct u64_stats_sync syncp; u64 requests; u64 successes; u64 errors; }; struct vdpasim_net{ struct vdpasim vdpasim; struct vdpasim_dataq_stats tx_stats; struct vdpasim_dataq_stats rx_stats; struct vdpasim_cq_stats cq_stats; void *buffer; }; static struct vdpasim_net *sim_to_net(struct vdpasim *vdpasim) { return container_of(vdpasim, struct vdpasim_net, vdpasim); } static void vdpasim_net_complete(struct vdpasim_virtqueue *vq, size_t len) { /* Make sure data is wrote before advancing index */ smp_wmb(); vringh_complete_iotlb(&vq->vring, vq->head, len); /* Make sure used is visible before rasing the interrupt. */ smp_wmb(); local_bh_disable(); if (vringh_need_notify_iotlb(&vq->vring) > 0) vringh_notify(&vq->vring); local_bh_enable(); } static bool receive_filter(struct vdpasim *vdpasim, size_t len) { bool modern = vdpasim->features & (1ULL << VIRTIO_F_VERSION_1); size_t hdr_len = modern ? sizeof(struct virtio_net_hdr_v1) : sizeof(struct virtio_net_hdr); struct virtio_net_config *vio_config = vdpasim->config; struct vdpasim_net *net = sim_to_net(vdpasim); if (len < ETH_ALEN + hdr_len) return false; if (is_broadcast_ether_addr(net->buffer + hdr_len) || is_multicast_ether_addr(net->buffer + hdr_len)) return true; if (!strncmp(net->buffer + hdr_len, vio_config->mac, ETH_ALEN)) return true; return false; } static virtio_net_ctrl_ack vdpasim_handle_ctrl_mac(struct vdpasim *vdpasim, u8 cmd) { struct virtio_net_config *vio_config = vdpasim->config; struct vdpasim_virtqueue *cvq = &vdpasim->vqs[2]; virtio_net_ctrl_ack status = VIRTIO_NET_ERR; size_t read; switch (cmd) { case VIRTIO_NET_CTRL_MAC_ADDR_SET: read = vringh_iov_pull_iotlb(&cvq->vring, &cvq->in_iov, vio_config->mac, ETH_ALEN); if (read == ETH_ALEN) status = VIRTIO_NET_OK; break; default: break; } return status; } static void vdpasim_handle_cvq(struct vdpasim *vdpasim) { struct vdpasim_virtqueue *cvq = &vdpasim->vqs[2]; struct vdpasim_net *net = sim_to_net(vdpasim); virtio_net_ctrl_ack status = VIRTIO_NET_ERR; struct virtio_net_ctrl_hdr ctrl; size_t read, write; u64 requests = 0, errors = 0, successes = 0; int err; if (!(vdpasim->features & (1ULL << VIRTIO_NET_F_CTRL_VQ))) return; if (!cvq->ready) return; while (true) { err = vringh_getdesc_iotlb(&cvq->vring, &cvq->in_iov, &cvq->out_iov, &cvq->head, GFP_ATOMIC); if (err <= 0) break; ++requests; read = vringh_iov_pull_iotlb(&cvq->vring, &cvq->in_iov, &ctrl, sizeof(ctrl)); if (read != sizeof(ctrl)) { ++errors; break; } switch (ctrl.class) { case VIRTIO_NET_CTRL_MAC: status = vdpasim_handle_ctrl_mac(vdpasim, ctrl.cmd); break; default: break; } if (status == VIRTIO_NET_OK) ++successes; else ++errors; /* Make sure data is wrote before advancing index */ smp_wmb(); write = vringh_iov_push_iotlb(&cvq->vring, &cvq->out_iov, &status, sizeof(status)); vringh_complete_iotlb(&cvq->vring, cvq->head, write); vringh_kiov_cleanup(&cvq->in_iov); vringh_kiov_cleanup(&cvq->out_iov); /* Make sure used is visible before rasing the interrupt. */ smp_wmb(); local_bh_disable(); if (cvq->cb) cvq->cb(cvq->private); local_bh_enable(); } u64_stats_update_begin(&net->cq_stats.syncp); net->cq_stats.requests += requests; net->cq_stats.errors += errors; net->cq_stats.successes += successes; u64_stats_update_end(&net->cq_stats.syncp); } static void vdpasim_net_work(struct vdpasim *vdpasim) { struct vdpasim_virtqueue *txq = &vdpasim->vqs[1]; struct vdpasim_virtqueue *rxq = &vdpasim->vqs[0]; struct vdpasim_net *net = sim_to_net(vdpasim); ssize_t read, write; u64 tx_pkts = 0, rx_pkts = 0, tx_bytes = 0, rx_bytes = 0; u64 rx_drops = 0, rx_overruns = 0, rx_errors = 0, tx_errors = 0; int err; mutex_lock(&vdpasim->mutex); if (!vdpasim->running) goto out; if (!(vdpasim->status & VIRTIO_CONFIG_S_DRIVER_OK)) goto out; vdpasim_handle_cvq(vdpasim); if (!txq->ready || !rxq->ready) goto out; while (true) { err = vringh_getdesc_iotlb(&txq->vring, &txq->out_iov, NULL, &txq->head, GFP_ATOMIC); if (err <= 0) { if (err) ++tx_errors; break; } ++tx_pkts; read = vringh_iov_pull_iotlb(&txq->vring, &txq->out_iov, net->buffer, PAGE_SIZE); tx_bytes += read; if (!receive_filter(vdpasim, read)) { ++rx_drops; vdpasim_net_complete(txq, 0); continue; } err = vringh_getdesc_iotlb(&rxq->vring, NULL, &rxq->in_iov, &rxq->head, GFP_ATOMIC); if (err <= 0) { ++rx_overruns; vdpasim_net_complete(txq, 0); break; } write = vringh_iov_push_iotlb(&rxq->vring, &rxq->in_iov, net->buffer, read); if (write <= 0) { ++rx_errors; break; } ++rx_pkts; rx_bytes += write; vdpasim_net_complete(txq, 0); vdpasim_net_complete(rxq, write); if (tx_pkts > 4) { vdpasim_schedule_work(vdpasim); goto out; } } out: mutex_unlock(&vdpasim->mutex); u64_stats_update_begin(&net->tx_stats.syncp); net->tx_stats.pkts += tx_pkts; net->tx_stats.bytes += tx_bytes; net->tx_stats.errors += tx_errors; u64_stats_update_end(&net->tx_stats.syncp); u64_stats_update_begin(&net->rx_stats.syncp); net->rx_stats.pkts += rx_pkts; net->rx_stats.bytes += rx_bytes; net->rx_stats.drops += rx_drops; net->rx_stats.errors += rx_errors; net->rx_stats.overruns += rx_overruns; u64_stats_update_end(&net->rx_stats.syncp); } static int vdpasim_net_get_stats(struct vdpasim *vdpasim, u16 idx, struct sk_buff *msg, struct netlink_ext_ack *extack) { struct vdpasim_net *net = sim_to_net(vdpasim); u64 rx_pkts, rx_bytes, rx_errors, rx_overruns, rx_drops; u64 tx_pkts, tx_bytes, tx_errors, tx_drops; u64 cq_requests, cq_successes, cq_errors; unsigned int start; int err = -EMSGSIZE; switch(idx) { case 0: do { start = u64_stats_fetch_begin(&net->rx_stats.syncp); rx_pkts = net->rx_stats.pkts; rx_bytes = net->rx_stats.bytes; rx_errors = net->rx_stats.errors; rx_overruns = net->rx_stats.overruns; rx_drops = net->rx_stats.drops; } while (u64_stats_fetch_retry(&net->rx_stats.syncp, start)); if (nla_put_string(msg, VDPA_ATTR_DEV_VENDOR_ATTR_NAME, "rx packets")) break; if (nla_put_u64_64bit(msg, VDPA_ATTR_DEV_VENDOR_ATTR_VALUE, rx_pkts, VDPA_ATTR_PAD)) break; if (nla_put_string(msg, VDPA_ATTR_DEV_VENDOR_ATTR_NAME, "rx bytes")) break; if (nla_put_u64_64bit(msg, VDPA_ATTR_DEV_VENDOR_ATTR_VALUE, rx_bytes, VDPA_ATTR_PAD)) break; if (nla_put_string(msg, VDPA_ATTR_DEV_VENDOR_ATTR_NAME, "rx errors")) break; if (nla_put_u64_64bit(msg, VDPA_ATTR_DEV_VENDOR_ATTR_VALUE, rx_errors, VDPA_ATTR_PAD)) break; if (nla_put_string(msg, VDPA_ATTR_DEV_VENDOR_ATTR_NAME, "rx overruns")) break; if (nla_put_u64_64bit(msg, VDPA_ATTR_DEV_VENDOR_ATTR_VALUE, rx_overruns, VDPA_ATTR_PAD)) break; if (nla_put_string(msg, VDPA_ATTR_DEV_VENDOR_ATTR_NAME, "rx drops")) break; if (nla_put_u64_64bit(msg, VDPA_ATTR_DEV_VENDOR_ATTR_VALUE, rx_drops, VDPA_ATTR_PAD)) break; err = 0; break; case 1: do { start = u64_stats_fetch_begin(&net->tx_stats.syncp); tx_pkts = net->tx_stats.pkts; tx_bytes = net->tx_stats.bytes; tx_errors = net->tx_stats.errors; tx_drops = net->tx_stats.drops; } while (u64_stats_fetch_retry(&net->tx_stats.syncp, start)); if (nla_put_string(msg, VDPA_ATTR_DEV_VENDOR_ATTR_NAME, "tx packets")) break; if (nla_put_u64_64bit(msg, VDPA_ATTR_DEV_VENDOR_ATTR_VALUE, tx_pkts, VDPA_ATTR_PAD)) break; if (nla_put_string(msg, VDPA_ATTR_DEV_VENDOR_ATTR_NAME, "tx bytes")) break; if (nla_put_u64_64bit(msg, VDPA_ATTR_DEV_VENDOR_ATTR_VALUE, tx_bytes, VDPA_ATTR_PAD)) break; if (nla_put_string(msg, VDPA_ATTR_DEV_VENDOR_ATTR_NAME, "tx errors")) break; if (nla_put_u64_64bit(msg, VDPA_ATTR_DEV_VENDOR_ATTR_VALUE, tx_errors, VDPA_ATTR_PAD)) break; if (nla_put_string(msg, VDPA_ATTR_DEV_VENDOR_ATTR_NAME, "tx drops")) break; if (nla_put_u64_64bit(msg, VDPA_ATTR_DEV_VENDOR_ATTR_VALUE, tx_drops, VDPA_ATTR_PAD)) break; err = 0; break; case 2: do { start = u64_stats_fetch_begin(&net->cq_stats.syncp); cq_requests = net->cq_stats.requests; cq_successes = net->cq_stats.successes; cq_errors = net->cq_stats.errors; } while (u64_stats_fetch_retry(&net->cq_stats.syncp, start)); if (nla_put_string(msg, VDPA_ATTR_DEV_VENDOR_ATTR_NAME, "cvq requests")) break; if (nla_put_u64_64bit(msg, VDPA_ATTR_DEV_VENDOR_ATTR_VALUE, cq_requests, VDPA_ATTR_PAD)) break; if (nla_put_string(msg, VDPA_ATTR_DEV_VENDOR_ATTR_NAME, "cvq successes")) break; if (nla_put_u64_64bit(msg, VDPA_ATTR_DEV_VENDOR_ATTR_VALUE, cq_successes, VDPA_ATTR_PAD)) break; if (nla_put_string(msg, VDPA_ATTR_DEV_VENDOR_ATTR_NAME, "cvq errors")) break; if (nla_put_u64_64bit(msg, VDPA_ATTR_DEV_VENDOR_ATTR_VALUE, cq_errors, VDPA_ATTR_PAD)) break; err = 0; break; default: err = -EINVAL; break; } return err; } static void vdpasim_net_get_config(struct vdpasim *vdpasim, void *config) { struct virtio_net_config *net_config = config; net_config->status = cpu_to_vdpasim16(vdpasim, VIRTIO_NET_S_LINK_UP); } static void vdpasim_net_setup_config(struct vdpasim *vdpasim, const struct vdpa_dev_set_config *config) { struct virtio_net_config *vio_config = vdpasim->config; if (config->mask & (1 << VDPA_ATTR_DEV_NET_CFG_MACADDR)) memcpy(vio_config->mac, config->net.mac, ETH_ALEN); if (config->mask & (1 << VDPA_ATTR_DEV_NET_CFG_MTU)) vio_config->mtu = cpu_to_vdpasim16(vdpasim, config->net.mtu); else /* Setup default MTU to be 1500 */ vio_config->mtu = cpu_to_vdpasim16(vdpasim, 1500); } static void vdpasim_net_free(struct vdpasim *vdpasim) { struct vdpasim_net *net = sim_to_net(vdpasim); kvfree(net->buffer); } static void vdpasim_net_mgmtdev_release(struct device *dev) { } static struct device vdpasim_net_mgmtdev = { .init_name = "vdpasim_net", .release = vdpasim_net_mgmtdev_release, }; static int vdpasim_net_dev_add(struct vdpa_mgmt_dev *mdev, const char *name, const struct vdpa_dev_set_config *config) { struct vdpasim_dev_attr dev_attr = {}; struct vdpasim_net *net; struct vdpasim *simdev; int ret; dev_attr.mgmt_dev = mdev; dev_attr.name = name; dev_attr.id = VIRTIO_ID_NET; dev_attr.supported_features = VDPASIM_NET_FEATURES; dev_attr.nvqs = VDPASIM_NET_VQ_NUM; dev_attr.ngroups = VDPASIM_NET_GROUP_NUM; dev_attr.nas = VDPASIM_NET_AS_NUM; dev_attr.alloc_size = sizeof(struct vdpasim_net); dev_attr.config_size = sizeof(struct virtio_net_config); dev_attr.get_config = vdpasim_net_get_config; dev_attr.work_fn = vdpasim_net_work; dev_attr.get_stats = vdpasim_net_get_stats; dev_attr.free = vdpasim_net_free; simdev = vdpasim_create(&dev_attr, config); if (IS_ERR(simdev)) return PTR_ERR(simdev); vdpasim_net_setup_config(simdev, config); net = sim_to_net(simdev); u64_stats_init(&net->tx_stats.syncp); u64_stats_init(&net->rx_stats.syncp); u64_stats_init(&net->cq_stats.syncp); net->buffer = kvmalloc(PAGE_SIZE, GFP_KERNEL); if (!net->buffer) { ret = -ENOMEM; goto reg_err; } /* * Initialization must be completed before this call, since it can * connect the device to the vDPA bus, so requests can arrive after * this call. */ ret = _vdpa_register_device(&simdev->vdpa, VDPASIM_NET_VQ_NUM); if (ret) goto reg_err; return 0; reg_err: put_device(&simdev->vdpa.dev); return ret; } static void vdpasim_net_dev_del(struct vdpa_mgmt_dev *mdev, struct vdpa_device *dev) { struct vdpasim *simdev = container_of(dev, struct vdpasim, vdpa); _vdpa_unregister_device(&simdev->vdpa); } static const struct vdpa_mgmtdev_ops vdpasim_net_mgmtdev_ops = { .dev_add = vdpasim_net_dev_add, .dev_del = vdpasim_net_dev_del }; static struct virtio_device_id id_table[] = { { VIRTIO_ID_NET, VIRTIO_DEV_ANY_ID }, { 0 }, }; static struct vdpa_mgmt_dev mgmt_dev = { .device = &vdpasim_net_mgmtdev, .id_table = id_table, .ops = &vdpasim_net_mgmtdev_ops, .config_attr_mask = (1 << VDPA_ATTR_DEV_NET_CFG_MACADDR | 1 << VDPA_ATTR_DEV_NET_CFG_MTU | 1 << VDPA_ATTR_DEV_FEATURES), .max_supported_vqs = VDPASIM_NET_VQ_NUM, .supported_features = VDPASIM_NET_FEATURES, }; static int __init vdpasim_net_init(void) { int ret; ret = device_register(&vdpasim_net_mgmtdev); if (ret) { put_device(&vdpasim_net_mgmtdev); return ret; } ret = vdpa_mgmtdev_register(&mgmt_dev); if (ret) goto parent_err; return 0; parent_err: device_unregister(&vdpasim_net_mgmtdev); return ret; } static void __exit vdpasim_net_exit(void) { vdpa_mgmtdev_unregister(&mgmt_dev); device_unregister(&vdpasim_net_mgmtdev); } module_init(vdpasim_net_init); module_exit(vdpasim_net_exit); MODULE_VERSION(DRV_VERSION); MODULE_LICENSE(DRV_LICENSE); MODULE_AUTHOR(DRV_AUTHOR); MODULE_DESCRIPTION(DRV_DESC);
linux-master
drivers/vdpa/vdpa_sim/vdpa_sim_net.c
// SPDX-License-Identifier: GPL-2.0-only /* * VDPA device simulator core. * * Copyright (c) 2020, Red Hat Inc. All rights reserved. * Author: Jason Wang <[email protected]> * */ #include <linux/init.h> #include <linux/module.h> #include <linux/device.h> #include <linux/kernel.h> #include <linux/kthread.h> #include <linux/slab.h> #include <linux/dma-map-ops.h> #include <linux/vringh.h> #include <linux/vdpa.h> #include <linux/vhost_iotlb.h> #include <uapi/linux/vdpa.h> #include <uapi/linux/vhost_types.h> #include "vdpa_sim.h" #define DRV_VERSION "0.1" #define DRV_AUTHOR "Jason Wang <[email protected]>" #define DRV_DESC "vDPA Device Simulator core" #define DRV_LICENSE "GPL v2" static int batch_mapping = 1; module_param(batch_mapping, int, 0444); MODULE_PARM_DESC(batch_mapping, "Batched mapping 1 -Enable; 0 - Disable"); static int max_iotlb_entries = 2048; module_param(max_iotlb_entries, int, 0444); MODULE_PARM_DESC(max_iotlb_entries, "Maximum number of iotlb entries for each address space. 0 means unlimited. (default: 2048)"); static bool use_va = true; module_param(use_va, bool, 0444); MODULE_PARM_DESC(use_va, "Enable/disable the device's ability to use VA"); #define VDPASIM_QUEUE_ALIGN PAGE_SIZE #define VDPASIM_QUEUE_MAX 256 #define VDPASIM_VENDOR_ID 0 struct vdpasim_mm_work { struct kthread_work work; struct vdpasim *vdpasim; struct mm_struct *mm_to_bind; int ret; }; static void vdpasim_mm_work_fn(struct kthread_work *work) { struct vdpasim_mm_work *mm_work = container_of(work, struct vdpasim_mm_work, work); struct vdpasim *vdpasim = mm_work->vdpasim; mm_work->ret = 0; //TODO: should we attach the cgroup of the mm owner? vdpasim->mm_bound = mm_work->mm_to_bind; } static void vdpasim_worker_change_mm_sync(struct vdpasim *vdpasim, struct vdpasim_mm_work *mm_work) { struct kthread_work *work = &mm_work->work; kthread_init_work(work, vdpasim_mm_work_fn); kthread_queue_work(vdpasim->worker, work); kthread_flush_work(work); } static struct vdpasim *vdpa_to_sim(struct vdpa_device *vdpa) { return container_of(vdpa, struct vdpasim, vdpa); } static void vdpasim_vq_notify(struct vringh *vring) { struct vdpasim_virtqueue *vq = container_of(vring, struct vdpasim_virtqueue, vring); if (!vq->cb) return; vq->cb(vq->private); } static void vdpasim_queue_ready(struct vdpasim *vdpasim, unsigned int idx) { struct vdpasim_virtqueue *vq = &vdpasim->vqs[idx]; uint16_t last_avail_idx = vq->vring.last_avail_idx; struct vring_desc *desc = (struct vring_desc *) (uintptr_t)vq->desc_addr; struct vring_avail *avail = (struct vring_avail *) (uintptr_t)vq->driver_addr; struct vring_used *used = (struct vring_used *) (uintptr_t)vq->device_addr; if (use_va && vdpasim->mm_bound) { vringh_init_iotlb_va(&vq->vring, vdpasim->features, vq->num, true, desc, avail, used); } else { vringh_init_iotlb(&vq->vring, vdpasim->features, vq->num, true, desc, avail, used); } vq->vring.last_avail_idx = last_avail_idx; /* * Since vdpa_sim does not support receive inflight descriptors as a * destination of a migration, let's set both avail_idx and used_idx * the same at vq start. This is how vhost-user works in a * VHOST_SET_VRING_BASE call. * * Although the simple fix is to set last_used_idx at * vdpasim_set_vq_state, it would be reset at vdpasim_queue_ready. */ vq->vring.last_used_idx = last_avail_idx; vq->vring.notify = vdpasim_vq_notify; } static void vdpasim_vq_reset(struct vdpasim *vdpasim, struct vdpasim_virtqueue *vq) { vq->ready = false; vq->desc_addr = 0; vq->driver_addr = 0; vq->device_addr = 0; vq->cb = NULL; vq->private = NULL; vringh_init_iotlb(&vq->vring, vdpasim->dev_attr.supported_features, VDPASIM_QUEUE_MAX, false, NULL, NULL, NULL); vq->vring.notify = NULL; } static void vdpasim_do_reset(struct vdpasim *vdpasim) { int i; spin_lock(&vdpasim->iommu_lock); for (i = 0; i < vdpasim->dev_attr.nvqs; i++) { vdpasim_vq_reset(vdpasim, &vdpasim->vqs[i]); vringh_set_iotlb(&vdpasim->vqs[i].vring, &vdpasim->iommu[0], &vdpasim->iommu_lock); } for (i = 0; i < vdpasim->dev_attr.nas; i++) { vhost_iotlb_reset(&vdpasim->iommu[i]); vhost_iotlb_add_range(&vdpasim->iommu[i], 0, ULONG_MAX, 0, VHOST_MAP_RW); vdpasim->iommu_pt[i] = true; } vdpasim->running = true; spin_unlock(&vdpasim->iommu_lock); vdpasim->features = 0; vdpasim->status = 0; ++vdpasim->generation; } static const struct vdpa_config_ops vdpasim_config_ops; static const struct vdpa_config_ops vdpasim_batch_config_ops; static void vdpasim_work_fn(struct kthread_work *work) { struct vdpasim *vdpasim = container_of(work, struct vdpasim, work); struct mm_struct *mm = vdpasim->mm_bound; if (use_va && mm) { if (!mmget_not_zero(mm)) return; kthread_use_mm(mm); } vdpasim->dev_attr.work_fn(vdpasim); if (use_va && mm) { kthread_unuse_mm(mm); mmput(mm); } } struct vdpasim *vdpasim_create(struct vdpasim_dev_attr *dev_attr, const struct vdpa_dev_set_config *config) { const struct vdpa_config_ops *ops; struct vdpa_device *vdpa; struct vdpasim *vdpasim; struct device *dev; int i, ret = -ENOMEM; if (!dev_attr->alloc_size) return ERR_PTR(-EINVAL); if (config->mask & BIT_ULL(VDPA_ATTR_DEV_FEATURES)) { if (config->device_features & ~dev_attr->supported_features) return ERR_PTR(-EINVAL); dev_attr->supported_features = config->device_features; } if (batch_mapping) ops = &vdpasim_batch_config_ops; else ops = &vdpasim_config_ops; vdpa = __vdpa_alloc_device(NULL, ops, dev_attr->ngroups, dev_attr->nas, dev_attr->alloc_size, dev_attr->name, use_va); if (IS_ERR(vdpa)) { ret = PTR_ERR(vdpa); goto err_alloc; } vdpasim = vdpa_to_sim(vdpa); vdpasim->dev_attr = *dev_attr; dev = &vdpasim->vdpa.dev; kthread_init_work(&vdpasim->work, vdpasim_work_fn); vdpasim->worker = kthread_create_worker(0, "vDPA sim worker: %s", dev_attr->name); if (IS_ERR(vdpasim->worker)) goto err_iommu; mutex_init(&vdpasim->mutex); spin_lock_init(&vdpasim->iommu_lock); dev->dma_mask = &dev->coherent_dma_mask; if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64))) goto err_iommu; vdpasim->vdpa.mdev = dev_attr->mgmt_dev; vdpasim->config = kzalloc(dev_attr->config_size, GFP_KERNEL); if (!vdpasim->config) goto err_iommu; vdpasim->vqs = kcalloc(dev_attr->nvqs, sizeof(struct vdpasim_virtqueue), GFP_KERNEL); if (!vdpasim->vqs) goto err_iommu; vdpasim->iommu = kmalloc_array(vdpasim->dev_attr.nas, sizeof(*vdpasim->iommu), GFP_KERNEL); if (!vdpasim->iommu) goto err_iommu; vdpasim->iommu_pt = kmalloc_array(vdpasim->dev_attr.nas, sizeof(*vdpasim->iommu_pt), GFP_KERNEL); if (!vdpasim->iommu_pt) goto err_iommu; for (i = 0; i < vdpasim->dev_attr.nas; i++) vhost_iotlb_init(&vdpasim->iommu[i], max_iotlb_entries, 0); for (i = 0; i < dev_attr->nvqs; i++) vringh_set_iotlb(&vdpasim->vqs[i].vring, &vdpasim->iommu[0], &vdpasim->iommu_lock); vdpasim->vdpa.dma_dev = dev; return vdpasim; err_iommu: put_device(dev); err_alloc: return ERR_PTR(ret); } EXPORT_SYMBOL_GPL(vdpasim_create); void vdpasim_schedule_work(struct vdpasim *vdpasim) { kthread_queue_work(vdpasim->worker, &vdpasim->work); } EXPORT_SYMBOL_GPL(vdpasim_schedule_work); static int vdpasim_set_vq_address(struct vdpa_device *vdpa, u16 idx, u64 desc_area, u64 driver_area, u64 device_area) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); struct vdpasim_virtqueue *vq = &vdpasim->vqs[idx]; vq->desc_addr = desc_area; vq->driver_addr = driver_area; vq->device_addr = device_area; return 0; } static void vdpasim_set_vq_num(struct vdpa_device *vdpa, u16 idx, u32 num) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); struct vdpasim_virtqueue *vq = &vdpasim->vqs[idx]; vq->num = num; } static void vdpasim_kick_vq(struct vdpa_device *vdpa, u16 idx) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); struct vdpasim_virtqueue *vq = &vdpasim->vqs[idx]; if (!vdpasim->running && (vdpasim->status & VIRTIO_CONFIG_S_DRIVER_OK)) { vdpasim->pending_kick = true; return; } if (vq->ready) vdpasim_schedule_work(vdpasim); } static void vdpasim_set_vq_cb(struct vdpa_device *vdpa, u16 idx, struct vdpa_callback *cb) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); struct vdpasim_virtqueue *vq = &vdpasim->vqs[idx]; vq->cb = cb->callback; vq->private = cb->private; } static void vdpasim_set_vq_ready(struct vdpa_device *vdpa, u16 idx, bool ready) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); struct vdpasim_virtqueue *vq = &vdpasim->vqs[idx]; bool old_ready; mutex_lock(&vdpasim->mutex); old_ready = vq->ready; vq->ready = ready; if (vq->ready && !old_ready) { vdpasim_queue_ready(vdpasim, idx); } mutex_unlock(&vdpasim->mutex); } static bool vdpasim_get_vq_ready(struct vdpa_device *vdpa, u16 idx) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); struct vdpasim_virtqueue *vq = &vdpasim->vqs[idx]; return vq->ready; } static int vdpasim_set_vq_state(struct vdpa_device *vdpa, u16 idx, const struct vdpa_vq_state *state) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); struct vdpasim_virtqueue *vq = &vdpasim->vqs[idx]; struct vringh *vrh = &vq->vring; mutex_lock(&vdpasim->mutex); vrh->last_avail_idx = state->split.avail_index; mutex_unlock(&vdpasim->mutex); return 0; } static int vdpasim_get_vq_state(struct vdpa_device *vdpa, u16 idx, struct vdpa_vq_state *state) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); struct vdpasim_virtqueue *vq = &vdpasim->vqs[idx]; struct vringh *vrh = &vq->vring; state->split.avail_index = vrh->last_avail_idx; return 0; } static int vdpasim_get_vq_stats(struct vdpa_device *vdpa, u16 idx, struct sk_buff *msg, struct netlink_ext_ack *extack) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); if (vdpasim->dev_attr.get_stats) return vdpasim->dev_attr.get_stats(vdpasim, idx, msg, extack); return -EOPNOTSUPP; } static u32 vdpasim_get_vq_align(struct vdpa_device *vdpa) { return VDPASIM_QUEUE_ALIGN; } static u32 vdpasim_get_vq_group(struct vdpa_device *vdpa, u16 idx) { /* RX and TX belongs to group 0, CVQ belongs to group 1 */ if (idx == 2) return 1; else return 0; } static u64 vdpasim_get_device_features(struct vdpa_device *vdpa) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); return vdpasim->dev_attr.supported_features; } static u64 vdpasim_get_backend_features(const struct vdpa_device *vdpa) { return BIT_ULL(VHOST_BACKEND_F_ENABLE_AFTER_DRIVER_OK); } static int vdpasim_set_driver_features(struct vdpa_device *vdpa, u64 features) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); /* DMA mapping must be done by driver */ if (!(features & (1ULL << VIRTIO_F_ACCESS_PLATFORM))) return -EINVAL; vdpasim->features = features & vdpasim->dev_attr.supported_features; return 0; } static u64 vdpasim_get_driver_features(struct vdpa_device *vdpa) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); return vdpasim->features; } static void vdpasim_set_config_cb(struct vdpa_device *vdpa, struct vdpa_callback *cb) { /* We don't support config interrupt */ } static u16 vdpasim_get_vq_num_max(struct vdpa_device *vdpa) { return VDPASIM_QUEUE_MAX; } static u32 vdpasim_get_device_id(struct vdpa_device *vdpa) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); return vdpasim->dev_attr.id; } static u32 vdpasim_get_vendor_id(struct vdpa_device *vdpa) { return VDPASIM_VENDOR_ID; } static u8 vdpasim_get_status(struct vdpa_device *vdpa) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); u8 status; mutex_lock(&vdpasim->mutex); status = vdpasim->status; mutex_unlock(&vdpasim->mutex); return status; } static void vdpasim_set_status(struct vdpa_device *vdpa, u8 status) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); mutex_lock(&vdpasim->mutex); vdpasim->status = status; mutex_unlock(&vdpasim->mutex); } static int vdpasim_reset(struct vdpa_device *vdpa) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); mutex_lock(&vdpasim->mutex); vdpasim->status = 0; vdpasim_do_reset(vdpasim); mutex_unlock(&vdpasim->mutex); return 0; } static int vdpasim_suspend(struct vdpa_device *vdpa) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); mutex_lock(&vdpasim->mutex); vdpasim->running = false; mutex_unlock(&vdpasim->mutex); return 0; } static int vdpasim_resume(struct vdpa_device *vdpa) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); int i; mutex_lock(&vdpasim->mutex); vdpasim->running = true; if (vdpasim->pending_kick) { /* Process pending descriptors */ for (i = 0; i < vdpasim->dev_attr.nvqs; ++i) vdpasim_kick_vq(vdpa, i); vdpasim->pending_kick = false; } mutex_unlock(&vdpasim->mutex); return 0; } static size_t vdpasim_get_config_size(struct vdpa_device *vdpa) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); return vdpasim->dev_attr.config_size; } static void vdpasim_get_config(struct vdpa_device *vdpa, unsigned int offset, void *buf, unsigned int len) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); if (offset + len > vdpasim->dev_attr.config_size) return; if (vdpasim->dev_attr.get_config) vdpasim->dev_attr.get_config(vdpasim, vdpasim->config); memcpy(buf, vdpasim->config + offset, len); } static void vdpasim_set_config(struct vdpa_device *vdpa, unsigned int offset, const void *buf, unsigned int len) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); if (offset + len > vdpasim->dev_attr.config_size) return; memcpy(vdpasim->config + offset, buf, len); if (vdpasim->dev_attr.set_config) vdpasim->dev_attr.set_config(vdpasim, vdpasim->config); } static u32 vdpasim_get_generation(struct vdpa_device *vdpa) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); return vdpasim->generation; } static struct vdpa_iova_range vdpasim_get_iova_range(struct vdpa_device *vdpa) { struct vdpa_iova_range range = { .first = 0ULL, .last = ULLONG_MAX, }; return range; } static int vdpasim_set_group_asid(struct vdpa_device *vdpa, unsigned int group, unsigned int asid) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); struct vhost_iotlb *iommu; int i; if (group > vdpasim->dev_attr.ngroups) return -EINVAL; if (asid >= vdpasim->dev_attr.nas) return -EINVAL; iommu = &vdpasim->iommu[asid]; mutex_lock(&vdpasim->mutex); for (i = 0; i < vdpasim->dev_attr.nvqs; i++) if (vdpasim_get_vq_group(vdpa, i) == group) vringh_set_iotlb(&vdpasim->vqs[i].vring, iommu, &vdpasim->iommu_lock); mutex_unlock(&vdpasim->mutex); return 0; } static int vdpasim_set_map(struct vdpa_device *vdpa, unsigned int asid, struct vhost_iotlb *iotlb) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); struct vhost_iotlb_map *map; struct vhost_iotlb *iommu; u64 start = 0ULL, last = 0ULL - 1; int ret; if (asid >= vdpasim->dev_attr.nas) return -EINVAL; spin_lock(&vdpasim->iommu_lock); iommu = &vdpasim->iommu[asid]; vhost_iotlb_reset(iommu); vdpasim->iommu_pt[asid] = false; for (map = vhost_iotlb_itree_first(iotlb, start, last); map; map = vhost_iotlb_itree_next(map, start, last)) { ret = vhost_iotlb_add_range(iommu, map->start, map->last, map->addr, map->perm); if (ret) goto err; } spin_unlock(&vdpasim->iommu_lock); return 0; err: vhost_iotlb_reset(iommu); spin_unlock(&vdpasim->iommu_lock); return ret; } static int vdpasim_bind_mm(struct vdpa_device *vdpa, struct mm_struct *mm) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); struct vdpasim_mm_work mm_work; mm_work.vdpasim = vdpasim; mm_work.mm_to_bind = mm; vdpasim_worker_change_mm_sync(vdpasim, &mm_work); return mm_work.ret; } static void vdpasim_unbind_mm(struct vdpa_device *vdpa) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); struct vdpasim_mm_work mm_work; mm_work.vdpasim = vdpasim; mm_work.mm_to_bind = NULL; vdpasim_worker_change_mm_sync(vdpasim, &mm_work); } static int vdpasim_dma_map(struct vdpa_device *vdpa, unsigned int asid, u64 iova, u64 size, u64 pa, u32 perm, void *opaque) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); int ret; if (asid >= vdpasim->dev_attr.nas) return -EINVAL; spin_lock(&vdpasim->iommu_lock); if (vdpasim->iommu_pt[asid]) { vhost_iotlb_reset(&vdpasim->iommu[asid]); vdpasim->iommu_pt[asid] = false; } ret = vhost_iotlb_add_range_ctx(&vdpasim->iommu[asid], iova, iova + size - 1, pa, perm, opaque); spin_unlock(&vdpasim->iommu_lock); return ret; } static int vdpasim_dma_unmap(struct vdpa_device *vdpa, unsigned int asid, u64 iova, u64 size) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); if (asid >= vdpasim->dev_attr.nas) return -EINVAL; if (vdpasim->iommu_pt[asid]) { vhost_iotlb_reset(&vdpasim->iommu[asid]); vdpasim->iommu_pt[asid] = false; } spin_lock(&vdpasim->iommu_lock); vhost_iotlb_del_range(&vdpasim->iommu[asid], iova, iova + size - 1); spin_unlock(&vdpasim->iommu_lock); return 0; } static void vdpasim_free(struct vdpa_device *vdpa) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); int i; kthread_cancel_work_sync(&vdpasim->work); kthread_destroy_worker(vdpasim->worker); for (i = 0; i < vdpasim->dev_attr.nvqs; i++) { vringh_kiov_cleanup(&vdpasim->vqs[i].out_iov); vringh_kiov_cleanup(&vdpasim->vqs[i].in_iov); } vdpasim->dev_attr.free(vdpasim); for (i = 0; i < vdpasim->dev_attr.nas; i++) vhost_iotlb_reset(&vdpasim->iommu[i]); kfree(vdpasim->iommu); kfree(vdpasim->iommu_pt); kfree(vdpasim->vqs); kfree(vdpasim->config); } static const struct vdpa_config_ops vdpasim_config_ops = { .set_vq_address = vdpasim_set_vq_address, .set_vq_num = vdpasim_set_vq_num, .kick_vq = vdpasim_kick_vq, .set_vq_cb = vdpasim_set_vq_cb, .set_vq_ready = vdpasim_set_vq_ready, .get_vq_ready = vdpasim_get_vq_ready, .set_vq_state = vdpasim_set_vq_state, .get_vendor_vq_stats = vdpasim_get_vq_stats, .get_vq_state = vdpasim_get_vq_state, .get_vq_align = vdpasim_get_vq_align, .get_vq_group = vdpasim_get_vq_group, .get_device_features = vdpasim_get_device_features, .get_backend_features = vdpasim_get_backend_features, .set_driver_features = vdpasim_set_driver_features, .get_driver_features = vdpasim_get_driver_features, .set_config_cb = vdpasim_set_config_cb, .get_vq_num_max = vdpasim_get_vq_num_max, .get_device_id = vdpasim_get_device_id, .get_vendor_id = vdpasim_get_vendor_id, .get_status = vdpasim_get_status, .set_status = vdpasim_set_status, .reset = vdpasim_reset, .suspend = vdpasim_suspend, .resume = vdpasim_resume, .get_config_size = vdpasim_get_config_size, .get_config = vdpasim_get_config, .set_config = vdpasim_set_config, .get_generation = vdpasim_get_generation, .get_iova_range = vdpasim_get_iova_range, .set_group_asid = vdpasim_set_group_asid, .dma_map = vdpasim_dma_map, .dma_unmap = vdpasim_dma_unmap, .bind_mm = vdpasim_bind_mm, .unbind_mm = vdpasim_unbind_mm, .free = vdpasim_free, }; static const struct vdpa_config_ops vdpasim_batch_config_ops = { .set_vq_address = vdpasim_set_vq_address, .set_vq_num = vdpasim_set_vq_num, .kick_vq = vdpasim_kick_vq, .set_vq_cb = vdpasim_set_vq_cb, .set_vq_ready = vdpasim_set_vq_ready, .get_vq_ready = vdpasim_get_vq_ready, .set_vq_state = vdpasim_set_vq_state, .get_vendor_vq_stats = vdpasim_get_vq_stats, .get_vq_state = vdpasim_get_vq_state, .get_vq_align = vdpasim_get_vq_align, .get_vq_group = vdpasim_get_vq_group, .get_device_features = vdpasim_get_device_features, .get_backend_features = vdpasim_get_backend_features, .set_driver_features = vdpasim_set_driver_features, .get_driver_features = vdpasim_get_driver_features, .set_config_cb = vdpasim_set_config_cb, .get_vq_num_max = vdpasim_get_vq_num_max, .get_device_id = vdpasim_get_device_id, .get_vendor_id = vdpasim_get_vendor_id, .get_status = vdpasim_get_status, .set_status = vdpasim_set_status, .reset = vdpasim_reset, .suspend = vdpasim_suspend, .resume = vdpasim_resume, .get_config_size = vdpasim_get_config_size, .get_config = vdpasim_get_config, .set_config = vdpasim_set_config, .get_generation = vdpasim_get_generation, .get_iova_range = vdpasim_get_iova_range, .set_group_asid = vdpasim_set_group_asid, .set_map = vdpasim_set_map, .bind_mm = vdpasim_bind_mm, .unbind_mm = vdpasim_unbind_mm, .free = vdpasim_free, }; MODULE_VERSION(DRV_VERSION); MODULE_LICENSE(DRV_LICENSE); MODULE_AUTHOR(DRV_AUTHOR); MODULE_DESCRIPTION(DRV_DESC);
linux-master
drivers/vdpa/vdpa_sim/vdpa_sim.c
// SPDX-License-Identifier: GPL-2.0-only /* Copyright(c) 2023 Advanced Micro Devices, Inc */ #include <linux/pci.h> #include <linux/vdpa.h> #include <uapi/linux/vdpa.h> #include <linux/virtio_pci_modern.h> #include <linux/pds/pds_common.h> #include <linux/pds/pds_core_if.h> #include <linux/pds/pds_adminq.h> #include <linux/pds/pds_auxbus.h> #include "vdpa_dev.h" #include "aux_drv.h" #include "cmds.h" #include "debugfs.h" static u64 pds_vdpa_get_driver_features(struct vdpa_device *vdpa_dev); static struct pds_vdpa_device *vdpa_to_pdsv(struct vdpa_device *vdpa_dev) { return container_of(vdpa_dev, struct pds_vdpa_device, vdpa_dev); } static int pds_vdpa_notify_handler(struct notifier_block *nb, unsigned long ecode, void *data) { struct pds_vdpa_device *pdsv = container_of(nb, struct pds_vdpa_device, nb); struct device *dev = &pdsv->vdpa_aux->padev->aux_dev.dev; dev_dbg(dev, "%s: event code %lu\n", __func__, ecode); if (ecode == PDS_EVENT_RESET || ecode == PDS_EVENT_LINK_CHANGE) { if (pdsv->config_cb.callback) pdsv->config_cb.callback(pdsv->config_cb.private); } return 0; } static int pds_vdpa_register_event_handler(struct pds_vdpa_device *pdsv) { struct device *dev = &pdsv->vdpa_aux->padev->aux_dev.dev; struct notifier_block *nb = &pdsv->nb; int err; if (!nb->notifier_call) { nb->notifier_call = pds_vdpa_notify_handler; err = pdsc_register_notify(nb); if (err) { nb->notifier_call = NULL; dev_err(dev, "failed to register pds event handler: %ps\n", ERR_PTR(err)); return -EINVAL; } dev_dbg(dev, "pds event handler registered\n"); } return 0; } static void pds_vdpa_unregister_event_handler(struct pds_vdpa_device *pdsv) { if (pdsv->nb.notifier_call) { pdsc_unregister_notify(&pdsv->nb); pdsv->nb.notifier_call = NULL; } } static int pds_vdpa_set_vq_address(struct vdpa_device *vdpa_dev, u16 qid, u64 desc_addr, u64 driver_addr, u64 device_addr) { struct pds_vdpa_device *pdsv = vdpa_to_pdsv(vdpa_dev); pdsv->vqs[qid].desc_addr = desc_addr; pdsv->vqs[qid].avail_addr = driver_addr; pdsv->vqs[qid].used_addr = device_addr; return 0; } static void pds_vdpa_set_vq_num(struct vdpa_device *vdpa_dev, u16 qid, u32 num) { struct pds_vdpa_device *pdsv = vdpa_to_pdsv(vdpa_dev); pdsv->vqs[qid].q_len = num; } static void pds_vdpa_kick_vq(struct vdpa_device *vdpa_dev, u16 qid) { struct pds_vdpa_device *pdsv = vdpa_to_pdsv(vdpa_dev); iowrite16(qid, pdsv->vqs[qid].notify); } static void pds_vdpa_set_vq_cb(struct vdpa_device *vdpa_dev, u16 qid, struct vdpa_callback *cb) { struct pds_vdpa_device *pdsv = vdpa_to_pdsv(vdpa_dev); pdsv->vqs[qid].event_cb = *cb; } static irqreturn_t pds_vdpa_isr(int irq, void *data) { struct pds_vdpa_vq_info *vq; vq = data; if (vq->event_cb.callback) vq->event_cb.callback(vq->event_cb.private); return IRQ_HANDLED; } static void pds_vdpa_release_irq(struct pds_vdpa_device *pdsv, int qid) { if (pdsv->vqs[qid].irq == VIRTIO_MSI_NO_VECTOR) return; free_irq(pdsv->vqs[qid].irq, &pdsv->vqs[qid]); pdsv->vqs[qid].irq = VIRTIO_MSI_NO_VECTOR; } static void pds_vdpa_set_vq_ready(struct vdpa_device *vdpa_dev, u16 qid, bool ready) { struct pds_vdpa_device *pdsv = vdpa_to_pdsv(vdpa_dev); struct device *dev = &pdsv->vdpa_dev.dev; u64 driver_features; u16 invert_idx = 0; int err; dev_dbg(dev, "%s: qid %d ready %d => %d\n", __func__, qid, pdsv->vqs[qid].ready, ready); if (ready == pdsv->vqs[qid].ready) return; driver_features = pds_vdpa_get_driver_features(vdpa_dev); if (driver_features & BIT_ULL(VIRTIO_F_RING_PACKED)) invert_idx = PDS_VDPA_PACKED_INVERT_IDX; if (ready) { /* Pass vq setup info to DSC using adminq to gather up and * send all info at once so FW can do its full set up in * one easy operation */ err = pds_vdpa_cmd_init_vq(pdsv, qid, invert_idx, &pdsv->vqs[qid]); if (err) { dev_err(dev, "Failed to init vq %d: %pe\n", qid, ERR_PTR(err)); ready = false; } } else { err = pds_vdpa_cmd_reset_vq(pdsv, qid, invert_idx, &pdsv->vqs[qid]); if (err) dev_err(dev, "%s: reset_vq failed qid %d: %pe\n", __func__, qid, ERR_PTR(err)); } pdsv->vqs[qid].ready = ready; } static bool pds_vdpa_get_vq_ready(struct vdpa_device *vdpa_dev, u16 qid) { struct pds_vdpa_device *pdsv = vdpa_to_pdsv(vdpa_dev); return pdsv->vqs[qid].ready; } static int pds_vdpa_set_vq_state(struct vdpa_device *vdpa_dev, u16 qid, const struct vdpa_vq_state *state) { struct pds_vdpa_device *pdsv = vdpa_to_pdsv(vdpa_dev); struct pds_auxiliary_dev *padev = pdsv->vdpa_aux->padev; struct device *dev = &padev->aux_dev.dev; u64 driver_features; u16 avail; u16 used; if (pdsv->vqs[qid].ready) { dev_err(dev, "Setting device position is denied while vq is enabled\n"); return -EINVAL; } driver_features = pds_vdpa_get_driver_features(vdpa_dev); if (driver_features & BIT_ULL(VIRTIO_F_RING_PACKED)) { avail = state->packed.last_avail_idx | (state->packed.last_avail_counter << 15); used = state->packed.last_used_idx | (state->packed.last_used_counter << 15); /* The avail and used index are stored with the packed wrap * counter bit inverted. This way, in case set_vq_state is * not called, the initial value can be set to zero prior to * feature negotiation, and it is good for both packed and * split vq. */ avail ^= PDS_VDPA_PACKED_INVERT_IDX; used ^= PDS_VDPA_PACKED_INVERT_IDX; } else { avail = state->split.avail_index; /* state->split does not provide a used_index: * the vq will be set to "empty" here, and the vq will read * the current used index the next time the vq is kicked. */ used = avail; } if (used != avail) { dev_dbg(dev, "Setting used equal to avail, for interoperability\n"); used = avail; } pdsv->vqs[qid].avail_idx = avail; pdsv->vqs[qid].used_idx = used; return 0; } static int pds_vdpa_get_vq_state(struct vdpa_device *vdpa_dev, u16 qid, struct vdpa_vq_state *state) { struct pds_vdpa_device *pdsv = vdpa_to_pdsv(vdpa_dev); struct pds_auxiliary_dev *padev = pdsv->vdpa_aux->padev; struct device *dev = &padev->aux_dev.dev; u64 driver_features; u16 avail; u16 used; if (pdsv->vqs[qid].ready) { dev_err(dev, "Getting device position is denied while vq is enabled\n"); return -EINVAL; } avail = pdsv->vqs[qid].avail_idx; used = pdsv->vqs[qid].used_idx; driver_features = pds_vdpa_get_driver_features(vdpa_dev); if (driver_features & BIT_ULL(VIRTIO_F_RING_PACKED)) { avail ^= PDS_VDPA_PACKED_INVERT_IDX; used ^= PDS_VDPA_PACKED_INVERT_IDX; state->packed.last_avail_idx = avail & 0x7fff; state->packed.last_avail_counter = avail >> 15; state->packed.last_used_idx = used & 0x7fff; state->packed.last_used_counter = used >> 15; } else { state->split.avail_index = avail; /* state->split does not provide a used_index. */ } return 0; } static struct vdpa_notification_area pds_vdpa_get_vq_notification(struct vdpa_device *vdpa_dev, u16 qid) { struct pds_vdpa_device *pdsv = vdpa_to_pdsv(vdpa_dev); struct virtio_pci_modern_device *vd_mdev; struct vdpa_notification_area area; area.addr = pdsv->vqs[qid].notify_pa; vd_mdev = &pdsv->vdpa_aux->vd_mdev; if (!vd_mdev->notify_offset_multiplier) area.size = PDS_PAGE_SIZE; else area.size = vd_mdev->notify_offset_multiplier; return area; } static int pds_vdpa_get_vq_irq(struct vdpa_device *vdpa_dev, u16 qid) { struct pds_vdpa_device *pdsv = vdpa_to_pdsv(vdpa_dev); return pdsv->vqs[qid].irq; } static u32 pds_vdpa_get_vq_align(struct vdpa_device *vdpa_dev) { return PDS_PAGE_SIZE; } static u32 pds_vdpa_get_vq_group(struct vdpa_device *vdpa_dev, u16 idx) { return 0; } static u64 pds_vdpa_get_device_features(struct vdpa_device *vdpa_dev) { struct pds_vdpa_device *pdsv = vdpa_to_pdsv(vdpa_dev); return pdsv->supported_features; } static int pds_vdpa_set_driver_features(struct vdpa_device *vdpa_dev, u64 features) { struct pds_vdpa_device *pdsv = vdpa_to_pdsv(vdpa_dev); struct device *dev = &pdsv->vdpa_dev.dev; u64 driver_features; u64 nego_features; u64 hw_features; u64 missing; if (!(features & BIT_ULL(VIRTIO_F_ACCESS_PLATFORM)) && features) { dev_err(dev, "VIRTIO_F_ACCESS_PLATFORM is not negotiated\n"); return -EOPNOTSUPP; } /* Check for valid feature bits */ nego_features = features & pdsv->supported_features; missing = features & ~nego_features; if (missing) { dev_err(dev, "Can't support all requested features in %#llx, missing %#llx features\n", features, missing); return -EOPNOTSUPP; } pdsv->negotiated_features = nego_features; driver_features = pds_vdpa_get_driver_features(vdpa_dev); dev_dbg(dev, "%s: %#llx => %#llx\n", __func__, driver_features, nego_features); /* if we're faking the F_MAC, strip it before writing to device */ hw_features = le64_to_cpu(pdsv->vdpa_aux->ident.hw_features); if (!(hw_features & BIT_ULL(VIRTIO_NET_F_MAC))) nego_features &= ~BIT_ULL(VIRTIO_NET_F_MAC); if (driver_features == nego_features) return 0; vp_modern_set_features(&pdsv->vdpa_aux->vd_mdev, nego_features); return 0; } static u64 pds_vdpa_get_driver_features(struct vdpa_device *vdpa_dev) { struct pds_vdpa_device *pdsv = vdpa_to_pdsv(vdpa_dev); return pdsv->negotiated_features; } static void pds_vdpa_set_config_cb(struct vdpa_device *vdpa_dev, struct vdpa_callback *cb) { struct pds_vdpa_device *pdsv = vdpa_to_pdsv(vdpa_dev); pdsv->config_cb.callback = cb->callback; pdsv->config_cb.private = cb->private; } static u16 pds_vdpa_get_vq_num_max(struct vdpa_device *vdpa_dev) { struct pds_vdpa_device *pdsv = vdpa_to_pdsv(vdpa_dev); /* qemu has assert() that vq_num_max <= VIRTQUEUE_MAX_SIZE (1024) */ return min_t(u16, 1024, BIT(le16_to_cpu(pdsv->vdpa_aux->ident.max_qlen))); } static u32 pds_vdpa_get_device_id(struct vdpa_device *vdpa_dev) { return VIRTIO_ID_NET; } static u32 pds_vdpa_get_vendor_id(struct vdpa_device *vdpa_dev) { return PCI_VENDOR_ID_PENSANDO; } static u8 pds_vdpa_get_status(struct vdpa_device *vdpa_dev) { struct pds_vdpa_device *pdsv = vdpa_to_pdsv(vdpa_dev); return vp_modern_get_status(&pdsv->vdpa_aux->vd_mdev); } static int pds_vdpa_request_irqs(struct pds_vdpa_device *pdsv) { struct pci_dev *pdev = pdsv->vdpa_aux->padev->vf_pdev; struct pds_vdpa_aux *vdpa_aux = pdsv->vdpa_aux; struct device *dev = &pdsv->vdpa_dev.dev; int max_vq, nintrs, qid, err; max_vq = vdpa_aux->vdpa_mdev.max_supported_vqs; nintrs = pci_alloc_irq_vectors(pdev, max_vq, max_vq, PCI_IRQ_MSIX); if (nintrs < 0) { dev_err(dev, "Couldn't get %d msix vectors: %pe\n", max_vq, ERR_PTR(nintrs)); return nintrs; } for (qid = 0; qid < pdsv->num_vqs; ++qid) { int irq = pci_irq_vector(pdev, qid); snprintf(pdsv->vqs[qid].irq_name, sizeof(pdsv->vqs[qid].irq_name), "vdpa-%s-%d", dev_name(dev), qid); err = request_irq(irq, pds_vdpa_isr, 0, pdsv->vqs[qid].irq_name, &pdsv->vqs[qid]); if (err) { dev_err(dev, "%s: no irq for qid %d: %pe\n", __func__, qid, ERR_PTR(err)); goto err_release; } pdsv->vqs[qid].irq = irq; } vdpa_aux->nintrs = nintrs; return 0; err_release: while (qid--) pds_vdpa_release_irq(pdsv, qid); pci_free_irq_vectors(pdev); vdpa_aux->nintrs = 0; return err; } static void pds_vdpa_release_irqs(struct pds_vdpa_device *pdsv) { struct pci_dev *pdev = pdsv->vdpa_aux->padev->vf_pdev; struct pds_vdpa_aux *vdpa_aux = pdsv->vdpa_aux; int qid; if (!vdpa_aux->nintrs) return; for (qid = 0; qid < pdsv->num_vqs; qid++) pds_vdpa_release_irq(pdsv, qid); pci_free_irq_vectors(pdev); vdpa_aux->nintrs = 0; } static void pds_vdpa_set_status(struct vdpa_device *vdpa_dev, u8 status) { struct pds_vdpa_device *pdsv = vdpa_to_pdsv(vdpa_dev); struct device *dev = &pdsv->vdpa_dev.dev; u8 old_status; int i; old_status = pds_vdpa_get_status(vdpa_dev); dev_dbg(dev, "%s: old %#x new %#x\n", __func__, old_status, status); if (status & ~old_status & VIRTIO_CONFIG_S_DRIVER_OK) { if (pds_vdpa_request_irqs(pdsv)) status = old_status | VIRTIO_CONFIG_S_FAILED; } pds_vdpa_cmd_set_status(pdsv, status); /* Note: still working with FW on the need for this reset cmd */ if (status == 0) { pds_vdpa_cmd_reset(pdsv); for (i = 0; i < pdsv->num_vqs; i++) { pdsv->vqs[i].avail_idx = 0; pdsv->vqs[i].used_idx = 0; } pds_vdpa_cmd_set_mac(pdsv, pdsv->mac); } if (status & ~old_status & VIRTIO_CONFIG_S_FEATURES_OK) { for (i = 0; i < pdsv->num_vqs; i++) { pdsv->vqs[i].notify = vp_modern_map_vq_notify(&pdsv->vdpa_aux->vd_mdev, i, &pdsv->vqs[i].notify_pa); } } if (old_status & ~status & VIRTIO_CONFIG_S_DRIVER_OK) pds_vdpa_release_irqs(pdsv); } static void pds_vdpa_init_vqs_entry(struct pds_vdpa_device *pdsv, int qid, void __iomem *notify) { memset(&pdsv->vqs[qid], 0, sizeof(pdsv->vqs[0])); pdsv->vqs[qid].qid = qid; pdsv->vqs[qid].pdsv = pdsv; pdsv->vqs[qid].ready = false; pdsv->vqs[qid].irq = VIRTIO_MSI_NO_VECTOR; pdsv->vqs[qid].notify = notify; } static int pds_vdpa_reset(struct vdpa_device *vdpa_dev) { struct pds_vdpa_device *pdsv = vdpa_to_pdsv(vdpa_dev); struct device *dev; int err = 0; u8 status; int i; dev = &pdsv->vdpa_aux->padev->aux_dev.dev; status = pds_vdpa_get_status(vdpa_dev); if (status == 0) return 0; if (status & VIRTIO_CONFIG_S_DRIVER_OK) { /* Reset the vqs */ for (i = 0; i < pdsv->num_vqs && !err; i++) { err = pds_vdpa_cmd_reset_vq(pdsv, i, 0, &pdsv->vqs[i]); if (err) dev_err(dev, "%s: reset_vq failed qid %d: %pe\n", __func__, i, ERR_PTR(err)); } } pds_vdpa_set_status(vdpa_dev, 0); if (status & VIRTIO_CONFIG_S_DRIVER_OK) { /* Reset the vq info */ for (i = 0; i < pdsv->num_vqs && !err; i++) pds_vdpa_init_vqs_entry(pdsv, i, pdsv->vqs[i].notify); } return 0; } static size_t pds_vdpa_get_config_size(struct vdpa_device *vdpa_dev) { return sizeof(struct virtio_net_config); } static void pds_vdpa_get_config(struct vdpa_device *vdpa_dev, unsigned int offset, void *buf, unsigned int len) { struct pds_vdpa_device *pdsv = vdpa_to_pdsv(vdpa_dev); void __iomem *device; if (offset + len > sizeof(struct virtio_net_config)) { WARN(true, "%s: bad read, offset %d len %d\n", __func__, offset, len); return; } device = pdsv->vdpa_aux->vd_mdev.device; memcpy_fromio(buf, device + offset, len); } static void pds_vdpa_set_config(struct vdpa_device *vdpa_dev, unsigned int offset, const void *buf, unsigned int len) { struct pds_vdpa_device *pdsv = vdpa_to_pdsv(vdpa_dev); void __iomem *device; if (offset + len > sizeof(struct virtio_net_config)) { WARN(true, "%s: bad read, offset %d len %d\n", __func__, offset, len); return; } device = pdsv->vdpa_aux->vd_mdev.device; memcpy_toio(device + offset, buf, len); } static const struct vdpa_config_ops pds_vdpa_ops = { .set_vq_address = pds_vdpa_set_vq_address, .set_vq_num = pds_vdpa_set_vq_num, .kick_vq = pds_vdpa_kick_vq, .set_vq_cb = pds_vdpa_set_vq_cb, .set_vq_ready = pds_vdpa_set_vq_ready, .get_vq_ready = pds_vdpa_get_vq_ready, .set_vq_state = pds_vdpa_set_vq_state, .get_vq_state = pds_vdpa_get_vq_state, .get_vq_notification = pds_vdpa_get_vq_notification, .get_vq_irq = pds_vdpa_get_vq_irq, .get_vq_align = pds_vdpa_get_vq_align, .get_vq_group = pds_vdpa_get_vq_group, .get_device_features = pds_vdpa_get_device_features, .set_driver_features = pds_vdpa_set_driver_features, .get_driver_features = pds_vdpa_get_driver_features, .set_config_cb = pds_vdpa_set_config_cb, .get_vq_num_max = pds_vdpa_get_vq_num_max, .get_device_id = pds_vdpa_get_device_id, .get_vendor_id = pds_vdpa_get_vendor_id, .get_status = pds_vdpa_get_status, .set_status = pds_vdpa_set_status, .reset = pds_vdpa_reset, .get_config_size = pds_vdpa_get_config_size, .get_config = pds_vdpa_get_config, .set_config = pds_vdpa_set_config, }; static struct virtio_device_id pds_vdpa_id_table[] = { {VIRTIO_ID_NET, VIRTIO_DEV_ANY_ID}, {0}, }; static int pds_vdpa_dev_add(struct vdpa_mgmt_dev *mdev, const char *name, const struct vdpa_dev_set_config *add_config) { struct pds_vdpa_aux *vdpa_aux; struct pds_vdpa_device *pdsv; struct vdpa_mgmt_dev *mgmt; u16 fw_max_vqs, vq_pairs; struct device *dma_dev; struct pci_dev *pdev; struct device *dev; int err; int i; vdpa_aux = container_of(mdev, struct pds_vdpa_aux, vdpa_mdev); dev = &vdpa_aux->padev->aux_dev.dev; mgmt = &vdpa_aux->vdpa_mdev; if (vdpa_aux->pdsv) { dev_warn(dev, "Multiple vDPA devices on a VF is not supported.\n"); return -EOPNOTSUPP; } pdsv = vdpa_alloc_device(struct pds_vdpa_device, vdpa_dev, dev, &pds_vdpa_ops, 1, 1, name, false); if (IS_ERR(pdsv)) { dev_err(dev, "Failed to allocate vDPA structure: %pe\n", pdsv); return PTR_ERR(pdsv); } vdpa_aux->pdsv = pdsv; pdsv->vdpa_aux = vdpa_aux; pdev = vdpa_aux->padev->vf_pdev; dma_dev = &pdev->dev; pdsv->vdpa_dev.dma_dev = dma_dev; pdsv->supported_features = mgmt->supported_features; if (add_config->mask & BIT_ULL(VDPA_ATTR_DEV_FEATURES)) { u64 unsupp_features = add_config->device_features & ~pdsv->supported_features; if (unsupp_features) { dev_err(dev, "Unsupported features: %#llx\n", unsupp_features); err = -EOPNOTSUPP; goto err_unmap; } pdsv->supported_features = add_config->device_features; } err = pds_vdpa_cmd_reset(pdsv); if (err) { dev_err(dev, "Failed to reset hw: %pe\n", ERR_PTR(err)); goto err_unmap; } err = pds_vdpa_init_hw(pdsv); if (err) { dev_err(dev, "Failed to init hw: %pe\n", ERR_PTR(err)); goto err_unmap; } fw_max_vqs = le16_to_cpu(pdsv->vdpa_aux->ident.max_vqs); vq_pairs = fw_max_vqs / 2; /* Make sure we have the queues being requested */ if (add_config->mask & (1 << VDPA_ATTR_DEV_NET_CFG_MAX_VQP)) vq_pairs = add_config->net.max_vq_pairs; pdsv->num_vqs = 2 * vq_pairs; if (pdsv->supported_features & BIT_ULL(VIRTIO_NET_F_CTRL_VQ)) pdsv->num_vqs++; if (pdsv->num_vqs > fw_max_vqs) { dev_err(dev, "%s: queue count requested %u greater than max %u\n", __func__, pdsv->num_vqs, fw_max_vqs); err = -ENOSPC; goto err_unmap; } if (pdsv->num_vqs != fw_max_vqs) { err = pds_vdpa_cmd_set_max_vq_pairs(pdsv, vq_pairs); if (err) { dev_err(dev, "Failed to set max_vq_pairs: %pe\n", ERR_PTR(err)); goto err_unmap; } } /* Set a mac, either from the user config if provided * or use the device's mac if not 00:..:00 * or set a random mac */ if (add_config->mask & BIT_ULL(VDPA_ATTR_DEV_NET_CFG_MACADDR)) { ether_addr_copy(pdsv->mac, add_config->net.mac); } else { struct virtio_net_config __iomem *vc; vc = pdsv->vdpa_aux->vd_mdev.device; memcpy_fromio(pdsv->mac, vc->mac, sizeof(pdsv->mac)); if (is_zero_ether_addr(pdsv->mac) && (pdsv->supported_features & BIT_ULL(VIRTIO_NET_F_MAC))) { eth_random_addr(pdsv->mac); dev_info(dev, "setting random mac %pM\n", pdsv->mac); } } pds_vdpa_cmd_set_mac(pdsv, pdsv->mac); for (i = 0; i < pdsv->num_vqs; i++) { void __iomem *notify; notify = vp_modern_map_vq_notify(&pdsv->vdpa_aux->vd_mdev, i, &pdsv->vqs[i].notify_pa); pds_vdpa_init_vqs_entry(pdsv, i, notify); } pdsv->vdpa_dev.mdev = &vdpa_aux->vdpa_mdev; err = pds_vdpa_register_event_handler(pdsv); if (err) { dev_err(dev, "Failed to register for PDS events: %pe\n", ERR_PTR(err)); goto err_unmap; } /* We use the _vdpa_register_device() call rather than the * vdpa_register_device() to avoid a deadlock because our * dev_add() is called with the vdpa_dev_lock already set * by vdpa_nl_cmd_dev_add_set_doit() */ err = _vdpa_register_device(&pdsv->vdpa_dev, pdsv->num_vqs); if (err) { dev_err(dev, "Failed to register to vDPA bus: %pe\n", ERR_PTR(err)); goto err_unevent; } pds_vdpa_debugfs_add_vdpadev(vdpa_aux); return 0; err_unevent: pds_vdpa_unregister_event_handler(pdsv); err_unmap: put_device(&pdsv->vdpa_dev.dev); vdpa_aux->pdsv = NULL; return err; } static void pds_vdpa_dev_del(struct vdpa_mgmt_dev *mdev, struct vdpa_device *vdpa_dev) { struct pds_vdpa_device *pdsv = vdpa_to_pdsv(vdpa_dev); struct pds_vdpa_aux *vdpa_aux; pds_vdpa_unregister_event_handler(pdsv); vdpa_aux = container_of(mdev, struct pds_vdpa_aux, vdpa_mdev); _vdpa_unregister_device(vdpa_dev); pds_vdpa_cmd_reset(vdpa_aux->pdsv); pds_vdpa_debugfs_reset_vdpadev(vdpa_aux); vdpa_aux->pdsv = NULL; dev_info(&vdpa_aux->padev->aux_dev.dev, "Removed vdpa device\n"); } static const struct vdpa_mgmtdev_ops pds_vdpa_mgmt_dev_ops = { .dev_add = pds_vdpa_dev_add, .dev_del = pds_vdpa_dev_del }; int pds_vdpa_get_mgmt_info(struct pds_vdpa_aux *vdpa_aux) { union pds_core_adminq_cmd cmd = { .vdpa_ident.opcode = PDS_VDPA_CMD_IDENT, .vdpa_ident.vf_id = cpu_to_le16(vdpa_aux->vf_id), }; union pds_core_adminq_comp comp = {}; struct vdpa_mgmt_dev *mgmt; struct pci_dev *pf_pdev; struct device *pf_dev; struct pci_dev *pdev; dma_addr_t ident_pa; struct device *dev; u16 dev_intrs; u16 max_vqs; int err; dev = &vdpa_aux->padev->aux_dev.dev; pdev = vdpa_aux->padev->vf_pdev; mgmt = &vdpa_aux->vdpa_mdev; /* Get resource info through the PF's adminq. It is a block of info, * so we need to map some memory for PF to make available to the * firmware for writing the data. */ pf_pdev = pci_physfn(vdpa_aux->padev->vf_pdev); pf_dev = &pf_pdev->dev; ident_pa = dma_map_single(pf_dev, &vdpa_aux->ident, sizeof(vdpa_aux->ident), DMA_FROM_DEVICE); if (dma_mapping_error(pf_dev, ident_pa)) { dev_err(dev, "Failed to map ident space\n"); return -ENOMEM; } cmd.vdpa_ident.ident_pa = cpu_to_le64(ident_pa); cmd.vdpa_ident.len = cpu_to_le32(sizeof(vdpa_aux->ident)); err = pds_client_adminq_cmd(vdpa_aux->padev, &cmd, sizeof(cmd.vdpa_ident), &comp, 0); dma_unmap_single(pf_dev, ident_pa, sizeof(vdpa_aux->ident), DMA_FROM_DEVICE); if (err) { dev_err(dev, "Failed to ident hw, status %d: %pe\n", comp.status, ERR_PTR(err)); return err; } max_vqs = le16_to_cpu(vdpa_aux->ident.max_vqs); dev_intrs = pci_msix_vec_count(pdev); dev_dbg(dev, "ident.max_vqs %d dev_intrs %d\n", max_vqs, dev_intrs); max_vqs = min_t(u16, dev_intrs, max_vqs); mgmt->max_supported_vqs = min_t(u16, PDS_VDPA_MAX_QUEUES, max_vqs); vdpa_aux->nintrs = 0; mgmt->ops = &pds_vdpa_mgmt_dev_ops; mgmt->id_table = pds_vdpa_id_table; mgmt->device = dev; mgmt->supported_features = le64_to_cpu(vdpa_aux->ident.hw_features); /* advertise F_MAC even if the device doesn't */ mgmt->supported_features |= BIT_ULL(VIRTIO_NET_F_MAC); mgmt->config_attr_mask = BIT_ULL(VDPA_ATTR_DEV_NET_CFG_MACADDR); mgmt->config_attr_mask |= BIT_ULL(VDPA_ATTR_DEV_NET_CFG_MAX_VQP); mgmt->config_attr_mask |= BIT_ULL(VDPA_ATTR_DEV_FEATURES); return 0; }
linux-master
drivers/vdpa/pds/vdpa_dev.c
// SPDX-License-Identifier: GPL-2.0-only /* Copyright(c) 2023 Advanced Micro Devices, Inc */ #include <linux/pci.h> #include <linux/vdpa.h> #include <linux/pds/pds_common.h> #include <linux/pds/pds_core_if.h> #include <linux/pds/pds_adminq.h> #include <linux/pds/pds_auxbus.h> #include "aux_drv.h" #include "vdpa_dev.h" #include "debugfs.h" static struct dentry *dbfs_dir; void pds_vdpa_debugfs_create(void) { dbfs_dir = debugfs_create_dir(PDS_VDPA_DRV_NAME, NULL); } void pds_vdpa_debugfs_destroy(void) { debugfs_remove_recursive(dbfs_dir); dbfs_dir = NULL; } #define PRINT_SBIT_NAME(__seq, __f, __name) \ do { \ if ((__f) & (__name)) \ seq_printf(__seq, " %s", &#__name[16]); \ } while (0) static void print_status_bits(struct seq_file *seq, u8 status) { seq_puts(seq, "status:"); PRINT_SBIT_NAME(seq, status, VIRTIO_CONFIG_S_ACKNOWLEDGE); PRINT_SBIT_NAME(seq, status, VIRTIO_CONFIG_S_DRIVER); PRINT_SBIT_NAME(seq, status, VIRTIO_CONFIG_S_DRIVER_OK); PRINT_SBIT_NAME(seq, status, VIRTIO_CONFIG_S_FEATURES_OK); PRINT_SBIT_NAME(seq, status, VIRTIO_CONFIG_S_NEEDS_RESET); PRINT_SBIT_NAME(seq, status, VIRTIO_CONFIG_S_FAILED); seq_puts(seq, "\n"); } static void print_feature_bits_all(struct seq_file *seq, u64 features) { int i; seq_puts(seq, "features:"); for (i = 0; i < (sizeof(u64) * 8); i++) { u64 mask = BIT_ULL(i); switch (features & mask) { case BIT_ULL(VIRTIO_NET_F_CSUM): seq_puts(seq, " VIRTIO_NET_F_CSUM"); break; case BIT_ULL(VIRTIO_NET_F_GUEST_CSUM): seq_puts(seq, " VIRTIO_NET_F_GUEST_CSUM"); break; case BIT_ULL(VIRTIO_NET_F_CTRL_GUEST_OFFLOADS): seq_puts(seq, " VIRTIO_NET_F_CTRL_GUEST_OFFLOADS"); break; case BIT_ULL(VIRTIO_NET_F_MTU): seq_puts(seq, " VIRTIO_NET_F_MTU"); break; case BIT_ULL(VIRTIO_NET_F_MAC): seq_puts(seq, " VIRTIO_NET_F_MAC"); break; case BIT_ULL(VIRTIO_NET_F_GUEST_TSO4): seq_puts(seq, " VIRTIO_NET_F_GUEST_TSO4"); break; case BIT_ULL(VIRTIO_NET_F_GUEST_TSO6): seq_puts(seq, " VIRTIO_NET_F_GUEST_TSO6"); break; case BIT_ULL(VIRTIO_NET_F_GUEST_ECN): seq_puts(seq, " VIRTIO_NET_F_GUEST_ECN"); break; case BIT_ULL(VIRTIO_NET_F_GUEST_UFO): seq_puts(seq, " VIRTIO_NET_F_GUEST_UFO"); break; case BIT_ULL(VIRTIO_NET_F_HOST_TSO4): seq_puts(seq, " VIRTIO_NET_F_HOST_TSO4"); break; case BIT_ULL(VIRTIO_NET_F_HOST_TSO6): seq_puts(seq, " VIRTIO_NET_F_HOST_TSO6"); break; case BIT_ULL(VIRTIO_NET_F_HOST_ECN): seq_puts(seq, " VIRTIO_NET_F_HOST_ECN"); break; case BIT_ULL(VIRTIO_NET_F_HOST_UFO): seq_puts(seq, " VIRTIO_NET_F_HOST_UFO"); break; case BIT_ULL(VIRTIO_NET_F_MRG_RXBUF): seq_puts(seq, " VIRTIO_NET_F_MRG_RXBUF"); break; case BIT_ULL(VIRTIO_NET_F_STATUS): seq_puts(seq, " VIRTIO_NET_F_STATUS"); break; case BIT_ULL(VIRTIO_NET_F_CTRL_VQ): seq_puts(seq, " VIRTIO_NET_F_CTRL_VQ"); break; case BIT_ULL(VIRTIO_NET_F_CTRL_RX): seq_puts(seq, " VIRTIO_NET_F_CTRL_RX"); break; case BIT_ULL(VIRTIO_NET_F_CTRL_VLAN): seq_puts(seq, " VIRTIO_NET_F_CTRL_VLAN"); break; case BIT_ULL(VIRTIO_NET_F_CTRL_RX_EXTRA): seq_puts(seq, " VIRTIO_NET_F_CTRL_RX_EXTRA"); break; case BIT_ULL(VIRTIO_NET_F_GUEST_ANNOUNCE): seq_puts(seq, " VIRTIO_NET_F_GUEST_ANNOUNCE"); break; case BIT_ULL(VIRTIO_NET_F_MQ): seq_puts(seq, " VIRTIO_NET_F_MQ"); break; case BIT_ULL(VIRTIO_NET_F_CTRL_MAC_ADDR): seq_puts(seq, " VIRTIO_NET_F_CTRL_MAC_ADDR"); break; case BIT_ULL(VIRTIO_NET_F_HASH_REPORT): seq_puts(seq, " VIRTIO_NET_F_HASH_REPORT"); break; case BIT_ULL(VIRTIO_NET_F_RSS): seq_puts(seq, " VIRTIO_NET_F_RSS"); break; case BIT_ULL(VIRTIO_NET_F_RSC_EXT): seq_puts(seq, " VIRTIO_NET_F_RSC_EXT"); break; case BIT_ULL(VIRTIO_NET_F_STANDBY): seq_puts(seq, " VIRTIO_NET_F_STANDBY"); break; case BIT_ULL(VIRTIO_NET_F_SPEED_DUPLEX): seq_puts(seq, " VIRTIO_NET_F_SPEED_DUPLEX"); break; case BIT_ULL(VIRTIO_F_NOTIFY_ON_EMPTY): seq_puts(seq, " VIRTIO_F_NOTIFY_ON_EMPTY"); break; case BIT_ULL(VIRTIO_F_ANY_LAYOUT): seq_puts(seq, " VIRTIO_F_ANY_LAYOUT"); break; case BIT_ULL(VIRTIO_F_VERSION_1): seq_puts(seq, " VIRTIO_F_VERSION_1"); break; case BIT_ULL(VIRTIO_F_ACCESS_PLATFORM): seq_puts(seq, " VIRTIO_F_ACCESS_PLATFORM"); break; case BIT_ULL(VIRTIO_F_RING_PACKED): seq_puts(seq, " VIRTIO_F_RING_PACKED"); break; case BIT_ULL(VIRTIO_F_ORDER_PLATFORM): seq_puts(seq, " VIRTIO_F_ORDER_PLATFORM"); break; case BIT_ULL(VIRTIO_F_SR_IOV): seq_puts(seq, " VIRTIO_F_SR_IOV"); break; case 0: break; default: seq_printf(seq, " bit_%d", i); break; } } seq_puts(seq, "\n"); } void pds_vdpa_debugfs_add_pcidev(struct pds_vdpa_aux *vdpa_aux) { vdpa_aux->dentry = debugfs_create_dir(pci_name(vdpa_aux->padev->vf_pdev), dbfs_dir); } static int identity_show(struct seq_file *seq, void *v) { struct pds_vdpa_aux *vdpa_aux = seq->private; struct vdpa_mgmt_dev *mgmt; u64 hw_features; seq_printf(seq, "aux_dev: %s\n", dev_name(&vdpa_aux->padev->aux_dev.dev)); mgmt = &vdpa_aux->vdpa_mdev; seq_printf(seq, "max_vqs: %d\n", mgmt->max_supported_vqs); seq_printf(seq, "config_attr_mask: %#llx\n", mgmt->config_attr_mask); hw_features = le64_to_cpu(vdpa_aux->ident.hw_features); seq_printf(seq, "hw_features: %#llx\n", hw_features); print_feature_bits_all(seq, hw_features); return 0; } DEFINE_SHOW_ATTRIBUTE(identity); void pds_vdpa_debugfs_add_ident(struct pds_vdpa_aux *vdpa_aux) { debugfs_create_file("identity", 0400, vdpa_aux->dentry, vdpa_aux, &identity_fops); } static int config_show(struct seq_file *seq, void *v) { struct pds_vdpa_device *pdsv = seq->private; struct virtio_net_config vc; u8 status; memcpy_fromio(&vc, pdsv->vdpa_aux->vd_mdev.device, sizeof(struct virtio_net_config)); seq_printf(seq, "mac: %pM\n", vc.mac); seq_printf(seq, "max_virtqueue_pairs: %d\n", __virtio16_to_cpu(true, vc.max_virtqueue_pairs)); seq_printf(seq, "mtu: %d\n", __virtio16_to_cpu(true, vc.mtu)); seq_printf(seq, "speed: %d\n", le32_to_cpu(vc.speed)); seq_printf(seq, "duplex: %d\n", vc.duplex); seq_printf(seq, "rss_max_key_size: %d\n", vc.rss_max_key_size); seq_printf(seq, "rss_max_indirection_table_length: %d\n", le16_to_cpu(vc.rss_max_indirection_table_length)); seq_printf(seq, "supported_hash_types: %#x\n", le32_to_cpu(vc.supported_hash_types)); seq_printf(seq, "vn_status: %#x\n", __virtio16_to_cpu(true, vc.status)); status = vp_modern_get_status(&pdsv->vdpa_aux->vd_mdev); seq_printf(seq, "dev_status: %#x\n", status); print_status_bits(seq, status); seq_printf(seq, "negotiated_features: %#llx\n", pdsv->negotiated_features); print_feature_bits_all(seq, pdsv->negotiated_features); seq_printf(seq, "vdpa_index: %d\n", pdsv->vdpa_index); seq_printf(seq, "num_vqs: %d\n", pdsv->num_vqs); return 0; } DEFINE_SHOW_ATTRIBUTE(config); static int vq_show(struct seq_file *seq, void *v) { struct pds_vdpa_vq_info *vq = seq->private; seq_printf(seq, "ready: %d\n", vq->ready); seq_printf(seq, "desc_addr: %#llx\n", vq->desc_addr); seq_printf(seq, "avail_addr: %#llx\n", vq->avail_addr); seq_printf(seq, "used_addr: %#llx\n", vq->used_addr); seq_printf(seq, "q_len: %d\n", vq->q_len); seq_printf(seq, "qid: %d\n", vq->qid); seq_printf(seq, "doorbell: %#llx\n", vq->doorbell); seq_printf(seq, "avail_idx: %d\n", vq->avail_idx); seq_printf(seq, "used_idx: %d\n", vq->used_idx); seq_printf(seq, "irq: %d\n", vq->irq); seq_printf(seq, "irq-name: %s\n", vq->irq_name); return 0; } DEFINE_SHOW_ATTRIBUTE(vq); void pds_vdpa_debugfs_add_vdpadev(struct pds_vdpa_aux *vdpa_aux) { int i; debugfs_create_file("config", 0400, vdpa_aux->dentry, vdpa_aux->pdsv, &config_fops); for (i = 0; i < vdpa_aux->pdsv->num_vqs; i++) { char name[8]; snprintf(name, sizeof(name), "vq%02d", i); debugfs_create_file(name, 0400, vdpa_aux->dentry, &vdpa_aux->pdsv->vqs[i], &vq_fops); } } void pds_vdpa_debugfs_del_vdpadev(struct pds_vdpa_aux *vdpa_aux) { debugfs_remove_recursive(vdpa_aux->dentry); vdpa_aux->dentry = NULL; } void pds_vdpa_debugfs_reset_vdpadev(struct pds_vdpa_aux *vdpa_aux) { /* we don't keep track of the entries, so remove it all * then rebuild the basics */ pds_vdpa_debugfs_del_vdpadev(vdpa_aux); pds_vdpa_debugfs_add_pcidev(vdpa_aux); pds_vdpa_debugfs_add_ident(vdpa_aux); }
linux-master
drivers/vdpa/pds/debugfs.c
// SPDX-License-Identifier: GPL-2.0-only /* Copyright(c) 2023 Advanced Micro Devices, Inc */ #include <linux/auxiliary_bus.h> #include <linux/pci.h> #include <linux/vdpa.h> #include <linux/virtio_pci_modern.h> #include <linux/pds/pds_common.h> #include <linux/pds/pds_core_if.h> #include <linux/pds/pds_adminq.h> #include <linux/pds/pds_auxbus.h> #include "aux_drv.h" #include "debugfs.h" #include "vdpa_dev.h" static const struct auxiliary_device_id pds_vdpa_id_table[] = { { .name = PDS_VDPA_DEV_NAME, }, {}, }; static int pds_vdpa_device_id_check(struct pci_dev *pdev) { if (pdev->device != PCI_DEVICE_ID_PENSANDO_VDPA_VF || pdev->vendor != PCI_VENDOR_ID_PENSANDO) return -ENODEV; return PCI_DEVICE_ID_PENSANDO_VDPA_VF; } static int pds_vdpa_probe(struct auxiliary_device *aux_dev, const struct auxiliary_device_id *id) { struct pds_auxiliary_dev *padev = container_of(aux_dev, struct pds_auxiliary_dev, aux_dev); struct device *dev = &aux_dev->dev; struct pds_vdpa_aux *vdpa_aux; int err; vdpa_aux = kzalloc(sizeof(*vdpa_aux), GFP_KERNEL); if (!vdpa_aux) return -ENOMEM; vdpa_aux->padev = padev; vdpa_aux->vf_id = pci_iov_vf_id(padev->vf_pdev); auxiliary_set_drvdata(aux_dev, vdpa_aux); /* Get device ident info and set up the vdpa_mgmt_dev */ err = pds_vdpa_get_mgmt_info(vdpa_aux); if (err) goto err_free_mem; /* Find the virtio configuration */ vdpa_aux->vd_mdev.pci_dev = padev->vf_pdev; vdpa_aux->vd_mdev.device_id_check = pds_vdpa_device_id_check; vdpa_aux->vd_mdev.dma_mask = DMA_BIT_MASK(PDS_CORE_ADDR_LEN); err = vp_modern_probe(&vdpa_aux->vd_mdev); if (err) { dev_err(dev, "Unable to probe for virtio configuration: %pe\n", ERR_PTR(err)); goto err_free_mgmt_info; } /* Let vdpa know that we can provide devices */ err = vdpa_mgmtdev_register(&vdpa_aux->vdpa_mdev); if (err) { dev_err(dev, "%s: Failed to initialize vdpa_mgmt interface: %pe\n", __func__, ERR_PTR(err)); goto err_free_virtio; } pds_vdpa_debugfs_add_pcidev(vdpa_aux); pds_vdpa_debugfs_add_ident(vdpa_aux); return 0; err_free_virtio: vp_modern_remove(&vdpa_aux->vd_mdev); err_free_mgmt_info: pci_free_irq_vectors(padev->vf_pdev); err_free_mem: kfree(vdpa_aux); auxiliary_set_drvdata(aux_dev, NULL); return err; } static void pds_vdpa_remove(struct auxiliary_device *aux_dev) { struct pds_vdpa_aux *vdpa_aux = auxiliary_get_drvdata(aux_dev); struct device *dev = &aux_dev->dev; vdpa_mgmtdev_unregister(&vdpa_aux->vdpa_mdev); vp_modern_remove(&vdpa_aux->vd_mdev); pci_free_irq_vectors(vdpa_aux->padev->vf_pdev); pds_vdpa_debugfs_del_vdpadev(vdpa_aux); kfree(vdpa_aux); auxiliary_set_drvdata(aux_dev, NULL); dev_info(dev, "Removed\n"); } static struct auxiliary_driver pds_vdpa_driver = { .name = PDS_DEV_TYPE_VDPA_STR, .probe = pds_vdpa_probe, .remove = pds_vdpa_remove, .id_table = pds_vdpa_id_table, }; static void __exit pds_vdpa_cleanup(void) { auxiliary_driver_unregister(&pds_vdpa_driver); pds_vdpa_debugfs_destroy(); } module_exit(pds_vdpa_cleanup); static int __init pds_vdpa_init(void) { int err; pds_vdpa_debugfs_create(); err = auxiliary_driver_register(&pds_vdpa_driver); if (err) { pr_err("%s: aux driver register failed: %pe\n", PDS_VDPA_DRV_NAME, ERR_PTR(err)); pds_vdpa_debugfs_destroy(); } return err; } module_init(pds_vdpa_init); MODULE_DESCRIPTION(PDS_VDPA_DRV_DESCRIPTION); MODULE_AUTHOR("Advanced Micro Devices, Inc"); MODULE_LICENSE("GPL");
linux-master
drivers/vdpa/pds/aux_drv.c
// SPDX-License-Identifier: GPL-2.0-only /* Copyright(c) 2023 Advanced Micro Devices, Inc */ #include <linux/vdpa.h> #include <linux/virtio_pci_modern.h> #include <linux/pds/pds_common.h> #include <linux/pds/pds_core_if.h> #include <linux/pds/pds_adminq.h> #include <linux/pds/pds_auxbus.h> #include "vdpa_dev.h" #include "aux_drv.h" #include "cmds.h" int pds_vdpa_init_hw(struct pds_vdpa_device *pdsv) { struct pds_auxiliary_dev *padev = pdsv->vdpa_aux->padev; struct device *dev = &padev->aux_dev.dev; union pds_core_adminq_cmd cmd = { .vdpa_init.opcode = PDS_VDPA_CMD_INIT, .vdpa_init.vdpa_index = pdsv->vdpa_index, .vdpa_init.vf_id = cpu_to_le16(pdsv->vdpa_aux->vf_id), }; union pds_core_adminq_comp comp = {}; int err; /* Initialize the vdpa/virtio device */ err = pds_client_adminq_cmd(padev, &cmd, sizeof(cmd.vdpa_init), &comp, 0); if (err) dev_dbg(dev, "Failed to init hw, status %d: %pe\n", comp.status, ERR_PTR(err)); return err; } int pds_vdpa_cmd_reset(struct pds_vdpa_device *pdsv) { struct pds_auxiliary_dev *padev = pdsv->vdpa_aux->padev; struct device *dev = &padev->aux_dev.dev; union pds_core_adminq_cmd cmd = { .vdpa.opcode = PDS_VDPA_CMD_RESET, .vdpa.vdpa_index = pdsv->vdpa_index, .vdpa.vf_id = cpu_to_le16(pdsv->vdpa_aux->vf_id), }; union pds_core_adminq_comp comp = {}; int err; err = pds_client_adminq_cmd(padev, &cmd, sizeof(cmd.vdpa), &comp, 0); if (err) dev_dbg(dev, "Failed to reset hw, status %d: %pe\n", comp.status, ERR_PTR(err)); return err; } int pds_vdpa_cmd_set_status(struct pds_vdpa_device *pdsv, u8 status) { struct pds_auxiliary_dev *padev = pdsv->vdpa_aux->padev; struct device *dev = &padev->aux_dev.dev; union pds_core_adminq_cmd cmd = { .vdpa_status.opcode = PDS_VDPA_CMD_STATUS_UPDATE, .vdpa_status.vdpa_index = pdsv->vdpa_index, .vdpa_status.vf_id = cpu_to_le16(pdsv->vdpa_aux->vf_id), .vdpa_status.status = status, }; union pds_core_adminq_comp comp = {}; int err; err = pds_client_adminq_cmd(padev, &cmd, sizeof(cmd.vdpa_status), &comp, 0); if (err) dev_dbg(dev, "Failed to set status to %#x, error status %d: %pe\n", status, comp.status, ERR_PTR(err)); return err; } int pds_vdpa_cmd_set_mac(struct pds_vdpa_device *pdsv, u8 *mac) { struct pds_auxiliary_dev *padev = pdsv->vdpa_aux->padev; struct device *dev = &padev->aux_dev.dev; union pds_core_adminq_cmd cmd = { .vdpa_setattr.opcode = PDS_VDPA_CMD_SET_ATTR, .vdpa_setattr.vdpa_index = pdsv->vdpa_index, .vdpa_setattr.vf_id = cpu_to_le16(pdsv->vdpa_aux->vf_id), .vdpa_setattr.attr = PDS_VDPA_ATTR_MAC, }; union pds_core_adminq_comp comp = {}; int err; ether_addr_copy(cmd.vdpa_setattr.mac, mac); err = pds_client_adminq_cmd(padev, &cmd, sizeof(cmd.vdpa_setattr), &comp, 0); if (err) dev_dbg(dev, "Failed to set mac address %pM, status %d: %pe\n", mac, comp.status, ERR_PTR(err)); return err; } int pds_vdpa_cmd_set_max_vq_pairs(struct pds_vdpa_device *pdsv, u16 max_vqp) { struct pds_auxiliary_dev *padev = pdsv->vdpa_aux->padev; struct device *dev = &padev->aux_dev.dev; union pds_core_adminq_cmd cmd = { .vdpa_setattr.opcode = PDS_VDPA_CMD_SET_ATTR, .vdpa_setattr.vdpa_index = pdsv->vdpa_index, .vdpa_setattr.vf_id = cpu_to_le16(pdsv->vdpa_aux->vf_id), .vdpa_setattr.attr = PDS_VDPA_ATTR_MAX_VQ_PAIRS, .vdpa_setattr.max_vq_pairs = cpu_to_le16(max_vqp), }; union pds_core_adminq_comp comp = {}; int err; err = pds_client_adminq_cmd(padev, &cmd, sizeof(cmd.vdpa_setattr), &comp, 0); if (err) dev_dbg(dev, "Failed to set max vq pairs %u, status %d: %pe\n", max_vqp, comp.status, ERR_PTR(err)); return err; } int pds_vdpa_cmd_init_vq(struct pds_vdpa_device *pdsv, u16 qid, u16 invert_idx, struct pds_vdpa_vq_info *vq_info) { struct pds_auxiliary_dev *padev = pdsv->vdpa_aux->padev; struct device *dev = &padev->aux_dev.dev; union pds_core_adminq_cmd cmd = { .vdpa_vq_init.opcode = PDS_VDPA_CMD_VQ_INIT, .vdpa_vq_init.vdpa_index = pdsv->vdpa_index, .vdpa_vq_init.vf_id = cpu_to_le16(pdsv->vdpa_aux->vf_id), .vdpa_vq_init.qid = cpu_to_le16(qid), .vdpa_vq_init.len = cpu_to_le16(ilog2(vq_info->q_len)), .vdpa_vq_init.desc_addr = cpu_to_le64(vq_info->desc_addr), .vdpa_vq_init.avail_addr = cpu_to_le64(vq_info->avail_addr), .vdpa_vq_init.used_addr = cpu_to_le64(vq_info->used_addr), .vdpa_vq_init.intr_index = cpu_to_le16(qid), .vdpa_vq_init.avail_index = cpu_to_le16(vq_info->avail_idx ^ invert_idx), .vdpa_vq_init.used_index = cpu_to_le16(vq_info->used_idx ^ invert_idx), }; union pds_core_adminq_comp comp = {}; int err; dev_dbg(dev, "%s: qid %d len %d desc_addr %#llx avail_addr %#llx used_addr %#llx\n", __func__, qid, ilog2(vq_info->q_len), vq_info->desc_addr, vq_info->avail_addr, vq_info->used_addr); err = pds_client_adminq_cmd(padev, &cmd, sizeof(cmd.vdpa_vq_init), &comp, 0); if (err) dev_dbg(dev, "Failed to init vq %d, status %d: %pe\n", qid, comp.status, ERR_PTR(err)); return err; } int pds_vdpa_cmd_reset_vq(struct pds_vdpa_device *pdsv, u16 qid, u16 invert_idx, struct pds_vdpa_vq_info *vq_info) { struct pds_auxiliary_dev *padev = pdsv->vdpa_aux->padev; struct device *dev = &padev->aux_dev.dev; union pds_core_adminq_cmd cmd = { .vdpa_vq_reset.opcode = PDS_VDPA_CMD_VQ_RESET, .vdpa_vq_reset.vdpa_index = pdsv->vdpa_index, .vdpa_vq_reset.vf_id = cpu_to_le16(pdsv->vdpa_aux->vf_id), .vdpa_vq_reset.qid = cpu_to_le16(qid), }; union pds_core_adminq_comp comp = {}; int err; err = pds_client_adminq_cmd(padev, &cmd, sizeof(cmd.vdpa_vq_reset), &comp, 0); if (err) { dev_dbg(dev, "Failed to reset vq %d, status %d: %pe\n", qid, comp.status, ERR_PTR(err)); return err; } vq_info->avail_idx = le16_to_cpu(comp.vdpa_vq_reset.avail_index) ^ invert_idx; vq_info->used_idx = le16_to_cpu(comp.vdpa_vq_reset.used_index) ^ invert_idx; return 0; }
linux-master
drivers/vdpa/pds/cmds.c
// SPDX-License-Identifier: GPL-2.0-only /* * vDPA bridge driver for Alibaba ENI(Elastic Network Interface) * * Copyright (c) 2021, Alibaba Inc. All rights reserved. * Author: Wu Zongyong <[email protected]> * */ #include "linux/bits.h" #include <linux/interrupt.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/vdpa.h> #include <linux/virtio.h> #include <linux/virtio_config.h> #include <linux/virtio_ring.h> #include <linux/virtio_pci.h> #include <linux/virtio_pci_legacy.h> #include <uapi/linux/virtio_net.h> #define ENI_MSIX_NAME_SIZE 256 #define ENI_ERR(pdev, fmt, ...) \ dev_err(&pdev->dev, "%s"fmt, "eni_vdpa: ", ##__VA_ARGS__) #define ENI_DBG(pdev, fmt, ...) \ dev_dbg(&pdev->dev, "%s"fmt, "eni_vdpa: ", ##__VA_ARGS__) #define ENI_INFO(pdev, fmt, ...) \ dev_info(&pdev->dev, "%s"fmt, "eni_vdpa: ", ##__VA_ARGS__) struct eni_vring { void __iomem *notify; char msix_name[ENI_MSIX_NAME_SIZE]; struct vdpa_callback cb; int irq; }; struct eni_vdpa { struct vdpa_device vdpa; struct virtio_pci_legacy_device ldev; struct eni_vring *vring; struct vdpa_callback config_cb; char msix_name[ENI_MSIX_NAME_SIZE]; int config_irq; int queues; int vectors; }; static struct eni_vdpa *vdpa_to_eni(struct vdpa_device *vdpa) { return container_of(vdpa, struct eni_vdpa, vdpa); } static struct virtio_pci_legacy_device *vdpa_to_ldev(struct vdpa_device *vdpa) { struct eni_vdpa *eni_vdpa = vdpa_to_eni(vdpa); return &eni_vdpa->ldev; } static u64 eni_vdpa_get_device_features(struct vdpa_device *vdpa) { struct virtio_pci_legacy_device *ldev = vdpa_to_ldev(vdpa); u64 features = vp_legacy_get_features(ldev); features |= BIT_ULL(VIRTIO_F_ACCESS_PLATFORM); features |= BIT_ULL(VIRTIO_F_ORDER_PLATFORM); return features; } static int eni_vdpa_set_driver_features(struct vdpa_device *vdpa, u64 features) { struct virtio_pci_legacy_device *ldev = vdpa_to_ldev(vdpa); if (!(features & BIT_ULL(VIRTIO_NET_F_MRG_RXBUF)) && features) { ENI_ERR(ldev->pci_dev, "VIRTIO_NET_F_MRG_RXBUF is not negotiated\n"); return -EINVAL; } vp_legacy_set_features(ldev, (u32)features); return 0; } static u64 eni_vdpa_get_driver_features(struct vdpa_device *vdpa) { struct virtio_pci_legacy_device *ldev = vdpa_to_ldev(vdpa); return vp_legacy_get_driver_features(ldev); } static u8 eni_vdpa_get_status(struct vdpa_device *vdpa) { struct virtio_pci_legacy_device *ldev = vdpa_to_ldev(vdpa); return vp_legacy_get_status(ldev); } static int eni_vdpa_get_vq_irq(struct vdpa_device *vdpa, u16 idx) { struct eni_vdpa *eni_vdpa = vdpa_to_eni(vdpa); int irq = eni_vdpa->vring[idx].irq; if (irq == VIRTIO_MSI_NO_VECTOR) return -EINVAL; return irq; } static void eni_vdpa_free_irq(struct eni_vdpa *eni_vdpa) { struct virtio_pci_legacy_device *ldev = &eni_vdpa->ldev; struct pci_dev *pdev = ldev->pci_dev; int i; for (i = 0; i < eni_vdpa->queues; i++) { if (eni_vdpa->vring[i].irq != VIRTIO_MSI_NO_VECTOR) { vp_legacy_queue_vector(ldev, i, VIRTIO_MSI_NO_VECTOR); devm_free_irq(&pdev->dev, eni_vdpa->vring[i].irq, &eni_vdpa->vring[i]); eni_vdpa->vring[i].irq = VIRTIO_MSI_NO_VECTOR; } } if (eni_vdpa->config_irq != VIRTIO_MSI_NO_VECTOR) { vp_legacy_config_vector(ldev, VIRTIO_MSI_NO_VECTOR); devm_free_irq(&pdev->dev, eni_vdpa->config_irq, eni_vdpa); eni_vdpa->config_irq = VIRTIO_MSI_NO_VECTOR; } if (eni_vdpa->vectors) { pci_free_irq_vectors(pdev); eni_vdpa->vectors = 0; } } static irqreturn_t eni_vdpa_vq_handler(int irq, void *arg) { struct eni_vring *vring = arg; if (vring->cb.callback) return vring->cb.callback(vring->cb.private); return IRQ_HANDLED; } static irqreturn_t eni_vdpa_config_handler(int irq, void *arg) { struct eni_vdpa *eni_vdpa = arg; if (eni_vdpa->config_cb.callback) return eni_vdpa->config_cb.callback(eni_vdpa->config_cb.private); return IRQ_HANDLED; } static int eni_vdpa_request_irq(struct eni_vdpa *eni_vdpa) { struct virtio_pci_legacy_device *ldev = &eni_vdpa->ldev; struct pci_dev *pdev = ldev->pci_dev; int i, ret, irq; int queues = eni_vdpa->queues; int vectors = queues + 1; ret = pci_alloc_irq_vectors(pdev, vectors, vectors, PCI_IRQ_MSIX); if (ret != vectors) { ENI_ERR(pdev, "failed to allocate irq vectors want %d but %d\n", vectors, ret); return ret; } eni_vdpa->vectors = vectors; for (i = 0; i < queues; i++) { snprintf(eni_vdpa->vring[i].msix_name, ENI_MSIX_NAME_SIZE, "eni-vdpa[%s]-%d\n", pci_name(pdev), i); irq = pci_irq_vector(pdev, i); ret = devm_request_irq(&pdev->dev, irq, eni_vdpa_vq_handler, 0, eni_vdpa->vring[i].msix_name, &eni_vdpa->vring[i]); if (ret) { ENI_ERR(pdev, "failed to request irq for vq %d\n", i); goto err; } vp_legacy_queue_vector(ldev, i, i); eni_vdpa->vring[i].irq = irq; } snprintf(eni_vdpa->msix_name, ENI_MSIX_NAME_SIZE, "eni-vdpa[%s]-config\n", pci_name(pdev)); irq = pci_irq_vector(pdev, queues); ret = devm_request_irq(&pdev->dev, irq, eni_vdpa_config_handler, 0, eni_vdpa->msix_name, eni_vdpa); if (ret) { ENI_ERR(pdev, "failed to request irq for config vq %d\n", i); goto err; } vp_legacy_config_vector(ldev, queues); eni_vdpa->config_irq = irq; return 0; err: eni_vdpa_free_irq(eni_vdpa); return ret; } static void eni_vdpa_set_status(struct vdpa_device *vdpa, u8 status) { struct eni_vdpa *eni_vdpa = vdpa_to_eni(vdpa); struct virtio_pci_legacy_device *ldev = &eni_vdpa->ldev; u8 s = eni_vdpa_get_status(vdpa); if (status & VIRTIO_CONFIG_S_DRIVER_OK && !(s & VIRTIO_CONFIG_S_DRIVER_OK)) { eni_vdpa_request_irq(eni_vdpa); } vp_legacy_set_status(ldev, status); if (!(status & VIRTIO_CONFIG_S_DRIVER_OK) && (s & VIRTIO_CONFIG_S_DRIVER_OK)) eni_vdpa_free_irq(eni_vdpa); } static int eni_vdpa_reset(struct vdpa_device *vdpa) { struct eni_vdpa *eni_vdpa = vdpa_to_eni(vdpa); struct virtio_pci_legacy_device *ldev = &eni_vdpa->ldev; u8 s = eni_vdpa_get_status(vdpa); vp_legacy_set_status(ldev, 0); if (s & VIRTIO_CONFIG_S_DRIVER_OK) eni_vdpa_free_irq(eni_vdpa); return 0; } static u16 eni_vdpa_get_vq_num_max(struct vdpa_device *vdpa) { struct virtio_pci_legacy_device *ldev = vdpa_to_ldev(vdpa); return vp_legacy_get_queue_size(ldev, 0); } static u16 eni_vdpa_get_vq_num_min(struct vdpa_device *vdpa) { struct virtio_pci_legacy_device *ldev = vdpa_to_ldev(vdpa); return vp_legacy_get_queue_size(ldev, 0); } static int eni_vdpa_get_vq_state(struct vdpa_device *vdpa, u16 qid, struct vdpa_vq_state *state) { return -EOPNOTSUPP; } static int eni_vdpa_set_vq_state(struct vdpa_device *vdpa, u16 qid, const struct vdpa_vq_state *state) { struct virtio_pci_legacy_device *ldev = vdpa_to_ldev(vdpa); const struct vdpa_vq_state_split *split = &state->split; /* ENI is build upon virtio-pci specfication which not support * to set state of virtqueue. But if the state is equal to the * device initial state by chance, we can let it go. */ if (!vp_legacy_get_queue_enable(ldev, qid) && split->avail_index == 0) return 0; return -EOPNOTSUPP; } static void eni_vdpa_set_vq_cb(struct vdpa_device *vdpa, u16 qid, struct vdpa_callback *cb) { struct eni_vdpa *eni_vdpa = vdpa_to_eni(vdpa); eni_vdpa->vring[qid].cb = *cb; } static void eni_vdpa_set_vq_ready(struct vdpa_device *vdpa, u16 qid, bool ready) { struct virtio_pci_legacy_device *ldev = vdpa_to_ldev(vdpa); /* ENI is a legacy virtio-pci device. This is not supported * by specification. But we can disable virtqueue by setting * address to 0. */ if (!ready) vp_legacy_set_queue_address(ldev, qid, 0); } static bool eni_vdpa_get_vq_ready(struct vdpa_device *vdpa, u16 qid) { struct virtio_pci_legacy_device *ldev = vdpa_to_ldev(vdpa); return vp_legacy_get_queue_enable(ldev, qid); } static void eni_vdpa_set_vq_num(struct vdpa_device *vdpa, u16 qid, u32 num) { struct virtio_pci_legacy_device *ldev = vdpa_to_ldev(vdpa); struct pci_dev *pdev = ldev->pci_dev; u16 n = vp_legacy_get_queue_size(ldev, qid); /* ENI is a legacy virtio-pci device which not allow to change * virtqueue size. Just report a error if someone tries to * change it. */ if (num != n) ENI_ERR(pdev, "not support to set vq %u fixed num %u to %u\n", qid, n, num); } static int eni_vdpa_set_vq_address(struct vdpa_device *vdpa, u16 qid, u64 desc_area, u64 driver_area, u64 device_area) { struct virtio_pci_legacy_device *ldev = vdpa_to_ldev(vdpa); u32 pfn = desc_area >> VIRTIO_PCI_QUEUE_ADDR_SHIFT; vp_legacy_set_queue_address(ldev, qid, pfn); return 0; } static void eni_vdpa_kick_vq(struct vdpa_device *vdpa, u16 qid) { struct eni_vdpa *eni_vdpa = vdpa_to_eni(vdpa); iowrite16(qid, eni_vdpa->vring[qid].notify); } static u32 eni_vdpa_get_device_id(struct vdpa_device *vdpa) { struct virtio_pci_legacy_device *ldev = vdpa_to_ldev(vdpa); return ldev->id.device; } static u32 eni_vdpa_get_vendor_id(struct vdpa_device *vdpa) { struct virtio_pci_legacy_device *ldev = vdpa_to_ldev(vdpa); return ldev->id.vendor; } static u32 eni_vdpa_get_vq_align(struct vdpa_device *vdpa) { return VIRTIO_PCI_VRING_ALIGN; } static size_t eni_vdpa_get_config_size(struct vdpa_device *vdpa) { return sizeof(struct virtio_net_config); } static void eni_vdpa_get_config(struct vdpa_device *vdpa, unsigned int offset, void *buf, unsigned int len) { struct eni_vdpa *eni_vdpa = vdpa_to_eni(vdpa); struct virtio_pci_legacy_device *ldev = &eni_vdpa->ldev; void __iomem *ioaddr = ldev->ioaddr + VIRTIO_PCI_CONFIG_OFF(eni_vdpa->vectors) + offset; u8 *p = buf; int i; for (i = 0; i < len; i++) *p++ = ioread8(ioaddr + i); } static void eni_vdpa_set_config(struct vdpa_device *vdpa, unsigned int offset, const void *buf, unsigned int len) { struct eni_vdpa *eni_vdpa = vdpa_to_eni(vdpa); struct virtio_pci_legacy_device *ldev = &eni_vdpa->ldev; void __iomem *ioaddr = ldev->ioaddr + VIRTIO_PCI_CONFIG_OFF(eni_vdpa->vectors) + offset; const u8 *p = buf; int i; for (i = 0; i < len; i++) iowrite8(*p++, ioaddr + i); } static void eni_vdpa_set_config_cb(struct vdpa_device *vdpa, struct vdpa_callback *cb) { struct eni_vdpa *eni_vdpa = vdpa_to_eni(vdpa); eni_vdpa->config_cb = *cb; } static const struct vdpa_config_ops eni_vdpa_ops = { .get_device_features = eni_vdpa_get_device_features, .set_driver_features = eni_vdpa_set_driver_features, .get_driver_features = eni_vdpa_get_driver_features, .get_status = eni_vdpa_get_status, .set_status = eni_vdpa_set_status, .reset = eni_vdpa_reset, .get_vq_num_max = eni_vdpa_get_vq_num_max, .get_vq_num_min = eni_vdpa_get_vq_num_min, .get_vq_state = eni_vdpa_get_vq_state, .set_vq_state = eni_vdpa_set_vq_state, .set_vq_cb = eni_vdpa_set_vq_cb, .set_vq_ready = eni_vdpa_set_vq_ready, .get_vq_ready = eni_vdpa_get_vq_ready, .set_vq_num = eni_vdpa_set_vq_num, .set_vq_address = eni_vdpa_set_vq_address, .kick_vq = eni_vdpa_kick_vq, .get_device_id = eni_vdpa_get_device_id, .get_vendor_id = eni_vdpa_get_vendor_id, .get_vq_align = eni_vdpa_get_vq_align, .get_config_size = eni_vdpa_get_config_size, .get_config = eni_vdpa_get_config, .set_config = eni_vdpa_set_config, .set_config_cb = eni_vdpa_set_config_cb, .get_vq_irq = eni_vdpa_get_vq_irq, }; static u16 eni_vdpa_get_num_queues(struct eni_vdpa *eni_vdpa) { struct virtio_pci_legacy_device *ldev = &eni_vdpa->ldev; u32 features = vp_legacy_get_features(ldev); u16 num = 2; if (features & BIT_ULL(VIRTIO_NET_F_MQ)) { __virtio16 max_virtqueue_pairs; eni_vdpa_get_config(&eni_vdpa->vdpa, offsetof(struct virtio_net_config, max_virtqueue_pairs), &max_virtqueue_pairs, sizeof(max_virtqueue_pairs)); num = 2 * __virtio16_to_cpu(virtio_legacy_is_little_endian(), max_virtqueue_pairs); } if (features & BIT_ULL(VIRTIO_NET_F_CTRL_VQ)) num += 1; return num; } static int eni_vdpa_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct device *dev = &pdev->dev; struct eni_vdpa *eni_vdpa; struct virtio_pci_legacy_device *ldev; int ret, i; ret = pcim_enable_device(pdev); if (ret) return ret; eni_vdpa = vdpa_alloc_device(struct eni_vdpa, vdpa, dev, &eni_vdpa_ops, 1, 1, NULL, false); if (IS_ERR(eni_vdpa)) { ENI_ERR(pdev, "failed to allocate vDPA structure\n"); return PTR_ERR(eni_vdpa); } ldev = &eni_vdpa->ldev; ldev->pci_dev = pdev; ret = vp_legacy_probe(ldev); if (ret) { ENI_ERR(pdev, "failed to probe legacy PCI device\n"); goto err; } pci_set_master(pdev); pci_set_drvdata(pdev, eni_vdpa); eni_vdpa->vdpa.dma_dev = &pdev->dev; eni_vdpa->queues = eni_vdpa_get_num_queues(eni_vdpa); eni_vdpa->vring = devm_kcalloc(&pdev->dev, eni_vdpa->queues, sizeof(*eni_vdpa->vring), GFP_KERNEL); if (!eni_vdpa->vring) { ret = -ENOMEM; ENI_ERR(pdev, "failed to allocate virtqueues\n"); goto err; } for (i = 0; i < eni_vdpa->queues; i++) { eni_vdpa->vring[i].irq = VIRTIO_MSI_NO_VECTOR; eni_vdpa->vring[i].notify = ldev->ioaddr + VIRTIO_PCI_QUEUE_NOTIFY; } eni_vdpa->config_irq = VIRTIO_MSI_NO_VECTOR; ret = vdpa_register_device(&eni_vdpa->vdpa, eni_vdpa->queues); if (ret) { ENI_ERR(pdev, "failed to register to vdpa bus\n"); goto err; } return 0; err: put_device(&eni_vdpa->vdpa.dev); return ret; } static void eni_vdpa_remove(struct pci_dev *pdev) { struct eni_vdpa *eni_vdpa = pci_get_drvdata(pdev); vdpa_unregister_device(&eni_vdpa->vdpa); vp_legacy_remove(&eni_vdpa->ldev); } static struct pci_device_id eni_pci_ids[] = { { PCI_DEVICE_SUB(PCI_VENDOR_ID_REDHAT_QUMRANET, VIRTIO_TRANS_ID_NET, PCI_SUBVENDOR_ID_REDHAT_QUMRANET, VIRTIO_ID_NET) }, { 0 }, }; static struct pci_driver eni_vdpa_driver = { .name = "alibaba-eni-vdpa", .id_table = eni_pci_ids, .probe = eni_vdpa_probe, .remove = eni_vdpa_remove, }; module_pci_driver(eni_vdpa_driver); MODULE_AUTHOR("Wu Zongyong <[email protected]>"); MODULE_DESCRIPTION("Alibaba ENI vDPA driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/vdpa/alibaba/eni_vdpa.c
// SPDX-License-Identifier: GPL-2.0-only /* * SolidRun DPU driver for control plane * * Copyright (C) 2022-2023 SolidRun * * Author: Alvaro Karsz <[email protected]> * */ #include <linux/iopoll.h> #include "snet_vdpa.h" enum snet_ctrl_opcodes { SNET_CTRL_OP_DESTROY = 1, SNET_CTRL_OP_READ_VQ_STATE, SNET_CTRL_OP_SUSPEND, SNET_CTRL_OP_RESUME, }; #define SNET_CTRL_TIMEOUT 2000000 #define SNET_CTRL_DATA_SIZE_MASK 0x0000FFFF #define SNET_CTRL_IN_PROCESS_MASK 0x00010000 #define SNET_CTRL_CHUNK_RDY_MASK 0x00020000 #define SNET_CTRL_ERROR_MASK 0x0FFC0000 #define SNET_VAL_TO_ERR(val) (-(((val) & SNET_CTRL_ERROR_MASK) >> 18)) #define SNET_EMPTY_CTRL(val) (((val) & SNET_CTRL_ERROR_MASK) || \ !((val) & SNET_CTRL_IN_PROCESS_MASK)) #define SNET_DATA_READY(val) ((val) & (SNET_CTRL_ERROR_MASK | SNET_CTRL_CHUNK_RDY_MASK)) /* Control register used to read data from the DPU */ struct snet_ctrl_reg_ctrl { /* Chunk size in 4B words */ u16 data_size; /* We are in the middle of a command */ u16 in_process:1; /* A data chunk is ready and can be consumed */ u16 chunk_ready:1; /* Error code */ u16 error:10; /* Saved for future usage */ u16 rsvd:4; }; /* Opcode register */ struct snet_ctrl_reg_op { u16 opcode; /* Only if VQ index is relevant for the command */ u16 vq_idx; }; struct snet_ctrl_regs { struct snet_ctrl_reg_op op; struct snet_ctrl_reg_ctrl ctrl; u32 rsvd; u32 data[]; }; static struct snet_ctrl_regs __iomem *snet_get_ctrl(struct snet *snet) { return snet->bar + snet->psnet->cfg.ctrl_off; } static int snet_wait_for_empty_ctrl(struct snet_ctrl_regs __iomem *regs) { u32 val; return readx_poll_timeout(ioread32, &regs->ctrl, val, SNET_EMPTY_CTRL(val), 10, SNET_CTRL_TIMEOUT); } static int snet_wait_for_empty_op(struct snet_ctrl_regs __iomem *regs) { u32 val; return readx_poll_timeout(ioread32, &regs->op, val, !val, 10, SNET_CTRL_TIMEOUT); } static int snet_wait_for_data(struct snet_ctrl_regs __iomem *regs) { u32 val; return readx_poll_timeout(ioread32, &regs->ctrl, val, SNET_DATA_READY(val), 10, SNET_CTRL_TIMEOUT); } static u32 snet_read32_word(struct snet_ctrl_regs __iomem *ctrl_regs, u16 word_idx) { return ioread32(&ctrl_regs->data[word_idx]); } static u32 snet_read_ctrl(struct snet_ctrl_regs __iomem *ctrl_regs) { return ioread32(&ctrl_regs->ctrl); } static void snet_write_ctrl(struct snet_ctrl_regs __iomem *ctrl_regs, u32 val) { iowrite32(val, &ctrl_regs->ctrl); } static void snet_write_op(struct snet_ctrl_regs __iomem *ctrl_regs, u32 val) { iowrite32(val, &ctrl_regs->op); } static int snet_wait_for_dpu_completion(struct snet_ctrl_regs __iomem *ctrl_regs) { /* Wait until the DPU finishes completely. * It will clear the opcode register. */ return snet_wait_for_empty_op(ctrl_regs); } /* Reading ctrl from the DPU: * buf_size must be 4B aligned * * Steps: * * (1) Verify that the DPU is not in the middle of another operation by * reading the in_process and error bits in the control register. * (2) Write the request opcode and the VQ idx in the opcode register * and write the buffer size in the control register. * (3) Start readind chunks of data, chunk_ready bit indicates that a * data chunk is available, we signal that we read the data by clearing the bit. * (4) Detect that the transfer is completed when the in_process bit * in the control register is cleared or when the an error appears. */ static int snet_ctrl_read_from_dpu(struct snet *snet, u16 opcode, u16 vq_idx, void *buffer, u32 buf_size) { struct pci_dev *pdev = snet->pdev; struct snet_ctrl_regs __iomem *regs = snet_get_ctrl(snet); u32 *bfr_ptr = (u32 *)buffer; u32 val; u16 buf_words; int ret; u16 words, i, tot_words = 0; /* Supported for config 2+ */ if (!SNET_CFG_VER(snet, 2)) return -EOPNOTSUPP; if (!IS_ALIGNED(buf_size, 4)) return -EINVAL; mutex_lock(&snet->ctrl_lock); buf_words = buf_size / 4; /* Make sure control register is empty */ ret = snet_wait_for_empty_ctrl(regs); if (ret) { SNET_WARN(pdev, "Timeout waiting for previous control data to be consumed\n"); goto exit; } /* We need to write the buffer size in the control register, and the opcode + vq index in * the opcode register. * We use a spinlock to serialize the writes. */ spin_lock(&snet->ctrl_spinlock); snet_write_ctrl(regs, buf_words); snet_write_op(regs, opcode | (vq_idx << 16)); spin_unlock(&snet->ctrl_spinlock); while (buf_words != tot_words) { ret = snet_wait_for_data(regs); if (ret) { SNET_WARN(pdev, "Timeout waiting for control data\n"); goto exit; } val = snet_read_ctrl(regs); /* Error? */ if (val & SNET_CTRL_ERROR_MASK) { ret = SNET_VAL_TO_ERR(val); SNET_WARN(pdev, "Error while reading control data from DPU, err %d\n", ret); goto exit; } words = min_t(u16, val & SNET_CTRL_DATA_SIZE_MASK, buf_words - tot_words); for (i = 0; i < words; i++) { *bfr_ptr = snet_read32_word(regs, i); bfr_ptr++; } tot_words += words; /* Is the job completed? */ if (!(val & SNET_CTRL_IN_PROCESS_MASK)) break; /* Clear the chunk ready bit and continue */ val &= ~SNET_CTRL_CHUNK_RDY_MASK; snet_write_ctrl(regs, val); } ret = snet_wait_for_dpu_completion(regs); if (ret) SNET_WARN(pdev, "Timeout waiting for the DPU to complete a control command\n"); exit: mutex_unlock(&snet->ctrl_lock); return ret; } /* Send a control message to the DPU using the old mechanism * used with config version 1. */ static int snet_send_ctrl_msg_old(struct snet *snet, u32 opcode) { struct pci_dev *pdev = snet->pdev; struct snet_ctrl_regs __iomem *regs = snet_get_ctrl(snet); int ret; mutex_lock(&snet->ctrl_lock); /* Old mechanism uses just 1 register, the opcode register. * Make sure that the opcode register is empty, and that the DPU isn't * processing an old message. */ ret = snet_wait_for_empty_op(regs); if (ret) { SNET_WARN(pdev, "Timeout waiting for previous control message to be ACKed\n"); goto exit; } /* Write the message */ snet_write_op(regs, opcode); /* DPU ACKs the message by clearing the opcode register */ ret = snet_wait_for_empty_op(regs); if (ret) SNET_WARN(pdev, "Timeout waiting for a control message to be ACKed\n"); exit: mutex_unlock(&snet->ctrl_lock); return ret; } /* Send a control message to the DPU. * A control message is a message without payload. */ static int snet_send_ctrl_msg(struct snet *snet, u16 opcode, u16 vq_idx) { struct pci_dev *pdev = snet->pdev; struct snet_ctrl_regs __iomem *regs = snet_get_ctrl(snet); u32 val; int ret; /* If config version is not 2+, use the old mechanism */ if (!SNET_CFG_VER(snet, 2)) return snet_send_ctrl_msg_old(snet, opcode); mutex_lock(&snet->ctrl_lock); /* Make sure control register is empty */ ret = snet_wait_for_empty_ctrl(regs); if (ret) { SNET_WARN(pdev, "Timeout waiting for previous control data to be consumed\n"); goto exit; } /* We need to clear the control register and write the opcode + vq index in the opcode * register. * We use a spinlock to serialize the writes. */ spin_lock(&snet->ctrl_spinlock); snet_write_ctrl(regs, 0); snet_write_op(regs, opcode | (vq_idx << 16)); spin_unlock(&snet->ctrl_spinlock); /* The DPU ACKs control messages by setting the chunk ready bit * without data. */ ret = snet_wait_for_data(regs); if (ret) { SNET_WARN(pdev, "Timeout waiting for control message to be ACKed\n"); goto exit; } /* Check for errors */ val = snet_read_ctrl(regs); ret = SNET_VAL_TO_ERR(val); /* Clear the chunk ready bit */ val &= ~SNET_CTRL_CHUNK_RDY_MASK; snet_write_ctrl(regs, val); ret = snet_wait_for_dpu_completion(regs); if (ret) SNET_WARN(pdev, "Timeout waiting for DPU to complete a control command, err %d\n", ret); exit: mutex_unlock(&snet->ctrl_lock); return ret; } void snet_ctrl_clear(struct snet *snet) { struct snet_ctrl_regs __iomem *regs = snet_get_ctrl(snet); snet_write_op(regs, 0); } int snet_destroy_dev(struct snet *snet) { return snet_send_ctrl_msg(snet, SNET_CTRL_OP_DESTROY, 0); } int snet_read_vq_state(struct snet *snet, u16 idx, struct vdpa_vq_state *state) { return snet_ctrl_read_from_dpu(snet, SNET_CTRL_OP_READ_VQ_STATE, idx, state, sizeof(*state)); } int snet_suspend_dev(struct snet *snet) { return snet_send_ctrl_msg(snet, SNET_CTRL_OP_SUSPEND, 0); } int snet_resume_dev(struct snet *snet) { return snet_send_ctrl_msg(snet, SNET_CTRL_OP_RESUME, 0); }
linux-master
drivers/vdpa/solidrun/snet_ctrl.c
// SPDX-License-Identifier: GPL-2.0-only /* * SolidRun DPU driver for control plane * * Copyright (C) 2022-2023 SolidRun * * Author: Alvaro Karsz <[email protected]> * */ #include <linux/hwmon.h> #include "snet_vdpa.h" /* Monitor offsets */ #define SNET_MON_TMP0_IN_OFF 0x00 #define SNET_MON_TMP0_MAX_OFF 0x08 #define SNET_MON_TMP0_CRIT_OFF 0x10 #define SNET_MON_TMP1_IN_OFF 0x18 #define SNET_MON_TMP1_CRIT_OFF 0x20 #define SNET_MON_CURR_IN_OFF 0x28 #define SNET_MON_CURR_MAX_OFF 0x30 #define SNET_MON_CURR_CRIT_OFF 0x38 #define SNET_MON_PWR_IN_OFF 0x40 #define SNET_MON_VOLT_IN_OFF 0x48 #define SNET_MON_VOLT_CRIT_OFF 0x50 #define SNET_MON_VOLT_LCRIT_OFF 0x58 static void snet_hwmon_read_reg(struct psnet *psnet, u32 reg, long *out) { *out = psnet_read64(psnet, psnet->cfg.hwmon_off + reg); } static umode_t snet_howmon_is_visible(const void *data, enum hwmon_sensor_types type, u32 attr, int channel) { return 0444; } static int snet_howmon_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long *val) { struct psnet *psnet = dev_get_drvdata(dev); int ret = 0; switch (type) { case hwmon_in: switch (attr) { case hwmon_in_lcrit: snet_hwmon_read_reg(psnet, SNET_MON_VOLT_LCRIT_OFF, val); break; case hwmon_in_crit: snet_hwmon_read_reg(psnet, SNET_MON_VOLT_CRIT_OFF, val); break; case hwmon_in_input: snet_hwmon_read_reg(psnet, SNET_MON_VOLT_IN_OFF, val); break; default: ret = -EOPNOTSUPP; break; } break; case hwmon_power: switch (attr) { case hwmon_power_input: snet_hwmon_read_reg(psnet, SNET_MON_PWR_IN_OFF, val); break; default: ret = -EOPNOTSUPP; break; } break; case hwmon_curr: switch (attr) { case hwmon_curr_input: snet_hwmon_read_reg(psnet, SNET_MON_CURR_IN_OFF, val); break; case hwmon_curr_max: snet_hwmon_read_reg(psnet, SNET_MON_CURR_MAX_OFF, val); break; case hwmon_curr_crit: snet_hwmon_read_reg(psnet, SNET_MON_CURR_CRIT_OFF, val); break; default: ret = -EOPNOTSUPP; break; } break; case hwmon_temp: switch (attr) { case hwmon_temp_input: if (channel == 0) snet_hwmon_read_reg(psnet, SNET_MON_TMP0_IN_OFF, val); else snet_hwmon_read_reg(psnet, SNET_MON_TMP1_IN_OFF, val); break; case hwmon_temp_max: if (channel == 0) snet_hwmon_read_reg(psnet, SNET_MON_TMP0_MAX_OFF, val); else ret = -EOPNOTSUPP; break; case hwmon_temp_crit: if (channel == 0) snet_hwmon_read_reg(psnet, SNET_MON_TMP0_CRIT_OFF, val); else snet_hwmon_read_reg(psnet, SNET_MON_TMP1_CRIT_OFF, val); break; default: ret = -EOPNOTSUPP; break; } break; default: ret = -EOPNOTSUPP; break; } return ret; } static int snet_hwmon_read_string(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, const char **str) { int ret = 0; switch (type) { case hwmon_in: *str = "main_vin"; break; case hwmon_power: *str = "soc_pin"; break; case hwmon_curr: *str = "soc_iin"; break; case hwmon_temp: if (channel == 0) *str = "power_stage_temp"; else *str = "ic_junction_temp"; break; default: ret = -EOPNOTSUPP; break; } return ret; } static const struct hwmon_ops snet_hwmon_ops = { .is_visible = snet_howmon_is_visible, .read = snet_howmon_read, .read_string = snet_hwmon_read_string }; static const struct hwmon_channel_info * const snet_hwmon_info[] = { HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_CRIT | HWMON_T_LABEL, HWMON_T_INPUT | HWMON_T_CRIT | HWMON_T_LABEL), HWMON_CHANNEL_INFO(power, HWMON_P_INPUT | HWMON_P_LABEL), HWMON_CHANNEL_INFO(curr, HWMON_C_INPUT | HWMON_C_MAX | HWMON_C_CRIT | HWMON_C_LABEL), HWMON_CHANNEL_INFO(in, HWMON_I_INPUT | HWMON_I_CRIT | HWMON_I_LCRIT | HWMON_I_LABEL), NULL }; static const struct hwmon_chip_info snet_hwmono_info = { .ops = &snet_hwmon_ops, .info = snet_hwmon_info, }; /* Create an HW monitor device */ void psnet_create_hwmon(struct pci_dev *pdev) { struct device *hwmon; struct psnet *psnet = pci_get_drvdata(pdev); snprintf(psnet->hwmon_name, SNET_NAME_SIZE, "snet_%s", pci_name(pdev)); hwmon = devm_hwmon_device_register_with_info(&pdev->dev, psnet->hwmon_name, psnet, &snet_hwmono_info, NULL); /* The monitor is not mandatory, Just alert user in case of an error */ if (IS_ERR(hwmon)) SNET_WARN(pdev, "Failed to create SNET hwmon, error %ld\n", PTR_ERR(hwmon)); }
linux-master
drivers/vdpa/solidrun/snet_hwmon.c
// SPDX-License-Identifier: GPL-2.0-only /* * SolidRun DPU driver for control plane * * Copyright (C) 2022-2023 SolidRun * * Author: Alvaro Karsz <[email protected]> * */ #include <linux/iopoll.h> #include "snet_vdpa.h" /* SNET DPU device ID */ #define SNET_DEVICE_ID 0x1000 /* SNET signature */ #define SNET_SIGNATURE 0xD0D06363 /* Max. config version that we can work with */ #define SNET_CFG_VERSION 0x2 /* Queue align */ #define SNET_QUEUE_ALIGNMENT PAGE_SIZE /* Kick value to notify that new data is available */ #define SNET_KICK_VAL 0x1 #define SNET_CONFIG_OFF 0x0 /* How long we are willing to wait for a SNET device */ #define SNET_DETECT_TIMEOUT 5000000 /* How long should we wait for the DPU to read our config */ #define SNET_READ_CFG_TIMEOUT 3000000 /* Size of configs written to the DPU */ #define SNET_GENERAL_CFG_LEN 36 #define SNET_GENERAL_CFG_VQ_LEN 40 static struct snet *vdpa_to_snet(struct vdpa_device *vdpa) { return container_of(vdpa, struct snet, vdpa); } static irqreturn_t snet_cfg_irq_hndlr(int irq, void *data) { struct snet *snet = data; /* Call callback if any */ if (likely(snet->cb.callback)) return snet->cb.callback(snet->cb.private); return IRQ_HANDLED; } static irqreturn_t snet_vq_irq_hndlr(int irq, void *data) { struct snet_vq *vq = data; /* Call callback if any */ if (likely(vq->cb.callback)) return vq->cb.callback(vq->cb.private); return IRQ_HANDLED; } static void snet_free_irqs(struct snet *snet) { struct psnet *psnet = snet->psnet; struct pci_dev *pdev; u32 i; /* Which Device allcoated the IRQs? */ if (PSNET_FLAG_ON(psnet, SNET_CFG_FLAG_IRQ_PF)) pdev = snet->pdev->physfn; else pdev = snet->pdev; /* Free config's IRQ */ if (snet->cfg_irq != -1) { devm_free_irq(&pdev->dev, snet->cfg_irq, snet); snet->cfg_irq = -1; } /* Free VQ IRQs */ for (i = 0; i < snet->cfg->vq_num; i++) { if (snet->vqs[i] && snet->vqs[i]->irq != -1) { devm_free_irq(&pdev->dev, snet->vqs[i]->irq, snet->vqs[i]); snet->vqs[i]->irq = -1; } } /* IRQ vectors are freed when the pci remove callback is called */ } static int snet_set_vq_address(struct vdpa_device *vdev, u16 idx, u64 desc_area, u64 driver_area, u64 device_area) { struct snet *snet = vdpa_to_snet(vdev); /* save received parameters in vqueue sturct */ snet->vqs[idx]->desc_area = desc_area; snet->vqs[idx]->driver_area = driver_area; snet->vqs[idx]->device_area = device_area; return 0; } static void snet_set_vq_num(struct vdpa_device *vdev, u16 idx, u32 num) { struct snet *snet = vdpa_to_snet(vdev); /* save num in vqueue */ snet->vqs[idx]->num = num; } static void snet_kick_vq(struct vdpa_device *vdev, u16 idx) { struct snet *snet = vdpa_to_snet(vdev); /* not ready - ignore */ if (unlikely(!snet->vqs[idx]->ready)) return; iowrite32(SNET_KICK_VAL, snet->vqs[idx]->kick_ptr); } static void snet_kick_vq_with_data(struct vdpa_device *vdev, u32 data) { struct snet *snet = vdpa_to_snet(vdev); u16 idx = data & 0xFFFF; /* not ready - ignore */ if (unlikely(!snet->vqs[idx]->ready)) return; iowrite32((data & 0xFFFF0000) | SNET_KICK_VAL, snet->vqs[idx]->kick_ptr); } static void snet_set_vq_cb(struct vdpa_device *vdev, u16 idx, struct vdpa_callback *cb) { struct snet *snet = vdpa_to_snet(vdev); snet->vqs[idx]->cb.callback = cb->callback; snet->vqs[idx]->cb.private = cb->private; } static void snet_set_vq_ready(struct vdpa_device *vdev, u16 idx, bool ready) { struct snet *snet = vdpa_to_snet(vdev); snet->vqs[idx]->ready = ready; } static bool snet_get_vq_ready(struct vdpa_device *vdev, u16 idx) { struct snet *snet = vdpa_to_snet(vdev); return snet->vqs[idx]->ready; } static bool snet_vq_state_is_initial(struct snet *snet, const struct vdpa_vq_state *state) { if (SNET_HAS_FEATURE(snet, VIRTIO_F_RING_PACKED)) { const struct vdpa_vq_state_packed *p = &state->packed; if (p->last_avail_counter == 1 && p->last_used_counter == 1 && p->last_avail_idx == 0 && p->last_used_idx == 0) return true; } else { const struct vdpa_vq_state_split *s = &state->split; if (s->avail_index == 0) return true; } return false; } static int snet_set_vq_state(struct vdpa_device *vdev, u16 idx, const struct vdpa_vq_state *state) { struct snet *snet = vdpa_to_snet(vdev); /* We can set any state for config version 2+ */ if (SNET_CFG_VER(snet, 2)) { memcpy(&snet->vqs[idx]->vq_state, state, sizeof(*state)); return 0; } /* Older config - we can't set the VQ state. * Return 0 only if this is the initial state we use in the DPU. */ if (snet_vq_state_is_initial(snet, state)) return 0; return -EOPNOTSUPP; } static int snet_get_vq_state(struct vdpa_device *vdev, u16 idx, struct vdpa_vq_state *state) { struct snet *snet = vdpa_to_snet(vdev); return snet_read_vq_state(snet, idx, state); } static int snet_get_vq_irq(struct vdpa_device *vdev, u16 idx) { struct snet *snet = vdpa_to_snet(vdev); return snet->vqs[idx]->irq; } static u32 snet_get_vq_align(struct vdpa_device *vdev) { return (u32)SNET_QUEUE_ALIGNMENT; } static int snet_reset_dev(struct snet *snet) { struct pci_dev *pdev = snet->pdev; int ret = 0; u32 i; /* If status is 0, nothing to do */ if (!snet->status) return 0; /* If DPU started, destroy it */ if (snet->status & VIRTIO_CONFIG_S_DRIVER_OK) ret = snet_destroy_dev(snet); /* Clear VQs */ for (i = 0; i < snet->cfg->vq_num; i++) { if (!snet->vqs[i]) continue; snet->vqs[i]->cb.callback = NULL; snet->vqs[i]->cb.private = NULL; snet->vqs[i]->desc_area = 0; snet->vqs[i]->device_area = 0; snet->vqs[i]->driver_area = 0; snet->vqs[i]->ready = false; } /* Clear config callback */ snet->cb.callback = NULL; snet->cb.private = NULL; /* Free IRQs */ snet_free_irqs(snet); /* Reset status */ snet->status = 0; snet->dpu_ready = false; if (ret) SNET_WARN(pdev, "Incomplete reset to SNET[%u] device, err: %d\n", snet->sid, ret); else SNET_DBG(pdev, "Reset SNET[%u] device\n", snet->sid); return 0; } static int snet_reset(struct vdpa_device *vdev) { struct snet *snet = vdpa_to_snet(vdev); return snet_reset_dev(snet); } static size_t snet_get_config_size(struct vdpa_device *vdev) { struct snet *snet = vdpa_to_snet(vdev); return (size_t)snet->cfg->cfg_size; } static u64 snet_get_features(struct vdpa_device *vdev) { struct snet *snet = vdpa_to_snet(vdev); return snet->cfg->features; } static int snet_set_drv_features(struct vdpa_device *vdev, u64 features) { struct snet *snet = vdpa_to_snet(vdev); snet->negotiated_features = snet->cfg->features & features; return 0; } static u64 snet_get_drv_features(struct vdpa_device *vdev) { struct snet *snet = vdpa_to_snet(vdev); return snet->negotiated_features; } static u16 snet_get_vq_num_max(struct vdpa_device *vdev) { struct snet *snet = vdpa_to_snet(vdev); return (u16)snet->cfg->vq_size; } static void snet_set_config_cb(struct vdpa_device *vdev, struct vdpa_callback *cb) { struct snet *snet = vdpa_to_snet(vdev); snet->cb.callback = cb->callback; snet->cb.private = cb->private; } static u32 snet_get_device_id(struct vdpa_device *vdev) { struct snet *snet = vdpa_to_snet(vdev); return snet->cfg->virtio_id; } static u32 snet_get_vendor_id(struct vdpa_device *vdev) { return (u32)PCI_VENDOR_ID_SOLIDRUN; } static u8 snet_get_status(struct vdpa_device *vdev) { struct snet *snet = vdpa_to_snet(vdev); return snet->status; } static int snet_write_conf(struct snet *snet) { u32 off, i, tmp; int ret; /* No need to write the config twice */ if (snet->dpu_ready) return true; /* Snet data : * * General data: SNET_GENERAL_CFG_LEN bytes long * 0 0x4 0x8 0xC 0x10 0x14 0x1C 0x24 * | MAGIC NUMBER | CFG VER | SNET SID | NUMBER OF QUEUES | IRQ IDX | FEATURES | RSVD | * * For every VQ: SNET_GENERAL_CFG_VQ_LEN bytes long * 0 0x4 0x8 * | VQ SID AND QUEUE SIZE | IRQ Index | * | DESC AREA | * | DEVICE AREA | * | DRIVER AREA | * | VQ STATE (CFG 2+) | RSVD | * * Magic number should be written last, this is the DPU indication that the data is ready */ /* Init offset */ off = snet->psnet->cfg.host_cfg_off; /* Ignore magic number for now */ off += 4; snet_write32(snet, off, snet->psnet->negotiated_cfg_ver); off += 4; snet_write32(snet, off, snet->sid); off += 4; snet_write32(snet, off, snet->cfg->vq_num); off += 4; snet_write32(snet, off, snet->cfg_irq_idx); off += 4; snet_write64(snet, off, snet->negotiated_features); off += 8; /* Ignore reserved */ off += 8; /* Write VQs */ for (i = 0 ; i < snet->cfg->vq_num ; i++) { tmp = (i << 16) | (snet->vqs[i]->num & 0xFFFF); snet_write32(snet, off, tmp); off += 4; snet_write32(snet, off, snet->vqs[i]->irq_idx); off += 4; snet_write64(snet, off, snet->vqs[i]->desc_area); off += 8; snet_write64(snet, off, snet->vqs[i]->device_area); off += 8; snet_write64(snet, off, snet->vqs[i]->driver_area); off += 8; /* Write VQ state if config version is 2+ */ if (SNET_CFG_VER(snet, 2)) snet_write32(snet, off, *(u32 *)&snet->vqs[i]->vq_state); off += 4; /* Ignore reserved */ off += 4; } /* Write magic number - data is ready */ snet_write32(snet, snet->psnet->cfg.host_cfg_off, SNET_SIGNATURE); /* The DPU will ACK the config by clearing the signature */ ret = readx_poll_timeout(ioread32, snet->bar + snet->psnet->cfg.host_cfg_off, tmp, !tmp, 10, SNET_READ_CFG_TIMEOUT); if (ret) { SNET_ERR(snet->pdev, "Timeout waiting for the DPU to read the config\n"); return false; } /* set DPU flag */ snet->dpu_ready = true; return true; } static int snet_request_irqs(struct pci_dev *pdev, struct snet *snet) { int ret, i, irq; /* Request config IRQ */ irq = pci_irq_vector(pdev, snet->cfg_irq_idx); ret = devm_request_irq(&pdev->dev, irq, snet_cfg_irq_hndlr, 0, snet->cfg_irq_name, snet); if (ret) { SNET_ERR(pdev, "Failed to request IRQ\n"); return ret; } snet->cfg_irq = irq; /* Request IRQ for every VQ */ for (i = 0; i < snet->cfg->vq_num; i++) { irq = pci_irq_vector(pdev, snet->vqs[i]->irq_idx); ret = devm_request_irq(&pdev->dev, irq, snet_vq_irq_hndlr, 0, snet->vqs[i]->irq_name, snet->vqs[i]); if (ret) { SNET_ERR(pdev, "Failed to request IRQ\n"); return ret; } snet->vqs[i]->irq = irq; } return 0; } static void snet_set_status(struct vdpa_device *vdev, u8 status) { struct snet *snet = vdpa_to_snet(vdev); struct psnet *psnet = snet->psnet; struct pci_dev *pdev = snet->pdev; int ret; bool pf_irqs; if (status == snet->status) return; if ((status & VIRTIO_CONFIG_S_DRIVER_OK) && !(snet->status & VIRTIO_CONFIG_S_DRIVER_OK)) { /* Request IRQs */ pf_irqs = PSNET_FLAG_ON(psnet, SNET_CFG_FLAG_IRQ_PF); ret = snet_request_irqs(pf_irqs ? pdev->physfn : pdev, snet); if (ret) goto set_err; /* Write config to the DPU */ if (snet_write_conf(snet)) { SNET_INFO(pdev, "Create SNET[%u] device\n", snet->sid); } else { snet_free_irqs(snet); goto set_err; } } /* Save the new status */ snet->status = status; return; set_err: snet->status |= VIRTIO_CONFIG_S_FAILED; } static void snet_get_config(struct vdpa_device *vdev, unsigned int offset, void *buf, unsigned int len) { struct snet *snet = vdpa_to_snet(vdev); void __iomem *cfg_ptr = snet->cfg->virtio_cfg + offset; u8 *buf_ptr = buf; u32 i; /* check for offset error */ if (offset + len > snet->cfg->cfg_size) return; /* Write into buffer */ for (i = 0; i < len; i++) *buf_ptr++ = ioread8(cfg_ptr + i); } static void snet_set_config(struct vdpa_device *vdev, unsigned int offset, const void *buf, unsigned int len) { struct snet *snet = vdpa_to_snet(vdev); void __iomem *cfg_ptr = snet->cfg->virtio_cfg + offset; const u8 *buf_ptr = buf; u32 i; /* check for offset error */ if (offset + len > snet->cfg->cfg_size) return; /* Write into PCI BAR */ for (i = 0; i < len; i++) iowrite8(*buf_ptr++, cfg_ptr + i); } static int snet_suspend(struct vdpa_device *vdev) { struct snet *snet = vdpa_to_snet(vdev); int ret; ret = snet_suspend_dev(snet); if (ret) SNET_ERR(snet->pdev, "SNET[%u] suspend failed, err: %d\n", snet->sid, ret); else SNET_DBG(snet->pdev, "Suspend SNET[%u] device\n", snet->sid); return ret; } static int snet_resume(struct vdpa_device *vdev) { struct snet *snet = vdpa_to_snet(vdev); int ret; ret = snet_resume_dev(snet); if (ret) SNET_ERR(snet->pdev, "SNET[%u] resume failed, err: %d\n", snet->sid, ret); else SNET_DBG(snet->pdev, "Resume SNET[%u] device\n", snet->sid); return ret; } static const struct vdpa_config_ops snet_config_ops = { .set_vq_address = snet_set_vq_address, .set_vq_num = snet_set_vq_num, .kick_vq = snet_kick_vq, .kick_vq_with_data = snet_kick_vq_with_data, .set_vq_cb = snet_set_vq_cb, .set_vq_ready = snet_set_vq_ready, .get_vq_ready = snet_get_vq_ready, .set_vq_state = snet_set_vq_state, .get_vq_state = snet_get_vq_state, .get_vq_irq = snet_get_vq_irq, .get_vq_align = snet_get_vq_align, .reset = snet_reset, .get_config_size = snet_get_config_size, .get_device_features = snet_get_features, .set_driver_features = snet_set_drv_features, .get_driver_features = snet_get_drv_features, .get_vq_num_min = snet_get_vq_num_max, .get_vq_num_max = snet_get_vq_num_max, .set_config_cb = snet_set_config_cb, .get_device_id = snet_get_device_id, .get_vendor_id = snet_get_vendor_id, .get_status = snet_get_status, .set_status = snet_set_status, .get_config = snet_get_config, .set_config = snet_set_config, .suspend = snet_suspend, .resume = snet_resume, }; static int psnet_open_pf_bar(struct pci_dev *pdev, struct psnet *psnet) { char name[50]; int ret, i, mask = 0; /* We don't know which BAR will be used to communicate.. * We will map every bar with len > 0. * * Later, we will discover the BAR and unmap all other BARs. */ for (i = 0; i < PCI_STD_NUM_BARS; i++) { if (pci_resource_len(pdev, i)) mask |= (1 << i); } /* No BAR can be used.. */ if (!mask) { SNET_ERR(pdev, "Failed to find a PCI BAR\n"); return -ENODEV; } snprintf(name, sizeof(name), "psnet[%s]-bars", pci_name(pdev)); ret = pcim_iomap_regions(pdev, mask, name); if (ret) { SNET_ERR(pdev, "Failed to request and map PCI BARs\n"); return ret; } for (i = 0; i < PCI_STD_NUM_BARS; i++) { if (mask & (1 << i)) psnet->bars[i] = pcim_iomap_table(pdev)[i]; } return 0; } static int snet_open_vf_bar(struct pci_dev *pdev, struct snet *snet) { char name[50]; int ret; snprintf(name, sizeof(name), "snet[%s]-bar", pci_name(pdev)); /* Request and map BAR */ ret = pcim_iomap_regions(pdev, BIT(snet->psnet->cfg.vf_bar), name); if (ret) { SNET_ERR(pdev, "Failed to request and map PCI BAR for a VF\n"); return ret; } snet->bar = pcim_iomap_table(pdev)[snet->psnet->cfg.vf_bar]; return 0; } static void snet_free_cfg(struct snet_cfg *cfg) { u32 i; if (!cfg->devs) return; /* Free devices */ for (i = 0; i < cfg->devices_num; i++) { if (!cfg->devs[i]) break; kfree(cfg->devs[i]); } /* Free pointers to devices */ kfree(cfg->devs); } /* Detect which BAR is used for communication with the device. */ static int psnet_detect_bar(struct psnet *psnet, u32 off) { unsigned long exit_time; int i; exit_time = jiffies + usecs_to_jiffies(SNET_DETECT_TIMEOUT); /* SNET DPU will write SNET's signature when the config is ready. */ while (time_before(jiffies, exit_time)) { for (i = 0; i < PCI_STD_NUM_BARS; i++) { /* Is this BAR mapped? */ if (!psnet->bars[i]) continue; if (ioread32(psnet->bars[i] + off) == SNET_SIGNATURE) return i; } usleep_range(1000, 10000); } return -ENODEV; } static void psnet_unmap_unused_bars(struct pci_dev *pdev, struct psnet *psnet) { int i, mask = 0; for (i = 0; i < PCI_STD_NUM_BARS; i++) { if (psnet->bars[i] && i != psnet->barno) mask |= (1 << i); } if (mask) pcim_iounmap_regions(pdev, mask); } /* Read SNET config from PCI BAR */ static int psnet_read_cfg(struct pci_dev *pdev, struct psnet *psnet) { struct snet_cfg *cfg = &psnet->cfg; u32 i, off; int barno; /* Move to where the config starts */ off = SNET_CONFIG_OFF; /* Find BAR used for communication */ barno = psnet_detect_bar(psnet, off); if (barno < 0) { SNET_ERR(pdev, "SNET config is not ready.\n"); return barno; } /* Save used BAR number and unmap all other BARs */ psnet->barno = barno; SNET_DBG(pdev, "Using BAR number %d\n", barno); psnet_unmap_unused_bars(pdev, psnet); /* load config from BAR */ cfg->key = psnet_read32(psnet, off); off += 4; cfg->cfg_size = psnet_read32(psnet, off); off += 4; cfg->cfg_ver = psnet_read32(psnet, off); off += 4; /* The negotiated config version is the lower one between this driver's config * and the DPU's. */ psnet->negotiated_cfg_ver = min_t(u32, cfg->cfg_ver, SNET_CFG_VERSION); SNET_DBG(pdev, "SNET config version %u\n", psnet->negotiated_cfg_ver); cfg->vf_num = psnet_read32(psnet, off); off += 4; cfg->vf_bar = psnet_read32(psnet, off); off += 4; cfg->host_cfg_off = psnet_read32(psnet, off); off += 4; cfg->max_size_host_cfg = psnet_read32(psnet, off); off += 4; cfg->virtio_cfg_off = psnet_read32(psnet, off); off += 4; cfg->kick_off = psnet_read32(psnet, off); off += 4; cfg->hwmon_off = psnet_read32(psnet, off); off += 4; cfg->ctrl_off = psnet_read32(psnet, off); off += 4; cfg->flags = psnet_read32(psnet, off); off += 4; /* Ignore Reserved */ off += sizeof(cfg->rsvd); cfg->devices_num = psnet_read32(psnet, off); off += 4; /* Allocate memory to hold pointer to the devices */ cfg->devs = kcalloc(cfg->devices_num, sizeof(void *), GFP_KERNEL); if (!cfg->devs) return -ENOMEM; /* Load device configuration from BAR */ for (i = 0; i < cfg->devices_num; i++) { cfg->devs[i] = kzalloc(sizeof(*cfg->devs[i]), GFP_KERNEL); if (!cfg->devs[i]) { snet_free_cfg(cfg); return -ENOMEM; } /* Read device config */ cfg->devs[i]->virtio_id = psnet_read32(psnet, off); off += 4; cfg->devs[i]->vq_num = psnet_read32(psnet, off); off += 4; cfg->devs[i]->vq_size = psnet_read32(psnet, off); off += 4; cfg->devs[i]->vfid = psnet_read32(psnet, off); off += 4; cfg->devs[i]->features = psnet_read64(psnet, off); off += 8; /* Ignore Reserved */ off += sizeof(cfg->devs[i]->rsvd); cfg->devs[i]->cfg_size = psnet_read32(psnet, off); off += 4; /* Is the config witten to the DPU going to be too big? */ if (SNET_GENERAL_CFG_LEN + SNET_GENERAL_CFG_VQ_LEN * cfg->devs[i]->vq_num > cfg->max_size_host_cfg) { SNET_ERR(pdev, "Failed to read SNET config, the config is too big..\n"); snet_free_cfg(cfg); return -EINVAL; } } return 0; } static int psnet_alloc_irq_vector(struct pci_dev *pdev, struct psnet *psnet) { int ret = 0; u32 i, irq_num = 0; /* Let's count how many IRQs we need, 1 for every VQ + 1 for config change */ for (i = 0; i < psnet->cfg.devices_num; i++) irq_num += psnet->cfg.devs[i]->vq_num + 1; ret = pci_alloc_irq_vectors(pdev, irq_num, irq_num, PCI_IRQ_MSIX); if (ret != irq_num) { SNET_ERR(pdev, "Failed to allocate IRQ vectors\n"); return ret; } SNET_DBG(pdev, "Allocated %u IRQ vectors from physical function\n", irq_num); return 0; } static int snet_alloc_irq_vector(struct pci_dev *pdev, struct snet_dev_cfg *snet_cfg) { int ret = 0; u32 irq_num; /* We want 1 IRQ for every VQ + 1 for config change events */ irq_num = snet_cfg->vq_num + 1; ret = pci_alloc_irq_vectors(pdev, irq_num, irq_num, PCI_IRQ_MSIX); if (ret <= 0) { SNET_ERR(pdev, "Failed to allocate IRQ vectors\n"); return ret; } return 0; } static void snet_free_vqs(struct snet *snet) { u32 i; if (!snet->vqs) return; for (i = 0 ; i < snet->cfg->vq_num ; i++) { if (!snet->vqs[i]) break; kfree(snet->vqs[i]); } kfree(snet->vqs); } static int snet_build_vqs(struct snet *snet) { u32 i; /* Allocate the VQ pointers array */ snet->vqs = kcalloc(snet->cfg->vq_num, sizeof(void *), GFP_KERNEL); if (!snet->vqs) return -ENOMEM; /* Allocate the VQs */ for (i = 0; i < snet->cfg->vq_num; i++) { snet->vqs[i] = kzalloc(sizeof(*snet->vqs[i]), GFP_KERNEL); if (!snet->vqs[i]) { snet_free_vqs(snet); return -ENOMEM; } /* Reset IRQ num */ snet->vqs[i]->irq = -1; /* VQ serial ID */ snet->vqs[i]->sid = i; /* Kick address - every VQ gets 4B */ snet->vqs[i]->kick_ptr = snet->bar + snet->psnet->cfg.kick_off + snet->vqs[i]->sid * 4; /* Clear kick address for this VQ */ iowrite32(0, snet->vqs[i]->kick_ptr); } return 0; } static int psnet_get_next_irq_num(struct psnet *psnet) { int irq; spin_lock(&psnet->lock); irq = psnet->next_irq++; spin_unlock(&psnet->lock); return irq; } static void snet_reserve_irq_idx(struct pci_dev *pdev, struct snet *snet) { struct psnet *psnet = snet->psnet; int i; /* one IRQ for every VQ, and one for config changes */ snet->cfg_irq_idx = psnet_get_next_irq_num(psnet); snprintf(snet->cfg_irq_name, SNET_NAME_SIZE, "snet[%s]-cfg[%d]", pci_name(pdev), snet->cfg_irq_idx); for (i = 0; i < snet->cfg->vq_num; i++) { /* Get next free IRQ ID */ snet->vqs[i]->irq_idx = psnet_get_next_irq_num(psnet); /* Write IRQ name */ snprintf(snet->vqs[i]->irq_name, SNET_NAME_SIZE, "snet[%s]-vq[%d]", pci_name(pdev), snet->vqs[i]->irq_idx); } } /* Find a device config based on virtual function id */ static struct snet_dev_cfg *snet_find_dev_cfg(struct snet_cfg *cfg, u32 vfid) { u32 i; for (i = 0; i < cfg->devices_num; i++) { if (cfg->devs[i]->vfid == vfid) return cfg->devs[i]; } /* Oppss.. no config found.. */ return NULL; } /* Probe function for a physical PCI function */ static int snet_vdpa_probe_pf(struct pci_dev *pdev) { struct psnet *psnet; int ret = 0; bool pf_irqs = false; ret = pcim_enable_device(pdev); if (ret) { SNET_ERR(pdev, "Failed to enable PCI device\n"); return ret; } /* Allocate a PCI physical function device */ psnet = kzalloc(sizeof(*psnet), GFP_KERNEL); if (!psnet) return -ENOMEM; /* Init PSNET spinlock */ spin_lock_init(&psnet->lock); pci_set_master(pdev); pci_set_drvdata(pdev, psnet); /* Open SNET MAIN BAR */ ret = psnet_open_pf_bar(pdev, psnet); if (ret) goto free_psnet; /* Try to read SNET's config from PCI BAR */ ret = psnet_read_cfg(pdev, psnet); if (ret) goto free_psnet; /* If SNET_CFG_FLAG_IRQ_PF flag is set, we should use * PF MSI-X vectors */ pf_irqs = PSNET_FLAG_ON(psnet, SNET_CFG_FLAG_IRQ_PF); if (pf_irqs) { ret = psnet_alloc_irq_vector(pdev, psnet); if (ret) goto free_cfg; } SNET_DBG(pdev, "Enable %u virtual functions\n", psnet->cfg.vf_num); ret = pci_enable_sriov(pdev, psnet->cfg.vf_num); if (ret) { SNET_ERR(pdev, "Failed to enable SR-IOV\n"); goto free_irq; } /* Create HW monitor device */ if (PSNET_FLAG_ON(psnet, SNET_CFG_FLAG_HWMON)) { #if IS_ENABLED(CONFIG_HWMON) psnet_create_hwmon(pdev); #else SNET_WARN(pdev, "Can't start HWMON, CONFIG_HWMON is not enabled\n"); #endif } return 0; free_irq: if (pf_irqs) pci_free_irq_vectors(pdev); free_cfg: snet_free_cfg(&psnet->cfg); free_psnet: kfree(psnet); return ret; } /* Probe function for a virtual PCI function */ static int snet_vdpa_probe_vf(struct pci_dev *pdev) { struct pci_dev *pdev_pf = pdev->physfn; struct psnet *psnet = pci_get_drvdata(pdev_pf); struct snet_dev_cfg *dev_cfg; struct snet *snet; u32 vfid; int ret; bool pf_irqs = false; /* Get virtual function id. * (the DPU counts the VFs from 1) */ ret = pci_iov_vf_id(pdev); if (ret < 0) { SNET_ERR(pdev, "Failed to find a VF id\n"); return ret; } vfid = ret + 1; /* Find the snet_dev_cfg based on vfid */ dev_cfg = snet_find_dev_cfg(&psnet->cfg, vfid); if (!dev_cfg) { SNET_WARN(pdev, "Failed to find a VF config..\n"); return -ENODEV; } /* Which PCI device should allocate the IRQs? * If the SNET_CFG_FLAG_IRQ_PF flag set, the PF device allocates the IRQs */ pf_irqs = PSNET_FLAG_ON(psnet, SNET_CFG_FLAG_IRQ_PF); ret = pcim_enable_device(pdev); if (ret) { SNET_ERR(pdev, "Failed to enable PCI VF device\n"); return ret; } /* Request for MSI-X IRQs */ if (!pf_irqs) { ret = snet_alloc_irq_vector(pdev, dev_cfg); if (ret) return ret; } /* Allocate vdpa device */ snet = vdpa_alloc_device(struct snet, vdpa, &pdev->dev, &snet_config_ops, 1, 1, NULL, false); if (!snet) { SNET_ERR(pdev, "Failed to allocate a vdpa device\n"); ret = -ENOMEM; goto free_irqs; } /* Init control mutex and spinlock */ mutex_init(&snet->ctrl_lock); spin_lock_init(&snet->ctrl_spinlock); /* Save pci device pointer */ snet->pdev = pdev; snet->psnet = psnet; snet->cfg = dev_cfg; snet->dpu_ready = false; snet->sid = vfid; /* Reset IRQ value */ snet->cfg_irq = -1; ret = snet_open_vf_bar(pdev, snet); if (ret) goto put_device; /* Create a VirtIO config pointer */ snet->cfg->virtio_cfg = snet->bar + snet->psnet->cfg.virtio_cfg_off; /* Clear control registers */ snet_ctrl_clear(snet); pci_set_master(pdev); pci_set_drvdata(pdev, snet); ret = snet_build_vqs(snet); if (ret) goto put_device; /* Reserve IRQ indexes, * The IRQs may be requested and freed multiple times, * but the indexes won't change. */ snet_reserve_irq_idx(pf_irqs ? pdev_pf : pdev, snet); /*set DMA device*/ snet->vdpa.dma_dev = &pdev->dev; /* Register VDPA device */ ret = vdpa_register_device(&snet->vdpa, snet->cfg->vq_num); if (ret) { SNET_ERR(pdev, "Failed to register vdpa device\n"); goto free_vqs; } return 0; free_vqs: snet_free_vqs(snet); put_device: put_device(&snet->vdpa.dev); free_irqs: if (!pf_irqs) pci_free_irq_vectors(pdev); return ret; } static int snet_vdpa_probe(struct pci_dev *pdev, const struct pci_device_id *id) { if (pdev->is_virtfn) return snet_vdpa_probe_vf(pdev); else return snet_vdpa_probe_pf(pdev); } static void snet_vdpa_remove_pf(struct pci_dev *pdev) { struct psnet *psnet = pci_get_drvdata(pdev); pci_disable_sriov(pdev); /* If IRQs are allocated from the PF, we should free the IRQs */ if (PSNET_FLAG_ON(psnet, SNET_CFG_FLAG_IRQ_PF)) pci_free_irq_vectors(pdev); snet_free_cfg(&psnet->cfg); kfree(psnet); } static void snet_vdpa_remove_vf(struct pci_dev *pdev) { struct snet *snet = pci_get_drvdata(pdev); struct psnet *psnet = snet->psnet; vdpa_unregister_device(&snet->vdpa); snet_free_vqs(snet); /* If IRQs are allocated from the VF, we should free the IRQs */ if (!PSNET_FLAG_ON(psnet, SNET_CFG_FLAG_IRQ_PF)) pci_free_irq_vectors(pdev); } static void snet_vdpa_remove(struct pci_dev *pdev) { if (pdev->is_virtfn) snet_vdpa_remove_vf(pdev); else snet_vdpa_remove_pf(pdev); } static struct pci_device_id snet_driver_pci_ids[] = { { PCI_DEVICE_SUB(PCI_VENDOR_ID_SOLIDRUN, SNET_DEVICE_ID, PCI_VENDOR_ID_SOLIDRUN, SNET_DEVICE_ID) }, { 0 }, }; MODULE_DEVICE_TABLE(pci, snet_driver_pci_ids); static struct pci_driver snet_vdpa_driver = { .name = "snet-vdpa-driver", .id_table = snet_driver_pci_ids, .probe = snet_vdpa_probe, .remove = snet_vdpa_remove, }; module_pci_driver(snet_vdpa_driver); MODULE_AUTHOR("Alvaro Karsz <[email protected]>"); MODULE_DESCRIPTION("SolidRun vDPA driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/vdpa/solidrun/snet_main.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Force feedback support for memoryless devices * * Copyright (c) 2006 Anssi Hannula <[email protected]> * Copyright (c) 2006 Dmitry Torokhov <[email protected]> */ /* #define DEBUG */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/slab.h> #include <linux/input.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/spinlock.h> #include <linux/jiffies.h> #include <linux/fixp-arith.h> MODULE_LICENSE("GPL"); MODULE_AUTHOR("Anssi Hannula <[email protected]>"); MODULE_DESCRIPTION("Force feedback support for memoryless devices"); /* Number of effects handled with memoryless devices */ #define FF_MEMLESS_EFFECTS 16 /* Envelope update interval in ms */ #define FF_ENVELOPE_INTERVAL 50 #define FF_EFFECT_STARTED 0 #define FF_EFFECT_PLAYING 1 #define FF_EFFECT_ABORTING 2 struct ml_effect_state { struct ff_effect *effect; unsigned long flags; /* effect state (STARTED, PLAYING, etc) */ int count; /* loop count of the effect */ unsigned long play_at; /* start time */ unsigned long stop_at; /* stop time */ unsigned long adj_at; /* last time the effect was sent */ }; struct ml_device { void *private; struct ml_effect_state states[FF_MEMLESS_EFFECTS]; int gain; struct timer_list timer; struct input_dev *dev; int (*play_effect)(struct input_dev *dev, void *data, struct ff_effect *effect); }; static const struct ff_envelope *get_envelope(const struct ff_effect *effect) { static const struct ff_envelope empty_envelope; switch (effect->type) { case FF_PERIODIC: return &effect->u.periodic.envelope; case FF_CONSTANT: return &effect->u.constant.envelope; default: return &empty_envelope; } } /* * Check for the next time envelope requires an update on memoryless devices */ static unsigned long calculate_next_time(struct ml_effect_state *state) { const struct ff_envelope *envelope = get_envelope(state->effect); unsigned long attack_stop, fade_start, next_fade; if (envelope->attack_length) { attack_stop = state->play_at + msecs_to_jiffies(envelope->attack_length); if (time_before(state->adj_at, attack_stop)) return state->adj_at + msecs_to_jiffies(FF_ENVELOPE_INTERVAL); } if (state->effect->replay.length) { if (envelope->fade_length) { /* check when fading should start */ fade_start = state->stop_at - msecs_to_jiffies(envelope->fade_length); if (time_before(state->adj_at, fade_start)) return fade_start; /* already fading, advance to next checkpoint */ next_fade = state->adj_at + msecs_to_jiffies(FF_ENVELOPE_INTERVAL); if (time_before(next_fade, state->stop_at)) return next_fade; } return state->stop_at; } return state->play_at; } static void ml_schedule_timer(struct ml_device *ml) { struct ml_effect_state *state; unsigned long now = jiffies; unsigned long earliest = 0; unsigned long next_at; int events = 0; int i; pr_debug("calculating next timer\n"); for (i = 0; i < FF_MEMLESS_EFFECTS; i++) { state = &ml->states[i]; if (!test_bit(FF_EFFECT_STARTED, &state->flags)) continue; if (test_bit(FF_EFFECT_PLAYING, &state->flags)) next_at = calculate_next_time(state); else next_at = state->play_at; if (time_before_eq(now, next_at) && (++events == 1 || time_before(next_at, earliest))) earliest = next_at; } if (!events) { pr_debug("no actions\n"); del_timer(&ml->timer); } else { pr_debug("timer set\n"); mod_timer(&ml->timer, earliest); } } /* * Apply an envelope to a value */ static int apply_envelope(struct ml_effect_state *state, int value, struct ff_envelope *envelope) { struct ff_effect *effect = state->effect; unsigned long now = jiffies; int time_from_level; int time_of_envelope; int envelope_level; int difference; if (envelope->attack_length && time_before(now, state->play_at + msecs_to_jiffies(envelope->attack_length))) { pr_debug("value = 0x%x, attack_level = 0x%x\n", value, envelope->attack_level); time_from_level = jiffies_to_msecs(now - state->play_at); time_of_envelope = envelope->attack_length; envelope_level = min_t(u16, envelope->attack_level, 0x7fff); } else if (envelope->fade_length && effect->replay.length && time_after(now, state->stop_at - msecs_to_jiffies(envelope->fade_length)) && time_before(now, state->stop_at)) { time_from_level = jiffies_to_msecs(state->stop_at - now); time_of_envelope = envelope->fade_length; envelope_level = min_t(u16, envelope->fade_level, 0x7fff); } else return value; difference = abs(value) - envelope_level; pr_debug("difference = %d\n", difference); pr_debug("time_from_level = 0x%x\n", time_from_level); pr_debug("time_of_envelope = 0x%x\n", time_of_envelope); difference = difference * time_from_level / time_of_envelope; pr_debug("difference = %d\n", difference); return value < 0 ? -(difference + envelope_level) : (difference + envelope_level); } /* * Return the type the effect has to be converted into (memless devices) */ static int get_compatible_type(struct ff_device *ff, int effect_type) { if (test_bit(effect_type, ff->ffbit)) return effect_type; if (effect_type == FF_PERIODIC && test_bit(FF_RUMBLE, ff->ffbit)) return FF_RUMBLE; pr_err("invalid type in get_compatible_type()\n"); return 0; } /* * Only left/right direction should be used (under/over 0x8000) for * forward/reverse motor direction (to keep calculation fast & simple). */ static u16 ml_calculate_direction(u16 direction, u16 force, u16 new_direction, u16 new_force) { if (!force) return new_direction; if (!new_force) return direction; return (((u32)(direction >> 1) * force + (new_direction >> 1) * new_force) / (force + new_force)) << 1; } #define FRAC_N 8 static inline s16 fixp_new16(s16 a) { return ((s32)a) >> (16 - FRAC_N); } static inline s16 fixp_mult(s16 a, s16 b) { a = ((s32)a * 0x100) / 0x7fff; return ((s32)(a * b)) >> FRAC_N; } /* * Combine two effects and apply gain. */ static void ml_combine_effects(struct ff_effect *effect, struct ml_effect_state *state, int gain) { struct ff_effect *new = state->effect; unsigned int strong, weak, i; int x, y; s16 level; switch (new->type) { case FF_CONSTANT: i = new->direction * 360 / 0xffff; level = fixp_new16(apply_envelope(state, new->u.constant.level, &new->u.constant.envelope)); x = fixp_mult(fixp_sin16(i), level) * gain / 0xffff; y = fixp_mult(-fixp_cos16(i), level) * gain / 0xffff; /* * here we abuse ff_ramp to hold x and y of constant force * If in future any driver wants something else than x and y * in s8, this should be changed to something more generic */ effect->u.ramp.start_level = clamp_val(effect->u.ramp.start_level + x, -0x80, 0x7f); effect->u.ramp.end_level = clamp_val(effect->u.ramp.end_level + y, -0x80, 0x7f); break; case FF_RUMBLE: strong = (u32)new->u.rumble.strong_magnitude * gain / 0xffff; weak = (u32)new->u.rumble.weak_magnitude * gain / 0xffff; if (effect->u.rumble.strong_magnitude + strong) effect->direction = ml_calculate_direction( effect->direction, effect->u.rumble.strong_magnitude, new->direction, strong); else if (effect->u.rumble.weak_magnitude + weak) effect->direction = ml_calculate_direction( effect->direction, effect->u.rumble.weak_magnitude, new->direction, weak); else effect->direction = 0; effect->u.rumble.strong_magnitude = min(strong + effect->u.rumble.strong_magnitude, 0xffffU); effect->u.rumble.weak_magnitude = min(weak + effect->u.rumble.weak_magnitude, 0xffffU); break; case FF_PERIODIC: i = apply_envelope(state, abs(new->u.periodic.magnitude), &new->u.periodic.envelope); /* here we also scale it 0x7fff => 0xffff */ i = i * gain / 0x7fff; if (effect->u.rumble.strong_magnitude + i) effect->direction = ml_calculate_direction( effect->direction, effect->u.rumble.strong_magnitude, new->direction, i); else effect->direction = 0; effect->u.rumble.strong_magnitude = min(i + effect->u.rumble.strong_magnitude, 0xffffU); effect->u.rumble.weak_magnitude = min(i + effect->u.rumble.weak_magnitude, 0xffffU); break; default: pr_err("invalid type in ml_combine_effects()\n"); break; } } /* * Because memoryless devices have only one effect per effect type active * at one time we have to combine multiple effects into one */ static int ml_get_combo_effect(struct ml_device *ml, unsigned long *effect_handled, struct ff_effect *combo_effect) { struct ff_effect *effect; struct ml_effect_state *state; int effect_type; int i; memset(combo_effect, 0, sizeof(struct ff_effect)); for (i = 0; i < FF_MEMLESS_EFFECTS; i++) { if (__test_and_set_bit(i, effect_handled)) continue; state = &ml->states[i]; effect = state->effect; if (!test_bit(FF_EFFECT_STARTED, &state->flags)) continue; if (time_before(jiffies, state->play_at)) continue; /* * here we have started effects that are either * currently playing (and may need be aborted) * or need to start playing. */ effect_type = get_compatible_type(ml->dev->ff, effect->type); if (combo_effect->type != effect_type) { if (combo_effect->type != 0) { __clear_bit(i, effect_handled); continue; } combo_effect->type = effect_type; } if (__test_and_clear_bit(FF_EFFECT_ABORTING, &state->flags)) { __clear_bit(FF_EFFECT_PLAYING, &state->flags); __clear_bit(FF_EFFECT_STARTED, &state->flags); } else if (effect->replay.length && time_after_eq(jiffies, state->stop_at)) { __clear_bit(FF_EFFECT_PLAYING, &state->flags); if (--state->count <= 0) { __clear_bit(FF_EFFECT_STARTED, &state->flags); } else { state->play_at = jiffies + msecs_to_jiffies(effect->replay.delay); state->stop_at = state->play_at + msecs_to_jiffies(effect->replay.length); } } else { __set_bit(FF_EFFECT_PLAYING, &state->flags); state->adj_at = jiffies; ml_combine_effects(combo_effect, state, ml->gain); } } return combo_effect->type != 0; } static void ml_play_effects(struct ml_device *ml) { struct ff_effect effect; DECLARE_BITMAP(handled_bm, FF_MEMLESS_EFFECTS); memset(handled_bm, 0, sizeof(handled_bm)); while (ml_get_combo_effect(ml, handled_bm, &effect)) ml->play_effect(ml->dev, ml->private, &effect); ml_schedule_timer(ml); } static void ml_effect_timer(struct timer_list *t) { struct ml_device *ml = from_timer(ml, t, timer); struct input_dev *dev = ml->dev; unsigned long flags; pr_debug("timer: updating effects\n"); spin_lock_irqsave(&dev->event_lock, flags); ml_play_effects(ml); spin_unlock_irqrestore(&dev->event_lock, flags); } /* * Sets requested gain for FF effects. Called with dev->event_lock held. */ static void ml_ff_set_gain(struct input_dev *dev, u16 gain) { struct ml_device *ml = dev->ff->private; int i; ml->gain = gain; for (i = 0; i < FF_MEMLESS_EFFECTS; i++) __clear_bit(FF_EFFECT_PLAYING, &ml->states[i].flags); ml_play_effects(ml); } /* * Start/stop specified FF effect. Called with dev->event_lock held. */ static int ml_ff_playback(struct input_dev *dev, int effect_id, int value) { struct ml_device *ml = dev->ff->private; struct ml_effect_state *state = &ml->states[effect_id]; if (value > 0) { pr_debug("initiated play\n"); __set_bit(FF_EFFECT_STARTED, &state->flags); state->count = value; state->play_at = jiffies + msecs_to_jiffies(state->effect->replay.delay); state->stop_at = state->play_at + msecs_to_jiffies(state->effect->replay.length); state->adj_at = state->play_at; } else { pr_debug("initiated stop\n"); if (test_bit(FF_EFFECT_PLAYING, &state->flags)) __set_bit(FF_EFFECT_ABORTING, &state->flags); else __clear_bit(FF_EFFECT_STARTED, &state->flags); } ml_play_effects(ml); return 0; } static int ml_ff_upload(struct input_dev *dev, struct ff_effect *effect, struct ff_effect *old) { struct ml_device *ml = dev->ff->private; struct ml_effect_state *state = &ml->states[effect->id]; spin_lock_irq(&dev->event_lock); if (test_bit(FF_EFFECT_STARTED, &state->flags)) { __clear_bit(FF_EFFECT_PLAYING, &state->flags); state->play_at = jiffies + msecs_to_jiffies(state->effect->replay.delay); state->stop_at = state->play_at + msecs_to_jiffies(state->effect->replay.length); state->adj_at = state->play_at; ml_schedule_timer(ml); } spin_unlock_irq(&dev->event_lock); return 0; } static void ml_ff_destroy(struct ff_device *ff) { struct ml_device *ml = ff->private; /* * Even though we stop all playing effects when tearing down * an input device (via input_device_flush() that calls into * input_ff_flush() that stops and erases all effects), we * do not actually stop the timer, and therefore we should * do it here. */ del_timer_sync(&ml->timer); kfree(ml->private); } /** * input_ff_create_memless() - create memoryless force-feedback device * @dev: input device supporting force-feedback * @data: driver-specific data to be passed into @play_effect * @play_effect: driver-specific method for playing FF effect */ int input_ff_create_memless(struct input_dev *dev, void *data, int (*play_effect)(struct input_dev *, void *, struct ff_effect *)) { struct ml_device *ml; struct ff_device *ff; int error; int i; ml = kzalloc(sizeof(struct ml_device), GFP_KERNEL); if (!ml) return -ENOMEM; ml->dev = dev; ml->private = data; ml->play_effect = play_effect; ml->gain = 0xffff; timer_setup(&ml->timer, ml_effect_timer, 0); set_bit(FF_GAIN, dev->ffbit); error = input_ff_create(dev, FF_MEMLESS_EFFECTS); if (error) { kfree(ml); return error; } ff = dev->ff; ff->private = ml; ff->upload = ml_ff_upload; ff->playback = ml_ff_playback; ff->set_gain = ml_ff_set_gain; ff->destroy = ml_ff_destroy; /* we can emulate periodic effects with RUMBLE */ if (test_bit(FF_RUMBLE, ff->ffbit)) { set_bit(FF_PERIODIC, dev->ffbit); set_bit(FF_SINE, dev->ffbit); set_bit(FF_TRIANGLE, dev->ffbit); set_bit(FF_SQUARE, dev->ffbit); } for (i = 0; i < FF_MEMLESS_EFFECTS; i++) ml->states[i].effect = &ff->effects[i]; return 0; } EXPORT_SYMBOL_GPL(input_ff_create_memless);
linux-master
drivers/input/ff-memless.c
// SPDX-License-Identifier: GPL-2.0-only /* * Helpers for matrix keyboard bindings * * Copyright (C) 2012 Google, Inc * * Author: * Olof Johansson <[email protected]> */ #include <linux/device.h> #include <linux/export.h> #include <linux/gfp.h> #include <linux/input.h> #include <linux/input/matrix_keypad.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/property.h> #include <linux/slab.h> #include <linux/types.h> static bool matrix_keypad_map_key(struct input_dev *input_dev, unsigned int rows, unsigned int cols, unsigned int row_shift, unsigned int key) { unsigned short *keymap = input_dev->keycode; unsigned int row = KEY_ROW(key); unsigned int col = KEY_COL(key); unsigned short code = KEY_VAL(key); if (row >= rows || col >= cols) { dev_err(input_dev->dev.parent, "%s: invalid keymap entry 0x%x (row: %d, col: %d, rows: %d, cols: %d)\n", __func__, key, row, col, rows, cols); return false; } keymap[MATRIX_SCAN_CODE(row, col, row_shift)] = code; __set_bit(code, input_dev->keybit); return true; } /** * matrix_keypad_parse_properties() - Read properties of matrix keypad * * @dev: Device containing properties * @rows: Returns number of matrix rows * @cols: Returns number of matrix columns * @return 0 if OK, <0 on error */ int matrix_keypad_parse_properties(struct device *dev, unsigned int *rows, unsigned int *cols) { *rows = *cols = 0; device_property_read_u32(dev, "keypad,num-rows", rows); device_property_read_u32(dev, "keypad,num-columns", cols); if (!*rows || !*cols) { dev_err(dev, "number of keypad rows/columns not specified\n"); return -EINVAL; } return 0; } EXPORT_SYMBOL_GPL(matrix_keypad_parse_properties); static int matrix_keypad_parse_keymap(const char *propname, unsigned int rows, unsigned int cols, struct input_dev *input_dev) { struct device *dev = input_dev->dev.parent; unsigned int row_shift = get_count_order(cols); unsigned int max_keys = rows << row_shift; u32 *keys; int i; int size; int retval; if (!propname) propname = "linux,keymap"; size = device_property_count_u32(dev, propname); if (size <= 0) { dev_err(dev, "missing or malformed property %s: %d\n", propname, size); return size < 0 ? size : -EINVAL; } if (size > max_keys) { dev_err(dev, "%s size overflow (%d vs max %u)\n", propname, size, max_keys); return -EINVAL; } keys = kmalloc_array(size, sizeof(u32), GFP_KERNEL); if (!keys) return -ENOMEM; retval = device_property_read_u32_array(dev, propname, keys, size); if (retval) { dev_err(dev, "failed to read %s property: %d\n", propname, retval); goto out; } for (i = 0; i < size; i++) { if (!matrix_keypad_map_key(input_dev, rows, cols, row_shift, keys[i])) { retval = -EINVAL; goto out; } } retval = 0; out: kfree(keys); return retval; } /** * matrix_keypad_build_keymap - convert platform keymap into matrix keymap * @keymap_data: keymap supplied by the platform code * @keymap_name: name of device tree property containing keymap (if device * tree support is enabled). * @rows: number of rows in target keymap array * @cols: number of cols in target keymap array * @keymap: expanded version of keymap that is suitable for use by * matrix keyboard driver * @input_dev: input devices for which we are setting up the keymap * * This function converts platform keymap (encoded with KEY() macro) into * an array of keycodes that is suitable for using in a standard matrix * keyboard driver that uses row and col as indices. * * If @keymap_data is not supplied and device tree support is enabled * it will attempt load the keymap from property specified by @keymap_name * argument (or "linux,keymap" if @keymap_name is %NULL). * * If @keymap is %NULL the function will automatically allocate managed * block of memory to store the keymap. This memory will be associated with * the parent device and automatically freed when device unbinds from the * driver. * * Callers are expected to set up input_dev->dev.parent before calling this * function. */ int matrix_keypad_build_keymap(const struct matrix_keymap_data *keymap_data, const char *keymap_name, unsigned int rows, unsigned int cols, unsigned short *keymap, struct input_dev *input_dev) { unsigned int row_shift = get_count_order(cols); size_t max_keys = rows << row_shift; int i; int error; if (WARN_ON(!input_dev->dev.parent)) return -EINVAL; if (!keymap) { keymap = devm_kcalloc(input_dev->dev.parent, max_keys, sizeof(*keymap), GFP_KERNEL); if (!keymap) { dev_err(input_dev->dev.parent, "Unable to allocate memory for keymap"); return -ENOMEM; } } input_dev->keycode = keymap; input_dev->keycodesize = sizeof(*keymap); input_dev->keycodemax = max_keys; __set_bit(EV_KEY, input_dev->evbit); if (keymap_data) { for (i = 0; i < keymap_data->keymap_size; i++) { unsigned int key = keymap_data->keymap[i]; if (!matrix_keypad_map_key(input_dev, rows, cols, row_shift, key)) return -EINVAL; } } else { error = matrix_keypad_parse_keymap(keymap_name, rows, cols, input_dev); if (error) return error; } __clear_bit(KEY_RESERVED, input_dev->keybit); return 0; } EXPORT_SYMBOL(matrix_keypad_build_keymap); MODULE_LICENSE("GPL");
linux-master
drivers/input/matrix-keymap.c
// SPDX-License-Identifier: GPL-2.0-only /* * Support for polling mode for input devices. */ #include <linux/device.h> #include <linux/input.h> #include <linux/jiffies.h> #include <linux/mutex.h> #include <linux/slab.h> #include <linux/types.h> #include <linux/workqueue.h> #include "input-poller.h" struct input_dev_poller { void (*poll)(struct input_dev *dev); unsigned int poll_interval; /* msec */ unsigned int poll_interval_max; /* msec */ unsigned int poll_interval_min; /* msec */ struct input_dev *input; struct delayed_work work; }; static void input_dev_poller_queue_work(struct input_dev_poller *poller) { unsigned long delay; delay = msecs_to_jiffies(poller->poll_interval); if (delay >= HZ) delay = round_jiffies_relative(delay); queue_delayed_work(system_freezable_wq, &poller->work, delay); } static void input_dev_poller_work(struct work_struct *work) { struct input_dev_poller *poller = container_of(work, struct input_dev_poller, work.work); poller->poll(poller->input); input_dev_poller_queue_work(poller); } void input_dev_poller_finalize(struct input_dev_poller *poller) { if (!poller->poll_interval) poller->poll_interval = 500; if (!poller->poll_interval_max) poller->poll_interval_max = poller->poll_interval; } void input_dev_poller_start(struct input_dev_poller *poller) { /* Only start polling if polling is enabled */ if (poller->poll_interval > 0) { poller->poll(poller->input); input_dev_poller_queue_work(poller); } } void input_dev_poller_stop(struct input_dev_poller *poller) { cancel_delayed_work_sync(&poller->work); } int input_setup_polling(struct input_dev *dev, void (*poll_fn)(struct input_dev *dev)) { struct input_dev_poller *poller; poller = kzalloc(sizeof(*poller), GFP_KERNEL); if (!poller) { /* * We want to show message even though kzalloc() may have * printed backtrace as knowing what instance of input * device we were dealing with is helpful. */ dev_err(dev->dev.parent ?: &dev->dev, "%s: unable to allocate poller structure\n", __func__); return -ENOMEM; } INIT_DELAYED_WORK(&poller->work, input_dev_poller_work); poller->input = dev; poller->poll = poll_fn; dev->poller = poller; return 0; } EXPORT_SYMBOL(input_setup_polling); static bool input_dev_ensure_poller(struct input_dev *dev) { if (!dev->poller) { dev_err(dev->dev.parent ?: &dev->dev, "poller structure has not been set up\n"); return false; } return true; } void input_set_poll_interval(struct input_dev *dev, unsigned int interval) { if (input_dev_ensure_poller(dev)) dev->poller->poll_interval = interval; } EXPORT_SYMBOL(input_set_poll_interval); void input_set_min_poll_interval(struct input_dev *dev, unsigned int interval) { if (input_dev_ensure_poller(dev)) dev->poller->poll_interval_min = interval; } EXPORT_SYMBOL(input_set_min_poll_interval); void input_set_max_poll_interval(struct input_dev *dev, unsigned int interval) { if (input_dev_ensure_poller(dev)) dev->poller->poll_interval_max = interval; } EXPORT_SYMBOL(input_set_max_poll_interval); int input_get_poll_interval(struct input_dev *dev) { if (!dev->poller) return -EINVAL; return dev->poller->poll_interval; } EXPORT_SYMBOL(input_get_poll_interval); /* SYSFS interface */ static ssize_t input_dev_get_poll_interval(struct device *dev, struct device_attribute *attr, char *buf) { struct input_dev *input = to_input_dev(dev); return sprintf(buf, "%d\n", input->poller->poll_interval); } static ssize_t input_dev_set_poll_interval(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct input_dev *input = to_input_dev(dev); struct input_dev_poller *poller = input->poller; unsigned int interval; int err; err = kstrtouint(buf, 0, &interval); if (err) return err; if (interval < poller->poll_interval_min) return -EINVAL; if (interval > poller->poll_interval_max) return -EINVAL; mutex_lock(&input->mutex); poller->poll_interval = interval; if (input_device_enabled(input)) { cancel_delayed_work_sync(&poller->work); if (poller->poll_interval > 0) input_dev_poller_queue_work(poller); } mutex_unlock(&input->mutex); return count; } static DEVICE_ATTR(poll, 0644, input_dev_get_poll_interval, input_dev_set_poll_interval); static ssize_t input_dev_get_poll_max(struct device *dev, struct device_attribute *attr, char *buf) { struct input_dev *input = to_input_dev(dev); return sprintf(buf, "%d\n", input->poller->poll_interval_max); } static DEVICE_ATTR(max, 0444, input_dev_get_poll_max, NULL); static ssize_t input_dev_get_poll_min(struct device *dev, struct device_attribute *attr, char *buf) { struct input_dev *input = to_input_dev(dev); return sprintf(buf, "%d\n", input->poller->poll_interval_min); } static DEVICE_ATTR(min, 0444, input_dev_get_poll_min, NULL); static umode_t input_poller_attrs_visible(struct kobject *kobj, struct attribute *attr, int n) { struct device *dev = kobj_to_dev(kobj); struct input_dev *input = to_input_dev(dev); return input->poller ? attr->mode : 0; } static struct attribute *input_poller_attrs[] = { &dev_attr_poll.attr, &dev_attr_max.attr, &dev_attr_min.attr, NULL }; struct attribute_group input_poller_attribute_group = { .is_visible = input_poller_attrs_visible, .attrs = input_poller_attrs, };
linux-master
drivers/input/input-poller.c
// SPDX-License-Identifier: GPL-2.0-only /* * Event char devices, giving access to raw input device events. * * Copyright (c) 1999-2002 Vojtech Pavlik */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #define EVDEV_MINOR_BASE 64 #define EVDEV_MINORS 32 #define EVDEV_MIN_BUFFER_SIZE 64U #define EVDEV_BUF_PACKETS 8 #include <linux/poll.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/vmalloc.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/init.h> #include <linux/input/mt.h> #include <linux/major.h> #include <linux/device.h> #include <linux/cdev.h> #include "input-compat.h" struct evdev { int open; struct input_handle handle; struct evdev_client __rcu *grab; struct list_head client_list; spinlock_t client_lock; /* protects client_list */ struct mutex mutex; struct device dev; struct cdev cdev; bool exist; }; struct evdev_client { unsigned int head; unsigned int tail; unsigned int packet_head; /* [future] position of the first element of next packet */ spinlock_t buffer_lock; /* protects access to buffer, head and tail */ wait_queue_head_t wait; struct fasync_struct *fasync; struct evdev *evdev; struct list_head node; enum input_clock_type clk_type; bool revoked; unsigned long *evmasks[EV_CNT]; unsigned int bufsize; struct input_event buffer[]; }; static size_t evdev_get_mask_cnt(unsigned int type) { static const size_t counts[EV_CNT] = { /* EV_SYN==0 is EV_CNT, _not_ SYN_CNT, see EVIOCGBIT */ [EV_SYN] = EV_CNT, [EV_KEY] = KEY_CNT, [EV_REL] = REL_CNT, [EV_ABS] = ABS_CNT, [EV_MSC] = MSC_CNT, [EV_SW] = SW_CNT, [EV_LED] = LED_CNT, [EV_SND] = SND_CNT, [EV_FF] = FF_CNT, }; return (type < EV_CNT) ? counts[type] : 0; } /* requires the buffer lock to be held */ static bool __evdev_is_filtered(struct evdev_client *client, unsigned int type, unsigned int code) { unsigned long *mask; size_t cnt; /* EV_SYN and unknown codes are never filtered */ if (type == EV_SYN || type >= EV_CNT) return false; /* first test whether the type is filtered */ mask = client->evmasks[0]; if (mask && !test_bit(type, mask)) return true; /* unknown values are never filtered */ cnt = evdev_get_mask_cnt(type); if (!cnt || code >= cnt) return false; mask = client->evmasks[type]; return mask && !test_bit(code, mask); } /* flush queued events of type @type, caller must hold client->buffer_lock */ static void __evdev_flush_queue(struct evdev_client *client, unsigned int type) { unsigned int i, head, num; unsigned int mask = client->bufsize - 1; bool is_report; struct input_event *ev; BUG_ON(type == EV_SYN); head = client->tail; client->packet_head = client->tail; /* init to 1 so a leading SYN_REPORT will not be dropped */ num = 1; for (i = client->tail; i != client->head; i = (i + 1) & mask) { ev = &client->buffer[i]; is_report = ev->type == EV_SYN && ev->code == SYN_REPORT; if (ev->type == type) { /* drop matched entry */ continue; } else if (is_report && !num) { /* drop empty SYN_REPORT groups */ continue; } else if (head != i) { /* move entry to fill the gap */ client->buffer[head] = *ev; } num++; head = (head + 1) & mask; if (is_report) { num = 0; client->packet_head = head; } } client->head = head; } static void __evdev_queue_syn_dropped(struct evdev_client *client) { ktime_t *ev_time = input_get_timestamp(client->evdev->handle.dev); struct timespec64 ts = ktime_to_timespec64(ev_time[client->clk_type]); struct input_event ev; ev.input_event_sec = ts.tv_sec; ev.input_event_usec = ts.tv_nsec / NSEC_PER_USEC; ev.type = EV_SYN; ev.code = SYN_DROPPED; ev.value = 0; client->buffer[client->head++] = ev; client->head &= client->bufsize - 1; if (unlikely(client->head == client->tail)) { /* drop queue but keep our SYN_DROPPED event */ client->tail = (client->head - 1) & (client->bufsize - 1); client->packet_head = client->tail; } } static void evdev_queue_syn_dropped(struct evdev_client *client) { unsigned long flags; spin_lock_irqsave(&client->buffer_lock, flags); __evdev_queue_syn_dropped(client); spin_unlock_irqrestore(&client->buffer_lock, flags); } static int evdev_set_clk_type(struct evdev_client *client, unsigned int clkid) { unsigned long flags; enum input_clock_type clk_type; switch (clkid) { case CLOCK_REALTIME: clk_type = INPUT_CLK_REAL; break; case CLOCK_MONOTONIC: clk_type = INPUT_CLK_MONO; break; case CLOCK_BOOTTIME: clk_type = INPUT_CLK_BOOT; break; default: return -EINVAL; } if (client->clk_type != clk_type) { client->clk_type = clk_type; /* * Flush pending events and queue SYN_DROPPED event, * but only if the queue is not empty. */ spin_lock_irqsave(&client->buffer_lock, flags); if (client->head != client->tail) { client->packet_head = client->head = client->tail; __evdev_queue_syn_dropped(client); } spin_unlock_irqrestore(&client->buffer_lock, flags); } return 0; } static void __pass_event(struct evdev_client *client, const struct input_event *event) { client->buffer[client->head++] = *event; client->head &= client->bufsize - 1; if (unlikely(client->head == client->tail)) { /* * This effectively "drops" all unconsumed events, leaving * EV_SYN/SYN_DROPPED plus the newest event in the queue. */ client->tail = (client->head - 2) & (client->bufsize - 1); client->buffer[client->tail] = (struct input_event) { .input_event_sec = event->input_event_sec, .input_event_usec = event->input_event_usec, .type = EV_SYN, .code = SYN_DROPPED, .value = 0, }; client->packet_head = client->tail; } if (event->type == EV_SYN && event->code == SYN_REPORT) { client->packet_head = client->head; kill_fasync(&client->fasync, SIGIO, POLL_IN); } } static void evdev_pass_values(struct evdev_client *client, const struct input_value *vals, unsigned int count, ktime_t *ev_time) { const struct input_value *v; struct input_event event; struct timespec64 ts; bool wakeup = false; if (client->revoked) return; ts = ktime_to_timespec64(ev_time[client->clk_type]); event.input_event_sec = ts.tv_sec; event.input_event_usec = ts.tv_nsec / NSEC_PER_USEC; /* Interrupts are disabled, just acquire the lock. */ spin_lock(&client->buffer_lock); for (v = vals; v != vals + count; v++) { if (__evdev_is_filtered(client, v->type, v->code)) continue; if (v->type == EV_SYN && v->code == SYN_REPORT) { /* drop empty SYN_REPORT */ if (client->packet_head == client->head) continue; wakeup = true; } event.type = v->type; event.code = v->code; event.value = v->value; __pass_event(client, &event); } spin_unlock(&client->buffer_lock); if (wakeup) wake_up_interruptible_poll(&client->wait, EPOLLIN | EPOLLOUT | EPOLLRDNORM | EPOLLWRNORM); } /* * Pass incoming events to all connected clients. */ static void evdev_events(struct input_handle *handle, const struct input_value *vals, unsigned int count) { struct evdev *evdev = handle->private; struct evdev_client *client; ktime_t *ev_time = input_get_timestamp(handle->dev); rcu_read_lock(); client = rcu_dereference(evdev->grab); if (client) evdev_pass_values(client, vals, count, ev_time); else list_for_each_entry_rcu(client, &evdev->client_list, node) evdev_pass_values(client, vals, count, ev_time); rcu_read_unlock(); } /* * Pass incoming event to all connected clients. */ static void evdev_event(struct input_handle *handle, unsigned int type, unsigned int code, int value) { struct input_value vals[] = { { type, code, value } }; evdev_events(handle, vals, 1); } static int evdev_fasync(int fd, struct file *file, int on) { struct evdev_client *client = file->private_data; return fasync_helper(fd, file, on, &client->fasync); } static void evdev_free(struct device *dev) { struct evdev *evdev = container_of(dev, struct evdev, dev); input_put_device(evdev->handle.dev); kfree(evdev); } /* * Grabs an event device (along with underlying input device). * This function is called with evdev->mutex taken. */ static int evdev_grab(struct evdev *evdev, struct evdev_client *client) { int error; if (evdev->grab) return -EBUSY; error = input_grab_device(&evdev->handle); if (error) return error; rcu_assign_pointer(evdev->grab, client); return 0; } static int evdev_ungrab(struct evdev *evdev, struct evdev_client *client) { struct evdev_client *grab = rcu_dereference_protected(evdev->grab, lockdep_is_held(&evdev->mutex)); if (grab != client) return -EINVAL; rcu_assign_pointer(evdev->grab, NULL); synchronize_rcu(); input_release_device(&evdev->handle); return 0; } static void evdev_attach_client(struct evdev *evdev, struct evdev_client *client) { spin_lock(&evdev->client_lock); list_add_tail_rcu(&client->node, &evdev->client_list); spin_unlock(&evdev->client_lock); } static void evdev_detach_client(struct evdev *evdev, struct evdev_client *client) { spin_lock(&evdev->client_lock); list_del_rcu(&client->node); spin_unlock(&evdev->client_lock); synchronize_rcu(); } static int evdev_open_device(struct evdev *evdev) { int retval; retval = mutex_lock_interruptible(&evdev->mutex); if (retval) return retval; if (!evdev->exist) retval = -ENODEV; else if (!evdev->open++) { retval = input_open_device(&evdev->handle); if (retval) evdev->open--; } mutex_unlock(&evdev->mutex); return retval; } static void evdev_close_device(struct evdev *evdev) { mutex_lock(&evdev->mutex); if (evdev->exist && !--evdev->open) input_close_device(&evdev->handle); mutex_unlock(&evdev->mutex); } /* * Wake up users waiting for IO so they can disconnect from * dead device. */ static void evdev_hangup(struct evdev *evdev) { struct evdev_client *client; spin_lock(&evdev->client_lock); list_for_each_entry(client, &evdev->client_list, node) { kill_fasync(&client->fasync, SIGIO, POLL_HUP); wake_up_interruptible_poll(&client->wait, EPOLLHUP | EPOLLERR); } spin_unlock(&evdev->client_lock); } static int evdev_release(struct inode *inode, struct file *file) { struct evdev_client *client = file->private_data; struct evdev *evdev = client->evdev; unsigned int i; mutex_lock(&evdev->mutex); if (evdev->exist && !client->revoked) input_flush_device(&evdev->handle, file); evdev_ungrab(evdev, client); mutex_unlock(&evdev->mutex); evdev_detach_client(evdev, client); for (i = 0; i < EV_CNT; ++i) bitmap_free(client->evmasks[i]); kvfree(client); evdev_close_device(evdev); return 0; } static unsigned int evdev_compute_buffer_size(struct input_dev *dev) { unsigned int n_events = max(dev->hint_events_per_packet * EVDEV_BUF_PACKETS, EVDEV_MIN_BUFFER_SIZE); return roundup_pow_of_two(n_events); } static int evdev_open(struct inode *inode, struct file *file) { struct evdev *evdev = container_of(inode->i_cdev, struct evdev, cdev); unsigned int bufsize = evdev_compute_buffer_size(evdev->handle.dev); struct evdev_client *client; int error; client = kvzalloc(struct_size(client, buffer, bufsize), GFP_KERNEL); if (!client) return -ENOMEM; init_waitqueue_head(&client->wait); client->bufsize = bufsize; spin_lock_init(&client->buffer_lock); client->evdev = evdev; evdev_attach_client(evdev, client); error = evdev_open_device(evdev); if (error) goto err_free_client; file->private_data = client; stream_open(inode, file); return 0; err_free_client: evdev_detach_client(evdev, client); kvfree(client); return error; } static ssize_t evdev_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos) { struct evdev_client *client = file->private_data; struct evdev *evdev = client->evdev; struct input_event event; int retval = 0; if (count != 0 && count < input_event_size()) return -EINVAL; retval = mutex_lock_interruptible(&evdev->mutex); if (retval) return retval; if (!evdev->exist || client->revoked) { retval = -ENODEV; goto out; } while (retval + input_event_size() <= count) { if (input_event_from_user(buffer + retval, &event)) { retval = -EFAULT; goto out; } retval += input_event_size(); input_inject_event(&evdev->handle, event.type, event.code, event.value); cond_resched(); } out: mutex_unlock(&evdev->mutex); return retval; } static int evdev_fetch_next_event(struct evdev_client *client, struct input_event *event) { int have_event; spin_lock_irq(&client->buffer_lock); have_event = client->packet_head != client->tail; if (have_event) { *event = client->buffer[client->tail++]; client->tail &= client->bufsize - 1; } spin_unlock_irq(&client->buffer_lock); return have_event; } static ssize_t evdev_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos) { struct evdev_client *client = file->private_data; struct evdev *evdev = client->evdev; struct input_event event; size_t read = 0; int error; if (count != 0 && count < input_event_size()) return -EINVAL; for (;;) { if (!evdev->exist || client->revoked) return -ENODEV; if (client->packet_head == client->tail && (file->f_flags & O_NONBLOCK)) return -EAGAIN; /* * count == 0 is special - no IO is done but we check * for error conditions (see above). */ if (count == 0) break; while (read + input_event_size() <= count && evdev_fetch_next_event(client, &event)) { if (input_event_to_user(buffer + read, &event)) return -EFAULT; read += input_event_size(); } if (read) break; if (!(file->f_flags & O_NONBLOCK)) { error = wait_event_interruptible(client->wait, client->packet_head != client->tail || !evdev->exist || client->revoked); if (error) return error; } } return read; } /* No kernel lock - fine */ static __poll_t evdev_poll(struct file *file, poll_table *wait) { struct evdev_client *client = file->private_data; struct evdev *evdev = client->evdev; __poll_t mask; poll_wait(file, &client->wait, wait); if (evdev->exist && !client->revoked) mask = EPOLLOUT | EPOLLWRNORM; else mask = EPOLLHUP | EPOLLERR; if (client->packet_head != client->tail) mask |= EPOLLIN | EPOLLRDNORM; return mask; } #ifdef CONFIG_COMPAT #define BITS_PER_LONG_COMPAT (sizeof(compat_long_t) * 8) #define BITS_TO_LONGS_COMPAT(x) ((((x) - 1) / BITS_PER_LONG_COMPAT) + 1) #ifdef __BIG_ENDIAN static int bits_to_user(unsigned long *bits, unsigned int maxbit, unsigned int maxlen, void __user *p, int compat) { int len, i; if (compat) { len = BITS_TO_LONGS_COMPAT(maxbit) * sizeof(compat_long_t); if (len > maxlen) len = maxlen; for (i = 0; i < len / sizeof(compat_long_t); i++) if (copy_to_user((compat_long_t __user *) p + i, (compat_long_t *) bits + i + 1 - ((i % 2) << 1), sizeof(compat_long_t))) return -EFAULT; } else { len = BITS_TO_LONGS(maxbit) * sizeof(long); if (len > maxlen) len = maxlen; if (copy_to_user(p, bits, len)) return -EFAULT; } return len; } static int bits_from_user(unsigned long *bits, unsigned int maxbit, unsigned int maxlen, const void __user *p, int compat) { int len, i; if (compat) { if (maxlen % sizeof(compat_long_t)) return -EINVAL; len = BITS_TO_LONGS_COMPAT(maxbit) * sizeof(compat_long_t); if (len > maxlen) len = maxlen; for (i = 0; i < len / sizeof(compat_long_t); i++) if (copy_from_user((compat_long_t *) bits + i + 1 - ((i % 2) << 1), (compat_long_t __user *) p + i, sizeof(compat_long_t))) return -EFAULT; if (i % 2) *((compat_long_t *) bits + i - 1) = 0; } else { if (maxlen % sizeof(long)) return -EINVAL; len = BITS_TO_LONGS(maxbit) * sizeof(long); if (len > maxlen) len = maxlen; if (copy_from_user(bits, p, len)) return -EFAULT; } return len; } #else static int bits_to_user(unsigned long *bits, unsigned int maxbit, unsigned int maxlen, void __user *p, int compat) { int len = compat ? BITS_TO_LONGS_COMPAT(maxbit) * sizeof(compat_long_t) : BITS_TO_LONGS(maxbit) * sizeof(long); if (len > maxlen) len = maxlen; return copy_to_user(p, bits, len) ? -EFAULT : len; } static int bits_from_user(unsigned long *bits, unsigned int maxbit, unsigned int maxlen, const void __user *p, int compat) { size_t chunk_size = compat ? sizeof(compat_long_t) : sizeof(long); int len; if (maxlen % chunk_size) return -EINVAL; len = compat ? BITS_TO_LONGS_COMPAT(maxbit) : BITS_TO_LONGS(maxbit); len *= chunk_size; if (len > maxlen) len = maxlen; return copy_from_user(bits, p, len) ? -EFAULT : len; } #endif /* __BIG_ENDIAN */ #else static int bits_to_user(unsigned long *bits, unsigned int maxbit, unsigned int maxlen, void __user *p, int compat) { int len = BITS_TO_LONGS(maxbit) * sizeof(long); if (len > maxlen) len = maxlen; return copy_to_user(p, bits, len) ? -EFAULT : len; } static int bits_from_user(unsigned long *bits, unsigned int maxbit, unsigned int maxlen, const void __user *p, int compat) { int len; if (maxlen % sizeof(long)) return -EINVAL; len = BITS_TO_LONGS(maxbit) * sizeof(long); if (len > maxlen) len = maxlen; return copy_from_user(bits, p, len) ? -EFAULT : len; } #endif /* CONFIG_COMPAT */ static int str_to_user(const char *str, unsigned int maxlen, void __user *p) { int len; if (!str) return -ENOENT; len = strlen(str) + 1; if (len > maxlen) len = maxlen; return copy_to_user(p, str, len) ? -EFAULT : len; } static int handle_eviocgbit(struct input_dev *dev, unsigned int type, unsigned int size, void __user *p, int compat_mode) { unsigned long *bits; int len; switch (type) { case 0: bits = dev->evbit; len = EV_MAX; break; case EV_KEY: bits = dev->keybit; len = KEY_MAX; break; case EV_REL: bits = dev->relbit; len = REL_MAX; break; case EV_ABS: bits = dev->absbit; len = ABS_MAX; break; case EV_MSC: bits = dev->mscbit; len = MSC_MAX; break; case EV_LED: bits = dev->ledbit; len = LED_MAX; break; case EV_SND: bits = dev->sndbit; len = SND_MAX; break; case EV_FF: bits = dev->ffbit; len = FF_MAX; break; case EV_SW: bits = dev->swbit; len = SW_MAX; break; default: return -EINVAL; } return bits_to_user(bits, len, size, p, compat_mode); } static int evdev_handle_get_keycode(struct input_dev *dev, void __user *p) { struct input_keymap_entry ke = { .len = sizeof(unsigned int), .flags = 0, }; int __user *ip = (int __user *)p; int error; /* legacy case */ if (copy_from_user(ke.scancode, p, sizeof(unsigned int))) return -EFAULT; error = input_get_keycode(dev, &ke); if (error) return error; if (put_user(ke.keycode, ip + 1)) return -EFAULT; return 0; } static int evdev_handle_get_keycode_v2(struct input_dev *dev, void __user *p) { struct input_keymap_entry ke; int error; if (copy_from_user(&ke, p, sizeof(ke))) return -EFAULT; error = input_get_keycode(dev, &ke); if (error) return error; if (copy_to_user(p, &ke, sizeof(ke))) return -EFAULT; return 0; } static int evdev_handle_set_keycode(struct input_dev *dev, void __user *p) { struct input_keymap_entry ke = { .len = sizeof(unsigned int), .flags = 0, }; int __user *ip = (int __user *)p; if (copy_from_user(ke.scancode, p, sizeof(unsigned int))) return -EFAULT; if (get_user(ke.keycode, ip + 1)) return -EFAULT; return input_set_keycode(dev, &ke); } static int evdev_handle_set_keycode_v2(struct input_dev *dev, void __user *p) { struct input_keymap_entry ke; if (copy_from_user(&ke, p, sizeof(ke))) return -EFAULT; if (ke.len > sizeof(ke.scancode)) return -EINVAL; return input_set_keycode(dev, &ke); } /* * If we transfer state to the user, we should flush all pending events * of the same type from the client's queue. Otherwise, they might end up * with duplicate events, which can screw up client's state tracking. * If bits_to_user fails after flushing the queue, we queue a SYN_DROPPED * event so user-space will notice missing events. * * LOCKING: * We need to take event_lock before buffer_lock to avoid dead-locks. But we * need the even_lock only to guarantee consistent state. We can safely release * it while flushing the queue. This allows input-core to handle filters while * we flush the queue. */ static int evdev_handle_get_val(struct evdev_client *client, struct input_dev *dev, unsigned int type, unsigned long *bits, unsigned int maxbit, unsigned int maxlen, void __user *p, int compat) { int ret; unsigned long *mem; mem = bitmap_alloc(maxbit, GFP_KERNEL); if (!mem) return -ENOMEM; spin_lock_irq(&dev->event_lock); spin_lock(&client->buffer_lock); bitmap_copy(mem, bits, maxbit); spin_unlock(&dev->event_lock); __evdev_flush_queue(client, type); spin_unlock_irq(&client->buffer_lock); ret = bits_to_user(mem, maxbit, maxlen, p, compat); if (ret < 0) evdev_queue_syn_dropped(client); bitmap_free(mem); return ret; } static int evdev_handle_mt_request(struct input_dev *dev, unsigned int size, int __user *ip) { const struct input_mt *mt = dev->mt; unsigned int code; int max_slots; int i; if (get_user(code, &ip[0])) return -EFAULT; if (!mt || !input_is_mt_value(code)) return -EINVAL; max_slots = (size - sizeof(__u32)) / sizeof(__s32); for (i = 0; i < mt->num_slots && i < max_slots; i++) { int value = input_mt_get_value(&mt->slots[i], code); if (put_user(value, &ip[1 + i])) return -EFAULT; } return 0; } static int evdev_revoke(struct evdev *evdev, struct evdev_client *client, struct file *file) { client->revoked = true; evdev_ungrab(evdev, client); input_flush_device(&evdev->handle, file); wake_up_interruptible_poll(&client->wait, EPOLLHUP | EPOLLERR); return 0; } /* must be called with evdev-mutex held */ static int evdev_set_mask(struct evdev_client *client, unsigned int type, const void __user *codes, u32 codes_size, int compat) { unsigned long flags, *mask, *oldmask; size_t cnt; int error; /* we allow unknown types and 'codes_size > size' for forward-compat */ cnt = evdev_get_mask_cnt(type); if (!cnt) return 0; mask = bitmap_zalloc(cnt, GFP_KERNEL); if (!mask) return -ENOMEM; error = bits_from_user(mask, cnt - 1, codes_size, codes, compat); if (error < 0) { bitmap_free(mask); return error; } spin_lock_irqsave(&client->buffer_lock, flags); oldmask = client->evmasks[type]; client->evmasks[type] = mask; spin_unlock_irqrestore(&client->buffer_lock, flags); bitmap_free(oldmask); return 0; } /* must be called with evdev-mutex held */ static int evdev_get_mask(struct evdev_client *client, unsigned int type, void __user *codes, u32 codes_size, int compat) { unsigned long *mask; size_t cnt, size, xfer_size; int i; int error; /* we allow unknown types and 'codes_size > size' for forward-compat */ cnt = evdev_get_mask_cnt(type); size = sizeof(unsigned long) * BITS_TO_LONGS(cnt); xfer_size = min_t(size_t, codes_size, size); if (cnt > 0) { mask = client->evmasks[type]; if (mask) { error = bits_to_user(mask, cnt - 1, xfer_size, codes, compat); if (error < 0) return error; } else { /* fake mask with all bits set */ for (i = 0; i < xfer_size; i++) if (put_user(0xffU, (u8 __user *)codes + i)) return -EFAULT; } } if (xfer_size < codes_size) if (clear_user(codes + xfer_size, codes_size - xfer_size)) return -EFAULT; return 0; } static long evdev_do_ioctl(struct file *file, unsigned int cmd, void __user *p, int compat_mode) { struct evdev_client *client = file->private_data; struct evdev *evdev = client->evdev; struct input_dev *dev = evdev->handle.dev; struct input_absinfo abs; struct input_mask mask; struct ff_effect effect; int __user *ip = (int __user *)p; unsigned int i, t, u, v; unsigned int size; int error; /* First we check for fixed-length commands */ switch (cmd) { case EVIOCGVERSION: return put_user(EV_VERSION, ip); case EVIOCGID: if (copy_to_user(p, &dev->id, sizeof(struct input_id))) return -EFAULT; return 0; case EVIOCGREP: if (!test_bit(EV_REP, dev->evbit)) return -ENOSYS; if (put_user(dev->rep[REP_DELAY], ip)) return -EFAULT; if (put_user(dev->rep[REP_PERIOD], ip + 1)) return -EFAULT; return 0; case EVIOCSREP: if (!test_bit(EV_REP, dev->evbit)) return -ENOSYS; if (get_user(u, ip)) return -EFAULT; if (get_user(v, ip + 1)) return -EFAULT; input_inject_event(&evdev->handle, EV_REP, REP_DELAY, u); input_inject_event(&evdev->handle, EV_REP, REP_PERIOD, v); return 0; case EVIOCRMFF: return input_ff_erase(dev, (int)(unsigned long) p, file); case EVIOCGEFFECTS: i = test_bit(EV_FF, dev->evbit) ? dev->ff->max_effects : 0; if (put_user(i, ip)) return -EFAULT; return 0; case EVIOCGRAB: if (p) return evdev_grab(evdev, client); else return evdev_ungrab(evdev, client); case EVIOCREVOKE: if (p) return -EINVAL; else return evdev_revoke(evdev, client, file); case EVIOCGMASK: { void __user *codes_ptr; if (copy_from_user(&mask, p, sizeof(mask))) return -EFAULT; codes_ptr = (void __user *)(unsigned long)mask.codes_ptr; return evdev_get_mask(client, mask.type, codes_ptr, mask.codes_size, compat_mode); } case EVIOCSMASK: { const void __user *codes_ptr; if (copy_from_user(&mask, p, sizeof(mask))) return -EFAULT; codes_ptr = (const void __user *)(unsigned long)mask.codes_ptr; return evdev_set_mask(client, mask.type, codes_ptr, mask.codes_size, compat_mode); } case EVIOCSCLOCKID: if (copy_from_user(&i, p, sizeof(unsigned int))) return -EFAULT; return evdev_set_clk_type(client, i); case EVIOCGKEYCODE: return evdev_handle_get_keycode(dev, p); case EVIOCSKEYCODE: return evdev_handle_set_keycode(dev, p); case EVIOCGKEYCODE_V2: return evdev_handle_get_keycode_v2(dev, p); case EVIOCSKEYCODE_V2: return evdev_handle_set_keycode_v2(dev, p); } size = _IOC_SIZE(cmd); /* Now check variable-length commands */ #define EVIOC_MASK_SIZE(nr) ((nr) & ~(_IOC_SIZEMASK << _IOC_SIZESHIFT)) switch (EVIOC_MASK_SIZE(cmd)) { case EVIOCGPROP(0): return bits_to_user(dev->propbit, INPUT_PROP_MAX, size, p, compat_mode); case EVIOCGMTSLOTS(0): return evdev_handle_mt_request(dev, size, ip); case EVIOCGKEY(0): return evdev_handle_get_val(client, dev, EV_KEY, dev->key, KEY_MAX, size, p, compat_mode); case EVIOCGLED(0): return evdev_handle_get_val(client, dev, EV_LED, dev->led, LED_MAX, size, p, compat_mode); case EVIOCGSND(0): return evdev_handle_get_val(client, dev, EV_SND, dev->snd, SND_MAX, size, p, compat_mode); case EVIOCGSW(0): return evdev_handle_get_val(client, dev, EV_SW, dev->sw, SW_MAX, size, p, compat_mode); case EVIOCGNAME(0): return str_to_user(dev->name, size, p); case EVIOCGPHYS(0): return str_to_user(dev->phys, size, p); case EVIOCGUNIQ(0): return str_to_user(dev->uniq, size, p); case EVIOC_MASK_SIZE(EVIOCSFF): if (input_ff_effect_from_user(p, size, &effect)) return -EFAULT; error = input_ff_upload(dev, &effect, file); if (error) return error; if (put_user(effect.id, &(((struct ff_effect __user *)p)->id))) return -EFAULT; return 0; } /* Multi-number variable-length handlers */ if (_IOC_TYPE(cmd) != 'E') return -EINVAL; if (_IOC_DIR(cmd) == _IOC_READ) { if ((_IOC_NR(cmd) & ~EV_MAX) == _IOC_NR(EVIOCGBIT(0, 0))) return handle_eviocgbit(dev, _IOC_NR(cmd) & EV_MAX, size, p, compat_mode); if ((_IOC_NR(cmd) & ~ABS_MAX) == _IOC_NR(EVIOCGABS(0))) { if (!dev->absinfo) return -EINVAL; t = _IOC_NR(cmd) & ABS_MAX; abs = dev->absinfo[t]; if (copy_to_user(p, &abs, min_t(size_t, size, sizeof(struct input_absinfo)))) return -EFAULT; return 0; } } if (_IOC_DIR(cmd) == _IOC_WRITE) { if ((_IOC_NR(cmd) & ~ABS_MAX) == _IOC_NR(EVIOCSABS(0))) { if (!dev->absinfo) return -EINVAL; t = _IOC_NR(cmd) & ABS_MAX; if (copy_from_user(&abs, p, min_t(size_t, size, sizeof(struct input_absinfo)))) return -EFAULT; if (size < sizeof(struct input_absinfo)) abs.resolution = 0; /* We can't change number of reserved MT slots */ if (t == ABS_MT_SLOT) return -EINVAL; /* * Take event lock to ensure that we are not * changing device parameters in the middle * of event. */ spin_lock_irq(&dev->event_lock); dev->absinfo[t] = abs; spin_unlock_irq(&dev->event_lock); return 0; } } return -EINVAL; } static long evdev_ioctl_handler(struct file *file, unsigned int cmd, void __user *p, int compat_mode) { struct evdev_client *client = file->private_data; struct evdev *evdev = client->evdev; int retval; retval = mutex_lock_interruptible(&evdev->mutex); if (retval) return retval; if (!evdev->exist || client->revoked) { retval = -ENODEV; goto out; } retval = evdev_do_ioctl(file, cmd, p, compat_mode); out: mutex_unlock(&evdev->mutex); return retval; } static long evdev_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { return evdev_ioctl_handler(file, cmd, (void __user *)arg, 0); } #ifdef CONFIG_COMPAT static long evdev_ioctl_compat(struct file *file, unsigned int cmd, unsigned long arg) { return evdev_ioctl_handler(file, cmd, compat_ptr(arg), 1); } #endif static const struct file_operations evdev_fops = { .owner = THIS_MODULE, .read = evdev_read, .write = evdev_write, .poll = evdev_poll, .open = evdev_open, .release = evdev_release, .unlocked_ioctl = evdev_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = evdev_ioctl_compat, #endif .fasync = evdev_fasync, .llseek = no_llseek, }; /* * Mark device non-existent. This disables writes, ioctls and * prevents new users from opening the device. Already posted * blocking reads will stay, however new ones will fail. */ static void evdev_mark_dead(struct evdev *evdev) { mutex_lock(&evdev->mutex); evdev->exist = false; mutex_unlock(&evdev->mutex); } static void evdev_cleanup(struct evdev *evdev) { struct input_handle *handle = &evdev->handle; evdev_mark_dead(evdev); evdev_hangup(evdev); /* evdev is marked dead so no one else accesses evdev->open */ if (evdev->open) { input_flush_device(handle, NULL); input_close_device(handle); } } /* * Create new evdev device. Note that input core serializes calls * to connect and disconnect. */ static int evdev_connect(struct input_handler *handler, struct input_dev *dev, const struct input_device_id *id) { struct evdev *evdev; int minor; int dev_no; int error; minor = input_get_new_minor(EVDEV_MINOR_BASE, EVDEV_MINORS, true); if (minor < 0) { error = minor; pr_err("failed to reserve new minor: %d\n", error); return error; } evdev = kzalloc(sizeof(struct evdev), GFP_KERNEL); if (!evdev) { error = -ENOMEM; goto err_free_minor; } INIT_LIST_HEAD(&evdev->client_list); spin_lock_init(&evdev->client_lock); mutex_init(&evdev->mutex); evdev->exist = true; dev_no = minor; /* Normalize device number if it falls into legacy range */ if (dev_no < EVDEV_MINOR_BASE + EVDEV_MINORS) dev_no -= EVDEV_MINOR_BASE; dev_set_name(&evdev->dev, "event%d", dev_no); evdev->handle.dev = input_get_device(dev); evdev->handle.name = dev_name(&evdev->dev); evdev->handle.handler = handler; evdev->handle.private = evdev; evdev->dev.devt = MKDEV(INPUT_MAJOR, minor); evdev->dev.class = &input_class; evdev->dev.parent = &dev->dev; evdev->dev.release = evdev_free; device_initialize(&evdev->dev); error = input_register_handle(&evdev->handle); if (error) goto err_free_evdev; cdev_init(&evdev->cdev, &evdev_fops); error = cdev_device_add(&evdev->cdev, &evdev->dev); if (error) goto err_cleanup_evdev; return 0; err_cleanup_evdev: evdev_cleanup(evdev); input_unregister_handle(&evdev->handle); err_free_evdev: put_device(&evdev->dev); err_free_minor: input_free_minor(minor); return error; } static void evdev_disconnect(struct input_handle *handle) { struct evdev *evdev = handle->private; cdev_device_del(&evdev->cdev, &evdev->dev); evdev_cleanup(evdev); input_free_minor(MINOR(evdev->dev.devt)); input_unregister_handle(handle); put_device(&evdev->dev); } static const struct input_device_id evdev_ids[] = { { .driver_info = 1 }, /* Matches all devices */ { }, /* Terminating zero entry */ }; MODULE_DEVICE_TABLE(input, evdev_ids); static struct input_handler evdev_handler = { .event = evdev_event, .events = evdev_events, .connect = evdev_connect, .disconnect = evdev_disconnect, .legacy_minors = true, .minor = EVDEV_MINOR_BASE, .name = "evdev", .id_table = evdev_ids, }; static int __init evdev_init(void) { return input_register_handler(&evdev_handler); } static void __exit evdev_exit(void) { input_unregister_handler(&evdev_handler); } module_init(evdev_init); module_exit(evdev_exit); MODULE_AUTHOR("Vojtech Pavlik <[email protected]>"); MODULE_DESCRIPTION("Input driver event char devices"); MODULE_LICENSE("GPL");
linux-master
drivers/input/evdev.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Joystick device driver for the input driver suite. * * Copyright (c) 1999-2002 Vojtech Pavlik * Copyright (c) 1999 Colin Van Dyke */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <asm/io.h> #include <linux/delay.h> #include <linux/errno.h> #include <linux/joystick.h> #include <linux/input.h> #include <linux/kernel.h> #include <linux/major.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/poll.h> #include <linux/init.h> #include <linux/device.h> #include <linux/cdev.h> MODULE_AUTHOR("Vojtech Pavlik <[email protected]>"); MODULE_DESCRIPTION("Joystick device interfaces"); MODULE_LICENSE("GPL"); #define JOYDEV_MINOR_BASE 0 #define JOYDEV_MINORS 16 #define JOYDEV_BUFFER_SIZE 64 struct joydev { int open; struct input_handle handle; wait_queue_head_t wait; struct list_head client_list; spinlock_t client_lock; /* protects client_list */ struct mutex mutex; struct device dev; struct cdev cdev; bool exist; struct js_corr corr[ABS_CNT]; struct JS_DATA_SAVE_TYPE glue; int nabs; int nkey; __u16 keymap[KEY_MAX - BTN_MISC + 1]; __u16 keypam[KEY_MAX - BTN_MISC + 1]; __u8 absmap[ABS_CNT]; __u8 abspam[ABS_CNT]; __s16 abs[ABS_CNT]; }; struct joydev_client { struct js_event buffer[JOYDEV_BUFFER_SIZE]; int head; int tail; int startup; spinlock_t buffer_lock; /* protects access to buffer, head and tail */ struct fasync_struct *fasync; struct joydev *joydev; struct list_head node; }; static int joydev_correct(int value, struct js_corr *corr) { switch (corr->type) { case JS_CORR_NONE: break; case JS_CORR_BROKEN: value = value > corr->coef[0] ? (value < corr->coef[1] ? 0 : ((corr->coef[3] * (value - corr->coef[1])) >> 14)) : ((corr->coef[2] * (value - corr->coef[0])) >> 14); break; default: return 0; } return clamp(value, -32767, 32767); } static void joydev_pass_event(struct joydev_client *client, struct js_event *event) { struct joydev *joydev = client->joydev; /* * IRQs already disabled, just acquire the lock */ spin_lock(&client->buffer_lock); client->buffer[client->head] = *event; if (client->startup == joydev->nabs + joydev->nkey) { client->head++; client->head &= JOYDEV_BUFFER_SIZE - 1; if (client->tail == client->head) client->startup = 0; } spin_unlock(&client->buffer_lock); kill_fasync(&client->fasync, SIGIO, POLL_IN); } static void joydev_event(struct input_handle *handle, unsigned int type, unsigned int code, int value) { struct joydev *joydev = handle->private; struct joydev_client *client; struct js_event event; switch (type) { case EV_KEY: if (code < BTN_MISC || value == 2) return; event.type = JS_EVENT_BUTTON; event.number = joydev->keymap[code - BTN_MISC]; event.value = value; break; case EV_ABS: event.type = JS_EVENT_AXIS; event.number = joydev->absmap[code]; event.value = joydev_correct(value, &joydev->corr[event.number]); if (event.value == joydev->abs[event.number]) return; joydev->abs[event.number] = event.value; break; default: return; } event.time = jiffies_to_msecs(jiffies); rcu_read_lock(); list_for_each_entry_rcu(client, &joydev->client_list, node) joydev_pass_event(client, &event); rcu_read_unlock(); wake_up_interruptible(&joydev->wait); } static int joydev_fasync(int fd, struct file *file, int on) { struct joydev_client *client = file->private_data; return fasync_helper(fd, file, on, &client->fasync); } static void joydev_free(struct device *dev) { struct joydev *joydev = container_of(dev, struct joydev, dev); input_put_device(joydev->handle.dev); kfree(joydev); } static void joydev_attach_client(struct joydev *joydev, struct joydev_client *client) { spin_lock(&joydev->client_lock); list_add_tail_rcu(&client->node, &joydev->client_list); spin_unlock(&joydev->client_lock); } static void joydev_detach_client(struct joydev *joydev, struct joydev_client *client) { spin_lock(&joydev->client_lock); list_del_rcu(&client->node); spin_unlock(&joydev->client_lock); synchronize_rcu(); } static void joydev_refresh_state(struct joydev *joydev) { struct input_dev *dev = joydev->handle.dev; int i, val; for (i = 0; i < joydev->nabs; i++) { val = input_abs_get_val(dev, joydev->abspam[i]); joydev->abs[i] = joydev_correct(val, &joydev->corr[i]); } } static int joydev_open_device(struct joydev *joydev) { int retval; retval = mutex_lock_interruptible(&joydev->mutex); if (retval) return retval; if (!joydev->exist) retval = -ENODEV; else if (!joydev->open++) { retval = input_open_device(&joydev->handle); if (retval) joydev->open--; else joydev_refresh_state(joydev); } mutex_unlock(&joydev->mutex); return retval; } static void joydev_close_device(struct joydev *joydev) { mutex_lock(&joydev->mutex); if (joydev->exist && !--joydev->open) input_close_device(&joydev->handle); mutex_unlock(&joydev->mutex); } /* * Wake up users waiting for IO so they can disconnect from * dead device. */ static void joydev_hangup(struct joydev *joydev) { struct joydev_client *client; spin_lock(&joydev->client_lock); list_for_each_entry(client, &joydev->client_list, node) kill_fasync(&client->fasync, SIGIO, POLL_HUP); spin_unlock(&joydev->client_lock); wake_up_interruptible(&joydev->wait); } static int joydev_release(struct inode *inode, struct file *file) { struct joydev_client *client = file->private_data; struct joydev *joydev = client->joydev; joydev_detach_client(joydev, client); kfree(client); joydev_close_device(joydev); return 0; } static int joydev_open(struct inode *inode, struct file *file) { struct joydev *joydev = container_of(inode->i_cdev, struct joydev, cdev); struct joydev_client *client; int error; client = kzalloc(sizeof(struct joydev_client), GFP_KERNEL); if (!client) return -ENOMEM; spin_lock_init(&client->buffer_lock); client->joydev = joydev; joydev_attach_client(joydev, client); error = joydev_open_device(joydev); if (error) goto err_free_client; file->private_data = client; stream_open(inode, file); return 0; err_free_client: joydev_detach_client(joydev, client); kfree(client); return error; } static int joydev_generate_startup_event(struct joydev_client *client, struct input_dev *input, struct js_event *event) { struct joydev *joydev = client->joydev; int have_event; spin_lock_irq(&client->buffer_lock); have_event = client->startup < joydev->nabs + joydev->nkey; if (have_event) { event->time = jiffies_to_msecs(jiffies); if (client->startup < joydev->nkey) { event->type = JS_EVENT_BUTTON | JS_EVENT_INIT; event->number = client->startup; event->value = !!test_bit(joydev->keypam[event->number], input->key); } else { event->type = JS_EVENT_AXIS | JS_EVENT_INIT; event->number = client->startup - joydev->nkey; event->value = joydev->abs[event->number]; } client->startup++; } spin_unlock_irq(&client->buffer_lock); return have_event; } static int joydev_fetch_next_event(struct joydev_client *client, struct js_event *event) { int have_event; spin_lock_irq(&client->buffer_lock); have_event = client->head != client->tail; if (have_event) { *event = client->buffer[client->tail++]; client->tail &= JOYDEV_BUFFER_SIZE - 1; } spin_unlock_irq(&client->buffer_lock); return have_event; } /* * Old joystick interface */ static ssize_t joydev_0x_read(struct joydev_client *client, struct input_dev *input, char __user *buf) { struct joydev *joydev = client->joydev; struct JS_DATA_TYPE data; int i; spin_lock_irq(&input->event_lock); /* * Get device state */ for (data.buttons = i = 0; i < 32 && i < joydev->nkey; i++) data.buttons |= test_bit(joydev->keypam[i], input->key) ? (1 << i) : 0; data.x = (joydev->abs[0] / 256 + 128) >> joydev->glue.JS_CORR.x; data.y = (joydev->abs[1] / 256 + 128) >> joydev->glue.JS_CORR.y; /* * Reset reader's event queue */ spin_lock(&client->buffer_lock); client->startup = 0; client->tail = client->head; spin_unlock(&client->buffer_lock); spin_unlock_irq(&input->event_lock); if (copy_to_user(buf, &data, sizeof(struct JS_DATA_TYPE))) return -EFAULT; return sizeof(struct JS_DATA_TYPE); } static inline int joydev_data_pending(struct joydev_client *client) { struct joydev *joydev = client->joydev; return client->startup < joydev->nabs + joydev->nkey || client->head != client->tail; } static ssize_t joydev_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { struct joydev_client *client = file->private_data; struct joydev *joydev = client->joydev; struct input_dev *input = joydev->handle.dev; struct js_event event; int retval; if (!joydev->exist) return -ENODEV; if (count < sizeof(struct js_event)) return -EINVAL; if (count == sizeof(struct JS_DATA_TYPE)) return joydev_0x_read(client, input, buf); if (!joydev_data_pending(client) && (file->f_flags & O_NONBLOCK)) return -EAGAIN; retval = wait_event_interruptible(joydev->wait, !joydev->exist || joydev_data_pending(client)); if (retval) return retval; if (!joydev->exist) return -ENODEV; while (retval + sizeof(struct js_event) <= count && joydev_generate_startup_event(client, input, &event)) { if (copy_to_user(buf + retval, &event, sizeof(struct js_event))) return -EFAULT; retval += sizeof(struct js_event); } while (retval + sizeof(struct js_event) <= count && joydev_fetch_next_event(client, &event)) { if (copy_to_user(buf + retval, &event, sizeof(struct js_event))) return -EFAULT; retval += sizeof(struct js_event); } return retval; } /* No kernel lock - fine */ static __poll_t joydev_poll(struct file *file, poll_table *wait) { struct joydev_client *client = file->private_data; struct joydev *joydev = client->joydev; poll_wait(file, &joydev->wait, wait); return (joydev_data_pending(client) ? (EPOLLIN | EPOLLRDNORM) : 0) | (joydev->exist ? 0 : (EPOLLHUP | EPOLLERR)); } static int joydev_handle_JSIOCSAXMAP(struct joydev *joydev, void __user *argp, size_t len) { __u8 *abspam; int i; int retval = 0; len = min(len, sizeof(joydev->abspam)); /* Validate the map. */ abspam = memdup_user(argp, len); if (IS_ERR(abspam)) return PTR_ERR(abspam); for (i = 0; i < len && i < joydev->nabs; i++) { if (abspam[i] > ABS_MAX) { retval = -EINVAL; goto out; } } memcpy(joydev->abspam, abspam, len); for (i = 0; i < joydev->nabs; i++) joydev->absmap[joydev->abspam[i]] = i; out: kfree(abspam); return retval; } static int joydev_handle_JSIOCSBTNMAP(struct joydev *joydev, void __user *argp, size_t len) { __u16 *keypam; int i; int retval = 0; if (len % sizeof(*keypam)) return -EINVAL; len = min(len, sizeof(joydev->keypam)); /* Validate the map. */ keypam = memdup_user(argp, len); if (IS_ERR(keypam)) return PTR_ERR(keypam); for (i = 0; i < (len / 2) && i < joydev->nkey; i++) { if (keypam[i] > KEY_MAX || keypam[i] < BTN_MISC) { retval = -EINVAL; goto out; } } memcpy(joydev->keypam, keypam, len); for (i = 0; i < joydev->nkey; i++) joydev->keymap[joydev->keypam[i] - BTN_MISC] = i; out: kfree(keypam); return retval; } static int joydev_ioctl_common(struct joydev *joydev, unsigned int cmd, void __user *argp) { struct input_dev *dev = joydev->handle.dev; size_t len; int i; const char *name; /* Process fixed-sized commands. */ switch (cmd) { case JS_SET_CAL: return copy_from_user(&joydev->glue.JS_CORR, argp, sizeof(joydev->glue.JS_CORR)) ? -EFAULT : 0; case JS_GET_CAL: return copy_to_user(argp, &joydev->glue.JS_CORR, sizeof(joydev->glue.JS_CORR)) ? -EFAULT : 0; case JS_SET_TIMEOUT: return get_user(joydev->glue.JS_TIMEOUT, (s32 __user *) argp); case JS_GET_TIMEOUT: return put_user(joydev->glue.JS_TIMEOUT, (s32 __user *) argp); case JSIOCGVERSION: return put_user(JS_VERSION, (__u32 __user *) argp); case JSIOCGAXES: return put_user(joydev->nabs, (__u8 __user *) argp); case JSIOCGBUTTONS: return put_user(joydev->nkey, (__u8 __user *) argp); case JSIOCSCORR: if (copy_from_user(joydev->corr, argp, sizeof(joydev->corr[0]) * joydev->nabs)) return -EFAULT; for (i = 0; i < joydev->nabs; i++) { int val = input_abs_get_val(dev, joydev->abspam[i]); joydev->abs[i] = joydev_correct(val, &joydev->corr[i]); } return 0; case JSIOCGCORR: return copy_to_user(argp, joydev->corr, sizeof(joydev->corr[0]) * joydev->nabs) ? -EFAULT : 0; } /* * Process variable-sized commands (the axis and button map commands * are considered variable-sized to decouple them from the values of * ABS_MAX and KEY_MAX). */ switch (cmd & ~IOCSIZE_MASK) { case (JSIOCSAXMAP & ~IOCSIZE_MASK): return joydev_handle_JSIOCSAXMAP(joydev, argp, _IOC_SIZE(cmd)); case (JSIOCGAXMAP & ~IOCSIZE_MASK): len = min_t(size_t, _IOC_SIZE(cmd), sizeof(joydev->abspam)); return copy_to_user(argp, joydev->abspam, len) ? -EFAULT : len; case (JSIOCSBTNMAP & ~IOCSIZE_MASK): return joydev_handle_JSIOCSBTNMAP(joydev, argp, _IOC_SIZE(cmd)); case (JSIOCGBTNMAP & ~IOCSIZE_MASK): len = min_t(size_t, _IOC_SIZE(cmd), sizeof(joydev->keypam)); return copy_to_user(argp, joydev->keypam, len) ? -EFAULT : len; case JSIOCGNAME(0): name = dev->name; if (!name) return 0; len = min_t(size_t, _IOC_SIZE(cmd), strlen(name) + 1); return copy_to_user(argp, name, len) ? -EFAULT : len; } return -EINVAL; } #ifdef CONFIG_COMPAT static long joydev_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct joydev_client *client = file->private_data; struct joydev *joydev = client->joydev; void __user *argp = (void __user *)arg; s32 tmp32; struct JS_DATA_SAVE_TYPE_32 ds32; int retval; retval = mutex_lock_interruptible(&joydev->mutex); if (retval) return retval; if (!joydev->exist) { retval = -ENODEV; goto out; } switch (cmd) { case JS_SET_TIMELIMIT: retval = get_user(tmp32, (s32 __user *) arg); if (retval == 0) joydev->glue.JS_TIMELIMIT = tmp32; break; case JS_GET_TIMELIMIT: tmp32 = joydev->glue.JS_TIMELIMIT; retval = put_user(tmp32, (s32 __user *) arg); break; case JS_SET_ALL: retval = copy_from_user(&ds32, argp, sizeof(ds32)) ? -EFAULT : 0; if (retval == 0) { joydev->glue.JS_TIMEOUT = ds32.JS_TIMEOUT; joydev->glue.BUSY = ds32.BUSY; joydev->glue.JS_EXPIRETIME = ds32.JS_EXPIRETIME; joydev->glue.JS_TIMELIMIT = ds32.JS_TIMELIMIT; joydev->glue.JS_SAVE = ds32.JS_SAVE; joydev->glue.JS_CORR = ds32.JS_CORR; } break; case JS_GET_ALL: ds32.JS_TIMEOUT = joydev->glue.JS_TIMEOUT; ds32.BUSY = joydev->glue.BUSY; ds32.JS_EXPIRETIME = joydev->glue.JS_EXPIRETIME; ds32.JS_TIMELIMIT = joydev->glue.JS_TIMELIMIT; ds32.JS_SAVE = joydev->glue.JS_SAVE; ds32.JS_CORR = joydev->glue.JS_CORR; retval = copy_to_user(argp, &ds32, sizeof(ds32)) ? -EFAULT : 0; break; default: retval = joydev_ioctl_common(joydev, cmd, argp); break; } out: mutex_unlock(&joydev->mutex); return retval; } #endif /* CONFIG_COMPAT */ static long joydev_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct joydev_client *client = file->private_data; struct joydev *joydev = client->joydev; void __user *argp = (void __user *)arg; int retval; retval = mutex_lock_interruptible(&joydev->mutex); if (retval) return retval; if (!joydev->exist) { retval = -ENODEV; goto out; } switch (cmd) { case JS_SET_TIMELIMIT: retval = get_user(joydev->glue.JS_TIMELIMIT, (long __user *) arg); break; case JS_GET_TIMELIMIT: retval = put_user(joydev->glue.JS_TIMELIMIT, (long __user *) arg); break; case JS_SET_ALL: retval = copy_from_user(&joydev->glue, argp, sizeof(joydev->glue)) ? -EFAULT : 0; break; case JS_GET_ALL: retval = copy_to_user(argp, &joydev->glue, sizeof(joydev->glue)) ? -EFAULT : 0; break; default: retval = joydev_ioctl_common(joydev, cmd, argp); break; } out: mutex_unlock(&joydev->mutex); return retval; } static const struct file_operations joydev_fops = { .owner = THIS_MODULE, .read = joydev_read, .poll = joydev_poll, .open = joydev_open, .release = joydev_release, .unlocked_ioctl = joydev_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = joydev_compat_ioctl, #endif .fasync = joydev_fasync, .llseek = no_llseek, }; /* * Mark device non-existent. This disables writes, ioctls and * prevents new users from opening the device. Already posted * blocking reads will stay, however new ones will fail. */ static void joydev_mark_dead(struct joydev *joydev) { mutex_lock(&joydev->mutex); joydev->exist = false; mutex_unlock(&joydev->mutex); } static void joydev_cleanup(struct joydev *joydev) { struct input_handle *handle = &joydev->handle; joydev_mark_dead(joydev); joydev_hangup(joydev); /* joydev is marked dead so no one else accesses joydev->open */ if (joydev->open) input_close_device(handle); } /* * These codes are copied from hid-ids.h, unfortunately there is no common * usb_ids/bt_ids.h header. */ #define USB_VENDOR_ID_SONY 0x054c #define USB_DEVICE_ID_SONY_PS3_CONTROLLER 0x0268 #define USB_DEVICE_ID_SONY_PS4_CONTROLLER 0x05c4 #define USB_DEVICE_ID_SONY_PS4_CONTROLLER_2 0x09cc #define USB_DEVICE_ID_SONY_PS4_CONTROLLER_DONGLE 0x0ba0 #define USB_VENDOR_ID_THQ 0x20d6 #define USB_DEVICE_ID_THQ_PS3_UDRAW 0xcb17 #define USB_VENDOR_ID_NINTENDO 0x057e #define USB_DEVICE_ID_NINTENDO_JOYCONL 0x2006 #define USB_DEVICE_ID_NINTENDO_JOYCONR 0x2007 #define USB_DEVICE_ID_NINTENDO_PROCON 0x2009 #define USB_DEVICE_ID_NINTENDO_CHRGGRIP 0x200E #define ACCEL_DEV(vnd, prd) \ { \ .flags = INPUT_DEVICE_ID_MATCH_VENDOR | \ INPUT_DEVICE_ID_MATCH_PRODUCT | \ INPUT_DEVICE_ID_MATCH_PROPBIT, \ .vendor = (vnd), \ .product = (prd), \ .propbit = { BIT_MASK(INPUT_PROP_ACCELEROMETER) }, \ } static const struct input_device_id joydev_blacklist[] = { /* Avoid touchpads and touchscreens */ { .flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT, .evbit = { BIT_MASK(EV_KEY) }, .keybit = { [BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH) }, }, /* Avoid tablets, digitisers and similar devices */ { .flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT, .evbit = { BIT_MASK(EV_KEY) }, .keybit = { [BIT_WORD(BTN_DIGI)] = BIT_MASK(BTN_DIGI) }, }, /* Disable accelerometers on composite devices */ ACCEL_DEV(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS3_CONTROLLER), ACCEL_DEV(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER), ACCEL_DEV(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER_2), ACCEL_DEV(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER_DONGLE), ACCEL_DEV(USB_VENDOR_ID_THQ, USB_DEVICE_ID_THQ_PS3_UDRAW), ACCEL_DEV(USB_VENDOR_ID_NINTENDO, USB_DEVICE_ID_NINTENDO_PROCON), ACCEL_DEV(USB_VENDOR_ID_NINTENDO, USB_DEVICE_ID_NINTENDO_CHRGGRIP), ACCEL_DEV(USB_VENDOR_ID_NINTENDO, USB_DEVICE_ID_NINTENDO_JOYCONL), ACCEL_DEV(USB_VENDOR_ID_NINTENDO, USB_DEVICE_ID_NINTENDO_JOYCONR), { /* sentinel */ } }; static bool joydev_dev_is_blacklisted(struct input_dev *dev) { const struct input_device_id *id; for (id = joydev_blacklist; id->flags; id++) { if (input_match_device_id(dev, id)) { dev_dbg(&dev->dev, "joydev: blacklisting '%s'\n", dev->name); return true; } } return false; } static bool joydev_dev_is_absolute_mouse(struct input_dev *dev) { DECLARE_BITMAP(jd_scratch, KEY_CNT); bool ev_match = false; BUILD_BUG_ON(ABS_CNT > KEY_CNT || EV_CNT > KEY_CNT); /* * Virtualization (VMware, etc) and remote management (HP * ILO2) solutions use absolute coordinates for their virtual * pointing devices so that there is one-to-one relationship * between pointer position on the host screen and virtual * guest screen, and so their mice use ABS_X, ABS_Y and 3 * primary button events. This clashes with what joydev * considers to be joysticks (a device with at minimum ABS_X * axis). * * Here we are trying to separate absolute mice from * joysticks. A device is, for joystick detection purposes, * considered to be an absolute mouse if the following is * true: * * 1) Event types are exactly * EV_ABS, EV_KEY and EV_SYN * or * EV_ABS, EV_KEY, EV_SYN and EV_MSC * or * EV_ABS, EV_KEY, EV_SYN, EV_MSC and EV_REL. * 2) Absolute events are exactly ABS_X and ABS_Y. * 3) Keys are exactly BTN_LEFT, BTN_RIGHT and BTN_MIDDLE. * 4) Device is not on "Amiga" bus. */ bitmap_zero(jd_scratch, EV_CNT); /* VMware VMMouse, HP ILO2 */ __set_bit(EV_ABS, jd_scratch); __set_bit(EV_KEY, jd_scratch); __set_bit(EV_SYN, jd_scratch); if (bitmap_equal(jd_scratch, dev->evbit, EV_CNT)) ev_match = true; /* HP ILO2, AMI BMC firmware */ __set_bit(EV_MSC, jd_scratch); if (bitmap_equal(jd_scratch, dev->evbit, EV_CNT)) ev_match = true; /* VMware Virtual USB Mouse, QEMU USB Tablet, ATEN BMC firmware */ __set_bit(EV_REL, jd_scratch); if (bitmap_equal(jd_scratch, dev->evbit, EV_CNT)) ev_match = true; if (!ev_match) return false; bitmap_zero(jd_scratch, ABS_CNT); __set_bit(ABS_X, jd_scratch); __set_bit(ABS_Y, jd_scratch); if (!bitmap_equal(dev->absbit, jd_scratch, ABS_CNT)) return false; bitmap_zero(jd_scratch, KEY_CNT); __set_bit(BTN_LEFT, jd_scratch); __set_bit(BTN_RIGHT, jd_scratch); __set_bit(BTN_MIDDLE, jd_scratch); if (!bitmap_equal(dev->keybit, jd_scratch, KEY_CNT)) return false; /* * Amiga joystick (amijoy) historically uses left/middle/right * button events. */ if (dev->id.bustype == BUS_AMIGA) return false; return true; } static bool joydev_match(struct input_handler *handler, struct input_dev *dev) { /* Disable blacklisted devices */ if (joydev_dev_is_blacklisted(dev)) return false; /* Avoid absolute mice */ if (joydev_dev_is_absolute_mouse(dev)) return false; return true; } static int joydev_connect(struct input_handler *handler, struct input_dev *dev, const struct input_device_id *id) { struct joydev *joydev; int i, j, t, minor, dev_no; int error; minor = input_get_new_minor(JOYDEV_MINOR_BASE, JOYDEV_MINORS, true); if (minor < 0) { error = minor; pr_err("failed to reserve new minor: %d\n", error); return error; } joydev = kzalloc(sizeof(struct joydev), GFP_KERNEL); if (!joydev) { error = -ENOMEM; goto err_free_minor; } INIT_LIST_HEAD(&joydev->client_list); spin_lock_init(&joydev->client_lock); mutex_init(&joydev->mutex); init_waitqueue_head(&joydev->wait); joydev->exist = true; dev_no = minor; /* Normalize device number if it falls into legacy range */ if (dev_no < JOYDEV_MINOR_BASE + JOYDEV_MINORS) dev_no -= JOYDEV_MINOR_BASE; dev_set_name(&joydev->dev, "js%d", dev_no); joydev->handle.dev = input_get_device(dev); joydev->handle.name = dev_name(&joydev->dev); joydev->handle.handler = handler; joydev->handle.private = joydev; for_each_set_bit(i, dev->absbit, ABS_CNT) { joydev->absmap[i] = joydev->nabs; joydev->abspam[joydev->nabs] = i; joydev->nabs++; } for (i = BTN_JOYSTICK - BTN_MISC; i < KEY_MAX - BTN_MISC + 1; i++) if (test_bit(i + BTN_MISC, dev->keybit)) { joydev->keymap[i] = joydev->nkey; joydev->keypam[joydev->nkey] = i + BTN_MISC; joydev->nkey++; } for (i = 0; i < BTN_JOYSTICK - BTN_MISC; i++) if (test_bit(i + BTN_MISC, dev->keybit)) { joydev->keymap[i] = joydev->nkey; joydev->keypam[joydev->nkey] = i + BTN_MISC; joydev->nkey++; } for (i = 0; i < joydev->nabs; i++) { j = joydev->abspam[i]; if (input_abs_get_max(dev, j) == input_abs_get_min(dev, j)) { joydev->corr[i].type = JS_CORR_NONE; continue; } joydev->corr[i].type = JS_CORR_BROKEN; joydev->corr[i].prec = input_abs_get_fuzz(dev, j); t = (input_abs_get_max(dev, j) + input_abs_get_min(dev, j)) / 2; joydev->corr[i].coef[0] = t - input_abs_get_flat(dev, j); joydev->corr[i].coef[1] = t + input_abs_get_flat(dev, j); t = (input_abs_get_max(dev, j) - input_abs_get_min(dev, j)) / 2 - 2 * input_abs_get_flat(dev, j); if (t) { joydev->corr[i].coef[2] = (1 << 29) / t; joydev->corr[i].coef[3] = (1 << 29) / t; } } joydev->dev.devt = MKDEV(INPUT_MAJOR, minor); joydev->dev.class = &input_class; joydev->dev.parent = &dev->dev; joydev->dev.release = joydev_free; device_initialize(&joydev->dev); error = input_register_handle(&joydev->handle); if (error) goto err_free_joydev; cdev_init(&joydev->cdev, &joydev_fops); error = cdev_device_add(&joydev->cdev, &joydev->dev); if (error) goto err_cleanup_joydev; return 0; err_cleanup_joydev: joydev_cleanup(joydev); input_unregister_handle(&joydev->handle); err_free_joydev: put_device(&joydev->dev); err_free_minor: input_free_minor(minor); return error; } static void joydev_disconnect(struct input_handle *handle) { struct joydev *joydev = handle->private; cdev_device_del(&joydev->cdev, &joydev->dev); joydev_cleanup(joydev); input_free_minor(MINOR(joydev->dev.devt)); input_unregister_handle(handle); put_device(&joydev->dev); } static const struct input_device_id joydev_ids[] = { { .flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_ABSBIT, .evbit = { BIT_MASK(EV_ABS) }, .absbit = { BIT_MASK(ABS_X) }, }, { .flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_ABSBIT, .evbit = { BIT_MASK(EV_ABS) }, .absbit = { BIT_MASK(ABS_Z) }, }, { .flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_ABSBIT, .evbit = { BIT_MASK(EV_ABS) }, .absbit = { BIT_MASK(ABS_WHEEL) }, }, { .flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_ABSBIT, .evbit = { BIT_MASK(EV_ABS) }, .absbit = { BIT_MASK(ABS_THROTTLE) }, }, { .flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT, .evbit = { BIT_MASK(EV_KEY) }, .keybit = {[BIT_WORD(BTN_JOYSTICK)] = BIT_MASK(BTN_JOYSTICK) }, }, { .flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT, .evbit = { BIT_MASK(EV_KEY) }, .keybit = { [BIT_WORD(BTN_GAMEPAD)] = BIT_MASK(BTN_GAMEPAD) }, }, { .flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT, .evbit = { BIT_MASK(EV_KEY) }, .keybit = { [BIT_WORD(BTN_TRIGGER_HAPPY)] = BIT_MASK(BTN_TRIGGER_HAPPY) }, }, { } /* Terminating entry */ }; MODULE_DEVICE_TABLE(input, joydev_ids); static struct input_handler joydev_handler = { .event = joydev_event, .match = joydev_match, .connect = joydev_connect, .disconnect = joydev_disconnect, .legacy_minors = true, .minor = JOYDEV_MINOR_BASE, .name = "joydev", .id_table = joydev_ids, }; static int __init joydev_init(void) { return input_register_handler(&joydev_handler); } static void __exit joydev_exit(void) { input_unregister_handler(&joydev_handler); } module_init(joydev_init); module_exit(joydev_exit);
linux-master
drivers/input/joydev.c
// SPDX-License-Identifier: GPL-2.0-only /* * LED support for the input layer * * Copyright 2010-2015 Samuel Thibault <[email protected]> */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/init.h> #include <linux/leds.h> #include <linux/input.h> #if IS_ENABLED(CONFIG_VT) #define VT_TRIGGER(_name) .trigger = _name #else #define VT_TRIGGER(_name) .trigger = NULL #endif static const struct { const char *name; const char *trigger; } input_led_info[LED_CNT] = { [LED_NUML] = { "numlock", VT_TRIGGER("kbd-numlock") }, [LED_CAPSL] = { "capslock", VT_TRIGGER("kbd-capslock") }, [LED_SCROLLL] = { "scrolllock", VT_TRIGGER("kbd-scrolllock") }, [LED_COMPOSE] = { "compose" }, [LED_KANA] = { "kana", VT_TRIGGER("kbd-kanalock") }, [LED_SLEEP] = { "sleep" } , [LED_SUSPEND] = { "suspend" }, [LED_MUTE] = { "mute" }, [LED_MISC] = { "misc" }, [LED_MAIL] = { "mail" }, [LED_CHARGING] = { "charging" }, }; struct input_led { struct led_classdev cdev; struct input_handle *handle; unsigned int code; /* One of LED_* constants */ }; struct input_leds { struct input_handle handle; unsigned int num_leds; struct input_led leds[]; }; static enum led_brightness input_leds_brightness_get(struct led_classdev *cdev) { struct input_led *led = container_of(cdev, struct input_led, cdev); struct input_dev *input = led->handle->dev; return test_bit(led->code, input->led) ? cdev->max_brightness : 0; } static void input_leds_brightness_set(struct led_classdev *cdev, enum led_brightness brightness) { struct input_led *led = container_of(cdev, struct input_led, cdev); input_inject_event(led->handle, EV_LED, led->code, !!brightness); } static void input_leds_event(struct input_handle *handle, unsigned int type, unsigned int code, int value) { } static int input_leds_get_count(struct input_dev *dev) { unsigned int led_code; int count = 0; for_each_set_bit(led_code, dev->ledbit, LED_CNT) if (input_led_info[led_code].name) count++; return count; } static int input_leds_connect(struct input_handler *handler, struct input_dev *dev, const struct input_device_id *id) { struct input_leds *leds; struct input_led *led; unsigned int num_leds; unsigned int led_code; int led_no; int error; num_leds = input_leds_get_count(dev); if (!num_leds) return -ENXIO; leds = kzalloc(struct_size(leds, leds, num_leds), GFP_KERNEL); if (!leds) return -ENOMEM; leds->num_leds = num_leds; leds->handle.dev = dev; leds->handle.handler = handler; leds->handle.name = "leds"; leds->handle.private = leds; error = input_register_handle(&leds->handle); if (error) goto err_free_mem; error = input_open_device(&leds->handle); if (error) goto err_unregister_handle; led_no = 0; for_each_set_bit(led_code, dev->ledbit, LED_CNT) { if (!input_led_info[led_code].name) continue; led = &leds->leds[led_no]; led->handle = &leds->handle; led->code = led_code; led->cdev.name = kasprintf(GFP_KERNEL, "%s::%s", dev_name(&dev->dev), input_led_info[led_code].name); if (!led->cdev.name) { error = -ENOMEM; goto err_unregister_leds; } led->cdev.max_brightness = 1; led->cdev.brightness_get = input_leds_brightness_get; led->cdev.brightness_set = input_leds_brightness_set; led->cdev.default_trigger = input_led_info[led_code].trigger; error = led_classdev_register(&dev->dev, &led->cdev); if (error) { dev_err(&dev->dev, "failed to register LED %s: %d\n", led->cdev.name, error); kfree(led->cdev.name); goto err_unregister_leds; } led_no++; } return 0; err_unregister_leds: while (--led_no >= 0) { struct input_led *led = &leds->leds[led_no]; led_classdev_unregister(&led->cdev); kfree(led->cdev.name); } input_close_device(&leds->handle); err_unregister_handle: input_unregister_handle(&leds->handle); err_free_mem: kfree(leds); return error; } static void input_leds_disconnect(struct input_handle *handle) { struct input_leds *leds = handle->private; int i; for (i = 0; i < leds->num_leds; i++) { struct input_led *led = &leds->leds[i]; led_classdev_unregister(&led->cdev); kfree(led->cdev.name); } input_close_device(handle); input_unregister_handle(handle); kfree(leds); } static const struct input_device_id input_leds_ids[] = { { .flags = INPUT_DEVICE_ID_MATCH_EVBIT, .evbit = { BIT_MASK(EV_LED) }, }, { }, }; MODULE_DEVICE_TABLE(input, input_leds_ids); static struct input_handler input_leds_handler = { .event = input_leds_event, .connect = input_leds_connect, .disconnect = input_leds_disconnect, .name = "leds", .id_table = input_leds_ids, }; static int __init input_leds_init(void) { return input_register_handler(&input_leds_handler); } module_init(input_leds_init); static void __exit input_leds_exit(void) { input_unregister_handler(&input_leds_handler); } module_exit(input_leds_exit); MODULE_AUTHOR("Samuel Thibault <[email protected]>"); MODULE_AUTHOR("Dmitry Torokhov <[email protected]>"); MODULE_DESCRIPTION("Input -> LEDs Bridge"); MODULE_LICENSE("GPL v2");
linux-master
drivers/input/input-leds.c
// SPDX-License-Identifier: GPL-2.0-only /* * Generic support for sparse keymaps * * Copyright (c) 2009 Dmitry Torokhov * * Derived from wistron button driver: * Copyright (C) 2005 Miloslav Trmac <[email protected]> * Copyright (C) 2005 Bernhard Rosenkraenzer <[email protected]> * Copyright (C) 2005 Dmitry Torokhov <[email protected]> */ #include <linux/input.h> #include <linux/input/sparse-keymap.h> #include <linux/module.h> #include <linux/slab.h> MODULE_AUTHOR("Dmitry Torokhov <[email protected]>"); MODULE_DESCRIPTION("Generic support for sparse keymaps"); MODULE_LICENSE("GPL v2"); static unsigned int sparse_keymap_get_key_index(struct input_dev *dev, const struct key_entry *k) { struct key_entry *key; unsigned int idx = 0; for (key = dev->keycode; key->type != KE_END; key++) { if (key->type == KE_KEY) { if (key == k) break; idx++; } } return idx; } static struct key_entry *sparse_keymap_entry_by_index(struct input_dev *dev, unsigned int index) { struct key_entry *key; unsigned int key_cnt = 0; for (key = dev->keycode; key->type != KE_END; key++) if (key->type == KE_KEY) if (key_cnt++ == index) return key; return NULL; } /** * sparse_keymap_entry_from_scancode - perform sparse keymap lookup * @dev: Input device using sparse keymap * @code: Scan code * * This function is used to perform &struct key_entry lookup in an * input device using sparse keymap. */ struct key_entry *sparse_keymap_entry_from_scancode(struct input_dev *dev, unsigned int code) { struct key_entry *key; for (key = dev->keycode; key->type != KE_END; key++) if (code == key->code) return key; return NULL; } EXPORT_SYMBOL(sparse_keymap_entry_from_scancode); /** * sparse_keymap_entry_from_keycode - perform sparse keymap lookup * @dev: Input device using sparse keymap * @keycode: Key code * * This function is used to perform &struct key_entry lookup in an * input device using sparse keymap. */ struct key_entry *sparse_keymap_entry_from_keycode(struct input_dev *dev, unsigned int keycode) { struct key_entry *key; for (key = dev->keycode; key->type != KE_END; key++) if (key->type == KE_KEY && keycode == key->keycode) return key; return NULL; } EXPORT_SYMBOL(sparse_keymap_entry_from_keycode); static struct key_entry *sparse_keymap_locate(struct input_dev *dev, const struct input_keymap_entry *ke) { struct key_entry *key; unsigned int scancode; if (ke->flags & INPUT_KEYMAP_BY_INDEX) key = sparse_keymap_entry_by_index(dev, ke->index); else if (input_scancode_to_scalar(ke, &scancode) == 0) key = sparse_keymap_entry_from_scancode(dev, scancode); else key = NULL; return key; } static int sparse_keymap_getkeycode(struct input_dev *dev, struct input_keymap_entry *ke) { const struct key_entry *key; if (dev->keycode) { key = sparse_keymap_locate(dev, ke); if (key && key->type == KE_KEY) { ke->keycode = key->keycode; if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) ke->index = sparse_keymap_get_key_index(dev, key); ke->len = sizeof(key->code); memcpy(ke->scancode, &key->code, sizeof(key->code)); return 0; } } return -EINVAL; } static int sparse_keymap_setkeycode(struct input_dev *dev, const struct input_keymap_entry *ke, unsigned int *old_keycode) { struct key_entry *key; if (dev->keycode) { key = sparse_keymap_locate(dev, ke); if (key && key->type == KE_KEY) { *old_keycode = key->keycode; key->keycode = ke->keycode; set_bit(ke->keycode, dev->keybit); if (!sparse_keymap_entry_from_keycode(dev, *old_keycode)) clear_bit(*old_keycode, dev->keybit); return 0; } } return -EINVAL; } /** * sparse_keymap_setup - set up sparse keymap for an input device * @dev: Input device * @keymap: Keymap in form of array of &key_entry structures ending * with %KE_END type entry * @setup: Function that can be used to adjust keymap entries * depending on device's needs, may be %NULL * * The function calculates size and allocates copy of the original * keymap after which sets up input device event bits appropriately. * The allocated copy of the keymap is automatically freed when it * is no longer needed. */ int sparse_keymap_setup(struct input_dev *dev, const struct key_entry *keymap, int (*setup)(struct input_dev *, struct key_entry *)) { size_t map_size = 1; /* to account for the last KE_END entry */ const struct key_entry *e; struct key_entry *map, *entry; int i; int error; for (e = keymap; e->type != KE_END; e++) map_size++; map = devm_kmemdup(&dev->dev, keymap, map_size * sizeof(*map), GFP_KERNEL); if (!map) return -ENOMEM; for (i = 0; i < map_size; i++) { entry = &map[i]; if (setup) { error = setup(dev, entry); if (error) return error; } switch (entry->type) { case KE_KEY: __set_bit(EV_KEY, dev->evbit); __set_bit(entry->keycode, dev->keybit); break; case KE_SW: case KE_VSW: __set_bit(EV_SW, dev->evbit); __set_bit(entry->sw.code, dev->swbit); break; } } if (test_bit(EV_KEY, dev->evbit)) { __set_bit(KEY_UNKNOWN, dev->keybit); __set_bit(EV_MSC, dev->evbit); __set_bit(MSC_SCAN, dev->mscbit); } dev->keycode = map; dev->keycodemax = map_size; dev->getkeycode = sparse_keymap_getkeycode; dev->setkeycode = sparse_keymap_setkeycode; return 0; } EXPORT_SYMBOL(sparse_keymap_setup); /** * sparse_keymap_report_entry - report event corresponding to given key entry * @dev: Input device for which event should be reported * @ke: key entry describing event * @value: Value that should be reported (ignored by %KE_SW entries) * @autorelease: Signals whether release event should be emitted for %KE_KEY * entries right after reporting press event, ignored by all other * entries * * This function is used to report input event described by given * &struct key_entry. */ void sparse_keymap_report_entry(struct input_dev *dev, const struct key_entry *ke, unsigned int value, bool autorelease) { switch (ke->type) { case KE_KEY: input_event(dev, EV_MSC, MSC_SCAN, ke->code); input_report_key(dev, ke->keycode, value); input_sync(dev); if (value && autorelease) { input_report_key(dev, ke->keycode, 0); input_sync(dev); } break; case KE_SW: value = ke->sw.value; fallthrough; case KE_VSW: input_report_switch(dev, ke->sw.code, value); input_sync(dev); break; } } EXPORT_SYMBOL(sparse_keymap_report_entry); /** * sparse_keymap_report_event - report event corresponding to given scancode * @dev: Input device using sparse keymap * @code: Scan code * @value: Value that should be reported (ignored by %KE_SW entries) * @autorelease: Signals whether release event should be emitted for %KE_KEY * entries right after reporting press event, ignored by all other * entries * * This function is used to perform lookup in an input device using sparse * keymap and report corresponding event. Returns %true if lookup was * successful and %false otherwise. */ bool sparse_keymap_report_event(struct input_dev *dev, unsigned int code, unsigned int value, bool autorelease) { const struct key_entry *ke = sparse_keymap_entry_from_scancode(dev, code); struct key_entry unknown_ke; if (ke) { sparse_keymap_report_entry(dev, ke, value, autorelease); return true; } /* Report an unknown key event as a debugging aid */ unknown_ke.type = KE_KEY; unknown_ke.code = code; unknown_ke.keycode = KEY_UNKNOWN; sparse_keymap_report_entry(dev, &unknown_ke, value, true); return false; } EXPORT_SYMBOL(sparse_keymap_report_event);
linux-master
drivers/input/sparse-keymap.c
// SPDX-License-Identifier: GPL-2.0-only /* * Input Multitouch Library * * Copyright (c) 2008-2010 Henrik Rydberg */ #include <linux/input/mt.h> #include <linux/export.h> #include <linux/slab.h> #include "input-core-private.h" #define TRKID_SGN ((TRKID_MAX + 1) >> 1) static void copy_abs(struct input_dev *dev, unsigned int dst, unsigned int src) { if (dev->absinfo && test_bit(src, dev->absbit)) { dev->absinfo[dst] = dev->absinfo[src]; dev->absinfo[dst].fuzz = 0; __set_bit(dst, dev->absbit); } } /** * input_mt_init_slots() - initialize MT input slots * @dev: input device supporting MT events and finger tracking * @num_slots: number of slots used by the device * @flags: mt tasks to handle in core * * This function allocates all necessary memory for MT slot handling * in the input device, prepares the ABS_MT_SLOT and * ABS_MT_TRACKING_ID events for use and sets up appropriate buffers. * Depending on the flags set, it also performs pointer emulation and * frame synchronization. * * May be called repeatedly. Returns -EINVAL if attempting to * reinitialize with a different number of slots. */ int input_mt_init_slots(struct input_dev *dev, unsigned int num_slots, unsigned int flags) { struct input_mt *mt = dev->mt; int i; if (!num_slots) return 0; if (mt) return mt->num_slots != num_slots ? -EINVAL : 0; mt = kzalloc(struct_size(mt, slots, num_slots), GFP_KERNEL); if (!mt) goto err_mem; mt->num_slots = num_slots; mt->flags = flags; input_set_abs_params(dev, ABS_MT_SLOT, 0, num_slots - 1, 0, 0); input_set_abs_params(dev, ABS_MT_TRACKING_ID, 0, TRKID_MAX, 0, 0); if (flags & (INPUT_MT_POINTER | INPUT_MT_DIRECT)) { __set_bit(EV_KEY, dev->evbit); __set_bit(BTN_TOUCH, dev->keybit); copy_abs(dev, ABS_X, ABS_MT_POSITION_X); copy_abs(dev, ABS_Y, ABS_MT_POSITION_Y); copy_abs(dev, ABS_PRESSURE, ABS_MT_PRESSURE); } if (flags & INPUT_MT_POINTER) { __set_bit(BTN_TOOL_FINGER, dev->keybit); __set_bit(BTN_TOOL_DOUBLETAP, dev->keybit); if (num_slots >= 3) __set_bit(BTN_TOOL_TRIPLETAP, dev->keybit); if (num_slots >= 4) __set_bit(BTN_TOOL_QUADTAP, dev->keybit); if (num_slots >= 5) __set_bit(BTN_TOOL_QUINTTAP, dev->keybit); __set_bit(INPUT_PROP_POINTER, dev->propbit); } if (flags & INPUT_MT_DIRECT) __set_bit(INPUT_PROP_DIRECT, dev->propbit); if (flags & INPUT_MT_SEMI_MT) __set_bit(INPUT_PROP_SEMI_MT, dev->propbit); if (flags & INPUT_MT_TRACK) { unsigned int n2 = num_slots * num_slots; mt->red = kcalloc(n2, sizeof(*mt->red), GFP_KERNEL); if (!mt->red) goto err_mem; } /* Mark slots as 'inactive' */ for (i = 0; i < num_slots; i++) input_mt_set_value(&mt->slots[i], ABS_MT_TRACKING_ID, -1); /* Mark slots as 'unused' */ mt->frame = 1; dev->mt = mt; return 0; err_mem: kfree(mt); return -ENOMEM; } EXPORT_SYMBOL(input_mt_init_slots); /** * input_mt_destroy_slots() - frees the MT slots of the input device * @dev: input device with allocated MT slots * * This function is only needed in error path as the input core will * automatically free the MT slots when the device is destroyed. */ void input_mt_destroy_slots(struct input_dev *dev) { if (dev->mt) { kfree(dev->mt->red); kfree(dev->mt); } dev->mt = NULL; } EXPORT_SYMBOL(input_mt_destroy_slots); /** * input_mt_report_slot_state() - report contact state * @dev: input device with allocated MT slots * @tool_type: the tool type to use in this slot * @active: true if contact is active, false otherwise * * Reports a contact via ABS_MT_TRACKING_ID, and optionally * ABS_MT_TOOL_TYPE. If active is true and the slot is currently * inactive, or if the tool type is changed, a new tracking id is * assigned to the slot. The tool type is only reported if the * corresponding absbit field is set. * * Returns true if contact is active. */ bool input_mt_report_slot_state(struct input_dev *dev, unsigned int tool_type, bool active) { struct input_mt *mt = dev->mt; struct input_mt_slot *slot; int id; if (!mt) return false; slot = &mt->slots[mt->slot]; slot->frame = mt->frame; if (!active) { input_event(dev, EV_ABS, ABS_MT_TRACKING_ID, -1); return false; } id = input_mt_get_value(slot, ABS_MT_TRACKING_ID); if (id < 0) id = input_mt_new_trkid(mt); input_event(dev, EV_ABS, ABS_MT_TRACKING_ID, id); input_event(dev, EV_ABS, ABS_MT_TOOL_TYPE, tool_type); return true; } EXPORT_SYMBOL(input_mt_report_slot_state); /** * input_mt_report_finger_count() - report contact count * @dev: input device with allocated MT slots * @count: the number of contacts * * Reports the contact count via BTN_TOOL_FINGER, BTN_TOOL_DOUBLETAP, * BTN_TOOL_TRIPLETAP and BTN_TOOL_QUADTAP. * * The input core ensures only the KEY events already setup for * this device will produce output. */ void input_mt_report_finger_count(struct input_dev *dev, int count) { input_event(dev, EV_KEY, BTN_TOOL_FINGER, count == 1); input_event(dev, EV_KEY, BTN_TOOL_DOUBLETAP, count == 2); input_event(dev, EV_KEY, BTN_TOOL_TRIPLETAP, count == 3); input_event(dev, EV_KEY, BTN_TOOL_QUADTAP, count == 4); input_event(dev, EV_KEY, BTN_TOOL_QUINTTAP, count == 5); } EXPORT_SYMBOL(input_mt_report_finger_count); /** * input_mt_report_pointer_emulation() - common pointer emulation * @dev: input device with allocated MT slots * @use_count: report number of active contacts as finger count * * Performs legacy pointer emulation via BTN_TOUCH, ABS_X, ABS_Y and * ABS_PRESSURE. Touchpad finger count is emulated if use_count is true. * * The input core ensures only the KEY and ABS axes already setup for * this device will produce output. */ void input_mt_report_pointer_emulation(struct input_dev *dev, bool use_count) { struct input_mt *mt = dev->mt; struct input_mt_slot *oldest; int oldid, count, i; if (!mt) return; oldest = NULL; oldid = mt->trkid; count = 0; for (i = 0; i < mt->num_slots; ++i) { struct input_mt_slot *ps = &mt->slots[i]; int id = input_mt_get_value(ps, ABS_MT_TRACKING_ID); if (id < 0) continue; if ((id - oldid) & TRKID_SGN) { oldest = ps; oldid = id; } count++; } input_event(dev, EV_KEY, BTN_TOUCH, count > 0); if (use_count) { if (count == 0 && !test_bit(ABS_MT_DISTANCE, dev->absbit) && test_bit(ABS_DISTANCE, dev->absbit) && input_abs_get_val(dev, ABS_DISTANCE) != 0) { /* * Force reporting BTN_TOOL_FINGER for devices that * only report general hover (and not per-contact * distance) when contact is in proximity but not * on the surface. */ count = 1; } input_mt_report_finger_count(dev, count); } if (oldest) { int x = input_mt_get_value(oldest, ABS_MT_POSITION_X); int y = input_mt_get_value(oldest, ABS_MT_POSITION_Y); input_event(dev, EV_ABS, ABS_X, x); input_event(dev, EV_ABS, ABS_Y, y); if (test_bit(ABS_MT_PRESSURE, dev->absbit)) { int p = input_mt_get_value(oldest, ABS_MT_PRESSURE); input_event(dev, EV_ABS, ABS_PRESSURE, p); } } else { if (test_bit(ABS_MT_PRESSURE, dev->absbit)) input_event(dev, EV_ABS, ABS_PRESSURE, 0); } } EXPORT_SYMBOL(input_mt_report_pointer_emulation); static void __input_mt_drop_unused(struct input_dev *dev, struct input_mt *mt) { int i; lockdep_assert_held(&dev->event_lock); for (i = 0; i < mt->num_slots; i++) { if (input_mt_is_active(&mt->slots[i]) && !input_mt_is_used(mt, &mt->slots[i])) { input_handle_event(dev, EV_ABS, ABS_MT_SLOT, i); input_handle_event(dev, EV_ABS, ABS_MT_TRACKING_ID, -1); } } } /** * input_mt_drop_unused() - Inactivate slots not seen in this frame * @dev: input device with allocated MT slots * * Lift all slots not seen since the last call to this function. */ void input_mt_drop_unused(struct input_dev *dev) { struct input_mt *mt = dev->mt; if (mt) { unsigned long flags; spin_lock_irqsave(&dev->event_lock, flags); __input_mt_drop_unused(dev, mt); mt->frame++; spin_unlock_irqrestore(&dev->event_lock, flags); } } EXPORT_SYMBOL(input_mt_drop_unused); /** * input_mt_release_slots() - Deactivate all slots * @dev: input device with allocated MT slots * * Lift all active slots. */ void input_mt_release_slots(struct input_dev *dev) { struct input_mt *mt = dev->mt; lockdep_assert_held(&dev->event_lock); if (mt) { /* This will effectively mark all slots unused. */ mt->frame++; __input_mt_drop_unused(dev, mt); if (test_bit(ABS_PRESSURE, dev->absbit)) input_handle_event(dev, EV_ABS, ABS_PRESSURE, 0); mt->frame++; } } /** * input_mt_sync_frame() - synchronize mt frame * @dev: input device with allocated MT slots * * Close the frame and prepare the internal state for a new one. * Depending on the flags, marks unused slots as inactive and performs * pointer emulation. */ void input_mt_sync_frame(struct input_dev *dev) { struct input_mt *mt = dev->mt; bool use_count = false; if (!mt) return; if (mt->flags & INPUT_MT_DROP_UNUSED) { unsigned long flags; spin_lock_irqsave(&dev->event_lock, flags); __input_mt_drop_unused(dev, mt); spin_unlock_irqrestore(&dev->event_lock, flags); } if ((mt->flags & INPUT_MT_POINTER) && !(mt->flags & INPUT_MT_SEMI_MT)) use_count = true; input_mt_report_pointer_emulation(dev, use_count); mt->frame++; } EXPORT_SYMBOL(input_mt_sync_frame); static int adjust_dual(int *begin, int step, int *end, int eq, int mu) { int f, *p, s, c; if (begin == end) return 0; f = *begin; p = begin + step; s = p == end ? f + 1 : *p; for (; p != end; p += step) { if (*p < f) { s = f; f = *p; } else if (*p < s) { s = *p; } } c = (f + s + 1) / 2; if (c == 0 || (c > mu && (!eq || mu > 0))) return 0; /* Improve convergence for positive matrices by penalizing overcovers */ if (s < 0 && mu <= 0) c *= 2; for (p = begin; p != end; p += step) *p -= c; return (c < s && s <= 0) || (f >= 0 && f < c); } static void find_reduced_matrix(int *w, int nr, int nc, int nrc, int mu) { int i, k, sum; for (k = 0; k < nrc; k++) { for (i = 0; i < nr; i++) adjust_dual(w + i, nr, w + i + nrc, nr <= nc, mu); sum = 0; for (i = 0; i < nrc; i += nr) sum += adjust_dual(w + i, 1, w + i + nr, nc <= nr, mu); if (!sum) break; } } static int input_mt_set_matrix(struct input_mt *mt, const struct input_mt_pos *pos, int num_pos, int mu) { const struct input_mt_pos *p; struct input_mt_slot *s; int *w = mt->red; int x, y; for (s = mt->slots; s != mt->slots + mt->num_slots; s++) { if (!input_mt_is_active(s)) continue; x = input_mt_get_value(s, ABS_MT_POSITION_X); y = input_mt_get_value(s, ABS_MT_POSITION_Y); for (p = pos; p != pos + num_pos; p++) { int dx = x - p->x, dy = y - p->y; *w++ = dx * dx + dy * dy - mu; } } return w - mt->red; } static void input_mt_set_slots(struct input_mt *mt, int *slots, int num_pos) { struct input_mt_slot *s; int *w = mt->red, j; for (j = 0; j != num_pos; j++) slots[j] = -1; for (s = mt->slots; s != mt->slots + mt->num_slots; s++) { if (!input_mt_is_active(s)) continue; for (j = 0; j != num_pos; j++) { if (w[j] < 0) { slots[j] = s - mt->slots; break; } } w += num_pos; } for (s = mt->slots; s != mt->slots + mt->num_slots; s++) { if (input_mt_is_active(s)) continue; for (j = 0; j != num_pos; j++) { if (slots[j] < 0) { slots[j] = s - mt->slots; break; } } } } /** * input_mt_assign_slots() - perform a best-match assignment * @dev: input device with allocated MT slots * @slots: the slot assignment to be filled * @pos: the position array to match * @num_pos: number of positions * @dmax: maximum ABS_MT_POSITION displacement (zero for infinite) * * Performs a best match against the current contacts and returns * the slot assignment list. New contacts are assigned to unused * slots. * * The assignments are balanced so that all coordinate displacements are * below the euclidian distance dmax. If no such assignment can be found, * some contacts are assigned to unused slots. * * Returns zero on success, or negative error in case of failure. */ int input_mt_assign_slots(struct input_dev *dev, int *slots, const struct input_mt_pos *pos, int num_pos, int dmax) { struct input_mt *mt = dev->mt; int mu = 2 * dmax * dmax; int nrc; if (!mt || !mt->red) return -ENXIO; if (num_pos > mt->num_slots) return -EINVAL; if (num_pos < 1) return 0; nrc = input_mt_set_matrix(mt, pos, num_pos, mu); find_reduced_matrix(mt->red, num_pos, nrc / num_pos, nrc, mu); input_mt_set_slots(mt, slots, num_pos); return 0; } EXPORT_SYMBOL(input_mt_assign_slots); /** * input_mt_get_slot_by_key() - return slot matching key * @dev: input device with allocated MT slots * @key: the key of the sought slot * * Returns the slot of the given key, if it exists, otherwise * set the key on the first unused slot and return. * * If no available slot can be found, -1 is returned. * Note that for this function to work properly, input_mt_sync_frame() has * to be called at each frame. */ int input_mt_get_slot_by_key(struct input_dev *dev, int key) { struct input_mt *mt = dev->mt; struct input_mt_slot *s; if (!mt) return -1; for (s = mt->slots; s != mt->slots + mt->num_slots; s++) if (input_mt_is_active(s) && s->key == key) return s - mt->slots; for (s = mt->slots; s != mt->slots + mt->num_slots; s++) if (!input_mt_is_active(s) && !input_mt_is_used(mt, s)) { s->key = key; return s - mt->slots; } return -1; } EXPORT_SYMBOL(input_mt_get_slot_by_key);
linux-master
drivers/input/input-mt.c
// SPDX-License-Identifier: GPL-2.0-only /* * 32bit compatibility wrappers for the input subsystem. * * Very heavily based on evdev.c - Copyright (c) 1999-2002 Vojtech Pavlik */ #include <linux/export.h> #include <linux/uaccess.h> #include "input-compat.h" #ifdef CONFIG_COMPAT int input_event_from_user(const char __user *buffer, struct input_event *event) { if (in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { struct input_event_compat compat_event; if (copy_from_user(&compat_event, buffer, sizeof(struct input_event_compat))) return -EFAULT; event->input_event_sec = compat_event.sec; event->input_event_usec = compat_event.usec; event->type = compat_event.type; event->code = compat_event.code; event->value = compat_event.value; } else { if (copy_from_user(event, buffer, sizeof(struct input_event))) return -EFAULT; } return 0; } int input_event_to_user(char __user *buffer, const struct input_event *event) { if (in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { struct input_event_compat compat_event; compat_event.sec = event->input_event_sec; compat_event.usec = event->input_event_usec; compat_event.type = event->type; compat_event.code = event->code; compat_event.value = event->value; if (copy_to_user(buffer, &compat_event, sizeof(struct input_event_compat))) return -EFAULT; } else { if (copy_to_user(buffer, event, sizeof(struct input_event))) return -EFAULT; } return 0; } int input_ff_effect_from_user(const char __user *buffer, size_t size, struct ff_effect *effect) { if (in_compat_syscall()) { struct ff_effect_compat *compat_effect; if (size != sizeof(struct ff_effect_compat)) return -EINVAL; /* * It so happens that the pointer which needs to be changed * is the last field in the structure, so we can retrieve the * whole thing and replace just the pointer. */ compat_effect = (struct ff_effect_compat *)effect; if (copy_from_user(compat_effect, buffer, sizeof(struct ff_effect_compat))) return -EFAULT; if (compat_effect->type == FF_PERIODIC && compat_effect->u.periodic.waveform == FF_CUSTOM) effect->u.periodic.custom_data = compat_ptr(compat_effect->u.periodic.custom_data); } else { if (size != sizeof(struct ff_effect)) return -EINVAL; if (copy_from_user(effect, buffer, sizeof(struct ff_effect))) return -EFAULT; } return 0; } #else int input_event_from_user(const char __user *buffer, struct input_event *event) { if (copy_from_user(event, buffer, sizeof(struct input_event))) return -EFAULT; return 0; } int input_event_to_user(char __user *buffer, const struct input_event *event) { if (copy_to_user(buffer, event, sizeof(struct input_event))) return -EFAULT; return 0; } int input_ff_effect_from_user(const char __user *buffer, size_t size, struct ff_effect *effect) { if (size != sizeof(struct ff_effect)) return -EINVAL; if (copy_from_user(effect, buffer, sizeof(struct ff_effect))) return -EFAULT; return 0; } #endif /* CONFIG_COMPAT */ EXPORT_SYMBOL_GPL(input_event_from_user); EXPORT_SYMBOL_GPL(input_event_to_user); EXPORT_SYMBOL_GPL(input_ff_effect_from_user);
linux-master
drivers/input/input-compat.c
// SPDX-License-Identifier: GPL-2.0 /* * Helpers for ChromeOS Vivaldi keyboard function row mapping * * Copyright (C) 2022 Google, Inc */ #include <linux/export.h> #include <linux/input/vivaldi-fmap.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/types.h> /** * vivaldi_function_row_physmap_show - Print vivaldi function row physmap attribute * @data: The vivaldi function row map * @buf: Buffer to print the function row phsymap to */ ssize_t vivaldi_function_row_physmap_show(const struct vivaldi_data *data, char *buf) { ssize_t size = 0; int i; const u32 *physmap = data->function_row_physmap; if (!data->num_function_row_keys) return 0; for (i = 0; i < data->num_function_row_keys; i++) size += scnprintf(buf + size, PAGE_SIZE - size, "%s%02X", size ? " " : "", physmap[i]); if (size) size += scnprintf(buf + size, PAGE_SIZE - size, "\n"); return size; } EXPORT_SYMBOL_GPL(vivaldi_function_row_physmap_show); MODULE_LICENSE("GPL");
linux-master
drivers/input/vivaldi-fmap.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) 1999-2001 Vojtech Pavlik */ /* * Input driver event debug module - dumps all events into syslog */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/slab.h> #include <linux/module.h> #include <linux/input.h> #include <linux/init.h> #include <linux/device.h> MODULE_AUTHOR("Vojtech Pavlik <[email protected]>"); MODULE_DESCRIPTION("Input driver event debug module"); MODULE_LICENSE("GPL"); static void evbug_event(struct input_handle *handle, unsigned int type, unsigned int code, int value) { printk(KERN_DEBUG pr_fmt("Event. Dev: %s, Type: %d, Code: %d, Value: %d\n"), dev_name(&handle->dev->dev), type, code, value); } static int evbug_connect(struct input_handler *handler, struct input_dev *dev, const struct input_device_id *id) { struct input_handle *handle; int error; handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL); if (!handle) return -ENOMEM; handle->dev = dev; handle->handler = handler; handle->name = "evbug"; error = input_register_handle(handle); if (error) goto err_free_handle; error = input_open_device(handle); if (error) goto err_unregister_handle; printk(KERN_DEBUG pr_fmt("Connected device: %s (%s at %s)\n"), dev_name(&dev->dev), dev->name ?: "unknown", dev->phys ?: "unknown"); return 0; err_unregister_handle: input_unregister_handle(handle); err_free_handle: kfree(handle); return error; } static void evbug_disconnect(struct input_handle *handle) { printk(KERN_DEBUG pr_fmt("Disconnected device: %s\n"), dev_name(&handle->dev->dev)); input_close_device(handle); input_unregister_handle(handle); kfree(handle); } static const struct input_device_id evbug_ids[] = { { .driver_info = 1 }, /* Matches all devices */ { }, /* Terminating zero entry */ }; MODULE_DEVICE_TABLE(input, evbug_ids); static struct input_handler evbug_handler = { .event = evbug_event, .connect = evbug_connect, .disconnect = evbug_disconnect, .name = "evbug", .id_table = evbug_ids, }; static int __init evbug_init(void) { return input_register_handler(&evbug_handler); } static void __exit evbug_exit(void) { input_unregister_handler(&evbug_handler); } module_init(evbug_init); module_exit(evbug_exit);
linux-master
drivers/input/evbug.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Force feedback support for Linux input subsystem * * Copyright (c) 2006 Anssi Hannula <[email protected]> * Copyright (c) 2006 Dmitry Torokhov <[email protected]> */ /* #define DEBUG */ #include <linux/input.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/sched.h> #include <linux/slab.h> /* * Check that the effect_id is a valid effect and whether the user * is the owner */ static int check_effect_access(struct ff_device *ff, int effect_id, struct file *file) { if (effect_id < 0 || effect_id >= ff->max_effects || !ff->effect_owners[effect_id]) return -EINVAL; if (file && ff->effect_owners[effect_id] != file) return -EACCES; return 0; } /* * Checks whether 2 effects can be combined together */ static inline int check_effects_compatible(struct ff_effect *e1, struct ff_effect *e2) { return e1->type == e2->type && (e1->type != FF_PERIODIC || e1->u.periodic.waveform == e2->u.periodic.waveform); } /* * Convert an effect into compatible one */ static int compat_effect(struct ff_device *ff, struct ff_effect *effect) { int magnitude; switch (effect->type) { case FF_RUMBLE: if (!test_bit(FF_PERIODIC, ff->ffbit)) return -EINVAL; /* * calculate magnitude of sine wave as average of rumble's * 2/3 of strong magnitude and 1/3 of weak magnitude */ magnitude = effect->u.rumble.strong_magnitude / 3 + effect->u.rumble.weak_magnitude / 6; effect->type = FF_PERIODIC; effect->u.periodic.waveform = FF_SINE; effect->u.periodic.period = 50; effect->u.periodic.magnitude = magnitude; effect->u.periodic.offset = 0; effect->u.periodic.phase = 0; effect->u.periodic.envelope.attack_length = 0; effect->u.periodic.envelope.attack_level = 0; effect->u.periodic.envelope.fade_length = 0; effect->u.periodic.envelope.fade_level = 0; return 0; default: /* Let driver handle conversion */ return 0; } } /** * input_ff_upload() - upload effect into force-feedback device * @dev: input device * @effect: effect to be uploaded * @file: owner of the effect */ int input_ff_upload(struct input_dev *dev, struct ff_effect *effect, struct file *file) { struct ff_device *ff = dev->ff; struct ff_effect *old; int ret = 0; int id; if (!test_bit(EV_FF, dev->evbit)) return -ENOSYS; if (effect->type < FF_EFFECT_MIN || effect->type > FF_EFFECT_MAX || !test_bit(effect->type, dev->ffbit)) { dev_dbg(&dev->dev, "invalid or not supported effect type in upload\n"); return -EINVAL; } if (effect->type == FF_PERIODIC && (effect->u.periodic.waveform < FF_WAVEFORM_MIN || effect->u.periodic.waveform > FF_WAVEFORM_MAX || !test_bit(effect->u.periodic.waveform, dev->ffbit))) { dev_dbg(&dev->dev, "invalid or not supported wave form in upload\n"); return -EINVAL; } if (!test_bit(effect->type, ff->ffbit)) { ret = compat_effect(ff, effect); if (ret) return ret; } mutex_lock(&ff->mutex); if (effect->id == -1) { for (id = 0; id < ff->max_effects; id++) if (!ff->effect_owners[id]) break; if (id >= ff->max_effects) { ret = -ENOSPC; goto out; } effect->id = id; old = NULL; } else { id = effect->id; ret = check_effect_access(ff, id, file); if (ret) goto out; old = &ff->effects[id]; if (!check_effects_compatible(effect, old)) { ret = -EINVAL; goto out; } } ret = ff->upload(dev, effect, old); if (ret) goto out; spin_lock_irq(&dev->event_lock); ff->effects[id] = *effect; ff->effect_owners[id] = file; spin_unlock_irq(&dev->event_lock); out: mutex_unlock(&ff->mutex); return ret; } EXPORT_SYMBOL_GPL(input_ff_upload); /* * Erases the effect if the requester is also the effect owner. The mutex * should already be locked before calling this function. */ static int erase_effect(struct input_dev *dev, int effect_id, struct file *file) { struct ff_device *ff = dev->ff; int error; error = check_effect_access(ff, effect_id, file); if (error) return error; spin_lock_irq(&dev->event_lock); ff->playback(dev, effect_id, 0); ff->effect_owners[effect_id] = NULL; spin_unlock_irq(&dev->event_lock); if (ff->erase) { error = ff->erase(dev, effect_id); if (error) { spin_lock_irq(&dev->event_lock); ff->effect_owners[effect_id] = file; spin_unlock_irq(&dev->event_lock); return error; } } return 0; } /** * input_ff_erase - erase a force-feedback effect from device * @dev: input device to erase effect from * @effect_id: id of the effect to be erased * @file: purported owner of the request * * This function erases a force-feedback effect from specified device. * The effect will only be erased if it was uploaded through the same * file handle that is requesting erase. */ int input_ff_erase(struct input_dev *dev, int effect_id, struct file *file) { struct ff_device *ff = dev->ff; int ret; if (!test_bit(EV_FF, dev->evbit)) return -ENOSYS; mutex_lock(&ff->mutex); ret = erase_effect(dev, effect_id, file); mutex_unlock(&ff->mutex); return ret; } EXPORT_SYMBOL_GPL(input_ff_erase); /* * input_ff_flush - erase all effects owned by a file handle * @dev: input device to erase effect from * @file: purported owner of the effects * * This function erases all force-feedback effects associated with * the given owner from specified device. Note that @file may be %NULL, * in which case all effects will be erased. */ int input_ff_flush(struct input_dev *dev, struct file *file) { struct ff_device *ff = dev->ff; int i; dev_dbg(&dev->dev, "flushing now\n"); mutex_lock(&ff->mutex); for (i = 0; i < ff->max_effects; i++) erase_effect(dev, i, file); mutex_unlock(&ff->mutex); return 0; } EXPORT_SYMBOL_GPL(input_ff_flush); /** * input_ff_event() - generic handler for force-feedback events * @dev: input device to send the effect to * @type: event type (anything but EV_FF is ignored) * @code: event code * @value: event value */ int input_ff_event(struct input_dev *dev, unsigned int type, unsigned int code, int value) { struct ff_device *ff = dev->ff; if (type != EV_FF) return 0; switch (code) { case FF_GAIN: if (!test_bit(FF_GAIN, dev->ffbit) || value > 0xffffU) break; ff->set_gain(dev, value); break; case FF_AUTOCENTER: if (!test_bit(FF_AUTOCENTER, dev->ffbit) || value > 0xffffU) break; ff->set_autocenter(dev, value); break; default: if (check_effect_access(ff, code, NULL) == 0) ff->playback(dev, code, value); break; } return 0; } EXPORT_SYMBOL_GPL(input_ff_event); /** * input_ff_create() - create force-feedback device * @dev: input device supporting force-feedback * @max_effects: maximum number of effects supported by the device * * This function allocates all necessary memory for a force feedback * portion of an input device and installs all default handlers. * @dev->ffbit should be already set up before calling this function. * Once ff device is created you need to setup its upload, erase, * playback and other handlers before registering input device */ int input_ff_create(struct input_dev *dev, unsigned int max_effects) { struct ff_device *ff; size_t ff_dev_size; int i; if (!max_effects) { dev_err(&dev->dev, "cannot allocate device without any effects\n"); return -EINVAL; } if (max_effects > FF_MAX_EFFECTS) { dev_err(&dev->dev, "cannot allocate more than FF_MAX_EFFECTS effects\n"); return -EINVAL; } ff_dev_size = sizeof(struct ff_device) + max_effects * sizeof(struct file *); if (ff_dev_size < max_effects) /* overflow */ return -EINVAL; ff = kzalloc(ff_dev_size, GFP_KERNEL); if (!ff) return -ENOMEM; ff->effects = kcalloc(max_effects, sizeof(struct ff_effect), GFP_KERNEL); if (!ff->effects) { kfree(ff); return -ENOMEM; } ff->max_effects = max_effects; mutex_init(&ff->mutex); dev->ff = ff; dev->flush = input_ff_flush; dev->event = input_ff_event; __set_bit(EV_FF, dev->evbit); /* Copy "true" bits into ff device bitmap */ for_each_set_bit(i, dev->ffbit, FF_CNT) __set_bit(i, ff->ffbit); /* we can emulate RUMBLE with periodic effects */ if (test_bit(FF_PERIODIC, ff->ffbit)) __set_bit(FF_RUMBLE, dev->ffbit); return 0; } EXPORT_SYMBOL_GPL(input_ff_create); /** * input_ff_destroy() - frees force feedback portion of input device * @dev: input device supporting force feedback * * This function is only needed in error path as input core will * automatically free force feedback structures when device is * destroyed. */ void input_ff_destroy(struct input_dev *dev) { struct ff_device *ff = dev->ff; __clear_bit(EV_FF, dev->evbit); if (ff) { if (ff->destroy) ff->destroy(ff); kfree(ff->private); kfree(ff->effects); kfree(ff); dev->ff = NULL; } } EXPORT_SYMBOL_GPL(input_ff_destroy);
linux-master
drivers/input/ff-core.c
// SPDX-License-Identifier: GPL-2.0-only /* * The input core * * Copyright (c) 1999-2002 Vojtech Pavlik */ #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt #include <linux/init.h> #include <linux/types.h> #include <linux/idr.h> #include <linux/input/mt.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/random.h> #include <linux/major.h> #include <linux/proc_fs.h> #include <linux/sched.h> #include <linux/seq_file.h> #include <linux/pm.h> #include <linux/poll.h> #include <linux/device.h> #include <linux/kstrtox.h> #include <linux/mutex.h> #include <linux/rcupdate.h> #include "input-compat.h" #include "input-core-private.h" #include "input-poller.h" MODULE_AUTHOR("Vojtech Pavlik <[email protected]>"); MODULE_DESCRIPTION("Input core"); MODULE_LICENSE("GPL"); #define INPUT_MAX_CHAR_DEVICES 1024 #define INPUT_FIRST_DYNAMIC_DEV 256 static DEFINE_IDA(input_ida); static LIST_HEAD(input_dev_list); static LIST_HEAD(input_handler_list); /* * input_mutex protects access to both input_dev_list and input_handler_list. * This also causes input_[un]register_device and input_[un]register_handler * be mutually exclusive which simplifies locking in drivers implementing * input handlers. */ static DEFINE_MUTEX(input_mutex); static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 }; static const unsigned int input_max_code[EV_CNT] = { [EV_KEY] = KEY_MAX, [EV_REL] = REL_MAX, [EV_ABS] = ABS_MAX, [EV_MSC] = MSC_MAX, [EV_SW] = SW_MAX, [EV_LED] = LED_MAX, [EV_SND] = SND_MAX, [EV_FF] = FF_MAX, }; static inline int is_event_supported(unsigned int code, unsigned long *bm, unsigned int max) { return code <= max && test_bit(code, bm); } static int input_defuzz_abs_event(int value, int old_val, int fuzz) { if (fuzz) { if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2) return old_val; if (value > old_val - fuzz && value < old_val + fuzz) return (old_val * 3 + value) / 4; if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2) return (old_val + value) / 2; } return value; } static void input_start_autorepeat(struct input_dev *dev, int code) { if (test_bit(EV_REP, dev->evbit) && dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] && dev->timer.function) { dev->repeat_key = code; mod_timer(&dev->timer, jiffies + msecs_to_jiffies(dev->rep[REP_DELAY])); } } static void input_stop_autorepeat(struct input_dev *dev) { del_timer(&dev->timer); } /* * Pass event first through all filters and then, if event has not been * filtered out, through all open handles. This function is called with * dev->event_lock held and interrupts disabled. */ static unsigned int input_to_handler(struct input_handle *handle, struct input_value *vals, unsigned int count) { struct input_handler *handler = handle->handler; struct input_value *end = vals; struct input_value *v; if (handler->filter) { for (v = vals; v != vals + count; v++) { if (handler->filter(handle, v->type, v->code, v->value)) continue; if (end != v) *end = *v; end++; } count = end - vals; } if (!count) return 0; if (handler->events) handler->events(handle, vals, count); else if (handler->event) for (v = vals; v != vals + count; v++) handler->event(handle, v->type, v->code, v->value); return count; } /* * Pass values first through all filters and then, if event has not been * filtered out, through all open handles. This function is called with * dev->event_lock held and interrupts disabled. */ static void input_pass_values(struct input_dev *dev, struct input_value *vals, unsigned int count) { struct input_handle *handle; struct input_value *v; lockdep_assert_held(&dev->event_lock); if (!count) return; rcu_read_lock(); handle = rcu_dereference(dev->grab); if (handle) { count = input_to_handler(handle, vals, count); } else { list_for_each_entry_rcu(handle, &dev->h_list, d_node) if (handle->open) { count = input_to_handler(handle, vals, count); if (!count) break; } } rcu_read_unlock(); /* trigger auto repeat for key events */ if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) { for (v = vals; v != vals + count; v++) { if (v->type == EV_KEY && v->value != 2) { if (v->value) input_start_autorepeat(dev, v->code); else input_stop_autorepeat(dev); } } } } #define INPUT_IGNORE_EVENT 0 #define INPUT_PASS_TO_HANDLERS 1 #define INPUT_PASS_TO_DEVICE 2 #define INPUT_SLOT 4 #define INPUT_FLUSH 8 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE) static int input_handle_abs_event(struct input_dev *dev, unsigned int code, int *pval) { struct input_mt *mt = dev->mt; bool is_new_slot = false; bool is_mt_event; int *pold; if (code == ABS_MT_SLOT) { /* * "Stage" the event; we'll flush it later, when we * get actual touch data. */ if (mt && *pval >= 0 && *pval < mt->num_slots) mt->slot = *pval; return INPUT_IGNORE_EVENT; } is_mt_event = input_is_mt_value(code); if (!is_mt_event) { pold = &dev->absinfo[code].value; } else if (mt) { pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST]; is_new_slot = mt->slot != dev->absinfo[ABS_MT_SLOT].value; } else { /* * Bypass filtering for multi-touch events when * not employing slots. */ pold = NULL; } if (pold) { *pval = input_defuzz_abs_event(*pval, *pold, dev->absinfo[code].fuzz); if (*pold == *pval) return INPUT_IGNORE_EVENT; *pold = *pval; } /* Flush pending "slot" event */ if (is_new_slot) { dev->absinfo[ABS_MT_SLOT].value = mt->slot; return INPUT_PASS_TO_HANDLERS | INPUT_SLOT; } return INPUT_PASS_TO_HANDLERS; } static int input_get_disposition(struct input_dev *dev, unsigned int type, unsigned int code, int *pval) { int disposition = INPUT_IGNORE_EVENT; int value = *pval; /* filter-out events from inhibited devices */ if (dev->inhibited) return INPUT_IGNORE_EVENT; switch (type) { case EV_SYN: switch (code) { case SYN_CONFIG: disposition = INPUT_PASS_TO_ALL; break; case SYN_REPORT: disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH; break; case SYN_MT_REPORT: disposition = INPUT_PASS_TO_HANDLERS; break; } break; case EV_KEY: if (is_event_supported(code, dev->keybit, KEY_MAX)) { /* auto-repeat bypasses state updates */ if (value == 2) { disposition = INPUT_PASS_TO_HANDLERS; break; } if (!!test_bit(code, dev->key) != !!value) { __change_bit(code, dev->key); disposition = INPUT_PASS_TO_HANDLERS; } } break; case EV_SW: if (is_event_supported(code, dev->swbit, SW_MAX) && !!test_bit(code, dev->sw) != !!value) { __change_bit(code, dev->sw); disposition = INPUT_PASS_TO_HANDLERS; } break; case EV_ABS: if (is_event_supported(code, dev->absbit, ABS_MAX)) disposition = input_handle_abs_event(dev, code, &value); break; case EV_REL: if (is_event_supported(code, dev->relbit, REL_MAX) && value) disposition = INPUT_PASS_TO_HANDLERS; break; case EV_MSC: if (is_event_supported(code, dev->mscbit, MSC_MAX)) disposition = INPUT_PASS_TO_ALL; break; case EV_LED: if (is_event_supported(code, dev->ledbit, LED_MAX) && !!test_bit(code, dev->led) != !!value) { __change_bit(code, dev->led); disposition = INPUT_PASS_TO_ALL; } break; case EV_SND: if (is_event_supported(code, dev->sndbit, SND_MAX)) { if (!!test_bit(code, dev->snd) != !!value) __change_bit(code, dev->snd); disposition = INPUT_PASS_TO_ALL; } break; case EV_REP: if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) { dev->rep[code] = value; disposition = INPUT_PASS_TO_ALL; } break; case EV_FF: if (value >= 0) disposition = INPUT_PASS_TO_ALL; break; case EV_PWR: disposition = INPUT_PASS_TO_ALL; break; } *pval = value; return disposition; } static void input_event_dispose(struct input_dev *dev, int disposition, unsigned int type, unsigned int code, int value) { if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event) dev->event(dev, type, code, value); if (!dev->vals) return; if (disposition & INPUT_PASS_TO_HANDLERS) { struct input_value *v; if (disposition & INPUT_SLOT) { v = &dev->vals[dev->num_vals++]; v->type = EV_ABS; v->code = ABS_MT_SLOT; v->value = dev->mt->slot; } v = &dev->vals[dev->num_vals++]; v->type = type; v->code = code; v->value = value; } if (disposition & INPUT_FLUSH) { if (dev->num_vals >= 2) input_pass_values(dev, dev->vals, dev->num_vals); dev->num_vals = 0; /* * Reset the timestamp on flush so we won't end up * with a stale one. Note we only need to reset the * monolithic one as we use its presence when deciding * whether to generate a synthetic timestamp. */ dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0); } else if (dev->num_vals >= dev->max_vals - 2) { dev->vals[dev->num_vals++] = input_value_sync; input_pass_values(dev, dev->vals, dev->num_vals); dev->num_vals = 0; } } void input_handle_event(struct input_dev *dev, unsigned int type, unsigned int code, int value) { int disposition; lockdep_assert_held(&dev->event_lock); disposition = input_get_disposition(dev, type, code, &value); if (disposition != INPUT_IGNORE_EVENT) { if (type != EV_SYN) add_input_randomness(type, code, value); input_event_dispose(dev, disposition, type, code, value); } } /** * input_event() - report new input event * @dev: device that generated the event * @type: type of the event * @code: event code * @value: value of the event * * This function should be used by drivers implementing various input * devices to report input events. See also input_inject_event(). * * NOTE: input_event() may be safely used right after input device was * allocated with input_allocate_device(), even before it is registered * with input_register_device(), but the event will not reach any of the * input handlers. Such early invocation of input_event() may be used * to 'seed' initial state of a switch or initial position of absolute * axis, etc. */ void input_event(struct input_dev *dev, unsigned int type, unsigned int code, int value) { unsigned long flags; if (is_event_supported(type, dev->evbit, EV_MAX)) { spin_lock_irqsave(&dev->event_lock, flags); input_handle_event(dev, type, code, value); spin_unlock_irqrestore(&dev->event_lock, flags); } } EXPORT_SYMBOL(input_event); /** * input_inject_event() - send input event from input handler * @handle: input handle to send event through * @type: type of the event * @code: event code * @value: value of the event * * Similar to input_event() but will ignore event if device is * "grabbed" and handle injecting event is not the one that owns * the device. */ void input_inject_event(struct input_handle *handle, unsigned int type, unsigned int code, int value) { struct input_dev *dev = handle->dev; struct input_handle *grab; unsigned long flags; if (is_event_supported(type, dev->evbit, EV_MAX)) { spin_lock_irqsave(&dev->event_lock, flags); rcu_read_lock(); grab = rcu_dereference(dev->grab); if (!grab || grab == handle) input_handle_event(dev, type, code, value); rcu_read_unlock(); spin_unlock_irqrestore(&dev->event_lock, flags); } } EXPORT_SYMBOL(input_inject_event); /** * input_alloc_absinfo - allocates array of input_absinfo structs * @dev: the input device emitting absolute events * * If the absinfo struct the caller asked for is already allocated, this * functions will not do anything. */ void input_alloc_absinfo(struct input_dev *dev) { if (dev->absinfo) return; dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL); if (!dev->absinfo) { dev_err(dev->dev.parent ?: &dev->dev, "%s: unable to allocate memory\n", __func__); /* * We will handle this allocation failure in * input_register_device() when we refuse to register input * device with ABS bits but without absinfo. */ } } EXPORT_SYMBOL(input_alloc_absinfo); void input_set_abs_params(struct input_dev *dev, unsigned int axis, int min, int max, int fuzz, int flat) { struct input_absinfo *absinfo; __set_bit(EV_ABS, dev->evbit); __set_bit(axis, dev->absbit); input_alloc_absinfo(dev); if (!dev->absinfo) return; absinfo = &dev->absinfo[axis]; absinfo->minimum = min; absinfo->maximum = max; absinfo->fuzz = fuzz; absinfo->flat = flat; } EXPORT_SYMBOL(input_set_abs_params); /** * input_copy_abs - Copy absinfo from one input_dev to another * @dst: Destination input device to copy the abs settings to * @dst_axis: ABS_* value selecting the destination axis * @src: Source input device to copy the abs settings from * @src_axis: ABS_* value selecting the source axis * * Set absinfo for the selected destination axis by copying it from * the specified source input device's source axis. * This is useful to e.g. setup a pen/stylus input-device for combined * touchscreen/pen hardware where the pen uses the same coordinates as * the touchscreen. */ void input_copy_abs(struct input_dev *dst, unsigned int dst_axis, const struct input_dev *src, unsigned int src_axis) { /* src must have EV_ABS and src_axis set */ if (WARN_ON(!(test_bit(EV_ABS, src->evbit) && test_bit(src_axis, src->absbit)))) return; /* * input_alloc_absinfo() may have failed for the source. Our caller is * expected to catch this when registering the input devices, which may * happen after the input_copy_abs() call. */ if (!src->absinfo) return; input_set_capability(dst, EV_ABS, dst_axis); if (!dst->absinfo) return; dst->absinfo[dst_axis] = src->absinfo[src_axis]; } EXPORT_SYMBOL(input_copy_abs); /** * input_grab_device - grabs device for exclusive use * @handle: input handle that wants to own the device * * When a device is grabbed by an input handle all events generated by * the device are delivered only to this handle. Also events injected * by other input handles are ignored while device is grabbed. */ int input_grab_device(struct input_handle *handle) { struct input_dev *dev = handle->dev; int retval; retval = mutex_lock_interruptible(&dev->mutex); if (retval) return retval; if (dev->grab) { retval = -EBUSY; goto out; } rcu_assign_pointer(dev->grab, handle); out: mutex_unlock(&dev->mutex); return retval; } EXPORT_SYMBOL(input_grab_device); static void __input_release_device(struct input_handle *handle) { struct input_dev *dev = handle->dev; struct input_handle *grabber; grabber = rcu_dereference_protected(dev->grab, lockdep_is_held(&dev->mutex)); if (grabber == handle) { rcu_assign_pointer(dev->grab, NULL); /* Make sure input_pass_values() notices that grab is gone */ synchronize_rcu(); list_for_each_entry(handle, &dev->h_list, d_node) if (handle->open && handle->handler->start) handle->handler->start(handle); } } /** * input_release_device - release previously grabbed device * @handle: input handle that owns the device * * Releases previously grabbed device so that other input handles can * start receiving input events. Upon release all handlers attached * to the device have their start() method called so they have a change * to synchronize device state with the rest of the system. */ void input_release_device(struct input_handle *handle) { struct input_dev *dev = handle->dev; mutex_lock(&dev->mutex); __input_release_device(handle); mutex_unlock(&dev->mutex); } EXPORT_SYMBOL(input_release_device); /** * input_open_device - open input device * @handle: handle through which device is being accessed * * This function should be called by input handlers when they * want to start receive events from given input device. */ int input_open_device(struct input_handle *handle) { struct input_dev *dev = handle->dev; int retval; retval = mutex_lock_interruptible(&dev->mutex); if (retval) return retval; if (dev->going_away) { retval = -ENODEV; goto out; } handle->open++; if (dev->users++ || dev->inhibited) { /* * Device is already opened and/or inhibited, * so we can exit immediately and report success. */ goto out; } if (dev->open) { retval = dev->open(dev); if (retval) { dev->users--; handle->open--; /* * Make sure we are not delivering any more events * through this handle */ synchronize_rcu(); goto out; } } if (dev->poller) input_dev_poller_start(dev->poller); out: mutex_unlock(&dev->mutex); return retval; } EXPORT_SYMBOL(input_open_device); int input_flush_device(struct input_handle *handle, struct file *file) { struct input_dev *dev = handle->dev; int retval; retval = mutex_lock_interruptible(&dev->mutex); if (retval) return retval; if (dev->flush) retval = dev->flush(dev, file); mutex_unlock(&dev->mutex); return retval; } EXPORT_SYMBOL(input_flush_device); /** * input_close_device - close input device * @handle: handle through which device is being accessed * * This function should be called by input handlers when they * want to stop receive events from given input device. */ void input_close_device(struct input_handle *handle) { struct input_dev *dev = handle->dev; mutex_lock(&dev->mutex); __input_release_device(handle); if (!--dev->users && !dev->inhibited) { if (dev->poller) input_dev_poller_stop(dev->poller); if (dev->close) dev->close(dev); } if (!--handle->open) { /* * synchronize_rcu() makes sure that input_pass_values() * completed and that no more input events are delivered * through this handle */ synchronize_rcu(); } mutex_unlock(&dev->mutex); } EXPORT_SYMBOL(input_close_device); /* * Simulate keyup events for all keys that are marked as pressed. * The function must be called with dev->event_lock held. */ static bool input_dev_release_keys(struct input_dev *dev) { bool need_sync = false; int code; lockdep_assert_held(&dev->event_lock); if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) { for_each_set_bit(code, dev->key, KEY_CNT) { input_handle_event(dev, EV_KEY, code, 0); need_sync = true; } } return need_sync; } /* * Prepare device for unregistering */ static void input_disconnect_device(struct input_dev *dev) { struct input_handle *handle; /* * Mark device as going away. Note that we take dev->mutex here * not to protect access to dev->going_away but rather to ensure * that there are no threads in the middle of input_open_device() */ mutex_lock(&dev->mutex); dev->going_away = true; mutex_unlock(&dev->mutex); spin_lock_irq(&dev->event_lock); /* * Simulate keyup events for all pressed keys so that handlers * are not left with "stuck" keys. The driver may continue * generate events even after we done here but they will not * reach any handlers. */ if (input_dev_release_keys(dev)) input_handle_event(dev, EV_SYN, SYN_REPORT, 1); list_for_each_entry(handle, &dev->h_list, d_node) handle->open = 0; spin_unlock_irq(&dev->event_lock); } /** * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry * @ke: keymap entry containing scancode to be converted. * @scancode: pointer to the location where converted scancode should * be stored. * * This function is used to convert scancode stored in &struct keymap_entry * into scalar form understood by legacy keymap handling methods. These * methods expect scancodes to be represented as 'unsigned int'. */ int input_scancode_to_scalar(const struct input_keymap_entry *ke, unsigned int *scancode) { switch (ke->len) { case 1: *scancode = *((u8 *)ke->scancode); break; case 2: *scancode = *((u16 *)ke->scancode); break; case 4: *scancode = *((u32 *)ke->scancode); break; default: return -EINVAL; } return 0; } EXPORT_SYMBOL(input_scancode_to_scalar); /* * Those routines handle the default case where no [gs]etkeycode() is * defined. In this case, an array indexed by the scancode is used. */ static unsigned int input_fetch_keycode(struct input_dev *dev, unsigned int index) { switch (dev->keycodesize) { case 1: return ((u8 *)dev->keycode)[index]; case 2: return ((u16 *)dev->keycode)[index]; default: return ((u32 *)dev->keycode)[index]; } } static int input_default_getkeycode(struct input_dev *dev, struct input_keymap_entry *ke) { unsigned int index; int error; if (!dev->keycodesize) return -EINVAL; if (ke->flags & INPUT_KEYMAP_BY_INDEX) index = ke->index; else { error = input_scancode_to_scalar(ke, &index); if (error) return error; } if (index >= dev->keycodemax) return -EINVAL; ke->keycode = input_fetch_keycode(dev, index); ke->index = index; ke->len = sizeof(index); memcpy(ke->scancode, &index, sizeof(index)); return 0; } static int input_default_setkeycode(struct input_dev *dev, const struct input_keymap_entry *ke, unsigned int *old_keycode) { unsigned int index; int error; int i; if (!dev->keycodesize) return -EINVAL; if (ke->flags & INPUT_KEYMAP_BY_INDEX) { index = ke->index; } else { error = input_scancode_to_scalar(ke, &index); if (error) return error; } if (index >= dev->keycodemax) return -EINVAL; if (dev->keycodesize < sizeof(ke->keycode) && (ke->keycode >> (dev->keycodesize * 8))) return -EINVAL; switch (dev->keycodesize) { case 1: { u8 *k = (u8 *)dev->keycode; *old_keycode = k[index]; k[index] = ke->keycode; break; } case 2: { u16 *k = (u16 *)dev->keycode; *old_keycode = k[index]; k[index] = ke->keycode; break; } default: { u32 *k = (u32 *)dev->keycode; *old_keycode = k[index]; k[index] = ke->keycode; break; } } if (*old_keycode <= KEY_MAX) { __clear_bit(*old_keycode, dev->keybit); for (i = 0; i < dev->keycodemax; i++) { if (input_fetch_keycode(dev, i) == *old_keycode) { __set_bit(*old_keycode, dev->keybit); /* Setting the bit twice is useless, so break */ break; } } } __set_bit(ke->keycode, dev->keybit); return 0; } /** * input_get_keycode - retrieve keycode currently mapped to a given scancode * @dev: input device which keymap is being queried * @ke: keymap entry * * This function should be called by anyone interested in retrieving current * keymap. Presently evdev handlers use it. */ int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke) { unsigned long flags; int retval; spin_lock_irqsave(&dev->event_lock, flags); retval = dev->getkeycode(dev, ke); spin_unlock_irqrestore(&dev->event_lock, flags); return retval; } EXPORT_SYMBOL(input_get_keycode); /** * input_set_keycode - attribute a keycode to a given scancode * @dev: input device which keymap is being updated * @ke: new keymap entry * * This function should be called by anyone needing to update current * keymap. Presently keyboard and evdev handlers use it. */ int input_set_keycode(struct input_dev *dev, const struct input_keymap_entry *ke) { unsigned long flags; unsigned int old_keycode; int retval; if (ke->keycode > KEY_MAX) return -EINVAL; spin_lock_irqsave(&dev->event_lock, flags); retval = dev->setkeycode(dev, ke, &old_keycode); if (retval) goto out; /* Make sure KEY_RESERVED did not get enabled. */ __clear_bit(KEY_RESERVED, dev->keybit); /* * Simulate keyup event if keycode is not present * in the keymap anymore */ if (old_keycode > KEY_MAX) { dev_warn(dev->dev.parent ?: &dev->dev, "%s: got too big old keycode %#x\n", __func__, old_keycode); } else if (test_bit(EV_KEY, dev->evbit) && !is_event_supported(old_keycode, dev->keybit, KEY_MAX) && __test_and_clear_bit(old_keycode, dev->key)) { /* * We have to use input_event_dispose() here directly instead * of input_handle_event() because the key we want to release * here is considered no longer supported by the device and * input_handle_event() will ignore it. */ input_event_dispose(dev, INPUT_PASS_TO_HANDLERS, EV_KEY, old_keycode, 0); input_event_dispose(dev, INPUT_PASS_TO_HANDLERS | INPUT_FLUSH, EV_SYN, SYN_REPORT, 1); } out: spin_unlock_irqrestore(&dev->event_lock, flags); return retval; } EXPORT_SYMBOL(input_set_keycode); bool input_match_device_id(const struct input_dev *dev, const struct input_device_id *id) { if (id->flags & INPUT_DEVICE_ID_MATCH_BUS) if (id->bustype != dev->id.bustype) return false; if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR) if (id->vendor != dev->id.vendor) return false; if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT) if (id->product != dev->id.product) return false; if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION) if (id->version != dev->id.version) return false; if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) || !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) || !bitmap_subset(id->relbit, dev->relbit, REL_MAX) || !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) || !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) || !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) || !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) || !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) || !bitmap_subset(id->swbit, dev->swbit, SW_MAX) || !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) { return false; } return true; } EXPORT_SYMBOL(input_match_device_id); static const struct input_device_id *input_match_device(struct input_handler *handler, struct input_dev *dev) { const struct input_device_id *id; for (id = handler->id_table; id->flags || id->driver_info; id++) { if (input_match_device_id(dev, id) && (!handler->match || handler->match(handler, dev))) { return id; } } return NULL; } static int input_attach_handler(struct input_dev *dev, struct input_handler *handler) { const struct input_device_id *id; int error; id = input_match_device(handler, dev); if (!id) return -ENODEV; error = handler->connect(handler, dev, id); if (error && error != -ENODEV) pr_err("failed to attach handler %s to device %s, error: %d\n", handler->name, kobject_name(&dev->dev.kobj), error); return error; } #ifdef CONFIG_COMPAT static int input_bits_to_string(char *buf, int buf_size, unsigned long bits, bool skip_empty) { int len = 0; if (in_compat_syscall()) { u32 dword = bits >> 32; if (dword || !skip_empty) len += snprintf(buf, buf_size, "%x ", dword); dword = bits & 0xffffffffUL; if (dword || !skip_empty || len) len += snprintf(buf + len, max(buf_size - len, 0), "%x", dword); } else { if (bits || !skip_empty) len += snprintf(buf, buf_size, "%lx", bits); } return len; } #else /* !CONFIG_COMPAT */ static int input_bits_to_string(char *buf, int buf_size, unsigned long bits, bool skip_empty) { return bits || !skip_empty ? snprintf(buf, buf_size, "%lx", bits) : 0; } #endif #ifdef CONFIG_PROC_FS static struct proc_dir_entry *proc_bus_input_dir; static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait); static int input_devices_state; static inline void input_wakeup_procfs_readers(void) { input_devices_state++; wake_up(&input_devices_poll_wait); } static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait) { poll_wait(file, &input_devices_poll_wait, wait); if (file->f_version != input_devices_state) { file->f_version = input_devices_state; return EPOLLIN | EPOLLRDNORM; } return 0; } union input_seq_state { struct { unsigned short pos; bool mutex_acquired; }; void *p; }; static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos) { union input_seq_state *state = (union input_seq_state *)&seq->private; int error; /* We need to fit into seq->private pointer */ BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); error = mutex_lock_interruptible(&input_mutex); if (error) { state->mutex_acquired = false; return ERR_PTR(error); } state->mutex_acquired = true; return seq_list_start(&input_dev_list, *pos); } static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos) { return seq_list_next(v, &input_dev_list, pos); } static void input_seq_stop(struct seq_file *seq, void *v) { union input_seq_state *state = (union input_seq_state *)&seq->private; if (state->mutex_acquired) mutex_unlock(&input_mutex); } static void input_seq_print_bitmap(struct seq_file *seq, const char *name, unsigned long *bitmap, int max) { int i; bool skip_empty = true; char buf[18]; seq_printf(seq, "B: %s=", name); for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { if (input_bits_to_string(buf, sizeof(buf), bitmap[i], skip_empty)) { skip_empty = false; seq_printf(seq, "%s%s", buf, i > 0 ? " " : ""); } } /* * If no output was produced print a single 0. */ if (skip_empty) seq_putc(seq, '0'); seq_putc(seq, '\n'); } static int input_devices_seq_show(struct seq_file *seq, void *v) { struct input_dev *dev = container_of(v, struct input_dev, node); const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); struct input_handle *handle; seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n", dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version); seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : ""); seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : ""); seq_printf(seq, "S: Sysfs=%s\n", path ? path : ""); seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : ""); seq_puts(seq, "H: Handlers="); list_for_each_entry(handle, &dev->h_list, d_node) seq_printf(seq, "%s ", handle->name); seq_putc(seq, '\n'); input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX); input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX); if (test_bit(EV_KEY, dev->evbit)) input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX); if (test_bit(EV_REL, dev->evbit)) input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX); if (test_bit(EV_ABS, dev->evbit)) input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX); if (test_bit(EV_MSC, dev->evbit)) input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX); if (test_bit(EV_LED, dev->evbit)) input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX); if (test_bit(EV_SND, dev->evbit)) input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX); if (test_bit(EV_FF, dev->evbit)) input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX); if (test_bit(EV_SW, dev->evbit)) input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX); seq_putc(seq, '\n'); kfree(path); return 0; } static const struct seq_operations input_devices_seq_ops = { .start = input_devices_seq_start, .next = input_devices_seq_next, .stop = input_seq_stop, .show = input_devices_seq_show, }; static int input_proc_devices_open(struct inode *inode, struct file *file) { return seq_open(file, &input_devices_seq_ops); } static const struct proc_ops input_devices_proc_ops = { .proc_open = input_proc_devices_open, .proc_poll = input_proc_devices_poll, .proc_read = seq_read, .proc_lseek = seq_lseek, .proc_release = seq_release, }; static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos) { union input_seq_state *state = (union input_seq_state *)&seq->private; int error; /* We need to fit into seq->private pointer */ BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); error = mutex_lock_interruptible(&input_mutex); if (error) { state->mutex_acquired = false; return ERR_PTR(error); } state->mutex_acquired = true; state->pos = *pos; return seq_list_start(&input_handler_list, *pos); } static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos) { union input_seq_state *state = (union input_seq_state *)&seq->private; state->pos = *pos + 1; return seq_list_next(v, &input_handler_list, pos); } static int input_handlers_seq_show(struct seq_file *seq, void *v) { struct input_handler *handler = container_of(v, struct input_handler, node); union input_seq_state *state = (union input_seq_state *)&seq->private; seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name); if (handler->filter) seq_puts(seq, " (filter)"); if (handler->legacy_minors) seq_printf(seq, " Minor=%d", handler->minor); seq_putc(seq, '\n'); return 0; } static const struct seq_operations input_handlers_seq_ops = { .start = input_handlers_seq_start, .next = input_handlers_seq_next, .stop = input_seq_stop, .show = input_handlers_seq_show, }; static int input_proc_handlers_open(struct inode *inode, struct file *file) { return seq_open(file, &input_handlers_seq_ops); } static const struct proc_ops input_handlers_proc_ops = { .proc_open = input_proc_handlers_open, .proc_read = seq_read, .proc_lseek = seq_lseek, .proc_release = seq_release, }; static int __init input_proc_init(void) { struct proc_dir_entry *entry; proc_bus_input_dir = proc_mkdir("bus/input", NULL); if (!proc_bus_input_dir) return -ENOMEM; entry = proc_create("devices", 0, proc_bus_input_dir, &input_devices_proc_ops); if (!entry) goto fail1; entry = proc_create("handlers", 0, proc_bus_input_dir, &input_handlers_proc_ops); if (!entry) goto fail2; return 0; fail2: remove_proc_entry("devices", proc_bus_input_dir); fail1: remove_proc_entry("bus/input", NULL); return -ENOMEM; } static void input_proc_exit(void) { remove_proc_entry("devices", proc_bus_input_dir); remove_proc_entry("handlers", proc_bus_input_dir); remove_proc_entry("bus/input", NULL); } #else /* !CONFIG_PROC_FS */ static inline void input_wakeup_procfs_readers(void) { } static inline int input_proc_init(void) { return 0; } static inline void input_proc_exit(void) { } #endif #define INPUT_DEV_STRING_ATTR_SHOW(name) \ static ssize_t input_dev_show_##name(struct device *dev, \ struct device_attribute *attr, \ char *buf) \ { \ struct input_dev *input_dev = to_input_dev(dev); \ \ return scnprintf(buf, PAGE_SIZE, "%s\n", \ input_dev->name ? input_dev->name : ""); \ } \ static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL) INPUT_DEV_STRING_ATTR_SHOW(name); INPUT_DEV_STRING_ATTR_SHOW(phys); INPUT_DEV_STRING_ATTR_SHOW(uniq); static int input_print_modalias_bits(char *buf, int size, char name, const unsigned long *bm, unsigned int min_bit, unsigned int max_bit) { int len = 0, i; len += snprintf(buf, max(size, 0), "%c", name); for (i = min_bit; i < max_bit; i++) if (bm[BIT_WORD(i)] & BIT_MASK(i)) len += snprintf(buf + len, max(size - len, 0), "%X,", i); return len; } static int input_print_modalias(char *buf, int size, const struct input_dev *id, int add_cr) { int len; len = snprintf(buf, max(size, 0), "input:b%04Xv%04Xp%04Xe%04X-", id->id.bustype, id->id.vendor, id->id.product, id->id.version); len += input_print_modalias_bits(buf + len, size - len, 'e', id->evbit, 0, EV_MAX); len += input_print_modalias_bits(buf + len, size - len, 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX); len += input_print_modalias_bits(buf + len, size - len, 'r', id->relbit, 0, REL_MAX); len += input_print_modalias_bits(buf + len, size - len, 'a', id->absbit, 0, ABS_MAX); len += input_print_modalias_bits(buf + len, size - len, 'm', id->mscbit, 0, MSC_MAX); len += input_print_modalias_bits(buf + len, size - len, 'l', id->ledbit, 0, LED_MAX); len += input_print_modalias_bits(buf + len, size - len, 's', id->sndbit, 0, SND_MAX); len += input_print_modalias_bits(buf + len, size - len, 'f', id->ffbit, 0, FF_MAX); len += input_print_modalias_bits(buf + len, size - len, 'w', id->swbit, 0, SW_MAX); if (add_cr) len += snprintf(buf + len, max(size - len, 0), "\n"); return len; } static ssize_t input_dev_show_modalias(struct device *dev, struct device_attribute *attr, char *buf) { struct input_dev *id = to_input_dev(dev); ssize_t len; len = input_print_modalias(buf, PAGE_SIZE, id, 1); return min_t(int, len, PAGE_SIZE); } static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL); static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap, int max, int add_cr); static ssize_t input_dev_show_properties(struct device *dev, struct device_attribute *attr, char *buf) { struct input_dev *input_dev = to_input_dev(dev); int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit, INPUT_PROP_MAX, true); return min_t(int, len, PAGE_SIZE); } static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL); static int input_inhibit_device(struct input_dev *dev); static int input_uninhibit_device(struct input_dev *dev); static ssize_t inhibited_show(struct device *dev, struct device_attribute *attr, char *buf) { struct input_dev *input_dev = to_input_dev(dev); return scnprintf(buf, PAGE_SIZE, "%d\n", input_dev->inhibited); } static ssize_t inhibited_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct input_dev *input_dev = to_input_dev(dev); ssize_t rv; bool inhibited; if (kstrtobool(buf, &inhibited)) return -EINVAL; if (inhibited) rv = input_inhibit_device(input_dev); else rv = input_uninhibit_device(input_dev); if (rv != 0) return rv; return len; } static DEVICE_ATTR_RW(inhibited); static struct attribute *input_dev_attrs[] = { &dev_attr_name.attr, &dev_attr_phys.attr, &dev_attr_uniq.attr, &dev_attr_modalias.attr, &dev_attr_properties.attr, &dev_attr_inhibited.attr, NULL }; static const struct attribute_group input_dev_attr_group = { .attrs = input_dev_attrs, }; #define INPUT_DEV_ID_ATTR(name) \ static ssize_t input_dev_show_id_##name(struct device *dev, \ struct device_attribute *attr, \ char *buf) \ { \ struct input_dev *input_dev = to_input_dev(dev); \ return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \ } \ static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL) INPUT_DEV_ID_ATTR(bustype); INPUT_DEV_ID_ATTR(vendor); INPUT_DEV_ID_ATTR(product); INPUT_DEV_ID_ATTR(version); static struct attribute *input_dev_id_attrs[] = { &dev_attr_bustype.attr, &dev_attr_vendor.attr, &dev_attr_product.attr, &dev_attr_version.attr, NULL }; static const struct attribute_group input_dev_id_attr_group = { .name = "id", .attrs = input_dev_id_attrs, }; static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap, int max, int add_cr) { int i; int len = 0; bool skip_empty = true; for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { len += input_bits_to_string(buf + len, max(buf_size - len, 0), bitmap[i], skip_empty); if (len) { skip_empty = false; if (i > 0) len += snprintf(buf + len, max(buf_size - len, 0), " "); } } /* * If no output was produced print a single 0. */ if (len == 0) len = snprintf(buf, buf_size, "%d", 0); if (add_cr) len += snprintf(buf + len, max(buf_size - len, 0), "\n"); return len; } #define INPUT_DEV_CAP_ATTR(ev, bm) \ static ssize_t input_dev_show_cap_##bm(struct device *dev, \ struct device_attribute *attr, \ char *buf) \ { \ struct input_dev *input_dev = to_input_dev(dev); \ int len = input_print_bitmap(buf, PAGE_SIZE, \ input_dev->bm##bit, ev##_MAX, \ true); \ return min_t(int, len, PAGE_SIZE); \ } \ static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL) INPUT_DEV_CAP_ATTR(EV, ev); INPUT_DEV_CAP_ATTR(KEY, key); INPUT_DEV_CAP_ATTR(REL, rel); INPUT_DEV_CAP_ATTR(ABS, abs); INPUT_DEV_CAP_ATTR(MSC, msc); INPUT_DEV_CAP_ATTR(LED, led); INPUT_DEV_CAP_ATTR(SND, snd); INPUT_DEV_CAP_ATTR(FF, ff); INPUT_DEV_CAP_ATTR(SW, sw); static struct attribute *input_dev_caps_attrs[] = { &dev_attr_ev.attr, &dev_attr_key.attr, &dev_attr_rel.attr, &dev_attr_abs.attr, &dev_attr_msc.attr, &dev_attr_led.attr, &dev_attr_snd.attr, &dev_attr_ff.attr, &dev_attr_sw.attr, NULL }; static const struct attribute_group input_dev_caps_attr_group = { .name = "capabilities", .attrs = input_dev_caps_attrs, }; static const struct attribute_group *input_dev_attr_groups[] = { &input_dev_attr_group, &input_dev_id_attr_group, &input_dev_caps_attr_group, &input_poller_attribute_group, NULL }; static void input_dev_release(struct device *device) { struct input_dev *dev = to_input_dev(device); input_ff_destroy(dev); input_mt_destroy_slots(dev); kfree(dev->poller); kfree(dev->absinfo); kfree(dev->vals); kfree(dev); module_put(THIS_MODULE); } /* * Input uevent interface - loading event handlers based on * device bitfields. */ static int input_add_uevent_bm_var(struct kobj_uevent_env *env, const char *name, const unsigned long *bitmap, int max) { int len; if (add_uevent_var(env, "%s", name)) return -ENOMEM; len = input_print_bitmap(&env->buf[env->buflen - 1], sizeof(env->buf) - env->buflen, bitmap, max, false); if (len >= (sizeof(env->buf) - env->buflen)) return -ENOMEM; env->buflen += len; return 0; } static int input_add_uevent_modalias_var(struct kobj_uevent_env *env, const struct input_dev *dev) { int len; if (add_uevent_var(env, "MODALIAS=")) return -ENOMEM; len = input_print_modalias(&env->buf[env->buflen - 1], sizeof(env->buf) - env->buflen, dev, 0); if (len >= (sizeof(env->buf) - env->buflen)) return -ENOMEM; env->buflen += len; return 0; } #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \ do { \ int err = add_uevent_var(env, fmt, val); \ if (err) \ return err; \ } while (0) #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \ do { \ int err = input_add_uevent_bm_var(env, name, bm, max); \ if (err) \ return err; \ } while (0) #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \ do { \ int err = input_add_uevent_modalias_var(env, dev); \ if (err) \ return err; \ } while (0) static int input_dev_uevent(const struct device *device, struct kobj_uevent_env *env) { const struct input_dev *dev = to_input_dev(device); INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x", dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version); if (dev->name) INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name); if (dev->phys) INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys); if (dev->uniq) INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq); INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX); INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX); if (test_bit(EV_KEY, dev->evbit)) INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX); if (test_bit(EV_REL, dev->evbit)) INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX); if (test_bit(EV_ABS, dev->evbit)) INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX); if (test_bit(EV_MSC, dev->evbit)) INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX); if (test_bit(EV_LED, dev->evbit)) INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX); if (test_bit(EV_SND, dev->evbit)) INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX); if (test_bit(EV_FF, dev->evbit)) INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX); if (test_bit(EV_SW, dev->evbit)) INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX); INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev); return 0; } #define INPUT_DO_TOGGLE(dev, type, bits, on) \ do { \ int i; \ bool active; \ \ if (!test_bit(EV_##type, dev->evbit)) \ break; \ \ for_each_set_bit(i, dev->bits##bit, type##_CNT) { \ active = test_bit(i, dev->bits); \ if (!active && !on) \ continue; \ \ dev->event(dev, EV_##type, i, on ? active : 0); \ } \ } while (0) static void input_dev_toggle(struct input_dev *dev, bool activate) { if (!dev->event) return; INPUT_DO_TOGGLE(dev, LED, led, activate); INPUT_DO_TOGGLE(dev, SND, snd, activate); if (activate && test_bit(EV_REP, dev->evbit)) { dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]); dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]); } } /** * input_reset_device() - reset/restore the state of input device * @dev: input device whose state needs to be reset * * This function tries to reset the state of an opened input device and * bring internal state and state if the hardware in sync with each other. * We mark all keys as released, restore LED state, repeat rate, etc. */ void input_reset_device(struct input_dev *dev) { unsigned long flags; mutex_lock(&dev->mutex); spin_lock_irqsave(&dev->event_lock, flags); input_dev_toggle(dev, true); if (input_dev_release_keys(dev)) input_handle_event(dev, EV_SYN, SYN_REPORT, 1); spin_unlock_irqrestore(&dev->event_lock, flags); mutex_unlock(&dev->mutex); } EXPORT_SYMBOL(input_reset_device); static int input_inhibit_device(struct input_dev *dev) { mutex_lock(&dev->mutex); if (dev->inhibited) goto out; if (dev->users) { if (dev->close) dev->close(dev); if (dev->poller) input_dev_poller_stop(dev->poller); } spin_lock_irq(&dev->event_lock); input_mt_release_slots(dev); input_dev_release_keys(dev); input_handle_event(dev, EV_SYN, SYN_REPORT, 1); input_dev_toggle(dev, false); spin_unlock_irq(&dev->event_lock); dev->inhibited = true; out: mutex_unlock(&dev->mutex); return 0; } static int input_uninhibit_device(struct input_dev *dev) { int ret = 0; mutex_lock(&dev->mutex); if (!dev->inhibited) goto out; if (dev->users) { if (dev->open) { ret = dev->open(dev); if (ret) goto out; } if (dev->poller) input_dev_poller_start(dev->poller); } dev->inhibited = false; spin_lock_irq(&dev->event_lock); input_dev_toggle(dev, true); spin_unlock_irq(&dev->event_lock); out: mutex_unlock(&dev->mutex); return ret; } static int input_dev_suspend(struct device *dev) { struct input_dev *input_dev = to_input_dev(dev); spin_lock_irq(&input_dev->event_lock); /* * Keys that are pressed now are unlikely to be * still pressed when we resume. */ if (input_dev_release_keys(input_dev)) input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1); /* Turn off LEDs and sounds, if any are active. */ input_dev_toggle(input_dev, false); spin_unlock_irq(&input_dev->event_lock); return 0; } static int input_dev_resume(struct device *dev) { struct input_dev *input_dev = to_input_dev(dev); spin_lock_irq(&input_dev->event_lock); /* Restore state of LEDs and sounds, if any were active. */ input_dev_toggle(input_dev, true); spin_unlock_irq(&input_dev->event_lock); return 0; } static int input_dev_freeze(struct device *dev) { struct input_dev *input_dev = to_input_dev(dev); spin_lock_irq(&input_dev->event_lock); /* * Keys that are pressed now are unlikely to be * still pressed when we resume. */ if (input_dev_release_keys(input_dev)) input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1); spin_unlock_irq(&input_dev->event_lock); return 0; } static int input_dev_poweroff(struct device *dev) { struct input_dev *input_dev = to_input_dev(dev); spin_lock_irq(&input_dev->event_lock); /* Turn off LEDs and sounds, if any are active. */ input_dev_toggle(input_dev, false); spin_unlock_irq(&input_dev->event_lock); return 0; } static const struct dev_pm_ops input_dev_pm_ops = { .suspend = input_dev_suspend, .resume = input_dev_resume, .freeze = input_dev_freeze, .poweroff = input_dev_poweroff, .restore = input_dev_resume, }; static const struct device_type input_dev_type = { .groups = input_dev_attr_groups, .release = input_dev_release, .uevent = input_dev_uevent, .pm = pm_sleep_ptr(&input_dev_pm_ops), }; static char *input_devnode(const struct device *dev, umode_t *mode) { return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev)); } struct class input_class = { .name = "input", .devnode = input_devnode, }; EXPORT_SYMBOL_GPL(input_class); /** * input_allocate_device - allocate memory for new input device * * Returns prepared struct input_dev or %NULL. * * NOTE: Use input_free_device() to free devices that have not been * registered; input_unregister_device() should be used for already * registered devices. */ struct input_dev *input_allocate_device(void) { static atomic_t input_no = ATOMIC_INIT(-1); struct input_dev *dev; dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (dev) { dev->dev.type = &input_dev_type; dev->dev.class = &input_class; device_initialize(&dev->dev); mutex_init(&dev->mutex); spin_lock_init(&dev->event_lock); timer_setup(&dev->timer, NULL, 0); INIT_LIST_HEAD(&dev->h_list); INIT_LIST_HEAD(&dev->node); dev_set_name(&dev->dev, "input%lu", (unsigned long)atomic_inc_return(&input_no)); __module_get(THIS_MODULE); } return dev; } EXPORT_SYMBOL(input_allocate_device); struct input_devres { struct input_dev *input; }; static int devm_input_device_match(struct device *dev, void *res, void *data) { struct input_devres *devres = res; return devres->input == data; } static void devm_input_device_release(struct device *dev, void *res) { struct input_devres *devres = res; struct input_dev *input = devres->input; dev_dbg(dev, "%s: dropping reference to %s\n", __func__, dev_name(&input->dev)); input_put_device(input); } /** * devm_input_allocate_device - allocate managed input device * @dev: device owning the input device being created * * Returns prepared struct input_dev or %NULL. * * Managed input devices do not need to be explicitly unregistered or * freed as it will be done automatically when owner device unbinds from * its driver (or binding fails). Once managed input device is allocated, * it is ready to be set up and registered in the same fashion as regular * input device. There are no special devm_input_device_[un]register() * variants, regular ones work with both managed and unmanaged devices, * should you need them. In most cases however, managed input device need * not be explicitly unregistered or freed. * * NOTE: the owner device is set up as parent of input device and users * should not override it. */ struct input_dev *devm_input_allocate_device(struct device *dev) { struct input_dev *input; struct input_devres *devres; devres = devres_alloc(devm_input_device_release, sizeof(*devres), GFP_KERNEL); if (!devres) return NULL; input = input_allocate_device(); if (!input) { devres_free(devres); return NULL; } input->dev.parent = dev; input->devres_managed = true; devres->input = input; devres_add(dev, devres); return input; } EXPORT_SYMBOL(devm_input_allocate_device); /** * input_free_device - free memory occupied by input_dev structure * @dev: input device to free * * This function should only be used if input_register_device() * was not called yet or if it failed. Once device was registered * use input_unregister_device() and memory will be freed once last * reference to the device is dropped. * * Device should be allocated by input_allocate_device(). * * NOTE: If there are references to the input device then memory * will not be freed until last reference is dropped. */ void input_free_device(struct input_dev *dev) { if (dev) { if (dev->devres_managed) WARN_ON(devres_destroy(dev->dev.parent, devm_input_device_release, devm_input_device_match, dev)); input_put_device(dev); } } EXPORT_SYMBOL(input_free_device); /** * input_set_timestamp - set timestamp for input events * @dev: input device to set timestamp for * @timestamp: the time at which the event has occurred * in CLOCK_MONOTONIC * * This function is intended to provide to the input system a more * accurate time of when an event actually occurred. The driver should * call this function as soon as a timestamp is acquired ensuring * clock conversions in input_set_timestamp are done correctly. * * The system entering suspend state between timestamp acquisition and * calling input_set_timestamp can result in inaccurate conversions. */ void input_set_timestamp(struct input_dev *dev, ktime_t timestamp) { dev->timestamp[INPUT_CLK_MONO] = timestamp; dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp); dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp, TK_OFFS_BOOT); } EXPORT_SYMBOL(input_set_timestamp); /** * input_get_timestamp - get timestamp for input events * @dev: input device to get timestamp from * * A valid timestamp is a timestamp of non-zero value. */ ktime_t *input_get_timestamp(struct input_dev *dev) { const ktime_t invalid_timestamp = ktime_set(0, 0); if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp)) input_set_timestamp(dev, ktime_get()); return dev->timestamp; } EXPORT_SYMBOL(input_get_timestamp); /** * input_set_capability - mark device as capable of a certain event * @dev: device that is capable of emitting or accepting event * @type: type of the event (EV_KEY, EV_REL, etc...) * @code: event code * * In addition to setting up corresponding bit in appropriate capability * bitmap the function also adjusts dev->evbit. */ void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code) { if (type < EV_CNT && input_max_code[type] && code > input_max_code[type]) { pr_err("%s: invalid code %u for type %u\n", __func__, code, type); dump_stack(); return; } switch (type) { case EV_KEY: __set_bit(code, dev->keybit); break; case EV_REL: __set_bit(code, dev->relbit); break; case EV_ABS: input_alloc_absinfo(dev); __set_bit(code, dev->absbit); break; case EV_MSC: __set_bit(code, dev->mscbit); break; case EV_SW: __set_bit(code, dev->swbit); break; case EV_LED: __set_bit(code, dev->ledbit); break; case EV_SND: __set_bit(code, dev->sndbit); break; case EV_FF: __set_bit(code, dev->ffbit); break; case EV_PWR: /* do nothing */ break; default: pr_err("%s: unknown type %u (code %u)\n", __func__, type, code); dump_stack(); return; } __set_bit(type, dev->evbit); } EXPORT_SYMBOL(input_set_capability); static unsigned int input_estimate_events_per_packet(struct input_dev *dev) { int mt_slots; int i; unsigned int events; if (dev->mt) { mt_slots = dev->mt->num_slots; } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) { mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum - dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1, mt_slots = clamp(mt_slots, 2, 32); } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) { mt_slots = 2; } else { mt_slots = 0; } events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */ if (test_bit(EV_ABS, dev->evbit)) for_each_set_bit(i, dev->absbit, ABS_CNT) events += input_is_mt_axis(i) ? mt_slots : 1; if (test_bit(EV_REL, dev->evbit)) events += bitmap_weight(dev->relbit, REL_CNT); /* Make room for KEY and MSC events */ events += 7; return events; } #define INPUT_CLEANSE_BITMASK(dev, type, bits) \ do { \ if (!test_bit(EV_##type, dev->evbit)) \ memset(dev->bits##bit, 0, \ sizeof(dev->bits##bit)); \ } while (0) static void input_cleanse_bitmasks(struct input_dev *dev) { INPUT_CLEANSE_BITMASK(dev, KEY, key); INPUT_CLEANSE_BITMASK(dev, REL, rel); INPUT_CLEANSE_BITMASK(dev, ABS, abs); INPUT_CLEANSE_BITMASK(dev, MSC, msc); INPUT_CLEANSE_BITMASK(dev, LED, led); INPUT_CLEANSE_BITMASK(dev, SND, snd); INPUT_CLEANSE_BITMASK(dev, FF, ff); INPUT_CLEANSE_BITMASK(dev, SW, sw); } static void __input_unregister_device(struct input_dev *dev) { struct input_handle *handle, *next; input_disconnect_device(dev); mutex_lock(&input_mutex); list_for_each_entry_safe(handle, next, &dev->h_list, d_node) handle->handler->disconnect(handle); WARN_ON(!list_empty(&dev->h_list)); del_timer_sync(&dev->timer); list_del_init(&dev->node); input_wakeup_procfs_readers(); mutex_unlock(&input_mutex); device_del(&dev->dev); } static void devm_input_device_unregister(struct device *dev, void *res) { struct input_devres *devres = res; struct input_dev *input = devres->input; dev_dbg(dev, "%s: unregistering device %s\n", __func__, dev_name(&input->dev)); __input_unregister_device(input); } /* * Generate software autorepeat event. Note that we take * dev->event_lock here to avoid racing with input_event * which may cause keys get "stuck". */ static void input_repeat_key(struct timer_list *t) { struct input_dev *dev = from_timer(dev, t, timer); unsigned long flags; spin_lock_irqsave(&dev->event_lock, flags); if (!dev->inhibited && test_bit(dev->repeat_key, dev->key) && is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) { input_set_timestamp(dev, ktime_get()); input_handle_event(dev, EV_KEY, dev->repeat_key, 2); input_handle_event(dev, EV_SYN, SYN_REPORT, 1); if (dev->rep[REP_PERIOD]) mod_timer(&dev->timer, jiffies + msecs_to_jiffies(dev->rep[REP_PERIOD])); } spin_unlock_irqrestore(&dev->event_lock, flags); } /** * input_enable_softrepeat - enable software autorepeat * @dev: input device * @delay: repeat delay * @period: repeat period * * Enable software autorepeat on the input device. */ void input_enable_softrepeat(struct input_dev *dev, int delay, int period) { dev->timer.function = input_repeat_key; dev->rep[REP_DELAY] = delay; dev->rep[REP_PERIOD] = period; } EXPORT_SYMBOL(input_enable_softrepeat); bool input_device_enabled(struct input_dev *dev) { lockdep_assert_held(&dev->mutex); return !dev->inhibited && dev->users > 0; } EXPORT_SYMBOL_GPL(input_device_enabled); /** * input_register_device - register device with input core * @dev: device to be registered * * This function registers device with input core. The device must be * allocated with input_allocate_device() and all it's capabilities * set up before registering. * If function fails the device must be freed with input_free_device(). * Once device has been successfully registered it can be unregistered * with input_unregister_device(); input_free_device() should not be * called in this case. * * Note that this function is also used to register managed input devices * (ones allocated with devm_input_allocate_device()). Such managed input * devices need not be explicitly unregistered or freed, their tear down * is controlled by the devres infrastructure. It is also worth noting * that tear down of managed input devices is internally a 2-step process: * registered managed input device is first unregistered, but stays in * memory and can still handle input_event() calls (although events will * not be delivered anywhere). The freeing of managed input device will * happen later, when devres stack is unwound to the point where device * allocation was made. */ int input_register_device(struct input_dev *dev) { struct input_devres *devres = NULL; struct input_handler *handler; unsigned int packet_size; const char *path; int error; if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) { dev_err(&dev->dev, "Absolute device without dev->absinfo, refusing to register\n"); return -EINVAL; } if (dev->devres_managed) { devres = devres_alloc(devm_input_device_unregister, sizeof(*devres), GFP_KERNEL); if (!devres) return -ENOMEM; devres->input = dev; } /* Every input device generates EV_SYN/SYN_REPORT events. */ __set_bit(EV_SYN, dev->evbit); /* KEY_RESERVED is not supposed to be transmitted to userspace. */ __clear_bit(KEY_RESERVED, dev->keybit); /* Make sure that bitmasks not mentioned in dev->evbit are clean. */ input_cleanse_bitmasks(dev); packet_size = input_estimate_events_per_packet(dev); if (dev->hint_events_per_packet < packet_size) dev->hint_events_per_packet = packet_size; dev->max_vals = dev->hint_events_per_packet + 2; dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL); if (!dev->vals) { error = -ENOMEM; goto err_devres_free; } /* * If delay and period are pre-set by the driver, then autorepeating * is handled by the driver itself and we don't do it in input.c. */ if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) input_enable_softrepeat(dev, 250, 33); if (!dev->getkeycode) dev->getkeycode = input_default_getkeycode; if (!dev->setkeycode) dev->setkeycode = input_default_setkeycode; if (dev->poller) input_dev_poller_finalize(dev->poller); error = device_add(&dev->dev); if (error) goto err_free_vals; path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); pr_info("%s as %s\n", dev->name ? dev->name : "Unspecified device", path ? path : "N/A"); kfree(path); error = mutex_lock_interruptible(&input_mutex); if (error) goto err_device_del; list_add_tail(&dev->node, &input_dev_list); list_for_each_entry(handler, &input_handler_list, node) input_attach_handler(dev, handler); input_wakeup_procfs_readers(); mutex_unlock(&input_mutex); if (dev->devres_managed) { dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n", __func__, dev_name(&dev->dev)); devres_add(dev->dev.parent, devres); } return 0; err_device_del: device_del(&dev->dev); err_free_vals: kfree(dev->vals); dev->vals = NULL; err_devres_free: devres_free(devres); return error; } EXPORT_SYMBOL(input_register_device); /** * input_unregister_device - unregister previously registered device * @dev: device to be unregistered * * This function unregisters an input device. Once device is unregistered * the caller should not try to access it as it may get freed at any moment. */ void input_unregister_device(struct input_dev *dev) { if (dev->devres_managed) { WARN_ON(devres_destroy(dev->dev.parent, devm_input_device_unregister, devm_input_device_match, dev)); __input_unregister_device(dev); /* * We do not do input_put_device() here because it will be done * when 2nd devres fires up. */ } else { __input_unregister_device(dev); input_put_device(dev); } } EXPORT_SYMBOL(input_unregister_device); /** * input_register_handler - register a new input handler * @handler: handler to be registered * * This function registers a new input handler (interface) for input * devices in the system and attaches it to all input devices that * are compatible with the handler. */ int input_register_handler(struct input_handler *handler) { struct input_dev *dev; int error; error = mutex_lock_interruptible(&input_mutex); if (error) return error; INIT_LIST_HEAD(&handler->h_list); list_add_tail(&handler->node, &input_handler_list); list_for_each_entry(dev, &input_dev_list, node) input_attach_handler(dev, handler); input_wakeup_procfs_readers(); mutex_unlock(&input_mutex); return 0; } EXPORT_SYMBOL(input_register_handler); /** * input_unregister_handler - unregisters an input handler * @handler: handler to be unregistered * * This function disconnects a handler from its input devices and * removes it from lists of known handlers. */ void input_unregister_handler(struct input_handler *handler) { struct input_handle *handle, *next; mutex_lock(&input_mutex); list_for_each_entry_safe(handle, next, &handler->h_list, h_node) handler->disconnect(handle); WARN_ON(!list_empty(&handler->h_list)); list_del_init(&handler->node); input_wakeup_procfs_readers(); mutex_unlock(&input_mutex); } EXPORT_SYMBOL(input_unregister_handler); /** * input_handler_for_each_handle - handle iterator * @handler: input handler to iterate * @data: data for the callback * @fn: function to be called for each handle * * Iterate over @bus's list of devices, and call @fn for each, passing * it @data and stop when @fn returns a non-zero value. The function is * using RCU to traverse the list and therefore may be using in atomic * contexts. The @fn callback is invoked from RCU critical section and * thus must not sleep. */ int input_handler_for_each_handle(struct input_handler *handler, void *data, int (*fn)(struct input_handle *, void *)) { struct input_handle *handle; int retval = 0; rcu_read_lock(); list_for_each_entry_rcu(handle, &handler->h_list, h_node) { retval = fn(handle, data); if (retval) break; } rcu_read_unlock(); return retval; } EXPORT_SYMBOL(input_handler_for_each_handle); /** * input_register_handle - register a new input handle * @handle: handle to register * * This function puts a new input handle onto device's * and handler's lists so that events can flow through * it once it is opened using input_open_device(). * * This function is supposed to be called from handler's * connect() method. */ int input_register_handle(struct input_handle *handle) { struct input_handler *handler = handle->handler; struct input_dev *dev = handle->dev; int error; /* * We take dev->mutex here to prevent race with * input_release_device(). */ error = mutex_lock_interruptible(&dev->mutex); if (error) return error; /* * Filters go to the head of the list, normal handlers * to the tail. */ if (handler->filter) list_add_rcu(&handle->d_node, &dev->h_list); else list_add_tail_rcu(&handle->d_node, &dev->h_list); mutex_unlock(&dev->mutex); /* * Since we are supposed to be called from ->connect() * which is mutually exclusive with ->disconnect() * we can't be racing with input_unregister_handle() * and so separate lock is not needed here. */ list_add_tail_rcu(&handle->h_node, &handler->h_list); if (handler->start) handler->start(handle); return 0; } EXPORT_SYMBOL(input_register_handle); /** * input_unregister_handle - unregister an input handle * @handle: handle to unregister * * This function removes input handle from device's * and handler's lists. * * This function is supposed to be called from handler's * disconnect() method. */ void input_unregister_handle(struct input_handle *handle) { struct input_dev *dev = handle->dev; list_del_rcu(&handle->h_node); /* * Take dev->mutex to prevent race with input_release_device(). */ mutex_lock(&dev->mutex); list_del_rcu(&handle->d_node); mutex_unlock(&dev->mutex); synchronize_rcu(); } EXPORT_SYMBOL(input_unregister_handle); /** * input_get_new_minor - allocates a new input minor number * @legacy_base: beginning or the legacy range to be searched * @legacy_num: size of legacy range * @allow_dynamic: whether we can also take ID from the dynamic range * * This function allocates a new device minor for from input major namespace. * Caller can request legacy minor by specifying @legacy_base and @legacy_num * parameters and whether ID can be allocated from dynamic range if there are * no free IDs in legacy range. */ int input_get_new_minor(int legacy_base, unsigned int legacy_num, bool allow_dynamic) { /* * This function should be called from input handler's ->connect() * methods, which are serialized with input_mutex, so no additional * locking is needed here. */ if (legacy_base >= 0) { int minor = ida_simple_get(&input_ida, legacy_base, legacy_base + legacy_num, GFP_KERNEL); if (minor >= 0 || !allow_dynamic) return minor; } return ida_simple_get(&input_ida, INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES, GFP_KERNEL); } EXPORT_SYMBOL(input_get_new_minor); /** * input_free_minor - release previously allocated minor * @minor: minor to be released * * This function releases previously allocated input minor so that it can be * reused later. */ void input_free_minor(unsigned int minor) { ida_simple_remove(&input_ida, minor); } EXPORT_SYMBOL(input_free_minor); static int __init input_init(void) { int err; err = class_register(&input_class); if (err) { pr_err("unable to register input_dev class\n"); return err; } err = input_proc_init(); if (err) goto fail1; err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0), INPUT_MAX_CHAR_DEVICES, "input"); if (err) { pr_err("unable to register char major %d", INPUT_MAJOR); goto fail2; } return 0; fail2: input_proc_exit(); fail1: class_unregister(&input_class); return err; } static void __exit input_exit(void) { input_proc_exit(); unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0), INPUT_MAX_CHAR_DEVICES); class_unregister(&input_class); } subsys_initcall(input_init); module_exit(input_exit);
linux-master
drivers/input/input.c
// SPDX-License-Identifier: GPL-2.0-only /* * Input Power Event -> APM Bridge * * Copyright (c) 2007 Richard Purdie */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/input.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/tty.h> #include <linux/delay.h> #include <linux/pm.h> #include <linux/apm-emulation.h> static void system_power_event(unsigned int keycode) { switch (keycode) { case KEY_SUSPEND: apm_queue_event(APM_USER_SUSPEND); pr_info("Requesting system suspend...\n"); break; default: break; } } static void apmpower_event(struct input_handle *handle, unsigned int type, unsigned int code, int value) { /* only react on key down events */ if (value != 1) return; switch (type) { case EV_PWR: system_power_event(code); break; default: break; } } static int apmpower_connect(struct input_handler *handler, struct input_dev *dev, const struct input_device_id *id) { struct input_handle *handle; int error; handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL); if (!handle) return -ENOMEM; handle->dev = dev; handle->handler = handler; handle->name = "apm-power"; error = input_register_handle(handle); if (error) { pr_err("Failed to register input power handler, error %d\n", error); kfree(handle); return error; } error = input_open_device(handle); if (error) { pr_err("Failed to open input power device, error %d\n", error); input_unregister_handle(handle); kfree(handle); return error; } return 0; } static void apmpower_disconnect(struct input_handle *handle) { input_close_device(handle); input_unregister_handle(handle); kfree(handle); } static const struct input_device_id apmpower_ids[] = { { .flags = INPUT_DEVICE_ID_MATCH_EVBIT, .evbit = { BIT_MASK(EV_PWR) }, }, { }, }; MODULE_DEVICE_TABLE(input, apmpower_ids); static struct input_handler apmpower_handler = { .event = apmpower_event, .connect = apmpower_connect, .disconnect = apmpower_disconnect, .name = "apm-power", .id_table = apmpower_ids, }; static int __init apmpower_init(void) { return input_register_handler(&apmpower_handler); } static void __exit apmpower_exit(void) { input_unregister_handler(&apmpower_handler); } module_init(apmpower_init); module_exit(apmpower_exit); MODULE_AUTHOR("Richard Purdie <[email protected]>"); MODULE_DESCRIPTION("Input Power Event -> APM Bridge"); MODULE_LICENSE("GPL");
linux-master
drivers/input/apm-power.c
// SPDX-License-Identifier: GPL-2.0-only /* * Generic helper functions for touchscreens and other two-dimensional * pointing devices * * Copyright (c) 2014 Sebastian Reichel <[email protected]> */ #include <linux/property.h> #include <linux/input.h> #include <linux/input/mt.h> #include <linux/input/touchscreen.h> #include <linux/module.h> static bool touchscreen_get_prop_u32(struct device *dev, const char *property, unsigned int default_value, unsigned int *value) { u32 val; int error; error = device_property_read_u32(dev, property, &val); if (error) { *value = default_value; return false; } *value = val; return true; } static void touchscreen_set_params(struct input_dev *dev, unsigned long axis, int min, int max, int fuzz) { struct input_absinfo *absinfo; if (!test_bit(axis, dev->absbit)) { dev_warn(&dev->dev, "Parameters are specified but the axis %lu is not set up\n", axis); return; } absinfo = &dev->absinfo[axis]; absinfo->minimum = min; absinfo->maximum = max; absinfo->fuzz = fuzz; } /** * touchscreen_parse_properties - parse common touchscreen properties * @input: input device that should be parsed * @multitouch: specifies whether parsed properties should be applied to * single-touch or multi-touch axes * @prop: pointer to a struct touchscreen_properties into which to store * axis swap and invert info for use with touchscreen_report_x_y(); * or %NULL * * This function parses common properties for touchscreens and sets up the * input device accordingly. The function keeps previously set up default * values if no value is specified. */ void touchscreen_parse_properties(struct input_dev *input, bool multitouch, struct touchscreen_properties *prop) { struct device *dev = input->dev.parent; struct input_absinfo *absinfo; unsigned int axis, axis_x, axis_y; unsigned int minimum, maximum, fuzz; bool data_present; input_alloc_absinfo(input); if (!input->absinfo) return; axis_x = multitouch ? ABS_MT_POSITION_X : ABS_X; axis_y = multitouch ? ABS_MT_POSITION_Y : ABS_Y; data_present = touchscreen_get_prop_u32(dev, "touchscreen-min-x", input_abs_get_min(input, axis_x), &minimum); data_present |= touchscreen_get_prop_u32(dev, "touchscreen-size-x", input_abs_get_max(input, axis_x) + 1, &maximum); data_present |= touchscreen_get_prop_u32(dev, "touchscreen-fuzz-x", input_abs_get_fuzz(input, axis_x), &fuzz); if (data_present) touchscreen_set_params(input, axis_x, minimum, maximum - 1, fuzz); data_present = touchscreen_get_prop_u32(dev, "touchscreen-min-y", input_abs_get_min(input, axis_y), &minimum); data_present |= touchscreen_get_prop_u32(dev, "touchscreen-size-y", input_abs_get_max(input, axis_y) + 1, &maximum); data_present |= touchscreen_get_prop_u32(dev, "touchscreen-fuzz-y", input_abs_get_fuzz(input, axis_y), &fuzz); if (data_present) touchscreen_set_params(input, axis_y, minimum, maximum - 1, fuzz); axis = multitouch ? ABS_MT_PRESSURE : ABS_PRESSURE; data_present = touchscreen_get_prop_u32(dev, "touchscreen-max-pressure", input_abs_get_max(input, axis), &maximum); data_present |= touchscreen_get_prop_u32(dev, "touchscreen-fuzz-pressure", input_abs_get_fuzz(input, axis), &fuzz); if (data_present) touchscreen_set_params(input, axis, 0, maximum, fuzz); if (!prop) return; prop->max_x = input_abs_get_max(input, axis_x); prop->max_y = input_abs_get_max(input, axis_y); prop->invert_x = device_property_read_bool(dev, "touchscreen-inverted-x"); if (prop->invert_x) { absinfo = &input->absinfo[axis_x]; absinfo->maximum -= absinfo->minimum; absinfo->minimum = 0; } prop->invert_y = device_property_read_bool(dev, "touchscreen-inverted-y"); if (prop->invert_y) { absinfo = &input->absinfo[axis_y]; absinfo->maximum -= absinfo->minimum; absinfo->minimum = 0; } prop->swap_x_y = device_property_read_bool(dev, "touchscreen-swapped-x-y"); if (prop->swap_x_y) swap(input->absinfo[axis_x], input->absinfo[axis_y]); } EXPORT_SYMBOL(touchscreen_parse_properties); static void touchscreen_apply_prop_to_x_y(const struct touchscreen_properties *prop, unsigned int *x, unsigned int *y) { if (prop->invert_x) *x = prop->max_x - *x; if (prop->invert_y) *y = prop->max_y - *y; if (prop->swap_x_y) swap(*x, *y); } /** * touchscreen_set_mt_pos - Set input_mt_pos coordinates * @pos: input_mt_pos to set coordinates of * @prop: pointer to a struct touchscreen_properties * @x: X coordinate to store in pos * @y: Y coordinate to store in pos * * Adjust the passed in x and y values applying any axis inversion and * swapping requested in the passed in touchscreen_properties and store * the result in a struct input_mt_pos. */ void touchscreen_set_mt_pos(struct input_mt_pos *pos, const struct touchscreen_properties *prop, unsigned int x, unsigned int y) { touchscreen_apply_prop_to_x_y(prop, &x, &y); pos->x = x; pos->y = y; } EXPORT_SYMBOL(touchscreen_set_mt_pos); /** * touchscreen_report_pos - Report touchscreen coordinates * @input: input_device to report coordinates for * @prop: pointer to a struct touchscreen_properties * @x: X coordinate to report * @y: Y coordinate to report * @multitouch: Report coordinates on single-touch or multi-touch axes * * Adjust the passed in x and y values applying any axis inversion and * swapping requested in the passed in touchscreen_properties and then * report the resulting coordinates on the input_dev's x and y axis. */ void touchscreen_report_pos(struct input_dev *input, const struct touchscreen_properties *prop, unsigned int x, unsigned int y, bool multitouch) { touchscreen_apply_prop_to_x_y(prop, &x, &y); input_report_abs(input, multitouch ? ABS_MT_POSITION_X : ABS_X, x); input_report_abs(input, multitouch ? ABS_MT_POSITION_Y : ABS_Y, y); } EXPORT_SYMBOL(touchscreen_report_pos); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Helper functions for touchscreens and other devices");
linux-master
drivers/input/touchscreen.c
// SPDX-License-Identifier: GPL-2.0-only /* * Input driver to ExplorerPS/2 device driver module. * * Copyright (c) 1999-2002 Vojtech Pavlik * Copyright (c) 2004 Dmitry Torokhov */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #define MOUSEDEV_MINOR_BASE 32 #define MOUSEDEV_MINORS 31 #define MOUSEDEV_MIX 63 #include <linux/bitops.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/poll.h> #include <linux/module.h> #include <linux/init.h> #include <linux/input.h> #include <linux/random.h> #include <linux/major.h> #include <linux/device.h> #include <linux/cdev.h> #include <linux/kernel.h> MODULE_AUTHOR("Vojtech Pavlik <[email protected]>"); MODULE_DESCRIPTION("Mouse (ExplorerPS/2) device interfaces"); MODULE_LICENSE("GPL"); #ifndef CONFIG_INPUT_MOUSEDEV_SCREEN_X #define CONFIG_INPUT_MOUSEDEV_SCREEN_X 1024 #endif #ifndef CONFIG_INPUT_MOUSEDEV_SCREEN_Y #define CONFIG_INPUT_MOUSEDEV_SCREEN_Y 768 #endif static int xres = CONFIG_INPUT_MOUSEDEV_SCREEN_X; module_param(xres, uint, 0644); MODULE_PARM_DESC(xres, "Horizontal screen resolution"); static int yres = CONFIG_INPUT_MOUSEDEV_SCREEN_Y; module_param(yres, uint, 0644); MODULE_PARM_DESC(yres, "Vertical screen resolution"); static unsigned tap_time = 200; module_param(tap_time, uint, 0644); MODULE_PARM_DESC(tap_time, "Tap time for touchpads in absolute mode (msecs)"); struct mousedev_hw_data { int dx, dy, dz; int x, y; int abs_event; unsigned long buttons; }; struct mousedev { int open; struct input_handle handle; wait_queue_head_t wait; struct list_head client_list; spinlock_t client_lock; /* protects client_list */ struct mutex mutex; struct device dev; struct cdev cdev; bool exist; struct list_head mixdev_node; bool opened_by_mixdev; struct mousedev_hw_data packet; unsigned int pkt_count; int old_x[4], old_y[4]; int frac_dx, frac_dy; unsigned long touch; int (*open_device)(struct mousedev *mousedev); void (*close_device)(struct mousedev *mousedev); }; enum mousedev_emul { MOUSEDEV_EMUL_PS2, MOUSEDEV_EMUL_IMPS, MOUSEDEV_EMUL_EXPS }; struct mousedev_motion { int dx, dy, dz; unsigned long buttons; }; #define PACKET_QUEUE_LEN 16 struct mousedev_client { struct fasync_struct *fasync; struct mousedev *mousedev; struct list_head node; struct mousedev_motion packets[PACKET_QUEUE_LEN]; unsigned int head, tail; spinlock_t packet_lock; int pos_x, pos_y; u8 ps2[6]; unsigned char ready, buffer, bufsiz; unsigned char imexseq, impsseq; enum mousedev_emul mode; unsigned long last_buttons; }; #define MOUSEDEV_SEQ_LEN 6 static unsigned char mousedev_imps_seq[] = { 0xf3, 200, 0xf3, 100, 0xf3, 80 }; static unsigned char mousedev_imex_seq[] = { 0xf3, 200, 0xf3, 200, 0xf3, 80 }; static struct mousedev *mousedev_mix; static LIST_HEAD(mousedev_mix_list); #define fx(i) (mousedev->old_x[(mousedev->pkt_count - (i)) & 03]) #define fy(i) (mousedev->old_y[(mousedev->pkt_count - (i)) & 03]) static void mousedev_touchpad_event(struct input_dev *dev, struct mousedev *mousedev, unsigned int code, int value) { int size, tmp; enum { FRACTION_DENOM = 128 }; switch (code) { case ABS_X: fx(0) = value; if (mousedev->touch && mousedev->pkt_count >= 2) { size = input_abs_get_max(dev, ABS_X) - input_abs_get_min(dev, ABS_X); if (size == 0) size = 256 * 2; tmp = ((value - fx(2)) * 256 * FRACTION_DENOM) / size; tmp += mousedev->frac_dx; mousedev->packet.dx = tmp / FRACTION_DENOM; mousedev->frac_dx = tmp - mousedev->packet.dx * FRACTION_DENOM; } break; case ABS_Y: fy(0) = value; if (mousedev->touch && mousedev->pkt_count >= 2) { /* use X size for ABS_Y to keep the same scale */ size = input_abs_get_max(dev, ABS_X) - input_abs_get_min(dev, ABS_X); if (size == 0) size = 256 * 2; tmp = -((value - fy(2)) * 256 * FRACTION_DENOM) / size; tmp += mousedev->frac_dy; mousedev->packet.dy = tmp / FRACTION_DENOM; mousedev->frac_dy = tmp - mousedev->packet.dy * FRACTION_DENOM; } break; } } static void mousedev_abs_event(struct input_dev *dev, struct mousedev *mousedev, unsigned int code, int value) { int min, max, size; switch (code) { case ABS_X: min = input_abs_get_min(dev, ABS_X); max = input_abs_get_max(dev, ABS_X); size = max - min; if (size == 0) size = xres ? : 1; value = clamp(value, min, max); mousedev->packet.x = ((value - min) * xres) / size; mousedev->packet.abs_event = 1; break; case ABS_Y: min = input_abs_get_min(dev, ABS_Y); max = input_abs_get_max(dev, ABS_Y); size = max - min; if (size == 0) size = yres ? : 1; value = clamp(value, min, max); mousedev->packet.y = yres - ((value - min) * yres) / size; mousedev->packet.abs_event = 1; break; } } static void mousedev_rel_event(struct mousedev *mousedev, unsigned int code, int value) { switch (code) { case REL_X: mousedev->packet.dx += value; break; case REL_Y: mousedev->packet.dy -= value; break; case REL_WHEEL: mousedev->packet.dz -= value; break; } } static void mousedev_key_event(struct mousedev *mousedev, unsigned int code, int value) { int index; switch (code) { case BTN_TOUCH: case BTN_0: case BTN_LEFT: index = 0; break; case BTN_STYLUS: case BTN_1: case BTN_RIGHT: index = 1; break; case BTN_2: case BTN_FORWARD: case BTN_STYLUS2: case BTN_MIDDLE: index = 2; break; case BTN_3: case BTN_BACK: case BTN_SIDE: index = 3; break; case BTN_4: case BTN_EXTRA: index = 4; break; default: return; } if (value) { set_bit(index, &mousedev->packet.buttons); set_bit(index, &mousedev_mix->packet.buttons); } else { clear_bit(index, &mousedev->packet.buttons); clear_bit(index, &mousedev_mix->packet.buttons); } } static void mousedev_notify_readers(struct mousedev *mousedev, struct mousedev_hw_data *packet) { struct mousedev_client *client; struct mousedev_motion *p; unsigned int new_head; int wake_readers = 0; rcu_read_lock(); list_for_each_entry_rcu(client, &mousedev->client_list, node) { /* Just acquire the lock, interrupts already disabled */ spin_lock(&client->packet_lock); p = &client->packets[client->head]; if (client->ready && p->buttons != mousedev->packet.buttons) { new_head = (client->head + 1) % PACKET_QUEUE_LEN; if (new_head != client->tail) { p = &client->packets[client->head = new_head]; memset(p, 0, sizeof(struct mousedev_motion)); } } if (packet->abs_event) { p->dx += packet->x - client->pos_x; p->dy += packet->y - client->pos_y; client->pos_x = packet->x; client->pos_y = packet->y; } client->pos_x += packet->dx; client->pos_x = clamp_val(client->pos_x, 0, xres); client->pos_y += packet->dy; client->pos_y = clamp_val(client->pos_y, 0, yres); p->dx += packet->dx; p->dy += packet->dy; p->dz += packet->dz; p->buttons = mousedev->packet.buttons; if (p->dx || p->dy || p->dz || p->buttons != client->last_buttons) client->ready = 1; spin_unlock(&client->packet_lock); if (client->ready) { kill_fasync(&client->fasync, SIGIO, POLL_IN); wake_readers = 1; } } rcu_read_unlock(); if (wake_readers) wake_up_interruptible(&mousedev->wait); } static void mousedev_touchpad_touch(struct mousedev *mousedev, int value) { if (!value) { if (mousedev->touch && time_before(jiffies, mousedev->touch + msecs_to_jiffies(tap_time))) { /* * Toggle left button to emulate tap. * We rely on the fact that mousedev_mix always has 0 * motion packet so we won't mess current position. */ set_bit(0, &mousedev->packet.buttons); set_bit(0, &mousedev_mix->packet.buttons); mousedev_notify_readers(mousedev, &mousedev_mix->packet); mousedev_notify_readers(mousedev_mix, &mousedev_mix->packet); clear_bit(0, &mousedev->packet.buttons); clear_bit(0, &mousedev_mix->packet.buttons); } mousedev->touch = mousedev->pkt_count = 0; mousedev->frac_dx = 0; mousedev->frac_dy = 0; } else if (!mousedev->touch) mousedev->touch = jiffies; } static void mousedev_event(struct input_handle *handle, unsigned int type, unsigned int code, int value) { struct mousedev *mousedev = handle->private; switch (type) { case EV_ABS: /* Ignore joysticks */ if (test_bit(BTN_TRIGGER, handle->dev->keybit)) return; if (test_bit(BTN_TOOL_FINGER, handle->dev->keybit)) mousedev_touchpad_event(handle->dev, mousedev, code, value); else mousedev_abs_event(handle->dev, mousedev, code, value); break; case EV_REL: mousedev_rel_event(mousedev, code, value); break; case EV_KEY: if (value != 2) { if (code == BTN_TOUCH && test_bit(BTN_TOOL_FINGER, handle->dev->keybit)) mousedev_touchpad_touch(mousedev, value); else mousedev_key_event(mousedev, code, value); } break; case EV_SYN: if (code == SYN_REPORT) { if (mousedev->touch) { mousedev->pkt_count++; /* * Input system eats duplicate events, * but we need all of them to do correct * averaging so apply present one forward */ fx(0) = fx(1); fy(0) = fy(1); } mousedev_notify_readers(mousedev, &mousedev->packet); mousedev_notify_readers(mousedev_mix, &mousedev->packet); mousedev->packet.dx = mousedev->packet.dy = mousedev->packet.dz = 0; mousedev->packet.abs_event = 0; } break; } } static int mousedev_fasync(int fd, struct file *file, int on) { struct mousedev_client *client = file->private_data; return fasync_helper(fd, file, on, &client->fasync); } static void mousedev_free(struct device *dev) { struct mousedev *mousedev = container_of(dev, struct mousedev, dev); input_put_device(mousedev->handle.dev); kfree(mousedev); } static int mousedev_open_device(struct mousedev *mousedev) { int retval; retval = mutex_lock_interruptible(&mousedev->mutex); if (retval) return retval; if (!mousedev->exist) retval = -ENODEV; else if (!mousedev->open++) { retval = input_open_device(&mousedev->handle); if (retval) mousedev->open--; } mutex_unlock(&mousedev->mutex); return retval; } static void mousedev_close_device(struct mousedev *mousedev) { mutex_lock(&mousedev->mutex); if (mousedev->exist && !--mousedev->open) input_close_device(&mousedev->handle); mutex_unlock(&mousedev->mutex); } /* * Open all available devices so they can all be multiplexed in one. * stream. Note that this function is called with mousedev_mix->mutex * held. */ static int mixdev_open_devices(struct mousedev *mixdev) { int error; error = mutex_lock_interruptible(&mixdev->mutex); if (error) return error; if (!mixdev->open++) { struct mousedev *mousedev; list_for_each_entry(mousedev, &mousedev_mix_list, mixdev_node) { if (!mousedev->opened_by_mixdev) { if (mousedev_open_device(mousedev)) continue; mousedev->opened_by_mixdev = true; } } } mutex_unlock(&mixdev->mutex); return 0; } /* * Close all devices that were opened as part of multiplexed * device. Note that this function is called with mousedev_mix->mutex * held. */ static void mixdev_close_devices(struct mousedev *mixdev) { mutex_lock(&mixdev->mutex); if (!--mixdev->open) { struct mousedev *mousedev; list_for_each_entry(mousedev, &mousedev_mix_list, mixdev_node) { if (mousedev->opened_by_mixdev) { mousedev->opened_by_mixdev = false; mousedev_close_device(mousedev); } } } mutex_unlock(&mixdev->mutex); } static void mousedev_attach_client(struct mousedev *mousedev, struct mousedev_client *client) { spin_lock(&mousedev->client_lock); list_add_tail_rcu(&client->node, &mousedev->client_list); spin_unlock(&mousedev->client_lock); } static void mousedev_detach_client(struct mousedev *mousedev, struct mousedev_client *client) { spin_lock(&mousedev->client_lock); list_del_rcu(&client->node); spin_unlock(&mousedev->client_lock); synchronize_rcu(); } static int mousedev_release(struct inode *inode, struct file *file) { struct mousedev_client *client = file->private_data; struct mousedev *mousedev = client->mousedev; mousedev_detach_client(mousedev, client); kfree(client); mousedev->close_device(mousedev); return 0; } static int mousedev_open(struct inode *inode, struct file *file) { struct mousedev_client *client; struct mousedev *mousedev; int error; #ifdef CONFIG_INPUT_MOUSEDEV_PSAUX if (imajor(inode) == MISC_MAJOR) mousedev = mousedev_mix; else #endif mousedev = container_of(inode->i_cdev, struct mousedev, cdev); client = kzalloc(sizeof(struct mousedev_client), GFP_KERNEL); if (!client) return -ENOMEM; spin_lock_init(&client->packet_lock); client->pos_x = xres / 2; client->pos_y = yres / 2; client->mousedev = mousedev; mousedev_attach_client(mousedev, client); error = mousedev->open_device(mousedev); if (error) goto err_free_client; file->private_data = client; stream_open(inode, file); return 0; err_free_client: mousedev_detach_client(mousedev, client); kfree(client); return error; } static void mousedev_packet(struct mousedev_client *client, u8 *ps2_data) { struct mousedev_motion *p = &client->packets[client->tail]; s8 dx, dy, dz; dx = clamp_val(p->dx, -127, 127); p->dx -= dx; dy = clamp_val(p->dy, -127, 127); p->dy -= dy; ps2_data[0] = BIT(3); ps2_data[0] |= ((dx & BIT(7)) >> 3) | ((dy & BIT(7)) >> 2); ps2_data[0] |= p->buttons & 0x07; ps2_data[1] = dx; ps2_data[2] = dy; switch (client->mode) { case MOUSEDEV_EMUL_EXPS: dz = clamp_val(p->dz, -7, 7); p->dz -= dz; ps2_data[3] = (dz & 0x0f) | ((p->buttons & 0x18) << 1); client->bufsiz = 4; break; case MOUSEDEV_EMUL_IMPS: dz = clamp_val(p->dz, -127, 127); p->dz -= dz; ps2_data[0] |= ((p->buttons & 0x10) >> 3) | ((p->buttons & 0x08) >> 1); ps2_data[3] = dz; client->bufsiz = 4; break; case MOUSEDEV_EMUL_PS2: default: p->dz = 0; ps2_data[0] |= ((p->buttons & 0x10) >> 3) | ((p->buttons & 0x08) >> 1); client->bufsiz = 3; break; } if (!p->dx && !p->dy && !p->dz) { if (client->tail == client->head) { client->ready = 0; client->last_buttons = p->buttons; } else client->tail = (client->tail + 1) % PACKET_QUEUE_LEN; } } static void mousedev_generate_response(struct mousedev_client *client, int command) { client->ps2[0] = 0xfa; /* ACK */ switch (command) { case 0xeb: /* Poll */ mousedev_packet(client, &client->ps2[1]); client->bufsiz++; /* account for leading ACK */ break; case 0xf2: /* Get ID */ switch (client->mode) { case MOUSEDEV_EMUL_PS2: client->ps2[1] = 0; break; case MOUSEDEV_EMUL_IMPS: client->ps2[1] = 3; break; case MOUSEDEV_EMUL_EXPS: client->ps2[1] = 4; break; } client->bufsiz = 2; break; case 0xe9: /* Get info */ client->ps2[1] = 0x60; client->ps2[2] = 3; client->ps2[3] = 200; client->bufsiz = 4; break; case 0xff: /* Reset */ client->impsseq = client->imexseq = 0; client->mode = MOUSEDEV_EMUL_PS2; client->ps2[1] = 0xaa; client->ps2[2] = 0x00; client->bufsiz = 3; break; default: client->bufsiz = 1; break; } client->buffer = client->bufsiz; } static ssize_t mousedev_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos) { struct mousedev_client *client = file->private_data; unsigned char c; unsigned int i; for (i = 0; i < count; i++) { if (get_user(c, buffer + i)) return -EFAULT; spin_lock_irq(&client->packet_lock); if (c == mousedev_imex_seq[client->imexseq]) { if (++client->imexseq == MOUSEDEV_SEQ_LEN) { client->imexseq = 0; client->mode = MOUSEDEV_EMUL_EXPS; } } else client->imexseq = 0; if (c == mousedev_imps_seq[client->impsseq]) { if (++client->impsseq == MOUSEDEV_SEQ_LEN) { client->impsseq = 0; client->mode = MOUSEDEV_EMUL_IMPS; } } else client->impsseq = 0; mousedev_generate_response(client, c); spin_unlock_irq(&client->packet_lock); cond_resched(); } kill_fasync(&client->fasync, SIGIO, POLL_IN); wake_up_interruptible(&client->mousedev->wait); return count; } static ssize_t mousedev_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos) { struct mousedev_client *client = file->private_data; struct mousedev *mousedev = client->mousedev; u8 data[sizeof(client->ps2)]; int retval = 0; if (!client->ready && !client->buffer && mousedev->exist && (file->f_flags & O_NONBLOCK)) return -EAGAIN; retval = wait_event_interruptible(mousedev->wait, !mousedev->exist || client->ready || client->buffer); if (retval) return retval; if (!mousedev->exist) return -ENODEV; spin_lock_irq(&client->packet_lock); if (!client->buffer && client->ready) { mousedev_packet(client, client->ps2); client->buffer = client->bufsiz; } if (count > client->buffer) count = client->buffer; memcpy(data, client->ps2 + client->bufsiz - client->buffer, count); client->buffer -= count; spin_unlock_irq(&client->packet_lock); if (copy_to_user(buffer, data, count)) return -EFAULT; return count; } /* No kernel lock - fine */ static __poll_t mousedev_poll(struct file *file, poll_table *wait) { struct mousedev_client *client = file->private_data; struct mousedev *mousedev = client->mousedev; __poll_t mask; poll_wait(file, &mousedev->wait, wait); mask = mousedev->exist ? EPOLLOUT | EPOLLWRNORM : EPOLLHUP | EPOLLERR; if (client->ready || client->buffer) mask |= EPOLLIN | EPOLLRDNORM; return mask; } static const struct file_operations mousedev_fops = { .owner = THIS_MODULE, .read = mousedev_read, .write = mousedev_write, .poll = mousedev_poll, .open = mousedev_open, .release = mousedev_release, .fasync = mousedev_fasync, .llseek = noop_llseek, }; /* * Mark device non-existent. This disables writes, ioctls and * prevents new users from opening the device. Already posted * blocking reads will stay, however new ones will fail. */ static void mousedev_mark_dead(struct mousedev *mousedev) { mutex_lock(&mousedev->mutex); mousedev->exist = false; mutex_unlock(&mousedev->mutex); } /* * Wake up users waiting for IO so they can disconnect from * dead device. */ static void mousedev_hangup(struct mousedev *mousedev) { struct mousedev_client *client; spin_lock(&mousedev->client_lock); list_for_each_entry(client, &mousedev->client_list, node) kill_fasync(&client->fasync, SIGIO, POLL_HUP); spin_unlock(&mousedev->client_lock); wake_up_interruptible(&mousedev->wait); } static void mousedev_cleanup(struct mousedev *mousedev) { struct input_handle *handle = &mousedev->handle; mousedev_mark_dead(mousedev); mousedev_hangup(mousedev); /* mousedev is marked dead so no one else accesses mousedev->open */ if (mousedev->open) input_close_device(handle); } static int mousedev_reserve_minor(bool mixdev) { int minor; if (mixdev) { minor = input_get_new_minor(MOUSEDEV_MIX, 1, false); if (minor < 0) pr_err("failed to reserve mixdev minor: %d\n", minor); } else { minor = input_get_new_minor(MOUSEDEV_MINOR_BASE, MOUSEDEV_MINORS, true); if (minor < 0) pr_err("failed to reserve new minor: %d\n", minor); } return minor; } static struct mousedev *mousedev_create(struct input_dev *dev, struct input_handler *handler, bool mixdev) { struct mousedev *mousedev; int minor; int error; minor = mousedev_reserve_minor(mixdev); if (minor < 0) { error = minor; goto err_out; } mousedev = kzalloc(sizeof(struct mousedev), GFP_KERNEL); if (!mousedev) { error = -ENOMEM; goto err_free_minor; } INIT_LIST_HEAD(&mousedev->client_list); INIT_LIST_HEAD(&mousedev->mixdev_node); spin_lock_init(&mousedev->client_lock); mutex_init(&mousedev->mutex); lockdep_set_subclass(&mousedev->mutex, mixdev ? SINGLE_DEPTH_NESTING : 0); init_waitqueue_head(&mousedev->wait); if (mixdev) { dev_set_name(&mousedev->dev, "mice"); mousedev->open_device = mixdev_open_devices; mousedev->close_device = mixdev_close_devices; } else { int dev_no = minor; /* Normalize device number if it falls into legacy range */ if (dev_no < MOUSEDEV_MINOR_BASE + MOUSEDEV_MINORS) dev_no -= MOUSEDEV_MINOR_BASE; dev_set_name(&mousedev->dev, "mouse%d", dev_no); mousedev->open_device = mousedev_open_device; mousedev->close_device = mousedev_close_device; } mousedev->exist = true; mousedev->handle.dev = input_get_device(dev); mousedev->handle.name = dev_name(&mousedev->dev); mousedev->handle.handler = handler; mousedev->handle.private = mousedev; mousedev->dev.class = &input_class; if (dev) mousedev->dev.parent = &dev->dev; mousedev->dev.devt = MKDEV(INPUT_MAJOR, minor); mousedev->dev.release = mousedev_free; device_initialize(&mousedev->dev); if (!mixdev) { error = input_register_handle(&mousedev->handle); if (error) goto err_free_mousedev; } cdev_init(&mousedev->cdev, &mousedev_fops); error = cdev_device_add(&mousedev->cdev, &mousedev->dev); if (error) goto err_cleanup_mousedev; return mousedev; err_cleanup_mousedev: mousedev_cleanup(mousedev); if (!mixdev) input_unregister_handle(&mousedev->handle); err_free_mousedev: put_device(&mousedev->dev); err_free_minor: input_free_minor(minor); err_out: return ERR_PTR(error); } static void mousedev_destroy(struct mousedev *mousedev) { cdev_device_del(&mousedev->cdev, &mousedev->dev); mousedev_cleanup(mousedev); input_free_minor(MINOR(mousedev->dev.devt)); if (mousedev != mousedev_mix) input_unregister_handle(&mousedev->handle); put_device(&mousedev->dev); } static int mixdev_add_device(struct mousedev *mousedev) { int retval; retval = mutex_lock_interruptible(&mousedev_mix->mutex); if (retval) return retval; if (mousedev_mix->open) { retval = mousedev_open_device(mousedev); if (retval) goto out; mousedev->opened_by_mixdev = true; } get_device(&mousedev->dev); list_add_tail(&mousedev->mixdev_node, &mousedev_mix_list); out: mutex_unlock(&mousedev_mix->mutex); return retval; } static void mixdev_remove_device(struct mousedev *mousedev) { mutex_lock(&mousedev_mix->mutex); if (mousedev->opened_by_mixdev) { mousedev->opened_by_mixdev = false; mousedev_close_device(mousedev); } list_del_init(&mousedev->mixdev_node); mutex_unlock(&mousedev_mix->mutex); put_device(&mousedev->dev); } static int mousedev_connect(struct input_handler *handler, struct input_dev *dev, const struct input_device_id *id) { struct mousedev *mousedev; int error; mousedev = mousedev_create(dev, handler, false); if (IS_ERR(mousedev)) return PTR_ERR(mousedev); error = mixdev_add_device(mousedev); if (error) { mousedev_destroy(mousedev); return error; } return 0; } static void mousedev_disconnect(struct input_handle *handle) { struct mousedev *mousedev = handle->private; mixdev_remove_device(mousedev); mousedev_destroy(mousedev); } static const struct input_device_id mousedev_ids[] = { { .flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT | INPUT_DEVICE_ID_MATCH_RELBIT, .evbit = { BIT_MASK(EV_KEY) | BIT_MASK(EV_REL) }, .keybit = { [BIT_WORD(BTN_LEFT)] = BIT_MASK(BTN_LEFT) }, .relbit = { BIT_MASK(REL_X) | BIT_MASK(REL_Y) }, }, /* A mouse like device, at least one button, two relative axes */ { .flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_RELBIT, .evbit = { BIT_MASK(EV_KEY) | BIT_MASK(EV_REL) }, .relbit = { BIT_MASK(REL_WHEEL) }, }, /* A separate scrollwheel */ { .flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT | INPUT_DEVICE_ID_MATCH_ABSBIT, .evbit = { BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS) }, .keybit = { [BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH) }, .absbit = { BIT_MASK(ABS_X) | BIT_MASK(ABS_Y) }, }, /* A tablet like device, at least touch detection, two absolute axes */ { .flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT | INPUT_DEVICE_ID_MATCH_ABSBIT, .evbit = { BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS) }, .keybit = { [BIT_WORD(BTN_TOOL_FINGER)] = BIT_MASK(BTN_TOOL_FINGER) }, .absbit = { BIT_MASK(ABS_X) | BIT_MASK(ABS_Y) | BIT_MASK(ABS_PRESSURE) | BIT_MASK(ABS_TOOL_WIDTH) }, }, /* A touchpad */ { .flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT | INPUT_DEVICE_ID_MATCH_ABSBIT, .evbit = { BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS) }, .keybit = { [BIT_WORD(BTN_LEFT)] = BIT_MASK(BTN_LEFT) }, .absbit = { BIT_MASK(ABS_X) | BIT_MASK(ABS_Y) }, }, /* Mouse-like device with absolute X and Y but ordinary clicks, like hp ILO2 High Performance mouse */ { }, /* Terminating entry */ }; MODULE_DEVICE_TABLE(input, mousedev_ids); static struct input_handler mousedev_handler = { .event = mousedev_event, .connect = mousedev_connect, .disconnect = mousedev_disconnect, .legacy_minors = true, .minor = MOUSEDEV_MINOR_BASE, .name = "mousedev", .id_table = mousedev_ids, }; #ifdef CONFIG_INPUT_MOUSEDEV_PSAUX #include <linux/miscdevice.h> static struct miscdevice psaux_mouse = { .minor = PSMOUSE_MINOR, .name = "psaux", .fops = &mousedev_fops, }; static bool psaux_registered; static void __init mousedev_psaux_register(void) { int error; error = misc_register(&psaux_mouse); if (error) pr_warn("could not register psaux device, error: %d\n", error); else psaux_registered = true; } static void __exit mousedev_psaux_unregister(void) { if (psaux_registered) misc_deregister(&psaux_mouse); } #else static inline void mousedev_psaux_register(void) { } static inline void mousedev_psaux_unregister(void) { } #endif static int __init mousedev_init(void) { int error; mousedev_mix = mousedev_create(NULL, &mousedev_handler, true); if (IS_ERR(mousedev_mix)) return PTR_ERR(mousedev_mix); error = input_register_handler(&mousedev_handler); if (error) { mousedev_destroy(mousedev_mix); return error; } mousedev_psaux_register(); pr_info("PS/2 mouse device common for all mice\n"); return 0; } static void __exit mousedev_exit(void) { mousedev_psaux_unregister(); input_unregister_handler(&mousedev_handler); mousedev_destroy(mousedev_mix); } module_init(mousedev_init); module_exit(mousedev_exit);
linux-master
drivers/input/mousedev.c
// SPDX-License-Identifier: GPL-2.0-only /* * A driver for the Griffin Technology, Inc. "PowerMate" USB controller dial. * * v1.1, (c)2002 William R Sowerbutts <[email protected]> * * This device is a anodised aluminium knob which connects over USB. It can measure * clockwise and anticlockwise rotation. The dial also acts as a pushbutton with * a spring for automatic release. The base contains a pair of LEDs which illuminate * the translucent base. It rotates without limit and reports its relative rotation * back to the host when polled by the USB controller. * * Testing with the knob I have has shown that it measures approximately 94 "clicks" * for one full rotation. Testing with my High Speed Rotation Actuator (ok, it was * a variable speed cordless electric drill) has shown that the device can measure * speeds of up to 7 clicks either clockwise or anticlockwise between pollings from * the host. If it counts more than 7 clicks before it is polled, it will wrap back * to zero and start counting again. This was at quite high speed, however, almost * certainly faster than the human hand could turn it. Griffin say that it loses a * pulse or two on a direction change; the granularity is so fine that I never * noticed this in practice. * * The device's microcontroller can be programmed to set the LED to either a constant * intensity, or to a rhythmic pulsing. Several patterns and speeds are available. * * Griffin were very happy to provide documentation and free hardware for development. * * Some userspace tools are available on the web: http://sowerbutts.com/powermate/ * */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/spinlock.h> #include <linux/usb/input.h> #define POWERMATE_VENDOR 0x077d /* Griffin Technology, Inc. */ #define POWERMATE_PRODUCT_NEW 0x0410 /* Griffin PowerMate */ #define POWERMATE_PRODUCT_OLD 0x04AA /* Griffin soundKnob */ #define CONTOUR_VENDOR 0x05f3 /* Contour Design, Inc. */ #define CONTOUR_JOG 0x0240 /* Jog and Shuttle */ /* these are the command codes we send to the device */ #define SET_STATIC_BRIGHTNESS 0x01 #define SET_PULSE_ASLEEP 0x02 #define SET_PULSE_AWAKE 0x03 #define SET_PULSE_MODE 0x04 /* these refer to bits in the powermate_device's requires_update field. */ #define UPDATE_STATIC_BRIGHTNESS (1<<0) #define UPDATE_PULSE_ASLEEP (1<<1) #define UPDATE_PULSE_AWAKE (1<<2) #define UPDATE_PULSE_MODE (1<<3) /* at least two versions of the hardware exist, with differing payload sizes. the first three bytes always contain the "interesting" data in the relevant format. */ #define POWERMATE_PAYLOAD_SIZE_MAX 6 #define POWERMATE_PAYLOAD_SIZE_MIN 3 struct powermate_device { signed char *data; dma_addr_t data_dma; struct urb *irq, *config; struct usb_ctrlrequest *configcr; struct usb_device *udev; struct usb_interface *intf; struct input_dev *input; spinlock_t lock; int static_brightness; int pulse_speed; int pulse_table; int pulse_asleep; int pulse_awake; int requires_update; // physical settings which are out of sync char phys[64]; }; static char pm_name_powermate[] = "Griffin PowerMate"; static char pm_name_soundknob[] = "Griffin SoundKnob"; static void powermate_config_complete(struct urb *urb); /* Callback for data arriving from the PowerMate over the USB interrupt pipe */ static void powermate_irq(struct urb *urb) { struct powermate_device *pm = urb->context; struct device *dev = &pm->intf->dev; int retval; switch (urb->status) { case 0: /* success */ break; case -ECONNRESET: case -ENOENT: case -ESHUTDOWN: /* this urb is terminated, clean up */ dev_dbg(dev, "%s - urb shutting down with status: %d\n", __func__, urb->status); return; default: dev_dbg(dev, "%s - nonzero urb status received: %d\n", __func__, urb->status); goto exit; } /* handle updates to device state */ input_report_key(pm->input, BTN_0, pm->data[0] & 0x01); input_report_rel(pm->input, REL_DIAL, pm->data[1]); input_sync(pm->input); exit: retval = usb_submit_urb (urb, GFP_ATOMIC); if (retval) dev_err(dev, "%s - usb_submit_urb failed with result: %d\n", __func__, retval); } /* Decide if we need to issue a control message and do so. Must be called with pm->lock taken */ static void powermate_sync_state(struct powermate_device *pm) { if (pm->requires_update == 0) return; /* no updates are required */ if (pm->config->status == -EINPROGRESS) return; /* an update is already in progress; it'll issue this update when it completes */ if (pm->requires_update & UPDATE_PULSE_ASLEEP){ pm->configcr->wValue = cpu_to_le16( SET_PULSE_ASLEEP ); pm->configcr->wIndex = cpu_to_le16( pm->pulse_asleep ? 1 : 0 ); pm->requires_update &= ~UPDATE_PULSE_ASLEEP; }else if (pm->requires_update & UPDATE_PULSE_AWAKE){ pm->configcr->wValue = cpu_to_le16( SET_PULSE_AWAKE ); pm->configcr->wIndex = cpu_to_le16( pm->pulse_awake ? 1 : 0 ); pm->requires_update &= ~UPDATE_PULSE_AWAKE; }else if (pm->requires_update & UPDATE_PULSE_MODE){ int op, arg; /* the powermate takes an operation and an argument for its pulse algorithm. the operation can be: 0: divide the speed 1: pulse at normal speed 2: multiply the speed the argument only has an effect for operations 0 and 2, and ranges between 1 (least effect) to 255 (maximum effect). thus, several states are equivalent and are coalesced into one state. we map this onto a range from 0 to 510, with: 0 -- 254 -- use divide (0 = slowest) 255 -- use normal speed 256 -- 510 -- use multiple (510 = fastest). Only values of 'arg' quite close to 255 are particularly useful/spectacular. */ if (pm->pulse_speed < 255) { op = 0; // divide arg = 255 - pm->pulse_speed; } else if (pm->pulse_speed > 255) { op = 2; // multiply arg = pm->pulse_speed - 255; } else { op = 1; // normal speed arg = 0; // can be any value } pm->configcr->wValue = cpu_to_le16( (pm->pulse_table << 8) | SET_PULSE_MODE ); pm->configcr->wIndex = cpu_to_le16( (arg << 8) | op ); pm->requires_update &= ~UPDATE_PULSE_MODE; } else if (pm->requires_update & UPDATE_STATIC_BRIGHTNESS) { pm->configcr->wValue = cpu_to_le16( SET_STATIC_BRIGHTNESS ); pm->configcr->wIndex = cpu_to_le16( pm->static_brightness ); pm->requires_update &= ~UPDATE_STATIC_BRIGHTNESS; } else { printk(KERN_ERR "powermate: unknown update required"); pm->requires_update = 0; /* fudge the bug */ return; } /* printk("powermate: %04x %04x\n", pm->configcr->wValue, pm->configcr->wIndex); */ pm->configcr->bRequestType = 0x41; /* vendor request */ pm->configcr->bRequest = 0x01; pm->configcr->wLength = 0; usb_fill_control_urb(pm->config, pm->udev, usb_sndctrlpipe(pm->udev, 0), (void *) pm->configcr, NULL, 0, powermate_config_complete, pm); if (usb_submit_urb(pm->config, GFP_ATOMIC)) printk(KERN_ERR "powermate: usb_submit_urb(config) failed"); } /* Called when our asynchronous control message completes. We may need to issue another immediately */ static void powermate_config_complete(struct urb *urb) { struct powermate_device *pm = urb->context; unsigned long flags; if (urb->status) printk(KERN_ERR "powermate: config urb returned %d\n", urb->status); spin_lock_irqsave(&pm->lock, flags); powermate_sync_state(pm); spin_unlock_irqrestore(&pm->lock, flags); } /* Set the LED up as described and begin the sync with the hardware if required */ static void powermate_pulse_led(struct powermate_device *pm, int static_brightness, int pulse_speed, int pulse_table, int pulse_asleep, int pulse_awake) { unsigned long flags; if (pulse_speed < 0) pulse_speed = 0; if (pulse_table < 0) pulse_table = 0; if (pulse_speed > 510) pulse_speed = 510; if (pulse_table > 2) pulse_table = 2; pulse_asleep = !!pulse_asleep; pulse_awake = !!pulse_awake; spin_lock_irqsave(&pm->lock, flags); /* mark state updates which are required */ if (static_brightness != pm->static_brightness) { pm->static_brightness = static_brightness; pm->requires_update |= UPDATE_STATIC_BRIGHTNESS; } if (pulse_asleep != pm->pulse_asleep) { pm->pulse_asleep = pulse_asleep; pm->requires_update |= (UPDATE_PULSE_ASLEEP | UPDATE_STATIC_BRIGHTNESS); } if (pulse_awake != pm->pulse_awake) { pm->pulse_awake = pulse_awake; pm->requires_update |= (UPDATE_PULSE_AWAKE | UPDATE_STATIC_BRIGHTNESS); } if (pulse_speed != pm->pulse_speed || pulse_table != pm->pulse_table) { pm->pulse_speed = pulse_speed; pm->pulse_table = pulse_table; pm->requires_update |= UPDATE_PULSE_MODE; } powermate_sync_state(pm); spin_unlock_irqrestore(&pm->lock, flags); } /* Callback from the Input layer when an event arrives from userspace to configure the LED */ static int powermate_input_event(struct input_dev *dev, unsigned int type, unsigned int code, int _value) { unsigned int command = (unsigned int)_value; struct powermate_device *pm = input_get_drvdata(dev); if (type == EV_MSC && code == MSC_PULSELED){ /* bits 0- 7: 8 bits: LED brightness bits 8-16: 9 bits: pulsing speed modifier (0 ... 510); 0-254 = slower, 255 = standard, 256-510 = faster. bits 17-18: 2 bits: pulse table (0, 1, 2 valid) bit 19: 1 bit : pulse whilst asleep? bit 20: 1 bit : pulse constantly? */ int static_brightness = command & 0xFF; // bits 0-7 int pulse_speed = (command >> 8) & 0x1FF; // bits 8-16 int pulse_table = (command >> 17) & 0x3; // bits 17-18 int pulse_asleep = (command >> 19) & 0x1; // bit 19 int pulse_awake = (command >> 20) & 0x1; // bit 20 powermate_pulse_led(pm, static_brightness, pulse_speed, pulse_table, pulse_asleep, pulse_awake); } return 0; } static int powermate_alloc_buffers(struct usb_device *udev, struct powermate_device *pm) { pm->data = usb_alloc_coherent(udev, POWERMATE_PAYLOAD_SIZE_MAX, GFP_KERNEL, &pm->data_dma); if (!pm->data) return -1; pm->configcr = kmalloc(sizeof(*(pm->configcr)), GFP_KERNEL); if (!pm->configcr) return -ENOMEM; return 0; } static void powermate_free_buffers(struct usb_device *udev, struct powermate_device *pm) { usb_free_coherent(udev, POWERMATE_PAYLOAD_SIZE_MAX, pm->data, pm->data_dma); kfree(pm->configcr); } /* Called whenever a USB device matching one in our supported devices table is connected */ static int powermate_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev (intf); struct usb_host_interface *interface; struct usb_endpoint_descriptor *endpoint; struct powermate_device *pm; struct input_dev *input_dev; int pipe, maxp; int error = -ENOMEM; interface = intf->cur_altsetting; if (interface->desc.bNumEndpoints < 1) return -EINVAL; endpoint = &interface->endpoint[0].desc; if (!usb_endpoint_is_int_in(endpoint)) return -EIO; usb_control_msg(udev, usb_sndctrlpipe(udev, 0), 0x0a, USB_TYPE_CLASS | USB_RECIP_INTERFACE, 0, interface->desc.bInterfaceNumber, NULL, 0, USB_CTRL_SET_TIMEOUT); pm = kzalloc(sizeof(struct powermate_device), GFP_KERNEL); input_dev = input_allocate_device(); if (!pm || !input_dev) goto fail1; if (powermate_alloc_buffers(udev, pm)) goto fail2; pm->irq = usb_alloc_urb(0, GFP_KERNEL); if (!pm->irq) goto fail2; pm->config = usb_alloc_urb(0, GFP_KERNEL); if (!pm->config) goto fail3; pm->udev = udev; pm->intf = intf; pm->input = input_dev; usb_make_path(udev, pm->phys, sizeof(pm->phys)); strlcat(pm->phys, "/input0", sizeof(pm->phys)); spin_lock_init(&pm->lock); switch (le16_to_cpu(udev->descriptor.idProduct)) { case POWERMATE_PRODUCT_NEW: input_dev->name = pm_name_powermate; break; case POWERMATE_PRODUCT_OLD: input_dev->name = pm_name_soundknob; break; default: input_dev->name = pm_name_soundknob; printk(KERN_WARNING "powermate: unknown product id %04x\n", le16_to_cpu(udev->descriptor.idProduct)); } input_dev->phys = pm->phys; usb_to_input_id(udev, &input_dev->id); input_dev->dev.parent = &intf->dev; input_set_drvdata(input_dev, pm); input_dev->event = powermate_input_event; input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_REL) | BIT_MASK(EV_MSC); input_dev->keybit[BIT_WORD(BTN_0)] = BIT_MASK(BTN_0); input_dev->relbit[BIT_WORD(REL_DIAL)] = BIT_MASK(REL_DIAL); input_dev->mscbit[BIT_WORD(MSC_PULSELED)] = BIT_MASK(MSC_PULSELED); /* get a handle to the interrupt data pipe */ pipe = usb_rcvintpipe(udev, endpoint->bEndpointAddress); maxp = usb_maxpacket(udev, pipe); if (maxp < POWERMATE_PAYLOAD_SIZE_MIN || maxp > POWERMATE_PAYLOAD_SIZE_MAX) { printk(KERN_WARNING "powermate: Expected payload of %d--%d bytes, found %d bytes!\n", POWERMATE_PAYLOAD_SIZE_MIN, POWERMATE_PAYLOAD_SIZE_MAX, maxp); maxp = POWERMATE_PAYLOAD_SIZE_MAX; } usb_fill_int_urb(pm->irq, udev, pipe, pm->data, maxp, powermate_irq, pm, endpoint->bInterval); pm->irq->transfer_dma = pm->data_dma; pm->irq->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; /* register our interrupt URB with the USB system */ if (usb_submit_urb(pm->irq, GFP_KERNEL)) { error = -EIO; goto fail4; } error = input_register_device(pm->input); if (error) goto fail5; /* force an update of everything */ pm->requires_update = UPDATE_PULSE_ASLEEP | UPDATE_PULSE_AWAKE | UPDATE_PULSE_MODE | UPDATE_STATIC_BRIGHTNESS; powermate_pulse_led(pm, 0x80, 255, 0, 1, 0); // set default pulse parameters usb_set_intfdata(intf, pm); return 0; fail5: usb_kill_urb(pm->irq); fail4: usb_free_urb(pm->config); fail3: usb_free_urb(pm->irq); fail2: powermate_free_buffers(udev, pm); fail1: input_free_device(input_dev); kfree(pm); return error; } /* Called when a USB device we've accepted ownership of is removed */ static void powermate_disconnect(struct usb_interface *intf) { struct powermate_device *pm = usb_get_intfdata (intf); usb_set_intfdata(intf, NULL); if (pm) { pm->requires_update = 0; usb_kill_urb(pm->irq); input_unregister_device(pm->input); usb_free_urb(pm->irq); usb_free_urb(pm->config); powermate_free_buffers(interface_to_usbdev(intf), pm); kfree(pm); } } static const struct usb_device_id powermate_devices[] = { { USB_DEVICE(POWERMATE_VENDOR, POWERMATE_PRODUCT_NEW) }, { USB_DEVICE(POWERMATE_VENDOR, POWERMATE_PRODUCT_OLD) }, { USB_DEVICE(CONTOUR_VENDOR, CONTOUR_JOG) }, { } /* Terminating entry */ }; MODULE_DEVICE_TABLE (usb, powermate_devices); static struct usb_driver powermate_driver = { .name = "powermate", .probe = powermate_probe, .disconnect = powermate_disconnect, .id_table = powermate_devices, }; module_usb_driver(powermate_driver); MODULE_AUTHOR( "William R Sowerbutts" ); MODULE_DESCRIPTION( "Griffin Technology, Inc PowerMate driver" ); MODULE_LICENSE("GPL");
linux-master
drivers/input/misc/powermate.c
// SPDX-License-Identifier: GPL-2.0 // Copyright (C) STMicroelectronics 2018 // Author: Pascal Paillet <[email protected]> for STMicroelectronics. #include <linux/input.h> #include <linux/interrupt.h> #include <linux/mfd/stpmic1.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/property.h> #include <linux/regmap.h> /** * struct stpmic1_onkey - OnKey data * @input_dev: pointer to input device * @irq_falling: irq that we are hooked on to * @irq_rising: irq that we are hooked on to */ struct stpmic1_onkey { struct input_dev *input_dev; int irq_falling; int irq_rising; }; static irqreturn_t onkey_falling_irq(int irq, void *ponkey) { struct stpmic1_onkey *onkey = ponkey; struct input_dev *input_dev = onkey->input_dev; input_report_key(input_dev, KEY_POWER, 1); pm_wakeup_event(input_dev->dev.parent, 0); input_sync(input_dev); return IRQ_HANDLED; } static irqreturn_t onkey_rising_irq(int irq, void *ponkey) { struct stpmic1_onkey *onkey = ponkey; struct input_dev *input_dev = onkey->input_dev; input_report_key(input_dev, KEY_POWER, 0); pm_wakeup_event(input_dev->dev.parent, 0); input_sync(input_dev); return IRQ_HANDLED; } static int stpmic1_onkey_probe(struct platform_device *pdev) { struct stpmic1 *pmic = dev_get_drvdata(pdev->dev.parent); struct device *dev = &pdev->dev; struct input_dev *input_dev; struct stpmic1_onkey *onkey; unsigned int val, reg = 0; int error; onkey = devm_kzalloc(dev, sizeof(*onkey), GFP_KERNEL); if (!onkey) return -ENOMEM; onkey->irq_falling = platform_get_irq_byname(pdev, "onkey-falling"); if (onkey->irq_falling < 0) return onkey->irq_falling; onkey->irq_rising = platform_get_irq_byname(pdev, "onkey-rising"); if (onkey->irq_rising < 0) return onkey->irq_rising; if (!device_property_read_u32(dev, "power-off-time-sec", &val)) { if (val > 0 && val <= 16) { dev_dbg(dev, "power-off-time=%d seconds\n", val); reg |= PONKEY_PWR_OFF; reg |= ((16 - val) & PONKEY_TURNOFF_TIMER_MASK); } else { dev_err(dev, "power-off-time-sec out of range\n"); return -EINVAL; } } if (device_property_present(dev, "st,onkey-clear-cc-flag")) reg |= PONKEY_CC_FLAG_CLEAR; error = regmap_update_bits(pmic->regmap, PKEY_TURNOFF_CR, PONKEY_TURNOFF_MASK, reg); if (error) { dev_err(dev, "PKEY_TURNOFF_CR write failed: %d\n", error); return error; } if (device_property_present(dev, "st,onkey-pu-inactive")) { error = regmap_update_bits(pmic->regmap, PADS_PULL_CR, PONKEY_PU_INACTIVE, PONKEY_PU_INACTIVE); if (error) { dev_err(dev, "ONKEY Pads configuration failed: %d\n", error); return error; } } input_dev = devm_input_allocate_device(dev); if (!input_dev) { dev_err(dev, "Can't allocate Pwr Onkey Input Device\n"); return -ENOMEM; } input_dev->name = "pmic_onkey"; input_dev->phys = "pmic_onkey/input0"; input_set_capability(input_dev, EV_KEY, KEY_POWER); onkey->input_dev = input_dev; /* interrupt is nested in a thread */ error = devm_request_threaded_irq(dev, onkey->irq_falling, NULL, onkey_falling_irq, IRQF_ONESHOT, dev_name(dev), onkey); if (error) { dev_err(dev, "Can't get IRQ Onkey Falling: %d\n", error); return error; } error = devm_request_threaded_irq(dev, onkey->irq_rising, NULL, onkey_rising_irq, IRQF_ONESHOT, dev_name(dev), onkey); if (error) { dev_err(dev, "Can't get IRQ Onkey Rising: %d\n", error); return error; } error = input_register_device(input_dev); if (error) { dev_err(dev, "Can't register power button: %d\n", error); return error; } platform_set_drvdata(pdev, onkey); device_init_wakeup(dev, true); return 0; } static int stpmic1_onkey_suspend(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct stpmic1_onkey *onkey = platform_get_drvdata(pdev); if (device_may_wakeup(dev)) { enable_irq_wake(onkey->irq_falling); enable_irq_wake(onkey->irq_rising); } return 0; } static int stpmic1_onkey_resume(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct stpmic1_onkey *onkey = platform_get_drvdata(pdev); if (device_may_wakeup(dev)) { disable_irq_wake(onkey->irq_falling); disable_irq_wake(onkey->irq_rising); } return 0; } static DEFINE_SIMPLE_DEV_PM_OPS(stpmic1_onkey_pm, stpmic1_onkey_suspend, stpmic1_onkey_resume); static const struct of_device_id of_stpmic1_onkey_match[] = { { .compatible = "st,stpmic1-onkey" }, { }, }; MODULE_DEVICE_TABLE(of, of_stpmic1_onkey_match); static struct platform_driver stpmic1_onkey_driver = { .probe = stpmic1_onkey_probe, .driver = { .name = "stpmic1_onkey", .of_match_table = of_match_ptr(of_stpmic1_onkey_match), .pm = pm_sleep_ptr(&stpmic1_onkey_pm), }, }; module_platform_driver(stpmic1_onkey_driver); MODULE_DESCRIPTION("Onkey driver for STPMIC1"); MODULE_AUTHOR("Pascal Paillet <[email protected]>"); MODULE_LICENSE("GPL v2");
linux-master
drivers/input/misc/stpmic1_onkey.c
/* * Retu power button driver. * * Copyright (C) 2004-2010 Nokia Corporation * * Original code written by Ari Saastamoinen, Juha Yrjölä and Felipe Balbi. * Rewritten by Aaro Koskinen. * * This file is subject to the terms and conditions of the GNU General * Public License. See the file "COPYING" in the main directory of this * archive for more details. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include <linux/irq.h> #include <linux/slab.h> #include <linux/errno.h> #include <linux/input.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/mfd/retu.h> #include <linux/interrupt.h> #include <linux/platform_device.h> #define RETU_STATUS_PWRONX (1 << 5) static irqreturn_t retu_pwrbutton_irq(int irq, void *_pwr) { struct input_dev *idev = _pwr; struct retu_dev *rdev = input_get_drvdata(idev); bool state; state = !(retu_read(rdev, RETU_REG_STATUS) & RETU_STATUS_PWRONX); input_report_key(idev, KEY_POWER, state); input_sync(idev); return IRQ_HANDLED; } static int retu_pwrbutton_probe(struct platform_device *pdev) { struct retu_dev *rdev = dev_get_drvdata(pdev->dev.parent); struct input_dev *idev; int irq; int error; irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; idev = devm_input_allocate_device(&pdev->dev); if (!idev) return -ENOMEM; idev->name = "retu-pwrbutton"; idev->dev.parent = &pdev->dev; input_set_capability(idev, EV_KEY, KEY_POWER); input_set_drvdata(idev, rdev); error = devm_request_threaded_irq(&pdev->dev, irq, NULL, retu_pwrbutton_irq, IRQF_ONESHOT, "retu-pwrbutton", idev); if (error) return error; error = input_register_device(idev); if (error) return error; return 0; } static struct platform_driver retu_pwrbutton_driver = { .probe = retu_pwrbutton_probe, .driver = { .name = "retu-pwrbutton", }, }; module_platform_driver(retu_pwrbutton_driver); MODULE_ALIAS("platform:retu-pwrbutton"); MODULE_DESCRIPTION("Retu Power Button"); MODULE_AUTHOR("Ari Saastamoinen"); MODULE_AUTHOR("Felipe Balbi"); MODULE_AUTHOR("Aaro Koskinen <[email protected]>"); MODULE_LICENSE("GPL");
linux-master
drivers/input/misc/retu-pwrbutton.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * MAX8997-haptic controller driver * * Copyright (C) 2012 Samsung Electronics * Donggeun Kim <[email protected]> * * This program is not provided / owned by Maxim Integrated Products. */ #include <linux/module.h> #include <linux/slab.h> #include <linux/platform_device.h> #include <linux/err.h> #include <linux/pwm.h> #include <linux/input.h> #include <linux/mfd/max8997-private.h> #include <linux/mfd/max8997.h> #include <linux/regulator/consumer.h> /* Haptic configuration 2 register */ #define MAX8997_MOTOR_TYPE_SHIFT 7 #define MAX8997_ENABLE_SHIFT 6 #define MAX8997_MODE_SHIFT 5 /* Haptic driver configuration register */ #define MAX8997_CYCLE_SHIFT 6 #define MAX8997_SIG_PERIOD_SHIFT 4 #define MAX8997_SIG_DUTY_SHIFT 2 #define MAX8997_PWM_DUTY_SHIFT 0 struct max8997_haptic { struct device *dev; struct i2c_client *client; struct input_dev *input_dev; struct regulator *regulator; struct work_struct work; struct mutex mutex; bool enabled; unsigned int level; struct pwm_device *pwm; unsigned int pwm_period; enum max8997_haptic_pwm_divisor pwm_divisor; enum max8997_haptic_motor_type type; enum max8997_haptic_pulse_mode mode; unsigned int internal_mode_pattern; unsigned int pattern_cycle; unsigned int pattern_signal_period; }; static int max8997_haptic_set_duty_cycle(struct max8997_haptic *chip) { int ret = 0; if (chip->mode == MAX8997_EXTERNAL_MODE) { unsigned int duty = chip->pwm_period * chip->level / 100; ret = pwm_config(chip->pwm, duty, chip->pwm_period); } else { u8 duty_index = 0; duty_index = DIV_ROUND_UP(chip->level * 64, 100); switch (chip->internal_mode_pattern) { case 0: max8997_write_reg(chip->client, MAX8997_HAPTIC_REG_SIGPWMDC1, duty_index); break; case 1: max8997_write_reg(chip->client, MAX8997_HAPTIC_REG_SIGPWMDC2, duty_index); break; case 2: max8997_write_reg(chip->client, MAX8997_HAPTIC_REG_SIGPWMDC3, duty_index); break; case 3: max8997_write_reg(chip->client, MAX8997_HAPTIC_REG_SIGPWMDC4, duty_index); break; default: break; } } return ret; } static void max8997_haptic_configure(struct max8997_haptic *chip) { u8 value; value = chip->type << MAX8997_MOTOR_TYPE_SHIFT | chip->enabled << MAX8997_ENABLE_SHIFT | chip->mode << MAX8997_MODE_SHIFT | chip->pwm_divisor; max8997_write_reg(chip->client, MAX8997_HAPTIC_REG_CONF2, value); if (chip->mode == MAX8997_INTERNAL_MODE && chip->enabled) { value = chip->internal_mode_pattern << MAX8997_CYCLE_SHIFT | chip->internal_mode_pattern << MAX8997_SIG_PERIOD_SHIFT | chip->internal_mode_pattern << MAX8997_SIG_DUTY_SHIFT | chip->internal_mode_pattern << MAX8997_PWM_DUTY_SHIFT; max8997_write_reg(chip->client, MAX8997_HAPTIC_REG_DRVCONF, value); switch (chip->internal_mode_pattern) { case 0: value = chip->pattern_cycle << 4; max8997_write_reg(chip->client, MAX8997_HAPTIC_REG_CYCLECONF1, value); value = chip->pattern_signal_period; max8997_write_reg(chip->client, MAX8997_HAPTIC_REG_SIGCONF1, value); break; case 1: value = chip->pattern_cycle; max8997_write_reg(chip->client, MAX8997_HAPTIC_REG_CYCLECONF1, value); value = chip->pattern_signal_period; max8997_write_reg(chip->client, MAX8997_HAPTIC_REG_SIGCONF2, value); break; case 2: value = chip->pattern_cycle << 4; max8997_write_reg(chip->client, MAX8997_HAPTIC_REG_CYCLECONF2, value); value = chip->pattern_signal_period; max8997_write_reg(chip->client, MAX8997_HAPTIC_REG_SIGCONF3, value); break; case 3: value = chip->pattern_cycle; max8997_write_reg(chip->client, MAX8997_HAPTIC_REG_CYCLECONF2, value); value = chip->pattern_signal_period; max8997_write_reg(chip->client, MAX8997_HAPTIC_REG_SIGCONF4, value); break; default: break; } } } static void max8997_haptic_enable(struct max8997_haptic *chip) { int error; mutex_lock(&chip->mutex); error = max8997_haptic_set_duty_cycle(chip); if (error) { dev_err(chip->dev, "set_pwm_cycle failed, error: %d\n", error); goto out; } if (!chip->enabled) { error = regulator_enable(chip->regulator); if (error) { dev_err(chip->dev, "Failed to enable regulator\n"); goto out; } max8997_haptic_configure(chip); if (chip->mode == MAX8997_EXTERNAL_MODE) { error = pwm_enable(chip->pwm); if (error) { dev_err(chip->dev, "Failed to enable PWM\n"); regulator_disable(chip->regulator); goto out; } } chip->enabled = true; } out: mutex_unlock(&chip->mutex); } static void max8997_haptic_disable(struct max8997_haptic *chip) { mutex_lock(&chip->mutex); if (chip->enabled) { chip->enabled = false; max8997_haptic_configure(chip); if (chip->mode == MAX8997_EXTERNAL_MODE) pwm_disable(chip->pwm); regulator_disable(chip->regulator); } mutex_unlock(&chip->mutex); } static void max8997_haptic_play_effect_work(struct work_struct *work) { struct max8997_haptic *chip = container_of(work, struct max8997_haptic, work); if (chip->level) max8997_haptic_enable(chip); else max8997_haptic_disable(chip); } static int max8997_haptic_play_effect(struct input_dev *dev, void *data, struct ff_effect *effect) { struct max8997_haptic *chip = input_get_drvdata(dev); chip->level = effect->u.rumble.strong_magnitude; if (!chip->level) chip->level = effect->u.rumble.weak_magnitude; schedule_work(&chip->work); return 0; } static void max8997_haptic_close(struct input_dev *dev) { struct max8997_haptic *chip = input_get_drvdata(dev); cancel_work_sync(&chip->work); max8997_haptic_disable(chip); } static int max8997_haptic_probe(struct platform_device *pdev) { struct max8997_dev *iodev = dev_get_drvdata(pdev->dev.parent); const struct max8997_platform_data *pdata = dev_get_platdata(iodev->dev); const struct max8997_haptic_platform_data *haptic_pdata = NULL; struct max8997_haptic *chip; struct input_dev *input_dev; int error; if (pdata) haptic_pdata = pdata->haptic_pdata; if (!haptic_pdata) { dev_err(&pdev->dev, "no haptic platform data\n"); return -EINVAL; } chip = kzalloc(sizeof(struct max8997_haptic), GFP_KERNEL); input_dev = input_allocate_device(); if (!chip || !input_dev) { dev_err(&pdev->dev, "unable to allocate memory\n"); error = -ENOMEM; goto err_free_mem; } INIT_WORK(&chip->work, max8997_haptic_play_effect_work); mutex_init(&chip->mutex); chip->client = iodev->haptic; chip->dev = &pdev->dev; chip->input_dev = input_dev; chip->pwm_period = haptic_pdata->pwm_period; chip->type = haptic_pdata->type; chip->mode = haptic_pdata->mode; chip->pwm_divisor = haptic_pdata->pwm_divisor; switch (chip->mode) { case MAX8997_INTERNAL_MODE: chip->internal_mode_pattern = haptic_pdata->internal_mode_pattern; chip->pattern_cycle = haptic_pdata->pattern_cycle; chip->pattern_signal_period = haptic_pdata->pattern_signal_period; break; case MAX8997_EXTERNAL_MODE: chip->pwm = pwm_get(&pdev->dev, NULL); if (IS_ERR(chip->pwm)) { error = PTR_ERR(chip->pwm); dev_err(&pdev->dev, "unable to request PWM for haptic, error: %d\n", error); goto err_free_mem; } /* * FIXME: pwm_apply_args() should be removed when switching to * the atomic PWM API. */ pwm_apply_args(chip->pwm); break; default: dev_err(&pdev->dev, "Invalid chip mode specified (%d)\n", chip->mode); error = -EINVAL; goto err_free_mem; } chip->regulator = regulator_get(&pdev->dev, "inmotor"); if (IS_ERR(chip->regulator)) { error = PTR_ERR(chip->regulator); dev_err(&pdev->dev, "unable to get regulator, error: %d\n", error); goto err_free_pwm; } input_dev->name = "max8997-haptic"; input_dev->id.version = 1; input_dev->dev.parent = &pdev->dev; input_dev->close = max8997_haptic_close; input_set_drvdata(input_dev, chip); input_set_capability(input_dev, EV_FF, FF_RUMBLE); error = input_ff_create_memless(input_dev, NULL, max8997_haptic_play_effect); if (error) { dev_err(&pdev->dev, "unable to create FF device, error: %d\n", error); goto err_put_regulator; } error = input_register_device(input_dev); if (error) { dev_err(&pdev->dev, "unable to register input device, error: %d\n", error); goto err_destroy_ff; } platform_set_drvdata(pdev, chip); return 0; err_destroy_ff: input_ff_destroy(input_dev); err_put_regulator: regulator_put(chip->regulator); err_free_pwm: if (chip->mode == MAX8997_EXTERNAL_MODE) pwm_put(chip->pwm); err_free_mem: input_free_device(input_dev); kfree(chip); return error; } static int max8997_haptic_remove(struct platform_device *pdev) { struct max8997_haptic *chip = platform_get_drvdata(pdev); input_unregister_device(chip->input_dev); regulator_put(chip->regulator); if (chip->mode == MAX8997_EXTERNAL_MODE) pwm_put(chip->pwm); kfree(chip); return 0; } static int max8997_haptic_suspend(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct max8997_haptic *chip = platform_get_drvdata(pdev); max8997_haptic_disable(chip); return 0; } static DEFINE_SIMPLE_DEV_PM_OPS(max8997_haptic_pm_ops, max8997_haptic_suspend, NULL); static const struct platform_device_id max8997_haptic_id[] = { { "max8997-haptic", 0 }, { }, }; MODULE_DEVICE_TABLE(platform, max8997_haptic_id); static struct platform_driver max8997_haptic_driver = { .driver = { .name = "max8997-haptic", .pm = pm_sleep_ptr(&max8997_haptic_pm_ops), }, .probe = max8997_haptic_probe, .remove = max8997_haptic_remove, .id_table = max8997_haptic_id, }; module_platform_driver(max8997_haptic_driver); MODULE_AUTHOR("Donggeun Kim <[email protected]>"); MODULE_DESCRIPTION("max8997_haptic driver"); MODULE_LICENSE("GPL");
linux-master
drivers/input/misc/max8997_haptic.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * AD714X CapTouch Programmable Controller driver (SPI bus) * * Copyright 2009-2011 Analog Devices Inc. */ #include <linux/input.h> /* BUS_SPI */ #include <linux/module.h> #include <linux/spi/spi.h> #include <linux/pm.h> #include <linux/types.h> #include "ad714x.h" #define AD714x_SPI_CMD_PREFIX 0xE000 /* bits 15:11 */ #define AD714x_SPI_READ BIT(10) static int ad714x_spi_read(struct ad714x_chip *chip, unsigned short reg, unsigned short *data, size_t len) { struct spi_device *spi = to_spi_device(chip->dev); struct spi_message message; struct spi_transfer xfer[2]; int i; int error; spi_message_init(&message); memset(xfer, 0, sizeof(xfer)); chip->xfer_buf[0] = cpu_to_be16(AD714x_SPI_CMD_PREFIX | AD714x_SPI_READ | reg); xfer[0].tx_buf = &chip->xfer_buf[0]; xfer[0].len = sizeof(chip->xfer_buf[0]); spi_message_add_tail(&xfer[0], &message); xfer[1].rx_buf = &chip->xfer_buf[1]; xfer[1].len = sizeof(chip->xfer_buf[1]) * len; spi_message_add_tail(&xfer[1], &message); error = spi_sync(spi, &message); if (unlikely(error)) { dev_err(chip->dev, "SPI read error: %d\n", error); return error; } for (i = 0; i < len; i++) data[i] = be16_to_cpu(chip->xfer_buf[i + 1]); return 0; } static int ad714x_spi_write(struct ad714x_chip *chip, unsigned short reg, unsigned short data) { struct spi_device *spi = to_spi_device(chip->dev); int error; chip->xfer_buf[0] = cpu_to_be16(AD714x_SPI_CMD_PREFIX | reg); chip->xfer_buf[1] = cpu_to_be16(data); error = spi_write(spi, (u8 *)chip->xfer_buf, 2 * sizeof(*chip->xfer_buf)); if (unlikely(error)) { dev_err(chip->dev, "SPI write error: %d\n", error); return error; } return 0; } static int ad714x_spi_probe(struct spi_device *spi) { struct ad714x_chip *chip; int err; spi->bits_per_word = 8; err = spi_setup(spi); if (err < 0) return err; chip = ad714x_probe(&spi->dev, BUS_SPI, spi->irq, ad714x_spi_read, ad714x_spi_write); if (IS_ERR(chip)) return PTR_ERR(chip); spi_set_drvdata(spi, chip); return 0; } static struct spi_driver ad714x_spi_driver = { .driver = { .name = "ad714x_captouch", .pm = pm_sleep_ptr(&ad714x_pm), }, .probe = ad714x_spi_probe, }; module_spi_driver(ad714x_spi_driver); MODULE_DESCRIPTION("Analog Devices AD714X Capacitance Touch Sensor SPI Bus Driver"); MODULE_AUTHOR("Barry Song <[email protected]>"); MODULE_LICENSE("GPL");
linux-master
drivers/input/misc/ad714x-spi.c
// SPDX-License-Identifier: GPL-2.0-only /* * rotary_encoder.c * * (c) 2009 Daniel Mack <[email protected]> * Copyright (C) 2011 Johan Hovold <[email protected]> * * state machine code inspired by code from Tim Ruetz * * A generic driver for rotary encoders connected to GPIO lines. * See file:Documentation/input/devices/rotary-encoder.rst for more information */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/interrupt.h> #include <linux/input.h> #include <linux/device.h> #include <linux/platform_device.h> #include <linux/gpio/consumer.h> #include <linux/slab.h> #include <linux/of.h> #include <linux/pm.h> #include <linux/property.h> #define DRV_NAME "rotary-encoder" enum rotary_encoder_encoding { ROTENC_GRAY, ROTENC_BINARY, }; struct rotary_encoder { struct input_dev *input; struct mutex access_mutex; u32 steps; u32 axis; bool relative_axis; bool rollover; enum rotary_encoder_encoding encoding; unsigned int pos; struct gpio_descs *gpios; unsigned int *irq; bool armed; signed char dir; /* 1 - clockwise, -1 - CCW */ unsigned int last_stable; }; static unsigned int rotary_encoder_get_state(struct rotary_encoder *encoder) { int i; unsigned int ret = 0; for (i = 0; i < encoder->gpios->ndescs; ++i) { int val = gpiod_get_value_cansleep(encoder->gpios->desc[i]); /* convert from gray encoding to normal */ if (encoder->encoding == ROTENC_GRAY && ret & 1) val = !val; ret = ret << 1 | val; } return ret & 3; } static void rotary_encoder_report_event(struct rotary_encoder *encoder) { if (encoder->relative_axis) { input_report_rel(encoder->input, encoder->axis, encoder->dir); } else { unsigned int pos = encoder->pos; if (encoder->dir < 0) { /* turning counter-clockwise */ if (encoder->rollover) pos += encoder->steps; if (pos) pos--; } else { /* turning clockwise */ if (encoder->rollover || pos < encoder->steps) pos++; } if (encoder->rollover) pos %= encoder->steps; encoder->pos = pos; input_report_abs(encoder->input, encoder->axis, encoder->pos); } input_sync(encoder->input); } static irqreturn_t rotary_encoder_irq(int irq, void *dev_id) { struct rotary_encoder *encoder = dev_id; unsigned int state; mutex_lock(&encoder->access_mutex); state = rotary_encoder_get_state(encoder); switch (state) { case 0x0: if (encoder->armed) { rotary_encoder_report_event(encoder); encoder->armed = false; } break; case 0x1: case 0x3: if (encoder->armed) encoder->dir = 2 - state; break; case 0x2: encoder->armed = true; break; } mutex_unlock(&encoder->access_mutex); return IRQ_HANDLED; } static irqreturn_t rotary_encoder_half_period_irq(int irq, void *dev_id) { struct rotary_encoder *encoder = dev_id; unsigned int state; mutex_lock(&encoder->access_mutex); state = rotary_encoder_get_state(encoder); if (state & 1) { encoder->dir = ((encoder->last_stable - state + 1) % 4) - 1; } else { if (state != encoder->last_stable) { rotary_encoder_report_event(encoder); encoder->last_stable = state; } } mutex_unlock(&encoder->access_mutex); return IRQ_HANDLED; } static irqreturn_t rotary_encoder_quarter_period_irq(int irq, void *dev_id) { struct rotary_encoder *encoder = dev_id; unsigned int state; mutex_lock(&encoder->access_mutex); state = rotary_encoder_get_state(encoder); if ((encoder->last_stable + 1) % 4 == state) encoder->dir = 1; else if (encoder->last_stable == (state + 1) % 4) encoder->dir = -1; else goto out; rotary_encoder_report_event(encoder); out: encoder->last_stable = state; mutex_unlock(&encoder->access_mutex); return IRQ_HANDLED; } static int rotary_encoder_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct rotary_encoder *encoder; struct input_dev *input; irq_handler_t handler; u32 steps_per_period; unsigned int i; int err; encoder = devm_kzalloc(dev, sizeof(struct rotary_encoder), GFP_KERNEL); if (!encoder) return -ENOMEM; mutex_init(&encoder->access_mutex); device_property_read_u32(dev, "rotary-encoder,steps", &encoder->steps); err = device_property_read_u32(dev, "rotary-encoder,steps-per-period", &steps_per_period); if (err) { /* * The 'half-period' property has been deprecated, you must * use 'steps-per-period' and set an appropriate value, but * we still need to parse it to maintain compatibility. If * neither property is present we fall back to the one step * per period behavior. */ steps_per_period = device_property_read_bool(dev, "rotary-encoder,half-period") ? 2 : 1; } encoder->rollover = device_property_read_bool(dev, "rotary-encoder,rollover"); if (!device_property_present(dev, "rotary-encoder,encoding") || !device_property_match_string(dev, "rotary-encoder,encoding", "gray")) { dev_info(dev, "gray"); encoder->encoding = ROTENC_GRAY; } else if (!device_property_match_string(dev, "rotary-encoder,encoding", "binary")) { dev_info(dev, "binary"); encoder->encoding = ROTENC_BINARY; } else { dev_err(dev, "unknown encoding setting\n"); return -EINVAL; } device_property_read_u32(dev, "linux,axis", &encoder->axis); encoder->relative_axis = device_property_read_bool(dev, "rotary-encoder,relative-axis"); encoder->gpios = devm_gpiod_get_array(dev, NULL, GPIOD_IN); if (IS_ERR(encoder->gpios)) return dev_err_probe(dev, PTR_ERR(encoder->gpios), "unable to get gpios\n"); if (encoder->gpios->ndescs < 2) { dev_err(dev, "not enough gpios found\n"); return -EINVAL; } input = devm_input_allocate_device(dev); if (!input) return -ENOMEM; encoder->input = input; input->name = pdev->name; input->id.bustype = BUS_HOST; if (encoder->relative_axis) input_set_capability(input, EV_REL, encoder->axis); else input_set_abs_params(input, encoder->axis, 0, encoder->steps, 0, 1); switch (steps_per_period >> (encoder->gpios->ndescs - 2)) { case 4: handler = &rotary_encoder_quarter_period_irq; encoder->last_stable = rotary_encoder_get_state(encoder); break; case 2: handler = &rotary_encoder_half_period_irq; encoder->last_stable = rotary_encoder_get_state(encoder); break; case 1: handler = &rotary_encoder_irq; break; default: dev_err(dev, "'%d' is not a valid steps-per-period value\n", steps_per_period); return -EINVAL; } encoder->irq = devm_kcalloc(dev, encoder->gpios->ndescs, sizeof(*encoder->irq), GFP_KERNEL); if (!encoder->irq) return -ENOMEM; for (i = 0; i < encoder->gpios->ndescs; ++i) { encoder->irq[i] = gpiod_to_irq(encoder->gpios->desc[i]); err = devm_request_threaded_irq(dev, encoder->irq[i], NULL, handler, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING | IRQF_ONESHOT, DRV_NAME, encoder); if (err) { dev_err(dev, "unable to request IRQ %d (gpio#%d)\n", encoder->irq[i], i); return err; } } err = input_register_device(input); if (err) { dev_err(dev, "failed to register input device\n"); return err; } device_init_wakeup(dev, device_property_read_bool(dev, "wakeup-source")); platform_set_drvdata(pdev, encoder); return 0; } static int rotary_encoder_suspend(struct device *dev) { struct rotary_encoder *encoder = dev_get_drvdata(dev); unsigned int i; if (device_may_wakeup(dev)) { for (i = 0; i < encoder->gpios->ndescs; ++i) enable_irq_wake(encoder->irq[i]); } return 0; } static int rotary_encoder_resume(struct device *dev) { struct rotary_encoder *encoder = dev_get_drvdata(dev); unsigned int i; if (device_may_wakeup(dev)) { for (i = 0; i < encoder->gpios->ndescs; ++i) disable_irq_wake(encoder->irq[i]); } return 0; } static DEFINE_SIMPLE_DEV_PM_OPS(rotary_encoder_pm_ops, rotary_encoder_suspend, rotary_encoder_resume); #ifdef CONFIG_OF static const struct of_device_id rotary_encoder_of_match[] = { { .compatible = "rotary-encoder", }, { }, }; MODULE_DEVICE_TABLE(of, rotary_encoder_of_match); #endif static struct platform_driver rotary_encoder_driver = { .probe = rotary_encoder_probe, .driver = { .name = DRV_NAME, .pm = pm_sleep_ptr(&rotary_encoder_pm_ops), .of_match_table = of_match_ptr(rotary_encoder_of_match), } }; module_platform_driver(rotary_encoder_driver); MODULE_ALIAS("platform:" DRV_NAME); MODULE_DESCRIPTION("GPIO rotary encoder driver"); MODULE_AUTHOR("Daniel Mack <[email protected]>, Johan Hovold"); MODULE_LICENSE("GPL v2");
linux-master
drivers/input/misc/rotary_encoder.c
// SPDX-License-Identifier: GPL-2.0-only /* * Support for the S1 button on Routerboard 532 * * Copyright (C) 2009 Phil Sutter <[email protected]> */ #include <linux/input.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/gpio.h> #include <asm/mach-rc32434/gpio.h> #include <asm/mach-rc32434/rb.h> #define DRV_NAME "rb532-button" #define RB532_BTN_RATE 100 /* msec */ #define RB532_BTN_KSYM BTN_0 /* The S1 button state is provided by GPIO pin 1. But as this * pin is also used for uart input as alternate function, the * operational modes must be switched first: * 1) disable uart using set_latch_u5() * 2) turn off alternate function implicitly through * gpio_direction_input() * 3) read the GPIO's current value * 4) undo step 2 by enabling alternate function (in this * mode the GPIO direction is fixed, so no change needed) * 5) turn on uart again * The GPIO value occurs to be inverted, so pin high means * button is not pressed. */ static bool rb532_button_pressed(void) { int val; set_latch_u5(0, LO_FOFF); gpio_direction_input(GPIO_BTN_S1); val = gpio_get_value(GPIO_BTN_S1); rb532_gpio_set_func(GPIO_BTN_S1); set_latch_u5(LO_FOFF, 0); return !val; } static void rb532_button_poll(struct input_dev *input) { input_report_key(input, RB532_BTN_KSYM, rb532_button_pressed()); input_sync(input); } static int rb532_button_probe(struct platform_device *pdev) { struct input_dev *input; int error; input = devm_input_allocate_device(&pdev->dev); if (!input) return -ENOMEM; input->name = "rb532 button"; input->phys = "rb532/button0"; input->id.bustype = BUS_HOST; input_set_capability(input, EV_KEY, RB532_BTN_KSYM); error = input_setup_polling(input, rb532_button_poll); if (error) return error; input_set_poll_interval(input, RB532_BTN_RATE); error = input_register_device(input); if (error) return error; return 0; } static struct platform_driver rb532_button_driver = { .probe = rb532_button_probe, .driver = { .name = DRV_NAME, }, }; module_platform_driver(rb532_button_driver); MODULE_AUTHOR("Phil Sutter <[email protected]>"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Support for S1 button on Routerboard 532"); MODULE_ALIAS("platform:" DRV_NAME);
linux-master
drivers/input/misc/rb532_button.c
// SPDX-License-Identifier: GPL-2.0+ // // Power Button driver for RAVE SP // // Copyright (C) 2017 Zodiac Inflight Innovations // // #include <linux/input.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/mfd/rave-sp.h> #include <linux/platform_device.h> #define RAVE_SP_EVNT_BUTTON_PRESS (RAVE_SP_EVNT_BASE + 0x00) struct rave_sp_power_button { struct input_dev *idev; struct notifier_block nb; }; static int rave_sp_power_button_event(struct notifier_block *nb, unsigned long action, void *data) { struct rave_sp_power_button *pb = container_of(nb, struct rave_sp_power_button, nb); const u8 event = rave_sp_action_unpack_event(action); const u8 value = rave_sp_action_unpack_value(action); struct input_dev *idev = pb->idev; if (event == RAVE_SP_EVNT_BUTTON_PRESS) { input_report_key(idev, KEY_POWER, value); input_sync(idev); return NOTIFY_STOP; } return NOTIFY_DONE; } static int rave_sp_pwrbutton_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct rave_sp_power_button *pb; struct input_dev *idev; int error; pb = devm_kzalloc(dev, sizeof(*pb), GFP_KERNEL); if (!pb) return -ENOMEM; idev = devm_input_allocate_device(dev); if (!idev) return -ENOMEM; idev->name = pdev->name; input_set_capability(idev, EV_KEY, KEY_POWER); error = input_register_device(idev); if (error) return error; pb->idev = idev; pb->nb.notifier_call = rave_sp_power_button_event; pb->nb.priority = 128; error = devm_rave_sp_register_event_notifier(dev, &pb->nb); if (error) return error; return 0; } static const struct of_device_id rave_sp_pwrbutton_of_match[] = { { .compatible = "zii,rave-sp-pwrbutton" }, {} }; static struct platform_driver rave_sp_pwrbutton_driver = { .probe = rave_sp_pwrbutton_probe, .driver = { .name = KBUILD_MODNAME, .of_match_table = rave_sp_pwrbutton_of_match, }, }; module_platform_driver(rave_sp_pwrbutton_driver); MODULE_DEVICE_TABLE(of, rave_sp_pwrbutton_of_match); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Andrey Vostrikov <[email protected]>"); MODULE_AUTHOR("Nikita Yushchenko <[email protected]>"); MODULE_AUTHOR("Andrey Smirnov <[email protected]>"); MODULE_DESCRIPTION("RAVE SP Power Button driver");
linux-master
drivers/input/misc/rave-sp-pwrbutton.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2016 Texas Instruments Incorporated - http://www.ti.com/ * * A generic driver to read multiple gpio lines and translate the * encoded numeric value into an input event. */ #include <linux/device.h> #include <linux/gpio/consumer.h> #include <linux/input.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> struct gpio_decoder { struct gpio_descs *input_gpios; struct device *dev; u32 axis; u32 last_stable; }; static int gpio_decoder_get_gpios_state(struct gpio_decoder *decoder) { struct gpio_descs *gpios = decoder->input_gpios; unsigned int ret = 0; int i, val; for (i = 0; i < gpios->ndescs; i++) { val = gpiod_get_value_cansleep(gpios->desc[i]); if (val < 0) { dev_err(decoder->dev, "Error reading gpio %d: %d\n", desc_to_gpio(gpios->desc[i]), val); return val; } val = !!val; ret = (ret << 1) | val; } return ret; } static void gpio_decoder_poll_gpios(struct input_dev *input) { struct gpio_decoder *decoder = input_get_drvdata(input); int state; state = gpio_decoder_get_gpios_state(decoder); if (state >= 0 && state != decoder->last_stable) { input_report_abs(input, decoder->axis, state); input_sync(input); decoder->last_stable = state; } } static int gpio_decoder_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct gpio_decoder *decoder; struct input_dev *input; u32 max; int err; decoder = devm_kzalloc(dev, sizeof(*decoder), GFP_KERNEL); if (!decoder) return -ENOMEM; decoder->dev = dev; device_property_read_u32(dev, "linux,axis", &decoder->axis); decoder->input_gpios = devm_gpiod_get_array(dev, NULL, GPIOD_IN); if (IS_ERR(decoder->input_gpios)) { dev_err(dev, "unable to acquire input gpios\n"); return PTR_ERR(decoder->input_gpios); } if (decoder->input_gpios->ndescs < 2) { dev_err(dev, "not enough gpios found\n"); return -EINVAL; } if (device_property_read_u32(dev, "decoder-max-value", &max)) max = (1U << decoder->input_gpios->ndescs) - 1; input = devm_input_allocate_device(dev); if (!input) return -ENOMEM; input_set_drvdata(input, decoder); input->name = pdev->name; input->id.bustype = BUS_HOST; input_set_abs_params(input, decoder->axis, 0, max, 0, 0); err = input_setup_polling(input, gpio_decoder_poll_gpios); if (err) { dev_err(dev, "failed to set up polling\n"); return err; } err = input_register_device(input); if (err) { dev_err(dev, "failed to register input device\n"); return err; } return 0; } #ifdef CONFIG_OF static const struct of_device_id gpio_decoder_of_match[] = { { .compatible = "gpio-decoder", }, { }, }; MODULE_DEVICE_TABLE(of, gpio_decoder_of_match); #endif static struct platform_driver gpio_decoder_driver = { .probe = gpio_decoder_probe, .driver = { .name = "gpio-decoder", .of_match_table = of_match_ptr(gpio_decoder_of_match), } }; module_platform_driver(gpio_decoder_driver); MODULE_DESCRIPTION("GPIO decoder input driver"); MODULE_AUTHOR("Vignesh R <[email protected]>"); MODULE_LICENSE("GPL v2");
linux-master
drivers/input/misc/gpio_decoder.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2010-2011, 2020-2021, The Linux Foundation. All rights reserved. * Copyright (c) 2014, Sony Mobile Communications Inc. */ #include <linux/delay.h> #include <linux/errno.h> #include <linux/input.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/ktime.h> #include <linux/log2.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/platform_device.h> #include <linux/reboot.h> #include <linux/regmap.h> #define PON_REV2 0x01 #define PON_SUBTYPE 0x05 #define PON_SUBTYPE_PRIMARY 0x01 #define PON_SUBTYPE_SECONDARY 0x02 #define PON_SUBTYPE_1REG 0x03 #define PON_SUBTYPE_GEN2_PRIMARY 0x04 #define PON_SUBTYPE_GEN2_SECONDARY 0x05 #define PON_SUBTYPE_GEN3_PBS 0x08 #define PON_SUBTYPE_GEN3_HLOS 0x09 #define PON_RT_STS 0x10 #define PON_KPDPWR_N_SET BIT(0) #define PON_RESIN_N_SET BIT(1) #define PON_GEN3_RESIN_N_SET BIT(6) #define PON_GEN3_KPDPWR_N_SET BIT(7) #define PON_PS_HOLD_RST_CTL 0x5a #define PON_PS_HOLD_RST_CTL2 0x5b #define PON_PS_HOLD_ENABLE BIT(7) #define PON_PS_HOLD_TYPE_MASK 0x0f #define PON_PS_HOLD_TYPE_WARM_RESET 1 #define PON_PS_HOLD_TYPE_SHUTDOWN 4 #define PON_PS_HOLD_TYPE_HARD_RESET 7 #define PON_PULL_CTL 0x70 #define PON_KPDPWR_PULL_UP BIT(1) #define PON_RESIN_PULL_UP BIT(0) #define PON_DBC_CTL 0x71 #define PON_DBC_DELAY_MASK_GEN1 0x7 #define PON_DBC_DELAY_MASK_GEN2 0xf #define PON_DBC_SHIFT_GEN1 6 #define PON_DBC_SHIFT_GEN2 14 struct pm8941_data { unsigned int pull_up_bit; unsigned int status_bit; bool supports_ps_hold_poff_config; bool supports_debounce_config; bool has_pon_pbs; const char *name; const char *phys; }; struct pm8941_pwrkey { struct device *dev; int irq; u32 baseaddr; u32 pon_pbs_baseaddr; struct regmap *regmap; struct input_dev *input; unsigned int revision; unsigned int subtype; struct notifier_block reboot_notifier; u32 code; u32 sw_debounce_time_us; ktime_t sw_debounce_end_time; bool last_status; const struct pm8941_data *data; }; static int pm8941_reboot_notify(struct notifier_block *nb, unsigned long code, void *unused) { struct pm8941_pwrkey *pwrkey = container_of(nb, struct pm8941_pwrkey, reboot_notifier); unsigned int enable_reg; unsigned int reset_type; int error; /* PMICs with revision 0 have the enable bit in same register as ctrl */ if (pwrkey->revision == 0) enable_reg = PON_PS_HOLD_RST_CTL; else enable_reg = PON_PS_HOLD_RST_CTL2; error = regmap_update_bits(pwrkey->regmap, pwrkey->baseaddr + enable_reg, PON_PS_HOLD_ENABLE, 0); if (error) dev_err(pwrkey->dev, "unable to clear ps hold reset enable: %d\n", error); /* * Updates of PON_PS_HOLD_ENABLE requires 3 sleep cycles between * writes. */ usleep_range(100, 1000); switch (code) { case SYS_HALT: case SYS_POWER_OFF: reset_type = PON_PS_HOLD_TYPE_SHUTDOWN; break; case SYS_RESTART: default: if (reboot_mode == REBOOT_WARM) reset_type = PON_PS_HOLD_TYPE_WARM_RESET; else reset_type = PON_PS_HOLD_TYPE_HARD_RESET; break; } error = regmap_update_bits(pwrkey->regmap, pwrkey->baseaddr + PON_PS_HOLD_RST_CTL, PON_PS_HOLD_TYPE_MASK, reset_type); if (error) dev_err(pwrkey->dev, "unable to set ps hold reset type: %d\n", error); error = regmap_update_bits(pwrkey->regmap, pwrkey->baseaddr + enable_reg, PON_PS_HOLD_ENABLE, PON_PS_HOLD_ENABLE); if (error) dev_err(pwrkey->dev, "unable to re-set enable: %d\n", error); return NOTIFY_DONE; } static irqreturn_t pm8941_pwrkey_irq(int irq, void *_data) { struct pm8941_pwrkey *pwrkey = _data; unsigned int sts; int err; if (pwrkey->sw_debounce_time_us) { if (ktime_before(ktime_get(), pwrkey->sw_debounce_end_time)) { dev_dbg(pwrkey->dev, "ignoring key event received before debounce end %llu us\n", pwrkey->sw_debounce_end_time); return IRQ_HANDLED; } } err = regmap_read(pwrkey->regmap, pwrkey->baseaddr + PON_RT_STS, &sts); if (err) return IRQ_HANDLED; sts &= pwrkey->data->status_bit; if (pwrkey->sw_debounce_time_us && !sts) pwrkey->sw_debounce_end_time = ktime_add_us(ktime_get(), pwrkey->sw_debounce_time_us); /* * Simulate a press event in case a release event occurred without a * corresponding press event. */ if (!pwrkey->last_status && !sts) { input_report_key(pwrkey->input, pwrkey->code, 1); input_sync(pwrkey->input); } pwrkey->last_status = sts; input_report_key(pwrkey->input, pwrkey->code, sts); input_sync(pwrkey->input); return IRQ_HANDLED; } static int pm8941_pwrkey_sw_debounce_init(struct pm8941_pwrkey *pwrkey) { unsigned int val, addr, mask; int error; if (pwrkey->data->has_pon_pbs && !pwrkey->pon_pbs_baseaddr) { dev_err(pwrkey->dev, "PON_PBS address missing, can't read HW debounce time\n"); return 0; } if (pwrkey->pon_pbs_baseaddr) addr = pwrkey->pon_pbs_baseaddr + PON_DBC_CTL; else addr = pwrkey->baseaddr + PON_DBC_CTL; error = regmap_read(pwrkey->regmap, addr, &val); if (error) return error; if (pwrkey->subtype >= PON_SUBTYPE_GEN2_PRIMARY) mask = 0xf; else mask = 0x7; pwrkey->sw_debounce_time_us = 2 * USEC_PER_SEC / (1 << (mask - (val & mask))); dev_dbg(pwrkey->dev, "SW debounce time = %u us\n", pwrkey->sw_debounce_time_us); return 0; } static int pm8941_pwrkey_suspend(struct device *dev) { struct pm8941_pwrkey *pwrkey = dev_get_drvdata(dev); if (device_may_wakeup(dev)) enable_irq_wake(pwrkey->irq); return 0; } static int pm8941_pwrkey_resume(struct device *dev) { struct pm8941_pwrkey *pwrkey = dev_get_drvdata(dev); if (device_may_wakeup(dev)) disable_irq_wake(pwrkey->irq); return 0; } static DEFINE_SIMPLE_DEV_PM_OPS(pm8941_pwr_key_pm_ops, pm8941_pwrkey_suspend, pm8941_pwrkey_resume); static int pm8941_pwrkey_probe(struct platform_device *pdev) { struct pm8941_pwrkey *pwrkey; bool pull_up; struct device *parent; struct device_node *regmap_node; const __be32 *addr; u32 req_delay, mask, delay_shift; int error; if (of_property_read_u32(pdev->dev.of_node, "debounce", &req_delay)) req_delay = 15625; if (req_delay > 2000000 || req_delay == 0) { dev_err(&pdev->dev, "invalid debounce time: %u\n", req_delay); return -EINVAL; } pull_up = of_property_read_bool(pdev->dev.of_node, "bias-pull-up"); pwrkey = devm_kzalloc(&pdev->dev, sizeof(*pwrkey), GFP_KERNEL); if (!pwrkey) return -ENOMEM; pwrkey->dev = &pdev->dev; pwrkey->data = of_device_get_match_data(&pdev->dev); parent = pdev->dev.parent; regmap_node = pdev->dev.of_node; pwrkey->regmap = dev_get_regmap(parent, NULL); if (!pwrkey->regmap) { regmap_node = parent->of_node; /* * We failed to get regmap for parent. Let's see if we are * a child of pon node and read regmap and reg from its * parent. */ pwrkey->regmap = dev_get_regmap(parent->parent, NULL); if (!pwrkey->regmap) { dev_err(&pdev->dev, "failed to locate regmap\n"); return -ENODEV; } } addr = of_get_address(regmap_node, 0, NULL, NULL); if (!addr) { dev_err(&pdev->dev, "reg property missing\n"); return -EINVAL; } pwrkey->baseaddr = be32_to_cpup(addr); if (pwrkey->data->has_pon_pbs) { /* PON_PBS base address is optional */ addr = of_get_address(regmap_node, 1, NULL, NULL); if (addr) pwrkey->pon_pbs_baseaddr = be32_to_cpup(addr); } pwrkey->irq = platform_get_irq(pdev, 0); if (pwrkey->irq < 0) return pwrkey->irq; error = regmap_read(pwrkey->regmap, pwrkey->baseaddr + PON_REV2, &pwrkey->revision); if (error) { dev_err(&pdev->dev, "failed to read revision: %d\n", error); return error; } error = regmap_read(pwrkey->regmap, pwrkey->baseaddr + PON_SUBTYPE, &pwrkey->subtype); if (error) { dev_err(&pdev->dev, "failed to read subtype: %d\n", error); return error; } error = of_property_read_u32(pdev->dev.of_node, "linux,code", &pwrkey->code); if (error) { dev_dbg(&pdev->dev, "no linux,code assuming power (%d)\n", error); pwrkey->code = KEY_POWER; } pwrkey->input = devm_input_allocate_device(&pdev->dev); if (!pwrkey->input) { dev_dbg(&pdev->dev, "unable to allocate input device\n"); return -ENOMEM; } input_set_capability(pwrkey->input, EV_KEY, pwrkey->code); pwrkey->input->name = pwrkey->data->name; pwrkey->input->phys = pwrkey->data->phys; if (pwrkey->data->supports_debounce_config) { if (pwrkey->subtype >= PON_SUBTYPE_GEN2_PRIMARY) { mask = PON_DBC_DELAY_MASK_GEN2; delay_shift = PON_DBC_SHIFT_GEN2; } else { mask = PON_DBC_DELAY_MASK_GEN1; delay_shift = PON_DBC_SHIFT_GEN1; } req_delay = (req_delay << delay_shift) / USEC_PER_SEC; req_delay = ilog2(req_delay); error = regmap_update_bits(pwrkey->regmap, pwrkey->baseaddr + PON_DBC_CTL, mask, req_delay); if (error) { dev_err(&pdev->dev, "failed to set debounce: %d\n", error); return error; } } error = pm8941_pwrkey_sw_debounce_init(pwrkey); if (error) return error; if (pwrkey->data->pull_up_bit) { error = regmap_update_bits(pwrkey->regmap, pwrkey->baseaddr + PON_PULL_CTL, pwrkey->data->pull_up_bit, pull_up ? pwrkey->data->pull_up_bit : 0); if (error) { dev_err(&pdev->dev, "failed to set pull: %d\n", error); return error; } } error = devm_request_threaded_irq(&pdev->dev, pwrkey->irq, NULL, pm8941_pwrkey_irq, IRQF_ONESHOT, pwrkey->data->name, pwrkey); if (error) { dev_err(&pdev->dev, "failed requesting IRQ: %d\n", error); return error; } error = input_register_device(pwrkey->input); if (error) { dev_err(&pdev->dev, "failed to register input device: %d\n", error); return error; } if (pwrkey->data->supports_ps_hold_poff_config) { pwrkey->reboot_notifier.notifier_call = pm8941_reboot_notify; error = register_reboot_notifier(&pwrkey->reboot_notifier); if (error) { dev_err(&pdev->dev, "failed to register reboot notifier: %d\n", error); return error; } } platform_set_drvdata(pdev, pwrkey); device_init_wakeup(&pdev->dev, 1); return 0; } static int pm8941_pwrkey_remove(struct platform_device *pdev) { struct pm8941_pwrkey *pwrkey = platform_get_drvdata(pdev); if (pwrkey->data->supports_ps_hold_poff_config) unregister_reboot_notifier(&pwrkey->reboot_notifier); return 0; } static const struct pm8941_data pwrkey_data = { .pull_up_bit = PON_KPDPWR_PULL_UP, .status_bit = PON_KPDPWR_N_SET, .name = "pm8941_pwrkey", .phys = "pm8941_pwrkey/input0", .supports_ps_hold_poff_config = true, .supports_debounce_config = true, .has_pon_pbs = false, }; static const struct pm8941_data resin_data = { .pull_up_bit = PON_RESIN_PULL_UP, .status_bit = PON_RESIN_N_SET, .name = "pm8941_resin", .phys = "pm8941_resin/input0", .supports_ps_hold_poff_config = true, .supports_debounce_config = true, .has_pon_pbs = false, }; static const struct pm8941_data pon_gen3_pwrkey_data = { .status_bit = PON_GEN3_KPDPWR_N_SET, .name = "pmic_pwrkey", .phys = "pmic_pwrkey/input0", .supports_ps_hold_poff_config = false, .supports_debounce_config = false, .has_pon_pbs = true, }; static const struct pm8941_data pon_gen3_resin_data = { .status_bit = PON_GEN3_RESIN_N_SET, .name = "pmic_resin", .phys = "pmic_resin/input0", .supports_ps_hold_poff_config = false, .supports_debounce_config = false, .has_pon_pbs = true, }; static const struct of_device_id pm8941_pwr_key_id_table[] = { { .compatible = "qcom,pm8941-pwrkey", .data = &pwrkey_data }, { .compatible = "qcom,pm8941-resin", .data = &resin_data }, { .compatible = "qcom,pmk8350-pwrkey", .data = &pon_gen3_pwrkey_data }, { .compatible = "qcom,pmk8350-resin", .data = &pon_gen3_resin_data }, { } }; MODULE_DEVICE_TABLE(of, pm8941_pwr_key_id_table); static struct platform_driver pm8941_pwrkey_driver = { .probe = pm8941_pwrkey_probe, .remove = pm8941_pwrkey_remove, .driver = { .name = "pm8941-pwrkey", .pm = pm_sleep_ptr(&pm8941_pwr_key_pm_ops), .of_match_table = of_match_ptr(pm8941_pwr_key_id_table), }, }; module_platform_driver(pm8941_pwrkey_driver); MODULE_DESCRIPTION("PM8941 Power Key driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/input/misc/pm8941-pwrkey.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * ADLX345/346 Three-Axis Digital Accelerometers (I2C Interface) * * Enter bugs at http://blackfin.uclinux.org/ * * Copyright (C) 2009 Michael Hennerich, Analog Devices Inc. */ #include <linux/input.h> /* BUS_I2C */ #include <linux/i2c.h> #include <linux/module.h> #include <linux/of.h> #include <linux/types.h> #include <linux/pm.h> #include "adxl34x.h" static int adxl34x_smbus_read(struct device *dev, unsigned char reg) { struct i2c_client *client = to_i2c_client(dev); return i2c_smbus_read_byte_data(client, reg); } static int adxl34x_smbus_write(struct device *dev, unsigned char reg, unsigned char val) { struct i2c_client *client = to_i2c_client(dev); return i2c_smbus_write_byte_data(client, reg, val); } static int adxl34x_smbus_read_block(struct device *dev, unsigned char reg, int count, void *buf) { struct i2c_client *client = to_i2c_client(dev); return i2c_smbus_read_i2c_block_data(client, reg, count, buf); } static int adxl34x_i2c_read_block(struct device *dev, unsigned char reg, int count, void *buf) { struct i2c_client *client = to_i2c_client(dev); int ret; ret = i2c_master_send(client, &reg, 1); if (ret < 0) return ret; ret = i2c_master_recv(client, buf, count); if (ret < 0) return ret; if (ret != count) return -EIO; return 0; } static const struct adxl34x_bus_ops adxl34x_smbus_bops = { .bustype = BUS_I2C, .write = adxl34x_smbus_write, .read = adxl34x_smbus_read, .read_block = adxl34x_smbus_read_block, }; static const struct adxl34x_bus_ops adxl34x_i2c_bops = { .bustype = BUS_I2C, .write = adxl34x_smbus_write, .read = adxl34x_smbus_read, .read_block = adxl34x_i2c_read_block, }; static int adxl34x_i2c_probe(struct i2c_client *client) { struct adxl34x *ac; int error; error = i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA); if (!error) { dev_err(&client->dev, "SMBUS Byte Data not Supported\n"); return -EIO; } ac = adxl34x_probe(&client->dev, client->irq, false, i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_READ_I2C_BLOCK) ? &adxl34x_smbus_bops : &adxl34x_i2c_bops); if (IS_ERR(ac)) return PTR_ERR(ac); i2c_set_clientdata(client, ac); return 0; } static void adxl34x_i2c_remove(struct i2c_client *client) { struct adxl34x *ac = i2c_get_clientdata(client); adxl34x_remove(ac); } static const struct i2c_device_id adxl34x_id[] = { { "adxl34x", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, adxl34x_id); static const struct of_device_id adxl34x_of_id[] = { /* * The ADXL346 is backward-compatible with the ADXL345. Differences are * handled by runtime detection of the device model, there's thus no * need for listing the "adi,adxl346" compatible value explicitly. */ { .compatible = "adi,adxl345", }, /* * Deprecated, DT nodes should use one or more of the device-specific * compatible values "adi,adxl345" and "adi,adxl346". */ { .compatible = "adi,adxl34x", }, { } }; MODULE_DEVICE_TABLE(of, adxl34x_of_id); static struct i2c_driver adxl34x_driver = { .driver = { .name = "adxl34x", .pm = pm_sleep_ptr(&adxl34x_pm), .of_match_table = adxl34x_of_id, }, .probe = adxl34x_i2c_probe, .remove = adxl34x_i2c_remove, .id_table = adxl34x_id, }; module_i2c_driver(adxl34x_driver); MODULE_AUTHOR("Michael Hennerich <[email protected]>"); MODULE_DESCRIPTION("ADXL345/346 Three-Axis Digital Accelerometer I2C Bus Driver"); MODULE_LICENSE("GPL");
linux-master
drivers/input/misc/adxl34x-i2c.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2014, National Instruments Corp. All rights reserved. * * Driver for NI Ettus Research USRP E3x0 Button Driver */ #include <linux/device.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/input.h> #include <linux/interrupt.h> #include <linux/of.h> #include <linux/slab.h> static irqreturn_t e3x0_button_release_handler(int irq, void *data) { struct input_dev *idev = data; input_report_key(idev, KEY_POWER, 0); input_sync(idev); return IRQ_HANDLED; } static irqreturn_t e3x0_button_press_handler(int irq, void *data) { struct input_dev *idev = data; input_report_key(idev, KEY_POWER, 1); pm_wakeup_event(idev->dev.parent, 0); input_sync(idev); return IRQ_HANDLED; } static int e3x0_button_suspend(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); if (device_may_wakeup(dev)) enable_irq_wake(platform_get_irq_byname(pdev, "press")); return 0; } static int e3x0_button_resume(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); if (device_may_wakeup(dev)) disable_irq_wake(platform_get_irq_byname(pdev, "press")); return 0; } static DEFINE_SIMPLE_DEV_PM_OPS(e3x0_button_pm_ops, e3x0_button_suspend, e3x0_button_resume); static int e3x0_button_probe(struct platform_device *pdev) { struct input_dev *input; int irq_press, irq_release; int error; irq_press = platform_get_irq_byname(pdev, "press"); if (irq_press < 0) return irq_press; irq_release = platform_get_irq_byname(pdev, "release"); if (irq_release < 0) return irq_release; input = devm_input_allocate_device(&pdev->dev); if (!input) return -ENOMEM; input->name = "NI Ettus Research USRP E3x0 Button Driver"; input->phys = "e3x0_button/input0"; input->dev.parent = &pdev->dev; input_set_capability(input, EV_KEY, KEY_POWER); error = devm_request_irq(&pdev->dev, irq_press, e3x0_button_press_handler, 0, "e3x0-button", input); if (error) { dev_err(&pdev->dev, "Failed to request 'press' IRQ#%d: %d\n", irq_press, error); return error; } error = devm_request_irq(&pdev->dev, irq_release, e3x0_button_release_handler, 0, "e3x0-button", input); if (error) { dev_err(&pdev->dev, "Failed to request 'release' IRQ#%d: %d\n", irq_release, error); return error; } error = input_register_device(input); if (error) { dev_err(&pdev->dev, "Can't register input device: %d\n", error); return error; } device_init_wakeup(&pdev->dev, 1); return 0; } #ifdef CONFIG_OF static const struct of_device_id e3x0_button_match[] = { { .compatible = "ettus,e3x0-button", }, { } }; MODULE_DEVICE_TABLE(of, e3x0_button_match); #endif static struct platform_driver e3x0_button_driver = { .driver = { .name = "e3x0-button", .of_match_table = of_match_ptr(e3x0_button_match), .pm = pm_sleep_ptr(&e3x0_button_pm_ops), }, .probe = e3x0_button_probe, }; module_platform_driver(e3x0_button_driver); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Moritz Fischer <[email protected]>"); MODULE_DESCRIPTION("NI Ettus Research USRP E3x0 Button driver"); MODULE_ALIAS("platform:e3x0-button");
linux-master
drivers/input/misc/e3x0-button.c
// SPDX-License-Identifier: GPL-2.0-only /* * Driver for the VoIP USB phones with CM109 chipsets. * * Copyright (C) 2007 - 2008 Alfred E. Heggestad <[email protected]> */ /* * Tested devices: * - Komunikate KIP1000 * - Genius G-talk * - Allied-Telesis Corega USBPH01 * - ... * * This driver is based on the yealink.c driver * * Thanks to: * - Authors of yealink.c * - Thomas Reitmayr * - Oliver Neukum for good review comments and code * - Shaun Jackman <[email protected]> for Genius G-talk keymap * - Dmitry Torokhov for valuable input and review * * Todo: * - Read/write EEPROM */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/rwsem.h> #include <linux/usb/input.h> #define DRIVER_VERSION "20080805" #define DRIVER_AUTHOR "Alfred E. Heggestad" #define DRIVER_DESC "CM109 phone driver" static char *phone = "kip1000"; module_param(phone, charp, S_IRUSR); MODULE_PARM_DESC(phone, "Phone name {kip1000, gtalk, usbph01, atcom}"); enum { /* HID Registers */ HID_IR0 = 0x00, /* Record/Playback-mute button, Volume up/down */ HID_IR1 = 0x01, /* GPI, generic registers or EEPROM_DATA0 */ HID_IR2 = 0x02, /* Generic registers or EEPROM_DATA1 */ HID_IR3 = 0x03, /* Generic registers or EEPROM_CTRL */ HID_OR0 = 0x00, /* Mapping control, buzzer, SPDIF (offset 0x04) */ HID_OR1 = 0x01, /* GPO - General Purpose Output */ HID_OR2 = 0x02, /* Set GPIO to input/output mode */ HID_OR3 = 0x03, /* SPDIF status channel or EEPROM_CTRL */ /* HID_IR0 */ RECORD_MUTE = 1 << 3, PLAYBACK_MUTE = 1 << 2, VOLUME_DOWN = 1 << 1, VOLUME_UP = 1 << 0, /* HID_OR0 */ /* bits 7-6 0: HID_OR1-2 are used for GPO; HID_OR0, 3 are used for buzzer and SPDIF 1: HID_OR0-3 are used as generic HID registers 2: Values written to HID_OR0-3 are also mapped to MCU_CTRL, EEPROM_DATA0-1, EEPROM_CTRL (see Note) 3: Reserved */ HID_OR_GPO_BUZ_SPDIF = 0 << 6, HID_OR_GENERIC_HID_REG = 1 << 6, HID_OR_MAP_MCU_EEPROM = 2 << 6, BUZZER_ON = 1 << 5, /* up to 256 normal keys, up to 15 special key combinations */ KEYMAP_SIZE = 256 + 15, }; /* CM109 protocol packet */ struct cm109_ctl_packet { u8 byte[4]; } __attribute__ ((packed)); enum { USB_PKT_LEN = sizeof(struct cm109_ctl_packet) }; /* CM109 device structure */ struct cm109_dev { struct input_dev *idev; /* input device */ struct usb_device *udev; /* usb device */ struct usb_interface *intf; /* irq input channel */ struct cm109_ctl_packet *irq_data; dma_addr_t irq_dma; struct urb *urb_irq; /* control output channel */ struct cm109_ctl_packet *ctl_data; dma_addr_t ctl_dma; struct usb_ctrlrequest *ctl_req; struct urb *urb_ctl; /* * The 3 bitfields below are protected by ctl_submit_lock. * They have to be separate since they are accessed from IRQ * context. */ unsigned irq_urb_pending:1; /* irq_urb is in flight */ unsigned ctl_urb_pending:1; /* ctl_urb is in flight */ unsigned buzzer_pending:1; /* need to issue buzz command */ spinlock_t ctl_submit_lock; unsigned char buzzer_state; /* on/off */ /* flags */ unsigned open:1; unsigned resetting:1; unsigned shutdown:1; /* This mutex protects writes to the above flags */ struct mutex pm_mutex; unsigned short keymap[KEYMAP_SIZE]; char phys[64]; /* physical device path */ int key_code; /* last reported key */ int keybit; /* 0=new scan 1,2,4,8=scan columns */ u8 gpi; /* Cached value of GPI (high nibble) */ }; /****************************************************************************** * CM109 key interface *****************************************************************************/ static unsigned short special_keymap(int code) { if (code > 0xff) { switch (code - 0xff) { case RECORD_MUTE: return KEY_MICMUTE; case PLAYBACK_MUTE: return KEY_MUTE; case VOLUME_DOWN: return KEY_VOLUMEDOWN; case VOLUME_UP: return KEY_VOLUMEUP; } } return KEY_RESERVED; } /* Map device buttons to internal key events. * * The "up" and "down" keys, are symbolised by arrows on the button. * The "pickup" and "hangup" keys are symbolised by a green and red phone * on the button. Komunikate KIP1000 Keyboard Matrix -> -- 1 -- 2 -- 3 --> GPI pin 4 (0x10) | | | | <- -- 4 -- 5 -- 6 --> GPI pin 5 (0x20) | | | | END - 7 -- 8 -- 9 --> GPI pin 6 (0x40) | | | | OK -- * -- 0 -- # --> GPI pin 7 (0x80) | | | | /|\ /|\ /|\ /|\ | | | | GPO pin: 3 2 1 0 0x8 0x4 0x2 0x1 */ static unsigned short keymap_kip1000(int scancode) { switch (scancode) { /* phone key: */ case 0x82: return KEY_NUMERIC_0; /* 0 */ case 0x14: return KEY_NUMERIC_1; /* 1 */ case 0x12: return KEY_NUMERIC_2; /* 2 */ case 0x11: return KEY_NUMERIC_3; /* 3 */ case 0x24: return KEY_NUMERIC_4; /* 4 */ case 0x22: return KEY_NUMERIC_5; /* 5 */ case 0x21: return KEY_NUMERIC_6; /* 6 */ case 0x44: return KEY_NUMERIC_7; /* 7 */ case 0x42: return KEY_NUMERIC_8; /* 8 */ case 0x41: return KEY_NUMERIC_9; /* 9 */ case 0x81: return KEY_NUMERIC_POUND; /* # */ case 0x84: return KEY_NUMERIC_STAR; /* * */ case 0x88: return KEY_ENTER; /* pickup */ case 0x48: return KEY_ESC; /* hangup */ case 0x28: return KEY_LEFT; /* IN */ case 0x18: return KEY_RIGHT; /* OUT */ default: return special_keymap(scancode); } } /* Contributed by Shaun Jackman <[email protected]> Genius G-Talk keyboard matrix 0 1 2 3 4: 0 4 8 Talk 5: 1 5 9 End 6: 2 6 # Up 7: 3 7 * Down */ static unsigned short keymap_gtalk(int scancode) { switch (scancode) { case 0x11: return KEY_NUMERIC_0; case 0x21: return KEY_NUMERIC_1; case 0x41: return KEY_NUMERIC_2; case 0x81: return KEY_NUMERIC_3; case 0x12: return KEY_NUMERIC_4; case 0x22: return KEY_NUMERIC_5; case 0x42: return KEY_NUMERIC_6; case 0x82: return KEY_NUMERIC_7; case 0x14: return KEY_NUMERIC_8; case 0x24: return KEY_NUMERIC_9; case 0x44: return KEY_NUMERIC_POUND; /* # */ case 0x84: return KEY_NUMERIC_STAR; /* * */ case 0x18: return KEY_ENTER; /* Talk (green handset) */ case 0x28: return KEY_ESC; /* End (red handset) */ case 0x48: return KEY_UP; /* Menu up (rocker switch) */ case 0x88: return KEY_DOWN; /* Menu down (rocker switch) */ default: return special_keymap(scancode); } } /* * Keymap for Allied-Telesis Corega USBPH01 * http://www.alliedtelesis-corega.com/2/1344/1437/1360/chprd.html * * Contributed by [email protected] */ static unsigned short keymap_usbph01(int scancode) { switch (scancode) { case 0x11: return KEY_NUMERIC_0; /* 0 */ case 0x21: return KEY_NUMERIC_1; /* 1 */ case 0x41: return KEY_NUMERIC_2; /* 2 */ case 0x81: return KEY_NUMERIC_3; /* 3 */ case 0x12: return KEY_NUMERIC_4; /* 4 */ case 0x22: return KEY_NUMERIC_5; /* 5 */ case 0x42: return KEY_NUMERIC_6; /* 6 */ case 0x82: return KEY_NUMERIC_7; /* 7 */ case 0x14: return KEY_NUMERIC_8; /* 8 */ case 0x24: return KEY_NUMERIC_9; /* 9 */ case 0x44: return KEY_NUMERIC_POUND; /* # */ case 0x84: return KEY_NUMERIC_STAR; /* * */ case 0x18: return KEY_ENTER; /* pickup */ case 0x28: return KEY_ESC; /* hangup */ case 0x48: return KEY_LEFT; /* IN */ case 0x88: return KEY_RIGHT; /* OUT */ default: return special_keymap(scancode); } } /* * Keymap for ATCom AU-100 * http://www.atcom.cn/products.html * http://www.packetizer.com/products/au100/ * http://www.voip-info.org/wiki/view/AU-100 * * Contributed by [email protected] */ static unsigned short keymap_atcom(int scancode) { switch (scancode) { /* phone key: */ case 0x82: return KEY_NUMERIC_0; /* 0 */ case 0x11: return KEY_NUMERIC_1; /* 1 */ case 0x12: return KEY_NUMERIC_2; /* 2 */ case 0x14: return KEY_NUMERIC_3; /* 3 */ case 0x21: return KEY_NUMERIC_4; /* 4 */ case 0x22: return KEY_NUMERIC_5; /* 5 */ case 0x24: return KEY_NUMERIC_6; /* 6 */ case 0x41: return KEY_NUMERIC_7; /* 7 */ case 0x42: return KEY_NUMERIC_8; /* 8 */ case 0x44: return KEY_NUMERIC_9; /* 9 */ case 0x84: return KEY_NUMERIC_POUND; /* # */ case 0x81: return KEY_NUMERIC_STAR; /* * */ case 0x18: return KEY_ENTER; /* pickup */ case 0x28: return KEY_ESC; /* hangup */ case 0x48: return KEY_LEFT; /* left arrow */ case 0x88: return KEY_RIGHT; /* right arrow */ default: return special_keymap(scancode); } } static unsigned short (*keymap)(int) = keymap_kip1000; /* * Completes a request by converting the data into events for the * input subsystem. */ static void report_key(struct cm109_dev *dev, int key) { struct input_dev *idev = dev->idev; if (dev->key_code >= 0) { /* old key up */ input_report_key(idev, dev->key_code, 0); } dev->key_code = key; if (key >= 0) { /* new valid key */ input_report_key(idev, key, 1); } input_sync(idev); } /* * Converts data of special key presses (volume, mute) into events * for the input subsystem, sends press-n-release for mute keys. */ static void cm109_report_special(struct cm109_dev *dev) { static const u8 autorelease = RECORD_MUTE | PLAYBACK_MUTE; struct input_dev *idev = dev->idev; u8 data = dev->irq_data->byte[HID_IR0]; unsigned short keycode; int i; for (i = 0; i < 4; i++) { keycode = dev->keymap[0xff + BIT(i)]; if (keycode == KEY_RESERVED) continue; input_report_key(idev, keycode, data & BIT(i)); if (data & autorelease & BIT(i)) { input_sync(idev); input_report_key(idev, keycode, 0); } } input_sync(idev); } /****************************************************************************** * CM109 usb communication interface *****************************************************************************/ static void cm109_submit_buzz_toggle(struct cm109_dev *dev) { int error; if (dev->buzzer_state) dev->ctl_data->byte[HID_OR0] |= BUZZER_ON; else dev->ctl_data->byte[HID_OR0] &= ~BUZZER_ON; error = usb_submit_urb(dev->urb_ctl, GFP_ATOMIC); if (error) dev_err(&dev->intf->dev, "%s: usb_submit_urb (urb_ctl) failed %d\n", __func__, error); } /* * IRQ handler */ static void cm109_urb_irq_callback(struct urb *urb) { struct cm109_dev *dev = urb->context; const int status = urb->status; int error; unsigned long flags; dev_dbg(&dev->intf->dev, "### URB IRQ: [0x%02x 0x%02x 0x%02x 0x%02x] keybit=0x%02x\n", dev->irq_data->byte[0], dev->irq_data->byte[1], dev->irq_data->byte[2], dev->irq_data->byte[3], dev->keybit); if (status) { if (status == -ESHUTDOWN) return; dev_err_ratelimited(&dev->intf->dev, "%s: urb status %d\n", __func__, status); goto out; } /* Special keys */ cm109_report_special(dev); /* Scan key column */ if (dev->keybit == 0xf) { /* Any changes ? */ if ((dev->gpi & 0xf0) == (dev->irq_data->byte[HID_IR1] & 0xf0)) goto out; dev->gpi = dev->irq_data->byte[HID_IR1] & 0xf0; dev->keybit = 0x1; } else { report_key(dev, dev->keymap[dev->irq_data->byte[HID_IR1]]); dev->keybit <<= 1; if (dev->keybit > 0x8) dev->keybit = 0xf; } out: spin_lock_irqsave(&dev->ctl_submit_lock, flags); dev->irq_urb_pending = 0; if (likely(!dev->shutdown)) { if (dev->buzzer_state) dev->ctl_data->byte[HID_OR0] |= BUZZER_ON; else dev->ctl_data->byte[HID_OR0] &= ~BUZZER_ON; dev->ctl_data->byte[HID_OR1] = dev->keybit; dev->ctl_data->byte[HID_OR2] = dev->keybit; dev->buzzer_pending = 0; dev->ctl_urb_pending = 1; error = usb_submit_urb(dev->urb_ctl, GFP_ATOMIC); if (error) dev_err(&dev->intf->dev, "%s: usb_submit_urb (urb_ctl) failed %d\n", __func__, error); } spin_unlock_irqrestore(&dev->ctl_submit_lock, flags); } static void cm109_urb_ctl_callback(struct urb *urb) { struct cm109_dev *dev = urb->context; const int status = urb->status; int error; unsigned long flags; dev_dbg(&dev->intf->dev, "### URB CTL: [0x%02x 0x%02x 0x%02x 0x%02x]\n", dev->ctl_data->byte[0], dev->ctl_data->byte[1], dev->ctl_data->byte[2], dev->ctl_data->byte[3]); if (status) { if (status == -ESHUTDOWN) return; dev_err_ratelimited(&dev->intf->dev, "%s: urb status %d\n", __func__, status); } spin_lock_irqsave(&dev->ctl_submit_lock, flags); dev->ctl_urb_pending = 0; if (likely(!dev->shutdown)) { if (dev->buzzer_pending || status) { dev->buzzer_pending = 0; dev->ctl_urb_pending = 1; cm109_submit_buzz_toggle(dev); } else if (likely(!dev->irq_urb_pending)) { /* ask for key data */ dev->irq_urb_pending = 1; error = usb_submit_urb(dev->urb_irq, GFP_ATOMIC); if (error) dev_err(&dev->intf->dev, "%s: usb_submit_urb (urb_irq) failed %d\n", __func__, error); } } spin_unlock_irqrestore(&dev->ctl_submit_lock, flags); } static void cm109_toggle_buzzer_async(struct cm109_dev *dev) { unsigned long flags; spin_lock_irqsave(&dev->ctl_submit_lock, flags); if (dev->ctl_urb_pending) { /* URB completion will resubmit */ dev->buzzer_pending = 1; } else { dev->ctl_urb_pending = 1; cm109_submit_buzz_toggle(dev); } spin_unlock_irqrestore(&dev->ctl_submit_lock, flags); } static void cm109_toggle_buzzer_sync(struct cm109_dev *dev, int on) { int error; if (on) dev->ctl_data->byte[HID_OR0] |= BUZZER_ON; else dev->ctl_data->byte[HID_OR0] &= ~BUZZER_ON; error = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, 0), dev->ctl_req->bRequest, dev->ctl_req->bRequestType, le16_to_cpu(dev->ctl_req->wValue), le16_to_cpu(dev->ctl_req->wIndex), dev->ctl_data, USB_PKT_LEN, USB_CTRL_SET_TIMEOUT); if (error < 0 && error != -EINTR) dev_err(&dev->intf->dev, "%s: usb_control_msg() failed %d\n", __func__, error); } static void cm109_stop_traffic(struct cm109_dev *dev) { dev->shutdown = 1; /* * Make sure other CPUs see this */ smp_wmb(); usb_kill_urb(dev->urb_ctl); usb_kill_urb(dev->urb_irq); cm109_toggle_buzzer_sync(dev, 0); dev->shutdown = 0; smp_wmb(); } static void cm109_restore_state(struct cm109_dev *dev) { if (dev->open) { /* * Restore buzzer state. * This will also kick regular URB submission */ cm109_toggle_buzzer_async(dev); } } /****************************************************************************** * input event interface *****************************************************************************/ static int cm109_input_open(struct input_dev *idev) { struct cm109_dev *dev = input_get_drvdata(idev); int error; error = usb_autopm_get_interface(dev->intf); if (error < 0) { dev_err(&idev->dev, "%s - cannot autoresume, result %d\n", __func__, error); return error; } mutex_lock(&dev->pm_mutex); dev->buzzer_state = 0; dev->key_code = -1; /* no keys pressed */ dev->keybit = 0xf; /* issue INIT */ dev->ctl_data->byte[HID_OR0] = HID_OR_GPO_BUZ_SPDIF; dev->ctl_data->byte[HID_OR1] = dev->keybit; dev->ctl_data->byte[HID_OR2] = dev->keybit; dev->ctl_data->byte[HID_OR3] = 0x00; dev->ctl_urb_pending = 1; error = usb_submit_urb(dev->urb_ctl, GFP_KERNEL); if (error) { dev->ctl_urb_pending = 0; dev_err(&dev->intf->dev, "%s: usb_submit_urb (urb_ctl) failed %d\n", __func__, error); } else { dev->open = 1; } mutex_unlock(&dev->pm_mutex); if (error) usb_autopm_put_interface(dev->intf); return error; } static void cm109_input_close(struct input_dev *idev) { struct cm109_dev *dev = input_get_drvdata(idev); mutex_lock(&dev->pm_mutex); /* * Once we are here event delivery is stopped so we * don't need to worry about someone starting buzzer * again */ cm109_stop_traffic(dev); dev->open = 0; mutex_unlock(&dev->pm_mutex); usb_autopm_put_interface(dev->intf); } static int cm109_input_ev(struct input_dev *idev, unsigned int type, unsigned int code, int value) { struct cm109_dev *dev = input_get_drvdata(idev); dev_dbg(&dev->intf->dev, "input_ev: type=%u code=%u value=%d\n", type, code, value); if (type != EV_SND) return -EINVAL; switch (code) { case SND_TONE: case SND_BELL: dev->buzzer_state = !!value; if (!dev->resetting) cm109_toggle_buzzer_async(dev); return 0; default: return -EINVAL; } } /****************************************************************************** * Linux interface and usb initialisation *****************************************************************************/ struct driver_info { char *name; }; static const struct driver_info info_cm109 = { .name = "CM109 USB driver", }; enum { VENDOR_ID = 0x0d8c, /* C-Media Electronics */ PRODUCT_ID_CM109 = 0x000e, /* CM109 defines range 0x0008 - 0x000f */ }; /* table of devices that work with this driver */ static const struct usb_device_id cm109_usb_table[] = { { .match_flags = USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_INT_INFO, .idVendor = VENDOR_ID, .idProduct = PRODUCT_ID_CM109, .bInterfaceClass = USB_CLASS_HID, .bInterfaceSubClass = 0, .bInterfaceProtocol = 0, .driver_info = (kernel_ulong_t) &info_cm109 }, /* you can add more devices here with product ID 0x0008 - 0x000f */ { } }; static void cm109_usb_cleanup(struct cm109_dev *dev) { kfree(dev->ctl_req); usb_free_coherent(dev->udev, USB_PKT_LEN, dev->ctl_data, dev->ctl_dma); usb_free_coherent(dev->udev, USB_PKT_LEN, dev->irq_data, dev->irq_dma); usb_free_urb(dev->urb_irq); /* parameter validation in core/urb */ usb_free_urb(dev->urb_ctl); /* parameter validation in core/urb */ kfree(dev); } static void cm109_usb_disconnect(struct usb_interface *interface) { struct cm109_dev *dev = usb_get_intfdata(interface); usb_set_intfdata(interface, NULL); input_unregister_device(dev->idev); cm109_usb_cleanup(dev); } static int cm109_usb_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(intf); struct driver_info *nfo = (struct driver_info *)id->driver_info; struct usb_host_interface *interface; struct usb_endpoint_descriptor *endpoint; struct cm109_dev *dev; struct input_dev *input_dev = NULL; int ret, pipe, i; int error = -ENOMEM; interface = intf->cur_altsetting; if (interface->desc.bNumEndpoints < 1) return -ENODEV; endpoint = &interface->endpoint[0].desc; if (!usb_endpoint_is_int_in(endpoint)) return -ENODEV; dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) return -ENOMEM; spin_lock_init(&dev->ctl_submit_lock); mutex_init(&dev->pm_mutex); dev->udev = udev; dev->intf = intf; dev->idev = input_dev = input_allocate_device(); if (!input_dev) goto err_out; /* allocate usb buffers */ dev->irq_data = usb_alloc_coherent(udev, USB_PKT_LEN, GFP_KERNEL, &dev->irq_dma); if (!dev->irq_data) goto err_out; dev->ctl_data = usb_alloc_coherent(udev, USB_PKT_LEN, GFP_KERNEL, &dev->ctl_dma); if (!dev->ctl_data) goto err_out; dev->ctl_req = kmalloc(sizeof(*(dev->ctl_req)), GFP_KERNEL); if (!dev->ctl_req) goto err_out; /* allocate urb structures */ dev->urb_irq = usb_alloc_urb(0, GFP_KERNEL); if (!dev->urb_irq) goto err_out; dev->urb_ctl = usb_alloc_urb(0, GFP_KERNEL); if (!dev->urb_ctl) goto err_out; /* get a handle to the interrupt data pipe */ pipe = usb_rcvintpipe(udev, endpoint->bEndpointAddress); ret = usb_maxpacket(udev, pipe); if (ret != USB_PKT_LEN) dev_err(&intf->dev, "invalid payload size %d, expected %d\n", ret, USB_PKT_LEN); /* initialise irq urb */ usb_fill_int_urb(dev->urb_irq, udev, pipe, dev->irq_data, USB_PKT_LEN, cm109_urb_irq_callback, dev, endpoint->bInterval); dev->urb_irq->transfer_dma = dev->irq_dma; dev->urb_irq->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; dev->urb_irq->dev = udev; /* initialise ctl urb */ dev->ctl_req->bRequestType = USB_TYPE_CLASS | USB_RECIP_INTERFACE | USB_DIR_OUT; dev->ctl_req->bRequest = USB_REQ_SET_CONFIGURATION; dev->ctl_req->wValue = cpu_to_le16(0x200); dev->ctl_req->wIndex = cpu_to_le16(interface->desc.bInterfaceNumber); dev->ctl_req->wLength = cpu_to_le16(USB_PKT_LEN); usb_fill_control_urb(dev->urb_ctl, udev, usb_sndctrlpipe(udev, 0), (void *)dev->ctl_req, dev->ctl_data, USB_PKT_LEN, cm109_urb_ctl_callback, dev); dev->urb_ctl->transfer_dma = dev->ctl_dma; dev->urb_ctl->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; dev->urb_ctl->dev = udev; /* find out the physical bus location */ usb_make_path(udev, dev->phys, sizeof(dev->phys)); strlcat(dev->phys, "/input0", sizeof(dev->phys)); /* register settings for the input device */ input_dev->name = nfo->name; input_dev->phys = dev->phys; usb_to_input_id(udev, &input_dev->id); input_dev->dev.parent = &intf->dev; input_set_drvdata(input_dev, dev); input_dev->open = cm109_input_open; input_dev->close = cm109_input_close; input_dev->event = cm109_input_ev; input_dev->keycode = dev->keymap; input_dev->keycodesize = sizeof(unsigned char); input_dev->keycodemax = ARRAY_SIZE(dev->keymap); input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_SND); input_dev->sndbit[0] = BIT_MASK(SND_BELL) | BIT_MASK(SND_TONE); /* register available key events */ for (i = 0; i < KEYMAP_SIZE; i++) { unsigned short k = keymap(i); dev->keymap[i] = k; __set_bit(k, input_dev->keybit); } __clear_bit(KEY_RESERVED, input_dev->keybit); error = input_register_device(dev->idev); if (error) goto err_out; usb_set_intfdata(intf, dev); return 0; err_out: input_free_device(input_dev); cm109_usb_cleanup(dev); return error; } static int cm109_usb_suspend(struct usb_interface *intf, pm_message_t message) { struct cm109_dev *dev = usb_get_intfdata(intf); dev_info(&intf->dev, "cm109: usb_suspend (event=%d)\n", message.event); mutex_lock(&dev->pm_mutex); cm109_stop_traffic(dev); mutex_unlock(&dev->pm_mutex); return 0; } static int cm109_usb_resume(struct usb_interface *intf) { struct cm109_dev *dev = usb_get_intfdata(intf); dev_info(&intf->dev, "cm109: usb_resume\n"); mutex_lock(&dev->pm_mutex); cm109_restore_state(dev); mutex_unlock(&dev->pm_mutex); return 0; } static int cm109_usb_pre_reset(struct usb_interface *intf) { struct cm109_dev *dev = usb_get_intfdata(intf); mutex_lock(&dev->pm_mutex); /* * Make sure input events don't try to toggle buzzer * while we are resetting */ dev->resetting = 1; smp_wmb(); cm109_stop_traffic(dev); return 0; } static int cm109_usb_post_reset(struct usb_interface *intf) { struct cm109_dev *dev = usb_get_intfdata(intf); dev->resetting = 0; smp_wmb(); cm109_restore_state(dev); mutex_unlock(&dev->pm_mutex); return 0; } static struct usb_driver cm109_driver = { .name = "cm109", .probe = cm109_usb_probe, .disconnect = cm109_usb_disconnect, .suspend = cm109_usb_suspend, .resume = cm109_usb_resume, .reset_resume = cm109_usb_resume, .pre_reset = cm109_usb_pre_reset, .post_reset = cm109_usb_post_reset, .id_table = cm109_usb_table, .supports_autosuspend = 1, }; static int __init cm109_select_keymap(void) { /* Load the phone keymap */ if (!strcasecmp(phone, "kip1000")) { keymap = keymap_kip1000; printk(KERN_INFO KBUILD_MODNAME ": " "Keymap for Komunikate KIP1000 phone loaded\n"); } else if (!strcasecmp(phone, "gtalk")) { keymap = keymap_gtalk; printk(KERN_INFO KBUILD_MODNAME ": " "Keymap for Genius G-talk phone loaded\n"); } else if (!strcasecmp(phone, "usbph01")) { keymap = keymap_usbph01; printk(KERN_INFO KBUILD_MODNAME ": " "Keymap for Allied-Telesis Corega USBPH01 phone loaded\n"); } else if (!strcasecmp(phone, "atcom")) { keymap = keymap_atcom; printk(KERN_INFO KBUILD_MODNAME ": " "Keymap for ATCom AU-100 phone loaded\n"); } else { printk(KERN_ERR KBUILD_MODNAME ": " "Unsupported phone: %s\n", phone); return -EINVAL; } return 0; } static int __init cm109_init(void) { int err; err = cm109_select_keymap(); if (err) return err; err = usb_register(&cm109_driver); if (err) return err; printk(KERN_INFO KBUILD_MODNAME ": " DRIVER_DESC ": " DRIVER_VERSION " (C) " DRIVER_AUTHOR "\n"); return 0; } static void __exit cm109_exit(void) { usb_deregister(&cm109_driver); } module_init(cm109_init); module_exit(cm109_exit); MODULE_DEVICE_TABLE(usb, cm109_usb_table); MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_LICENSE("GPL");
linux-master
drivers/input/misc/cm109.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Driver for a keypad w/16 buttons connected to a PCF8574 I2C I/O expander * * Copyright 2005-2008 Analog Devices Inc. */ #include <linux/module.h> #include <linux/input.h> #include <linux/interrupt.h> #include <linux/i2c.h> #include <linux/slab.h> #include <linux/workqueue.h> #define DRV_NAME "pcf8574_keypad" static const unsigned char pcf8574_kp_btncode[] = { [0] = KEY_RESERVED, [1] = KEY_ENTER, [2] = KEY_BACKSLASH, [3] = KEY_0, [4] = KEY_RIGHTBRACE, [5] = KEY_C, [6] = KEY_9, [7] = KEY_8, [8] = KEY_7, [9] = KEY_B, [10] = KEY_6, [11] = KEY_5, [12] = KEY_4, [13] = KEY_A, [14] = KEY_3, [15] = KEY_2, [16] = KEY_1 }; struct kp_data { unsigned short btncode[ARRAY_SIZE(pcf8574_kp_btncode)]; struct input_dev *idev; struct i2c_client *client; char name[64]; char phys[32]; unsigned char laststate; }; static short read_state(struct kp_data *lp) { unsigned char x, y, a, b; i2c_smbus_write_byte(lp->client, 240); x = 0xF & (~(i2c_smbus_read_byte(lp->client) >> 4)); i2c_smbus_write_byte(lp->client, 15); y = 0xF & (~i2c_smbus_read_byte(lp->client)); for (a = 0; x > 0; a++) x = x >> 1; for (b = 0; y > 0; b++) y = y >> 1; return ((a - 1) * 4) + b; } static irqreturn_t pcf8574_kp_irq_handler(int irq, void *dev_id) { struct kp_data *lp = dev_id; unsigned char nextstate = read_state(lp); if (lp->laststate != nextstate) { int key_down = nextstate < ARRAY_SIZE(lp->btncode); unsigned short keycode = key_down ? lp->btncode[nextstate] : lp->btncode[lp->laststate]; input_report_key(lp->idev, keycode, key_down); input_sync(lp->idev); lp->laststate = nextstate; } return IRQ_HANDLED; } static int pcf8574_kp_probe(struct i2c_client *client) { int i, ret; struct input_dev *idev; struct kp_data *lp; if (i2c_smbus_write_byte(client, 240) < 0) { dev_err(&client->dev, "probe: write fail\n"); return -ENODEV; } lp = kzalloc(sizeof(*lp), GFP_KERNEL); if (!lp) return -ENOMEM; idev = input_allocate_device(); if (!idev) { dev_err(&client->dev, "Can't allocate input device\n"); ret = -ENOMEM; goto fail_allocate; } lp->idev = idev; lp->client = client; idev->evbit[0] = BIT_MASK(EV_KEY); idev->keycode = lp->btncode; idev->keycodesize = sizeof(lp->btncode[0]); idev->keycodemax = ARRAY_SIZE(lp->btncode); for (i = 0; i < ARRAY_SIZE(pcf8574_kp_btncode); i++) { if (lp->btncode[i] <= KEY_MAX) { lp->btncode[i] = pcf8574_kp_btncode[i]; __set_bit(lp->btncode[i], idev->keybit); } } __clear_bit(KEY_RESERVED, idev->keybit); sprintf(lp->name, DRV_NAME); sprintf(lp->phys, "kp_data/input0"); idev->name = lp->name; idev->phys = lp->phys; idev->id.bustype = BUS_I2C; idev->id.vendor = 0x0001; idev->id.product = 0x0001; idev->id.version = 0x0100; lp->laststate = read_state(lp); ret = request_threaded_irq(client->irq, NULL, pcf8574_kp_irq_handler, IRQF_TRIGGER_LOW | IRQF_ONESHOT, DRV_NAME, lp); if (ret) { dev_err(&client->dev, "IRQ %d is not free\n", client->irq); goto fail_free_device; } ret = input_register_device(idev); if (ret) { dev_err(&client->dev, "input_register_device() failed\n"); goto fail_free_irq; } i2c_set_clientdata(client, lp); return 0; fail_free_irq: free_irq(client->irq, lp); fail_free_device: input_free_device(idev); fail_allocate: kfree(lp); return ret; } static void pcf8574_kp_remove(struct i2c_client *client) { struct kp_data *lp = i2c_get_clientdata(client); free_irq(client->irq, lp); input_unregister_device(lp->idev); kfree(lp); } static int pcf8574_kp_resume(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); enable_irq(client->irq); return 0; } static int pcf8574_kp_suspend(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); disable_irq(client->irq); return 0; } static DEFINE_SIMPLE_DEV_PM_OPS(pcf8574_kp_pm_ops, pcf8574_kp_suspend, pcf8574_kp_resume); static const struct i2c_device_id pcf8574_kp_id[] = { { DRV_NAME, 0 }, { } }; MODULE_DEVICE_TABLE(i2c, pcf8574_kp_id); static struct i2c_driver pcf8574_kp_driver = { .driver = { .name = DRV_NAME, .pm = pm_sleep_ptr(&pcf8574_kp_pm_ops), }, .probe = pcf8574_kp_probe, .remove = pcf8574_kp_remove, .id_table = pcf8574_kp_id, }; module_i2c_driver(pcf8574_kp_driver); MODULE_AUTHOR("Michael Hennerich"); MODULE_DESCRIPTION("Keypad input driver for 16 keys connected to PCF8574"); MODULE_LICENSE("GPL");
linux-master
drivers/input/misc/pcf8574_keypad.c
// SPDX-License-Identifier: GPL-2.0-only /* * DRV2665 haptics driver family * * Author: Dan Murphy <[email protected]> * * Copyright: (C) 2015 Texas Instruments, Inc. */ #include <linux/i2c.h> #include <linux/input.h> #include <linux/module.h> #include <linux/regmap.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/regulator/consumer.h> /* Contol registers */ #define DRV2665_STATUS 0x00 #define DRV2665_CTRL_1 0x01 #define DRV2665_CTRL_2 0x02 #define DRV2665_FIFO 0x0b /* Status Register */ #define DRV2665_FIFO_FULL BIT(0) #define DRV2665_FIFO_EMPTY BIT(1) /* Control 1 Register */ #define DRV2665_25_VPP_GAIN 0x00 #define DRV2665_50_VPP_GAIN 0x01 #define DRV2665_75_VPP_GAIN 0x02 #define DRV2665_100_VPP_GAIN 0x03 #define DRV2665_DIGITAL_IN 0xfc #define DRV2665_ANALOG_IN BIT(2) /* Control 2 Register */ #define DRV2665_BOOST_EN BIT(1) #define DRV2665_STANDBY BIT(6) #define DRV2665_DEV_RST BIT(7) #define DRV2665_5_MS_IDLE_TOUT 0x00 #define DRV2665_10_MS_IDLE_TOUT 0x04 #define DRV2665_15_MS_IDLE_TOUT 0x08 #define DRV2665_20_MS_IDLE_TOUT 0x0c /** * struct drv2665_data - * @input_dev: Pointer to the input device * @client: Pointer to the I2C client * @regmap: Register map of the device * @work: Work item used to off load the enable/disable of the vibration * @regulator: Pointer to the regulator for the IC */ struct drv2665_data { struct input_dev *input_dev; struct i2c_client *client; struct regmap *regmap; struct work_struct work; struct regulator *regulator; }; /* 8kHz Sine wave to stream to the FIFO */ static const u8 drv2665_sine_wave_form[] = { 0x00, 0x10, 0x20, 0x2e, 0x3c, 0x48, 0x53, 0x5b, 0x61, 0x65, 0x66, 0x65, 0x61, 0x5b, 0x53, 0x48, 0x3c, 0x2e, 0x20, 0x10, 0x00, 0xf0, 0xe0, 0xd2, 0xc4, 0xb8, 0xad, 0xa5, 0x9f, 0x9b, 0x9a, 0x9b, 0x9f, 0xa5, 0xad, 0xb8, 0xc4, 0xd2, 0xe0, 0xf0, 0x00, }; static const struct reg_default drv2665_reg_defs[] = { { DRV2665_STATUS, 0x02 }, { DRV2665_CTRL_1, 0x28 }, { DRV2665_CTRL_2, 0x40 }, { DRV2665_FIFO, 0x00 }, }; static void drv2665_worker(struct work_struct *work) { struct drv2665_data *haptics = container_of(work, struct drv2665_data, work); unsigned int read_buf; int error; error = regmap_read(haptics->regmap, DRV2665_STATUS, &read_buf); if (error) { dev_err(&haptics->client->dev, "Failed to read status: %d\n", error); return; } if (read_buf & DRV2665_FIFO_EMPTY) { error = regmap_bulk_write(haptics->regmap, DRV2665_FIFO, drv2665_sine_wave_form, ARRAY_SIZE(drv2665_sine_wave_form)); if (error) { dev_err(&haptics->client->dev, "Failed to write FIFO: %d\n", error); return; } } } static int drv2665_haptics_play(struct input_dev *input, void *data, struct ff_effect *effect) { struct drv2665_data *haptics = input_get_drvdata(input); schedule_work(&haptics->work); return 0; } static void drv2665_close(struct input_dev *input) { struct drv2665_data *haptics = input_get_drvdata(input); int error; cancel_work_sync(&haptics->work); error = regmap_update_bits(haptics->regmap, DRV2665_CTRL_2, DRV2665_STANDBY, DRV2665_STANDBY); if (error) dev_err(&haptics->client->dev, "Failed to enter standby mode: %d\n", error); } static const struct reg_sequence drv2665_init_regs[] = { { DRV2665_CTRL_2, 0 | DRV2665_10_MS_IDLE_TOUT }, { DRV2665_CTRL_1, DRV2665_25_VPP_GAIN }, }; static int drv2665_init(struct drv2665_data *haptics) { int error; error = regmap_register_patch(haptics->regmap, drv2665_init_regs, ARRAY_SIZE(drv2665_init_regs)); if (error) { dev_err(&haptics->client->dev, "Failed to write init registers: %d\n", error); return error; } return 0; } static const struct regmap_config drv2665_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = DRV2665_FIFO, .reg_defaults = drv2665_reg_defs, .num_reg_defaults = ARRAY_SIZE(drv2665_reg_defs), .cache_type = REGCACHE_NONE, }; static int drv2665_probe(struct i2c_client *client) { struct drv2665_data *haptics; int error; haptics = devm_kzalloc(&client->dev, sizeof(*haptics), GFP_KERNEL); if (!haptics) return -ENOMEM; haptics->regulator = devm_regulator_get(&client->dev, "vbat"); if (IS_ERR(haptics->regulator)) { error = PTR_ERR(haptics->regulator); dev_err(&client->dev, "unable to get regulator, error: %d\n", error); return error; } haptics->input_dev = devm_input_allocate_device(&client->dev); if (!haptics->input_dev) { dev_err(&client->dev, "Failed to allocate input device\n"); return -ENOMEM; } haptics->input_dev->name = "drv2665:haptics"; haptics->input_dev->dev.parent = client->dev.parent; haptics->input_dev->close = drv2665_close; input_set_drvdata(haptics->input_dev, haptics); input_set_capability(haptics->input_dev, EV_FF, FF_RUMBLE); error = input_ff_create_memless(haptics->input_dev, NULL, drv2665_haptics_play); if (error) { dev_err(&client->dev, "input_ff_create() failed: %d\n", error); return error; } INIT_WORK(&haptics->work, drv2665_worker); haptics->client = client; i2c_set_clientdata(client, haptics); haptics->regmap = devm_regmap_init_i2c(client, &drv2665_regmap_config); if (IS_ERR(haptics->regmap)) { error = PTR_ERR(haptics->regmap); dev_err(&client->dev, "Failed to allocate register map: %d\n", error); return error; } error = drv2665_init(haptics); if (error) { dev_err(&client->dev, "Device init failed: %d\n", error); return error; } error = input_register_device(haptics->input_dev); if (error) { dev_err(&client->dev, "couldn't register input device: %d\n", error); return error; } return 0; } static int drv2665_suspend(struct device *dev) { struct drv2665_data *haptics = dev_get_drvdata(dev); int ret = 0; mutex_lock(&haptics->input_dev->mutex); if (input_device_enabled(haptics->input_dev)) { ret = regmap_update_bits(haptics->regmap, DRV2665_CTRL_2, DRV2665_STANDBY, DRV2665_STANDBY); if (ret) { dev_err(dev, "Failed to set standby mode\n"); regulator_disable(haptics->regulator); goto out; } ret = regulator_disable(haptics->regulator); if (ret) { dev_err(dev, "Failed to disable regulator\n"); regmap_update_bits(haptics->regmap, DRV2665_CTRL_2, DRV2665_STANDBY, 0); } } out: mutex_unlock(&haptics->input_dev->mutex); return ret; } static int drv2665_resume(struct device *dev) { struct drv2665_data *haptics = dev_get_drvdata(dev); int ret = 0; mutex_lock(&haptics->input_dev->mutex); if (input_device_enabled(haptics->input_dev)) { ret = regulator_enable(haptics->regulator); if (ret) { dev_err(dev, "Failed to enable regulator\n"); goto out; } ret = regmap_update_bits(haptics->regmap, DRV2665_CTRL_2, DRV2665_STANDBY, 0); if (ret) { dev_err(dev, "Failed to unset standby mode\n"); regulator_disable(haptics->regulator); goto out; } } out: mutex_unlock(&haptics->input_dev->mutex); return ret; } static DEFINE_SIMPLE_DEV_PM_OPS(drv2665_pm_ops, drv2665_suspend, drv2665_resume); static const struct i2c_device_id drv2665_id[] = { { "drv2665", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, drv2665_id); #ifdef CONFIG_OF static const struct of_device_id drv2665_of_match[] = { { .compatible = "ti,drv2665", }, { } }; MODULE_DEVICE_TABLE(of, drv2665_of_match); #endif static struct i2c_driver drv2665_driver = { .probe = drv2665_probe, .driver = { .name = "drv2665-haptics", .of_match_table = of_match_ptr(drv2665_of_match), .pm = pm_sleep_ptr(&drv2665_pm_ops), }, .id_table = drv2665_id, }; module_i2c_driver(drv2665_driver); MODULE_DESCRIPTION("TI DRV2665 haptics driver"); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Dan Murphy <[email protected]>");
linux-master
drivers/input/misc/drv2665.c
// SPDX-License-Identifier: GPL-2.0-only /* * Atmel Atmegaxx Capacitive Touch Button Driver * * Copyright (C) 2016 Google, inc. */ /* * It's irrelevant that the HW used to develop captouch driver is based * on Atmega88PA part and uses QtouchADC parts for sensing touch. * Calling this driver "captouch" is an arbitrary way to distinguish * the protocol this driver supported by other atmel/qtouch drivers. * * Captouch driver supports a newer/different version of the I2C * registers/commands than the qt1070.c driver. * Don't let the similarity of the general driver structure fool you. * * For raw i2c access from userspace, use i2cset/i2cget * to poke at /dev/i2c-N devices. */ #include <linux/device.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/i2c.h> #include <linux/input.h> #include <linux/interrupt.h> #include <linux/slab.h> /* Maximum number of buttons supported */ #define MAX_NUM_OF_BUTTONS 8 /* Registers */ #define REG_KEY1_THRESHOLD 0x02 #define REG_KEY2_THRESHOLD 0x03 #define REG_KEY3_THRESHOLD 0x04 #define REG_KEY4_THRESHOLD 0x05 #define REG_KEY1_REF_H 0x20 #define REG_KEY1_REF_L 0x21 #define REG_KEY2_REF_H 0x22 #define REG_KEY2_REF_L 0x23 #define REG_KEY3_REF_H 0x24 #define REG_KEY3_REF_L 0x25 #define REG_KEY4_REF_H 0x26 #define REG_KEY4_REF_L 0x27 #define REG_KEY1_DLT_H 0x30 #define REG_KEY1_DLT_L 0x31 #define REG_KEY2_DLT_H 0x32 #define REG_KEY2_DLT_L 0x33 #define REG_KEY3_DLT_H 0x34 #define REG_KEY3_DLT_L 0x35 #define REG_KEY4_DLT_H 0x36 #define REG_KEY4_DLT_L 0x37 #define REG_KEY_STATE 0x3C /* * @i2c_client: I2C slave device client pointer * @input: Input device pointer * @num_btn: Number of buttons * @keycodes: map of button# to KeyCode * @prev_btn: Previous key state to detect button "press" or "release" * @xfer_buf: I2C transfer buffer */ struct atmel_captouch_device { struct i2c_client *client; struct input_dev *input; u32 num_btn; u32 keycodes[MAX_NUM_OF_BUTTONS]; u8 prev_btn; u8 xfer_buf[8] ____cacheline_aligned; }; /* * Read from I2C slave device * The protocol is that the client has to provide both the register address * and the length, and while reading back the device would prepend the data * with address and length for verification. */ static int atmel_read(struct atmel_captouch_device *capdev, u8 reg, u8 *data, size_t len) { struct i2c_client *client = capdev->client; struct device *dev = &client->dev; struct i2c_msg msg[2]; int err; if (len > sizeof(capdev->xfer_buf) - 2) return -EINVAL; capdev->xfer_buf[0] = reg; capdev->xfer_buf[1] = len; msg[0].addr = client->addr; msg[0].flags = 0; msg[0].buf = capdev->xfer_buf; msg[0].len = 2; msg[1].addr = client->addr; msg[1].flags = I2C_M_RD; msg[1].buf = capdev->xfer_buf; msg[1].len = len + 2; err = i2c_transfer(client->adapter, msg, ARRAY_SIZE(msg)); if (err != ARRAY_SIZE(msg)) return err < 0 ? err : -EIO; if (capdev->xfer_buf[0] != reg) { dev_err(dev, "I2C read error: register address does not match (%#02x vs %02x)\n", capdev->xfer_buf[0], reg); return -ECOMM; } memcpy(data, &capdev->xfer_buf[2], len); return 0; } /* * Handle interrupt and report the key changes to the input system. * Multi-touch can be supported; however, it really depends on whether * the device can multi-touch. */ static irqreturn_t atmel_captouch_isr(int irq, void *data) { struct atmel_captouch_device *capdev = data; struct device *dev = &capdev->client->dev; int error; int i; u8 new_btn; u8 changed_btn; error = atmel_read(capdev, REG_KEY_STATE, &new_btn, 1); if (error) { dev_err(dev, "failed to read button state: %d\n", error); goto out; } dev_dbg(dev, "%s: button state %#02x\n", __func__, new_btn); changed_btn = new_btn ^ capdev->prev_btn; capdev->prev_btn = new_btn; for (i = 0; i < capdev->num_btn; i++) { if (changed_btn & BIT(i)) input_report_key(capdev->input, capdev->keycodes[i], new_btn & BIT(i)); } input_sync(capdev->input); out: return IRQ_HANDLED; } /* * Probe function to setup the device, input system and interrupt */ static int atmel_captouch_probe(struct i2c_client *client) { struct atmel_captouch_device *capdev; struct device *dev = &client->dev; struct device_node *node; int i; int err; if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_WORD_DATA | I2C_FUNC_SMBUS_I2C_BLOCK)) { dev_err(dev, "needed i2c functionality is not supported\n"); return -EINVAL; } capdev = devm_kzalloc(dev, sizeof(*capdev), GFP_KERNEL); if (!capdev) return -ENOMEM; capdev->client = client; err = atmel_read(capdev, REG_KEY_STATE, &capdev->prev_btn, sizeof(capdev->prev_btn)); if (err) { dev_err(dev, "failed to read initial button state: %d\n", err); return err; } capdev->input = devm_input_allocate_device(dev); if (!capdev->input) { dev_err(dev, "failed to allocate input device\n"); return -ENOMEM; } capdev->input->id.bustype = BUS_I2C; capdev->input->id.product = 0x880A; capdev->input->id.version = 0; capdev->input->name = "ATMegaXX Capacitive Button Controller"; __set_bit(EV_KEY, capdev->input->evbit); node = dev->of_node; if (!node) { dev_err(dev, "failed to find matching node in device tree\n"); return -EINVAL; } if (of_property_read_bool(node, "autorepeat")) __set_bit(EV_REP, capdev->input->evbit); capdev->num_btn = of_property_count_u32_elems(node, "linux,keymap"); if (capdev->num_btn > MAX_NUM_OF_BUTTONS) capdev->num_btn = MAX_NUM_OF_BUTTONS; err = of_property_read_u32_array(node, "linux,keycodes", capdev->keycodes, capdev->num_btn); if (err) { dev_err(dev, "failed to read linux,keycode property: %d\n", err); return err; } for (i = 0; i < capdev->num_btn; i++) __set_bit(capdev->keycodes[i], capdev->input->keybit); capdev->input->keycode = capdev->keycodes; capdev->input->keycodesize = sizeof(capdev->keycodes[0]); capdev->input->keycodemax = capdev->num_btn; err = input_register_device(capdev->input); if (err) return err; err = devm_request_threaded_irq(dev, client->irq, NULL, atmel_captouch_isr, IRQF_ONESHOT, "atmel_captouch", capdev); if (err) { dev_err(dev, "failed to request irq %d: %d\n", client->irq, err); return err; } return 0; } static const struct of_device_id atmel_captouch_of_id[] = { { .compatible = "atmel,captouch", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, atmel_captouch_of_id); static const struct i2c_device_id atmel_captouch_id[] = { { "atmel_captouch", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, atmel_captouch_id); static struct i2c_driver atmel_captouch_driver = { .probe = atmel_captouch_probe, .id_table = atmel_captouch_id, .driver = { .name = "atmel_captouch", .of_match_table = atmel_captouch_of_id, }, }; module_i2c_driver(atmel_captouch_driver); /* Module information */ MODULE_AUTHOR("Hung-yu Wu <[email protected]>"); MODULE_DESCRIPTION("Atmel ATmegaXX Capacitance Touch Sensor I2C Driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/input/misc/atmel_captouch.c
// SPDX-License-Identifier: GPL-2.0-only /* * DRV260X haptics driver family * * Author: Dan Murphy <[email protected]> * * Copyright: (C) 2014 Texas Instruments, Inc. */ #include <linux/i2c.h> #include <linux/input.h> #include <linux/module.h> #include <linux/regmap.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/gpio/consumer.h> #include <linux/regulator/consumer.h> #include <dt-bindings/input/ti-drv260x.h> #define DRV260X_STATUS 0x0 #define DRV260X_MODE 0x1 #define DRV260X_RT_PB_IN 0x2 #define DRV260X_LIB_SEL 0x3 #define DRV260X_WV_SEQ_1 0x4 #define DRV260X_WV_SEQ_2 0x5 #define DRV260X_WV_SEQ_3 0x6 #define DRV260X_WV_SEQ_4 0x7 #define DRV260X_WV_SEQ_5 0x8 #define DRV260X_WV_SEQ_6 0x9 #define DRV260X_WV_SEQ_7 0xa #define DRV260X_WV_SEQ_8 0xb #define DRV260X_GO 0xc #define DRV260X_OVERDRIVE_OFF 0xd #define DRV260X_SUSTAIN_P_OFF 0xe #define DRV260X_SUSTAIN_N_OFF 0xf #define DRV260X_BRAKE_OFF 0x10 #define DRV260X_A_TO_V_CTRL 0x11 #define DRV260X_A_TO_V_MIN_INPUT 0x12 #define DRV260X_A_TO_V_MAX_INPUT 0x13 #define DRV260X_A_TO_V_MIN_OUT 0x14 #define DRV260X_A_TO_V_MAX_OUT 0x15 #define DRV260X_RATED_VOLT 0x16 #define DRV260X_OD_CLAMP_VOLT 0x17 #define DRV260X_CAL_COMP 0x18 #define DRV260X_CAL_BACK_EMF 0x19 #define DRV260X_FEEDBACK_CTRL 0x1a #define DRV260X_CTRL1 0x1b #define DRV260X_CTRL2 0x1c #define DRV260X_CTRL3 0x1d #define DRV260X_CTRL4 0x1e #define DRV260X_CTRL5 0x1f #define DRV260X_LRA_LOOP_PERIOD 0x20 #define DRV260X_VBAT_MON 0x21 #define DRV260X_LRA_RES_PERIOD 0x22 #define DRV260X_MAX_REG 0x23 #define DRV260X_GO_BIT 0x01 /* Library Selection */ #define DRV260X_LIB_SEL_MASK 0x07 #define DRV260X_LIB_SEL_RAM 0x0 #define DRV260X_LIB_SEL_OD 0x1 #define DRV260X_LIB_SEL_40_60 0x2 #define DRV260X_LIB_SEL_60_80 0x3 #define DRV260X_LIB_SEL_100_140 0x4 #define DRV260X_LIB_SEL_140_PLUS 0x5 #define DRV260X_LIB_SEL_HIZ_MASK 0x10 #define DRV260X_LIB_SEL_HIZ_EN 0x01 #define DRV260X_LIB_SEL_HIZ_DIS 0 /* Mode register */ #define DRV260X_STANDBY (1 << 6) #define DRV260X_STANDBY_MASK 0x40 #define DRV260X_INTERNAL_TRIGGER 0x00 #define DRV260X_EXT_TRIGGER_EDGE 0x01 #define DRV260X_EXT_TRIGGER_LEVEL 0x02 #define DRV260X_PWM_ANALOG_IN 0x03 #define DRV260X_AUDIOHAPTIC 0x04 #define DRV260X_RT_PLAYBACK 0x05 #define DRV260X_DIAGNOSTICS 0x06 #define DRV260X_AUTO_CAL 0x07 /* Audio to Haptics Control */ #define DRV260X_AUDIO_HAPTICS_PEAK_10MS (0 << 2) #define DRV260X_AUDIO_HAPTICS_PEAK_20MS (1 << 2) #define DRV260X_AUDIO_HAPTICS_PEAK_30MS (2 << 2) #define DRV260X_AUDIO_HAPTICS_PEAK_40MS (3 << 2) #define DRV260X_AUDIO_HAPTICS_FILTER_100HZ 0x00 #define DRV260X_AUDIO_HAPTICS_FILTER_125HZ 0x01 #define DRV260X_AUDIO_HAPTICS_FILTER_150HZ 0x02 #define DRV260X_AUDIO_HAPTICS_FILTER_200HZ 0x03 /* Min/Max Input/Output Voltages */ #define DRV260X_AUDIO_HAPTICS_MIN_IN_VOLT 0x19 #define DRV260X_AUDIO_HAPTICS_MAX_IN_VOLT 0x64 #define DRV260X_AUDIO_HAPTICS_MIN_OUT_VOLT 0x19 #define DRV260X_AUDIO_HAPTICS_MAX_OUT_VOLT 0xFF /* Feedback register */ #define DRV260X_FB_REG_ERM_MODE 0x7f #define DRV260X_FB_REG_LRA_MODE (1 << 7) #define DRV260X_BRAKE_FACTOR_MASK 0x1f #define DRV260X_BRAKE_FACTOR_2X (1 << 0) #define DRV260X_BRAKE_FACTOR_3X (2 << 4) #define DRV260X_BRAKE_FACTOR_4X (3 << 4) #define DRV260X_BRAKE_FACTOR_6X (4 << 4) #define DRV260X_BRAKE_FACTOR_8X (5 << 4) #define DRV260X_BRAKE_FACTOR_16 (6 << 4) #define DRV260X_BRAKE_FACTOR_DIS (7 << 4) #define DRV260X_LOOP_GAIN_LOW 0xf3 #define DRV260X_LOOP_GAIN_MED (1 << 2) #define DRV260X_LOOP_GAIN_HIGH (2 << 2) #define DRV260X_LOOP_GAIN_VERY_HIGH (3 << 2) #define DRV260X_BEMF_GAIN_0 0xfc #define DRV260X_BEMF_GAIN_1 (1 << 0) #define DRV260X_BEMF_GAIN_2 (2 << 0) #define DRV260X_BEMF_GAIN_3 (3 << 0) /* Control 1 register */ #define DRV260X_AC_CPLE_EN (1 << 5) #define DRV260X_STARTUP_BOOST (1 << 7) /* Control 2 register */ #define DRV260X_IDISS_TIME_45 0 #define DRV260X_IDISS_TIME_75 (1 << 0) #define DRV260X_IDISS_TIME_150 (1 << 1) #define DRV260X_IDISS_TIME_225 0x03 #define DRV260X_BLANK_TIME_45 (0 << 2) #define DRV260X_BLANK_TIME_75 (1 << 2) #define DRV260X_BLANK_TIME_150 (2 << 2) #define DRV260X_BLANK_TIME_225 (3 << 2) #define DRV260X_SAMP_TIME_150 (0 << 4) #define DRV260X_SAMP_TIME_200 (1 << 4) #define DRV260X_SAMP_TIME_250 (2 << 4) #define DRV260X_SAMP_TIME_300 (3 << 4) #define DRV260X_BRAKE_STABILIZER (1 << 6) #define DRV260X_UNIDIR_IN (0 << 7) #define DRV260X_BIDIR_IN (1 << 7) /* Control 3 Register */ #define DRV260X_LRA_OPEN_LOOP (1 << 0) #define DRV260X_ANALOG_IN (1 << 1) #define DRV260X_LRA_DRV_MODE (1 << 2) #define DRV260X_RTP_UNSIGNED_DATA (1 << 3) #define DRV260X_SUPPLY_COMP_DIS (1 << 4) #define DRV260X_ERM_OPEN_LOOP (1 << 5) #define DRV260X_NG_THRESH_0 (0 << 6) #define DRV260X_NG_THRESH_2 (1 << 6) #define DRV260X_NG_THRESH_4 (2 << 6) #define DRV260X_NG_THRESH_8 (3 << 6) /* Control 4 Register */ #define DRV260X_AUTOCAL_TIME_150MS (0 << 4) #define DRV260X_AUTOCAL_TIME_250MS (1 << 4) #define DRV260X_AUTOCAL_TIME_500MS (2 << 4) #define DRV260X_AUTOCAL_TIME_1000MS (3 << 4) /** * struct drv260x_data - * @input_dev: Pointer to the input device * @client: Pointer to the I2C client * @regmap: Register map of the device * @work: Work item used to off load the enable/disable of the vibration * @enable_gpio: Pointer to the gpio used for enable/disabling * @regulator: Pointer to the regulator for the IC * @magnitude: Magnitude of the vibration event * @mode: The operating mode of the IC (LRA_NO_CAL, ERM or LRA) * @library: The vibration library to be used * @rated_voltage: The rated_voltage of the actuator * @overdrive_voltage: The over drive voltage of the actuator **/ struct drv260x_data { struct input_dev *input_dev; struct i2c_client *client; struct regmap *regmap; struct work_struct work; struct gpio_desc *enable_gpio; struct regulator *regulator; u8 magnitude; u32 mode; u32 library; int rated_voltage; int overdrive_voltage; }; #define DRV260X_DEF_RATED_VOLT 0x90 #define DRV260X_DEF_OD_CLAMP_VOLT 0x90 /* * Rated and Overdriver Voltages: * Calculated using the formula r = v * 255 / 5.6 * where r is what will be written to the register * and v is the rated or overdriver voltage of the actuator */ static int drv260x_calculate_voltage(unsigned int voltage) { return (voltage * 255 / 5600); } static void drv260x_worker(struct work_struct *work) { struct drv260x_data *haptics = container_of(work, struct drv260x_data, work); int error; gpiod_set_value(haptics->enable_gpio, 1); /* Data sheet says to wait 250us before trying to communicate */ udelay(250); error = regmap_write(haptics->regmap, DRV260X_MODE, DRV260X_RT_PLAYBACK); if (error) { dev_err(&haptics->client->dev, "Failed to write set mode: %d\n", error); } else { error = regmap_write(haptics->regmap, DRV260X_RT_PB_IN, haptics->magnitude); if (error) dev_err(&haptics->client->dev, "Failed to set magnitude: %d\n", error); } } static int drv260x_haptics_play(struct input_dev *input, void *data, struct ff_effect *effect) { struct drv260x_data *haptics = input_get_drvdata(input); haptics->mode = DRV260X_LRA_NO_CAL_MODE; /* Scale u16 magnitude into u8 register value */ if (effect->u.rumble.strong_magnitude > 0) haptics->magnitude = effect->u.rumble.strong_magnitude >> 8; else if (effect->u.rumble.weak_magnitude > 0) haptics->magnitude = effect->u.rumble.weak_magnitude >> 8; else haptics->magnitude = 0; schedule_work(&haptics->work); return 0; } static void drv260x_close(struct input_dev *input) { struct drv260x_data *haptics = input_get_drvdata(input); int error; cancel_work_sync(&haptics->work); error = regmap_write(haptics->regmap, DRV260X_MODE, DRV260X_STANDBY); if (error) dev_err(&haptics->client->dev, "Failed to enter standby mode: %d\n", error); gpiod_set_value(haptics->enable_gpio, 0); } static const struct reg_sequence drv260x_lra_cal_regs[] = { { DRV260X_MODE, DRV260X_AUTO_CAL }, { DRV260X_CTRL3, DRV260X_NG_THRESH_2 | DRV260X_RTP_UNSIGNED_DATA }, { DRV260X_FEEDBACK_CTRL, DRV260X_FB_REG_LRA_MODE | DRV260X_BRAKE_FACTOR_4X | DRV260X_LOOP_GAIN_HIGH }, }; static const struct reg_sequence drv260x_lra_init_regs[] = { { DRV260X_MODE, DRV260X_RT_PLAYBACK }, { DRV260X_A_TO_V_CTRL, DRV260X_AUDIO_HAPTICS_PEAK_20MS | DRV260X_AUDIO_HAPTICS_FILTER_125HZ }, { DRV260X_A_TO_V_MIN_INPUT, DRV260X_AUDIO_HAPTICS_MIN_IN_VOLT }, { DRV260X_A_TO_V_MAX_INPUT, DRV260X_AUDIO_HAPTICS_MAX_IN_VOLT }, { DRV260X_A_TO_V_MIN_OUT, DRV260X_AUDIO_HAPTICS_MIN_OUT_VOLT }, { DRV260X_A_TO_V_MAX_OUT, DRV260X_AUDIO_HAPTICS_MAX_OUT_VOLT }, { DRV260X_FEEDBACK_CTRL, DRV260X_FB_REG_LRA_MODE | DRV260X_BRAKE_FACTOR_2X | DRV260X_LOOP_GAIN_MED | DRV260X_BEMF_GAIN_3 }, { DRV260X_CTRL1, DRV260X_STARTUP_BOOST }, { DRV260X_CTRL2, DRV260X_SAMP_TIME_250 }, { DRV260X_CTRL3, DRV260X_NG_THRESH_2 | DRV260X_RTP_UNSIGNED_DATA | DRV260X_ANALOG_IN }, { DRV260X_CTRL4, DRV260X_AUTOCAL_TIME_500MS }, }; static const struct reg_sequence drv260x_erm_cal_regs[] = { { DRV260X_MODE, DRV260X_AUTO_CAL }, { DRV260X_A_TO_V_MIN_INPUT, DRV260X_AUDIO_HAPTICS_MIN_IN_VOLT }, { DRV260X_A_TO_V_MAX_INPUT, DRV260X_AUDIO_HAPTICS_MAX_IN_VOLT }, { DRV260X_A_TO_V_MIN_OUT, DRV260X_AUDIO_HAPTICS_MIN_OUT_VOLT }, { DRV260X_A_TO_V_MAX_OUT, DRV260X_AUDIO_HAPTICS_MAX_OUT_VOLT }, { DRV260X_FEEDBACK_CTRL, DRV260X_BRAKE_FACTOR_3X | DRV260X_LOOP_GAIN_MED | DRV260X_BEMF_GAIN_2 }, { DRV260X_CTRL1, DRV260X_STARTUP_BOOST }, { DRV260X_CTRL2, DRV260X_SAMP_TIME_250 | DRV260X_BLANK_TIME_75 | DRV260X_IDISS_TIME_75 }, { DRV260X_CTRL3, DRV260X_NG_THRESH_2 | DRV260X_RTP_UNSIGNED_DATA }, { DRV260X_CTRL4, DRV260X_AUTOCAL_TIME_500MS }, }; static int drv260x_init(struct drv260x_data *haptics) { int error; unsigned int cal_buf; error = regmap_write(haptics->regmap, DRV260X_RATED_VOLT, haptics->rated_voltage); if (error) { dev_err(&haptics->client->dev, "Failed to write DRV260X_RATED_VOLT register: %d\n", error); return error; } error = regmap_write(haptics->regmap, DRV260X_OD_CLAMP_VOLT, haptics->overdrive_voltage); if (error) { dev_err(&haptics->client->dev, "Failed to write DRV260X_OD_CLAMP_VOLT register: %d\n", error); return error; } switch (haptics->mode) { case DRV260X_LRA_MODE: error = regmap_register_patch(haptics->regmap, drv260x_lra_cal_regs, ARRAY_SIZE(drv260x_lra_cal_regs)); if (error) { dev_err(&haptics->client->dev, "Failed to write LRA calibration registers: %d\n", error); return error; } break; case DRV260X_ERM_MODE: error = regmap_register_patch(haptics->regmap, drv260x_erm_cal_regs, ARRAY_SIZE(drv260x_erm_cal_regs)); if (error) { dev_err(&haptics->client->dev, "Failed to write ERM calibration registers: %d\n", error); return error; } error = regmap_update_bits(haptics->regmap, DRV260X_LIB_SEL, DRV260X_LIB_SEL_MASK, haptics->library); if (error) { dev_err(&haptics->client->dev, "Failed to write DRV260X_LIB_SEL register: %d\n", error); return error; } break; default: error = regmap_register_patch(haptics->regmap, drv260x_lra_init_regs, ARRAY_SIZE(drv260x_lra_init_regs)); if (error) { dev_err(&haptics->client->dev, "Failed to write LRA init registers: %d\n", error); return error; } error = regmap_update_bits(haptics->regmap, DRV260X_LIB_SEL, DRV260X_LIB_SEL_MASK, haptics->library); if (error) { dev_err(&haptics->client->dev, "Failed to write DRV260X_LIB_SEL register: %d\n", error); return error; } /* No need to set GO bit here */ return 0; } error = regmap_write(haptics->regmap, DRV260X_GO, DRV260X_GO_BIT); if (error) { dev_err(&haptics->client->dev, "Failed to write GO register: %d\n", error); return error; } do { usleep_range(15000, 15500); error = regmap_read(haptics->regmap, DRV260X_GO, &cal_buf); if (error) { dev_err(&haptics->client->dev, "Failed to read GO register: %d\n", error); return error; } } while (cal_buf == DRV260X_GO_BIT); return 0; } static const struct regmap_config drv260x_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = DRV260X_MAX_REG, .cache_type = REGCACHE_NONE, }; static int drv260x_probe(struct i2c_client *client) { struct device *dev = &client->dev; struct drv260x_data *haptics; u32 voltage; int error; haptics = devm_kzalloc(dev, sizeof(*haptics), GFP_KERNEL); if (!haptics) return -ENOMEM; error = device_property_read_u32(dev, "mode", &haptics->mode); if (error) { dev_err(dev, "Can't fetch 'mode' property: %d\n", error); return error; } if (haptics->mode < DRV260X_LRA_MODE || haptics->mode > DRV260X_ERM_MODE) { dev_err(dev, "Vibrator mode is invalid: %i\n", haptics->mode); return -EINVAL; } error = device_property_read_u32(dev, "library-sel", &haptics->library); if (error) { dev_err(dev, "Can't fetch 'library-sel' property: %d\n", error); return error; } if (haptics->library < DRV260X_LIB_EMPTY || haptics->library > DRV260X_ERM_LIB_F) { dev_err(dev, "Library value is invalid: %i\n", haptics->library); return -EINVAL; } if (haptics->mode == DRV260X_LRA_MODE && haptics->library != DRV260X_LIB_EMPTY && haptics->library != DRV260X_LIB_LRA) { dev_err(dev, "LRA Mode with ERM Library mismatch\n"); return -EINVAL; } if (haptics->mode == DRV260X_ERM_MODE && (haptics->library == DRV260X_LIB_EMPTY || haptics->library == DRV260X_LIB_LRA)) { dev_err(dev, "ERM Mode with LRA Library mismatch\n"); return -EINVAL; } error = device_property_read_u32(dev, "vib-rated-mv", &voltage); haptics->rated_voltage = error ? DRV260X_DEF_RATED_VOLT : drv260x_calculate_voltage(voltage); error = device_property_read_u32(dev, "vib-overdrive-mv", &voltage); haptics->overdrive_voltage = error ? DRV260X_DEF_OD_CLAMP_VOLT : drv260x_calculate_voltage(voltage); haptics->regulator = devm_regulator_get(dev, "vbat"); if (IS_ERR(haptics->regulator)) { error = PTR_ERR(haptics->regulator); dev_err(dev, "unable to get regulator, error: %d\n", error); return error; } haptics->enable_gpio = devm_gpiod_get_optional(dev, "enable", GPIOD_OUT_HIGH); if (IS_ERR(haptics->enable_gpio)) return PTR_ERR(haptics->enable_gpio); haptics->input_dev = devm_input_allocate_device(dev); if (!haptics->input_dev) { dev_err(dev, "Failed to allocate input device\n"); return -ENOMEM; } haptics->input_dev->name = "drv260x:haptics"; haptics->input_dev->close = drv260x_close; input_set_drvdata(haptics->input_dev, haptics); input_set_capability(haptics->input_dev, EV_FF, FF_RUMBLE); error = input_ff_create_memless(haptics->input_dev, NULL, drv260x_haptics_play); if (error) { dev_err(dev, "input_ff_create() failed: %d\n", error); return error; } INIT_WORK(&haptics->work, drv260x_worker); haptics->client = client; i2c_set_clientdata(client, haptics); haptics->regmap = devm_regmap_init_i2c(client, &drv260x_regmap_config); if (IS_ERR(haptics->regmap)) { error = PTR_ERR(haptics->regmap); dev_err(dev, "Failed to allocate register map: %d\n", error); return error; } error = drv260x_init(haptics); if (error) { dev_err(dev, "Device init failed: %d\n", error); return error; } error = input_register_device(haptics->input_dev); if (error) { dev_err(dev, "couldn't register input device: %d\n", error); return error; } return 0; } static int drv260x_suspend(struct device *dev) { struct drv260x_data *haptics = dev_get_drvdata(dev); int ret = 0; mutex_lock(&haptics->input_dev->mutex); if (input_device_enabled(haptics->input_dev)) { ret = regmap_update_bits(haptics->regmap, DRV260X_MODE, DRV260X_STANDBY_MASK, DRV260X_STANDBY); if (ret) { dev_err(dev, "Failed to set standby mode\n"); goto out; } gpiod_set_value(haptics->enable_gpio, 0); ret = regulator_disable(haptics->regulator); if (ret) { dev_err(dev, "Failed to disable regulator\n"); regmap_update_bits(haptics->regmap, DRV260X_MODE, DRV260X_STANDBY_MASK, 0); } } out: mutex_unlock(&haptics->input_dev->mutex); return ret; } static int drv260x_resume(struct device *dev) { struct drv260x_data *haptics = dev_get_drvdata(dev); int ret = 0; mutex_lock(&haptics->input_dev->mutex); if (input_device_enabled(haptics->input_dev)) { ret = regulator_enable(haptics->regulator); if (ret) { dev_err(dev, "Failed to enable regulator\n"); goto out; } ret = regmap_update_bits(haptics->regmap, DRV260X_MODE, DRV260X_STANDBY_MASK, 0); if (ret) { dev_err(dev, "Failed to unset standby mode\n"); regulator_disable(haptics->regulator); goto out; } gpiod_set_value(haptics->enable_gpio, 1); } out: mutex_unlock(&haptics->input_dev->mutex); return ret; } static DEFINE_SIMPLE_DEV_PM_OPS(drv260x_pm_ops, drv260x_suspend, drv260x_resume); static const struct i2c_device_id drv260x_id[] = { { "drv2605l", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, drv260x_id); static const struct of_device_id drv260x_of_match[] = { { .compatible = "ti,drv2604", }, { .compatible = "ti,drv2604l", }, { .compatible = "ti,drv2605", }, { .compatible = "ti,drv2605l", }, { } }; MODULE_DEVICE_TABLE(of, drv260x_of_match); static struct i2c_driver drv260x_driver = { .probe = drv260x_probe, .driver = { .name = "drv260x-haptics", .of_match_table = drv260x_of_match, .pm = pm_sleep_ptr(&drv260x_pm_ops), }, .id_table = drv260x_id, }; module_i2c_driver(drv260x_driver); MODULE_DESCRIPTION("TI DRV260x haptics driver"); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Dan Murphy <[email protected]>");
linux-master
drivers/input/misc/drv260x.c
// SPDX-License-Identifier: GPL-2.0-only /* * CPCAP Power Button Input Driver * * Copyright (C) 2017 Sebastian Reichel <[email protected]> */ #include <linux/module.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/input.h> #include <linux/interrupt.h> #include <linux/regmap.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/mfd/motorola-cpcap.h> #define CPCAP_IRQ_ON 23 #define CPCAP_IRQ_ON_BITMASK (1 << (CPCAP_IRQ_ON % 16)) struct cpcap_power_button { struct regmap *regmap; struct input_dev *idev; struct device *dev; }; static irqreturn_t powerbutton_irq(int irq, void *_button) { struct cpcap_power_button *button = _button; int val; val = cpcap_sense_virq(button->regmap, irq); if (val < 0) { dev_err(button->dev, "irq read failed: %d", val); return IRQ_HANDLED; } pm_wakeup_event(button->dev, 0); input_report_key(button->idev, KEY_POWER, val); input_sync(button->idev); return IRQ_HANDLED; } static int cpcap_power_button_probe(struct platform_device *pdev) { struct cpcap_power_button *button; int irq; int err; irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; button = devm_kmalloc(&pdev->dev, sizeof(*button), GFP_KERNEL); if (!button) return -ENOMEM; button->idev = devm_input_allocate_device(&pdev->dev); if (!button->idev) return -ENOMEM; button->regmap = dev_get_regmap(pdev->dev.parent, NULL); if (!button->regmap) return -ENODEV; button->dev = &pdev->dev; button->idev->name = "cpcap-pwrbutton"; button->idev->phys = "cpcap-pwrbutton/input0"; input_set_capability(button->idev, EV_KEY, KEY_POWER); err = devm_request_threaded_irq(&pdev->dev, irq, NULL, powerbutton_irq, IRQF_ONESHOT, "cpcap_pwrbutton", button); if (err < 0) { dev_err(&pdev->dev, "IRQ request failed: %d\n", err); return err; } err = input_register_device(button->idev); if (err) { dev_err(&pdev->dev, "Input register failed: %d\n", err); return err; } device_init_wakeup(&pdev->dev, true); return 0; } #ifdef CONFIG_OF static const struct of_device_id cpcap_pwrbutton_dt_match_table[] = { { .compatible = "motorola,cpcap-pwrbutton" }, {}, }; MODULE_DEVICE_TABLE(of, cpcap_pwrbutton_dt_match_table); #endif static struct platform_driver cpcap_power_button_driver = { .probe = cpcap_power_button_probe, .driver = { .name = "cpcap-pwrbutton", .of_match_table = of_match_ptr(cpcap_pwrbutton_dt_match_table), }, }; module_platform_driver(cpcap_power_button_driver); MODULE_ALIAS("platform:cpcap-pwrbutton"); MODULE_DESCRIPTION("CPCAP Power Button"); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Sebastian Reichel <[email protected]>");
linux-master
drivers/input/misc/cpcap-pwrbutton.c
// SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2010-2011, Code Aurora Forum. All rights reserved. */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/slab.h> #include <linux/input.h> #include <linux/interrupt.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/log2.h> #include <linux/of.h> #define PON_CNTL_1 0x1C #define PON_CNTL_PULL_UP BIT(7) #define PON_CNTL_TRIG_DELAY_MASK (0x7) #define PON_CNTL_1_PULL_UP_EN 0xe0 #define PON_CNTL_1_USB_PWR_EN 0x10 #define PON_CNTL_1_WD_EN_RESET 0x08 #define PM8058_SLEEP_CTRL 0x02b #define PM8921_SLEEP_CTRL 0x10a #define SLEEP_CTRL_SMPL_EN_RESET 0x04 /* Regulator master enable addresses */ #define REG_PM8058_VREG_EN_MSM 0x018 #define REG_PM8058_VREG_EN_GRP_5_4 0x1c8 /* Regulator control registers for shutdown/reset */ #define PM8058_S0_CTRL 0x004 #define PM8058_S1_CTRL 0x005 #define PM8058_S3_CTRL 0x111 #define PM8058_L21_CTRL 0x120 #define PM8058_L22_CTRL 0x121 #define PM8058_REGULATOR_ENABLE_MASK 0x80 #define PM8058_REGULATOR_ENABLE 0x80 #define PM8058_REGULATOR_DISABLE 0x00 #define PM8058_REGULATOR_PULL_DOWN_MASK 0x40 #define PM8058_REGULATOR_PULL_DOWN_EN 0x40 /* Buck CTRL register */ #define PM8058_SMPS_LEGACY_VREF_SEL 0x20 #define PM8058_SMPS_LEGACY_VPROG_MASK 0x1f #define PM8058_SMPS_ADVANCED_BAND_MASK 0xC0 #define PM8058_SMPS_ADVANCED_BAND_SHIFT 6 #define PM8058_SMPS_ADVANCED_VPROG_MASK 0x3f /* Buck TEST2 registers for shutdown/reset */ #define PM8058_S0_TEST2 0x084 #define PM8058_S1_TEST2 0x085 #define PM8058_S3_TEST2 0x11a #define PM8058_REGULATOR_BANK_WRITE 0x80 #define PM8058_REGULATOR_BANK_MASK 0x70 #define PM8058_REGULATOR_BANK_SHIFT 4 #define PM8058_REGULATOR_BANK_SEL(n) ((n) << PM8058_REGULATOR_BANK_SHIFT) /* Buck TEST2 register bank 1 */ #define PM8058_SMPS_LEGACY_VLOW_SEL 0x01 /* Buck TEST2 register bank 7 */ #define PM8058_SMPS_ADVANCED_MODE_MASK 0x02 #define PM8058_SMPS_ADVANCED_MODE 0x02 #define PM8058_SMPS_LEGACY_MODE 0x00 /** * struct pmic8xxx_pwrkey - pmic8xxx pwrkey information * @key_press_irq: key press irq number * @regmap: device regmap * @shutdown_fn: shutdown configuration function */ struct pmic8xxx_pwrkey { int key_press_irq; struct regmap *regmap; int (*shutdown_fn)(struct pmic8xxx_pwrkey *, bool); }; static irqreturn_t pwrkey_press_irq(int irq, void *_pwr) { struct input_dev *pwr = _pwr; input_report_key(pwr, KEY_POWER, 1); input_sync(pwr); return IRQ_HANDLED; } static irqreturn_t pwrkey_release_irq(int irq, void *_pwr) { struct input_dev *pwr = _pwr; input_report_key(pwr, KEY_POWER, 0); input_sync(pwr); return IRQ_HANDLED; } static int pmic8xxx_pwrkey_suspend(struct device *dev) { struct pmic8xxx_pwrkey *pwrkey = dev_get_drvdata(dev); if (device_may_wakeup(dev)) enable_irq_wake(pwrkey->key_press_irq); return 0; } static int pmic8xxx_pwrkey_resume(struct device *dev) { struct pmic8xxx_pwrkey *pwrkey = dev_get_drvdata(dev); if (device_may_wakeup(dev)) disable_irq_wake(pwrkey->key_press_irq); return 0; } static DEFINE_SIMPLE_DEV_PM_OPS(pm8xxx_pwr_key_pm_ops, pmic8xxx_pwrkey_suspend, pmic8xxx_pwrkey_resume); static void pmic8xxx_pwrkey_shutdown(struct platform_device *pdev) { struct pmic8xxx_pwrkey *pwrkey = platform_get_drvdata(pdev); int error; u8 mask, val; bool reset = system_state == SYSTEM_RESTART; if (pwrkey->shutdown_fn) { error = pwrkey->shutdown_fn(pwrkey, reset); if (error) return; } /* * Select action to perform (reset or shutdown) when PS_HOLD goes low. * Also ensure that KPD, CBL0, and CBL1 pull ups are enabled and that * USB charging is enabled. */ mask = PON_CNTL_1_PULL_UP_EN | PON_CNTL_1_USB_PWR_EN; mask |= PON_CNTL_1_WD_EN_RESET; val = mask; if (!reset) val &= ~PON_CNTL_1_WD_EN_RESET; regmap_update_bits(pwrkey->regmap, PON_CNTL_1, mask, val); } /* * Set an SMPS regulator to be disabled in its CTRL register, but enabled * in the master enable register. Also set it's pull down enable bit. * Take care to make sure that the output voltage doesn't change if switching * from advanced mode to legacy mode. */ static int pm8058_disable_smps_locally_set_pull_down(struct regmap *regmap, u16 ctrl_addr, u16 test2_addr, u16 master_enable_addr, u8 master_enable_bit) { int error; u8 vref_sel, vlow_sel, band, vprog, bank; unsigned int reg; bank = PM8058_REGULATOR_BANK_SEL(7); error = regmap_write(regmap, test2_addr, bank); if (error) return error; error = regmap_read(regmap, test2_addr, &reg); if (error) return error; reg &= PM8058_SMPS_ADVANCED_MODE_MASK; /* Check if in advanced mode. */ if (reg == PM8058_SMPS_ADVANCED_MODE) { /* Determine current output voltage. */ error = regmap_read(regmap, ctrl_addr, &reg); if (error) return error; band = reg & PM8058_SMPS_ADVANCED_BAND_MASK; band >>= PM8058_SMPS_ADVANCED_BAND_SHIFT; switch (band) { case 3: vref_sel = 0; vlow_sel = 0; break; case 2: vref_sel = PM8058_SMPS_LEGACY_VREF_SEL; vlow_sel = 0; break; case 1: vref_sel = PM8058_SMPS_LEGACY_VREF_SEL; vlow_sel = PM8058_SMPS_LEGACY_VLOW_SEL; break; default: pr_err("%s: regulator already disabled\n", __func__); return -EPERM; } vprog = reg & PM8058_SMPS_ADVANCED_VPROG_MASK; /* Round up if fine step is in use. */ vprog = (vprog + 1) >> 1; if (vprog > PM8058_SMPS_LEGACY_VPROG_MASK) vprog = PM8058_SMPS_LEGACY_VPROG_MASK; /* Set VLOW_SEL bit. */ bank = PM8058_REGULATOR_BANK_SEL(1); error = regmap_write(regmap, test2_addr, bank); if (error) return error; error = regmap_update_bits(regmap, test2_addr, PM8058_REGULATOR_BANK_WRITE | PM8058_REGULATOR_BANK_MASK | PM8058_SMPS_LEGACY_VLOW_SEL, PM8058_REGULATOR_BANK_WRITE | PM8058_REGULATOR_BANK_SEL(1) | vlow_sel); if (error) return error; /* Switch to legacy mode */ bank = PM8058_REGULATOR_BANK_SEL(7); error = regmap_write(regmap, test2_addr, bank); if (error) return error; error = regmap_update_bits(regmap, test2_addr, PM8058_REGULATOR_BANK_WRITE | PM8058_REGULATOR_BANK_MASK | PM8058_SMPS_ADVANCED_MODE_MASK, PM8058_REGULATOR_BANK_WRITE | PM8058_REGULATOR_BANK_SEL(7) | PM8058_SMPS_LEGACY_MODE); if (error) return error; /* Enable locally, enable pull down, keep voltage the same. */ error = regmap_update_bits(regmap, ctrl_addr, PM8058_REGULATOR_ENABLE_MASK | PM8058_REGULATOR_PULL_DOWN_MASK | PM8058_SMPS_LEGACY_VREF_SEL | PM8058_SMPS_LEGACY_VPROG_MASK, PM8058_REGULATOR_ENABLE | PM8058_REGULATOR_PULL_DOWN_EN | vref_sel | vprog); if (error) return error; } /* Enable in master control register. */ error = regmap_update_bits(regmap, master_enable_addr, master_enable_bit, master_enable_bit); if (error) return error; /* Disable locally and enable pull down. */ return regmap_update_bits(regmap, ctrl_addr, PM8058_REGULATOR_ENABLE_MASK | PM8058_REGULATOR_PULL_DOWN_MASK, PM8058_REGULATOR_DISABLE | PM8058_REGULATOR_PULL_DOWN_EN); } static int pm8058_disable_ldo_locally_set_pull_down(struct regmap *regmap, u16 ctrl_addr, u16 master_enable_addr, u8 master_enable_bit) { int error; /* Enable LDO in master control register. */ error = regmap_update_bits(regmap, master_enable_addr, master_enable_bit, master_enable_bit); if (error) return error; /* Disable LDO in CTRL register and set pull down */ return regmap_update_bits(regmap, ctrl_addr, PM8058_REGULATOR_ENABLE_MASK | PM8058_REGULATOR_PULL_DOWN_MASK, PM8058_REGULATOR_DISABLE | PM8058_REGULATOR_PULL_DOWN_EN); } static int pm8058_pwrkey_shutdown(struct pmic8xxx_pwrkey *pwrkey, bool reset) { int error; struct regmap *regmap = pwrkey->regmap; u8 mask, val; /* When shutting down, enable active pulldowns on important rails. */ if (!reset) { /* Disable SMPS's 0,1,3 locally and set pulldown enable bits. */ pm8058_disable_smps_locally_set_pull_down(regmap, PM8058_S0_CTRL, PM8058_S0_TEST2, REG_PM8058_VREG_EN_MSM, BIT(7)); pm8058_disable_smps_locally_set_pull_down(regmap, PM8058_S1_CTRL, PM8058_S1_TEST2, REG_PM8058_VREG_EN_MSM, BIT(6)); pm8058_disable_smps_locally_set_pull_down(regmap, PM8058_S3_CTRL, PM8058_S3_TEST2, REG_PM8058_VREG_EN_GRP_5_4, BIT(7) | BIT(4)); /* Disable LDO 21 locally and set pulldown enable bit. */ pm8058_disable_ldo_locally_set_pull_down(regmap, PM8058_L21_CTRL, REG_PM8058_VREG_EN_GRP_5_4, BIT(1)); } /* * Fix-up: Set regulator LDO22 to 1.225 V in high power mode. Leave its * pull-down state intact. This ensures a safe shutdown. */ error = regmap_update_bits(regmap, PM8058_L22_CTRL, 0xbf, 0x93); if (error) return error; /* Enable SMPL if resetting is desired */ mask = SLEEP_CTRL_SMPL_EN_RESET; val = 0; if (reset) val = mask; return regmap_update_bits(regmap, PM8058_SLEEP_CTRL, mask, val); } static int pm8921_pwrkey_shutdown(struct pmic8xxx_pwrkey *pwrkey, bool reset) { struct regmap *regmap = pwrkey->regmap; u8 mask = SLEEP_CTRL_SMPL_EN_RESET; u8 val = 0; /* Enable SMPL if resetting is desired */ if (reset) val = mask; return regmap_update_bits(regmap, PM8921_SLEEP_CTRL, mask, val); } static int pmic8xxx_pwrkey_probe(struct platform_device *pdev) { struct input_dev *pwr; int key_release_irq = platform_get_irq(pdev, 0); int key_press_irq = platform_get_irq(pdev, 1); int err; unsigned int delay; unsigned int pon_cntl; struct regmap *regmap; struct pmic8xxx_pwrkey *pwrkey; u32 kpd_delay; bool pull_up; if (of_property_read_u32(pdev->dev.of_node, "debounce", &kpd_delay)) kpd_delay = 15625; /* Valid range of pwr key trigger delay is 1/64 sec to 2 seconds. */ if (kpd_delay > USEC_PER_SEC * 2 || kpd_delay < USEC_PER_SEC / 64) { dev_err(&pdev->dev, "invalid power key trigger delay\n"); return -EINVAL; } pull_up = of_property_read_bool(pdev->dev.of_node, "pull-up"); regmap = dev_get_regmap(pdev->dev.parent, NULL); if (!regmap) { dev_err(&pdev->dev, "failed to locate regmap for the device\n"); return -ENODEV; } pwrkey = devm_kzalloc(&pdev->dev, sizeof(*pwrkey), GFP_KERNEL); if (!pwrkey) return -ENOMEM; pwrkey->shutdown_fn = of_device_get_match_data(&pdev->dev); pwrkey->regmap = regmap; pwrkey->key_press_irq = key_press_irq; pwr = devm_input_allocate_device(&pdev->dev); if (!pwr) { dev_dbg(&pdev->dev, "Can't allocate power button\n"); return -ENOMEM; } input_set_capability(pwr, EV_KEY, KEY_POWER); pwr->name = "pmic8xxx_pwrkey"; pwr->phys = "pmic8xxx_pwrkey/input0"; delay = (kpd_delay << 6) / USEC_PER_SEC; delay = ilog2(delay); err = regmap_read(regmap, PON_CNTL_1, &pon_cntl); if (err < 0) { dev_err(&pdev->dev, "failed reading PON_CNTL_1 err=%d\n", err); return err; } pon_cntl &= ~PON_CNTL_TRIG_DELAY_MASK; pon_cntl |= (delay & PON_CNTL_TRIG_DELAY_MASK); if (pull_up) pon_cntl |= PON_CNTL_PULL_UP; else pon_cntl &= ~PON_CNTL_PULL_UP; err = regmap_write(regmap, PON_CNTL_1, pon_cntl); if (err < 0) { dev_err(&pdev->dev, "failed writing PON_CNTL_1 err=%d\n", err); return err; } err = devm_request_irq(&pdev->dev, key_press_irq, pwrkey_press_irq, IRQF_TRIGGER_RISING, "pmic8xxx_pwrkey_press", pwr); if (err) { dev_err(&pdev->dev, "Can't get %d IRQ for pwrkey: %d\n", key_press_irq, err); return err; } err = devm_request_irq(&pdev->dev, key_release_irq, pwrkey_release_irq, IRQF_TRIGGER_RISING, "pmic8xxx_pwrkey_release", pwr); if (err) { dev_err(&pdev->dev, "Can't get %d IRQ for pwrkey: %d\n", key_release_irq, err); return err; } err = input_register_device(pwr); if (err) { dev_err(&pdev->dev, "Can't register power key: %d\n", err); return err; } platform_set_drvdata(pdev, pwrkey); device_init_wakeup(&pdev->dev, 1); return 0; } static const struct of_device_id pm8xxx_pwr_key_id_table[] = { { .compatible = "qcom,pm8058-pwrkey", .data = &pm8058_pwrkey_shutdown }, { .compatible = "qcom,pm8921-pwrkey", .data = &pm8921_pwrkey_shutdown }, { } }; MODULE_DEVICE_TABLE(of, pm8xxx_pwr_key_id_table); static struct platform_driver pmic8xxx_pwrkey_driver = { .probe = pmic8xxx_pwrkey_probe, .shutdown = pmic8xxx_pwrkey_shutdown, .driver = { .name = "pm8xxx-pwrkey", .pm = pm_sleep_ptr(&pm8xxx_pwr_key_pm_ops), .of_match_table = pm8xxx_pwr_key_id_table, }, }; module_platform_driver(pmic8xxx_pwrkey_driver); MODULE_ALIAS("platform:pmic8xxx_pwrkey"); MODULE_DESCRIPTION("PMIC8XXX Power Key driver"); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Trilok Soni <[email protected]>");
linux-master
drivers/input/misc/pmic8xxx-pwrkey.c
// SPDX-License-Identifier: GPL-2.0+ /* * GPIO vibrator driver * * Copyright (C) 2019 Luca Weiss <[email protected]> * * Based on PWM vibrator driver: * Copyright (C) 2017 Collabora Ltd. * * Based on previous work from: * Copyright (C) 2012 Dmitry Torokhov <[email protected]> * * Based on PWM beeper driver: * Copyright (C) 2010, Lars-Peter Clausen <[email protected]> */ #include <linux/gpio/consumer.h> #include <linux/input.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/property.h> #include <linux/regulator/consumer.h> #include <linux/slab.h> struct gpio_vibrator { struct input_dev *input; struct gpio_desc *gpio; struct regulator *vcc; struct work_struct play_work; bool running; bool vcc_on; }; static int gpio_vibrator_start(struct gpio_vibrator *vibrator) { struct device *pdev = vibrator->input->dev.parent; int err; if (!vibrator->vcc_on) { err = regulator_enable(vibrator->vcc); if (err) { dev_err(pdev, "failed to enable regulator: %d\n", err); return err; } vibrator->vcc_on = true; } gpiod_set_value_cansleep(vibrator->gpio, 1); return 0; } static void gpio_vibrator_stop(struct gpio_vibrator *vibrator) { gpiod_set_value_cansleep(vibrator->gpio, 0); if (vibrator->vcc_on) { regulator_disable(vibrator->vcc); vibrator->vcc_on = false; } } static void gpio_vibrator_play_work(struct work_struct *work) { struct gpio_vibrator *vibrator = container_of(work, struct gpio_vibrator, play_work); if (vibrator->running) gpio_vibrator_start(vibrator); else gpio_vibrator_stop(vibrator); } static int gpio_vibrator_play_effect(struct input_dev *dev, void *data, struct ff_effect *effect) { struct gpio_vibrator *vibrator = input_get_drvdata(dev); int level; level = effect->u.rumble.strong_magnitude; if (!level) level = effect->u.rumble.weak_magnitude; vibrator->running = level; schedule_work(&vibrator->play_work); return 0; } static void gpio_vibrator_close(struct input_dev *input) { struct gpio_vibrator *vibrator = input_get_drvdata(input); cancel_work_sync(&vibrator->play_work); gpio_vibrator_stop(vibrator); vibrator->running = false; } static int gpio_vibrator_probe(struct platform_device *pdev) { struct gpio_vibrator *vibrator; int err; vibrator = devm_kzalloc(&pdev->dev, sizeof(*vibrator), GFP_KERNEL); if (!vibrator) return -ENOMEM; vibrator->input = devm_input_allocate_device(&pdev->dev); if (!vibrator->input) return -ENOMEM; vibrator->vcc = devm_regulator_get(&pdev->dev, "vcc"); if (IS_ERR(vibrator->vcc)) return dev_err_probe(&pdev->dev, PTR_ERR(vibrator->vcc), "Failed to request regulator\n"); vibrator->gpio = devm_gpiod_get(&pdev->dev, "enable", GPIOD_OUT_LOW); if (IS_ERR(vibrator->gpio)) return dev_err_probe(&pdev->dev, PTR_ERR(vibrator->gpio), "Failed to request main gpio\n"); INIT_WORK(&vibrator->play_work, gpio_vibrator_play_work); vibrator->input->name = "gpio-vibrator"; vibrator->input->id.bustype = BUS_HOST; vibrator->input->close = gpio_vibrator_close; input_set_drvdata(vibrator->input, vibrator); input_set_capability(vibrator->input, EV_FF, FF_RUMBLE); err = input_ff_create_memless(vibrator->input, NULL, gpio_vibrator_play_effect); if (err) { dev_err(&pdev->dev, "Couldn't create FF dev: %d\n", err); return err; } err = input_register_device(vibrator->input); if (err) { dev_err(&pdev->dev, "Couldn't register input dev: %d\n", err); return err; } platform_set_drvdata(pdev, vibrator); return 0; } static int gpio_vibrator_suspend(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct gpio_vibrator *vibrator = platform_get_drvdata(pdev); cancel_work_sync(&vibrator->play_work); if (vibrator->running) gpio_vibrator_stop(vibrator); return 0; } static int gpio_vibrator_resume(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct gpio_vibrator *vibrator = platform_get_drvdata(pdev); if (vibrator->running) gpio_vibrator_start(vibrator); return 0; } static DEFINE_SIMPLE_DEV_PM_OPS(gpio_vibrator_pm_ops, gpio_vibrator_suspend, gpio_vibrator_resume); #ifdef CONFIG_OF static const struct of_device_id gpio_vibra_dt_match_table[] = { { .compatible = "gpio-vibrator" }, {} }; MODULE_DEVICE_TABLE(of, gpio_vibra_dt_match_table); #endif static struct platform_driver gpio_vibrator_driver = { .probe = gpio_vibrator_probe, .driver = { .name = "gpio-vibrator", .pm = pm_sleep_ptr(&gpio_vibrator_pm_ops), .of_match_table = of_match_ptr(gpio_vibra_dt_match_table), }, }; module_platform_driver(gpio_vibrator_driver); MODULE_AUTHOR("Luca Weiss <[email protected]>"); MODULE_DESCRIPTION("GPIO vibrator driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:gpio-vibrator");
linux-master
drivers/input/misc/gpio-vibra.c
// SPDX-License-Identifier: BSD-2-Clause OR GPL-2.0-or-later /* * Dell Wyse 3020 a.k.a. "Ariel" Power Button Driver * * Copyright (C) 2020 Lubomir Rintel */ #include <linux/device.h> #include <linux/gfp.h> #include <linux/input.h> #include <linux/interrupt.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/spi/spi.h> #define RESP_COUNTER(response) (response.header & 0x3) #define RESP_SIZE(response) ((response.header >> 2) & 0x3) #define RESP_TYPE(response) ((response.header >> 4) & 0xf) struct ec_input_response { u8 reserved; u8 header; u8 data[3]; } __packed; struct ariel_pwrbutton { struct spi_device *client; struct input_dev *input; u8 msg_counter; }; static int ec_input_read(struct ariel_pwrbutton *priv, struct ec_input_response *response) { u8 read_request[] = { 0x00, 0x5a, 0xa5, 0x00, 0x00 }; struct spi_device *spi = priv->client; struct spi_transfer t = { .tx_buf = read_request, .rx_buf = response, .len = sizeof(read_request), }; compiletime_assert(sizeof(read_request) == sizeof(*response), "SPI xfer request/response size mismatch"); return spi_sync_transfer(spi, &t, 1); } static irqreturn_t ec_input_interrupt(int irq, void *dev_id) { struct ariel_pwrbutton *priv = dev_id; struct spi_device *spi = priv->client; struct ec_input_response response; int error; int i; error = ec_input_read(priv, &response); if (error < 0) { dev_err(&spi->dev, "EC read failed: %d\n", error); goto out; } if (priv->msg_counter == RESP_COUNTER(response)) { dev_warn(&spi->dev, "No new data to read?\n"); goto out; } priv->msg_counter = RESP_COUNTER(response); if (RESP_TYPE(response) != 0x3 && RESP_TYPE(response) != 0xc) { dev_dbg(&spi->dev, "Ignoring message that's not kbd data\n"); goto out; } for (i = 0; i < RESP_SIZE(response); i++) { switch (response.data[i]) { case 0x74: input_report_key(priv->input, KEY_POWER, 1); input_sync(priv->input); break; case 0xf4: input_report_key(priv->input, KEY_POWER, 0); input_sync(priv->input); break; default: dev_dbg(&spi->dev, "Unknown scan code: %02x\n", response.data[i]); } } out: return IRQ_HANDLED; } static int ariel_pwrbutton_probe(struct spi_device *spi) { struct ec_input_response response; struct ariel_pwrbutton *priv; int error; if (!spi->irq) { dev_err(&spi->dev, "Missing IRQ.\n"); return -EINVAL; } priv = devm_kzalloc(&spi->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->client = spi; spi_set_drvdata(spi, priv); priv->input = devm_input_allocate_device(&spi->dev); if (!priv->input) return -ENOMEM; priv->input->name = "Power Button"; priv->input->dev.parent = &spi->dev; input_set_capability(priv->input, EV_KEY, KEY_POWER); error = input_register_device(priv->input); if (error) { dev_err(&spi->dev, "error registering input device: %d\n", error); return error; } error = ec_input_read(priv, &response); if (error < 0) { dev_err(&spi->dev, "EC read failed: %d\n", error); return error; } priv->msg_counter = RESP_COUNTER(response); error = devm_request_threaded_irq(&spi->dev, spi->irq, NULL, ec_input_interrupt, IRQF_ONESHOT, "Ariel EC Input", priv); if (error) { dev_err(&spi->dev, "Failed to request IRQ %d: %d\n", spi->irq, error); return error; } return 0; } static const struct of_device_id ariel_pwrbutton_of_match[] = { { .compatible = "dell,wyse-ariel-ec-input" }, { } }; MODULE_DEVICE_TABLE(of, ariel_pwrbutton_of_match); static const struct spi_device_id ariel_pwrbutton_spi_ids[] = { { .name = "wyse-ariel-ec-input" }, { } }; MODULE_DEVICE_TABLE(spi, ariel_pwrbutton_spi_ids); static struct spi_driver ariel_pwrbutton_driver = { .driver = { .name = "dell-wyse-ariel-ec-input", .of_match_table = ariel_pwrbutton_of_match, }, .probe = ariel_pwrbutton_probe, .id_table = ariel_pwrbutton_spi_ids, }; module_spi_driver(ariel_pwrbutton_driver); MODULE_AUTHOR("Lubomir Rintel <[email protected]>"); MODULE_DESCRIPTION("Dell Wyse 3020 Power Button Input Driver"); MODULE_LICENSE("Dual BSD/GPL");
linux-master
drivers/input/misc/ariel-pwrbutton.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * ON pin driver for Dialog DA9052 PMICs * * Copyright(c) 2012 Dialog Semiconductor Ltd. * * Author: David Dajun Chen <[email protected]> */ #include <linux/input.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/workqueue.h> #include <linux/mfd/da9052/da9052.h> #include <linux/mfd/da9052/reg.h> struct da9052_onkey { struct da9052 *da9052; struct input_dev *input; struct delayed_work work; }; static void da9052_onkey_query(struct da9052_onkey *onkey) { int ret; ret = da9052_reg_read(onkey->da9052, DA9052_STATUS_A_REG); if (ret < 0) { dev_err(onkey->da9052->dev, "Failed to read onkey event err=%d\n", ret); } else { /* * Since interrupt for deassertion of ONKEY pin is not * generated, onkey event state determines the onkey * button state. */ bool pressed = !(ret & DA9052_STATUSA_NONKEY); input_report_key(onkey->input, KEY_POWER, pressed); input_sync(onkey->input); /* * Interrupt is generated only when the ONKEY pin * is asserted. Hence the deassertion of the pin * is simulated through work queue. */ if (pressed) schedule_delayed_work(&onkey->work, msecs_to_jiffies(50)); } } static void da9052_onkey_work(struct work_struct *work) { struct da9052_onkey *onkey = container_of(work, struct da9052_onkey, work.work); da9052_onkey_query(onkey); } static irqreturn_t da9052_onkey_irq(int irq, void *data) { struct da9052_onkey *onkey = data; da9052_onkey_query(onkey); return IRQ_HANDLED; } static int da9052_onkey_probe(struct platform_device *pdev) { struct da9052 *da9052 = dev_get_drvdata(pdev->dev.parent); struct da9052_onkey *onkey; struct input_dev *input_dev; int error; if (!da9052) { dev_err(&pdev->dev, "Failed to get the driver's data\n"); return -EINVAL; } onkey = kzalloc(sizeof(*onkey), GFP_KERNEL); input_dev = input_allocate_device(); if (!onkey || !input_dev) { dev_err(&pdev->dev, "Failed to allocate memory\n"); error = -ENOMEM; goto err_free_mem; } onkey->input = input_dev; onkey->da9052 = da9052; INIT_DELAYED_WORK(&onkey->work, da9052_onkey_work); input_dev->name = "da9052-onkey"; input_dev->phys = "da9052-onkey/input0"; input_dev->dev.parent = &pdev->dev; input_dev->evbit[0] = BIT_MASK(EV_KEY); __set_bit(KEY_POWER, input_dev->keybit); error = da9052_request_irq(onkey->da9052, DA9052_IRQ_NONKEY, "ONKEY", da9052_onkey_irq, onkey); if (error < 0) { dev_err(onkey->da9052->dev, "Failed to register ONKEY IRQ: %d\n", error); goto err_free_mem; } error = input_register_device(onkey->input); if (error) { dev_err(&pdev->dev, "Unable to register input device, %d\n", error); goto err_free_irq; } platform_set_drvdata(pdev, onkey); return 0; err_free_irq: da9052_free_irq(onkey->da9052, DA9052_IRQ_NONKEY, onkey); cancel_delayed_work_sync(&onkey->work); err_free_mem: input_free_device(input_dev); kfree(onkey); return error; } static int da9052_onkey_remove(struct platform_device *pdev) { struct da9052_onkey *onkey = platform_get_drvdata(pdev); da9052_free_irq(onkey->da9052, DA9052_IRQ_NONKEY, onkey); cancel_delayed_work_sync(&onkey->work); input_unregister_device(onkey->input); kfree(onkey); return 0; } static struct platform_driver da9052_onkey_driver = { .probe = da9052_onkey_probe, .remove = da9052_onkey_remove, .driver = { .name = "da9052-onkey", }, }; module_platform_driver(da9052_onkey_driver); MODULE_AUTHOR("David Dajun Chen <[email protected]>"); MODULE_DESCRIPTION("Onkey driver for DA9052"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:da9052-onkey");
linux-master
drivers/input/misc/da9052_onkey.c
// SPDX-License-Identifier: GPL-2.0-or-later /* NXP PCF50633 Input Driver * * (C) 2006-2008 by Openmoko, Inc. * Author: Balaji Rao <[email protected]> * All rights reserved. * * Broken down from monstrous PCF50633 driver mainly by * Harald Welte, Andy Green and Werner Almesberger */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/device.h> #include <linux/platform_device.h> #include <linux/input.h> #include <linux/slab.h> #include <linux/mfd/pcf50633/core.h> #define PCF50633_OOCSTAT_ONKEY 0x01 #define PCF50633_REG_OOCSTAT 0x12 #define PCF50633_REG_OOCMODE 0x10 struct pcf50633_input { struct pcf50633 *pcf; struct input_dev *input_dev; }; static void pcf50633_input_irq(int irq, void *data) { struct pcf50633_input *input; int onkey_released; input = data; /* We report only one event depending on the key press status */ onkey_released = pcf50633_reg_read(input->pcf, PCF50633_REG_OOCSTAT) & PCF50633_OOCSTAT_ONKEY; if (irq == PCF50633_IRQ_ONKEYF && !onkey_released) input_report_key(input->input_dev, KEY_POWER, 1); else if (irq == PCF50633_IRQ_ONKEYR && onkey_released) input_report_key(input->input_dev, KEY_POWER, 0); input_sync(input->input_dev); } static int pcf50633_input_probe(struct platform_device *pdev) { struct pcf50633_input *input; struct input_dev *input_dev; int ret; input = kzalloc(sizeof(*input), GFP_KERNEL); if (!input) return -ENOMEM; input_dev = input_allocate_device(); if (!input_dev) { kfree(input); return -ENOMEM; } platform_set_drvdata(pdev, input); input->pcf = dev_to_pcf50633(pdev->dev.parent); input->input_dev = input_dev; input_dev->name = "PCF50633 PMU events"; input_dev->id.bustype = BUS_I2C; input_dev->evbit[0] = BIT(EV_KEY) | BIT(EV_PWR); set_bit(KEY_POWER, input_dev->keybit); ret = input_register_device(input_dev); if (ret) { input_free_device(input_dev); kfree(input); return ret; } pcf50633_register_irq(input->pcf, PCF50633_IRQ_ONKEYR, pcf50633_input_irq, input); pcf50633_register_irq(input->pcf, PCF50633_IRQ_ONKEYF, pcf50633_input_irq, input); return 0; } static int pcf50633_input_remove(struct platform_device *pdev) { struct pcf50633_input *input = platform_get_drvdata(pdev); pcf50633_free_irq(input->pcf, PCF50633_IRQ_ONKEYR); pcf50633_free_irq(input->pcf, PCF50633_IRQ_ONKEYF); input_unregister_device(input->input_dev); kfree(input); return 0; } static struct platform_driver pcf50633_input_driver = { .driver = { .name = "pcf50633-input", }, .probe = pcf50633_input_probe, .remove = pcf50633_input_remove, }; module_platform_driver(pcf50633_input_driver); MODULE_AUTHOR("Balaji Rao <[email protected]>"); MODULE_DESCRIPTION("PCF50633 input driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:pcf50633-input");
linux-master
drivers/input/misc/pcf50633-input.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * AD714X CapTouch Programmable Controller driver (I2C bus) * * Copyright 2009-2011 Analog Devices Inc. */ #include <linux/input.h> /* BUS_I2C */ #include <linux/i2c.h> #include <linux/module.h> #include <linux/types.h> #include <linux/pm.h> #include "ad714x.h" static int ad714x_i2c_write(struct ad714x_chip *chip, unsigned short reg, unsigned short data) { struct i2c_client *client = to_i2c_client(chip->dev); int error; chip->xfer_buf[0] = cpu_to_be16(reg); chip->xfer_buf[1] = cpu_to_be16(data); error = i2c_master_send(client, (u8 *)chip->xfer_buf, 2 * sizeof(*chip->xfer_buf)); if (unlikely(error < 0)) { dev_err(&client->dev, "I2C write error: %d\n", error); return error; } return 0; } static int ad714x_i2c_read(struct ad714x_chip *chip, unsigned short reg, unsigned short *data, size_t len) { struct i2c_client *client = to_i2c_client(chip->dev); int i; int error; chip->xfer_buf[0] = cpu_to_be16(reg); error = i2c_master_send(client, (u8 *)chip->xfer_buf, sizeof(*chip->xfer_buf)); if (error >= 0) error = i2c_master_recv(client, (u8 *)chip->xfer_buf, len * sizeof(*chip->xfer_buf)); if (unlikely(error < 0)) { dev_err(&client->dev, "I2C read error: %d\n", error); return error; } for (i = 0; i < len; i++) data[i] = be16_to_cpu(chip->xfer_buf[i]); return 0; } static int ad714x_i2c_probe(struct i2c_client *client) { struct ad714x_chip *chip; chip = ad714x_probe(&client->dev, BUS_I2C, client->irq, ad714x_i2c_read, ad714x_i2c_write); if (IS_ERR(chip)) return PTR_ERR(chip); i2c_set_clientdata(client, chip); return 0; } static const struct i2c_device_id ad714x_id[] = { { "ad7142_captouch", 0 }, { "ad7143_captouch", 0 }, { "ad7147_captouch", 0 }, { "ad7147a_captouch", 0 }, { "ad7148_captouch", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, ad714x_id); static struct i2c_driver ad714x_i2c_driver = { .driver = { .name = "ad714x_captouch", .pm = pm_sleep_ptr(&ad714x_pm), }, .probe = ad714x_i2c_probe, .id_table = ad714x_id, }; module_i2c_driver(ad714x_i2c_driver); MODULE_DESCRIPTION("Analog Devices AD714X Capacitance Touch Sensor I2C Bus Driver"); MODULE_AUTHOR("Barry Song <[email protected]>"); MODULE_LICENSE("GPL");
linux-master
drivers/input/misc/ad714x-i2c.c
// SPDX-License-Identifier: GPL-2.0-only /* * Supports for the button array on SoC tablets originally running * Windows 8. * * (C) Copyright 2014 Intel Corporation */ #include <linux/module.h> #include <linux/input.h> #include <linux/init.h> #include <linux/irq.h> #include <linux/kernel.h> #include <linux/acpi.h> #include <linux/dmi.h> #include <linux/gpio/consumer.h> #include <linux/gpio_keys.h> #include <linux/gpio.h> #include <linux/platform_device.h> static bool use_low_level_irq; module_param(use_low_level_irq, bool, 0444); MODULE_PARM_DESC(use_low_level_irq, "Use low-level triggered IRQ instead of edge triggered"); struct soc_button_info { const char *name; int acpi_index; unsigned int event_type; unsigned int event_code; bool autorepeat; bool wakeup; bool active_low; }; struct soc_device_data { const struct soc_button_info *button_info; int (*check)(struct device *dev); }; /* * Some of the buttons like volume up/down are auto repeat, while others * are not. To support both, we register two platform devices, and put * buttons into them based on whether the key should be auto repeat. */ #define BUTTON_TYPES 2 struct soc_button_data { struct platform_device *children[BUTTON_TYPES]; }; /* * Some 2-in-1s which use the soc_button_array driver have this ugly issue in * their DSDT where the _LID method modifies the irq-type settings of the GPIOs * used for the power and home buttons. The intend of this AML code is to * disable these buttons when the lid is closed. * The AML does this by directly poking the GPIO controllers registers. This is * problematic because when re-enabling the irq, which happens whenever _LID * gets called with the lid open (e.g. on boot and on resume), it sets the * irq-type to IRQ_TYPE_LEVEL_LOW. Where as the gpio-keys driver programs the * type to, and expects it to be, IRQ_TYPE_EDGE_BOTH. * To work around this we don't set gpio_keys_button.gpio on these 2-in-1s, * instead we get the irq for the GPIO ourselves, configure it as * IRQ_TYPE_LEVEL_LOW (to match how the _LID AML code configures it) and pass * the irq in gpio_keys_button.irq. Below is a list of affected devices. */ static const struct dmi_system_id dmi_use_low_level_irq[] = { { /* * Acer Switch 10 SW5-012. _LID method messes with home- and * power-button GPIO IRQ settings. When (re-)enabling the irq * it ors in its own flags without clearing the previous set * ones, leading to an irq-type of IRQ_TYPE_LEVEL_LOW | * IRQ_TYPE_LEVEL_HIGH causing a continuous interrupt storm. */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Acer"), DMI_MATCH(DMI_PRODUCT_NAME, "Aspire SW5-012"), }, }, { /* Acer Switch V 10 SW5-017, same issue as Acer Switch 10 SW5-012. */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Acer"), DMI_MATCH(DMI_PRODUCT_NAME, "SW5-017"), }, }, { /* * Acer One S1003. _LID method messes with power-button GPIO * IRQ settings, leading to a non working power-button. */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Acer"), DMI_MATCH(DMI_PRODUCT_NAME, "One S1003"), }, }, { /* * Lenovo Yoga Tab2 1051F/1051L, something messes with the home-button * IRQ settings, leading to a non working home-button. */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), DMI_MATCH(DMI_PRODUCT_NAME, "60073"), DMI_MATCH(DMI_PRODUCT_VERSION, "1051"), }, }, {} /* Terminating entry */ }; /* * Some devices have a wrong entry which points to a GPIO which is * required in another driver, so this driver must not claim it. */ static const struct dmi_system_id dmi_invalid_acpi_index[] = { { /* * Lenovo Yoga Book X90F / X90L, the PNP0C40 home button entry * points to a GPIO which is not a home button and which is * required by the lenovo-yogabook driver. */ .matches = { DMI_EXACT_MATCH(DMI_SYS_VENDOR, "Intel Corporation"), DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "CHERRYVIEW D1 PLATFORM"), DMI_EXACT_MATCH(DMI_PRODUCT_VERSION, "YETI-11"), }, .driver_data = (void *)1l, }, {} /* Terminating entry */ }; /* * Get the Nth GPIO number from the ACPI object. */ static int soc_button_lookup_gpio(struct device *dev, int acpi_index, int *gpio_ret, int *irq_ret) { struct gpio_desc *desc; desc = gpiod_get_index(dev, NULL, acpi_index, GPIOD_ASIS); if (IS_ERR(desc)) return PTR_ERR(desc); *gpio_ret = desc_to_gpio(desc); *irq_ret = gpiod_to_irq(desc); gpiod_put(desc); return 0; } static struct platform_device * soc_button_device_create(struct platform_device *pdev, const struct soc_button_info *button_info, bool autorepeat) { const struct soc_button_info *info; struct platform_device *pd; struct gpio_keys_button *gpio_keys; struct gpio_keys_platform_data *gpio_keys_pdata; const struct dmi_system_id *dmi_id; int invalid_acpi_index = -1; int error, gpio, irq; int n_buttons = 0; for (info = button_info; info->name; info++) if (info->autorepeat == autorepeat) n_buttons++; gpio_keys_pdata = devm_kzalloc(&pdev->dev, sizeof(*gpio_keys_pdata) + sizeof(*gpio_keys) * n_buttons, GFP_KERNEL); if (!gpio_keys_pdata) return ERR_PTR(-ENOMEM); gpio_keys = (void *)(gpio_keys_pdata + 1); n_buttons = 0; dmi_id = dmi_first_match(dmi_invalid_acpi_index); if (dmi_id) invalid_acpi_index = (long)dmi_id->driver_data; for (info = button_info; info->name; info++) { if (info->autorepeat != autorepeat) continue; if (info->acpi_index == invalid_acpi_index) continue; error = soc_button_lookup_gpio(&pdev->dev, info->acpi_index, &gpio, &irq); if (error || irq < 0) { /* * Skip GPIO if not present. Note we deliberately * ignore -EPROBE_DEFER errors here. On some devices * Intel is using so called virtual GPIOs which are not * GPIOs at all but some way for AML code to check some * random status bits without need a custom opregion. * In some cases the resources table we parse points to * such a virtual GPIO, since these are not real GPIOs * we do not have a driver for these so they will never * show up, therefore we ignore -EPROBE_DEFER. */ continue; } /* See dmi_use_low_level_irq[] comment */ if (!autorepeat && (use_low_level_irq || dmi_check_system(dmi_use_low_level_irq))) { irq_set_irq_type(irq, IRQ_TYPE_LEVEL_LOW); gpio_keys[n_buttons].irq = irq; gpio_keys[n_buttons].gpio = -ENOENT; } else { gpio_keys[n_buttons].gpio = gpio; } gpio_keys[n_buttons].type = info->event_type; gpio_keys[n_buttons].code = info->event_code; gpio_keys[n_buttons].active_low = info->active_low; gpio_keys[n_buttons].desc = info->name; gpio_keys[n_buttons].wakeup = info->wakeup; /* These devices often use cheap buttons, use 50 ms debounce */ gpio_keys[n_buttons].debounce_interval = 50; n_buttons++; } if (n_buttons == 0) { error = -ENODEV; goto err_free_mem; } gpio_keys_pdata->buttons = gpio_keys; gpio_keys_pdata->nbuttons = n_buttons; gpio_keys_pdata->rep = autorepeat; pd = platform_device_register_resndata(&pdev->dev, "gpio-keys", PLATFORM_DEVID_AUTO, NULL, 0, gpio_keys_pdata, sizeof(*gpio_keys_pdata)); error = PTR_ERR_OR_ZERO(pd); if (error) { dev_err(&pdev->dev, "failed registering gpio-keys: %d\n", error); goto err_free_mem; } return pd; err_free_mem: devm_kfree(&pdev->dev, gpio_keys_pdata); return ERR_PTR(error); } static int soc_button_get_acpi_object_int(const union acpi_object *obj) { if (obj->type != ACPI_TYPE_INTEGER) return -1; return obj->integer.value; } /* Parse a single ACPI0011 _DSD button descriptor */ static int soc_button_parse_btn_desc(struct device *dev, const union acpi_object *desc, int collection_uid, struct soc_button_info *info) { int upage, usage; if (desc->type != ACPI_TYPE_PACKAGE || desc->package.count != 5 || /* First byte should be 1 (control) */ soc_button_get_acpi_object_int(&desc->package.elements[0]) != 1 || /* Third byte should be collection uid */ soc_button_get_acpi_object_int(&desc->package.elements[2]) != collection_uid) { dev_err(dev, "Invalid ACPI Button Descriptor\n"); return -ENODEV; } info->event_type = EV_KEY; info->active_low = true; info->acpi_index = soc_button_get_acpi_object_int(&desc->package.elements[1]); upage = soc_button_get_acpi_object_int(&desc->package.elements[3]); usage = soc_button_get_acpi_object_int(&desc->package.elements[4]); /* * The UUID: fa6bd625-9ce8-470d-a2c7-b3ca36c4282e descriptors use HID * usage page and usage codes, but otherwise the device is not HID * compliant: it uses one irq per button instead of generating HID * input reports and some buttons should generate wakeups where as * others should not, so we cannot use the HID subsystem. * * Luckily all devices only use a few usage page + usage combinations, * so we can simply check for the known combinations here. */ if (upage == 0x01 && usage == 0x81) { info->name = "power"; info->event_code = KEY_POWER; info->wakeup = true; } else if (upage == 0x01 && usage == 0xca) { info->name = "rotation lock switch"; info->event_type = EV_SW; info->event_code = SW_ROTATE_LOCK; } else if (upage == 0x07 && usage == 0xe3) { info->name = "home"; info->event_code = KEY_LEFTMETA; info->wakeup = true; } else if (upage == 0x0c && usage == 0xe9) { info->name = "volume_up"; info->event_code = KEY_VOLUMEUP; info->autorepeat = true; } else if (upage == 0x0c && usage == 0xea) { info->name = "volume_down"; info->event_code = KEY_VOLUMEDOWN; info->autorepeat = true; } else { dev_warn(dev, "Unknown button index %d upage %02x usage %02x, ignoring\n", info->acpi_index, upage, usage); info->name = "unknown"; info->event_code = KEY_RESERVED; } return 0; } /* ACPI0011 _DSD btns descriptors UUID: fa6bd625-9ce8-470d-a2c7-b3ca36c4282e */ static const u8 btns_desc_uuid[16] = { 0x25, 0xd6, 0x6b, 0xfa, 0xe8, 0x9c, 0x0d, 0x47, 0xa2, 0xc7, 0xb3, 0xca, 0x36, 0xc4, 0x28, 0x2e }; /* Parse ACPI0011 _DSD button descriptors */ static struct soc_button_info *soc_button_get_button_info(struct device *dev) { struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER }; const union acpi_object *desc, *el0, *uuid, *btns_desc = NULL; struct soc_button_info *button_info; acpi_status status; int i, btn, collection_uid = -1; status = acpi_evaluate_object_typed(ACPI_HANDLE(dev), "_DSD", NULL, &buf, ACPI_TYPE_PACKAGE); if (ACPI_FAILURE(status)) { dev_err(dev, "ACPI _DSD object not found\n"); return ERR_PTR(-ENODEV); } /* Look for the Button Descriptors UUID */ desc = buf.pointer; for (i = 0; (i + 1) < desc->package.count; i += 2) { uuid = &desc->package.elements[i]; if (uuid->type != ACPI_TYPE_BUFFER || uuid->buffer.length != 16 || desc->package.elements[i + 1].type != ACPI_TYPE_PACKAGE) { break; } if (memcmp(uuid->buffer.pointer, btns_desc_uuid, 16) == 0) { btns_desc = &desc->package.elements[i + 1]; break; } } if (!btns_desc) { dev_err(dev, "ACPI Button Descriptors not found\n"); button_info = ERR_PTR(-ENODEV); goto out; } /* The first package describes the collection */ el0 = &btns_desc->package.elements[0]; if (el0->type == ACPI_TYPE_PACKAGE && el0->package.count == 5 && /* First byte should be 0 (collection) */ soc_button_get_acpi_object_int(&el0->package.elements[0]) == 0 && /* Third byte should be 0 (top level collection) */ soc_button_get_acpi_object_int(&el0->package.elements[2]) == 0) { collection_uid = soc_button_get_acpi_object_int( &el0->package.elements[1]); } if (collection_uid == -1) { dev_err(dev, "Invalid Button Collection Descriptor\n"); button_info = ERR_PTR(-ENODEV); goto out; } /* There are package.count - 1 buttons + 1 terminating empty entry */ button_info = devm_kcalloc(dev, btns_desc->package.count, sizeof(*button_info), GFP_KERNEL); if (!button_info) { button_info = ERR_PTR(-ENOMEM); goto out; } /* Parse the button descriptors */ for (i = 1, btn = 0; i < btns_desc->package.count; i++, btn++) { if (soc_button_parse_btn_desc(dev, &btns_desc->package.elements[i], collection_uid, &button_info[btn])) { button_info = ERR_PTR(-ENODEV); goto out; } } out: kfree(buf.pointer); return button_info; } static int soc_button_remove(struct platform_device *pdev) { struct soc_button_data *priv = platform_get_drvdata(pdev); int i; for (i = 0; i < BUTTON_TYPES; i++) if (priv->children[i]) platform_device_unregister(priv->children[i]); return 0; } static int soc_button_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; const struct soc_device_data *device_data; const struct soc_button_info *button_info; struct soc_button_data *priv; struct platform_device *pd; int i; int error; device_data = acpi_device_get_match_data(dev); if (device_data && device_data->check) { error = device_data->check(dev); if (error) return error; } if (device_data && device_data->button_info) { button_info = device_data->button_info; } else { button_info = soc_button_get_button_info(dev); if (IS_ERR(button_info)) return PTR_ERR(button_info); } error = gpiod_count(dev, NULL); if (error < 0) { dev_dbg(dev, "no GPIO attached, ignoring...\n"); return -ENODEV; } priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; platform_set_drvdata(pdev, priv); for (i = 0; i < BUTTON_TYPES; i++) { pd = soc_button_device_create(pdev, button_info, i == 0); if (IS_ERR(pd)) { error = PTR_ERR(pd); if (error != -ENODEV) { soc_button_remove(pdev); return error; } continue; } priv->children[i] = pd; } if (!priv->children[0] && !priv->children[1]) return -ENODEV; if (!device_data || !device_data->button_info) devm_kfree(dev, button_info); return 0; } /* * Definition of buttons on the tablet. The ACPI index of each button * is defined in section 2.8.7.2 of "Windows ACPI Design Guide for SoC * Platforms" */ static const struct soc_button_info soc_button_PNP0C40[] = { { "power", 0, EV_KEY, KEY_POWER, false, true, true }, { "home", 1, EV_KEY, KEY_LEFTMETA, false, true, true }, { "volume_up", 2, EV_KEY, KEY_VOLUMEUP, true, false, true }, { "volume_down", 3, EV_KEY, KEY_VOLUMEDOWN, true, false, true }, { "rotation_lock", 4, EV_KEY, KEY_ROTATE_LOCK_TOGGLE, false, false, true }, { } }; static const struct soc_device_data soc_device_PNP0C40 = { .button_info = soc_button_PNP0C40, }; static const struct soc_button_info soc_button_INT33D3[] = { { "tablet_mode", 0, EV_SW, SW_TABLET_MODE, false, false, false }, { } }; static const struct soc_device_data soc_device_INT33D3 = { .button_info = soc_button_INT33D3, }; /* * Button info for Microsoft Surface 3 (non pro), this is indentical to * the PNP0C40 info except that the home button is active-high. * * The Surface 3 Pro also has a MSHW0028 ACPI device, but that uses a custom * version of the drivers/platform/x86/intel/hid.c 5 button array ACPI API * instead. A check() callback is not necessary though as the Surface 3 Pro * MSHW0028 ACPI device's resource table does not contain any GPIOs. */ static const struct soc_button_info soc_button_MSHW0028[] = { { "power", 0, EV_KEY, KEY_POWER, false, true, true }, { "home", 1, EV_KEY, KEY_LEFTMETA, false, true, false }, { "volume_up", 2, EV_KEY, KEY_VOLUMEUP, true, false, true }, { "volume_down", 3, EV_KEY, KEY_VOLUMEDOWN, true, false, true }, { } }; static const struct soc_device_data soc_device_MSHW0028 = { .button_info = soc_button_MSHW0028, }; /* * Special device check for Surface Book 2 and Surface Pro (2017). * Both, the Surface Pro 4 (surfacepro3_button.c) and the above mentioned * devices use MSHW0040 for power and volume buttons, however the way they * have to be addressed differs. Make sure that we only load this drivers * for the correct devices by checking the OEM Platform Revision provided by * the _DSM method. */ #define MSHW0040_DSM_REVISION 0x01 #define MSHW0040_DSM_GET_OMPR 0x02 // get OEM Platform Revision static const guid_t MSHW0040_DSM_UUID = GUID_INIT(0x6fd05c69, 0xcde3, 0x49f4, 0x95, 0xed, 0xab, 0x16, 0x65, 0x49, 0x80, 0x35); static int soc_device_check_MSHW0040(struct device *dev) { acpi_handle handle = ACPI_HANDLE(dev); union acpi_object *result; u64 oem_platform_rev = 0; // valid revisions are nonzero // get OEM platform revision result = acpi_evaluate_dsm_typed(handle, &MSHW0040_DSM_UUID, MSHW0040_DSM_REVISION, MSHW0040_DSM_GET_OMPR, NULL, ACPI_TYPE_INTEGER); if (result) { oem_platform_rev = result->integer.value; ACPI_FREE(result); } /* * If the revision is zero here, the _DSM evaluation has failed. This * indicates that we have a Pro 4 or Book 1 and this driver should not * be used. */ if (oem_platform_rev == 0) return -ENODEV; dev_dbg(dev, "OEM Platform Revision %llu\n", oem_platform_rev); return 0; } /* * Button infos for Microsoft Surface Book 2 and Surface Pro (2017). * Obtained from DSDT/testing. */ static const struct soc_button_info soc_button_MSHW0040[] = { { "power", 0, EV_KEY, KEY_POWER, false, true, true }, { "volume_up", 2, EV_KEY, KEY_VOLUMEUP, true, false, true }, { "volume_down", 4, EV_KEY, KEY_VOLUMEDOWN, true, false, true }, { } }; static const struct soc_device_data soc_device_MSHW0040 = { .button_info = soc_button_MSHW0040, .check = soc_device_check_MSHW0040, }; static const struct acpi_device_id soc_button_acpi_match[] = { { "PNP0C40", (unsigned long)&soc_device_PNP0C40 }, { "INT33D3", (unsigned long)&soc_device_INT33D3 }, { "ID9001", (unsigned long)&soc_device_INT33D3 }, { "ACPI0011", 0 }, /* Microsoft Surface Devices (3th, 5th and 6th generation) */ { "MSHW0028", (unsigned long)&soc_device_MSHW0028 }, { "MSHW0040", (unsigned long)&soc_device_MSHW0040 }, { } }; MODULE_DEVICE_TABLE(acpi, soc_button_acpi_match); static struct platform_driver soc_button_driver = { .probe = soc_button_probe, .remove = soc_button_remove, .driver = { .name = KBUILD_MODNAME, .acpi_match_table = ACPI_PTR(soc_button_acpi_match), }, }; module_platform_driver(soc_button_driver); MODULE_LICENSE("GPL");
linux-master
drivers/input/misc/soc_button_array.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * User level driver support for input subsystem * * Heavily based on evdev.c by Vojtech Pavlik * * Author: Aristeu Sergio Rozanski Filho <[email protected]> * * Changes/Revisions: * 0.4 01/09/2014 (Benjamin Tissoires <[email protected]>) * - add UI_GET_SYSNAME ioctl * 0.3 09/04/2006 (Anssi Hannula <[email protected]>) * - updated ff support for the changes in kernel interface * - added MODULE_VERSION * 0.2 16/10/2004 (Micah Dowty <[email protected]>) * - added force feedback support * - added UI_SET_PHYS * 0.1 20/06/2002 * - first public version */ #include <uapi/linux/uinput.h> #include <linux/poll.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/init.h> #include <linux/fs.h> #include <linux/miscdevice.h> #include <linux/overflow.h> #include <linux/input/mt.h> #include "../input-compat.h" #define UINPUT_NAME "uinput" #define UINPUT_BUFFER_SIZE 16 #define UINPUT_NUM_REQUESTS 16 #define UINPUT_TIMESTAMP_ALLOWED_OFFSET_SECS 10 enum uinput_state { UIST_NEW_DEVICE, UIST_SETUP_COMPLETE, UIST_CREATED }; struct uinput_request { unsigned int id; unsigned int code; /* UI_FF_UPLOAD, UI_FF_ERASE */ int retval; struct completion done; union { unsigned int effect_id; struct { struct ff_effect *effect; struct ff_effect *old; } upload; } u; }; struct uinput_device { struct input_dev *dev; struct mutex mutex; enum uinput_state state; wait_queue_head_t waitq; unsigned char ready; unsigned char head; unsigned char tail; struct input_event buff[UINPUT_BUFFER_SIZE]; unsigned int ff_effects_max; struct uinput_request *requests[UINPUT_NUM_REQUESTS]; wait_queue_head_t requests_waitq; spinlock_t requests_lock; }; static int uinput_dev_event(struct input_dev *dev, unsigned int type, unsigned int code, int value) { struct uinput_device *udev = input_get_drvdata(dev); struct timespec64 ts; ktime_get_ts64(&ts); udev->buff[udev->head] = (struct input_event) { .input_event_sec = ts.tv_sec, .input_event_usec = ts.tv_nsec / NSEC_PER_USEC, .type = type, .code = code, .value = value, }; udev->head = (udev->head + 1) % UINPUT_BUFFER_SIZE; wake_up_interruptible(&udev->waitq); return 0; } /* Atomically allocate an ID for the given request. Returns 0 on success. */ static bool uinput_request_alloc_id(struct uinput_device *udev, struct uinput_request *request) { unsigned int id; bool reserved = false; spin_lock(&udev->requests_lock); for (id = 0; id < UINPUT_NUM_REQUESTS; id++) { if (!udev->requests[id]) { request->id = id; udev->requests[id] = request; reserved = true; break; } } spin_unlock(&udev->requests_lock); return reserved; } static struct uinput_request *uinput_request_find(struct uinput_device *udev, unsigned int id) { /* Find an input request, by ID. Returns NULL if the ID isn't valid. */ if (id >= UINPUT_NUM_REQUESTS) return NULL; return udev->requests[id]; } static int uinput_request_reserve_slot(struct uinput_device *udev, struct uinput_request *request) { /* Allocate slot. If none are available right away, wait. */ return wait_event_interruptible(udev->requests_waitq, uinput_request_alloc_id(udev, request)); } static void uinput_request_release_slot(struct uinput_device *udev, unsigned int id) { /* Mark slot as available */ spin_lock(&udev->requests_lock); udev->requests[id] = NULL; spin_unlock(&udev->requests_lock); wake_up(&udev->requests_waitq); } static int uinput_request_send(struct uinput_device *udev, struct uinput_request *request) { int retval; retval = mutex_lock_interruptible(&udev->mutex); if (retval) return retval; if (udev->state != UIST_CREATED) { retval = -ENODEV; goto out; } init_completion(&request->done); /* * Tell our userspace application about this new request * by queueing an input event. */ uinput_dev_event(udev->dev, EV_UINPUT, request->code, request->id); out: mutex_unlock(&udev->mutex); return retval; } static int uinput_request_submit(struct uinput_device *udev, struct uinput_request *request) { int retval; retval = uinput_request_reserve_slot(udev, request); if (retval) return retval; retval = uinput_request_send(udev, request); if (retval) goto out; if (!wait_for_completion_timeout(&request->done, 30 * HZ)) { retval = -ETIMEDOUT; goto out; } retval = request->retval; out: uinput_request_release_slot(udev, request->id); return retval; } /* * Fail all outstanding requests so handlers don't wait for the userspace * to finish processing them. */ static void uinput_flush_requests(struct uinput_device *udev) { struct uinput_request *request; int i; spin_lock(&udev->requests_lock); for (i = 0; i < UINPUT_NUM_REQUESTS; i++) { request = udev->requests[i]; if (request) { request->retval = -ENODEV; complete(&request->done); } } spin_unlock(&udev->requests_lock); } static void uinput_dev_set_gain(struct input_dev *dev, u16 gain) { uinput_dev_event(dev, EV_FF, FF_GAIN, gain); } static void uinput_dev_set_autocenter(struct input_dev *dev, u16 magnitude) { uinput_dev_event(dev, EV_FF, FF_AUTOCENTER, magnitude); } static int uinput_dev_playback(struct input_dev *dev, int effect_id, int value) { return uinput_dev_event(dev, EV_FF, effect_id, value); } static int uinput_dev_upload_effect(struct input_dev *dev, struct ff_effect *effect, struct ff_effect *old) { struct uinput_device *udev = input_get_drvdata(dev); struct uinput_request request; /* * uinput driver does not currently support periodic effects with * custom waveform since it does not have a way to pass buffer of * samples (custom_data) to userspace. If ever there is a device * supporting custom waveforms we would need to define an additional * ioctl (UI_UPLOAD_SAMPLES) but for now we just bail out. */ if (effect->type == FF_PERIODIC && effect->u.periodic.waveform == FF_CUSTOM) return -EINVAL; request.code = UI_FF_UPLOAD; request.u.upload.effect = effect; request.u.upload.old = old; return uinput_request_submit(udev, &request); } static int uinput_dev_erase_effect(struct input_dev *dev, int effect_id) { struct uinput_device *udev = input_get_drvdata(dev); struct uinput_request request; if (!test_bit(EV_FF, dev->evbit)) return -ENOSYS; request.code = UI_FF_ERASE; request.u.effect_id = effect_id; return uinput_request_submit(udev, &request); } static int uinput_dev_flush(struct input_dev *dev, struct file *file) { /* * If we are called with file == NULL that means we are tearing * down the device, and therefore we can not handle FF erase * requests: either we are handling UI_DEV_DESTROY (and holding * the udev->mutex), or the file descriptor is closed and there is * nobody on the other side anymore. */ return file ? input_ff_flush(dev, file) : 0; } static void uinput_destroy_device(struct uinput_device *udev) { const char *name, *phys; struct input_dev *dev = udev->dev; enum uinput_state old_state = udev->state; udev->state = UIST_NEW_DEVICE; if (dev) { name = dev->name; phys = dev->phys; if (old_state == UIST_CREATED) { uinput_flush_requests(udev); input_unregister_device(dev); } else { input_free_device(dev); } kfree(name); kfree(phys); udev->dev = NULL; } } static int uinput_create_device(struct uinput_device *udev) { struct input_dev *dev = udev->dev; int error, nslot; if (udev->state != UIST_SETUP_COMPLETE) { printk(KERN_DEBUG "%s: write device info first\n", UINPUT_NAME); return -EINVAL; } if (test_bit(EV_ABS, dev->evbit)) { input_alloc_absinfo(dev); if (!dev->absinfo) { error = -EINVAL; goto fail1; } if (test_bit(ABS_MT_SLOT, dev->absbit)) { nslot = input_abs_get_max(dev, ABS_MT_SLOT) + 1; error = input_mt_init_slots(dev, nslot, 0); if (error) goto fail1; } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) { input_set_events_per_packet(dev, 60); } } if (test_bit(EV_FF, dev->evbit) && !udev->ff_effects_max) { printk(KERN_DEBUG "%s: ff_effects_max should be non-zero when FF_BIT is set\n", UINPUT_NAME); error = -EINVAL; goto fail1; } if (udev->ff_effects_max) { error = input_ff_create(dev, udev->ff_effects_max); if (error) goto fail1; dev->ff->upload = uinput_dev_upload_effect; dev->ff->erase = uinput_dev_erase_effect; dev->ff->playback = uinput_dev_playback; dev->ff->set_gain = uinput_dev_set_gain; dev->ff->set_autocenter = uinput_dev_set_autocenter; /* * The standard input_ff_flush() implementation does * not quite work for uinput as we can't reasonably * handle FF requests during device teardown. */ dev->flush = uinput_dev_flush; } dev->event = uinput_dev_event; input_set_drvdata(udev->dev, udev); error = input_register_device(udev->dev); if (error) goto fail2; udev->state = UIST_CREATED; return 0; fail2: input_ff_destroy(dev); fail1: uinput_destroy_device(udev); return error; } static int uinput_open(struct inode *inode, struct file *file) { struct uinput_device *newdev; newdev = kzalloc(sizeof(struct uinput_device), GFP_KERNEL); if (!newdev) return -ENOMEM; mutex_init(&newdev->mutex); spin_lock_init(&newdev->requests_lock); init_waitqueue_head(&newdev->requests_waitq); init_waitqueue_head(&newdev->waitq); newdev->state = UIST_NEW_DEVICE; file->private_data = newdev; stream_open(inode, file); return 0; } static int uinput_validate_absinfo(struct input_dev *dev, unsigned int code, const struct input_absinfo *abs) { int min, max, range; min = abs->minimum; max = abs->maximum; if ((min != 0 || max != 0) && max < min) { printk(KERN_DEBUG "%s: invalid abs[%02x] min:%d max:%d\n", UINPUT_NAME, code, min, max); return -EINVAL; } if (!check_sub_overflow(max, min, &range) && abs->flat > range) { printk(KERN_DEBUG "%s: abs_flat #%02x out of range: %d (min:%d/max:%d)\n", UINPUT_NAME, code, abs->flat, min, max); return -EINVAL; } return 0; } static int uinput_validate_absbits(struct input_dev *dev) { unsigned int cnt; int error; if (!test_bit(EV_ABS, dev->evbit)) return 0; /* * Check if absmin/absmax/absfuzz/absflat are sane. */ for_each_set_bit(cnt, dev->absbit, ABS_CNT) { if (!dev->absinfo) return -EINVAL; error = uinput_validate_absinfo(dev, cnt, &dev->absinfo[cnt]); if (error) return error; } return 0; } static int uinput_dev_setup(struct uinput_device *udev, struct uinput_setup __user *arg) { struct uinput_setup setup; struct input_dev *dev; if (udev->state == UIST_CREATED) return -EINVAL; if (copy_from_user(&setup, arg, sizeof(setup))) return -EFAULT; if (!setup.name[0]) return -EINVAL; dev = udev->dev; dev->id = setup.id; udev->ff_effects_max = setup.ff_effects_max; kfree(dev->name); dev->name = kstrndup(setup.name, UINPUT_MAX_NAME_SIZE, GFP_KERNEL); if (!dev->name) return -ENOMEM; udev->state = UIST_SETUP_COMPLETE; return 0; } static int uinput_abs_setup(struct uinput_device *udev, struct uinput_setup __user *arg, size_t size) { struct uinput_abs_setup setup = {}; struct input_dev *dev; int error; if (size > sizeof(setup)) return -E2BIG; if (udev->state == UIST_CREATED) return -EINVAL; if (copy_from_user(&setup, arg, size)) return -EFAULT; if (setup.code > ABS_MAX) return -ERANGE; dev = udev->dev; error = uinput_validate_absinfo(dev, setup.code, &setup.absinfo); if (error) return error; input_alloc_absinfo(dev); if (!dev->absinfo) return -ENOMEM; set_bit(setup.code, dev->absbit); dev->absinfo[setup.code] = setup.absinfo; return 0; } /* legacy setup via write() */ static int uinput_setup_device_legacy(struct uinput_device *udev, const char __user *buffer, size_t count) { struct uinput_user_dev *user_dev; struct input_dev *dev; int i; int retval; if (count != sizeof(struct uinput_user_dev)) return -EINVAL; if (!udev->dev) { udev->dev = input_allocate_device(); if (!udev->dev) return -ENOMEM; } dev = udev->dev; user_dev = memdup_user(buffer, sizeof(struct uinput_user_dev)); if (IS_ERR(user_dev)) return PTR_ERR(user_dev); udev->ff_effects_max = user_dev->ff_effects_max; /* Ensure name is filled in */ if (!user_dev->name[0]) { retval = -EINVAL; goto exit; } kfree(dev->name); dev->name = kstrndup(user_dev->name, UINPUT_MAX_NAME_SIZE, GFP_KERNEL); if (!dev->name) { retval = -ENOMEM; goto exit; } dev->id.bustype = user_dev->id.bustype; dev->id.vendor = user_dev->id.vendor; dev->id.product = user_dev->id.product; dev->id.version = user_dev->id.version; for (i = 0; i < ABS_CNT; i++) { input_abs_set_max(dev, i, user_dev->absmax[i]); input_abs_set_min(dev, i, user_dev->absmin[i]); input_abs_set_fuzz(dev, i, user_dev->absfuzz[i]); input_abs_set_flat(dev, i, user_dev->absflat[i]); } retval = uinput_validate_absbits(dev); if (retval < 0) goto exit; udev->state = UIST_SETUP_COMPLETE; retval = count; exit: kfree(user_dev); return retval; } /* * Returns true if the given timestamp is valid (i.e., if all the following * conditions are satisfied), false otherwise. * 1) given timestamp is positive * 2) it's within the allowed offset before the current time * 3) it's not in the future */ static bool is_valid_timestamp(const ktime_t timestamp) { ktime_t zero_time; ktime_t current_time; ktime_t min_time; ktime_t offset; zero_time = ktime_set(0, 0); if (ktime_compare(zero_time, timestamp) >= 0) return false; current_time = ktime_get(); offset = ktime_set(UINPUT_TIMESTAMP_ALLOWED_OFFSET_SECS, 0); min_time = ktime_sub(current_time, offset); if (ktime_after(min_time, timestamp) || ktime_after(timestamp, current_time)) return false; return true; } static ssize_t uinput_inject_events(struct uinput_device *udev, const char __user *buffer, size_t count) { struct input_event ev; size_t bytes = 0; ktime_t timestamp; if (count != 0 && count < input_event_size()) return -EINVAL; while (bytes + input_event_size() <= count) { /* * Note that even if some events were fetched successfully * we are still going to return EFAULT instead of partial * count to let userspace know that it got it's buffers * all wrong. */ if (input_event_from_user(buffer + bytes, &ev)) return -EFAULT; timestamp = ktime_set(ev.input_event_sec, ev.input_event_usec * NSEC_PER_USEC); if (is_valid_timestamp(timestamp)) input_set_timestamp(udev->dev, timestamp); input_event(udev->dev, ev.type, ev.code, ev.value); bytes += input_event_size(); cond_resched(); } return bytes; } static ssize_t uinput_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos) { struct uinput_device *udev = file->private_data; int retval; if (count == 0) return 0; retval = mutex_lock_interruptible(&udev->mutex); if (retval) return retval; retval = udev->state == UIST_CREATED ? uinput_inject_events(udev, buffer, count) : uinput_setup_device_legacy(udev, buffer, count); mutex_unlock(&udev->mutex); return retval; } static bool uinput_fetch_next_event(struct uinput_device *udev, struct input_event *event) { bool have_event; spin_lock_irq(&udev->dev->event_lock); have_event = udev->head != udev->tail; if (have_event) { *event = udev->buff[udev->tail]; udev->tail = (udev->tail + 1) % UINPUT_BUFFER_SIZE; } spin_unlock_irq(&udev->dev->event_lock); return have_event; } static ssize_t uinput_events_to_user(struct uinput_device *udev, char __user *buffer, size_t count) { struct input_event event; size_t read = 0; while (read + input_event_size() <= count && uinput_fetch_next_event(udev, &event)) { if (input_event_to_user(buffer + read, &event)) return -EFAULT; read += input_event_size(); } return read; } static ssize_t uinput_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos) { struct uinput_device *udev = file->private_data; ssize_t retval; if (count != 0 && count < input_event_size()) return -EINVAL; do { retval = mutex_lock_interruptible(&udev->mutex); if (retval) return retval; if (udev->state != UIST_CREATED) retval = -ENODEV; else if (udev->head == udev->tail && (file->f_flags & O_NONBLOCK)) retval = -EAGAIN; else retval = uinput_events_to_user(udev, buffer, count); mutex_unlock(&udev->mutex); if (retval || count == 0) break; if (!(file->f_flags & O_NONBLOCK)) retval = wait_event_interruptible(udev->waitq, udev->head != udev->tail || udev->state != UIST_CREATED); } while (retval == 0); return retval; } static __poll_t uinput_poll(struct file *file, poll_table *wait) { struct uinput_device *udev = file->private_data; __poll_t mask = EPOLLOUT | EPOLLWRNORM; /* uinput is always writable */ poll_wait(file, &udev->waitq, wait); if (udev->head != udev->tail) mask |= EPOLLIN | EPOLLRDNORM; return mask; } static int uinput_release(struct inode *inode, struct file *file) { struct uinput_device *udev = file->private_data; uinput_destroy_device(udev); kfree(udev); return 0; } #ifdef CONFIG_COMPAT struct uinput_ff_upload_compat { __u32 request_id; __s32 retval; struct ff_effect_compat effect; struct ff_effect_compat old; }; static int uinput_ff_upload_to_user(char __user *buffer, const struct uinput_ff_upload *ff_up) { if (in_compat_syscall()) { struct uinput_ff_upload_compat ff_up_compat; ff_up_compat.request_id = ff_up->request_id; ff_up_compat.retval = ff_up->retval; /* * It so happens that the pointer that gives us the trouble * is the last field in the structure. Since we don't support * custom waveforms in uinput anyway we can just copy the whole * thing (to the compat size) and ignore the pointer. */ memcpy(&ff_up_compat.effect, &ff_up->effect, sizeof(struct ff_effect_compat)); memcpy(&ff_up_compat.old, &ff_up->old, sizeof(struct ff_effect_compat)); if (copy_to_user(buffer, &ff_up_compat, sizeof(struct uinput_ff_upload_compat))) return -EFAULT; } else { if (copy_to_user(buffer, ff_up, sizeof(struct uinput_ff_upload))) return -EFAULT; } return 0; } static int uinput_ff_upload_from_user(const char __user *buffer, struct uinput_ff_upload *ff_up) { if (in_compat_syscall()) { struct uinput_ff_upload_compat ff_up_compat; if (copy_from_user(&ff_up_compat, buffer, sizeof(struct uinput_ff_upload_compat))) return -EFAULT; ff_up->request_id = ff_up_compat.request_id; ff_up->retval = ff_up_compat.retval; memcpy(&ff_up->effect, &ff_up_compat.effect, sizeof(struct ff_effect_compat)); memcpy(&ff_up->old, &ff_up_compat.old, sizeof(struct ff_effect_compat)); } else { if (copy_from_user(ff_up, buffer, sizeof(struct uinput_ff_upload))) return -EFAULT; } return 0; } #else static int uinput_ff_upload_to_user(char __user *buffer, const struct uinput_ff_upload *ff_up) { if (copy_to_user(buffer, ff_up, sizeof(struct uinput_ff_upload))) return -EFAULT; return 0; } static int uinput_ff_upload_from_user(const char __user *buffer, struct uinput_ff_upload *ff_up) { if (copy_from_user(ff_up, buffer, sizeof(struct uinput_ff_upload))) return -EFAULT; return 0; } #endif #define uinput_set_bit(_arg, _bit, _max) \ ({ \ int __ret = 0; \ if (udev->state == UIST_CREATED) \ __ret = -EINVAL; \ else if ((_arg) > (_max)) \ __ret = -EINVAL; \ else set_bit((_arg), udev->dev->_bit); \ __ret; \ }) static int uinput_str_to_user(void __user *dest, const char *str, unsigned int maxlen) { char __user *p = dest; int len, ret; if (!str) return -ENOENT; if (maxlen == 0) return -EINVAL; len = strlen(str) + 1; if (len > maxlen) len = maxlen; ret = copy_to_user(p, str, len); if (ret) return -EFAULT; /* force terminating '\0' */ ret = put_user(0, p + len - 1); return ret ? -EFAULT : len; } static long uinput_ioctl_handler(struct file *file, unsigned int cmd, unsigned long arg, void __user *p) { int retval; struct uinput_device *udev = file->private_data; struct uinput_ff_upload ff_up; struct uinput_ff_erase ff_erase; struct uinput_request *req; char *phys; const char *name; unsigned int size; retval = mutex_lock_interruptible(&udev->mutex); if (retval) return retval; if (!udev->dev) { udev->dev = input_allocate_device(); if (!udev->dev) { retval = -ENOMEM; goto out; } } switch (cmd) { case UI_GET_VERSION: if (put_user(UINPUT_VERSION, (unsigned int __user *)p)) retval = -EFAULT; goto out; case UI_DEV_CREATE: retval = uinput_create_device(udev); goto out; case UI_DEV_DESTROY: uinput_destroy_device(udev); goto out; case UI_DEV_SETUP: retval = uinput_dev_setup(udev, p); goto out; /* UI_ABS_SETUP is handled in the variable size ioctls */ case UI_SET_EVBIT: retval = uinput_set_bit(arg, evbit, EV_MAX); goto out; case UI_SET_KEYBIT: retval = uinput_set_bit(arg, keybit, KEY_MAX); goto out; case UI_SET_RELBIT: retval = uinput_set_bit(arg, relbit, REL_MAX); goto out; case UI_SET_ABSBIT: retval = uinput_set_bit(arg, absbit, ABS_MAX); goto out; case UI_SET_MSCBIT: retval = uinput_set_bit(arg, mscbit, MSC_MAX); goto out; case UI_SET_LEDBIT: retval = uinput_set_bit(arg, ledbit, LED_MAX); goto out; case UI_SET_SNDBIT: retval = uinput_set_bit(arg, sndbit, SND_MAX); goto out; case UI_SET_FFBIT: retval = uinput_set_bit(arg, ffbit, FF_MAX); goto out; case UI_SET_SWBIT: retval = uinput_set_bit(arg, swbit, SW_MAX); goto out; case UI_SET_PROPBIT: retval = uinput_set_bit(arg, propbit, INPUT_PROP_MAX); goto out; case UI_SET_PHYS: if (udev->state == UIST_CREATED) { retval = -EINVAL; goto out; } phys = strndup_user(p, 1024); if (IS_ERR(phys)) { retval = PTR_ERR(phys); goto out; } kfree(udev->dev->phys); udev->dev->phys = phys; goto out; case UI_BEGIN_FF_UPLOAD: retval = uinput_ff_upload_from_user(p, &ff_up); if (retval) goto out; req = uinput_request_find(udev, ff_up.request_id); if (!req || req->code != UI_FF_UPLOAD || !req->u.upload.effect) { retval = -EINVAL; goto out; } ff_up.retval = 0; ff_up.effect = *req->u.upload.effect; if (req->u.upload.old) ff_up.old = *req->u.upload.old; else memset(&ff_up.old, 0, sizeof(struct ff_effect)); retval = uinput_ff_upload_to_user(p, &ff_up); goto out; case UI_BEGIN_FF_ERASE: if (copy_from_user(&ff_erase, p, sizeof(ff_erase))) { retval = -EFAULT; goto out; } req = uinput_request_find(udev, ff_erase.request_id); if (!req || req->code != UI_FF_ERASE) { retval = -EINVAL; goto out; } ff_erase.retval = 0; ff_erase.effect_id = req->u.effect_id; if (copy_to_user(p, &ff_erase, sizeof(ff_erase))) { retval = -EFAULT; goto out; } goto out; case UI_END_FF_UPLOAD: retval = uinput_ff_upload_from_user(p, &ff_up); if (retval) goto out; req = uinput_request_find(udev, ff_up.request_id); if (!req || req->code != UI_FF_UPLOAD || !req->u.upload.effect) { retval = -EINVAL; goto out; } req->retval = ff_up.retval; complete(&req->done); goto out; case UI_END_FF_ERASE: if (copy_from_user(&ff_erase, p, sizeof(ff_erase))) { retval = -EFAULT; goto out; } req = uinput_request_find(udev, ff_erase.request_id); if (!req || req->code != UI_FF_ERASE) { retval = -EINVAL; goto out; } req->retval = ff_erase.retval; complete(&req->done); goto out; } size = _IOC_SIZE(cmd); /* Now check variable-length commands */ switch (cmd & ~IOCSIZE_MASK) { case UI_GET_SYSNAME(0): if (udev->state != UIST_CREATED) { retval = -ENOENT; goto out; } name = dev_name(&udev->dev->dev); retval = uinput_str_to_user(p, name, size); goto out; case UI_ABS_SETUP & ~IOCSIZE_MASK: retval = uinput_abs_setup(udev, p, size); goto out; } retval = -EINVAL; out: mutex_unlock(&udev->mutex); return retval; } static long uinput_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { return uinput_ioctl_handler(file, cmd, arg, (void __user *)arg); } #ifdef CONFIG_COMPAT /* * These IOCTLs change their size and thus their numbers between * 32 and 64 bits. */ #define UI_SET_PHYS_COMPAT \ _IOW(UINPUT_IOCTL_BASE, 108, compat_uptr_t) #define UI_BEGIN_FF_UPLOAD_COMPAT \ _IOWR(UINPUT_IOCTL_BASE, 200, struct uinput_ff_upload_compat) #define UI_END_FF_UPLOAD_COMPAT \ _IOW(UINPUT_IOCTL_BASE, 201, struct uinput_ff_upload_compat) static long uinput_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { switch (cmd) { case UI_SET_PHYS_COMPAT: cmd = UI_SET_PHYS; break; case UI_BEGIN_FF_UPLOAD_COMPAT: cmd = UI_BEGIN_FF_UPLOAD; break; case UI_END_FF_UPLOAD_COMPAT: cmd = UI_END_FF_UPLOAD; break; } return uinput_ioctl_handler(file, cmd, arg, compat_ptr(arg)); } #endif static const struct file_operations uinput_fops = { .owner = THIS_MODULE, .open = uinput_open, .release = uinput_release, .read = uinput_read, .write = uinput_write, .poll = uinput_poll, .unlocked_ioctl = uinput_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = uinput_compat_ioctl, #endif .llseek = no_llseek, }; static struct miscdevice uinput_misc = { .fops = &uinput_fops, .minor = UINPUT_MINOR, .name = UINPUT_NAME, }; module_misc_device(uinput_misc); MODULE_ALIAS_MISCDEV(UINPUT_MINOR); MODULE_ALIAS("devname:" UINPUT_NAME); MODULE_AUTHOR("Aristeu Sergio Rozanski Filho"); MODULE_DESCRIPTION("User level driver support for input subsystem"); MODULE_LICENSE("GPL");
linux-master
drivers/input/misc/uinput.c
// SPDX-License-Identifier: GPL-2.0-only /* * twl6040-vibra.c - TWL6040 Vibrator driver * * Author: Jorge Eduardo Candelaria <[email protected]> * Author: Misael Lopez Cruz <[email protected]> * * Copyright: (C) 2011 Texas Instruments, Inc. * * Based on twl4030-vibra.c by Henrik Saari <[email protected]> * Felipe Balbi <[email protected]> * Jari Vanhala <[email protected]> */ #include <linux/module.h> #include <linux/platform_device.h> #include <linux/of.h> #include <linux/workqueue.h> #include <linux/input.h> #include <linux/mfd/twl6040.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/regulator/consumer.h> #define EFFECT_DIR_180_DEG 0x8000 /* Recommended modulation index 85% */ #define TWL6040_VIBRA_MOD 85 #define TWL6040_NUM_SUPPLIES 2 struct vibra_info { struct device *dev; struct input_dev *input_dev; struct work_struct play_work; int irq; bool enabled; int weak_speed; int strong_speed; int direction; unsigned int vibldrv_res; unsigned int vibrdrv_res; unsigned int viblmotor_res; unsigned int vibrmotor_res; struct regulator_bulk_data supplies[TWL6040_NUM_SUPPLIES]; struct twl6040 *twl6040; }; static irqreturn_t twl6040_vib_irq_handler(int irq, void *data) { struct vibra_info *info = data; struct twl6040 *twl6040 = info->twl6040; u8 status; status = twl6040_reg_read(twl6040, TWL6040_REG_STATUS); if (status & TWL6040_VIBLOCDET) { dev_warn(info->dev, "Left Vibrator overcurrent detected\n"); twl6040_clear_bits(twl6040, TWL6040_REG_VIBCTLL, TWL6040_VIBENA); } if (status & TWL6040_VIBROCDET) { dev_warn(info->dev, "Right Vibrator overcurrent detected\n"); twl6040_clear_bits(twl6040, TWL6040_REG_VIBCTLR, TWL6040_VIBENA); } return IRQ_HANDLED; } static void twl6040_vibra_enable(struct vibra_info *info) { struct twl6040 *twl6040 = info->twl6040; int ret; ret = regulator_bulk_enable(ARRAY_SIZE(info->supplies), info->supplies); if (ret) { dev_err(info->dev, "failed to enable regulators %d\n", ret); return; } twl6040_power(info->twl6040, 1); if (twl6040_get_revid(twl6040) <= TWL6040_REV_ES1_1) { /* * ERRATA: Disable overcurrent protection for at least * 3ms when enabling vibrator drivers to avoid false * overcurrent detection */ twl6040_reg_write(twl6040, TWL6040_REG_VIBCTLL, TWL6040_VIBENA | TWL6040_VIBCTRL); twl6040_reg_write(twl6040, TWL6040_REG_VIBCTLR, TWL6040_VIBENA | TWL6040_VIBCTRL); usleep_range(3000, 3500); } twl6040_reg_write(twl6040, TWL6040_REG_VIBCTLL, TWL6040_VIBENA); twl6040_reg_write(twl6040, TWL6040_REG_VIBCTLR, TWL6040_VIBENA); info->enabled = true; } static void twl6040_vibra_disable(struct vibra_info *info) { struct twl6040 *twl6040 = info->twl6040; twl6040_reg_write(twl6040, TWL6040_REG_VIBCTLL, 0x00); twl6040_reg_write(twl6040, TWL6040_REG_VIBCTLR, 0x00); twl6040_power(info->twl6040, 0); regulator_bulk_disable(ARRAY_SIZE(info->supplies), info->supplies); info->enabled = false; } static u8 twl6040_vibra_code(int vddvib, int vibdrv_res, int motor_res, int speed, int direction) { int vpk, max_code; u8 vibdat; /* output swing */ vpk = (vddvib * motor_res * TWL6040_VIBRA_MOD) / (100 * (vibdrv_res + motor_res)); /* 50mV per VIBDAT code step */ max_code = vpk / 50; if (max_code > TWL6040_VIBDAT_MAX) max_code = TWL6040_VIBDAT_MAX; /* scale speed to max allowed code */ vibdat = (u8)((speed * max_code) / USHRT_MAX); /* 2's complement for direction > 180 degrees */ vibdat *= direction; return vibdat; } static void twl6040_vibra_set_effect(struct vibra_info *info) { struct twl6040 *twl6040 = info->twl6040; u8 vibdatl, vibdatr; int volt; /* weak motor */ volt = regulator_get_voltage(info->supplies[0].consumer) / 1000; vibdatl = twl6040_vibra_code(volt, info->vibldrv_res, info->viblmotor_res, info->weak_speed, info->direction); /* strong motor */ volt = regulator_get_voltage(info->supplies[1].consumer) / 1000; vibdatr = twl6040_vibra_code(volt, info->vibrdrv_res, info->vibrmotor_res, info->strong_speed, info->direction); twl6040_reg_write(twl6040, TWL6040_REG_VIBDATL, vibdatl); twl6040_reg_write(twl6040, TWL6040_REG_VIBDATR, vibdatr); } static void vibra_play_work(struct work_struct *work) { struct vibra_info *info = container_of(work, struct vibra_info, play_work); int ret; /* Do not allow effect, while the routing is set to use audio */ ret = twl6040_get_vibralr_status(info->twl6040); if (ret & TWL6040_VIBSEL) { dev_info(info->dev, "Vibra is configured for audio\n"); return; } if (info->weak_speed || info->strong_speed) { if (!info->enabled) twl6040_vibra_enable(info); twl6040_vibra_set_effect(info); } else if (info->enabled) twl6040_vibra_disable(info); } static int vibra_play(struct input_dev *input, void *data, struct ff_effect *effect) { struct vibra_info *info = input_get_drvdata(input); info->weak_speed = effect->u.rumble.weak_magnitude; info->strong_speed = effect->u.rumble.strong_magnitude; info->direction = effect->direction < EFFECT_DIR_180_DEG ? 1 : -1; schedule_work(&info->play_work); return 0; } static void twl6040_vibra_close(struct input_dev *input) { struct vibra_info *info = input_get_drvdata(input); cancel_work_sync(&info->play_work); if (info->enabled) twl6040_vibra_disable(info); } static int twl6040_vibra_suspend(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct vibra_info *info = platform_get_drvdata(pdev); cancel_work_sync(&info->play_work); if (info->enabled) twl6040_vibra_disable(info); return 0; } static DEFINE_SIMPLE_DEV_PM_OPS(twl6040_vibra_pm_ops, twl6040_vibra_suspend, NULL); static int twl6040_vibra_probe(struct platform_device *pdev) { struct device *twl6040_core_dev = pdev->dev.parent; struct device_node *twl6040_core_node; struct vibra_info *info; int vddvibl_uV = 0; int vddvibr_uV = 0; int error; twl6040_core_node = of_get_child_by_name(twl6040_core_dev->of_node, "vibra"); if (!twl6040_core_node) { dev_err(&pdev->dev, "parent of node is missing?\n"); return -EINVAL; } info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL); if (!info) { of_node_put(twl6040_core_node); dev_err(&pdev->dev, "couldn't allocate memory\n"); return -ENOMEM; } info->dev = &pdev->dev; info->twl6040 = dev_get_drvdata(pdev->dev.parent); of_property_read_u32(twl6040_core_node, "ti,vibldrv-res", &info->vibldrv_res); of_property_read_u32(twl6040_core_node, "ti,vibrdrv-res", &info->vibrdrv_res); of_property_read_u32(twl6040_core_node, "ti,viblmotor-res", &info->viblmotor_res); of_property_read_u32(twl6040_core_node, "ti,vibrmotor-res", &info->vibrmotor_res); of_property_read_u32(twl6040_core_node, "ti,vddvibl-uV", &vddvibl_uV); of_property_read_u32(twl6040_core_node, "ti,vddvibr-uV", &vddvibr_uV); of_node_put(twl6040_core_node); if ((!info->vibldrv_res && !info->viblmotor_res) || (!info->vibrdrv_res && !info->vibrmotor_res)) { dev_err(info->dev, "invalid vibra driver/motor resistance\n"); return -EINVAL; } info->irq = platform_get_irq(pdev, 0); if (info->irq < 0) return -EINVAL; error = devm_request_threaded_irq(&pdev->dev, info->irq, NULL, twl6040_vib_irq_handler, IRQF_ONESHOT, "twl6040_irq_vib", info); if (error) { dev_err(info->dev, "VIB IRQ request failed: %d\n", error); return error; } info->supplies[0].supply = "vddvibl"; info->supplies[1].supply = "vddvibr"; /* * When booted with Device tree the regulators are attached to the * parent device (twl6040 MFD core) */ error = devm_regulator_bulk_get(twl6040_core_dev, ARRAY_SIZE(info->supplies), info->supplies); if (error) { dev_err(info->dev, "couldn't get regulators %d\n", error); return error; } if (vddvibl_uV) { error = regulator_set_voltage(info->supplies[0].consumer, vddvibl_uV, vddvibl_uV); if (error) { dev_err(info->dev, "failed to set VDDVIBL volt %d\n", error); return error; } } if (vddvibr_uV) { error = regulator_set_voltage(info->supplies[1].consumer, vddvibr_uV, vddvibr_uV); if (error) { dev_err(info->dev, "failed to set VDDVIBR volt %d\n", error); return error; } } INIT_WORK(&info->play_work, vibra_play_work); info->input_dev = devm_input_allocate_device(&pdev->dev); if (!info->input_dev) { dev_err(info->dev, "couldn't allocate input device\n"); return -ENOMEM; } input_set_drvdata(info->input_dev, info); info->input_dev->name = "twl6040:vibrator"; info->input_dev->id.version = 1; info->input_dev->close = twl6040_vibra_close; __set_bit(FF_RUMBLE, info->input_dev->ffbit); error = input_ff_create_memless(info->input_dev, NULL, vibra_play); if (error) { dev_err(info->dev, "couldn't register vibrator to FF\n"); return error; } error = input_register_device(info->input_dev); if (error) { dev_err(info->dev, "couldn't register input device\n"); return error; } platform_set_drvdata(pdev, info); return 0; } static struct platform_driver twl6040_vibra_driver = { .probe = twl6040_vibra_probe, .driver = { .name = "twl6040-vibra", .pm = pm_sleep_ptr(&twl6040_vibra_pm_ops), }, }; module_platform_driver(twl6040_vibra_driver); MODULE_ALIAS("platform:twl6040-vibra"); MODULE_DESCRIPTION("TWL6040 Vibra driver"); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Jorge Eduardo Candelaria <[email protected]>"); MODULE_AUTHOR("Misael Lopez Cruz <[email protected]>");
linux-master
drivers/input/misc/twl6040-vibra.c
// SPDX-License-Identifier: GPL-2.0-only /* * Implements I2C interface for VTI CMA300_D0x Accelerometer driver * * Copyright (C) 2010 Texas Instruments * Author: Hemanth V <[email protected]> */ #include <linux/module.h> #include <linux/i2c.h> #include <linux/input/cma3000.h> #include "cma3000_d0x.h" static int cma3000_i2c_set(struct device *dev, u8 reg, u8 val, char *msg) { struct i2c_client *client = to_i2c_client(dev); int ret; ret = i2c_smbus_write_byte_data(client, reg, val); if (ret < 0) dev_err(&client->dev, "%s failed (%s, %d)\n", __func__, msg, ret); return ret; } static int cma3000_i2c_read(struct device *dev, u8 reg, char *msg) { struct i2c_client *client = to_i2c_client(dev); int ret; ret = i2c_smbus_read_byte_data(client, reg); if (ret < 0) dev_err(&client->dev, "%s failed (%s, %d)\n", __func__, msg, ret); return ret; } static const struct cma3000_bus_ops cma3000_i2c_bops = { .bustype = BUS_I2C, #define CMA3000_BUSI2C (0 << 4) .ctrl_mod = CMA3000_BUSI2C, .read = cma3000_i2c_read, .write = cma3000_i2c_set, }; static int cma3000_i2c_probe(struct i2c_client *client) { struct cma3000_accl_data *data; data = cma3000_init(&client->dev, client->irq, &cma3000_i2c_bops); if (IS_ERR(data)) return PTR_ERR(data); i2c_set_clientdata(client, data); return 0; } static void cma3000_i2c_remove(struct i2c_client *client) { struct cma3000_accl_data *data = i2c_get_clientdata(client); cma3000_exit(data); } static int cma3000_i2c_suspend(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct cma3000_accl_data *data = i2c_get_clientdata(client); cma3000_suspend(data); return 0; } static int cma3000_i2c_resume(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct cma3000_accl_data *data = i2c_get_clientdata(client); cma3000_resume(data); return 0; } static const struct dev_pm_ops cma3000_i2c_pm_ops = { .suspend = cma3000_i2c_suspend, .resume = cma3000_i2c_resume, }; static const struct i2c_device_id cma3000_i2c_id[] = { { "cma3000_d01", 0 }, { }, }; MODULE_DEVICE_TABLE(i2c, cma3000_i2c_id); static struct i2c_driver cma3000_i2c_driver = { .probe = cma3000_i2c_probe, .remove = cma3000_i2c_remove, .id_table = cma3000_i2c_id, .driver = { .name = "cma3000_i2c_accl", .pm = pm_sleep_ptr(&cma3000_i2c_pm_ops), }, }; module_i2c_driver(cma3000_i2c_driver); MODULE_DESCRIPTION("CMA3000-D0x Accelerometer I2C Driver"); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Hemanth V <[email protected]>");
linux-master
drivers/input/misc/cma3000_d0x_i2c.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Rockchip RK805 PMIC Power Key driver * * Copyright (c) 2017, Fuzhou Rockchip Electronics Co., Ltd * * Author: Joseph Chen <[email protected]> */ #include <linux/errno.h> #include <linux/init.h> #include <linux/input.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/platform_device.h> static irqreturn_t pwrkey_fall_irq(int irq, void *_pwr) { struct input_dev *pwr = _pwr; input_report_key(pwr, KEY_POWER, 1); input_sync(pwr); return IRQ_HANDLED; } static irqreturn_t pwrkey_rise_irq(int irq, void *_pwr) { struct input_dev *pwr = _pwr; input_report_key(pwr, KEY_POWER, 0); input_sync(pwr); return IRQ_HANDLED; } static int rk805_pwrkey_probe(struct platform_device *pdev) { struct input_dev *pwr; int fall_irq, rise_irq; int err; pwr = devm_input_allocate_device(&pdev->dev); if (!pwr) { dev_err(&pdev->dev, "Can't allocate power button\n"); return -ENOMEM; } pwr->name = "rk805 pwrkey"; pwr->phys = "rk805_pwrkey/input0"; pwr->id.bustype = BUS_HOST; input_set_capability(pwr, EV_KEY, KEY_POWER); fall_irq = platform_get_irq(pdev, 0); if (fall_irq < 0) return fall_irq; rise_irq = platform_get_irq(pdev, 1); if (rise_irq < 0) return rise_irq; err = devm_request_any_context_irq(&pwr->dev, fall_irq, pwrkey_fall_irq, IRQF_TRIGGER_FALLING | IRQF_ONESHOT, "rk805_pwrkey_fall", pwr); if (err < 0) { dev_err(&pdev->dev, "Can't register fall irq: %d\n", err); return err; } err = devm_request_any_context_irq(&pwr->dev, rise_irq, pwrkey_rise_irq, IRQF_TRIGGER_RISING | IRQF_ONESHOT, "rk805_pwrkey_rise", pwr); if (err < 0) { dev_err(&pdev->dev, "Can't register rise irq: %d\n", err); return err; } err = input_register_device(pwr); if (err) { dev_err(&pdev->dev, "Can't register power button: %d\n", err); return err; } platform_set_drvdata(pdev, pwr); device_init_wakeup(&pdev->dev, true); return 0; } static struct platform_driver rk805_pwrkey_driver = { .probe = rk805_pwrkey_probe, .driver = { .name = "rk805-pwrkey", }, }; module_platform_driver(rk805_pwrkey_driver); MODULE_ALIAS("platform:rk805-pwrkey"); MODULE_AUTHOR("Joseph Chen <[email protected]>"); MODULE_DESCRIPTION("RK805 PMIC Power Key driver"); MODULE_LICENSE("GPL");
linux-master
drivers/input/misc/rk805-pwrkey.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) ST-Ericsson SA 2010 * * Author: Sundar Iyer <[email protected]> for ST-Ericsson * * AB8500 Power-On Key handler */ #include <linux/device.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/input.h> #include <linux/interrupt.h> #include <linux/mfd/abx500/ab8500.h> #include <linux/of.h> #include <linux/slab.h> /** * struct ab8500_ponkey - ab8500 ponkey information * @idev: pointer to input device * @ab8500: ab8500 parent * @irq_dbf: irq number for falling transition * @irq_dbr: irq number for rising transition */ struct ab8500_ponkey { struct input_dev *idev; struct ab8500 *ab8500; int irq_dbf; int irq_dbr; }; /* AB8500 gives us an interrupt when ONKEY is held */ static irqreturn_t ab8500_ponkey_handler(int irq, void *data) { struct ab8500_ponkey *ponkey = data; if (irq == ponkey->irq_dbf) input_report_key(ponkey->idev, KEY_POWER, true); else if (irq == ponkey->irq_dbr) input_report_key(ponkey->idev, KEY_POWER, false); input_sync(ponkey->idev); return IRQ_HANDLED; } static int ab8500_ponkey_probe(struct platform_device *pdev) { struct ab8500 *ab8500 = dev_get_drvdata(pdev->dev.parent); struct ab8500_ponkey *ponkey; struct input_dev *input; int irq_dbf, irq_dbr; int error; irq_dbf = platform_get_irq_byname(pdev, "ONKEY_DBF"); if (irq_dbf < 0) return irq_dbf; irq_dbr = platform_get_irq_byname(pdev, "ONKEY_DBR"); if (irq_dbr < 0) return irq_dbr; ponkey = devm_kzalloc(&pdev->dev, sizeof(struct ab8500_ponkey), GFP_KERNEL); if (!ponkey) return -ENOMEM; input = devm_input_allocate_device(&pdev->dev); if (!input) return -ENOMEM; ponkey->idev = input; ponkey->ab8500 = ab8500; ponkey->irq_dbf = irq_dbf; ponkey->irq_dbr = irq_dbr; input->name = "AB8500 POn(PowerOn) Key"; input->dev.parent = &pdev->dev; input_set_capability(input, EV_KEY, KEY_POWER); error = devm_request_any_context_irq(&pdev->dev, ponkey->irq_dbf, ab8500_ponkey_handler, 0, "ab8500-ponkey-dbf", ponkey); if (error < 0) { dev_err(ab8500->dev, "Failed to request dbf IRQ#%d: %d\n", ponkey->irq_dbf, error); return error; } error = devm_request_any_context_irq(&pdev->dev, ponkey->irq_dbr, ab8500_ponkey_handler, 0, "ab8500-ponkey-dbr", ponkey); if (error < 0) { dev_err(ab8500->dev, "Failed to request dbr IRQ#%d: %d\n", ponkey->irq_dbr, error); return error; } error = input_register_device(ponkey->idev); if (error) { dev_err(ab8500->dev, "Can't register input device: %d\n", error); return error; } return 0; } #ifdef CONFIG_OF static const struct of_device_id ab8500_ponkey_match[] = { { .compatible = "stericsson,ab8500-ponkey", }, {} }; MODULE_DEVICE_TABLE(of, ab8500_ponkey_match); #endif static struct platform_driver ab8500_ponkey_driver = { .driver = { .name = "ab8500-poweron-key", .of_match_table = of_match_ptr(ab8500_ponkey_match), }, .probe = ab8500_ponkey_probe, }; module_platform_driver(ab8500_ponkey_driver); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Sundar Iyer <[email protected]>"); MODULE_DESCRIPTION("ST-Ericsson AB8500 Power-ON(Pon) Key driver");
linux-master
drivers/input/misc/ab8500-ponkey.c
/* * wm831x-on.c - WM831X ON pin driver * * Copyright (C) 2009 Wolfson Microelectronics plc * * This file is subject to the terms and conditions of the GNU General * Public License. See the file "COPYING" in the main directory of this * archive for more details. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include <linux/module.h> #include <linux/slab.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/input.h> #include <linux/interrupt.h> #include <linux/platform_device.h> #include <linux/workqueue.h> #include <linux/mfd/wm831x/core.h> struct wm831x_on { struct input_dev *dev; struct delayed_work work; struct wm831x *wm831x; }; /* * The chip gives us an interrupt when the ON pin is asserted but we * then need to poll to see when the pin is deasserted. */ static void wm831x_poll_on(struct work_struct *work) { struct wm831x_on *wm831x_on = container_of(work, struct wm831x_on, work.work); struct wm831x *wm831x = wm831x_on->wm831x; int poll, ret; ret = wm831x_reg_read(wm831x, WM831X_ON_PIN_CONTROL); if (ret >= 0) { poll = !(ret & WM831X_ON_PIN_STS); input_report_key(wm831x_on->dev, KEY_POWER, poll); input_sync(wm831x_on->dev); } else { dev_err(wm831x->dev, "Failed to read ON status: %d\n", ret); poll = 1; } if (poll) schedule_delayed_work(&wm831x_on->work, 100); } static irqreturn_t wm831x_on_irq(int irq, void *data) { struct wm831x_on *wm831x_on = data; schedule_delayed_work(&wm831x_on->work, 0); return IRQ_HANDLED; } static int wm831x_on_probe(struct platform_device *pdev) { struct wm831x *wm831x = dev_get_drvdata(pdev->dev.parent); struct wm831x_on *wm831x_on; int irq = wm831x_irq(wm831x, platform_get_irq(pdev, 0)); int ret; wm831x_on = devm_kzalloc(&pdev->dev, sizeof(struct wm831x_on), GFP_KERNEL); if (!wm831x_on) { dev_err(&pdev->dev, "Can't allocate data\n"); return -ENOMEM; } wm831x_on->wm831x = wm831x; INIT_DELAYED_WORK(&wm831x_on->work, wm831x_poll_on); wm831x_on->dev = devm_input_allocate_device(&pdev->dev); if (!wm831x_on->dev) { dev_err(&pdev->dev, "Can't allocate input dev\n"); ret = -ENOMEM; goto err; } wm831x_on->dev->evbit[0] = BIT_MASK(EV_KEY); wm831x_on->dev->keybit[BIT_WORD(KEY_POWER)] = BIT_MASK(KEY_POWER); wm831x_on->dev->name = "wm831x_on"; wm831x_on->dev->phys = "wm831x_on/input0"; wm831x_on->dev->dev.parent = &pdev->dev; ret = request_threaded_irq(irq, NULL, wm831x_on_irq, IRQF_TRIGGER_RISING | IRQF_ONESHOT, "wm831x_on", wm831x_on); if (ret < 0) { dev_err(&pdev->dev, "Unable to request IRQ: %d\n", ret); goto err_input_dev; } ret = input_register_device(wm831x_on->dev); if (ret) { dev_dbg(&pdev->dev, "Can't register input device: %d\n", ret); goto err_irq; } platform_set_drvdata(pdev, wm831x_on); return 0; err_irq: free_irq(irq, wm831x_on); err_input_dev: err: return ret; } static int wm831x_on_remove(struct platform_device *pdev) { struct wm831x_on *wm831x_on = platform_get_drvdata(pdev); int irq = platform_get_irq(pdev, 0); free_irq(irq, wm831x_on); cancel_delayed_work_sync(&wm831x_on->work); return 0; } static struct platform_driver wm831x_on_driver = { .probe = wm831x_on_probe, .remove = wm831x_on_remove, .driver = { .name = "wm831x-on", }, }; module_platform_driver(wm831x_on_driver); MODULE_ALIAS("platform:wm831x-on"); MODULE_DESCRIPTION("WM831x ON pin"); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Mark Brown <[email protected]>");
linux-master
drivers/input/misc/wm831x-on.c
// SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2010-2011, Code Aurora Forum. All rights reserved. */ #include <linux/errno.h> #include <linux/input.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/slab.h> #define VIB_MAX_LEVEL_mV (3100) #define VIB_MIN_LEVEL_mV (1200) #define VIB_MAX_LEVELS (VIB_MAX_LEVEL_mV - VIB_MIN_LEVEL_mV) #define MAX_FF_SPEED 0xff struct pm8xxx_regs { unsigned int enable_addr; unsigned int enable_mask; unsigned int drv_addr; unsigned int drv_mask; unsigned int drv_shift; unsigned int drv_en_manual_mask; }; static const struct pm8xxx_regs pm8058_regs = { .drv_addr = 0x4A, .drv_mask = 0xf8, .drv_shift = 3, .drv_en_manual_mask = 0xfc, }; static struct pm8xxx_regs pm8916_regs = { .enable_addr = 0xc046, .enable_mask = BIT(7), .drv_addr = 0xc041, .drv_mask = 0x1F, .drv_shift = 0, .drv_en_manual_mask = 0, }; /** * struct pm8xxx_vib - structure to hold vibrator data * @vib_input_dev: input device supporting force feedback * @work: work structure to set the vibration parameters * @regmap: regmap for register read/write * @regs: registers' info * @speed: speed of vibration set from userland * @active: state of vibrator * @level: level of vibration to set in the chip * @reg_vib_drv: regs->drv_addr register value */ struct pm8xxx_vib { struct input_dev *vib_input_dev; struct work_struct work; struct regmap *regmap; const struct pm8xxx_regs *regs; int speed; int level; bool active; u8 reg_vib_drv; }; /** * pm8xxx_vib_set - handler to start/stop vibration * @vib: pointer to vibrator structure * @on: state to set */ static int pm8xxx_vib_set(struct pm8xxx_vib *vib, bool on) { int rc; unsigned int val = vib->reg_vib_drv; const struct pm8xxx_regs *regs = vib->regs; if (on) val |= (vib->level << regs->drv_shift) & regs->drv_mask; else val &= ~regs->drv_mask; rc = regmap_write(vib->regmap, regs->drv_addr, val); if (rc < 0) return rc; vib->reg_vib_drv = val; if (regs->enable_mask) rc = regmap_update_bits(vib->regmap, regs->enable_addr, regs->enable_mask, on ? ~0 : 0); return rc; } /** * pm8xxx_work_handler - worker to set vibration level * @work: pointer to work_struct */ static void pm8xxx_work_handler(struct work_struct *work) { struct pm8xxx_vib *vib = container_of(work, struct pm8xxx_vib, work); const struct pm8xxx_regs *regs = vib->regs; int rc; unsigned int val; rc = regmap_read(vib->regmap, regs->drv_addr, &val); if (rc < 0) return; /* * pmic vibrator supports voltage ranges from 1.2 to 3.1V, so * scale the level to fit into these ranges. */ if (vib->speed) { vib->active = true; vib->level = ((VIB_MAX_LEVELS * vib->speed) / MAX_FF_SPEED) + VIB_MIN_LEVEL_mV; vib->level /= 100; } else { vib->active = false; vib->level = VIB_MIN_LEVEL_mV / 100; } pm8xxx_vib_set(vib, vib->active); } /** * pm8xxx_vib_close - callback of input close callback * @dev: input device pointer * * Turns off the vibrator. */ static void pm8xxx_vib_close(struct input_dev *dev) { struct pm8xxx_vib *vib = input_get_drvdata(dev); cancel_work_sync(&vib->work); if (vib->active) pm8xxx_vib_set(vib, false); } /** * pm8xxx_vib_play_effect - function to handle vib effects. * @dev: input device pointer * @data: data of effect * @effect: effect to play * * Currently this driver supports only rumble effects. */ static int pm8xxx_vib_play_effect(struct input_dev *dev, void *data, struct ff_effect *effect) { struct pm8xxx_vib *vib = input_get_drvdata(dev); vib->speed = effect->u.rumble.strong_magnitude >> 8; if (!vib->speed) vib->speed = effect->u.rumble.weak_magnitude >> 9; schedule_work(&vib->work); return 0; } static int pm8xxx_vib_probe(struct platform_device *pdev) { struct pm8xxx_vib *vib; struct input_dev *input_dev; int error; unsigned int val; const struct pm8xxx_regs *regs; vib = devm_kzalloc(&pdev->dev, sizeof(*vib), GFP_KERNEL); if (!vib) return -ENOMEM; vib->regmap = dev_get_regmap(pdev->dev.parent, NULL); if (!vib->regmap) return -ENODEV; input_dev = devm_input_allocate_device(&pdev->dev); if (!input_dev) return -ENOMEM; INIT_WORK(&vib->work, pm8xxx_work_handler); vib->vib_input_dev = input_dev; regs = of_device_get_match_data(&pdev->dev); /* operate in manual mode */ error = regmap_read(vib->regmap, regs->drv_addr, &val); if (error < 0) return error; val &= regs->drv_en_manual_mask; error = regmap_write(vib->regmap, regs->drv_addr, val); if (error < 0) return error; vib->regs = regs; vib->reg_vib_drv = val; input_dev->name = "pm8xxx_vib_ffmemless"; input_dev->id.version = 1; input_dev->close = pm8xxx_vib_close; input_set_drvdata(input_dev, vib); input_set_capability(vib->vib_input_dev, EV_FF, FF_RUMBLE); error = input_ff_create_memless(input_dev, NULL, pm8xxx_vib_play_effect); if (error) { dev_err(&pdev->dev, "couldn't register vibrator as FF device\n"); return error; } error = input_register_device(input_dev); if (error) { dev_err(&pdev->dev, "couldn't register input device\n"); return error; } platform_set_drvdata(pdev, vib); return 0; } static int pm8xxx_vib_suspend(struct device *dev) { struct pm8xxx_vib *vib = dev_get_drvdata(dev); /* Turn off the vibrator */ pm8xxx_vib_set(vib, false); return 0; } static DEFINE_SIMPLE_DEV_PM_OPS(pm8xxx_vib_pm_ops, pm8xxx_vib_suspend, NULL); static const struct of_device_id pm8xxx_vib_id_table[] = { { .compatible = "qcom,pm8058-vib", .data = &pm8058_regs }, { .compatible = "qcom,pm8921-vib", .data = &pm8058_regs }, { .compatible = "qcom,pm8916-vib", .data = &pm8916_regs }, { } }; MODULE_DEVICE_TABLE(of, pm8xxx_vib_id_table); static struct platform_driver pm8xxx_vib_driver = { .probe = pm8xxx_vib_probe, .driver = { .name = "pm8xxx-vib", .pm = pm_sleep_ptr(&pm8xxx_vib_pm_ops), .of_match_table = pm8xxx_vib_id_table, }, }; module_platform_driver(pm8xxx_vib_driver); MODULE_ALIAS("platform:pm8xxx_vib"); MODULE_DESCRIPTION("PMIC8xxx vibrator driver based on ff-memless framework"); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Amy Maloche <[email protected]>");
linux-master
drivers/input/misc/pm8xxx-vibrator.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2022 Richtek Technology Corp. * Author: ChiYuan Huang <[email protected]> */ #include <linux/bits.h> #include <linux/input.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/platform_device.h> #include <linux/regmap.h> #define RT5120_REG_INTSTAT 0x1E #define RT5120_PWRKEYSTAT_MASK BIT(7) struct rt5120_priv { struct regmap *regmap; struct input_dev *input; }; static irqreturn_t rt5120_pwrkey_handler(int irq, void *devid) { struct rt5120_priv *priv = devid; unsigned int stat; int error; error = regmap_read(priv->regmap, RT5120_REG_INTSTAT, &stat); if (error) return IRQ_NONE; input_report_key(priv->input, KEY_POWER, !(stat & RT5120_PWRKEYSTAT_MASK)); input_sync(priv->input); return IRQ_HANDLED; } static int rt5120_pwrkey_probe(struct platform_device *pdev) { struct rt5120_priv *priv; struct device *dev = &pdev->dev; int press_irq, release_irq; int error; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->regmap = dev_get_regmap(dev->parent, NULL); if (!priv->regmap) { dev_err(dev, "Failed to init regmap\n"); return -ENODEV; } press_irq = platform_get_irq_byname(pdev, "pwrkey-press"); if (press_irq < 0) return press_irq; release_irq = platform_get_irq_byname(pdev, "pwrkey-release"); if (release_irq < 0) return release_irq; /* Make input device be device resource managed */ priv->input = devm_input_allocate_device(dev); if (!priv->input) return -ENOMEM; priv->input->name = "rt5120_pwrkey"; priv->input->phys = "rt5120_pwrkey/input0"; priv->input->id.bustype = BUS_I2C; input_set_capability(priv->input, EV_KEY, KEY_POWER); error = input_register_device(priv->input); if (error) { dev_err(dev, "Failed to register input device: %d\n", error); return error; } error = devm_request_threaded_irq(dev, press_irq, NULL, rt5120_pwrkey_handler, 0, "pwrkey-press", priv); if (error) { dev_err(dev, "Failed to register pwrkey press irq: %d\n", error); return error; } error = devm_request_threaded_irq(dev, release_irq, NULL, rt5120_pwrkey_handler, 0, "pwrkey-release", priv); if (error) { dev_err(dev, "Failed to register pwrkey release irq: %d\n", error); return error; } return 0; } static const struct of_device_id r5120_pwrkey_match_table[] = { { .compatible = "richtek,rt5120-pwrkey" }, {} }; MODULE_DEVICE_TABLE(of, r5120_pwrkey_match_table); static struct platform_driver rt5120_pwrkey_driver = { .driver = { .name = "rt5120-pwrkey", .of_match_table = r5120_pwrkey_match_table, }, .probe = rt5120_pwrkey_probe, }; module_platform_driver(rt5120_pwrkey_driver); MODULE_AUTHOR("ChiYuan Huang <[email protected]>"); MODULE_DESCRIPTION("Richtek RT5120 power key driver"); MODULE_LICENSE("GPL");
linux-master
drivers/input/misc/rt5120-pwrkey.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2011 Kionix, Inc. * Written by Chris Hudson <[email protected]> */ #include <linux/delay.h> #include <linux/i2c.h> #include <linux/input.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/input/kxtj9.h> #define NAME "kxtj9" #define G_MAX 8000 /* OUTPUT REGISTERS */ #define XOUT_L 0x06 #define WHO_AM_I 0x0F /* CONTROL REGISTERS */ #define INT_REL 0x1A #define CTRL_REG1 0x1B #define INT_CTRL1 0x1E #define DATA_CTRL 0x21 /* CONTROL REGISTER 1 BITS */ #define PC1_OFF 0x7F #define PC1_ON (1 << 7) /* Data ready funtion enable bit: set during probe if using irq mode */ #define DRDYE (1 << 5) /* DATA CONTROL REGISTER BITS */ #define ODR12_5F 0 #define ODR25F 1 #define ODR50F 2 #define ODR100F 3 #define ODR200F 4 #define ODR400F 5 #define ODR800F 6 /* INTERRUPT CONTROL REGISTER 1 BITS */ /* Set these during probe if using irq mode */ #define KXTJ9_IEL (1 << 3) #define KXTJ9_IEA (1 << 4) #define KXTJ9_IEN (1 << 5) /* INPUT_ABS CONSTANTS */ #define FUZZ 3 #define FLAT 3 /* RESUME STATE INDICES */ #define RES_DATA_CTRL 0 #define RES_CTRL_REG1 1 #define RES_INT_CTRL1 2 #define RESUME_ENTRIES 3 /* * The following table lists the maximum appropriate poll interval for each * available output data rate. */ static const struct { unsigned int cutoff; u8 mask; } kxtj9_odr_table[] = { { 3, ODR800F }, { 5, ODR400F }, { 10, ODR200F }, { 20, ODR100F }, { 40, ODR50F }, { 80, ODR25F }, { 0, ODR12_5F}, }; struct kxtj9_data { struct i2c_client *client; struct kxtj9_platform_data pdata; struct input_dev *input_dev; unsigned int last_poll_interval; u8 shift; u8 ctrl_reg1; u8 data_ctrl; u8 int_ctrl; }; static int kxtj9_i2c_read(struct kxtj9_data *tj9, u8 addr, u8 *data, int len) { struct i2c_msg msgs[] = { { .addr = tj9->client->addr, .flags = tj9->client->flags, .len = 1, .buf = &addr, }, { .addr = tj9->client->addr, .flags = tj9->client->flags | I2C_M_RD, .len = len, .buf = data, }, }; return i2c_transfer(tj9->client->adapter, msgs, 2); } static void kxtj9_report_acceleration_data(struct kxtj9_data *tj9) { s16 acc_data[3]; /* Data bytes from hardware xL, xH, yL, yH, zL, zH */ s16 x, y, z; int err; err = kxtj9_i2c_read(tj9, XOUT_L, (u8 *)acc_data, 6); if (err < 0) dev_err(&tj9->client->dev, "accelerometer data read failed\n"); x = le16_to_cpu(acc_data[tj9->pdata.axis_map_x]); y = le16_to_cpu(acc_data[tj9->pdata.axis_map_y]); z = le16_to_cpu(acc_data[tj9->pdata.axis_map_z]); x >>= tj9->shift; y >>= tj9->shift; z >>= tj9->shift; input_report_abs(tj9->input_dev, ABS_X, tj9->pdata.negate_x ? -x : x); input_report_abs(tj9->input_dev, ABS_Y, tj9->pdata.negate_y ? -y : y); input_report_abs(tj9->input_dev, ABS_Z, tj9->pdata.negate_z ? -z : z); input_sync(tj9->input_dev); } static irqreturn_t kxtj9_isr(int irq, void *dev) { struct kxtj9_data *tj9 = dev; int err; /* data ready is the only possible interrupt type */ kxtj9_report_acceleration_data(tj9); err = i2c_smbus_read_byte_data(tj9->client, INT_REL); if (err < 0) dev_err(&tj9->client->dev, "error clearing interrupt status: %d\n", err); return IRQ_HANDLED; } static int kxtj9_update_g_range(struct kxtj9_data *tj9, u8 new_g_range) { switch (new_g_range) { case KXTJ9_G_2G: tj9->shift = 4; break; case KXTJ9_G_4G: tj9->shift = 3; break; case KXTJ9_G_8G: tj9->shift = 2; break; default: return -EINVAL; } tj9->ctrl_reg1 &= 0xe7; tj9->ctrl_reg1 |= new_g_range; return 0; } static int kxtj9_update_odr(struct kxtj9_data *tj9, unsigned int poll_interval) { int err; int i; /* Use the lowest ODR that can support the requested poll interval */ for (i = 0; i < ARRAY_SIZE(kxtj9_odr_table); i++) { tj9->data_ctrl = kxtj9_odr_table[i].mask; if (poll_interval < kxtj9_odr_table[i].cutoff) break; } err = i2c_smbus_write_byte_data(tj9->client, CTRL_REG1, 0); if (err < 0) return err; err = i2c_smbus_write_byte_data(tj9->client, DATA_CTRL, tj9->data_ctrl); if (err < 0) return err; err = i2c_smbus_write_byte_data(tj9->client, CTRL_REG1, tj9->ctrl_reg1); if (err < 0) return err; return 0; } static int kxtj9_device_power_on(struct kxtj9_data *tj9) { if (tj9->pdata.power_on) return tj9->pdata.power_on(); return 0; } static void kxtj9_device_power_off(struct kxtj9_data *tj9) { int err; tj9->ctrl_reg1 &= PC1_OFF; err = i2c_smbus_write_byte_data(tj9->client, CTRL_REG1, tj9->ctrl_reg1); if (err < 0) dev_err(&tj9->client->dev, "soft power off failed\n"); if (tj9->pdata.power_off) tj9->pdata.power_off(); } static int kxtj9_enable(struct kxtj9_data *tj9) { int err; err = kxtj9_device_power_on(tj9); if (err < 0) return err; /* ensure that PC1 is cleared before updating control registers */ err = i2c_smbus_write_byte_data(tj9->client, CTRL_REG1, 0); if (err < 0) return err; /* only write INT_CTRL_REG1 if in irq mode */ if (tj9->client->irq) { err = i2c_smbus_write_byte_data(tj9->client, INT_CTRL1, tj9->int_ctrl); if (err < 0) return err; } err = kxtj9_update_g_range(tj9, tj9->pdata.g_range); if (err < 0) return err; /* turn on outputs */ tj9->ctrl_reg1 |= PC1_ON; err = i2c_smbus_write_byte_data(tj9->client, CTRL_REG1, tj9->ctrl_reg1); if (err < 0) return err; err = kxtj9_update_odr(tj9, tj9->last_poll_interval); if (err < 0) return err; /* clear initial interrupt if in irq mode */ if (tj9->client->irq) { err = i2c_smbus_read_byte_data(tj9->client, INT_REL); if (err < 0) { dev_err(&tj9->client->dev, "error clearing interrupt: %d\n", err); goto fail; } } return 0; fail: kxtj9_device_power_off(tj9); return err; } static void kxtj9_disable(struct kxtj9_data *tj9) { kxtj9_device_power_off(tj9); } static int kxtj9_input_open(struct input_dev *input) { struct kxtj9_data *tj9 = input_get_drvdata(input); return kxtj9_enable(tj9); } static void kxtj9_input_close(struct input_dev *dev) { struct kxtj9_data *tj9 = input_get_drvdata(dev); kxtj9_disable(tj9); } /* * When IRQ mode is selected, we need to provide an interface to allow the user * to change the output data rate of the part. For consistency, we are using * the set_poll method, which accepts a poll interval in milliseconds, and then * calls update_odr() while passing this value as an argument. In IRQ mode, the * data outputs will not be read AT the requested poll interval, rather, the * lowest ODR that can support the requested interval. The client application * will be responsible for retrieving data from the input node at the desired * interval. */ /* Returns currently selected poll interval (in ms) */ static ssize_t kxtj9_get_poll(struct device *dev, struct device_attribute *attr, char *buf) { struct i2c_client *client = to_i2c_client(dev); struct kxtj9_data *tj9 = i2c_get_clientdata(client); return sprintf(buf, "%d\n", tj9->last_poll_interval); } /* Allow users to select a new poll interval (in ms) */ static ssize_t kxtj9_set_poll(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct kxtj9_data *tj9 = i2c_get_clientdata(client); struct input_dev *input_dev = tj9->input_dev; unsigned int interval; int error; error = kstrtouint(buf, 10, &interval); if (error < 0) return error; /* Lock the device to prevent races with open/close (and itself) */ mutex_lock(&input_dev->mutex); disable_irq(client->irq); /* * Set current interval to the greater of the minimum interval or * the requested interval */ tj9->last_poll_interval = max(interval, tj9->pdata.min_interval); kxtj9_update_odr(tj9, tj9->last_poll_interval); enable_irq(client->irq); mutex_unlock(&input_dev->mutex); return count; } static DEVICE_ATTR(poll, S_IRUGO|S_IWUSR, kxtj9_get_poll, kxtj9_set_poll); static struct attribute *kxtj9_attributes[] = { &dev_attr_poll.attr, NULL }; static struct attribute_group kxtj9_attribute_group = { .attrs = kxtj9_attributes }; static void kxtj9_poll(struct input_dev *input) { struct kxtj9_data *tj9 = input_get_drvdata(input); unsigned int poll_interval = input_get_poll_interval(input); kxtj9_report_acceleration_data(tj9); if (poll_interval != tj9->last_poll_interval) { kxtj9_update_odr(tj9, poll_interval); tj9->last_poll_interval = poll_interval; } } static void kxtj9_platform_exit(void *data) { struct kxtj9_data *tj9 = data; if (tj9->pdata.exit) tj9->pdata.exit(); } static int kxtj9_verify(struct kxtj9_data *tj9) { int retval; retval = kxtj9_device_power_on(tj9); if (retval < 0) return retval; retval = i2c_smbus_read_byte_data(tj9->client, WHO_AM_I); if (retval < 0) { dev_err(&tj9->client->dev, "read err int source\n"); goto out; } retval = (retval != 0x07 && retval != 0x08) ? -EIO : 0; out: kxtj9_device_power_off(tj9); return retval; } static int kxtj9_probe(struct i2c_client *client) { const struct kxtj9_platform_data *pdata = dev_get_platdata(&client->dev); struct kxtj9_data *tj9; struct input_dev *input_dev; int err; if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C | I2C_FUNC_SMBUS_BYTE_DATA)) { dev_err(&client->dev, "client is not i2c capable\n"); return -ENXIO; } if (!pdata) { dev_err(&client->dev, "platform data is NULL; exiting\n"); return -EINVAL; } tj9 = devm_kzalloc(&client->dev, sizeof(*tj9), GFP_KERNEL); if (!tj9) { dev_err(&client->dev, "failed to allocate memory for module data\n"); return -ENOMEM; } tj9->client = client; tj9->pdata = *pdata; if (pdata->init) { err = pdata->init(); if (err < 0) return err; } err = devm_add_action_or_reset(&client->dev, kxtj9_platform_exit, tj9); if (err) return err; err = kxtj9_verify(tj9); if (err < 0) { dev_err(&client->dev, "device not recognized\n"); return err; } i2c_set_clientdata(client, tj9); tj9->ctrl_reg1 = tj9->pdata.res_12bit | tj9->pdata.g_range; tj9->last_poll_interval = tj9->pdata.init_interval; input_dev = devm_input_allocate_device(&client->dev); if (!input_dev) { dev_err(&client->dev, "input device allocate failed\n"); return -ENOMEM; } input_set_drvdata(input_dev, tj9); tj9->input_dev = input_dev; input_dev->name = "kxtj9_accel"; input_dev->id.bustype = BUS_I2C; input_dev->open = kxtj9_input_open; input_dev->close = kxtj9_input_close; input_set_abs_params(input_dev, ABS_X, -G_MAX, G_MAX, FUZZ, FLAT); input_set_abs_params(input_dev, ABS_Y, -G_MAX, G_MAX, FUZZ, FLAT); input_set_abs_params(input_dev, ABS_Z, -G_MAX, G_MAX, FUZZ, FLAT); if (client->irq <= 0) { err = input_setup_polling(input_dev, kxtj9_poll); if (err) return err; } err = input_register_device(input_dev); if (err) { dev_err(&client->dev, "unable to register input polled device %s: %d\n", input_dev->name, err); return err; } if (client->irq) { /* If in irq mode, populate INT_CTRL_REG1 and enable DRDY. */ tj9->int_ctrl |= KXTJ9_IEN | KXTJ9_IEA | KXTJ9_IEL; tj9->ctrl_reg1 |= DRDYE; err = devm_request_threaded_irq(&client->dev, client->irq, NULL, kxtj9_isr, IRQF_TRIGGER_RISING | IRQF_ONESHOT, "kxtj9-irq", tj9); if (err) { dev_err(&client->dev, "request irq failed: %d\n", err); return err; } err = devm_device_add_group(&client->dev, &kxtj9_attribute_group); if (err) { dev_err(&client->dev, "sysfs create failed: %d\n", err); return err; } } return 0; } static int kxtj9_suspend(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct kxtj9_data *tj9 = i2c_get_clientdata(client); struct input_dev *input_dev = tj9->input_dev; mutex_lock(&input_dev->mutex); if (input_device_enabled(input_dev)) kxtj9_disable(tj9); mutex_unlock(&input_dev->mutex); return 0; } static int kxtj9_resume(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct kxtj9_data *tj9 = i2c_get_clientdata(client); struct input_dev *input_dev = tj9->input_dev; mutex_lock(&input_dev->mutex); if (input_device_enabled(input_dev)) kxtj9_enable(tj9); mutex_unlock(&input_dev->mutex); return 0; } static DEFINE_SIMPLE_DEV_PM_OPS(kxtj9_pm_ops, kxtj9_suspend, kxtj9_resume); static const struct i2c_device_id kxtj9_id[] = { { NAME, 0 }, { }, }; MODULE_DEVICE_TABLE(i2c, kxtj9_id); static struct i2c_driver kxtj9_driver = { .driver = { .name = NAME, .pm = pm_sleep_ptr(&kxtj9_pm_ops), }, .probe = kxtj9_probe, .id_table = kxtj9_id, }; module_i2c_driver(kxtj9_driver); MODULE_DESCRIPTION("KXTJ9 accelerometer driver"); MODULE_AUTHOR("Chris Hudson <[email protected]>"); MODULE_LICENSE("GPL");
linux-master
drivers/input/misc/kxtj9.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2010, Lars-Peter Clausen <[email protected]> * PWM beeper driver */ #include <linux/input.h> #include <linux/regulator/consumer.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/property.h> #include <linux/pwm.h> #include <linux/slab.h> #include <linux/workqueue.h> struct pwm_beeper { struct input_dev *input; struct pwm_device *pwm; struct regulator *amplifier; struct work_struct work; unsigned long period; unsigned int bell_frequency; bool suspended; bool amplifier_on; }; #define HZ_TO_NANOSECONDS(x) (1000000000UL/(x)) static int pwm_beeper_on(struct pwm_beeper *beeper, unsigned long period) { struct pwm_state state; int error; pwm_get_state(beeper->pwm, &state); state.enabled = true; state.period = period; pwm_set_relative_duty_cycle(&state, 50, 100); error = pwm_apply_state(beeper->pwm, &state); if (error) return error; if (!beeper->amplifier_on) { error = regulator_enable(beeper->amplifier); if (error) { pwm_disable(beeper->pwm); return error; } beeper->amplifier_on = true; } return 0; } static void pwm_beeper_off(struct pwm_beeper *beeper) { if (beeper->amplifier_on) { regulator_disable(beeper->amplifier); beeper->amplifier_on = false; } pwm_disable(beeper->pwm); } static void pwm_beeper_work(struct work_struct *work) { struct pwm_beeper *beeper = container_of(work, struct pwm_beeper, work); unsigned long period = READ_ONCE(beeper->period); if (period) pwm_beeper_on(beeper, period); else pwm_beeper_off(beeper); } static int pwm_beeper_event(struct input_dev *input, unsigned int type, unsigned int code, int value) { struct pwm_beeper *beeper = input_get_drvdata(input); if (type != EV_SND || value < 0) return -EINVAL; switch (code) { case SND_BELL: value = value ? beeper->bell_frequency : 0; break; case SND_TONE: break; default: return -EINVAL; } if (value == 0) beeper->period = 0; else beeper->period = HZ_TO_NANOSECONDS(value); if (!beeper->suspended) schedule_work(&beeper->work); return 0; } static void pwm_beeper_stop(struct pwm_beeper *beeper) { cancel_work_sync(&beeper->work); pwm_beeper_off(beeper); } static void pwm_beeper_close(struct input_dev *input) { struct pwm_beeper *beeper = input_get_drvdata(input); pwm_beeper_stop(beeper); } static int pwm_beeper_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct pwm_beeper *beeper; struct pwm_state state; u32 bell_frequency; int error; beeper = devm_kzalloc(dev, sizeof(*beeper), GFP_KERNEL); if (!beeper) return -ENOMEM; beeper->pwm = devm_pwm_get(dev, NULL); if (IS_ERR(beeper->pwm)) return dev_err_probe(dev, PTR_ERR(beeper->pwm), "Failed to request PWM device\n"); /* Sync up PWM state and ensure it is off. */ pwm_init_state(beeper->pwm, &state); state.enabled = false; error = pwm_apply_state(beeper->pwm, &state); if (error) { dev_err(dev, "failed to apply initial PWM state: %d\n", error); return error; } beeper->amplifier = devm_regulator_get(dev, "amp"); if (IS_ERR(beeper->amplifier)) return dev_err_probe(dev, PTR_ERR(beeper->amplifier), "Failed to get 'amp' regulator\n"); INIT_WORK(&beeper->work, pwm_beeper_work); error = device_property_read_u32(dev, "beeper-hz", &bell_frequency); if (error) { bell_frequency = 1000; dev_dbg(dev, "failed to parse 'beeper-hz' property, using default: %uHz\n", bell_frequency); } beeper->bell_frequency = bell_frequency; beeper->input = devm_input_allocate_device(dev); if (!beeper->input) { dev_err(dev, "Failed to allocate input device\n"); return -ENOMEM; } beeper->input->name = "pwm-beeper"; beeper->input->phys = "pwm/input0"; beeper->input->id.bustype = BUS_HOST; beeper->input->id.vendor = 0x001f; beeper->input->id.product = 0x0001; beeper->input->id.version = 0x0100; input_set_capability(beeper->input, EV_SND, SND_TONE); input_set_capability(beeper->input, EV_SND, SND_BELL); beeper->input->event = pwm_beeper_event; beeper->input->close = pwm_beeper_close; input_set_drvdata(beeper->input, beeper); error = input_register_device(beeper->input); if (error) { dev_err(dev, "Failed to register input device: %d\n", error); return error; } platform_set_drvdata(pdev, beeper); return 0; } static int pwm_beeper_suspend(struct device *dev) { struct pwm_beeper *beeper = dev_get_drvdata(dev); /* * Spinlock is taken here is not to protect write to * beeper->suspended, but to ensure that pwm_beeper_event * does not re-submit work once flag is set. */ spin_lock_irq(&beeper->input->event_lock); beeper->suspended = true; spin_unlock_irq(&beeper->input->event_lock); pwm_beeper_stop(beeper); return 0; } static int pwm_beeper_resume(struct device *dev) { struct pwm_beeper *beeper = dev_get_drvdata(dev); spin_lock_irq(&beeper->input->event_lock); beeper->suspended = false; spin_unlock_irq(&beeper->input->event_lock); /* Let worker figure out if we should resume beeping */ schedule_work(&beeper->work); return 0; } static DEFINE_SIMPLE_DEV_PM_OPS(pwm_beeper_pm_ops, pwm_beeper_suspend, pwm_beeper_resume); #ifdef CONFIG_OF static const struct of_device_id pwm_beeper_match[] = { { .compatible = "pwm-beeper", }, { }, }; MODULE_DEVICE_TABLE(of, pwm_beeper_match); #endif static struct platform_driver pwm_beeper_driver = { .probe = pwm_beeper_probe, .driver = { .name = "pwm-beeper", .pm = pm_sleep_ptr(&pwm_beeper_pm_ops), .of_match_table = of_match_ptr(pwm_beeper_match), }, }; module_platform_driver(pwm_beeper_driver); MODULE_AUTHOR("Lars-Peter Clausen <[email protected]>"); MODULE_DESCRIPTION("PWM beeper driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:pwm-beeper");
linux-master
drivers/input/misc/pwm-beeper.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * drivers/usb/input/yealink.c * * Copyright (c) 2005 Henk Vergonet <[email protected]> */ /* * Description: * Driver for the USB-P1K voip usb phone. * This device is produced by Yealink Network Technology Co Ltd * but may be branded under several names: * - Yealink usb-p1k * - Tiptel 115 * - ... * * This driver is based on: * - the usbb2k-api http://savannah.nongnu.org/projects/usbb2k-api/ * - information from http://memeteau.free.fr/usbb2k * - the xpad-driver drivers/input/joystick/xpad.c * * Thanks to: * - Olivier Vandorpe, for providing the usbb2k-api. * - Martin Diehl, for spotting my memory allocation bug. * * History: * 20050527 henk First version, functional keyboard. Keyboard events * will pop-up on the ../input/eventX bus. * 20050531 henk Added led, LCD, dialtone and sysfs interface. * 20050610 henk Cleanups, make it ready for public consumption. * 20050630 henk Cleanups, fixes in response to comments. * 20050701 henk sysfs write serialisation, fix potential unload races * 20050801 henk Added ringtone, restructure USB * 20050816 henk Merge 2.6.13-rc6 */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/rwsem.h> #include <linux/usb/input.h> #include <linux/map_to_7segment.h> #include "yealink.h" #define DRIVER_VERSION "yld-20051230" #define YEALINK_POLLING_FREQUENCY 10 /* in [Hz] */ struct yld_status { u8 lcd[24]; u8 led; u8 dialtone; u8 ringtone; u8 keynum; } __attribute__ ((packed)); /* * Register the LCD segment and icon map */ #define _LOC(k,l) { .a = (k), .m = (l) } #define _SEG(t, a, am, b, bm, c, cm, d, dm, e, em, f, fm, g, gm) \ { .type = (t), \ .u = { .s = { _LOC(a, am), _LOC(b, bm), _LOC(c, cm), \ _LOC(d, dm), _LOC(e, em), _LOC(g, gm), \ _LOC(f, fm) } } } #define _PIC(t, h, hm, n) \ { .type = (t), \ .u = { .p = { .name = (n), .a = (h), .m = (hm) } } } static const struct lcd_segment_map { char type; union { struct pictogram_map { u8 a,m; char name[10]; } p; struct segment_map { u8 a,m; } s[7]; } u; } lcdMap[] = { #include "yealink.h" }; struct yealink_dev { struct input_dev *idev; /* input device */ struct usb_device *udev; /* usb device */ struct usb_interface *intf; /* usb interface */ /* irq input channel */ struct yld_ctl_packet *irq_data; dma_addr_t irq_dma; struct urb *urb_irq; /* control output channel */ struct yld_ctl_packet *ctl_data; dma_addr_t ctl_dma; struct usb_ctrlrequest *ctl_req; struct urb *urb_ctl; char phys[64]; /* physical device path */ u8 lcdMap[ARRAY_SIZE(lcdMap)]; /* state of LCD, LED ... */ int key_code; /* last reported key */ unsigned int shutdown:1; int stat_ix; union { struct yld_status s; u8 b[sizeof(struct yld_status)]; } master, copy; }; /******************************************************************************* * Yealink lcd interface ******************************************************************************/ /* * Register a default 7 segment character set */ static SEG7_DEFAULT_MAP(map_seg7); /* Display a char, * char '\9' and '\n' are placeholders and do not overwrite the original text. * A space will always hide an icon. */ static int setChar(struct yealink_dev *yld, int el, int chr) { int i, a, m, val; if (el >= ARRAY_SIZE(lcdMap)) return -EINVAL; if (chr == '\t' || chr == '\n') return 0; yld->lcdMap[el] = chr; if (lcdMap[el].type == '.') { a = lcdMap[el].u.p.a; m = lcdMap[el].u.p.m; if (chr != ' ') yld->master.b[a] |= m; else yld->master.b[a] &= ~m; return 0; } val = map_to_seg7(&map_seg7, chr); for (i = 0; i < ARRAY_SIZE(lcdMap[0].u.s); i++) { m = lcdMap[el].u.s[i].m; if (m == 0) continue; a = lcdMap[el].u.s[i].a; if (val & 1) yld->master.b[a] |= m; else yld->master.b[a] &= ~m; val = val >> 1; } return 0; }; /******************************************************************************* * Yealink key interface ******************************************************************************/ /* Map device buttons to internal key events. * * USB-P1K button layout: * * up * IN OUT * down * * pickup C hangup * 1 2 3 * 4 5 6 * 7 8 9 * * 0 # * * The "up" and "down" keys, are symbolised by arrows on the button. * The "pickup" and "hangup" keys are symbolised by a green and red phone * on the button. */ static int map_p1k_to_key(int scancode) { switch(scancode) { /* phone key: */ case 0x23: return KEY_LEFT; /* IN */ case 0x33: return KEY_UP; /* up */ case 0x04: return KEY_RIGHT; /* OUT */ case 0x24: return KEY_DOWN; /* down */ case 0x03: return KEY_ENTER; /* pickup */ case 0x14: return KEY_BACKSPACE; /* C */ case 0x13: return KEY_ESC; /* hangup */ case 0x00: return KEY_1; /* 1 */ case 0x01: return KEY_2; /* 2 */ case 0x02: return KEY_3; /* 3 */ case 0x10: return KEY_4; /* 4 */ case 0x11: return KEY_5; /* 5 */ case 0x12: return KEY_6; /* 6 */ case 0x20: return KEY_7; /* 7 */ case 0x21: return KEY_8; /* 8 */ case 0x22: return KEY_9; /* 9 */ case 0x30: return KEY_KPASTERISK; /* * */ case 0x31: return KEY_0; /* 0 */ case 0x32: return KEY_LEFTSHIFT | KEY_3 << 8; /* # */ } return -EINVAL; } /* Completes a request by converting the data into events for the * input subsystem. * * The key parameter can be cascaded: key2 << 8 | key1 */ static void report_key(struct yealink_dev *yld, int key) { struct input_dev *idev = yld->idev; if (yld->key_code >= 0) { /* old key up */ input_report_key(idev, yld->key_code & 0xff, 0); if (yld->key_code >> 8) input_report_key(idev, yld->key_code >> 8, 0); } yld->key_code = key; if (key >= 0) { /* new valid key */ input_report_key(idev, key & 0xff, 1); if (key >> 8) input_report_key(idev, key >> 8, 1); } input_sync(idev); } /******************************************************************************* * Yealink usb communication interface ******************************************************************************/ static int yealink_cmd(struct yealink_dev *yld, struct yld_ctl_packet *p) { u8 *buf = (u8 *)p; int i; u8 sum = 0; for(i=0; i<USB_PKT_LEN-1; i++) sum -= buf[i]; p->sum = sum; return usb_control_msg(yld->udev, usb_sndctrlpipe(yld->udev, 0), USB_REQ_SET_CONFIGURATION, USB_TYPE_CLASS | USB_RECIP_INTERFACE | USB_DIR_OUT, 0x200, 3, p, sizeof(*p), USB_CTRL_SET_TIMEOUT); } static u8 default_ringtone[] = { 0xEF, /* volume [0-255] */ 0xFB, 0x1E, 0x00, 0x0C, /* 1250 [hz], 12/100 [s] */ 0xFC, 0x18, 0x00, 0x0C, /* 1000 [hz], 12/100 [s] */ 0xFB, 0x1E, 0x00, 0x0C, 0xFC, 0x18, 0x00, 0x0C, 0xFB, 0x1E, 0x00, 0x0C, 0xFC, 0x18, 0x00, 0x0C, 0xFB, 0x1E, 0x00, 0x0C, 0xFC, 0x18, 0x00, 0x0C, 0xFF, 0xFF, 0x01, 0x90, /* silent, 400/100 [s] */ 0x00, 0x00 /* end of sequence */ }; static int yealink_set_ringtone(struct yealink_dev *yld, u8 *buf, size_t size) { struct yld_ctl_packet *p = yld->ctl_data; int ix, len; if (size <= 0) return -EINVAL; /* Set the ringtone volume */ memset(yld->ctl_data, 0, sizeof(*(yld->ctl_data))); yld->ctl_data->cmd = CMD_RING_VOLUME; yld->ctl_data->size = 1; yld->ctl_data->data[0] = buf[0]; yealink_cmd(yld, p); buf++; size--; p->cmd = CMD_RING_NOTE; ix = 0; while (size != ix) { len = size - ix; if (len > sizeof(p->data)) len = sizeof(p->data); p->size = len; p->offset = cpu_to_be16(ix); memcpy(p->data, &buf[ix], len); yealink_cmd(yld, p); ix += len; } return 0; } /* keep stat_master & stat_copy in sync. */ static int yealink_do_idle_tasks(struct yealink_dev *yld) { u8 val; int i, ix, len; ix = yld->stat_ix; memset(yld->ctl_data, 0, sizeof(*(yld->ctl_data))); yld->ctl_data->cmd = CMD_KEYPRESS; yld->ctl_data->size = 1; yld->ctl_data->sum = 0xff - CMD_KEYPRESS; /* If state update pointer wraps do a KEYPRESS first. */ if (ix >= sizeof(yld->master)) { yld->stat_ix = 0; return 0; } /* find update candidates: copy != master */ do { val = yld->master.b[ix]; if (val != yld->copy.b[ix]) goto send_update; } while (++ix < sizeof(yld->master)); /* nothing todo, wait a bit and poll for a KEYPRESS */ yld->stat_ix = 0; /* TODO how can we wait abit. ?? * msleep_interruptible(1000 / YEALINK_POLLING_FREQUENCY); */ return 0; send_update: /* Setup an appropriate update request */ yld->copy.b[ix] = val; yld->ctl_data->data[0] = val; switch(ix) { case offsetof(struct yld_status, led): yld->ctl_data->cmd = CMD_LED; yld->ctl_data->sum = -1 - CMD_LED - val; break; case offsetof(struct yld_status, dialtone): yld->ctl_data->cmd = CMD_DIALTONE; yld->ctl_data->sum = -1 - CMD_DIALTONE - val; break; case offsetof(struct yld_status, ringtone): yld->ctl_data->cmd = CMD_RINGTONE; yld->ctl_data->sum = -1 - CMD_RINGTONE - val; break; case offsetof(struct yld_status, keynum): val--; val &= 0x1f; yld->ctl_data->cmd = CMD_SCANCODE; yld->ctl_data->offset = cpu_to_be16(val); yld->ctl_data->data[0] = 0; yld->ctl_data->sum = -1 - CMD_SCANCODE - val; break; default: len = sizeof(yld->master.s.lcd) - ix; if (len > sizeof(yld->ctl_data->data)) len = sizeof(yld->ctl_data->data); /* Combine up to <len> consecutive LCD bytes in a singe request */ yld->ctl_data->cmd = CMD_LCD; yld->ctl_data->offset = cpu_to_be16(ix); yld->ctl_data->size = len; yld->ctl_data->sum = -CMD_LCD - ix - val - len; for(i=1; i<len; i++) { ix++; val = yld->master.b[ix]; yld->copy.b[ix] = val; yld->ctl_data->data[i] = val; yld->ctl_data->sum -= val; } } yld->stat_ix = ix + 1; return 1; } /* Decide on how to handle responses * * The state transition diagram is somethhing like: * * syncState<--+ * | | * | idle * \|/ | * init --ok--> waitForKey --ok--> getKey * ^ ^ | * | +-------ok-------+ * error,start * */ static void urb_irq_callback(struct urb *urb) { struct yealink_dev *yld = urb->context; int ret, status = urb->status; if (status) dev_err(&yld->intf->dev, "%s - urb status %d\n", __func__, status); switch (yld->irq_data->cmd) { case CMD_KEYPRESS: yld->master.s.keynum = yld->irq_data->data[0]; break; case CMD_SCANCODE: dev_dbg(&yld->intf->dev, "get scancode %x\n", yld->irq_data->data[0]); report_key(yld, map_p1k_to_key(yld->irq_data->data[0])); break; default: dev_err(&yld->intf->dev, "unexpected response %x\n", yld->irq_data->cmd); } yealink_do_idle_tasks(yld); if (!yld->shutdown) { ret = usb_submit_urb(yld->urb_ctl, GFP_ATOMIC); if (ret && ret != -EPERM) dev_err(&yld->intf->dev, "%s - usb_submit_urb failed %d\n", __func__, ret); } } static void urb_ctl_callback(struct urb *urb) { struct yealink_dev *yld = urb->context; int ret = 0, status = urb->status; if (status) dev_err(&yld->intf->dev, "%s - urb status %d\n", __func__, status); switch (yld->ctl_data->cmd) { case CMD_KEYPRESS: case CMD_SCANCODE: /* ask for a response */ if (!yld->shutdown) ret = usb_submit_urb(yld->urb_irq, GFP_ATOMIC); break; default: /* send new command */ yealink_do_idle_tasks(yld); if (!yld->shutdown) ret = usb_submit_urb(yld->urb_ctl, GFP_ATOMIC); break; } if (ret && ret != -EPERM) dev_err(&yld->intf->dev, "%s - usb_submit_urb failed %d\n", __func__, ret); } /******************************************************************************* * input event interface ******************************************************************************/ /* TODO should we issue a ringtone on a SND_BELL event? static int input_ev(struct input_dev *dev, unsigned int type, unsigned int code, int value) { if (type != EV_SND) return -EINVAL; switch (code) { case SND_BELL: case SND_TONE: break; default: return -EINVAL; } return 0; } */ static int input_open(struct input_dev *dev) { struct yealink_dev *yld = input_get_drvdata(dev); int i, ret; dev_dbg(&yld->intf->dev, "%s\n", __func__); /* force updates to device */ for (i = 0; i<sizeof(yld->master); i++) yld->copy.b[i] = ~yld->master.b[i]; yld->key_code = -1; /* no keys pressed */ yealink_set_ringtone(yld, default_ringtone, sizeof(default_ringtone)); /* issue INIT */ memset(yld->ctl_data, 0, sizeof(*(yld->ctl_data))); yld->ctl_data->cmd = CMD_INIT; yld->ctl_data->size = 10; yld->ctl_data->sum = 0x100-CMD_INIT-10; if ((ret = usb_submit_urb(yld->urb_ctl, GFP_KERNEL)) != 0) { dev_dbg(&yld->intf->dev, "%s - usb_submit_urb failed with result %d\n", __func__, ret); return ret; } return 0; } static void input_close(struct input_dev *dev) { struct yealink_dev *yld = input_get_drvdata(dev); yld->shutdown = 1; /* * Make sure the flag is seen by other CPUs before we start * killing URBs so new URBs won't be submitted */ smp_wmb(); usb_kill_urb(yld->urb_ctl); usb_kill_urb(yld->urb_irq); yld->shutdown = 0; smp_wmb(); } /******************************************************************************* * sysfs interface ******************************************************************************/ static DECLARE_RWSEM(sysfs_rwsema); /* Interface to the 7-segments translation table aka. char set. */ static ssize_t show_map(struct device *dev, struct device_attribute *attr, char *buf) { memcpy(buf, &map_seg7, sizeof(map_seg7)); return sizeof(map_seg7); } static ssize_t store_map(struct device *dev, struct device_attribute *attr, const char *buf, size_t cnt) { if (cnt != sizeof(map_seg7)) return -EINVAL; memcpy(&map_seg7, buf, sizeof(map_seg7)); return sizeof(map_seg7); } /* Interface to the LCD. */ /* Reading /sys/../lineX will return the format string with its settings: * * Example: * cat ./line3 * 888888888888 * Linux Rocks! */ static ssize_t show_line(struct device *dev, char *buf, int a, int b) { struct yealink_dev *yld; int i; down_read(&sysfs_rwsema); yld = dev_get_drvdata(dev); if (yld == NULL) { up_read(&sysfs_rwsema); return -ENODEV; } for (i = a; i < b; i++) *buf++ = lcdMap[i].type; *buf++ = '\n'; for (i = a; i < b; i++) *buf++ = yld->lcdMap[i]; *buf++ = '\n'; *buf = 0; up_read(&sysfs_rwsema); return 3 + ((b - a) << 1); } static ssize_t show_line1(struct device *dev, struct device_attribute *attr, char *buf) { return show_line(dev, buf, LCD_LINE1_OFFSET, LCD_LINE2_OFFSET); } static ssize_t show_line2(struct device *dev, struct device_attribute *attr, char *buf) { return show_line(dev, buf, LCD_LINE2_OFFSET, LCD_LINE3_OFFSET); } static ssize_t show_line3(struct device *dev, struct device_attribute *attr, char *buf) { return show_line(dev, buf, LCD_LINE3_OFFSET, LCD_LINE4_OFFSET); } /* Writing to /sys/../lineX will set the coresponding LCD line. * - Excess characters are ignored. * - If less characters are written than allowed, the remaining digits are * unchanged. * - The '\n' or '\t' char is a placeholder, it does not overwrite the * original content. */ static ssize_t store_line(struct device *dev, const char *buf, size_t count, int el, size_t len) { struct yealink_dev *yld; int i; down_write(&sysfs_rwsema); yld = dev_get_drvdata(dev); if (yld == NULL) { up_write(&sysfs_rwsema); return -ENODEV; } if (len > count) len = count; for (i = 0; i < len; i++) setChar(yld, el++, buf[i]); up_write(&sysfs_rwsema); return count; } static ssize_t store_line1(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return store_line(dev, buf, count, LCD_LINE1_OFFSET, LCD_LINE1_SIZE); } static ssize_t store_line2(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return store_line(dev, buf, count, LCD_LINE2_OFFSET, LCD_LINE2_SIZE); } static ssize_t store_line3(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return store_line(dev, buf, count, LCD_LINE3_OFFSET, LCD_LINE3_SIZE); } /* Interface to visible and audible "icons", these include: * pictures on the LCD, the LED, and the dialtone signal. */ /* Get a list of "switchable elements" with their current state. */ static ssize_t get_icons(struct device *dev, struct device_attribute *attr, char *buf) { struct yealink_dev *yld; int i, ret = 1; down_read(&sysfs_rwsema); yld = dev_get_drvdata(dev); if (yld == NULL) { up_read(&sysfs_rwsema); return -ENODEV; } for (i = 0; i < ARRAY_SIZE(lcdMap); i++) { if (lcdMap[i].type != '.') continue; ret += sprintf(&buf[ret], "%s %s\n", yld->lcdMap[i] == ' ' ? " " : "on", lcdMap[i].u.p.name); } up_read(&sysfs_rwsema); return ret; } /* Change the visibility of a particular element. */ static ssize_t set_icon(struct device *dev, const char *buf, size_t count, int chr) { struct yealink_dev *yld; int i; down_write(&sysfs_rwsema); yld = dev_get_drvdata(dev); if (yld == NULL) { up_write(&sysfs_rwsema); return -ENODEV; } for (i = 0; i < ARRAY_SIZE(lcdMap); i++) { if (lcdMap[i].type != '.') continue; if (strncmp(buf, lcdMap[i].u.p.name, count) == 0) { setChar(yld, i, chr); break; } } up_write(&sysfs_rwsema); return count; } static ssize_t show_icon(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return set_icon(dev, buf, count, buf[0]); } static ssize_t hide_icon(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return set_icon(dev, buf, count, ' '); } /* Upload a ringtone to the device. */ /* Stores raw ringtone data in the phone */ static ssize_t store_ringtone(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct yealink_dev *yld; down_write(&sysfs_rwsema); yld = dev_get_drvdata(dev); if (yld == NULL) { up_write(&sysfs_rwsema); return -ENODEV; } /* TODO locking with async usb control interface??? */ yealink_set_ringtone(yld, (char *)buf, count); up_write(&sysfs_rwsema); return count; } #define _M444 S_IRUGO #define _M664 S_IRUGO|S_IWUSR|S_IWGRP #define _M220 S_IWUSR|S_IWGRP static DEVICE_ATTR(map_seg7 , _M664, show_map , store_map ); static DEVICE_ATTR(line1 , _M664, show_line1 , store_line1 ); static DEVICE_ATTR(line2 , _M664, show_line2 , store_line2 ); static DEVICE_ATTR(line3 , _M664, show_line3 , store_line3 ); static DEVICE_ATTR(get_icons , _M444, get_icons , NULL ); static DEVICE_ATTR(show_icon , _M220, NULL , show_icon ); static DEVICE_ATTR(hide_icon , _M220, NULL , hide_icon ); static DEVICE_ATTR(ringtone , _M220, NULL , store_ringtone); static struct attribute *yld_attributes[] = { &dev_attr_line1.attr, &dev_attr_line2.attr, &dev_attr_line3.attr, &dev_attr_get_icons.attr, &dev_attr_show_icon.attr, &dev_attr_hide_icon.attr, &dev_attr_map_seg7.attr, &dev_attr_ringtone.attr, NULL }; static const struct attribute_group yld_attr_group = { .attrs = yld_attributes }; /******************************************************************************* * Linux interface and usb initialisation ******************************************************************************/ struct driver_info { char *name; }; static const struct driver_info info_P1K = { .name = "Yealink usb-p1k", }; static const struct usb_device_id usb_table [] = { { .match_flags = USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_INT_INFO, .idVendor = 0x6993, .idProduct = 0xb001, .bInterfaceClass = USB_CLASS_HID, .bInterfaceSubClass = 0, .bInterfaceProtocol = 0, .driver_info = (kernel_ulong_t)&info_P1K }, { } }; static int usb_cleanup(struct yealink_dev *yld, int err) { if (yld == NULL) return err; if (yld->idev) { if (err) input_free_device(yld->idev); else input_unregister_device(yld->idev); } usb_free_urb(yld->urb_irq); usb_free_urb(yld->urb_ctl); kfree(yld->ctl_req); usb_free_coherent(yld->udev, USB_PKT_LEN, yld->ctl_data, yld->ctl_dma); usb_free_coherent(yld->udev, USB_PKT_LEN, yld->irq_data, yld->irq_dma); kfree(yld); return err; } static void usb_disconnect(struct usb_interface *intf) { struct yealink_dev *yld; down_write(&sysfs_rwsema); yld = usb_get_intfdata(intf); sysfs_remove_group(&intf->dev.kobj, &yld_attr_group); usb_set_intfdata(intf, NULL); up_write(&sysfs_rwsema); usb_cleanup(yld, 0); } static int usb_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev (intf); struct driver_info *nfo = (struct driver_info *)id->driver_info; struct usb_host_interface *interface; struct usb_endpoint_descriptor *endpoint; struct yealink_dev *yld; struct input_dev *input_dev; int ret, pipe, i; interface = intf->cur_altsetting; if (interface->desc.bNumEndpoints < 1) return -ENODEV; endpoint = &interface->endpoint[0].desc; if (!usb_endpoint_is_int_in(endpoint)) return -ENODEV; yld = kzalloc(sizeof(struct yealink_dev), GFP_KERNEL); if (!yld) return -ENOMEM; yld->udev = udev; yld->intf = intf; yld->idev = input_dev = input_allocate_device(); if (!input_dev) return usb_cleanup(yld, -ENOMEM); /* allocate usb buffers */ yld->irq_data = usb_alloc_coherent(udev, USB_PKT_LEN, GFP_KERNEL, &yld->irq_dma); if (yld->irq_data == NULL) return usb_cleanup(yld, -ENOMEM); yld->ctl_data = usb_alloc_coherent(udev, USB_PKT_LEN, GFP_KERNEL, &yld->ctl_dma); if (!yld->ctl_data) return usb_cleanup(yld, -ENOMEM); yld->ctl_req = kmalloc(sizeof(*(yld->ctl_req)), GFP_KERNEL); if (yld->ctl_req == NULL) return usb_cleanup(yld, -ENOMEM); /* allocate urb structures */ yld->urb_irq = usb_alloc_urb(0, GFP_KERNEL); if (yld->urb_irq == NULL) return usb_cleanup(yld, -ENOMEM); yld->urb_ctl = usb_alloc_urb(0, GFP_KERNEL); if (yld->urb_ctl == NULL) return usb_cleanup(yld, -ENOMEM); /* get a handle to the interrupt data pipe */ pipe = usb_rcvintpipe(udev, endpoint->bEndpointAddress); ret = usb_maxpacket(udev, pipe); if (ret != USB_PKT_LEN) dev_err(&intf->dev, "invalid payload size %d, expected %zd\n", ret, USB_PKT_LEN); /* initialise irq urb */ usb_fill_int_urb(yld->urb_irq, udev, pipe, yld->irq_data, USB_PKT_LEN, urb_irq_callback, yld, endpoint->bInterval); yld->urb_irq->transfer_dma = yld->irq_dma; yld->urb_irq->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; yld->urb_irq->dev = udev; /* initialise ctl urb */ yld->ctl_req->bRequestType = USB_TYPE_CLASS | USB_RECIP_INTERFACE | USB_DIR_OUT; yld->ctl_req->bRequest = USB_REQ_SET_CONFIGURATION; yld->ctl_req->wValue = cpu_to_le16(0x200); yld->ctl_req->wIndex = cpu_to_le16(interface->desc.bInterfaceNumber); yld->ctl_req->wLength = cpu_to_le16(USB_PKT_LEN); usb_fill_control_urb(yld->urb_ctl, udev, usb_sndctrlpipe(udev, 0), (void *)yld->ctl_req, yld->ctl_data, USB_PKT_LEN, urb_ctl_callback, yld); yld->urb_ctl->transfer_dma = yld->ctl_dma; yld->urb_ctl->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; yld->urb_ctl->dev = udev; /* find out the physical bus location */ usb_make_path(udev, yld->phys, sizeof(yld->phys)); strlcat(yld->phys, "/input0", sizeof(yld->phys)); /* register settings for the input device */ input_dev->name = nfo->name; input_dev->phys = yld->phys; usb_to_input_id(udev, &input_dev->id); input_dev->dev.parent = &intf->dev; input_set_drvdata(input_dev, yld); input_dev->open = input_open; input_dev->close = input_close; /* input_dev->event = input_ev; TODO */ /* register available key events */ input_dev->evbit[0] = BIT_MASK(EV_KEY); for (i = 0; i < 256; i++) { int k = map_p1k_to_key(i); if (k >= 0) { set_bit(k & 0xff, input_dev->keybit); if (k >> 8) set_bit(k >> 8, input_dev->keybit); } } ret = input_register_device(yld->idev); if (ret) return usb_cleanup(yld, ret); usb_set_intfdata(intf, yld); /* clear visible elements */ for (i = 0; i < ARRAY_SIZE(lcdMap); i++) setChar(yld, i, ' '); /* display driver version on LCD line 3 */ store_line3(&intf->dev, NULL, DRIVER_VERSION, sizeof(DRIVER_VERSION)); /* Register sysfs hooks (don't care about failure) */ ret = sysfs_create_group(&intf->dev.kobj, &yld_attr_group); return 0; } static struct usb_driver yealink_driver = { .name = "yealink", .probe = usb_probe, .disconnect = usb_disconnect, .id_table = usb_table, }; module_usb_driver(yealink_driver); MODULE_DEVICE_TABLE (usb, usb_table); MODULE_AUTHOR("Henk Vergonet"); MODULE_DESCRIPTION("Yealink phone driver"); MODULE_LICENSE("GPL");
linux-master
drivers/input/misc/yealink.c
// SPDX-License-Identifier: GPL-2.0-only /* * twl4030-vibra.c - TWL4030 Vibrator driver * * Copyright (C) 2008-2010 Nokia Corporation * * Written by Henrik Saari <[email protected]> * Updates by Felipe Balbi <[email protected]> * Input by Jari Vanhala <[email protected]> */ #include <linux/module.h> #include <linux/jiffies.h> #include <linux/platform_device.h> #include <linux/of.h> #include <linux/workqueue.h> #include <linux/mfd/twl.h> #include <linux/mfd/twl4030-audio.h> #include <linux/input.h> #include <linux/slab.h> /* MODULE ID2 */ #define LEDEN 0x00 /* ForceFeedback */ #define EFFECT_DIR_180_DEG 0x8000 /* range is 0 - 0xFFFF */ struct vibra_info { struct device *dev; struct input_dev *input_dev; struct work_struct play_work; bool enabled; int speed; int direction; bool coexist; }; static void vibra_disable_leds(void) { u8 reg; /* Disable LEDA & LEDB, cannot be used with vibra (PWM) */ twl_i2c_read_u8(TWL4030_MODULE_LED, &reg, LEDEN); reg &= ~0x03; twl_i2c_write_u8(TWL4030_MODULE_LED, LEDEN, reg); } /* Powers H-Bridge and enables audio clk */ static void vibra_enable(struct vibra_info *info) { u8 reg; twl4030_audio_enable_resource(TWL4030_AUDIO_RES_POWER); /* turn H-Bridge on */ twl_i2c_read_u8(TWL4030_MODULE_AUDIO_VOICE, &reg, TWL4030_REG_VIBRA_CTL); twl_i2c_write_u8(TWL4030_MODULE_AUDIO_VOICE, (reg | TWL4030_VIBRA_EN), TWL4030_REG_VIBRA_CTL); twl4030_audio_enable_resource(TWL4030_AUDIO_RES_APLL); info->enabled = true; } static void vibra_disable(struct vibra_info *info) { u8 reg; /* Power down H-Bridge */ twl_i2c_read_u8(TWL4030_MODULE_AUDIO_VOICE, &reg, TWL4030_REG_VIBRA_CTL); twl_i2c_write_u8(TWL4030_MODULE_AUDIO_VOICE, (reg & ~TWL4030_VIBRA_EN), TWL4030_REG_VIBRA_CTL); twl4030_audio_disable_resource(TWL4030_AUDIO_RES_APLL); twl4030_audio_disable_resource(TWL4030_AUDIO_RES_POWER); info->enabled = false; } static void vibra_play_work(struct work_struct *work) { struct vibra_info *info = container_of(work, struct vibra_info, play_work); int dir; int pwm; u8 reg; dir = info->direction; pwm = info->speed; twl_i2c_read_u8(TWL4030_MODULE_AUDIO_VOICE, &reg, TWL4030_REG_VIBRA_CTL); if (pwm && (!info->coexist || !(reg & TWL4030_VIBRA_SEL))) { if (!info->enabled) vibra_enable(info); /* set vibra rotation direction */ twl_i2c_read_u8(TWL4030_MODULE_AUDIO_VOICE, &reg, TWL4030_REG_VIBRA_CTL); reg = (dir) ? (reg | TWL4030_VIBRA_DIR) : (reg & ~TWL4030_VIBRA_DIR); twl_i2c_write_u8(TWL4030_MODULE_AUDIO_VOICE, reg, TWL4030_REG_VIBRA_CTL); /* set PWM, 1 = max, 255 = min */ twl_i2c_write_u8(TWL4030_MODULE_AUDIO_VOICE, 256 - pwm, TWL4030_REG_VIBRA_SET); } else { if (info->enabled) vibra_disable(info); } } /*** Input/ForceFeedback ***/ static int vibra_play(struct input_dev *input, void *data, struct ff_effect *effect) { struct vibra_info *info = input_get_drvdata(input); info->speed = effect->u.rumble.strong_magnitude >> 8; if (!info->speed) info->speed = effect->u.rumble.weak_magnitude >> 9; info->direction = effect->direction < EFFECT_DIR_180_DEG ? 0 : 1; schedule_work(&info->play_work); return 0; } static void twl4030_vibra_close(struct input_dev *input) { struct vibra_info *info = input_get_drvdata(input); cancel_work_sync(&info->play_work); if (info->enabled) vibra_disable(info); } /*** Module ***/ static int twl4030_vibra_suspend(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct vibra_info *info = platform_get_drvdata(pdev); if (info->enabled) vibra_disable(info); return 0; } static int twl4030_vibra_resume(struct device *dev) { vibra_disable_leds(); return 0; } static DEFINE_SIMPLE_DEV_PM_OPS(twl4030_vibra_pm_ops, twl4030_vibra_suspend, twl4030_vibra_resume); static bool twl4030_vibra_check_coexist(struct device_node *parent) { struct device_node *node; node = of_get_child_by_name(parent, "codec"); if (node) { of_node_put(node); return true; } return false; } static int twl4030_vibra_probe(struct platform_device *pdev) { struct device_node *twl4030_core_node = pdev->dev.parent->of_node; struct vibra_info *info; int ret; if (!twl4030_core_node) { dev_dbg(&pdev->dev, "twl4030 OF node is missing\n"); return -EINVAL; } info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL); if (!info) return -ENOMEM; info->dev = &pdev->dev; info->coexist = twl4030_vibra_check_coexist(twl4030_core_node); INIT_WORK(&info->play_work, vibra_play_work); info->input_dev = devm_input_allocate_device(&pdev->dev); if (info->input_dev == NULL) { dev_err(&pdev->dev, "couldn't allocate input device\n"); return -ENOMEM; } input_set_drvdata(info->input_dev, info); info->input_dev->name = "twl4030:vibrator"; info->input_dev->id.version = 1; info->input_dev->close = twl4030_vibra_close; __set_bit(FF_RUMBLE, info->input_dev->ffbit); ret = input_ff_create_memless(info->input_dev, NULL, vibra_play); if (ret < 0) { dev_dbg(&pdev->dev, "couldn't register vibrator to FF\n"); return ret; } ret = input_register_device(info->input_dev); if (ret < 0) { dev_dbg(&pdev->dev, "couldn't register input device\n"); goto err_iff; } vibra_disable_leds(); platform_set_drvdata(pdev, info); return 0; err_iff: input_ff_destroy(info->input_dev); return ret; } static struct platform_driver twl4030_vibra_driver = { .probe = twl4030_vibra_probe, .driver = { .name = "twl4030-vibra", .pm = pm_sleep_ptr(&twl4030_vibra_pm_ops), }, }; module_platform_driver(twl4030_vibra_driver); MODULE_ALIAS("platform:twl4030-vibra"); MODULE_DESCRIPTION("TWL4030 Vibra driver"); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Nokia Corporation");
linux-master
drivers/input/misc/twl4030-vibra.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Cobalt button interface driver. * * Copyright (C) 2007-2008 Yoichi Yuasa <[email protected]> */ #include <linux/input.h> #include <linux/io.h> #include <linux/ioport.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/slab.h> #define BUTTONS_POLL_INTERVAL 30 /* msec */ #define BUTTONS_COUNT_THRESHOLD 3 #define BUTTONS_STATUS_MASK 0xfe000000 static const unsigned short cobalt_map[] = { KEY_RESERVED, KEY_RESTART, KEY_LEFT, KEY_UP, KEY_DOWN, KEY_RIGHT, KEY_ENTER, KEY_SELECT }; struct buttons_dev { unsigned short keymap[ARRAY_SIZE(cobalt_map)]; int count[ARRAY_SIZE(cobalt_map)]; void __iomem *reg; }; static void handle_buttons(struct input_dev *input) { struct buttons_dev *bdev = input_get_drvdata(input); uint32_t status; int i; status = ~readl(bdev->reg) >> 24; for (i = 0; i < ARRAY_SIZE(bdev->keymap); i++) { if (status & (1U << i)) { if (++bdev->count[i] == BUTTONS_COUNT_THRESHOLD) { input_event(input, EV_MSC, MSC_SCAN, i); input_report_key(input, bdev->keymap[i], 1); input_sync(input); } } else { if (bdev->count[i] >= BUTTONS_COUNT_THRESHOLD) { input_event(input, EV_MSC, MSC_SCAN, i); input_report_key(input, bdev->keymap[i], 0); input_sync(input); } bdev->count[i] = 0; } } } static int cobalt_buttons_probe(struct platform_device *pdev) { struct buttons_dev *bdev; struct input_dev *input; struct resource *res; int error, i; bdev = devm_kzalloc(&pdev->dev, sizeof(*bdev), GFP_KERNEL); if (!bdev) return -ENOMEM; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) return -EBUSY; bdev->reg = devm_ioremap(&pdev->dev, res->start, resource_size(res)); if (!bdev->reg) return -ENOMEM; memcpy(bdev->keymap, cobalt_map, sizeof(bdev->keymap)); input = devm_input_allocate_device(&pdev->dev); if (!input) return -ENOMEM; input_set_drvdata(input, bdev); input->name = "Cobalt buttons"; input->phys = "cobalt/input0"; input->id.bustype = BUS_HOST; input->keycode = bdev->keymap; input->keycodemax = ARRAY_SIZE(bdev->keymap); input->keycodesize = sizeof(unsigned short); input_set_capability(input, EV_MSC, MSC_SCAN); __set_bit(EV_KEY, input->evbit); for (i = 0; i < ARRAY_SIZE(cobalt_map); i++) __set_bit(bdev->keymap[i], input->keybit); __clear_bit(KEY_RESERVED, input->keybit); error = input_setup_polling(input, handle_buttons); if (error) return error; input_set_poll_interval(input, BUTTONS_POLL_INTERVAL); error = input_register_device(input); if (error) return error; return 0; } MODULE_AUTHOR("Yoichi Yuasa <[email protected]>"); MODULE_DESCRIPTION("Cobalt button interface driver"); MODULE_LICENSE("GPL"); /* work with hotplug and coldplug */ MODULE_ALIAS("platform:Cobalt buttons"); static struct platform_driver cobalt_buttons_driver = { .probe = cobalt_buttons_probe, .driver = { .name = "Cobalt buttons", }, }; module_platform_driver(cobalt_buttons_driver);
linux-master
drivers/input/misc/cobalt_btns.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * ADLX345/346 Three-Axis Digital Accelerometers (SPI Interface) * * Enter bugs at http://blackfin.uclinux.org/ * * Copyright (C) 2009 Michael Hennerich, Analog Devices Inc. */ #include <linux/input.h> /* BUS_SPI */ #include <linux/module.h> #include <linux/spi/spi.h> #include <linux/pm.h> #include <linux/types.h> #include "adxl34x.h" #define MAX_SPI_FREQ_HZ 5000000 #define MAX_FREQ_NO_FIFODELAY 1500000 #define ADXL34X_CMD_MULTB (1 << 6) #define ADXL34X_CMD_READ (1 << 7) #define ADXL34X_WRITECMD(reg) (reg & 0x3F) #define ADXL34X_READCMD(reg) (ADXL34X_CMD_READ | (reg & 0x3F)) #define ADXL34X_READMB_CMD(reg) (ADXL34X_CMD_READ | ADXL34X_CMD_MULTB \ | (reg & 0x3F)) static int adxl34x_spi_read(struct device *dev, unsigned char reg) { struct spi_device *spi = to_spi_device(dev); unsigned char cmd; cmd = ADXL34X_READCMD(reg); return spi_w8r8(spi, cmd); } static int adxl34x_spi_write(struct device *dev, unsigned char reg, unsigned char val) { struct spi_device *spi = to_spi_device(dev); unsigned char buf[2]; buf[0] = ADXL34X_WRITECMD(reg); buf[1] = val; return spi_write(spi, buf, sizeof(buf)); } static int adxl34x_spi_read_block(struct device *dev, unsigned char reg, int count, void *buf) { struct spi_device *spi = to_spi_device(dev); ssize_t status; reg = ADXL34X_READMB_CMD(reg); status = spi_write_then_read(spi, &reg, 1, buf, count); return (status < 0) ? status : 0; } static const struct adxl34x_bus_ops adxl34x_spi_bops = { .bustype = BUS_SPI, .write = adxl34x_spi_write, .read = adxl34x_spi_read, .read_block = adxl34x_spi_read_block, }; static int adxl34x_spi_probe(struct spi_device *spi) { struct adxl34x *ac; /* don't exceed max specified SPI CLK frequency */ if (spi->max_speed_hz > MAX_SPI_FREQ_HZ) { dev_err(&spi->dev, "SPI CLK %d Hz too fast\n", spi->max_speed_hz); return -EINVAL; } ac = adxl34x_probe(&spi->dev, spi->irq, spi->max_speed_hz > MAX_FREQ_NO_FIFODELAY, &adxl34x_spi_bops); if (IS_ERR(ac)) return PTR_ERR(ac); spi_set_drvdata(spi, ac); return 0; } static void adxl34x_spi_remove(struct spi_device *spi) { struct adxl34x *ac = spi_get_drvdata(spi); adxl34x_remove(ac); } static struct spi_driver adxl34x_driver = { .driver = { .name = "adxl34x", .pm = pm_sleep_ptr(&adxl34x_pm), }, .probe = adxl34x_spi_probe, .remove = adxl34x_spi_remove, }; module_spi_driver(adxl34x_driver); MODULE_AUTHOR("Michael Hennerich <[email protected]>"); MODULE_DESCRIPTION("ADXL345/346 Three-Axis Digital Accelerometer SPI Bus Driver"); MODULE_LICENSE("GPL");
linux-master
drivers/input/misc/adxl34x-spi.c
// SPDX-License-Identifier: GPL-2.0+ /* * Azoteq IQS269A Capacitive Touch Controller * * Copyright (C) 2020 Jeff LaBundy <[email protected]> * * This driver registers up to 3 input devices: one representing capacitive or * inductive keys as well as Hall-effect switches, and one for each of the two * axial sliders presented by the device. */ #include <linux/completion.h> #include <linux/delay.h> #include <linux/device.h> #include <linux/err.h> #include <linux/i2c.h> #include <linux/input.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/property.h> #include <linux/regmap.h> #include <linux/slab.h> #define IQS269_VER_INFO 0x00 #define IQS269_VER_INFO_PROD_NUM 0x4F #define IQS269_SYS_FLAGS 0x02 #define IQS269_SYS_FLAGS_SHOW_RESET BIT(15) #define IQS269_SYS_FLAGS_PWR_MODE_MASK GENMASK(12, 11) #define IQS269_SYS_FLAGS_PWR_MODE_SHIFT 11 #define IQS269_SYS_FLAGS_IN_ATI BIT(10) #define IQS269_CHx_COUNTS 0x08 #define IQS269_SLIDER_X 0x30 #define IQS269_CAL_DATA_A 0x35 #define IQS269_CAL_DATA_A_HALL_BIN_L_MASK GENMASK(15, 12) #define IQS269_CAL_DATA_A_HALL_BIN_L_SHIFT 12 #define IQS269_CAL_DATA_A_HALL_BIN_R_MASK GENMASK(11, 8) #define IQS269_CAL_DATA_A_HALL_BIN_R_SHIFT 8 #define IQS269_SYS_SETTINGS 0x80 #define IQS269_SYS_SETTINGS_CLK_DIV BIT(15) #define IQS269_SYS_SETTINGS_ULP_AUTO BIT(14) #define IQS269_SYS_SETTINGS_DIS_AUTO BIT(13) #define IQS269_SYS_SETTINGS_PWR_MODE_MASK GENMASK(12, 11) #define IQS269_SYS_SETTINGS_PWR_MODE_SHIFT 11 #define IQS269_SYS_SETTINGS_PWR_MODE_MAX 3 #define IQS269_SYS_SETTINGS_ULP_UPDATE_MASK GENMASK(10, 8) #define IQS269_SYS_SETTINGS_ULP_UPDATE_SHIFT 8 #define IQS269_SYS_SETTINGS_ULP_UPDATE_MAX 7 #define IQS269_SYS_SETTINGS_RESEED_OFFSET BIT(6) #define IQS269_SYS_SETTINGS_EVENT_MODE BIT(5) #define IQS269_SYS_SETTINGS_EVENT_MODE_LP BIT(4) #define IQS269_SYS_SETTINGS_REDO_ATI BIT(2) #define IQS269_SYS_SETTINGS_ACK_RESET BIT(0) #define IQS269_FILT_STR_LP_LTA_MASK GENMASK(7, 6) #define IQS269_FILT_STR_LP_LTA_SHIFT 6 #define IQS269_FILT_STR_LP_CNT_MASK GENMASK(5, 4) #define IQS269_FILT_STR_LP_CNT_SHIFT 4 #define IQS269_FILT_STR_NP_LTA_MASK GENMASK(3, 2) #define IQS269_FILT_STR_NP_LTA_SHIFT 2 #define IQS269_FILT_STR_NP_CNT_MASK GENMASK(1, 0) #define IQS269_FILT_STR_MAX 3 #define IQS269_EVENT_MASK_SYS BIT(6) #define IQS269_EVENT_MASK_DEEP BIT(2) #define IQS269_EVENT_MASK_TOUCH BIT(1) #define IQS269_EVENT_MASK_PROX BIT(0) #define IQS269_RATE_NP_MS_MAX 255 #define IQS269_RATE_LP_MS_MAX 255 #define IQS269_RATE_ULP_MS_MAX 4080 #define IQS269_TIMEOUT_PWR_MS_MAX 130560 #define IQS269_TIMEOUT_LTA_MS_MAX 130560 #define IQS269_MISC_A_ATI_BAND_DISABLE BIT(15) #define IQS269_MISC_A_ATI_LP_ONLY BIT(14) #define IQS269_MISC_A_ATI_BAND_TIGHTEN BIT(13) #define IQS269_MISC_A_FILT_DISABLE BIT(12) #define IQS269_MISC_A_GPIO3_SELECT_MASK GENMASK(10, 8) #define IQS269_MISC_A_GPIO3_SELECT_SHIFT 8 #define IQS269_MISC_A_DUAL_DIR BIT(6) #define IQS269_MISC_A_TX_FREQ_MASK GENMASK(5, 4) #define IQS269_MISC_A_TX_FREQ_SHIFT 4 #define IQS269_MISC_A_TX_FREQ_MAX 3 #define IQS269_MISC_A_GLOBAL_CAP_SIZE BIT(0) #define IQS269_MISC_B_RESEED_UI_SEL_MASK GENMASK(7, 6) #define IQS269_MISC_B_RESEED_UI_SEL_SHIFT 6 #define IQS269_MISC_B_RESEED_UI_SEL_MAX 3 #define IQS269_MISC_B_TRACKING_UI_ENABLE BIT(4) #define IQS269_MISC_B_FILT_STR_SLIDER GENMASK(1, 0) #define IQS269_CHx_ENG_A_MEAS_CAP_SIZE BIT(15) #define IQS269_CHx_ENG_A_RX_GND_INACTIVE BIT(13) #define IQS269_CHx_ENG_A_LOCAL_CAP_SIZE BIT(12) #define IQS269_CHx_ENG_A_ATI_MODE_MASK GENMASK(9, 8) #define IQS269_CHx_ENG_A_ATI_MODE_SHIFT 8 #define IQS269_CHx_ENG_A_ATI_MODE_MAX 3 #define IQS269_CHx_ENG_A_INV_LOGIC BIT(7) #define IQS269_CHx_ENG_A_PROJ_BIAS_MASK GENMASK(6, 5) #define IQS269_CHx_ENG_A_PROJ_BIAS_SHIFT 5 #define IQS269_CHx_ENG_A_PROJ_BIAS_MAX 3 #define IQS269_CHx_ENG_A_SENSE_MODE_MASK GENMASK(3, 0) #define IQS269_CHx_ENG_A_SENSE_MODE_MAX 15 #define IQS269_CHx_ENG_B_LOCAL_CAP_ENABLE BIT(13) #define IQS269_CHx_ENG_B_SENSE_FREQ_MASK GENMASK(10, 9) #define IQS269_CHx_ENG_B_SENSE_FREQ_SHIFT 9 #define IQS269_CHx_ENG_B_SENSE_FREQ_MAX 3 #define IQS269_CHx_ENG_B_STATIC_ENABLE BIT(8) #define IQS269_CHx_ENG_B_ATI_BASE_MASK GENMASK(7, 6) #define IQS269_CHx_ENG_B_ATI_BASE_75 0x00 #define IQS269_CHx_ENG_B_ATI_BASE_100 0x40 #define IQS269_CHx_ENG_B_ATI_BASE_150 0x80 #define IQS269_CHx_ENG_B_ATI_BASE_200 0xC0 #define IQS269_CHx_ENG_B_ATI_TARGET_MASK GENMASK(5, 0) #define IQS269_CHx_ENG_B_ATI_TARGET_MAX 2016 #define IQS269_CHx_WEIGHT_MAX 255 #define IQS269_CHx_THRESH_MAX 255 #define IQS269_CHx_HYST_DEEP_MASK GENMASK(7, 4) #define IQS269_CHx_HYST_DEEP_SHIFT 4 #define IQS269_CHx_HYST_TOUCH_MASK GENMASK(3, 0) #define IQS269_CHx_HYST_MAX 15 #define IQS269_CHx_HALL_INACTIVE 6 #define IQS269_CHx_HALL_ACTIVE 7 #define IQS269_HALL_PAD_R BIT(0) #define IQS269_HALL_PAD_L BIT(1) #define IQS269_HALL_PAD_INV BIT(6) #define IQS269_HALL_UI 0xF5 #define IQS269_HALL_UI_ENABLE BIT(15) #define IQS269_MAX_REG 0xFF #define IQS269_NUM_CH 8 #define IQS269_NUM_SL 2 #define iqs269_irq_wait() usleep_range(200, 250) enum iqs269_local_cap_size { IQS269_LOCAL_CAP_SIZE_0, IQS269_LOCAL_CAP_SIZE_GLOBAL_ONLY, IQS269_LOCAL_CAP_SIZE_GLOBAL_0pF5, }; enum iqs269_st_offs { IQS269_ST_OFFS_PROX, IQS269_ST_OFFS_DIR, IQS269_ST_OFFS_TOUCH, IQS269_ST_OFFS_DEEP, }; enum iqs269_th_offs { IQS269_TH_OFFS_PROX, IQS269_TH_OFFS_TOUCH, IQS269_TH_OFFS_DEEP, }; enum iqs269_event_id { IQS269_EVENT_PROX_DN, IQS269_EVENT_PROX_UP, IQS269_EVENT_TOUCH_DN, IQS269_EVENT_TOUCH_UP, IQS269_EVENT_DEEP_DN, IQS269_EVENT_DEEP_UP, }; struct iqs269_switch_desc { unsigned int code; bool enabled; }; struct iqs269_event_desc { const char *name; enum iqs269_st_offs st_offs; enum iqs269_th_offs th_offs; bool dir_up; u8 mask; }; static const struct iqs269_event_desc iqs269_events[] = { [IQS269_EVENT_PROX_DN] = { .name = "event-prox", .st_offs = IQS269_ST_OFFS_PROX, .th_offs = IQS269_TH_OFFS_PROX, .mask = IQS269_EVENT_MASK_PROX, }, [IQS269_EVENT_PROX_UP] = { .name = "event-prox-alt", .st_offs = IQS269_ST_OFFS_PROX, .th_offs = IQS269_TH_OFFS_PROX, .dir_up = true, .mask = IQS269_EVENT_MASK_PROX, }, [IQS269_EVENT_TOUCH_DN] = { .name = "event-touch", .st_offs = IQS269_ST_OFFS_TOUCH, .th_offs = IQS269_TH_OFFS_TOUCH, .mask = IQS269_EVENT_MASK_TOUCH, }, [IQS269_EVENT_TOUCH_UP] = { .name = "event-touch-alt", .st_offs = IQS269_ST_OFFS_TOUCH, .th_offs = IQS269_TH_OFFS_TOUCH, .dir_up = true, .mask = IQS269_EVENT_MASK_TOUCH, }, [IQS269_EVENT_DEEP_DN] = { .name = "event-deep", .st_offs = IQS269_ST_OFFS_DEEP, .th_offs = IQS269_TH_OFFS_DEEP, .mask = IQS269_EVENT_MASK_DEEP, }, [IQS269_EVENT_DEEP_UP] = { .name = "event-deep-alt", .st_offs = IQS269_ST_OFFS_DEEP, .th_offs = IQS269_TH_OFFS_DEEP, .dir_up = true, .mask = IQS269_EVENT_MASK_DEEP, }, }; struct iqs269_ver_info { u8 prod_num; u8 sw_num; u8 hw_num; u8 padding; } __packed; struct iqs269_ch_reg { u8 rx_enable; u8 tx_enable; __be16 engine_a; __be16 engine_b; __be16 ati_comp; u8 thresh[3]; u8 hyst; u8 assoc_select; u8 assoc_weight; } __packed; struct iqs269_sys_reg { __be16 general; u8 active; u8 filter; u8 reseed; u8 event_mask; u8 rate_np; u8 rate_lp; u8 rate_ulp; u8 timeout_pwr; u8 timeout_rdy; u8 timeout_lta; __be16 misc_a; __be16 misc_b; u8 blocking; u8 padding; u8 slider_select[IQS269_NUM_SL]; u8 timeout_tap; u8 timeout_swipe; u8 thresh_swipe; u8 redo_ati; struct iqs269_ch_reg ch_reg[IQS269_NUM_CH]; } __packed; struct iqs269_flags { __be16 system; u8 gesture; u8 padding; u8 states[4]; } __packed; struct iqs269_private { struct i2c_client *client; struct regmap *regmap; struct mutex lock; struct iqs269_switch_desc switches[ARRAY_SIZE(iqs269_events)]; struct iqs269_sys_reg sys_reg; struct completion ati_done; struct input_dev *keypad; struct input_dev *slider[IQS269_NUM_SL]; unsigned int keycode[ARRAY_SIZE(iqs269_events) * IQS269_NUM_CH]; unsigned int ch_num; bool hall_enable; bool ati_current; }; static int iqs269_ati_mode_set(struct iqs269_private *iqs269, unsigned int ch_num, unsigned int mode) { struct iqs269_ch_reg *ch_reg = iqs269->sys_reg.ch_reg; u16 engine_a; if (ch_num >= IQS269_NUM_CH) return -EINVAL; if (mode > IQS269_CHx_ENG_A_ATI_MODE_MAX) return -EINVAL; mutex_lock(&iqs269->lock); engine_a = be16_to_cpu(ch_reg[ch_num].engine_a); engine_a &= ~IQS269_CHx_ENG_A_ATI_MODE_MASK; engine_a |= (mode << IQS269_CHx_ENG_A_ATI_MODE_SHIFT); ch_reg[ch_num].engine_a = cpu_to_be16(engine_a); iqs269->ati_current = false; mutex_unlock(&iqs269->lock); return 0; } static int iqs269_ati_mode_get(struct iqs269_private *iqs269, unsigned int ch_num, unsigned int *mode) { struct iqs269_ch_reg *ch_reg = iqs269->sys_reg.ch_reg; u16 engine_a; if (ch_num >= IQS269_NUM_CH) return -EINVAL; mutex_lock(&iqs269->lock); engine_a = be16_to_cpu(ch_reg[ch_num].engine_a); mutex_unlock(&iqs269->lock); engine_a &= IQS269_CHx_ENG_A_ATI_MODE_MASK; *mode = (engine_a >> IQS269_CHx_ENG_A_ATI_MODE_SHIFT); return 0; } static int iqs269_ati_base_set(struct iqs269_private *iqs269, unsigned int ch_num, unsigned int base) { struct iqs269_ch_reg *ch_reg = iqs269->sys_reg.ch_reg; u16 engine_b; if (ch_num >= IQS269_NUM_CH) return -EINVAL; switch (base) { case 75: base = IQS269_CHx_ENG_B_ATI_BASE_75; break; case 100: base = IQS269_CHx_ENG_B_ATI_BASE_100; break; case 150: base = IQS269_CHx_ENG_B_ATI_BASE_150; break; case 200: base = IQS269_CHx_ENG_B_ATI_BASE_200; break; default: return -EINVAL; } mutex_lock(&iqs269->lock); engine_b = be16_to_cpu(ch_reg[ch_num].engine_b); engine_b &= ~IQS269_CHx_ENG_B_ATI_BASE_MASK; engine_b |= base; ch_reg[ch_num].engine_b = cpu_to_be16(engine_b); iqs269->ati_current = false; mutex_unlock(&iqs269->lock); return 0; } static int iqs269_ati_base_get(struct iqs269_private *iqs269, unsigned int ch_num, unsigned int *base) { struct iqs269_ch_reg *ch_reg = iqs269->sys_reg.ch_reg; u16 engine_b; if (ch_num >= IQS269_NUM_CH) return -EINVAL; mutex_lock(&iqs269->lock); engine_b = be16_to_cpu(ch_reg[ch_num].engine_b); mutex_unlock(&iqs269->lock); switch (engine_b & IQS269_CHx_ENG_B_ATI_BASE_MASK) { case IQS269_CHx_ENG_B_ATI_BASE_75: *base = 75; return 0; case IQS269_CHx_ENG_B_ATI_BASE_100: *base = 100; return 0; case IQS269_CHx_ENG_B_ATI_BASE_150: *base = 150; return 0; case IQS269_CHx_ENG_B_ATI_BASE_200: *base = 200; return 0; default: return -EINVAL; } } static int iqs269_ati_target_set(struct iqs269_private *iqs269, unsigned int ch_num, unsigned int target) { struct iqs269_ch_reg *ch_reg = iqs269->sys_reg.ch_reg; u16 engine_b; if (ch_num >= IQS269_NUM_CH) return -EINVAL; if (target > IQS269_CHx_ENG_B_ATI_TARGET_MAX) return -EINVAL; mutex_lock(&iqs269->lock); engine_b = be16_to_cpu(ch_reg[ch_num].engine_b); engine_b &= ~IQS269_CHx_ENG_B_ATI_TARGET_MASK; engine_b |= target / 32; ch_reg[ch_num].engine_b = cpu_to_be16(engine_b); iqs269->ati_current = false; mutex_unlock(&iqs269->lock); return 0; } static int iqs269_ati_target_get(struct iqs269_private *iqs269, unsigned int ch_num, unsigned int *target) { struct iqs269_ch_reg *ch_reg = iqs269->sys_reg.ch_reg; u16 engine_b; if (ch_num >= IQS269_NUM_CH) return -EINVAL; mutex_lock(&iqs269->lock); engine_b = be16_to_cpu(ch_reg[ch_num].engine_b); mutex_unlock(&iqs269->lock); *target = (engine_b & IQS269_CHx_ENG_B_ATI_TARGET_MASK) * 32; return 0; } static int iqs269_parse_mask(const struct fwnode_handle *fwnode, const char *propname, u8 *mask) { unsigned int val[IQS269_NUM_CH]; int count, error, i; count = fwnode_property_count_u32(fwnode, propname); if (count < 0) return 0; if (count > IQS269_NUM_CH) return -EINVAL; error = fwnode_property_read_u32_array(fwnode, propname, val, count); if (error) return error; *mask = 0; for (i = 0; i < count; i++) { if (val[i] >= IQS269_NUM_CH) return -EINVAL; *mask |= BIT(val[i]); } return 0; } static int iqs269_parse_chan(struct iqs269_private *iqs269, const struct fwnode_handle *ch_node) { struct i2c_client *client = iqs269->client; struct fwnode_handle *ev_node; struct iqs269_ch_reg *ch_reg; u16 engine_a, engine_b; unsigned int reg, val; int error, i; error = fwnode_property_read_u32(ch_node, "reg", &reg); if (error) { dev_err(&client->dev, "Failed to read channel number: %d\n", error); return error; } else if (reg >= IQS269_NUM_CH) { dev_err(&client->dev, "Invalid channel number: %u\n", reg); return -EINVAL; } iqs269->sys_reg.active |= BIT(reg); if (!fwnode_property_present(ch_node, "azoteq,reseed-disable")) iqs269->sys_reg.reseed |= BIT(reg); if (fwnode_property_present(ch_node, "azoteq,blocking-enable")) iqs269->sys_reg.blocking |= BIT(reg); if (fwnode_property_present(ch_node, "azoteq,slider0-select")) iqs269->sys_reg.slider_select[0] |= BIT(reg); if (fwnode_property_present(ch_node, "azoteq,slider1-select")) iqs269->sys_reg.slider_select[1] |= BIT(reg); ch_reg = &iqs269->sys_reg.ch_reg[reg]; error = iqs269_parse_mask(ch_node, "azoteq,rx-enable", &ch_reg->rx_enable); if (error) { dev_err(&client->dev, "Invalid channel %u RX enable mask: %d\n", reg, error); return error; } error = iqs269_parse_mask(ch_node, "azoteq,tx-enable", &ch_reg->tx_enable); if (error) { dev_err(&client->dev, "Invalid channel %u TX enable mask: %d\n", reg, error); return error; } engine_a = be16_to_cpu(ch_reg->engine_a); engine_b = be16_to_cpu(ch_reg->engine_b); engine_a |= IQS269_CHx_ENG_A_MEAS_CAP_SIZE; if (fwnode_property_present(ch_node, "azoteq,meas-cap-decrease")) engine_a &= ~IQS269_CHx_ENG_A_MEAS_CAP_SIZE; engine_a |= IQS269_CHx_ENG_A_RX_GND_INACTIVE; if (fwnode_property_present(ch_node, "azoteq,rx-float-inactive")) engine_a &= ~IQS269_CHx_ENG_A_RX_GND_INACTIVE; engine_a &= ~IQS269_CHx_ENG_A_LOCAL_CAP_SIZE; engine_b &= ~IQS269_CHx_ENG_B_LOCAL_CAP_ENABLE; if (!fwnode_property_read_u32(ch_node, "azoteq,local-cap-size", &val)) { switch (val) { case IQS269_LOCAL_CAP_SIZE_0: break; case IQS269_LOCAL_CAP_SIZE_GLOBAL_0pF5: engine_a |= IQS269_CHx_ENG_A_LOCAL_CAP_SIZE; fallthrough; case IQS269_LOCAL_CAP_SIZE_GLOBAL_ONLY: engine_b |= IQS269_CHx_ENG_B_LOCAL_CAP_ENABLE; break; default: dev_err(&client->dev, "Invalid channel %u local cap. size: %u\n", reg, val); return -EINVAL; } } engine_a &= ~IQS269_CHx_ENG_A_INV_LOGIC; if (fwnode_property_present(ch_node, "azoteq,invert-enable")) engine_a |= IQS269_CHx_ENG_A_INV_LOGIC; if (!fwnode_property_read_u32(ch_node, "azoteq,proj-bias", &val)) { if (val > IQS269_CHx_ENG_A_PROJ_BIAS_MAX) { dev_err(&client->dev, "Invalid channel %u bias current: %u\n", reg, val); return -EINVAL; } engine_a &= ~IQS269_CHx_ENG_A_PROJ_BIAS_MASK; engine_a |= (val << IQS269_CHx_ENG_A_PROJ_BIAS_SHIFT); } if (!fwnode_property_read_u32(ch_node, "azoteq,sense-mode", &val)) { if (val > IQS269_CHx_ENG_A_SENSE_MODE_MAX) { dev_err(&client->dev, "Invalid channel %u sensing mode: %u\n", reg, val); return -EINVAL; } engine_a &= ~IQS269_CHx_ENG_A_SENSE_MODE_MASK; engine_a |= val; } if (!fwnode_property_read_u32(ch_node, "azoteq,sense-freq", &val)) { if (val > IQS269_CHx_ENG_B_SENSE_FREQ_MAX) { dev_err(&client->dev, "Invalid channel %u sensing frequency: %u\n", reg, val); return -EINVAL; } engine_b &= ~IQS269_CHx_ENG_B_SENSE_FREQ_MASK; engine_b |= (val << IQS269_CHx_ENG_B_SENSE_FREQ_SHIFT); } engine_b &= ~IQS269_CHx_ENG_B_STATIC_ENABLE; if (fwnode_property_present(ch_node, "azoteq,static-enable")) engine_b |= IQS269_CHx_ENG_B_STATIC_ENABLE; ch_reg->engine_a = cpu_to_be16(engine_a); ch_reg->engine_b = cpu_to_be16(engine_b); if (!fwnode_property_read_u32(ch_node, "azoteq,ati-mode", &val)) { error = iqs269_ati_mode_set(iqs269, reg, val); if (error) { dev_err(&client->dev, "Invalid channel %u ATI mode: %u\n", reg, val); return error; } } if (!fwnode_property_read_u32(ch_node, "azoteq,ati-base", &val)) { error = iqs269_ati_base_set(iqs269, reg, val); if (error) { dev_err(&client->dev, "Invalid channel %u ATI base: %u\n", reg, val); return error; } } if (!fwnode_property_read_u32(ch_node, "azoteq,ati-target", &val)) { error = iqs269_ati_target_set(iqs269, reg, val); if (error) { dev_err(&client->dev, "Invalid channel %u ATI target: %u\n", reg, val); return error; } } error = iqs269_parse_mask(ch_node, "azoteq,assoc-select", &ch_reg->assoc_select); if (error) { dev_err(&client->dev, "Invalid channel %u association: %d\n", reg, error); return error; } if (!fwnode_property_read_u32(ch_node, "azoteq,assoc-weight", &val)) { if (val > IQS269_CHx_WEIGHT_MAX) { dev_err(&client->dev, "Invalid channel %u associated weight: %u\n", reg, val); return -EINVAL; } ch_reg->assoc_weight = val; } for (i = 0; i < ARRAY_SIZE(iqs269_events); i++) { ev_node = fwnode_get_named_child_node(ch_node, iqs269_events[i].name); if (!ev_node) continue; if (!fwnode_property_read_u32(ev_node, "azoteq,thresh", &val)) { if (val > IQS269_CHx_THRESH_MAX) { dev_err(&client->dev, "Invalid channel %u threshold: %u\n", reg, val); fwnode_handle_put(ev_node); return -EINVAL; } ch_reg->thresh[iqs269_events[i].th_offs] = val; } if (!fwnode_property_read_u32(ev_node, "azoteq,hyst", &val)) { u8 *hyst = &ch_reg->hyst; if (val > IQS269_CHx_HYST_MAX) { dev_err(&client->dev, "Invalid channel %u hysteresis: %u\n", reg, val); fwnode_handle_put(ev_node); return -EINVAL; } if (i == IQS269_EVENT_DEEP_DN || i == IQS269_EVENT_DEEP_UP) { *hyst &= ~IQS269_CHx_HYST_DEEP_MASK; *hyst |= (val << IQS269_CHx_HYST_DEEP_SHIFT); } else if (i == IQS269_EVENT_TOUCH_DN || i == IQS269_EVENT_TOUCH_UP) { *hyst &= ~IQS269_CHx_HYST_TOUCH_MASK; *hyst |= val; } } error = fwnode_property_read_u32(ev_node, "linux,code", &val); fwnode_handle_put(ev_node); if (error == -EINVAL) { continue; } else if (error) { dev_err(&client->dev, "Failed to read channel %u code: %d\n", reg, error); return error; } switch (reg) { case IQS269_CHx_HALL_ACTIVE: if (iqs269->hall_enable) { iqs269->switches[i].code = val; iqs269->switches[i].enabled = true; } fallthrough; case IQS269_CHx_HALL_INACTIVE: if (iqs269->hall_enable) break; fallthrough; default: iqs269->keycode[i * IQS269_NUM_CH + reg] = val; } iqs269->sys_reg.event_mask &= ~iqs269_events[i].mask; } return 0; } static int iqs269_parse_prop(struct iqs269_private *iqs269) { struct iqs269_sys_reg *sys_reg = &iqs269->sys_reg; struct i2c_client *client = iqs269->client; struct fwnode_handle *ch_node; u16 general, misc_a, misc_b; unsigned int val; int error; iqs269->hall_enable = device_property_present(&client->dev, "azoteq,hall-enable"); error = regmap_raw_read(iqs269->regmap, IQS269_SYS_SETTINGS, sys_reg, sizeof(*sys_reg)); if (error) return error; if (!device_property_read_u32(&client->dev, "azoteq,filt-str-lp-lta", &val)) { if (val > IQS269_FILT_STR_MAX) { dev_err(&client->dev, "Invalid filter strength: %u\n", val); return -EINVAL; } sys_reg->filter &= ~IQS269_FILT_STR_LP_LTA_MASK; sys_reg->filter |= (val << IQS269_FILT_STR_LP_LTA_SHIFT); } if (!device_property_read_u32(&client->dev, "azoteq,filt-str-lp-cnt", &val)) { if (val > IQS269_FILT_STR_MAX) { dev_err(&client->dev, "Invalid filter strength: %u\n", val); return -EINVAL; } sys_reg->filter &= ~IQS269_FILT_STR_LP_CNT_MASK; sys_reg->filter |= (val << IQS269_FILT_STR_LP_CNT_SHIFT); } if (!device_property_read_u32(&client->dev, "azoteq,filt-str-np-lta", &val)) { if (val > IQS269_FILT_STR_MAX) { dev_err(&client->dev, "Invalid filter strength: %u\n", val); return -EINVAL; } sys_reg->filter &= ~IQS269_FILT_STR_NP_LTA_MASK; sys_reg->filter |= (val << IQS269_FILT_STR_NP_LTA_SHIFT); } if (!device_property_read_u32(&client->dev, "azoteq,filt-str-np-cnt", &val)) { if (val > IQS269_FILT_STR_MAX) { dev_err(&client->dev, "Invalid filter strength: %u\n", val); return -EINVAL; } sys_reg->filter &= ~IQS269_FILT_STR_NP_CNT_MASK; sys_reg->filter |= val; } if (!device_property_read_u32(&client->dev, "azoteq,rate-np-ms", &val)) { if (val > IQS269_RATE_NP_MS_MAX) { dev_err(&client->dev, "Invalid report rate: %u\n", val); return -EINVAL; } sys_reg->rate_np = val; } if (!device_property_read_u32(&client->dev, "azoteq,rate-lp-ms", &val)) { if (val > IQS269_RATE_LP_MS_MAX) { dev_err(&client->dev, "Invalid report rate: %u\n", val); return -EINVAL; } sys_reg->rate_lp = val; } if (!device_property_read_u32(&client->dev, "azoteq,rate-ulp-ms", &val)) { if (val > IQS269_RATE_ULP_MS_MAX) { dev_err(&client->dev, "Invalid report rate: %u\n", val); return -EINVAL; } sys_reg->rate_ulp = val / 16; } if (!device_property_read_u32(&client->dev, "azoteq,timeout-pwr-ms", &val)) { if (val > IQS269_TIMEOUT_PWR_MS_MAX) { dev_err(&client->dev, "Invalid timeout: %u\n", val); return -EINVAL; } sys_reg->timeout_pwr = val / 512; } if (!device_property_read_u32(&client->dev, "azoteq,timeout-lta-ms", &val)) { if (val > IQS269_TIMEOUT_LTA_MS_MAX) { dev_err(&client->dev, "Invalid timeout: %u\n", val); return -EINVAL; } sys_reg->timeout_lta = val / 512; } misc_a = be16_to_cpu(sys_reg->misc_a); misc_b = be16_to_cpu(sys_reg->misc_b); misc_a &= ~IQS269_MISC_A_ATI_BAND_DISABLE; if (device_property_present(&client->dev, "azoteq,ati-band-disable")) misc_a |= IQS269_MISC_A_ATI_BAND_DISABLE; misc_a &= ~IQS269_MISC_A_ATI_LP_ONLY; if (device_property_present(&client->dev, "azoteq,ati-lp-only")) misc_a |= IQS269_MISC_A_ATI_LP_ONLY; misc_a &= ~IQS269_MISC_A_ATI_BAND_TIGHTEN; if (device_property_present(&client->dev, "azoteq,ati-band-tighten")) misc_a |= IQS269_MISC_A_ATI_BAND_TIGHTEN; misc_a &= ~IQS269_MISC_A_FILT_DISABLE; if (device_property_present(&client->dev, "azoteq,filt-disable")) misc_a |= IQS269_MISC_A_FILT_DISABLE; if (!device_property_read_u32(&client->dev, "azoteq,gpio3-select", &val)) { if (val >= IQS269_NUM_CH) { dev_err(&client->dev, "Invalid GPIO3 selection: %u\n", val); return -EINVAL; } misc_a &= ~IQS269_MISC_A_GPIO3_SELECT_MASK; misc_a |= (val << IQS269_MISC_A_GPIO3_SELECT_SHIFT); } misc_a &= ~IQS269_MISC_A_DUAL_DIR; if (device_property_present(&client->dev, "azoteq,dual-direction")) misc_a |= IQS269_MISC_A_DUAL_DIR; if (!device_property_read_u32(&client->dev, "azoteq,tx-freq", &val)) { if (val > IQS269_MISC_A_TX_FREQ_MAX) { dev_err(&client->dev, "Invalid excitation frequency: %u\n", val); return -EINVAL; } misc_a &= ~IQS269_MISC_A_TX_FREQ_MASK; misc_a |= (val << IQS269_MISC_A_TX_FREQ_SHIFT); } misc_a &= ~IQS269_MISC_A_GLOBAL_CAP_SIZE; if (device_property_present(&client->dev, "azoteq,global-cap-increase")) misc_a |= IQS269_MISC_A_GLOBAL_CAP_SIZE; if (!device_property_read_u32(&client->dev, "azoteq,reseed-select", &val)) { if (val > IQS269_MISC_B_RESEED_UI_SEL_MAX) { dev_err(&client->dev, "Invalid reseed selection: %u\n", val); return -EINVAL; } misc_b &= ~IQS269_MISC_B_RESEED_UI_SEL_MASK; misc_b |= (val << IQS269_MISC_B_RESEED_UI_SEL_SHIFT); } misc_b &= ~IQS269_MISC_B_TRACKING_UI_ENABLE; if (device_property_present(&client->dev, "azoteq,tracking-enable")) misc_b |= IQS269_MISC_B_TRACKING_UI_ENABLE; if (!device_property_read_u32(&client->dev, "azoteq,filt-str-slider", &val)) { if (val > IQS269_FILT_STR_MAX) { dev_err(&client->dev, "Invalid filter strength: %u\n", val); return -EINVAL; } misc_b &= ~IQS269_MISC_B_FILT_STR_SLIDER; misc_b |= val; } sys_reg->misc_a = cpu_to_be16(misc_a); sys_reg->misc_b = cpu_to_be16(misc_b); sys_reg->active = 0; sys_reg->reseed = 0; sys_reg->blocking = 0; sys_reg->slider_select[0] = 0; sys_reg->slider_select[1] = 0; sys_reg->event_mask = ~((u8)IQS269_EVENT_MASK_SYS); device_for_each_child_node(&client->dev, ch_node) { error = iqs269_parse_chan(iqs269, ch_node); if (error) { fwnode_handle_put(ch_node); return error; } } /* * Volunteer all active channels to participate in ATI when REDO-ATI is * manually triggered. */ sys_reg->redo_ati = sys_reg->active; general = be16_to_cpu(sys_reg->general); if (device_property_present(&client->dev, "azoteq,clk-div")) general |= IQS269_SYS_SETTINGS_CLK_DIV; /* * Configure the device to automatically switch between normal and low- * power modes as a function of sensing activity. Ultra-low-power mode, * if enabled, is reserved for suspend. */ general &= ~IQS269_SYS_SETTINGS_ULP_AUTO; general &= ~IQS269_SYS_SETTINGS_DIS_AUTO; general &= ~IQS269_SYS_SETTINGS_PWR_MODE_MASK; if (!device_property_read_u32(&client->dev, "azoteq,suspend-mode", &val)) { if (val > IQS269_SYS_SETTINGS_PWR_MODE_MAX) { dev_err(&client->dev, "Invalid suspend mode: %u\n", val); return -EINVAL; } general |= (val << IQS269_SYS_SETTINGS_PWR_MODE_SHIFT); } if (!device_property_read_u32(&client->dev, "azoteq,ulp-update", &val)) { if (val > IQS269_SYS_SETTINGS_ULP_UPDATE_MAX) { dev_err(&client->dev, "Invalid update rate: %u\n", val); return -EINVAL; } general &= ~IQS269_SYS_SETTINGS_ULP_UPDATE_MASK; general |= (val << IQS269_SYS_SETTINGS_ULP_UPDATE_SHIFT); } general &= ~IQS269_SYS_SETTINGS_RESEED_OFFSET; if (device_property_present(&client->dev, "azoteq,reseed-offset")) general |= IQS269_SYS_SETTINGS_RESEED_OFFSET; general |= IQS269_SYS_SETTINGS_EVENT_MODE; /* * As per the datasheet, enable streaming during normal-power mode if * either slider is in use. In that case, the device returns to event * mode during low-power mode. */ if (sys_reg->slider_select[0] || sys_reg->slider_select[1]) general |= IQS269_SYS_SETTINGS_EVENT_MODE_LP; general |= IQS269_SYS_SETTINGS_REDO_ATI; general |= IQS269_SYS_SETTINGS_ACK_RESET; sys_reg->general = cpu_to_be16(general); return 0; } static int iqs269_dev_init(struct iqs269_private *iqs269) { int error; mutex_lock(&iqs269->lock); error = regmap_update_bits(iqs269->regmap, IQS269_HALL_UI, IQS269_HALL_UI_ENABLE, iqs269->hall_enable ? ~0 : 0); if (error) goto err_mutex; error = regmap_raw_write(iqs269->regmap, IQS269_SYS_SETTINGS, &iqs269->sys_reg, sizeof(iqs269->sys_reg)); if (error) goto err_mutex; /* * The following delay gives the device time to deassert its RDY output * so as to prevent an interrupt from being serviced prematurely. */ usleep_range(2000, 2100); iqs269->ati_current = true; err_mutex: mutex_unlock(&iqs269->lock); return error; } static int iqs269_input_init(struct iqs269_private *iqs269) { struct i2c_client *client = iqs269->client; unsigned int sw_code, keycode; int error, i, j; iqs269->keypad = devm_input_allocate_device(&client->dev); if (!iqs269->keypad) return -ENOMEM; iqs269->keypad->keycodemax = ARRAY_SIZE(iqs269->keycode); iqs269->keypad->keycode = iqs269->keycode; iqs269->keypad->keycodesize = sizeof(*iqs269->keycode); iqs269->keypad->name = "iqs269a_keypad"; iqs269->keypad->id.bustype = BUS_I2C; for (i = 0; i < ARRAY_SIZE(iqs269_events); i++) { sw_code = iqs269->switches[i].code; for (j = 0; j < IQS269_NUM_CH; j++) { keycode = iqs269->keycode[i * IQS269_NUM_CH + j]; /* * Hall-effect sensing repurposes a pair of dedicated * channels, only one of which reports events. */ switch (j) { case IQS269_CHx_HALL_ACTIVE: if (iqs269->hall_enable && iqs269->switches[i].enabled) input_set_capability(iqs269->keypad, EV_SW, sw_code); fallthrough; case IQS269_CHx_HALL_INACTIVE: if (iqs269->hall_enable) continue; fallthrough; default: if (keycode != KEY_RESERVED) input_set_capability(iqs269->keypad, EV_KEY, keycode); } } } for (i = 0; i < IQS269_NUM_SL; i++) { if (!iqs269->sys_reg.slider_select[i]) continue; iqs269->slider[i] = devm_input_allocate_device(&client->dev); if (!iqs269->slider[i]) return -ENOMEM; iqs269->slider[i]->name = i ? "iqs269a_slider_1" : "iqs269a_slider_0"; iqs269->slider[i]->id.bustype = BUS_I2C; input_set_capability(iqs269->slider[i], EV_KEY, BTN_TOUCH); input_set_abs_params(iqs269->slider[i], ABS_X, 0, 255, 0, 0); error = input_register_device(iqs269->slider[i]); if (error) { dev_err(&client->dev, "Failed to register slider %d: %d\n", i, error); return error; } } return 0; } static int iqs269_report(struct iqs269_private *iqs269) { struct i2c_client *client = iqs269->client; struct iqs269_flags flags; unsigned int sw_code, keycode; int error, i, j; u8 slider_x[IQS269_NUM_SL]; u8 dir_mask, state; error = regmap_raw_read(iqs269->regmap, IQS269_SYS_FLAGS, &flags, sizeof(flags)); if (error) { dev_err(&client->dev, "Failed to read device status: %d\n", error); return error; } /* * The device resets itself if its own watchdog bites, which can happen * in the event of an I2C communication error. In this case, the device * asserts a SHOW_RESET interrupt and all registers must be restored. */ if (be16_to_cpu(flags.system) & IQS269_SYS_FLAGS_SHOW_RESET) { dev_err(&client->dev, "Unexpected device reset\n"); error = iqs269_dev_init(iqs269); if (error) dev_err(&client->dev, "Failed to re-initialize device: %d\n", error); return error; } if (be16_to_cpu(flags.system) & IQS269_SYS_FLAGS_IN_ATI) return 0; error = regmap_raw_read(iqs269->regmap, IQS269_SLIDER_X, slider_x, sizeof(slider_x)); if (error) { dev_err(&client->dev, "Failed to read slider position: %d\n", error); return error; } for (i = 0; i < IQS269_NUM_SL; i++) { if (!iqs269->sys_reg.slider_select[i]) continue; /* * Report BTN_TOUCH if any channel that participates in the * slider is in a state of touch. */ if (flags.states[IQS269_ST_OFFS_TOUCH] & iqs269->sys_reg.slider_select[i]) { input_report_key(iqs269->slider[i], BTN_TOUCH, 1); input_report_abs(iqs269->slider[i], ABS_X, slider_x[i]); } else { input_report_key(iqs269->slider[i], BTN_TOUCH, 0); } input_sync(iqs269->slider[i]); } for (i = 0; i < ARRAY_SIZE(iqs269_events); i++) { dir_mask = flags.states[IQS269_ST_OFFS_DIR]; if (!iqs269_events[i].dir_up) dir_mask = ~dir_mask; state = flags.states[iqs269_events[i].st_offs] & dir_mask; sw_code = iqs269->switches[i].code; for (j = 0; j < IQS269_NUM_CH; j++) { keycode = iqs269->keycode[i * IQS269_NUM_CH + j]; switch (j) { case IQS269_CHx_HALL_ACTIVE: if (iqs269->hall_enable && iqs269->switches[i].enabled) input_report_switch(iqs269->keypad, sw_code, state & BIT(j)); fallthrough; case IQS269_CHx_HALL_INACTIVE: if (iqs269->hall_enable) continue; fallthrough; default: input_report_key(iqs269->keypad, keycode, state & BIT(j)); } } } input_sync(iqs269->keypad); /* * The following completion signals that ATI has finished, any initial * switch states have been reported and the keypad can be registered. */ complete_all(&iqs269->ati_done); return 0; } static irqreturn_t iqs269_irq(int irq, void *context) { struct iqs269_private *iqs269 = context; if (iqs269_report(iqs269)) return IRQ_NONE; /* * The device does not deassert its interrupt (RDY) pin until shortly * after receiving an I2C stop condition; the following delay ensures * the interrupt handler does not return before this time. */ iqs269_irq_wait(); return IRQ_HANDLED; } static ssize_t counts_show(struct device *dev, struct device_attribute *attr, char *buf) { struct iqs269_private *iqs269 = dev_get_drvdata(dev); struct i2c_client *client = iqs269->client; __le16 counts; int error; if (!iqs269->ati_current || iqs269->hall_enable) return -EPERM; if (!completion_done(&iqs269->ati_done)) return -EBUSY; /* * Unsolicited I2C communication prompts the device to assert its RDY * pin, so disable the interrupt line until the operation is finished * and RDY has been deasserted. */ disable_irq(client->irq); error = regmap_raw_read(iqs269->regmap, IQS269_CHx_COUNTS + iqs269->ch_num * 2, &counts, sizeof(counts)); iqs269_irq_wait(); enable_irq(client->irq); if (error) return error; return scnprintf(buf, PAGE_SIZE, "%u\n", le16_to_cpu(counts)); } static ssize_t hall_bin_show(struct device *dev, struct device_attribute *attr, char *buf) { struct iqs269_private *iqs269 = dev_get_drvdata(dev); struct iqs269_ch_reg *ch_reg = iqs269->sys_reg.ch_reg; struct i2c_client *client = iqs269->client; unsigned int val; int error; disable_irq(client->irq); error = regmap_read(iqs269->regmap, IQS269_CAL_DATA_A, &val); iqs269_irq_wait(); enable_irq(client->irq); if (error) return error; switch (ch_reg[IQS269_CHx_HALL_ACTIVE].rx_enable & ch_reg[IQS269_CHx_HALL_INACTIVE].rx_enable) { case IQS269_HALL_PAD_R: val &= IQS269_CAL_DATA_A_HALL_BIN_R_MASK; val >>= IQS269_CAL_DATA_A_HALL_BIN_R_SHIFT; break; case IQS269_HALL_PAD_L: val &= IQS269_CAL_DATA_A_HALL_BIN_L_MASK; val >>= IQS269_CAL_DATA_A_HALL_BIN_L_SHIFT; break; default: return -EINVAL; } return scnprintf(buf, PAGE_SIZE, "%u\n", val); } static ssize_t hall_enable_show(struct device *dev, struct device_attribute *attr, char *buf) { struct iqs269_private *iqs269 = dev_get_drvdata(dev); return scnprintf(buf, PAGE_SIZE, "%u\n", iqs269->hall_enable); } static ssize_t hall_enable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct iqs269_private *iqs269 = dev_get_drvdata(dev); unsigned int val; int error; error = kstrtouint(buf, 10, &val); if (error) return error; mutex_lock(&iqs269->lock); iqs269->hall_enable = val; iqs269->ati_current = false; mutex_unlock(&iqs269->lock); return count; } static ssize_t ch_number_show(struct device *dev, struct device_attribute *attr, char *buf) { struct iqs269_private *iqs269 = dev_get_drvdata(dev); return scnprintf(buf, PAGE_SIZE, "%u\n", iqs269->ch_num); } static ssize_t ch_number_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct iqs269_private *iqs269 = dev_get_drvdata(dev); unsigned int val; int error; error = kstrtouint(buf, 10, &val); if (error) return error; if (val >= IQS269_NUM_CH) return -EINVAL; iqs269->ch_num = val; return count; } static ssize_t rx_enable_show(struct device *dev, struct device_attribute *attr, char *buf) { struct iqs269_private *iqs269 = dev_get_drvdata(dev); struct iqs269_ch_reg *ch_reg = iqs269->sys_reg.ch_reg; return scnprintf(buf, PAGE_SIZE, "%u\n", ch_reg[iqs269->ch_num].rx_enable); } static ssize_t rx_enable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct iqs269_private *iqs269 = dev_get_drvdata(dev); struct iqs269_ch_reg *ch_reg = iqs269->sys_reg.ch_reg; unsigned int val; int error; error = kstrtouint(buf, 10, &val); if (error) return error; if (val > 0xFF) return -EINVAL; mutex_lock(&iqs269->lock); ch_reg[iqs269->ch_num].rx_enable = val; iqs269->ati_current = false; mutex_unlock(&iqs269->lock); return count; } static ssize_t ati_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct iqs269_private *iqs269 = dev_get_drvdata(dev); unsigned int val; int error; error = iqs269_ati_mode_get(iqs269, iqs269->ch_num, &val); if (error) return error; return scnprintf(buf, PAGE_SIZE, "%u\n", val); } static ssize_t ati_mode_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct iqs269_private *iqs269 = dev_get_drvdata(dev); unsigned int val; int error; error = kstrtouint(buf, 10, &val); if (error) return error; error = iqs269_ati_mode_set(iqs269, iqs269->ch_num, val); if (error) return error; return count; } static ssize_t ati_base_show(struct device *dev, struct device_attribute *attr, char *buf) { struct iqs269_private *iqs269 = dev_get_drvdata(dev); unsigned int val; int error; error = iqs269_ati_base_get(iqs269, iqs269->ch_num, &val); if (error) return error; return scnprintf(buf, PAGE_SIZE, "%u\n", val); } static ssize_t ati_base_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct iqs269_private *iqs269 = dev_get_drvdata(dev); unsigned int val; int error; error = kstrtouint(buf, 10, &val); if (error) return error; error = iqs269_ati_base_set(iqs269, iqs269->ch_num, val); if (error) return error; return count; } static ssize_t ati_target_show(struct device *dev, struct device_attribute *attr, char *buf) { struct iqs269_private *iqs269 = dev_get_drvdata(dev); unsigned int val; int error; error = iqs269_ati_target_get(iqs269, iqs269->ch_num, &val); if (error) return error; return scnprintf(buf, PAGE_SIZE, "%u\n", val); } static ssize_t ati_target_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct iqs269_private *iqs269 = dev_get_drvdata(dev); unsigned int val; int error; error = kstrtouint(buf, 10, &val); if (error) return error; error = iqs269_ati_target_set(iqs269, iqs269->ch_num, val); if (error) return error; return count; } static ssize_t ati_trigger_show(struct device *dev, struct device_attribute *attr, char *buf) { struct iqs269_private *iqs269 = dev_get_drvdata(dev); return scnprintf(buf, PAGE_SIZE, "%u\n", iqs269->ati_current && completion_done(&iqs269->ati_done)); } static ssize_t ati_trigger_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct iqs269_private *iqs269 = dev_get_drvdata(dev); struct i2c_client *client = iqs269->client; unsigned int val; int error; error = kstrtouint(buf, 10, &val); if (error) return error; if (!val) return count; disable_irq(client->irq); reinit_completion(&iqs269->ati_done); error = iqs269_dev_init(iqs269); iqs269_irq_wait(); enable_irq(client->irq); if (error) return error; if (!wait_for_completion_timeout(&iqs269->ati_done, msecs_to_jiffies(2000))) return -ETIMEDOUT; return count; } static DEVICE_ATTR_RO(counts); static DEVICE_ATTR_RO(hall_bin); static DEVICE_ATTR_RW(hall_enable); static DEVICE_ATTR_RW(ch_number); static DEVICE_ATTR_RW(rx_enable); static DEVICE_ATTR_RW(ati_mode); static DEVICE_ATTR_RW(ati_base); static DEVICE_ATTR_RW(ati_target); static DEVICE_ATTR_RW(ati_trigger); static struct attribute *iqs269_attrs[] = { &dev_attr_counts.attr, &dev_attr_hall_bin.attr, &dev_attr_hall_enable.attr, &dev_attr_ch_number.attr, &dev_attr_rx_enable.attr, &dev_attr_ati_mode.attr, &dev_attr_ati_base.attr, &dev_attr_ati_target.attr, &dev_attr_ati_trigger.attr, NULL, }; static const struct attribute_group iqs269_attr_group = { .attrs = iqs269_attrs, }; static const struct regmap_config iqs269_regmap_config = { .reg_bits = 8, .val_bits = 16, .max_register = IQS269_MAX_REG, }; static int iqs269_probe(struct i2c_client *client) { struct iqs269_ver_info ver_info; struct iqs269_private *iqs269; int error; iqs269 = devm_kzalloc(&client->dev, sizeof(*iqs269), GFP_KERNEL); if (!iqs269) return -ENOMEM; i2c_set_clientdata(client, iqs269); iqs269->client = client; iqs269->regmap = devm_regmap_init_i2c(client, &iqs269_regmap_config); if (IS_ERR(iqs269->regmap)) { error = PTR_ERR(iqs269->regmap); dev_err(&client->dev, "Failed to initialize register map: %d\n", error); return error; } mutex_init(&iqs269->lock); init_completion(&iqs269->ati_done); error = regmap_raw_read(iqs269->regmap, IQS269_VER_INFO, &ver_info, sizeof(ver_info)); if (error) return error; if (ver_info.prod_num != IQS269_VER_INFO_PROD_NUM) { dev_err(&client->dev, "Unrecognized product number: 0x%02X\n", ver_info.prod_num); return -EINVAL; } error = iqs269_parse_prop(iqs269); if (error) return error; error = iqs269_dev_init(iqs269); if (error) { dev_err(&client->dev, "Failed to initialize device: %d\n", error); return error; } error = iqs269_input_init(iqs269); if (error) return error; error = devm_request_threaded_irq(&client->dev, client->irq, NULL, iqs269_irq, IRQF_ONESHOT, client->name, iqs269); if (error) { dev_err(&client->dev, "Failed to request IRQ: %d\n", error); return error; } if (!wait_for_completion_timeout(&iqs269->ati_done, msecs_to_jiffies(2000))) { dev_err(&client->dev, "Failed to complete ATI\n"); return -ETIMEDOUT; } /* * The keypad may include one or more switches and is not registered * until ATI is complete and the initial switch states are read. */ error = input_register_device(iqs269->keypad); if (error) { dev_err(&client->dev, "Failed to register keypad: %d\n", error); return error; } error = devm_device_add_group(&client->dev, &iqs269_attr_group); if (error) dev_err(&client->dev, "Failed to add attributes: %d\n", error); return error; } static u16 iqs269_general_get(struct iqs269_private *iqs269) { u16 general = be16_to_cpu(iqs269->sys_reg.general); general &= ~IQS269_SYS_SETTINGS_REDO_ATI; general &= ~IQS269_SYS_SETTINGS_ACK_RESET; return general | IQS269_SYS_SETTINGS_DIS_AUTO; } static int iqs269_suspend(struct device *dev) { struct iqs269_private *iqs269 = dev_get_drvdata(dev); struct i2c_client *client = iqs269->client; int error; u16 general = iqs269_general_get(iqs269); if (!(general & IQS269_SYS_SETTINGS_PWR_MODE_MASK)) return 0; disable_irq(client->irq); error = regmap_write(iqs269->regmap, IQS269_SYS_SETTINGS, general); iqs269_irq_wait(); enable_irq(client->irq); return error; } static int iqs269_resume(struct device *dev) { struct iqs269_private *iqs269 = dev_get_drvdata(dev); struct i2c_client *client = iqs269->client; int error; u16 general = iqs269_general_get(iqs269); if (!(general & IQS269_SYS_SETTINGS_PWR_MODE_MASK)) return 0; disable_irq(client->irq); error = regmap_write(iqs269->regmap, IQS269_SYS_SETTINGS, general & ~IQS269_SYS_SETTINGS_PWR_MODE_MASK); if (!error) error = regmap_write(iqs269->regmap, IQS269_SYS_SETTINGS, general & ~IQS269_SYS_SETTINGS_DIS_AUTO); iqs269_irq_wait(); enable_irq(client->irq); return error; } static DEFINE_SIMPLE_DEV_PM_OPS(iqs269_pm, iqs269_suspend, iqs269_resume); static const struct of_device_id iqs269_of_match[] = { { .compatible = "azoteq,iqs269a" }, { } }; MODULE_DEVICE_TABLE(of, iqs269_of_match); static struct i2c_driver iqs269_i2c_driver = { .driver = { .name = "iqs269a", .of_match_table = iqs269_of_match, .pm = pm_sleep_ptr(&iqs269_pm), }, .probe = iqs269_probe, }; module_i2c_driver(iqs269_i2c_driver); MODULE_AUTHOR("Jeff LaBundy <[email protected]>"); MODULE_DESCRIPTION("Azoteq IQS269A Capacitive Touch Controller"); MODULE_LICENSE("GPL");
linux-master
drivers/input/misc/iqs269a.c
// SPDX-License-Identifier: GPL-2.0-only /* * Driver for IMS Passenger Control Unit Devices * * Copyright (C) 2013 The IMS Company */ #include <linux/completion.h> #include <linux/device.h> #include <linux/firmware.h> #include <linux/ihex.h> #include <linux/input.h> #include <linux/kernel.h> #include <linux/leds.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/types.h> #include <linux/usb/input.h> #include <linux/usb/cdc.h> #include <asm/unaligned.h> #define IMS_PCU_KEYMAP_LEN 32 struct ims_pcu_buttons { struct input_dev *input; char name[32]; char phys[32]; unsigned short keymap[IMS_PCU_KEYMAP_LEN]; }; struct ims_pcu_gamepad { struct input_dev *input; char name[32]; char phys[32]; }; struct ims_pcu_backlight { struct led_classdev cdev; char name[32]; }; #define IMS_PCU_PART_NUMBER_LEN 15 #define IMS_PCU_SERIAL_NUMBER_LEN 8 #define IMS_PCU_DOM_LEN 8 #define IMS_PCU_FW_VERSION_LEN (9 + 1) #define IMS_PCU_BL_VERSION_LEN (9 + 1) #define IMS_PCU_BL_RESET_REASON_LEN (2 + 1) #define IMS_PCU_PCU_B_DEVICE_ID 5 #define IMS_PCU_BUF_SIZE 128 struct ims_pcu { struct usb_device *udev; struct device *dev; /* control interface's device, used for logging */ unsigned int device_no; bool bootloader_mode; char part_number[IMS_PCU_PART_NUMBER_LEN]; char serial_number[IMS_PCU_SERIAL_NUMBER_LEN]; char date_of_manufacturing[IMS_PCU_DOM_LEN]; char fw_version[IMS_PCU_FW_VERSION_LEN]; char bl_version[IMS_PCU_BL_VERSION_LEN]; char reset_reason[IMS_PCU_BL_RESET_REASON_LEN]; int update_firmware_status; u8 device_id; u8 ofn_reg_addr; struct usb_interface *ctrl_intf; struct usb_endpoint_descriptor *ep_ctrl; struct urb *urb_ctrl; u8 *urb_ctrl_buf; dma_addr_t ctrl_dma; size_t max_ctrl_size; struct usb_interface *data_intf; struct usb_endpoint_descriptor *ep_in; struct urb *urb_in; u8 *urb_in_buf; dma_addr_t read_dma; size_t max_in_size; struct usb_endpoint_descriptor *ep_out; u8 *urb_out_buf; size_t max_out_size; u8 read_buf[IMS_PCU_BUF_SIZE]; u8 read_pos; u8 check_sum; bool have_stx; bool have_dle; u8 cmd_buf[IMS_PCU_BUF_SIZE]; u8 ack_id; u8 expected_response; u8 cmd_buf_len; struct completion cmd_done; struct mutex cmd_mutex; u32 fw_start_addr; u32 fw_end_addr; struct completion async_firmware_done; struct ims_pcu_buttons buttons; struct ims_pcu_gamepad *gamepad; struct ims_pcu_backlight backlight; bool setup_complete; /* Input and LED devices have been created */ }; /********************************************************************* * Buttons Input device support * *********************************************************************/ static const unsigned short ims_pcu_keymap_1[] = { [1] = KEY_ATTENDANT_OFF, [2] = KEY_ATTENDANT_ON, [3] = KEY_LIGHTS_TOGGLE, [4] = KEY_VOLUMEUP, [5] = KEY_VOLUMEDOWN, [6] = KEY_INFO, }; static const unsigned short ims_pcu_keymap_2[] = { [4] = KEY_VOLUMEUP, [5] = KEY_VOLUMEDOWN, [6] = KEY_INFO, }; static const unsigned short ims_pcu_keymap_3[] = { [1] = KEY_HOMEPAGE, [2] = KEY_ATTENDANT_TOGGLE, [3] = KEY_LIGHTS_TOGGLE, [4] = KEY_VOLUMEUP, [5] = KEY_VOLUMEDOWN, [6] = KEY_DISPLAYTOGGLE, [18] = KEY_PLAYPAUSE, }; static const unsigned short ims_pcu_keymap_4[] = { [1] = KEY_ATTENDANT_OFF, [2] = KEY_ATTENDANT_ON, [3] = KEY_LIGHTS_TOGGLE, [4] = KEY_VOLUMEUP, [5] = KEY_VOLUMEDOWN, [6] = KEY_INFO, [18] = KEY_PLAYPAUSE, }; static const unsigned short ims_pcu_keymap_5[] = { [1] = KEY_ATTENDANT_OFF, [2] = KEY_ATTENDANT_ON, [3] = KEY_LIGHTS_TOGGLE, }; struct ims_pcu_device_info { const unsigned short *keymap; size_t keymap_len; bool has_gamepad; }; #define IMS_PCU_DEVINFO(_n, _gamepad) \ [_n] = { \ .keymap = ims_pcu_keymap_##_n, \ .keymap_len = ARRAY_SIZE(ims_pcu_keymap_##_n), \ .has_gamepad = _gamepad, \ } static const struct ims_pcu_device_info ims_pcu_device_info[] = { IMS_PCU_DEVINFO(1, true), IMS_PCU_DEVINFO(2, true), IMS_PCU_DEVINFO(3, true), IMS_PCU_DEVINFO(4, true), IMS_PCU_DEVINFO(5, false), }; static void ims_pcu_buttons_report(struct ims_pcu *pcu, u32 data) { struct ims_pcu_buttons *buttons = &pcu->buttons; struct input_dev *input = buttons->input; int i; for (i = 0; i < 32; i++) { unsigned short keycode = buttons->keymap[i]; if (keycode != KEY_RESERVED) input_report_key(input, keycode, data & (1UL << i)); } input_sync(input); } static int ims_pcu_setup_buttons(struct ims_pcu *pcu, const unsigned short *keymap, size_t keymap_len) { struct ims_pcu_buttons *buttons = &pcu->buttons; struct input_dev *input; int i; int error; input = input_allocate_device(); if (!input) { dev_err(pcu->dev, "Not enough memory for input input device\n"); return -ENOMEM; } snprintf(buttons->name, sizeof(buttons->name), "IMS PCU#%d Button Interface", pcu->device_no); usb_make_path(pcu->udev, buttons->phys, sizeof(buttons->phys)); strlcat(buttons->phys, "/input0", sizeof(buttons->phys)); memcpy(buttons->keymap, keymap, sizeof(*keymap) * keymap_len); input->name = buttons->name; input->phys = buttons->phys; usb_to_input_id(pcu->udev, &input->id); input->dev.parent = &pcu->ctrl_intf->dev; input->keycode = buttons->keymap; input->keycodemax = ARRAY_SIZE(buttons->keymap); input->keycodesize = sizeof(buttons->keymap[0]); __set_bit(EV_KEY, input->evbit); for (i = 0; i < IMS_PCU_KEYMAP_LEN; i++) __set_bit(buttons->keymap[i], input->keybit); __clear_bit(KEY_RESERVED, input->keybit); error = input_register_device(input); if (error) { dev_err(pcu->dev, "Failed to register buttons input device: %d\n", error); input_free_device(input); return error; } buttons->input = input; return 0; } static void ims_pcu_destroy_buttons(struct ims_pcu *pcu) { struct ims_pcu_buttons *buttons = &pcu->buttons; input_unregister_device(buttons->input); } /********************************************************************* * Gamepad Input device support * *********************************************************************/ static void ims_pcu_gamepad_report(struct ims_pcu *pcu, u32 data) { struct ims_pcu_gamepad *gamepad = pcu->gamepad; struct input_dev *input = gamepad->input; int x, y; x = !!(data & (1 << 14)) - !!(data & (1 << 13)); y = !!(data & (1 << 12)) - !!(data & (1 << 11)); input_report_abs(input, ABS_X, x); input_report_abs(input, ABS_Y, y); input_report_key(input, BTN_A, data & (1 << 7)); input_report_key(input, BTN_B, data & (1 << 8)); input_report_key(input, BTN_X, data & (1 << 9)); input_report_key(input, BTN_Y, data & (1 << 10)); input_report_key(input, BTN_START, data & (1 << 15)); input_report_key(input, BTN_SELECT, data & (1 << 16)); input_sync(input); } static int ims_pcu_setup_gamepad(struct ims_pcu *pcu) { struct ims_pcu_gamepad *gamepad; struct input_dev *input; int error; gamepad = kzalloc(sizeof(struct ims_pcu_gamepad), GFP_KERNEL); input = input_allocate_device(); if (!gamepad || !input) { dev_err(pcu->dev, "Not enough memory for gamepad device\n"); error = -ENOMEM; goto err_free_mem; } gamepad->input = input; snprintf(gamepad->name, sizeof(gamepad->name), "IMS PCU#%d Gamepad Interface", pcu->device_no); usb_make_path(pcu->udev, gamepad->phys, sizeof(gamepad->phys)); strlcat(gamepad->phys, "/input1", sizeof(gamepad->phys)); input->name = gamepad->name; input->phys = gamepad->phys; usb_to_input_id(pcu->udev, &input->id); input->dev.parent = &pcu->ctrl_intf->dev; __set_bit(EV_KEY, input->evbit); __set_bit(BTN_A, input->keybit); __set_bit(BTN_B, input->keybit); __set_bit(BTN_X, input->keybit); __set_bit(BTN_Y, input->keybit); __set_bit(BTN_START, input->keybit); __set_bit(BTN_SELECT, input->keybit); __set_bit(EV_ABS, input->evbit); input_set_abs_params(input, ABS_X, -1, 1, 0, 0); input_set_abs_params(input, ABS_Y, -1, 1, 0, 0); error = input_register_device(input); if (error) { dev_err(pcu->dev, "Failed to register gamepad input device: %d\n", error); goto err_free_mem; } pcu->gamepad = gamepad; return 0; err_free_mem: input_free_device(input); kfree(gamepad); return error; } static void ims_pcu_destroy_gamepad(struct ims_pcu *pcu) { struct ims_pcu_gamepad *gamepad = pcu->gamepad; input_unregister_device(gamepad->input); kfree(gamepad); } /********************************************************************* * PCU Communication protocol handling * *********************************************************************/ #define IMS_PCU_PROTOCOL_STX 0x02 #define IMS_PCU_PROTOCOL_ETX 0x03 #define IMS_PCU_PROTOCOL_DLE 0x10 /* PCU commands */ #define IMS_PCU_CMD_STATUS 0xa0 #define IMS_PCU_CMD_PCU_RESET 0xa1 #define IMS_PCU_CMD_RESET_REASON 0xa2 #define IMS_PCU_CMD_SEND_BUTTONS 0xa3 #define IMS_PCU_CMD_JUMP_TO_BTLDR 0xa4 #define IMS_PCU_CMD_GET_INFO 0xa5 #define IMS_PCU_CMD_SET_BRIGHTNESS 0xa6 #define IMS_PCU_CMD_EEPROM 0xa7 #define IMS_PCU_CMD_GET_FW_VERSION 0xa8 #define IMS_PCU_CMD_GET_BL_VERSION 0xa9 #define IMS_PCU_CMD_SET_INFO 0xab #define IMS_PCU_CMD_GET_BRIGHTNESS 0xac #define IMS_PCU_CMD_GET_DEVICE_ID 0xae #define IMS_PCU_CMD_SPECIAL_INFO 0xb0 #define IMS_PCU_CMD_BOOTLOADER 0xb1 /* Pass data to bootloader */ #define IMS_PCU_CMD_OFN_SET_CONFIG 0xb3 #define IMS_PCU_CMD_OFN_GET_CONFIG 0xb4 /* PCU responses */ #define IMS_PCU_RSP_STATUS 0xc0 #define IMS_PCU_RSP_PCU_RESET 0 /* Originally 0xc1 */ #define IMS_PCU_RSP_RESET_REASON 0xc2 #define IMS_PCU_RSP_SEND_BUTTONS 0xc3 #define IMS_PCU_RSP_JUMP_TO_BTLDR 0 /* Originally 0xc4 */ #define IMS_PCU_RSP_GET_INFO 0xc5 #define IMS_PCU_RSP_SET_BRIGHTNESS 0xc6 #define IMS_PCU_RSP_EEPROM 0xc7 #define IMS_PCU_RSP_GET_FW_VERSION 0xc8 #define IMS_PCU_RSP_GET_BL_VERSION 0xc9 #define IMS_PCU_RSP_SET_INFO 0xcb #define IMS_PCU_RSP_GET_BRIGHTNESS 0xcc #define IMS_PCU_RSP_CMD_INVALID 0xcd #define IMS_PCU_RSP_GET_DEVICE_ID 0xce #define IMS_PCU_RSP_SPECIAL_INFO 0xd0 #define IMS_PCU_RSP_BOOTLOADER 0xd1 /* Bootloader response */ #define IMS_PCU_RSP_OFN_SET_CONFIG 0xd2 #define IMS_PCU_RSP_OFN_GET_CONFIG 0xd3 #define IMS_PCU_RSP_EVNT_BUTTONS 0xe0 /* Unsolicited, button state */ #define IMS_PCU_GAMEPAD_MASK 0x0001ff80UL /* Bits 7 through 16 */ #define IMS_PCU_MIN_PACKET_LEN 3 #define IMS_PCU_DATA_OFFSET 2 #define IMS_PCU_CMD_WRITE_TIMEOUT 100 /* msec */ #define IMS_PCU_CMD_RESPONSE_TIMEOUT 500 /* msec */ static void ims_pcu_report_events(struct ims_pcu *pcu) { u32 data = get_unaligned_be32(&pcu->read_buf[3]); ims_pcu_buttons_report(pcu, data & ~IMS_PCU_GAMEPAD_MASK); if (pcu->gamepad) ims_pcu_gamepad_report(pcu, data); } static void ims_pcu_handle_response(struct ims_pcu *pcu) { switch (pcu->read_buf[0]) { case IMS_PCU_RSP_EVNT_BUTTONS: if (likely(pcu->setup_complete)) ims_pcu_report_events(pcu); break; default: /* * See if we got command completion. * If both the sequence and response code match save * the data and signal completion. */ if (pcu->read_buf[0] == pcu->expected_response && pcu->read_buf[1] == pcu->ack_id - 1) { memcpy(pcu->cmd_buf, pcu->read_buf, pcu->read_pos); pcu->cmd_buf_len = pcu->read_pos; complete(&pcu->cmd_done); } break; } } static void ims_pcu_process_data(struct ims_pcu *pcu, struct urb *urb) { int i; for (i = 0; i < urb->actual_length; i++) { u8 data = pcu->urb_in_buf[i]; /* Skip everything until we get Start Xmit */ if (!pcu->have_stx && data != IMS_PCU_PROTOCOL_STX) continue; if (pcu->have_dle) { pcu->have_dle = false; pcu->read_buf[pcu->read_pos++] = data; pcu->check_sum += data; continue; } switch (data) { case IMS_PCU_PROTOCOL_STX: if (pcu->have_stx) dev_warn(pcu->dev, "Unexpected STX at byte %d, discarding old data\n", pcu->read_pos); pcu->have_stx = true; pcu->have_dle = false; pcu->read_pos = 0; pcu->check_sum = 0; break; case IMS_PCU_PROTOCOL_DLE: pcu->have_dle = true; break; case IMS_PCU_PROTOCOL_ETX: if (pcu->read_pos < IMS_PCU_MIN_PACKET_LEN) { dev_warn(pcu->dev, "Short packet received (%d bytes), ignoring\n", pcu->read_pos); } else if (pcu->check_sum != 0) { dev_warn(pcu->dev, "Invalid checksum in packet (%d bytes), ignoring\n", pcu->read_pos); } else { ims_pcu_handle_response(pcu); } pcu->have_stx = false; pcu->have_dle = false; pcu->read_pos = 0; break; default: pcu->read_buf[pcu->read_pos++] = data; pcu->check_sum += data; break; } } } static bool ims_pcu_byte_needs_escape(u8 byte) { return byte == IMS_PCU_PROTOCOL_STX || byte == IMS_PCU_PROTOCOL_ETX || byte == IMS_PCU_PROTOCOL_DLE; } static int ims_pcu_send_cmd_chunk(struct ims_pcu *pcu, u8 command, int chunk, int len) { int error; error = usb_bulk_msg(pcu->udev, usb_sndbulkpipe(pcu->udev, pcu->ep_out->bEndpointAddress), pcu->urb_out_buf, len, NULL, IMS_PCU_CMD_WRITE_TIMEOUT); if (error < 0) { dev_dbg(pcu->dev, "Sending 0x%02x command failed at chunk %d: %d\n", command, chunk, error); return error; } return 0; } static int ims_pcu_send_command(struct ims_pcu *pcu, u8 command, const u8 *data, int len) { int count = 0; int chunk = 0; int delta; int i; int error; u8 csum = 0; u8 ack_id; pcu->urb_out_buf[count++] = IMS_PCU_PROTOCOL_STX; /* We know the command need not be escaped */ pcu->urb_out_buf[count++] = command; csum += command; ack_id = pcu->ack_id++; if (ack_id == 0xff) ack_id = pcu->ack_id++; if (ims_pcu_byte_needs_escape(ack_id)) pcu->urb_out_buf[count++] = IMS_PCU_PROTOCOL_DLE; pcu->urb_out_buf[count++] = ack_id; csum += ack_id; for (i = 0; i < len; i++) { delta = ims_pcu_byte_needs_escape(data[i]) ? 2 : 1; if (count + delta >= pcu->max_out_size) { error = ims_pcu_send_cmd_chunk(pcu, command, ++chunk, count); if (error) return error; count = 0; } if (delta == 2) pcu->urb_out_buf[count++] = IMS_PCU_PROTOCOL_DLE; pcu->urb_out_buf[count++] = data[i]; csum += data[i]; } csum = 1 + ~csum; delta = ims_pcu_byte_needs_escape(csum) ? 3 : 2; if (count + delta >= pcu->max_out_size) { error = ims_pcu_send_cmd_chunk(pcu, command, ++chunk, count); if (error) return error; count = 0; } if (delta == 3) pcu->urb_out_buf[count++] = IMS_PCU_PROTOCOL_DLE; pcu->urb_out_buf[count++] = csum; pcu->urb_out_buf[count++] = IMS_PCU_PROTOCOL_ETX; return ims_pcu_send_cmd_chunk(pcu, command, ++chunk, count); } static int __ims_pcu_execute_command(struct ims_pcu *pcu, u8 command, const void *data, size_t len, u8 expected_response, int response_time) { int error; pcu->expected_response = expected_response; init_completion(&pcu->cmd_done); error = ims_pcu_send_command(pcu, command, data, len); if (error) return error; if (expected_response && !wait_for_completion_timeout(&pcu->cmd_done, msecs_to_jiffies(response_time))) { dev_dbg(pcu->dev, "Command 0x%02x timed out\n", command); return -ETIMEDOUT; } return 0; } #define ims_pcu_execute_command(pcu, code, data, len) \ __ims_pcu_execute_command(pcu, \ IMS_PCU_CMD_##code, data, len, \ IMS_PCU_RSP_##code, \ IMS_PCU_CMD_RESPONSE_TIMEOUT) #define ims_pcu_execute_query(pcu, code) \ ims_pcu_execute_command(pcu, code, NULL, 0) /* Bootloader commands */ #define IMS_PCU_BL_CMD_QUERY_DEVICE 0xa1 #define IMS_PCU_BL_CMD_UNLOCK_CONFIG 0xa2 #define IMS_PCU_BL_CMD_ERASE_APP 0xa3 #define IMS_PCU_BL_CMD_PROGRAM_DEVICE 0xa4 #define IMS_PCU_BL_CMD_PROGRAM_COMPLETE 0xa5 #define IMS_PCU_BL_CMD_READ_APP 0xa6 #define IMS_PCU_BL_CMD_RESET_DEVICE 0xa7 #define IMS_PCU_BL_CMD_LAUNCH_APP 0xa8 /* Bootloader commands */ #define IMS_PCU_BL_RSP_QUERY_DEVICE 0xc1 #define IMS_PCU_BL_RSP_UNLOCK_CONFIG 0xc2 #define IMS_PCU_BL_RSP_ERASE_APP 0xc3 #define IMS_PCU_BL_RSP_PROGRAM_DEVICE 0xc4 #define IMS_PCU_BL_RSP_PROGRAM_COMPLETE 0xc5 #define IMS_PCU_BL_RSP_READ_APP 0xc6 #define IMS_PCU_BL_RSP_RESET_DEVICE 0 /* originally 0xa7 */ #define IMS_PCU_BL_RSP_LAUNCH_APP 0 /* originally 0xa8 */ #define IMS_PCU_BL_DATA_OFFSET 3 static int __ims_pcu_execute_bl_command(struct ims_pcu *pcu, u8 command, const void *data, size_t len, u8 expected_response, int response_time) { int error; pcu->cmd_buf[0] = command; if (data) memcpy(&pcu->cmd_buf[1], data, len); error = __ims_pcu_execute_command(pcu, IMS_PCU_CMD_BOOTLOADER, pcu->cmd_buf, len + 1, expected_response ? IMS_PCU_RSP_BOOTLOADER : 0, response_time); if (error) { dev_err(pcu->dev, "Failure when sending 0x%02x command to bootloader, error: %d\n", pcu->cmd_buf[0], error); return error; } if (expected_response && pcu->cmd_buf[2] != expected_response) { dev_err(pcu->dev, "Unexpected response from bootloader: 0x%02x, wanted 0x%02x\n", pcu->cmd_buf[2], expected_response); return -EINVAL; } return 0; } #define ims_pcu_execute_bl_command(pcu, code, data, len, timeout) \ __ims_pcu_execute_bl_command(pcu, \ IMS_PCU_BL_CMD_##code, data, len, \ IMS_PCU_BL_RSP_##code, timeout) \ #define IMS_PCU_INFO_PART_OFFSET 2 #define IMS_PCU_INFO_DOM_OFFSET 17 #define IMS_PCU_INFO_SERIAL_OFFSET 25 #define IMS_PCU_SET_INFO_SIZE 31 static int ims_pcu_get_info(struct ims_pcu *pcu) { int error; error = ims_pcu_execute_query(pcu, GET_INFO); if (error) { dev_err(pcu->dev, "GET_INFO command failed, error: %d\n", error); return error; } memcpy(pcu->part_number, &pcu->cmd_buf[IMS_PCU_INFO_PART_OFFSET], sizeof(pcu->part_number)); memcpy(pcu->date_of_manufacturing, &pcu->cmd_buf[IMS_PCU_INFO_DOM_OFFSET], sizeof(pcu->date_of_manufacturing)); memcpy(pcu->serial_number, &pcu->cmd_buf[IMS_PCU_INFO_SERIAL_OFFSET], sizeof(pcu->serial_number)); return 0; } static int ims_pcu_set_info(struct ims_pcu *pcu) { int error; memcpy(&pcu->cmd_buf[IMS_PCU_INFO_PART_OFFSET], pcu->part_number, sizeof(pcu->part_number)); memcpy(&pcu->cmd_buf[IMS_PCU_INFO_DOM_OFFSET], pcu->date_of_manufacturing, sizeof(pcu->date_of_manufacturing)); memcpy(&pcu->cmd_buf[IMS_PCU_INFO_SERIAL_OFFSET], pcu->serial_number, sizeof(pcu->serial_number)); error = ims_pcu_execute_command(pcu, SET_INFO, &pcu->cmd_buf[IMS_PCU_DATA_OFFSET], IMS_PCU_SET_INFO_SIZE); if (error) { dev_err(pcu->dev, "Failed to update device information, error: %d\n", error); return error; } return 0; } static int ims_pcu_switch_to_bootloader(struct ims_pcu *pcu) { int error; /* Execute jump to the bootoloader */ error = ims_pcu_execute_command(pcu, JUMP_TO_BTLDR, NULL, 0); if (error) { dev_err(pcu->dev, "Failure when sending JUMP TO BOOTLOADER command, error: %d\n", error); return error; } return 0; } /********************************************************************* * Firmware Update handling * *********************************************************************/ #define IMS_PCU_FIRMWARE_NAME "imspcu.fw" struct ims_pcu_flash_fmt { __le32 addr; u8 len; u8 data[]; }; static unsigned int ims_pcu_count_fw_records(const struct firmware *fw) { const struct ihex_binrec *rec = (const struct ihex_binrec *)fw->data; unsigned int count = 0; while (rec) { count++; rec = ihex_next_binrec(rec); } return count; } static int ims_pcu_verify_block(struct ims_pcu *pcu, u32 addr, u8 len, const u8 *data) { struct ims_pcu_flash_fmt *fragment; int error; fragment = (void *)&pcu->cmd_buf[1]; put_unaligned_le32(addr, &fragment->addr); fragment->len = len; error = ims_pcu_execute_bl_command(pcu, READ_APP, NULL, 5, IMS_PCU_CMD_RESPONSE_TIMEOUT); if (error) { dev_err(pcu->dev, "Failed to retrieve block at 0x%08x, len %d, error: %d\n", addr, len, error); return error; } fragment = (void *)&pcu->cmd_buf[IMS_PCU_BL_DATA_OFFSET]; if (get_unaligned_le32(&fragment->addr) != addr || fragment->len != len) { dev_err(pcu->dev, "Wrong block when retrieving 0x%08x (0x%08x), len %d (%d)\n", addr, get_unaligned_le32(&fragment->addr), len, fragment->len); return -EINVAL; } if (memcmp(fragment->data, data, len)) { dev_err(pcu->dev, "Mismatch in block at 0x%08x, len %d\n", addr, len); return -EINVAL; } return 0; } static int ims_pcu_flash_firmware(struct ims_pcu *pcu, const struct firmware *fw, unsigned int n_fw_records) { const struct ihex_binrec *rec = (const struct ihex_binrec *)fw->data; struct ims_pcu_flash_fmt *fragment; unsigned int count = 0; u32 addr; u8 len; int error; error = ims_pcu_execute_bl_command(pcu, ERASE_APP, NULL, 0, 2000); if (error) { dev_err(pcu->dev, "Failed to erase application image, error: %d\n", error); return error; } while (rec) { /* * The firmware format is messed up for some reason. * The address twice that of what is needed for some * reason and we end up overwriting half of the data * with the next record. */ addr = be32_to_cpu(rec->addr) / 2; len = be16_to_cpu(rec->len); fragment = (void *)&pcu->cmd_buf[1]; put_unaligned_le32(addr, &fragment->addr); fragment->len = len; memcpy(fragment->data, rec->data, len); error = ims_pcu_execute_bl_command(pcu, PROGRAM_DEVICE, NULL, len + 5, IMS_PCU_CMD_RESPONSE_TIMEOUT); if (error) { dev_err(pcu->dev, "Failed to write block at 0x%08x, len %d, error: %d\n", addr, len, error); return error; } if (addr >= pcu->fw_start_addr && addr < pcu->fw_end_addr) { error = ims_pcu_verify_block(pcu, addr, len, rec->data); if (error) return error; } count++; pcu->update_firmware_status = (count * 100) / n_fw_records; rec = ihex_next_binrec(rec); } error = ims_pcu_execute_bl_command(pcu, PROGRAM_COMPLETE, NULL, 0, 2000); if (error) dev_err(pcu->dev, "Failed to send PROGRAM_COMPLETE, error: %d\n", error); return 0; } static int ims_pcu_handle_firmware_update(struct ims_pcu *pcu, const struct firmware *fw) { unsigned int n_fw_records; int retval; dev_info(pcu->dev, "Updating firmware %s, size: %zu\n", IMS_PCU_FIRMWARE_NAME, fw->size); n_fw_records = ims_pcu_count_fw_records(fw); retval = ims_pcu_flash_firmware(pcu, fw, n_fw_records); if (retval) goto out; retval = ims_pcu_execute_bl_command(pcu, LAUNCH_APP, NULL, 0, 0); if (retval) dev_err(pcu->dev, "Failed to start application image, error: %d\n", retval); out: pcu->update_firmware_status = retval; sysfs_notify(&pcu->dev->kobj, NULL, "update_firmware_status"); return retval; } static void ims_pcu_process_async_firmware(const struct firmware *fw, void *context) { struct ims_pcu *pcu = context; int error; if (!fw) { dev_err(pcu->dev, "Failed to get firmware %s\n", IMS_PCU_FIRMWARE_NAME); goto out; } error = ihex_validate_fw(fw); if (error) { dev_err(pcu->dev, "Firmware %s is invalid\n", IMS_PCU_FIRMWARE_NAME); goto out; } mutex_lock(&pcu->cmd_mutex); ims_pcu_handle_firmware_update(pcu, fw); mutex_unlock(&pcu->cmd_mutex); release_firmware(fw); out: complete(&pcu->async_firmware_done); } /********************************************************************* * Backlight LED device support * *********************************************************************/ #define IMS_PCU_MAX_BRIGHTNESS 31998 static int ims_pcu_backlight_set_brightness(struct led_classdev *cdev, enum led_brightness value) { struct ims_pcu_backlight *backlight = container_of(cdev, struct ims_pcu_backlight, cdev); struct ims_pcu *pcu = container_of(backlight, struct ims_pcu, backlight); __le16 br_val = cpu_to_le16(value); int error; mutex_lock(&pcu->cmd_mutex); error = ims_pcu_execute_command(pcu, SET_BRIGHTNESS, &br_val, sizeof(br_val)); if (error && error != -ENODEV) dev_warn(pcu->dev, "Failed to set desired brightness %u, error: %d\n", value, error); mutex_unlock(&pcu->cmd_mutex); return error; } static enum led_brightness ims_pcu_backlight_get_brightness(struct led_classdev *cdev) { struct ims_pcu_backlight *backlight = container_of(cdev, struct ims_pcu_backlight, cdev); struct ims_pcu *pcu = container_of(backlight, struct ims_pcu, backlight); int brightness; int error; mutex_lock(&pcu->cmd_mutex); error = ims_pcu_execute_query(pcu, GET_BRIGHTNESS); if (error) { dev_warn(pcu->dev, "Failed to get current brightness, error: %d\n", error); /* Assume the LED is OFF */ brightness = LED_OFF; } else { brightness = get_unaligned_le16(&pcu->cmd_buf[IMS_PCU_DATA_OFFSET]); } mutex_unlock(&pcu->cmd_mutex); return brightness; } static int ims_pcu_setup_backlight(struct ims_pcu *pcu) { struct ims_pcu_backlight *backlight = &pcu->backlight; int error; snprintf(backlight->name, sizeof(backlight->name), "pcu%d::kbd_backlight", pcu->device_no); backlight->cdev.name = backlight->name; backlight->cdev.max_brightness = IMS_PCU_MAX_BRIGHTNESS; backlight->cdev.brightness_get = ims_pcu_backlight_get_brightness; backlight->cdev.brightness_set_blocking = ims_pcu_backlight_set_brightness; error = led_classdev_register(pcu->dev, &backlight->cdev); if (error) { dev_err(pcu->dev, "Failed to register backlight LED device, error: %d\n", error); return error; } return 0; } static void ims_pcu_destroy_backlight(struct ims_pcu *pcu) { struct ims_pcu_backlight *backlight = &pcu->backlight; led_classdev_unregister(&backlight->cdev); } /********************************************************************* * Sysfs attributes handling * *********************************************************************/ struct ims_pcu_attribute { struct device_attribute dattr; size_t field_offset; int field_length; }; static ssize_t ims_pcu_attribute_show(struct device *dev, struct device_attribute *dattr, char *buf) { struct usb_interface *intf = to_usb_interface(dev); struct ims_pcu *pcu = usb_get_intfdata(intf); struct ims_pcu_attribute *attr = container_of(dattr, struct ims_pcu_attribute, dattr); char *field = (char *)pcu + attr->field_offset; return scnprintf(buf, PAGE_SIZE, "%.*s\n", attr->field_length, field); } static ssize_t ims_pcu_attribute_store(struct device *dev, struct device_attribute *dattr, const char *buf, size_t count) { struct usb_interface *intf = to_usb_interface(dev); struct ims_pcu *pcu = usb_get_intfdata(intf); struct ims_pcu_attribute *attr = container_of(dattr, struct ims_pcu_attribute, dattr); char *field = (char *)pcu + attr->field_offset; size_t data_len; int error; if (count > attr->field_length) return -EINVAL; data_len = strnlen(buf, attr->field_length); if (data_len > attr->field_length) return -EINVAL; error = mutex_lock_interruptible(&pcu->cmd_mutex); if (error) return error; memset(field, 0, attr->field_length); memcpy(field, buf, data_len); error = ims_pcu_set_info(pcu); /* * Even if update failed, let's fetch the info again as we just * clobbered one of the fields. */ ims_pcu_get_info(pcu); mutex_unlock(&pcu->cmd_mutex); return error < 0 ? error : count; } #define IMS_PCU_ATTR(_field, _mode) \ struct ims_pcu_attribute ims_pcu_attr_##_field = { \ .dattr = __ATTR(_field, _mode, \ ims_pcu_attribute_show, \ ims_pcu_attribute_store), \ .field_offset = offsetof(struct ims_pcu, _field), \ .field_length = sizeof(((struct ims_pcu *)NULL)->_field), \ } #define IMS_PCU_RO_ATTR(_field) \ IMS_PCU_ATTR(_field, S_IRUGO) #define IMS_PCU_RW_ATTR(_field) \ IMS_PCU_ATTR(_field, S_IRUGO | S_IWUSR) static IMS_PCU_RW_ATTR(part_number); static IMS_PCU_RW_ATTR(serial_number); static IMS_PCU_RW_ATTR(date_of_manufacturing); static IMS_PCU_RO_ATTR(fw_version); static IMS_PCU_RO_ATTR(bl_version); static IMS_PCU_RO_ATTR(reset_reason); static ssize_t ims_pcu_reset_device(struct device *dev, struct device_attribute *dattr, const char *buf, size_t count) { static const u8 reset_byte = 1; struct usb_interface *intf = to_usb_interface(dev); struct ims_pcu *pcu = usb_get_intfdata(intf); int value; int error; error = kstrtoint(buf, 0, &value); if (error) return error; if (value != 1) return -EINVAL; dev_info(pcu->dev, "Attempting to reset device\n"); error = ims_pcu_execute_command(pcu, PCU_RESET, &reset_byte, 1); if (error) { dev_info(pcu->dev, "Failed to reset device, error: %d\n", error); return error; } return count; } static DEVICE_ATTR(reset_device, S_IWUSR, NULL, ims_pcu_reset_device); static ssize_t ims_pcu_update_firmware_store(struct device *dev, struct device_attribute *dattr, const char *buf, size_t count) { struct usb_interface *intf = to_usb_interface(dev); struct ims_pcu *pcu = usb_get_intfdata(intf); const struct firmware *fw = NULL; int value; int error; error = kstrtoint(buf, 0, &value); if (error) return error; if (value != 1) return -EINVAL; error = mutex_lock_interruptible(&pcu->cmd_mutex); if (error) return error; error = request_ihex_firmware(&fw, IMS_PCU_FIRMWARE_NAME, pcu->dev); if (error) { dev_err(pcu->dev, "Failed to request firmware %s, error: %d\n", IMS_PCU_FIRMWARE_NAME, error); goto out; } /* * If we are already in bootloader mode we can proceed with * flashing the firmware. * * If we are in application mode, then we need to switch into * bootloader mode, which will cause the device to disconnect * and reconnect as different device. */ if (pcu->bootloader_mode) error = ims_pcu_handle_firmware_update(pcu, fw); else error = ims_pcu_switch_to_bootloader(pcu); release_firmware(fw); out: mutex_unlock(&pcu->cmd_mutex); return error ?: count; } static DEVICE_ATTR(update_firmware, S_IWUSR, NULL, ims_pcu_update_firmware_store); static ssize_t ims_pcu_update_firmware_status_show(struct device *dev, struct device_attribute *dattr, char *buf) { struct usb_interface *intf = to_usb_interface(dev); struct ims_pcu *pcu = usb_get_intfdata(intf); return scnprintf(buf, PAGE_SIZE, "%d\n", pcu->update_firmware_status); } static DEVICE_ATTR(update_firmware_status, S_IRUGO, ims_pcu_update_firmware_status_show, NULL); static struct attribute *ims_pcu_attrs[] = { &ims_pcu_attr_part_number.dattr.attr, &ims_pcu_attr_serial_number.dattr.attr, &ims_pcu_attr_date_of_manufacturing.dattr.attr, &ims_pcu_attr_fw_version.dattr.attr, &ims_pcu_attr_bl_version.dattr.attr, &ims_pcu_attr_reset_reason.dattr.attr, &dev_attr_reset_device.attr, &dev_attr_update_firmware.attr, &dev_attr_update_firmware_status.attr, NULL }; static umode_t ims_pcu_is_attr_visible(struct kobject *kobj, struct attribute *attr, int n) { struct device *dev = kobj_to_dev(kobj); struct usb_interface *intf = to_usb_interface(dev); struct ims_pcu *pcu = usb_get_intfdata(intf); umode_t mode = attr->mode; if (pcu->bootloader_mode) { if (attr != &dev_attr_update_firmware_status.attr && attr != &dev_attr_update_firmware.attr && attr != &dev_attr_reset_device.attr) { mode = 0; } } else { if (attr == &dev_attr_update_firmware_status.attr) mode = 0; } return mode; } static const struct attribute_group ims_pcu_attr_group = { .is_visible = ims_pcu_is_attr_visible, .attrs = ims_pcu_attrs, }; /* Support for a separate OFN attribute group */ #define OFN_REG_RESULT_OFFSET 2 static int ims_pcu_read_ofn_config(struct ims_pcu *pcu, u8 addr, u8 *data) { int error; s16 result; error = ims_pcu_execute_command(pcu, OFN_GET_CONFIG, &addr, sizeof(addr)); if (error) return error; result = (s16)get_unaligned_le16(pcu->cmd_buf + OFN_REG_RESULT_OFFSET); if (result < 0) return -EIO; /* We only need LSB */ *data = pcu->cmd_buf[OFN_REG_RESULT_OFFSET]; return 0; } static int ims_pcu_write_ofn_config(struct ims_pcu *pcu, u8 addr, u8 data) { u8 buffer[] = { addr, data }; int error; s16 result; error = ims_pcu_execute_command(pcu, OFN_SET_CONFIG, &buffer, sizeof(buffer)); if (error) return error; result = (s16)get_unaligned_le16(pcu->cmd_buf + OFN_REG_RESULT_OFFSET); if (result < 0) return -EIO; return 0; } static ssize_t ims_pcu_ofn_reg_data_show(struct device *dev, struct device_attribute *dattr, char *buf) { struct usb_interface *intf = to_usb_interface(dev); struct ims_pcu *pcu = usb_get_intfdata(intf); int error; u8 data; mutex_lock(&pcu->cmd_mutex); error = ims_pcu_read_ofn_config(pcu, pcu->ofn_reg_addr, &data); mutex_unlock(&pcu->cmd_mutex); if (error) return error; return scnprintf(buf, PAGE_SIZE, "%x\n", data); } static ssize_t ims_pcu_ofn_reg_data_store(struct device *dev, struct device_attribute *dattr, const char *buf, size_t count) { struct usb_interface *intf = to_usb_interface(dev); struct ims_pcu *pcu = usb_get_intfdata(intf); int error; u8 value; error = kstrtou8(buf, 0, &value); if (error) return error; mutex_lock(&pcu->cmd_mutex); error = ims_pcu_write_ofn_config(pcu, pcu->ofn_reg_addr, value); mutex_unlock(&pcu->cmd_mutex); return error ?: count; } static DEVICE_ATTR(reg_data, S_IRUGO | S_IWUSR, ims_pcu_ofn_reg_data_show, ims_pcu_ofn_reg_data_store); static ssize_t ims_pcu_ofn_reg_addr_show(struct device *dev, struct device_attribute *dattr, char *buf) { struct usb_interface *intf = to_usb_interface(dev); struct ims_pcu *pcu = usb_get_intfdata(intf); int error; mutex_lock(&pcu->cmd_mutex); error = scnprintf(buf, PAGE_SIZE, "%x\n", pcu->ofn_reg_addr); mutex_unlock(&pcu->cmd_mutex); return error; } static ssize_t ims_pcu_ofn_reg_addr_store(struct device *dev, struct device_attribute *dattr, const char *buf, size_t count) { struct usb_interface *intf = to_usb_interface(dev); struct ims_pcu *pcu = usb_get_intfdata(intf); int error; u8 value; error = kstrtou8(buf, 0, &value); if (error) return error; mutex_lock(&pcu->cmd_mutex); pcu->ofn_reg_addr = value; mutex_unlock(&pcu->cmd_mutex); return count; } static DEVICE_ATTR(reg_addr, S_IRUGO | S_IWUSR, ims_pcu_ofn_reg_addr_show, ims_pcu_ofn_reg_addr_store); struct ims_pcu_ofn_bit_attribute { struct device_attribute dattr; u8 addr; u8 nr; }; static ssize_t ims_pcu_ofn_bit_show(struct device *dev, struct device_attribute *dattr, char *buf) { struct usb_interface *intf = to_usb_interface(dev); struct ims_pcu *pcu = usb_get_intfdata(intf); struct ims_pcu_ofn_bit_attribute *attr = container_of(dattr, struct ims_pcu_ofn_bit_attribute, dattr); int error; u8 data; mutex_lock(&pcu->cmd_mutex); error = ims_pcu_read_ofn_config(pcu, attr->addr, &data); mutex_unlock(&pcu->cmd_mutex); if (error) return error; return scnprintf(buf, PAGE_SIZE, "%d\n", !!(data & (1 << attr->nr))); } static ssize_t ims_pcu_ofn_bit_store(struct device *dev, struct device_attribute *dattr, const char *buf, size_t count) { struct usb_interface *intf = to_usb_interface(dev); struct ims_pcu *pcu = usb_get_intfdata(intf); struct ims_pcu_ofn_bit_attribute *attr = container_of(dattr, struct ims_pcu_ofn_bit_attribute, dattr); int error; int value; u8 data; error = kstrtoint(buf, 0, &value); if (error) return error; if (value > 1) return -EINVAL; mutex_lock(&pcu->cmd_mutex); error = ims_pcu_read_ofn_config(pcu, attr->addr, &data); if (!error) { if (value) data |= 1U << attr->nr; else data &= ~(1U << attr->nr); error = ims_pcu_write_ofn_config(pcu, attr->addr, data); } mutex_unlock(&pcu->cmd_mutex); return error ?: count; } #define IMS_PCU_OFN_BIT_ATTR(_field, _addr, _nr) \ struct ims_pcu_ofn_bit_attribute ims_pcu_ofn_attr_##_field = { \ .dattr = __ATTR(_field, S_IWUSR | S_IRUGO, \ ims_pcu_ofn_bit_show, ims_pcu_ofn_bit_store), \ .addr = _addr, \ .nr = _nr, \ } static IMS_PCU_OFN_BIT_ATTR(engine_enable, 0x60, 7); static IMS_PCU_OFN_BIT_ATTR(speed_enable, 0x60, 6); static IMS_PCU_OFN_BIT_ATTR(assert_enable, 0x60, 5); static IMS_PCU_OFN_BIT_ATTR(xyquant_enable, 0x60, 4); static IMS_PCU_OFN_BIT_ATTR(xyscale_enable, 0x60, 1); static IMS_PCU_OFN_BIT_ATTR(scale_x2, 0x63, 6); static IMS_PCU_OFN_BIT_ATTR(scale_y2, 0x63, 7); static struct attribute *ims_pcu_ofn_attrs[] = { &dev_attr_reg_data.attr, &dev_attr_reg_addr.attr, &ims_pcu_ofn_attr_engine_enable.dattr.attr, &ims_pcu_ofn_attr_speed_enable.dattr.attr, &ims_pcu_ofn_attr_assert_enable.dattr.attr, &ims_pcu_ofn_attr_xyquant_enable.dattr.attr, &ims_pcu_ofn_attr_xyscale_enable.dattr.attr, &ims_pcu_ofn_attr_scale_x2.dattr.attr, &ims_pcu_ofn_attr_scale_y2.dattr.attr, NULL }; static const struct attribute_group ims_pcu_ofn_attr_group = { .name = "ofn", .attrs = ims_pcu_ofn_attrs, }; static void ims_pcu_irq(struct urb *urb) { struct ims_pcu *pcu = urb->context; int retval, status; status = urb->status; switch (status) { case 0: /* success */ break; case -ECONNRESET: case -ENOENT: case -ESHUTDOWN: /* this urb is terminated, clean up */ dev_dbg(pcu->dev, "%s - urb shutting down with status: %d\n", __func__, status); return; default: dev_dbg(pcu->dev, "%s - nonzero urb status received: %d\n", __func__, status); goto exit; } dev_dbg(pcu->dev, "%s: received %d: %*ph\n", __func__, urb->actual_length, urb->actual_length, pcu->urb_in_buf); if (urb == pcu->urb_in) ims_pcu_process_data(pcu, urb); exit: retval = usb_submit_urb(urb, GFP_ATOMIC); if (retval && retval != -ENODEV) dev_err(pcu->dev, "%s - usb_submit_urb failed with result %d\n", __func__, retval); } static int ims_pcu_buffers_alloc(struct ims_pcu *pcu) { int error; pcu->urb_in_buf = usb_alloc_coherent(pcu->udev, pcu->max_in_size, GFP_KERNEL, &pcu->read_dma); if (!pcu->urb_in_buf) { dev_err(pcu->dev, "Failed to allocate memory for read buffer\n"); return -ENOMEM; } pcu->urb_in = usb_alloc_urb(0, GFP_KERNEL); if (!pcu->urb_in) { dev_err(pcu->dev, "Failed to allocate input URB\n"); error = -ENOMEM; goto err_free_urb_in_buf; } pcu->urb_in->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; pcu->urb_in->transfer_dma = pcu->read_dma; usb_fill_bulk_urb(pcu->urb_in, pcu->udev, usb_rcvbulkpipe(pcu->udev, pcu->ep_in->bEndpointAddress), pcu->urb_in_buf, pcu->max_in_size, ims_pcu_irq, pcu); /* * We are using usb_bulk_msg() for sending so there is no point * in allocating memory with usb_alloc_coherent(). */ pcu->urb_out_buf = kmalloc(pcu->max_out_size, GFP_KERNEL); if (!pcu->urb_out_buf) { dev_err(pcu->dev, "Failed to allocate memory for write buffer\n"); error = -ENOMEM; goto err_free_in_urb; } pcu->urb_ctrl_buf = usb_alloc_coherent(pcu->udev, pcu->max_ctrl_size, GFP_KERNEL, &pcu->ctrl_dma); if (!pcu->urb_ctrl_buf) { dev_err(pcu->dev, "Failed to allocate memory for read buffer\n"); error = -ENOMEM; goto err_free_urb_out_buf; } pcu->urb_ctrl = usb_alloc_urb(0, GFP_KERNEL); if (!pcu->urb_ctrl) { dev_err(pcu->dev, "Failed to allocate input URB\n"); error = -ENOMEM; goto err_free_urb_ctrl_buf; } pcu->urb_ctrl->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; pcu->urb_ctrl->transfer_dma = pcu->ctrl_dma; usb_fill_int_urb(pcu->urb_ctrl, pcu->udev, usb_rcvintpipe(pcu->udev, pcu->ep_ctrl->bEndpointAddress), pcu->urb_ctrl_buf, pcu->max_ctrl_size, ims_pcu_irq, pcu, pcu->ep_ctrl->bInterval); return 0; err_free_urb_ctrl_buf: usb_free_coherent(pcu->udev, pcu->max_ctrl_size, pcu->urb_ctrl_buf, pcu->ctrl_dma); err_free_urb_out_buf: kfree(pcu->urb_out_buf); err_free_in_urb: usb_free_urb(pcu->urb_in); err_free_urb_in_buf: usb_free_coherent(pcu->udev, pcu->max_in_size, pcu->urb_in_buf, pcu->read_dma); return error; } static void ims_pcu_buffers_free(struct ims_pcu *pcu) { usb_kill_urb(pcu->urb_in); usb_free_urb(pcu->urb_in); usb_free_coherent(pcu->udev, pcu->max_out_size, pcu->urb_in_buf, pcu->read_dma); kfree(pcu->urb_out_buf); usb_kill_urb(pcu->urb_ctrl); usb_free_urb(pcu->urb_ctrl); usb_free_coherent(pcu->udev, pcu->max_ctrl_size, pcu->urb_ctrl_buf, pcu->ctrl_dma); } static const struct usb_cdc_union_desc * ims_pcu_get_cdc_union_desc(struct usb_interface *intf) { const void *buf = intf->altsetting->extra; size_t buflen = intf->altsetting->extralen; struct usb_cdc_union_desc *union_desc; if (!buf) { dev_err(&intf->dev, "Missing descriptor data\n"); return NULL; } if (!buflen) { dev_err(&intf->dev, "Zero length descriptor\n"); return NULL; } while (buflen >= sizeof(*union_desc)) { union_desc = (struct usb_cdc_union_desc *)buf; if (union_desc->bLength > buflen) { dev_err(&intf->dev, "Too large descriptor\n"); return NULL; } if (union_desc->bDescriptorType == USB_DT_CS_INTERFACE && union_desc->bDescriptorSubType == USB_CDC_UNION_TYPE) { dev_dbg(&intf->dev, "Found union header\n"); if (union_desc->bLength >= sizeof(*union_desc)) return union_desc; dev_err(&intf->dev, "Union descriptor too short (%d vs %zd)\n", union_desc->bLength, sizeof(*union_desc)); return NULL; } buflen -= union_desc->bLength; buf += union_desc->bLength; } dev_err(&intf->dev, "Missing CDC union descriptor\n"); return NULL; } static int ims_pcu_parse_cdc_data(struct usb_interface *intf, struct ims_pcu *pcu) { const struct usb_cdc_union_desc *union_desc; struct usb_host_interface *alt; union_desc = ims_pcu_get_cdc_union_desc(intf); if (!union_desc) return -EINVAL; pcu->ctrl_intf = usb_ifnum_to_if(pcu->udev, union_desc->bMasterInterface0); if (!pcu->ctrl_intf) return -EINVAL; alt = pcu->ctrl_intf->cur_altsetting; if (alt->desc.bNumEndpoints < 1) return -ENODEV; pcu->ep_ctrl = &alt->endpoint[0].desc; pcu->max_ctrl_size = usb_endpoint_maxp(pcu->ep_ctrl); pcu->data_intf = usb_ifnum_to_if(pcu->udev, union_desc->bSlaveInterface0); if (!pcu->data_intf) return -EINVAL; alt = pcu->data_intf->cur_altsetting; if (alt->desc.bNumEndpoints != 2) { dev_err(pcu->dev, "Incorrect number of endpoints on data interface (%d)\n", alt->desc.bNumEndpoints); return -EINVAL; } pcu->ep_out = &alt->endpoint[0].desc; if (!usb_endpoint_is_bulk_out(pcu->ep_out)) { dev_err(pcu->dev, "First endpoint on data interface is not BULK OUT\n"); return -EINVAL; } pcu->max_out_size = usb_endpoint_maxp(pcu->ep_out); if (pcu->max_out_size < 8) { dev_err(pcu->dev, "Max OUT packet size is too small (%zd)\n", pcu->max_out_size); return -EINVAL; } pcu->ep_in = &alt->endpoint[1].desc; if (!usb_endpoint_is_bulk_in(pcu->ep_in)) { dev_err(pcu->dev, "Second endpoint on data interface is not BULK IN\n"); return -EINVAL; } pcu->max_in_size = usb_endpoint_maxp(pcu->ep_in); if (pcu->max_in_size < 8) { dev_err(pcu->dev, "Max IN packet size is too small (%zd)\n", pcu->max_in_size); return -EINVAL; } return 0; } static int ims_pcu_start_io(struct ims_pcu *pcu) { int error; error = usb_submit_urb(pcu->urb_ctrl, GFP_KERNEL); if (error) { dev_err(pcu->dev, "Failed to start control IO - usb_submit_urb failed with result: %d\n", error); return -EIO; } error = usb_submit_urb(pcu->urb_in, GFP_KERNEL); if (error) { dev_err(pcu->dev, "Failed to start IO - usb_submit_urb failed with result: %d\n", error); usb_kill_urb(pcu->urb_ctrl); return -EIO; } return 0; } static void ims_pcu_stop_io(struct ims_pcu *pcu) { usb_kill_urb(pcu->urb_in); usb_kill_urb(pcu->urb_ctrl); } static int ims_pcu_line_setup(struct ims_pcu *pcu) { struct usb_host_interface *interface = pcu->ctrl_intf->cur_altsetting; struct usb_cdc_line_coding *line = (void *)pcu->cmd_buf; int error; memset(line, 0, sizeof(*line)); line->dwDTERate = cpu_to_le32(57600); line->bDataBits = 8; error = usb_control_msg(pcu->udev, usb_sndctrlpipe(pcu->udev, 0), USB_CDC_REQ_SET_LINE_CODING, USB_TYPE_CLASS | USB_RECIP_INTERFACE, 0, interface->desc.bInterfaceNumber, line, sizeof(struct usb_cdc_line_coding), 5000); if (error < 0) { dev_err(pcu->dev, "Failed to set line coding, error: %d\n", error); return error; } error = usb_control_msg(pcu->udev, usb_sndctrlpipe(pcu->udev, 0), USB_CDC_REQ_SET_CONTROL_LINE_STATE, USB_TYPE_CLASS | USB_RECIP_INTERFACE, 0x03, interface->desc.bInterfaceNumber, NULL, 0, 5000); if (error < 0) { dev_err(pcu->dev, "Failed to set line state, error: %d\n", error); return error; } return 0; } static int ims_pcu_get_device_info(struct ims_pcu *pcu) { int error; error = ims_pcu_get_info(pcu); if (error) return error; error = ims_pcu_execute_query(pcu, GET_FW_VERSION); if (error) { dev_err(pcu->dev, "GET_FW_VERSION command failed, error: %d\n", error); return error; } snprintf(pcu->fw_version, sizeof(pcu->fw_version), "%02d%02d%02d%02d.%c%c", pcu->cmd_buf[2], pcu->cmd_buf[3], pcu->cmd_buf[4], pcu->cmd_buf[5], pcu->cmd_buf[6], pcu->cmd_buf[7]); error = ims_pcu_execute_query(pcu, GET_BL_VERSION); if (error) { dev_err(pcu->dev, "GET_BL_VERSION command failed, error: %d\n", error); return error; } snprintf(pcu->bl_version, sizeof(pcu->bl_version), "%02d%02d%02d%02d.%c%c", pcu->cmd_buf[2], pcu->cmd_buf[3], pcu->cmd_buf[4], pcu->cmd_buf[5], pcu->cmd_buf[6], pcu->cmd_buf[7]); error = ims_pcu_execute_query(pcu, RESET_REASON); if (error) { dev_err(pcu->dev, "RESET_REASON command failed, error: %d\n", error); return error; } snprintf(pcu->reset_reason, sizeof(pcu->reset_reason), "%02x", pcu->cmd_buf[IMS_PCU_DATA_OFFSET]); dev_dbg(pcu->dev, "P/N: %s, MD: %s, S/N: %s, FW: %s, BL: %s, RR: %s\n", pcu->part_number, pcu->date_of_manufacturing, pcu->serial_number, pcu->fw_version, pcu->bl_version, pcu->reset_reason); return 0; } static int ims_pcu_identify_type(struct ims_pcu *pcu, u8 *device_id) { int error; error = ims_pcu_execute_query(pcu, GET_DEVICE_ID); if (error) { dev_err(pcu->dev, "GET_DEVICE_ID command failed, error: %d\n", error); return error; } *device_id = pcu->cmd_buf[IMS_PCU_DATA_OFFSET]; dev_dbg(pcu->dev, "Detected device ID: %d\n", *device_id); return 0; } static int ims_pcu_init_application_mode(struct ims_pcu *pcu) { static atomic_t device_no = ATOMIC_INIT(-1); const struct ims_pcu_device_info *info; int error; error = ims_pcu_get_device_info(pcu); if (error) { /* Device does not respond to basic queries, hopeless */ return error; } error = ims_pcu_identify_type(pcu, &pcu->device_id); if (error) { dev_err(pcu->dev, "Failed to identify device, error: %d\n", error); /* * Do not signal error, but do not create input nor * backlight devices either, let userspace figure this * out (flash a new firmware?). */ return 0; } if (pcu->device_id >= ARRAY_SIZE(ims_pcu_device_info) || !ims_pcu_device_info[pcu->device_id].keymap) { dev_err(pcu->dev, "Device ID %d is not valid\n", pcu->device_id); /* Same as above, punt to userspace */ return 0; } /* Device appears to be operable, complete initialization */ pcu->device_no = atomic_inc_return(&device_no); /* * PCU-B devices, both GEN_1 and GEN_2 do not have OFN sensor */ if (pcu->device_id != IMS_PCU_PCU_B_DEVICE_ID) { error = sysfs_create_group(&pcu->dev->kobj, &ims_pcu_ofn_attr_group); if (error) return error; } error = ims_pcu_setup_backlight(pcu); if (error) return error; info = &ims_pcu_device_info[pcu->device_id]; error = ims_pcu_setup_buttons(pcu, info->keymap, info->keymap_len); if (error) goto err_destroy_backlight; if (info->has_gamepad) { error = ims_pcu_setup_gamepad(pcu); if (error) goto err_destroy_buttons; } pcu->setup_complete = true; return 0; err_destroy_buttons: ims_pcu_destroy_buttons(pcu); err_destroy_backlight: ims_pcu_destroy_backlight(pcu); return error; } static void ims_pcu_destroy_application_mode(struct ims_pcu *pcu) { if (pcu->setup_complete) { pcu->setup_complete = false; mb(); /* make sure flag setting is not reordered */ if (pcu->gamepad) ims_pcu_destroy_gamepad(pcu); ims_pcu_destroy_buttons(pcu); ims_pcu_destroy_backlight(pcu); if (pcu->device_id != IMS_PCU_PCU_B_DEVICE_ID) sysfs_remove_group(&pcu->dev->kobj, &ims_pcu_ofn_attr_group); } } static int ims_pcu_init_bootloader_mode(struct ims_pcu *pcu) { int error; error = ims_pcu_execute_bl_command(pcu, QUERY_DEVICE, NULL, 0, IMS_PCU_CMD_RESPONSE_TIMEOUT); if (error) { dev_err(pcu->dev, "Bootloader does not respond, aborting\n"); return error; } pcu->fw_start_addr = get_unaligned_le32(&pcu->cmd_buf[IMS_PCU_DATA_OFFSET + 11]); pcu->fw_end_addr = get_unaligned_le32(&pcu->cmd_buf[IMS_PCU_DATA_OFFSET + 15]); dev_info(pcu->dev, "Device is in bootloader mode (addr 0x%08x-0x%08x), requesting firmware\n", pcu->fw_start_addr, pcu->fw_end_addr); error = request_firmware_nowait(THIS_MODULE, true, IMS_PCU_FIRMWARE_NAME, pcu->dev, GFP_KERNEL, pcu, ims_pcu_process_async_firmware); if (error) { /* This error is not fatal, let userspace have another chance */ complete(&pcu->async_firmware_done); } return 0; } static void ims_pcu_destroy_bootloader_mode(struct ims_pcu *pcu) { /* Make sure our initial firmware request has completed */ wait_for_completion(&pcu->async_firmware_done); } #define IMS_PCU_APPLICATION_MODE 0 #define IMS_PCU_BOOTLOADER_MODE 1 static struct usb_driver ims_pcu_driver; static int ims_pcu_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(intf); struct ims_pcu *pcu; int error; pcu = kzalloc(sizeof(struct ims_pcu), GFP_KERNEL); if (!pcu) return -ENOMEM; pcu->dev = &intf->dev; pcu->udev = udev; pcu->bootloader_mode = id->driver_info == IMS_PCU_BOOTLOADER_MODE; mutex_init(&pcu->cmd_mutex); init_completion(&pcu->cmd_done); init_completion(&pcu->async_firmware_done); error = ims_pcu_parse_cdc_data(intf, pcu); if (error) goto err_free_mem; error = usb_driver_claim_interface(&ims_pcu_driver, pcu->data_intf, pcu); if (error) { dev_err(&intf->dev, "Unable to claim corresponding data interface: %d\n", error); goto err_free_mem; } usb_set_intfdata(pcu->ctrl_intf, pcu); error = ims_pcu_buffers_alloc(pcu); if (error) goto err_unclaim_intf; error = ims_pcu_start_io(pcu); if (error) goto err_free_buffers; error = ims_pcu_line_setup(pcu); if (error) goto err_stop_io; error = sysfs_create_group(&intf->dev.kobj, &ims_pcu_attr_group); if (error) goto err_stop_io; error = pcu->bootloader_mode ? ims_pcu_init_bootloader_mode(pcu) : ims_pcu_init_application_mode(pcu); if (error) goto err_remove_sysfs; return 0; err_remove_sysfs: sysfs_remove_group(&intf->dev.kobj, &ims_pcu_attr_group); err_stop_io: ims_pcu_stop_io(pcu); err_free_buffers: ims_pcu_buffers_free(pcu); err_unclaim_intf: usb_driver_release_interface(&ims_pcu_driver, pcu->data_intf); err_free_mem: kfree(pcu); return error; } static void ims_pcu_disconnect(struct usb_interface *intf) { struct ims_pcu *pcu = usb_get_intfdata(intf); struct usb_host_interface *alt = intf->cur_altsetting; usb_set_intfdata(intf, NULL); /* * See if we are dealing with control or data interface. The cleanup * happens when we unbind primary (control) interface. */ if (alt->desc.bInterfaceClass != USB_CLASS_COMM) return; sysfs_remove_group(&intf->dev.kobj, &ims_pcu_attr_group); ims_pcu_stop_io(pcu); if (pcu->bootloader_mode) ims_pcu_destroy_bootloader_mode(pcu); else ims_pcu_destroy_application_mode(pcu); ims_pcu_buffers_free(pcu); kfree(pcu); } #ifdef CONFIG_PM static int ims_pcu_suspend(struct usb_interface *intf, pm_message_t message) { struct ims_pcu *pcu = usb_get_intfdata(intf); struct usb_host_interface *alt = intf->cur_altsetting; if (alt->desc.bInterfaceClass == USB_CLASS_COMM) ims_pcu_stop_io(pcu); return 0; } static int ims_pcu_resume(struct usb_interface *intf) { struct ims_pcu *pcu = usb_get_intfdata(intf); struct usb_host_interface *alt = intf->cur_altsetting; int retval = 0; if (alt->desc.bInterfaceClass == USB_CLASS_COMM) { retval = ims_pcu_start_io(pcu); if (retval == 0) retval = ims_pcu_line_setup(pcu); } return retval; } #endif static const struct usb_device_id ims_pcu_id_table[] = { { USB_DEVICE_AND_INTERFACE_INFO(0x04d8, 0x0082, USB_CLASS_COMM, USB_CDC_SUBCLASS_ACM, USB_CDC_ACM_PROTO_AT_V25TER), .driver_info = IMS_PCU_APPLICATION_MODE, }, { USB_DEVICE_AND_INTERFACE_INFO(0x04d8, 0x0083, USB_CLASS_COMM, USB_CDC_SUBCLASS_ACM, USB_CDC_ACM_PROTO_AT_V25TER), .driver_info = IMS_PCU_BOOTLOADER_MODE, }, { } }; static struct usb_driver ims_pcu_driver = { .name = "ims_pcu", .id_table = ims_pcu_id_table, .probe = ims_pcu_probe, .disconnect = ims_pcu_disconnect, #ifdef CONFIG_PM .suspend = ims_pcu_suspend, .resume = ims_pcu_resume, .reset_resume = ims_pcu_resume, #endif }; module_usb_driver(ims_pcu_driver); MODULE_DESCRIPTION("IMS Passenger Control Unit driver"); MODULE_AUTHOR("Dmitry Torokhov <[email protected]>"); MODULE_LICENSE("GPL");
linux-master
drivers/input/misc/ims-pcu.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * MAXIM MAX77693/MAX77843 Haptic device driver * * Copyright (C) 2014,2015 Samsung Electronics * Jaewon Kim <[email protected]> * Krzysztof Kozlowski <[email protected]> * * This program is not provided / owned by Maxim Integrated Products. */ #include <linux/err.h> #include <linux/init.h> #include <linux/i2c.h> #include <linux/regmap.h> #include <linux/input.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/pwm.h> #include <linux/slab.h> #include <linux/workqueue.h> #include <linux/regulator/consumer.h> #include <linux/mfd/max77693.h> #include <linux/mfd/max77693-common.h> #include <linux/mfd/max77693-private.h> #include <linux/mfd/max77843-private.h> #define MAX_MAGNITUDE_SHIFT 16 enum max77693_haptic_motor_type { MAX77693_HAPTIC_ERM = 0, MAX77693_HAPTIC_LRA, }; enum max77693_haptic_pulse_mode { MAX77693_HAPTIC_EXTERNAL_MODE = 0, MAX77693_HAPTIC_INTERNAL_MODE, }; enum max77693_haptic_pwm_divisor { MAX77693_HAPTIC_PWM_DIVISOR_32 = 0, MAX77693_HAPTIC_PWM_DIVISOR_64, MAX77693_HAPTIC_PWM_DIVISOR_128, MAX77693_HAPTIC_PWM_DIVISOR_256, }; struct max77693_haptic { enum max77693_types dev_type; struct regmap *regmap_pmic; struct regmap *regmap_haptic; struct device *dev; struct input_dev *input_dev; struct pwm_device *pwm_dev; struct regulator *motor_reg; bool enabled; bool suspend_state; unsigned int magnitude; unsigned int pwm_duty; enum max77693_haptic_motor_type type; enum max77693_haptic_pulse_mode mode; struct work_struct work; }; static int max77693_haptic_set_duty_cycle(struct max77693_haptic *haptic) { struct pwm_args pargs; int delta; int error; pwm_get_args(haptic->pwm_dev, &pargs); delta = (pargs.period + haptic->pwm_duty) / 2; error = pwm_config(haptic->pwm_dev, delta, pargs.period); if (error) { dev_err(haptic->dev, "failed to configure pwm: %d\n", error); return error; } return 0; } static int max77843_haptic_bias(struct max77693_haptic *haptic, bool on) { int error; if (haptic->dev_type != TYPE_MAX77843) return 0; error = regmap_update_bits(haptic->regmap_haptic, MAX77843_SYS_REG_MAINCTRL1, MAX77843_MAINCTRL1_BIASEN_MASK, on << MAINCTRL1_BIASEN_SHIFT); if (error) { dev_err(haptic->dev, "failed to %s bias: %d\n", on ? "enable" : "disable", error); return error; } return 0; } static int max77693_haptic_configure(struct max77693_haptic *haptic, bool enable) { unsigned int value, config_reg; int error; switch (haptic->dev_type) { case TYPE_MAX77693: value = ((haptic->type << MAX77693_CONFIG2_MODE) | (enable << MAX77693_CONFIG2_MEN) | (haptic->mode << MAX77693_CONFIG2_HTYP) | MAX77693_HAPTIC_PWM_DIVISOR_128); config_reg = MAX77693_HAPTIC_REG_CONFIG2; break; case TYPE_MAX77843: value = (haptic->type << MCONFIG_MODE_SHIFT) | (enable << MCONFIG_MEN_SHIFT) | MAX77693_HAPTIC_PWM_DIVISOR_128; config_reg = MAX77843_HAP_REG_MCONFIG; break; default: return -EINVAL; } error = regmap_write(haptic->regmap_haptic, config_reg, value); if (error) { dev_err(haptic->dev, "failed to update haptic config: %d\n", error); return error; } return 0; } static int max77693_haptic_lowsys(struct max77693_haptic *haptic, bool enable) { int error; if (haptic->dev_type != TYPE_MAX77693) return 0; error = regmap_update_bits(haptic->regmap_pmic, MAX77693_PMIC_REG_LSCNFG, MAX77693_PMIC_LOW_SYS_MASK, enable << MAX77693_PMIC_LOW_SYS_SHIFT); if (error) { dev_err(haptic->dev, "cannot update pmic regmap: %d\n", error); return error; } return 0; } static void max77693_haptic_enable(struct max77693_haptic *haptic) { int error; if (haptic->enabled) return; error = pwm_enable(haptic->pwm_dev); if (error) { dev_err(haptic->dev, "failed to enable haptic pwm device: %d\n", error); return; } error = max77693_haptic_lowsys(haptic, true); if (error) goto err_enable_lowsys; error = max77693_haptic_configure(haptic, true); if (error) goto err_enable_config; haptic->enabled = true; return; err_enable_config: max77693_haptic_lowsys(haptic, false); err_enable_lowsys: pwm_disable(haptic->pwm_dev); } static void max77693_haptic_disable(struct max77693_haptic *haptic) { int error; if (!haptic->enabled) return; error = max77693_haptic_configure(haptic, false); if (error) return; error = max77693_haptic_lowsys(haptic, false); if (error) goto err_disable_lowsys; pwm_disable(haptic->pwm_dev); haptic->enabled = false; return; err_disable_lowsys: max77693_haptic_configure(haptic, true); } static void max77693_haptic_play_work(struct work_struct *work) { struct max77693_haptic *haptic = container_of(work, struct max77693_haptic, work); int error; error = max77693_haptic_set_duty_cycle(haptic); if (error) { dev_err(haptic->dev, "failed to set duty cycle: %d\n", error); return; } if (haptic->magnitude) max77693_haptic_enable(haptic); else max77693_haptic_disable(haptic); } static int max77693_haptic_play_effect(struct input_dev *dev, void *data, struct ff_effect *effect) { struct max77693_haptic *haptic = input_get_drvdata(dev); struct pwm_args pargs; u64 period_mag_multi; haptic->magnitude = effect->u.rumble.strong_magnitude; if (!haptic->magnitude) haptic->magnitude = effect->u.rumble.weak_magnitude; /* * The magnitude comes from force-feedback interface. * The formula to convert magnitude to pwm_duty as follows: * - pwm_duty = (magnitude * pwm_period) / MAX_MAGNITUDE(0xFFFF) */ pwm_get_args(haptic->pwm_dev, &pargs); period_mag_multi = (u64)pargs.period * haptic->magnitude; haptic->pwm_duty = (unsigned int)(period_mag_multi >> MAX_MAGNITUDE_SHIFT); schedule_work(&haptic->work); return 0; } static int max77693_haptic_open(struct input_dev *dev) { struct max77693_haptic *haptic = input_get_drvdata(dev); int error; error = max77843_haptic_bias(haptic, true); if (error) return error; error = regulator_enable(haptic->motor_reg); if (error) { dev_err(haptic->dev, "failed to enable regulator: %d\n", error); return error; } return 0; } static void max77693_haptic_close(struct input_dev *dev) { struct max77693_haptic *haptic = input_get_drvdata(dev); int error; cancel_work_sync(&haptic->work); max77693_haptic_disable(haptic); error = regulator_disable(haptic->motor_reg); if (error) dev_err(haptic->dev, "failed to disable regulator: %d\n", error); max77843_haptic_bias(haptic, false); } static int max77693_haptic_probe(struct platform_device *pdev) { struct max77693_dev *max77693 = dev_get_drvdata(pdev->dev.parent); struct max77693_haptic *haptic; int error; haptic = devm_kzalloc(&pdev->dev, sizeof(*haptic), GFP_KERNEL); if (!haptic) return -ENOMEM; haptic->regmap_pmic = max77693->regmap; haptic->dev = &pdev->dev; haptic->type = MAX77693_HAPTIC_LRA; haptic->mode = MAX77693_HAPTIC_EXTERNAL_MODE; haptic->suspend_state = false; /* Variant-specific init */ haptic->dev_type = platform_get_device_id(pdev)->driver_data; switch (haptic->dev_type) { case TYPE_MAX77693: haptic->regmap_haptic = max77693->regmap_haptic; break; case TYPE_MAX77843: haptic->regmap_haptic = max77693->regmap; break; default: dev_err(&pdev->dev, "unsupported device type: %u\n", haptic->dev_type); return -EINVAL; } INIT_WORK(&haptic->work, max77693_haptic_play_work); /* Get pwm and regulatot for haptic device */ haptic->pwm_dev = devm_pwm_get(&pdev->dev, NULL); if (IS_ERR(haptic->pwm_dev)) { dev_err(&pdev->dev, "failed to get pwm device\n"); return PTR_ERR(haptic->pwm_dev); } /* * FIXME: pwm_apply_args() should be removed when switching to the * atomic PWM API. */ pwm_apply_args(haptic->pwm_dev); haptic->motor_reg = devm_regulator_get(&pdev->dev, "haptic"); if (IS_ERR(haptic->motor_reg)) { dev_err(&pdev->dev, "failed to get regulator\n"); return PTR_ERR(haptic->motor_reg); } /* Initialize input device for haptic device */ haptic->input_dev = devm_input_allocate_device(&pdev->dev); if (!haptic->input_dev) { dev_err(&pdev->dev, "failed to allocate input device\n"); return -ENOMEM; } haptic->input_dev->name = "max77693-haptic"; haptic->input_dev->id.version = 1; haptic->input_dev->dev.parent = &pdev->dev; haptic->input_dev->open = max77693_haptic_open; haptic->input_dev->close = max77693_haptic_close; input_set_drvdata(haptic->input_dev, haptic); input_set_capability(haptic->input_dev, EV_FF, FF_RUMBLE); error = input_ff_create_memless(haptic->input_dev, NULL, max77693_haptic_play_effect); if (error) { dev_err(&pdev->dev, "failed to create force-feedback\n"); return error; } error = input_register_device(haptic->input_dev); if (error) { dev_err(&pdev->dev, "failed to register input device\n"); return error; } platform_set_drvdata(pdev, haptic); return 0; } static int max77693_haptic_suspend(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct max77693_haptic *haptic = platform_get_drvdata(pdev); if (haptic->enabled) { max77693_haptic_disable(haptic); haptic->suspend_state = true; } return 0; } static int max77693_haptic_resume(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct max77693_haptic *haptic = platform_get_drvdata(pdev); if (haptic->suspend_state) { max77693_haptic_enable(haptic); haptic->suspend_state = false; } return 0; } static DEFINE_SIMPLE_DEV_PM_OPS(max77693_haptic_pm_ops, max77693_haptic_suspend, max77693_haptic_resume); static const struct platform_device_id max77693_haptic_id[] = { { "max77693-haptic", TYPE_MAX77693 }, { "max77843-haptic", TYPE_MAX77843 }, {}, }; MODULE_DEVICE_TABLE(platform, max77693_haptic_id); static struct platform_driver max77693_haptic_driver = { .driver = { .name = "max77693-haptic", .pm = pm_sleep_ptr(&max77693_haptic_pm_ops), }, .probe = max77693_haptic_probe, .id_table = max77693_haptic_id, }; module_platform_driver(max77693_haptic_driver); MODULE_AUTHOR("Jaewon Kim <[email protected]>"); MODULE_AUTHOR("Krzysztof Kozlowski <[email protected]>"); MODULE_DESCRIPTION("MAXIM 77693/77843 Haptic driver"); MODULE_LICENSE("GPL");
linux-master
drivers/input/misc/max77693-haptic.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Driver for Freescale's 3-Axis Accelerometer MMA8450 * * Copyright (C) 2011 Freescale Semiconductor, Inc. All Rights Reserved. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/i2c.h> #include <linux/input.h> #include <linux/mod_devicetable.h> #define MMA8450_DRV_NAME "mma8450" #define MODE_CHANGE_DELAY_MS 100 #define POLL_INTERVAL 100 #define POLL_INTERVAL_MAX 500 /* register definitions */ #define MMA8450_STATUS 0x00 #define MMA8450_STATUS_ZXYDR 0x08 #define MMA8450_OUT_X8 0x01 #define MMA8450_OUT_Y8 0x02 #define MMA8450_OUT_Z8 0x03 #define MMA8450_OUT_X_LSB 0x05 #define MMA8450_OUT_X_MSB 0x06 #define MMA8450_OUT_Y_LSB 0x07 #define MMA8450_OUT_Y_MSB 0x08 #define MMA8450_OUT_Z_LSB 0x09 #define MMA8450_OUT_Z_MSB 0x0a #define MMA8450_XYZ_DATA_CFG 0x16 #define MMA8450_CTRL_REG1 0x38 #define MMA8450_CTRL_REG2 0x39 static int mma8450_read(struct i2c_client *c, unsigned int off) { int ret; ret = i2c_smbus_read_byte_data(c, off); if (ret < 0) dev_err(&c->dev, "failed to read register 0x%02x, error %d\n", off, ret); return ret; } static int mma8450_write(struct i2c_client *c, unsigned int off, u8 v) { int error; error = i2c_smbus_write_byte_data(c, off, v); if (error < 0) { dev_err(&c->dev, "failed to write to register 0x%02x, error %d\n", off, error); return error; } return 0; } static int mma8450_read_block(struct i2c_client *c, unsigned int off, u8 *buf, size_t size) { int err; err = i2c_smbus_read_i2c_block_data(c, off, size, buf); if (err < 0) { dev_err(&c->dev, "failed to read block data at 0x%02x, error %d\n", MMA8450_OUT_X_LSB, err); return err; } return 0; } static void mma8450_poll(struct input_dev *input) { struct i2c_client *c = input_get_drvdata(input); int x, y, z; int ret; u8 buf[6]; ret = mma8450_read(c, MMA8450_STATUS); if (ret < 0) return; if (!(ret & MMA8450_STATUS_ZXYDR)) return; ret = mma8450_read_block(c, MMA8450_OUT_X_LSB, buf, sizeof(buf)); if (ret < 0) return; x = ((int)(s8)buf[1] << 4) | (buf[0] & 0xf); y = ((int)(s8)buf[3] << 4) | (buf[2] & 0xf); z = ((int)(s8)buf[5] << 4) | (buf[4] & 0xf); input_report_abs(input, ABS_X, x); input_report_abs(input, ABS_Y, y); input_report_abs(input, ABS_Z, z); input_sync(input); } /* Initialize the MMA8450 chip */ static int mma8450_open(struct input_dev *input) { struct i2c_client *c = input_get_drvdata(input); int err; /* enable all events from X/Y/Z, no FIFO */ err = mma8450_write(c, MMA8450_XYZ_DATA_CFG, 0x07); if (err) return err; /* * Sleep mode poll rate - 50Hz * System output data rate - 400Hz * Full scale selection - Active, +/- 2G */ err = mma8450_write(c, MMA8450_CTRL_REG1, 0x01); if (err) return err; msleep(MODE_CHANGE_DELAY_MS); return 0; } static void mma8450_close(struct input_dev *input) { struct i2c_client *c = input_get_drvdata(input); mma8450_write(c, MMA8450_CTRL_REG1, 0x00); mma8450_write(c, MMA8450_CTRL_REG2, 0x01); } /* * I2C init/probing/exit functions */ static int mma8450_probe(struct i2c_client *c) { struct input_dev *input; int err; input = devm_input_allocate_device(&c->dev); if (!input) return -ENOMEM; input_set_drvdata(input, c); input->name = MMA8450_DRV_NAME; input->id.bustype = BUS_I2C; input->open = mma8450_open; input->close = mma8450_close; input_set_abs_params(input, ABS_X, -2048, 2047, 32, 32); input_set_abs_params(input, ABS_Y, -2048, 2047, 32, 32); input_set_abs_params(input, ABS_Z, -2048, 2047, 32, 32); err = input_setup_polling(input, mma8450_poll); if (err) { dev_err(&c->dev, "failed to set up polling\n"); return err; } input_set_poll_interval(input, POLL_INTERVAL); input_set_max_poll_interval(input, POLL_INTERVAL_MAX); err = input_register_device(input); if (err) { dev_err(&c->dev, "failed to register input device\n"); return err; } return 0; } static const struct i2c_device_id mma8450_id[] = { { MMA8450_DRV_NAME, 0 }, { }, }; MODULE_DEVICE_TABLE(i2c, mma8450_id); static const struct of_device_id mma8450_dt_ids[] = { { .compatible = "fsl,mma8450", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, mma8450_dt_ids); static struct i2c_driver mma8450_driver = { .driver = { .name = MMA8450_DRV_NAME, .of_match_table = mma8450_dt_ids, }, .probe = mma8450_probe, .id_table = mma8450_id, }; module_i2c_driver(mma8450_driver); MODULE_AUTHOR("Freescale Semiconductor, Inc."); MODULE_DESCRIPTION("MMA8450 3-Axis Accelerometer Driver"); MODULE_LICENSE("GPL");
linux-master
drivers/input/misc/mma8450.c
// SPDX-License-Identifier: GPL-2.0-only /* * Arizona haptics driver * * Copyright 2012 Wolfson Microelectronics plc * * Author: Mark Brown <[email protected]> */ #include <linux/module.h> #include <linux/platform_device.h> #include <linux/input.h> #include <linux/slab.h> #include <sound/soc.h> #include <sound/soc-dapm.h> #include <linux/mfd/arizona/core.h> #include <linux/mfd/arizona/pdata.h> #include <linux/mfd/arizona/registers.h> struct arizona_haptics { struct arizona *arizona; struct input_dev *input_dev; struct work_struct work; struct mutex mutex; u8 intensity; }; static void arizona_haptics_work(struct work_struct *work) { struct arizona_haptics *haptics = container_of(work, struct arizona_haptics, work); struct arizona *arizona = haptics->arizona; struct snd_soc_component *component = snd_soc_dapm_to_component(arizona->dapm); int ret; if (!haptics->arizona->dapm) { dev_err(arizona->dev, "No DAPM context\n"); return; } if (haptics->intensity) { ret = regmap_update_bits(arizona->regmap, ARIZONA_HAPTICS_PHASE_2_INTENSITY, ARIZONA_PHASE2_INTENSITY_MASK, haptics->intensity); if (ret != 0) { dev_err(arizona->dev, "Failed to set intensity: %d\n", ret); return; } /* This enable sequence will be a noop if already enabled */ ret = regmap_update_bits(arizona->regmap, ARIZONA_HAPTICS_CONTROL_1, ARIZONA_HAP_CTRL_MASK, 1 << ARIZONA_HAP_CTRL_SHIFT); if (ret != 0) { dev_err(arizona->dev, "Failed to start haptics: %d\n", ret); return; } ret = snd_soc_component_enable_pin(component, "HAPTICS"); if (ret != 0) { dev_err(arizona->dev, "Failed to start HAPTICS: %d\n", ret); return; } ret = snd_soc_dapm_sync(arizona->dapm); if (ret != 0) { dev_err(arizona->dev, "Failed to sync DAPM: %d\n", ret); return; } } else { /* This disable sequence will be a noop if already enabled */ ret = snd_soc_component_disable_pin(component, "HAPTICS"); if (ret != 0) { dev_err(arizona->dev, "Failed to disable HAPTICS: %d\n", ret); return; } ret = snd_soc_dapm_sync(arizona->dapm); if (ret != 0) { dev_err(arizona->dev, "Failed to sync DAPM: %d\n", ret); return; } ret = regmap_update_bits(arizona->regmap, ARIZONA_HAPTICS_CONTROL_1, ARIZONA_HAP_CTRL_MASK, 0); if (ret != 0) { dev_err(arizona->dev, "Failed to stop haptics: %d\n", ret); return; } } } static int arizona_haptics_play(struct input_dev *input, void *data, struct ff_effect *effect) { struct arizona_haptics *haptics = input_get_drvdata(input); struct arizona *arizona = haptics->arizona; if (!arizona->dapm) { dev_err(arizona->dev, "No DAPM context\n"); return -EBUSY; } if (effect->u.rumble.strong_magnitude) { /* Scale the magnitude into the range the device supports */ if (arizona->pdata.hap_act) { haptics->intensity = effect->u.rumble.strong_magnitude >> 9; if (effect->direction < 0x8000) haptics->intensity += 0x7f; } else { haptics->intensity = effect->u.rumble.strong_magnitude >> 8; } } else { haptics->intensity = 0; } schedule_work(&haptics->work); return 0; } static void arizona_haptics_close(struct input_dev *input) { struct arizona_haptics *haptics = input_get_drvdata(input); struct snd_soc_component *component; cancel_work_sync(&haptics->work); if (haptics->arizona->dapm) { component = snd_soc_dapm_to_component(haptics->arizona->dapm); snd_soc_component_disable_pin(component, "HAPTICS"); } } static int arizona_haptics_probe(struct platform_device *pdev) { struct arizona *arizona = dev_get_drvdata(pdev->dev.parent); struct arizona_haptics *haptics; int ret; haptics = devm_kzalloc(&pdev->dev, sizeof(*haptics), GFP_KERNEL); if (!haptics) return -ENOMEM; haptics->arizona = arizona; ret = regmap_update_bits(arizona->regmap, ARIZONA_HAPTICS_CONTROL_1, ARIZONA_HAP_ACT, arizona->pdata.hap_act); if (ret != 0) { dev_err(arizona->dev, "Failed to set haptics actuator: %d\n", ret); return ret; } INIT_WORK(&haptics->work, arizona_haptics_work); haptics->input_dev = devm_input_allocate_device(&pdev->dev); if (!haptics->input_dev) { dev_err(arizona->dev, "Failed to allocate input device\n"); return -ENOMEM; } input_set_drvdata(haptics->input_dev, haptics); haptics->input_dev->name = "arizona:haptics"; haptics->input_dev->close = arizona_haptics_close; __set_bit(FF_RUMBLE, haptics->input_dev->ffbit); ret = input_ff_create_memless(haptics->input_dev, NULL, arizona_haptics_play); if (ret < 0) { dev_err(arizona->dev, "input_ff_create_memless() failed: %d\n", ret); return ret; } ret = input_register_device(haptics->input_dev); if (ret < 0) { dev_err(arizona->dev, "couldn't register input device: %d\n", ret); return ret; } return 0; } static struct platform_driver arizona_haptics_driver = { .probe = arizona_haptics_probe, .driver = { .name = "arizona-haptics", }, }; module_platform_driver(arizona_haptics_driver); MODULE_ALIAS("platform:arizona-haptics"); MODULE_DESCRIPTION("Arizona haptics driver"); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Mark Brown <[email protected]>");
linux-master
drivers/input/misc/arizona-haptics.c
// SPDX-License-Identifier: GPL-2.0 // // Driver for TPS65219 Push Button // // Copyright (C) 2022 BayLibre Incorporated - https://www.baylibre.com/ #include <linux/init.h> #include <linux/input.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/mfd/tps65219.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/slab.h> struct tps65219_pwrbutton { struct device *dev; struct input_dev *idev; char phys[32]; }; static irqreturn_t tps65219_pb_push_irq(int irq, void *_pwr) { struct tps65219_pwrbutton *pwr = _pwr; input_report_key(pwr->idev, KEY_POWER, 1); pm_wakeup_event(pwr->dev, 0); input_sync(pwr->idev); return IRQ_HANDLED; } static irqreturn_t tps65219_pb_release_irq(int irq, void *_pwr) { struct tps65219_pwrbutton *pwr = _pwr; input_report_key(pwr->idev, KEY_POWER, 0); input_sync(pwr->idev); return IRQ_HANDLED; } static int tps65219_pb_probe(struct platform_device *pdev) { struct tps65219 *tps = dev_get_drvdata(pdev->dev.parent); struct device *dev = &pdev->dev; struct tps65219_pwrbutton *pwr; struct input_dev *idev; int error; int push_irq; int release_irq; pwr = devm_kzalloc(dev, sizeof(*pwr), GFP_KERNEL); if (!pwr) return -ENOMEM; idev = devm_input_allocate_device(dev); if (!idev) return -ENOMEM; idev->name = pdev->name; snprintf(pwr->phys, sizeof(pwr->phys), "%s/input0", pdev->name); idev->phys = pwr->phys; idev->id.bustype = BUS_I2C; input_set_capability(idev, EV_KEY, KEY_POWER); pwr->dev = dev; pwr->idev = idev; device_init_wakeup(dev, true); push_irq = platform_get_irq(pdev, 0); if (push_irq < 0) return -EINVAL; release_irq = platform_get_irq(pdev, 1); if (release_irq < 0) return -EINVAL; error = devm_request_threaded_irq(dev, push_irq, NULL, tps65219_pb_push_irq, IRQF_ONESHOT, dev->init_name, pwr); if (error) { dev_err(dev, "failed to request push IRQ #%d: %d\n", push_irq, error); return error; } error = devm_request_threaded_irq(dev, release_irq, NULL, tps65219_pb_release_irq, IRQF_ONESHOT, dev->init_name, pwr); if (error) { dev_err(dev, "failed to request release IRQ #%d: %d\n", release_irq, error); return error; } error = input_register_device(idev); if (error) { dev_err(dev, "Can't register power button: %d\n", error); return error; } /* Enable interrupts for the pushbutton */ regmap_clear_bits(tps->regmap, TPS65219_REG_MASK_CONFIG, TPS65219_REG_MASK_INT_FOR_PB_MASK); /* Set PB/EN/VSENSE pin to be a pushbutton */ regmap_update_bits(tps->regmap, TPS65219_REG_MFP_2_CONFIG, TPS65219_MFP_2_EN_PB_VSENSE_MASK, TPS65219_MFP_2_PB); return 0; } static void tps65219_pb_remove(struct platform_device *pdev) { struct tps65219 *tps = dev_get_drvdata(pdev->dev.parent); int ret; /* Disable interrupt for the pushbutton */ ret = regmap_set_bits(tps->regmap, TPS65219_REG_MASK_CONFIG, TPS65219_REG_MASK_INT_FOR_PB_MASK); if (ret) dev_warn(&pdev->dev, "Failed to disable irq (%pe)\n", ERR_PTR(ret)); } static const struct platform_device_id tps65219_pwrbtn_id_table[] = { { "tps65219-pwrbutton", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(platform, tps65219_pwrbtn_id_table); static struct platform_driver tps65219_pb_driver = { .probe = tps65219_pb_probe, .remove_new = tps65219_pb_remove, .driver = { .name = "tps65219_pwrbutton", }, .id_table = tps65219_pwrbtn_id_table, }; module_platform_driver(tps65219_pb_driver); MODULE_DESCRIPTION("TPS65219 Power Button"); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Markus Schneider-Pargmann <[email protected]");
linux-master
drivers/input/misc/tps65219-pwrbutton.c
// SPDX-License-Identifier: GPL-2.0-only /* * Driver for PC-speaker like devices found on various Sparc systems. * * Copyright (c) 2002 Vojtech Pavlik * Copyright (c) 2002, 2006, 2008 David S. Miller ([email protected]) */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/input.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <asm/io.h> MODULE_AUTHOR("David S. Miller <[email protected]>"); MODULE_DESCRIPTION("Sparc Speaker beeper driver"); MODULE_LICENSE("GPL"); struct grover_beep_info { void __iomem *freq_regs; void __iomem *enable_reg; }; struct bbc_beep_info { u32 clock_freq; void __iomem *regs; }; struct sparcspkr_state { const char *name; int (*event)(struct input_dev *dev, unsigned int type, unsigned int code, int value); spinlock_t lock; struct input_dev *input_dev; union { struct grover_beep_info grover; struct bbc_beep_info bbc; } u; }; static u32 bbc_count_to_reg(struct bbc_beep_info *info, unsigned int count) { u32 val, clock_freq = info->clock_freq; int i; if (!count) return 0; if (count <= clock_freq >> 20) return 1 << 18; if (count >= clock_freq >> 12) return 1 << 10; val = 1 << 18; for (i = 19; i >= 11; i--) { val >>= 1; if (count <= clock_freq >> i) break; } return val; } static int bbc_spkr_event(struct input_dev *dev, unsigned int type, unsigned int code, int value) { struct sparcspkr_state *state = dev_get_drvdata(dev->dev.parent); struct bbc_beep_info *info = &state->u.bbc; unsigned int count = 0; unsigned long flags; if (type != EV_SND) return -1; switch (code) { case SND_BELL: if (value) value = 1000; case SND_TONE: break; default: return -1; } if (value > 20 && value < 32767) count = 1193182 / value; count = bbc_count_to_reg(info, count); spin_lock_irqsave(&state->lock, flags); if (count) { sbus_writeb(0x01, info->regs + 0); sbus_writeb(0x00, info->regs + 2); sbus_writeb((count >> 16) & 0xff, info->regs + 3); sbus_writeb((count >> 8) & 0xff, info->regs + 4); sbus_writeb(0x00, info->regs + 5); } else { sbus_writeb(0x00, info->regs + 0); } spin_unlock_irqrestore(&state->lock, flags); return 0; } static int grover_spkr_event(struct input_dev *dev, unsigned int type, unsigned int code, int value) { struct sparcspkr_state *state = dev_get_drvdata(dev->dev.parent); struct grover_beep_info *info = &state->u.grover; unsigned int count = 0; unsigned long flags; if (type != EV_SND) return -1; switch (code) { case SND_BELL: if (value) value = 1000; case SND_TONE: break; default: return -1; } if (value > 20 && value < 32767) count = 1193182 / value; spin_lock_irqsave(&state->lock, flags); if (count) { /* enable counter 2 */ sbus_writeb(sbus_readb(info->enable_reg) | 3, info->enable_reg); /* set command for counter 2, 2 byte write */ sbus_writeb(0xB6, info->freq_regs + 1); /* select desired HZ */ sbus_writeb(count & 0xff, info->freq_regs + 0); sbus_writeb((count >> 8) & 0xff, info->freq_regs + 0); } else { /* disable counter 2 */ sbus_writeb(sbus_readb(info->enable_reg) & 0xFC, info->enable_reg); } spin_unlock_irqrestore(&state->lock, flags); return 0; } static int sparcspkr_probe(struct device *dev) { struct sparcspkr_state *state = dev_get_drvdata(dev); struct input_dev *input_dev; int error; input_dev = input_allocate_device(); if (!input_dev) return -ENOMEM; input_dev->name = state->name; input_dev->phys = "sparc/input0"; input_dev->id.bustype = BUS_ISA; input_dev->id.vendor = 0x001f; input_dev->id.product = 0x0001; input_dev->id.version = 0x0100; input_dev->dev.parent = dev; input_dev->evbit[0] = BIT_MASK(EV_SND); input_dev->sndbit[0] = BIT_MASK(SND_BELL) | BIT_MASK(SND_TONE); input_dev->event = state->event; error = input_register_device(input_dev); if (error) { input_free_device(input_dev); return error; } state->input_dev = input_dev; return 0; } static void sparcspkr_shutdown(struct platform_device *dev) { struct sparcspkr_state *state = platform_get_drvdata(dev); struct input_dev *input_dev = state->input_dev; /* turn off the speaker */ state->event(input_dev, EV_SND, SND_BELL, 0); } static int bbc_beep_probe(struct platform_device *op) { struct sparcspkr_state *state; struct bbc_beep_info *info; struct device_node *dp; int err = -ENOMEM; state = kzalloc(sizeof(*state), GFP_KERNEL); if (!state) goto out_err; state->name = "Sparc BBC Speaker"; state->event = bbc_spkr_event; spin_lock_init(&state->lock); dp = of_find_node_by_path("/"); err = -ENODEV; if (!dp) goto out_free; info = &state->u.bbc; info->clock_freq = of_getintprop_default(dp, "clock-frequency", 0); of_node_put(dp); if (!info->clock_freq) goto out_free; info->regs = of_ioremap(&op->resource[0], 0, 6, "bbc beep"); if (!info->regs) goto out_free; platform_set_drvdata(op, state); err = sparcspkr_probe(&op->dev); if (err) goto out_clear_drvdata; return 0; out_clear_drvdata: of_iounmap(&op->resource[0], info->regs, 6); out_free: kfree(state); out_err: return err; } static int bbc_remove(struct platform_device *op) { struct sparcspkr_state *state = platform_get_drvdata(op); struct input_dev *input_dev = state->input_dev; struct bbc_beep_info *info = &state->u.bbc; /* turn off the speaker */ state->event(input_dev, EV_SND, SND_BELL, 0); input_unregister_device(input_dev); of_iounmap(&op->resource[0], info->regs, 6); kfree(state); return 0; } static const struct of_device_id bbc_beep_match[] = { { .name = "beep", .compatible = "SUNW,bbc-beep", }, {}, }; MODULE_DEVICE_TABLE(of, bbc_beep_match); static struct platform_driver bbc_beep_driver = { .driver = { .name = "bbcbeep", .of_match_table = bbc_beep_match, }, .probe = bbc_beep_probe, .remove = bbc_remove, .shutdown = sparcspkr_shutdown, }; static int grover_beep_probe(struct platform_device *op) { struct sparcspkr_state *state; struct grover_beep_info *info; int err = -ENOMEM; state = kzalloc(sizeof(*state), GFP_KERNEL); if (!state) goto out_err; state->name = "Sparc Grover Speaker"; state->event = grover_spkr_event; spin_lock_init(&state->lock); info = &state->u.grover; info->freq_regs = of_ioremap(&op->resource[2], 0, 2, "grover beep freq"); if (!info->freq_regs) goto out_free; info->enable_reg = of_ioremap(&op->resource[3], 0, 1, "grover beep enable"); if (!info->enable_reg) goto out_unmap_freq_regs; platform_set_drvdata(op, state); err = sparcspkr_probe(&op->dev); if (err) goto out_clear_drvdata; return 0; out_clear_drvdata: of_iounmap(&op->resource[3], info->enable_reg, 1); out_unmap_freq_regs: of_iounmap(&op->resource[2], info->freq_regs, 2); out_free: kfree(state); out_err: return err; } static int grover_remove(struct platform_device *op) { struct sparcspkr_state *state = platform_get_drvdata(op); struct grover_beep_info *info = &state->u.grover; struct input_dev *input_dev = state->input_dev; /* turn off the speaker */ state->event(input_dev, EV_SND, SND_BELL, 0); input_unregister_device(input_dev); of_iounmap(&op->resource[3], info->enable_reg, 1); of_iounmap(&op->resource[2], info->freq_regs, 2); kfree(state); return 0; } static const struct of_device_id grover_beep_match[] = { { .name = "beep", .compatible = "SUNW,smbus-beep", }, {}, }; MODULE_DEVICE_TABLE(of, grover_beep_match); static struct platform_driver grover_beep_driver = { .driver = { .name = "groverbeep", .of_match_table = grover_beep_match, }, .probe = grover_beep_probe, .remove = grover_remove, .shutdown = sparcspkr_shutdown, }; static struct platform_driver * const drivers[] = { &bbc_beep_driver, &grover_beep_driver, }; static int __init sparcspkr_init(void) { return platform_register_drivers(drivers, ARRAY_SIZE(drivers)); } static void __exit sparcspkr_exit(void) { platform_unregister_drivers(drivers, ARRAY_SIZE(drivers)); } module_init(sparcspkr_init); module_exit(sparcspkr_exit);
linux-master
drivers/input/misc/sparcspkr.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * SGI Volume Button interface driver * * Copyright (C) 2008 Thomas Bogendoerfer <[email protected]> */ #include <linux/input.h> #include <linux/ioport.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/slab.h> #ifdef CONFIG_SGI_IP22 #include <asm/sgi/ioc.h> static inline u8 button_status(void) { u8 status; status = readb(&sgioc->panel) ^ 0xa0; return ((status & 0x80) >> 6) | ((status & 0x20) >> 5); } #endif #ifdef CONFIG_SGI_IP32 #include <asm/ip32/mace.h> static inline u8 button_status(void) { u64 status; status = readq(&mace->perif.audio.control); writeq(status & ~(3U << 23), &mace->perif.audio.control); return (status >> 23) & 3; } #endif #define BUTTONS_POLL_INTERVAL 30 /* msec */ #define BUTTONS_COUNT_THRESHOLD 3 static const unsigned short sgi_map[] = { KEY_VOLUMEDOWN, KEY_VOLUMEUP }; struct buttons_dev { unsigned short keymap[ARRAY_SIZE(sgi_map)]; int count[ARRAY_SIZE(sgi_map)]; }; static void handle_buttons(struct input_dev *input) { struct buttons_dev *bdev = input_get_drvdata(input); u8 status; int i; status = button_status(); for (i = 0; i < ARRAY_SIZE(bdev->keymap); i++) { if (status & (1U << i)) { if (++bdev->count[i] == BUTTONS_COUNT_THRESHOLD) { input_event(input, EV_MSC, MSC_SCAN, i); input_report_key(input, bdev->keymap[i], 1); input_sync(input); } } else { if (bdev->count[i] >= BUTTONS_COUNT_THRESHOLD) { input_event(input, EV_MSC, MSC_SCAN, i); input_report_key(input, bdev->keymap[i], 0); input_sync(input); } bdev->count[i] = 0; } } } static int sgi_buttons_probe(struct platform_device *pdev) { struct buttons_dev *bdev; struct input_dev *input; int error, i; bdev = devm_kzalloc(&pdev->dev, sizeof(*bdev), GFP_KERNEL); if (!bdev) return -ENOMEM; input = devm_input_allocate_device(&pdev->dev); if (!input) return -ENOMEM; memcpy(bdev->keymap, sgi_map, sizeof(bdev->keymap)); input_set_drvdata(input, bdev); input->name = "SGI buttons"; input->phys = "sgi/input0"; input->id.bustype = BUS_HOST; input->keycode = bdev->keymap; input->keycodemax = ARRAY_SIZE(bdev->keymap); input->keycodesize = sizeof(unsigned short); input_set_capability(input, EV_MSC, MSC_SCAN); __set_bit(EV_KEY, input->evbit); for (i = 0; i < ARRAY_SIZE(sgi_map); i++) __set_bit(bdev->keymap[i], input->keybit); __clear_bit(KEY_RESERVED, input->keybit); error = input_setup_polling(input, handle_buttons); if (error) return error; input_set_poll_interval(input, BUTTONS_POLL_INTERVAL); error = input_register_device(input); if (error) return error; return 0; } static struct platform_driver sgi_buttons_driver = { .probe = sgi_buttons_probe, .driver = { .name = "sgibtns", }, }; module_platform_driver(sgi_buttons_driver); MODULE_LICENSE("GPL");
linux-master
drivers/input/misc/sgi_btns.c
// SPDX-License-Identifier: GPL-2.0+ /* * Onkey driver for Actions Semi ATC260x PMICs. * * Copyright (c) 2020 Cristian Ciocaltea <[email protected]> */ #include <linux/bitfield.h> #include <linux/input.h> #include <linux/interrupt.h> #include <linux/mfd/atc260x/core.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/regmap.h> /* <2s for short press, >2s for long press */ #define KEY_PRESS_TIME_SEC 2 /* Driver internals */ enum atc260x_onkey_reset_status { KEY_RESET_HW_DEFAULT, KEY_RESET_DISABLED, KEY_RESET_USER_SEL, }; struct atc260x_onkey_params { u32 reg_int_ctl; u32 kdwn_state_bm; u32 long_int_pnd_bm; u32 short_int_pnd_bm; u32 kdwn_int_pnd_bm; u32 press_int_en_bm; u32 kdwn_int_en_bm; u32 press_time_bm; u32 reset_en_bm; u32 reset_time_bm; }; struct atc260x_onkey { struct atc260x *atc260x; const struct atc260x_onkey_params *params; struct input_dev *input_dev; struct delayed_work work; int irq; }; static const struct atc260x_onkey_params atc2603c_onkey_params = { .reg_int_ctl = ATC2603C_PMU_SYS_CTL2, .long_int_pnd_bm = ATC2603C_PMU_SYS_CTL2_ONOFF_LONG_PRESS, .short_int_pnd_bm = ATC2603C_PMU_SYS_CTL2_ONOFF_SHORT_PRESS, .kdwn_int_pnd_bm = ATC2603C_PMU_SYS_CTL2_ONOFF_PRESS_PD, .press_int_en_bm = ATC2603C_PMU_SYS_CTL2_ONOFF_INT_EN, .kdwn_int_en_bm = ATC2603C_PMU_SYS_CTL2_ONOFF_PRESS_INT_EN, .kdwn_state_bm = ATC2603C_PMU_SYS_CTL2_ONOFF_PRESS, .press_time_bm = ATC2603C_PMU_SYS_CTL2_ONOFF_PRESS_TIME, .reset_en_bm = ATC2603C_PMU_SYS_CTL2_ONOFF_PRESS_RESET_EN, .reset_time_bm = ATC2603C_PMU_SYS_CTL2_ONOFF_RESET_TIME_SEL, }; static const struct atc260x_onkey_params atc2609a_onkey_params = { .reg_int_ctl = ATC2609A_PMU_SYS_CTL2, .long_int_pnd_bm = ATC2609A_PMU_SYS_CTL2_ONOFF_LONG_PRESS, .short_int_pnd_bm = ATC2609A_PMU_SYS_CTL2_ONOFF_SHORT_PRESS, .kdwn_int_pnd_bm = ATC2609A_PMU_SYS_CTL2_ONOFF_PRESS_PD, .press_int_en_bm = ATC2609A_PMU_SYS_CTL2_ONOFF_LSP_INT_EN, .kdwn_int_en_bm = ATC2609A_PMU_SYS_CTL2_ONOFF_PRESS_INT_EN, .kdwn_state_bm = ATC2609A_PMU_SYS_CTL2_ONOFF_PRESS, .press_time_bm = ATC2609A_PMU_SYS_CTL2_ONOFF_PRESS_TIME, .reset_en_bm = ATC2609A_PMU_SYS_CTL2_ONOFF_RESET_EN, .reset_time_bm = ATC2609A_PMU_SYS_CTL2_ONOFF_RESET_TIME_SEL, }; static int atc2603x_onkey_hw_init(struct atc260x_onkey *onkey, enum atc260x_onkey_reset_status reset_status, u32 reset_time, u32 press_time) { u32 reg_bm, reg_val; reg_bm = onkey->params->long_int_pnd_bm | onkey->params->short_int_pnd_bm | onkey->params->kdwn_int_pnd_bm | onkey->params->press_int_en_bm | onkey->params->kdwn_int_en_bm; reg_val = reg_bm | press_time; reg_bm |= onkey->params->press_time_bm; if (reset_status == KEY_RESET_DISABLED) { reg_bm |= onkey->params->reset_en_bm; } else if (reset_status == KEY_RESET_USER_SEL) { reg_bm |= onkey->params->reset_en_bm | onkey->params->reset_time_bm; reg_val |= onkey->params->reset_en_bm | reset_time; } return regmap_update_bits(onkey->atc260x->regmap, onkey->params->reg_int_ctl, reg_bm, reg_val); } static void atc260x_onkey_query(struct atc260x_onkey *onkey) { u32 reg_bits; int ret, key_down; ret = regmap_read(onkey->atc260x->regmap, onkey->params->reg_int_ctl, &key_down); if (ret) { key_down = 1; dev_err(onkey->atc260x->dev, "Failed to read onkey status: %d\n", ret); } else { key_down &= onkey->params->kdwn_state_bm; } /* * The hardware generates interrupt only when the onkey pin is * asserted. Hence, the deassertion of the pin is simulated through * work queue. */ if (key_down) { schedule_delayed_work(&onkey->work, msecs_to_jiffies(200)); return; } /* * The key-down status bit is cleared when the On/Off button * is released. */ input_report_key(onkey->input_dev, KEY_POWER, 0); input_sync(onkey->input_dev); reg_bits = onkey->params->long_int_pnd_bm | onkey->params->short_int_pnd_bm | onkey->params->kdwn_int_pnd_bm | onkey->params->press_int_en_bm | onkey->params->kdwn_int_en_bm; /* Clear key press pending events and enable key press interrupts. */ regmap_update_bits(onkey->atc260x->regmap, onkey->params->reg_int_ctl, reg_bits, reg_bits); } static void atc260x_onkey_work(struct work_struct *work) { struct atc260x_onkey *onkey = container_of(work, struct atc260x_onkey, work.work); atc260x_onkey_query(onkey); } static irqreturn_t atc260x_onkey_irq(int irq, void *data) { struct atc260x_onkey *onkey = data; int ret; /* Disable key press interrupts. */ ret = regmap_update_bits(onkey->atc260x->regmap, onkey->params->reg_int_ctl, onkey->params->press_int_en_bm | onkey->params->kdwn_int_en_bm, 0); if (ret) dev_err(onkey->atc260x->dev, "Failed to disable interrupts: %d\n", ret); input_report_key(onkey->input_dev, KEY_POWER, 1); input_sync(onkey->input_dev); atc260x_onkey_query(onkey); return IRQ_HANDLED; } static int atc260x_onkey_open(struct input_dev *dev) { struct atc260x_onkey *onkey = input_get_drvdata(dev); enable_irq(onkey->irq); return 0; } static void atc260x_onkey_close(struct input_dev *dev) { struct atc260x_onkey *onkey = input_get_drvdata(dev); disable_irq(onkey->irq); cancel_delayed_work_sync(&onkey->work); } static int atc260x_onkey_probe(struct platform_device *pdev) { struct atc260x *atc260x = dev_get_drvdata(pdev->dev.parent); struct atc260x_onkey *onkey; struct input_dev *input_dev; enum atc260x_onkey_reset_status reset_status; u32 press_time = KEY_PRESS_TIME_SEC, reset_time = 0; int val, error; onkey = devm_kzalloc(&pdev->dev, sizeof(*onkey), GFP_KERNEL); if (!onkey) return -ENOMEM; error = device_property_read_u32(pdev->dev.parent, "reset-time-sec", &val); if (error) { reset_status = KEY_RESET_HW_DEFAULT; } else if (val) { if (val < 6 || val > 12) { dev_err(&pdev->dev, "reset-time-sec out of range\n"); return -EINVAL; } reset_status = KEY_RESET_USER_SEL; reset_time = (val - 6) / 2; } else { reset_status = KEY_RESET_DISABLED; dev_dbg(&pdev->dev, "Disabled reset on long-press\n"); } switch (atc260x->ic_type) { case ATC2603C: onkey->params = &atc2603c_onkey_params; press_time = FIELD_PREP(ATC2603C_PMU_SYS_CTL2_ONOFF_PRESS_TIME, press_time); reset_time = FIELD_PREP(ATC2603C_PMU_SYS_CTL2_ONOFF_RESET_TIME_SEL, reset_time); break; case ATC2609A: onkey->params = &atc2609a_onkey_params; press_time = FIELD_PREP(ATC2609A_PMU_SYS_CTL2_ONOFF_PRESS_TIME, press_time); reset_time = FIELD_PREP(ATC2609A_PMU_SYS_CTL2_ONOFF_RESET_TIME_SEL, reset_time); break; default: dev_err(&pdev->dev, "OnKey not supported for ATC260x PMIC type: %u\n", atc260x->ic_type); return -EINVAL; } input_dev = devm_input_allocate_device(&pdev->dev); if (!input_dev) { dev_err(&pdev->dev, "Failed to allocate input device\n"); return -ENOMEM; } onkey->input_dev = input_dev; onkey->atc260x = atc260x; input_dev->name = "atc260x-onkey"; input_dev->phys = "atc260x-onkey/input0"; input_dev->open = atc260x_onkey_open; input_dev->close = atc260x_onkey_close; input_set_capability(input_dev, EV_KEY, KEY_POWER); input_set_drvdata(input_dev, onkey); INIT_DELAYED_WORK(&onkey->work, atc260x_onkey_work); onkey->irq = platform_get_irq(pdev, 0); if (onkey->irq < 0) return onkey->irq; error = devm_request_threaded_irq(&pdev->dev, onkey->irq, NULL, atc260x_onkey_irq, IRQF_ONESHOT, dev_name(&pdev->dev), onkey); if (error) { dev_err(&pdev->dev, "Failed to register IRQ %d: %d\n", onkey->irq, error); return error; } /* Keep IRQ disabled until atc260x_onkey_open() is called. */ disable_irq(onkey->irq); error = input_register_device(input_dev); if (error) { dev_err(&pdev->dev, "Failed to register input device: %d\n", error); return error; } error = atc2603x_onkey_hw_init(onkey, reset_status, reset_time, press_time); if (error) return error; device_init_wakeup(&pdev->dev, true); return 0; } static struct platform_driver atc260x_onkey_driver = { .probe = atc260x_onkey_probe, .driver = { .name = "atc260x-onkey", }, }; module_platform_driver(atc260x_onkey_driver); MODULE_DESCRIPTION("Onkey driver for ATC260x PMICs"); MODULE_AUTHOR("Cristian Ciocaltea <[email protected]>"); MODULE_LICENSE("GPL");
linux-master
drivers/input/misc/atc260x-onkey.c
/* * Xen para-virtual input device * * Copyright (C) 2005 Anthony Liguori <[email protected]> * Copyright (C) 2006-2008 Red Hat, Inc., Markus Armbruster <[email protected]> * * Based on linux/drivers/input/mouse/sermouse.c * * This file is subject to the terms and conditions of the GNU General Public * License. See the file COPYING in the main directory of this archive for * more details. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kernel.h> #include <linux/errno.h> #include <linux/module.h> #include <linux/input.h> #include <linux/input/mt.h> #include <linux/slab.h> #include <asm/xen/hypervisor.h> #include <xen/xen.h> #include <xen/events.h> #include <xen/page.h> #include <xen/grant_table.h> #include <xen/interface/grant_table.h> #include <xen/interface/io/fbif.h> #include <xen/interface/io/kbdif.h> #include <xen/xenbus.h> #include <xen/platform_pci.h> struct xenkbd_info { struct input_dev *kbd; struct input_dev *ptr; struct input_dev *mtouch; struct xenkbd_page *page; int gref; int irq; struct xenbus_device *xbdev; char phys[32]; /* current MT slot/contact ID we are injecting events in */ int mtouch_cur_contact_id; }; enum { KPARAM_X, KPARAM_Y, KPARAM_CNT }; static int ptr_size[KPARAM_CNT] = { XENFB_WIDTH, XENFB_HEIGHT }; module_param_array(ptr_size, int, NULL, 0444); MODULE_PARM_DESC(ptr_size, "Pointing device width, height in pixels (default 800,600)"); static void xenkbd_remove(struct xenbus_device *); static int xenkbd_connect_backend(struct xenbus_device *, struct xenkbd_info *); static void xenkbd_disconnect_backend(struct xenkbd_info *); /* * Note: if you need to send out events, see xenfb_do_update() for how * to do that. */ static void xenkbd_handle_motion_event(struct xenkbd_info *info, struct xenkbd_motion *motion) { if (unlikely(!info->ptr)) return; input_report_rel(info->ptr, REL_X, motion->rel_x); input_report_rel(info->ptr, REL_Y, motion->rel_y); if (motion->rel_z) input_report_rel(info->ptr, REL_WHEEL, -motion->rel_z); input_sync(info->ptr); } static void xenkbd_handle_position_event(struct xenkbd_info *info, struct xenkbd_position *pos) { if (unlikely(!info->ptr)) return; input_report_abs(info->ptr, ABS_X, pos->abs_x); input_report_abs(info->ptr, ABS_Y, pos->abs_y); if (pos->rel_z) input_report_rel(info->ptr, REL_WHEEL, -pos->rel_z); input_sync(info->ptr); } static void xenkbd_handle_key_event(struct xenkbd_info *info, struct xenkbd_key *key) { struct input_dev *dev; int value = key->pressed; if (test_bit(key->keycode, info->ptr->keybit)) { dev = info->ptr; } else if (test_bit(key->keycode, info->kbd->keybit)) { dev = info->kbd; if (key->pressed && test_bit(key->keycode, info->kbd->key)) value = 2; /* Mark as autorepeat */ } else { pr_warn("unhandled keycode 0x%x\n", key->keycode); return; } if (unlikely(!dev)) return; input_event(dev, EV_KEY, key->keycode, value); input_sync(dev); } static void xenkbd_handle_mt_event(struct xenkbd_info *info, struct xenkbd_mtouch *mtouch) { if (unlikely(!info->mtouch)) return; if (mtouch->contact_id != info->mtouch_cur_contact_id) { info->mtouch_cur_contact_id = mtouch->contact_id; input_mt_slot(info->mtouch, mtouch->contact_id); } switch (mtouch->event_type) { case XENKBD_MT_EV_DOWN: input_mt_report_slot_state(info->mtouch, MT_TOOL_FINGER, true); fallthrough; case XENKBD_MT_EV_MOTION: input_report_abs(info->mtouch, ABS_MT_POSITION_X, mtouch->u.pos.abs_x); input_report_abs(info->mtouch, ABS_MT_POSITION_Y, mtouch->u.pos.abs_y); break; case XENKBD_MT_EV_SHAPE: input_report_abs(info->mtouch, ABS_MT_TOUCH_MAJOR, mtouch->u.shape.major); input_report_abs(info->mtouch, ABS_MT_TOUCH_MINOR, mtouch->u.shape.minor); break; case XENKBD_MT_EV_ORIENT: input_report_abs(info->mtouch, ABS_MT_ORIENTATION, mtouch->u.orientation); break; case XENKBD_MT_EV_UP: input_mt_report_slot_inactive(info->mtouch); break; case XENKBD_MT_EV_SYN: input_mt_sync_frame(info->mtouch); input_sync(info->mtouch); break; } } static void xenkbd_handle_event(struct xenkbd_info *info, union xenkbd_in_event *event) { switch (event->type) { case XENKBD_TYPE_MOTION: xenkbd_handle_motion_event(info, &event->motion); break; case XENKBD_TYPE_KEY: xenkbd_handle_key_event(info, &event->key); break; case XENKBD_TYPE_POS: xenkbd_handle_position_event(info, &event->pos); break; case XENKBD_TYPE_MTOUCH: xenkbd_handle_mt_event(info, &event->mtouch); break; } } static irqreturn_t input_handler(int rq, void *dev_id) { struct xenkbd_info *info = dev_id; struct xenkbd_page *page = info->page; __u32 cons, prod; prod = page->in_prod; if (prod == page->in_cons) return IRQ_HANDLED; rmb(); /* ensure we see ring contents up to prod */ for (cons = page->in_cons; cons != prod; cons++) xenkbd_handle_event(info, &XENKBD_IN_RING_REF(page, cons)); mb(); /* ensure we got ring contents */ page->in_cons = cons; notify_remote_via_irq(info->irq); return IRQ_HANDLED; } static int xenkbd_probe(struct xenbus_device *dev, const struct xenbus_device_id *id) { int ret, i; bool with_mtouch, with_kbd, with_ptr; struct xenkbd_info *info; struct input_dev *kbd, *ptr, *mtouch; info = kzalloc(sizeof(*info), GFP_KERNEL); if (!info) { xenbus_dev_fatal(dev, -ENOMEM, "allocating info structure"); return -ENOMEM; } dev_set_drvdata(&dev->dev, info); info->xbdev = dev; info->irq = -1; info->gref = -1; snprintf(info->phys, sizeof(info->phys), "xenbus/%s", dev->nodename); info->page = (void *)__get_free_page(GFP_KERNEL | __GFP_ZERO); if (!info->page) goto error_nomem; /* * The below are reverse logic, e.g. if the feature is set, then * do not expose the corresponding virtual device. */ with_kbd = !xenbus_read_unsigned(dev->otherend, XENKBD_FIELD_FEAT_DSBL_KEYBRD, 0); with_ptr = !xenbus_read_unsigned(dev->otherend, XENKBD_FIELD_FEAT_DSBL_POINTER, 0); /* Direct logic: if set, then create multi-touch device. */ with_mtouch = xenbus_read_unsigned(dev->otherend, XENKBD_FIELD_FEAT_MTOUCH, 0); if (with_mtouch) { ret = xenbus_write(XBT_NIL, dev->nodename, XENKBD_FIELD_REQ_MTOUCH, "1"); if (ret) { pr_warn("xenkbd: can't request multi-touch"); with_mtouch = 0; } } /* keyboard */ if (with_kbd) { kbd = input_allocate_device(); if (!kbd) goto error_nomem; kbd->name = "Xen Virtual Keyboard"; kbd->phys = info->phys; kbd->id.bustype = BUS_PCI; kbd->id.vendor = 0x5853; kbd->id.product = 0xffff; __set_bit(EV_KEY, kbd->evbit); for (i = KEY_ESC; i < KEY_UNKNOWN; i++) __set_bit(i, kbd->keybit); for (i = KEY_OK; i < KEY_MAX; i++) __set_bit(i, kbd->keybit); ret = input_register_device(kbd); if (ret) { input_free_device(kbd); xenbus_dev_fatal(dev, ret, "input_register_device(kbd)"); goto error; } info->kbd = kbd; } /* pointing device */ if (with_ptr) { unsigned int abs; /* Set input abs params to match backend screen res */ abs = xenbus_read_unsigned(dev->otherend, XENKBD_FIELD_FEAT_ABS_POINTER, 0); ptr_size[KPARAM_X] = xenbus_read_unsigned(dev->otherend, XENKBD_FIELD_WIDTH, ptr_size[KPARAM_X]); ptr_size[KPARAM_Y] = xenbus_read_unsigned(dev->otherend, XENKBD_FIELD_HEIGHT, ptr_size[KPARAM_Y]); if (abs) { ret = xenbus_write(XBT_NIL, dev->nodename, XENKBD_FIELD_REQ_ABS_POINTER, "1"); if (ret) { pr_warn("xenkbd: can't request abs-pointer\n"); abs = 0; } } ptr = input_allocate_device(); if (!ptr) goto error_nomem; ptr->name = "Xen Virtual Pointer"; ptr->phys = info->phys; ptr->id.bustype = BUS_PCI; ptr->id.vendor = 0x5853; ptr->id.product = 0xfffe; if (abs) { __set_bit(EV_ABS, ptr->evbit); input_set_abs_params(ptr, ABS_X, 0, ptr_size[KPARAM_X], 0, 0); input_set_abs_params(ptr, ABS_Y, 0, ptr_size[KPARAM_Y], 0, 0); } else { input_set_capability(ptr, EV_REL, REL_X); input_set_capability(ptr, EV_REL, REL_Y); } input_set_capability(ptr, EV_REL, REL_WHEEL); __set_bit(EV_KEY, ptr->evbit); for (i = BTN_LEFT; i <= BTN_TASK; i++) __set_bit(i, ptr->keybit); ret = input_register_device(ptr); if (ret) { input_free_device(ptr); xenbus_dev_fatal(dev, ret, "input_register_device(ptr)"); goto error; } info->ptr = ptr; } /* multi-touch device */ if (with_mtouch) { int num_cont, width, height; mtouch = input_allocate_device(); if (!mtouch) goto error_nomem; num_cont = xenbus_read_unsigned(info->xbdev->otherend, XENKBD_FIELD_MT_NUM_CONTACTS, 1); width = xenbus_read_unsigned(info->xbdev->otherend, XENKBD_FIELD_MT_WIDTH, XENFB_WIDTH); height = xenbus_read_unsigned(info->xbdev->otherend, XENKBD_FIELD_MT_HEIGHT, XENFB_HEIGHT); mtouch->name = "Xen Virtual Multi-touch"; mtouch->phys = info->phys; mtouch->id.bustype = BUS_PCI; mtouch->id.vendor = 0x5853; mtouch->id.product = 0xfffd; input_set_abs_params(mtouch, ABS_MT_TOUCH_MAJOR, 0, 255, 0, 0); input_set_abs_params(mtouch, ABS_MT_POSITION_X, 0, width, 0, 0); input_set_abs_params(mtouch, ABS_MT_POSITION_Y, 0, height, 0, 0); ret = input_mt_init_slots(mtouch, num_cont, INPUT_MT_DIRECT); if (ret) { input_free_device(mtouch); xenbus_dev_fatal(info->xbdev, ret, "input_mt_init_slots"); goto error; } ret = input_register_device(mtouch); if (ret) { input_free_device(mtouch); xenbus_dev_fatal(info->xbdev, ret, "input_register_device(mtouch)"); goto error; } info->mtouch_cur_contact_id = -1; info->mtouch = mtouch; } if (!(with_kbd || with_ptr || with_mtouch)) { ret = -ENXIO; goto error; } ret = xenkbd_connect_backend(dev, info); if (ret < 0) goto error; return 0; error_nomem: ret = -ENOMEM; xenbus_dev_fatal(dev, ret, "allocating device memory"); error: xenkbd_remove(dev); return ret; } static int xenkbd_resume(struct xenbus_device *dev) { struct xenkbd_info *info = dev_get_drvdata(&dev->dev); xenkbd_disconnect_backend(info); memset(info->page, 0, PAGE_SIZE); return xenkbd_connect_backend(dev, info); } static void xenkbd_remove(struct xenbus_device *dev) { struct xenkbd_info *info = dev_get_drvdata(&dev->dev); xenkbd_disconnect_backend(info); if (info->kbd) input_unregister_device(info->kbd); if (info->ptr) input_unregister_device(info->ptr); if (info->mtouch) input_unregister_device(info->mtouch); free_page((unsigned long)info->page); kfree(info); } static int xenkbd_connect_backend(struct xenbus_device *dev, struct xenkbd_info *info) { int ret, evtchn; struct xenbus_transaction xbt; ret = gnttab_grant_foreign_access(dev->otherend_id, virt_to_gfn(info->page), 0); if (ret < 0) return ret; info->gref = ret; ret = xenbus_alloc_evtchn(dev, &evtchn); if (ret) goto error_grant; ret = bind_evtchn_to_irqhandler(evtchn, input_handler, 0, dev->devicetype, info); if (ret < 0) { xenbus_dev_fatal(dev, ret, "bind_evtchn_to_irqhandler"); goto error_evtchan; } info->irq = ret; again: ret = xenbus_transaction_start(&xbt); if (ret) { xenbus_dev_fatal(dev, ret, "starting transaction"); goto error_irqh; } ret = xenbus_printf(xbt, dev->nodename, XENKBD_FIELD_RING_REF, "%lu", virt_to_gfn(info->page)); if (ret) goto error_xenbus; ret = xenbus_printf(xbt, dev->nodename, XENKBD_FIELD_RING_GREF, "%u", info->gref); if (ret) goto error_xenbus; ret = xenbus_printf(xbt, dev->nodename, XENKBD_FIELD_EVT_CHANNEL, "%u", evtchn); if (ret) goto error_xenbus; ret = xenbus_transaction_end(xbt, 0); if (ret) { if (ret == -EAGAIN) goto again; xenbus_dev_fatal(dev, ret, "completing transaction"); goto error_irqh; } xenbus_switch_state(dev, XenbusStateInitialised); return 0; error_xenbus: xenbus_transaction_end(xbt, 1); xenbus_dev_fatal(dev, ret, "writing xenstore"); error_irqh: unbind_from_irqhandler(info->irq, info); info->irq = -1; error_evtchan: xenbus_free_evtchn(dev, evtchn); error_grant: gnttab_end_foreign_access(info->gref, NULL); info->gref = -1; return ret; } static void xenkbd_disconnect_backend(struct xenkbd_info *info) { if (info->irq >= 0) unbind_from_irqhandler(info->irq, info); info->irq = -1; if (info->gref >= 0) gnttab_end_foreign_access(info->gref, NULL); info->gref = -1; } static void xenkbd_backend_changed(struct xenbus_device *dev, enum xenbus_state backend_state) { switch (backend_state) { case XenbusStateInitialising: case XenbusStateInitialised: case XenbusStateReconfiguring: case XenbusStateReconfigured: case XenbusStateUnknown: break; case XenbusStateInitWait: xenbus_switch_state(dev, XenbusStateConnected); break; case XenbusStateConnected: /* * Work around xenbus race condition: If backend goes * through InitWait to Connected fast enough, we can * get Connected twice here. */ if (dev->state != XenbusStateConnected) xenbus_switch_state(dev, XenbusStateConnected); break; case XenbusStateClosed: if (dev->state == XenbusStateClosed) break; fallthrough; /* Missed the backend's CLOSING state */ case XenbusStateClosing: xenbus_frontend_closed(dev); break; } } static const struct xenbus_device_id xenkbd_ids[] = { { XENKBD_DRIVER_NAME }, { "" } }; static struct xenbus_driver xenkbd_driver = { .ids = xenkbd_ids, .probe = xenkbd_probe, .remove = xenkbd_remove, .resume = xenkbd_resume, .otherend_changed = xenkbd_backend_changed, .not_essential = true, }; static int __init xenkbd_init(void) { if (!xen_domain()) return -ENODEV; /* Nothing to do if running in dom0. */ if (xen_initial_domain()) return -ENODEV; if (!xen_has_pv_devices()) return -ENODEV; return xenbus_register_frontend(&xenkbd_driver); } static void __exit xenkbd_cleanup(void) { xenbus_unregister_driver(&xenkbd_driver); } module_init(xenkbd_init); module_exit(xenkbd_cleanup); MODULE_DESCRIPTION("Xen virtual keyboard/pointer device frontend"); MODULE_LICENSE("GPL"); MODULE_ALIAS("xen:" XENKBD_DRIVER_NAME);
linux-master
drivers/input/misc/xen-kbdfront.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * ADXL345/346 Three-Axis Digital Accelerometers * * Enter bugs at http://blackfin.uclinux.org/ * * Copyright (C) 2009 Michael Hennerich, Analog Devices Inc. */ #include <linux/device.h> #include <linux/delay.h> #include <linux/input.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/slab.h> #include <linux/workqueue.h> #include <linux/input/adxl34x.h> #include <linux/module.h> #include "adxl34x.h" /* ADXL345/6 Register Map */ #define DEVID 0x00 /* R Device ID */ #define THRESH_TAP 0x1D /* R/W Tap threshold */ #define OFSX 0x1E /* R/W X-axis offset */ #define OFSY 0x1F /* R/W Y-axis offset */ #define OFSZ 0x20 /* R/W Z-axis offset */ #define DUR 0x21 /* R/W Tap duration */ #define LATENT 0x22 /* R/W Tap latency */ #define WINDOW 0x23 /* R/W Tap window */ #define THRESH_ACT 0x24 /* R/W Activity threshold */ #define THRESH_INACT 0x25 /* R/W Inactivity threshold */ #define TIME_INACT 0x26 /* R/W Inactivity time */ #define ACT_INACT_CTL 0x27 /* R/W Axis enable control for activity and */ /* inactivity detection */ #define THRESH_FF 0x28 /* R/W Free-fall threshold */ #define TIME_FF 0x29 /* R/W Free-fall time */ #define TAP_AXES 0x2A /* R/W Axis control for tap/double tap */ #define ACT_TAP_STATUS 0x2B /* R Source of tap/double tap */ #define BW_RATE 0x2C /* R/W Data rate and power mode control */ #define POWER_CTL 0x2D /* R/W Power saving features control */ #define INT_ENABLE 0x2E /* R/W Interrupt enable control */ #define INT_MAP 0x2F /* R/W Interrupt mapping control */ #define INT_SOURCE 0x30 /* R Source of interrupts */ #define DATA_FORMAT 0x31 /* R/W Data format control */ #define DATAX0 0x32 /* R X-Axis Data 0 */ #define DATAX1 0x33 /* R X-Axis Data 1 */ #define DATAY0 0x34 /* R Y-Axis Data 0 */ #define DATAY1 0x35 /* R Y-Axis Data 1 */ #define DATAZ0 0x36 /* R Z-Axis Data 0 */ #define DATAZ1 0x37 /* R Z-Axis Data 1 */ #define FIFO_CTL 0x38 /* R/W FIFO control */ #define FIFO_STATUS 0x39 /* R FIFO status */ #define TAP_SIGN 0x3A /* R Sign and source for tap/double tap */ /* Orientation ADXL346 only */ #define ORIENT_CONF 0x3B /* R/W Orientation configuration */ #define ORIENT 0x3C /* R Orientation status */ /* DEVIDs */ #define ID_ADXL345 0xE5 #define ID_ADXL346 0xE6 /* INT_ENABLE/INT_MAP/INT_SOURCE Bits */ #define DATA_READY (1 << 7) #define SINGLE_TAP (1 << 6) #define DOUBLE_TAP (1 << 5) #define ACTIVITY (1 << 4) #define INACTIVITY (1 << 3) #define FREE_FALL (1 << 2) #define WATERMARK (1 << 1) #define OVERRUN (1 << 0) /* ACT_INACT_CONTROL Bits */ #define ACT_ACDC (1 << 7) #define ACT_X_EN (1 << 6) #define ACT_Y_EN (1 << 5) #define ACT_Z_EN (1 << 4) #define INACT_ACDC (1 << 3) #define INACT_X_EN (1 << 2) #define INACT_Y_EN (1 << 1) #define INACT_Z_EN (1 << 0) /* TAP_AXES Bits */ #define SUPPRESS (1 << 3) #define TAP_X_EN (1 << 2) #define TAP_Y_EN (1 << 1) #define TAP_Z_EN (1 << 0) /* ACT_TAP_STATUS Bits */ #define ACT_X_SRC (1 << 6) #define ACT_Y_SRC (1 << 5) #define ACT_Z_SRC (1 << 4) #define ASLEEP (1 << 3) #define TAP_X_SRC (1 << 2) #define TAP_Y_SRC (1 << 1) #define TAP_Z_SRC (1 << 0) /* BW_RATE Bits */ #define LOW_POWER (1 << 4) #define RATE(x) ((x) & 0xF) /* POWER_CTL Bits */ #define PCTL_LINK (1 << 5) #define PCTL_AUTO_SLEEP (1 << 4) #define PCTL_MEASURE (1 << 3) #define PCTL_SLEEP (1 << 2) #define PCTL_WAKEUP(x) ((x) & 0x3) /* DATA_FORMAT Bits */ #define SELF_TEST (1 << 7) #define SPI (1 << 6) #define INT_INVERT (1 << 5) #define FULL_RES (1 << 3) #define JUSTIFY (1 << 2) #define RANGE(x) ((x) & 0x3) #define RANGE_PM_2g 0 #define RANGE_PM_4g 1 #define RANGE_PM_8g 2 #define RANGE_PM_16g 3 /* * Maximum value our axis may get in full res mode for the input device * (signed 13 bits) */ #define ADXL_FULLRES_MAX_VAL 4096 /* * Maximum value our axis may get in fixed res mode for the input device * (signed 10 bits) */ #define ADXL_FIXEDRES_MAX_VAL 512 /* FIFO_CTL Bits */ #define FIFO_MODE(x) (((x) & 0x3) << 6) #define FIFO_BYPASS 0 #define FIFO_FIFO 1 #define FIFO_STREAM 2 #define FIFO_TRIGGER 3 #define TRIGGER (1 << 5) #define SAMPLES(x) ((x) & 0x1F) /* FIFO_STATUS Bits */ #define FIFO_TRIG (1 << 7) #define ENTRIES(x) ((x) & 0x3F) /* TAP_SIGN Bits ADXL346 only */ #define XSIGN (1 << 6) #define YSIGN (1 << 5) #define ZSIGN (1 << 4) #define XTAP (1 << 3) #define YTAP (1 << 2) #define ZTAP (1 << 1) /* ORIENT_CONF ADXL346 only */ #define ORIENT_DEADZONE(x) (((x) & 0x7) << 4) #define ORIENT_DIVISOR(x) ((x) & 0x7) /* ORIENT ADXL346 only */ #define ADXL346_2D_VALID (1 << 6) #define ADXL346_2D_ORIENT(x) (((x) & 0x30) >> 4) #define ADXL346_3D_VALID (1 << 3) #define ADXL346_3D_ORIENT(x) ((x) & 0x7) #define ADXL346_2D_PORTRAIT_POS 0 /* +X */ #define ADXL346_2D_PORTRAIT_NEG 1 /* -X */ #define ADXL346_2D_LANDSCAPE_POS 2 /* +Y */ #define ADXL346_2D_LANDSCAPE_NEG 3 /* -Y */ #define ADXL346_3D_FRONT 3 /* +X */ #define ADXL346_3D_BACK 4 /* -X */ #define ADXL346_3D_RIGHT 2 /* +Y */ #define ADXL346_3D_LEFT 5 /* -Y */ #define ADXL346_3D_TOP 1 /* +Z */ #define ADXL346_3D_BOTTOM 6 /* -Z */ #undef ADXL_DEBUG #define ADXL_X_AXIS 0 #define ADXL_Y_AXIS 1 #define ADXL_Z_AXIS 2 #define AC_READ(ac, reg) ((ac)->bops->read((ac)->dev, reg)) #define AC_WRITE(ac, reg, val) ((ac)->bops->write((ac)->dev, reg, val)) struct axis_triple { int x; int y; int z; }; struct adxl34x { struct device *dev; struct input_dev *input; struct mutex mutex; /* reentrant protection for struct */ struct adxl34x_platform_data pdata; struct axis_triple swcal; struct axis_triple hwcal; struct axis_triple saved; char phys[32]; unsigned orient2d_saved; unsigned orient3d_saved; bool disabled; /* P: mutex */ bool opened; /* P: mutex */ bool suspended; /* P: mutex */ bool fifo_delay; int irq; unsigned model; unsigned int_mask; const struct adxl34x_bus_ops *bops; }; static const struct adxl34x_platform_data adxl34x_default_init = { .tap_threshold = 35, .tap_duration = 3, .tap_latency = 20, .tap_window = 20, .tap_axis_control = ADXL_TAP_X_EN | ADXL_TAP_Y_EN | ADXL_TAP_Z_EN, .act_axis_control = 0xFF, .activity_threshold = 6, .inactivity_threshold = 4, .inactivity_time = 3, .free_fall_threshold = 8, .free_fall_time = 0x20, .data_rate = 8, .data_range = ADXL_FULL_RES, .ev_type = EV_ABS, .ev_code_x = ABS_X, /* EV_REL */ .ev_code_y = ABS_Y, /* EV_REL */ .ev_code_z = ABS_Z, /* EV_REL */ .ev_code_tap = {BTN_TOUCH, BTN_TOUCH, BTN_TOUCH}, /* EV_KEY {x,y,z} */ .power_mode = ADXL_AUTO_SLEEP | ADXL_LINK, .fifo_mode = ADXL_FIFO_STREAM, .watermark = 0, }; static void adxl34x_get_triple(struct adxl34x *ac, struct axis_triple *axis) { __le16 buf[3]; ac->bops->read_block(ac->dev, DATAX0, DATAZ1 - DATAX0 + 1, buf); mutex_lock(&ac->mutex); ac->saved.x = (s16) le16_to_cpu(buf[0]); axis->x = ac->saved.x; ac->saved.y = (s16) le16_to_cpu(buf[1]); axis->y = ac->saved.y; ac->saved.z = (s16) le16_to_cpu(buf[2]); axis->z = ac->saved.z; mutex_unlock(&ac->mutex); } static void adxl34x_service_ev_fifo(struct adxl34x *ac) { struct adxl34x_platform_data *pdata = &ac->pdata; struct axis_triple axis; adxl34x_get_triple(ac, &axis); input_event(ac->input, pdata->ev_type, pdata->ev_code_x, axis.x - ac->swcal.x); input_event(ac->input, pdata->ev_type, pdata->ev_code_y, axis.y - ac->swcal.y); input_event(ac->input, pdata->ev_type, pdata->ev_code_z, axis.z - ac->swcal.z); } static void adxl34x_report_key_single(struct input_dev *input, int key) { input_report_key(input, key, true); input_sync(input); input_report_key(input, key, false); } static void adxl34x_send_key_events(struct adxl34x *ac, struct adxl34x_platform_data *pdata, int status, int press) { int i; for (i = ADXL_X_AXIS; i <= ADXL_Z_AXIS; i++) { if (status & (1 << (ADXL_Z_AXIS - i))) input_report_key(ac->input, pdata->ev_code_tap[i], press); } } static void adxl34x_do_tap(struct adxl34x *ac, struct adxl34x_platform_data *pdata, int status) { adxl34x_send_key_events(ac, pdata, status, true); input_sync(ac->input); adxl34x_send_key_events(ac, pdata, status, false); } static irqreturn_t adxl34x_irq(int irq, void *handle) { struct adxl34x *ac = handle; struct adxl34x_platform_data *pdata = &ac->pdata; int int_stat, tap_stat, samples, orient, orient_code; /* * ACT_TAP_STATUS should be read before clearing the interrupt * Avoid reading ACT_TAP_STATUS in case TAP detection is disabled */ if (pdata->tap_axis_control & (TAP_X_EN | TAP_Y_EN | TAP_Z_EN)) tap_stat = AC_READ(ac, ACT_TAP_STATUS); else tap_stat = 0; int_stat = AC_READ(ac, INT_SOURCE); if (int_stat & FREE_FALL) adxl34x_report_key_single(ac->input, pdata->ev_code_ff); if (int_stat & OVERRUN) dev_dbg(ac->dev, "OVERRUN\n"); if (int_stat & (SINGLE_TAP | DOUBLE_TAP)) { adxl34x_do_tap(ac, pdata, tap_stat); if (int_stat & DOUBLE_TAP) adxl34x_do_tap(ac, pdata, tap_stat); } if (pdata->ev_code_act_inactivity) { if (int_stat & ACTIVITY) input_report_key(ac->input, pdata->ev_code_act_inactivity, 1); if (int_stat & INACTIVITY) input_report_key(ac->input, pdata->ev_code_act_inactivity, 0); } /* * ORIENTATION SENSING ADXL346 only */ if (pdata->orientation_enable) { orient = AC_READ(ac, ORIENT); if ((pdata->orientation_enable & ADXL_EN_ORIENTATION_2D) && (orient & ADXL346_2D_VALID)) { orient_code = ADXL346_2D_ORIENT(orient); /* Report orientation only when it changes */ if (ac->orient2d_saved != orient_code) { ac->orient2d_saved = orient_code; adxl34x_report_key_single(ac->input, pdata->ev_codes_orient_2d[orient_code]); } } if ((pdata->orientation_enable & ADXL_EN_ORIENTATION_3D) && (orient & ADXL346_3D_VALID)) { orient_code = ADXL346_3D_ORIENT(orient) - 1; /* Report orientation only when it changes */ if (ac->orient3d_saved != orient_code) { ac->orient3d_saved = orient_code; adxl34x_report_key_single(ac->input, pdata->ev_codes_orient_3d[orient_code]); } } } if (int_stat & (DATA_READY | WATERMARK)) { if (pdata->fifo_mode) samples = ENTRIES(AC_READ(ac, FIFO_STATUS)) + 1; else samples = 1; for (; samples > 0; samples--) { adxl34x_service_ev_fifo(ac); /* * To ensure that the FIFO has * completely popped, there must be at least 5 us between * the end of reading the data registers, signified by the * transition to register 0x38 from 0x37 or the CS pin * going high, and the start of new reads of the FIFO or * reading the FIFO_STATUS register. For SPI operation at * 1.5 MHz or lower, the register addressing portion of the * transmission is sufficient delay to ensure the FIFO has * completely popped. It is necessary for SPI operation * greater than 1.5 MHz to de-assert the CS pin to ensure a * total of 5 us, which is at most 3.4 us at 5 MHz * operation. */ if (ac->fifo_delay && (samples > 1)) udelay(3); } } input_sync(ac->input); return IRQ_HANDLED; } static void __adxl34x_disable(struct adxl34x *ac) { /* * A '0' places the ADXL34x into standby mode * with minimum power consumption. */ AC_WRITE(ac, POWER_CTL, 0); } static void __adxl34x_enable(struct adxl34x *ac) { AC_WRITE(ac, POWER_CTL, ac->pdata.power_mode | PCTL_MEASURE); } static int adxl34x_suspend(struct device *dev) { struct adxl34x *ac = dev_get_drvdata(dev); mutex_lock(&ac->mutex); if (!ac->suspended && !ac->disabled && ac->opened) __adxl34x_disable(ac); ac->suspended = true; mutex_unlock(&ac->mutex); return 0; } static int adxl34x_resume(struct device *dev) { struct adxl34x *ac = dev_get_drvdata(dev); mutex_lock(&ac->mutex); if (ac->suspended && !ac->disabled && ac->opened) __adxl34x_enable(ac); ac->suspended = false; mutex_unlock(&ac->mutex); return 0; } static ssize_t adxl34x_disable_show(struct device *dev, struct device_attribute *attr, char *buf) { struct adxl34x *ac = dev_get_drvdata(dev); return sprintf(buf, "%u\n", ac->disabled); } static ssize_t adxl34x_disable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct adxl34x *ac = dev_get_drvdata(dev); unsigned int val; int error; error = kstrtouint(buf, 10, &val); if (error) return error; mutex_lock(&ac->mutex); if (!ac->suspended && ac->opened) { if (val) { if (!ac->disabled) __adxl34x_disable(ac); } else { if (ac->disabled) __adxl34x_enable(ac); } } ac->disabled = !!val; mutex_unlock(&ac->mutex); return count; } static DEVICE_ATTR(disable, 0664, adxl34x_disable_show, adxl34x_disable_store); static ssize_t adxl34x_calibrate_show(struct device *dev, struct device_attribute *attr, char *buf) { struct adxl34x *ac = dev_get_drvdata(dev); ssize_t count; mutex_lock(&ac->mutex); count = sprintf(buf, "%d,%d,%d\n", ac->hwcal.x * 4 + ac->swcal.x, ac->hwcal.y * 4 + ac->swcal.y, ac->hwcal.z * 4 + ac->swcal.z); mutex_unlock(&ac->mutex); return count; } static ssize_t adxl34x_calibrate_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct adxl34x *ac = dev_get_drvdata(dev); /* * Hardware offset calibration has a resolution of 15.6 mg/LSB. * We use HW calibration and handle the remaining bits in SW. (4mg/LSB) */ mutex_lock(&ac->mutex); ac->hwcal.x -= (ac->saved.x / 4); ac->swcal.x = ac->saved.x % 4; ac->hwcal.y -= (ac->saved.y / 4); ac->swcal.y = ac->saved.y % 4; ac->hwcal.z -= (ac->saved.z / 4); ac->swcal.z = ac->saved.z % 4; AC_WRITE(ac, OFSX, (s8) ac->hwcal.x); AC_WRITE(ac, OFSY, (s8) ac->hwcal.y); AC_WRITE(ac, OFSZ, (s8) ac->hwcal.z); mutex_unlock(&ac->mutex); return count; } static DEVICE_ATTR(calibrate, 0664, adxl34x_calibrate_show, adxl34x_calibrate_store); static ssize_t adxl34x_rate_show(struct device *dev, struct device_attribute *attr, char *buf) { struct adxl34x *ac = dev_get_drvdata(dev); return sprintf(buf, "%u\n", RATE(ac->pdata.data_rate)); } static ssize_t adxl34x_rate_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct adxl34x *ac = dev_get_drvdata(dev); unsigned char val; int error; error = kstrtou8(buf, 10, &val); if (error) return error; mutex_lock(&ac->mutex); ac->pdata.data_rate = RATE(val); AC_WRITE(ac, BW_RATE, ac->pdata.data_rate | (ac->pdata.low_power_mode ? LOW_POWER : 0)); mutex_unlock(&ac->mutex); return count; } static DEVICE_ATTR(rate, 0664, adxl34x_rate_show, adxl34x_rate_store); static ssize_t adxl34x_autosleep_show(struct device *dev, struct device_attribute *attr, char *buf) { struct adxl34x *ac = dev_get_drvdata(dev); return sprintf(buf, "%u\n", ac->pdata.power_mode & (PCTL_AUTO_SLEEP | PCTL_LINK) ? 1 : 0); } static ssize_t adxl34x_autosleep_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct adxl34x *ac = dev_get_drvdata(dev); unsigned int val; int error; error = kstrtouint(buf, 10, &val); if (error) return error; mutex_lock(&ac->mutex); if (val) ac->pdata.power_mode |= (PCTL_AUTO_SLEEP | PCTL_LINK); else ac->pdata.power_mode &= ~(PCTL_AUTO_SLEEP | PCTL_LINK); if (!ac->disabled && !ac->suspended && ac->opened) AC_WRITE(ac, POWER_CTL, ac->pdata.power_mode | PCTL_MEASURE); mutex_unlock(&ac->mutex); return count; } static DEVICE_ATTR(autosleep, 0664, adxl34x_autosleep_show, adxl34x_autosleep_store); static ssize_t adxl34x_position_show(struct device *dev, struct device_attribute *attr, char *buf) { struct adxl34x *ac = dev_get_drvdata(dev); ssize_t count; mutex_lock(&ac->mutex); count = sprintf(buf, "(%d, %d, %d)\n", ac->saved.x, ac->saved.y, ac->saved.z); mutex_unlock(&ac->mutex); return count; } static DEVICE_ATTR(position, S_IRUGO, adxl34x_position_show, NULL); #ifdef ADXL_DEBUG static ssize_t adxl34x_write_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct adxl34x *ac = dev_get_drvdata(dev); unsigned int val; int error; /* * This allows basic ADXL register write access for debug purposes. */ error = kstrtouint(buf, 16, &val); if (error) return error; mutex_lock(&ac->mutex); AC_WRITE(ac, val >> 8, val & 0xFF); mutex_unlock(&ac->mutex); return count; } static DEVICE_ATTR(write, 0664, NULL, adxl34x_write_store); #endif static struct attribute *adxl34x_attributes[] = { &dev_attr_disable.attr, &dev_attr_calibrate.attr, &dev_attr_rate.attr, &dev_attr_autosleep.attr, &dev_attr_position.attr, #ifdef ADXL_DEBUG &dev_attr_write.attr, #endif NULL }; static const struct attribute_group adxl34x_attr_group = { .attrs = adxl34x_attributes, }; static int adxl34x_input_open(struct input_dev *input) { struct adxl34x *ac = input_get_drvdata(input); mutex_lock(&ac->mutex); if (!ac->suspended && !ac->disabled) __adxl34x_enable(ac); ac->opened = true; mutex_unlock(&ac->mutex); return 0; } static void adxl34x_input_close(struct input_dev *input) { struct adxl34x *ac = input_get_drvdata(input); mutex_lock(&ac->mutex); if (!ac->suspended && !ac->disabled) __adxl34x_disable(ac); ac->opened = false; mutex_unlock(&ac->mutex); } struct adxl34x *adxl34x_probe(struct device *dev, int irq, bool fifo_delay_default, const struct adxl34x_bus_ops *bops) { struct adxl34x *ac; struct input_dev *input_dev; const struct adxl34x_platform_data *pdata; int err, range, i; int revid; if (!irq) { dev_err(dev, "no IRQ?\n"); err = -ENODEV; goto err_out; } ac = kzalloc(sizeof(*ac), GFP_KERNEL); input_dev = input_allocate_device(); if (!ac || !input_dev) { err = -ENOMEM; goto err_free_mem; } ac->fifo_delay = fifo_delay_default; pdata = dev_get_platdata(dev); if (!pdata) { dev_dbg(dev, "No platform data: Using default initialization\n"); pdata = &adxl34x_default_init; } ac->pdata = *pdata; pdata = &ac->pdata; ac->input = input_dev; ac->dev = dev; ac->irq = irq; ac->bops = bops; mutex_init(&ac->mutex); input_dev->name = "ADXL34x accelerometer"; revid = AC_READ(ac, DEVID); switch (revid) { case ID_ADXL345: ac->model = 345; break; case ID_ADXL346: ac->model = 346; break; default: dev_err(dev, "Failed to probe %s\n", input_dev->name); err = -ENODEV; goto err_free_mem; } snprintf(ac->phys, sizeof(ac->phys), "%s/input0", dev_name(dev)); input_dev->phys = ac->phys; input_dev->dev.parent = dev; input_dev->id.product = ac->model; input_dev->id.bustype = bops->bustype; input_dev->open = adxl34x_input_open; input_dev->close = adxl34x_input_close; input_set_drvdata(input_dev, ac); __set_bit(ac->pdata.ev_type, input_dev->evbit); if (ac->pdata.ev_type == EV_REL) { __set_bit(REL_X, input_dev->relbit); __set_bit(REL_Y, input_dev->relbit); __set_bit(REL_Z, input_dev->relbit); } else { /* EV_ABS */ __set_bit(ABS_X, input_dev->absbit); __set_bit(ABS_Y, input_dev->absbit); __set_bit(ABS_Z, input_dev->absbit); if (pdata->data_range & FULL_RES) range = ADXL_FULLRES_MAX_VAL; /* Signed 13-bit */ else range = ADXL_FIXEDRES_MAX_VAL; /* Signed 10-bit */ input_set_abs_params(input_dev, ABS_X, -range, range, 3, 3); input_set_abs_params(input_dev, ABS_Y, -range, range, 3, 3); input_set_abs_params(input_dev, ABS_Z, -range, range, 3, 3); } __set_bit(EV_KEY, input_dev->evbit); __set_bit(pdata->ev_code_tap[ADXL_X_AXIS], input_dev->keybit); __set_bit(pdata->ev_code_tap[ADXL_Y_AXIS], input_dev->keybit); __set_bit(pdata->ev_code_tap[ADXL_Z_AXIS], input_dev->keybit); if (pdata->ev_code_ff) { ac->int_mask = FREE_FALL; __set_bit(pdata->ev_code_ff, input_dev->keybit); } if (pdata->ev_code_act_inactivity) __set_bit(pdata->ev_code_act_inactivity, input_dev->keybit); ac->int_mask |= ACTIVITY | INACTIVITY; if (pdata->watermark) { ac->int_mask |= WATERMARK; if (FIFO_MODE(pdata->fifo_mode) == FIFO_BYPASS) ac->pdata.fifo_mode |= FIFO_STREAM; } else { ac->int_mask |= DATA_READY; } if (pdata->tap_axis_control & (TAP_X_EN | TAP_Y_EN | TAP_Z_EN)) ac->int_mask |= SINGLE_TAP | DOUBLE_TAP; if (FIFO_MODE(pdata->fifo_mode) == FIFO_BYPASS) ac->fifo_delay = false; AC_WRITE(ac, POWER_CTL, 0); err = request_threaded_irq(ac->irq, NULL, adxl34x_irq, IRQF_ONESHOT, dev_name(dev), ac); if (err) { dev_err(dev, "irq %d busy?\n", ac->irq); goto err_free_mem; } err = sysfs_create_group(&dev->kobj, &adxl34x_attr_group); if (err) goto err_free_irq; err = input_register_device(input_dev); if (err) goto err_remove_attr; AC_WRITE(ac, OFSX, pdata->x_axis_offset); ac->hwcal.x = pdata->x_axis_offset; AC_WRITE(ac, OFSY, pdata->y_axis_offset); ac->hwcal.y = pdata->y_axis_offset; AC_WRITE(ac, OFSZ, pdata->z_axis_offset); ac->hwcal.z = pdata->z_axis_offset; AC_WRITE(ac, THRESH_TAP, pdata->tap_threshold); AC_WRITE(ac, DUR, pdata->tap_duration); AC_WRITE(ac, LATENT, pdata->tap_latency); AC_WRITE(ac, WINDOW, pdata->tap_window); AC_WRITE(ac, THRESH_ACT, pdata->activity_threshold); AC_WRITE(ac, THRESH_INACT, pdata->inactivity_threshold); AC_WRITE(ac, TIME_INACT, pdata->inactivity_time); AC_WRITE(ac, THRESH_FF, pdata->free_fall_threshold); AC_WRITE(ac, TIME_FF, pdata->free_fall_time); AC_WRITE(ac, TAP_AXES, pdata->tap_axis_control); AC_WRITE(ac, ACT_INACT_CTL, pdata->act_axis_control); AC_WRITE(ac, BW_RATE, RATE(ac->pdata.data_rate) | (pdata->low_power_mode ? LOW_POWER : 0)); AC_WRITE(ac, DATA_FORMAT, pdata->data_range); AC_WRITE(ac, FIFO_CTL, FIFO_MODE(pdata->fifo_mode) | SAMPLES(pdata->watermark)); if (pdata->use_int2) { /* Map all INTs to INT2 */ AC_WRITE(ac, INT_MAP, ac->int_mask | OVERRUN); } else { /* Map all INTs to INT1 */ AC_WRITE(ac, INT_MAP, 0); } if (ac->model == 346 && ac->pdata.orientation_enable) { AC_WRITE(ac, ORIENT_CONF, ORIENT_DEADZONE(ac->pdata.deadzone_angle) | ORIENT_DIVISOR(ac->pdata.divisor_length)); ac->orient2d_saved = 1234; ac->orient3d_saved = 1234; if (pdata->orientation_enable & ADXL_EN_ORIENTATION_3D) for (i = 0; i < ARRAY_SIZE(pdata->ev_codes_orient_3d); i++) __set_bit(pdata->ev_codes_orient_3d[i], input_dev->keybit); if (pdata->orientation_enable & ADXL_EN_ORIENTATION_2D) for (i = 0; i < ARRAY_SIZE(pdata->ev_codes_orient_2d); i++) __set_bit(pdata->ev_codes_orient_2d[i], input_dev->keybit); } else { ac->pdata.orientation_enable = 0; } AC_WRITE(ac, INT_ENABLE, ac->int_mask | OVERRUN); ac->pdata.power_mode &= (PCTL_AUTO_SLEEP | PCTL_LINK); return ac; err_remove_attr: sysfs_remove_group(&dev->kobj, &adxl34x_attr_group); err_free_irq: free_irq(ac->irq, ac); err_free_mem: input_free_device(input_dev); kfree(ac); err_out: return ERR_PTR(err); } EXPORT_SYMBOL_GPL(adxl34x_probe); void adxl34x_remove(struct adxl34x *ac) { sysfs_remove_group(&ac->dev->kobj, &adxl34x_attr_group); free_irq(ac->irq, ac); input_unregister_device(ac->input); dev_dbg(ac->dev, "unregistered accelerometer\n"); kfree(ac); } EXPORT_SYMBOL_GPL(adxl34x_remove); EXPORT_GPL_SIMPLE_DEV_PM_OPS(adxl34x_pm, adxl34x_suspend, adxl34x_resume); MODULE_AUTHOR("Michael Hennerich <[email protected]>"); MODULE_DESCRIPTION("ADXL345/346 Three-Axis Digital Accelerometer Driver"); MODULE_LICENSE("GPL");
linux-master
drivers/input/misc/adxl34x.c
// SPDX-License-Identifier: GPL-2.0-only /* * Regulator haptic driver * * Copyright (c) 2014 Samsung Electronics Co., Ltd. * Author: Jaewon Kim <[email protected]> * Author: Hyunhee Kim <[email protected]> */ #include <linux/input.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_data/regulator-haptic.h> #include <linux/platform_device.h> #include <linux/regulator/consumer.h> #include <linux/slab.h> #define MAX_MAGNITUDE_SHIFT 16 struct regulator_haptic { struct device *dev; struct input_dev *input_dev; struct regulator *regulator; struct work_struct work; struct mutex mutex; bool active; bool suspended; unsigned int max_volt; unsigned int min_volt; unsigned int magnitude; }; static int regulator_haptic_toggle(struct regulator_haptic *haptic, bool on) { int error; if (haptic->active != on) { error = on ? regulator_enable(haptic->regulator) : regulator_disable(haptic->regulator); if (error) { dev_err(haptic->dev, "failed to switch regulator %s: %d\n", on ? "on" : "off", error); return error; } haptic->active = on; } return 0; } static int regulator_haptic_set_voltage(struct regulator_haptic *haptic, unsigned int magnitude) { u64 volt_mag_multi; unsigned int intensity; int error; volt_mag_multi = (u64)(haptic->max_volt - haptic->min_volt) * magnitude; intensity = (unsigned int)(volt_mag_multi >> MAX_MAGNITUDE_SHIFT); error = regulator_set_voltage(haptic->regulator, intensity + haptic->min_volt, haptic->max_volt); if (error) { dev_err(haptic->dev, "cannot set regulator voltage to %d: %d\n", intensity + haptic->min_volt, error); return error; } regulator_haptic_toggle(haptic, !!magnitude); return 0; } static void regulator_haptic_work(struct work_struct *work) { struct regulator_haptic *haptic = container_of(work, struct regulator_haptic, work); mutex_lock(&haptic->mutex); if (!haptic->suspended) regulator_haptic_set_voltage(haptic, haptic->magnitude); mutex_unlock(&haptic->mutex); } static int regulator_haptic_play_effect(struct input_dev *input, void *data, struct ff_effect *effect) { struct regulator_haptic *haptic = input_get_drvdata(input); haptic->magnitude = effect->u.rumble.strong_magnitude; if (!haptic->magnitude) haptic->magnitude = effect->u.rumble.weak_magnitude; schedule_work(&haptic->work); return 0; } static void regulator_haptic_close(struct input_dev *input) { struct regulator_haptic *haptic = input_get_drvdata(input); cancel_work_sync(&haptic->work); regulator_haptic_set_voltage(haptic, 0); } static int __maybe_unused regulator_haptic_parse_dt(struct device *dev, struct regulator_haptic *haptic) { struct device_node *node; int error; node = dev->of_node; if(!node) { dev_err(dev, "Missing device tree data\n"); return -EINVAL; } error = of_property_read_u32(node, "max-microvolt", &haptic->max_volt); if (error) { dev_err(dev, "cannot parse max-microvolt\n"); return error; } error = of_property_read_u32(node, "min-microvolt", &haptic->min_volt); if (error) { dev_err(dev, "cannot parse min-microvolt\n"); return error; } return 0; } static int regulator_haptic_probe(struct platform_device *pdev) { const struct regulator_haptic_data *pdata = dev_get_platdata(&pdev->dev); struct regulator_haptic *haptic; struct input_dev *input_dev; int error; haptic = devm_kzalloc(&pdev->dev, sizeof(*haptic), GFP_KERNEL); if (!haptic) return -ENOMEM; platform_set_drvdata(pdev, haptic); haptic->dev = &pdev->dev; mutex_init(&haptic->mutex); INIT_WORK(&haptic->work, regulator_haptic_work); if (pdata) { haptic->max_volt = pdata->max_volt; haptic->min_volt = pdata->min_volt; } else if (IS_ENABLED(CONFIG_OF)) { error = regulator_haptic_parse_dt(&pdev->dev, haptic); if (error) return error; } else { dev_err(&pdev->dev, "Missing platform data\n"); return -EINVAL; } haptic->regulator = devm_regulator_get_exclusive(&pdev->dev, "haptic"); if (IS_ERR(haptic->regulator)) { dev_err(&pdev->dev, "failed to get regulator\n"); return PTR_ERR(haptic->regulator); } input_dev = devm_input_allocate_device(&pdev->dev); if (!input_dev) return -ENOMEM; haptic->input_dev = input_dev; haptic->input_dev->name = "regulator-haptic"; haptic->input_dev->dev.parent = &pdev->dev; haptic->input_dev->close = regulator_haptic_close; input_set_drvdata(haptic->input_dev, haptic); input_set_capability(haptic->input_dev, EV_FF, FF_RUMBLE); error = input_ff_create_memless(input_dev, NULL, regulator_haptic_play_effect); if (error) { dev_err(&pdev->dev, "failed to create force-feedback\n"); return error; } error = input_register_device(haptic->input_dev); if (error) { dev_err(&pdev->dev, "failed to register input device\n"); return error; } return 0; } static int regulator_haptic_suspend(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct regulator_haptic *haptic = platform_get_drvdata(pdev); int error; error = mutex_lock_interruptible(&haptic->mutex); if (error) return error; regulator_haptic_set_voltage(haptic, 0); haptic->suspended = true; mutex_unlock(&haptic->mutex); return 0; } static int regulator_haptic_resume(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct regulator_haptic *haptic = platform_get_drvdata(pdev); unsigned int magnitude; mutex_lock(&haptic->mutex); haptic->suspended = false; magnitude = READ_ONCE(haptic->magnitude); if (magnitude) regulator_haptic_set_voltage(haptic, magnitude); mutex_unlock(&haptic->mutex); return 0; } static DEFINE_SIMPLE_DEV_PM_OPS(regulator_haptic_pm_ops, regulator_haptic_suspend, regulator_haptic_resume); static const struct of_device_id regulator_haptic_dt_match[] = { { .compatible = "regulator-haptic" }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, regulator_haptic_dt_match); static struct platform_driver regulator_haptic_driver = { .probe = regulator_haptic_probe, .driver = { .name = "regulator-haptic", .of_match_table = regulator_haptic_dt_match, .pm = pm_sleep_ptr(&regulator_haptic_pm_ops), }, }; module_platform_driver(regulator_haptic_driver); MODULE_AUTHOR("Jaewon Kim <[email protected]>"); MODULE_AUTHOR("Hyunhee Kim <[email protected]>"); MODULE_DESCRIPTION("Regulator haptic driver"); MODULE_LICENSE("GPL");
linux-master
drivers/input/misc/regulator-haptic.c
/* * 88pm860x_onkey.c - Marvell 88PM860x ONKEY driver * * Copyright (C) 2009-2010 Marvell International Ltd. * Haojian Zhuang <[email protected]> * * This file is subject to the terms and conditions of the GNU General * Public License. See the file "COPYING" in the main directory of this * archive for more details. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/i2c.h> #include <linux/input.h> #include <linux/interrupt.h> #include <linux/mfd/88pm860x.h> #include <linux/slab.h> #include <linux/device.h> #define PM8607_WAKEUP 0x0b #define LONG_ONKEY_EN (1 << 1) #define ONKEY_STATUS (1 << 0) struct pm860x_onkey_info { struct input_dev *idev; struct pm860x_chip *chip; struct i2c_client *i2c; struct device *dev; int irq; }; /* 88PM860x gives us an interrupt when ONKEY is held */ static irqreturn_t pm860x_onkey_handler(int irq, void *data) { struct pm860x_onkey_info *info = data; int ret; ret = pm860x_reg_read(info->i2c, PM8607_STATUS_2); ret &= ONKEY_STATUS; input_report_key(info->idev, KEY_POWER, ret); input_sync(info->idev); /* Enable 8-second long onkey detection */ pm860x_set_bits(info->i2c, PM8607_WAKEUP, 3, LONG_ONKEY_EN); return IRQ_HANDLED; } static int pm860x_onkey_probe(struct platform_device *pdev) { struct pm860x_chip *chip = dev_get_drvdata(pdev->dev.parent); struct pm860x_onkey_info *info; int irq, ret; irq = platform_get_irq(pdev, 0); if (irq < 0) return -EINVAL; info = devm_kzalloc(&pdev->dev, sizeof(struct pm860x_onkey_info), GFP_KERNEL); if (!info) return -ENOMEM; info->chip = chip; info->i2c = (chip->id == CHIP_PM8607) ? chip->client : chip->companion; info->dev = &pdev->dev; info->irq = irq; info->idev = devm_input_allocate_device(&pdev->dev); if (!info->idev) { dev_err(chip->dev, "Failed to allocate input dev\n"); return -ENOMEM; } info->idev->name = "88pm860x_on"; info->idev->phys = "88pm860x_on/input0"; info->idev->id.bustype = BUS_I2C; info->idev->dev.parent = &pdev->dev; info->idev->evbit[0] = BIT_MASK(EV_KEY); info->idev->keybit[BIT_WORD(KEY_POWER)] = BIT_MASK(KEY_POWER); ret = input_register_device(info->idev); if (ret) { dev_err(chip->dev, "Can't register input device: %d\n", ret); return ret; } ret = devm_request_threaded_irq(&pdev->dev, info->irq, NULL, pm860x_onkey_handler, IRQF_ONESHOT, "onkey", info); if (ret < 0) { dev_err(chip->dev, "Failed to request IRQ: #%d: %d\n", info->irq, ret); return ret; } platform_set_drvdata(pdev, info); device_init_wakeup(&pdev->dev, 1); return 0; } static int pm860x_onkey_suspend(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct pm860x_chip *chip = dev_get_drvdata(pdev->dev.parent); if (device_may_wakeup(dev)) chip->wakeup_flag |= 1 << PM8607_IRQ_ONKEY; return 0; } static int pm860x_onkey_resume(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct pm860x_chip *chip = dev_get_drvdata(pdev->dev.parent); if (device_may_wakeup(dev)) chip->wakeup_flag &= ~(1 << PM8607_IRQ_ONKEY); return 0; } static DEFINE_SIMPLE_DEV_PM_OPS(pm860x_onkey_pm_ops, pm860x_onkey_suspend, pm860x_onkey_resume); static struct platform_driver pm860x_onkey_driver = { .driver = { .name = "88pm860x-onkey", .pm = pm_sleep_ptr(&pm860x_onkey_pm_ops), }, .probe = pm860x_onkey_probe, }; module_platform_driver(pm860x_onkey_driver); MODULE_DESCRIPTION("Marvell 88PM860x ONKEY driver"); MODULE_AUTHOR("Haojian Zhuang <[email protected]>"); MODULE_LICENSE("GPL");
linux-master
drivers/input/misc/88pm860x_onkey.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * PWM vibrator driver * * Copyright (C) 2017 Collabora Ltd. * * Based on previous work from: * Copyright (C) 2012 Dmitry Torokhov <[email protected]> * * Based on PWM beeper driver: * Copyright (C) 2010, Lars-Peter Clausen <[email protected]> */ #include <linux/gpio/consumer.h> #include <linux/input.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/property.h> #include <linux/pwm.h> #include <linux/regulator/consumer.h> #include <linux/slab.h> struct pwm_vibrator { struct input_dev *input; struct gpio_desc *enable_gpio; struct pwm_device *pwm; struct pwm_device *pwm_dir; struct regulator *vcc; struct work_struct play_work; u16 level; u32 direction_duty_cycle; bool vcc_on; }; static int pwm_vibrator_start(struct pwm_vibrator *vibrator) { struct device *pdev = vibrator->input->dev.parent; struct pwm_state state; int err; if (!vibrator->vcc_on) { err = regulator_enable(vibrator->vcc); if (err) { dev_err(pdev, "failed to enable regulator: %d\n", err); return err; } vibrator->vcc_on = true; } gpiod_set_value_cansleep(vibrator->enable_gpio, 1); pwm_get_state(vibrator->pwm, &state); pwm_set_relative_duty_cycle(&state, vibrator->level, 0xffff); state.enabled = true; err = pwm_apply_state(vibrator->pwm, &state); if (err) { dev_err(pdev, "failed to apply pwm state: %d\n", err); return err; } if (vibrator->pwm_dir) { pwm_get_state(vibrator->pwm_dir, &state); state.duty_cycle = vibrator->direction_duty_cycle; state.enabled = true; err = pwm_apply_state(vibrator->pwm_dir, &state); if (err) { dev_err(pdev, "failed to apply dir-pwm state: %d\n", err); pwm_disable(vibrator->pwm); return err; } } return 0; } static void pwm_vibrator_stop(struct pwm_vibrator *vibrator) { if (vibrator->pwm_dir) pwm_disable(vibrator->pwm_dir); pwm_disable(vibrator->pwm); gpiod_set_value_cansleep(vibrator->enable_gpio, 0); if (vibrator->vcc_on) { regulator_disable(vibrator->vcc); vibrator->vcc_on = false; } } static void pwm_vibrator_play_work(struct work_struct *work) { struct pwm_vibrator *vibrator = container_of(work, struct pwm_vibrator, play_work); if (vibrator->level) pwm_vibrator_start(vibrator); else pwm_vibrator_stop(vibrator); } static int pwm_vibrator_play_effect(struct input_dev *dev, void *data, struct ff_effect *effect) { struct pwm_vibrator *vibrator = input_get_drvdata(dev); vibrator->level = effect->u.rumble.strong_magnitude; if (!vibrator->level) vibrator->level = effect->u.rumble.weak_magnitude; schedule_work(&vibrator->play_work); return 0; } static void pwm_vibrator_close(struct input_dev *input) { struct pwm_vibrator *vibrator = input_get_drvdata(input); cancel_work_sync(&vibrator->play_work); pwm_vibrator_stop(vibrator); } static int pwm_vibrator_probe(struct platform_device *pdev) { struct pwm_vibrator *vibrator; struct pwm_state state; int err; vibrator = devm_kzalloc(&pdev->dev, sizeof(*vibrator), GFP_KERNEL); if (!vibrator) return -ENOMEM; vibrator->input = devm_input_allocate_device(&pdev->dev); if (!vibrator->input) return -ENOMEM; vibrator->vcc = devm_regulator_get(&pdev->dev, "vcc"); if (IS_ERR(vibrator->vcc)) return dev_err_probe(&pdev->dev, PTR_ERR(vibrator->vcc), "Failed to request regulator\n"); vibrator->enable_gpio = devm_gpiod_get_optional(&pdev->dev, "enable", GPIOD_OUT_LOW); if (IS_ERR(vibrator->enable_gpio)) return dev_err_probe(&pdev->dev, PTR_ERR(vibrator->enable_gpio), "Failed to request enable gpio\n"); vibrator->pwm = devm_pwm_get(&pdev->dev, "enable"); if (IS_ERR(vibrator->pwm)) return dev_err_probe(&pdev->dev, PTR_ERR(vibrator->pwm), "Failed to request main pwm\n"); INIT_WORK(&vibrator->play_work, pwm_vibrator_play_work); /* Sync up PWM state and ensure it is off. */ pwm_init_state(vibrator->pwm, &state); state.enabled = false; err = pwm_apply_state(vibrator->pwm, &state); if (err) { dev_err(&pdev->dev, "failed to apply initial PWM state: %d\n", err); return err; } vibrator->pwm_dir = devm_pwm_get(&pdev->dev, "direction"); err = PTR_ERR_OR_ZERO(vibrator->pwm_dir); switch (err) { case 0: /* Sync up PWM state and ensure it is off. */ pwm_init_state(vibrator->pwm_dir, &state); state.enabled = false; err = pwm_apply_state(vibrator->pwm_dir, &state); if (err) { dev_err(&pdev->dev, "failed to apply initial PWM state: %d\n", err); return err; } vibrator->direction_duty_cycle = pwm_get_period(vibrator->pwm_dir) / 2; device_property_read_u32(&pdev->dev, "direction-duty-cycle-ns", &vibrator->direction_duty_cycle); break; case -ENODATA: /* Direction PWM is optional */ vibrator->pwm_dir = NULL; break; default: dev_err(&pdev->dev, "Failed to request direction pwm: %d\n", err); fallthrough; case -EPROBE_DEFER: return err; } vibrator->input->name = "pwm-vibrator"; vibrator->input->id.bustype = BUS_HOST; vibrator->input->dev.parent = &pdev->dev; vibrator->input->close = pwm_vibrator_close; input_set_drvdata(vibrator->input, vibrator); input_set_capability(vibrator->input, EV_FF, FF_RUMBLE); err = input_ff_create_memless(vibrator->input, NULL, pwm_vibrator_play_effect); if (err) { dev_err(&pdev->dev, "Couldn't create FF dev: %d\n", err); return err; } err = input_register_device(vibrator->input); if (err) { dev_err(&pdev->dev, "Couldn't register input dev: %d\n", err); return err; } platform_set_drvdata(pdev, vibrator); return 0; } static int pwm_vibrator_suspend(struct device *dev) { struct pwm_vibrator *vibrator = dev_get_drvdata(dev); cancel_work_sync(&vibrator->play_work); if (vibrator->level) pwm_vibrator_stop(vibrator); return 0; } static int pwm_vibrator_resume(struct device *dev) { struct pwm_vibrator *vibrator = dev_get_drvdata(dev); if (vibrator->level) pwm_vibrator_start(vibrator); return 0; } static DEFINE_SIMPLE_DEV_PM_OPS(pwm_vibrator_pm_ops, pwm_vibrator_suspend, pwm_vibrator_resume); #ifdef CONFIG_OF static const struct of_device_id pwm_vibra_dt_match_table[] = { { .compatible = "pwm-vibrator" }, {}, }; MODULE_DEVICE_TABLE(of, pwm_vibra_dt_match_table); #endif static struct platform_driver pwm_vibrator_driver = { .probe = pwm_vibrator_probe, .driver = { .name = "pwm-vibrator", .pm = pm_sleep_ptr(&pwm_vibrator_pm_ops), .of_match_table = of_match_ptr(pwm_vibra_dt_match_table), }, }; module_platform_driver(pwm_vibrator_driver); MODULE_AUTHOR("Sebastian Reichel <[email protected]>"); MODULE_DESCRIPTION("PWM vibrator driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:pwm-vibrator");
linux-master
drivers/input/misc/pwm-vibra.c
// SPDX-License-Identifier: GPL-2.0+ /* * Azoteq IQS626A Capacitive Touch Controller * * Copyright (C) 2020 Jeff LaBundy <[email protected]> * * This driver registers up to 2 input devices: one representing capacitive or * inductive keys as well as Hall-effect switches, and one for a trackpad that * can express various gestures. */ #include <linux/bits.h> #include <linux/completion.h> #include <linux/delay.h> #include <linux/device.h> #include <linux/err.h> #include <linux/i2c.h> #include <linux/input.h> #include <linux/input/touchscreen.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/property.h> #include <linux/regmap.h> #include <linux/slab.h> #define IQS626_VER_INFO 0x00 #define IQS626_VER_INFO_PROD_NUM 0x51 #define IQS626_SYS_FLAGS 0x02 #define IQS626_SYS_FLAGS_SHOW_RESET BIT(15) #define IQS626_SYS_FLAGS_IN_ATI BIT(12) #define IQS626_SYS_FLAGS_PWR_MODE_MASK GENMASK(9, 8) #define IQS626_SYS_FLAGS_PWR_MODE_SHIFT 8 #define IQS626_HALL_OUTPUT 0x23 #define IQS626_SYS_SETTINGS 0x80 #define IQS626_SYS_SETTINGS_CLK_DIV BIT(15) #define IQS626_SYS_SETTINGS_ULP_AUTO BIT(14) #define IQS626_SYS_SETTINGS_DIS_AUTO BIT(13) #define IQS626_SYS_SETTINGS_PWR_MODE_MASK GENMASK(12, 11) #define IQS626_SYS_SETTINGS_PWR_MODE_SHIFT 11 #define IQS626_SYS_SETTINGS_PWR_MODE_MAX 3 #define IQS626_SYS_SETTINGS_ULP_UPDATE_MASK GENMASK(10, 8) #define IQS626_SYS_SETTINGS_ULP_UPDATE_SHIFT 8 #define IQS626_SYS_SETTINGS_ULP_UPDATE_MAX 7 #define IQS626_SYS_SETTINGS_EVENT_MODE BIT(5) #define IQS626_SYS_SETTINGS_EVENT_MODE_LP BIT(4) #define IQS626_SYS_SETTINGS_REDO_ATI BIT(2) #define IQS626_SYS_SETTINGS_ACK_RESET BIT(0) #define IQS626_MISC_A_ATI_BAND_DISABLE BIT(7) #define IQS626_MISC_A_TPx_LTA_UPDATE_MASK GENMASK(6, 4) #define IQS626_MISC_A_TPx_LTA_UPDATE_SHIFT 4 #define IQS626_MISC_A_TPx_LTA_UPDATE_MAX 7 #define IQS626_MISC_A_ATI_LP_ONLY BIT(3) #define IQS626_MISC_A_GPIO3_SELECT_MASK GENMASK(2, 0) #define IQS626_MISC_A_GPIO3_SELECT_MAX 7 #define IQS626_EVENT_MASK_SYS BIT(6) #define IQS626_EVENT_MASK_GESTURE BIT(3) #define IQS626_EVENT_MASK_DEEP BIT(2) #define IQS626_EVENT_MASK_TOUCH BIT(1) #define IQS626_EVENT_MASK_PROX BIT(0) #define IQS626_RATE_NP_MS_MAX 255 #define IQS626_RATE_LP_MS_MAX 255 #define IQS626_RATE_ULP_MS_MAX 4080 #define IQS626_TIMEOUT_PWR_MS_MAX 130560 #define IQS626_TIMEOUT_LTA_MS_MAX 130560 #define IQS626_MISC_B_RESEED_UI_SEL_MASK GENMASK(7, 6) #define IQS626_MISC_B_RESEED_UI_SEL_SHIFT 6 #define IQS626_MISC_B_RESEED_UI_SEL_MAX 3 #define IQS626_MISC_B_THRESH_EXTEND BIT(5) #define IQS626_MISC_B_TRACKING_UI_ENABLE BIT(4) #define IQS626_MISC_B_TPx_SWIPE BIT(3) #define IQS626_MISC_B_RESEED_OFFSET BIT(2) #define IQS626_MISC_B_FILT_STR_TPx GENMASK(1, 0) #define IQS626_THRESH_SWIPE_MAX 255 #define IQS626_TIMEOUT_TAP_MS_MAX 4080 #define IQS626_TIMEOUT_SWIPE_MS_MAX 4080 #define IQS626_CHx_ENG_0_MEAS_CAP_SIZE BIT(7) #define IQS626_CHx_ENG_0_RX_TERM_VSS BIT(5) #define IQS626_CHx_ENG_0_LINEARIZE BIT(4) #define IQS626_CHx_ENG_0_DUAL_DIR BIT(3) #define IQS626_CHx_ENG_0_FILT_DISABLE BIT(2) #define IQS626_CHx_ENG_0_ATI_MODE_MASK GENMASK(1, 0) #define IQS626_CHx_ENG_0_ATI_MODE_MAX 3 #define IQS626_CHx_ENG_1_CCT_HIGH_1 BIT(7) #define IQS626_CHx_ENG_1_CCT_HIGH_0 BIT(6) #define IQS626_CHx_ENG_1_PROJ_BIAS_MASK GENMASK(5, 4) #define IQS626_CHx_ENG_1_PROJ_BIAS_SHIFT 4 #define IQS626_CHx_ENG_1_PROJ_BIAS_MAX 3 #define IQS626_CHx_ENG_1_CCT_ENABLE BIT(3) #define IQS626_CHx_ENG_1_SENSE_FREQ_MASK GENMASK(2, 1) #define IQS626_CHx_ENG_1_SENSE_FREQ_SHIFT 1 #define IQS626_CHx_ENG_1_SENSE_FREQ_MAX 3 #define IQS626_CHx_ENG_1_ATI_BAND_TIGHTEN BIT(0) #define IQS626_CHx_ENG_2_LOCAL_CAP_MASK GENMASK(7, 6) #define IQS626_CHx_ENG_2_LOCAL_CAP_SHIFT 6 #define IQS626_CHx_ENG_2_LOCAL_CAP_MAX 3 #define IQS626_CHx_ENG_2_LOCAL_CAP_ENABLE BIT(5) #define IQS626_CHx_ENG_2_SENSE_MODE_MASK GENMASK(3, 0) #define IQS626_CHx_ENG_2_SENSE_MODE_MAX 15 #define IQS626_CHx_ENG_3_TX_FREQ_MASK GENMASK(5, 4) #define IQS626_CHx_ENG_3_TX_FREQ_SHIFT 4 #define IQS626_CHx_ENG_3_TX_FREQ_MAX 3 #define IQS626_CHx_ENG_3_INV_LOGIC BIT(0) #define IQS626_CHx_ENG_4_RX_TERM_VREG BIT(6) #define IQS626_CHx_ENG_4_CCT_LOW_1 BIT(5) #define IQS626_CHx_ENG_4_CCT_LOW_0 BIT(4) #define IQS626_CHx_ENG_4_COMP_DISABLE BIT(1) #define IQS626_CHx_ENG_4_STATIC_ENABLE BIT(0) #define IQS626_TPx_ATI_BASE_MIN 45 #define IQS626_TPx_ATI_BASE_MAX 300 #define IQS626_CHx_ATI_BASE_MASK GENMASK(7, 6) #define IQS626_CHx_ATI_BASE_75 0x00 #define IQS626_CHx_ATI_BASE_100 0x40 #define IQS626_CHx_ATI_BASE_150 0x80 #define IQS626_CHx_ATI_BASE_200 0xC0 #define IQS626_CHx_ATI_TARGET_MASK GENMASK(5, 0) #define IQS626_CHx_ATI_TARGET_MAX 2016 #define IQS626_CHx_THRESH_MAX 255 #define IQS626_CHx_HYST_DEEP_MASK GENMASK(7, 4) #define IQS626_CHx_HYST_DEEP_SHIFT 4 #define IQS626_CHx_HYST_TOUCH_MASK GENMASK(3, 0) #define IQS626_CHx_HYST_MAX 15 #define IQS626_FILT_STR_NP_TPx_MASK GENMASK(7, 6) #define IQS626_FILT_STR_NP_TPx_SHIFT 6 #define IQS626_FILT_STR_LP_TPx_MASK GENMASK(5, 4) #define IQS626_FILT_STR_LP_TPx_SHIFT 4 #define IQS626_FILT_STR_NP_CNT_MASK GENMASK(7, 6) #define IQS626_FILT_STR_NP_CNT_SHIFT 6 #define IQS626_FILT_STR_LP_CNT_MASK GENMASK(5, 4) #define IQS626_FILT_STR_LP_CNT_SHIFT 4 #define IQS626_FILT_STR_NP_LTA_MASK GENMASK(3, 2) #define IQS626_FILT_STR_NP_LTA_SHIFT 2 #define IQS626_FILT_STR_LP_LTA_MASK GENMASK(1, 0) #define IQS626_FILT_STR_MAX 3 #define IQS626_ULP_PROJ_ENABLE BIT(4) #define IQS626_GEN_WEIGHT_MAX 255 #define IQS626_MAX_REG 0xFF #define IQS626_NUM_CH_TP_3 9 #define IQS626_NUM_CH_TP_2 6 #define IQS626_NUM_CH_GEN 3 #define IQS626_NUM_CRx_TX 8 #define IQS626_PWR_MODE_POLL_SLEEP_US 50000 #define IQS626_PWR_MODE_POLL_TIMEOUT_US 500000 #define iqs626_irq_wait() usleep_range(350, 400) enum iqs626_ch_id { IQS626_CH_ULP_0, IQS626_CH_TP_2, IQS626_CH_TP_3, IQS626_CH_GEN_0, IQS626_CH_GEN_1, IQS626_CH_GEN_2, IQS626_CH_HALL, }; enum iqs626_rx_inactive { IQS626_RX_INACTIVE_VSS, IQS626_RX_INACTIVE_FLOAT, IQS626_RX_INACTIVE_VREG, }; enum iqs626_st_offs { IQS626_ST_OFFS_PROX, IQS626_ST_OFFS_DIR, IQS626_ST_OFFS_TOUCH, IQS626_ST_OFFS_DEEP, }; enum iqs626_th_offs { IQS626_TH_OFFS_PROX, IQS626_TH_OFFS_TOUCH, IQS626_TH_OFFS_DEEP, }; enum iqs626_event_id { IQS626_EVENT_PROX_DN, IQS626_EVENT_PROX_UP, IQS626_EVENT_TOUCH_DN, IQS626_EVENT_TOUCH_UP, IQS626_EVENT_DEEP_DN, IQS626_EVENT_DEEP_UP, }; enum iqs626_gesture_id { IQS626_GESTURE_FLICK_X_POS, IQS626_GESTURE_FLICK_X_NEG, IQS626_GESTURE_FLICK_Y_POS, IQS626_GESTURE_FLICK_Y_NEG, IQS626_GESTURE_TAP, IQS626_GESTURE_HOLD, IQS626_NUM_GESTURES, }; struct iqs626_event_desc { const char *name; enum iqs626_st_offs st_offs; enum iqs626_th_offs th_offs; bool dir_up; u8 mask; }; static const struct iqs626_event_desc iqs626_events[] = { [IQS626_EVENT_PROX_DN] = { .name = "event-prox", .st_offs = IQS626_ST_OFFS_PROX, .th_offs = IQS626_TH_OFFS_PROX, .mask = IQS626_EVENT_MASK_PROX, }, [IQS626_EVENT_PROX_UP] = { .name = "event-prox-alt", .st_offs = IQS626_ST_OFFS_PROX, .th_offs = IQS626_TH_OFFS_PROX, .dir_up = true, .mask = IQS626_EVENT_MASK_PROX, }, [IQS626_EVENT_TOUCH_DN] = { .name = "event-touch", .st_offs = IQS626_ST_OFFS_TOUCH, .th_offs = IQS626_TH_OFFS_TOUCH, .mask = IQS626_EVENT_MASK_TOUCH, }, [IQS626_EVENT_TOUCH_UP] = { .name = "event-touch-alt", .st_offs = IQS626_ST_OFFS_TOUCH, .th_offs = IQS626_TH_OFFS_TOUCH, .dir_up = true, .mask = IQS626_EVENT_MASK_TOUCH, }, [IQS626_EVENT_DEEP_DN] = { .name = "event-deep", .st_offs = IQS626_ST_OFFS_DEEP, .th_offs = IQS626_TH_OFFS_DEEP, .mask = IQS626_EVENT_MASK_DEEP, }, [IQS626_EVENT_DEEP_UP] = { .name = "event-deep-alt", .st_offs = IQS626_ST_OFFS_DEEP, .th_offs = IQS626_TH_OFFS_DEEP, .dir_up = true, .mask = IQS626_EVENT_MASK_DEEP, }, }; struct iqs626_ver_info { u8 prod_num; u8 sw_num; u8 hw_num; u8 padding; } __packed; struct iqs626_flags { __be16 system; u8 gesture; u8 padding_a; u8 states[4]; u8 ref_active; u8 padding_b; u8 comp_min; u8 comp_max; u8 trackpad_x; u8 trackpad_y; } __packed; struct iqs626_ch_reg_ulp { u8 thresh[2]; u8 hyst; u8 filter; u8 engine[2]; u8 ati_target; u8 padding; __be16 ati_comp; u8 rx_enable; u8 tx_enable; } __packed; struct iqs626_ch_reg_tp { u8 thresh; u8 ati_base; __be16 ati_comp; } __packed; struct iqs626_tp_grp_reg { u8 hyst; u8 ati_target; u8 engine[2]; struct iqs626_ch_reg_tp ch_reg_tp[IQS626_NUM_CH_TP_3]; } __packed; struct iqs626_ch_reg_gen { u8 thresh[3]; u8 padding; u8 hyst; u8 ati_target; __be16 ati_comp; u8 engine[5]; u8 filter; u8 rx_enable; u8 tx_enable; u8 assoc_select; u8 assoc_weight; } __packed; struct iqs626_ch_reg_hall { u8 engine; u8 thresh; u8 hyst; u8 ati_target; __be16 ati_comp; } __packed; struct iqs626_sys_reg { __be16 general; u8 misc_a; u8 event_mask; u8 active; u8 reseed; u8 rate_np; u8 rate_lp; u8 rate_ulp; u8 timeout_pwr; u8 timeout_rdy; u8 timeout_lta; u8 misc_b; u8 thresh_swipe; u8 timeout_tap; u8 timeout_swipe; u8 redo_ati; u8 padding; struct iqs626_ch_reg_ulp ch_reg_ulp; struct iqs626_tp_grp_reg tp_grp_reg; struct iqs626_ch_reg_gen ch_reg_gen[IQS626_NUM_CH_GEN]; struct iqs626_ch_reg_hall ch_reg_hall; } __packed; struct iqs626_channel_desc { const char *name; int num_ch; u8 active; bool events[ARRAY_SIZE(iqs626_events)]; }; static const struct iqs626_channel_desc iqs626_channels[] = { [IQS626_CH_ULP_0] = { .name = "ulp-0", .num_ch = 1, .active = BIT(0), .events = { [IQS626_EVENT_PROX_DN] = true, [IQS626_EVENT_PROX_UP] = true, [IQS626_EVENT_TOUCH_DN] = true, [IQS626_EVENT_TOUCH_UP] = true, }, }, [IQS626_CH_TP_2] = { .name = "trackpad-3x2", .num_ch = IQS626_NUM_CH_TP_2, .active = BIT(1), .events = { [IQS626_EVENT_TOUCH_DN] = true, }, }, [IQS626_CH_TP_3] = { .name = "trackpad-3x3", .num_ch = IQS626_NUM_CH_TP_3, .active = BIT(2) | BIT(1), .events = { [IQS626_EVENT_TOUCH_DN] = true, }, }, [IQS626_CH_GEN_0] = { .name = "generic-0", .num_ch = 1, .active = BIT(4), .events = { [IQS626_EVENT_PROX_DN] = true, [IQS626_EVENT_PROX_UP] = true, [IQS626_EVENT_TOUCH_DN] = true, [IQS626_EVENT_TOUCH_UP] = true, [IQS626_EVENT_DEEP_DN] = true, [IQS626_EVENT_DEEP_UP] = true, }, }, [IQS626_CH_GEN_1] = { .name = "generic-1", .num_ch = 1, .active = BIT(5), .events = { [IQS626_EVENT_PROX_DN] = true, [IQS626_EVENT_PROX_UP] = true, [IQS626_EVENT_TOUCH_DN] = true, [IQS626_EVENT_TOUCH_UP] = true, [IQS626_EVENT_DEEP_DN] = true, [IQS626_EVENT_DEEP_UP] = true, }, }, [IQS626_CH_GEN_2] = { .name = "generic-2", .num_ch = 1, .active = BIT(6), .events = { [IQS626_EVENT_PROX_DN] = true, [IQS626_EVENT_PROX_UP] = true, [IQS626_EVENT_TOUCH_DN] = true, [IQS626_EVENT_TOUCH_UP] = true, [IQS626_EVENT_DEEP_DN] = true, [IQS626_EVENT_DEEP_UP] = true, }, }, [IQS626_CH_HALL] = { .name = "hall", .num_ch = 1, .active = BIT(7), .events = { [IQS626_EVENT_TOUCH_DN] = true, [IQS626_EVENT_TOUCH_UP] = true, }, }, }; struct iqs626_private { struct i2c_client *client; struct regmap *regmap; struct iqs626_sys_reg sys_reg; struct completion ati_done; struct input_dev *keypad; struct input_dev *trackpad; struct touchscreen_properties prop; unsigned int kp_type[ARRAY_SIZE(iqs626_channels)] [ARRAY_SIZE(iqs626_events)]; unsigned int kp_code[ARRAY_SIZE(iqs626_channels)] [ARRAY_SIZE(iqs626_events)]; unsigned int tp_code[IQS626_NUM_GESTURES]; unsigned int suspend_mode; }; static noinline_for_stack int iqs626_parse_events(struct iqs626_private *iqs626, struct fwnode_handle *ch_node, enum iqs626_ch_id ch_id) { struct iqs626_sys_reg *sys_reg = &iqs626->sys_reg; struct i2c_client *client = iqs626->client; struct fwnode_handle *ev_node; const char *ev_name; u8 *thresh, *hyst; unsigned int val; int i; switch (ch_id) { case IQS626_CH_ULP_0: thresh = sys_reg->ch_reg_ulp.thresh; hyst = &sys_reg->ch_reg_ulp.hyst; break; case IQS626_CH_TP_2: case IQS626_CH_TP_3: thresh = &sys_reg->tp_grp_reg.ch_reg_tp[0].thresh; hyst = &sys_reg->tp_grp_reg.hyst; break; case IQS626_CH_GEN_0: case IQS626_CH_GEN_1: case IQS626_CH_GEN_2: i = ch_id - IQS626_CH_GEN_0; thresh = sys_reg->ch_reg_gen[i].thresh; hyst = &sys_reg->ch_reg_gen[i].hyst; break; case IQS626_CH_HALL: thresh = &sys_reg->ch_reg_hall.thresh; hyst = &sys_reg->ch_reg_hall.hyst; break; default: return -EINVAL; } for (i = 0; i < ARRAY_SIZE(iqs626_events); i++) { if (!iqs626_channels[ch_id].events[i]) continue; if (ch_id == IQS626_CH_TP_2 || ch_id == IQS626_CH_TP_3) { /* * Trackpad touch events are simply described under the * trackpad child node. */ ev_node = fwnode_handle_get(ch_node); } else { ev_name = iqs626_events[i].name; ev_node = fwnode_get_named_child_node(ch_node, ev_name); if (!ev_node) continue; if (!fwnode_property_read_u32(ev_node, "linux,code", &val)) { iqs626->kp_code[ch_id][i] = val; if (fwnode_property_read_u32(ev_node, "linux,input-type", &val)) { if (ch_id == IQS626_CH_HALL) val = EV_SW; else val = EV_KEY; } if (val != EV_KEY && val != EV_SW) { dev_err(&client->dev, "Invalid input type: %u\n", val); fwnode_handle_put(ev_node); return -EINVAL; } iqs626->kp_type[ch_id][i] = val; sys_reg->event_mask &= ~iqs626_events[i].mask; } } if (!fwnode_property_read_u32(ev_node, "azoteq,hyst", &val)) { if (val > IQS626_CHx_HYST_MAX) { dev_err(&client->dev, "Invalid %s channel hysteresis: %u\n", fwnode_get_name(ch_node), val); fwnode_handle_put(ev_node); return -EINVAL; } if (i == IQS626_EVENT_DEEP_DN || i == IQS626_EVENT_DEEP_UP) { *hyst &= ~IQS626_CHx_HYST_DEEP_MASK; *hyst |= (val << IQS626_CHx_HYST_DEEP_SHIFT); } else if (i == IQS626_EVENT_TOUCH_DN || i == IQS626_EVENT_TOUCH_UP) { *hyst &= ~IQS626_CHx_HYST_TOUCH_MASK; *hyst |= val; } } if (ch_id != IQS626_CH_TP_2 && ch_id != IQS626_CH_TP_3 && !fwnode_property_read_u32(ev_node, "azoteq,thresh", &val)) { if (val > IQS626_CHx_THRESH_MAX) { dev_err(&client->dev, "Invalid %s channel threshold: %u\n", fwnode_get_name(ch_node), val); fwnode_handle_put(ev_node); return -EINVAL; } if (ch_id == IQS626_CH_HALL) *thresh = val; else *(thresh + iqs626_events[i].th_offs) = val; } fwnode_handle_put(ev_node); } return 0; } static noinline_for_stack int iqs626_parse_ati_target(struct iqs626_private *iqs626, struct fwnode_handle *ch_node, enum iqs626_ch_id ch_id) { struct iqs626_sys_reg *sys_reg = &iqs626->sys_reg; struct i2c_client *client = iqs626->client; unsigned int val; u8 *ati_target; int i; switch (ch_id) { case IQS626_CH_ULP_0: ati_target = &sys_reg->ch_reg_ulp.ati_target; break; case IQS626_CH_TP_2: case IQS626_CH_TP_3: ati_target = &sys_reg->tp_grp_reg.ati_target; break; case IQS626_CH_GEN_0: case IQS626_CH_GEN_1: case IQS626_CH_GEN_2: i = ch_id - IQS626_CH_GEN_0; ati_target = &sys_reg->ch_reg_gen[i].ati_target; break; case IQS626_CH_HALL: ati_target = &sys_reg->ch_reg_hall.ati_target; break; default: return -EINVAL; } if (!fwnode_property_read_u32(ch_node, "azoteq,ati-target", &val)) { if (val > IQS626_CHx_ATI_TARGET_MAX) { dev_err(&client->dev, "Invalid %s channel ATI target: %u\n", fwnode_get_name(ch_node), val); return -EINVAL; } *ati_target &= ~IQS626_CHx_ATI_TARGET_MASK; *ati_target |= (val / 32); } if (ch_id != IQS626_CH_TP_2 && ch_id != IQS626_CH_TP_3 && !fwnode_property_read_u32(ch_node, "azoteq,ati-base", &val)) { switch (val) { case 75: val = IQS626_CHx_ATI_BASE_75; break; case 100: val = IQS626_CHx_ATI_BASE_100; break; case 150: val = IQS626_CHx_ATI_BASE_150; break; case 200: val = IQS626_CHx_ATI_BASE_200; break; default: dev_err(&client->dev, "Invalid %s channel ATI base: %u\n", fwnode_get_name(ch_node), val); return -EINVAL; } *ati_target &= ~IQS626_CHx_ATI_BASE_MASK; *ati_target |= val; } return 0; } static int iqs626_parse_pins(struct iqs626_private *iqs626, struct fwnode_handle *ch_node, const char *propname, u8 *enable) { struct i2c_client *client = iqs626->client; unsigned int val[IQS626_NUM_CRx_TX]; int error, count, i; if (!fwnode_property_present(ch_node, propname)) return 0; count = fwnode_property_count_u32(ch_node, propname); if (count > IQS626_NUM_CRx_TX) { dev_err(&client->dev, "Too many %s channel CRX/TX pins present\n", fwnode_get_name(ch_node)); return -EINVAL; } else if (count < 0) { dev_err(&client->dev, "Failed to count %s channel CRX/TX pins: %d\n", fwnode_get_name(ch_node), count); return count; } error = fwnode_property_read_u32_array(ch_node, propname, val, count); if (error) { dev_err(&client->dev, "Failed to read %s channel CRX/TX pins: %d\n", fwnode_get_name(ch_node), error); return error; } *enable = 0; for (i = 0; i < count; i++) { if (val[i] >= IQS626_NUM_CRx_TX) { dev_err(&client->dev, "Invalid %s channel CRX/TX pin: %u\n", fwnode_get_name(ch_node), val[i]); return -EINVAL; } *enable |= BIT(val[i]); } return 0; } static int iqs626_parse_trackpad(struct iqs626_private *iqs626, struct fwnode_handle *ch_node, enum iqs626_ch_id ch_id) { struct iqs626_sys_reg *sys_reg = &iqs626->sys_reg; struct i2c_client *client = iqs626->client; u8 *hyst = &sys_reg->tp_grp_reg.hyst; int error, count, i; unsigned int val; if (!fwnode_property_read_u32(ch_node, "azoteq,lta-update", &val)) { if (val > IQS626_MISC_A_TPx_LTA_UPDATE_MAX) { dev_err(&client->dev, "Invalid %s channel update rate: %u\n", fwnode_get_name(ch_node), val); return -EINVAL; } sys_reg->misc_a &= ~IQS626_MISC_A_TPx_LTA_UPDATE_MASK; sys_reg->misc_a |= (val << IQS626_MISC_A_TPx_LTA_UPDATE_SHIFT); } if (!fwnode_property_read_u32(ch_node, "azoteq,filt-str-trackpad", &val)) { if (val > IQS626_FILT_STR_MAX) { dev_err(&client->dev, "Invalid %s channel filter strength: %u\n", fwnode_get_name(ch_node), val); return -EINVAL; } sys_reg->misc_b &= ~IQS626_MISC_B_FILT_STR_TPx; sys_reg->misc_b |= val; } if (!fwnode_property_read_u32(ch_node, "azoteq,filt-str-np-cnt", &val)) { if (val > IQS626_FILT_STR_MAX) { dev_err(&client->dev, "Invalid %s channel filter strength: %u\n", fwnode_get_name(ch_node), val); return -EINVAL; } *hyst &= ~IQS626_FILT_STR_NP_TPx_MASK; *hyst |= (val << IQS626_FILT_STR_NP_TPx_SHIFT); } if (!fwnode_property_read_u32(ch_node, "azoteq,filt-str-lp-cnt", &val)) { if (val > IQS626_FILT_STR_MAX) { dev_err(&client->dev, "Invalid %s channel filter strength: %u\n", fwnode_get_name(ch_node), val); return -EINVAL; } *hyst &= ~IQS626_FILT_STR_LP_TPx_MASK; *hyst |= (val << IQS626_FILT_STR_LP_TPx_SHIFT); } for (i = 0; i < iqs626_channels[ch_id].num_ch; i++) { u8 *ati_base = &sys_reg->tp_grp_reg.ch_reg_tp[i].ati_base; u8 *thresh = &sys_reg->tp_grp_reg.ch_reg_tp[i].thresh; struct fwnode_handle *tc_node; char tc_name[10]; snprintf(tc_name, sizeof(tc_name), "channel-%d", i); tc_node = fwnode_get_named_child_node(ch_node, tc_name); if (!tc_node) continue; if (!fwnode_property_read_u32(tc_node, "azoteq,ati-base", &val)) { if (val < IQS626_TPx_ATI_BASE_MIN || val > IQS626_TPx_ATI_BASE_MAX) { dev_err(&client->dev, "Invalid %s %s ATI base: %u\n", fwnode_get_name(ch_node), tc_name, val); fwnode_handle_put(tc_node); return -EINVAL; } *ati_base = val - IQS626_TPx_ATI_BASE_MIN; } if (!fwnode_property_read_u32(tc_node, "azoteq,thresh", &val)) { if (val > IQS626_CHx_THRESH_MAX) { dev_err(&client->dev, "Invalid %s %s threshold: %u\n", fwnode_get_name(ch_node), tc_name, val); fwnode_handle_put(tc_node); return -EINVAL; } *thresh = val; } fwnode_handle_put(tc_node); } if (!fwnode_property_present(ch_node, "linux,keycodes")) return 0; count = fwnode_property_count_u32(ch_node, "linux,keycodes"); if (count > IQS626_NUM_GESTURES) { dev_err(&client->dev, "Too many keycodes present\n"); return -EINVAL; } else if (count < 0) { dev_err(&client->dev, "Failed to count keycodes: %d\n", count); return count; } error = fwnode_property_read_u32_array(ch_node, "linux,keycodes", iqs626->tp_code, count); if (error) { dev_err(&client->dev, "Failed to read keycodes: %d\n", error); return error; } sys_reg->misc_b &= ~IQS626_MISC_B_TPx_SWIPE; if (fwnode_property_present(ch_node, "azoteq,gesture-swipe")) sys_reg->misc_b |= IQS626_MISC_B_TPx_SWIPE; if (!fwnode_property_read_u32(ch_node, "azoteq,timeout-tap-ms", &val)) { if (val > IQS626_TIMEOUT_TAP_MS_MAX) { dev_err(&client->dev, "Invalid %s channel timeout: %u\n", fwnode_get_name(ch_node), val); return -EINVAL; } sys_reg->timeout_tap = val / 16; } if (!fwnode_property_read_u32(ch_node, "azoteq,timeout-swipe-ms", &val)) { if (val > IQS626_TIMEOUT_SWIPE_MS_MAX) { dev_err(&client->dev, "Invalid %s channel timeout: %u\n", fwnode_get_name(ch_node), val); return -EINVAL; } sys_reg->timeout_swipe = val / 16; } if (!fwnode_property_read_u32(ch_node, "azoteq,thresh-swipe", &val)) { if (val > IQS626_THRESH_SWIPE_MAX) { dev_err(&client->dev, "Invalid %s channel threshold: %u\n", fwnode_get_name(ch_node), val); return -EINVAL; } sys_reg->thresh_swipe = val; } sys_reg->event_mask &= ~IQS626_EVENT_MASK_GESTURE; return 0; } static noinline_for_stack int iqs626_parse_channel(struct iqs626_private *iqs626, struct fwnode_handle *ch_node, enum iqs626_ch_id ch_id) { struct iqs626_sys_reg *sys_reg = &iqs626->sys_reg; struct i2c_client *client = iqs626->client; u8 *engine, *filter, *rx_enable, *tx_enable; u8 *assoc_select, *assoc_weight; unsigned int val; int error, i; switch (ch_id) { case IQS626_CH_ULP_0: engine = sys_reg->ch_reg_ulp.engine; break; case IQS626_CH_TP_2: case IQS626_CH_TP_3: engine = sys_reg->tp_grp_reg.engine; break; case IQS626_CH_GEN_0: case IQS626_CH_GEN_1: case IQS626_CH_GEN_2: i = ch_id - IQS626_CH_GEN_0; engine = sys_reg->ch_reg_gen[i].engine; break; case IQS626_CH_HALL: engine = &sys_reg->ch_reg_hall.engine; break; default: return -EINVAL; } error = iqs626_parse_ati_target(iqs626, ch_node, ch_id); if (error) return error; error = iqs626_parse_events(iqs626, ch_node, ch_id); if (error) return error; if (!fwnode_property_present(ch_node, "azoteq,ati-exclude")) sys_reg->redo_ati |= iqs626_channels[ch_id].active; if (!fwnode_property_present(ch_node, "azoteq,reseed-disable")) sys_reg->reseed |= iqs626_channels[ch_id].active; *engine |= IQS626_CHx_ENG_0_MEAS_CAP_SIZE; if (fwnode_property_present(ch_node, "azoteq,meas-cap-decrease")) *engine &= ~IQS626_CHx_ENG_0_MEAS_CAP_SIZE; *engine |= IQS626_CHx_ENG_0_RX_TERM_VSS; if (!fwnode_property_read_u32(ch_node, "azoteq,rx-inactive", &val)) { switch (val) { case IQS626_RX_INACTIVE_VSS: break; case IQS626_RX_INACTIVE_FLOAT: *engine &= ~IQS626_CHx_ENG_0_RX_TERM_VSS; if (ch_id == IQS626_CH_GEN_0 || ch_id == IQS626_CH_GEN_1 || ch_id == IQS626_CH_GEN_2) *(engine + 4) &= ~IQS626_CHx_ENG_4_RX_TERM_VREG; break; case IQS626_RX_INACTIVE_VREG: if (ch_id == IQS626_CH_GEN_0 || ch_id == IQS626_CH_GEN_1 || ch_id == IQS626_CH_GEN_2) { *engine &= ~IQS626_CHx_ENG_0_RX_TERM_VSS; *(engine + 4) |= IQS626_CHx_ENG_4_RX_TERM_VREG; break; } fallthrough; default: dev_err(&client->dev, "Invalid %s channel CRX pin termination: %u\n", fwnode_get_name(ch_node), val); return -EINVAL; } } *engine &= ~IQS626_CHx_ENG_0_LINEARIZE; if (fwnode_property_present(ch_node, "azoteq,linearize")) *engine |= IQS626_CHx_ENG_0_LINEARIZE; *engine &= ~IQS626_CHx_ENG_0_DUAL_DIR; if (fwnode_property_present(ch_node, "azoteq,dual-direction")) *engine |= IQS626_CHx_ENG_0_DUAL_DIR; *engine &= ~IQS626_CHx_ENG_0_FILT_DISABLE; if (fwnode_property_present(ch_node, "azoteq,filt-disable")) *engine |= IQS626_CHx_ENG_0_FILT_DISABLE; if (!fwnode_property_read_u32(ch_node, "azoteq,ati-mode", &val)) { if (val > IQS626_CHx_ENG_0_ATI_MODE_MAX) { dev_err(&client->dev, "Invalid %s channel ATI mode: %u\n", fwnode_get_name(ch_node), val); return -EINVAL; } *engine &= ~IQS626_CHx_ENG_0_ATI_MODE_MASK; *engine |= val; } if (ch_id == IQS626_CH_HALL) return 0; *(engine + 1) &= ~IQS626_CHx_ENG_1_CCT_ENABLE; if (!fwnode_property_read_u32(ch_node, "azoteq,cct-increase", &val) && val) { unsigned int orig_val = val--; /* * In the case of the generic channels, the charge cycle time * field doubles in size and straddles two separate registers. */ if (ch_id == IQS626_CH_GEN_0 || ch_id == IQS626_CH_GEN_1 || ch_id == IQS626_CH_GEN_2) { *(engine + 4) &= ~IQS626_CHx_ENG_4_CCT_LOW_1; if (val & BIT(1)) *(engine + 4) |= IQS626_CHx_ENG_4_CCT_LOW_1; *(engine + 4) &= ~IQS626_CHx_ENG_4_CCT_LOW_0; if (val & BIT(0)) *(engine + 4) |= IQS626_CHx_ENG_4_CCT_LOW_0; val >>= 2; } if (val & ~GENMASK(1, 0)) { dev_err(&client->dev, "Invalid %s channel charge cycle time: %u\n", fwnode_get_name(ch_node), orig_val); return -EINVAL; } *(engine + 1) &= ~IQS626_CHx_ENG_1_CCT_HIGH_1; if (val & BIT(1)) *(engine + 1) |= IQS626_CHx_ENG_1_CCT_HIGH_1; *(engine + 1) &= ~IQS626_CHx_ENG_1_CCT_HIGH_0; if (val & BIT(0)) *(engine + 1) |= IQS626_CHx_ENG_1_CCT_HIGH_0; *(engine + 1) |= IQS626_CHx_ENG_1_CCT_ENABLE; } if (!fwnode_property_read_u32(ch_node, "azoteq,proj-bias", &val)) { if (val > IQS626_CHx_ENG_1_PROJ_BIAS_MAX) { dev_err(&client->dev, "Invalid %s channel bias current: %u\n", fwnode_get_name(ch_node), val); return -EINVAL; } *(engine + 1) &= ~IQS626_CHx_ENG_1_PROJ_BIAS_MASK; *(engine + 1) |= (val << IQS626_CHx_ENG_1_PROJ_BIAS_SHIFT); } if (!fwnode_property_read_u32(ch_node, "azoteq,sense-freq", &val)) { if (val > IQS626_CHx_ENG_1_SENSE_FREQ_MAX) { dev_err(&client->dev, "Invalid %s channel sensing frequency: %u\n", fwnode_get_name(ch_node), val); return -EINVAL; } *(engine + 1) &= ~IQS626_CHx_ENG_1_SENSE_FREQ_MASK; *(engine + 1) |= (val << IQS626_CHx_ENG_1_SENSE_FREQ_SHIFT); } *(engine + 1) &= ~IQS626_CHx_ENG_1_ATI_BAND_TIGHTEN; if (fwnode_property_present(ch_node, "azoteq,ati-band-tighten")) *(engine + 1) |= IQS626_CHx_ENG_1_ATI_BAND_TIGHTEN; if (ch_id == IQS626_CH_TP_2 || ch_id == IQS626_CH_TP_3) return iqs626_parse_trackpad(iqs626, ch_node, ch_id); if (ch_id == IQS626_CH_ULP_0) { sys_reg->ch_reg_ulp.hyst &= ~IQS626_ULP_PROJ_ENABLE; if (fwnode_property_present(ch_node, "azoteq,proj-enable")) sys_reg->ch_reg_ulp.hyst |= IQS626_ULP_PROJ_ENABLE; filter = &sys_reg->ch_reg_ulp.filter; rx_enable = &sys_reg->ch_reg_ulp.rx_enable; tx_enable = &sys_reg->ch_reg_ulp.tx_enable; } else { i = ch_id - IQS626_CH_GEN_0; filter = &sys_reg->ch_reg_gen[i].filter; rx_enable = &sys_reg->ch_reg_gen[i].rx_enable; tx_enable = &sys_reg->ch_reg_gen[i].tx_enable; } if (!fwnode_property_read_u32(ch_node, "azoteq,filt-str-np-cnt", &val)) { if (val > IQS626_FILT_STR_MAX) { dev_err(&client->dev, "Invalid %s channel filter strength: %u\n", fwnode_get_name(ch_node), val); return -EINVAL; } *filter &= ~IQS626_FILT_STR_NP_CNT_MASK; *filter |= (val << IQS626_FILT_STR_NP_CNT_SHIFT); } if (!fwnode_property_read_u32(ch_node, "azoteq,filt-str-lp-cnt", &val)) { if (val > IQS626_FILT_STR_MAX) { dev_err(&client->dev, "Invalid %s channel filter strength: %u\n", fwnode_get_name(ch_node), val); return -EINVAL; } *filter &= ~IQS626_FILT_STR_LP_CNT_MASK; *filter |= (val << IQS626_FILT_STR_LP_CNT_SHIFT); } if (!fwnode_property_read_u32(ch_node, "azoteq,filt-str-np-lta", &val)) { if (val > IQS626_FILT_STR_MAX) { dev_err(&client->dev, "Invalid %s channel filter strength: %u\n", fwnode_get_name(ch_node), val); return -EINVAL; } *filter &= ~IQS626_FILT_STR_NP_LTA_MASK; *filter |= (val << IQS626_FILT_STR_NP_LTA_SHIFT); } if (!fwnode_property_read_u32(ch_node, "azoteq,filt-str-lp-lta", &val)) { if (val > IQS626_FILT_STR_MAX) { dev_err(&client->dev, "Invalid %s channel filter strength: %u\n", fwnode_get_name(ch_node), val); return -EINVAL; } *filter &= ~IQS626_FILT_STR_LP_LTA_MASK; *filter |= val; } error = iqs626_parse_pins(iqs626, ch_node, "azoteq,rx-enable", rx_enable); if (error) return error; error = iqs626_parse_pins(iqs626, ch_node, "azoteq,tx-enable", tx_enable); if (error) return error; if (ch_id == IQS626_CH_ULP_0) return 0; *(engine + 2) &= ~IQS626_CHx_ENG_2_LOCAL_CAP_ENABLE; if (!fwnode_property_read_u32(ch_node, "azoteq,local-cap-size", &val) && val) { unsigned int orig_val = val--; if (val > IQS626_CHx_ENG_2_LOCAL_CAP_MAX) { dev_err(&client->dev, "Invalid %s channel local cap. size: %u\n", fwnode_get_name(ch_node), orig_val); return -EINVAL; } *(engine + 2) &= ~IQS626_CHx_ENG_2_LOCAL_CAP_MASK; *(engine + 2) |= (val << IQS626_CHx_ENG_2_LOCAL_CAP_SHIFT); *(engine + 2) |= IQS626_CHx_ENG_2_LOCAL_CAP_ENABLE; } if (!fwnode_property_read_u32(ch_node, "azoteq,sense-mode", &val)) { if (val > IQS626_CHx_ENG_2_SENSE_MODE_MAX) { dev_err(&client->dev, "Invalid %s channel sensing mode: %u\n", fwnode_get_name(ch_node), val); return -EINVAL; } *(engine + 2) &= ~IQS626_CHx_ENG_2_SENSE_MODE_MASK; *(engine + 2) |= val; } if (!fwnode_property_read_u32(ch_node, "azoteq,tx-freq", &val)) { if (val > IQS626_CHx_ENG_3_TX_FREQ_MAX) { dev_err(&client->dev, "Invalid %s channel excitation frequency: %u\n", fwnode_get_name(ch_node), val); return -EINVAL; } *(engine + 3) &= ~IQS626_CHx_ENG_3_TX_FREQ_MASK; *(engine + 3) |= (val << IQS626_CHx_ENG_3_TX_FREQ_SHIFT); } *(engine + 3) &= ~IQS626_CHx_ENG_3_INV_LOGIC; if (fwnode_property_present(ch_node, "azoteq,invert-enable")) *(engine + 3) |= IQS626_CHx_ENG_3_INV_LOGIC; *(engine + 4) &= ~IQS626_CHx_ENG_4_COMP_DISABLE; if (fwnode_property_present(ch_node, "azoteq,comp-disable")) *(engine + 4) |= IQS626_CHx_ENG_4_COMP_DISABLE; *(engine + 4) &= ~IQS626_CHx_ENG_4_STATIC_ENABLE; if (fwnode_property_present(ch_node, "azoteq,static-enable")) *(engine + 4) |= IQS626_CHx_ENG_4_STATIC_ENABLE; i = ch_id - IQS626_CH_GEN_0; assoc_select = &sys_reg->ch_reg_gen[i].assoc_select; assoc_weight = &sys_reg->ch_reg_gen[i].assoc_weight; *assoc_select = 0; if (!fwnode_property_present(ch_node, "azoteq,assoc-select")) return 0; for (i = 0; i < ARRAY_SIZE(iqs626_channels); i++) { if (fwnode_property_match_string(ch_node, "azoteq,assoc-select", iqs626_channels[i].name) < 0) continue; *assoc_select |= iqs626_channels[i].active; } if (fwnode_property_read_u32(ch_node, "azoteq,assoc-weight", &val)) return 0; if (val > IQS626_GEN_WEIGHT_MAX) { dev_err(&client->dev, "Invalid %s channel associated weight: %u\n", fwnode_get_name(ch_node), val); return -EINVAL; } *assoc_weight = val; return 0; } static int iqs626_parse_prop(struct iqs626_private *iqs626) { struct iqs626_sys_reg *sys_reg = &iqs626->sys_reg; struct i2c_client *client = iqs626->client; struct fwnode_handle *ch_node; unsigned int val; int error, i; u16 general; if (!device_property_read_u32(&client->dev, "azoteq,suspend-mode", &val)) { if (val > IQS626_SYS_SETTINGS_PWR_MODE_MAX) { dev_err(&client->dev, "Invalid suspend mode: %u\n", val); return -EINVAL; } iqs626->suspend_mode = val; } error = regmap_raw_read(iqs626->regmap, IQS626_SYS_SETTINGS, sys_reg, sizeof(*sys_reg)); if (error) return error; general = be16_to_cpu(sys_reg->general); general &= IQS626_SYS_SETTINGS_ULP_UPDATE_MASK; if (device_property_present(&client->dev, "azoteq,clk-div")) general |= IQS626_SYS_SETTINGS_CLK_DIV; if (device_property_present(&client->dev, "azoteq,ulp-enable")) general |= IQS626_SYS_SETTINGS_ULP_AUTO; if (!device_property_read_u32(&client->dev, "azoteq,ulp-update", &val)) { if (val > IQS626_SYS_SETTINGS_ULP_UPDATE_MAX) { dev_err(&client->dev, "Invalid update rate: %u\n", val); return -EINVAL; } general &= ~IQS626_SYS_SETTINGS_ULP_UPDATE_MASK; general |= (val << IQS626_SYS_SETTINGS_ULP_UPDATE_SHIFT); } sys_reg->misc_a &= ~IQS626_MISC_A_ATI_BAND_DISABLE; if (device_property_present(&client->dev, "azoteq,ati-band-disable")) sys_reg->misc_a |= IQS626_MISC_A_ATI_BAND_DISABLE; sys_reg->misc_a &= ~IQS626_MISC_A_ATI_LP_ONLY; if (device_property_present(&client->dev, "azoteq,ati-lp-only")) sys_reg->misc_a |= IQS626_MISC_A_ATI_LP_ONLY; if (!device_property_read_u32(&client->dev, "azoteq,gpio3-select", &val)) { if (val > IQS626_MISC_A_GPIO3_SELECT_MAX) { dev_err(&client->dev, "Invalid GPIO3 selection: %u\n", val); return -EINVAL; } sys_reg->misc_a &= ~IQS626_MISC_A_GPIO3_SELECT_MASK; sys_reg->misc_a |= val; } if (!device_property_read_u32(&client->dev, "azoteq,reseed-select", &val)) { if (val > IQS626_MISC_B_RESEED_UI_SEL_MAX) { dev_err(&client->dev, "Invalid reseed selection: %u\n", val); return -EINVAL; } sys_reg->misc_b &= ~IQS626_MISC_B_RESEED_UI_SEL_MASK; sys_reg->misc_b |= (val << IQS626_MISC_B_RESEED_UI_SEL_SHIFT); } sys_reg->misc_b &= ~IQS626_MISC_B_THRESH_EXTEND; if (device_property_present(&client->dev, "azoteq,thresh-extend")) sys_reg->misc_b |= IQS626_MISC_B_THRESH_EXTEND; sys_reg->misc_b &= ~IQS626_MISC_B_TRACKING_UI_ENABLE; if (device_property_present(&client->dev, "azoteq,tracking-enable")) sys_reg->misc_b |= IQS626_MISC_B_TRACKING_UI_ENABLE; sys_reg->misc_b &= ~IQS626_MISC_B_RESEED_OFFSET; if (device_property_present(&client->dev, "azoteq,reseed-offset")) sys_reg->misc_b |= IQS626_MISC_B_RESEED_OFFSET; if (!device_property_read_u32(&client->dev, "azoteq,rate-np-ms", &val)) { if (val > IQS626_RATE_NP_MS_MAX) { dev_err(&client->dev, "Invalid report rate: %u\n", val); return -EINVAL; } sys_reg->rate_np = val; } if (!device_property_read_u32(&client->dev, "azoteq,rate-lp-ms", &val)) { if (val > IQS626_RATE_LP_MS_MAX) { dev_err(&client->dev, "Invalid report rate: %u\n", val); return -EINVAL; } sys_reg->rate_lp = val; } if (!device_property_read_u32(&client->dev, "azoteq,rate-ulp-ms", &val)) { if (val > IQS626_RATE_ULP_MS_MAX) { dev_err(&client->dev, "Invalid report rate: %u\n", val); return -EINVAL; } sys_reg->rate_ulp = val / 16; } if (!device_property_read_u32(&client->dev, "azoteq,timeout-pwr-ms", &val)) { if (val > IQS626_TIMEOUT_PWR_MS_MAX) { dev_err(&client->dev, "Invalid timeout: %u\n", val); return -EINVAL; } sys_reg->timeout_pwr = val / 512; } if (!device_property_read_u32(&client->dev, "azoteq,timeout-lta-ms", &val)) { if (val > IQS626_TIMEOUT_LTA_MS_MAX) { dev_err(&client->dev, "Invalid timeout: %u\n", val); return -EINVAL; } sys_reg->timeout_lta = val / 512; } sys_reg->event_mask = ~((u8)IQS626_EVENT_MASK_SYS); sys_reg->redo_ati = 0; sys_reg->reseed = 0; sys_reg->active = 0; for (i = 0; i < ARRAY_SIZE(iqs626_channels); i++) { ch_node = device_get_named_child_node(&client->dev, iqs626_channels[i].name); if (!ch_node) continue; error = iqs626_parse_channel(iqs626, ch_node, i); fwnode_handle_put(ch_node); if (error) return error; sys_reg->active |= iqs626_channels[i].active; } general |= IQS626_SYS_SETTINGS_EVENT_MODE; /* * Enable streaming during normal-power mode if the trackpad is used to * report raw coordinates instead of gestures. In that case, the device * returns to event mode during low-power mode. */ if (sys_reg->active & iqs626_channels[IQS626_CH_TP_2].active && sys_reg->event_mask & IQS626_EVENT_MASK_GESTURE) general |= IQS626_SYS_SETTINGS_EVENT_MODE_LP; general |= IQS626_SYS_SETTINGS_REDO_ATI; general |= IQS626_SYS_SETTINGS_ACK_RESET; sys_reg->general = cpu_to_be16(general); error = regmap_raw_write(iqs626->regmap, IQS626_SYS_SETTINGS, &iqs626->sys_reg, sizeof(iqs626->sys_reg)); if (error) return error; iqs626_irq_wait(); return 0; } static int iqs626_input_init(struct iqs626_private *iqs626) { struct iqs626_sys_reg *sys_reg = &iqs626->sys_reg; struct i2c_client *client = iqs626->client; int error, i, j; iqs626->keypad = devm_input_allocate_device(&client->dev); if (!iqs626->keypad) return -ENOMEM; iqs626->keypad->keycodemax = ARRAY_SIZE(iqs626->kp_code); iqs626->keypad->keycode = iqs626->kp_code; iqs626->keypad->keycodesize = sizeof(**iqs626->kp_code); iqs626->keypad->name = "iqs626a_keypad"; iqs626->keypad->id.bustype = BUS_I2C; for (i = 0; i < ARRAY_SIZE(iqs626_channels); i++) { if (!(sys_reg->active & iqs626_channels[i].active)) continue; for (j = 0; j < ARRAY_SIZE(iqs626_events); j++) { if (!iqs626->kp_type[i][j]) continue; input_set_capability(iqs626->keypad, iqs626->kp_type[i][j], iqs626->kp_code[i][j]); } } if (!(sys_reg->active & iqs626_channels[IQS626_CH_TP_2].active)) return 0; iqs626->trackpad = devm_input_allocate_device(&client->dev); if (!iqs626->trackpad) return -ENOMEM; iqs626->trackpad->keycodemax = ARRAY_SIZE(iqs626->tp_code); iqs626->trackpad->keycode = iqs626->tp_code; iqs626->trackpad->keycodesize = sizeof(*iqs626->tp_code); iqs626->trackpad->name = "iqs626a_trackpad"; iqs626->trackpad->id.bustype = BUS_I2C; /* * Present the trackpad as a traditional pointing device if no gestures * have been mapped to a keycode. */ if (sys_reg->event_mask & IQS626_EVENT_MASK_GESTURE) { u8 tp_mask = iqs626_channels[IQS626_CH_TP_3].active; input_set_capability(iqs626->trackpad, EV_KEY, BTN_TOUCH); input_set_abs_params(iqs626->trackpad, ABS_Y, 0, 255, 0, 0); if ((sys_reg->active & tp_mask) == tp_mask) input_set_abs_params(iqs626->trackpad, ABS_X, 0, 255, 0, 0); else input_set_abs_params(iqs626->trackpad, ABS_X, 0, 128, 0, 0); touchscreen_parse_properties(iqs626->trackpad, false, &iqs626->prop); } else { for (i = 0; i < IQS626_NUM_GESTURES; i++) if (iqs626->tp_code[i] != KEY_RESERVED) input_set_capability(iqs626->trackpad, EV_KEY, iqs626->tp_code[i]); } error = input_register_device(iqs626->trackpad); if (error) dev_err(&client->dev, "Failed to register trackpad: %d\n", error); return error; } static int iqs626_report(struct iqs626_private *iqs626) { struct iqs626_sys_reg *sys_reg = &iqs626->sys_reg; struct i2c_client *client = iqs626->client; struct iqs626_flags flags; __le16 hall_output; int error, i, j; u8 state; u8 *dir_mask = &flags.states[IQS626_ST_OFFS_DIR]; error = regmap_raw_read(iqs626->regmap, IQS626_SYS_FLAGS, &flags, sizeof(flags)); if (error) { dev_err(&client->dev, "Failed to read device status: %d\n", error); return error; } /* * The device resets itself if its own watchdog bites, which can happen * in the event of an I2C communication error. In this case, the device * asserts a SHOW_RESET interrupt and all registers must be restored. */ if (be16_to_cpu(flags.system) & IQS626_SYS_FLAGS_SHOW_RESET) { dev_err(&client->dev, "Unexpected device reset\n"); error = regmap_raw_write(iqs626->regmap, IQS626_SYS_SETTINGS, sys_reg, sizeof(*sys_reg)); if (error) dev_err(&client->dev, "Failed to re-initialize device: %d\n", error); return error; } if (be16_to_cpu(flags.system) & IQS626_SYS_FLAGS_IN_ATI) return 0; /* * Unlike the ULP or generic channels, the Hall channel does not have a * direction flag. Instead, the direction (i.e. magnet polarity) can be * derived based on the sign of the 2's complement differential output. */ if (sys_reg->active & iqs626_channels[IQS626_CH_HALL].active) { error = regmap_raw_read(iqs626->regmap, IQS626_HALL_OUTPUT, &hall_output, sizeof(hall_output)); if (error) { dev_err(&client->dev, "Failed to read Hall output: %d\n", error); return error; } *dir_mask &= ~iqs626_channels[IQS626_CH_HALL].active; if (le16_to_cpu(hall_output) < 0x8000) *dir_mask |= iqs626_channels[IQS626_CH_HALL].active; } for (i = 0; i < ARRAY_SIZE(iqs626_channels); i++) { if (!(sys_reg->active & iqs626_channels[i].active)) continue; for (j = 0; j < ARRAY_SIZE(iqs626_events); j++) { if (!iqs626->kp_type[i][j]) continue; state = flags.states[iqs626_events[j].st_offs]; state &= iqs626_events[j].dir_up ? *dir_mask : ~(*dir_mask); state &= iqs626_channels[i].active; input_event(iqs626->keypad, iqs626->kp_type[i][j], iqs626->kp_code[i][j], !!state); } } input_sync(iqs626->keypad); /* * The following completion signals that ATI has finished, any initial * switch states have been reported and the keypad can be registered. */ complete_all(&iqs626->ati_done); if (!(sys_reg->active & iqs626_channels[IQS626_CH_TP_2].active)) return 0; if (sys_reg->event_mask & IQS626_EVENT_MASK_GESTURE) { state = flags.states[IQS626_ST_OFFS_TOUCH]; state &= iqs626_channels[IQS626_CH_TP_2].active; input_report_key(iqs626->trackpad, BTN_TOUCH, state); if (state) touchscreen_report_pos(iqs626->trackpad, &iqs626->prop, flags.trackpad_x, flags.trackpad_y, false); } else { for (i = 0; i < IQS626_NUM_GESTURES; i++) input_report_key(iqs626->trackpad, iqs626->tp_code[i], flags.gesture & BIT(i)); if (flags.gesture & GENMASK(IQS626_GESTURE_TAP, 0)) { input_sync(iqs626->trackpad); /* * Momentary gestures are followed by a complementary * release cycle so as to emulate a full keystroke. */ for (i = 0; i < IQS626_GESTURE_HOLD; i++) input_report_key(iqs626->trackpad, iqs626->tp_code[i], 0); } } input_sync(iqs626->trackpad); return 0; } static irqreturn_t iqs626_irq(int irq, void *context) { struct iqs626_private *iqs626 = context; if (iqs626_report(iqs626)) return IRQ_NONE; /* * The device does not deassert its interrupt (RDY) pin until shortly * after receiving an I2C stop condition; the following delay ensures * the interrupt handler does not return before this time. */ iqs626_irq_wait(); return IRQ_HANDLED; } static const struct regmap_config iqs626_regmap_config = { .reg_bits = 8, .val_bits = 16, .max_register = IQS626_MAX_REG, }; static int iqs626_probe(struct i2c_client *client) { struct iqs626_ver_info ver_info; struct iqs626_private *iqs626; int error; iqs626 = devm_kzalloc(&client->dev, sizeof(*iqs626), GFP_KERNEL); if (!iqs626) return -ENOMEM; i2c_set_clientdata(client, iqs626); iqs626->client = client; iqs626->regmap = devm_regmap_init_i2c(client, &iqs626_regmap_config); if (IS_ERR(iqs626->regmap)) { error = PTR_ERR(iqs626->regmap); dev_err(&client->dev, "Failed to initialize register map: %d\n", error); return error; } init_completion(&iqs626->ati_done); error = regmap_raw_read(iqs626->regmap, IQS626_VER_INFO, &ver_info, sizeof(ver_info)); if (error) return error; if (ver_info.prod_num != IQS626_VER_INFO_PROD_NUM) { dev_err(&client->dev, "Unrecognized product number: 0x%02X\n", ver_info.prod_num); return -EINVAL; } error = iqs626_parse_prop(iqs626); if (error) return error; error = iqs626_input_init(iqs626); if (error) return error; error = devm_request_threaded_irq(&client->dev, client->irq, NULL, iqs626_irq, IRQF_ONESHOT, client->name, iqs626); if (error) { dev_err(&client->dev, "Failed to request IRQ: %d\n", error); return error; } if (!wait_for_completion_timeout(&iqs626->ati_done, msecs_to_jiffies(2000))) { dev_err(&client->dev, "Failed to complete ATI\n"); return -ETIMEDOUT; } /* * The keypad may include one or more switches and is not registered * until ATI is complete and the initial switch states are read. */ error = input_register_device(iqs626->keypad); if (error) dev_err(&client->dev, "Failed to register keypad: %d\n", error); return error; } static int iqs626_suspend(struct device *dev) { struct iqs626_private *iqs626 = dev_get_drvdata(dev); struct i2c_client *client = iqs626->client; unsigned int val; int error; if (!iqs626->suspend_mode) return 0; disable_irq(client->irq); /* * Automatic power mode switching must be disabled before the device is * forced into any particular power mode. In this case, the device will * transition into normal-power mode. */ error = regmap_update_bits(iqs626->regmap, IQS626_SYS_SETTINGS, IQS626_SYS_SETTINGS_DIS_AUTO, ~0); if (error) goto err_irq; /* * The following check ensures the device has completed its transition * into normal-power mode before a manual mode switch is performed. */ error = regmap_read_poll_timeout(iqs626->regmap, IQS626_SYS_FLAGS, val, !(val & IQS626_SYS_FLAGS_PWR_MODE_MASK), IQS626_PWR_MODE_POLL_SLEEP_US, IQS626_PWR_MODE_POLL_TIMEOUT_US); if (error) goto err_irq; error = regmap_update_bits(iqs626->regmap, IQS626_SYS_SETTINGS, IQS626_SYS_SETTINGS_PWR_MODE_MASK, iqs626->suspend_mode << IQS626_SYS_SETTINGS_PWR_MODE_SHIFT); if (error) goto err_irq; /* * This last check ensures the device has completed its transition into * the desired power mode to prevent any spurious interrupts from being * triggered after iqs626_suspend has already returned. */ error = regmap_read_poll_timeout(iqs626->regmap, IQS626_SYS_FLAGS, val, (val & IQS626_SYS_FLAGS_PWR_MODE_MASK) == (iqs626->suspend_mode << IQS626_SYS_FLAGS_PWR_MODE_SHIFT), IQS626_PWR_MODE_POLL_SLEEP_US, IQS626_PWR_MODE_POLL_TIMEOUT_US); err_irq: iqs626_irq_wait(); enable_irq(client->irq); return error; } static int iqs626_resume(struct device *dev) { struct iqs626_private *iqs626 = dev_get_drvdata(dev); struct i2c_client *client = iqs626->client; unsigned int val; int error; if (!iqs626->suspend_mode) return 0; disable_irq(client->irq); error = regmap_update_bits(iqs626->regmap, IQS626_SYS_SETTINGS, IQS626_SYS_SETTINGS_PWR_MODE_MASK, 0); if (error) goto err_irq; /* * This check ensures the device has returned to normal-power mode * before automatic power mode switching is re-enabled. */ error = regmap_read_poll_timeout(iqs626->regmap, IQS626_SYS_FLAGS, val, !(val & IQS626_SYS_FLAGS_PWR_MODE_MASK), IQS626_PWR_MODE_POLL_SLEEP_US, IQS626_PWR_MODE_POLL_TIMEOUT_US); if (error) goto err_irq; error = regmap_update_bits(iqs626->regmap, IQS626_SYS_SETTINGS, IQS626_SYS_SETTINGS_DIS_AUTO, 0); if (error) goto err_irq; /* * This step reports any events that may have been "swallowed" as a * result of polling PWR_MODE (which automatically acknowledges any * pending interrupts). */ error = iqs626_report(iqs626); err_irq: iqs626_irq_wait(); enable_irq(client->irq); return error; } static DEFINE_SIMPLE_DEV_PM_OPS(iqs626_pm, iqs626_suspend, iqs626_resume); static const struct of_device_id iqs626_of_match[] = { { .compatible = "azoteq,iqs626a" }, { } }; MODULE_DEVICE_TABLE(of, iqs626_of_match); static struct i2c_driver iqs626_i2c_driver = { .driver = { .name = "iqs626a", .of_match_table = iqs626_of_match, .pm = pm_sleep_ptr(&iqs626_pm), }, .probe = iqs626_probe, }; module_i2c_driver(iqs626_i2c_driver); MODULE_AUTHOR("Jeff LaBundy <[email protected]>"); MODULE_DESCRIPTION("Azoteq IQS626A Capacitive Touch Controller"); MODULE_LICENSE("GPL");
linux-master
drivers/input/misc/iqs626a.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Input driver for slidebars on some Lenovo IdeaPad laptops * * Copyright (C) 2013 Andrey Moiseev <[email protected]> * * Reverse-engineered from Lenovo SlideNav software (SBarHook.dll). * * Trademarks are the property of their respective owners. */ /* * Currently tested and works on: * Lenovo IdeaPad Y550 * Lenovo IdeaPad Y550P * * Other models can be added easily. To test, * load with 'force' parameter set 'true'. * * LEDs blinking and input mode are managed via sysfs, * (hex, unsigned byte value): * /sys/devices/platform/ideapad_slidebar/slidebar_mode * * The value is in byte range, however, I only figured out * how bits 0b10011001 work. Some other bits, probably, * are meaningfull too. * * Possible states: * * STD_INT, ONMOV_INT, OFF_INT, LAST_POLL, OFF_POLL * * Meaning: * released touched * STD 'heartbeat' lights follow the finger * ONMOV no lights lights follow the finger * LAST at last pos lights follow the finger * OFF no lights no lights * * INT all input events are generated, interrupts are used * POLL no input events by default, to get them, * send 0b10000000 (read below) * * Commands: write * * All | 0b01001 -> STD_INT * possible | 0b10001 -> ONMOV_INT * states | 0b01000 -> OFF_INT * * | 0b0 -> LAST_POLL * STD_INT or ONMOV_INT | * | 0b1 -> STD_INT * * | 0b0 -> OFF_POLL * OFF_INT or OFF_POLL | * | 0b1 -> OFF_INT * * Any state | 0b10000000 -> if the slidebar has updated data, * produce one input event (last position), * switch to respective POLL mode * (like 0x0), if not in POLL mode yet. * * Get current state: read * * masked by 0x11 read value means: * * 0x00 LAST * 0x01 STD * 0x10 OFF * 0x11 ONMOV */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/kernel.h> #include <linux/dmi.h> #include <linux/spinlock.h> #include <linux/platform_device.h> #include <linux/input.h> #include <linux/io.h> #include <linux/ioport.h> #include <linux/i8042.h> #include <linux/serio.h> #define IDEAPAD_BASE 0xff29 static bool force; module_param(force, bool, 0); MODULE_PARM_DESC(force, "Force driver load, ignore DMI data"); static DEFINE_SPINLOCK(io_lock); static struct input_dev *slidebar_input_dev; static struct platform_device *slidebar_platform_dev; static u8 slidebar_pos_get(void) { u8 res; unsigned long flags; spin_lock_irqsave(&io_lock, flags); outb(0xf4, 0xff29); outb(0xbf, 0xff2a); res = inb(0xff2b); spin_unlock_irqrestore(&io_lock, flags); return res; } static u8 slidebar_mode_get(void) { u8 res; unsigned long flags; spin_lock_irqsave(&io_lock, flags); outb(0xf7, 0xff29); outb(0x8b, 0xff2a); res = inb(0xff2b); spin_unlock_irqrestore(&io_lock, flags); return res; } static void slidebar_mode_set(u8 mode) { unsigned long flags; spin_lock_irqsave(&io_lock, flags); outb(0xf7, 0xff29); outb(0x8b, 0xff2a); outb(mode, 0xff2b); spin_unlock_irqrestore(&io_lock, flags); } static bool slidebar_i8042_filter(unsigned char data, unsigned char str, struct serio *port) { static bool extended = false; /* We are only interested in data coming form KBC port */ if (str & I8042_STR_AUXDATA) return false; /* Scancodes: e03b on move, e0bb on release. */ if (data == 0xe0) { extended = true; return true; } if (!extended) return false; extended = false; if (likely((data & 0x7f) != 0x3b)) { serio_interrupt(port, 0xe0, 0); return false; } if (data & 0x80) { input_report_key(slidebar_input_dev, BTN_TOUCH, 0); } else { input_report_key(slidebar_input_dev, BTN_TOUCH, 1); input_report_abs(slidebar_input_dev, ABS_X, slidebar_pos_get()); } input_sync(slidebar_input_dev); return true; } static ssize_t show_slidebar_mode(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%x\n", slidebar_mode_get()); } static ssize_t store_slidebar_mode(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { u8 mode; int error; error = kstrtou8(buf, 0, &mode); if (error) return error; slidebar_mode_set(mode); return count; } static DEVICE_ATTR(slidebar_mode, S_IWUSR | S_IRUGO, show_slidebar_mode, store_slidebar_mode); static struct attribute *ideapad_attrs[] = { &dev_attr_slidebar_mode.attr, NULL }; static struct attribute_group ideapad_attr_group = { .attrs = ideapad_attrs }; static const struct attribute_group *ideapad_attr_groups[] = { &ideapad_attr_group, NULL }; static int __init ideapad_probe(struct platform_device* pdev) { int err; if (!request_region(IDEAPAD_BASE, 3, "ideapad_slidebar")) { dev_err(&pdev->dev, "IO ports are busy\n"); return -EBUSY; } slidebar_input_dev = input_allocate_device(); if (!slidebar_input_dev) { dev_err(&pdev->dev, "Failed to allocate input device\n"); err = -ENOMEM; goto err_release_ports; } slidebar_input_dev->name = "IdeaPad Slidebar"; slidebar_input_dev->id.bustype = BUS_HOST; slidebar_input_dev->dev.parent = &pdev->dev; input_set_capability(slidebar_input_dev, EV_KEY, BTN_TOUCH); input_set_capability(slidebar_input_dev, EV_ABS, ABS_X); input_set_abs_params(slidebar_input_dev, ABS_X, 0, 0xff, 0, 0); err = i8042_install_filter(slidebar_i8042_filter); if (err) { dev_err(&pdev->dev, "Failed to install i8042 filter: %d\n", err); goto err_free_dev; } err = input_register_device(slidebar_input_dev); if (err) { dev_err(&pdev->dev, "Failed to register input device: %d\n", err); goto err_remove_filter; } return 0; err_remove_filter: i8042_remove_filter(slidebar_i8042_filter); err_free_dev: input_free_device(slidebar_input_dev); err_release_ports: release_region(IDEAPAD_BASE, 3); return err; } static int ideapad_remove(struct platform_device *pdev) { i8042_remove_filter(slidebar_i8042_filter); input_unregister_device(slidebar_input_dev); release_region(IDEAPAD_BASE, 3); return 0; } static struct platform_driver slidebar_drv = { .driver = { .name = "ideapad_slidebar", }, .remove = ideapad_remove, }; static int __init ideapad_dmi_check(const struct dmi_system_id *id) { pr_info("Laptop model '%s'\n", id->ident); return 1; } static const struct dmi_system_id ideapad_dmi[] __initconst = { { .ident = "Lenovo IdeaPad Y550", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), DMI_MATCH(DMI_PRODUCT_NAME, "20017"), DMI_MATCH(DMI_PRODUCT_VERSION, "Lenovo IdeaPad Y550") }, .callback = ideapad_dmi_check }, { .ident = "Lenovo IdeaPad Y550P", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), DMI_MATCH(DMI_PRODUCT_NAME, "20035"), DMI_MATCH(DMI_PRODUCT_VERSION, "Lenovo IdeaPad Y550P") }, .callback = ideapad_dmi_check }, { NULL, } }; MODULE_DEVICE_TABLE(dmi, ideapad_dmi); static int __init slidebar_init(void) { int err; if (!force && !dmi_check_system(ideapad_dmi)) { pr_err("DMI does not match\n"); return -ENODEV; } slidebar_platform_dev = platform_device_alloc("ideapad_slidebar", -1); if (!slidebar_platform_dev) { pr_err("Not enough memory\n"); return -ENOMEM; } slidebar_platform_dev->dev.groups = ideapad_attr_groups; err = platform_device_add(slidebar_platform_dev); if (err) { pr_err("Failed to register platform device\n"); goto err_free_dev; } err = platform_driver_probe(&slidebar_drv, ideapad_probe); if (err) { pr_err("Failed to register platform driver\n"); goto err_delete_dev; } return 0; err_delete_dev: platform_device_del(slidebar_platform_dev); err_free_dev: platform_device_put(slidebar_platform_dev); return err; } static void __exit slidebar_exit(void) { platform_device_unregister(slidebar_platform_dev); platform_driver_unregister(&slidebar_drv); } module_init(slidebar_init); module_exit(slidebar_exit); MODULE_AUTHOR("Andrey Moiseev <[email protected]>"); MODULE_DESCRIPTION("Slidebar input support for some Lenovo IdeaPad laptops"); MODULE_LICENSE("GPL");
linux-master
drivers/input/misc/ideapad_slidebar.c
// SPDX-License-Identifier: GPL-2.0-only /* * keyspan_remote: USB driver for the Keyspan DMR * * Copyright (C) 2005 Zymeta Corporation - Michael Downey ([email protected]) * * This driver has been put together with the support of Innosys, Inc. * and Keyspan, Inc the manufacturers of the Keyspan USB DMR product. */ #include <linux/kernel.h> #include <linux/errno.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/usb/input.h> /* Parameters that can be passed to the driver. */ static int debug; module_param(debug, int, 0444); MODULE_PARM_DESC(debug, "Enable extra debug messages and information"); /* Vendor and product ids */ #define USB_KEYSPAN_VENDOR_ID 0x06CD #define USB_KEYSPAN_PRODUCT_UIA11 0x0202 /* Defines for converting the data from the remote. */ #define ZERO 0x18 #define ZERO_MASK 0x1F /* 5 bits for a 0 */ #define ONE 0x3C #define ONE_MASK 0x3F /* 6 bits for a 1 */ #define SYNC 0x3F80 #define SYNC_MASK 0x3FFF /* 14 bits for a SYNC sequence */ #define STOP 0x00 #define STOP_MASK 0x1F /* 5 bits for the STOP sequence */ #define GAP 0xFF #define RECV_SIZE 8 /* The UIA-11 type have a 8 byte limit. */ /* * Table that maps the 31 possible keycodes to input keys. * Currently there are 15 and 17 button models so RESERVED codes * are blank areas in the mapping. */ static const unsigned short keyspan_key_table[] = { KEY_RESERVED, /* 0 is just a place holder. */ KEY_RESERVED, KEY_STOP, KEY_PLAYCD, KEY_RESERVED, KEY_PREVIOUSSONG, KEY_REWIND, KEY_FORWARD, KEY_NEXTSONG, KEY_RESERVED, KEY_RESERVED, KEY_RESERVED, KEY_PAUSE, KEY_VOLUMEUP, KEY_RESERVED, KEY_RESERVED, KEY_RESERVED, KEY_VOLUMEDOWN, KEY_RESERVED, KEY_UP, KEY_RESERVED, KEY_MUTE, KEY_LEFT, KEY_ENTER, KEY_RIGHT, KEY_RESERVED, KEY_RESERVED, KEY_DOWN, KEY_RESERVED, KEY_KPASTERISK, KEY_RESERVED, KEY_MENU }; /* table of devices that work with this driver */ static const struct usb_device_id keyspan_table[] = { { USB_DEVICE(USB_KEYSPAN_VENDOR_ID, USB_KEYSPAN_PRODUCT_UIA11) }, { } /* Terminating entry */ }; /* Structure to store all the real stuff that a remote sends to us. */ struct keyspan_message { u16 system; u8 button; u8 toggle; }; /* Structure used for all the bit testing magic needed to be done. */ struct bit_tester { u32 tester; int len; int pos; int bits_left; u8 buffer[32]; }; /* Structure to hold all of our driver specific stuff */ struct usb_keyspan { char name[128]; char phys[64]; unsigned short keymap[ARRAY_SIZE(keyspan_key_table)]; struct usb_device *udev; struct input_dev *input; struct usb_interface *interface; struct usb_endpoint_descriptor *in_endpoint; struct urb* irq_urb; int open; dma_addr_t in_dma; unsigned char *in_buffer; /* variables used to parse messages from remote. */ struct bit_tester data; int stage; int toggle; }; static struct usb_driver keyspan_driver; /* * Debug routine that prints out what we've received from the remote. */ static void keyspan_print(struct usb_keyspan* dev) /*unsigned char* data)*/ { char codes[4 * RECV_SIZE]; int i; for (i = 0; i < RECV_SIZE; i++) snprintf(codes + i * 3, 4, "%02x ", dev->in_buffer[i]); dev_info(&dev->udev->dev, "%s\n", codes); } /* * Routine that manages the bit_tester structure. It makes sure that there are * at least bits_needed bits loaded into the tester. */ static int keyspan_load_tester(struct usb_keyspan* dev, int bits_needed) { if (dev->data.bits_left >= bits_needed) return 0; /* * Somehow we've missed the last message. The message will be repeated * though so it's not too big a deal */ if (dev->data.pos >= dev->data.len) { dev_dbg(&dev->interface->dev, "%s - Error ran out of data. pos: %d, len: %d\n", __func__, dev->data.pos, dev->data.len); return -1; } /* Load as much as we can into the tester. */ while ((dev->data.bits_left + 7 < (sizeof(dev->data.tester) * 8)) && (dev->data.pos < dev->data.len)) { dev->data.tester += (dev->data.buffer[dev->data.pos++] << dev->data.bits_left); dev->data.bits_left += 8; } return 0; } static void keyspan_report_button(struct usb_keyspan *remote, int button, int press) { struct input_dev *input = remote->input; input_event(input, EV_MSC, MSC_SCAN, button); input_report_key(input, remote->keymap[button], press); input_sync(input); } /* * Routine that handles all the logic needed to parse out the message from the remote. */ static void keyspan_check_data(struct usb_keyspan *remote) { int i; int found = 0; struct keyspan_message message; switch(remote->stage) { case 0: /* * In stage 0 we want to find the start of a message. The remote sends a 0xFF as filler. * So the first byte that isn't a FF should be the start of a new message. */ for (i = 0; i < RECV_SIZE && remote->in_buffer[i] == GAP; ++i); if (i < RECV_SIZE) { memcpy(remote->data.buffer, remote->in_buffer, RECV_SIZE); remote->data.len = RECV_SIZE; remote->data.pos = 0; remote->data.tester = 0; remote->data.bits_left = 0; remote->stage = 1; } break; case 1: /* * Stage 1 we should have 16 bytes and should be able to detect a * SYNC. The SYNC is 14 bits, 7 0's and then 7 1's. */ memcpy(remote->data.buffer + remote->data.len, remote->in_buffer, RECV_SIZE); remote->data.len += RECV_SIZE; found = 0; while ((remote->data.bits_left >= 14 || remote->data.pos < remote->data.len) && !found) { for (i = 0; i < 8; ++i) { if (keyspan_load_tester(remote, 14) != 0) { remote->stage = 0; return; } if ((remote->data.tester & SYNC_MASK) == SYNC) { remote->data.tester = remote->data.tester >> 14; remote->data.bits_left -= 14; found = 1; break; } else { remote->data.tester = remote->data.tester >> 1; --remote->data.bits_left; } } } if (!found) { remote->stage = 0; remote->data.len = 0; } else { remote->stage = 2; } break; case 2: /* * Stage 2 we should have 24 bytes which will be enough for a full * message. We need to parse out the system code, button code, * toggle code, and stop. */ memcpy(remote->data.buffer + remote->data.len, remote->in_buffer, RECV_SIZE); remote->data.len += RECV_SIZE; message.system = 0; for (i = 0; i < 9; i++) { keyspan_load_tester(remote, 6); if ((remote->data.tester & ZERO_MASK) == ZERO) { message.system = message.system << 1; remote->data.tester = remote->data.tester >> 5; remote->data.bits_left -= 5; } else if ((remote->data.tester & ONE_MASK) == ONE) { message.system = (message.system << 1) + 1; remote->data.tester = remote->data.tester >> 6; remote->data.bits_left -= 6; } else { dev_err(&remote->interface->dev, "%s - Unknown sequence found in system data.\n", __func__); remote->stage = 0; return; } } message.button = 0; for (i = 0; i < 5; i++) { keyspan_load_tester(remote, 6); if ((remote->data.tester & ZERO_MASK) == ZERO) { message.button = message.button << 1; remote->data.tester = remote->data.tester >> 5; remote->data.bits_left -= 5; } else if ((remote->data.tester & ONE_MASK) == ONE) { message.button = (message.button << 1) + 1; remote->data.tester = remote->data.tester >> 6; remote->data.bits_left -= 6; } else { dev_err(&remote->interface->dev, "%s - Unknown sequence found in button data.\n", __func__); remote->stage = 0; return; } } keyspan_load_tester(remote, 6); if ((remote->data.tester & ZERO_MASK) == ZERO) { message.toggle = 0; remote->data.tester = remote->data.tester >> 5; remote->data.bits_left -= 5; } else if ((remote->data.tester & ONE_MASK) == ONE) { message.toggle = 1; remote->data.tester = remote->data.tester >> 6; remote->data.bits_left -= 6; } else { dev_err(&remote->interface->dev, "%s - Error in message, invalid toggle.\n", __func__); remote->stage = 0; return; } keyspan_load_tester(remote, 5); if ((remote->data.tester & STOP_MASK) == STOP) { remote->data.tester = remote->data.tester >> 5; remote->data.bits_left -= 5; } else { dev_err(&remote->interface->dev, "Bad message received, no stop bit found.\n"); } dev_dbg(&remote->interface->dev, "%s found valid message: system: %d, button: %d, toggle: %d\n", __func__, message.system, message.button, message.toggle); if (message.toggle != remote->toggle) { keyspan_report_button(remote, message.button, 1); keyspan_report_button(remote, message.button, 0); remote->toggle = message.toggle; } remote->stage = 0; break; } } /* * Routine for sending all the initialization messages to the remote. */ static int keyspan_setup(struct usb_device* dev) { int retval = 0; retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 0x11, 0x40, 0x5601, 0x0, NULL, 0, USB_CTRL_SET_TIMEOUT); if (retval) { dev_dbg(&dev->dev, "%s - failed to set bit rate due to error: %d\n", __func__, retval); return(retval); } retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 0x44, 0x40, 0x0, 0x0, NULL, 0, USB_CTRL_SET_TIMEOUT); if (retval) { dev_dbg(&dev->dev, "%s - failed to set resume sensitivity due to error: %d\n", __func__, retval); return(retval); } retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 0x22, 0x40, 0x0, 0x0, NULL, 0, USB_CTRL_SET_TIMEOUT); if (retval) { dev_dbg(&dev->dev, "%s - failed to turn receive on due to error: %d\n", __func__, retval); return(retval); } dev_dbg(&dev->dev, "%s - Setup complete.\n", __func__); return(retval); } /* * Routine used to handle a new message that has come in. */ static void keyspan_irq_recv(struct urb *urb) { struct usb_keyspan *dev = urb->context; int retval; /* Check our status in case we need to bail out early. */ switch (urb->status) { case 0: break; /* Device went away so don't keep trying to read from it. */ case -ECONNRESET: case -ENOENT: case -ESHUTDOWN: return; default: goto resubmit; } if (debug) keyspan_print(dev); keyspan_check_data(dev); resubmit: retval = usb_submit_urb(urb, GFP_ATOMIC); if (retval) dev_err(&dev->interface->dev, "%s - usb_submit_urb failed with result: %d\n", __func__, retval); } static int keyspan_open(struct input_dev *dev) { struct usb_keyspan *remote = input_get_drvdata(dev); remote->irq_urb->dev = remote->udev; if (usb_submit_urb(remote->irq_urb, GFP_KERNEL)) return -EIO; return 0; } static void keyspan_close(struct input_dev *dev) { struct usb_keyspan *remote = input_get_drvdata(dev); usb_kill_urb(remote->irq_urb); } static struct usb_endpoint_descriptor *keyspan_get_in_endpoint(struct usb_host_interface *iface) { struct usb_endpoint_descriptor *endpoint; int i; for (i = 0; i < iface->desc.bNumEndpoints; ++i) { endpoint = &iface->endpoint[i].desc; if (usb_endpoint_is_int_in(endpoint)) { /* we found our interrupt in endpoint */ return endpoint; } } return NULL; } /* * Routine that sets up the driver to handle a specific USB device detected on the bus. */ static int keyspan_probe(struct usb_interface *interface, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(interface); struct usb_endpoint_descriptor *endpoint; struct usb_keyspan *remote; struct input_dev *input_dev; int i, error; endpoint = keyspan_get_in_endpoint(interface->cur_altsetting); if (!endpoint) return -ENODEV; remote = kzalloc(sizeof(*remote), GFP_KERNEL); input_dev = input_allocate_device(); if (!remote || !input_dev) { error = -ENOMEM; goto fail1; } remote->udev = udev; remote->input = input_dev; remote->interface = interface; remote->in_endpoint = endpoint; remote->toggle = -1; /* Set to -1 so we will always not match the toggle from the first remote message. */ remote->in_buffer = usb_alloc_coherent(udev, RECV_SIZE, GFP_KERNEL, &remote->in_dma); if (!remote->in_buffer) { error = -ENOMEM; goto fail1; } remote->irq_urb = usb_alloc_urb(0, GFP_KERNEL); if (!remote->irq_urb) { error = -ENOMEM; goto fail2; } error = keyspan_setup(udev); if (error) { error = -ENODEV; goto fail3; } if (udev->manufacturer) strscpy(remote->name, udev->manufacturer, sizeof(remote->name)); if (udev->product) { if (udev->manufacturer) strlcat(remote->name, " ", sizeof(remote->name)); strlcat(remote->name, udev->product, sizeof(remote->name)); } if (!strlen(remote->name)) snprintf(remote->name, sizeof(remote->name), "USB Keyspan Remote %04x:%04x", le16_to_cpu(udev->descriptor.idVendor), le16_to_cpu(udev->descriptor.idProduct)); usb_make_path(udev, remote->phys, sizeof(remote->phys)); strlcat(remote->phys, "/input0", sizeof(remote->phys)); memcpy(remote->keymap, keyspan_key_table, sizeof(remote->keymap)); input_dev->name = remote->name; input_dev->phys = remote->phys; usb_to_input_id(udev, &input_dev->id); input_dev->dev.parent = &interface->dev; input_dev->keycode = remote->keymap; input_dev->keycodesize = sizeof(unsigned short); input_dev->keycodemax = ARRAY_SIZE(remote->keymap); input_set_capability(input_dev, EV_MSC, MSC_SCAN); __set_bit(EV_KEY, input_dev->evbit); for (i = 0; i < ARRAY_SIZE(keyspan_key_table); i++) __set_bit(keyspan_key_table[i], input_dev->keybit); __clear_bit(KEY_RESERVED, input_dev->keybit); input_set_drvdata(input_dev, remote); input_dev->open = keyspan_open; input_dev->close = keyspan_close; /* * Initialize the URB to access the device. * The urb gets sent to the device in keyspan_open() */ usb_fill_int_urb(remote->irq_urb, remote->udev, usb_rcvintpipe(remote->udev, endpoint->bEndpointAddress), remote->in_buffer, RECV_SIZE, keyspan_irq_recv, remote, endpoint->bInterval); remote->irq_urb->transfer_dma = remote->in_dma; remote->irq_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; /* we can register the device now, as it is ready */ error = input_register_device(remote->input); if (error) goto fail3; /* save our data pointer in this interface device */ usb_set_intfdata(interface, remote); return 0; fail3: usb_free_urb(remote->irq_urb); fail2: usb_free_coherent(udev, RECV_SIZE, remote->in_buffer, remote->in_dma); fail1: kfree(remote); input_free_device(input_dev); return error; } /* * Routine called when a device is disconnected from the USB. */ static void keyspan_disconnect(struct usb_interface *interface) { struct usb_keyspan *remote; remote = usb_get_intfdata(interface); usb_set_intfdata(interface, NULL); if (remote) { /* We have a valid driver structure so clean up everything we allocated. */ input_unregister_device(remote->input); usb_kill_urb(remote->irq_urb); usb_free_urb(remote->irq_urb); usb_free_coherent(remote->udev, RECV_SIZE, remote->in_buffer, remote->in_dma); kfree(remote); } } /* * Standard driver set up sections */ static struct usb_driver keyspan_driver = { .name = "keyspan_remote", .probe = keyspan_probe, .disconnect = keyspan_disconnect, .id_table = keyspan_table }; module_usb_driver(keyspan_driver); MODULE_DEVICE_TABLE(usb, keyspan_table); MODULE_AUTHOR("Michael Downey <[email protected]>"); MODULE_DESCRIPTION("Driver for the USB Keyspan remote control."); MODULE_LICENSE("GPL");
linux-master
drivers/input/misc/keyspan_remote.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * atlas_btns.c - Atlas Wallmount Touchscreen ACPI Extras * * Copyright (C) 2006 Jaya Kumar * Based on Toshiba ACPI by John Belmonte and ASUS ACPI * This work was sponsored by CIS(M) Sdn Bhd. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kernel.h> #include <linux/module.h> #include <linux/input.h> #include <linux/types.h> #include <linux/acpi.h> #include <linux/uaccess.h> #define ACPI_ATLAS_NAME "Atlas ACPI" #define ACPI_ATLAS_CLASS "Atlas" static unsigned short atlas_keymap[16]; static struct input_dev *input_dev; /* button handling code */ static acpi_status acpi_atlas_button_setup(acpi_handle region_handle, u32 function, void *handler_context, void **return_context) { *return_context = (function != ACPI_REGION_DEACTIVATE) ? handler_context : NULL; return AE_OK; } static acpi_status acpi_atlas_button_handler(u32 function, acpi_physical_address address, u32 bit_width, u64 *value, void *handler_context, void *region_context) { acpi_status status; if (function == ACPI_WRITE) { int code = address & 0x0f; int key_down = !(address & 0x10); input_event(input_dev, EV_MSC, MSC_SCAN, code); input_report_key(input_dev, atlas_keymap[code], key_down); input_sync(input_dev); status = AE_OK; } else { pr_warn("shrugged on unexpected function: function=%x,address=%lx,value=%x\n", function, (unsigned long)address, (u32)*value); status = AE_BAD_PARAMETER; } return status; } static int atlas_acpi_button_add(struct acpi_device *device) { acpi_status status; int i; int err; input_dev = input_allocate_device(); if (!input_dev) { pr_err("unable to allocate input device\n"); return -ENOMEM; } input_dev->name = "Atlas ACPI button driver"; input_dev->phys = "ASIM0000/atlas/input0"; input_dev->id.bustype = BUS_HOST; input_dev->keycode = atlas_keymap; input_dev->keycodesize = sizeof(unsigned short); input_dev->keycodemax = ARRAY_SIZE(atlas_keymap); input_set_capability(input_dev, EV_MSC, MSC_SCAN); __set_bit(EV_KEY, input_dev->evbit); for (i = 0; i < ARRAY_SIZE(atlas_keymap); i++) { if (i < 9) { atlas_keymap[i] = KEY_F1 + i; __set_bit(KEY_F1 + i, input_dev->keybit); } else atlas_keymap[i] = KEY_RESERVED; } err = input_register_device(input_dev); if (err) { pr_err("couldn't register input device\n"); input_free_device(input_dev); return err; } /* hookup button handler */ status = acpi_install_address_space_handler(device->handle, 0x81, &acpi_atlas_button_handler, &acpi_atlas_button_setup, device); if (ACPI_FAILURE(status)) { pr_err("error installing addr spc handler\n"); input_unregister_device(input_dev); err = -EINVAL; } return err; } static void atlas_acpi_button_remove(struct acpi_device *device) { acpi_status status; status = acpi_remove_address_space_handler(device->handle, 0x81, &acpi_atlas_button_handler); if (ACPI_FAILURE(status)) pr_err("error removing addr spc handler\n"); input_unregister_device(input_dev); } static const struct acpi_device_id atlas_device_ids[] = { {"ASIM0000", 0}, {"", 0}, }; MODULE_DEVICE_TABLE(acpi, atlas_device_ids); static struct acpi_driver atlas_acpi_driver = { .name = ACPI_ATLAS_NAME, .class = ACPI_ATLAS_CLASS, .owner = THIS_MODULE, .ids = atlas_device_ids, .ops = { .add = atlas_acpi_button_add, .remove = atlas_acpi_button_remove, }, }; module_acpi_driver(atlas_acpi_driver); MODULE_AUTHOR("Jaya Kumar"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Atlas button driver");
linux-master
drivers/input/misc/atlas_btns.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) IBM Corporation 2020 */ #include <linux/i2c.h> #include <linux/init.h> #include <linux/input.h> #include <linux/kernel.h> #include <linux/limits.h> #include <linux/module.h> #include <linux/of.h> #include <linux/spinlock.h> #define DEVICE_NAME "ibm-panel" #define PANEL_KEYCODES_COUNT 3 struct ibm_panel { u8 idx; u8 command[11]; u32 keycodes[PANEL_KEYCODES_COUNT]; spinlock_t lock; /* protects writes to idx and command */ struct input_dev *input; }; static u8 ibm_panel_calculate_checksum(struct ibm_panel *panel) { u8 chksum; u16 sum = 0; unsigned int i; for (i = 0; i < sizeof(panel->command) - 1; ++i) { sum += panel->command[i]; if (sum & 0xff00) { sum &= 0xff; sum++; } } chksum = sum & 0xff; chksum = ~chksum; chksum++; return chksum; } static void ibm_panel_process_command(struct ibm_panel *panel) { u8 button; u8 chksum; if (panel->command[0] != 0xff && panel->command[1] != 0xf0) { dev_dbg(&panel->input->dev, "command invalid: %02x %02x\n", panel->command[0], panel->command[1]); return; } chksum = ibm_panel_calculate_checksum(panel); if (chksum != panel->command[sizeof(panel->command) - 1]) { dev_dbg(&panel->input->dev, "command failed checksum: %u != %u\n", chksum, panel->command[sizeof(panel->command) - 1]); return; } button = panel->command[2] & 0xf; if (button < PANEL_KEYCODES_COUNT) { input_report_key(panel->input, panel->keycodes[button], !(panel->command[2] & 0x80)); input_sync(panel->input); } else { dev_dbg(&panel->input->dev, "unknown button %u\n", button); } } static int ibm_panel_i2c_slave_cb(struct i2c_client *client, enum i2c_slave_event event, u8 *val) { unsigned long flags; struct ibm_panel *panel = i2c_get_clientdata(client); dev_dbg(&panel->input->dev, "event: %u data: %02x\n", event, *val); spin_lock_irqsave(&panel->lock, flags); switch (event) { case I2C_SLAVE_STOP: if (panel->idx == sizeof(panel->command)) ibm_panel_process_command(panel); else dev_dbg(&panel->input->dev, "command incorrect size %u\n", panel->idx); fallthrough; case I2C_SLAVE_WRITE_REQUESTED: panel->idx = 0; break; case I2C_SLAVE_WRITE_RECEIVED: if (panel->idx < sizeof(panel->command)) panel->command[panel->idx++] = *val; else /* * The command is too long and therefore invalid, so set the index * to it's largest possible value. When a STOP is finally received, * the command will be rejected upon processing. */ panel->idx = U8_MAX; break; case I2C_SLAVE_READ_REQUESTED: case I2C_SLAVE_READ_PROCESSED: *val = 0xff; break; default: break; } spin_unlock_irqrestore(&panel->lock, flags); return 0; } static int ibm_panel_probe(struct i2c_client *client) { struct ibm_panel *panel; int i; int error; panel = devm_kzalloc(&client->dev, sizeof(*panel), GFP_KERNEL); if (!panel) return -ENOMEM; spin_lock_init(&panel->lock); panel->input = devm_input_allocate_device(&client->dev); if (!panel->input) return -ENOMEM; panel->input->name = client->name; panel->input->id.bustype = BUS_I2C; error = device_property_read_u32_array(&client->dev, "linux,keycodes", panel->keycodes, PANEL_KEYCODES_COUNT); if (error) { /* * Use gamepad buttons as defaults for compatibility with * existing applications. */ panel->keycodes[0] = BTN_NORTH; panel->keycodes[1] = BTN_SOUTH; panel->keycodes[2] = BTN_SELECT; } for (i = 0; i < PANEL_KEYCODES_COUNT; ++i) input_set_capability(panel->input, EV_KEY, panel->keycodes[i]); error = input_register_device(panel->input); if (error) { dev_err(&client->dev, "Failed to register input device: %d\n", error); return error; } i2c_set_clientdata(client, panel); error = i2c_slave_register(client, ibm_panel_i2c_slave_cb); if (error) { dev_err(&client->dev, "Failed to register as i2c slave: %d\n", error); return error; } return 0; } static void ibm_panel_remove(struct i2c_client *client) { i2c_slave_unregister(client); } static const struct of_device_id ibm_panel_match[] = { { .compatible = "ibm,op-panel" }, { } }; MODULE_DEVICE_TABLE(of, ibm_panel_match); static struct i2c_driver ibm_panel_driver = { .driver = { .name = DEVICE_NAME, .of_match_table = ibm_panel_match, }, .probe = ibm_panel_probe, .remove = ibm_panel_remove, }; module_i2c_driver(ibm_panel_driver); MODULE_AUTHOR("Eddie James <[email protected]>"); MODULE_DESCRIPTION("IBM Operation Panel Driver"); MODULE_LICENSE("GPL");
linux-master
drivers/input/misc/ibm-panel.c
/* * Copyright (C) 2011 Philippe Rétornaz * * Based on twl4030-pwrbutton driver by: * Peter De Schrijver <[email protected]> * Felipe Balbi <[email protected]> * * This file is subject to the terms and conditions of the GNU General * Public License. See the file "COPYING" in the main directory of this * archive for more details. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/input.h> #include <linux/interrupt.h> #include <linux/platform_device.h> #include <linux/mfd/mc13783.h> #include <linux/sched.h> #include <linux/slab.h> struct mc13783_pwrb { struct input_dev *pwr; struct mc13xxx *mc13783; #define MC13783_PWRB_B1_POL_INVERT (1 << 0) #define MC13783_PWRB_B2_POL_INVERT (1 << 1) #define MC13783_PWRB_B3_POL_INVERT (1 << 2) int flags; unsigned short keymap[3]; }; #define MC13783_REG_INTERRUPT_SENSE_1 5 #define MC13783_IRQSENSE1_ONOFD1S (1 << 3) #define MC13783_IRQSENSE1_ONOFD2S (1 << 4) #define MC13783_IRQSENSE1_ONOFD3S (1 << 5) #define MC13783_REG_POWER_CONTROL_2 15 #define MC13783_POWER_CONTROL_2_ON1BDBNC 4 #define MC13783_POWER_CONTROL_2_ON2BDBNC 6 #define MC13783_POWER_CONTROL_2_ON3BDBNC 8 #define MC13783_POWER_CONTROL_2_ON1BRSTEN (1 << 1) #define MC13783_POWER_CONTROL_2_ON2BRSTEN (1 << 2) #define MC13783_POWER_CONTROL_2_ON3BRSTEN (1 << 3) static irqreturn_t button_irq(int irq, void *_priv) { struct mc13783_pwrb *priv = _priv; int val; mc13xxx_irq_ack(priv->mc13783, irq); mc13xxx_reg_read(priv->mc13783, MC13783_REG_INTERRUPT_SENSE_1, &val); switch (irq) { case MC13783_IRQ_ONOFD1: val = val & MC13783_IRQSENSE1_ONOFD1S ? 1 : 0; if (priv->flags & MC13783_PWRB_B1_POL_INVERT) val ^= 1; input_report_key(priv->pwr, priv->keymap[0], val); break; case MC13783_IRQ_ONOFD2: val = val & MC13783_IRQSENSE1_ONOFD2S ? 1 : 0; if (priv->flags & MC13783_PWRB_B2_POL_INVERT) val ^= 1; input_report_key(priv->pwr, priv->keymap[1], val); break; case MC13783_IRQ_ONOFD3: val = val & MC13783_IRQSENSE1_ONOFD3S ? 1 : 0; if (priv->flags & MC13783_PWRB_B3_POL_INVERT) val ^= 1; input_report_key(priv->pwr, priv->keymap[2], val); break; } input_sync(priv->pwr); return IRQ_HANDLED; } static int mc13783_pwrbutton_probe(struct platform_device *pdev) { const struct mc13xxx_buttons_platform_data *pdata; struct mc13xxx *mc13783 = dev_get_drvdata(pdev->dev.parent); struct input_dev *pwr; struct mc13783_pwrb *priv; int err = 0; int reg = 0; pdata = dev_get_platdata(&pdev->dev); if (!pdata) { dev_err(&pdev->dev, "missing platform data\n"); return -ENODEV; } pwr = input_allocate_device(); if (!pwr) { dev_dbg(&pdev->dev, "Can't allocate power button\n"); return -ENOMEM; } priv = kzalloc(sizeof(*priv), GFP_KERNEL); if (!priv) { err = -ENOMEM; dev_dbg(&pdev->dev, "Can't allocate power button\n"); goto free_input_dev; } reg |= (pdata->b1on_flags & 0x3) << MC13783_POWER_CONTROL_2_ON1BDBNC; reg |= (pdata->b2on_flags & 0x3) << MC13783_POWER_CONTROL_2_ON2BDBNC; reg |= (pdata->b3on_flags & 0x3) << MC13783_POWER_CONTROL_2_ON3BDBNC; priv->pwr = pwr; priv->mc13783 = mc13783; mc13xxx_lock(mc13783); if (pdata->b1on_flags & MC13783_BUTTON_ENABLE) { priv->keymap[0] = pdata->b1on_key; if (pdata->b1on_key != KEY_RESERVED) __set_bit(pdata->b1on_key, pwr->keybit); if (pdata->b1on_flags & MC13783_BUTTON_POL_INVERT) priv->flags |= MC13783_PWRB_B1_POL_INVERT; if (pdata->b1on_flags & MC13783_BUTTON_RESET_EN) reg |= MC13783_POWER_CONTROL_2_ON1BRSTEN; err = mc13xxx_irq_request(mc13783, MC13783_IRQ_ONOFD1, button_irq, "b1on", priv); if (err) { dev_dbg(&pdev->dev, "Can't request irq\n"); goto free_priv; } } if (pdata->b2on_flags & MC13783_BUTTON_ENABLE) { priv->keymap[1] = pdata->b2on_key; if (pdata->b2on_key != KEY_RESERVED) __set_bit(pdata->b2on_key, pwr->keybit); if (pdata->b2on_flags & MC13783_BUTTON_POL_INVERT) priv->flags |= MC13783_PWRB_B2_POL_INVERT; if (pdata->b2on_flags & MC13783_BUTTON_RESET_EN) reg |= MC13783_POWER_CONTROL_2_ON2BRSTEN; err = mc13xxx_irq_request(mc13783, MC13783_IRQ_ONOFD2, button_irq, "b2on", priv); if (err) { dev_dbg(&pdev->dev, "Can't request irq\n"); goto free_irq_b1; } } if (pdata->b3on_flags & MC13783_BUTTON_ENABLE) { priv->keymap[2] = pdata->b3on_key; if (pdata->b3on_key != KEY_RESERVED) __set_bit(pdata->b3on_key, pwr->keybit); if (pdata->b3on_flags & MC13783_BUTTON_POL_INVERT) priv->flags |= MC13783_PWRB_B3_POL_INVERT; if (pdata->b3on_flags & MC13783_BUTTON_RESET_EN) reg |= MC13783_POWER_CONTROL_2_ON3BRSTEN; err = mc13xxx_irq_request(mc13783, MC13783_IRQ_ONOFD3, button_irq, "b3on", priv); if (err) { dev_dbg(&pdev->dev, "Can't request irq: %d\n", err); goto free_irq_b2; } } mc13xxx_reg_rmw(mc13783, MC13783_REG_POWER_CONTROL_2, 0x3FE, reg); mc13xxx_unlock(mc13783); pwr->name = "mc13783_pwrbutton"; pwr->phys = "mc13783_pwrbutton/input0"; pwr->dev.parent = &pdev->dev; pwr->keycode = priv->keymap; pwr->keycodemax = ARRAY_SIZE(priv->keymap); pwr->keycodesize = sizeof(priv->keymap[0]); __set_bit(EV_KEY, pwr->evbit); err = input_register_device(pwr); if (err) { dev_dbg(&pdev->dev, "Can't register power button: %d\n", err); goto free_irq; } platform_set_drvdata(pdev, priv); return 0; free_irq: mc13xxx_lock(mc13783); if (pdata->b3on_flags & MC13783_BUTTON_ENABLE) mc13xxx_irq_free(mc13783, MC13783_IRQ_ONOFD3, priv); free_irq_b2: if (pdata->b2on_flags & MC13783_BUTTON_ENABLE) mc13xxx_irq_free(mc13783, MC13783_IRQ_ONOFD2, priv); free_irq_b1: if (pdata->b1on_flags & MC13783_BUTTON_ENABLE) mc13xxx_irq_free(mc13783, MC13783_IRQ_ONOFD1, priv); free_priv: mc13xxx_unlock(mc13783); kfree(priv); free_input_dev: input_free_device(pwr); return err; } static int mc13783_pwrbutton_remove(struct platform_device *pdev) { struct mc13783_pwrb *priv = platform_get_drvdata(pdev); const struct mc13xxx_buttons_platform_data *pdata; pdata = dev_get_platdata(&pdev->dev); mc13xxx_lock(priv->mc13783); if (pdata->b3on_flags & MC13783_BUTTON_ENABLE) mc13xxx_irq_free(priv->mc13783, MC13783_IRQ_ONOFD3, priv); if (pdata->b2on_flags & MC13783_BUTTON_ENABLE) mc13xxx_irq_free(priv->mc13783, MC13783_IRQ_ONOFD2, priv); if (pdata->b1on_flags & MC13783_BUTTON_ENABLE) mc13xxx_irq_free(priv->mc13783, MC13783_IRQ_ONOFD1, priv); mc13xxx_unlock(priv->mc13783); input_unregister_device(priv->pwr); kfree(priv); return 0; } static struct platform_driver mc13783_pwrbutton_driver = { .probe = mc13783_pwrbutton_probe, .remove = mc13783_pwrbutton_remove, .driver = { .name = "mc13783-pwrbutton", }, }; module_platform_driver(mc13783_pwrbutton_driver); MODULE_ALIAS("platform:mc13783-pwrbutton"); MODULE_DESCRIPTION("MC13783 Power Button"); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Philippe Retornaz");
linux-master
drivers/input/misc/mc13783-pwrbutton.c
// SPDX-License-Identifier: GPL-2.0-only /* * DRV2667 haptics driver family * * Author: Dan Murphy <[email protected]> * * Copyright: (C) 2014 Texas Instruments, Inc. */ #include <linux/i2c.h> #include <linux/input.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/regulator/consumer.h> /* Contol registers */ #define DRV2667_STATUS 0x00 #define DRV2667_CTRL_1 0x01 #define DRV2667_CTRL_2 0x02 /* Waveform sequencer */ #define DRV2667_WV_SEQ_0 0x03 #define DRV2667_WV_SEQ_1 0x04 #define DRV2667_WV_SEQ_2 0x05 #define DRV2667_WV_SEQ_3 0x06 #define DRV2667_WV_SEQ_4 0x07 #define DRV2667_WV_SEQ_5 0x08 #define DRV2667_WV_SEQ_6 0x09 #define DRV2667_WV_SEQ_7 0x0A #define DRV2667_FIFO 0x0B #define DRV2667_PAGE 0xFF #define DRV2667_MAX_REG DRV2667_PAGE #define DRV2667_PAGE_0 0x00 #define DRV2667_PAGE_1 0x01 #define DRV2667_PAGE_2 0x02 #define DRV2667_PAGE_3 0x03 #define DRV2667_PAGE_4 0x04 #define DRV2667_PAGE_5 0x05 #define DRV2667_PAGE_6 0x06 #define DRV2667_PAGE_7 0x07 #define DRV2667_PAGE_8 0x08 /* RAM fields */ #define DRV2667_RAM_HDR_SZ 0x0 /* RAM Header addresses */ #define DRV2667_RAM_START_HI 0x01 #define DRV2667_RAM_START_LO 0x02 #define DRV2667_RAM_STOP_HI 0x03 #define DRV2667_RAM_STOP_LO 0x04 #define DRV2667_RAM_REPEAT_CT 0x05 /* RAM data addresses */ #define DRV2667_RAM_AMP 0x06 #define DRV2667_RAM_FREQ 0x07 #define DRV2667_RAM_DURATION 0x08 #define DRV2667_RAM_ENVELOPE 0x09 /* Control 1 Register */ #define DRV2667_25_VPP_GAIN 0x00 #define DRV2667_50_VPP_GAIN 0x01 #define DRV2667_75_VPP_GAIN 0x02 #define DRV2667_100_VPP_GAIN 0x03 #define DRV2667_DIGITAL_IN 0xfc #define DRV2667_ANALOG_IN (1 << 2) /* Control 2 Register */ #define DRV2667_GO (1 << 0) #define DRV2667_STANDBY (1 << 6) #define DRV2667_DEV_RST (1 << 7) /* RAM Envelope settings */ #define DRV2667_NO_ENV 0x00 #define DRV2667_32_MS_ENV 0x01 #define DRV2667_64_MS_ENV 0x02 #define DRV2667_96_MS_ENV 0x03 #define DRV2667_128_MS_ENV 0x04 #define DRV2667_160_MS_ENV 0x05 #define DRV2667_192_MS_ENV 0x06 #define DRV2667_224_MS_ENV 0x07 #define DRV2667_256_MS_ENV 0x08 #define DRV2667_512_MS_ENV 0x09 #define DRV2667_768_MS_ENV 0x0a #define DRV2667_1024_MS_ENV 0x0b #define DRV2667_1280_MS_ENV 0x0c #define DRV2667_1536_MS_ENV 0x0d #define DRV2667_1792_MS_ENV 0x0e #define DRV2667_2048_MS_ENV 0x0f /** * struct drv2667_data - * @input_dev: Pointer to the input device * @client: Pointer to the I2C client * @regmap: Register map of the device * @work: Work item used to off load the enable/disable of the vibration * @regulator: Pointer to the regulator for the IC * @page: Page number * @magnitude: Magnitude of the vibration event * @frequency: Frequency of the vibration event **/ struct drv2667_data { struct input_dev *input_dev; struct i2c_client *client; struct regmap *regmap; struct work_struct work; struct regulator *regulator; u32 page; u32 magnitude; u32 frequency; }; static const struct reg_default drv2667_reg_defs[] = { { DRV2667_STATUS, 0x02 }, { DRV2667_CTRL_1, 0x28 }, { DRV2667_CTRL_2, 0x40 }, { DRV2667_WV_SEQ_0, 0x00 }, { DRV2667_WV_SEQ_1, 0x00 }, { DRV2667_WV_SEQ_2, 0x00 }, { DRV2667_WV_SEQ_3, 0x00 }, { DRV2667_WV_SEQ_4, 0x00 }, { DRV2667_WV_SEQ_5, 0x00 }, { DRV2667_WV_SEQ_6, 0x00 }, { DRV2667_WV_SEQ_7, 0x00 }, { DRV2667_FIFO, 0x00 }, { DRV2667_PAGE, 0x00 }, }; static int drv2667_set_waveform_freq(struct drv2667_data *haptics) { unsigned int read_buf; int freq; int error; /* Per the data sheet: * Sinusoid Frequency (Hz) = 7.8125 x Frequency */ freq = (haptics->frequency * 1000) / 78125; if (freq <= 0) { dev_err(&haptics->client->dev, "ERROR: Frequency calculated to %i\n", freq); return -EINVAL; } error = regmap_read(haptics->regmap, DRV2667_PAGE, &read_buf); if (error) { dev_err(&haptics->client->dev, "Failed to read the page number: %d\n", error); return -EIO; } if (read_buf == DRV2667_PAGE_0 || haptics->page != read_buf) { error = regmap_write(haptics->regmap, DRV2667_PAGE, haptics->page); if (error) { dev_err(&haptics->client->dev, "Failed to set the page: %d\n", error); return -EIO; } } error = regmap_write(haptics->regmap, DRV2667_RAM_FREQ, freq); if (error) dev_err(&haptics->client->dev, "Failed to set the frequency: %d\n", error); /* Reset back to original page */ if (read_buf == DRV2667_PAGE_0 || haptics->page != read_buf) { error = regmap_write(haptics->regmap, DRV2667_PAGE, read_buf); if (error) { dev_err(&haptics->client->dev, "Failed to set the page: %d\n", error); return -EIO; } } return error; } static void drv2667_worker(struct work_struct *work) { struct drv2667_data *haptics = container_of(work, struct drv2667_data, work); int error; if (haptics->magnitude) { error = regmap_write(haptics->regmap, DRV2667_PAGE, haptics->page); if (error) { dev_err(&haptics->client->dev, "Failed to set the page: %d\n", error); return; } error = regmap_write(haptics->regmap, DRV2667_RAM_AMP, haptics->magnitude); if (error) { dev_err(&haptics->client->dev, "Failed to set the amplitude: %d\n", error); return; } error = regmap_write(haptics->regmap, DRV2667_PAGE, DRV2667_PAGE_0); if (error) { dev_err(&haptics->client->dev, "Failed to set the page: %d\n", error); return; } error = regmap_write(haptics->regmap, DRV2667_CTRL_2, DRV2667_GO); if (error) { dev_err(&haptics->client->dev, "Failed to set the GO bit: %d\n", error); } } else { error = regmap_update_bits(haptics->regmap, DRV2667_CTRL_2, DRV2667_GO, 0); if (error) { dev_err(&haptics->client->dev, "Failed to unset the GO bit: %d\n", error); } } } static int drv2667_haptics_play(struct input_dev *input, void *data, struct ff_effect *effect) { struct drv2667_data *haptics = input_get_drvdata(input); if (effect->u.rumble.strong_magnitude > 0) haptics->magnitude = effect->u.rumble.strong_magnitude; else if (effect->u.rumble.weak_magnitude > 0) haptics->magnitude = effect->u.rumble.weak_magnitude; else haptics->magnitude = 0; schedule_work(&haptics->work); return 0; } static void drv2667_close(struct input_dev *input) { struct drv2667_data *haptics = input_get_drvdata(input); int error; cancel_work_sync(&haptics->work); error = regmap_update_bits(haptics->regmap, DRV2667_CTRL_2, DRV2667_STANDBY, DRV2667_STANDBY); if (error) dev_err(&haptics->client->dev, "Failed to enter standby mode: %d\n", error); } static const struct reg_sequence drv2667_init_regs[] = { { DRV2667_CTRL_2, 0 }, { DRV2667_CTRL_1, DRV2667_25_VPP_GAIN }, { DRV2667_WV_SEQ_0, 1 }, { DRV2667_WV_SEQ_1, 0 } }; static const struct reg_sequence drv2667_page1_init[] = { { DRV2667_RAM_HDR_SZ, 0x05 }, { DRV2667_RAM_START_HI, 0x80 }, { DRV2667_RAM_START_LO, 0x06 }, { DRV2667_RAM_STOP_HI, 0x00 }, { DRV2667_RAM_STOP_LO, 0x09 }, { DRV2667_RAM_REPEAT_CT, 0 }, { DRV2667_RAM_DURATION, 0x05 }, { DRV2667_RAM_ENVELOPE, DRV2667_NO_ENV }, { DRV2667_RAM_AMP, 0x60 }, }; static int drv2667_init(struct drv2667_data *haptics) { int error; /* Set default haptic frequency to 195Hz on Page 1*/ haptics->frequency = 195; haptics->page = DRV2667_PAGE_1; error = regmap_register_patch(haptics->regmap, drv2667_init_regs, ARRAY_SIZE(drv2667_init_regs)); if (error) { dev_err(&haptics->client->dev, "Failed to write init registers: %d\n", error); return error; } error = regmap_write(haptics->regmap, DRV2667_PAGE, haptics->page); if (error) { dev_err(&haptics->client->dev, "Failed to set page: %d\n", error); goto error_out; } error = drv2667_set_waveform_freq(haptics); if (error) goto error_page; error = regmap_register_patch(haptics->regmap, drv2667_page1_init, ARRAY_SIZE(drv2667_page1_init)); if (error) { dev_err(&haptics->client->dev, "Failed to write page registers: %d\n", error); return error; } error = regmap_write(haptics->regmap, DRV2667_PAGE, DRV2667_PAGE_0); return error; error_page: regmap_write(haptics->regmap, DRV2667_PAGE, DRV2667_PAGE_0); error_out: return error; } static const struct regmap_config drv2667_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = DRV2667_MAX_REG, .reg_defaults = drv2667_reg_defs, .num_reg_defaults = ARRAY_SIZE(drv2667_reg_defs), .cache_type = REGCACHE_NONE, }; static int drv2667_probe(struct i2c_client *client) { struct drv2667_data *haptics; int error; haptics = devm_kzalloc(&client->dev, sizeof(*haptics), GFP_KERNEL); if (!haptics) return -ENOMEM; haptics->regulator = devm_regulator_get(&client->dev, "vbat"); if (IS_ERR(haptics->regulator)) { error = PTR_ERR(haptics->regulator); dev_err(&client->dev, "unable to get regulator, error: %d\n", error); return error; } haptics->input_dev = devm_input_allocate_device(&client->dev); if (!haptics->input_dev) { dev_err(&client->dev, "Failed to allocate input device\n"); return -ENOMEM; } haptics->input_dev->name = "drv2667:haptics"; haptics->input_dev->dev.parent = client->dev.parent; haptics->input_dev->close = drv2667_close; input_set_drvdata(haptics->input_dev, haptics); input_set_capability(haptics->input_dev, EV_FF, FF_RUMBLE); error = input_ff_create_memless(haptics->input_dev, NULL, drv2667_haptics_play); if (error) { dev_err(&client->dev, "input_ff_create() failed: %d\n", error); return error; } INIT_WORK(&haptics->work, drv2667_worker); haptics->client = client; i2c_set_clientdata(client, haptics); haptics->regmap = devm_regmap_init_i2c(client, &drv2667_regmap_config); if (IS_ERR(haptics->regmap)) { error = PTR_ERR(haptics->regmap); dev_err(&client->dev, "Failed to allocate register map: %d\n", error); return error; } error = drv2667_init(haptics); if (error) { dev_err(&client->dev, "Device init failed: %d\n", error); return error; } error = input_register_device(haptics->input_dev); if (error) { dev_err(&client->dev, "couldn't register input device: %d\n", error); return error; } return 0; } static int drv2667_suspend(struct device *dev) { struct drv2667_data *haptics = dev_get_drvdata(dev); int ret = 0; mutex_lock(&haptics->input_dev->mutex); if (input_device_enabled(haptics->input_dev)) { ret = regmap_update_bits(haptics->regmap, DRV2667_CTRL_2, DRV2667_STANDBY, DRV2667_STANDBY); if (ret) { dev_err(dev, "Failed to set standby mode\n"); regulator_disable(haptics->regulator); goto out; } ret = regulator_disable(haptics->regulator); if (ret) { dev_err(dev, "Failed to disable regulator\n"); regmap_update_bits(haptics->regmap, DRV2667_CTRL_2, DRV2667_STANDBY, 0); } } out: mutex_unlock(&haptics->input_dev->mutex); return ret; } static int drv2667_resume(struct device *dev) { struct drv2667_data *haptics = dev_get_drvdata(dev); int ret = 0; mutex_lock(&haptics->input_dev->mutex); if (input_device_enabled(haptics->input_dev)) { ret = regulator_enable(haptics->regulator); if (ret) { dev_err(dev, "Failed to enable regulator\n"); goto out; } ret = regmap_update_bits(haptics->regmap, DRV2667_CTRL_2, DRV2667_STANDBY, 0); if (ret) { dev_err(dev, "Failed to unset standby mode\n"); regulator_disable(haptics->regulator); goto out; } } out: mutex_unlock(&haptics->input_dev->mutex); return ret; } static DEFINE_SIMPLE_DEV_PM_OPS(drv2667_pm_ops, drv2667_suspend, drv2667_resume); static const struct i2c_device_id drv2667_id[] = { { "drv2667", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, drv2667_id); #ifdef CONFIG_OF static const struct of_device_id drv2667_of_match[] = { { .compatible = "ti,drv2667", }, { } }; MODULE_DEVICE_TABLE(of, drv2667_of_match); #endif static struct i2c_driver drv2667_driver = { .probe = drv2667_probe, .driver = { .name = "drv2667-haptics", .of_match_table = of_match_ptr(drv2667_of_match), .pm = pm_sleep_ptr(&drv2667_pm_ops), }, .id_table = drv2667_id, }; module_i2c_driver(drv2667_driver); MODULE_DESCRIPTION("TI DRV2667 haptics driver"); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Dan Murphy <[email protected]>");
linux-master
drivers/input/misc/drv2667.c
// SPDX-License-Identifier: GPL-2.0-only /* * PC Speaker beeper driver for Linux * * Copyright (c) 2002 Vojtech Pavlik * Copyright (c) 1992 Orest Zborowski */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/i8253.h> #include <linux/input.h> #include <linux/platform_device.h> #include <linux/timex.h> #include <linux/io.h> MODULE_AUTHOR("Vojtech Pavlik <[email protected]>"); MODULE_DESCRIPTION("PC Speaker beeper driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:pcspkr"); static int pcspkr_event(struct input_dev *dev, unsigned int type, unsigned int code, int value) { unsigned int count = 0; unsigned long flags; if (type != EV_SND) return -EINVAL; switch (code) { case SND_BELL: if (value) value = 1000; break; case SND_TONE: break; default: return -EINVAL; } if (value > 20 && value < 32767) count = PIT_TICK_RATE / value; raw_spin_lock_irqsave(&i8253_lock, flags); if (count) { /* set command for counter 2, 2 byte write */ outb_p(0xB6, 0x43); /* select desired HZ */ outb_p(count & 0xff, 0x42); outb((count >> 8) & 0xff, 0x42); /* enable counter 2 */ outb_p(inb_p(0x61) | 3, 0x61); } else { /* disable counter 2 */ outb(inb_p(0x61) & 0xFC, 0x61); } raw_spin_unlock_irqrestore(&i8253_lock, flags); return 0; } static int pcspkr_probe(struct platform_device *dev) { struct input_dev *pcspkr_dev; int err; pcspkr_dev = input_allocate_device(); if (!pcspkr_dev) return -ENOMEM; pcspkr_dev->name = "PC Speaker"; pcspkr_dev->phys = "isa0061/input0"; pcspkr_dev->id.bustype = BUS_ISA; pcspkr_dev->id.vendor = 0x001f; pcspkr_dev->id.product = 0x0001; pcspkr_dev->id.version = 0x0100; pcspkr_dev->dev.parent = &dev->dev; pcspkr_dev->evbit[0] = BIT_MASK(EV_SND); pcspkr_dev->sndbit[0] = BIT_MASK(SND_BELL) | BIT_MASK(SND_TONE); pcspkr_dev->event = pcspkr_event; err = input_register_device(pcspkr_dev); if (err) { input_free_device(pcspkr_dev); return err; } platform_set_drvdata(dev, pcspkr_dev); return 0; } static int pcspkr_remove(struct platform_device *dev) { struct input_dev *pcspkr_dev = platform_get_drvdata(dev); input_unregister_device(pcspkr_dev); /* turn off the speaker */ pcspkr_event(NULL, EV_SND, SND_BELL, 0); return 0; } static int pcspkr_suspend(struct device *dev) { pcspkr_event(NULL, EV_SND, SND_BELL, 0); return 0; } static void pcspkr_shutdown(struct platform_device *dev) { /* turn off the speaker */ pcspkr_event(NULL, EV_SND, SND_BELL, 0); } static const struct dev_pm_ops pcspkr_pm_ops = { .suspend = pcspkr_suspend, }; static struct platform_driver pcspkr_platform_driver = { .driver = { .name = "pcspkr", .pm = &pcspkr_pm_ops, }, .probe = pcspkr_probe, .remove = pcspkr_remove, .shutdown = pcspkr_shutdown, }; module_platform_driver(pcspkr_platform_driver);
linux-master
drivers/input/misc/pcspkr.c
// SPDX-License-Identifier: GPL-2.0+ // // Copyright 2022 NXP. #include <linux/device.h> #include <linux/err.h> #include <linux/init.h> #include <linux/input.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/jiffies.h> #include <linux/kernel.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/platform_device.h> #include <linux/pm_wakeirq.h> #include <linux/regmap.h> #define BBNSM_CTRL 0x8 #define BBNSM_INT_EN 0x10 #define BBNSM_EVENTS 0x14 #define BBNSM_PAD_CTRL 0x24 #define BBNSM_BTN_PRESSED BIT(7) #define BBNSM_PWR_ON BIT(6) #define BBNSM_BTN_OFF BIT(5) #define BBNSM_EMG_OFF BIT(4) #define BBNSM_PWRKEY_EVENTS (BBNSM_PWR_ON | BBNSM_BTN_OFF | BBNSM_EMG_OFF) #define BBNSM_DP_EN BIT(24) #define DEBOUNCE_TIME 30 #define REPEAT_INTERVAL 60 struct bbnsm_pwrkey { struct regmap *regmap; int irq; int keycode; int keystate; /* 1:pressed */ struct timer_list check_timer; struct input_dev *input; }; static void bbnsm_pwrkey_check_for_events(struct timer_list *t) { struct bbnsm_pwrkey *bbnsm = from_timer(bbnsm, t, check_timer); struct input_dev *input = bbnsm->input; u32 state; regmap_read(bbnsm->regmap, BBNSM_EVENTS, &state); state = state & BBNSM_BTN_PRESSED ? 1 : 0; /* only report new event if status changed */ if (state ^ bbnsm->keystate) { bbnsm->keystate = state; input_event(input, EV_KEY, bbnsm->keycode, state); input_sync(input); pm_relax(bbnsm->input->dev.parent); } /* repeat check if pressed long */ if (state) mod_timer(&bbnsm->check_timer, jiffies + msecs_to_jiffies(REPEAT_INTERVAL)); } static irqreturn_t bbnsm_pwrkey_interrupt(int irq, void *dev_id) { struct platform_device *pdev = dev_id; struct bbnsm_pwrkey *bbnsm = platform_get_drvdata(pdev); u32 event; regmap_read(bbnsm->regmap, BBNSM_EVENTS, &event); if (!(event & BBNSM_BTN_OFF)) return IRQ_NONE; pm_wakeup_event(bbnsm->input->dev.parent, 0); mod_timer(&bbnsm->check_timer, jiffies + msecs_to_jiffies(DEBOUNCE_TIME)); /* clear PWR OFF */ regmap_write(bbnsm->regmap, BBNSM_EVENTS, BBNSM_BTN_OFF); return IRQ_HANDLED; } static void bbnsm_pwrkey_act(void *pdata) { struct bbnsm_pwrkey *bbnsm = pdata; timer_shutdown_sync(&bbnsm->check_timer); } static int bbnsm_pwrkey_probe(struct platform_device *pdev) { struct bbnsm_pwrkey *bbnsm; struct input_dev *input; struct device_node *np = pdev->dev.of_node; int error; bbnsm = devm_kzalloc(&pdev->dev, sizeof(*bbnsm), GFP_KERNEL); if (!bbnsm) return -ENOMEM; bbnsm->regmap = syscon_node_to_regmap(np->parent); if (IS_ERR(bbnsm->regmap)) { dev_err(&pdev->dev, "bbnsm pwerkey get regmap failed\n"); return PTR_ERR(bbnsm->regmap); } if (device_property_read_u32(&pdev->dev, "linux,code", &bbnsm->keycode)) { bbnsm->keycode = KEY_POWER; dev_warn(&pdev->dev, "key code is not specified, using default KEY_POWER\n"); } bbnsm->irq = platform_get_irq(pdev, 0); if (bbnsm->irq < 0) return -EINVAL; /* config the BBNSM power related register */ regmap_update_bits(bbnsm->regmap, BBNSM_CTRL, BBNSM_DP_EN, BBNSM_DP_EN); /* clear the unexpected interrupt before driver ready */ regmap_write_bits(bbnsm->regmap, BBNSM_EVENTS, BBNSM_PWRKEY_EVENTS, BBNSM_PWRKEY_EVENTS); timer_setup(&bbnsm->check_timer, bbnsm_pwrkey_check_for_events, 0); input = devm_input_allocate_device(&pdev->dev); if (!input) { dev_err(&pdev->dev, "failed to allocate the input device\n"); return -ENOMEM; } input->name = pdev->name; input->phys = "bbnsm-pwrkey/input0"; input->id.bustype = BUS_HOST; input_set_capability(input, EV_KEY, bbnsm->keycode); /* input customer action to cancel release timer */ error = devm_add_action(&pdev->dev, bbnsm_pwrkey_act, bbnsm); if (error) { dev_err(&pdev->dev, "failed to register remove action\n"); return error; } bbnsm->input = input; platform_set_drvdata(pdev, bbnsm); error = devm_request_irq(&pdev->dev, bbnsm->irq, bbnsm_pwrkey_interrupt, IRQF_SHARED, pdev->name, pdev); if (error) { dev_err(&pdev->dev, "interrupt not available.\n"); return error; } error = input_register_device(input); if (error) { dev_err(&pdev->dev, "failed to register input device\n"); return error; } device_init_wakeup(&pdev->dev, true); error = dev_pm_set_wake_irq(&pdev->dev, bbnsm->irq); if (error) dev_warn(&pdev->dev, "irq wake enable failed.\n"); return 0; } static const struct of_device_id bbnsm_pwrkey_ids[] = { { .compatible = "nxp,imx93-bbnsm-pwrkey" }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, bbnsm_pwrkey_ids); static struct platform_driver bbnsm_pwrkey_driver = { .driver = { .name = "bbnsm_pwrkey", .of_match_table = bbnsm_pwrkey_ids, }, .probe = bbnsm_pwrkey_probe, }; module_platform_driver(bbnsm_pwrkey_driver); MODULE_AUTHOR("Jacky Bai <[email protected]>"); MODULE_DESCRIPTION("NXP bbnsm power key Driver"); MODULE_LICENSE("GPL");
linux-master
drivers/input/misc/nxp-bbnsm-pwrkey.c
// SPDX-License-Identifier: GPL-2.0-only /* * Texas Instruments' TPS65217 and TPS65218 Power Button Input Driver * * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com/ * Author: Felipe Balbi <[email protected]> * Author: Marcin Niestroj <[email protected]> */ #include <linux/init.h> #include <linux/input.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/mfd/tps65217.h> #include <linux/mfd/tps65218.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/slab.h> struct tps6521x_data { unsigned int reg_status; unsigned int pb_mask; const char *name; }; static const struct tps6521x_data tps65217_data = { .reg_status = TPS65217_REG_STATUS, .pb_mask = TPS65217_STATUS_PB, .name = "tps65217_pwrbutton", }; static const struct tps6521x_data tps65218_data = { .reg_status = TPS65218_REG_STATUS, .pb_mask = TPS65218_STATUS_PB_STATE, .name = "tps65218_pwrbutton", }; struct tps6521x_pwrbutton { struct device *dev; struct regmap *regmap; struct input_dev *idev; const struct tps6521x_data *data; char phys[32]; }; static const struct of_device_id of_tps6521x_pb_match[] = { { .compatible = "ti,tps65217-pwrbutton", .data = &tps65217_data }, { .compatible = "ti,tps65218-pwrbutton", .data = &tps65218_data }, { }, }; MODULE_DEVICE_TABLE(of, of_tps6521x_pb_match); static irqreturn_t tps6521x_pb_irq(int irq, void *_pwr) { struct tps6521x_pwrbutton *pwr = _pwr; const struct tps6521x_data *tps_data = pwr->data; unsigned int reg; int error; error = regmap_read(pwr->regmap, tps_data->reg_status, &reg); if (error) { dev_err(pwr->dev, "can't read register: %d\n", error); goto out; } if (reg & tps_data->pb_mask) { input_report_key(pwr->idev, KEY_POWER, 1); pm_wakeup_event(pwr->dev, 0); } else { input_report_key(pwr->idev, KEY_POWER, 0); } input_sync(pwr->idev); out: return IRQ_HANDLED; } static int tps6521x_pb_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct tps6521x_pwrbutton *pwr; struct input_dev *idev; const struct of_device_id *match; int error; int irq; match = of_match_node(of_tps6521x_pb_match, dev->of_node); if (!match) return -ENXIO; pwr = devm_kzalloc(dev, sizeof(*pwr), GFP_KERNEL); if (!pwr) return -ENOMEM; pwr->data = match->data; idev = devm_input_allocate_device(dev); if (!idev) return -ENOMEM; idev->name = pwr->data->name; snprintf(pwr->phys, sizeof(pwr->phys), "%s/input0", pwr->data->name); idev->phys = pwr->phys; idev->dev.parent = dev; idev->id.bustype = BUS_I2C; input_set_capability(idev, EV_KEY, KEY_POWER); pwr->regmap = dev_get_regmap(dev->parent, NULL); pwr->dev = dev; pwr->idev = idev; device_init_wakeup(dev, true); irq = platform_get_irq(pdev, 0); if (irq < 0) return -EINVAL; error = devm_request_threaded_irq(dev, irq, NULL, tps6521x_pb_irq, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING | IRQF_ONESHOT, pwr->data->name, pwr); if (error) { dev_err(dev, "failed to request IRQ #%d: %d\n", irq, error); return error; } error= input_register_device(idev); if (error) { dev_err(dev, "Can't register power button: %d\n", error); return error; } return 0; } static const struct platform_device_id tps6521x_pwrbtn_id_table[] = { { "tps65218-pwrbutton", }, { "tps65217-pwrbutton", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(platform, tps6521x_pwrbtn_id_table); static struct platform_driver tps6521x_pb_driver = { .probe = tps6521x_pb_probe, .driver = { .name = "tps6521x_pwrbutton", .of_match_table = of_tps6521x_pb_match, }, .id_table = tps6521x_pwrbtn_id_table, }; module_platform_driver(tps6521x_pb_driver); MODULE_DESCRIPTION("TPS6521X Power Button"); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Felipe Balbi <[email protected]>");
linux-master
drivers/input/misc/tps65218-pwrbutton.c
/* * MAX8925 ONKEY driver * * Copyright (C) 2009 Marvell International Ltd. * Haojian Zhuang <[email protected]> * * This file is subject to the terms and conditions of the GNU General * Public License. See the file "COPYING" in the main directory of this * archive for more details. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/i2c.h> #include <linux/input.h> #include <linux/interrupt.h> #include <linux/mfd/max8925.h> #include <linux/slab.h> #include <linux/device.h> #define SW_INPUT (1 << 7) /* 0/1 -- up/down */ #define HARDRESET_EN (1 << 7) #define PWREN_EN (1 << 7) struct max8925_onkey_info { struct input_dev *idev; struct i2c_client *i2c; struct device *dev; unsigned int irq[2]; }; /* * MAX8925 gives us an interrupt when ONKEY is pressed or released. * max8925_set_bits() operates I2C bus and may sleep. So implement * it in thread IRQ handler. */ static irqreturn_t max8925_onkey_handler(int irq, void *data) { struct max8925_onkey_info *info = data; int state; state = max8925_reg_read(info->i2c, MAX8925_ON_OFF_STATUS); input_report_key(info->idev, KEY_POWER, state & SW_INPUT); input_sync(info->idev); dev_dbg(info->dev, "onkey state:%d\n", state); /* Enable hardreset to halt if system isn't shutdown on time */ max8925_set_bits(info->i2c, MAX8925_SYSENSEL, HARDRESET_EN, HARDRESET_EN); return IRQ_HANDLED; } static int max8925_onkey_probe(struct platform_device *pdev) { struct max8925_chip *chip = dev_get_drvdata(pdev->dev.parent); struct max8925_onkey_info *info; struct input_dev *input; int irq[2], error; irq[0] = platform_get_irq(pdev, 0); if (irq[0] < 0) return -EINVAL; irq[1] = platform_get_irq(pdev, 1); if (irq[1] < 0) return -EINVAL; info = devm_kzalloc(&pdev->dev, sizeof(struct max8925_onkey_info), GFP_KERNEL); if (!info) return -ENOMEM; input = devm_input_allocate_device(&pdev->dev); if (!input) return -ENOMEM; info->idev = input; info->i2c = chip->i2c; info->dev = &pdev->dev; info->irq[0] = irq[0]; info->irq[1] = irq[1]; input->name = "max8925_on"; input->phys = "max8925_on/input0"; input->id.bustype = BUS_I2C; input->dev.parent = &pdev->dev; input_set_capability(input, EV_KEY, KEY_POWER); error = devm_request_threaded_irq(&pdev->dev, irq[0], NULL, max8925_onkey_handler, IRQF_ONESHOT, "onkey-down", info); if (error < 0) { dev_err(chip->dev, "Failed to request IRQ: #%d: %d\n", irq[0], error); return error; } error = devm_request_threaded_irq(&pdev->dev, irq[1], NULL, max8925_onkey_handler, IRQF_ONESHOT, "onkey-up", info); if (error < 0) { dev_err(chip->dev, "Failed to request IRQ: #%d: %d\n", irq[1], error); return error; } error = input_register_device(info->idev); if (error) { dev_err(chip->dev, "Can't register input device: %d\n", error); return error; } platform_set_drvdata(pdev, info); device_init_wakeup(&pdev->dev, 1); return 0; } static int max8925_onkey_suspend(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct max8925_onkey_info *info = platform_get_drvdata(pdev); struct max8925_chip *chip = dev_get_drvdata(pdev->dev.parent); if (device_may_wakeup(dev)) { chip->wakeup_flag |= 1 << info->irq[0]; chip->wakeup_flag |= 1 << info->irq[1]; } return 0; } static int max8925_onkey_resume(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct max8925_onkey_info *info = platform_get_drvdata(pdev); struct max8925_chip *chip = dev_get_drvdata(pdev->dev.parent); if (device_may_wakeup(dev)) { chip->wakeup_flag &= ~(1 << info->irq[0]); chip->wakeup_flag &= ~(1 << info->irq[1]); } return 0; } static DEFINE_SIMPLE_DEV_PM_OPS(max8925_onkey_pm_ops, max8925_onkey_suspend, max8925_onkey_resume); static struct platform_driver max8925_onkey_driver = { .driver = { .name = "max8925-onkey", .pm = pm_sleep_ptr(&max8925_onkey_pm_ops), }, .probe = max8925_onkey_probe, }; module_platform_driver(max8925_onkey_driver); MODULE_DESCRIPTION("Maxim MAX8925 ONKEY driver"); MODULE_AUTHOR("Haojian Zhuang <[email protected]>"); MODULE_LICENSE("GPL");
linux-master
drivers/input/misc/max8925_onkey.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * OnKey device driver for DA9063, DA9062 and DA9061 PMICs * Copyright (C) 2015 Dialog Semiconductor Ltd. */ #include <linux/devm-helpers.h> #include <linux/module.h> #include <linux/errno.h> #include <linux/input.h> #include <linux/interrupt.h> #include <linux/platform_device.h> #include <linux/pm_wakeirq.h> #include <linux/workqueue.h> #include <linux/regmap.h> #include <linux/of.h> #include <linux/mfd/da9063/core.h> #include <linux/mfd/da9063/registers.h> #include <linux/mfd/da9062/core.h> #include <linux/mfd/da9062/registers.h> struct da906x_chip_config { /* REGS */ int onkey_status; int onkey_pwr_signalling; int onkey_fault_log; int onkey_shutdown; /* MASKS */ int onkey_nonkey_mask; int onkey_nonkey_lock_mask; int onkey_key_reset_mask; int onkey_shutdown_mask; /* NAMES */ const char *name; }; struct da9063_onkey { struct delayed_work work; struct input_dev *input; struct device *dev; struct regmap *regmap; const struct da906x_chip_config *config; char phys[32]; bool key_power; }; static const struct da906x_chip_config da9063_regs = { /* REGS */ .onkey_status = DA9063_REG_STATUS_A, .onkey_pwr_signalling = DA9063_REG_CONTROL_B, .onkey_fault_log = DA9063_REG_FAULT_LOG, .onkey_shutdown = DA9063_REG_CONTROL_F, /* MASKS */ .onkey_nonkey_mask = DA9063_NONKEY, .onkey_nonkey_lock_mask = DA9063_NONKEY_LOCK, .onkey_key_reset_mask = DA9063_KEY_RESET, .onkey_shutdown_mask = DA9063_SHUTDOWN, /* NAMES */ .name = DA9063_DRVNAME_ONKEY, }; static const struct da906x_chip_config da9062_regs = { /* REGS */ .onkey_status = DA9062AA_STATUS_A, .onkey_pwr_signalling = DA9062AA_CONTROL_B, .onkey_fault_log = DA9062AA_FAULT_LOG, .onkey_shutdown = DA9062AA_CONTROL_F, /* MASKS */ .onkey_nonkey_mask = DA9062AA_NONKEY_MASK, .onkey_nonkey_lock_mask = DA9062AA_NONKEY_LOCK_MASK, .onkey_key_reset_mask = DA9062AA_KEY_RESET_MASK, .onkey_shutdown_mask = DA9062AA_SHUTDOWN_MASK, /* NAMES */ .name = "da9062-onkey", }; static const struct of_device_id da9063_compatible_reg_id_table[] = { { .compatible = "dlg,da9063-onkey", .data = &da9063_regs }, { .compatible = "dlg,da9062-onkey", .data = &da9062_regs }, { }, }; MODULE_DEVICE_TABLE(of, da9063_compatible_reg_id_table); static void da9063_poll_on(struct work_struct *work) { struct da9063_onkey *onkey = container_of(work, struct da9063_onkey, work.work); const struct da906x_chip_config *config = onkey->config; unsigned int val; int fault_log = 0; bool poll = true; int error; /* Poll to see when the pin is released */ error = regmap_read(onkey->regmap, config->onkey_status, &val); if (error) { dev_err(onkey->dev, "Failed to read ON status: %d\n", error); goto err_poll; } if (!(val & config->onkey_nonkey_mask)) { error = regmap_update_bits(onkey->regmap, config->onkey_pwr_signalling, config->onkey_nonkey_lock_mask, 0); if (error) { dev_err(onkey->dev, "Failed to reset the Key Delay %d\n", error); goto err_poll; } input_report_key(onkey->input, KEY_POWER, 0); input_sync(onkey->input); poll = false; } /* * If the fault log KEY_RESET is detected, then clear it * and shut down the system. */ error = regmap_read(onkey->regmap, config->onkey_fault_log, &fault_log); if (error) { dev_warn(&onkey->input->dev, "Cannot read FAULT_LOG: %d\n", error); } else if (fault_log & config->onkey_key_reset_mask) { error = regmap_write(onkey->regmap, config->onkey_fault_log, config->onkey_key_reset_mask); if (error) { dev_warn(&onkey->input->dev, "Cannot reset KEY_RESET fault log: %d\n", error); } else { /* at this point we do any S/W housekeeping * and then send shutdown command */ dev_dbg(&onkey->input->dev, "Sending SHUTDOWN to PMIC ...\n"); error = regmap_write(onkey->regmap, config->onkey_shutdown, config->onkey_shutdown_mask); if (error) dev_err(&onkey->input->dev, "Cannot SHUTDOWN PMIC: %d\n", error); } } err_poll: if (poll) schedule_delayed_work(&onkey->work, msecs_to_jiffies(50)); } static irqreturn_t da9063_onkey_irq_handler(int irq, void *data) { struct da9063_onkey *onkey = data; const struct da906x_chip_config *config = onkey->config; unsigned int val; int error; error = regmap_read(onkey->regmap, config->onkey_status, &val); if (onkey->key_power && !error && (val & config->onkey_nonkey_mask)) { input_report_key(onkey->input, KEY_POWER, 1); input_sync(onkey->input); schedule_delayed_work(&onkey->work, 0); dev_dbg(onkey->dev, "KEY_POWER long press.\n"); } else { input_report_key(onkey->input, KEY_POWER, 1); input_sync(onkey->input); input_report_key(onkey->input, KEY_POWER, 0); input_sync(onkey->input); dev_dbg(onkey->dev, "KEY_POWER short press.\n"); } return IRQ_HANDLED; } static int da9063_onkey_probe(struct platform_device *pdev) { struct da9063_onkey *onkey; const struct of_device_id *match; int irq; int error; match = of_match_node(da9063_compatible_reg_id_table, pdev->dev.of_node); if (!match) return -ENXIO; onkey = devm_kzalloc(&pdev->dev, sizeof(struct da9063_onkey), GFP_KERNEL); if (!onkey) { dev_err(&pdev->dev, "Failed to allocate memory.\n"); return -ENOMEM; } onkey->config = match->data; onkey->dev = &pdev->dev; onkey->regmap = dev_get_regmap(pdev->dev.parent, NULL); if (!onkey->regmap) { dev_err(&pdev->dev, "Parent regmap unavailable.\n"); return -ENXIO; } onkey->key_power = !of_property_read_bool(pdev->dev.of_node, "dlg,disable-key-power"); onkey->input = devm_input_allocate_device(&pdev->dev); if (!onkey->input) { dev_err(&pdev->dev, "Failed to allocated input device.\n"); return -ENOMEM; } onkey->input->name = onkey->config->name; snprintf(onkey->phys, sizeof(onkey->phys), "%s/input0", onkey->config->name); onkey->input->phys = onkey->phys; onkey->input->dev.parent = &pdev->dev; input_set_capability(onkey->input, EV_KEY, KEY_POWER); error = devm_delayed_work_autocancel(&pdev->dev, &onkey->work, da9063_poll_on); if (error) { dev_err(&pdev->dev, "Failed to add cancel poll action: %d\n", error); return error; } irq = platform_get_irq_byname(pdev, "ONKEY"); if (irq < 0) return irq; error = devm_request_threaded_irq(&pdev->dev, irq, NULL, da9063_onkey_irq_handler, IRQF_TRIGGER_LOW | IRQF_ONESHOT, "ONKEY", onkey); if (error) { dev_err(&pdev->dev, "Failed to request IRQ %d: %d\n", irq, error); return error; } error = dev_pm_set_wake_irq(&pdev->dev, irq); if (error) dev_warn(&pdev->dev, "Failed to set IRQ %d as a wake IRQ: %d\n", irq, error); else device_init_wakeup(&pdev->dev, true); error = input_register_device(onkey->input); if (error) { dev_err(&pdev->dev, "Failed to register input device: %d\n", error); return error; } return 0; } static struct platform_driver da9063_onkey_driver = { .probe = da9063_onkey_probe, .driver = { .name = DA9063_DRVNAME_ONKEY, .of_match_table = da9063_compatible_reg_id_table, }, }; module_platform_driver(da9063_onkey_driver); MODULE_AUTHOR("S Twiss <[email protected]>"); MODULE_DESCRIPTION("Onkey device driver for Dialog DA9063, DA9062 and DA9061"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:" DA9063_DRVNAME_ONKEY);
linux-master
drivers/input/misc/da9063_onkey.c
// SPDX-License-Identifier: GPL-2.0-only /* * Fujitsu Lifebook Application Panel button drive * * Copyright (C) 2007 Stephen Hemminger <[email protected]> * Copyright (C) 2001-2003 Jochen Eisinger <[email protected]> * * Many Fujitsu Lifebook laptops have a small panel of buttons that are * accessible via the i2c/smbus interface. This driver polls those * buttons and generates input events. * * For more details see: * http://apanel.sourceforge.net/tech.php */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/ioport.h> #include <linux/io.h> #include <linux/input.h> #include <linux/i2c.h> #include <linux/leds.h> #define APANEL_NAME "Fujitsu Application Panel" #define APANEL "apanel" /* How often we poll keys - msecs */ #define POLL_INTERVAL_DEFAULT 1000 /* Magic constants in BIOS that tell about buttons */ enum apanel_devid { APANEL_DEV_NONE = 0, APANEL_DEV_APPBTN = 1, APANEL_DEV_CDBTN = 2, APANEL_DEV_LCD = 3, APANEL_DEV_LED = 4, APANEL_DEV_MAX, }; enum apanel_chip { CHIP_NONE = 0, CHIP_OZ992C = 1, CHIP_OZ163T = 2, CHIP_OZ711M3 = 4, }; /* Result of BIOS snooping/probing -- what features are supported */ static enum apanel_chip device_chip[APANEL_DEV_MAX]; #define MAX_PANEL_KEYS 12 struct apanel { struct input_dev *idev; struct i2c_client *client; unsigned short keymap[MAX_PANEL_KEYS]; u16 nkeys; struct led_classdev mail_led; }; static const unsigned short apanel_keymap[MAX_PANEL_KEYS] = { [0] = KEY_MAIL, [1] = KEY_WWW, [2] = KEY_PROG2, [3] = KEY_PROG1, [8] = KEY_FORWARD, [9] = KEY_REWIND, [10] = KEY_STOPCD, [11] = KEY_PLAYPAUSE, }; static void report_key(struct input_dev *input, unsigned keycode) { dev_dbg(input->dev.parent, "report key %#x\n", keycode); input_report_key(input, keycode, 1); input_sync(input); input_report_key(input, keycode, 0); input_sync(input); } /* Poll for key changes * * Read Application keys via SMI * A (0x4), B (0x8), Internet (0x2), Email (0x1). * * CD keys: * Forward (0x100), Rewind (0x200), Stop (0x400), Pause (0x800) */ static void apanel_poll(struct input_dev *idev) { struct apanel *ap = input_get_drvdata(idev); u8 cmd = device_chip[APANEL_DEV_APPBTN] == CHIP_OZ992C ? 0 : 8; s32 data; int i; data = i2c_smbus_read_word_data(ap->client, cmd); if (data < 0) return; /* ignore errors (due to ACPI??) */ /* write back to clear latch */ i2c_smbus_write_word_data(ap->client, cmd, 0); if (!data) return; dev_dbg(&idev->dev, APANEL ": data %#x\n", data); for (i = 0; i < idev->keycodemax; i++) if ((1u << i) & data) report_key(idev, ap->keymap[i]); } static int mail_led_set(struct led_classdev *led, enum led_brightness value) { struct apanel *ap = container_of(led, struct apanel, mail_led); u16 led_bits = value != LED_OFF ? 0x8000 : 0x0000; return i2c_smbus_write_word_data(ap->client, 0x10, led_bits); } static int apanel_probe(struct i2c_client *client) { struct apanel *ap; struct input_dev *idev; u8 cmd = device_chip[APANEL_DEV_APPBTN] == CHIP_OZ992C ? 0 : 8; int i, err; ap = devm_kzalloc(&client->dev, sizeof(*ap), GFP_KERNEL); if (!ap) return -ENOMEM; idev = devm_input_allocate_device(&client->dev); if (!idev) return -ENOMEM; ap->idev = idev; ap->client = client; i2c_set_clientdata(client, ap); err = i2c_smbus_write_word_data(client, cmd, 0); if (err) { dev_warn(&client->dev, "smbus write error %d\n", err); return err; } input_set_drvdata(idev, ap); idev->name = APANEL_NAME " buttons"; idev->phys = "apanel/input0"; idev->id.bustype = BUS_HOST; memcpy(ap->keymap, apanel_keymap, sizeof(apanel_keymap)); idev->keycode = ap->keymap; idev->keycodesize = sizeof(ap->keymap[0]); idev->keycodemax = (device_chip[APANEL_DEV_CDBTN] != CHIP_NONE) ? 12 : 4; set_bit(EV_KEY, idev->evbit); for (i = 0; i < idev->keycodemax; i++) if (ap->keymap[i]) set_bit(ap->keymap[i], idev->keybit); err = input_setup_polling(idev, apanel_poll); if (err) return err; input_set_poll_interval(idev, POLL_INTERVAL_DEFAULT); err = input_register_device(idev); if (err) return err; if (device_chip[APANEL_DEV_LED] != CHIP_NONE) { ap->mail_led.name = "mail:blue"; ap->mail_led.brightness_set_blocking = mail_led_set; err = devm_led_classdev_register(&client->dev, &ap->mail_led); if (err) return err; } return 0; } static void apanel_shutdown(struct i2c_client *client) { struct apanel *ap = i2c_get_clientdata(client); if (device_chip[APANEL_DEV_LED] != CHIP_NONE) led_set_brightness(&ap->mail_led, LED_OFF); } static const struct i2c_device_id apanel_id[] = { { "fujitsu_apanel", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, apanel_id); static struct i2c_driver apanel_driver = { .driver = { .name = APANEL, }, .probe = apanel_probe, .shutdown = apanel_shutdown, .id_table = apanel_id, }; /* Scan the system ROM for the signature "FJKEYINF" */ static __init const void __iomem *bios_signature(const void __iomem *bios) { ssize_t offset; const unsigned char signature[] = "FJKEYINF"; for (offset = 0; offset < 0x10000; offset += 0x10) { if (check_signature(bios + offset, signature, sizeof(signature)-1)) return bios + offset; } pr_notice(APANEL ": Fujitsu BIOS signature '%s' not found...\n", signature); return NULL; } static int __init apanel_init(void) { void __iomem *bios; const void __iomem *p; u8 devno; unsigned char i2c_addr; int found = 0; bios = ioremap(0xF0000, 0x10000); /* Can't fail */ p = bios_signature(bios); if (!p) { iounmap(bios); return -ENODEV; } /* just use the first address */ p += 8; i2c_addr = readb(p + 3) >> 1; for ( ; (devno = readb(p)) & 0x7f; p += 4) { unsigned char method, slave, chip; method = readb(p + 1); chip = readb(p + 2); slave = readb(p + 3) >> 1; if (slave != i2c_addr) { pr_notice(APANEL ": only one SMBus slave " "address supported, skipping device...\n"); continue; } /* translate alternative device numbers */ switch (devno) { case 6: devno = APANEL_DEV_APPBTN; break; case 7: devno = APANEL_DEV_LED; break; } if (devno >= APANEL_DEV_MAX) pr_notice(APANEL ": unknown device %u found\n", devno); else if (device_chip[devno] != CHIP_NONE) pr_warn(APANEL ": duplicate entry for devno %u\n", devno); else if (method != 1 && method != 2 && method != 4) { pr_notice(APANEL ": unknown method %u for devno %u\n", method, devno); } else { device_chip[devno] = (enum apanel_chip) chip; ++found; } } iounmap(bios); if (found == 0) { pr_info(APANEL ": no input devices reported by BIOS\n"); return -EIO; } return i2c_add_driver(&apanel_driver); } module_init(apanel_init); static void __exit apanel_cleanup(void) { i2c_del_driver(&apanel_driver); } module_exit(apanel_cleanup); MODULE_AUTHOR("Stephen Hemminger <[email protected]>"); MODULE_DESCRIPTION(APANEL_NAME " driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("dmi:*:svnFUJITSU:pnLifeBook*:pvr*:rvnFUJITSU:*"); MODULE_ALIAS("dmi:*:svnFUJITSU:pnLifebook*:pvr*:rvnFUJITSU:*");
linux-master
drivers/input/misc/apanel.c
// SPDX-License-Identifier: GPL-2.0-only /* * Texas Instruments' Palmas Power Button Input Driver * * Copyright (C) 2012-2014 Texas Instruments Incorporated - http://www.ti.com/ * Girish S Ghongdemath * Nishanth Menon */ #include <linux/bitfield.h> #include <linux/init.h> #include <linux/input.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/mfd/palmas.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/slab.h> #define PALMAS_LPK_TIME_MASK 0x0c #define PALMAS_PWRON_DEBOUNCE_MASK 0x03 #define PALMAS_PWR_KEY_Q_TIME_MS 20 /** * struct palmas_pwron - Palmas power on data * @palmas: pointer to palmas device * @input_dev: pointer to input device * @input_work: work for detecting release of key * @irq: irq that we are hooked on to */ struct palmas_pwron { struct palmas *palmas; struct input_dev *input_dev; struct delayed_work input_work; int irq; }; /** * struct palmas_pwron_config - configuration of palmas power on * @long_press_time_val: value for long press h/w shutdown event * @pwron_debounce_val: value for debounce of power button */ struct palmas_pwron_config { u8 long_press_time_val; u8 pwron_debounce_val; }; /** * palmas_power_button_work() - Detects the button release event * @work: work item to detect button release */ static void palmas_power_button_work(struct work_struct *work) { struct palmas_pwron *pwron = container_of(work, struct palmas_pwron, input_work.work); struct input_dev *input_dev = pwron->input_dev; unsigned int reg; int error; error = palmas_read(pwron->palmas, PALMAS_INTERRUPT_BASE, PALMAS_INT1_LINE_STATE, &reg); if (error) { dev_err(input_dev->dev.parent, "Cannot read palmas PWRON status: %d\n", error); } else if (reg & BIT(1)) { /* The button is released, report event. */ input_report_key(input_dev, KEY_POWER, 0); input_sync(input_dev); } else { /* The button is still depressed, keep checking. */ schedule_delayed_work(&pwron->input_work, msecs_to_jiffies(PALMAS_PWR_KEY_Q_TIME_MS)); } } /** * pwron_irq() - button press isr * @irq: irq * @palmas_pwron: pwron struct * * Return: IRQ_HANDLED */ static irqreturn_t pwron_irq(int irq, void *palmas_pwron) { struct palmas_pwron *pwron = palmas_pwron; struct input_dev *input_dev = pwron->input_dev; input_report_key(input_dev, KEY_POWER, 1); pm_wakeup_event(input_dev->dev.parent, 0); input_sync(input_dev); mod_delayed_work(system_wq, &pwron->input_work, msecs_to_jiffies(PALMAS_PWR_KEY_Q_TIME_MS)); return IRQ_HANDLED; } /** * palmas_pwron_params_ofinit() - device tree parameter parser * @dev: palmas button device * @config: configuration params that this fills up */ static void palmas_pwron_params_ofinit(struct device *dev, struct palmas_pwron_config *config) { struct device_node *np; u32 val; int i, error; static const u8 lpk_times[] = { 6, 8, 10, 12 }; static const int pwr_on_deb_ms[] = { 15, 100, 500, 1000 }; memset(config, 0, sizeof(*config)); /* Default config parameters */ config->long_press_time_val = ARRAY_SIZE(lpk_times) - 1; np = dev->of_node; if (!np) return; error = of_property_read_u32(np, "ti,palmas-long-press-seconds", &val); if (!error) { for (i = 0; i < ARRAY_SIZE(lpk_times); i++) { if (val <= lpk_times[i]) { config->long_press_time_val = i; break; } } } error = of_property_read_u32(np, "ti,palmas-pwron-debounce-milli-seconds", &val); if (!error) { for (i = 0; i < ARRAY_SIZE(pwr_on_deb_ms); i++) { if (val <= pwr_on_deb_ms[i]) { config->pwron_debounce_val = i; break; } } } dev_info(dev, "h/w controlled shutdown duration=%d seconds\n", lpk_times[config->long_press_time_val]); } /** * palmas_pwron_probe() - probe * @pdev: platform device for the button * * Return: 0 for successful probe else appropriate error */ static int palmas_pwron_probe(struct platform_device *pdev) { struct palmas *palmas = dev_get_drvdata(pdev->dev.parent); struct device *dev = &pdev->dev; struct input_dev *input_dev; struct palmas_pwron *pwron; struct palmas_pwron_config config; int val; int error; palmas_pwron_params_ofinit(dev, &config); pwron = kzalloc(sizeof(*pwron), GFP_KERNEL); if (!pwron) return -ENOMEM; input_dev = input_allocate_device(); if (!input_dev) { dev_err(dev, "Can't allocate power button\n"); error = -ENOMEM; goto err_free_mem; } input_dev->name = "palmas_pwron"; input_dev->phys = "palmas_pwron/input0"; input_dev->dev.parent = dev; input_set_capability(input_dev, EV_KEY, KEY_POWER); /* * Setup default hardware shutdown option (long key press) * and debounce. */ val = FIELD_PREP(PALMAS_LPK_TIME_MASK, config.long_press_time_val) | FIELD_PREP(PALMAS_PWRON_DEBOUNCE_MASK, config.pwron_debounce_val); error = palmas_update_bits(palmas, PALMAS_PMU_CONTROL_BASE, PALMAS_LONG_PRESS_KEY, PALMAS_LPK_TIME_MASK | PALMAS_PWRON_DEBOUNCE_MASK, val); if (error) { dev_err(dev, "LONG_PRESS_KEY_UPDATE failed: %d\n", error); goto err_free_input; } pwron->palmas = palmas; pwron->input_dev = input_dev; INIT_DELAYED_WORK(&pwron->input_work, palmas_power_button_work); pwron->irq = platform_get_irq(pdev, 0); if (pwron->irq < 0) { error = pwron->irq; goto err_free_input; } error = request_threaded_irq(pwron->irq, NULL, pwron_irq, IRQF_TRIGGER_HIGH | IRQF_TRIGGER_LOW | IRQF_ONESHOT, dev_name(dev), pwron); if (error) { dev_err(dev, "Can't get IRQ for pwron: %d\n", error); goto err_free_input; } error = input_register_device(input_dev); if (error) { dev_err(dev, "Can't register power button: %d\n", error); goto err_free_irq; } platform_set_drvdata(pdev, pwron); device_init_wakeup(dev, true); return 0; err_free_irq: cancel_delayed_work_sync(&pwron->input_work); free_irq(pwron->irq, pwron); err_free_input: input_free_device(input_dev); err_free_mem: kfree(pwron); return error; } /** * palmas_pwron_remove() - Cleanup on removal * @pdev: platform device for the button * * Return: 0 */ static int palmas_pwron_remove(struct platform_device *pdev) { struct palmas_pwron *pwron = platform_get_drvdata(pdev); free_irq(pwron->irq, pwron); cancel_delayed_work_sync(&pwron->input_work); input_unregister_device(pwron->input_dev); kfree(pwron); return 0; } /** * palmas_pwron_suspend() - suspend handler * @dev: power button device * * Cancel all pending work items for the power button, setup irq for wakeup * * Return: 0 */ static int palmas_pwron_suspend(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct palmas_pwron *pwron = platform_get_drvdata(pdev); cancel_delayed_work_sync(&pwron->input_work); if (device_may_wakeup(dev)) enable_irq_wake(pwron->irq); return 0; } /** * palmas_pwron_resume() - resume handler * @dev: power button device * * Just disable the wakeup capability of irq here. * * Return: 0 */ static int palmas_pwron_resume(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct palmas_pwron *pwron = platform_get_drvdata(pdev); if (device_may_wakeup(dev)) disable_irq_wake(pwron->irq); return 0; } static DEFINE_SIMPLE_DEV_PM_OPS(palmas_pwron_pm, palmas_pwron_suspend, palmas_pwron_resume); #ifdef CONFIG_OF static const struct of_device_id of_palmas_pwr_match[] = { { .compatible = "ti,palmas-pwrbutton" }, { }, }; MODULE_DEVICE_TABLE(of, of_palmas_pwr_match); #endif static struct platform_driver palmas_pwron_driver = { .probe = palmas_pwron_probe, .remove = palmas_pwron_remove, .driver = { .name = "palmas_pwrbutton", .of_match_table = of_match_ptr(of_palmas_pwr_match), .pm = pm_sleep_ptr(&palmas_pwron_pm), }, }; module_platform_driver(palmas_pwron_driver); MODULE_ALIAS("platform:palmas-pwrbutton"); MODULE_DESCRIPTION("Palmas Power Button"); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Texas Instruments Inc.");
linux-master
drivers/input/misc/palmas-pwrbutton.c
// SPDX-License-Identifier: GPL-2.0-only /* * m68k beeper driver for Linux * * Copyright (c) 2002 Richard Zidlicky * Copyright (c) 2002 Vojtech Pavlik * Copyright (c) 1992 Orest Zborowski */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/input.h> #include <linux/platform_device.h> #include <asm/machdep.h> #include <asm/io.h> MODULE_AUTHOR("Richard Zidlicky <[email protected]>"); MODULE_DESCRIPTION("m68k beeper driver"); MODULE_LICENSE("GPL"); static struct platform_device *m68kspkr_platform_device; static int m68kspkr_event(struct input_dev *dev, unsigned int type, unsigned int code, int value) { unsigned int count = 0; if (type != EV_SND) return -1; switch (code) { case SND_BELL: if (value) value = 1000; case SND_TONE: break; default: return -1; } if (value > 20 && value < 32767) count = 1193182 / value; mach_beep(count, -1); return 0; } static int m68kspkr_probe(struct platform_device *dev) { struct input_dev *input_dev; int err; input_dev = input_allocate_device(); if (!input_dev) return -ENOMEM; input_dev->name = "m68k beeper"; input_dev->phys = "m68k/generic"; input_dev->id.bustype = BUS_HOST; input_dev->id.vendor = 0x001f; input_dev->id.product = 0x0001; input_dev->id.version = 0x0100; input_dev->dev.parent = &dev->dev; input_dev->evbit[0] = BIT_MASK(EV_SND); input_dev->sndbit[0] = BIT_MASK(SND_BELL) | BIT_MASK(SND_TONE); input_dev->event = m68kspkr_event; err = input_register_device(input_dev); if (err) { input_free_device(input_dev); return err; } platform_set_drvdata(dev, input_dev); return 0; } static int m68kspkr_remove(struct platform_device *dev) { struct input_dev *input_dev = platform_get_drvdata(dev); input_unregister_device(input_dev); /* turn off the speaker */ m68kspkr_event(NULL, EV_SND, SND_BELL, 0); return 0; } static void m68kspkr_shutdown(struct platform_device *dev) { /* turn off the speaker */ m68kspkr_event(NULL, EV_SND, SND_BELL, 0); } static struct platform_driver m68kspkr_platform_driver = { .driver = { .name = "m68kspkr", }, .probe = m68kspkr_probe, .remove = m68kspkr_remove, .shutdown = m68kspkr_shutdown, }; static int __init m68kspkr_init(void) { int err; if (!mach_beep) { printk(KERN_INFO "m68kspkr: no lowlevel beep support\n"); return -ENODEV; } err = platform_driver_register(&m68kspkr_platform_driver); if (err) return err; m68kspkr_platform_device = platform_device_alloc("m68kspkr", -1); if (!m68kspkr_platform_device) { err = -ENOMEM; goto err_unregister_driver; } err = platform_device_add(m68kspkr_platform_device); if (err) goto err_free_device; return 0; err_free_device: platform_device_put(m68kspkr_platform_device); err_unregister_driver: platform_driver_unregister(&m68kspkr_platform_driver); return err; } static void __exit m68kspkr_exit(void) { platform_device_unregister(m68kspkr_platform_device); platform_driver_unregister(&m68kspkr_platform_driver); } module_init(m68kspkr_init); module_exit(m68kspkr_exit);
linux-master
drivers/input/misc/m68kspkr.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) 2011 Bosch Sensortec GmbH * Copyright (c) 2011 Unixphere * * This driver adds support for Bosch Sensortec's digital acceleration * sensors BMA150 and SMB380. * The SMB380 is fully compatible with BMA150 and only differs in packaging. * * The datasheet for the BMA150 chip can be found here: * http://www.bosch-sensortec.com/content/language1/downloads/BST-BMA150-DS000-07.pdf */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/i2c.h> #include <linux/input.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/slab.h> #include <linux/pm.h> #include <linux/pm_runtime.h> #include <linux/bma150.h> #define ABSMAX_ACC_VAL 0x01FF #define ABSMIN_ACC_VAL -(ABSMAX_ACC_VAL) /* Each axis is represented by a 2-byte data word */ #define BMA150_XYZ_DATA_SIZE 6 /* Input poll interval in milliseconds */ #define BMA150_POLL_INTERVAL 10 #define BMA150_POLL_MAX 200 #define BMA150_POLL_MIN 0 #define BMA150_MODE_NORMAL 0 #define BMA150_MODE_SLEEP 2 #define BMA150_MODE_WAKE_UP 3 /* Data register addresses */ #define BMA150_DATA_0_REG 0x00 #define BMA150_DATA_1_REG 0x01 #define BMA150_DATA_2_REG 0x02 /* Control register addresses */ #define BMA150_CTRL_0_REG 0x0A #define BMA150_CTRL_1_REG 0x0B #define BMA150_CTRL_2_REG 0x14 #define BMA150_CTRL_3_REG 0x15 /* Configuration/Setting register addresses */ #define BMA150_CFG_0_REG 0x0C #define BMA150_CFG_1_REG 0x0D #define BMA150_CFG_2_REG 0x0E #define BMA150_CFG_3_REG 0x0F #define BMA150_CFG_4_REG 0x10 #define BMA150_CFG_5_REG 0x11 #define BMA150_CHIP_ID 2 #define BMA150_CHIP_ID_REG BMA150_DATA_0_REG #define BMA150_ACC_X_LSB_REG BMA150_DATA_2_REG #define BMA150_SLEEP_POS 0 #define BMA150_SLEEP_MSK 0x01 #define BMA150_SLEEP_REG BMA150_CTRL_0_REG #define BMA150_BANDWIDTH_POS 0 #define BMA150_BANDWIDTH_MSK 0x07 #define BMA150_BANDWIDTH_REG BMA150_CTRL_2_REG #define BMA150_RANGE_POS 3 #define BMA150_RANGE_MSK 0x18 #define BMA150_RANGE_REG BMA150_CTRL_2_REG #define BMA150_WAKE_UP_POS 0 #define BMA150_WAKE_UP_MSK 0x01 #define BMA150_WAKE_UP_REG BMA150_CTRL_3_REG #define BMA150_SW_RES_POS 1 #define BMA150_SW_RES_MSK 0x02 #define BMA150_SW_RES_REG BMA150_CTRL_0_REG /* Any-motion interrupt register fields */ #define BMA150_ANY_MOTION_EN_POS 6 #define BMA150_ANY_MOTION_EN_MSK 0x40 #define BMA150_ANY_MOTION_EN_REG BMA150_CTRL_1_REG #define BMA150_ANY_MOTION_DUR_POS 6 #define BMA150_ANY_MOTION_DUR_MSK 0xC0 #define BMA150_ANY_MOTION_DUR_REG BMA150_CFG_5_REG #define BMA150_ANY_MOTION_THRES_REG BMA150_CFG_4_REG /* Advanced interrupt register fields */ #define BMA150_ADV_INT_EN_POS 6 #define BMA150_ADV_INT_EN_MSK 0x40 #define BMA150_ADV_INT_EN_REG BMA150_CTRL_3_REG /* High-G interrupt register fields */ #define BMA150_HIGH_G_EN_POS 1 #define BMA150_HIGH_G_EN_MSK 0x02 #define BMA150_HIGH_G_EN_REG BMA150_CTRL_1_REG #define BMA150_HIGH_G_HYST_POS 3 #define BMA150_HIGH_G_HYST_MSK 0x38 #define BMA150_HIGH_G_HYST_REG BMA150_CFG_5_REG #define BMA150_HIGH_G_DUR_REG BMA150_CFG_3_REG #define BMA150_HIGH_G_THRES_REG BMA150_CFG_2_REG /* Low-G interrupt register fields */ #define BMA150_LOW_G_EN_POS 0 #define BMA150_LOW_G_EN_MSK 0x01 #define BMA150_LOW_G_EN_REG BMA150_CTRL_1_REG #define BMA150_LOW_G_HYST_POS 0 #define BMA150_LOW_G_HYST_MSK 0x07 #define BMA150_LOW_G_HYST_REG BMA150_CFG_5_REG #define BMA150_LOW_G_DUR_REG BMA150_CFG_1_REG #define BMA150_LOW_G_THRES_REG BMA150_CFG_0_REG struct bma150_data { struct i2c_client *client; struct input_dev *input; u8 mode; }; /* * The settings for the given range, bandwidth and interrupt features * are stated and verified by Bosch Sensortec where they are configured * to provide a generic sensitivity performance. */ static const struct bma150_cfg default_cfg = { .any_motion_int = 1, .hg_int = 1, .lg_int = 1, .any_motion_dur = 0, .any_motion_thres = 0, .hg_hyst = 0, .hg_dur = 150, .hg_thres = 160, .lg_hyst = 0, .lg_dur = 150, .lg_thres = 20, .range = BMA150_RANGE_2G, .bandwidth = BMA150_BW_50HZ }; static int bma150_write_byte(struct i2c_client *client, u8 reg, u8 val) { s32 ret; /* As per specification, disable irq in between register writes */ if (client->irq) disable_irq_nosync(client->irq); ret = i2c_smbus_write_byte_data(client, reg, val); if (client->irq) enable_irq(client->irq); return ret; } static int bma150_set_reg_bits(struct i2c_client *client, int val, int shift, u8 mask, u8 reg) { int data; data = i2c_smbus_read_byte_data(client, reg); if (data < 0) return data; data = (data & ~mask) | ((val << shift) & mask); return bma150_write_byte(client, reg, data); } static int bma150_set_mode(struct bma150_data *bma150, u8 mode) { int error; error = bma150_set_reg_bits(bma150->client, mode, BMA150_WAKE_UP_POS, BMA150_WAKE_UP_MSK, BMA150_WAKE_UP_REG); if (error) return error; error = bma150_set_reg_bits(bma150->client, mode, BMA150_SLEEP_POS, BMA150_SLEEP_MSK, BMA150_SLEEP_REG); if (error) return error; if (mode == BMA150_MODE_NORMAL) usleep_range(2000, 2100); bma150->mode = mode; return 0; } static int bma150_soft_reset(struct bma150_data *bma150) { int error; error = bma150_set_reg_bits(bma150->client, 1, BMA150_SW_RES_POS, BMA150_SW_RES_MSK, BMA150_SW_RES_REG); if (error) return error; usleep_range(2000, 2100); return 0; } static int bma150_set_range(struct bma150_data *bma150, u8 range) { return bma150_set_reg_bits(bma150->client, range, BMA150_RANGE_POS, BMA150_RANGE_MSK, BMA150_RANGE_REG); } static int bma150_set_bandwidth(struct bma150_data *bma150, u8 bw) { return bma150_set_reg_bits(bma150->client, bw, BMA150_BANDWIDTH_POS, BMA150_BANDWIDTH_MSK, BMA150_BANDWIDTH_REG); } static int bma150_set_low_g_interrupt(struct bma150_data *bma150, u8 enable, u8 hyst, u8 dur, u8 thres) { int error; error = bma150_set_reg_bits(bma150->client, hyst, BMA150_LOW_G_HYST_POS, BMA150_LOW_G_HYST_MSK, BMA150_LOW_G_HYST_REG); if (error) return error; error = bma150_write_byte(bma150->client, BMA150_LOW_G_DUR_REG, dur); if (error) return error; error = bma150_write_byte(bma150->client, BMA150_LOW_G_THRES_REG, thres); if (error) return error; return bma150_set_reg_bits(bma150->client, !!enable, BMA150_LOW_G_EN_POS, BMA150_LOW_G_EN_MSK, BMA150_LOW_G_EN_REG); } static int bma150_set_high_g_interrupt(struct bma150_data *bma150, u8 enable, u8 hyst, u8 dur, u8 thres) { int error; error = bma150_set_reg_bits(bma150->client, hyst, BMA150_HIGH_G_HYST_POS, BMA150_HIGH_G_HYST_MSK, BMA150_HIGH_G_HYST_REG); if (error) return error; error = bma150_write_byte(bma150->client, BMA150_HIGH_G_DUR_REG, dur); if (error) return error; error = bma150_write_byte(bma150->client, BMA150_HIGH_G_THRES_REG, thres); if (error) return error; return bma150_set_reg_bits(bma150->client, !!enable, BMA150_HIGH_G_EN_POS, BMA150_HIGH_G_EN_MSK, BMA150_HIGH_G_EN_REG); } static int bma150_set_any_motion_interrupt(struct bma150_data *bma150, u8 enable, u8 dur, u8 thres) { int error; error = bma150_set_reg_bits(bma150->client, dur, BMA150_ANY_MOTION_DUR_POS, BMA150_ANY_MOTION_DUR_MSK, BMA150_ANY_MOTION_DUR_REG); if (error) return error; error = bma150_write_byte(bma150->client, BMA150_ANY_MOTION_THRES_REG, thres); if (error) return error; error = bma150_set_reg_bits(bma150->client, !!enable, BMA150_ADV_INT_EN_POS, BMA150_ADV_INT_EN_MSK, BMA150_ADV_INT_EN_REG); if (error) return error; return bma150_set_reg_bits(bma150->client, !!enable, BMA150_ANY_MOTION_EN_POS, BMA150_ANY_MOTION_EN_MSK, BMA150_ANY_MOTION_EN_REG); } static void bma150_report_xyz(struct bma150_data *bma150) { u8 data[BMA150_XYZ_DATA_SIZE]; s16 x, y, z; s32 ret; ret = i2c_smbus_read_i2c_block_data(bma150->client, BMA150_ACC_X_LSB_REG, BMA150_XYZ_DATA_SIZE, data); if (ret != BMA150_XYZ_DATA_SIZE) return; x = ((0xc0 & data[0]) >> 6) | (data[1] << 2); y = ((0xc0 & data[2]) >> 6) | (data[3] << 2); z = ((0xc0 & data[4]) >> 6) | (data[5] << 2); x = sign_extend32(x, 9); y = sign_extend32(y, 9); z = sign_extend32(z, 9); input_report_abs(bma150->input, ABS_X, x); input_report_abs(bma150->input, ABS_Y, y); input_report_abs(bma150->input, ABS_Z, z); input_sync(bma150->input); } static irqreturn_t bma150_irq_thread(int irq, void *dev) { bma150_report_xyz(dev); return IRQ_HANDLED; } static void bma150_poll(struct input_dev *input) { struct bma150_data *bma150 = input_get_drvdata(input); bma150_report_xyz(bma150); } static int bma150_open(struct input_dev *input) { struct bma150_data *bma150 = input_get_drvdata(input); int error; error = pm_runtime_get_sync(&bma150->client->dev); if (error < 0 && error != -ENOSYS) return error; /* * See if runtime PM woke up the device. If runtime PM * is disabled we need to do it ourselves. */ if (bma150->mode != BMA150_MODE_NORMAL) { error = bma150_set_mode(bma150, BMA150_MODE_NORMAL); if (error) return error; } return 0; } static void bma150_close(struct input_dev *input) { struct bma150_data *bma150 = input_get_drvdata(input); pm_runtime_put_sync(&bma150->client->dev); if (bma150->mode != BMA150_MODE_SLEEP) bma150_set_mode(bma150, BMA150_MODE_SLEEP); } static int bma150_initialize(struct bma150_data *bma150, const struct bma150_cfg *cfg) { int error; error = bma150_soft_reset(bma150); if (error) return error; error = bma150_set_bandwidth(bma150, cfg->bandwidth); if (error) return error; error = bma150_set_range(bma150, cfg->range); if (error) return error; if (bma150->client->irq) { error = bma150_set_any_motion_interrupt(bma150, cfg->any_motion_int, cfg->any_motion_dur, cfg->any_motion_thres); if (error) return error; error = bma150_set_high_g_interrupt(bma150, cfg->hg_int, cfg->hg_hyst, cfg->hg_dur, cfg->hg_thres); if (error) return error; error = bma150_set_low_g_interrupt(bma150, cfg->lg_int, cfg->lg_hyst, cfg->lg_dur, cfg->lg_thres); if (error) return error; } return bma150_set_mode(bma150, BMA150_MODE_SLEEP); } static int bma150_probe(struct i2c_client *client) { const struct bma150_platform_data *pdata = dev_get_platdata(&client->dev); const struct bma150_cfg *cfg; struct bma150_data *bma150; struct input_dev *idev; int chip_id; int error; if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) { dev_err(&client->dev, "i2c_check_functionality error\n"); return -EIO; } chip_id = i2c_smbus_read_byte_data(client, BMA150_CHIP_ID_REG); if (chip_id != BMA150_CHIP_ID) { dev_err(&client->dev, "BMA150 chip id error: %d\n", chip_id); return -EINVAL; } bma150 = devm_kzalloc(&client->dev, sizeof(*bma150), GFP_KERNEL); if (!bma150) return -ENOMEM; bma150->client = client; if (pdata) { if (pdata->irq_gpio_cfg) { error = pdata->irq_gpio_cfg(); if (error) { dev_err(&client->dev, "IRQ GPIO conf. error %d, error %d\n", client->irq, error); return error; } } cfg = &pdata->cfg; } else { cfg = &default_cfg; } error = bma150_initialize(bma150, cfg); if (error) return error; idev = devm_input_allocate_device(&bma150->client->dev); if (!idev) return -ENOMEM; input_set_drvdata(idev, bma150); bma150->input = idev; idev->name = BMA150_DRIVER; idev->phys = BMA150_DRIVER "/input0"; idev->id.bustype = BUS_I2C; idev->open = bma150_open; idev->close = bma150_close; input_set_abs_params(idev, ABS_X, ABSMIN_ACC_VAL, ABSMAX_ACC_VAL, 0, 0); input_set_abs_params(idev, ABS_Y, ABSMIN_ACC_VAL, ABSMAX_ACC_VAL, 0, 0); input_set_abs_params(idev, ABS_Z, ABSMIN_ACC_VAL, ABSMAX_ACC_VAL, 0, 0); if (client->irq <= 0) { error = input_setup_polling(idev, bma150_poll); if (error) return error; input_set_poll_interval(idev, BMA150_POLL_INTERVAL); input_set_min_poll_interval(idev, BMA150_POLL_MIN); input_set_max_poll_interval(idev, BMA150_POLL_MAX); } error = input_register_device(idev); if (error) return error; if (client->irq > 0) { error = devm_request_threaded_irq(&client->dev, client->irq, NULL, bma150_irq_thread, IRQF_TRIGGER_RISING | IRQF_ONESHOT, BMA150_DRIVER, bma150); if (error) { dev_err(&client->dev, "irq request failed %d, error %d\n", client->irq, error); return error; } } i2c_set_clientdata(client, bma150); pm_runtime_enable(&client->dev); return 0; } static void bma150_remove(struct i2c_client *client) { pm_runtime_disable(&client->dev); } static int __maybe_unused bma150_suspend(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct bma150_data *bma150 = i2c_get_clientdata(client); return bma150_set_mode(bma150, BMA150_MODE_SLEEP); } static int __maybe_unused bma150_resume(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct bma150_data *bma150 = i2c_get_clientdata(client); return bma150_set_mode(bma150, BMA150_MODE_NORMAL); } static UNIVERSAL_DEV_PM_OPS(bma150_pm, bma150_suspend, bma150_resume, NULL); static const struct i2c_device_id bma150_id[] = { { "bma150", 0 }, { "smb380", 0 }, { "bma023", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, bma150_id); static struct i2c_driver bma150_driver = { .driver = { .name = BMA150_DRIVER, .pm = &bma150_pm, }, .class = I2C_CLASS_HWMON, .id_table = bma150_id, .probe = bma150_probe, .remove = bma150_remove, }; module_i2c_driver(bma150_driver); MODULE_AUTHOR("Albert Zhang <[email protected]>"); MODULE_DESCRIPTION("BMA150 driver"); MODULE_LICENSE("GPL");
linux-master
drivers/input/misc/bma150.c